

engineering and constructing a better tomorrow

January 31, 2019

Mr. Robert Strang, Project Manager New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233-7013

Subject:2018 Annual Site Activities ReportPrimoshield Incorporated Site, Site No. 633027MACTEC Engineering & Consulting, P.C., Project No. 3612122251

Dear Mr. Strang:

MACTEC Engineering and Consulting, P.C., (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC) is submitting this letter report describing the 2018 site management (SM) activities and observations at the Primoshield Incorporated Site (Site), NYSDEC Site # 633027, located in Utica, New York. This report presents the following:

- Site History
- 2018 Scope of Work
- Institutional Controls / Engineering Controls (IC/ECs)
- Groundwater Collection System Inspections and Operation, Monitoring, and Maintenance (OM&M) Activities
- Long-Term (15 month) Monitoring
- Recommendations for calendar year 2019.

Site History

The Primoshield site, which has a Classification Code of 4 (SM), is a former metal electroplating facility located at 1212 St. Vincent Street (Figure 1). The Site, approximately 2.4 acres in size and bordered by

Conkling Avenue on the Northwest and St. Vincent Street on the south and east, is comprised of four parcels. The City of Utica owns two parcels totaling approximately 0.82 acres; the two parcels are enclosed by a chain link fence. The fenced portion of the Site, designated as 1223 Conkling Avenue (tax map parcel number 41) and as 1212 St. Vincent Street (tax map parcel number 33), is in a mixed commercial/residential area (Figure 2).

The Site's Record of Decision (NYSDEC, 1995) requires a groundwater treatment system to remediate contaminated groundwater by carbon filtration; treated effluent was then discharged to the Publicly Owned Treatment Works (POTW). The remedial system was initially installed for treatment of trichloroethene, 1,1,1-trichloroethane, 1,1-dichloroethane, and chromium in groundwater. Since 2001, however, reported influent concentrations have been below discharge permit levels and carbon filtration treatment is no longer warranted. Currently, water is gravity fed to a collection sump and then pumped and discharged directly to the POTW.

2018 Scope of Work

SM activities conducted in 2018 include: long term groundwater monitoring, semi-annual discharge monitoring, and spring and fall site inspections (MACTEC, 2017). These requirements are summarized in Table 1.

Institutional Controls/ Engineering Controls (IC /EC)

Because contaminated groundwater and soil are present at the site, ICs/ ECs are required to protect human health and the environment. EC systems at the Site include the groundwater collection system (GWCS), site access controls, and groundwater monitoring wells.

Requirements/restrictions (ICs) imposed pursuant to the Site Management Plan (SMP) include:

- access to the site for operation of the GWCS
- prohibition of groundwater extraction for any purpose except for treatment at the GWCS
- prohibition of animal production for human consumption
- prohibition of vegetable gardens onsite unless planted in gardens where soil achieves residential use Soil Cleanup Objectives
- site use is limited to industrial uses only
- site owner(s) must follow the requirements of the SMP

• excavation on the property is prohibited without written permission from the NYSDEC.

The IC/ECs are in place and observations pertaining to them during 2018 are summarized in the following section.

Site Inspections and OM&M Activities

Spring and Fall Inspections

The onsite inspections conducted at the Site on March 28 and on November 28, 2018 are discussed in the March and November 2018 Inspection Reports (MACTEC, 2018b; MACTEC, 2019). Site conditions in 2018 were consistent with observations made in recent years with the exception of the Trench 1 cleanout during the fall inspection. During the November 2018 inspection, the groundwater collection system was found to be in the "off" position upon arrival at the Site. With the collection system inactive shallow groundwater is no longer being captured once the water level in the collection manhole reaches equilibrium with the water table. Once at equilibrium the potential exists for the contaminated groundwater plume on the Site to then migrate and impact the nearest receptors (residences) immediately to the northeast of the Site.

The system was turned to the "auto" mode and allowed to run for one hour prior to discharge sampling. The system was left running for the duration of the inspection visit. However, silty water was observed upwelling near the Trench 1 cleanout on the southwest corner of the Site (Fall Inspection Report Attachment 1 photo log, photos 9 and 10 [MACTEC, 2019]). The cause of the water upwelling was not apparent at the time of the inspection. The system was shut off prior to leaving the Site to prevent surface ponding with potential overland flow to neighboring properties and/or along St. Vincent Street. The issue was further investigated in a subsequent visit in December 2018.

A monitoring well inventory was conducted during the 2018 semi-annual inspections. Monitoring wells were observed to be in generally good condition and functional. Four wells were observed to be in need of repairs; the observation is consistent with previous inspections (MACTEC 2018a).

Spring and Fall 2018 Inspection Findings:

• the northernmost cleanout (Trench 2, Cleanout 5) will not close due to settlement of the protective road-box and surrounding concrete

- the top rail of fence is unattached along the north-central site area where the fence height changes
- monitoring well P-107S is loose and tilting with a cracked and broken concrete collar; monitoring wells P-107D, P-106S, and P-106D are also loose
- loose and/or damaged barbed wire was observed in two areas of the fencing
- vegetation including young trees is encroaching on the perimeter fence in several locations
- silty water was observed upwelling near the Trench 1 cleanout on the southwest corner of the Site during the fall inspection; the cause of the upwelling was not apparent at the time of inspection.

Additional Inspection Activities

Because of the upwelling water observed during the 2018 fall inspection, a follow-up GWCS evaluation was performed during a December 20, 2018 Site visit by representatives from MACTEC and the NYSDEC. During the visit a Site walkthrough was completed to document static conditions with the system off. This evaluation included a visual inspection and measurement of water in the trench collection manhole, the POTW sanitary sewer manhole located in St. Vincent Street, and the collection sump inside the treatment building. Once the initial inspection was completed, the system was reactivated to its 'auto" mode. With the system activated the following were observed:

- lowering of the water level in the building sump and in the collection manhole
- visible discharge of water through the sanitary sewer manhole
- no visible daylighting of water at any of the three collection trenches.

These observations indicated that the system was performing as designed. A sewer tape with an endoscopic camera was advanced into the cleanout at the end of Trench 1. The video taken with the camera was inconclusive as to the condition of the perforated collection pipe entering the cleanout. The sewer tape was then advanced 45 linear feet into the Trench 1 collection pipe and no obstructions were encountered.

The system was observed for three hours under pumping conditions and no further indications of upwelling water were observed on Site. The system was left in its "auto" run mode upon leaving the Site and will be re-assessed during the spring 2019 inspection and/or on an as needed basis. The root cause or duration of the system shutdown between the spring and fall inspection currently remains unknown.

Semiannual Discharge Monitoring

Samples of the treatment system effluent were collected during each of the semiannual Site inspections from the discharge sampling port inside the onsite treatment building. Samples were submitted to ALS laboratory for the following analysis: volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) method 624, metals (cadmium, chromium, copper, nickel, lead, and zinc) by USEPA method 200.7, cyanide by USEPA method 9012B and pH by method 4500. The field data record collection forms, laboratory reports of analysis and chain of custody records are included with the 2018 site inspection reports (MACTEC 2018b; MACTEC, 2019). Results are presented in the following table and demonstrate that concentrations remain below the POTW discharge criteria.

POLLUTANT/PARAMETER	POTW Limit	March Results	November Results
Totalizer Reading	NA	4,370,492	4,445,400
Total Flow, gal/day	NA	3,871**	306**
pН	5.0-12.5	7.5	7.1
Cadmium, mg/L	1	0.005 U	0.005 U
Chromium, mg/L	5	0.01 U	0.01 U
Copper, mg/L	3	0.02 U	0.02 U
Lead, mg/L	5	0.05 U	0.05 U
Nickel, mg/L	2	0.04 U	0.04 U
Zinc, mg/L	4	0.02 U	0.02 U
Cyanide, mg/L	3	0.01 U	0.01 U
Total VOCs, mg/L	2.0*	0.0102	0.02594

Semiannual Discharge Analytical Results March and November 2018

mg/L = milligrams per liter.

*Total VOCs is the sum of detected VOCs.

Bold results indicate the parameter was detected.

U = not detected; value represents the sample quantitation limit.

** = Average flow based on totalizer reading and days between measurements.

The system was turned off sometime between the spring and fall inspections which resulted in an approximately 12% reduction in the volume of water collected compared to the period between fall 2017 and spring 2018.

Maintenance Activities:

Per the recommendation in the 2017 Periodic Review Report (MACTEC, 2018a), locks were installed on all well casings except for GW-01 which is secured with a road box.

Long Term Monitoring (LTM)

Groundwater Elevation Monitoring

Groundwater elevations were measured in March and November 2018 and compared to historical groundwater elevations (Table 2). Water levels measured were similar to historical measurements and reflected typical seasonal variation for the region.

Long Term Monitoring Sampling and Analysis

Samples were collected from seven monitoring wells during the LTM event in March 2018 in accordance with the sampling and analysis plan summarized in Table 3. The samples were collected using low flow procedures and the field data records are provided in Attachment 1. These samples were submitted to ALS laboratory for VOCs, pH and metals analysis. Samples from selected wells were also analyzed for emerging contaminants 1,4-dioxane and per-and polyfluoroalkyl substances (PFAS) at the request of the NYSDEC and submitted to Test America Laboratory for analysis. 1,4-Dioxane and PFAS samples were collected from three wells (P-105. P-106S and P-106D); GW-01 was also sampled for 1,4-dioxane. The Category A data validation review conducted for the LTM analytical data is provided in Attachment 2. Results for contaminants detected in one or more samples are summarized in Table 4.

Concentrations of trichloroethene and nickel in shallow groundwater collected from monitoring well P-107S exceeded Class GA standards (Figure 3). Presence of three PFAS compounds were detected in P-107S, and presence of one PFAS compound was detected in P-105 and P-106D. The combined concentration of Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) for P-107S were detected below the current USEPA health advisory of 70 parts per thousand (ppt) and the New York State Department of Health proposed Maximum Contaminant Level of 10 ppt. These two compounds were not detected in P-105 or P-106D. All samples collected were non-detect for 1,4dioxane.

Trend plots (i.e., concentration vs time plots) were prepared for Site contaminants of concern detected in monitoring wells for the period beginning December 2011 and ending November 2018 (Attachment 3).

The next LTM event is scheduled for June 2019.

Conclusions and Recommendations

The Site's groundwater collection system had been turned off at some point between the spring and fall inspections. After the system was restarted during the November fall inspection water was observed upwelling near or at the Trench 1 cleanout prompting shutdown of the system for further evaluation. The evaluation of the system in December did not identify the same problem and it appeared the system was functioning properly. The system was returned to its previous automated operational status upon the conclusion of the December inspection.

Semiannual discharge samples were collected as part of the spring and fall Site inspections and results indicate detectable levels of total VOCs; however, results were below the POTW allowable discharge limits of the permit. Inspections and discharge monitoring are recommended to continue on a semi-annual basis. Fence and well inspections show deterioration, however, they are generally in the same condition as observed in previous inspections.

Based on the inspections conducted in 2018, there has not been a change in property use, and the Site is in compliance with the ICs.

Recommended maintenance activities for 2019 are as follows:

- the system discharge lines should be jetted and flushed to remove sediment or potential blockage
- young trees observed along the fence perimeter should be removed at the roots to prevent further damage.
- other vegetation impinging on the perimeter fences should be removed.
- well casings for P-106S, P-106D, P-107S, and P-107D should be re-grouted to stabilize them in the well pad.
- the top of the northernmost cleanout in Trench 2 should be trimmed down to allow the cover to sit securely.

Additional inspections of the GWCS are recommended prior to the spring inspection to ensure the system is running properly and the upwelling at the cleanout on Trench 1 has not reoccurred.

Page 7 of 9

• the top of the northernmost cleanout in Trench 2 should be trimmed down to allow the cover to sit securely.

Additional inspections of the GWCS are recommended prior to the spring inspection to ensure the system is running properly and the upwelling at the cleanout on Trench 1 has not reoccurred.

Recommended maintenance activities will be coordinated with the spring 2019 inspection.

Please feel free to contact us if you have any questions at 207-775-5401.

Sincerely,

MACTEC Engineering & Consulting, P.C.

Jean Firth, PG

Project Manager

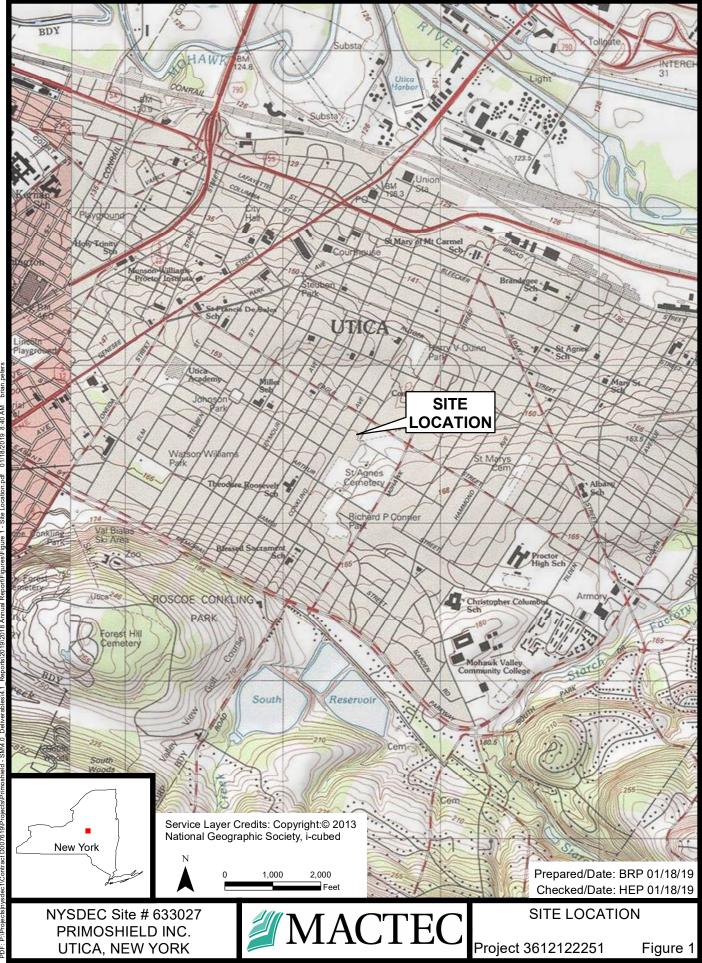
Mark Stelmack, PE

Associate Engineer

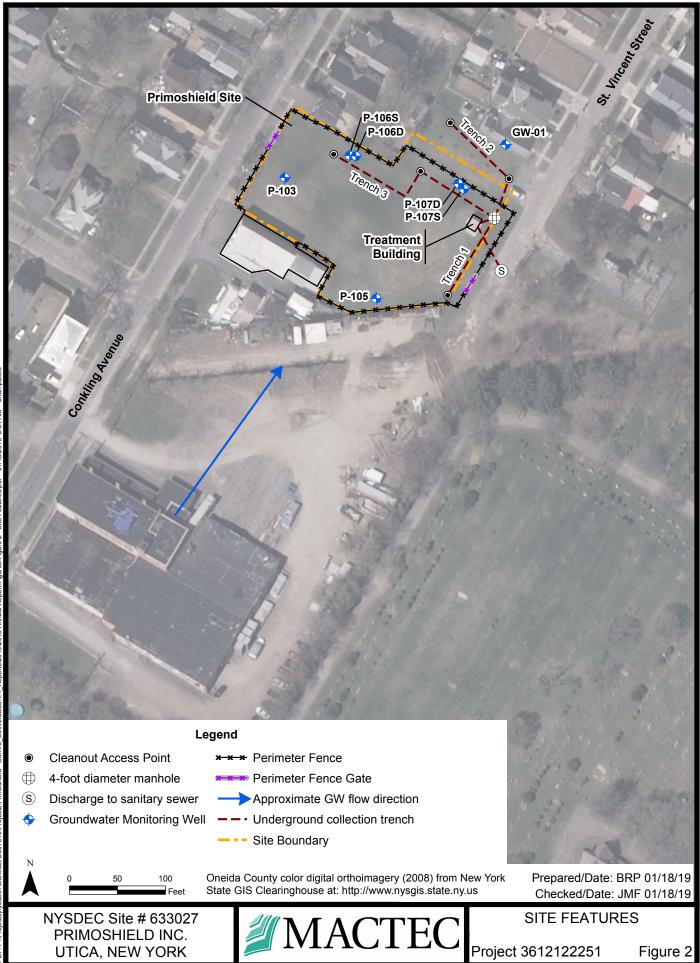
Enclosures (10)	
Figure 1:	Site Location
Figure 2:	Site Features
Figure 3:	Exceedances of Class GA Groundwater Standards, March 2018
Table 1:	Site Management Requirements
Table 2:	Summary of Groundwater Measurements
Table 3:	Sampling and Analysis Plan
Table 4:	Long Term Monitoring Summary of Compounds Detected - March 2018
Table 5:	Summary of Compounds Detected at GW-01 2015 to 2018
Attachment 1:	Field Data Records – March 2018 LTM

