2014 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Former Lockheed Martin French Road Facility Utica, New York

Prepared for:

Lockheed Martin Corporation Energy, Environment, Safety and Health 6801 Rockledge Drive Bethesda, Maryland 20817

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street Suite 100 Rochester, New York 14614

Table of Contents

1.0		1
2.0	GROUNDWATER COLLECTION AND TREATMENT SYSTEM	2
2.1	MAJOR SYSTEM COMPONENTS	2
3.0	REMEDIAL OPERATIONAL OBJECTIVES	5
4.0	OPERATION AND MAINTENANCE ACTIVITIES	6
4.1	DAILY ROUTINE SYSTEM INSPECTIONS	6
4.2	MONTHLY ROUTINE SYSTEM INSPECTIONS	6
4.3	QUARTERLY SYSTEM O&M AND INSPECTIONS	7
4.4	NON-ROUTINE OPERATION AND MAINTENANCE ACTIVITIES	8
4.5	ALARM CONDITIONS AND SYSTEM MODIFICATIONS	8
5.0	ANALYTICAL MONITORING ACTIVITIES	10
5.1	SYSTEM EFFLUENT MONITORING	
5.2	SYSTEM INFLUENT MONITORING	10
5.3	STORMWATER MONITORING	11
6.0	SYSTEM PERFORMANCE RESULTS	12
6.1	GROUNDWATER RECOVERY/EXTRACTED LIQUID FLOWRATE	
6.2	AIR STRIPPER PERFORMANCE	12
6.3	AIR STRIPPER EMISSIONS	12
6.4	WATER TREATMENT CHEMICAL MONITORING	13
6.5	STORMWATER MONITORING	13
6.6	GROUNDWATER ELEVATION MEASUREMENTS	14
7.0	2014 GOALS AND RECOMMENDATIONS	15
7.1	GOALS	15
7.2	RECOMMENDATIONS	15
8.0	REFERENCES	16

U:\190500800\05_report_deliv\deliverables\3-ANNUAL REPORTS\A-GCTS OM&M rpt\FINAL\2014AnnualGCTS-OMMReport.docx

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

LIST OF TABLES

- Table 1Groundwater Collection and Treatment System Operation Summary
- Table 2Groundwater Collection and Treatment System Effluent Analytical Sampling
Results
- Table 3Groundwater Collection and Treatment System Influent Groundwater
Concentrations
- Table 4Stormwater Analytical Sampling Results
- Table 5Groundwater Collection and Treatment System Flowrates
- Table 6Vapor Phase Analytical Sampling Results
- Table 7
 Summary of Estimated Air Stripper Emissions
- Table 8Water Treatment Chemical Consumption Summary

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2 Groundwater Collection and Treatment System Layout
- Figure 3 Groundwater Contours February 2014
- Figure 4 Groundwater Contours April 2014
- Figure 5 Groundwater Contours July 2014
- Figure 6 Groundwater Contours October 2014

LIST OF APPENDICES

- Appendix A Record Drawings
- Appendix B Monthly/Quarterly O&M Checklists
- Appendix C Alarm-Response Log Sheets

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

Abbreviations

СВ	catch basin
cfm	cubic feet per minute
CVOCs	chlorinated volatile organic compounds
DAR	Division of Air Resources
ft	feet
GCTS	groundwater collection and treatment system
gpm	gallons per minute
HDPE	high-density polyethylene
НОА	hand-off-auto
hp	horsepower
in	inch
lb	pound
MH	manhole
mL	milliliters
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
O&M	operations and maintenance
OM&M	operation, maintenance, and monitoring
PLC	programmable logic controller
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
RCP	Reinforced-concrete pipe
RL	reporting limits
SCFM	standard cubic feet per minute
SCH	schedule
SOP	standard operating procedure
SPDES	State Pollutant Discharge Elimination System
USEPA	United States Environmental Protection Agency
VOA	volatile organic analysis
VOCs	volatile organic compounds
WTC	water treatment chemical

1.0 INTRODUCTION

This Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report was prepared by Stantec Consulting Services Inc. (Stantec) for Lockheed Martin Corporation (Lockheed Martin), in accordance with the DRAFT Site Management Plan for the Solvent Dock Area (Arcadis 2011) at the Former Lockheed Martin French Road Facility (herein referred to as the "Site") in Utica, New York (Figure 1). Work was performed in accordance with the October 3, 2008 "Order on Consent" (CO 6-20080321-5) issued by the New York State Department of Environmental Conservation (NYSDEC). This report summarizes the operation, maintenance, and monitoring (OM&M) of the groundwater collection and treatment system (GCTS) from January 1 through December 31, 2014. The data summary includes a review of influent and effluent system sampling, analysis of key operating parameters (e.g., flow rates, pressures, system run-time, and maintenance activities), and any modifications and recommendations related to continued system operation and monitoring.

2.0 GROUNDWATER COLLECTION AND TREATMENT SYSTEM

The GCTS is designed to collect groundwater contaminated with chlorinated volatile organic compounds (CVOCs) from the former Solvent Dock Area and former northern-perimeter ditch area and transport it to a treatment building where the CVOCs are removed by a low-profile air stripper. Following treatment, groundwater is discharged via gravity to the local municipal storm drain under a NYSDEC "State Pollutant Discharge Elimination System" (SPDES) permit (permit No. NY-0121894). The system operates automatically but requires periodic inspections and maintenance. An automated system operation log is sent daily via e-mail to project team members to verify operation. A more detailed explanation of the GCTS appears below.

Groundwater in the former Solvent Dock Area (MH-2 and MH-3) and former northern-perimeter ditch area (MH-1) is captured by separate buried, perforated pipelines and flows via gravity to collection manholes. Groundwater is then pumped (batch mode) from each manhole through subsurface double-walled pipelines to the GCTS building for treatment before being discharged to the local municipal stormwater collection system. The groundwater is treated with a low-profile air stripper, which removes the dissolved-phase CVOCs.

During air stripping, contaminated water enters the air stripper at the top and ambient air enters from the bottom. The groundwater flows over four trays in series where CVOCs are transferred from the aqueous phase (i.e., water) to the vapor phase (i.e., counter-current air stream). The VOC-containing air stream is treated using granular activated carbon before discharge to the atmosphere. A GCTS system layout Site plan is shown on Figure 2, and the GCTS process and instrumentation diagram record drawing showing sampling locations is provided in Appendix A.

2.1 MAJOR SYSTEM COMPONENTS

Major components of the system are as follows:

- MH-1: 6-ft diameter and 13-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - o Two 3/4 horsepower (hp) submersible pumps;
 - o Five associated float-switches;
 - o 2-in/4-in diameter, double-walled, high-density polyethylene (HDPE) dischargepiping; and
 - Gravity Collection Drain 670 feet (ft) of 8-inch (in) diameter perforated HDPE pipe installed in a 4 to 6-ft deep, stone-filled collection trench located parallel to the former northern-perimeter ditch.
- MH-2: 6-ft diameter and 18-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - o Two ³/₄ hp submersible pumps;

- o Five associated float-switches;
- o 2-in/4-in diameter, double-wall HDPE discharge piping; and
- Gravity Collection Drain 70 ft of 6-in diameter perforated HDPE-pipe installed in a 16-ft deep, stone-filled collection trench located adjacent to the former Solvent Dock area.
- MH-3: 6-ft diameter and 17-ft deep pre-cast concrete pumping-manhole equipped with the following components:
 - o Two 3/4 hp submersible pumps;
 - o Five associated float-switches;
 - o 2-in/4-in diameter, double-wall HDPE discharge piping; and
 - Gravity Collection Drain 173 ft of 6-in diameter perforated HDPE-pipe installed in a 9 to 11-ft deep, stone-filled collection trench located adjacent to the facility stormwater drainage line within the former Solvent Dock area.
- Pre-Engineered Metal Building: A 24-ft 8-in by 20-ft pre-engineered metal treatmentbuilding set on a concrete foundation and slab equipped with a secondarycontainment dike and floor sump;
- Programmable Logic Controller (PLC) and motor control panels for the air stripper, duct heater, and manhole pumps;
- Air Stripper: Low-profile, stainless steel air stripper rated for a maximum flowrate of 120 gallons per minute (gpm);
- Liquid Phase Discharge: 60-ft of 4-in diameter schedule (SCH)-40 polyvinyl chloride (PVC) gravity-discharge pipe from the air stripper effluent to the local municipal stormwater collection and drainage system (30-in diameter reinforced-concrete pipe [RCP]);
- Duct Heater: Inline duct heater rated at 600 standard cubic feet per minute (SCFM);
- Vapor Phase Treatment Vessels: Two 1000-pound (lb) activated-carbon vessels operated in series that discharge the treated air stripper off-gas through an exhaust-duct made of PVC (interior) and stainless steel (exterior) that extends approximately 28-ft above the ground surface; and
- Chemical Feed System: Aries Chemical sequestering agent 2908 is injected into the influent groundwater stream for mineral deposit (scale) control using a LMI chemical feed pump model AA941-353 BI, equipped with a LMI Digi-Pulse Meter model FM-200 rated for 0.05-5.0 milliliter (ml) per stroke. Approval for the water treatment chemical [WTC] was received from NYSDEC on April 13, 2011. Usage of the WTC began on April 20, 2011.

2014 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

Record drawings for the GCTS are included in Appendix A. System components are described in more detail in the *Operational, Maintenance, and Monitoring Manual* (OM&M Manual; Stantec 2014).

3.0 REMEDIAL OPERATIONAL OBJECTIVES

The overall remedial goal of GCTS operation is to reduce the potential for groundwater contaminated with CVOCs to infiltrate the facility's storm drainage system (Figure 2), which ultimately discharges to Nail Creek. The GCTS operational objectives are to:

- Maintain and operate the system continuously without significant downtime;
- Demonstrate the system's effectiveness in preventing infiltration of CVOC-contaminated groundwater into the facility storm drain;
- Demonstrate that the air stripper is removing CVOCs from the influent groundwater streams before being discharged into the local county storm drain system, in compliance with the Site SPDES permit;
- Demonstrate that vapor-phase discharge from the air stripper complies with NYSDEC Division of Air Resources (DAR-1); and
- Achieve the site-specific goal of 95 % mass removal of target CVOCs, which include Tetrachloroethene (PCE), Trichloroethene (TCE), 1,1-Dichloroethane (1,1-DCA), cis-1,2-Dichloroethene (cis-1,2-DCE), and trans-1,2,-Dichloroethene (trans-1,2-DCE), in the system vapor effluent.

The operational goals, as recommended in the 2013 OM&M annual report, were successfully achieved during the 2014 reporting period by performing the following activities:

- Monitored the GCTS operation remotely on a daily basis to review operating parameters and maximize runtime;
- Performed monthly physical system inspections to verify proper operation, and to perform required maintenance;
- Performed monthly system compliance sampling to demonstrate that the related CVOCs were being removed from the groundwater prior to discharge through the system effluent;
- Performed quarterly system OM&M, which included the following:
 - Collected stormwater samples from the onsite catch basins (CBs) to monitor for the presence of CVOCs.
 - Collected system pre-carbon (influent), mid-carbon, and post-carbon (effluent) vapor samples during each quarter to calculate mass removal efficiencies and to monitor the effluent discharge concentrations of site-related CVOCs.

4.0 OPERATION AND MAINTENANCE ACTIVITIES

The GCTS operational run time was approximately 98% (358 out of 365) days, with minor scheduled routine maintenance and/or operational interruptions due to system alarm conditions.

The system was inspected either by physical Site inspections, remote computer monitoring, and/or via review of the daily system operation e-mails during the reporting period. System operating parameters were recorded during monthly Site inspections and compliance sampling events. The GCTS operational summary is provided in Table 1.

4.1 DAILY ROUTINE SYSTEM INSPECTIONS

Daily remote system monitoring of the system was performed throughout the year. Monitoring included review of the daily system operational e-mails to confirm that the system was operational, that all system variables were within their allowable ranges, and that no alarm conditions were present.

4.2 MONTHLY ROUTINE SYSTEM INSPECTIONS

This section summarizes the activities completed during the operations and maintenance (O&M) monthly Site visits. These activities were recorded on the "Monthly O&M Checklists." The checklist forms were updated in April 2014. An updated electronic copy of the *OM&M Manual* was distributed to the project team, and the hard copy kept onsite was also updated. Copies of the updated blank forms are included herein in Appendix B, along with completed field forms.

Air Stripper:

- Observe the air stripper for visible leaks;
- Clean air stripper aeration trays and sump (as required);
- Observe the blower for proper operation;
- Inspect the air stripper trays via the glass door and record and note deposits; and
- Record the gauge pressure and level readings for the following:
 - o Air stripper sump; and
 - o Air stripper-sump water level.

Flow Meters:

- Observe the flow meters to ensure they are operating properly and clean them, as necessary; and
- Record the monthly and permanent totalizer readings.

Vapor Phase Equipment:

- Inspect the duct heater for proper operation;
- Record pre-duct heater and carbon vessel temperatures;
- Inspect the carbon vessels for signs of leaks; and
- Record pressures before the lead vessel, and between the lead and lag vessels.

Control Panels:

- Test hand-off-auto (HOA) switches for proper operation; and
- Test power and pump-run lights.

Water Treatment Chemical:

- Inspect chemical feed pump and associated tubing for any signs of leaks;
- Record and date remaining chemical level in drum; and
- Track chemical consumption and dosing rates.

Pumping Manhole Inspections:

- Check the HDPE double-walled pipe for flow entering the manhole from the outer containment pipe, which could indicate a discharge pipe leak;
- Check the floats to ensure they are hanging properly and unobstructed;
- Observe groundwater in the manhole for any unusual odors, water clarity, etc.; and
- If the pump(s) are running, listen for unusual sounds and inspect the discharge piping in the manhole for leaks.

Miscellaneous O&M:

- Observe all treatment-building piping for signs of leaks;
- Exercise MH-1, MH-2, and MH-3 influent ball valves to clean any mineral deposits in order to maintain full operational range of the valve;
- Check the building unit heaters and thermostats, adjust as necessary; and
- Inspect health and safety-related equipment and replace as necessary.

4.3 QUARTERLY SYSTEM O&M AND INSPECTIONS

This section describes activities completed during the O&M quarterly critical device testing. These activities were recorded on the "Monthly/Quarterly O&M Checklists" (attached in Appendix B). The system was temporarily turned on and off for several hours during each event in February, April, July, and October 2014 to perform critical-device testing. These devices were tested for proper operation as described in the *OM&M Manual* standard operating procedures

(SOPs). The results of each event are summarized below. Note that the First Quarter event, normally performed in January, was postponed until February to accommodate the transition from Arcadis to Stantec as Lockheed Martin's new Performing Contractor.

- February 5-6, 2014 All critical devices passed.
- April 1-2, 2014 All critical devices passed.
- July 8, 2014 All critical devices passed.
- October 9, 2014 All critical devices passed.

4.4 NON-ROUTINE OPERATION AND MAINTENANCE ACTIVITIES

The following non-routine system O&M activities were performed between January 1 and December 31, 2014:

- The MH-1 Pump 1 run light bulb/contact block and HOA switch, MH-1 panel light, and new fuse for discrete output #33 were repaired (by Arcadis) on February 11;
- The flow meter for manhole MH-2 was replaced on August 7 with an existing spare meter. A replacement spare meter was purchased in October.
- ConMed performed an excavation on an emergency basis to repair their fire protection system post indicator valve PIV-3. Stantec managed the groundwater pumped from the excavation. An estimated 1,850 gallons of water were pumped into a frac tank for temporary storage, and permission was obtained from NYSDEC (Region 6 Division of Water) to discharge the water to the GCTS treatment under the existing SPDES permit. An estimated 1,500 gallons of water were discharged to collection system manhole MH-1 on November17, 2014. The water was passed through a filtration unit prior to discharge to remove suspended solids. Water containing residual sediment was left in the tank and ultimately placed in drums for disposal.

4.5 ALARM CONDITIONS AND SYSTEM MODIFICATIONS

Several "fatal" alarm conditions occurred during 2014. A fatal alarm is one that causes system shutdown. The cause of each system alarm and corresponding corrective action are summarized in Table 1. Alarm logs and response sheets are provided in Appendix C. Below is a summary of fatal alarms and corrective actions including any system modifications that were made during 2014:

- January 15: Daily operation status email not received. System found offline. Site visit, restarted system and rebooted PLC.
- March 5: Process 44 (GCTS Bldg. Low Temperature); GCTS building door left open during cold weather (alarm trips at 45°F). Door closed and system restarted.
- May 7: System found in Manual Mode. Site visit, system restarted on May 12.

- June 28: Process 36 (Manhole MH-1 Low Level); Process 38 (Manhole MH-2 Low Level). Cause unknown but possibly related to ConMed electrical shutdown. Site visit, system restarted June 29.
- July 1: Process 41 (High Stripper Sump Pressure). Cause unknown possibly related to manifold valve position adjustment made to regulate sump liquid level. System restarted remotely on July 1.

Several non-fatal alarms or system communication deficiencies were observed during the reporting period. Alarm Logs generated for each of these alarm situations are included in Appendix C. The following types of non-fatal alarms occurred:

- Lack of daily operational update email
- Lack of daily operational update email attachments
- Process 32 Stripper sump low level
- Process 29/55 Manhole and Aggregate low flow
- Process 30/31 Manhole pump low flow
- Process 36/38 Manhole Low Level
- Process 53 Sequestering agent pump low flow

The lack of daily operational emails or missing daily operational email data attachments occurred several times in the first half of 2014. Stantec worked with EOS Research, the vendor/service provider for the PLC system during this time period in an attempt to resolve the problem. EOS made changes to the firmware used in operation of the PLC, but was not able to completely fix the problem. EOS contacted Verizon Communications who made additional changes to the communication system. Although missing attachments have been noted in the second half of 2014, the frequency of these occurrences has been significantly reduced, and overall communications with the PLC have remained relatively problem-free.

5.0 ANALYTICAL MONITORING ACTIVITIES

This section summarizes the monthly GCTS compliance sampling and monitoring activities completed during the reporting period.

5.1 SYSTEM EFFLUENT MONITORING

The treatment system discharges to an Oneida County storm drain under the terms of an SPDES permit (permit No. NY-0121894). As required by the SPDES permit, effluent grab-water samples were collected monthly from the treatment system. One effluent grab-sample was collected monthly from the treatment-system-effluent sampling-port SP-100 (designated by NYSDEC as "Outfall #2"), located on the 4-in diameter air stripper liquid phase effluent line. The location of sampling port SP-100 is shown on drawing M-1 in Appendix A.

Samples were collected in 40-ml volatile organic analysis (VOA) vials supplied by a New York State Department of Health (NYSDOH)-certified laboratory. The sampling protocol for the effluent sample is included in the *Site-Specific Quality Assurance Project Plan* (QAPP; Arcadis 2009b). The samples were shipped on the day of collection via overnight delivery to TestAmerica Laboratories, Inc. in Amherst, New York. One laboratory trip-blank accompanied each water sample, with the exception of the December sample when a trip blank was inadvertently omitted. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260. The SPDES permit also requires monthly collection and analysis of a grab sample for pH. The pH is measured locally using a sitededicated pH meter. The pH meter was replaced in October to ensure reliability of measurement.

The system-effluent samples contained no detectable concentrations of VOCs above their respective laboratory reporting limits (RL) (as shown in Table 2) during the reporting period.

The SPDES permit limits the system's effluent average daily discharge flow (over the course of a monthly reporting period) to 45 gpm. Effluent flow did not exceed this average during the reporting period. In addition, the pH recorded during the reporting period ranged from 8.1 to 8.4 standard units, and remained within the SPDES effluent limits of 6.5 to 8.5 standard units.

5.2 SYSTEM INFLUENT MONITORING

Influent-water samples were collected as part of quarterly monitoring activities in February, April, July, and October. Influent samples were collected from each influent-line (MH-1, MH-2, and MH-3) sampling-tap on the 2-in diameter influent lines before the influent water entered the air stripper. The sampling protocol and delivery method followed were identical to those for the SPDES compliance sampling. Complete system influent analytical sampling results are summarized in Table 3. The following is a summary of the primary contaminant concentrations for each manhole influent sample for each quarterly sampling event:

	2014 M	lanhole Influ	ent Sample	Results								
	February	March	July	October								
Manhole MH-1			•									
1,1-DCA	5.8	3.3	3.3	6.5								
cis-1,2-DCE	33.0	18.0	20.0	38.0								
PCE	22.0	14.0	12.0	27.0								
TCE	44.0	21.0	20.0	39.0								
Manhole MH-2												
1,1-DCA	1.3	0.97J	2.1	2.6								
cis-1,2-DCE	6.5	9.1	11	17								
PCE	1.1	2.7	2.1	0.98								
TCE	4.3	4.9	5.1	5.1								
VC	<1.0	<1.0	<1.0	2.4								
Manhole MH-3												
1,1-DCA	< 0.38	< 1.0	< 0.38	< 0.38								
cis-1,2-DCE	2.6	2.0	2.6	2.5								
PCE	37.0	30.0	41.0	33.0								
TCE	15.0	10.0	17.0	17.0								

Notes:

1. All results are expressed in micrograms per liter, or $\mu g/L$

2. "J" indicates estimated value.

5.3 STORMWATER MONITORING

As outlined in the *OM&M Manual*, quarterly stormwater samples were collected from three CB locations at the Site (identified as CB-1, CB-2, and CB-3; as shown on Figure 2). Note that because of a lack of water in the sewer line due to freezing conditions, the Quarter 1 catch basin samples could not be collected in February. Accordingly, collection of these samples was delayed until March 19, 2014 when warmer conditions prevailed and water was flowing through the basins. All samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260.

The quarterly stormwater samples collected from the CBs contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of the April 3, 2014 sample from stormwater sampling location CB-3. This sample exhibited detectable concentrations of 1,1-DCA (0.42(J) μ g/L) and PCE (0.83 μ g/L). These detections were below the allowable SPDES permit effluent limits.

6.0 SYSTEM PERFORMANCE RESULTS

Operational data collected during monthly system-operation inspections are summarized in the following sections.

6.1 GROUNDWATER RECOVERY/EXTRACTED LIQUID FLOWRATE

The groundwater recovery/extraction-liquid flowrates for the reporting period are summarized in Table 5. These data include the average and cumulative recovered-groundwater and manhole-pump run-times. Total extracted-groundwater flow readings were collected from the flow-meters FT 101 (MH-1), FT 102 (MH-2) and FT 103 (MH-3). Total flow and recovery rates for the three system manholes are as follows:

Manhole #	Total <u>Flow (gal)</u>	Avg. Recovery <u>Rate (gpm)</u>
MH-1	3,157,678	6.0
MH-2	476,542	0.9
MH-3	1,364,307	2.6

The resulting total annual flow for the GCTS was approximately 4,998,527 gallons of groundwater. The total flows recorded correspond to an average recovery rate of approximately 9.5 gpm over the reporting period. This average recovery rate corresponds to an approximate 4 % decrease when compared to the 2013 rate of 9.9 gpm. The change in flow is within the expected variation of the system, due potentially to variations in precipitation and groundwater conditions over time.

6.2 AIR STRIPPER PERFORMANCE

Monthly air stripper performance data are summarized in Table 5. The air stripper effluent vapor flowrate was recorded during each monthly sampling event. This flowrate is calculated by converting the differential pressure measurement recorded by flow transmitter FT-106 (located post carbon vessels VPGAC-401 and 402) into a volumetric flow. The vapor flowrate ranged from 563 to 848 standard cubic feet per minute (scfm) during the reporting period; the average flow rate was approximately 695 scfm. The air stripper sump pressures ranged from 25.5 to 32.4 inches of water column (in. W.C.) during the reporting period.

6.3 AIR STRIPPER EMISSIONS

GCTS pre-carbon, mid-carbon and effluent vapor samples were collected quarterly. All samples were analyzed by TestAmerica's Burlington, Vermont facility. Samples were collected in Summa® canisters and analyzed per USEPA "Method TO-15" for VOCs.

Quarterly estimated mass removal rate data are summarized in Table 6. The GCTS removed an estimated 4.3 lbs. of total VOCs from groundwater during the reporting period. This value was calculated using the quarterly pre-carbon vapor analytical data, the average monthly air stripper effluent vapor flowrate, and an average blower runtime of 36%. This runtime reflects the percentage of the time the blower was actually operating and stripping VOCs from influent water. The overall system uptime for the reporting period was 98%. The estimated total VOC mass removal is most likely overestimated due to the fact that manhole MH-1, which has the highest influent concentration of VOCs, is always online during the time of the quarterly sample collection. VOC removal efficiency of the carbon vessels was tracked throughout the reporting period. Both cumulative and target VOC percent removal was calculated by comparing the quarterly vapor influent, mid-carbon, and post-carbon analytical results. As noted in Section 3.0, the site-specific goal for vapor phase treatment is a 95% mass removal of target VOCs. Percent removals calculated based on effluent results ranged from 99% to 76% during 2014. Carbon change-out was not performed in 2014. Due to the decreased removal efficiency observed in Q4, a carbon change-out will be conducted if the 2015 Q1 sampling results confirm the removal efficiency remains below 95% for target VOCs.

The VOC concentrations emitted in the air stripper (pre-carbon, mid-carbon, and post-carbon) were below the allowable annual-guideline concentration (AGC) values (as provided in NYSDEC DAR 1 tables) for each detectable compound. Short-term guideline concentration (SGC) values are not applicable as performance samples are only collected quarterly. Individual VOCs emitted and their estimated maximum allowable-mass flow-concentrations, as per NYSDEC DAR 1 guidance, are shown in Table 7.

6.4 WATER TREATMENT CHEMICAL MONITORING

The terms of the SPDES permit (permit no. NY0121894) for the system discharge require that the total volume of any WTC discharged during a permit year be reported to NYSDEC in the December Monthly Discharge Monitoring Report. Monthly WTC usage, dosing rates, and date of recording are summarized in Table 8.

The total amount of WTC (i.e., Sequestering Agent - Aries 2908) discharged through Outfall 002 during 2014 was approximately 631.6 lbs. The total amount of WTC discharged corresponds to an average dosing rate of 13.1 parts per million (ppm) over the reporting period.

6.5 STORMWATER MONITORING

As presented in Section 5.3, the quarterly stormwater samples contained no detectable concentrations of VOCs above their respective laboratory RLs (as shown in Table 4), with the exception of CB-3 during the April 2014 sample event. As noted above in Section 5.3, the detections were below the allowable SPDES permit effluent limits.

The general absence of constituents detected in the stormwater samples collected at the Site continues to indicate that the GCTS is operating as designed and preventing the migration of impacted groundwater into the stormwater system.

6.6 GROUNDWATER ELEVATION MEASUREMENTS

Groundwater elevation measurements are collected from Site monitoring wells and piezometers as part of the quarterly OM&M program. Groundwater data summaries were generated for Quarters 1 through 3; these were provided to NYSDEC. Quarter 4 data will be provided in the Annual Groundwater Report being generated concurrently with this report. Groundwater contour maps for Quarter1 through 4 are provided on Figures 3 through 6.

Groundwater elevations are generally consistent with historical measurements at the Site and identify the influence of the GCTS at the three collection trenches. Localized fluctuations exist, attributable to variations in subsurface conditions, including building construction, utility corridors, and operation of the GCTS. Measurements indicate general flow toward the south-southeast.

7.0 2014 GOALS AND RECOMMENDATIONS

The information presented in this report indicates that the systems will continue to operate as designed and outlined within the NYSDEC approved *Groundwater Collection and Treatment System 100% Design Work Plan* (Arcadis 2010), and *OM&M Manual*. The recommendations and action items planned for during the 2014 reporting period are described in the sections below.

7.1 GOALS

The GCTS 2015 remedial and operational goals will be unchanged from those noted in section 3.0. The operational data to be collected includes:

- GCTS influent-water samples will be collected quarterly during a routine monthly SPDES sampling event;
- Quarterly groundwater-elevation measurements will be collected at all accessible Site monitoring-wells and piezometers;
- Quarterly storm-water samples will be collected from the pipe running beneath the manufacturing building and traversing east towards the public storm-drain pipe. These samples will be collected at catch-basin locations CB-1, CB-2, and CB-3. Samples will be analyzed for VOCs by USEPA Method 8260 and collected and submitted to the laboratory in accordance with procedures outlined in the QAPP;
- Monthly effluent SPDES compliance samples, including tracking the WTC dosing rates;
- Continued demonstration that VOCs concentrations in the GCTS air stripper exhaust (i.e., post-carbon) remain below the NYSDEC DAR 1 guidance values before being discharged to the atmosphere;
- Continued tracking of the carbon performance in order to maintain the minimum 95% removal goal for target VOCs in the vapor effluent; and
- Daily review of GCTS operation email logs and prompt response to system alarms.

7.2 RECOMMENDATIONS

The following recommendations and action items are planned for implementation during the next reporting period (January through December 2015):

- Continued operation of the GCTS;
- Continued system compliance sampling, including monitoring the pH of the system effluent;
- Continued preventive maintenance and failure-mode-effects analyses to maintain system reliability;
- Modification of the OM&M Manual as needed if new system enhancements or modifications are made.

8.0 **REFERENCES**

Arcadis, 2014.	2013 Annual Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Report, Solvent Dock Area. March 2014.
Arcadis, 2012.	Revised Tables of the Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. January.
Arcadis, 2011.	Remediation System Startup Checklist – Operational Readiness Review. April.
Arcadis, 2010.	Groundwater Collection and Treatment System 100% Design Work Plan, Solvent Dock Area. February.
Arcadis, 2009a.	Corrective Measures Study Report. March.
Arcadis, 2009b.	Quality Assurance Project Plan. August.
Arcadis, 2011	DRAFT Site Management Plan. October.
Arcadis, 2008.	Solvent Dock Area and West Lot Site Health and Safety Plan. November.
NYSDEC, 1998.	Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values. June.
NYSDEC, 2008.	Order on Consent Index Number CO 6-20080321-5. October 3.
NYSDEC 2014.	Letter to Stantec approving discharge of water to GCTS. November 14.
Stantec, 2014.	Health and Safety Plan, Site Activities for Remediation OM&M and Groundwater Monitoring, Former Lockheed Martin Facility, 525 French Road, Utica, New York. March 2014.
Stantec 2014	Groundwater Collection and Treatment System Operations, Maintenance, and Monitoring Manual, Solvent Dock Area. May.

Tables

Data		Date/Time		Brosses	Description	Suspected Cause of Alarm	Corrocti
Date	Shutdown	Online	Off (days)	- Process	Description	Suspected Cause of Alarm	Correcti
June 1996					Historical data (pre- 2009) ha	s not been included in this table.	
1/17/2009	1/17/09 8:25	1/17/09 9:34	0.05	45	High/low air temperature.	Low ambient air temperature.	Adjusted ambient
8/3/2009	7/31/09 9:58	8/3/09 14:38	3.2	40	Wall louver fault.	Power outage due to inclement weather.	Restart s
9/4/2009	9/1/09 15:09	9/4/09 12:47	2.9	NA	Power outage	Power outage due to inclement weather.	Restart s
2000 % Bum	Time Summers	Days Offline	Days Online	% Run Time			
2009 % Run	Time Summary	6.1	357.86	98%			
1/25/2010	1/25/10 17:53	1/27/10 7:57	1.6	46/Other	Low Air Flow/System PLC left in manual mode accidentally	Blower influent damper/tray and/or demister pad fouled	Adjust bl
3/2/2010	3/2/10 17:55	3/3/10 11:31	0.7	42	High level air stripper sump.	Blower influent damper in need of adjustment following air stripper tray cleaning.	Damper
4/7/2010	4/7/10 12:00	4/7/10 18:00	0.3	NA	Quarterly System Testing	NA	NA
4/15/2010	4/15/10 8:00	4/15/10 19:30	0.5	NA	Annual Stripper Cleaning	NA	NA
4/22/2010	4/22/10 6:20	4/22/10 11:08	0.2	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust bl
4/25/2010	4/25/10 19:08	4/26/10 9:39	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust bl
4/27/2010	4/27/10 8:53	4/27/10 14:58	0.3	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust bl
4/29/2010	4/29/10 16:35	4/30/10 7:41	0.6	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust bl
5/28/2010	5/28/10 16:35	/28/10 16:35 5/31/10 9:40		NA	Power outage	Power outage due to inclement weather. Electric meter damaged as a result.	Inspect s inspectio
6/1/2010	6/1/10 14:42	6/2/10 8:55	0.8	42	High Air Stripper Sump Level	Low back pressure due to recent stripper cleaning which results in gravity discharge issues.	Adjust bl
7/12/2010	7/12/10 16:00	7/16/10 14:31	3.9	0	MH-1 offline for testing phase, air stripper left in auto with MH-2 online.	NA	NA
11/2/2010	11/2/10 22:22	11/3/10 13:45	0.6	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust ai
11/10/2010	11/10/10 11:42	11/10/10 20:23	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart s
11/11/2010	11/11/10 9:52	11/11/10 16:21	0.3	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart s
11/11/2010	11/11/10 16:37	11/11/10 18:49	0.1	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust ai
11/11/2010	11/11/10 19:18	11/12/10 9:08	0.6	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust ai
11/12/2010	11/12/10 9:18	11/12/10 12:43	0.1	41	High Pressure in Air Stripper Sump.	Blower damper adjustment.	Adjust ai
11/12/2010	11/12/10 12:55	11/12/10 13:04	0.0	41	High Pressure in Air Stripper Sump.	Fouled air stripper trays.	Clean ai
11/18/2010	11/18/10 10:23	11/18/10 19:22	0.4	48	Manual system shutdown/LOTO	Implementing GCTS system upgrades.	Restart s
11/19/2010	11/19/10 9:44	11/19/10 17:06	0.3	40	Wall louver damper motor fault.	Power failure due to a system shutdown for system inspection during construction phase.	Restart s

ective Action

ted low temperature alarm setting from 40 to 32 F to account for low ent temperature.

rt system and observe proper operation following storm event. In system and observe proper operation following storm event.

t blower damper/Restart system remotely

per adjusted to allow more air flow.

t blower damper to increase air flow/sump pressure.

ct system, temporarily bypass faulty E-meter, perform critical device ction, restart system and monitor for proper operation.

t blower damper to increase air flow/sump pressure.

t air stripper blower damper.

rt system after completing work.

rt system after completing work.

t air stripper blower damper.

t air stripper blower damper.

t air stripper blower damper.

air stripper trays and adjust air stripper blower damper.

rt system after completing work.

irt system after inspection.

Date		Date/Time		Process	Description	Suspected Cause of Alarm	Correct						
Date	Shutdown	Online	Off (days)	Process	Description	Suspected Cause of Alarm	Correcti						
11/29/2010 ⁽³⁾	11/29/10 12:53	12/31/10 23:59	23.5	NA	Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	Install te						
2010 % Bum	Timo Summony	Days Offline	Days Online	% Run Time		•							
2010 % Run	Time Summary	38.4	326.6	89%									
1/1/2011 ⁽⁴⁾	1/1/11 0:00	1/24/11 23:59	1/24/11 23:59 22.7 NA Air Stripper ta offline.		Air Stripper taken permanently offline.	Implementing GCTS system upgrades.	ogrades. Periodica						
1/31/2011	1/31/11 4:30			Narrow sump elevation operating range.	Restarte								
2/2/2011	2/2/11 7:09			42 High Air Stripper Sump Level N	Narrow sump elevation operating range.	Adjusted							
2/8/2011	2/8/11 2:53	2/8/11 8:52	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
2/8/2011	2/8/11 13:59	2/8/11 19:11	0.2	46	High Pre-Carbon Temperature	Residual heat in duct heater raising pre-carbon temperature following blower/duct heater shutdown.	Modified blower.						
2/8/2011	2/8/11 19:51	2/9/11 8:17	0.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
2/11/2011	2/11/11 5:06	2/11/11 11:46	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
2/13/2011	2/13/11 18:01	2/17/11 16:03	3.9	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
2/19/2011	2/19/11 10:31	2/21/11 9:42	2.0	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
2/24/2011	2/24/11 0:08	2/24/11 8:47	0.4	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre-carbon temperature to drop.	Restart s						
2/26/2011	2/26/11 3:23	2/26/11 10:58	0.3	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre-carbon temperature to drop.	Restart						
2/26/2011	2/26/11 13:46	2/28/11 10:22	1.9	47	Low Pre-Carbon Temperature	Following end-cycle of manhole pump down and 10 minute continuation of blower operation, air stream generated by blower with duct heater off causing pre-carbon temperature to drop.	Modified and pre- operatin						
3/14/2011	3/14/11 0:33	3/14/11 10:31	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
3/14/2011	3/14/11 23:53	3/15/11 9:14	0.4	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
3/20/2011	3/20/11 7:16	3/20/11 12:35	0.2	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
3/23/2011	3/23/11 6:47	3/23/11 11:42	0.2	42	High Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
3/26/2011	3/26/11 3:21	3/26/11 9:37	0.3	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted						
3/26/2011	3/26/11 21:38	3/29/11 9:52	2.5	32	Low Air Stripper Sump Level	Narrow sump elevation operating range.	Adjusted existing in sump.						
6/11/2011	6/11/11 16:53	6/12/11 11:40	0.8	NA	Power outage	Power outage due to inclement weather.	Restart						
6/12/2011	6/12/11 23:00	6/13/11 7:15	0.3	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Low tem initiated						
7/9/2011	7/9/11 6:58	7/11/11 8:56	2.1	NA	Power outage	Power outage.	Restart						
7/12/2011	7/12/11 22:13	7/13/11 12:53	0.6	47	Low Pre-Carbon Temperature	Duct heater requires local reset following power outage therefore not operating.	Duct he						
11/21/2011	11/21/11 16:23	11/23/11 12:00	1.8	NA	PLC Reset to "Manual" for unknown reason, identified during remote login following no daily fax receipt.	System reset automatically, exact cause unknown. Suspect cause due to bad remote system reconfiguration due to faulty/interrupted remote connection.	Log into File #17						
12/8/2011	12/8/11 10:06	12/9/11 21:00	1.5	46	High Pre-Carbon Temperature	Unknown	Monitor						
12/11/2011	12/11/11 20:06	12/11/11 20:13	0.0	46	High Pre-Carbon Temperature	Unknown	Review of field gau						
12/14/2011	12/12/11 1:17	12/12/11 9:49	0.4	45	High Air Flowrate	Potential drifting associated with transmitter calibration.	Adjust hi						

ctive Action

temporary air stripper.

dically operated system.

rted system remotely.

ted blower damper and/or liquid effluent pipe elevation.

ted blower damper and/or liquid effluent pipe elevation.

ied programming so that duct heater shuts off 2 minutes prior to r.

ted blower damper and/or liquid effluent pipe elevation.

rt system.

rt system.

ed programming so that duct heater shuts off in parallel with blower re-carbon temperature alarms are ignored when blower is not ting.

ted blower damper and/or liquid effluent pipe elevation.

ted blower damper and/or liquid effluent pipe elevation. Will replace ng high level sensor with tethered float to allow wider operating range np.

rt system after inspection.

emperature setpoint temporarily lowered until local restart could be ed on 6/13/11.

rt system.

neater locally reset.

nto the system remotely and reconfigures the PLC with the latest GCTS 17.

or system and temperatures remotely.

w datalogger file/site inspection to verify transmitter readings versus lauge.

t high flow alarm setpoint

Dete		Date/Time		Brooses	Description	Suspected Cause of Alarm		
Date	Shutdown	Online	Off (days)	- Process	Description	Suspected Cause of Alarm		
12/13/2011	12/13/11 3:50	12/13/11 8:06	0.2	46	High Pre-Carbon Temperature	Potential drifting associated with transmitter calibration.	Adjust hi	
2014 % Dum	Time Summers	Days Offline	Days Online	% Run Time				
2011 % Run	Time Summary	47	348	88%				
1/14/2012	1/14/12 19:46	1/15/12 8:10	0.5	32	Low water level in air stripper sump	Increased back pressure from air stripper trays	Tempora 1/26/12.	
1/26/2012	1/25/12 11:06	1/26/12 13:54	1.1	NA	Annual Stripper Cleaning and float replacement	NA - Scheduled maintenance	NA	
1/30/2012	1/30/12 20:03	1/31/12 8:59	0.5	32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Re-adjus	
2/6/2012 2/6/12 16:45		2/7/12 11:00	0.8	42	High water level in air stripper sump	The LSH-100 was tripped during a automated startup when MH-1 was called to pumped. The data logger indicated that the LSH-100 went into alarm several seconds after one of the pumps turned on. The high level alarm is most likely a result of the new level float being set with too short of tether during the initial install.		
3/7/2012	3/7/12 9:06	3/7/12 16:55	0.3	NA	System temporarily taken offline to complete the arc flash study field reconnaissance	NA	NA	
4/16/2012	4/16/12 9:18	4/17/12 12:45	1.1	NA	System PLC/building power outage.	Power outage due to inclement weather.	Manually dial-out	
4/23/2012	4/23/12 12:27	4/23/12 16:39	0.2	NA	Chris Davern onsite making modification to GCTS cfg file and to test UPS battery	GCTS cfg file was modified to make LSH-100 in the up position be a fatal alarm condition regardless of blower status. UPS battery backup tested successfully, UPS provided power to PLC for approx. 60 minutes.	NA	
7/16/2012	7/16/12 5:57	7/16/12 12:12	0.3	47	Low temperature alarm for pre- VPGAC air stream.	5 1	Mobilize alarm. R	
7/17/2012	7/17/12 18:06	7/18/12 12:16	0.8	42	High water level in air stripper sump	The LSH-100 was tripped following an automated ending of a manhole pumping cycle (i.e., batch). No system adjustments (e.g., damper adjustment) made or observed drift in operational parameters (e.g., air stripper sump pressure).	Mobilize tethered partially pressure damper	
10/11/2012	10/11/12 6:15	10/11/12 13:49	0.3	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Restart s	
10/12/2012	10/12/12 12:10	10/12/12 14:51	0.1	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect t	
10/13/2012	10/13/12 5:37	10/14/12 18:01	1.5	45	Low/High Air Flowrate	Potential drifting associated with transmitter calibration.	Inspect t	
10/16/2012	10/16/12 8:40	10/17/12 8:35	1.0	NA	Replacement of air stripper gaskets	NA	NA	
10/30/2012	10/30/12 12:28	10/30/12 18:50	0.3	NA	Critical Device Testing	NA	NA	

ctive Action

t high temperature alarm setpoint

orarily adjust air stripper damper on 1/16/12. Clean air stripper on 12.

ljust air stripper blower damper on 2/2/12

ally drained enough water from the air stripper sump in order to clear tch) the high level alarm. The length of the high level float tether was ased 3-inches.

ally reset PLC UPS/battery backup and restart system. Will test alarm ut sequence in the event of a power outage.

ize field staff to site and manually reset duct heater high temperature . Restart system.

lize field staff and manually drop liquid level of air stripper sump so that red high float LSH-100 will drop into off position. Done by manually ally closing pre-VPGAC butterfly valve to raise air stripper sump sure and lower air stripper sump elevation. Restart system. Opened ber slightly.

rt system.

ct transmitter and pitot tube, restart system.

ct transmitter and pitot tube, restart system.

			•								
Date		Date/Time		Process	Description	Suspected Cause of Alarm					
Dale	Shutdown	Online	Off (days)	FIDCESS	Description	Suspected Gause of Alarm	Correct				
11/4/2012	11/4/12 3:37	11/4/12 3:37 11/5/12 20:44		45	Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Log into PLC dat operatio three ma correspo that suff				
11/7/2012	11/7/12 5:03	11/7/12 9:23	7/12 9:23 0.2		Low and High air stripper air flow rates, FT-106.	4-20 mA signal drift from the pressure transmitter FT-106 to the PLC.	Followin to site th the PLC system a fatal to				
12/26/2012	12/26/12 4:24	12/26/12 12:24	0.3	32	Low water level in air stripper sump	Increased back pressure due to air stripper damper being left open too much.	Restart pressure				
2012 % Run T	ime Summary	Days Offline	Days Online	% Run Time	_						
2012 /01/01/1	ine Summary	11.0	355.0	97%			_				
2/4/2013	2/4/13 9:00	2/6/13 18:00	2.4	NA	System taken offline to upgrade PLC with cellular modem.	ΝΑ	NA				
2/11/2013	2/11/13 9:00	2/11/13 18:59	0.4	NA	System temporarily taken offline to complete the cellular modem upgrade.	NA	NA				
11/30/2013	11/30/13 5:50	11/30/13 20:21	0.6	32	Low water level in air stripper sump	The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart				
12/17/2013	12/17/13 4:40	12/17/13 8:070.132Low water level in air stripper sumpshutdown. The data logger indicated that the toggling back and forth during the 10 minute		The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart						
12/25/2013	12/25/13 5:07	12/25/13 21:08	0.7	32	Low water level in air stripper sump	The LSL-100 was tripped during a automated system shutdown. The data logger indicated that the LSL-100 was toggling back and forth during the 10 minute blower shutdown mode and latched long enough (5 second set point) in the off position to trigger the alarm.	Restart				
2013 % Run T	ime Summary	Days Offline	Days Online	% Run Time		1					
	ecember 31)	-	· · · · · · · · · · · · · · · · · · ·								

ective Action

nto system remotely on 11/5/12 at 20:44. Following an inspection of the data logger files the system was restarted and monitored for proper ation. The air flow rate was noted at approximately 550-600 cfm with all manholes online pumping at a total flow rate of 70 gpm with a sponding air stripper sump pressure of ~32 in.W.C., which confirmed sufficient air flow was flowing through the air stripper.

wing receiving the alarm again on 11/7/12 at 5:03 ARCADIS mobilized e that morning at 9:08 to inspect the system. Following an inspection of PLC and other major system components, and confirming that the im was operating as intended the Process 45 alarm was changed from al to non-fatal. The system was restarted at 9:23.

art system remotely, monitor for proper operation including flows, sures, float levels, etc.

art system and monitor for normal operation.

art system and monitor for normal operation.

art system and monitor for normal operation.

Date		Date/Time		Process	Description	Suspected Cause of Alarm							
Date	Shutdown	Online	Off (days)	Flocess	Description								
1/14/2014	1/15/14 3:15 1/15/14 11:12 0.3		NA	Daily system operational status email not received.	Unknown - PLC processor not responding.	Reboot							
3/5/2014	5/2014 3/5/14 7:39 3/5/14 9:10 0.1		44	Building Low Temperature	Prolonged opening of overhead door cooled building temperature.	Temper							
4 - 4 - 0		Days Offline	Days Online	% Run Time									
1st Quarter (2014) %	% Run Time Summary	0.4	89.6	100%									
5/7/2014	5/7/14 9:20	5/12/14 9:00	5.0	Manual	System was in manual mode	System was inadvertently switched to manual mode during a site visit and rendered the system inoperative.	System						
6/28/2014	6/28/14 7:31	6/29/14 13:00	1.2	36/38	Power loss to system building	Planned ConMed electrical shutdown	Could n manuall						
		Days Offline	Days Online	% Run Time			•						
2nd Quarter (2014)	% Run Time Summary	6.2	84.8	93%									
7/1/2014	7/1/14 20:03	7/1/14 21:40	0.1	Process 41	High Air Stripper Sump Level	Butterfly valve closed on carbon manifold to increase pressure in air stipper sump and keep the sump level down	System						
2rd Quarter (2014)	% Run Time Summary	Days Offline	Days Online	% Run Time									
Sid Quarter (2014)	¹⁰ Kun Time Summary	0.1	91.9	99.9%									
4th Quarter (2014) 9	% Run Time Summary	Days Offline	Days Online	% Run Time									
	o Ran Time Gummary	0.0	92.0	100%									
	Time Summary	Days Offline	Days Online	% Run Time									
(through D	ecember 31)	6.7	358.3	98%									

Notes:

1. Table does not include brief (less than 3 hours [0.1 days]) system shutdowns for routine operation and maintenance activities.

2. Table does not include non-fatal alarms (i.e. low liquid flow, low air flow, etc.) observed during the reporting period.

3. Between 11/29/10 and 12/31/10, temporary system was operational approximately 10 hours (7AM to 5PM) per weekday excluding 12/24/10, 12/30/10, and 12/31/10. System offline for nights and weekends due to lack of safety controls/interlocks and freezing weather conditions.

4. Between 1/1/11 and 1/24/11, the upgraded system was operated on the following dates: 1/13, 1/14, 1/17, 1/18 and 1/20. An average daily run time of 6 hours has been estimated for those dates.

ective Action

bot the PLC and restart system and monitor for normal operation.

perature returned to normal and system restarted.

em was restarted remotely in AUTO mode as soon as issue was found.

d not restart system remotely - Site visit made and system was restarted ually.

em was restarted remotely in AUTO mode.

Table 2. Groundwater Collection and Treatment System Effluent Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/8/2009	2/5/2009	3/4/2009	4/1/2009	5/5/2009	6/2/2009	7/1/2009	8/14/2009	9/4/2009	10/9/2009	11/4/2009	12/11/2009	1/12/2010	2/3/2010	3/3/2010	4/7/2010	5/5/2010	6/3/2010	7/8/2010	8/5/2010	9/7/2010	10/6/2010	11/10/2010	12/22/2010
1,1,1-Trichloroethane	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 1.0	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75
1,2-Dichlorobenzene	10	< 1.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84
Benzene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chlorobenzene Chloroethane	- 10	< 1.0 < 1.0	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.40 < 0.40	< 0.75 < 0.40	< 0.75 < 0.40	< 0.75 < 0.40	< 0.75 < 0.40	< 0.75 < 0.40	< 0.75 < 0.40									
cis-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Ethylbenzene	5	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Toluene	5	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60
trans-1,2-Dichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	15 8.5	< 3.0 8.36	< 1.0 7.31	< 1.0 7.10	< 1.0 7.47	< 1.0 7.61	< 1.0 7.43	< 1.0 7.00	< 1.0 7.08	< 1.0 7.84	< 1.0 7.07	< 1.0 7.04	< 1.0 7.13	< 1.0 8.13	< 1.0 8.51	< 1.0 8.51	< 1.0 8.53	< 1.0 8.62 ⁽⁴⁾	< 1.0 7.19	< 1.0 8.5	< 1.0 8.1	< 1.0 8.3	< 1.0 7.8	< 1.0 8.1	< 1.0 8.0
pH (S.U.) ⁽²⁾		0.30	7.31	7.10	7.47	7.01	7.43	7.00	7.00	7.04	7.07	7.04	7.13	0.13	0.51	0.51	0.55	8.62	7.19	0.5	0.1	0.3	7.0	0.1	8.0
Volatile Organic ⁽¹⁾ Compounds (µg/L)	SPDES Effluent Limitations (ug/L)	1/28/2011	2/23/2011	3/22/2011	4/5/2011	5/12/2011	6/2/2011	7/7/2011	8/11/2011	9/8/2011	10/11/2011	11/1/2011	12/1/2011	1/26/2012	2/9/2012	3/1/2012	4/5/2012	5/1/2012	6/7/2012	7/12/2012	8/15/2012	9/11/2012	10/17/2012	11/8/2012	12/6/2012
1,1,1-Trichloroethane	10	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene Benzene	-	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84	< 0.84	< 0.84 < 0.41	< 0.84	< 0.84	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84	< 0.84 < 0.41	< 0.84	< 0.84	< 0.84 < 0.41	< 0.84 < 0.41	< 0.84 < 0.41
Chlorobenzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
Chloroethane	10	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.73	< 0.32	< 0.73	< 0.75	< 0.32	< 0.32	< 0.73	< 0.32	< 0.73	< 0.75	< 0.73	< 0.32	< 0.32	< 0.73	< 0.32
cis-1,2-Dichloroethene	10	< 0.32	< 0.32	< 0.81	< 0.81	< 0.32	< 0.81	< 0.32	< 0.32	< 0.32	< 0.32	< 0.81	< 0.32	< 0.81	< 0.32	< 0.32	< 0.32	< 0.81	< 0.81	< 0.32	< 0.81	< 0.32	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0
o-Xylene	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	0.47	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 1.0
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0
pH (S.U.) ⁽²⁾	8.5	8.1	8.2	8.1	8.1	6.9	6.8	8.1	8.2	7.9	7.8	7.8	7.7	7.9	7.9	7.9	7.1	7.9	8.2	7.8	8.1	8.1	8.4	8.2	8.2
Volatile Organic ⁽¹⁾	SPDES Effluent	1/16/2013	2/7/2013	3/5/2013	4/24/2013	5/9/2013	6/12/2013	7/11/2013	8/8/2013	9/10/2013	10/22/2013	11/5/2013	12/3/2013	1/23/2014	2/6/2014	3/4/2014	4/3/2014	5/5/2014	6/13/2014	7/10/2014	8/7/2014	9/3/2014	10/9/2014	11/5/2014	12/3/2014
Compounds (µg/L)	Limitations (ug/L)	.0.92	- 0.92	- 0.92	.0.82	.0.92	- 0.92	.0.92	- 0.92	.0.92	.0.92	- 0.92	.0.92	.0.92	.0.92	.0.92	.0.92	- 0.92	.0.82	.0.92	.0.92	.10	- 0.92	- 0.92	< 0.82
1,1,1-Trichloroethane 1,1-Dichloroethane	10	< 0.82	< 0.82	< 0.82 < 0.38	< 0.82	< 0.82 < 0.38	< 0.82	< 0.82	< 0.82 < 0.38	< 0.82	< 0.82	< 0.82	< 0.82 < 0.38	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82 < 0.38	< 0.82	< 0.82 < 0.38	< 0.82	< 1.0 < 1.0	< 0.82 < 0.38	< 0.82	< 0.82
1,2-Dichlorobenzene	10	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 1.0	< 0.38	< 0.38	< 0.38
1,3-Dichlorobenzene	-	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79	< 0.79
1,4-Dichlorobenzene	-	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41	< 0.41
Chlorobenzene	-	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75	< 0.75
Chloroethane	10	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene		< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	0.88	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 1.0	< 0.81	< 0.81	< 0.81
Ethylbenzene	5	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76	< 0.76
Tetrachloroethene	10	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 1.0	< 0.36	< 0.36	< 0.36
Toluene	5	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9	< 0.9	< 0.9	< 0.9	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 0.90	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	1.1	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 1.0	< 0.46	< 0.46	< 0.46
Vinyl Chloride		< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total		< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
pH (S.U.) ⁽²⁾	8.5	7.9	8.2	8.2	8.0	8.2	8.0	8.0	8.1	8.1	8.0	8.1	8.1	8.1	8.1	8.4	8.3	8.4	8.4	8.2	8.3	8.1	8.2	8.4	8.2

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Analyzed in field.

BOLD indicates detected concentrations.

