Frastructure · Water · Environment · Buildings Transmittal Letter To: Ms. Ruth Curley NYSDEC, Remedial Bureau B 625 Broadway, 12 th Floor Albany, NY 12233	^{Copies:} Charles Trione, Lockheed Martin James Zigmont, CDM Greg Rys, NYSDOH Dale Truskett, Lockheed Martin Kay Armstrong, Armstrong & Assoc. Mary Morningstar, Lockheed Martin Biabard Ziganfun, ConMad	ARCADIS of New 855 Route 146 Suite 210 Clifton Park New York 12065 Tel 518 250 7300 Fax 518 250 730)
	Richard Zigenfus, ConMed Glenda Smith, Lockheed Martin File		
From: Lisa Collins	_{Date:} March 11, 2013		
Subject: 2012 Annual Groundwater Collection and Treatment System Operation, Maintenance & Monitoring Report	ARCADIS Project No.: NJ001045.0001		
We are sending you: ☑ Attached	Separate Cover Via the Following Ite	ems:	
□ Shop Drawings □ Plans □ Prints □ Samples ☑ Other: CD	SpecificationsCopy of Letter	☐ Change Ord☑ Reports	ler
Copies Date	Description		Action*
	r Collections and Treatment System Open ng Report, Former Lockheed Martin Fre		AS
Action* □ C A Approved □ C AN Approved As Noted □ F AS As Requested □ F, Other:	File	Resubmit Cop Return Cop Review and Comr	
Mailing Method U.S. Postal Service 1 st Class Certified/Registered Mail Other:		☐ FedEx 2-Da ☐ FedEx Ecor	
Comments:			

Imagine the result

LOCKHEED MARTIN

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility Utica, New York

March 2013

T. Carigun

Todd Carignan Project Engineer

Sanstu

Jeffrey Bonsteel Associate Project Manager

Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer/Engineer of Record NY PE License #074527-1

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

Prepared for: Lockheed Martin Corporation

Prepared by: ARCADIS of New York, Inc. 855 Route 146 Suite 210 Clifton Park New York 12065 Tel 518.250.7300 Fax 518.250.7301

Our Ref.: NJ001045.0001

Date: March 11, 2013

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Ac	ronyms		iii
1.	Introd	uction	1
2.	Grour	ndwater Collection and Treatment System Description	1
	2.1	Major System Components	2
3.	2012 F	Remedial Operational Objectives	3
4.	Opera	tion and Maintenance Activities	4
	4.1	Daily Routine System Inspections	4
	4.2	Monthly Routine System Inspections	4
	4.3	Quarterly System O&M and Inspections	6
	4.4	Non-Routine Operation and Maintenance Activities	7
	4.5	Alarm Conditions and System Modifications	7
	4.6	Whole Effluent Toxicity (WET) Testing	8
	4.7	Arc Flash Study	8
5.	Analy	tical Monitoring Activities	9
	5.1	System-Effluent Monitoring	9
	5.2	System-Influent Monitoring	10
	5.3	Stormwater Monitoring	12
6.	Syste	m Performance Results	12
	6.1	Groundwater Recovery/Extracted Liquid Flowrate	12
	6.2	Air Stripper Performance	13
	6.3	Air Stripper Emissions	13
	6.4	Water Treatment Chemical Monitoring	14
	6.5	Stormwater Monitoring	14
	6.6	Groundwater Elevation Measurements	14
7.	2013 (Goals and Recommendations	15
	7.1	Goals	15
	7.2	Recommendations	16

Table of Contents

8. References

Tables

1	Groundwater Collection and Treatment System Operation Summary
2	Groundwater Collection and Treatment System Effluent Analytical Sampling Results
3	Groundwater Collection and Treatment System Influent Groundwater Concentrations
4	Stormwater Analytical Sampling Results
5	Groundwater Collection and Treatment System Flowrates
6	Vapor Phase Analytical Sampling Results
7	Summary of Estimated Air Stripper Emissions
8	Water Treatment Chemical Consumption Summary
9	Groundwater Elevation Measurements
Figures	
1	Site Location Map
2	Site Plan and Groundwater Collection and Treatment System Layout

- 3 Groundwater Contours January 2012
- 4 Groundwater Contours April 2012
- 5 Groundwater Contours July 2012
- 6 Groundwater Contours October 2012

Appendices

А	Record Drawings
В	Monthly O&M Checklists
С	OM&M Plan Addendum
D	Alarm-Response Log Sheets

17

Acronyms

Acronyms

СВ	catch-basin
cfm	cubic feet per minute
CVOCs	chlorinated volatile organic compounds
DAR	Division of Air Resources
ft	feet
GCTS	groundwater collection and treatment system
gpm	gallons per minute
HDPE	high-density polyethylene
HOA	hand-off-auto
hp	horsepower
in	inch
lb	pounds
MH	manhole
mL	milliliters
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
O&M	operations and maintenance
OM&M	operation, maintenance, and monitoring
PLC	programmable logic controller
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
RCP	Reinforced-concrete pipe
RL	reporting limits
SCFM	standard cubic feet per minute
SCH	schedule
SOP	standard operating procedure
SPDES	State Pollutant Discharge Elimination System
USEPA	United States Environmental Protection Agency
VOA	volatile organic analysis
VOCs	volatile organic compounds
WTC	water treatment chemical

This page intentionally left blank

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

1. Introduction

This Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report was prepared by ARCADIS for Lockheed Martin Corporation (Lockheed Martin), in accordance with the DRAFT Site Management Plan for the Solvent Dock Area (ARCADIS 2009) at the Former Lockheed Martin French Road Facility (herein referred to as the "site") in Utica, New York (Figure 1). All work was performed in accordance with the October 3, 2008 "Order on Consent" (CO 6-20080321-5) issued by the New York State Department of Environmental Conservation (NYSDEC). This report summarizes the operation, maintenance, and monitoring (OM&M) of the groundwater collection and treatment system (GCTS) from January 1 through December 31, 2012. The data summary includes a review of influent and effluent system sampling, analysis of key operating parameters (e.g., flow rates, pressures, system run-time, and maintenance activities), and any modifications and recommendations related to continued system operation and monitoring.

2. Groundwater Collection and Treatment System Description

The GCTS is designed to collect groundwater contaminated with chlorinated volatile organic compounds (CVOCs) from the former Solvent Dock Area and former northernperimeter ditch area and transport it to a treatment building where the CVOCs are removed by a low-profile air stripper. Following treatment, groundwater is discharged via gravity to the local municipal storm drain under a NYSDEC "State Pollutant Discharge Elimination System" (SPDES) permit (permit No. NY-0121894). The system is designed to operate automatically and requires only periodic inspections and maintenance. An automated system operation log is sent daily via e-mail to the project engineer to verify operation. A more detailed explanation of the GCTS appears below.

Groundwater in the former Solvent Dock area (MH-2 and MH-3) and former northernperimeter ditch area (MH-1) is captured by separate perforated-pipelines and flows via gravity to collection manholes. Groundwater is then pumped (batch mode) from each manhole through subsurface double-walled pipelines to the GCTS building for treatment before being discharged to the local municipal stormwater collection system. The groundwater is treated with a low-profile air stripper, which removes the dissolved-phase CVOCs.

During air stripping, contaminated water enters the air stripper at the top and ambient air enters from the bottom. The groundwater flows over four trays in series where CVOCs are transferred from the aqueous phase (i.e., water) to the vapor phase (i.e.,

Former Lockheed Martin French Road Facility, Utica, New York

counter-current air stream). The air stream (off-gas) is treated using granular activated carbon before discharge to the atmosphere. A GCTS site plan is illustrated in Figure 2, and the GCTS process and instrumentation diagram record drawing showing sampling locations is provided in Appendix A.

2.1 Major System Components

Major components of the system are as follows:

- MH-1: 6-ft diameter and 13-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two $\frac{3}{4}$ horsepower (hp) submersible pumps;
 - Five associated float-switches;
 - 2-in/4-in diameter double walled high-density polyethylene (HDPE) discharge-piping; and
 - Gravity Collection Drain 670 feet (ft) of 8-inch (in) diameter perforated HDPE pipe installed in a 4–6-ft deep, stone-filled collection trench located parallel to the former northern-perimeter ditch.
- MH-2: 6-ft diameter and 18-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two $\frac{3}{4}$ hp submersible pumps;
 - Five associated float-switches;
 - o 2-in/4-in diameter double wall HDPE discharge piping; and
 - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the former Solvent Dock area.
- MH-3: 6-ft diameter and 17-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two $\frac{3}{4}$ hp submersible pumps;
 - Five associated float-switches;
 - o 2-in/4-in diameter double wall HDPE discharge piping; and

Former Lockheed Martin French Road Facility, Utica, New York

- Gravity Collection Drain 173 ft of 6-in diameter perforated HDPE-pipe installed in a 9–11-ft deep, stone-filled collection trench located adjacent to the facility stormwater drainage line within the former Solvent Dock area.
- Pre-Engineering Metal Building: A 24-ft 8-in by 20-ft pre-engineered metal treatment-building set on a concrete foundation and slab equipped with a secondary containment- dike and floor sump;
- Programmable Logic Controller (PLC) and motor control panels for the air stripper, duct heater, and manhole pumps;
- Air Stripper: Low profile, stainless steel air stripper rated for a maximum flowrate of 120 gallons per minute (gpm);
- Liquid Phase Discharge: 60-ft of 4-in diameter schedule (SCH)-40 polyvinyl chloride (PVC) gravity-discharge pipe from the air stripper effluent to the local municipal stormwater collection and drainage system [30-in diameter reinforced-concrete pipe (RCP)];
- Duct Heater: Inline duct heater rated at 600 standard cubic feet per minute (SCFM);
- Vapor Phase Treatment Vessels: two 1000-pound (lb) activated carbon vessels operated in series that discharge the treated air stripper off-gas through an exhaust-duct made of PVC (interior) and stainless steel (exterior) that extends approximately 28-ft above the ground surface; and
- Chemical Feed System: Aries Chemical sequestering agent 2908 is injected into the influent groundwater stream for mineral deposit control using a LMI chemical feed pump model AA941-353 BI, equipped with a LMI Digi-Pulse Meter model FM-200 rated for 0.05-5.0 milliliter (ml) per stroke. [Note: Approval for the water treatment chemical (WTC) was received from NYSDEC on April 13, 2011. Usage of the WTC began on April 20, 2011.]

Record drawings for the GCTS are included in Appendix A. System components are described in more detail in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011).

3. 2012 Remedial Operational Objectives

The GCTS' overall remedial goal is to reduce the potential for groundwater contaminated with CVOCs to infiltrate the facility's storm drainage system (Figure 2)

Former Lockheed Martin French Road Facility, Utica, New York

before its contents eventually discharge to Nail Creek. The GCTS' operational objectives are to:

- Maintain and operate the system continuously without significant downtime;
- Demonstrate the GCTS' effectiveness in preventing infiltration of CVOC contaminated groundwater into the site facility's storm drain;
- Demonstrate that the air stripper is removing CVOCs from the influent groundwater streams before being discharged into the local county storm drain system, in compliance with the site's SPDES permit;
- Demonstrate that vapor phase discharge from the air stripper complies with NYSDEC Division of Air Resources (DAR-1); and
- Achieve the site specific goal of 95 percent (%) mass removal of target CVOCs (i.e., TCE and daughter products including 1, 2-DCE) in the system vapor effluent.

4. Operation and Maintenance Activities

The GCTS operated nearly continuously between January 1 - December 31, 2012 (run time was approximately 97%, or 355 of 366 days), with minor scheduled routine maintenance and/or operational interruptions due to system alarm conditions.

The system was inspected either by physical site inspections, remote computer monitoring, and/or via review of the daily system operation e-mails during the reporting period. System operating-parameters are recorded during monthly site inspections and compliance sampling events. The GCTS operational summary is provided in Table 1.

4.1 Daily Routine System Inspections

Daily remote system monitoring of the system was performed during 2012. Monitoring included review of the daily system operational e-mails to confirm that the system was operational, that all system variables were within their allowable ranges, and that no alarm conditions were present.

4.2 Monthly Routine System Inspections

This section summarizes the activities completed during the operations and maintenance (O&M) monthly site visits. These activities were recorded on the "Monthly O&M Checklists" (attached as Appendix B).

Former Lockheed Martin French Road Facility, Utica, New York

Air Stripper:

- Observe the air stripper for any visible leaks;
- Clean air stripper aeration trays and sump (as required);
- Observe the blower for proper operation;
- Inspect the air stripper trays via the glass door and record and note deposits; and
- Record the gauge pressure and level readings on the log sheet for the following:
 - o Air stripper sump; and
 - o Air stripper-sump water level.

Flow Meters:

- Observe the flow meters to ensure they are operating properly and clean them, as necessary; and
- Record the monthly and permanent totalizer readings.

Vapor Phase Equipment:

- Inspect the duct heater for proper operation;
- Record pre-duct heater and carbon vessel temperatures;
- Inspect the carbon vessels for any signs of leaks; and
- Record pressures before the lead vessel, and between the lead and lag vessels.

Control Panels:

- Test hand-off-auto (HOA) switches for proper operation; and
- Test power and pump-run lights.

Water Treatment Chemical:

- Inspect chemical feed pump and associated tubing for any signs of leaks;
- Record and date remaining chemical level in drum on a monthly basis; and
- Track chemical consumption and dosing rates on a monthly basis.

Former Lockheed Martin French Road Facility, Utica, New York

Pumping Manhole Inspections:

- Check the HDPE double-walled pipe for flow entering the manhole from the outer containment pipe, which could indicate a discharge pipe leak;
- Check the floats to ensure they are hanging properly and unobstructed;
- Observe groundwater in the manhole for any unusual odors, water clarity, etc.; and
- If the pump(s) are running, listen for unusual sounds and inspect the discharge piping in the manhole for leaks.

Miscellaneous O&M:

- Observe all treatment-building piping for signs of leaks;
- Exercise MH-1, MH-2, and MH-3 influent ball valves to clean any mineral deposits in order to maintain full operational range of the valve;
- Check the building unit heaters and thermostats, adjust as necessary; and
- Inspect all health and safety related equipment and replace as necessary.

4.3 Quarterly System O&M and Inspections

This section describes activities completed during the O&M quarterly critical device testing. These activities were recorded on the "Monthly/Quarterly O&M Checklists" (attached as Appendix B). The system was temporarily turned on and off for several hours, per event in January, April, July, and October 2012 to perform critical-device testing. These devices were tested for proper operation as described in the *OM&M Manual* (ARCADIS 2011) standard operating procedures (SOPs). Below is a summary of each event:

- January 27, 2012 All critical devices passed.
- April 4 and 5, 2012 All critical devices passed.
- July 13, 2012 All critical devices passed.
- October 30, 2012 All critical devices passed.

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

4.4 Non-Routine Operation and Maintenance Activities

The following non-routine system O&M activities were performed between January 1 and December 31, 2012:

- On January 25, 2012, the rigid high-liquid level sensor for the air stripper sump (LSH-100) was replaced with a mechanical tethered float to provide a larger liquid level operating range for the air stripper.
- On June 22, 2012, a new aggregate flow meter (FT-105) was installed to improve accuracy measurement across the entire range of expected liquid flows in order to better attain the target chemical dosing rate.
- On October 16, 2012, the backup battery for the personnel door interior emergency exit light was replaced.
- On October 16, 2012, the air stripper tray gaskets were replaced.
- On November 30, 2012 a new air flow transmitter (FT-106) was ordered in response to multiple alarm occurrences due to faulty air flow readings. The new transmitter was installed on January 3, 2013.

Several minor changes to critical device set points, standard operating procedures, and O&M log sheets were made during the 2012 reporting period. These were documented in OM&M Plan addendums during 2012 (Appendix C, ARCADIS 2012).

4.5 Alarm Conditions and System Modifications

Several fatal alarm conditions occurred between January 1 and December 31, 2012. The cause of each system alarm and corresponding corrective action are summarized in Table 1. Alarm logs and response sheets are provided in Appendix D. Below is a summary of fatal alarms and corrective actions including any system modifications that were made during the reporting period:

- On January 14 and 30, 2012, the air stripper sump low liquid level alarm was observed. Adjustments to the blower damper were made and the rigid high liquid level sensor was replaced with a tethered float sensor to allow for a larger liquid level operating range.
- On February 6, 2012, the air stripper sump high liquid level alarm was observed. The length of the cord for the newly installed tethered float sensor was increased several inches to further allow a larger liquid level operating range.

Former Lockheed Martin French Road Facility, Utica, New York

- On July 16, 2012, a low pre-carbon temperature alarm condition was observed via temperature transmitter TT-400. This was related to incomplete quarterly critical device testing performed on July 13 which caused the duct heater to remain offline. A site visit was conducted and the duct heater was returned online.
- On July 17, 2012, the air stripper sump high liquid level alarm was observed.
 A manual adjustment to the blower damper was made to lower the air stripper sump operational level during batch cycles.
- Between October 11 and 13, 2012, the low air flow alarm occurred via air flow transmitter FT-106. Investigation of the system's performance readings via the PLC indicated that FT-106 was likely not measuring correctly. As a result, the alarm delay was changed from five seconds to five minutes.
- Between November 4 and 18, 2012, both the high and low air flow alarms occurred at various times via air flow transmitter FT-106. Investigation of the system's performance readings via the PLC confirmed that FT-106 was no longer functioning properly. A new air flow transmitter was subsequently ordered and the air flow alarms were both changed from fatal to non-fatal alarms.
- On December 26, 2012, the air stripper sump low liquid level alarm was observed. A manual adjustment to the blower damper was made to raise the air stripper sump operational level during batch cycles.
- Several non-fatal alarms were observed during the 2012 reporting period, including failed daily communication logs and low flow meter flows, these nonfatal alarms and the associated corrective actions (if applicable) are documented in Appendix D.

4.6 Whole Effluent Toxicity (WET) Testing

Whole Effluent Toxicity (WET) testing was requested by the NYSDEC in a letter dated January 11, 2012. The 7-day WET testing was completed on March 6, 2012, and submitted to the NYSDEC on April 3, 2012. A NYSDEC review of the results is still pending.

4.7 Arc Flash Study

An Arc Flash Study (ARCADIS 2012) was completed May 3, 2012 for the SSDS in order to satisfy the newly modified Occupational Safety and Health Administration

Former Lockheed Martin French Road Facility, Utica, New York

(OSHA) regulation pertaining to electrical safety in the workplace. The report provided an evaluation of the hazards associated with the arc flash potential for SSDS electrical components, and provided general recommendations related to the reduction of the arc flash potential and associated workplace hazards.

The intent of the arc flash study analysis was to provide calculations and flash hazard analysis in order to determine arc flash boundaries for all major electrical equipment. The Coordination Study was performed to minimize the potential arc flash energy by selecting the optimum settings of protective devices and to verify that no nuisance tripping will occur at the existing substation #5 & #6 located remote in ConMed Facility.

The results of the assessment showed that arc flash hazards exist at the SSDS. As such, arc flash labels were attached to the electrical equipment to warn personnel about potential risk of an arc flash and electric shock hazard on June 7, 2012.

The overall arc flash assessment for the SSDS resulted in the identification of the following required labels:

- No "DANGER" labels are required.
- "WARNING" labels of hazard/risk categories (HRC) 0 thru 4 for all remaining equipment.

The arc flash study also identified what personal protective equipment (PPE) are required when working at or near exposed energized live parts or operating electrical devices. Minimum required level PPE is detailed and indicated on the arc flash labels.

5. Analytical Monitoring Activities

This section summarizes the monthly GCTS compliance sampling and monitoring activities completed during the reporting period.

5.1 System-Effluent Monitoring

The treatment system discharges to an Oneida County storm drain under the terms of an SPDES permit (permit No. NY-0121894). As required by the SPDES permit, effluent grab-water samples were collected monthly from the treatment system. One effluent grab-sample was collected monthly from the treatment-system-effluent sampling-port SP-100 (designated by NYSDEC as "Outfall #2"), located on the 4-in diameter air

stripper liquid phase effluent line. The location of sampling port SP-100 is shown on drawing M-1 in Appendix A.

Samples were collected in 40-ml volatile organic analysis (VOA) vials supplied by a New York State Department of Health (NYSDOH)-certified laboratory. The sampling protocol for the effluent sample is included in the *Site-Specific Quality Assurance Project Plan* (QAPP) (ARCADIS 2009b). The samples were shipped on the day of collection via overnight delivery to TestAmerica Laboratories, Inc. in Amherst, New York. One laboratory trip-blank accompanied each water sample. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260. The SPDES permit also requires monthly collection and analysis of a grab sample for pH. The pH is measured locally using a site-dedicated pH meter.

The system-effluent samples contained no detectable concentrations of VOCs above their respective laboratory reporting limits (RL) (as shown in Table 2) during the entire reporting period.

The SPDES permit limits the systems effluent average daily discharge flow (over the course of a monthly reporting period) to 45 gpm. Effluent flow did not exceed this average during the reporting period. In addition, the pH recorded during the 2012 reporting period ranged from 7.1 to 8.4 standard units, and remained within the SPDES effluent limits of 6.5 to 8.5 standard units.

5.2 System-Influent Monitoring

Influent-water samples were collected as part of quarterly monitoring activities in January, April, July, and October 2012. Influent samples were collected from each influent-line (MH-1, MH-2, and MH-3) sampling-tap on the 2-in diameter influent lines before the influent water entered the air stripper. The sampling protocol and delivery method followed were identical to those for the SPDES compliance sampling.

The primary site-related CVOCs detected for MH-1 were:

- 1,1-Dichloroethane (4.9 μg/L in January, 8.5 μg/L in April, 10 μg/L in July, and 8 μg/L in October);
- cis-1,2-Dichloroethene (28 μg/L in January, 39 μg/L in April, 56 μg/L in July, and 43 μg/L in October);

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

Former Lockheed Martin French Road Facility, Utica, New York

- Tetrachloroethene (16 μ g/L in January, 23 μ g/L in April, 36 μ g/L in July, and 28 μ g/L in October); and
- Trichloroethene (26 μg/L in January, 52 μg/L in April, 66 μg/L in July, and 41 μg/L in October).

The primary site-related CVOCs detected for MH-2 were:

- 1,1-Dichloroethane (1.5 μg/L in January, 1.8 μg/L in July, 2.5 μg/L, and 2.4 μg/L in October);
- cis-1,2-Dichloroethene (5.4 μg/L in January, 8.3 μg/L in April, 22 μg/L in July and 13 μg/L in October);
- Tetrachloroethene (1.6 μg/L in January and 1.7 μg/L in April);
- trans-1,2-Dichloroethene (4.9 μg/L in July and 1.6 μg/L in October);
- Trichloroethene (2.8 μg/L in January, 4.8 μg/L in April, 1.6 μg/L in July and 6.7 μg/L in October); and
- Vinyl chloride (1.2 μg/L in January, 1.6 μg/L in April, 2.4 μg/L in July and 3.3 μg/L in October).

The primary site-related CVOCs detected for MH-3 were:

- cis-1,2-Dichloroethene (2.5 μg/L in January, 2.7 μg/L in April and 3.2 μg/L in July);
- Tetrachloroethene (33 µg/L in January, 49 µg/L in April and 49 µg/L in October); and
- Trichloroethene (16 μg/L in January, 17 μg/L in April and 22 μg/L in October).

System influent analytical sampling results are summarized in Table 3.

Former Lockheed Martin French Road Facility, Utica, New York

5.3 Stormwater Monitoring

As outlined in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011), quarterly stormwater samples were collected from 3 catch basin (CB) locations at the site (identified as CB-1, CB-2, and CB-3; as shown on Figure 2). The quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4).

6. System Performance Results

Operational data collected during monthly system-operation inspections are summarized in the following sections.

6.1 Groundwater Recovery/Extracted Liquid Flowrate

The groundwater recovery/extraction-liquid flowrates for the 2012 reporting period are summarized in Table 5. These data include the average and cumulative recoveredgroundwater and manhole-pump run-times. Total extracted-groundwater flow readings were collected from the flow-meters FT 101 (MH-1), FT 102 (MH-2) and FT 103 (MH-3). The average monthly system groundwater extraction flowrates from January to December 2012 are included in Table 5. The total flow recorded for manhole MH-1 was approximately 2,320,233 gallons, with a corresponding average recovery rate of 4.3 gpm. The total flow recorded for manhole MH-2 was approximately 404.972 gallons. with a corresponding average recovery rate of 0.8 gpm. The total flow recorded for manhole MH-3 was approximately 1,068,225 gallons, with a corresponding average recovery rate of 2.0 gpm. The resulting total annual flow for the GCTS was approximately 3,793,430 gallons of groundwater. The total flows recorded correspond to an average recovery rate of approximately 7.1 gpm over the entire 2012 reporting period. This average recovery rate corresponds to an approximate 32 percent (%) reduction when compared to the 2011 rate of 10.3 gpm. The reduction in flow is likely attributable to a decrease of annual precipitation in the area, as recorded from local weather data station (Syracuse Hancock International Airport) located in Syracuse, New York. The total annual precipitation amount recorded for 2011 and 2012 were 52 in. and 35 in., respectively. The reduction in flow was most notable in the third guarter of 2012 where the recorded precipitation was only 7.7 in. versus 15.7 in. in 2011.

Former Lockheed Martin French Road Facility, Utica, New York

6.2 Air Stripper Performance

The air stripper vapor flowrate was calculated using the differential pressure (postcarbon vessels) recorded during each monthly sampling event which is converted to volumetric flowrate using a transmitter. The vapor flowrate ranged from 630 to 934 standard cubic feet per minute (scfm) during the 2012 reporting period. These flow ranges correspond to an average of approximately 756 scfm over the entire 2012 reporting period. The air stripper sump pressures ranged from 25 to 32.2 inches of water column (in.W.C.) during the 2012 reporting period. Monthly air stripper performance data are summarized in Table 5.

6.3 Air Stripper Emissions

The GCTS removed an estimated 5.0 lbs of total VOCs from groundwater during the 2012 reporting period. This value was calculated from the quarterly pre-carbon vapor analytical data and the average monthly air stripper effluent vapor flowrate. The estimated total VOC mass removal calculated is most likely on the conservative side as a result of the fact that manhole MH-1, which has the highest influent concentration of VOCs, is always online during the time of the quarterly sample collection. Quarterly estimated mass removal rate data are summarized in Table 6.

VOC removal efficiency of the carbon vessels was tracked throughout the 2012 reporting period. Both cumulative and target VOC percent removal was calculated by comparing the quarterly vapor influent, mid-carbon, and post-carbon analytical results. As noted in Section 3.0, the site specific goal for vapor phase treatment is a 95% mass removal of target VOCs. Percent removals calculated based on effluent results exceeded 95% for the first three quarters of the reporting period. A reduction in mass removal (57%) was calculated for the fourth quarter sampling event. As a precautionary measure a carbon changeout is scheduled for 2013. The changeout is currently pending approval for regeneration by the carbon vendor (Siemens, Darlington, PA), and then subsequently approval of the regeneration profile by the local regulatory agency (PADEP).

The VOC concentrations emitted in the air stripper (pre-carbon, mid-carbon, and postcarbon) were below the allowable annual-guideline concentration (AGC) values (as provided in NYSDEC DAR 1 tables) for each detectable compound. Short-term guideline concentration (SGC) values are not applicable as performance samples are only collected quarterly. Individual VOCs emitted and their estimated maximum

Former Lockheed Martin French Road Facility, Utica, New York

allowable-mass flow-concentrations, as per NYSDEC DAR 1 guidance, are shown in Table 7.

6.4 Water Treatment Chemical Monitoring

As required under the terms of an SPDES permit (permit no. NY0121894), the volume WTC discharged on an annual basis is reported to NYSDEC in the December Monthly Discharge Monitoring Report. The total amount of WTC (i.e., Sequestering Agent - Aries 2908) discharged through the site Outfall 002 during the 2012 reporting was approximately 524 lbs. The total amount of WTC discharged corresponds to an average dosing rate of 16.7 ppm over the entire 2012 reporting period. Monthly WTC consumption, dosing rates, and date of recording are summarized in Table 8.

6.5 Stormwater Monitoring

As presented in Section 5.3, the quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4).

The general absence of constituents detected in the stormwater samples collected at the site continues to indicate that the GCTS is operating as designed and preventing the migration of impacted groundwater into the stormwater system at the locations sampled.

6.6 Groundwater Elevation Measurements

Groundwater elevation measurements are collected from site monitoring wells and piezometers as part of the quarterly O&M program. Groundwater elevations for the reporting period are included in Table 9 and quarterly groundwater contour maps are provided on Figures 3, 4, 5, and 6.

Groundwater elevations are generally consistent with historical measurements at the site and identify the influence of the GCTS at the three collection trenches. Localized fluctuations exist, attributable to variations in subsurface conditions, including building construction, utility corridors, and operation of the GCTS. Measurements indicate general flow toward the south-southeast.

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

7. 2013 Goals and Recommendations

The information presented in this report indicates that the systems will continue to operate as designed and outlined within the NYSDEC approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010), and *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011). The recommendations and action items planned for during the 2013 reporting period are described in the sections below.

7.1 Goals

The GCTS 2012 remedial and operational goals will be unchanged from those noted in section 3.0. The operational data to be collected includes:

- Quarterly influent-water samples will be collected during the first monthly sampling event of each quarter (i.e., January, April, July, and October);
- Quarterly groundwater-elevation measurements will be collected at all accessible site monitoring-wells and piezometers;
- Quarterly storm-water samples will be collected from the pipe running beneath the manufacturing building and traversing east towards the public storm-drain pipe. These samples will be collected at catch-basin (CB) locations CB-1, CB-2, and CB-3. Samples will be analyzed for VOCs by USEPA Method 8260 and collected and submitted to the laboratory in accordance with procedures outlined in the QAPP;
- Monthly effluent SPDES compliance samples, including tracking the WTC dosing rates;
- Continued demonstration that VOCs concentrations in the GCTS air stripper exhaust (i.e., post-carbon) remain below the NYSDEC DAR 1 guidance values before being discharged to the atmosphere;
- Continued to track the carbon performance in order to maintain the minimum 95% removal goal for target VOCs in the vapor effluent; and
- Daily review of GCTS operation email logs and prompt response to system alarms.

2012 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

7.2 Recommendations

The following recommendations and action items are planned for implementation during the next reporting period (January through December 2013):

- Continued operation of the GCTS;
- Continued system compliance sampling, including monitoring the pH of the system effluent;
- Continued preventive maintenance and failure-mode-effects analyses to improve system reliability;
- Perform carbon changeout in first quarter of 2013, in response to the noted reduction in carbon efficiency during the fourth quarters of 2011 and 2012;
- NYSDECs review of WET testing results still pending, however, modifications to the SPDES permit are not anticipated with the exception of the requested pH adjustment; and
- Modification of the OM&M Manual as needed to include new system enhancements/modifications.

Former Lockheed Martin French Road Facility, Utica, New York

8. References

- ARCADIS. 2012. Revised Tables of the Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. January.
- ARCADIS. 2011. Remediation System Startup Checklist Operational Readiness Review. April.
- ARCADIS. 2011. Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. March.
- ARCADIS. 2010. Groundwater Collection and Treatment System 100% Design Work Plan, Solvent Dock Area. February.
- ARCADIS. 2009a. Corrective Measures Study Report. March.
- ARCADIS. 2009b. Quality Assurance Project Plan. August.
- ARCADIS. 2009c. DRAFT Site Management Plan. October.
- ARCADIS. 2008. Solvent Dock Area and West Lot Site Health and Safety Plan. November.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June.

NYSDEC. 2008. Order on Consent Index Number CO 6-20080321-5. October 3.

Tables

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

		Date/Time					
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action
June 1996					Historical data (pre- 2009) ha	as not been included in this table.	
1/17/2009	1/17/09 8:25	1/17/09 9:34	0.05	45	High/low air temperature.	Low ambient air temperature.	Adjusted low temperature alarm setting from 40 to 32 F to account for low ambient temperature.
8/3/2009	7/31/09 9:58	8/3/09 14:38	3.2	40	Wall louver fault.	Power outage due to inclement weather.	Restart system and observe proper operation following storm event.
9/4/2009	9/1/09 15:09	9/4/09 12:47	2.9	NA	Power outage	Power outage due to inclement weather.	Restart system and observe proper operation following storm event.
ı		Days Offline	Days Online	% Run Time	-		
2009 % Run 1	Time Summary	6.1	357.86	98%	-		
1/25/2010	1/25/10 17:53	1/27/10 7:57	1.6	46/Other	Low Air Flow/System PLC left in manual mode accidentally	Blower influent damper/tray and/or demister pad fouled	Adjust blower damper/Restart system remotely
3/2/2010	3/2/10 17:55	3/3/10 11:31	0.7	42	High level air stripper sump.	Blower influent damper in need of adjustment following air stripper tray cleaning.	Damper adjusted to allow more air flow.
4/7/2010	4/7/10 12:00	4/7/10 18:00	0.3	NA	Quarterly System Testing	NA	NA
4/15/2010	4/15/10 8:00	4/15/10 19:30	0.5	NA	Annual Stripper Cleaning	NA	NA
4/22/2010	4/22/10 6:20	4/22/10 11:08	0.2	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
4/25/2010	4/25/10 19:08 4/26/10 9:39 0.6		0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
4/27/2010	4/27/10 8:53	4/27/10 14:58	0.3	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
4/29/2010	4/29/10 16:35	4/30/10 7:41	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
5/28/2010	5/28/10 16:35	5/31/10 9:40	2.7	NA	Power outage	Power outage due to inclement weather. Electric meter damaged as a result.	Inspect system, temporarily bypass faulty E-meter, perform critical device inspection, restart system and monitor for proper operation.
6/1/2010	6/1/10 14:42	6/2/10 8:55	0.8	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.
7/12/2010	7/12/10 16:00	7/16/10 14:31	3.9	0	MH-1 offline for testing phase, air stripper left in auto with MH-2 online.	ΝΑ	NA
11/2/2010	11/2/10 22:22	11/3/10 13:45	0.6	41	High Pressure in Air Stripper	Blower damper adjustment.	Adjust air stripper blower damper.
11/10/2010	11/10/10 11:42	11/10/10 20:23	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.
11/11/2010	11/11/10 9:52	11/11/10 16:21	0.3	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.
11/11/2010	11/11/10 16:37	11/11/10 18:49	0.1	41	High Pressure in Air Stripper	Blower damper adjustment.	Adjust air stripper blower damper.
11/11/2010	11/11/10 19:18	11/12/10 9:08	0.6	41	Aigh Pressure in Air Stripper	Blower damper adjustment.	Adjust air stripper blower damper.
11/12/2010	11/12/10 9:18	11/12/10 12:43	0.1	41	Algh Pressure in Air Supper	Blower damper adjustment.	Adjust air stripper blower damper.
11/12/2010	11/12/10 12:55	11/12/10 13:04	0.0	41	Algn Pressure in Air Stripper	Fouled air stripper trays.	Clean air stripper trays and adjust air stripper blower damper.
11/18/2010	11/18/10 10:23	11/18/10 19:22	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.
11/19/2010	11/19/10 9:44	11/19/10 17:06	0.3	40	Wall louver damper motor fault.	Power failure due to a system shutdown for system inspection during construction phase.	Restart system after inspection.
11/29/2010 ⁽³⁾	11/29/10 12:53	12/31/10 23:59	23.5	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Install temporary air stripper.
2010 0/ Due 7	Time Summary	Days Offline	Days Online	% Run Time			
2010 % KUN I	inite Summary	38.4	326.6	89%			
1/1/2011 ⁽⁴⁾	1/1/11 0:00	1/24/11 23:59	22.7	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Periodically operated system.
1/31/2011	1/31/11 4:30	1/31/11 16:02	0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Restarted system remotely.
2/2/2011	2/2/11 7:09	2/2/11 11:21	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/8/2011	2/8/11 2:53	2/8/11 8:52	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/8/2011	2/8/11 13:59	2/8/11 19:11	0.2	46	High Pre-Carbon Temperature	Residual heat in duct heater raising pre-carbon temperature following blower/duct heater shutdown.	Modified programming so that duct heater shuts off 2 minutes prior to blower.
			0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

P. (Date/Time			Description						
Date	Shutdown	Online	Off (days)	- Process	Description	Suspected Cause of Alarm	Corrective Action				
2/11/2011	2/11/11 5:06	2/11/11 11:46	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
2/13/2011	2/13/11 18:01	2/17/11 16:03	3.9	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
2/19/2011	2/19/11 10:31	2/21/11 9:42	2.0	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
2/24/2011	2/24/11 0:08	2/24/11 8:47	8:47 0.4 47 Low Pre-Carbon Temperature minute generation		Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre- carbon temperature to drop.	Restart system.					
2/26/2011	2/26/11 3:23	2/26/11 10:58	0.3	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre- carbon temperature to drop.	Restart system.				
2/26/2011	2/26/11 13:46	2/28/11 10:22	1.9	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre- carbon temperature to drop.	Modified programming so that duct heater shuts off in parallel with blower and pre-carbon temperature alarms are ignored when blower is not operating.				
3/14/2011	3/14/11 0:33	3/14/11 10:31	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
3/14/2011	3/14/11 23:53	3/15/11 9:14	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
3/20/2011	3/20/11 7:16	3/20/11 12:35	0.2	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
3/23/2011	3/23/11 6:47	3/23/11 11:42	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
3/26/2011	3/26/11 3:21	3/26/11 9:37	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				
3/26/2011	3/26/11 21:38	3/29/11 9:52	2.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation. Will replace existing high level sensor with tethered float to allow wider operating rang in sump.				
6/11/2011	6/11/11 16:53	6/12/11 11:40	0.8	NA	Power outage	Power outage due to inclement weather.	Restart system after inspection.				
6/12/2011	6/12/11 23:00	6/13/11 7:15	0.3	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Low temperature setpoint temporarily lowered until local restart could be initiated on 6/13/11.				
7/9/2011	7/9/11 6:58	7/11/11 8:56	2.1	NA	Power outage	Power outage.	Restart system.				
7/12/2011	7/12/11 22:13	7/13/11 12:53	0.6	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Duct heater locally reset.				
11/21/2011	11/21/11 16:23	11/23/11 12:00	1.8	NA	PLC Reset to "Manual" for unknown reason, identified during remote login following no daily fax receipt.	System reset automatically, exact cause unknown. Suspect cause due to bad remote system reconfiguration due to faulty/interrupted remote connection.	Log into the system remotely and reconfigures the PLC with the latest GCTS File #17.				
12/8/2011	12/8/11 10:06	12/9/11 21:00	1.5	46	High Pre-Carbon Temperature	Unknown	Monitor system and temperatures remotely.				
12/11/2011	12/11/11 20:06	12/11/11 20:13	0.0	46	High Pre-Carbon Temperature	Unknown	Review datalogger file/site inspection to verify transmitter readings versu field gauge.				
12/14/2011	12/12/11 1:17	12/12/11 9:49	0.4	45	High Air Flowrate	Potential drifting associated with transmitter calibration.	Adjust high flow alarm setpoint				
12/13/2011	12/13/11 3:50	12/13/11 8:06	0.2	46	High Pre-Carbon Temperature	Potential drifting associated with transmitter calibration.	Adjust high temperature alarm setpoint				
0044 0/ D		Days Offline	Days Online	% Run Time							
2011 % Run	Time Summary	47	348	88%	1						
1/14/2012	1/14/12 19:46	1/15/12 8:10	0.5	32	Low water level in air stripper sump	Increased back pressure from air stripper trays	Temporarily adjust air stripper damper on 1/16/12. Clean air stripper on 1/26/12.				
1/26/2012	1/25/12 11:06	1/26/12 13:54	1.1	NA	Annual Stripper Cleaning and float replacement	NA - Scheduled maintenance	NA				
1/30/2012	1/30/12 20:03	1/31/12 8:59	0.5	32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Re-adjust air stripper blower damper on 2/2/12				
2/6/2012	2/6/12 16:45	2/6/12 16:452/7/12 11:000.842High water level in air stripper sumpThe LSH-100 was tripped during a automate when MH-1 was called to pumped. The data indicated that the LSH-100 went into alarm is seconds after one of the pumps turned on. T alarm is most likely a result of the new level		The LSH-100 was tripped during a automated startup when MH-1 was called to pumped. The data logger indicated that the LSH-100 went into alarm several seconds after one of the pumps turned on. The high level alarm is most likely a result of the new level float being set with too short of tether during the initial install.	Manually drained enough water from the air stripper sump in order to cle (un-latch) the high level alarm. The length of the high level float tether wa increased 3-inches.						

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Dut		Date/Time			Description of the second s		
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action
3/7/2012	3/7/12 9:06	3/7/12 16:55	0.3	NA	System temporarily taken offline to complete the arc flash study field reconnaissance	NA	NA
4/16/2012	4/16/12 9:18	4/17/12 12:45	1.1	NA	System PLC/building power outage.	Power outage due to inclement weather.	Manually reset PLC UPS/battery backup and restart system. Will test alarm dial-out sequence in the event of a power outage.
4/23/2012	4/23/12 12:27	4/23/12 16:39	0.2	NA	Chris Davern onsite making modification to GCTS cfg file and to test UPS battery	GCTS cfg file was modified to make LSH-100 in the up position be a fatal alarm condition regardless of blower status. UPS battery backup tested successfully, UPS provided power to PLC for approx. 60 minutes.	NA
7/16/2012	7/16/12 5:57	7/16/12 12:12	0.3	47	Low temperature alarm for pre- VPGAC air stream.	Critical device testing activities conducted 7/13/12 resulted in occurrence of internal high temperature alarm for duct heater. Alarm requires local resetting of duct heater, which was not done on 7/13/12.	Mobilize field staff to site and manually reset duct heater high temperature alarm. Restart system.
7/17/2012	7/17/12 18:06	7/18/12 12:16	0.8	42	High water level in air stripper sump	The LSH-100 was tripped following an automated ending of a manhole pumping cycle (i.e., batch). No system adjustments (e.g., damper adjustment) made or observed drift in operational parameters (e.g., air stripper sump pressure).	Mobilize field staff and manually drop liquid level of air stripper sump so that tethered high float LSH-100 will drop into off position. Done by manually partially closing pre-VPGAC butterfly valve to raise air stripper sump pressure and lower air stripper sump elevation. Restart system. Opened damper slightly.
10/11/2012	10/11/12 6:15	10/11/12 13:49	0.3	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Restart system.
10/12/2012	10/12/12 12:10	10/12/12 14:51	0.1	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect transmitter and pitot tube, restart system.
10/13/2012	10/13/12 5:37	10/14/12 18:01	1.5	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect transmitter and pitot tube, restart system.
10/16/2012	10/16/12 8:40	10/17/12 8:35	1.0	NA	Replacement of air stripper	NA	NA
10/30/2012	10/30/12 12:28	10/30/12 18:50	0.3	NA	Critical Device Testing	NA	NA
11/4/2012	11/4/12 3:37	11/5/12 20:44	1.7	45	Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Log into system remotely on 11/5/12 at 20:44. Following an inspection of the PLC data logger files the system was restarted and monitored for proper operation. The air flow rate was noted at approximately 550-600 cfm with all three manholes online pumping at a total flow rate of 70 gpm with a corresponding air stripper sump pressure of ~32 in.W.C., which confirmed that sufficient air flow was flowing through the air stripper.
11/7/2012	11/7/12 5:03	11/7/12 9:23	0.2	45	Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Following receiving the alarm again on 11/7/12 at 5:03 ARCADIS mobilized to site that morning at 9:08 to inspect the system. Following an inspection of the PLC and other major system components, and confirming that the system was operating as intended the Process 45 alarm was changed from a fatal to non-fatal. The system was restarted at 9:23.
12/26/2012	/2012 12/26/12 4:24 12/26/12 12:24 0.3 3		32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Restart system remotely, monitor for proper operation including flows, pressures, float levels, etc.	
2012 % Dun T		Days Offline	Days Online	% Run Time			
2012 % Run Time Summary Days of time Days of time 11.0 355.0			97%				

Notes:

1. Table does not include brief (less than 3 hours [0.1 days]) system shutdowns for routine operation and maintenance activities.

2. Table does not include non-fatal alarms (i.e. low liquid flow, low air flow, etc.) observed during the reporting period.

3. Between 11/29/10 and 12/31/10, temporary system was operational approximately 10 hours (7AM to 5PM) per weekday excluding 12/24/10, 12/30/10,

and 12/31/10. System offline for nights and weekends due to lack of safety controls/interlocks and freezing weather conditions.

4. Between 1/1/11 and 1/24/11, the upgraded system was operated on the following dates: 1/13, 1/14, 1/17, 1/18 and 1/20. An average daily run time of 6 hours has been estimated for those dates.

Table 2. Groundwater Collection and Treatment System Effluent Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/8/2009	2/5/2009	3/4/2009	4/1/2009	5/5/2009	6/2/2009	7/1/2009	8/14/2009	9/4/2009	10/9/2009	11/4/2009	12/11/2009	1/12/2010	2/3/2010	3/3/2010	4/7/2010	5/5/2010	6/3/2010	7/8/2010	8/5/2010	9/7/2010	10/6/2010	11/10/2010	12/22/2010
1,1,1-Trichloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 1.0	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dichlorobenzene	10	< 1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
cis-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Toluene	5	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60
trans-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	15	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
pH (S.U.) ⁽²⁾	8.5	8.36	7.31	7.10	7.47	7.61	7.43	7.00	7.08	7.84	7.07	7.04	7.13	8.13	8.51	8.51	8.53	8.62 ⁽⁴⁾	7.19	8.5	8.1	8.3	7.8	8.1	8.0
Oil & Grease (mg/L) ⁽³⁾	-	NS	NS	NS	NS	NS	< 5.0	2.5 J	< 5.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
													-												
Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/28/11	2/23/11	3/22/11	4/5/11	5/12/11	6/2/11	7/7/11	8/11/11	9/8/11	10/11/11	11/1/11	12/1/11	1/26/12	2/9/12	3/1/12	4/5/12	5/1/12	6/7/12	7/12/12	8/15/12	9/11/12	10/17/12	11/8/12	12/6/12
Volatile Organic ⁽¹⁾						5/12/11 < 0.82	6/2/11 < 0.82		8/11/11 < 0.82	9/8/11 < 0.82	10/11/11 < 0.82	11/1/11 < 0.82			2/9/12 < 0.82	3/1/12 < 0.82	4/5/12 < 0.82	5/1/12 < 0.82	6/7/12 < 0.82	7/12/12 < 0.82	8/15/12 < 0.82	9/11/12 < 0.82	10/17/12 < 0.82	11/8/12 < 0.82	12/6/12 < 0.82
Volatile Organic ⁽¹⁾ Compounds (μg/L)	Limitations (ug/L)	1/28/11	2/23/11	3/22/11	4/5/11			7/7/11 < 0.82 < 0.38				< 0.82 < 0.38	12/1/11	1/26/12					< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane	Limitations (ug/L)	1/28/11 < 0.82	2/23/11 < 0.82 < 0.38 < 0.79	3/22/11 < 0.82 < 0.38 < 0.79 	4/5/11 < 0.82 < 0.38 < 0.79	< 0.82	< 0.82 < 0.38 < 0.79	7/7/11 < 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	12/1/11 < 0.82 < 0.38 < 0.79	1/26/12 < 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82	< 0.82 < 0.38 < 0.79	< 0.82	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane	Limitations (ug/L) 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78	2/23/11 < 0.82 < 0.38	3/22/11 < 0.82 < 0.38	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene	Limitations (ug/L) 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	2/23/11 < 0.82 < 0.38 < 0.79	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	Limitations (ug/L) 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene	Limitations (ug/L) 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane	Limitations (ug/L) 10 10 10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chlorobenzene chloroethane	Limitations (ug/L) 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene chloroethane cis-1,2-Dichloroethene Ethylbenzene	Limitations (ug/L) 10 10 10 10 - 10 10 10 5	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene	Limitations (ug/L) 10 10 10 10 - 10 - 5	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chlorobenzene cis-1,2-Dichloroethane Ethylbenzene m-Xylene & p-Xylene o-Xylene	Limitations (ug/L) 10 10 10 10 - 10 10 5	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Limitations (ug/L) 10 10 10 10 - 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	12/1/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 0.66 \\< 0.76 \\< 0.36 $	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene	Limitations (ug/L) 10 10 10 10 10 10 10 10 10 10 5 10 10 5 - 10 10 5 - 10 10 5 - 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.41 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \end{aligned}$	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 $	$\begin{array}{c} \textbf{12/1/11} \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \end{array}$	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene Toluene	Limitations (ug/L) 10 10 10 10 - 10 10 10 - 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.90	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51 < 0.90	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	$\begin{array}{c} 12/1/11 \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \end{array}$	$ \begin{array}{r} 1/26/12 \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ \end{array} $	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 $
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene Toluene trans-1,2-Dichloroethene	Limitations (ug/L) 10 10 10 10 10 10 10 5 10 5 - 10 5 10 5	1/28/11 <	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 0.47	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.78 < 0.74 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.90 < 0.46	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	$\begin{array}{c} \textbf{12/1/11} \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ < 0.46 \end{array}$	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene O-Xylene Tetrachloroethene Toluene trans-1,2-Dichloroethene Vinyl Chloride	Limitations (ug/L) 10 10 10 10 10 10 10 10 10 10 5 - 10 10 5 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 0.47 < 1.0	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.78 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$\begin{array}{c} 12/1/11 \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ < 0.46 \\ < 1.0 \end{array}$	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 \\< 0.46 \\< 1.0 $	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 \\< 0.46 \\< 1.0 $
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene trans-1,2-Dichloroethene Vinyl Chloride Xylenes, total	Limitations (ug/L) 10 10 10 10 10 10 10 10 5 10 5 10 5	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 0.47 < 1.0 < 1.0 < 1.0	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.74 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.46 < 1.0 < 1.0 < 1.0	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.78 < 0.74 < 0.32 < 0.81 < 0.74 < 1.0 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.75 < 0.32 < 0.75 < 0.32 < 0.75 < 0.32 < 0.75 < 0.32 < 0.76 < 0.76 < 0.76 < 0.76 < 0.36 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 0.41 < 0.90 < 0.41 < 0.75 < 0.32 < 0.41 < 0.75 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 0.41 < 0.90 < 0.41 < 0.90 < 0.41 < 0.75 < 0.32 < 0.36 < 0.36 < 0.51 < 0.41 < 0.75 < 0.36 < 0.75 < 0.75 < 0.76 < 0.75 < 0.75 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 <	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 0.41 < 0.90 < 0.46 < 1.0 < 0.41 < 0.90 < 0.46 < 0.41 < 0.90 < 0.46 < 0.41 < 0.90 < 0.46 < 0.41 < 0.41 < 0.75 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.77 < 0.76 < 0.76 < 0.76 < 0.77 < 0.77 < 0.76 < 0.77 < 0.76 < 0.77 < 0.77 < 0.76 < 0.70 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.75 < 0.32 < 0.75 < 0.75 < 0.32 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.74 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.76 < 0.76 < 0.77 < 0.76 < 0.77 < 0.76 < 0.77 < 0.76 < 0.77 < 0.76 < 0.77 < 0.77 < 0.76 < 0.76 < 0.76 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.71 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.75 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 0.41 < 0.75 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.76 < 0.77 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.76 < 0.76 < 0.77 < 0.77 < 0.76 < 0.77 < 0.77 < 0.77 < 0.76 < 0.76 < 0.77 < 0.77 < 0.77 < 0.76 < 0.77 < 0.77 < 0.76 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0	$\begin{array}{c} \textbf{12/1/11} \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ < 0.46 \\ < 1.0 \\ < 1.0 \\ < 1.0 \end{array}$	$ \begin{array}{r} 1/26/12 \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ < 0.46 \\ < 1.0 \\ < 1.0 \\ < 1.0 \\ < 1.10 \\ \end{array} $	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.75 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 0.41 < 0.90 < 0.41 < 0.90 < 0.41 < 0.75 < 0.32 < 0.76 < 0.36 < 0.51 < 0.90 < 0.41 < 0.90 < 0.41 < 0.76 < 0.36 < 0.51 < 0.90 < 0.41 < 0.90 < 0.41 < 0.76 < 0.76 < 0.76 < 0.36 < 0.90 < 0.41 < 0.76 < 0.90 < 0.41 < 0.76 < 0.90 < 0.90 < 0.41 < 0.90 < 0.90 < 0.41 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 <	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.46 < 1.0 < 0.46 < 1.0 < 0.46 < 1.0 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.47 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.46 < 0.40 < 0.46 < 0.40 < 0.40 < 0.40 < 0.46 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.46 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 0.41 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.75 < 0.74 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.77 < 0.76 < 0.76 < 0.76 < 0.76 < 0.77 < 0.77 < 0.76 < 0.77 < 0.70 < 0.76 < 0.70 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.71 < 0.70 < 0.71 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.71 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 < 0.70 <	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.74 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0 < 1.0 < 1.0	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 \\< 0.46 \\< 1.0 \\< 1.0 \\< 1.0 $
Volatile Organic ⁽¹⁾ Compounds (µg/L) 1,1,1-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Chlorobenzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene O-Xylene Tetrachloroethene Toluene trans-1,2-Dichloroethene Vinyl Chloride	Limitations (ug/L) 10 10 10 10 10 10 10 10 10 10 5 - 10 10 5 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10	1/28/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	2/23/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 0.47 < 1.0	3/22/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	4/5/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.78 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.76 < 0.36 < 0.51 < 0.90 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	7/7/11 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$\begin{array}{c} 12/1/11 \\ < 0.82 \\ < 0.38 \\ < 0.79 \\ < 0.78 \\ < 0.84 \\ < 0.41 \\ < 0.75 \\ < 0.32 \\ < 0.81 \\ < 0.74 \\ < 1.0 \\ < 0.76 \\ < 0.36 \\ < 0.51 \\ < 0.90 \\ < 0.46 \\ < 1.0 \end{array}$	1/26/12 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 \\< 0.46 \\< 1.0 $	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	 < 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46 < 1.0	$< 0.82 \\< 0.38 \\< 0.79 \\< 0.78 \\< 0.84 \\< 0.41 \\< 0.75 \\< 0.32 \\< 0.81 \\< 0.74 \\< 1.0 \\< 0.76 \\< 0.36 \\< 0.51 \\< 0.90 \\< 0.46 \\< 1.0 $

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Analyzed in field.

3. Analyzed using United States Environmental Protection Agency (USEPA) Method 1664 A.

4. Several pH measurements were collected in May 2010, ranging from 7.83 to 8.62.

BOLD indicates detected concentrations.

Definitions:

- < less than laboratory detection limit listed
- No Standard
- NS Not Sampled For
- mg/L milligrams per liter
- S.U. Standard Units
- µg/L micrograms per liter

Table 3. Groundwater Collection and Treatment System Influent Groundwater Concentrations, Former Lockheed Martin French Road Facility, Utica, NY.

								MH-1						
Volatile Organic ⁽¹⁾ Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	8.4	9	6	6	6.2	3.6	4.2	2.7	8.5	5.9	4.9	8.5	10	8
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	0.70 J	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	39	< 0.40 44	< 0.40 28	< 0.40 42	35	21	< 0.02 30	19	43	33	28	39	< 0.32 56	43
Ethylbenzene	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	31	< 0.40 31	< 0.40 27	< 0.70 29	< 0.70 21	< 0.70 8.4	23	18	26	19	16	23	36	28
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
		< 0.60					< 0.90			< 0.90				
trans-1,2-Dichloroethene	< 1.0 64	< 0.42 51	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90 57	< 0.90	< 0.90 57	< 0.90 29	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene			55	49	33	11		27			26	52	66	41
Vinyl Chloride	0.50 J	0.41 J	< 1.0	< 1.0	< 1.0	0.99 J	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 1.0
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0
Volatile Organic ⁽¹⁾			1/7/00/0	=/0/00/0		4.0/00/004.0	-	MH-2						40/17/00/00
Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011 ⁽²⁾	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012
1,1,1-Trichloroethane		< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	-	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	1.6	11	2	2.4	2.6	1.9	1.5	-	3.5	3	1.5	1.8	2.5	2.4
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	-	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	-	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	-	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	-	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	-	< 0.32	< 0.32	< 0.32	< 0.32	< 0.35	< 0.35
cis-1,2-Dichloroethene		47	12	14	13	12	7.6	-	12	16	5.4	8.3	22	13
Ethylbenzene		< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	-	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
o-Xylene		< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	3.8	28	3.5	9.3	7.5	4.5	2.6	-	2.8	3.6	1.6	1.7	< 0.36	0.76
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	-	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	0.22 J	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	-	< 0.90	< 0.90	< 0.90	< 0.90	4.9	1.6
Trichloroethene	6.7	53	7.5	18	14	8.4	4.6	-	7.7	7.5	2.8	4.8	1.6	6.7
Vinyl Chloride		< 1.0	1.4	2.3	1.8	1.5	1.5	-	6.1	4.5	1.2	1.6	2.4	3.3
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0
Volatile Organic ⁽¹⁾					MH-3									
Compounds (µg/L)	1/28/2011	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1				
1,1,1-Trichloroethane	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	1				
1,1-Dichloroethane	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	1				
1,2-Dichlorobenzene	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	1				
1,3-Dichlorobenzene	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	1				
1,4-Dichlorobenzene	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	1				
Benzene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41					
Chlorobenzene	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75					
Chloroethane	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32					
cis-1,2-Dichloroethene	3.7	2.3	3.5	3.8	3.1	2.5	2.7	3.2	< 0.81					
Ethylbenzene	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74					
m-Xylene & p-Xylene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66					
o-Xylene	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76					
Tetrachloroethene	1.2	1.1	12	21	23	33	49	49	< 0.36					
Toluene	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51					
										1				

Teldelle	10.01	10.01	10.01	4 0.01	4 0.01	4 0.01	4 0.01	4 0.01	10101
trans-1,2-Dichloroethene	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	4.2	5.6	9	19	13	16	17	22	< 0.46
Vinyl Chloride	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90
Xylenes, total	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Manhole MH-2 not sampled during Second Quarter 2011 event due to manhole being offline for pump replacement.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

"-" - Analyte Not Analyzed For

J - Indicates concentration is estimated

 μ g/L - micrograms per liter

Table 4. Stormwater Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾	SPDES Effluent						CI	3-1					
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
Volatile Organic ⁽¹⁾	SPDES Effluent						CI	3-2					
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
Volatile Organic ⁽¹⁾	SPDES Effluent				-		CI	B-3				1	
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	0.85	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	1.9	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	0.51	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90 < 0.66	< 0.90 < 0.66
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

µg/L - micrograms per liter

Table 5. Groundwater Collection and Treatment System Flowrates, Former Lockheed Martin French Road Facility, Utica, NY.

	Cu	Imulative	1		MH-1			MH-2			MH-3		Air	Stripper Para	meters
Date	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Sumn	Differential Pressure (In. W.C.)	Vapor Phase Flowrate (scfm) ⁽³⁾
1/8/2009	51,642,496	547,845	10.3	43,857,473	468,600	8.8	7,785,023	79,245	1.5	-	-	-	14.0	1.0	1,398
2/5/2009	51,882,819	240,323	6.0	44,074,280	216,807	5.4	7,808,539	23,516	0.6	-	-	-	14.0	1.0	1,398
3/4/2009	52,290,566	407,747	10.5	44,426,462	352,182	9.1	7,864,104	55,565	1.4	-	-	-	15.0	1.0	1,398
4/1/2009	52,820,498	529,932	13.1	44,879,781	453,319	11.2	7,940,717	76,613	1.9	-	-	-	14.0	1.0	1,398
5/5/2009	53,224,271	403,773	8.2	45,236,249	356,468	7.3	7,988,022	47,305	1.0	-	-	-	14.0	1.0	1,398
6/2/2009	53,499,861	275,590	6.8	45,470,774	234,525	5.8	8,029,087	41,065	1.0	-	-	-	15.0	1.5	1,712
7/1/2009 8/14/2009	53,736,159 54,078,743	236,298 342,584	5.7 5.4	45,666,782 45,940,852	196,008 274,070	4.7 4.3	8,069,377 8,137,891	40,290 68,514	1.0 1.1	-	-	-	15.0 14.0	1.5 1.5	1,712 1,712
9/4/2009	54,230,373	151,630	5.0	46,060,707	119,855	4.0	8,169,666	31,775	1.1	-	-	-	14.0	1.5	1,712
10/9/2009	54,512,663	282,290	5.6	46,289,841	229,134	4.5	8,222,822	53,156	1.1	-	-	-	14.5	1.0	1,398
11/4/2009	54,750,788	238,125	6.4	46,494,959	205,118	5.5	8,255,829	33,007	0.9	-	-	-	14.5	1.0	1,398
12/11/2009	55,029,188	278,400	5.2	46,722,959	228,000	4.3	8,306,229	50,400	0.9	-	-	-	14.0	1.3	1,594
2009 Totals ⁽¹⁾	-	3,934,537	7.3	-	3,334,086	6.2	-	600,451	1.1	-	-	-	14.3	1.2	1,519
1/12/2010	55,368,138	338,950	7.4	47,041,049	318,090	6.9	8,327,089	20,860	0.5	-	-	-	18.0	1.2	1,531
2/3/2010	55,615,048	246,910	7.8	47,254,345	213,296	6.7	8,360,703	33,614	1.1	-	-	-	24.0	1.0	1,398
3/3/2010	55,830,985	215,937	5.4	47,442,614	188,269	4.7	8,388,371	27,668	0.7	-	-	-	11.0	1.7	1,823
4/7/2010	56,443,357	612,372	12.2	47,970,713	528,099	10.5	8,472,644	84,273	1.7	-	-	-	12.0	1.5	1,712
5/5/2010	56,705,454	262,097	6.5	48,202,863	232,150	5.8	8,502,591	29,947	0.7	-		-	17.5	2.7	2,297
6/3/2010	56,921,019	215,565	5.2	48,388,351	185,488	4.4	8,532,668	30,077	0.7	-	-	-	16.1	2.7	2,297
7/7/2010	57,256,158	335,139	6.8	48,646,601	258,250	5.3	8,609,557	76,889	1.6	-	-	-	15.5	2.4	2,166
8/5/2010	57,518,041	261,883	6.3	48,863,064	216,463	5.2	8,654,977	45,420	1.1	-	-	-	15.9	2.2	2,073
9/7/2010	57,797,649	279,608	5.9	49,095,255	232,191	4.9	8,702,394	47,417	1.0	-	-	-	18.5	1.9	1,927
10/5/2010	58,082,548	284,899	7.1	49,327,736	232,481	5.8	8,754,812	52,418	1.3	-	-	-	17.0	2.0	1,977
11/2/2010	58,456,895	374,347	9.3	49,643,060	315,324	7.8	8,813,835	59,023	1.5	-	-	-	22.0	0.9	1,289
12/22/2010	59,009,574	552,679	7.7	50,101,316	458,256	6.4	8,908,258	94,423	1.3	-	-	-	17.0	NA ²	NA ²
2010 Totals ⁽²⁾	-	3,980,386	7.4	-	3,378,357	6.2	-	602,029	1.1	-	-	-	17.0	1.8	1,863
1/28/2011	59,088,966	79,392	1.5	50,142,913	41,597	0.8	8,930,851	22,593	0.4	15,202	-	-	25.9	-	718
2/23/2011	59,483,460	394,494	10.5	50,432,263	289,350	7.7	8,976,813	45,962	1.2	74,384	59182.0	1.6	26.0	-	742
3/22/2011	60,118,863	635,403	16.3	50,940,888	508,625	13.1	9,102,550	125,737	3.2	75,425	1041.0	0.0	26.2	-	681
4/5/2011	60,264,174	145,311	7.2	51,085,909	145,021	7.2	9,102,790	240	0.0	75,475	50	0.0	29.0	-	663
5/12/2011	61,189,715	925,541	17.4	51,609,588	523,679	9.8	9,161,683	58,893	1.1	418,444	342,969	9.2	26.5	-	553
6/2/2011	61,557,472	367,757	12.2	51,834,699	225,111	7.4	9,189,679	27,996	0.9	533,094	114,650	2.9	26.5	-	618
7/7/2011	61,975,516	418,044	8.3	52,075,707	241,008	4.8	9,227,668	37,989	0.8	672,141	139,047	2.8	25.2	-	636
8/11/2011	62,296,730	321,214	6.4	52,243,445	167,738	3.3	9,265,879	38,211	0.8	787,406	115,265	2.3	26.5	-	651
9/8/2011 10/11/2011	62,817,398 63,444,585	520,668 627,187	12.9 13.2	52,508,569	265,124 374,577	6.6 7.9	9,342,539	76,660 57,582	1.9 1.2	966,290	178,884 195,028	4.4	28.5 27.0	-	609 715
11/1/2011	63,764,975	320,390	10.6	52,883,146 53,071,145	187,999	6.2	9,400,121 9,435,095	34,974	1.2	1,161,318 1,258,735	97,417	3.2	27.0	-	715
12/1/2011	64,185,589	420,614	9.7	53,345,456	274,311	6.3	9,469,773	34,974	0.8	1,370,360	111,625	2.6	27.0	-	739
2011 Totals ⁽²⁾⁽⁵⁾	-	5,176,015	9.7 10.4	-	3,244,140	6.5	-	561,515	0.8 1.1	-	1,355,158	2.0	2 7.0 26.8	-	676
1/27/2012	64,972,202	786,613	9.6	53,871,038	525,582	6.4	9,542,467	72,694	0.9	1,558,697	188,337	2.3	32.2	-	745
2/9/2012	65,195,486	223,284	11.9	54,009,006	137,968	7.4	9,573,810	31,343	1.7	1,612,670	53,973	2.9	29.0	-	743
3/1/2012	65,448,455	252,969	8.4	54,180,412	171,406	5.7	9,596,526	22,716	0.8	1,671,517	58,847	1.9	29.0	-	766
First Quarter 2012	-	1,262,866	9.6	-	834,956	6.4	•	126,753	1.0	-	301,157	2.3	30.1	-	766
4/5/2012	65,853,255	404,800	8.0	54,447,552	267,140	5.3	9,635,004	38,478	0.8	1,770,699	99,182	2.0	27.0	-	740
5/1/2012	66,090,367	237,112	6.3	54,595,683	148,131	4.0	9,661,648	26,644	0.7	1,833,036	62,337	1.7	26.6	-	805
6/7/2012	66,591,098	500,731	9.4	54,904,479	308,796	5.8	9,710,985	49,337	0.9	1,975,634	142,598	2.7	27.4	-	752
Second Quarter 2012	-	1,142,643	8.1	-	724,067	5.1	-	114,459	0.8	-	304,117	2.2	27.0	-	766
7/12/2012	66,828,112	237,014	4.7	55,041,035	136,556	2.7	9,738,010	27,025	0.5	2,049,067	73,433	1.5	25.0	-	630
8/15/2012	67,068,471	240,359	4.9	55,163,445	122,410	2.5	9,766,492	28,482	0.6	2,138,534	89,467	1.8	27.7	-	701
9/11/2012	67,259,158	190,687	4.9	55,259,345	95,900	2.5	9,790,891	24,399	0.6	2,208,922	70,388	1.8	27.7	-	761
Third Quarter 2012	-	668,060	4.8	-	354,866	2.6	-	79,906	0.6	-	233,288	1.7	26.8	-	697
10/17/2012	67,568,957	309,799	6.0	55,424,161	164,816	3.2	9,830,240	39,349	0.8	2,314,556	105,634	2.0	26.2	-	677
11/8/2012	67,777,512	208,555	6.6	55,542,079	117,918	3.7	9,852,388	22,148	0.7	2,383,045	68,489	2.2	30.8	-	778
12/6/2012	67,979,019	201,507	5.0	55,665,689	123,610	3.1	9,874,745	22,357	0.6	2,438,585	55,540	1.4	29.3	-	934
Fourth Quarter 2012	-	719,861	5.8	-	406,344	3.3	-	83,854	0.7	-	229,663	1.9	28.8	-	796
2012 Totals	-	3,793,430	7.1	-	2,320,233	4.3	-	404,972	0.8	-	1,068,225	2.0	28.2	-	756
1/15/2013	68,601,819	622,800	10.8	56,064,192	398,503	6.9	9,937,367	62,622	1.1	2,600,260	161,675	2.8	29.6		830

Notes:

1. 2009 Totals include data between 12/8/2008 and 12/11/2009.