Attachment 2: Category A Data Validation Report

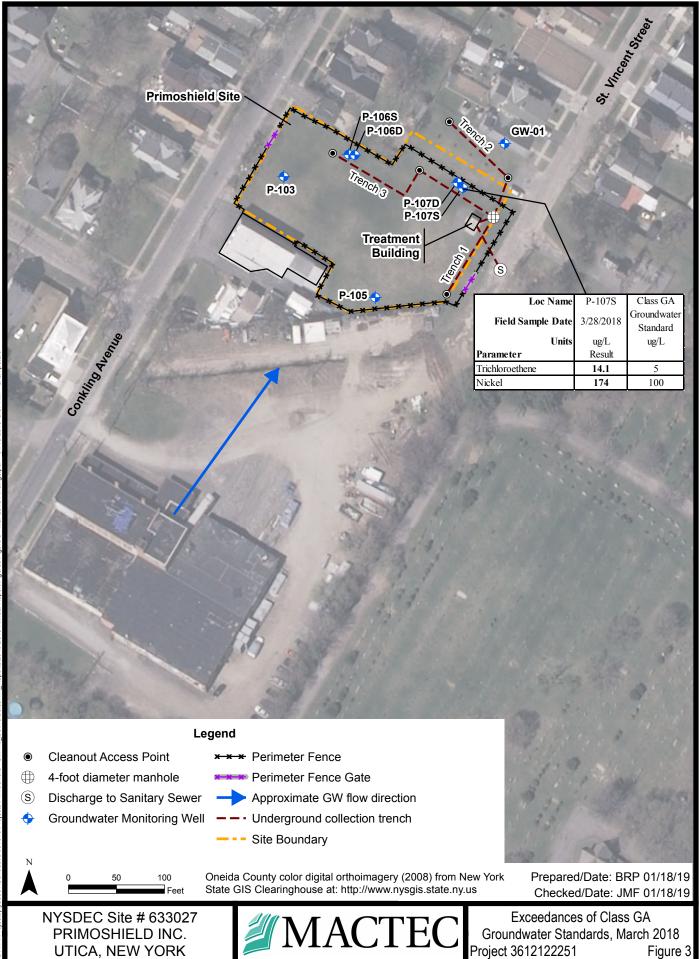
Page 8 of 9


REFERENCES

MACTEC Engineering and Consulting, P.C. (MACTEC), 2017. Site Management Plan Revision 1, Primoshield, Incorporated Site No.: 633027. March 2017.


MACTEC, 2018a. 2017 Periodic Review Report, 2018. January 2018.

- MACTEC, 2018b. March 2018 Site Inspection Report, Primoshield, Incorporated Site No.: 633027. May 2018.
- MACTEC, 2019. November 2018 Site Inspection Report, Primoshield, Incorporated Site No.: 633027. January 2019.
- New York State Department of Environmental Conservation (NYSDEC), 1995. Record of Decision, Primoshield Plating Site, Site Number 633027, City of Utica, Oneida County, New York, March 2995.


FIGURES

SiteLocation.mxd 1/18/2019 8:40 AM shield s\GIS\Map[ables\4.5_Data Deliv Incorporated 4.0 P:\Projects|nysdec1\Contracts D004434 and D00444\projects\Primoshield, oiects\nysdec1\Contract D007619\Projects\Primoshield - SM44__Deliverable PDF

1/Contracts D004434 and D004444/projects/Primoshield, Incorporated/4.0_Deliverables/4.5_Databases/GIS/MapDocuments/Site_Features 8.5x11P.mxd tract D007619Projects/Primoshield - SMN4.0_Deliverables/4.1_Reports/2019/2018 Annual Report/Figures/Figure 2 - Site Features.pdf _0178/2019 8:34 AM t: P:\Projects|nysdec Docu

TABLES

Table 1: Site Management Requirements

(Inspection and Long Term Monitoring)

Component	Action	Required Frequency
	TREATMENT SYSTEM	
Treatment System	Inspection	Semi-annually in spring and summer
Effluent	Grab sample	Semi-annually in spring and summer
	ENVIRONMENTAL MONITORIN	G
Groundwater Monitoring Program	n	
7 monitoring locations	Low flow sampling	Every 15 months (June 2019)
Groundwater Monitoring System	Inspection	Every 15 months (June 2019)

Table 2: Summary of Groundwater Measurements

	Course 1	Estimated	Stickup	TOCA	Darath da	12/20/2011		12/11/2012				6/23/2014	6/23/2014			12/19/2016	12/19/2016		10/23/2017			11/28/2018	
	Ground Elevation	Measurement Point Elevation	on	TOR	Depth to BOW	Water Level	Water Elevation	Water Level	Water Elevation														
Well ID	(feet msl)	(feet msl)	(feet)	(feet)	(feet TOR)	(feet TOR)	(feet msl)	(feet TOR)	(feet msl)														
P-103	521.8	524.3	2.8	0.34	18.1	7.04	517.22	6.74	517.52	6.77	517.49	7.07	517.19	8.47	515.79	6.7	517.56	8.65	515.61	5.96	518.30	5.95	518.31
P-105	522.7	525.1	2.9	0.48	18.2	4.75	520.37	3.85	521.27	4.35	520.77	4.57	520.55	5.3	519.82	4.21	520.91	4.97	520.15	3.98	521.14	3.81	521.31
P-106-S	521.1	524.8	4.0	0.27	18.5	7.38	517.45	5.81	519.02	6.62	518.21	7.92	516.91	9.98	514.85	6.36	518.47	9.87	514.96	5.78	519.05	5.00	519.83
P-106-D	520.8	524.3	3.9	0.39	77.6	28.81	495.50	29.11	495.20	28.73	495.58	28.97	495.34	29.16	495.15	29.54	494.77	29.15	495.16	29.15	495.16	28.11	496.20
P-107-S	519.4	522.1	2.9	0.21	17.2	6.43	515.66	4.89	517.20	6.43	515.66	8.11	513.98	10.17	511.92	6.06	516.03	10.19	511.90	6.13	515.96	4.39	517.70
P-107-D	519.3	522.0	3.2	0.50	77.7	29.28	492.72	29.57	492.43	29.13	492.87	29.45	492.55	29.56	492.44	30.04	491.96	29.56	492.44	29.65	492.35	28.57	493.43
GW-01	517*	517.0	0	0.41	17.5	NA	NA	4.56	512.44	5.39	511.61	3.76	513.24	NM	NM								

Notes:

1) Ground Elevation from monitoring well logs included in Monitoring Plan for Primoshield Plating January 2004

2) Measurement Point Elevation calculated using the ground elevation and field measurements of casing stickup and the distance from the top of riser to the top of casing; therefore, the water elevations are approximate

3) NM = Not measured

4) NA = Not applicable

5) msl = Mean sea level

6) TOC = Top of casing $\frac{1}{2}$

7) TOR = Top of riser

8) Ground surface and well measurement point elevations for GW-01 are estimated

*- estimated based on site survey.

January	2019
Junuary	2017

Table 3: Sampling and Analysis Plan

Performance Monitoring - Semi-Annual												
Sample Locations	pH (SM 4500-H+) Metals (200.7)* Cyanide (9012B)	VOC (624)										
Effluent	X	X										
Monito	oring Wells - 15 Month	**										
Sample Locations	Metals (6010B)	VOC (8260B)										
P-103	Х	Х										
P-105	Х	Х										
P-106S	Х	Х										
P-106D	Х	Х										
P-107S	Х	Х										
P-107D	Х	Х										
GW-01	Х	Х										

Notes:

*- Cadmium, chromium, copper, lead, nickel and zinc.

An 'X' marked in a column indicates the analysis to be performed for that sample location. VOCs = Volatile Organic Compounds

**-Samples collected in March 2018; next groundwater monitoring event is June 2019.

Table 4: Long Term Monitoring Summary of Compounds Detected - March 2018

				Locati	on Name	GW	/-01	P-	103	P-	105	P-106	D	P-1	06S	P-1	07D	P-1	107S
				San	nple Date	3/27/	2018	3/27	/2018	3/27	//2018	3/27/20	18	3/27	/2018	3/28	/2018	3/28	3/2018
				S	ample ID	663027	- GW01	66302	7 - P103	66302	7 - P105	663027 - P	106D	663027	- P106S	663027	- P107D	663027	′ - P107S
					Qc Code	F	S]	FS]	FS	FS	FS		TS	H	FS]	FS
Parameter	HA	MCL	GA	GV	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result (Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,4-Dioxane SW8260C-SIM																			
1,4-Dioxane	NS	NS	NS	NS	μg/L	0.4	U			0.4	U	0.4 U		0.4	U				
PFCs Modified 537																			
Perfluorooctanoic acid (PFOA)	70	10	NS	NS	ng/L					2	2 U	2 U		2	U				
Perfluorooctanesulfonic acid (PFOS)	70	10	NS	NS	ng/L					2	2 U	2 U		0.66	J				
Sum PFOA and PFOS	70	10	NS	NS	ng/L					2	U	2 U		0.66	J				
Perfluorobutanesulfonic acid (PFBS)	NS	NS	NS	NS	ng/L					2	2 U	2 U		0.38	J				
Perfluorobutanoic acid (PFBA)	NS	NS	NS	NS	ng/L					0.55	5 J	0.6 J		1	J				
Volatile Organic Compounds SW826	C																		
1,1,1-Trichloroethane	NS	NS	5	NS	μg/L	0.5	J	2.1		1	U	1 U		1	U	1	U	0.44	J
1,1-Dichloroethane	NS	NS	5	NS	μg/L	1	U	1	U	1	U	1 U		1	U	1	U	0.32	J
Trichloroethene	NS	NS	5	NS	μg/L	1	U	0.8 4	J	1	U	1 U		1	U	1	U	7.1	
Metals (Total) SW6010C																			
Chromium	NS	NS	50	NS	μg/L			10	U	10) U	1.7 J		10	U	10	U	2.4	J
Nickel	NS	NS	100	NS	μg/L			40	U	40	U	40 U		40	U	40	U	174	l .

Notes:

Only compounds detected shown

HA = EPA 2016 Revised Health Advisory

MCL = Maximum Contamination Level, proposed by NYSDOH

GA = NYS Class GA groundwater quality standard Part 703

GV = NYS Guidance Value

Shaded = Result exceeds HA, GA, or GV standard

Bold = contaminant detected

J = result estimated

U = not detected

NS= No standard

 $\mu g/L = micrograms per liter$

ng/L = nanograms per liter

FS = field sample

Table 5: Summary of Compounds Detected at GW-01 2015 to 2018

	Location Name			ation Name	GW	-01	GW	V-01	GW	-01	GW	7-01	GW	/-01	GW	-01	GW	V-01
	•		Sample Date	9/10/	2015	5/4/	2016	6/28/	2016	7/20/	2016	9/13/2016		12/20	/2016	3/27	/2018	
	•		Sample ID	633027	'GW01	633027GW01		GW	-01	GW	7-01	GW	/-01	633027	'GW01	633027	- GW01	
	Qc Code H		S	FS		FS		FS		FS		FS		F	7S			
Parameter	HA	GA	GV	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Organic Compo	unds SV	V8260C																
1,1,1-Trichloroethane	NS	5	NS	μg/L	1	UJ	1.4		0.36	J	0.49	J	0.38	J	1.4		0.5	J
1,1-Dichloroethane	NS	5	NS	μg/L	1	UJ	0.63	0.63 J		1 U		1 U		1 U		J	1	U

Notes:

Only compounds detected shown

HA = EPA 2016 Revised Health Advisory

GA = NYS Class GA groundwater quality standard Part 703

GV = NYS Guidance Value

Bold = contaminant detected

J = result estimated

U = not detected

 $\mu g/L = micrograms per liter$

FS = field sample

ATTACHMENT 1

FIELD DATA RECORDS – MARCH 2018 LTM

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING	JOB NUMBER 3612122251-04.****
PROJECT NYSDEC Primoshield Inc. FIELD SAMPLE NUMBER 633027-G-W01	
SITE ID (MW) P- GWO1 SITE TYPE WELL	DATE 3/26/18
ACTIVITY START 18.15 (3/26) 16:40 (3/37) SAMPLE TIME 12:43	
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT PROTECTIVE	CASING/WELL (), 48
INITIAL DEPTH TO WATER 3.76 FT TOP OF WELL RISER CASING STICKUP (FROM GROUND)	WELL
FINAL DEPTH DRY FT WELL DEPTH TORN IF. AMBIENT AIR MM PPN	M DIAM. IN IN WELL INTERGRITY:
DRAWDOWN VOLUME DRY GAL SCREEN 10 FT PID WELL LENGTH 10 FT MOUTH	YES NO N/A
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF DRAWDOWN VOLUME PRESSURE TO TOTAL VOLUME PURGED TO PUMP	
TOTAL VOL. PURGED J. 47 GAL DR.J. REFILL (purge volume (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) REFILL N.A	
PURGE DATA PURGE RATE TEMP (°C) SP. CONDUCT. pH (units) DISS. O2 TURBIDITY REDOX	
DEPTH TO (mL/min) (+/- 3 degrees) (mS/cm) (+/- 0.1 (mg/L) (ntu) (mv) TIME WATER (ft) (mL/min) (+/- 3 degrees) (+/- 3%) units) (+/- 10%) (+/- 10%) (+/- 10%) (+/- 10%)	COMMENTS
18:17 3.76 600 NM > >999 NM	PURGING TO DRY
18:27 WELL RAN DRY, WILL RETURN TOMORROW TO CO	
12:37 4.19 150 RETURN TO WELL TO STABILIZE AND COLE	GSAMPLES(3/27)
12:42 7.81 150 8:16 0:637 7.09 4:63 888 1335	
12:52 8.25 150 7.96 0.571 7.08 7.00 641 131.4 12:57 8.92 150 7.99 0.544 7.05 7.19 438 131.0	CONT. PLRGE FOR TURB
12:57 8.92 150 7.99 0.544 7.05 7.19 438 131.0 13:02 9.70 150 8.02 0.537 7.074 7.01 260 131.4	
13:07 11.00 150 7.74 0.541 7.03 7.24 2999 131.8	
13:12-TURBIDITO INCREASING, METER CANT FIT DOWN WOL	W/HDRE, PAUSE
- FOR RECHARGE	
16:07 598 140 RETURN TO CHECK RECHARGE TURBIDITY	TO DETERMINE
	<u> </u>
16:17 860 718 39 8:39 0.572 7.24 8:09 806 961	
16:22 9.10 140 8.26 0.524 6.99 8.31 134 94.1	
16:27 9.85 140 7.99 0.513 7.01 8.39 113 96.5	KUMP STALLED, HAD TO INCREM
16:32 12.69 190 7.99 0.508 6.99 8.11 657 102.	PURE PATE
16:37 NM* 180 8.02 0.510 7.03 793 975 104.0	
16:38 WELL RAN DRY, TURBIDITY <50 NEVER REACHE	D. METALS & PFAS
- WILL NOT BE COLLECTED IN THIS EVENT.	
8.0 0.510 1.9 1.9 980 100	
EQUIPMENT DOCUMENTATION	
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL	TYPE OF BLADDER MATERIAL
GEOPUMP (peristaltic)	TEFLON OTHER
ANALYTICAL PARAMETERS METHOD PRESERVATION VOLUME SAMPL	E
NUMBER METHOD REQUIRED COLLEC	
VOC 8260B HCl to pH <2 2 x 40ml TAL METALS (Cd, Cr, Cu, Pb, Ni, Zn) 6010B/7470A/7141A HNO3 to pH <2	NOT SAMPLOD
TAL METALS (Dissolved) 6010B/7470A/7141A HNO3 to pH <2 500 ml poly	Field Filtered
PEAS PECIDA (MW) 317 PEB Stundard hist 9°C 1×230, ML STUDIOXANE PECIDA (MW) 4°C, HOL 1×40, ML	
	~
NOTES: LOCATION SKETCH	P-1065
DUE TO TURBIDITO, PEAS & METALS	- A Tranch -
COLLD NOT BE COLLECTED	Trench 9
	P-107D P-1078
1.37gal -> 3/26 1.37gal -> B:12	Treatment Trench 1
0.595gel -> 16:38 the clifeded by	7 18
THE AMERICAN	1 mil 3
SIGNATURE: CITY III III	P-105