Definitions: < - less than laboratory detection limit listed

- No Standard

NS - Not Sampled For

mg/L - milligrams per liter S.U. - Standard Units

µg/L - micrograms per liter

Table 3. Groundwater Collection and Treatment System Influent Groundwater Concentrations, Former Lockheed Martin French Road Fac
--

able 3. Groundwater			ent systen	i innuent G	lounuwater	Concentrat	ions, Forme	LOCKNEEU	Martin Frei		anty, otica,	MH·	4										
Volatile Organic ⁽¹⁾ Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013	2/6/2014	4/4/2014	7/10/2014	10/9/2014	1/8/2015
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	8.4	9	6	6	6.2	3.6	4.2	2.7	8.5	5.9	4.9	8.5	10	8	3.5	5.4	4.2	5.9	5.8	3.3	3.3	6.5	1.7
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75	< 0.75
Chloroethane	0.70 J	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	39	44	28	42	35	21	30	19	43	33	28	39	56	43	21	28	24	36	33	18	20	38	15
Ethylbenzene	< 1.0	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76	< 0.76
Tetrachloroethene	31	31	27	29	21	8.4	23	18	26	19	16	23	36	28	16	21	16	24	22	14	12	27	12
Toluene trans-1,2-Dichloroethene	< 1.0 < 1.0	< 0.60 < 0.42	< 0.60 < 0.42	< 0.60 < 0.90	< 0.60 < 0.90	< 0.60 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.9	< 0.51 < 0.90	< 1.0	< 0.51 < 0.90	< 0.51 < 0.90	< 0.51 < 0.90
Trichloroethene	< 1.0 64	< 0.42 51	< 0.42 55	< 0.90 49	< 0.90 33	< 0.90	< 0.90 57	< 0.90 27	< 0.90 57	< 0.90 29	< 0.90 26	< 0.90 52	< 0.90 66	< 0.90 41	< 0.90 23	< 0.90 36	< 0.90 24	< 0.9 32	< 0.90 44	< 1.0 21	< 0.90 20	< 0.90 39	< 0.90 19
Vinyl Chloride	0.50 J	0.41 J	33 < 1.0	49 < 1.0	< 1.0	0.99 J	1.3	< 1.0	< 1.0	< 1.0	< 1.0	32 < 1.0	< 0.90	41 < 1.0	< 0.90	< 0.90	< 0.90	32 < 1	< 1.0	< 1.0	< 1.0	39 < 1.0	< 1.0
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0	< 0.66	< 0.66	< 0.66	<1	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
Volatile Organic ⁽¹⁾	. 0.0											MH·			. 5100								
Compounds (µg/L)	2/4/2009	1/12/2010	4/7/2010	7/8/2010	10/6/2010	12/22/2010	2/23/2011	4/5/2011 ⁽²⁾	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013	2/6/2014	4/4/2014	7/10/2014	10/9/2014	1/8/2015
1,1,1-Trichloroethane	< 1.0	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	-	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82	< 0.82
1,1-Dichloroethane	1.6	11	2	2.4	2.6	1.9	1.5	-	3.5	3	1.5	1.8	2.5	2.4	1.3	1.4	2	2.5	1.3	0.97 J	2.1	2.6	1.2
1,2-Dichlorobenzene	< 1.0	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	-	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79	< 0.79
1,3-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	-	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78	< 0.78
1,4-Dichlorobenzene	< 1.0	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	-	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84	< 0.84
Benzene	< 1.0	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41	< 0.41
Chlorobenzene	< 1.0	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	-	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75	< 0.75
Chloroethane	< 1.0	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	-	< 0.32	< 0.32	< 0.32	< 0.32	< 0.35	< 0.35	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	47	12 < 0.40	14 < 0.74	13 < 0.74	12 < 0.74	7.6 < 0.74	-	12 < 0.74	16 < 0.74	5.4	8.3 < 0.74	22 < 0.74	13 < 0.74	7.8 < 0.74	8.2 < 0.74	16 < 0.74	14	6.5	9.1 < 1.0	11 < 0.74	17 < 0.74	5.0 < 0.74
Ethylbenzene m-Xylene & p-Xylene	< 1.0	< 0.40 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 0.74 < 1.0	< 1.0	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74 < 1	< 0.74 < 1.0	< 1.0	< 1.0	< 0.74	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	-	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76	< 0.76
Tetrachloroethene	3.8	28	3.5	9.3	7.5	4.5	2.6	-	2.8	3.6	1.6	1.7	< 0.36	0.76	2.5	2	3.9	2.5	1.1	2.7	2.1	0.98	2.2
Toluene	< 1.0	< 0.60	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	-	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51	< 0.51
trans-1,2-Dichloroethene	0.22 J	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	-	< 0.90	< 0.90	< 0.90	< 0.90	4.9	1.6	< 0.90	< 0.90	< 0.90	< 0.9	< 0.90	< 1.0	< 0.90	1.8	< 0.90
Trichloroethene	6.7	53	7.5	18	14	8.4	4.6	-	7.7	7.5	2.8	4.8	1.6	6.7	5.2	4.6	9.8	5.1	4.3	4.9	5.1	5.1	3.7
Vinyl Chloride	1.0 J	< 1.0	1.4	2.3	1.8	1.5	1.5	-	6.1	4.5	1.2	1.6	2.4	3.3	< 0.90	1.2	1.7	3.1	< 1.0	< 1.0	< 1.0	2.4	< 1.0
Xylenes, total	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 1.0	< 0.66	< 0.66	< 0.66	< 1	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
Volatile Organic ⁽¹⁾												MH-	-3	-				-					
Compounds (µg/L)							1/28/2011	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013		4/3/2014	7/10/2014	10/9/2014
1,1,1-Trichloroethane							< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82
1,1-Dichloroethane	4						< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 1.0	< 0.38	< 0.38
1,2-Dichlorobenzene	4						< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79
1,3-Dichlorobenzene	4						< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78
1,4-Dichlorobenzene	4						< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84
Benzene	4						< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41
Chlorobenzene	4						< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75
Chloroethane cis-1,2-Dichloroethene	1						< 0.32 3.7	< 0.32 2.3	< 0.32 3.5	< 0.32 3.8	< 0.32 3.1	< 0.32 2.5	< 0.32 2.7	< 0.32 3.2	< 0.32	< 0.32 2.4	< 0.32 2.3	< 0.32 1.7	< 0.32 2.7	< 0.32 2.6	< 1.0 2.0	< 0.32 2.6	< 0.32 2.5
Ethylbenzene	1						3.7 < 0.74	< 0.74	3.5 < 0.74	3.8 < 0.74	3. 1 < 0.74	2.5 < 0.74	< 0.74	< 0.74	< 0.81 < 0.74	< 0.74	< 0.74	1.7 < 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74
m-Xylene & p-Xylene	1						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	1						< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.66	< 0.66	< 0.06	< 0.66	< 0.66	< 0.76	< 0.76	< 2.0	< 0.76	< 0.76
Tetrachloroethene	1						< 0.76 1.2	< 0.76	< 0.76 12	< 0.76 21	< 0.76 23	< 0.76 33	< 0.76 49	< 0.76 49	< 0.76	< 0.76 44	< 0.76 48	< 0.76 32	< 0.76 35	< 0.76 37	< 1.0 30	< 0.76 41	< 0.76 33
Toluene	1						< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	49 < 0.51	< 0.51	< 0.50	< 0.51	40 < 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51
trans-1,2-Dichloroethene	1						< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.9	< 0.90	< 1.0	< 0.90	< 0.90
Trichloroethene	1						4.2	< 0.50 5.6	< 0.30 9	19	13	16	17	22	< 0.46	14	14	13	16	15	10	17	17
Vinyl Chloride	1						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	1						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1	< 1.0	< 1.0	< 1.0	< 1.0
Ayrenes, Iolar	J					l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.00	< 0.00	< 0.00	< 0.00	< 0.00	~ 1	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. Manhole MH-2 not sampled during Second Quarter 2011 event due to manhole being offline for pump replacement.

BOLD indicates detected concentrations.

Definitions:

< - less than laboratory detection limit listed

"-" - Analyte Not Analyzed For

J - Indicates concentration is estimated

µg/L - micrograms per liter

Table 4. Stormwater Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

Volatile Organic ⁽¹⁾	SPDES Effluent											CB-1									
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013	3/19/2014 ⁽³⁾	4/3/2014	7/10/2014	10/9/201
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 1.0	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 1.0	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74
m-Xylene & p-Xylene	-					< 1.0				< 1.0		< 0.66		< 0.74					< 2.0		
, , ,		< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0		< 0.66		< 0.66	< 0.66	< 1.0	< 1.0		< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 1.0	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 1.0	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, total	15	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
Volatile Organic ⁽¹⁾	SPDES Effluent											CB-2									
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013	3/19/2014 ⁽³⁾	4/3/2014	7/10/2014	10/9/201
1.1.1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82
11 1 1 1 1 1	10							< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82			< 1.0	< 0.82	< 0.82
1,1-Dichloroethane		< 0.75	< 0.75	< 0.75	< 0.75	< 0.38	< 0.38										< 0.38	< 0.38			
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 0.81	< 1.0	< 0.81	< 0.81
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 1.0	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 0.90	< 0.90
Trichloroethene	10	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 1.0	< 0.46	< 0.46
Vinyl Chloride	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.40	< 0.40	< 0.90	< 0.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
-	10				< 1.0							< 0.66	< 0.66	< 0.90	< 0.90	< 0.66			< 2.0		< 1.0
Xylenes, total		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
Volatile Organic ⁽¹⁾	SPDES Effluent						-		-		-	CB-3									
Compounds (µg/L)	Limitations (µg/L)	1/12/2010	4/7/2010	7/8/2010	12/22/2010	2/23/2011	4/5/2011	7/7/2011	10/11/2011	1/26/2012	4/5/2012	7/12/2012	10/16/2012	1/15/2013	4/24/2013	7/11/2013	10/22/2013	3/19/2014 ⁽³⁾	4/3/2014	7/10/2014	10/9/201
1,1,1-Trichloroethane	10	< 0.40	< 0.40	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 0.82	< 1.0	< 0.82	< 0.82
1,1-Dichloroethane	10	< 0.75	< 0.75	0.85	< 0.75	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	< 0.38	0.64	< 0.38	< 0.38	< 0.38	0.42 J	< 0.38	< 0.38
1,2-Dichlorobenzene	10	< 0.50	< 0.50	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 0.79	< 1.0	< 0.79	< 0.79
1,3-Dichlorobenzene	-	< 0.40	< 0.40	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 0.78	< 1.0	< 0.78	< 0.78
1,4-Dichlorobenzene	-	< 0.40	< 0.40	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 0.84	< 1.0	< 0.84	< 0.84
Benzene	-	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 1.0	< 0.41	< 0.41
Chlorobenzene	-	< 0.40	< 0.40	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 0.75	< 1.0	< 0.75	< 0.75
Chloroethane	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32
cis-1,2-Dichloroethene	10	< 0.40	< 0.40	< 0.40 1.9	< 0.40	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 0.32	< 1.0	< 0.32	< 0.32
																		-			
Ethylbenzene	5	< 0.40	< 0.40	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 0.74	< 1.0	< 0.74	< 0.74
m-Xylene & p-Xylene	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.66	< 0.66	< 0.66	< 0.66	< 0.66	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
o-Xylene	-	< 0.40	< 0.40	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 0.76	< 1.0	< 0.76	< 0.76
Tetrachloroethene	10	< 0.40	< 0.40	< 0.40	< 0.40	< 0.36	0.51	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	0.83	< 1.0	< 0.36	< 0.36
Toluene	5	< 0.60	< 0.60	< 0.60	< 0.60	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 0.51	< 1.0	< 0.51	< 0.51
trans-1,2-Dichloroethene	10	< 0.42	< 0.42	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 0.90	< 0.90
trans-1,2-Dichloroethene			0.40	0.69	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	< 0.46	0.47	< 0.46	< 0.46	< 0.46	< 1.0	< 0.46	< 0.46
Trichloroethene	10	< 0.46	< 0.46	0.09	< 0.40																
	10 10	< 0.46 < 1.0	< 0.46	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

1. Analyzed using United States Environmental Protection Agency (USEPA) Method 8260.

2. BOLD indicates concentrations above method detection limits.

3. Q1 2014 sampling delayed until March due to frozen conditions and lack of fluid during February.

Definitions:

< - less than laboratory detection limit listed

µg/L - micrograms per liter

able 5. Groundwater Col	lection and Trea Cu	tment System mulative	m Flowrat	es, Former Lo	ockheed Mar MH-1	tin French	Road Facility	/, Utica, NY. MH-2			MH-3			Stringer Pro-	metero
		Flow Per			Flow Per			Flow Per			Flow Per		Aır	Stripper Para	meters
Date	Permanent Flow (gallons) ⁽⁵⁾	Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons) ⁽⁵⁾	Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons) ⁽⁵⁾	Reporting Period (gallons)	Monthly Flowrate (gpm)	Permanent Flow (gallons) ⁽⁵⁾	Reporting Period (gallons)	Monthly Flowrate (gpm)	Average Sump Pressure (in. W.C.)	Differential Pressure (in. W.C.)	Vapor Phase Flowrate (scfm) ⁽³⁾
1/8/2009 2/5/2009	51,642,496 51,882,819	547,845 240,323	10.3 6.0	43,857,473 44,074,280	468,600 216,807	8.8 5.4	7,785,023 7,808,539	79,245 23,516	1.5 0.6	-	-	-	14.0 14.0	1.0	1,398 1,398
3/4/2009	52,290,566	407,747	10.5	44,426,462	352,182	9.1	7,864,104	55,565	1.4	-	-	-	15.0	1.0	1,398
4/1/2009 5/5/2009	52,820,498 53,224,271	529,932 403,773	13.1 8.2	44,879,781 45,236,249	453,319 356,468	11.2 7.3	7,940,717 7,988,022	76,613 47,305	1.9 1.0	-	-	-	14.0 14.0	1.0	1,398 1,398
6/2/2009	53,499,861	275,590	6.8	45,470,774	234,525	5.8	8,029,087	41,065	1.0	-	-	-	15.0	1.5	1,712
7/1/2009 8/14/2009	53,736,159 54,078,743	236,298 342,584	5.7 5.4	45,666,782 45,940,852	196,008 274,070	4.7 4.3	8,069,377 8,137,891	40,290 68,514	1.0 1.1	-	-	-	15.0 14.0	1.5 1.5	1,712 1,712
9/4/2009	54,230,373	151,630	5.0	46,060,707	119,855	4.0	8,169,666	31,775	1.1	-	-	-	14.0	1.5	1,712
10/9/2009 11/4/2009	54,512,663 54,750,788	282,290 238,125	5.6 6.4	46,289,841 46,494,959	229,134 205,118	4.5 5.5	8,222,822 8,255,829	53,156 33,007	1.1 0.9	-	-	-	14.5 14.5	1.0 1.0	1,398 1,398
12/11/2009	55,029,188	278,400	5.2	46,722,959	228,000	4.3	8,306,229	50,400	0.9	-	-	-	14.0	1.3	1,594
2009 Totals ⁽¹⁾ 1/12/2010	- 55,368,138	3,934,537 338,950	7.3	- 47.041.049	3,334,086 318,090	6.2 6.9	- 8,327,089	600,451 20,860	1.1 0.5	-	-	-	14.3 18.0	1.2 1.2	1,519
2/3/2010	55,615,048	246,910	7.4	47,254,345	213,296	6.7	8,360,703	33,614	1.1	-	-	-	24.0	1.2	1,531 1,398
3/3/2010 4/7/2010	55,830,985 56,443,357	215,937 612,372	5.4 12.2	47,442,614 47,970,713	188,269 528,099	4.7 10.5	8,388,371 8,472,644	27,668 84,273	0.7	-	-	-	11.0 12.0	1.7 1.5	1,823
5/5/2010	56,705,454	262,097	6.5	48,202,863	232,150	5.8	8,502,591	29,947	0.7	-	-	-	12.0	2.7	1,712 2,297
6/3/2010	56,921,019	215,565	5.2	48,388,351	185,488	4.4	8,532,668	30,077	0.7	-	-	-	16.1	2.7	2,297
7/7/2010 8/5/2010	57,256,158 57,518,041	335,139 261,883	6.8 6.3	48,646,601 48,863,064	258,250 216,463	5.3 5.2	8,609,557 8,654,977	76,889 45,420	1.6 1.1	-	-	-	15.5 15.9	2.4	2,166 2,073
9/7/2010	57,797,649	279,608	5.9	49,095,255	232,191	4.9	8,702,394	47,417	1.0	-	-	-	18.5	1.9	1,927
10/5/2010 11/2/2010	58,082,548 58,456,895	284,899 374,347	7.1 9.3	49,327,736 49,643,060	232,481 315,324	5.8 7.8	8,754,812 8,813,835	52,418 59,023	1.3 1.5	-	-	-	17.0 22.0	2.0 0.9	1,977 1,289
12/22/2010	59,009,574	552,679	7.7	50,101,316	458,256	6.4	8,908,258	94,423	1.3	-	-	-	17.0	NA ²	NA ²
2010 Totals ⁽²⁾ 1/28/2011	- 59,088,966	3,980,386 79,392	7.4 1.5	- 50,142,913	3,378,357 41,597	6.2 0.8	- 8,930,851	602,029 22,593	1.1 0.4	- 15,202	-	-	17.0 25.9	1.8 -	1,863 718
2/23/2011	59,483,460	394,494	10.5	50,432,263	289,350	7.7	8,976,813	45,962	1.2	74,384	59182.0	1.6	26.0	-	742
3/22/2011 4/5/2011	60,118,863 60,264,174	635,403 145,311	16.3 7.2	50,940,888 51,085,909	508,625 145,021	13.1 7.2	9,102,550 9,102,790	125,737 240	3.2 0.0	75,425 75,475	1041.0 50	0.0	26.2 29.0	-	681 663
5/12/2011	61,189,715	925,541	17.4	51,609,588	523,679	9.8	9,161,683	58,893	1.1	418,444	342,969	9.2	26.5	-	553
6/2/2011 7/7/2011	61,557,472 61,975,516	367,757 418,044	12.2 8.3	51,834,699 52,075,707	225,111 241,008	7.4 4.8	9,189,679 9,227,668	27,996 37,989	0.9 0.8	533,094 672,141	114,650 139,047	2.9 2.8	26.5 25.2	-	618 636
8/11/2011	62,296,730	321,214	6.4	52,243,445	167,738	3.3	9,265,879	38,211	0.8	787,406	115,265	2.3	26.5	-	651
9/8/2011 10/11/2011	62,817,398 63,444,585	520,668 627,187	12.9 13.2	52,508,569 52,883,146	265,124 374,577	6.6 7.9	9,342,539 9,400,121	76,660 57,582	1.9 1.2	966,290 1,161,318	178,884 195,028	4.4 4.1	28.5 27.0	-	609 715
11/1/2011	63,764,975	320,390	10.6	53,071,145	187,999	6.2	9,435,095	34,974	1.2	1,258,735	÷.,	3.2	27.0	-	784
12/1/2011 2011 Totals ⁽²⁾⁽⁵⁾	64,185,589 -	420,614 5,176,015	9.7 10.4	53,345,456	274,311 3,244,140	6.3 6.5	9,469,773	34,678 561,515	0.8 1.1	1,370,360	111,625 1,355,158	2.6 2.7	27.0 26.8	-	739 676
1/27/2012	64,972,202	786,613	9.6	53,871,038	525,582	6.4	9,542,467	72,694	0.9	1,558,697	188,337	2.3	32.2	-	745
2/9/2012 3/1/2012	65,195,486 65,448,455	223,284 252,969	11.9 8.4	54,009,006 54,180,412	137,968 171,406	7.4 5.7	9,573,810 9,596,526	31,343 22,716	1.7 0.8	1,612,670 1,671,517	53,973 58,847	2.9 1.9	29.0 29.0	-	787 766
First Quarter 2012	-	1,262,866	9.6	-	834,956	6.4	-	126,753	1.0	-	301,157	2.3	30.1	-	766
4/5/2012 5/1/2012	65,853,255 66,090,367	404,800	8.0 6.3	54,447,552 54,595,683	267,140 148,131	5.3 4.0	9,635,004 9,661,648	38,478 26,644	0.8 0.7	1,770,699 1,833,036	99,182 62,337	2.0 1.7	27.0 26.6	-	740 805
6/7/2012	66,591,098	500,731	9.4	54,904,479	308,796	5.8 5.1	9,710,985	49,337	0.9	1,975,634	142,598	2.7 2.2	27.4	-	752 766
Second Quarter 2012 7/12/2012	- 66,828,112	1,142,643 237,014	8.1 4.7	- 55,041,035	724,067 136,556	3.1 2.7	9,738,010	114,459 27,025	0.8 0.5	2,049,067	304,117 73,433	2.2 1.5	27.0 25.0	-	630
8/15/2012 9/11/2012	67,068,471 67,259,158	240,359 190,687	4.9 4.9	55,163,445 55,259,345	122,410 95,900	2.5 2.5	9,766,492 9,790,891	28,482 24,399	0.6 0.6	2,138,534 2,208,922	89,467 70,388	1.8 1.8	27.7 27.7	-	701 761
Third Quarter 2012	-	668,060	4.9 4.8	-	354,866	2.5 2.6	-	79,906	0.6	-	233,288	1.8 1.7	26.8	-	697
10/17/2012 11/8/2012	67,568,957 67,777,512	309,799 208,555	6.0 6.6	55,424,161 55,542,079	164,816 117,918	3.2 3.7	9,830,240 9,852,388	39,349 22,148	0.8	2,314,556 2,383,045	105,634 68,489	2.0 2.2	26.2 30.8	-	677 778
12/6/2012	67,979,019	201,507	5.0	55,665,689	123,610	3.1	9,874,745	22,357	0.6	2,438,585	55,540	1.4	29.3	-	934
Fourth Quarter 2012	-	719,861	5.8	-	406,344	3.3	-	83,854	0.7	-	229,663	1.9 2.0	28.8	-	796
2012 Totals 1/15/2013	- 68,601,819	3,793,430 622,800	7.1 10.8	- 56,064,192	2,320,233 398,503	4.3 6.9	9,937,367	404,972 62,622	0.8 1.1	2,600,260	1,068,225 161,675	2.0	28.2 29.6	-	756 830
2/7/2013	68,933,628	331,809	10.0	56,285,230	221,038	6.7	9,972,998	35,631	1.1	2,675,400	75,140	2.3	31.1	-	894
3/5/2013 First Quarter 2013	69,250,256 -	316,628 1,271,237	8.5 9.9	56,490,599 -	205,369 824,910	5.5 6.4	10,000,253	27,255 125,508	0.7	2,759,404	84,004 320,819	2.2 2.5	28.7 29.8	-	836 853
4/24/2013 5/9/2013	69,990,978	740,722	10.3 7.4	56,960,249	469,650	6.5 4.8	10,083,948	83,695	1.2 0.6	2,946,781	187,377	2.6 2.0	27.7 26.0	-	715 718
6/12/2013	70,150,855 70,634,036	159,877 483,181	9.9	57,063,303 57,352,931	103,054 289,628	4.0 5.9	10,097,769 10,154,228	13,821 56,459	1.2	2,989,783 3,126,877	43,002 137,094	2.0	25.5	-	635
Second Quarter 2013	-	1,383,780	9.7	-	862,332	6.0	-	153,975	1.1 2.1	-	367,473	2.6	26.4	-	689
7/11/2013 8/8/2013	71,537,658 71,875,374	903,622 337,716	21.6 8.4	57,910,436 58,109,657	557,505 199,221	13.4 4.9	10,242,031 10,279,795	87,803 37,764	2.1 0.9	3,385,191 3,485,922	258,314 100,731	6.2 2.5	27.9 28.0	-	602 633
9/10/2013	72,237,550	362,176	7.6	58,313,137	203,480	4.3	10,332,018	52,223	1.1	3,592,395	106,473	2.2	27.2	-	695
Third Quarter 2013 10/22/2013	- 72,683,219	1,603,514 445,669	12.4 7.4	- 58,574,976	960,206 261,839	7.4 4.3	- 10,387,447	177,790 55,429	1.4 0.9	- 3,720,796	465,518 128,401	3.6 2.1	27.7 28.0	-	643 763
11/5/2013	72,809,855	126,636	6.3	58,651,023	76,047	3.8	10,402,542	15,095	0.7	3,756,290	35,494	1.8	30.5	-	799
12/3/2013 Fourth Quarter 2013	73,139,690 -	329,835 902,140	8.2 7.5	58,855,332	204,309 542,195	5.1 4.5	10,439,113 -	36,571 107,095	0.9 0.9	3,845,245	88,955 252,850	2.2 2.1	31.0 29.8	-	702 755
2013 Totals	-	5,160,671	9.9	-	3,189,643	6.1	-	564,368	1.1	-	1,406,660	2.7	28.4	-	735
1/23/2014 2/6/2014	73,923,345 74,030,005	783,655 106,660	10.7 5.3	59,358,620 59,433,504	503,288 74,884	6.9 3.7	10,527,204 10,535,270	88,091 8,066	1.2 0.4	4,037,521 4,061,231	192,276 23,710	2.6 1.2	32.4 28.0	-	771 788
3/4/2014	74,323,569	293,564	7.8	59,644,595	211,091	5.6	10,556,036	20,766	0.6	4,122,938	61,707	1.6	28.0	-	848
First Quarter 2014 4/1/2014	- 74,817,439	1,183,879 493,870	9.0 12.2	- 59,967,227	789,263 322,632	6.0 8.0	- 10,598,933	116,923 42,897	0.9 1.1	- 4,251,279	277,693 128,341	2.1 3.2	29.5 27.0	-	802 821
5/5/2014	75,502,123	684,684	14.0	60,390,981	423,754	8.7	10,663,846	64,913	1.3	4,447,296	196,017	4.0	27.0	-	715
6/13/2014 Second Quarter 2014	76,112,994 -	610,871 1,789,425	10.9 12.3	60,788,558	397,577 1,143,963	7.1 7.9	10,724,198 -	60,352 168,162	1.1 1.2	4,600,238	152,942 477,300	2.7 3.3	25.5 26.5	-	656 730
7/8/2014	76,499,000	386,006	10.7	61,018,320	229,762	6.4	10,762,606	38,408	1.1	4,718,074	117,836	3.3	26.7	-	633
8/7/2014 9/3/2014	76,854,057 77,169,456	355,057 315,399	8.2 8.1	61,236,646 61,421,404	218,326 184,758	5.1 4.8	10,792,351 10,822,990	29,745 30,639	0.7	4,825,060 4,925,062	106,986 100,002	2.5 2.6	26.4 28.1	-	630 609
Third Quarter 2014	-	1,056,462	8.9	-	632,846	5.4	-	98,792	0.8	-	324,824	2.8	27.1	-	624
10/7/2014 11/5/2014	77,458,482 77,796,601	289,026 338,119	5.9 8.1	61,596,858 61,802,713	175,454 205,855	3.6 4.9	10,850,636 10,885,790	27,646 35,154	0.6 0.8	5,010,988 5,108,098	85,926 97,110	1.8 2.3	26.0 28.0	-	563 637
12/3/2014	78,138,217	341,616	8.5	62,013,010	210,297	5.2	10,915,655	29,865	0.8	5,209,552	101,454	2.5	29.0	-	674
Fourth Quarter 2014	-	968,761	7.4	-	591,606	4.5	-	92,665	0.7	-	284,490	2.2	27.7	-	625
2014 YTD Totals	-	4,998,527	9.5	-	3,157,678	6.0	-	476,542	0.9	-	1,364,307	2.6	27.7	-	695

Notes:

1. 2009 Totals include data between 12/8/2008 and 12/11/2009.

2. Existing air stripper taken offline on 11/29/10 and temporary air stripper in operation through end of 2010 while system upgrades were being implemented. Current air stripper operated intermittently in

January 2011 on the dates of 1/13, 1/14, 1/17, 1/18 and 1/20. Current air stripper brought online permanently in February 2011.

3. Prior to 2011, vapor phase flowrate calculated using the Air Velocity Measurement formula as provided in the Dwyer Instruments catalog. Differential pressure used in the blower intake pipe, and constants for temperature (70°F) and barometric pressure (29.92 in.Hg.) were assumed. Following the beginning of 2011, the vapor phase flowrate has been obtained from flow transmitter FT-106.

4. Manhole MH-2 offline for pump replacement from 3/22/11 to 4/20/11.

5. Data for Permanent Flow (gallons) retrieved from EOS Research ProView Totalizer Data File on PLC.

Definitions:

gpm - gallons per minute

In. W.C. - Inches of Water Column

cfm - cubic feet per minute

NA - Not applicable

Table 6. Vapor Phase Analytical Sampling Results, Former Lockheed Martin French Road Facility, Utica, NY.

			1				_			_				_	Pre-Carb	on		1 1	-		_	-	I			1	-	-
Volatile Organic ⁽¹⁾ Compounds (µg/m ³)	1/28/2011 Q	2/23/2011	Q	4/5/2011	Q 7/	/7/2011	Q 10/12/2011	Q	1/26/2012	Q	4/5/2012	Q	7/12/2012	Q	10/17/2012	Q 1/15/	013	Q 4/24/2013	Q :	7/11/2013	Q 10/23/20	13 Q	2/7/2014	Q	4/4/2014 Q	7/10/201	4 Q	10/9/20
1,1-Trichloroethane	< 0.83	< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.	33	< 1.6		< 11.00	< 2.20)	< 4.40		< 1.10	< 2.20		< 3.30
,1,2,2-Tetrachloroethane	< 1.00	< 1.0		< 1.00		< 1.00	< 1.00		< 1.00		< 1.00		< 1.00		< 1.00	< 1		< 2.1		< 14.00	< 2.70		< 5.50		< 1.40	< 2.70		< 4.10
1,2-Trichloroethane	< 0.83	< 0.83		< 0.83		< 0.83	< 0.83		< 0.83		< 0.83		< 0.83		< 0.83	< 0.		< 1.6		< 11.00	< 2.20)	< 4.40		< 1.10	< 2.20		< 3.30
1-Dichloroethane	< 0.62	18		19		71	41		38		49		150		44	4		36		28	44		28		15	25		49
1-Dichloroethene	< 0.60	< 0.60		< 0.60		0.81	0.48	J	<0.60		0.97		1.2		0.87	< 0.		< 1.2		< 7.90	< 1.60		< 3.20		0.39 J		J	< 2.40
2,4-Trichlorobenzene	< 1.10	< 1.1		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1		< 5.6		< 37.00	< 7.40		< 15.00		< 3.70	< 7.40		< 11.0
2,4-Trimethylbenzene	1	4.6		1.6		1.3	< 0.75		0.5	J	< 0.75		1.8		0.9	< 0	75	< 1.5		< 9.80	< 2.00		< 3.90		0.20 J	0.35	J	0.59
2-Dibromoethane	< 1.20	< 1.2		< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1	20	< 2.3		< 15.00	< 3.10)	< 6.10		< 1.50	< 3.10		< 4.60
2-Dichlorobenzene	< 0.92	< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.	92	< 1.8		< 12.00	< 2.40)	< 4.80		< 1.20	< 2.40		< 3.60
2-Dichloroethane	< 0.62	< 0.62		< 0.62	•	< 0.62	< 0.62		< 0.62		< 0.62		< 0.62		< 0.62	< 0.	62	< 1.2		< 8.10	< 1.60)	< 3.20		< 0.81	< 1.60		< 2.40
2-Dichloropropane	< 0.70	< 0.70		< 0.70	•	< 0.70	< 0.70		< 0.70		< 0.70		< 0.70		< 0.70	< 0.	70	< 1.4		< 9.20	< 1.80)	< 3.70		< 0.92	< 1.80		< 2.80
3,5-Trimethylbenzene	< 0.75	1.5		< 0.75		< 0.75	< 0.75		< 0.75		< 0.75		0.65	J	< 0.75	< 0.	75	< 1.5		< 9.80	< 2.00)	< 3.90		0.069 J	< 2.00		< 2.90
3-butadiene	< 0.34	< 0.34		< 0.34	•	< 0.34	< 0.34		< 0.34		< 0.34		< 0.34		< 0.34	< 0	34	< 0.66		< 4.40	< 0.88	3	< 1.80		< 0.44	< 0.88		< 1.30
3-Dichlorobenzene	< 0.92	< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.	92	< 1.8		< 12.00	< 2.40)	< 4.80		< 1.20	< 2.40		< 3.60
4-Dichlorobenzene	< 0.92	< 0.92		< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.	92	< 1.8		< 12.00	< 2.40)	< 4.80		< 1.20	< 2.40		< 3.60
4-Dioxane	< 1.10	< 1.1		< 1.10		< 1.10	< 1.10		< 1.10		< 1.10		< 1.10		< 1.10	< 1.	10	< 27		< 180.00	< 36.0	0	< 72.00		< 18.00	< 36.00)	< 54.0
Chlorotoluene	NS	NS		NS		NS	NS		NS		NS		NS		NS	N	;	< 1.6		< 10.00	< 2.10)	< 4.10		< 1.00	< 2.10		< 3.10
2,4-trimethylpentane	< 0.71	0.76		< 0.71		< 0.71	< 0.71		< 0.71		< 0.71		< 0.71		< 0.71	< 0.	71	0.31	J	< 9.30	< 1.90		1.9	J	< 0.93	< 1.90		< 2.80
ethyltoluene	0.6 J	1.1		< 0.75		< 0.75	< 0.75		< 0.75		< 0.75		0.5	J	< 0.75	< 0.		< 1.5		< 9.80	< 2.00		< 3.90		< 0.98	< 2.00		< 2.90
Isopropyltoluene	NS	NS	1	NS		NS	NS		NS		NS	t	NS		NS	N		< 1.6	-	< 11.00	< 2.20		< 4.40	11	< 1.10	< 2.20		< 3.30
cetone	29	21	1	10		14	3.7		81		3.7	t	16		21	3.		11	J	11	J 3.9			11	5.4 J	< 24.00		< 36.0
lyl chloride	< 0.48	< 0.48	1	< 0.48		< 0.48	< 0.48		< 0.48		< 0.48	t	< 0.48		< 0.48	< 0.		< 2.3	-	< 16.00	< 3.10		< 6.30	11	< 1.60	< 3.10		< 4.70
enzene	< 0.49	1.5	+	0.91			J 0.75	+	1.2	-	0.42	J	0.65		0.32	J < 0.		0.62	J	< 6.40	< 1.30		1.2	J	0.32 J	0.18		< 1.90
enzyl chloride	< 0.88	< 0.88	+	< 0.88		< 0.88	< 0.88	+	< 0.88	-	< 0.88	-	< 0.88		< 0.88	< 0.	_	< 1.6	-	< 10.00	< 2.10		< 4.10	t t	< 1.00	< 2.10		< 3.10
romodichloromethane	< 1.00	< 1.0	+	< 1.00		< 1.00	< 1.00	+	< 1.00	-	< 1.00	1	< 1.00		< 1.00	< 1.		< 2.0		< 13.00	< 2.70		< 5.40	+	< 1.30	< 2.70		< 4.00
romoform	< 1.60	< 1.6	+	< 1.60		< 1.60	< 1.60	+	< 1.60	-	< 1.60	1	< 1.60		< 1.60	<1		< 3.1		< 21.00	< 4.10		< 8.30	+	< 2.10	< 4.10		< 6.20
romomethane	< 0.59	< 0.59	1	< 0.59		< 0.59	< 0.59		< 0.59		< 0.59	t	< 0.59		< 0.59	< 0		< 1.2	-	< 7.80	< 1.60		< 3.10	11	< 0.78	< 1.60		< 2.30
arbon disulfide	< 0.47	< 0.47	+	< 0.47		0.32	J < 0.47	+	< 0.47	-	< 0.47	1	1.3		< 0.47	< 0		< 2.3		< 16.00	0.47	L I	< 6.20	+	< 1.60	< 3.10		< 4.70
arbon tetrachloride	< 0.96	0.77	J	< 0.96			J 0.38	J		J	< 0.96	-	< 0.96		< 0.96	< 0.		0.49	+	< 2.50	< 0.50		< 1.00	1 1	0.40	0.51		0.53
hlorobenzene	< 0.70	0.66	J	< 0.70		< 0.70	< 0.70	11	< 0.70	-	< 0.70	t	< 0.70		< 0.70	< 0.		< 1.4	-	< 9.20	< 1.80		< 3.70	11	< 0.92	< 1.80	1	< 2.80
chloroethane	< 0.40	1.2	Ť	< 0.40		< 0.40	0.86	+	<0.40	-	1.3	1	1.2		< 0.40	0.6			J	< 13.00	1.5	J		+	0.49 J		+	0.69
hloroform	< 0.74	5.7		10		8.5	1.3		1.8		0.94		1.9		1	0.5			J	1.8	J 0.57	J	< 3.90		0.43 J			2.0
hloromethane	1.2	0.84	1	< 0.31		< 0.31	0.57		< 0.31		0.9		< 0.31		< 0.31	< 0.			J	5.9	J 1.1	J	< 4.10		1.0 J		J	< 3.10
s-1.2-Dichloroethene	< 0.60	220	1	140		840	210		200		510		430		200	31		180	-	160	270	-	150		89	180	- T-	290
s-1,3-Dichloropropene	< 0.69	< 0.69		< 0.69		< 0.69	< 0.69		< 0.69		< 0.69		< 0.69		< 0.69	< 0.		< 1.4		< 9.10	< 1.80)	< 3.60		< 0.91	< 1.80		< 2.70
vclohexane	< 0.52	< 0.52	1	< 0.52		< 0.52	< 0.52		< 0.52		< 0.52		< 0.52		< 0.52	< 0.		3.2	-	< 6.90	< 1.40		17		< 0.69	< 1.40		< 2.10
ibromochloromethane	< 1.30	< 1.3	1	< 1.30		< 1.30	< 1.30		< 1.30		< 1.30		< 1.30		< 1.30	< 1.		< 2.6	-	< 17.00	< 3.40		< 6.80		< 1.70	< 3.40		< 5.10
thyl acetate	< 0.92	< 0.92	1	< 0.92		< 0.92	< 0.92		< 0.92		< 0.92		< 0.92		< 0.92	< 0.		NS	-	NS	NS	_	NS		NS	NS		NS
thylbenzene	2.8	2.3	1	0.71		< 0.66	< 0.66		0.49	J	< 0.66		1.3		< 0.66	< 0.		0.69	J.	< 8.70	< 1.70		< 3.50		1.2	0.16		< 2.60
reon 11	< 0.86	1.7	1	6	-	1.8	1.1		2		< 0.60 1.5	_	2.5		1.7	1.		< 1.3		< 11.00	2.2	, 	< 4.50		1.3	1.4		< 3.40
ireon 113	< 1.20	110	-	60		170	83	-	30	-	130		380		110	5		70	-	45	81	-	< 4.50 69	в	31	37		92
	< 1.10	< 1.1	-	< 1.10	-	< 1.10	< 1.10	-	< 1.10	-	< 1.10	-	< 1.10	-	< 1.10	< 1.		< 2.1	-	< 14.00	< 2.80	_	< 5.60		< 1.40	< 2.80	-	< 4.20
ireon 114 ireon 12	< 1.10 0.65 J	2.8	-	< 1.10 3.4	-	< 1.10 2.7	1.6	-	< 1.10 2.6	-	< 1.10 5.8	-	< 0.75	-	< 1.10 2.8	5.		2.9	-	< 14.00 2.5	< 2.80 J 2.4		< 5.60 2.8	J	< 1.40 2.3 J	< 2.80 2.8	- I	< 4.20
	NS 5	NS	-	NS		NS	NS	-	NS	-	5.8 NS	-	< 0.75 NS	_	2.8 NS	5. N			1	< 18.00	< 3.50	, J	1.4	J	2.3 J	1.0		2.6
reon 22		0.92	-					-						L			_	1.2	J					J			J	
leptane	< 0.62		-	< 0.62		< 0.62	< 0.62	-	< 0.62		< 0.62		0.5	J	< 0.62	< 0.			_	< 8.20	< 1.60		5.9		< 0.82	< 1.60		< 2.50
exachloro-1,3-butadiene	< 1.60	< 1.6	-	< 1.60		< 1.60	< 1.60	-	< 1.60		< 1.60		< 1.60		< 1.60	< 1		< 3.2	_	< 21.00	< 4.30		< 8.50		< 2.10	< 4.30		< 6.40
lexane	< 0.54	< 0.54	-	< 0.54		< 0.54	0.75	_	0.75		< 0.54		0.64		< 0.54	< 0		2.1		< 7.00	0.2	J	81		< 0.70	< 1.40		< 2.10
opropyl alcohol	< 0.37	4.3	-	5.4		< 0.37	< 0.37		3.5		< 0.37		2		< 0.37	2.		3.2	J	< 120.00	< 25.0		< 49.00		1.1 J			< 37.0
i&p-Xylene	7.9	8.5	-	2.3		1.6	0.75	J	1.3		< 1.30		4.7		< 1.30	0.4		J 2.5	J	< 22.00	< 4.30)	< 8.70		4.4	0.45		< 6.50
ethyl Butyl Ketone	< 1.20	< 1.2	_	< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1.		< 3.1		< 20.00	4.1		< 8.20		< 2.00	< 4.10		< 6.10
ethyl Ethyl Ketone	10	2.7	_	2.5		< 0.90	1.2		4		0.42	J	1.6		1.1	< 0.		2.6		< 15.00	1.2				1.6	< 2.90		10
lethyl Isobutyl Ketone	< 1.20	< 1.2	_	< 1.20		< 1.20	< 1.20		< 1.20		< 1.20		< 1.20		< 1.20	< 1		< 3.1		< 20.00	< 4.10		< 8.20		0.74 J	< 4.10		< 6.10
lethyl methacrylate	NS	NS	_	NS		NS	NS		NS		NS		NS		NS	N		< 3.1		< 20.00	< 4.10		< 8.20		< 2.00	< 4.10		< 6.10
ethyl tert-butyl ether	< 0.55	< 0.55	1	< 0.55		< 0.55	< 0.55	+	< 0.55		0.66		1.6		< 0.55	< 0		< 1.1		< 7.20	< 1.40		< 2.90		< 0.72	0.25	J	< 2.20
lethylene chloride	< 0.53	1.8		1.8		1.8	0.56	ļĪ	1.2		2		2.6		1	1.		3.2	в	2.3	J B 0.95	JE		J	1.1 J		J	< 5.20
-Butane	NS	NS		NS		NS	NS		NS		NS		NS		NS	N		3.5		< 12.00	1.5	J	200	LI	< 1.20	< 2.40		< 3.60
Butylbenzene	NS	NS		NS		NS	NS		NS		NS		NS		NS	N		< 1.6		< 11.00	< 2.20		< 4.40	L	< 1.10	< 2.20		< 3.30
Propylbenzene	NS	NS		NS		NS	NS		NS		NS		NS		NS	N		< 1.5		< 9.80	< 2.00		< 3.90		< 0.98	< 2.00		< 2.90
aphthalene	NS	NS		NS		NS	NS		NS		NS		NS		NS	N	;	< 3.9		< 26.00	< 5.20)	< 10.00		< 2.60	< 5.20		< 7.80
Xylene	1.4	3.1		0.66		0.62	J < 0.66		0.49	J	< 0.66		1.7		< 0.66	< 0.	66	0.85	J	< 8.70	< 1.70)	< 3.50		1.1	0.27	J	0.53
ropylene	< 0.26	< 0.26		< 0.26		< 0.26	< 0.26		< 0.26		< 0.26		< 0.26		< 0.26	< 0		NS		NS	NS		NS		NS	NS		NS
ec-Butylbenzene	NS	NS		NS		NS	NS		NS		NS		NS		NS	N	;	< 1.6		< 11.00	< 2.20)	< 4.40		< 1.10	< 2.20		< 3.30
tyrene	0.52 J	< 0.65		< 0.65		< 0.65	< 0.65		< 0.65		< 0.65		< 0.65		< 0.65	< 0.	65	< 1.3		< 8.50	< 1.70		< 3.40		0.084 J	< 1.70		0.45
rt-Butyl Alcohol	NS	NS		NS		NS	NS		NS		NS		NS		NS	N		< 23		< 150.00	< 30.0		< 61.00		< 15.00	< 30.00		< 45.0
ert-Butylbenzene	NS	NS	1	NS		NS	NS		NS		NS	l	NS		NS	N		< 1.6		< 11.00	< 2.20		< 4.40	11	< 1.10	< 2.20		< 3.30
etrachloroethylene	0.83 J	110	1	180		460	140		290		< 97.00	l	470		240	38		120		170	23		40	11	140	280	1	160
etrahydrofuran	72	2.4	1	5.1		< 0.45	0.96		< 0.45	1	< 0.45	1	1.8		< 0.45	< 0.			J	< 150.00	< 29.0	0	< 59.00	11	< 15.00	0.95	J	
pluene	5.7	7.2	1	2.3		1.5	1.9		2.3		< 0.57		6.1		2.1	0.8		4.1		0.79	J < 1.50		< 3.00	11	0.52 J		J	
ins-1,2-Dichloroethene	< 0.60	0.64	+	1.5		1.1	1.4	+	1.7		< 0.60	1	3.2		< 0.60	1.			J	< 7.90	1.1	J		+	0.32 J		J	
ans-1,3-Dichloropropene	< 0.69	< 0.69	+	< 0.69		< 0.69	< 0.69	+	< 0.69	-	< 0.69	1	< 0.69		< 0.69	< 0.		< 1.4	-	< 9.10	< 1.80	-	< 3.60	+	< 0.91	< 1.80	-	< 2.40
ichloroethene	< 0.69 0.71 J	< 0.69 350	1	< 0.69 220		< 0.69 1,200	< 0.69	+	< 0.69 210	-	< 76.00	-	< 0.69 480	-	< 0.69 250	< 0.		220	+	< 9.10 170	< 1.80		< 3.60	1 1	130	< 1.80	1	270
nvl acetate	< 0.54	< 0.54	+	< 0.54		< 0.54	< 0.54	+	< 0.54		< 0.54	-	< 0.54	-	< 0.54	< 0.		NS	-+	NS	NS		NS	+	NS	NS	+	NS
,	< 0.54	< 0.54	+	< 0.54		< 0.67	< 0.54	+	< 0.67		< 0.54	-	< 0.67	-	< 0.54	< 0.		< 1.3	-+	< 8.70	< 1.70		< 3.50	+	< 0.87	< 1.70	+	< 2.60
nyl Bromide		< 0.67 4.7	+	< 0.67 2.3		< 0.67 3	< 0.67	+	< 0.67 3.9	_		-		_				< 1.3						+			-1-	
nyl chloride	< 0.39 134.31	4.7		2.3 675.48	_	3 2,781.34	1.7	8	3.9 877.11		< 0.39 707.61		2.3 1,967.74	_	2.6 879.39	1.	79.17			< 1.00	2.1		1.4 784.50	-	1.2 431.60	1.0 758.	32	1.4
Cumulative VOCs (µg/m ³) ⁽²⁾	134.31 NA	890.65 NA		675.48 NA	_	2,781.34 NA	673.9I NA	,	877.11 NA		707.61 NA		1,967.74 NA		879.39 NA		NA	676.24		597.29	601		784.50 NA		431.60 NA	758. N/		883 N
% Removal - Cumulative																		NA		NA	N 400							
Target VOCs (µg/m ³) ⁽³⁾	1.54	698.64	4	560.50		2,572.10	572.4	J	739.70		559.00		1,533.20		734.00		07.30	556.00		528.00	498		398.00		374.37	705.		769
% Removal - Target VOCs	NA	NA		NA		NA	NA		NA		NA		NA		NA		NA	NA		NA	N		NA		NA	N/		N
Manholes Online ⁽⁴⁾	MH-3 ^A	MH-1'	A	MH-1, 3 ^A		MH-1 ^M	MH-1	4	MH-1, 2, 3 ^M	a -	MH-1 ^M		MH-1 ^M		MH-1 ^A	N	H-1 ^A	MH-1 ^A		MH-1, 2 ⁴			MH-1 ^A		MH-1, MH-3 ^A	MH-1 ^A ,		MH
																					R FLOWRATE) 802		730	62		62
			1_	T				+1												Re	porting Period		h 91		101	82		9
E E E E E E E E E E E E E E E E E E E			1	I T				11		1	T		Т	I			1	- T			Runtim	ne % ^{(6,7}	36%		43%	35	%	30
/OC Mass Removal from Goundwater												_		_					_			10 /0			4070			

 per Quarter ((bs) (9)
 NA
 NA
 NA
 NA
 NA
 NA
 NA

 Notes:
 1. Samples analyzed for VOCs using USEPA Method TO-15.
 2. Cumulative VOCs calculated using only detected concentrations.
 3. Target VOC concentration calculated using only detected concentrations of the following compounds: 1,1-dichloroethene, circl-Addinoethene, tetrachiorethylene, trans-1,2-dichloroethene, and trichloroethene.
 4. Indicates which manhole(s) were online during the sampling event.
 5. VOC (Mass Removal per Quarter calculations not generated before Jan. 2014. Refer to annual summary for previous calculations.
 6. Runtime is the percentage of time the blower was physically running during the operational period. Operational periods are the same as flow reporting periods in Table 5.

 7. Due to Consultant transition from Arcadis to Stantec, no Q1 data was recorded from PLC. Q1 runtime is an average of Q2, Q3, and Q4 runtime of 2014.

BOLD indicates detected concentrations.

Definitions; <-less than reporting limit listed J - Indicates that the result was less than the RL, but greater than or equal to the MDL and the concentration is an estimate. B - Indicates that the compound was also identified in the method blank and sample.

B - Indicates that the Compound was also user time in the mean of the model of the second seco

	s Removed dwater (lbs)
2011	22.8
2012	5.4
2013	6.2
2014	4.3
Cumulative since 1/28/2011	38.7

1 of 3

Table 6. Vapor Phase Analytical Sampling	Results, Former	Lockheed I	Aartin F	rench Road Facil	ity, Uti	ica, NY.								Mid-Carbo	on.													
Volatile Organic ⁽¹⁾ Compounds (µg/m³)	1/28/2011	Q 2/23/2	011 0	4/5/2011	Q	7/7/2011	Q 10/12/2011	Q 1/26	5/2012 Q	4/5/2012	Q	7/12/2012	Q	10/17/2012	Q	1/15/2013	Q	4/24/2013	Q 7/11/2013	٩	10/23/2013 Q	2/7/2014	Q	4/4/2014	Q	7/10/2014	2 10	/9/2014
1,1,1-Trichloroethane	< 0.83	< 0.8	3	< 0.83		< 0.83	< 0.83	<	0.83	< 0.83		< 0.83		< 0.83		< 0.83		< 1.1	< 1.10		< 1.10	< 1.10		< 1.10		< 2.20		< 2.20
1,1,2,2-Tetrachloroethane	< 1.00	< 1.0	0	< 1.00		< 1.00	< 1.00	<	1.00	< 1.00		< 1.00		< 1.00		< 1.00		< 1.4	< 0.76		< 1.40	< 1.40		< 1.40		< 2.70		< 2.70
1,1,2-Trichloroethane	< 0.83	< 0.8		< 0.83		< 0.83	< 0.83		0.83	< 0.83	_	< 0.83		< 0.83		< 0.83		< 1.1	< 0.87		< 1.10	< 1.10		< 1.10		< 2.20		< 2.20
1,1-Dichloroethane 1,1-Dichloroethene	0.49 < 0.60	J < 0.6		< 0.62		0.66	10 < 0.60		2.5 0.60	0.82 < 0.60	_	46 1.7		6.2 < 0.60		2.8 < 0.60		1.3 < 0.79	< 0.93	-	16 < 0.79	2.7 < 0.79		1.9 < 0.79	_	44 0.79	-	25 < 1.60
1,2,4-Trichlorobenzene	< 1.10	< 1.1		< 1.10		< 1.10	< 1.10		1.10	< 1.10	-	< 1.10		< 1.10		< 1.10		< 3.7	< 2.20		< 3.70	< 3.70		< 3.70	_	< 7.40		< 7.40
1,2,4-Trimethylbenzene	1.9	2.1		3		14	J < 0.75		5.9	0.65	J	1.2		0.6	J	0.5	J	0.79	J < 1.00		< 0.98	< 0.98		0.38	J	0.86	J	1.0
1,2-Dibromoethane	< 1.20	< 1.2		< 1.20		< 1.20	< 1.20		1.20	< 1.20		< 1.20		< 1.20		< 1.20		< 1.5	< 1.10		< 1.50	< 1.50		< 1.50		< 3.10		< 3.10
1,2-Dichlorobenzene	< 0.92	< 0.9		< 0.92		< 0.92	< 0.92		0.92	< 0.92	_	< 0.92		< 0.92		< 0.92		< 1.2	< 1.60		< 1.20	< 1.20		< 1.20		< 2.40		< 2.40
1,2-Dichloroethane 1,2-Dichloropropane	< 0.62	< 0.6		< 0.62		< 0.62 < 0.70	< 0.62		0.62	< 0.62	-	< 0.62		< 0.62		< 0.62	_	< 0.81	< 0.73	-	< 0.81	< 0.81		< 0.81	_	< 1.60 < 1.80		< 1.60
1,3,5-Trimethylbenzene	0.8	0.8		1		4.4	< 0.75		1.4	< 0.75		< 0.75		< 0.75		< 0.75		0.27	J < 0.93		< 0.98	< 0.98		0.18	J	0.35	_	0.35
1,3-butadiene	< 0.34	< 0.3		<0.34		< 0.34	< 0.34		0.34	< 0.34		< 0.34		< 0.34		< 0.34		< 0.44	< 0.55		< 0.44	< 0.44		< 0.44		< 0.88		< 0.88
1,3-Dichlorobenzene	< 0.92	< 0.9		< 0.92		< 0.92	< 0.92		0.92	< 0.92	_	< 0.92		< 0.92		< 0.92		< 1.2	< 1.10		< 1.20	< 1.20		< 1.20		< 2.40		< 2.40
1,4-Dichlorobenzene 1.4-Dioxane	< 0.92 2.3	< 0.9		< 0.92		< 0.92 1.3	< 0.92		0.92	< 0.92	_	< 0.92		< 0.92		< 0.92 < 1.10		< 1.2	< 1.10	-	< 1.20	< 1.20		< 1.20 < 18.00	_	< 2.40 < 36.00		< 2.40 36.00
2-Chlorotoluene	NS	NS		NS		NS	NS		NS	NS	-	NS		NS		NS	-	< 1.0	< 0.67	1	< 1.00	< 1.00		< 1.00	-	< 2.10		< 2.10
2,2,4-trimethylpentane	< 0.71	0.6				< 0.71	< 0.71		0.71	< 0.71		< 0.71		< 0.71		< 0.71		0.31	J < 0.70		0.47 J	6.2	J	< 0.93		< 1.90		< 1.90
4-ethyltoluene	0.6	J 0.9		2.2		3.5	< 0.75		0.9	< 0.75		< 0.75		< 0.75		< 0.75		< 0.98	< 0.74		< 0.98	< 0.98		0.10	J	< 2.00		< 2.00
4-Isopropyltoluene	NS 20	NS 37		NS 7.5	\square	NS 25	NS 3.5		NS 4.3	NS 1.0	+	NS 4.2	\square	NS	\vdash	NS 10		< 1.1	< 1.10	1	< 1.10	< 1.10	\vdash	< 1.10	_	< 2.20	_	< 2.20
Acetone Allyl chloride	20 < 0.48	37 < 0.4		7.5 < 0.48	\vdash	25 < 0.48	3.5 < 0.48		4.3 0.48	1.9 < 0.48	+	4.2 < 0.48	\vdash	4.4 < 0.48	++	10 < 0.48		21 < 1.6	< 9.50	+	14 B < 1.60	< 12.00 < 1.60	+	< 12.00 < 1.60	_	< 3.10		24.00 < 3.10
Benzene	2	0.8		< 0.49		< 0.49	< 0.49		0.49	< 0.49	+	< 0.49		< 0.49	+	< 0.49		0.63	< 0.58	+	0.28 J	< 0.64		< 0.64		< 1.30		< 1.30
Benzyl chloride	< 0.88	< 0.8		< 0.88		< 0.88	< 0.88		0.88	< 0.88		< 0.88		< 0.88		< 0.88		< 1.0	< 1.10		< 1.00	< 1.00		< 1.00		< 2.10		< 2.10
Bromodichloromethane	< 1.00	< 1.0		< 1.00		< 1.00	< 1.00		1.00	< 1.00	_	< 1.00		< 1.00		< 1.00		< 1.3	< 0.80	_	< 1.30	< 1.30		< 1.30		< 2.70		< 2.70
Bromoform Bromomethane	< 1.60	< 1.6	-	< 1.60	\vdash	< 1.60	< 1.60		1.60 0.59	< 1.60	+	< 1.60	\vdash	< 1.60	++	< 1.60 < 0.59		< 2.1	< 0.74	+	< 2.10	< 2.10	+	< 2.10	_	< 4.10 < 1.60	_	< 4.10 < 1.60
Carbon disulfide	< 0.47	< 0.4		< 0.47		0.32	J 0.85		0.47	< 0.47		1.4		< 0.47		< 0.47		< 1.6	< 0.62		30	< 1.60		< 1.60		< 3.10		< 3.10
Carbon tetrachloride	0.77	J < 0.9		< 0.96		< 0.96	< 0.96		0.96	< 0.96		< 0.96		< 0.96		< 0.96		< 0.25	< 0.82		< 0.25	< 0.25		< 0.25		< 0.50		< 0.50
Chlorobenzene	< 0.70	< 0.7		< 0.70		< 0.70	< 0.70		0.70	< 0.70	_	< 0.70		< 0.70		< 0.70		< 0.92	< 0.60	_	< 0.92	< 0.92		< 0.92		0.2		< 1.80
Chloroethane Chloroform	< 0.40 8.9	< 0.4		< 0.40		< 0.40	0.46		0.8 0.5 J	0.54 < 0.74	-	< 0.40 2.7		< 0.40 2.2		< 0.40	_	1.5 0.16	< 0.87 J < 1.20	1	0.52 J 0.96	0.28 < 0.98	J	< 1.30 < 0.98	-	< 2.60		< 2.60 1.3
Chloromethane	1.2	0.5		< 0.31		< 0.31	0.59		0.31	0.76		< 0.31		0.78		< 0.31		3.1	< 0.70		1.1	1.5		1.3		1.0	J.	< 2.10
cis-1,2-Dichloroethene	24	< 0.6		< 0.60		0.44	J 63		25	8.5		110		190		44		23	< 3.30		83	27		20		170		190
cis-1,3-Dichloropropene	< 0.69	< 0.6		< 0.69		< 0.69	< 0.69		0.69	< 0.69	_	< 0.69		< 0.69		< 0.69		< 0.91	< 0.59	_	< 0.91	< 0.91		< 0.91		< 1.80		< 1.80
Cyclohexane Dibromochloromethane	< 0.52	< 0.5		< 0.52		< 0.52	< 0.52		0.52	< 0.52	-	< 0.52		< 0.52		< 0.52 < 1.30	_	1.7 < 1.7	< 0.65	1	< 0.69	< 0.69		< 0.69 < 1.70	-	< 1.40 < 3.40		< 1.40 < 3.40
Ethyl acetate	< 0.92	< 0.9		< 0.92		< 0.92	< 0.92		0.92	< 0.92		< 0.92		< 0.92		< 0.92		NS	NS		NS	NS		NS		NS		NS
Ethylbenzene	0.97	4.5		8.2		7.5	0.71		0.66	< 0.66		0.66		< 0.66		< 0.66		0.76	J < 0.65		0.2 J	< 0.87		1.1		0.25		0.37
Freon 11	3.1 1.2	< 0.8		< 0.86		9.9	1.5		.86	< 0.86	_	8.5		1		0.63	J	1.3 0.72	3.1 J 4.6	1	5.9 21	0.98	J	1.1		1.9	J	1.8 53
Freon 113 Freon 114	< 1.10	< 1.2		< 1.20		< 1.20	< 1.10		1.10	< 1.20	+	66 < 1.10		12 < 1.10		0.78	J	< 1.4	< 1.50	1	0.23 J	1.4 < 1.40	J	0.69 < 1.40	J	30 < 2.80	<u> </u>	< 2.80
Freon 12	3.6	4.2		4		5.7	3.8		2.6	1.6		< 0.75		2.5		2.9		3.1	2.4	J	2.5	2.8		2.7		3.0	J	1.7
Freon 22	NS	NS		NS		NS	NS		NS	NS		NS		NS		NS		4.4	< 0.81		1.5 J	1.5	J	1.4	J	1.1	J	1.1
Heptane	0.62	0.7		< 0.62		< 0.62	< 0.62		0.62	< 0.62	_	< 0.62		< 0.62		< 0.62		2.3	< 0.70	_	0.83	< 0.82		< 0.82		< 1.60		< 1.60
Hexachloro-1,3-butadiene Hexane	< 1.60 0.9	< 1.6		< 1.60		< 1.60	< 1.60		1.60 0.54	< 1.60	+	< 1.60		< 1.60		< 1.60 < 0.54		< 2.1 1.1	< 3.10	-	< 2.10 0.78	< 2.10		< 2.10	_	< 4.30 < 1.40		< 4.30 < 1.40
Isopropyl alcohol	< 0.37	5.3		< 0.34		< 0.37	< 0.37		0.37	0.52	-	< 0.34		0.52		< 0.34			J < 1.90		2 J	< 12.00		0.77	J	1.4	_	25.00
m&p-Xylene	2.4	34				75	3.1		1.9	1.2	J	3		< 1.30		0.62	J	2.8	< 0.96		0.55 J			4.2		1.1	J	1.4
Methyl Butyl Ketone	< 1.20	< 1.2		< 1.20		< 1.20	< 1.20		1.20	< 1.20		< 1.20		< 1.20		< 1.20		0.71	J < 1.60		< 2.00	< 2.00		< 2.00		< 4.10		< 4.10
Methyl Ethyl Ketone Methyl Isobutyl Ketone	3.1 < 1.20	< 0.9		1.9 < 1.20		1.7 < 1.20	0.87 < 1.20		0.9 1.20	< 0.90	_	0.9 < 1.20		< 0.90		< 0.90 < 1.20		4.5 < 2.0	< 0.74	-	4.9 B < 2.00	< 1.50		< 1.50 0.65	-	< 2.90 < 4.10	_	7.5
Methyl isobutyl Ketone Methyl methacrylate	< 1.20 NS	< 1.4 NS		< 1.20 NS		< 1.20 NS	< 1.20 NS		1.20 NS	< 1.20 NS	-	< 1.20 NS		< 1.20 NS		< 1.20 NS	-	< 2.0	< 0.66	1	< 2.00	< 2.00		< 2.00		< 4.10		< 4.10 < 4.10
Methyl tert-butyl ether	< 0.55	< 0.5		< 0.55		< 0.55	< 0.55		0.55	< 0.55	L	< 0.55		< 0.55		< 0.55		< 0.72	< 0.54	L	< 0.72	< 0.72		< 0.72		< 1.40	_	< 1.40
Methylene chloride	0.6	0.6		< 0.53		1.4	1.3	0	.81	1.2	Τ	3.5		0.78		3.6		1.8	B 2.9	JΒ	1.2 J B	1.8		1.1	J	1.1	J	1.7
n-Butane	NS	NS		NS	\vdash	NS	NS		NS	NS	+	NS	\vdash	NS	\vdash	NS		6.1	< 2.00	-	7	4.4	+	2.0	_	< 2.40		< 2.40
n-Butylbenzene n-Propylbenzene	NS NS	NS		NS NS	\vdash	NS NS	NS NS		NS NS	NS NS	+	NS NS	\vdash	NS NS	++	NS NS		< 1.1 < 0.98	< 0.52	+	< 1.10 < 0.98	< 1.10 < 0.98	+	< 1.10	_	< 2.20 < 2.00		< 2.20 < 2.00
Naphthalene	NS	NS		NS		NS	NS		NS	NS	+	NS		NS	+	NS		< 2.6	< 0.64	+	< 2.60	< 2.60		< 2.60		< 5.20		< 5.20
o-Xylene	0.71	5.2		5.7		30	1.6	0	.88	0.62	J	1.2		< 0.66		< 0.66		1	< 0.69		0.25 J	< 0.87		1.1		0.84	J	0.99
Propylene	< 0.26	< 0.2		< 0.26	\square	< 0.26	< 0.26		0.26	< 0.26	+	< 0.26	L	< 0.26	$\left \right $	< 0.26		NS	NS	_	NS	NS	$ \downarrow \downarrow$	NS		NS	_	NS
sec-Butylbenzene Styrene	NS 0.48	NS J < 0.6		NS < 0.65	\vdash	NS < 0.65	NS < 0.65		NS 0.65	NS < 0.65	+	NS < 0.65	\vdash	NS < 0.65	\vdash	NS < 0.65	\vdash	< 1.1 0.46	< 0.82 J < 0.47	+	< 1.10 < 0.85	< 1.10 < 0.85	+	< 1.10 < 0.85	_	< 2.20	+	< 2.20 0.33
styrene tert-Butyl Alcohol	0.48 NS	J < 0.6		< 0.65 NS	\vdash	< 0.65 NS	< 0.65 NS		0.65 NS	< 0.65 NS	+	< 0.65 NS		< 0.65 NS	+	< 0.65 NS	\vdash		J < 1.20	+	< 0.85 0.23 J		+	< 15.00		< 30.00	-	30.00
tert-Butylbenzene	NS	NS		NS		NS	NS		NS	NS	T	NS		NS		NS		< 1.1	< 0.60	L	1.1	< 1.10		< 1.10		< 2.20		< 2.20
Tetrachloroethylene	8.8	< 1.0		< 1.00		1.5	< 1.00		1.00	< 1.00	T	< 1.00		< 1.00		< 1.00		< 1.4	< 1.00		3.1	< 1.40	\square	0.26	J	0.36		0.51
Tetrahydrofuran	12 4	5.5		8.4 J 21		4.2 39	6.5 2.2		1.8	< 0.45	+	5.8	\vdash	2.7	\vdash	1		2.1 3.7	J < 0.86	-	1.1 J		+	< 15.00	_	0.57	-	2.2
Toluene trans-1,2-Dichloroethene	4	< 0.6		J 21 < 0.60	\vdash	39 < 0.60	2.2		0.60	4.9 < 0.60	+	3.3 1.2		0.69 < 0.60	+	< 0.57 < 0.60	\vdash	3.7 0.14	< 0.53 J < 0.91	+	4 0.64 J	< 0.75 < 0.79	+	0.38 < 0.79	J	0.57	-	2.3
trans-1,3-Dichloropropene	< 0.69	< 0.6		< 0.69		< 0.69	< 0.69		0.69	< 0.69	1	< 0.69		< 0.69	Lt	< 0.69		< 0.91	< 0.68	L	< 0.91	< 0.91	LI	< 0.91	_	< 1.80	-	< 1.80
Trichloroethene	32	< 0.8	2	< 0.82		3.2	0.49	J <	0.82	< 0.82	Τ	< 0.82		0.66	J	< 0.82		0.21	< 0.49		0.46	< 0.21		< 0.21		< 0.43		0.94
Vinyl acetate	< 0.54	< 0.5		< 0.54	\square	< 0.54	< 0.54		0.54	< 0.54	+	< 0.54		< 0.54	\vdash	< 0.54		NS	NS	-	NS	NS	$\left \right $	NS		NS	+	NS
Vinyl Bromide Vinyl chloride	< 0.67	< 0.6		< 0.67	\vdash	< 0.67 2.6	< 0.67 2.3		0.67 2.1	< 0.67	+	< 0.67 2.1	\vdash	< 0.67 1.6	++	< 0.67 1.1		< 0.87 1.1	< 0.83	+	< 0.87 1.9	< 0.87	+	< 0.87 1.3	_	< 1.70 1.2	+	< 1.70 1.9
Cumulative VOCs (µg/m ³) ⁽²⁾	< 0.39		6.28	84.50		231.32	123.57		54.77	24.2	1	263.36	-	226.63	-	67.93		99.66	< 0.23		207.70	51.66	-	42.61		271.02		295.39
% Removal - Cumulative	NA		6%	87%		92%	82%		94%	97%		87%		74%		95%		85%	98%		65%	93%		90%		64%		67%
Target VOCs (µg/m ³) ⁽³⁾	66.29		.00	0.00		5.80	74.59		27.50	9.32		157.20		196.86		46.80		24.65	0.00		103.20	29.70		22.16		215.46		216.45
% Removal - Target VOCs	NA MH-3 ^A		00% H-1 ^A	100% MH-1, 3	Ą	100% MH-1 ^M	87% MH-1 ^A		96% H-1, 2, 3 ^M	98% MH-1		90% MH-1 ^M		73% MH-1 ^A		96% MH-1 ^A		96% MH-1 ^A	100% MH-1, 2		79% MH-2 ^A	93% MH-1 ^A		94% MH-1 ^A , MH	3 ^A	69% MH-1 ^A , MH-3	A	72% MH-1 ^A
Manholes Online ⁽⁴⁾	MH-3	M	net 1	MH-1, 3		MH-1**	MH-1^	M	n=1, 2, 3	MH-1		MH-1**	-	MH-1^		MH-1		MH-1**	MH-1, 2	4	WH-2	MH-17		WH-1", MH	-3	MH-1, MH-3		WH-1