2. Existing air stripper taken offline on 11/29/10 and temporary air stripper in operation through end of 2010 while system upgrades were being implemented. Current air stripper operated intermittently in

January 2011 on the dates of 1/13, 1/14, 1/17, 1/18 and 1/20. Current air stripper brought online permanently in February 2011.

3. Prior to 2011, vapor phase flowrate calculated using the Air Velocity Measurement formula as provided in the Dwyer Instruments catalog. Differential pressure used in the blower intake pipe, and constants for temperature (70°F) and barometric pressure (29.92 in.Hg.) were assumed. Following the beginning of 2011, the vapor phase flowrate has been obtained from flow transmitter FT-106.

5. Manhole MH-2 offline for pump replacement from 3/22/11 to 4/20/11.

Definitions:

gpm - gallons per minute

In. W.C. - Inches of Water Column cfm - cubic feet per minute

NA - Not applicable

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

		_							Pre-Carbo	on								
Volatile Organic ⁽¹⁾ Compounds (µg/m ³)	1/28/2011	Q	2/23/2011	Ø	4/5/2011	Q	7/7/2011	Q	10/12/2011	Q	1/26/2012	Q	4/5/2012	Q	7/12/2012	Q	10/17/2012	Q
1,1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	
1,1,2,2-Tetrachloroethane	< 1.00		< 1.0		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	ļ
1,1,2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	
1,1-Dichloroethane	< 0.62		18		19		71		41		38		49		150		44	
1,1-Dichloroethene	< 0.60		< 0.60		< 0.60		0.81		0.48	J	<0.60		0.97		1.2		0.87	
1,2,4-Trichlorobenzene	< 1.10		< 1.1		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	
1,2,4-Trimethylbenzene 1,2-Dibromoethane	1 < 1.20		4.6 < 1.2		1.6 < 1.20		1.3 < 1.20		< 0.75 < 1.20		0.5 < 1.20	J	< 0.75 < 1.20		1.8 < 1.20		0.9 < 1.20	
1,2-Diblomoernane	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1.2-Dichloroethane	< 0.92		< 0.92		< 0.62		< 0.92		< 0.62		< 0.92		< 0.62		< 0.92		< 0.92	
1,2-Dichloropropane	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	
1,3,5-Trimethylbenzene	< 0.75		1.5		< 0.75		< 0.75		< 0.75		< 0.75		< 0.75		0.65	J	< 0.75	
1,3-butadiene	< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34	
1,3-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1,4-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1,4-Dioxane	< 1.10		< 1.1		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	ļ
2,2,4-trimethylpentane	< 0.71		0.76		< 0.71		< 0.71		< 0.71		< 0.71		< 0.71		< 0.71		< 0.71	H
4-ethyltoluene	0.6	J	1.1		< 0.75		< 0.75	<u> </u>	< 0.75		< 0.75		< 0.75		0.5	J	< 0.75	
	29		21		10		14		3.7		81		3.7		16		21	
Allyl chloride	< 0.48		< 0.48		< 0.48		< 0.48	-	< 0.48		< 0.48		< 0.48	-	< 0.48		< 0.48	-
Benzene	< 0.49		1.5		0.91		0.39	J	0.75		1.2		0.42	J	0.65		0.32	J
Benzyl chloride	< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88	
Bromodichloromethane	< 1.00		< 1.0		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	
Bromoform	< 1.60 < 0.59		< 1.6 < 0.59		< 1.60 < 0.59		< 1.60 < 0.59		< 1.60 < 0.59		< 1.60		< 1.60 < 0.59		< 1.60 < 0.59		< 1.60 < 0.59	
Bromomethane Carbon disulfide	< 0.59		< 0.59		< 0.59		< 0.59 0.32		< 0.59		< 0.59 < 0.47		< 0.59		< 0.59 1.3		< 0.59	
Carbon distance Carbon tetrachloride	< 0.47		< 0.47 0.77	J	< 0.47		0.32	J	< 0.47 0.38	J	< 0.47 0.38	J	< 0.47		< 0.96		< 0.47	
Chlorobenzene	< 0.90		0.66	J	< 0.90		< 0.70	5	< 0.70	J	< 0.70	J	< 0.90		< 0.90		< 0.90	
Chloroethane	< 0.40		1.2	•	< 0.40		< 0.40		0.86		<0.40		1.3		1.2		< 0.40	
Chloroform	< 0.74		5.7		10		8.5		1.3		1.8		0.94		1.9		1	
Chloromethane	1.2		0.84		< 0.31		< 0.31		0.57		< 0.31		0.9		< 0.31		< 0.31	
cis-1,2-Dichloroethene	< 0.60		220		140		840		210		200		510		430		200	
cis-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	
Cyclohexane	< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52	
Dibromochloromethane	< 1.30		< 1.3		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	
Ethyl acetate	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	,
Ethylbenzene	2.8		2.3		0.71		< 0.66		< 0.66		0.49	J	< 0.66		1.3		< 0.66	
Freon 11	< 0.86		1.7		6		1.8		1.1		2		1.5		2.5		1.7	
Freon 113	< 1.20		110		60		170		83		30		130		380		110	
Freon 114	< 1.10		< 1.1		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	
Freon 12	0.65	J	2.8		3.4		2.7 < 0.62		1.6		2.6		5.8		< 0.75	-	2.8	
Heptane	< 0.62		0.92		< 0.62				< 0.62		< 0.62		< 0.62		0.5	J	< 0.62	
Hexachloro-1,3-butadiene Hexane	< 1.60 < 0.54		< 1.6 < 0.54		< 1.60 < 0.54		< 1.60 < 0.54		< 1.60 0.75		< 1.60 0.75		< 1.60 < 0.54		< 1.60 0.64		< 1.60 < 0.54	
Isopropyl alcohol	< 0.34		< 0.34 4.3		< 0.54 5.4		< 0.34		< 0.37		3.5		< 0.34		2		< 0.34	
m&p-Xylene	< 0.37 7.9		8.5		2.3		< 0.57 1.6		0.75	J	1.3		< 1.30		4.7		< 1.30	
Methyl Butyl Ketone	< 1.20		< 1.2		< 1.20		< 1.20	1	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	
Methyl Ethyl Ketone	10		2.7		2.5		< 0.90	Ĺ	1.2		4		0.42	J	1.6		1.1	
Methyl Isobutyl Ketone	< 1.20		< 1.2		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	
Methyl tert-butyl ether	< 0.55		< 0.55		< 0.55		< 0.55		< 0.55		< 0.55		0.66		1.6		< 0.55	
Methylene chloride	< 0.53		1.8		1.8		1.8		0.56		1.2		2		2.6		1	
o-Xylene	1.4		3.1		0.66		0.62	J	< 0.66		0.49	J	< 0.66		1.7		< 0.66	
Propylene	< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26	
Styrene	0.52	J	< 0.65		< 0.65		< 0.65		< 0.65		< 0.65		< 0.65		< 0.65		< 0.65	
Tetrachloroethylene	0.83	J	110		180		460		140		290		< 97.00		470		240	
Tetrahydrofuran	72		2.4		5.1		< 0.45		0.96		< 0.45		< 0.45		1.8		< 0.45	
Toluene trans-1,2-Dichloroethene	5.7 < 0.60		7.2 0.64		2.3 1.5		1.5 1.1		1.9 1.4		2.3 1.7		< 0.57 < 0.60		6.1 3.2		2.1 < 0.60	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	< 0.60		0.64 < 0.69		1.5 < 0.69		1.1 < 0.69		1.4 < 0.69		1.7 < 0.69		< 0.60 < 0.69		3.2 < 0.69		< 0.60 < 0.69	
Trichloroethene	< 0.69 0.71	J	< 0.69 350		< 0.69 220		< 0.69 1,200		< 0.69 180		< 0.69 210		< 76.00		< 0.69 480		< 0.69 250	
Vinyl acetate	< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	
Vinyl Bromide	< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67	
Vinyl chloride	< 0.39		4.7		2.3		3		1.7		3.9		< 0.39		2.3		2.6	
Cumulative VOCs (µg/m ³) ⁽²⁾			890.69		675.48		2,781.34	1	673.96		877.11		707.61		1,967.74		879.39	
Cum % Removal			NA		NA		NA		NA		NA		NA		NA		NA	
Target VOCs (μg/m ³) ⁽³⁾	1.54		680.64		541.50		2,501.10)	531.40		701.70		510.00		1,383.20)	690.00	
Target % Removal	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Manholes Online ⁴	MH-3 ^A		MH-1 ^A		MH-1, 3 [/]	4	MH-1 ^M		MH-1 ^A		MH-1, 2, 3	3 ^M	MH-1 ^M		MH-1 ^M		MH-1 ^A	
Notes:																		

Notes:

1. Samples analyzed for VOCs using USEPA Method TO-15.

2. Cumulative VOCs calculated using only detected concentrations.

3. Target VOCs calculated using only detected concentrations of the following compounds: 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, and trichloroethene.

4. Indicates which manhole(s) were online during the sampling event.

BOLD indicates detected concentrations.

Definitions:

< - less than reporting limit listed

J - indicates concentration is estimated

µg/m³ - micrograms per cubic meter

A - indicates that the system/manhole(s) was batching automatically during the sampling event

M - indicates that the air stripper/manhole(s) was turned on manually in order to collect a vapor sample.

NA - not applicable

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY. $_0$

0									Mid-Carbo	on								
Volatile Organic ⁽¹⁾ Compounds (µg/m ³)	1/28/2011	Q	2/23/2011	Q	4/5/2011	Q	7/7/2011	Q	10/12/2011	Q	1/26/2012	Q	4/5/2012	Q	7/12/2012	Q	10/17/2012	Q
1,1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	
1,1,2,2-Tetrachloroethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	
1,1,2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	
1,1-Dichloroethane	0.49	J	< 0.62		< 0.62		0.66		10		2.5		0.82		46		6.2	
1,1-Dichloroethene	< 0.60		< 0.60		< 0.60		< 0.60		< 0.60		< 0.60		< 0.60		1.7		< 0.60	
1,2,4-Trichlorobenzene	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	
1,2,4-Trimethylbenzene	1.9		2.1		3		14	J	< 0.75		5.9		0.65	J	1.2		0.6	J
1,2-Dibromoethane	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	
1,2-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1,2-Dichloroethane 1,2-Dichloropropane	< 0.62 < 0.70		< 0.62 < 0.70		< 0.62 < 0.70		< 0.62 < 0.70		< 0.62 < 0.70		< 0.62 < 0.70	_	< 0.62 < 0.70		< 0.62 < 0.70		< 0.62 < 0.70	
1,3,5-Trimethylbenzene	< 0.70		< 0.70 0.8		< 0.70 1		< 0.70 4.4		< 0.75		< 0.70 1.4		< 0.70		< 0.75		< 0.75	
1.3-butadiene	< 0.34		< 0.34		<0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.73		< 0.34	
1,3-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1,4-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	
1,4-Dioxane	2.3		< 1.10		< 1.10		1.3		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	
2,2,4-trimethylpentane	< 0.71		0.66	J	< 0.71		< 0.71		< 0.71		< 0.71		< 0.71		< 0.71		< 0.71	
4-ethyltoluene	0.6	J	0.95		2.2		3.5		< 0.75		0.9		< 0.75		< 0.75		< 0.75	
Acetone	20		37		7.5		25		3.5		4.3		1.9		4.2		4.4	
Allyl chloride	< 0.48		< 0.48		< 0.48		< 0.48		< 0.48		< 0.48	\square	< 0.48		< 0.48		< 0.48	
Benzene	2		0.81		< 0.49		< 0.49		< 0.49		< 0.49	\square	< 0.49		< 0.49		< 0.49	
Benzyl chloride	< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88	
Bromodichloromethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	
Bromoform	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	_	< 1.60		< 1.60		< 1.60	
Bromomethane Carbon disulfide	< 0.59 < 0.47		< 0.59 < 0.47		< 0.59 < 0.47		< 0.59 0.32	J	< 0.59 0.85		< 0.59 < 0.47	_	< 0.59 < 0.47		< 0.59 1.4		< 0.59 < 0.47	
Carbon disulide Carbon tetrachloride	0.4 7	J	< 0.47		< 0.96		< 0.96	3	< 0.96		< 0.47	_	< 0.96		< 0.96		< 0.47	
Chlorobenzene	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	
Chloroethane	< 0.40		< 0.40		< 0.40		< 0.40		0.46		0.8		0.54		< 0.40		< 0.40	
Chloroform	8.9		< 0.74		< 0.74		< 0.74		3.7			J	< 0.74		2.7		2.2	
Chloromethane	1.2		0.57		< 0.31		< 0.31		0.59		< 0.31		0.76		< 0.31		0.78	
cis-1,2-Dichloroethene	24		< 0.60		< 0.60		0.44	J	63		25		8.5		110		190	
cis-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	
Cyclohexane	< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52	
Dibromochloromethane	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	
Ethyl acetate	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	_	< 0.92		< 0.92		< 0.92	
Ethylbenzene	0.97		4.5		8.2		7.5		0.71		< 0.66	_	< 0.66		0.66		< 0.66	
Freon 11 Freon 113	3.1 1.2		< 0.86 < 1.20		< 0.86 < 1.20		9.9 < 1.20		1.5 16		0.86		< 0.86 < 1.20		8.5 66		1 12	
Freon 114	< 1.10		< 1.20		< 1.20		< 1.20		< 1.10		< 1.10		< 1.20		00 < 1.10		12 < 1.10	
Freon 12	3.6		4.2		4		5.7		3.8		2.6		1.6		< 0.75		2.5	
Heptane	0.62		0.79		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	
Hexachloro-1,3-butadiene	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	
Hexane	0.9		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	
Isopropyl alcohol	< 0.37		5.3		< 0.37		< 0.37		< 0.37		< 0.37		0.52		< 0.37		0.52	
m&p-Xylene	2.4		34	J	20		75		3.1		1.9		1.2	J	3		< 1.30	
Methyl Butyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	
Methyl Ethyl Ketone	3.1		< 0.90		1.9		1.7		0.87	J	0.9	\square	< 0.90		0.9		< 0.90	
Methyl Isobutyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	-	< 1.20		< 1.20		< 1.20	
Methyl tert-butyl ether	< 0.55		< 0.55		< 0.55		< 0.55		< 0.55		< 0.55	\dashv	< 0.55		< 0.55		< 0.55	
Methylene chloride	0.6 0.71		0.6 5.2		< 0.53 5.7		1.4 30		1.3 1.6		0.81	\dashv	1.2	J	3.5		0.78	
o-Xylene											0.88		0.62	J	1.2		< 0.66	
Propylene Styrene	< 0.26 0.48	J	< 0.26 < 0.65		< 0.26 < 0.65		< 0.26 < 0.65		< 0.26 < 0.65	1	< 0.26 < 0.65	-	< 0.26 < 0.65		< 0.26 < 0.65		< 0.26 < 0.65	
Tetrachloroethylene	8.8		< 1.00		< 1.00		1.5		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	
Tetrahydrofuran	12		5.5		8.4		4.2		6.5		1.8	\neg	< 0.45		5.8		2.7	
Toluene	4		21	J	21		39		2.2	1	0.69	╡	4.9		3.3		0.69	
trans-1,2-Dichloroethene	1		< 0.60		< 0.60		< 0.60		1.1		< 0.60		< 0.60		1.2		< 0.60	
trans-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	
Trichloroethene	32		< 0.82		< 0.82		3.2		0.49	J	< 0.82		< 0.82		< 0.82		0.66	J
Vinyl acetate	< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	
Vinyl Bromide	< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67	
Vinyl chloride	< 0.39		2.3		1.6		2.6		2.3		2.1		1		2.1		1.6	
Cumulative VOCs (µg/m ³) ⁽²⁾			126.28		84.50		231.32		123.57		54.77		24.21		263.36		226.63	
Cum % Removal			86%		87%		92%		82%		94%		97%		87%		74%	
Target VOCs (μg/m ³) ⁽³⁾			0.00		0.00		5.14		64.59		25.00		8.50		111.20		190.66	
Target % Removal			100%		100%	A	100%		88%		96%		98%		92%		72%	
Manholes Online ⁴	MH-3 ^A		MH-1 ^A		MH-1, 3		MH-1 ^M		MH-1 ^A		MH-1, 2, 3 ^M		MH-1 ^M		MH-1 ^M		MH-1 ^A	

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY. $_0$

0	Effluent																
Volatile Organic ⁽¹⁾ Compounds (µg/m ³)	1/28/2011	Q	2/23/2011	Q	4/5/2011	Q	7/7/2011	Q	10/12/2011	Q	1/26/2012 G	4/5/2012	Q	7/12/2012	Q	10/17/2012	Q
1,1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		0.72	J
1,1,2,2-Tetrachloroethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00	<u> </u>
1,1,2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 0.83	<u> </u>
1,1-Dichloroethane	< 0.62		< 0.62		< 0.62		< 0.62		17		2.4	0.82		12		35	<u> </u>
1,1-Dichloroethene	< 0.60		< 0.60		< 0.60		< 0.60		0.48	J	< 0.60	< 0.60		0.64		0.69	<u> </u>
1,2,4-Trichlorobenzene	< 1.10 1.5		< 1.10		< 1.10 1.3		< 1.10 3.3		< 1.10		< 1.10	< 1.10		< 1.10 2.1		< 1.10	
1,2,4-Trimethylbenzene 1.2-Dibromoethane	< 1.20		3.7 < 1.20		< 1.20		3.3 < 1.20		< 0.75 < 1.20		< 0.75 < 1.20	< 0.75		< 1.20		1.2 < 1.20	
1.2-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92	
1,2-Dichloroethane	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62		< 0.62	
1,2-Dichloropropane	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70		< 0.70	<u> </u>
1,3,5-Trimethylbenzene	0.65	J	1.4		0.65	J	1.3		< 0.75		< 0.75	< 0.75		0.95		0.75	<u> </u>
1,3-butadiene	< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34	< 0.34		< 0.34		< 0.34	
1,3-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92	
1,4-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92	
1,4-Dioxane	1.6		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10	
2,2,4-trimethylpentane	< 0.71		0.81		< 0.71		< 0.71		< 0.71		< 0.71	< 0.71		< 0.71		< 0.71	
4-ethyltoluene	< 0.75		0.95		0.8		0.95		< 0.75		< 0.75	< 0.75		0.6	J	< 0.75	
Acetone	100		27		8.5		6.2		4.4		5	3.9		< 0.72		140	
Allyl chloride	< 0.48		< 0.48		< 0.48		< 0.48		< 0.48		< 0.48	< 0.48		< 0.48		< 0.48	
Benzene	1.1		1.2		< 0.49		< 0.49		< 0.49		< 0.49	< 0.49		0.49		0.36	J
Benzyl chloride	< 0.88		< 0.88		< 0.88		< 0.88		< 0.88		< 0.88	< 0.88		< 0.88		< 0.88	<u> </u>
Bromodichloromethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00	<u> </u>
Bromoform	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60		< 1.60	
Bromomethane	< 0.59		< 0.59		< 0.59		< 0.59		< 0.59		< 0.59	< 0.59		< 0.59		< 0.59	
Carbon disulfide	< 0.47		< 0.47		< 0.47		0.47		0.38	J	< 0.47	< 0.47		1.1		1.6	<u> </u>
Carbon tetrachloride	< 0.96		< 0.96		< 0.96		< 0.96		< 0.96		< 0.96	< 0.96		< 0.96		< 0.96	
Chlorobenzene	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70		< 0.70	-
Chloroethane Chloroform	< 0.40 < 0.74		< 0.40 < 0.74		< 0.40 < 0.74		< 0.40 < 0.74		0.54 4.2		< 0.40 0.55	< 0.40		< 0.40 2.9		< 0.40 6	├
Chloromethane	< 0.74 1.3		< 0.74 0.8		< 0.74 0.94		< 0.74 1.2		4.2 0.92		< 0.31	< 0.74 0.76		< 0.31		o < 0.31	
cis-1,2-Dichloroethene	9.7	J	< 0.60		< 0.60		< 0.60		32		12	5		< 0.31 54		290	
cis-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 0.69	
Cyclohexane	< 0.52		< 0.52		< 0.52		0.66		< 0.52		< 0.52	< 0.52		< 0.52		< 0.52	
Dibromochloromethane	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	< 1.30		< 1.30		< 1.30	
Ethyl acetate	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92	
Ethylbenzene	0.97		2.4		1.5		1.8		< 0.66		< 0.66	< 0.66		1.3		< 0.66	
Freon 11	< 0.86		< 0.86		< 0.86		< 0.86		1.9		1.4	0.63	J	12		3.2	
Freon 113	< 1.20		< 1.20		< 1.20		< 1.20		22		22	< 1.20		9.7		83	
Freon 114	0.85	J	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10	
Freon 12	4.3		2.9		2.5		3.7		4.3		3.7	1.6		< 0.75		3.2	
Heptane	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62		< 0.62	
Hexachloro-1,3-butadiene	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60		< 1.60	<u> </u>
Hexane	< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54		< 0.54	<u> </u>
Isopropyl alcohol	< 0.37		6.7		4.2		< 0.37		< 0.37		< 0.37	1.3		< 0.37		20	<u> </u>
m&p-Xylene	2.7		9.9		7.2		8.4		< 1.30		1.3	< 1.30		6		0.71	J
Methyl Butyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 1.20	\vdash
Methyl Ethyl Ketone	22		< 0.90		2		1.9		1.5		< 0.90	< 0.90		0.99		0.72	J
Methyl Isobutyl Ketone Methyl tert-butyl ether	< 1.20 < 0.55		< 1.20 < 0.55		< 1.20 < 0.55		< 1.20 < 0.55		< 1.20 < 0.55		< 1.20 < 0.55	< 1.20 < 0.55		< 1.20 < 0.55		< 1.20 < 0.55	<u> </u>]
Methylene chloride	< 0.53		< 0.55 0.64		< 0.55 1.2		< 0.55 2.4		< 0.55 0.95		0.74	< 0.55 3.5		< 0.55 4.2		< 0.55 16	
o-Xylene	0.88		3.8		1.2		2.5		< 0.66		< 0.66	< 0.66		2.2		< 0.66	
Propylene	< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26	< 0.26		< 0.26		< 0.26	
Styrene	0.65		< 0.65		< 0.65		< 0.65		< 0.65		< 0.65	< 0.65		< 0.65		< 0.65	<u> </u>
Tetrachloroethylene	1.9		0.83	J	< 1.00		< 1.00		1.2		< 0.10	1		< 1.00		< 1.00	
Tetrahydrofuran	110		6.3		6		3.7		9.7		2.8	2.9		12		16	<u> </u>
Toluene	2.1		8.1		1.4		2.5		0.69		0.73	0.57		6.9		2.4	
trans-1,2-Dichloroethene	< 0.60		< 0.60		< 0.60		< 0.60		0.44	J	< 0.60	< 0.60		< 0.60		1.3	
trans-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 0.69	
Trichloroethene	21		< 0.82		< 0.82		< 0.82		< 0.82		< 0.82	1.4		< 0.82		3.7	
Vinyl acetate	< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54		< 0.54	
Vinyl Bromide	< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67	< 0.67		< 0.67		< 0.67	
Vinyl chloride	< 0.39		2.1		1		3.2		3.7		2.7	1.1		3.5		2.2	
Cumulative VOCs (µg/m ³) ⁽²⁾			79.53		40.99		44.18		106.30		55.32	24.48		133.57		628.75	
Cum % Removal			91%		94%		98%		84%		94%	97%		93%		29%	
Target VOCs (µg/m ³) ⁽³⁾			0.83		0.00		0.00		33.64		12.00	7.40		54.00		295.00	
Target % Removal			100%		100%		100%		94%		98%	99%		96%		57%	
Manholes Online ⁴	MH-3 ^A		MH-1 ^A		MH-1, 3 [⁄]	•	MH-1 ^M		MH-1 ^A		MH-1, 2, 3 ^M	MH-1	•1	MH-1 ^M		MH-1 ^A	

Table 7. Summary of Estimated Air Stripper Emissions, Former Lockheed Martin French Road Facility, Utica, NY.

			Maximum	1/28/2011	2/23/2011	4/4/2011	7/7/2011	10/12/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	Maximum	Actual Annual	Actual Annual
Volatile Organic Compounds ⁽¹⁾	AGC ⁽²⁾ (µg/m ³)	SGC ⁽²⁾ (µg/m³)	Effluent Concentration (µg/m ³) ⁽³⁾	Result (µg/m3)	Maximum Emission Rate (Ib/day) ⁽⁴⁾	Actual Annual Impact (µg/m ³) ⁽⁵⁾	Impact Percentage of AGC (%)								
1,1,1-Trichloroethane	5,000	9,000	0.72	ND	0.72	4.88E-05	5.70E-05	0.00							
1,1-Dichloroethane	0.63	-	35	ND	ND	ND	ND	17	2.4	0.82	12	35	2.37E-03	2.77E-03	0.44
1,1-Dichloroethene	70	-	0.69	ND	0.64	0.69	4.68E-05	5.46E-05	0.00						
1,2,4-Trimethylbenzene	290	-	3.7	1.5	3.7	1.3	3.3	ND	ND	ND	2.1	1.2	2.51E-04	3.05E-04	0.00
1,3,5-Trimethylbenzene	290	-	1.4	0.65 J	1.4	0.65 J	1.3	ND	ND	ND	0.95	0.75	9.49E-05	1.15E-04	0.00
1,4-Dioxane	0.13	3,000	1.6	1.6	ND	1.08E-04	1.32E-04	0.10							
2,2,4-trimethylpentane	3,300	-	0.81	ND	0.81	ND	5.49E-05	6.67E-05	0.00						
4-ethyltoluene	-	-	0.95	ND	0.95	0.8	0.95	ND	ND	ND	0.6	ND	6.44E-05	7.82E-05	-
Acetone	28,000	180,000	140	100	27	8.5	6.2	4.4	5	3.9	ND	140	9.49E-03	1.15E-02	0.00
Benzene	0.13	1,300	1.2	1.1	1.2	ND	ND	ND	ND	ND	0.49	0.36	8.14E-05	9.88E-05	0.08
Carbon disulfide	700	6,200	1.6	ND	ND	ND	0.47	ND	ND	ND	1.1	1.6	1.08E-04	1.32E-04	0.00
Chloroform	0.043	150	6	ND	ND	ND	0	ND	ND	ND	2.9	6	4.07E-04	4.94E-04	1.15
Chloromethane	90	22,000	1.3	1.3	0.8	0.94	1.2	0.92	ND	0.76	ND	ND	8.81E-05	1.07E-04	0.00
cis-1,2-Dichloroethene	63	-	290	9.7 J	ND	ND	ND	32	12	5	54	290	1.97E-02	2.39E-02	0.04
Cyclohexane	6,000	-	0.66	ND	ND	ND	0.66	ND	ND	ND	ND	ND	4.47E-05	5.43E-05	0.00
Ethylbenzene	1,000	54,000	2.4	0.97	2.4	1.5	1.8	ND	ND	ND	1.3	ND	1.63E-04	1.98E-04	0.00
Freon 11	1,000	68,000	12	ND	ND	ND	ND	ND	1.4	0.63 J	12	3.2	8.14E-04	9.88E-04	0.00
Freon 113	180,000	960,000	83	ND	ND	ND	ND	ND	22	ND	9.7	83	5.63E-03	6.83E-03	0.00
Freon 12	12,000	-	4.3	4.3	2.9	2.5	3.7	4.3	3.7	1.6	ND	3.2	2.92E-04	3.54E-04	0.00
Isopropyl alcohol	7,000	98,000	20	ND	6.7	4.2	ND	ND	ND	1.3	ND	20	1.36E-03	1.65E-03	0.00
m&p-Xylene	100	4,300	9.9	2.7	9.9	7.2	8.4	ND	1.3	ND	6	0.71	6.71E-04	8.15E-04	0.00
Methyl Ethyl Ketone	5,000	13,000	22	22	ND	2	1.9	1.5	ND	ND	0.99	0.72	1.49E-03	1.81E-03	0.00
Methylene chloride	2.1	14,000	16	ND	0.64	1.2	2.4	0.95	0.74	3.5	4.2	16	1.08E-03	1.32E-03	0.06
o-Xylene	100	4,300	3.8	0.88	3.8	1.8	2.5	ND	ND	ND	2.2	ND	2.58E-04	3.13E-04	0.00
Styrene	1,000	17,000	0.65	0.65	ND	4.41E-05	5.35E-05	0.00							
Tetrachloroethylene	1	1,000	1.9	1.9	0.83 J	ND	ND	1.2	ND	1	ND	ND	1.29E-04	1.56E-04	0.02
Tetrahydrofuran	350	30,000	110	110	6.3	6	3.7	9.7	2.8	2.9	12	16	7.46E-03	9.06E-03	0.00
Toluene	5,000	37,000	8.1	2.1	8.1	1.4	2.5	0.69	0.73	0.57	6.9	2.4	5.49E-04	6.67E-04	0.00
trans-1,2-Dichloroethene	63	-	1.3	ND	1.3	8.81E-05	1.07E-04	0.00							
Trichloroethene	0.5	14,000	21	21	ND	ND	ND	ND	ND	1.4	ND	3.7	1.42E-03	1.73E-03	0.35
Vinyl chloride	0.1	180,000	37	ND	2.1	1	3.2	37	2.7	1.1	3.5	2.2	2.51E-03	3.05E-03	3.05

Notes:

1. Volatile organic compounds shown are only those detected in effluent samples during 2011 through 2013

2. AGC and SGC values obtained from NYSDEC DAR-1 AGC/SGC Tables, dated 9/10/07.

3. Concentrations shown for each volatile organic compound are the maximum concentrations detected from 2011 through 2013.

4. Maximum emission rate calculated using the maximum vapor phase concentrations for each volatile organic compound and the average instantaneous vapor phase effluent flow rate (756 scfm) during 2012. Note that the system is not operated continuously, so the actual annual impact estimated in this table is calculated using a significantly higher volume of air than in actually emitted by the system.

5. Actual annual impact calculated by following procedures described in NYSDEC DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants (NYSDEC 1991). Note effective stack height of 28 feet.

Definitions:

< - less than laboratory detection limit listed

"-" - indicates no guideline as been established

AGC - Annual Guideline Concentration

J - Indicates concentration is estimated

lb/day - pounds per day

ND - non-detect

Q - data qualifier

SGC - Short-term Guideline Concentration

µg/m³ - micrograms per cubic meter

Table 8. Water Treatment Chemical Consumption Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Chemical Name - ARIES 2908	
Chemical Specific Gravity - 1.04 to 1.09	1.065
Specific Weight of Water @ 60°F	8.3378 (lb/gallon)
Specific Weight of Chemical @ 60°F	8.8798 (lb/gallon)

Date	Drum #	Days	Volume in 30 Gallon Drum (gal.)	% Full	∆ Volume (gal.)	Δ Lbs	Consumption Rate (Ibs/day) ⁽¹⁾	MH-1 Total Flow (gallons)	MH-2 Total Flow (gallons)	MH-3 Total Flow (gallons)	∑ Total Flows (gallons)	∆ Total Flow	Dose Rate This Period (ppm) ⁽²⁾	Notes
4/20/2011	1	-	30	100%	-	-	-	51,271,950	9,102,881	224,649	60,599,480	-	-	Brought sequestering agent online for first time.
5/19/2011	1	29	18.5	62%	11.5	102.1	3.5	51,670,347	9,169,542	455,374	61,295,263	695,783	16.5	
6/2/2011	1	14	14.1	47%	4.4	39.1	2.8	51,837,640	9,189,887	534,242	61,561,769	266,506	16.5	
7/7/2011	1	35	12	40%	2.1	18.6	0.5	52,075,707	9,227,668	672,141	61,975,516	413,747	5.1	Under dosing due to CFP being offline due to noted past alarms.
8/11/2011	1	35	7	23%	5	44.4	1.3	52,243,445	9,265,879	787,928	62,297,252	321,736	15.5	
9/8/2011	1	28	0	0%	7	62.2	2.2	52,508,569	9,342,539	966,290	62,817,398	520,146	13.5	Drum #1 empty.
									Ν	NEW DRUM ONL	INE			
9/9/2011	2	-	30	100%	-	-	-	52,552,901	9,347,402	986,141	62,886,444	-	-	Brought Drum #2 online.
9/26/2011	2	17	26	87%	4	35.5	2.1	52,717,931	9,374,727	1,081,024	63,173,682	287,238	13.9	Low sequestering agent flow alarm occurs due to solidified chemical. See noted 3.
10/6/2011	2	10	26	87%	0	0.0	0.0	52,842,625	9,395,515	1,142,812	63,380,952	207,270	0.0	See Note 3.
									Ν	NEW DRUM ONL	INE			
10/6/2011	3	-	30	100%	-	-	-	52,842,625	9,395,515	1,142,812	63,380,952	-	-	Cleaned and inspected fittings/tubing; brought Drum #3 online.
11/1/2011	3	26	26	87%	4	35.5	1.4	53,071,145	9,435,095	1,258,735	63,764,975	384,023	10.4	Continue using 3rd drum.
12/1/2011	3	30	0	0%	26	230.9	7.7	53,349,688	9,469,794	1,371,989	64,191,471	426,496	61.0	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
	NEW/OLD DRUM ONLINE													
12/1/2011	2	-	26	87%	-	-	-	53,349,688	9,469,794	1,371,989	64,191,471	-	-	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
12/22/2011	2		22	73%	4	35.5	1.7	53,525,286	9,491,900	1,437,180	64,454,366	262,895	15.2	
2011 Total	-	246	-	-	68	603.8	-	-	-	-	-	3,854,886	17.6	Through 12/22/2011
1/27/2012	2	36	15	50%	7	62.2	1.7	53,871,038	9,542,467	1,558,697	64,972,202	517,836	13.5	
2/9/2012	2	13	10	33%	5	44.4	3.4	54,009,006	9,573,810	1,612,670	65,195,486	223,284	22.4	
3/1/2012	2	21	7.5	25%	2.5	22.2	1.1	54,180,412	9,596,526	1,671,517	65,448,455	252,969	9.9	
4/5/2012	2	35	0	0%	7.5	66.6	1.9	54,447,552	9,635,004	1,770,699	65,853,255	404,800	18.5	Drum # 2 empty. Unmeasured volume of solidified chemical in bottom of drum; actual volume remaining greater than 0. Calculated dose rate assumes volume remaining of 0.
										NEW DRUM OLI	NE			
4/5/2012	4	-	30	100%	-	-	-	54,447,552	9,635,004	1,770,699	65,853,255	-	-	Brought Drum #4 online.
5/1/2012	4	26	27.5	92%	2.5	22.2	0.9	54,595,683	9,661,648	1,833,036	66,090,367	237,112	10.5	Drum noted to be under vacuum due to changes in temperatures and not properly vented.
6/7/2012	4	37	18	60%	9.5	84.4	2.3	54,904,479	9,710,985	1,975,634	66,591,098	500,731	19.0	
7/12/2012	4	35	13.7	46%	4.3	38.2	1.1	55,041,035	9,738,010	2,049,067	66,828,112	237,014	18.1	
8/15/2012	4	34	9	30%	4.7	41.7	1.2	55,163,445	9,766,492	2,138,534	67,068,471	240,359	19.6	
9/11/2012	4	27	6	20%	3	26.6	1.0	55,259,345	9,790,891	2,208,922	67,259,158	190,687	15.7	
10/17/2012	4	36	0.5	2%	5.5	48.8	1.4	55,424,161	9,830,240	2,314,556	67,568,957	309,799	17.8	
10/19/2012	4	2	0	0%	0.5	4.4	2.2	55,441,907	9,832,600	2,326,244	67,600,751	31,794	15.7	
										NEW DRUM OLI	NE			
10/19/2012	5	-	30	100%	-	-	-	55,441,907	9,832,600	2,326,244	67,600,751	-	-	Brought Drum #5 online.
11/8/2012	5	20	27	90%	3	26.6	1.3	55,542,079	9,852,388	2,383,045	67,777,512	176,761	17.0	
12/6/2012	5	28	23	77%	4	35.5	1.3	55,665,689	9,874,745	2,438,585	67,979,019	201,507	19.9	
2012 Total	-	350	-	-	59	523.9	-	-	-	-	-	3,524,653	16.7	Through 12/6/2012

Notes:

1) Maximum allowable daily loading rate of 12.5 lbs/day per WTC Usage Form dated 4/11/11.

2) Sequestering agent dosing rate is setup to be proportional to the aggregate flow transmitter value (not shown). However, this table utilizes the sum of the three individual pumping manhole flow transmitter values to calculate dose rate.

3) Sequestering agent low flow alarm occurred on 9/26/11 due to partial solidification of chemical within suction/injection fittings and tubing. Inspection not conducted until 10/6/11, during which time the fittings and tubing were cleaned. Drum #2 was taken offline until vendor could troubleshoot observation, in the interim Drum #3 was brought online.

Table 9. Groundwater Elevation Measurements, Former Lockheed Martin French Road Facility, Utica, New York.

MW - 1 MW - 2 MW - 3 MW - 4 MW - 5 MW - 6 MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 14SR MW - 15S	Elevation 506.80 504.69 509.30 506.73 504.46 508.58 506.94 505.15 504.48 507.03 508.34	February 8.11 NM 10.58 NM 3.81 6.87 8.53 2.60	23, 2011 498.69 498.72 500.65 501.71	April 1 6.84 4.05 9.30	, 2011 499.96 500.64	July 5, 8.57		Septembe	00.0011
MW - 2 MW - 3 MW - 4 MW - 5 MW - 6 MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 14S MW - 14BR	504.69 509.30 506.73 504.46 508.58 506.94 505.15 504.48 507.03	NM 10.58 NM 3.81 6.87 8.53 2.60	 498.72 500.65	4.05 9.30		0 5 7		Coptembe	· · · · · · · · · · · · · · · · · · ·
MW - 3 MW - 4 MW - 5 MW - 6 MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	509.30 506.73 504.46 508.58 506.94 505.15 504.48 507.03	10.58 NM 3.81 6.87 8.53 2.60	498.72 500.65	9.30	500 64		498.23	8.09	498.71
MW - 4 MW - 5 MW - 6 MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	506.73 504.46 508.58 506.94 505.15 504.48 507.03	NM 3.81 6.87 8.53 2.60	 500.65			5.89	498.80	5.42	499.27
MW - 5 MW - 6 MW - 7 MW - 9 MW - 10 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	504.46 508.58 506.94 505.15 504.48 507.03	3.81 6.87 8.53 2.60	500.65	6.12	500.00 500.61	10.98 11.24	498.32 495.49	10.58 10.55	498.72 496.18
MW - 6 MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	508.58 506.94 505.15 504.48 507.03	6.87 8.53 2.60		2.48	501.98	2.63	501.83	3.08	501.38
MW - 7 MW - 9 MW - 10 MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	506.94 505.15 504.48 507.03	8.53 2.60		5.92	502.66	6.23	502.35	5.59	502.99
MW - 10 MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	505.15 504.48 507.03	2.60	498.41	7.65	499.29	7.84	499.10	7.46	499.48
MW - 11 MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR	507.03		502.55	1.99	503.16	3.01	502.14	2.55	502.60
MW - 12 MW - 13S MW - 13BR MW - 14S MW - 14BR		4.41	500.07	3.53	500.95	5.16	499.32	4.80	499.68
MW - 13S MW - 13BR MW - 14S MW - 14BR	508.34	8.50	498.53	7.89	499.14	8.09	498.94	6.80	500.23
MW - 13BR MW - 14S MW - 14BR		NM		10.90	497.44	12.08	496.26	NM	
MW - 14S MW - 14BR	506.03	NM		5.40	500.63	DRY		6.68	499.35
MW - 14BR	506.28	NM		9.55	496.73	10.67	495.61	10.94	495.34
	507.85	9.86	497.99	10.22	497.63	12.57	495.28	10.35	497.50
10100 - 100	507.95	29.25	478.70	28.02	479.93	25.46	482.49	23.55	484.40
MW - 15BR	507.46 507.29	8.04 34.23	499.42 473.06	8.24 33.48	499.22 473.81	8.38 31.94	499.08 475.35	8.28 30.79	499.18 476.50
MW-16	507.29	NI		NI		NI		NI	
MW-17	504.69	NI		NI		NI		NI	
MW-18	504.97	NI		NI		NI		NI	
MW-19	503.13	NI		NI		NI		NI	
MW-20	503.40	NI		NI		NI		NI	
MW-21	503.66	NI		NI		NI		NI	
IW-1	503.30	NI		NI		NI		NI	
PZ - 2	508.95	1.78	507.17	6.23	502.72	3.08	505.87	NM	
PZ - 4	505.51	NM		NM		1.42	504.09	0.47	505.04
PZ - 5	508.29	9.13	499.16	8.99	499.30	8.94	499.35	8.83	499.46
PZ - 6	508.37	9.44	498.93	9.08	499.29	9.32	499.05	9.11	499.26
PZ - 7 PZ - 8	508.36 508.23	8.98 8.91	499.38 499.32	8.80 9.00	499.56 499.23	9.00 9.51	499.36 498.72	8.89 9.05	499.47 499.18
PZ - 9	508.08	8.22	499.86	7.88	500.20	8.02	500.06	7.86	500.22
PZ - 10	508.14	8.70	499.44	8.75	499.39	9.08	499.06	8.78	499.36
PZ - 11R	505.82	7.04	498.78	7.22	498.60	8.64	497.18	8.44	497.38
PZ - 13R	503.85	6.39	497.46	6.46	497.39	8.17	495.68	8.05	495.80
PZ - 17	504.05	5.66	498.39	5.68	498.37	6.17	497.88	6.47	497.58
PZ - 18	504.85	6.39	498.46	6.53	498.32	7.99	496.86	7.85	497.00
PZ - 19	504.60	6.60	498.00	6.65	497.95	7.36	497.24	7.09	497.51
PZ - 20	503.85	6.28	497.57	6.38	497.47	7.04	496.81	6.62	497.23
PZ - 21	505.70	8.90	496.80	DRY		DRY		DRY	
PZ - 22	508.57	6.73 6.81	501.84	7.30	501.27	7.94	500.63	7.56 6.12	501.01
PZ - 23 PZ - 24	510.07 507.83	10.23	503.26 497.60	6.09 10.52	503.98 497.31	6.82 10.92	503.25 496.91	10.74	503.95 497.09
PZ - 24	510.62	6.52	504.10	5.96	504.66	6.67	503.95	6.05	504.57
PZ - 26	510.02	9.07	501.88	8.72	502.23	9.21	501.74	8.99	501.96
PZ - 27	510.00	8.80	501.33	10.08	500.05	11.13	499.00	11.47	498.66
PZ - 28	504.12	3.49	500.63	3.53	500.59	3.93	500.19	3.04	501.08
PZ - 29	503.84	NM		2.36	501.48	2.43	501.41	2.12	501.72
PZ - 30	504.72	3.68	501.04	3.56	501.16	4.10	500.62	3.54	501.18
PZ - 31	505.17	1.46	503.71	2.10	503.07	2.33	502.84	1.46	503.71
PZ - 32	504.90	0.65	504.25	0.53	504.37	1.84	503.06	0.45	504.45
PZ - 33	510.00	DRY		DRY		6.82	503.18	DRY	
PZ - 34	503.88	2.30	501.58	2.34	501.54	3.11	500.77	2.41	501.47
PZ - 35 PZ - 36	503.98	NM 1.12	502.92	0.98 1.00	503.00 503.04	2.09 1.55	501.89 502.49	1.04 1.09	502.94 502.95
PZ - 36 PZ - 39	504.04 504.51	2.75	502.92	1.90	503.04	3.53	502.49	2.62	502.95
PZ - 39	504.51	4.45	502.01	4.49	501.97	4.92	501.54	4.58	501.89
PZ - 41	506.27	4.12	502.15	4.10	502.17	4.51	501.76	4.22	502.05
PZ - 42	505.18	NM		0.30	504.88	0.62	504.56	0.28	504.90
A1-PZ1	503.77	NM		1.16	502.61	1.53	502.24	NM	
A1-PZ2	503.00	1.92	501.08	2.33	500.67	2.30	500.70	2.00	501.00
A2-PZ1	509.74	NM		3.49	506.25	4.35	505.39	3.87	505.87
A2-PZ2	509.46	6.89	502.57	6.41	503.05	6.63	502.83	6.08	503.38
A2-PZ3	509.46	1.69	507.77	2.98	506.48	3.06	506.40	NM	
A2-PZ4	509.40	0.40	509.00	0.81	508.59	1.86	507.54	0.65	508.75
A2-PZ5	510.03	2.13	507.90	7.68	502.35	7.88	502.15	5.81	504.22
A2-PZ6	509.74	1.21	508.53	0.54	509.20	3.25	506.49	1.20	508.54
A2-PZ7 A2-PZ8	509.59 509.70	1.63 0.75	507.96 508.95	5.74 0.80	503.85 508.90	6.27 5.72	503.32 503.98	NM 0.74	508.96

Notes:

- All elevations are reported as feet mean sea level (ft msl) - Survey data is referenced horizontally to the NAD83 and projected on the New York State Plane Coordinate System (Central Zone). The reference vertical benchmark is the finished floor elevation Definitions:

NI - not installed

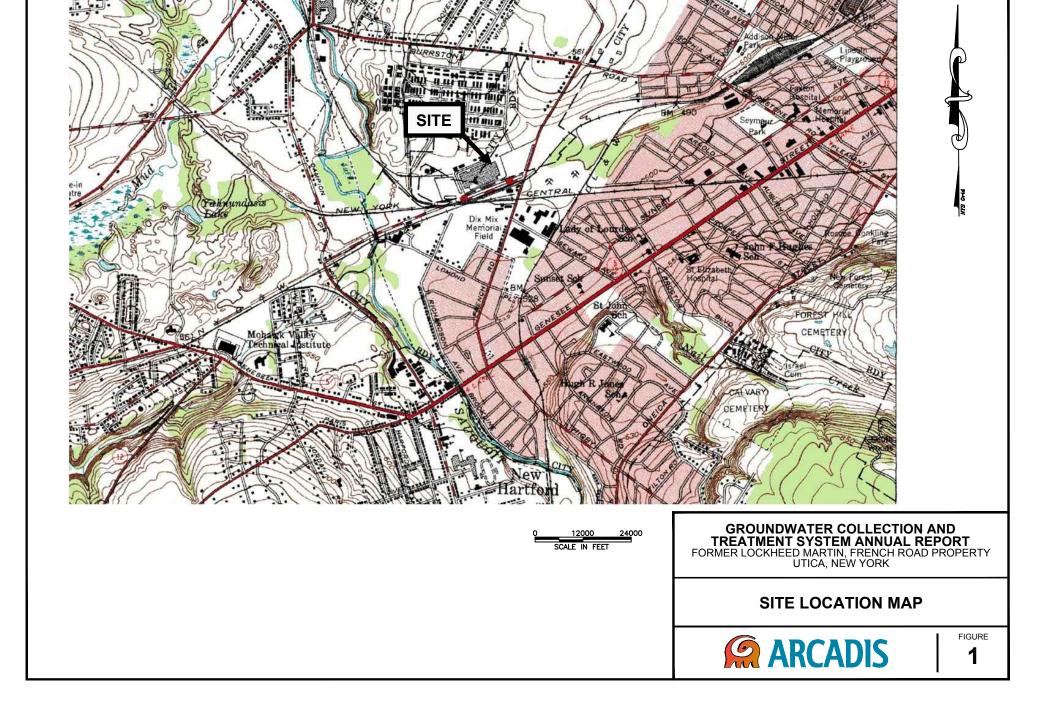
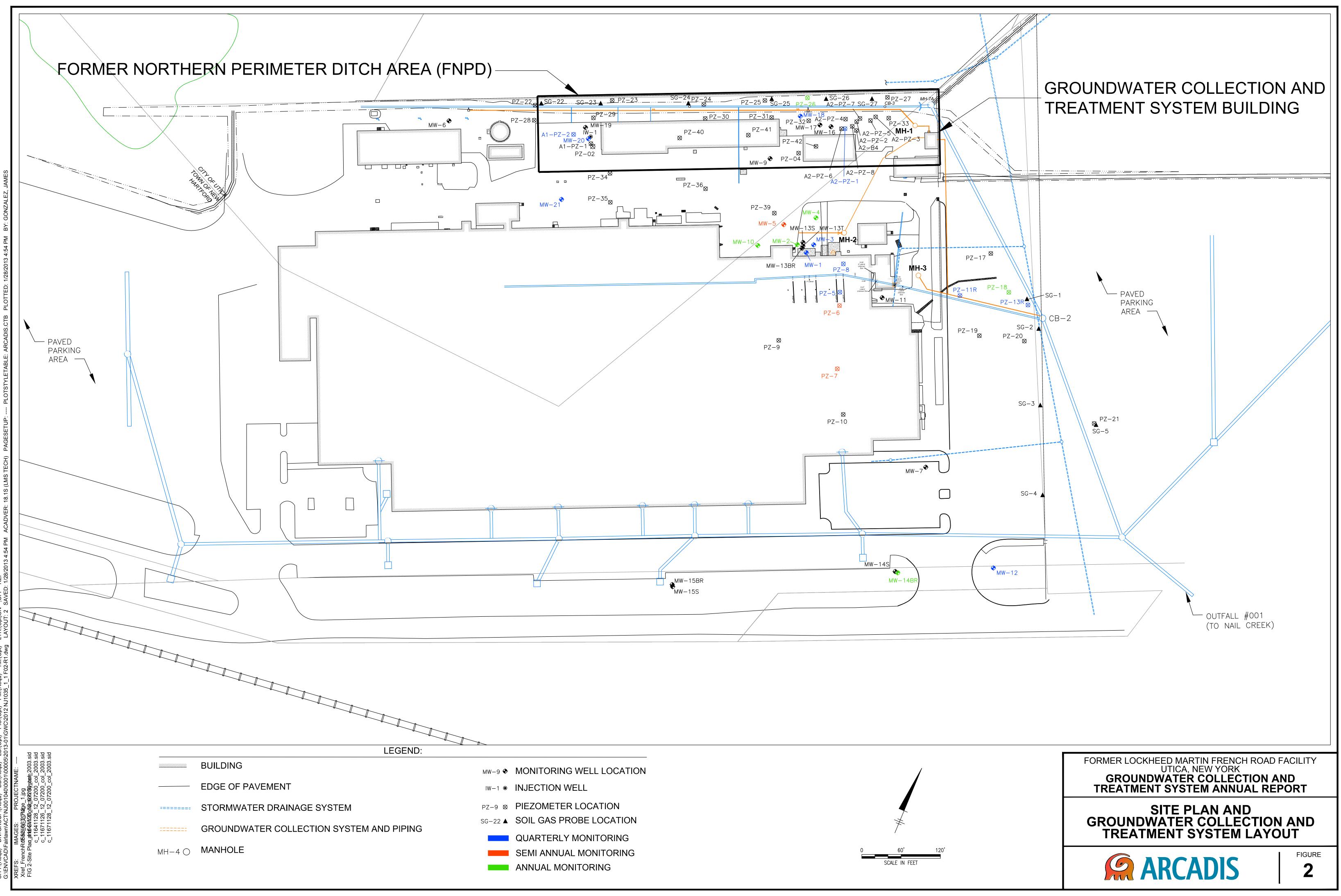

NM - not measured

Table 9. Groundwater Elevation Measurements, Former Lockheed Martin French Road Facility, Utica, New York.

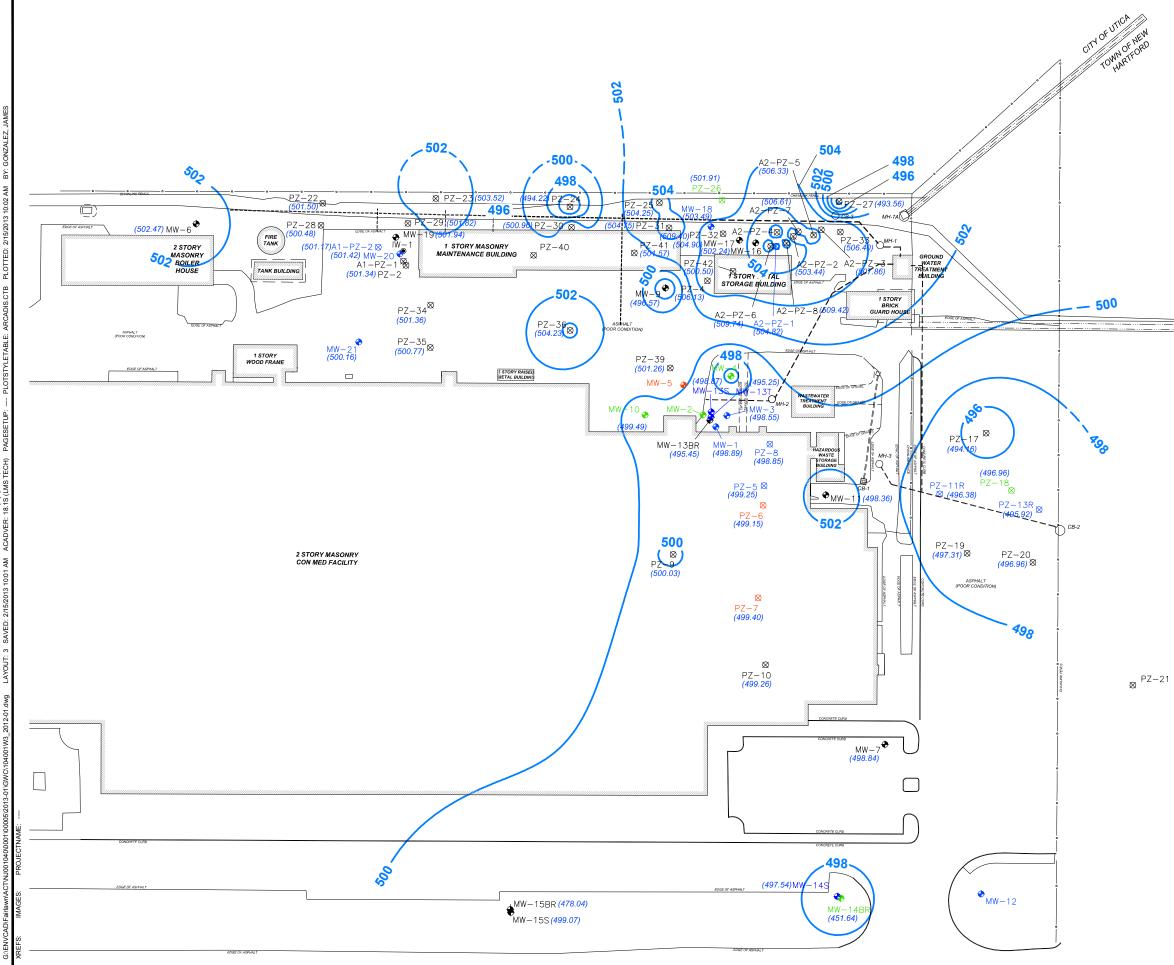
Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)	Depth to water (from top of PVC riser)	Groundwater Elevation (ft)
January		April 10		July 9,		October	,
8.39	498.41	8.64	498.16	8.77	498.03	8.53	498.27
NM 10.00		5.91	498.78	5.98	498.71	5.93	498.76
10.90 11.48	498.40 495.25	11.18 11.70	498.12 495.03	11.2 11.81	498.10 494.92	10.93 11.31	498.37 495.42
NM		4.73	499.73	5.22	499.24	4.85	499.61
5.59	502.99	6.36	502.22	6.91	501.67	6.49	502.09
8.10	498.84	8.01	498.93	7.92	499.02	7.57	499.37
3.28	501.87	3.41	501.74	3.69	501.46	2.97	502.18
4.99	499.49	5.37	499.11	5.49	498.99	5.16	499.32
8.27	498.76	8.47	498.56	8.27	498.76	7.88	499.15
NM		12.00	496.34	12.12	496.22	12.12	496.22
6.94 10.67	499.09 495.61	DRY 10.05	 496.23	DRY NM		DRY 10.82	495.46
10.87	495.61	10.05	496.23	10.79	497.06	10.82	495.46
56.31	451.64	51.30	456.65	46.1	461.85	41.77	466.18
8.19	499.27	8.44	499.02	8.62	498.84	8.67	498.79
29.20	478.09	28.28	479.01	27.31	479.98	26.43	480.86
4.19	500.50	4.25	500.44	4.46	500.23	4.45	500.24
2.40	502.24	4.14	500.50	4.13	500.51	3.68	500.96
1.48	503.49	3.45	501.52	3.61	501.36	3.4	501.57
1.19	501.94	1.42	501.71	1.46	501.67	1.02	502.11
1.98	501.42	2.50	500.90	2.83	500.57	2.68	500.72
3.50	500.16	3.30	500.36	3.12	500.54	3.11	500.55
1.88 2.35	501.42 506.60	NM 2.98	 505.97	2.7	500.60 503.99	2.2 3.71	501.10 505.24
0.00	505.51	2.98	502.66	4.96 3	503.99	1.29	505.24
9.04	499.25	10.11	498.18	9.88	498.41	9.44	498.85
9.22	499.15	9.48	498.89	9.44	498.93	9.95	498.42
8.96	499.40	9.12	499.24	9.13	499.23	9	499.36
9.38	498.85	DRY		DRY		9.43	498.80
8.05	500.03	8.15	499.93	8.06	500.02	8.04	500.04
8.88	499.26	9.08	499.06	9.1	499.04	8.98	499.16
8.50	497.32	8.76	497.06	8.74	497.08	NM	
8.06	495.79	8.16	495.69	8.15	495.70	8.13	495.72
9.89 7.89	494.16 496.96	7.30 7.97	496.75 496.88	7.75 8.08	496.30 496.77	7.41 7.98	496.64 496.87
7.29	496.96	7.43	496.88	7.52	497.08	7.98	496.87
6.89	496.96	7.14	496.71	7.28	496.57	6.86	496.99
DRY		DRY		DRY		DRY	
7.07	501.50	7.79	500.78	8.54	500.03	8.62	499.95
6.55	503.52	6.81	503.26	7.24	502.83	6.75	503.32
10.55	497.28	10.85	496.98	11.02	496.81	11.00	496.83
6.37	504.25	6.72	503.90	6.98	503.64	6.80	503.82
9.04	501.91	9.24	501.71	9.48	501.47	9.42	501.53
10.56	499.57	11.00	499.13	11.30	498.83	11.43	498.70
3.64 2.02	500.48 501.82	3.93 2.71	500.19 501.13	4.20 3.00	499.92 500.84	3.91 2.26	500.21 501.58
3.76	500.96	4.18	500.54	4.37	500.84	3.98	500.74
1.42	503.75	1.49	503.68	2.61	502.56	0.00	505.17
0.00	504.90	2.32	502.58	2.98	501.92	0.60	504.30
3.60	506.40	DRY		DRY		DRY	
2.52	501.36	2.80	501.08	3.30	500.58	8.11	495.77
3.21	500.77	2.06	501.92	2.56	501.42	1.95	502.03
0.00	504.04	2.79	501.25	2.00	502.04	1.75	502.29
3.25	501.26	3.87	500.64	4.00	500.51	3.10	501.41
NM		5.05	501.41	5.39	501.07	4.93	501.53
4.70 NM	501.57	4.80 0.61	501.47 504.57	5.07 1.15	501.20 504.03	4.63 0.55	501.64 504.63
NM		2.12	501.65	2.37	504.03	1.50	504.63
1.83	501.17	1.27	501.73	2.66	500.34	2.30	500.70
4.18	505.56	4.44	505.30	5.85	503.89	4.10	505.64
6.30	503.16	6.66	502.80	6.77	502.69	6.15	503.31
1.60	507.86	3.72	505.74	4.41	505.05	2.85	506.61
0.00	509.40	2.10	507.30	5.52	503.88	0.82	508.58
3.70	506.33	7.84	502.19	8.01	502.02	6.38	503.65
0.00	509.74	2.31	507.43	4.63	505.11	NM	
2.98	506.61	6.28	503.31	6.61	502.98	5.61	503.98

n of the southeasterly corner of the Boiler House Building (Elevation 506.50 feet).