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING			JOB NUMBER	36121222	251-04.****
PROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	IPLE NUMBE	R 633	1027-P	103	2.9		
SITE ID	(MW)	P- 103			SITE TYP	E WEL			DATE	3/20	18
ACTIVITY	START 10	25 EN	0 11:55	SAMPLE TI	ME	11:47	3			27	
CONTRACTOR STORES	EVEL / PUMP S		То	REMENT POINT P OF WELL RISER	1210222550	PROTECTIVE CASING STIC	CKUP	.81 FT	CASING / WEI DIFFER.	0.3	33 FT
INITIAL DEF TO WAT	TER 5.0	76		P OF PROTECTIVE	CASING	(FROM GROU		· 8/ FT	WELL DIAM.	2	IN
FINAL DEF TO WAT		.71	(TOR) FT	18.0	OFT	AMBIENT AIF	R NM	РРМ		GRITY:	IN
DRAWDO VOLU		28	SCREE LENGTI		FT	PID WELL MOUTH	NM	PPM	CAP CASING	KES NO	-NA B
(initial - f	final x 0.16 {2-inc	h} or x 0.65 {4-in	ch}) RATIO	OF DRAWDOWN V OTAL VOLUME PUF		PRESSURE TO PUMP	NA	PSI	LOCKED		
TOTAL V PURG	GED 2		GAL	0 - 134 tes) x 0.00026 gal/mi	Illiliter)	REFILL SETTING	N	A	DISCHARGE	N	A
PURGE DA				SP. CONDUCT.	pH (units)	DISS. O2	TURBIDITY	REDOX			<u></u>
TIME	DEPTH TO WATER (ft)	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(mg/L) (+/- 10%)	(ntu) (+/- 10% <10	(mv) (+/- 10 mv)		COMMENTS	0
			-MM-						RECENC	5 TO DA	LEB-
10:32	6.14	115	BEGIN	PURGE		110	1.0	10	\rightarrow		
10:57	7.34	115	6.04	0.462	7.29	6.60	5.09	121.4			
11:07	7.42	115	5.96	0.755	7.27	6.48	1.83	124,5			
11:12	7.48	115	5.89	0#53	7.28	6.53	1.47	125.2			
11:17	7.56	115	6.12 -	0.452	7.28	6.38	2.02	125.5			
11:22	7.45	115	6.056	12 0:453	7.27	6.44	0.96	126.1			
11:27	7.55	115	5.79	0.456	7.20	6.63	1.45	127.1			
11:32	7.60	115	5.93	0.457	7.26	6.38	1.78	127.7			
11:37	7.66	115	5.97	0.459	7.26	6.36	1.17	128.0			
11:42	7.71	115	6,14	0.462	7.26	6.31	1.21	1286			
11:43	-W	ELL ST	ABLE,	Collect	SAMI	PLES-					
					C	0					
						C					
										12.00 14	5
			6.0	0.460	7.3	63	1.2	130			
EQUIPMEN TYPE OF			TYPE OF TUBIN	IG	TYP	E OF PUMP M			TYPE OF BLA	DDER MATER	IAI
GE GE	OPUMP (peristal			ITY POLYETHYLEN		STAINLESS			TEFLON		
ANALYTIC	AL PARAMETE	ERS	MET	THOD	PRES	ERVATION	VOLUME	SAMPLI	E	SCC31112-24	
Voc	;		NUN 8260	<u>MBER</u>)B		ETHOD to pH <2	3 2 x 40ml	COLLECT	<u>ED</u>		
	METALS (Cd, C		(i) Alternative)B/7470A/7141A	HNC	3 to pH <2	125 500 ml poly	X	Field Filtered		
	METALS (Dissol	ived)	0010)B/7470A/7141A	HNC	3 to pH <2	500 ml poly	. 🛏	Field Filtered		
					-			-	1		
NOTES:	£12					LOCATION	SKETCH	1	P-1065	1	
5galet	6.5000							7		Traich	GW-01
								5	Trench 3	A	Tes
				hacked b	8			P-103		07D 1073	>
		1 5	\sim (hollow					Treatm	ling X	Trench 1
	1	IK	2 1	Jali ho	1	Silve 1		1 Barrow	7	11	s
SIGNATURE	7	VX	11	A.H.K	1 4	1 -111-			Andre In		No. of Street
		1						P. Delman 24		Street of the second	and the second

										D 2612122	251-04.****	
FIELD	DATA REC	ORD - LO	N FLOW C	GROUNDWA	TER SAI	MPLING	- 17 - 01	-	JOB NUMBE	:R 3612122	251-04.	
PROJECT	NYSDEC Primos	hield Inc.		FIELD SAMP	LE NUMBER	633	027-P/c	55	8		102	
SITE ID	(MW)	P- 105 -			SITE TYPE	-			DATE	3/20	18	
ACTIVITY	START 16	15 BEND	10:22(3/	27 SAMPLE TIN	AE	10:03						
A SPECIAL STRUCTURE	VEL / PUMP SI	the second se		REMENT POINT		PROTECTIVE			CASING / W DIFFER.	ELL 0.4	18 FT	
INITIAL DEI		00		OF WELL RISER	CASING	CASING STIC (FROM GROU		D FT	WELL			
TO WA		.90	FT WELL D	FPTH CLARE		PID	A		DIAM.	1	- IN	
FINAL DE	ртн -1	05	(TOR)	1810	FT	AMBIENT AIR	NA	∧ PPM	WELL INTE	RGRITY:		
TO WA	TER 1	.05	FT SCREEM			PID WELL	NA	A PPM	CAP	YES NO	ANAC	3
DRAWDO VOLU		491	LENGTH GAL		FT	MOUTH	107	1 111	CASING	X I	-00	
(initial -	final x 0.16 {2-inc		ch)) RATIO	OF DRAWDOWN VO OTAL VOLUME PUF		PRESSURE TO PUMP	NA	PSI	LOCKED	文 二		
TOTAL	VOL.	2 291 (TOTA		0.025					DISCHARG	SE		
DUD	OFD T		GALL I	tes) x 0.00026 gal/mi	lliliter)	REFILL	NA		SETTING		IA	
	21.0.1.			SP. CONDUCT.	pH (units)	DISS. O2	TURBIDITY	REDOX]			
PURGE D	DEPTH TO	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(mg/L) (+/- 10%)	(ntu) (+/- 10% <10	(mv) (+/- 10 mv)	_	COMMENT	S	
TIME	WATER (ft)	750	NM-	(+/- 3%)	dinto/	(1/-10/0)	<u></u>	->	PURGI	ING TO	DRY	
16:22		750	NM-			\rightarrow	3.90	NM			-	1
16:42	9.85	750	NM			>	3.85	NM				4
17:32	12.50	750	NM			\rightarrow	4.52	NM		0000		1 x-
17:50		750	NM	WELL AP	PEARS	TOBE	Zeinas	eins,	STUP	press	1211	6.03
08:4		125	RETURN					FLOW	10	DURE	(3/27/)	3)
09:02	110	125	4.74	0.863	7.32	3.01	235.5	16.20		x/TURBIDIT	J SWITCHO	P
69.07		125	4.62	0.850	7-34	3.45	228,0	10,10				-
09.12		125	5.05	0.853	7.37	3.39	214.70	-8:20	-			-
09:17	6.23	125	5.31	0.854	7.37		216.70					-
09:22		125	5,49	0:853	7.37	2,78		7,79				
09:23	+ 6,60	125	5.63	0.852	7.37		184.24	10.51		+		-
09:32		125	5.81	0.851	7.37	2,66	178.50	7.12		V		1
08:3	the second se	125	5.81	0.853	7.37		166.0	1430	FILM	(OLLMNS		1
09:42	6.94	125	5.90	0.853	7.37		5.35	129.1			GO RATE	Mour
09:4		115	6:23	0.854	7.35	251	4.71	125,0			FROMSUL	N
09:52		115	6.00	0.851	7.38	2:48	3.70	120.3				
09:53	7 7.01	115	5.98	0.849	7.40	2.40		117.3				
09.10	-	11	6.10			- 10	51.50		-		Contraction of the second s	
10:03	Well :	STABLE,	COLLECT	SINGHLE	2	-			-Ce	PA.	7	
		ITATION	C	0,850	14	7.4	3.4	120				-
EQUIPN	ENT DOCUMEN	NTATION	TYPE OF TUE	BING	STREET AND ADDREET AND ADDREET	PE OF PUMP			TYPE OF TEFLON	BLADDER MA	TERIAL	
N'	GEOPUMP (peris	staltic)		HOPE	ENE	STAINLES	SSTEEL	F	OTHER			
	QED BLADDER	TEDO	OTHER_	11210					- 10			1.1
ANALY	FICAL PARAME	TERS		ETHOD		ESERVATION METHOD	VOLUM	E SAMI	PLE CTED		343	
X	VOC			UMBER 260B	HC	CI to pH <2	3 2 x 40ml	1	Y			
	TAL METALS (Co	i, Cr, Cu, Pb, Ni,		010B/7470A/7141A 010B/7470A/7141A		NO3 to pH <2 NO3 to pH <2	バステ 500 ml pc 参 500 ml pc		Field Filt	ered	12	
	PEAS	solved) PFL_TI	(aum)-AC	537 PRAS Sh	maulist	4°C	2×2	SOML D	$\langle \rangle$	1. In.	1.6 5	
	1,4 Dioxan		-	82 60 C.SIM	(muo) -	4°C, Hil	1 × 40	me p	×.		· ·	
			-	a and a second	T	LOCATIO	N SKETCH	he.		1065	6955 J	
NOTES	11.50					LOCATIO	i oneron	Y	X	P-106D	GW-01	
10 1 1/	16:50						e	1	Trench		rench 2	
17 11	alapa	n(3/1)		Υ.	land			SP-10	24/20	P-1070	1	
14.10	egal pro	1 (3/22	1	N. Mala	1-3					P-1073	- Trench 1	
2,23	egal piper	0 1-1-1	-	LHULW	1	1	lix			Building	IV	
		018		ñ 1. 1	FT	414	1110	100	1		15	
	4	LH	2-	- that a	XY	1000		201	-	(1	1
SIGNAT		-14		10.0	14			Martin.	AT LEY	P.105	Stational Solution	
										<i>N</i> :		
	(D. Jacobield	CWI OWELOW	xlsx/LF PRIMOS	HIELD						14	3/22/2018	<u>.</u>

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			JOB NUMBER 3612122	2251-04.****
PROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	IPLE NUMBE	R 6330	027-P10	65		
SITE ID	(MW)	P- 1065			SITE TYP				DATE 3/26 - 3/	27/18
ACTIVITY	START 3 34 14	r 1630 EN	03/27/18/14	145 SAMPLET	IME /	440				
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT		PROTECTIVE			CASING/WELL 0. 6	10
INITIAL DEF		78'	ТО	P OF WELL RISER P OF PROTECTIVE		CASING STIC (FROM GROU		/ FT	and the second sec	FT FT
TO WAT	TER J.	10	FT WELL D	EPTH LCC IN	~]	PID			WELL 2=	IN
FINAL DEF	TER 6,	36	FT (TOR)	18.4	FT	AMBIENT AIF	2	PPM	WELL INTERGRITY:	
DRAWDO			SCREE LENGT		FT	PID WELL MOUTH		PPM	YES NO	N/A
VOLU			GAL	OF DRAWDOWN V		PRESSURE			CASING A	
			тот	OTAL VOLUME PUI	1 TATE I AND TO A TATE A	TO PUMP		- PSI	COLLAR	
TOTAL V PURG	SED 612.		GAL 2.1			REFILL		_	DISCHARGE	
		per minute) x tim	ne duration (minu	tes) x 0.00026 gal/m		SETTING			SETTING	
PURGE DA	DEPTH TO	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCT. (mS/cm)	pH (units) (+/- 0.1	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)		
TIME	WATER (ft)		(+/- 3 degrees)	(+/- 3%)	units)	(+/- 10%)	(+/- 10% <10	(+/- 10 mv)	COMMENTS	11
1635	5.78	3/26/18	ruged	6 gallin	- da	1				Hower
3/2-7/18	and the second s	Resure	punger	H. Ceum	0132	2			a la la	1
1328	6.78	190	6.7	0.455	7.3	9.4	4.1	-38	popper on y og	quin
1335	6.86	135	6.4	0.446	7.3	9.5	4.6	-18		
1340	4.94	140	6.4	0,443	7.3	9.4	3.8	-12		
1345	6.01	140	6.3	0.441	7.3	9.2	3.1	-1		
1355	6.12	130	6.2	0.439	7.3	9.1	3,2	12		
1400	6.21	140	6.1	0.439	7.3	9.1	2.6	19		
1405	6.27	140	6.1	0.437	7.3	9.1	2.3	24		
1410	6.28	130	6.0	0,436	7.3	8.9	2.1	29		
1415	6.33	140	6.0	0.435	7.3	8.8	2.6	33		
1420	6.36	140	6.0	0.434	7.3	8.8	1.8	36		
				/	-					
			/							
			la	0.930	72	9.8	18	40		
EQUIPMEN	T DOCUMENT	ATION	V	01 130	1.0	91.2	1.9	10		
TYPE OF	FPUMP		TYPE OF TUBIN				Contraction of the second		TYPE OF BLADDER MATE	RIAL
	OPUMP (perista DBLADDER	uc)	K OTHER H	ITY POLYETHYLEN		STAINLESS	STEEL		OTHER	
ANALYTICA	AL PARAMETE	RS	MET	HOD	DDCS	ERVATION	VOLUME	SAMOU	-	
NVOC				IBER	M	ERVATION ETHOD opH <2	VOLUME REQUIRED 32 x 40ml	SAMPLI COLLECT		
TAL	METALS (Cd, C) 6010	B/7470A/7141A	HNO	3 to pH <2 1	5 500 ml poly	X		
关节	METALS (Dissol 714-5	PPC_1DI	4-(M000+	18/7470A/7141A	51 . 4	3 to pH <2	500 ml poly	n to	Field Filtered	
14	-Divxan		® Ht	10 - 51M (MO)	113 正	4	LAYOW	1 IA		
NOTES:			0 + (0)	2-3109 (000		LOCATION	SKETCH		(P-1065)	
101201					0			Y	P-106D	GW-01
						5191561	1. Hle losse concrete	1	Trench 3	2
						Ilar	SWORF(9 P-103	P-107D P-1073	1
				cluberty	M	1		and a	Treatment	Trench 1
	1	\wedge	10 1	D HIL	U	1. W. R.		here 7	Building	X
		12. 11	1 h	hun	Y	Mið		A C	hand	3
SIGNATURE	Huy	naw	<u> </u>			la a ca		in the	P-105	10 485
) (]	l	V							

