

Infrastructure · Water · Environment · Buildings

Transmittal Letter

To:

Ms. Ruth Curley NYSDEC, Remedial Bureau B 625 Broadway, 12th Floor Albany, NY 12233 Copies:

James Zigmont, CDM
Nathan Freeman, NYSDOH
Dale Truskett, Lockheed Martin
Kay Armstrong, Armstrong & Assoc.
Mary Morningstar, Lockheed Martin
Richard Zigenfus, ConMed
Glenda Smith, Lockheed Martin

enua Simili, Luckiii

File

From: Date:

Lisa Collins February 20, 2014

Subject:
2013 Annual Groundwater Collection and

Treatment System Operation, Maintenance &

Monitoring Report
We are sending you:

☐ Under Separate Cover Via _	the Following Items:	

\boxtimes	Attached	☐ Under Separate Cover \	Via	the Following Items:		
	Shop Drawings	Plans	☐ Specifi	ications		Change Order
	Prints	☐ Samples	☐ Copy o	of Letter	\boxtimes	Reports
\boxtimes	Other: CD					

ARCADIS Project No.:

NJ001045.0001

Copies	Date	Description	Action*
1	2/20/14	2013 Annual Groundwater Collections and Treatment System Operation, Maintenance and Monitoring Report, Former Lockheed Martin French Road Facility, Utica, New York	AS

Action* ☐ A Approved ☐ AN Approved As Noted ☐ AS As Requested ☐ Other:	☐ CR Correct and☐ F File☐ FA For Approva		Resubmit Copies Return Copies Review and Comment
Mailing Method ☐ U.S. Postal Service 1 st Class ☐ Certified/Registered Mail ☐ Other:	☐ Courier/Hand Delivery ☐ United Parcel Service (UPS)	☐ FedEx Priority Overnight ☐ FedEx Standard Overnight	☐ FedEx 2-Day Delivery ☐ FedEx Economy
Comments:			

ARCADIS of New York, Inc.

855 Route 146 Suite 210

Tel 518 250 7300

Fax 518 250 7301

Clifton Park New York 12065

Former Lockheed Martin French Road Facility Utica, New York

February 2014

Todd Carignan Project Engineer

Jeffrey Bonsteel Associate Project Manager

Moh Mohiuddin, Ph.D., P.E., BCEE Principal Engineer/Engineer of Record NY PE License #074527-1

T. Carigum

2013 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility, Utica, New York

Prepared for:

Lockheed Martin Corporation

Prepared by:
ARCADIS of New York, Inc.
855 Route 146
Suite 210
Clifton Park
New York 12065
Tel 518.250.7300

Our Ref.:

NJ001045.0001

Fax 518.250.7301

Date:

February 20, 2014

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

Ac	ronyms		iii
1.	Introd	uction	1
2.	Groun	dwater Collection and Treatment System Description	1
	2.1	Major System Components	2
3.	2013 F	Remedial Operational Objectives	3
4.	Opera	tion and Maintenance Activities	5
	4.1	Daily Routine System Inspections	5
	4.2	Monthly Routine System Inspections	5
	4.3	Quarterly System O&M and Inspections	7
	4.4	Non-Routine Operation and Maintenance Activities	7
	4.5	Alarm Conditions and System Modifications	8
	4.6	Whole Effluent Toxicity (WET) Testing	8
5.	Analyt	tical Monitoring Activities	8
	5.1	System-Effluent Monitoring	9
	5.2	System-Influent Monitoring	9
	5.3	Stormwater Monitoring	11
6.	Syster	n Performance Results	11
	6.1	Groundwater Recovery/Extracted Liquid Flowrate	11
	6.2	Air Stripper Performance	12
	6.3	Air Stripper Emissions	12
	6.4	Water Treatment Chemical Monitoring	13
	6.5	Stormwater Monitoring	13
	6.6	Groundwater Elevation Measurements	14
7.	2014 0	Soals and Recommendations	14
	7.1	Goals	14
	7.2	Recommendations	15
8.	Refere	ences	16

Table of Contents

Tables	
1	Groundwater Collection and Treatment System Operation Summary
2	Groundwater Collection and Treatment System Effluent Analytical Sampling Results
3	Groundwater Collection and Treatment System Influent Groundwater Concentrations
4	Stormwater Analytical Sampling Results
5	Groundwater Collection and Treatment System Flowrates
6	Vapor Phase Analytical Sampling Results
7	Summary of Estimated Air Stripper Emissions
8	Sequestering Agent Consumption Summary
Figures	
1	Site Location Map
2	Site Plan and Groundwater Collection and Treatment System Layout
3	Groundwater Contours January 2013
4	Groundwater Contours April 2013
5	Groundwater Contours July 2013
6	Groundwater Contours October 2013
Appendices	
Α	Record Drawings
В	Monthly O&M Checklists
С	Alarm-Response Log Sheets

Acronyms

Acronyms

CB catch-basin

cfm cubic feet per minute

CVOCs chlorinated volatile organic compounds

DAR Division of Air Resources

ft feet

GCTS groundwater collection and treatment system

gpm gallons per minute

HDPE high-density polyethylene

HOA hand-off-auto hp horsepower

in inch
lb pound
MH manhole
mL milliliters

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operations and maintenance

OM&M operation, maintenance, and monitoring

PLC programmable logic controller

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RCP Reinforced-concrete pipe

RL reporting limits

SCFM standard cubic feet per minute

SCH schedule

SOP standard operating procedure

SPDES State Pollutant Discharge Elimination System
USEPA United States Environmental Protection Agency

VOA volatile organic analysis
VOCs volatile organic compounds
WTC water treatment chemical

Former Lockheed Martin French Road Facility, Utica, New York

1. Introduction

This *Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report* was prepared by ARCADIS for Lockheed Martin Corporation (Lockheed Martin), in accordance with the DRAFT *Site Management Plan for the Solvent Dock Area* (ARCADIS 2009) at the Former Lockheed Martin French Road Facility (herein referred to as the "site") in Utica, New York (Figure 1). All work was performed in accordance with the October 3, 2008 "Order on Consent" (CO 6-20080321-5) issued by the New York State Department of Environmental Conservation (NYSDEC). This report summarizes the operation, maintenance, and monitoring (OM&M) of the groundwater collection and treatment system (GCTS) from January 1 through December 31, 2013. The data summary includes a review of influent and effluent system sampling, analysis of key operating parameters (e.g., flow rates, pressures, system run-time, and maintenance activities), and any modifications and recommendations related to continued system operation and monitoring.

2. Groundwater Collection and Treatment System Description

The GCTS is designed to collect groundwater contaminated with chlorinated volatile organic compounds (CVOCs) from the former Solvent Dock Area and former northern-perimeter ditch area and transport it to a treatment building where the CVOCs are removed by a low-profile air stripper. Following treatment, groundwater is discharged via gravity to the local municipal storm drain under a NYSDEC "State Pollutant Discharge Elimination System" (SPDES) permit (permit No. NY-0121894). The system is designed to operate automatically and requires only periodic inspections and maintenance. An automated system operation log is sent daily via e-mail to the project engineer to verify operation. A more detailed explanation of the GCTS appears below.

Groundwater in the former Solvent Dock Area (MH-2 and MH-3) and former northern-perimeter ditch area (MH-1) is captured by separate perforated-pipelines and flows via gravity to collection manholes. Groundwater is then pumped (batch mode) from each manhole through subsurface double-walled pipelines to the GCTS building for treatment before being discharged to the local municipal stormwater collection system. The groundwater is treated with a low-profile air stripper, which removes the dissolved-phase CVOCs.

During air stripping, contaminated water enters the air stripper at the top and ambient air enters from the bottom. The groundwater flows over four trays in series where CVOCs are transferred from the aqueous phase (i.e., water) to the vapor phase (i.e.,

Former Lockheed Martin French Road Facility, Utica, New York

counter-current air stream). The air stream (off-gas) is treated using granular activated carbon before discharge to the atmosphere. A GCTS site plan is illustrated in Figure 2, and the GCTS process and instrumentation diagram record drawing showing sampling locations is provided in Appendix A.

2.1 Major System Components

Major components of the system are as follows:

- MH-1: 6-ft diameter and 13-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ horsepower (hp) submersible pumps;
 - Five associated float-switches;
 - 2-in/4-in diameter double walled high-density polyethylene (HDPE) discharge-piping; and
 - Gravity Collection Drain 670 feet (ft) of 8-inch (in) diameter perforated HDPE pipe installed in a 4–6-ft deep, stone-filled collection trench located parallel to the former northern-perimeter ditch.
- MH-2: 6-ft diameter and 18-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ hp submersible pumps;
 - Five associated float-switches;
 - 2-in/4-in diameter double wall HDPE discharge piping; and
 - Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the former Solvent Dock area.
- MH-3: 6-ft diameter and 17-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - Two ³/₄ hp submersible pumps;
 - Five associated float-switches;
 - 2-in/4-in diameter double wall HDPE discharge piping; and

Former Lockheed Martin French Road Facility, Utica, New York

- Gravity Collection Drain 173 ft of 6-in diameter perforated HDPE-pipe installed in a 9–11-ft deep, stone-filled collection trench located adjacent to the facility stormwater drainage line within the former Solvent Dock area.
- Pre-Engineered Metal Building: A 24-ft 8-in by 20-ft pre-engineered metal treatment-building set on a concrete foundation and slab equipped with a secondary containment- dike and floor sump;
- Programmable Logic Controller (PLC) and motor control panels for the air stripper, duct heater, and manhole pumps;
- Air Stripper: Low profile, stainless steel air stripper rated for a maximum flowrate of 120 gallons per minute (gpm);
- Liquid Phase Discharge: 60-ft of 4-in diameter schedule (SCH)-40 polyvinyl chloride (PVC) gravity-discharge pipe from the air stripper effluent to the local municipal stormwater collection and drainage system (30-in diameter reinforced-concrete pipe [RCP]);
- Duct Heater: Inline duct heater rated at 600 standard cubic feet per minute (SCFM);
- Vapor Phase Treatment Vessels: two 1000-pound (lb) activated carbon vessels operated in series that discharge the treated air stripper off-gas through an exhaust-duct made of PVC (interior) and stainless steel (exterior) that extends approximately 28-ft above the ground surface; and
- Chemical Feed System: Aries Chemical sequestering agent 2908 is injected into the influent groundwater stream for mineral deposit control using a LMI chemical feed pump model AA941-353 BI, equipped with a LMI Digi-Pulse Meter model FM-200 rated for 0.05-5.0 milliliter (ml) per stroke. (Note: Approval for the water treatment chemical [WTC] was received from NYSDEC on April 13, 2011. Usage of the WTC began on April 20, 2011.)

Record drawings for the GCTS are included in Appendix A. System components are described in more detail in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011).

3. 2013 Remedial Operational Objectives

The GCTS' overall remedial goal is to reduce the potential for groundwater contaminated with CVOCs to infiltrate the facility's storm drainage system (Figure 2)

Former Lockheed Martin French Road Facility, Utica, New York

before its contents eventually discharge to Nail Creek. The GCTS' operational objectives are to:

- Maintain and operate the system continuously without significant downtime;
- Demonstrate the GCTS' effectiveness in preventing infiltration of CVOC contaminated groundwater into the site facility's storm drain;
- Demonstrate that the air stripper is removing CVOCs from the influent groundwater streams before being discharged into the local county storm drain system, in compliance with the site's SPDES permit;
- Demonstrate that vapor phase discharge from the air stripper complies with NYSDEC Division of Air Resources (DAR-1); and
- Achieve the site specific goal of 95 percent (%) mass removal of target CVOCs, which include Tetrachloroethene (PCE), Trichloroethene (TCE), 1,1-Dichloroethane (1,1-DCA), cis-1,2-Dichloroethene (cis-1,2-DCE), and trans-1,2,-Dichloroethene (trans-1,2-DCE), in the system vapor effluent.

The operational goals, as recommended in the 2012 OM&M annual report, were successfully achieved during the 2013 reporting period by performing the following activities:

- Monitored the GCTS operation remotely on a daily basis to ensure continuous operation;
- Performed monthly physical system inspections to verify proper operation, and to perform any required maintenance;
- Performed monthly system compliance sampling to ensure that the Site-related CVOCs were being removed from the groundwater prior to discharge through the system effluent; and
- Performed quarterly system OM&M, which included the following:
 - Collected stormwater samples from the onsite catch basins (CB) to monitor for the presence of CVOCs.
 - Collected system pre-carbon (influent), mid-carbon, and effluent vapor samples during each quarter to calculate mass removal

Former Lockheed Martin French Road Facility, Utica, New York

efficiencies and to monitor the effluent discharge concentrations of Site- related CVOCs.

4. Operation and Maintenance Activities

The GCTS operated nearly continuously between January 1 - December 31, 2013 (run time was approximately 99%, or 360 of 366 days), with minor scheduled routine maintenance and/or operational interruptions due to system alarm conditions.

The system was inspected either by physical site inspections, remote computer monitoring, and/or via review of the daily system operation e-mails during the reporting period. System operating-parameters are recorded during monthly site inspections and compliance sampling events. The GCTS operational summary is provided in Table 1.

4.1 Daily Routine System Inspections

Daily remote system monitoring of the system was performed during 2013. Monitoring included review of the daily system operational e-mails to confirm that the system was operational, that all system variables were within their allowable ranges, and that no alarm conditions were present.

4.2 Monthly Routine System Inspections

This section summarizes the activities completed during the operations and maintenance (O&M) monthly site visits. These activities were recorded on the "Monthly O&M Checklists" (attached as Appendix B).

Air Stripper:

- Observe the air stripper for any visible leaks;
- Clean air stripper aeration trays and sump (as required);
- Observe the blower for proper operation;
- Inspect the air stripper trays via the glass door and record and note deposits;
 and
- Record the gauge pressure and level readings on the log sheet for the following:
 - o Air stripper sump; and

Former Lockheed Martin French Road Facility, Utica, New York

o Air stripper-sump water level.

Flow Meters:

- Observe the flow meters to ensure they are operating properly and clean them, as necessary; and
- Record the monthly and permanent totalizer readings.

Vapor Phase Equipment:

- Inspect the duct heater for proper operation;
- Record pre-duct heater and carbon vessel temperatures;
- Inspect the carbon vessels for any signs of leaks; and
- Record pressures before the lead vessel, and between the lead and lag vessels.

Control Panels:

- Test hand-off-auto (HOA) switches for proper operation; and
- Test power and pump-run lights.

Water Treatment Chemical:

- Inspect chemical feed pump and associated tubing for any signs of leaks;
- Record and date remaining chemical level in drum on a monthly basis; and
- Track chemical consumption and dosing rates on a monthly basis.

Pumping Manhole Inspections:

- Check the HDPE double-walled pipe for flow entering the manhole from the outer containment pipe, which could indicate a discharge pipe leak;
- Check the floats to ensure they are hanging properly and unobstructed;
- Observe groundwater in the manhole for any unusual odors, water clarity, etc.;
 and
- If the pump(s) are running, listen for unusual sounds and inspect the discharge piping in the manhole for leaks.

Former Lockheed Martin French Road Facility, Utica, New York

Miscellaneous O&M:

- Observe all treatment-building piping for signs of leaks;
- Exercise MH-1, MH-2, and MH-3 influent ball valves to clean any mineral deposits in order to maintain full operational range of the valve;
- Check the building unit heaters and thermostats, adjust as necessary; and
- Inspect all health and safety related equipment and replace as necessary.

4.3 Quarterly System O&M and Inspections

This section describes activities completed during the O&M quarterly critical device testing. These activities were recorded on the "Monthly/Quarterly O&M Checklists" (attached as Appendix B). The system was temporarily turned on and off for several hours, per event in January, April, July, and October 2013 to perform critical-device testing. These devices were tested for proper operation as described in the *OM&M Manual* (ARCADIS 2011) standard operating procedures (SOPs). Below is a summary of each event:

- January 17, 2013 All critical devices passed.
- April 25, 2013 All critical devices passed.
- July 11-12, 2013 All critical devices passed.
- October 23-24, 2013 All critical devices passed.

4.4 Non-Routine Operation and Maintenance Activities

The following non-routine system O&M activities were performed between January 1 and December 31, 2013:

The carbon in both vapor phase carbon vessels were replaced with virgin Siemens VC36C carbon on May 29, 2013. Approximately 1,000 lbs of carbon was placed into each vessel. (Note: Prior to the changeout a sample of the spent carbon was collected and analyzed for VOCs by Siemens. The analytical data was used to prepare a waste characterization/regeneration profile which was subsequently approved by the carbon vendor [Siemens, Darlington, PA], and the local regulatory agency [PADEP] where the carbon will be regenerated.)

Former Lockheed Martin French Road Facility, Utica, New York

4.5 Alarm Conditions and System Modifications

Several fatal alarm conditions occurred between January 1 and December 31, 2013. The cause of each system alarm and corresponding corrective action are summarized in Table 1. Alarm logs and response sheets are provided in Appendix C. Below is a summary of fatal alarms and corrective actions including any system modifications that were made during the reporting period:

On November 30 and December 17 and 25, 2013, the air stripper sump low liquid level alarm (Process 32) was observed. The cause of these alarms was a function of the low level switch and the blower damper set point, which controls the gravity discharge via the pressure that is induced in the air stripper sump by the blower. The corrective action included inspecting the datalogger and confirming the low level condition in the sump and restarting the system. Due to the sensitivity of the blower damper set point no adjustments were made.

Several non-fatal alarms (e.g., failed daily communication logs, building wet floor sensor, low flow liquid flow alarms from the manholes) were observed during the 2013 reporting period. These non-fatal alarms and the associated corrective actions (if applicable) are documented in Appendix C.

Due to the unreliable landline communication service, as noted during the 2012 reporting period, the PLC was upgraded with a cellular wireless modem, manufactured by MultiTech, on February 7, 2013. In addition to the cellular modem hardware upgrade, the PLC was also updated with firmware in order to provide a wireless internet protocol (IP) connection so that the unit could transmit daily system operation status emails, as well as alarm notification emails.

4.6 Whole Effluent Toxicity (WET) Testing

Whole Effluent Toxicity (WET) testing was requested by the NYSDEC in a letter dated January 11, 2012. The 7-day WET testing was completed on March 6, 2012, and submitted to the NYSDEC on April 3, 2012. A NYSDEC review of the results is still pending.

5. Analytical Monitoring Activities

This section summarizes the monthly GCTS compliance sampling and monitoring activities completed during the reporting period.

Former Lockheed Martin French Road Facility, Utica, New York

5.1 System-Effluent Monitoring

The treatment system discharges to an Oneida County storm drain under the terms of an SPDES permit (permit No. NY-0121894). As required by the SPDES permit, effluent grab-water samples were collected monthly from the treatment system. One effluent grab-sample was collected monthly from the treatment-system-effluent sampling-port SP-100 (designated by NYSDEC as "Outfall #2"), located on the 4-in diameter air stripper liquid phase effluent line. The location of sampling port SP-100 is shown on drawing M-1 in Appendix A.

Samples were collected in 40-ml volatile organic analysis (VOA) vials supplied by a New York State Department of Health (NYSDOH)-certified laboratory. The sampling protocol for the effluent sample is included in the *Site-Specific Quality Assurance Project Plan* (QAPP) (ARCADIS 2009b). The samples were shipped on the day of collection via overnight delivery to TestAmerica Laboratories, Inc. in Amherst, New York. One laboratory trip-blank accompanied each water sample. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260. The SPDES permit also requires monthly collection and analysis of a grab sample for pH. The pH is measured locally using a site-dedicated pH meter.

The system-effluent samples contained no detectable concentrations of VOCs above their respective laboratory reporting limits (RL) (as shown in Table 2) during the entire reporting period.

The SPDES permit limits the system's effluent average daily discharge flow (over the course of a monthly reporting period) to 45 gpm. Effluent flow did not exceed this average during the reporting period. In addition, the pH recorded during the 2013 reporting period ranged from 7.9 to 8.2 standard units, and remained within the SPDES effluent limits of 6.5 to 8.5 standard units.

5.2 System-Influent Monitoring

Influent-water samples were collected as part of quarterly monitoring activities in January, April, July, and October 2013. Influent samples were collected from each influent-line (MH-1, MH-2, and MH-3) sampling-tap on the 2-in diameter influent lines before the influent water entered the air stripper. The sampling protocol and delivery method followed were identical to those for the SPDES compliance sampling.

Former Lockheed Martin French Road Facility, Utica, New York

The primary site-related CVOCs detected for MH-1 were:

- 1,1-DCA (3.5 µg/L in January, 5.4 µg/L in April, 4.2 µg/L in July, and 5.9 µg/L in October);
- cis-1,2-DCE (21 μg/L in January, 28 μg/L in April, 24 μg/L in July, and 36 μg/L in October);
- PCE (16 μg/L in January, 21 μg/L in April, 16 μg/L in July, and 24 μg/L in October); and
- TCE (23 μg/L in January, 36 μg/L in April, 24 μg/L in July, and 32 μg/L in October).

The primary site-related CVOCs detected for MH-2 were:

- 1,1-DCA (1.3 µg/L in January, 1.4 µg/L in July, 2.0 µg/L, and 2.5 µg/L in October);
- cis-1,2-DCE (7.8 μg/L in January, 8.2 μg/L in April, 16 μg/L in July and 14 μg/L in October);
- PCE (2.5 μg/L in January, 2.0 μg/L in April, 3.9 μg/L in July and 2.5 μg/L in October);
- TCE (5.2 μg/L in January, 4.6 μg/L in April, 9.8 μg/L in July and 5.1 μg/L in October); and
- VC (1.2 μg/L in April, 1.7 μg/L in July and 3.1 μg/L in October).

The primary site-related CVOCs detected for MH-3 were:

- cis-1,2-DCE (2.1 μg/L in January, 2.3 μg/L in April, 1.7 μg/L in July and 2.7 μg/L in October);
- PCE (44 μg/L in January, 48 μg/L in April, 32 μg/L in July and 35 μg/L in October); and

Former Lockheed Martin French Road Facility, Utica, New York

TCE (14 μg/L in January, 14 μg/L in April, 13 μg/L in July and 16 μg/L in October).

System influent analytical sampling results are summarized in Table 3.

5.3 Stormwater Monitoring

As outlined in the *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011), quarterly stormwater samples were collected from 3 CB locations at the site (identified as CB-1, CB-2, and CB-3; as shown on Figure 2). The quarterly stormwater samples collected from the CBs contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 2013 sample from stormwater sampling location CB-3. This sample exhibited detectable concentrations of Trichloroethene (0.47 μ g/L) and 1,1-Dichloroethane (0.64 μ g/L). Although detected above laboratory RLs, these detections were below the applicable SPDES effluent limitations. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260.

6. System Performance Results

Operational data collected during monthly system-operation inspections are summarized in the following sections.

6.1 Groundwater Recovery/Extracted Liquid Flowrate

The groundwater recovery/extraction-liquid flowrates for the 2013 reporting period are summarized in Table 5. These data include the average and cumulative recovered-groundwater and manhole-pump run-times. Total extracted-groundwater flow readings were collected from the flow-meters FT 101 (MH-1), FT 102 (MH-2) and FT 103 (MH-3). The average monthly system groundwater extraction flowrates from January to December 2013 are included in Table 5. The total flow recorded for manhole MH-1 was approximately 3,189,643 gallons, with a corresponding average recovery rate of 6.1 gpm. The total flow recorded for manhole MH-2 was approximately 564,368 gallons, with a corresponding average recovery rate of 1.1 gpm. The total flow recorded for manhole MH-3 was approximately 1,406,660 gallons, with a corresponding average recovery rate of 2.7 gpm. The resulting total annual flow for the GCTS was approximately 5,160,671 gallons of groundwater. The total flows recorded correspond to an average recovery rate of approximately 9.9 gpm over the entire 2013 reporting period. This average recovery rate corresponds to an approximate 36 percent (%)

Former Lockheed Martin French Road Facility, Utica, New York

increase when compared to the 2012 rate of 7.1 gpm. The increase in flow is likely attributable to an increase of annual precipitation in the area, as recorded from local weather data station (Syracuse Hancock International Airport) located in Syracuse, New York. The total annual precipitation amounts recorded for 2012 and 2013 were 35 in. and 40 in., respectively.

6.2 Air Stripper Performance

The air stripper effluent vapor flowrate was recorded during each monthly sampling event. This flowrate is calculated by converting the differential pressure measurement recorded by flow transmitter FT-106 (located post carbon vessels VPGAC-401 and 402) into a volumetric flow. The vapor flowrate ranged from 602 to 894 standard cubic feet per minute (scfm) during the 2013 reporting period. These flow ranges correspond to an average of approximately 735 scfm over the entire 2013 reporting period. The air stripper sump pressures ranged from 25 to 31 inches of water column (in.W.C.) during the 2013 reporting period. Monthly air stripper performance data are summarized in Table 5.

6.3 Air Stripper Emissions

GCTS pre-carbon, mid-carbon and effluent samples were collected quarterly. The January 2013 samples were analyzed by Centek Laboratories, LLC, in Syracuse, NY, and the April, July, and October 2013 were analyzed by TestAmerica Laboratories of Burlington, Vermont. Samples were collected in Summa® canisters and analyzed per USEPA "Method TO-15" for VOCs.

The GCTS removed an estimated 5.9 lbs of total VOCs from groundwater during the 2013 reporting period. This value was calculated using the quarterly pre-carbon vapor analytical data, the average monthly air stripper effluent vapor flowrate, and an average system runtime of 37%. The estimated total VOC mass removal is most likely overestimated due to the fact that manhole MH-1, which has the highest influent concentration of VOCs, is always online during the time of the quarterly sample collection. Quarterly estimated mass removal rate data are summarized in Table 6.

VOC removal efficiency of the carbon vessels was tracked throughout the 2013 reporting period. Both cumulative and target VOC percent removal was calculated by comparing the quarterly vapor influent, mid-carbon, and post-carbon analytical results. As noted in Section 3.0, the site specific goal for vapor phase treatment is a 95% mass removal of target VOCs. Percent removals calculated based on effluent results

Former Lockheed Martin French Road Facility, Utica, New York

exceeded 96% for the 2013 reporting period. It should be noted that a reduction in mass removal (57%) was calculated for the fourth quarter 2012 sampling event. As noted above in Section 4.4, and as a precautionary measure, a carbon change-out was conducted on May 29, 2013.

The VOC concentrations emitted in the air stripper (pre-carbon, mid-carbon, and post-carbon) were below the allowable annual-guideline concentration (AGC) values (as provided in NYSDEC DAR 1 tables) for each detectable compound. Short-term guideline concentration (SGC) values are not applicable as performance samples are only collected quarterly. Individual VOCs emitted and their estimated maximum allowable-mass flow-concentrations, as per NYSDEC DAR 1 guidance, are shown in Table 7.

6.4 Water Treatment Chemical Monitoring

As required under the terms of an SPDES permit (permit no. NY0121894), the volume WTC discharged on an annual basis is reported to NYSDEC in the December Monthly Discharge Monitoring Report. The total amount of WTC (i.e., Sequestering Agent - Aries 2908) discharged through the site Outfall 002 during the 2013 reporting was approximately 540.6 lbs. The total amount of WTC discharged corresponds to an average dosing rate of 16.3 ppm over the entire 2013 reporting period. Monthly WTC consumption, dosing rates, and date of recording are summarized in Table 8.

6.5 Stormwater Monitoring

As presented in Section 5.3, the quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of CB-3 during the April 2013 sample event. As noted above in Section 5.3, the detections were below the applicable SPDES effluent limitations.

The general absence of constituents detected in the stormwater samples collected at the site continues to indicate that the GCTS is operating as designed and preventing the migration of impacted groundwater into the stormwater system at the locations sampled.

Former Lockheed Martin French Road Facility, Utica, New York

6.6 Groundwater Elevation Measurements

Groundwater elevation measurements are collected from site monitoring wells and piezometers as part of the quarterly O&M program. Quarterly groundwater contour maps are provided on Figures 3, 4, 5, and 6.

Groundwater elevations are generally consistent with historical measurements at the site and identify the influence of the GCTS at the three collection trenches. Localized fluctuations exist, attributable to variations in subsurface conditions, including building construction, utility corridors, and operation of the GCTS. Measurements indicate general flow toward the south-southeast.

7. 2014 Goals and Recommendations

The information presented in this report indicates that the systems will continue to operate as designed and outlined within the NYSDEC approved *Groundwater Collection and Treatment System 100% Design Work Plan* (ARCADIS 2010), and *Operational, Maintenance, and Monitoring Manual* (ARCADIS 2011). The recommendations and action items planned for during the 2014 reporting period are described in the sections below.

7.1 Goals

The GCTS 2014 remedial and operational goals will be unchanged from those noted in section 3.0. The operational data to be collected includes:

- GCTS influent-water samples will be collected quarterly during a routine monthly SPDES sampling event;
- Quarterly groundwater-elevation measurements will be collected at all accessible site monitoring-wells and piezometers;
- Quarterly storm-water samples will be collected from the pipe running beneath the manufacturing building and traversing east towards the public storm-drain pipe. These samples will be collected at catch-basin (CB) locations CB-1, CB-2, and CB-3. Samples will be analyzed for VOCs by USEPA Method 8260 and collected and submitted to the laboratory in accordance with procedures outlined in the QAPP;

Former Lockheed Martin French Road Facility, Utica, New York

- Monthly effluent SPDES compliance samples, including tracking the WTC dosing rates;
- Continued demonstration that VOCs concentrations in the GCTS air stripper exhaust (i.e., post-carbon) remain below the NYSDEC DAR 1 guidance values before being discharged to the atmosphere;
- Continued to track the carbon performance in order to maintain the minimum 95% removal goal for target VOCs in the vapor effluent; and
- Daily review of GCTS operation email logs and prompt response to system alarms.

7.2 Recommendations

The following recommendations and action items are planned for implementation during the next reporting period (January through December 2014):

- Continued operation of the GCTS;
- Continued system compliance sampling, including monitoring the pH of the system effluent;
- Continued preventive maintenance and failure-mode-effects analyses to improve system reliability;
- A request to increase the upper pH limit from 8.5 to 9.0 was submitted to NYSDEC on April 3, 2012 along with the WET testing results. However, NYSDEC's review and approval of this request is still pending; and
- Update the OM&M Manual as needed to include new system enhancements and/or modifications.

Former Lockheed Martin French Road Facility, Utica, New York

8. References

- ARCADIS. 2013. 2012 Annual Groundwater Collection and Treatment System
 Operations, Maintenance, and Monitoring Report, Solvent Dock Area. March
 2013.
- ARCADIS. 2012. Revised Tables of the Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. January.
- ARCADIS. 2011. Remediation System Startup Checklist Operational Readiness Review. April.
- ARCADIS. 2011. Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. March.
- ARCADIS. 2010. Groundwater Collection and Treatment System 100% Design Work Plan, Solvent Dock Area. February.
- ARCADIS. 2009a. Corrective Measures Study Report. March.
- ARCADIS. 2009b. Quality Assurance Project Plan. August.
- ARCADIS. 2009c. DRAFT Site Management Plan. October.
- ARCADIS. 2008. Solvent Dock Area and West Lot Site Health and Safety Plan.

 November.
- New York State Department of Environmental Conservation (NYSDEC). 1998.

 Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June.
- NYSDEC. 2008. Order on Consent Index Number CO 6-20080321-5. October 3.

Tables

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Date		Date/Time	·	D	December (few	Output of October of Allows	Ourse that Author				
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action				
June 1996				_	Historical data (pre- 2009) ha	as not been included in this table.					
1/17/2009	1/17/09 8:25	1/17/09 9:34	0.05	45	High/low air temperature.	Low ambient air temperature.	Adjusted low temperature alarm setting from 40 to 32 F to account for low ambient temperature.				
8/3/2009	7/31/09 9:58	8/3/09 14:38	3.2	40	Wall louver fault.	Power outage due to inclement weather.	Restart system and observe proper operation following storm event.				
9/4/2009	9/1/09 15:09	9/4/09 12:47	2.9	NA	Power outage	Power outage due to inclement weather.	Restart system and observe proper operation following storm event.				
2009 % Run 1	Гime Summary	Days Offline	Days Online	% Run Time							
	-	6.1	357.86	98%							
1/25/2010	1/25/10 17:53	1/27/10 7:57	1.6	46/Other	Low Air Flow/System PLC left in manual mode accidentally	Blower influent damper/tray and/or demister pad fouled	Adjust blower damper/Restart system remotely				
3/2/2010	3/2/10 17:55	3/3/10 11:31	0.7	42	High level air stripper sump.	Blower influent damper in need of adjustment following air stripper tray cleaning.	Damper adjusted to allow more air flow.				
4/7/2010	4/7/10 12:00	4/7/10 18:00	0.3	NA	Quarterly System Testing	NA	NA				
4/15/2010	4/15/10 8:00	4/15/10 19:30	0.5	NA	Annual Stripper Cleaning	NA	NA				
4/22/2010	4/22/10 6:20	4/22/10 11:08	0.2	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.				
4/25/2010	4/25/10 19:08	4/26/10 9:39	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.				
4/27/2010	4/27/10 8:53	4/27/10 14:58	0.3	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.				
4/29/2010	4/29/10 16:35	4/30/10 7:41	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.				
5/28/2010	5/28/10 16:35	5/31/10 9:40	2.7	NA	Power outage	Power outage due to inclement weather. Electric meter damaged as a result.	Inspect system, temporarily bypass faulty E-meter, perform critical device inspection, restart system and monitor for proper operation.				
6/1/2010	6/1/10 14:42	6/2/10 8:55	0.8	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust blower damper to increase air flow/sump pressure.				
7/12/2010	7/12/10 16:00	7/16/10 14:31	3.9	0	MH-1 offline for testing phase, air stripper left in auto with MH-2 online.	NA	NA				
11/2/2010	11/2/10 22:22	11/3/10 13:45	0.6	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust air stripper blower damper.				
11/10/2010	11/10/10 11:42	11/10/10 20:23	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.				
11/11/2010	11/11/10 9:52	11/11/10 16:21	0.3	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.				
11/11/2010	11/11/10 16:37	11/11/10 18:49	0.1	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust air stripper blower damper.				
11/11/2010	11/11/10 19:18	11/12/10 9:08	0.6	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust air stripper blower damper.				
11/12/2010	11/12/10 9:18	11/12/10 12:43	0.1	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust air stripper blower damper.				
11/12/2010	11/12/10 12:55	11/12/10 13:04	0.0	41	High Pressure in Air Stripper Sump.	Fouled air stripper trays.	Clean air stripper trays and adjust air stripper blower damper.				
11/18/2010	11/18/10 10:23	11/18/10 19:22	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart system after completing work.				
11/19/2010	11/19/10 9:44	11/19/10 17:06	0.3	40	Wall louver damper motor fault.	Power failure due to a system shutdown for system inspection during construction phase.	Restart system after inspection.				
11/29/2010 ⁽³⁾	11/29/10 12:53	12/31/10 23:59	23.5	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Install temporary air stripper.				
2010 % Run 1	Гime Summary	Days Offline	Days Online	% Run Time							
2010 /0114111	,	38.4	326.6	89%							
1/1/2011 ⁽⁴⁾	1/1/11 0:00	1/24/11 23:59	22.7	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Periodically operated system.				
1/31/2011	1/31/11 4:30	1/31/11 16:02	0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Restarted system remotely.				
2/2/2011	2/2/11 7:09	2/2/11 11:21	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.				

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

ъ.		Date/Time		_			
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action
2/8/2011	2/8/11 2:53	2/8/11 8:52	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/8/2011	2/8/11 13:59	2/8/11 19:11	0.2	46	High Pre-Carbon Temperature	Residual heat in duct heater raising pre-carbon temperature following blower/duct heater shutdown.	Modified programming so that duct heater shuts off 2 minutes prior to blower.
2/8/2011	2/8/11 19:51	2/9/11 8:17	0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/11/2011	2/11/11 5:06	2/11/11 11:46	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/13/2011	2/13/11 18:01	2/17/11 16:03	3.9	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/19/2011	2/19/11 10:31	2/21/11 9:42	2.0	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
2/24/2011	2/24/11 0:08	2/24/11 8:47	0.4	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing precarbon temperature to drop.	Restart system.
2/26/2011	2/26/11 3:23	2/26/11 10:58	0.3	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing precarbon temperature to drop.	Restart system.
2/26/2011	2/26/11 13:46	2/28/11 10:22	1.9	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing precarbon temperature to drop.	Modified programming so that duct heater shuts off in parallel with blower and pre-carbon temperature alarms are ignored when blower is not operating.
3/14/2011	3/14/11 0:33	3/14/11 10:31	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/14/2011	3/14/11 23:53	3/15/11 9:14	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/20/2011	3/20/11 7:16	3/20/11 12:35	0.2	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/23/2011	3/23/11 6:47	3/23/11 11:42	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/26/2011	3/26/11 3:21	3/26/11 9:37	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation.
3/26/2011	3/26/11 21:38	3/29/11 9:52	2.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted blower damper and/or liquid effluent pipe elevation. Will replace existing high level sensor with tethered float to allow wider operating range in sump.
6/11/2011	6/11/11 16:53	6/12/11 11:40	0.8	NA	Power outage	Power outage due to inclement weather.	Restart system after inspection.
6/12/2011	6/12/11 23:00	6/13/11 7:15	0.3	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Low temperature setpoint temporarily lowered until local restart could be initiated on 6/13/11.
7/9/2011	7/9/11 6:58	7/11/11 8:56	2.1	NA	Power outage	Power outage.	Restart system.
7/12/2011	7/12/11 22:13	7/13/11 12:53	0.6	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Duct heater locally reset.
11/21/2011	11/21/11 16:23	11/23/11 12:00	1.8	NA	PLC Reset to "Manual" for unknown reason, identified during remote login following no daily fax receipt.	System reset automatically, exact cause unknown. Suspect cause due to bad remote system reconfiguration due to faulty/interrupted remote connection.	Log into the system remotely and reconfigures the PLC with the latest GCTS File #17.
12/8/2011	12/8/11 10:06	12/9/11 21:00	1.5	46	High Pre-Carbon Temperature	Unknown	Monitor system and temperatures remotely.
12/11/2011	12/11/11 20:06	12/11/11 20:13	0.0	46	High Pre-Carbon Temperature	Unknown	Review datalogger file/site inspection to verify transmitter readings versus field gauge.
12/14/2011	12/12/11 1:17	12/12/11 9:49	0.4	45	High Air Flowrate	Potential drifting associated with transmitter calibration.	Adjust high flow alarm setpoint
12/13/2011	12/13/11 3:50	12/13/11 8:06	0.2	46	High Pre-Carbon Temperature	Potential drifting associated with transmitter calibration.	Adjust high temperature alarm setpoint
2044 0/ D	Timo Summery	Days Offline	Days Online	% Run Time			
2011 % KUN	Time Summary	47	348	88%			
1/14/2012	1/14/12 19:46	1/15/12 8:10	0.5	32	Low water level in air stripper sump	Increased back pressure from air stripper trays	Temporarily adjust air stripper damper on 1/16/12. Clean air stripper on 1/26/12.
1/26/2012	1/25/12 11:06	1/26/12 13:54	1.1	NA	Annual Stripper Cleaning and float replacement	NA - Scheduled maintenance	NA
1/30/2012	1/30/12 20:03	1/31/12 8:59	0.5	32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Re-adjust air stripper blower damper on 2/2/12

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

- .		Date/Time		_			Carractive Action				
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action				
2/6/2012	2/6/12 16:45	2/7/12 11:00	0.8	42	High water level in air stripper sump	The LSH-100 was tripped during a automated startup when MH-1 was called to pumped. The data logger indicated that the LSH-100 went into alarm several seconds after one of the pumps turned on. The high level alarm is most likely a result of the new level float being set with too short of tether during the initial install.	Manually drained enough water from the air stripper sump in order to clear (un-latch) the high level alarm. The length of the high level float tether was increased 3-inches.				
3/7/2012	3/7/12 9:06	3/7/12 16:55	0.3	NA	System temporarily taken offline to complete the arc flash study field reconnaissance	NA	NA				
4/16/2012	4/16/12 9:18	4/17/12 12:45	1.1	NA	System PLC/building power outage.	Power outage due to inclement weather.	Manually reset PLC UPS/battery backup and restart system. Will test alarm dial-out sequence in the event of a power outage.				
4/23/2012	4/23/12 12:27	4/23/12 16:39	0.2	NA	Chris Davern onsite making modification to GCTS cfg file and to test UPS battery	GCTS cfg file was modified to make LSH-100 in the up position be a fatal alarm condition regardless of blower status. UPS battery backup tested successfully, UPS provided power to PLC for approx. 60 minutes.	NA				
7/16/2012	7/16/12 5:57	7/16/12 12:12	0.3	47	Low temperature alarm for pre- VPGAC air stream.	Critical device testing activities conducted 7/13/12 resulted in occurrence of internal high temperature alarm for duct heater. Alarm requires local resetting of duct heater, which was not done on 7/13/12.	Mobilize field staff to site and manually reset duct heater high temperature				
7/17/2012	7/17/12 18:06	7/18/12 12:16	0.8	42	High water level in air stripper sump	The LSH-100 was tripped following an automated ending of a manhole pumping cycle (i.e., batch). No system adjustments (e.g., damper adjustment) made or observed drift in operational parameters (e.g., air stripper sump pressure).	Mobilize field staff and manually drop liquid level of air stripper sump so that tethered high float LSH-100 will drop into off position. Done by manually partially closing pre-VPGAC butterfly valve to raise air stripper sump pressure and lower air stripper sump elevation. Restart system. Opened damper slightly.				
10/11/2012	10/11/12 6:15	10/11/12 13:49	0.3	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Restart system.				
10/12/2012	10/12/12 12:10	10/12/12 14:51	0.1	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect transmitter and pitot tube, restart system.				
10/13/2012	10/13/12 5:37	10/14/12 18:01	1.5	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect transmitter and pitot tube, restart system.				
10/16/2012	10/16/12 8:40	10/17/12 8:35	1.0	NA	Replacement of air stripper gaskets	NA	NA				
10/30/2012	10/30/12 12:28	10/30/12 18:50	0.3	NA	Critical Device Testing	NA	NA				
11/4/2012	11/4/12 3:37	11/5/12 20:44	1.7	45	Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Log into system remotely on 11/5/12 at 20:44. Following an inspection of the PLC data logger files the system was restarted and monitored for proper operation. The air flow rate was noted at approximately 550-600 cfm with all three manholes online pumping at a total flow rate of 70 gpm with a corresponding air stripper sump pressure of ~32 in.W.C., which confirmed that sufficient air flow was flowing through the air stripper.				
11/7/2012	11/7/12 5:03	11/7/12 9:23	0.2	45	Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Following receiving the alarm again on 11/7/12 at 5:03 ARCADIS mobilized to site that morning at 9:08 to inspect the system. Following an inspection of the PLC and other major system components, and confirming that the system was operating as intended the Process 45 alarm was changed from a fatal to non-fatal. The system was restarted at 9:23.				
12/26/2012	12/26/12 4:24	12/26/12 12:24	0.3	32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Restart system remotely, monitor for proper operation including flows, pressures, float levels, etc.				
2012 % Run 1	Гime Summary	Days Offline	Days Online	% Run Time							
2/4/2013	2/4/13 9:00	2/6/13 18:00	355.0 2.4	97% NA	System taken offline to upgrade PLC with cellular modem.	NA	NA				

Table 1. Groundwater Collection and Treatment System Operation Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Date		Date/Time		Process	Description	Suspected Cause of Alarm	Corrective Action
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Corrective Action
2/11/2013	2/11/13 9:00	2/11/13 18:59	0.4	NA	System temporarily taken offline to complete the cellular modem upgrade.	NA	NA
11/30/2013	11/30/13 5:50	11/30/13 20:21	0.6	32	Low water level in air stripper sump	The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart system and monitor for normal operation.
12/17/2013	12/17/13 4:40	12/17/13 8:07	0.1	32	Low water level in air stripper sump	The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart system and monitor for normal operation.
12/25/2013	12/25/13 5:07	12/25/13 21:08	0.7	32	Low water level in air stripper sump	The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart system and monitor for normal operation.
2013 % Run	Time Summary	Days Offline	Days Online	% Run Time			
(through D	ecember 31)	4.2	360.8	99%			

Notes

- 1. Table does not include brief (less than 3 hours [0.1 days]) system shutdowns for routine operation and maintenance activities.
- 2. Table does not include non-fatal alarms (i.e. low liquid flow, low air flow, etc.) observed during the reporting period.
- 3. Between 11/29/10 and 12/31/10, temporary system was operational approximately 10 hours (7AM to 5PM) per weekday excluding 12/24/10, 12/30/10, and 12/31/10. System offline for nights and weekends due to lack of safety controls/interlocks and freezing weather conditions.
- 4. Between 1/1/11 and 1/24/11, the upgraded system was operated on the following dates: 1/13, 1/14, 1/17, 1/18 and 1/20. An average daily run time of 6 hours has been estimated for those dates.

Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/8/2009	2/5/2009	3/4/2009	4/1/2009	5/5/2009	6/2/2009	7/1/2009	8/14/2009	9/4/2009	10/9/2009	11/4/2009	12/11/2009	1/12/2010	2/3/2010	3/3/2010	4/7/2010	5/5/2010	6/3/2010	7/8/2010	8/5/2010	9/7/2010	10/6/2010	11/10/2010	12/22/2010	2/9/2012	3/1/2012	4/5/2012	5/1/2012	6/7/2012	7/12/2012
1,1,1-Trichloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 1.0	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66
o-Xylene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90
Xylenes, total	15	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66
pH (S.U.) ⁽²⁾	8.5	8.36	7.31	7.10	7.47	7.61	7.43	7.00	7.08	7.84	7.07	7.04	7.13	8.13	8.51	8.51	8.53	8.62 ⁽⁴⁾	7.19	8.5	8.1	8.3	7.8	8.1	8.0	7.9	7.9	7.1	7.9	8.2	7.8
Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent	1/28/11	2/23/11	3/22/11	4/5/11	5/12/11	6/2/11	7/7/11	8/11/11	9/8/11	10/11/11	11/1/11	12/1/11	1/26/12	8/15/12	9/11/12	10/17/12	11/8/12	12/6/12	1/16/2013	2/7/2013	3/5/2013	4/24/2013	5/9/2013	6/12/2013	7/11/2013	8/8/2013	9/10/2013	10/22/2013	11/5/2013	12/3/2013
	Limitations (ug/L)					0,12,11	0/2/11	'///	0,11,11	0,0,11	10,11,11	1,	1, .,		6, 16, 12	3/11/12	10,11,12						"""	0,0,20.0	0,12,2010	771172010	0/0/2013	0/10/2010		1.70,20.0	
1,1,1-Trichloroethane	10	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1,1-Trichloroethane 1,1-Dichloroethane																			< 0.82 < 0.38												< 0.82 < 0.38
	10	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82		< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	
1,1-Dichloroethane	10 10	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.82 < 0.38	< 0.38
1,1-Dichloroethane 1,2-Dichlorobenzene	10 10	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.82 < 0.38 < 0.79	< 0.38 < 0.79
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	10 10	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.82 < 0.38 < 0.79 < 0.78	< 0.38 < 0.79 < 0.78
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	10 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84	< 0.38 < 0.79 < 0.78 < 0.84
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene	10 10 10 - - - -	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene	10 10 10 - - - - 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene	10 10 10 - - - - - 10 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene	10 10 10 - - - - 10 10 5	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82 < 0.84	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.82 < 0.81
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene	10 10 10 - - - - 10 10 5	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene	10 10 10 	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 1.0
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene	10 10 10 - - - - 10 10 5 - - 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene	10 10 10 10 10 10 5 10 5 5 5	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene Toluene	10 10 10 10 10 10 10 5 - 10 5 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.36	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene Toluene trans-1,2-Dichloroethene	10 10 10 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.9	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.9	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.9
1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Chlorobenzene Chloroethane cis-1,2-Dichloroethene Ethylbenzene m-Xylene & p-Xylene o-Xylene Tetrachloroethene Toluene trans-1,2-Dichloroethene Trichloroethene	10 10 10 10	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 0.47	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.41 < 0.41 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.1 < 0.76 < 0.36 < 0.41 < 0.41 < 0.74	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40 < 0.40 < 0.76 < 0.40 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.41 < 0.76 < 0.41 < 0.76 < 0.41 < 0.76 < 0.41 < 0.76 < 0.41 < 0.41 < 0.76 < 0.41 < 0.41 < 0.76 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0.41 < 0	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.40 < 0.41 < 0.76 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.41 < 0.41 < 0.66 < 0.76 < 0.36 < 0.40 < 0.41	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.46	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 0.66 < 0.76 < 0.36 < 0.51 < 0.90 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.41 < 0.40 < 0.76	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.40 < 0.40 < 0.40	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.9 < 0.46	< 0.82 < 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.9 < 0.46	< 0.38 < 0.79 < 0.78 < 0.84 < 0.41 < 0.75 < 0.32 < 0.81 < 0.74 < 1.0 < 0.76 < 0.36 < 0.51 < 0.9 < 0.46

Notes

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Analyzed in field.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

- No Standard

NS - Not Sampled For mg/L - milligrams per liter

ng/L - milligrams per li S.L. - Standard Units

S.U. - Standard Units µg/L - micrograms per liter

Table 3. Groundwater Collection and Treatment System Influent Groundwater Concentrations, Former Lockheed Martin French Road Facility, Utica, NY.

V 1 . 11 . 5										MH-1								
Volatile Organic ⁽¹⁾ Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1.1-Dichloroethane	8.4	9	6	6	6.2	3.6	4.2	2.7	8.5	5.9	4.9	8.5	10	8	3.5	5.4	4.2	5.9
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	0.70 J	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	39	44	28	42	35	21	30	19	43	33	28	39	56	43	21	28	24	36
Ethylbenzene	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	31	31	27	29	21	8.4	23	18	26	19	16	23	36	28	16	21	16	24
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	< 1.0	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9
Trichloroethene	64	51	55	49	33	11	57	27	57	29	26	52	66	41	23	36	24	32
Vinyl Chloride	0.50 J	0.41 J	< 1.0	< 1.0	< 1.0	0.99 J	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 1.0	< 0.90	< 0.90	< 0.90	< 1
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0	< 0.66	< 0.66	< 0.66	< 1
Volatile Organic ⁽¹⁾										MH-2								
Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011 ⁽²⁾	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	-	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	1.6	11	2	2.4	2.6	1.9	1.5	-	3.5	3	1.5	1.8	2.5	2.4	1.3	1.4	2	2.5
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	-	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	-	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40 < 0.41	< 0.84	< 0.84	< 0.84 < 0.41	< 0.84		< 0.84 < 0.41	< 0.84	< 0.84	< 0.84	< 0.84 < 0.41	< 0.84 < 0.41				
Benzene	< 1.0	< 0.41					< 0.41	-		< 0.41				< 0.41	< 0.41	< 0.41		
Chlorobenzene Chloroethane	< 1.0 < 1.0	< 0.40	< 0.40	< 0.75 < 0.40	< 0.75	< 0.75 < 0.40	< 0.75 < 0.32	-	< 0.75 < 0.32	< 0.75	< 0.75 < 0.32	< 0.75 < 0.32	< 0.75 < 0.35	< 0.75 < 0.35	< 0.75	< 0.75 < 0.32	< 0.75 < 0.32	< 0.75 < 0.32
cis-1.2-Dichloroethene	10	47	12	14	13	12	7.6		12	16	5.4	8.3	22	13	7.8	8.2	16	14
Ethylbenzene	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74		< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	- 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
o-Xylene		< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	3.8	28	3.5	9.3	7.5	4.5	2.6		2.8	3.6	1.6	1.7	< 0.36	0.76	2.5	2	3.9	2.5
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	-	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	0.22 J	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90		< 0.90	< 0.90	< 0.90	< 0.90	4.9	1.6	< 0.90	< 0.90	< 0.90	< 0.9
Trichloroethene	6.7	53	7.5	18	14	8.4	4.6	-	7.7	7.5	2.8	4.8	1.6	6.7	5.2	4.6	9.8	5.1
Vinyl Chloride	1.0 J	< 1.0	1.4	2.3	1.8	1.5	1.5		6.1	4.5	1.2	1.6	2.4	3.3	< 0.90	1.2	1.7	3.1
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0	< 0.66	< 0.66	< 0.66	<1
Volatile Organic ⁽¹⁾							MH-3											
Compounds (µg/L)	1/28/2011	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013					
1,1,1-Trichloroethane	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82					
1,1-Dichloroethane	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38					
1,2-Dichlorobenzene	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79					
1,3-Dichlorobenzene	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78					
1,4-Dichlorobenzene	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84					
Benzene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41					
Chlorobenzene	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75					
Chloroethane	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32					
cis-1,2-Dichloroethene	3.7	2.3	3.5	3.8	3.1	2.5	2.7	3.2	< 0.81	2.4	2.3	1.7	2.7					
Ethylbenzene	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74					
m-Xylene & p-Xylene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1					
o-Xylene	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76					
Tetrachloroethene	1.2	1.1	12	21	23	33	49	49	< 0.36	44	48	32	35					
Toluene	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51					
trans-1,2-Dichloroethene	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9					
Trichloroethene	4.2	5.6	9	19	13	16	17	22	< 0.46	14	14	13	16					
Vinyl Chloride	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	<1					
Xylenes, total	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1					

Definitions:

Definitions:

- less than laboratory detection limit listed

"-" - Analyte Not Analyzed For

J - Indicates concentration is estimated

µg/L - micrograms per liter

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Manhole MH-2 not sampled during Second Quarter 2011 event due to manhole being offline for pump replacement.

BOLD indicates detected concentrations.

Table 4. Stormwater Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾	SPDES Effluent								C	CB-1							
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
		V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0	V 1.0		CB-2	V 1.0	< 0.00	< 0.00	₹ 0.00	₹ 0.00	₹ 0.00	
Volatile Organic ⁽¹⁾	SPDES Effluent Limitations (µg/L)			=1010010													
Compounds (µg/L)		1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
Volatile Organic ⁽¹⁾	SPDES Effluent								С	CB-3							
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013
1.1.1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.40	< 0.40	0.85	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	0.64	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.75	< 0.73	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.76	< 0.76	< 0.78	< 0.78	< 0.76	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.76	< 0.78	< 0.76
1,4-Dichiorobenzene Benzene	-	< 0.40	< 0.40	< 0.84	< 0.41	< 0.41	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	
Chlorobenzene																	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	1.9	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	0.51	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
Toluene						< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9
Toluene trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90												
Toluene	10	< 0.42 < 0.46	< 0.42 < 0.46	< 0.90 0.69	< 0.90	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.47	< 0.46	< 0.46
Toluene trans-1,2-Dichloroethene																	< 0.46 < 1 < 1

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

BOLD indicates detected concentrations.

< - less than laboratory detection limit listed $\mu g/L$ - micrograms per liter

Table 5. Groundwater Collection and Treatment System Flowrates, Former Lockheed Martin French Road Facility, Utica, NY.

	Cı	umulative			MH-1			MH-2			MH-3		Air	Stripper Para	meters
Date	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons)	Flow Per Reporting Period (gallons)	Monthly Flowrate (gpm)	Sump Pressure (In. W.C.)	Differential Pressure (In. W.C.)	Vapor Phase Flowrate (scfm) ⁽³⁾
1/8/2009	51,642,496	547,845	10.3	43,857,473	468,600	8.8	7,785,023	79,245	1.5	-	-	-	14.0	1.0	1,398
2/5/2009	51,882,819	240,323	6.0	44,074,280	216,807	5.4	7,808,539	23,516	0.6	-	-	-	14.0	1.0	1,398
3/4/2009	52,290,566	407,747	10.5	44,426,462	352,182	9.1	7,864,104	55,565	1.4	-	-	-	15.0	1.0	1,398
4/1/2009	52,820,498	529,932	13.1	44,879,781	453,319	11.2	7,940,717	76,613	1.9	-	-	-	14.0	1.0	1,398
5/5/2009	53,224,271	403,773	8.2	45,236,249	356,468	7.3	7,988,022	47,305	1.0	-	-	-	14.0	1.0	1,398
6/2/2009 7/1/2009	53,499,861 53,736,159	275,590 236,298	6.8 5.7	45,470,774 45,666,782	234,525 196,008	5.8 4.7	8,029,087 8,069,377	41,065 40,290	1.0	-	-	-	15.0 15.0	1.5 1.5	1,712
8/14/2009	54,078,743	342,584	5.4	45,940,852	274,070	4.3	8,137,891	68,514	1.1	-	-	-	14.0	1.5	1,712
9/4/2009	54,230,373	151,630	5.0	46,060,707	119,855	4.0	8,169,666	31,775	1.1	-	-	-	14.0	1.5	1,712
10/9/2009	54,512,663	282,290	5.6	46,289,841	229,134	4.5	8,222,822	53,156	1.1	-	-	-	14.5	1.0	1,398
11/4/2009	54,750,788	238,125	6.4	46,494,959	205,118	5.5	8,255,829	33,007	0.9	-	-	-	14.5	1.0	1,398
12/11/2009 2009 Totals ⁽¹⁾	55,029,188	278,400 3,934,537	5.2 7.3	46,722,959	228,000 3,334,086	4.3 6.2	8,306,229	50,400 600,451	0.9 1.1	-		-	14.0 14.3	1.3 1.2	1,594 1,519
1/12/2010	55,368,138	338,950	7.4	47,041,049	318,090	6.9	8,327,089	20,860	0.5	-	-	-	18.0	1.2	1,519
2/3/2010	55,615,048	246,910	7.8	47,254,345	213,296	6.7	8,360,703	33,614	1.1	-	-	-	24.0	1.0	1,398
3/3/2010	55,830,985	215,937	5.4	47,442,614	188,269	4.7	8,388,371	27,668	0.7	-	-	-	11.0	1.7	1,823
4/7/2010	56,443,357	612,372	12.2	47,970,713	528,099	10.5	8,472,644	84,273	1.7	-	-	-	12.0	1.5	1,712
5/5/2010	56,705,454	262,097	6.5	48,202,863	232,150	5.8	8,502,591	29,947	0.7	-	-	-	17.5	2.7	2,297
6/3/2010 7/7/2010	56,921,019 57,256,158	215,565 335,139	5.2 6.8	48,388,351 48,646,601	185,488 258,250	4.4 5.3	8,532,668 8,609,557	30,077 76,889	0.7 1.6	-	-	-	16.1 15.5	2.7	2,297
7/7/2010 8/5/2010	57,256,158 57,518,041	261,883	6.8	48,863,064	258,250	5.3	8,654,977	76,889 45,420	1.6	-	-	-	15.5 15.9	2.4	2,166 2,073
9/7/2010	57,797,649	279,608	5.9	49,095,255	232,191	4.9	8,702,394	47,417	1.0	-	-	-	18.5	1.9	1,927
10/5/2010	58,082,548	284,899	7.1	49,327,736	232,481	5.8	8,754,812	52,418	1.3	-	-	-	17.0	2.0	1,977
11/2/2010	58,456,895	374,347	9.3	49,643,060	315,324	7.8	8,813,835	59,023	1.5	-	-	-	22.0	0.9	1,289
12/22/2010	59,009,574	552,679	7.7	50,101,316	458,256	6.4	8,908,258	94,423	1.3	-	-	-	17.0	NA ²	NA ²
2010 Totals ⁽²⁾	-	3,980,386	7.4	-	3,378,357	6.2		602,029	1.1	45.000	-	-	17.0	1.8	1,863
1/28/2011 2/23/2011	59,088,966 59,483,460	79,392 394,494	1.5 10.5	50,142,913 50,432,263	41,597 289,350	0.8 7.7	8,930,851 8,976,813	22,593 45,962	0.4 1.2	15,202 74,384	59182.0	1.6	25.9 26.0	-	718 742
3/22/2011	60,118,863	635,403	16.3	50,940,888	508,625	13.1	9,102,550	125,737	3.2	75,425	1041.0	0.0	26.2	-	681
4/5/2011	60,264,174	145,311	7.2	51,085,909	145,021	7.2	9,102,790	240	0.0	75,475	50	0.0	29.0	-	663
5/12/2011	61,189,715	925,541	17.4	51,609,588	523,679	9.8	9,161,683	58,893	1.1	418,444	342,969	9.2	26.5	-	553
6/2/2011	61,557,472	367,757	12.2	51,834,699	225,111	7.4	9,189,679	27,996	0.9	533,094	114,650	2.9	26.5	-	618
7/7/2011	61,975,516	418,044	8.3	52,075,707	241,008	4.8	9,227,668	37,989	0.8	672,141	139,047	2.8	25.2	-	636
8/11/2011 9/8/2011	62,296,730 62,817,398	321,214 520,668	6.4 12.9	52,243,445 52,508,569	167,738 265,124	3.3 6.6	9,265,879 9,342,539	38,211 76,660	0.8 1.9	787,406 966,290	115,265 178,884	2.3 4.4	26.5 28.5	-	651 609
10/11/2011	63,444,585	627,187	13.2	52,883,146	374,577	7.9	9,400,121	57,582	1.9	1,161,318	195,028	4.4	27.0	-	715
11/1/2011	63,764,975	320,390	10.6	53,071,145	187,999	6.2	9,435,095	34,974	1.2	1,258,735	97,417	3.2	27.0	-	784
12/1/2011	64,185,589	420,614	9.7	53,345,456	274,311	6.3	9,469,773	34,678	0.8	1,370,360	111,625	2.6	27.0	-	739
2011 Totals ⁽²⁾⁽⁵⁾	-	5,176,015	10.4	-	3,244,140	6.5	-	561,515	1.1	-	1,355,158	2.7	26.8	-	676
1/27/2012	64,972,202	786,613	9.6	53,871,038	525,582	6.4	9,542,467	72,694	0.9	1,558,697	188,337	2.3	32.2	-	745
2/9/2012 3/1/2012	65,195,486	223,284 252,969	11.9 8.4	54,009,006	137,968	7.4	9,573,810	31,343	1.7 0.8	1,612,670	53,973 58,847	2.9 1.9	29.0 29.0	-	787 766
First Quarter 2012	65,448,455	1,262,866	9.6	54,180,412	171,406 834,956	5.7 6.4	9,596,526	22,716 126,753	1.0	1,671,517	301,157	2.3	30.1	-	766
4/5/2012	65,853,255	404,800	8.0	54,447,552	267,140	5.3	9,635,004	38,478	0.8	1,770,699	99,182	2.0	27.0	-	740
5/1/2012	66,090,367	237,112	6.3	54,595,683	148,131	4.0	9,661,648	26,644	0.7	1,833,036	62,337	1.7	26.6	-	805
6/7/2012	66,591,098	500,731	9.4	54,904,479	308,796	5.8	9,710,985	49,337	0.9	1,975,634	142,598	2.7	27.4	-	752
Second Quarter 2012	-	1,142,643	8.1	-	724,067	5.1	-	114,459	0.8	-	304,117	2.2	27.0	-	766
7/12/2012	66,828,112	237,014	4.7 4.9	55,041,035 55,163,445	136,556	2.7	9,738,010	27,025	0.5	2,049,067	73,433	1.5	25.0 27.7	-	630 701
8/15/2012 9/11/2012	67,068,471 67,259,158	240,359 190,687	4.9	55,163,445	122,410 95,900	2.5 2.5	9,766,492 9,790,891	28,482 24,399	0.6	2,138,534 2,208,922	89,467 70,388	1.8	27.7	-	701
Third Quarter 2012	-	668,060	4.8	-	354,866	2.6	-	79,906	0.6	-	233,288	1.7	26.8	-	697
10/17/2012	67,568,957	309,799	6.0	55,424,161	164,816	3.2	9,830,240	39,349	0.8	2,314,556	105,634	2.0	26.2		677
11/8/2012	67,777,512	208,555	6.6	55,542,079	117,918	3.7	9,852,388	22,148	0.7	2,383,045	68,489	2.2	30.8	-	778
12/6/2012	67,979,019	201,507	5.0	55,665,689	123,610	3.1	9,874,745	22,357	0.6	2,438,585	55,540	1.4	29.3	-	934
Fourth Quarter 2012 2012 Totals	-	719,861 3,793,430	5.8 7.1	-	406,344 2,320,233	3.3 4.3	-	83,854 404,972	0.7	-	229,663 1,068,225	1.9 2.0	28.8 28.2	-	796 756
1/15/2013	68,601,819	622,800	10.8	56,064,192	398,503	6.9	9,937,367	62,622	1.1	2,600,260	161,675	2.8	29.6	-	830
2/7/2013	68,933,628	331,809	10.0	56,285,230	221,038	6.7	9,972,998	35,631	1.1	2,675,400	75,140	2.3	31.1	-	894
3/5/2013	69,250,256	316,628	8.5	56,490,599	205,369	5.5	10,000,253	27,255	0.7	2,759,404	84,004	2.2	28.7	-	836
First Quarter 2013	-	1,271,237	9.9	-	824,910	6.4	-	125,508	1.0	-	320,819	2.5	29.8	-	853
4/24/2013	69,990,978	740,722	10.3	56,960,249	469,650	6.5	10,083,948	83,695	1.2	2,946,781	187,377	2.6	27.7	-	715
5/9/2013	70,150,855 70,634,036	159,877	7.4	57,063,303	103,054	4.8	10,097,769	13,821	0.6	2,989,783	43,002	2.0	26.0	-	718
6/12/2013 Second Quarter 2013	70,634,036	483,181 1,383,780	9.9 9.7	57,352,931	289,628 862,332	5.9 6.0	10,154,228	56,459 153,975	1.2 1.1	3,126,877	137,094 367,473	2.8 2.6	25.5 26.4	-	635 689
7/11/2013	71,537,658	903,622	21.6	57,910,436	557,505	13.4	10,242,031	87,803	2.1	3,385,191	258,314	6.2	27.9	-	602
8/8/2013	71,875,374	337,716	8.4	58,109,657	199,221	4.9	10,279,795	37,764	0.9	3,485,922	100,731	2.5	28.0	-	633
9/10/2013	72,237,550	362,176	7.6	58,313,137	203,480	4.3	10,332,018	52,223	1.1	3,592,395	106,473	2.2	27.2	-	695
Third Quarter 2013	-	1,603,514	12.4	-	960,206	7.4	-	177,790	1.4	-	465,518	3.6	27.7	-	643
10/22/2013	72,683,219	445,669	7.4	58,574,976	261,839	4.3	10,387,447	55,429	0.9	3,720,796	128,401	2.1	28.0	-	763
11/5/2013 12/3/2013	72,809,855 73,139,690	126,636 329,835	6.3 8.2	58,651,023 58,855,332	76,047 204,309	3.8 5.1	10,402,542 10,439,113	15,095 36,571	0.7	3,756,290 3,845,245	35,494 88,955	1.8	30.5 31.0	-	799 702
Fourth Quarter 2013	73,139,690	902,140	7.5	-	542,195	4.5	-	107,095	0.9	3,845,245	252,850	2.2	29.8	-	702 755
2013 Totals	-	5,160,671	9.9	-	3,189,643	6.1	-	564,368	1.1	-	1,406,660	2.7	28.4	-	735
Notes:									•			-			

- 1. 2009 Totals include data between 12/8/2008 and 12/11/2009.
- 2. Existing air stripper taken offline on 11/29/10 and temporary air stripper in operation through end of 2010 while system upgrades were being implemented. Current air stripper operated intermittently in January 2011 on the dates of 1/13, 1/14, 1/17, 1/18 and 1/20. Current air stripper brought online permanently in February 2011.
- 3. Prior to 2011, vapor phase flowrate calculated using the Air Velocity Measurement formula as provided in the Dwyer Instruments catalog. Differential pressure used in the blower intake pipe, and constants for temperature (70°F) and barometric pressure (29.92 in.Hg.) were assumed. Following the beginning of 2011, the vapor phase flowrate has been obtained from flow transmitter FT-106.
- 5. Manhole MH-2 offline for pump replacement from 3/22/11 to 4/20/11.

Definitions:

gpm - gallons per minute In. W.C. - Inches of Water Column cfm - cubic feet per minute

NA - Not applicable

												Pi	e-Ca	rbon											
Volatile Organic ⁽¹⁾ Compounds (μg/m³)						Value	Reporting																		
, , ,	1/28/2011	Q 2/23/2011	Q	4/5/2011	Q	used for calcs	Limit	7/7/2011	Q	10/12/2011	Q	1/26/2012	Q	4/5/2012	Q	7/12/2012	Q 10/17/2012	Q /	1/15/2013	Q	4/24/2013	Q	7/11/2013	Q	10/23/2013
1,1,1-Trichloroethane	< 0.83	< 0.83		< 0.83		0	0.83	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 1.6		< 11.00		< 2.20
1,1,2,2-Tetrachloroethane	< 1.00	< 1.0		< 1.00		0	1	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 2.1		< 14.00		< 2.70
1,1,2-Trichloroethane	< 0.83	< 0.83		< 0.83		0	0.83	< 0.83		< 0.83 41		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83	\vdash	< 1.6		< 11.00		< 2.20 44
1,1-Dichloroethane 1,1-Dichloroethene	< 0.62 < 0.60	< 0.60		19 < 0.60		19 0	0.6	0.81		0.48	.1	38 <0.60		49 0.97		150 1.2	0.87		46 < 0.60		36 < 1.2		28 < 7.90		< 1.60
1,2,4-Trichlorobenzene	< 1.10	< 1.1		< 1.10		0	1.1	< 1.10		< 1.10	3	< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 5.6		< 37.00		< 7.40
1,2,4-Trimethylbenzene	1	4.6		1.6		1.6		1.3		< 0.75		0.5	J	< 0.75		1.8	0.9		< 0.75		< 1.5		< 9.80		< 2.00
1,2-Dibromoethane	< 1.20	< 1.2		< 1.20		0	1.2	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 2.3		< 15.00		< 3.10
1,2-Dichlorobenzene	< 0.92	< 0.92		< 0.92		0	0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 1.8		< 12.00		< 2.40
1,2-Dichloroethane	< 0.62	< 0.62		< 0.62		0	0.62	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62		< 1.2		< 8.10		< 1.60
1,2-Dichloropropane	< 0.70	< 0.70		< 0.70		0	0.7	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70		< 1.4		< 9.20		< 1.80
1,3,5-Trimethylbenzene	< 0.75 < 0.34	1.5		< 0.75 < 0.34		0	0.75	< 0.75		< 0.75 < 0.34		< 0.75 < 0.34		< 0.75		0.65	J < 0.75 < 0.34		< 0.75 < 0.34		< 1.5 < 0.66		< 9.80 < 4.40		< 2.00 < 0.88
1,3-butadiene 1,3-Dichlorobenzene	< 0.92	< 0.34 < 0.92		< 0.34		0	0.34 0.92	< 0.34 < 0.92		< 0.92		< 0.92		< 0.34 < 0.92		< 0.34 < 0.92	< 0.92		< 0.92		< 1.8		< 12.00		< 2.40
1,4-Dichlorobenzene	< 0.92	< 0.92		< 0.92		0	0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 1.8		< 12.00		< 2.40
1,4-Dioxane	< 1.10	< 1.1		< 1.10		0	1.1	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 27		< 180.00		< 36.00
2-Chlorotoluene	NS	NS		NS				NS		NS		NS		NS		NS	NS		NS		< 1.6		< 10.00		< 2.10
2,2,4-trimethylpentane	< 0.71	0.76		< 0.71		0	0.71	< 0.71		< 0.71		< 0.71		< 0.71		< 0.71	< 0.71		< 0.71		0.31	J	< 9.30		< 1.90
4-ethyltoluene	0.6	J 1.1		< 0.75		0	0.75	< 0.75		< 0.75		< 0.75		< 0.75		0.5	J < 0.75		< 0.75		< 1.5		< 9.80		< 2.00
4-Isopropyltoluene	NS 20	NS 24	\vdash	NS 40		4.6		NS		NS 2.7		NS 84		NS 0.7		NS 46	NS 04		NS		< 1.6		< 11.00	\sqcup	< 2.20
Allylichloride	29	21		10		10	0.48	14 - 0.48		3.7		81		3.7		16	21		3.6	\vdash	11 < 2.3	J	11 < 16.00	J	3.9 J
Allyl chloride Benzene	< 0.48 < 0.49	< 0.48 1.5		< 0.48 0.91		0 0.91	U. 4 0	< 0.48 0.39	.J	< 0.48 0.75		< 0.48		< 0.48 0.42	I.	< 0.48 0.65	< 0.48 0.32	J	< 0.48		< 2.3 0.62	.J	< 16.00 < 6.40	$\vdash \vdash$	< 3.10 < 1.30
Benzyl chloride	< 0.49	< 0.88	\vdash	< 0.88		0.91	0.88	< 0.88		< 0.88		< 0.88		< 0.88		< 0.88	< 0.88	+	< 0.49		< 1.6		< 10.00	\vdash	< 2.10
Bromodichloromethane	< 1.00	< 1.0		< 1.00		0	1	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 2.0		< 13.00		< 2.70
Bromoform	< 1.60	< 1.6		< 1.60		0	1.6	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60		< 3.1		< 21.00		< 4.10
Bromomethane	< 0.59	< 0.59		< 0.59		0	0.59	< 0.59		< 0.59		< 0.59		< 0.59		< 0.59	< 0.59		< 0.59		< 1.2		< 7.80		< 1.60
Carbon disulfide	< 0.47	< 0.47		< 0.47		0	0.47	0.32	J	< 0.47		< 0.47		< 0.47		1.3	< 0.47		< 0.47		< 2.3		< 16.00	\square	0.47
Carbon tetrachloride	< 0.96	0.77	J	< 0.96		0	0.96	0.9	J	0.38	J	0.38	J	< 0.96		< 0.96	< 0.96		< 0.96		0.49		< 2.50	-	< 0.50
Chlorobenzene Chloroethane	< 0.70 < 0.40	0.66 1.2	J	< 0.70 < 0.40		0	0.7	< 0.70 < 0.40		< 0.70 0.86		< 0.70 < 0.40		< 0.70 1.3		< 0.70 1.2	< 0.70 < 0.40		< 0.70 0.64		< 1.4 0.94	_	< 9.20 < 13.00		< 1.80
Chloroform	< 0.74	5.7		10		10	0.4	8.5		1.3		1.8		0.94		1.9	1		0.55	J	0.41	J	1.8	J	0.57
Chloromethane	1.2	0.84		< 0.31		0	0.31	< 0.31		0.57		< 0.31		0.9		< 0.31	< 0.31		< 0.31		1.4	J	5.9	J	1.1
cis-1,2-Dichloroethene	< 0.60	220		140		140		840		210		200		510		430	200		310		180		160		270
cis-1,3-Dichloropropene	< 0.69	< 0.69		< 0.69		0	0.69	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 1.4		< 9.10		< 1.80
Cyclohexane	< 0.52	< 0.52		< 0.52		0	0.52	< 0.52		< 0.52		< 0.52		< 0.52		< 0.52	< 0.52		< 0.52		3.2		< 6.90		< 1.40
Dibromochloromethane	< 1.30	< 1.3		< 1.30		0	1.3	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	< 1.30		< 1.30		< 2.6		< 17.00		< 3.40
Ethyl acetate	< 0.92	< 0.92		< 0.92		0	0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		NS 0.00		NS 0.70	-	NS 1.70
Ethylbenzene Freon 11	2.8 < 0.86	2.3 1.7		0.71 6		0.71 6		< 0.66 1.8		< 0.66 1.1		0.49	J	< 0.66 1.5		1.3 2.5	< 0.66 1.7		< 0.66 1.5		0.69 < 1.3	J	< 8.70 < 11.00		< 1.70 2.2
Freon 113	< 1.20	110		60		60		170		83		30		130		380	110		54		70		45		81
Freon 114	< 1.10	< 1.1		< 1.10		0	1.1	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 2.1		< 14.00		< 2.80
Freon 12	0.65	J 2.8		3.4		3.4		2.7		1.6		2.6		5.8		< 0.75	2.8		5.4		2.9	J	2.5	J	2.4
Freon 22	NS	NS		NS				NS		NS		NS		NS		NS	NS		NS		2.1	J	< 18.00		< 3.50
Heptane	< 0.62	0.92		< 0.62		0	0.62	< 0.62		< 0.62		< 0.62		< 0.62		0.5	J < 0.62		< 0.62		1.2		< 8.20		< 1.60
Hexachloro-1,3-butadiene	< 1.60	< 1.6		< 1.60		0	1.6	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60		< 3.2		< 21.00		< 4.30
Hexane	< 0.54	< 0.54 4.3		< 0.54		0	0.54	< 0.54		0.75		0.75		< 0.54		0.64	< 0.54		< 0.54		2.1		< 7.00		0.2
Isopropyl alcohol m&p-Xylene	< 0.37 7.9	8.5		5.4 2.3		5.4 2.3		< 0.37 1.6		< 0.37 0.75	.1	3.5 1.3		< 0.37 < 1.30		4.7	< 0.37 < 1.30		2.1 0.44		2.5	J	< 120.00 < 22.00		< 25.00 < 4.30
Methyl Butyl Ketone	< 1.20	< 1.2		< 1.20		0	1.2	< 1.20		< 1.20	-	< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	١	< 3.1	J	< 20.00		4.1
Methyl Ethyl Ketone	10	2.7		2.5		2.5		< 0.90		1.2		4		0.42	J	1.6	1.1		< 0.90		2.6		< 15.00		1.2 J
Methyl Isobutyl Ketone	< 1.20	< 1.2		< 1.20		0	1.2	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 3.1		< 20.00		< 4.10
Methyl methacrylate	NS	NS		NS				NS		NS		NS		NS		NS	NS		NS		< 3.1		< 20.00	П	< 4.10
Methyl tert-butyl ether	< 0.55	< 0.55		< 0.55		0	0.55	< 0.55		< 0.55		< 0.55		0.66		1.6	< 0.55		< 0.55		< 1.1	_	< 7.20		< 1.40
Methylene chloride	< 0.53	1.8		1.8		1.8		1.8		0.56		1.2		2 NC		2.6	1	$\vdash \vdash$	1.4	H	3.2	В	2.3	JB	0.95 J
n-Butane n-Butylbenzene	NS NS	NS NS	\vdash	NS NS			+	NS NS		NS NS		NS NS		NS NS	$\vdash \vdash$	NS NS	NS NS	\vdash	NS NS	\vdash	3.5 < 1.6		< 12.00 < 11.00	$\vdash \vdash$	1.5 < 2.20
n-Butylbenzene n-Propylbenzene	NS NS	NS NS	\vdash	NS				NS NS		NS NS		NS NS		NS NS	$\vdash \vdash$	NS NS	NS NS	\vdash	NS		< 1.5		< 9.80	$\vdash \vdash$	< 2.20
Naphthalene	NS	NS		NS				NS		NS		NS		NS		NS	NS	\vdash	NS		< 3.9		< 26.00		< 5.20
o-Xylene	1.4	3.1		0.66		0.66		0.62	J	< 0.66		0.49	J	< 0.66		1.7	< 0.66		< 0.66		0.85	J	< 8.70		< 1.70
Propylene	< 0.26	< 0.26		< 0.26		0	0.26	< 0.26		< 0.26		< 0.26		< 0.26		< 0.26	< 0.26		< 0.26		NS		NS		NS
sec-Butylbenzene	NS	NS	Ш	NS				NS		NS		NS		NS		NS	NS		NS	\coprod	< 1.6		< 11.00	Щ	< 2.20
Styrene	0.52	J < 0.65	Ш	< 0.65		0	0.65	< 0.65		< 0.65		< 0.65		< 0.65		< 0.65	< 0.65	$\vdash \vdash$	< 0.65		< 1.3		< 8.50		< 1.70
ert-Butyl Alcohol	NS NS	NS NS	\vdash	NS NS				NS NS		NS NS		NS NS		NS NS		NS NS	NS NS	\vdash	NS	\vdash	< 23		< 150.00	$\vdash \vdash$	< 30.00
ert-Butylbenzene Tetrachloroethylene	NS 0.83	NS 110	\vdash	NS 180		180		NS 460		NS 140		NS 290		NS < 97.00		NS 470	NS 240		NS 380	\vdash	< 1.6 120		< 11.00 170	\vdash	< 2.20 23
Tetrachioroethylene	72	2.4		5.1		5.1	+	< 0.45		0.96		< 0.45		< 0.45		1.8	< 0.45	\vdash	< 0.45		0.68	J	< 150.00		< 29.00
Toluene	5.7	7.2		2.3		2.3		1.5		1.9		2.3		< 0.43		6.1	2.1		0.84		4.1		0.79	J	< 1.50
rans-1,2-Dichloroethene	< 0.60	0.64		1.5		1.5		1.1		1.4		1.7		< 0.60		3.2	< 0.60		1.3		0.45	J	< 7.90		1.1
rans-1,3-Dichloropropene	< 0.69	< 0.69		< 0.69		0	0.69	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 1.4		< 9.10		< 1.80
Trichloroethene	0.71	J 350		220		220		1,200		180		210		< 76.00		480	250		470		220		170		160
/inyl acetate	< 0.54	< 0.54		< 0.54		0	0.54	< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54		NS		NS		NS
/inyl Bromide	< 0.67	< 0.67	\vdash	< 0.67		0	0.67	< 0.67		< 0.67		< 0.67		< 0.67		< 0.67	< 0.67	\vdash	< 0.67	\vdash	< 1.3		< 8.70	\square	< 1.70
Vinyl chloride Cumulative VOCs (µg/m³)(2)	< 0.39 134.31	4.7 890.69		2.3		2.3 675.48		3 2,781.34		1.7 673.96		3.9 877.11		< 0.39 707.61		2.3 1,967.74	2.6 879.39		1.4 1,279.17	7	1.8 676.24		< 1.00 597.29		2.1 601.29
Cumulative VOCs (μg/m³) ⁽⁻⁾ Cum % Removal	134.31 NA	890.69 NA				NA		2,781.34 NA		673.96 NA		877.11 NA		707.61 NA		1,967.74 NA	879.39 NA		1,279.17 NA	'	676.24 NA		597.29 NA		601.29 NA
	1.54	680.64				541.50		2,501.10)	531.40		701.70		510.00		1,383.20	690.00		1,161.30	0	520.45		500.00		454.10
Target VOCs (ug/m ³) ⁽³⁾	1.54	000.0.																					000.00		
Target VOCs (μg/m³) ⁽³⁾ Target % Removal	NA	NA				NA		NA		NA		NA		NA		NA	NA		NA		NA		NA		NA

								1					Mid-Carbo	on	1								П	
olatile Organic ⁽¹⁾ Compounds (µg/m³)	1/28/2011	Q	2/23/2011	Q	4/5/2011	<u>ء</u>	7/7/2011	Q	10/12/2011	Q	1/26/2012	Q	4/5/2012	Q 7/12/2012	Q	10/17/2012	Q	1/15/2013	Q	4/24/2013	Q	7/11/2013	Q	10/23/2013
1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 0.83		< 1.1		< 1.10		< 1.10
,2,2-Tetrachloroethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		< 1.4		< 0.76		< 1.40
2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 0.83		< 1.1		< 0.87		< 1.10
ichloroethane	0.49	J	< 0.62		< 0.62		0.66		10		2.5		0.82	46		6.2		2.8		1.3		< 0.93		16
ichloroethene	< 0.60		< 0.60		< 0.60		< 0.60		< 0.60		< 0.60		< 0.60	1.7		< 0.60		< 0.60		< 0.79		< 3.40		< 0.79
-Trichlorobenzene	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10		< 3.7		< 2.20		< 3.70
-Trimethylbenzene	1.9		2.1		3		14	J	< 0.75		5.9		0.65	J 1.2		0.6	J	0.5	J	0.79	J	< 1.00		< 0.98
ibromoethane	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		< 1.5		< 1.10		< 1.50
ichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 1.2		< 1.60		< 1.20
ichloroethane	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62		< 0.62		< 0.81		< 0.73		< 0.81
ichloropropane	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70		< 0.70		< 0.92		< 1.10		< 0.92
-Trimethylbenzene	0.8		8.0		1		4.4		< 0.75		1.4		< 0.75	< 0.75		< 0.75		< 0.75		0.27	J	< 0.93		< 0.98
outadiene	< 0.34		< 0.34		<0.34		< 0.34		< 0.34		< 0.34		< 0.34	< 0.34		< 0.34		< 0.34		< 0.44		< 0.55		< 0.44
Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 1.2		< 1.10		< 1.20
Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 1.2		< 1.10		< 1.20
Dioxane	2.3		< 1.10		< 1.10		1.3		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10		< 18		< 2.50		< 18.00
lorotoluene	NS		NS		NS		NS		NS		NS		NS	NS		NS		NS		< 1.0		< 0.67		< 1.00
-trimethylpentane	< 0.71		0.66	J	< 0.71		< 0.71		< 0.71		< 0.71		< 0.71	< 0.71		< 0.71		< 0.71		0.31	J	< 0.70		0.47
yltoluene	0.6	J	0.95		2.2		3.5		< 0.75		0.9		< 0.75	< 0.75		< 0.75		< 0.75		< 0.98		< 0.74		< 0.98
ppropyltoluene	NS		NS		NS		NS		NS		NS		NS	NS		NS		NS		< 1.1		< 1.10		< 1.10
one	20		37	1	7.5	十	25		3.5		4.3		1.9	4.2		4.4		10		21		< 9.50		14
chloride	< 0.48		< 0.48	1	< 0.48	\dashv	< 0.48		< 0.48	\Box	< 0.48		< 0.48	< 0.48		< 0.48		< 0.48		< 1.6		< 1.50		< 1.60
ene	2		0.81		< 0.49	\dashv	< 0.49		< 0.49		< 0.49		< 0.49	< 0.49		< 0.49		< 0.49		0.63		< 0.58		0.28
zyl chloride	< 0.88		< 0.88		< 0.88	\dashv	< 0.88		< 0.88		< 0.88		< 0.88	< 0.88		< 0.88		< 0.88		< 1.0		< 1.10	\Box	< 1.00
nodichloromethane	< 1.00		< 1.00	1	< 1.00	\dashv	< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		< 1.3		< 0.80		< 1.30
noform	< 1.60		< 1.60	†	< 1.60	\dashv	< 1.60		< 1.60	\vdash	< 1.60		< 1.60	< 1.60		< 1.60		< 1.60	\vdash	< 2.1		< 0.74		< 2.10
nomethane	< 0.59		< 0.59	+	< 0.59	\dashv	< 0.59		< 0.59		< 0.59		< 0.59	< 0.59		< 0.59		< 0.59		< 0.78		< 1.00	 	< 0.78
on disulfide	< 0.39		< 0.47	+	< 0.47	\dashv	0.32	<u>,, </u>	0.85	\vdash	< 0.47		< 0.47	1.4		< 0.39		< 0.39		< 1.6		< 0.62		30
on tetrachloride	0.77		< 0.47	+	< 0.47	+	< 0.96	۲	< 0.96	\vdash	< 0.47		< 0.47	< 0.96		< 0.47		< 0.47	\vdash	< 0.25		< 0.82	$\vdash \vdash \vdash$	< 0.25
robenzene	< 0.70		< 0.96	+	< 0.70	+	< 0.96	\vdash	< 0.90	\vdash	< 0.96		< 0.96	< 0.96	\vdash	< 0.70		< 0.96	\vdash	< 0.25		< 0.60	\vdash	< 0.25
roethane	< 0.70		< 0.70		< 0.70	+	< 0.70	 	< 0.70 0.46	\vdash	< 0.70 0.8		< 0.70 0.54	< 0.70		< 0.70		< 0.70		< 0.92 1.5		< 0.60	$\vdash \vdash$	0.52
	8.9		< 0.40		< 0.40		< 0.40				0.5	-	< 0.74			2.2		< 0.40		0.16		< 1.20		0.96
roform	1.2		< 0.74 0.57	-					3.7			J		2.7		1		1			J			
romethane					< 0.31	-	< 0.31	<u> </u>	0.59		< 0.31		0.76	< 0.31		0.78		< 0.31		3.1		< 0.70		1.1
2-Dichloroethene	24		< 0.60	+	< 0.60		0.44	J	63	-	25		8.5	110		190		44	-	23		< 3.30		83
,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 0.69		< 0.91		< 0.59		< 0.91
ohexane	< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52		< 0.52	< 0.52		< 0.52		< 0.52		1.7		< 0.65		< 0.69
omochloromethane	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	< 1.30		< 1.30		< 1.30		< 1.7		< 0.94		< 1.70
l acetate	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		NS	_	NS		NS
Ibenzene	0.97		4.5		8.2		7.5		0.71		< 0.66		< 0.66	0.66		< 0.66		< 0.66	.	0.76	J	< 0.65		0.2
n 11	3.1		< 0.86		< 0.86		9.9		1.5		0.86		< 0.86	8.5		1		0.63	J	1.3	_	3.1	J	5.9
n 113	1.2		< 1.20		< 1.20		< 1.20		16		0.93		< 1.20	66		12		0.78	J	0.72	J	4.6	J	21
n 114	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10		< 1.4		< 1.50	. .	0.23
n 12	3.6		4.2	+	4		5.7		3.8		2.6		1.6	< 0.75		2.5		2.9		3.1		2.4	J	2.5
n 22	NS		NS 2.To		NS		NS		NS		NS		NS	NS		NS		NS		4.4		< 0.81		1.5
ane	0.62		0.79		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62		< 0.62		2.3		< 0.70		0.83
chloro-1,3-butadiene	< 1.60		< 1.60	<u> </u>	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60		< 1.60		< 2.1		< 3.10		< 2.10
ane	0.9		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54		< 0.54		1.1		< 0.70		0.78
opyl alcohol	< 0.37		5.3		< 0.37		< 0.37		< 0.37		< 0.37		0.52	< 0.37		0.52		< 0.37		6.2	J	< 1.90		2
-Xylene	2.4		34	J	20		75		3.1		1.9		1.2	J 3		< 1.30		0.62	J	2.8		< 0.96		0.55
yl Butyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		0.71	J	< 1.60		< 2.00
yl Ethyl Ketone	3.1		< 0.90	<u> </u>	1.9		1.7		0.87	J	0.9		< 0.90	0.9		< 0.90		< 0.90		4.5		< 0.74		4.9
yl Isobutyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		< 2.0		< 1.40	igsquare	< 2.00
yl methacrylate	NS		NS		NS		NS		NS	لَـــا	NS		NS	NS		NS		NS		< 2.0		< 0.66	آلـــا	< 2.00
yl tert-butyl ether	< 0.55		< 0.55		< 0.55		< 0.55	oxdot	< 0.55		< 0.55		< 0.55	< 0.55	$oxedsymbol{oxedsymbol{oxed}}$	< 0.55		< 0.55		< 0.72		< 0.54	$oxedsymbol{oxed}$	< 0.72
ylene chloride	0.6		0.6		< 0.53		1.4	oxdot	1.3		0.81		1.2	3.5	$oxedsymbol{oxedsymbol{oxed}}$	0.78		3.6		1.8	В	2.9	J B	1.2
ane	NS		NS		NS		NS	oxdot	NS		NS		NS	NS	$oxedsymbol{oxedsymbol{oxed}}$	NS		NS		6.1		< 2.00	$oxedsymbol{oxed}$	7
ylbenzene	NS		NS		NS		NS		NS		NS		NS	NS		NS		NS		< 1.1		< 0.52		< 1.10
pylbenzene	NS		NS		NS		NS		NS		NS		NS	NS		NS		NS		< 0.98		< 1.20		< 0.98
thalene	NS		NS		NS		NS		NS		NS		NS	NS		NS		NS		< 2.6		< 0.64		< 2.60
ene	0.71		5.2	<u> </u>	5.7		30		1.6		0.88		0.62	J 1.2		< 0.66		< 0.66		1		< 0.69		0.25
/lene	< 0.26		< 0.26		< 0.26	1	< 0.26		< 0.26		< 0.26		< 0.26	< 0.26		< 0.26		< 0.26		NS		NS		NS
Sutylbenzene	NS		NS		NS	1	NS		NS		NS		NS	NS		NS		NS		< 1.1		< 0.82		< 1.10
ne	0.48	J	< 0.65		< 0.65	丁	< 0.65		< 0.65		< 0.65		< 0.65	< 0.65		< 0.65		< 0.65		0.46	J	< 0.47		< 0.85
sutyl Alcohol	NS		NS		NS	1	NS		NS		NS		NS	NS		NS		NS		1.4	J	< 1.20		0.23
utylbenzene	NS		NS		NS	丁	NS		NS		NS		NS	NS		NS		NS		< 1.1		< 0.60		1.1
chloroethylene	8.8		< 1.00		< 1.00		1.5		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		< 1.4		< 1.00		3.1
hydrofuran	12		5.5	1	8.4	十	4.2		6.5		1.8		< 0.45	5.8		2.7		1		2.1	J	< 0.86		1.1
ne	4		21	J	21	\dashv	39		2.2	\Box	0.69		4.9	3.3		0.69		< 0.57		3.7		< 0.53		4
-1,2-Dichloroethene	1		< 0.60	† -	< 0.60	\dashv	< 0.60		1.1		< 0.60		< 0.60	1.2		< 0.60		< 0.60		0.14	J	< 0.91		0.64
-1,3-Dichloropropene	< 0.69		< 0.69	†	< 0.69	\dashv	< 0.69	\vdash	< 0.69	\vdash	< 0.69		< 0.69	< 0.69		< 0.69		< 0.69	\vdash	< 0.91		< 0.68	\vdash	< 0.91
loroethene	32		< 0.82	1	< 0.82	\dashv	3.2	\vdash	0.49		< 0.82		< 0.82	< 0.82	 	0.66	J	< 0.82		0.21		< 0.49		0.46
acetate	< 0.54	1	< 0.54	1	< 0.54	\dashv	< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54		< 0.52		NS		NS	\vdash	NS
Bromide	< 0.67		< 0.54	+	< 0.67	\dashv	< 0.67		< 0.67	\vdash	< 0.67		< 0.67	< 0.67		< 0.67		< 0.67		< 0.87		< 0.83	 	< 0.87
chloride	< 0.87		2.3	+	1.6	\dashv	2.6		2.3	\vdash	2.1		1	2.1		1.6		1.1		1.1		< 0.83	 	1.9
			126.28		84.50		231.32		123.57		54.77		24.21	263.36		226.63		67.93		99.66		13.00		207.7
Cumulative VOCs (μg/m³) ⁽²⁾ Cum % Removal	138.44 NA		86%		84.50		92%		82%		94%		97%	87%		74%		95%		99.66 85%		98%		65%
	65.80		0.00		0.00		5.14		64.59		25.00		8.50	111.20		190.66		44.00		23.35		0.00		87.20
A A A 1,7 1.7 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	05.60		0.00		0.00		J. 14		04.09		7.3 1 11 1		(1 11	111.20		I MI I NN		- 44 (11)		/ 4 4h				87.20
Target VOCs (μg/m³) ⁽³⁾ Target % Removal	NA		100%		100%		100%		88%		96%		98%	92%		72%		96%		96%		100%		81%