Figures


CITY:(MAHWAH) DIV/GROUP:(ENRI-1) DB:(JG LD:(Opt) PIC:(Opt) PIM:(CM) TM:(BM) LYR:(Opt)ON=*;OFF=*REF* G:ENVCAD/Mahwah/ACT/NJ0010001/00001/00001/00001/2012-02/FIG 1- SITE LOCATION.dwg LAYOUT: 1 SAVED: 2/20/2012 3:39 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: ---- PLOTTED: 2/20/2012 3:39 PM BY: GONZALEZ, JAMES

XREFS


IMAGES:

Picture

PROJECTNAME:

MW−9 �	MONITORING WELL LOCATION
W−1 ●	INJECTION WELL
PZ−9 Ø	PIEZOMETER LOCATION
SG-22 ▲	SOIL GAS PROBE LOCATION
	QUARTERLY MONITORING
	SEMI ANNUAL MONITORING
	ANNUAL MONITORING

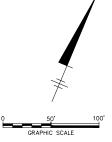
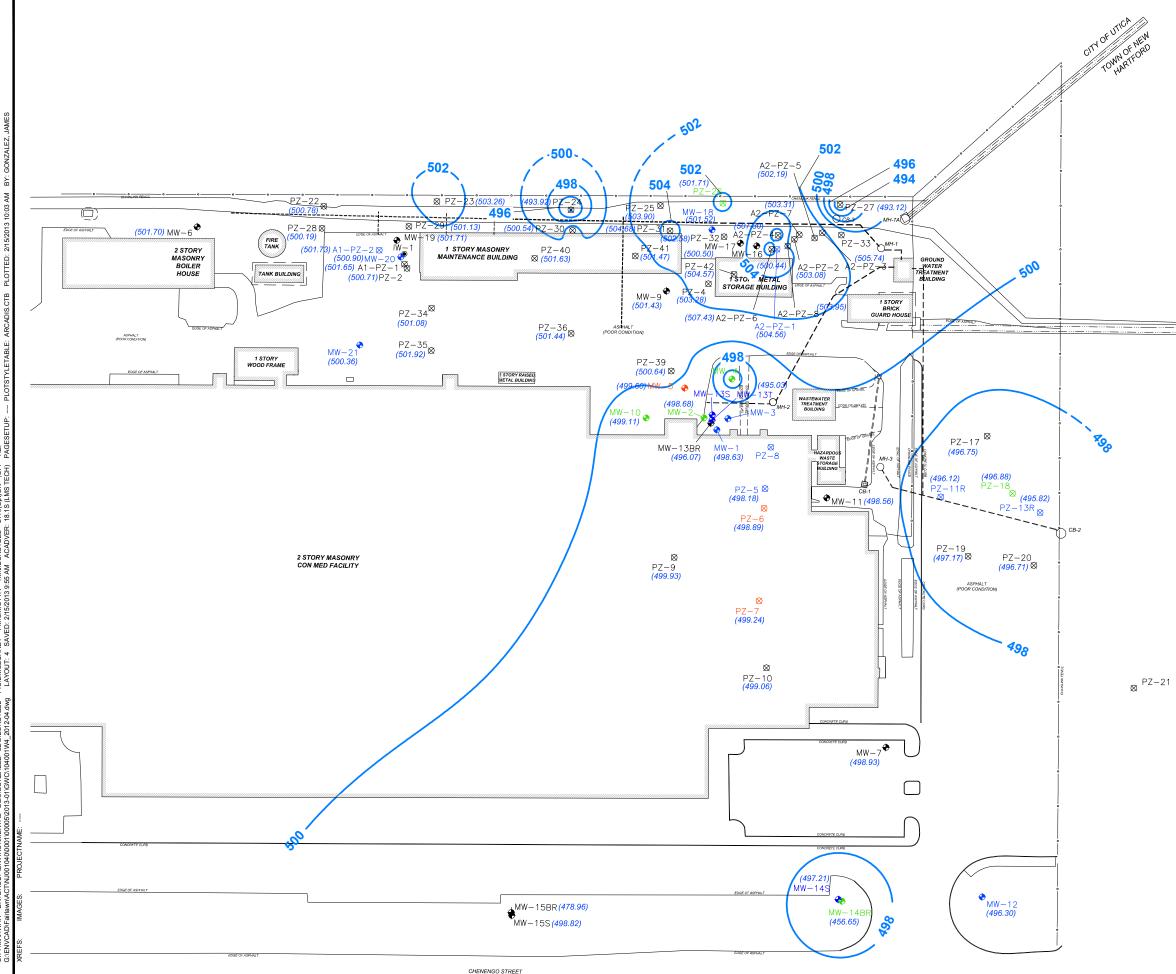

PIC:L.MCBURNEY PM:C.MOTTA TM:J.BONSTEEL LYR:(Op!)ON=*;0FF=*REF* LAYOUT: 3 SAVED: 2/15/2013 10:01 AM ACADVER: 18.1S (LMS TECH) PAG DB:J.GONZALEZ LD:J.BONSTEEL 013-01\GWC\104001W3_2012-01.dwg NMENTAL ENVIRO

FIGURE 3

FORMER LOCKHEED MARTIN, FRENCH ROAD FACILITY UTICA, NEW YORK GROUNDWATER CONTOURS JANUARY 2012


GROUNDWATER COLLECTION AND TREATMENT SYSTEM ANNUAL REPORT

- 3. WELLS MW-13S, PZ-8, PZ-21, AND PZ-33 WERE NOTED TO BE DRY AND NOT USED FOR GROUNDWATER CONTOURS.
- 2. MW-3 WAS UNABLE TO BE ACCESSED DUE TO SITE CONDITIONS.
- ALL WELLS AND PIEZOMETERS SHOWN ARE UTILIZED FOR QUARTERLY GROUNDWATER ELEVATIONS EXCEPT WELLS IW-1, MW-13BR, MW-14BR, AND MW-15BR.
- NOTES:
- IW-1 INJECTION WELL LOCATION MONITORING WELL LOCATION MW-10€ PIEZOMETER LOCATION PZ-9 ⊠ QUARTERLY SAMPLING LOCATION SEMI ANNUAL SAMPLING LOCATION ANNUAL SAMPLING LOCATION (496.38) QUARTERLY GROUNDWATER ELEVATION POINT GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED) **500** _____ GROUNDWATER COLLECTION TRENCH FENCE LINE ^{MH-2}O MANHOLE LOCATION
- LEGEND:

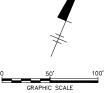
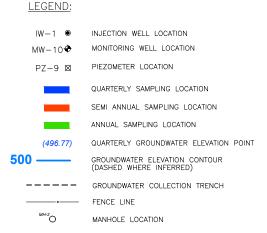

PIC:L.MCBURNEY PM:C.MOTTA TM:J.BONSTEEL LYR;(Opi)ON=*,0FF=*REF* LAYOUT: 4 SAVED: 2/15/2013 9:55 AM ACADVER: 18.1S (LMS TECH) PAGE DB:J.GONZALEZ LD:J.BONSTEEL 013-01\GWC\104001W4_2012-04.dwg NMENTAL ENVIRO ≧

FIGURE 4

GROUNDWATER COLLECTION AND TREATMENT SYSTEM ANNUAL REPORT FORMER LOCKHEED MARTIN, FRENCH ROAD FACILITY UTICA, NEW YORK



- 3. WELLS MW-13S, PZ-8, PZ-21, AND PZ-33 WERE NOTED TO BE DRY AND NOT USED FOR GROUNDWATER CONTOURS.
- 2. MW-3 WAS UNABLE TO BE ACCESSED DUE TO SITE CONDITIONS.

- ALL WELLS AND PIEZOMETERS SHOWN ARE UTILIZED FOR QUARTERLY GROUNDWATER ELEVATIONS EXCEPT WELLS IW-1, MW-13BR, MW-14BR, AND MW-15BR.
- NOTES:

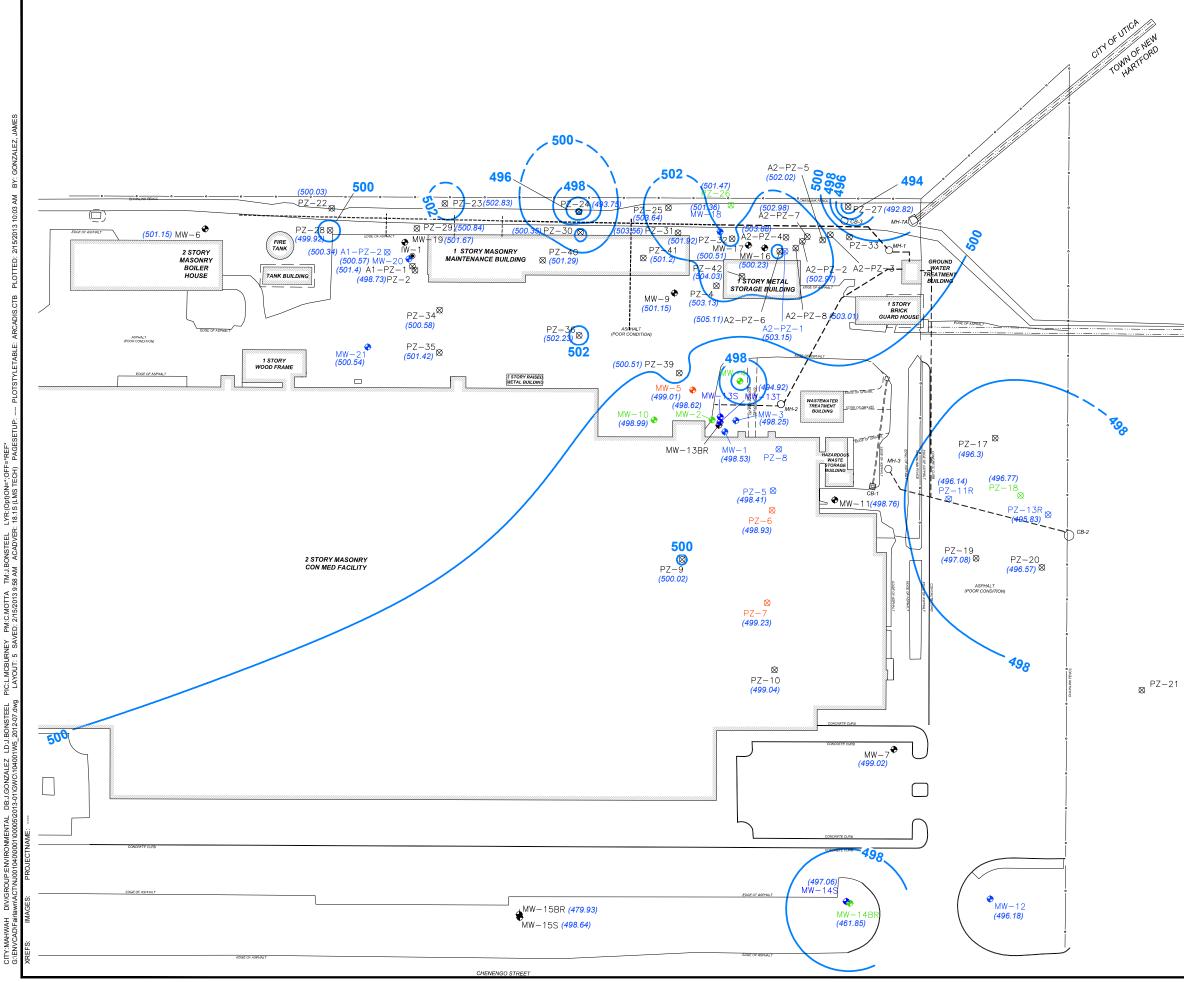
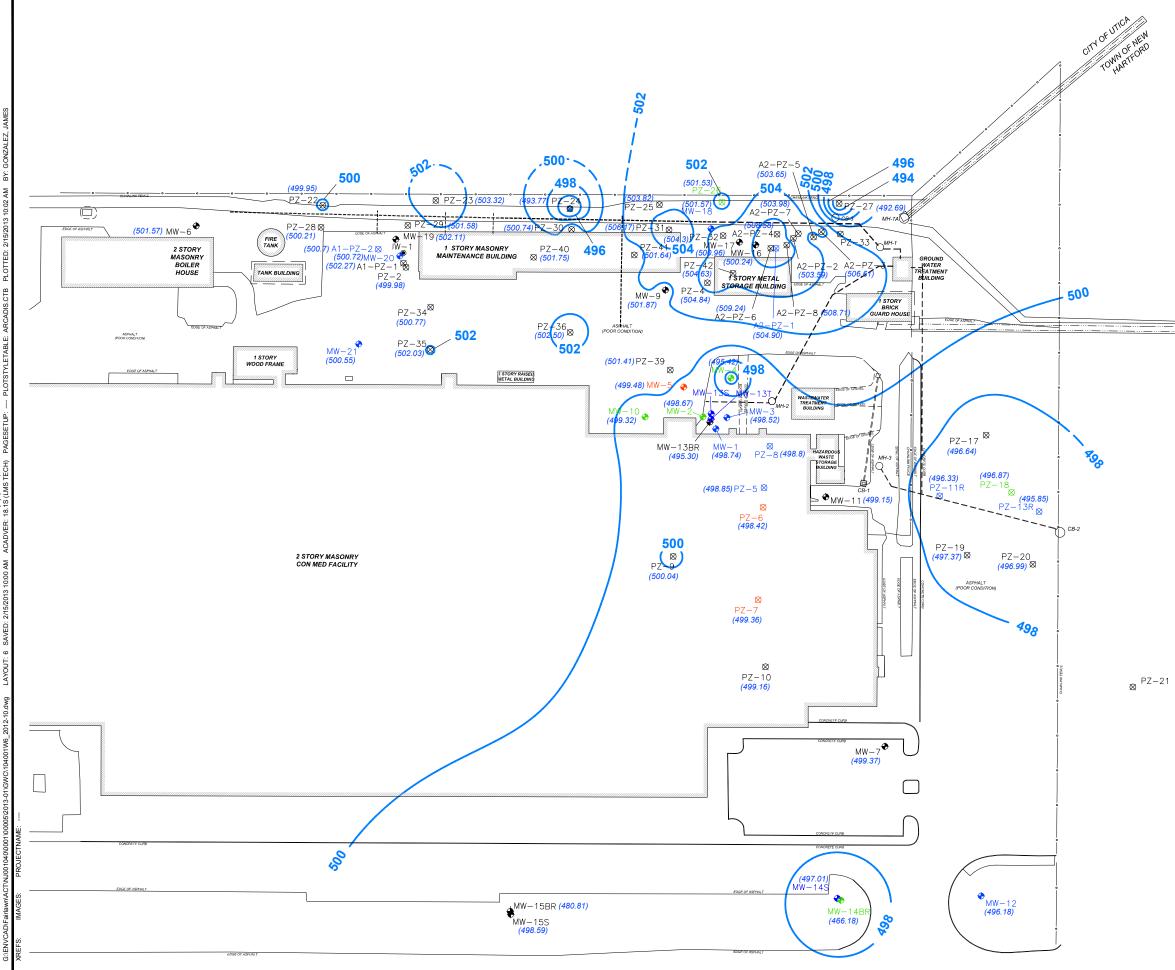


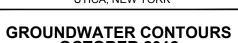
FIGURE 5

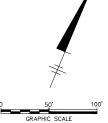
GROUNDWATER CONTOURS JULY 2012


GROUNDWATER COLLECTION AND TREATMENT SYSTEM ANNUAL REPORT FORMER LOCKHEED MARTIN, FRENCH ROAD FACILITY UTICA, NEW YORK

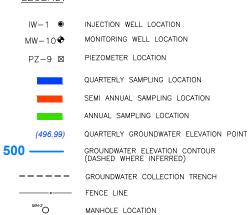
- 3. WELLS MW-13S, PZ-21, AND PZ-33 WERE NOTED TO BE DRY AND NOT USED FOR GROUNDWATER CONTOURS.
- 2. MW-13BR WAS UNABLE TO BE ACCESSED DUE TO SITE CONDITIONS.
- ALL WELLS AND PIEZOMETERS SHOWN ARE UTILIZED FOR QUARTERLY GROUNDWATER ELEVATIONS EXCEPT WELLS IW-1, MW-13BR, MW-14BR, AND MW-15BR.
- NOTES:

PIC:L.MCBURNEY PM:C.MOTTA TM:J.BONSTEEL LYR:(Op!)ON=*;0FF=*REF* LAYOUT: 6 SAVED: 2/15/2013 10:00 AM ACADVER: 18.13 (LMS TECH) PAG DB:J.GONZALEZ LD:J.BONSTEEL 013-01\GWC\104001W6_2012-10.dwg ENVIRONMENTAL ≧ Ĕ



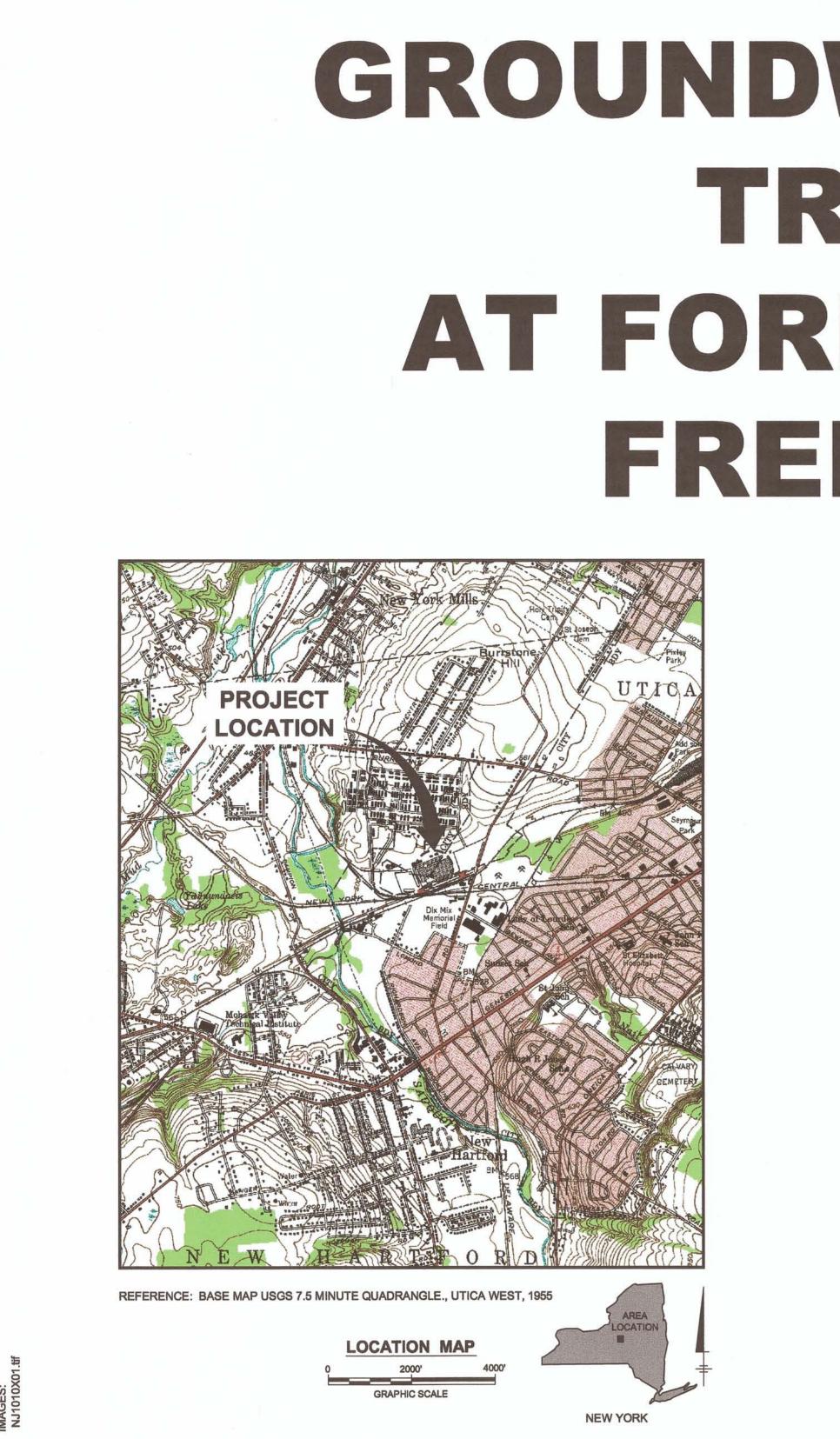


GROUNDWATER CONTOURS OCTOBER 2012



GROUNDWATER COLLECTION AND TREATMENT SYSTEM ANNUAL REPORT

- 2. WELLS MW-13S, PZ-21, AND PZ-33 WERE NOTED TO BE DRY AND NOT USED FOR GROUNDWATER CONTOURS.
- ALL WELLS AND PIEZOMETERS SHOWN ARE UTILIZED FOR QUARTERLY GROUNDWATER ELEVATIONS EXCEPT WELLS IW-1, MW-13BR, MW-14BR, AND MW-15BR.
- NOTES:



LEGEND:

Appendix A

Record Drawings

RECORD DRAWINGS GROUNDWATER COLLECTION AND TREATMENT SYSTEM AT FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY

DATE ISSUED **MARCH 2011**

LOCKHEED MARTIN CORPORATION **UTICA, NEW YORK**

ARCADIS OF NEW YORK, INC.

INDEX TO DRAWINGS

GENERA

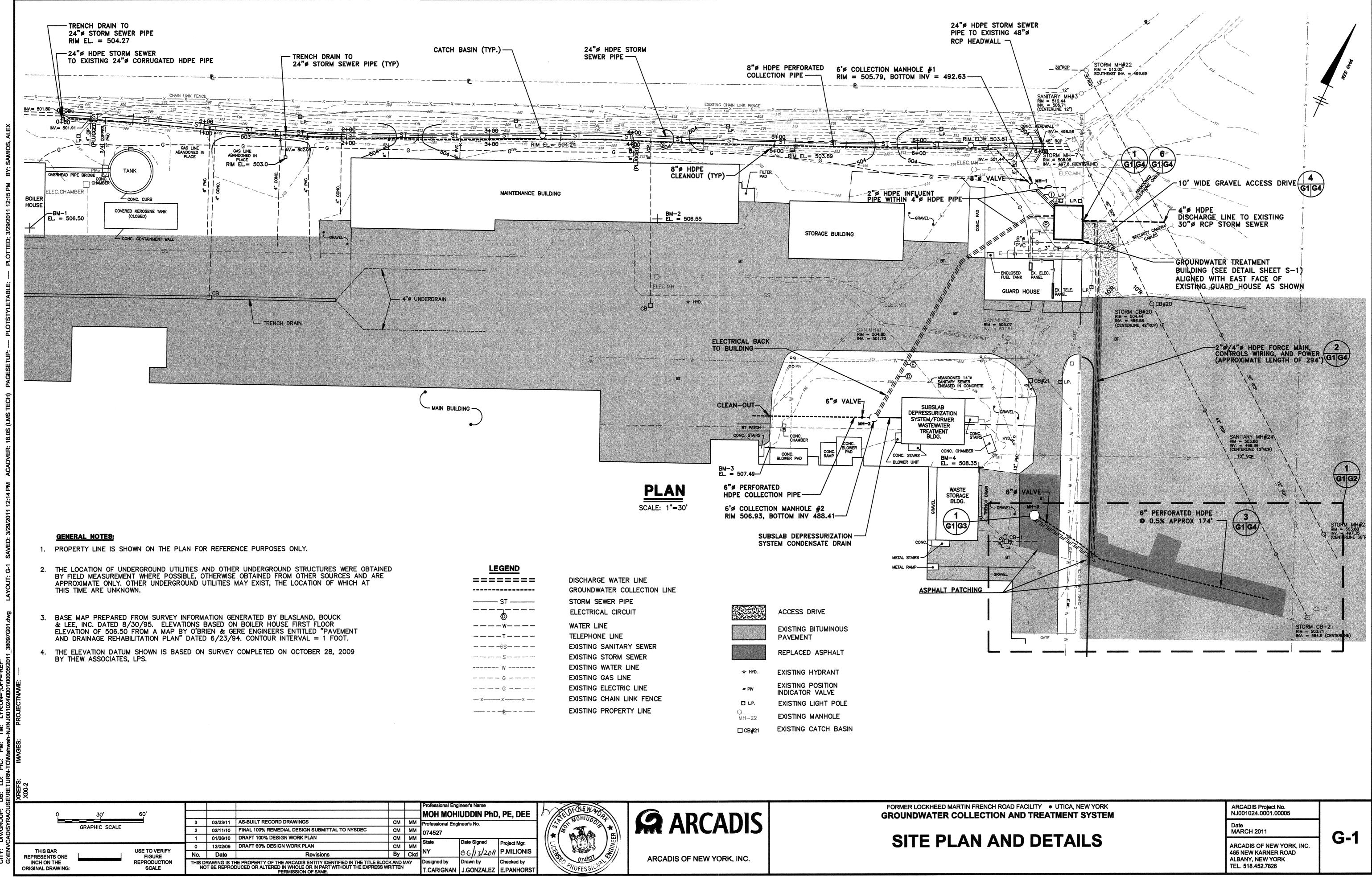
- G-1 SITE PLAN
- G-2 PLAN & PROFILE OF MH-3 AND GROUNDWATER COLLECTION TRENCH
- PUMPING MANHOLE DETAILS AND SPECIFICATIONS G-3
- PIPING AND TRENCHING DETAILS G-4
- GENERAL NOTES AND ABBREVIATIONS G-5
- G-6 LEGEND AND SYMBOLS

MECHANICAL

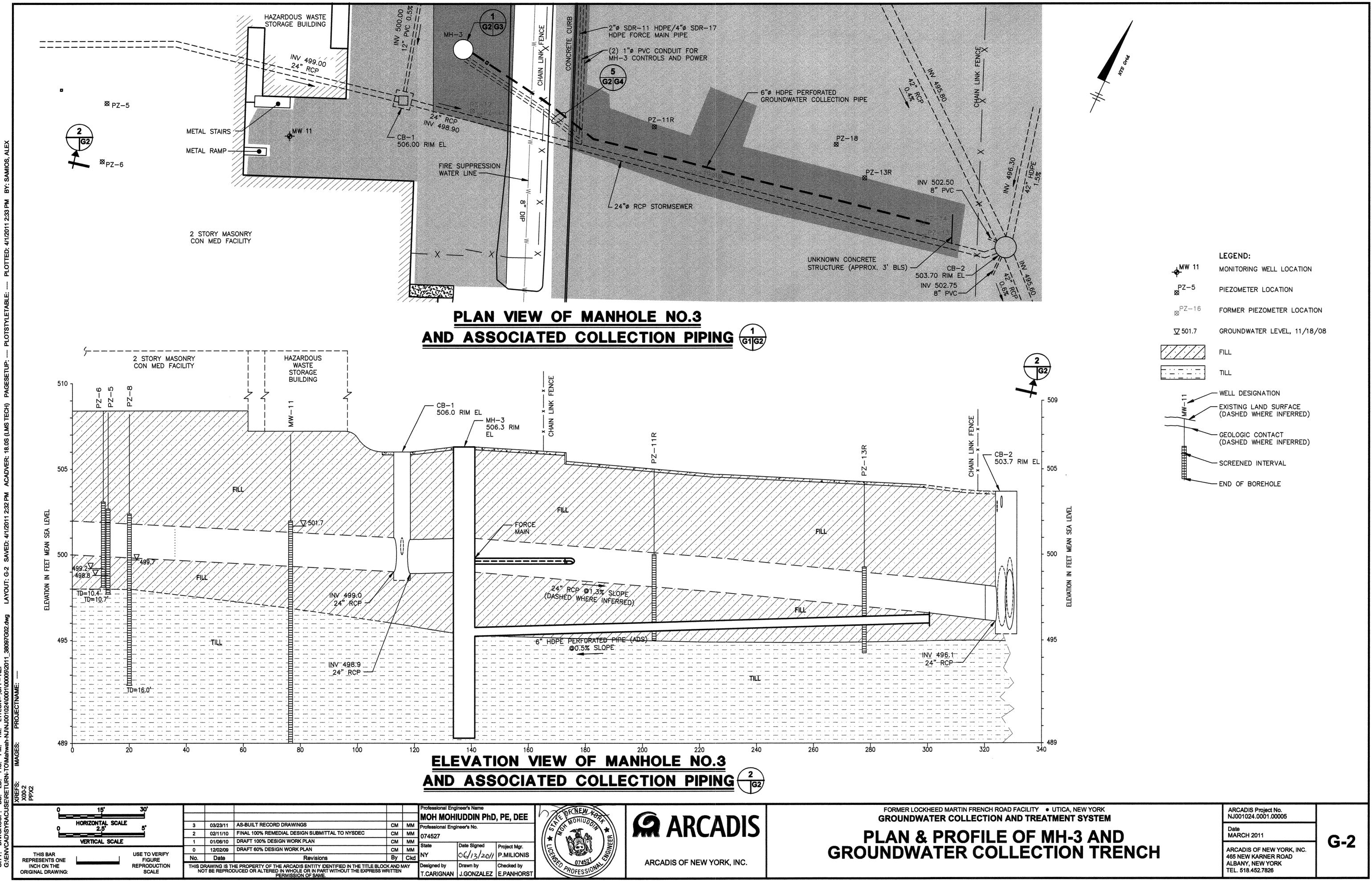
- PIPING AND INSTRUMENTATION DIAGRAM M-1
- FLOOR PLAN AND DETAILS M-2
- M-3 PROCESS FLOW DIAGRAM

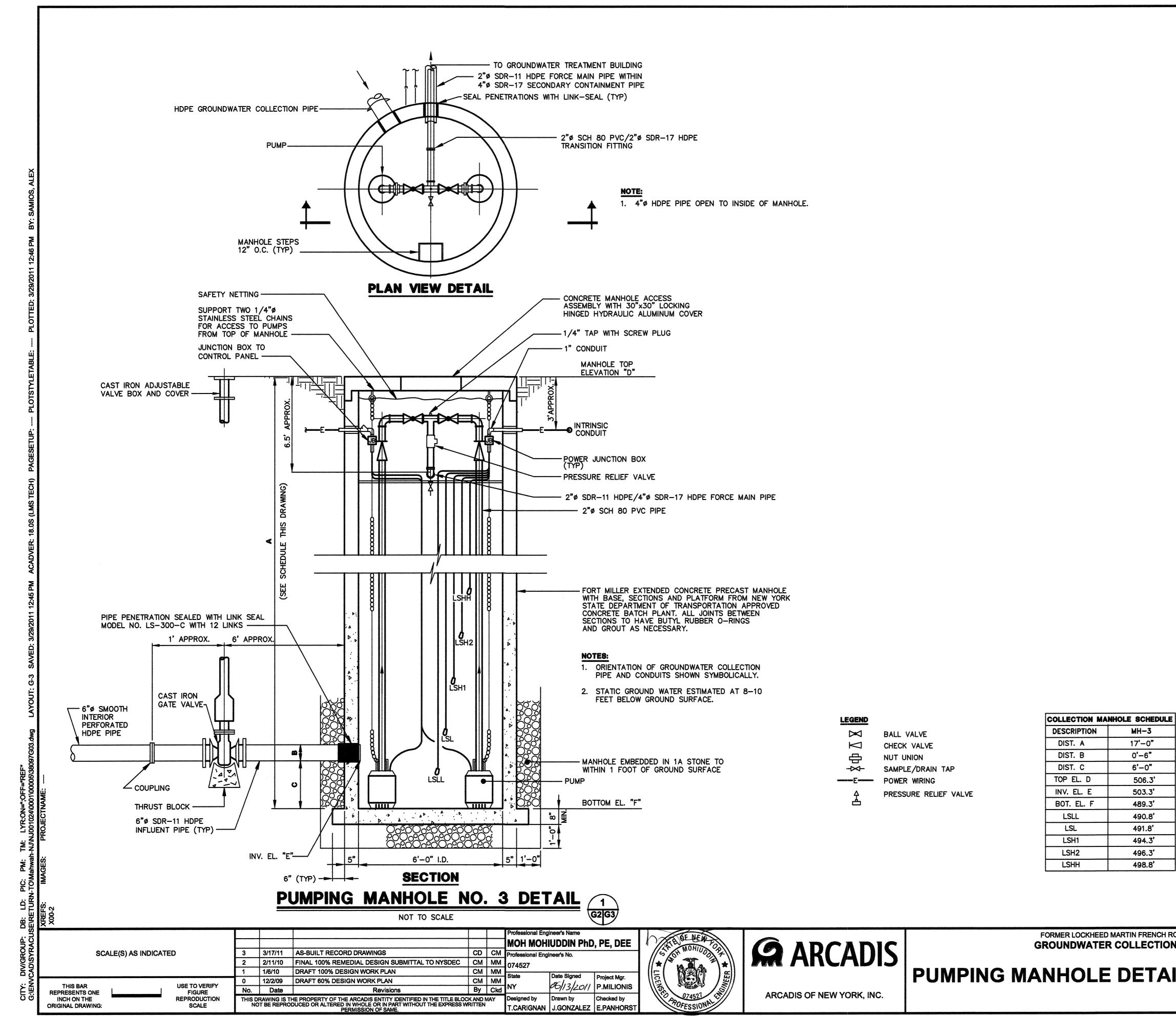
ELECTRICAL

- ELECTRICAL FLOOR PLANS E-1
- ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD E-2 SCHEDULES
- CONTROL LOGIC E-3

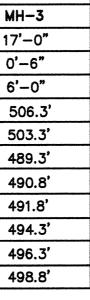

STRUCTURAL

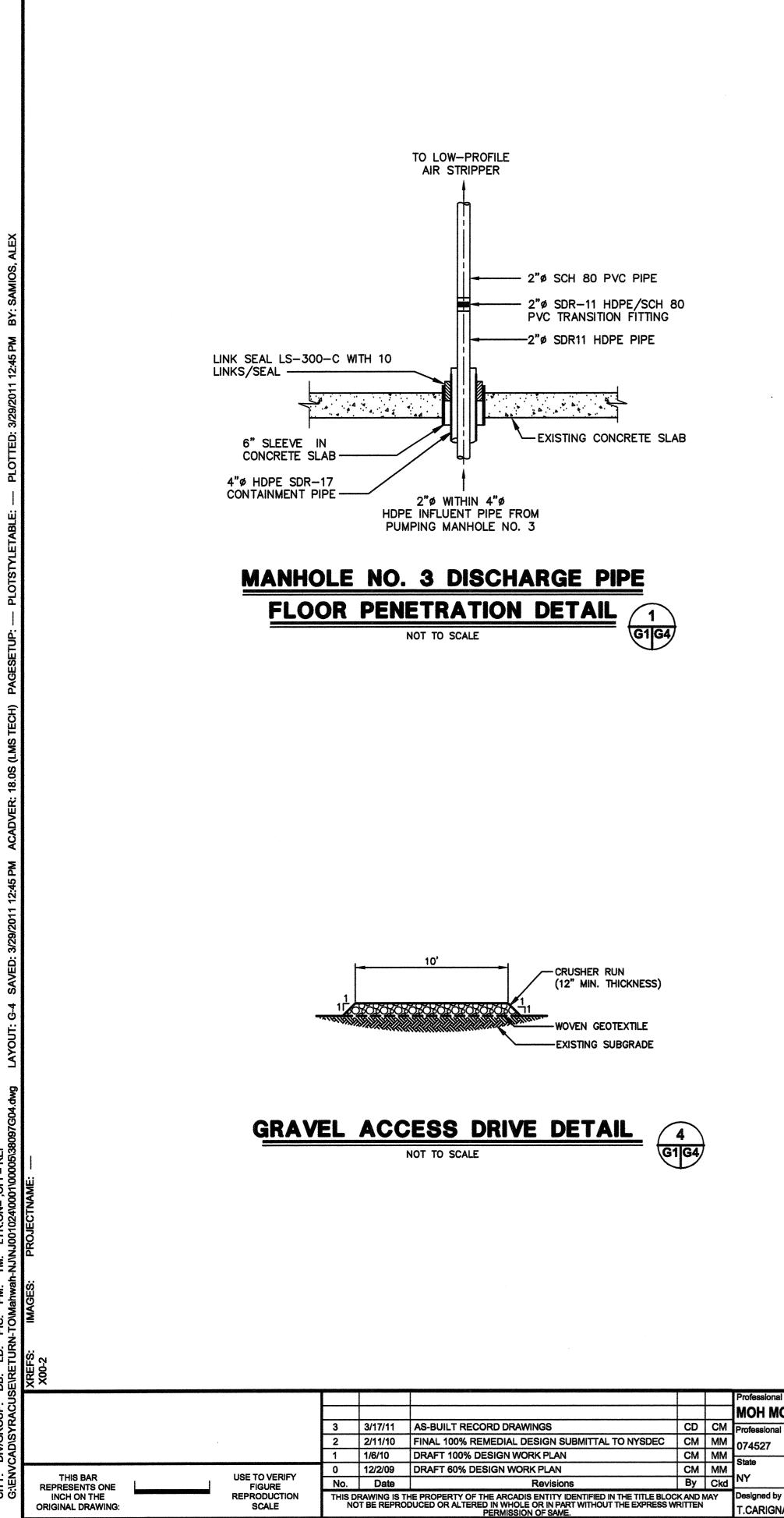
BUILDING ELEVATION SECTION AND DETAILS S-1

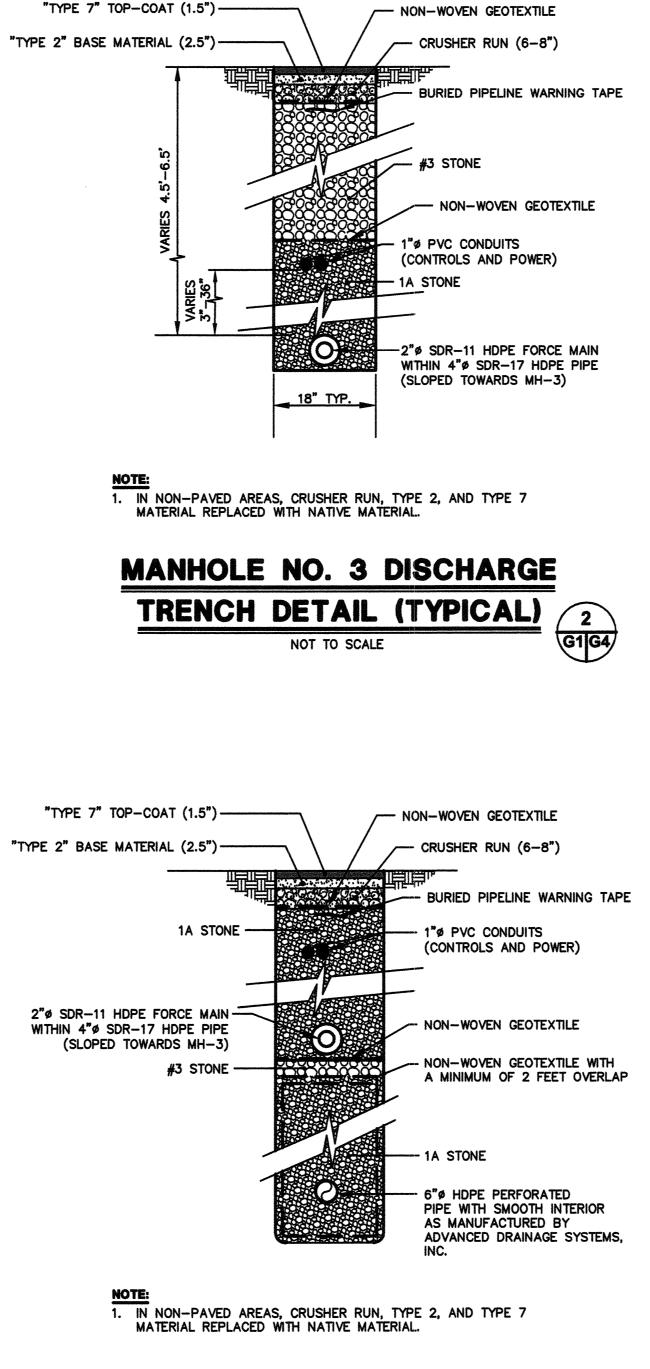

RECORD DRAWINGS


TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

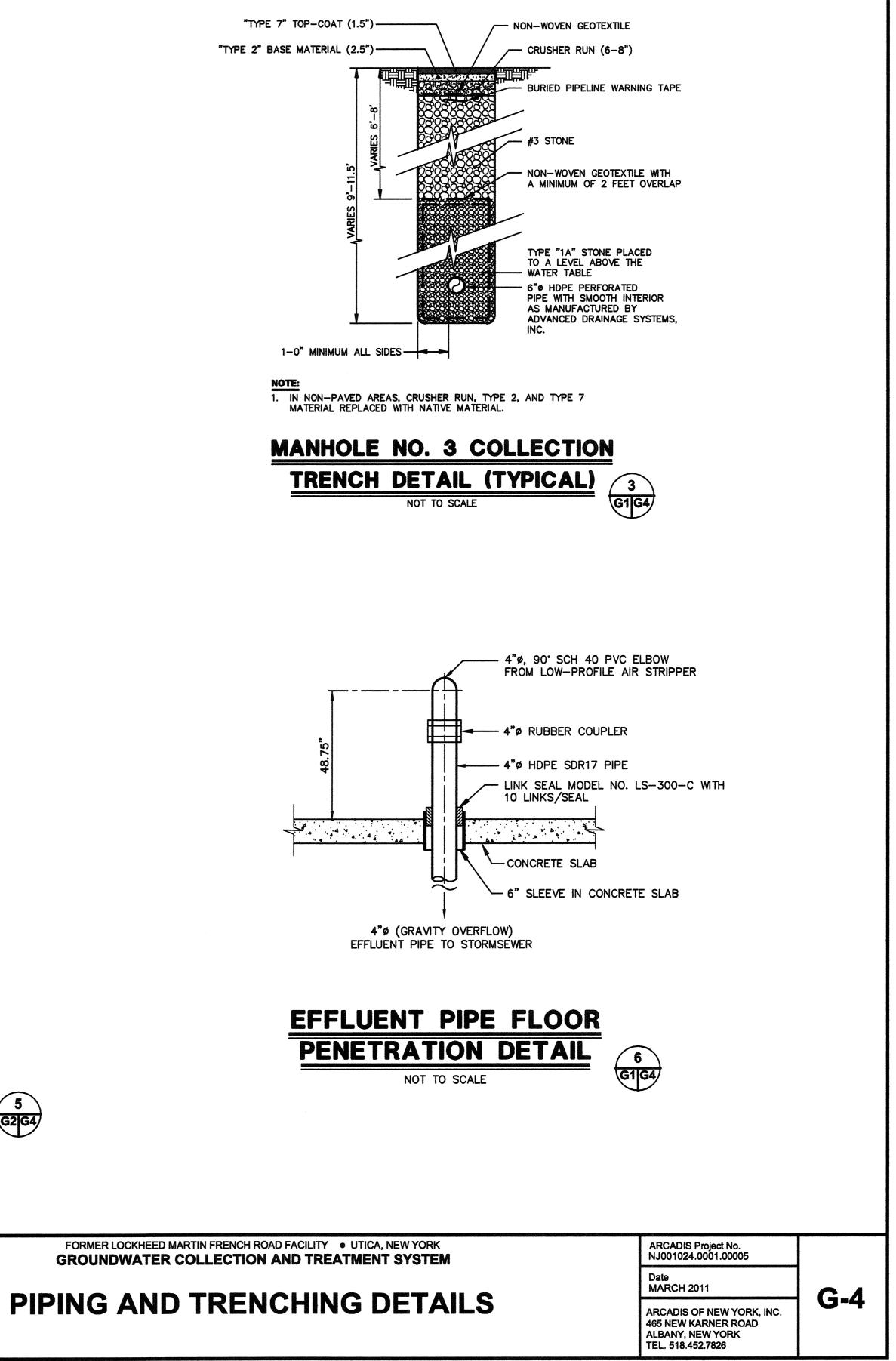
CONSTRUCTED. DATE: 06/13/201/ BY:

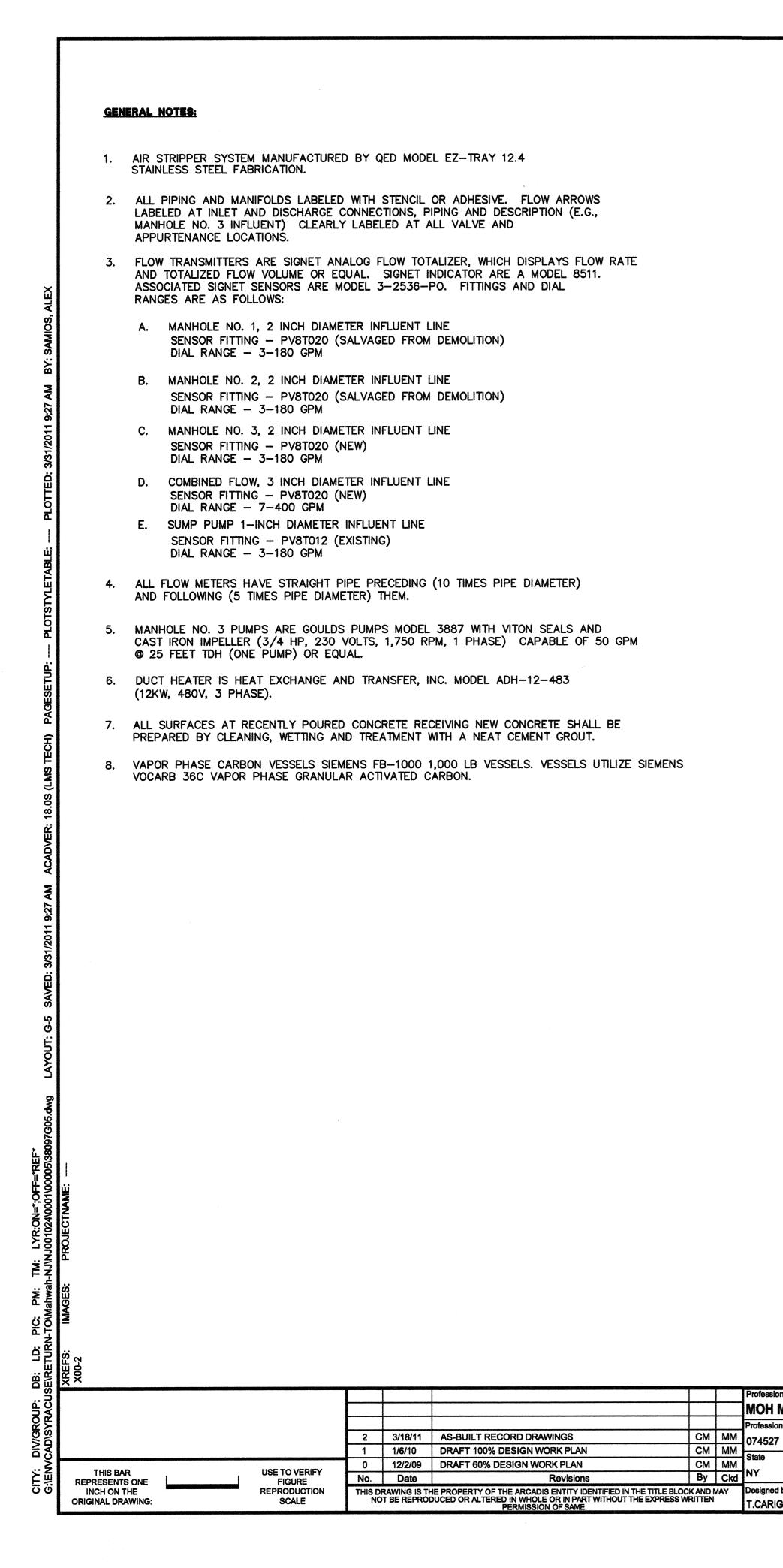



•	ineer's Name IUDDIN PhD	A TELOF	
onal Engi	neer's No.	155	
7			
	Date Signed	Project Mgr.	
	06/13/20/1	P.MILIONIS	ICE .
d by	Drawn by	Checked by	1000
GNAN	J.GONZALEZ	E.PANHORST	PR



ENCH ROAD FACILITY • UTICA, NEW YORK CTION AND TREATMENT SYSTEM	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	- G-3
TAILS AND SPECIFICATIONS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	6-5





essional Engineer's Name MOH MOHIUDDIN PhD, PE, DEE fessional Engineer's No. Date Signed Project Mgr. 06/13/2011 P.MILIONIS Drawn by Checked by T.CARIGNAN J.GONZALEZ E.PANHORS

ARCADIS OF NEW YORK, INC.

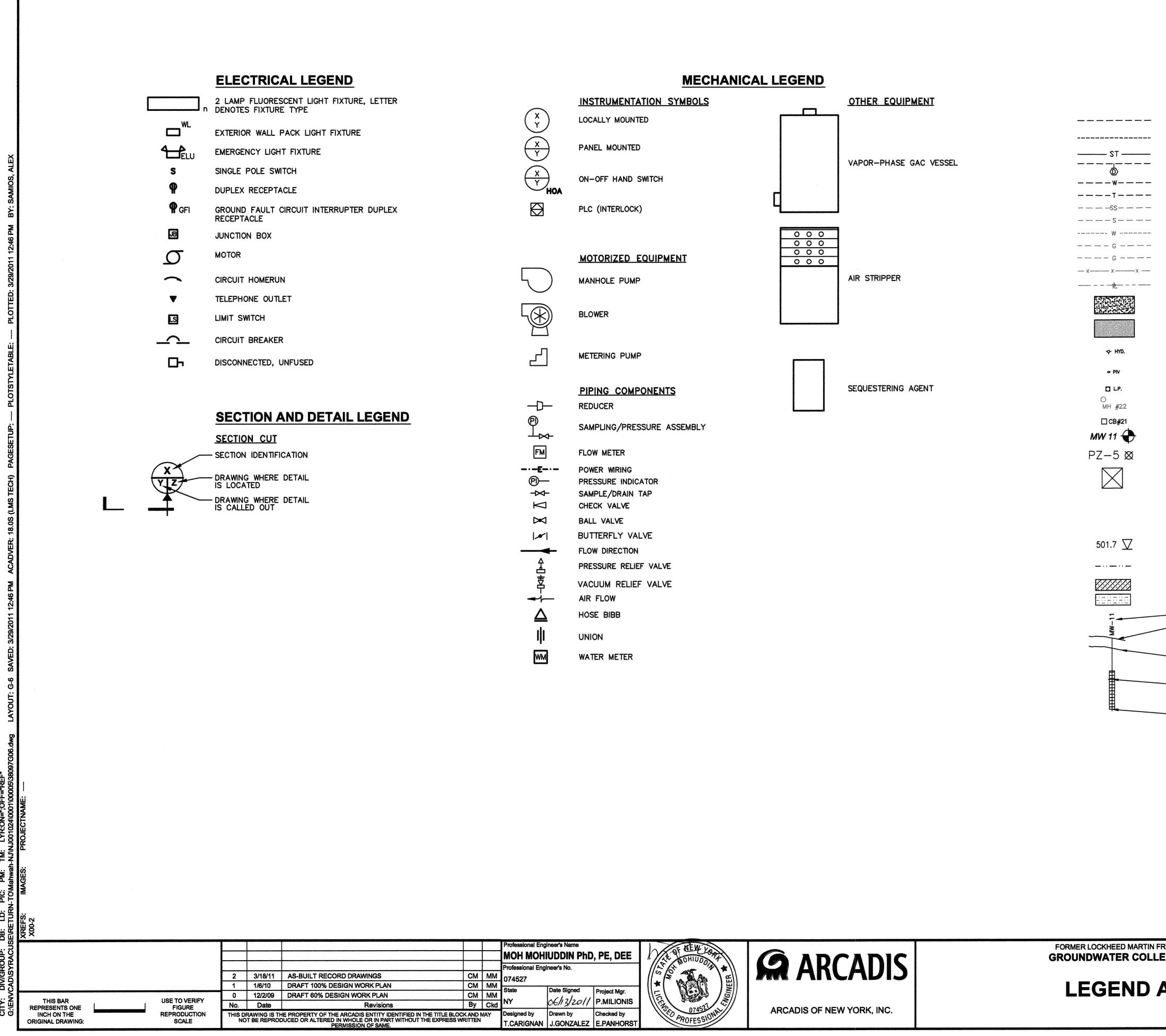
ABBREVIATIONS:

- A.F.F ABOVE FINISHED FLOOR
- BV BALL VALVE
- BFV BUTTERFLY VALVE
- CMP CHEMICAL METERING PUMP
- FS FLOW SENSOR
- FT FLOW TRANSMITTER
- HS HAND SWITCH
- LEVEL INDICATOR LI
- LSH LEVEL SENSOR HIGH
- LSL LEVEL SENSOR LOW
- LV LOUVER
- MIN. MINIMUM
- PRESSURE INDICATOR PI
- PT PRESSURE TRANSMITTER
- SP SAMPLE PORT
- TE TEMPERATURE ELEMENT
- TI TEMPERATURE INDICATOR
- TT TEMPERATURE TRANSMITTER
- UH UNIT HEATER

MOH	$r\gamma$		
nal Engi	neer's No.		
	Date Signed 06//3/201/	Project Mgr. P.MILIONIS	LICE
^{by} GNAN	Drawn by J.GONZALEZ	Checked by E.PANHORST	

fessional Engineer's Nam

esigned



ARCADIS OF NEW YORK, INC.

FORMER LOCKHEED MARTIN FR

GENERAL NOTES

RENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	G-5
AND ABBREVIATIONS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	9-9

H MOH	KYZE		
sional Engl			
527			
	Date Signed	Project Mgr.	IEI
	06/13/2011	P.MILIONIS	I E
ned by	Drawn by	Checked by	136
RIGNAN	J.GONZALEZ	E.PANHORST	

CIVIL LEGEND

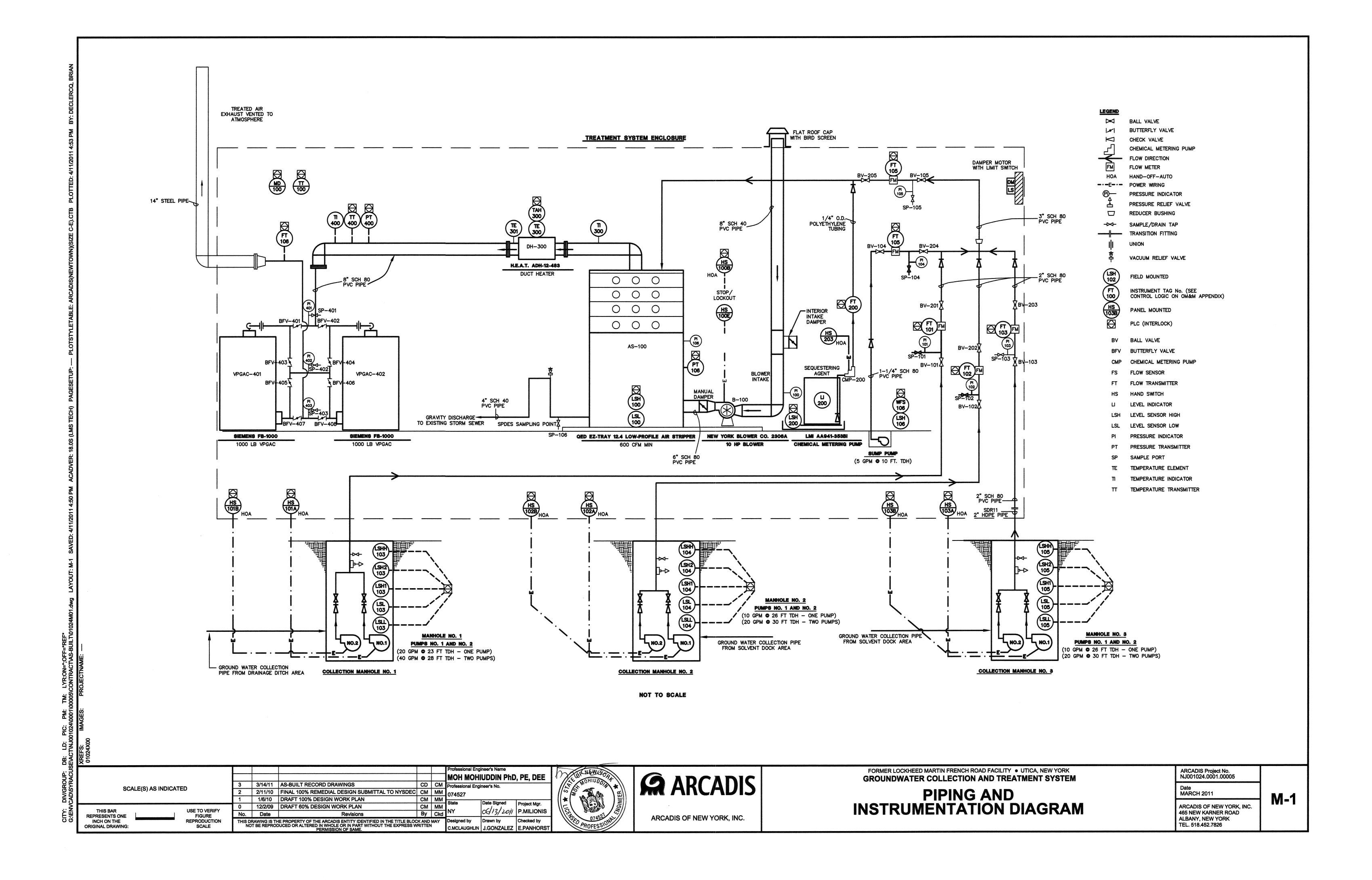
SITE PLAN LEGEND MANHOLE DISCHARGE WATER LINE GROUNDWATER COLLECTION LINE STORM SEWER PIPE ELECTRICAL CIRCUIT WATER LINE TELEPHONE LINE EXISTING SANITARY SEWER EXISTING STORM SEWER EXISTING WATER LINE EXISTING GAS LINE EXISTING ELECTRIC LINE EXISTING CHAIN LINK FENCE EXISTING PROPERTY LINE

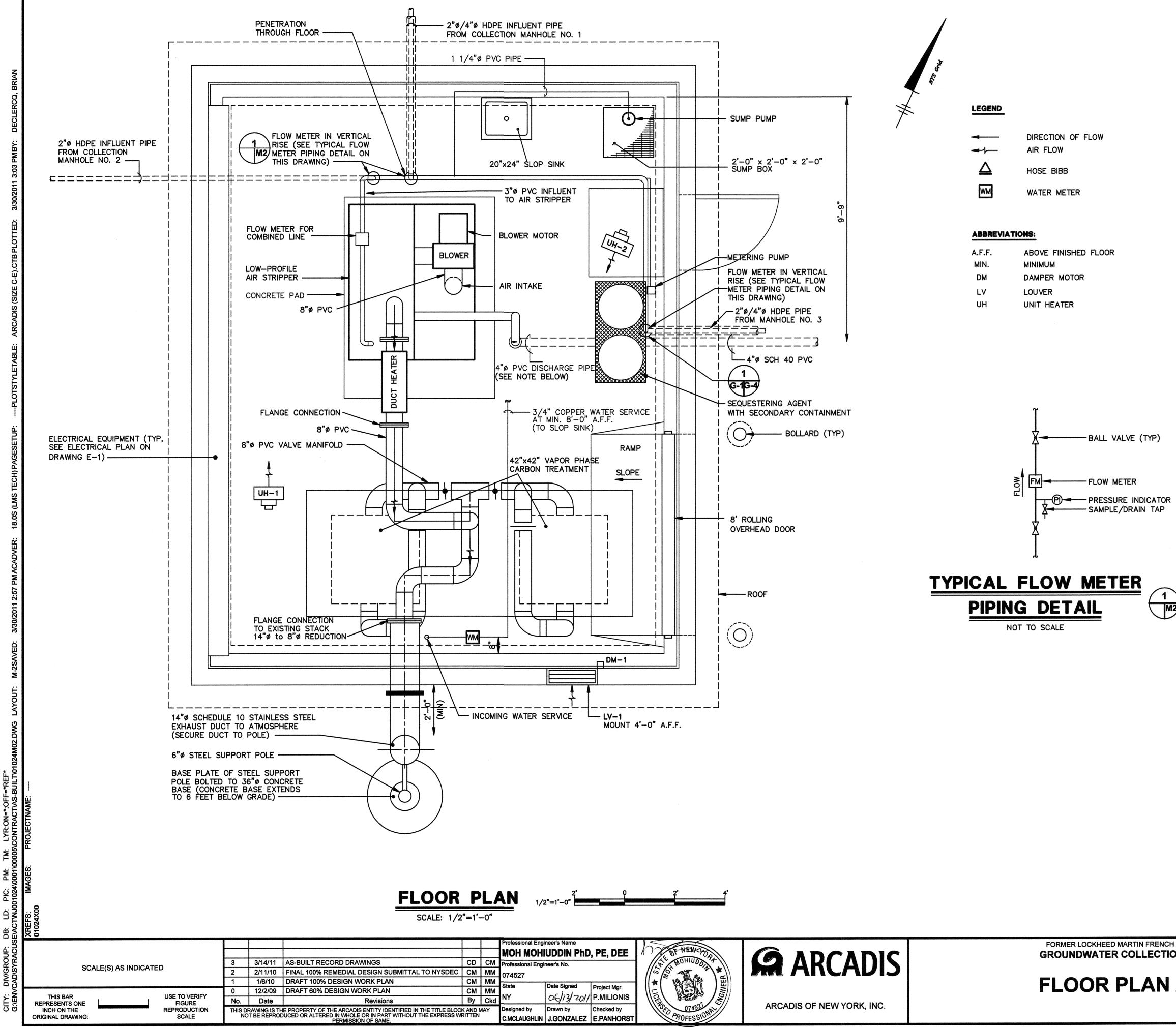
ACCESS DRIVE

EXISTING BITUMINOUS PAVEMENT EXISTING HYDRANT EXISTING POSITION INDICATOR VALVE EXISTING LIGHT POLE EXISTING MANHOLE EXISTING CATCH BASIN MONITORING WELL LOCATION

PIEZOMETER LOCATION

TEST PIT LOCATION

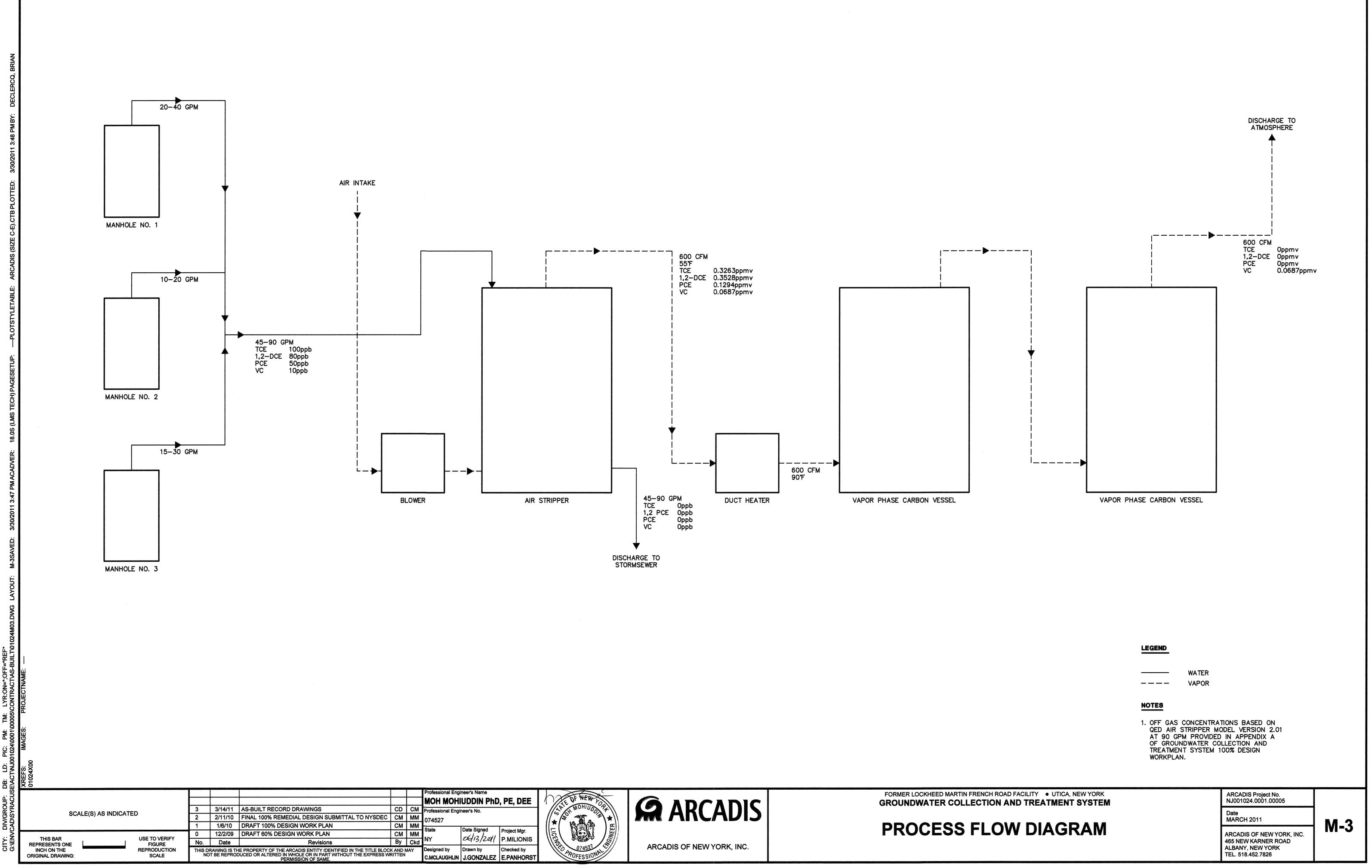

PROFILE LEGEND

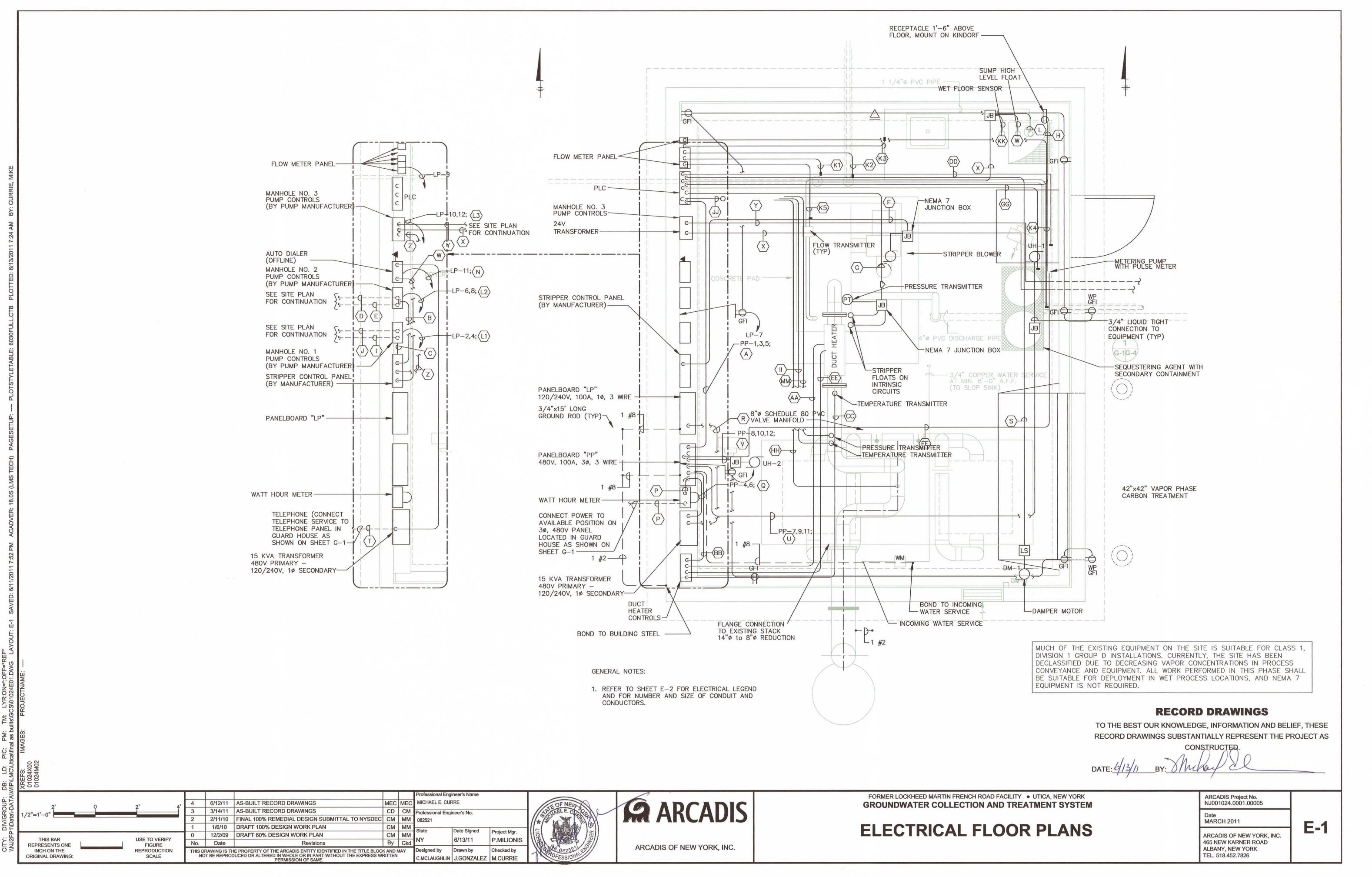

GROUNDWATER LEVEL, 11/18/08 OUTLINE OF TEST PIT PROFILE FILL TILL - WELL DESIGNATION -EXISTING LAND SURFACE (DASHED WHERE INFERRED)

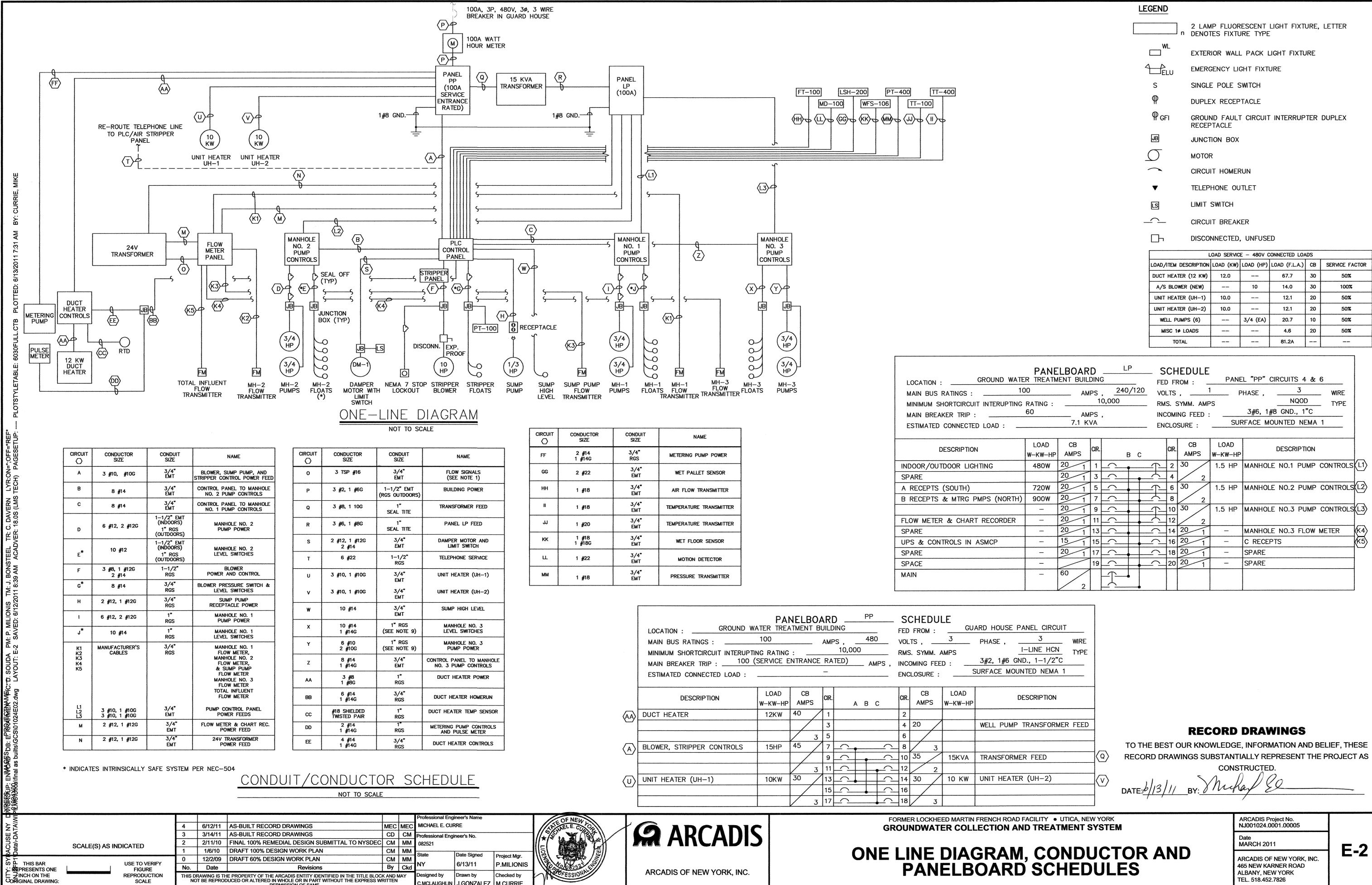
-GEOLOGIC CONTACT (DASHED WHERE INFERRED) -SCREENED INTERVAL

-----END OF BOREHOLE

RENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005			
	Date MARCH 2011	G-6		
AND SYMBOLS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	9-0		

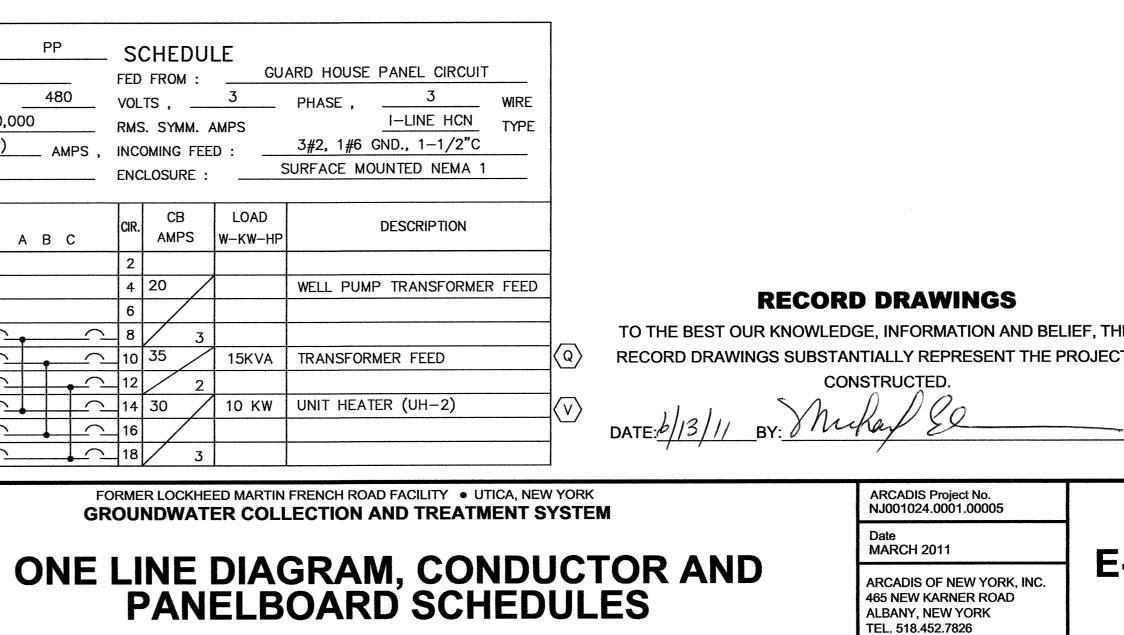





GENERAL NOTES:

1. REFER TO DRAWING G-5 FOR SPECIFICATIONS AND NOTES.

N FRENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	M-2
AN AND DETAILS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	IVI-Z



· · · · · ·				1/6/10	DRAFT 100% DESIGN WORK PLAN	Ľ
		0	12/2/09	DRAFT 60% DESIGN WORK PLAN		
HIS BAR ESENTS ONE		USE TO VERIFY FIGURE	No.	Date	Revisions	
H ON THE AL DRAWING:	REPRODUCTION SCALE			IE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK DUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WE PERMISSION OF SAME.		