4-Primoshield GW LOWFLOW.xlsx/LF PRIMOSHIELD

FIELD	DATA REC	ORD - LO	W FLOW	GROUNDWA	ATER SA	MPLING			JOB NUMBER 3612122251-04.****
PROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	IPLE NUMBE	R 6330	7- P1061	D	Page lot2
SITE ID	(MW)	P- 060			SITE TYP	E WEL	L		DATE 3/26-3/27/18
ACTIVITY	START 1650) 3/2418 ENI	01600 3/27/18	SAMPLE T	IME	1540	31271.8		
	EVEL / PUMP S		MEASU	REMENT POINT	A Designation of the local distance of the l	PROTECTIVE			CASING/WELL 020
INITIAL DE	PTH			P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROU		0 FT	DIFFER. 0.39 FT
TO WA	TER 29	.15	FT WELL C			PID			WELL J- IN
FINAL DE TO WA		1.6 TUP 01	(TOR)	77,	SOFT	AMBIENT AIF	2	- PPM	
81501038		. o proop	SCREE			PID WELL		- 0014	YES NO N/A
DRAWDO VOLU	JME 0.10		GAL		FT	MOUTH		PPM	CASING A
DURING L	final x 0.16 {2-inc .ວພງໆປະບຸ	h} or x 0.65 {4-in		OF DRAWDOWN V OTAL VOLUME PUI		PRESSURE TO PUMP	30 -	- PSI	
TOTAL	1014	5= 14.5 0		and the fact that the second		REFILL			DISCHARGE
PUR (purge v			ne duration (minu	tes) x 0.00026 gal/m	illiliter)	SETTING	13 —		SETTING 7
PURGE D		PURGE RATE	TEMP. (°C)	SP. CONDUCT.	pH (units)	DISS. O2	TURBIDITY	REDOX	
TIME	DEPTH TO WATER (ft)	(mL/min)	(+/- 3 degrees)	(mS/cm) (+/- 3%)	(+/- 0.1 units)	(mg/L) (+/- 10%)	(ntu) (+/- 10% <10	(mv) (+/- 10 mv)	COMMENTS
1703	29,15	STWFF	meni	The Jorner	1	0			
1712	55.10	/	<i>v</i>		1. 1				5. Gullons
1734	73,00	Α	,	· · · · · · · · · · · · · · · · · · ·		~			10 Gulling
1740	Punge	lto in	11	mp (=	0		1 02	0	1000
	Puteda	DPEt	1	low sup	ean T	ULS W	the ppo	the	Studiler pup
3/27/48	and It	1 10	,	V					1
0435	30.80	80	port pry	01552	819	10.2	87	-78	
0945	31.46	200	815	0.536	9.1	8.5	103	-118	
0455	31.39	105	7.5	0:522	9.1	7.6	97	-128	
1005	31.54	125	7.5	0.499	9.1	6.2	136	-134	Itaring truthe shluligers
1015	31.28	90	6.9	0.486	9.1	5.5	150	-125	rate.
1075	30.85	60	6.3	0.474	9.1	4.3	129	-130	
1035	30,59	50	6.0	0,472	9.1	2.3	123	-131	
1045	30,52	70	6.1	0.473	9.1	2.4	107	-135	
1055	30.34	50	6.2	01480	9.1	2.2	80	-146	
11.5	30,57	60	6.4	0.489	9.1	2.0	67	-146	
1125	30.64	120	7.3	0.441	9.1	1.9	55	-157	
1135	30.47	50	7.0	0.509	9.0	1.5	52	-153	
1145	30.33	50	7.0	0.504	9.0	1.6	53	-150	
	NT DOCUMENT	ATION	20	01500	90	.16	20	- 170	
	<u>)F PUMP</u> EOPUMP (perista	ltic)		<u>NG</u> SITY POLYETHYLEN		E OF PUMP M STAINLESS	The second s	-	TYPE OF BLADDER MATERIAL
	D BLADDER		OTHER _	+OPE Silas	n'	OTHER		K	OTHER Poly
ANALYTIC	AL PARAMETE	ERS	ME	ГНОД	DDES	ERVATION	VOLUME	SAMPL	/
	0			MBER	M	ETHOD	REQUIRED	COLLECT	ED
	METALS (Cd, C			0B/7470A/7141A	HNC		3⊉ x 40ml 125 [°] 500 ml poly]
	METALS (Disso	lved)	PEC-10	0В/7470А/7141А <u>}-(шоо)</u> РЕНАS Simu	untie HNC	03 to pH <2 °(500 ml poly 2 x 2 50 m		Field Filtered
	1, Presena			OUC-SIM			1×40ml		
							0//27011	1	P.1083
NOTES: U	Vell rech	unge note	=100 ml	Invin I		LOCATION	SKEICH	X	P-1060 6 GW-01
Turb,	chty iss	mes.			Vac -			1	Trench 2
	10			1.0-1	61.6			S P-103	Trench 3 P-107D
			N	Aural				-	P-1078
				that he h		. 6		-	Treatment Trench 1 Building
	Δ	\cap \wedge	N/ r	MAL		141	1	Photo	1 1/2
SIGNATUR	E: DILL	Lul		IL I		1		14	Agreent
SIGNATOR	A	1-amp	1					NO. STORE OF	P-105
	~ 0	V							

4-Primoshield GW LOWFLOW.xlsx/LF PRIMOSHIELD

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER SA	MPLING			JOB NUMB	ER 3612122251-	04.****
PROJECT	NYSDEC Primo	shield Inc.		FIELD SAM	IPLE NUMBE	R 6830	127-P10	60		Page 20f	
SITE ID	(MW)	P-106D			SITE TYP				DATE	3/27/18	
ACTIVITY	START 3/26	81650 ENI	0 1600 3/2	SAMPLE TI	IME	154	0				
	VEL / PUMP S		MEASU	REMENT POINT		PROTECTIVE			CASING / W	/ELL 0.39	
INITIAL DEF	PTH 2		ТО	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC (FROM GROU		U FT			FT
TO WAT	TER A		FT WELL D	EPTH 77,5	5	PID		-	WELL DIAM.	2	IN
FINAL DEF TO WAT		.6 PUMP	(TOR)	17/3	FT	AMBIENT AIF	2	PPM	WELL INTE	RGRITY:	
DRAWDO	WN ON9		SCREE LENGT		FT	PID WELL MOUTH		PPM	CAP	YES NO	N/A
VOLU (initial - f			GAL RATIO	OF DRAWDOWN V	OLUME	PRESSURE			CASING	<u> </u>	
TOTAL V	final x 0.16 {2-inc	and the second and the second and the		OTAL VOLUME PUR	RGED	TO PUMP	30	PSI	- N N 1983 BOD (1893 BB)		
PURG	SED 10+ 7	1.5= 14.5 0		101 4.0	5	REFILL	13		DISCHARG	^E 7	
PURGE DA				tes) x 0.00026 gal/mi SP. CONDUCT.	pH (units)	DISS. O ₂	TURBIDITY	REDOX	1		
	DEPTH TO	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm)	(+/- 0.1 units)	(mg/L)	(ntu) (+/- 10% <10	(mv) (+/- 10 mv)		COMMENTS	
TIME	WATER (ft)	55	7.0	(+/- 3%)	910	(+/-10%) 1,6	51	-147		COMMENTS	
1205	30.7-3	50	7./	0.519	9.0	1.7	43	-145			
1215	30.41	65	7.2	0.525	9.0	1.6	36	-148			
1225	30,48	65	7,5	0.522	9.0	1.4	37	-152			
	30.42	55	7,3	0,523	9.0	1.5	41	-149			
1245	30.38	60	7:3	0.571	9.0	1.5	33	-148			
1305	30.32	50	7,5	0.530	9.0	1.6	30	-148			
1315	30.33	65	7.6	0,541	9.0	1.5	29	-147			
M	vingto	0-1065	Gaing to	(ef P-106	D prey	e into	y to ge	t Jur	healing	helow /	UNTU
11.00							1		1	/	1.
1450							24		Culles	DEC with	5
1512							26		and	Fre sign	ing_
1520							-				
			/								
	/		7	0.546	9.0	15	30	-150			
	T DOCUMENT	ATION		10							
	F PUMP OPUMP (perista	Itic)	LOW DENS	<u>IG</u> SITY POLYETHYLEN		E OF PUMP M	STEEL		TYPE OF B	LADDER MATERIAL	
	D BLADDER		Z OTHER			OTHER P	st-		OTHER_	Puly	-
ANALYTIC	AL PARAMET	ERS	ME	THOD	PRES	ERVATION	VOLUME	SAMPL	E	/	
KIVO	0			MBER	M	ETHOD to pH <2	3 2 x 40ml	COLLECT			
FTAL	METALS (Cd, C	-		0B/7470A/7141A		03 to pH <2 2 03 to pH <2	500 ml poly		Field Filtere	d	
E Pr	METALS (Disso	wedt-(av)	PEC-IDA-M	0B/7470A/7141A <u>vv) PF/</u> KStrudau		2436	2×250m	/		iu -	
FLY	Dwang		82	WC-SIM	_[+	ĈI	1x 40%	ul 1	3		
NOTES:],	lell reclus.	a 2 100l	Imin 1 +.	rbiding issu	4	LOCATION	SKETCH	r	P-106	THE R. LEWIS CO. LANSING MICH.	
	() IC COOLO	p > 100 we		1 1 1 1 3 3 4	~, [1		Trench 2	GW-01
				13 1 20	br			1	Trench 3		19
				(4019)	M			\$P-103	ALL BE	P-107D P-1075	> /
		r	1	NIN				and the second second	Trea	atment uilding	nch 1
	٨	$\cap \Lambda$		UW1	1. 11			-	7	11	Mass
	Olan	K.V.V	1/ .	1 M JU	1116			MA.	hole	il "	
SIGNATURE	ferry	- wy	//	<u> </u>	1.2			AND REAL	To be and	P-105	Mr. All
	JU	V	\sim	121 - 1420 N							20
4	-Primoshield GW	LOWFLOW,xis>	ULF PRIMOSHIE	LD						3/22/201	8

FIELD D	ATA REC	ORD - LO	W FLOW C	ROUNDWA	TER SA	MPLING	633027-PI	075	JOB NUMBE	R 3612122251-0)4.***
Г	NYSDEC Primos	the state			PLE NUMBER	1. 21	0277.				
		P- 1075		12/2	SITE TYPE	WELL			DATE	3/26/18-	128/8
		40 (3/28) ENE	09:45	SAMPLE TIN	ME	0913	8				<i>.</i>
	VEL / PUMP S		MEASUF	REMENT POINT		PROTECTIVE			CASING / W DIFFER.	ELL 0.21	FT
INITIAL DEP	ты Г		TOF	OF WELL RISER	CASING	CASING STIC (FROM GROU		FT	WELL		
TO WAT	ER (Di	13	WELL D			PID	-		DIAM.	22	IN
FINAL DEP TO WAT		.60	(TOR)	17.1	FT	AMBIENT AIR		PPM	WELL INTE		
			SCREEN		FT	PID WELL MOUTH	_	PPM	CAP	YES NO	N/A
DRAWDON VOLUN	ME OI		AL	·		PRESSURE			CASING	<u>太</u> 二 二	
(initial - f	inal x 0.16 {2-inc	h} or x 0.65 {4-in	ch}) RATIO (OF DRAWDOWN VO DTAL VOLUME PUR		TO PUMP	-	PSI			
TOTAL V PURG	ED D'	145 0	SAL	0.048		REFILL			DISCHARG	E	-
(purge ve	olume (milliliters	per minute) x tim	e duration (minut	es) x 0.00026 gal/mi		SETTING	TUDDIDITY	REDOX	SETTING		
PURGE DA	TA DEPTH TO	PURGE RATE	TEMP. (°C)	SP. CONDUCT. (mS/cm)	pH (units) (+/- 0.1	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	(mv)			
TIME	WATER (ft)	(mL/min)	(+/- 3 degrees)	(+/- 3%)	units)	(+/- 10%)	(+/- 10% <10	(+/- 10 mv)		COMMENTS	
1800	6.13	0 1	~ 2 01	0. 1. 15. 0		Pl di	1. 1. tl 1	ow A	line		
1809	16.9	Puyed	-sque	ins pu	yall	mar	y will I	00011			
3/27/15	23.OR	supl	coury								
3/28/18	4.54	150	REGIN	PURGE (2)	08:4	2					
08:52	\$,50	150	5.93	0.478	6.93	8.72	24.2	2335			
08:57	4.57	150	5.84	0.463	7.01	8.57	14.2	224.3	•		
09:02	4.59	150	5.58	0,448	7.03	8,74	10.9	225.9			
09:07	4.59	150	5.52	0.433	7.03	9.04	6,87	223,4	(
09:12	4.60	150	5,24	0,416	7.03	9.09	7.25	217,4	1		
09:22	4.60	150	5.07	0.414	7.04	9.26	6.11	212.1			
09:32	4.60	150	5.01	0.408	7.04	9.26	6.21	206.9			
09:37	4.60	150	5.01	0.406	7.04		5.13	204.			
09:38	-WE	L STAF	IE, Co	LECT SA	MPLES						
				o II							
				DA	-						Λ
			9	tot							
									-		
2						E 13		2.1			
	NT DOCUMEN	TATION	TYPE OF TUBI	0.410	7 O TYP		ATERIAL	501	TYPE OF E	BLADDER MATERIA	<u>\L</u>
G	EOPUMP (perist	altic)	LOW DEN	SITY POLYETHYLE	CONTRACT SPECIAL	STAINLESS			TEFLON		
	ED BLADDER		OTHER_			OTHER					
ANALYTIC	CAL PARAMET	FERS		THOD		SERVATION	VOLUME		LE		
Xvo	oc		826	MBER SOB	HC	I to pH <2	37 x 40ml	Z			
	L METALS (Cd, L METALS (Diss			10B/7470A/7141A 10B/7470A/7141A		O3 to pH <2 O3 to pH <2	500 ml pol 500 ml pol		Field Filter	red	
		1750/757 4 0					-		-		
NOTES:	1.0					LOCATION	SKETCH	V	1-10	65 106D	GW-01
3gal (214gal	3/26)			1				1		Trench 2	5 ×
2.14gal	(100)			Val bi	on.			1	Trench 3	P-107D	5
			(b	cled by	N			P-103	A AND PA	P-1078	7
			Un	10H				-	Tr	eatment Building	rench 1
		i n		NN	dil.			1 And	7	1/3	
	-7	1K	1		11111			1	100	P-105	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SIGNATU	KE:	Ac						No. of Concession, Name	LL CONTRACT		100 100 100 A