-												Efflu	ent											
/olatile Organic ⁽¹⁾ Compounds (μg/m³)	1/28/2011	Q	2/23/2011	Q	4/5/2011	Q	7/7/2011	Q	10/12/2011	Q	1/26/2012	Q	4/5/2012 Q	7/12/2012	Q	10/17/2012 Q	1/15/201	3 Q	4/24/2013	Q	7/11/2013	Q 1	0/23/2013	6
,1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		0.72 J	< 0.83		< 1.1		< 1.10		< 1.10	
,1,2,2-Tetrachloroethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00	< 1.00		< 1.4		< 0.76		< 1.40	L
,1,2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83	< 0.83		< 1.1		< 0.87		< 1.10	H
,1-Dichloroethane	< 0.62		< 0.62		< 0.62		< 0.62		17	.	2.4		0.82	12		35	4.6	_	1.7		< 0.93		7.8	Н
,1-Dichloroethene	< 0.60		< 0.60		< 0.60		< 0.60		0.48	J	< 0.60		< 0.60	0.64		0.69	< 0.60		< 0.79 < 3.7		< 3.40 < 2.20		< 0.79	Н
2,4-Trichlorobenzene 2,4-Trimethylbenzene	< 1.10 1.5		< 1.10 3.7		< 1.10 1.3		< 1.10 3.3		< 1.10 < 0.75		< 1.10 < 0.75		< 1.10 < 0.75	< 1.10 2.1		< 1.10 1.2	< 1.10 0.7		0.53	ı.	< 1.00		< 0.98	Г
2-Dibromoethane	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20	+-	< 1.5	Ť	< 1.10		< 1.50	Γ
2-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92		< 1.2		< 1.60		< 1.20	Γ
2-Dichloroethane	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62	< 0.62		< 0.81		< 0.73		< 0.81	ī
2-Dichloropropane	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70	< 0.70		< 0.92		< 1.10		< 0.92	Ī
3,5-Trimethylbenzene	0.65	J	1.4		0.65	J	1.3		< 0.75		< 0.75		< 0.75	0.95		0.75	< 0.75		< 0.98		< 0.93		< 0.98	Ĺ
3-butadiene	< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34		< 0.34	< 0.34		< 0.34	< 0.34		< 0.44		< 0.55		< 0.44	L
3-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92		< 1.2		< 1.10		< 1.20	L
-Dichlorobenzene	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92		< 1.2		< 1.10		< 1.20	F
-Dioxane	1.6		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10	< 1.10		< 18		< 2.50		0.5	H
Chlorotoluene	NS 0.74		NS 0.04		NS 0.74		NS 0.74		NS 0.74		NS		NS 0.74	NS 0.74		NS 0.74	NS 0.74		< 1.0	.	< 0.67		< 1.00	H
2,4-trimethylpentane	< 0.71		0.81 0.95		< 0.71		< 0.71 0.95		< 0.71		< 0.71 < 0.75		< 0.71	< 0.71	J	< 0.71	< 0.71		0.3	J	< 0.70		0.23	r
ethyltoluene	< 0.75				0.8				< 0.75				< 0.75	0.6	J	< 0.75	< 0.75		< 0.98		< 0.74		< 0.98	r
sopropyltoluene etone	NS 100	$\vdash \vdash$	NS 27		NS 8.5		NS 6.2		NS 4.4		NS 5		NS 3.9	NS < 0.72		NS 140	NS 4	+	< 1.1 18		< 1.10 < 9.50		< 1.10 15	l
t chloride	< 0.48	$\vdash \vdash$	< 0.48		< 0.48	\longrightarrow	< 0.48		< 0.48		s < 0.48		< 0.48	< 0.72	1	< 0.48	< 0.48	+	< 1.6	 	< 9.50 < 1.50		< 1.60	ſ
nzene	1.1	-	1.2		< 0.49		< 0.49		< 0.49		< 0.49		< 0.49	0.49		0.36 J	< 0.49	+	0.57	J	< 0.58		0.33	Ī
nzyl chloride	< 0.88		< 0.88		< 0.43		< 0.43		< 0.88		< 0.88		< 0.88	< 0.88		< 0.88	< 0.88		< 1.0		< 1.10		< 1.00	i
omodichloromethane	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00	< 1.00	_	< 1.3		< 0.80		< 1.30	
moform	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 2.1		< 0.74		< 2.10	i
omomethane	< 0.59		< 0.59		< 0.59		< 0.59		< 0.59		< 0.59		< 0.59	< 0.59		< 0.59	< 0.59		< 0.78		< 1.00		< 0.78	Ĺ
rbon disulfide	< 0.47		< 0.47		< 0.47		0.47		0.38	J	< 0.47		< 0.47	1.1		1.6	< 0.47		< 1.6		< 0.62		0.41	Ļ
rbon tetrachloride	< 0.96	Щ	< 0.96		< 0.96		< 0.96		< 0.96		< 0.96		< 0.96	< 0.96	<u> </u>	< 0.96	< 0.96		< 0.25		< 0.82		< 0.25	ŀ
orobenzene	< 0.70	\square	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70	< 0.70		< 0.92		< 0.60		< 0.92	ŀ
proethane	< 0.40	$\vdash \vdash$	< 0.40		< 0.40		< 0.40		0.54		< 0.40		< 0.40	< 0.40		< 0.40	< 0.40	\perp	< 1.3	 	< 0.87		0.47	ŀ
oroform	< 0.74	$\vdash \vdash$	< 0.74		< 0.74		< 0.74	\vdash	4.2		0.55	J	< 0.74	2.9	1	6	< 0.74	-	0.26	J	< 1.20		0.16	t
oromethane	1.3		0.8		0.94		1.2		0.92		< 0.31		0.76	< 0.31		< 0.31	< 0.31	+	1.4		< 0.70		1.2	Ì
,2-Dichloroethene	9.7 < 0.69	J	< 0.60		< 0.60		< 0.60		32		12 < 0.69		c 0.60	54		290	34	-	23 < 0.91		< 3.30		1.8	Ì
1,3-Dichloropropene ohexane	< 0.69 < 0.52	$\vdash \vdash$	< 0.69 < 0.52		< 0.69 < 0.52		< 0.69 0.66		< 0.69 < 0.52		< 0.69 < 0.52		< 0.69 < 0.52	< 0.69 < 0.52	1	< 0.69 < 0.52	< 0.69 < 0.52	+	2.1	-	< 0.59 < 0.65		< 0.91 0.17	ſ
romochloromethane	< 1.30	\vdash	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	< 1.30		< 1.30	< 1.30	+	< 1.7		< 0.05		< 1.70	Ī
yl acetate	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92		NS		NS		V 1.70	ſ
ylbenzene	0.97		2.4		1.5		1.8		< 0.66		< 0.66		< 0.66	1.3	1	< 0.66	< 0.66	+	0.67	J	< 0.65		0.18	-
on 11	< 0.86		< 0.86		< 0.86		< 0.86		1.9		1.4		0.63 J	12		3.2	< 0.86		0.5	J	< 1.20		2.5	Ī
on 113	< 1.20		< 1.20		< 1.20		< 1.20		22		22		< 1.20	9.7		83	1	J	0.63	J	< 1.50		13	ļ
on 114	0.85	J	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.10		< 1.10	< 1.10		< 1.4		< 1.40		< 1.40	ļ
on 12	4.3		2.9		2.5		3.7		4.3		3.7		1.6	< 0.75		3.2	2.7		3.1		2.4	J	2.3	ļ
on 22	NS		NS		NS		NS		NS		NS		NS	NS		NS	NS		4		< 0.81		1.9	ŀ
otane	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.62		< 0.62	< 0.62		0.99		< 0.70		0.52	ł
achloro-1,3-butadiene	< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 2.1		< 3.10		< 2.10	ł
cane propyl alcohol	< 0.54 < 0.37		< 0.54 6.7		< 0.54 4.2		< 0.54 < 0.37		< 0.54 < 0.37		< 0.54 < 0.37		< 0.54 1.3	< 0.54 < 0.37		< 0.54 20	< 0.54 1.5		0.95 7.2	-	< 0.70 < 1.90		0.58 6.7	Ì
o-Xylene	2.7		9.9		7.2		< 0.37 8.4		< 1.30		< 0.37 1.3		< 1.30	< 0.37		0.71 J	0.44	+-	2.1	J	< 0.96		0.57	ĺ
hyl Butyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20	+	0.23	J	< 1.60		< 2.00	ĺ
nyl Ethyl Ketone	22	\vdash	< 0.90		2		1.9		1.5		< 0.90		< 0.90	0.99		0.72 J	0.63	J	< 1.5	۲	< 0.74		7.4	İ
hyl Isobutyl Ketone	< 1.20	$ \cdot $	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20	<u> </u>	< 2.0		< 1.40		0.18	ĺ
nyl methacrylate	NS		NS		NS		NS		NS		NS		NS	NS	1	NS NS	NS	1	< 2.0		< 0.66		< 2.00	i
nyl tert-butyl ether	< 0.55		< 0.55		< 0.55		< 0.55		< 0.55		< 0.55		< 0.55	< 0.55	İ	< 0.55	< 0.55		< 0.72	Ĺ	< 0.54		< 0.72	i
nylene chloride	< 0.53		0.64		1.2		2.4		0.95		0.74		3.5	4.2		16	0.81		2.1	В	3.2	JB	< 1.70	ľ
tane	NS	Ш	NS		NS		NS		NS		NS		NS	NS		NS	NS		4.6		< 2.00		4.4	l
itylbenzene	NS		NS		NS		NS		NS		NS		NS	NS		NS	NS		< 1.1		< 0.52		< 1.10	
opylbenzene	NS	\coprod	NS		NS		NS		NS		NS	[NS	NS		NS	NS		< 0.98		< 1.20		< 0.98	
hthalene	NS	\sqcup	NS		NS		NS		NS		NS		NS	NS		NS	NS		< 2.6		< 0.64		0.92	I
ene	0.88	$\vdash \vdash$	3.8		1.8		2.5		< 0.66		< 0.66		< 0.66	2.2	1	< 0.66	< 0.66	_	0.63	J	< 0.69		0.21	
ylene	< 0.26	\vdash	< 0.26		< 0.26		< 0.26		< 0.26		< 0.26		< 0.26	< 0.26		< 0.26	< 0.26	+	NS . 4.4		NS . o. o.o.		NS -1.10	1
Butylbenzene	NS 0.65	$\vdash \vdash$	NS + 0.65		NS 10.65		NS 10.65		NS 10.65		NS 10.65		NS + 0.65	NS 10.65	1	NS 10.65	NS 10.65	+	< 1.1	.	< 0.82		< 1.10	1
ne Butyl Alcohol	0.65 NS	\vdash	< 0.65 NS		< 0.65 NS		< 0.65 NS		< 0.65 NS		< 0.65 NS		< 0.65 NS	< 0.65 NS	-	< 0.65 NS	< 0.65 NS	+	0.45 < 15	J	< 0.47 < 1.20		< 0.85 < 15.00	1
Butyl Alcohol Butylbenzene	NS NS	$\vdash \vdash$	NS NS		NS NS	\vdash	NS NS	\vdash	NS NS		NS NS		NS NS	NS NS		NS NS	NS NS	+	< 15 < 1.1		< 1.20 < 0.60		< 15.00 < 1.10	1
chloroethylene	1.9	$\vdash \vdash$	0.83	,I	< 1.00		< 1.00		1.2		NS < 0.10		1	< 1.00		< 1.00	< 1.00	+	< 1.1		< 0.60 < 1.00		< 1.10 0.16	1
hydrofuran	110	$\vdash \vdash$	6.3	3	< 1.00 6		3.7		9.7		< 0.10 2.8		2.9	< 1.00 12		< 1.00 16	< 1.00 1.7	+	1.7	.ı	< 0.86		6	+
ene	2.1	$\vdash \vdash$	8.1		1.4		2.5		0.69		0.73		0.57	6.9		2.4	< 0.57	+	4.1	۲	< 0.53		1.8	1
	< 0.60	$\vdash \vdash$	< 0.60		< 0.60		< 0.60		0.44	J	< 0.60		< 0.60	< 0.60	1	1.3	< 0.60	+	0.16	J	< 0.91		< 0.79	+
-1,2-Dichloroethene	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69	< 0.69	+	< 0.91	Ť	< 0.68		< 0.73	1
	21	\Box	< 0.82		< 0.82		< 0.82		< 0.82		< 0.82		1.4	< 0.82		3.7	< 0.82		< 0.21		< 0.49		0.35	1
-1,3-Dichloropropene			< 0.54		< 0.54		< 0.54		< 0.54		< 0.54		< 0.54	< 0.54	1	< 0.54	< 0.54	1	NS		NS		NS	1
-1,3-Dichloropropene	< 0.54		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67		< 0.67	< 0.67		< 0.67	< 0.67	+	< 0.87		< 0.83		< 0.87	1
-1,3-Dichloropropene lloroethene acetate	< 0.54	<u> </u>								_					T					_	< 0.03			١
acetate Bromide			2.1		1		3.2		3.7		2.7	_	1.1	3.5	1	2.2	1.6	_	1.1		< 0.23		1.8	1
as-1,2-Dichloroethene as-1,3-Dichloropropene chloroethene yl acetate yl Bromide yl chloride Cumulative VOCs (µg/m³)(2)	< 0.67				1 40.99		3.2 44.18		3.7 106.30		2.7 55.32		1.1 24.48	3.5 133.57		2.2 628.75	1.6 53.6	8	1.1 83.07				1.8 79.54	
s-1,3-Dichloropropene chloroethene yl acetate yl Bromide yl chloride Cumulative VOCs (µg/m³)(2) Cum % Removal	< 0.67 < 0.39 283.20 NA		2.1 79.53 91%		1 40.99 94%		44.18 98%		106.30 84%		55.32 94%		24.48 97%	133.57 93%		628.75 29%	53.6 96%	6			< 0.23			
s-1,3-Dichloropropene chloroethene yl acetate yl Bromide yl chloride Cumulative VOCs (µg/m³)(2)	< 0.67 < 0.39 283.20		2.1 79.53		1 40.99		44.18		106.30		55.32		24.48	133.57		628.75	53.6	6	83.07		< 0.23 5.60		79.54	

Notes:

- 1. Samples analyzed for VOCs using USEPA Method TO-15.
- 2. Cumulative VOCs calculated using only detected concentrations.
- 3. Target VOCs calculated using only detected concentrations of the following compounds: 1,1-dichloroethene, cis-1,2-dichloroethene, tetrachloroethylene, trans-1,2-dichloroethene, and trichloroethene.
- 4. Indicates which manhole(s) were online during the sampling event.

BOLD indicates detected concentrations.

Definitions:

- < less than reporting limit listed
- J Indicates that the result was less than the RL, but greater than or equal to the MDL and the concentration is an estimate.
- B Indicates that the compound was also identified in the method blank and sample.
- μg/m³ micrograms per cubic meter
- U Indicates that compound was analyzed for but was not detected.
- A indicates that the system/manhole(s) was batching automatically during the sampling event
- M indicates that the air stripper/manhole(s) was turned on manually in order to collect a vapor sample.
- NA not applicable
- NS compound not sampled for

Table 7. Summary of Estimated Air Stripper Emissions, Former Lockheed Martin French Road Facility, Utica, NY.

			Maximum	1/28/2011	2/23/2011	4/4/2011	7/7/2011	10/12/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/23/2013	Maximum	Actual Annual	Actual Annual
Volatile Organic Compounds ⁽¹⁾	AGC ⁽²⁾ (µg/m³)	SGC ⁽²⁾ (µg/m³)	Effluent Concentration (µg/m³) ⁽³⁾	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (μg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (µg/m3)	Result (μg/m3)	Result (µg/m3)	Emission Rate (lb/day) ⁽⁴⁾	Impact (µg/m³) ⁽⁵⁾	Impact Percentage of AGC (%)
1,1,1-Trichloroethane	5,000	9,000	0.72	ND	0.72	ND	ND	ND	ND	4.88E-05	5.70E-05	0.00							
1,1-Dichloroethane	0.63	-	35	ND	ND	ND	ND	17	2.4	0.82	12	35	4.6	1.7	ND	7.8	2.37E-03	2.77E-03	0.44
1,1-Dichloroethene	70	-	0.69	ND	0.64	0.69	ND	ND	ND	ND	4.68E-05	5.46E-05	0.00						
1,2,4-Trimethylbenzene	290	-	3.7	1.5	3.7	1.3	3.3	ND	ND	ND	2.1	1.2	0.7	0.53	ND	ND	2.51E-04	3.05E-04	0.00
1,3,5-Trimethylbenzene	290	-	1.4	0.65 J	1.4	0.65 J	1.3	ND	ND	ND	0.95	0.75	ND	ND	ND	ND	9.49E-05	1.15E-04	0.00
1,4-Dioxane	0.13	3,000	1.6	1.6	ND	0.5	1.08E-04	1.32E-04	0.10										
2,2,4-trimethylpentane	3,300	-	0.81	ND	0.81	ND	0.3	ND	0.23	5.49E-05	6.67E-05	0.00							
4-ethyltoluene	-	-	0.95	ND	0.95	0.8	0.95	ND	ND	ND	0.6	ND	ND	ND	ND	ND	6.44E-05	7.82E-05	-
Acetone	28,000	180,000	140	100	27	8.5	6.2	4.4	5	3.9	ND	140	4	18	ND	15	9.49E-03	1.15E-02	0.00
Benzene	0.13	1,300	1.2	1.1	1.2	ND	ND	ND	ND	ND	0.49	0.36	ND	0.57	ND	0.33	8.14E-05	9.88E-05	0.08
Carbon disulfide	700	6,200	1.6	ND	ND	ND	0.47	ND	ND	ND	1.1	1.6	ND	ND	ND	0.41	1.08E-04	1.32E-04	0.00
Chloroform	0.043	150	6	ND	2.9	6	ND	0.26	ND	0.16	4.07E-04	4.94E-04	1.15						
Chloromethane	90	22,000	1.4	1.3	0.8	0.94	1.2	0.92	ND	0.76	ND	ND	ND	1.4	ND	1.2	9.49E-05	1.15E-04	0.00
cis-1,2-Dichloroethene	63	-	290	9.7 J	ND	ND	ND	32	12	5	54	290	34	23	ND	1.8	1.97E-02	2.39E-02	0.04
Cyclohexane	6,000	-	2.1	ND	ND	ND	0.66	ND	ND	ND	ND	ND	ND	2.1	ND	0.17	1.42E-04	1.73E-04	0.00
Ethylbenzene	1,000	54,000	2.4	0.97	2.4	1.5	1.8	ND	ND	ND	1.3	ND	ND	0.67	ND	0.18	1.63E-04	1.98E-04	0.00
Freon 11	1,000	68,000	12	ND	ND	ND	ND	ND	1.4	0.63 J	12	3.2	ND	0.5	ND	2.5	8.14E-04	9.88E-04	0.00
Freon 113	180,000	960,000	83	ND	ND	ND	ND	ND	22	ND	9.7	83	1	0.63	ND	13	5.63E-03	6.83E-03	0.00
Freon 12	12,000	-	4.3	4.3	2.9	2.5	3.7	4.3	3.7	1.6	ND	3.2	2.7	3.1	2.4	2.3	2.92E-04	3.54E-04	0.00
Freon 22	50,000	-	4	NS	4	ND	1.9	2.71E-04	3.29E-04	0.00									
Heptane	3,900	210,000	0.99	ND	0.99	ND	0.52	6.71E-05	8.15E-05	0.00									
Hexane	700	-	0.95	ND	0.95	ND	0.58	6.44E-05	7.82E-05	0.00									
Isopropyl alcohol	7,000	98,000	20	ND	6.7	4.2	ND	ND	ND	1.3	ND	20	1.5	7.2	ND	6.7	1.36E-03	1.65E-03	0.00
m&p-Xylene	100	4,300	9.9	2.7	9.9	7.2	8.4	ND	1.3	ND	6	0.71	0.44	2.1	ND	0.57	6.71E-04	8.15E-04	0.00
Methyl Butyl Ketone	30	4,000	0.23	ND	0.23	ND	ND	1.56E-05	1.89E-05	0.00									
Methyl Ethyl Ketone	5,000	13,000	22	22	ND	2	1.9	1.5	ND	ND	0.99	0.72	0.63	ND	ND	7.4	1.49E-03	1.81E-03	0.00
Methylene chloride	2.1	14,000	16	ND	0.64	1.2	2.4	0.95	0.74	3.5	4.2	16	0.81	2.1	3.2	ND	1.08E-03	1.32E-03	0.06
n-Butane	57,000	-	4.6	NS	4.6	ND	ND	3.12E-04	3.79E-04	0.00									
o-Xylene	100	4,300	3.8	0.88	3.8	1.8	2.5	ND	ND	ND	2.2	ND	ND	0.63	ND	0.21	2.58E-04	3.13E-04	0.00
Styrene	1,000	17,000	0.65	0.65	ND	0.45	ND	ND	4.41E-05	5.35E-05	0.00								
Tetrachloroethylene	1	1,000	1.9	1.9	0.83 J	ND	ND	1.2	ND	1	ND	ND	ND	ND	ND	0.16	1.29E-04	1.56E-04	0.02
Tetrahydrofuran	350	30,000	110	110	6.3	6	3.7	9.7	2.8	2.9	12	16	1.7	1.7	ND	6	7.46E-03	9.06E-03	0.00
Toluene	5,000	37,000	8.1	2.1	8.1	1.4	2.5	0.69	0.73	0.57	6.9	2.4	ND	4.1	ND	1.8	5.49E-04	6.67E-04	0.00
trans-1,2-Dichloroethene	63	-	1.3	ND	1.3	ND	0.16	ND	ND	8.81E-05	1.07E-04	0.00							
Trichloroethene	0.5	14,000	21	21	ND	ND	ND	ND	ND	1.4	ND	3.7	ND	ND	ND	0.35	1.42E-03	1.73E-03	0.35
Vinyl chloride	0.1	180,000	37	ND	2.1	1	3.2	37	2.7	1.1	3.5	2.2	1.6	1.1	ND	1.8	2.51E-03	3.05E-03	3.05

Notes:

- 1. Volatile organic compounds shown are only those detected in effluent samples during 2011 through 2013
- 2. AGC and SGC values obtained from NYSDEC DAR-1 AGC/SGC Tables, dated 9/10/07.
- 3. Concentrations shown for each volatile organic compound are the maximum concentrations detected from 2011 through 2013.
- 4. Maximum emission rate calculated using the maximum vapor phase concentrations for each volatile organic compound and the average instantaneous vapor phase effluent flow rate (756 scfm) during 2012. Note that the system is not operated continuously, so the actual annual impact estimated in this table is calculated using a significantly higher volume of air than in actually emitted by the system.
- 5. Actual annual impact calculated by following procedures described in NYSDEC DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants (NYSDEC 1991). Note effective stack height of 28 feet.

Definitions:

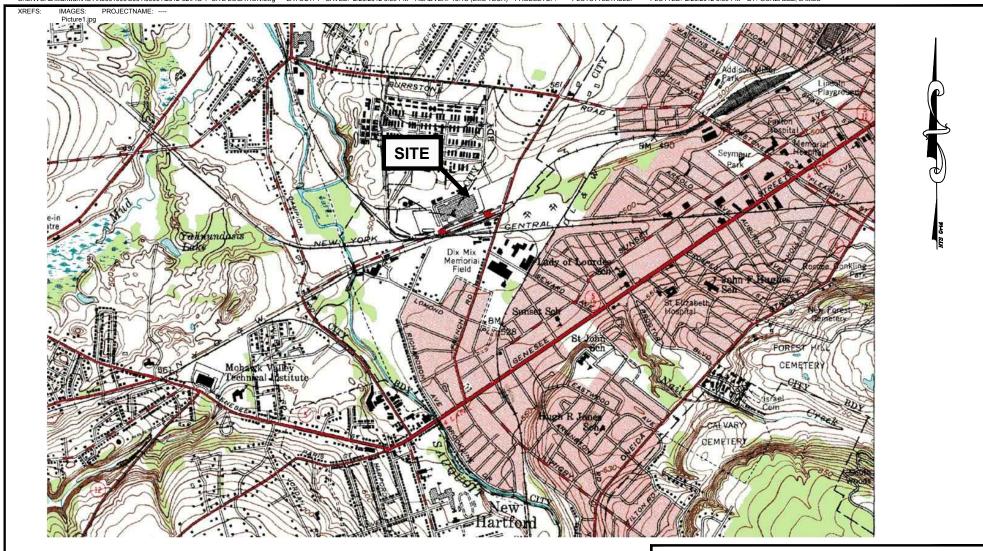
- < less than laboratory detection limit listed
- "-" indicates no guideline as been established
- AGC Annual Guideline Concentration
- J Indicates concentration is estimated
- lb/day pounds per day ND - non-detect
- Q data qualifier
- SGC Short-term Guideline Concentration
- μg/m³ micrograms per cubic meter

Chemical Name - ARIES 2908

 Chemical Specific Gravity - 1.04 to 1.09
 1.065

 Specific Weight of Water @ 60°F
 8.3378 (lb/gallon)

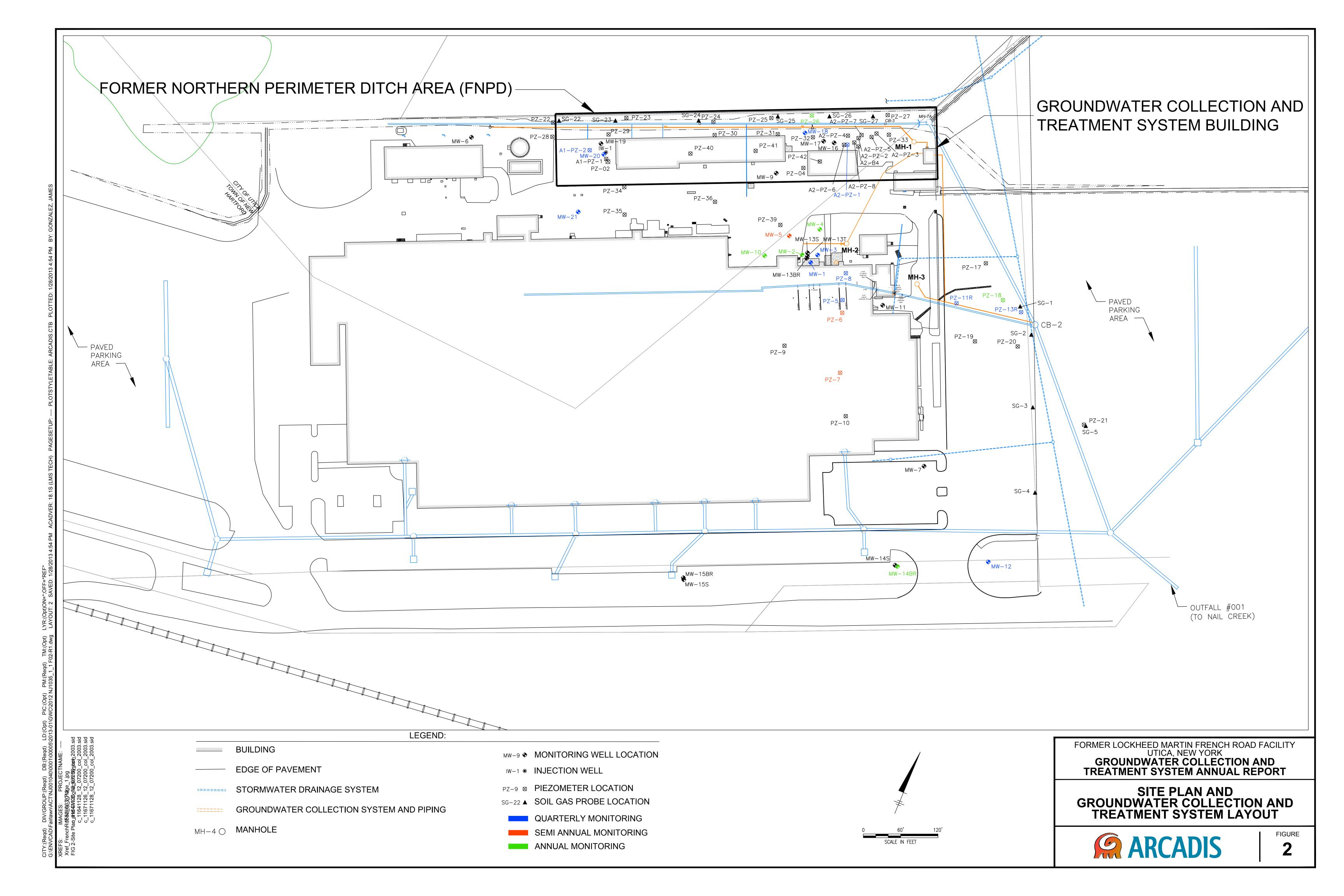
 Specific Weight of Chemical @ 60°F
 8.8798 (lb/gallon)

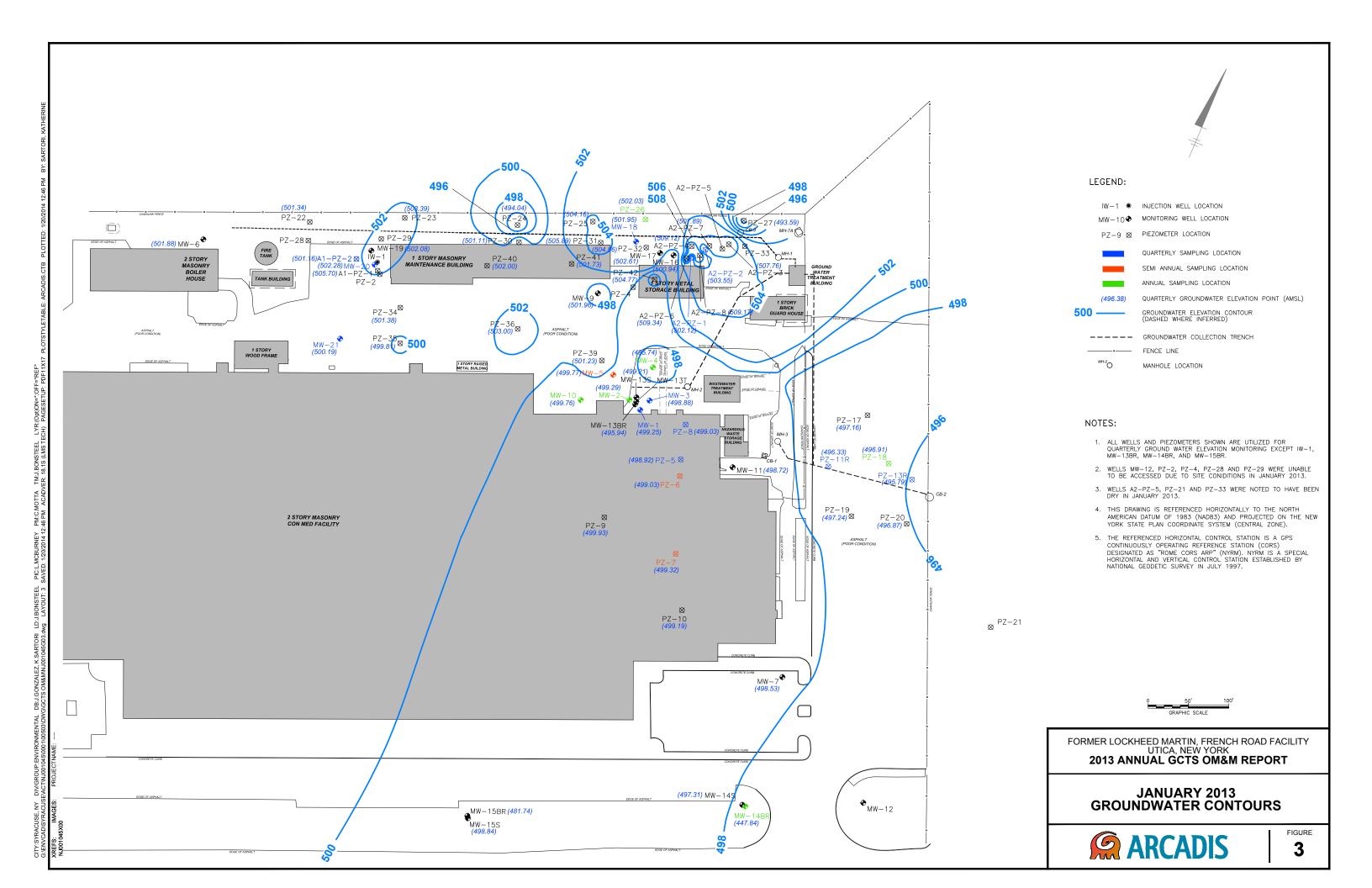

Date	Drum #	Days	Volume in 30 Gallon Drum (gal.)	% Full	Δ Volume (gal.)	Δ Lbs	Consumption Rate (lbs/day) ⁽¹⁾	MH-1 Total Flow (gallons)	MH-2 Total Flow (gallons)	MH-3 Total Flow (gallons)	∑ Total Flows (gallons)	Δ Total Flow	Dose Rate This Period (ppm) ⁽²⁾	Notes
4/20/2011	1	-	30	100%	-	-	-	51,271,950	9,102,881	224,649	60,599,480	-	-	Brought sequestering agent online for first time.
5/19/2011	1	29	18.5	62%	11.5	102.1	3.5	51,670,347	9,169,542	455,374	61,295,263	695,783	16.5	
6/2/2011	1	14	14.1	47%	4.4	39.1	2.8	51,837,640	9,189,887	534,242	61,561,769	266,506	16.5	
7/7/2011	1	35	12	40%	2.1	18.6	0.5	52,075,707	9,227,668	672,141	61,975,516	413,747	5.1	Under dosing due to CFP being offline due to noted past alarms.
8/11/2011	1	35	7	23%	5	44.4	1.3	52,243,445	9,265,879	787,928	62,297,252	321,736	15.5	
9/8/2011	1	28	0	0%	7	62.2	2.2	52,508,569	9,342,539	966,290	62,817,398	520,146	13.5	Drum #1 empty.
2/2/22/1						1 1				NEW DRUM ONL				December December 110 and Pro-
9/9/2011	2	-	30	100% 87%	4	-	-	52,552,901	9,347,402	986,141	62,886,444	-	-	Brought Drum #2 online. Low sequestering agent flow alarm occurs due to solidified chemical. See noted 3.
9/26/2011	2	17	26			35.5	2.1	52,717,931	9,374,727	1,081,024	63,173,682	287,238	13.9	
10/6/2011	10/6/2011 2 10 26 87% 0 0.0 52,842,625 9,395,515 1,142,812 63,380,952 207,270 0.0 See Note 3. NEW DRUM ONLINE													
10/6/2011	3		30	100%				52,842,625	9,395,515	1,142,812	63,380,952			Cleaned and inspected fittings/tubing; brought Drum #3 online.
11/1/2011	3	26	26	87%	4	35.5	1.4	53,071,145	9,435,095	1,258,735	63,764,975	384,023	10.4	Continue using 3rd drum.
12/1/2011	3	30	0	0%	26	230.9	7.7	53,349,688	9,469,794	1,371,989	64,191,471	426,496	61.0	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
	12/1/2011 3 30 0 0 0% 26 230.9 1.1 53,343,000 9,463,794 1,371,369 04,191,471 420,496 61.0 3rd druint elipty, reuse zird druint triat was taken druinte diri futur i													
12/1/2011	2	-	26	87%	-	-		53,349,688	9,469,794	1,371,989	64,191,471	-	-	3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
12/22/2011	2		22	73%	4	35.5	1.7	53,525,286	9,491,900	1,437,180	64,454,366	262,895	15.2	
2011 Total	-	246	-	-	68	603.8	-		-	-	-	3,854,886	17.6	Through 12/22/2011
1/27/2012	2	36	15	50%	7	62.2	1.7	53,871,038	9,542,467	1,558,697	64,972,202	517,836	13.5	
2/9/2012	2	13	10	33%	5	44.4	3.4	54,009,006	9,573,810	1,612,670	65,195,486	223,284	22.4	
3/1/2012	2	21	7.5	25%	2.5	22.2	1.1	54,180,412	9,596,526	1,671,517	65,448,455	252,969	9.9	-
4/5/2012	2	35	0	0%	7.5	66.6	1.9	54,447,552	9,635,004	1,770,699	65,853,255	404,800	18.5	Drum # 2 empty. Unmeasured volume of solidified chemical in bottom of drum; actual volume
										NEW DRUM OLI				remaining greater than 0. Calculated dose rate assumes volume remaining of 0.
4/5/2012	4	-	30	100%		- 1		54,447,552	9,635,004	1,770,699	65,853,255			Brought Drum #4 online.
5/1/2012	4	26	27.5	92%	2.5	22.2	0.9	54,595,683	9,661,648	1,833,036	66,090,367	237,112	10.5	Drum noted to be under vacuum due to changes in temperatures and not properly vented.
07/0040	4	37	40	60%	9.5	84.4	2.3	54.004.470	0.740.005	4.075.004	66,591,098	500,731	19.0	
6/7/2012 7/12/2012	4	35	18 13.7	46%	4.3	38.2	1.1	54,904,479 55,041,035	9,710,985 9,738,010	1,975,634 2,049,067	66,828,112	237,014	19.0	
8/15/2012	4	34	9	30%	4.3	41.7	1.2	55,163,445	9,766,492	2,049,067	67,068,471	240,359	19.6	
9/11/2012	4	27	6	20%	3	26.6	1.0	55,259,345	9,790,891	2,138,934	67,259,158	190,687	15.7	
10/17/2012	4	36	0.5	2%	5.5	48.8	1.4	55,424,161	9,830,240	2,314,556	67,568,957	309,799	17.8	
10/19/2012	4	2	0.0	0%	0.5	4.4	2.2	55,441,907	9.832.600	2.326.244	67.600,751	31,794	15.7	
									.,,	NEW DRUM OLI	. ,, .			
10/19/2012	5	-	30	100%	-	-	-	55,441,907	9,832,600	2,326,244	67,600,751	-	-	Brought Drum #5 online.
11/8/2012	5	20	27	90%	3	26.6	1.3	55,542,079	9,852,388	2,383,045	67,777,512	176,761	17.0	
12/6/2012	5	28	23	77%	4	35.5	1.3	55,665,689	9,874,745	2,438,585	67,979,019	201,507	19.9	
2012 Total	-	350	-	-	59	523.9	-	-	-	-	-	3,524,653	16.7	Through 12/6/2012
1/15/2013	5	40	12.5	42%	10.5	93.2	2.3	56,064,192	9,937,367	2,600,260	68,601,819	622,800	16.9	
2/7/2013	5	23	6	20%	6.5	57.7	2.5	56,285,230	9,972,998	2,675,400	68,933,628	331,809	19.6	Includes flow totals from loaner PLC from 2/6 through 2/11.
3/5/2013	5	26	0	0%	6	53.3	2.0	56,492,292	10,000,253	2,759,940	69,252,485	318,857	18.8	
										NEW DRUM OLI	NE			
3/5/2013	6	-	29	97%	-	-	-	56,490,599	10,000,253	2,759,940	69,250,792	-	-	Brought Drum #6 online. New drum starting only with 29 gallons. Flow monitoring device in fault mode (FA-200), which turns off the CFP.
3/22/2013	6	17	29	97%	0	0.0	0.0	56,582,710	10,017,495	2,798,316	69,398,521	147,729	0.0	FA-200 fault cleared locally, CFP resumed sequestering agent dosing.
4/24/2013	6	33	18.7	62%	10.3	91.5	2.8	56,960,249	10,083,948	2,946,781	69,990,978	592,457	17.4	
5/9/2013	6	15	15	50%	3.7	32.9	2.2	57,068,038	10,097,769	2,991,283	70,157,090	166,112	22.3	
6/7/2013	6	29	7	23%	8	71.0	2.4	57,299,819	10,144,690	3,098,532	70,543,041	385,951	20.7	Stroke length on CFP reduced from 100% to 85%
6/12/2013	6	5	5	17%	2	17.8	3.6	57,352,931	10,154,228	3,126,877	70,634,036	90,995	22.0	
6/25/2013	6	13	0	0%	5	44.4	3.4	57,552,196	10,187,599	3,219,750 NEW DRUM OLI	70,959,545	325,509	15.4	
6/26/2013	7		29	97%				57,584,303	10,192,884	3,234,698	71,011,885			Drum #7 (29 gallons) put into service.
7/11/2013	7	15	20.9	70%	8.1	72.0	4.8	57,584,303	10,192,884	3,234,698	71,011,885	510,504	15.9	Drum #1 (20 gamono) put litto service.
8/8/2013	7	28	15.5	70% 52%	5.4	47.6	1.7	57,900,710	10,241,119	3,485,922	71,522,389	352,985	15.9	
9/10/2013	7	33	9.6	32%	5.4	52.3	1.6	58,313,137	10,279,795	3,592,395	72,237,550	362,176	16.3	
10/22/2013	7	42	3.2	11%	6.4	57.1	1.4	58,574,976	10,387,447	3,720,796	72,683,219	445,669	14.4	
11/5/2013	7	14	1.6	5%	1.6	14.3	1.0	58,651,023	10,402,542	3,756,290	72,809,855	126,636	12.7	
11/14/2013	7	9	0.0	0%	1.6	14.3	1.6	58,715,549	10,412,625	3,785,392	72,913,566	103,711	15.5	
							-	., .,		NEW DRUM OLI				
11/14/2013	8	-	30	100%	-	-	-	58,715,549	10,412,625	3,785,392	72,913,566	-	-	Drum #8 (30 gallons) put into service.
12/3/2013	8	19	27.1	90%	2.9	25.5	1.3	58,855,332	10,439,113	3,845,245	73,139,690	226,124	12.7	
2013 Total	-	362	-	-	83.875	540.6	-	•	-	-	-	5,160,671	16.3	Through 12/3/2013

