

April 21, 2020

Mr. Justin Starr, PG
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau C
625 Broadway
Albany, NY 12233-70134

Re: National Grid Kingsley Avenue Site Rome, New York 2020 1st Quarter OM&M Report

Dear Mr. Starr:

Enclosed for your review is the 2020 1st Quarter Operation, Maintenance, and Monitoring (OM&M) Report for the National Grid Rome (Kingsley Avenue) Site. OM&M is being conducted in accordance with the Site Management Plan (SMP) and OM&M Plan issued May 31, 2013. National Grid filed the updated Declaration of Covenants and Restrictions with Oneida County on December 15, 2017. National Grid also submitted the final Site Management Plan to the NYSDEC on January 24, 2018. The NYSDEC provided comments to the SMP and Final Engineering Report on March 3, 2019. National Grid submitted the final SMP and FER on November 30, 2019.

The completed quarterly OM&M activities included:

- A quarterly site inspection;
- Collection of quarterly static water level measurements of site wells;
- Collection and laboratory analysis of quarterly groundwater samples from OU-1 groundwater wells;
- Collection and laboratory analysis of quarterly groundwater extraction system samples; and
- Monitoring and/or collection of light non-aqueous phase liquid and dense nonaqueous phase liquid at site wells.

The groundwater extraction system is operating continuously and discharging to the sanitary sewer under the existing City of Rome Water Pollution Control Authority discharge permit. A chemical treatment system to minimize iron fouling within the

Mr. Justin Starr, PG April 21, 2020 Page 2 of 2

groundwater extraction manhole, submersible pump, and piping also operates continuously.

If you have any questions regarding the report or the scheduled activities, feel free to contact me at (315) 428-5652.

Very truly yours,

for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer National Grid

Enclosures

Cc: Devin Shay - Groundwater & Environmental Services, Inc.

National Grid

2020 1st Quarter Operations, Maintenance, and Monitoring Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

April 2020

Version 1

2020 1st Quarter OM&M Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by:
Groundwater & Environmental Services, Inc.
5 Technology Place, Suite 4
East Syracuse, NY 13057
TEL: 800-220-3069
www.gesonline.com

GES Project: 0603123.134400.221

Date: April 17, 2020

Devin T. Shay, PG Program Manager / Principal Hydrogeologist

Table of Contents

1	In	troduction	. 1
	1.1	Overview	. 1
	1.2	Site Description	. 1
	1.3	Site History	2
2	Ο	peration, Maintenance, and Monitoring Activities	5
	2.1	Quarterly Site Inspection	5
	2.2	Quarterly Static Water Level Measurements	5
	2.3	Quarterly Groundwater Monitoring Event	5
	2.4	Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event	
	2.5	Quarterly Groundwater Extraction System Discharge Sampling Event	7
	2.6	Groundwater Extraction System Discharge Flow and Operation, Maintenance, ar Monitoring	
	2.7	Vegetation Management and Snow Removal	8
3	C	onclusions, Recommendations, and Certifications	9
	3.1	Conclusions	9
	3.2	Recommendations	9
	3.3	Certifications1	0

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Site Map – West

Figure 4 – Site Map – East

Figure 5 – Barrier Wall Profile

Tables

Table 1 – Groundwater Extraction System Discharge Flow

Table 2 – Site Monitoring Wells

Table 3 – Historical Groundwater Data

Table 4 – Groundwater Analytical Data

Table 5 - Discharge Analytical Data

Appendices

Appendix A – Field Inspection Report

Appendix B - Quarterly Gauging Data

Appendix C - Well Sampling Field Data

Appendix D - Data Usability Summary Report and Analytical Data

Acronyms

AWQS	Ambient Water Quality Standards	OM&M	Operations, Maintenance, and Monitoring
BTEX	Benzene, Toluene, Ethylbenzene, and Total Xylenes	OU	Operable Unit
DNAPL	Dense Non-Aqueous Phase Liquid	Pace	Pace Analytical Services, LLC
DUSR	Data Usability Summary Report	PAH	Polycyclic Aromatic Hydrocarbons
GES	Groundwater & Environmental Services,	POTW	Publically Owned Treatment Works
OLO	Inc.	QA/QC	Quality Assurance / Quality Control
gpm	Gallons per Minute	ROD	Record of Decision
IRM	Interim Remedial Measures	SMP	Site Management Plan
LNAPL	Light Non-Aqueous Phase Liquid	USEPA	United States Environmental Protection
MGP	Manufactured Gas Plant		Agency
NYSDEC	New York State Department of Environmental Conservation	WPCF	Water Pollution Control Facility

1 Introduction

1.1 Overview

Groundwater & Environmental Services, Inc. (GES) has prepared this 2020 1st Quarter Operations, Maintenance, and Monitoring Report (OM&M) on behalf of National Grid. This report compiles the OM&M activities completed in the 1st quarter of 2020 at the Former Kingsley Avenue Manufactured Gas Plant (MGP) Site (the Site), located in Rome, New York. The Site has been classified as a Class 2 inactive hazardous waste disposal site by the New York State Department of Environmental Conservation (NYSDEC) and is identified as Site No. 633043.

In accordance with the Record of Decision (March 2002) and following successful completion of the selected remedy, long-term OM&M is required at the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) for Operable Unit (OU) -1 and OU-2 were submitted to NYSDEC on November 30, 2019.

The following long-term OM&M activities are conducted in accordance with the SMP to monitor the effectiveness of the remediation previously conducted:

- Quarterly inspection of the Site (March, June, September, December);
- Collection of quarterly static water level measurements at the 34 site wells (16 Operable Unit [OU]-1 shallow and deep groundwater wells, eight dense non-aqueous phase liquid (DNAPL) wells, five OU-2 groundwater wells, and five extraction trench monitoring wells);
- Collection of quarterly groundwater samples from the 16 OU-1 shallow and deep groundwater wells and laboratory analysis of samples;
- Monitoring and/or collection of light non-aqueous phase liquid (LNAPL) and DNAPL monitoring at the 34 site wells, as needed. Offsite disposal of collected DNAPL at least once every 12 months;
- Removal of vegetation and snow, as necessary, to allow for access to the Site; and
- Submittal of quarterly OM&M reports to NYSDEC.

The groundwater extraction system is fully operational and discharges to the nearby sanitary sewer under an existing City of Rome Water Pollution Control Facility (WPCF) discharge permit. Discharge water samples are collected and analyzed quarterly for comparison to the permit limits as part of OM&M.

This OM&M Quarterly Report covers OM&M activities conducted during January, February, and March 2020.