2 of 3

Table 6. Vapor Phase Analytical Sampling I	Kesuits, Former	LOCK	kneed Martin	Fren	ICh Road Facil	ity, Ut	uca, INT.							Effluent															
Volatile Organic ⁽¹⁾ Compounds (µg/m³)	1/28/2011 (2	2/23/2011	Q	4/5/2011	Q	7/7/2011	Q 10/12/2011	Q	1/26/2012 Q	4/5/2012	2 Q	7/12/2012 Q	10/17/2012	Q	1/15/2013 Q	4/24/2013	3 Q	7/11/2013	Q	10/23/2013	Q	2/7/2014	Q	4/4/2014	Q	7/10/2014	Q	10/9/2014
1,1-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83	< 0.83		< 0.83	0.72	J	< 0.83	< 1.1		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10
1,2,2-Tetrachloroethane	< 1.00		< 1.00		< 1.00		< 1.00	< 1.00		< 1.00	< 1.00		< 1.00	< 1.00		< 1.00	< 1.4		< 0.76		< 1.40		< 1.40		< 1.40		< 1.40		< 1.40
1,2-Trichloroethane	< 0.83		< 0.83		< 0.83		< 0.83	< 0.83		< 0.83	< 0.83		< 0.83	< 0.83		< 0.83	< 1.1		< 0.87		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10
1-Dichloroethane	< 0.62	_	< 0.62		< 0.62		< 0.62	17		2.4	0.82		12	35		4.6	1.7	_	< 0.93		7.8		1.6		1.3		17		52
1-Dichloroethene	< 0.60	_	< 0.60		< 0.60		< 0.60	0.48	J	< 0.60	< 0.60		0.64	0.69		< 0.60	< 0.79	_	< 3.40		< 0.79		< 0.79		< 0.79		0.57	J	0.70
2,4-Trichlorobenzene	< 1.10	_	< 1.10 3.7		< 1.10		< 1.10	< 1.10		< 1.10	< 1.10		< 1.10	< 1.10		< 1.10	< 3.7		< 2.20		< 3.70		< 3.70		< 3.70		< 3.70		< 3.70
,2,4-Trimethylbenzene	1.5	_			1.3		3.3	< 0.75	_	< 0.75	< 0.75		2.1	1.2		0.7 J	0.53	J	< 1.00		< 0.98		< 0.98		< 0.98	_	0.37	J	0.37
2-Dibromoethane	< 1.20	_	< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20	_	< 1.20	< 1.20		< 1.20	< 1.5	_	< 1.10		< 1.50		< 1.50		< 1.50	_	< 1.50	_	< 1.50
2-Dichlorobenzene	< 0.92	_	< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92	_	< 0.92	< 0.92		< 0.92	< 1.2	_	< 1.60		< 1.20		< 1.20		< 1.20	_	< 1.20	_	< 1.20
2-Dichloroethane	< 0.62	_	< 0.62		< 0.62		< 0.62	< 0.62		< 0.62	< 0.62		< 0.62	< 0.62		< 0.62	< 0.81	-	< 0.73		< 0.81		< 0.81		< 0.81		< 0.81		< 0.81
,2-Dichloropropane ,3,5-Trimethylbenzene	< 0.70		< 0.70 1.4		< 0.70 0.65	J	< 0.70 1.3	< 0.70		< 0.70 < 0.75	< 0.70	_	< 0.70 0.95	< 0.70 0.75		< 0.70 < 0.75	< 0.92	-	< 1.10		< 0.92		< 0.92		< 0.92	-	< 0.92 0.11	-	< 0.92
.3-butadiene	< 0.34		< 0.34		< 0.34	3	< 0.34	< 0.34		< 0.34	< 0.75	_	< 0.34	< 0.34		< 0.34	< 0.98	-	< 0.93		< 0.98		< 0.98		< 0.98	-	< 0.44	J	< 0.98
3-Dichlorobenzene	< 0.92	-	< 0.92		< 0.92		< 0.92	< 0.92		< 0.92	< 0.92	_	< 0.34	< 0.92		< 0.94	< 1.2	-	< 1.10		< 1.20		< 1.20		< 1.20	-	< 1.20	-	< 1.20
.4-Dichlorobenzene	< 0.92	-	< 0.92		< 0.92	-	< 0.92	< 0.92		< 0.92	< 0.92	-	< 0.92	< 0.92		< 0.92	< 1.2		< 1.10		< 1.20		< 1.20		< 1.20	-	< 1.20	-	< 1.20
.4-Dioxane	1.6	-	< 1.10		< 1.10		< 1.10	< 1.10		< 1.10	< 1.10	_	< 1.10	< 1.10		< 1.10	< 18	-	< 2.50		< 1.20 0.5	J	< 18.00		< 18.00	-	< 18.00	-	< 18.00
-Chlorotoluene	NS	-	NS		NS		NS	NS		NS	NS	-	NS	NS		NS	< 1.0	-	< 0.67	-	< 1.00	3	< 1.00		< 1.00		< 1.00	-	< 1.00
2,4-trimethylpentane	< 0.71	-	0.81		< 0.71	-	< 0.71	< 0.71		< 0.71	< 0.71		< 0.71	< 0.71		< 0.71	0.3		< 0.70		0.23	.I.	< 0.93		< 0.93	-	< 0.93	-	< 0.93
-ethyltoluene	< 0.75	+	0.95	-	0.8		0.95	< 0.75		< 0.75	< 0.75		< 0.71 0.6 J	< 0.75	1 1	< 0.75	< 0.98	Ť	< 0.74	\square	< 0.98	L_	< 0.93		< 0.93		< 0.93 0.094	J	< 0.93
-Isopropyltoluene	NS NS	+	NS	-	NS		NS NS	NS NS		NS NS	NS		NS	NS NS	1 1	NS NS	< 1.1	+	< 1.10	\square	< 1.10		< 1.10		< 1.10		< 1.10	-+	< 1.10
cetone	100	+	27		8.5		6.2	4.4		5	3.9	-	< 0.72	140	1 1	4	18	1	< 9.50		15	в	< 12.00		4.9	J	4.4	J	< 12.00
llyl chloride	< 0.48	+	< 0.48		< 0.48		< 0.48	< 0.48		< 0.48	< 0.48	-	< 0.48	< 0.48	1 1	< 0.48	< 1.6	1	< 1.50		< 1.60	Ē	< 1.60		< 1.60	-	< 1.60	֠	< 1.60
enzene	1.1	+	1.2		< 0.49		< 0.49	< 0.49		< 0.49	< 0.49	-	0.49	0.36	J	< 0.49	0.57	J	< 0.58		0.33	J	< 0.64		< 0.64	+	0.094	J	0.13
lenzyl chloride	< 0.88	+	< 0.88		< 0.88		< 0.88	< 0.88		< 0.88	< 0.88		< 0.88	< 0.88		< 0.88	< 1.0	Ť	< 1.10		< 1.00		< 1.00		< 1.00	1	< 1.00	Ť	< 1.00
Formodichloromethane	< 1.00	+	< 1.00		< 1.00		< 1.00	< 1.00		< 1.00	< 1.00		< 1.00	< 1.00	11	< 1.00	< 1.3	1	< 0.80		< 1.30		< 1.30		< 1.30		< 1.30	t	< 1.30
romoform	< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 1.60	< 2.1	1	< 0.74	L	< 2.10		< 2.10		< 2.10		< 2.10	_†	< 2.10
romomethane	< 0.59		< 0.59		< 0.59		< 0.59	< 0.59		< 0.59	< 0.59		< 0.59	< 0.59		< 0.59	< 0.78	1	< 1.00	L	< 0.78		< 0.78		< 0.78		< 0.78	_1	< 0.78
arbon disulfide	< 0.47	T	< 0.47		< 0.47		0.47	0.38	J	< 0.47	< 0.47		1.1	1.6		< 0.47	< 1.6		< 0.62		0.41	J	18		0.32	J	< 1.60		< 1.60
arbon tetrachloride	< 0.96	Т	< 0.96		< 0.96		< 0.96	< 0.96		< 0.96	< 0.96		< 0.96	< 0.96		< 0.96	< 0.25	T	< 0.82		< 0.25		< 0.25		< 0.25		< 0.25	T	< 0.25
hlorobenzene	< 0.70		< 0.70		< 0.70		< 0.70	< 0.70		< 0.70	< 0.70		< 0.70	< 0.70		< 0.70	< 0.92		< 0.60		< 0.92		< 0.92		< 0.92		0.077	J	< 0.92
hloroethane	< 0.40		< 0.40		< 0.40		< 0.40	0.54		< 0.40	< 0.40		< 0.40	< 0.40		< 0.40	< 1.3		< 0.87		0.47	J	< 1.30		< 1.30		< 1.30		< 1.30
hloroform	< 0.74		< 0.74		< 0.74		< 0.74	4.2		0.55 J	< 0.74		2.9	6		< 0.74	0.26	J	< 1.20		0.16	J	< 0.98		< 0.98		0.47	J	1.4
hloromethane	1.3		0.8		0.94		1.2	0.92		< 0.31	0.76		< 0.31	< 0.31		< 0.31	1.4	_	< 0.70		1.2		1.4		1.2		1.2		< 1.00
s-1,2-Dichloroethene	9.7	J	< 0.60		< 0.60		< 0.60	32		12	5	_	54	290		34	23	_	< 3.30		1.8		5.5		2.0		30		130
is-1,3-Dichloropropene	< 0.69	_	< 0.69		< 0.69		< 0.69 0.66	< 0.69	_	< 0.69	< 0.69		< 0.69	< 0.69		< 0.69	< 0.91	_	< 0.59		< 0.91		< 0.91		< 0.91	_	< 0.91	_	< 0.91
/ · · · · ·		_										_				< 0.52	2.1 < 1.7	-			0.17	J							
ibromochloromethane	< 1.30	_	< 1.30		< 1.30		< 1.30	< 1.30		< 1.30	< 1.30		< 1.30	< 1.30		< 1.30	< 1.7 NS	-	< 0.94		< 1.70		< 1.70		< 1.70		< 1.70		< 1.70
thyl acetate	< 0.92 0.97	-	< 0.92 2.4		< 0.92 1.5		< 0.92 1.8	< 0.92		< 0.92	< 0.92		< 0.92	< 0.92		< 0.92	0.67		NS < 0.65		0.18	J	NS		NS 0.47		NS 0.11	J	NS < 0.87
thylbenzene reon 11	< 0.86	-	< 0.86		< 0.86		< 0.86	< 0.66		< 0.66	< 0.66 0.63	-	1.3 12	< 0.66 3.2		< 0.86	0.5	J	< 1.20	-	2.5	J	< 0.87 0.72		0.47	J	7.9	3	< 0.87
ireon 113	< 1.20	-	< 1.20		< 1.20	-	< 1.20	22		22	< 1.20		9.7	83		< 0.80		L L	< 1.50		13		0.45	, ,	0.46	J	42	-	59
reon 114	0.85	1	< 1.10		< 1.10		< 1.10	< 1.10		< 1.10	< 1.10		3. 7	< 1.10		< 1.10	< 1.4	- J	< 1.40	-	< 1.40		< 1.40	Ĵ	< 1.40		< 1.40	-	< 1.40
ireon 12	4.3	-	2.9		2.5	-	3.7	4.3		3.7	1.6		< 0.75	3.2		2.7	3.1	-	2.4		2.3	J	2.8		2.7	-	2.7	-	3.3
reon 22	NS	-	NS		NS	-	NS	NS		NS	NS		NS NS	NS		NS	4	-	< 0.81		1.9	J	1.4	J	1.3	Л	1.2	J	1.2
leptane	< 0.62	-	< 0.62		< 0.62	-	< 0.62	< 0.62		< 0.62	< 0.62		< 0.62	< 0.62		< 0.62	0.99	-	< 0.70		0.52	J	< 0.82	Ŭ	< 0.82		< 0.82	Ť	< 0.82
lexachloro-1,3-butadiene	< 1.60		< 1.60		< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 1.60	< 1.60		< 1.60	< 2.1	-	< 3.10		< 2.10	-	< 2.10		< 2.10	_	< 2.10		< 2.10
exane	< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54	< 0.54		< 0.54	< 0.54		< 0.54	0.95	-	< 0.70		0.58	J	< 0.70		< 0.70	_	< 0.70		< 0.70
opropyl alcohol	< 0.37		6.7		4.2		< 0.37	< 0.37		< 0.37	1.3		< 0.37	20		1.5	7.2	J	< 1.90		6.7	J	< 12.00		0.64	J	0.60	J	< 12.00
n&p-Xylene	2.7		9.9		7.2		8.4	< 1.30		1.3	< 1.30		6	0.71	J	0.44 J	2.1	J	< 0.96		0.57	J	< 2.20		1.6	J	0.38	J	0.36
lethyl Butyl Ketone	< 1.20		< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20		< 1.20	< 1.20		< 1.20	0.23	J	< 1.60		< 2.00		< 2.00		< 2.00		< 2.00		< 2.00
lethyl Ethyl Ketone	22		< 0.90		2		1.9	1.5		< 0.90	< 0.90		0.99	0.72	J	0.63 J	< 1.5		< 0.74		7.4	в	< 1.50		0.99	J	2.6		4.1
lethyl Isobutyl Ketone	< 1.20	1	< 1.20		< 1.20		< 1.20	< 1.20		< 1.20	< 1.20	_	< 1.20	< 1.20	11	< 1.20	< 2.0	1	< 1.40		0.18	J	< 2.00		0.34	J	0.13	J	< 2.00
lethyl methacrylate	NS	1	NS		NS		NS	NS		NS	NS		NS	NS	11	NS	< 2.0	1	< 0.66		< 2.00		< 2.00		< 2.00		< 2.00	t	< 2.00
lethyl tert-butyl ether	< 0.55		< 0.55		< 0.55		< 0.55	< 0.55		< 0.55	< 0.55		< 0.55	< 0.55	11	< 0.55	< 0.72	1	< 0.54		< 0.72		< 0.72		< 0.72		< 0.72	1	< 0.72
lethylene chloride	< 0.53		0.64		1.2		2.4	0.95		0.74	3.5		4.2	16		0.81	2.1	в	3.2	JВ	< 1.70	JВ	3.0		0.74	J	1.4	J	1.3
Butane	NS	T	NS		NS		NS	NS		NS	NS		NS	NS		NS	4.6		< 2.00		4.4		3.1		0.90	J	4.7		< 1.20
Butylbenzene	NS		NS		NS		NS	NS		NS	NS		NS	NS		NS	< 1.1		< 0.52		< 1.10		< 1.10		< 1.10		< 1.10		< 1.10
Propylbenzene	NS	T	NS		NS		NS	NS		NS	NS		NS	NS		NS	< 0.98		< 1.20		< 0.98		< 0.98		< 0.98		< 0.98		< 0.98
aphthalene	NS	Τ	NS		NS		NS	NS		NS	NS		NS	NS		NS	< 2.6		< 0.64		0.92	J	< 2.60		< 2.60		< 2.60		< 2.60
Xylene	0.88		3.8		1.8		2.5	< 0.66		< 0.66	< 0.66		2.2	< 0.66		< 0.66	0.63	J	< 0.69		0.21	J	< 0.87		0.35	J	0.25	J	0.39
ropylene	< 0.26		< 0.26		< 0.26		< 0.26	< 0.26		< 0.26	< 0.26		< 0.26	< 0.26		< 0.26	NS		NS		NS		NS		NS	Ī	NS		NS
c-Butylbenzene	NS		NS		NS		NS	NS		NS	NS		NS	NS		NS	< 1.1		< 0.82		< 1.10		< 1.10		< 1.10	T	< 1.10		< 1.10
yrene	0.65		< 0.65		< 0.65		< 0.65	< 0.65		< 0.65	< 0.65		< 0.65	< 0.65		< 0.65	0.45	J			< 0.85		< 0.85		< 0.85	T	0.17	J	0.22
rt-Butyl Alcohol	NS		NS		NS		NS	NS		NS	NS		NS	NS	LI	NS	< 15		< 1.20		< 15.00		< 15.00	L	< 15.00		< 15.00	[< 15.00
rt-Butylbenzene	NS		NS		NS		NS	NS		NS	NS		NS	NS	LI	NS	< 1.1		< 0.60		< 1.10		< 1.10		< 1.10		< 1.10	[< 1.10
etrachloroethylene	1.9		0.83	ſ	< 1.00		< 1.00	1.2		< 0.10	1		< 1.00	< 1.00	μI	< 1.00	< 1.4	1	< 1.00		0.16	J	< 1.40	ĻП	0.20	J	< 1.40	[0.22
etrahydrofuran	110		6.3		6		3.7	9.7		2.8	2.9		12	16		1.7	1.7	J	< 0.86		6	J	1.1	J	< 15.00		< 15.00	\downarrow	1.3
bluene	2.1		8.1		1.4		2.5	0.69		0.73	0.57		6.9	2.4		< 0.57	4.1	4	< 0.53		1.8		< 0.75		0.13	J	0.20	J	0.46
ans-1,2-Dichloroethene	< 0.60		< 0.60		< 0.60		< 0.60	0.44	J	< 0.60	< 0.60		< 0.60	1.3	\square	< 0.60	0.16	J	< 0.91	L	< 0.79		< 0.79		< 0.79		0.32	J	< 0.79
ans-1,3-Dichloropropene	< 0.69		< 0.69		< 0.69		< 0.69	< 0.69		< 0.69	< 0.69		< 0.69	< 0.69	\square	< 0.69	< 0.91	_	< 0.68	L	< 0.91		< 0.91		< 0.91		< 0.91	_	< 0.91
richloroethene	21		< 0.82		< 0.82		< 0.82	< 0.82		< 0.82	1.4		< 0.82	3.7		< 0.82	< 0.21	4	< 0.49		0.35		< 0.21		< 0.21		< 0.21	\downarrow	0.21
inyl acetate	< 0.54		< 0.54		< 0.54		< 0.54	< 0.54		< 0.54	< 0.54		< 0.54	< 0.54		< 0.54	NS	4	NS		NS		NS		NS		NS	\downarrow	NS
inyl Bromide	< 0.67	_	< 0.67		< 0.67		< 0.67	< 0.67		< 0.67	< 0.67		< 0.67	< 0.67	\square	< 0.67	< 0.87	+	< 0.83		< 0.87		< 0.87	ĻЦ	< 0.87		< 0.87		< 0.87
inyl chloride	< 0.39		2.1		1		3.2	3.7	L	2.7	1.1		3.5	2.2	L .	1.6	1.1	1	< 0.23	L	1.8		0.80	L	1.4		0.77		2.7
Cumulative VOCs (µg/m ³) ⁽²⁾	283.20		79.53		40.99		44.18	106.30		55.32	24.4		133.57	628.75		53.68	83.0		5.60		79.54		39.87		22.32		119.82		261.1
% Removal - Cumulative	NA		91%		94%		98%	84%		94%	979		93%	29%		96%	88%		99%		87%		95%		95%		84%		70%
Target VOCs (µg/m ³) ⁽³⁾	32.60		0.83		0.00		0.00	50.64		14.40	8.2		66.00	330.00		38.60	24.8		0.00		10.11		7.10		3.50		47.32		182.4
% Removal - Target VOCs	NA		100%		100%		100%	91%		98%	99%		96%	55%		97%	96%		100%		98%		98%		99% MH-1 ^A , MH-		93% MH-1 ^A , MH-		76%
Manholes Online ⁽⁴⁾	MH-3 ^A		MH-1 ^A		MH-1, 3	а,	MH-1 ^M	MH-1 ^A		MH-1, 2, 3 ^M	MH-	4 M	MH-1 ^M	MH-1 ^A		MH-1 ^A	MH-	A	MH-1, 2	A	MH-2 ^A		MH-1 ^A						MH-1

| Mass VOCs Adsorbed by
Carbon Vessels (lbs) | NA | 0.9 | 1.0 | 0.9 | 0.8 |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|

3 of 3

Table 7.	Summary of Estimated Air Stripper Emissions, Former Lockheed Martin French Road Facility, Utica, N	Y.
----------	--	----

			Maximum	1/28/2011	2/23/2011	4/4/2011	7/7/2011	10/12/2011	1/26/2012	4/5/2012	7/12/2012	10/17/2012	1/15/2013	4/24/2013	7/11/2013	10/23/2013	2/7/2014	4/4/2014	7/10/2014	10/9/2014	Maximum	Actual Annual	Actual Annual
Volatile Organic Compounds ⁽¹⁾	AGC ⁽²⁾ (µg/m ³)	SGC ⁽²⁾ (µg/m ³)	Effluent Concentration (µg/m ³) ⁽³⁾	Result (µg/m3)	Emission Rate (Ib/day) ⁽⁴⁾	Impact (μg/m ³) ⁽⁵⁾	Impact Percentage of AGC (%)																
1,1,1-Trichloroethane	5,000	9,000	0.72	ND	0.72	ND	4.88E-05	5.70E-05	0.00														
1,1-Dichloroethane	0.63	-	52	ND	ND	ND	ND	17	2.4	0.82	12	35	4.6	1.7	ND	7.8	1.6	1.3	17	52	3.53E-03	4.11E-03	0.65
1,1-Dichloroethene	70	-	0.69	ND	0.64	0.69	ND	ND	ND	ND	ND	ND	0.57 J	0.70 J	4.68E-05	5.46E-05	0.00						
1,2,4-Trimethylbenzene	290	-	3.7	1.5	3.7	1.3	3.3	ND	ND	ND	2.1	1.2	0.7	0.53	ND	ND	ND	ND	0.37 J	0.37 J	2.51E-04	3.05E-04	0.00
1,3,5-Trimethylbenzene	290	-	1.4	0.65 J	1.4	0.65 J	1.3	ND	ND	ND	0.95	0.75	ND	ND	ND	ND	ND	ND	0.11 J	ND	9.49E-05	1.15E-04	0.00
1,4-Dioxane	0.13	3,000	1.6	1.6	ND	0.5	ND	ND	ND	ND	1.08E-04	1.32E-04	0.10										
2,2,4-trimethylpentane	3,300	-	0.81	ND	0.81	ND	0.3	ND	0.23	ND	ND	ND	ND	5.49E-05	6.67E-05	0.00							
4-ethyltoluene	-	-	0.95	ND	0.95	0.8	0.95	ND	ND	ND	0.6	ND	0.094 J	ND	6.44E-05	7.82E-05	-						
Acetone	28,000	180,000	140	100	27	8.5	6.2	4.4	5	3.9	ND	140	4	18	ND	15	ND	4.9 J	4.4 J	ND	9.49E-03	1.15E-02	0.00
Benzene	0.13	1,300	1.2	1.1	1.2	ND	ND	ND	ND	ND	0.49	0.36	ND	0.57	ND	0.33	ND	ND	0.094 J	0.13 J	8.14E-05	9.88E-05	0.08
Carbon disulfide	700	6,200	18	ND	ND	ND	0.47	ND	ND	ND	1.1	1.6	ND	ND	ND	0.41	18	0.32 J	ND	ND	1.22E-03	1.48E-03	0.00
Chloroform	0.043	150	6	ND	2.9	6	ND	0.26	ND	0.16	ND	ND	0.47 J	1.4	4.07E-04	4.94E-04	1.15						
Chloromethane	90	22,000	1.4	1.3	0.8	0.94	1.2	0.92	ND	0.76	ND	ND	ND	1.4	ND	1.2	1.4	1.2	1.2	ND	9.49E-05	1.15E-04	0.00
cis-1,2-Dichloroethene	63	-	290	9.7 J	ND	ND	ND	32	12	5	54	290	34	23	ND	1.8	5.5	2.0	30	130	1.97E-02	2.39E-02	0.04
Cyclohexane	6,000	-	2.1	ND	ND	ND	0.66	ND	ND	ND	ND	ND	ND	2.1	ND	0.17	ND	ND	ND	ND	1.42E-04	1.73E-04	0.00
Ethylbenzene	1,000	54,000	2.4	0.97	2.4	1.5	1.8	ND	ND	ND	1.3	ND	ND	0.67	ND	0.18	ND	0.47 J	0.11 J	ND	1.63E-04	1.98E-04	0.00
Freon 11	1,000	68,000	12	ND	ND	ND	ND	ND	1.4	0.63 J	12	3.2	ND	0.5	ND	2.5	0.72 J	0.48 J	7.9	1.8	8.14E-04	9.88E-04	0.00
Freon 113	180,000	960,000	83	ND	ND	ND	ND	ND	22	ND	9.7	83	1	0.63	ND	13	0.45 J	0.36 J	42	59	5.63E-03	6.83E-03	0.00
Freon 12	12,000	-	4.3	4.3	2.9	2.5	3.7	4.3	3.7	1.6	ND	3.2	2.7	3.1	2.4	2.3	2.8	2.7	2.7	3.3	2.92E-04	3.54E-04	0.00
Freon 22	50,000	-	4	NS	4	ND	1.9	1.4 J	1.3 J	1.2 J	1.2 J	2.71E-04	3.29E-04	0.00									
Heptane	3,900	210,000	0.99	ND	0.99	ND	0.52	ND	ND	ND	ND	6.71E-05	8.15E-05	0.00									
Hexane	700	-	0.95	ND	0.95	ND	0.58	ND	ND	ND	ND	6.44E-05	7.82E-05	0.00									
Isopropyl alcohol	7,000	98,000	20	ND	6.7	4.2	ND	ND	ND	1.3	ND	20	1.5	7.2	ND	6.7	ND	0.64 J	0.6 J	ND	1.36E-03	1.65E-03	0.00
m&p-Xylene	100	4,300	9.9	2.7	9.9	7.2	8.4	ND	1.3	ND	6	0.71	0.44	2.1	ND	0.57	ND	1.6 J	0.38 J	0.36 J	6.71E-04	8.15E-04	0.00
Methyl Butyl Ketone	30	4,000	0.23	ND	0.23	ND	ND	ND	ND	ND	ND	1.56E-05	1.89E-05	0.00									
Methyl Ethyl Ketone	5,000	13,000	22	22	ND	2	1.9	1.5	ND	ND	0.99	0.72	0.63	ND	ND	7.4	ND	0.99 J	2.6	4.1	1.49E-03	1.81E-03	0.00
Methylene chloride	2.1	14,000	16	ND	0.64	1.2	2.4	0.95	0.74	3.5	4.2	16	0.81	2.1	3.2	ND	3	0.74 J	1.4 J	1.3 J	1.08E-03	1.32E-03	0.06
n-Butane	57,000	-	4.7	NS	4.6	ND	ND	3.1	0.90 J	4.7	ND	3.19E-04	3.87E-04	0.00									
o-Xylene	100	4,300	3.8	0.88	3.8	1.8	2.5	ND	ND	ND	2.2	ND	ND	0.63	ND	0.21	ND	0.35 J	0.25 J	0.39 J	2.58E-04	3.13E-04	0.00
Styrene	1,000	17,000	0.65	0.65	ND	0.45	ND	ND	ND	ND	0.17 J	0.22 J	4.41E-05	5.35E-05	0.00								
Tetrachloroethylene	1	1,000	1.9	1.9	0.83 J	ND	ND	1.2	ND	1	ND	ND	ND	ND	ND	0.16	ND	0.20 J	ND	0.22 J	1.29E-04	1.56E-04	0.02
Tetrahydrofuran	350	30,000	110	110	6.3	6	3.7	9.7	2.8	2.9	12	16	1.7	1.7	ND	6	1.1 J	ND	ND	1.3 J	7.46E-03	9.06E-03	0.00
Toluene	5,000	37,000	8.1	2.1	8.1	1.4	2.5	0.69	0.73	0.57	6.9	2.4	ND	4.1	ND	1.8	ND	0.13 J	0.20 J	0.46 J	5.49E-04	6.67E-04	0.00
trans-1,2-Dichloroethene	63	-	1.3	ND	1.3	ND	0.16	ND	ND	ND	ND	0.32 J	ND	8.81E-05	1.07E-04	0.00							
Trichloroethene	0.5	14,000	21	21	ND	ND	ND	ND	ND	1.4	ND	3.7	ND	ND	ND	0.35	ND	ND	ND	0.21	1.42E-03	1.73E-03	0.35
Vinyl chloride	0.1	180,000	3.7	ND	2.1	1	3.2	3.7	2.7	1.1	3.5	2.2	1.6	1.1	ND	1.8	0.8	1.4	0.77	2.7	2.51E-04	3.05E-04	0.30

Notes:

1. Volatile organic compounds shown are only those detected in effluent samples during 2011 through 2014

2. AGC and SGC values obtained from NYSDEC DAR-1 AGC/SGC Tables, dated 9/10/07.

3. Concentrations shown for each volatile organic compound are the maximum concentrations detected from 2011 through 2013.

4. Maximum emission rate calculated using the maximum vapor phase concentrations for each volatile organic compound and the average instantaneous vapor phase effluent flow rate (756 scfm) during 2012. Note that the system is not operated continuously, so the actual annual impact estimated in this table is calculated using the maximum vapor phase effluent flow rate (756 scfm) during 2012. Note that the system is not operated continuously, so the actual annual impact estimated in this table is calculated using a significantly higher volume of air than in actually emitted by the system.

5. Actual annual impact calculated by following procedures described in NYSDEC DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants (NYSDEC 1991). Note effective stack height of 28 feet.

Definitions:

< - less than laboratory detection limit listed

"-" - indicates no guideline as been established

AGC - Annual Guideline Concentration

J - Indicates concentration is estimated

lb/day - pounds per day

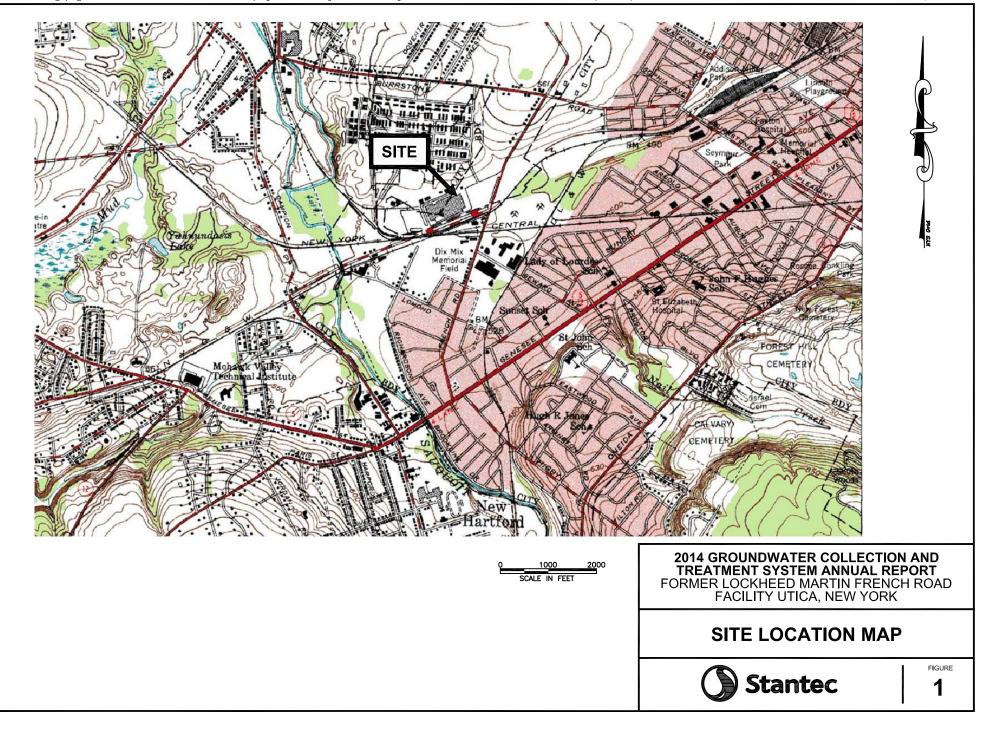
ND - non-detect

Q - data qualifier

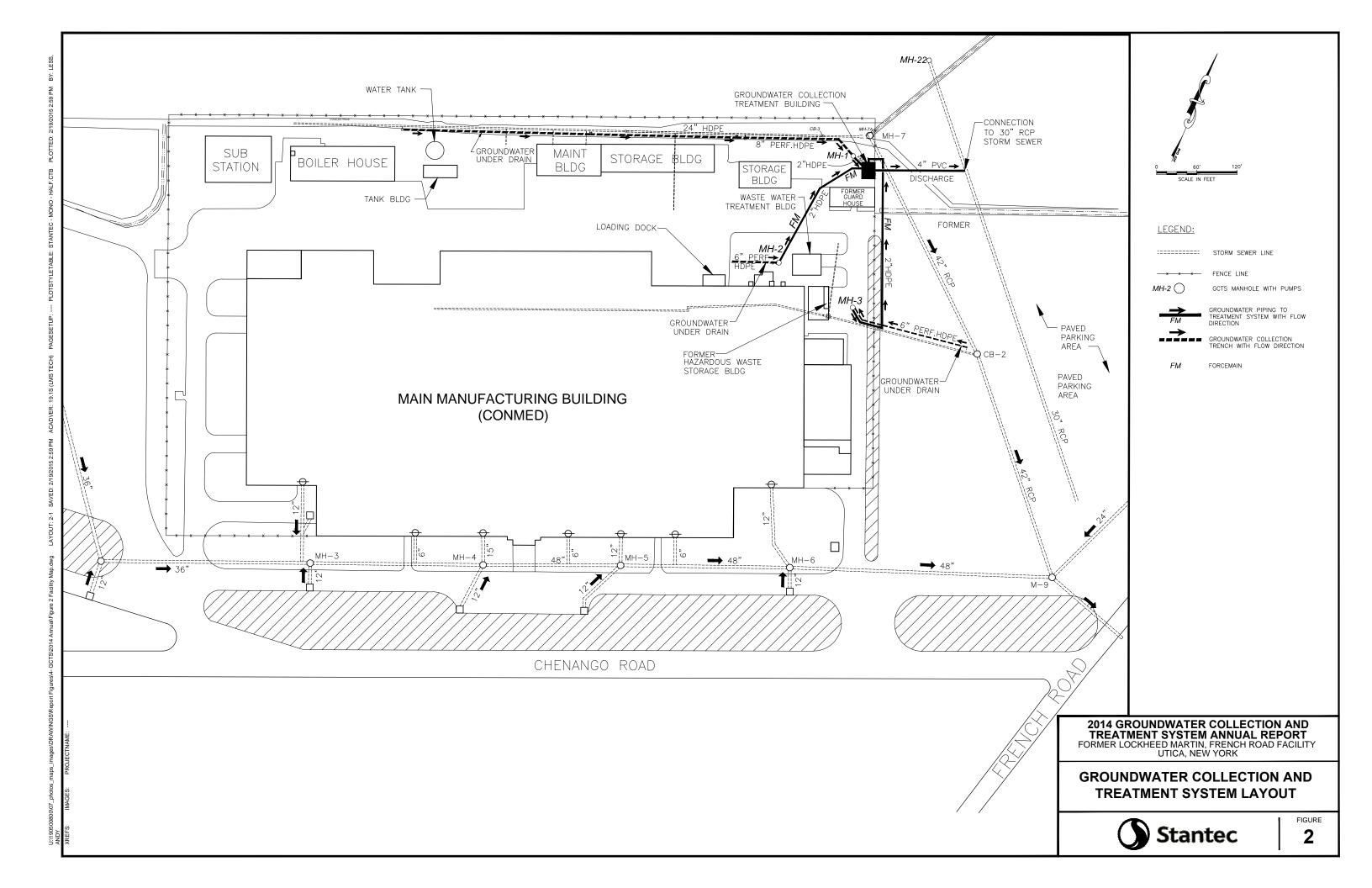
SGC - Short-term Guideline Concentration $\mu g/m^3$ - micrograms per cubic meter

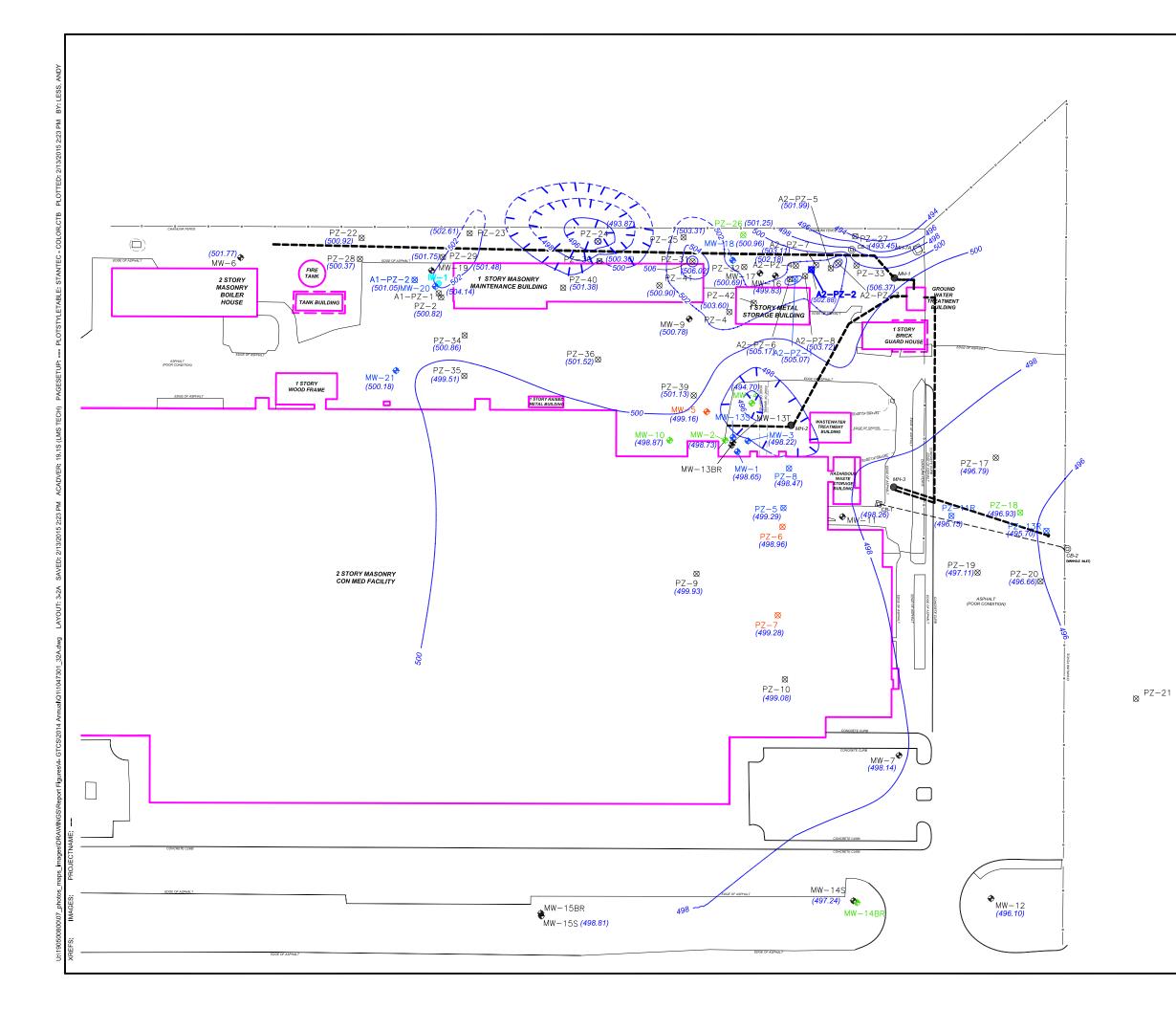
Table 8. Sequestering Agent Consumption Summary, Former Lockheed Martin French Road Facility, Utica, NY.

Chemical Name - ARIES 2908	
Chemical Specific Gravity - 1.04 to 1.09	1.065
Specific Weight of Water @ 60°F	8.3378 (lb/gallon)
Specific Weight of Chemical @ 60°F	8.8798 (lb/gallon)

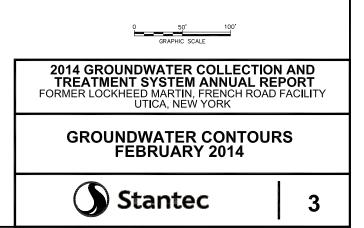

N N	Date	Drum	Days	Volume in 30 Gallon	% Full	Δ Volume (gal.)	∆ Lbs	Consumption Rate (Ibs/day) ⁽¹⁾	MH-1 Total Flow	MH-2 Total	MH-3 Total	∑ Total Flows	∆ Total Flow	Dose Rate This Period	Notes
9 9 8	4/20/2014				400%	(gai.)		Rate (ibs/day)						(ppm) ⁽²⁾	Prought acquisitating agent coling for first time
conditional and sector se	-		- 29			- 11.5	- 102.1	- 3.5					- 695,783	- 16.5	Brought sequestering agent online for hist time.
10 <td>6/2/2011</td> <td>1</td> <td></td> <td>14.1</td> <td>47%</td> <td>4.4</td> <td>39.1</td> <td>2.8</td> <td>51,837,640</td> <td>9,189,887</td> <td>534,242</td> <td>61,561,769</td> <td>266,506</td> <td>16.5</td> <td></td>	6/2/2011	1		14.1	47%	4.4	39.1	2.8	51,837,640	9,189,887	534,242	61,561,769	266,506	16.5	
No. No. <td>-</td> <td></td> <td>-</td> <td></td> <td>Under dosing due to CFP being offline due to noted past alarms.</td>	-												-		Under dosing due to CFP being offline due to noted past alarms.
N V															Drum #1 empty.
Nome No No No No No			-				-								-
viel viel viel viel viel viel viel viel				1 1											
1111111 13 14 15						1 -				-,,					
cond cond <th< td=""><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td></th<>	-		-			-		-					-	-	
	-			1 1											5
bit bi	12/1/2011	0	00		070		200.0		00,010,000	0,100,101			120,100	0110	
SectorSect	-		-												3rd drum empty, reuse 2nd drum that was taken offline on 10/6/11
NUME N			246												Through 12/22/2011
Name Name<															
	2/9/2012	2						3.4				65,195,486		22.4	
base base <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Drum # 2 empty. I Inmeasured volume of solidified chemical in bottom of drum: actual volume</td></t<>							1								Drum # 2 empty. I Inmeasured volume of solidified chemical in bottom of drum: actual volume
end i j	4/5/2012	2	35	0	0%	7.5	66.6	1.9	54,447,552	9,635,004			404,800	18.5	
91 81 82<	4/5/0040				4000/			_	54 447 550	0.005.004					Prought Drum #4 police
State V V V V															
mmm i </td <td>5/1/2012</td> <td>4</td> <td>26</td> <td>27.5</td> <td>92%</td> <td>2.5</td> <td>22.2</td> <td>0.9</td> <td>54,595,683</td> <td>9,661,648</td> <td>1,833,036</td> <td>66,090,367</td> <td>237,112</td> <td>10.5</td> <td>Drum noted to be under vacuum due to changes in temperatures and not properly vented.</td>	5/1/2012	4	26	27.5	92%	2.5	22.2	0.9	54,595,683	9,661,648	1,833,036	66,090,367	237,112	10.5	Drum noted to be under vacuum due to changes in temperatures and not properly vented.
NYME I N															
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
	-			-											
Normal 6	10/17/2012	4	36	0.5	2%	5.5	48.8		55,424,161	9,830,240	2,314,556	67,568,957	309,799	17.8	
Image S <td>10/19/2012</td> <td>4</td> <td>2</td> <td>0</td> <td>0%</td> <td>0.5</td> <td>4.4</td> <td>2.2</td> <td>55,441,907</td> <td>9,832,600</td> <td></td> <td></td> <td>31,794</td> <td>15.7</td> <td></td>	10/19/2012	4	2	0	0%	0.5	4.4	2.2	55,441,907	9,832,600			31,794	15.7	
180056776677<	10/19/2012	5	-	30	100%	· ·	-		55.441.907	9.832.600			-	-	Brought Drum #5 online.
2010 30 - <td></td> <td></td> <td>20</td> <td></td> <td></td> <td>3</td> <td></td> <td>1.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td>			20			3		1.3							·
15000 5 6 9 9 7 2 9 <th< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>The st 40/0/040</td></th<>		5													The st 40/0/040
1 1 2 2 4 9 4 5 7 2 5 9 2 9 0 1 0 1 0 1 0 </td <td></td> <td>-</td> <td></td> <td>1 nrough 12/6/2012</td>		-													1 nrough 12/6/2012
Normal Part Part Part Part Part Part Part Part				1 1											Includes flow totals from loaner PLC from 2/6 through 2/11.
SetS	3/5/2013	5	26	0	0%	6	53.3	2.0	56,492,292	10,000,253			318,857	18.8	
addedaddaddaddaddaddadded <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td>Brought Drum #6 online. New drum starting only with 29 gallons. Flow monitoring device in fault mode</td>				<u> </u>											Brought Drum #6 online. New drum starting only with 29 gallons. Flow monitoring device in fault mode
49 69 78 <t< td=""><td>3/5/2013</td><td>6</td><td>-</td><td>29</td><td>97%</td><td>-</td><td>-</td><td>-</td><td>56,490,599</td><td>10,000,253</td><td>2,759,940</td><td>69,250,792</td><td>-</td><td>-</td><td></td></t<>	3/5/2013	6	-	29	97%	-	-	-	56,490,599	10,000,253	2,759,940	69,250,792	-	-	
omegame<	-														FA-200 fault cleared locally, CFP resumed sequestering agent dosing.
off off set off set off set off set set set set set set set set set def set set set set set set set set set def set set set set set set set set set def set set set set set set set set def set set set set set set set set set def set set set set set set set set set def set set set set set set set set set def set set set set				1 1											
general stategeneral stategener															Stroke length on CFP reduced from 100% to 85%
Virtual	-												-		
generalization r <	6/25/2013	6	13	0	0%	5	44.4	3.4	57,552,196	10,187,599			325,509	15.4	
98979895.<	6/26/2013	7	-	29	97%	-	-	-	57,584,303	10,192,884			-	-	Drum #7 (29 gallons) put into service.
910202017.3.89.6.9.2%9.6.9.2.9.6.9.1.1.9.1.0				1 1											
1022023744711/414/410.2410.24,24737.07.0672.83.21944.6814.414.414.414.410.2410.40.24437.07.0672.83.21912.8612.714.414.414.414.414.414.414.414.414.415.514.415.514.415.514.415.514.415.514.415.514.415.514.415.514.415.514.414.414.26.337.85.3272.91.36612.415.514.415.514.414.414.414.26.337.85.3272.91.36612.415.514.415.514.4 </td <td>-</td> <td></td>	-														
11/14/2013 7 9 0.0 0% 1.6 1.4.3 1.6.6 58,715,50 10,712 785,302 721,356 10,711 1.5.5 Drum #6 (30 galons) put into service. 11/14/2013 6 - 300 10% - 2.5.5 1.3.3 586,322 10,4311 3,46,545 7,213,566 2.6.1 Drum #6 (30 galons) put into service. Drum #6 (30 galons) put into service. 11/12/2013 6 - 6.6 1.5.0 1.0.412,65 3,563,302 7,213,566 2.6.1 Drum #6 (30 galons) put into service. 12/12/2014 6 362 - 6.0 - - - 5.60.671 16.3 Though 12/3/2/13 1/2/2014 8 7.53 7.87.3 7.87.35 7.89.35 7.89.35 7.89.35 4.60 16.30 Though 12/3/2/13 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0															
NEW DRUM ONLINE NEW DRUM ONLINE 11/14/2013 6 - 30 100% - - 68,715,543 10,412,625 3,785,382 72,913,666 - - Drum #6 (30 gallons) put into service. 2013 Total - 382 - - 88,375 540.6 - - - - 5,160,671 16.3 Through 12/3/2013 1/22/2014 8 51 22.5 78% 3.6 3.22 0.6 59,386,620 10,527,204 4,037,521 73,923,345 783,655 4.6 Through 12/3/2013 1/22/2014 8 51 22.5 78% 3.6 3.22 0.6 59,386,620 10,527,204 4,037,521 73,823,45 4.6 Through 12/3/2013 3/42014 8 2.6 25.6 86% 4.20 37.3 1.4 59,445,45 10,558,270 4,061,231 74,030,06 - Phodu trecovered from partially expt avas valve was adjusted so that all of the flow would be refurced to the the sequestarting agent to be refurced to the the sequestartis avas valve avas avas				1 1											
11/14/2013 8 - 90 10% - 2 - 58/715.68 10.412.826 7.378.582 7.29.3566 - Drum #8 (30 galona) put into service. 12/32013 6 19 27.1 90% 2.9 25.5 1.3 68.65.322 10.430.113 3.442.65 7.313.680 26.124 12.7 21/32014 - - 8.8.75 540.6 - - - 5,60.671 16.3 Through 12/3/2013 1/232014 8 51 23.5 78% 3.6 32.2 0.6 59.358.620 10.577.204 4.037.521 7.392.345 788.565 4.6 Ishould be noted that the chemical feed pump's return 3-way valve was adjusted so that all of the flow would be redered to the AS influent manifold. The 3-way valve was adjusted so that all of the flow would be redered to the AS influent manifold. 2/82/014 8 2.5 8.66 3.6 3.0 10.555.270 4.061.231 74.030.065 - - Product recovered from parially empty drum. 4/82/014 8 2.5 1.0 3.1 69.987.29 70.958.334 4.232.587 74.817.33 493.870 1	11/14/2013	7	9	0.0	0%	1.6	14.3	1.6	58,715,549	10,412,625			103,711	15.5	
1222010 8 9 27.1 90% 2.9 2.5 1.3 58,8532 10,49113 3,845,45 73,19,80 228,14 12.7 Produbt 12/2014 2013 Col 5 56.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0 74.03 74.00 </td <td>11/14/2013</td> <td>8</td> <td>-</td> <td>30</td> <td>100%</td> <td>-</td> <td>- 1</td> <td></td> <td>58,715,549</td> <td>10,412,625</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>Drum #8 (30 gallons) put into service.</td>	11/14/2013	8	-	30	100%	-	- 1		58,715,549	10,412,625			-	-	Drum #8 (30 gallons) put into service.
1/23/201 R S<	12/3/2013	8	19	27.1	90%	2.9	25.5				3,845,245	73,139,690	226,124	12.7	
123201 8 51 23.5 78% 3.6 3.22 0.66 59,36,62 10,52,724 4,07,521 7,32,34 78,855 4.66 feed position, feed positio	2013 Total	-	362	-	-	83.875	540.6	-	-	-	-	-	5,160,671	16.3	-
3/4/2014 8 26 25.8 86% 4.20 37.3 1.4 59,64,585 10,556,036 4,122,93 74,323,569 293,564 14.3 4/1/2014 8 28 16 53% 9.80 87.0 3.1 69,967,227 10,588,933 4,251,279 74,817,439 493,870 19.8 5/5/2014 8 34 4 13% 12.00 106.6 3.1 69,967,227 10,588,933 4,241,796 75,502,123 684,684 17.5 5/5/2014 9 - 32 107% - - 60,39,981 10,663,846 4,447,296 75,502,123 - - - 5/5/2014 9 39 21 70% 11.00 97.7 2.5 60,39,981 10,762,606 4,718,074 76,499,000 - - Recovered 5.5 gallons of sequesturing agent from previous drums. 7/7/2014 9 11 19 63% 0.00 0.0 61,123,201 10,762,606 7,718,014 76,499,000 - - Recovered 5.5 gallons of sequesturing agent from previous drums. 87,714,56	1/23/2014	8	51	23.5	78%	3.6	32.2	0.6	59,358,620	10,527,204	4,037,521	73,923,345	783,655	4.6	feed position, thereby allowing a portion of the sequestering agent to be returned to the drum, and not into the AS influent manifold. The 3-way valve was adjusted so that all of the flow would be redirected to
4/1/2014 8 28 16 53% 9.80 87.0 3.1 59.97.27 10.598.933 4.251.279 74.817.439 493.870 19.8 11.0 10.000 10			-			-	-	-						-	Product recovered from partially empty drum.
55/2014 8 34 4 13% 12.00 10.66 3.1 60,390,981 10,663,846 4,47,296 75,502,123 684,684 17.5 VEV DEV DEV DEV DEV DEV DEV DEV DEV DEV													-		
NEW DRUM ONLINE 5/5/2014 9 - 32 107% - - 60,390,981 10,663,866 4,447,296 75,502,123 - - - - 60,390,981 10,663,866 4,447,296 75,502,123 - - - - - - - 60,390,981 10,663,866 4,447,296 75,502,123 -	-			1 1											
6/13/2014 9 39 21 70% 11.00 97.7 2.5 60,786,558 10,724,198 4,600,238 76,112,994 610,871 18.0 7/7/2014 9 24 13.5 45% 7.50 66.6 2.8 61,011,399 10,760,338 4,714,103 76,459,300 372,836 20.1 7/8/2014 9 1 19 63% - - - 61,018,201 10,762,606 4,718,074 76,499,000 - A Recovered 5.5 gallons of sequestring agent from previous drums. 8/7/2014 9 30 19 63% 0.00 0.0 61,286,646 10,792,511 4,825,600 7,684,900 - - Recovered 5.5 gallons of sequestring agent from previous drums. 9/3/2014 9 32 7 13.0 61,986,788 10,822,990 7,718,456 315,399 19.0 Insert end of the sequestring agent flow alarm occurred on 8/2/14. See alarm log. 11/5/2014 9 29 1.5 5% 6.50 57.7 2.00 61,802,713 10,885,790 5,186,888 77,786,601 338,119 19.2 </td <td></td> <td>1</td> <td></td> <td>I I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NEW DRUM</td> <td>ONLINE</td> <td></td> <td></td> <td></td>		1		I I							NEW DRUM	ONLINE			
7/7/2014 9 24 13.5 45% 7.50 66.6 2.8 61.011,389 10,760,338 4,714,103 76,485,830 372,836 20.1 7/8/2014 9 1 19 63% - - 61.018,320 10,762,606 4,718,074 76,499,000 - - Recovered 5.5 gallons of sequesturing agent from previous drums. 8/7/2014 9 30 19 63% 0.00 0.0 61,236,646 10,792,351 4,825,060 76,854,057 355,057 0.0 Low sequestering agent flow alarm occurred on 8/2/14. See alarm log. 9/3/2014 9 27 13 43% 6.00 5.3 2.0 61,421,404 10,822,990 4,925,062 77,169,456 315,399 19.0 10/7/2014 9 34 8 27% 5.00 44.4 1.3 61,596,688 10,886,790 5,108,988 77,458,482 289,026 17.3 11/5/2014 9 29 1.5 5% 6.50 57.7 Q.0 61,802,713 10,885,790 5,108,08 77,766,61 338,119 19.2 Commot															
78/2014 9 1 19 63% - 6.108.320 10,762,666 4,718,074 76,499,00 - Recovered 5.5 gallons of sequestring agent from previous drums. 87/2014 9 30 19 63% 0.00 0.0 61,236,646 10,792,351 4,825,060 76,854,057 355,057 0.0 Low sequestering agent flow alarm occurred on 8/2/14. See alarm log. 9/3/2014 9 27 13 43% 6.00 53.3 2.0 61,421,404 10,822,990 4,925,062 77,189,456 315,399 19.0 10/7/2014 9 34 8 27% 5.00 4.4 1.3 61,596,858 10,850,636 5,019,88 77,458,482 289,026 17.3 11/5/2014 9 29 1.5 5% 6.50 57.7 2.0 61,802,713 10,885,790 5,108,098 77,796,601 338,119 19.2 11/5/2014 10 - 0.06 0.06 0.06 62,013,010 10,915,655 5,209,552 78,1															
9/3/2014 9 27 13 43% 6.00 53.3 2.0 61,421,404 10,822,90 4,925,662 77,169,456 315,399 19.0 10/7/2014 9 34 8 27% 5.00 44.4 1.3 61,596,858 10,850,636 5,010,988 77,458,482 289,026 17.3 11/5/2014 9 29 1.5 5% 6.50 57.7 2.0 61,802,713 10,885,790 5,108,988 77,796,601 338,119 19.2 0 0 0 0.00 0.0 62,013,01 10,915,655 5,209,552 78,182,17 38,761 0.0 11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,988 77,96,601 338,119 19.2 11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,988 77,796,601 - - 11/5/2014 10 28 24.5 82% 5.5 48.8 1.7 62,013,010 10,915,655 5,209,	7/8/2014	9	1	19	63%	-	-		61,018,320	10,762,606	4,718,074	76,499,000	-	-	
10/7/2014 9 34 8 27% 5.00 44.4 1.3 61,596,858 10,850,636 5,010,988 77,458,482 289,026 17.3 11/5/2014 9 29 1.5 5% 6.50 57.7 2.0 61,802,713 10,885,790 5,108,098 77,766,01 338,119 19.2 0 0 0 0.0 0.0 0.0 62,013,01 10,915,655 5,209,552 78,138,217 968,761 0.0 II/5/2014 10 3.00 100% - <td></td> <td>Low sequestering agent flow alarm occurred on 8/2/14. See alarm log.</td>															Low sequestering agent flow alarm occurred on 8/2/14. See alarm log.
11/5/2014 9 29 1.5 5% 6.50 57.7 2.0 61.802,713 10.885,703 57.96,601 338,119 19.2 10 0 0% 0.00 0.0 0.0 62.013,010 10.916,655 52.09,552 78,138,217 968,761 0.0 NEW DRUMENT 11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,098 77,796,601 0.0 11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,098 77,796,601 - - 11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,098 77,796,601 - - - 12/3/2014 10 28 24.5 82% 5.5 48.8 1.7 62,013,010 10,915,655 5,209,552 78,138,217 341,616 16.1				1 1											
11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,098 77,796,601 - - 12/3/2014 10 28 24.5 82% 5.5 48.8 1.7 62,013,010 10,915,655 5,209,552 78,138,217 341,616 16.1	-														
11/5/2014 10 - 30.0 100% - - 61,802,713 10,885,790 5,108,098 77,796,601 - - 12/3/2014 10 28 24.5 82% 5.5 48.8 1.7 62,013,010 10,915,655 5,209,552 78,138,217 341,616 16.1			0		0%	0.00	0.0	0.0	62,013,010	10,915,655			968,761	0.0	
12/3/2014 10 28 24.5 82% 5.5 48.8 1.7 62,013,010 10,915,655 5,209,552 78,138,217 341,616 16.1	11/5/2014	10		30.0	100%				61 802 713	10 885 790					
				1 1		5.5		1.7					341,616	16.1	<u> </u>
	2014 Total	-	337	-	-	65.63	631.6	-	-	-				13.1	Through 12/3/2014