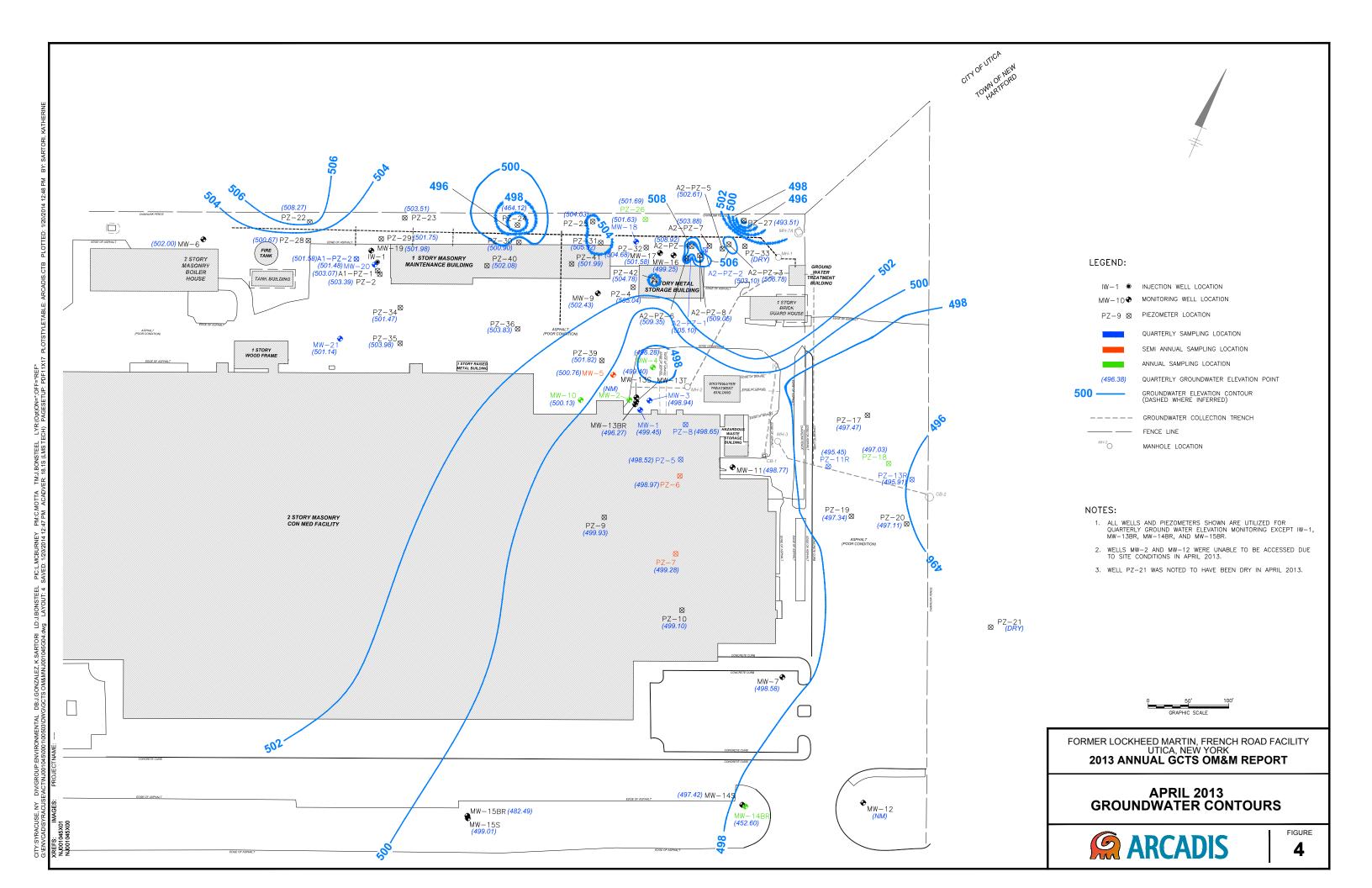
Notes:

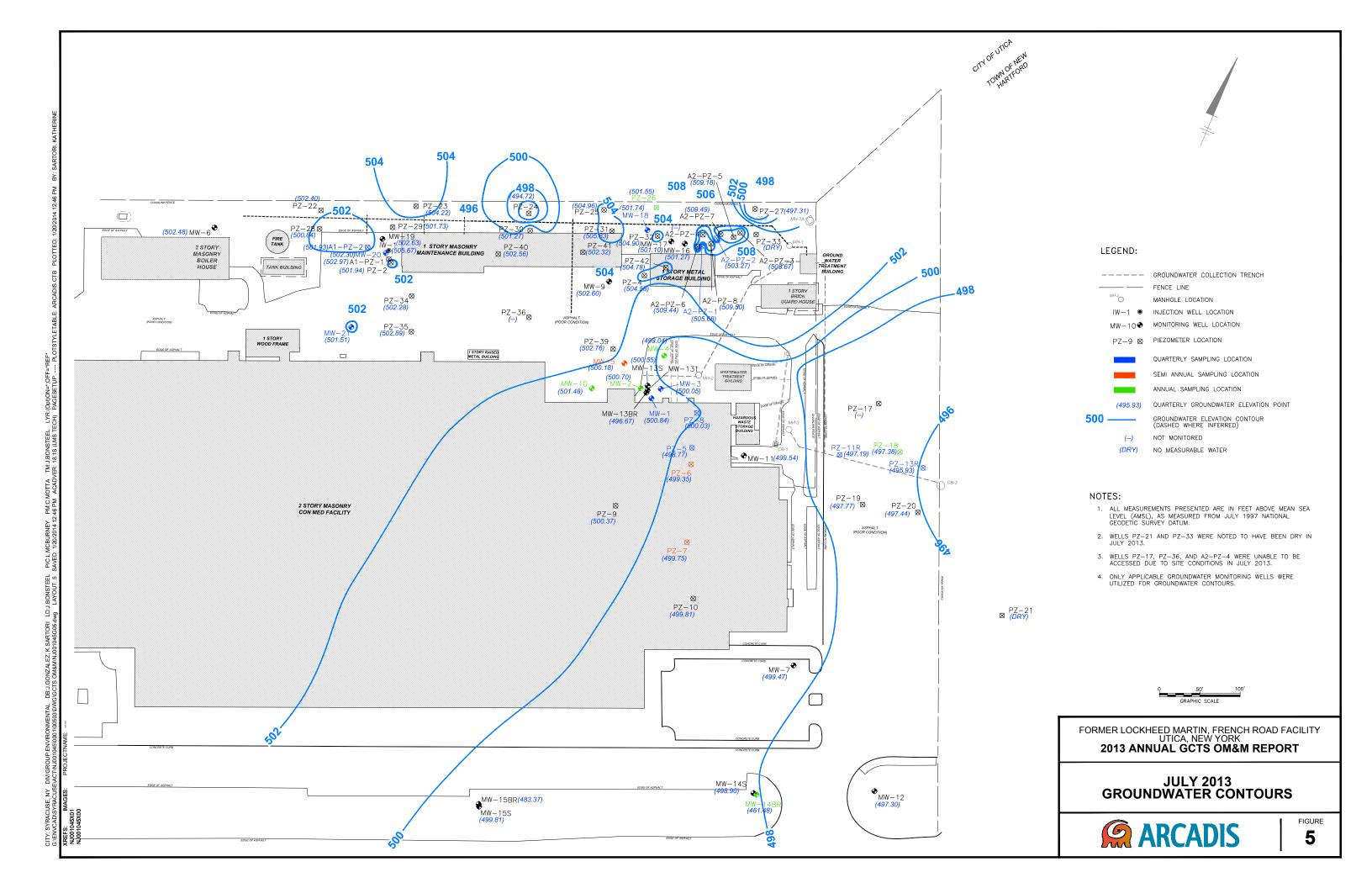
- 1) Maximum allowable daily loading rate of 12.5 lbs/day per WTC Usage Form dated 4/11/11.
- 2) Sequestering agent dosing rate is setup to be proportional to the aggregate flow transmitter value (not shown). However, this table utilizes the sum of the three individual pumping manhole flow transmitter values to calculate dose rate.
- 3) Sequestering agent low flow alarm occurred on 9/26/11 due to partial solidification of chemical within suction/injection fittings and tubing. Inspection not conducted until 10/6/11, during which time the fittings and tubing were cleaned. Drum #2 was taken offline until vendor could troubleshoot observation, in the interim Drum #3 was brought online.

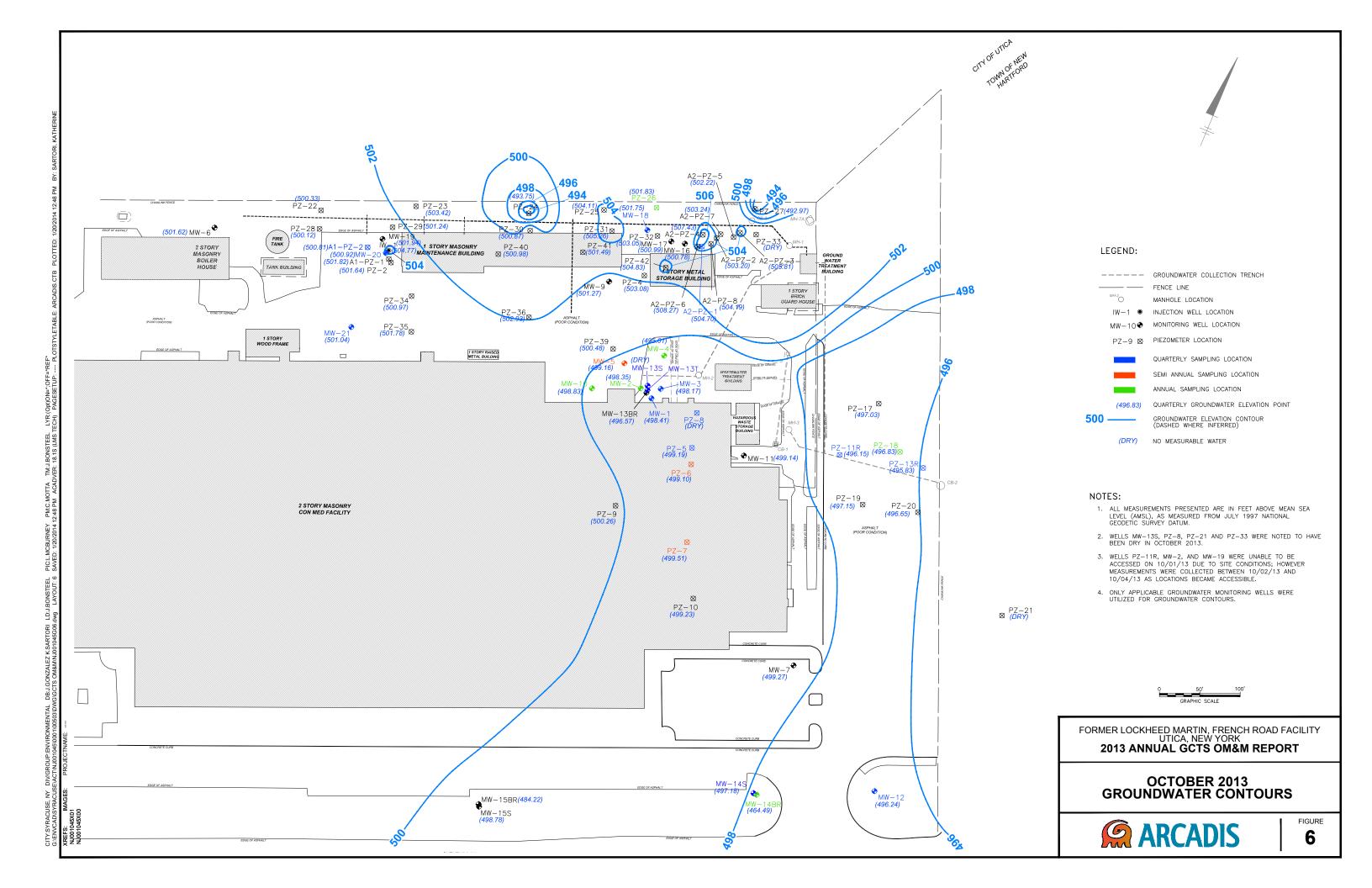
Figures

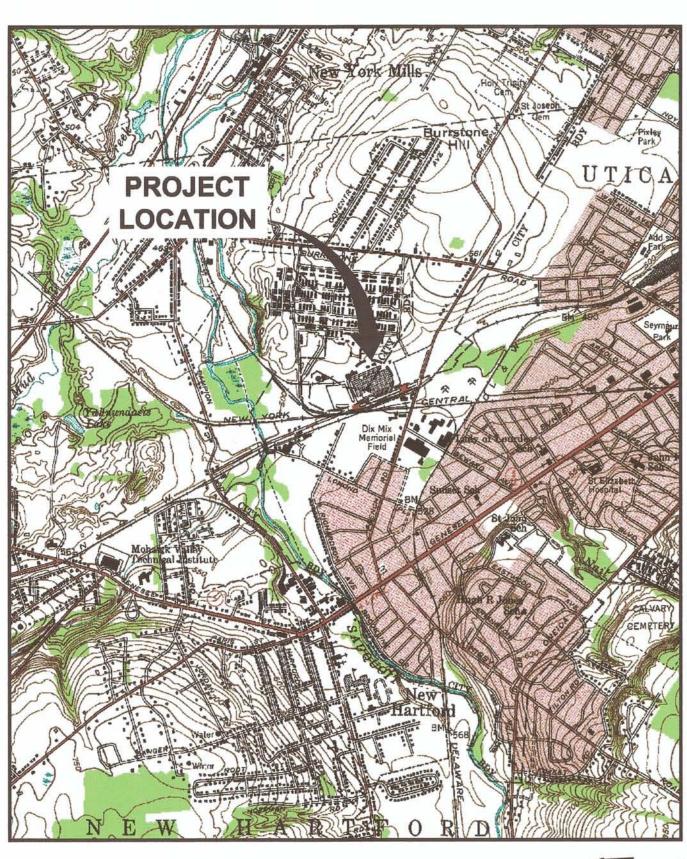

GROUNDWATER COLLECTION AND


TREATMENT SYSTEM ANNUAL REPORT FORMER LOCKHEED MARTIN, FRENCH ROAD PROPERTY UTICA, NEW YORK


SITE LOCATION MAP




FIGURE



Appendix A

Record Drawings

RECORD DRAWINGS

GROUNDWATER COLLECTION AND TREATMENT SYSTEM AT FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY

REFERENCE: BASE MAP USGS 7.5 MINUTE QUADRANGLE., UTICA WEST, 1955

LOCATION MAP

O 2000' 4000'

GRAPHIC SCALE

DATE ISSUED
MARCH 2011

LOCKHEED MARTIN CORPORATION
UTICA, NEW YORK

ARCADIS OF NEW YORK, INC.

INDEX TO DRAWINGS

GENERAL

G-1 SITE PLAN

G-2 PLAN & PROFILE OF MH-3 AND GROUNDWATER
COLLECTION TRENCH

G-3 PUMPING MANHOLE DETAILS AND SPECIFICATIONS

G-4 PIPING AND TRENCHING DETAILS

G-5 GENERAL NOTES AND ABBREVIATIONS

G-6 LEGEND AND SYMBOLS

MECHANICAL

M-1 PIPING AND INSTRUMENTATION DIAGRAM

M-2 FLOOR PLAN AND DETAILSM-3 PROCESS FLOW DIAGRAM

ELECTRICAL

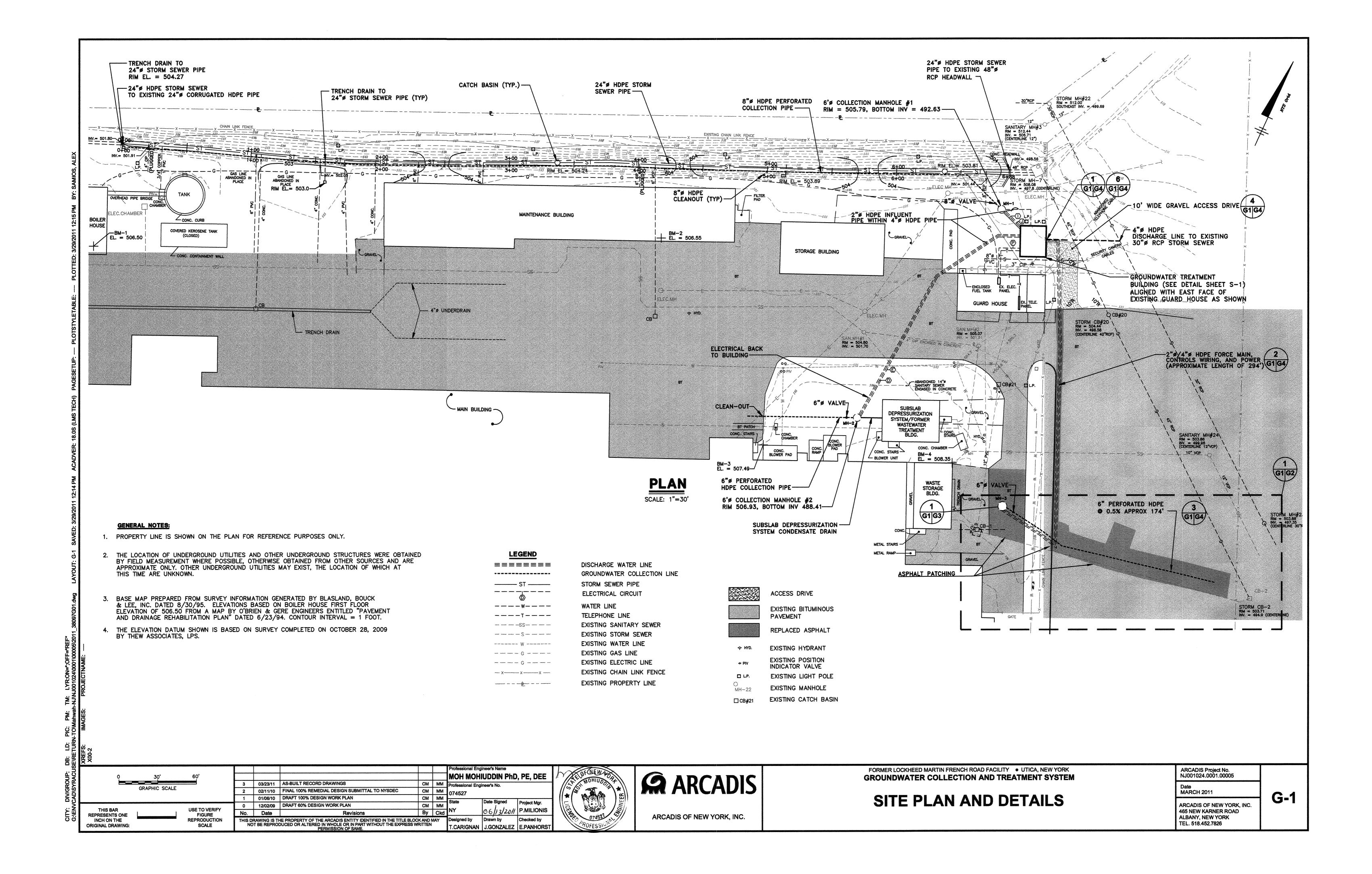
E-1 ELECTRICAL FLOOR PLANS

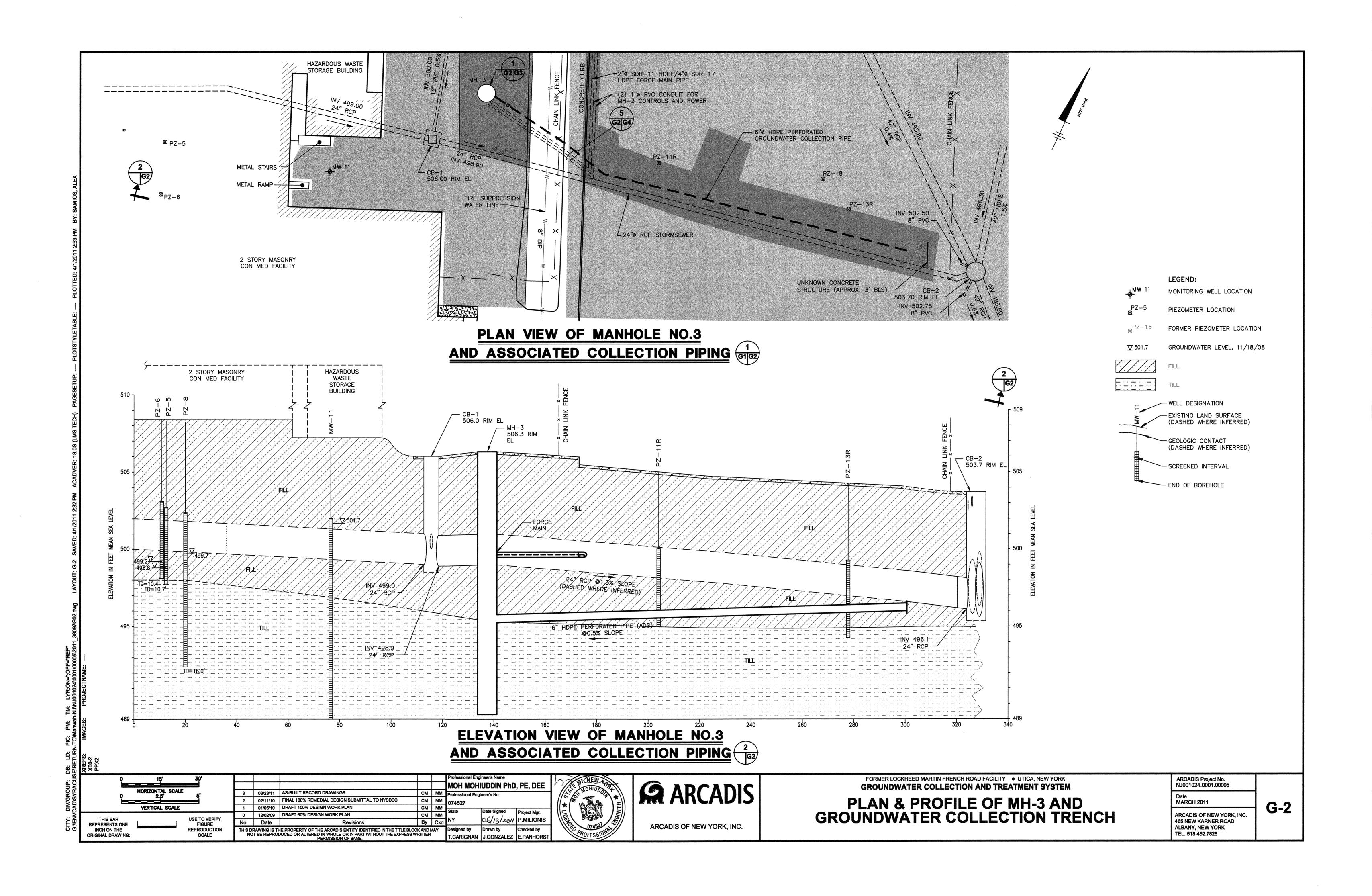
E-2 ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD

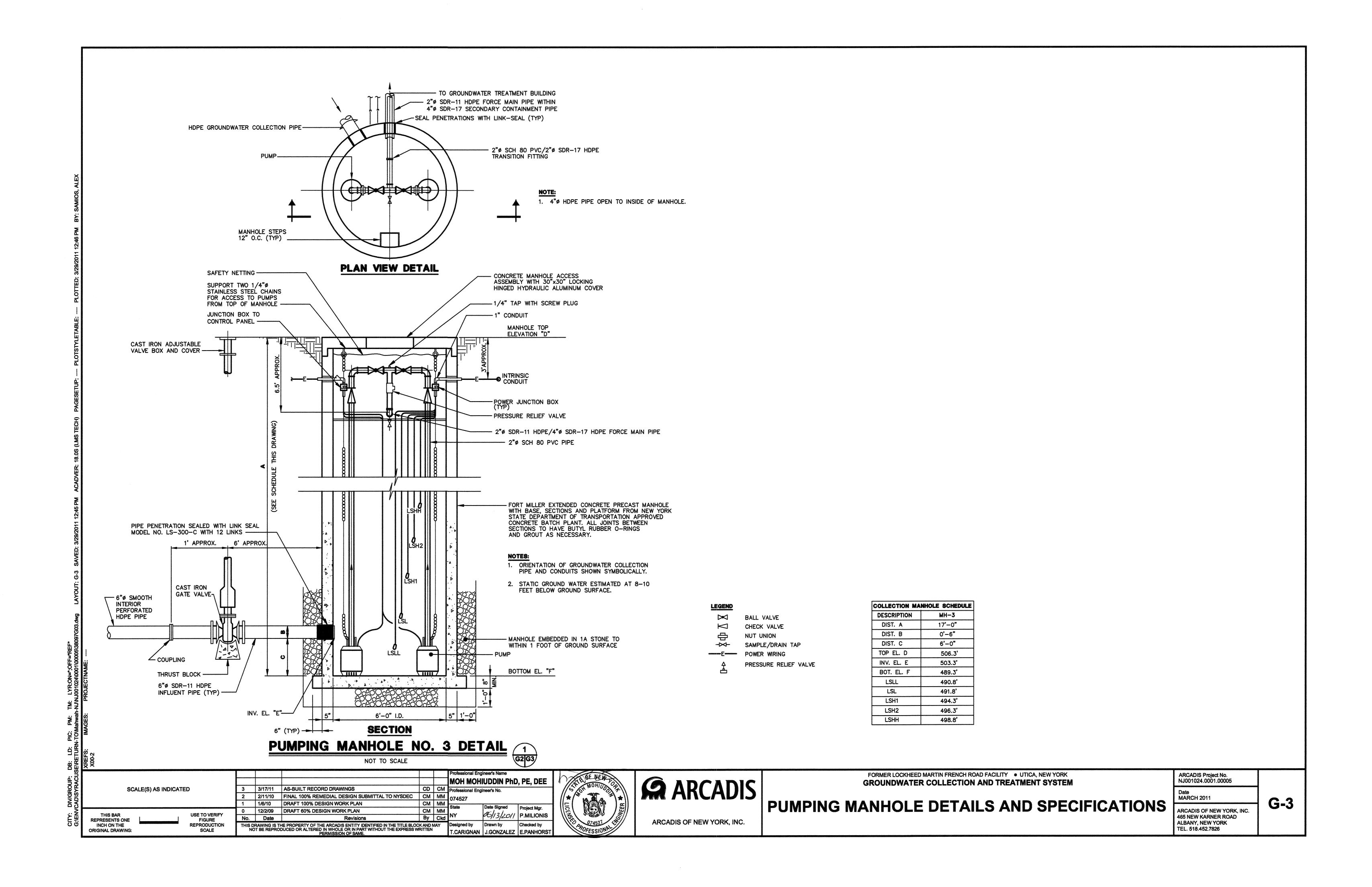
SCHEDULES

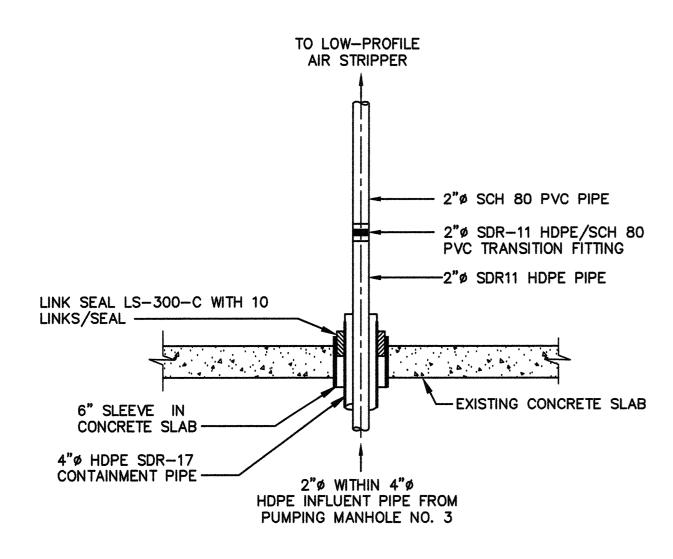
STRUCTURAL

E-3 CONTROL LOGIC

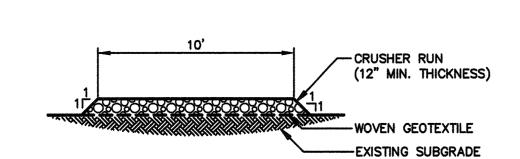

S-1 BUILDING ELEVATION SECTION AND DETAILS

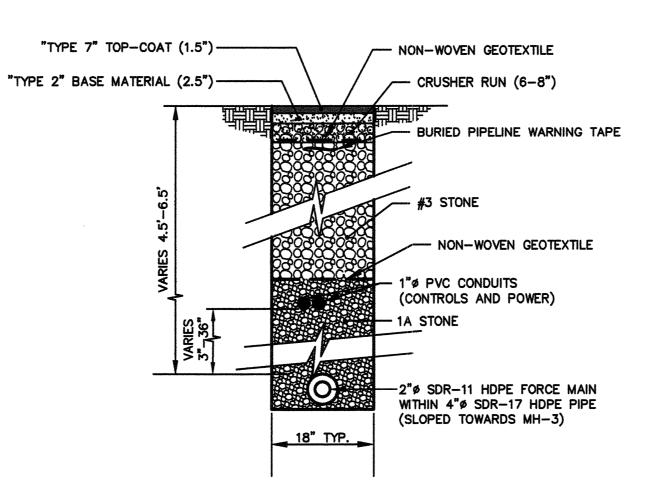

RECORD DRAWINGS

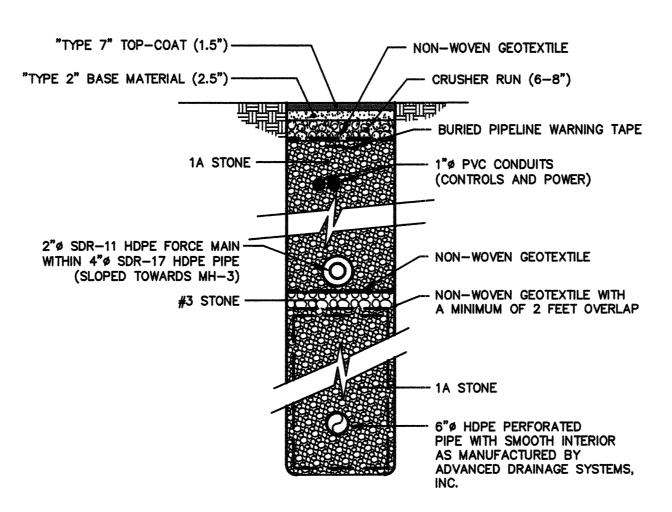

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS


DATE: 06/13/201/ BY:

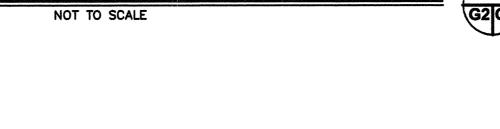
mica

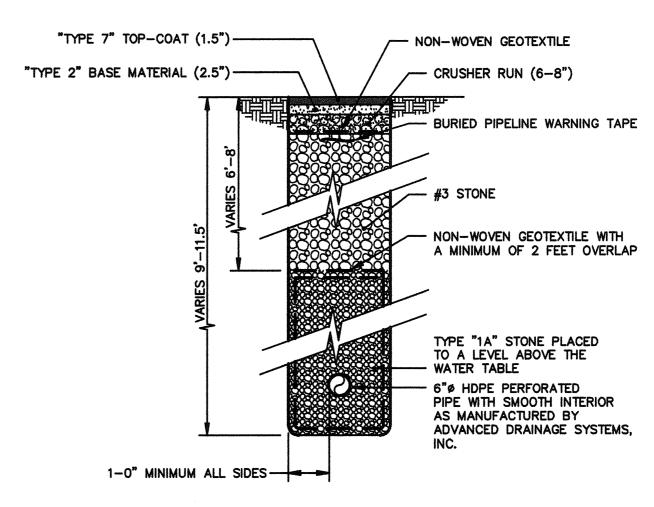






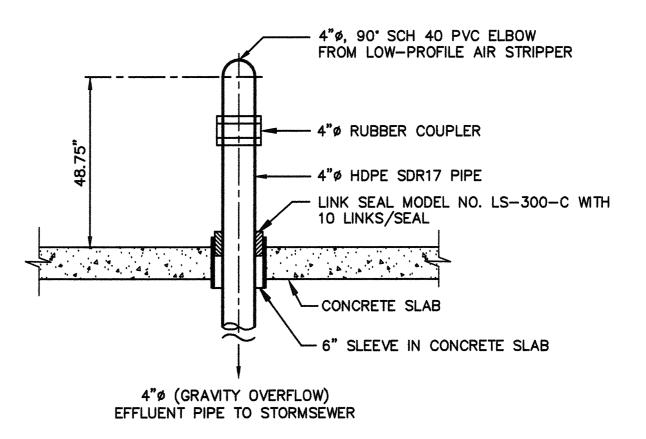
1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.

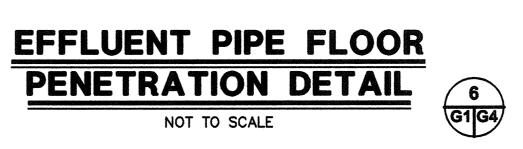

MANHOLE NO. 3 DISCHARGE TRENCH DETAIL (TYPICAL) NOT TO SCALE



NOTE:

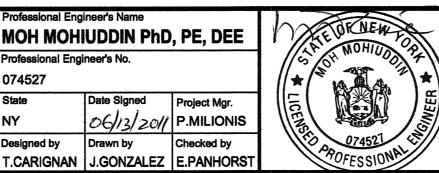
1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.


COMBINED MANHOLE NO. 3 DISCHARGE AND COLLECTION TRENCH DETAIL (TYPICAL) NOT TO SCALE



1. IN NON-PAVED AREAS, CRUSHER RUN, TYPE 2, AND TYPE 7
MATERIAL REPLACED WITH NATIVE MATERIAL.

MANHOLE NO. 3 COLLECTION TRENCH DETAIL (TYPICAL) NOT TO SCALE



<u> </u>											_
								Professional Eng	ineer's Name		
								MOH MOH	UDDIN PhD	, PE, DEE	ĺ
			3	3/17/11	AS-BUILT RECORD DRAWINGS	CD	СМ	Tologolorial Engineers 110.			
			2	2/11/10	FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC	СМ	MM				
			1	1/6/10	DRAFT 100% DESIGN WORK PLAN	СМ	MM		Date Signed	D-1-114	
7:10 0.40			0	12/2/09	DRAFT 60% DESIGN WORK PLAN		MM		, ,	Project Mgr.	ĺ
THIS BAR REPRESENTS ONE			No.	Date	Revisions	Ву	Ckd	NY	06/13/2011	P.MILIONIS	
											i

THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME.

REPRODUCTION

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

ARCADIS Project No. NJ001024.0001.00005
Date MARCH 2011
ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826

G-4

INCH ON THE

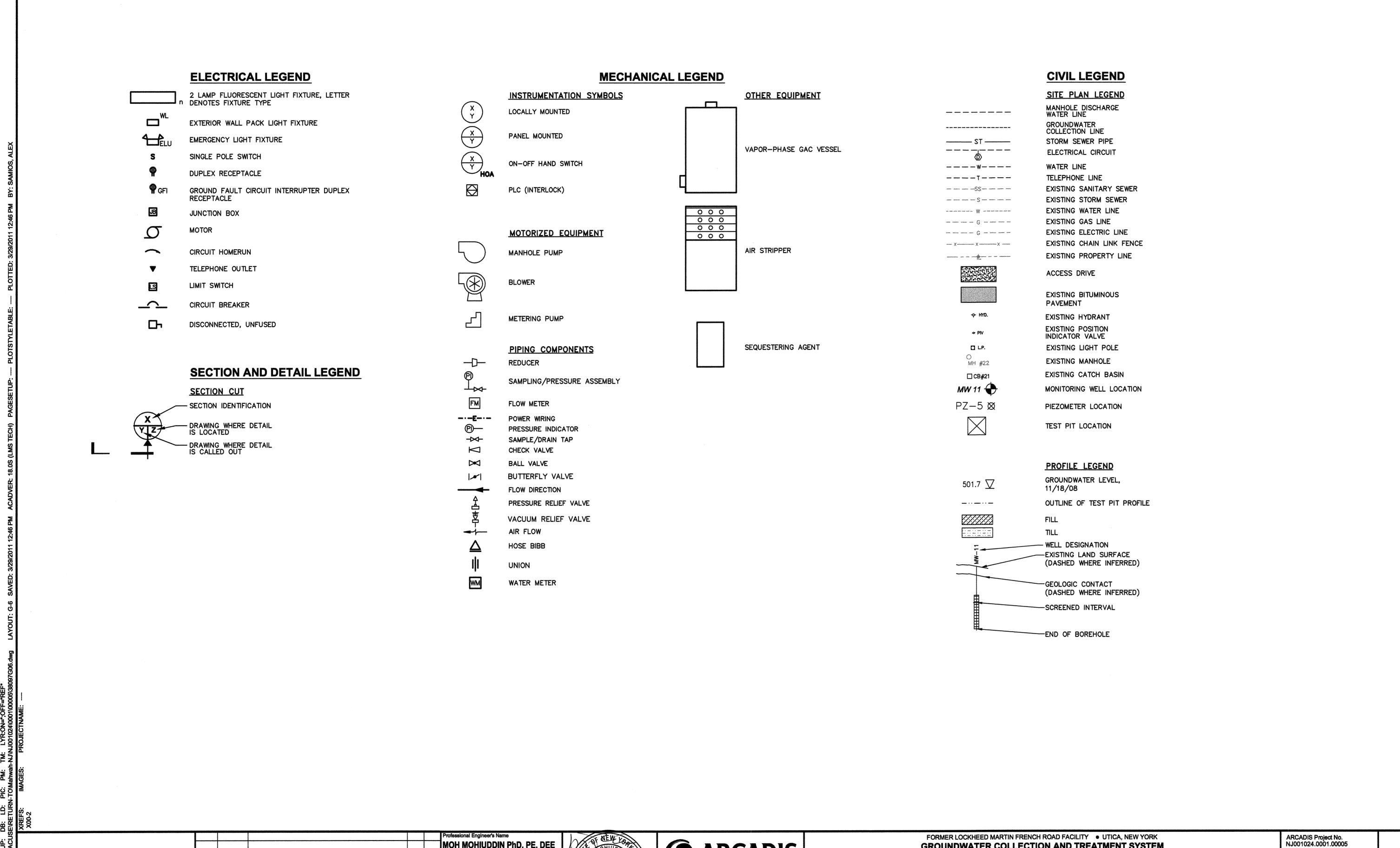
ORIGINAL DRAWING

- 1. AIR STRIPPER SYSTEM MANUFACTURED BY QED MODEL EZ-TRAY 12.4 STAINLESS STEEL FABRICATION.
- 2. ALL PIPING AND MANIFOLDS LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G., MANHOLE NO. 3 INFLUENT) CLEARLY LABELED AT ALL VALVE AND APPURTENANCE LOCATIONS.
- 3. FLOW TRANSMITTERS ARE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR ARE A MODEL 8511. ASSOCIATED SIGNET SENSORS ARE MODEL 3-2536-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:
 - A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (SALVAGED FROM DEMOLITION) DIAL RANGE - 3-180 GPM
 - B. MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (SALVAGED FROM DEMOLITION) DIAL RANGE - 3-180 GPM
 - C. MANHOLE NO. 3, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (NEW) DIAL RANGE - 3-180 GPM
 - D. COMBINED FLOW, 3 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 (NEW) DIAL RANGE - 7-400 GPM
 - E. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T012 (EXISTING) DIAL RANGE - 3-180 GPM
- 4. ALL FLOW METERS HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER) AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.
- 5. MANHOLE NO. 3 PUMPS ARE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 50 GPM @ 25 FEET TDH (ONE PUMP) OR EQUAL.
- 6. DUCT HEATER IS HEAT EXCHANGE AND TRANSFER, INC. MODEL ADH-12-483 (12KW, 480V, 3 PHASE).
- 7. ALL SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE PREPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- 8. VAPOR PHASE CARBON VESSELS SIEMENS FB-1000 1,000 LB VESSELS. VESSELS UTILIZE SIEMENS VOCARB 36C VAPOR PHASE GRANULAR ACTIVATED CARBON.