1.2 Site Description

The Site is located within the City of Rome, Oneida County, New York. Refer to **Figure 1** for the Site location map. The Site consists of an approximately 22 acre parcel owned by National Grid. MGP operations formerly covered the northern half of the Site. The southern portion of the Site

consists of a National Grid electric substation, where some MGP impacts were left in place due to the inability to excavate on an active substation. National Grid presently operates and maintains a natural gas valving station located adjacent to the terminus of Kingsley Avenue.

The Site is located south of East Dominick Street, bordering a historic commercial and residential district, approximately 2,000 feet north of the confluence of the Mohawk River with the New York State Barge Canal. It is bounded by the Genesee and Mohawk Valley Railroad to the north, and the Mohawk River forms the western boundary of the Site. Whitesboro Street terminates near the southern boundary of the Site. The City of Rome Department of Public Works facility is located to the east and southeast of the Site. Residential properties are located near the Site entrance on Kingsley Avenue.

The Site is relatively flat, with existing grades ranging from 430 to 442 feet above mean sea level. The primary surface water feature in the area is the Mohawk River, which discharges into the Barge Canal approximately 2,000 feet downstream toward the south. The groundwater flow direction in both the water table aquifer (near surface) and deep aquifer (within the overburden above the clay) is toward the south-southwest. Depth to groundwater generally ranges from 2 to 15 feet below ground surface at the Site.

1.3 Site History

The Kingsley Avenue MGP was constructed in 1917. Gas production began at the Site in 1917 and peaked in 1927. Manufactured gas was produced at the Site using the coal gas and water gas processes. Coal carbonization produced coal gas by heating coal in retorts or beehive ovens. The water gas process involved the passage of steam through burning coal. This formed a gaseous mixture that was passed through a super heater into which an oil feed stock was sprayed. In each process, the gas produced was condensed and purified prior to distribution. The production of manufactured gas created many by-products, some of which remain onsite. A dense, oily liquid known as coal tar condensed out of the gas at various stages during its production, purification, and distribution. Although much of the coal tar produced was reused, recovery of the coal tar waste was incomplete. Substantial amounts of coal tar leaked from storage and processing facilities, contaminating surface and subsurface soils, as well as groundwater. Another by-product includes the discarded lime and/or wood chips treated with iron oxides to remove cyanide and sulfur from the gas (known as purifier waste).

By 1930, production of gas at the Kingsley Avenue MGP was limited to emergency capacity, as the supply of gas for the City of Rome came from other facilities. Between 1938 and 1941, the retort house and relief holder were decommissioned. By 1949, gas manufacturing equipment had been removed from the central building. In 1959, the main gas holder was dismantled.

Environmental concerns at the Site caused NYSDEC and the United States Environmental Protection Agency (USEPA) to evaluate the need for investigation and remedial action. Regulators typically define a single site into a number of OUs. An OU, for technical or administrative reasons, can be addressed separately to eliminate or mitigate a release, threat of release, or exposure pathway resulting from the Site contamination. The lead agency, NYSDEC, defined OUs: OU-1 and OU-2. NYSDEC continues to administer the Site under a Consent Order with National Grid. OU-1 includes the former Kingsley Avenue MGP property, the surface soils

of a small contiguous area of undeveloped New York State-owned land along the Mohawk River, and sediments in a backwater area west of the Site. OU-2 includes an approximate 2-acre area between the National Grid property and the eastern shore of the Mohawk River. Additionally, OU-2 includes the area beneath the Mohawk River and property west of the Mohawk River to East Westboro Street. OU-2 encompasses approximately 20 acres of land. Refer to **Figure 2** for a depiction of OU-1 and OU-2.

This report is focused on OU-1. The following provides a general chronology of key events related to OU-1.

- 1987 USEPA Preliminary Assessment
- 1992 Preliminary Site Assessment/Interim Remedial Measures (IRM) Work Plan
- May 1994 Concentrator House IRM
- July 1994 Start of Remedial Investigation
- January 1995 Purifier Disposal Area IRM
- July 1998 Light non-aqueous phase liquid (LNAPL) Removal IRM initiated
- March 1999 Remedial Investigation Report
- December 2001 Offsite Remedial Investigation Report complete
- January 2002 OU-1 Feasibility Study complete
- March 2002 OU-1 Record of Decision (ROD) issued by NYSDEC
- August 2006 Remedial Design approved
- August 2007 Remedial Action started
- December 2010 Remedial Action completed
- January 2011 long-term groundwater and LNAPL and DNAPL monitoring commenced
- December 2011 long-term groundwater extraction system OM&M commenced
- November 2012 chemical treatment system for the extraction manhole completed

The remedial elements for OU-1 that have been completed include:

- Utility relocation.
- DNAPL and LNAPL source area soil removal and offsite thermal treatment/disposal.
- Purifier waste material removal and offsite disposal.
- River bank soil removal and offsite disposal.
- Demolition and offsite disposal of the MGP tar well and holder foundations.
- Installation of a sheet pile cutoff wall to contain and minimize offsite migration of DNAPL.
- Installation of a groundwater extraction trench with passive recovery pipe along the upgradient side of the wall. The trench includes a series of collection manholes/sumps. Submersible

pumps deliver untreated groundwater to a sanitary manhole under an existing City of Rome WPCF.

- Installation of a 14-acre soil cover in the northern portion of the Site.
- The two foot thick vegetative cover (clean soil above geotextile layer).
- Installation of eight DNAPL collection wells within known source areas.
- Installation of five groundwater monitoring wells along the extraction trench.
- Installation of 16 groundwater monitoring wells to monitor shallow and deep aguifers.
- Installation of five groundwater monitoring wells within the OU-2 area.
- An Environmental Easement has been placed on the property and is included with the final Site Management Plan.

Figure 3 presents the monitoring well locations for the western portion of the Site. **Figure 4** presents monitoring well locations for the eastern portion of the Site.

Following start-up of the groundwater extraction system, it became apparent that iron fouling would be an operational issue. Therefore, National Grid installed a chemical treatment system to help protect the groundwater wells, piping, and submersible pump associated with the groundwater extraction system. As part of the chemical treatment system, a weather-proof structure was installed adjacent to the groundwater pumping manhole and houses a chemical tote and chemical feed pump. An environmental friendly iron inhibitor (REDUX 340) is injected into the pumping manhole to protect the submersible pump, piping, and metering instruments. This chemical is used at similar National Grid sites across central and eastern New York State in order to minimize iron fouling and reduce operation and maintenance costs and has been approved by the City of Rome publicly owned treatment works (POTW). The chemical treatment system became operational in November 2012.

