

Primo-shield, Inc. Oneida County Utica, New York

Periodic Review Report January 2016 – December 2021 NYSDEC Site No. 633027 (Work Assignment No. D009806-34)

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering and Geology, P.C. Washington Station 333 West Washington Street, Suite 300 Syracuse, New York 13202 315-431-4610

> June 2025 Version: FINAL EA Project No. 16025-34-00-CP

This page intentionally left blank

Primo-shield, Inc. Oneida County Utica, New York

Periodic Review Report January 2016 – December 2021 NYSDEC Site No. 633027

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering and Geology, P.C. Washington Station 333 West Washington Street, Suite 300 Syracuse, New York 13202 315-431-4610

mall

Donald Conan, P.E., P.G., Program Manager

June 5, 2025 Date

Adam Etringer, Senior Project Manager

June 5, 2025 Date

June 2025 Version: FINAL EA Project No. 16025-34-00-CP This page intentionally left blank

TABLE OF CONTENTS

Page

LIST OF 7	TABLESiii
LIST OF I	FIGURESiii
LIST OF A	APPENDIXESiii
LIST OF A	ACRONYMS AND ABBREVIATIONS iv
ES. EXEC	CUTIVE SUMMARY 1
1. IN	TRODUCTION 1
1.1 1.2 1.3	 INVESTIGATION AND REMEDIAL HISTORY
2. IN: 2.1 2.2 2.3	2 ENGINEERING CONTROLS
3. EV PR	VALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND COTECTIVENESS
3.1 3.2 3.3	2 GROUNDWATER MONITORING
3.4	
4.1	4.1.1Electric Usage124.1.2Fossil Fuel Usage124.1.3Water Usage134.1.4Air Emissions134.1.5Consumption of Materials and Generation of Waste13
4.2 4.3 5. CC	-
<i>J.</i> CC	The contraction of the contracti

6.	FUTURE SITE ACTIVITIES	8
7.	REFERENCES	0

LIST OF TABLES

- Table 1.Site Inspections, Monitoring, Maintenance, and Reporting Frequency
- Table 2.Groundwater Levels (2016-2021)
- Table 3a.Summary of Site Contaminants of Concern in Groundwater Monitoring Wells
(2016-2019)
- Table 3b.Summary of Site Contaminants of Concern in Groundwater Treatment System
(2016-2019)

LIST OF FIGURES

- Figure 1. Site Location
- Figure 2. Site Features and Monitoring Locations
- Figure 3. Groundwater Elevation Contour Map (August 2021)
- Figure 4 Site Groundwater COC Exceedances (2016-2021)

LIST OF APPENDIXES

- Appendix A. Real Property Map
- Appendix B. Inspection and Gauging Forms
- Appendix C. Full Analyte List Data Tables (2016-2021; no data available for 2020)
- Appendix D. Mann-Kendall Trend Analysis of TCE, Lead, & Nickel in Monitoring Wells (December 2011-August 2021)

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L	Microgram(s) per liter
AWQS	Ambient water quality standards
COC	Contaminant of concern
DER	Division of Environmental Remediation
EA EC EPA	EA Engineering and Geology, P.C. Engineering control U.S. Environmental Protection Agency
GWCS GWTS	Groundwater collection system Groundwater treatment system
IC	Institutional control
LTM	Long-term monitoring
MACTEC M-K	MACTEC Engineering and Consulting, P.C. Mann Kendall (Trend Analysis)
No. NYSDEC NYSDOH	Number New York State Department of Environmental Conservation New York State Department of Health
PDB PFOA PFOS POTW PRR	Passive diffusion bag Perfluorooctanoic acid Perfluorooctane sulfonic acid Publicly-Owned Treatment Works Periodic Review Report
RI ROD	Remedial investigation Record of Decision
SCGs SCOs Site SMP SSF	Standards, criteria, and guidance values Soil Cleanup Objectives Primo-shield, Inc. Site Site Management Plan State Superfund
TCE	Trichloroethene
VOC	Volatile organic compound(s)

ES. EXECUTIVE SUMMARY

The Primoshield, Incorporated site (Site No. 633027; hereinafter referred to as the Site) is located at 1212 St. Vincent Street in Utica, Oneida County, New York. The Site is a New York State Department of Environmental Conservation (NYSDEC) Class 4 site that has been properly closed but requires continued site management consisting of operation, maintenance and/or monitoring.

The Site was a metal electroplating facility that operated from the early 1970s until it was abandoned in August of 1985. When the facility was abandoned, several drums and open vats (some containing acids, cyanide solutions and spent plating solutions) were left scattered over the entire property. A Remedial Investigation (RI) /Feasibility Study (FS) was completed in 1995, and a ROD was signed on March 22, 1995. The ROD called for construction of a groundwater pump and treat (P&T) system where contaminated groundwater was treated by carbon filtration prior to being discharged to a Publicly-Owned Treatment Works (POTW). The ROD established the following Remedial Action Objectives (RAOs) for the Site:

- Reduce, control, or eliminate the contamination present within the soils on Site
- Eliminate the threat to surface waters by eliminating future contaminated surface water run-off from the contaminated soils on Site, and potential future discharge from site sewer lines to the Oneida County Sewer System
- Eliminate the potential for direct human contact with the contaminated soils onsite
- Mitigate the impacts of contaminated groundwater to the environment and to nearby residents
- Prevent to the extent possible migration of contaminants in the soils to groundwater
- Provide for attainment of standards, criteria, and guidance values for groundwater quality at the limits of the area of concern
- Remediate the Site and adjoining property to provide for future delisting and unrestricted use.

The Site was assigned by NYSDEC as a State Superfund project in November of 1996. Since entering the State Superfund program, the NYSDEC has completed the remediation, including building demolition and soil removal in 1998, and assumed responsibility for Operations and Maintenance (O&M) of the treatment system that was installed in 1998. The pump and treat system worked effectively, the groundwater contaminant levels dropped to below discharge criteria, and the system was modified in 2001 to bypass the carbon treatment prior to discharge to the POTW. Groundwater collection continues at the Site with an objective of intercepting and collecting contaminated groundwater upgradient of the nearest receptors. Groundwater is currently pumped from the groundwater collection system and discharged directly to the POTW.

Residual contamination in the groundwater is being managed under a Site Management Plan, which outlines the controls established to meet the RAOs. Because remaining contaminated groundwater exists beneath the Site, engineering controls (ECs)/institutional controls are required to protect human health and the environment (**Table ES-1**). EC systems at the Site include: the groundwater collection system (not running as of 2020), site access controls, and groundwater collection system on contaminant concentrations, evaluate if contaminants are migrating off-site, monitor long-term trends in concentrations of contaminants, and evaluate the effectiveness of the remedial actions. Site management consists of the following:

- Semi-annual site inspections
- Semi-annual POTW discharge monitoring
- Long-term monitoring consisting of groundwater monitoring every 15 months.

This Periodic Review Report summarizes Site Management activities completed at the Site from 2016 through 2021. Based on activities completed during this period, the Site use and activities are in compliance with the Site Management Plan requirements, and the institutional controls/engineering controls remaining in-place are effective in protecting public health and the environment.

Table ES-1. Site Summary (NTSDEC Site No. 055027)											
Category	Summary/Results										
	1. The property may be used for:										
	• "Industrial Use" as defined in New York State Department of Environmental										
	Conservation (NYSDEC) Regulations Title 6of the New York Codes, Rules, and										
	Regulations Part $375 - 1.8(g)(2)(iii)$ and (iv).										

Table ES-1. Site Summary (NYSDEC Site No. 633027)

Table ES-1. Site Summary (NYSDEC Site No. 633027)									
Category	Summary/Results								
	2. Institutional controls (ICs) for the site are:								
	• Access to the site for maintaining the groundwater collection system (GWCS) must be allowed. The GWCS was operational from 2001 to 2020 when NYSDEC approved shutdown and has not been operational since.								
	• Groundwater extraction for anything other than monitoring is prohibited.								
	Animal production for human consumption is prohibited.								
	• Vegetable gardens are prohibited on-site unless planted in gardens where soil achieves the residential use Soil Cleanup Objectives.								
Institutional Controls:	• Site use is limited to industrial uses only. The Site may not be used for a less restrictive use without additional remediation and amendment of the Site Management Plan (SMP) by the NYSDEC. Should any development of the Site be considered, soil and soil vapor sampling would be necessary to evaluate current conditions relative to soil Standards, Criteria, and Guidance values.								
	• Excavation on the property is prohibited without written permission from the NYSDEC.								
	• Compliance by the Grantor and the Grantor's successors and assigns with the SMP.								
	• Engineering controls (ECs) must be operated and maintained as specified in the SMP.								
	• ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.								
	• Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.								
	• Data and information pertinent to site management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP.								
	• On-site environmental monitoring devices, including but not limited to groundwater monitoring wells, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP.								
	• Future activities on the site that will disturb remaining contaminated material are prohibited unless they are conducted in accordance with the SMP.								
	• NYSDEC retains the right to access the Site in order to evaluate the continued maintenance of controls.								
	3. ECs must be inspected at a frequency and in a manner defined in the SMP.								
Engineering	1. GWCS (turned off)								
Controls:	2. Groundwater monitoring wells								
	3. Site Access Controls								

Table FS_1 Site Su (NVSDEC Site No. 622027)

Inspections	Frequency				
1. Fencing, gates, and Site access	Semi-annually				
2. Monitoring well integrity and water levels from 7 wells	15-month interval				
3. Groundwater collection trenches	As needed				
4. Groundwater treatment system building and piping	As needed				
Monitoring	Frequency				
1. Monitoring well groundwater sampling and analysis from 7 monitoring	Every 15 months				
wells					
Maintenance	Frequency				
1. Mowing	Annually				
2. Fence repair	As needed				
3. Building structures	As needed				
4. Groundwater collection trenches	As needed				
5. Monitoring wells	As needed				
Reporting	Frequency				
1. Inspection Report	Semi-annual				
2. Long-Term Monitoring Report	With the Annual Report or				
	Periodic Review Report (PRR)				
	following the sampling event				
3. Annual Report	Annually for years without a PRR				
4. PRR	Every 5 years				

Table ES-2. Inspections, Monitoring, Maintenance, and Reporting Frequency

1. INTRODUCTION

EA Engineering and Geology, P.C. (EA) was tasked by the New York State Department of Environmental Conservation (NYSDEC) under State Superfund (SSF) Standby Contract Work Assignment Number (No.) D009806-34 to prepare a Periodic Review Report (PRR) for the Primoshield Inc. Plating Site (Site No. 633027) that covers activity from January 2016 through December 2021. The purpose of this PRR is to certify the engineering controls (ECs) and institutional controls (ICs) required by the remedy, report the results of the site inspection and groundwater sampling, and summarize and evaluate the remedy implemented at the site, relative to the requirements of the Record of Decision (ROD) dated March 1995 (NYSDEC 1995). This report was prepared in accordance with the NYSDEC Division of Environmental Remediation (DER)-10, Technical Guidance for Site Investigation and Remediation (NYSDEC 2010).

1.1 SITE LOCATION, OWNERSHIP, AND DESCRIPTION

The Primo-shield, Inc. Site (Site), which has a Classification Code of 4 (Site Management), is a former metal electroplating facility located at 1212 St. Vincent Street, Utica, New York (**Figure 1**). The Site is bordered by Conkling Avenue to the northwest and St. Vincent Street and St. Agnes R.C. cemetery to the southeast. The Mohawk River is located approximately 1.5 miles north and downgradient of the Site. The Site is approximately 2.4 acres in size and is comprised of four parcels. The City of Utica owns 2 parcels totaling approximately 0.82 acres and enclosed by a chain link fence. The fenced portion of the Site, designated as 1223 Conkling Avenue (tax map parcel No. 41; **Appendix A**) and 1212 St. Vincent Street (tax map parcel No. 33), is in a mixed commercial/residential area (**Figure 2**). The remaining parcels correspond to the DePaul cinder and gravel parking lot located south of the Site. The owner of the fenced Site parcels is the City of Utica.

1.2 INVESTIGATION AND REMEDIAL HISTORY

Primo-shield, Inc. was a metal electroplating facility that operated from the early 1970s until it was abandoned in August of 1985. The property consisted of office and factory buildings, a small laboratory, and a storage trailer. Included in the original Site was an adjacent gravel parking lot not owned by Primo-shield, Inc. Following a fire in 1985, the facility was abandoned by its owners. When the facility was abandoned, several drums and open vats (some containing acids, cyanide solutions and spent plating solutions) were left scattered over the entire property. The City of Utica subsequently assumed ownership of the property in 1989 due to non-payment of taxes.

1.2.1 Site Investigation History

Following an initial site reconnaissance and sampling effort by NYSDEC in December 1985, laboratory sample results obtained indicated a very high risk to the public from the Site. On 12 March 1986, the NYSDEC formally petitioned the U.S. Environmental Protection Agency (EPA) Region II Office to perform an Emergency Response and Removal Action at the Site, including but not limited to, the cleanup and removal of the surficial and containerized hazardous wastes and the installation of a fence and gate system to resecure the Site. In 1986 and 1987, EPA removed all containerized wastes and disposed of the wastes at approved disposal locations. All structures

on the property were demolished and removed. In November 1987, EPA emergency response and cleanup actions at the Site were completed and jurisdiction for further remedial action at the Site was returned to NYSDEC.

In December 1989, NYSDEC signed a negotiated Consent Order with the City of Utica in which the city agreed to perform a Remedial Investigation (RI)/Feasibility Study to further investigate and remediate residual hazardous waste contamination remaining at the Site. The RI was conducted from September/October 1992 through October 1993 (O'Brien & Gere Engineers Inc. and Harza Northeast Inc. 1994). The RI identified cadmium, chromium, nickel, and cyanide in surficial soils and trichloroethene, 1,1,1-trichloroethane, 1,1-dichloroethane, and chromium in groundwater. At the time of the RI, the shallow groundwater plume at the Site was estimated at ¹/₂ acre in size and to contain a 6-foot saturated thickness beginning at 4 feet below ground surface. The shallow surficial overburden strata (generally less than 20 feet in total thickness) are underlain by approximately 35 feet or more of dense silt/clay rich glacial till, which limits the vertical migration of contaminated groundwater at the Site. Both the surficial soil contamination and the shallow groundwater contamination extended a short distance to the north from the Site onto the adjoining property (MACTEC Engineering and Consulting, P.C. [MACTEC] 2019a).

1.2.2 Site Remediation History

Two Interim Remedial Measures¹ were implemented at the Site prior to completion of the RI/FS as follows:

- On 15 June 1993, an interim structural brace (tubular metal scaffolding system) was installed in the center of the main production building to transfer loading from an unbraced vertical column which appeared to be close to failure.
- On 19 April 1994. a site surficial cleanup was conducted at the Site. Scrap metal and scrap lumber were collected and stockpiled for later recycling and/or disposal. Brush was cleared and stockpiled, and miscellaneous debris was collected and stockpiled for later off-site disposal.

The ROD was signed on 22 March 1995 and called for the following (NYSDEC 1995):

- Excavation and disposal of hazardous and non-hazardous soils
- Building demolition
- Groundwater collection trench installation
- Operation, maintenance, and monitoring of a groundwater collection system, the purpose of which was to intercept, collect, and discharge contaminated groundwater.

¹ Interim Remedial Measures are conducted at sites when sources of contamination or exposure pathways can be effectively addressed before completion of the RI/FS.

The Site was re-assigned by NYSDEC as a State Superfund project in November 1996 because the City of Utica had inadequate funds to complete the remediation. Since entering the State Superfund program, the NYSDEC has completed the remediation, including building demolition and soil removal in 1998, and assumed responsibility for Operations and Maintenance (O&M) of the treatment system that was installed in 1998.

The originally installed groundwater treatment system was designed to intercept and collect the plume of contaminated groundwater and treat the water by carbon filtration, with effluent discharged to the Oneida County Sewer System Publicly Owned Treatment Works (POTW). The pump and treat system worked effectively, the groundwater contaminant levels dropped to below discharge criteria, and the system was modified in 2001 to bypass the carbon treatment prior to discharge to the POTW. The groundwater treatment system continued to be used for groundwater collection until the fourth quarter of 2020 with an objective of intercepting and collecting contaminated groundwater upgradient of the nearest receptors. Groundwater is currently pumped from the groundwater collection system, which was shut down in 2020, and discharged directly to the POTW. The Site was subsequently reclassified as Class 4 (Site Management). Site Management is currently underway and consists of:

- Semi-annual site inspections
- Semi-annual POTW discharge monitoring (while the system was operational)
- Long term monitoring (LTM) consisting of groundwater monitoring every 15 months.

Existing wells are monitored to evaluate COC concentrations (i.e., cadmium, chromium, lead, nickel, cyanide, and VOCs) in groundwater. Ten groundwater monitoring wells installed at and near the Site during the RI in the mid-1990s were initially included in the LTM program (P-103, P-104, P-105, P-106S, P-106D, P-107S, P-107D, P-108, P-101S, and P-101D). One additional groundwater monitoring well (GW-01) was installed downgradient of the collection trench in 2015 to obtain data for evaluating the effectiveness of the groundwater collection system (GWCS). In addition, an evaluation of the monitoring well network in 2015 determined that four wells (P-101S, P-101D, P-104, P-108) were no longer needed, and the wells were decommissioned in October 2016 (MACTEC Engineering and Consulting, P.C. [MACTEC] 2016).

1.3 REMEDIAL ACTION OBJECTIVES

The ROD signed in March 1995 established the following remedial action objectives:

- Reduce, control, or eliminate the contamination present within the soils on-site.
- Eliminate the threat to surface waters by eliminating future contaminated surface water runoff from the contaminated soils on Site, and potential future discharge from Site sewer lines to the Oneida County Sewer System.
- Eliminate the potential for direct human contact with the contaminated soils on-Site.
- Mitigate the impacts of contaminated groundwater to the environment and to nearby residents.

- To the extent possible, prevent migration of contaminants in the soil to groundwater.
- Provide for attainment of SCGs for groundwater quality at the limits of the area of concern.
- Remediate the Site and adjoining property to provide for future delisting and unrestricted use.

The ROD defined cleanup criteria for the various media at the Site (surface soil; groundwater; sump sediments/solids; and basement seepage, sump water, and groundwater) (NYSDEC 1995). The shallow soil (12 inches) clean-up goals defined in the ROD for cadmium, chromium, and lead are less stringent than the current residential and/or commercial Part 375 SCOs (MACTEC 2019a).

2. INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE

Due to remaining contaminated groundwater and soil existing beneath the Site, IC/ECs are required to protect human health and the environment. ICs are required to: (1) ensure unimpeded operation of the EC systems (GWCS, site access controls, and groundwater monitoring wells); and (2) limit the reuse of the Site to industrial uses. A SMP presenting the ICs and ECs for the Site was approved by NYSDEC in August 2013 (MACTEC 2013) and updated in 2016 (MACTEC 2016) and 2019 (MACTEC 2019a). The SMP includes an Institutional and Engineering Control Plan, Long-Term Monitoring Plan, Operation and Maintenance Plan, and a Site Management Reporting and Certification Plan.

2.1 INSTITUTIONAL CONTROLS

The ICs established for the Site include the following:

- Access to the Site for maintaining the GWCS must be allowed.
- Groundwater extraction for anything other than monitoring is prohibited.
- Animal production for human consumption is prohibited.
- Vegetable gardens are prohibited on-site unless planted in gardens where soil achieves the residential use SCOs.
- Site use is limited to industrial uses only. The Site may not be used for a less restrictive use without additional remediation and amendment of the Site Management Plan (SMP) by NYSDEC. Should any development of the Site be considered, soil and soil vapor sampling would be necessary to evaluate current conditions relative to soil SCGs.
- Excavation on the property is prohibited without written permission from the NYSDEC.
- Compliance with the SMP by the Grantor, the Grantor's successors and assigns is required.
- ECs must be operated and maintained as specified in the SMP.
- ECs on the Site must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Data and information pertinent to the site management must be reported at the frequency and in a manner defined in the SMP.
- On-site environmental monitoring devices, including but not limited to groundwater monitoring wells, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP.

- Future activities on the Site that will disturb remaining contaminated material are prohibited unless they are conducted in accordance with the SMP.
- NYSDEC retains the right to access the Site in order to evaluate the continued maintenance of controls.

2.2 ENGINEERING CONTROLS

EC systems at the Site include the GWCS (formerly the GWTS), Site access controls, and groundwater monitoring wells.

Unauthorized access to the Site is restricted by 6 foot chain link fence with locked gates. The fence will be inspected quarterly to ensure the fence is in good repair. Results of this inspection will be recorded on the Inspection Log sheet (**Appendix B**). If maintenance is required, it will be noted in the quarterly inspection report and repairs will be performed as soon as possible.

Seven groundwater monitoring wells at and near the Site are sampled as part of the LTM every 15 months. The groundwater monitoring wells are to be inspected during the sampling event for cracking, ruptures or leaks, or concrete pads cracking and sediment build up.

The following ECs have been established for the Site:

- GWCS
- Site access controls
- Groundwater monitoring wells

2.3 LONG-TERM MONITORING PLAN

A Monitoring and Sampling Plan is in place for the Site and provides methods for evaluating the groundwater plume originating at the Site and includes groundwater elevation monitoring, monitoring well inventory and repair, and groundwater sampling and analysis. Elements of the Monitoring and Sampling Plan include, but are not limited to:

- Requirements and protocols for inspection and maintenance, groundwater sampling and analysis, sample locations and sampling frequency
- Assessment of remedial performance and groundwater standards compliance
- Reporting and Quality Assurance/Quality Control requirements.

Monitoring has been conducted since 1999 and the Site is currently scheduled for sampling at 15 month intervals. The well network currently consists seven on-site and off-site wells, including P-103, P-105, P-106D, P-107D, P-107D, and GW-01 (Figure 2). Existing wells are monitored to evaluate contaminant of concern concentrations (i.e., cadmium, chromium, lead, nickel, cyanide and VOCs) in groundwater compared to the Site cleanup goals (New York State Class GA Standards [6 New York Codes, Rules and Regulations Parts 700-705].

3. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The SMP (MACTEC 2019a) included requirements for site management activities, including sitewide inspections and soil cover monitoring and groundwater monitoring (**Table ES-1**). The subsections below present site management activities completed during the period from January 2016 through December 2021, including site inspections and groundwater monitoring.

3.1 SITE-WIDE INSPECTION AND SOIL COVER MONITORING

ICs/ECs have been established for the Site and require inspection and certification. The site-wide inspection requires confirmation that ICs are adhered to and that ECs are evaluated, including:

- Site security fencing, gates, and site access (semi-annual)
- Performance of the collection system (as needed)
- Monitoring well integrity (15-month interval during LTM sampling events)

Site-wide inspections were conducted during the following months: September 2016, April and October 2017, March and November 2018, June and October 2019, and April, July, and December 2020. No site inspections were completed in 2021. Visual observation and maintenance of the site security in the form of the perimeter fence was completed to evaluate and document the conditions including:

- Breaches in the fence
- Condition of the gates and locks
- Vegetation growing on or near the fence that could cause damage (vegetation that can be removed with hand tools will be cut back during inspections).

Site inspection forms for September 2016, April and October 2017, March 2018, and October 2019 are not available. Site-wide inspection forms for the June 2016, November 2018, June 2019, and April, July, and December 2020 inspections are provided in **Appendix B**.

No evidence of major disturbances to the site or changes to the designated site use were observed during the site inspections. There has not been a change in property use and the Site is in compliance with ICs. The ECs are in place; EC observations made site inspections include:

- During the November 2018 inspection, it was noted that silty water was pooling in the southeast corner of the site while the GWTS was operating, likely due to system blockage.
- During the June 2019 inspection, P-106S, P-106D, P-107S, and P-107D received new concrete pads and repairs were made to trench 2.

Visual observation of the monitoring wells was conducted during LTM events in December 2016, March 2018, June 2019, and August 2021. No inspections were completed in 2020. Inspections included observation and documentation of monitoring well condition including:

- Guard post
- Protective casing
- Well lock
- Concrete pad
- Well riser/cap

The monitoring wells were observed to be in good condition following repairs in June 2019.

3.2 GROUNDWATER MONITORING

The requirement for the groundwater monitoring program in the SMP includes groundwater elevation monitoring and groundwater sampling and analysis at 15 month intervals. During the period of this PRR, groundwater elevation monitoring and groundwater sampling was conducted at seven monitoring wells (GW-01, P-103, P-105, P-106S, P-106D, P-107S, and P-107D) as discussed in the subsections below. Monitoring well locations are presented on **Figure 2-1**. Available field forms for groundwater elevation monitoring and groundwater sampling are provided in **Appendix B**.

3.2.1 Groundwater Elevation Monitoring

Monitoring well gauging was conducted in December 2016, October 2017, March and November 2018, June 2019, April, July and December 2020, and August 2021. Gauging forms from December 2016, October 2017, March 2018, and April 2020 are not available. Gauging forms from November 2018, June 2019, July 2020, and December 2020, and gauging information from August 2021 are provided in **Appendix B**.

Groundwater levels were measured with an electronic water level meter to the nearest 0.01 ft from a reference point marked on the top of the inner casing. Water levels and groundwater elevations are provided in **Table 2**. Local groundwater flow direction from each event was variable but overall trended dominantly to the north toward the Mohawk River. Each well's depth to water varied as much as 5.91 ft over the five-year period between 2016 and 2021, with the greatest variance noted in shallow well P-107S and the least variance observed in deep well P-107D (1.02 ft). **Figure 3** presents groundwater elevation contours from August 2021.

3.2.2 Groundwater Sampling

Groundwater sampling at GW-01 was conducted in May, June, July, and November 2016 following well installation for analysis of VOCs only. Groundwater sampling at each of the seven wells in the well network was conducted on a 15-month frequency in December 2016, March 2018, June 2019, and August 2021 using low-flow sampling procedures. Sampling was not conducted in 2020. Water quality field parameters including temperature, pH, dissolved oxygen, conductivity, turbidity, and oxidation-reduction potential were monitored throughout purging and groundwater

samples were collected when groundwater parameters had stabilized over three consecutive readings, indicating that formation water was being drawn. Groundwater samples collected from each well during each event were analyzed for VOCs, pH, and metals. Quality assurance /quality control samples collected for groundwater samples included one field duplicate and one matrix spike /matrix spike duplicate per event. Analytical results for site COCs are presented in **Table 3a**. A complete table of laboratory analytical results is presented in **Appendix C**.

Metals and VOC COCs detected in one or more groundwater samples from 2016 through 2021 included cadmium, total chromium, lead, nickel, 1,1,1-Trichloroethane (TCA), 1,1-Dichloroethane, and Trichloroethylene (TCE). COCs detected at concentrations above Class GA Standards included lead, nickel, and TCE as follows (**Figure 4**):

- Lead, detected above the Class GA standard of 25 micrograms per liter (μ g/L) in one monitoring well in December 2016 (GW-01 at 29 μ g/L)
- Nickel detected above the Class GA standard of 100 µg/L in two monitoring wells in December 2016 (GW-01 at 110 µg/L and P-107S at 290 µg/L); in one monitoring well in March 2018 (P-107S at 174 µg/L); in one monitoring well in June 2019 (P-107S at 313 µg/L); and in two monitoring wells in August 2021 (GW-01 at 220 µg/L and P-107S at 170 µg/L)
- TCE detected above the Class GA standard of 5 μg/L in one monitoring well during December 2016, March 2018, June 2019, and August 2021 (P-107S, with concentrations of 14.1 μg/L, 7.1 μg/L, 7.5 μg/L, and 14.0 μg/L, respectively).
- Although cyanide is a site COC, no samples were analyzed for cyanide during this fiveyear period.

Mann-Kendall (M-K) trend analysis was used to evaluate TCE, nickel, and lead detected in monitoring wells for the period beginning December 2011 and ending August 2021. Trend plots were prepared to visually evaluate trends, which generally have no trend or are stable. The M-K plots are provided in **Appendix D**. Concentrations above NYSDEC AWQS are as follows:

GW-01

- Lead Concentrations were last above AWQS in December 2016 (29 µg/L).
- Nickel Concentrations were reported above standards in December 2016 (110 μg/L) and August 2021 (220 μg/L).