ABBREVIATIONS:

- A.F.F ABOVE FINISHED FLOOR
- BV BALL VALVE
- BFV BUTTERFLY VALVE
- CMP CHEMICAL METERING PUMP
- FS FLOW SENSOR
- FT FLOW TRANSMITTER
- HS HAND SWITCH
- LEVEL INDICATOR LSH LEVEL SENSOR HIGH
- LSL LEVEL SENSOR LOW
- LV LOUVER
- MIN. MINIMUM
- PRESSURE INDICATOR
- PT PRESSURE TRANSMITTER
- SP SAMPLE PORT
- TEMPERATURE ELEMENT
- TEMPERATURE INDICATOR
- TEMPERATURE TRANSMITTER
- UNIT HEATER

MOH MOHIUDDIN PhD, PE, DEE CM MM 074527 2 3/18/11 AS-BUILT RECORD DRAWINGS 1 1/6/10 DRAFT 100% DESIGN WORK PLAN Date Signed Project Mgr. 0 12/2/09 DRAFT 60% DESIGN WORK PLAN CM MM 06/13/201/ P.MILIONIS REPRESENTS ONE THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME. INCH ON THE REPRODUCTION ORIGINAL DRAWING T.CARIGNAN J.GONZALEZ E.PANHORS


FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK **GROUNDWATER COLLECTION AND TREATMENT SYSTEM**

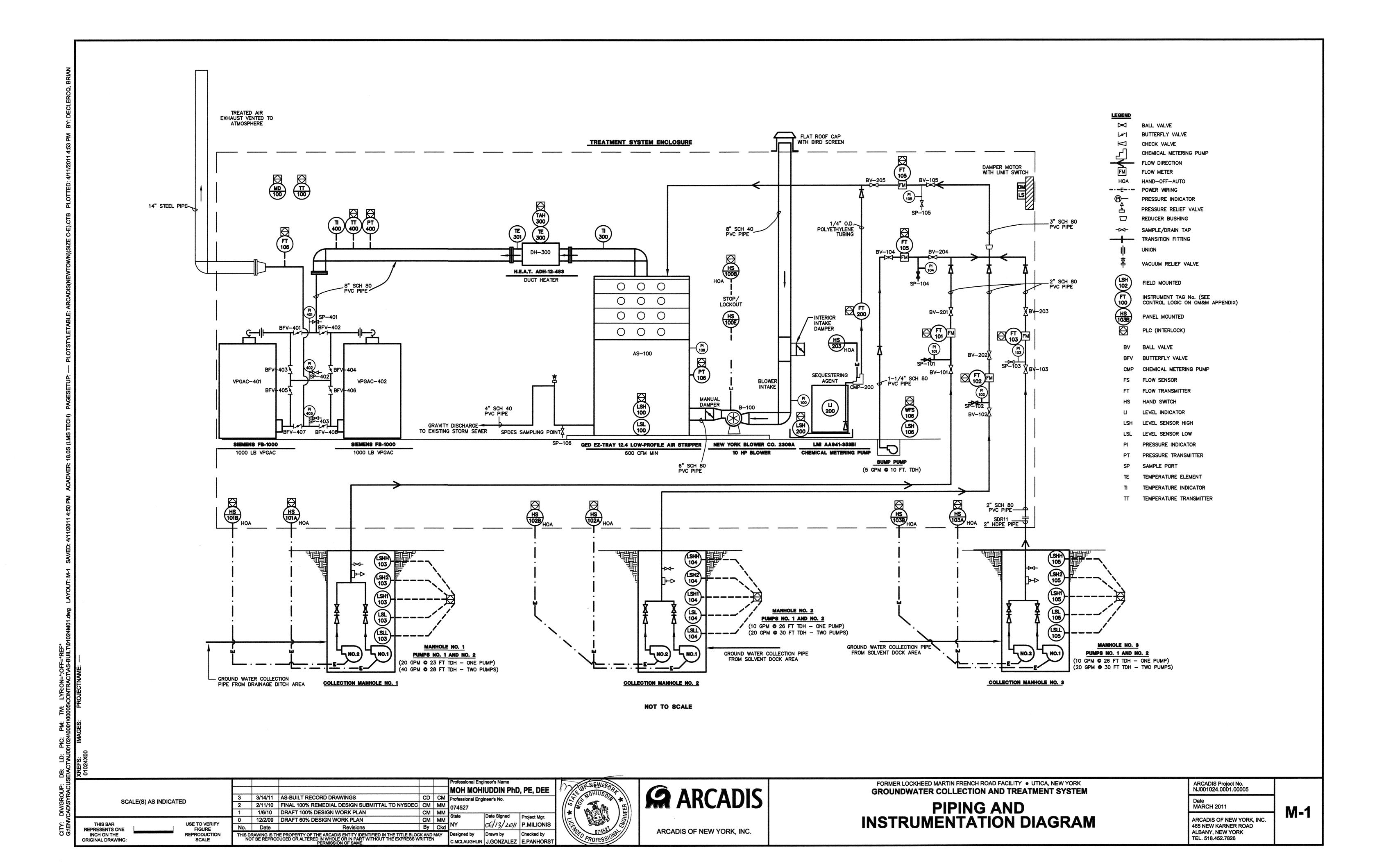
GENERAL NOTES AND ABBREVIATIONS

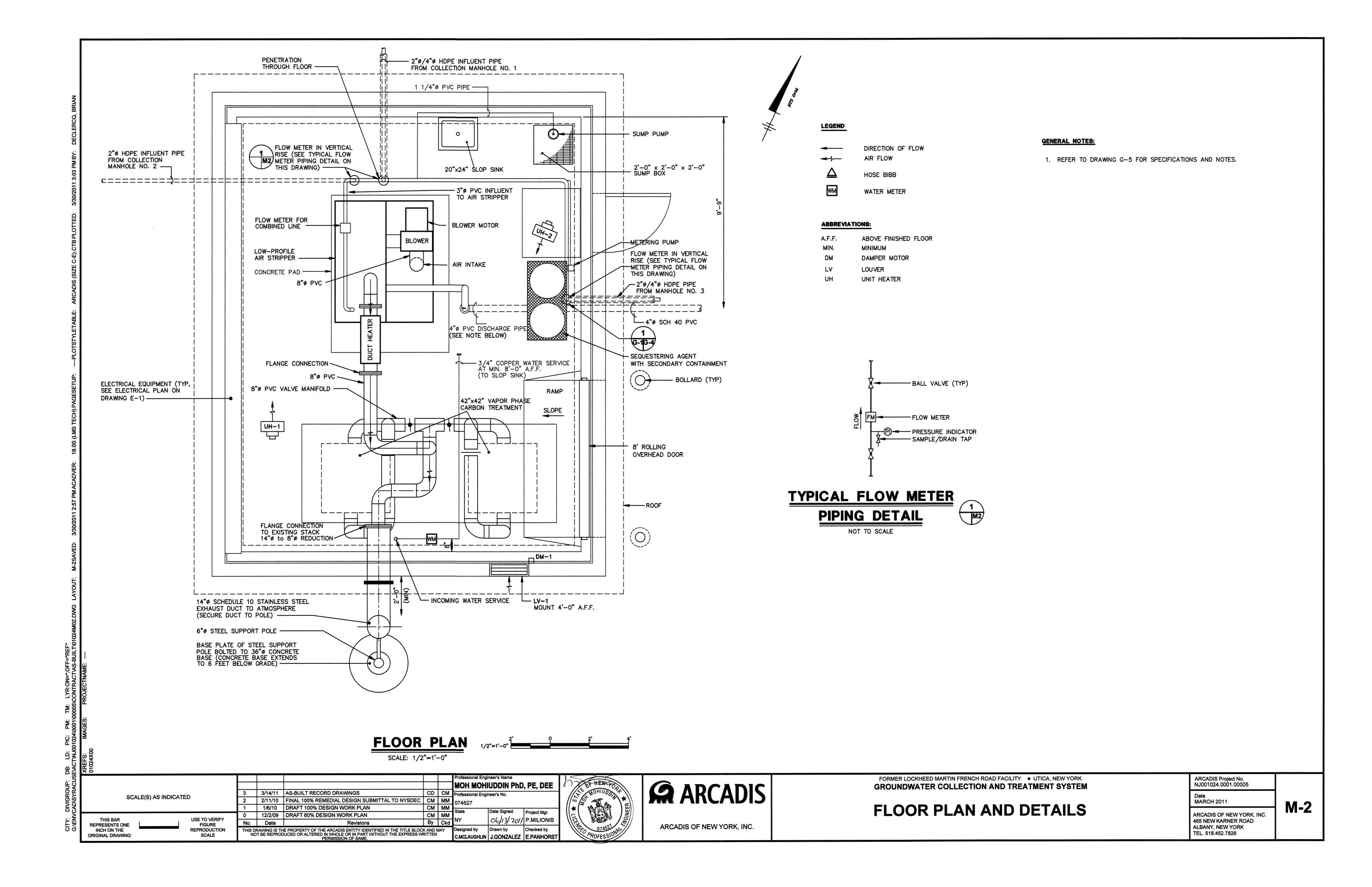
ARCADIS Project No. NJ001024.0001.00005

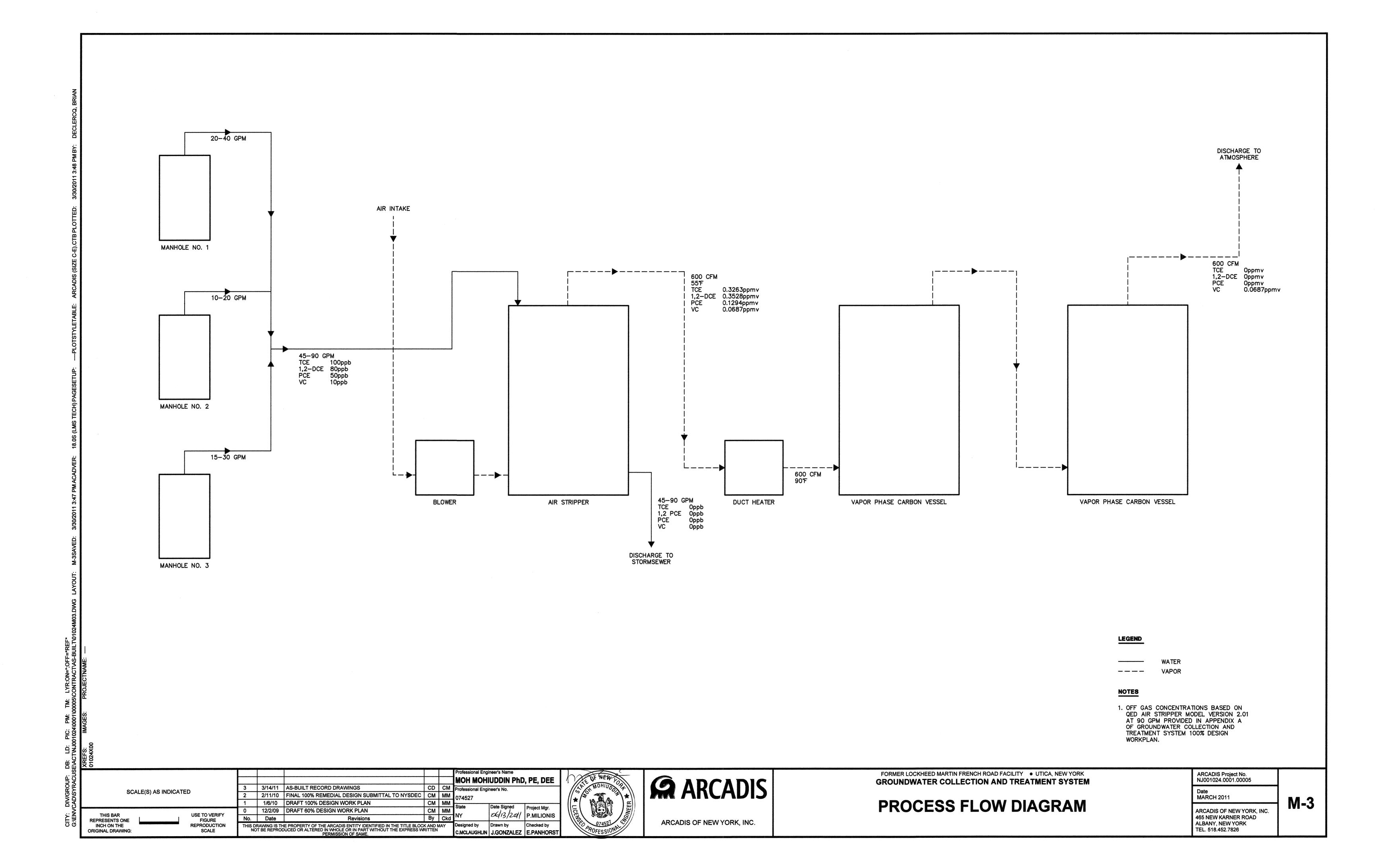
Date MARCH 2011 ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD

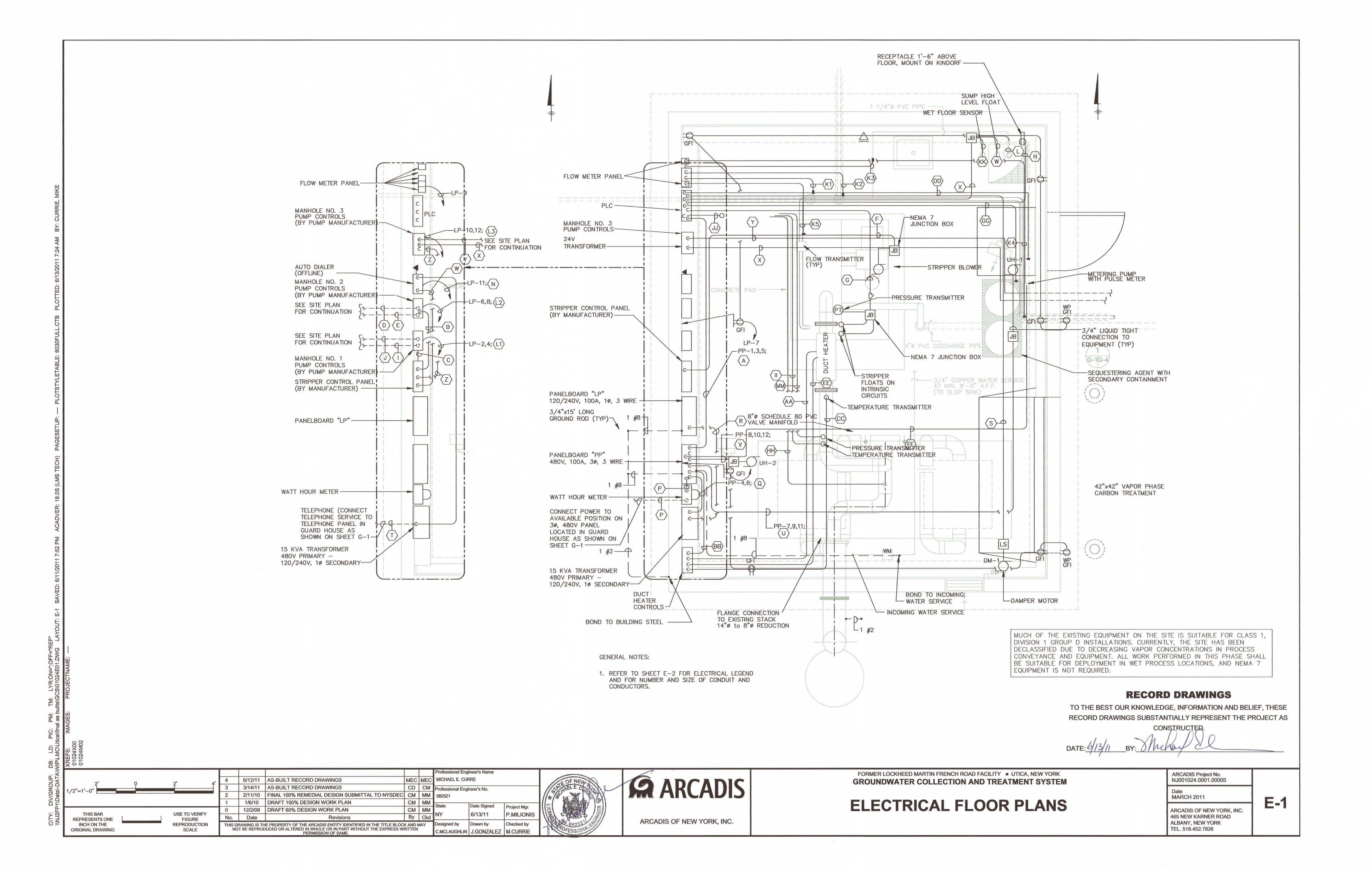
ALBANY, NEW YORK TEL. 518.452.7826

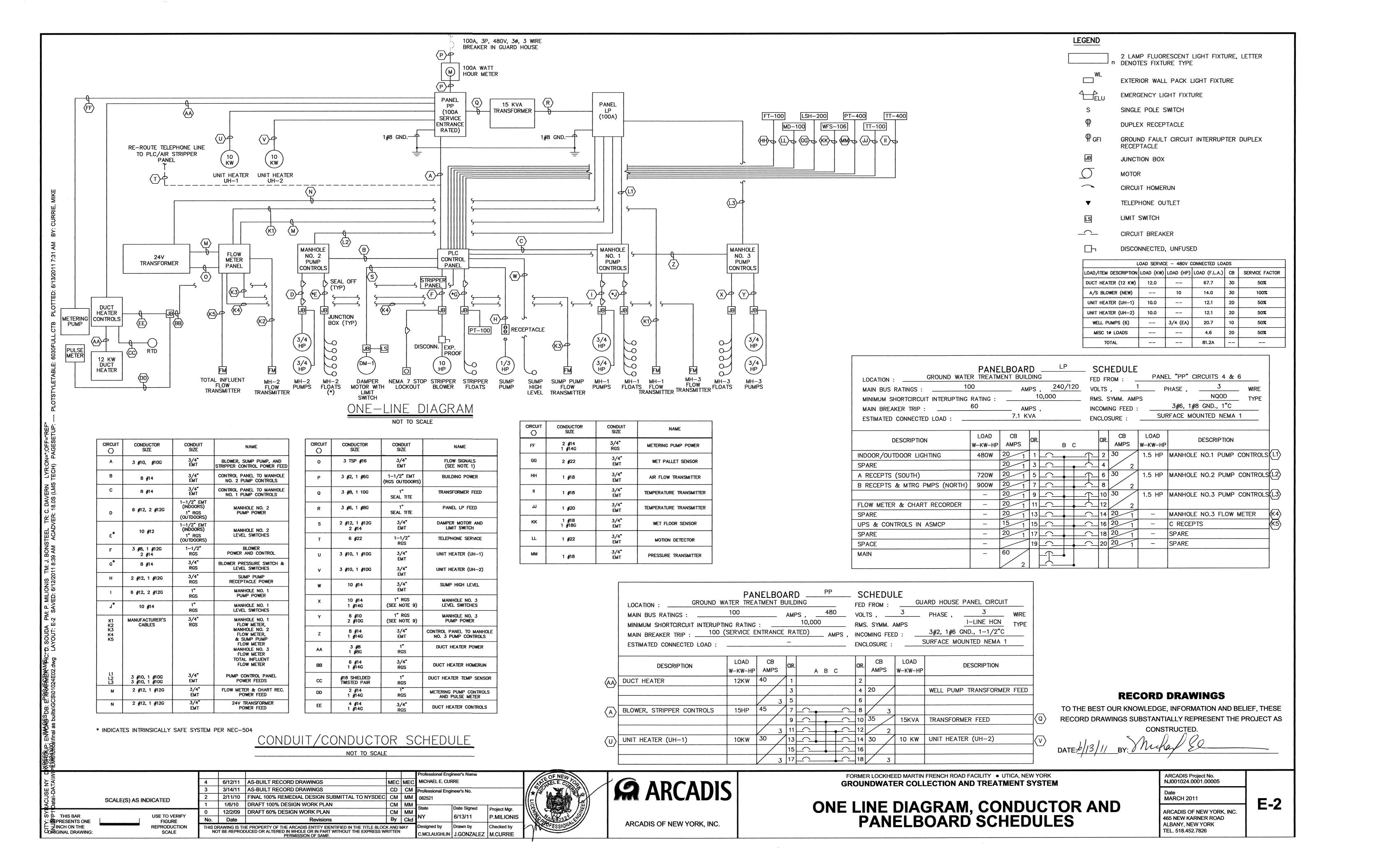
MOH MOHIUDDIN PhD, PE, DEE CM MM 074527 2 3/18/11 AS-BUILT RECORD DRAWINGS CM MM State 1 1/6/10 DRAFT 100% DESIGN WORK PLAN Date Signed Project Mgr. 0 12/2/09 DRAFT 60% DESIGN WORK PLAN CM MM 06/13/20// P.MILIONIS THIS BAR USE TO VERIFY REPRESENTS ONE FIGURE THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME. INCH ON THE REPRODUCTION ORIGINAL DRAWING: T.CARIGNAN J.GONZALEZ E.PANHORST




GROUNDWATER COLLECTION AND TREATMENT SYSTEM


LEGEND AND SYMBOLS


Date MARCH 2011
ARCADIS OF NEW YORK, IN 465 NEW KARNER ROAD ALBANY, NEW YORK


TEL. 518.452.7826

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN OFF POSITION 3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)
- 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)
- PUMP NO. 1 SHALL OPERATE IF:
- 1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND
- NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE
- NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN OFF POSITION
- 3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)
- 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 2 SHALL OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN HAND POSITION

LOGIC FOR AIR STRIPPER BLOWER (B-100)

BLOWER SHALL OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN HAND POSITION 2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 4. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES! 5. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 6. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 7. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES]

BLOWER SHALL NOT OPERATE IF:

- 1. BLOWER HOA SWITCH (HS-100) IS IN OFF POSITION 2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND FATAL ALARMS (SHOWN ON THIS DRAWING) HAVE BEEN INDICATED AT PLC FOR GREATER THAN TEN MINUTES
- 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND NONE OF THE STATEMENTS LISTED ABOVE ARE TRUE

LOGIC FOR MANHOLE NO. 2

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION, AND FATAL
- ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN OFF POSITION
- 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104)
- 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 1 SHALL OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND
- NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION, AND FATAL
- ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN OFF POSITION
- 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104)
- 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)
- PUMP NO. 2 SHALL OPERATE IF:
- 1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN HAND POSITION

LOGIC FOR DUCT HEATER (DH-300)

DUCT HEATER SHALL OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS RUNNING

DUCT HEATER SHALL NOT OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN OFF POSITION 2. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS NOT

LOGIC FOR CHEMICAL METERING PUMP (CMP-200)

CHEMICAL METERING PUMP SHALL OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS REGISTERING AN INSTANTANEOUS FLOWRATE

CHEMICAL METERING PUMP SHALL NOT OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS NOT REGISTERING AN INSTANTANEOUS FLOWRATE

LOGIC FOR MANHOLE NO. 3

PUMP NO. 1 SHALL NOT OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN OFF POSITION
- 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105)
- 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 1 SHALL OPERATE IF:

- 1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105)
- 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 2 SHALL OPERATE IF:

- 1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC
- 3. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN HAND POSITION

FATAL ALARMS:

- 1. HIGH AIR STRIPPER SUMP PRESSURE (PT-106)
- 2. LOW AIR STRIPPER SUMP PRESSURE (PT-106)
- 3. HIGH AIR STRIPPER SUMP LEVEL (LSH-100)
- 4. LOW AIR STRIPPER SUMP LEVEL (LSL-100)
- 5. HIGH AIR FLOWRATE (FT-106)
- 6. LOW AIR FLOWRATE (FT-106)
- 7. PRE-CARBON HIGH TEMPERATURE (TT-400)
- 8. PRE-CARBON LOW TEMPERATURE (TT-400)
- 9. PRE-CARBON HIGH PRESSURE (PT-400) 10. PRE-CARBON LOW PRESSURE (PT-400)
- 11. BUILDING WET FLOOR SENSOR ALARM (WFS-106)

NOTES:

- 1. CONTROLS WERE MODIFIED FROM AN ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIES, INC, IN DECEMBER 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWINGS/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&M MANUAL.
- 3. PLC PROGRAMMING WILL BE PERFORMED BY ARCADIS.

RECORD DRAWINGS

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK

GROUNDWATER COLLECTION AND TREATMENT SYSTEM

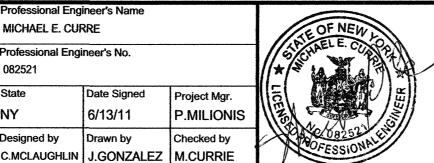
MARCH 2011

ARCADIS Project No.

NJ001024.0001.00005

E-3

SCALE(S) AS INDICATED

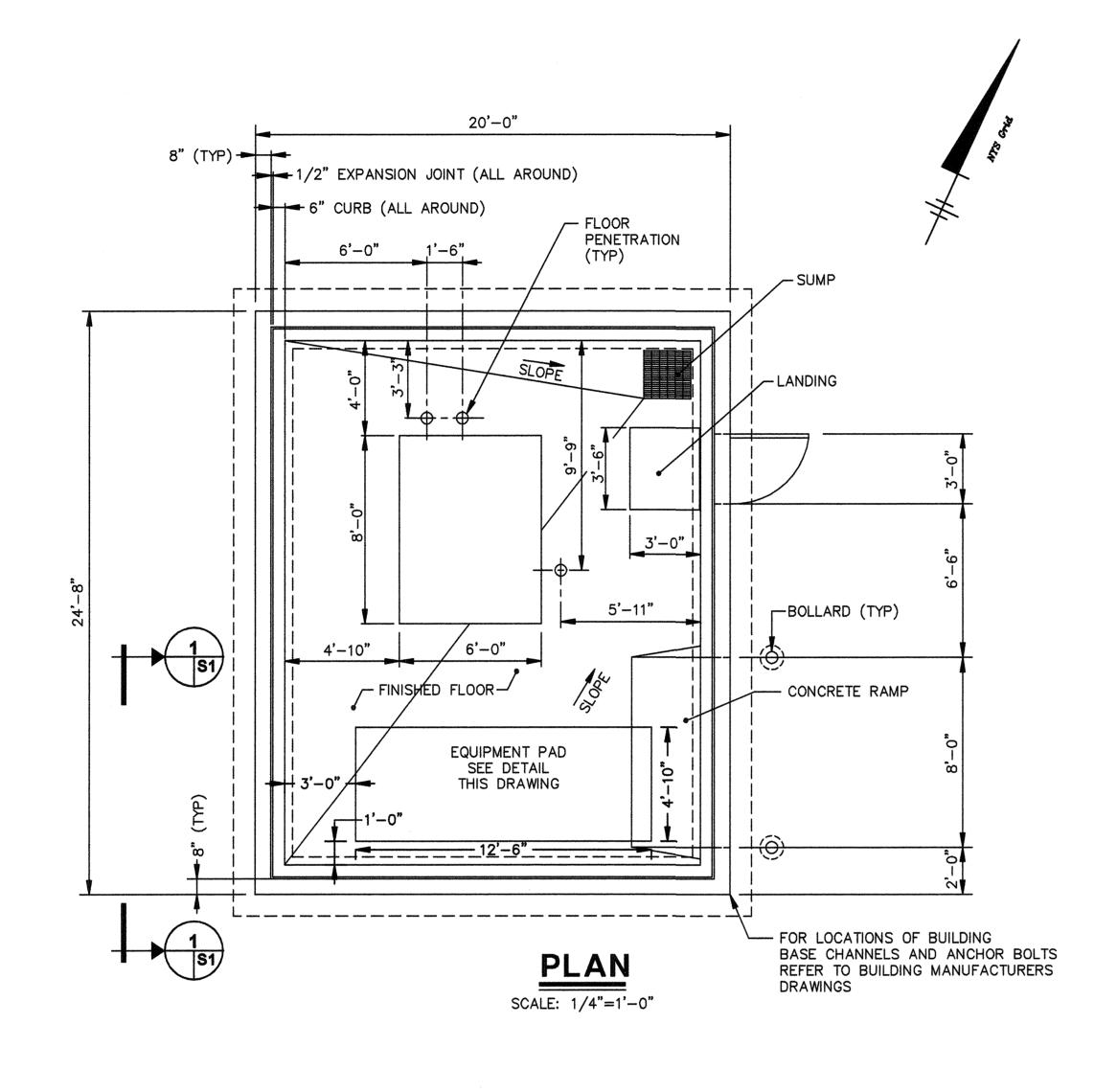

THIS BAR REPRESENTS ONE INCH ON THE **ORIGINAL DRAWING**

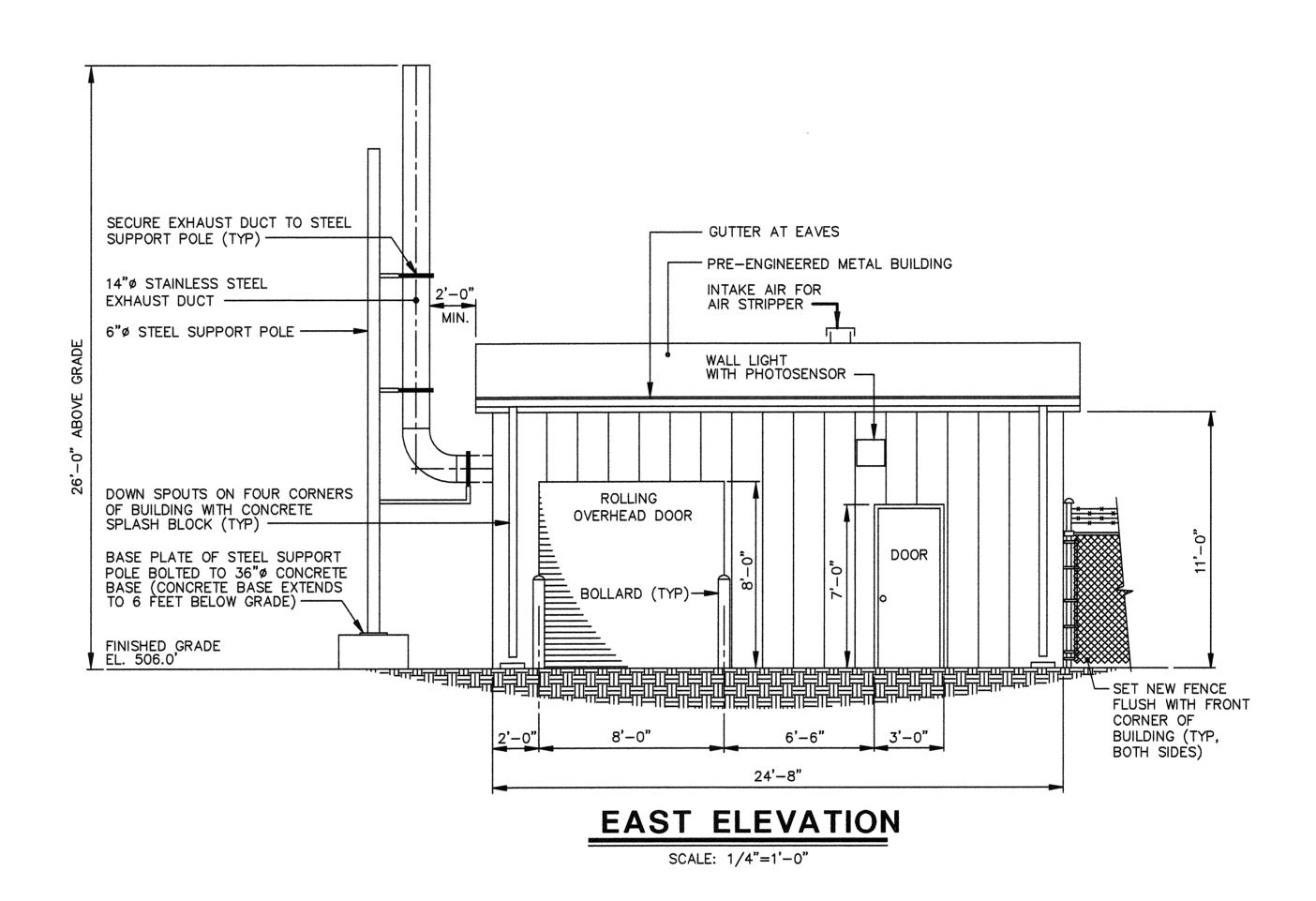
USE TO VERIFY FIGURE REPRODUCTION

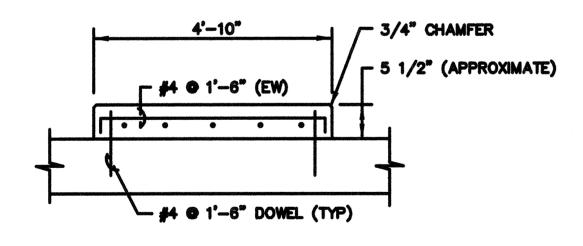
3/14/11 AS-BUILT RECORD DRAWINGS CD CM P 2/11/10 FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC CM MM 082521 1/6/10 DRAFT 100% DESIGN WORK PLAN CM MM 12/2/09 DRAFT 60% DESIGN WORK PLAN CM MM By Ckd THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME.

6/12/11 AS-BUILT RECORD DRAWINGS

MEC MEC MICHAEL E. CURRE ssional Engineer's No. Date Signed 6/13/11 P.MILIONIS Drawn by Checked by

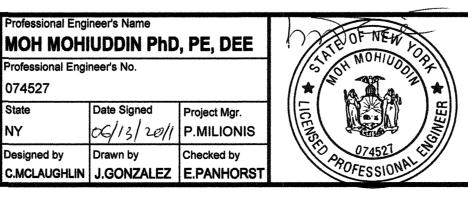



A ARCADIS


ARCADIS OF NEW YORK, INC.

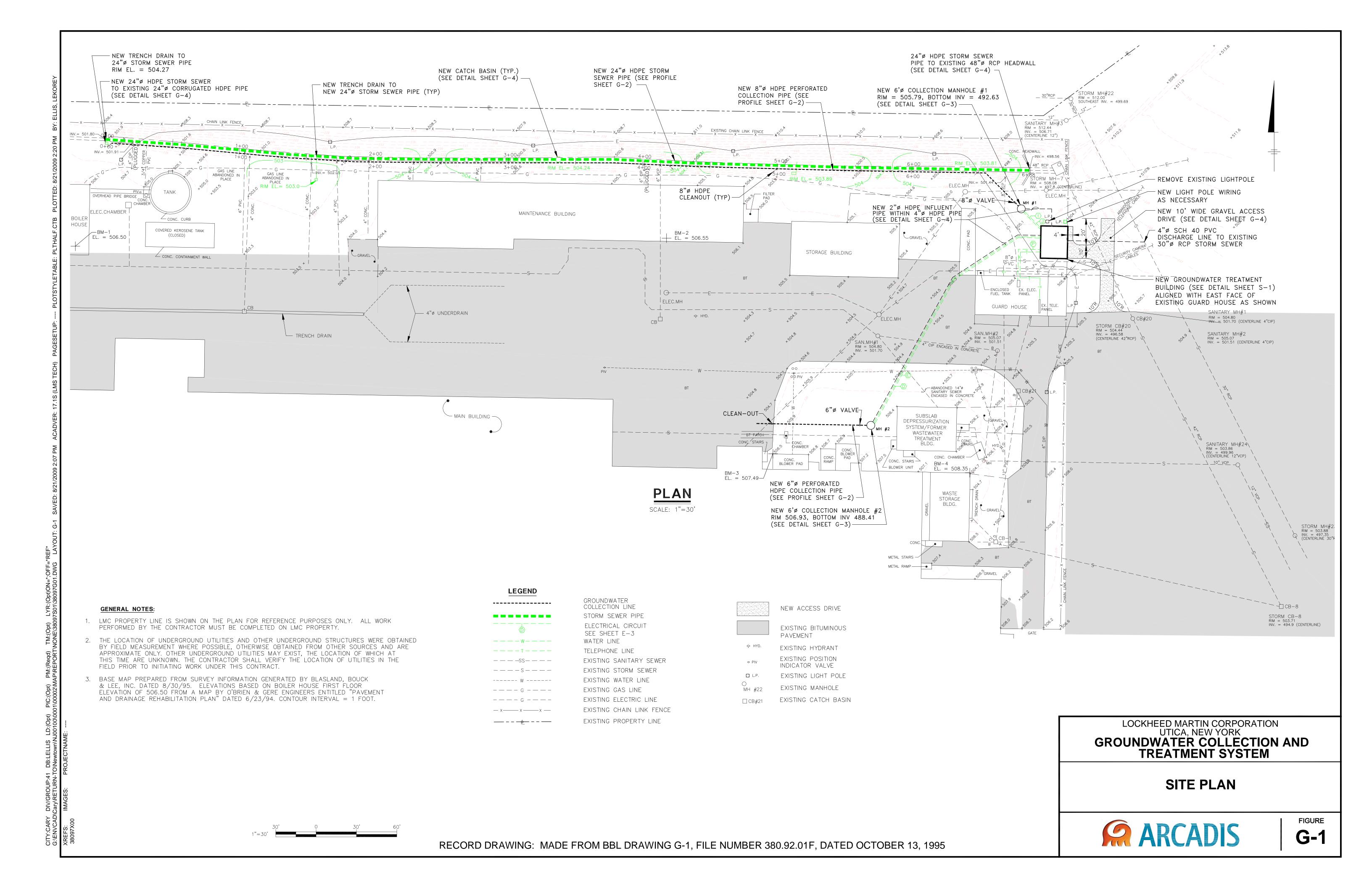
CONTROL LOGIC

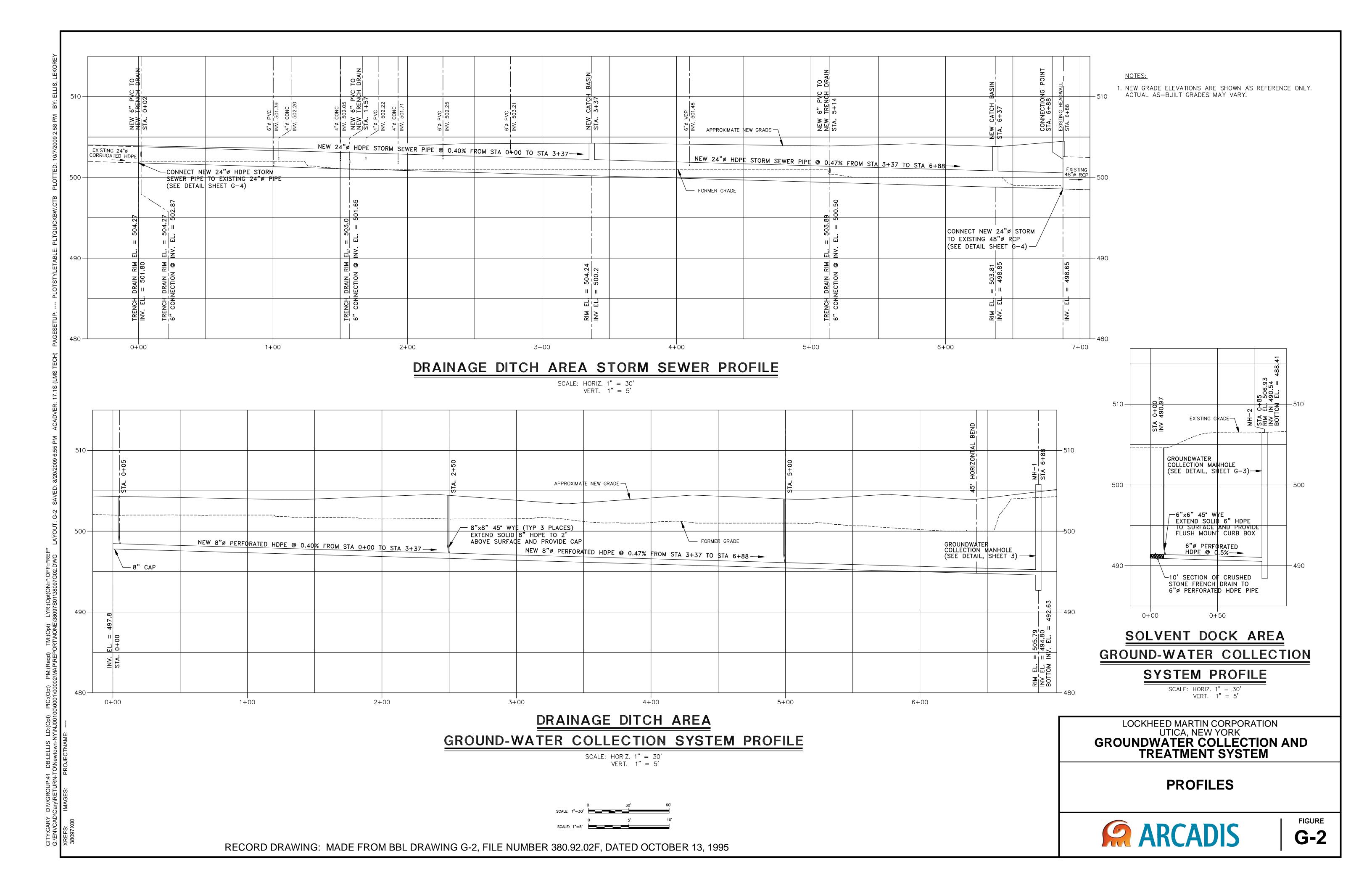
ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826



SCALE: 4' 2' 0 4' 8'

SCALE(S) AS INDICATED




FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK

GROUNDWATER COLLECTION AND TREATMENT SYSTEM

BUILDING	ELE	VATION,
SECTION	AND	DETAILS

RCADIS Project No. J001024.0001.00005	
 ate ARCH 2011	

NOT TO SCALE

SPECIFICATIONS AND NOTES (APPLICABLE TO DRAWINGS G-1 THROUGH E-3)

- 1. AIR STRIPPER SYSTEM TO BE MANUFACTURED BY SHALLOWTRAY MODEL 3631, 316 AS SPECIFIED IN MATERIAL AND PERFORMANCE SPECIFICATION MP-04006.
- 2. ALL PVC PIPES SHALL BE SCHEDULE 80 TYPE II UNLESS OTHERWISE SPECIFIED.
- ALL PVC JOINTS TO BE SOLVENT WELDED.
- 4. ALL PVC PIPES SHALL BE SUPPORTED EVERY 5'-0" AND LOCATED 2'-0" (MAX) FROM JOINT LOCATIONS.
- 5. ALL CORRUGATED HDPE PIPE SHALL BE ADS N-12 SMOOTH INTERIOR OR EQUAL. ALL OTHER HDPE PIPE TO BE SDR-11 OR SDR-17 AS INDICATED.
- 6. ALL HDPE JOINTS TO BE BUTT FUSED.
- 7. ALL PIPE AND HOSE TO BE INSTALLED AND PRESSURE—TESTED AS PER MANUFACTURER'S SPECIFICATIONS. ZERO LEAKAGE IS ALLOWED FOR ALL JOINTS.
- 8. ALL PIPING AND MANIFOLDS TO BE LABELED WITH STENCIL OR ADHESIVE. FLOW ARROWS TO BE LABELED AT INLET AND DISCHARGE CONNECTIONS, PIPING AND DESCRIPTION (E.G., MANHOLE NO. 1 INFLUENT) SHALL ALSO BE CLEARLY LABELED AT ALL VALVE AND APPURTENANCE LOCATIONS.
- 9. FLOW METERS SHALL BE SIGNET ANALOG FLOW TOTALIZER, WHICH DISPLAYS FLOW RATE AND TOTALIZED FLOW VOLUME OR EQUAL. SIGNET INDICATOR SHALL BE A MODEL P57540. ASSOCIATED SIGNET SENSOR SHALL BE MODEL P51530-PO. FITTINGS AND DIAL RANGES ARE AS FOLLOWS:
 - A. MANHOLE NO. 1, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 DIAL RANGE - 0-60 GPM
 - MANHOLE NO. 2, 2 INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T020 DIAL RANGE - 0-30 GPM
 - C. SUMP PUMP 1-INCH DIAMETER INFLUENT LINE SENSOR FITTING - PV8T012 DIAL RANGE - 0-30 GPM
- 10. ALL FLOW METERS SHALL HAVE STRAIGHT PIPE PRECEDING (10 TIMES PIPE DIAMETER) AND FOLLOWING (5 TIMES PIPE DIAMETER) THEM.
- 11. ALL SAMPLE TAPS AND DRAIN VALVES SHALL CONSIST OF A 1/2"ø PIPE EXTENSION AND BALL VALVE OR EQUAL. SAMPLE TAPS AND DRAIN VALVES SHALL BE LOCATED AT LOCATIONS SHOWN ON THE DRAWINGS AND AT ALL LOW ELEVATIONS IN PROCESS PIPING.
- 12. ALL BALL VALVES TO BE PVC TRUE UNION TYPE WITH VITON SEALS BY TRUE BLUE OR EQUAL.
- 13. ALL BALL CHECK VALVES TO BE PVC, TRUE UNION TYPE WITH VITON SEALS BY PLASTO-MATIC OR EQUAL.
- 14. ALL PRESSURE GAUGES TO BE TRERICE MODEL NO. 450 LFB (WET) SILICONE-FILLED OR EQUAL. DIAL RANGES ARE AS FOLLOWS:
 - MANHOLE NO. 1 INFLUENT LINE (0-30 PSI) MANHOLE NO. 2 INFLUENT LINE - (0-30 PSI)
- C. SUMP PUMP INFLUENT LINE -(0-15 PSI)
- 15. SUMP PUMP SHALL BE A GRUNDFOG MODEL BOSS 210-A STAINLESS STEEL TOP-DISCHARGE SUBMERSIBLE SUMP PUMP WITH AUTOMATIC FLOAT SWITCH.
- 16. MANHOLE NO. 1 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 20 GPM @ 23 FEET TDH (ONE PUMP) AND 40 GPM @ 28 FEET TDH (TWO PUMPS) OR EQUAL.
- 17. MANHOLE NO. 2 PUMPS SHALL BE GOULDS PUMPS MODEL 3887 WITH VITON SEALS AND CAST IRON IMPELLER (3/4 HP, 230 VOLTS, 1,750 RPM, 1 PHASE) CAPABLE OF 10 GPM @ 26 FEET TDH (ONE PUMP) AND 20 GPM @ 30 FEET TDH (TWO PUMPS) OR EQUAL.

- 18. DUCTWORK
- A. UNLESS SPECIFICALLY SHOWN OTHERWISE, DUCTWORK SHALL BE FABRICATED OF ASTM AA167 TYPE 316 STAINLESS STEEL, SCHEDULE 10.
- B. DUCTWORK JOINTS, FABRICATION, AND SUPPORTS SHALL BE IN ACCORDANCE WITH SMACNA DUCT CONSTRUCTION STANDARDS.
- C. ALL DUCTWORK TO BE AIR TIGHT.
- 19. POTABLE WATER LINE PIPING SHALL BE ASTM B88 TYPE L COPPER WITH ANSI/ASME B16.29 WROUGHT COPPER FITTINGS. JOINTS SHALL BE SOLDERED WITH GRADE 95TA SOLDER.
- 20. ITEMS OF SPECIFIC MANUFACTURERS SHALL BE INSTALLED IN STRICT ACCORDANCE WITH THE PRINTED INSTRUCTIONS AND/OR THE MANUFACTURERS REPRESENTATIVES
- 21. ALL WALL PENETRATIONS SHALL BE SEALED WITH SILICONE AND COORDINATED WITH BUILDING MANUFACTURER SO AS NOT TO VOID BUILDING WARRANTEE.
- 22. ALL EXPOSED METALLIC SURFACES SHALL BE CORROSION RESISTANT OR CORROSION RESISTANT PAINTED.
- 23. ALL EQUIPMENT SHALL BE SUPPLIED AS SHOWN ON THE DRAWINGS. ANY PROPOSED DEVIATION FROM THE DRAWING MUST BE APPROVED BY LMC'S REPRESENTATIVE.
- 24. CONCRETE COATING SYSTEM TO BE PROVIDED AS PER SPECIFICATION MP-03002.
- 25. CONTRACTOR TO PROVIDE AND MOUNT ON WALL A FULLY-CHARGED DRY CHEMICAL TYPE FIRE EXTINGUISHER WITH AN A, B, C, RATING KIDDE OR EQUAL.
- 26. ALL WORK SHALL BE IN ACCORDANCE WITH LOCAL BUILDING CODES AND LOCAL HEALTH DEPARTMENT REGULATIONS.
- 27. SLOP SINK SHALL BE MUSTEE UTILATUB MODEL 18F OR EQUAL PROVIDE WITH MANUFACTURERS FAUCET WITH SWING SPOUT 1-1/2" BASKET STRAINER AND P-TRAP.
- 28. NEW MANHOLES SHALL BE EXFILTRATION TESTED AS FOLLOWS: THE MANHOLE SHALL BE FILLED WITH POTABLE WATER FOR 8 HOURS AND WILL BE ACCEPTABLE IF, FOR A TWO-HOUR OBSERVATION PERIOD THE LEAKAGE RATE IN THE STRUCTURE IS BELOW ONE GALLON PER VERTICAL FOOT OF DEPTH OVER A CALCULATED 24-HOUR PERIOD, NO VISIBLE LEAKAGE OF ANY AMOUNT IS ACCEPTABLE.
- 29. DESIGN LOADS: ALL STRUCTURAL LOADS AND LOAD COMBINATIONS SHALL BE IN ACCORDANCE WITH THE NEW YORK STATE BUILDING CODE.
- 30. SEE MECHANICAL DRAWINGS FOR LOCATION OF ALL OPENINGS IN FLOOR AND WALLS NOT SHOWN ON STRUCTURAL DRAWINGS. THE CONTRACTOR SHALL VERIFY THE NUMBER, SIZE AND LOCATION OF ALL OPENINGS BEFORE POURING ANY CONCRETE.
- 31. ALL BACKFILL REQUIRED AS THE RESULT OF OVER EXCAVATION, UNLESS DIRECTED BY REPRESENTATIVES OF LMC, SHALL BE MADE WITH COMPACTED SPECIAL BACKFILL OR LEAN CONCRETE FILL.
- 32. BACKFILL AT WALLS SHALL BE PLACED AND COMPACTED SIMULTANEOUSLY ON BOTH SIDES.
- 33. BACKFILL SHALL NOT BE PLACED AGAINST FOUNDATION WALLS UNTIL 28-DAY DESIGN STRENGTH IS REACHED OR THE WALLS ARE ADEQUATELY BRACED.
- 34. ALL STEEL REINFORCING SHALL BE SECURELY WIRED TOGETHER IN THE FORMS.
- 35. ALL EXPOSED EDGES OF CONCRETE SHALL BE CHAMFERED 3/4-INCH.
- 36. ALL SURFACES AT RECENTLY POURED CONCRETE RECEIVING NEW CONCRETE SHALL BE PREPARED BY CLEANING, WETTING AND TREATMENT WITH A NEAT CEMENT GROUT.
- 37. TRENCH DRAIN SHALL CONSIST OF A 24" WIDE , 11" DEEP AND 39" LONG PRECAST CONCRETE DRAIN WITH CAST IRON GRATING, AND 6"Ø OUTLET.
- 38. PUMPING MANHOLES NO.1 AND NO.2 ARE ELECTRICALLY CLASSIFIED AS CLASS 1, DIVISION 1, GROUP D ATMOSPHERES.