2 Operation, Maintenance, and Monitoring Activities

2.1 Quarterly Site Inspection

GES conducted the 2020 1st quarter site inspection on March 20, 2020. Inspections are generally conducted in March, June, September, and December of each year. The Site inspection included the Site wells, security perimeter fence/gates, drainage system, vegetation, and the Site access road. In general, the Site was noted to be in compliance during the inspection. Refer to **Appendix A** for the Site Inspection Form.

There are 34 total site wells that were inspected as part of this event. **Figures 3** and **4** show the well locations. **Table 2** details each well in terms of horizontal location, vertical elevation, diameter, material, and screen elevation.

2.2 Quarterly Static Water Level Measurements

Quarterly static water level measurements were collected from the 34 wells on March 18 and 19, 2020. **Table 3** presents historical and recent static water level measurements. Refer to **Appendix B** for the field log sheet with water level measurements.

Prior to the construction of the barrier wall and groundwater extraction trench/system remedy, groundwater generally flowed northwesterly toward the Mohawk River. The remedy was designed and constructed to intercept that groundwater flow pattern and minimize migration of site-related DNAPL from the upgradient side of the barrier wall to the river. To ensure that the barrier wall meets the intent of the remedial action, it was agreed by NYSDEC and National Grid that the long-term compliance mechanism would be to compare the top of steel sheeting barrier wall (generally 435 to 437 feet above sea level) with the groundwater levels immediately upgradient of the barrier wall.

Eight manholes (MH-2, MH-3, MH-4, MH-5, MH-6, MH-6A, MH-7, and MH-8) and ten groundwater monitoring wells (DNAPL-2, DNAPL-3, DNAPL-4, DNAPL-5, DNAPL-6, VTW-1, VTW-2, VTW-3, VTW-4, and VTW-5) were constructed immediately upgradient of the barrier wall within the gravel extraction trench. The static water levels in each of the upgradient groundwater monitoring wells were measured and found to be between 425 and 431 (Table 3) feet above sea level since start-up of the groundwater extraction system. Groundwater does not overtop the barrier wall. Figure 5 presents the groundwater levels compared to the barrier wall profile. Gauging data for all 34 wells and containment data for the 10 upgradient groundwater monitoring wells are presented in Appendix B.

2.3 Quarterly Groundwater Monitoring Event

The 2020 1st quarter groundwater monitoring event was conducted on March 18 and 19, 2020. Sixteen groundwater monitoring wells were sampled (LTMW-D01, LTMW-S01, LTMW-D02, LTMW-S02, LTMW-D03, LTMW-S03, LTMW-D04, LTMW-S04, LTMW-D05, LTMW-S05, LTMW-D06, LTMW-S06, LTMW-S07, LTMW-S08, LTMW-S09, LTMW-S10).

The wells were sampled in accordance with USEPA Low-Flow Groundwater Sampling Procedures [1996]. Purge water was contained and subsequently discharged to the onsite groundwater extraction system which discharges water to the City of Rome WPCF. Field measurements (temperature, pH, oxidation-reduction potential, conductivity, turbidity, dissolved oxygen, and total dissolved solids) were recorded at each well during the sampling using a water quality meter and are presented in **Appendix C**.

In addition to the 16 water samples collected, four quality assurance/quality control (QA/QC) samples were collected, including one Matrix Spike sample, one Matrix Spike Duplicate sample, one field duplicate sample, and one trip blank sample. Twenty total samples were shipped on ice to the Pace Analytical Services, LLC (Pace) of Greensburg, Pennsylvania, for laboratory analysis. Analyses included: polycyclic aromatic hydrocarbons (PAHs) via USEPA Method 8270D; benzene, toluene, ethylbenzene, and total xylenes (BTEX) via USEPA Method 8260C; heavy metals via USEPA Method 200.7; and total cyanide via USEPA Method 335.4.

The analytical results included detections of BTEX, acenaphthene, benzo(a)anthracene, chrysene, cyanide, fluorene, and naphthalene, above the New York State regulatory maximum allowable limits. Additionally, analytical results at LTMW-S03 indicated zinc levels above the guidance value provided in NYSDEC's Technical and Operational Guidance Series section 1.1.1. A summary of laboratory analytical results is provided in **Table 4**. Of the 16 wells sampled, LTMW-D01, LTMW-S01, and LTMW-D03 had BTEX concentrations above the New York State Groundwater Ambient Water Quality Standards (AWQS). Results indicated no detections of any compound for LTMW-D02, LTMW-D05, and LTMW-S07.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The data validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. In summary, sample results are usable as reported. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.4 Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event

Each of the 34 wells was monitored for LNAPL and DNAPL in March for this quarter. The gauging data for these events are presented in **Appendix B**. This activity is conducted in conjunction with the collection of static water level measurements. A probe is lowered to the water level in the well and inspected for LNAPL. The probe is then lowered to the bottom of the well and inspected for DNAPL. If LNAPL or DNAPL is discovered in measurable quantities, product is removed from the well using a submersible pump. The removed product/water mixture is subsequently containerized in a properly labeled NYSDOT-approved 55-gallon drum for future offsite disposal. DNAPL in measurable quantities was noted in four site wells: DNAPL-03, MW-OU2-1, MW-OU2-2 and MW-OU2-4.

As part of the NAPL monitoring/collection event, a total of 6.5 gallons of DNAPL were collected (4 gallons from MW-OU2-1, and 2.5 gallons from MW-OU2-4) during this quarter.

Since the start of the NAPL monitoring/collection program, a total of 540 gallons of DNAPL have been removed for offsite disposal. Zero gallons of LNAPL have been detected/recovered.

2.5 Quarterly Groundwater Extraction System Discharge Sampling Event

Under an existing City of Rome WPCF discharge permit, quarterly sampling, analysis, and reporting of the groundwater extraction system discharge to the local sewer system is required. A water sample was collected on March 19, 2020, and analyzed by Pace for the permit-specified parameters. No detections above permit limits were noted. **Table 5** provides the analytical results compared to the permit limits.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. The review stated that field sample analyte values/reporting limits were usable as reported. The laboratory result for pH is always considered estimated as the EPA recommended short hold time of 15 minutes can only be met by in-field measurements. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.6 Groundwater Extraction System Discharge Flow and Operation, Maintenance, and Monitoring

The groundwater extraction system consists of a gravel trench, a pumping manhole, dual submersible pumps, and below ground piping. The piping enters the onsite groundwater treatment building where flow measurements, discharge sampling, pressure measurements, and other OM&M activities can be conducted. The piping then continues below ground from the nearby sanitary sewer manhole to the City of Rome WPCF.