AND MAY

Designed by ITTEN C.MCLAUGHLIN J.GONZALEZ M.CURRIE

LEGEND	
n	2 LAMP FLUORESCENT LIGHT FIXTURE, LETTER DENOTES FIXTURE TYPE
WL	EXTERIOR WALL PACK LIGHT FIXTURE
	EMERGENCY LIGHT FIXTURE
S	SINGLE POLE SWITCH
φ	DUPLEX RECEPTACLE
∯ GFI	GROUND FAULT CIRCUIT INTERRUPTER DUPLEX RECEPTACLE
JB	JUNCTION BOX
\mathcal{O}	MOTOR
	CIRCUIT HOMERUN
▼	TELEPHONE OUTLET
LS	LIMIT SWITCH
	CIRCUIT BREAKER
	DISCONNECTED, UNFUSED

LOAD SERVICE - 480V CONNECTED LOADS							
LOAD/ITEM DESCRIPTION	LOAD (KW)	LOAD (HP)	LOAD (F.L.A.)	CB	SERVICE FACTOR		
DUCT HEATER (12 KW)	12.0		67.7	30	50%		
A/S BLOWER (NEW)		10	14.0	30	100%		
UNIT HEATER (UH-1)	10.0		12.1	20	50%		
UNIT HEATER (UH-2)	10.0		12.1	20	50%		
WELL PUMPS (6)		3/4 (EA)	20.7	10	50%		
MISC 10 LOADS			4.6	20	50%		
TOTAL			81.2A				

	LBOAR			Р	— S	CH	IEDULE	PANE	L "PP" CI	RCUITS 4 &	6
TING :	AM AM		0,000	/120	_ VO	LTS S. S		1 P >S	HASE ,	3 NQOD GND., 1"C	Wire Type
	7.1 K		3		- EN	CLO	SURE :	SUF	RFACE MOL	JNTED NEMA	X 1
LOAD -KW-HP	CB AMPS	CIR.	E	з с		CIR.	CB AMPS	LOAD W-KW-HP		DESCRIPTION	
480W	20 1	1				2	30	1.5 HP	MANHOLE	NO.1 PUMP	CONTROLS
720W	20 1	5	\leq			6	2 30	1.5 HP	MANHOLE	NO.2 PUMP	' CONTROLS
900W -	20 1 20 1	7 9				8 10	2 30	1.5 HP	MANHOLE	NO.3 PUMP	' CONTROLS
-	20 1 20 1	11 13				12 14	<u> </u>		MANHOLE	NO.3 FLOW	METER
-	15 1 20 1	15 17				1	20 1 20 1	_	C RECEPT	ſS	
_		19				1	20 1	-	SPARE		

LOGIC FOR MANHOLE NO. 1

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)

4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND

NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103) 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN HAND POSITION

LOGIC FOR AIR STRIPPER BLOWER (B-100)

BLOWER SHALL OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN HAND POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 4. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES 5. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 6. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 7. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE

BLOWER SHALL NOT OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN OFF POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND FATAL ALARMS (SHOWN ON THIS DRAWING) HAVE BEEN INDICATED AT PLC FOR GREATER THAN TEN MINUTES

NO. 3 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES]

3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND NONE OF THE STATEMENTS LISTED ABOVE ARE TRUE

							Professional Engi	neer's Name		
	SCALE(S) AS INDICATED		6/12/11	AS-BUILT RECORD DRAWINGS	MEC	MEC	MICHAEL E. CUF	RRE		
			3/14/11	AS-BUILT RECORD DRAWINGS	CD	CM	Professional Engi	Professional Engineer's No.		
			2/11/10	FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC	СМ	MM	082521 State Date Signed Project			
			1/6/10	DRAFT 100% DESIGN WORK PLAN	СМ	MM			<u> </u>	
		0	12/2/09	DRAFT 60% DESIGN WORK PLAN	CM	MM			Project Mgr.	
	THIS BAR USE TO VERIFY REPRESENTS ONE FIGURE	No.	Date	Revisions	By	Ckd	NY	6/13/11	P.MILION	
	INCH ON THE REPRODUCTION		THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY				Designed by	Drawn by	Checked by	
	ORIGINAL DRAWING: SCALE	NO	T BE REPROD	DDUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME.			C.MCLAUGHLIN J.GONZALEZ M.CUR		M.CURRIE	

LOGIC FOR MANHOLE NO. 2

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN HAND POSITION

LOGIC FOR DUCT HEATER (DH-300)

DUCT HEATER SHALL OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS RUNNING

DUCT HEATER SHALL NOT OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN OFF POSITION 2. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS NOT RUNNING

LOGIC FOR CHEMICAL METERING PUMP (CMP-200)

CHEMICAL METERING PUMP SHALL OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS REGISTERING AN INSTANTANEOUS FLOWRATE

CHEMICAL METERING PUMP SHALL NOT OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS NOT REGISTERING AN INSTANTANEOUS FLOWRATE

LOGIC FOR MANHOLE NO. 3

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN HAND POSITION

FATAL ALARMS:

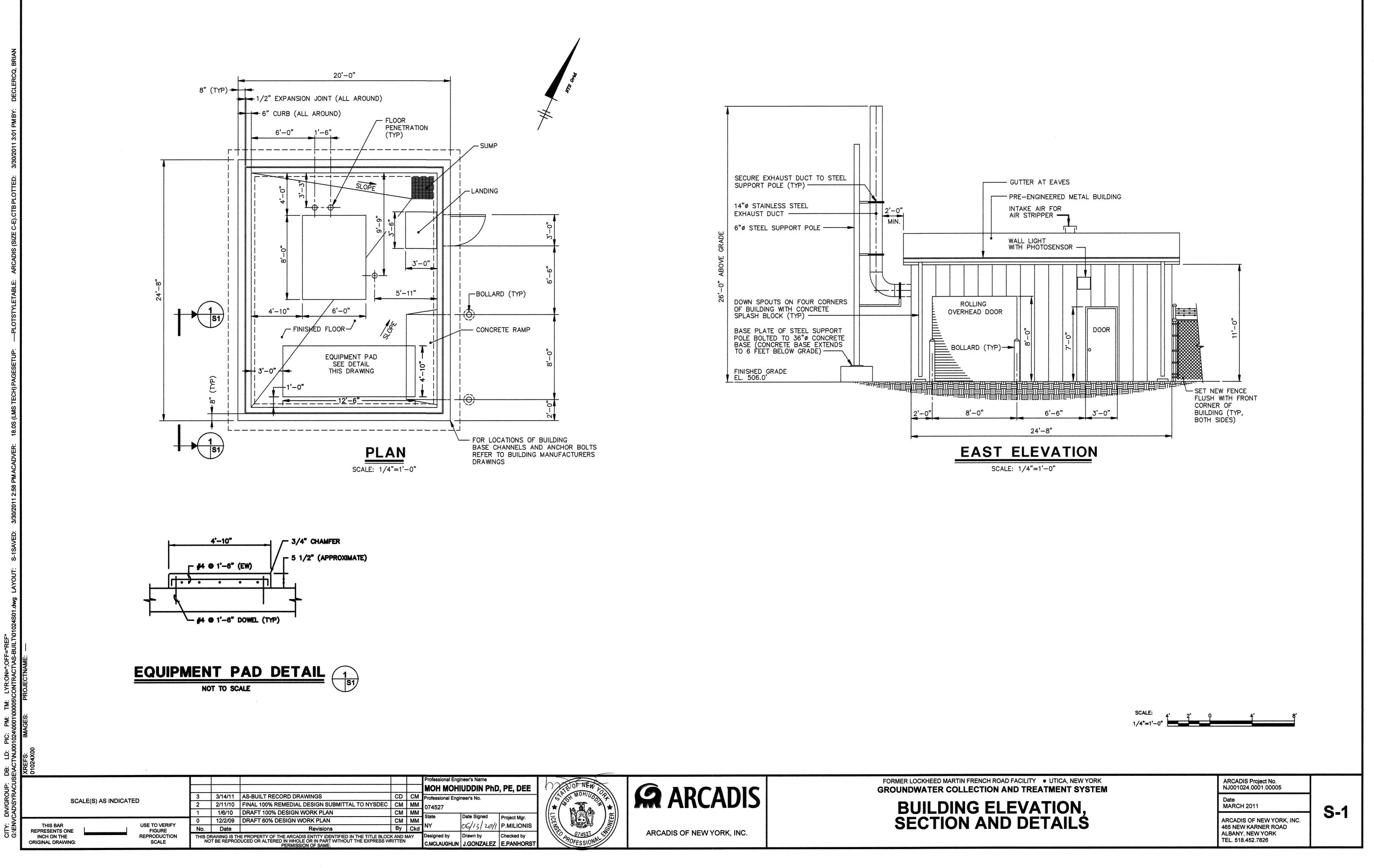
1. HIGH AIR STRIPPER SUMP PRESSURE (PT-106)

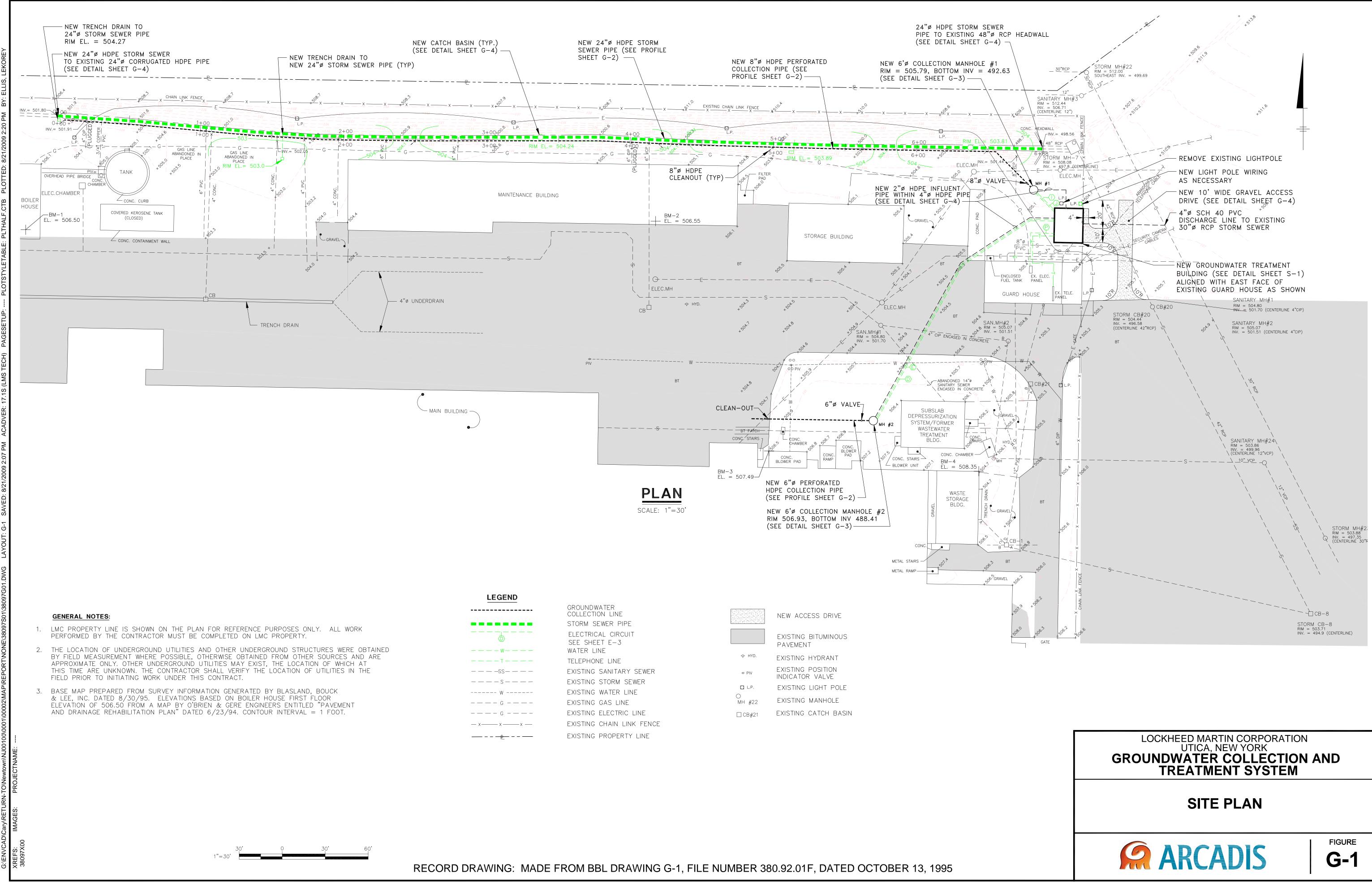
- 2. LOW AIR STRIPPER SUMP PRESSURE (PT-106) 3. HIGH AIR STRIPPER SUMP LEVEL (LSH-100)
- 4. LOW AIR STRIPPER SUMP LEVEL (LSL-100)
- 5. HIGH AIR FLOWRATE (FT-106)
- 6. LOW AIR FLOWRATE (FT-106)
- 7. PRE-CARBON HIGH TEMPERATURE (TT-400) 8. PRE-CARBON LOW TEMPERATURE (TT-400)
- 9. PRE-CARBON HIGH PRESSURE (PT-400)
- 10. PRE-CARBON LOW PRESSURE (PT-400)
- 11. BUILDING WET FLOOR SENSOR ALARM (WFS-106)

ARCADIS Project Mgr. **P.MILIONIS** Checked by

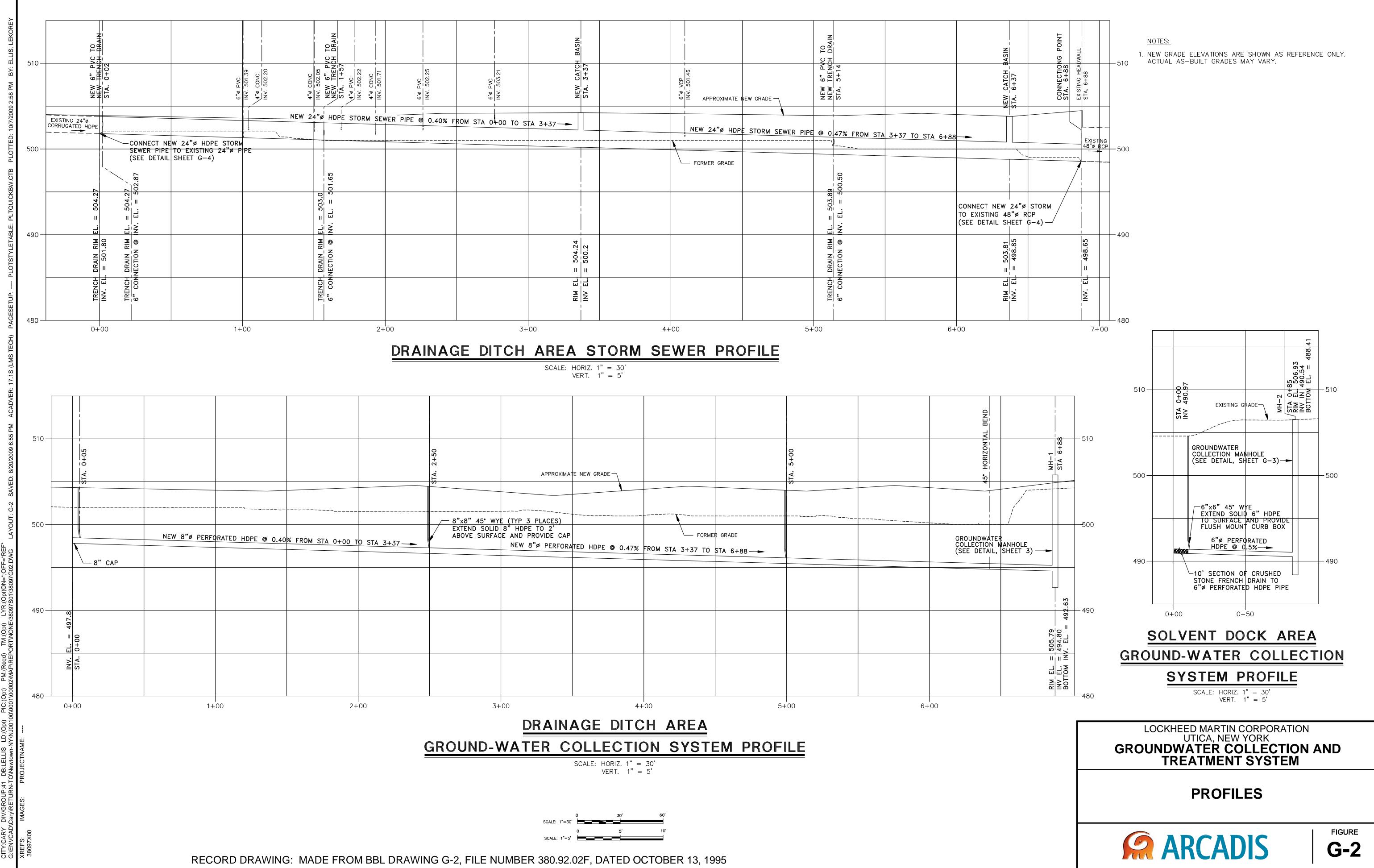
ARCADIS OF NEW YORK, INC.

GROUNDWATER COLLECTION AND TREATMENT SYSTEM

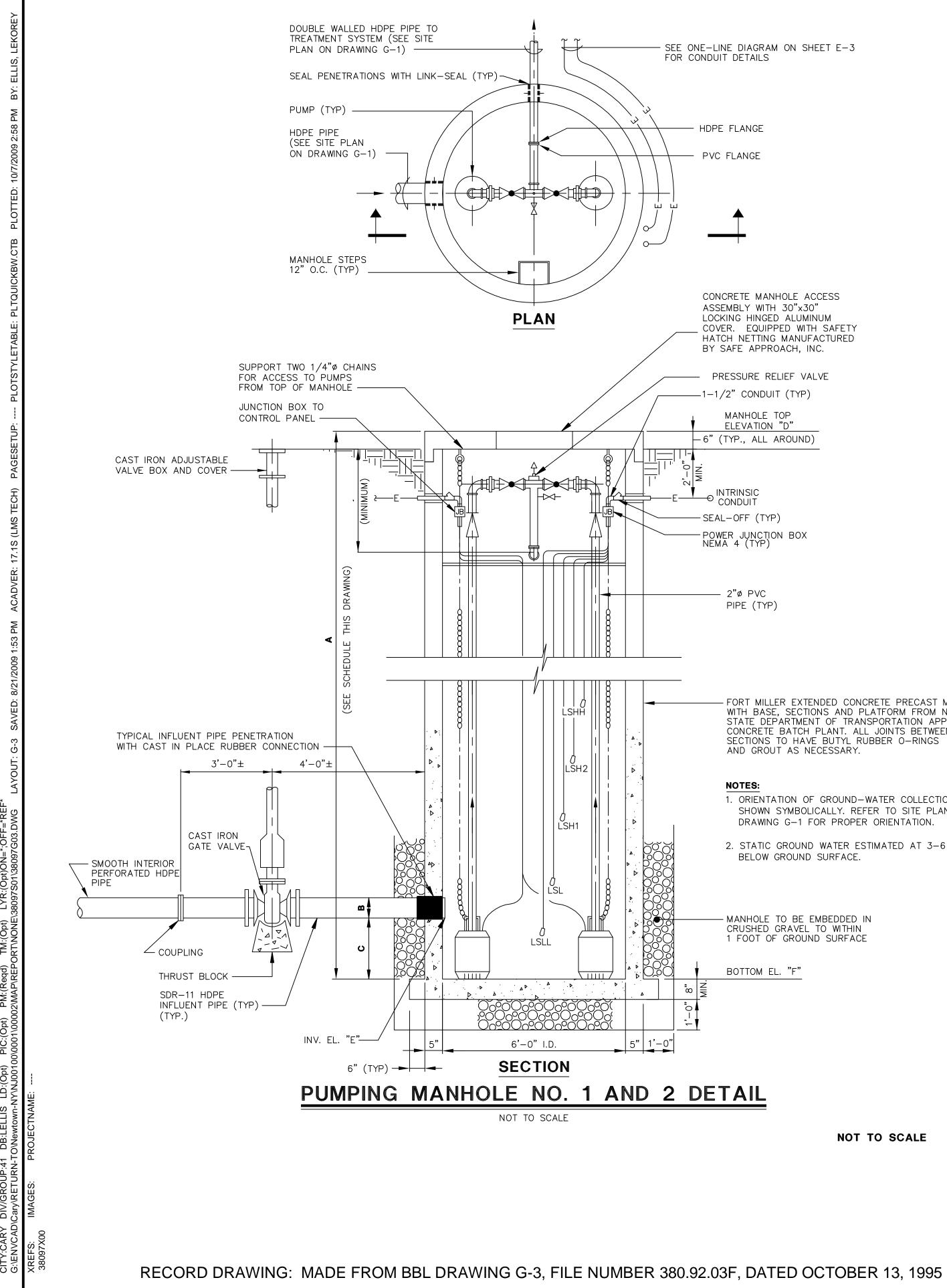

NOTES:


- 1. CONTROLS WERE MODIFIED FROM AN ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIÉS, INC, IN DECEMBER 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWINGS/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&M MANUAL.
- 3. PLC PROGRAMMING WILL BE PERFORMED BY ARCADIS.

RECORD DRAWINGS


TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK ARCADIS Project No. NJ001024.0001.00005 **MARCH 2011 E-3** ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826



NV. 503.21	NEW CATCH BASIN STA. 3+37	APPROXIMATE	NEM CLADE		NEW_CATCH_BASIN
0+00 TO STA 3+3	37	NEW 24ӯ HDF	E STORM SEWER PIPE @ 0.4	7% FROM STA 3+37 TO STA 6+8	38
		FORMER GRADE			
			 		CONNECT NEW 24"\$ TO EXISTING 48"ø (SEE DETAIL SHEET
	= 504.24 = 500.2			<u> </u>	= 503.81 = 498.85
	RIM EL			2 2 2	RIM EL
3+00	· ·	4+00	5+00	6	6+00

DIAGRAM ON SHEET E-3 ETAILS	551	CIFICATIONS AND NOTES (APPLICABLE TO DRAWINGS G-1 THROUGH E-3)		
	1.	AIR STRIPPER SYSTEM TO BE MANUFACTURED BY SHALLOWTRAY MODEL 3631, 316 AS SPECIFIED IN MATERIAL AND PERFORMANCE SPECIFICATION MP-04006.	18.	DUC A.
	2.	ALL PVC PIPES SHALL BE SCHEDULE 80 TYPE II UNLESS OTHERWISE SPECIFIED.		
ANGE	3.	ALL PVC JOINTS TO BE SOLVENT WELDED.		В.
ANGE	4.	ALL PVC PIPES SHALL BE SUPPORTED EVERY 5'-0" AND LOCATED 2'-0" (MAX) FROM JOINT LOCATIONS.		C.
	5.	ALL CORRUGATED HDPE PIPE SHALL BE ADS N-12 SMOOTH INTERIOR OR EQUAL. ALL OTHER HDPE PIPE TO BE SDR-11 OR SDR-17 AS INDICATED.		POT/ WRC
	6.	ALL HDPE JOINTS TO BE BUTT FUSED.	20.	ITEM THE
	7.	ALL PIPE AND HOSE TO BE INSTALLED AND PRESSURE—TESTED AS PER MANUFACTURER'S SPECIFICATIONS. ZERO LEAKAGE IS ALLOWED FOR ALL JOINTS.	21.	DIRE ALL
TE MANHOLE ACCESS	8.	ALL PIPING AND MANIFOLDS TO BE LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS TO BE LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G., MANHOLE NO. 1 INFLUENT) SHALL ALSO BE CLEARLY LABELED AT ALL VALVE AND APPURTENANCE LOCATIONS.	22.	BUIL ALL RESI
BLY WITH 30"x30" G HINGED ALUMINUM EQUIPPED WITH SAFETY	9.	FLOW METERS SHALL BE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR SHALL BE A MODEL	23.	ALL FRO
NETTING MANUFACTURED E APPROACH, INC.		P57540. ASSOCIATED SIGNET SENSOR SHALL BE MODEL P51530-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:	24.	CON
SURE RELIEF VALVE CONDUIT (TYP)		A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING – PV8T020 DIAL RANGE – 0-60 GPM		CON TYPI
NHOLE TOP			26.	ALL DEP
EVATION "D" P., ALL AROUND)		 B. MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING – PV8T020 DIAL RANGE – 0–30 GPM 	27.	SLO PRO STR
INSIC DUIT		C. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T012 DIAL RANGE - 0-30 GPM	28.	NEW THE ACC THE
DFF (TYP)	10.	ALL FLOW METERS SHALL HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER) AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.		CAL
JUNCTION BOX (TYP)	11.	ALL SAMPLE TAPS AND DRAIN VALVES SHALL CONSIST OF A 1/2"Ø PIPE EXTENSION AND BALL VALVE OR EQUAL. SAMPLE TAPS AND DRAIN VALVES SHALL BE LOCATED AT LOCATIONS SHOWN ON THE DRAWINGS AND AT ALL LOW ELEVATIONS IN PROCESS PIPING.		DESI WITH SEE
Ø PVC	12.	ALL BALL VALVES TO BE PVC TRUE UNION TYPE WITH VITON SEALS BY TRUE BLUE OR EQUAL.		NOT SIZE
PE (TYP)	13.	ALL BALL CHECK VALVES TO BE PVC, TRUE UNION TYPE WITH VITON SEALS BY PLASTO-MATIC OR EQUAL.	31.	ALL REPI OR
	14.	ALL PRESSURE GAUGES TO BE TRERICE MODEL NO. 450 LFB (WET) SILICONE-FILLED OR EQUAL. DIAL RANGES ARE AS FOLLOWS:	32.	BACł
RT MILLER EXTENDED CONCRETE PRECAST MANHOLE		A. MANHOLE NO. 1 INFLUENT LINE — (0—30 PSI) B. MANHOLE NO. 2 INFLUENT LINE — (0—30 PSI) C. SUMP PUMP INFLUENT LINE — (0—15 PSI)	33.	BACI STRE
TH BASE, SECTIONS AND PLATFORM FROM NEW YORK ATE DEPARTMENT OF TRANSPORTATION APPROVED	15	SUMP PUMP SHALL BE A GRUNDFOG MODEL BOSS 210-A STAINLESS STEEL TOP-		ALL
CTIONS TO HAVE BUTYL RUBBER O-RINGS	10.	DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH.		ALL
	16.	MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM @ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL.		ALL PREF TREN
ORIENTATION OF GROUND-WATER COLLECTION PIPE SHOWN SYMBOLICALLY. REFER TO SITE PLAN ON	17.	MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 10 GPM		DRAI
ID GROUT AS NECESSARY. TES: ORIENTATION OF GROUND-WATER COLLECTION PIPE	16.	DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH. MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM @ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL. MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND	3 3	56. 57.

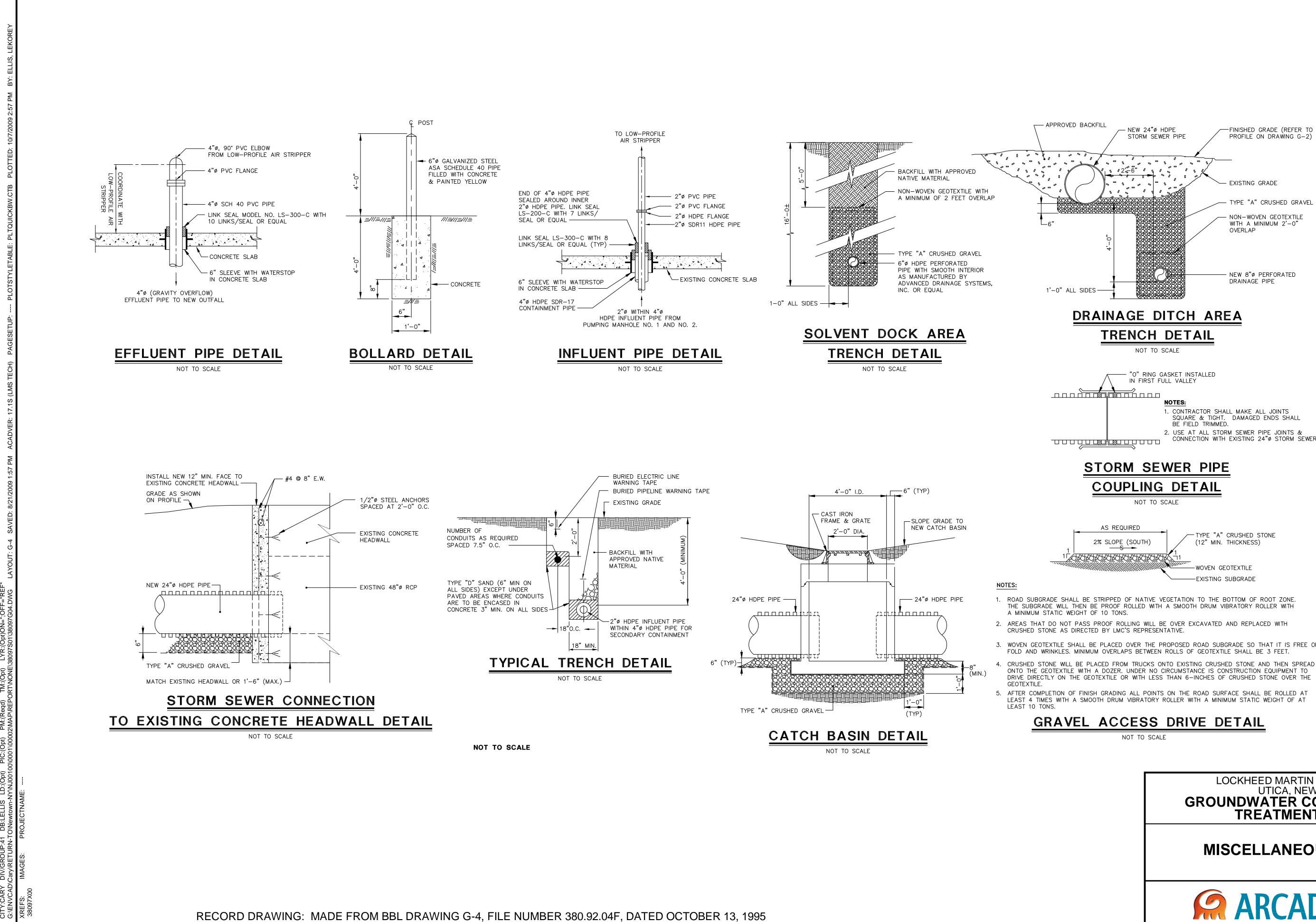
- MANHOLE TO BE EMBEDDED IN	
CRUSHED GRAVEL TO WITHIN	
1 FOOT OF GROUND SURFACE	

BOTTOM EL. "F"

\bowtie	BALL VALVE
\square	CHECK VALVE
Ð	NUT UNION
	SAMPLE/DRAIN TAP
—Е—	POWER WIRING
А Ш	PRESSURE RELIEF VALVE

COLLEC	TION MANHOLE S	CHEDULE
DESCRIPTION	MH-1	MH-2
DIST. A	13'—1"	18'-5"
DIST. B	0'-8"	0'-6"
DIST. C	2'-0"	2'-0"
TOP EL. D	505.79 '	506.93'
INV. EL. E	494.66'	490.44'
BOT. EL. F	492.63 '	488.41'
LSLL	494.13'	489.91'
LSL	495.13'	491.41'
LSH1	497.63'	493.41'
LSH2	499.63'	496.41'
LSHH	502.13'	499.41'

NOT TO SCALE


- UNLESS SPECIFICALLY SHOWN OTHERWISE, DUCTWORK SHALL BE FABRICATED OF ASTM AA167 TYPE 316 STAINLESS STEEL, SCHEDULE 10.
- DUCTWORK JOINTS, FABRICATION, AND SUPPORTS SHALL BE IN ACCORDANCE WITH SMACNA DUCT CONSTRUCTION STANDARDS.
- ALL DUCTWORK TO BE AIR TIGHT.
- TABLE WATER LINE PIPING SHALL BE ASTM B88 TYPE L COPPER WITH ANSI/ASME B16.29 ROUGHT COPPER FITTINGS. JOINTS SHALL BE SOLDERED WITH GRADE 95TA SOLDER.
- EMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH HE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURERS REPRESENTATIVES RECTIONS.
- L WALL PENETRATIONS SHALL BE SEALED WITH SILICONE AND COORDINATED WITH UILDING MANUFACTURER SO AS NOT TO VOID BUILDING WARRANTEE.
- ALL EXPOSED METALLIC SURFACES SHALL BE CORROSION RESISTANT OR CORROSION SISTANT PAINTED.
- ALL EQUIPMENT SHALL BE SUPPLIED AS SHOWN ON THE DRAWINGS. ANY PROPOSED DEVIATION ROM THE DRAWING MUST BE APPROVED BY LMC'S REPRESENTATIVE.
- ONCRETE COATING SYSTEM TO BE PROVIDED AS PER SPECIFICATION MP-03002.
- ONTRACTOR TO PROVIDE AND MOUNT ON WALL A FULLY-CHARGED DRY CHEMICAL YPE FIRE EXTINGUISHER WITH AN A, B, C, RATING KIDDE OR EQUAL.
- LL WORK SHALL BE IN ACCORDANCE WITH LOCAL BUILDING CODES AND LOCAL HEALTH EPARTMENT REGULATIONS.
- ILOP SINK SHALL BE MUSTEE UTILATUB MODEL 18F OR EQUAL ROVIDE WITH MANUFACTURERS FAUCET WITH SWING SPOUT 1-1/2" BASKET TRAINER AND P-TRAP.
- EW MANHOLES SHALL BE EXFILTRATION TESTED AS FOLLOWS: HE MANHOLE SHALL BE FILLED WITH POTABLE WATER FOR 8 HOURS AND WILL BE CCEPTABLE IF, FOR A TWO-HOUR OBSERVATION PERIOD THE LEAKAGE RATE IN HE STRUCTURE IS BELOW ONE GALLON PER VERTICAL FOOT OF DEPTH OVER A ALCULATED 24-HOUR PERIOD, NO VISIBLE LEAKAGE OF ANY AMOUNT IS ACCEPTABLE.
- SIGN LOADS: ALL STRUCTURAL LOADS AND LOAD COMBINATIONS SHALL BE IN ACCORDANCE ITH THE NEW YORK STATE BUILDING CODE.
- MECHANICAL DRAWINGS FOR LOCATION OF ALL OPENINGS IN FLOOR AND WALLS OT SHOWN ON STRUCTURAL DRAWINGS. THE CONTRACTOR SHALL VERIFY THE NUMBER, ZE AND LOCATION OF ALL OPENINGS BEFORE POURING ANY CONCRETE.
- LL BACKFILL REQUIRED AS THE RESULT OF OVER EXCAVATION, UNLESS DIRECTED BY EPRESENTATIVES OF LMC, SHALL BE MADE WITH COMPACTED SPECIAL BACKFILL LEAN CONCRETE FILL.
- ACKFILL AT WALLS SHALL BE PLACED AND COMPACTED SIMULTANEOUSLY ON BOTH SIDES. ACKFILL SHALL NOT BE PLACED AGAINST FOUNDATION WALLS UNTIL 28-DAY DESIGN RENGTH IS REACHED OR THE WALLS ARE ADEQUATELY BRACED.
- L STEEL REINFORCING SHALL BE SECURELY WIRED TOGETHER IN THE FORMS.
- L EXPOSED EDGES OF CONCRETE SHALL BE CHAMFERED 3/4-INCH.
- . SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE EPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- ENCH DRAIN SHALL CONSIST OF A 24" WIDE, 11" DEEP AND 39" LONG PRECAST CONCRETE RAIN WITH CAST IRON GRATING, AND 6"Ø OUTLET.
- MPING MANHOLES NO.1 AND NO.2 ARE ELECTRICALLY CLASSIFIED AS CLASS 1, ISION 1, GROUP D ATMOSPHERES.

PUMPING MANHOLE DETAILS AND SPECIFICATIONS

MISCELLANEOUS DETAILS

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK GROUNDWATER COLLECTION AND **TREATMENT SYSTEM**

NOT TO SCALE

GRAVEL ACCESS DRIVE DETAIL

DRIVE DIRECTLY ON THE GEOTEXTILE OR WITH LESS THAN 6-INCHES OF CRUSHED STONE OVER THE 5. AFTER COMPLETION OF FINISH GRADING ALL POINTS ON THE ROAD SURFACE SHALL BE ROLLED AT LEAST 4 TIMES WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF AT

3. WOVEN GEOTEXTILE SHALL BE PLACED OVER THE PROPOSED ROAD SUBGRADE SO THAT IT IS FREE OF FOLD AND WRINKLES. MINIMUM OVERLAPS BETWEEN ROLLS OF GEOTEXTILE SHALL BE 3 FEET.

2. AREAS THAT DO NOT PASS PROOF ROLLING WILL BE OVER EXCAVATED AND REPLACED WITH CRUSHED STONE AS DIRECTED BY LMC'S REPRESENTATIVE.

- WOVEN GEOTEXTILE

-EXISTING SUBGRADE 1. ROAD SUBGRADE SHALL BE STRIPPED OF NATIVE VEGETATION TO THE BOTTOM OF ROOT ZONE. THE SUBGRADE WILL THEN BE PROOF ROLLED WITH A SMOOTH DRUM VIBRATORY ROLLER WITH

AS REQUIRED YPE "A" CRUSHED STONE 2% SLOPE (SOUTH) (12" MIN. THICKNESS)

NOT TO SCALE

STORM SEWER PIPE COUPLING DETAIL

2. USE AT ALL STORM SEWER PIPE JOINTS & CONNECTION WITH EXISTING 24"Ø STORM SEWER.

NOT TO SCALE — "O" RING GASKET INSTALLED IN FIRST FULL VALLEY

NOTES:

DRAINAGE DITCH AREA TRENCH DETAIL

\$6**5**656666

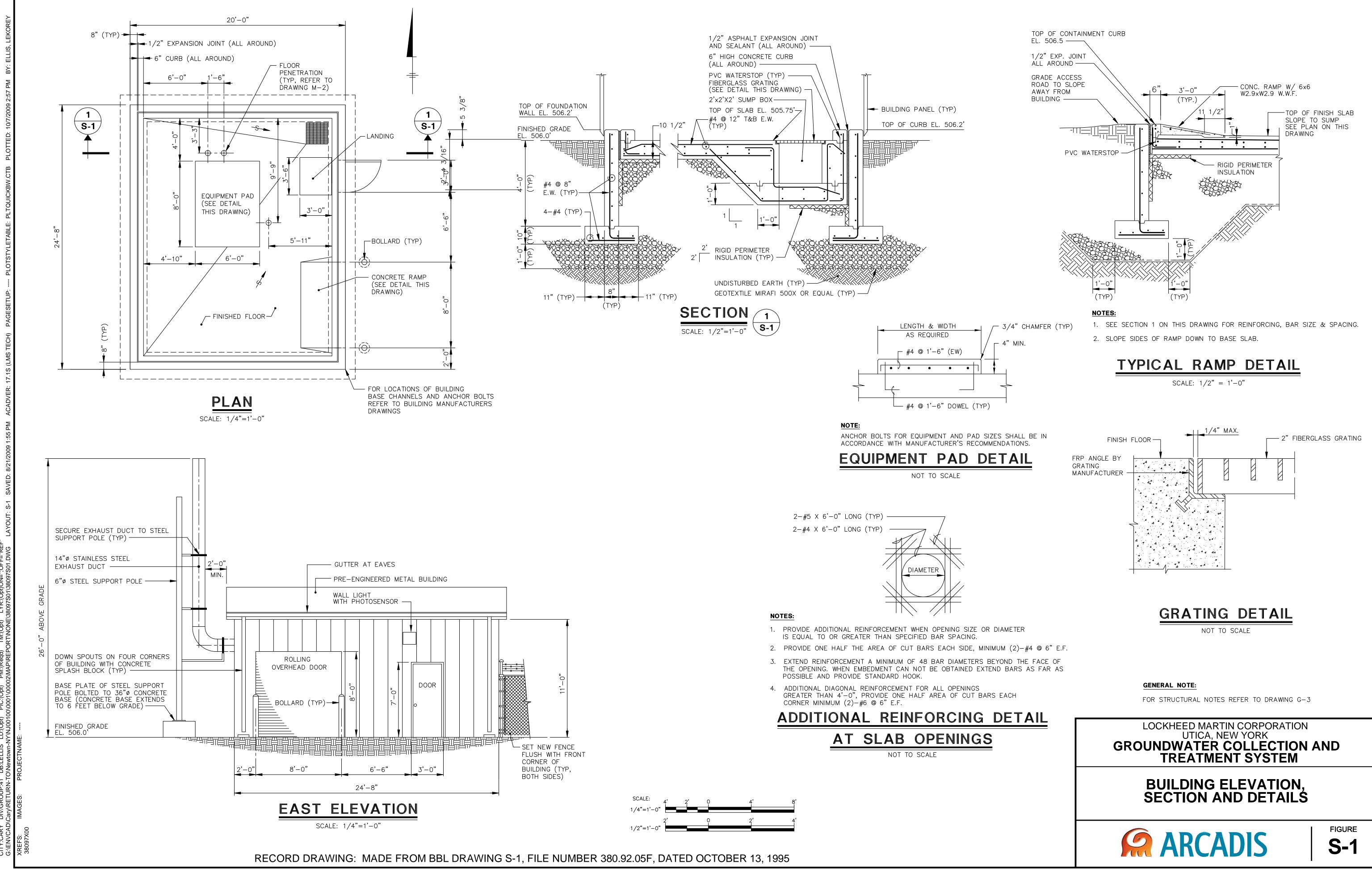
- NEW 24"Ø HDPE

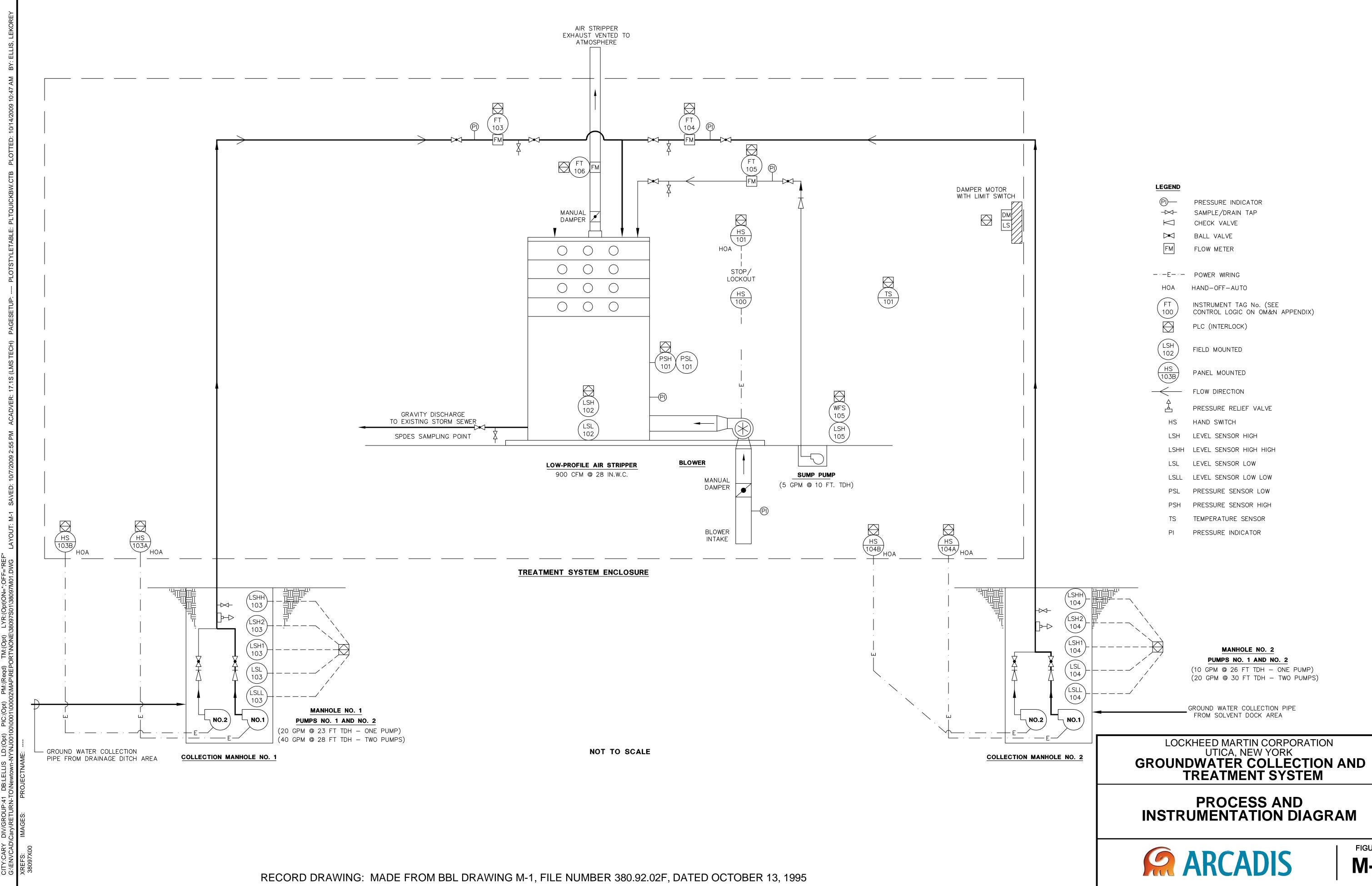
2'≤ 6" < < </p>

STORM SEWER PIPE

DRAINAGE PIPE

1. CONTRACTOR SHALL MAKE ALL JOINTS SQUARE & TIGHT. DAMAGED ENDS SHALL


BE FIELD TRIMMED.


- NON-WOVEN GEOTEXTILE WITH A MINIMUM 2'-0" OVERLAP

NEW 8"Ø PERFORATED

- EXISTING GRADE - TYPE "A" CRUSHED GRAVEL

-FINISHED GRADE (REFER TO PROFILE ON DRAWING G-2)

PROCESS AND INSTRUMENTATION DIAGRAM

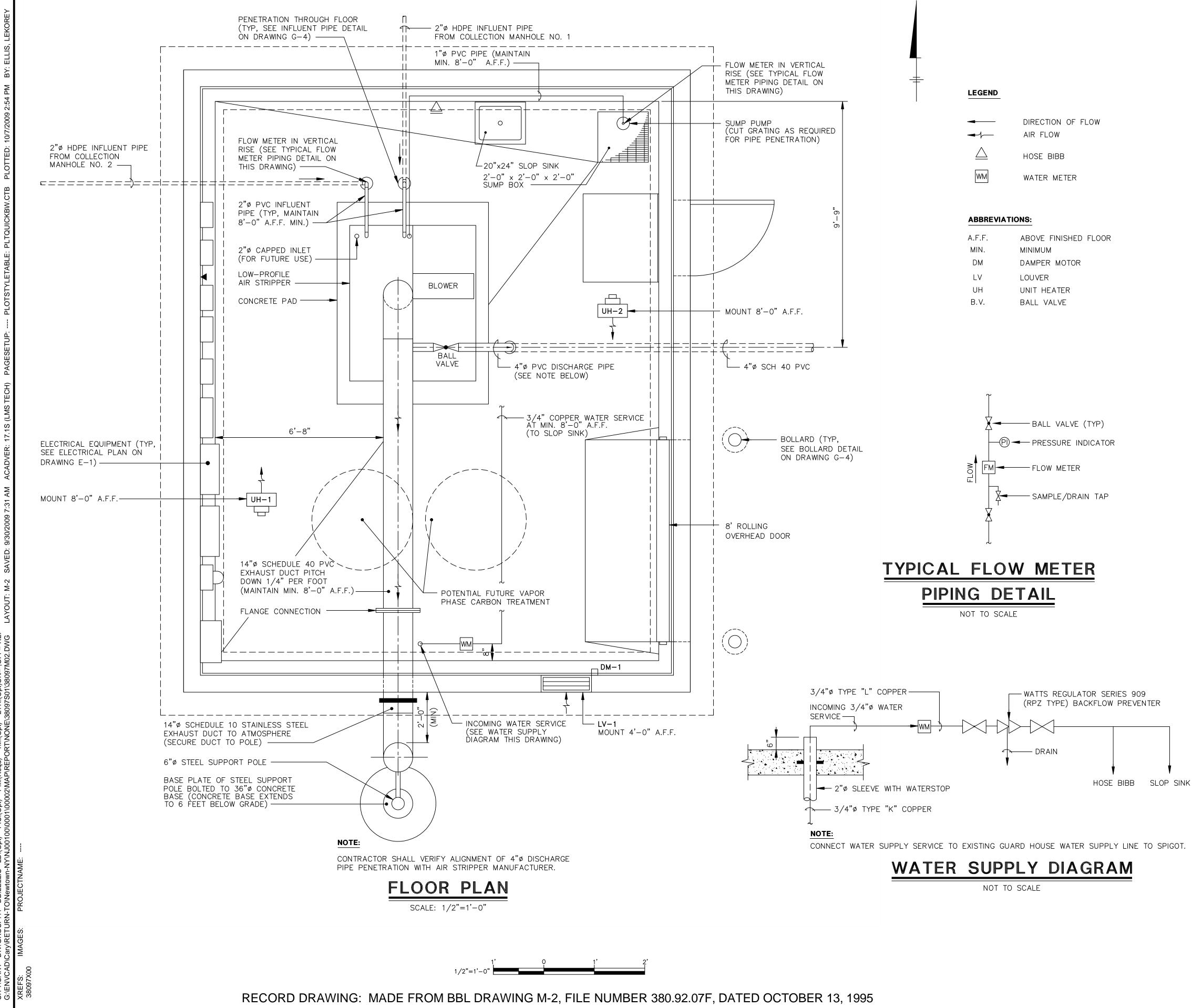
GROUND WATER COLLECTION PIPE

PUMPS NO. 1 AND NO. 2 (10 GPM © 26 FT TDH - ONE PUMP) (20 GPM © 30 FT TDH - TWO PUMPS)

MANHOLE NO. 2

FM	FLOW METER					
· -E- · -	POWER WIRING					
НОА	HAND-OFF-AUTO					
FT 100	INSTRUMENT TAG No. (SEE CONTROL LOGIC ON OM&N APPENDIX)					
\bigcirc	PLC (INTERLOCK)					
LSH 102	FIELD MOUNTED					
HS 103B	PANEL MOUNTED					
\leftarrow	FLOW DIRECTION					
٨						
	PRESSURE RELIEF VALVE					
нs	PRESSURE RELIEF VALVE HAND SWITCH					
HS LSH						
	HAND SWITCH LEVEL SENSOR HIGH					
LSH	HAND SWITCH LEVEL SENSOR HIGH					
LSH LSHH	HAND SWITCH LEVEL SENSOR HIGH LEVEL SENSOR HIGH HIGH LEVEL SENSOR LOW					
LSH LSHH LSL	HAND SWITCH LEVEL SENSOR HIGH LEVEL SENSOR HIGH HIGH LEVEL SENSOR LOW LEVEL SENSOR LOW LOW					
LSH LSHH LSL LSLL	HAND SWITCH LEVEL SENSOR HIGH LEVEL SENSOR HIGH HIGH LEVEL SENSOR LOW LEVEL SENSOR LOW LOW PRESSURE SENSOR LOW					
LSH LSHH LSL LSLL PSL	HAND SWITCH LEVEL SENSOR HIGH LEVEL SENSOR HIGH HIGH LEVEL SENSOR LOW LEVEL SENSOR LOW LOW PRESSURE SENSOR LOW					

PRESSURE INDICATOR


PRESSURE INDICATOR

SAMPLE/DRAIN TAP

CHECK VALVE

BALL VALVE

LEGEND

HEATING AND VENTILATING EQUIPMENT SPECIFICATIONS:

A. UNIT HEATERS

UNIT HEATER (UH-2)

- 1. HEATER SHALL BE CHROMOLAX CATALOG NO. LUH-10-43 OR EQUAL
- 2. HEATER SHALL BE 10 kW, 460 VAC, THREE PHASE, CAPABLE OF 750 CFM 47' RISE AND 27' THROW.
- 3. PROVIDE WITH MANUFACTURER'S INTEGRAL THERMOSTAT AND HANGER KIT.

B. LOUVERS

LOUVER (LV-1)

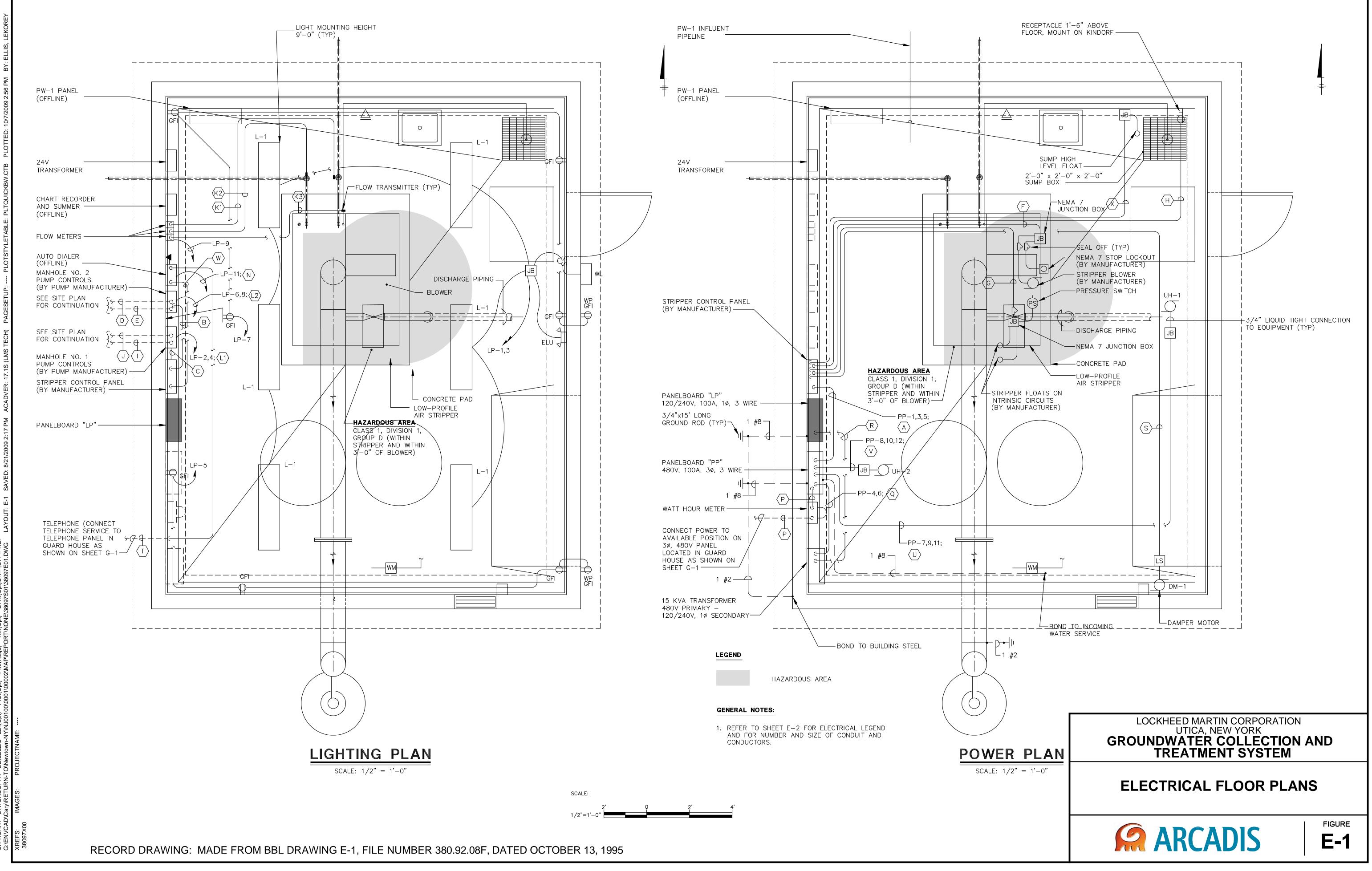
- 1. LOUVER SHALL BE ARROW UNITED MODEL NO. 690, RUSKIN MODEL NO. ELC6375 D, OR EQUAL.
- 2. LOUVER SHALL BE ALUMINUM, COMBINATION TYPE WITH DRAINABLE BLADES.
- 3. LOUVER LV-1 SHALL HANDLE 900 CFM AT APPROXIMATELY 650 FPM FREE AREA VELOCITY AND A MAXIMUM PRESSURE DROP OF 0.05" W.C.