									JOB NUMBER	3612122251-04.****
FIELD D	ATA RECO	ORD - LOV	V FLOW G	ROUNDWA	IER SAI		- 0		JOB NUMBER	5012122251-04.
PROJECT	NYSDEC Primosh	hield Inc.		FIELD SAMF	LE NUMBER	63300	- PIU	D D	Г	alactic
SITE ID	(MW) F	0.1070			SITE TYPE	WELL			DATE	3/28/18
	START US3	D END	1035	SAMPLE TIN	/IE	1015	-			
	VEL / PUMP SE		MEASUR	EMENT POINT		PROTECTIVE	// ID		CASING / WEL DIFFER.	L 0.49 FT
				OF WELL RISER OF PROTECTIVE		CASING STICH (FROM GROUI		२ _{FT}	(TRACE)	
TO WAT		Ч5 F	т			PID			WELL DIAM.	2 IN
FINAL DEP		. 0	WELL DE (TOR)	77.6'		AMBIENT AIR	-	PPM	WELL INTERG	BITY:
TO WAT		1-1 F	SCREEN			PID WELL			Y	res no n/a
DRAWDOW	1.030		LENGTH		FT	MOUTH		PPM	CAP CASING	
VOLUN (initial - fi	ME // // // // // // // // // // // // //		AL h}) RATIO (OF DRAWDOWN V	DLUME	PRESSURE	35	PSI	LOCKED	
TOTAL V				TAL VOLUME PUF	GED	TO PUMP		101		
DUDC		G		03 es) x 0.00026 gal/mi	liliter)	REFILL SETTING	16		DISCHARGE	4
		per minute) x time	e duration (minute	SP. CONDUCT.	pH (units)	DISS. O2	TURBIDITY	REDOX		
PURGE DA	TA DEPTH TO	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm)	(+/- 0.1	(mg/L)	(ntu) (+/- 10% <10	(mv) (+/- 10 mv)		COMMENTS
TIME	WATER (ft)			(+/- 3%)	units)	(+/- 10%)	(+/- 10/0 ~10	(1/2 10 111)		
0848	25:95	Start p	6.2.	0.405	10.7	6.0	61	116		
0856	29.16	80	6.2	0.369	10.5	3.4	32	19		
0915	21,20	80	6.7	0.358	10.4	1.4	17	-44		
0420	29.21	90	6.8	0.356	10.4	1.1	15	-63		
0925	29.25	90	6.8	0.354	10,4	1.0	18	-78		
8930	29.20	65	6.8	0.354	10.4	0.9	16	-90		
0935	29.17	55	6.5	0.354	10.4	0.9	17 18	-99		
0940	29.18	55	6.3	0.354	10:4	1.0	19	-109		
0945	29.18	55	5.9	0.353	1013	0,9	24	-114		
0950	24.18	55	5.4	0,350	10.4	0,9	27	-119		
0.955	29.19 All Duru	utors sta	a 7	int turbe			- 3000	to a	sub	
	Supp	Leline	Jurhald	4 increas	es to	A		1	0	
1018	(Afin:	supply to	billing)			34			
		/	/							
						-			-	
								1		
			6	0.360	10.4	0.9	30	120		
FOLIDME	NT DOCUMEN	TATION	V)							
TYPE	OF PUMP		TYPE OF TUBI			STAINLESS		Г	TEFLON	
	EOPUMP (perist	altic)	OTHER	SITY POLYETHYLE		OTHER_		[2	OTHER /	ohy
	CAL PARAMET	ERS			005	SERVATION	VOLUME	E SAMF	ЧE	
			NU	THOD		METHOD It to pH <2	3 2 x 40ml	D COLLEC	CTED	
× VC	DC AL METALS (Cd,	Cr. Cu. Pb. Ni, Z		60B 10B/7470A/7141A			2.50 500 ml po	ly 🗖	K)	
	AL METALS (Diss		60	10B/7470A/7141A	HN	1O3 to pH <2	500 ml po	ly L	Field Filtere	a
									<u> </u>	
					011		OVETOU		P-1065	5
NOTES:	Turbidity	increasing	even after	being very co	welld	LOCATION	SKEICH	X	Pito	A REAL PROPERTY OF A REAL PROPER
install	ling promp	and purgi	my at a ve	in low rate.				1		Trench 2
	1.		1		1-1				Trench 3	P-107D
				hickey	401	SV		A A A A	at and the	atment Trench 1
				STIN	4 1					uilding
	٨	O AL		hall		a second		-	1	10
		KUL	1	114	VI	-1110			and a	P-105
SIGNATU	IKE: JUMA	1 unity						A Londonger	A kee	
	VU	10							×.	3/22/2018

4-Primoshield GW LOWFLOW, xlsx/LF PRIMOSHIELD

ATTACHMENT 2

CATEGORY A DATA VALIDATION REPORT

CATEGORY A REVIEW MARCH 2018 GROUNDWATER SAMPLING PROGRAM PRIMOSHIELD INCORPORATED SITE UTICA, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in March 2018 at the Primoshield Incorporated Site in Utica, New York, and shipped to ALS Environmental in Rochester, New York, and Test America Laboratories (TAL) in Amherst, New York, for analysis. Analyses for volatile organic compounds (VOCs) and metals were performed by ALS, and analyses for 1,4-dioxane and per- and polyfluorinated alkyl substances (PFAS) were performed by TAL. Samples were analyzed by one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260C
- Metals (select list) by USEPA Method 6010C
- 1,4-Dioxane by USEPA Method 8260C-Selected Ion Monitoring (SIM)
- PFAS by USEPA Method 537 (Modified)

Results were reported in the following sample delivery groups (SDGs):

- R1802717
- 480-133240-1

Sample data included in this chemistry review is presented in the following tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005)

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) Evaluation
- Reporting Limits
- Electronic Data Qualification and Verification

NYSDEC Primoshield Incorporated NYSDEC – Site No. 633027 MACTEC Engineering and Consulting, P.C.

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit

J = concentration is estimated

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review conducted the data meets the data quality objectives; however, the following potential limitations were identified:

• Results for acetone, cadmium, and perfluorohexanesulfonic adicd (PFHxS) in a subset of samples were qualified non-detect (U) based on blank contamination.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Julie Ricardi

ulie Ricardi

Date: 5/16/2018

Reviewed by: Chris Ricardi, NRCC-EAC

Rican NO Date: 5/23/2018

C:\Users\julie.ricardi\AppData\Local\Temp\83fc-c6d1-b021-5272.doc

				Met	hod Class	VOCs	1,4-Dioxane	PFCs	Metals
				Analysi	s Method	SW8260C	SW8260C-SIM	537 Modified	SW6010C
				Fraction		N	N	N	Т
SDG	Location	Sample ID	Sample Date	Media	Qc Code	Param_Count	Param_Count	Param_Count	Param_Count
480-133240-1	GW-01	633027-GW01	3/27/2018	GW	FS		1		
480-133240-1	P-105	633027-P105	3/27/2018	GW	FS		1	18	
480-133240-1	P-106D	633027-P106D	3/27/2018	GW	FS		1	18	
480-133240-1	P-106S	633027-P106S	3/27/2018	GW	FS		1	18	
480-133240-1	QC	TRIP BLANK	3/27/2018	BW	ТВ		1		
R1802717	GW-01	633027 - GW01	3/27/2018	GW	FS	35			
R1802717	P-103	633027 - P103	3/27/2018	GW	FS	35			6
R1802717	P-105	633027 - P105	3/27/2018	GW	FS	35			6
R1802717	P-106D	633027 - P106D	3/27/2018	GW	FS	35			6
R1802717	P-106S	633027 - P106S	3/27/2018	GW	FS	35			6
R1802717	P-107D	633027 - P107D	3/28/2018	GW	FS	35			6
R1802717	P-107S	633027 - P107S	3/28/2018	GW	FS	35			6
R1802717	QC	633027 - EB1	3/28/2018	BW	EB	35			6
R1802717	QC	TRIP BLANK	3/27/2018	BW	ТВ	35			

N, T = total

FS = field sample

TB = trip blank

EB = equipment blank

GW = groundwater

BW = blank water

			SDG	480-1	33240-1	480-1	33240-1	480-1	33240-1
		L	ocation	G	W-01	P-	105	P-1	106D
		Samp	le Date	3/27/2018		3/27/2018		3/27	7/2018
		Sa	mple ID	633027-GW01		633027-P105		63302	7-P106D
		C	c Code	FS		FS			FS
Method	Class	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
537 Modified	PFAS	Perfluorobutanesulfonic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorobutanoic acid	ng/l			0.55	J	0.6	J
537 Modified	PFAS	Perfluorodecanesulfonic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorodecanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorododecanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluoroheptanesulfonic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluoroheptanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorohexane sulfonic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorohexanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorononanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorooctane sulfonamide	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorooctanesulfonic acid (PFOS)	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorooctanoic acid (PFOA)	ng/l			2	U	2	U
537 Modified	PFAS	Perfluoropentanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorotetradecanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluorotridecanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Perfluoroundecanoic acid	ng/l			2	U	2	U
537 Modified	PFAS	Sum PFOA and PFOS	ng/l			2	U	2	U
SW8260C-SIM	1,4-Dioxane	1,4-Dioxane	ug/l	0.4	U	0.4	U	0.4	U

ug/I = microgram per liter

ng/l = nanogram per liter

U = not detected

			SDG	480-1	33240-1	480-1	.33240-1
			P-	106S		QC	
		Sam	3/27	7/2018	3/2	7/2018	
		Sa	63302	7-P106S	TRIP BLANK		
			Qc Code				ТВ
Method	Class	Parameter	Units	Result	Qualifier	Result	Qualifier
537 Modified	PFAS	Perfluorobutanesulfonic acid	ng/l	0.38	J		
537 Modified	PFAS	Perfluorobutanoic acid	ng/l	1	J		
537 Modified	PFAS	Perfluorodecanesulfonic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorodecanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorododecanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluoroheptanesulfonic acid	ng/l	2	U		
537 Modified	PFAS	Perfluoroheptanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorohexane sulfonic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorohexanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorononanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorooctane sulfonamide	ng/l	2	U		
537 Modified	PFAS	Perfluorooctanesulfonic acid (PFOS)	ng/l	0.66	J		
537 Modified	PFAS	Perfluorooctanoic acid (PFOA)	ng/l	2	U		
537 Modified	PFAS	Perfluoropentanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorotetradecanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluorotridecanoic acid	ng/l	2	U		
537 Modified	PFAS	Perfluoroundecanoic acid	ng/l	2	U		
537 Modified	PFAS	Sum PFOA and PFOS	ng/l	0.66	J		
SW8260C-SIM	1,4-Dioxane	1,4-Dioxane	ug/l	0.4	U	0.4	U

ug/I = microgram per liter

ng/l = nanogram per liter

U = not detected

			R180	2717	R180)2717	R180	02717	R180)2717	
		Lo	ocation	GW	-01	P-:	103	P-	105	P-1	.06D
		Samp	le Date	3/27/	2018	3/27	/2018	3/27	/2018	3/27	/2018
		San	nple ID	633027	- GW01	633027	7 - P103	63302	7 - P105	633027	- P106D
		q	c Code	E	S	F	S		FS		=S
Method	Class	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	VOCs	1,1,1-Trichloroethane	ug/l	0.5	J	2.1		1 U			U
SW8260C	VOCs	1,1,2,2-Tetrachloroethane	ug/l	1	U	1 U		1 U		1	U
SW8260C		1,1,2-Trichloroethane	ug/l	1	U	1	U		U	1	U
SW8260C	VOCs	1,1-Dichloroethane	ug/l	1		1	U		U	1	U
SW8260C		1,1-Dichloroethene	ug/l	1			U		U		U
SW8260C	VOCs	1,2-Dichloroethane	ug/l	1			U		U		U
SW8260C	VOCs	1,2-Dichloropropane	ug/l	1			U		U		U
SW8260C	VOCs	2-Butanone	ug/l	5			U		U		U
SW8260C		2-Hexanone	ug/l	5			U		U		U
SW8260C		4-Methyl-2-pentanone	ug/l	5			U		U		U
SW8260C	VOCs	Acetone	ug/l	5			U		U		U
SW8260C	VOCs	Benzene	ug/l	1			U		U		U
SW8260C	VOCs	Bromodichloromethane	ug/l	1			U		U		U
SW8260C	VOCs	Bromoform	ug/l	1		1 U		1 U			U
SW8260C	VOCs	Bromomethane	ug/l	1			U	1 U			U
SW8260C	VOCs	Carbon disulfide	ug/l	1		1 U 1 U		1 U 1 U			U
SW8260C	VOCs	Carbon tetrachloride	ug/l	1							U
SW8260C	VOCs	Chlorobenzene	ug/l	1			U		U		U
SW8260C	VOCs	Chloroethane	ug/l	1		1 U		1 U		1 U 1 U	
SW8260C		Chloroform	ug/l	1		1 U 1 U		1 U			
SW8260C		Chloromethane	ug/l	1				1 U			U
SW8260C		Cis-1,2-Dichloroethene	ug/l	1			U	1 U		1 U	
SW8260C		Cis-1,3-Dichloropropene	ug/l	1			U		U		U
SW8260C		Dibromochloromethane	ug/l	1			U		U		U
SW8260C		Ethylbenzene	ug/l	1			U		U		U
SW8260C SW8260C		Methylene chloride	ug/l	1			U		U		U
		Styrene Tetrachloroethene	ug/l	1			U		U		U
SW8260C SW8260C	VOCs VOCs	Toluene	ug/l	1 1			U U		U U		U U
SW8260C SW8260C			ug/l	1			U		U		U
		trans-1,2-Dichloroethene trans-1,3-Dichloropropene	ug/l								
SW8260C SW8260C		Trichloroethene	ug/l ug/l	1 1		0.84	U		U U		U U
SW8260C SW8260C		Vinyl chloride	ug/I ug/I	1			Ŋ		U		U
SW8260C SW8260C		Xylene, o	ug/I ug/I	1			U		U		U
SW8260C		Xylenes (m&p)	ug/I ug/I	1			U		U		U
SW6010C		Cadmium	ug/I ug/I	2	-		U		U		U
SW6010C		Chromium	ug/l			10					
SW6010C		Copper	ug/l							1.7 J 20 U	
SW6010C		Lead	ug/l				20 U 20 U 50 U 50 U				
SW6010C		Nickel	ug/l			40		50 U 40 U		50 U 40 U	
SW6010C	Metals		ug/l			20		20		20	
2000100	IVIELAIS		ug/1			20	U	20	0	20	J

ug/I = microgram per liter

U = not detected

	SDG			R180	2717	R180)2717	R180	2717	R180	02717
		L	ocation	P-1(06S	P-1	07D	P-1	07S	(QC
		Sam	ole Date	3/27/	3/27/2018		/2018	3/28,	/2018	3/27	/2018
		Sa	mple ID	633027	- P106S	633027	- P107D	633027	- P107S	TRIP	BLANK
			Qc Code	FS		FS		FS			ТВ
Method	Class	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	VOCs	1,1,1-Trichloroethane	ug/l	1		1 U		0.44 J			U
SW8260C	VOCs	1,1,2,2-Tetrachloroethane	ug/l	1			U	1 U			U
SW8260C	VOCs	1,1,2-Trichloroethane	ug/l	1			U	1			U
SW8260C	VOCs	1,1-Dichloroethane	ug/l	1			U	0.32			U
SW8260C	VOCs	1,1-Dichloroethene	ug/l	1			U	1			U
SW8260C	VOCs	1,2-Dichloroethane	ug/l	1			U	1			U
SW8260C	VOCs	1,2-Dichloropropane	ug/l	1			U	1			U
SW8260C	VOCs	2-Butanone	ug/l	5			U		U		U
SW8260C	VOCs	2-Hexanone	ug/l	5			U		U		U
	VOCs	4-Methyl-2-pentanone	ug/l	5			U		U		U
SW8260C	VOCs	Acetone	ug/l	5			U		U	3.5	
SW8260C	VOCs	Benzene	ug/l	1			U	1			U
SW8260C	VOCs	Bromodichloromethane	ug/l	1			U	1			U
SW8260C	VOCs	Bromoform	ug/l	1		1 U		1 U			U
SW8260C	VOCs	Bromomethane	ug/l	1		1 U		1 U			U
SW8260C	VOCs	Carbon disulfide	ug/l	1		1 U 1 U		1 U 1 U			U
SW8260C	VOCs	Carbon tetrachloride	ug/l	1							U
SW8260C	VOCs	Chlorobenzene	ug/l	1			U		U		U
SW8260C	VOCs	Chloroethane	ug/l	1		1 U		1 U		1 U 1 U	
SW8260C	VOCs	Chloroform	ug/l	1		1 U		1 U			
SW8260C	VOCs	Chloromethane	ug/l	1		1 U		1 U		1 U	
SW8260C	VOCs	Cis-1,2-Dichloroethene	ug/l	1			U	1 U 1 U			U
SW8260C	VOCs	Cis-1,3-Dichloropropene	ug/l	1			U				U
SW8260C	VOCs	Dibromochloromethane	ug/l	1			U	1			U
SW8260C	VOCs	Ethylbenzene	ug/l	1			U	1			U
SW8260C	VOCs	Methylene chloride	ug/l	1			U	1			U
SW8260C SW8260C	VOCs	Styrene Tetrachloroethene	ug/l	1			U	1			U
	VOCs		ug/l	1			U	1			U
SW8260C SW8260C	VOCs VOCs	Toluene trans-1,2-Dichloroethene	ug/l	1 1			U U	1 1			UUU
		trans-1,3-Dichloropropene	ug/l								
	VOCs VOCs	Trichloroethene	ug/l	1 1			U U		U		U
SW8260C SW8260C	VOCs	Vinyl chloride	ug/l	1			U	7.1	U		U
SW8260C	VOCs	Xylene, o	ug/l	1			U		U		U
		-	ug/l								
SW8260C SW6010C	VOCs Metals	Xylenes (m&p) Cadmium	ug/l	2 5			U U	2 U		2	U
	Metals	Chromium	ug/l ug/l	5 10		5 10		5 U			
SW6010C SW6010C	Metals		ug/I ug/I	20				2.4 J			
	Metals	Copper Lead	ug/I ug/I	20 50		20 U 50 U		20 U 50 U			
	Metals	Nickel	ug/I ug/I	50 40		50 40		50 U 174			
	Metals	Zinc		40 20		40 20		20			
2000100	wietais		ug/l	20	0	20	U	20	U		

ug/I = microgram per liter

U = not detected

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS CATEGORY A REVIEW MARCH 2018 GROUNDWATER SAMPLING PROGRAM PRIMOSHIELD INCORPORATED SITE UTICA, NEW YORK