A mechanical flow meter is located within the Site building and serves as the recording device for the City of Rome WPCF discharge fees. During the 2020 1st quarter, approximately 3,775,177 gallons (average flow ~ 28 gpm) were discharged. Since the groundwater extraction system was installed, approximately 159 million gallons have been discharged. Below is a summary table for the groundwater extraction system discharge flow:

Table 1 – Groundwater Extraction System Discharge Flow

Time Period	Discharge Flow (gallons)
2010	11,600,000
2011	14,400,000
2012	19,900,000
2013	19,500,000
2014	16,500,000
2015	16,686,700
2016	13,695,010
2017	13,874,930
2018	13,208,189
2019	15,989,356
2020 1st Quarter	3,775,177
TOTAL	159,129,362

The previous consultant conducted an evaluation of the groundwater extraction system, including inspections of the extraction manhole, submersible pumps, valving/controls, and clean-outs. Iron fouling throughout the system, particularly scaling on the submersible pumps, piping, and metering instruments, had been observed. As such, a chemical scale inhibitor (Redux 340) system, which applies the Redux 340 at the groundwater extraction manhole/submersible pumps, was installed and became operational in November 2012. A heating element located at the pumping manhole was installed in June 2012. Electrical power and building lighting/heating was installed in August/September 2012. Information regarding the environmentally-friendly, iron scale inhibitor was previously provided to the City of Rome POTW. The groundwater treatment system (including pumping station, conveyance piping, and flow meters) was cleaned (water lancing) during September 2012 in order to remove iron scale build-up in advance of the chemical treatment system installation.

2.7 Vegetation Management and Snow Removal

Vegetation management and snow removal activities were conducted during the 1st quarter 2020 as needed.

3 Conclusions, Recommendations, and Certifications

3.1 Conclusions

Based on data collected from the 2020 1st quarter OM&M activities, the following conclusions were made:

- Overall, the site is in regulatory compliance. Vegetation maintenance and snow removal was conducted as needed during 1st guarter 2020.
- Quarterly static water level measurements were collected at ten groundwater monitoring wells
 upgradient of the steel sheeting barrier within the gravel extraction trench. The static water
 levels of the upgradient wells (ranging between 425 to 431 feet above sea level) did not
 overtop the barrier wall (top of wall ranges between 435 to 437 feet above sea level).
- Site groundwater contained detectable concentrations of BTEX, acenaphthene, chrysene, cyanide, fluorine, and napthalene above the New York State regulatory maximum allowable limits. Additionally, analytical results for well LTMW-S03 indicated zinc concentrations above the NYSDEC AWQS guidance value. Seven of the 16 wells (LTMW-D01, LTMW-S01, LTMW-D03, LTMW-S03, LTMW-S04, LTMW-S08, and LTMW-S10) sampled had at least one detection of a site-related constituent above the New York State limits.
- The total quarterly volume of DNAPL collected (6.5 gallons) was removed from two wells (MW-OU2-1, and MW-OU2-4). 540 gallons of DNAPL have been removed from the site wells since the inception of the program. LNAPL has not been observed in any site wells to date.
- The groundwater extraction system operated continuously at an average flow rate of approximately 28 gpm, and a quarterly total of 3,775,177 gallons were discharged to the local sanitary sewer in accordance with the City of Rome WPCF discharge permit. A quarterly effluent water sample was collected and analyzed. There were no permit limit exceedances. Since December 2011, approximately 159 million gallons of water have been discharged without any permit limit exceedances.

3.2 Recommendations

It is recommended that all OM&M activities continue.

3.3 Certifications

I certify the following:

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional controls and engineering controls employed at this site are unchanged from the date the controls were put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any SMP for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of the controls;
- Use of the Site is compliant with the Declarations of Covenants and Restrictions;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this
 certification are in accordance with the requirements of the Site remedial program; and

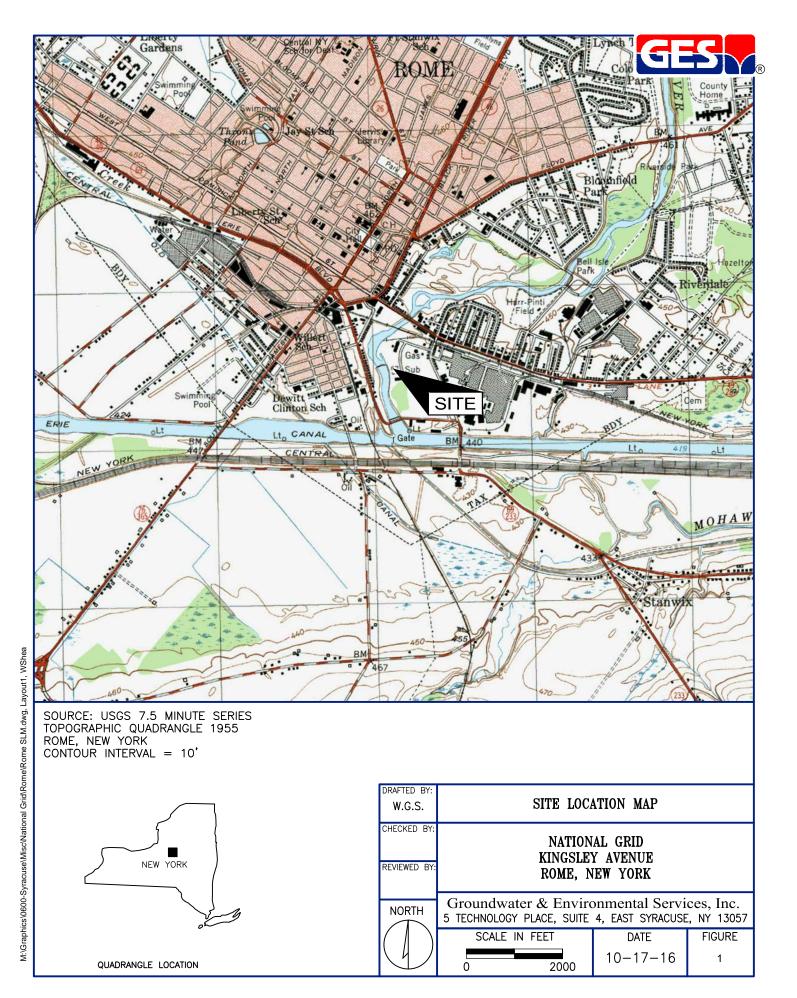
The information presented in this report is accurate and complete.