P-107S

Nickel — All four samples taken during the 2016 through 2020 reporting period had concentrations above AWQS. Reported concentrations are as follows: 290 µg/L (December 2016), 174 µg/L (March 2018), 313 µg/L (June 2019), and 170 µg/L (August 2021).

TCE — All four samples taken during the 2016 through 2020 reporting period had concentrations above AWQS. Reported concentrations are as follows: 14.1 μg/L (December 2016), 7.1 μg/L (March 2018), 7.5 μg/L (June 2019), and 14.0 μg/L (August 2021).

The March 2018 groundwater monitoring event included sampling and analysis of emergent contaminants (1,4-dioxane and per-and polyfluoroalkyl substances [PFAS]) at the request of the NYSDEC. Samples collected from four wells (GW-01, P-105, P-106S, and P-106D) were analyzed for 1,4-dioxane and samples from three wells (P-105, P-106S, and P-106D) were analyzed for PFAS. GW-01 was not analyzed for per- and polyfluoroalkyl substances due to high turbidity during sampling. Analytical results are presented in **Table 3a** and **Appendix C**. 1,4-Dioxane was not detected in groundwater samples collected in March 2018. PFAS analytes were detected at concentrations below groundwater screening levels and included the following:

- Perfluorobutanesulfonic acid (PFBS) detected at P-106S (estimated 0.38 nanograms per liter [ng/L]
- Perfluorobutanoic acid detected at P-105 (estimated 0.55 ng/L), P-106S (estimated 1 ng/L), P-106D (estimated 0.6 ng/L)
- Perfluorooctanesulfonic acid (PFOS) detected at P-106S (estimated 0.66 ng/L)

3.2.3 Performance Monitoring

Discharge of effluent from the groundwater collection system is permitted by the Oneida County Department of Water Quality & Water Pollution Control. Groundwater Remediation Discharge Permit No. GW-040 establishes semiannual monitoring requirements and discharge criteria. During the reporting period, effluent samples were collected every 5-8 months beginning in September 2016 through June 2019, with sampling events conducted in September 2016, April 2017, October 2017, March 2018, November 2018, and June 2019. Samples were analyzed for VOCs by EPA Method 624; copper, nickel and zinc by EPA Method 200.7, and cyanide by EEPA Method 9012B. Discharge reports were submitted to the Oneida County Sewer District.

A summary of site COC concentrations between 2016 and 2019 is provided in **Table 3b** and a complete list of analytical data is presented in **Appendix C**. No effluent samples were reported in exceedance of permitted limits.

3.3 OPERATION AND MAINTENANCE PLAN

According to the SMP, site wide inspections are to be conducted semi-annually. The semi-annual inspections include the inspection and maintenance of the perimeter fence, and inspection and monitoring of the groundwater collection system. Inspections and LTM were conducted as described in the sections above.

The flowmeter readings for the GWCS presented in the 2016, 2018, and 2019 annual site activities reports and site inspection forms (**Appendix B**) indicate that the totalizer was advancing between June 2016 (2,447,800 gal), November 2018 (4,445,400 gal), and June 2019 (5,132,155 gal) but no longer advancing between July 2020 (6,094,238 gal) and December 2020 (6,094,238 gal). At this point, NYSDEC confirmed system shutdown, and the system was no longer operational (MACTEC 2019b, MACTEC 2020).

3.4 ADDITIONAL SITE MANAGEMENT ACTIVITIES

Based on an evaluation of the monitoring well network in 2015, four wells (P-101S, P-101D, P-104, P-108) were no longer needed. P-101 S/D and P-108 were background wells used to evaluate groundwater upgradient of the Site. These wells were decommissioned in October 2016 (MACTEC Engineering and Consulting, P.C. [MACTEC] 2016).

4. GREEN REMEDIATION AND CLIMATE CHANGE RESILIENCE

Consistent with NYSDEC DER-31 Green Remediation Policy, this section provides a brief summary and qualitative assessment of the overall environmental impacts or environmental footprint of the Site for the current reporting period. In accordance with the NYSDEC's Executive Order No. 24, consideration has been given to reducing the consumption of energy and materials; and thereby, reducing the production of greenhouse gases, in the operation and maintenance of the Site. Implementation of NYSDEC DER-31 and Executive Order No. 24 have not compromised the selected remedy's protectiveness of public health and the environment, nor has it hindered achievement of the remedial goals established for the site.

As each discrete step of any site operation and maintenance activity consumes resources and energy, consideration has been given to reducing/eliminating those activities which may not be critical to the protectiveness of the selected remedy.

A climate vulnerability assessment was not completed during this certifying period. An assessment would generally be utilized to evaluate the potential consequences climate changes may have on a site, as well as any ongoing site management activities.

4.1 GREEN REMEDIATION ASSESSMENT

In accordance with the NYSDEC's DER-31 Green Remediation policy, the following section provides a qualitative assessment of the overall environmental impacts, or environmental footprint associated with the remedy.

4.1.1 Electric Usage

Implementation of the selected remedy uses electricity to operate the GWCS. The GWCS was operated between January 2016 and fourth quarter 2020.

4.1.2 Fossil Fuel Usage

Implementation of the selected remedy does not directly use fossil fuels as part of SM; however, fossil fuels are indirectly used during the completion of maintenance and monitoring activities associated with the groundwater monitoring well network.

Indirect fossil fuel use results from completion of the following site-related activities:

- Transportation to and from the site for monitoring, sampling, and well rehabilitation.
- Maintenance of site vegetation.
- Off-site transportation and shipment of samples collected for laboratory analysis.
- Disposal of waste generated at the Site.

4.1.3 Water Usage

Implementation of the selected remedy does not directly require the use of water at this Site. However, a *de minimis* quantity of water is used during sampling events for equipment decontamination.

4.1.4 Air Emissions

Implementation of the selected remedy emits a *de minimis* quantity of VOCs indirectly through the operation of the GWCS. The remedy emits contaminants to the air through the combustion of fossil fuels in vehicles and use in generators, as described above.

4.1.5 Consumption of Materials and Generation of Waste

Monitoring, maintenance and reporting activities associated with groundwater sampling events result in material consumption and the generation of waste. A summary of the current material consumption and waste generation activities for the Site are summarized below:

- Personal protective equipment associated with groundwater sampling, such as nitrile gloves, etc.
- Consumables associated with groundwater sampling such as polyethylene tubing, paper towels, trash bags, etc.
- Packaging material and ice used to pack and preserve samples to be submitted for laboratory analysis.
- Paper and office supplies associated with site logs, monitoring logs, and report preparation.
- Repair and replacement of equipment associated with the monitoring well network.

4.2 CLIMATE CHANGE VULNERABILITY ASSESSMENT

Increases in both the severity and frequency of storms and weather events, an increase in sea-level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuations, resulting from global climate change and instability, have the potential to significantly impact the performance, effectiveness, and protectiveness of a given site remedy. The intent of this vulnerability assessment is to provide information to allow the site remedy to better prepare for the impacts of the increasing frequency and intensity of severe storms, weather events, and associated flooding brought on by global climate changes and instabilities, in order to ultimately enhance the remedy's resilience to such events.

This section briefly summarizes the vulnerability of the Site and/or the remedy to severe storms, weather events and associated flooding.

This assessment included consideration of the following:

- *Flood Plain*—The current monitoring well network lies immediately adjacent to low-lying wetlands. Given the site topography, it is reasonable to assume that severe rain events may cause temporary flooding of the Site. However, the overall performance and effectiveness of the bulk of the monitoring wells would not be impacted.
- *Site Drainage and Storm Water Management*—The Site drains by overland flow northward to the adjacent wetland. Like the overall site topography, the gradients of the drainage swales and drainage ditches on-site are generally quite low. However, the accessible monitoring wells are located just outside of the wetland in areas of higher elevation and all regrading efforts completed during the remedial action mitigated the environmental threat due to migration of fill contaminants to the wetlands.
- *Erosion*—There is no evidence of erosion at the Site, though the slopes of the drainage ditch and soil caps may be susceptible to erosion during periods of severe rain events. Any erosion at these areas should not impact the monitoring well network.
- *High Wind*—The monitoring wells at the Site are stick-ups and may be susceptible to damage from falling trees resulting from periods of high winds.

4.3 CONSIDERATIONS FOR OPTIMIZATION OF PHYSICAL SYSTEMS

Environmental and energy conservation measures and other methods to reduce energy consumption, resource usage, waste generation, and water usage have been considered and are described below. During the certifying period, 8 groundwater sampling events were conducted, which required the purging of water from the observation wells prior to sampling. For future events, the use of HydraSleeves would significantly reduce or negate the need for purging observation wells and would reduce or negate the need for associated equipment and energy/fuel consumption. The advantages of HydraSleeve samplers is that they are inexpensive and have the potential to eliminate or substantially reduce the amount of purge water associated with sampling. The samplers are easy to deploy and recover. Because HydraSleeve samplers are disposable, there is no down-hole sampling equipment to be decontaminated between wells.

Additionally, electric powered trimmers and non-powered hand tools have been used as much as possible to reduce the amount of fossil fuel use at site. Further evaluation and reduction of vegetative clearing areas could potentially reduce the amount of fossil fuel use at the Site while enhancing habitat.

This page intentionally left blank

5. CONCLUSIONS AND RECOMMENDATIONS

Current SM activities being conducted according to the requirements of the SMP, except for semiannual inspections in 2021, and groundwater monitoring and well inspections in 2020. Based on a review of the data collected during this reporting period, the remedy continues to be protective of public health and the environment and is in compliance with the remedial action objectives (RAOs) established in the ROD. Site inspections conducted between January 2016 and December 2021 indicate that between July 2020 and December 2020, the collection system was no longer operational.

Based on the findings presented in this PRR, the following recommendations are provided:

ICs/ECs Plan

With no major deficiencies of the ICs noted at the Site, and with the GWCS not being utilized at this time, it is recommended that inspection items presented in the Executive Summary and in **Table 1** be synchronized with the 15-month frequency for groundwater sampling. This change would facilitate the reduction of the environmental footprint associated with semi-annual site visits.

Monitoring Plan

The limited analytical results following the remediation efforts are not yet robust enough to fully identify trends, and additional sampling events would provide for a more thorough and robust trend evaluation. The last available groundwater sampling data in monitoring well P-107S (2019) yielded an exceedance of the Class GA standard of 5 μ g/L for TCE; it is recommended that groundwater sampling continue to be performed at a 15-month frequency. If the groundwater collection system becomes operational again, performance monitoring of effluent will continue as required by the POTW permit.

Periodic Review Reporting

The requirements for discontinuing site management activities have not been met. Therefore, the monitoring schedule set forth by the SMP (MACTEC 2019a) for the Site will continue. The next PRR is expected in 2024 and will evaluate groundwater data from sampling events in September 2022 and the first quarter of 2024.

This page intentionally left blank

6. FUTURE SITE ACTIVITIES

Based on the recommendations in Section 5, the following site management activities will be completed during the next PRR reporting period (2021 through 2026):

- Site Inspection Monthly (between April 2023 and May 2024); Semi-Annually (beginning August 2024)
- On-site maintenance (i.e., fence repair, building structures, monitoring wells) as needed.
- Groundwater sampling 15-month (First quarter 2024, Second quarter 2025, and third quarter 2026)

This page intentionally left blank

7. REFERENCES

- MACTEC Engineering and Consulting, P.C. (MACTEC). 2019a. Site Management Plan, Primoshield Inc. NYSDEC Site No. 633027. 19 February.
 - .2019b. 2018 Annual Site Activity Report Primo-shield Incorporated Site, Site No. 633027.
 31 January.
- .2020. 2019 Annual Site Activity Report Primo-shield Incorporated Site, Site No. 633027.
 31 January.
- MACTEC Engineering and Consulting, P.C. (MACTEC). 2016. Periodic Review Report (2015), Primo-shield Inc. NYSDEC Site No. 633027. January.
- New York State Department of Environmental Conservation (NYSDEC) 1995. Division of Hazardous Waste Remediation. Primo-shield Plating Site – Site Number 6-33-027, City of Utica, Oneida County, New York. Record of Decision. March.
- ———.1999. Primo-shield Remediation Contract Contract No. 1 Site No.633027 City of Utica, New Oneida County York, Post Remediation Report. March.
- ——. 2010. DER-10/Technical Guidance for Site Investigation and Remediation. May.
- New York State Department of Health (NYSDOH). 2006. *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. October. And NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

This page intentionally left blank

Tables

Inspections	Frequency				
1. Fencing, gates, and Site access	Semi-annually				
2. Monitoring well integrity and water levels from 10 wells	15-month interval				
3. Groundwater collection trenches	As needed				
4. Groundwater treatment system building and piping	As needed				
Monitoring	Frequency				
1. Monitoring well groundwater sampling and analysis from 7 monitoring	Every 15 months				
wells					
Maintenance	Frequency				
1. Mowing	Annually				
2. Fence repair	As needed				
3. Building structures	As needed				
4. Groundwater collection trenches	As needed				
5. Monitoring wells	As needed				
Reporting	Frequency				
1. Inspection Report	Semi-annual				
2. Long-Term Monitoring Report	Following groundwater sampling				
	events				
3. PRR	Every 5 years				

Table 1. Inspections, Monitoring, Maintenance, and Reporting Frequency

Version: FINAL Table 2, Page 1 of 1 June 2025

Table 2	Groundwater	Levels	(2016 -	2021	•
I abit 2.	Orounumater	LUVUIS	2010 -	2021	,

				Date	07/02/2020	12/19/2016	10/23/2017	03/26/2018	11/28/2018	06/18/2019	04/29/2020	07/02/2020	12/01/2020	08/20/2021
Well ID	Ground Elevation ¹ (ft AMSL)	Estimated Measurement Point Elevation ²	Stickup on Casing (ft)	TOC to TOR (ft)	Depth to BOW (ft below TOR)	Water Level (ft below TOR)								
GW-01	517	517	0	0.41	17.30	4.56	5.39	3.76	NM	5.56	5.41	7.10	4.35	3.05
P-103	521.8	524.3	2.8	0.34	18.15	6.70	8.65	5.96	5.95	6.66	5.65	8.39	5.39	6.05
P-105	522.7	525.1	2.9	0.48	18.20	4.21	4.97	3.98	3.81	4.02	4.40	5.30	4.30	4.32
P-106S	521.1	524.8	4.0	0.27	18.50	6.36	9.87	5.78	5.00	7.67	7.05	9.80	6.65	6.00
P-106D	520.8	524.3	3.9	0.39	77.60	29.54	29.15	29.15	28.11	28.48	28.88	29.96	29.95	28.65
P-107S	519.4	522.1	2.9	0.21	17.15	6.06	10.19	6.13	4.39	8.33	7.00	10.30	6.15	4.60
P-107D	519.3	522.0	3.2	0.50	77.60	30.04	29.56	29.65	28.57	29.02	29.32	29.45	29.54	29.15
2.7														

Notes:

1) Ground Elevation from monitoring well logs included in Monitoring Plan for Primoshield Plating January 2004.

2) Measurement Point Elevation calculated using the ground elevation and field measurements of casing stickup and the distance from

the top of riser to the top of casing; therefore, the water elevations are approximate

AMSL = Above mean sea level

ft = Foot (feet)

NM = Not measured

TOC = Top of casing

TOR = Top of riser

		Location ID				G	W-01					P-	103			P-	105	
	Sa	mple Name	633027GW01	GW-01	GW-01	GW-01	633027GW01	633027 - GW01	633027-GW01	GW-01	633027P103	633027 - P103	633027-P103	P-103	633027P105	633027 - P105	633027-P105	P-105
	Parent	Sample ID																
	s	ample Date	5/4/2016	6/28/2016	7/20/2016	9/13/2016	12/20/2016	3/27/2018	6/19/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021
	NYSDEC																	
Analyte	AWQS ¹	Unit																
Total Metals (Various Methods)								•										
Cadmium	5	μg/L	NA	NA	NA	NA	0.43 J	NA	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U	0.63 J
Chromium, Total	50	µg/L	NA	NA	NA	NA	21	NA	< 10 U	8.5	1.3 J	< 10 U	< 10 U	< 1.0 U	2.1 J	< 10 U	< 10 U	< 1.0 U
Lead	25	μg/L	NA	NA	NA	NA	29	NA	< 50 U	3.7 J	< 2.2 U	< 50 U	< 50 U	< 3.0 U	< 2.2 U	< 50 U	< 50 U	< 3.0 U
Nickel	100	µg/L	NA	NA	NA	NA	110	NA	9.2 J	220	< 5.6 U	< 40 U	< 40 U	1.4 J	2.3 J	< 40 U	< 40 U	< 1.3 U
VOCs (Various Methods)																		
1,1,1-Trichloroethane (TCA)	5	µg/L	1.4	0.36 J	0.49 J	0.38 J	1.4	0.5 J	< 1 U	1.9	2.8	2.1	4.6	1.3	< 1 U	< 1 U	< 1 U	< 0.82 U
1,1-Dichloroethane	5	µg/L	0.63 J	< 1 U	< 1 U	< 1 U	0.36 J	< 1 U	< 1 U	0.79 J	< 1 U	< 1 U	0.59 J	< 0.38 U	< 1 U	< 1 U	< 1 U	< 0.38 U
Trichloroethylene (TCE)	5	µg/L	<1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1 U	< 1 U	< 0.46 U	1.2	0.84 J	2.1	0.98 J	< 1 U	< 1 U	< 1 U	< 0.46 U
PFAS																		
Perfluorobutanesulfonic acid (PFBS)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorobutanoic Acid	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.55 J	NA	NA
Perfluorodecanesulfonic acid (PFDS)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorodecanoic acid (PFDA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorododecanoic acid (PFDoA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluoroheptanesulfonic acid (PFHpS)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluoroheptanoic acid (PFHpA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorohexanoic acid (PFHxA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorononanoic acid (PFNA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorooctane Sulfonamide (PFOSA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorooctanesulfonic acid (PFOS)	2.7	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorooctanoic acid (PFOA)	6.7	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluoropentanoic Acid (PFPeA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorotetradecanoic acid (PFTeDA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
Perfluoroundecanoic Acid (PFUnA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
TOTAL PFOA AND PFOS	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA	NA
1,4-Dioxane																		
1,4-Dioxane	0.35	μg/L	NA	NA	NA	NA	NA	0.4 U	NA	NA	NA	NA	NA	NA	NA	0.4 U	NA	NA

Table 3a. Summary of Site Contaminants of Concern in Groundwater Monitoring Wells (2016-2021)

Notes: (1) New York State Department of Environmental Conservation (NYSDEC) Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1). $\mu g/L =$ Microgram(s) per liter H = Sample analyzed after maximum recommended holding time J = Concentration is estimated NA = Not analyzed U = Analyte not detected VOC = Volatile organic compound Concentrations exceeding the screening level are shaded gray.

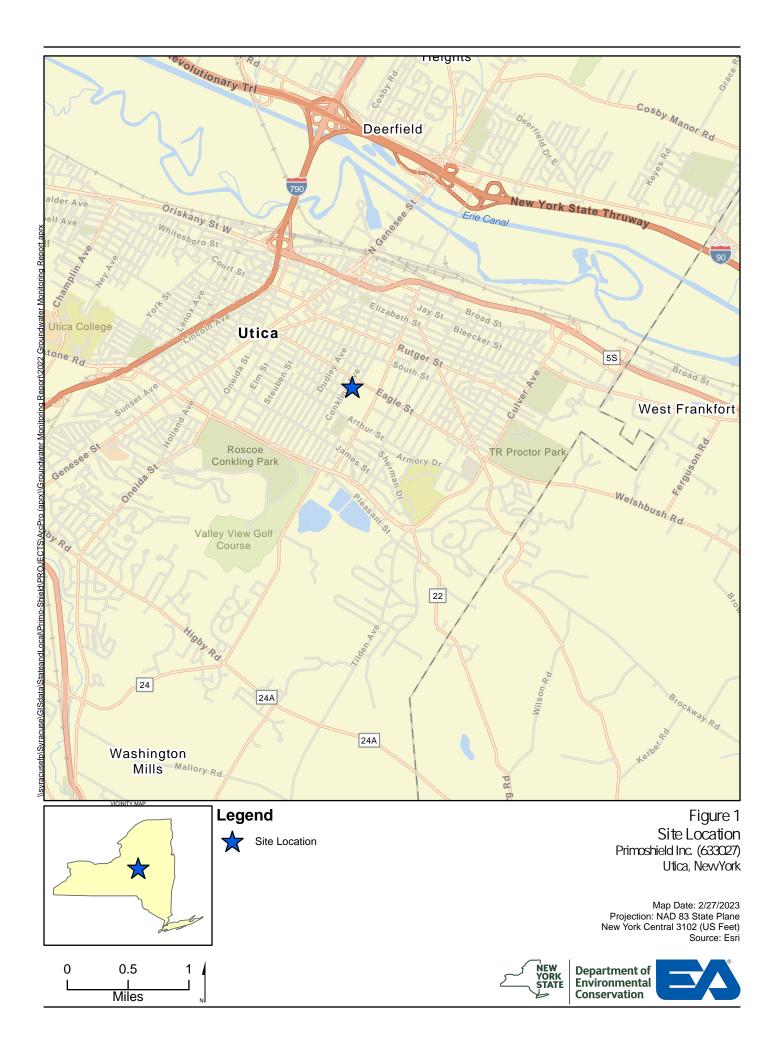
		Location ID		P-1	06D			P-1	06S			P-1	07D			P-1	107S	
	S	ample Name	633027P106D	633027 - P106D	633027-P106D	P-106D	633027P106S	633027 - P106S	633027-P106S	P-106S	633027P107D	633027 - P107D	633027-P107D	P-107D	633027P107S	633027 - P107S	633027-P107S	P-107S
	Paren	t Sample ID																
	5	Sample Date	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/20/2016	3/28/2018	6/18/2019	8/20/2021	12/20/2016	3/28/2018	6/19/2019	8/20/2021
	NYSDEC																	
Analyte	AWQS ¹	Unit																
Total Metals (Various Methods)				•			•				•							
Cadmium	5	μg/L	< 1.1 U	< 5 U	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U	< 0.50 U	3.1	< 5 U	3.7 J	3
Chromium, Total	50	μg/L	4.1	1.7 J	< 10 U	1.6 J	2.1 J	< 10 U	< 10 U	1.8 J	5.8	< 10 U	< 10 U	5.4	8.6	2.4 J	1.1 J	1.6 J
Lead	25	μg/L	4.1	< 50 U	< 50 U	< 3.0 U	< 2.2 U	< 50 U	< 50 U	< 3.0 U	7.2	< 50 U	< 50 U	< 3.0 U	< 2.2 U	< 50 U	< 50 U	< 3.0 U
Nickel	100	μg/L	5.2 J	< 40 U	< 40 U	< 1.3 U	< 5.6 U	< 40 U	< 40 U	1.7 J	11	< 40 U	< 40 U	4.9 J	290	174	313	170
VOCs (Various Methods)																		
1,1,1-Trichloroethane (TCA)	5	µg/L	< 1 U	< 1 U	<1 U	< 0.82 U	0.44 J	< 1 U	0.64 J	< 0.82 U	< 1 U	< 1 U	< 1 U	< 0.82 U	1.6	0.44 J	1.4	1.7
1,1-Dichloroethane	5	µg/L	< 1 U	< 1 U	< 1 U	< 0.38 U	< 1 U	< 1 U	< 1 U	< 0.38 U	< 1 U	< 1 U	< 1 U	< 0.38 U	0.75 J	0.32 J	1.2	0.79 J
Trichloroethylene (TCE)	5	µg/L	<1 U	< 1 U	<1 U	< 0.46 U	0.68 J	< 1 U	0.7 J	< 0.46 U	< 1 U	< 1 U	< 1 U	< 0.46 U	14.1	7.1	7.5	14
PFAS																		
Perfluorobutanesulfonic acid (PFBS)	NSL	ng/L	NA	< 2 U	NA	NA	NA	0.38 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorobutanoic Acid	NSL	ng/L	NA	0.6 J	NA	NA	NA	1 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorodecanesulfonic acid (PFDS)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorodecanoic acid (PFDA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorododecanoic acid (PFDoA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluoroheptanesulfonic acid (PFHpS)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluoroheptanoic acid (PFHpA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorohexanoic acid (PFHxA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorononanoic acid (PFNA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorooctane Sulfonamide (PFOSA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorooctanesulfonic acid (PFOS)	2.7	ng/L	NA	< 2 U	NA	NA	NA	0.66 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorooctanoic acid (PFOA)	6.7	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluoropentanoic Acid (PFPeA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorotetradecanoic acid (PFTeDA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluorotridecanoic Acid (PFTriA/PFTrDA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Perfluoroundecanoic Acid (PFUnA)	NSL	ng/L	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOTAL PFOA AND PFOS	NSL	ng/L	NA	< 2 U	NA	NA	NA	0.66 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dioxane																		
1,4-Dioxane	0.35	μg/L	NA	0.4 U	NA	NA	NA	0.4 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Notes:																		

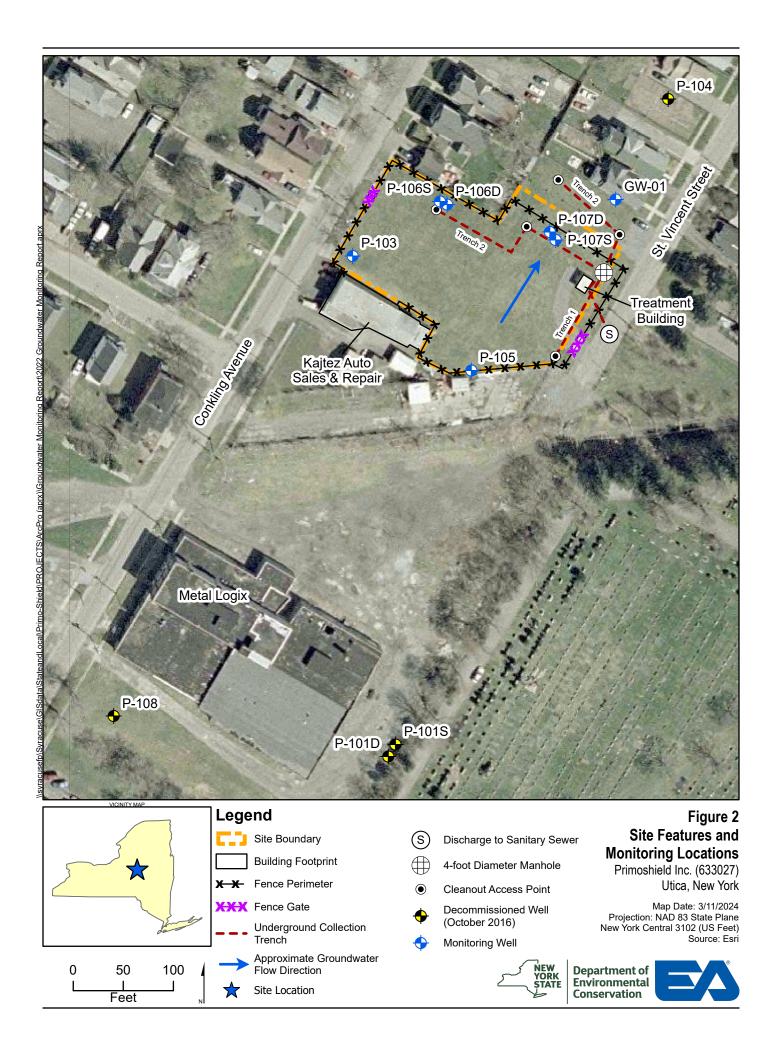
Table 3a. Summary of Site Contaminants of Concern in Groundwater Monitoring Wells (2016-2021)

Notes: (1) New York State Department of Environmental Conservation (NYSDEC) Ambnt Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1). µg/L = Microgram(s) per liter H = Sample analyzed after maximum recommended holding time J = Concentration is estimated NA = Not analyzed U = Analyte not detected VOC = Volatile organic compound Concentrations exceeding the screening level are shaded gray.