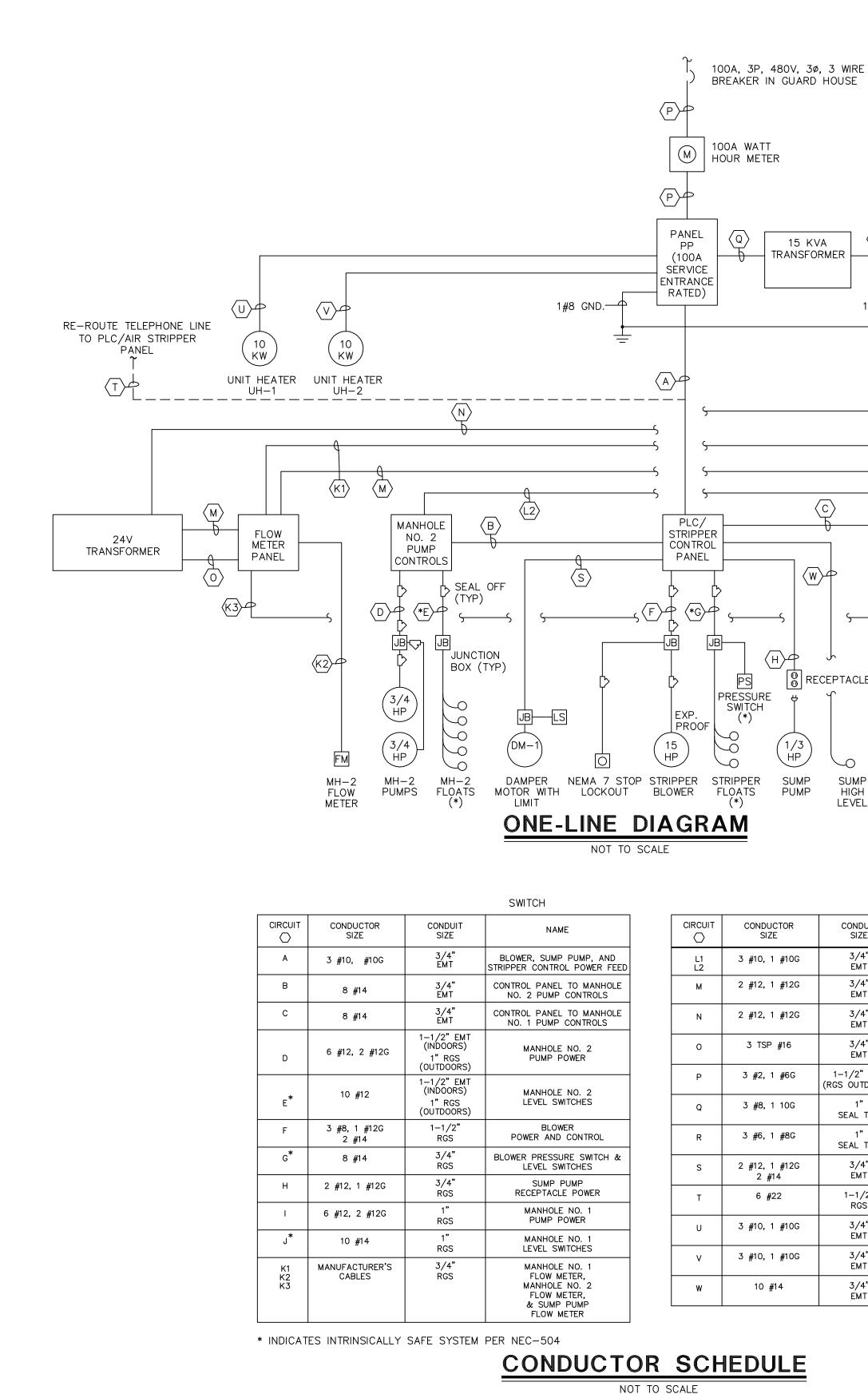
DAMPER MOTORS C.

DAMPER MOTOR (DM-1)

- 1. DAMPER MOTORS SHALL BE 120 VAC, 2 POSITION SPRING RETURN, 60-INCH POUNDS TORQUE WITH AUXILIARY SWITCH TO MAKE OR BREAK A CIRCUIT AT THE POWERED END OF STROKE.
- 2. DAMPER MOTORS SHALL BE BARBER COLEMAN MODEL NO. MA418-500.

GENERAL NOTES:


- 1. ALL WORK SHALL CONFORM TO ALL APPLICABLE RULES, REGULATIONS AND CODES INCLUDING, BUT NOT LIMITED TO, NEW YORK STATE BUILDING CODES AND LOCAL HEALTH DEPARTMENT REGULATIONS.
- 2. ITEMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURER'S REPRESENTATIVES DIRECTIONS.
- 3. ALL ELECTRICAL EQUIPMENT SHALL BE U.L. LISTED AND LABELED.
- 4. THE CONTRACTOR SHALL FIELD VERIFY ALL DIMENSIONS.
- 5. ALL THERMOSTATS SHALL BE MOUNTED 5'-0" AFF.
- 6. DIMENSIONS SHOWN "AFF" INDICATE THE ACTUAL CLEAR DIMENSION FROM THE FINISHED FLOOR ELEVATION TO THE BOTTOM OF THE UNIT.
- 7. ALL INDOOR PROCESS EQUIPMENT EXHAUST DUCTS SHALL BE PVC. ALL OUTDOOR EXHAUST DUCTS SHALL BE STAINLESS STEEL.
- 8. PROTECT ALL HEATING AND VENTILATING EQUIPMENT FROM DAMAGE DURING CONSTRUCTION. DAMAGED UNITS SHALL BE REPLACED AT NO ADDITIONAL COST TO THE OWNER.
- 9. INTERIOR OF AIR STRIPPER AND AREA WITHIN 3-FEET OF BLOWER ARE ELECTRICALLY CLASSIFIED AS CLASS 1, DIVISION 1, GROUP D ATMOSPHERE.


LOCKHEED MARTIN CORPORATION UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

FLOOR PLAN AND DETAILS

RECORD DRAWING: MADE FROM BBL DRAWING E-2, FILE NUMBER 380.92.09F, DATED OCTOBER 13, 1995 DRAWING E-3, FILE NUMBER 380.92.10F, DATED OCTOBER 13, 1995

NOT TO SCALE

TOR	CONDUIT SIZE	NAME
#10G	3/4" EMT	PUMP CONTROL PANEL POWER FEEDS
#12G	3/4" EMT	FLOW METER & CHART REC. POWER FEED
#12G	3/4" EMT	24V TRANSFORMER POWER FEED
# 16	3/4" EMT	FLOW SIGNALS
#6G	1-1/2" EMT (RGS OUTDOORS)	BUILDING POWER
10G	1" SEAL TITE	TRANSFORMER FEED
#8G	1" SEAL TITE	PANEL LP FEED
#12G 4	3/4" EMT	DAMPER MOTOR AND LIMIT SWITCH
2	1-1/2" RGS	TELEPHONE SERVICE
#10G	3/4" EMT	UNIT HEATER (UH-1)
#10G	3/4" EMT	UNIT HEATER (UH-2)
4	3/4" EMT	SUMP HIGH LEVEL

		S	<u>حرا</u> ج	>
C W + C + C + C + + C + + C + + + + + + + + + +	€M	N P	NHOLE O. 1 UMP ITROLS	

SUMP SUMP PUMP MH-1

LEVEL

HIGH FLOW METER PUMPS FLOATS FLOW

 $\langle R \rangle$

1#8 GND.-

PANEL

LP (100A)

NOTES:

MH-1

METER

MH-1

- 1. CONTROLS WERE MODIFIED FROM A ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIÉS, INC, IN DECEMEBR 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWING/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&N MANUAL.

		PANEL
GROUND	WATER	TREATME

LOCATION : ____ 100 MAIN BUS RATINGS : MINIMUM SHORTCIRCUIT INTERUPTING RATING 60 MAIN BREAKER TRIP : ESTIMATED CONNECTED LOAD :

DESCRIPTION	LOAD W-KW-HP	Д
INDOOR LIGHTING	480W	20
OUTDOOR LIGHTING	300W	20
RECEPTACLES (SOUTH)	720W	20
RECEPTACLES (NORTH)	900W	20
FLOW METER & CHART RECORDER	_	20
SPARE	_	20

_												
		PAI	NELBO	٩RI	D	PP	_ S	CHEDU	LE			
	LOCATION : GROUND W										PANEL CIRCUIT	
	MAIN BUS RATINGS :	100		AMF	PS, _	480	VC				3	WIRE
	MINIMUM SHORTCIRCUIT INTERUPTI MAIN BREAKER TRIP :	SERVICE E	NTRANCE	RA	TED)	AMPS ,	IN	COMING FEE		3#2, 1#6	I-LINE HCN GND., 1-1/2"C DUNTED NEMA 1	TYPE
	DESCRIPTION	LOAD W-KW-HP	CB AMPS	CIR.	А	вС	CI	R. CB AMPS	LOAD W-KW-HP		DESCRIPTION	
	BLOWER, STRIPPER CONTROLS	15HP	45	1			<u> </u>			SPACE		
	SUMP PUMP, & DAMPER MOTOR			3		_ _	<u> </u>	. 35	15KVA	TRANSFOR	MER FEED	4
			3	5		<u>_</u>	<u> </u>	2				
	UNIT HEATER (UH-1)	10KW	30	7			<u> </u>	30	10KW	UNIT HEAT	TER (UH-2)	(
			3	9 11			<u>1</u>	2 3				

17

19

LEGEND

n	2 LAMP FLUORESCENT LIG DENOTES FIXTURE TYPE
WL	EXTERIOR WALL PACK LIGH
	EMERGENCY LIGHT FIXTURE
S	SINGLE POLE SWITCH
φ	DUPLEX RECEPTACLE
∯ gFI	GROUND FAULT CIRCUIT IN RECEPTACLE
JB	JUNCTION BOX
	MOTOR
\frown	CIRCUIT HOMERUN
▼	TELEPHONE OUTLET
LS	LIMIT SWITCH
	CIRCUIT BREAKER

ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD SCHEDULES

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK GROUNDWATER COLLECTION AND TREATMENT SYSTEM

INTERRUPTER DUPLEX

RE

GHT FIXTURE

IGHT FIXTURE, LETTER

	NELBC			LF		_	CHEDU		NEL "PP" CI	RCUITS 4 &	: 6	
NG	:7		10,C	_ <u>240</u> 000	/120	VOL RMS INCO	TS , 5. SYMM. A DMING FEE CLOSURE :	AMPS D:	PHASE , 3#6, 1#8 SURFACE MOU		WIRE TYPE	
) ·HP	CB AMPS	CIF	R.	B	c	CIR.	CB AMPS	LOAD W-KW-HP		DESCRIPTION		-
٧	20	1 1		•	\frown	2	30	1.5 HP	MANHOLE N	O.1 PUMP	CONTROLS	$\left \left< L \right> \right $
V	20	1 3			•	4	2					
V	20	1 5		_		6	30	1.5 HP	MANHOLE N	10.2 PUMP	CONTROLS]{L2}
۷	20	1 7			•	8	2]
	20	1 9				10	20 1	_	SPARE			
	20	1 1'				12	20 1	_	SPARE			
	20	1 13	\sim			14	20 1	_	SPARE			

—

—

—

SPARE

SPARE

SPARE

Appendix B

Monthly O&M Checklists

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date: Time: Technician:

Pleane o

25

1,gW

SYSTEM STATUS

STSTEMSTATU				1.	
System operation	nal? (PLC sci	reen indicating system in	"AUTO" or "MANUAL")	Yes/ Auto	
System currently	cycling?	yes			
Alarms? (list)					

Electrical Meter Reading (kWh):

90185

AIR STRIPPER PARAMETERS (record while air stripper is running)

	Units	Value	Parameter
]	(în. W.C.)	26-5 -305	Air stripper sump pressure [PI-106]
2 16.5-1	(inches)	17-05	Air stripper sump water elevation (record from site gauge)
]	(in. W.C.)	2	Blower intake line vacuum [PI-100]
	(inches)	29	Main damper position (record distance from center of wingnut to outside of blower housing)
	(°)	190	Interior dilution damper position (0° is shut, 90° is open)

Is white "POWER ON" light on air stripper control panel lit? Yes

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Ve 5

Note scaling inside liquid effluent pipe from access port 1/9/4+

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Yes

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	12:00 1/27/12	12:00	12:00	12:00	12:00
Instantaneous Flowrate [gpm]	39,5	18.5	17,2	0	71-75
"Total" Flow (resettable, gal)	NH			1	
"Perm" Flow (gal)	14253888	2397095	1632421	1652	5449703
Pump 1 Running (Y/N)?	Y	ĸЧ	Y	N	NA
Pump 2 Running (Y/N)?	N	N	N	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

(located on duct heater control panel door) Is duct heater "HEAT ON/OFF" light lit? (Y/N) Ve5 Is duct heater "HI TEMP" alarm light on? (Y/N) (located on duct heater control panel door)

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xisx

1 of 3

Date: 1/2-7/12 Time: 12:45 Technician: 42

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	54	(°F)	
Pre-Carbon Temperature	TI-400	76	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	•	84	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.5	(in. W.C.)	
Effluent Pressure	PI-403	< 1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	37.2	(in. W.C.)	
Vapor Flowrate	FT-106	680-245	(cfm)	
Pre-Carbon Temperature	TT-400	80.5	(°F)	
Pre-Carbon Pressure	PT-400	9,9	(in. W.C.)	
Building Temperature	TT-100	61,4	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Yes	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA and stroke speed values	<u>5,3 (mA)</u> 7 (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	15 gal remains	
Quantity of additional full drums	2	
Inspect sequestering agent components signs of leaking or wear (tubing [suc injection, bleed return], injection check v fitting, spill pallet, a	tion, alve	

MONTHLY OM&M TASKS

The state of the second s	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	7,89
Model of pH meter	Hanny 11 991001
Calibration notes / method used	4/7 solution

Date: (/27/12 Time: 8:00 Technician: 00

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No .
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes
Observe groundwater inside each manhole and note odor and appearance	MH-1 + MH-3 -> clear, no odol MH-2 -> slight sheen, no ador
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	6008
With pump(s) running, listen for any unusual sounds	0 Km j
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	600d
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	(rood,
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes, all exercised
List any notable observations	Nove
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is interior emergency lighting operational? (Y/N)	×(es
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP - 3/11 04-M - 3/11
Is emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Yes
Is current SPDES permit onsite? (Y/N) (note date)	Res 4/1/11

S

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xlsx

Date: Quarterly OM&M Log Sheet, Groundwater Collection and Time: Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Technician: QUARTERLY OM&M TASKS 126/12 Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) Yes 6.97 MH-1 influent pH MH-2 influent pH MH-3 influent pH 6.7 Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Yes, Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Ves Quarterly groundwater elevation levels collected? (Y/N) yes 1/24/12 Blower bearings greased? (Y/N) Ves 1126112 Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall 2300-2400 (fpm) side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) (cfm) 745 TET-106 - 680-745 / **QUARTERLY CRITICAL DEVICE / ALARM TESTING** Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) Yes Yes. Pumpdown tests for all 3 MH's. If yes, document testing and MH-1 -> A FT-101 = 310 q. ; A DTW = 18,1875" = 320 qui = note any changes in sensor calibration factors 114-2 -> 4 FT-102=496 q. : 6 DTW= 28,375" = 499 qui = - 0.6 14.3 -> A FT-103 = 588 9. : & DTW = 34" = 598 gal = FT-101= 14252048 FT-102=2396246 FT-103=1631572, FT-105 = 544 6279 FT-105 -> 11:20 2397426 1632715 5 450978 12:40 -14254609 OK = 38% 1 = 1,180 A- 1, 143 5= 4884 4,699 A:2561 Yes. All working properly. Manhole floats tested? (Y/N) Test the following critical alarms (note that system must be in AUTO to observe proper alarm response): Caused PLC Caused System Corresponding Alarm Output Passed PLC Alarm Shutdown? Transmitter / Alarm Type Alarm (Y/N) State Change? **Output Name** (Y/N) Sensor (Y/N). Yes PT-106 fatal Yes PA 106 Yes Notes: Air Stripper Sump Good 7 occurred. PA 106 **High Pressure** Yes Yes Yes PT-106 PA 106 fatal Notes: Good -> Air Stripper Sump PA, 106 occurred. Low Pressure les fatal Yes ler LSH-100 LA 100 Notes: Confirmed following installation of tethered float Air Stripper High 1/26/12: Liquid Level

Date:	1/27/12	
Time:	8:00	
Technician:	00	

.

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Air Stripper Low Liquid Level	LSL-100 Notes: Good. Te	LA_100 sted during sump	fatal cracuation f	Yes be LSH-100 instal	Yes 1.	Yes
	FT-106	FA_106	fatal	Yes	Yes	Yes
High Air Flowrate	Notes: Good,					
· · · · · · · · · · · · · · · · · · ·	FT-106	FA_106	fatal	Yes	Yes	Yes
Low Air Flowrate	Notes: Good,	FA-106/				
	TT-400	TAH400	fatal	Yes	Yes	Yer
Pre-Carbon High Temperature	Notes: Good , 3	min delay. TAH40	01			
	TT-400	TAL400	fatal	Yes	Yes	Yer
Pre-Carbon Low Temperature	Notes: (, 00 d , 1 ,	nin delay. TAL	100 /			
	PT-400	PA_400	fatal	Yes	Yes	Ver
Pre-Carbon High Pressure	Notes: Good , u	15 second leby,	PA. 400 /			
	PT-400	PA_400	fatal	Yes	Yes	Yes
Pre-Carbon Low Pressure	Notes: 6008. 45	second delay.	PA. 400 1			
· · · · ·	FT-101	FA_101	warning	Yes	No	Yes
MH-1 Low Flowrate	Notes: Turned	MOA to off. F	A.1011			
	FT-102	FA_102	warning	Yes	No	Yes
MH-2 Low Flowrate	Notos: Turned 1	ton to off. God	d; FA.102	nor faited,		
5	FT-103	FA_103	warning	Yes	No	Y05
MH-3 Low Flowrate				103 after 30 s	erends	

Date:	1/27/12	
Time:	8:00	
rechnician:	CD	

Ålarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Aggregate Low Flowrate	FT-105 Notes: Turn nil	FA_105 six pump HOAs	warning off; got	Y FA. 105	N	<u>Y</u>
Building Wet Floor Sensor Alarm	WFS-106 Notes: Duer fille	WFS106 d sump. Fatal	fatal alarn. "WF	Yes 5106 "	Yes	Yes
Building Sump High Level	LSH-106 Notes: Filled sur	LSH106 mp w/ clean wat	warning ef. Observel	Yes L5H-106 switch.	No	Yes
Sequestering Agent Low Flow	FT-200 Notes: Read	FA_200 uxed FA 200	warning	Yes	No	Yes
Spill Pallet Wet Sensor Alarm	LSH-200 Notes: / Red	LSH200 erved LSH206	warning)	Yes	Nø	Yes
MH-1 High Level	LSHH-103 Notes: Goud. (LA_MH1 Conducted w/ 1	warning man hole fi	leat terring.	No	Yes
MH-1 Low Level	LSLL-103 Notes: Should fo	LA_MH1 rce off both MH-1 (sod	warning	t yes	N	Yes
MH-2 High Level	LSHH-104 Notes:	LA_MH2 600d	warning	Yes	No	Yer
MH-2 Low Level	LSLL-104 Notes: Should fo	LA_MH2 rce off both MH-2 (5 oc d	warning 2 pumps ✓	¥ Yer	No	Yes
MH-3 High Level	LSHH-105 Notes:	LA_MH3 Good	warning	Yes	No	Yes

Date:	1/27/10	
Time:		
Technician:		

Alâm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
MH-3 Low Level	LSLL-105 Notes: Should for	LA_MH3 rce off both MH-3 Good	warning pumps /	Yes	No	Yes
Building High Temperature	TT-100 Notes: (5000	TA_100	shutdown	Yes	Yes	les
Building Low Temperature	TT-100 Notes: Good.	TA_100	shutdown	Yes	Yes	Yes

CADIS

At use

a,

Nater Level Record

Page_ 1 of 3

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
MW - 1	839	11:12	Good
MW - 2	5.59	•	Under large snow hank
MW - 3	10.90	11.29	Good
MW - 4	11.48	11.30	12000
MW - 5			ICE under wellcover
MW - 6	5.59	1546	Bailer in well(Remove to collect WL)
иW - 7	8.10	1420	Good
VIW - 9	3.28	1237	Good
MW - 10	4.99	1225	Good
MW - 11	8.27	1355	Good
WW - 12			Well under Very large snowbank "
WW - 13S	6.94	1509	Well Dry 6.94 Depth to bottom
MW - 13BR	10,67	11.11	Good
- 14S	10,31	1406	Good
W 14BR	56.31	1524	Good
MM - 15S	8.19	1410	Good
WW - 158R	29.20	1653	Under pressure *caution when opening 9000
/W-16	4.19	1210	
WW-17	2.40	17/2	
/W-18	1.44	1715	
/W-19	1.19	1305	600 0
/W-20	1.98	1306	Good
dw-21	3.50	1330	Good
B A	1.88	1307	4" Well
Z-2	2,35	1314	Good
PZ - 4	0.00	12,34	Water @ bottom of wellcover
PZ - 5	9.04	1658	(Inside Conmed)
Z-6	9.22	1724	(Inside Conmed)
Z-7	6.96	1731	(Inside Conmed)
Z - 8		1635	(Inside Conmed)
Z-9			(Inside Conmed)
Z - 10	8.89		(Inside Conmed)
Z - 11R		the second s	Bolt is bent, can not Remove
Z - 13R	8.06		6000
Z 17	9,89		Good

4.19 1710 East 2.48 1712 Center MW-16-18 1.48 1715 West

Page__ 2 of 3

Water Level Record

Project

ARCADIS

LMC Utica, NY

Date 1/24/12

Staff: J.G.

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)	+
Z - 18	7,89	1424	Good	7
Z - 19	7.29	1637	Good	7
Z - 20	6.89	1460	6000	7
PZ - 21	Dal	1530	(Outside IHOP, next to SG Point)	1
Z - 22	7,07	1318	Good	1
PZ - 23	6.55	1250	1 A A	
PZ - 24	10.55	1020		1
PZ - 25	6.37	1032		1
PZ - 26	9.04	1033		Τ
PZ - 27	10.56	1035		
PZ - 28	3.64	1253.		1
PZ - 29	2.02	1245		٦
PZ - 30	3.76	1023		
PZ - 31	1,42	6958		1
PZ - 32	0.00	1008	All Good, water @ Sorface	7
PZ - 33	3.60	0943	Good]
PZ - 34	2.52	160=F=		
PZ - 35	3.21	1603	Good	12
PZ - 36	0.00	1610	Water@ Top of Riser	10
PZ - 39	325	1614	(1) Bolt Missing	3
PZ - 40	200	162	(In Maintenance building) - Unoble to Arress	葡萄
PZ - 41	44.70	1619	(In Maintenance building)	3
PZ - 42		1630	(In Maintenance building) Water froze IN Rizer	100
(1-PZ1		1645	1 Plugfroze in	
1-PZ2	1.83	11194	රිංගේ	
25821	4.18	0951	All Good	
24PZ2	6.30	0946		,
2PZ3	1.60	0944		1-5
2-PZ4	0.00	0953	iwater @ sorface	
2-PZ5	3.70	0944		1

5

ARCADIS

Water Level Record

Page <u>3 of 3</u>

Project

LMC Utica, NY

Date <u>1/24/12</u>

Staff: <u>J.G.</u>

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
A2-PZ6	0.00	0952	All Good, water @ Surface
A2-PZ7	2.98	0945	
A2-PZ8	0.28	0946	V

Date:	2/aliz
Time:	1145
Technician:	

SYSTEM STATUS

System operation	nal? (PLC scr	een indicating system	in "AUTO" or "MANUA	L") (Auto	
System currently	cycling?	ves				
Alarms? (list)	None	······································				
	(注)					

Electrical Meter Reading (kWh): 93394

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure (F	PI-106] 29.0	(in. W.C.)
Air stripper sump water elevation (record from site	gauge) 16.5	(inches)
Blower intake line vacuum (F	PI-100] -Z	(in. W.C.)
per position (record distance from center of wingnut to out blower ho		(inches)
Interior dilution damper position (0° is shut, 90° is	open) O.I	(°)

Is white "POWER ON" light on air stripper control panel lit? Ve5

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Ve5

Note scaling inside liquid effluent pipe from access port /14/e to

Note scaling observed inside air stripper via clear tray access door /1++/e +0 nosca ling

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>Ves all three</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 (FT-103)	Sump [FT-104]	Cumulative [FT-105]
Date/Time	2/11/1150				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instantaneous Flowrate [gpm]	37.80	NA	16.80	NA	53.98
"Total" Flow (resettable, gal)	1965 893	349,946	383,142	50	3.019,539
"Perm" Flow (gal)	14.412,959	2.429.957	1.698.277	16.52	5695022
Pump 1 Running (Y/N)?	Ves	NO	Ves	NIK	NA
Pump 2 Running (Y/N)?	NO	NO	NO	NA	NA

and HS-103B] in "auto" position? (Y/N) yes all SIX

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date: <u>2/9/12</u> Time: <u>1200</u> Technician: <u>Japon Gutkows</u>k,

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	53	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	13	(in. W.C.)	
Mid-Carbon Pressure	P1-402	4	(in. W.C.)	
Effluent Pressure	PI-403	Ŏ	(in. W.C.)	

VAPOR PHASE PARAMETERS (continued)

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.10	(in. W.C.)	
Vapor Flowrate	FT-106	787.5	(cfm)	
Pre-Carbon Temperature	TT-400	83.8	(°F)	
Pre-Carbon Pressure	PT-400	10.6	(in. W.C.)	
Building Temperature	TT-100	62.5	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	VPS	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	13 Remaining	
Quantity of additional full drums	Z full Drums	
Inspect sequestering agent components signs of leaking or wear (tubing [suc injection, bleed return], injection check v	uon,	d, no leaking, no build up

fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @ 1140 on 2/9/12
pH of effluent sample	
Model of pH meter	Hanna H1991001
Calibration notes / method used	3Don+Cal.

Date: 2/9/12 Time: 1400 Technician: Jason Gotteousk;

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1: None MH-2: None MH-3: None
Do level floats appear to be in good condition and hanging freely? (Y/N)	All good in All 3MW's
Observe groundwater inside each manhole and note odor and appearance	clear w/no odor in All 3MH'S
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Yes, All Good
With pump(s) running, listen for any unusual sounds	No unusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	AllGood
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes
List any notable observations	Nolssues
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Heater working Thermostatehecked, Good

HEALTH AND SAFETY

item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	Ves
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	Ves
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes 3/11/11
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Ves

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xisx

3 of 3

Date:	311	12	
	12		
Technician:	Jasan	Gutkows	Ċ.

SYSTEM STATUS

System operatio	nal? (PLC sc.	reen indicating sys	tem in "AUTO" or "N	IANUAL")	Auto
System currently	cycling?	Ves			
Alarms? (list)	None				

Electrical Meter Reading (kWh):

97297

AIR STRIPPER PARAMETERS (record while air stripper is running)

	TYN IC SG	
Air stripper sump pressure [PI-106]	29,0	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	16.5	(inches)
Blower intake line vacuum [PI-100]	-2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.25	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.1	(°)

Is white "POWER ON" light on air stripper control panel lit? Nes

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port // H /2

Note scaling observed inside air stripper via clear tray access door 1, + 1e

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>VES All Three</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) <u>1/ES All Six</u>

Paramora							
Date/Time	31	1/12	1215				7
Instantaneous Flowrate [gpm]		38.	22	15.96	17.50	NLA	71.65
"Total" Flow (resettable, gal)	2	112	489	369,944	435,243	50	3,227,390
"Perm" Flow (gal)	16	1,55	9,580	2,449,958	1,750,378	1652	5,902,836
Pump 1 Running (Y/N)?		les	•	Yes	Ves	NO	NA
Pump 2 Running (Y/N)?		NO		NO	NO	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves.	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date: 311112 Time: 1220 Technician: Jason Gutkousk.

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	, Units -	Notes
Pre-Duct Heater Temperature	TI-300	+	(°F)	Accidentally not
Pre-Carbon Temperature	TI-400	ଞ୍ଚ	(°F)	recorded in field.
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	84	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	()	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Rarameter 🐇 😪	i Pile Angel	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.95	(in. W.C.)	
Vapor Flowrate	FT-106	766.4	(cfm)	
Pre-Carbon Temperature	TT-400	96.0	(°F)	
Pre-Carbon Pressure	PT-400	9,1	(in. W.C.)	
Building Temperature	TT-100	63.	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes :
is pump operating? (Y/N)	1/83	
Is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)	Yez	
If in external mode, record one set of mA	4.95 2 (mA)	display screen should automatically be switching back and
and stroke speed values	ි (spm)	forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	14 Remaining	
Quantity of additional full drums	2 Full Drums	
	1110-0	delaska shuldan

Inspect sequestering agent components for <u>All good w/no leaking or buildup</u> signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Task	Notes
	Ves collected @ 1225 on 311/12
pH of effluent sample	7.86
Model of pH meter	Hanna H1 991001
Calibration notes / method used	3 point cali
	Effluent Sample collected while

Date: 31112 Time: 1230 Technician: boon Gutkowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1: None MH-Z: None MH-3: None
Do level floats appear to be in good condition and hanging freely? (Y/N)	Ves, Good in All 3
Observe groundwater inside each manhole and note odor and appearance	Clear/No odorin All 3
Is confined space entry signage present at each manhole? (Y/N)	ves
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good w/ Noleaks in All 3
With pump(s) running, listen for any unusual sounds	No Unusual Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good in All 3
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	Nolssues
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Heater working Thermostat checked, Good

HEALTH AND SAFETY

tem.	Status and
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	ves
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Ves 3lulu
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xlsx

Monthly OM&M Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date: Time: Technician:

SYSTEM STATUS

System operational? (PLC scr	een indicating system in "AUTO" or "MANUAL")	
	Yes, but the MH-1, blower on in manual for sampling.	
Alarms? (list) None		

Electrical Meter Reading (kWh):

102,850

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]		(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17"	(inches)
Blower intake line vacuum [PI-100]	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	ə,5	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0"	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Hand

Note scaling inside liquid effluent pipe from access port Present

ham clean

Sandlur

Note scaling observed inside air stripper via clear tray access door Trays inspected

FLOWMETER / PUMP PARAMETERS

Are white power light Are pump hand-off-auto swit	ches [HS-101A, H	IS-101B, HS-102			cept H5-101A.	Gr MH-1
Ricineter a	MH-1	MH-2	IM:1-3 (E1=103)	Sumo	Cumulative	pomp #
Date/Time	4/5/12 15:45					
Instantaneous Flowrate [gpm] "Total" Flow (resettable, gal)	and the second se	16-17.5 NM	17.5-18.0	NM	61-66	
"Perm" Flow (gal)	14829215	2488832	1853922	1652	6290998	
Pump 1 Running (Y/N)?	Y	N	N	N	NA	
Pump 2 Running (Y/N)?	N	Y	Y	NA	NA	

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 At All three MH's were bumped to collect These readings using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) N (located on duct heater control panel door)

Date: 4/5/12 Time: 16:00-15:45 Technician: CD/JG

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Nõtes
Pre-Duct Heater Temperature	TI-300	63°	(°F)	
Pre-Carbon Temperature	TI-400	78	(°F)	
Duct Heater Temperature Setpoint	-	# 85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	78	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11.8	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.1	(in. W.C.)	
Effluent Pressure	PI-403	<1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PIDITagia	Value	Units	iNotes
Air Stripper Sump Pressure	PT-106	1 29.1	(in. W.C.)	
Vapor Flowrate	FT-106	694-786	(cfm)	
Pre-Carbon Temperature	TT-400	-18 99,5	(°F)	
Pre-Carbon Pressure	PT-400	9,4 =	(in. W.C.)	
Building Temperature	TT-100	59,7	(°F)	door open

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

		Notes
is pump operating? (Y/N) Is low flow alarm present? (Y/N)		22
Is pump in external mode? (Y/N)		
If in external mode, record one set of mA and stroke speed values	Ý,8 (mA)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	30 gal	Finished DRUM #2 [9/11-10/7/11 + 12/1/11-4)5/13 Begin DRUM #4
Quantity of additional full drums		Labeled # 5
inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting, spill pallet, e	lion, alve	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary manually turn on MH-1 Pump 1 or 2 (and blower if not already running in Auto).

Task Hask	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	7.08
Model of pH meter	Hounna 991001
Calibration notes / method used	447
MH-1 online (Auto or Manual?)	Only MH-1 in manual
Are MH-2 or MH-3 online in auto during sampling collection?	No

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manuai 03.30.12\Appendix D - GCTS OM&M Log Sheets 03.30.12.xisx

Time: 17:0 Technician: 20

Date:

4/5/12 17:00 20

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes
Observe groundwater inside each manhole and note odor and appearance	MH-2 sheen MH-1,3 no sheen or odor
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	OK
With pump(s) running, listen for any unusual sounds	ок
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	All okox
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	No leaks observed
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	Several BFV Hundle locks stick (not actual value)
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Several BFV Hundle locks stick (not actual value) Yes, SW & NE heaters okay.

HEALTH AND SAFETY

	Status Status	item sources and sources an
	Yes	s fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)
	Yes	Is eyewash/shower station operational and unobstructed? (Y/N)
witage	? Turned off light breaker on bur u	Is interior emergency lighting operational? (Y/N)
E lig	Yes	Is first aid kit present and in good condition? (Y/N)
	Yes	Is lockout/tagout equipment available? (Y/N)
	Yes	Have electrical GFIs been tested and reset? (Y/N)
	Yes	Do all electrical panels have 36" of open floor space in front of them? (Y/N)
	Yes OHM - March 2011 Yes HASP-3 March 2012	Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)
	Yes, in SSDS building	Is emergency spill kit available? (Y/N)
	Yes	s H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)
	Yes 4/1/11	Is current SPDES permit onsite? (Y/N) (note date)

				U	112 -415 110
		g Sheet, Groundwater Collection and Solvent Dock Area, Former Lockheed		Date: $\frac{4}{4}$	10 1/0/10
	French Road Facility			Technician: こマ	TG
	QUARTERLY OM&N				
			114 MILO and MILL	DO OVAN YOC	
	Quarterly	liquid influent samples collected for M	H-1, MH-2, and MH-	57 (T/N) 105	<u></u>
		MH-1 influent pH 6,96	sample	1 d	
		MH-2 influent pH 7-32			
		MH-3 influent pH 7,19			1 h h a a a a h
	not already running in				nd blower if
	Quarterly va	apor samples collected pre-carbon, mic	l-carbon, and effluen	t? (Y/N) <u>Yes</u>	
		Are MH-2 or MH-3 online in auto	o during sampling col	lection? Only MH1	online in monu-
	Quarte	erly catch basin samples collected for C	CB-1, CB-2, and CB-3	3? (Y/N) Yes 4/5/12	
		Quarterly groundwater elev	vation levels collecte	d? (Y/N) Not yet; sel	hed. for next w
			wer bearings grease		
	Indicate air velocity	measurement collected from 8" efflue	nt pipe (plug located	on wall~2300	(fpm)
		side of vertical portion of efflu	ent pipe, 1 fpm = 0.3	11/cm) <u>~730 /</u>	(cfm)
	QUARTERLY CRITIC	CAL DEVICE / ALARM TESTING	FT-106 = 70	19-180	
		ters FT-101, FT-102, FT-103, and FT-	105 calibrated? (Y/N) (should	
	Eighte norr centorin	107 be	done after flow sensor	cleaning) Yes	
	If yes, document		test -> 250 us	ing DTW, 240 w/-	wans mitter
	note any change			To = OKV	
	calibration factors			IMA DTW, BIL USING	a transmitter
	FT-10/ -> P. Ju	un test -> 540 Using DTW:550	1		
	A fransmitter - 3 3				
	7- 11000000		+	5 × NU123-2	375.19-
		JA TALALANA ANNE CALERAL 1855 MA		モデー バロマ・ク・フー・ み	111 041 T
	FT-105 -> Over to	vo recording points several his at	OKCY	+01 /1174,0,3-0	,713 gal +
	E for cumulation	e = 2,052 -> 13.0% -> not	ok <u>cy.</u>	101 /1114,0,2 - 2	<u>, 713 921 +</u>
	E for cumulation Manhole floats tested	e = 2,052 -> 13.0% -> not	ent, Zat As okcy.	+01 /1174,0,3 - 0	
	E for cumulation	e = 2,052 -> 13.0% -> not	ok <u>y.</u>	+01 /1174,0,0 - 0	
ſ	<u>E for cumulation</u> Manhole floats tested	e = 2,052 -> 13.0% -> not	<u> </u>		, , , , , , , , , , , , , , , , , , , ,
ſ	<u>E for cumulation</u> Manhole floats tested	$e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) \qquad Yes$ ical alarms (note that system must be in A	<u> </u>	r alarm response):	
ſ	E for complation Manhole floats tested Test the following crit	$e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) \qquad Yes$ ical alarms (note that system must be in A Corresponding to PLC Alarmity of the system of the syste	UTO to observe prope	r alarm response): diplic ist Caused Syste Outputs	
ſ	<u>E for cumulation</u> Manhole floats tested	$e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT$ ical alarms (note that system must be in A Corresponding: PIIC/Alarmi, Transmitter//s. Qoutour:Name.	UTO to observe prope	r alarm response): diPLC Output Output Shutdown?	
ſ	E for complation Manhole floats tested Test the following crit	$e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT$ ical alarms (note that system must be in A Corresponding) Transmitter// Sensor	UTO to observe prope	r alarm response): diPIC Output Output hange? (//N)	
ſ	E for complation Manhole floats tested Test the following crit	$\frac{e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT}{P(Y/N)} \xrightarrow{Yes} \frac{13.6\% \rightarrow noT}{Fes}$ ical alarms (note that system must be in A Corresponding: PIIC/Alarmi Iransmitter// ISensor PT-106 PA_106	AUTO to observe prope Auto to observe prope Alarmi NarmiType State C State C Marmi State Y	r alarm response): diPLC output hange? N)	m HPassed (V/N)
	E for complation Manhole floats tested Test the following crit Alarma	$\frac{e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT}{P(Y/N)} \xrightarrow{Yes} \frac{13.6\% \rightarrow noT}{Fes}$ ical alarms (note that system must be in A Corresponding: PIIC/Alarmi Iransmitter// ISensor PT-106 PA_106	AUTO to observe prope Auto to observe prope Alarmi NarmiType State C State C Marmi State Y	r alarm response): diPLC output hange? N)	m HPassed (V/N)
	E for complation Manhole floats tested Test the following crit Alarma Air Stripper Sump	$e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) \qquad Yes$ ical alarms (note that system must be in A Corresponding: PlC/Alarmi, Transmitter//s Couput Name Sensor PT-106 PA_106 Notes: Operating pressure ~26-27	AUTO to observe prope Auto to observe prope Alarmi NarmiType State C State C Marmi State Y	r alarm response): diPLC output hange? N)	m HPassed (V/N)
4/12	E for complation Manhole floats tested Test the following crit Alarma	$\frac{e \Rightarrow 2,052 \longrightarrow 13.6\% \rightarrow noT}{P(Y/N)} \xrightarrow{Yes} \frac{13.6\% \rightarrow noT}{Fes}$ ical alarms (note that system must be in A Corresponding: PIIC/Alarmi Iransmitter// ISensor PT-106 PA_106	AUTO to observe prope Auto to observe prope Alarmi NarmiType State C State C Marmi State Y	r alarm response): diPLC output hange? N)	m HPassed (V/N)
4/12	E for complation Manhole floats tested Test the following crit Alarma Air Stripper Sump	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) \qquad Yes$ ical alarms (note that system must be in A Corresponding) Transmitter// Transmitter// Sensor PT-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown.	AUTO to observe prope Auto to observe prope Alarmi NarmiType State C State C Marmi State Y	r alarm response): diPLC output hange? N)	m HPassed (V/N)
4/12	E for complation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ ical alarms (note that system must be in A Corresponding): PIIC/Alarm Transmitter// I Sensor: POUtput:Name: PT-106 PA_106 Notes: Operating pressure ~26-27 to a4. Short deby. Shitdown. PT-106 PA_106	AUTO to observe prope Auto to observe prope Alarmi Alarmi State C State C State C M fatal Y inw C w/ 34 3pm - C	r alarm response): diPLC: Caused Syste Output: Shutdown? N) (Y/N) Y Change high setpoint	The Passed (V/N) Y Frank 34
4/12	E for complation Manhole floats tested Test the following crit Alarma Air Stripper Sump	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) \qquad Yes$ ical alarms (note that system must be in A Corresponding): Transmitter// Sensor PT-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 Notes: Operating pressure ~26-27	AUTO to observe prope Auto to observe prope Alarmi Alarmi State C State C State C M fatal Y inw C w/ 34 3pm - C	r alarm response): diPLC: Caused Syste Output: Shutdown? N) (Y/N) Y Change high setpoint	The Passed (V/N) Y Frank 34
4/12	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ ical alarms (note that system must be in A Corresponding): PIIC/Alarm Transmitter// I Sensor: POUtput:Name: PT-106 PA_106 Notes: Operating pressure ~26-27 to a4. Short deby. Shitdown. PT-106 PA_106	AUTO to observe prope Auto to observe prope Alarmi Alarmi State C State C State C M fatal Y inw C w/ 34 3pm - C	r alarm response): diPLC: Caused Syste Output: Shutdown? N) (Y/N) Y Change high setpoint	The Passed (V/N) Y Frank 34
4/12	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) Yes$ ical alarms (note that system must be in A Corresponding) Transmitter//A Corresponding) PT-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short beloy. Shitdown.	Inwc w/ 34 opm-	r alarm response): diPLC: Caused Syste Output: Shutdown? N) (Y/N) Y Change high setpoint	The Passed (V/N) Y Frank 34
4/12	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) Yes$ ical alarms (note that system must be in A Corresponding) Transmitter//A Corresponding) PI-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short deby. Shitdown. LSH-100 LA_100	OKcy. AUTO to observe prope ICause Alarmi Narmi Ivpe State C State C Inwcw/ 34 apm- C fatal Y Inwc w/ 34 apm- C fatal Y Inwc w/ 34 apm- C fatal Y Inwc w/ 34 apm- C	r alarm response): diPiC: Output: hange? N) Y Change high satpoint Y Change low setpoint	Passed (V/N) Y Fran 34 Hon 8
412	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow noT$ $? (Y/N) Yes$ ical alarms (note that system must be in A Corresponding: PILC/Alarmity Iransmitter//S PT-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short deby. Shitdown. LSH-100 LA_100 Notes: Sump level @ 20"; Tripped	OK_{GY} . AUTO to observe prope ICause Alarmi Alarmi Inwork fatal Y inwork fatal Y inwork fatal Y L5H-100	r alarm response): diplic Guiputs hange? Nie Change high satpoint Change low setpoint Change low setpoint Change low setpoint	The Passed (VIN) Frank 34 Frank 34 Frank 34 Frank 8
18:00	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	e = 2,052 → 13.6% → not ? (Y/N) Yes ical alarms (note that system must be in A Corresponding: PIC/Alarmi Transmitter//S PIC/Alarmi	OKq.x. IUTO to observe prope ICause Alarmi Inwc.u/ State C fatal Y inwc.u/ 34 ppm-C fatal Y inwc.u/ fatal Y fatal Y inwc.u/ Jumac fatal Y fatal Y inwc.u/ Jumac Y Y Jumac Y Y	r alarm response): diplic Guiputs hange? Nie Change high satpoint Change low setpoint Change low setpoint Change low setpoint	The Passed (VIN) Frank 34 Frank 34 Frank 34 Frank 8
4/12	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow not$ $? (Y/N) Yes$ ical alarms (note that system must be in A Corresponding: PIC(Alarmitic Transmitter//s PI-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short deby. Shitdown. LSH-100 LA_100 Notes: Simplemet & 20": Tripped blower on in auto, This is an alars 11-115" to change states of that	$\frac{\partial K_{G,Y}}{\partial K_{G,Y}}$	r elem response): diplic Quiputs Shuidowm? Aange? Nie Change high setpont Change low setpont Change low setpont ower off this is not to somp level must d	Passed (V/N) Frank 34 Frank 34
412	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow not$ $? (YIN) Yes$ ical alarms (note that system must be in A Corresponding) Transmitter//A Sensor PI-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short deby. Shitdown. LSH-100 LA_100 Notes: Simp level $e \ge 0$; Tripped blower on in auto, this is an alars $11-11.5$; to change states of floet CCD determines we should cha	OKgy AUTO to observe prope ICause Alarmi Narmi Ivpe State C Alarmi State C State C Inwcw/ 34 ppm-C fatal Y Inwcw/ 34 ppm-C fatal Y Inwc w/ 34 ppm-C fatal Y Inwc w/ 34 ppm-C fatal Y squh with bl with delay No squh Squh so Tha	r elem response): diplic Quiputs Shuidowm? Aange? Nie Change high setpont Change low setpont Change low setpont ower off this is not to somp level must d	Passed (V/N) Frank 34 Frank 34
4/12-18:00	E for comulation Manhole floats tested Test the following crit Alarma Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	$e = 2,052 \longrightarrow 13.6\% \rightarrow not$ $? (Y/N) Yes$ ical alarms (note that system must be in A Corresponding: PIC(Alarmitic Transmitter//s PI-106 PA_106 Notes: Operating pressure ~26-27 to 24. Short deby. Shitdown. PT-106 PA_106 Notes: Operating pressure ~26-27 to 30. Short deby. Shitdown. LSH-100 LA_100 Notes: Simplemet & 20": Tripped blower on in auto, This is an alars 11-115" to change states of that	OKgy AUTO to observe prope ICause Alarmi Narmi Ivpe State C Alarmi State C State C Inwcw/ 34 ppm-C fatal Y Inwcw/ 34 ppm-C fatal Y Inwc w/ 34 ppm-C fatal Y Inwc w/ 34 ppm-C fatal Y squh with bl with delay No squh Squh so Tha	r elem response): diplic Quiputs Shuidowm? Aange? Nie Change high setpont Change low setpont Change low setpont ower off this is not to somp level must d	Passed (V/N) Frank 34 Frank 34

Date:	4/4/12	
Time:	18:00	
Technician:		

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Air Stripper Low Liquid Level	LSL-100 Notes: Closed	LA 100 pre-carbon BF	fatal V, Evacunta	ed sump-shute	<u>ү</u> Гогия <u>.</u>	9
High Air Flowrate	FT-106 Notes: Changed Quick deby; shut	FA_106 high flow setp down. DIFFERS	fatal sunt from 1 FROM 5.	y 200 to 700(0 0P	porcting @ 800	<u>ү</u>).
Low Air Flowrate	FT-106 Notes: Closed pre partially	FA_106 -carbon DFV. Flow	fatal urate Gropped	Y <400, short d	Y eley, shutdown	_γ
Pre-Carbon High Temperature	TT-400 Notes: Chamged	TAH400 hugh from 110 to a	fatai 70. 65. 1	y minute delay.	4 Shitdoun.	4
Pre-Carbon Low Temperature	TT-400 Notes: Changed	TAL400 It low from 60	fatal 9 +0 105.	3 minute de	y ly. Shitdown	Y
Pre-Carbon High Pressure	PT-400 Notes: Operating(e	PA_400 P 9 Inwc. Cl	fatal nangt high t	4 1 fram 25 to 6. 6	15 second dele	y. Shitkon
Pre-Carbon Low Pressure	PT-400 Notes: Changed	PA_400	fatal Ho 11, 41	4 5 second delay.	Y Shutdown.	<u> </u>
MH-1 Low Flowrate	FT-101 Notes: Turned off	FA_101 Both NH-1 pur	warning wps w/ Hox	y switch. 30 sec	N and delay. Non-	Y Fatal
MH-2 Low Flowrate	FT-102 Notos: Turned a	FA_102	waming L prmps	V I w/ HOA suit	N 2. New-Faster	<u> </u>
/IH-3 Low Flowrate	FT-103 Notes: Turned of		warning	Y HOA switch. 1	N New-fat-1	Y

Date:	4/4/12	-4/5/12
Time:	16:30	
Technician:	< D	

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm T,ype	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Aggregate Low Flowrate	FT-105 Notos: Receive	FA_105 d during MH	warning '-3 test	Y.	N	Ŷ
Building Wet Floor Sensor Alarm	WFS-106 Notes: Filling sum	WFS106 p. Tripped u	fatal NFS-106, 51	nutdour	Y I	Ŷ
Building Sump High Level	LSH-106 Notes: Filed 30	LSH106 mp. Tripped	warning 1.5H-106, No	n-factor	Y I	_ <u></u> ?
Sequestering Agent Low Flow	FT-200 Notes: Remare 5	FA_200 viction tubing.	warning Achieved	von-fatal a	N larm,	4
Spill Pallet Wet Sensor Alarm	LSH-200 Notes: Tested w	LSH200 Nth water, Nou	warning 1-fafa(Y	N	P
MH-1 High Level	LSHH-103 Notes: Cafirme	LA_MH1 d by physice	warning ally switch	Y LSHH.	N	Y
MH-1 Low Level	LSLL-103 Notes: Should force Confirmed	LA_MH1 9 off both MH-1 p 6 physically,	warning umps lumps off,	<u> </u>	N	Y
MH-2 High Level	LSHH-104 Notes: Confirmed	LA_MH2 d physically,	warning	<u> </u>	N[Ŷ
MH-2 Low Level	LSLL-104 Notes: Should force Carfir	LA_MH2 off both MH-2 p med physical	warning umps Ily, Pmps 5	<u>Y</u> [N	Y
MH-3 High Level	LSHH-105 Notes: Confirme	LA_MH3 physically.	warning	-y I	N	Y.

Date: Time:

Technician: CP/T

			onundouj			
Alam	Conesponding Transmiter// Sensor		Alamitype	CaucodiPLO Alam Ouput State Change?	Caused System Shutdown?	Passed (Y/N)
	LSLL-105 Notes: Should force	LA_MH3	warning	<u> </u>	Y	ų
MH-3 Low Level		ed physically.		ps turn off.		
Building High Temperature	TT-100 Notes: Changed	TA_100 low fran #4	shutdown 40 to	100, Shitdow	Y 1.	9
Building Low Temperature	TT-100 Notes: Changed U	TA 100 high From (10	shutdown to 50.56	y l itan after	7 7 min delay	· Y

NTO01040.1.101

ARCADIS

Water Level Record

Project

LMC Utica, NY

Date 4/10/12

Staff:)ason Gutleouster.

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
MW - 1	8.64	1515	
MW - 2	5,91	1522	
MW - 3			Could notfind
MW - 4	11.70	1524	
MW - 5🗸	4,73	1425	
MW - 6	6.36		Bailer in well(Remove to collect WL) NO Bailer in wall
MW = 7	8,01	1443	
MW - 9	3.41	#1457	
MW - 10	5.37	1509	
MW - 11	8.47	1107	
MW - 12 🥁	12.00	1425	
MW - 138	Dry	1247	
MW - 13BR	10.05	1516	
MW - 145	10.64	1436	
MW - 14BR	51.30	1437	
MW - 158	8.44	1430	
WW - 15BR	28.28	1431	Under pressure *caution when opening (28.28)
WW-16	4.25	1159	· · · · · · · · · · · · · · · · · · ·
MW-17	4.14	1200	
WW-18	3.45	1201	
MW-19	1.42	1600	Coilected on 4/9/12
MW-20	2.50	1600	Collected on 4/9/12
WW-21	3.30	1300	
W-1			4" Well Protonor Find Myection well
PZ - 2	2.98	1600	Collectedon 4/9/12
°Z - 4	2.85	1448	
PZ-5√	10,11	1305	(Inside Conmed) Dan
PZ-6√	9,48	1320	(Inside Conmed)
PZ - 7J	9.12	1646	(Inside Conmed) Dave
PZ-8/	Dry	1244	(Inside Conmed)
PZ - 9	8.15		(Inside Conmed)
PZ - 10	9.08	the second s	(Inside Conmed)
PZ - 11R√	8.76 -	- 1723	
PZ - 13R ∕	8.16 -	-1355	Dan
PZ - 17	7.30	1345	
PZ - 18	<u>-7.97</u>	1356	÷
PZ - 19	7.43	1402	
PZ - 20	7.14	1340	
PZ - 21	Dry	415	(Outside IHOP, next to SG Point)
PZ - 22		1244	
PZ - 23	6.81	1214	
PZ - 24	10.85	1211	
PZ - 25	6.72	1209	
PZ - 26	9.24	1206	
PZ - 27	11.00	1224	
PZ - 28	3.93	1242	

ARCADIS

Water Level Record

Project

LMC Utica, NY

Date 1/10/12 Staff: Jason Gutkowski

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
PZ - 29	2.71	1254	
PZ - 30	4.18	12:19	
PZ - 31	1.49	1208	
PZ - 32	2.32	1205	
PZ - 33	Dry	1140	
PZ - 34	2.80	1305	
PZ - 35	2.06	1306	
PZ - 36	2,79	1309	
PZ - 39	3.87	13.13	
PZ - 40	5.05	1100	(In Maintenance building)
PZ - 41	4.80	1105	(In Maintenance building)
PZ - 42	0.61	1319	(In Maintenance building)
A1-PZ1	2.12	1600	collected on 4/9/12 \$
A1-PZ2	1.27	1600	collected on 4/9/12
A2-PZ1	4.44	1150	
A2-PZ2	6.66	1147	
A2-PZ3	3.72	<u>1141</u>	
A2-PZ4	2.10	1149	
A2-PZ5	7.84	1143	
A2-PZ6	Z.31	1153	·····································
A2-PZ7	6.28	1146	
A2-PZ8	5.75	1148	

Date:	5/1/12
Time:	0950
Technician:	J. GutKowski

SYSTEM STATUS

System operation	nal? (PLC sci	reen indicating system	in "AUTO" or "MANUAL")	Auto
System currently	cycling?	yes		
Alarms? (list)	None	·		

Electrical Meter Reading (kWh):

105306

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	u Units
Air stripper sump pressure [PI-106]	25	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17.0	(inches)
Blower intake line vacuum [PI-100]	-2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.25	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.1	(°)

Is white "POWER ON" light on air stripper control panel lit? \sqrt{e} 5

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door 1114

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>VESALT WEE</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

Parameter	MH-1 (FT-1011)	MH-2 [E1:102]	MH-3. [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	5/1/12/1330				
Instantaneous Flowrate [gpm]	36.15	14.93	15.75	NIA	66.47
"Total" Flow (resettable, gal)	2529585	435,243	605647	50	3837264
"Perm" Flow (gal)	14,976,677	2,515,254	1,920,768	1652	6513110
Pump 1 Running (Y/N)?	Ves .	yes	Yes	NO	ŇA
Pump 2 Running (Y/N)?	NO	NO	NO	NA	NA

and HS-103B] in "auto" position? (Y/N) Ves All Sy

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date: <u>5/1/12</u> Time: <u>0930</u> Technician:). <u>Sut Kowski</u>

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	58	(°F)	
Pre-Carbon Temperature	TI-400	72	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

VAPOR PHASE PARAMETERS (continued)

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26.62	(in. W.C.)	
Vapor Flowrate	FT-106	805.6	(cfm)	
Pre-Carbon Temperature	TT-400	80.8	(°F)	
Pre-Carbon Pressure	PT-400	11.9	(in. W.C.)	
Building Temperature	TT-100	61.2	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes		
Is pump operating? (Y/N)	Ves	10		
is low flow alarm present? (Y/N)	NO			
is pump in external mode? (Y/N)	Ves			
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)		
Stroke length	100 -	(record from local stroke length knob on pump)		
Sequestering agent drum level [LI-200]	27.5 gal, remaining	Drum 1s under Neg. Pressure side of frum has been pulled in by varium, (Neg. Pressure)		
Quantity of additional full drums	1 Fulldrum			
Inspect sequestering agent component signs of leaking or wear (tubing [suc injection, bleed return], injection check v	s for <u>Cood</u> , tion,	Drum was vented by loosening the		
fitting, spill pallet,	etc.)	unused bung plug.		

MONTHLY OM&M TASKS

Task	Notes		
Monthly liquid effluent sample collected? (Y/N)	Yes Collected @ 1335		
pH of effluent sample			
Model of pH meter	Hanna H1991001		
Calibration notes / method used	Z Point Cal. Effluent sample Collect		
	Effluent sample Collect MH-1 was in Cycle	edus	hile
ALADDA FOTH ACKUEEDIN 1004024 00041/2CTS and SSDS Evenes	MH-2 and MH-3 were offline while collecting sample.	lanuat	2 of 3

Date: <u>5/1/12</u> Time: <u>/500</u> Technician:). Gu+kowski

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: None MHZ: None MHJ: None
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, Allthree
Observe groundwater inside each manhole and note odor and appearance	Clear, no odor in All three
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Allgood, No leaks in all three
With pump(s) running, listen for any unusual sounds	No unusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good in all three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Allgood, no leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters	Heater 15 Working
and confirm proper heater response)	Thermostat Checked, good

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Ves
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	Ves
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	Ves, working
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes 3/11
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Yes Posted on wall
Is current SPDES permit onsite? (Y/N) (note date)	Ves Posted on wall

Date:	6/7/12
Time:	
Technician:	J. Gutleowski

SYSTEM STATUS

System operation	nal? (PLC scr	een indicating system in "AU	TO" or "MANUAL")	Ves, Auto
System currently	cycling?	Ves		•••
Alarms? (list)	None	1	<u></u>	

Electrical Meter Reading (kWh):

109763

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	25.5	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17.4	(inches)
Blower intake line vacuum [PI-100]	Z	(in. W.C.)
Main damper position <i>(record distance from center of wingnut to outside of blower housing)</i>	z.25	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.1	(°)

Is white "POWER ON" light on air stripper control panel lit? <u> $\sqrt{e_5}$ </u> Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Au+O

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door 1, 41/e

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Ves Att 3

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) V-5 A11 6

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	617.				
Instantaneous Flowrate [gpm]	36.14	18.07	16.52	NA	69.91
"Total" Flow (resettable, gal)		484302	755576	50	4316533
"Perm" Flow (gal)			2070729	1652	6992048
Pump 1 Running (Y/N)?		VED	VES	NO	NA –
Pump 2 Running (Y/N)?		NO	NO	NA	5 2 NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) (located on duct heater control panel door)

Date: <u>6/7/12</u> Time: <u>0930</u> Technician: <u>2000</u> (Suthawass)

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	59	(°F)	
Pre-Carbon Temperature	TI-400	77	(°F)	
Duct Heater Temperature Setpoint	- *	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	sig-n	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	< 11a - 2	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.44	(in. W.C.)	
Vapor Flowrate	FT-106	751.8	(cfm)	
Pre-Carbon Temperature	TT-400	81.4	(°F)	
Pre-Carbon Pressure	PT-400	9.9	(in. W.C.)	
Building Temperature	TT-100	64.6	(°F)	- e -

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	yes	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	18 gali remaining	
Quantity of additional full drums	IFULL Drum	

fitting, spill pallet, etc.) All good

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves@ 1000 on 6/2/12
pH of effluent sample	8.23
Model of pH meter	Hanna H1 991001
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	MHZONline while sampling

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

Date: <u>617112</u> Time: <u>0800</u> Technician: J. Gutkowski

MONTH	Y	M&MO	TASKS	(continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: None MHZ: None MHJ: None
Do level floats appear to be in good condition and hanging freely? (Y/N)	Ves, in all three
Observe groundwater inside each manhole and note odor and appearance	Clear w/no odor in all three
Is confined space entry signage present at each manhole? (Y/N)	Ves
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Allgood, no leaksin all three
With pump(s) running, listen for any unusual sounds	Nounusual sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good, all three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Allgood, noleaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes
List any notable observations	
Are both building heaters working property? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Checked, yes

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	yes
Is interior emergency lighting operational? (Y/N)	Yes .
Is first aid kit present and in good condition? (Y/N)	yes .
Is lockout/tagout equipment available? (Y/N)	ves
Have electrical GFIs been tested and reset? (Y/N)	Ves, GAS working
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes .
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes allı
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Ves Postedonwall
Is current SPDES permit onsite? (Y/N) (note date)	Ves posted on wall

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xtsx

Date:	7/12/12
Time:	1015
Technician:	CD/J6

SYSTEM STATUS

System operational? (PLC sc	reen indicating system in "AUTO" or "MANUAL")	Auto
System currently cycling?	Vei	
Alarms? (list)		······································

Electrical Meter Reading (kWh):

112043

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Válue	Units
Air stripper sump pressure [PI-106]	25	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	19,5	(inches)
Blower intake line vacuum (PI-100)	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.5	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Yes

Yes

Ves

Clean

Thù

scaling

Yes

< /m

1.5

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	7/12,14.50				>
Instantaneous Flowrate [gpm]		18,6	16.4	11-	66.0
"Total" Flow (resettable, gal)					
"Perm" Flow (gal)		2592545	2150361	1652	7224044
Pump 1 Running (Y/N)?		Y	4	N	NA
Pump 2 Bunning (Y/N)?		Ŷ	Y	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Yes	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	No	(located on duct heater control panel door)

Date: 7/12/12Time: 11:15Technician: CO/JG

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	T1-300	67	(°F)	
Pre-Carbon Temperature	TI-400	83	(°F)	
Duct Heater Temperature Setpoint	-	8 5	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3	(in. W.C.)	
Effluent Pressure	PI-403	<	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26.5	(in. W.C.)	
Vapor Flowrate	FT-106	630	(cfm)	
Pre-Carbon Temperature	TT-400	78.8	(°F)	
Pre-Carbon Pressure	PT-400	7.9	(in. W.C.)	
Building Temperature	TT-100	82.1	(°F)	

Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

th FT-105 @ 18-19 spm مر (record while air stripper is running) المسر th FT-105 @ 18-19 spm

Parameter	Status	Notes
Is pump operating? (Y/N)	Yes	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA and stroke speed values	<u> 4 イブ (mA)</u> 入 _ (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	13.7	13.7 gallons remaining.
Quantity of additional full drums	1	
Inspect sequestering agent components signs of leaking or wear (tubing [sucti injection, bleed return], injection check va fitting, spill pallet, e	on, .lve	Key

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). 7[ふ(ル) 3:00

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	7.82
Model of pH meter	Hannia 991001
Calibration notes / method used	794
Are MH-2 or MH-3 online in auto during sampling collection?	No

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\4.30.12 Revisions\Appendix D - GCTS OM&M Log Sheets 04.30.12.xisx 2 of 9

Date: 7/12/12Time: 11:30Technician: CP/TG

IONTHLY OM&M TASKS (continued) Task	Notes '
iquid flow sensors cleaned? (Y/N) (only as needed)	No
Nonthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, all 3
Observe groundwater inside each manhole and note odor and appearance	MH-1 + MH-3; clear + no odor MH-2; organic sheen + no odor
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	oK
With pump(s) running, listen for any unusual sounds	014
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good, used for pump-down tests
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Nothing noteworthy observed; no leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes, MHH BU'S difficult
List any notable observations	MH-1 BV's difficult to move
Are both building heaters working property? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	NE + oK Sw-> highest thermostat temp (75°F) already achieved in this portion of bldg;
Item	Status
Is fire extinguisher charged, unobstructed, and possessi	(ag? (1/N) (10)
Is eyewash/shower station operational and uno	bstructed? (Y/N) Yes
Is interior emergency lighting or	perational? (Y/N) No. Keconed ballery The Kern
Is first aid kit present and in good	condition? (Y/N) Yes
ts lockout/tagout equipment	available? (Y/N) No.
Have electrical GFIs been tested	
Do all electrical panels have 36" of open floor space	(Y/N)
Are both the OM&M Manual and HASP onsite? (Y	each) 0/447
Is emergency spill kit	
Is H&S signage including emergency contact list, eye p protection, and automatic equipment	not present? (Y/N) 165 need car plugs
Is current SPDES permit onsite?	