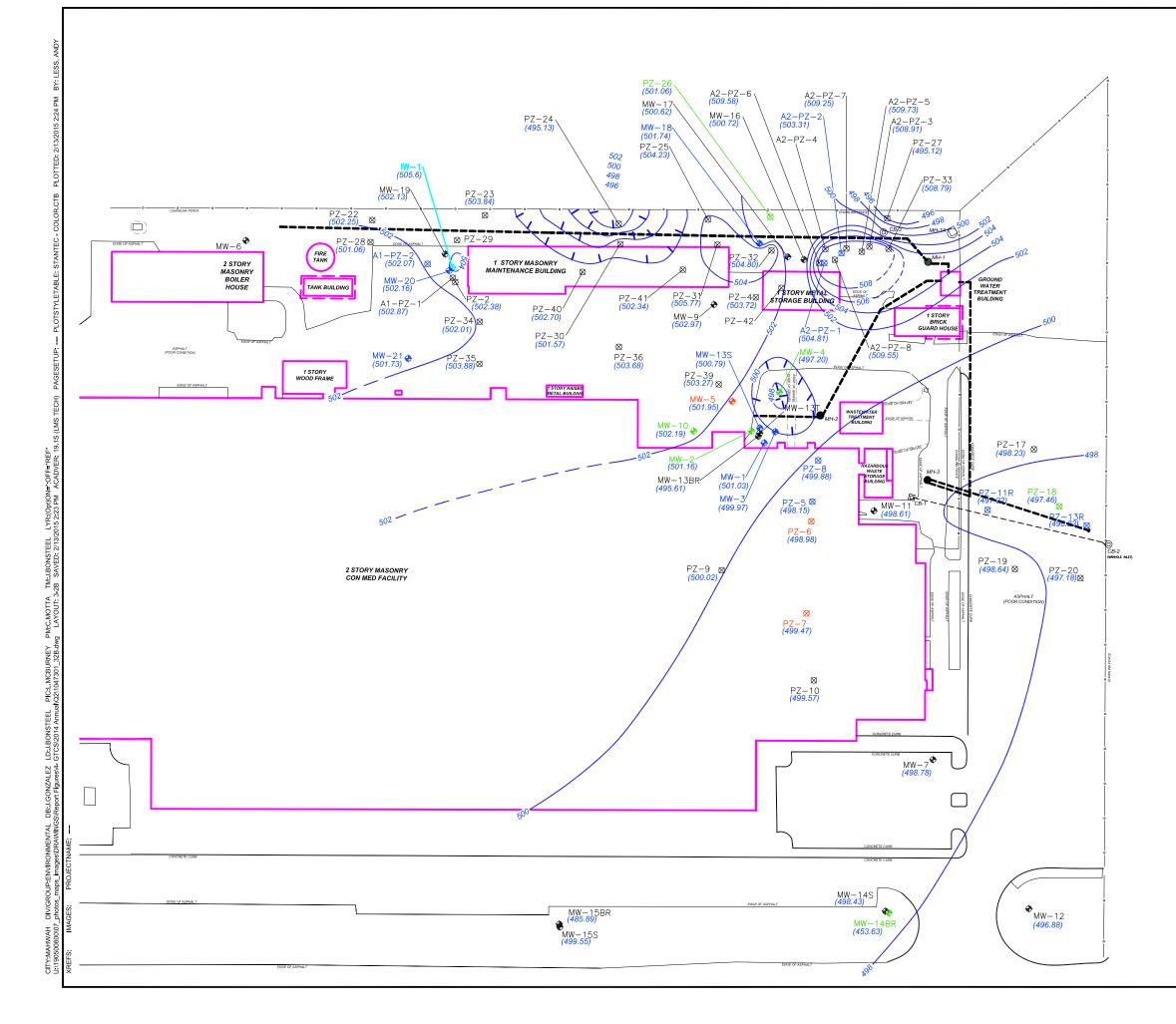
Notes:


Notes: 1) Maximum allowable daily loading rate of 12.5 lbs/day per WTC Usage Form dated 4/11/11. 2) Sequestering agent dosing rate is setup to be proportional to the aggregate flow transmitter value (not shown). However, this table utilizes the sum of the three individual pumping manhole flow transmitter values to calculate dose rate. 3) Sequestering agent low flow alarm occurred on 9/26/11 due to partial solidification of chemical within suction/injection fittings and tubing. Inspection not conducted until 10/6/11, during which time the fittings and tubing were cleaned. Drum #2 was taken offline until vendor could troubleshoot observation, in the interim Drum #3 was brought online.


Figures

CITY:(MAHWAH) DIV/GROUP:(ENRI-1) DB:(JG LD:(Opt) PIC:(Opt) PM:(CM) TM:(BM) LYR:(Opt)ON=";OFF="REF" U:\190500800\05_report_deliv/deliverables\3-ANNUAL REPORTS\A-GCTS OM&M rpt\Figures\Draft 2(CAD\Figure 1 Site Location.dwg LAYOUT: 1 SAVED: 1/22/2015 3:07 PM ACADVER: 19.1S (LMS TECH) PAGESETUP: --- PLOTSTYLETABLE: --- PLOTTED: 1/22/2015 3:08 PM BY: ARMINGTON, WILLIAM

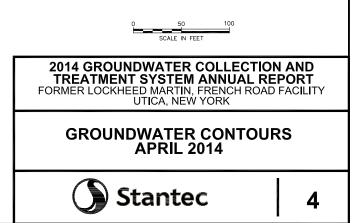


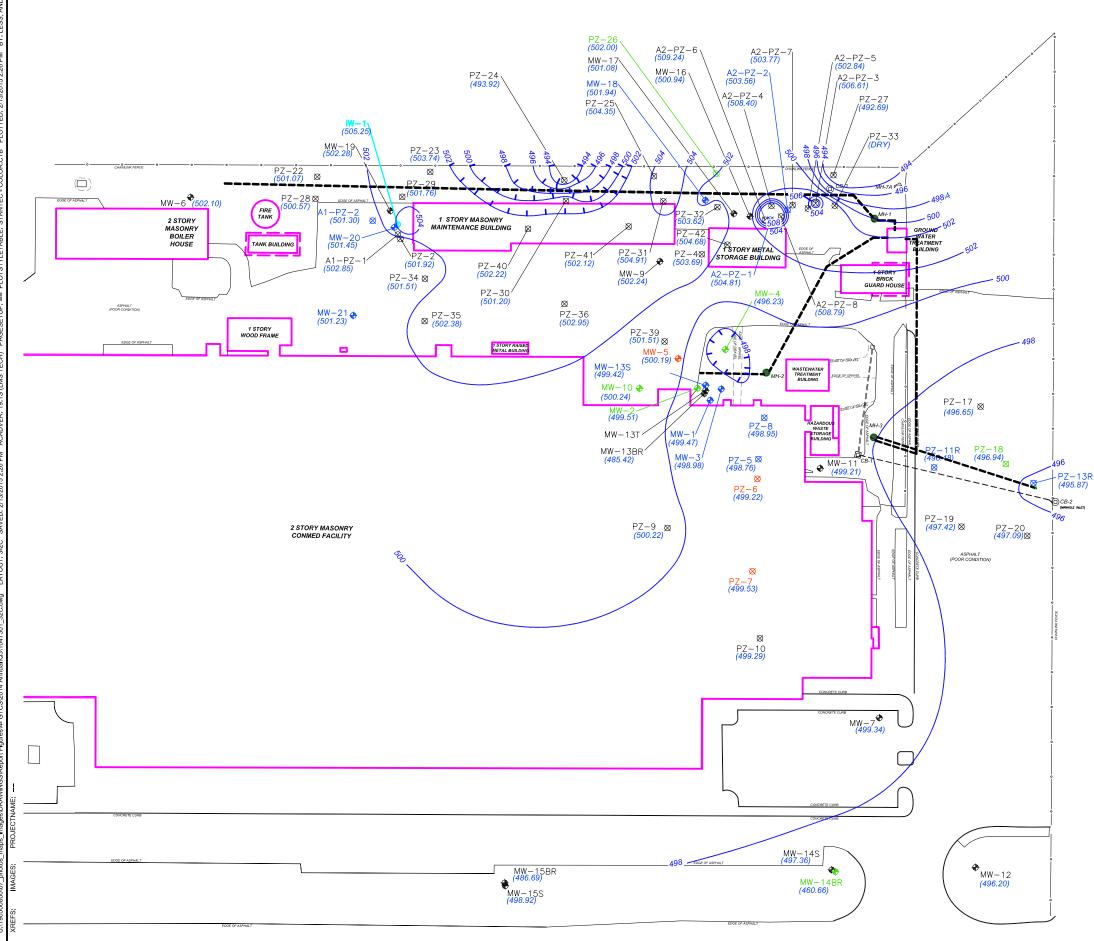

LEGEND:

	₩−1 ◎ M₩−10 � PZ−9 ⊗	INJECTION WELL LOCATION MONITORING WELL LOCATION PIEZOMETER LOCATION
	The second s	QUARTERLY SAMPLING LOCATION
	· · · · · · · · · · · · · · · · · · ·	SEMI-ANNUAL SAMPLING LOCATION
	·	ANNUAL SAMPLING LOCATION
	(501.52)	QUARTERLY GROUNDWATER ELEVATION POINT (AMSL)
500	\sim	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED)
-		GROUNDWATER COLLECTION TRENCH AND PIPING
	•	FENCE LINE
	мн-2 О СВ-2 О	GROUNDWATER COLLECTION MANHOLE LOCATION MANHOLE WITH INLET GRATE LOCATION

NOTES:

- BASE PLAN ADAPTED FROM DRAWING ENTITLED "2013 ANNUAL GROUNDWATER MONITORING REPORT, JANUARY 2013 GROUNDWATER CONTOURS" PREPARED BY ACRCADIS.
- THIS DRAWING IS REFERENCED HORIZONTALLY TO THE NORTH AMERICAN DATUM OF 1983 (NAD83) AND PROJECTED ON THE NEW YORK STATE PLAN COORDINATE SYSTEM (CENTRAL ZONE).
- 3. THE REFERENCED HORIZONTAL CONTROL STATION IS A GPS CONTINUOUSLY OPERATING REFERENCE STATION (CORS) DESIGNATED AS "ROME CORS ARP" (NYRM), NYRM IS A SPECIAL HORIZONTAL AND VERTICAL CONTROL STATION ESTABLISHED BY NATIONAL GEODETIC SURVEY IN JULY 1997.
- CONTOURS DEVELOPED USING WATER LEVEL DATA FROM FEBRUARY 3, 2014.
- 5. WELLS PZ-8, AND MW-135 WERE GAUGED, BUT WAS DRY.


LEGEND:

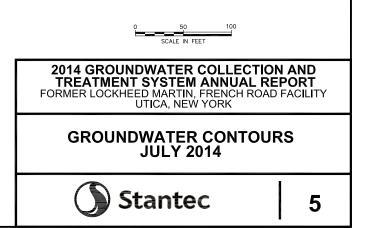

	₩−1 ◎ M₩−10 Φ PZ−9 ⊗	INJECTION WELL LOCATION MONITORING WELL LOCATION PIEZOMETER LOCATION
	No. of Concession, Name	QUARTERLY SAMPLING LOCATION
	·	SEMI-ANNUAL SAMPLING LOCATION
		ANNUAL SAMPLING LOCATION
	(501.52)	QUARTERLY GROUNDWATER ELEVATION POINT (AMSL)
500	\sim	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED)
-		GROUNDWATER COLLECTION TRENCH AND PIPING
	o	FENCE LINE
	мн-2 ● СВ-2 □	GROUNDWATER COLLECTION MANHOLE LOCATION MANHOLE WITH INLET GRATE LOCATION

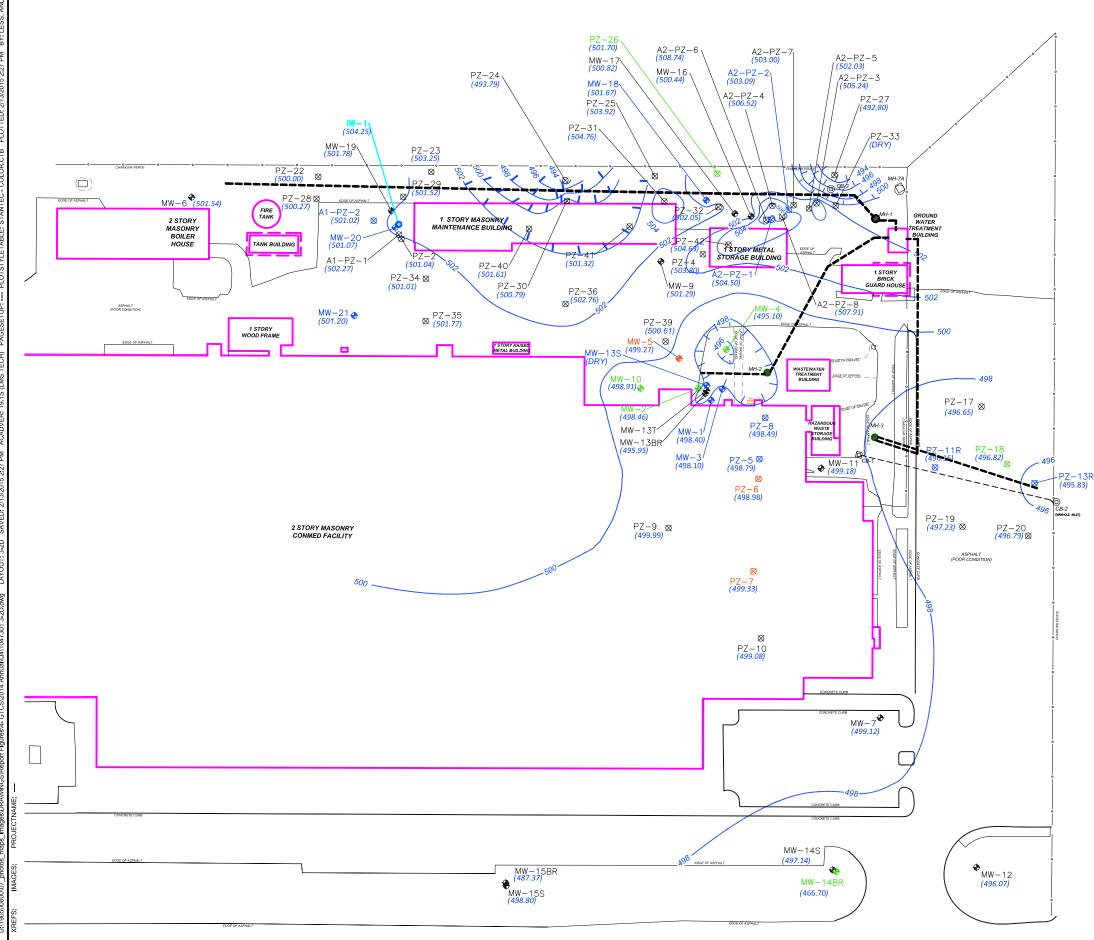
NOTES:

- BASE PLAN ADAPTED FROM DRAWING ENTITLED "2013 ANNUAL GROUNDWATER MONITORING REPORT, JANUARY 2013 GROUNDWATER CONTOURS" PREPARED BY ACRCADIS.
- THIS DRAWING IS REFERENCED HORIZONTALLY TO THE NORTH AMERICAN DATUM OF 1983 (NAD83) AND PROJECTED ON THE NEW YORK STATE PLAN COORDINATE SYSTEM (CENTRAL ZONE).
- 3. THE REFERENCED HORIZONTAL CONTROL STATION IS A GPS CONTINUOUSLY OPERATING REFERENCE STATION (CORS) DESIGNATED AS "ROME CORS ARP" (NYRM). NYRM IS A SPECIAL HORIZONTAL AND VERTICAL CONTROL STATION ESTABLISHED BY NATIONAL GEODETIC SURVEY IN JULY 1997.
- 4. CONTOURS DEVELOPED USING WATER LEVEL DATA FROM APRIL 1, 2014.
- 5. WELLS MW-6, PZ-29, PZ-42, AND A2-PZ-4 WERE NOT GAUGED. PZ-21 WAS GAUGED BUT WAS DRY.

⊗ <mark>PZ−21</mark> (**DRY)**

C.MOTTA PICI ĒĒ LD.J.BONS NZALEZ ñ


LEGEND:

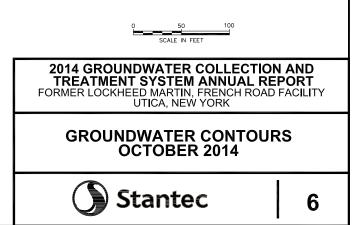

	₩−1 ◎ M₩−10 Φ PZ−9 ⊗	INJECTION WELL LOCATION MONITORING WELL LOCATION PIEZOMETER LOCATION
	No. of Concession, Name	QUARTERLY SAMPLING LOCATION
	· · · · · · · · · · · · · · · · · · ·	SEMI-ANNUAL SAMPLING LOCATION
		ANNUAL SAMPLING LOCATION
	(501.52)	QUARTERLY GROUNDWATER ELEVATION POINT (AMSL)
500	\sim	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED)
-		GROUNDWATER COLLECTION TRENCH AND PIPING
	o	FENCE LINE
	мн-2 О СВ-2 О	GROUNDWATER COLLECTION MANHOLE LOCATION MANHOLE WITH INLET GRATE LOCATION

NOTES:

- BASE PLAN ADAPTED FROM DRAWING ENTITLED "2013 ANNUAL GROUNDWATER MONITORING REPORT, JANUARY 2013 GROUNDWATER CONTOURS" PREPARED BY ACRCADIS.
- THIS DRAWING IS REFERENCED HORIZONTALLY TO THE NORTH AMERICAN DATUM OF 1983 (NAD83) AND PROJECTED ON THE NEW YORK STATE PLAN COORDINATE SYSTEM (CENTRAL ZONE).
- 3. THE REFERENCED HORIZONTAL CONTROL STATION IS A GPS CONTINUOUSLY OPERATING REFERENCE STATION (CORS) DESIGNATED AS "ROME CORS ARP" (NYRM). NYRM IS A SPECIAL HORIZONTAL AND VERTICAL CONTROL STATION ESTABLISHED BY NATIONAL GEODETIC SURVEY IN JULY 1997.
- 4. CONTOURS DEVELOPED USING WATER LEVEL DATA FROM JULY 8, 2014.
- 5. WELLS PZ-21and PZ-33 WERE GAUGED BUT WERE DRY.

⊗ <mark>PZ−21</mark> (**DRY)**

₹ PICH Ē LD.J.BONS NZALEZ ñ


LEGEND:

	₩−1 ◎ M₩−10 Φ PZ−9 ⊗	INJECTION WELL LOCATION MONITORING WELL LOCATION PIEZOMETER LOCATION
	No. of Concession, Name	QUARTERLY SAMPLING LOCATION
	·	SEMI-ANNUAL SAMPLING LOCATION
		ANNUAL SAMPLING LOCATION
	(501.52)	QUARTERLY GROUNDWATER ELEVATION POINT (AMSL)
500	\sim	GROUNDWATER ELEVATION CONTOUR (DASHED WHERE INFERRED)
-		GROUNDWATER COLLECTION TRENCH AND PIPING
	o	FENCE LINE
	мн-2 ● СВ-2 □	GROUNDWATER COLLECTION MANHOLE LOCATION MANHOLE WITH INLET GRATE LOCATION

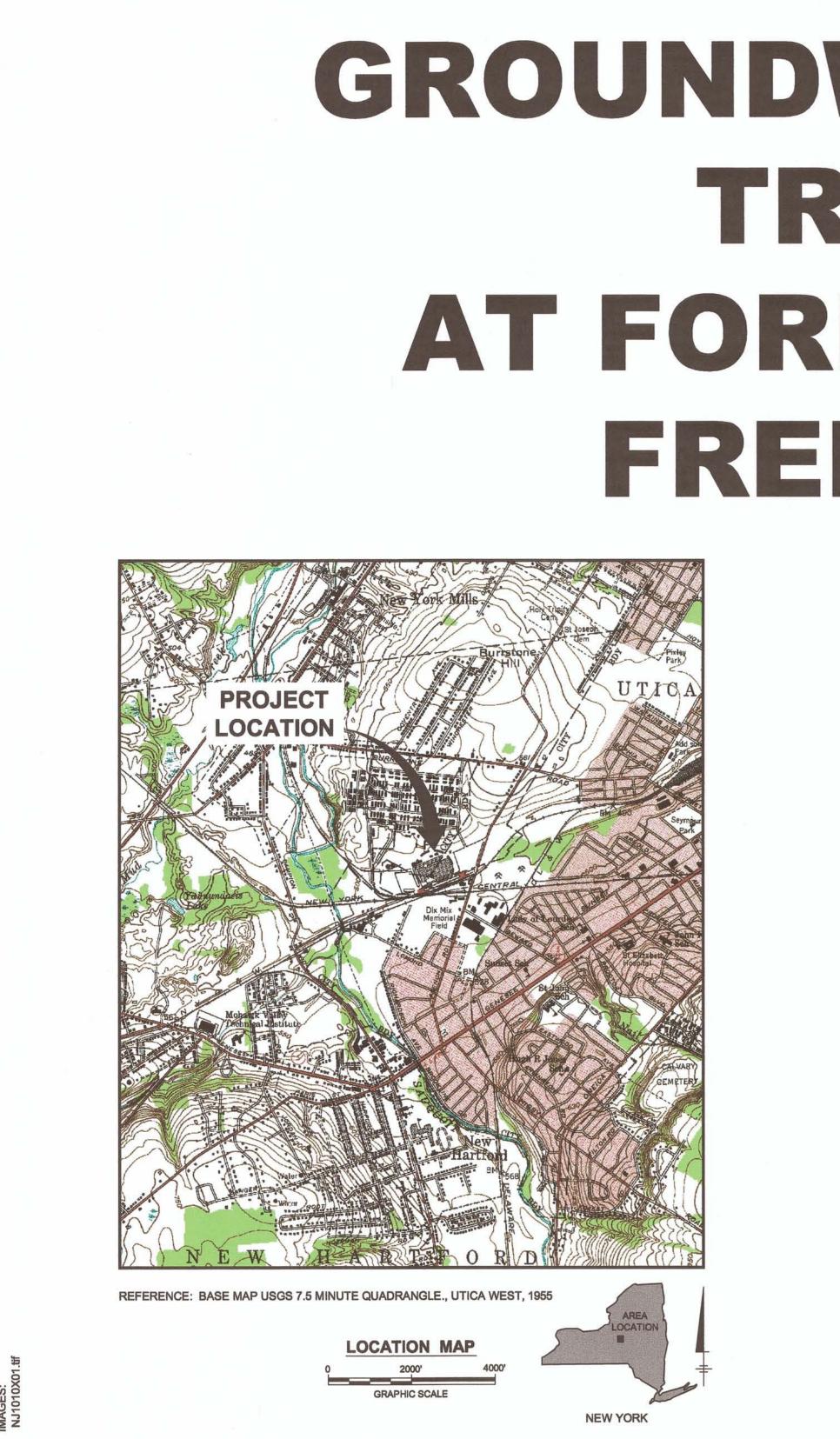
NOTES:

- BASE PLAN ADAPTED FROM DRAWING ENTITLED "2013 ANNUAL GROUNDWATER MONITORING REPORT, JANUARY 2013 GROUNDWATER CONTOURS" PREPARED BY ACRCADIS.
- THIS DRAWING IS REFERENCED HORIZONTALLY TO THE NORTH AMERICAN DATUM OF 1983 (NAD83) AND PROJECTED ON THE NEW YORK STATE PLAN COORDINATE SYSTEM (CENTRAL ZONE).
- 3. THE REFERENCED HORIZONTAL CONTROL STATION IS A GPS CONTINUOUSLY OPERATING REFERENCE STATION (CORS) DESIGNATED AS "ROME CORS ARP" (NYRM). NYRM IS A SPECIAL HORIZONTAL AND VERTICAL CONTROL STATION ESTABLISHED BY NATIONAL GEODETIC SURVEY IN JULY 1997.
- 4. CONTOURS DEVELOPED USING WATER LEVEL DATA FROM OCTOBER 7, 2014.
- 5. WELLS MW-13S, PZ-21 AND PZ-33 WERE GAUGED BUT WERE DRY.

⊗ ^{PZ−21} (DRY)

2014 Annual Groundwater Collection and Treatment System Operation, Maintenance, and Monitoring Report

APPENDICES



2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

Appendix A

Record Drawings

RECORD DRAWINGS GROUNDWATER COLLECTION AND TREATMENT SYSTEM AT FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY

DATE ISSUED **MARCH 2011**

LOCKHEED MARTIN CORPORATION **UTICA, NEW YORK**

ARCADIS OF NEW YORK, INC.

INDEX TO DRAWINGS

GENERA

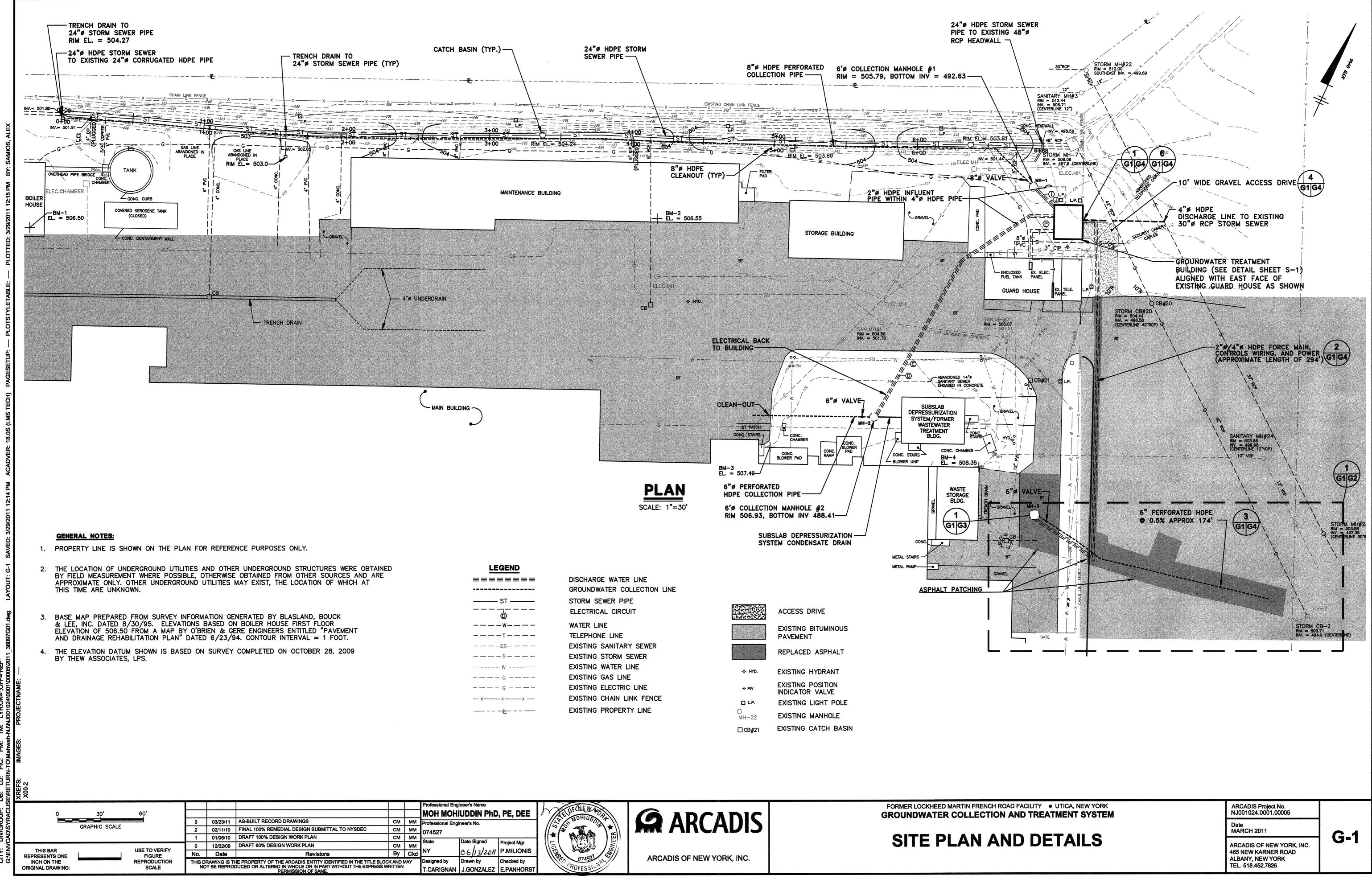
- G-1 SITE PLAN
- G-2 PLAN & PROFILE OF MH-3 AND GROUNDWATER COLLECTION TRENCH
- PUMPING MANHOLE DETAILS AND SPECIFICATIONS G-3
- PIPING AND TRENCHING DETAILS G-4
- GENERAL NOTES AND ABBREVIATIONS G-5
- G-6 LEGEND AND SYMBOLS

MECHANICAL

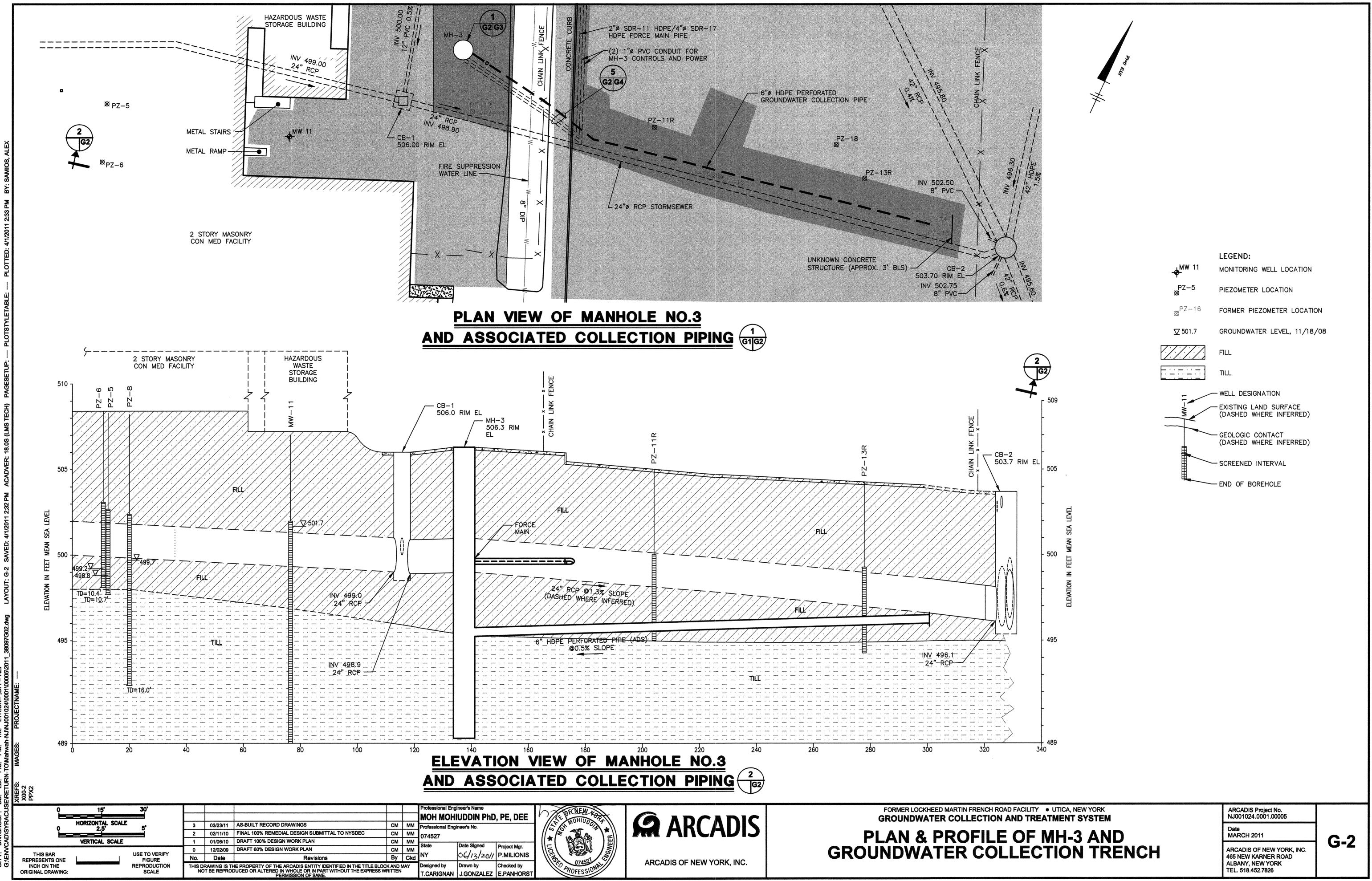
- PIPING AND INSTRUMENTATION DIAGRAM M-1
- FLOOR PLAN AND DETAILS M-2
- M-3 PROCESS FLOW DIAGRAM

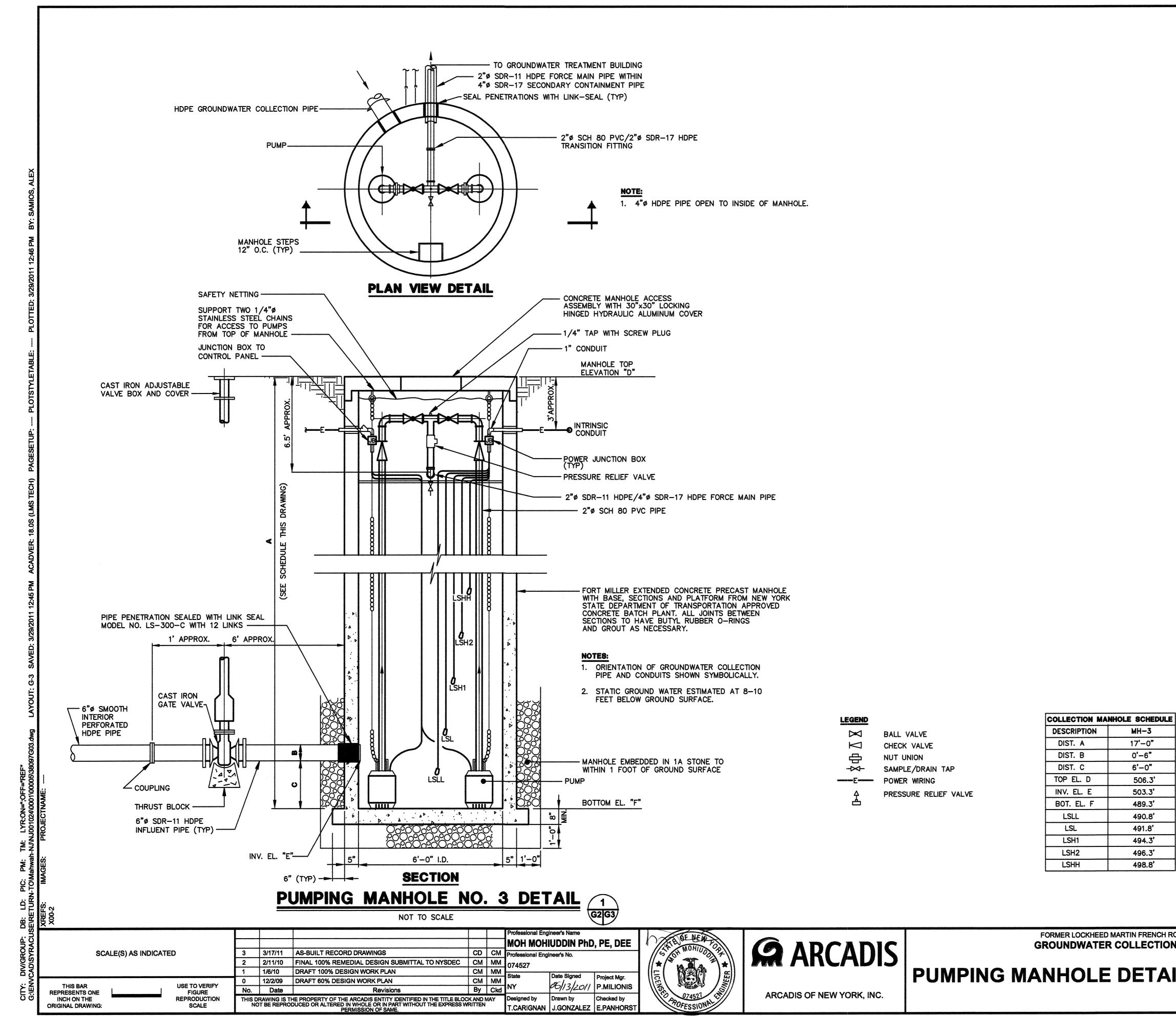
ELECTRICAL

- ELECTRICAL FLOOR PLANS E-1
- ONE LINE DIAGRAM, CONDUCTOR AND PANELBOARD E-2 SCHEDULES
- CONTROL LOGIC E-3

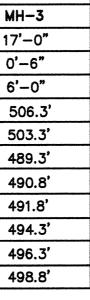

STRUCTURAL

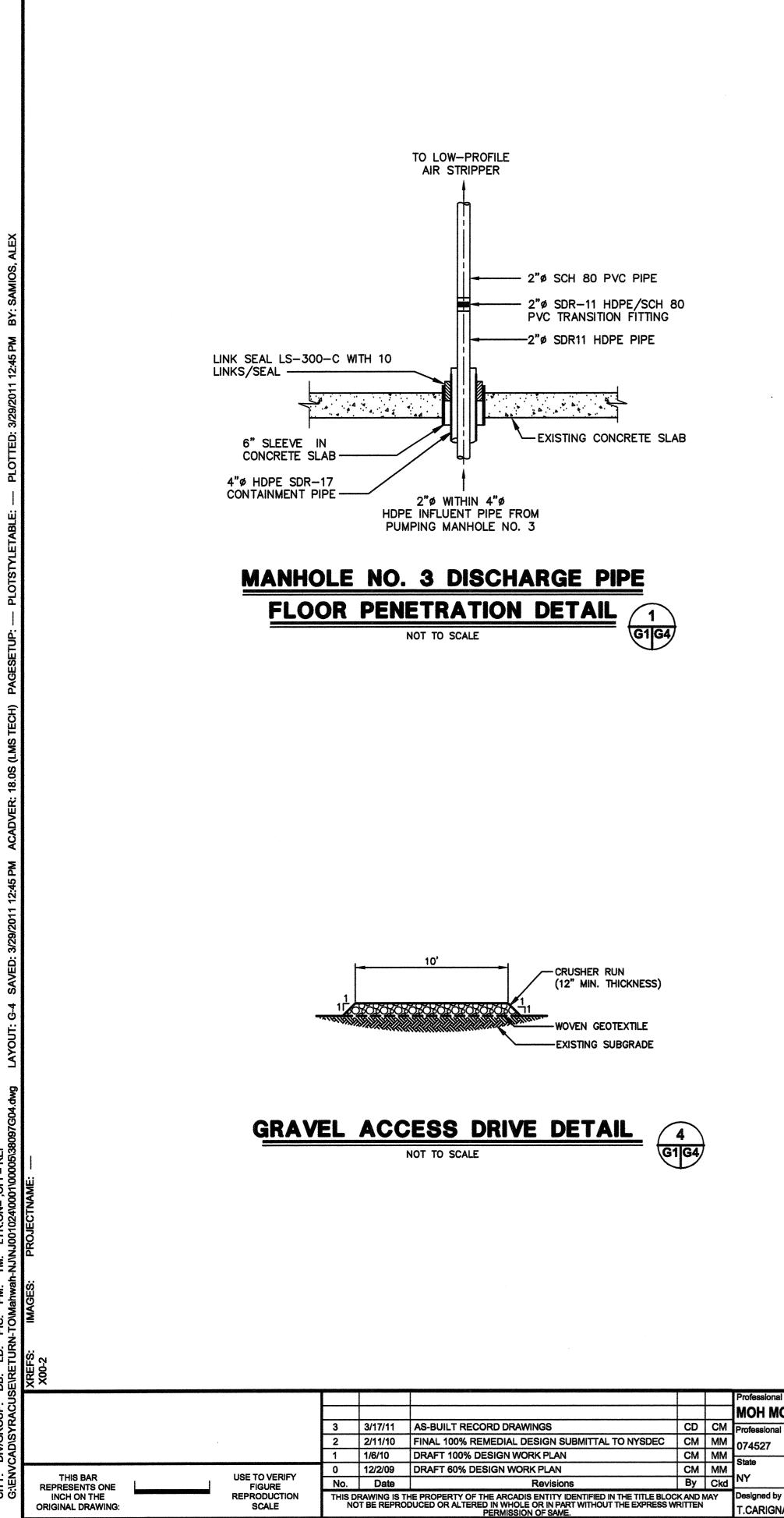
BUILDING ELEVATION SECTION AND DETAILS S-1

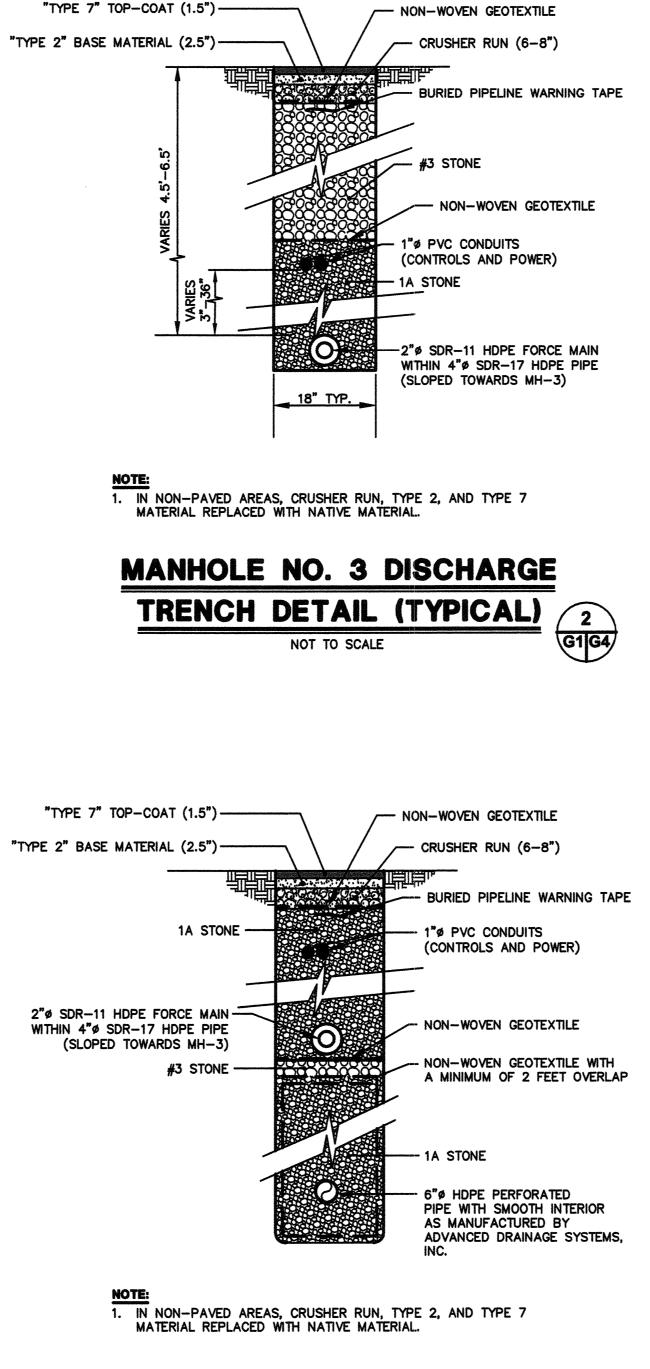

RECORD DRAWINGS


TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS CONSTRUCTED.

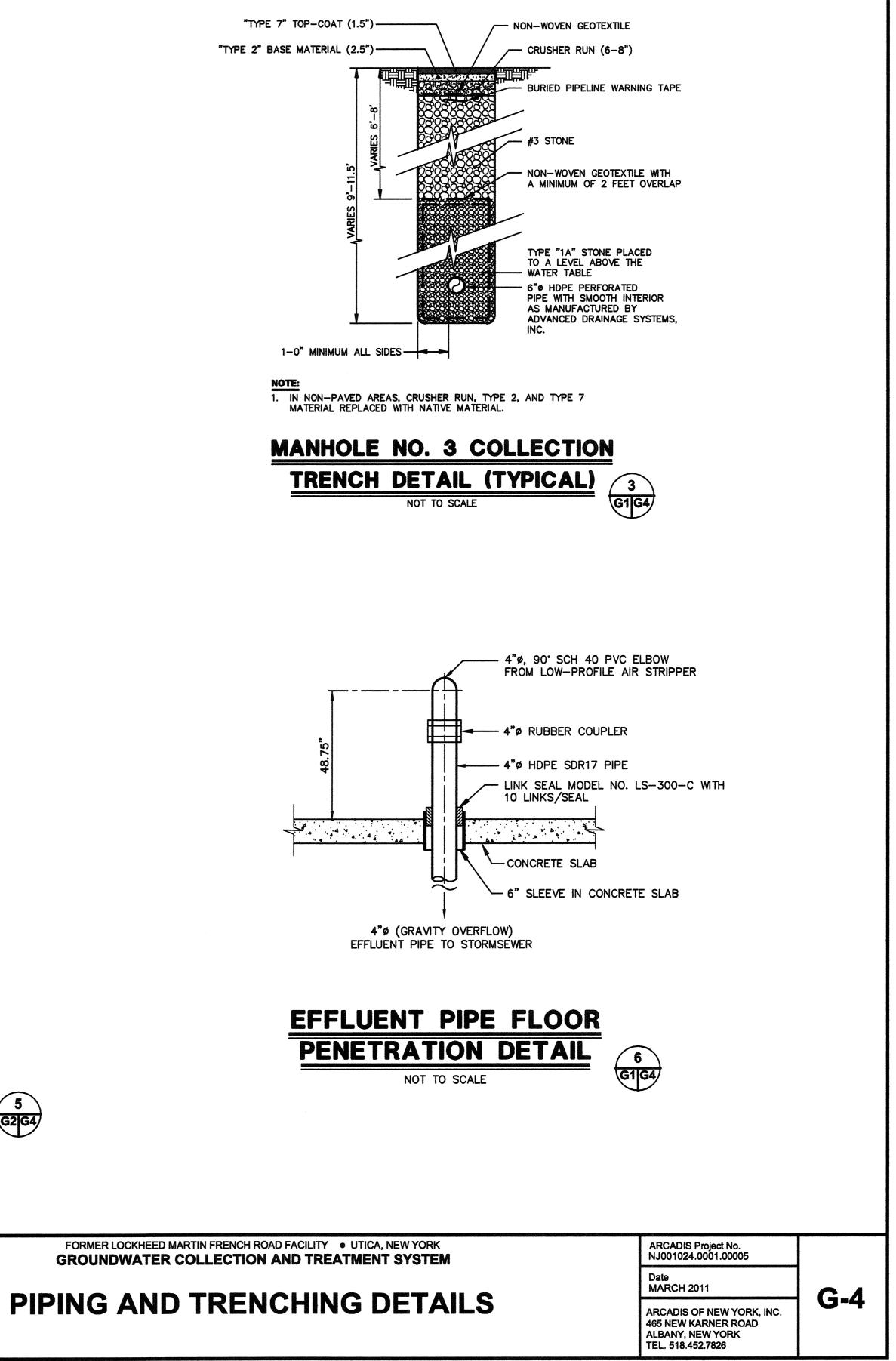
DATE: 06/13/201/ BY:

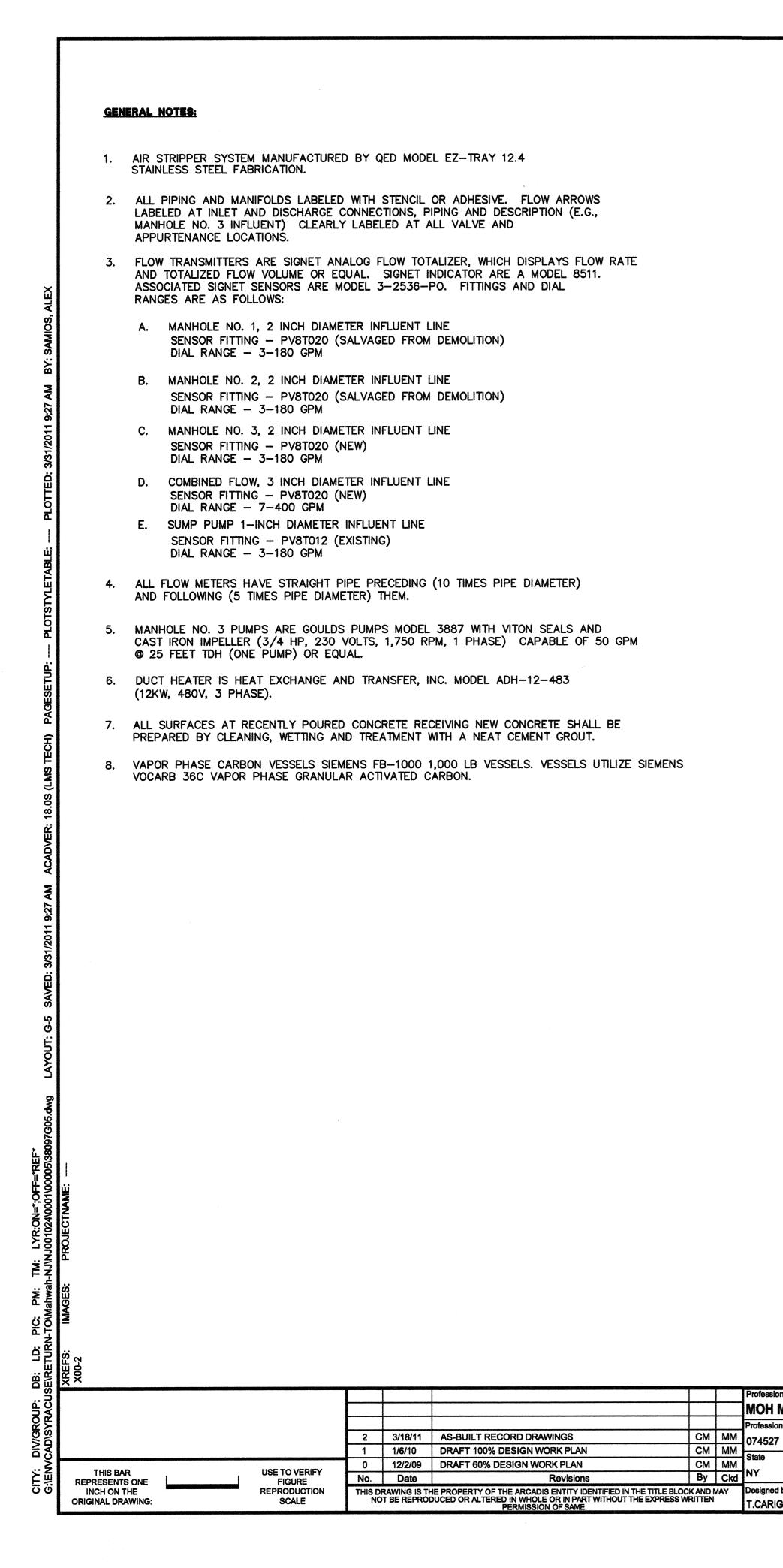



•	ineer's Name IUDDIN PhD	A TELOF	
onal Engi	neer's No.		155
7			
	Date Signed	Project Mgr.	
	06/13/20/1	P.MILIONIS	ICE .
d by	Drawn by	Checked by	1000
GNAN	J.GONZALEZ	E.PANHORST	PR



ENCH ROAD FACILITY • UTICA, NEW YORK CTION AND TREATMENT SYSTEM	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	G-3
TAILS AND SPECIFICATIONS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	6-5





essional Engineer's Name MOH MOHIUDDIN PhD, PE, DEE fessional Engineer's No. Date Signed Project Mgr. 06/13/2011 P.MILIONIS Drawn by Checked by T.CARIGNAN J.GONZALEZ E.PANHORS

ARCADIS OF NEW YORK, INC.