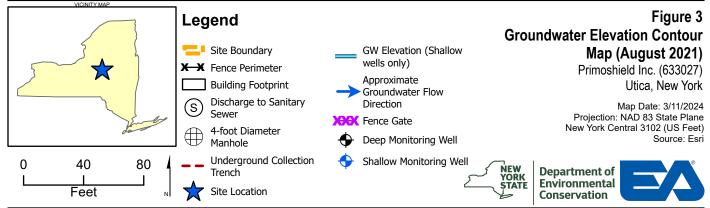
Table 3b. Summary of Site Contaminants of Concern in Groundwater Treatment System (2016-2019)								
	Locati	on ID	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
	Sample 1	Name	633027-Effluent	633027-EFFLUENT	R1710120-001	633027 - Effluent	633027 - Effluent	633027 - Effluent
I	Parent Sample ID							
	Sample	Date	9/13/2016	4/13/2017	10/23/2017	3/28/2018	11/28/2018	6/17/2019
	Permitted							
Analyte	Limit	Unit						
Total Metals (Various Methods)								
Cadmium	1000	µg/L	< 0.5 U	< 5 U	< 1 U	< 5 U	< 5 U	< 5 U
Chromium, Total	5000	µg/L	0.38 J	< 10 U	< 2.5 U	< 10 U	< 10 U	< 10 U
Lead	5000	µg/L	< 1 U	< 50 U	< 3 U	< 50 U	< 50 U	< 50 U
Nickel	2000	µg/L	45	< 40 U	51	< 40 U	< 40 U	< 40 U
Cyanide	3000	µg/L	1.0 J	U	6.0	U	U	U
VOCs (Various Methods)								
Total VOCs*	2000	µg/L	34.1	16.5	28.9	10.22	25.94	19.99
Notes:								

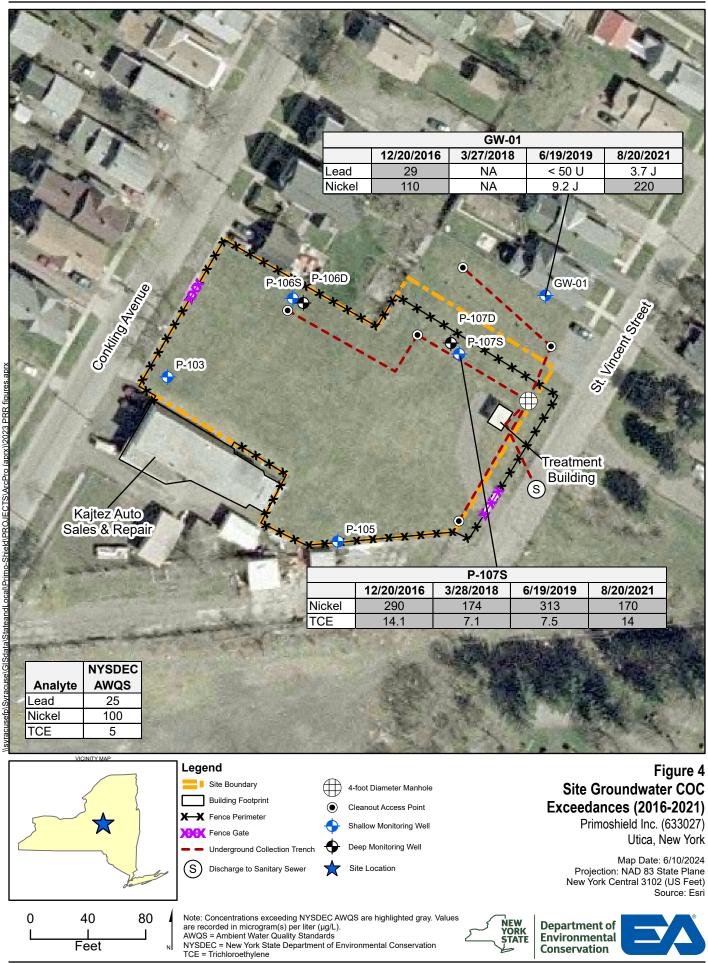
*Total VOCs is the sum of all detectable VOC substances as determined using the USEPA Method 624.


 $\mu g/L = Microgram(s)$ per liter


J = Concentration is estimated

U = Analyte not detected


VOC = Volatile organic compound


Version: FINAL Table 3b, Page 1 of 1 June 2025 Figures

Appendix A

Real Property Map

Primoshield 633027 - Parcels

Source: Oneida County GIS Tax Map https://hoccpp.maps.arcgis.com/apps/webappviewer/index.html?id=18e988c601f54b62a60f36f39fce5a92

Appendix B

Inspection and Gauging Forms

Primoshield Site Visit 06-03-2016 DER Site Management, Photo report by Will Welling, NYSDEC. 06-03-2016

Photos with Notes

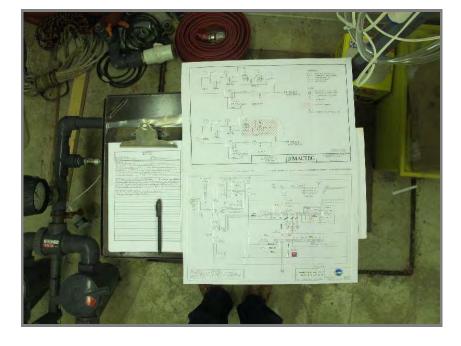
Photo

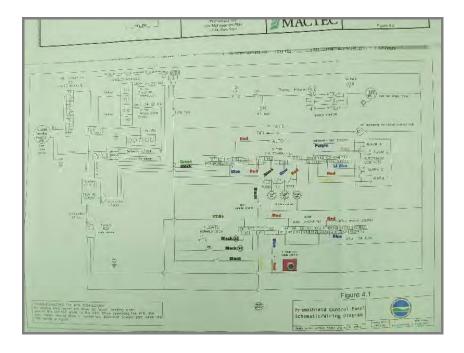
Description

3:45 PM I arrived at Primoshield. A bit of the city's pipe is being stored along the Primoshield fence.

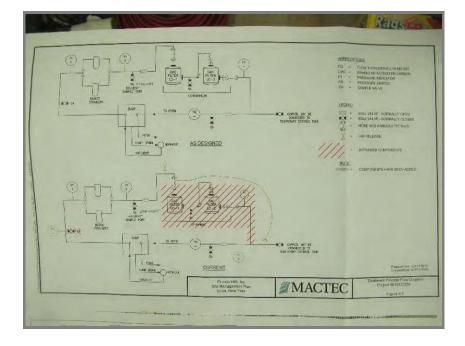
The empty lot at the end of the street has been scraped, spread with stone and bladed smooth.

Panning around

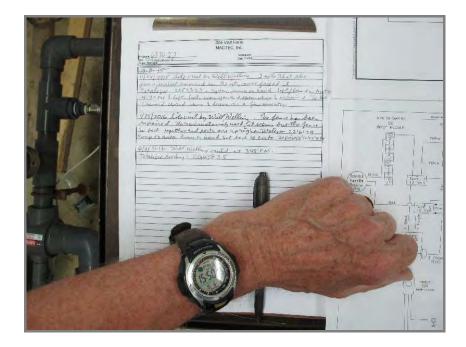



Panning around

The lockup.



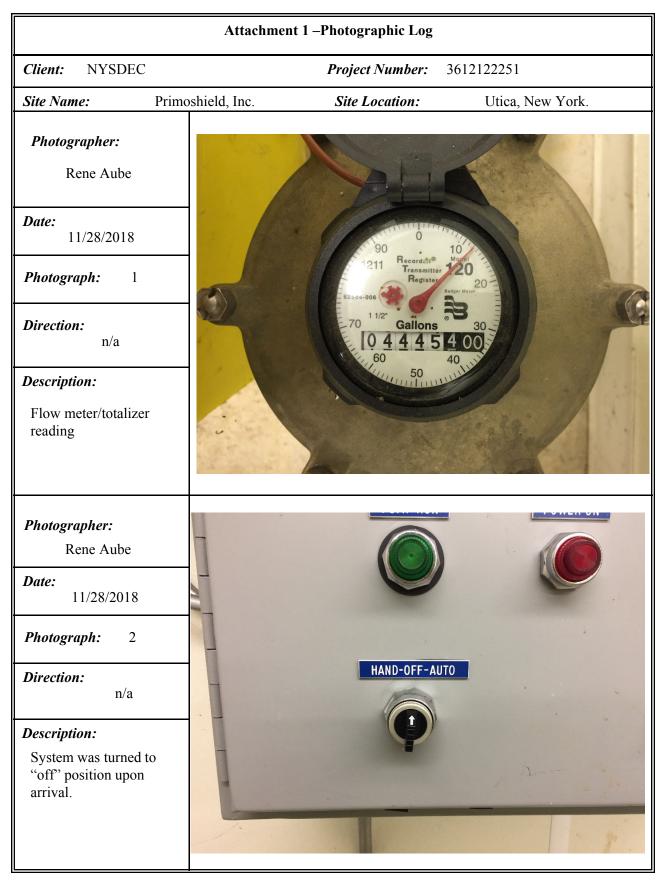
AMEC's schematic, my circuit drawing and a sign-in page are available on the table on the middle of the floor of the building.



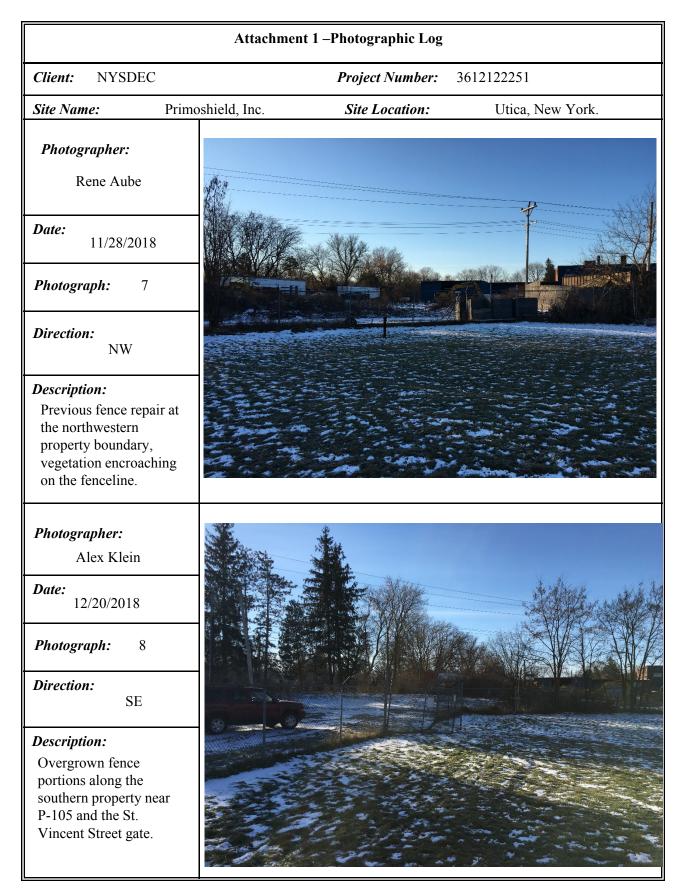
My circuit, schematic/wiring diagram

Process diagram

Documentation



New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems


Site Name: Primoshield Inc.			NYSDI	EC Site Nu	imber:	NYSDEC PM:	
				633027		Will Welling	
Site Location: 1212 St. Vincent Street, Utica, NY			Site C	lassificati	on #:	Primary Site Contact:	
				4		Will Welling	
Site Inspection Date:	NOT REPORT OF A DECK	Purpose of	f Inspecti	ion: Sem	i-annua	l inspection	
Site Inspection Date: $11/28/18$ Name of Inspector: RENE AUBE	_	r ur pose of	inspect	ion. Sem	amma	a inspection	
Name of Inspector:		Title:	Agency	/Company	/:	Address:	
KENE AUBE		SR.	MACTI	EC/Amec I	Foster	511 Congress Street, Suite 200	
Phone Number:	Contraction and the second second	ENG.	Wheele	r		Portland, ME 04101	
860-888-3377		TECH.					
	Treatr	nent System	ıs				
System Status					Gener	al Observations:	
System in operation during visit?	Tes		No]		
Manned on a fulltime basis?		No	>				
Pump working?	Tes		No		1		
Initial flow rate (gpm):		INKNOI					
Totalizer reading (gallons):	0	4445	400				
Discharge Monitoring							
Discharge to the POTW?	Oneida Co	ounty Sewer Di	strict Permit	GW-040	1		
Was permit performance monitoring conducted?	Tes		No]		
Condition of Operational Controls		State Barrier			1		
Condition of gauges?	Good	P	oor	NE	1		
(TOTALIZER) Condition of flow meters?	Good	P	oor	NE	1		
Condition of system alarms?	Good	P	oor	NE	TEST	METHOD UNKNOWN.	
Condition of flow pipes and hoses?		P	oor	NE			
Pipes labeled with direction of flow and contents?		(No)		NE	1		
Condition of valves?	Good Pe		oor	NE	1		
Evidence of leaking?	Yes	0	Vo	NE	1		
Condition of extraction/sump pump?	Good	P	oor	NE	1		
Lighting in Work Areas Adequate?	(Yes)	1	Vo	NE	1		
Collection Vault and Pump			and and a state	A STREET	1		
Vault condition - outside (floor level)?	Good	P	Poor		1		
Vault condition - inside (observed from floor level)?	Good	P	oor	NE	1		
Collection/Discharge Trenches	~						
Condition of clean-out covers?	(Good)	Y P	oor	NE	*71	COVER NOT STITUS FULS	
Evidence of sedimentation?	Yes		Vo	NE	our	COVER NOT STATING FUIS	
	Site	e Features			- Charles		
Site Security and Fence		10 A.			Gener	al Observations:	
Condition of the access gates and locks?	Good	> Pe	oor	NE	1		
Condition building?	Good	P	oor	NE	1		
Condition of the perimeter fence	Good	P	oor	NE	1		
Is vegetation infringing on the fence?	Yes	1	Vo	NE	you	NG TREES REQUIRE	
Was a monitoring well inspection completed?	Yes	see attached	1	No	REI	MOVAL W/POWER EQUI	
NE- not evaluated, provide	explanation				TOE	IG OUT ROOTS.	
Additional Observation Notes:		Part and the			845		
ARRIVED ONSITE TO FIND SUSTEM TURNED OFF CALLED WOOD PM PER HIS DIRECTON							
ARRIVED ONSITE TO FIND SYSTEM TURNED OFF. CALLED WOOD PM, PER HIS DIRECTION TURN SYSTEM BACK TO AUTO RUN MODE, LET RUN FOR I HR, THEN COLLECT EFFLUENT SAMPLES. LEAVE SYSTEM RUNNING, WHILE PACKING UP FOR DEPARTURE, NOTICED SILTY WATER FLOODING SW CORNER OF SITE AND ADJACENT PROPERTY, WHICH							
SAMALES LEAVE SYSTEM RUNALING WHILE DARKING UP END DEPARTURE HATIGED							
SUTVERTED ELEDANCE CHI CARNER AS SITE AND ADJACENT DOADERTY WILLING							
WASN'T PRESENT ON ARRIVAL. TOOK PHOTOS, TURNED SYSTEM BACK OFF. PROBABLE							
WASN'T PRESENT ON ARRIVAL. 10	ook DH	0705.	TINTAL	ED SV	STEN	n back off, mobabl	
BLOCKAGE IN SYSTEM DISCHARE	E. CA	LLED U	0000	pm.	LEFT	SYSTEM OFF.	
		1000 0123.0		,			

1. Stere segention infringing on the perimeter fence? (Remove infringing vegetation that can be removed without the use of power tools.) YET, YOUNATTREES NEED TO BE DUG OUT WITH PONET EQUIPMENT, 2. What is the condition of the protective casings on P-1003 and P-1063 PIOES, PIOED, PIOTS CASINGS LOOSE IN GIROUND, PIOTS FROST HEAVED u.p. 3. What is the condition of the morthermost intake/access port in Trench 22 Was it repaired? NOT REPAIRED, COYER STILL NOT SITTING FLUSH, 4. What is the condition of the metal rule in the north-central area of the fence where the fence height changes? STILL RUSTY/LOOSE; 6. What is the condition of the fence games barbed wire along the fencing previously noted? STILL RUSTY/LOOSE; 7. What is the condition of the fence and/or dumaged barbed wire along the fencing previously noted? STILL RUSTY/LOOSE; 6. What is the condition of the fence along the north-central Site area where the fence changes in height? SAME AS # 4. Photograph Log: Photograph 1 Photograph 1 Photograph 4 Photograph 5 Photograph 6 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (Tam No	Previously observed: Review and comment as to status (include photo documentation)						
YES, YOUNG TREES NEED TO BE DUG OUT WITH POWER EQUIDMENT, 2. What is the condition of the protective casings on P-107 and P-1067 Phocks, Pholod, Pholod, Pholos CASINGS LOOSE IN GROUND, PHOTS FROST HEANED UP, 3. What is the condition of the mederating indevaces port in Trench 27 Was it repaired? NOT REPAIRED, COYER STILL NOT SITING FLUISH, 4. What is the condition of the mederating in the north-central area of the fence height change? STILL ALSTY/LOOSE, 6. What is the condition of the one posts supporting the St Vincent Street gate? ThTED INJUARD BUT SERVICABLE. 7. What is the condition of the one post supporting the St Vincent Street gate? THADED INJUARD BUT SERVICABLE. 7. What is the condition of the one and/or damaged barbed wire along the fencing previously noted? SAME AS #4. Photograph 1 Photograph 4 Photograph 5 Photograph 6 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (No Sample type collected forder or write in other): Groundwater Efficient List Parameters/Methods Collected Per Media: PH (150,1) METALS (200,7) Voc. (624) CYANIDE (90.0) <							
2. What is the condition of the protective easings on P-107 and P-1067 PIOEDS, PIOED , PIOTS CASINGES LOOSE IN GROUND, PIOTS FROST HEANED u.J. 3. What is the condition of the northermost intelexcess port in Trench 27 Was it repaired? NOT REPAIRED , COYER STILL NOT SITINGE FLUSH, 4. What is the condition of the northermost intelexcess port in Trench 27 Was it repaired? NOT REPAIRED , COYER STILL NOT SITINGE FLUSH, 4. What is the condition of the northermost intelexcess port in Trench 27 Was it repaired? STILL RUSTY/LOOSE, 5. What is the condition of the face posts supporting the SI Vincent Street gate? TREED INWARD BUT SERVICABLE. 7. What is the condition of the tor, and of the orth-central Size area where the fence changes in height? SAME AS #41. Photograph 1 Photograph 1 Photograph 3 Photograph 5 Photograph 4 Photograph 9 Photograph 9 Photograph 9 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? To No Sample type collected (circle or write in other): Groundwater Effuent List Parameters/Methods Collected Per Media: PH (155.1) METALS (200.7) Voc (62.4) CYANIDE (90.10) Analytical Laboratory/Location: ALS ENVIRONMENTAL , ROCHESTER NY,							
PIOCS, PIOLD, PIOTS CASINGS LOOSE IN GROWND, PIOTS FROST HEANED u.f. 3. What is the condition of the north-central intake/access port in Trench 27 was it repaired? NOT REPAIRED, COYER, STILL, MAISSING; 4. What is the condition of the metal rail in the north-central area of the fencing previously noted? STILL, MISSING; 5. What is the condition of the fence and/or damaged barbed wire along the fencing previously noted? STILL, RUSTY/LOOSE; 6. What is the condition of the force posts supporting the SI Vincent Street gate? TINTED NUMARD BUT SERVICABLE; 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? SAME AS #4. Photograph 1 Photograph 1 Photograph 5 Photograph 6 Photograph 1 Photograph 3 Photograph 4 Photograph 10 Performance Monitoring: Were check samples collected during this visit? () No Sample type collected (circle or write in other): Groundwater Effuent List Parameters/Methods Collecte							
3. What is the condition of the northermost intukeAccess port in Trench 29 Was it repaired? NOT REPAIRED, COVER STILL NOT SITTING FLUSH, 4. What is the condition of the meal rail in the north-central are of the fence there the fence height changes? STILL MISSING; 5. What is the condition of the meal rail in the north-central are of the fence there the fence height changes? STILL RUSTY/2005E; 6. What is the condition of the ones and/or damaged barbed wire along the fencing previously noted? STILL RUSTY/2005E; 7. What is the condition of the tops rail of fence along the north-central Site area where the fence changes in height? SATE AS # 4. Photograph 12 Photograph 12 Photograph 5 Photograph 5 Photograph 6 Photograph 7 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (Ter) No Sample type collected (circle or write in other): Groundwater Enternet List Parameters/Methods Collected Per Media: $pH(1550, i)$ METALS (2000, T) Vocc (624) CYANIDE (9016) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
NOT REPAIRED, COVER STILL NOT SITTING FLUSH, 4. What is the condition of the metal rali in the north-central area of the fence where the fence height changes? STILL RUSTY/LOOSE, 5. What is the condition of the neodost supporting the St Vincent Street gate? THTED INWARD BUT SERVICABLE. 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? SAME AS #44, Photograph Log: Photograph 1 Photograph 3 Photograph 6 Photograph 7 Photograph 8 Photograph 10 Ferformance Monitoring: Were check samples collected during this visit? (C) No Sample type collected (circle or write in other): Groundwater Augustal Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	MOGS, MOGD, MOTS CASINGS LOOSE IN GROUND. MOTS FROST HEAVED UP.						
4. What is the condition of the meal rall in the north-central area of the fence where the fence height changes? STILL RUSTY/2005E. 6. What is the condition of the loses and/or damaged barbed wire along the fencing previously noted? STILL RUSTY/2005E. 6. What is the condition of the fence posts supporting the St Vincent Street gate? TRITED INWARD BUT SERVICABLE. 7. What is the condition of the top rall of fence along the north-central Site area where the fence changes in height? SAME AS #4. Photograph Log: Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? In No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: PH (150.1) METALS (200.7) VoC (62.4) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
STILL MISSING: S. What is the condition of the loses and/or damaged barbed wire along the fencing previously noted? $STILL RUSTY/LOOSE:$ 6. What is the condition of the force posts supporting the St Vincent Street gate? $TILTED INWARD BUT SERVICABLE.$ 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? $SAME AS # 4.$ Photograph 10 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (s) No Sample type collected (circle or write in other): Groundwater (ffluent) List Parameters/Methods Collected Per Media: PH (150.1) METALS (200.7) Voc (62.4) CYANIDE (90.10) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
5. What is the condition of the loses and/or damaged barbed wire along the fencing previously noted? <i>STRL RUSTY/LOSEF</i> , 6. What is the condition of the tone posts supporting the St Vincent Street gate? <i>TRTED INWARD BUT SERVICABLE</i> , 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? <i>SAME AS # 4.</i> Photograph 1 Photograph 3 Photograph 4 Photograph 5 Photograph 7 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (S) No Sample type collected (<i>circle or write in other</i>): Groundwater Efficient List Parameters/Methods Collected Per Media: <i>pH (150.1) METALS (200.7)</i> <i>Voc (624) CYANIDE (90.10)</i> Analytical Laboratory/Location: <i>ALS ENVIRONMENTAL</i> , <i>ROCHESTER NY</i> ,							
STILL RUSTY/ LOOSE, 6. What is the condition of the frace posts supporting the St Vincent Street gate? THITED INWARD BUT SERVICABLE. 7. What is the condition of the tor mill of fence along the north-central Site area where the fence changes in height? SAME AS # 4. Photograph 10 Photograph 2 Photograph 3 Photograph 4 Photograph 6 Photograph 8 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? The No Sample type collected (circle or write in other): Groundwater Entiment List Parameters/Methods Collected Per Media: DH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY.	STILL MISSING.						
6. What is the condition of the Fence posts supporting the St Vincent Street gate? THTED INWARD BUT SERVICABLE. 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? SAME AS #4. Photograph 10 Photograph 2 Photograph 3 Photograph 4 Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Constant filteret Sample type collected (circle or write in other): Groundwater filteret USA (200, 7) VOC (224) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	5. What is the condition of the loose and/or damaged barbed wire along the fencing previously noted?						
6. What is the condition of the Fence posts supporting the St Vincent Street gate? THTED INWARD BUT SERVICABLE. 7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? SAME AS #4. Photograph 10 Photograph 2 Photograph 3 Photograph 4 Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Constant filteret Sample type collected (circle or write in other): Groundwater filteret USA (200, 7) VOC (224) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	STILL RUSTY/LOOSE						
7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? Photograph Lg: Photograph 1 Photograph 3 Photograph 4 Photograph 6 Photograph 7 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (e) No Sample type collected (circle or write in other): Sample type collected (circle or write in other): Photo(62:4) Mathematical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	6. What is the condition of the fence posts supporting the St Vincent Street gate?						
7. What is the condition of the top rail of fence along the north-central Site area where the fence changes in height? Photograph Lg: Photograph 1 Photograph 3 Photograph 4 Photograph 6 Photograph 7 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (e) No Sample type collected (circle or write in other): Sample type collected (circle or write in other): Photo(62:4) Mathematical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	TITED WWAT D BUT SERVICABLE						
SAME AS # 4. Photograph Log: Photograph 1 Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 7 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (c) No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: $p.H. (150, i)$ $VOC. (624)$ $VAIDE. (9010)$ ALS ENVIRONMENTAL, ROCHESTER NY,							
Photograph Log: Photograph 1 Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 7 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (rs) No Sample type collected (circle or write in other): Groundwater (fffuent) List Parameters/Methods Collected Per Media: pH (150.i) METALS (200.i7) Voc (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL , ROCHESTER NY,							
Photograph 1 Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 6 Photograph 7 Photograph 7 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (res No Sample type collected (circle or write in other): Groundwater (Effluent) List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL , ROCHESTER NY,							
Photograph 2 Photograph 2 Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 7 Photograph 7 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (ss) No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: $pH(150,i)$ METALS (200,7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
Photograph 3 Photograph 4 Photograph 5 Photograph 6 Photograph 7 Photograph 7 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (s) No Sample type collected (circle or write in other): Groundwater (s) Mere the samples collected during this visit? (s) No Sample type collected (circle or write in other): Groundwater (s) List Parameters/Methods Collected Per Media: p H (150.1) METALS (200.7) VOC (624) CyANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
Photograph 4 Photograph 5 Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (es) No Sample type collected during this visit? (es) No Sample type collected for write in other): Groundwater (effluent) List Parameters/Methods Collected Per Media: $pH(150,1)$ METALS (200,7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 2						
Photograph 5 Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? (res No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: $pH(150.1)$ METALS ($2\infty.7$) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 3						
Photograph 6 Photograph 7 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Tes No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: PH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 4						
Photograph 7 Photograph 7 Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Tes No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 5						
Photograph 8 Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Tes No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: $pH(156,i)$ METALS (200,7) V6C(624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 6						
Photograph 9 Photograph 10 Performance Monitoring: Were check samples collected during this visit? Tes No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: PH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 7						
Photograph 10 Performance Monitoring: Were check samples collected during this visit? (res) No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY.	Photograph 8						
Performance Monitoring: Were check samples collected during this visit? (es) No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY.	Photograph 9						
Were check samples collected during this visit? Ves No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Photograph 10						
Were check samples collected during this visit? Ves No Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Performance Monitoring:						
Sample type collected (circle or write in other): Groundwater Effluent List Parameters/Methods Collected Per Media: PH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7) VOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Were check samples collected during this visit? Ves No						
Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	Sample type collected (circle or write in other) : Groundwater Effluent						
NOC (624) CYANIDE (9010) Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,	List Parameters/Methods Collected Per Media: pH (150.1) METALS (200.7)						
Analytical Laboratory/Location: ALS ENVIRONMENTAL, ROCHESTER NY,							
Sample Observations: TEMP SP. COND PH DO ORP TURB CLEAR, 10.17°C .544 MS/CM 6.50 5,51 MS/L 209.0MV 4,22 NTU	ALS ENVIRONMENTAL, ROCHESTER NY.						
CLEAR, 10.17°C .544 MS/cm 6.50 5,51 Mg/2 209.0 My 4.22 NTU	Sample Observations: TEMP SP. COND OH DA GRO TIOP						
NO 0000 10.17 C , 544 "3/cm 6,50 3,51 "9/L 209.0MY 4,22 NTU	CLEAR THINGS THE AND THE TOTAL						
	NO OPOR, 10.17 C ,344 "2/cm 6,20 3,51 "9/L 209.0MV 4,22 NTU						

Attachment 1 – Photographic Log						
<i>Client:</i> NYSDEC		Project Number:	3612122251			
Site Name: Prime	oshield, Inc.	Site Location:	Utica, New York.			
<i>Photographer:</i> Rene Aube						
Date: 11/28/2018						
Photograph: 3	A A A					
<i>Direction:</i> n/a						
<i>Description:</i> Well pad heaved at P- 107S and casing is loose.						
<i>Photographer:</i> Rene Aube						
Date: 11/28/2018	and and					
Photograph: 4	A C		A A A A A A A A A A A A A A A A A A A			
<i>Direction:</i> n/a			A start			
<i>Description:</i> Northwest end collection trench #2 cleanout lid does not sit properly.						