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\4.30.12 Revisions\Appendix D 3 of 9

Date:	7/12-7/13/12
Time:	
Technician:	CP/T6

QUARTERLY OM&M TASKS Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)

		nfluent pH <u>6,7</u>	Y			
	MH-2 in	nfluent pH 7. 2				
	MH-3 in	nfluent pH 6,6,	/			
Note: MH-1 must be (MH-1 typically batch)			cessary wait f	or MH-1 Pump 1 o	or 2 to turn on auto	matically
	apor samples colle		nid-carbon, ar	nd effluent? (Y/N)	les	
		r MH-3 online in a				
Quarte	erly catch basin sa	mples collected fo	r CB-1, CB-2,	and CB-3? (Y/N)	Yes	
		erly groundwater e				
				s greased? (Y/N)	Yes	
Indicate air velocity	y measurement co	llected from 8" effi	uent pipe (<i>plu</i>	g located on wall	2480	(fpm)
	side of ve	ertical portion of ef	fluent pipe, 1			(cfm)
UARTERLY CRITK	CAL DEVICE / AL	ARM TESTING		FT-106 = 710	-810	
Liquid flow transmit			T-105 calibrat	ed? (Y/N) (should		
Eidara von severu		L L L L L L L L L L L L L L L L L L L	oe done after flo	w sensor cleaning)		
If yes, document	testing and FT	-102 - DOTW	= 18.75" = 3	30 gal (211 gal)	(12 ⁺)	
note any change	s in sensor				321(-2.7%)=	٥K
calibration factor	s FT.	-103 - 4 DTW=	25.25 - 4	44 001		
		Tams. A . 430	(-370)=04	(FT-105 A:	= 419/- 5.6%)= 0Ľ.
ET-101 -> AUT	W=26" = 45	7 agl.				
trave A= 4:	39= -4%=0	55				
	1= 452 = 0KV					
		Jo				
Anhole floats tested		/•			<u> </u>	
						-
est the following crit	tical alarms (note th	nat system must be in	n AUTO to obse	In a statement of the statement of the statement whether	sponse):	
est the following crit Alarm	tical alarms (note th Corresponding Transmitter / Sensor	PLC Alarm Output Name	AUTO to obse	Caused PLC Alarm Output State Change?	sponse): Caused System Shutdown? (Y/N)	Passed (Y/N)
	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown?	Contract of the state of the second second
Alarm	Corresponding Transmitter / Sensor PT-106	PLC Alarm Output Name PA_106	Alarm Type fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106	Caused System Shutdown? (Y/N) Y	(Y/N) Y
Alarm Air Stripper Sump	Corresponding Transmitter / Sensor PT-106 Notes: Current	PLC Alarm Output Name PA_106 Set point = 34	Alarm Type fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20.	Caused System Shutdown? (Y/N) Y 0 - 15 sec de	(Y/N) Y
Alarm	Corresponding Transmitter / Sensor PT-106 Notes: Current	PLC Alarm Output Name PA_106	Alarm Type fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20.	Caused System Shutdown? (Y/N) Y 0 - 15 sec de	(Y/N) Y
Alarm Air Stripper Sump	Corresponding Transmitter / Sensor PT-106 Notes: Current shittown, NCP	PLC Alarm Output Name PA_106 Set point = 34 hight "Blower	Alarm Type fatal in W.C. PRESSURE	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20. HH or CL ALAR	Caused System Shutdown? (Y/N) Y 0 - 15 sec de	(Y/N) Y lay Then
Alarm Air Stripper Sump High Pressure	Corresponding Transmitter / Sensor PT-106 Notes: Current shittown, NCP PT-106	PLC Alarm Output Name PA_106 Set point = 34 hight "BlowER	Alarm Type fatal in W.C. PRESSURE fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20, HH or CL ALAR	Caused System Shutdown? (Y/N) Y 10 - 15 sec de 2N * av, Y	(Y/N) Y lay Then Y
Alarm Air Stripper Sump High Pressure Air Stripper Sump	Corresponding Transmitter / Sensor PT-106 Notes: Current shittown, NCP PT-106 Notes: Current	PLC Alarm Output Name PA_106 Set point = 34 hight "BlowER PA_106 setpoint = 8 i	Alarm Type fatal in W.C. PRESSURE fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20, HH or CL ALAR	Caused System Shutdown? (Y/N) Y 0 - 15 sec de	(Y/N) Y lay Then Y
Alarm Air Stripper Sump High Pressure	Corresponding Transmitter / Sensor PT-106 Notes: Current shittown, NCP PT-106	PLC Alarm Output Name PA_106 Set point = 34 hight "BlowER PA_106 setpoint = 8 i	Alarm Type fatal in W.C. PRESSURE fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20, HH or CL ALAR	Caused System Shutdown? (Y/N) Y 10 - 15 sec de 2N * av, Y	(Y/N) Y lay Then Y
Alarm Air Stripper Sump High Pressure Air Stripper Sump	Corresponding Transmitter / Sensor PT-106 Notes: Current shittown, NCP PT-106 Notes: Current shittown, MCP	PLC Alarm Output Name PA_106 Set point = 34 hight "Blower PA_106 set point = 8 i hight on.	Alarm Type fatal in W.C. C PRESSURE fatal n W.C. CLa	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20, HH or CL ALAR	Caused System Shutdown? (Y/N) Y 10 - 15 sec de 2N * av, Y	(Y/N) Y lay Then Y
Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	Corresponding Transmitter / Sensor PT-106 Notes: Current shitlown, NCP PT-106 Notes: Current shitlown, MCP LSH-100	PLC Alarm Output Name PA_106 Set point = 34 hight "BLOWER PA_106 set point = 8 i hight8 i hight8 i hight8 i	Alarm Type fatal in W.C. C PRESSURE fatal in W.C. CLau fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20, HH or CC ACAN Yes mge to 33. (0)	Caused System Shutdown? (Y/N) Y 10 - 15' sec del 2H * av, Y - 15' sec delay *	(Y/N) Y lay Then Y Then Y
Alarm Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	Corresponding Transmitter / Sensor PT-106 Notes: Current shutdown. NCP PT-106 Notes: Current shutdown. MCP LSH-100 Notes: Filled sur	PLC Alarm Output Name PA_106 Set point = 34 hight "BLOWER PA_106 Setpoint = 8 i hight 04. LA_100 mp(bldg somp); P	Alarm Type fatal in W.C. C PRESSURE fatal in W.C. CLau fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20. Hill or CL ALAR Yes mge to 33. (0 Yes AS while AS	Caused System Shutdown? (Y/N) V 10-15 sec del 2N* av. V 15 sec delay aff bot in auto.	(Y/N) Y ay Then Y Then Set off
Alarm Air Stripper Sump High Pressure Air Stripper Sump Low Pressure	Corresponding Transmitter / Sensor PT-106 Notes: Current shutdown. NCP PT-106 Notes: Current shutdown. MCP LSH-100 Notes: Filled sur	PLC Alarm Output Name PA_106 Set point = 34 hight "BLOWER PA_106 Setpoint = 8 i hight 04. LA_100 mp(bldg somp); P	Alarm Type fatal in W.C. C PRESSURE fatal in W.C. CLau fatal	Caused PLC Alarm Output State Change? (Y/N) Y, PA_106 Lange to 20. Hill or CL ALAR Yes mge to 33. (0 Yes AS while AS	Caused System Shutdown? (Y/N) Y 10 - 15' sec del 2H * av, Y - 15' sec delay *	(Y/N) Y ay Then Y Then Set off

Date:	7/13/12
Time:	13:00
Technician:	c)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)	
	LSL-100	LA_100	fatal	Y	Y	Y	
Air Stripper Low Liquid Level	Notes: Closed deep flort. Shit	pre-VPGAC Som.	vel dropped t	o approx. 12:	75" to		
	FT-106	FA_106	fatal	Y	Y	8	
High Air Flowrate	Notos: Setpoin Shutdown.	t is 1200 d	fm. Chang	jed to 500.	short delay	Then	
	FT-106	FA_106	fatal	Y	Y	Y	
Low Air Flowrate	Notes: Sefpoint	is 400 cfm	. Change	d to 1,000.	Short delay The	en shitte	
	TT-400	TAH400	fatal	Ŷ	Y	Y	
Pre-Carbon High Temperature	Notes: Setpoint is 110°F. Changed to 70°F. Shitdown. ~1 min delay						
	TT-400	TAL400	fatal	Y	Y	N	
Pre-Carbon Low Temperature	Notes: Setpoint	is 60°F. (changed t	109°F. 51	nutloum. ~3 mil	h belay	
	PT-400	PA_400	fatal	Y	Y	Y	
Pre-Carbon High Pressure	Notes: Wey 25	awlc. Chang	jed to 5.	~45 sec dela	y. Shuttown.		
	PT-400	PA_400	fatal	Y	Y	Ŷ	
Pre-Carbon Low Pressure	Notes: Selpoint	15 jnW.C.	Changed	to 24 mwc.	~45 sec dela	x. shutdom	
	FT-101	FA_101	warning	Y	N	Y	
/H-1 Low Flowrate	Notes: Turned	aff Hox.					
	FT-102	FA_102	warning	Y	N	Y	
VH-2 Low Flowrate	Notes: Turned	off MH-2+	10A.				
	FT-103	/ FA_103	warning	Ý	N	Y	
IH-3 Low Flowrate	Notes: Turnel H	HIJ HOA'S to	off,				

Date:	7/13/12
Time:	13:00
Technician:	CP

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? ((Y/N))	Passed (Y/N)
	FT-105	FA_105	warning	Y	N	<u>Y</u>
Aggregate Low Flowrate	Notos: Confirmed while testing MH low-flow alarms					
	WFS-106	WFS106	fatal	Y	Y I	Y
Building Wet Floor Sensor Alarm	Notes: Overflow	ed sump. I	mpet/output	switch. Sh	tdour.	
	LSH-106	LSH106	warning	Y.	N	Y
Building Sump High Level	Notes: Filled su	mp. Inpot 7	ostpot ch	angel. No sl	hitlour.	
	FT-200	FA_200	warning	Y	N	Y
Sequestering Agent Low Flow	Notes: Removed	l foot value	from dorn	n. Received	alarm. Re-	primed.
·····	LSH-200	LSH200	warning	Y	N	Y
Spill Pallet Wet Sensor Alarm	Notes: Put pro	bes rate wa	ter. Receive	ed impit/outp	at change,	No shit lo u
	LSHH-103	LA_MH1	warning			
MH-1 High Level	Notes: D.d	not test.				
	LSLL-103	LA_MH1	warning			
MH-1 Low Level	Notes: Should ford	e off both MH-1	pumps			
	D.d	not test.				
	LSHH-104	LA_MH2	warning	l		
MH-2 High Level	Notes: Tid n	ot test.				
	LSLL-104	LA_MH2	warning			
MH-2 Low Level	Notes: Should force off both MH-2 pumps Did not test.					
	LSHH-105	LA_MH3	warning			
MH-3 High Level	Notes: Did no	t test:				

Date:	7/13/12
Time:	13:00
Technician:	CD

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
MH-3 Low Level	LSLL-105 Notes: Should ford Did M	LA_MH3 ce off both MH-3, of test.	warning pumps			
Building High Temperature	TT-100 Notes: Setpoint	TA_100	shutdown Changed 1	70°F. 51	Y I willown.	-Y
Building Low Temperature	TT-100 Notes: Setpoint	TA_100 15 40°F. C	shutdown have to	90°F. Sh	Y	Y

ARCADIS

Water Level Record

Project

LMC Utica, NY

Page____ 1 o<u>f 2</u> Date 7/9/12+ 7/0/12 Staff: JG/ES

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
MW - 1	8,74	1310	
MW - 2	5.98	1259	4"well
MW - 3	11.20	14.22	
MW - 4	Ц.81	1210	
MW - 5	5.32	1533	
MW - 6	6.91	1109	Bailer in well(Remove to collect WL)
MW - 7	7,92	1430	
MW - 9	369	1435	
MW - 10	5.49	1340	
 MW - 11	8.27	1338	
MW - 12	12.12	12.17	
MW - 135		1.301	Davas SO
MW - 13BR	Dry		Ory@b.SO Cantfind
MW - 14S	10.79	1215	
MW - 14BR	46.10	12/3	
MW - 15S	40.10	1206	
MW - 15BR	27.31	1208	Under pressure *caution when opening
MW-16	4.46	1023	
MW-17	4.12	1075	
MV <u>V</u> -1'8	3.61	1028	
MW-19	1.46	1053	
MW-20		1055	
MW-21	Z .83	1350	
IW-1	2.70		4" Well
PZ - 2		NOZ	
PZ - 4	3.00	1440	
PZ - 5		7401510	(inside Conmed) (Cover Oroke) Oct 9.30 7/6/12
PZ - 6	9.44	1742	(Inside Conmed) Cantfind 7/10/12
PZ #7	9.13	1.745	(Inside Conmed) 7/10/1/2
PZ - 8	Dry	1510	(Inside Conmed) Coverbroke, Dry @ 9.30
PZ [*] 9	8.06		(Inside Conmed)
PZ - 10	9.10		(Inside Conmed)
PZ - 11R	8.74	.1533	
PZ - 13R	8.15	1251	
PZ - 17	7,75	1255	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PZ - 18	8.08	12 50	
PZ - 19	7.52	12:38	
PZ - 20	7.28	12:33	
PZ - 21	DOV		(Outside IHOP, next to SG Point) Dry @ 8.91
PZ - 22	8.54	1111	
PZ - 23	1.24	1048	
PZ - 24	11.02	1041	
PZ - 25	6.98	1035	
PZ - 26	9.48	1031	
PZ - 27	11.30	1044	

G:\TECHNICL\FIELD LOGS\Water Level Round.XLS- Sheet

Water Level Record

Project

LMC Utica, NY .

Page <u>2 of 2</u> Date <u>7/9/12</u> Staff: <u>76-/B5</u>

Well (s)	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
PZ - 29	3.00	1051	
PZ - 30	4.37	1040	
PZ - 31	2,61	1035	
PZ - 32	12,98	1025	
- PZ - 33	MA	0.00	Dry, W 107+m @ 0.581 6.30'
PZ - 34	<u> </u>	1345	
PZ - 35	7.56	1347	
PZ - 36	2.00	1340	
PZ - 39	4.00	1335	
PZ - 40	5.39	1358	(In Maintenance building)
PZ - 41	5,07	1355	(In Maintenance building)
PZ - 42	1.15	1405	(In Maintenance building)
A1-PZ1	2.37	1102	
A1-PZ2	2.66	1105	
A2-PZ1	5.85	1020	
A2-PZ2	6.77	1016	
A2-PZ3	4,41	1005	
A2-PZ4	5.53	692	
A2-PZ5	8.01	1090	
A2-PZ6	4,63	1030	
A2-PZ7	6.61	1015	
A2-PZ8	6.09	1018	

SYSTEM STATUS

System operational? (PLC s	creen indicating system in "AUTO" or "MANUAL")	Ves Auto
System currently cycling?	Ves	
Alarms? (list) None		

Date:

Time: Technician:

Electrical Meter Reading (kWh):

114240

AIR STRIPPER PARAMETERS (record while air stripper is running)

Units	Value	Parameter			
(in. W.C.)	(98)+8.7525	Air stripper sump pressure [PI-106]			
(inches)	18.75	Air stripper sump water elevation (record from site gauge)			
(in. W.C.)		Blower intake line vacuum [PI-100]			
(inches)	2.25	Main damper position (record distance from center of wingnut to outside of blower housing)			
(°)	0.1	Interior dilution damper position (0° is shut, 90° is open)			

Is white "POWER ON" light on air stripper control panel lit? Ve5

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Auto

Note scaling inside liquid effluent pipe from access port None

Note scaling observed inside air stripper via clear tray access door None

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>yes All Three</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) <u>VES All</u> Six

Parameter	MH-1	MH-2	MH-31	EXCELLATE CALLER AND AND	Cumulative
(A) The second se	8 15 12, 140		Victoria Carlo da Car		
Instantaneous Flowrate [gpm]		16.90	16.39	NA	58.90
"Total" Flow (resettable, gal)		540,339	928,671	.50	4,780,671
"Perm" Flow (gal)	15,545,934	2,620,354	2,243,795	1652	7,456,158
Pump 1 Running (Y/N)?		yes	yes	NO	NA
Pump 2 Running (Y/N)?		NO	NO	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves.	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date: Time: Technician:)

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	72	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.69	(in. W.C.)	
Vapor Flowrate	FT-106	701.3	(cfm)	
Pre-Carbon Temperature	TT-400	79.0	(°F)	
Pre-Carbon Pressure	PT-400	7.9	(in. W.C.)	요즘 승규는 그는 것 같은 것 같아.
Building Temperature	TT-100	77.4	(°F)	es engel a Sy inter

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter en el company	Status	Notes
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)	NO	ang
Is pump in external mode? (Y/N)	VES	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	qgal. Remaining	
Quantity of additional full drums	1 Full Drum	

Inspect sequestering agent components for 6000 Nolecking

signs of leaking or wear (tubing [suction, _ injection, bleed return], injection check valve

fitting, spill pallet, etc.) A11 Good

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @ 1400 on Blis/12
pH of effluent sample	8.14
Model of pH meter	Hanna H1991001
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

Date: 8/15/12 Time: 1300 Technician:). 60+kowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1: None MH-2: None MH-3: None
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, All Three
Observe groundwater inside each manhole and note odor and appearance	Clear, No odor in All Three
Is confined space entry signage present at each manhole? (Y/N)	Ves
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good, Noleaks in All Three
With pump(s) running, listen for any unusual sounds	No Unusual Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good, All Three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	All Good, NO Leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	NIA
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	yes
Have electrical GFIs been tested and reset? (Y/N)	yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	γes OMM 7/31/2012 HASP 3/28/2012
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Mas Real and a smill
Is current SPDES permit onsite? (Y/N) (note date)	vesposted onwall

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xtsx

Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Time:		0945
Technician:	5.	60+KOWSK

SYSTEM STATUS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	Auto, yes
System currently cycling? Ves	
Alarms? (list) None	

115889 **Electrical Meter Reading (kWh):**

AIR STRIPPER PARAMETERS (record while air stripper is running)

Units	Value	Parameter
(in. W.C.)	26	Air stripper sump pressure [PI-106]
(inches)	17.25	Air stripper sump water elevation (record from site gauge)
(in. W.C.)	Z	Blower intake line vacuum [PI-100]
(inches)	z.25	Main damper position (record distance from center of wingnut to outside of blower housing)
(°)	0.1	Interior dilution damper position (0° is shut, 90° is open)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Very little Ver 1410

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) 11e3 Att Three Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-

	103A	, and HS-103B] in	"auto" position?	(Y/N)	Ves.	ALLSIX
--	------	-------------------	------------------	-------	------	--------

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	9/11/12,0945		4 "		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instantaneous Flowrate [gpm]		14.82	16.80	NA	55.50
"Total" Flow (resettable, gal)		564,799	1.002,105		4,964,992
"Perm" Flow (gal)			2.317,229	1652	7,640,471
Pump 1 Running (Y/N)?		Ves	VRS	NO	NA
Pump 2 Running (Y/N)?		NO	NO	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

(located on duct heater control panel door) is duct heater "HEAT ON/OFF" light lit? (Y/N) ソセラ (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) NO

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12VAppendix D - GCTS OM&M Log Sheets 04.30.12.xisx

1 of 3

Time: 0955 Technician: J. Gu+Kowsk

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	70	(°F)	
Pre-Carbon Temperature	TI-400	78	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12	(in. W.C.)	3500
Mid-Carbon Pressure	PI-402	ч	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27,72	(in. W.C.)	
Vapor Flowrate	FT-106	760.9	(cfm)	
Pre-Carbon Temperature	TT-400	80.8	(°F)	
Pre-Carbon Pressure	PT-400	10.4	(in. W.C.)	
Building Temperature	TT-100	68.5	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	VES	
is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)	NES	
If in external mode, record one set of mA and stroke speed values	식 (mA) 2, (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	Egal. Remaining	
Quantity of additional full drums	I FUILDAM	

Inspect sequestering agent components for <u>All Good</u>, Noleaking or Build up

signs of leaking or wear (tubing [suction, _

injection, bleed return], injection check valve

fitting, spill pallet, etc.) <u>All Good</u>

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @: 1500 00 9/11/12
pH of effluent sample	8.11
Model of pH meter	Hanna H1 991001
Calibration notes / method used	Z DOIN+ Cal.
Are MH-2 or MH-3 online in auto during sampling collection?	MH-3 online in Auto

MH-1 was Placed in Manual TO Sample

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

2 of 3

Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Time: Technician: <u>\</u>

IN: 1. GULKOWSK

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1: None MH-Z:None MH-3:None
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes All Three
Observe groundwater inside each manhole and note odor and appearance	Clear w/ NO odar In All Three
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good, No leaks In All Three
With pump(s) running, listen for any unusual sounds	NO UNUSUAl Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good In All Three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood, NO Leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	VES Tested

HEALTH AND SAFETY

item	Status
s fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Ves
Is eyewash/shower station operational and unobstructed? (Y/N)	yes
Is interior emergency lighting operational? (Y/N)	Ves
Is first aid kit present and in good condition? (Y/N)	yes
Is lockout/tagout equipment available? (Y/N)	y es
Have electrical GFIs been tested and reset? (Y/N)	Ves
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes
Is emergency spill kit available? (Y/N)	Ves
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	yes posted on wall
Is current SPDES permit onsite? (Y/N) (note date)	ves Postedon wall

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

3 of 3

Date:	10/17/12
Time:	15:21
Technician:	CD/J6

SYSTEM STATUS

System operational? (PLC	screen indicatin	g system in "AUT()" or "MANUAL	-")	AUTO	
System currently cycling?	Yes				<u></u>	
Alarms? (list)						

Electrical Meter Reading (kWh):

118762

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Unite
Air stripper sump pressure [PI-106]	26.2	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17.5-18,0	(inches)
Blower intake line vacuum [PI-100]	2.0	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.5	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0	(°)

Y. 85 Is white "POWER ON" light on air stripper control panel lit? Yes

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port (, whit scaling

clean Note scaling observed inside air stripper via clear tray access door Cleaned 10/16/12 ports all

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Yes

Yes

<u>ore</u>scu

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [F·T-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative
Date/Time	10 17/12 15:25-				
Instantaneous Flowrate (gpm)	the second se	18.6-19.0	15.7-16.2		57-59
"Total" Flow (resettable, gal)					\rightarrow
"Perm" Flow (gal)		2684287	2433722	1652	7949916
Pump 1 Running (Y/N)?		Yes	N	N	NA
Pump 2 Running (Y/N)?		N	Yes	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	A7	(located on duct heater control panel door)

Date: 10/17/12 Time: 15:21 Technician: <u>CD/J6</u>

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	63	(°F)	
Pre-Carbon Temperature	TI-400	77	(°F)	
Duct Heater Temperature Setpoint	-	95	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10.9	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3.8	(in. W.C.)	
Effluent Pressure	PI-403	1.9	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	28.45	(in. W.C.)	
Vapor Flowrate	FT-106	650-705	(cfm)	
Pre-Carbon Temperature	TT-400	78,9	(°F)	
Pre-Carbon Pressure	PT-400	8.6	(in. W.C.)	
Building Temperature	TT-100	68.3	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

fitting, spill pallet, etc.)

Notes
omatically be switching back and ke speed)
ngth knob on pump)
14 # 4 (start 4/5/12)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	8,37
Model of pH meter	Oakton ell Test 30
Calibration notes / method used	4 + 7 solutions
Are MH-2 or MH-3 online in auto during sampling collection?	No. mly NH-1

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

Date: 10/23/12 Time: 15:30 Technician: CD

Taek	Notes 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Liquid flow sensors cleaned? (Y/N) (only as needed)	N
Monthly manhole inspections conducted? (Y/N)	Y
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	nh-1 = No nh-3 - No Mh-2 - No
Do level floats appear to be in good condition and hanging freely? (Y/N)	NH-1-yes MH-2-yes NH-3-yes
Observe groundwater inside each manhole and note odor and appearance	MH-1-clear, no other MH-2-ne odor, clear MH-3-clear, odor present
Is confined space entry signage present at each manhole? (Y/N)	MH-1 - xes MH-2- xes MH-3 - yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	114-1- ok 14-3- ok 14-2- ok
With pump(s) running, listen for any unusual sounds	MH-1- 0K MH-3 - 0K MH-2-0K
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	MH-1 - good MH-3 - good MH D- good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes; BU-101 + 102 (old ball values) are not very mon
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes. Changed both thermostats from lowest setpoint (45°F) to 60°F.

HEALTH AND SAFETY

€.

	Leave and the Status Manual Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	V.
Is interior emergency lighting operational? (Y/N)	Yes, scolared battery last week
is first aid kit present and in good condition? (Y/N)	les
Is lockout/tagout equipment available? (Y/N)	les
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yos, HASP 3/12, OMAM 7/12
Is emergency spill kit available? (Y/N)	In SSDS & building + overpack dom
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	U 100
Is current SPDES permit onsite? (Y/N) (note date)	Yei

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx

QUA

Date:	10/17/12	
	15:20	
Technician:	20/56	

QUARTERLY OM&M T	ASKS				
Quarterly lic	quid influent samples collecte	ed for MH-1, MH-2	2, and MH-3? (Y/N)	les	
	MH-1 influent pH	7.29			_
	MH-2 influent pH	7.89			
	MH-3 influent pH	8.15			
Note: MH-1 must be onl (MH-1 typically batches	line during sample collection, every 1.5 hours).	, if necessary wai	for MH-1 Pump 1 c	or 2 to turn on auto	matically
Quarterly vap	or samples collected pre-carl	bon, mid-carbon,	and effluent? (Y/N)	Yes	
	Are MH-2 or MH-3 online	e in auto during s	ampling collection?	No	
Quarterh	y catch basin samples collect			Yes	
•			els collected? (Y/N)		
			ngs greased? (Y/N)		
Indicate air velocity n	neasurement collected from 8	8" effluent pipe (p	lug located on wall	2200 2300	(fpm)
	side of vertical portion	n of effluent pip o ,	1 fpm = 0.317 cfm)	713	(cfm)
	L DEVICE / ALARM TESTIN				
Liquid flow transmitte	rs FT-101, FT-102, FT-103, a	be done after	flow sensor cleaning)	Yes (10/23/	112, 12:45)
If yes, document te	sting and FT-101 Close get	e value. DTW=119	FT(101) trans = 158	5 8669, FT-105/trans)-8021682-
note any changes i	n sensor Pumploin MH-1. New	DTW - 141 5 4-723	75 = 394 gal. FT-101/tm	ns): 15859045. <u>1</u> =3	76 FT-103 (trans)=
calibration factors	8022054, 4-372.1	Max error = 5.6 2 - CK	FT-102 Close value	DTW . 176.5." FT-10	2/treens)= 2693560
FT-105/truns) - 8022317, Pu	modern. New DTW = 191.5; A= 15"	- 264 gal. # Vew FT-1	12=2693830,6=270	Non FT-105:8072	555, 4= 238
Man erior = 10. 2%, NOTOK -	FT-105 FT-103 Clox gate vilve	DTW=154.5" FT-103	(frams)= 2460836. FT-	105(trans)=802705	4. Rompdoim.
AL. NTUL-171 5 A-17"-249	- the all TT 102/4- 10)=24/1125	A-289 11 FT-105/4	m.)= 8022317 A=26	Hu prior = 12.76	NOTOK: FT-105

<u>n.</u> T-105. New D ay<u>qi(a)</u>, 187 1-1-10 x tra FT-105 rending low by 20's of -5.6, -9.8, and -12.0 for \$ FT-101, FT-102, FT-103. Will correct assuming 9 20 error. Old FT-105 K-Factors Manhole floats tested? (VN) =74. New K = 74/1.09 = 67.9. Change FT-105 K's from 24 to 67.9.

10 30

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal	Ý		y
Air Stripper Sump High Pressure	Notes: Current to 24 psi: 10 PT-106	sec delay. Shit	fatal	pinel light c	hange.	
Air Stripper Sump Low Pressure	Notes: Current 1 NCP light chou	our setpoint = 1		e to 30 psi:	10 sec de lay th	hen shitlen
	LSH-100	LA_100	fatal	Y	Ŷ	Y
Air Stripper High Liquid Level	Notes: Changed setpoint from 4 5-10 sec del	PT-106 high	h setpoint for Glosed BFV	am 34 to 40 -401 partially ;	Change FT-10 to lower sup i	6 low Ierel.

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\4.30.12 Revisions\Appendix D - GCTS 1 of 5 OM&M Log Sheets 04.30.12.xlsx

Date: 10/30/12 Time: 17:10 Technician:

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor Output Name		Alam Type	Caused PLC Alarm Output State Change?	Caused System Shutdown? (Y/N)	Passed (Y/N)
High Air Stripper Law Liquid Level	LSL-100 Notes: Filled s	LA_100 mp w/ sinK	fatal water du	ring non-batel	y 1 cxcle.	¥
High Air Flowrate	FT-106 Notes: Current 1 1200 to 500				4 15 ~600 cfm	Y n. Chan
Low Air Flowrate	FT-106 Notes: Low is is shutdown.	FA_106 currently 400	fatal 9. Change	4000,5	y sec delay th	<u>Y</u> en
Pre-Carbon High Temperature	TT-400 Notes: Current 80°. 1 min del			rent value is	93 Chiange	H to
Pre-Carbon Low Temperature	TT-400 Notes: Current l shutdown.	TAL400 ow setpoint i	fatal 5 60° F. (Y Change to il	70. 3 min de	y lay Then
Pre-Carbon High Pressure	PT-400 Notes: Current h to 7, 45 se			y rent value is	Y 5 8. Change	<u> </u>
Pre-Carbon Low Pressure	PT-400 Notes: Cirrent shutleum,	PA_400	fatal W.C. Chem	ge to 11. 45	sec delay T	19 ior
MH-1 Low Flowrate	FT-101 Notes: Turn of	FA_101 F wa Ho4	warning	g. Hunds	N BA 45-50;	y sec de
MH-2 Low Flowrate	FT-102 Notes: Turned c	FA_102 AF HOA. deley,		<u>ү</u> щ.	N	У
MH-3 Low Flowrate	FT-103 Notes: Turned c	FA_103 f Hots while	warning an in ante	Υ γ.	N	Ÿ

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D -GCTS OM&M Log Sheets 04.30.12.xlsx 2 of 5

Date: Time: 7 Technician:

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alem	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-105	FA_105	warning	Y	N	9
Aggregate Low Flowrate	Notes: Had all	HOA'S off when	en MH-1	was being ca	lhed. ~30 se	e delog.
	WFS-106	WFS106	fatal	4	Y	4
Building Wet Floor Sensor Alarm	Notes: Continued	I filling sum	р.			
	LSH-106	LSH106	warning	Y	N	V
Building Sump High Level	Notes: Filled sov	np w/ sink	writer,			
	FT-200	FA_200	warning	Ŷ	N	4
Sequestering Agent Low Flow	Notes: Removed	foot pump fi	roun drum.	Re-ett pr	imed afferwa	uds.
	LSH-200	LSH200	warning	Y -	N	Y
Spill Pallet Wet Sensor Alarm	Notes: Pit sensol	" in cup of	water.			
	LSHH-103	LA_MH1	warning			
MH-1 High Level	Notes: Did Not	t Test.		Υ.		
	LSLL-103	LA_MH1	warning			
MH-1 Low Level	Notes: Should ford		pumps			
MIT-I LON LOIDI	Did not	test.				
	LSHH-104	LA_MH2	warning	1		
MH-2 High Level	Notes: Did not					
	LSLL-104		warning			
MH-2 Low Level	Notes: Should ford Did no		pumps			
	LSHH-105	LA_MH3	warning			
MH-3 High Level	Notes: D.d no	t test.				

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D -GCTS OM&M Log Sheets 04.30.12.xlsx 3 of 5

Date:	10/30/12
Time:	18:00
Technician:	CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alam	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
MH-3 Low Level	LSLL-105 Notes: Should ford		warning pumps			
	Did not TT-100	test.	shutdown	<u> </u>	9	Y
Building High Temperature	Notes: Current high to 65. ~	and the second s	And the second sec	arrent vo	lue is Tor o	Change
Building Low Temperature	TT-100 Notes: Corrent shitdown.	TA_100 lew is 40	shutdown Change	d to 100.~;	2 min delay	y then

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D -GCTS OM&M Log Sheets 04.30.12.xlsx 4 of 5

Water Level Record

Page____ 1 of 2

۰.

Project

LMC Utica, NY

Date 10/5/12 Staff: <u>Rebeen Herril</u> Geoff Bisher.

Well (s)	Depth to Water (ft)	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
	TIC/MP		
MW - 1	8.53 DZ	1510	10/4/12
MW - 2	5.93	1128	
MW - 3 285	10.93 DZ	1400	12/4/12
MW - 4	11.31	7107	
MW - 5	4.85	1230	
MW - 6	(140071500	Bailer in well(Remove to collect WL) (4.3
MW - 7	7.57	131325	· · · · · · · · · · · · · · · · · · ·
MW - 9	2.97	1235	
MW - 10	5.16 DE		10/4/12
MW - 11	7,88	1250	
MW - 12	12012	1350	
MW - 13S	Dru	110	
MW - 13BR	10 322	1115_	
MW - 14S	10.84	1334	
MW - 14BR	41 77 02	1046	18/4/12
MW - 15S	8.67	1342	
MW - 158R	26.43	1729	Under pressure *caution when opening
MW-16	4.45	93	
		412	an ordene
MW-17	3.68	911	· · · · · · · · · · · · · · · · · · ·
MW-18	3.4	966	
MW-19	10,5	1207	<u>к</u>
MW-20	2.68	1160	
MW-21	B.11	1240	4
IW-1	2.20	145	4" Well Some Hing on TOP of white
PZ - 2	3.71	1263	
PZ-4 1	1.29	1400-71500	64B
PZ-88	9,43	1410	(Inside Conmed)
PZ - 6	9,95	1415	(Inside Conmed)
PZ - 7***	- 90	1420	(Inside Conmed)
PZ-85	9.44	1415	(inside Conmed)
PZ - 9	8.04	1400	(inside Conmed)
PZ - 9 PZ - 10	8.98		
		1425	(Inside Conmed)
PZ-11R -CPR	NAA RIJ CC	NA	Car Parked an card Notures
PZ - 13R		1055	10/4/12
PZ - 17	W257.41	1255	
PZ - 18	7,48	1305	
PZ - 19	7.23	1330	
PZ - 20	6.86	1326	
PZ - 21	Dry	NA	(Outside IHOP, next to SG Point) しょろ (いつううちの)
PZ - 22	8.62	1015	
PZ - 23	6.75	10.12	
D7 - 24	11.00	1007	
PZ - 25	6.8	1067	
PZ - 26	9.42	1002	
PZ - 27		455	No Lock
	11.43		
R₂z - 28 °	3.91	1026	

G:\TECHNICL\FIELD LOGS\Water Level Round XLS- Sheet1

Project

٢.,

LMC Utica, NY

Char > 1

Date 10/5/12

<u>2 of</u>

14

Page

Well (ş)*	Depth to Water (ft) TIC/MP	Time	Remarks (Well condition - J-plug, lock, bolts, MH, Inner Casing)
PZ - 29	2.26	1032	2100
PZ - 30	3.98	1035	
PZ - 31	at Grade	MA	field
PZ - 32		910	
PZ - 33	the Dry		094/
PZ - 34	3-11-2-11	1-10	
PZ - 35	1.15.	9-10	
PZ - 36	1.73	4-10	
PZ - 39	3.10	9-10	
PZ - 40	4.93	9-10	(In Maintenance building)
PZ - 41	4.63	7-10	(In Maintenance building)
PZ - 42	- 225	9-10	(In Maintenance building)
A1-PZ1	1.5	1168	85 -
A1-PZ2	08 2,30	1435	W/4/12
A2-PZ1	4.0 9.10		
A2-PZ2	6.15	924	
A2-PZ3	2.85	936	
A2-PZ4	.82	418	
A2-PZ5	6.38	100	At JOR APPRIX 6 in Bridges TIC VISUALEST
A2-PZ6	See Note	717	At JOR ARRICK G in Below TIC VISUALEST
A2-PZ7 4	5.61	926	CCLB

Monthly OM&M Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

 Date:
 11/8/2012

 Time:
 10:00

 Technician:
 Jason Gutkowski

SYSTEM STATUS

System operation	al? (PLC scr	en indicating system in "AUTO" or "MA	NUAL")A	uto
System currently	cycling?	fes	<u> </u>	
Alarms? (list)	None		<u></u>	

Electrical Meter Reading (kWh): 120790

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	29	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	15.5	(inches)
Blower intake line vacuum [PI-100]	-1	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.25	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0	(°)
Is white "POWER ON" light on air stripper control panel lit	?	Yes
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?		Yes, Auto
Note scaling inside liquid effluent pipe from access port		Trace
Note scaling observed inside air stripper via clear tray access doo		Trace

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Yes, all three

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Yes, all six

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH_3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time 1	1/8/2012, 10:25				
Instantaneous Flowrate [gpm]	35.55	17.32	17.01	NA	63.92
"Total" Flow (resettable, gal)	3,479,331	626,422	1,185,639		5.466.744
"Perm" Flow (gal)	15,926,421	2,706,427	2,500,769		8,142,222
Pump 1 Running (Y/N)?	Yes	Yes	Yes	No	NA
Pump 2 Running (Y/N)?	No	No	No	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Yes/on	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	No	(located on duct heater control panel door)

 Date:
 11/8/2012

 Time:
 10:00

 Technician:
 Jason Gutkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	68	(°F)	
Pre-Carbon Temperature	TI-400	89	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11.5	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	P1-403	1	(in. W.C.)	94

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.8	(in. W.C.)	
Vapor Flowrate	FT-106	697-778	(cfm)	instantaneous flowrate varies
Pre-Carbon Temperature	TT-400	88.7	(°F)	
Pre-Carbon Pressure	PT-400	9.2	(in. W.C.)	
Building Temperature	TT-100	69	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Yes	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA	4.8 (mA)	(display screen should automatically be switching back and
and stroke speed values	5 (spm)	forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	27	gallons remaining
Quantity of additional full drums	None	need to order more

Inspect sequestering agent components for _

signs of leaking or wear (tubing [suction, Good, no leaking or wear

injection, bleed return], injection check valve

fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Y, 11/8/12 @ 10:15
pH of effluent sample	8.15
Model of pH meter	Hanna 991001
Calibration notes / method used	2-point calibration, 7 and 10
Are MH-2 or MH-3 online in auto during sampling collection?	No

Date:11/8/2012Time:15:00Technician:Jason Gutkowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No, all three MH inspected
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, all three
Observe groundwater inside each manhole and note odor and appearance	Clear, no odor
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All three inspected, no leaks
With pump(s) running, listen for any unusual sounds	All three inspected, no unusal sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	All three were in good condition
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Good, no leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	NA
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

Item	Status
s fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is interior emergency lighting operational? (Y/N)	Yes
Is first aid kit present and in good condition? (Y/N)	Yes
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yes, OMM 10/12, HASP 3/12
Is emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Yes
Is current SPDES permit onsite? (Y/N) (note date)	Yes, dated 3/12

Date: 12/6/12 Time: 0840 Technician: Jason Gutkowski

SYSTEM STATUS

System operational? (PLC	screen indicating system in "AUTO" or "MANUAL")	Auto	
System currently cycling?	Ves	 	
Alarms? (list) None			

Electrical Meter Reading (kWh):

125002

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter 11 12 Parameter	Value	Units
Air stripper sump pressure (PI-106)	28.5	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	14.5	(inches)
Blower intake line vacuum (PI-100)	-2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.25	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.1	(°) —

Is white "POWER ON" light on air stripper control panel lit? Ve5

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? 125 AUto

Note scaling inside liquid effluent pipe from access port Non e

Note scaling observed inside air stripper via clear tray access door None

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) <u>Ves All Six</u> Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Ves All Six

Parameter		1015) (715-02)	ग्राह्य जिल्लाहा		Cumulative
Date/Time	12/6/12/1200				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instantaneous Flowrate (gpm)		18.23	16.38	NIA	60.95
"Total" Flow (resettable, gal)		648,823	1,244,816	50	5.678,817
"Perm" Flow (gal)		2,728,838	2,559,945	1652	8,354,299
Pump 1 Running (Y/N)?		Yes	Ves	NO	NA
Pump 2 Running (Y/N)?		NO	NO	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	V E S / D M (located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	A/O (located on duct heater control panel door)

Date: 12/6/12 Time: 0820 Technician: 0500 Gutterusk

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	69	(°F)	
Pre-Carbon Temperature	TI-400	90	(°F)	X I CONTRACTOR X
Duct Heater Temperature Setpoint	J. P.	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		83	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12.5	(in. W.C.)	E MIL I SM ÓR I-
Mid-Carbon Pressure	PI-402	5.5	(in. W.C.)	
Effluent Pressure	PI-403	1.0	(in. W.C.)	Reality of the second s

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	29.30	(in, W.C.)	
Vapor Flowrate	FT-106	893 TO 934	(cfm)	
Pre-Carbon Temperature	TT-400	88.8	(°F)	
Pre-Carbon Pressure	PT-400	978188	(in. W.C.)	www.com.com.com.com.com.com.com.com.com.com
Building Temperature	TT-100	68.9	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	로
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	yes	
If in external mode, record one set of mA	4.8 (mA)	(display screen should automatically be switching back and
and stroke speed values	5 (spm)	forth between mA and stroke speed)
Stroke length	/00	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	23.321.	
Quantity of additional full drums	None	

Inspect sequestering agent components for

signs of leaking or wear (tubing [suction,

injection, bleed return), injection check valve

fitting, spill pallet, etc.) All Good. NO Leaks or Wear

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes	
Monthly liquid effluent sample collected? (Y/N)	Ves @ 1220 on 12/6/12	
pH of effluent sample	8.17	
Model of pH meter	Hanna H1 991001	
	2 Point Calibration	
Are MH-2 or MH-3 online in auto during sampling collection?		

Date: 12/6/12 Time: 1230 Technician: Japan Gutkowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	VES
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1 MH-2 MH-3
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes All Three
Observe groundwater inside each manhole and note odor and appearance	Clear, No Odor
Is confined space entry signage present at each manhole? (Y/N)	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good, Noleaks
With pump(s) running, listen for any unusual sounds	No Unusual Sound
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	6000, All Three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Good No Leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is Interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	Ves
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	VES Hasp: 3/12 omen: 7/12
Is emergency spill kit available? (Y/N)	Ves in SSDS
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	yes
Is current SPDES permit onsite? (Y/N) (note date)	ves Posted on Wall

Appendix C

OM&M Plan Addendum

GCTS OM&M Manual Addendum Log Table

Addendums are to be added to every copy of the OM&M Manual, and logged on Table A-1 to verify that all hard copies current:

Table A-1 Addendum Log Table

Addendum Number	Date of Addendum	Reason for Addendum	Person Completing Addendum
1	12/28/11	Updated Appendix D Monthly OMM Log Sheets, Tables, Table 2 Significant Equipment Log, and Table 3 Critical Device Alarm Setpoints.	Todd Carignan
2	1/12/12	Updated Appendix D Monthly OMM Log Sheets and Table 2 Significant Equipment Log	Todd Carignan
3	3/30/12	Updated Appendix D Monthly OMM Log Sheets, SOP-03, and SOP-12	Todd Carignan
4	4/9/12	Updated SOP-03, and SOP-12	Todd Carignan
5	4/30/12	Updated Appendix D Monthly and Quarterly OMM Log Sheets	Todd Carignan
6	6/18/12	Updated SOP-12 (Revised High/Low Air Stripper flow rate testing method).	Todd Carignan
7	7/13/12	Updated SOP-11 (Revised sequestering agent changeout SOP including drum venting and securing).	Todd Carignan
8	10/8/12	Updated SOP-10 (Revised carbon changeout SOP including multiple vessel changeouts).	Todd Carignan
9	11/21/12	Updated Table 3, Critical Device Alarm Set Points.	Todd Carignan
10			

Table 2. Significant Equipment List, Groundwater Collection and Treatment System OM&M Manual, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Quantity	Description	Description Specification				
		Goulds Model 3887-WSO71BF submersible sewage pump capable of 20 gpm at 23 feet TDH; 3/4 hp; 230 volts,				
2	Pumping Manhole No. 1 Pumps	single phase				
		Goulds Model 3887-WSO71BF submersible sewage pump capable of 20 gpm at 23 feet TDH; 3/4 hp; 230 volts,				
2	Pumping Manhole No. 2 Pumps	single phase				
		Goulds Model 3887-WSO71BF submersible sewage pump capable of 20 gpm at 23 feet TDH; 3/4 hp; 230 volts,				
2	Pumping Manhole No. 3 Pumps	single phase				
5	Pumping Manhole No. 1 Float Switch	Flygt Model ENM-10 float switch, mechanical switch, polypropylene float body. 2 amps at 115 or 230 volts				
5	Pumping Manhole No. 2 Float Switch	Flygt Model ENM-10 float switch, mechanical switch, polypropylene float body. 2 amps at 115 or 230 volts				
5	Pumping Manhole No. 3 Float Switch	Flygt Model ENM-10 float switch, mechanical switch, polypropylene float body. 2 amps at 115 or 230 volts				
1	Air Stripper	QED Environmental Systems. EZ-12.4 SS, design flow rate of 10 to 70 gpm, max flow rate of 120gpm				
		New York Blower Model 2306A, 10 hp, 460 volts, 3 phase blower (minimum performance of 600 cfm at 39				
1	Blower	inches of water column). Baldor Reliance Motor - CAT NO: M3771T, Bearings: DE 6307				
1	Duct Heater	Heat Exchange And Transfer, Inc. Model ADH-12-483, 460 volts, 3 phase duct heater				
1	Pre-VPGAC Temperature Transmitter	ProSense Model TTD25N-20-0300F-H, 0-300 degrees Fahrenheit, 4-20 mA ouput				
2	VPGAC Vessels	Siemens Model FB1000, 1,000 pound vessels with VOCarb 36C media				
1	Pre-VPGAC Pressure Transmitter	ProSense PTD25-20-0015H pressure transmitter, 0-15 psi range, 4-20 mA output				
1	Differential Pressure Transmitter	Dwyer Series 668C-4 differential pressure transmitter, 0-2.5 in. WC, 4-20 mA output, DS-300 Series sensor				
1	Pressure Transmitter (Air Stripper)	Wika Model S-10 pressure switch, 4-20 mA output				
		1.25-Inch Signet Model 3-2536-PO with 0-200 gpm flow range and a 4-20 mA output signal and signet sensor				
5	Flow Sensor	model 2536				
5	Flow Transmitter	Signet Compak Flow Transmitter Model 8511, 10-30 volts, 4-20 mA Input				
1	Metering Pump (Sequestering Line)	LMI Model AA941-353BI metering pump, 120 V, 0.58 GPH				
1	Programmable Logic Controller	EOS Research ProView Pro Control Series 2+ PLC				
2	Treatment Building Heaters	Model MUH-10-4, 480 volt, 3 phase, 34100 BTU/HR				
1	Treatment Building Sump Pump	Dayton, Cast iron submersible pump, 1/4 hp, 115 volts, single phase with option tethered float control				

Definitions:

cfm - cubic feet per minute

gpm - gallons per minute

hp - horsepower

in. W.C. - inches of water column

mA - milliamps

PLC - Programmable Logic Controller

TDH - Total Dynamic Head

Table 3. Critical Device Alarm Setpoints, Groundwater Collection and Treatment System OM&M Manual, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Alarm Description	Corresponding Input	Alarm Output ⁽¹⁾	Туре	Alarm Setpoint ⁽²⁾	Delay ⁽³⁾	Process ⁽⁴⁾
Air Stripper Sump High Pressure	PT-106	PA_106	shutdown	> 34 in. W.C.	10 seconds	41
Air Stripper Sump Low Pressure	PT-106	PA_106	shutdown	< 8 in. W.C.	10 seconds	41
Air Stripper High Liquid Level	LSH-100	LA_100	shutdown	ON (>15 in.)	15 seconds	42
Air Stripper Low Liquid Level	LSL-100	LA_100	shutdown	OFF (<13.25 in.)	5 seconds	32
High Air Flowrate	FT-106	FA_106	warning	> 1,200 cfm	5 minutes	45
Low Air Flowrate	FT-106	FA_106	warning	< 300 cfm	5 minutes	45
Pre-Carbon High Temperature	TT-400	TAH400	shutdown	> 110 °F	1 minute	46
Pre-Carbon Low Temperature	TT-400	TAL400	shutdown	< 60 °F	3 minutes	47
Pre-Carbon High Pressure	PT-400	PA_400	shutdown	> 25 in. W.C.	45 seconds	52
Pre-Carbon Low Pressure	PT-400	PA_400	shutdown	< 1 in. W.C.	45 seconds	52
MH-1 Low Flowrate	FT-101	FA_101	warning	< 10 gpm	30 seconds	29
MH-2 Low Flowrate	FT-102	FA_102	warning	< 10 gpm	30 seconds	30
MH-3 Low Flowrate	FT-103	FA_103	warning	< 10 gpm	30 seconds	31
Aggregate Low Flowrate	FT-105	FA_105	warning	< 3 gpm	30 seconds	55, 56, 57
Building Wet Floor Sensor Alarm	WFS-106	WFS106	shutdown	ON	1 second	13
Building Sump High Level	LSH-106	LSH106	warning	ON	2 seconds	43
Sequestering Agent Low Flow	FT-200	FA_200	warning	ON	1 second	53
Spill Pallet Wet Sensor Alarm	LSH-200	LSH200	warning	ON	10 seconds	54
MH-1 High Level	LSHH-103	LA_MH1	warning	ON (>9.5 ft.)	3 seconds	35
MH-2 High Level	LSHH-104	LA_MH2	warning	ON (>11 ft.)	2 seconds	37
MH-3 High Level	LSHH-105	LA_MH3	warning	ON (>9.5 ft.)	2 seconds	39
MH-1 Low Level ⁽⁵⁾	LSLL-103	LA_MH1	warning	OFF (<1.5 ft.)	2 seconds	36
MH-2 Low Level ⁽⁵⁾	LSLL-104	LA_MH2	warning	OFF (<1.5 ft.)	2 seconds	38
MH-3 Low Level ⁽⁵⁾	LSLL-105	LA_MH3	warning	OFF (<1.5 ft.)	2 seconds	40
Motion Detector	MD-100	MOTION	warning	ON	1 second	20
Building High Temperature	TT-100	TA_100	shutdown	> 110 °F	2 minutes	44
Building Low Temperature	TT-100	TA_100	shutdown	< 40 °F	2 minutes	44

1) Alarm output shown is exactly as shown on ProControl fax reports as "Discrete Outputs." System must be operating in automatic mode for an alarm output to become indicated.

2) For all "level" alarms, the raised position of the float or sensor is "ON."

3) Delay refers to amount of time in which alarm condition must persist before alarm response is initiated.

4) Process refers to the line of logic which causes alarm condition to occur.

5) Manhole low level alarms force off that respective manhole's pumps, but do not initiate system shutdown.

Date: _____ Time: _____ Technician:

SYSTEM STATUS

System operational? (PLC scre	en indicating system in "AUTO" or "MANUAL")	
System currently cycling?		
Alarms? (list)		

Electrical Meter Reading (kWh):

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]		(in. W.C.)
Air stripper sump water elevation (record from site gauge)		(inches)
Blower intake line vacuum [PI-100]		(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)		(inches)
Interior dilution damper position (0° is shut, 90° is open)		(°)

Is white "POWER ON" light on air stripper control panel lit? Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Note scaling inside liquid effluent pipe from access port Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-

103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1	MH-2	MH-3	Sump	Cumulative
	[FT-101]	[FT-102]	[FT-103]	[FT-104]	[FT-105]
Date/Time					
Instantaneous Flowrate [gpm]					
"Total" Flow (resettable, gal)					
"Perm" Flow (gal)					
Pump 1 Running (Y/N)?					NA
Pump 2 Running (Y/N)?				NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	(located on duct heater control panel door)

Date: _____ Time: _____ Technician:

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300		(°F)	
Pre-Carbon Temperature	TI-400		(°F)	
Duct Heater Temperature Setpoint	-		(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-		(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401		(in. W.C.)	
Mid-Carbon Pressure	PI-402		(in. W.C.)	
Effluent Pressure	PI-403		(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106		(in. W.C.)	
Vapor Flowrate	FT-106		(cfm)	
Pre-Carbon Temperature	TT-400		(°F)	
Pre-Carbon Pressure	PT-400		(in. W.C.)	
Building Temperature	TT-100		(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)		
Is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)		
If in external mode, record one set of mA	(mA)	(display screen should automatically be switching back and
and stroke speed values	(spm)	forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]		
Quantity of additional full drums		
Inspect sequestering agent components signs of leaking or wear (tubing [sucti		

signs of leaking or wear (tubing [suction, ______ injection, bleed return], injection check valve ______ fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	
pH of effluent sample	
Model of pH meter	
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	

Date: Time: Technician:

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	
Monthly manhole inspections conducted? (Y/N)	
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	
Do level floats appear to be in good condition and hanging freely? (Y/N)	
Observe groundwater inside each manhole and note odor and appearance	
Is confined space entry signage present at each manhole? (Y/N)	
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	
With pump(s) running, listen for any unusual sounds	
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection	
tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them?	
(Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for	
each)	
Is emergency spill kit available? (Y/N)	
Is H&S signage including emergency contact list, eye protection hearing	
protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	

Quarterly OM&M Log Sheet, Groundwater Collection and	Date:
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:
French Road Facility, Utica, New York	Technician:
QUARTERLY OM&M TASKS	
Quarterly liquid influent samples collected for MH-1, MH-2, and	d MH-3? (Y/N)
MH-1 influent pH	
MH-2 influent pH	
MH-3 influent pH	
Note: MH-1 must be online during sample collection, if necessary wait for I (MH-1 typically batches every 1.5 hours).	MH-1 Pump 1 or 2 to turn on automatically
Quarterly vapor samples collected pre-carbon, mid-carbon, and e	effluent? (Y/N)
Are MH-2 or MH-3 online in auto during sampl	
Quarterly catch basin samples collected for CB-1, CB-2, an	d CB-3? (Y/N)
	bllected? (Y/N)
	reased? (Y/N)
Indicate air velocity measurement collected from 8" effluent pipe (plug la	
side of vertical portion of effluent pipe, 1 fpn	n = 0.317 cfm) (cfm)
QUARTERLY CRITICAL DEVICE / ALARM TESTING	
Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated	? (Y/N) (should
be done after flow s	sensor cleaning)
If yes, document testing and	
note any changes in sensor	
calibration factors	
Manhole floats tested? (Y/N)	

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal			
Air Stripper Sump High Pressure	Notes:					
	PT-106	PA_106	fatal			
Air Stripper Sump Low Pressure	Notes:					
	LSH-100	LA_100	fatal			
Air Stripper High Liquid Level	Notes:					

Date: ______ Time: ______ Technician: _____

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSL-100	LA_100	fatal			
Air Stripper Low Liquid Level	Notes:					
	FT-106	FA_106	fatal			
High Air Flowrate	Notes:					
	FT-106	FA_106	fatal			
Low Air Flowrate	Notes:					
	TT-400	TAH400	fatal			
Pre-Carbon High Temperature	Notes:					
	TT-400	TAL400	fatal			
Pre-Carbon Low Temperature	Notes:					
	PT-400	PA_400	fatal			
Pre-Carbon High Pressure	Notes:					
	PT-400	PA_400	fatal			
Pre-Carbon Low Pressure	Notes:					
	FT-101	FA_101	warning			
MH-1 Low Flowrate	Notes:					
	FT-102	FA_102	warning			
MH-2 Low Flowrate	Notes:					
	FT-103	FA_103	warning			
MH-3 Low Flowrate	Notes:					

Date: ______ Time: ______ Technician: _____

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-105	FA_105	warning			
Aggregate Low Flowrate	Notes:					
	WFS-106	WFS106	fatal			
Building Wet Floor Sensor Alarm	Notes:					
	LSH-106	LSH106	warning			
Building Sump High Level	Notes:					
	FT-200	FA_200	warning			
Sequestering Agent Low Flow	Notes:					
	LSH-200	LSH200	warning			
Spill Pallet Wet Sensor Alarm	Notes:					
	LSHH-103	LA_MH1	warning			
MH-1 High Level	Notes:					
	LSLL-103	LA_MH1	warning			
MH-1 Low Level	Notes: Should ford					
	LSHH-104	LA_MH2	warning			
MH-2 High Level	Notes:					
MH-2 Low Level	LSLL-104	LA_MH2	warning			
	Notes: Should forc		oumps			
MH-3 High Level	LSHH-105	LA_MH3	warning			
	Notes:					

Date: _____ Time: _____ Technician: _____

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should ford	e off both MH-3 p	oumps			
	TT-100	TA_100	shutdown			
Building High Temperature	Notes:					
Building Low Temperature	TT-100	TA_100	shutdown			
	Notes:					

Device Failure:		eet, Groundwater Collection and nt Dock Area, Former Lockheed Martin ca, New York	Date: Time: Technician:		
Critical Device Failure:	CRITICAL DEVICE CORR	ECTIVE ACTION LOG SHEET			
Device Failure:	Date:	Time:			
	Critical Device Failure:				
Corrective Action:	Device Failure:				
Corrective Action:					
Corrective Action:					
	Corrective Action:				

Lockheed Martin Corporation SOP GCTS – System Sampling

Description

This SOP is to be used when performing system sampling of the GCTS.

Abbreviations

GCTS	Groundwater Collection and Treatment System
SOP	Standard Operating Procedure
VOCs	Volatile Organic Compounds
USEPA	United States Environmental Protection Agency
QAPP	Quality Assurance Project Plan
PPE	Personal Protective Equipment
VPGAC	Vapor Phase Granular Activated Carbon

Monthly System Groundwater Sampling

- 1. A liquid phase effluent sample should be collected monthly from the air stripper effluent sampling port SP-106 (Outfall #2). VOCs should be analyzed by USEPA Method 8260 in accordance with the ARCADIS QAPP.
- An effluent sample may only be collected while the system is running during a manhole dewatering cycle (i.e. when the air stripper blower and at least one of the six manhole pumps are online). NOTE: MH-1 must be online during sample collection. If MH-1 Pump 1 or 2 is not on upon arrival, then sampler shall wait until MH-1 cycles on automatically (MH-1 typically batches approximately every 1.5 hours).
- 3. Observe system operating in automatic for at least 20 minutes.
- 4. Sampling personnel should be wearing Level D PPE.
- 5. Calibrate the onsite pH meter with 4.0 and 7.0 buffer solution.
- Place a purge bucket under the sampling point to collect water that is not collected in the VOA vial(s). Purge approximately 500 mL (just enough to flush the sample port).

SOP Author:	ARCADIS-US
SOP #:	GCTS-03
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- 7. Collect a pH reading and record on Monthly OM&M Log Sheet.
- 8. An approximate flow of 40 mL/min (i.e. fill one VOA vial in one minute) will be attempted for sampling to minimize volatilization of the VOCs in the water coming out of the sampling port.
- 9. Fill each VOA vial to the top until the surface tension of the water is mounded up above the top. Try to minimize spillover to maximize HCl preservative. Verify that there is no headspace in the VOA vial.
- 10. Once sampling is complete the VOA vials should be labeled and put on ice and the purge water should be poured into the building sump. Return selector switches to the Auto position if they were placed in Hand.

Photo 1: Effluent Sampling Location

Lockheed Martin Corporation SOP GCTS – System Sampling

Quarterly System Groundwater Sampling

 Liquid phase influent samples should be collected quarterly for pumping manholes MH-1, MH-2, and MH-3 from sampling ports SP-101, SP-102, and SP-103, respectively (Photo 2). VOCs should be analyzed by USEPA Method 8260 in accordance with the ARCADIS QAPP.

Photo 2: MH-3 Influent Sample Location

2. Steps 1 through 10 may be replicated for the quarterly influent sampling. Note pH reading on Quarterly OM&M Log Sheet.

Quarterly System Vapor Sampling

11. Quarterly vapor phase samples should be collected from the VPGAC pre-carbon, mid-carbon, and effluent sample ports (SP-401, SP-402, and SP-403, respectively) on the VPGAC manifold (Photo 3). Grab samples should be collected directly from the sample ports. Samples will be analyzed for VOCs using USEPA Method TO-15 in accordance with the ARCADIS QAPP and submitted to Centek Laboratories, LLC. **NOTE: MH-1 must be online** during sample collection. If MH-1 Pump 1 or 2 is not on upon arrival, then sampler shall wait until MH-1 cycles on automatically (MH-1 typically batches approximately every 1.5 hours).

SOP Author:	ARCADIS-US
SOP #:	GCTS-03
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- 1. Confirm that each of the manifold valves are in the proper lead lag operating positions (open or closed) prior to proceeding with sampling.
- 2. Confirm that each vapor sampling port contains a hose barb fitting which is appropriate for the tubing to be used (typically tubing with I.D. of ¼"). Use silicon tubing to connect a lab-provided regulator/gauge assembly to a male threaded x hose barb fitting. Check that tubing is secured tightly at both ends. Verify that the ¼" ball valve associated with each sample port is closed.
- 3. Attach a 1-liter Summa canister to the regulator/gauge assembly. Vacuum is now being applied to the sample port. Record the initial vacuum in the canister read from the vacuum gauge assembly (typically canisters are charged with a vacuum of -30 in.Hg.).
- 4. Slowly open sample port valve to begin extracting vapor sample. <u>WARNING</u>, once the sample port is opened and sample extraction begins, the vacuum in the canister will begin to drop. While carefully monitoring the vacuum drop on the gauge, close the sample port ball valve when the vacuum gauge reads 7 to 8 in.Hg. Note that typically the ball valve will need to be closed to read an accurate canister vacuum (i.e. vacuum is typically lower while sample extraction is occurring as compared to when the sample port ball valve is shut and extraction is not occurring.
- 5. After the target sample volume (vacuum of 7 to 8 in.Hg.) for the Summa canister is collected, remove the regulator/gauge assembly from the Summa canister. Record the final canister vacuum. Thread the dust cap onto the Summa valve.

Lockheed Martin Corporation SOP GCTS – System Sampling

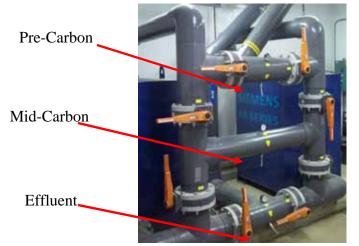


Photo 3: VPGAC Sampling Locations

6. Once sampling is complete the Summa canister should be labeled and placed back in boxes for shipping to the lab.

SOP Author:	ARCADIS-US
SOP #:	GCTS-03
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Contact Phone List Project Manager: Peter Milionis: (267) 685-1815 Task Manager: Jeff Bonsteel: (518) 250-7300 Project Engineer: Todd Carignan (518) 250-7300 Field Engineer: Chris Davern (518) 250-7300

Safety Considerations

- This system removes contaminated groundwater and, once treated, discharges treated water to the municipal storm sewer. Therefore, it is
 EXTREMELY IMPORTANT that the operator be prepared to shut down the treatment system at any time there is question that the water is not receiving FULL TREATMENT.
- Follow all associated procedures as outlined in the Health and Safety Plan.

Related Documents

Appendix D – OM&M Log Sheets

Description

This SOP is to be used when performing the quarterly Critical Device / Alarm Testing.

Abbreviations

GCTS	Groundwater Collection and Treatment System
SOP	Standard Operating Procedure
PLC	Programmable Logic Controller
cfm	Cubic Feet Per Minute
In. W.C.	Inches of Water Column
VPGAC	Vapor Phase Granular Activated Carbon

Critical Device Inspection/Testing

The following devices should be tested quarterly or as needed. Refer to the Quarterly OM&M Log Sheet for a list of critical devices to be tested. Refer to the Critical Device Alarm Setpoints table (Table 3) for alarm setpoints, delays, and response types.

For any alarm to be indicated by the PLC, the system must be running in automatic mode. "AUTO" should be displayed in the lower right corner of the PLC display screen (Photo 1). If "MANUAL" is displayed, then an automatic system startup must be initiated (SOP GCTS-01).

Due to the repetitive nature of several alarms (i.e. air stripper sump high pressure alarm and low air stripper sump level alarm occur under the same conditions), the alarm setpoints may need to be temporarily adjusted to simulate the alarm subject to testing. Following testing, alarm setpoints must be returned to those indicated in the Critical Device Alarm Setpoints table (Table 3).

High & Low Air Stripper Sump Pressure Alarms

1. Both the high and low air stripper sump pressure alarms should be tested. These alarms are based on pressure transmitter PT-106.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- 2. Confirm that the system is operating in automatic mode by observing the PLC display screen. "AUTO" should be displayed in the lower right corner (see Photo 1).
- 3. Note that the system must be in the middle of a manhole pumpdown cycle (i.e. the blower must be running).
- 4. Press the "I/O" arrow buttons until "PT_106" is displayed in the upper left corner of the screen. The value shown represents the current value measured from PT-106.
- 5. To simulate a high air stripper sump pressure alarm, the high setpoint for PT-106 must be decreased. With "PT_106" displayed on the PLC, press the "Set Hi Lo" button on the keypad until "HIGH ALARM" is displayed. Using the "Up" and "Down" buttons to increase or decrease values, and the "Field" button to change characters from left to right, change the value to 25. Press the "Enter" button. Press "Set Hi Lo" until the current PT-106 value is again displayed. The high pressure alarm setpoint is now 25 in. W.C.
- Wait for the time delay specified in the Critical Device Alarm Setpoints table (Table 3) to elapse.
- Document the system response (shutdown, fax out, alarm light on air stripper blower control panel...etc) and verify consistency with that indicated on the Critical Alarm Setpoints table.
- Confirm occurrence of the alarm by pressing the "I/O" arrows on the PLC keypad until "PA_106 OUTPUT" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 9. Repeat Step 5, but return the high alarm setpoint to that indicated in Table 3.
- 10. Restart the system.

- 11. To simulate a low air stripper sump pressure alarm, the low setpoint for PT-106 must be increased. With "PT_106" displayed on the PLC, press the "Set Hi Lo" button on the keypad until "LOW ALARM" is displayed. Using the "Up" and "Down" buttons to increase or decrease values, and the "Field" button to change characters from left to right, change the value to 32. Press the "Enter" button. Press "Set Hi Lo" until the current PT-106 value is again displayed. The low pressure alarm setpoint is now 32 in. W.C.
- 12. Wait for the time delay specified in the Critical Device Alarm Setpoints table (Table 3) to elapse.
- Document the system response (shutdown, fax out, alarm light on air stripper blower control panel...etc) and verify consistency with that indicated on the Critical Alarm Setpoints table.
- 14. Confirm occurrence of the alarm by pressing the "I/O" arrows on the PLC keypad until "PA_106 OUTPUT" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 15. Repeat Step 11, but return the low alarm setpoint to that indicated in Table 3.
- 16. Restart the system.