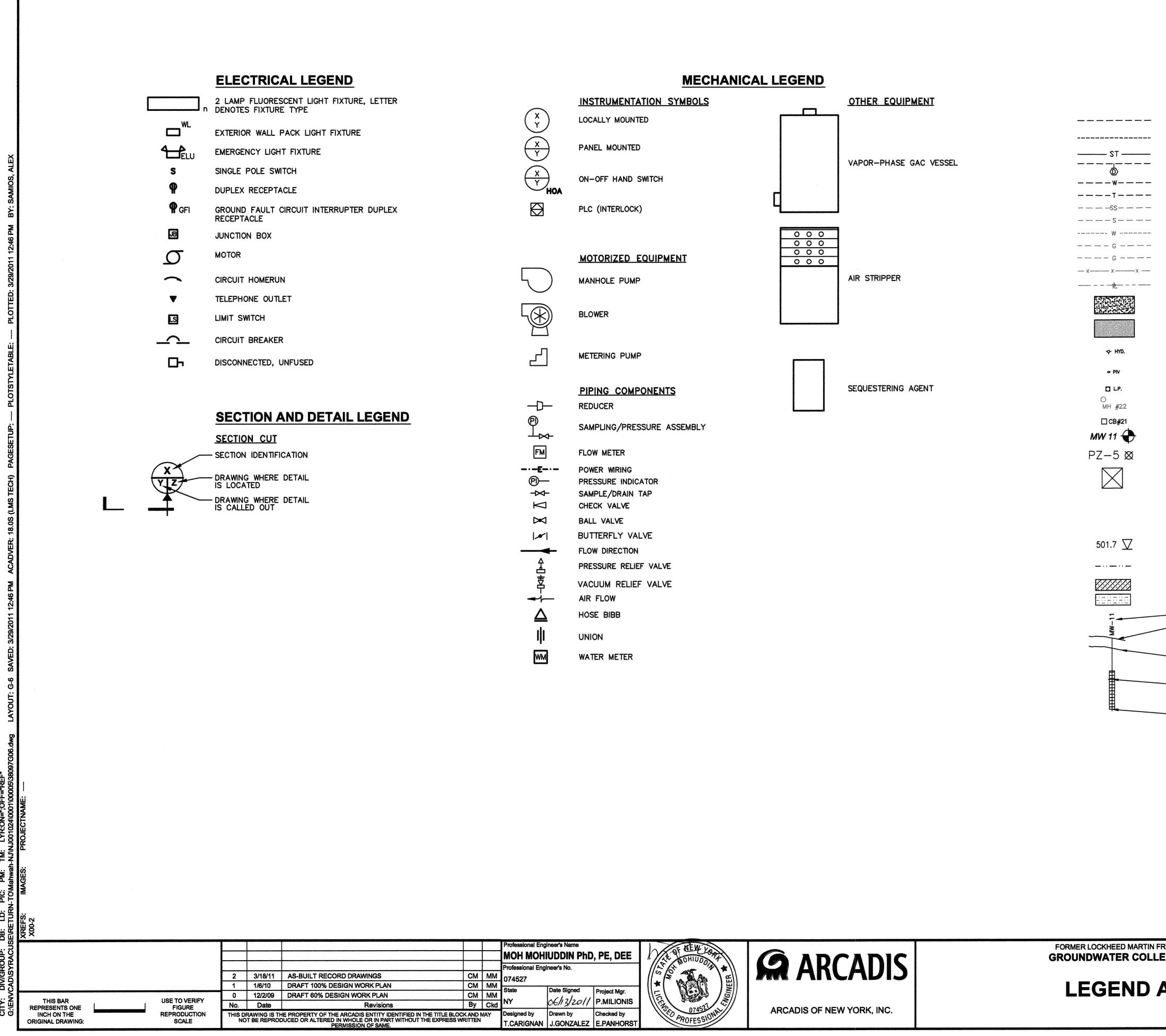
ABBREVIATIONS:

- A.F.F ABOVE FINISHED FLOOR
- BV BALL VALVE
- BFV BUTTERFLY VALVE
- CMP CHEMICAL METERING PUMP
- FS FLOW SENSOR
- FT FLOW TRANSMITTER
- HS HAND SWITCH
- LEVEL INDICATOR LI
- LSH LEVEL SENSOR HIGH
- LSL LEVEL SENSOR LOW
- LV LOUVER
- MIN. MINIMUM
- PRESSURE INDICATOR PI
- PT PRESSURE TRANSMITTER
- SP SAMPLE PORT
- TE TEMPERATURE ELEMENT
- TI TEMPERATURE INDICATOR
- TT TEMPERATURE TRANSMITTER
- UH UNIT HEATER

MOH	$r\gamma$		
nal Engi	neer's No.		
	Date Signed 06//3/201/	Project Mgr. P.MILIONIS	LICE
^{by} GNAN	Drawn by J.GONZALEZ	Checked by E.PANHORST	

fessional Engineer's Nam

esigned



ARCADIS OF NEW YORK, INC.

FORMER LOCKHEED MARTIN FR

GENERAL NOTES

RENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	G-5
AND ABBREVIATIONS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	9-9

H MOH	KYZE		
sional Engl			
527			
	Date Signed	Project Mgr.	IEI
	06/13/2011	P.MILIONIS	I E
ned by	Drawn by	Checked by	136
RIGNAN	J.GONZALEZ	E.PANHORST	

CIVIL LEGEND

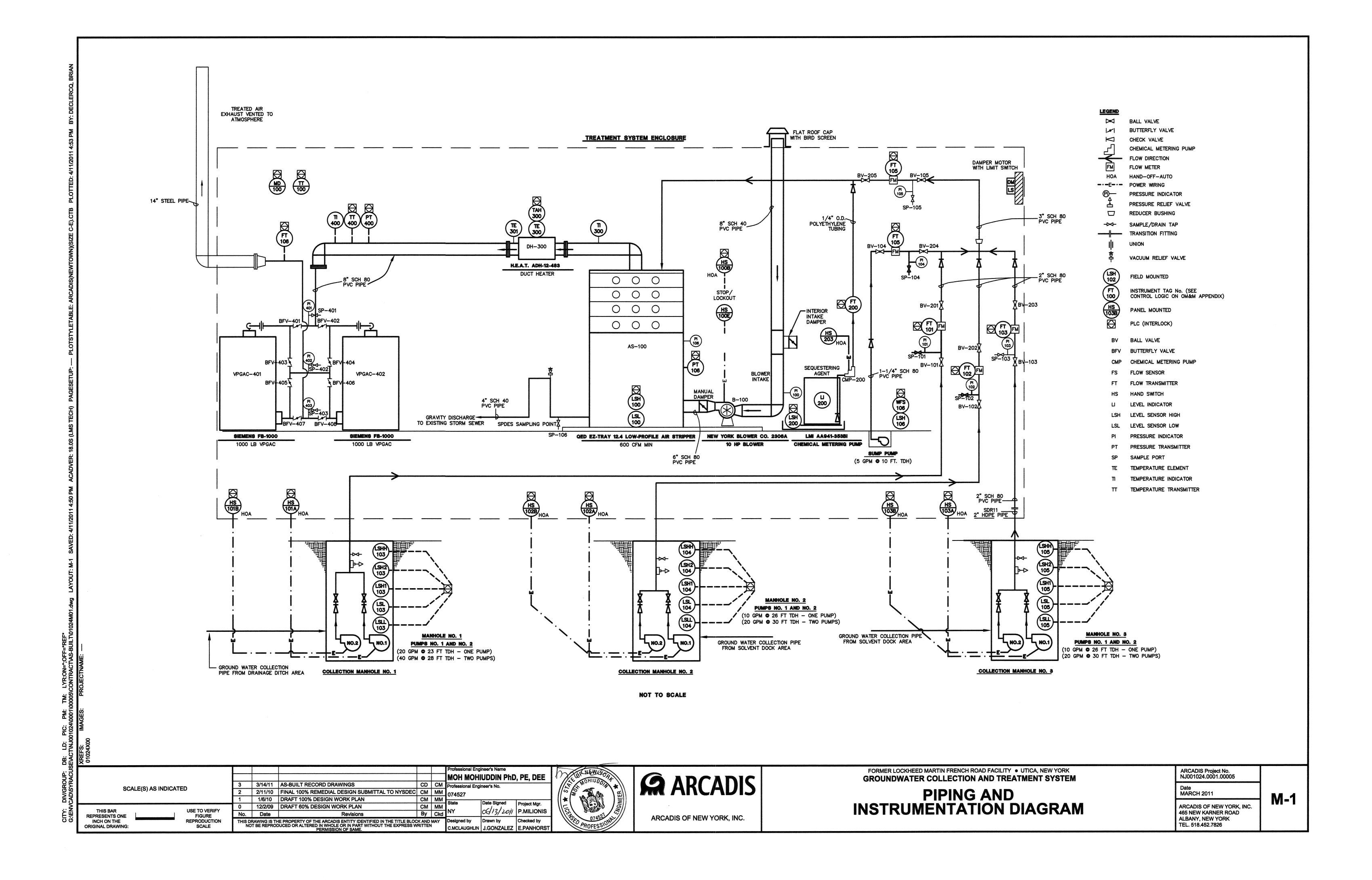
SITE PLAN LEGEND MANHOLE DISCHARGE WATER LINE GROUNDWATER COLLECTION LINE STORM SEWER PIPE ELECTRICAL CIRCUIT WATER LINE TELEPHONE LINE EXISTING SANITARY SEWER EXISTING STORM SEWER EXISTING WATER LINE EXISTING GAS LINE EXISTING ELECTRIC LINE EXISTING CHAIN LINK FENCE EXISTING PROPERTY LINE

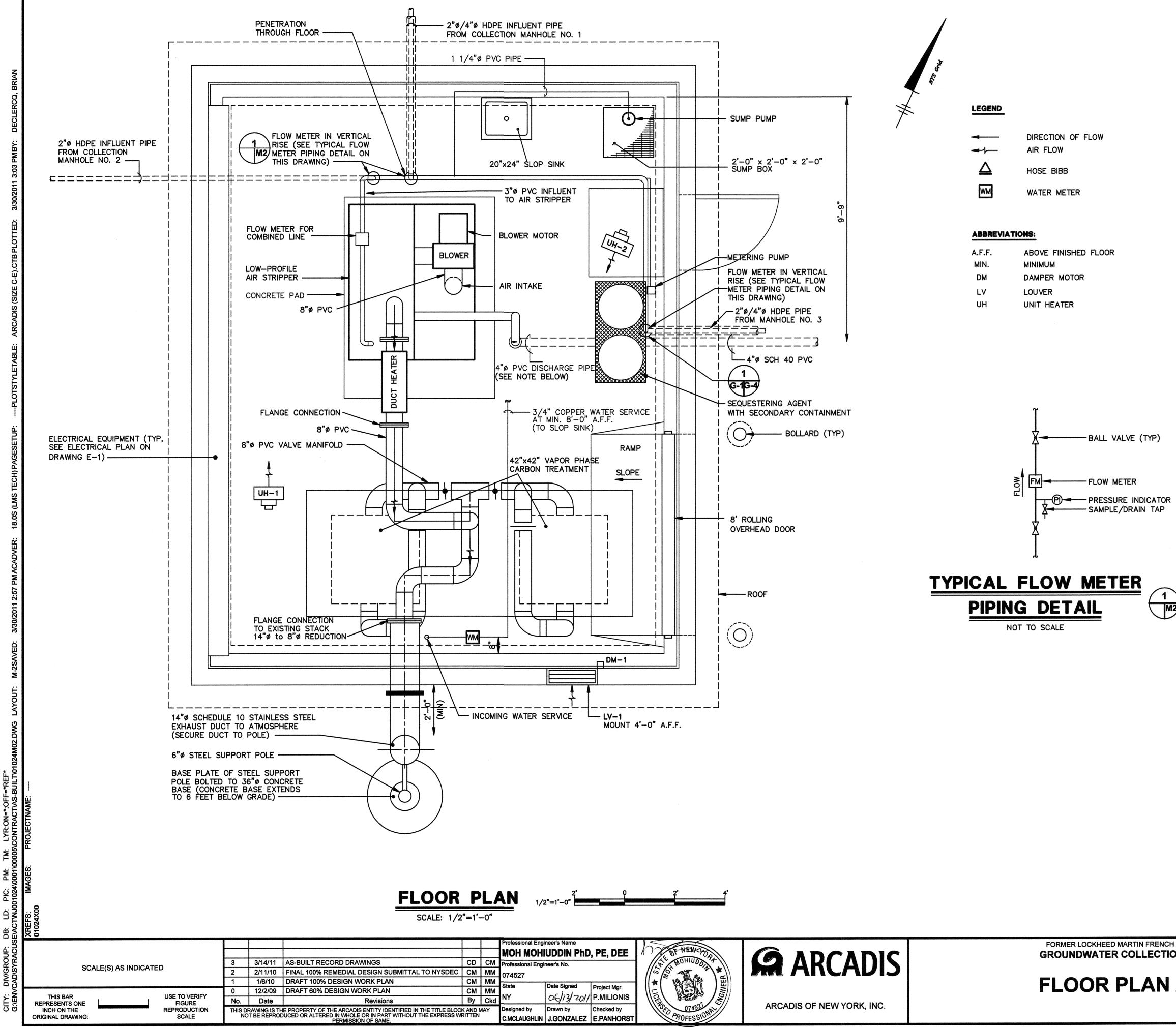
ACCESS DRIVE

EXISTING BITUMINOUS PAVEMENT EXISTING HYDRANT EXISTING POSITION INDICATOR VALVE EXISTING LIGHT POLE EXISTING MANHOLE EXISTING CATCH BASIN MONITORING WELL LOCATION

PIEZOMETER LOCATION

TEST PIT LOCATION

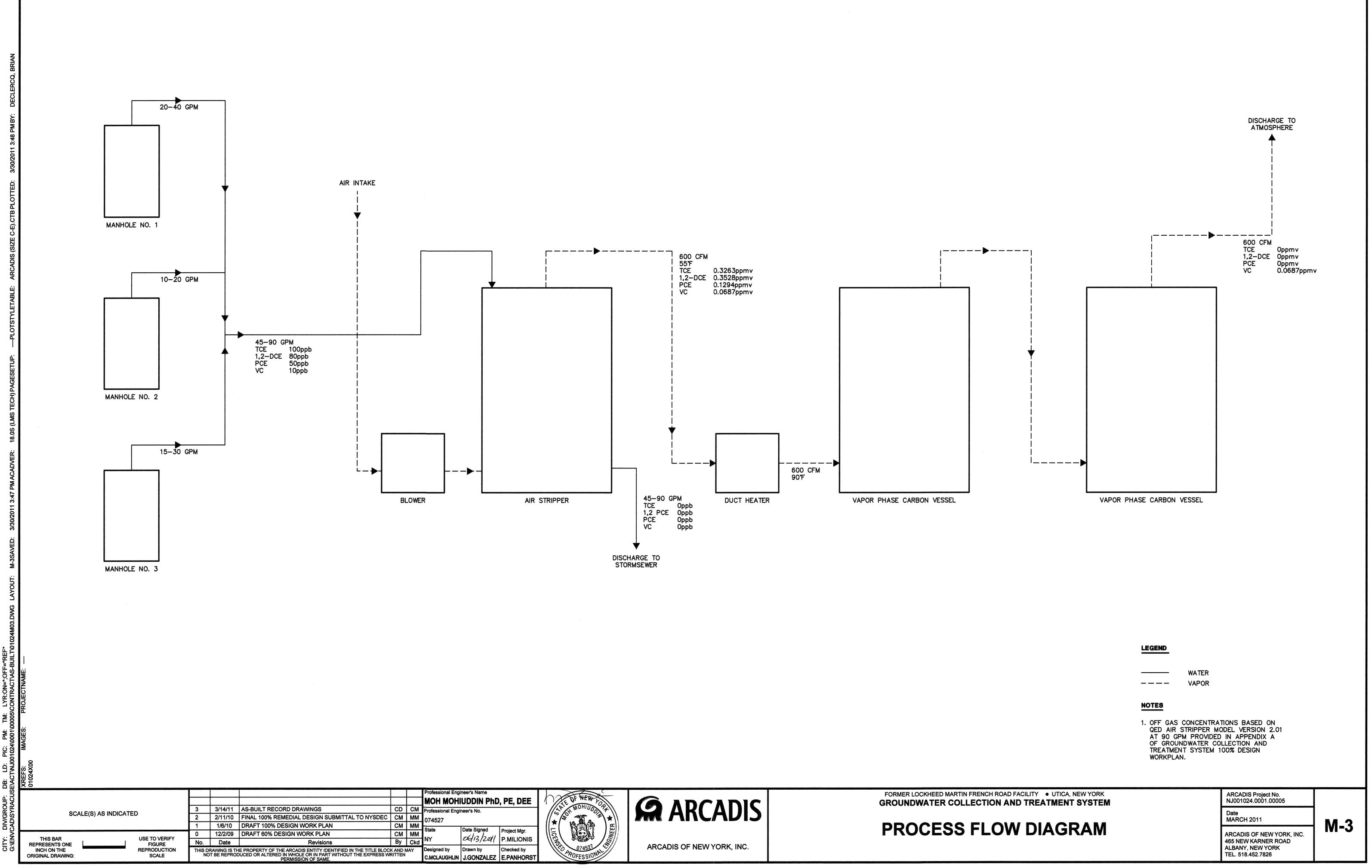

PROFILE LEGEND

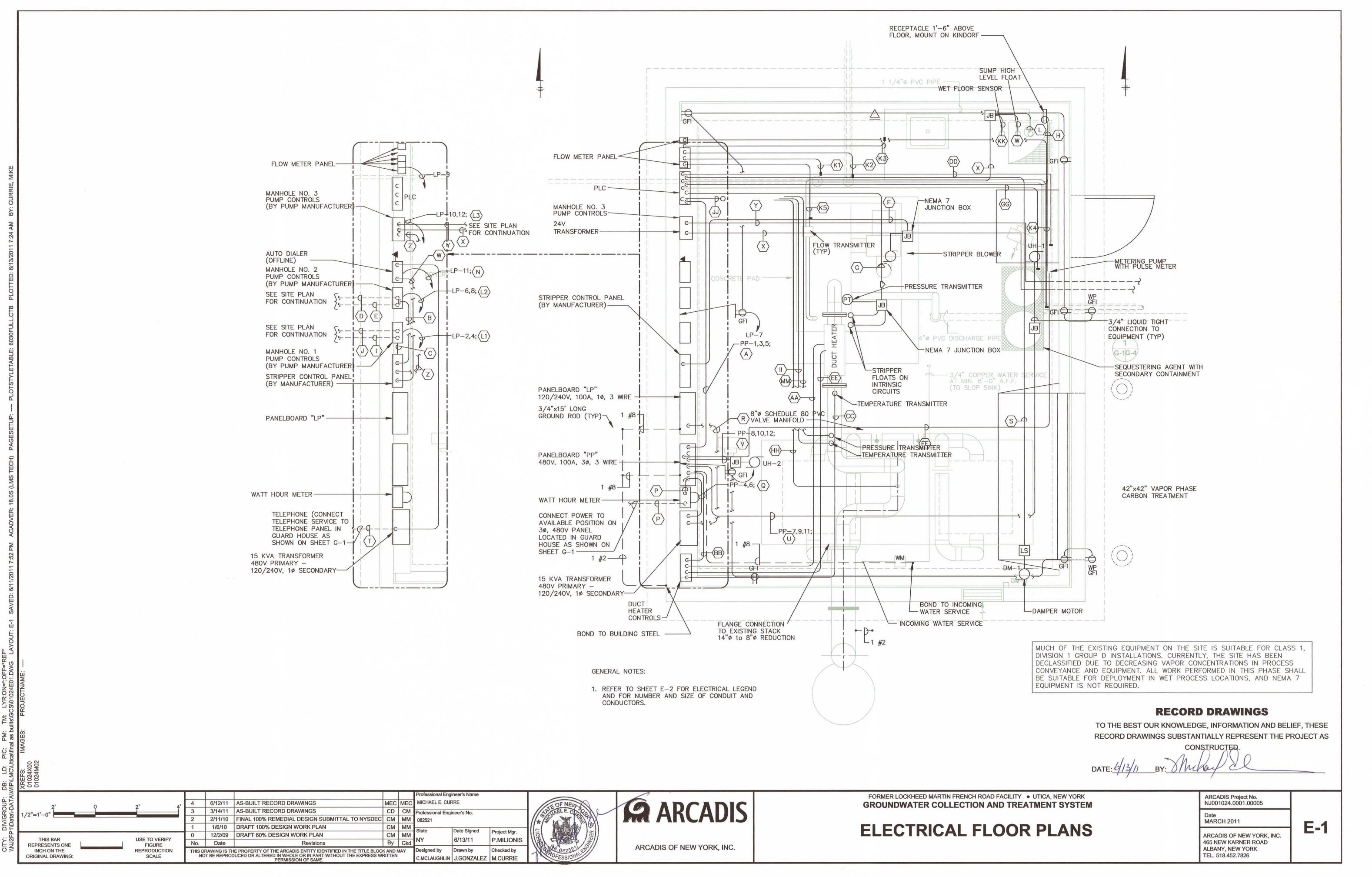

GROUNDWATER LEVEL, 11/18/08 OUTLINE OF TEST PIT PROFILE FILL TILL - WELL DESIGNATION -EXISTING LAND SURFACE (DASHED WHERE INFERRED)

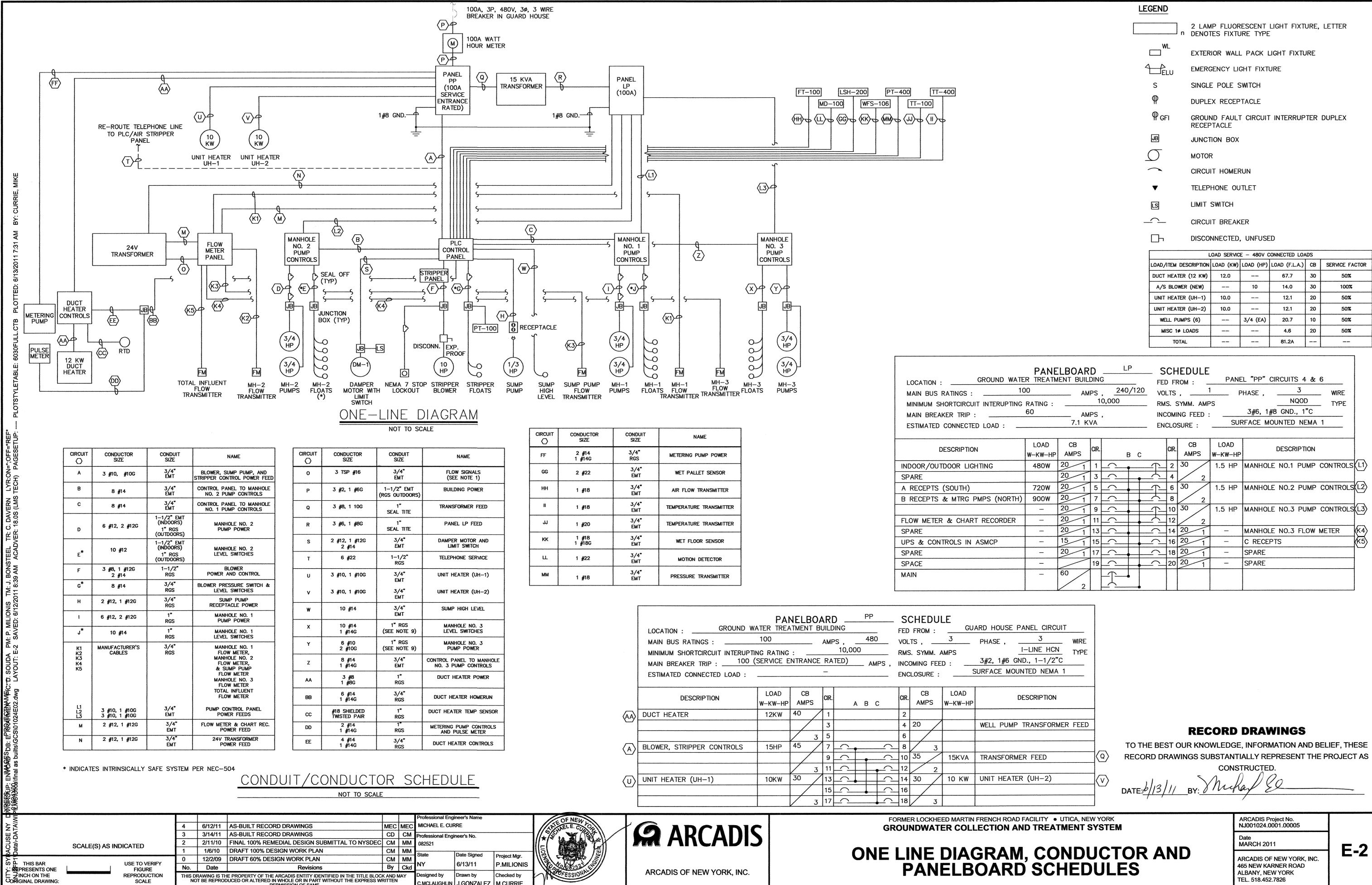
-GEOLOGIC CONTACT (DASHED WHERE INFERRED) -SCREENED INTERVAL

-----END OF BOREHOLE

RENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005		
	Date MARCH 2011	G-6	
AND SYMBOLS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	9-0	

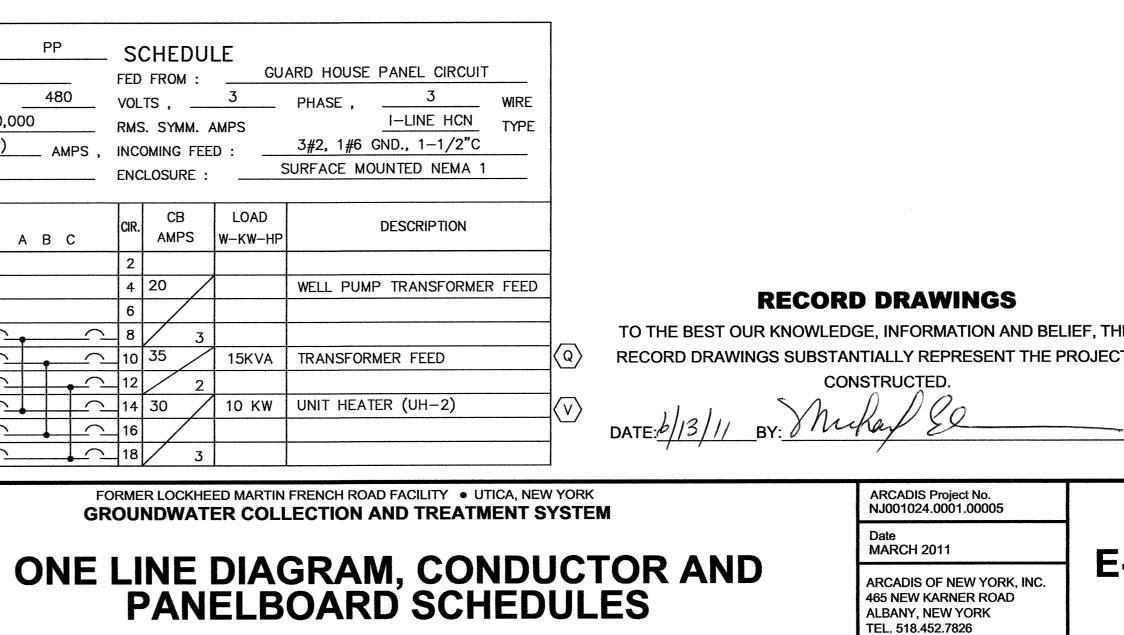





GENERAL NOTES:

1. REFER TO DRAWING G-5 FOR SPECIFICATIONS AND NOTES.

N FRENCH ROAD FACILITY • UTICA, NEW YORK	ARCADIS Project No. NJ001024.0001.00005	
	Date MARCH 2011	M-2
AN AND DETAILS	ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826	IVI-Z



		1	1/6/10	DRAFT 100% DESIGN WORK PLAN	Ľ	
		0	12/2/09	DRAFT 60% DESIGN WORK PLAN		
HIS BAR ESENTS ONE		USE TO VERIFY FIGURE	No.	Date	Revisions	
H ON THE IAL DRAWING:	REPRODUCTION SCALE	THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WE PERMISSION OF SAME.				

AND MAY

Designed by ITTEN C.MCLAUGHLIN J.GONZALEZ M.CURRIE

LEGEND	
n	2 LAMP FLUORESCENT LIGHT FIXTURE, LETTER DENOTES FIXTURE TYPE
WL	EXTERIOR WALL PACK LIGHT FIXTURE
	EMERGENCY LIGHT FIXTURE
S	SINGLE POLE SWITCH
φ	DUPLEX RECEPTACLE
∯ GFI	GROUND FAULT CIRCUIT INTERRUPTER DUPLEX RECEPTACLE
JB	JUNCTION BOX
\mathcal{O}	MOTOR
	CIRCUIT HOMERUN
▼	TELEPHONE OUTLET
LS	LIMIT SWITCH
	CIRCUIT BREAKER
	DISCONNECTED, UNFUSED

LOAD SERVICE - 480V CONNECTED LOADS							
LOAD/ITEM DESCRIPTION	LOAD (KW)	LOAD (HP)	LOAD (F.L.A.)	CB	SERVICE FACTOR		
DUCT HEATER (12 KW)	12.0		67.7	30	50%		
A/S BLOWER (NEW)		10	14.0	30	100%		
UNIT HEATER (UH-1)	10.0		12.1	20	50%		
UNIT HEATER (UH-2)	10.0		12.1	20	50%		
WELL PUMPS (6)		3/4 (EA)	20.7	10	50%		
MISC 10 LOADS			4.6	20	50%		
TOTAL			81.2A				

	LBOAR			Р	— S	CH	IEDULE	PANE	L "PP" CI	RCUITS 4 &	6
TING :	AM AM		0,000	/120	_ VO	LTS S. S		1 P >S	HASE ,	3 NQOD GND., 1"C	Wire Type
	7.1 K		3		- EN	CLO	SURE :	SUF	RFACE MOL	JNTED NEMA	X 1
LOAD -KW-HP	CB AMPS	CIR.	E	з с		CIR.	CB AMPS	LOAD W-KW-HP		DESCRIPTION	
480W	20 1	1				2	30	1.5 HP	MANHOLE	NO.1 PUMP	CONTROLS
720W	20 1	5	\leq			6	2 30	1.5 HP	MANHOLE	NO.2 PUMP	' CONTROLS
900W -	20 1 20 1	7 9				8 10	2 30	1.5 HP	MANHOLE	NO.3 PUMP	' CONTROLS
-	20 1 20 1	11 13				12 14	<u> </u>		MANHOLE	NO.3 FLOW	METER
-	15 1 20 1	15 17				1	20 1 20 1	_	C RECEPT	ſS	
_		19				1	20 1	-	SPARE		

LOGIC FOR MANHOLE NO. 1

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103)

4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND

NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN OFF POSITION

3. MANHOLE NO. 1 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-103) 4. MANHOLE NO. 1 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-103)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

2. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-103) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC

3. PUMP NO. 2 HOA SWITCH (HS-101B) IS IN HAND POSITION

LOGIC FOR AIR STRIPPER BLOWER (B-100)

BLOWER SHALL OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN HAND POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 1 HOA SWITCH (HS-101A) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 1 PUMP NO. 2 HOA SWITCH (HS-101B) IS IN AUTO POSITION AND MANHOLE NO. 1 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 4. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES 5. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 2 PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 6. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 PUMP NO. 1 HAS BEEN RUNNING WITHIN LAST TEN MINUTES] 7. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND [MANHOLE NO. 3 PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE

BLOWER SHALL NOT OPERATE IF:

1. BLOWER HOA SWITCH (HS-100) IS IN OFF POSITION

2. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND FATAL ALARMS (SHOWN ON THIS DRAWING) HAVE BEEN INDICATED AT PLC FOR GREATER THAN TEN MINUTES

NO. 3 PUMP NO. 2 HAS BEEN RUNNING WITHIN LAST TEN MINUTES]

3. BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND NONE OF THE STATEMENTS LISTED ABOVE ARE TRUE

							Professional Engi	neer's Name	
			6/12/11	AS-BUILT RECORD DRAWINGS	MEC	MEC	MICHAEL E. CUF	RRE	
		3	3/14/11	AS-BUILT RECORD DRAWINGS	CD	CM	Professional Engi		
	SCALE(S) AS INDICATED		2/11/10	FINAL 100% REMEDIAL DESIGN SUBMITTAL TO NYSDEC	СМ	MM	082521		
			1/6/10	DRAFT 100% DESIGN WORK PLAN	СМ	MM	State	<u> </u>	
			12/2/09	DRAFT 60% DESIGN WORK PLAN	CM	MM			Project Mgr.
	THIS BAR USE TO VERIFY REPRESENTS ONE FIGURE	No.	Date	Revisions	By	Ckd	NY	6/13/11	P.MILION
	INCH ON THE REPRODUCTION		THIS DRAWING IS THE PROPERTY OF THE ARCADIS ENTITY IDENTIFIED IN THE TITLE BLOCK AND MAY				Designed by	Drawn by	Checked by
	ORIGINAL DRAWING: SCALE	NO	NOT BE REPRODUCED OR ALTERED IN WHOLE OR IN PART WITHOUT THE EXPRESS WRITTEN PERMISSION OF SAME.				C.MCLAUGHLIN	J.GONZALEZ	M.CURRIE

LOGIC FOR MANHOLE NO. 2

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-102A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN OFF POSITION 3. MANHOLE NO. 2 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-104) 4. MANHOLE NO. 2 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-104)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN AUTO POSITION AND MANHOLE NO. 2 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-104) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-102B) IS IN HAND POSITION

LOGIC FOR DUCT HEATER (DH-300)

DUCT HEATER SHALL OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS RUNNING

DUCT HEATER SHALL NOT OPERATE IF:

1. DUCT HEATER HEAT ON/OFF SWITCH IS IN OFF POSITION 2. DUCT HEATER HEAT ON/OFF SWITCH IS IN ON POSITION AND BLOWER HOA SWITCH (HS-100) IS IN AUTO POSITION AND BLOWER (B-100) IS NOT RUNNING

LOGIC FOR CHEMICAL METERING PUMP (CMP-200)

CHEMICAL METERING PUMP SHALL OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS REGISTERING AN INSTANTANEOUS FLOWRATE

CHEMICAL METERING PUMP SHALL NOT OPERATE IF:

1. AGGREGATE FLOW TRANSMITTER (FT-105) IS NOT REGISTERING AN INSTANTANEOUS FLOWRATE

LOGIC FOR MANHOLE NO. 3

PUMP NO. 1 SHALL NOT OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 1 SHALL OPERATE IF:

1. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 1 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 1 HOA SWITCH (HS-103A) IS IN HAND POSITION

PUMP NO. 2 SHALL NOT OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION, AND FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN OFF POSITION 3. MANHOLE NO. 3 LEVEL IS BELOW LOW LEVEL FLOAT (LSL-105) 4. MANHOLE NO. 3 LEVEL IS BELOW LOW-LOW LEVEL FLOAT (LSLL-105)

PUMP NO. 2 SHALL OPERATE IF:

1. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-1 LEVEL FLOAT (LSH1-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LEAD PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 2. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN AUTO POSITION AND MANHOLE NO. 3 LEVEL IS ABOVE HIGH-2 LEVEL FLOAT (LSH2-105) AND PUMP NO. 2 IS DESIGNATED BY PLC AS LAG PUMP AND NO FATAL ALARMS (SHOWN BELOW) ARE INDICATED AT PLC 3. PUMP NO. 2 HOA SWITCH (HS-103B) IS IN HAND POSITION

FATAL ALARMS:

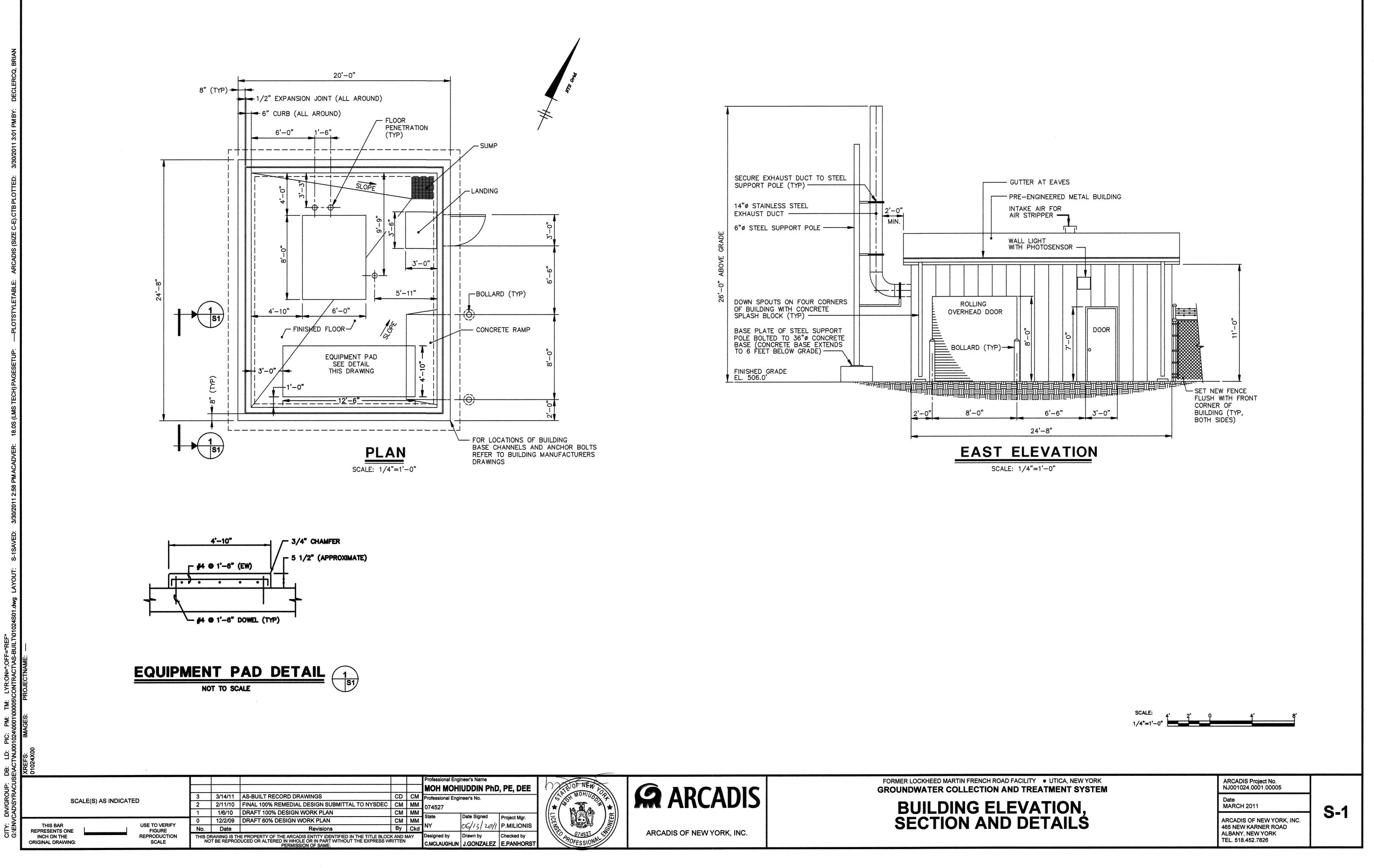
1. HIGH AIR STRIPPER SUMP PRESSURE (PT-106)

- 2. LOW AIR STRIPPER SUMP PRESSURE (PT-106) 3. HIGH AIR STRIPPER SUMP LEVEL (LSH-100)
- 4. LOW AIR STRIPPER SUMP LEVEL (LSL-100)
- 5. HIGH AIR FLOWRATE (FT-106)
- 6. LOW AIR FLOWRATE (FT-106)
- 7. PRE-CARBON HIGH TEMPERATURE (TT-400) 8. PRE-CARBON LOW TEMPERATURE (TT-400)
- 9. PRE-CARBON HIGH PRESSURE (PT-400)
- 10. PRE-CARBON LOW PRESSURE (PT-400)
- 11. BUILDING WET FLOOR SENSOR ALARM (WFS-106)

ARCADIS Project Mgr. **P.MILIONIS** Checked by

ARCADIS OF NEW YORK, INC.

GROUNDWATER COLLECTION AND TREATMENT SYSTEM


NOTES:

- 1. CONTROLS WERE MODIFIED FROM AN ELECTRICAL CIRCUIT RELAY. BASED CONTROL SYSTEM TO A MICROPROCESSOR BASED (PROGRAMMABLE LOGIC CONTROLLER) CONTROLS BY AZTECH TECHNOLOGIÉS, INC, IN DECEMBER 2007.
- 2. MODIFIED CONTROL DETAILS AND LINE DRAWINGS/SCHEMATIC ARE PROVIDED IN THE APPENDIX OF OM&M MANUAL.
- 3. PLC PROGRAMMING WILL BE PERFORMED BY ARCADIS.

RECORD DRAWINGS

TO THE BEST OUR KNOWLEDGE, INFORMATION AND BELIEF, THESE RECORD DRAWINGS SUBSTANTIALLY REPRESENT THE PROJECT AS

FORMER LOCKHEED MARTIN FRENCH ROAD FACILITY • UTICA, NEW YORK ARCADIS Project No. NJ001024.0001.00005 **MARCH 2011 E-3** ARCADIS OF NEW YORK, INC. 465 NEW KARNER ROAD ALBANY, NEW YORK TEL. 518.452.7826

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

> Appendix B Monthly/**Quarterly** O&M Checklists

Updated Blank O&M Checklist Forms

Date:_____ Time:_____ Technician:

SYSTEM STATUS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	
System currently cycling?	
Alarms? (list)	

Electrical Meter Reading (kWh):

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]		(in. W.C.)
Air stripper sump water elevation (record from site gauge)		(inches)
Blower intake line vacuum [PI-100]		(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)		(inches)
Interior dilution damper position (0° is shut, 90° is open)		(°) (inches)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time					
Instantaneous Flowrate [gpm]					
"Total" Flow (resettable, gal)					
"Perm" Flow (gal)					
Pump 1 Running (Y/N)?					NA
Pump 2 Running (Y/N)?				NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	(located on duct heater control panel door,
Is duct heater "HI TEMP" alarm light on? (Y/N)	(located on duct heater control panel door)

Date:_____ Time:_____ Technician:

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300		(°F)	
Pre-Carbon Temperature	TI-400		(°F)	
Duct Heater Temperature Setpoint	-		(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-		(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401		(in. W.C.)	
Mid-Carbon Pressure	PI-402		(in. W.C.)	
Effluent Pressure	PI-403		(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106		(in. W.C.)	
Vapor Flowrate	FT-106		(cfm)	
Pre-Carbon Temperature	TT-400		(°F)	
Pre-Carbon Pressure	PT-400		(in. W.C.)	
Building Temperature	TT-100		(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)		
Is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)		
If in external mode, record one set of mA	(mA)	(display screen should automatically be switching back and
and stroke speed values	(spm)	forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	(gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums		

Inspect sequestering agent components for _____

fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Time:
pH of effluent sample	
Model of pH meter	
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: MH-3:

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date:_____ Time:_____ Technician:_____

MONTHLY OM&M TASKS (continued)

Task		Notes	
Liquid flow sensors cleaned? (Y/N) (only as needed)			
	MH-1	MH-2	MH-3
Monthly manhole inspections conducted? (Y/N)			
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)			
Do level floats appear to be in good condition and hanging freely? (Y/N)			
Observe groundwater inside each manhole and note odor and appearance			
Is confined space entry signage present at each manhole? (Y/N)			
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks			
With pump(s) running, listen for any unusual sounds			
Inspect condition of collection line gate valve protection flush-mount covers for each manhole			
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations			
List any notable observations			
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)			

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection	
tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them?	
(Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP: Date:
	OMM: Date:
Is emergency spill kit available? (Y/N)	
Is H&S signage including emergency contact list, eye protection hearing	
protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Date:

Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) MH-1 influent pH Date: Time: MH-2 influent pH Date: Time: MH-3 influent pH Date: Time: Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Are MH-2 or MH-3 online in auto during sampling collection? Treatment system valves exercised? Sample Location PID Tag Vapor Sample collects? event in sample? (Y/N) Canister # Vacuum at Sam Finish (in. Hg) Pre-Carbon Image: (Y/N) Image: (Y/N) Image: (Y/N) Image: (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Image: (Y/N) Indicate air velocity measurement collected form 8" effluent pipe (plug located on wall collected? (Y/N) Image: (Y/N) Image: (Y/N) Blower bearings greased? (Y/N) Image: (Y/N) Image: (Y/N) Image: (Y/N) Indicate air velocity measurement collected form 8" effluent pipe (plug located on wall collected? (Y/N) Image: (Y/N) Image: (Y/N) Indicate air velocity measurement collected form 8" effluent pipe (plug located on wall co
MH-2 influent pH Date: Time: MH-3 influent pH Date: Time: Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Are MH-2 or MH-3 online in auto during sampling collection? Treatment system valves exercised? Sample Location PID Tag Vapor Condensate collects? resent in (Y/N) Sample? (Y/N) Pre-Carbon Canister Mid-Carbon Callecter Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for B° effluent pipe (plug located on wall collecter? (Y/N) Blower bearings greased? (Y/N) Canister velocity measurement collected from 8° effluent pipe, 1 fpm = 0.317 cfm QUARTERLY CRITICAL DEVICE / ALARM TESTING
MH-3 influent pH Date: Time: Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Are MH-2 or MH-3 online in auto during sampling collection? Treatment system valves exercised? Sample Location PID Tag Vapor Condensate present in sample? (Y/N) Canister Vacuum at Sam Mid-Carbon Image: Collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for 06
Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Are MH-2 or MH-3 online in auto during sampling collection? Treatment system valves exercised? Sample Location PID Tag Vapor Sample? (Y/N) Condensate present in sample? (Y/N) Canister (Y/N) Canister # Vacuum at Sample? (Y/N) Canister # Vacuum at Mid-Carbon Image: Collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected for M8" effluent pipe, 1 fpm = 0.317 cfm) cduarterLy CRITICAL DEVICE / ALARM TESTING
(MH-1 typically batches every 1.5 hours). Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) Are MH-2 or MH-3 online in auto during sampling collection? Treatment system valves exercised? Sample Location PID Tag Vapor Condensate present in sample? (Y/N) collects? Canister # Vacuum at Vacuum at Vacuum at Sample? (Y/N) Canister # Pre-Carbon Image: Collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected for 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING
Sample Location PID Tag Sample collects? (Y/N) Condensate present in sample? (Y/N) Canister # Canister Vacuum at Start (in. Hg) Vacuum at Finish (in. Hg) Sam Tin Hg) Pre-Carbon
Mid-Carbon Image: Mid-Carbon Image: Mid-Carbon Post-Carbon Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)
Post-Carbon Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING
Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING
Quarterly groundwater elevation levels collected? (Y/N) Blower bearings greased? (Y/N) Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) QUARTERLY CRITICAL DEVICE / ALARM TESTING
Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning)
Sensor NameTest TypeMH in. StartMH in. EndMH in. ΔMH in. ΔΔ Gal.Sensor StartSensor EndSensor ΔMere MonthOrig. K FactorNew Factor
FT-101
FT-105
FT-102 FT-105
FT-103
FT-105
Test Type MH1 % diff. MH2 % diff. MH3 % diff. Avg. % Diff. Orig. K Factor New K Fac

Notes*: % Difference calculated by the following formula:

$$\frac{MH-S}{0.5(MH+S)} \times 100$$

Manholes are 6' diameter. 1" manhole depth = 17.624 gallons.

If % difference is negative, increase K factor by that percentage to reach zero. If % difference is positive, decrease K factor by that percentage to each zero.