Location QC Sample Dat 3/28/2018 633027 - FB1 633027 - FB1 VC Code Code SW8260C VOCs 1,1,1-Trichloroethane ug/l 1 SW8260C VOCs 1,1,2-Trichloroethane ug/l 1 U SW8260C VOCs 1,1,2-Trichloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Hexanone ug/l 5 U SW8260C VOCs A-Methyl-2-pentanone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U				SDG	R1802717
Sample ID 633027 - EB1 Qc Code EB Nethod Class Parameter Units Result Qualifier SW8260C VOCs 1,1,1-Trichloroethane ug/l 1 U U SW8260C VOCs 1,1,2,2-Tetrachloroethane ug/l 1 U U SW8260C VOCs 1,1,2-Trichloroethane ug/l 1 U U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Hexanone ug/l 1 U SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Berzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Carbon tetrachloride ug/l			L	ocation	QC
Qc Code EB Method Class Parameter Units Result Qualifier SW8260C VOCs 1,1,2,2-Tetrachloroethane ug/l 1 U SW8260C VOCs 1,1,2,2-Tetrachloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 5 U SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs A-Methyl-2-pentanone ug/l 1 U SW8260C VOCs Berzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C </td <td></td> <td></td> <td>Samp</td> <td>le Date</td> <td>3/28/2018</td>			Samp	le Date	3/28/2018
MethodClassParameterUnitsResultQualifierSW8260CVOCs1,1,1-Trichloroethaneug/l1USW8260CVOCs1,1,2-Trichloroethaneug/l1USW8260CVOCs1,1,2-Trichloroethaneug/l1USW8260CVOCs1,1,2-Dichloroethaneug/l1USW8260CVOCs1,2-Dichloroethaneug/l1USW8260CVOCs1,2-Dichloroethaneug/l1USW8260CVOCs2-Butanoneug/l5USW8260CVOCs2-Hexanoneug/l39SSW8260CVOCs2-Hexanoneug/l1USW8260CVOCsAcetoneug/l1USW8260CVOCsBenzeneug/l1USW8260CVOCsBromodichloromethaneug/l1USW8260CVOCsBromoformug/l1USW8260CVOCsCarbon tisulfideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloroform<			Sai	mple ID	633027 - EB1
SW8260C VOCs 1,1,1-Trichloroethane ug/l 1 U SW8260C VOCs 1,1,2,2-Tetrachloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs 2-Hexanone ug/l 1 U SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Bernene ug/l 1 U SW8260C VOCs Bromofichloromethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Chloroethane ug/l 1			C	c Code	EB
SW8260C VOCs 1,1,2,2-Tetrachloroethane ug/l 1 U SW8260C VOCs 1,1,2-Trichloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs 2-Hexanone ug/l 1 U SW8260C VOCs 4-Methyl-2-pentanone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromoform ug/l 1 U SW8260C VOCs Bromoethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C	Method		Parameter	Units	Result Qualifier
SW8260C VOCs 1,1,2-Trichloroethane ug/l 1 SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 5 U SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs 2-Hexanone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Berzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Chlorobenzene ug/l 1 U	SW8260C	VOCs	1,1,1-Trichloroethane	ug/l	1 U
SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,1-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs 2-Hexanone ug/l 1 U SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Bernene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs C	SW8260C	VOCs	1,1,2,2-Tetrachloroethane	ug/l	1 U
SW8260C VOCs 1,1-Dichloroethene ug/l 1 U SW8260C VOCs 1,2-Dichloroethane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 1,2-Dichloropropane ug/l 5.7 SW8260C VOCs 2-Butanone ug/l 5 U SW8260C VOCs 2-Hexanone ug/l 39 SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Carbon tetrachloride ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs Chloromethane ug/l 1 U SW8260C VOCs <t< td=""><td>SW8260C</td><td></td><td></td><td>-</td><td></td></t<>	SW8260C			-	
SW8260C VOCs 1,2-Dichloroethane ug/l 1 SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Butanone ug/l 5.7 SW8260C VOCs 2-Hexanone ug/l 5 U SW8260C VOCs 4-Methyl-2-pentanone ug/l 39 SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Chlorobenzene ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs					
SW8260C VOCs 1,2-Dichloropropane ug/l 1 U SW8260C VOCs 2-Butanone ug/l 5.7 SW8260C VOCs 2-Hexanone ug/l 5 U SW8260C VOCs 4-Methyl-2-pentanone ug/l 39 SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Carbon tetrachloride ug/l 1 U SW8260C VOCs Carbon tetrachloride ug/l 1 U SW8260C VOCs Chlorobenzene ug/l 1 U SW8260C VOCs Chlorobenzene ug/l 1 U SW8260C VOCs					-
SW8260CVOCs2-Butanoneug/l5.7SW8260CVOCs2-Hexanoneug/l5 USW8260CVOCs4-Methyl-2-pentanoneug/l39SW8260CVOCsAcetoneug/l1 USW8260CVOCsBenzeneug/l1 USW8260CVOCsBromodichloromethaneug/l1 USW8260CVOCsBromodichloromethaneug/l1 USW8260CVOCsBromoformug/l1 USW8260CVOCsBromomethaneug/l1 USW8260CVOCsCarbon disulfideug/l1 USW8260CVOCsCarbon tetrachlorideug/l1 USW8260CVOCsChlorobenzeneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachlo					-
SW8260C VOCs 2-Hexanone ug/l 5 U SW8260C VOCs 4-Methyl-2-pentanone ug/l 39 SW8260C VOCs Acetone ug/l 1 U SW8260C VOCs Benzene ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromodichloromethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Bromomethane ug/l 1 U SW8260C VOCs Carbon disulfide ug/l 1 U SW8260C VOCs Carbon tetrachloride ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs Chloroethane ug/l 1 U SW8260C VOCs Cis-1,2-Dichloroethene ug/l 1 U SW8260C VOCs					-
SW8260CVOCs4-Methyl-2-pentanoneug/l5 USW8260CVOCsAcetoneug/l39SW8260CVOCsBenzeneug/l1 USW8260CVOCsBromodichloromethaneug/l1 USW8260CVOCsBromoformug/l1 USW8260CVOCsBromomethaneug/l1 USW8260CVOCsBromomethaneug/l1 USW8260CVOCsCarbon disulfideug/l1 USW8260CVOCsCarbon tetrachlorideug/l1 USW8260CVOCsChlorobenzeneug/l1 USW8260CVOCsChloroethaneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroethene </td <td></td> <td></td> <td></td> <td></td> <td>-</td>					-
SW8260CVOCsAcetoneug/l39SW8260CVOCsBenzeneug/l1USW8260CVOCsBromodichloromethaneug/l1USW8260CVOCsBromoformug/l1USW8260CVOCsBromomethaneug/l1USW8260CVOCsBromomethaneug/l1USW8260CVOCsCarbon disulfideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloroethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsCis-1,2-Dichloroetheneug/l1USW8260CVOCsCis-1,3-Dichloropropeneug/l1USW8260CVOCsEthylbenzeneug/l1USW8260CVOCsStyreneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTrans-1,2-Dichloroetheneug/l1USW8260CVOCstrans-1,3-Dichloropr					
SW8260CVOCsBenzeneug/l1USW8260CVOCsBromodichloromethaneug/l1USW8260CVOCsBromoformug/l1USW8260CVOCsBromomethaneug/l1USW8260CVOCsCarbon disulfideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChlorothaneug/l1USW8260CVOCsChlorothaneug/l1USW8260CVOCsChlorothaneug/l1USW8260CVOCsChlorothaneug/l1USW8260CVOCsCis-1,2-Dichloroetheneug/l1USW8260CVOCsCis-1,3-Dichloropropeneug/l1USW8260CVOCsEthylbenzeneug/l1USW8260CVOCsStyreneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTolueneug/l1USW8260CVOCsTrans-1,2-Dichloroetheneug/l1USW8260CVOCsTrichloroetheneug/l1USW8260CVOCsTrichloroetheneug/l1USW8260CVOCsTrichloroethene <td></td> <td></td> <td></td> <td></td> <td></td>					
SW8260CVOCsBromodichloromethaneug/l1SW8260CVOCsBromoformug/l1USW8260CVOCsBromomethaneug/l1USW8260CVOCsCarbon disulfideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloroformug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsCis-1,2-Dichloroetheneug/l1USW8260CVOCsCis-1,3-Dichloropropeneug/l1USW8260CVOCsDibromochloromethaneug/l1USW8260CVOCsKtrylene chlorideug/l1USW8260CVOCsStyreneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTolueneug/l1USW8260CVOCsTolueneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCsTrichloroetheneug/l1USW8260CVOCsTrich				-	
SW8260CVOCsBromoformug/l1USW8260CVOCsBromomethaneug/l1USW8260CVOCsCarbon disulfideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloroethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsCis-1,2-Dichloroetheneug/l1USW8260CVOCsCis-1,3-Dichloropropeneug/l1USW8260CVOCsEthylbenzeneug/l1USW8260CVOCsEthylbenzeneug/l1USW8260CVOCsStyreneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCstrans-1,2-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1U					-
SW8260CVOCsBromomethaneug/l1USW8260CVOCsCarbon disulfideug/l1USW8260CVOCsCarbon tetrachlorideug/l1USW8260CVOCsChlorobenzeneug/l1USW8260CVOCsChloroethaneug/l1USW8260CVOCsChloroethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsChloromethaneug/l1USW8260CVOCsCis-1,2-Dichloroetheneug/l1USW8260CVOCsCis-1,3-Dichloropropeneug/l1USW8260CVOCsDibromochloromethaneug/l1USW8260CVOCsEthylbenzeneug/l1USW8260CVOCsStyreneug/l1USW8260CVOCsTetrachloroetheneug/l1USW8260CVOCsTrans-1,2-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCsTrichloroetheneug/l1USW8260CVOCstrans-1,3-Dichloropropeneug/l1USW8260CVOCsTrichloroetheneug/l1USW8260CVOCsTrichloroetheneug/l1U<					_
SW8260CVOCsCarbon disulfideug/l1 USW8260CVOCsCarbon tetrachlorideug/l1 USW8260CVOCsChlorobenzeneug/l1 USW8260CVOCsChloroethaneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKtyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCsTrans-1,2-Dichloropropeneug/l1 USW8260CVOCsTrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U				-	-
SW8260CVOCsCarbon tetrachlorideug/l1 USW8260CVOCsChlorobenzeneug/l1 USW8260CVOCsChloroethaneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKethylene chlorideug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCs					-
SW8260CVOCsChlorobenzeneug/l1 USW8260CVOCsChloroethaneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCstrans-1,2-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U					
SW8260CVOCsChloroethaneug/l1 USW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U					-
SW8260CVOCsChloroformug/l1 USW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U					_
SW8260CVOCsChloromethaneug/l1 USW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U					-
SW8260CVOCsCis-1,2-Dichloroetheneug/l1 USW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsKethylene chlorideug/l1 USW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U					_
SW8260CVOCsCis-1,3-Dichloropropeneug/l1 USW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l1 U				-	_
SW8260CVOCsDibromochloromethaneug/l1 USW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U				-	-
SW8260CVOCsEthylbenzeneug/l1 USW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					-
SW8260CVOCsMethylene chlorideug/l1 USW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					
SW8260CVOCsStyreneug/l1 USW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					-
SW8260CVOCsTetrachloroetheneug/l1 USW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					
SW8260CVOCsTolueneug/l1 USW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					-
SW8260CVOCstrans-1,2-Dichloroetheneug/l1 USW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					
SW8260CVOCstrans-1,3-Dichloropropeneug/l1 USW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylene, oug/l2 U					-
SW8260CVOCsTrichloroetheneug/l1 USW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylenes (m&p)ug/l2 U					
SW8260CVOCsVinyl chlorideug/l1 USW8260CVOCsXylene, oug/l1 USW8260CVOCsXylenes (m&p)ug/l2 U					
SW8260CVOCsXylene, oug/l1 USW8260CVOCsXylenes (m&p)ug/l2 U					
SW8260C VOCs Xylenes (m&p) ug/l 2 U			'		
SW6010C Metals Chromium ug/l 10 U					
SW6010C Metals Copper ug/l 20 U					
SW6010C Metals Lead ug/I 50 U					
SW6010C Metals Nickel ug/I 40 U					
SW6010C Metals Zinc ug/l 20 U					

ug/I = microgram per liter

U = not detected

J = estimated value

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW MARCH 2018 GROUNDWATER SAMPLING PROGRAM PRIMOSHIELD INCORPORATED SITE UTICA, NEW YORK

	Analysis				Lab	Lab	Validated	Validation	Val Reason	Result
SDG	Method	Lab Sample ID	Field Sample ID	Parameter Name	Result	Qualifier	Result	Qualifier	Code	Units
480-133240-1	537 Modified	480-133240-1	633027-P105	Perfluorohexane sulfonic acid	0.3	JB	2	U	BL1	ng/l
480-133240-1	537 Modified	480-133240-2	633027-P106S	Perfluorohexane sulfonic acid	0.52	JB	2	U	BL1	ng/l
480-133240-1	537 Modified	480-133240-3	633027-P106D	Perfluorohexane sulfonic acid	0.31	JB	2	U	BL1	ng/l
R1802717	SW6010C	R1802717-006	633027 - P107S	Cadmium	2.1	J	5	U	BL1	ug/l
R1802717	SW8260C	R1802717-001	633027 - P105	Acetone	1.6	J	5	U	BL2	ug/l
R1802717	SW8260C	R1802717-002	633027 - GW01	Acetone	2.7	J	5	U	BL2	ug/l
R1802717	SW8260C	R1802717-003	633027 - P103	Acetone	2.3	J	5	U	BL2	ug/l
R1802717	SW8260C	R1802717-006	633027 - P107S	Acetone	1.8	J	5	U	BL2	ug/l

BL1 = method blank contamination

BL2 = trip or equipment blank contamination

ATTACHMENT A

PFAS

NYSDEC PROJECT CATEGORY A REVIEW RECORD Project: Primoshield Method : Modified 537 Laboratory and SDG(s): TAL SAL SDG# 480-133240-1 Date: 5 14/18 Reviewer: Julic Ricardi Review Level X CATEGORY A 1. Case Narrative Review and Data Package Completeness **COMMENTS** Were all the samples on the COC analyzed for the requested analyses? (YES NO (circle one) Are Field Sample IDs and Locations assigned correctly (YES)NO (circle one) 2. I Holding time and Sample Collection Plob D due to excess sedment. Were all water samples extracted within the 14 day holding time, and extracts analyzed within 28 (YES) NO (circle one) days? 3. Q OC Blanks Are method blanks free of contamination?---KES (NO (circle one) Are field reagent blanks free of contamination? YES NO (NA) (circle one) 4. Matrix Spike (water & soil limits: lab limits) Were MS/MSDs submitted/analyzed? YES (NO) Were all results were within limits? YES NO (NA) (circle one) **Field Duplicates** (RPD limits = water:50, soil:100) 5. Were Field Duplicates submitted/analyzed? YES (NO) Were RPDs within criteria. YES NO(NA)(circle one) YES (NO)(circle one) 6. Reporting Limits: Were samples analyzed at a dilution? 7. Electronic Data Review and Edits: Does the EDD match the Form I's YES NO (circle one) 8. **Table Review** Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? (YES)NO (circle one) Sumosates / Isotope Dilution; All whin lab limits (25-150) (actual recoveries 69 to 100) LCS/D: OK

P:\Projects\nysdec1\Contract D007619\Validation\NYSDEC CAT A Review Checklist PFAS.doc

Job ID: 480-133240-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-133240-1

Comments

No additional comments.