PRESSURE RELIEF VALVE

COLLECTION MANHOLE SCHEDULE DESCRIPTION MH-1MH-2DIST. A 13'-1" 18'-5" DIST. B 0'-8" 0'-6" DIST. C 2'-0" 2'-0" TOP EL. D 505.79 506.93 INV. EL. E 494.66 490.44 BOT. EL. F 492.63 488.41 LSLL 494.13 489.91' LSL 495.13 491.41' LSH1 497.63 493.41' LSH2 499.63' 496.41 LSHH 502.13 499.41'

LOCKHEED MARTIN CORPORATION UTICA, NEW YORK **GROUNDWATER COLLECTION AND** TREATMENT SYSTEM

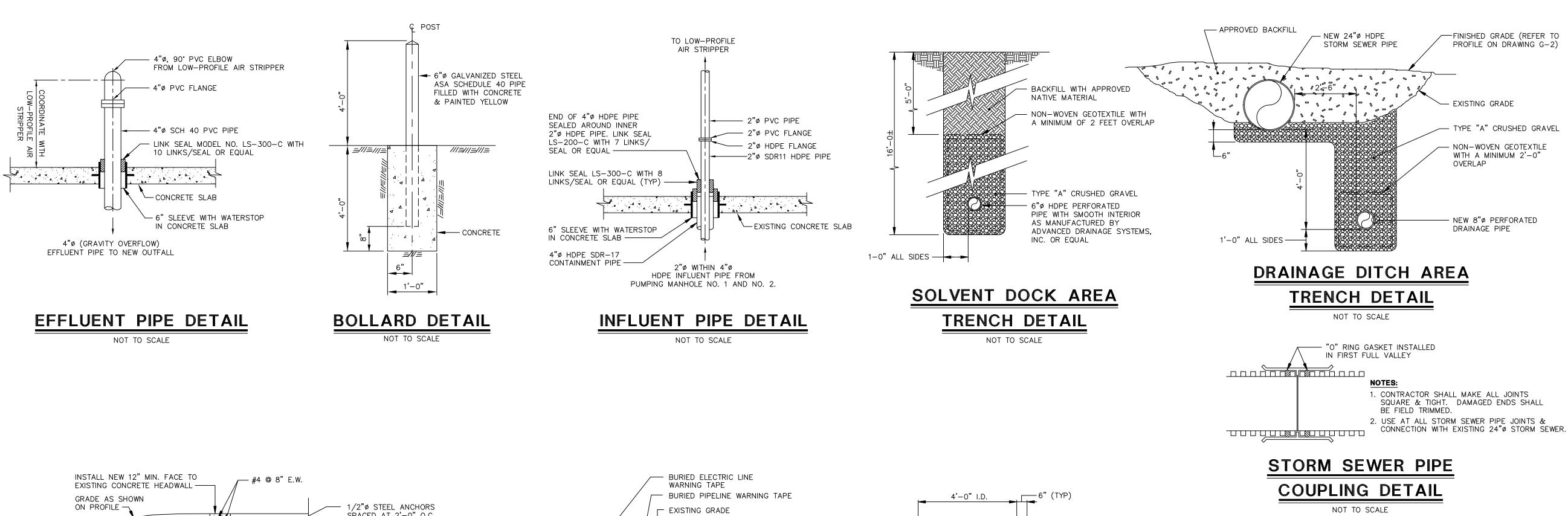
PUMPING MANHOLE DETAILS AND **SPECIFICATIONS**

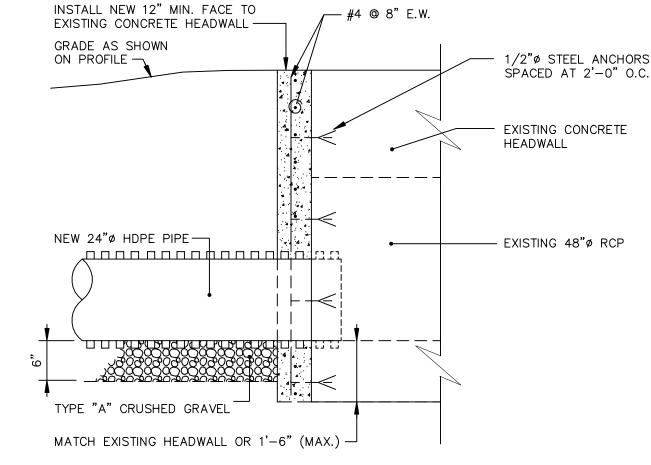
FIGURE G-3

LEGEND

 \rightarrow

BALL VALVE


NUT UNION


CHECK VALVE

POWER WIRING

SAMPLE/DRAIN TAP

NOT TO SCALE

STORM SEWER CONNECTION
TO EXISTING CONCRETE HEADWALL DETAIL

NOT TO SCALE

NUMBER OF
CONDUITS AS REQUIRED
SPACED 7.5" O.C.

BACKFILL WITH
APPROVED NATIVE
MATERIAL

TYPE "D" SAND (6" MIN ON
ALL SIDES) EXCEPT UNDER
PAVED AREAS WHERE CONDUITS
ARE TO BE ENCASED IN
CONCRETE 3" MIN. ON ALL SIDES

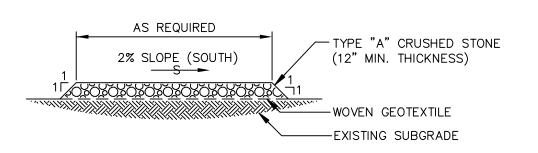
TYPICAL TRENCH DETAIL

NOT TO SCALE

24"ø HDPE PIPE

24"ø HDPE PIPE

6" (TYP)


TYPE "A" CRUSHED GRAVEL

(TYP)

- CAST IRON FRAME & GRATE

CATCH BASIN DETAIL

NOT TO SCALE

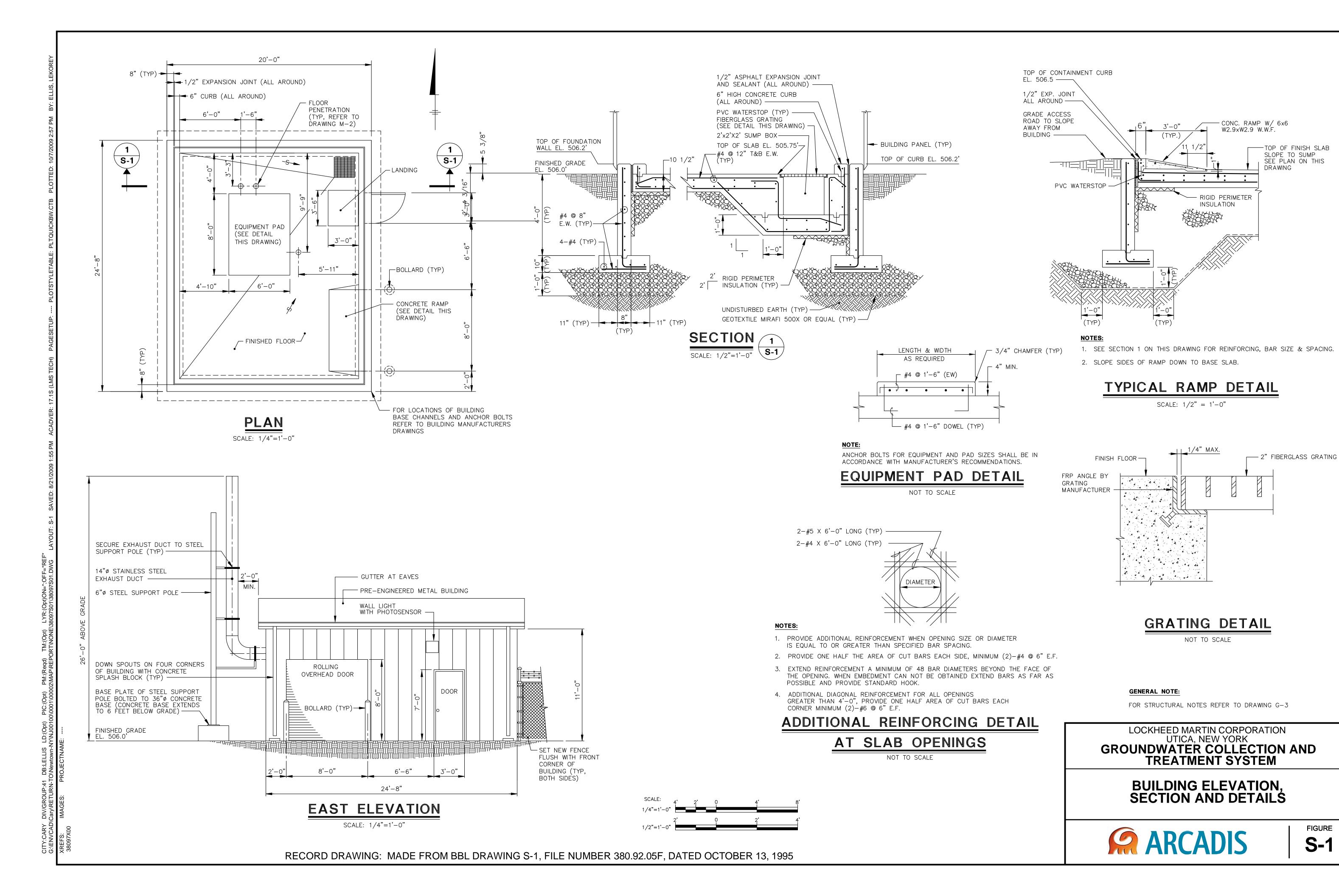
NOTES:

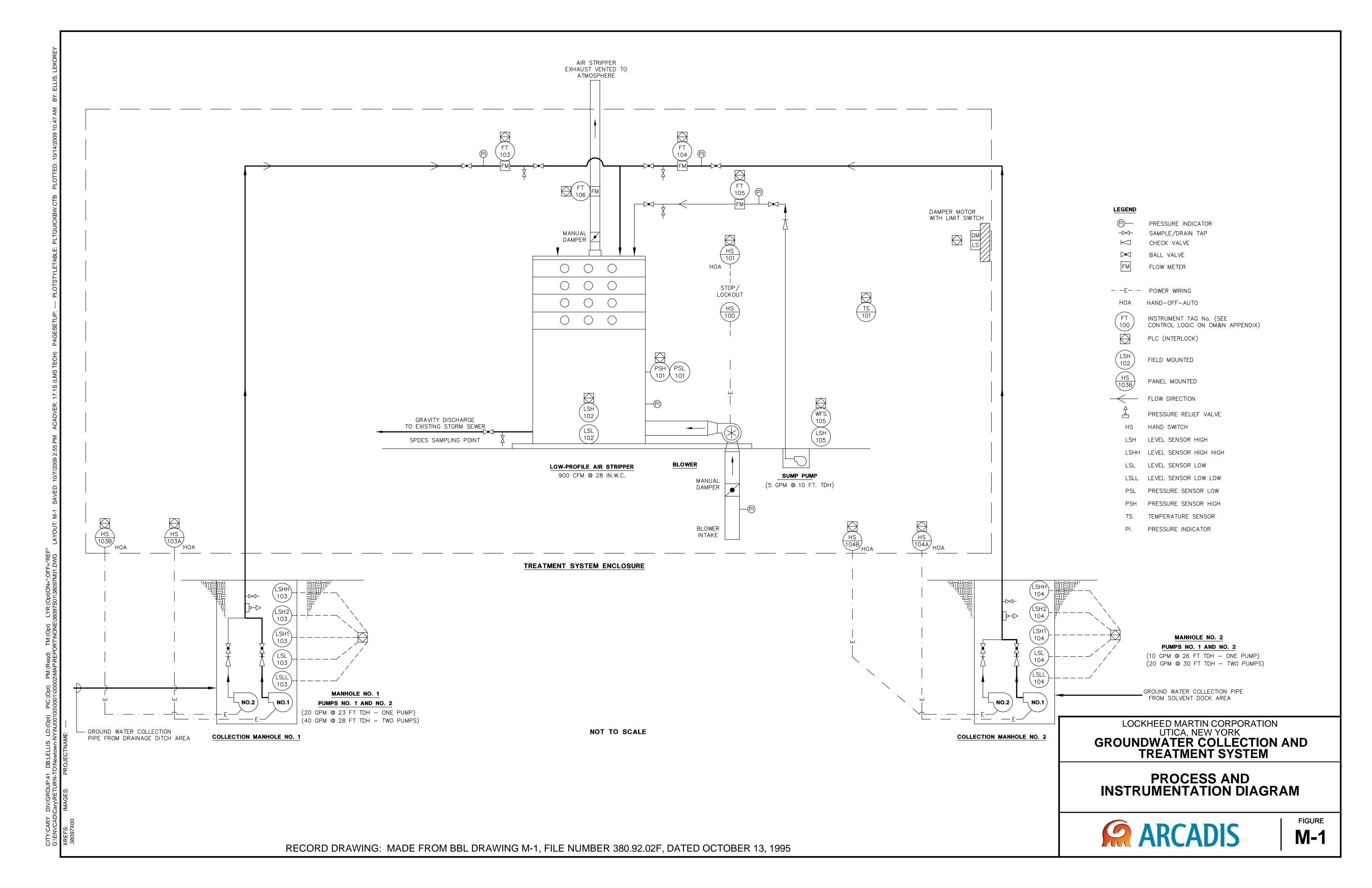
SLOPE GRADE TO NEW CATCH BASIN

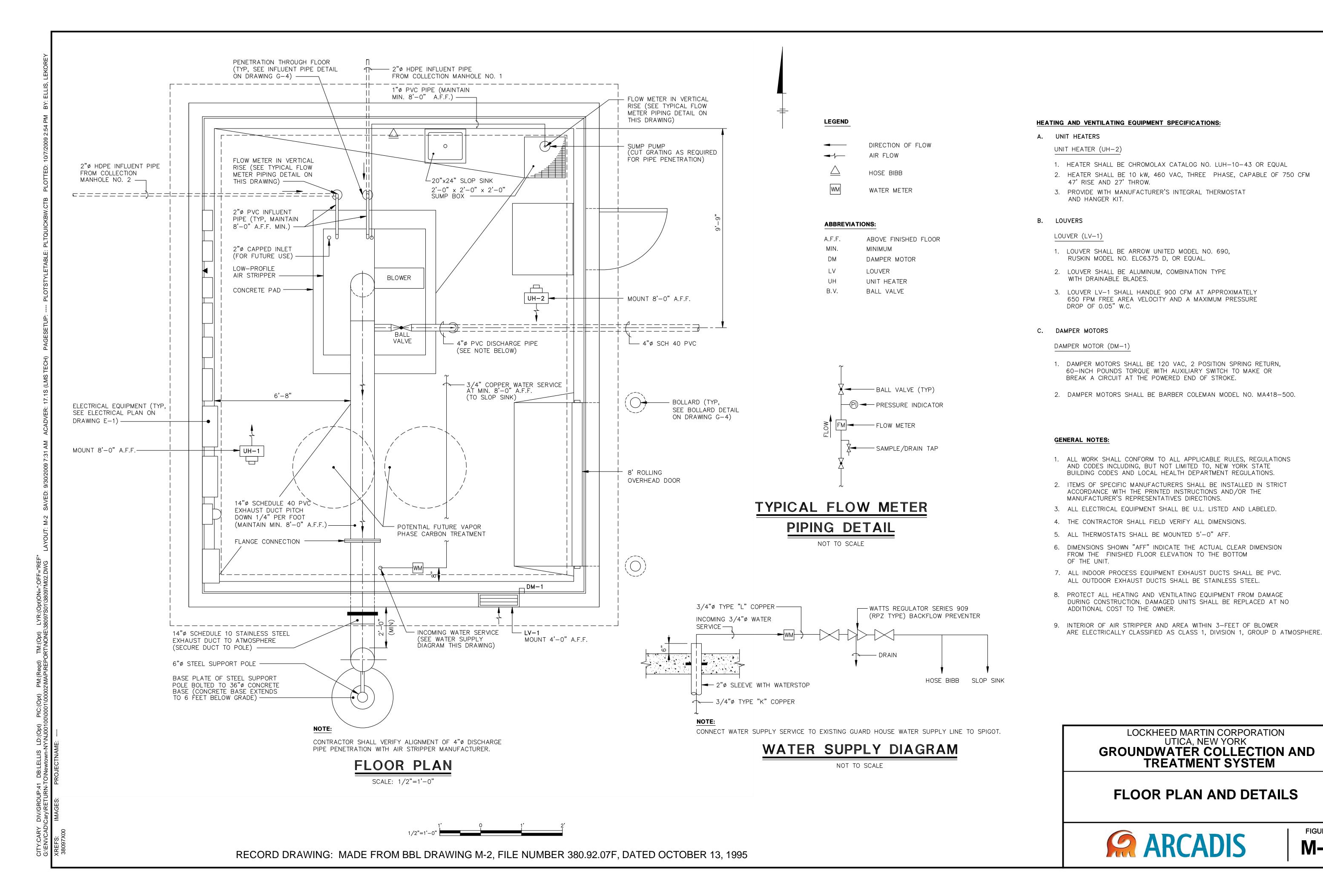
- 1. ROAD SUBGRADE SHALL BE STRIPPED OF NATIVE VEGETATION TO THE BOTTOM OF ROOT ZONE. THE SUBGRADE WILL THEN BE PROOF ROLLED WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF 10 TONS.
- 2. AREAS THAT DO NOT PASS PROOF ROLLING WILL BE OVER EXCAVATED AND REPLACED WITH CRUSHED STONE AS DIRECTED BY LMC'S REPRESENTATIVE.
- 3. WOVEN GEOTEXTILE SHALL BE PLACED OVER THE PROPOSED ROAD SUBGRADE SO THAT IT IS FREE OF FOLD AND WRINKLES. MINIMUM OVERLAPS BETWEEN ROLLS OF GEOTEXTILE SHALL BE 3 FEET.
- 4. CRUSHED STONE WILL BE PLACED FROM TRUCKS ONTO EXISTING CRUSHED STONE AND THEN SPREAD ONTO THE GEOTEXTILE WITH A DOZER. UNDER NO CIRCUMSTANCE IS CONSTRUCTION EQUIPMENT TO DRIVE DIRECTLY ON THE GEOTEXTILE OR WITH LESS THAN 6-INCHES OF CRUSHED STONE OVER THE GEOTEXTILE.
- 5. AFTER COMPLETION OF FINISH GRADING ALL POINTS ON THE ROAD SURFACE SHALL BE ROLLED AT LEAST 4 TIMES WITH A SMOOTH DRUM VIBRATORY ROLLER WITH A MINIMUM STATIC WEIGHT OF AT LEAST 10 TONS.

GRAVEL ACCESS DRIVE DETAIL

NOT TO SCALE

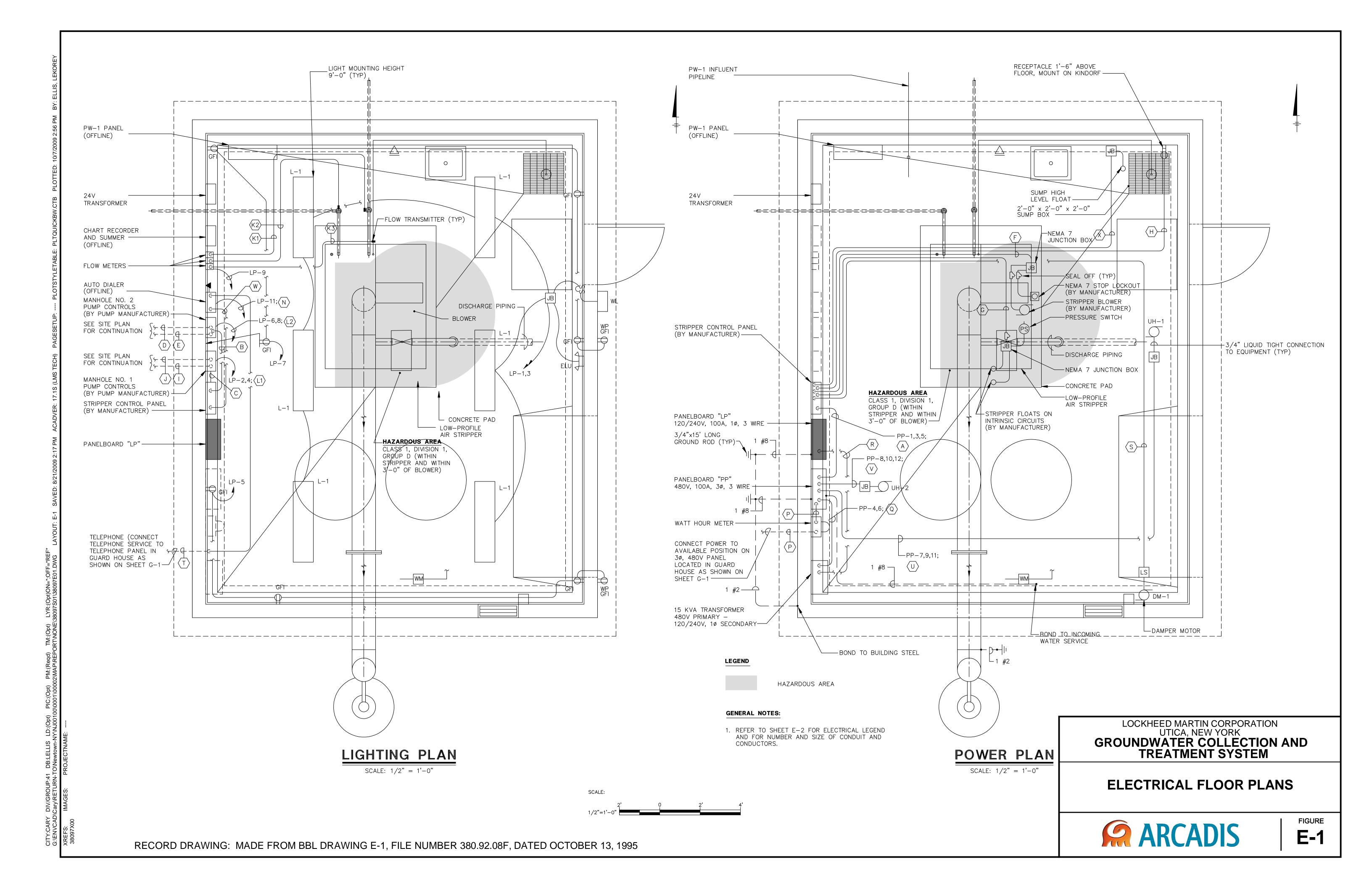

LOCKHEED MARTIN CORPORATION
UTICA, NEW YORK
GROUNDWATER COLLECTION AND
TREATMENT SYSTEM


MISCELLANEOUS DETAILS



G-4

NOT TO SCALE



FIGURE

M-2

ONE-LINE DIAGRAM

NOT TO SCALE

SWITCH

			31111011			
CIRCUIT	CONDUCTOR SIZE	CONDUIT SIZE	NAME			
Α	3 #10, #10G	3/4" EMT	BLOWER, SUMP PUMP, AND STRIPPER CONTROL POWER FEED			
В	8 # 14	3/4" EMT	CONTROL PANEL TO MANHOLE NO. 2 PUMP CONTROLS			
С	8 #14	3/4" EMT	CONTROL PANEL TO MANHOLE NO. 1 PUMP CONTROLS			
D	6 #12, 2 #12G	1-1/2" EMT (INDOORS) 1" RGS (OUTDOORS)	MANHOLE NO. 2 PUMP POWER			
E*	10 #12	1-1/2" EMT (INDOORS) 1" RGS (OUTDOORS)	MANHOLE NO. 2 LEVEL SWITCHES			
F	3 #8, 1 #12G 2 #14	1-1/2" RGS	BLOWER POWER AND CONTROL			
g*	8 #14	3/4" RGS	BLOWER PRESSURE SWITCH & LEVEL SWITCHES			
Н	2 #12, 1 #12G	3/4" RGS	SUMP PUMP RECEPTACLE POWER			
I	6 #12, 2 #12G	1" RGS	MANHOLE NO. 1 PUMP POWER			
J*	10 #14	1" RGS	MANHOLE NO. 1 LEVEL SWITCHES			
K1 K2 K3	MANUFACTURER'S CABLES	3/4" RGS	MANHOLE NO. 1 FLOW METER, MANHOLE NO. 2 FLOW METER, & SUMP PUMP FLOW METER			

CIRCUIT CONDUCTOR SIZE CONDUIT SIZE NAME L1							
M				NAME			
M	L1 L2	3 #10, 1 #10G					
EMT POWER FEED	М	2 #12, 1 #12G					
EMT	N	2 #12, 1 #12G					
(RGS OUTDOORS) Q 3 #8, 1 10G 1" TRANSFORMER FEED R 3 #6, 1 #8G 1" PANEL LP FEED SEAL TITE SEAL TITE SEAL TITE DAMPER MOTOR AND LIMIT SWITCH T 6 #22 1-1/2" TELEPHONE SERVICE RGS U 3 #10, 1 #10G 3/4" UNIT HEATER (UH-1) EMT V 3 #10, 1 #10G 3/4" UNIT HEATER (UH-2) W 10 #14 3/4" SUMP HIGH LEVEL	0	3 TSP #16		FLOW SIGNALS			
SEAL TITE R 3 #6, 1 #8G 1" SEAL TITE PANEL LP FEED SEAL TITE SEAL TITE DAMPER MOTOR AND LIMIT SWITCH T 6 #22 1-1/2" RGS UNIT HEATER (UH-1) EMT V 3 #10, 1 #10G 3/4" EMT UNIT HEATER (UH-2) EMT W 10 #14 3/4" SUMP HIGH LEVEL	Р	3 #2, 1 #6G		BUILDING POWER			
SEAL TITE S 2 #12, 1 #12G	Q	3 #8, 1 10G	'	TRANSFORMER FEED			
T EMT LIMIT SWITCH T 6 #22 1-1/2" TELEPHONE SERVICE U 3 #10, 1 #10G 3/4" UNIT HEATER (UH-1) V 3 #10, 1 #10G 3/4" UNIT HEATER (UH-2) W 10 #14 3/4" SUMP HIGH LEVEL	R	3 #6, 1 #8G	'	PANEL LP FEED			
" RGS U 3 #10, 1 #10G 3/4" UNIT HEATER (UH-1) EMT V 3 #10, 1 #10G 3/4" UNIT HEATER (UH-2) EMT W 10 #14 3/4" SUMP HIGH LEVEL	S						
W 10 #14 3/4" SUMP HIGH LEVEL	T 6 #22			TELEPHONE SERVICE			
W 10 #14 3/4" SUMP HIGH LEVEL	U	3 #10, 1 #10G		UNIT HEATER (UH-1)			
	٧	3 #10, 1 #10G		UNIT HEATER (UH-2)			
	W	10 #14		SUMP HIGH LEVEL			

^{*} INDICATES INTRINSICALLY SAFE SYSTEM PER NEC-504

CONDUCTOR SCHEDULE

NOT TO SCALE

SCHEDULE PANELBOARD GROUND WATER TREATMENT BUILDING PANEL "PP" CIRCUITS 4 & 6 LOCATION : ___ MAIN BUS RATINGS : ____ NQOD MINIMUM SHORTCIRCUIT INTERUPTING RATING RMS. SYMM. AMPS 3#6, 1#8 GND., 1"C MAIN BREAKER TRIP : AMPS , INCOMING FEED SURFACE MOUNTED NEMA 1 7.1 KVA ESTIMATED CONNECTED LOAD : ENCLOSURE CB CB DESCRIPTION DESCRIPTION |W-KW-HP| AMPS W-KW-HP INDOOR LIGHTING OUTDOOR LIGHTING RECEPTACLES (SOUTH) RECEPTACLES (NORTH) FLOW METER & CHART RECORDER SPARE SPARE SPARE SPARE SPARE SPARE SPARE SPARE SPARE SPARE SPARE

LOCATION :GROUN	PAI d water tre <i>i</i>	NELBOA Atment bi	ARI UILE))ING				CHEDUI FROM:	_	UARD HOUSE	PANEL CIRCUIT	
MAIN BUS RATINGS : MINIMUM SHORTCIRCUIT INTER	100				480 0		VOLTS ,3		3			WIRE TYPE
MAIN BREAKER TRIP : 1 ESTIMATED CONNECTED LOAD	00 (SERVICE E	NTRANCE	RA	TED)	_ AMPS	,	INCO	DMING FEE	D: _	3#2, 1#6	GND., 1-1/2"C OUNTED NEMA 1	
DESCRIPTION	LOAD W-KW-HP	CB AMPS	CIR.	A	ВС		CIR.	CB AMPS	LOAD W-KW-H		DESCRIPTION	
BLOWER, STRIPPER CONTROLS	15HP	45	1		,		2			SPACE		
SUMP PUMP, & DAMPER MOT	OR		3		• ′		4	35	15KVA	TRANSFOR	RMER FEED	
		3	5		• /		6	2				
UNIT HEATER (UH-1)	10KW	30	7		/		8	30	10KW	UNIT HEA	TER (UH-2)	
			9				10					
		3	11				12	$\sqrt{3}$				

LEGEND

DENOTES FIXTURE TYPE

WL

EXTERIOR WALL PACK LIGHT FIXTURE

EMERGENCY LIGHT FIXTURE

S SINGLE POLE SWITCH

DUPLEX RECEPTACLE

GROUND FAULT CIRCUIT INTERRUPTER DUPLEX RECEPTACLE

B JUNCTION BOX

MOTOR

CIRCUIT HOMERUN

TELEPHONE OUTLET

LIMIT SWITCH

CIRCUIT BREAKER

LOCKHEED MARTIN CORPORATION
UTICA, NEW YORK
GROUNDWATER COLLECTION AND
TREATMENT SYSTEM

ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD SCHEDULES

FIGURE **E-2**

Appendix B

Monthly O&M Checklists

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	1/15/13
Time:	8:30
Technician:	CD/TG

		S		

System operation System currently		indicating system in "AUTO" or "MANUAL")	<u>AUTO</u>		
Alarms? (list)	Nanë.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Electrical Mete	r Reading (kWh):	134953			

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [F	PI-106] 27.0	(in. W.C.)
Air stripper sump water elevation (record from site	gauge) 15.625	(inches)
Blower intake line vacuum [F	PI-100] 2.1	(in. W.C.)
Main damper position (record distance from center of wingnut to out		(inches)
Interior dilution damper position (0° is shut, 90° is	s open)	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	1/15/13 9:22				>
Instantaneous Flowrate [gpm]	31.6-32.1	16,4-16,9	15,3-15,5		55.9-57.2
"Total" Flow (resettable, gal)		-			•
"Perm" Flow (gal)	16442788	2791636	2730579	1652	8913358
Pump 1 Running (Y/N)?	Y.	Υ	· 4	, N	NA NA
Pump 2 Running (Y/N)?	N	N	N	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Yes	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	No	(located on duct heater control panel door)

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	1/15/13
Time:	8:40
Technician:	60/56

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	62	(°F)	
Pre-Carbon Temperature	TI-400	88	(°F)	
Duct Heater Temperature Setpoint	<u>-</u>	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	<u>-</u>	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11.9	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.2	(in. W.C.)	
Effluent Pressure	PI-403	< 1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	29,6	(in. W.C.)	
Vapor Flowrate	FT-106	735-830	(cfm)	
Pre-Carbon Temperature	TT-400	86.6	(°F)	
Pre-Carbon Pressure	PT-400	8.9	(in. W.C.)	
Building Temperature	TT-100	68,9	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Yes	
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	Yes	
If in external mode, record one set of mA	4,8 (mA)	(display screen should automatically be switching back and
and stroke speed values	ち (spm)	forth between mA and stroke speed)
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	12.4	~ 4" below 12.5 gal tick mark
Quantity of additional full drums	two	

Inspect sequestering agent components for _	δK
signs of leaking or wear (tubing [suction, _	
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Yes
pH of effluent sample	7,86
Model of pH meter	Haman 41991001
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	N _o

Date:	1/15/13
Time:	9:30
Technician:	c D

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	
	No
Monthly manhole inspections conducted? (Y/N)	Yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No, none at 3
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, all 3 (15 Houts)
Observe groundwater inside each manhole and note odor and appearance	MH-1 -> No odor, no sheen, clear MH-3; odor, c MH-2 -> no odor, clear, no visible sheen.
Is confined space entry signage present at each manhole? (Y/N)	Yes, all 3 MH's
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MH-1-0K MH-2→
With pump(s) running, listen for any unusual sounds	MH-1; when pump 2 turns off line in MH-1 shakes. MH-27
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	MH-1 Good MM-3 Good MM-3 Good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	oK
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	MH-1+MH-2 in-line ball valves tough
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

ltem 1	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is interior emergency lighting operational? (Y/N)	Yes
Is first aid kit present and in good condition? (Y/N)	Yes
Is lockout/tagout equipment available? (Y/N)	Yes
Have electrical GFIs been tested and reset? (Y/N)	Yes
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP & Harch all DMM Harch 2 Addendum Nov 2012 OTT &M
ls emergency spill kit available? (Y/N)	Yes, in 5505
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Yes
Is current SPDES permit onsite? (Y/N) (note date)	Yes April 2011

Date:	1/15/13
Time:	9:45
Technician:	CD/JG

					ASK	

Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)	Yes
MH-1 influent pH 7.35	
MH-2 influent pH 7,98	
MH-3 influent pH 8.10	
I must be online during appeals collection if necessary weit for MLI 4 During 4 a	- O to turn on automobically

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N)

Are MH-2 or MH-3 online in auto during sampling collection?

Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)

Quarterly groundwater elevation levels collected? (Y/N)

Blower bearings greased? (Y/N) No Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) 775 (cfm)

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning)

If yes, document testing and note any changes in sensor calibration factors

FT-101 - MY-1 pumpdown test w/ gate valve closed, Agal per DTW = per FT-101 = 490 [-4.7.70 -> ok]. FT-102 -> MH-2 pumpdown test. A gal

test. Agal per DTW-321 gal, A gal per FT-103 = 313[-2.576] - OK.
FT-105 → For FT-101 test → I+3.7 % // ανε. actual MH-1 DTW 1)

FT-102 test > [-8.490] you to FT-105 being both above AND below actual volumes,

FT-103 test > [-2.1890] plus MH-1 accombing for most flow, we'll keep it as currently

Manhole floats tested? (Y/N)

_	lest the following cri	tical alarms (note the	at system must be i	n AUTO to obs	erve proper alarm r	esponse):	<u> </u>
3	Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
4		PT-106	PA_106	fatal	Y	Y	Y
	Air Stripper Sump High Pressure	Notes: Currout s	etporatn 343	4 inwic. C	losed BFV-401.	short delay.	hutdown.
ſ		PT-106	PA_106	fatal	Y	Y	4
	Air Stripper Sump Low Pressure	Notes: Current Calso had MH-1	setpoint 8 in of	v.C. During PP). Short d	cycle turned a eby-Shitdown.	ir stripper HOA	to affi
	,	LSH-100	LA_100	fatal	Y	Y	У
	Air Stripper High Liquid Level	Notes: Filled u	with building	sump wat	ter Juhile	no MH's onlin	e]

Date:	1/17/13
Time:	12:00
Technician:	cp/AS

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Air Stripper Low Liquid Level	LSL-100 Notes: Closed b	LA_100 OFV-401. Trigg to, but MH	's HOAS of	7. PT-106 he	Did This cold just below of 34.0 in m	current
High Air Flowrate	FT-106 Notes: Sctpoint Then shitdown.	FA_106 - 1200 cf	fatal	· Y	Υ	<i>Y</i>
Low Air Flowrate	FT-106 Notes: Curent 5 min delay		fatal 3 00, V	nplugged high	tube from po	ү
Pre-Carbon High Temperature	Notes: Current s	TAH400 etpoint 110°F,	fatal Change t	90°F. mi	nute delay shu	tdown.
Pre-Carbon Low Temperature	Notes: Two Se	TAL400 expount @ 6	fatal o. Turned	Y duct heat	y off. 3 n	un delay.
Pre-Carbon High Pressure	PT-400 Notes: Current	PA_400 satpoint 25 10	fatal W.E. Chong	ge to 8 in W.C	. 45 sec delo	y, shitdown
Pre-Carbon Low Pressure	PT-400 Notes: Current	PA_400 satpoint 1.0	fatal hange to	7 20. 45 sec	delay, shutdown	
MH-1 Low Flowrate	FT-101 Notes: HOA in	FA_101 off while MH	warning	calling for p	umping.	Y
MH-2 Low Flowrate	FT-102 Notes: MH-A	FA_102	warning hen high	float up. 1	N Van-Fafal	Y
MH-3 Low Flowrate	FT-103 Notes: Both Mr	FA_103 1-3 HOA switch and system			N ile pumps bein	5

Date:	1/17/13	
Time:	12:00	
echnician:	CD/AS	

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-105	FA_105	warning	Y	N	γ
Aggregate Low Flowrate	Notes: Tested/a	observed thr	ing MH-1,	lon Q test.		
	WFS-106	WFS106	fatal	Y Y	Y	4
Building Wet Floor Sensor Alarm	Notes: Overflow	ed sump. Tr	rygered al	larm. Shutdon		
	LSH-106	LSH106	warning	Y	N	Y
Building Sump High Level	Notes: Filled s	ump. Trigger	ed alarm.			
	FT-200	FA_200	warning	Ý	N	Y
Sequestering Agent Low Flow	Notes: Pulled s	iction tubing a	wt. Got alo	um.		
	LSH-200	LSH200	warning	У	N	Y
Spill Pallet Wet Sensor Alarm	Notes: Put sen					3.
	LSHH-103	LA_MH1	warning			
MH-1 High Level	Notes:	en en en en en en en en en en en en en e				
9.7	LSLL-103	LA_MH1	warning			
MH-1 Low Level	Notes: Should ford	ce off both MH-1	pumps		.7	
	LSHH-104	LA_MH2	warning	,		
MH-2 High Level	Notes:					
	LSLL-104	LA_MH2	warning		-	
MH-2 Low Level	Notes: Should ford	ce off both MH-2	pumps			
	LSHH-105	LA_MH3	warning			
MH-3 High Level	Notes:					

Date:	1/17/13
Time:	12:00
Technician:	CD/45

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should ford	ce off both MH-3	oumps			· · · · · · · · · · · · · · · · · · ·
		N				
	TT-100	TA_100	shutdown	4	Y	Ŋ
Building High Temperature	Notes: Current 5	expount 110°F,	Change t	e 50. shotd	n w	
	TT-100	TA_100	shutdown	Y	У	У
Building Low Temperature	Notes: Held sm	ow up to prob	e. 2 minus	tes, shotdown)	mangénakan menungunga

Date:	2/7/13
Time:	1030
Technician:	1. Gutkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	62	(°F)	
Pre-Carbon Temperature	TI-400	101	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Ternperature Transmitter	-	75	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12.0	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.0	(in. W.C.)	
Effluent Pressure	PI-403	1.0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	31.14	(in. W.C.)	
Vapor Flowrate	FT-106	780 +0894	(cfm)	
Pre-Carbon Temperature	TT-400	100.4	(°F)	
Pre-Carbon Pressure	PT-400	9.1	(in. W.C.)	
Building Temperature	TT-100	63.9	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	ves	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	yes	
If in external mode, record one set of mA and stroke speed values	4.8 (mA) 5 (spm	- (and a second determined by the second deter
Stroke length	100	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	6991.	
Quantity of additional full drums	2 Full	

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction,	
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	All Good, NO Leaks or Wear

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	ves@1040 on 2/7/13
pH of effluent sample	8.21
Model of pH meter	Hanna HI 991001
Calibration notes / method used	2 point calibration
Are MH-2 or MH-3 online in auto during sampling collection?	No

Date: 2/7/13
Time: /200
Technician: 2500 60+kewsk.

MONTHLY OM&M TASKS (continued)

Notes
NO
Ves
MH-1: No Leaking MH-Z: No Leaking MH-3: No Leaking
Yes In All Three
Clear, WINO odor
yes
All Good, Noleaks
NO Unusual Sounds
Good, All Three
All Good
yes
None
106

Item。	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Ves
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	yes
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	ves
Have electrical GFIs been tested and reset? (Y/N)	ves .
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Ve5 OMM - 11/21/12 HASP - 3/28/12
Is emergency spill kit available? (Y/N)	Ves in 5505, 11/12/13
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	yes
Is current SPDES permit onsite? (Y/N) (note date)	ves Posted on Wall 4/1/1:

Monthly OM&M Log Sheet, Groundwater Collection and Date: Treatment System, Solvent Dock Area, Former Lockheed Martin Time: French Road Facility, Utica, New York Technician: SYSTEM STATUS System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) Electrical Meter Reading (kWh): 141046 AIR STRIPPER PARAMETERS (record while air stripper is running) Parameter Value 經 Units Air stripper sump pressure [PI-106] 29.0 (in. W.C.) Air stripper sump water elevation (record from site gauge) 15.0 (inches) Blower intake line vacuum [PI-100] (in. W.C.) Main damper position (record distance from center of wingnut to outside of

Is white "POWER ON" light on air stripper control panel lit?	ves
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?	ves Auto
	None
Note scaling observed inside air stripper via clear tray access door	None

blower housing)

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) $\sqrt{\ell}$ 5

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) $\sqrt{\ell}$ 5

Interior dilution damper position (0° is shut, 90° is open)

Parameter	MB:1 [E7-101]	MH-2 [FT-102]	MA-3 [FT-103];	Sump [FT-104]	Cum labve [FT-105]	
Date/Time	2/7/13					
Instantaneous Flowrate [gpm]	35.1	16.22	16.51	NA	59.58	
"Total" Flow (resettable, gal)	4,219,071	744,057	1,494,939	90	6,643,460	
"Perm" Flow (gal)	16,666159	2,824,071	2,810,065	1692	9,318,93	
Pump 1 Running (Y/N)?	, NO,	ves	ves	NO	NA NA	
Pump 2 Running (Y/N)?	ves	ALO	NO	NA	NA	

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) yes (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) NO (located on duct heater control panel door)

(inches)

2.25

0.)

A MANUEL OF THE STREET	York		3/5/2013	echnician:).	bu+Kowski
SYSTEM STATUS			11:00		
System operational? (PLC screen in System currently cycling? Alarms? (list) Flow Alarm	5			Auto	
Electrical Meter Reading (kWh):	1474		ng)		
	ameter	a de la comina	-	lue	Units
THE PARTY OF THE P	Control of the last of the las	imp pressure [PI-	DOMESTIC OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER,	SECTION AND ADDRESS OF THE PERSON	W.C.)
Air stripper sump				- 1	ches)
		line vacuum [PI-	10		W.C.)
Main damper position (record di			de of	1100000	ches)
Interior dilution	damper position	(0° is shut, 90° is c	ppen) c	(°)	
	inside liquid efflu	ent pipe from ac	cess port	les lone	
Note scaling Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10	-2, and MH-3 con	ntrol panels? (Y/I S-102B, HS-103	N) <u>ves</u>	llev
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10 and	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au	ntrol panels? (Y/I S-102B, HS-103 to" position? (Y/I	N) yes A, N) yes Ai	
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10 and	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au	ntrol panels? (Y/I S-102B, HS-103 to" position? (Y/I	N) yes A, N) yes A	Cumulative
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches Parameter	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10 and MH-1 [FT-101]	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au	ntrol panels? (Y/I S-102B, HS-103 to" position? (Y/I	N) yes A, N) yes Ai	
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches Parameter Date/Time	inside air stripper ERS s lit on MH-1, MH- [HS-101A, HS-10 and MH-1 [FT-101] 3 5 13 1110	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au MH-2 [FT-102]	ntrol panels? (Y/I S-102B, HS-103, to" position? (Y/I MH-3 [FT-103]	N) <u>yes</u> A, N) <u>yes</u> A Sump [FT-104]	Cumulative [FT-105]
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches Parameter Date/Time Instantaneous Flowrate [gpm]	inside air stripper ERS s lit on MH-1, MH- [HS-101A, HS-10 and MH-1 [FT-101] 3 3 3 15	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au MH-2 [FT-102]	MH-3 [FT-103]	N) <u>yes</u> A, N) <u>yes A</u> Sump [FT-104]	Cumulative [FT-105]
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches Parameter Date/Time Instantaneous Flowrate [gpm] "Total" Flow (resettable, gal)	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10 and MH-1 [FT-101] 3 5 13 1110 3 3 . 15 4,429,787	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au MH-2 [FT-102]	mtrol panels? (Y/I S-102B, HS-103, to" position? (Y/I MH-3 [FT-103]	N) yes A, N) yes A, Sump [FT-104]	Cumulative [FT-105] 59.02 6,968,675
Note scaling observed FLOWMETER / PUMP PARAMET Are white power lights Are pump hand-off-auto switches Parameter Date/Time Instantaneous Flowrate [gpm]	inside air stripper ERS s lit on MH-1, MH [HS-101A, HS-10 and MH-1 [FT-101] 3 5 13 1110 3 3 . 15 4,429,787	-2, and MH-3 con 1B, HS-102A, HS HS-103B] in "au MH-2 [FT-102]	mtrol panels? (Y/I S-102B, HS-103 to" position? (Y/I MH-3 [FT-103]	N) yes A, N) yes A, Sump [FT-104]	Cumulative [FT-105]

Is duct heater "HEAT ON/OFF" light lit? (Y/N) Ves (located on duct heater control panel door)

Is duct heater "HI TEMP" alarm light on? (Y/N) NO (located on duct heater control panel door)

Date: 3|5|13
Time: 1120
Technician: Jason Gutkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	64	(°F)	
Pre-Carbon Temperature	TI-400	83	(°F)	
Duct Heater Temperature Setpoint	2	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3.5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
ir Stripper Sump Pressure	PT-106	28.66	(in. W.C.)	
Vapor Flowrate	FT-106	755 TO 836	(cfm)	
Pre-Carbon Temperature	TT-400	89.7	(°F)	
Pre-Carbon Pressure	PT-400	8.4	(in. W.C.)	
Building Temperature	TT-100	67.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	ves	
Is low flow alarm present? (Y/N)	′ —>	Intermittent
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA	5.0 (mA)	(display screen should automatically be switching back and
and stroke speed values	6 (spm)	forth between mA and stroke speed)
Stroke length	90	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	29gal.	New Drum, Started @ 29991.
Quantity of additional full drums	1 Full Drum	

Inspect sequestering agent components for signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

All Good, NO Leaks or Wear

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves
pH of effluent sample	
Model of pH meter	Hanna H1991001
Calibration notes / method used	2 Poin+ Calibration
Are MH-2 or MH-3 online in auto during sampling collection?	