Photo 1: PLC Display Screen

Air Stripper Sump Level High & Low Alarms

1. Both the high and low air stripper sump level alarms should be tested. These alarms are based on level sensors LSL-100 and LSH-100.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- 2. Confirm that the system is operating in automatic mode by observing the PLC display screen. "AUTO" should be displayed in the lower right corner (see Photo 1).
- 3. Press the "I/O" arrow buttons until "LSL100" is displayed in the upper left corner of the screen. If the value shown is "ON," then the water level in the air stripper sump is above the sensor.
- 4. To simulate the air stripper sump low level alarm, slowly close the butterfly valve on the influent side of the lead VPGAC vessel (typically BFV-401 [if VPGAC-401 being used as lead vessel]) (Photo 4) until the water level indicated on the air stripper site gauge (see Photo 2) drops below the low level sensor (see Critical Alarm Setpoints table for site gauge level for LSL-100). The value for "LSL100" indicated on the PLC display screen should now be "OFF." Wait for the delay (specified in the table) to elapse.
- 5. Document the system response (shutdown, warning, air stripper control panel alarm light...etc) and verify consistency with the response indicated on the Critical Alarm Setpoints table.
- Confirm occurrence of the low air stripper sump level alarm by pressing the "I/O" arrow buttons on the PLC keypad until "LA_100 OUTPUT" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed.
- 7. Return the butterfly valve on the influent side of the lead VPGAC vessel to the open position. Restart the system.
- 8. To test the high air stripper sump level alarm, wait until the system is not currently cycling (i.e. system is in AUTO but air stripper blower is not currently running).
- 9. Press the "I/O" arrow buttons until "LSH100" is displayed on the upper right corner of the PLC display screen.

10. Plug in the building sump pump power cord.

Photo 2: Air Stripper Site Gauge

- 11. Begin filling the building sump with tap water via the hard-piped sink drain.
- 12. After the water level in the building sump rises above the sump pump's operational float, observe the liquid influent port of the air stripper to confirm that clean tap water from the sump is being pumped into the air stripper.
- 13. Observe the air stripper sump level rising until it is above the level of LSH-100 (see Critical Alarm Setpoints table for site gauge level). Confirm that the sump level is above LSH-100 by observing that the value of "LSH100" is "ON." Wait for the delay specified in the Critical Device Alarm Setpoints table to elapse.
- 14. Document system response (shutdown, fax out, air stripper control panel alarm light...etc). If an automatic shutdown has been initiated then "SHUTDOWN" and "MANUAL" will be displayed on the lower row of the PLC display screen.
- 15. Unplug the building sump pump power cord.
- 16. Restart the system.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

High & Low Air Flow Alarms

- Both the high and low air flow alarms should be tested. Both alarms are based on differential pressure / air flow transmitter FT-106.
- 2. Confirm that the system is operating in automatic mode by observing the PLC display screen. "AUTO" should be displayed in the lower right corner (see Photo 1).
- 3. Press the "I/O" arrow buttons until "FT_106" is displayed in the upper left corner of the screen. The value shown represents the current air flowrate measured from FT-106.
- 4. To simulate the high air flow alarm, the high setpoint for FT-106 must be decreased. With "FT_106" displayed on the PLC, press the "Set Hi Lo" button on the keypad until "HIGH ALARM" is displayed. Using the "Up" and "Down" buttons to increase or decrease values, and the "Field" button to change characters from left to right, change the value to 500 cfm. Press the "Enter" button. Press "Set Hi Lo" until the current FT-106 value is again displayed. The high flow alarm setpoint is now 500 cfm..
- 5. Wait for the delay specified in the Critical Device Alarm Setpoints table to elapse.
- 6. Document the system response (shutdown, warning...etc) and verify consistency with that indicated on the Critical Alarm Setpoints table.
- Confirm occurrence of the high air flow alarm by pressing the "I/O" arrow buttons on the PLC keypad until "FA_106" is displayed. If the alarm condition was recognized by the PLC then "ON" should be displayed in the upper right screen.
- 8. Return the high setpoint to that indicated in Table 3.
- 9. Restart the system.

- 10. To simulate the low air flow alarm, the low setpoint for FT-106 must be increased. With "FT_106" displayed on the PLC, press the "Set Hi Lo" button on the keypad until "LOW ALARM" is displayed. Using the "Up" and "Down" buttons to increase or decrease values, and the "Field" button to change characters from left to right, change the value to 900 cfm. Press the "Enter" button. Press "Set Hi Lo" until the current FT-106 value is again displayed. The low flow alarm setpoint is now 900 cfm.
- 11. Repeat steps 7 and 8 for the low air flow alarm.
- 12. Return the low setpoint to that indicated in Table 3.

High & Low Pre-Carbon Temperature Alarms

- 1. Both the high and low pre-carbon temperature alarms should be tested. Both alarms are based on temperature transmitter TT-400.
- 2. Confirm that the system is operating in automatic mode by observing the PLC display screen. "AUTO" should be displayed in the lower right corner (see Photo 1).
- 3. Note that the system must be in the middle of a manhole pumpdown cycle (i.e. the blower must be running).
- 4. Press the "I/O" arrow buttons until "TT_400" is displayed in the upper left corner of the screen (see Photo 1).
- You will need to adjust the programmable high and low temperature setpoints for TT-400. Press the "Set Hi Lo" button until "HIGH ALARM" is displayed. Using the "field" button to move left to right, and the "Up" and "Down" arrow buttons increase or decrease values, change the high temperature setpoint to 80 °F. Press "enter" button.
- Wait until the delay time elapses (found in Table 3 Critical Device Alarm Setpoints) and observe system response.
- Confirm occurrence of the high temperature alarm by pressing the "I/O" arrows on the PLC keypad until "TAH400" is displayed. If the alarm condition was

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.

- 8. Repeat Step 5 to return the high temperature setpoint to the value indicated in Table 3.
- 9. Restart the system.
- Repeat step 5 to change the low TT-400 setpoint to 95 °F (press the "Set Hi Lo" button until "LO" is displayed). Wait until the time delay elapses (found in Table 3) and observe system response.
- 11. Confirm occurrence of the low temperature alarm by pressing the "I/O" arrows on the PLC keypad until "TAL400" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 12. Repeat Step 5 to return the low temperature setpoint to the value indicated in Table 3.
- 13. Restart the system.

High & Low Pre-Carbon Pressure Alarms

- 1. Both the high and low pre-carbon pressure alarms should be tested. Both alarms are based on pressure transmitter PT-400.
- 2. Confirm that the system is operating in automatic mode by observing the PLC display screen. "AUTO" should be displayed in the lower right corner (see Photo 1).
- 3. Note that the system must be in the middle of a manhole pumpdown cycle (i.e. the blower must be running).
- 4. Press the "I/O" arrow buttons until "PT_400" is displayed in the upper left corner of the screen (see Photo 1).
- 5. The high alarm setpoint value must be adjusted. Press the "Set Hi Lo" button until "HIGH ALARM" is displayed. Using the "Up"

and "Down" arrows to increase or decrease values, and the "Field" button to move characters from left to right, change the high alarm setpoint to 4. Press the "Enter" button.

- 6. Wait for the delay specified in Table 3 to elapse.
- 7. Confirm that the system response is consistent with that indicated in Table 3 (shutdown, fax out, delay).
- 8. Confirm occurrence of the alarm by pressing the "I/O" arrows on the PLC keypad until "PA_400 OUTPUT" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 9. Repeat Step 5 to return the high alarm setpoint to the value indicated in Table 3.
- 10. Restart the system.
- 11. The low alarm setpoint value must be adjusted. Press the "Set Hi Lo" button until "LOW ALARM" is displayed. Using the "Up" and "Down" arrows to increase or decrease values, and the "Field" button to move characters from left to right, change the low alarm setpoint to 15. Press the "Enter" button.
- 12. Wait for the delay specified in Table 3 to elapse.
- 13. Confirm that the system response is consistent with that indicated in Table 3 (shutdown, fax out, time delay).
- 14. Confirm occurrence of the alarm by pressing the "I/O" arrows on the PLC keypad until "PA_400" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 15. Repeat Step 11 to return the low alarm setpoint to the value as indicated in Table 3.
- 16. Restart the system.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Photo 4: VPGAC Manifold

Manhole & Aggregate Low Flow Alarms

- Low flow alarms for each manhole should be tested. Each alarm is based on the corresponding flow transmitter (FT-101, FT-102, FT-103, and FT-105) (see Photo 5).
- 2. Check Table 3 for the low flow alarm setpoints for each of the flow transmitters.
- 3. Testing of the low flow alarms should be conducted with the system operating in automatic mode and with the desired pumping manhole online (i.e. if testing the low flow alarm for MH-1, then at least one of the pumps for MH-1 should be online automatically). The low flow alarm for the aggregate flow transmitter may be tested in parallel with testing of any of the other three low flow alarms.
- When MH-1 is online, change the position of the HAND-OFF-AUTO switches for both MH-1 pumps to "OFF." Confirm that no flowrate is currently being registered at the MH-1 flow transmitter (FT-101).

- 5. Wait for the time delay (specified in Table 3) to elapse and observe system response. Confirm that the MH-1 low flow alarm has occurred by pressing the "I/O" arrow buttons on the PLC until "FA_101" is displayed. If the alarm condition is present, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 6. Return the position of the MH-1 pump HAND-OFF-AUTO switches to "AUTO."
- When MH-2 is online, change the position of the HAND-OFF-AUTO switches for both MH-2 pumps to "OFF." Confirm that no flowrate is currently being registered at the MH-2 flow transmitter (FT-102).
- 8. Wait for the time delay (specified in Table 3) to elapse and observe system response. Confirm that the MH-2 low flow alarm has occurred by pressing the "I/O" arrow buttons on the PLC until "FA_102" is displayed. If the alarm condition is present, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 9. Return the position of the MH-2 pump HAND-OFF-AUTO switches to "AUTO."
- When MH-3 is online, change the position of the HAND-OFF-AUTO switches for both MH-3 pumps to "OFF." Confirm that no flowrate is currently being registered at the MH-3 flow transmitter (FT-103).
- 11. Wait for the time delay (specified in Table 3) to elapse and observe system response. Confirm that the MH-3 low flow alarm has occurred by pressing the "I/O" arrow buttons on the PLC until "FA_103" is displayed. If the alarm condition is present, then "ON" should be displayed in the upper right corner of the PLC display screen.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Photo 5: Flow Transmitters

- 12. Return the position of the MH-3 pump HAND-OFF-AUTO switches to "AUTO."
- 13. Confirm that the low flow alarm for the aggregate flow transmitter has occurred by pressing the "I/O" arrow buttons on the PLC until "FA_105" is displayed. If the alarm condition is present, then "ON" should be displayed in the upper right corner of the PLC display screen.

Building Sump High Level Alarm

1. Press the "I/O" arrow buttons on the PLC keypad (see Photo 1) until "LSH106" is displayed. The current value should be

"OFF," meaning that the level in the building sump is currently below the high level float.

- 2. Confirm that the building sump pump power cord is unplugged.
- 3. Begin filling the building sump with tap water via the hard-piped sink drain until the status of "LSH106" changes to "ON" on the PLC display screen.
- 4. Wait until the time delay specified in Table 3 elapses, and observe system response.
- 5. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LSH106 OUTPUT" is displayed. If the alarm was

recognized by the PLC, then the value should be "ON."

Building Wet Floor Sensor Alarm

- 1. Press the "I/O" arrow buttons on the PLC keypad (see Photo 1) until "WFS106" is displayed. The current value should be "OFF," meaning that the building wet floor sensor (WFS-106) is currently not indicating wet floor conditions.
- 2. Confirm that the building sump pump power cord is unplugged.
- Begin filling the building sump with tap water via the hard-piped sink drain. Note that the building sump must become totally filled and begin to overflow onto the building floor to indicate the wet floor alarm. Continue adding water to the building sump until the status of "WFS106" changes to "ON" on the PLC display screen.
- 4. Wait until the time delay specified in Table 3 elapses, and observe system response.
- 5. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "WFS106 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 6. Plug in the building sump pump power cord to allow the clean tap water to be pumped into the air stripper.
- 7. Unplug the building sump pump power cord.
- 8. Restart the system.

Sequestering Agent Low Flow Alarm

- Press the "I/O" arrow buttons on the PLC keypad until "FT_200" is displayed. Confirm that the current value is off, indicating that the low flow alarm signal is currently not being sent from the chemical metering pump (CMP-200).
- 2. The low sequestering agent flow alarm should be tested while the system is currently cycling (i.e. there is flow being registered at FT-105).

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

3. Confirm that the chemical metering pump is operating. If the pump is operating properly in external mode, the pump display should be switching back and forth between a mA value and (strokes) per minute value (see Photo 6).

Photo 6: Chemical Metering Pump

- 4. To simulate a low sequestering agent flow alarm, remove the suction tubing from the chemical supply drum.
- The pump must be allowed to pulse until it runs dry. "E2" should become indicated on the pump display screen when the low flow alarm occurs. The status of "FT_200" on the PLC display screen should now be "ON." Observe system response.
- Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "FA_200" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 7. Return the suction tubing to its original position in the chemical supply drum.

8. Restart and prime the pump as indicated in SOP GCTS-11.

Sequestering Agent Wet Spill Pallet Alarm

- Press the "I/O" arrow buttons on the PLC keypad until "LSH200" is displayed. The current value should be "OFF," meaning that the spill pallet wet sensor (LSH-200) is currently not indicating wet pallet conditions.
- 2. Remove the wet pallet sensor from the pallet by loosening the two horizontal screws which hold it against the pallet wall (Photo 7).

Photo 7: Wet Pallet Sensor

- 3. Fill a small container with tap water from the sink. To simulate the wet spill pallet alarm, submerge the two vertical screws on the base of the wet pallet sensor in the water.
- 4. The status of "LSH200" should now be "ON." Observe system response.
- 5. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LSH200 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 6. Reinstall the wet pallet sensor to the wall of the spill pallet.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Manhole High Level Alarms

- 1. The high level alarms for each manhole should be tested. The high level alarms for MH-1, MH-2, and MH-3 are based on the state of level floats LSHH-103, LSHH-104, and LSHH-105, respectively.
- 2. To simulate the high manhole level alarms, the high-high level floats will need to be manually lifted into the "on" position.
- Press the "I/O" arrow buttons on the PLC keypad until "MH1_HH" is displayed. Confirm that the current state of the MH-1 high-high float is currently "OFF" (i.e. the water level in MH-1 is below LSHH-103).
- Manually tip the high-high level float for MH-1 (LSHH-103) so that the bottom of the float is above the top of the float. Wait for the time delay specified in Table 3 to elapse and observe system response.
- 5. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH1 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 6. Gently lower the high-high level float to its natural position in MH-1.
- Manually tip the high-high level float for MH-2 (LSHH-104) so that the bottom of the float is above the top of the float. Wait for the time delay specified in Table 3 to elapse and observe system response.
- Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH2 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 9. Gently lower the high-high level float to its natural position in MH-2.
- Manually tip the high-high level float for MH-3 (LSHH-105) so that the bottom of the float is above the top of the float. Wait for the

time delay specified in Table 3 to elapse and observe system response.

- 11. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH3 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 12. Gently lower the high-high level float to its natural position in MH-3.

Manhole Low Level Alarms

- 1. The low level alarms for each manhole should be tested. The low level alarms for MH-1, MH-2, and MH-3 are based on the state of level floats LSLL-103, LSLL-104, and LSLL-105, respectively.
- 2. The low level alarms for each manhole should be tested while that respective manhole is in the middle of a pumpdown cycle. If the manhole being tested is not currently in a pumpdown cycle, then the high-1 float for that manhole should be manually tipped to initiate a pumpdown sequence.
- 3. To simulate the low manhole level alarms, the tethers for the low-low level floats will need to be manually lifted so that the floats are in the "off" position (i.e. the floats are hanging freely).
- Press the "I/O" arrow buttons on the PLC keypad until "MH1_LL" is displayed. Confirm that the current state of the MH-1 low-low float is currently "ON" (i.e. the water level in MH-1 is above LSLL-103).
- Manually lift the tether for the low-low level float for MH-1 (LSLL-103) such that the float is in the "off" position. Wait for the time delay specified in Table 3 to elapse and observe system response.
- Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH1 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 7. Confirm that both pumps for MH-1 have been automatically turned off.
- 8. Gently lower the low-low level float to its natural position in MH-1.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- Press the "I/O" arrow buttons on the PLC keypad until "MH2_LL" is displayed. Confirm that the current state of the MH-2 low-low float is currently "ON" (i.e. the water level in MH-2 is above LSLL-104).
- 10. Manually lift the tether for the low-low level float for MH-2 (LSLL-104) such that the float is in the "off" position. Wait for the time delay specified in Table 3 to elapse and observe system response.
- Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH2 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 12. Confirm that both pumps for MH-2 have been automatically turned off.
- 13. Gently lower the low-low level float to its natural position in MH-2.
- Press the "I/O" arrow buttons on the PLC keypad until "MH3_LL" is displayed. Confirm that the current state of the MH-3 low-low float is currently "ON" (i.e. the water level in MH-3 is above LSLL-105).
- 15. Manually lift the tether for the low-low level float for MH-3 (LSLL-105) such that the float is in the "off" position. Wait for the time delay specified in Table 3 to elapse and observe system response.
- 16. Confirm occurrence of the alarm by pressing the "I/O" arrow buttons until "LA_MH3 OUTPUT" is displayed. If the alarm was recognized by the PLC, then the value should be "ON."
- 17. Confirm that both pumps for MH-3 have been automatically turned off.
- 18. Gently lower the low-low level float to its natural position in MH-3.
- 19. Since the low manhole level alarm for a given manhole turns off that manhole's pumps automatically, the system must be

restarted. Initiate an automatic system shutdown (SOP GCTS-02). Wait for the blower to turn off. Initiate an automatic system startup (SOP GCTS-01).

Flow Transmitter Calibration / Validation

- 1. Flow transmitters FT-101, FT-102, FT-103, and FT-105 should be tested for accuracy (see Photo 5).
- The accuracy of the aggregate flow transmitter (FT-105) may be tested in parallel with testing of any of the three manholes. The difference in total volume indicated by FT-105 should be compared to the actual difference in volume based on the change in water elevation in manhole being tested in parallel. Refer to Steps 41 through 52 for adjustment of the FT-105 K-factors, if needed.
- With both MH-1 pumps offline, close the MH-1 groundwater collection line valve using the "tee bar" located onsite. Note that rotating the valve head clockwise should close the valve.
- 4. Measure the depth to water inside MH-1 using a tape measure or water level meter probe.
- 5. Record the permanent flow volume (totalizer) from FT-101
- Manually lift the high level float (LSH1-103) to simulate an automatic pump-down of MH-1. When the water level inside the manhole drops below the low level float (LSL-103), the pump(s) should stop.
- 7. Measure the depth to water inside MH-1 using a tape measure or water level meter probe.
- 8. Calculate the difference in volume of water inside the manhole based on the change in water elevation in the manhole. Note that 1" of water inside the manhole is equal to approximately 17.6 gallons.
- 9. Again, record the permanent flow volume (totalizer) from FT-101. Calculate the difference in the permanent flow volume before and after the pump-down of MH-1.
- 10. Compare the actual, measured volume difference with the volume difference indicated by the FT-101 permanent flow totalizer. If the FT-101 volume is

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

more than 7.5% different than the actual volume, (i.e. if actual volume pumped calculated using depth to water in manhole is 100 gallons, and volume pumped measured by FT-101 is 108 gallons), then the K-factor for FT-101 should be adjusted.

- 11. If needed, modify the FT-101 K-factor. Both of the K-factors (flow and total) should be adjusted equally. To modify the flow transmitter settings so that it reads a higher instantaneous flowrate and volume, the K-factor must be lowered (i.e. if a decrease in instantaneous flowrate / volume of 10% is desired, then the K-factor should be *increased* by 10%). Similarly, to modify flow transmitter setting so that it reads a lower instantaneous flowrate and volume, the K-factor must be increased.
- 12. If the K-factor is not in need of adjustment, skip ahead to Step 21.
- 13. If the K-factor for FT-101 needs to be adjusted, press and hold the up and down arrow buttons simultaneously. Tap the up arrow button three times, followed by the down arrow button once.
- 14. Then press the down arrow button until "K-factor" is displayed.
- 15. Press the right arrow button once to view the current K-factor.
- 16. Using the up/down arrows to change values, and the right arrow to change characters, change the K-factor to the desired new value. Press and hold the right arrow button to save the new value.
- 17. Tap the up and down arrow buttons simultaneously to exit the K-factor adjustment screen.
- 18. Tap the down arrow button until "K-total" is displayed.
- 19. Repeat Steps 14, 15, and 16 to adjust the "K-total" value.

- 20. Document any changes to the MH-1 flow transmitter K-factor.
- 21. Open the groundwater collection line gate valve for MH-1.
- 22. With both MH-2 pumps offline, close the MH-2 groundwater collection line valve using the "tee bar" located onsite. Note that rotating the valve head clockwise should close the valve.
- 23. Measure the depth to water inside MH-2 using a tape measure or water level meter probe.
- 24. Record the permanent flow volume (totalizer) from FT-102.
- 25. Manually lift the high level float (LSH1-104) to simulate an automatic pump-down of MH-2. When the water level inside the manhole drops below the low level float (LSL-104), the pump(s) should stop.
- 26. Measure the depth to water inside MH-2 using a tape measure or water level meter probe.
- 27. Calculate the difference in volume of water inside the manhole based on the change in water elevation in the manhole. Note that 1" of water inside the manhole is equal to approximately 17.6 gallons.
- 28. Again, record the permanent flow volume (totalizer) from FT-102. Calculate the difference in the permanent flow volume before and after the pump-down of MH-2.
- 29. Compare the actual, measured volume difference with the volume difference indicated by the FT-102 permanent flow totalizer. If the FT-102 volume is more than 7.5% different than the actual volume, (i.e. if actual volume pumped calculated using depth to water in manhole is 100 gallons, and volume pumped measured by FT-102 is 108 gallons), then the K-factor for FT-102 should be adjusted.
- 30. If needed, modify the FT-102 K-factor. Both of the K-factors (flow and total) should be adjusted equally. To modify the flow transmitter settings so that it reads a higher instantaneous flowrate and volume, the K-factor must be lowered (i.e. if a decrease in instantaneous flowrate / volume of 10% is desired, then the K-factor should be *increased* by 10%).

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Similarly, to modify flow transmitter setting so that it reads a lower instantaneous flowrate and volume, the K-factor must be increased.

- If the K-factor is in need of adjustment, repeat Steps 13 through 20 for MH-2 (FT-102).
- 32. Open the groundwater collection line gate valve for MH-2.

Photo 8: MH-3 Collection Line Gate Valve

- 33. With both MH-3 pumps offline, close the MH-3 groundwater collection line valve using the "tee bar" located onsite. Note that rotating the valve head counter-clockwise should close the valve (Photo 8).
- 34. Measure the depth to water inside MH-3 using a tape measure or water level meter probe.
- 35. Record the permanent flow volume (totalizer) from FT-103.
- Manually lift the high level float (LSH1-105) to simulate an automatic pump-down of MH-2. When the water level inside the manhole drops below the low level float (LSL-105), the pump(s) should stop.
- 37. Measure the depth to water inside MH-3 using a tape measure or water level meter probe.

- 38. Calculate the difference in volume of water inside the manhole based on the change in water elevation in the manhole. Note that 1" of water inside the manhole is equal to approximately 17.6 gallons.
- 39. Again, record the permanent flow volume (totalizer) from FT-103. Calculate the difference in the permanent flow volume before and after the pump-down of MH-3.
- 40. Compare the actual, measured volume difference with the volume difference indicated by the FT-103 permanent flow totalizer. If the FT-103 volume is more than 7.5% different than the actual volume, (i.e. if actual volume pumped calculated using depth to water in manhole is 100 gallons, and volume pumped measured by FT-103 is 108 gallons), then the K-factor for FT-103 should be adjusted.
- 41. If needed, modify the FT-103 K-factor. Both of the K-factors (flow and total) should be adjusted equally. To modify the flow transmitter settings so that it reads a higher instantaneous flowrate and volume, the K-factor must be lowered (i.e. if a decrease in instantaneous flowrate / volume of 10% is desired, then the K-factor should be *increased* by 10%). Similarly, to modify flow transmitter setting so that it reads a lower instantaneous flowrate and volume, the K-factor must be increased.
- 42. If the K-factor does not need to be adjusted, then skip ahead to Step 52.
- 43. If the K-factor needs to be adjusted, press and hold the "Enter" button on the FT-103 keypad.
- 44. Tap the up arrow button three times, followed by the down arrow button once.
- 45. Press the down arrow button until "Flow K-factor" is displayed.
- 46. Press the right arrow button to access the K-factor adjustment screen.
- 47. Using the up and down arrow buttons to change values, and the right arrow to change characters, change the K-factor to its desired new value.
- 48. Press and hold the "ENTER" button to save the new K-factor.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

- 49. Press the down arrow button until "Total Kfactor" is displayed.
- 50. Repeat Steps 46, 47, and 48 to adjust the "Total K-factor" as desired.
- 51. Document any changes to the MH-3 flow transmitter K-factor.
- 52. Open the groundwater collection line gate valve for MH-3.

High & Low Building Temperature Alarms

- 1. Both the high and low building temperature alarms should be tested. Both alarms are based on temperature transmitter TT-100 (Photo 9).
- 2. Press the "I/O" arrow buttons until "TT_100" is displayed in the upper left corner of the screen (see Photo 1).
- You will need to adjust the programmable high temperature setpoint for TT-100. Press the "Set Hi Lo" button until "HIGH ALARM" is displayed. Using the "field" button to move left to right, and the "Up" and "Down" arrow buttons increase or decrease values, change the high temperature setpoint to 55 °F. Press the "enter" button.
- Wait until the delay time elapses (found in Table 3 – Critical Device Alarm Setpoints) and observe system response.
- 5. Confirm occurrence of the high temperature alarm by pressing the "I/O" arrows on the PLC keypad until "TA_100" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 6. Repeat Step 3 to return the high temperature setpoint to its value as indicated in Table 3.
- 7. Restart the system.

Photo 9: Building Temperature Transmitter

- 8. Repeat step 3 to return the high TT-100 setpoint to its original value.
- 9. To simulate the low building temperature alarm, crushed ice will be needed.
- Surround the TT-100 probe with crushed ice until the TT-100 value drops below the low temperature setpoint as indicated in Table 3. Wait until the time delay elapses (found in Table 3) and observe system response.
- 11. Confirm occurrence of the low temperature alarm by pressing the "I/O" arrows on the PLC keypad until "TA_100" is displayed. If the alarm condition was recognized by the PLC, then "ON" should be displayed in the upper right corner of the PLC display screen.
- 12. Restart system.

Safety Considerations

- This system removes contaminated groundwater and, once treated, discharges treated water to the municipal storm sewer. Therefore, it is
 <u>EXTREMELY IMPORTANT</u> that the operator be prepared to shut down the treatment system at any time there is question that the water is not receiving FULL TREATMENT.
- Follow all associated procedures as outlined in the Health and Safety Plan.

SOP Author:	ARCADIS-US
SOP #:	GCTS-09
Revision #:	2
Date Implemented:	3/16/11
Approval:	

Related Documents

- SOP GCTS-01 System Startup
- SOP GCTS-02 System Shutdown
- SOP GCTS-11 Sequestering Agent Change-Out
- Quarterly OM&M Log Sheet
- Table 3 Critical Device Alarm Setpoints

(007) 005 4045

Contact Phone List

Project Manager:

	Peter Milionis:	(267) 685-1815
•	Task Manager:	
	Jeff Bonsteel:	(267) 685-1874
-	Project Engineer:	
	Todd Carignan	(518) 250-7300
-	Field Engineer:	
	Chris Davern	(518) 250-7300

Lockheed Martin Corporation SOP GCTS – Carbon Changeout

Description

This SOP is to be used when performing a Carbon Changeout at the GCTS.

Abbreviations

GCTS	Groundwater Collection and Treatment System
SOP	Standard Operating Procedure
VPGAC	Vapor Phase Granular Activated Carbon
VOCs	Volatile Organic Compounds
USEPA	United States Environmental Protection Agency
QAPP	Quality Assurance Project Plan
OM&M	Operation Monitoring and Maintenance

Carbon Changeout

- 1. Inspect the vendor's delivery bill of lading to ensure that the correct type and amount of VPGAC has been delivered. Ask the vendor to fill 2 1-gallon zip lock bags with samples of the fresh VPGAC as a quality assurance check on the fresh VPGAC. Inspect VPGAC material to ensure that it is dry and free-flowing.
- 2. Shutdown the system as outlined in SOP GCTS-02 System Shutdown (<u>INSTALL LOTO DEVICES TO</u> <u>PREVENT BLOWER FROM INADVERTAINTLY</u> <u>STARTING UP)</u>.
- Vendor will access the vessel(s) through the top lid. Open top access hatch by removing split ring seal (WARNING SPLIT RING IS UNDER PRESSURE USE EXTREME CAUTION WHEN REMOVING SECURING BOLT) and hatch cover plate from each carbon vessel.

SOP Author:	ARCADIS-US
SOP #:	GCTS-10
Revision #:	3
Date Implemented:	3/21/2011
Approval:	

Photo 1: VPGAC Vessels

- 4. Prior to the removal of the VPGAC, measure and record the level of the VPGAC in the vessel from the top of the vessel.
- Remove (Note: A vacuum assembly is typically utilized by the vendor for handling the VPGAC removal and installation). Spent carbon will be removed and handled by an authorized subcontractor.
- 6. Make sure the operators establish a work zone and equipment is arranged in locations that leave room for entrance and exit from the building if necessary.
- 7. The vendor will remove the spent VPGAC and package it in super sacks for transport and disposal or regeneration. Observe vendor operations to ensure proper handling of VPGAC, minimizing VPGAC spillage or overfilling of packaging. Record the number of super sacks filled with spent VPGAC for offsite disposal.
- 8. After the VPGAC has been removed, inspect the condition of the vessel internals, plenum, and screen for damage and degradation Photograph any corrosion/wear inside the vessels. Document conditions with photos and in the Log book.

Lockheed Martin Corporation SOP GCTS – Carbon Changeout

- Replace spent carbon with virgin granular activated carbon, Siemens VOCARB 36C or equivalent (mesh size, 3X6 U.S. Sieve) and close up and secure vessel then inspect for vessel body, lid, and gasket for any apparent damage.
- 10. After the VPGAC vessel is full, the vendor will also level off the VPGAC bed surface using a rake. Inspect the bed surface, and measure the bed level relative to the top of the vessel to confirm that the VPGAC bed has been raked level. Record these measurements on the log book.
- 11. If both the carbon in both VPGAC vessels were replaced then the manifold valve configuration shall remain unchanged. If only the carbon in the lead VPGAC vessel was changed out then move previous lag VPGAC vessel to the lead position and the previous lead VPGAC vessel (with the new carbon) to the lag position (Note: this may be completed by re-arranging the valve configuration,).
- 12. Remove the LOTO device from the blower. Restart the system as outlined in SOP GCTS-01 System Start-Up.
- 13. Following system startup VPGAC access hatch shall be tested for possible leaks with a two-equal part solution of dish wash detergent and potable water.
- To test for leaks, apply the test solution liberally to the VPGAC hatch split ring seal using a spry bottle. If bubbles appear at any point, there is a gas leak.
- 15. Inspect gasket and re-tighten the connections and retest.
- 16. If you still see bubbles at any of the tested connections, repair the leaking component and replace if necessary.

Safety Considerations

This system removes contaminated vapor and, once treated, discharges the clean vapor into the atmosphere. Therefore, it is **EXTREMELY**

SOP Author:	ARCADIS-US
SOP #:	GCTS-10
Revision #:	3
Date Implemented:	3/21/2011
Approval:	

IMPORTANT that the operator be prepared to shut down the treatment system at any time there is question that the vapor is not receiving **FULL TREATMENT**.

- Follow all associated procedures as outlined in the Health and Safety Plan.
- WARNING: NO DUST should be allowed to generate during VPGAC change-out or the activity must stop. Visible emissions of dust must not be tolerated.
- The MSDS sheet for the VPGAC should be reviewed prior to the delivery and change-out activity.

Related Documents

- SOP GCTS-01 System Startup
- SOP GCTS-02 System Shutdown
- ARCADIS QAPP

Contact Phone List

- Project Manager: Peter Milionis: (267) 685-1815
 Task Manager: Jeff Bonsteel: (267) 658-1874
- Project Engineer: Todd Carignan (518) 250-7352
- Project Engineer:
 Chris Davern (518) 250-7346

Lockheed Martin Corporation SOP GCTS-11– Sequestering Agent Changeout

Description

This SOP is to be used when performing a standard sequestering agent changeout while the system is online.

Abbreviations

GCTS	Groundwater Collection and Treatment System
SOP	Standard Operating Procedure
LMC	Lockheed Martin Corporation
MSDS	Material Safety and Data Sheet
PPE	Personal Protective Equipment

Sequestering Agent Change Out

NOTE: IT IS IMPORTANT THAT PERSONNEL HANDLING THE SEQUESTERING AGENT REVIEW THE MSDS FOR THE ARIES 2908 CHEMICAL AND WEAR THE PROPER PPE FOR CONDUCTING THIS TASK.

- 1. Temporarily shut down the chemical metering pump (CMP-200) by unplugging it.
- 2. Remove both tapped bung plugs from the empty drum.
- 3. Remove the metering pump suction tubing/foot valve and air bleed return tubing and place in a 5 gallon bucket to prevent unnecessary dripping of any excess agent from entering the containment pad.
- 4. Remove ratchet straps from empty drum and remove empty drum from spill pallet. Place new drum on spill pallet and secure in place with ratchet straps.
- 5. Place a funnel in the new drum and empty the last of the existing drum into the new drum. If there is potential to overfill the drum stop this step and place the near empty drum back on the pallet and repeat procedures upon next monthly visit to completely empty drum.

SOP Author:	ARCADIS-US
SOP #:	GCTS-11
Revision #:	1
Date Implemented:	3/21/11
Approval:	

- 6. Insert suction tubing into tapped bung plug and install foot valve.
- 7. Place foot valve back in the new drum. Install air bleed return tubing into tapped bung plug.
- 8. Screw bung plug with drum vent hole into new drum.
- Plug the chemical metering pump back in. Monitor the pump for 5-10 minutes to confirm that it does not require priming. If "E2" message appears on display of pump, then the pump will require priming. See Steps 7 through 14 if the pump requires priming.

Photo 1: Chemical Metering Pump Controls

- 10. Use a flathead screwdriver to rotate the gray screw on the bleed valve 1 full turn counter-clockwise.
- 11. Make sure that the bleed return tubing is vented to the inside of the drum.
- 12. Put the pump into internal mode by pressing the "INT-MODE-EXT" button on the lower left corner of the control face (Photo 1).
- 13. Press the start button.

Lockheed Martin Corporation SOP GCTS-11– Sequestering Agent Changeout

- 14. Use the up arrow buttons to increase the stroke speed to 100 strokes per minute.
- 15. Note that the pump may require several restarts in the event that the low flow alarm occurs and causes the pump to turn off.
- 16. Let the pump run until chemical is consistently dripping from the bleed return tubing with every pump pulse and there are no visible bubbles inside of the suction or bleed return tubing.
- 17. Close the bleed valve so that it is $\frac{1}{4}$ turns open. The pump is now primed.

Photo 2: Sequestering Agent Drums and Pump

- 18. Return the pump to external mode by pressing the "INT-MODE-EXT" button again.
- 19. Empty drums shall be rinsed out into the sump using a hose by spraying water in one bung and

SOP Author:	ARCADIS-US
SOP #:	GCTS-11
Revision #:	1
Date Implemented:	3/21/11
Approval:	

draining the drum out the other bung. If necessary the sump shall be filled with city water to dilute the water as much as possible and then the sump shall be allowed to drain while the system is operating with at least one manhole pump in operation.

New Shipments

- 20. Record the company information and license plate number of the delivery truck in the Log Book.
- 21. Conduct a health and safety tailgate with everyone onsite.
- 22. Inspect the delivery bill of lading to ensure that the correct type and quantity of sequestering agent. Inspect the drums for any potential damage causing leaks.

NOTE: IT IS IMPORTANT THAT PERSONNEL HANDLING THE SEQUESTERING AGENT REVIEW THE MSDS FOR THE ARIES 2908 AND WEAR THE PROPER PPE FOR CONDUCTING THIS TASK.

- 23. The shipping company then shall unload the drums via lift gate and ARCADIS shall bring them into the GCTS enclosure via the personnel door.
- 24. Drums shall be transferred from the concrete pad located inside the personnel door entrance to the secondary containment pallet.
- 25. Return to Step 1.
- 26. ARCADIS shall then load the empty drums back on the lift gate.
- 27. The empty drums shall be sent offsite with the delivery company back to Aries.

Lockheed Martin Corporation SOP GCTS-11– Sequestering Agent Changeout

Safety Considerations

This system removes contaminated groundwater and, once treated, discharges treated water to the municipal storm sewer and vapor containing the stripped VOCs is treated and then vented to the atmosphere. Therefore, it is **EXTREMELY IMPORTANT** that the operator be prepared to shut down the treatment system at any time there is question that the water is not receiving **FULL TREATMENT**.

 Follow all associated procedures as outlined in the Health and Safety Plan.

Necessary Equipment

- Level D PPE Including:
 - o Steel Toe Boots
 - o Safety Glasses
 - Face Shield
 - o Chemical Resistant Gloves
 - o Long Sleeve Shirt
- Funnel
- 5-Gallon Bucket

Associated SOPs

None

SOP Author:	ARCADIS-US
SOP #:	GCTS-11
Revision #:	1
Date Implemented:	3/21/11
Approval:	

Contact Phone List

- Project Manager:
 - Peter Milionis: (267) 685-1815
- Task Manager:
 - Jeff Bonsteel: (267) 685-1874
- Project Engineer:
 - Todd Carignan (518) 250-7300

(518) 250-7300

- Field Engineer:
 - Chris Davern

Lockheed Martin Corporation SOP GCTS – Manhole Inspection Checklist

Description

This SOP is to be used when a confined space entry is completed for any of the pumping manholes. This SOP shall be implemented at each of the three manholes (MH-1, MH-2, and MH-3) while a confined space crew is onsite performing routine or non-routine maintenance activities.

Abbreviations

GCTS	Groundwater Collection and Treatment System
SOP	Standard Operating Procedure
OSHA	Occupational Safety and Health Administration
MCP	Main Control Panel
PID	Photo Ionization Detector
NFPA	National Fire Protection Association
PPE	Personal Protective Equipment
LEL	Lower Explosive Limits
VOC	Volatile Organic Compounds

NOTE: THIS PROCEDURE REQUIRES COMPLIANCE WITH CONFINED SPACE ENTRY REQUIREMENTS ANDCOORDINATION WITH AN AUTHORIZED GCTS OPERATOR TO CONTROL MANHOLE PUMPING.

Pre-Manhole Inspection Tasks

1. Perform Steps 1 through 11 in SOP GCTS-05.

Photo 1: MH-1 Control Panel

SOP Author:	ARCADIS-US
SOP #:	GCTS-12
Revision #:	0
Date Implemented:	4/13/12
Approval:	

Photo 2: Tripod Set Up For Confined Space Entry

Exercise Ball Valves

- 1. Each manhole contains two PVC ball valves in the discharge pipe from each pump. Each ball valve is to be exercised by closing and opening several times.
- 2. If a ball valve cannot be completely closed or opened, then the ball valve shall be removed in order to be cleaned. Prior to removing, the upgradient check valve nut-union (closest to GCTS building) shall be loosened (using strap wrenches) first to drain out the standing water within the line. Once all water has been drained the nut-union(s) can be retightened. Now remove the ball valves by uncoupling the nut-unions, being careful not to lose the O-ring seal of the nut-union.
- 3. If the ball valve doesn't have any apparent physical damage or deformation, then clean it in the slop sink located in the GCTS building and remove any bio-film or hardened mineral scale that may be present. Note: If the space attendant confined and supervisor leave the manhole during this time the hatch shall be securely closed prior to leaving.

Lockheed Martin Corporation SOP GCTS – Manhole Inspection

Checklist

- 4. If a ball valve cannot be cleaned to a point which will return its full range of motion, then ball valve shall be replaced.
- 5. Reinstall ball valves in the open position.

Photo 3: Ball Valve

Check Valve Inspection and Cleaning

- 1. Prior to removing, the upgradient check valve nut-union (closest to GCTS building) shall be loosened (using strap wrenches) first to drain out the standing water within the line. Once all water has been drained completely uncouple the nut-union for both check valves, careful not to lose the O-ring seal of the nut-union.
- 2. Remove check valve body and ball, inspect for excessive wear. If ball and body do not have any physical damage or deformation, then clean both parts in the slop sink located in the GCTS building and remove any bio-film or hardened mineral scale that may be present. Note: If the confined space attendant and supervisor leave the manhole during this time the hatch shall be securely closed prior to leaving.
- 3. Reinstall both check valves. Ensure that both ball valves are positioned in the correct flow direction prior to exiting the manhole.

SOP Author:	ARCADIS-US
SOP #:	GCTS-12
Revision #:	0
Date Implemented:	4/13/12
Approval:	

Photo 4: Check Valve (Ball Type)

Pump Inspection

- 1. With the manhole completely dewatered both submersible pumps shall be inspected for any visual damage, including verifying that the coolant oil fill plugs are securely in place and not leaking.
- 2. Inspect both pump riser pipes for any visual damage including degradation or deformation of the plastic.
- 3. If a pump is found to be defective it shall be removed and replaced by following the steps provided in SOP GCTS-05.

Float Cleaning and Inspection

- 1. Each of the five mechanical float switches and associated tethers shall be cleaned by removing bio-film or hardened scale from the surface.
- 2. After cleaning each float level switch, each switch shall be tested manually.
- 3. Testing of the Low-Low level switch shall be conducted while the manhole is completely dewatered and with the level switch in the downward position. With the level switch in the downward position the input into the PLC should be "off", confirming the switch is functioning properly.
- 4. The High-High switch shall be lifted manually into the upright position. With the level switch in the upward position the input

Lockheed Martin Corporation SOP GCTS – Manhole Inspection

Checklist

into the PLC should be "on", confirming the switch is functioning properly.

5. The inputs for the Low, High, High-2 level switches shall also be tested using the same methods noted above for the High-High switch.

Post-Manhole Inspection Tasks

- 1. Reopen the gate valve to the collection drain using the valve key to allow water to flow into the manhole.
- 2. At the GCTS building the lockout/tag out can be removed at the MCP. Turn the power back on to the manhole.
- Perform a system startup as outlined in SOP GCTS-01.
- 4. Return to the manhole and check for proper operation, and check the manhole for leaks. Verify flow rates at the GCTS PLC and local transmitters located within the GCTS building.

Safety Considerations

This system removes contaminated groundwater and, once treated, discharges treated water to the municipal storm sewer. Therefore, it is **EXTREMELY IMPORTANT** that the operator be prepared to shut down the treatment system at any time there is question that the water is not receiving **FULL TREATMENT**.

- Follow all associated procedures as outlined in the Health and Safety Plan.
- Confined space entry procedures must be conducted in accordance with OSHA regulations.
- All electrical work must be conducted as outlined in NFPA 70E. Proper PPE must be worn when performing electrical work.

Related SOPs

- SOP GCTS-01 System Startup
- SOP GCTS-02 System Shutdown
- SOP GCTS-05 Manhole Pump Removal and Replacement

SOP Author:	ARCADIS-US
SOP #:	GCTS-12
Revision #:	0
Date Implemented:	4/13/12
Approval:	

Related Documents

- Health and Safety Plan, Job Safety Analysis for Confined Space Analysis
- ARCADIS Health and Safety Standard, ARC HSFS003 – Confined Space Entry

Contact Phone List		
Project Manager:		
Peter Milionis:	(267) 685-1815	
Task Manager:		
Jeff Bonsteel:	(518) 250-7300	
Project Engineer:		
Todd Carignan	(518) 250-7300	
Field Engineer:		
Chris Davern	(518) 250-7300	

ARCADIS

Appendix D

Alarm-Response Log Sheets

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	4/9/2012
Time:	13:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 4/6/12 Time: 5:49:24

Alarm Condition:

Process 57 - FA-105

Low Flow Alarm Aggregate Flowmeter FT-105 with MH-3 Pump 1 online

Non-Fatal Alarm

Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.

Lower flow velocity is occurring within the 3-inch diameter header pipe when only one pump is batching (MH-3, Pump 1 at 16 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.

Corrective Action:

Paddle wheel flow sensor to be replaced with a more accurate/high sensitivity magmeter type, pending approval from Lockheed

Specified replacement magmeter flow sensor (GF Signet, Model 3-2551-P0-11) is attached for reference.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 05:49:24 ON 04/06/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P57 : LAST SHUTDOWN @ 14:14:07 ON 04/04/2012 BY KEYPAD FAX REPORT INITIATED BY PROCESS 57

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH100 is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2	is	OFF
MH3_P1	is		MH3_P2		
LA_MH1	is	OFF	FA_{101}	is	OFF
LA_MH3			FA_103		
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	54450711	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9635345	GAL		
FT_103 is 16.41	GPM	TOTAL FLOW is	1773236	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	6206370	GAL		
PT_106 is 27.84	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 75.4	DEG	LIMITS are L:	60.0	DEG	н: 110.0	\mathbf{DEG}
PT_400 is 13.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 57.6	DEG	LIMITS are L:	40.0	DEG	н: 110.0	\mathbf{DEG}
FT_106 is 923.1	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	\mathbf{CFM}

	*********	 	 ***********	 	
******		 	 ***********	 	
	1. NO 10	 	 - M A A		*******
.			 		
- 20 - C.	2.10.00	 	 	 	
..*.*.	********	 	 	 	

INJSPD 0.0

0.0 PCT PRO

Signet 2551 Magmeter Flow Sensor

Available in a variety of wetted materials and ideal for pipe sizes up to DN900 (36 in.)

The Signet 2551 Magmeter is an insertion style magnetic flow sensor that features no moving parts. The patented* sensor design is available in corrosionresistant materials to provide long-term reliability with minimal maintenance costs. Material options include PP with stainless steel, PVDF with Hastelloy-C, or PVDF with Titanium. Utilizing the comprehensive line of Signet installation fittings, sensor alignment and insertion depth is automatic. These versatile, simpleto-install sensors deliver accurate flow measurement over a wide dynamic range in pipe sizes ranging from DN15 to DN900 (½ to 36 inches), satisfying the requirements of many diverse applications.

Signet 2551 Magmeters offer many output options of frequency/digital (S³L) or 4 to 20 mA which are available on both the blind and display versions. The frequency or digital (S³L) sensor output can be used with Signet's extensive line of flow instruments while the 4 to 20 mA output can be used for a direct input to PLCs, chart recorders, etc. Both the 4 to 20 mA output and digital (S³L) sensor interface is available for long distance signal transmission. An additional benefit is the empty pipe detection which features a zero flow output when the sensors are not completely wetted. Also, the frequency output is bi-directional while the 4 to 20 mA output can be set for uni- or bi-directional flow using the display or the 3-0250 USB to Digital (S³L) Configuration/Diagnostic setup tool which connects to PCs for programming capabilities.

In addition the display version of the 2551 Magmeter is available with relays and features permanent and resettable totalizer values which can be stored and seen on the display. Also, the display contains multilanguages with English, Spanish, German, French, Italian and Portuguese menu options.

Features

- Test certificate included for -X0, -X1
- Patented Magmeter technology
- No moving parts
- Bi-directional flow
- Empty pipe detection
- Installs into pipe sizes DN15 to DN900 (0.5 to 36 in.)
- Operating range 0.05 to 10 m/s (0.15 to 33 ft/s)
- Accurate measurement even in dirty liquids
- Blind 4 to 20 mA, digital (S³L), frequency, relay output
- No pressure drop
- Corrosion resistant materials; PP or PVDF with SS, Hastelloy-C, or Titanium
- Multi-language display menu available

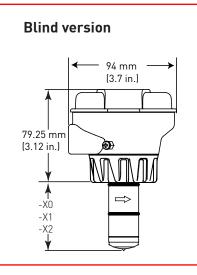
Applications

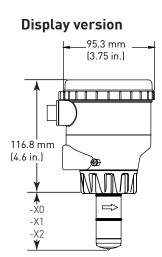
- Chemical Processing
- Water and Wastewater Monitoring
- Metal Recovery and Landfill Leachate
- Commercial Pools, Spas, and Aquariums
- HVAC
- Irrigation
- Scrubber Control
- Neutralization Systems
- Industrial Water
- Distribution

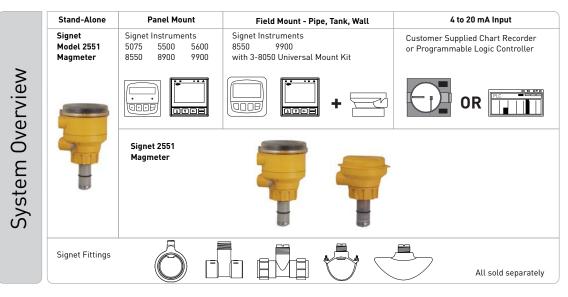
* U.S. Patent No: 7,055,396 B1

Specifications

General				
Operating Range	0.05 to 10 m/s	0.15 to 33 ft/s		
Pipe Size Range	DN15 to DN900	½ in. to 36 in.		
Linearity	±1% reading plus 0.01 r			
Repeatability	±0.5% of reading @ 25			
Minimum Conductivity	20 µS/cm			
Wetted Materials	20 µ0/ 011			
Sensor Body/Electrodes				
and Grounding Ring	-P0, -P1, -P2: PP/316L			
	-T0, -T1, -T2: PVDF/Tita			
	-V0, -V1, -V2: PVDF/Ha	stelloy-C		
0-rings	FPM (standard) EPR (EPDM), FFPM (op	tional)		
Case	PBT			
Display Window	Polyamide (transparen	t nylon)		
Protection Rating	NEMA 4X/IP65			
Electrical				
Power Requirements	4 to 20 mA	24 VDC ±10%, regulated, 22.	1 mA max.	
I	Frequency	5 to 24 VDC ±10%, regulated		
	Digital (S ³ L)	5 to 6.5 VDC, 15 mA max.	·	
Auxiliary (only required for		9 to 24 VDC, 0.4 A max.		
Reverse Polarity and Short				
Current Output 4 to 20 mA		32 µA max. error (25 °C @ 2	4 VDC)	
	Isolation		m electrodes and auxiliary power	
	Maximum Cable	300 m (1000 ft)	7 1	
	Error condition	22.1 mA		
	Max. Loop Resistance	300 Ω		
		PC or similar equipment		
	4 to 20 mA load needed			
Frequency Output	Output Modes	Freq., or Mirror Relay (displa	av version only)	
	Max. Pull-up Voltage	30 VDC		
	Max. Current Sink	50 mA, current limited		
	Maximum Cable	300 m (1000 ft)		
		Model 5075, 5500, 5600, 8550	8900, 9900	
Digital (S³L) Output	Serial ASCII, TTL level			
	Compatible with Model			
Relay Specifications		3		
#1, #2 Type	Mechanical SPDT			
Rating	5 A @ 30 VDC max., 5 A	@ 250 VDC max.		
#3 Type	Solid State			
	50 mA @ 30 VDC, 50 m	A @ 42 VAC		
Hysteresis	User adjustable for exit			
Alarm On Trigger Delay	Adjustable (0 to 9999.9	•		
Relay Modes		, and Proportional Pulse		
Relay Source	Flow Rate, Resettable			
Error Condition	Selectable; Fail Open o			
Display				
Characters		2 x 16		
Contrast		User-set in four levels		
Backlighting (only on relay	versions)	Requires external 9-24 VDC,	0.4 mA max.	
Max. Temperature/Pressu				
Storage Temperature		-20 °C to 70 °C	-4 °F to 158 °F	
Relative Humidity		0 to 95% (non-condensing)		
Operating Temperature	Ambient	-10 °C to 70 °C	14 °F to 158 °F	
- For a string reinper a tare	Media	0 °C to 85 °C	32 °F to 185 °F	
Maximum Operating Press		10.3 bar @ 25 °C	150 psi @ 77 °F	
maximum operating r ress	ure	1.4 bar @ 85 °C	20 psi @ 185 °F	
Standards and Approvals				
Standards and Approvats	CE, UL, CUL (for displa	v versions with relavel		
	RoHS compliant, China			
	NEMA 4X / IP65 Enclos			
	U.S. Patent No. 7,055,3			
	0.5.1 atent No. 7,000,0			

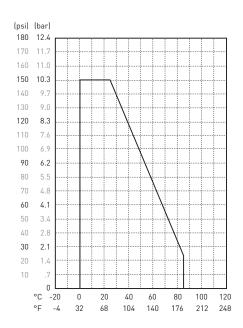

See Temperature and Pressure graphs for more information.


Dimensions


⋺

Pipe Range	
1/2 to 4 in.	-X0 = 58 mm (2.3 in.)
5 to 8 in.	-X1 = 91 mm (3.6 in.)
10 to 12 in.	-X2 = 167 mm (6.6 in.)

X = Sensor Body P, T, or V


Operating Temperature/Pressure Graphs

Note:

The pressure/temperature graphs are specifically for the Signet sensor. During system design the specifications of all components must be considered. In the case of a metal piping system, a plastic sensor will reduce the system specification. When using a PVDF sensor in a PVC piping system, the fitting will reduce the system specification.

Application Tips

- Note minimum process liquid conductivity requirement is 20 µs/cm
- Install sensor using standard Signet installation fittings for best results
- Sensor is capable of retrofitting into existing 515 and 2536 fittings.

Please refer to Wiring, Installation, and Accessories sections for more information.

Ordering Information

	Pipe Size	Mfr. Part No.	Code	Sensor Body				
$\overline{\underline{r}}$		y or Digital (S³L) o nable open collecto		ignet Flow Instrument or the 8900 or 9900 Instruments**				
M		N100 (½ to 4 in.)						
]	No Display							
		3-2551-P0-11	159 001 105	Polypropylene and 316L SS				
		3-2551-T0-11	159 001 108	PVDF and Titanium				
		3-2551-V0-11	159 001 257	PVDF and Hastelloy-C				
	with D		elays, one solid stat	-				
		3-2551-P0-21	159 001 267	Polypropylene and 316L SS				
		3-2551-T0-21	159 001 436	PVDF and Titanium				
		3-2551-V0-21	159 001 269	PVDF and Hastelloy-C				
<u> </u>	with d		10, 001 20,					
n (, , , , , , , , , , , , , , , , , , ,	3-2551-P0-41	159 001 261	Polypropylene and 316L SS				
M		3-2551-T0-41	159 001 433	PVDF and Titanium				
-		3-2551-V0-41	159 001 263	PVDF and Hastelloy-C				
	DN125 to	DN200 (5 to 8 in.)						
	No Dis	splav						
		3-2551-P1-11	159 001 106	Polypropylene and 316L SS				
$\overline{}$		3-2551-T1-11	159 001 109	PVDF and Titanium				
M		3-2551-V1-11	159 001 258	PVDF and Hastelloy-C				
-	with D	I	elays, one solid stat	-				
, 		3-2551-P1-21	159 001 268	Polypropylene and 316L SS				
J		3-2551-T1-21	159 001 437	PVDF and Titanium				
		3-2551-V1-21	159 001 270	PVDF and Hastelloy-C				
Ē	with F)isplay						
7	With E	3-2551-P1-41	159 001 262	Polypropylene and 316L SS				
N		3-2551-T1-41	159 001 434	PVDF and Titanium				
4		3-2551-V1-41	159 001 264	PVDF and Hastelloy-C				
	DN250 to	DN900 (10 to 36 in						
	No Dis	splav						
		3-2551-P2-11	159 001 107	Polypropylene and 316L SS				
		3-2551-T2-11	159 001 448	PVDF and Titanium				
		3-2551-V2-11	159 001 450	PVDF and Hastelloy-C				
7	with D		elays, one solid stat					
Ŵ		3-2551-P2-21	159 001 435	Polypropylene and 316L SS				
-		3-2551-T2-21	159 001 454	PVDF and Titanium				
		3-2551-V2-21	159 001 456	PVDF and Hastelloy-C				
•	with D)isplay	1					
		3-2551-P2-41	159 001 432	Polypropylene and 316L SS				
2		3-2551-T2-41	159 001 460	PVDF and Titanium				
		3-2551-V2-41	159 001 462	PVDF and Hastelloy-C				

Ordering Information (continued)

	Pipe Size	Mfr. Part No.	Code	Sensor Body				
	4 to 20 mA output for use with PLC, PC or similar equipment							
	DN15 to DN100 (1/2 to 4 in.)							
Ŷ	No Display							
		3-2551-P0-12	159 001 110	Polypropylene and 316L SS				
		3-2551-T0-12	159 001 113	PVDF and Titanium				
		3-2551-V0-12	159 001 259	PVDF and Hastelloy-C				
ŴM	with Dis	play, two SPDT relay	rs, one solid state relay					
⇒		3-2551-P0-22	159 001 273	Polypropylene and 316L SS				
\mathbb{P}		3-2551-T0-22	159 001 439	PVDF and Titanium				
		3-2551-V0-22	159 001 275	PVDF and Hastelloy-C				
	with Dis							
		3-2551-P0-42	159 001 279	Polypropylene and 316L SS				
ŴŴ		3-2551-T0-42	159 001 442	PVDF and Titanium				
		3-2551-V0-42	159 001 281	PVDF and Hastelloy-C				
⇒	DN125 to DN200 (5 to 8 in.)							
P	No Disp							
		3-2551-P1-12	159 001 111	Polypropylene and 316L SS				
ЧР		3-2551-T1-12	159 001 114	PVDF and Titanium				
		3-2551-V1-12	159 001 260	PVDF and Hastelloy-C				
	with Dis		vs, one solid state relay					
⇒		3-2551-P1-22	159 001 274	Polypropylene and 316L SS				
		3-2551-T1-22	159 001 440	PVDF and Titanium				
	with Die	3-2551-V1-22	159 001 276	PVDF and Hastelloy-C				
	with Dis	3-2551-P1-42	159 001 280	Deburgerulene and 21/L SC				
		3-2551-P1-42	159 001 280	Polypropylene and 316L SS PVDF and Titanium				
		3-2551-V1-42	159 001 282	PVDF and Hastelloy-C				
	DN250 to D	N900 (10 to 36 in.)	137 001 202					
	No Disp	-	150 001 110	Debuggered and and 21/1 CC				
		3-2551-P2-12	159 001 112	Polypropylene and 316L SS				
P		3-2551-T2-12	159 001 449	PVDF and Titanium				
		3-2551-V2-12	159 001 451	PVDF and Hastelloy-C				
	with Dis		s, one solid state relay	Deburgerulene and 21/L SC				
		3-2551-P2-22 3-2551-T2-22	159 001 438 159 001 455	Polypropylene and 316L SS PVDF and Titanium				
		3-2551-V2-22	159 001 455	PVDF and Hastelloy-C				
	with Dis	1	137 001 437	FVDF and hastelloy-C				
	with Dis	3-2551-P2-42	159 001 441	Polypropylopo and 2141 CC				
		3-2551-P2-42 3-2551-T2-42	159 001 441	Polypropylene and 316L SS PVDF and Titanium				
U I		3-2551-12-42 3-2551-V2-42	159 001 463	PVDF and Titanium PVDF and Hastelloy-C				
		0 2001 12 42						

Accessories and Replacement Parts

Mfr. Part No.	Code	Description
0-Rings		Securit
1220-0021	198 801 186	O-ring, FPM (2 required per sensor)
1224-0021	198 820 006	O-ring, EPR (EPDM) (2 required per sensor)
1228-0021	198 820 007	O-ring, FFPM (2 required per sensor)
Replacement Trar		
3-2551-P0	159 001 211	PP/316L SS, DN15 to DN100 (1/2 to 4 in.) pipe
3-2551-P1	159 001 212	PP/316L SS, DN125 to DN200 (5 to 8 in.) pipe
3-2551-P2	159 001 444	PP/316L SS, DN250 to DN900 (10 to 36 in.) pipe
3-2551-T0	159 001 213	PVDF/Titanium, DN15 to DN100 (½ to 4 in.) pipe
3-2551-T1	159 001 214	PVDF/Titanium, DN125 to DN200 (5 to 8 in.) pipe
3-2551-T2	159 000 445	PVDF/Titanium, DN250 to DN900 (10 to 36 in.) pipe
3-2551-V0	159 001 376	PVDF/Hastelloy-C, DN15 to DN100 (½ to 4 in.) pipe
3-2551-V1	159 001 377	PVDF/Hastelloy-C, DN125 to DN200 (5 to 8 in.) pipe
3-2551-V2	159 000 446	PVDF/Hastelloy-C, DN250 to DN900 (10 to 36 in.) pipe
Replacement Elec	tronics Module	
3-2551-11	159 001 215	Magmeter electronics, frequency or digital (S ³ L) output
3-2551-12	159 001 216	Magmeter electronics, 4 to 20 mA output
3-2551-21	159 001 372	Magmeter display electronics, frequency or digital (S ³ L) output, with relays
3-2551-22	159 001 373	Magmeter display electronics, 4 to 20 mA output w/relays
3-2551-41	159 001 374	Magmeter display electronics, frequency or digital (S ³ L) output
3-2551-42	159 001 375	Magmeter display electronics, 4 to 20 mA output
Other	1	
P31536	198 840 201	Sensor plug, Polypropylene
7300-7524	159 000 687	24 VDC power supply 7.5W, 300 mA
7300-1524	159 000 688	24 VDC power supply 15W, 600 mA
7300-3024	159 000 689	24 VDC power supply 30W, 1.3 A
7300-5024	159 000 690	24 VDC power supply 50W, 2.1 A
7300-1024	159 000 691	24 VDC power supply 100W, 4.2 A
3-8050.390-1	159 001 702	Retaining nut replacement kit, Valox K4530
3-8050.391	159 001 703	Retaining nut replacement kit, Stainless Steel
3-8551.521	159 001 378	Clear plastic cap for display
1222-0042	159 001 379	O-ring for clear plastic cap, EPR (EPDM)
3-0250	159 001 538	USB to digital (S ³ L) Configuration/Diagnostic tool

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date:	1/18/2012
Time:	9:40
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 1/14/12 Time: 19:46:00

Alarm Condition:

Process - 32 - LA-100 (Low water level in air stripper sump)

Cause of Alarm:

Slight increase in back pressure in sump due to slight fouling of air stripper trays.

Corrective Action:

TMC logs in remotely on1/15/12 at 8:10 am and inspects system data logger, restart system and alarm condition reoccurs within ~1 min.

TMC logs in remotely on 1/15/12 several times throughout the day to manual run system to maintain groundwater levels below high float elevations.

Dan Zuck onsite 1/16/12 to inspect and verify sump pressure read by pressure transmitter versus pressure gauge. TMC has Dan close the blower damper slightly to reduce air flow from 800 cfm to ~650-700 cfm. Restart system, sump pressure appears to have settled back to within a range to maintain the water level above LSL-100.

Schedule air stripper cleaning and float replacement for week of 1/23/12.

1				
				٠
	٠	8	r	

TODD CARIGNAN

THE ARCADIS GCTS SYSTEM IN UTICA_NEW YORK @ 06:30:00 ON 01/15/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL

LAST SHUTDOWN @ 19:56:28 ON 01/14/2012 BY LSL100 ÷

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1_LL is ON	MH2 HH is OFF	MH2 H2 is OFF	MH2 ^{H1} is ON
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH $\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1_P1			MH1_P2			MH2
MH3_P1			MH3_P2			B_10
LA_MH1			FA_{101}			LA_M
LA_MH3			FA_103			PA_1
LSH106	is	OFF	WFS106			TA_1
FA 106	is	OFF	FA 200	is	OFF	MOTI
TAL400	is	OFF	PA_400	is	OFF	LSH2

MH2_P2 is OFF DH_300 is OFF P1 is OFF 00 is OFF FA_102 is OFF MH2 is OFF 106 is OFF LA_100 is ON 100 is OFF FA_105 is ON TAH400 is OFF ION is OFF 200 is OFF

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	53746038	GAL		
FT ⁻¹⁰² is 0.00	GPM	TOTAL FLOW is	9522668	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	1521830	GAL		
FT ⁻¹⁰⁵ is 0.00	GPM	TOTAL FLOW is	5179466	GAL		
PT_106 is 0.03	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 98.9	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 0.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 57.3	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 0.0	\mathbf{CFM}	LIMITS are L:	400.0	\mathbf{CFM}	Н:	CFM

0.0 PCT

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 1/18/2012 Time: 9:40 Technician: TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

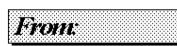
Date: 1/17/12 Time: 12:27:00

Alarm Condition:

Process - 57 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105 with MH-3 online)

Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.


Lower velocity in 3" diameter header pipe when only one MH-3 pump is batching (18-19 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.

Corrective Action:

Consider replacing paddle wheel flow sensor with a more accurate/high sensitivity magmeter type (see attached spec sheet).