Receipt

The samples were received on 3/28/2018 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.7° C and 2.9° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-216477.

Method(s) 3535: The following samples: 633027-P105 (480-133240-1) and 633027-P106D (480-133240-3) was/were decanted prior to extraction, due to containing excess sediment which had the potential to clog the solid-phase column. noti in report

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

SILVIA

Detection Summary

Client: AMEC Foster Wheeler E & I, Inc Project/Site: NYSDEC Primoshield

TestAmerica Job ID: 480-133240-1

Lab Sample ID: 480-133240-1

Client Sample ID: 633027-P105

Analyte	Result Qualifi	er RI	. MDL	Unit	Dil Fac D Method	Prep Type
Perfluorobutanoic acid (PFBA)	0.55 J	2.0	0.35	ng/L	1 537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	-0-30-J-B-	2,0 4 2.0	0.17	ng/L	1 537 (modified)	Total/NA

Client Sample ID: 633027-P106S

Analyte	Result Qualifier	RL.	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	1,0 J	2.0	0.35 ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.38 J	2.0	0.20 ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.52-JB-2,0 U	2.0	0.17 ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	0.66 J	2.0	0.54 ng/L	1	537 (modified)	Total/NA
Total PFOA and PFOS	کر 0.66 J	2.0	0.54 ng/L	. 1	537 (modified)	Total/NA

Client Sample ID: 633027-P106D

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Perfluorobutanoic acid (PFBA)	0.60 J	2.0	0.34	ng/L	1	-	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	0.31_LB- 2,	o U 2.0	0.17	ng/L	1		537 (modified)	Total/NA

Client Sample ID: 633027-GW01

No Detections.

 ∂^{\sim} 5/14/18

Client Sample ID: TRIP BLANK

This Detection Summary does not include radiochemical test results.

No Detections.

Lab Sample ID: 480-133240-2

Lab Sample ID: 480-133240-4

Lab Sample ID: 480-133240-3

Lab Sample ID: 480-133240-5

TestAmerica Buffalo

Sector Sector

A CONTRACT OF A

4/13/2018

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-5 Matrix: Water												mple ID: I Prep T		
Analysis Batch: 508115														
	_		MB								_			
Analyte	Re		Qualifier		RL -		MDL			D F	repared			Dil Fa
1,4-Dioxane		ND		0.	40		0.20	ug/L				04/03/1	8 18:12	
		MB	MB											
Surrogate	%Reco		Qualifier	Limits						F	Prepared	d Anal	zed	Díl F
1,2-Dichloroethane-d4 (Surr)		95		71 - 14	4							04/03/1	8 18:12	
4-Bromofluorobenzene		104		72 - 13	3							04/03/1	8 18:12	
Lab Sample ID: LCS 460⊣	508115/4								Clie	nt Sa	mple l	D: Lab Co	ntrol S	amp
Matrix: Water											-	Prep Ty	/pe: To	tal/N
Analysis Batch: 508115														
				Spike		LCS	LCS					%Rec.		
Analyte				Added	R	lesult	Qual	ifier	Unit	D	%Rec	Limits		
,4-Dioxane				5.00		5.01			ug/L		100	66 - 135		
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
1,2-Dichloroethane-d4 (Surr)	102			71 - 144										
1-Bromofluorobenzene	106			72 - 133										
Lab Sample ID: LCSD 460	-508115/5							Ċ	lient Sa	mple	ID: La	b Control	Sampl	e Du
Vatrix: Water										•		Prep Ty		
Analysis Batch: 508115													•	
				Spike	L	CSD	LCSI)				%Rec.		RP
Analyte				Added	R	esult	Qual	ifier	Unit	D	%Rec	Limits	RPD	Lim
,4-Dioxane				5.00		4.85			ug/L		97	66 - 135	3	3
	LCSD	LCSI	D											
Surrogate	%Recovery	Qual	lifier	Limits										
,2-Dichloroethane-d4 (Surr)	96			71-144										
-Bromofluorobenzene	104			72-133										
-bromonadi oberizene														

Lab Sample ID: MB 320-216477/ Matrix: Water Analysis Batch: 216860	1-A							le ID: Method Prep Type: To Prep Batch: :	otal/NA
Allalysis Batch. 210000	MB	МВ						гтер Басси.	210477
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0	0.35	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluoropentanoic acid (PFPeA)	ND		2,0	0.49	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorooctanoic acid (PFOA)	1.35	1 5x = 6.7	\$ 2.0	0.85	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorodecanoic acid (PFDA)	ND	PFOA ND	2.0	0.31	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluoroundecanoic acid (PFUnA)	ND	11	2.0	1.1	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorododecanoic acid (PFDoA)	ND	al)	2.0	0.55	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorotridecanoic Acid (PFTriA)	ND	semples;	2.0	1.3	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorobutanesulfonic acid (PFBS)	ND	no quels	2.0	0.20	ng/L		04/05/18 12:06	04/07/18 14:53	1

TestAmerica Buffalo

all a contraction

And a second

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-21647 Matrix: Water Analysis Batch: 216860	7/1 -А мв	МВ					•	le ID: Method Prep Type: To Prep Batch: 3	otal/NA
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanesulfonic acid (PFHxS)	0.240	J SX = 112		0.17			04/05/18 12:06	04/07/18 14:53	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	(4) all	2.0		ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32	ng/L		04/05/18 12:06	04/07/18 14:53	1
Perfluorooctane Sulfonamide (FOSA)	ND		2.0	0.35	ng/L		04/05/18 12:06	04/07/18 14:53	1
Total PFOA and PFOS	1.35	J (PFDA)	2.0	0.54	ng/L		04/05/18 12:06	04/07/18 14:53	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier Li	mits				Prepared	Analyzed	Dil Fac
13C8 FOSA	63	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C4 PFBA	69	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C2 PFHxA	67		- 150				04/05/18 12:06	04/07/18 14:53	1
13C4 PFOA	73	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C5 PFNA	78	5/14/18 25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C2 PFDA	81	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C2 PFUnA	78	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C2 PFDoA	79	25	- 150				04/05/18 12:06	04/07/18 14:53	1
18O2 PFHxS	71	25	- 150				04/05/18 12:06	04/07/18 14:53	. 1
13C4 PFOS	74	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C4-PFHpA	73	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C5 PFPeA	70	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C3-PFBS	69	25	- 150				04/05/18 12:06	04/07/18 14:53	1
13C2-PFTeDA	76	25	- 150				04/05/18 12:06	04/07/18 14:53	1

Lab Sample ID: LCS 320-216477/2-A Matrix: Water Analysis Batch: 216860

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 216477

·······	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier L	nit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)	40.0	39.0	r	g/L	• • •	97	70 - 130
Perfluoropentanoic acid (PFPeA)	40.0	34.8	r	g/L		87	66 - 126
Perfluorohexanoic acid (PFHxA)	40.0	37.1	r	g/L		93	66 - 126
Perfluoroheptanoic acid (PFHpA)	40.0	36.1	n	g/L		90	66 - 126
Perfluorooctanoic acid (PFOA)	40.0	35.7	n	g/L		89	64 - 124
Perfluorononanoic acid (PFNA)	40.0	36.7	n	g/L		92	68 - 128
Perfluorodecanoic acid (PFDA)	40.0	39.0	n	g/L	• • •	97	69 - 129
Perfluoroundecanoic acid	40.0	37.9	n	g/L		95	60 - 120
(PFUnA)							
Perfluorododecanoic acid	40.0	36.2	n	g/L		91	71 - 131
(PFDoA) Perfluorotridecanoic Acid (PFTriA)	40.0	36.7	n	g/L		92	72 - 132
Perfluorotetradecanoic acid	40.0	36.9	n	g/L		92	68 - 128
(PFTeA)							
Perfluorobutanesulfonic acid	35.4	33.6	n	g/L		95	73 - 133
(PFBS) Perfluorohexanesulfonic acid (PFHxS)	36.4	32.6	'n	j/L		90	63 - 123
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	34.2	n	Ĵ∕L		90	68 - 128

TestAmerica Buffalo

9-5464 1.4-Dioxonc **VOCs**-PROJECT CATEGORY A REVIEW RECORD **Project:** Prinoshield Method : SW-846 8260B SDG(s): 480-133240-1 Laboratory: TAL Edison Slivis Ricordi Date: **Reviewer:** X CATEGORY A **Review Level** Case Narrative Review and COC/Data Package Completeness **COMMENTS** 1. Were problems noted? No YES NO (circle one) Were all the samples on the COC analyzed for the requested analyses? Are Field Sample IDs and Locations assigned correctly?(YES) NO (circle one) Holding time and Sample Collection 2. All samples were analyzed within the 14 day holding time. (YES) NO (circle one) <u>~</u> **QC** Blanks 3. Are method blanks free of contamination? (YES) NO (circle one) Are Trip blanks free of contamination? (YES) NO (circle one) Are Rinse blanks free of contamination? YES NO (NA) (circle one) Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) 4. Were MS/MSDs submitted/analyzed? YES (NO) Were all results were within the Region II limits? YES NO (NA) (circle one) 5. Field Duplicates - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES (NQ) Were all results were within Region II Limits? YES NO NA (circle one) YES (NO)(circle one) **Reporting Limits:** Were samples analyzed at a dilution? 6. Electronic Data Review and Edits 7. Does the EDD match the Form Is? (YES)NO (circle one) Table Review 8. Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) NO (circle one) Were all tables produced and reviewed? YES(NO) (circle one) Table 4 (TICs) Did lab report TICs? Sumogetes: All ok LOS/DI OK

No Quals

VOCs
PROJECT CATEGORY A REVIEW RECORD Project: VMOShield Method: <u>SW-846 8260B</u> Laboratory: ALS Rochester SDG(s): R1802717 Date: <u>SIMIE</u> Ricecti Reviewer: Julie Ricecti Review Level X CATEGORY A
1. Case Narrative Review and COC/Data Package Completeness <u>COMMENTS</u> Were problems noted? CCAL'z LCS notad; See attached; no quals
Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one)
Are Field Sample IDs and Locations assigned correctly? ES NO (circle one)
 Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one)
3. C Blanks Are method blanks free of contamination? YES NO (circle one)
Are Trip blanks free of contamination? YES (NO) (circle one) > See attached for detone
Are Rinse blanks free of contamination? YES NO NA (circle one)
 Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed? YES NO
Were all results were within the Region II limits? YES NO (NA)(circle one)
5. Field Duplicates - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO
Were all results were within Region II Limits? YES NO(NA)(circle one)
6. C Reporting Limits: Were samples analyzed at a dilution? YES (NO) (circle one)
7. Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one)
 8. Table Review Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
Table 4 (TICs) Did lab report TICs? YES NO (circle one)
Surrogetus: OK
Les i See etteched, no evels

......

Client:	AMEC Foster Wheeler E & I (MACTEC)
Project:	Primoshield
Sample Matrix:	Water

Service Request: R1802717 Date Received: 03/29/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier IV, validation deliverables including all summary forms and associated raw data. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Nine water samples were received for analysis at ALS Environmental on 03/29/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature.

Metals:

No significant anomalies were noted with this analysis.

Volatiles by GC/MS:

Method 8260C, : The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken. In the data $\frac{1}{2}$ and $\frac{$

Sample, NDi OLC no action

 $\partial^{}$ 5/14/18

* since other QC (LCS) is in control or has high bias at analyter ND

Janansty

Approved by

Date 04/09/2018

SAMPLE DETECTION SUMMARY

LIENT ID: 633027 - P105		and an and the state of the state of the	l all		747 004	and send on the second second	The second second second second second
Analyte		Results	Flag	MDL	PQL	Units	Method
Acetone	5.0 2-10 U	1.6-		1.3	5.0	ug/L	8260C
LIENT ID: 633027 - GW01			Lab	ID: R1802	2717-002	opic provide pro-	
Analyte		Results	Flag	MDL	PQL	Units	Method
1,1,1-Trichloroethane (TCA)		0.50	J	0.36	1.0	ug/L	8260C
Acetone	5,0 U	-2.7 -	-J	1.3	5.0	ug/L	8260C
LIENT ID: 633027 - P103			Lab	ID: R1802	2717-003		
Analytė		Results	Flag	MDL	PQL	Units	Method
1,1,1-Trichloroethane (TCA)		2.1		0.36	1.0	ug/L	8260C
Acetone	5,0 0	K - 2.3	~ . J	1.3	5.0	ug/L	8260C
Trichloroethene (TCE)		0.84	J	0.22	1.0	ug/L	8260C
LIENT ID: 633027 - P107S			Lab	ID: R1802	717-006		
Analyte	· ·	Results	Flag	MDL	PQL	Units	Method
Cadmium, Total		2.1	J	0.6	5.0	ug/L	6010C
Chromium, Total		2	J	2	10	ug/L	6010C
Nickel, Total		174		3	40	ug/L	6010C
1,1,1-Trichloroethane (TCA)		0.44	J	0.36	1.0	ug/L	8260C
1,1-Dichloroethane (1,1-DCA)		0.32	J	0.20	1.0	ug/L	8260C
Acetone	5.0 U	1.8-		1.3	5.0	ug/L	8260C
Trichloroethene (TCE)		7.1		0.22	1.0	ug/L	8260C
LIENT ID: 633027 - EB1			Lab	ID: R1802	717-008		
Analyte		Results	Flag	MDL	PQL	Units	Method
2-Butanone (MEK)) no quali	5.7 5	x = 28.	S 0.81	5.0	ug/L	8260C
Acetone	subset, else N	39 10)x = 39	o ^{1.3}	5.0	ug/L	8260C
LIENT ID: Trip Blank		1903 (1946) (1946) 1967 (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1946) (1 1946) (194	Lab	ID: R1802	717-009		
Analyte		Results	Flag	MDL	PQL	Units	Method
7.11019.00					5.0		8260C

J-5116/18

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:
Project:
Sample Matrix:

AMEC Foster Wheeler E & I (MACTEC) Primoshield/3612122251.03 Water Service Request: R1802717 Date Analyzed: 04/03/18