Date: 3 | 5 | 13

Time: 115

Technician: 2000 6 0 + 40 wski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	yes
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI: NO leaks MHZ: NO leaks MH3: NO leaks
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes, All in All Three Wells
Observe groundwater inside each manhole and note odor and appearance	Clear No Odors
Is confined space entry signage present at each manhole? (Y/N)	yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good, Noleaks
With pump(s) running, listen for any unusual sounds	No Unusual Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good All Three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Good No Leaks
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	ves
Is interior emergency lighting operational? (Y/N)	ves
Is first aid kit present and in good condition? (Y/N)	ves
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	Ves
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	YES OMEM Manual: 11/21/12 Hasp: 3/28/12
Is emergency spill kit available? (Y/N)	Ves in 5505
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	No.
Is current SPDES permit onsite? (Y/N) (note date)	vesposted on Wall 4/1/11

Date:	4/24/13
Time:	12:36
Technician:	CO/CE/J6

_			 	
0	vo	TEN	 ГАТ	. 116
-			 	115

System operational? (PLC screen in System currently cycling? Yes Alarms? (list) No		indicating system in "AUTO" or "MANUAL") S	Auts	
Electrical Meter	Reading (kWh):	159304		

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	25.5	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	18.5	(inches)
Blower intake line vacuum [PI-100]	1.8	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.4	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Note scaling observed inside air stripper via clear tray access door

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	4/24/13	12:46			>
Instantaneous Flowrate [gpm]	34-35	0	0	0	39-4/
"Total" Flow (resettable, gal)					
"Perm" Flow (gal)	17752397	29359/4	3085028	1711	10400966
Pump 1 Running (Y/N)?	2	N	N	N	NA
Pump 2 Running (Y/N)?	Y	N	N	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	(located on duct heater control panel door
Is duct heater "HI TEMP" alarm light on? (Y/N)	N	(located on duct heater control panel door

Date: 4/24/13
Time: 12:36
echnician: CP/CE/J6

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	56	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3.2	(in. W.C.)	
Effluent Pressure	PI-403	<1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.72	(in. W.C.)	
Vapor Flowrate	FT-106	670-760	(cfm)	
Pre-Carbon Temperature	TT-400	79, 2	(°F)	
Pre-Carbon Pressure	PT-400	7-6	(in. W.C.)	
Building Temperature	TT-100	70.1	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter Parameter	Stat	üs	Notes		
Is pump operating? (Y/N)	Y				
Is low flow alarm present? (Y/N)	N				
Is pump in external mode? (Y/N)	Y				
If in external mode, record one set of mA	5 (mA)		(display screen should automatically be switching back and		
and stroke speed values	6	(spm)	forth between mA and stroke speed)		
Stroke length	100		(record from local stroke length knob on pump)		
Sequestering agent drum level [LI-200]	18.7	•			
Quantity of additional full drums	1				

Inspect sequestering agent components for	OK
signs of leaking or wear (tubing [suction,	
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Y
pH of effluent sample	7.98
Model of pH meter	Hanna HI 991001
Calibration notes / method used	2 pt cal.
Are MH-2 or MH-3 online in auto during sampling collection?	No

Technician: CE

MONTHLY OM&M TASKS (continued)	
Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	N; all fine
Monthly manhole inspections conducted? (Y/N)	Y
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1 → N N ← X → N 3 → N
Do level floats appear to be in good condition and hanging freely? (Y/N)	MH-1-30K HH-2-3 OK MH-3-> OK
Observe groundwater inside each manhole and note odor and appearance	MH-3-> OK MH-1-> clear, no odor MH-3,-> clear, no odo MH-2-> clear w/sh, bt ador
Is confined space entry signage present at each manhole? (Y/N)	Yes, all 3
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MH-1 -> shakes when pump No. 1 shuts off MH-2 -> shakes when Pump No. 2 shuts off MH-3 -> OK
With pump(s) running, listen for any unusual sounds	ok
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	No signs of distress
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Yes, OK
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

Item	Status	
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	1 0	
Is eyewash/shower station operational and unobstructed? (Y/N)	Y	
Is interior emergency lighting operational? (Y/N)	Y	
Is first aid kit present and in good condition? (Y/N)	Υ	
Is lockout/tagout equipment available? (Y/N)	Y	
Have electrical GFIs been tested and reset? (Y/N)	Y	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	17	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	y only -7 original March 2011, adden- up to Nov. 2012 HASP + Jan 2013	den
Is emergency spill kit available? (Y/N)	Yes	
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Need ear protection	
Is current SPDES permit onsite? (Y/N) (note date)	April 2011	

French Road Facilit			eeg Martin	Te	chnician: CD/cE	:/T6	-	
QUARTERLY OM&	=				<u> </u>	. / J U	-	
Quarterly	y liquid influent sam MH-1 inf	ples collected for luent pH 8.01	MH-1, MH-2,	and MH-3? (Y/N)	Y		_	
	MH-2 inf		,					
Note: MH-1 must be (MH-1 typically batch			cessary wait f	or MH-1 Pump 1	or 2 to turn on auto	omatically		
Quarterly v	apor samples collec						-	
				npling collection?			-	
Quart	erly catch basin san	•		• • •			-	
	Quarte			s collected? (Y/N) s greased? (Y/N)			-	
Indicate air velocit	y measurement coll					(fpm)	-	
maioato dii volooit	side of ve	rtical portion of el	fluent pipe, 1	fpm = 0.317 cfm)	630-667	(cfm)		
QUARTERLY CRITIC					(4)			
	tters FT-101, FT-10		T-105 calibrat	ed2 (Y/N) /should				
Eiquia non tranomi				w sensor cleaning)				
If yes, document	testing and FT-10	MH-1 Propolous	n tent (18co	II. line unlives	Lx) → DTW=	26" = 457	anllows i	(61 et
note any change	s in sensor AFT-	101=443 gallon					- 5	march
calibration factor					FT-103 = 324 ->	-4% error	r-> 0K	
FT-102 HH-2 test	+ ABTW = 14.75" =	259 gallows. A	FT-WATA6	2 gallous -> +1	% error = OK.		_	
=T-105 Comparison								
	just K factor for							
T-105 by 5%	so expected %	e orrors for	FT-105 per	FT-102 + 10	3 world be -9	690 + -	8.6%.	, .
Manhole floats tested	d? (Y/N) <u>No.</u>			Uver - accompany	9 for MH-1(F	<u> </u>		tion du
				10 1191-1	boing majori	ly of flo		
Test the following cri	tical alarms (note tha	nt system must be in	n AUTO to obse	erve proper alarm re	esponse):		Old K's	•
Alam	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)	101 81.4 102 76.6 103 66.7 105 67.9	, , , ,
	PT-106	PA_106	fatal	Y	y	Y	105 01.7	71.5
Air Stripper Sump High Pressure	Notes: Change		nat from	34 10 26.	Short delay,	, shitday		
	PT-106	PA_106	fatal	Y	Y	4	1	
Air Stripper Sump Low Pressure	Notes: Change	d low setpos	it from	8 to 32. 5	hort delay. S	hetdown.		
	LSH-100	LA_100	fatal	y	Y	Y	1	
Air Stripper High Liquid Level	Notes: Filled	w/ bldg su	y water	during off-	cycle.			

Quarterly OM&M Log Sheet, Groundwater Collection and

Liquid Level

Date: 4/24/13

Date:	4/25/13
Time:	10:00
Technician:	CO/CE

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Air Stripper Low Liquid Level	Notes: Closed somp. Shutdown.	Pre-VPGAC b	fatal ut. value	75-80%.E	acrated our	shipper
High Air Flowrate	FT-106 Notes: Change	FA_106	fatal	y 500. 5 m	h delay. Shul	,
Low Air Flowrate	Notes: Changed	FA_106	fatal 300 16 1	700. Shut.	Υ	Ч
Pre-Carbon High Temperature	Notes: Great 5	TAH400 elpoint 13 d	fatal 9 //0. Cl	anged to s	80. Shotdown	Y
Pre-Carbon Low Temperature	TT-400 Notes: Turned	duct henter	off. Delay	. Shutdown.	Y	٢
Pre-Carbon High Pressure	PT-400 Notes: Change	PA_400 Sexponat fra	fatal	10. Shotdown	. Y	У
Pre-Carbon Low Pressure	PT-400 Notes: Change	PA_400	fatal From 1 +	20. Shuta	loun.	Y
MH-1 Low Flowrate	FT-101 Notes:	FA_101	warning	P Y	N	Y
MH-2 Low Flowrate	FT-102 Notes:	FA_102	warning	;	N	Υ
MH-3 Low Flowrate	FT-103 Notes:	FA_103	warning	pumps calle	N d for	Y

Date:	4/25/13
Time:	16:10
rechnician:	CDICE

Alam	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Aggregate Low Flowrate	Notes: Tested	dring MH-1	warning	test.	N	Y
Building Wet Floor Sensor Alarm	WFS-106 Notes: Filed so	WFS106	fatal ; overflow	ed. Shitdom		Y
Building Sump High Level	LSH-106 Notes: F.Hed w	LSH106	warning	Forkel.	N	Ÿ
Sequestering Agent Low Flow	Notes: Pulled	FA_200	warning	T-200 alas	/m//	Y
Spill Pallet Wet Sensor Alarm	Notes: Pul sens	LSH200 or in water.	warning	Y	N	- y
MH-1 High Level	LSHH-103 Notes:	LA_MH1	warning			
MH-1 Low Level	LSLL-103 Notes: Should force	LA_MH1 ce off both MH-1 p	warning oumps	, later		
MH-2 High Level	LSHH-104 Notes:	LA_MH2	warning			
MH-2 Low Level	LSLL-104 Notes: Should ford	LA_MH2 ce off both MH-2 p	warning oumps			
MH-3 High Level	LSHH-105 Notes: No	LA_MH3	warning			

Date:	4/25/13
Time:	16:10
Technician:	CP/CF

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
MH-3 Low Level	LSLL-105 Notes: Should ford	LA_MH3 e off both MH-3	warning oumps			-
Building High Temperature	TT-100 Notes: Changed	TA_100 setpoint	shutdown	to 40. sh	rtdan,	y
Building Low Temperature	Notes: Change	TA_100	shutdown	7 % 100. Sh	itlem	y

Date:	5/9/13
Time:	0940
Technician:). Gutkowski

2	107	 	TAT	2110
31	5	1 2 1	AI	ับร

System operati	onal? (PLC s	creen indicating system in "AUTO" or "MANUAL")	Auto
System current	ly cycling?	ves	
Alarms? (list)	None	1	

Electrical Meter Reading (kWh):

/61331

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	18:526.0	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	18.5	(inches)
Blower intake line vacuum [PI-100]	-z	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.0	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0,7	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

None

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Ves

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	5/9/13/				
Instantaneous Flowrate [gpm]	36,19	NIA	NA	N/A	36.90
"Total" Flow (resettable, gal)	5,005,548	869,778	1.812,098	206	7,881,575
"Perm" Flow (gal)		2,949,769	3,127,219	1808	10,557,051
Pump 1 Running (Y/N)?		NO	NO	NO	NA
Pump 2 Running (Y/N)?	NO	NO	NO	NA	NA

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)_	Ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date:	5	9	113	
Time:	0900			
Technician:	1.60	+4	owsk:	

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	64	(°F)	
Pre-Carbon Temperature	TI-400	81	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	2.5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	Registration of the second of

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.87	(in. W.C.)	
Vapor Flowrate	FT-106	655 TO 718	(cfm)	
Pre-Carbon Temperature	TT-400	85.1	(°F)	
Pre-Carbon Pressure	PT-400	7.3	(in. W.C.)	
Building Temperature	TT-100	68.9	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes		
Is pump operating? (Y/N)	Ves			
Is low flow alarm present? (Y/N)	NO			
Is pump in external mode? (Y/N)	Ves			
If in external mode, record one set of mA		(display screen should automatically be switching back an		
and stroke speed values	(spm)			
Stroke length	100	(record from local stroke length knob on pump)		
Sequestering agent drum level [LI-200]	15921			
Quantity of additional full drums	1 Full Drum			

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction,	
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	Good, Notecks or Wear

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves, @ 0925 on 5/9/13
pH of effluent sample	
Model of pH meter	Hanna H1 991001
Calibration notes / method used	2 Poin + Calibration
Are MH-2 or MH-3 online in auto during sampling collection?	NO

Date: 5/9/13 Time: /030 Technician:), 60+k0wsk',

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MHI- No Dripping / Leaks MHZ- NO Dripping / Leaks MH3- NO Dripping / Leaks MHI- Yes
Do level floats appear to be in good condition and hanging freely? (Y/N)	MHI-yes MH3.yes.
Observe groundwater inside each manhole and note odor and appearance	Clear No Odors
Is confined space entry signage present at each manhole? (Y/N)	Ves
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MHI-NOLEGES MHZ-NOLEGES MH3-NOLEGES
With pump(s) running, listen for any unusual sounds	NOUNUSURISQUIDS INAITTHEE
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good All Three
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	Good, NO Notable observation INAll Three
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	les
Is first aid kit present and in good condition? (Y/N)	ves
Is lockout/tagout equipment available? (Y/N)	ves
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	ves
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes Hap 3/28/12
Is emergency spill kit available? (Y/N)	Vesin 5305
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	ves Posted on Wall 4/1

Freatment System, Solvent Dock French Road Facility, Utica, New		Technician:). (ou+kowsk'.			
renen Road racinty, otica, New	"	echnician: J.	Co+kousk.		
SYSTEM STATUS					
System operational? (PLC screen in System currently cycling? Ve. Alarms? (list) None		in "AUTO" or "M/	ANUAL")	Auto	
Electrical Meter Reading (kWh):	1660	27			
AIR STRIPPER PARAMETERS (re	ecord while air s	tripper is runnin	g)		
Par	ameter	NAME OF STREET	Vali	Je .	Units
	Air stripper su	ımp pressure [PI-	106] 25	5 (in.	W.C.)
Air stripper sump	water elevation (record from site ga	uge) 17.5	Š (in	ches)
	Blower intake	e line vacuum [PI-	100] ~ 2	(in	W.C.)
Main damper position (record dis	stance from center	of wingnut to outside blower house		(inc	ches)
Interior dilution	damper position	(0° is shut, 90° is o	pen) O	7 (°)	
Are pump hand-off-auto switches	s lit on MH-1, MH [HS-101A, HS-10		S-102B, HS-103A		
A	MH-1	MH-2	MH-3	Sump	Cumulative
Parameter	[FT-101]	[FT-102]	[FT-103]	[FT-104]	[FT-105]
Date/Time	6/12/13/1020				
Instantaneous Flowrate [gpm]	38.51	NIA	16.21	NIA	48.82
"Total" Flow (resettable, gal)	5,298,314	926,713	1,951,901	237	8344,256
"Perm" Flow (gal)		3006,724	3,267,038	1,839	11,019,734
Pump 1 Running (Y/N)? NO NO N				NO	NA NA
Pump 2 Running (Y/N)? Yes NO Yes NA					
- Flowrate and Permanent Flow cousing up/down arrows. VAPOR PHASE PARAMETERS (r				FT-101 throug	h FT-105
				nador anatad	anal daarl
			-		
Is duct heater "HEAT OF Is duct heater "HI TEMP"			_(located on duct i _(located on duct i		

Monthly OM&M Log Sheet, Groundwater Collection and

Date:	6/12/13
Time:	1030
Technician:)	· Gut Kowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	62	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	THE RESERVE OF THE PROPERTY OF THE PARTY OF
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	m • 12	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3.5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	29.37	(in. W.C.)	
Vapor Flowrate	FT-106	59876635	(cfm)	
Pre-Carbon Temperature	TT-400	80.1	(°F)	
Pre-Carbon Pressure	PT-400	7.5	(in. W.C.)	
Building Temperature	TT-100	70.5	(°F)	

Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	SHIM SHIM IN THE NOTES
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA and stroke speed values	5.3 (mA)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	8,5	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	5991.	Market State of the last of th
Quantity of additional full drums	1FUIL Drum	

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction,	
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	Good, Noteaks or Wear

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	ves @ 103000 6/12/13
pH of effluent sample	8,04
Model of pH meter	Hanna H1 991001
	2 Poin + Calibration
Are MH-2 or MH-3 online in auto during sampling collection?	

Date: 6/12/13
Time: 1200
Technician: Joseph Gutkowski,

MONTHLY OM&M TASKS (continued)

Task	Notes		
Liquid flow sensors cleaned? (Y/N) (only as needed)	No		
Monthly manhole inspections conducted? (Y/N)	Ves		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	MH-1 . All Good, NO Dripping or Leaks MH-2. MH-3		
Do level floats appear to be in good condition and hanging freely? (Y/N)	MH-1: YES MH-3: YES MH-2: YES		
Observe groundwater inside each manhole and note odor and appearance	Clear, NO Odor		
Is confined space entry signage present at each manhole? (Y/N)	Yes All Three		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	MH-1 MH-Z: NOLEGIES@AIITHREE MH-3		
With pump(s) running, listen for any unusual sounds	No Unusual Sounds @ All Three		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good No issues @ All Three		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	All Good, No Leaks or Distress		
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes .		
List any notable observations	None		
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes, Both working froperly		

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	742
Is interior emergency lighting operational? (Y/N)	Y25
Is first aid kit present and in good condition? (Y/N)	VES
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	YES HOSP! 3/28/12
Is emergency spill kit available? (Y/N)	Ves in 5505
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Vi-ac
Is current SPDES permit onsite? (Y/N) (note date)	ves fosted on wall 4/1/11

Date:	7/11/13
Time:	0830
Technician:	The Ju

2727	'EM	ST	Δ	TI	IS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling?	
Alarms? (list) FA - 102 from 7/2/3	
Electrical Meter Reading (kWh): 170904	

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	27	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	17	(inches)
Blower intake line vacuum [PI-100]	. 2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	0	(inches)
Interior dilution damper position (0° is shut, 90° is open)		(°)

Is white "POWER ON" light on air stripper control panel lit?	Y		_
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?	У		
Note scaling inside liquid effluent pipe from access port	Trace		
Note scaling observed inside air stripper via clear tray access door	Trace noted :	through	9/65,
	4001,	,	

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N)

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time 1	1/11/13 10:00	"	11	"	
Instantaneous Flowrate [gpm]	36.0	14.5	16.0	0	57,0
"Total" Flow (resettable, gal)	5,857,980	1,014,588	2,209,938	237	9,160,660
"Perm" Flow (gal) 】		3,094,591	3,525,059	1839	11,836,133
Pump 1 Running (Y/N)?	Y, Manual	2	Y manuel	N	NA
Pump 2 Running (Y/N)?	2	Y	N	NA	NA

⁻ Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (recor	d while air	stripper is	running
-------------------------------	-------------	-------------	---------

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	(located on duct heater control panel door,
Is duct heater "HI TEMP" alarm light on? (Y/N)	N	(located on duct heater control panel door,

Date:	7/11/13
Time:	
Technician:	TMC

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	65	(°F)	
Pre-Carbon Temperature	TI -400	79	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(° F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401		(in. W.C.)	
Mid-Carbon Pressure	PI-402	3	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27,9	(in. W.C.)	
Vapor Flowrate	FT-106	602	(cfm)	
Pre-Carbon Temperature	T T -400	74	(°F)	
Pre-Carbon Pressure	PT-400	8,4	(in. W.C.)	MH-3 Online
Building Temperature	TT-100	76	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status		Status		Notes
Is pump operating? (Y/N)	Y				
Is low flow alarm present? (Y/N)	2				
Is pump in external mode? (Y/N)	Y				
If in external mode, record one set of mA	5.4	(mA)	(display screen should automatically be switching back a		
and stroke speed values	8	(spm)	forth between mA and stroke speed)		
Stroke length	85		(record from local stroke length knob on pump)		
Sequestering agent drum level [LI-200]	19,5/2	28 11			
Quantity of additional full drums	Quantity of additional full drums		Need to order a new down		

Inspect sequestering agent components for	<u> </u>
signs of leaking or wear (tubing [suction,	•
injection, bleed return], injection check valve	
fitting, spill pallet, etc.)	

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Y
pH of effluent sample	7.98
Model of pH meter	Hanna HI 991001
Calibration notes / method used	2 point 4 \$ 7
Are MH-2 or MH-3 online in auto during sampling collection?	

Date:	7/11/13
Time:	
Technician:	TMC

MONTHLY OM&M TASKS (continued)

MONTHLY OM&M TASKS (continued)			
Task	Notes		
Liquid flow sensors cleaned? (Y/N) (only as needed)	Y, MH-2		
Monthly manhole inspections conducted? (Y/N)	Y		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No leaks		
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes, ok		
Observe groundwater inside each manhole and note odor and appearance	clear, no odors		
Is confined space entry signage present at each manhole? (Y/N)	Y		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Y, no leaks		
With pump(s) running, listen for any unusual sounds	Y, no unusual sounds		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	or		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	0K		
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes .		
List any notable observations			
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes, offline for summer		

ltem	Status
s fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	У
Is interior emergency lighting operational? (Y/N)	Y
Is first aid kit present and in good condition? (Y/N)	Y
Is lockout/tagout equipment available? (Y/N)	Y
Have electrical GFIs been tested and reset? (Y/N)	Y
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	У
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Y, OMM Addendum 11/21/12 HASP 1/13
Is emergency spill kit available? (Y/N)	Y
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Y, April 2013

Quarterly OM&M Lo						11/13 - 7/	12/13
Treatment System, French Road Facilit			eed Martin	To	Time: 132	+5	
QUARTERLY OM&	•			Te	chnician: TM	· C	
				- 1 1 1 1 00 0 (0 1)	V		
Quarterly	liquid influent samp		_	ind MH-3? (Y/N)			
	MH-1 infl MH-2 infl	· <u>- 011</u>	<u>4-</u> ei				
	MH-3 infl		27				
Note: MH-1 must be				ally turn on MH	.1 Pump 1 or 2 /s	and blower if	
not already running i		ie conection, ii ne	cessary mana	lany turn on wir	-11 dilip 1 01 2 (e	ina biower ii	
	por samples collect	ted pre-carbon, m	nid-carbon, and	d effluent? (Y/N)	Y		
_		MH-3 online in au				÷.,	
Quarte	rly catch basin sam	ples collected for	CB-1, CB-2, a	and CB-3? (Y/N	<u> </u>		
	Quarter	y groundwater el				Water Brief Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	
				greased? (Y/N			
Indicate air velocity		ected from 8" efflu tical portion of eff				3 (fpm) (cfm)	
QUARTERLY CRITI	CAL DEVICE / ALA	RM TESTING					
Liquid flow transmit	ters FT-101, FT-102	2, FT-103, and F	Γ-105 calibrate	d? (Y/N) (should	•		
		b	e done after flow	sensor cleaning)			
If yes, documen		1/FT-101, T		2 T=0		= 12700 ga	
note any change calibration factor				D D T= 6:		= 12905,941	
		<u> </u>		= 211961		205 gel	
MH-2/FT-102, -	and the same of th			-3/FT-103			
	= 15:06 = 15		9/5			(.61	= 6588
-	Kn H= 2	22961 128	27 gs/		VMH =109	1 gal	D 107 901
					\ \ \ \ / \ \		
Manhole floats teste	d? (Y/N) <u>// A</u>			<u> </u>			
Test the following cri	tical alarms (note the	at system must be i	n AUTO to obse	rve proper alarm	response):		
	Corresponding			Caused PLC	Caused System		
Alarm	Transmitter/	PLC Alarm	Alarm Type	Alarm Output	Shutdown?	Passeo	
	Sensor	Output Name		State Change? (Y/N)	(Y/N)	(Y/N)	
	PT-106	PA_106	fatal	~		V	
Air Stripper Sump		set your	L	5 to 25 m	wc.		
High Pressure		,					
1	PT-106	PA_106	fatal	7	<u> </u>	7	
Air Stripper Sump Low Pressure	Notes: Chang	e set point	trum 8	to 30	inuc.		
98	LSH-100	LA_100	fatal			1 /	
Air Stripper High Liquid Level	Notes: Klood	Jump with	Clean a	sater,			

No charle resis # |30/15

Date:	7/11/13	-7/1	2/13
Time:	•	•	
Technician:	TMC		

Alarm	Corresponding Transmitter// Sensor	PLC Alarm Output Name	Ålarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (X/N)	Passed (Y/N)
Air Stripper Low Liquid Level	LSL-100 Notes: Close	LA_100 pre VPGA presure w	fatal c valve hich eva	BFY-401 wated the	76% to 11	ncresse in Juap.
High Air Flowrate	Notes: Chang	FA_106 e Setpoins	fatal	200 to 500	D CEM	Υ
Low Air Flowrate	FT-106 Notes: Chono	FA_106	fatal	y n 300 to	900 Cfm	Y
Pre-Carbon High Temperature	TT-400 Notes: Chang	TAH400	fatal	110 to 8	Y Y	У
Pre-Carbon Low Temperature	Notes: Torn	TAL400	fatal Lester	У	Υ	Y
Pre-Carbon High Pressure	PT-400 Notes: Change			from 25 inv		System
Pre-Carbon Low Pressure	PT-400 Notes: Charge	PA_400	fatal	to zo inwo	,	Υ
MH-1 Low Flowrate	FT-101 Notes: HOA	FA_101	warning	p being ce	Illed to run	У
MH-2 Low Flowrate	FT-102 Notes: HOA	FA_102 ~ off who		being celle	N Con	У
MH-3 Low Flowrate	FT-103 Notes: +>O A	FA_103	warning	being cell	el to run	У

Date:	7/12/13	
Time:	0830	
Technician:	TMC	

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Aggregate Low Flowrate	FT-105 Notes:	FA_105	warning	owneter ca	N	У
Building Wet Floor Sensor Alarm	WFS-106 Notes:	WFS106	fatal	-s Julomorge	remor.	У
Building Sump High Level	LSH-106 Notes:	LSH106	potable	weter	И	<i>Y</i>
Sequestering Agent Low Flow	FT-200 Notes:	FA_200	warning	У	N	Y
Spill Pallet Wet Sensor Alarm	Notes:	LSH200	warning) Y	N	Y
MH-1 High Level	LSHH-103 Notes:	LA_MH1	warning			
MH-1 Low Level	LSLL-103 Notes: Should for	LA_MH1	warning pumps			
MH-2 High Level	LSHH-104 Notes:	LA_MH2	warning			
MH-2 Low Level	LSLL-104 Notes: Should ford	LA_MH2 ce off both MH-2	warning pumps			
MH-3 High Level	LSHH-105 Notes:	LA_MH3	warning			

Date:	7	12	13		
Time:	0830				
Technician:	Tr	10			

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Property of the Parket of the	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should for	ce off both MH-3	pumps			
	TT-100	TA_100	shutdown	У	7	Y
Building High Temperature	Notes: Chang	ge Setpoir	+ from	110 +0	70 F	
	TT-100	TA_100	shutdown	У	Y	7
Building Low Temperature	Notes: Change	e selpann	- from	40 +0 -	75 F	

Monthly OM&M Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

SYSTEM STATUS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")

System currently cycling?

Alarms? (list)

Mone

Electrical Meter Reading (kWh): 173393

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units	
Air stripper sump pressure [PI-106]	26.5 18.505	(in. W.C.)	
Air stripper sump water elevation (record from site gauge)	18.5	(inches)	
Blower intake line vacuum [PI-100]	2	(in. W.C.)	
Main damper position (record distance from center of wingnut to outside of blower housing)		(inches)	
Interior dilution damper position (0° is shut, 90° is open)	0.2	(°)	

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door Very 1, +1 e

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Ves All Three

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	818113/0945				
Instantaneous Flowrate [gpm]	33.91	6.	13.97	0	43.65
"Total" Flow (resettable, gal)	206010	38763	104 468	0	322551
"Perm" Flow (gal)	18511180	3133363	3629532	1839	12158695
Pump 1 Running (Y/N)?	Ye5	NO	yes	NO	NA
Pump 2 Running (Y/N)?	NO	NO	NO	NA	NA

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

With the !

Cont Till

Date:	8/8/13
Time:	1000
Technician:). Butkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	69	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3.5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.96	(in. W.C.)	
Vapor Flowrate	FT-106	599 To 633	(cfm)	
Pre-Carbon Temperature	TT-400	77.3	(°F)	
Pre-Carbon Pressure	PT-400	7.7	(in. W.C.)	
Building Temperature	TT-100	73.1	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	ves	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	1'21/2"	From Bottom of Drum (16,25 gal.)
Quantity of additional full drums	None	

Inspect sequestering agent components for signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	ves @0935 on 818113
pH of effluent sample	8.10
Model of pH meter	Hanna, H1 991001
Calibration notes / method used	2 Point Cal.
Are MH-2 or MH-3 online in auto during sampling collection?	Ves MH-3

Date: 6 813
Time: 1030
Technician: 9500 (60+k005k)

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	All bood, No Leaking Dripping
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes in All Three
Observe groundwater inside each manhole and note odor and appearance	Clear, No Odorin All Three
Is confined space entry signage present at each manhole? (Y/N)	Yes, All Three
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Noteaks in All Three
With pump(s) running, listen for any unusual sounds	No Unusual Sound, All Three
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	600d/2015sues@AllThree
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	All Good
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Yes
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	ves
Is interior emergency lighting operational? (Y/N)	ves
Is first aid kit present and in good condition? (Y/N)	ves .
Is lockout/tagout equipment available? (Y/N)	ves
Have electrical GFIs been tested and reset? (Y/N)	ves operational
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	yes Hasp 3120/12 113
Is emergency spill kit available? (Y/N)	Ves in 5505
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	yes
Is current SPDES permit onsite? (Y/N) (note date)	ves Posted on wall 4/1/11
	The state of the s

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York	Da Tim Technicia	ne: 0930
SYSTEM STATUS		
System operational? (PLC screen indicating system in "AUTO" or "MANUAL") System currently cycling? Alarms? (list) None	Aut	0
Electrical Meter Reading (kWh): 176063 AIR STRIPPER PARAMETERS (record while air stripper is running)		
Parameter	Value	Units
Air stripper sump pressure [PI-106]	. 25.0	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	. 18.5	(inches)
Blower intake line vacuum [PI-100]	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.1	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.2	(°)
Is white "POWER ON" light on air stripper control panel lit Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position Note scaling inside liquid effluent pipe from access por Note scaling observed inside air stripper via clear tray access door	yes t very litt	
FLOWMETER / PUMP PARAMETERS		
Are white power lights lit on MH-1, MH-2, and MH-3 control panel. Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, and HS-103B] in "auto" position.	HS-103A,	SAIL Three
Darameter	STATE OF THE PARTY	imp Cumulati

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	9/10/13/1105	9/10/13/0936	9/10/13/0934	9/10/13/07/5	9/10/13/0934
Instantaneous Flowrate [gpm]	35.76	Ö.	17.59	0'	14.90
"Total" Flow (resettable, gal)	413529	91417	212298	0	657078
"Perm" Flow (gal)		3186017	3737373	1839	12493229
Pump 1 Running (Y/N)?		NO	yes	NO	NA
Pump 2 Running (Y/N)?		NO	NO.	NA	NA

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101, through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS	record while air	stripper	is runni	ng)
------------------------	------------------	----------	----------	-----

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ves	_(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Date:	alialis
Time:	1100
Technician:	1. Gutkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	71	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	4-4	97	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.23	(in. W.C.)	
Vapor Flowrate	FT-106	643 TO 695	(cfm)	
Pre-Carbon Temperature	TT-400	78.5	(°F)	
Pre-Carbon Pressure	PT-400		(in. W.C.)	
Building Temperature	TT-100	70.6	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA	4 (mA)	(display screen should automatically be switching back and
and stroke speed values	4.5 (spm)	forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	0,11	UP From Bottom of Drum
Quantity of additional full drums		

Inspect sequestering agent components for	
signs of leaking or wear (tubing [suction,	
injection, bleed return), injection check valve	
fitting, spill pallet, etc.)	All Good, No Leaking or Wear

MONTHLY OM&M TASKS

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	VES @1100
pH of effluent sample	8.14
Model of pH meter	Hanna H1 99100)
Calibration notes / method used	Zfon+Cal.
Are MH-2 or MH-3 online in auto during sampling collection?	No

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 2/10/13
Time: 1360
Technician: J. Gutleouski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	No
Monthly manhole inspections conducted? (Y/N)	Ves
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	AllGood
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes All Three
Observe groundwater inside each manhole and note odor and appearance	Clear w/ No Odor
Is confined space entry signage present at each manhole? (Y/N)	yes. All Three
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Noteaks
With pump(s) running, listen for any unusual sounds	No Unusual Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	All Good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Ves
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes

HEALTH AND SAFETY

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	ves
Is first aid kit present and in good condition? (Y/N)	vies .
Is lockout/tagout equipment available? (Y/N)	Ves
Have electrical GFIs been tested and reset? (Y/N)	vies working
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes .
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	OM&M! 11/2/12 Hasp 1/13
Is emergency spill kit available? (Y/N)	Ves in 5505
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Ves
Is current SPDES permit onsite? (Y/N) (note date)	vies fosted Onlyall 4/1/

Monthly OM&M Log Sheet, Grou Treatment System, Solvent Doc French Road Facility, Utica, Nev	Te	Date: Time: echnician:	10/22/13 1020 Jason Gothous			
SYSTEM STATUS				1101		
System operational? (PLC screen System currently cycling? Alarms? (list) None		n in "AUTO" or "M/	ANUAL",)	Auto	
Electrical Meter Reading (kWh):	1796	90		-		
AIR STRIPPER PARAMETERS (r		stripper is runnin	g)			
Pa	rameter	经中心 联系		Valu	Salar Barrier or Stock or 18 S. Stock	Units
Ai-Ai-		ump pressure [PI-				n. W.C.)
Air stripper sump		(record from site ga				nches)
		e line vacuum [PI-		to - 2	5 <u>10</u>	n. W.C.)
Main damper position (record d		blower hous	ing)	(2.1	nches)
Interior dilution	damper position	(0° is shut, 90° is o	pen)	.0	:2 (<u>')</u>
Is white "POWI	ER ON" light on a	ir stripper control i	panel lit	? Ve	25	
Is air stripper hand-off		(6.16			25	
Note scaling	g inside liquid effl	uent pipe from acc	cess por		Hle	
Note scaling observed	inside air stripper	via clear tray acc	ess doo	r lı	Hle	
FLOWMETER / PUMP PARAMET Are white power light Are pump hand-off-auto switches	s lit on MH-1, MH [HS-101A, HS-10		-102B, I	HS-103A	7	
Parameter	MH-1	MH-2	M	H-3	Sump	Cumulative
raiametei	[FT-101]	[FT-102]	SEASON FOR THE PART OF	-103]	[FT-104	
Date/Time	10/22/1032	10/22/3/1025	25/01	1030	10/22/13/10	27 10/22/13/1026
Instantaneous Flowrate [gpm]	0	17:47		2	0	1307
"Total" Flow (resettable, gal)	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner,	149011		078	0	1069,583
"Perm" Flow (gal)	Name and Address of the Owner, where the Owner, which is the Owner,	3243,615	3,86	7137	1,839	12,905,724
Pump 1 Running (Y/N)?		, N		N	N	NA '
Pump 2 Running (Y/N)?	N	h. for m. u.d. 11 may = 1-	d flow to	Namittara	NA ET 101 throu	NA NA

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Nes	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

⁻ Flowrate and Permanent Flow can be viewed locally from Wall-mounted flow transmitters F1-101 through F1-105 using up/down arrows.

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	10/22/13	
Time:	1020	
Technician:	Jason Gutkowsk	6

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	67	(°F)	
Pre-Carbon Temperature	TI-400	77	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.25	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.96	(in. W.C.)	
Vapor Flowrate	FT-106	717 70763	(cfm)	
Pre-Carbon Temperature	TT-400	717 70 763	(°F)	(77.7)(09)
Pre-Carbon Pressure	PT-400	9.9	(in. W.C.)	
Building Temperature	TT-100	66.1	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	yes	3
Is low flow alarm present? (Y/N)	No	
Is pump in external mode? (Y/N)	yes	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	2"	UP From Bottom of Drum
Quantity of additional full drums	1	·

Inspect sequestering agent components for _				
signs of leaking or wear (tubing [suction, _				
injection, bleed return], injection check valve				
fitting, spill pallet, etc.)	All	Good,	No Leaks or Wear	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @ 0915
pH of effluent sample	8.01
Model of pH meter	Hanna H1 991001
Calibration notes / method used	2 Poin Cal.
Are MH-2 or MH-3 online in auto during sampling collection?	Ves MH-2

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	10/22/13	
Time:	14:00	
Technician:	4D	

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	N
Monthly manhole inspections conducted? (Y/N)	
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	\mathcal{N}
Do level floats appear to be in good condition and hanging freely? (Y/N)	Y
Observe groundwater inside each manhole and note odor and appearance	MH-1 -> clear/no odor MH-3 -> clear/no odor MH-2 -> clear/slight odor
Is confined space entry signage present at each manhole? (Y/N)	Y
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	οK
With pump(s) running, listen for any unusual sounds	ok
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	oK
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	No issues
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Y
List any notable observations	
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Υ

HEALTH AND SAFETY

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	1 Y
Is eyewash/shower station operational and unobstructed? (Y/N)	Y
Is interior emergency lighting operational? (Y/N)	Ý
Is first aid kit present and in good condition? (Y/N)	Y
Is lockout/tagout equipment available? (Y/N)	Y
Have electrical GFIs been tested and reset? (Y/N)	Ý
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	I V
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Yer HASP → Jan 2017 OMR → Nov 2012
Is emergency spill kit available? (Y/N)	Y
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Y

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

QUARTERLY OM&M TASKS

Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)

MH-1 influent pH

7.08

MH-2 influent pH

7.77

MH-3 influent pH

7.77

Note: MH-1 must be online during sample collection, if necessary manually turn on MH-1 Pump 1 or 2 (and blower if not already running in Auto).

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N)

Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)

Quarterly groundwater elevation levels collected? (Y/N)

Blower bearings greased? (Y/N)

Y

Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm)

(fpm)

6(8)

Are MH-2 or MH-3 online in auto during sampling collection?

MH-3 9 MH-

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) If yes, document testing and Conducted pumpdown tests individually an note any changes in sensor MH-1 Test -> FT-101 = -6% calibration factors FT-105 = -9% MH-2 Test -> FT-102 -> +3.5% K Factors for Teits FT-105 - -16.3% FT-101 -> 81.4 MH-3 Test → FT-19816 103 → -1.6% 102-> 76.6 103 -> 66.739 FT-105 -12-79 Manhole floats tested? (Y/N)

Test the following critical alarms (note that system must be in AUTO to observe proper plarm response):

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal	Y	Y	Y
Air Stripper Sump High Pressure	Notes: Changed	high setpoint	from 2	4 to 34 1/w.	<i>c</i> .	
	PT-106	PA_106	fatal	Y	Y	Y
Air Stripper Sump Low Pressure	PT-106 Notes:			A into off (of all pumps in	off)
Air Stripper Sump Low Pressure				Y A into off (of all pumps in	7 oH)

10/24/13

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date: 10/24/13
Time: 17:55
Technician: CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Air Stripper Low Liquid Level	Notes: Closed	ere-vPGAC b	fatal Heefly valu	ve to increas	e sump press	Y 1e.
High Air Flowrate	Notes: Change	FA_106 I high sexpo	fatal an	Y	Y	Y
Low Air Flowrate	Notes: Change	FA_106 d low setpo	fatal	in delay	У	Y
Pre-Carbon High Temperature	Notes: Change	TAH400 Ingh setp	fatal	nin, shit	Y	Y
Pre-Carbon Low Temperature	TT-400 Notes: Changed	TAL400 Holls setpon low	fatal	in delay, sl	ntdonn	Y
Pre-Carbon High Pressure	PT-400 Notes: Changed	PA_400 I high to	fatal 5.0,	Y	У	Y
Pre-Carbon Low Pressure	PT-400 Notes: Changed	PA_400	fatal	Y	Υ	Y
MH-1 Low Flowrate	FT-101 Notes: Kept MH -	FA_101 I HOAIs in a	warning off, MH ea	yel rises a	N l bore H,	У
MH-2 Low Flowrate	FT-102 Notes: MH-み p・	FA_102 up HOA's aff	warning → level	above h	N	Y
MH-3 Low Flowrate	FT-103 Notes: Kept MH	FA_103 -3 HOA's in a	warning	level rises ab	N we H	Y

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	10/24/13
Time:	17:55
「echnician:	CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
Aggregate Low Flowrate	FT-105 Notes:	FA_105	warning	ed alarm	N	Y
Building Wet Floor Sensor Alarm	WFS-106 Notes: Filled	WFS106 Sump w/ sib	fatal K weter	<i>'</i> ,	Y	y
Building Sump High Level	LSH-106 Notes: Filled su to hanging	LSH106 up w/ sink up on grate		nd to adjust	N float wire	die die
Sequestering Agent Low Flow	Notes: Pulled s	FA_200 volian from	drum drum	Y	N	Y
Spill Pallet Wet Sensor Alarm	LSH-200 Notes: Dipped	LSH200 Sensor in	warning water	У	N	Y
MH-1 High Level	LSHH-103 Notes:	LA_MH1	warning			
MH-1 Low Level	LSLL-103 Notes: Should forc	LA_MH1 e off both MH-1 p	warning umps			
MH-2 High Level	LSHH-104 Notes:	LA_MH2	warning			
MH-2 Low Level	LSLL-104 Notes: Should force	LA_MH2 e off both MH-2 p	warning umps			
MH-3 High Level	LSHH-105 Notes:	LA_MH3	warning			

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: /0/24/13
Time: /7:55
Technician: CD

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should ford	e off both MH-3 p	oumps			RE-
	TT-100	TA_100	shutdown	Y	Y	Y
Building High Temperature	Notes: Change	d sexpoint	to 60.	7		
	TT-100	TA_100	shutdown	Y	Y	Y
Building Low Temperature	Notes: Changed	setpoint t	0 75			

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 11/5/13
Time: 0730
Technician:) 3.500 (12/10/25)

01	OT				
5 Y	21	ΕM	ST	AΙ	บธ

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")

System currently cycling?