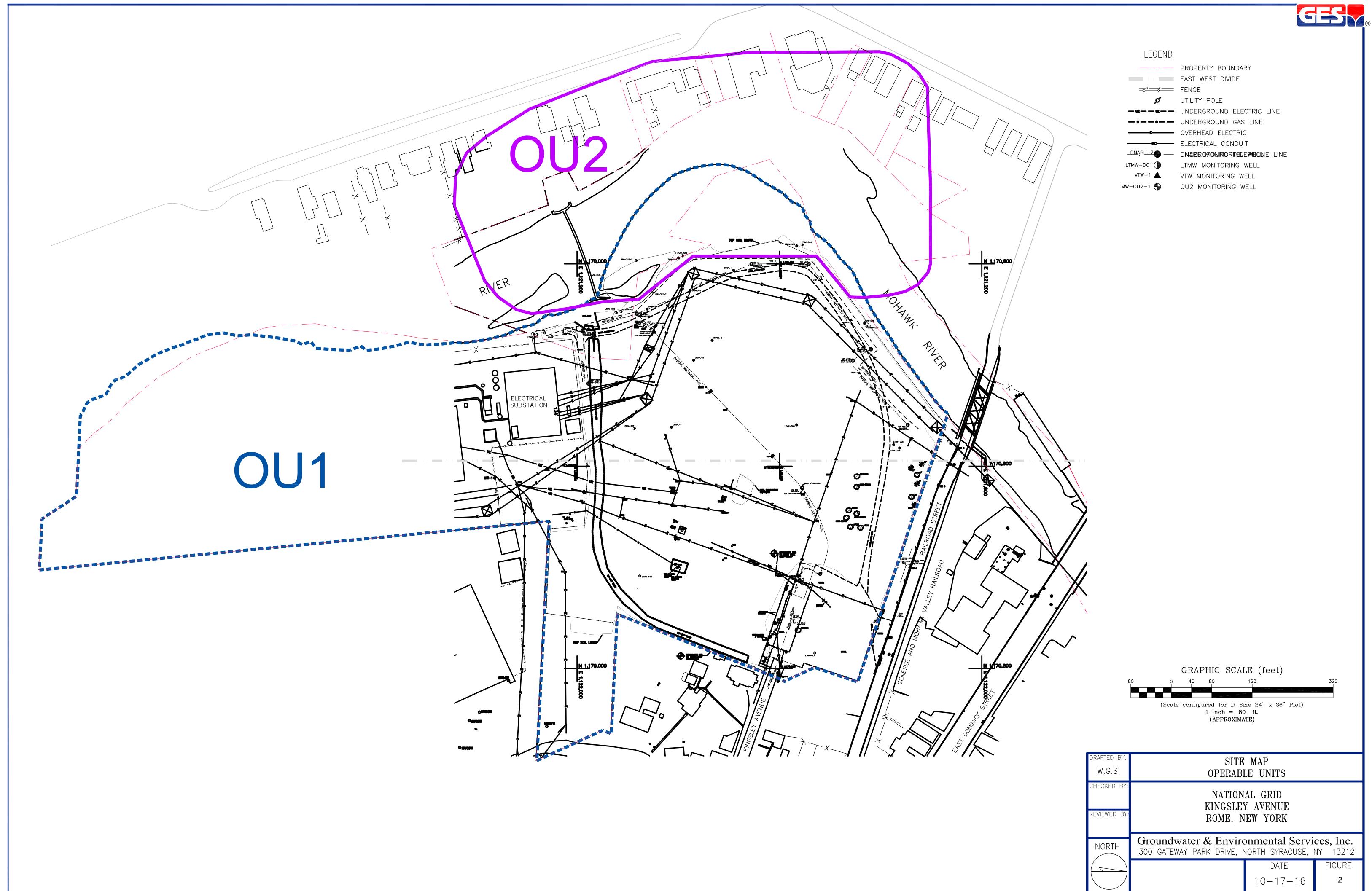
Signatur

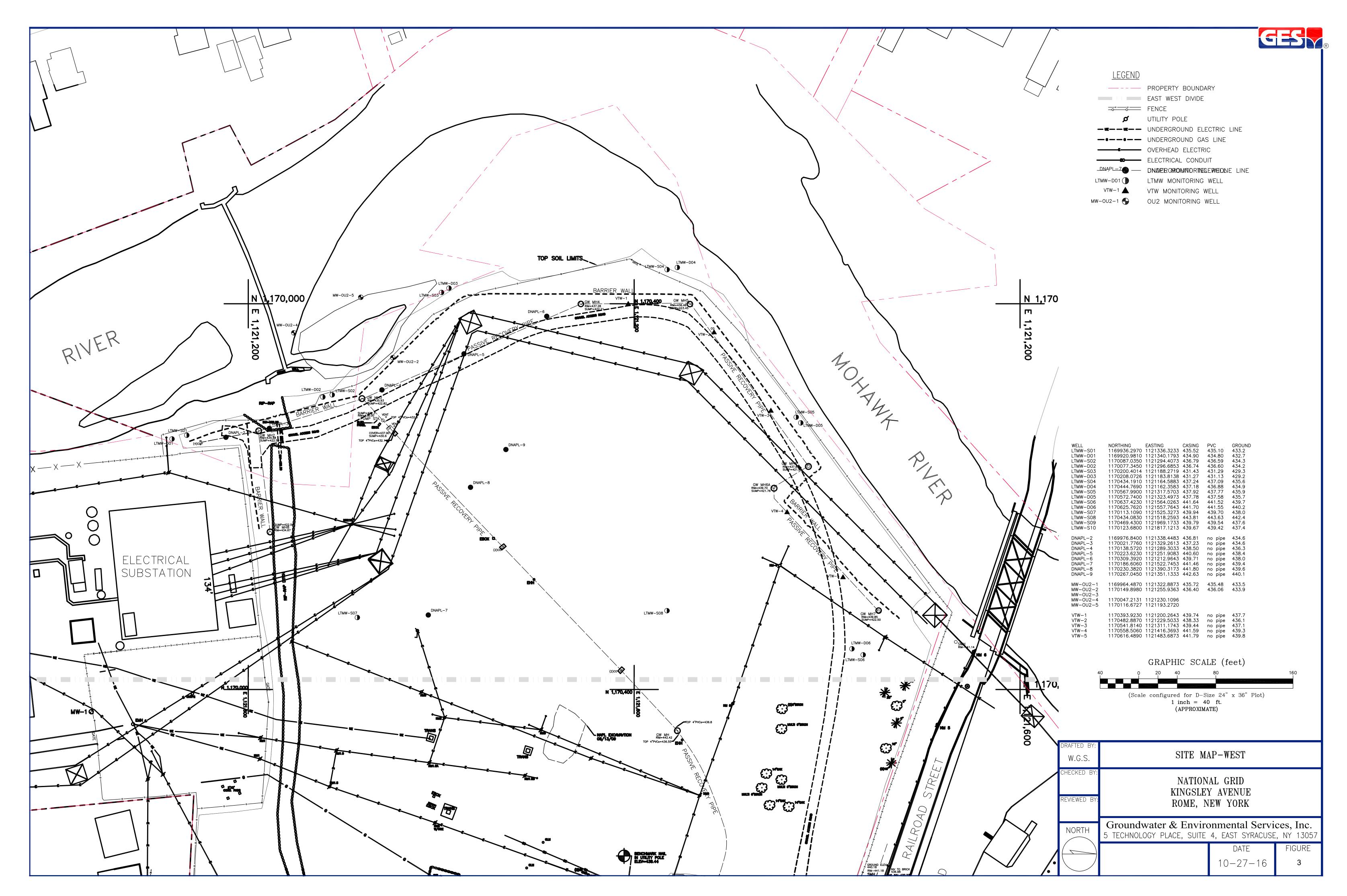
Name: Gerald H. Cresap, P.E. Title: Director of Engineering