	Attachmen	t 1 –Photographic Log					
<i>Client:</i> NYSDEC		Project Number:	3612122251				
Site Name: Prime	oshield, Inc.	Site Location:	Utica, New York.				
<i>Photographer:</i> Rene Aube			ANT MA				
Date: 11/28/2018							
Photograph: 5							
<i>Direction:</i> ESE							
<i>Description:</i> View of the property from the western corner of the property boundary.	-						
<i>Photographer:</i> Alex Klein							
Date: 12/20/2018							
Photograph: 6		NAME .					
<i>Direction:</i> N							
<i>Description:</i> Overgrown fence portions along the northern property boundary.							

Attachment 1 – Photographic Log						
<i>Client:</i> NYSDEC		Project Number:	3612122251			
Site Name: Prime	oshield, Inc.	Site Location:	Utica, New York.			
<i>Photographer:</i> Rene Aube						
Date: 11/28/2018	113					
Photograph: 9						
<i>Direction:</i> n/a						
<i>Description:</i> Silty water observed at Trench 1 cleanout after the system was turned on.						
<i>Photographer:</i> Rene Aube						
Date: 11/28/2018						
Photograph: 10						
<i>Direction:</i> SW		and the second second				
<i>Description:</i> Silty water observed at the southern property boundary near the Trench 1 cleanout after the system was turned on.						

Site Management Plan - Primoshield Inc. NYSDEC - Site No. 633027 AMEC Environmental and Infrastructure, P.C., Project No. 3612122251

RENE AUBE Inspector(s): Reviewed by: 0 Date: //-2 Estimated Stickup Well ID Cap on Cap on TOC to Depth to Well Ground Measurement Water Protective Concrete Well ID on Clearly Well Protective Elevation Point Level TOR BOW Lock Casing Pad Casing Labeled Riser Casing Comments Elevation² (feet (feet TOR) (feet msl) (feet msl) (feet) (feet) (Y/N)(Y/N) (G/P/F)(G/F/P) (G/F/P)(G/F/P)TOR) 5.95 Y P-103 521.8 524.3 2.82 0.33 G 18.IC G G G 3.03 P-105 3,81 0.48 18,22 522.7 525.1 ν G G G নি P 4,12 P-106S 521.1 524.8 5.00 0.28 CASING LOOSE IN GROUND. G 18,50 V G G P 28.11 P-106D 520.8 524.3 4.07 6.40 G CASING LOOSE IN GROUND G G 77.70 CASING LOOSE IN GROUND, PAD FROST-HEAVED UD. 0 4,39 P-107S 519.4 522.1 3,15 0,21 17,16 6 G G 0,49 77,73 P-107D 519.3 522.0 28.57 3,25 G Ġ G 5 BURRIED SNOW. GW-01³

Monitoring Well Inspection Form

Notes:

1) Ground Elevation from monitoring well logs included in Monitoring Plan for Primoshield Plating January 2004.

2) Measurement Point Elevation calculated using the ground elevation and field measurements of casing stickup

and the distance from the top of riser to the top of casing; therefore, the water elevations are approximate

3) GW-01 not surveyed as of 12/14/2016.

NM = Not measured	F = Fair
msl = mean sea level	G = Good
TOC = top of casing	N = No
TOR = top of riser	P == Poor
BOW = bottom of well	Y = yes

4.1 MW Inspection form.xlsx

Revision 1

	EFFLUENT	F SAMPLING REC	CORD				
	PROJECT NAME						
	Primoshield Inc.						
	PROJECT NUMBER						
	3612122	2251.03					
	SAMPLER NAME RENE	E AUBE	на н				
	SAMPLER SIGNATURE	é Aulo	é				
	CHECKED BY:	DATE:	13/18				
		······································	<u> </u>				
Monitoring Location	Collection System Effluent	SKETC	H/NOTES:				
Sample ID	633027-Effluent	_])					
Sample Date/Time	11/28/18 1415			·5日			
		Sample por		2.0			
ANALYTICAL PAR	AMETERS	I	······································				
	PARAMETER	METHOD NUMBER	PRESERVATION METHOD	VOLUME REQUIRED			
X VOCs		624	NONE/THE	- 7×40m			
X Metals*	· · · · · · · · · · · · · · · · · · ·	200.7	HNO3 IICE	1x125 PL			
Х рн		150.1	NONETICE	1 × 150 PL			
X Cyanide	· · · · · · · · · · · · · · · · · · ·	9010	<u>NAOH/ICE</u>	<u>7 x 125 pl</u>			
· · · · · · · · · · · · · · · · · · ·			·····				
MACTEC	······································		· · · · · · · · · · · · · · · · · · ·				
511 Congress Street, P	Portland Maine 04101	*- cadmium, chro	omium, copper, lead, nickel a	nd zinc			
TEMP K	0,17°C						
SP, COND	0,544 MS/CM	<u>^</u>	-10 11 -	<u> </u>			
PH 6.50	•	Cl	EAR, NO TIN	T, NO ODOR			
DO 5.51	/						
ORP 209,0							
TURB 4.2	LZ NTU						

FIE	LD INSTRI	UMENT	FATION	CALIBRA	TION REC	ORD	
PROJECT NAME:		noshield			TASK NO;	03	DATE: 11-28-18
PROJECT NUMBER:		12122251			MACTEC CREV		
PROJECT LOCATION:		Utica. NY	,		SAMPLER NAM		ENE AUBE
WEATHER CONDITIONS (AM):					SAMPLER SIG		
WEATHER CONDITIONS (PM):	CLOUDY	/ COLD	WINDY	1 L-5NOU	JCHECKED BY:	KMB	DATE: 12/3/18
MULTI-PARAMETER WATER (UALITY METE	R					
METER TYPE YSI		AM C	ALIBRATI	ON	POS	<u>T CALIBRATI</u>	ON CHECK
MODEL NO. <u>558 Mp5</u>	Start Ti		25 TEnd T	ime_1400	Start Time	14 3/ Tr	d Time 14450
UNIT ID NO. MOIS-10		• • •			Start think _		u Time <u>1-1 12 C</u>
Uni	ts Standard	Met		*Acceptance	Standard	Meter	*Acceptance
pH (4) SL	Value	· Valu		Criteria (AM)	Value	Value	Criteria (PM)
1		4,0		0.1 pH Units	7.0	701	
pH (7) SU pH (10) SU		70		0.1 pH Units 0.1 pH Units	7.0	7.02	+/- 0.3 pH Units
	V250 -240-	250	the second s	10 mV	250 240	14A I	+/- 10 mV
Conductivity mS/c		7.4		0.5 % of standard	1,413	7415	+/- 5% of standard
DO (saturated) %	100	वंह,		2% of standard			17- 576 OF Statigate
DO (saturated) mg/L ^{1 (see}	Chiart 1) 10,87			0.2 mg/L	10,87	10.90	+/- 0.5 mg/L of
DO (<0.1) mg/				.5 mg/L		70110	standard
Temperature °C		9,9	ष्ठ			9.98	
Baro. Press. mml	łg	73	3.1			733.1	
TURBIDITY METER		** **	Standard	Meter	Standard	Meter	*Acceptance
METER TYPE HACH		Units	Value	Value	Value	Value	Criteria (PM)
MODEL NO. 2/00 CR				600		<i></i>	
UNIT ID NO. <u>M024-37</u>	10 Standard	NTU	10	4.78	10	447	+/- 5% of standard
	20 Standard	NTU	20	-HIZY	2 20	19.2	+/- 5% of standard
	100 Standard	NTU NTU	100 800	100'	100	491	+/- 5% of standard
PHOTOIONIZATION DETECTO	800 Standard	NIU	800		800	<u> 140 </u>	+/- 5% of standard
METER TIPE NA	Background	ppmv	<0.1		<0.1		within 5 ppmv of BG
MODEL NO.		••		<u> </u>			section of point of DO
UNIT ID NO. NA	Span Gas	ppmv	100		100		+/- 10% of standard
O ₂ -LEL 4 GAS METER							
METER TYPE <u>NA</u>	Methane	%	50		50	1 -1	+/- 10% of standard
MODEL NO. <u>NA</u>	O ₂	%	20.9		20.9		+/- 10% of standard
UNIT ID NO. <u>NA</u>	H_2S	ppmv	25	<u> </u>	25	·	+/- 10% of standard
	CO	ppmv	50		50		+/- 10% of standard
OTHER METER					-		
METER TYPE	·			· · ·		· · · · · · · · · · · · · · · · · · ·	See Notes Below
MODEL NO.	·						for Additional
UNIT ID NO.	<u> </u>	······					Information
		17 1 0					
Equipment calibrated within the A			•				
Equipment (not) calibrated within	the Acceptance Crit	eria specified	tor each of th				
MATERIALS RECORD					al. Standard Lot	Number	Exp. Date
Deionized Water Source:				рН (4) pH (7)		1/	3-20
Lot#/Date Produced:				рН (10) рН (10)	09011		
Trip Blank Source:				ORP	2340		12-22
Sample Preservatives Source:				Conductivity	8664	21	3-19
Disposable Filter Type:	0.45 um cellul	ose		10 Turb. Stan.	A 8232	2	11-19
Calibration Fluids / Standard Source:				20 Turb. Stan.	A 8234	7	12-19
- DO Calibration Fluid (<0.1 mg/L)				100 Turb. Stan.	_A 8230	6	11-19
- Other				800 Turb. Stan.	<u>A 823</u>	5	_/1-19_
- Other				PID Span Gas	· · · · · · · · · · · · · · · · · · ·		
- Other			<u> </u>	O2-LEL Span Gas			
NOTES:				Other			
NOTES:							
							4
* - Unless otherwise noted, calibration procedures and a Sampling (EQASOP-GW001), each dated 1/19/2010, A	icceptance criteria are m iditional accentance crite	general accorda	ince with USEPA m instrument spe	Region 1 SOPs for Field	Instrument Calibration (EQASOP-FieldCalibr	at) and Low Stress Purging and
** = If meter reading is not within acceptance criteria, cl	ean/replace probe and re-					essitute use of the insti	rument, clearly document any
deviations from acceptance criteria on all data sheets and	l log book entries.						
1 = DO Saturated standard value is calculated based on	oxygen aosubility at Indi	culeu rressure	coars from the U	SUPA Region I SOP for	r ieid Instrument Calibrat	uon (EQASOP-FieldC	alibrai), dated 1/19/2010.
					•		
TATUTIOT TO				1	FIELD INSTRU	MENT CALL	BRATION RECORD
511 Congress Street, Portland Maine 04101					· · · · · · · · · · · · · · · · · · ·		

.

New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems

checked	(by:
	6 Drlig
C	\supset

Site Name: Primoshield Inc.			NYSDEC Site N 633027	umber:	NYSDEC PM: Payson Long
Site Location: 1212 St. Vincent Street, Utica, NY		Site Classification #: 4		Primary Site Contact: Payson Long	
Site Inspection Date:	Purpose of Inspection: Semi-annual inspection - Spring 2019				
Name of Inspector:		Title:	Agency/Compan		Address:
Alox Howe		Agency/Compa		y.	511 Congress Street, Suite 200
Phone Number:		opelagist MACTEC/Am		Foster	Portland, ME 04101
(860) 257-5536		Jo milise	Wheeler	ruster	1 01 awing 1112 0,7101
(000) 014 0000	Treate	nent System			
Protect Real	ficati	nent System	9	Ta	
System Status				Genera	l Observations:
System in operation during visit?	(Yes)		No	on a	whereafter
Manned on a fulltime basis?	(Yes))	4	
Pump working? Initial flow rate (gpm):		Shines 1 A	No	4	
Totalizer reading (gallons)	<u> </u>	2155		Ina	D. 10.0
Discharge Moniforing	217	<u> </u>		1 <i>4720</i>	pm 061819
Discharge to the POTW?	Oneida Co	ounty Sewer Disi	rict Permit GW-040		
Was permit performance monitoring conducted?	Tes		No	1	
Condition of Operational Controls					
Condition of gauges?	Good	Po	or NE		
Condition of flow meters	Good	Poe			
Condition of system alarms?	Good	Poe	or NE	Junkne	w n
Condition of flow pipes and hoses?	Goods	Poe		1	
Pipes labeled with direction of flow and contents?	Contraction of the local division of the loc	No	NE	1	
Condition of valves?	Good	Poe	or NE	1	
Evidence of leaking?	Yes	M	> NE	1	
Condition of extraction/sump pump?	Good	Poo	or NE	1	
Lighting in Work Areas Adequate?	Yes	No	NE NE		
Collection Vault and Pump					
Vault condition - ground surface Vault condition - inside (visual observation from ground	Good	Poo	or NE		
level)?	Good	Pod	nr NE		
Collection/Discharge Trenches		1			
Condition of clean-out covers?	(Good)	Poo	r NE		ast constat and of NEMENDI
Evidence of sedimentation?	Tes	(No		clem	out cover at end of NETHERD
) NE	100+1	visible
Site Security and Fence	one	Features			
					Observations:
Condition of the access gates and locks?	Good		r) NE	100 B.	nd lock on gate
Condition building?	Good	Poo	r NE	when	arrived. Takin care
Condition of the perimeter fence	Good	Poo		comp	my opened gate.
Is vegetation infringing on the fence?	Yes			gales	at both side of site
		No	NE	are so	unin some ashart un
Was a monitoring well inspection completed?	Yes -	see attached	No	Dest-	at both sids of site again somewhat no toteers boom swaying.
NE- not evaluated, provide explanation				1-27	To cep wan swayy.
dditional Observation Notes:	nowed	on c	6/17/14.		
" Nears to P-10	06 S/D	and	P-107510	> we	ne completed on
06/17/19 - Acw	Concrel	H pade	i.		
repairs were a cup now sits flug	nonte	10 (clean out a	nt ev	nd at preach 2
cap now sins they	, *1				

New York Department of Environmental Conservation Inactive Hazardous Waste Site Inspection Form-Treatment Systems

Previously observed: Review and comment as to status (include photo documentation)
1. Is there vegetation infringing on the perimeter fence? Remove infringing vegetation that can be removed without the use of nower tools
ver, vegetation hus taloged in muliple locations. power tools are
ver, vegetation hus relinged in muliple locatures. Power tools are copound at this point for premoval.
2. What is the condition of the protective casings on P-107 and P-106?
well's were repaired during this event. Deiller reset the stand pipe with new
Concrete Part. AVC COST of P-1075 Was tink at grand surface. 3. What is the condition of the northernmost intake/access port in Trench 2? Was it repaired?
inture patt whe fixed at grad the
P-1075/D.
4. What is the condition of the metal rail in the north-central area of the fence where the fence height changes?
jood unanunged condition.
5. What is the condition of the loose and/or damaged barbed wire along the fencing previously noted?
no change from pressurs can to
6. What is the condition of the fence posts supporting the St Vincent Street gate?
good to managed condition.
Photograph Log:
Photograph 1 Flow wells / totalizes in preatment building
Photograph 2
Photometh 2
Photograph 3 end of top rail where fence hight changes (west of f-1075/0)
r notograph 4
Photograph 5
Photograph 6 North terce new P-106 5/12 News we growth, sequences your tools
Sw corner at Conclance five tree brance pulled anne
Photograph 7 <u>Not visible</u> due to tree and plunt growth damnayed hubed withe.
Photograph 8
hour tree grow M new P-105 Photograph 9
st vincent sweet gale entrance.
Photograph 10 Efficient sample part
Performance Monitoring
Were check samples collected during this visit? Yes No
Sample type collected (circle or write in other) : Groundwater Effluent
List Parameters/Methods Collected Per Media:
(LTVM) - VOCS (8260), TAL metals (Cd, (r, (v, Pb, Ni, Zn) field fibered due to myn
In the day to my h
effluent - NOCS (624), metalls (Cd, (r, Cu, Ph, Ni, 2n), Arginic, PH.
Analytical Laboratory/Location:
ALS tamatorices 1565 Jelfuson Road BIDG 300, suite 360 Rocheste NY 14693
Sample Observations:
None.

Site Management Plan - Primoshield Inc. NYSDEC – Site No. 633027 AMEC Environmental and Infrastructure, P.C., Project No. 3612122251

2010 Reviewed by:

Revision 1

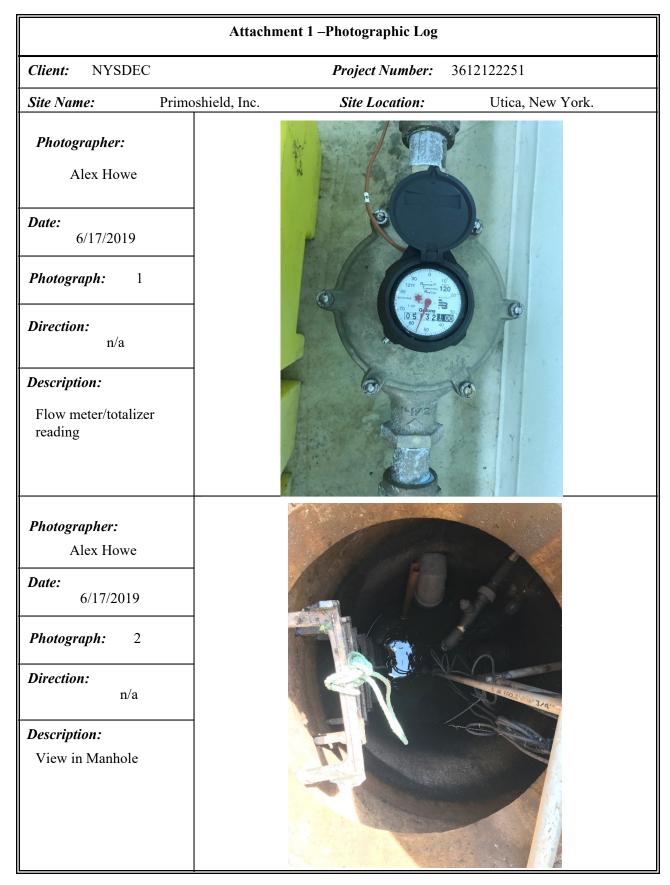
Monitoring Well Inspection Form

6121119

N

Well ID	Ground Elevation ¹ (feet msl)	Estimated Measurement Point Elevation ² (feet msl)	Water Level (feet TOR)	Casing	TOC to TOR (feet)	Depth to BOW (feet TOR)	Well ID Clearly Labeled (Y/N)	Well Lock (Y/N)	Cap on Well Riser (G/P/F)	Cap on Protective Casing (G/F/P)	Protective Casing (G/F/P)	Concrete Pad (G/F/P)	Comments
P-103	521.8	524.3	6.70	2.84	0.32	18.05	У	У	6	G	6	6	no while And
P-105	522.7	525.1	4.14	2.93	0.46		У	У	G	G	6	G	no utsible and
P-106S	521.1	524.8	7.81	3.98	0.29	18.46	У	Y	G	G	G	G	Fixed by Drilles on 06/17/19
P-106D	520.8	524.3	28.63	3.79	0.40	77H1	Y.	У	G	Ģ	G	G	11 11
P-107S	519.4	522.1	8.47	3.15	0.22	I.FI	Y	Ý	G	G	6	G	l u
P-107D	519.3	522.0	29.10	3.14	0.48	77.9	Y	У	G	G	G	G	N 11
GW-01 ³	NA	NA	5.56	NA	0 H \	17.4	¥	2	G	G	G	6	Road tox

Notes:


Inspector(s): Date:

06

Ground Elevation from monitoring well logs included in Monitoring Plan for Primoshield Plating January 2004.
 Measurement Point Elevation calculated using the ground elevation and field measurements of casing stickup and the distance from the top of riser to the top of casing; therefore, the water elevations are approximate

3) GW-01 not surveyed as of 12/14/2016.

NM = Not measured	F = Fair
msl = mean sea level	G = Good
TOC = top of casing	N = No
TOR = top of riser	$\mathbf{P} = \mathbf{Poor}$
BOW = bottom of well	Y = yes

	Attachmei	nt 1 –Photographic Log	
<i>Client:</i> NYSDEC		Project Number:	3612122251
Site Name:	Primoshield, Inc.	Site Location:	Utica, New York.
<i>Photographer:</i> Alex Howe			
Date: 6/17/2019			
Photograph: 3			THE ST
<i>Direction:</i> WNW	_		
<i>Description:</i> End of top rail wher fence height change			
Photographer: Alex Howe			
Date: 6/17/2019			
Photograph: 4			
<i>Direction:</i> n/a			
<i>Description:</i> Northwest end collection trench #2 cleanout lid repaired 6/17/19.			

	EFFLUE	NT SAMPLING RE	CORD	
	PROJECT NAME Primoshie PROJECT NUMBER 36121	ld Inc. 22251.03		
	SAMPLER NAME Alex Ho SAMPLER SIGNATURE	w		
	CHECKED BY:	DATE: 6-19-19		
Monitoring Location Sample ID Sample Date/Time	Collection System Effluent 633027-Effluent 06/17/2019 (* 160)			
ANALYTICAL PA	RAMETERS PARAMETER	METHOD NUMBER	PRESERVATION METHOD	VOLUME REQUIRED
× VOCs × Metals* × pH × Cyanide		624 200.7 150.1 9010	NUNE HNO NONE NAOH	<u>3 x 40ml</u> <u>125ml</u> 125ml 125mL
L				

$$femp = 13.01$$

$$spec = 0.816$$

$$Do = 94.00/0$$

$$= 10.34 mg/L$$

$$pH = 6.92$$

$$Turb = 3.92$$

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633027 Date: 4-29-30

			- • • • •	·				
NYSDEC Division of Environm	ental Remediat	ion	K K TE Conserva	ent of hental tion 50	9	NYSDEC C D011107		t No.
Site Location: ₩ee		NYSDEC PM: hysen large						
·	Weather	_						
General Description	Claudy	AM	Gurdy		PM	Consultant PI	M: John J	Toknson
Temperature	405	AM	SOS		PM	Consultant Si	_	
Wind		AM			PM	Patrick		
Health & Safety If any box below is	checked "Yes	", provide e	explanation	on under "He	alth &			
Were there any change	es to the Health &	Safety Plan?	,		_	TYes)	No	NA
Were there any exceed	lances of the peri	imeter air mor	nitoring rep	orted on this da	ate?	*Yes	No	NA
Were there any nuisan						*Yes	No	NA
Health & Safety Cor								
* COVID-19 p Summary of Work F	·	Arrived at s	site	0798		eparted Site:	130	
- Site inspecti - Clauned gar - Fixed leak - Fixed leak - Fit up Cou - Facorded was Equipment/Material If any hor below is	TD postors the level : Tracking	and sign	n in sh					
If any box below is a Were there any vehicles	CNECKEO "Tes"	, provide ex	kplanatio	n under "Mat	erial			
Were there any vehicles			0.0.1 num	pers and placa	ras?	*Yes	No ·	(NA)
Were there any vehicles			ed prior to	eviting the wor	k sito2	* Yes * Yes	No No	
Personnel and Equi				oxiding the wor	N SILC :	163	NO	
Individual				_				
Patrick Sakalars	<u> </u>	Accia	pany			ade		al Hours
					200			howig
					_			
<u> </u>								
·							+	
<u> </u>								
							1	
·								
								_
				1	_			
					_			
·							<u> </u>	
								_
							F	

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633ω2.7 Date: 4-29-2ω

Equipment Description Contractor/Vendor Quantity Used QU_T Precipien Precipi		on		Contractor/Vendor		Quantity	Use	ed
Material Description Imported to Site Exported off Site Waste Profile (If Applicable) Source or Disposal Facility (if Applicable) Daily Weight (fons) Material Description Imported to Site Exported off Site Vaste Profile (If Applicable) Source or Disposal Facility (if Applicable) Daily Weight (fons) Daily Weight (fons)	WLI		Prec	isten				
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)	·	_		<u> </u>	·	-		
to Site Off Site Off Site Off Site Trading (if Applicable) Trading (if Applicable) Local of (tons)*			·					
to Site Off Site Off Site Off Site Trading (if Applicable) Trading (if Applicable) Local of (tons)*								
to Site Off Site Off Site Off Site Trading (in Applicable) Tradin Applicable) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
to Site Off Site Off Site Off Site Trading (in Applicable) Tradin Applicable) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)		·						
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)			<u> </u>					
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)							_	
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)							_	
to Site Off One (if Applicable) Founds(if Applicable)								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)	······							
to Site Off One (if Applicable) Fusing (if Applicable) Eddus() (tons)*				· · · · · · · · · · · · · · · · · · ·				
to Site Off One (if Applicable) Founds(if Applicable)								
to Site Off One (if Applicable) Founds(if Applicable)								
to Site Off One (if Applicable) Founds(if Applicable)								
to Site Off One (if Applicable) Fusing (if Applicable) Eddus() (tons)*								
to Site Off Site Off Site Off Site Trading (if Applicable) Tradin (if Applicable)								
to Site Off Site (if Applicable) Fusing (if Applicable) Local S((tons))*								
to Site Off Site (if Applicable) Fusing (if Applicable) Local S((tons))*								
to Site Off Site Off Site Transmit (if Applicable) Transmit (if Applicable) Local Site (tons)*								
to Site Off Site (if Applicable) From (if Applicable) Local S (tons)*		Imported	Exported	Waste Profile	Source or	Disposal	Daily	Daily
m-Site scale for off-site shipment, delivery ticket for material received								
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	to Site	off Site		Facility (If /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (If /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (If J	Applicable)	Loads	(tons)*
	Material Description	Delivered to Site	off Site		Facility (If /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (If A	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description		off Site		Facility (if /	Applicable)	Loads	(tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site			Facility (if /	Applicable)	Loads	vveignu (tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description	Delivered to Site	off Site			Applicable)	Loads	vveignu (tons)*
n-Site scale for off-site shipment, delivery ticket for material received	Material Description					Applicable)		
	Material Description	Delivered to Site				Applicable)		
				(If Applicable)		Applicable)		
		to Site	y ticket for mater	(If Applicable)		Applicable)		
	Dn-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)	Loads	
	m-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)	Loads	
	Dn-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)		
	n-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)		
	n-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)		
	n-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)		
	-Site scale for off-site ship	to Site	y ticket for mater	(If Applicable)		Applicable)		

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. (33027 Date: 4-20-20)

Prinostield			
Visitors to Site			
NONE			
Name	Representing	Entered	Exclusion/CRZ Zone
		Yes	No
Site Representatives		Yes	No
Name	Representing		
Project Schedule Comments			
······································			
Issues Pending			
Interaction with Public, Property Ow	vners, Media, etc.		
NONE			
,			

State Conservation

Include (insert) figures with markups showing location of work and job progress

Primoshive H

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. (33027 Date: 4-29-27 Pate: 4-29-27

Site Photographs (Descriptions Below)	
	<u></u>

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 4-26-20

Prinishield	<u> Dale</u>	<u> </u>
Comments		
		i
Site Inspector(s):		Date:

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633027 Date: 4-29-3-0

Prinoskield

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes 🗆	No 🗆	NACO
Is the tail gate safety meeting held outdoors?	Yes 🗆	No 🗆	NA do
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	23/ \A 🕉
Were personal protective gloves, masks, and eye protection being used?	Yes	No 🗆	
Are sanitizing wipes, wash stations or spray available?	Yes 🖄	No 🗆	
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes 🗆	No	
Comments: DOULY Person onsite			