Alarms? (list)

None

Electrical Meter Reading (kWh): 181317

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	29	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	15.75	(inches)
Blower intake line vacuum [PI-100]	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.1	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.2	(°)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

yes on MH-Z & MH-3

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) 1:96+15 00+00 MH-1

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, HS-101B, HS-102B, HS-103A, HS-101B, HS-102B, HS-103B, HS-

and HS-103B] in "auto" position? (Y/N) Ves All Six

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	11/5/13/0740	115/13/0742	11/5/13/0742	11/5/13/0143	15/13/0741
Instantaneous Flowrate [gpm]	34.97	0	0	Ó	35.10
"Total" Flow (resettable, gal)	755035	162,518	378,073	0	1197,957
"Perm" Flow (gal)		3,257,118	3,903,132	1,839	13034101
Pump 1 Running (Y/N)?		NO	NO	NO	NA NA
Pump 2 Running (Y/N)?		NO	NO	NA	NA

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) Ve 5 (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) NO (located on duct heater control panel door)

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	11/5/13
Time:	0750
Technician:	ason butkowski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	70	(°F)	
Pre-Carbon Temperature	TI-400	85	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter		84	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4.75	(in. W.C.)	
Effluent Pressure	PI-403	Ó	(in. W.C.)	name and a second secon

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.46	(in. W.C.)	
Vapor Flowrate	FT-106	728 TO 799	(cfm)	
Pre-Carbon Temperature	TT-400	89.9	(°F)	
Pre-Carbon Pressure	PT-400	9.5	(in. W.C.)	
Building Temperature	TT-100	64.8	(°F)	

Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	Ves	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	1/2"	from Bottom of Drom
Quantity of additional full drums		

Inspect sequestering agent components for signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

All Good, No Leaks or Wear

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes		
Monthly liquid effluent sample collected? (Y/N)	Ves @ 0743		
pH of effluent sample			
Model of pH meter	811 Hanna HI 991001		
Calibration notes / method used	2 Point Cal.		
Are MH-2 or MH-3 online in auto during sampling collection?	NO		

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	11/5/13
Time:	0800
Technician:	· Gu+kowski

MONTHLY OM&M TASKS (continued)

Task	Notes		
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO		
Monthly manhole inspections conducted? (Y/N)	Ves		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	All Good Noleaks		
Do level floats appear to be in good condition and hanging freely? (Y/N)	yes Hanging Free in All Three		
Observe groundwater inside each manhole and note odor and appearance	Clear With No odor		
Is confined space entry signage present at each manhole? (Y/N)	VesAllTuree		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	All Good Noteaks in All Three		
With pump(s) running, listen for any unusual sounds	NO Unusual Sounds		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	All Good		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	AllGood NoLeaks or Distres		
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes All Values Free		
List any notable observations	None		
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes		

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	yes
Is eyewash/shower station operational and unobstructed? (Y/N)	Ves
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	hes
Have electrical GFIs been tested and reset? (Y/N)	Ves .
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	105
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	VES DM &M: 11/12 Hesp: 1/13
Is emergency spill kit available? (Y/N)	ves In SSDS
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	yes
Is current SPDES permit onsite? (Y/N) (note date)	Ves Posted on Wall 4/11/11

Monthly OM&M Log Sheet, Groundwater Collection and

Treatment System, Solvent Dock Area, Former Lockheed Martin

French Road Facility, Utica, New York

SYSTEM STATUS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")

System currently cycling?

Alarms? (list)

None

Electrical Meter Reading (kWh):

185809

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	29	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	16.25	(inches)
Blower intake line vacuum [PI-100]	3.5	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2.1	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.2	(°)

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) I glat but for MH-1 Pump \
Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Ves All SW

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	0731	0733	.0734	0734	0737
Instantaneous Flowrate [gpm]	36.70	16.09	0	0	51:33
"Total" Flow (resettable, gal)	962543	20152	468644	0	1533138
"Perm" Flow (gal)	19267721	3296126	3993703	1839	13369292
Pump 1 Running (Y/N)?		NO	NO	NO	NA
Pump 2 Running (Y/N)?		Ves	NO	NA	NA NA

Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)		(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	12/3	113
Time:	080	
Technician: 🛚	.60+6	-owski

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	61	(°F)	
Pre-Carbon Temperature	TI-400	78	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12	(in. W.C.)	
Mid-Carbon Pressure	PI-402	8	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	31.14	(in. W.C.)	
Vapor Flowrate	FT-106	650 TO 702	(cfm)	
Pre-Carbon Temperature	TT-400	78.0	(°F)	
Pre-Carbon Pressure	PT-400	9.1	(in. W.C.)	
Building Temperature	TT-100	65.1	(°F)	

⁻ Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes	
Is pump operating? (Y/N)	Ves		
Is low flow alarm present? (Y/N)	NO		
Is pump in external mode? (Y/N)	Ves		
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)	
Stroke length	85	(record from local stroke length knob on pump)	
Sequestering agent drum level [LI-200]	27/8	From Bottom of Drum	
Quantity of additional full drums	None		

Inspect sequestering agent components for signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves@ 0745
pH of effluent sample	8-14
Model of pH meter	Hanna H1 991001
Calibration notes / method used	2 Point Cal.
Are MH-2 or MH-3 online in auto during sampling collection?	

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 12/3/13
Time: 08'30
Technician:), 60+kowski

MONTHLY OM&M TASKS (continued)

Task	Notes
Liquid flow sensors cleaned? (Y/N) (only as needed)	NO
Monthly manhole inspections conducted? (Y/N)	yes.
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	No Leaking or D
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes Hanging Freely in All Three
Observe groundwater inside each manhole and note odor and appearance	Clear / No Odor
Is confined space entry signage present at each manhole? (Y/N)	
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Good, No leaks in All Three
With pump(s) running, listen for any unusual sounds	No Unusual Sounds
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	All Good
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	All Good, No Leaks or Distress
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	yes
List any notable observations	None
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes

HEALTH AND SAFETY

ltem	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Ves Hasp 1/13
Is emergency spill kit available? (Y/N)	
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Vac
Is current SPDES permit onsite? (Y/N) (note date)	yes Posted On Wall 4/11/1

Appendix C

Alarm-Response Log Sheets

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	1/23/2013				
Time:	15:30				
Technician:	Todd Carignan				

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET 1/19/2013 Date: Time: 6:30 1/23/2013 6:30 **Alarm Condition:** Daily scheduled fax Log not received at 6:30. Cause of Alarm: Unknown - Faulty phone line connection resulting a "fax fail". **Corrective Action:** 1/20/13 - Received daily on schedule indicating that the system was online and in auto. 1/23/13 - Dan Zuck performed a site inspection on 1/23/2013 at approximately 11:45 and confirmed that the system was online in auto. A "fax now" was successfully initiated locally from the PLC. Approved RFA for installing a wireless cellular auto dialer is pending final Lockheed authorization.

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

TODD CARIGNAN

From:

SYSTEM IN UTICA NEW YORK @ 11:42:02 ON 01/23/2013 : ROM 2.1996 : MODEL A2 THE ARCADIS GCTS SER NO 9539 : SETUP VER 1

System Status:

LAST SHUTDOWN @ 13:52:03 ON 01/18/2013 BY KEYPAD AUTO P06 :

FAX REPORT INITIATED BY KEYPAD

Discrete Inputs:

MH1_HH is OFF	$\mathtt{MH1}_\mathtt{H2}$ is OFF	MH1_H1 is OFF	MH1_LO is ON
MH1_LL is ON	MH2 HH is OFF	MH2 H2 is OFF	MH2 H1 is OFF
MH2LO is OFF	MH2LL is ON	MH3 HH is OFF	MH3 ⁻ H2 is OFF
MH3 ^T H1 is OFF	MH3 LO is ON	MH3LL is ON	WFS $\overline{1}$ 06 is OFF
$MOT\overline{I}ON$ is OFF	LSH $\overline{1}$ 06 is OFF	LSH $\overline{1}$ 00 is OFF	LSL100 is ON
FT 200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is 0	OFF	MH1 P2 is	OFF	MH2 P1 i		MH2 P2		
MH3P1 is (OFF	MH3P2 is	OFF	$\mathbf{B} 1 \overline{0} 0 \mathbf{i}$	is OFF	DH 300	is	OFF
$LA_\overline{M}H1$ is (OFF	$FA_{1}01$ is	OFF	LA MH2 i		FA_102		
LA_MH3 is (FA_103 is	OFF	PA_106 i	is OFF	LA_100	is	OFF
$LS\overline{H}106$ is ($WF\overline{S}106$ is	OFF	TA_100 i	is OFF	FA_105		
FA_106 is C		FA_200 is		MOTION i	is OFF	$TA\overline{H}400$	is	OFF
$ ext{TA}\overline{ ext{L}}400$ is (OFF	$PA^{-}400$ is	OFF	LSH200 i	is OFF			

Analog Inputs:

FT_101 is 0 .	00 GPM	TOTAL FLOW	is	56124173	${f GAL}$			
$FT^{-}102$ is 0.	OO GPM	TOTAL FLOW	is	9946554	GAL			
FT103 is 0.	OO GPM	TOTAL FLOW	is	2627156	GAL			
FT105 is 0.	OO GPM	TOTAL FLOW	is	8984645	GAL			
PT 106 is 0.	09 IWC	LIMITS are	${f L}$:	8.00	IWC	\mathbf{H} :	34.00	IWC
TT 400 is 89	0.0 DEG	LIMITS are	$\mathbf L$:	60.0	DEG	\mathbf{H} :	110.0	\mathbf{DEG}
$PT^{-}400$ is 0 .	0 IWC	LIMITS are	${f L}$:	1.0	IWC	\mathbf{H} :	25.0	IWC
$TT^{-}100$ is 64	1.9 DEG	LIMITS are	${f L}$:	40.0	\mathbf{DEG}	\mathbf{H} :	110.0	\mathbf{DEG}
FT_106 is 0.	0 CFM	LIMITS are	${f L}$:	300.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	2/3/2013
Time:	15:30
Technician:	Todd Carignan

ALARM	RESPONSE / CC	RRECTIVE AC	TION LOG SHEE	Γ
Date:	2/2/2013	Time:	6:30	
-		_		
Alarm C	ondition:			
Daily sch	neduled fax Log no	ot received at 6:	:30.	
Cause o				
Unknowr	n - Faulty phone li	ne connection r	esulting a "fax fail"	
0				
2/2/13 - \$		•	-	to the PLC remotely. It should be noted that a ttempting to log into the PLC.
				ng that the system was online in "Auto". Additionally, wnloaded logged data files.
ARCADI	S scheduled to in:	stall new wireles	ss cellular auto dia	er the week of 2/4/13.

To:

TODD CARIGNAN

From:

THE ARCADIS GCTS SYSTEM IN UTICA NEW YORK @ 06:30:00 ON 02/03/2013 SER NO 9539 : SETUP VER 1 : ROM $2.1\overline{9}96$: MODEL A2

System Status:

AUTO P06 : LAST SHUTDOWN @ 13:52:03 ON 01/18/2013 BY KEYPAD

Discrete Inputs:

MH1 HH is OFF	MH1 H2 is OFF	MH1_H1 is OFF	MH1 LO is ON
$\mathtt{MH1_LL}$ is ON	MH2_HH is OFF	MH2_H2 is OFF	MH2H1 is OFF
MH2_LO is ON	MH2_LL is ON	MH3_HH is OFF	MH3_H2 is OFF
MH3_H1 is OFF	MH3_LO is ON	MH3_LL is ON	WFS $\overline{1}$ 06 is OFF
MOTION is OFF	$\mathtt{LSH}\overline{1}\mathtt{06}$ is OFF	$\mathtt{LSH}\overline{1}00$ is OFF	LSL100 is ON
FT_200 is OFF	LSH200 is OFF		

Discrete Outputs:

MH1 P1 is OFF	MH1 P2 is OFF	MH2 P1 is OFF	MH2 P2 is OFF
MH3_P1 is OFF	MH3P2 is OFF	${ t B_1\overline{0}0}$ is OFF	$DH_{\overline{3}00}$ is OFF
LA_MH1 is OFF	$\mathtt{FA}_\overline{1}\mathtt{01}$ is \mathtt{OFF}	$L\overline{A}$ MH2 is OFF	FA_102 is OFF
LA MH3 is OFF	FA_103 is ON	PA_106 is OFF	LA_100 is OFF
$LS\overline{H}106$ is OFF	$WF\overline{S}106$ is OFF	$\mathtt{TA} \overline{\mathtt{100}}$ is OFF	FA_105 is OFF
FA_106 is OFF	FA_200 is OFF	$ exttt{MOTION}$ is OFF	$ extsf{TAH400}$ is OFF
$\mathtt{TAL}400$ is OFF	DB 400 is OFF	LSH200 is OFF	

Analog Inputs:

FT_101	is	0.00	GPM	TOTAL B	FLOW	is	56247185	GAL			
FT_102	is	0.00	GPM	TOTAL I	FLOW	is	9967055	GAL			
FT_{103}	is	0.00	GPM	TOTAL B	FLOW	is	2663622	GAL			
$FT^{-}105$	is	0.00	GPM	TOTAL B	FLOW	is	9175189	GAL			
PT_{106}	is	0.15	IWC	LIMITS	are	\mathbf{L} :	8.00	IWC	H :	34.00	IWC
${f TT}^{-}400$	is	108.6	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	60.0	\mathbf{DEG}	H :	110.0	\mathbf{DEG}
PT_400	is	0.0	IWC	LIMITS	are	\mathbf{L} :	1.0	IWC	H :	25.0	IWC
$\mathtt{TT}^{-}100$	is	66.8	\mathbf{DEG}	LIMITS	are	\mathbf{L} :	40.0	DEG	H :	110.0	\mathbf{DEG}
FT_106	is	0.0	CFM	LIMITS	are	\mathbf{L} :	300.0	CFM	H :		CFM

Analog Outputs:

INJSPD 0.0 PCT PRO

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	3/6/2013
Time:	17:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	3/5/13	Time:	3:35		
Alarm Cond	lition:				
Process 53					
Low Flow Se	equestering Age	nt - FA-200.			
Non-Fatal Al	arm				
Cause of Al	arm:				
Sequestering	g agent drum #5	ran out of solution	on.		
					·

Corrective Action:

ARCADIS onsite the day of the alarm to perform monthly O&M. The drum was found to be empty, as expected based on tracking log. A new full drum (Drum #6) of sequestering agent was placed into service at approximately 12:00 on 3/5/13.

However, FA-200 was unable to be cleared following bringing the new drum online and successfully priming the pump.

The following corrective actions were performed:

- 1. Re-prime pump and visually confirm flow through tubing.
- 2. Remove and clean the injection port location on the manifold.
- 3. Operate pump with tubing and injection port removed and placed in bucket to confirm flow.
- 4. Re-start pump to clear alarm.
- 5. Check wiring to/from the flow sensor.
- 6. Remove flow sensor and clean with hot water.

ARCADIS plans on performing another site inspection on March 14 to further inspect the FA-200 and its output to the PLC.

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Tuesday, March 05, 2013 3:37 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 03:35:00 on 03/05/2013

ALARM was triggered by PROCESS 53. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #53.

This system last shut down at 16:30:47 on 02/13/2013 and the cause was PT_106.

	DISCRETE INPUT STATUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF	
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF	
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF	
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON	
FT_200	ON	LSH200	OFF					
		DISCRE	TE OU'	TPUT STAT	ΓUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	OFF	MH1_P2	ON	MH2_P1	OFF	MH2_P2	OFF	
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON	
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF	
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	

FA_106	OFF	FA_200	ON	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:							
Taonama	Value	Units	Totalizer	Total Units	Alarm Setpoints			S
Tagname	Value	Unus	Totatizer	Total Onlis	Low	High	Low-Low	High-High
FT_101	35.75	GPM	56490599	GAL	10.00	80.00	0.00	20.00
FT_102	0.00	GPM	10000253	GAL	10.00	80.00	0.00	20.00
FT_103	0.00	GPM	2759404	GAL	10.00	80.00	0.00	20.00
FT_105	38.64	GPM	9540639	GAL	3.00	80.00	0.00	20.00
PT_106	30.16	IWC			8.00	34.00	0.00	20.00
TT_400	84.6	DEG			60.0	110.0	0.0	20.0
PT_400	8.9	IWC			1.0	25.0	0.0	20.0
TT_100	66.1	DEG			40.0	110.0	0.0	20.0
FT_106	829.2	CFM			300.0	****	0.0	20.0

ANALOG OUTPUT STATUS:							
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode		
INJSPD	5.8%	Open Loop Proportional					

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	3/27/2013
Time:	12:50
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/5/13 Time: 3:35
Alarm Condition: Process 53
Low Flow Sequestering Agent - FA-200.
Non-Fatal Alarm
Cause of Alarm:
Sequestering agent drum #5 ran out of solution.
Corrective Action: ARCADIS onsite the day of the alarm to perform monthly O&M. The drum was found to be empty, as expected based on tracking log. A new full drum (Drum #6) of sequestering agent was placed into service at approximately 12:00 on 3/5/13.
However, FA-200 was unable to be cleared following bringing the new drum online and successfully priming the pump.
The following corrective actions were performed:
Re-prime pump and visually confirm flow through tubing.
2. Remove and clean the injection port location on the manifold.
3. Operate pump with tubing and injection port removed and placed in bucket to confirm flow.
4. Re-start pump to clear alarm.
5. Check wiring to/from the flow sensor.
6. Remove flow sensor and clean with hot water.
An ARCADIS site visit on 3/22/13 (15:00) determined the following: The pump itself is functioning properly and transferring chemical when on. The flow sensor is not detecting flow as it should with each pump pulse. Adjustment of the flow-range setpoint knob on the side of the flow sensor was performed. Proper flow sensor operation was then observed for both normal operation (i.e., sensing flow when chemical is indeed being transferred) and dry operation (i.e., not sensing flow when suction tubing removed from chemical drum). It should noted that the volume sequestering agent remained relatively unchanged while this alarm was present due to the fact that the low flow alarm sent by the flow sensor turns off the chemical feed pump automatically, and when this occurs the pump requires a local restart.
ARCADIS will re-inspect the pump during the April monthly OM&M event to confirm that the in-use chemical drum is being consumed and that the current setpoint for the flow sensor is working properly.

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	6/27/2013
Time:	8:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET Time: Date: 6/25/13 23:30 **Alarm Condition:** Process 53 Low Flow Sequestering Agent - FA-200. Non-Fatal Alarm Cause of Alarm: Sequestering agent drum #6 ran out of solution. **Corrective Action:** ARCADIS onsite 6/26/13 at approximately 16:00. The sequestering agent drum was found to be empty, as expected based on tracking log. A new full drum (Drum #7) of sequestering agent was placed into service. ARCADIS logged into the system remotely on 6/27/13, at approximately 8:00, and cleared the alarm FA-200.

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Tuesday, June 25, 2013 11:32 PM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 23:30:45 on 06/25/2013

ALARM was triggered by PROCESS 53. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #53.

This system last shut down at 12:28:45 on 05/29/2013 and the cause was B_100.

	DISCRETE INPUT STATUS:						
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	МН2_НН	OFF	MH2_H2	OFF	MH2_H1	OFF
MH2_LO	ON	MH2_LL	ON	МН3_НН	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON
FT_200	ON	LSH200	OFF				
		DISCRETE OUT	TPUT S	TATUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF

1

FA_106	OFF	FA_200	ON	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_4ProControl_Outer					

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	7/1/2013	
Time:	16:30	
Technician:	TMC	

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET
Date: 6/29/2013 Time: 5:50-5:53
Alarm Condition:
Processes 29 and 55.
Low flow alarms for FT-101 (manhole MH-1) and FT-105 (aggregate flow), respectively.
Non-fatal alarms.
Cause of Alarm: Flow transmitters FT-101 and FT-105 not recording flow despite MH-1-pump-2 being called to run. Suspected cause is check valve on MH-1-pump-1 leg of MH-1 piping being stuck in open position, allowing flow from pump-2 to recirculate back into manhole.
recirculate back into mannole.
Corrective Action: Todd Carignan logged into the system remotely on 6/29/13 at approximately 11:39 to inspect the alarm condition. Reviewed the events and discrete logs to confirm that MH-1 Pump-2 had not cycled off, thereby indicating a recirculating condition at the MH. The MH-1-pump-1 was then manually cycled on/off remotely several times to
exercise the inline check ball valve. Pump-1 was placed back into "Auto" (which was currently off), at which point flow was then registered at both FT-101 and FT-105 with only Pump-2 online.
FA-101 was cleared and the system was monitored for a short period to confirm the proper operation of the flowmeter. Will monitor for low flow alarm at FT-101 and consider replacement of check valve on MH-1-pump-1 if needed, or during next confined space manhole inspection.

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Saturday, June 29, 2013 5:52 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:50:50 on 06/29/2013

ALARM was triggered by PROCESS 29. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #55.

This system last shut down at 14:16:16 on 06/27/2013 and the cause was KEYPAD.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	ON	MH1_LO	ON		
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF		
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF		
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON		
FT_200	OFF	LSH200	OFF						
		DISCRE	TE OU'	TPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	ON	MH2_P1	OFF	MH2_P2	OFF		
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON		
LA_MH1	OFF	FA_101	ON	LA_MH2	OFF	FA_102	OFF		
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	ON		

1

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:									
Taganama	Value	Units	Totalizer	Total Units		Ala	rm Setpoints	S		
Tagname	Value	Unus	Totatizer	Total Units	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	57661672	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10206008	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	3268031	GAL	10.00	80.00	0.00	20.00		
FT_105	0.00	GPM	11351719	GAL	3.00	80.00	0.00	20.00		
PT_106	22.95	IWC			8.00	34.00	0.00	20.00		
TT_400	73.5	DEG			60.0	110.0	0.0	20.0		
PT_400	11.3	IWC			1.0	25.0	0.0	20.0		
TT_100	72.0	DEG			40.0	110.0	0.0	20.0		
FT_106	781.3	CFM			300.0	****	0.0	20.0		

ANALOG OUTPUT STATUS:								
Tagname	Tagname Percentage Full Scale Operational Mode Tagname Percentage Full Scale Operational Mode							
INJSPD	0.0%	Open Loop Proportional						

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Saturday, June 29, 2013 5:54 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:53:00 on 06/29/2013

ALARM was triggered by PROCESS 55. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #55.

This system last shut down at 14:16:16 on 06/27/2013 and the cause was KEYPAD.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	ON	MH1_LO	ON				
MH1_LL	ON	МН2_НН	OFF	MH2_H2	OFF	MH2_H1	OFF				
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
MOTION	OFF	LProControl_Outer									

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	7/2/2013
Time:	9:50
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	6/30/2013	Time:	17:06	_		
	7/2/2013		8:29	_		
Alarm C	ondition:					
Process	es 30.					
	alarm for FT-102	(manhole MH-2	2).			
Non-fata	al alarm.					
	of Alarm: nsmitter FT-102 no	ot recording flow	v despite MH-2-pu	mp-2 being called to	run.	
Correct	ive Action:					
review o Based o approxir suspecto recircula	If the events, analo n the data loggers nately 60 seconds ed flow alarm is be ation at startup befo	g, and discrete MH-2 Pump-1 to start register ing caused by a pre sealing it se	logs it was confir registers flow imn ring flow (Note, ala faulty Pump-1 in with the pressu	t approximately 11:5 med that the low flow lediately upon pump arm delay is set at 30 line check ball valve e induced by the opeconfirm the proper o	valarm occurs with F startup, however, P seconds). Based of which is allowing for eration of Pump-2. F	Pump-2 only. ump-2 takes n this data the r partial A-102 was
Further reoccurr cleared week. D leaks. T	review of the data I ence of this alarm in order to eliminat uring this event the	ogger files indic FA-102 was no e the nuisance e manhole can l	cated that the FA- ot cleared on 7/2/1 alarms until the q be pumped all the	t approximately 9:43 102 alarm only occur 3. ARCADIS recomn uarterly critical device way down in order to any leaks or any nois	rs with Pump-2 onlin nends that the FA-10 e inspection/testing in to inspected the pum	ne. Due to the 02 remained units performed next up and piping for
recomm		nclude the clear	ning and/or replac	e cause of the alarm ement of a faulty che		

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Sunday, June 30, 2013 5:08 PM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 17:06:48 on 06/30/2013

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30.

This system last shut down at 14:16:16 on 06/27/2013 and the cause was KEYPAD.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON		
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON		
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF		
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON		
FT_200	OFF	LSH200	OFF						
		DISCRE	TE OU'	TPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	ON		
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON		
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON		
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF		

1

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:									
Tagnama	Value	Units	Totalizer	Total Units		Ala	rm Setpoints	S		
Tagname	vaiue	Unus	Totatizer	Total Units	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	57692540	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10208420	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	3282285	GAL	10.00	80.00	0.00	20.00		
FT_105	14.50	GPM	11394775	GAL	3.00	80.00	0.00	20.00		
PT_106	23.78	IWC			8.00	34.00	0.00	20.00		
TT_400	71.8	DEG			60.0	110.0	0.0	20.0		
PT_400	9.6	IWC			1.0	25.0	0.0	20.0		
TT_100	75.6	DEG			40.0	110.0	0.0	20.0		
FT_106	732.2	CFM			300.0	****	0.0	20.0		

ANALOG OUTPUT STATUS:								
Tagname	Tagname Percentage Operational Mode Tagname Percentage Operational Mode Full Scale Operational Mode							
INJSPD	2.2%	Open Loop Proportional						

Carignan, Todd

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Tuesday, July 02, 2013 8:31 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 08:29:13 on 07/02/2013

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30.

This system last shut down at 14:16:16 on 06/27/2013 and the cause was KEYPAD.

DISCRETE INPUT STATUS:								
Tagname	State	Tagname	State	Tagname State		Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON	
MH2_LO	ON	MH2_LL	ON	МН3_НН	OFF	MH3_H2	OFF	
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF	
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON	
FT_200	OFF	LSH200	OFF					
DISCRETE OUTPUT STATUS:								
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	ON	
MH3_P1	OFF	MH3_P2	ON	B_100	ON	DH_300	ON	
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON	
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	

1

FA_106 OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400 OFF	PA_4ProControl_Outer					

Alarm Response Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:	10/11/2013
Time:	7:45
Technician:	TC

ALARM F	RESPONSE / CO	ORRECTIVE AC	TION LOG SHEE	T			
Date: _	10/9/13	Time:	12:40	_			
Alarm Co	ondition:						
Process 4	13, LSH-106.						
Building s	ump high liquid	level.					
Non-Fatal	l Alarm						
	ump being used		generated during aucet in slop sink		vities and possib	ole slight leak from	air
	re Action:	o system remote	ly at 6:30 on 10/1	0/13 to review al	arm condition.		
Confirm we arlier that	vith Dan Zuck or at day prior to the	n 10/10/13 that pu	urge water from th	ne groundwater s	sampling event v	was placed in the she GCTS building.	
	·	•	to see if he could	•	•	ously observed wat observed.	ter leak.
	•		n on 10/11/13 whi ntified they will be			ble leaks from the liately.	air

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Wednesday, October 09, 2013 12:40 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 00:37:00 on 10/09/2013

ALARM was triggered by PROCESS 43. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #24.

This system last shut down at 19:55:56 on 07/11/2013 and the cause was LSH100.

	DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON			
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF			
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF			
MH3_H1	OFF	MH3_LO	OFF	MH3_LL	ON	WFS106	OFF			
MOTION	OFF	LSH106	ON	LSH100	OFF	LSL100	ON			
FT_200	OFF	LSH200	OFF							
		DISCRE	TE OU'	TPUT STAT	TUS:					
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF			
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON			
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF			
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF			
LSH106	ON	WFS106	OFF	TA_100	OFF	FA_105	OFF			

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:											
Tagnama	Value	Units	Totalizer	Total Units		Alarm Setpoints						
Tagname	vaiue	Unus	Totatizer	Total Onlis	Low	High	Low-Low	High-High				
FT_101	0.00	GPM	58495178	GAL	10.00	80.00	0.00	20.00				
FT_102	0.00	GPM	10372472	GAL	10.00	80.00	0.00	20.00				
FT_103	0.00	GPM	3683475	GAL	10.00	80.00	0.00	20.00				
FT_105	0.00	GPM	12639969	GAL	3.00	80.00	0.00	20.00				
PT_106	27.35	IWC			8.00	34.00	0.00	20.00				
TT_400	76.6	DEG			60.0	110.0	0.0	20.0				
PT_400	11.3	IWC			1.0	25.0	0.0	20.0				
TT_100	65.4	DEG			40.0	110.0	0.0	20.0				
FT_106	819.6	CFM			300.0	****	0.0	20.0				

	ANALOG OUTPUT STATUS:									
Tagname	Tagname Percentage Operational Mode		Tagname	Percentage Full Scale	Operational Mode					
INJSPD	0.0%	Open Loop Proportional								

Date:	12/2/2013	
Time:	12:00	
Technician:	TMC	

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	11/30/2013	Time: _	5:50:00	
Alarm C	ondition:	_		
Process	- 32 (Low level alarr	n via LSL-1	00) - Fatal Alarm	

Cause of Alarm:

The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.

Corrective Action:

TMC logged in remotely on 11/30/2013 to review alarm condition, after review of alarm condition the alarm condition was cleared and remained cleared. The system was restarted at 20:21.

Upon further review of the datalogger Events file it appears that following the previous automated batch sequence where MH-3 cycled that the water level in the air stripper sump was evacuated very close to the LSL-100 set point elevation during the 8 minute automated air stripper shutdown period. As such during the next pump cycle (MH-1 at 5:50) the alarm latched after 5 seconds of operation due to the fact that it takes greater than 5 seconds for any water generated during the next batch cycle to drain into the sump. During this time frame the back pressure from the blower most likely evacuated enough water to latch the LSL-100 alarm. Additionally, the volume of water that was pumped by MH-1 for the short duration it was on was enough to re-latch LSL-100, thus allowing the alarm to be cleared remotely and system restarted.

It should be noted that the air stripper sump pressure appears slightly higher than normal with a single pump online, this is most likely due to the seasonal drop in air temperature (~3 F at time of alarm) which subsequently increases the density of the ambient air stream. This operational condition has been noted before during extreme cold weather events.

Jason Gutkowski will be onsite on 12/3 to perform the monthly O&M event and will visually inspect the automated operation if the air stripper to verify proper operation set points (e.g., sump pressure).

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Saturday, November 30, 2013 4:54 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:50:05 on 11/30/2013

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02.

This system last shut down at 18:11:42 on 10/24/2013 and the cause was LSL100.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	ON	MH1_LO	ON				
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF				
MH2_LO	ON	MH2_LL	ON	МН3_НН	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON				
FT_200	OFF	LSH200	OFF								
<u> </u>		DISCRETE OUT	PUT S	TATUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF				
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON				
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF				
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON				
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF				

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_4ProControl_Outer					

Date:	12/19/2013
Time:	6:00
Technician:	TMC

ALARM	RESPONSE / CO	RRECTIVE AC	TION LOG SHEET	
Date:	12/17/2013	Time:	10:31	
Alarm C Process	condition: es 30.			
Low flow	alarm for FT-102	(Pump 1, Manh	nole MH-2).	
Non-fata		•	,	
	of Alarm: nsmitter FT-102 no	ot recording flow	v despite MH-2-pun	np-2 being called to run.
Correcti	ive Action:			
review o minutes alarm oc was at 1 Based o leaking i previous	f the events, analogof operation. Base curred at 10:31:51 0:40 which indicate the note online check ball various pump cycle (appr	og, and discrete ed on the data lo (Note, alarm d ed that MH-2 Po ed delay in regis live which allow ox. 1 day prior),	logs it was confirm aggers MH-2 Pump elay is set at 30 seump-1 was pumping stering flow may had all of the water in thus causing a slig	3 at approximately to inspect the alarm condition. Upon ed that the low flow alarm occurred within the first few -1 was called to run at 10:31:21 and the Process 30 conds). The next "analog in" logged flow measurement g at approx. 17 gpm for the remainder of the pump cycle ve been to due to a dirty paddlewheel sensor and/or a n the forcemain to drain back into the sump since the ght delay of flow. FA-102 alarm was cleared and the r operation of the flowmeter.
necessa	•	-	-	&M event. Corrective actions may include, if deemed r increasing the alarm time delay for FA-102 from 30

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Tuesday, December 17, 2013 9:36 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 10:31:51 on 12/17/2013

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30.

This system last shut down at 04:50:41 on 12/17/2013 and the cause was LSL100.

	DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON			
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON			
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF			
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF			
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON			
FT_200	OFF	LSH200	OFF							
		DISCRE	TE OU'	TPUT STAT	TUS:					
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_P1	ON	MH1_P2	OFF	MH2_P1	ON	MH2_P2	OFF			
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON			
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON			
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF			
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF			

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:									
Taonama	Value	Units	Totalizer			Ala	rm Setpoints	S		
Tagname	Value	Unus	Totatizer	Total Units	Low	High	Low-Low	High-High		
FT_101	34.31	GPM	58958084	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10454269	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	3885880	GAL	10.00	80.00	0.00	20.00		
FT_105	49.33	GPM	13372855	GAL	3.00	80.00	0.00	20.00		
PT_106	33.06	IWC			8.00	34.00	0.00	20.00		
TT_400	96.8	DEG			60.0	110.0	0.0	20.0		
PT_400	9.5	IWC			1.0	25.0	0.0	20.0		
TT_100	60.1	DEG			40.0	110.0	0.0	20.0		
FT_106	774.5	CFM			300.0	****	0.0	20.0		

ANALOG OUTPUT STATUS:									
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode				
INJSPD	7.4%	Open Loop Proportional							

Date:	12/19/2013
Time:	1:20
Technician:	TMC

ALARM RESPONSE /	CORRECTIVE	ACTION LOG SHEET	

Date: _	12/17/2013	Time:	4:40:00	
Alarm Co	ondition:			
Process -	32 (Low level alar	m via LSL-10)) - Fatal Alarm	
Cause of	Alarm:			
toggling b	• • •	ng the 10 min	ated system shutdown. The data logger indicate te blower shutdown mode and latched long end	
TMC logg	•		8:05 to review alarm condition, after review of a ed. The system was restarted at 8:07.	alarm condition the alarm
during the toggling b into the cy approx. 3 drained a	e alarm event was eack and forth at th ycle alarm latched .5 hours after the a	MH-3. Based e LSL-100 sv long enough alarm the volu sequence sto	nts file it appears that following the current auto on the logged discrete data the water level in the itch/set point during steady state operation of M o trip the alarm (5 second alarm delay). Upon I me of water that was stored in the air stripper tra pped was enough to re-latch LSL-100, thus allo	ne air stripper sump was MH-3. Approx. 18 minutes logging into the system ays, which completely
this is mo	st likely due to the	seasonal dro	np pressure appears slightly higher than normal o in air temperature (~0 F at time of alarm) whic operational condition has been noted before d	ch subsequently increases
ARCADIS	S would recommen	d increasing	ne time delay for this alarm from 5 seconds to 6	0 seconds.

```
12/16/2013
             23:58:59 MH1_H1
                                ON
12/16/2013
             23:59:00 MH1_P2
                                ON
12/16/2013
             23:59:01 DH_300
                                ON
            23:59:01 B_100
12/16/2013
                                ON
12/17/2013
              0:04:28 MH1_H1
                                OFF
12/17/2013
              0:59:23 MH1_LO
                                OFF
12/17/2013
              0:59:24 MH1_P2
                                OFF
12/17/2013
              1:07:26 DH_300
                                OFF
12/17/2013
              1:07:27 B_100
                                OFF
12/17/2013
              1:21:49 MH1_LO
                                ON
12/17/2013
              4:22:12 MH3_H1
                                ON
12/17/2013
              4:22:14 DH_300
                                ON
12/17/2013
              4:22:14 B_100
                                ON
12/17/2013
              4:22:16 MH3_P2
                                ON
12/17/2013
              4:23:47 MH3_H1
                                OFF
12/17/2013
              4:36:45 LSL100
                                OFF
12/17/2013
              4:36:45 LSL100
                                ON
12/17/2013
              4:37:46 LSL100
                                OFF
12/17/2013
              4:37:46 LSL100
                                ON
12/17/2013
              4:37:54 LSL100
                                OFF
              4:37:54 LSL100
12/17/2013
                                ON
12/17/2013
              4:37:56 LSL100
                                OFF
12/17/2013
              4:37:57 LSL100
                                ON
12/17/2013
              4:37:59 LSL100
                                OFF
12/17/2013
              4:37:59 LSL100
                                ON
12/17/2013
              4:38:04 LSL100
                                OFF
12/17/2013
              4:38:05 LSL100
                                ON
12/17/2013
                                OFF
              4:38:07 LSL100
12/17/2013
              4:38:08 LSL100
                                ON
12/17/2013
              4:38:09 LSL100
                                OFF
12/17/2013
              4:38:10 LSL100
                                ON
12/17/2013
              4:38:12 LSL100
                                OFF
12/17/2013
              4:38:14 LSL100
                                ON
12/17/2013
              4:38:15 LSL100
                                OFF
12/17/2013
              4:38:15 LSL100
                                ON
12/17/2013
              4:38:20 LSL100
                                OFF
12/17/2013
              4:38:23 LSL100
                                ON
12/17/2013
              4:38:24 LSL100
                                OFF
12/17/2013
              4:38:25 LSL100
                                ON
12/17/2013
              4:38:30 LSL100
                                OFF
12/17/2013
              4:38:31 LSL100
                                ON
12/17/2013
              4:38:33 LSL100
                                OFF
12/17/2013
              4:38:35 LSL100
                                ON
12/17/2013
              4:38:42 LSL100
                                OFF
12/17/2013
              4:38:42 LSL100
                                ON
12/17/2013
              4:38:43 LSL100
                                OFF
12/17/2013
              4:38:43 LSL100
                                ON
```

10/17/2012	4.20.4F LCL100	OFF
12/17/2013	4:38:45 LSL100	OFF
12/17/2013	4:38:46 LSL100	ON
		ON
12/17/2013	4:38:47 LSL100	OFF
12/17/2013	4:38:48 LSL100	ON
10/17/2012	4.20.40 0.100	OFF
12/17/2013	4:38:49 LSL100	OFF
12/17/2013	4:38:49 LSL100	ON
12/17/2013	4:38:50 LSL100	OFF
12/17/2013	4:38:52 LSL100	ON
12/17/2013	4:38:53 LSL100	OFF
12/11/2013	4.30.33 L3L100	UFF
12/17/2013	4:38:56 LSL100	ON
12/17/2013	4:38:57 LSL100	OFF
10/17/2012	4.20.E7 LCI 100	ON
12/17/2013	4:38:57 LSL100	ON
12/17/2013	4:39:00 LSL100	OFF
12/17/2013	4:39:04 LSL100	ON
10/17/2012	4.20.0F LCL100	OFF
12/17/2013	4:39:05 LSL100	OFF
12/17/2013	4:39:07 LSL100	ON
12/17/2013	4:39:09 LSL100	OFF
12/17/2013	4:39:09 LSL100	ON
12/17/2013	4:39:13 LSL100	OFF
12/17/2013	4:39:14 LSL100	ON
12/17/2013	4:39:15 LSL100	OFF
12/17/2013	4:39:16 LSL100	ON
		ON
12/17/2013	4:39:18 LSL100	OFF
12/17/2013	4:39:21 LSL100	ON
12/17/2013	4:39:22 LSL100	OFF
12/17/2013	4:39:25 LSL100	ON
12/17/2013	4:39:25 LSL100	OFF
12/17/2013	4:39:27 LSL100	ON
12/17/2013	4:39:28 LSL100	OFF
10/17/2012	4.20.20 0.100	ON
12/17/2013	4:39:29 LSL100	ON
12/17/2013	4:39:34 LSL100	OFF
12/17/2013	4:39:34 LSL100	ON
12/17/2013	4:39:35 LSL100	$\cap \Gamma \Gamma$
12/1//2013	4.39.33 L3L100	OFF
12/17/2013	4:39:37 LSL100	ON
12/17/2013	4:39:40 LSL100	OFF
12/17/2013	4:39:43 LSL100	ON
12/11/2013	4.39.43 L3L100	ON
12/17/2013	4:39:44 LSL100	OFF
12/17/2013	4:39:46 LSL100	ON
12/17/2013	4:39:47 LSL100	OFF
12/17/2013	4:39:48 LSL100	ON
12/17/2013	4:39:49 LSL100	OFF
12/17/2013	4:39:52 LSL100	ON
12/17/2013	4:39:53 LSL100	OFF
12/17/2013	4:39:53 LSL100	ON
12/17/2013	4:39:55 LSL100	OFF
12/17/2013	4:39:55 LSL100	ON
12/17/2013	4:39:57 LSL100	OFF
12/11/2013	4.37.37 L3L1UU	UFF

12/17/2013	4:39:57 LSL100	ON
12/17/2013	4:40:03 LSL100	OFF
12/17/2013	4:40:04 LSL100	ON
12/17/2013	4:40:07 LSL100	OFF
12/17/2013	4:40:10 LSL100	ON
12/17/2013	4:40:12 LSL100	OFF
12/17/2013	4:40:13 LSL100	ON
12/17/2013	4:40:15 LSL100	OFF
12/17/2013	4:40:16 LSL100	ON
12/17/2013	4:40:17 LSL100	OFF
12/17/2013	4:40:17 LSL100	ON
12/17/2013	4:40:19 LSL100	OFF
12/17/2013	4:40:20 LSL100	ON
12/17/2013	4:40:21 LSL100	OFF
12/17/2013	4:40:22 LSL100	ON
12/17/2013	4:40:24 LSL100	OFF
12/17/2013	4:40:27 LSL100	ON
12/17/2013	4:40:28 LSL100	OFF
12/17/2013	4:40:30 LSL100	ON
12/17/2013	4:40:31 LSL100	OFF
12/17/2013	4:40:33 LSL100	ON
12/17/2013	4:40:34 LSL100	OFF
12/17/2013	4:40:34 LSL100	ON
12/17/2013	4:40:35 LSL100	OFF
12/17/2013	4:40:40 LA_100	ON
12/17/2013	4:40:41 LSL100	ON
12/17/2013	4:40:41 MH3_P2	OFF
12/17/2013	4:40:41 LSL100	OFF
12/17/2013	4:40:49 LSL100	ON
12/17/2013	4:40:51 LSL100	OFF
12/17/2013	4:40:52 LSL100	ON
12/17/2013	4:42:38 LSL100	OFF
12/17/2013	4:42:39 LSL100	ON
12/17/2013	4:42:49 LSL100	OFF
12/17/2013	4:42:49 LSL100	ON

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Tuesday, December 17, 2013 3:45 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 04:40:40 on 12/17/2013

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02.

This system last shut down at 06:00:05 on 11/30/2013 and the cause was LSL100.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON		
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF		
MH2_LO	ON	MH2_LL	ON	мнз_нн	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF		
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON		
FT_200	OFF	LSH200	OFF						
		DISCRE	TE OU'	TPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF		
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON		
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF		
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF		

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:										
Taonama	Value	Units	Totalizer	Total Units		Ala	rm Setpoints	S			
Tagname	vaiue	Unus	Totatizer	Total Onlis	Low	High	Low-Low	High-High			
FT_101	0.00	GPM	58957004	GAL	10.00	80.00	0.00	20.00			
FT_102	0.00	GPM	10454269	GAL	10.00	80.00	0.00	20.00			
FT_103	0.00	GPM	3885370	GAL	10.00	80.00	0.00	20.00			
FT_105	0.00	GPM	13371231	GAL	3.00	80.00	0.00	20.00			
PT_106	30.98	IWC			8.00	34.00	0.00	20.00			
TT_400	106.0	DEG			60.0	110.0	0.0	20.0			
PT_400	11.1	IWC			1.0	25.0	0.0	20.0			
TT_100	60.1	DEG			40.0	110.0	0.0	20.0			
FT_106	907.0	CFM			300.0	****	0.0	20.0			

ANALOG OUTPUT STATUS:									
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode				
INJSPD	0.0%	Open Loop Proportional							

Date:	1/2/2014
Time:	13:15
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 12/17/2013 Time: 4:40:00 12/25/2013 5:07:00

Alarm Condition:

Process - 32 (Low level alarm via LSL-100) - Fatal Alarm

Cause of Alarm:

The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.

Corrective Action:

TMC logged in remotely on 12/17/2013 at 8:05 to review alarm condition, after review of alarm condition the alarm condition was cleared and remained cleared. The system was restarted at 8:07.

Upon further review of the datalogger Events file it appears that following the current automated batch sequence during the alarm event was MH-3. Based on the logged discrete data the water level in the air stripper sump was toggling back and forth at the LSL-100 switch/set point during steady state operation of MH-3. Approx. 18 minutes into the cycle alarm latched long enough to trip the alarm (5 second alarm delay). Upon logging into the system approx. 3.5 hours after the alarm the volume of water that was stored in the air stripper trays, which completely drained after the blower run sequence stopped was enough to re-latch LSL-100, thus allowing the alarm to be cleared remotely and system restarted.

It should be noted that the air stripper sump pressure appears slightly higher than normal with a single pump online, this is most likely due to the seasonal drop in air temperature (~0 F at time of alarm) which subsequently increases the density of the ambient air stream. This operational condition has been noted before during extreme cold weather events.

ARCADIS would recommend increasing the time delay for this alarm from 5 seconds to 60 seconds.

TMC logged in remotely on 12/25/2013 at 21:08 to review alarm condition. The condition was similar to the one observed on 12/17. After review of alarm condition the alarm condition was cleared and remained cleared. The system was restarted and resumed normal operation.

ARCADIS plans on increasing the time delay for this alarm from 5 seconds to 10 minutes. By increasing this alarm setpoint to 10 minutes this will eliminate any nuisance alarms associated with the low level sensor in the AS sump which may occur during a automated system shutdown or startup. The system is also equipped with low air flow alarm which is another redundant alarm which would shutdown the system and notify the operator that the minimum air flow wasn't passing through the air stripper in order to efficiently remove the VOCs from the liquid phase.

From: The ARCADIS GCTS system {#9539} in UTICA_NEW YORK

control@eosresearch.com> control@eosresearch.com>

Sent: Wednesday, December 25, 2013 5:08 AM

To: Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com;

Zuck, Daniel

Subject: ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142

Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:07:14 on 12/25/2013

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02.

This system last shut down at 04:50:41 on 12/17/2013 and the cause was LSL100.

DISCRETE INPUT STATUS:								
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF	
MH2_LO	ON	MH2_LL	ON	МН3_НН	OFF	MH3_H2	OFF	
MH3_H1	ON	MH3_LO	ON	MH3_LL	ON	WFS106	OFF	
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON	
FT_200	OFF	LSH200	OFF					
		DISCRETE OUT	IPUT S	TATUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF	
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON	
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON	
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_4ProControl_Outer					