Manhole floats tested? (Y/N):

FT-105

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: ______ Time: ______ Technician:

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal			
Air Stripper Sump High Pressure	Notes:					
	PT-106	PA_106	fatal			
Air Stripper Sump Low Pressure	Notes:					
	LSH-100	LA_100	fatal			
Air Stripper High Liquid Level	Notes:					
	LSL-100	LA_100	fatal			
Air Stripper Low Liquid Level	Notes:					
	FT-106	FA_106	fatal			
High Air Flowrate	Notes:					
	FT-106	FA_106	fatal			
Low Air Flowrate	Notes:					
	TT-400	TAH400	fatal			
Pre-Carbon High Temperature	Notes:					
	TT-400	TAL400	fatal			
Pre-Carbon Low Temperature	Notes:					
	PT-400	PA_400	fatal			
Pre-Carbon High Pressure	Notes:					
	PT-400	PA_400	fatal			
Pre-Carbon Low Pressure	Notes:					

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: ______ Time: ______ Technician:

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-101	FA_101	warning			
MH-1 Low Flowrate	Notes:					
	FT-102	FA_102	warning			
MH-2 Low Flowrate	Notes:					
	FT-103	FA_103	warning			
MH-3 Low Flowrate	Notes:					
	FT-105	FA_105	warning			
Aggregate Low Flowrate	Notes:					
	WFS-106	WFS106	fatal			
Building Wet Floor Sensor Alarm	Notes:					
	LSH-106	LSH106	warning			
Building Sump High Level	Notes:					
	FT-200	FA_200	warning			
Sequestering Agent Low Flow	Notes:					
	LSH-200	LSH200	warning			
Spill Pallet Wet Sensor Alarm	Notes:					
	LSHH-103	LA_MH1	warning			
MH-1 High Level	Notes:					
	LSLL-103	LA_MH1	warning			
MH-1 Low Level	Notes: Should forc	;e off both MH-1 µ	bumps			

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: ______ Time: ______ Technician:

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSHH-104	LA_MH2	warning			
MH-2 High Level	Notes:					
	LSLL-104	LA_MH2	warning			
MH-2 Low Level	Notes: Should for	ce off both MH-2	oumps			
	LSHH-105	LA_MH3	warning			
MH-3 High Level	Notes:					
	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should for	ce off both MH-3	oumps			
	TT-100	TA_100	shutdown			
Building High Temperature	Notes:					
	TT-100	TA_100	shutdown			
Building Low Temperature	Notes:					

Quarterly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York	Date: Time: Technician:
CRITICAL DEVICE CORRECTIVE ACTION LOG SHEET	
Date: Time:	
Critical Device Failure:	
Device Failure:	
Corrective Action:	

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

Completed O&M Checklists

Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 1/23/14 Time: 1230 Technician: 1.60+Kowski

SYSTEM STATUS

System operati	onal? (PLC scr	een indicating	system in "AL	UTO" or "MANUAL") Auto
System current	ly cycling?			a previous low level alarm was latched in PLC, but
Alarms? (list)	Aerator	Sump	Alarm	was not in that state during the monthly sampling
				event

Electrical Meter Reading (kWh):

AIR STRIPPER PARAMETERS (record while air stripper is running)

Units	Value	Parameter
(in. W.C.)	30.25	Air stripper sump pressure [PI-106]
(inches)	13.75	Air stripper sump water elevation (record from site gauge)
(in. W.C.)	3	Blower intake line vacuum [PI-100]
(inches)	2.1	Main damper position (record distance from center of wingnut to outside of blower housing)
(°)	0.2	Interior dilution damper position (0° is shut, 90° is open)

197715

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Ve 5

Note scaling inside liquid effluent pipe from access port very 1 + 1e

Note scaling observed inside air stripper via clear tray access door 1141e, Sealing on Windows

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Ves

Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A,

and HS-103B] in "auto" position? (Y/N) Ves AILSIX

Ves

Parameter	MH-1 [FT-101]/230	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	1/23/14/0047	1/23/14/1236			
Instantaneous Flowrate [gpm]	37.23	٥	0	0	36,91
"Total" Flow (resettable, gal)	1468396	288158	6620417	0	2297003
"Perm" Flow (gal)	19773551	3382758	4187107	1839	14133139
Pump 1 Running (Y/N)?		NO	NO	NO	NA
Pump 2 Running (Y/N)?		NO	NO	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	ves	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	NO	(located on duct heater control panel door)

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xlsx Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York Date: 1/23/14 Time: 1241 Technician: Jasen Guthowsky

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	69	(°F)	
Pre-Carbon Temperature	TI-400	91	(°F)	
Duct Heater Temperature Setpoint		85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	- 18	84	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	15	(in. W.C.)	
Mid-Carbon Pressure	PI-402	6	(in. W.C.)	
Effluent Pressure	PI-403	6	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	32.48	(in, W.C.)	
Vapor Flowrate	FT-106	719 70771	(cfm)	
Pre-Carbon Temperature	TT-400	99.5	(°F)	
Pre-Carbon Pressure	PT-400	9.6	(in. W.C.)	
Building Temperature	TT-100	60.1	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ves	And the second se
Is low flow alarm present? (Y/N)	NO	
Is pump in external mode? (Y/N)	ves	
If in external mode, record one set of mA and stroke speed values	6 (mA) 5, 1 (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	231/2	inches from bottom
Quantity of additional full drums	None	

signs of leaking or wear (tubing [suction,

injection, bleed return], injection check valve

fitting, spill pallet, etc.) All Good, NO leaks Or Wear

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ves @, 1245
pH of effluent sample	
Model of pH meter	Hanna H1 991001
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 03.30.12\Appendix D - GCTS OM&M Log Sheets 04.30.12.xlsx Monthly OM&M Log Sheet, Groundwater Collection and Treatment System, Solvent Dock Area, Former Lockheed Martin French Road Facility, Utica, New York

Date: 1/23/14 Time: 1300 Technician:). (29+kauski

Task	Notes		
Liquid flow sensors cleaned? (Y/N) (only as needed)	Ves		
Monthly manhole inspections conducted? (Y/N)	NO Manholes Froze Shut		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)			
Do level floats appear to be in good condition and hanging freely? (Y/N)			
Observe groundwater inside each manhole and note odor and appearance			
Is confined space entry signage present at each manhole? (Y/N)	yes		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks			
With pump(s) running, listen for any unusual sounds			
Inspect condition of collection line gate valve protection flush-mount covers for each manhole			
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	All Good, No Leaks Or Distress		
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	All Good, No Leaks Or Distress yes		
List any notable observations	None		
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes		

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	yes
Is interior emergency lighting operational? (Y/N)	Ves
Is first aid kit present and in good condition? (Y/N)	
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	jes .
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	yes
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	Ves Haspilis
Is emergency spill kit available? (Y/N)	
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	Ves Posted on Wall 4/11/11

G:\APROJECT\LOCKHEED\NJ001024.0001\GCTS and SSDS Expansions\GCTS Construction Documents\OM&M\OM&M Manual 1.12.12\Appendix D - GCTS OM&M Log Sheets 1.12.11.xlsx

2-5/14

Date:	2/6/14
Time:	
Technician:	CD/J6

QUARTERLY OM&	M TASKS					
Quarter	ly liquid influent sam	ples collected for	MH-1. MH-2	and MH-3? (Y/N)	Y	
		fluent pH 7 i	Y			
	MH-2 in	fluent pH 7.5	7	-		
	MH-3 in	fluent pH 7,9		-		
Note: MH-1 must be (MH-1 typically batch		le collection, if ne		for MH-1 Pump 1 o	or 2 to turn on auto	omatically
	apor samples colleg		nid-carbon a	nd effluent? (V/N)	Y	
Quality v				mpling collection?		
Quart	erly catch basin sar					
		-		s collected? (Y/N)		
				s greased? (Y/N)		
Indicate air velocit	ty measurement col					(fpm)
	side of ve	rtical portion of el	fluent pipe, 1	fpm = 0.317 cfm)	718	(cfm)
QUARTERLY CRITI		RM TESTING				
	ittore ET-101 ET-10	2 ET-102 and E	T-105 calibra	hed? (V/N) (chould		,
		2,11-100, and 1	ne done after fl	w sensor cleaning)	Yes on 2/4,	114
If yes, document	testing and FT-	101 -> punodan	test -> A .	ches = 11 + 19	Yes, on 2/4, byol. A totalizar	- 196 / OK
note any change	s in sensor	12-> Punda to	+->1 m.=1	2 # -> 224 ml	A toplizer = 255	~1 - + 13.8
calibration factor		inted K-factor -				<u>y - </u>
FT-103 -> Pumpdoum	test - A a. = 24	3 -> 424 yal	A Totalizer =	715-> -3.3% =	οK	
FT-105 -> D.d #	comparisons while	MH1, 2, 3 0	alme respectiv	ely_FT-105 rea	1 27% high 28	70 high t
	1-1, 2, + 3 prompdom					
			12 			
Manhole floats tested	1? (Y/N) 🛛 📈	Ø.,				
100				· · · ·		
Test the following crit	tical alarme (note the	t custom must be it				
Test the following chi		System must be in	AUTO ID UDS	Caused PLC	sponsej.	STREET SINC
	Corresponding	PLC Alarm		Alarm Output	Caused System	Passed
Alarm	Transmitter /	Output Name	AlarmType	State Change?	Shutdown?	(Y/N)
	Sensor	Centra Que des des reges		(Y/N)	(Y/N)	
	PT-106	PA_106	fatal	4	Y	4
Air Stripper Sump	Notes: Change	1	35 to	27, 10 sec	beles Shutton	
High Pressure	Chinge	d high tran	01 (* *	or, 10 sec	etic) - ourieu	~~~.
	PT-106	PA_106	fatal	Y	Y	Y
Air Stripper Sump				3) 10 %	ec delay. Shit	down
Low Pressure	Changel	100 7	ray o 1	0 19- 14 5		
				2		
	LSH-100	LA_100	fatal	Ϋ́	9	Y
Air Stripper High	Notes: Filled in		Kunterl	Ander ward and and	10	
Liquid Level	1 (lied wi	in clean m	- write ()	any and a ye		

Date: 🌶 Time: Technician: CD/WA/BH

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSL-100	LA_100	fatal	Y	N	Y
Air Stripper Low Liquid Level	Notes: Closed		rban Value.	10 mm dela	y. Non-Fatal	
	FT-106	FA_106	fatal	4	Y	4
High Air Flowrate	Notes: Setponi	t 1200. Cl	hanged se	stpoint to	500 ctm. Sh	tom
	FT-106	FA_106	fatal	Ч	Y	4
Low Air Flowrate	Notes: Setpoint	300. Change	ed to 1,00	0. Fatal ala	rm after 5	Min,
	TT-400	TAH400	fatal	Y	Y	Y
Pre-Carbon High Temperature	Notes: Change	high to 7	70, Minut	te dela, s	hutdown	
	TT-400	TAL400	fatal	Y	Y	Y
Pre-Carbon Low	Notes: //	1 1 1 1	<u> </u>	ا ا سند	ct 1 i	
Temperature	Chunge	: Ion to 109	-) mi	nte delux.	shitlour,	
	PT-400	PA 400	fatal	Y Y	r T	Y
		PA 400	fatal	Y Y	r T	Ŷ
Temperature Pre-Carbon High	PT-400	PA_400 h1y4 to 5 "w PA_400	fatal	y zc delay. Shut	Y down Y	Y
Temperature Pre-Carbon High	PT-400 Notes: Change I	PA_400 11194 to 5 "w PA_400	fatal	Y Y	Y down Y	
Temperature Pre-Carbon High Pressure Pre-Carbon Low	PT-400 Notes: Change 1 PT-400 Notes: Chunge FT-101	PA_400 h1y4 to 5 "w PA_400 low to 19. FA_101	fatal , c. 45 x fatal 45 sec de warning	y ze delex. Shut lex. Shutdou Y	Y down Y	
Temperature Pre-Carbon High Pressure Pre-Carbon Low	PT-400 Notes: Change I PT-400 Notes: Change FT-101 Notes: The 1	PA_400 h1y4 to 5 "w PA_400 low to 19. FA_101	fatal , c. 45 x fatal 45 sec de warning	y ze delex. Shut lex. Shutdou Y	dons Y Y M	
Temperature Pre-Carbon High Pressure Pre-Carbon Low Pressure	PT-400 Notes: Change I PT-400 Notes: Change FT-101 Notes: The 1	PA_400 h1y4 to 5 "w PA_400 low to 19. FA_101	fatal , c. 45 x fatal 45 sec de warning	y ze delex. Shut lex. Shutdou Y	dons Y Y M	
Temperature Pre-Carbon High Pressure Pre-Carbon Low Pressure	PT-400 Notes: Change I PT-400 Notes: Change FT-101 Notes: Tested FT-102 Notes:	PA_400 huy4 to 5 "w PA_400 low to 19. FA_101 Vià turning FA_102	fatal fatal fatal 45 sec de warning if vA 3 off	y ec delex. Shut lex. Shutdou line. Y	Y donn Y M N	
Temperature Pre-Carbon High Pressure Pre-Carbon Low Pressure MH-1 Low Flowrate	PT-400 Notes: Change 1 PT-400 Notes: Change FT-101 Notes: Tested FT-102	PA_400 huy4 to 5 "w PA_400 low to 19. FA_101 Vià turning FA_102	fatal fatal fatal 45 sec de warning if vA 3 off	y ec delex. Shut lex. Shutdou line. Y	Y donn Y M N	

Date: Time: Technician: CD/BH/WA

	Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
,		FT-105	FA_105	warning	Y	N	Y
2/4/14	Aggregate Low Flowrate	Notes: Tested du	Notes: Tested during NH-1 thro MH-3 low flowrate tests				
		WFS-106	WFS106	fatal	Y	Y	Y
+ <i> 5 </i> 14	Building Wet Floor Sensor Alarm	Notes: Filled o	verflowed sin	чр.			
		LSH-106	LSH106	warning	Y	N	Y
	Building Sump High Level	Notes: Filled 50	mp with cle	reen sinK	water Non.	fatal.	
		FT-200	FA_200	warning	P P	N	Y
	Sequestering Agent Low Flow						
		LSH-200	LSH200	warning	Y	N	<u> </u>
	Spill Pallet Wet Sensor Alarm	Notes: Wetted	sensor. Non-	fatel.			
	MH-1 High Level	LSHH-103 Notest		warning			
		LSLL-703	/ LA_MH1	warning			
	MH-1 Low Level	Notes: Should for		oumps			
		LSHH-104	LA_MH2	warning			
	MH-2 High Level	Notes:					
		LSL/L-104	LA_MH2	warning	<u> </u>		
	MH-2 Low Level	Notes:/Should forc	e off both MH-2 p	oumps			
		/LSHH-105	LA_MH3	warning			
	MH-3 High Level	Notes:					
L	/			\			

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	LSLL-105	LA_MH3	warning			
MH-3 Low Level	Notes: Should forc	ce off both MH-3-	ЭШтрs———			
	TT-100	TA_100	shutdown	Γ Υ	Y	Y
Building High Temperature	Notes: Setpoint	= 110°F, Cha	nge setpoint	to 60°F.)	minite delay.	Shotdown
	TT-100	TA_100	shutdown			
Building Low Temperature	Notes: setpont:	= 40"F. Pit	suon ip to	probe.	I	

2/5/14 2/5/14

SYSTEM STATUS

System operation	nal? (PLC scr	reen indicating system in "AUTO" or "MANUAL"	")	Yes
System currently	cycling?	tes		
Alarms? (list)	none			

Electrical Meter Reading (kWh):

00208058

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	28	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	15	(inches)
Blower intake line vacuum [PI-100]	1.9	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.35	(°)
Interior dilution damper position <i>(0° is shut, 90° is open)</i> Is white "POWER ON" light on air stripper control panel li		Yes

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

Yes Yes Small amount Cleas

Date:

Time:

Technician:

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Yes

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	3/4/14	3/4/14	314/14		3/4/14
Instantaneous Flowrate [gpm]	٢	O	16.65-17.03	_	15,10-17,30
"Total" Flow (resettable, gal)	01761851	00317221	00749480	-	02724024
"Perm" Flow (gal)	20067020	03411821	04274562		14560179
Pump 1 Running (Y/N)?	N	N	N		NA
Pump 2 Running (Y/N)?	\sim	N	Y	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	/	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	$\overline{\mathcal{N}}$	(located on duct heater control panel door)

Date: 3/4/14Time: 0936Technician: $BH \ \omega A$

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	65.0	(°F)	
Pre-Carbon Temperature	TI-400	98.0	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	86	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	14.0	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5.6	(in. W.C.)	
Effluent Pressure	PI-403	0.6	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30,40	(in. W.C.)	
Vapor Flowrate	FT-106	808.7-886,5	(cfm)	Range
Pre-Carbon Temperature	TT-400	97.0	(°F)	
Pre-Carbon Pressure	PT-400	11.0	(in. W.C.)	
Building Temperature	TT-100	59.2	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Y	
Is low flow alarm present? (Y/N)	N	
Is pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA and stroke speed values	4.6 (mA) 3 (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200] (inches of liquid from bottom of drum)	25.8	gallons
Quantity of additional full (30 gal) drums	1	
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting, spill pallet, e	ion,	ealss or wear

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Ý
pH of effluent sample	8.44
Model of pH meter	pH Testr 30
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	NO

Date: <u>3/4//4</u> Time: <u>0930</u> Technician: ВН ωА

MONTHLY OM&M TASKS (continued)

Task		Notes	
Liquid flow sensors cleaned? (Y/N) (only as needed)	N		
Monthly manhole inspections conducted? (Y/N)	i	2	3
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	12	N	N
Do level floats appear to be in good condition and hanging freely? (Y/N)	У	Y	Y
Observe groundwater inside each manhole and note odor and appearance	No odos No sheen	No odor No sheen	
Is confined space entry signage present at each manhole? (Y/N)	Y	γ	Y
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	0 (<	OK	6 4
With pump(s) running, listen for any unusual sounds	OK	O K	0 (2
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	OK	O 12	0 14
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	No notable	problems	
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	No		
List any notable observations			
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Y	//////////////////////////////////////	

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an	N
inspection tag? (Y/N)	1
Is eyewash/shower station operational and unobstructed? (Y/N)	Ý
Is interior emergency lighting operational? (Y/N)	Ý
Is first aid kit present and in good condition? (Y/N)	ý
Is lockout/tagout equipment available? (Y/N)	4
Have electrical GFIs been tested and reset? (Y/N)	¥
Do all electrical panels have 36" of open floor space in front of them?	N/
(Y/N)	Ý
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for	17
each)	Y
Is emergency spill kit available? (Y/N)	У
Is H&S signage including emergency contact list, eye protection hearing	
protection, and automatic equipment present? (Y/N)	1
Is current SPDES permit onsite? (Y/N) (note date)	V

SYSTEM STATUS

System operationa	Il? (PLC scre	en indicat	ting system in "/	AUTO" or "MANUA	L") A	to
System currently c	ycling? _	yes	MH-1	P:1		
Alarms? (list)		1	<u> </u>			

Electrical Meter Reading (kWh):

00215816 KuH

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	27	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	175	(inches)
Blower intake line vacuum [PI-100]	19	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0,25	(°) (inches)

Is white "POWER ON" light on air stripper control panel lit? Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

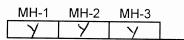
Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-

103A, and HS-103B] in "auto" position? (Y/N)


Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	4/1/14 327	4/1/14 1327	4/1/14 1327	24	11
Instantaneous Flowrate [gpm]	36.15	Ø	0	6	38.95
"Total" Flow (resettable, gal)	2095282	362797	883040	-	3265050
"Perm" Flow (gal)	20400451	3457397	440 8100	~	15101149
Pump 1 Running (Y/N)?	Y	N	N		NA
Pump 2 Running (Y/N)?	N	N	N	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) (located on duct heater control panel door)

Yes little 1ittle to none

Date: Time: Technician:

Date: <u>9/1/19</u> Time: <u>1300</u> Technician: <u>WA +1BH</u>

VAPOR PHASE PARAMETERS (continued)

2

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	50	(°F)	
Pre-Carbon Temperature	TI-400	72	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12.9	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5,0	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26.34	(in. W.C.)	
Vapor Flowrate	FT-106	815	(cfm)	785-856
Pre-Carbon Temperature	TT-400	74,4	(°F)	
Pre-Carbon Pressure	PT-400	11,7	(in. W.C.)	
Building Temperature	TT-100	65.0	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	\checkmark	
Is low flow alarm present? (Y/N)	Ň	
Is pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA and stroke speed values	4,6 (mA) ろ (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	87	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	16 (gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	1	/
Inspect sequestering agent components signs of leaking or wear (tubing [sucti injection, bleed return], injection check va fitting, spill pallet, e	ion, alve	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Y Time: 0925
pH of effluent sample	8.27
Model of pH meter	DHTESTY 30
Calibration notes / method used	3 DOINT
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: NO MH-3: Ves

Date: <u>4/1/14</u> Time: <u>1300</u> Technician: <u>ωA ↓ B H</u>

MONTHLY OM&M TASKS (continued)

£

Task		Notes		
Liquid flow sensors cleaned? (Y/N) (only as needed)	Not needed			
	MH-1	MH-2	MH-3	
Monthly manhole inspections conducted? (Y/N)	Ý	У	Y	
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	Ň	\sim	N	
Do level floats appear to be in good condition and hanging freely? (Y/N)	Y	\searrow	У	
Observe groundwater inside each manhole and note odor and appearance	No steen clear	No sheen No oday MURKY	Noshen, Nosor clear	
Is confined space entry signage present at each manhole? (Y/N)	\sim	У	У	
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	Gow	6000	600)	
With pump(s) running, listen for any unusual sounds	nare	pore	Nones	
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	6000	600)	G)	
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	oK			
Treatment system valves exercised? (Y/N) (should be conducted with system in-between batch cycles)	Y			
List any notable observations				
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Y	,		

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	N N
Is eyewash/shower station operational and unobstructed? (Y/N)	Ý
Is interior emergency lighting operational? (Y/N)	
Is first aid kit present and in good condition? (Y/N)	Y
Is lockout/tagout equipment available? (Y/N)	V
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Y
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP: 3/14 Date:
	OMM: Driving Date:
Is emergency spill kit available? (Y/N)	V,
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	V
Is current SPDES permit onsite? (Y/N) (note date)	V Date: 4/2011

Date: Time: Technician:

QUARTERLY OM&M TASKS

MH-1 influent pH	7.58	Date:	4/4/14	Time:	0915
MH-2 influent pH	7.73	Date:	4/4/14	Time:	0925
MH-3 influent pH	7,65	Date:	4/3/14	Time:	0855

Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours). . 1

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N)	Y	
Are MH-2 or MH-3 online in auto during sampling collection?	MH-3	
Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)	Ý	
Quarterly groundwater elevation levels collected? (Y/N)	У	
Blower bearings greased? (Y/N)	Y	
Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall	1895	(fpm)
side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm)	600,715	(cfm)

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning)

Sensor Name	Test Type	MH in. Start	MH in. End	MH in. Δ	Δ Gal.	Sensor Start	Sensor End	Sensor ∆	% Diff.	Orig. K Factor	New K Factor
FT-101	pumboun	114.0	126.25	12.25	215	0451	0671	220	-2%	76.5	-
				F	T-105	5579	5834	255	-17.0%		
FT-102	RyDown	173,125	184,875	11,75	207	7397	7574	177	15.6%	87.2	73.6
	A state			F	T-105	5202	5430	228	-9.7%		
FT-103	Annon	137.625	151.75	14,125	249	8000	8250		-0.4%		-
	11			F	T-105	4947	5202	255	- 2.4%		
Test Type MH1 % diff. MH2 % diff. MH3 % diff. Avg. % Diff. Orig. K Factor New K Factor											
FT-105	comportision	-17.0)	9.7	-2.4		9.7	V	9,2		86.2

Notes*: % Difference calculated by the following formula:

$$\frac{MH-S}{0.5(MH+S)} \times 100$$

86.2

Manholes are 6' diameter. 1" manhole depth = 17.624 gallons.

If % difference is negative, increase K factor by that percentage to reach zero.

If % difference is positive, decrease K factor by that percentage to each zero.

No Manhole floats tested? (Y/N):

4/2

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

				proper analiti roo	•••••).	
Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal	Y	Y	¥
Air Stripper Sump High Pressure	Notes: Set t 10 5 d	o 35" w C elay, Syste	n Shut	down	SC.	
	PT-106	PA_106	fatal	Y	¥	У
Air Stripper Sump Low Pressure	Notes: Set + Syste	to 8"wc m shitdo	, Changei) to as "ec	0C. 105 de	lay

Date: $\frac{4/2/14}{1000}$ Time: 0830 Technician: wA 134

	Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
4/2	Air Stripper High Liquid Level	LSH-100 Notes: pumped at sa		fatal nto AS, so water	Y twened off revel rosa	pupo & block 2. Used s.n	y k weiter
	Air Stripper Low Liquid Level	LSL-100 Notes: Closed AS, Wates Carto I po	LA_100 BF-401~ level@= anel ostp	fatal half wa site to be	y to put b. Jour to	IN Ia", 10 mm	y Jelay
	High Air Flowrate	FT-106 Notes: Blover	FA_106 Demper @	fatal	Y	¥ ≈750 cfn:	Y
	Low Air Flowrate	FT-106 Notes: Corvent Changed			m. Set poind delay. Shu		У
	Pre-Carbon High Temperature	TT-400 Notes: set point Shutdo		fatal Charged	to 60°. 1	min deley.	Υ
	Pre-Carbon Low Temperature	Notes: setpoin Shot	TAL400 17 @ 600 - 2000 n	fatal , Change	y 22 to 90°	y 3 min del	Y ay.
	Pre-Carbon High Pressure	PT-400 Notes: Setpin			y mged to 5 45 se		y Shutdown
	Pre-Carbon Low Pressure	PT-400 Notes: Setpoin	PA_400	fatal	γ	У	Υ
4/3	MH-1 Low Flowrate	FT-101 Notes: Turned	FA_101 HOA's +	warning v OFF	Y	1 down c	Y
4/4	MH-2 Low Flowrate	FT-102 Notes: Turned	FA_102 HOA to Responds	Warning OFF 2 when	ring punp float is	. (y cle
ч/з	MH-3 Low Flowrate	FT-103 Notes: Turned	FA_103 HOA to	warning OFF	Y	N Down cy	Y cle,

Date:	4/2/14
Time:	0830
Technician:	WA + BH

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

4/3

4(y 4(3

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passe (Y/N)	
	FT-105	FA_105	warning	У	N	Y	
Aggregate Low Flowrate	Notes: with A	nH-1 + MH witch to	- 3 prin	pping, Turn	rd		
	WFS-106	WFS106	fatal	\checkmark	У	V	
Building Wet Floor Sensor Alarm	Notes: Wetter	l wfsi	26 w/	water di	ish	1	
	LSH-106	LSH106	warning	V	N	V	
Building Sump High Level	, and the second s						
	FT-200 Nor	Mal FA_200	warning	4	\wedge	V	
Sequestering Agent Low Flow	Notes:	influent 1	in from	drug - L	roke suct	. /	
LOW FIOW	Kept efflu	cent to syst	tem. Not	bypaiss	The sucr	01.	
Spill Pallet Wet	LSH-200 Notes:	LSH200	warning	У	N	Y_	
Sensor Alarm	Wetted LSHH-103	SEASO1	warning				
	Notes:		Warning				
MH-1 High Level	0				/		
				/	/		
	LSLL-103	LA_MH1	warning				
	LSLL-103 Notes: Should fore		warning oumps				
	Notes: Should fore	e off both MH-1 p	warning oumps				
MH-1 Low Level	Notes: Should fore		warning oumps warning				
MH-1 Low Level	Notes: Should fore	e off both MH-1 p	oumps				
MH-1 Low Level MH-2 High Level	Notes: Should fore	LA_MH2	warning warning				
MH-1 Low Level MH-2 High Level	Notes: Should fore	LA_MH2	warning warning				
MH-1 Low Level MH-2 High Level MH-2 Low Level	Notes: Should fore	LA_MH2	warning warning				

٠

Date:	4/2/14
Time:	0830
Technician:	WATBH

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)		
	LSLL-105	LA_MH3	warning					
MH-3 Low Level	Notes: Should force off both MH-3 pumps							
	TT-100	TA_100	shutdown	Y	¥	Y		
Building High	Notes:				(1		
Temperature	Set to 110°. Change to 44",							
	TT-100	TA_100	shutdown	У	Y	Y		

SYSTEM STATUS

System operation	al? (PLC scr	een indicating system in "AUTO" or "MANUAL")	Arto
System currently	cycling?	NO	
Alarms? (list)	nore		

Electrical Meter Reading (kWh):

00223897

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	27	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	. 17	(inches)
Blower intake line vacuum [PI-100]	2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0,4	(°) (inches)

Is white "POWER ON" light on air stripper control panel lit? Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

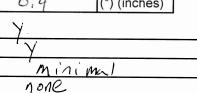
Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

MH-1

MH-1 MH-2 MH-3

Cumulative

Parameter	[FT-101]	[FT-102]	[FT-103]	[FT-104]	[FT-105]
Date/Time	5/5/14 0900	5/5/14 0900	5/5/14 0900	5/5/14 0900	5/5/14 0900
Instantaneous Flowrate [gpm]	0	0	O	0	Ø
"Total" Flow (resettable, gal)	02517153	00428395	01077999	O	03918307
"Perm" Flow (gal)	20822322	03522995	04603058	1839	15754443
Pump 1 Running (Y/N)?	\sim	2	\sim	N	NA
Pump 2 Running (Y/N)?	N	N	N	NA	NA


MH-2

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) Is duct heater "HI TEMP" alarm light on? (Y/N) (located on duct heater control panel door) (located on duct heater control panel door)

MH-3

Sumn

	5,5114
Time:	0 900
Technician:	art

Date: <u>5/5/14</u> Time: <u>0900</u> Technician: wh

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	65	(°F)	
Pre-Carbon Temperature	TI-400	83	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	83	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	12,1	(in. W.C.)	
Mid-Carbon Pressure	PI-402	5.2	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	29,00	(in. W.C.)	
Vapor Flowrate	FT-106	715	(cfm)	674 - 756
Pre-Carbon Temperature	TT-400	88,4	(°F)	
Pre-Carbon Pressure	PT-400	9.2	(in. W.C.)	
Building Temperature	TT-100	61,5	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ý	
Is low flow alarm present? (Y/N)	N	
Is pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA	6 (mA)	(display screen should automatically be switching back and
and stroke speed values	5 (spm)	forth between mA and stroke speed)
Stroke length	86	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	4 (gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	1	
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting, spill pallet, e	ion, <u> </u>	· Changed Sequesters Agent ms. Start at 32 gal.

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	ΥΥ Time: (000
pH of effluent sample	8.44
Model of pH meter	pH Festr 30
Calibration notes / method used	
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: W MH-3: N

Date: <u>096</u> <u>5/5//4</u> Time: <u>0900</u> Technician: W4

MONTHLY OM&M TASKS (continued)

Task		Notes	
Liquid flow sensors cleaned? (Y/N) (only as needed)	N		
	MH-1	MH-2	MH-3
Monthly manhole inspections conducted? (Y/N)	Y	Ý	Y
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	N	N	N
Do level floats appear to be in good condition and hanging freely? (Y/N)	У	Y	Ý
Observe groundwater inside each manhole and note odor and appearance	No odor. cleas	No odor, clear	no odos. clew
Is confined space entry signage present at each manhole? (Y/N)	Y	Y	У
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	None	None	None
With pump(s) running, listen for any unusual sounds	None	None	None
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	ok	014	o K
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations		NONE	
List any notable observations			
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Ч		

Item	1 March	1	Status	
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	× /			
Is eyewash/shower station operational and unobstructed? (Y/N)	Y	free-rik oog of the state of the state		
Is interior emergency lighting operational? (Y/N)	×			
Is first aid kit present and in good condition? (Y/N)	V			
Is lockout/tagout equipment available? (Y/N)	Ý			
Have electrical GFIs been tested and reset? (Y/N)	Y			
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Ý			
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP:	Y	Date	: mar 2014
(The owned wandar and Theor offsite? (The falles for each)	OMM:	Y	Date	Mar 2011
Is emergency spill kit available? (Y/N)	У			
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Ý			
Is current SPDES permit onsite? (Y/N) (note date)	Y	Date:	Apr	2011

Date:	6/13/14
Time:	0845
Technician:	Ben Haravitch

uto

SYSTEM STATUS

System operational?	(PLC scre	en indicating s	system in "AUT(O" or "MANUAL")	_ <u>A</u>
System currently cyc	ling?	Yes			
Alarms? (list)	None	,			

Electrical Meter Reading (kWh):

228 750

AIR STRIPPER PARAMETERS (record while air stripper is running)

Units	Value	Parameter			
(in. W.C.)	25.5	Air stripper sump pressure [PI-106]			
(inches)	18.5	Air stripper sump water elevation (record from site gauge)			
(in. W.C.)	- 2	Blower intake line vacuum [PI-100]			
(inches)	2	Main damper position (record distance from center of wingnut to outside of blower housing)			
(°) (inches)	0.4	Interior dilution damper position (0° is shut, 90° is open)			

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? <u>Yes</u>

Note scaling inside liquid effluent pipe from access port ______Minima

Note scaling observed inside air stripper via clear tray access door ________

FLOWMETER / PUMP PARAMETERS

MH-1 MH-2 MH-3

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Tim	1e 6/13 0845-				
Instantaneous Flowrate [gpr	n] 40.27	0.00	0.00	0.00	40.09
"Total" Flow (resettable, ga	-	486,834	1,232,070	0	4,501,032
"Perm" Flow (ga	1) 21, 221,012	3 581,434	4,757,130	1,839	16,337,178
Pump 1 Running (Y/N)? N	N	N'	Ν.	' NA'
Pump 2 Running (Y/N)? Y	\sim	N	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	Ń	(located on duct heater control panel door)

Date: Time: Technician:

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	60	(°F)	
Pre-Carbon Temperature	TI-400	78	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	11	(in. W.C.)	
Mid-Carbon Pressure	PI-402	Ч	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	27.81	(in. W.C.)	
Vapor Flowrate	FT-106	655.7	(cfm)	612-685
Pre-Carbon Temperature	TT-400	77.5	(°F)	
Pre-Carbon Pressure	PT-400	8.5	(in. W.C.)	
Building Temperature	TT-100	69.2	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	У	
Is low flow alarm present? (Y/N)	Ń	
Is pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA and stroke speed values	<u>5.i (mA)</u> 6 (spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	2.1 (gal)	(1 Gallon tick marks hand written in marker on drum based of plastic molded gallon marks)
Quantity of additional full drums	į	
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting spill pallet e	ion, <u>on b</u> alve <u>addra</u> d	New drun delivered to GCTS 12. Removed empty drum, new full drum to pallet.

fitting, spill pallet, etc.)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	V Time: 0830
pH of effluent sample	8,4
Model of pH meter	SHTestr 30
Calibration notes / method used	3 point @ 4, 7.10
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: N MH-3: У

6/13/14 Date: Time: 0930 Technician: BIH

MONTHLY OM&M TASKS (continued)

Task	Notes						
Liquid flow sensors cleaned? (Y/N) (only as needed)	No						
	MH-1	MH-2	MH-3				
Monthly manhole inspections conducted? (Y/N)	У	Ý	Y				
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	N	N	Ň				
Do level floats appear to be in good condition and hanging freely? (Y/N)	Y	Ý	Y				
Observe groundwater inside each manhole and note odor and appearance	No odor or shun. Clear	No odor or sheen. Clear	No odor or sheen. clear				
Is confined space entry signage present at each manhole? (Y/N)	Ч	Y	Y				
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	OK	OK	OK				
With pump(s) running, listen for any unusual sounds	None	None	Nore				
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	ok	o K	oK				
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	None, but	considerable	condensation				
List any notable observations	8						
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Y						

Item	1000		St	atus		
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Ч					
Is eyewash/shower station operational and unobstructed? (Y/N)	M					
Is interior emergency lighting operational? (Y/N)	Y					
Is first aid kit present and in good condition? (Y/N)	Ý					
Is lockout/tagout equipment available? (Y/N)	Ý					
Have electrical GFIs been tested and reset? (Y/N)	Y					
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Y					
Are both the ONIGNA Manual and LIACD anaite? (V/N) (ante datas for each)	HASP	:	Y	Date	: 3/13/14	last Ma
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	OMM:	í	1	Date	: 4/30/12	Last Moo
Is emergency spill kit available? (Y/N)	Y		1			document
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	1 X F					March, 20
Is current SPDES permit onsite? (Y/N) (note date)	Ý		Date:	4	12011]

Monthly OM&M Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

SYSTEM STATUS

System operation	nal? (P	LC scr	een indicating	ı system in	"AUTO"	or "MANU	AL")
System currently	cycling	<u>]</u> ?	no				
Alarms? (list)	no	ne					

Electrical Meter Reading (kWh):

231352

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	25	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	19,5	(inches)
Blower intake line vacuum [PI-100]	-2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.4	(°) (inches)
Is white "POWER ON" light on air stripper control panel		
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position		
Note scaling inside liquid effluent pipe from access p	port minin	ngl

Note scaling observed inside air stripper via clear tray access door nooc

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

MH-1	MH-2	MH-3
X	Ý	V

HS-/N)_<u>all_a_t_</u>

MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
7/8/14 1200	7/8/14 1200	7/8/14 1200		
0,0	0.0	0.0	0,0	0.0
314 9026	525578	1351000	0	4871491
21454195	3620178	4876059	1839	16707626
\sim	N	N	N	NA
\sim	N	N	NA	NA
	[FT-101] 7/8/14 1200 010 314 9026 214 9026 21454195 N	[FT-101] [FT-102] 7/8/14 1200 7/8/14 1200 0:0 0.0 0.0 0.0 3149026 525578 3620178 21454195 3620178 100	[FT-101] [FT-102] [FT-103] 7/8/14 1200 7/8/14 1200 0:0 0.0 0.0 314 9026 525578 1351000 2:454195 3620178 4876059 N N N	[FT-101] [FT-102] [FT-103] [FT-104] 7/8/14 1200 7/8/14 1200 7/8/14 1200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 314 9026 525578 1351000 0 0 0 145 4195 3620178 4876059 1837 N N

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	_(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)		(located on duct heater control panel door)

FBH

Date: Time:

Date: 7/8/14 Time: 1200 Technician: WA-FBH

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	69	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	10	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	26,65	(in. W.C.)	
Vapor Flowrate	FT-106	633	(cfm)	
Pre-Carbon Temperature	TT-400	79.3	(°F)	
Pre-Carbon Pressure	PT-400	7.5	(in. W.C.)	
Building Temperature	TT-100	78.0	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	V	
Is low flow alarm present? (Y/N)	/M	
Is pump in external mode? (Y/N)	y *	
If in external mode, record one set of mA and stroke speed values	, , , , ,	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	(gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	1	
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting, spill pallet, e	ion, alve	Added S

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	7/10/14 Time: 0922
pH of effluent sample	
Model of pH meter	PH Testy VSI
Calibration notes / method used	3-point calibration los intreatment h. i.d.
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: No MH-3: Yes

Date: 7/8/14 Time: 1200 Technician: W-+BH

MONTHLY OM&M TASKS (continued)

Task		Notes	
Liquid flow sensors cleaned? (Y/N) (only as needed)	Inspected 103 - unfit for removal		sensor shaft Be prepared for
	MH-1	MH-2	MH-3
Monthly manhole inspections conducted? (Y/N)	V	V	У
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	\mathcal{N}	N	N
Do level floats appear to be in good condition and hanging freely? (Y/N)	V	V.	Y
Observe groundwater inside each manhole and note odor and appearance	clear, no sheen No odor	No sheen no odor	No sheen, no odor
Is confined space entry signage present at each manhole? (Y/N)	Y	Y	У
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	OK	OK	oK
With pump(s) running, listen for any unusual sounds	None	None	None
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	ok	GK	ok
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	OK		
List any notable observations			
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes		

Item		5	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)			
Is eyewash/shower station operational and unobstructed? (Y/N)	Ý		
Is interior emergency lighting operational? (Y/N)	Y		
Is first aid kit present and in good condition? (Y/N)	Ý		
Is lockout/tagout equipment available? (Y/N)	Ý		
Have electrical GFIs been tested and reset? (Y/N)	Ý		
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Ý		
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP:	¥	Date: 3/13/14
(The official manage and theory official? (The faces for each)	OMM:	1	Date: 3 / 2011
Is emergency spill kit available? (Y/N)			
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	4		
Is current SPDES permit onsite? (Y/N) (note date)	Ý	Date:	4/1/2011

Quarterly OM&M Log Sheet, Groundwater Collection and						
Freatment System, Solvent Dock Area, Former Lockheed Martin						
French Road Facility, Utica, New York						

QUA	RTER		&M TASKS	
-----	------	--	----------	--

(

F

Date:	7/8/14
Time:	1200
Technician:	nA + BH

·

	Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N)	/
--	---	---

MH-1 influent pH	7,1	Date:	7/10/14	Time:	0916
MH-2 influent pH	7,0	Date:	7/10/14	Time:	1700
MH-3 influent pH	7,5	Date:	7/10/14	Time:	0911

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) $_$ \checkmark

Are MH-2 or MH-3 online in auto during sampling collection? <u>M</u> Treatment system valves exercised?

<u>MH-3 0.</u> Yes

 $\frac{\gamma}{\gamma}$

Y

(fpm)

(cfm)

Sample Location	PID Tag	Vapor Sample collects? (Y/N)	Condensate present in sample? (Y/N)	Canister #	Canister Vacuum at Start (in. Hg)	Canister Vacuum at Finish (in. Hg)	Sample Time
Pre-Carbon	SP-401	7	N ·	3081	-29,2	- 5	1025
Mid-Carbon	58-402	Y		510 8	-30	-4.8	1017
Post-Carbon	SP- 403	1	N	3217	-30	~6	1012

Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N) _

Quarterly groundwater elevation levels collected? (Y/N)

Blower bearings greased? (Y/N)

Indicate air velocity measurement collected from 8" effluent pipe (*plug located on wall* $2 \circ 5 2$

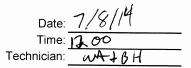
side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm) $\frac{1}{25}$

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be done after flow sensor cleaning) No. Values close to two

										<u><u>u</u>io-2</u>	0,0 ,
Sensor Name	Test Type	MH in. Start	MH in. End	MH in. Δ	∆ Gal.	Sensor Start	Sensor End	Sensor	% Diff.	Orig. K Factor	New K Factor
FT-101	pump down	118.5	129,5	11	194	5361	\$\$63	202	-4	76.5	
				F	T-105	9545	9735	190	+2.1		
FT-102	pop down	185	194	9	157	2549	2699	150	+4,5	73.6	-
				F	T-105	9735	9872	137	+13.6		
FT-103	pup down	126.5	136,75	10,25	181	6445	6645	200	-10	66.7	-
al reserver				F	T-105	0087	0269	180	+0,6		
	Test Type	MH1 %	diff. MH	2 % diff.	MH3 %	diff. A	vg. % Dif	f. Oria.	K Facto	r New	K Factor
FT-105	Companisa	+2.1	τl	3,6	+0,6			X	16,2		-

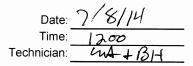
Notes*:

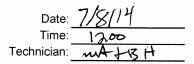

*: % Difference calculated by the following formula:

 $\frac{MH-S}{0.5(MH+S)}$ X 100

Manholes are 6' diameter. 1" manhole depth = 17.624 gallons.

If % difference is negative, increase K factor by that percentage to reach zero. If % difference is positive, decrease K factor by that percentage to each zero.


Manhole floats tested? (Y/N): \sqrt{e}


QUARTERLY CRITICAL DEVICE / ALARM TESTING

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)				
	PT-106	PA_106	fatal	V	Y Y	Y				
Air Stripper Sump High Pressure	Notes: Set at	35. CL	nance to	20.	(/				
riigiri ressure	10 sec	delay.	Fatal							
	PT-106	PA_106	fatal	Y	Y	V				
Air Stripper Sump	Notes: Set at	8. ch	ance to	30.		/				
Low Pressure	10 sec	delay. #								
	LSH-100	LA_100	fatal	Y	У	V				
Air Stripper High Liquid Level	Notes: Filled 1	milding sur	np with	tap water	while	/				
Liquid Level	stripper	not runn	ung.	1						
	LSL-100	LA_100	Notfatal	Y	N	V				
Air Stripper Low Liquid Level	Notes: Partially	1 closed 1	3FV-401	to induce.	pressure in	AS SUN				
	Liguid	level ~1	11-12"	10 min	datas Non	Fater				
	F1-106	FA 106	(A) fatal)	Y	V	V				
High Air Flowrate	Notes: et at 1200 cfm. Change to 550 during pup down									
	5 min delay. Fatal cycle.									
	FT-106	FA_106	fatal	У	У	4				
Low Air Flowrate	Notes:	300 cfm.	Chaye	to 800	(/				
x (4 (Set at 300 cfm. Chaye to 800 5 min delay. Faital									
	TT-400	TAH400	fatal	Y	Ч	Y				
Pre-Carbon High Temperature	Notes: Set at	lio"F.	Change	to 70°F	/	/				
and the second se	1 min	delay.	Fatal							
	TT-400	TAL400	fatal	4	4	V				
Pre-Carbon Low Temperature	Notes: Set at	60° F.	Chaby	e to 90.	F	/				
remperature	3 min delay. Fatal									
	PT-400	PA_400	fatal	Y	4	Y				
Pre-Carbon High Pressure	Notes: jet at	25 10	NC. CL	nage to 5	1	/				
1 Cooure	T t	c delay.	Fatal)						
	PT-400	PA_400	fatal	Y	Y	Y				
Pre-Carbon Low Pressure	Notes: Set at	1 0 1 -	vc. cl	rage to	15					
	45 Sec	delay.	Fatal	J						

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)			
	FT-101	FA_101	warning	У	\sim	Y			
MH-1 Low Flowrate	Notes: Turnec down	d pump s cycle. N	witch to	OFF duri	'ny punp	(
	FT-102	FA_102	warning	Y	N	4			
MH-2 Low Flowrate	Notes: Furned	pump su cycle. N	vitch to	OFF due	i'y pump	/			
	FT-103	FA_103	warning	X	\mathcal{N}	4			
MH-3 Low Flowrate	Notes: Turned ay cle.	l pump su	vitch to	OFF during	pump de	swn			
	FT-105	FA_105	warning	Y	N	4			
Aggregate Low Flowrate	Notes: Turned pump MH-1 switch to OFF during pump down. Non. fated								
	WFS-106	WFS106	fatal	Ý	V	V			
Building Wet Floor Sensor Alarm	Notes: Wet	Sensor, 2	L Sec	cleky. Fat	\sim	/			
	LSH-106	LSH106	warning	Y	N	Y			
Building Sump High Level		Surge way	er w/ p	up whiplugg	yed, Warn;	ng			
	FT-200	FA_200	warning	Y	N	Y			
Sequestering Agent Low Flow		l suction fated	line cli	urig isurp	down cycl	e			
	LSH-200	LSH200	warning	Y	\mathcal{N}	Y			
Spill Pallet Wet Sensor Alarm	Notes: wet	sensor,	10 Sec	delay. 1	Ion - faital	, /			
	LSHH-103	LA_MH1	warning	Y	N	Y			
MH-1 High Level	Notes: Pulled f	loat, A	larn try	per.					
	LSLL-103	LA_MH1	warning	4	N	\checkmark			
MH-1 Low Level	Notes: Should force			, shut of	Fpoups	1			

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)			
	LSHH-104	LA_MH2	warning	Y	N	Y			
MH-2 High Level	Notes: Pulled flo	at. Alarm	topped)					
	LSLL-104	LA_MH2	warning	Y	2	Y			
MH-2 Low Level	Notes: Should ford	e off both MH-2 p	oumps		1.	00			
	pulled float, Alarm tryped. Both pomps shit off								
	LSHH-105	LA_MH3	warning	4	\mathcal{N}	Y			
MH-3 High Level	Notes: pulled float. Altern topped								
	LSLL-105	LA_MH3	warning	4	N	Y			
MH-3 Low Level	Notes: Should forc	e off both MH-3 p	pumps pulle	ed float, 1	Both pups	shit off			
	TT-100	TA_100	shutdown	V	Y	У			
Building High	Notes: Set at	110°F.	Change	to 70.	l	1			
Temperature	2 min	delay.	Fatal						
	TT-100	TA_100	shutdown	Y	У	Y			
Building Low	Notes:	40° F.	Chane	to 90.	/	/			
Temperature		delay. F							

Monthly OM&M Log Sheet, Groundwater Collection and	Date:	8/7/14
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time:	0945
French Road Facility, Utica, New York	Technician:	W frington
SYSTEM STATUS	1 (\int
System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	tuto	
System currently cycling? <u>NO</u>		
Alarms? (list) $FA_2 \overline{00}$, $FA_1 \overline{02}$		

Electrical Meter Reading (kWh):

233923

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	26.4	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	16.2	(inches)
Blower intake line vacuum [PI-100]	-7 2	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	. 0.4 -2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.4	(°) (inches)

Yes

405

Same

le

Sca

MH-2

Y.

MH-3

MH-1

γ

 $\overline{}$

Is white "POWER ON" light on air stripper control panel lit? Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position? Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	8/7/14 -				-0945
Instantaneous Flowrate [gpm]	0	0	0	0	0
"Total" Flow (resettable, gal)	3372304	555574	1459 760	O	05215760
"Perm" Flow (gal)	21677473	3650174	49 848 19	1839	17051896
Pump 1 Running (Y/N)?	N	\mathcal{N}	2	N	NA
Pump 2 Running (Y/N)?	15	N	N	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) _____ (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) _____ (located on duct heater control panel door)

Date: <u>୫/୨//ዣ</u> Time: _____

Technician:

VAPOR PHASE PARAMETERS (continued)

Ń

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	70	(°F)	
Pre-Carbon Temperature	TI-400	81	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	14	(in. W.C.)	
Mid-Carbon Pressure	PI-402	3,5	(in. W.C.)	
Effluent Pressure	PI-403	0	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	28,54	(in. W.C.)	
Vapor Flowrate	FT-106	630	(cfm)	
Pre-Carbon Temperature	TT-400	78.2	(°F)	
Pre-Carbon Pressure	PT-400	11.3	(in. W.C.)	
Building Temperature	TT-100	74,6	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	NIY	
Is low flow alarm present? (Y/N)	YN	
Is pump in external mode? (Y/N)	NY	
If in external mode, record one set of mA and stroke speed values	2	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	19 [*] (gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	1	*
Inspect sequestering agent components signs of leaking or wear (tubing [suct injection, bleed return], injection check va fitting, spill pallet, e	ion, alve	prophens (Note: sequestering agent usage appears essentially uncharged From July yearing)

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

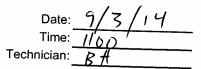
Task		Notes
Monthly liquid effluent sample collected? (Y/N)	Y	Time: 1400
pH of effluent sample	8:3	8,3
Model of pH meter	pH tester 30	Myran Utrameter II
Calibration notes / method used		by Fre rental
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: 00	MH-3: V Yes

Date: <u>8/?///</u> Time: ______ nician: _____

Technician:

MONTHLY OM&M TASKS (continued)

¢


Task		Notes			
Liquid flow sensors cleaned? (Y/N) (only as needed)	No				
	MH-1	MH-2	MH-3		
Monthly manhole inspections conducted? (Y/N)					
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	N	ų	N		
Do level floats appear to be in good condition and hanging freely? (Y/N)	Y	Y	Y		
Observe groundwater inside each manhole and note odor and appearance	Clear noudar	Clear no ador	No. od elear		
Is confined space entry signage present at each manhole? (Y/N)	У	Y	γ		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	hore	None	None		
With pump(s) running, listen for any unusual sounds	Nore	None	None		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	200)	9 000	goud		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	None				
List any notable observations					
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Ý				

ltem			Status	
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	V			
Is eyewash/shower station operational and unobstructed? (Y/N)	Y			
Is interior emergency lighting operational? (Y/N)	Y			
Is first aid kit present and in good condition? (Y/N)	У			
Is lockout/tagout equipment available? (Y/N)	Ý			
Have electrical GFIs been tested and reset? (Y/N)	Ý			
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Ý			
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)		Statec	Date:	3/13/14
	OMM:	Arcadis	Date:	3/20115/14
Is emergency spill kit available? (Y/N)	У			,
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Ý			
Is current SPDES permit onsite? (Y/N) (note date)	¥	Date:	8/1/3	2014

Monthly OM&M Log Sheet, Gro Treatment System, Solvent Doc French Road Facility, Utica, New	k Area, Forme	ection and er Lockheed Mar	tin	Date: Time: Technician:	9/2/14 1230	
SYSTEM STATUS				•		
System operational? (PLC screen System currently cycling? Ha Alarms? (list)	id to +	em in "AUTO" or uVn MH- ζ /045-	1 01 .	<u>Au</u> <u>AH3</u>		nauto
Electrical Meter Reading (kWh):	236	08D				
AIR STRIPPER PARAMETERS (r	ecord while ai	r stripper is runı	ning)			
And the second	ameter			Value	Units	
	Air stripper	sump pressure [P	1-1061 0		in. W.C.)	
Air stripper sump	water elevation	n (record from site g	gauge) //		inches)	
Main damper position (Blower intal	ke line vacuum [P	1-1001	the second se	in. W.C.)	
Main damper position (record di	stance from cent	er of wingnut to outs blower hou	side of 2	// (i	nches)	
Interior dilution	damper positio	n (0° is shut, 90° is				
		air stripper control			') (inches)	
Is air stripper hand-off-a	uto switch [HS			es,		
Note scaling	inside liquid eff	luent pipe from ac	position?	tand		
Note scaling observed in	side air strippe	r via clear trav ac				-
FLOWMETER / PUMP PARAMETE			$\frac{1}{2}$	eeds clea	aning	-
Are white power lights	it on MH 4 MU			MH-1 M	MH-2 MH-3	
Are white power lights l Are pump hand-off-auto switcl	hes [HS-101A	I-2, and MH-3 con HS-101B, HS-102 HS-103B] in "aut		IS-	Y I Y I	All others Auto
		Statement of the second s		(N) <u>MH-1, Pn</u>	mp#1 in Hund.	Anto
Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump	Cumulative	
Date/Time	1/3 1050		in the tool	[FT-104]	[FT-105]	
	36.02	0.0	0.17		75 115	
"Total" Flow (resettable, gal)	3,562,185	587832		90.0	55.48	
Perm" Flow (gal) Z	1,867,336	3.682,432	5 086 76		5,516950	
Pump 1 Running (Y/N)?	Y '	N	N	N	17,353,095 NA	
Pump 2 Running (Y/N)?	N	N	Ň			
- Flowrate and Permanent Flow can up/down arrows.	be viewed locally	from wall-mounted	flow transmitters	FT-101 through	FT-105 using	
APOR PHASE PARAMETERS (rec	ord while air o	strippor io sussi)			
Is duct heater "HEAT ONC			ig)			
Is duct heater "HEAT ON/C Is duct heater "HI TEMP" ala	arm light on? ()		(located on duct	heater control pa	anel door)	
	ann nght off? (Y	//v)//	(located on duct	heater control pa	anel door)	

7

۰.

VAPOR PHASE PARAMETERS (continued)

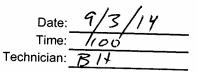
P

Parameter	PID Tag	Value	Units	
Pre-Duct Heater Temperature	TI-300	70	and the second second second	Notes
Pre-Carbon Temperature		80	(°F)	
Duct Heater Temperature Setpoint		85	(°F) (°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	74-	(in MC)	
Mid-Carbon Pressure	PI-402	3.5	(in. W.C.)	
Effluent Pressure	PI-403		(in. W.C.)	
			(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

and the provide and the second s	and the second se			
Parameter	PID Tag	Value	Units	Neter
Air Stripper Sump Pressure	PT-106	28.14	(in. W.C.)	Notes
Vapor Flowrate	FT-106	609	(cfm)	
Pre-Carbon Temperature	TT-400	781	(°E)	
Pre-Carbon Pressure	PT-400	11,1	(in. W.C.)	
Building Temperature	TT-100	74.9	(°F)	
- Press the "1/O" un /d-				

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.


SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	N
Is pump operating? (Y/N)	V	Notes
Is low flow alarm present? (Y/N)		
Is pump in external mode? (Y/N)	<u>/v</u>	
If in external mode, record one set of mA and stroke speed values	4.6 (mA) 3 (spm)	(display screen should automatically be switching back and
Stroke length	SC (spin)	form between mA and stroke speed)
Sequestering agent drum level [LI-200]	13 (gal)	(record from local stroke length knob on pump) (1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	1	procede modeca galion marks)
Inspect sequestering agent components signs of leaking or wear (tubing [suctio injection, bleed retum], injection check val fitting, spill pallet, eto	on, ve	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	N. A
Monthly liquid effluent sample collected? (Y/N)	Ves Time: // o o
pH of effluent sample	813
Model of pH meter	Horiba V-5000
Calibration notes / method used	Horiba V-5000 3 pt. Logged in Calibration log on sike
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: NO MH-3: Ves

MONTHLY OM&M TASKS (continued)

.

Task		Notes	NAMES OF A DESCRIPTION OF A
Liquid flow sensors cleaned? (Y/N) (only as needed)	No		
Monthly manhole inspections conducted? (Y/N)	MH-1	MH-2	MH-3
Leaking/dripping of water observed from double-	<u> </u>		
walled HDPE discharge pipe located inside manhole? (Y/N)	\sim	N	N
Do level floats appear to be in good condition and hanging freely? (Y/N)	Yes	Yes	Yes
Observe groundwater inside each manhole and note odor and appearance	Clear/10 odor	clew/no odor	clecy/No od
Is confined space entry signage present at each manhole? (Y/N)	Yes	Yes	Yes
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	ok	6K	ok
With pump(s) running, listen for any unusual sounds	None	None	None
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	OK	OK	ok
Vith system running, visually inspect all piping within ne treatment system for leaks, signs of distress, or any ther notable observations	6 K		
List any notable observations		······································	
re both building heaters working properly? (Y/N) adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Yes		

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	Kar
Is eyewash/shower station operational and unobstructed? (Y/N)	Yes
Is interior emergency lighting operational? (Y/N)	V + C
Is first aid kit present and in good condition? (Y/N)	VIPS
Is lockout/tagout equipment available? (Y/N)	Vos
Have electrical GFIs been tested and reset? (Y/N)	4126
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Yes
(I/N) (note dates for each)	HASP: Yes Date: 3/13/14 OMM: Yes Date: 3/14/5/20
Is emergency spill kit available? (Y/N)	Yes
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	V-c> Date: 8/1/14-7/31/19

Date: 10 Time: Technician: uA

SYSTEM STATUS

System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	A,L
System currently cycling?	1010
Alarms? (list)	<u></u>
	None

Electrical Meter Reading (kWh):

238573

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	26	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	16	(inches)
Blower intake line vacuum [PI-100]	1	(in. W.C.)
Nain damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0,4	(°) (inches)

Is white "POWER ON" light on air stripper control panel lit?

Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position?

Note scaling inside liquid effluent pipe from access port

Note scaling observed inside air stripper via clear tray access door $\frac{1}{2}$ Ma ll

Smill anoun trays cleaned anan

MH-2

MH-3

MH-1

Ves

yes

Ves

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-

103A, and HS-103B] in "auto" position? (Y/N)

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	1.1.1.1.1.0-0	10/7/14 1300	10/7/14 1300	10/7/14/300	
Instantaneous Flowrate [gpm]	010	0,0	0.0	0.0	10/ 1/14 1,300
"Total" Flow (resettable, gal)	3734158	614362	1646961	0.0	5775220
"Perm" Flow (gal)		3708962	5172020	1839	5775278
Pump 1 Running (Y/N)?	N	N	NI	1021	16/14/4
Pump 2 Running (Y/N)?		1	N	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N) (located on duct heater control panel door) Is duct heater "HI TEMP" alarm light on? (Y/N) N (located on duct heater control panel door)

Date: <u>10/9//4</u> Time: <u>6800</u> Technician: WA FLL

VAPOR PHASE PARAMETERS (continued)

Parameter -	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	65	(°F)	
Pre-Carbon Temperature	TI-400	78	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	14	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
ir Stripper Sump Pressure	PT-106	30.37	(in. W.C.)	
Vapor Flowrate	FT-106	562.8	(cfm)	
Pre-Carbon Temperature	TT-400	79.8	(°F)	
Pre-Carbon Pressure	PT-400	10-1	(in. W.C.)	
Building Temperature	TT-100	68.4	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status		Notes
Is pump operating? (Y/N)	Y		
Is low flow alarm present? (Y/N)	N		
Is pump in external mode? (Y/N)	Y		
If in external mode, record one set of mA and stroke speed values	0	mA) spm)	(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	1 /	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	8	(gal)	(1 Gallon tick marks hand written in marker on drum based of plastic molded gallon marks)
Quantity of additional full drums	1	10 /	, see a see gallon markey
Inspect sequestering agent components f signs of leaking or wear (tubing [suctio injection, bleed return], injection check valu fitting, spill pallet, etc	n, ve	OK	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes	
Monthly liquid effluent sample collected? (Y/N)	V Time: 10:55	
pH of effluent sample	8.17	
Model of pH meter	YSI QUATO 20M	
Calibration notes / method used	Pro-calibrated by ECO	
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: NO MH-3: NO	

Date: <u>10/9//4</u> Time: <u>08700</u> Technician: <u>LAT-LL</u>

MONTHLY OM&M TASKS (continued)

Task	Notes			
Liquid flow sensors cleaned? (Y/N) (only as needed)	N			
	MH-1	MH-2	MH-3	
Monthly manhole inspections conducted? (Y/N)	Y	Ч	Y	
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	N	N	N	
Do level floats appear to be in good condition and hanging freely? (Y/N)	Ч	Ч	Y	
Observe groundwater inside each manhole and note odor and appearance	no odar munky	No odov Murky	No obor Mutty	
Is confined space entry signage present at each manhole? (Y/N)	Y	Y	Y	
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	none	Nove	none	
With pump(s) running, listen for any unusual sounds	none	None	hone	
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good	Good	6000	
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	none			
List any notable observations				
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Y			

ltem	Status		
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)			
Is eyewash/shower station operational and unobstructed? (Y/N)	м		
Is interior emergency lighting operational? (Y/N)	Y		
Is first aid kit present and in good condition? (Y/N)	4		
Is lockout/tagout equipment available? (Y/N)	4		
Have electrical GFIs been tested and reset? (Y/N)			
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	Ч		
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP: Y Date: 3/14 OMM: Y Date: 5/20/4		
Is emergency spill kit available? (Y/N)	Y Sale: Stact		
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	Ч		
Is current SPDES permit onsite? (Y/N) (note date)	9 Date: 7/16/2014		

QUARTERLY OM&M TASKS

Date:	10/91	14
Time:	0600	
Technician:	WAJL	L

Quarterly liquid influent samples collected for MH-1, MH-2, and MH-3? (Y/N) $_$ \checkmark

MH-1 influent pH	7.31	Date:	10/9/14	Time:	10:50
MH-2 influent pH	7.44	Date:	10/9/14	Time:	17:20
MH-3 influent pH	7.54	Date:	10/9/14	Time:	17:25

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Quarterly vapor samples collected pre-carbon, mid-carbon, and effluent? (Y/N) ____

Are MH-2 or MH-3 online in auto during sampling collection? No

Treatment system valves exercised? $\underline{\vee}$

Sample Location	PID Tag	Vapor Sample collects? (Y/N)	Condensate present in sample? (Y/N)	Canister #	Canister Vacuum at Start (in. Hg)	Canister Vacuum at Finish (in. Hg)	Sample Time
Pre-Carbon	SD-401	Y	N	5128	25	4	17:12
Mid-Carbon	SP-400	Ý	N	4337	25	4	17:07
Post-Carbon	SP-403	Ý	N	3413	24	4	17:03

Quarterly catch basin samples collected for CB-1, CB-2, and CB-3? (Y/N)

Quarterly groundwater elevation levels collected? (Y/N)

Blower bearings greased? (Y/N)

Indicate air velocity measurement collected from 8" effluent pipe (plug located on wall side of vertical portion of effluent pipe, 1 fpm = 0.317 cfm)

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Liquid flow transmitters FT-101, FT-102, FT-103, and FT-105 calibrated? (Y/N) (should be

done after flow sensor cleaning)

Sensor Name	Test Type	MH in. Start	MH in. End	MH in. Δ	∆ Gal.	Sensor Start	Sensor End	Sensor	% Diff.	Orig. K Factor	Factor
FT-101	Pumodawan	121.5	133.75	12-25	215.994	9662	9886	224	-3.60	76.5	79.3
Contraction of	numpean	1171		F	-T-105	5415	5620	205	519		
FT-102	Rimpdown	199.625	200.5	11.875	209.295	7220	7421	201	4.04	73.6	70.6
20/22/22/22	II con-pease	Contraction of the	,	F	-T-105	5228	5415	187	11.25		at Alleren
FT-103	Pumodown	159	169.12	11.125	196.067	9267	9467	200	1.99	66.73	19 68.1
	Tropan	1.10 1	114 1 1 1	F	-T-105	5061	5228	167	16.01		
	Test Type	MH1 %	diff M	-12 % diff.	MH3 %	diff. A	Avg. % Dif	f. Orig	. K Facto	r Ne	w K Factor
FT-105	Companson			1.25	14.0		9.10	×	86.17		78.3

Notes*: %

% Difference calculated by the following formula:

 $\frac{MH-S}{0.5(MH+S)} \times 100$

Manholes are 6' diameter. 1" manhole depth = 17.624 gallons. If % difference is negative, increase K factor by that percentage to reach zero. If % difference is positive, decrease K factor by that percentage to each zero.

Manhole floats tested? (N):

Initial & Final

(fpm)

(cfm)

2087

6101.