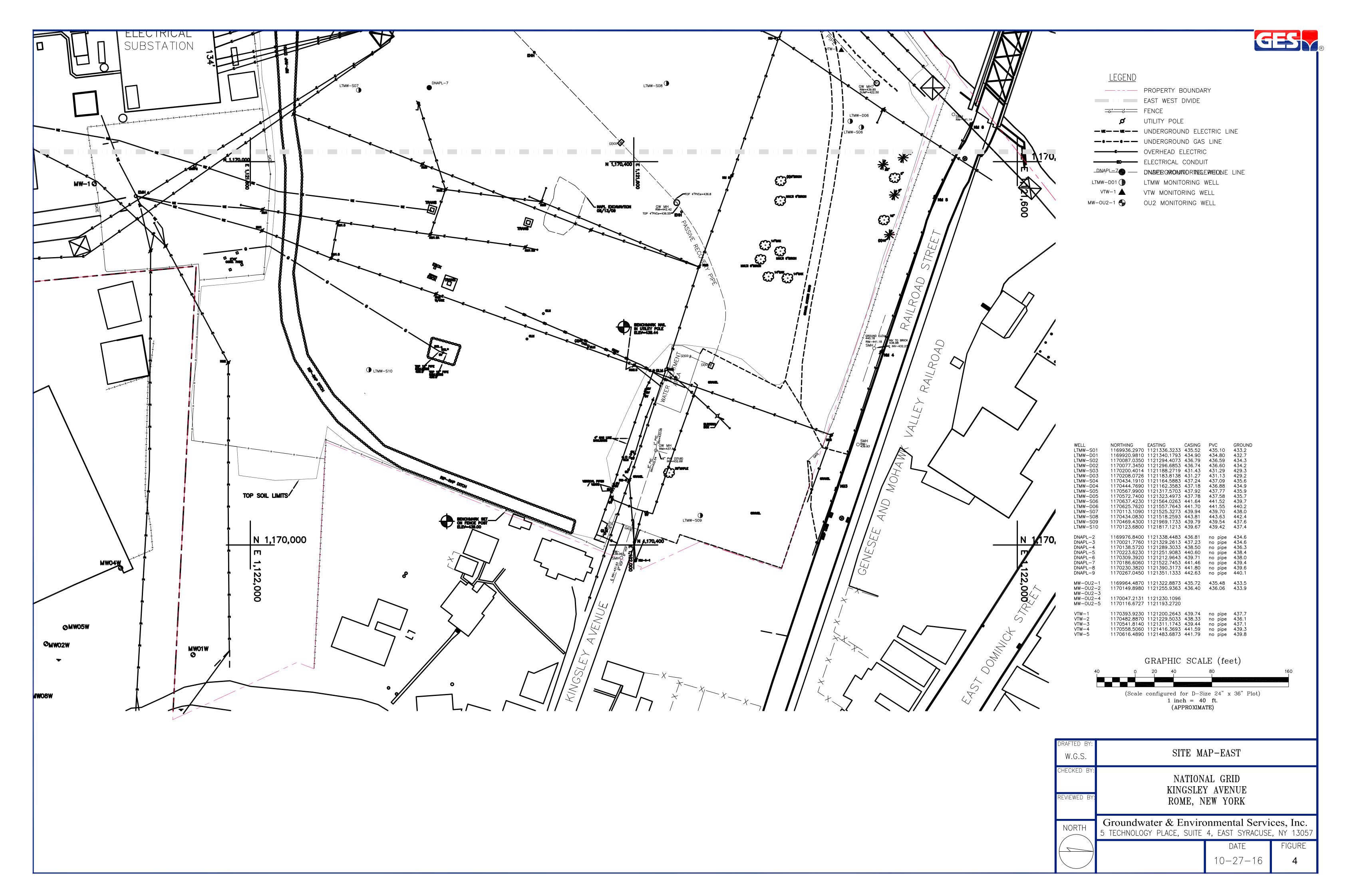
Company! Groundwater & Environmental Services, Inc.