REMEDIAL ACTIVITIES AT PROPERTIES

			-
1. Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖍	
2. Is anyone at this location isolated or quarantined for COVID-19?	Yes 🗆	No 💐	
3. Has anyone at this locaton had contact with anyone known to have COVID-19 in the past 14 days?	Yes 🗆	No 🕰	
4. Does anyone at this locaton have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🔨	
5. Does the Department and its contractors have your permission to enter the property at this time?	Yes 🗆	No 🗆	MA da
If Yes to any of 1-4 above:			
 If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry. 	Yes 🗆	No 🗆	
Comments:			
			_

DAILY INSPECTION REPORT <u>Report No.</u> (Site Name) - NYSDEC Site No. (3302) Date: 4-29-20 Prinoshield

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🗆	N/A
Were there any odors detected on this date?	Yes 🗆	No 🗆	N/A
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/AZ
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/AR
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/AK
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/AK
Was turbidity checked at the Montauk Highway outfall?	AM 🗆	PM 🗆	N/AA
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A
Was the temporary fabric structure closed at the end of the day?	Yes 🗆	No 🗆	N/A
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes 🗆	No 🗆	N/AÆ
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A
Comments:	·	·	

Precision Environmental Services, Inc. 831 Rt. 67, Lot 38 Ballston Spa, NY 12020

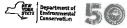
Tel #: 518-885-4399 Fax #: 518-885-4416

Well Gauging Data Sheet

Project: Primashic Id	Date: 7-2-20
Location: St. Vincent St., Utice	Project No.: 633027
Personnel: P5	Field Conditions: Supply Bos

Well ID	DTP	DTW	DTB	Purge Amount	Remarks	(color, odor, well conditions, roadbox conditions, etc.)
P-107D		29.45	77.60			
P-1075	L	10.30	17.15			
P-1065		9.80	18,50			
P-106D		29.96	77.60			
P-103		8.39	18.15			
P-105		5.36	18.20			
Gw-01		7.10	17.30			
	Water	Level	in manb	ole -	8.93	below grade
						finde
		Tetalizer	- 60947	238		

Purge Amount = DTB-DTW*ConversionFactor*3 Conversion Factors: 1" Well = 0.04 gal/ft 2" Well = 0.17 gal/ft


3" Well = 0.37 gal/ft 4" Well = 0.66 gal/ft 6" Well = 1.47 gal/ft

DAILY	INSP	ECTION	REP	ORT	
Donorth	la	1014 34			

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20

Page 1 of 9

NYSDEC		(NEW De				NVCDCO	-	
Division of Environmer	n tal Remedi	ation 🦳	STATE ENV	partment of /ironmental 1servation	50		NYSDEC D011107	Contr	act No.
Site Location: West	stip. New	Yark I					Superintend	ent:	
		er Conditio	Hice	NY			NYSDEC PN	A: Par	en la
General Description	Sunny	AM					Consultant P		
Temperature	Bus	AM	80.	iny		PM	Consultant P	W. Joh	n Johns
Wind		AM		<u> </u>		PM PM	Consultant S	ite Insp	ectors:
Health & Safety				` <u>```</u> ` <u>`</u>	···		Jan Jo	kolo.	-sles
If any box below is ch Were there any changes to	o the Health	s", provid	e explar	nation und	er "Hea	ilth &	Safety Com	ment	s".
Were there any exceedance	e une i rounu?	a onicity rid	mr				*Yes	No	NA
Were there any nuisance is	ssues report		onitoring	reported on	this date	e?	*Yes	No	INR
Health & Safety Comm	ents	cu/observeu	on this d	ate?	· <u> </u>		*Yes	No	NA
None					<u></u> -	<u> </u>			
Summary of Work Perf	· · · · · ·	Arrived a	t site:	11:00	<u> </u>	Dep	parted Site:	[7:	 პი
- performed insp	ection			•		<u> </u>		16.	30
- shut system a	1		~						
= zanged wells				-					
auipment/Material Tra	cking					-			
quipment/Material Tra any box below is check /ere there any vehicles whi	cking cked "Yes" ich did not di	, provide e					acking Com	ments	, ³² .
quipment/Material Tra- any box below is check /ere there any vehicles whi /ere there any vehicles whi	cking cked "Yes" ich did not di ich were not	5 , provide e splay proper	xplanat D.O.T nu	t ion under umbers and	"Mater placards	ial Tra	acking Com	I ments No	
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi	cking cked "Yes" ich did not di ich were not ich were not	5 , provide e splay proper	xplanat D.O.T nu	t ion under umbers and	"Mater placards	ial Tra	acking Com *Yes * Yes	ments	3". NA
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme	cking cked "Yes" ich did not di ich were not ich were not	5 , provide e splay proper	xplanat D.O.T nu	t ion under umbers and	"Mater placards	ial Tra	acking Com *Yes * Yes	No No	
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards	ial Tra	acking Com *Yes *Yes *Yes	No No No	NA NA NA
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme	cking cked "Yes" ich did not di ich were not ich were not	², provide e splay proper tarped? decontamina	D.O.T nu ated prior	t ion under umbers and	"Mater placards	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and vehicles whi /ersonnel and Equipme /individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ere there and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours
quipment/Material Tra any box below is check /ere there any vehicles whi /ere there any vehicles whi /ere there any vehicles whi /ersonnel and Equipme Individual	cking cked "Yes" ich did not di ich were not ich were not	² , provide e splay proper tarped? decontamina Con	D.O.T nu ated prior	t ion under umbers and	"Mater placards e work s	ial Tra s? ite?	acking Com *Yes *Yes *Yes	No No No To	NA NA NA tal Hours

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20

			Quanti	LY	Used
		·			
					<u> </u>
			_ 		
					<u></u>
+					
	<u> </u>				<u> </u>
			····		
		/		_ <u></u>	
		/			
ł_		/		_ 	
	-				
	1				
	1			+	_ .
<u>+</u>	_			+	
— - .					
	·· · · ·				
				+	
				+	
	<u> </u>			1	
mported/)elivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Disposal Facility (If Applicable)	Daily Load s	Dail Weig (tons
					<u> </u>
			<u>}</u>		
			<u> </u>		
+				_	
		1			
			· · · · · · · · · · · · · · · · · · ·		
		/			
			· · · · · · · · · · · · · · · · · · ·		
	mported/ >elivered to Site	mported/ belivered to Site	mported/ belivered to Site	mported/ to Site	mported/ belivered to Site

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 63027 Report No.

Visitors to Site				
Name		Representing	Entered	Exclusion/CRZ Zo
	·		Yes	No
			Yes	No
Site Representatives			Yes	No
lame				
		Representing		
	_,			
			2	
		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·				
oject Schedule Comments				
		1		
ues Pending				
raction with Dublic Design				
raction with Public, Property	Owners, Media, etc	······································		
, ,				
NONE				
1 VONC				
				l l

ie.

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20

Prinoshick

Include (insert) figures with markups showing location of work and job progress

CART Department of Environmental Conservation

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20 Primochic U

20

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20

	Primoshie Id	<u>Dato.</u>
	Site Photographs (Descriptions Below)	
Į	5	
ł		
ļ		
ŀ		
l		
ł		
ľ		

DAILY	INSP	ECTION	REPORT
	-		

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20 Page 7 of 9

Site Inspector(s):		Date:	
		· · · · · · · · · · · · · · · · · · ·	
]
Comments		÷	
	C.		
Primoshic Id	Da Da		

Page 8 of 9

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. 633027 Date: 7-2-20

Primoshield

DAILY HEALTH CHECKLIST

Is the tail gate safety meeting held outdoors? Yes □ No □ Are remote/call in job meetings being held in lieu of meeting in person where possible? Yes ☑ No □ Were personal protective gloves, masks, and eye protection being used? Yes ☑ No □ Are sanitizing wipes, wash stations or spray available? Yes ☑ No □ Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)? Yes □ No ☑	Is social distancing being practiced?	Yes 🗆	No 🗆	NA
Are remote/call in job meetings being held in lieu of meeting in person where possible? Yes I No I Were personal protective gloves, masks, and eye protection being used? Yes I No I Are sanitizing wipes, wash stations or spray available? Yes I No I Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)? Yes I No II			+	NAG
Were personal protective gloves, masks, and eye protection being used? Yes II No II Are sanitizing wipes, wash stations or spray available? Yes III No III Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic Yes IIII No IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Are remote/call in job meetings being held in lieu of meeting in person where possible?		<u> </u>	
Are sanitizing wipes, wash stations or spray available? Yes k No Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic Yes No K (fever, chills, cough/shortness of breath)?	Were personal protective gloves, masks, and eye protection being used?		f	-
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic Yes I No K (fever, chills, cough/shortness of breath)?			f	-
	with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic			
Comments:	Comments:	_!		{
				1

REMEDIAL ACTIVITIES AT PROPERTIES

	Yes 🗆	No 🗖
	Yes 🗆	No
3. Has anyone at this locaton had contact with anyone known to have COVID-19 in the past 14 days?	Yes 🗆	No 📌
4. Does anyone at this locaton have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No
5. Does the Department and its contractors have your permission to enter the property at this time?	Yes	No 🗆
 If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry. 	Yes 🗆	No 🗆

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. (3302) Date: 7-2-20 Prinoshield

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?			
Were there any odors detected on this date?	Yes 🗆		N/A🕅
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/AX
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A
	Yes 🗆	No 🗆	N/A
Any visible dust observed beyond the work perimeter on this date?			
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/AX
Was turbidity checked at the Montauk Highway outfail?	Yes 🗆	No 🗆	N/A🐹
Were any property owners NOT provided advance notice for work performed on this property on this date?		PM 🗆	N/AK
property of the date:	Yes 🗆	No 🗆	N/AK
Was the temporary fabric structure closed at the end of the day?	Yes 🗆		
Has Contractor failed to protect all foundations and attractures and			N/A
connected with performance of the Work?	Yes 🗆	No 🗆	N/AX
If yes, has Contractor been notified?			
Comments:	Yes 🗆	No 🗆	N/A
			ſ

Т

Precision Environmental Services, Inc. 831 Rt. 67, Lot 28 Ballston Spa, NY 12020

Well Gauging Data Sheet

Project: Prinschield	Date: 12-1-20
Location: St. Vinent St., Utica	Project No.: (33927
Personnel: A	Field Conditions: Claudy, Shavers

Well ID	DTP	DTW	DTB	Purge Amount	Remarks	(color, odor, well conditions, roadbox conditions, etc.)
PIOLS		6.65	18.50	1		rouged conditions, etc.)
F1060		29.95	77.66			
P-103		5.39	18.15			
P-105	·	4.30	18:20			
P-107D	ļ	29.54	77.60			
P-1075		6.15	17:15			
Gw-01		4.35	17.30			
	2 51 5	<u> </u>				
	Collection	Sump Pit	🏘	~3.80	to grow	rd
		Totalicer	- 60942	38		
		11 1 1 11				
		High Ala	the on D	nel 1	s on for	high water
		in mathake				
	· · · ·					

Purge Amount= DTB-DTW*Conversion Factor*3 Conversion Factors: 2" Well = .17 gal/ft 3" Well = .37 gal/ft

4" Well = .66 gal/ft 6" Well = 1.47 gal/ft

(A)	PORT				
port No. (Site Name)	- NYSDEC Site No	. 633027 [Date: 12-1-20	2	Page 1
Pamshield					
NYSDEC Division of Environmental Rem	ediation	artment of ironmental servation	NYSDEC D011107	Contra	ct No.
Site Location: West Islip, N	ew York (M		Superintend		
	ather Conditions) y	NYSDEC PI	M: Parsa	n Long
General Description Cloude	Shares AM claul		M Consultant F	PM: John	Jahnsen
Temperature 50	, Shores AM claud AM 500		M Consultant S		
Wind None None	AM Non	re P	M At 9	Sakulow	ski
If any box below is checked	"Yes" provide evalua				
If any box below is checked Were there any changes to the Hea	alth & Safety Plan?	lation under "Healt			·
Were there any exceedances of the	e perimeter air monitoring		*Yes	No_	NA
Were there any nuisance issues re	ported/observed on this de	reported on this date?		No	NA
Health & Safety Comments			*Yes	No	
None					
Summary of Work Performed	Arrived at site:	(130	Departed Site:		
				j31	2
mab to site 1	to graffe weits	and collecti	an est		1
If any box below is checked "Y	/es", provide explanat	tion under "Materia	al Tracking Cou	<u> </u>	
If any box below is checked "Y Were there any vehicles which did not	ot display proper () () T ni	tion under "Materia umbers and placards?	al Tracking Cor		
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were	not targed?	umbers and placards?	*Yes	nments' No No	NA
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were	not targed?	umbers and placards?	*Yes	No	
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment	not tarped? not tarped? not decontaminated prior	umbers and placards?	*Yes	No No	NA
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not tarped? not tarped? not decontaminated prior	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did no Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours
If any box below is checked "Y Were there any vehicles which did n Were there any vehicles which were Were there any vehicles which were Personnel and Equipment Individual	not decontaminated prior Company	umbers and placards? to exiting the work sit	*Yes * Yes e? *Yes	No No No	NA NA NA al Hours

Alter Department of Environmental Conservation

DAILY INSPECTION REPORT Report No. (Site Name) - NYSDEC Site No. (33-27) Date: 12-1-20

	on		Contractor/Vendor		Quantity	Us	ed
100' Water Lovel	Fidient		Pas		1	1	
<u> </u>							<u> </u>
				·			
				· · ·			
			<u> </u>				
<u> </u>							
			· · · · · ·				_
		. <u> </u>					
				_			
···		•					
			1				
			<u></u>		+		
<u> </u>	<u> </u>				Ī		
	<u> </u>						
			- · · ·				
	•						
· _,			· · ·				_
•						- 	
	<u>1</u>						
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Facility (If A	Disposał pplicable)	Daily Loads	Daily Weigh (tons)
Construction - Constr			·			<u> </u>	
	2952						
	· · · ·						
					······		
		The second second					
		interior and the second					
	nent, delivery t						
Dn-Site scale for off-site shipn quipment/Material Track	nent, delivery t						
	nent, delivery t						
	nent, delivery t						
	nent, delivery t						
	nent, delivery t						
	nent, delivery t						
	nent, delivery t						
	nent, delivery t						

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 12-1-20

Visitors to Site				<u> </u>
Name	P			
		epresenting		Exclusion/CRZ Zo
			Yes	No
	1		Yes	No
	***		Yes	 No
·		<u> </u>	Yes	No
			Yes	No
			Yes	No
Site Representatives				
Name		Representing		
			• <u> </u>	
			······	
roject Schedule Comments				
roject Schedule Comments		· · · · · · · · · · · · · · · · · · ·		
sues Pending				
				<u> </u>
eraction with Public, Property Ov				
eraction with Fublic, Froperty O	wners, Media, etc.			······
-				

The Department of Divergence of Conservation

Include (insert) figures with markups showing location of work and job progress

PRATE Conservation

Page 5 of 9

STATE Environmental State

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633027 Date: 12-1-20

Prinochield	
Site Photographs (Descriptions Below)	
×	

DAILY INSPECTION REPORT

Report No. (Site Name) - NYSDEC Site No. 633627 Date: 12-1-20

Primoshicid	Date: [2-1-20	-
		<u> </u>
Comments		0
Comments		
50 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -		
Site Inspector(s):	Date:	

MONITORING WELL INSPECTION FORM AND PURGE LOG

Site: Prinsphield							-			
Date: 🔗 –:	20-71					Company	V: D0<			
	40			-		Inspecto				
	S-noy BO) <		-		Signature		An /	<u>(</u>	
				- 		<u></u>	1.	<u> </u>		
			WELL ID:	51	N-01	<u> </u>				
EXTERIOR										
Prote	ctive Casing		10		lanhole)				_	
	Lock/Hasp		۱ <u>۱</u>						_	
	Hinge/Lid	· · ·		Inhate co	over				_	
	Well Pad		Ye	5					-	
	Bollards		No						_	
	Label/ID:		P	υ					_	
Oth	er (Specify):				_					
INTERIOR I			•				a			
	Well Riser:		ł	vc					_	
An	nular Space:			<u> </u>					_	
We	ell Cap/Plug:		10	~					_	
We	Il Diameter:			<u> </u>					_	
Dep	th to Water:		3.	.05					_	
Depth	n to Bottom:		17.	20					_	
	er (Specify):								_	
Purging/ Sampling				Tubing						
Device	Peri - PL	no (PE	s)	Type:	LDPE		Tubing Inlet Location:	~71	SC 1.4	
				PUR		ETERS				
TIME	Flow Rate	рН	TEMP	TDS	DO	TURB	ORP	COND	<u> </u>	
1145	2200 M/	6.71	20.61	482	3.09	345	10	,762		
1150		6.70	20.96	.492	2.90	294	10	,770		
1155		6.73	21.46	.495	2,84	725	9	דר,	<u> </u>	
1200			ent	dry						
7265										1
140										
									-	<u>†</u> ───┤
1245		6.93	24.89	.505	6.67	550	89	,802		1
								- 10 -	<u> </u>	╀───┤
									<u> </u>	<u> </u>
Sensing Equ	ipment:	Heriha	(Pin)	1 (a.	notor U	ed 100	63			<u> </u>
Sampling Pe	-	PS								
Notes/Com			led @	1245	· .					

	Site:_	Primoz	shied				());			
Date: 💈	-20-21			_		Compan	y: PES			
Time:	1000					Inspecto		.1		
Weather:	Cloudy	805		_		Signatur	e: A	h	6	
			WELL ID:	Pa	103					
EXTERIOR	ITEMS:									
Prote	ctive Casing		405							
	Lock/Hasp	:	Lock		·	· · · · · · · · · · · · · · · · · · ·			-	
	Hinge/Lid	:	Hine						-	
	Well Pad	:	No						-	
	Bollards	:	No						-	
	Label/ID	:	No						-	
Oth	er (Specify)	:							-	
INTERIOR I	TEMS:								-	
	Well Riser:		_ Prc	<u> </u>					_	
An	nular Space:	:							_	
W	ell Cap/Plug:		Cap						-	
We	ell Diameter:		2"						_	
Dep	th to Water:		6.05						-	
	to Bottom:		18,10						-	
	er (Specify):								-	
Purging/ Sampling Device	Rer. Pu	mo (PE	~	Tubing	LDPE		Tubing Inlet	r 14		
		Mp (re		Туре:			Location:			
		·	r		GE PARAM	ETERS				
TIME	Flow Rate	рН	TEMP	TDS	DO	TURB	ORP	COND		
1005		6.85	20.16	.338	4.95	4.3	163	528		
1010		6.76	19.59	, 338	3.97	2.4	153	,527		
1015		6.72	19.57	.340	3.54	6.5	93	535		
1023		6.70	20.06	.344	3.33	6.3	46	,538		<u> </u>
1025		6.69	Z0,04	,345	3.32	6.4	34	.541		+
1130		6.68	20.07	.353	3.31	4.1	-22	1551		+
										<u> </u>
										4
	inmont.		$\langle 0 \rangle \rangle$							
Sensing Equi Sampling Pe			(Time)	Grenes	ater (PE	(5)				
Notes/Comr		<u>Ps</u>								
	nenta.	Janpled	e la	>37						

1

	Site:	Pr	inoshie	12			(Self			
Date: 👌	-20-21					Company	PES			
	040_					Inspecto		1		
Weather:	Sugar 8	05		_		Signature	0	1 r	-	
				P-1	AS					
OVERIOR	ITTAC.		WELL ID:		05			-		
EXTERIOR			Yes							
Prote	ective Casing Lock/Hasp								-	
	Hinge/Lid		Lock U.						_	
	Well Pad		No						.	
	Bollards								-	
	Label/ID:		NO						-	
Ot	her (Specify):		No						-	
INTERIOR									-	
INTERIOR	Well Riser:		D	vC						
Δr	mular Space:		!"		·				-	
	ell Cap/Plug:		C						-	
	ell Diameter:		- (p					-	
	oth to Water:	·	4.30						-	
-	h to Bottom:		18.2.0	·					-	
	ner (Specify):		+ 0.4		Le. d			10.1	. h.	L
Purging/		- ILC	ie por	New Pu	logo	in well i	unse <u>6</u> d	tubing the	d a brea	
Sampling	D o	1-0	2	Tubing	LOPE	111.	Tubing Inlet	1	(-1)	/
Device	Teri - Pu	mp (96:	5)	Туре:	THEFE	west west	Location:	~~	off both	on
				PUR	GE PARAM	ETERS				
TIME	Flow Rate	рН	TEMP	TDS	DO	TURB	ORP	COND		
1100	~200 Min	7.07	19.10	,550	4.02	Z1.3	-77	,861		
1105	ļ	7.04	18.82	.543	2.63	28, 3	-78	,848		
1110	-	7.01	19.01	.538	2.03	32.0	-81	,841		
1115		6.99	19.05	,534	1.74	28.2	-02	.834		
1120		6.99	19.02	.533	1.71	27.9	-82	,837		
	ļ					ļ				
						ļ	ļ			
			· 			<u> </u>	<u> </u>			
					L,					
Sensing Equ	ipment:	tlonbo	LYES)' Genera	tor yel	(PES);	used n	25' LDF	× 36"	
Sampling Pe	ersonnel:	<u>15</u>	-1 C			1. 1		······		<u> </u>
Notes/Com	ments:	Jamph	<u>-10</u>	/120	; Du	plicate	takan	vere		

	Site:	Prim	ushield				51			
Date: 👂	20.4			-		Company	1: pes			
Time: 🐧	925		· · · · · · · · · · · · · · · · · · ·	_		Inspector	_			
Weather:	Clady 7	o _s		_		Signature	: pt	la		
	•		WELL ID:	P	1015					
EXTERIOR	ITENAS,		WELL ID:	<u> </u>						
	ective Casing	•	V.	دح						
riote	Lock/Hasp		Loci		·· ··				-	
	Hinge/Lid		Lid						-	
	Well Pad		No				<u> </u>		-	
	Bollards		NO						-	
	Label/ID:		Yes				<u>.</u>		-	
Oth	ner (Specify):		10						-	
INTERIOR							-	_	-	
	Well Riser:		1	Prc						
An	nular Space:								-	
	ell Cap/Plug:		C.	L.P.					-	
	ell Diameter:		21							
Dep	th to Water:		6	,00			<u> </u>		-	
Depti	n to Bottom:			50					-	
Oth	er (Specify):	·					·		-	
Purging/			- /						-	
Sampling Device	Peri - Pi	in a CF	~ES)	Tubing Type:	INDE	(already und)	Tubing Inlet Location:	~2'	~~	latton
						_				HER I LOS
TIME	Flow Rate	pН	TEMP	TDS	DO	TURB	ORP	COND		
0930	mas million		18.42	.414	5.32	4.5	164	.649		
0435		6.94	1875	.39e	4.90	6.0	166	,620	<u> </u>	
094-		6.82	19.64	.373	4.83	1.4	171	,581	<u> </u>	
0945		6.84	19.85	.365	4.97	0.4	174	. 576		
0450		6.81	20.38	.365	4.91	0.2	176	.571		
									 	
										-
						<u> </u>				
Sensing Equ	ipment:	Horib	- (P.re	N; &G		B(PES)				,
Sampling Pe		<u>Ps</u>								_
Notes/Com	ments:	Samples	1 @ 09:	<u>55</u>						

	Site:	Prin	schie 1				20			
Date: 🔗	-20-21					Company	1: PES			
Time:				_		Inspector			· · · · ·	
Weather:			-	_		Signature		61		
				P	ocd					
			WELL ID:	1 *1			<u> </u>	-		
EXTERIOR										
Prote	ective Casing		105						-	
	Lock/Hasp		lock						_	
	Hinge/Lid		Liz							
	Well Pad		pr	<u> </u>	<u> </u>				_	
	Bollards		Nu						_	
0.1	Label/ID:		les						-	
	her (Specify):		· · · · · · · · · · · · · · · · · · ·						-	
INTERIOR	Well Riser:		Ð	rc			4			
٨			PI	<u>/C</u>					-	
	nnular Space: /ell Cap/Plug:								-	
	ell Diameter:		<u>Cap</u> 2"						-	
	oth to Water:		28.6						-	
	h to Bottom:								-	
	ner (Specify):	· · · · · · · · · · · · · · · · · · ·	72.7		× 1	1 1 7	1 1 7	/ /	-5 //	Δ
Purging/	iei (opeeny).	<u>_</u>	rel prup	not in	orkin; h	d to be	ad buil	(purged	ZJ gallo	n <i>5)</i>
Sampling	RL	3 y wel	E	Tubing			Tubing Inlet			
Device	Barber -		me	Туре:			Location:			
				PUR	GE PARAM	ETERS				
TIME	Flow Rate	рН	ТЕМР	TDS	DO	TURB	ORP	COND		
1315		9.87	20.95	. 194	4.65	42.4	-14	.295		
	<u>^</u>	1								
<u>-</u>	ļ				L					
	ļ				L					
						<u> </u>				
		11 3					l			
Sensing Equ	•		(Pin)						*	
Sampling Pe		PS								
Notes/Com	ments:	Took	reading	a tim	e d	Sample	j Simpled	e 132	2	

	Site:_	Prin	oshield				8			
Date: 8-2	20-21					Compan	y: PES			
Time: 👩	340					Inspecto				
Weather:	Cloudy 7	05		_		Signatur	e: forto	hi		
	r.			P-107	5					
EXTERIOR	ITEMS		WELL ID:_	1-10/	<u> </u>			-		
	ctive Casing		Je	<						
	Lock/Hasp		Lock						-	
	Hinge/Lid		1:1						-	
	Well Pad	-	No						-	
	Bollards		No						-	
	Label/ID		Yes						-	
Oth	er (Specify)	:							-	
INTERIOR I	TEMS:						÷		-	
	Well Riser:		F	VC						
An	nular Space:									
We	ell Cap/Plug:		Ca	<u>-p</u>						
We	Il Diameter:		2	Ps	·				_	
Dept	th to Water:		4.6	6						
Depth	to Bottom:		17.15							
	er (Specify):									
Purging/ Sampling Device	Perio	Prop ((2")	Tubing Type:	LOPE	(down wall	Tubing Inlet	~/	45	
				PUR	GE PARAM	ETERS				
TIME	Flow Rate		ТЕМР	TDS	DO	TURB	ORP	COND		
0850	~ 200 1/ 11.0	7.48	18.52	,441	6.00	11.5	100	.692		
9855		7.22	18.50	.442	4.53	11.1	110	.691		
0900		6.98	18.8N	.434	3.63	11.5	128	,678		
0905		6.91	19.01	,429	3.35	10.0	134	.66B		
6910		6.85	19.38	,401	2.24	2.4	147	. 62.6		
6915		6.82	19.40	,398	2.96	1.2	152	.607		
						<u> </u>				
Sensing Equi Sampling Pe	ipment: rsonnel:	<u>Flerba</u> PS	(Pine)	, Conners	tor used	(PES)			*	
Notes/Comr			0.0							

	Site:	Prin	oshield				Ę.			
Date: 8-	20 - 21					Company	1: PES			
Time: 07						Inspector				
Weather:	Clouds 70	25				Signature	7 7	11		
				- 0	1		/			
			WELL ID:	<u> </u>	670					
EXTERIOR			1							
Prote	ctive Casing			les					-	
	Lock/Hasp		Loc						-	
	Hinge/Lid		Li	d					-	
	Well Pad		NO DA						-	
	Bollards			· · · .			<u></u>		-	
Oth	Label/ID		Ye	5					-	
	er (Specify):	·	·				<u></u>		-	
INTERIORI	Well Riser:						2			
A n	nular Space:			SVC.					-	
	ell Cap/Plug:								-	
	Il Diameter:		Car, 2'	<u>P</u>					-	
	th to Water:			. 6					-	
	to Bottom:		29.				·		-	
	er (Specify):		77.		1.0	110		10	-	И.,
Purging/ Sampling Device	Grundfas			Tubing Type:	LOPE	tal Pum	Tubing Inlet Location:	0	5' (thats	-
				PUR	GE PARAME	TERS			()//	Les ,
TIME	Flow Rate	рН	ТЕМР	TDS	DO	TURB	ORP	COND		
1255		9.61	18.67	,724	3.69	38	-23		<u> </u>	
The		1, - 1	10.01	14-1	2.01	30		346	<u> </u>	
					<u> </u>					
						1				
	·						<u> </u>			
		-								
Sensing Equi	pment:	Hack	(Pine)						×	
Sampling Pe		R	· (1 /18-)			1				
Notes/Com		5	140	RAM	metme	O LL				
		Sama	1	1000	(MS/MS	U TAR	· rerc)			
	1.04	LR	acing 5 (c	1/me	- OF Sam	<u>pię.</u>				