Date: 10/9//4 Time: 0800 Technician: WA FLL

QUARTERLY CRITICAL DEVICE / ALARM TESTING

Test the following critical alarms (note that system must be in AUTO to observe proper alarm response):

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	PT-106	PA_106	fatal	Ч	Y	Y
Air Stripper Sump High Pressure	Notes: Set high	alarm to	20 INC. V (Was 351		shutdown	
	PT-106	PA_106	fatal	Ч	Y	Y
Air Stripper Sump Low Pressure	Notes: Alarm level	was 8 "wa	, set to	34 "We. W	ient into sh	utelom
	LSH-100	LA_100	fatal	Y	Y	Y
Air Stripper High Liquid Level	Notes: Rumped clea tripped.	in H_{20} from	n sump	into stripp	er untifi	oat
	LSL-100	LA_100	fatal	Y	N	Y
Air Stripper Low Liquid Level	Notes: Increased air Caused o	stripper si Navning a	nmp pressi larm.	arets force t	120 out of t	nesum
	FT-106	FA_106	fatal	¥	4	Ч
High Air Flowrate				SOO ofm. M	ent into shut	dam.
	FT-106 Notes:	FA_106	fatal	Ч	Y	4
Low Air Flowrate		was 300 cfr	m, set to q	800 cfm . Wh	tinto shartow	~~ .
	TT-400	TAH400	fatal	1	Y	Y
Pre-Carbon High Temperature	Notes: Alarm lever	iwas 110°	F, set to	65°F. Wer	nt into shu	tdown.
5.4 5	TT-400	TAL400	fatal	¥	Y	Y
Pre-Carbon Low Temperature	Notes: Alama Level	was 60°F,	set to 1	100° F. Cau	sted Shite	an
1270 242 C 1997 C	PT-400	PA_400	fatal	Ý	Y	(
Pre-Carbon High Pressure	Notes: Alerm ler	vel was 25:	tuc, Set f	D ZIWC.	aused 5	holen
	PT-400	PA_400	fatal	~	Y	Y
Pre-Carbon Low Pressure	Notes: Alim ler	rel wing 1,0	twc, Sct	- to 24 INC	, cased sh	stom

Date: 10/9/14 Time: 0800 Technician: uA-LL

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)
	FT-101	FA_101	warning	Ч	N	Ч
MH-1 Low Flowrate	Notes: Turnee auto	HOA SWH	ch to "o sed warn	tt" when pun	np was calle	d in
	FT-102	FA_102	warning	Ч	N	Y
MH-2 Low Flowrate	Notes: Turned auto Mo	HOA svitel de. can sed	n to"off", warning	when primp ,	was called in	n ,
	FT-103	FA_103	warning	v	N	4
MH-3 Low Flowrate	Notes: Turned the mode.	caused war	to "off" wi	hen pump u	vas called i	n auto
	FT-105	FA_105	warning	¥	N	Y
Aggregate Low Flowrate	Notes: Twree Called,) MI-J-Z	off w/	HOA suitchn	sher pup w	as
	WFS-106	WFS106	fatal	Y	Y	Y
Building Wet Floor Sensor Alarm	Notes: Put Sen	kar.h c	up of we	fer i cased	shortdown	
	LSH-106	LSH106	warning	Y	2	V
Building Sump High Level			ean the	from silvek	. Tripped fl	oat.
Comments in A	FT-200	FA_200	warning	Y	N	Ч
Sequestering Agent Low Flow	Pulled sequest		dispensiv I warnin	g tubing ew	t izdivim n	hile
	LSH-200	LSH200	warning	Y	N	Y
Spill Pallet Wet Sensor Alarm	Notes: placed	SRNS OF I	n cop	of wate.	Carsed in	Const
	LSHH-103	LA_MH1	warning	Y	N	Y
MH-1 High Level	Notes: Used long p	role to the	floats, i	Caused warn	ngs.	
	LSLL-103	LA_MH1	warning	Y	N	Ч
IVIT I LOW LEVEL	Notes: Should force Used long po			used warmiv	0	1

Date: <u>10/9/14</u> Time: <u>0800</u> Technician: UA + LL

QUARTERLY CRITICAL DEVICE / ALARM TESTING (continued)

Alarm	Corresponding Transmitter / Sensor	PLC Alarm Output Name	Alarm Type	Caused PLC Alarm Output State Change? (Y/N)	Caused System Shutdown? (Y/N)	Passed (Y/N)		
	LSHH-104	LA_MH2	warning	Ч	N	1		
MH-2 High Level	Notes: Alarma Used love p		HOOF floats. Ca	used Nami	ng s			
	LSLL-104	LA_MH2	warning	Y	N	Ч		
MH-2 Low Level	Notes: Should ford	NA TANA MANAGAMATAN ANA ANA ANA ANA ANA ANA ANA ANA ANA	2220.000 (A.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S	caused warn	ng.			
	LSHH-105	LA_MH3	warning	Y	N	Y		
MH-3 High Level	Notes: Used long pole to trip toats caused warnings.							
	LSLL-105	LA_MH3	warning	Y	N	4		
MH-3 Low Level	Notes: Should force off both MH-3 pumps Used long pole to trip float. Caused warning							
	TT-100	TA_100	shutdown	Ý	У	AYU		
Building High Temperature	Notes: Alorm	was set t	0 110°F	. Set to 5	0 "F. caused	shotom		
-	TT-100	TA_100	shutdown	Y	У	Y		
Building Low Temperature	Notes:	er al	1 HOOF	col la	80°F. Caused	1 -1 - 1 -1		

Monthly OM&M Log Sheet, Groundwater Collection and	Date: 11/5/14
Treatment System, Solvent Dock Area, Former Lockheed Martin	Time: 0920
French Road Facility, Utica, New York	Technician: B. Haravitch
SYSTEM STATUS	L. LYD MS
System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	AUTO
System currently cycling?	Ч
Alarms? (list)	NONE, NIA
	• •

Electrical Meter Reading (kWh):

241644

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units
Air stripper sump pressure [PI-106]	28	(in. W.C.)
Air stripper sump water elevation (record from site gauge)	15.5	(inches)
Blower intake line vacuum [PI-100]	- 1	(in. W.C.)
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)
Interior dilution damper position (0° is shut, 90° is open)	0.4	(°) (inches)
Is white "POWER ON" light on air stripper control panel li	t? 🗸	
Is air stripper hand-off-auto switch [HS-100B] in "AUTO" position	1? Y	
Note scaling inside liquid effluent pipe from access po	ort Minim	al
Note scaling observed inside air stripper via clear tray access do	or None	

FLOWMETER / PUMP PARAMETERS

MH-1 MH-2 MH-3

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Y Y Y Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Y

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]	
Date/Time	11/5/14 0920	11/5/14 0920	11/5/14 0920	11/5/14 0922	11/5/14 0920	
Instantaneous Flowrate [gpm]	37.36	0	6	0	39.05	
"Total" Flow (resettable, gal)	3940794	650802	95642	0	6113405	
"Perm" Flow (gal)	22245955	3745402	5270204	1839	17949548	
Pump 1 Running (Y/N)?	2	N	N	N	NA	
Pump 2 Running (Y/N)?		N	N	NA	NA	

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Ч	(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	N	(located on duct heater control panel door)

 Date:
 || / 5 / | 4

 Time:
 0920

 Technician:
 BH , LL

VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	67	(°F)	
Pre-Carbon Temperature	TI-400	80	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	84	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	14	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	0.5	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.43	(in. W.C.)	
Vapor Flowrate	FT-106	637.2	(cfm)	
Pre-Carbon Temperature	TT-400	90.8	(°F)	
Pre-Carbon Pressure	PT-400	10.8	(in. W.C.)	
Building Temperature	TT-100	63.0	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.

SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status		Notes
Is pump operating? (Y/N)	Y		
Is low flow alarm present? (Y/N)	N		
Is pump in external mode? (Y/N)	Y		
If in external mode, record one set of mA	5.1 ((mA)	(display screen should automatically be switching back and
and stroke speed values	6 (:	spm)	forth between mA and stroke speed)
Stroke length	95		(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]	1.5 €) (gal)	(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	D,s	sec hi	the below

Inspect sequestering agent components for <u>None</u> signs of leaking or wear (tubing [suction, injection, bleed return], injection check valve fitting, spill pallet, etc.)

signs of leaking or wear (tubing [suction, @ switched to new drum with 30 gallons in it.

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Y Time: 0930
pH of effluent sample	8.42
Model of pH meter	Hanna Piccolo H1-1290
Calibration notes / method used	2 pt. w/ buffer solution
Are MH-2 or MH-3 online in auto during sampling collection?	

Date: <u>((/ 5 // 4</u> Time: <u>0920</u> Technician: BH, LL

MONTHLY OM&M TASKS (continued)

Task	Notes				
Liquid flow sensors cleaned? (Y/N) (only as needed)	Not needed.				
	MH-1	MH-2	MH-3		
Monthly manhole inspections conducted? (Y/N)	Y	Y	Ч		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	2	N	N		
Do level floats appear to be in good condition and hanging freely? (Y/N)	Ч	Ч	Ч		
Observe groundwater inside each manhole and note odor and appearance	clear, no odor no sheen	clear, no odor or sheen	clear, nooc ho sheen		
Is confined space entry signage present at each manhole? (Y/N)	Ч	Y	Ч		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	None	None	None		
With pump(s) running, listen for any unusual sounds	None	None	None		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	Good	Good	Good		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations		tem is good			
List any notable observations	None				
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	Ч				

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N	
Is eyewash/shower station operational and unobstructed? (Y/N	N) Y
Is interior emergency lighting operational? (Y/N	
Is first aid kit present and in good condition? (Y/N	
Is lockout/tagout equipment available? (Y/N	
Have electrical GFIs been tested and reset? (Y/N	N) Y
Do all electrical panels have 36" of open floor space in front of them (Y/N	
	HASP: Y Date: 3/3 3/13/
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each	OMM: Y Date: 00.2014
Is emergency spill kit available? (Y/N	N) Y
Is H&S signage including emergency contact list, eye protection hearin protection, and automatic equipment present? (Y/N	ng N) Y
Is current SPDES permit onsite? (Y/N) (note date	

Date: <u>2/3/14</u> Time: <u>930</u> Technician: <u>B Haravitet</u>

SYSTEM STATUS

	MI
System operational? (PLC screen indicating system in "AUTO" or "MANUAL")	#140
System currently cycling? $\gamma e \leq \gamma$	
Alarms? (list) Aerator Sump Level (Process 32) - Non-Fatal, Jon	1 A/S SUMP level. Recognized
and reported (1099ed) on 11/22/14. Adjusted BFV-401 to put less	pressure on sump. Raised
	rater level from 15.25" to
Electrical Meter Reading (kWh): 276761	16.25"

AIR STRIPPER PARAMETERS (record while air stripper is running)

Parameter	Value	Units	
Air stripper sump pressure [PI-106]	29	(in. W.C.)	
Air stripper sump water elevation (record from site gauge)	15.25	(inches)	raised to 16.2 by BFV-401
Blower intake line vacuum [PI-100]	-1.5	(in. W.C.)	
Main damper position (record distance from center of wingnut to outside of blower housing)	2	(inches)	
Interior dilution damper position (0° is shut, 90° is open)	0.4	(°) (inches)]
Is white "POWER ON" light on air stripper control panel Is air stripper hand-off-auto switch [HS-100B] in "AUTO" positio			
Note scaling inside liquid effluent pipe from access p	port Minin	nal	
Note scaling observed inside air stripper via clear tray access d	oor None	-	

FLOWMETER / PUMP PARAMETERS

Are white power lights lit on MH-1, MH-2, and MH-3 control panels? (Y/N) Are pump hand-off-auto switches [HS-101A, HS-101B, HS-102A, HS-102B, HS-103A, and HS-103B] in "auto" position? (Y/N) Ye 5

Parameter	MH-1 [FT-101]	MH-2 [FT-102]	MH-3 [FT-103]	Sump [FT-104]	Cumulative [FT-105]
Date/Time	12/3 930	10.76×3×			
Instantaneous Flowrate [gpm]	35.62	0.0	0.0	0.0	37.52
"Total" Flow (resettable, gal)	4.155.938	679.941	198,892	D	6,460,266
"Perm" Flow (gal)	22,461,122	3,774,541	5,373 453	1,839	18 296 409
Pump 1 Running (Y/N)?	Υ.	Ň	\wedge	N	NÁ
Pump 2 Running (Y/N)?	N	N	\wedge	NA	NA

- Flowrate and Permanent Flow can be viewed locally from wall-mounted flow transmitters FT-101 through FT-105 using up/down arrows.

VAPOR PHASE PARAMETERS (record while air stripper is running)

Is duct heater "HEAT ON/OFF" light lit? (Y/N)	Y	_(located on duct heater control panel door)
Is duct heater "HI TEMP" alarm light on? (Y/N)	\mathcal{N}	(located on duct heater control panel door)

Date: Time: Technician:

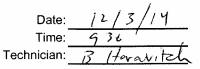
VAPOR PHASE PARAMETERS (continued)

Parameter	PID Tag	Value	Units	Notes
Pre-Duct Heater Temperature	TI-300	67	(°F)	
Pre-Carbon Temperature	TI-400	89	(°F)	
Duct Heater Temperature Setpoint	-	85	(°F)	(located in green on duct heat control panel)
Duct Heater Temperature Transmitter	-	85	(°F)	(located in red on duct heat control panel)
Pre-Carbon Pressure	PI-401	(4	(in. W.C.)	
Mid-Carbon Pressure	PI-402	4	(in. W.C.)	
Effluent Pressure	PI-403	1	(in. W.C.)	

TRANSMITTER READINGS (record from ProControl)

Parameter	PID Tag	Value	Units	Notes
Air Stripper Sump Pressure	PT-106	30.98	(in. W.C.)	
Vapor Flowrate	FT-106	674.4	(cfm)	
Pre-Carbon Temperature	TT-400	91.8	(°F)	
Pre-Carbon Pressure	PT-400	[[.]	(in. W.C.)	
Building Temperature	TT-100	61.7	(°F)	

- Press the "I/O" up/down arrows on the ProControl screen until the desired transmitter value is displayed.


SEQUESTERING AGENT (record while air stripper is running)

Parameter	Status	Notes
Is pump operating? (Y/N)	Ý	
Is low flow alarm present? (Y/N)	Ň	
Is pump in external mode? (Y/N)	Y	
If in external mode, record one set of mA and stroke speed values		(display screen should automatically be switching back and forth between mA and stroke speed)
Stroke length	85	(record from local stroke length knob on pump)
Sequestering agent drum level [LI-200]		(1 Gallon tick marks hand written in marker on drum based on plastic molded gallon marks)
Quantity of additional full drums	0	
Inspect sequestering agent components signs of leaking or wear (tubing [such injection, bleed return], injection check va fitting, spill pallet, e	tion, alve	

MONTHLY OM&M TASKS

Note: MH-1 must be online during sample collection, if necessary wait for MH-1 Pump 1 or 2 to turn on automatically (MH-1 typically batches every 1.5 hours).

Task	Notes
Monthly liquid effluent sample collected? (Y/N)	Time: 0950
pH of effluent sample	8.22 8.2
Model of pH meter	HI 1290 Piccelo
Calibration notes / method used	2 pt
Are MH-2 or MH-3 online in auto during sampling collection?	MH-2: N MH-3: N

MONTHLY OM&M TASKS (continued)

Task		Notes			
Liquid flow sensors cleaned? (Y/N) (only as needed)	No				
	MH-1	MH-2	MH-3		
Monthly manhole inspections conducted? (Y/N)	Ý	Y	Y		
Leaking/dripping of water observed from double- walled HDPE discharge pipe located inside manhole? (Y/N)	N	N	N		
Do level floats appear to be in good condition and hanging freely? (Y/N)	Y	Y	Υ.		
Observe groundwater inside each manhole and note odor and appearance	clear no sheen slight odor	No odor, No shun	No odor No shun		
Is confined space entry signage present at each manhole? (Y/N)	Ý	Y	4		
With pump(s) running, visually inspect discharge piping, pipe fittings, and pressure relief valve for leaks	OK	OK	oK		
With pump(s) running, listen for any unusual sounds	Nore	none	None		
Inspect condition of collection line gate valve protection flush-mount covers for each manhole	0K-	oK	oK		
With system running, visually inspect all piping within the treatment system for leaks, signs of distress, or any other notable observations	ok				
List any notable observations					
Are both building heaters working properly? (Y/N) (adjust respective wall-mounted thermostats for both heaters and confirm proper heater response)	yes				

HEALTH AND SAFETY

Item	Status
Is fire extinguisher charged, unobstructed, and possessing an inspection tag? (Y/N)	
Is eyewash/shower station operational and unobstructed? (Y/N)	1) Y
Is interior emergency lighting operational? (Y/N)) <u> </u>
Is first aid kit present and in good condition? (Y/N)	0 7
Is lockout/tagout equipment available? (Y/N)	
Have electrical GFIs been tested and reset? (Y/N)	
Do all electrical panels have 36" of open floor space in front of them? (Y/N)	
Are both the OM&M Manual and HASP onsite? (Y/N) (note dates for each)	HASP: 7 Date: 3/14 OMM: 7 Date: 3/11
Is emergency spill kit available? (Y/N)	
Is H&S signage including emergency contact list, eye protection hearing protection, and automatic equipment present? (Y/N)	
Is current SPDES permit onsite? (Y/N) (note date)	b) V Date: $\frac{8}{1/14} - \frac{7}{31/11}$

Appendix C

Alarm Response Log Sheets

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

Fatal Alarms

Date: 1/21/2014 Time: 14:30 Technician: Todd Carignan

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 1/15/2014 Time: 6:30

Alarm Condition:

Automated daily system operational status email not received as scheduled at 6:30 am.

Cause of Alarm:

Unknown

Corrective Action:

Todd Carignan attempted to log into the system remotely on 1/15/14 at approximately 7:30. However, a remote connection was able to be made.

Dan Zuck was onsite 1/15/14 at 11:10 and found the system offline and the PLC screen in a frozen/locked state. The PLC was rebooted and appeared to start up normally. Todd Carignan logged into the system remotely while Dan Zuck was onsite. The system was restarted in "Auto" at 11:12. Each of the analog and discrete inputs were reviewed for accuracy. According to data logger files the PLC stopped running around 3:15 am.

It should be noted that the PLC was bench tested in February 2013 and was found to be functioning properly. Due to the fact that the PLC has microprocessor, similar to a PC, it is recommended that the PLC is continually rebooted on a quarterly basis. This is currently performed when testing the UPS unit during the quarterly critical device events.

Alarm Response Log Sheet, Groundwater Collection and	
Treatment System, Solvent Dock Area, Former Lockheed Martin	
French Road Facility, Utica, New York	

Date:	3/5/2014
Time:	13:30
Technician:	WA/BH

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/5/14 Time: 7:37:00

Alarm Condition:

Process 44: Building Low Temperature

Cause of Alarm:

Arcadis personnel (on site to perform their last task related to groundwater sampling for the West Lot) were in GCTS building, reportedly cleaning out garbage, etc. The overhead door was left open for too long of a period and the cold outside air cooled the building to a point below the alarm set point of 45 degrees.

Stantec restarted the system at approximately 0910. No further action required.

Corrective Action:

Mahoney, Robert

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Wednesday, March 05, 2014 7:39 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 07:37:20 on 03/05/2014

ALARM was triggered by PROCESS 44. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02. This system last shut down at 10:06:23 on 02/11/2014 and the cause was KEYPAD.

DISCRETE INPUT STATUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	OFF
LSH200	OFF						
		DISCRE	TE OU'	TPUT STAT	TUS:		
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF
MH3_P1	OFF	MH3_P2	OFF	B_100	OFF	DH_300	OFF
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF
LSH106	OFF	WFS106	OFF	TA_100	ON	FA_105	OFF

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:								
Tagarama	Value	Units				Ala	rm Setpoints	5
Tagname	Value	Unus	Totalizer	Total Units	Low	High	Low-Low	High-High
FT_101	0.00	GPM	59653114	GAL	10.00	80.00	0.00	20.00
FT_102	0.00	GPM	10556036	GAL	10.00	80.00	0.00	20.00
FT_103	0.00	GPM	4125721	GAL	10.00	80.00	0.00	20.00
FT_105	0.00	GPM	14403195	GAL	3.00	80.00	0.00	20.00
PT_106	0.00	IWC			8.00	35.00	0.00	20.00
TT_400	94.0	DEG			60.0	110.0	0.0	20.0
PT_400	0.0	IWC			1.0	25.0	0.0	20.0
TT_100	38.0	DEG			40.0	110.0	0.0	20.0
FT_106	83.3	CFM			300.0	****	0.0	20.0

	ANALOG OUTPUT STATUS:					
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode	
INJSPD	0.0%	Open Loop Proportional				

Date: 5/13/2014 Time: 0900 Technician: W. Armington

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>5/12/14</u> Time: <u>0900</u>

Alarm Condition:

Not a formal alarm condition (i.e. an alarm email was not sent by the system). The GCTS did not pump

water from 5/7/14 at 0920 to 5/12/14 at 0900.

Cause of Alarm:

During site visit on 5/6/14, the GCTS PLC was rebooted, at which time the PLC appears to have defaulted to

Manual mode. Pumping occurred during May 6-7; however no pump operation occurred after 0920

on May 7.

Corrective Action:

On 5/12/14 at 0900, the GCTS was remotely switched to Auto mode and began to pump. As of 5/12/14 at

2310, manhole water levels have returned to their normal operating ranges. Note that the "high-high" alarm

level was not reached in any of the manholes.

Stantec made changes to the PLC settings to facilitate generation of an alarm fax in the future if

system outage results in high manhole water levels.

Date:	6/28/2014
Time:	0731
Technician:	WA

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 6/29/14 Time: 1230

Alarm Condition:

Alarms for Process 36 and process 38 of the GCTS were received at approximately 0730 6/28/2014.

Unable to connect to GCTS for restart.

Cause of Alarm:

Alarms may be related to the automatic sytem shutdown down resulting from ConMed's planned power

shutdown and local network; PLC connectivity problems may also have contributed.

Corrective Action:

Attempt to restart the systems remotely the morning of 6/29/2014 failed due to inability to connect to the

system. A site visit was made to manually clear alarms and restart the systems.

System returned to normal operation.

Mahoney, Robert

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Saturday, June 28, 2014 7:34 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 07:31:27 on 06/28/2014

ALARM was triggered by PROCESS 36. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02. This system last shut down at 10:21:38 on 04/04/2014 and the cause was REMOTE.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	OFF		
MH1_LL	OFF	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF		
MH2_LO	OFF	MH2_LL	OFF	MH3_HH	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	OFF	MH3_LL	OFF	WFS106	OFF		
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF		
LSH200	OFF								
		DISCRE	TE OU	TPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF		
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON		
LA_MH1	ON	FA_101	OFF	LA_MH2	ON	FA_102	OFF		
LA_MH3	ON	FA_103	OFF	PA_106	ON	LA_100	OFF		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF		

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:										
Taonama	Value	Units	Totalizer	Total Units		Ala	rm Setpoint	s		
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	60932468	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10748550	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	4674546	GAL	10.00	80.00	0.00	20.00		
FT_105	1.47	GPM	16378324	GAL	3.00	80.00	0.00	20.00		
PT_106	2.32	IWC			8.00	35.00	0.00	20.00		
TT_400	81.3	DEG			60.0	110.0	0.0	20.0		
PT_400	0.0	IWC			1.0	25.0	0.0	20.0		
TT_100	70.7	DEG			40.0	110.0	0.0	20.0		
FT_106	75.1	CFM			300.0	****	0.0	20.0		

ANALOG OUTPUT STATUS:							
Tagname	Operational Mode						
INJSPD	0.2%	Open Loop Proportional					

Mahoney, Robert

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Saturday, June 28, 2014 7:37 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 07:34:00 on 06/28/2014

ALARM was triggered by PROCESS 38. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02. This system last shut down at 10:21:38 on 04/04/2014 and the cause was REMOTE.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	OFF		
MH1_LL	OFF	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF		
MH2_LO	OFF	MH2_LL	OFF	MH3_HH	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	OFF	MH3_LL	OFF	WFS106	OFF		
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF		
LSH200	OFF								
		DISCRE	TE OU	TPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF		
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON		
LA_MH1	ON	FA_101	OFF	LA_MH2	ON	FA_102	OFF		
LA_MH3	ON	FA_103	OFF	PA_106	ON	LA_100	OFF		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF		

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:										
Taonama	Value	Ilaita	Totalizar	Total Units		Ala	rm Setpoints	S		
Tagname	Value	Units	Totalizer	Totat Units	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	60932468	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10748550	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	4674546	GAL	10.00	80.00	0.00	20.00		
FT_105	1.50	GPM	16378324	GAL	3.00	80.00	0.00	20.00		
PT_106	0.24	IWC			8.00	35.00	0.00	20.00		
TT_400	86.4	DEG			60.0	110.0	0.0	20.0		
PT_400	0.0	IWC			1.0	25.0	0.0	20.0		
TT_100	70.9	DEG			40.0	110.0	0.0	20.0		
FT_106	75.1	CFM			300.0	****	0.0	20.0		

	ANALOG OUTPUT STATUS:								
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode				
INJSPD	0.2%	Open Loop Proportional							

Alarm Date:	7/1/2014
Alarm Time:	20:03:57
Technician:	WA

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/3/14 Time: 1200

Alarm Condition:

Process 41 (Fatal) - High Air Stripper Sump Pressure

Cause of Alarm:

Exact cause of alarm is unknown. During the last site visit on 6/29/2014, one of the butterfly valves in the carbon manifold was partly closed to increase back pressure in the sump. This was done to lower the sump operating water level in an effort to decrease the chance that a high sump level alarm would trip. It is possible this adjustment contributed to the alarm condition.

Corrective Action:

The system was remotely restarted at 21:40 on 7/1/2014 and operation was normal. Stantec will evaluate the carbon manifold adjustment during the upcoming quarterly OM&M visit the week of 7/7/2014 to determine if it continues to be necessary.

Mahoney, Robert

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Tuesday, July 01, 2014 8:07 PM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 20:03:57 on 07/01/2014

ALARM was triggered by PROCESS 41. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in SHUTD mode and the last process to run was SHUTD process #02. This system last shut down at 10:01:28 on 06/29/2014 and the cause was LSH100.

	DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	OFF			
MH1_LL	OFF	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF			
MH2_LO	OFF	MH2_LL	OFF	MH3_HH	OFF	MH3_H2	OFF			
MH3_H1	OFF	MH3_LO	OFF	MH3_LL	OFF	WFS106	OFF			
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF			
LSH200	OFF									
		DISCRE	TE OU'	TPUT STAT	TUS:					
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF			
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON			
LA_MH1	ON	FA_101	OFF	LA_MH2	ON	FA_102	OFF			
LA_MH3	ON	FA_103	OFF	PA_106	ON	LA_100	OFF			
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF			
					1					

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

	ANALOG INPUT STATUS:											
Taonama	Value	Units	Totalizer	Total Units		Alarm Setpoints						
Tagname	value	Unus	Totatizer	Totat Units	Low	High	Low-Low	High-High				
FT_101	0.00	GPM	60961569	GAL	10.00	80.00	0.00	20.00				
FT_102	0.00	GPM	10753276	GAL	10.00	80.00	0.00	20.00				
FT_103	0.00	GPM	4688968	GAL	10.00	80.00	0.00	20.00				
FT_105	1.50	GPM	16423491	GAL	3.00	80.00	0.00	20.00				
PT_106	1.40	IWC			8.00	35.00	0.00	20.00				
TT_400	62.3	DEG			53.3	110.0	0.0	20.0				
PT_400	0.0	IWC			1.0	25.0	0.0	20.0				
TT_100	74.8	DEG			40.0	110.0	0.0	20.0				
FT_106	69.7	CFM			300.0	****	0.0	20.0				

	ANALOG OUTPUT STATUS:								
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode				
INJSPD	0.2%	Open Loop Proportional							

2014 ANNUAL GROUNDWATER COLLECTION AND TREATMENT SYSTEM OPERATION, MAINTENANCE, AND MONITORING REPORT

Non-Fatal Alarms

Date:	12/19/2013
Time:	6:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	12/17/2013	Time:	10:31
	12/22/2013		23:14
	1/10/2014		2:44

Alarm Condition:

Processes 30.

Low flow alarm for FT-102 (Pump 1, Manhole MH-2).

Non-fatal alarm.

Cause of Alarm:

Flow transmitter FT-102 not recording flow despite MH-2-pump-2 being called to run.

Corrective Action:

Todd Carignan logged into the system remotely on 12/18/2013 at approximately to inspect the alarm condition. Upon review of the events, analog, and discrete logs it was confirmed that the low flow alarm occurred within the first few minutes of operation. Based on the data loggers MH-2 Pump-1 was called to run at 10:31:21 and the Process 30 alarm occurred at 10:31:51 (Note, alarm delay is set at 30 seconds). The next "analog in" logged flow measurement was at 10:40 which indicated that MH-2 Pump-1 was pumping at approx. 17 gpm for the remainder of the pump cycle. Based on this data the noted delay in registering flow may have been to due to a dirty paddlewheel sensor and/or a leaking inline check ball valve which allowed all of the water in the forcemain to drain back into the sump since the previous pump cycle (approx. 1 day prior), thus causing a slight delay of flow. FA-102 alarm was cleared and the system was monitored for a short period to confirm the proper operation of the flowmeter.

The manhole will be inspected during the January monthly O&M event. Corrective actions may include, if deemed necessary, the cleaning of MH-2's paddlewheel sensor and/or increasing the alarm time delay for FA-102 from 30 seconds to 60 seconds.

Further review of the data logger files also indicated that the Process 30 low flow alarms were most likely due to a delay in MH-2 paddlewheel sensor registering flow.

On 1/10/2014 at 12:15 the alarm time delay was increased from 30 seconds to 3 minutes in the event the alarms are related to a faulty inline check valve in the MH-2 discharge line. The MH-2 time delay setpoint calculation is attached.

It should be noted that the time delay for the Process 31 low flow alarm for MH-3 was increased from 30 seconds to 5 minutes in the event any future alarm low flow alarms related to a faulty inline check valve in the MH-3 discharge line. The MH-3 time delay setpoint calculation is attached. The MH-1 Process 29 low flow alarm setpoint was left at 30 seconds as a result of its close proximity to the treatment building.

Carignan, Todd

From:	The ARCADIS GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Sunday, December 22, 2013 11:16 PM
То:	Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com; Zuck, Daniel
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 23:14:49 on 12/22/2013

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30. This system last shut down at 04:50:41 on 12/17/2013 and the cause was LSL100.

		DISCRETE IN	PUT ST	ATUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON
FT_200	OFF	LSH200	OFF				
		DISCRETE OUT	FPUT S	TATUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	ON
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_4ProControl_Outer					

Carignan, Todd

From:	The ARCADIS GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Friday, January 10, 2014 2:46 AM
То:	Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com; Zuck, Daniel
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 02:44:28 on 01/10/2014

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30. This system last shut down at 09:52:23 on 01/03/2014 and the cause was LSL100.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON				
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON				
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON				
FT_200	OFF	LSH200	OFF								
		DISCRE	TE OU'	ΓΡυτ στα	TUS:						
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	ON	MH2_P2	OFF				
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON				
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON				
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON				
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF				

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:											
Tagarama	Value	Units	Totalizer	Total Units		Alarm Setpoints						
Tagname	value	Unus	Totallzer	Totat Units	Low	High	Low-Low	High-High				
FT_101	0.00	GPM	59202035	GAL	10.00	80.00	0.00	20.00				
FT_102	0.00	GPM	10495734	GAL	10.00	80.00	0.00	20.00				
FT_103	0.00	GPM	3984322	GAL	10.00	80.00	0.00	20.00				
FT_105	15.05	GPM	13744569	GAL	3.00	80.00	0.00	20.00				
PT_106	28.02	IWC			8.00	35.00	0.00	20.00				
TT_400	77.9	DEG			60.0	110.0	0.0	20.0				
PT_400	11.9	IWC			1.0	25.0	0.0	20.0				
TT_100	61.8	DEG			40.0	110.0	0.0	20.0				
FT_106	938.4	CFM			300.0	****	0.0	20.0				

	ANALOG OUTPUT STATUS:				
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode
INJSPD	2.3%	Open Loop Proportional			

Date:	1/21/2014
Time:	13:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	1/21/2014	Time:	4:01

Alarm Condition:

Process - 32 (Low level alarm via LSL-100) - Non-Fatal Alarm

Cause of Alarm:

The LSL-100 was tripped during a automated system startup (MH-3 called to run). The data logger indicated that the LSL-100 was toggling on/off after the MH-3 Pump 1 was online for until it latched long enough (10 minute set point) in the off position to trigger the alarm.

Corrective Action:

TMC logged in remotely on 1/21/2014 at 15:30 to review alarm condition, after review of alarm condition the alarm condition was cleared and remained cleared.

The ambient air temperature at the time of the alarm was 5 degrees F, which increases the pressure in the air stripper sump and results in lowering the water level enough to trip the LSL-100 switch.

It should be noted that the air flow through the air stripper during the alarm condition was recorded at a range of 810-821 cfm, which indicates that sufficient air flow is passing through the air stripper trays to treat the influent groundwater.

As noted in the last alarm response log for this alarm condition, the alternate options to address the process 32 nuisance alarm would be to disable or change the high air stripper sump alarm LA-101 to non-fatal/increasing the time delay, and then adjust the damper to reduce the blower back pressure in the air stripper sump, which would allow the water level to operate at a slightly higher level above the low level switch.

Carignan, Todd

From:	The ARCADIS GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Tuesday, January 21, 2014 4:03 AM
То:	Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com; Zuck, Daniel
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 04:01:27 on 01/21/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 09:52:23 on 01/03/2014 and the cause was LSL100.

DISCRETE INPUT STATUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	OFF
FT_200	OFF	LSH200	OFF				
]		DISCRE	TE OU'	FPUT STAT	TUS:		
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

ANALOG INPUT STATUS:								
Taonama	Value	Units	Totalizar	Total Units		Ala	rm Setpoints	s
Tagname	Value	Unus	Totalizer	Totat Units	Low	High	Low-Low	High-High
FT_101	0.00	GPM	59339370	GAL	10.00	80.00	0.00	20.00
FT_102	0.00	GPM	10524506	GAL	10.00	80.00	0.00	20.00
FT_103	14.51	GPM	4031058	GAL	10.00	80.00	0.00	20.00
FT_105	13.58	GPM	13948989	GAL	3.00	80.00	0.00	20.00
PT_106	31.62	IWC			8.00	35.00	0.00	20.00
TT_400	102.5	DEG			60.0	110.0	0.0	20.0
PT_400	10.5	IWC			1.0	25.0	0.0	20.0
TT_100	60.7	DEG			40.0	110.0	0.0	20.0
FT_106	836.0	CFM			300.0	****	0.0	20.0

	ANALOG OUTPUT STATUS:				
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode
INJSPD	2.0%	Open Loop Proportional			

Date:	1/28/2014
Time:	12:00
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	1/23/2014	Time:	12:50
	1/24/2014		14:08

Alarm Condition:

MH-1 Pump 1 was not operating when being called to run by the PLC - Non-Fatal Alarm

Process 29/55 -MH-1/Aggregate Low Flow Alarm - Non-Fatal Alarm

Cause of Alarm:

Blown PLC discrete output fuse for MH-1 Pump 1

Corrective Action:

Upon review of the 1/24/14 daily operational log it was noted that MH-1 Pump 1 was being called to run, however there was no liquid flow present, and the air stripper sump pressure appeared to operating lower than usual based on the historical operational ranges, thus indicating no liquid flow into the stripper. TMC logged into the system remotely, upon review of the datalogger files, the pump had shutoff prematurely during a cycle the day before (1/23/2014). TMC attempted to start the pump remotely manually using the virtual "Hand" switch but was unable to do so. Dan Zuck was onsite 1/24/2014 and confirmed that Pump 1 would operate when the physical HOA switch was placed into Hand, which ruled out that the breaker for that pump had tripped out. Based on the initial troubleshooting the PLC's discrete output for Pump 1 to run was either faulty or had a blown fuse, and/or that one of the contacts/wires was bad between the PLC output and the pump.

TMC logged into the system remotely on daily basis (1/25-1/28) to force MH-1 Pump 2 online to maintain the operation of MH-1 until Chris Davern could be onsite to inspect the PLC outputs.

Chris Davern was onsite 1/29/2014 to inspect the PLC, HOA switch, and all wiring contacts for Pump 1. Upon inspection and testing the fuse for the PLCs discrete output (#33) was found blown and the contact block for Pump 1's run indicator light showed some signs of discoloration as a result of possibly overheating/arcing. Additionally, the contact block for MH-1's main power indicator light also showed signs of possible overheating/arcing. All other contacts and wire associated with Pump 1 were tested for continuity and passed. A temporary program was written in order for the MH-1 to call Pump 2 only for each pump cycle and ignore Pump 1 until a replacement fuse kit for the PLC, new contact blocks for the panel lights, and HOA switch could be ordered.

ARCADIS was onsite 2/11/2014 and installed the new fuse for discrete output #33, and new MH-1 light contact blocks and Pump 1 HOA switch. Each of these devises were successfully tested, these tests included testing the auto and manual operation of the pump via the physical and virtual HOA switches, and the run/power lights. The PLC logic was re-programmed to the previous program so that Pump 1 was brought back into cyclic operation.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date:	1/28/2014
Time:	12:10
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 1/26/2014 Time: 22:36

Alarm Condition:

Processes 31

Low flow alarm for FT-103 (Manhole MH-3, Pump 2).

Non-fatal alarm.

Cause of Alarm:

Flow transmitter FT-103 not recording flow despite MH-3 Pump-2 being called to run.

Corrective Action:

Todd Carignan logged into the system remotely on 1/28/2014 at approximately 12:15 to inspect the alarm condition. Upon review of the analog and discrete logs it was confirmed that the low flow alarm occurred after the first 10 minutes of operation. However, flow was registered during the entire pump cycle period by FT-105 (aggregate flowmeter). Based on this data the FT-103 paddlewheel sensor most likely had a build up of debris/scale which caused it to stop rotating temporarily. According to the data logger, FT-103 began registering flow two pump cycles later.

It should be noted that the time delay for the Process 31 low flow alarm for MH-3 was recently increased from 30 seconds to 5 minutes on 1/10/2014.

The flow meter paddlewheel sensor will be cleaned during the quarterly O&M event scheduled for the week of 2/3/2014.

X	⊡ * 7 • (* - -							
F	ile Home Inse	ert Page	Layout	Formulas	Data	Review	View Ac	robat
	💐 👗 Cut	Calibri	- 1	1 · A	= =		- 📑 Wr	ap Te
	Copy -							-
Pa	🗸 💞 Format Painter	BI	<u>1</u> • <u></u> •	<u></u> → <u>A</u>	* = =		🚛 🔤 Me	rge 8
	Clipboard 🕞		Font		Es .	Alig	gnment	
	L494 •	- (=	f_{x}					
	А	В	С	D	E	F	G	
1	EOS Research ProVi	ew Analog	Data File					
2	The ARCADIS GCTS S	System in U	JTICA_NEW	V YORK				
3								
4	Date & Time	FT_101	FT_102	FT_103	FT_105	PT_106	TT_400	PT_4
485	1/26/14 21:20	36.12	-0.07	-0.07	35.71	31.78	96.3	
486	1/26/14 21:30	-0.12	-0.07	-0.07	-0.18	29.15	95.5	
487	1/26/14 21:40	-0.12	-0.07	-0.07	-0.18	0.06	145.8	
488	1/26/14 21:50	-0.12	-0.07	-0.1	-0.18	0.06	135.3	
489	1/26/14 22:00	-0.12	-0.07	-0.07	-0.18	0.09	122.6	
490	1/26/14 22:10	-0.12	-0.07	-0.07	-0.21	0.09	112.2	
491	1/26/14 22:20	-0.12	-0.07	-0.1	-0.21	0.06	103.9	
492	1/26/14 22:30	-0.12	-0.07	15.24	15.08	27.69	77.7	
493	1/26/14 22:40	-0.12	-0.1	-0.07	14.96	30.19	88.6	
494	1/26/14 22:50	-0.15	-0.07	-0.07	14.19	30.19	86.1	
495	1/26/14 23:00	-0.12	-0.07	-0.1	12.33	30.04	86.8	
496	1/26/14 23:10	-0.15	-0.07	-0.1	-0.21	28.82	89.4	
497	1/26/14 23:20	-0.12	-0.07	-0.07	-0.21	0.03	133.8	
498	1/26/14 23:30	-0.12	-0.07	-0.07	-0.21	0.03	123.7	
499	1/26/14 23:40	-0.12	-0.07	-0.07	-0.18	0.06	114.4	
500	1/26/14 23:50	-0.12	-0.07	-0.07	-0.18	0.09	106	
501	1/27/14 0:00	-0.12	-0.07	-0.07	-0.18	0.03	99.2	
502	1/27/14 0:10	-0.15	-0.07	-0.07	-0.18	0.06	93.5	
503	1/27/14 0:20	-0.12	-0.07	-0.07	-0.18	0.03	89.3	
504	1/27/14 0:30	-0.1	-0.07	-0.07	-0.18	0	85.6	
505	1/27/14 0:40	-0.12	-0.07	-0.07	-0.21	0	82.5	
506	1/27/14 0:50	-0.12	-0.07	-0.1	-0.21	0	80	
507	1/27/14 1:00	-0.15	-0.07	-0.07	-0.18	0	79.7	
508	1/27/14 1:10	-0.12	-0.07	-0.07	-0.18	0	81.8	
509	1/27/14 1:20	-0.12	-0.07	-0.07	-0.18	0.03	84.3	
510	1/27/14 1:30	-0.12	-0.07	-0.07	-0.21	0.03	86.9	
511	1/27/14 1:40	-0.15	-0.1	-0.07	-0.18	0.06	89.2	
512	1/27/14 1:50	-0.12	-0.07	-0.07	-0.21	0.06	91	
513	1/27/14 2:00	-0.12	-0.07	-0.07	-0.18	0.09	90.5	
514	1/27/14 2.10	0 1 2	0.07	0 1	0 10	0.00	00	

Carignan, Todd

From:	The ARCADIS GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Sunday, January 26, 2014 10:38 PM
То:	Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com; Zuck, Daniel
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 22:36:47 on 01/26/2014

ALARM was triggered by PROCESS 31. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #31. This system last shut down at 09:52:23 on 01/03/2014 and the cause was LSL100.

		DISCRI	ETE IN	PUT STAT	U S:		
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	ON
FT_200	OFF	LSH200	OFF				
		DISCRE	TE OU'	TPUT STAT	TUS:		
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON
LA_MH1	OFF	FA_101	ON	LA_MH2	OFF	FA_102	OFF
LA_MH3	OFF	FA_103	ON	PA_106	OFF	LA_100	ON
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	ON

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

	ANALOG INPUT STATUS:													
Taonama	Value	Ilaita	Totalizar	Total Units	Ala		rm Setpoints	S						
Tagname	Value	Units	Totalizer	Total Units	Low	High	Low-Low	High-High						
FT_101	0.00	GPM	59381463	GAL	10.00	80.00	0.00	20.00						
FT_102	0.00	GPM	10529851	GAL	10.00	80.00	0.00	20.00						
FT_103	0.00	GPM	4045393	GAL	10.00	80.00	0.00	20.00						
FT_105	15.14	GPM	14008840	GAL	3.00	80.00	0.00	20.00						
PT_106	30.13	IWC			8.00	35.00	0.00	20.00						
TT_400	89.1	DEG			60.0	110.0	0.0	20.0						
PT_400	10.4	IWC			1.0	25.0	0.0	20.0						
TT_100	63.2	DEG			40.0	110.0	0.0	20.0						
FT_106	815.5	CFM			300.0	****	0.0	20.0						

	ANALOG OUTPUT STATUS:								
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode				
INJSPD	2.3%	Open Loop Proportional							

Date:	1/28/2014
Time:	13:30
Technician:	TMC

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:	1/28/2014	Time:	5:03

Alarm Condition:

Process - 32 (Low level alarm via LSL-100) - Non-Fatal Alarm

Cause of Alarm:

The LSL-100 was tripped during a automated MH-3 pump cycle. The data logger indicated that the LSL-100 was toggling on/off during the MH-3 Pump cycle until it latched long enough (10 minute set point) in the off position to trigger the alarm.

Corrective Action:

TMC logged in remotely on 1/28/2014 at 15:15 to review alarm condition. The alarm condition was confirmed to be identical to the previous alarm conditions. The alarm condition was NOT cleared.

The most recent corrective actions have been unsuccessful at mitigating this nuisance alarm. As noted in the last alarm response log for this alarm condition, the alternate option to address the process 32 nuisance alarm would be to disable or change the high air stripper sump alarm LA-101 to non-fatal/increasing the time delay, and then adjust the damper to reduce the blower back pressure in the air stripper sump, which would allow the water level to operate at a slightly higher level above the low level switch.

Following discussions with engineering team members, ARCADIS will be onsite 1/29/2014 to implement these changes, which will include adjustment to the blower damper to decrease the avg. operational sump pressure below 32-33 in.W.C., and increased the high level alarm delay setpoint from 15 seconds to 5 minutes. Following these adjustments ARCADIS will monitor the system remotely to ensure the modifications don't negatively affect the operation of the system. If any modifications are required they'll be addressed during the quarterly OM&M event scheduled for the week of 2/3/2014.

Fil								
	e Home I	nsert Pa	age Layout	Formulas	Data	Review	View	Acrobat
<u> </u>	🛛 🔏 Cut	Calibri		· 11 · A	• _A • =	= -	»- 📑	Wrap Te
	📃 📑 Сору 🔻							
Past	e 💞 Format Paint	er B <i>I</i>	<u>U</u> -] • 🌺 •	<u>A</u> · E			Merge 8
	Clipboard	Gi .	Font		Es.		Alignment	
	N683	-	$f_{\mathbf{x}}$					
	А	В	С	D	E	F	G	н
	EOS Research Pro			e	_			
	The ARCADIS GCT		-					
3			_					
4 [Date & Time	FT 101	FT 102	FT 103	FT 105	PT 106	TT 400	PT 400
CRA		_	_	_	_	_	_	_
671	1/28/14 4:20	-0.15	-0.07	-0.1	-0.18	0	83.8	-
672	1/28/14 4:30	-0.12	-0.07	-0.07	-0.21	0	86.1	-
673	1/28/14 4:40	-0.15		15.19	14.04	31.26	93.2	1
674	1/28/14 4:50	-0.15	-0.07	14.53	14.26	31.5	99.7	
675	1/28/14 5:00	-0.12	-0.1	13.92	13.55	31.5	100.6	1
676	1/28/14 5:10	-0.15	-0.07	-0.07	-0.18	31.17		
677	1/28/14 5:20	-0.12	-0.07	-0.07	-0.18	0.37		-
678	1/28/14 5:30	-0.12	-0.07	-0.1	-0.21	0	142.7	-
679	1/28/14 5:40	-0.12	-0.07	-0.1	-0.21	0	128.5	-
680	1/28/14 5:50	-0.15	-0.07	-0.07	-0.21	0	119	-
681	1/28/14 6:00	-0.12	-0.07	-0.07	-0.18	0	112.9	-
682	1/28/14 6:10	-0.12	-0.07	-0.07	-0.18	0	109.2	-
683	1/28/14 6:20	-0.12	-0.07	-0.07	-0.18	0.03	107.1	-
684	1/28/14 6:30	-0.12	-0.07	-0.07	-0.18	0.03	105.5	-
685	1/28/14 6:40	-0.12	-0.07	-0.07	-0.21	0.03	104.7	-
686	1/28/14 6:50	-0.12	-0.07	-0.07	-0.18			-
687	1/28/14 7:00	37.41	-0.07	-0.07	38.03	32.57		
688	1/28/14 7:10	37.14		-0.07	37.64	32.94	101	
689	1/28/14 7:20	36.73	-0.07	-0.07	37.61	33.06		
690	1/28/14 7:30 1/28/14 7:40	36.65		-0.07	37.52	32.97 33.03		
691	1/28/14 7:40	35.95	-0.07	-0.1	38.64		96.8	
692	1/28/14 7:50	36.34	-0.07	-0.07	37.3 -0.18	33.06		1
693 694	1/28/14 8:00	-0.12 -0.12	-0.07	-0.07	-0.18	30.8		1
694 695	1/28/14 8:10	-0.12	-0.07	-0.07	-0.21	0.09	138.4 141.7	
696	1/28/14 8:20	-0.12	-0.1	-0.07	-0.18		141.7	_
696 697	1/28/14 8:30		-0.07	-0.1	-0.18	0.03		
698	1/28/14 8:40	-0.12 -0.12			-0.18	0.06	120.1 114.6	_
698 699	1/28/14 8:50	-0.12	-0.07	-0.07	-0.18	0.06		-
700	1/28/14 9:00	-0.12	-0.07	-0.07	-0.18	0.00	107.7	_

Carignan, Todd

From:	The ARCADIS GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Tuesday, January 28, 2014 5:05 AM
То:	Carignan, Todd; Davern, Christopher; Bonsteel, Jeffrey; zigmontjh@cdmsmith.com; Zuck, Daniel
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:03:08 on 01/28/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 09:52:23 on 01/03/2014 and the cause was LSL100.

	DISCRETE INPUT STATUS:											
Tagname	State	Tagname	State	Tagname	State	Tagname	State					
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON					
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF					
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF					
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF					
MOTION	OFF	LSH106	OFF	LSH100	OFF	LSL100	OFF					
FT_200	OFF	LSH200	OFF									
		DISCRE	TE OU'	FPUT STAT	TUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State					
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF					
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON					
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF					
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON					
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF					

FA_106	OFF	FA_200	OFF	MOTION	OFF	TAH400	OFF
TAL400	OFF	PA_400	OFF	LSH200	OFF		

ANALOG INPUT STATUS:										
Taganama	Value	Units	Totalizer	Total Units		Ala	Alarm Setpoints			
Tagname	value	Unus	Totalizer	Totat Onus	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	59387417	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10529851	GAL	10.00	80.00	0.00	20.00		
FT_103	13.63	GPM	4046841	GAL	10.00	80.00	0.00	20.00		
FT_105	12.64	GPM	14017651	GAL	3.00	80.00	0.00	20.00		
PT_106	31.41	IWC			8.00	35.00	0.00	20.00		
TT_400	100.5	DEG			60.0	110.0	0.0	20.0		
PT_400	11.0	IWC			1.0	25.0	0.0	20.0		
TT_100	61.4	DEG			40.0	110.0	0.0	20.0		
FT_106	845.6	CFM			300.0	****	0.0	20.0		

	ANALOG OUTPUT STATUS:								
Tagname	TagnamePercentage Full ScaleOperational Mode		Tagname	Percentage Full Scale	Operational Mode				
INJSPD	1.9%	Open Loop Proportional							

Date:	3/12/2014
Time:	0930
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/10/14 Time: 0632

Alarm Condition:

On Sunday 03/09/14 the GCTS daily email status report did not contain the attachments that are normally included; however the system parameters and operation appeared normal.

On Monday 03/10/14, the system failed to send a daily email status report.

Cause of Alarm:

On the morning of Monday 03/10/14 Stantec logged in to the system (approx. 0500) to check system status; operation apeared normal). Stantec also logged in at approx 0800 hrs. and system parameters and operation appeared normal. However, connection with the PLC was then lost and additional attempt to connect generated error messages relative to a problem with the Serial Port connection. Several additional attempts to log in failed and communication with the PLC could not be re-established. EOS Research was contacted and they also could not access the PLC remotely.

Corrective Action:

Stantec traveled to the site, arriving at approx. 2000 hrs. The PLC was put through a power cycle to 're-boot' the unit. A test of the remote communication was successful; however communication was again lost and Serial Port error messages were received. A second re-boot reestablished connection and no further action was taken. Note that GCTS system operation was normal throughout the process.

A daily email status report was received on the morning of 03/11/14, however no attachments were included. System operation was normal.

On 03/11/14 EOS Research performed a check of the PLC setting and operation. Recent historical data indicated the likely cause of the failure to send a daily email status report on 3/10 was due to conflicit with a user login at the same time the daily report is normally sent. They system cannot perform two communication operations simultaneously.

The issue regarding lack of data attachments was corrected by resetting the frequency for attachments to "daily" status.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date:	3/17/2014
Time:	1600
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 3/16/14 Time: 0522

Alarm Condition:

No data files were attached to the daily email report.

Cause of Alarm:

R. Mahoney logged on to the system approximately 1315 hrs. Communication and system operation parameters appeared normal. No reason for the lack of attachments was evident.

Corrective Action:

A similar issue was observed with the SSDS system. A plan was made to visi the site on Monday 3/17. However, communication appeared to have returned to normal on 3/16, and the daily email report contained the appropriate file attachments.

EOS research has been contacted and possible modifications to the system software may be necessary because issues appear to be developing with Verizon.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date: 5/16/2014 Time: 0900 Technician:

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>5/6/2014 and</u> Time: <u>05:00</u> 5/7/2014

Alarm Condition:

On 5/6/14 and 5/7/14 the GCTS did not send out daily status emails.

Cause of Alarm:

The GCTS PLC software was locked up and was not communicating with the network.

Corrective Action:

A site visit was performed on 5/7/14 where the PLC was rebooted to clear the software lock. System data

indicate there was no interruption in operation during this time period.

Alarm Response Log Sheet, Groundwater Collection and
Treatment System, Solvent Dock Area, Former Lockheed Martin
French Road Facility, Utica, New York

Date:	6/5/2014
Time:	1400
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Alarm Condition:

Daily Fax emails did not contain one or more attachments.

Cause of Alarm:

Some missing attachments may reflect a lack of data to report.

Corrective Action:

A summary of attachments by day has been provided to EOS research for review and comment

relative to possible causes or corrective actions.

Alarm Date:	7/1/2014
Alarm Time:	17:59:33
Technician:	WA

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/3/14 Time: 1200

Alarm Condition:

Process 38 (Non-Fatal) - Manhole MH-2 Low Level alarm was generated at 18:02 on 7/1/2014.

Cause of Alarm:

Cause of alarm is unknown at this time. Note that a similar alarm for Mahole MH-2 was received at 18:02:00.

Corrective Action:

A remote system check was performed showing the system was operating normally. The low-level float was active indicating the water level in the manhole was at a normal level. Stantec will follow up by checking the floats during the upcoming quarterly OM&M visit the week of 7/7/2014.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Tuesday, July 01, 2014 6:05 PM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 18:02:00 on 07/01/2014

ALARM was triggered by PROCESS 38. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #40. This system last shut down at 10:01:28 on 06/29/2014 and the cause was LSH100.

DISCRETE INPUT STATUS:								
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF	
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF	
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF	
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	OFF	
LSH200	OFF							
		DISCRE	TE OU	TPUT STAT	rus:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF	
MH3_P1	OFF	MH3_P2	OFF	B_100	OFF	DH_300	OFF	
LA_MH1	ON	FA_101	OFF	LA_MH2	ON	FA_102	OFF	
LA_MH3	ON	FA_103	OFF	PA_106	OFF	LA_100	OFF	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

	ANALOG INPUT STATUS:										
Tagarama	Value	Units	Totalizer	Total Units		Ala	rm Setpoint	s			
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High			
FT_101	0.00	GPM	60958990	GAL	10.00	80.00	0.00	20.00			
FT_102	0.00	GPM	10753276	GAL	10.00	80.00	0.00	20.00			
FT_103	0.00	GPM	4688606	GAL	10.00	80.00	0.00	20.00			
FT_105	0.00	GPM	16420621	GAL	3.00	80.00	0.00	20.00			
PT_106	0.24	IWC			8.00	35.00	0.00	20.00			
TT_400	78.2	DEG			53.3	110.0	0.0	20.0			
PT_400	0.0	IWC			1.0	25.0	0.0	20.0			
TT_100	77.7	DEG			40.0	110.0	0.0	20.0			
FT_106	68.3	CFM			300.0	****	0.0	20.0			

ANALOG OUTPUT STATUS:									
Tagname	Percentage Full Scale	Operational Mode	TagnamePercentageFull Scale		Operational Mode				
INJSPD	0.0%	Open Loop Proportional							

Alarm Date:	7/1/2014
Alarm Time:	18:02:00
Technician:	WA

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/3/14 Time: 1200

Alarm Condition:

Process 36 (Non Fatal) - Manhole MH-1 Low Level alarm was generated at 18:02:00 on 7/1/2014.

Cause of Alarm:

Cause of alarm is unknown at this time. Note that a similar alarm was received two minutes prior for Manhole MH-1.

Corrective Action:

A remote system check was performed showing the system was operating normally. The low-level float was active indicating the water level in the manhole was operating at a normal level. Stantec will follow up by checking the floats during the upcoming quarterly OM&M visit the week of 7/7/2014.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Tuesday, July 01, 2014 6:02 PM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 17:59:33 on 07/01/2014

ALARM was triggered by PROCESS 36. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #40. This system last shut down at 10:01:28 on 06/29/2014 and the cause was LSH100.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON				
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF				
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	OFF				
LSH200	OFF										
		DISCRE	TE OU'	FPUT STAT	TUS:						
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF				
MH3_P1	OFF	MH3_P2	OFF	B_100	OFF	DH_300	OFF				
LA_MH1	ON	FA_101	OFF	LA_MH2	ON	FA_102	OFF				
LA_MH3	ON	FA_103	OFF	PA_106	OFF	LA_100	OFF				
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF				

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

	ANALOG INPUT STATUS:										
Taonama	Value	Units	Totalizer	Total Units		Ala	rm Setpoint	s			
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High			
FT_101	0.00	GPM	60958990	GAL	10.00	80.00	0.00	20.00			
FT_102	0.00	GPM	10753276	GAL	10.00	80.00	0.00	20.00			
FT_103	0.00	GPM	4688606	GAL	10.00	80.00	0.00	20.00			
FT_105	0.00	GPM	16420621	GAL	3.00	80.00	0.00	20.00			
PT_106	0.24	IWC			8.00	35.00	0.00	20.00			
TT_400	78.0	DEG			53.3	110.0	0.0	20.0			
PT_400	0.0	IWC			1.0	25.0	0.0	20.0			
TT_100	77.7	DEG			40.0	110.0	0.0	20.0			
FT_106	66.9	CFM			300.0	****	0.0	20.0			

ANALOG OUTPUT STATUS:									
Tagname	Percentage Full Scale	Operational Mode	TagnamePercentageFull Scale		Operational Mode				
INJSPD	0.0%	Open Loop Proportional							

Alarm Date:	7/5/2014
Alarm Time:	04:02:34
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/5/14 Time: 1000

Alarm Condition:

Process 32 (Non-Fatal) - Air Stripper Low Liquid Level

Cause of Alarm:

The liquid level in the air stripper sump varied significantly depending on inflow rates. The low level alarm is frequently tripped during normal operation as the sump level varies. These events typically last only a few seconds at the most. As such, the alarm has been set with a 10-minute delay to avoid unnecessary "nuisance" alarms. The alarm received on 7/5 indicates the liquid level must have remained below the low-level set point for greater than 10 minutes; however overall operation of the sytem does not appear to be impacted. This is likely related to the adjustment recently made to one of the carbon manifold valves.