Duplicate Lab Control Sample Summary Volatile Organic Compounds by GC/MS

> Units:ug/L Basis:NA

	8-5114/18		Lab Control RQ18030	-	Dupli	cate Lab Co RQ180305	ple			
Analyte Name	Analytical Method	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1,1,1-Trichloroethane (TCA)	8260C	19.9	20.0	100	20.4	20.0	102	74-120	2	30
1,1,2,2-Tetrachloroethane	8260C	19.0	20.0	95	18.8	20.0	94	78-122	1	30
1,1,2-Trichloroethane	8260C	18.8	20.0	94	18.3	20.0	91	82-118	3	30
1,1-Dichloroethane (1,1-DCA)	8260C	19.9	20.0	100	20.1	20.0	101	78-117	<1	30
1,1-Dichloroethene (1,1-DCE)	8260C	17.5	20.0	87	17.9	20.0	89	74-135	2	30
1,2-Dichloroethane	8260C	22.9	20.0	115	22.3	20.0	112	71-127	3	30
1,2-Dichloropropane	8260C	19.2	20.0	96	19.9	20.0	100	80-119	3	30
2-Butanone (MEK)	8260C	23.1	20.0	115	22.9	20.0	114	61-137	1	30
2-Hexanone	8260C	25.4	20.0	(127*)	24.0	20.0	120	63-124	6	30
4-Methyl-2-pentanone	8260C	25.1	20.0	(126*)	24.4	20.0	122	66-124	3	30
Acetone	8260C	24.9	20.0	125	25.3	20.0	126	40-161	1	30
Benzene	8260C	19.3	20.0	96	19.5	20.0	97	76-118	1	30
Bromodichloromethane	8260C	18.4	20.0	92	18.5	20.0	93	78-126	<1	30
Bromoform	8260C	20.7	20.0	104	20.6	20.0	103	71-136	<1	30
Bromomethane	8260C	13.7	20.0	69	14.2	20.0	71	42-166	3 .	30
Carbon Disulfide	8260C	16.0	20.0	80	15.8	20.0	79	65-127	1	30
Carbon Tetrachloride	8260C	21.7	20.0	108	21.3	20.0	106	68-125	2	30
Chlorobenzene	8260C	18.0	20.0	90	18.5	20.0	93	80-121	3	30
Chloroethane	8260C	14.3	20.0	72	15.1	20.0	75	70-127	5	30
Chloroform	8260C	19.1	20.0	95	19.4	20.0	97	76-120	1	30
Chloromethane	8260C	20.1	20.0	101	20.3	20.0	101	69-145	<1	30
Dibromochloromethane	8260C	19.3	20.0	97	19.0	20.0	95	77-128	2	30
Dichloromethane	8260C	18.6	20.0	93	18.7	20.0	94	73-122	<1	30
Ethylbenzene	8260C	18.6	20.0	93	18.9	20.0	94	76-120	2	30
Styrene	8260C	18.9	20.0	95	19.4	20.0	97	80-124	2	30
Tetrachloroethene (PCE)	8260C	18,2	20.0	91	19.7	20.0	98	78-124	8	30
Toluene	8260C	18.7	20.0	94	19.5	20.0	97	77-120	4	30
Trichloroethene (TCE)	8260C	18.1	20.0	90	18.3	20.0	91	78-123	1	30
Vinyl Chloride	8260C	18,1	20.0	90	18.9	20.0	95	69-133	5	30
cis-1,2-Dichloroethene	8260C	17.4	20.0	87	17.7	20.0	88	80-121	2	30
cis-1,3-Dichloropropene	8260C	19.8	20.0	99	19.6	20.0	98	74-126	<1	30
m,p-Xylenes	8260C	38.1	40.0	95	38.3	40.0	96	78-123	<1	30
o-Xylene	8260C	19.0	20.0	95	19.3	20.0	96	80-120	1	30
Printed 4/10/2018 5:08:17 PM						Sup	erset Referci	nce:18-00004	60514 rev 0	0

METALS (d, Cr, Cu, Pb, Ni, to
NYSDEC CATEGORY A REVIEW RECORD Project: <u>Primoshield</u> Method : <u>Goloc</u> Laboratory and SDG(s): <u>ALS Globel - Roch</u> ester Date: <u>Slylig</u> Reviewer: <u>Julic Ricercli</u>
Review Level X CATEGORY A
1. Case Narrative Review and Data Package Completeness Were all the samples on the COC analyzed for the requested analyses?
Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) No Narchie poblem, noted 2. I Holding time and Sample Collection Were all samples prepared and analyzed with the holding time (6 months) YES NO
3. De QC Blanks Are method blanks free of contamination? (YES) NO (circle one) CCB have hits for Ni and Cd; see etteched for Cd Qual Are Rinse blanks free of contamination? YES NO NA (circle one) else NID or >
4. Matrix Spike Were MS/MSDs submitted/analyzed? YES NO
Were all results were within 75-125% limits? YES NO (NA)(circle one)
5. Field Duplicates Were Field Duplicates submitted/analyzed? YES
Aqueous RPD within limit? (20)YESNONA(circle one)Soil RPD within limit? (35)YESNONA(circle one)
6. C Reporting Limits: Were samples analyzed at a dilution? YES (NO) (circle one)
7. Z Electronic Data Review and Edits: Does the EDD match the Form Is? (YES) NO (circle one)
 8. Z Table Review: Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)
LCS: OK

P:\Projects\nysdec1\Contract D007619\Validation\NYSDEC_CAT A_Review_Checklist_Metals.doc

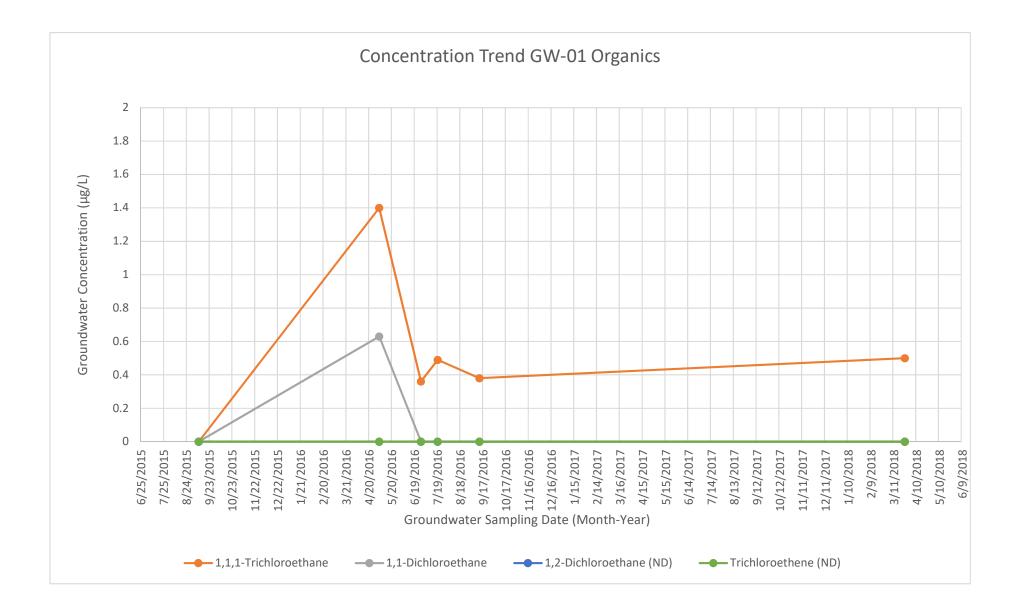
ALS Environmental

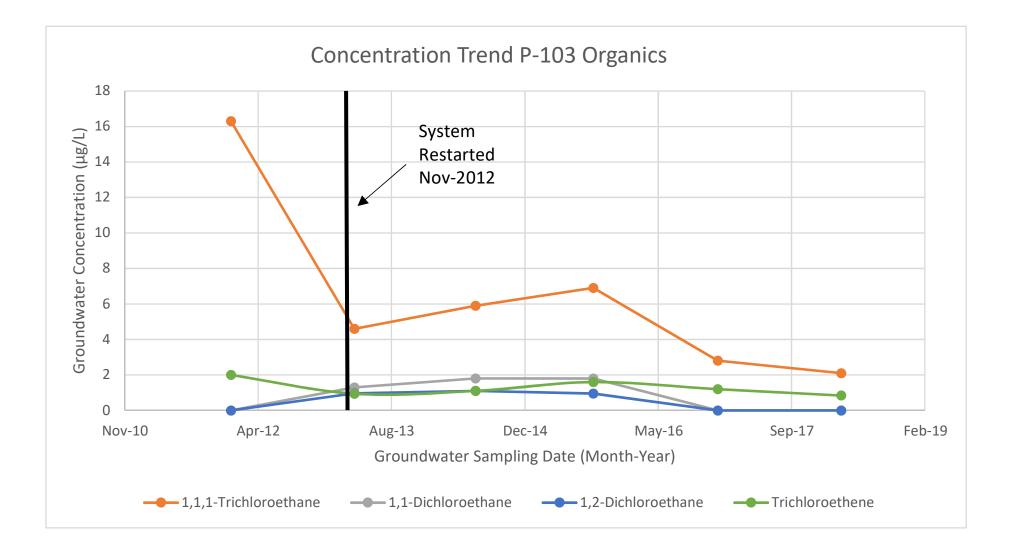
METALS

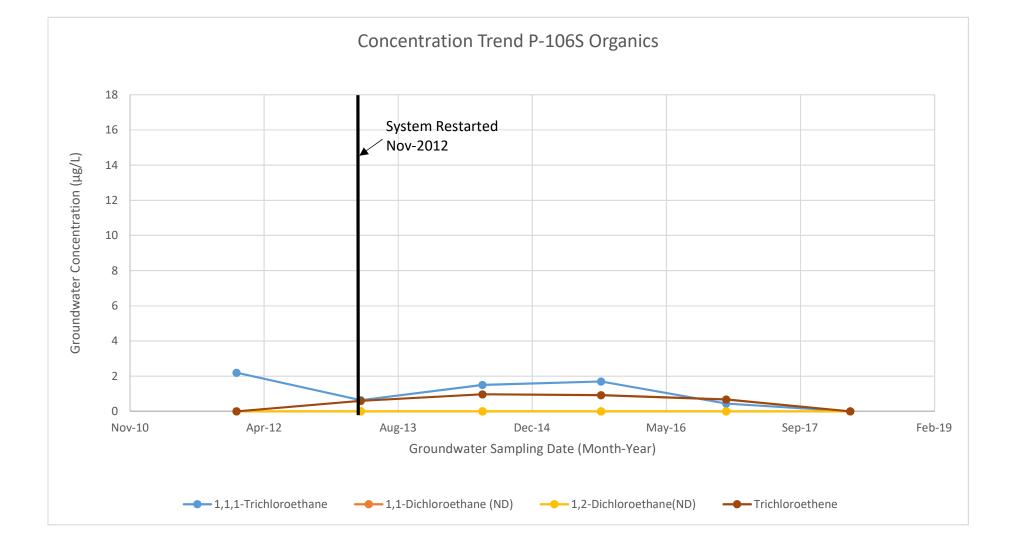
-3-

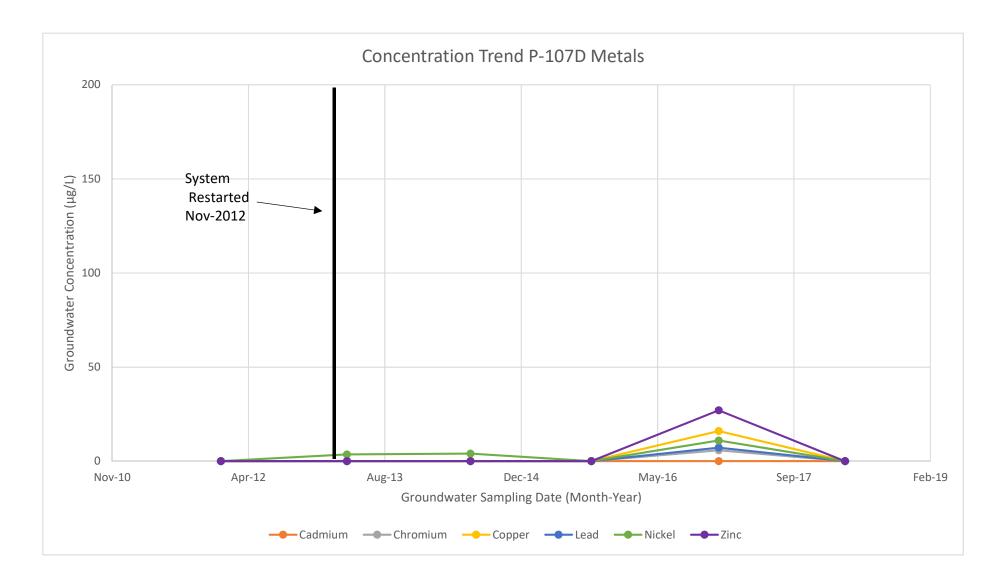
BLANKS

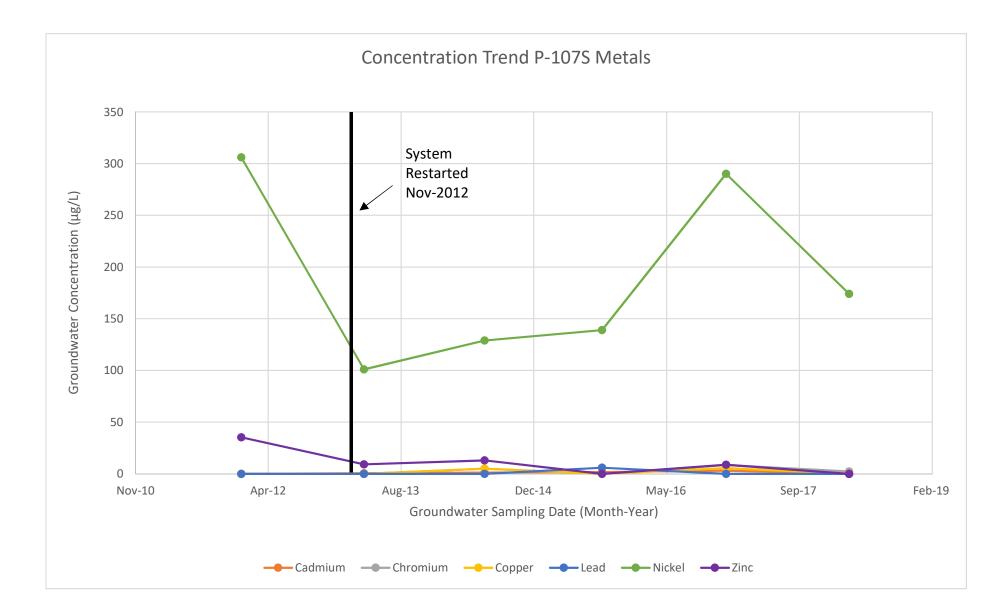
Contract:	R1802717				
Lab Code:		Case No.:	SAS No.:	SDG NO.:	633027 - P10
Preparatio	n Blank Matrix	(soil/water):	WATER		


Preparation Blank Concentration Units (ug/L, ppt, or mg/kg): UG/L


	Initial Calib. Blank		Continuing Calibration Blank ug/L						 Preparation Blank			
Analyte	ug/L	С	1	С	2	Ċ	3	С		С		м
Cadmium	0,59	U	0.70)J	0.59	טן	0.59	U	0.590	U		P
Chromium	1.40	υ	1.40	υ	1.40	U	1.40	U	1,400	Ū	Ī	P
Copper	6.30	σ	6.30	U	6.30	ט 🛛	6.30	ט	6.300	ΰ	İ	Р
Lead	2.50	σ	2.50	υ	2.50	U	2.50	U	2.500	U		Р
Nickel	2.60	υ	(3.10	પ્ર	2.60	U	2.60	U	2.600	ט'	Ī	Ρ
Zinc	9,40	σ	9.40	υ	9.40	Ū	9.40	υ	9.400	U	Ī	P


Ni 15.5 >


ATTACHMENT 3


GROUNDWATER CONCENTRATION TREND PLOTS