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 12:27:37 ON 01/17/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P57 : LAST SHUTDOWN @ 07:14:53 ON 01/16/2012 BY LSL100 FAX REPORT INITIATED BY PROCESS 57

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH100 is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1			мн3_р2		
LA_MH1	is	OFF	FA_101	is	OFF
LA_MH3			FA_103		
LSH106			WFS106	is	OFF
FA 106	is	OFF	FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT_101 is 0.00	GPM	TOTAL FLOW is	53770304	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9525881	GAL		
FT ¹⁰³ is 17.48	GPM	TOTAL FLOW is	1529437	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	5214246	GAL		
PT_106 is 28.02	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 90.4	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 9.2	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 60.0	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 694.9	CFM	LIMITS are L:	400.0	CFM	Н:	CFM

	•.•		•.•				۰.	۰.							•	٠.	۰.	۰.					۰.				۰.	•				٠.							•	٠.	۰.	۰.	7
242	- 24	0 C	÷.	۰.	24	×	10	с.	0	0	o	٠.		×			•	•	0	۰.	1	х	÷		٠.	1	•	0	۰.	24	1		0	0	۰.	٠.	24	1			•	с.	٠
•••	· •	÷.,	Ŀ.,	۰.	14		×1	•	•		۰.	٠.	٠.		٠.		•	•	۰.	÷	-	×	•	٠.	٠.	•••	÷	•	۰.	٠.	•••	•••	•	۰.	۰.	٠.	17	•••	٠.		•	•	
•.•	· * •	л.	٠.	<u>.</u>	14		12	÷	÷		٢.	۰.	-		-					Γ.	•		14	4.	-	-	с	÷	-	۰.	-	-			۰.	÷	1.1	-	٠.,		. ۰		
•.•	28	2.5	•		ю	r	2	C1	r		N	æ			P		٠.			Ν.	• •			Ρ.	т	ч.				п	Ľ					27				•			2
•	e .		Ε.	c	ν.	C.		х				Ε.					۰.	•		10	- 1	P			E.		1	а.			Γ.			Η.	-	ĸ	•0	•	0	۰.	٠.	٠.	
- 21						н			н			υ		٠	-	2.	٠.	٠.	-			г.			н		а.	ω,		٠	0			-	- 1		٠	•		۰.	٠.	٠.	
- 5	•.•	-		•••	<i>.</i> "		т,	5	•			7		c			۰.	۰.	•.•	7		٠.	۰.			г.		7		7		۰.	7	ç	7		а,	•••	۰.	۰.	۰.	۰.	
																Ξ.	۰.	۰.	•.•	٠.	·*.	٠.	۰.	•.•		. 4							٠.	•.•			. * .	٠.	۰.	٠.	۰.	٠.	

INJSPD 0.0 PCT PRO

Date:	1/31/2012
Time:	21:15
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

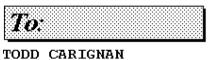
Date: <u>1/30/12</u> Time: <u>20:03:00</u>

Alarm Condition:

Process - 32 (Low level alarm via LSL-100)

Cause of Alarm:

The LSL-100 was tripped during a automated startup when MH-3 called to pumped. The data logger inidcated that the LSL-100 was toggling back and forth during the first few seconds of blower operation and latched long enough (5 second set point) to trigger the alarm. The low level alarm is most likely a result of the blower damper re-adjustment that was made on 1/27/12 while performing the quarterly critical device testing.


Corrective Action:

TMC logged in remotely on 1/31/12 to review the data logger. The system was restarted @ 8:59 am on 1/31/12.

Jason Gutkowski scheduled to be onsite on 2/2/12 to close the damper slightly to reduce the sump pressure (with one manhole online) from 33 in.W.C. to 30 in.W.C. (historical range which allowed for gravity discharging without evacuating too much water from the sump).

ARCADIS will continue to monitor the sump water level and if needed may increase the alarm time delay from 5 seconds to 15 seconds to help eliminate nuisance alarms during startup or shutdown.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 20:03:17 ON 01/30/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD

: LAST SHUTDOWN @ 13:11:45 ON 01/27/2012 BY REMOTE FAX REPORT INITIATED BY PROCESS 32

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_{101}	is	OFF
LA_MH3			FA_103	is	OFF
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT_101 is 0.00	GPM	TOTAL FLOW is	53935069	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9559585	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	1581607	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	5458038	GAL		
PT_106 is 30.46	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 83.9	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 13.6	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 60.7	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 967.9	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	***********		 	 ******
0004			 	
·		6779Y9	11361.	
- X - X		11024		

INJSPD 0.0

Date:	10/23/2012
Time:	15:30
Technician:	TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	10/11/12	Time:	6:15
	10/12/12		12:10
	10/13/12		5:37

Alarm Condition:

Process 45

Low air stripper air flow rate FT-106 with MH-3 online.

Fatal alarm.

Cause of Alarm:

Possible 4-20 mA signal drift or excessive moisture on the pitot tube low/high pressure ports or within the tubing between the transmitter and pitot tube low/high pressure ports.

Corrective Action:

Mobilize to site on 10/11/12 to inspect and restart the system. Following an inspection of the PLC and other major system components the system was restarted at approximately 14:00 and monitored for proper operation. The air flow rate was noted at approximately 800 cfm with MH-3 Pump A online.

Re-Mobilize to site on 10/12/12 to inspect and restart the system. Following an inspection of the PLC and other major system components. The pitot tube was removed and inspected for the presence of condensation. A small amount of condensation was noted in the low/high pressure ports, the pitot tube was dried out and reinstalled. Additionally prior to installing the pitot tube the system was started in manual and the air stream at the location of the pitot tube was inspected for moisture droplets, none were detected after a few minutes of operations. Review of the data logger indicated that both of the low air flow alarms occurred about 10 minutes after a cycle startup, both of which happened to be for MH-3. No odd pressures were observed. The system was restarted on 10/12/12 at approximately 15:00 and monitored for proper operation. The air flow rate was noted at approximately 800 cfm with MH-1 Pump A online.

Re-Mobilize to site on 10/14/12 to inspect and restart the system. When the system was restarted each MH called to pump and the total liquid flow through the air stripper as approximately 65 gpm and the corresponding air flow rate was 680 cfm. The system was monitored for 15 minutes in which time the air flow rate remained relatively constant.

Following a call with CDM Smith it was decided that the time delay for the low air flow alarm be increased from the current 5 second set point to a 5 minute set point. This change will be made the week of 10/22/12 during the quarterly critical device testing event.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 06:15:30 ON 10/11/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

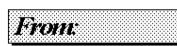
System Status:

SHUTD P-3 : LAST SHUTDOWN @ 18:16:23 ON 07/17/2012 BY LSH100 FAX REPORT INITIATED BY PROCESS 45

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is		MH3_P2		
LA_MH1	is	OFF	FA_{101}	is	OFF
LA MH3	is	OFF	FA_103	is	OFF
LSH106	is		$WF\overline{S}106$		
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:


FT 101 is 0.00	GPM	TOTAL FLOW is	55389588	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9822360	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2293686	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7788885	GAL		
PT_106 is 27.14	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 80.6	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 11.8	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT _100 is 63.4	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 410.9	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	•••••			*************	 **************
			· · · · · · · · · · · · · · ·		
· · · · ·					
. <u>A</u>					 Q
. Y	10.010	1002			
	T T T. /				

INJSPD 0

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 12:10:23 ON 10/12/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

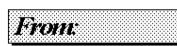
System Status:

SHUTD P-3 : LAST SHUTDOWN @ 06:25:30 ON 10/11/2012 BY FT_106 FAX REPORT INITIATED BY PROCESS 45

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

2 is OFF
2 is OFF
01 is OFF
03 is OFF
06 is OFF
00 is OFF
00 is OFF

Analog Inputs:


FT_101 is 0.00	GPM	TOTAL FLOW is	55394543	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9822381	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2297097	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7797076	GAL		
PT_106 is 26.92	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 81.3	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 11.8	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 64.4	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 810.9	CFM	LIMITS are L:	400.0	CFM	Н:	CFM

	•••••			*************	 **************
			· · · · · · · · · · · · · · ·		
· · · ·					
. <u>A</u>					 Q
. Y	10.010	1002			
	T T T. /				

INJSPD

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 13:13:47 on 10/15/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO

: LAST SHUTDOWN @ 05:37:12 ON 10/13/2012 BY FT_106 FAX REPORT INITIATED BY KEYPAD

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

	MH1_P2 is OFF
	MH3_P2 is OFF
	FA $\overline{1}01$ is OFF
LA_MH3 is OFF	FA_103 is OFF
	WF $\overline{S}106$ is OFF
	FA 200 is OFF
TA $\overline{L}400$ is OFF	PA_400 is OFF

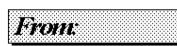
Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55418970	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9827953	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2310594	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7834520	GAL		
PT_106 is 0.12	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 92.9	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 0.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 67.3	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 0.0	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

INJSPD 0.0 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and	Date:	10/23/2012
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:	16:30
French Road Facility, Utica, New York	Technician:	TMC
ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET		
Date: 10/19/12 Time: 16:50		
Alarm Condition:		
Process 53		
Low Flow Sequestering Agent - FA-200.		
Non-Fatal Alarm		

Cause of Alarm:


Sequestering agent drum #4 ran out of solution.

Corrective Action:

ARCADIS onsite during alarm and placed new full drum (Drum #5) of sequestering agent into service at approximately 17:00.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 16:50:26 ON 10/19/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P53 : LAST SHUTDOWN @ 13:14:02 ON 10/18/2012 BY FT_106 FAX REPORT INITIATED BY PROCESS 53

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT_200 is ON	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1			MH3_P2		
LA_MH1			FA_{101}		
LA MH3			FA_103	is	OFF
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	ON
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT 101 is 32.94	GPM	TOTAL FLOW is	55444091	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9832600	GAL		
FT_103 is 18.12	GPM	TOTAL FLOW is	2326582	GAL		
FT_105 is 48.50	GPM	TOTAL FLOW is	7876735	GAL		
PT_106 is 28.66	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 81.6	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 9.2	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 64.9	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 664.1	CFM	LIMITS are L:	400.0	CFM	Н:	CFM

					• •	÷.,	• •		۰.	•.•		۰.	•.•			• •	÷.,	٠.			•.•			۰.					•••				• •		۰.
				с×:		242	0		÷	۰.	240			24		-	0 C	10	۰.		•	٠.	24		0	۰.	20	×		0	۰.			0	e
		0.Or	20	640		64	17		-0	٠.	20			۰.			640	10	۰.	1	÷.	۰.	24		0	۰.	20	20		÷	۰.	1		0	c
	×в	с eine	1 de 1	6.63	÷.	÷	г.	-	÷	÷.,	÷	41	٠.			• 1		-	÷.		с.	÷	-		c,	÷	-		-	ú١	÷.	•••	· · ·	۰.	
•••••	с. н.	· 28	х.				Γ.	•			٠.	۰.	· ' •		•.•	. 2		Γ.			ς.								- 6	7.	-	•.•	٠.	٠.	
- X.		15	18			с.	м.			2.	-	٠.	. 1		•••		Ν.	ч.				۰.			4		÷	2		٠.	٠.	•••			
· • •					23			λ.					· * •	۰,	-	Ξ.			-		е.	-	14	۳	х.		- 1				۰.	•.•		۰.	
		• • • •	- C + C		0.0		0.0		1			0		•0	•:•			٠.			Π.	•	•0	•	1	•	•	0	0.0		•	•••	0.0	1	
							· • *		- 7	-	τ.	٠.						÷.			-	•••	• *	۰.			۰.	۰.				۰.	- e e	1	۰.

INJSPD

0.0 PCT MAN

Date:	11/9/2012	
Time:	7:30	
Technician:	TC	

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	11/4/12	Time:	3:37
	11/7/12		11:07
	11/8/12		19:16

Alarm Condition:

Process 45, FA-106

Low and High air stripper air flow rates, FT-106.

Fatal alarm (11/4 and 11/7) and Non-Fatal (11/8).

Cause of Alarm:

4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.

Corrective Action:

Log into system remotely on 11/5/12 at 20:44. Following an inspection of the PLC data logger files the system was restarted and monitored for proper operation. The air flow rate was noted at approximately 550-600 cfm with all three manholes online pumping at a total flow rate of 70 gpm with a corresponding air stripper sump pressure of ~32 in.W.C., which confirmed that sufficient air flow was flowing through the air stripper.

On 11/6/12 ARCADIS mobilized to the site at 12:30 and reconfigured the Process 45 alarm delay from 5 seconds to 5 minutes, as previous discussed with CDM Smith.

Following receiving the alarm again on 11/7/12 at 5:03 ARCADIS mobilized to site that morning at 9:08 to inspect the system. Following an inspection of the PLC and other major system components, and confirming that the system was operating as intended the Process 45 alarm was changed from a fatal to non-fatal. The system was restarted at 9:23.

The Process 45 "low and high air flows" non-fatal alarm was received again on 11/8/12 at 19:16. Upon review of the data logger, all other analog inputs were confirmed to be operating within their respective ranges for the liquid flow rate running through the system at that time (see attached snap shot of analog data file). Therefore, the replacement of the pressure transmitter FT-106 is recommended.

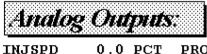
•						
			7			
				Ľ,		
		L,				

TODD CARIGNAN

SYSTEM IN UTICA NEW YORK @ 06:30:00 ON 11/04/2012 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

MANUAL LAST SHUTDOWN @ 03:37:51 ON 11/04/2012 BY FT_106 ÷


MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is ON
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1_P1 is OFF	MH1_P2 is OFF	MH2_P1 is OFF	MH2_P2 is OFF
MH3_P1 is OFF	MH3_P2 is OFF	B_100 is OFF	DH_300 is OFF
LA_MH1 is OFF	FA_101 is OFF	LA_MH2 is OFF	FA_102 is OFF
LA_MH3 is OFF	FA_103 is OFF	PA_106 is OFF	LA_100 is OFF
LSH106 is OFF	WFS106 is OFF	TA_100 is OFF	FA_105 is OFF
FA_106 is ON	FA_200 is OFF	MOTION is OFF	TAH400 is OFF
TAL400 is OFF	PA_400 is OFF	LSH200 is OFF	

Analog Inputs:

FT_101 is 0.00 FT 102 is 0.00	GPM GPM	TOTAL FLOW is TOTAL FLOW is	55527082 9848876	GAL GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2375160	GAL		
FT_105 is 0.00 PT_106 is 0.09	GPM IWC	TOTAL FLOW is LIMITS are L:		$\begin{array}{c} {f GAL} \\ {f IWC} \end{array}$	н: 34.00	IWC
TT_400 is 83.2 PT 400 is 0.0	$\begin{array}{c} \mathbf{DEG} \\ \mathbf{IWC} \end{array}$		60.0 1.0	$\begin{array}{c} \mathbf{DEG} \\ \mathbf{IWC} \end{array}$	Н: 110.0 Н: 25.0	\mathbf{DEG}
TT_100 is 64.9 FT_106 is 0.0	DEG CFM		$\begin{array}{c} 40.0\\ 400.0\end{array}$	DEG CFM	Н: 110.0 Н:	DEG CFM

0.0 PCT

PRO

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 05:08:44 ON 11/07/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD P-3 : LAST SHUTDOWN @ 03:37:51 ON 11/04/2012 BY FT_106 FAX REPORT INITIATED BY PROCESS 45

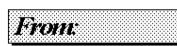
MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_{101}	is	OFF
LA_MH3			FA_103	is	OFF
LSH106			$WF\overline{S}106$	is	OFF
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

PRO

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION	is is is is is	ON OFF OFF OFF OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	ON OFF OFF OFF
LSH200	is	OFF			

Analog Inputs:


FT 101 is 0.00	GPM	TOTAL FLOW is	55539700	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9852388	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2380898	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	8044598	GAL		
PT_106 is 29.49	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT ⁴⁰⁰ is 82.9	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 11.9	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT ⁻ 100 is 62.6	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is	CFM	LIMITS are L:	300.0	CFM	Н:	CFM

INJSPD 0.0 PCT

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 19:16:59 ON 11/08/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

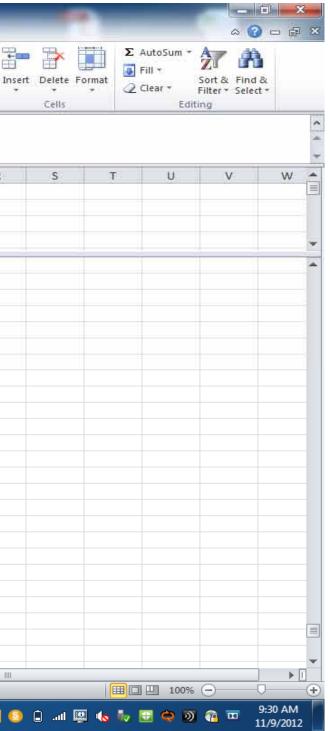
AUTO P45 : LAST SHUTDOWN @ 05:18:45 ON 11/07/2012 BY FT_106 FAX REPORT INITIATED BY PROCESS 45

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_101	is	OFF
LA MH3			FA_103	is	OFF
LSH106	is	OFF	WFS106	is	OFF
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

MH2_P1 i		MH2_P2		
в_1 <u>0</u> 0 і		$DH_{\overline{3}}00$		
LA_MH2 i		FA_102		
PA_106 i		LA_100		
TA_100 i		FA_105		
MOTION i	\mathbf{s} OFF	TAH400	is	OFF
LSH200 i	s OFF			

Analog Inputs:


FT 101 is 0.00	GPM	TOTAL FLOW is	55544447	GAL		
FT ⁻¹⁰² is 19.00	GPM	TOTAL FLOW is	9853101	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2384023	GAL		
FT ⁻ 105 is 18.28	GPM	TOTAL FLOW is	8053445	GAL		
PT_106 is 29.95	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT ⁴⁰⁰ is 88.1	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 10.1	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT ⁻ 100 is 70.0	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is	\mathbf{CFM}	LIMITS are L:	300.0	CFM	Н:	CFM

	•.•.•.•.•.•.•			 ************
2.00	in the second	Contraction (CONT	and the second second	
. 	****			Z
化合理学	: R. S. S.			

INJSPD

2.8 PCT PRO

× 1	-7 - (2 - =			_	_	_	_	_	-	_	110912L	M.CSV - N	Aicrosoft Exce	6	_		_			
File	Home Insert	t i	Page Layou	t Formu	las Dat	a Reviev	v View	Acrobat												
	👗 Cut	Calibr	rl	* 11 *	A Ă	= =	39.+	Wrap Tex	t	General				Norma	al	Bad	Goo	d		
Paste	I Format Painter	в.	<u>υ</u> .	🖽 - 🧆	• <u>A</u> • 1			Merge &	Center 🔻	\$ - %	•••••••••••••••••••••••••••••••••••••	Conditio Formatti	onal Format	Neutra	al	Calculation	Che	ck Cell	- 100 L - 1	ns
	Clipboard 👘		Fo	ont	5		Alignmen	t)	19	Numb	er 19		<u>a</u>		Styl	les				
	P1226 -	(fx																	
												-	-	-	-			1		_
A.	A		В	С	D	E	F	G	н	3	1	K	L	M	N	0	Р	Q	R	
	OS Research ProVie												_							
12-1	he ARCADIS GCTS S	syster	m in UTIC	A_NEW YO	RK														_	
3 4 D	ate & Time		FT_101	FT_102	FT_103	FT_105	PT_106	TT_400	PT_400	TT_100	FT_106	LSH106	LSH100	LSL100	FT 200	LSH200				
			1_101	11_102	11_105	11_105	F1_100	11_400	F1_400	11_100	11_100	2311100	Lanito	CSCIOO	11_200	1200		-	1	
218	11/8/12 6:40		-0.05		-0.93			120.6	-4.4											
219	11/8/12 6:50		-0.05		-0.93				9.8					-						
220	11/8/12 7:00		-0.05	18.49	-0.95			94.7	9.9							_				
221	11/8/12 7:10		-0.05		-0.93				9.9											
222	11/8/12 7:20 11/8/12 7:30		-0.05		-0.93 -0.93			87.8	10.1											
223 224	11/8/12 7:40		-0.05		-0.93			86.3 89	9.9											
225	11/8/12 7:50		-0.05		-0.93				9.8											
226	11/8/12 8:00		-0.05		-0.93			94.8	9.6									1		
227	11/8/12 8:10		-0.05	18.51	-0.93			97.2	9.8									1		
228	11/8/12 8:20		-0.05		-0.93			98.2	9.2											
229	11/8/12 8:30		-0.05		-0.93			99.4	9.2											
230	11/8/12 8:40	PM	-0.05	18.14	-0.93	17.34	30.13	100.2	9.2	2 71.9	746.8									
231	11/8/12 8:50	PM	-0.07	0.02	-0.95	-0.06	1.01	107.1	-4.6	5 72	2.6									
232	11/8/12 9:00	PM	-0.05	0	-0.93	-0.09	0.24	138.6	-4.6	5 72	-49.4									
233	11/8/12 9:10		-0.05	0	-0.93	-0.09	0.24	125.5	-4.4	1 71.4	-48.7	,								
234	11/8/12 9:20		-0.05	0	-0.93	-0.06	0.21	114.7	-4.2	2 70.9										
235	11/8/12 9:30		-0.05						-4.1											
236	11/8/12 9:40		-0.05		-0.93				-3.8											
237	11/8/12 9:50		-0.05		-0.93				-3.8											
238	11/8/12 10:00		-0.05		-0.93				-3.5											
239	11/8/12 10:10		-0.05		-0.93				-3.4											
240	11/8/12 10:20		-0.05		-0.93				-3.4											
241	11/8/12 10:30		-0.05		-0.93				-3.4											
242	11/8/12 10:40		-0.05	0	-0.93		0.12	87.7	-3.4	4 68.4	-38.5									_
• • •																				
Ready				Y													_		_	
-) 🖉 📜	NJ00	01039.0001		GCTS AI	arm Resp	11	0912LM.CSV										(3:15)	0	6

Date: 1/1/2013 Time: 12:00 Technician: Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	12/19/12	Time:	6:30
	12/21/2012	-	6:30
	12/23/2012	-	6:30
	1/1/2013		6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

12/19/12 - Chris Davern performed a site inspection on 12/19/12 and confirmed that the system was online in auto. A "fax now" was successfully initiated locally from the PLC.

12/21/12 - Chris Davern performed a site inspection on 12/21/12 and confirmed that the system was online in auto. A "fax now" was successfully initiated locally from the PLC.

12/23/12 - Dan Zuck performed a site inspection on 12/24/12 and confirmed that the system was online in auto. A "fax now" was initiated locally from the PLC but was not received.

1/1/13 - Todd Carignan successfully logged into the system remotely on 1/1/13, confirmed the system was in "Auto", and successfully initiated a "fax now".

Following discussion with CDMSmith and Lockheed ARCADIS prepared a RFA for installing a wireless cellular auto dialer, the RFA is currently under review.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 12:26:39 ON 12/19/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P06 : LAST SHUTDOWN @ 13:43:47 ON 12/06/2012 BY MEMORY 03 FAX REPORT INITIATED BY KEYPAD

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1		OFF	MH3_P2	is	OFF
LA_MH1	is		$FA_{\overline{1}01}$		
LA MH3			FA_103		
LSH106			WFS106	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION LSH200	is is is is	OFF OFF OFF OFF OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	OFF OFF OFF OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55779909	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9896730	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2491791	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	8449948	GAL		
PT_106 is 0.15	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 106.7	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	\mathbf{DEG}
PT_400 is 0.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT ⁻¹⁰⁰ is 70.0	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 0.0	\mathbf{CFM}	LIMITS are L:	300.0	CFM	Н:	CFM

INJSPD 0.0 PCT PRO

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 12:28:13 ON 12/21/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P05 : LAST SHUTDOWN @ 13:43:47 ON 12/06/2012 BY MEMORY 03 FAX REPORT INITIATED BY KEYPAD

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

is	OFF			
is				
is	OFF	FA_{101}	is	OFF
is				
		$WF\overline{S}106$	is	OFF
		FA 200	is	OFF
is	OFF	PA_400	is	OFF
	is is is is is	is OFF is OFF is OFF	is OFFMH3_P2is OFFFA_101is OFFFA_103is OFFWFS106is OFFFA_200	is OFF MH3_P2 is is OFF FA_101 is is OFF FA_103 is is OFF WFS106 is is OFF FA_200 is

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55806300	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9900383	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2502974	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	8491203	GAL		
PT_106 is 28.17	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 95.4	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 9.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 70.7	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 788.5	CFM	LIMITS are L:	300.0	CFM	Н:	CFM

	••••••			
0.000.000	C			
	N			
			•.•.•.•.•.•.•.•.•.	*********
	nal	nalog (nalog Outį	nalog Outputs

INJSPD

SYSTEM IN UTICA NEW YORK @ 09:22:47 ON 01/01/2013 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

AUTO P06 : LAST SHUTDOWN @ 04:34:55 ON 12/26/2012 BY LSL100 FAX REPORT INITIATED BY REMOTE

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1			MH3_P2		
LA_MH1	is		FA_101		
LA MH3			FA_103	is	OFF
LSH106			WFS106	is	OFF
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT_101 is 0.00 FT_102 is 0.00 FT_103 is 0.00	GPM GPM GPM	TOTAL FLOW is	9916659 GAL 2557119 GAL		
FT_105 is 0.00 PT_106 is 0.12 TT_400 is 134.0 PT_400 is 0.0 TT_100 is 68.4	GPM IWC DEG IWC DEG	TOTAL FLOW is LIMITS are L: LIMITS are L: LIMITS are L: LIMITS are L:	8.00 IWC 60.0 DEG 1.0 IWC	H: 34.00 H: 110.0 H: 25.0	IWC DEG IWC DEG
FT_106 is 0.0	CFM	LIMITS are L:	300.0 CFM	Н:	CFM

- 1. K 🖬 🗛		 A 100 YO 100		79 NB - 1997 - 1997
ं अन्य हर	 			K
10 C - 10 C		 A & A & A	****	

0.0 PCT PRO INJSPD

Date:	1/3/2013
Time:	12:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	12/26/2012	Time:	4:24:00
	1/2/2013		20:24:00

Alarm Condition:

Process - 32 (Low level alarm via LSL-100) - Fatal Alarm

Cause of Alarm:

The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.

Corrective Action:

TMC logged in remotely on 12/26/12 to review alarm condition and the datalogger. The system was restarted on 12/26/12 at 12:24.

Chris Davern onsite on 1/3/13 at 11:45 to inspect the alarm condition pressure. The following observations/testing/adjustments were conducted:

Height of water in AS sump with system off= 16.875" Startup system and record the following data. Q = 61 gpm, 730-800 cfm, 31.8 in.W.C, 15.25-15.75", damper nut 2 7/16" Closed AS blower damper roughly 1/16" to reduce sump back pressure. Q = 61 gpm, 690-770 cfm, 30.9 in.W.C, 16.25-16.75" Q = 40 gpm, 770-820 cfm, 29.2 in.W.C, 15.375" Q = 20 gpm, 780-860 cfm, 28.3 in.W.C, 15-15.125" Q = 63 gpm, 685-720 cfm, 31.0 in.W.C, 15.75-16.5" Initiate shutdown.

Height of water in AS sump steadies at 14.875" during 10 minute shutdown period with blower on, and then steadies at 18.25" following blower shutdown.

Following the adjustment of the blower damper the gravity discharge was working properly and the water level sump stayed within the historical range noted during both normal operation and during a shutdown period.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 04:24:54 ON 12/26/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD

: LAST SHUTDOWN @ 13:43:47 ON 12/06/2012 BY MEMORY 03 FAX REPORT INITIATED BY PROCESS 32

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is OFF
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is OFF
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is		мн3_р2		
LA MH1	is	OFF	FA_101	is	OFF
LA MH3	is		FA 103		
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

MH2 P1	is	OFF	MH2 P2	is	OFF
в 100	is	ON	DH 300	is	ON
LA MH2			FA_102	is	OFF
PA_106	is	OFF	LA_{100}		
TA_100	is	OFF	FA_105		
MOTION			TAH400	is	OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55870218	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9910004	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2534499	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	8595807	GAL		
PT_106 is 30.34	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 99.3	\mathbf{DEG}	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 11.4	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 66.5	\mathbf{DEG}	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is	CFM	LIMITS are L:	300.0	CFM	Н:	CFM

INJSPD 0.0 PCT PRO

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 20:24:19 ON 01/02/2013 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD

: LAST SHUTDOWN @ 04:34:55 ON 12/26/2012 BY LSL100 FAX REPORT INITIATED BY PROCESS 32

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_101	is	OFF
LA_MH3	is	OFF	FA_103	is	OFF
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT_101 is 0.00	GPM CDM	TOTAL FLOW is TOTAL FLOW is	$55934493 \\9918885$	GAL		
FT_102 is 0.00 FT_103 is 0.00	GPM GPM	TOTAL FLOW IS		GAL GAL		
FT _105 is 0.00	GPM	TOTAL FLOW is	8695109	GAL		
PT_106 is 30.92	IWC	LIMITS are L:		IWC	н: 34.00	IWC
TT_400 is 92.9		LIMITS are L:		\mathbf{DEG}	н: 110.0	\mathbf{DEG}
PT_400 is 11.7	IWC	LIMITS are L:		IWC	н: 25.0	IWC
TT_100 is 65.4	DEG	LIMITS are L:		DEG	н: 110.0	DEG
FT_106 is	CFM	LIMITS are L:	300.0	CFM	Н:	CFM

	•.•.•.•.•.•.•			 ************
2.00	in the second	Contraction (CONT	and the second second	
. 	****			Z
化合理学	: P			

INJSPD

 Date:
 12/7-11,14/2012

 Time:
 6:30

 Technician:
 Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	12/7-11/2012	Time:	6:30
12/14/2012			6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

12/7/12 - Dan Zuck performed a site inspection and confirmed that the system was online in auto. A "fax now" was initiated locally from the PLC but was not received.

12/8/12 - Dan Zuck performed a site inspection and confirmed that the system was online in auto. A "fax now" was initiated locally from the PLC but was not received.

12/10/12 - Jason Gutkowski performed a site inspection and confirmed that the system was online in auto. A "fax now" was initiated locally from the PLC but was not received.

12/11/12 - Todd Carignan performed a site inspection at approximately 19:00. The system was in "manual" mode. After attempting to log in locally with a laptop unsuccessfully the PLC was rebooted, after reboot a local connection was successfully made and the data logger files were downloaded. The system shutdown at approximately 19:00 on 12/10/12. The only apparent reason would be a power failure. The system was restarted and a "fax now" was successfully initiated locally from the PLC.

12/14/12 - Jason Gutkowski performed a site inspection and confirmed that the system was online in auto. A "fax now" was initiated locally from the PLC but was not received. The PLC was rebooted and a "fax now" was successfully initiated locally from the PLC.

The PLCs modem may need to be replaced, ARCADIS to discuss option with EOS along with other communication options including wireless.

Date:	2/7/2012
Time:	17:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 2/6/12 Time: 16:45

Alarm Condition:

Process - 42 (High level alarm via LSH-100)

Cause of Alarm:

The LSH-100 was tripped during a automated startup when MH-1 was called to pumped. The data logger indicated that the LSH-100 went into alarm several seconds after one of the pumps turned on. The high level alarm is most likely a result of the new level float being set with too short of tether during the initial install.

Corrective Action:

TMC logged in remotely on 2/6/12 to review the data logger and restart system. The system was unable to be restarted due to the high level float switch still being latched in the on position.

Jason Gutkowski was onsite on 2/7/12 and manually drained enough water from the air stripper sump in order to clear (un-latch) the high level alarm. The length of the high level float tether was increased 3-inches. TMC logged into the system remotely and restarted the system at 11:00.

ARCADIS will continue to monitor the sump water level and if needed may further modify (shorten or lengthen) the high float tether length fine tune the level alarm and reduce/eliminate nuisance alarms during startup or shutdown.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 16:45:37 ON 02/06/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD P-6 : LAST SHUTDOWN @ 20:13:17 ON 01/30/2012 BY LSL100 FAX REPORT INITIATED BY PROCESS 42

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is ON	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is ON	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1	is		MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is		$FA_{\overline{1}01}$		
LA MH3	is	OFF	FA_103	is	OFF
LSH106			WFS106	is	OFF
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION LSP200	is is is is is	ON OFF OFF OFF OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	ON OFF ON ON
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is 5	4011599 GA	L	
FT_102 is 0.00	GPM	TOTAL FLOW is 9	(574338 GA)	L	
FT_103 is 0.00	GPM	TOTAL FLOW is 1	.613924 GA:	L	
FT _105 is 0.00	GPM	TOTAL FLOW is 5.	(576189 GA)	L	
PT_106 is 27.47	IWC	LIMITS are L: 8	1.00 IW	С Н: 34.00	IWC
TT_400 is 82.4	DEG	LIMITS are L: 6	0.0 DE	G H: 110.0	DEG
PT_400 is 11.8	IWC	LIMITS are L: 1	0 IW	С Н: 25.0	IWC
TT_100 is 62.0	DEG	LIMITS are L: 4	0.0 DE	G H: 110.0	DEG
FT_106 is 835.3	\mathbf{CFM}	LIMITS are L: 4	00.0 CF	4 Н:	CFM

	• • • • • •						*.*.*.*		• • • • • • •				• • • • • • •	
	000			2000		1000								243
	- C			N 0 0		10 M			- Cel		1.010		0.000	20
10 M W	te da	i nin i si	- 1	1.00	di katala d	14 M B		in de	- · · ·			ini di la		·
·			s / .			· · · ·		r						٠.
- X 77	1 . K	1 M F	2 A A				- A - A	W 14		7 A .				٠.
19. A.S.	· · ·		2.48											٠.
	2000													•0
	******				- - -									

INJSPD

Date:	3/27/2012
Time:	12:10
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/7/12 Time: 22:39:00

Alarm Condition:

Process - 56 - FA-105 (Low Flow Alarm Aggregate Flowmeter FT-105 with MH-2 Pump 1 online)

Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.

Lower velocity in 3" diameter header pipe when only one pump is batching (MH-2, Pump 1 at 18 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.

Corrective Action:

Consider replacing paddle wheel flow sensor with a more accurate/high sensitivity magmeter type.

Specified replacement magmeter flow meter (GF Signet, Model 3-2551-P0-11) provided to CDM for review and comment.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 22:39:53 ON 03/07/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P56 : LAST SHUTDOWN @ 17:34:01 ON 02/06/2012 BY B_100 FAX REPORT INITIATED BY PROCESS 56

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1	is		MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_101	is	OFF
LA MH3			FA_103	is	OFF
LSH106			WFS106	is	OFF
FA_106			FA_200		
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	54243975	GAL		
FT_102 is 18.00	GPM	TOTAL FLOW is	9608013	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	1696347	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	5912953	GAL		
PT_106 is 28.05	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 76.6	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 10.8	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 65.2	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 754.5	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	•••••			*************	 **************
			· · · · · · · · · · · · · · ·		
· · · ·					
. <u>A</u>					 Q
. Y	10.010	1002			
	T T T. /				

INJSPD 0

Date:	4/12/2012
Time:	12:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 4/12/12 Time: 5:00

Alarm Condition:

Process 57 - FA-105

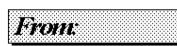
Low Flow Alarm Aggregate Flowmeter FT-105 with MH-3 Pump 1 online

Non-Fatal Alarm

Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.

Lower flow velocity is occurring within the 3-inch diameter header pipe when only one pump is batching (MH-3, Pump 1 at 16 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.


Corrective Action:

Paddle wheel flow sensor to be replaced with a more accurate/high sensitivity magmeter type, pending approval from Lockheed

Specified replacement magmeter flow sensor (GF Signet, Model 3-2551-P0-11) is attached for reference.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 05:00:48 ON 04/12/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P57 : LAST SHUTDOWN @ 13:45:00 ON 04/09/2012 BY KEYPAD FAX REPORT INITIATED BY PROCESS 57

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2	is	OFF
MH3_P1	is		MH3_P2		
LA_MH1	is	OFF	FA_{101}	is	OFF
LA_MH3	is		FA_103		
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	54479092	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9639828	GAL		
FT_103 is 16.51	GPM	TOTAL FLOW is	1782238	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	6244798	GAL		
PT_106 is 28.75	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 84.8	\mathbf{DEG}	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 11.8	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 58.1	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 823.7	CFM	LIMITS are L:	400.0	CFM	Н:	CFM

	• • • • • •						*.*.*.*		• • • • • • •				• • • • • • •	
	000			2000		1000								243
	- C			N 0 0		10 M			- Cel		1.010		0.000	20
10 M W	te da	i nin i si	- 1	1.00	di katala d	14 M B		in de	- · · ·	- -		ini di la		·
·			s / .			· · · ·		r						٠.
- X 77	1 . K	1 M F	2 A A				- A - A	W 14		7 A .				٠.
19. A.S.	· · ·		2.48											٠.
	2000													•0
	******				- - -									

INJSPD 0.

 Date:
 4/16/2012

 Time:
 12:00

 Technician:
 TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 4/16/12 Time: 7:30

Alarm Condition:

Daily scheduled fax Log not received at 7:30.

Unable to communicate with the PLC remotely.

Cause of Alarm:

PLC power failure.

Data logger files indicate that the system was online 4/16/12 up until approximately 9:30, then at which point no data was logged until 16:01 that day at which point the data logger indicated that PLC was reset.

Corrective Action:

Jason Gutkowski was onsite 4/17/12 at approximately 13:00 to inspect the system. The building had power upon Jason's arrival, however, the PLC and the building outlets did not have any power. The first GFCI at one of the outlets (wired in series) was tripped. Note: It should be noted that the Duct Heater did not require resetting, which would have indicated a building power outage.

Jason checked to low voltage panel to see if the outlet breakers had tripped, they had not. Jason then reset the local GFCI's that were tripped. At which time the chemical dosing pump regained power.

The UPS's audible alarm was also a constant tone which indicates one of the following; the battery is disconnected, battery needs to be replaced, or a overload shutdown occurred (i.e., during on battery operation a battery power supplied outlet overload was detected. Todd Carignan had Jason de-energize the panel where the UPS is installed in order to safely visually inspect the UPS. Upon opening the panel door the UPS's audible alarm was still present and the visual indicator was flashing red which indicates that the battery is disconnected (per the UPS user guide). It should be noted that the UPS line side circuit breaker was not tripped and did not require resetting.

The UPS was shutoff using the power button located on the front of the unit, then turned back on, following that sequence the UPS audible alarm turned off, the UPS green run light turned on, and the PLC rebooted.

After performing the above inspections it was still unclear of what caused the complete power failure to the PLC since the battery was not disconnected and was just recently tested during the quarterly critical device testing.

Chris Davern logged into the system remotely with Jason onsite on 4/17/12 and restarted the GCTS and observed it for proper operation.

On 4/23/12 Chris Davern was onsite and tested the UPS by turning off the main breaker to the building (simulating a building power outage). Upon doing this the PLC remained energized and the UPS's audible alarm indicated that the unit was on battery backup (i.e., beeping 4 times every 30 seconds). The PLC immediately dialed out a Process 36 alarm (level sensor low low alarm at MH-1). The system eventually then went into a shutdown mode as a result of Process 32, low level in air stripper sump (as a result of losing power to that discrete input). The battery backup provided power to PLC for approximately 60-70 minutes. Therefore, it appears that the UPS is functioning properly. ARCADIS spoke with the APC, the manufacturer of the UPS and discussed our observations and when through their troubleshooting guide. The technical support suggested two possible scenarios, the UPS has an internal fault or an outlet overload occurred on the battery side which disabled power to the battery backup outlets. At this point ARCADIS will continue monitoring the UPS, and if required may elect to replace the unit, which was installed in December 2007.

Date:	4/24/2012
Time:	14:05
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>4/24/12</u> Time: <u>11:35</u>

Alarm Condition:

Process 56 - FA-105

Low Flow Alarm Aggregate Flowmeter FT-105 with MH-2 Pump 2 online

Non-Fatal Alarm

Cause of Alarm:

Possible air pockets causing turbulent flow within the 3" dia. Manifold.

Lower flow velocity is occurring within the 3-inch diameter header pipe when only one pump is batching (MH-2, Pump 2 at 19 gpm), thus resulting in a flow of less than 3 gpm for a period greater than 30 seconds (alarm time delay set point) during the initial startup of batch cycle.

Corrective Action:

Paddle wheel flow sensor to be replaced with a more accurate/high sensitivity magmeter type, pending approval from Lockheed

Specified replacement magmeter flow sensor (GF Signet, Model 3-2551-P0-11) is attached for reference.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 11:35:24 ON 04/24/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P56 : LAST SHUTDOWN @ 12:37:49 ON 04/23/2012 BY LSL100 FAX REPORT INITIATED BY PROCESS 56

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is OFF
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is	OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_{101}	is	OFF
LA_MH3	is	OFF	FA_103	is	OFF
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION	is is is is	ON OFF OFF OFF	MH2 P2 DH_300 FA_102 LA_100 FA_105 TBH400	is is is is	ON OFF OFF ON
MOTION LSH200	is	OFF	TAH400		

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	54545900	GAL		
FT_102 is 18.93	GPM	TOTAL FLOW is	9653539	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	1812090	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	6351441	GAL		
PT_106 is 27.72	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 78.8	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 10.4	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 62.8	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 773.1	CFM	LIMITS are L:	400.0	CFM	Н:	\mathbf{CFM}

	•.•.•.•.•.•.•			 ************
2.00	in the second	Contraction (CONT	and the second second	
. 	****			Z
化合理学	: P			

INJSPD

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date:	5/25/2012
Time:	13:55
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 5/18-23/2012 Time: 7:30

Alarm Condition:

Daily scheduled fax Log not received at 7:30.

Unable to communicate with the PLC remotely.

Cause of Alarm:

5/23/2012 - Discover that ConMed disconnected the local GCTS fax/autodialer line in adjacent building.

Corrective Action:

Dan Zuck was onsite 5/21 at approximately 18:00, verified that the system was online in auto and initiated a "fax now" - not received.

Daily faxes not received on 5/21, 5/22, or 5/23.

Dan Zuck back onsite 5/23, check in with ConMed to discuss GCTS fax line issue and discovered that local line was disconnected/unplugged at adjacent building and local fax machine was plugged into data/voice port. Dan Zuck unplugs fax machine and plugs in GCTS fax line - successfully tested with "fax now". ARCADIS contacts Rick Zigenfus (on vacation) and then Kevin Duschanl (Rick's backup contact) to inform him of our findings and corrective actions. Kevin indicated that the local ConMed staff must have unknowingly disconnected the GCTS fax line and indicated that it wouldn't happen again.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date:	6/12/2012
Time:	12:15
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 5/28/12 Time: 7:30

Alarm Condition:

Daily scheduled fax Log not received at 7:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

Daily scheduled fax log received on schedule on 5/29/12.

Todd Carignan reviews data logger files which indicated that the system was online in "auto" on 5/28/12.

Date:	6/12/2012
Time:	12:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 5/29/12 Time: 18:53

Alarm Condition:

Process - 29 - FA-101 (Low Flow Alarm Aggregate Flowmeter FT-101) with MH-1 Pump #2 online

Cause of Alarm:

Suspect alarm conditions caused by stuck check valve located within MH-1 Pump #2 riser pipe.

Corrective Action:

Chris Davern logged into system remotely on 5/30 at 8:30 to inspect system and pump operation. The data logger file indicated that since 20:00 (5/29) pump 2 had been running. No flow had been registered at FT-101, and the flow change at FT-105 indicates that in actuality only MH-3 has pumped into the system overnight (delta for FT-101 = 0, delta for FT-103 = 2,963 gal and delta for FT-105 = 2,959 gal). Therefore eliminating the possibility that FT-101 simply needs to be cleaned.

MH-1 pump 1 was briefly turned on in manual, immediately following this action MH-1 pump 2 began to register flow. Based on these observations it is most likely that the check valve on the MH-1 pump 1 riser pipe was stuck in the open (up) position again and that by turning pump 1 on briefly dislodged the ball.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 18:53:10 ON 05/29/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P29 : LAST SHUTDOWN @ 12:37:49 ON 04/23/2012 BY LSL100 FAX REPORT INITIATED BY PROCESS 29

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1 is OFF	MH1_P2 is ON
MH3_P1 is OFF	MH3_P2 is OFF
LA MH1 is OFF	FA $\overline{1}01$ is ON
LA_MH3 is OFF	FA_103 is OFF
LSH106 is OFF	WFS106 is OFF
FA 106 is OFF	FA 200 is OFF
TAL 400 is OFF	PA_400 is OFF

MH2_P1			MH2_P2		
$B_1\overline{0}0$			DH_{300}		
LA_MH2			FA_102		
PA_106			LA_{100}		
TA 100	is	OFF	FA 105	is	ON
MOTION	is	OFF	TAH400	is	OFF
LSH200	is	OFF			

Analog Inputs:

FT_101 is 0.00	GPM	TOTAL FLOW is	54847353	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9700653	GAL		
FT_103 is 16.41	GPM	TOTAL FLOW is	1946829	GAL		
FT _105 is 15.57	GPM	TOTAL FLOW is	6812657	GAL		
PT_106 is 23.44	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 75.4	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 11.3	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 73.2	DEG	LIMITS are L:	40.0	DEG	н: 110.0	\mathbf{DEG}
FT_106 is 841.0	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	\mathbf{CFM}

		..*.*.*.*.*.				**************
		_				
. A .	275	12.9		18801		Q
. Y	A 6 5	1122			12 A C A	
			•			

INJSPD

2.3 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date:	6/12/2012
Time:	12:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 6/11/12 Time: 7:30

Alarm Condition:

Daily scheduled fax Log not received at 7:30.

Unable to communicate with the PLC remotely.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

ARCADIS attempted to log in remotely several times unsuccessfully on 6/11/12.

Jason Gutkowski onsite 6/11/12 at 15:30 and confirms that the system is online and in "auto".

Jason confirms that phone line is working by plugging in a analog phone. Chris Davern has Jason re-boot the PLC. Following the rebooting of the PLC a "fax now" is successfully initiated.

Daily fax received on 6/12/12 at 7:30. Todd Carignan successfully logs in remotely on 6/12/12 to test remote connectivity.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 16:02:36 ON 06/11/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P23 : LAST SHUTDOWN @ 09:11:31 ON 06/07/2012 BY KEYPAD FAX REPORT INITIATED BY KEYPAD

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1 is OFF	MH1_P2 is OFF
MH3_P1 is OFF	MH3_P2 is ON
	FA $\overline{1}01$ is OFF
	FA_103 is OFF
LSH106 is OFF	WFS106 is OFF
	FA 200 is OFF
TAL400 is OFF	PA_400 is OFF

		-	
S OFF			
s ON		is	ON
		is	OFF
		is	OFF
s OFF	FA_105	is	ON
s OFF	TAH400	is	OFF
s OFF			
	S ON S OFF S OFF S OFF S OFF	s ON DH_300 .s OFF FA_102 .s OFF LA_100 .s OFF FA_105 .s OFF TAH400	s ON DH_300 is .s OFF FA_102 is .s OFF LA_100 is .s OFF LA_100 is .s OFF FA_105 is .s OFF TAH400 is

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	54924010	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9715481	GAL		
FT_103 is 15.09	GPM	TOTAL FLOW is	1986522	GAL		
FT ⁻ 105 is 6.96	GPM	TOTAL FLOW is	6935434	GAL		
PT_106 is 26.13	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT ⁴⁰⁰ is 78.7	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 8.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT ⁻ 100 is 78.8	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 641.7	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	\mathbf{CFM}

6 - 1 - 5 - 1 - 1 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6
1 S S F X X / S F X 9000000

INJSPD

1.1 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date:	7/2/2012
Time:	11:30
Technician:	CD/TC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 6/30/12 Time: 9:25

Alarm Condition:

Process 31 - FA-103

Low Flow Alarm Flowmeter FT-103, MH-3 with Pump 1 online

Non-Fatal Alarm

Cause of Alarm:

FT-103 did not register flow when MH-3 was online within the time allowed (30 second delay).

Corrective Action:

Upon review of the alarm fax, MH-3 pump 1 was onlinne and the aggregate flow meter was registering the proper flow rate for that MH. It appears that FT-103 was not registering flow for a short period. This is supported by that fact that MH-3 was pumping water and the air stripper sump pressure and flow rate are representative of conditions when there is water in the trays (i.e.,air flow would be greater than 700 cfm and sump pressure would be less than 26 in.W.C. if the blower was on and no water was coming in).

CD logged in remotely on 7/2/12 and both pump 1 and 2 for MH-3 triggered flow readings at FT-103 and FT-105.

MH-3 paddwheel to be cleaned during the next monthly OM&M visit.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 09:25:27 ON 06/30/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P31 : LAST SHUTDOWN @ 12:05:30 ON 06/22/2012 BY KEYPAD FAX REPORT INITIATED BY PROCESS 31

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH $\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is				
LA_MH1			$FA_{\overline{1}01}$		
LA_MH3	is		FA_103		
LSH106	is	OFF	$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION ISH200	is is is is is	ON OFF OFF OFF OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	ON OFF OFF OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55006301	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9731333	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2030030	GAL		
FT_105 is 16.30	GPM	TOTAL FLOW is	7069963	GAL		
PT_106 is 26.25	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 79.6	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 8.4	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 74.8	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 678.8	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	\mathbf{CFM}

	• • • • • •						*.*.*.*		• • • • • • •				• • • • • • •	
	000			2000		1000								243
	- C			N 0 0		10 M			- Cel		1.010		0.000	20
10 M W	te da	i nin i si	- 1	1.00	di katala d	14 M B		in de	- · · ·			ini di la		·
·			s / .			· · · ·		r						٠.
- X 77	1 . K	1 M F	2 A A				- A - A	W 14		7 A .				٠.
19. A.S.	· · ·		2.48											٠.
	2000													•0
	******				- - -									

INJSPD

2.3 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and	Date:	7/2/2012	
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:	12:00	_
French Road Facility, Utica, New York	Technician: CMD		
ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET			

Date: 7/1/12 Time: 7:30

Alarm Condition:

Daily scheduled fax Log not received at 7:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

Daily fax received on 7/2/12 at 7:30. Chris Davern successfully logs in remotely on 7/2/12 to test remote connectivity.

Alarm Response Log Sheet, Groundwater Collection and	Date:	7/11/2012
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:	17:00
French Road Facility, Utica, New York	Technician:	CD
ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET		
Date: 7/11/12 Time: 16:19		
Alarm Condition:		
Process 43, LSH-106.		
Building sump high liquid level.		
Non-Fatal Alarm		

Cause of Alarm:

Building sump being used for groundwater generated during monitoring activities.

Corrective Action:

Confirm with field staff that sump will be manually dewatered while system is cycling automatically.

Confirm via next daily fax that sump has been dewatered by viewing status of LSH-106 input.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 16:19:20 ON 07/11/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P43 : LAST SHUTDOWN @ 12:05:30 ON 06/22/2012 BY KEYPAD FAX REPORT INITIATED BY PROCESS 43

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1 [_] LL is ON	MH2 HH is OFF	MH2 ⁻ H2 is OFF	MH2 ⁻ H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is ON	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1 i		MH1_P2 is OFF	
мн3_р1 і		MH3_P2 is OFF	
LA MH1 i		FA $\overline{1}01$ is OFF	
LA MH3 i	S OFF	FA ⁻ 103 is OFF	
LSH106 i	S ON	WF $\overline{S}106$ is OFF	
FA 106 i		FA 200 is OFF	
TAL400 i	s OFF	PA_400 is OFF	

MH2_P1 B_100 LA_MH2 PA_106 TA_100 MOTION LSH200	is is is is is	OFF OFF OFF OFF OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	OFF OFF OFF OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55038684	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9738010	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2048125	GAL		
FT ⁻¹⁰⁵ is 0.00	GPM	TOTAL FLOW is	7127347	GAL		
PT_106 is 0.31	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT ⁴⁰⁰ is 86.4	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 0.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT ⁻¹⁰⁰ is 80.0	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 0.0	\mathbf{CFM}	LIMITS are L:	400.0	\mathbf{CFM}	Н:	CFM

INJSPD 0.0 PCT PRO

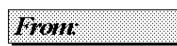
Alarm Response Log Sheet, Groundwater Collection and	Date:	7/16/2012				
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:	13:00				
French Road Facility, Utica, New York	Technician:	CD				
ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET						
Date: 7/16/12 Time: 5:57						
Alarm Condition:						
Process 47						
Low pre-carbon temperature TT-400.						
Fatal alarm.						

Cause of Alarm:

Critical device testing conducted on 7/13/12 resulted in occurrence of high internal temperature alarm for

duct heater. This alarm turns off duct heater and requires local, manual resetting of unit. Not conducted

by field staff on 7/13/12.


Corrective Action:

Mobilize to site and manually reset duct heater. Restart system at 12:12 on 7/16/12. Confirm proper

operation of duct heater and expected TT-400 temperature.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 05:57:13 ON 07/16/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD P-1 : LAST SHUTDOWN @ 12:28:21 ON 07/13/2012 BY FT_106 FAX REPORT INITIATED BY PROCESS 47

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	$LSH\overline{1}06$ is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

		MH1_P2	is	OFF
is				
is	OFF	FA_101	is	OFF
		WFS106	is	OFF
		FA 200	is	ON
is	ON	PA_400	is	OFF
	is is is is	is OFF is OFF is OFF is OFF is OFF	is OFF MH3_P2 is OFF FA_101 is OFF FA_103 is OFF WFS106 is OFF FA_200	is OFF MH3_P2 is is OFF FA_101 is is OFF FA_103 is is OFF WFS106 is is OFF FA_200 is

MH2 P1	is	OFF	MH2 P2		
в 100	is	ON	DH 300		
LA MH2	is	OFF	FA_102	is	OFF
PA_106	is	OFF	LA_{100}		
TA_100	is	OFF	FA_105	is	OFF
MOTION	is	OFF	TAH400	is	OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55050231	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9739727	GAL		
FT 103 is 0.00	GPM	TOTAL FLOW is	2054699	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7146508	GAL		
PT_106 is 25.64	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 59.4	DEG	LIMITS are L:	60.0	DEG	н: 110.0	DEG
PT_400 is 9.8	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 74.5	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is 823.1	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	- A - C						
	di Co						
·			17319		1 8 8 8 1 8		
- N	1.15			- C. C. C. C. A.			
· · · ·					THE R. P. LEWIS CO., LANSING MICH.		
•••••	••••••	********				*.*.*.*.*.*.*.*	•••••••••

INJSPD

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin	Date: Time:	7/18/2012
French Road Facility, Utica, New York	Technician:	CD
ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET		
Date: 7/17/12 Time: 18:06		
Alarm Condition:		
Process 42		
High air stripper sump level LSH-100.		
Fatal alarm.		

Cause of Alarm:

Liquid level in air stripper sump following ending of manhole pumpdown (i.e., batch) exceeds high level

float. No manual changes in system settings or observed changes in operational parameters.

Corrective Action:

Mobilize to site and manually evacuate air stripper sump to drop tethered high float LSH-100 to off

position. Evacuation done by partially closing pre-carbon butterfly valve while blower running until air

stripper sump level drops sufficiently. System returned to automatic mode at 12:16 on 7/18/12. Opened

blower intake damper slightly to lower operating and shutdown liquid level elevation of air stripper sump.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 18:06:22 ON 07/17/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

SHUTD P-6 : LAST SHUTDOWN @ 06:07:13 ON 07/16/2012 BY TT_400 FAX REPORT INITIATED BY PROCESS 42

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is ON	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH $\overline{1}00$ is ON	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1			MH3_P2		
LA MH1			FA 101	is	OFF
LA MH3	is		FA 103		
LSH106	is	OFF	$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

MOTION is OFF TAH400 is OFF		; ON ; OFF ; OFF ; OFF ; OFF ; OFF	MH2_P2 DH_300 FA_102 LA_100 FA_105 TAH400	is is is is	ON OFF ON OFF
LSH200 is OFF	LSH200 is	; OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55054936	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9741959	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2056647	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7154747	GAL		
PT_106 is 21.98	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 79.5	DEG	LIMITS are L:	60.0	DEG	н: 110.0	\mathbf{DEG}
PT_400 is 9.9	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 81.8	DEG	LIMITS are L:	40.0	DEG	н: 110.0	\mathbf{DEG}
FT_106 is 841.7	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	•.•			. · .			۰.	•		. *		۰.	۰.	•.•	•.•			. *			۰.	•.•					•.•					۰.	•.•						٠.	•	•.•	7
- 0	•••	242	÷		÷	20	•	•0	0	2				•	•	0	0		24		20	•	0	•	24		÷	o	•	24	1	•0	•	0		24				•0	•	•
20	÷	1	÷	20	÷	24		0	2	P				0	0	÷	÷	а	7		×.	÷	÷	÷	ю	1	- 2	o	÷	×		•	4	÷	÷	26	1			0	0	÷
	٠.	CH 1	.,	х.	-	14	1	-		ι.		7	v	÷.	÷	6.			C٠				N1						Ĥ	е.		н		1	÷,	12			•••	•••	•.•	٠,
•••	æ		1	ĸ		4	2.1			1	г.			1	P			r			к		1	e	л	P i				P.		۰.	Ľ	-	Y			٠.	٠.	•••	•.•	٠.
- 20	•••			Γ.	Ð				Ð							•••							κ.		e		Ε.	÷		и						4		٠.	٠.	•	•.•	٠
.7	•.•		7		٠.	л.	- 7	•7	7	.*						•.•		."		۰.				71			7	٠.			Ξ.	7	•.•			а,	۰.	۰.	٠.	•	•.•	٠
	•.•	·*•	•.•	·*•	•.•	٠.	٠.	- 2	•.•		۰.	- 2	۰.	-	٠.	•.•				۰.	۰.	••	•		.4	-	4.7	•.•	•.•	. *	۰.	۰.	••	٠.•		24	۰.	۰.	۰.	•	•.•	٠

INJSPD

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date: 7/24/2012 Time: 9:45 Technician: Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/24/12 Time: 6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

Todd Carignan successfully logged into the system remotely on 7/24/12 at approximately 9:45. The system was in "auto" mode. A fax now was successfully performed indicating that PLC autodialer was functioning properly.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 09:45:39 ON 07/24/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P06 : LAST SHUTDOWN @ 18:16:23 ON 07/17/2012 BY LSH100 FAX REPORT INITIATED BY REMOTE

MH1_HH is OFF	MH1_H2 is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}06$ is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1			MH3_P2	is	OFF
LA MH1			FA_101		
LA_MH3	is		FA_103		
LSH106	is	OFF	$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

OFF OFF OFF OFF OFF	DH_300 FA_102 LA_100 FA_105	is is is is	OFF OFF OFF OFF
	1011400	19	ULL
	OFF OFF OFF OFF OFF OFF	OFF DH_300 OFF FA_102 OFF LA_100 OFF FA_105 OFF TAH400	OFF DH_300 is OFF FA_102 is OFF LA_100 is OFF FA_105 is OFF TAH400 is

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55071810	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9746426	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2068088	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7187352	GAL		
PT_106 is 0.21	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 80.4	DEG	LIMITS are L:	60.0	DEG	н: 110.0	\mathbf{DEG}
PT_400 is 0.0	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 76.4	DEG	LIMITS are L:	40.0	DEG	н: 110.0	\mathbf{DEG}
FT_106 is 0.0	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	•.•.•.•.•.•.•	*************		 ************
2.00	in the second	Contraction (CONT	and the second second	
. 	****			Z
化合理学	: R. S. S.			

INJSPD 0

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	7/25/2012
Time:	13:00
Technician:	CD

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/24/12 Time: 23:10-23:15

Alarm Condition:

Processes 29 and 55.

Low flow alarms for FT-101 (manhole MH-1) and FT-105 (aggregate flow), respectively.

Non-fatal alarms.

Cause of Alarm:

Flow transmitters FT-101 and FT-105 not recording flow despite MH-1-pump-2 being called for. Suspected cause is check valve on MH-1-pump-1 leg of MH-1 piping being stuck in open position, allowing flow from pump-2 to recirculate back into manhole.

Corrective Action:

Log in remotely to system. Manually turn on MH-1-pump-1. Observe flow at both FT-101 and FT-105 at

expected rates. Turn off MH-1-pump-1 and confirm that MH-1-pump-2 alone causes flow to be recorded at

FT-101 and FT-105. Will monitor for low flow alarm at FT-101 and consider replacement of check valve on

MH-1-pump-1 if needed, or during next confined space manhole inspection.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 23:10:44 ON 07/24/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P55 : LAST SHUTDOWN @ 18:16:23 ON 07/17/2012 BY LSH100 FAX REPORT INITIATED BY PROCESS 29

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	LSH100 is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1 is		MH1_P2 is	
MH3_P1 is		MH3_P2 is	
LA_MH1 is		$FA_{\overline{1}01}$ is	
LA_MH3 is	OFF		
LSH106 is		WFS106 is	OFF
FA 106 is	OFF	FA 200 is	OFF
TAL400 is	OFF	PA_400 is	OFF

MH2 P1			MH2 P2		
$B_1\overline{0}0$			$DH_{\overline{3}00}$		
LA MH2			FA_102		
PA_106	is	OFF	LA_{100}	is	OFF
TA_{100}	is	OFF	FA_105	is	ON
MOTION	is	OFF	TAH400	is	OFF
LSH200	is	OFF			

Analog Inputs:

FT 101 is 0.00	GPM	TOTAL FLOW is	55071811	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9746426	GAL		
FT_103 is 0.00	GPM	TOTAL FLOW is	2069595	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7188879	GAL		
PT_106 is 23.41	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 76.9	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 11.9	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 74.8	DEG	LIMITS are L:	40.0	DEG	н: 110.0	DEG
FT_106 is	\mathbf{CFM}	LIMITS are L:	400.0	CFM	Н:	CFM

	•.•.•.•.•.•.•	*************		 ************
2.00	in the second	Contraction (CONT	and the second second	
. 	****			Z
化合理学	: R. S. S.			

INJSPD (

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 23:15:00 ON 07/24/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P55 : LAST SHUTDOWN @ 18:16:23 ON 07/17/2012 BY LSH100 FAX REPORT INITIATED BY PROCESS 55

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is ON	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1	is				
LA MH1	is	OFF	FA_101	is	ON
LA MH3	is	OFF	FA 103	is	OFF
LSH106	is	OFF	$WF\overline{S}106$	is	OFF
FA 106			FA 200	is	OFF
TAL400	is	OFF	PA_400	is	OFF

MH2 P1			MH2 P2		
$B_1\overline{0}0$	is	ON	$DH_{\overline{3}00}$		
LA MH2			FA_102	is	OFF
PA_106			LA_{100}		
TA_100	is	OFF	FA_105	is	ON
MOTION	is	OFF	TAH400	is	OFF
LSH200	is	OFF			

Analog Inputs:

FT_101 is 0.00 FT_102 is 0.00 FT_103 is 0.00 FT_105 is 0.00 PT_106 is 23.38 TT_400 is 78.8 PT_400 is 11.9 TT_100 is 74.8	GPM GPM GPM IWC DEG IWC DEG		9746426 2069595 7188879 8.00 60.0 1.0	GAL GAL GAL IWC DEG IWC DEG	H: 34.00 H: 110.0 H: 25.0 H: 110.0	IWC DEG IWC DEG
	DEG CFM	LIMITS are L: LIMITS are L:			H: 110.0 H:	

	************	**************	***************	*************	**************
			·	************	
000 - 1 00	0.00000000				
·	S 7 8 1 1		200 / X X X X		0
- A - A - A - A - A - A - A - A - A - A			27 A A A A A		

INJSPD 0.

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 7/30/2012 Time: 8:00 Technician: Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/28-29/2012 Time: 6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail", or ConMed performing phone maintenance over weekend.

Corrective Action:

Todd Carignan attempted to log into the system remotely, but was unsuccessful in doing so. Schedule field staff to visit site Monday 7/30/12 to confirm the system is online.

Daily fax received on Monday 7/30/12 and Tuesday 7/31/12 at 6:30, as scheduled.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date: 7/31/2012 Time: 9:40 Technician: Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/31/12 Time: 6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

Todd Carignan successfully logged into the system remotely on 7/31/12 at approximately 9:40. The system was in "auto" mode. A fax now was successfully performed indicating that PLC autodialer was functioning properly.

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 09:42:56 ON 07/31/2012 SER NO 9539 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P22 : LAST SHUTDOWN @ 18:16:23 ON 07/17/2012 BY LSH100 FAX REPORT INITIATED BY REMOTE

MH1 HH is OFF	MH1 H2 is OFF	MH1 H1 is OFF	MH1 LO is ON
MH1_LL is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2_H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is OFF	MH3_LL is ON	WFS106 is OFF
MOTION is OFF	LSH106 is OFF	$LSH\overline{1}00$ is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

MH1_P1			MH1_P2		
MH3_P1		OFF	MH3_P2	is	OFF
LA_MH1	is	OFF	FA_101	is	OFF
LA MH3			FA_103		
LSH106			$WF\overline{S}106$	is	OFF
FA 106			FA 200		
TAL400	is	OFF	PA_400	is	OFF

Analog Inputs:

FT_101 is 0.00	GPM	TOTAL FLOW is	55103076	GAL		
FT_102 is 0.00	GPM	TOTAL FLOW is	9753200	GAL		
FT ¹⁰³ is 0.00	GPM	TOTAL FLOW is	2092779	GAL		
FT_105 is 0.00	GPM	TOTAL FLOW is	7248015	GAL		
PT_106 is 25.09	IWC	LIMITS are L:	8.00	IWC	н: 34.00	IWC
TT_400 is 78.9	DEG	LIMITS are L:	60.0	DEG	Н: 110.0	DEG
PT_400 is 9.6	IWC	LIMITS are L:	1.0	IWC	н: 25.0	IWC
TT_100 is 78.2	DEG	LIMITS are L:	40.0	DEG	Н: 110.0	DEG
FT_106 is 824.4	CFM	LIMITS are L:	400.0	CFM	Н:	CFM

		 ++++++++++++++++++++++++++++++++++++++		
¥⊷ t.	2121			
- C		A & B & A /		

INJSPD 0

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed
Martin French Road Facility, Utica, New York

Date:	9/24/2012
Time:	13:00
Technician:	Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 9/24/12 Time: 6:30

Alarm Condition:

Daily scheduled fax Log not received at 6:30.

Cause of Alarm:

Unknown - Faulty phone line connection resulting a "fax fail".

Corrective Action:

Todd Carignan successfully logged into the system remotely on 9/24/12 at approximately 13:00. The system was in "auto" mode. A fax now was successfully performed indicating that PLC autodialer was functioning properly.