Corrective Action:

Logged onto system approximately 0700. Operation appeared normal - no indication of any problems with air stripper. Stantec will continue to monitor the system's performance and make adjustments as needed during this week's Quarterly OMM event.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Saturday, July 05, 2014 4:05 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 04:02:34 on 07/05/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 20:13:58 on 07/01/2014 and the cause was PT_106.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON				
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF				
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF				
LSH200	OFF										
		DISCRE	ΓΕ Ο υ'	FPUT STAT	TUS:						
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF				
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON				
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF				
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON				
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF				
					1						

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

	ANALOG INPUT STATUS:									
Taonama	Value	Units	Totalizer	Total Units		Ala	rm Setpoint	s		
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	60995170	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10758010	GAL	10.00	80.00	0.00	20.00		
FT_103	18.27	GPM	4705600	GAL	10.00	80.00	0.00	20.00		
FT_105	16.15	GPM	16475503	GAL	3.00	80.00	0.00	20.00		
PT_106	31.72	IWC			8.00	35.00	0.00	20.00		
TT_400	61.2	DEG			53.3	110.0	0.0	20.0		
PT_400	15.8	IWC			1.0	25.0	0.0	20.0		
TT_100	66.4	DEG			40.0	110.0	0.0	20.0		
FT_106	571.0	CFM			300.0	****	0.0	20.0		

	ANALOG OUTPUT STATUS:							
Tagname	Percentage Full Scale	Operational Mode	TagnamePercentage Full Scale		Operational Mode			
INJSPD	2.4%	Open Loop Proportional						

Alarm Date:	7/24/2014
Alarm Time:	04:24:38
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/24/14 Time: 0930

Alarm Condition:

Process 30: Manhole MH-2 Low flowrate

Cause of Alarm:

Based on a review of logged data, it appears that the pumps in Manhole MH-2 are functioning properly, however the flow being recorded by flow transmitter FT-102 appears to have stopped sometime before the warning alarm was gnerated. This is demonstrated by the attached log (7/21-7/24) of flows from all three manholes which also shows total combined flow recorded at transmitter FT-105. At the time of the alarm, manholes MH-1 and-3 are inactive, and no flow is indicated in MH-2, however FT-5 shows flow is occurring. This indicates the flow meter at FT-102 is not functioning properly.

Corrective Action:

None taken so far; system operation appears otherwise normal. Periodic checks of the flow parameters will continue to be made remotely to see if conditions change. Flow meter change-out may be required to correct this condition.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Thursday, July 24, 2014 4:28 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 04:24:38 on 07/24/2014

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30. This system last shut down at 11:15:07 on 07/10/2014 and the cause was REMOTE.

	DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON			
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON			
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF			
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF			
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	OFF			
LSH200	OFF									
		DISCRE	TE OU	FPUT STAT	TUS:					
Tagname	State	Tagname	State	Tagname	State	Tagname	State			
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	ON			
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON			
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON			
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF			
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF			

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

	ANALOG INPUT STATUS:									
Taonama	Value	Units	Totalizer	Total Units		Ala	rm Setpoint	s		
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High		
FT_101	0.00	GPM	61121293	GAL	10.00	80.00	0.00	20.00		
FT_102	0.00	GPM	10776459	GAL	10.00	80.00	0.00	20.00		
FT_103	0.00	GPM	4771105	GAL	10.00	80.00	0.00	20.00		
FT_105	14.22	GPM	16674028	GAL	3.00	80.00	0.00	20.00		
PT_106	28.85	IWC			8.00	35.00	0.00	20.00		
TT_400	73.4	DEG			60.0	110.0	0.0	20.0		
PT_400	12.0	IWC			1.0	25.0	0.0	20.0		
TT_100	72.4	DEG			40.0	110.0	0.0	20.0		
FT_106	639.3	CFM			300.0	****	0.0	20.0		

	ANALOG OUTPUT STATUS:							
Tagname	Percentage Full Scale	Operational Mode	TagnamePercentage Full Scale		Operational Mode			
INJSPD	2.1%	Open Loop Proportional						

Date & Time	FT_101	FT_102	FT_103	FT_105
7/21/14 12:10 AM	-0.15	-0.07	-0.07	-0.21
7/21/14 12:20 AM	-0.15	-0.07	-0.1	-0.18
7/21/14 12:30 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 12:40 AM 7/21/14 12:50 AM	-0.12 -0.12	-0.07 -0.07	-0.07 -0.07	-0.21 -0.18
7/21/14 12:30 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 1:10 AM	-0.15	-0.07	-0.07	-0.21
7/21/14 1:20 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 1:30 AM	-0.12	-0.07	19.17	16.85
7/21/14 1:40 AM	-0.12	-0.07	17.88	15.78
7/21/14 1:50 AM	-0.12	-0.07	17.22	15.23
7/21/14 2:00 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 2:10 AM	-0.12	-0.07	-0.1	-0.18
7/21/14 2:20 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 2:30 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 2:40 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 2:50 AM	-0.12	-0.07	-0.1	-0.18
7/21/14 3:00 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 3:10 AM 7/21/14 3:20 AM	-0.12	-0.07 -0.07	-0.07 -0.07	-0.21 -0.18
7/21/14 3:20 AM 7/21/14 3:30 AM	-0.12 -0.12	-0.07 -0.07	-0.07 -0.1	-0.18 -0.21
7/21/14 3:30 AM	-0.12 -0.15	-0.07	-0.1	-0.21 -0.21
7/21/14 3:50 AM	-0.13	-0.07	-0.07	-0.21
7/21/14 3:00 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 4:10 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 4:20 AM	36.9	-0.07	-0.1	36.78
7/21/14 4:30 AM	36.85	-0.07	-0.07	36.39
7/21/14 4:40 AM	37.22	-0.07	-0.1	36.11
7/21/14 4:50 AM	36.68	-0.07	-0.07	36.08
7/21/14 5:00 AM	36.24	-0.07	-0.07	35.9
7/21/14 5:10 AM	35.8	-0.07	-0.07	36.32
7/21/14 5:20 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 5:30 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 5:40 AM	-0.15	-0.07	-0.07	-0.21
7/21/14 5:50 AM	-0.15	-0.07	-0.1	-0.21
7/21/14 6:00 AM 7/21/14 6:10 AM	-0.15	-0.1 -0.07	-0.1 -0.07	-0.18
7/21/14 6:20 AM	-0.15 -0.12	-0.07	-0.07 -0.1	-0.21 -0.21
7/21/14 6:30 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 6:40 AM	-0.15	-0.07	19.56	17.55
7/21/14 6:50 AM	-0.12	-0.07	18.58	16.48
7/21/14 7:00 AM	-0.12	-0.1	17.58	15.23
7/21/14 7:10 AM	-0.1	-0.07	-0.07	0.49
7/21/14 7:20 AM	-0.15	-0.07	-0.07	-0.21
7/21/14 7:30 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 7:40 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 7:50 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 8:00 AM	-0.12	-0.07	-0.1	13.37
7/21/14 8:10 AM	-0.15	15.19	-0.1	15.26
7/21/14 8:20 AM	-0.12	14.95	-0.07	14.62
7/21/14 8:30 AM	-0.12	14.82	-0.07	14.47 12.86
7/21/14 8:40 AM 7/21/14 8:50 AM	-0.12 -0.12	14.65 14.65	-0.07	13.86 14.29
7/21/14 8:50 AM	-0.12 -0.12	14.65	-0.1 -0.07	14.29 14.47
7/21/14 9:10 AM	-0.12	14.48	-0.07	14.47
7/21/14 9:20 AM	-0.13	14.99	-0.07	13.95
7/21/14 9:30 AM	-0.12	14.38	-0.07	13.58
7/21/14 9:40 AM	-0.12	14.51	-0.1	13.71
7/21/14 9:50 AM	-0.12	14.87	-0.07	13.43
7/21/14 10:00 AM	-0.12	14.58	-0.07	12.58
7/21/14 10:10 AM	-0.15	14.33	-0.1	13.13
7/21/14 10:20 AM	-0.12	14.41	-0.1	12.48
7/21/14 10:30 AM	-0.12	14.11	-0.1	13.52
7/21/14 10:40 AM	-0.12	-0.07	-0.1	-0.21
7/21/14 10:50 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 11:00 AM	-0.12	-0.07	-0.07	-0.21
7/21/14 11:10 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 11:20 AM 7/21/14 11:30 AM	-0.12 -0.12	-0.07 -0.07	-0.07 -0.07	-0.18 -0.18

7/2/1/4 11:50 AM -0.12 -0.07 -0.07 -0.21 7/21/4 11:50 AM -0.12 -0.05 -0.07 -0.12 7/21/4 12:00 PM -0.12 -0.05 17.51 15.54 7/21/4 12:20 PM -0.12 -0.07 16.51 15.29 7/21/4 12:30 PM -0.12 -0.07 -0.07 -0.21 7/21/4 12:30 PM -0.12 -0.07 -0.07 -0.21 7/21/4 10 PM -0.12 -0.07 -0.07 -0.21 7/21/4 10 PM -0.12 -0.07 -0.07 -0.21 7/21/4 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/4 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/4 2:0P M	- /24 /44 44 40 44	0.40	0.07	0.07	
7/21/14 12:00 PM -0.12 -0.07 19.19 16.61 7/21/14 12:20 PM -0.12 -0.07 19.19 16.61 7/21/14 12:20 PM -0.12 -0.07 10.55 15.54 7/21/14 12:30 PM -0.12 -0.07 -0.07 -0.07 7/21/14 12:50 PM -0.11 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 13:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14	7/21/14 11:40 AM	-0.12	-0.07	-0.07	-0.18
7/21/14 12:20 PM -0.12 -0.07 19.19 16.61 7/21/14 12:20 PM -0.12 -0.07 16.51 15.29 7/21/14 12:30 PM -0.12 -0.07 10.07 -0.07 7/21/14 12:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 3:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14					
7/21/14 12:30 PM -0.12 -0.05 17.51 15.52 7/21/14 12:30 PM -0.12 -0.07 16.51 15.29 7/21/14 12:30 PM -0.11 -0.07 -0.07 -0.21 7/21/14 12:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 130 PM -0.12 -0.07 -0.07 -0.21 7/21/14 130 PM -0.12 -0.07 -0.07 -0.21 7/21/14 130 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:0 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:0					
7/21/14 12:30 PM -0.1 -0.07 16.51 15.29 7/21/14 12:30 PM -0.1 -0.07 -0.07 -0.21 7/21/14 12:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 12:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:00 PM -0.12 -0.07 -0.07 34.66 7/					
7/21/14 12:50 PM -0.1 -0.07 -0.07 -0.17 7/21/14 12:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/1					
7/21/14 12:50 PM -0.1 -0.07 -0.07 -0.21 7/21/14 1:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.12 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14					
7/21/14 1:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.07 7/21/14 1:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 1:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:00 PM 35.7 -0.07 -0.07 35.16 7/21/14 3:00 PM 35.11 -0.07 -0.07 35.16 7/21/14 3:00 PM 35.12 -0.07					
7/21/14 1:0 PM -0.12 -0.07 -0.07 -0.17 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.17 7/21/14 1:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:00 PM -0.12 -0.07 -0.07 3.23 7/21/14 3:0 PM -0.12 -0.07 -0.07 3.23 7/21/14 3:0 PM -0.12 -0.07 -0.07 3.23 7/21/14 3:0 PM -0.12 -0.07 -0					
7/21/14 1:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.15 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:0 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:0 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:0 PM -0.12 -0.07 -0.07 34.68 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 1:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:20 PM -0.15 -0.07 -0.07 -3.85 7/21/14 3:20 PM -0.12 -0.07 -0.07 34.66 7/21/14 3:20 PM -0.12 -0.07 -0.07 34.86 7/21/14 4:20 PM 36.12 -0.05 -0.07 34.86 7/21/14 4:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14					
7/21/14 1:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.13 7/21/14 2:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.13 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.13 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 35.23 7/21/14 3:00 PM -36.12 -0.07 -0.07 34.66 7/21/14 4:00 PM 36.12 -0.07 -0.07 34.65 7/21/14 4:00 PM -0.12 -0.07 -0.21 7/21/14 4:00 PM -0.12 -0.07 -0.21 7/21/14 4:00 PM -0.12					
7/21/14 -0.07 -0.07 -0.18 7/21/14 -0.07 -0.07 -0.18 7/21/14 -0.07 -0.07 -0.07 7/21/14 -0.07 -0.07 -0.07 7/21/14 -0.07 -0.07 -0.07 7/21/14 -0.07 -0.07 -0.18 7/21/14 -0.07 -0.07 -0.18 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.07 -0.07 -0.21 7/21/14 -0.12 -0.07 -0.07 -0.21 7/21/14 -0.12 -0.07 -0.07 <td></td> <td></td> <td></td> <td></td> <td></td>					
7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 36.85 7/21/14 3:30 PM -5.7 -0.07 -0.07 35.16 7/21/14 4:30 PM 36.12 -0.07 -0.07 34.83 7/21/14 4:30 PM 35.19 -0.07 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.21 -7/21/14 5:0 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07					
7/21/14 2:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:20 PM -0.12 -0.05 -0.07 -0.17 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:30 PM -0.11 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.11 -0.07 -0.07 -0.18 7/21/14 3:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.15 -0.07 -0.07 34.68 7/21/14 3:40 PM 36.29 -0.07 -0.07 35.16 7/21/14 3:40 PM 36.62 -0.07 -0.07 34.68 7/21/14 4:10 PM 36.61 -0.05 -0.07 34.83 7/21/14 4:10 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
7/21/14 2:20 PM -0.12 -0.05 -0.05 -0.21 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:50 PM -0.15 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 3.5.3 7/21/14 3:30 PM -0.12 -0.07 -0.07 35.53 7/21/14 4:00 PM 35.41 -0.07 -0.07 35.65 7/21/14 4:20 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 34.83 7/21/14 4:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.21 7/21/14 5:00 PM <					
7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 2:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:30 PM 36.29 -0.07 -0.07 35.16 7/21/14 4:0 PM 36.02 -0.07 -0.07 34.66 7/21/14 4:0 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0					
7/21/14 2:40 PM -0.12 -0.07 -0.18 7/21/14 2:50 PM -0.15 -0.07 -0.07 -0.18 7/21/14 3:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 3:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 34.68 7/21/14 3:40 PM 36.29 -0.07 -0.07 34.68 7/21/14 4:30 PM 35.7 -0.07 -0.07 34.68 7/21/14 4:10 PM 36.12 -0.05 -0.07 34.66 7/21/14 4:10 PM 36.12 -0.05 -0.07 34.86 7/21/14 4:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 10.75 -0.48 7/21/14 5:0 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0.12 -					
7/21/14 2:50 PM -0.15 -0.07 -0.07 -0.18 7/21/14 3:00 PM -0.1 -0.07 -0.07 -0.21 7/21/14 3:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 35.63 7/21/14 4:30 PM 35.7 -0.07 -0.07 35.65 7/21/14 4:0 PM 36.12 -0.05 -0.07 36.65 7/21/14 4:30 PM 35.19 -0.07 -0.07 34.83 7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 1.085 16.94 7/21/14 5:30 PM -0.12 -0.07 1.037 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.01 -0.21 7/21/14 6:00					
7/21/14 3:00 PM -0.1 -0.07 -0.07 -0.18 7/21/14 3:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM 36.29 -0.07 -0.07 35.68 7/21/14 4:00 PM 35.7 -0.07 -0.07 35.16 7/21/14 4:00 PM 35.12 -0.07 -0.07 34.68 7/21/14 4:00 PM 35.12 -0.07 -0.07 34.66 7/21/14 4:30 PM 35.19 -0.07 -0.07 34.68 7/21/14 4:30 PM -0.12 -0.07 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 10.86 16.94 7/21/14 5:0 PM -0.12 -0.07 18.56 16.94 7/21/14 5:0 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07					
7/21/14 3:10 PM -0.12 -0.07 -0.07 -0.11 7/21/14 3:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:30 PM 36.29 -0.07 -0.07 34.68 7/21/14 3:50 PM 35.7 -0.07 -0.07 35.23 7/21/14 4:10 PM 36.12 -0.05 -0.07 34.46 7/21/14 4:10 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:10 PM 36.12 -0.07 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 1.856 16.94 7/21/14 5:30 PM -0.12 -0.07 1.0.05 1.0.97 7/21/14 5:30 PM -0.12 -0.07 -0.21 7/21/14 6:40 PM -0.12 -0.07 -0.21 7/21/14 6:0 PM -0.12 -0.07					
7/21/14 3:20 PM -0.15 -0.07 -0.07 -0.21 7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 3:30 PM 35.7 -0.07 -0.07 35.23 7/21/14 4:00 PM 35.41 -0.07 -0.07 35.45 7/21/14 4:10 PM 36.02 -0.07 -0.07 34.46 7/21/14 4:20 PM 35.19 -0.07 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14					
7/21/14 3:30 PM -0.12 -0.07 -0.07 -0.07 7/21/14 3:30 PM 36.29 -0.07 -0.07 34.68 7/21/14 3:30 PM 35.7 -0.07 -0.07 35.16 7/21/14 4:00 PM 36.02 -0.07 -0.07 34.46 7/21/14 4:30 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:20 PM -0.1 -0.05 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.21 7/21/14 5:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.18 <					
7/21/14 3:40 PM 36.29 -0.07 -0.07 34.68 7/21/14 3:50 PM 35.7 -0.07 -0.07 35.16 7/21/14 4:30 PM 36.12 -0.05 -0.07 35.65 7/21/14 4:30 PM 36.12 -0.05 -0.07 36.83 7/21/14 4:30 PM 35.19 -0.07 -0.07 36.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 10.856 16.94 7/21/14 5:30 PM -0.12 -0.07 10.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.18 7/21/14 6:30 PM <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
7/21/14 3:50 PM 35.7 -0.07 -0.07 35.23 7/21/14 4:00 PM 35.41 -0.07 -0.07 35.16 7/21/14 4:10 PM 36.02 -0.07 -0.07 34.46 7/21/14 4:30 PM 35.19 -0.07 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:10 PM -0.1 -0.07 1.8.56 16.94 7/21/14 5:20 PM -0.1 -0.07 1.8.56 16.94 7/21/14 5:30 PM -0.12 -0.07 1.7.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.18 7/21/14 6:30 PM <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
7/21/14 4:00 PM 35.41 -0.07 -0.07 35.16 7/21/14 4:10 PM 36.02 -0.07 -0.07 34.46 7/21/14 4:20 PM 36.12 -0.05 -0.07 34.83 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:20 PM -0.1 -0.05 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.18 7/21/14 6:30 PM -0.12					
7/21/14 36.02 -0.07 -0.07 34.46 7/21/14 4:20 PM 36.12 -0.05 -0.07 35.65 7/21/14 4:30 PM 35.19 -0.07 -0.07 34.83 7/21/14 4:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.1 -0.07 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.07 19.49 17.86 7/21/14 5:30 PM -0.12 -0.07 10.7 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07					
7/21/14 36.12 -0.05 -0.07 35.65 7/21/14 4:30 PM 35.19 -0.07 -0.07 -0.07 7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.1 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.1 -0.05 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.07 18.56 16.94 7/21/14 5:20 PM -0.12 -0.07 10.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
7/21/14 35.19 -0.07 -0.07 34.83 7/21/14 4:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 <t< td=""><td></td><td></td><td>-0.07</td><td>-0.07</td><td>34.46</td></t<>			-0.07	-0.07	34.46
7/21/14 4:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:10 PM -0.12 -0.05 -19.49 17.86 7/21/14 5:20 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 1.7.3 15.9 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.05 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14	7/21/14 4:20 PM	36.12	-0.05	-0.07	35.65
7/21/14 4:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.1 -0.07 -0.07 -0.18 7/21/14 5:20 PM -0.1 -0.05 19.49 17.6 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:40 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:4	7/21/14 4:30 PM	35.19	-0.07	-0.07	34.83
7/21/14 5:00 PM -0.1 -0.07 -0.07 -0.18 7/21/14 5:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7	7/21/14 4:40 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 5:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 5:20 PM -0.1 -0.05 19.49 17.86 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7	7/21/14 4:50 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 5:20 PM -0.1 -0.05 19.49 17.86 7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:40 PM -0.12 -0.07 17.73 15.9 7/21/14 5:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7	7/21/14 5:00 PM	-0.1	-0.07	-0.07	-0.18
7/21/14 5:30 PM -0.12 -0.07 18.56 16.94 7/21/14 5:30 PM -0.12 -0.07 17.73 15.9 7/21/14 5:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14	7/21/14 5:10 PM	-0.12	-0.05	-0.07	-0.21
7/21/14 5:40 PM -0.12 -0.07 17.73 15.9 7/21/14 5:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.1 -0.05 -0.07 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:30 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8	7/21/14 5:20 PM	-0.1	-0.05	19.49	17.86
7/21/14 5:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.1 -0.05 -0.05 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/1	7/21/14 5:30 PM	-0.12	-0.07	18.56	16.94
7/21/14 6:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14	7/21/14 5:40 PM	-0.12	-0.07	17.73	15.9
7/21/14 6:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 6:20 PM -0.1 -0.05 -0.05 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14	7/21/14 5:50 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 6:20 PM -0.1 -0.05 -0.05 -0.21 7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.15 -0.07 -0.07 -0.21 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:	7/21/14 6:00 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 6:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 6:30 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 6:10 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 6:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 6:20 PM	-0.1	-0.05	-0.05	-0.21
7/21/14 6:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 7:00 PM -0.15 -0.07 -0.07 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 6:30 PM	-0.12	-0.07	-0.07	-0.18
7/21/14 7:00 PM -0.15 -0.07 -0.07 -0.21 7/21/14 7:10 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.05 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 6:40 PM	-0.15	-0.07	-0.07	-0.18
7/21/14 7:10 PM -0.12 -0.05 -0.05 -0.21 7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.05 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 6:50 PM	-0.12	-0.07	-0.07	-0.18
7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:	7/21/14 7:00 PM		-0.07	-0.07	-0.21
7/21/14 7:20 PM -0.12 -0.05 -0.07 -0.21 7/21/14 7:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.05 -0.07 -0.18 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/	7/21/14 7:10 PM	-0.12	-0.05	-0.05	-0.21
7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.05 -0.07 -0.18 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 7:20 PM				
7/21/14 7:40 PM -0.12 -0.07 -0.07 -0.21 7/21/14 7:50 PM -0.12 -0.05 -0.07 -0.18 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:0 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14	7/21/14 7:30 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 7:50 PM -0.12 -0.05 -0.07 -0.18 7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:40 PM -0.12 -0.07 -0.05 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14					
7/21/14 8:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.05 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14					
7/21/14 8:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/1					
7/21/14 8:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.21 7/21/14 8:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.05 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/					
7/21/14 8:30 PM-0.12-0.07-0.07-0.217/21/14 8:30 PM-0.12-0.07-0.07-0.187/21/14 8:50 PM-0.12-0.07-0.05-0.187/21/14 9:00 PM-0.12-0.07-0.07-0.187/21/14 9:10 PM-0.12-0.07-0.07-0.217/21/14 9:20 PM-0.12-0.07-0.07-0.217/21/14 9:30 PM-0.12-0.07-0.07-0.187/21/14 9:30 PM-0.12-0.07-0.07-0.187/21/14 9:50 PM-0.12-0.07-0.07-0.187/21/14 9:00 PM-0.12-0.07-0.07-0.187/21/14 10:00 PM-0.12-0.07-0.07-0.187/21/14 10:20 PM-0.12-0.07-0.07-0.187/21/14 10:30 PM-0.12-0.07-0.07-0.187/21/14 10:30 PM-0.12-0.07-0.07-0.187/21/14 10:30 PM-0.12-0.0718.9316.247/21/14 10:00 PM-0.12-0.0717.7315.817/21/14 11:00 PM-0.12-0.0716.714.847/21/14 11:00 PM-0.12-0.07-0.18-0.187/21/14 11:00 PM-0.12-0.0716.714.847/21/14 11:20 PM-0.12-0.07-0.07-0.18					
7/21/14 8:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 8:50 PM -0.12 -0.07 -0.05 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.12 -0.07 18.93 16.24 7/21/14 10:50 PM -0.12 -0.07 17.73 15.81 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
7/21/14 8:50 PM -0.12 -0.07 -0.05 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.12 -0.07 1.893 16.24 7/21/14 10:40 PM -0.12 -0.07 1.893 16.24 7					
7/21/14 9:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:40 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.12 -0.07 18.93 16.24 7/21/14 10:50 PM -0.12 -0.07 17.73 15.81 7					
7/21/14 9:10 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.15 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.12 -0.07 1.893 16.24 7/21/14 10:50 PM -0.12 -0.07 17.73 15.81 7/21/14 11:0 PM -0.12 -0.07 16.7 14.84 7/					
7/21/14 9:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:30 PM -0.15 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.12 -0.07 1.893 16.24 7/21/14 10:50 PM -0.12 -0.07 1.893 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
7/21/14 9:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 9:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 10.18 -0.18 7/21/14 10:40 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.18 -0.18					
7/21/14 9:40 PM -0.15 -0.07 -0.07 -0.18 7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 1.893 16.24 7/21/14 11:05 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 9:50 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:00 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:10 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.1 -0.07 18.93 16.24 7/21/14 10:50 PM -0.12 -0.07 17.73 15.81 7/21/14 11:00 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:20 PM -0.12 -0.07 -0.07 -0.21 7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.1 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:30 PM -0.12 -0.07 -0.07 -0.18 7/21/14 10:40 PM -0.1 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:40 PM -0.1 -0.07 -0.07 -0.18 7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 10:50 PM -0.12 -0.07 18.93 16.24 7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 11:00 PM -0.12 -0.07 17.73 15.81 7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 11:10 PM -0.12 -0.07 16.7 14.84 7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
7/21/14 11:20 PM -0.12 -0.07 -0.07 -0.18					
	, ,		2.07	,	

7/21/14 11:40 PM	-0.12	-0.07	-0.07	-0.21
7/21/14 11:50 PM				
	-0.12	-0.07	-0.1	-0.21
7/22/14 12:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 12:10 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 12:20 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 12:30 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 12:40 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 12:50 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:10 AM	-0.1	-0.07	-0.07	-0.18
7/22/14 1:20 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:30 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 1:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:50 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 2:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 2:10 AM	-0.15	-0.1	-0.07	-0.21
7/22/14 2:20 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 2:30 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 2:40 AM	-0.12	-0.07	-0.1	-0.18
7/22/14 2:50 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 3:00 AM	-0.12	-0.07	-0.1	-0.18
7/22/14 3:10 AM	37.83	-0.07	-0.07	37.27
7/22/14 3:20 AM	37.29	-0.07		
			-0.1	36.39
7/22/14 3:30 AM	37.46	-0.07	-0.1	37.06
7/22/14 3:40 AM	36.8	-0.07	-0.07	36.42
7/22/14 3:50 AM	36.34	-0.07	-0.07	35.87
7/22/14 4:00 AM	35.97	-0.07	-0.07	35.99
7/22/14 4:10 AM	-0.12	-0.07	19.63	17.98
7/22/14 4:20 AM	-0.15	-0.07	18.44	16.18
7/22/14 4:30 AM	-0.12	-0.07	17.46	15.05
7/22/14 4:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 4:50 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:00 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 5:10 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 5:20 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:30 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 5:40 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 5:50 AM	-0.12	-0.07	-0.1	-0.18
7/22/14 6:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:10 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:20 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 6:30 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 6:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:50 AM				
	-0.12	-0.07	-0.07	-0.21
7/22/14 7:00 AM	-0.15	-0.07	-0.07	-0.21
7/22/14 7:10 AM	-0.15	-0.07	-0.1	-0.21
7/22/14 7:20 AM	-0.12	-0.07	-0.1	-0.18
7/22/14 7:30 AM	-0.12	-0.07	-0.1	-0.21
7/22/14 7:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 7:50 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 8:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:10 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:20 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:30 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:40 AM				-0.21
	-0.12	-0.07	-0.07	
7/22/14 8:50 AM	-0.15	-0.07	-0.07	-0.21
7/22/14 9:00 AM	-0.15	-0.07	-0.07	-0.18
7/22/14 9:10 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 9:20 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 9:30 AM	-0.12	-0.07	19.05	17.03
7/22/14 9:40 AM	-0.12	-0.07	18.56	16.7
7/22/14 9:50 AM	-0.12	-0.07	17.53	15.29
7/22/14 10:00 AM	-0.12		-0.07	
		-0.07		-0.21
7/22/14 10:10 AM	-0.1	-0.07	-0.07	-0.21
7/22/14 10:20 AM	-0.12	-0.07	-0.07	-0.18
7/22/14 10:30 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:50 AM	-0.15	-0.07	-0.07	-0.21
7/22/14 11:00 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 11:10 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 11:20 AM	-0.12	-0.05	-0.07	-0.21
7/22/14 11:30 AM	-0.15	-0.07	-0.07	-0.21
				. I

7/22/14 11:40 AM	-0.12	-0.07	-0.07	-0.21
7/22/14 11:50 AM	-0.15	-0.07	-0.07	-0.18
7/22/14 12:00 PM	-0.15	-0.07	-0.07	-0.21
7/22/14 12:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 12:20 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 12:30 PM	-0.12	-0.05	-0.07	-0.21
7/22/14 12:40 PM	-0.12	-0.05	-0.07	-0.21
7/22/14 12:50 PM	-0.15	-0.05	-0.07	-0.21
7/22/14 1:00 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:20 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 1:30 PM	-0.15	-0.07	-0.07	-0.21
7/22/14 1:40 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 1:50 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 2:00 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 2:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 2:20 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 2:30 PM	-0.15	-0.07	-0.07	-0.21
7/22/14 2:40 PM	35.87	-0.07	-0.07	35.65
7/22/14 2:50 PM	35.68	-0.07	-0.07	35.41
7/22/14 3:00 PM	37	-0.07	20.17	51.5
7/22/14 3:10 PM	37.07	-0.07	19.24	50.92
7/22/14 3:20 PM	37.14	-0.07	18.02	49.97
7/22/14 3:30 PM	37.02	-0.07	-0.07	36.45
7/22/14 3:40 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 3:50 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 4:00 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 4:10 PM	-0.12	-0.05	-0.07	-0.18
7/22/14 4:20 PM	-0.12	-0.05	-0.07	-0.18
7/22/14 4:30 PM	-0.12	-0.07	-0.05	-0.18
7/22/14 4:40 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 4:50 PM	-0.15	-0.07	-0.07	-0.18
7/22/14 5:00 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:20 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:30 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 5:40 PM	-0.1	-0.07	-0.07	-0.18
7/22/14 5:50 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 6:00 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:20 PM	-0.1	-0.07	-0.07	-0.21
7/22/14 6:30 PM	-0.12	-0.05	-0.05	-0.18
7/22/14 6:40 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 6:50 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 7:00 PM	-0.12	-0.05	-0.07	-0.21
7/22/14 7:10 PM	-0.12	-0.07	-0.05	-0.18
	-0.12	-0.07	-0.05	-0.18
7/22/14 7:20 PM	-			
7/22/14 7:30 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 7:40 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 7:50 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:00 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:10 PM	-0.15	-0.07	-0.07	-0.21
7/22/14 8:20 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 8:30 PM	-0.12	-0.07	19	16.12
7/22/14 8:40 PM	-0.12	-0.07	18.19	14.93
7/22/14 8:50 PM	-0.15	-0.07	16.92	14.65
7/22/14 9:00 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 9:10 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 9:20 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 9:30 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 9:40 PM	-0.1	-0.07	-0.07	-0.21
7/22/14 9:50 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 10:00 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:10 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:20 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:30 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 10:40 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 10:50 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 11:00 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 11:10 PM	-0.12	-0.07	-0.07	-0.18
7/22/14 11:20 PM			0.05	-0.21
	-0.12	-0.05	-0.05	-0.21
7/22/14 11:30 PM		-0.05 -0.07	-0.05	

7/22/14 11:40 PM	-0.12	-0.07	-0.07	-0.21
7/22/14 11:50 PM		-0.07	-0.07	-0.18
7/23/14 12:00 AM		-0.07	-0.07	-0.21
7/23/14 12:10 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 12:20 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 12:30 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 12:40 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 12:50 AM		-0.07	-0.07	-0.18
7/23/14 1:00 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 1:10 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 1:20 AM		-0.07	-0.07	-0.18
7/23/14 1:30 AM				
		-0.07	-0.07	-0.21
7/23/14 1:40 AM		-0.05	-0.07	-0.21
7/23/14 1:50 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 2:00 AM	-0.12	-0.07	19.1	16.42
7/23/14 2:10 AM	-0.12	-0.07	18.14	15.9
7/23/14 2:20 AM		-0.07	17	15.17
7/23/14 2:30 AM		-0.07	-0.07	-0.18
7/23/14 2:40 AM	37.83	-0.07	-0.07	<u>36.72</u>
7/23/14 2:50 AM	37.85	-0.07	-0.07	37.64
7/23/14 3:00 AM	36.9	-0.07	-0.07	36.42
7/23/14 3:10 AM		-0.07	-0.07	36.72
7/23/14 3:20 AM	37.31	-0.07	-0.07	34.98
7/23/14 3:30 AM	35.92	-0.07	-0.07	35.23
7/23/14 3:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 3:50 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 4:00 AM		-0.07	-0.07	-0.21
7/23/14 4:10 AM		-0.07	-0.07	-0.18
7/23/14 4:20 AM		-0.07	-0.07	-0.21
7/23/14 4:30 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 4:40 AM	-0.12	-0.05	-0.07	-0.21
7/23/14 4:50 AM	-0.15	-0.07	-0.07	-0.21
7/23/14 5:00 AM		-0.07	-0.07	-0.18
7/23/14 5:10 AM		-0.07	-0.07	-0.21
7/23/14 5:20 AM		-0.07	-0.07	-0.21
7/23/14 5:30 AM	-0.12	-0.05	-0.07	-0.21
7/23/14 5:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 5:50 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 6:00 AM		-0.07	-0.07	-0.18
7/23/14 6:10 AM		-0.07	-0.07	-0.18
7/23/14 6:20 AM	-0.15	-0.07	-0.07	-0.21
7/23/14 6:30 AM	-0.15	-0.07	-0.07	-0.21
7/23/14 6:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 6:50 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 7:00 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 7:10 AM		-0.07	-0.07	-0.21
7/23/14 7:20 AM		-0.07	-0.07	-0.21
7/23/14 7:30 AM	-0.12	-0.07	19.19	18.04
7/23/14 7:40 AM	-0.15	-0.07	18.71	16.18
7/23/14 7:50 AM		-0.07	17.46	14.99
7/23/14 8:00 AM		-0.07	-0.07	-0.21
7/23/14 8:10 AM		-0.07	-0.07	-0.21
7/23/14 8:20 AM		-0.07	-0.07	-0.21
7/23/14 8:30 AM	-0.15	-0.07	-0.07	-0.21
7/23/14 8:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 8:50 AM	-0.15	-0.07	-0.07	-0.21
7/23/14 9:00 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 9:10 AM		-0.07	-0.07	-0.21
7/23/14 9:20 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 9:30 AM		-0.07	-0.07	-0.21
7/23/14 9:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 9:50 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 10:00 AM	-0.12	-0.07	-0.07	-0.18
7/23/14 10:10 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 10:20 AM		-0.07	-0.07	-0.21
7/23/14 10:30 AM		-0.07	-0.07	-0.21
7/23/14 10:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 10:50 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 11:00 AM	-0.15	-0.07	-0.07	-0.21
,,	0.10	0.07		
7/23/1/ 11.10 ^ 4	_0 12	-0.07	-0.07	_0 1 2
7/23/14 11:10 AM		-0.07	-0.07	-0.18
7/23/14 11:20 AM	-0.12	-0.07	-0.07	-0.21
	-0.12			-0.21

7/23/14 11:40 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 11:50 AM	-0.12	-0.07	-0.07	-0.21
7/23/14 12:00 PM	-0.12	-0.05	-0.07	-0.21
7/23/14 12:10 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 12:20 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 12:30 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 12:40 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 12:50 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 1:00 PM	-0.12	-0.07	19.61	18.25
7/23/14 1:10 PM	-0.12	-0.07	19.1	16.94
7/23/14 1:20 PM	-0.12	-0.07	18.05	15.38
7/23/14 1:30 PM				
	-0.12	-0.07	-0.05	-0.12
7/23/14 1:40 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 1:50 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 2:00 PM	-0.12	-0.05	-0.07	-0.18
7/23/14 2:10 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 2:20 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 2:30 PM	36.07	-0.07	-0.07	35.47
7/23/14 2:40 PM	36.7	-0.07	-0.07	36.11
7/23/14 2:50 PM	36.31	-0.07	-0.07	35.93
7/23/14 3:00 PM	35.97	-0.05	-0.07	36.08
7/23/14 3:10 PM	35.68	-0.05	-0.07	35.35
7/23/14 3:20 PM	35.21	-0.07	-0.07	35.32
7/23/14 3:30 PM	34.99	-0.05	-0.07	34.95
7/23/14 3:40 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 3:50 PM	-0.12	-0.05	-0.07	-0.18
7/23/14 4:00 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 4:10 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 4:20 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 4:30 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 4:40 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 4:50 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 5:00 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 5:10 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 5:20 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 5:30 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 5:40 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 5:50 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 6:00 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 6:10 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 6:20 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 6:30 PM	-0.12	-0.07	19.19	18.16
7/23/14 6:40 PM	-0.12	-0.07	18.61	16.12
7/23/14 6:50 PM	-0.12	-0.07	17.31	15.11
7/23/14 7:00 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 7:10 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 7:20 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 7:30 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 7:40 PM	-0.13	-0.07		
			-0.07	-0.18
7/23/14 7:50 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 8:00 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 8:10 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 8:20 PM	-0.12	-0.07	-0.1	-0.21
7/23/14 8:30 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 8:40 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 8:50 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 9:00 PM				
	-0.1	-0.07	-0.07	-0.21
7/23/14 9:10 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 9:20 PM	-0.12	-0.07	-0.1	-0.21
7/23/14 9:30 PM	-0.12	-0.07	-0.1	-0.21
7/23/14 9:40 PM	-0.15	-0.07	-0.1	-0.21
7/23/14 9:50 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 10:00 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 10:00 PM	-0.12	-0.07	-0.1	-0.21
7/23/14 10:20 PM	-0.15	-0.07	-0.07	-0.21
7/23/14 10:30 PM	-0.12	-0.07	-0.07	-0.18
7/23/14 10:40 PM	-0.12	-0.07	-0.07	-0.21
7/23/14 10:50 PM	-0.12	-0.07	19.51	16.51
7/23/14 11:00 PM	-0.12	-0.07	18.24	15.84
	-0.12	-0.07	17.26	14.29
7/23/14 11·10 PM				
7/23/14 11:10 PM 7/23/14 11:20 PM				
7/23/14 11:10 PM 7/23/14 11:20 PM 7/23/14 11:30 PM	-0.12	-0.07 -0.07	-0.1 -0.07	-0.21

7/22/44 44 40 004	27.70	0.07	0.07	27.2	
7/23/14 11:40 PM	37.78	-0.07	-0.07	37.3	
7/23/14 11:50 PM	37.44	-0.07	-0.07	36.42	
7/24/14 12:00 AM	36.8	-0.07	-0.1	35.65	
7/24/14 12:10 AM	36.83	-0.07	-0.1	35.38	
7/24/14 12:20 AM	36.36	-0.07	-0.07	35.71	
7/24/14 12:30 AM	36.19	-0.07	-0.1	35.71	
7/24/14 12:40 AM	-0.12	-0.07	-0.07	-0.18	
7/24/14 12:50 AM	-0.12	-0.07	-0.07	-0.18	
7/24/14 1:00 AM	-0.12	-0.07	-0.07	-0.18	
7/24/14 1:10 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 1:20 AM	-0.15	-0.07	-0.07	-0.21	
7/24/14 1:30 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 1:40 AM	-0.15	-0.07	-0.07	-0.21	
7/24/14 1:50 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 2:00 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 2:10 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 2:20 AM	-0.15	-0.07	-0.1	-0.21	
7/24/14 2:30 AM	-0.12	-0.07	-0.1	-0.21	
7/24/14 2:40 AM	-0.15	-0.07	-0.1	-0.21	
7/24/14 2:50 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 3:00 AM	-0.15	-0.07	-0.07	-0.21	
7/24/14 3:10 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 3:20 AM	-0.15	-0.07	-0.07	-0.21	
7/24/14 3:30 AM	-0.12	-0.1	19.46	16.18	
7/24/14 3:40 AM	-0.1	-0.1	18.49	16.03	
7/24/14 3:50 AM	-0.12	-0.07	17.02	14.41	
7/24/14 4:00 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 4:10 AM	-0.12	-0.07	-0.07	-0.18	
7/24/14 4:20 AM	-0.12	-0.07	-0.07	-0.18	Alarm at 0424
7/24/14 4:30 AM	-0.12	-0.07	-0.07	13.68	
7/24/14 4:40 AM	-0.15	-0.07	-0.1	13.52	
7/24/14 4:50 AM	-0.12	-0.07	-0.07	14.04	
7/24/14 5:00 AM	-0.12	-0.07	-0.07	13.64	
7/24/14 5:10 AM	-0.15	-0.07	-0.07	13.22	
7/24/14 5:20 AM	-0.12	-0.07	-0.07	13.58	
7/24/14 5:30 AM	-0.15	-0.07	-0.07	13.31	
7/24/14 5:40 AM	-0.12	-0.07	-0.1	13.68	
7/24/14 5:50 AM	-0.12	-0.07	-0.07	13.58	
7/24/14 6:00 AM	-0.15	-0.07	-0.07	12.55	
7/24/14 6:10 AM	-0.15	-0.07	-0.07	12.67	
7/24/14 6:20 AM	-0.12	-0.07	-0.07	12.82	
7/24/14 6:30 AM	-0.12	-0.07	-0.07	11.9	
7/24/14 6:40 AM	-0.12	-0.07	-0.07	12.12	
7/24/14 6:50 AM	-0.12	-0.07	-0.1	11.72	
7/24/14 7:00 AM	-0.12	-0.07	-0.07	-0.03	
7/24/14 7:10 AM	-0.12	-0.07	-0.07	-0.21	
7/24/14 7:20 AM	-0.15	-0.05	-0.07	-0.21	
7/24/14 7:30 AM	-0.12	-0.07	-0.1	-0.21	
7/24/14 7:40 AM	-0.15	-0.07	-0.1	-0.21	
	0.15		0.07		
7/24/14 7:50 AM	20.46	-0.07	-0.07	1.4	
7/24/14 7:50 AM 7/24/14 8:00 AM		-0.07 -0.07	-0.07 -0.07	1.4 -0.21	
	20.46				
7/24/14 8:00 AM	20.46 -0.12	-0.07	-0.07	-0.21	

Alarm Date:	7/27/2014
Alarm Time:	06:56:01
Technician:	W. Armington

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 7/30/14 Time: 1000

Alarm Condition:

Process 30: Manhole MH-2 Low flowrate (non-fatal)

Cause of Alarm:

Based on a review of logged data for this alarm and the same alarm receive on 7/24/14, it appears flow transmitter FT-102 is not functioning consistenly. The recorded values for flow from Manhole MH-2 do not appear to consistently represent actual flow conditions, i.e. it appears the flow meter at times is not functioning and at other times functions properly.

Corrective Action:

Stantec observed the flow meter began to operate normally at 0730 on 7/27/14 during the pump-down cycle of MH-2 after the alarm tripped. As of the morning of 7/30/14 the flow meter appears to function normally. Stantec will continue to monitor the operation remotely until the the next scheduled site visit on 8/7/14, at which time we will inspect the flow meter, wiring, and manhole. Replcement of the meter may be requred sometime in the near future.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Sunday, July 27, 2014 6:59 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 06:56:01 on 07/27/2014

ALARM was triggered by PROCESS 30. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #30. This system last shut down at 11:15:07 on 07/10/2014 and the cause was REMOTE.

DISCRETE INPUT STATUS:								
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	ON	
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF	
MH3_H1	OFF	MH3_LO	OFF	MH3_LL	ON	WFS106	OFF	
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	OFF	
LSH200	OFF							
		DISCRE	TE OU'	TPUT STAT	TUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	ON	
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON	
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	ON	
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:								
Taonama	Value	Units	Totalizer	Total Units	Alarm Setpoints			
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High
FT_101	0.00	GPM	61134838	GAL	10.00	80.00	0.00	20.00
FT_102	0.00	GPM	10776459	GAL	10.00	80.00	0.00	20.00
FT_103	0.00	GPM	4778365	GAL	10.00	80.00	0.00	20.00
FT_105	14.53	GPM	16695813	GAL	3.00	80.00	0.00	20.00
PT_106	28.57	IWC			8.00	35.00	0.00	20.00
TT_400	74.0	DEG			60.0	110.0	0.0	20.0
PT_400	11.5	IWC			1.0	25.0	0.0	20.0
TT_100	73.1	DEG			40.0	110.0	0.0	20.0
FT_106	624.3	CFM			300.0	****	0.0	20.0

ANALOG OUTPUT STATUS:							
TagnamePercentage Full ScaleOperational Mode			Tagname	Percentage Full Scale	Operational Mode		
INJSPD	2.2%	Open Loop Proportional					

Alarm Date:	8/2/2014
Alarm Time:	07.29.14
Technician:	W. Armington

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 8.4.2014 Time: 1500

Alarm Condition:

Process 53 (Non-Fatal) - Sequestering agent low flow. The system continues to function normally.

Cause of Alarm:

There is no indication of what cased the alarm. It is possible the sequestering agent pump became unprimed, which has reportedly happened in the past.

Corrective Action:

Stantec will inspect the sequestering agent pump on 8/7/14 during the August monthly OM&M visit.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Saturday, August 02, 2014 7:32 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 07:29:06 on 08/02/2014

ALARM was triggered by PROCESS 53. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #53. This system last shut down at 11:15:07 on 07/10/2014 and the cause was REMOTE.

DISCRETE INPUT STATUS:								
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON	
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF	
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF	
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF	
LSH106	OFF	LSH100	OFF	LSL100	ON	FT_200	ON	
LSH200	OFF							
<u> </u>		DISCRE	TE OU'	TPUT STAT	TUS:			
Tagname	State	Tagname	State	Tagname	State	Tagname	State	
MH1_P1	ON	MH1_P2	OFF	MH2_P1	ON	MH2_P2	OFF	
MH3_P1	OFF	MH3_P2	OFF	B_100	ON	DH_300	ON	
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF	
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	OFF	
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF	
					1			

FA_106	OFF	FA_200	ON	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:									
Tagname	Value	Units	Totalizer	Total Units		Ala	Alarm Setpoints		
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High	
FT_101	38.41	GPM	61183331	GAL	10.00	80.00	0.00	20.00	
FT_102	15.63	GPM	10784363	GAL	10.00	80.00	0.00	20.00	
FT_103	0.00	GPM	4801291	GAL	10.00	80.00	0.00	20.00	
FT_105	51.28	GPM	16770880	GAL	3.00	80.00	0.00	20.00	
PT_106	30.65	IWC			8.00	35.00	0.00	20.00	
TT_400	76.3	DEG			60.0	110.0	0.0	20.0	
PT_400	10.0	IWC			1.0	25.0	0.0	20.0	
TT_100	72.9	DEG			40.0	110.0	0.0	20.0	
FT_106	571.0	CFM			300.0	****	0.0	20.0	

ANALOG OUTPUT STATUS:					
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode
INJSPD	7.7%	Open Loop Proportional			

Alarm Date:	8/4/2014
Alarm Time:	18:52:30
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: 8/5/14 Time: 0800

Alarm Condition:

Process 30: Manhole MH-2 Low flowrate (non-fatal)

Cause of Alarm:

Based on a review of logged data this appears to be related to the flow meter for Manhole 2, which is malfunctions intermittently. See the attached logged data retreieved f the system this morning. Highlighted values show times when Manhole 2 is producing flow. Note the red box (corresponding to the alarm time) where flow values should be recorded for MH-2, but values are zero.

Corrective Action:

Stantec will diagnose the flow meter during the August Monthly OMM visit scheduled for 8/7.

Alarm Date:	11/19/2014
Alarm Time:	05:04:28
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date: <u>11/20/14</u> Time: <u>1015</u>

(revised 12/16/14)

Alarm Condition:

Process 32 (Non-Fatal) - Air Stripper Low Liquid Level

Cause of Alarm:

The liquid level in the air stripper sump varies depending on inflow rates. The low level alarm is frequently tripped during normal operation as the sump level varies; these events typically do not last longer than the 10-minute delay that has been set to avoid unnecessary "nuisance" alarms. This alarm indicates the liquid level must have remained below the low-level set point for greater than 10 minutes; however overall operation of the sytem does not appear to be impacted.

This condition is suspected to be due to changes in air stripper sump pressure caused by seasonal changes in air temperature and density.

Corrective Action:

Logged onto system approximately 0715. Operation appeared normal with no indication of any problems with air stripper. Stantec will continue to monitor system performance today.

This condition was corrected on 12/3 by adjusting the air manifold valve to decrease sump pressure.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Wednesday, November 19, 2014 4:09 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 05:04:28 on 11/19/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 15:52:23 on 10/08/2014 and the cause was PT_106.

DISCRETE INPUT STATUS:							
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF
LSH200	OFF						
		DISCRE	TE OU'	FPUT STAT	TUS:		
Tagname	State	Tagname	State	Tagname	State	Tagname	State
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF

FA_106	OFF	FA_200	ON	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:									
Taonama	Value	Units	Totalizer	Total Units		Ala	larm Setpoints		
Tagname	value	Unus	Totatizer	Totat Onus	Low	High	Low-Low	High-High	
FT_101	0.00	GPM	61883741	GAL	10.00	80.00	0.00	20.00	
FT_102	0.00	GPM	10896590	GAL	10.00	80.00	0.00	20.00	
FT_103	17.31	GPM	5146101	GAL	10.00	80.00	0.00	20.00	
FT_105	16.15	GPM	17868929	GAL	3.00	80.00	0.00	20.00	
PT_106	31.72	IWC			8.00	35.00	0.00	20.00	
TT_400	88.6	DEG			60.0	110.0	0.0	20.0	
PT_400	13.0	IWC			1.0	25.0	0.0	20.0	
TT_100	65.3	DEG			40.0	110.0	0.0	20.0	
FT_106	773.2	CFM			300.0	****	0.0	20.0	

	ANALOG OUTPUT STATUS:					
Tagname	Percentage Full Scale	Operational Mode	Tagname	Percentage Full Scale	Operational Mode	
INJSPD	2.4%	Open Loop Proportional				

Alarm Date:	11/21/2014
Alarm Time:	0441
Technician:	R. Mahoney

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

Date:11/21/14 Time: 1015

(revised 12/16/14)

1010

Alarm Condition:

- Missing Fax e-mail (no reporting today - not an alarm condition))

- Process 32 (Non-Fatal) - Air Stripper Low Liquid Level

Cause of Alarm:

Uncertain coause for missing fax.

When logged into system observed the sump low level alarm was activated.

This condition is suspected to be due to changes in air stripper sump pressure caused by seasonal changes in air temperature and density.

Corrective Action:

Logged onto system approximately 0700. Operation appeared normal, but a stripper sump low level alarm was showing. The alarm was cleared. Stantec will continue to monitor system operation.

This condition was corrected on 12/3 by adjusting the air manifold valve to decrease sump pressure.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Friday, November 21, 2014 3:47 AM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 04:41:47 on 11/21/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 15:52:23 on 10/08/2014 and the cause was PT_106.

DISCRETE INPUT STATUS:									
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON		
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF		
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF		
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF		
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF		
LSH200	OFF								
		DISCRE	TE OU'	FPUT STAT	TUS:				
Tagname	State	Tagname	State	Tagname	State	Tagname	State		
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF		
MH3_P1	OFF	MH3_P2	ON	B_100	ON	DH_300	ON		
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF		
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON		
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF		

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:									
Taonama			Alarm Setpoints						
Tagname	Value	Units	Totalizer	Total Units	Low	High	Low-Low	High-High	
FT_101	0.00	GPM	61899419	GAL	10.00	80.00	0.00	20.00	
FT_102	0.00	GPM	10898852	GAL	10.00	80.00	0.00	20.00	
FT_103	16.07	GPM	5152673	GAL	10.00	80.00	0.00	20.00	
FT_105	14.22	GPM	17893522	GAL	3.00	80.00	0.00	20.00	
PT_106	31.59	IWC			8.00	35.00	0.00	20.00	
TT_400	86.9	DEG			60.0	110.0	0.0	20.0	
PT_400	13.0	IWC			1.0	25.0	0.0	20.0	
TT_100	65.5	DEG			40.0	110.0	0.0	20.0	
FT_106	765.0	CFM			300.0	****	0.0	20.0	

ANALOG OUTPUT STATUS:								
TagnamePercentage Full ScaleOperational Mode		Tagname	Percentage Full Scale	Operational Mode				
INJSPD	2.1%	Open Loop Proportional						

Alarm Date:	11/21/2014				
Alarm Time:	17:28:16				
Technician:	W. Armington				

ALARM RESPONSE / CORRECTIVE ACTION LOG SHEET

(revised 12/16/14)

Date: <u>11/22/14</u> Time: <u>1100</u>

Alarm Condition:

Process 32 (Non-Fatal) - Air Stripper Low Liquid Level

Cause of Alarm:

This alarm indicates the liquid level in the air stripper sump remained below the low-level set point for greater than 10 minutes; however overall operation of the sytem does not appear to be impacted.

This condition is suspected to be due to changes in air stripper sump pressure caused by seasonal changes in air temperature and density.

Corrective Action:

Logged onto system approximately 1000. Operation appeared normal with no indication of any problems with air stripper. Stantec will continue to monitor system performance.

This condition was corrected on 12/3 by adjusting the air manifold valve to decrease sump pressure.

From:	The LMC GCTS system {#9539} in UTICA_NEW YORK <procontrol@eosresearch.com> <procontrol@eosresearch.com></procontrol@eosresearch.com></procontrol@eosresearch.com>
Sent:	Friday, November 21, 2014 5:29 PM
То:	Nielsen, Peter; Mahoney, Robert; Armington, William; zigmontjh@cdmsmith.com; Haravitch, Ben
Subject:	ProControl ALARM Report

ProControl Series 2^{plus} ALARM Report

Email generated from WAN IP address: 166.149.174.142 Both HTML and plain text reports are attached. Enable plain text alternative mode to view only text.

ALARM generated at 17:28:16 on 11/21/2014

ALARM was triggered by PROCESS 32. Process specific message follows:

This system uses ROM version 2.217 and is a MODEL A2.

The system is currently in AUTO mode and the last process to run was AUTO process #32. This system last shut down at 15:52:23 on 10/08/2014 and the cause was PT_106.

	DISCRETE INPUT STATUS:										
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_HH	OFF	MH1_H2	OFF	MH1_H1	OFF	MH1_LO	ON				
MH1_LL	ON	MH2_HH	OFF	MH2_H2	OFF	MH2_H1	OFF				
MH2_LO	ON	MH2_LL	ON	MH3_HH	OFF	MH3_H2	OFF				
MH3_H1	OFF	MH3_LO	ON	MH3_LL	ON	WFS106	OFF				
LSH106	OFF	LSH100	OFF	LSL100	OFF	FT_200	OFF				
LSH200	OFF										
		DISCRE	TE OU'	TPUT STAT	TUS:						
Tagname	State	Tagname	State	Tagname	State	Tagname	State				
MH1_P1	OFF	MH1_P2	OFF	MH2_P1	OFF	MH2_P2	OFF				
MH3_P1	ON	MH3_P2	OFF	B_100	ON	DH_300	ON				
LA_MH1	OFF	FA_101	OFF	LA_MH2	OFF	FA_102	OFF				
LA_MH3	OFF	FA_103	OFF	PA_106	OFF	LA_100	ON				
LSH106	OFF	WFS106	OFF	TA_100	OFF	FA_105	OFF				
LSH106	OFF	WFS106	OFF	TA_100	OFF 1	FA_105	OFF				

FA_106	OFF	FA_200	OFF	TAH400	OFF	TAL400	OFF
PA_400	OFF	LSH200	OFF				

ANALOG INPUT STATUS:									
Tagarama			Alarm Setpoints						
Tagname	Value	Units	Totalizer	Total Units	Low	High	Low-Low	High-High	
FT_101	0.00	GPM	61901634	GAL	10.00	80.00	0.00	20.00	
FT_102	0.00	GPM	10898852	GAL	10.00	80.00	0.00	20.00	
FT_103	17.07	GPM	5154116	GAL	10.00	80.00	0.00	20.00	
FT_105	15.69	GPM	17897183	GAL	3.00	80.00	0.00	20.00	
PT_106	31.93	IWC			8.00	35.00	0.00	20.00	
TT_400	96.5	DEG			60.0	110.0	0.0	20.0	
PT_400	12.9	IWC			1.0	25.0	0.0	20.0	
TT_100	64.2	DEG			40.0	110.0	0.0	20.0	
FT_106	756.8	CFM			300.0	****	0.0	20.0	

ANALOG OUTPUT STATUS:								
TagnamePercentage Full ScaleOperational Mode		Tagname	Percentage Full Scale	Operational Mode				
INJSPD	2.3%	Open Loop Proportional						