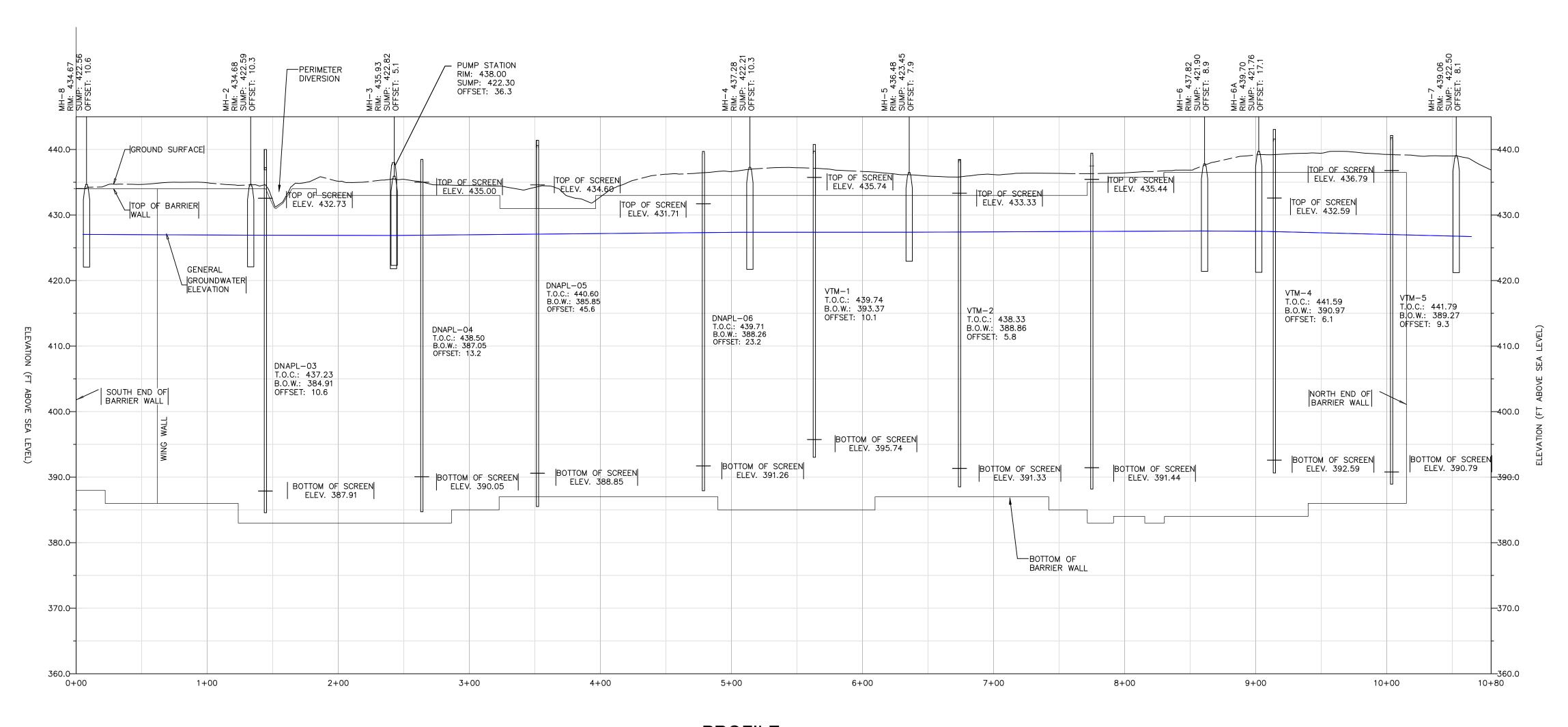
4-17-2020


Date




2020 1st Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440


Figures



Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome SM.dwg, D-40-W, WShea

M:\Graphics\0600-Syracuse\Misc\National Grid\Rome\Rome SM.dwg, D-40-E, WSF

PROFILE

HORIZONTAL: 1" = 50'

VERTICAL: 1" = 10'

LEGEND

T.O.C. TOP OF CASING

B.O.W. BOTTOM OF WELL

TOP OF WALL

GROUNDWATER ELEVATION (JUNE 2012)

NOTES

1. THE DEPTH OF THE BARRIER WALL IS APPROXIMATELY 50 FEET.

2. GROUNDWATER ELEVATION MEASUREMENTS TAKEN JUNE 2012.

DRAFTED BY: W.G.S.	BARRIER WA	ALL PROFILE												
CHECKED BY: REVIEWED BY:	KINGSLE	NATIONAL GRID KINGSLEY AVENUE ROME, NEW YORK												
NORTH	Groundwater & Environment 500 GATEWAY PARK DRIVE, N		,											
		DATE 10-17-16	FIGURE 5											

M:\Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome Profile.dwg, D., WShea