Appendix C

Full Analyte List Data Tables (2016-2021; no data available for 2020)

	Pa	Location Sample Na rent Sample	me 633027-Effluent	EFFLUENT 633027-EFFLUENT	EFFLUENT R1710120-001	EFFLUENT 633027 - Effluent	EFFLUENT 633027 - Effluent	EFFLUENT 633027 - Effluent	GW-01 633027GW01	GW-01 GW-01	GW-01 GW-01	GW-01 GW-01	GW-01 633027GW01	GW-01 633027 - GW01	GW-01 633027-GW01	GW-01 GW-01	P-103 633027P103	P-103 633027 - P103	P-103 633027-P103	P-103 P-103	P-105 633027P105	P-105 633027 - P105	P-105 633027-P105
	NYSDEC	Sample D		4/13/2017	10/23/2017	3/28/2018	11/28/2018	6/17/2019	5/4/2016	6/28/2016	7/20/2016	9/13/2016	12/20/2016	3/27/2018	6/19/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019
Analyte	AWQS ¹	Unit																					
Volatile Organic Compounds 1,1,1-Trichloroethane (TCA)	5	μg/L	11.3	6.6	10.8	2.35	10.2	6.34	1.4	0.36 J	0.49 J	0.38 J	1.4	0.5 J	< 1 U	1.9	2.8	2.1	4.6	1.3	< 1 U	< 1 U	< 1 U
1,1,2,2-Tetrachloroethane	5	μg/L μg/L	< 1 U NA	<1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	<1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	<1 U NA	<1 U NA	<1 U NA	< 0.21 U < 0.31 U	< 1 U NA	< 1 U NA	< 1 U NA	< 0.21 U < 0.31 U	< 1 U NA	< 1 U NA	< 1 U NA
1,1,2-Trichloroethane	1	μg/L	<1U 14	<1U <1U	<1U 13	<1U <1U	<1U 0.51	<1 U 0.86 J	<1 U 0.63 J	<1U <1U	<1U <1U	<1U <1U	<1 U 0.36 J	<1U <1U	<1U <1U	< 0.23 U 0.79 J	<1U <1U	<1U <1U	< 1 U 0.59 J	< 0.23 U < 0.38 U	<1U <1U	<1U <1U	<1U <1U
1,1-Dichloroethane 1,1-Dichloroethene	5	μg/L μg/L	0.85 J	< 1 U	<1U	<1U	1.64	0.86 J 0.72 J	<1 U	<1 U	<1U	<1 U	<1 U	<1 U	<1U	< 0.29 U	< 1 U	<1 U	<1U	< 0.29 U	<1U	<1 U	<1U
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	5	μg/L μg/L	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA < 0.41 U	NA NA	NA	NA	NA < 0.41 U	NA NA	NA NA	NA NA
1,2-Dibromo-3-Chloropropane	0.04	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	< 0.39 U < 0.73 U	NA	NA	NA	< 0.39 U < 0.73 U	NA	NA	NA
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	NSL 3	μg/L μg/L	NA NA	NA < 1 U	< 1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	< 0.79 U	NA NA	NA	NA	< 0.79 U	NA NA	NA NA	NA NA
1,2-Dichloroethane 1,2-Dichloropropane	0.6	μg/L μg/L	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.21 U < 0.72 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.21 U < 0.72 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U			
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	μg/L	NA	<1U <1U	<1U <1U	< 1 U < 1 U	<1U <1U	<1U <1U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	< 0.78 U < 0.84 U	NA NA	NA	NA	< 0.78 U < 0.84 U	NA	NA NA	NA NA
2-Chloroethyl Vinyl Ether	NSL	μg/L μg/L	NA	< 10 U	< 2 U	< 10 U	< 10 U	< 10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Hexanone Acetone	50 50	μg/L μg/L	< 5 U < 10 U	NA	NA	NA NA	NA NA	NA NA	< 5 U < 5 U	< 5 U < 10 U	< 5 U < 10 U	< 5 U 4.3 J	< 5 U < 10 U	< 5 U < 5 U	< 5 U < 5 U	< 1.2 U < 3.0 U	< 5 U < 10 U	< 5 U < 5 U	< 5 U < 5 U	< 1.2 U < 3.0 U	< 5 U < 10 U	< 5 U < 5 U	< 5 U < 5 U
Acrolein Acrylonitrile	5	μg/L μg/L	NA	< 10 U < 10 U	< 10 U < 5 U	< 10 U < 10 U	< 10 U < 10 U	NA < 10 U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
Benzene	1	μg/L μg/L	< 1 U	< 1 U	< 1 U	< 1 U	<1 U	< 1 U	<1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1 U	< 0.41 U	< 1 U	< 1 U	< 1 U	< 0.41 U	<1 U	< 1 U	<1 U
Bromochloromethane Bromodichloromethane	5	μg/L μg/L	NA < 1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA <1 U	NA <1 U	NA < 1 U	NA < 1 U	NA <1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 0.39 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 0.39 U	NA < 1 U	NA < 1 U	NA < 1 U
Bromoform Bromomethane	50	μg/L	<1U <1U	<1U <1U	< 1 U < 1 U	<1U <1U	<1U <1U	<1U <1U	<1 U <1 U	<1U <1U	<1U <1U	<1U <1U	<1 U <1 U	<1U <1U	<1U <1UJ	< 0.26 U < 0.69 U	<1U <1U	<1U <1U	< 1 U < 1 UJ	< 0.26 U < 0.69 U	<1U <1U	<1U <1U	< 1 U < 1 U
Carbon Disulfide	60	μg/L μg/L	0.33 J	NA	NA	NA	NA	NA	<1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 0.19 U	< 1 U	< 1 U	< 1 U	< 0.19 U	< 1 U	< 1 U	< 1 U
Carbon Tetrachloride Chlorobenzene	5	μg/L μg/L	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	<1 U <1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	<1 U <1 U	< 1 U < 1 U	< 0.27 U < 0.75 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.27 U < 0.75 U	< 1 U < 1 U	<1 U <1 U	< 1 U < 1 U
Chloroethane	5	µg/L	<1 U 0.22 J	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	<1 U <1 U	<1U <1U	< 1 U	< 1 U	< 1 U	< 1 U	<1U <1U	< 0.32 U < 0.34 U	<1U <1U	< 1 U	<1U <1U	< 0.32 U 0.84 J	<1U <1U	<1U <1U	<1U <1U
Chloroform Chloromethane (Methyl Chloride)	7 NSL	μg/L μg/L	<1 U	<1U	< 1 U	<1U	<1U	<1 U	<1 U	<1U	<1U <1U	< 1 U 0.32 J	< 1 U < 1 U	<1U <1U	<1U	< 0.35 U	< 1 U	<1U <1U	<1U	< 0.35 U	<1U	<1U	<1 U
Cis-1,2-Dichloroethylene Cis-1,3-Dichloropropene	5 0.4	μg/L μg/L	3.1 < 1 U	NA <1 U	NA < 1 U	NA < 1 U	NA < 1 U	2.35 < 1 U	<1 U <1 U	<1U <1U	< 1 U < 1 U	<1U <1U	<1 U <1 U	<1 U <1 U	<1 U <1 U	< 0.81 U < 0.36 U	<1U <1U	<1 U <1 U	< 1 U < 1 U	< 0.81 U < 0.36 U	< 1 U < 1 U	<1U <1U	< 1 U < 1 U
Cyclohexane	NSL	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.18 U	NA	NA	NA	< 0.18 U	NA	NA	NA
Dibromochloromethane Dichlorodifluoromethane	50 5	μg/L μg/L	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	<1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 0.32 U < 0.68 U	< 1 U NA	< 1 U NA	< 1 U NA	< 0.32 U < 0.68 U	< 1 U NA	< 1 U NA	< 1 U NA
Ethylbenzene Isopropylbenzene (Cumene)	5	μg/L μg/L	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 1 U NA	< 0.74 U < 0.79 U	< 1 U NA	< 1 U NA	< 1 U NA	< 0.74 U < 0.79 U	< 1 U NA	< 1 U NA	< 1 U NA
Methyl Acetate	NSL	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 1.3 U	NA	NA	NA	< 1.3 U	NA	NA	NA
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	50 NSL	μg/L μg/L	< 10 U < 5 U	NA NA	NA NA	NA NA	NA NA	NA NA	< 5 U < 5 U	< 10 U < 5 U	< 10 U < 5 U	< 10 U < 5 U	< 10 U < 5 U	< 5 U < 5 U	< 5 U < 5 U	< 1.3 U < 2.1 U	< 10 U < 5 U	< 5 U < 5 U	< 5 U < 5 U	< 1.3 U < 2.1 U	< 10 U < 5 U	< 5 U < 5 U	< 5 U < 5 U
Methyleyclohexane Methylene Chloride	NSL	µg/L	NA <1 U	NA <1 U	NA < 1 U	NA 1.4	NA <1 U	NA <1 U	NA <1 U	NA <1 U	NA <1 U	NA <1 U	NA <1 U	NA <1 U	NA <1 U	< 0.16 U < 0.44 U	NA <1 U	NA <1 U	NA < 1 U	< 0.16 U < 0.44 U	NA < 1 U	NA <1 U	NA < 1 U
M-P-Xylene	NSL	μg/L μg/L	< 2 U	< 2 U	NA	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	< 2 U	NA	< 2 U	< 2 U	< 2 U	NA	< 2 U	< 2 U	< 2 U
D-Xylene (1,2-Dimethylbenzene) Styrene	5	μg/L μg/L	< 1 U < 1 U	< 1 U NA	NA	< 1 U NA	< 1 U NA	< 1 U NA	<1 U <1 U	<1U <1U	< 1 U < 1 U	<1U <1U	<1U <1U	<1U <1U	<1U <1U	NA < 0.73 U	< 1 U < 1 U	<1U <1U	<1U <1U	NA < 0.73 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U
Tert-Butyl Methyl Ether	10	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA
Tetrachloroethylene (PCE) Toluene	5	μg/L μg/L	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	<1 U <1 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	<1 U <1 U	<1U <1U	< 1 U < 1 U	< 0.36 U < 0.51 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.36 U < 0.51 U	< 1 U < 1 U	<1U <1U	< 1 U < 1 U
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	5	μg/L μg/L	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	<1 U <1 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	<1 U <1 U	< 1 U < 1 U	< 1 U < 1 U	< 0.90 U < 0.37 U	<1U <1U	<1 U <1 U	<1U <1U	< 0.90 U < 0.37 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U
Trichloroethylene (TCE)	5	μg/L	18.3	9.9	16.8	6.47	14.1	11.3	<1 U	< 1 U	< 1 U	< 1 U	< 1 U	<1 U	< 1 U	< 0.46 U	1.2	0.84 J	2.1	0.98 J	<10	<1 U	<10
Trichlorofluoromethane Vinyl Chloride	5 2	μg/L μg/L	NA < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	< 1 U < 1 U	NA <1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 1 U	NA < 1 U	< 0.88 U < 0.90 U	NA < 1 U	NA < 1 U	NA < 1 U	< 0.88 U < 0.90 U	NA < 1 U	NA < 1 U	NA < 1 U
Xylenes Fotal Metals	5	µg/L	NA	NA	< 3 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.66 U	NA	NA	NA	< 0.66 U	NA	NA	NA
Aluminum	NSL	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7600	NA	NA	NA	< 60 U	NA	NA	NA
Antimony Arsenic	25	μg/L μg/L	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 6.8 U < 5.6 U	NA NA	NA NA	NA NA	< 6.8 U < 5.6 U	NA NA	NA NA	NA NA
Barium Beryllium	1000	μg/L μg/L	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	130 0.34 J	NA	NA	NA	82 < 0.30 U	NA NA	NA	NA
Cadmium	5	µg/L	< 0.5 U	< 5 U	< 1 U	< 5 U	< 5 U	< 5 U	NA	NA	NA	NA	0.43 J	NA	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U	< 0.50 U	< 1.1 U	< 5 U	< 5 U
Calcium Chromium, Total	NSL 50	μg/L μg/L	NA 0.38 J	NA < 10 U	NA < 2.5 U	NA < 10 U	NA < 10 U	NA < 10 U	NA NA	NA NA	NA NA	NA	NA 21	NA NA	NA < 10 U	130 8.5	NA 1.3 J	NA < 10 U	NA < 10 U	89.4 < 1.0 U	NA 2.1 J	NA < 10 U	NA < 10 U
Cobalt Copper	NSL 200	μg/L μg/L	NA 3.4	NA < 20 U	NA < 5 U	NA < 20 U	NA < 20 U	NA < 20 U	NA NA	NA NA	NA	NA	NA 47	NA	NA < 20 U	2.7 J 7.6 J	NA 11	NA < 20 U	NA < 20 U	< 0.63 U 3.1 J	NA 5.7	NA < 20 U	NA < 20 U
Iron	300	µg/L	NA	NA	NA	NA < 50 U	NA < 50 U	NA	NA	NA	NA	NA	NA	NA	NA < 50 U	6100	NA	NA < 50 U	NA < 50 U	180	NA	NA < 50 U	NA < 50 U
Lead Magnesium	35000	μg/L μg/L	<1U NA	< 50 U NA	< 3 U NA	NA	NA	< 50 U NA	NA	NA	NA NA	NA	29 NA	NA NA	NA	3.7 J 22700	< 2.2 U NA	NA	NA	< 3.0 U 17000	< 2.2 U NA	NA	NA
Manganese Mercury	300	μg/L μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	390 < 0.043 U	NA	NA	NA	10 < 0.043 U	NA	NA	NA
Nickel	100 NSL	μg/L	45	< 40 U	51	< 40 U	< 40 U	< 40 U	NA	NA	NA	NA	110	NA	9.2 J	220	< 5.6 U	< 40 U	< 40 U	1.4 J	2.3 J	< 40 U	< 40 U
Potassium Selenium	10	μg/L μg/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6100 < 8.7 U	NA NA	NA NA	NA NA	590 < 8.7 U	NA NA	NA NA	NA NA
Silver Sodium	50 20000	μg/L μg/L	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 1.7 U 8000	NA	NA	NA	< 1.7 U 5400	NA	NA NA	NA
Thallium	0.5	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 10 U	NA	NA	NA	< 10 U	NA	NA	NA
Vanadium Zinc	NSL 2000	μg/L μg/L	NA 2.1 J	NA < 20 U	NA < 10 U	NA < 20 U	NA < 20 U	NA < 20 U	NA NA	NA NA	NA NA	NA NA	NA 73	NA NA	NA < 20 U	12 19 B	NA < 5.6 U	NA < 20 U	NA < 20 U	< 1.5 U 4.9 J B	NA 2.7 J	NA < 20 U	NA < 20 U
PFAS Perfluorobutanesulfonic acid (PFBS)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA
Perfluorobutanoic Acid	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.55 J	NA
Perfluorodecanesulfonic acid (PFDS) Perfluorodecanoic acid (PFDA)	NSL NSL	ng/L ng/L		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	< 2 U < 2 U	NA NA
Perfluorododecanoic acid (PFDoA) Perfluoroheptanesulfonic acid (PFHpS)	NSL	ng/L ng/L	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	< 2 U < 2 U	NA
Perfluoroheptanoic acid (PFHpA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	NSL	ng/L ng/L	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	< 2 U < 2 U	NA NA
Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonamide (PFOSA)	NSL NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U < 2 U	NA
Perfluorooctanesulfonic acid (PFOS)	2.7	ng/L ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA
Perfluorooctanoic acid (PFOA) Perfluoropentanoic Acid (PFPeA)	6.7 NSL	ng/L ng/L	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	< 2 U < 2 U	NA NA
Perfluorotetradecanoic acid (PFTeDA)	NSL	ng/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA
Perfluorotridecanoic Acid (PFTriA/PFTrDA) Perfluoroundecanoic Acid (PFUnA)	NSL	ng/L ng/L	NA	NA	NA NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	< 2 U < 2 U	NA NA NA
TOTAL PFOA AND PFOS 1,4-Dioxane	NSL	ng/L	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2 U	NA
1,4-Dioxane Notes:	0.35	μg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.4 U	NA	NA	NA	NA	NA	NA	NA	0.4 U	NA
(1) DYSDEC Ambient Water Quality Standard (AW and Money) (Technical and Operational Guidance Series gal) — Microgram(a) per liter, and a strain of the blank and sample. I = Concentration is estimated. The blank and sample. I = Concentration is estimated. AN = Not analyzed. NN = Not analyzed. NNL = Nos screening level available. NYSDEC = New York State Department of Environ U = Analyte not detected.	[TOGS] 1.1.1).		ice																				

		Location ID Sample Name ent Sample ID	P-105 P-105	P-106D 633027P106D	P-106D 633027 - P106D	P-106D 633027-P106D	P-106D P-106D	P-106S 633027P106S	P-106S 633027 - P106S	P-106S 633027-P106S	P-106S P-106S	P-107D 633027P107D	P-107D 633027 - P107D	P-107D 633027-P107D	P-107D P-107D	P-107S 633027P107S	P-107S 633027 - P107S	P-107S 633027-P107S	P-1075 P-1075
	NYSDEC	Sample Date	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/19/2016	3/27/2018	6/18/2019	8/20/2021	12/20/2016	3/28/2018	6/18/2019	8/20/2021	12/20/2016	3/28/2018	6/19/2019	8/20/202
Analyte Datile Organic Compounds	AWQS ¹	Unit																	
,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 1 U	< 1 U	< 1 U	< 0.82 U	0.44 J	< 1 U	0.64 J	< 0.82 U	< 1 U	< 1 U	< 1 U	< 0.82 U	1.6	0.44 J	1.4	1.7
2,2-Tetrachloroethane	5	µg/L	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U
,2-Trichloro-1,2,2-Trifluoroethane	5	µg/L	< 0.31 U	NA	NA	NA	< 0.31 U	NA	NA	NA	< 0.31 U	NA	NA	NA	< 0.31 U	NA	NA	NA	< 0.31 U
,2-Trichloroethane	5	µg/L	< 0.23 U < 0.38 U	<1 U <1 U	< 1 U < 1 U	<1U <1U	< 0.23 U < 0.38 U	<1U <1U	<1U <1U	< 1 U < 1 U	< 0.23 U < 0.38 U	<1U <1U	<1U <1U	<1U <1U	< 0.23 U < 0.38 U	< 1 U 0.75 J	< 1 U 0.32 J	<1 U 1.2	< 0.23 U 0.79 J
Dichloroethene	5	μg/L μg/L	< 0.38 U	<1 U	<10	<1U	< 0.29 U	<1U	<1U	<10	< 0.38 U < 0.29 U	<10	<10	<1U <1U	< 0.38 U < 0.29 U	<1 U	<1 U	<1 U	< 0.29 t
3-Trichlorobenzene	5	µg/L	NA	NA	NA	NA	NA												
,4-Trichlorobenzene	5	µg/L	< 0.41 U	NA	NA	NA	< 0.41 U	NA	NA	NA	< 0.41 U	NA	NA	NA	< 0.41 U	NA	NA	NA	< 0.41 U
-Dibromo-3-Chloropropane -Dibromoethane (Ethylene Dibromide)	0.04 NSL	µg/L	< 0.39 U < 0.73 U	NA	NA	NA	< 0.39 U < 0.73 U	NA	NA	NA	< 0.39 U < 0.73 U	NA	NA	NA	< 0.39 U < 0.73 U	NA	NA	NA	< 0.39 U
-Dichlorobenzene	3	μg/L μg/L	< 0.79 U	NA	NA	NA	< 0.79 U	NA	NA	NA	< 0.79 U	NA	NA	NA	< 0.79 U	NA	NA	NA	< 0.79
Dichloroethane	0.6	μg/L	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21 U	< 1 U	< 1 U	< 1 U	< 0.21
Dichloropropane	1	μg/L	< 0.72 U	< 1 U	<1 U	<1 U	< 0.72 U	< 1 U	<1 U	< 1 U	< 0.72 U	< 1 U	< 1 U	<1 U	< 0.72 U	<1 U	<1 U	< 1 U	< 0.72
-Dichlorobenzene -Dichlorobenzene	3	µg/L	< 0.78 U < 0.84 U	NA	NA	NA NA	< 0.78 U < 0.84 U	NA	NA	NA	< 0.78 U < 0.84 U	NA	NA NA	NA	< 0.78 U < 0.84 U	NA	NA	NA	< 0.78
hloroethyl Vinyl Ether	3 NSL	μg/L μg/L	< 0.84 U NA	NA	NA	NA	< 0.84 U NA	NA NA	NA	NA	< 0.84 U NA	NA	NA	NA NA	< 0.84 U NA	NA	NA	NA	< 0.84 NA
exanone	50	μg/L	< 1.2 U	< 5 U	< 5 U	< 5 U	< 1.2 U	< 5 U	< 5 U	< 5 U	< 1.2 U	< 5 U	< 5 U	< 5 U	< 1.2 U	< 5 U	< 5 U	< 5 U	< 1.2 1
tone	50	µg/L	< 3.0 U	< 10 U	< 5 U	< 5 U	< 3.0 U	< 10 U	< 5 U	< 5 U	< 3.0 U	< 10 U	< 5 U	< 5 U	< 3.0 U	< 10 U	< 5 U	< 5 U	< 3.0 1
olein	5	µg/L	NA	NA	NA	NA	NA												
ylonitrile	5	µg/L	NA < 0.41 U	NA	NA <1 U	NA	NA < 0.41 U	NA	NA <1 U	NA <1 U	NA < 0.41 U	NA	NA	NA <1 U	NA	NA < 1 U	NA <1 U	NA < 1 U	NA
zene mochloromethane	1	μg/L μg/L	< 0.41 U NA	< 1 U NA	<1U NA	< 1 U NA	< 0.41 U NA	< 1 U NA	<1U NA	< I U NA	< 0.41 U NA	< 1 U NA	< 1 U NA	<1U NA	< 0.41 U NA	<1U NA	<1U NA	<1U NA	< 0.41 NA
modichloromethane	50	μg/L μg/L	< 0.39 U	< 1 U	< 1 U	< 1 U	< 0.39 U	< 1 U	<1 U	< 1 U	< 0.39 U	< 1 U	< 1 U	<1 U	< 0.39 U	<1 U	< 1 U	< 1 U	< 0.39
moform	50	μg/L	< 0.26 U	< 1 U	< 1 U	< 1 U	< 0.26 U	< 1 U	< 1 U	< 1 U	< 0.26 U	< 1 U	< 1 U	< 1 U	< 0.26 U	< 1 U	< 1 U	< 1 U	< 0.26
momethane	5	µg/L	< 0.69 U	< 1 U	< 1 U	<1U	< 0.69 U	<1U	<1U	< 1 U	< 0.69 U	< 1 U	<1 U	<1U	< 0.69 U	< 1 U	< 1 U	< 1 UJ	< 0.69
bon Disulfide bon Tetrachloride	60	µg/L	< 0.19 U < 0.27 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	< 0.19 U < 0.27 U	<1U <1U	< 1 U < 1 U	< 1 U < 1 U	< 0.19 U < 0.27 U	<1 U <1 U	<1U <1U	<1U <1U	< 0.19 U < 0.27 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	< 0.19 < 0.27
orobenzene	5	μg/L μg/L	< 0.27 U < 0.75 U	<1U <1U	<1U <1U	<1U <1U	< 0.27 U < 0.75 U	<1U <1U	<1U <1U	<1U <1U	< 0.27 U < 0.75 U	<1U <1U	<1U <1U	<1U <1U	< 0.27 U < 0.75 U	<10	<1U <1U	<1U <1U	< 0.27
loroethane	5	μg/L μg/L	< 0.32 U	<1 U	<10	<10	< 0.32 U	<10	<1U	<10	< 0.32 U	<1 U	<10	<1U	< 0.32 U	<10	<10	<1U	< 0.32
oroform	7	µg/L	< 0.34 U	< 1 U	< 1 U	< 1 U	< 0.34 U	<1 U	< 1 U	< 1 U	< 0.34 U	< 1 U	< 1 U	<1 U	< 0.34 U	< 1 U	< 1 U	< 1 U	< 0.34
oromethane (Methyl Chloride)	NSL	µg/L	< 0.35 U	<1U	<10	<1U	< 0.35 U	<1U	<1U	<1U	1.7	<1U	<1U	<1U	< 0.35 U	<10	<1U	<1U	< 0.35
-1,2-Dichloroethylene	5	µg/L	< 0.81 U < 0.36 U	<1U <1U	< 1 U < 1 U	<1U <1U	< 0.81 U < 0.36 U	<1U <1U	<1U <1U	< 1 U < 1 U	< 0.81 U < 0.36 U	< 1 U < 1 U	<1U <1U	<1 U <1 U	< 0.81 U < 0.36 U	< 1 U < 1 U	< 1 U < 1 U	<1U <1U	< 0.81
-1,3-Dichloropropene clohexane	0.4 NSL	μg/L μg/L	< 0.36 U < 0.18 U	< I U NA	<1U NA	<1U NA	< 0.36 U < 0.18 U	< I U NA	<1U NA	< I U NA	< 0.36 U < 0.18 U	< I U NA	< I U NA	<1U NA	< 0.36 U < 0.18 U	<1U NA	< I U NA	<1 U NA	< 0.36
romochloromethane	50	μg/L	< 0.32 U	<1 U	<1 U	<1 U	< 0.32 U	<1 U	<1 U	<1 U	< 0.32 U	<1U	<1U	<1 U	< 0.32 U	<1 U	<1 U	<1U	< 0.32
hlorodifluoromethane	5	μg/L	< 0.68 U	NA	NA	NA	< 0.68 U	NA	NA	NA	< 0.68 U	NA	NA	NA	< 0.68 U	NA	NA	NA	< 0.68
ylbenzene	5	µg/L	< 0.74 U	<1 U	<10	<1U	< 0.74 U	<1 U	<1 U	< 1 U	< 0.74 U	< 1 U	<1 U	<1U	< 0.74 U	<1U	<1U	< 1 U	< 0.74
propylbenzene (Cumene) thyl Acetate	5 NSL	µg/L	< 0.79 U < 1.3 U	NA	NA	NA NA	< 0.79 U < 1.3 U	NA	NA	NA	< 0.79 U < 1.3 U	NA	NA NA	NA NA	< 0.79 U < 1.3 U	NA	NA	NA	< 0.79 < 1.3 U
hyl Acetate hyl Ethyl Ketone (2-Butanone)	50	μg/L μg/L	< 1.3 U < 1.3 U	< 10 U	NA < 5 U	< 5 U	< 1.3 U < 1.3 U	< 10 U	< 5 U	< 5 U	< 1.3 U < 1.3 U	< 10 U	< 5 U	< 5 U	< 1.3 U < 1.3 U	< 10 U	NA < 5 U	< 5 U	< 1.3 U
thyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NSL	μg/L	< 2.1 U	< 5 U	< 5 U	< 5 U	< 2.1 U	< 5 U	< 5 U	< 5 U	< 2.1 U	< 5 U	< 5 U	< 5 U	< 2.1 U	< 5 U	< 5 U	< 5 U	< 2.1 U
thylcyclohexane	NSL	µg/L	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16
thylene Chloride	5	µg/L	< 0.44 U	<10	<10	<1U	< 0.44 U	<1U	<1U	<10	< 0.44 U	<10	<1 U	<1U	< 0.44 U	<10	<10	<1U	< 0.44
P-Xylene Xylene (1,2-Dimethylbenzene)	NSL	µg/L	NA	< 2 U < 1 U	< 2 U < 1 U	< 2 U < 1 U	NA NA	< 2 U < 1 U	< 2 U < 1 U	< 2 U < 1 U	NA NA	< 2 U < 1 U	< 2 U < 1 U	< 2 U < 1 U	NA	< 2 U < 1 U	< 2 U < 1 U	< 2 U < 1 U	NA
rene	5	μg/L μg/L	< 0.73 U	<10	<10	<10	< 0.73 U	<10	<10	<10	< 0.73 U	<10	<10	<10	< 0.73 U	<10	<10	<10	< 0.73
t-Butyl Methyl Ether	10	µg/L	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16 U	NA	NA	NA	< 0.16
rachloroethylene (PCE)	5	µg/L	< 0.36 U	< 1 U	< 1 U	< 1 U	< 0.36 U	< 1 U	< 1 U	< 1 U	< 0.36 U	< 1 U	< 1 U	< 1 U	< 0.36 U	< 1 U	<1 U	< 1 U	< 0.36
uene	5	µg/L	< 0.51 U	< 1 U	< 1 U	< 1 U	< 0.51 U	< 1 U	< 1 U	<1U	< 0.51 U	< 1 U	<1U	< 1 U	< 0.51 U	< 1 U	< 1 U	< 1 U	< 0.51
ins-1,2-Dichloroethene ins-1,3-Dichloropropene	0.4	μg/L μg/L	< 0.90 U < 0.37 U	<1U <1U	<1U <1U	<1U <1U	< 0.90 U < 0.37 U	<1U <1U	<1U <1U	<1U <1U	< 0.90 U < 0.37 U	<1U <1U	<1U <1U	<1U <1U	< 0.90 U < 0.37 U	< 1 U < 1 U	<1U <1U	<1U <1U	< 0.90
chloroethylene (TCE)	5	μg/L	< 0.46 U	<1 U	<10	<1U	< 0.46 U	0.68 J	<1 U	0.7 J	< 0.46 U	<10	<1 U	<1 U	< 0.46 U	14.1	7.1	7.5	14
chlorofluoromethane	5	µg/L	< 0.88 U	NA	NA	NA	< 0.88 U	NA	NA	NA	< 0.88 U	NA	NA	NA	< 0.88 U	NA	NA	NA	< 0.88
nyl Chloride	2	µg/L	< 0.90 U	< 1 U	< 1 U	< 1 U	< 0.90 U	< 1 U	< 1 U	< 1 U	< 0.90 U	< 1 U	< 1 U	< 1 U	< 0.90 U	< 1 U	< 1 U	< 1 U	< 0.90
enes tal Metals	5	μg/L	< 0.66 U	NA	NA	NA	< 0.66 U	NA	NA	NA	< 0.66 U	NA	NA	NA	< 0.66 U	NA	NA	NA	< 0.66
iminum	NSL	μg/L	< 60 U	NA	NA	NA	490	NA	NA	NA	65 J	NA	NA	NA	940	NA	NA	NA	< 60 U
timony	3	μg/L	< 6.8 U	NA	NA	NA	< 6.8 U	NA	NA	NA	< 6.8 U	NA	NA	NA	< 6.8 U	NA	NA	NA	< 6.8 L
enic	25	µg/L	7.6 J	NA	NA	NA	< 5.6 U	NA	NA	NA	< 5.6 U	NA	NA	NA	< 5.6 U	NA	NA	NA	< 5.6 U
ium	1000	µg/L	66	NA	NA	NA	62	NA	NA	NA	53	NA	NA	NA	83	NA	NA	NA	61
yllium Imium	3	µg/L	< 0.30 U 0.63 J	NA < 1.1 U	NA < 5 U	NA < 5 U	< 0.30 U < 0.50 U	NA < 1.1 U	NA < 5 U	NA < 5 U	< 0.30 U < 0.50 U	NA < 1.1 U	NA < 5 U	NA < 5 U	< 0.30 U < 0.50 U	NA 3.1	NA < 5 U	NA 3.7 J	< 0.30
lcium	5 NSL	μg/L μg/L	61.6	< 1.1 U NA	< 5 U NA	NA	< 0.50 U	< 1.1 U NA	NA	NA	< 0.50 U 96.5	NA	NA	NA	< 0.50 U	3.1 NA	< 5 U NA	3./ J NA	99.2
omium, Total	50	μg/L	< 1.0 U	4.1	1.7 J	< 10 U	1.6 J	2.1 J	< 10 U	< 10 U	1.8 J	5.8	< 10 U	< 10 U	5.4	8.6	2.4 J	1.1.1	1.6 J
balt	NSL	µg/L	< 0.63 U	NA	NA	NA	< 0.63 U	NA	NA	NA	< 0.63 U	NA	NA	NA	< 0.63 U	NA	NA	NA	< 0.63
pper	200	µg/L	< 1.6 U	11	< 20 U	< 20 U	< 1.6 U	4.6 J	< 20 U	< 20 U	1.8 J	16	< 20 U	< 20 U	3.6 J	5.6	< 20 U	< 20 U	3.2 J
n 1d	300 25	μg/L μg/L	170 < 3.0 U	NA 4.1	NA < 50 U	NA < 50 U	470 < 3.0 U	NA < 2.2 U	NA < 50 U	NA < 50 U	44 J < 3.0 U	NA 7.2	NA < 50 U	NA < 50 U	1100 < 3.0 U	NA < 2.2 U	NA < 50 U	NA < 50 U	60 < 3.0 I
gnesium	35000	μg/L μg/L	68100	4.1 NA	NA	NA	490	× 2.2 U NA	NA	NA	15000	NA	NA	NA	780	× 2.2 0 NA	NA	NA	1620
nganese	300	μg/L	260	NA	NA	NA	8.8	NA	NA	NA	15	NA	NA	NA	16	NA	NA	NA	29
reury	0.7	µg/L	< 0.043 U	NA	NA	NA	< 0.043 U	NA	NA	NA	< 0.043 U	NA	NA	NA	< 0.043 U	NA	NA	NA	< 0.043
kel	100	µg/L	< 1.3 U	5.2 J	< 40 U	< 40 U	< 1.3 U	< 5.6 U	< 40 U	< 40 U	1.7 J	11	< 40 U	< 40 U	4.9 J	290	174	313	170
assium znium	NSL 10	μg/L μg/L	3400 < 8.7 U	NA	NA	NA	3700 < 8.7 U	NA	NA	NA	1100 < 8.7 U	NA	NA NA	NA	4900 < 8.7 U	NA	NA	NA	< 8.7
/er	50	μg/L μg/L	< 1.7 U	NA	NA	NA	< 1.7 U	NA	NA	NA	< 1.7 U	NA	NA	NA	< 1.7 U	NA	NA	NA	< 1.7
ium	20000	μg/L	14300	NA	NA	NA	50000	NA	NA	NA	4200	NA	NA	NA	66200	NA	NA	NA	2100
allium	0.5	µg/L	< 10 U	NA	NA	NA	< 10 U	NA	NA	NA	< 10 U	NA	NA	NA	< 10 U	NA	NA	NA	< 10
adium	NSL	µg/L	< 1.5 U	NA 02	NA C 20 U	NA c 20 U	< 1.5 U	NA	NA C 20 U	NA < 20 U	< 1.5 U	NA 27	NA < 20 U	NA c 20 U	1.9 J	NA	NA C 20 U	NA	< 1.5
c AS	2000	μg/L	< 1.5 U	92	< 20 U	< 20 U	11 B	2.4 J	< 20 U	< 20 U	< 1.5 U	27	< 20 U	< 20 U	9.6 J B	8.9	< 20 U	14.5 J	8.3 J
luorobutanesulfonic acid (PFBS)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	0.38 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorobutanoic Acid	NSL	ng/L	NA	NA	0.6 J	NA	NA	NA	1.505	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorodecanesulfonic acid (PFDS)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorodecanoic acid (PFDA)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorododecanoic acid (PFDoA) luoroheptanesulfonic acid (PFHpS)	NSL NSL	ng/L ng/L	NA	NA NA	< 2 U < 2 U	NA	NA	NA NA	< 2 U < 2 U	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA
luoroheptanoic acid (PFHpA)	NSL	ng/L ng/L	NA	NA	< 2 U < 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorohexanesulfonic acid (PFHxS)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
fluorohexanoic acid (PFHxA)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorononanoic acid (PFNA)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorooctane Sulfonamide (PFOSA) luorooctanesulfonic acid (PFOS)	NSL 2.7	ng/L	NA	NA	< 2 U < 2 U	NA	NA	NA	< 2 U 0.66 J	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
luorooctanesulfonic acid (PFOS) luorooctanoic acid (PFOA)	2.7	ng/L ng/L	NA	NA	< 2 U < 2 U	NA NA	NA	NA	0.66 J < 2 U	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
luoropentanoic Acid (PFOA)	6./ NSL	ng/L ng/L	NA	NA	< 2 U < 2 U	NA	NA	NA	< 2 U < 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
fluorotetradecanoic acid (PFTeDA)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA	< 2 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
fluorotridecanoic Acid (PFTriA/PFTrDA)									< 2 U	214	214	NA	214	214	NA	211	214	214	NA
fluorotridecanoic Acid (PFTriA/PFTrDA) fluoroundecanoic Acid (PFUnA)	NSL	ng/L	NA	NA	< 2 U	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
rfluorotridecanoic Acid (PFTriA/PFTrDA) rfluorotridecanoic Acid (PFUnA) rfluoroundecanoic Acid (PFUnA) JTAL PFOA AND PFOS 4-Dioxane			NA NA	NA NA	< 2 U < 2 U	NA NA	NA NA	NA NA	0.66 J	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	N/

 I.4-Discance
 0.35
 µg/L

 Notes:
 (1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard'guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 µg/L = Micorgann(s) per liter.
 B
 Compound was found in the blank and sample.

 J = Concentration is estimated.
 NA = Not analyzed.
 NSL = No screening level available.

 NSL = No screening level available.
 NYSDEC = New York State Department of Environmental Conservation U = Analyte not detected.
 Concentrations exceeding the screening level are shaded gray.

Appendix D

Mann-Kendall Trend Analysis of TCE, Lead, & Nickel in Monitoring Wells (December 2011-August 2021)

Iuation Date: acility Name:	13-Jun-24 EA Engineeri	na (Primo	Shield)		\neg		c	Job ID: onstituent:		1 Primo S	Shield		
onducted By:	Cassandra D	errick						ation Units:					
Samp	ling Point ID:	GW-01											
Sampling	Sampling					LEA	D CONCE	NTRATION	(ua/L)				
Event 1	Date 20-Dec-16	29	-		-		1					-	
2	19-Jun-19	0.1											
3	20-Aug-21	3.7											
4 5													
6													
7													
8													
9 10													
11													
12													
13 14							-						
14													
16													
17													
18 19							_						
20													
	of Variation:	1.44											
Mann-Kendall	Statistic (S): lence Factor:	-1											
	ration Trend:												
Concent													
	100												
	100					GW-0							
	~	•											
=	۲ ۲												
	<u>n</u> 10 -											→ GW-0)1
	- 01 (ug/L												
	ti												
	1 - 1												
	en .								·				
	č –						/						
	ō –												
	0.1 +		_				-	_	-	-	_		
	08/16	03/17	09/17	04/18	10/18	05/19	12/19	06/20	01/21	07/21	02/22		
					S	Samplin	a Date						

2 Confidence (in Percent) that constituent contration is increasing (320) of decreasing (320). Set (320) is the reasing of Decreasing of Decreasing of Decreasing (320) is decreasing (320) of decreasing (320).
 2 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

luation Date:									1602534	Primo	Shield		
acility Name:	EA Engineeri	ng (Primo	Shield)		_			onstituent:					
	Cassandra De						Concentra	ation Units:	ug/L				
	ng Point ID:	GW-01											
Sampling Event	Sampling Date					NICK	EL CONCI	ENTRATIO	N (ug/L)				
1	20-Dec-16	110			- T								
2	19-Jun-19	9.2											
3 4	20-Aug-21	220											
5													
6													
7													
8 9													
10													
11													-
12													
13 14							_						
15													
16													
17													
18 19					_		-						
20													
Coefficient		0.93											
ann-Kendall	Statistic (S):	1	_		_		_						
	ation Trend:	_		_						_			_
Concenti													
	1000												
	1000					GW-0	1						_
_	-												
Chantration (Ind.)	1									/	_		
	5 100 -	~									_	→ GW-0	01
2									·				
					~		/						
5	10 -												
2												_	
ž	5												
č	5 –										_		
د	° 1∔_							_	_	_	_		
	08/16	03/17	09/17	04/18	10/18	05/19	12/19	06/20	01/21	07/21	02/22		
						Samplir							

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Conducted By: Cassandra Derrick Concentration Units: ug/L Sampling Point ID: GW-01	aluation Date: Facility Name:		ng (Primo Shield)			Job ID: Constituent:	1602534 Prim TCE	o Shield	
Sampling Date Sampling Date TCE CONCENTRATION (trg/L) 1 10.58p-15 0.1					Co				
Event Date ICCONCENTRATION (QL) 1<	Samp	ling Point ID:	GW-01						
1 10-Sep-15 0.1					TCE C	ONCENTRATION	(ug/L)		
3 28-Jun-16 0.1		10-Sep-15	0.1						
4 20-Jul-16 0.1									
5 13-Sep-16 0.1									
6 20-Dec-16 0.1									
8 19-Jun-19 0.1									
9 20-Aug-21 0.1	7	27-Mar-18	0.1						
10 11 <				T					
11 12 13 14 15 13 14 15 16 17 16 17 18 16 17 18 19 10 10 20 0.00 10 10 Coefficient of Variation: Mann-Kendall Statistic (5): Confidence Factor: Concentration Trend: 0.00 10		20-Aug-21	0.1						
12 13 14 15 14 15 16 16 16 16 16 17 18 16 18 19 10 20 Coefficient of Variation: Confidence Factor: Concentration Trend: 0.00 Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0 1 GW-01									
14 15 14 15 15 16 16 16 17 18 16 17 18 16 16 16 20 19 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 10 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 20 16 16 16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
15 16 17 17 17 17 17 17 18 19 19 19 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
16 17 18 19 10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
17 Image: Constraint of Variation: 0.00 Image: Constraint of Variation: 0 Mann-Kendall Statistic (S): 0 Image: Constraint of Variation: 0 Confidence Factor: 46.0% Image: Constraint of Variation: Image: Constraint of Variation: Concentration Trend: Stable Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Image: Constraint of Variation: Image: Constraint of Variation: 0 Image: Constraint of Variation: Imag									
19 0									
20 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable	-								
Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable									
Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable 0.1		t of Variation	0.00						
Confidence Factor: Concentration Trend: Stable									
	Confi	dence Factor:	46.0%						
	Concen	tration Trend:	Stable						
		1			GW-01				
		2							
		6n							→ GW-01
		č							
		0							
		at							
		Cel							
		ŭ							
		Ŭ 01							
			05/16	09/17	02/19	06/20	10/21	03/23	
		12/14	00/10	00/11				00,20	
Sampling Date					Sampling	Date			
Samping Date					Sampling	Dale			
	tes:								

								L TOC						
Evaluation Date:	13-Ji	un-24						Job	ID: 160253	4 Primo	Shield			
			ering (Primo S	hield)					nt: Lead					
Conducted By:	Cass	andra	Derrick			•	Con	centration Uni						
				-										
	oling Po		P-103											
Sampling		pling					LEAD CO	NCENTRATI	ON (ug/L)					
Event 1		ate ec-11	0.1	1								- T		
2		lar-13	0.1	-										
3		un-14	0.1											
4		ep-15	0.1											
5		ec-16	0.1											
6		lar-18	0.1											
7 8		un-19 ug-21	0.1 0.1											{
9	20-A	uy-2 I	0.1	+										-+
10	1		İ											
11														
12														
13														
14 15				-										
16														
10														
18														
19														
20														
Coefficien Mann-Kenda			0.00											
	dence l			_					_					
Concen														
Concen	uauon	menu.	Stable											
		1				Р	-103							_
											_			
	Г,										_			
	<u>_</u>										- 11			
	ਣ										_		← P-103	
	Б С													
	Concentration (ug/L)													
	tra													
	Ξ.											_		_
	ŭ													
	2													
	S	0.1 -		•	•									
		11/	10 04/12	08/13	12/14	05/16	09/17	02/19	06/20	10/21	03/23			
						Sam	pling D	vate						
Notes:														
Notes: . At least four inde	epende	nt sam	ipling events per v	vell are rec	wired for ca	Iculating the	e trend M	ethodoloav is	valid for 4 t	o 40 samnl	es			
. Confidence in Ti	•					•						or Decrea	sina:	
			or Probably Decre				0.	,			0		0,	
Methodology ba														
Ground Water,				,-		0	0	. ,	0.					

Г

			GSI MANI for Cons	N-KENDA stituent Tre						
Evaluation Date	13-Jun-24				Job ID	D: 1602534	1 Primo S	Shield		
	EA Engineer	ina (Primo S	hield)		Constituent					
	Cassandra D		,	C	oncentration Units	s: ug/L				
Sam	pling Point ID:	P-103								
Sampling	Sampling		• •	NICKEI	CONCENTRATI					
Event	Date			NICKEL	CONCENTRATI	ON (ug/L)				
1	20-Dec-11	0.1								
3	27-Mar-13 24-Jun-14	<u>2</u> 0.1								
4	9-Sep-15	0.1								
5	19-Dec-16	0.1								
6	27-Mar-18	0.1								
7	18-Jun-19	0.1								
8	20-Aug-21	1.4								
9	+									
10						_				
11 12						-				
13										
14										
15										
16										
17										
18										
19						_				
20	nt of Vorietion.	1.52								
	nt of Variation:	1.52								
	fidence Factor:	50.0%								
	ntration Trend:	No Trend								
Concer	itration frend.	No rrenu								
	10									
	<i>10</i> –			P-103						_
								_		
)g									
	D I		*						-	P-103
	E (/\				/			
	- ¹	/				/				
	La l	/								
	Ē	/							_	
	ē		- \			/				
	ŭ –							_		
	Concentration (ug/L)	.	·							
	0.1 +						10/5 1			
	11/10	04/12	08/13 12/14	05/16 09/1	7 02/19	06/20	10/21	03/23		
				Sampling	Date					
Notes:										
			well are required for ca	-						
			that constituent concer							
			easing; < 90% and S>							
	ased on "MAROS 41(3):355-367, 2		upport System for Opti	mizing Monitoring F	Plans", J.J. Aziz, N	I. Ling, H.S	. Rifai, C.	J. Newell, a	nd J.R. Gor	zales,

aluation Date:	13-Jun-24			7	Job ID:	1602534 Primo	Shield	
acility Name:	EA Engineeri	ing (Primo Sh	ield)	-	Constituent:			
Conducted By:	Cassandra D	errick			Concentration Units:	ug/L		
Samp	ling Point ID:	P-103	1					
Sampling	Sampling			TC	E CONCENTRATION	(ug/l)		
Event	Date		1	10		(dg/L)		
1 2	20-Dec-11 27-Mar-13	2 0.94	+	-				<u> </u>
3	24-Jun-14	1.1						
4	9-Sep-15	1.6						
5	19-Dec-16	1.2						
6	27-Mar-18	0.84						
7	18-Jun-19	2.1						
8 9	20-Aug-21	0.98						
9 10								
11			+					
12								
13								
14								
15		-	+					
16 17								
17								
19								
20								
	of Variation:	0.37						
Mann-Kendal		-2						
	dence Factor:	54.8%						
Concent	ration Trend:	Stable						
	10			P-10	3			
	Concentration (ug/L)							
	2	\sim						← P-103
	6 1 -							
	¥ 1				\checkmark			
	La la							
·	5						_	
	e e							
	5							
(ວັ _{0.1} 🖵							
	11/10	04/12	08/13 12/14	05/16 0	9/17 02/19	06/20 10/21	03/23	
	11/10	04/12	00/13 12/14			00/20 10/21	03/23	
				Somoli	ng Date			

T

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

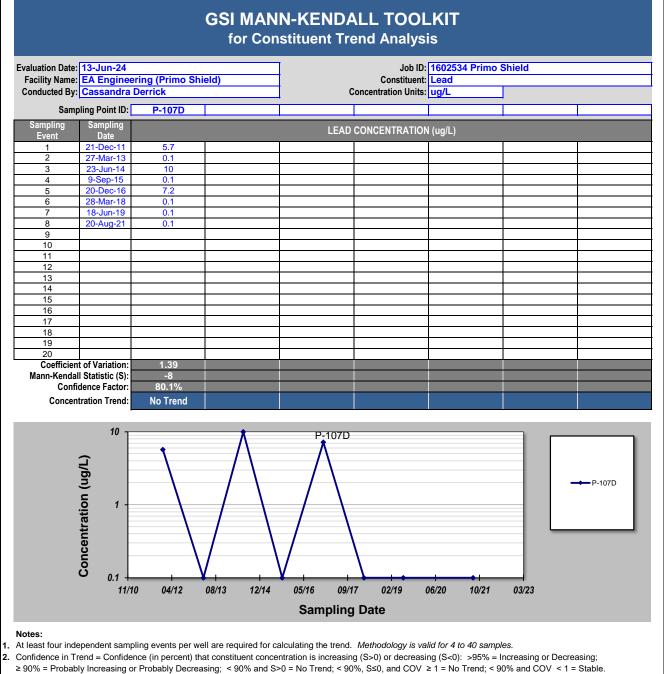
Evaluation Date: 13-Jun-24 Practility Name: Do b: 1602534 Primo Shield Constituent: Lead Constituent: Lead Constituent: Lead Constituent: Lead Sampling Point ID: P-105	
Facility Name: EA Engineering (Primo Shield) Conducted By: Constituent: Lead Concentration Units: Lead Ug/L Sampling Point ID: P-105	
Conducted By: Cassandra Derrick Concentration Units: ug/L Sampling Sampling Date LEAD CONCENTRATION (ug/L) 1 21-Dec-11 0.1 3 23-Jun-14 0.1 4 9-Sep-15 0.1 5 19-Dec-16 0.1 6 27-Mar-18 0.1	
Sampling Date Sampling Date LEAD CONCENTRATION (ug/L) 1 21-Dec-11 0.1 2 26-Mar-13 0.1 3 23-Jun-14 0.1 4 9-Sep-15 0.1 5 19-Dec-16 0.1 7 18-Jun-19 0.1 9 0.1	
Sampling Date Sampling Date LEAD CONCENTRATION (ug/L) 1 21-Dec-11 0.1 2 26-Mar-13 0.1 3 23-Jun-14 0.1 4 9-Sep-15 0.1 5 19-Dec-16 0.1 7 18-Jun-19 0.1 9 0.1	
Event Date LEAD CONCENTRATION (Ug/.) 1 21-Dec-11 0.1	
2 26-Mar-13 0.1 3 23-Jun-14 0.1 4 9-Sep-15 0.1 5 19-Dec-16 0.1 6 27-Mar-18 0.1 7 18-Jun-19 0.1 8 20-Aug-21 0.1 9	
3 23-Jun-14 0.1 4 9-Sep-15 0.1 5 19-Dec-16 0.1 6 27-Mar-18 0.1 7 18-Jun-19 0.1 8 20-Aug-21 0.1 9	
4 9-Sep-15 0.1 5 19-Dec-16 0.1 6 27-Mar-18 0.1 7 18-Jun-19 0.1 8 20-Aug-21 0.1 9	
5 19-Dec-16 0.1 6 27-Mar-18 0.1 7 18-Jun-19 0.1 8 20-Aug-21 0.1 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 Coefficient of Variation: 0 0 Mann-Kendall Statistic (S): 0 0 20 0 0 0 Confidence Factor: 45.2% 0 0 Confidence Factor: Stable 1 1	
7 18-Jun-19 0.1 8 20-Aug-21 0.1 9	
8 20-Aug-21 0.1 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 Coefficient of Variation: 0.00 0 Mann-Kendall Statistic (S): 0 0 Confidence Factor: 45.2% 0 Confidence Factor: Stable 0	
9 10 11 </td <td></td>	
10 11 11 11 12 13 13 14 15 16 16 16 17 18 16 19 19 19 20 Coefficient of Variation: 0.00 Mann-Kendall Statistic (S): 0 14 Concentration Trend: Stable 15	
12 13 13 14 14 14 15 16 16 17 18 19 20 10 Coefficient of Variation: 0.00 Mann-Kendall Statistic (S): 0 Confidence Factor: 45.2% Confidence Factor: Stable	
13 14 15 15 16 17 17 18 19 19 20 10 Coefficient of Variation: Cooffidence Factor: Confidence Factor: 0 0 45.2% 0 Confidence Factor: Stable	
14 15 16 17 16 17 18 19 19 20 0 10 10 10 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0.00 1 1 1 1 1 1 1 1 1 18 1 1 1 1 1 1 1 20 1	
15 16 16 17 17 18 19 19 20 Coefficient of Variation: 0.00 0 Mann-Kendall Statistic (S): 0 Confidence Factor: 45.2% Concentration Trend: Stable	<u> </u>
16 17 18 19 19 19 19 10 20 Coefficient of Variation: 0 0.00 0 Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0 0 1 P-105 1	<u> </u>
18 19 20 0 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: 0.00 45.2% 0 Concentration Trend: Stable	
19 0 20 0.00 Coefficient of Variation: 0.00 Mann-Kendall Statistic (S): 0 Confidence Factor: 45.2% Concentration Trend: Stable	
20 0.00 Mann-Kendall Statistic (S): 0 Confidence Factor: 45.2% Concentration Trend: Stable	
Coefficient of Variation: 0.00 Mann-Kendall Statistic (S): 0 Confidence Factor: 45.2% Concentration Trend: Stable 1 P-105	
Confidence Factor: 45.2% Concentration Trend: Stable	
Concentration Trend: Stable	
1P-105	
P-105	
P-105	
Centration (ug/L)	
Centration (ug/L)	
u (ug/	
Centration (L	
	← P-105
2	
<u> </u>	
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23	
Sampling Date	
Notes: At least four independent sampling events per well are required for calculating the trend. <i>Methodology is valid for 4 to 40 samples</i> . Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or De ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J <i>Ground Water</i> , 41(3):355-367, 2003.	1 = Stable.

aluation Date: Facility Name: Conducted By:	13-Jun-24 EA Engineeri Cassandra D	ng (Primo SI errick	nield)			Conc	Job II Constituen entration Unit		4 Primo S	Shield		
	pling Point ID:	P-105										
Sampling	Sampling	1-105	-									
Event	Date					NICKEL CO	DNCENTRATI	ON (ug/L)				
1	21-Dec-11	0.1										
2	26-Mar-13	0.1										
3 4	23-Jun-14 9-Sep-15	<u>0.1</u> 3										
5	19-Dec-16	2.3	-									
6	27-Mar-18	0.1	-									
7	18-Jun-19	0.1										
8	20-Aug-21	0.1										
9 10	<u>├</u>											
11	1 1		+					+				
12												
13	\square											
14												
15 16	<u>├</u>											
17	1 1		-					-				
18												
19			\perp									
20	nt of Variation:	1.62										
	Il Statistic (S):	-1										
	idence Factor:	50.0%										
Concer	tration Trend:	No Trend										
	10 -				n	-105						
					F	105						
	Concentration (ug/L)											
	n)			/							→ P	-105
	G 1					\						
	, atio											
	tre			/_		<u> </u>						
	en											
	č			_/						_		
	0			/		\						
	0.1 +	•	+						-			
	11/10	04/12	08/13	12/14	05/16	09/17	02/19	06/20	10/21	03/23		
					Sam	pling D	ate					
tes:												
	ependent samplir				-							
	rend = Confidenc	,					,	. ,		•		
	oly Increasing or F	,					,	. ,		•		e.

								L TOO d Analy					
Evaluation Date	13- lun	-24				r		loh l	D: 160253	A Primo	Shield		
Facility Name			a (Primo S	hield)				Constituer		H FIIIIO	Silleiu		
Conducted By	Cassa	ndra De	rrick	ineiu)			Conc	entration Unit					
											1		
Sam	pling Poir	nt ID:	P-105								-		
Sampling	Sampl						TCE CON	CENTRATIC	N (ua/L)				
Event	Date		2.1						··· (•·· g/ =/		1		
1 2	21-Dec 26-Mai		0.1										
3	20-Ivial 23-Jun		0.1										
4	9-Sep		0.1										
5	19-Dec		0.1										
6	27-Mai		0.1										
7	18-Jun	n-19	0.1										
8	20-Aug	-21	0.1										
9									_		ļ		
10	-												
11				_									
12 13	-										-		
14													
15													
16													
17													
18													
19													
20													
	nt of Varia		0.00										
Mann-Kenda	ill Statistic		0 45.2%									_	
Concer	ntration Tr	rend:	Stable										
		1				Р	-105						
	Ĵ										_		
	<u>j</u>	_									_		
	n)											-	- P-105
	ç												
	tio										_		
	ra												
	nt										_	_	
	e S												
	č												
	Concentration (ug/L)												
	- 0	.1 +	0.4/40	00/40	40/44	05/40	00/47	00/40	00/00	40/04			
		11/10	04/12	08/13	12/14	05/16	09/17	02/19	06/20	10/21	03/23		
						Sam	pling D	ate					
Notes:													
At least four inc	lependent	sampling	g events per v	vell are rec	uired for ca	alculating the	e trend. Me	thodology is	valid for 4 t	o 40 sampl	les.		
Confidence in T													
≥ 90% = Probal													
Methodology ba				upport Syst	em for Opti	imizing Mon	toring Plan	s", J.J. Aziz, I	M. Ling, H.S	S. Rifai, C.	J. Newell, a	nd J.R. Go	nzales,
Ground Water,	41(3):355	5-367, 20	03.										

					ALL TOOL end Analys			
Evaluation Date:	12 Jun 24			T	leb ID:	1602534 Primo	Shield	
		ring (Drime Ch	iold)		Constituent:		Shield	
		ring (Primo Sh	ieid)		Constituent: Concentration Units:			
Conducted By:	Cassandra	Derrick		l (concentration Units:	ug/L	1	
Samp	oling Point ID:	P-106D						
Sampling	Sampling		•	•	•	•	•	•
Event	Date			LEAD	CONCENTRATION	l (ug/L)		
1	21-Dec-11	0.1	1					
2	27-Mar-13	0.1						
3	24-Jun-14	0.1						
4	9-Sep-15	0.1						
5	19-Dec-16	4.1						
6	27-Mar-18	0.1						
7	18-Jun-19	0.1						
8	20-Aug-21	0.1						
9								
10	1						ļ	
11								
12								
13								
14								
15								
16 17								
18								
19								
20								
	t of Variation:	2.36						
Mann-Kendal	Statistic (S):	1						
Confi	dence Factor:	50.0%						
Concen	tration Trend:	No Trend						
	L							
	10 T			P-106D				
	<u> </u>			*				
	6			$-\Lambda$				
	<u>n</u>			/ \				
	Ē							
	. <u>0</u> 1 -			_/_\				
	at			- /				
	Ę			_/ _ \			_	
	e			_/			_	
	2			_/			_	
	Concentration (ug/L)			1	1			
	O _{0.1} –	•	• • • •		→ + +	+ +		
	11/1	0 04/12	08/13 12/14	05/16 09/1	7 02/19	06/20 10/21	03/23	
				Sampling	Date			
Notes:								
			ell are required for c	-				
			nat constituent conce					
			asing; < 90% and S					
			pport System for Opt	imizing Monitoring	Plans", J.J. Aziz, M.	Ling, H.S. Rifai, C.	J. Newell, and J.	R. Gonzales,
Ground Water,	41(3):355-367,	2003.						

					DALL TOC				
Evaluation Date:	13- Jun-24			Ţ	loh	ID: 160253	4 Primo Shi	old	
		ering (Primo Sh	ield)	-		nt: Nickel	+ FIIIIO SIII	ciu	
Conducted By:			ionay	1	Concentration Uni				
•				1					
	ling Point ID:	P-106D							
Sampling	Sampling Date			NIC	KEL CONCENTRAT	ION (ug/L)			
Event 1	21-Dec-11	0.1	1	1					
2	27-Mar-13	0.1							
3	24-Jun-14	0.1							
4	9-Sep-15	0.1							
5	19-Dec-16 27-Mar-18	<u>5.2</u> 0.1							
7	18-Jun-19	0.1							
8	20-Aug-21	0.1	1	1					1
9									
10									
11									
12 13									
14									
15									
16									
17									_
18 19									
20									
	t of Variation:	2.44							
Mann-Kendal		1							
	dence Factor:	50.0%							
Concen	tration Trend:	No Trend							
	10 -			P-106	5D				
	$\hat{}$			<u>۸</u>					
	۲ 6			/_					
	j l			/ \					
	E			/ \					
	- 1 E								
	La								
	in in			_/	1				
	5								
	Concentration (ug/L)			1					
	Ο _{0.1}	• I	• • • • •						
	11/1	0 04/12	08/13 12/14	05/16	09/17 02/19	06/20	10/21 0	03/23	
				Sampli	ng Date				
Notes:									
	ependent same	oling events per w	ell are required for c	alculating the tre	nd. Methodology is	valid for 4 to	40 samples.		
				-	asing (S>0) or decrea			easing or Dec	creasing;
					< 90%, S≤0, and CO				
					ng Plans", J.J. Aziz,				
Ground Water, 4	41(3):355-367,	2003.							


					DALL TOC Trend Analy				
Evaluation Date:	13-Jun-24			_	Job	ID: 160253	4 Primo Shi	eld	
Facility Name:	EA Engineeri	ng (Primo Sh	nield)	-	Constitue				
Conducted By:	Cassandra D	errick			Concentration Un	its: ug/L			
Samp	ling Point ID:	P-106D	1						
Sampling	Sampling								
Event	Date				CE CONCENTRATI	ON (ug/L)			
1	21-Dec-11	0.1							
2	27-Mar-13	0.1	-						
3 4	24-Jun-14 9-Sep-15	0.1	-						
5	19-Dec-16	0.1							
6	27-Mar-18	0.1							
7	18-Jun-19	0.1							
8	20-Aug-21	0.1							
9 10			+						
11			+						
12			1		1				1
13									
14									
15									
16 17									
18									
19									
20									
Mann-Kendall	t of Variation: Statistic (S): dence Factor:	0.00 0 45.2%							
	ration Trend:	Stable							
e enteente	indition internal	otubic							
	1			P-1(06D				
				P-1()6D				
				P-1(06D				
				P-1(06D				
				P-1()6D				
				P-1()6D				← P-106D
				P-1()6D				← P-106D
				P-1()6D				← P-106D
				P-1()6D				← P-106D
				P-1(J6D				← P-106D
	Concentration (ug/L)			P-1(J6D				← P-106D
	Concentration (ug/L)	04/42	08/12 10//	• • •		06/20	10/21		← P-106D
	Concentration (ug/L)	04/12	08/13 12/14	4 05/16	09/17 02/19	06/20	10/21 0	03/23	← P-106D
	Concentration (ug/L)	04/12	08/13 12/14	4 05/16		06/20	10/21 0	03/23	← P-106D
	Concentration (ug/L)	04/12	• • 08/13 12/14	4 05/16	09/17 02/19	06/20	10/21 0	03/23	← P-106D
Notes:	Concentration (ug/L)			4 05/16 Samp	09/17 02/19 ling Date			03/23	← P-106D
Notes: At least four inde	Concentration (ug/L)	ng events per w	vell are required fo	4 05/16 Samp r calculating the t	09/17 02/19 ling Date	s valid for 4 to	o 40 samples.		
Notes: At least four inde Confidence in Tre	Concentration (ug/L) 0.1 11/10 pendent samplin end = Confidence	ng events per w se (in percent) th	vell are required fo hat constituent cor	4 05/16 Samp r calculating the t	09/17 02/19 ling Date rend. <i>Methodology is</i> easing (S>0) or decre	s valid for 4 to easing (S<0):	o 40 samples. >95% = Incre	easing or Decr	easing;
Notes: At least four inde Confidence in Tre ≥ 90% = Probably	Concentration (ug/L) 0.1 11/10 pendent samplin end = Confidence y Increasing or f	ng events per w ce (in percent) th Probably Decre	vell are required fo hat constituent cor asing; < 90% and	4 05/16 Samp r calculating the t iccentration is incr I S>0 = No Trend;	09/17 02/19 ling Date rend. <i>Methodology is</i> easing (S>0) or decre < 90%, S≤0, and CC	e <i>valid for 4 t</i> e easing (S<0): V ≥ 1 = No	o 40 samples. >95% = Incre Trend; < 90%	easing or Decr and COV < 1	reasing; = Stable.
Notes: At least four inde Confidence in Tre ≥ 90% = Probably	Concentration (ug/L) 0.1 11/10 pendent samplin end = Confidence y Increasing or F sed on "MAROS	ng events per w æ (in percent) ti Probably Decre : A Decision Su	vell are required fo hat constituent cor asing; < 90% and	4 05/16 Samp r calculating the t iccentration is incr I S>0 = No Trend;	09/17 02/19 ling Date rend. <i>Methodology is</i> easing (S>0) or decre	e <i>valid for 4 t</i> e easing (S<0): V ≥ 1 = No	o 40 samples. >95% = Incre Trend; < 90%	easing or Decr and COV < 1	reasing; = Stable.

Evaluation Date: 13-Jun-24 Pacifity Name: Sub ID: 1602534 Primo Shield Constituent: Sampling Name: PACING Shield Constituent: Lead Conducted System Sampling Name: PACING Shield Constituent: Lead Sampling Name: Constituent: Lead Constituent: Lead Sampling Sampling Constituent: Lead Lead Lead Lead Sampling Sampling Constituent: Lead Lead Lead Lead Lead Sampling Sampling Constituent: Constituent: Lead								L TOC d Analy						
Conducted By: Cassandra Derrick Concentration Units: Ug/L Sampling Point ID: P-106S LEAD CONCENTRATION (ug/L) 1 27.546-13 0.1										34 Primo S	Shield			
Sampling Point ID: P-106S 1 220-20-11 0.1 2 3 22-Mar-13 0.1 3 22-Mar-14 0.1 1 4 9-580-15 0.1 1 1 5 19-Doc-16 0.1 1 1 1 8 27-Mar-13 0.1 1 1 1 1 1 19-Doc-16 0.1 1				hield)			Conc							
Sampling Sampling LEAD CONCENTRATION (ugL) 2 27.Mar(3) 0.1							Conc							
Event Date CLED COLCENTRATION (glpt) 1 27.00e-11 0.1 1	-	-	P-106S											
2 27.Mar-13 0.1							LEAD CO	NCENTRAT	ION (ug/L)					
3 24-Jun-14 0.1 Image: constraint of the second seco	1													
4 9:56p-15 0.1 Image: constraint of the second secon				_										
5 19-Dec-16 0.1 Image: constraint of the second seco														
7 18-Jun-19 0.1														
8 20-Aug-21 0.1 0.1 9 0 0 0 10 0 0 0 11 0 0 0 12 0 0 0 13 0 0 0 14 0 0 0 15 0 0 0 17 0 0 0 18 0 0 0 19 0 0 0 20 0 45.2% 0 Confidence Factor: 0 45.2% Concentration Trend: Stable 0 10 0.00 0 0 0 0.1 0.00 0 0 0 0.00 0 0 0 0 19 0 0 0 0 0 0 19 0 0 0 0 0 0 0 100 0.00 0 0 0 0 0 0														
9 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: Mam-Confidence Factor Concentration Trend: Stable 0.00 45.2% Stable 0.00 0.45.2% Stable 0.00 0.45.2% Stable 0.00 0.45.2% Stable 0.00 0.00 0.45.2% Stable 0.00 0.00 0.45.2% Stable 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45.2% Stable 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45.2% Stable 0.00														
10 11 12 13 14 15 16 16 17 18 19 20 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable 0.00 0 45.2% Stable P-106S 		20-Aug-21	U.1	_										
12 13 14 14 14 14 15 16 16 16 17 18 16 17 18 19 20 0 16 16 Coefficient of Variation: Mann-Kendall Statistic (S): Concentration Trend: 0.00 16 Confidence Factor: Concentration Trend: Stable P-106S Image: Concentration Trend: Stable P-106S Image: Concentration Trend: Stable Stable <td></td>														
13 Image: constraint of the second														
14 Image: constraint of Variation: 0.00 Image: constraint of Variation: 19 20 Image: constraint of Variation: 0.00 Coefficient of Variation: 0.00 Image: constraint of Variation: Constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variation: Image: constraint of Variation: 0.00 Image: constraint of Variatio														
15 Image: constraint of Variation: 0.00 Image: constraint of Variation: 0.00 20 Coefficient of Variation: 0 Image: constraint of Variation: 0 Mann-Kendall Statistic (S): 0 Image: constraint of Variation: 0 Concentration Trend: Stable Image: constraint of Variation: 0 Image: constraint of Variation: 0 Image: constraint of Variation: Image: constraint of Variation: Concentration Trend: Stable Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: 0 Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Image: constraint of Variation: Ima														
17 0														
18 0 0 20 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable 0 0														
19 0														
20 Coefficient of Variation: Mann-Kendall Statistics (S): Confidence Factor: Concentration Trend: Stable P-106S 0 P-106S 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1														
Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Stable														
Confidence Factor: Concentration Trend: Stable														
Concentration Trend: Stable				_										
P-106S () () () () () () () () () () () () () (
C 1 1/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date	Concenti	ration Trend:	Stable											
C 1065 0.1 1/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		4												
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		1				P-	106S							1
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		~									_			
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date	5	- L									_			
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		ôn										→	-P-106S	
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		c l												
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		2									_			
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date	0	Lai												
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date											_			
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date		5												
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date	5													
Sampling Date	C	0.1	• +	•	•				_					
· · ·		11/10	04/12	08/13	12/14	05/16	09/17	02/19	06/20	10/21	03/23			
· · ·						Sam	nling D	ate						
lotes:						Jam								
	Notes:													
At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.			•			•						_		
Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; 200% = Drabably percent as Drabably percention of the trend of the tren			,					,	• • • •		•			
90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable Iethodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzal		-	-	-										
Jethodology based on MAROS: A Decision Support System for Optimizing Monitoring Plans , J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzal Ground Water, 41(3):355-367, 2003.				upport Syste	on tor Optil	mizing won	noning Fian	5 , J.J. AZIZ,	w. Ling, H.	J. MINI, U.	J. INEWEII, af	nu J.K. G	uizaies,	

aluation Date:	13-Jun-24	4					Job ID:	1602534	Primo S	hield		
		eering (Primo	Shield)		1		Constituent:					
onducted By:	Cassand	a Derrick			1	Concent	ation Units:	ug/L				
Sam	oling Point ID	D: P-106S										
Sampling	Sampling				NIC		ENTRATIO	N (ua/L)				
Event 1	Date 20-Dec-11	1 0.1										
2	27-Mar-13											
3	24-Jun-14										· · · · · · · · · · · · · · · · · · ·	
4	9-Sep-15											
5 6	19-Dec-16 27-Mar-18											
7	18-Jun-19											
8	20-Aug-21											
9												
10												
11 12												
13		-										
14												
15												
16		_										
17 18												
19				-								-
20												
	t of Variation											
Mann-Kenda	I Statistic (S dence Facto											
Concen	tration Trend	d: No Trend	4									
	40											
	10				P-106	S						_
	_				A					_		
	٦ ا				1							
	6n											P-106S
	Concentration (ug/L)			/	1				1			1-1005
	<u>b</u> 1		/	/				/	·	_		
	ati		/							_		
	f		/					/		_		
	ē				\			/		_		
	Ĕ		/		\		/			_		
	ပိ _{0.1}		.		. \							
		1/10 04/12	08/13	12/14	05/16)9/17	02/19 (06/20	10/21	03/23		
	T	1/10 04/12	00/15	12/14				0/20	10/21	03/23		
					Sampli	ng Date)					

aluation Date:				I		1602534 Primo	Shield	
		ing (Primo Shie	əld)		Constituent:			
-	Cassandra D	errick		ļ	concentration Units:	ug/L	_	
-	ling Point ID:	P-106S						
Sampling Event	Sampling Date			TCE (CONCENTRATION	(ug/L)		
1	20-Dec-11	0.1						
2	27-Mar-13	0.6						
3 4	24-Jun-14 9-Sep-15	0.97						
5	19-Dec-16	0.68						
6	27-Mar-18	0.1						
7	18-Jun-19	0.7						
8	20-Aug-21	0.1						
9								
10							-	
11 12								
12								
13								
15			l					-
16								
17								
18								
19								
20		0.74						
Mann-Kendal	t of Variation:	0.71 -3						
	dence Factor:	-3 59.4%						
Concent	tration Trend:	Stable						
	1			P-106S				
	-				•			
ŝ				\	$ \Lambda -$			
	Concentration (ug/L)	/		\	/ \			D (200
•	2	/_		\	/-			
	5			<u>۱</u>	/ `			
	ţ					\mathbf{N}		
	tra			\ \		$\mathbf{\lambda}$		
	<u> </u>						_	
	<u> </u>							
	u l				\mathbf{N}			
	ບັ _{0.1} 🖵				<u>V</u>			
	11/10	04/12	08/13 12/14	05/16 09/1	7 02/19 (06/20 10/21	03/23	
	11/10	04/12	00/15 12/14			10/20 10/21	03/23	
				Sampling				

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

luation Date:	13-Jun-24			[Job ID:	1602534 Primo	Shield	
	EA Engineeri		ield)	ĺ	Constituent:			
onducted By:	Cassandra D	errick		(C	Concentration Units:	ug/L		
Sam	pling Point ID:	P-107D						
Sampling Event	Sampling Date			NICKEI	CONCENTRATIO	N (ug/L)		
1	21-Dec-11	0.1						
2	27-Mar-13	10.5				1		
3	23-Jun-14	24						
4	9-Sep-15	0.1				ļ		
5	20-Dec-16	11		l				
6	28-Mar-18	0.1	+				+	
7 8	18-Jun-19 20-Aug-21	0.1 4.9	+	l			+	<u> </u>
9	20-Aug-21	4.3	-				+	
10	1 1		+				+	
11								
12								
13								
14						ļ		
15								
16	├		+				+	
17			+				+	
18							+	
19 20	<u>} </u>		+			}	+	
	t of Variation:	1.34						
	Il Statistic (S):	-2						
	idence Factor:	54.8%						
Concen	tration Trend:	No Trend						
	(00							
	100			P-107D				
	•		A					
	<u>б</u>			•				
	Concentration (ug/L)			Λ .				← P-107D
	c I	/						
	.0	/						
	la l							
	년 1 	/		-/\		/		
	ie l					/		
	e l	/	\	_/`	\ /			
	8							
	- 0.1 +			¥				
	11/10	04/12	08/13 12/14	05/16 09/1	7 02/19 (06/20 10/21	03/23	
				Sompling	Data			
				Sampling	Date			

Ground Water, 41(3):355-367, 2003.

							L TOO I Analy						
Evaluation Date:	13-Jun-24						Job I	D: 160253	34 Primo S	Shield			
Facility Name:	EA Engine	ering (Primo S	hield)				Constitue	nt: TCE					
Conducted By:	Cassandra	a Derrick				Conce	entration Unit	ts: ug/L					
Samp	ling Point ID:	P-107D											
Sampling	Sampling						CENTRATIC	N (ug/L)					
Event	Date	0.1	-					n (ug/L)					
1 2	21-Dec-11 27-Mar-13	0.1											
3	23-Jun-14	0.1											
4	9-Sep-15	0.1											
5	20-Dec-16	0.1											
6 7	28-Mar-18 18-Jun-19	0.1											
8	20-Aug-21	0.1											
9													
10													
11 12		+	-					+					\rightarrow
13													
14													
15													
16 17													
18													
19													
20	t of Variation:	0.00											
Mann-Kendal			_										
	dence Factor:												
Concen	tration Trend:	Stable											
	1 -					1070							
					P-	107D							
	$\hat{}$									_			
	g/L												
	n										→	- P-107D	
	5												
	iti ti												
	tra												
	en												
	ů l												
	Concentration (ug/L)												
	- 0.1 -		00/60	40/44	05/40	00/17	00/60	00/00	40/04	00/00			
	11/	/10 04/12	08/13	12/14	05/16	09/17	02/19	06/20	10/21	03/23			
					Sam	pling Da	ate						
Notes: At least four inde	nendent com	nling events por	vell are requ	ired for col	culating the	trend Mos	hodology is	valid for A	0 40 campl	95			
Confidence in Tr											or Decreas	sina:	
		or Probably Decre				0 (,			0		0,	
Methodology bas	sed on "MAR	OS: A Decision S											
Ground Water, 4	41(3):355-367	7, 2003.											

Г

			GSI MAN for Cor								
Evaluation Date:	13-Jun-24			7		Job	ID: 160253	4 Primo SI	nield		
		ing (Primo Sh	ield)	+			ent: Lead		lioia		
Conducted By:				1	Conc	entration Un					
•		CITION		4	00110		no. ug/L				
Samp	ling Point ID:	P-107S									
Sampling	Sampling										
Event	Date				LEAD COM	GENTRAT	ION (Ug/L)				
1	21-Dec-11	0.1									
2	27-Mar-13	0.1									
3	24-Jun-14	0.1									
4	9-Sep-15	6									
5	20-Dec-16	0.1									
6	28-Mar-18	0.1									
7	19-Jun-19	0.1									
8	20-Aug-21	0.1		+			_				
<u>9</u> 10				-							
10				-							
11	├ ─── ├										
12	├		+	+							
13	<u> </u>										
14	<u> </u>										
16											
17											
18											
19											
20											
Coefficien	t of Variation:	2.49									
Mann-Kendal	Statistic (S):	-1									
Confi	dence Factor:	50.0%									
Concent	tration Trend:	No Trend									
	10			P	-107S						
	Concentration (ug/L)									← P-107S	
	8 0.1 11/10	04/12	08/13 12/14	^{05/16} San	^{09/17} pling Da	02/19 ate	06/20	10/21	03/23		
Confidence in Tr ≥ 90% = Probabl	end = Confidend ly Increasing or sed on "MAROS	ce (in percent) th Probably Decre S: A Decision Su	ell are required for o nat constituent conc asing; < 90% and S pport System for Op	entration is in >0 = No Tre	ncreasing (Sa nd; < 90%, S	>0) or decre s≤0, and CC	easing (S<0): 0V ≥ 1 = No	>95% = Ind Trend; < 909	creasing or [% and COV	< 1 = Stable.	

							L TOO d Analy						
Evaluation Date	13-Jun-24						Job I	D: 16025	34 Primo S	Shield			
	EA Engineer	ing (Primo S	hield)					nt: Nickel					
Conducted By	Cassandra D	errick				Cond	entration Unit						
		D 4070								1			
	pling Point ID:	P-107S				-							
Sampling	Sampling				N	ICKEL CO	DNCENTRAT	ION (ua/L))				
Event	Date 21-Dec-11	206	-					· (· J·)	/	1			
1 2	27-Mar-13	306 139											
3	24-Jun-14	129											
4	9-Sep-15	139											
5	20-Dec-16	290											
6	28-Mar-18	174											
7	19-Jun-19	313											
8	20-Aug-21	170											
9 10	+							_					
10	+ +												
11	+ +												
13													
14													
15													
16													
17													
18	-												
19 20													
	nt of Variation:	0.39											
	Il Statistic (S):	5											
Conf	idence Factor:	68.3%											
Concer	ntration Trend:	No Trend											
	1000				P-1	07S							-
	-	\sim				~							
				•		-							
	jor 100 -										⊸	P-107S	
	2												
	10 -												
	<u>1</u>										_		_
	S.												
	ů.												
	Concentration (ug/L												
	Ö ¹ ∔ 11/10	04/42	08/13	12/14	05/46	00/47	02/40	06/20	10/24	02/22			
	11/10	04/12	00/15	12/14	05/16	09/17	02/19	06/20	10/21	03/23			
					Sam	oling D	ate						
Notes:													
At least four ind													
Confidence in T		· · · /				0.	,			0		0,	
	oly Increasing or		-										
Methodology ba			upport Syste	em for Opti	mizing Monit	oring Plan	s", J.J. Aziz, I	M. Ling, H.	S. Rifai, C.	J. Newell, a	ind J.R. G	Sonzales,	
Ground Water,	41(3):355-367, 2	:003.											

Event Date Deconcentration (ugit) 1 2 22-Marcial 7.4 1 3 24-Juncial 7.8 1 1 4 9-Step-15 9.5 1 1 1 5 22-Marcial 7.1 1 1 1 1 7 19-Juncial 7.5 1 1 1 1 7 19-Juncial 7.5 1 1 1 1 8 22-Marcial 7.5 1					ANN-KEN Constituen								
skilly Ners inducted By: Cassandra Derrick Sampling Point ID: P-107S Concentration Units: Ug/L Concentration Trend Units: Ug/L Units: Ug/L Concentration Trend Units: Ug/L Units: Ug/L Concentration Trend Units: Ug/L Units: Ug	valuation Date:	13-Jun-24					Job ID:	1602534	Primo S	shield			
inducted By: Cassandra Derrick Concentration Units: Up/L			ering (Primo S	hield)									
Sampling Point ID: P-1075 Total 21-20-0-11 3 2 2 -20-0-15 5 2					<u> </u>	Conce							
standing branching of the second seco								- agre					
Event base for concentration (get) 1 21-20-c11 37.4 3 22-Mar-13 7.4 4 9-Sep-15 9.5 5 20-Dec-16 14.1 6 22-Mar-18 7.1 7 19-Jun-19 7.5 8 20-Aug-21 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sampl	-	P-107S										
est	Sampling Event	Sampling Date				TCE CON	CENTRATION	(ug/L)					
$\frac{3}{4} = \frac{9}{98} \frac{17}{10} = \frac{9}{9} \frac{1}{10} = 1$													
4 9:Sep-15 9:5 6 28:Mer-16 7:1 7 19:Jun-19 7:5 8 20:Aug-21 14 9 0 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 10 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 10 1 11 1 10 1													
$\frac{5}{6} \frac{20 \cdot Dec \cdot 16}{12 \cdot 11} \frac{1}{7 \cdot 1}$				-									
es													
$\frac{7}{8} \frac{19 \cdot Jun \cdot 19}{20 \cdot Aug \cdot 21} \frac{7 \cdot 5}{14}$													
8 20-Aug-21 14 9 10 1 14 1 10 10 10 10 10 10 10 10 10 10 10 10 1													
est				-									
tion to the second seco		_0 / Mg _1											
ti ti ti ti ti ti ti ti ti ti													
13 Image: constraint of the second secon													
14 14 <td< td=""><td>12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12												
15 16 17 18 19 20 Coefficient of Variation: Mann-Kendal Statistic (5) 4 64.0% Confidence Factor: Concentration Trend 0 0 0 0 0 0 0 0 0 0 0 0 0	13												
Herein Construction is a second seco													
17 18 19 20 Coefficient of Variation: Confidence Factor: Confidence Factor: Con													
18 0	-												
19 20 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend No Trend													
20 Coefficient of Variation: Wann-Kendal Statistic (5): 4 Confidence Factor: Concentration Trend 0 0 0 0 0 0 0 0 0 0 0 0 0													
Coefficient of Variation: Mann-Kendall Statistic (5): Confidence Factor: Concentration Trend													
Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend		of Variation	0.30										
Confidence Factor Concentration Trend													
$\mathbf{P} - 107S$			64.0%										
$\mathbf{P} - 107S$													
$(1_{0}, 0_{0}, $	ooncenta		No frend										
$(1_{0}, 0_{0}, $		100 -			p	1070							
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:					F-	10/3							
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		-											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:	=	-											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		<u> </u>									<u>→</u>	P-107S	
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:												-1-10/5	
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		5 10 -											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		Ĩ											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:													
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		C,											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:		ŭ											
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:													
11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 Sampling Date es:	¢	ן נ						_		_			
Sampling Date			10 04/12	08/13 12	/14 05/16	09/17	02/19	06/20	10/21	03/23			
es:		11/	10 04/12	00/13 12				0/20	10/21	00/20			
es:					Sam	pling Da	ite						
						55							
	otes:												
	t least four inder	pendent sam	pling events per v	well are required	for calculating the	trend. Me	hodology is val	lid for 4 to	40 sample	es.			
fidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;											r Decreasi	ng;	
)% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.													

Ground Water, 41(3):355-367, 2003.