2020 1st Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Tables

Table 2 Site Monitoring Wells

Well ID	Northing	Easting	Elevation of Ground	Elevation Top of Outer Casing	Elevation Top of Inner Casing	Nominal Well Diameter (inches)	Well Material	Well Sump Depth (ft)	Depth to Bottom of Well (ft)	Elevation Bottom of Well	Depth to Top Screen (ft)	Elevation Top Screen	Depth to Bottom Screen (ft)	Elevation Botton Screen	Action
MW-OU2-1	1169964.4870	1121322.8873	433.5	435.72	435.48	4	SS	3.0	46.12	389.36	33.0	402.48	43.0	392.48	Quarterly Inspection; Quarterly Static Water Level Measurement
MW-OU2-2	1170149.8980	1121255.9363	433.9	436.40	436.06	4	SS	3.0	49.60	386.46	39.0	397.06	49.0	387.06	Quarterly Inspection; Quarterly Static Water Leve Measurement
MW-OU2-3	1170101.2208	1121177.4485	430.63	433.25	432.96	4	SS	3.0	35.15	397.81	31.0	401.96	41.0	391.96	Quarterly Inspection; Quarterly Static Water Level Measurement (Surveyed in January 2014)
MW-OU2-4	1170149.6326	1121136.1811	430.63	433.05	432.88	4	SS	3.0	38.85	394.03	31.0	401.88	41.0	391.88	Quarterly Inspection; Quarterly Static Water Level Measurement (Surveyed in January 2014)
MW-OU2-5	1170167.9650	1121091.2658	431.23	433.77	433.46	4	SS	3.0	36.34	397.12	31.0	402.46	41.0	392.46	Quarterly Inspection; Quarterly Static Water Level Measurement (Surveyed in January 2014)
DNAPL-02	1169976.8400	1121338.4483	434.6	436.81	NA	6	SS	3.0	50.40	386.41	4.0	432.81	46.0	389.41	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-03	1170021.7760	1121329.2613	434.6	437.23	NA	6	SS	3.0	52.32	384.91	4.5	432.73	46.5	387.91	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-04	1170138.5720	1121289.3033	436.3	438.50	NA	6	SS	3.0	51.45	387.05	3.5	435.00	47.5	390.05	Quarterly Inspection; Quarterly Static Water Level Measurement: DNAPL Monitoring/Collection
DNAPL-05	1170223.6230	1121251.9083	438.4	440.60	NA	6	SS	3.0	54.75	385.85	6.0	434.60	50.0	388.85	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-06	1170309.3920	1121212.9643	438	439.71	NA	6	SS	3.0	51.45	388.26	8.0	431.71	48.0	391.26	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-07	1170186.6060	1121522.7453	439.4	441.46	NA	6	SS	3.0	53.60	387.86	5.0	436.46	55.5	390.86	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-08	1170230.3820	1121390.3173	439.6	441.80	NA	6	SS	3.0	58.01	383.79	7.0	434.80	53.0	386.79	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-09	1170267.0450	1121351.1333	440.1	442.63	NA	6	SS	3.0	57.58	385.05	5.0	437.63	53.2	388.05	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
VTM-1	1170393.9230	1121200.2643	437.7	439.74	NA	6	SS	NA	46.37	393.37	4.0	435.74	44.0	395.74	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-2	1170482.8870	1121229.5033	436.1	438.33	NA	6	SS	NA	49.47	388.86	5.0	433.33	47.0	391.33	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-3	1170541.8140	1121311.1743	437.1	439.44	NA	6	SS	NA	50.91	388.53	4.0	435.44	48.0	391.44	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-4	1170558.5060	1121416.3693	439.3	441.59	NA	6	SS	NA	50.62	390.97	9.0	432.59	49.0	392.59	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-5	1170616.4890	1121483.6873	439.8	441.79	NA	6	SS	NA	52.52	389.27	5.0	436.79	51.0	390.79	Quarterly Inspection; Quarterly Static Water Leve Measurement
LTMW-D01	1169920.9810	1121340.1793	432.7	434.90	434.80	2	PVC	NA	46.84	387.96	34.0	400.80	44.0	390.80	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S01	1169936.2970	1121336.3233	433.2	435.52	435.10	2	PVC	NA	16.92	418.18	5.0	430.10	15.0	420.10	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D02	1170077.3450	1121296.6853	434.2	436.74	436.60	2	PVC	NA	40.29	396.31	30.0	406.60	40.0	396.60	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S02	1170087.0350	1121294.4073	434.3	436.79	436.59	2	PVC	NA	17.98	418.61	5.0	431.59	15.0	421.59	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D03	1170208.0726	1121183.8138	429.2	431.27	431.13	2	PVC	NA	40.73	390.40	29.0	402.13	39.0	392.13	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S03	1170200.4014	1121188.2719	429.3	431.43	431.29	2	PVC	NA	13.70	417.59	2.0	429.29	12.0	419.29	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D04	1170444.7690	1121162.3583	434.9	437.18	436.88	2	PVC	NA NA	46.36	390.52	34.0	402.88	44.0	392.88	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S04	1170434.1910	1121164.5883	435.6	437.24	437.09	2	PVC	NA NA	17.26	419.83	5.0	432.09	15.0	422.09	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D05	1170572.7400	1121323.4973	435.7	437.78	437.58	2	PVC	NA NA	46.53	391.05	35.0	402.58	45.0	392.58	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
						2	PVC								Quarterly Inspection; Quarterly Static Water Leve
LTMW-S05	1170567.9900	1121317.5703	435.9 440.2	437.92 441.70	437.77 441.55	2	PVC	NA NA	16.83 52.22	420.94 389.33	5.0 40.0	432.77 401.55	15.0 50.0	422.77	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
	1170625.7620	1121557.7643				2		NA NA						391.55	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S06	1170637.4230	1121564.0263	439.7	441.64	441.52	_	PVC	NA	17.60	423.92	5.0	436.52	15.0	426.52	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S07	1170113.1090	1121525.3273	438	439.94	439.70	2	PVC	NA	17.82	421.88	5.0	434.70	15.0	424.70	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S08	1170434.0830	1121518.2593	442.4	443.81	443.63	2	PVC	NA	17.39	426.24	5.0	438.63	15.0	428.63	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S09	1170469.4300	1121969.1733	437.6	439.79	439.54	2	PVC	NA	16.92	422.62	5.0	434.54	15.0	424.54	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S10	1170123.6800	1121817.1213	437.4	439.67	439.42	2	PVC	NA	17.18	422.24	5.0	434.42	15.0	424.42	Measurement; Quarterly Sampling

- Notes:

 1) Shallow monitoring wells were sampled with a low flow peristaltic pump with battery pt
 2) Deep monitoring wells were sampled with a low flow peristaltic pump with genera
 3) Static water level measurements were taken from top of inner casing. If the well has no inner casing, the measurement will be taken from the top of outer cc

Table 3

Historical Groundwater Data
Operable Unit 2 Wells

Well	MW-	OU2-1	Well	MW-	OU2-2	Well	MW	/-OU2-3	Well	MW	'-OU2-4	Well	MW	/-OU2-5
	TOC =	435.72		TOC =	436.40		TOC =	432.96		TOC =	432.88		TOC =	433.46
Date	DTW	Water El.												
		i i									İ			İ
03/20/20	7.85	427.87	03/20/20	9.25	427.15	03/20/20	6.40	426.56	03/20/20	5.40	427.48	03/20/20	6.05	427.41
12/05/19	9.28	426.44	12/05/19	10.10	426.30	12/05/19	6.70	426.26	12/05/19	6.68	426.20	12/05/19	7.37	426.09
09/19/19	9.48	426.24	09/19/19	10.90	425.50	09/19/19	6.95	426.01	09/19/19	6.90	425.98	09/19/19	7.60	425.86
06/06/19	8.90	426.82	06/06/19	9.60	426.80	06/06/19	6.18	426.78	06/06/19	6.05	426.83	06/06/19	6.23	427.23
03/21/19	8.65	427.07	03/21/19	9.80	426.60	03/21/19	6.00	426.96	03/21/19	5.90	426.98	03/21/19	6.50	426.96
12/05/18	8.90	426.82	12/05/18	9.05	427.35	12/05/18	5.69	427.27	12/05/18	5.60	427.28	12/05/18	6.25	427.21
09/13/18	9.58	426.14	09/13/18	10.40	426.00	09/13/18	7.02	425.94	09/13/18	7.06	425.82	09/13/18	7.72	425.74
06/07/18	9.53	426.19	06/07/18	10.25	426.15	06/07/18	7.90	425.06	06/07/18	6.90	425.98	06/07/18	7.56	425.90
03/22/18	9.15	426.57	03/22/18	9.85	426.55	03/22/18	6.60	426.36	03/22/18	6.55	426.33	03/22/18	7.20	426.26
12/06/17	9.37	426.35	12/06/17	9.96	426.44	12/06/17	6.60	426.36	12/06/17	6.50	426.38	12/06/17	7.20	426.26
09/01/17	9.53	426.19	09/01/17	10.35	426.05	09/01/17	NM	-	09/01/17	6.98	425.90	09/01/17	7.73	425.73
06/23/17	9.35	426.37	06/23/17	10.02	426.38	06/23/17	7.10	425.86	06/23/17	6.70	426.18	06/23/17	7.15	426.31
03/08/17	8.68	427.04	03/08/17	5.94	430.46	03/08/17	5.93	427.03	03/08/17	5.94	426.94	03/08/17	6.62	426.84
12/15/16	8.91	426.81	12/15/16	9.80	426.60	12/15/16	6.42	426.54	12/15/16	6.35	426.53	12/15/16	7.02	426.44
09/19/16	9.58	426.14	09/19/16	10.52	425.88	09/19/16	7.29	425.67	09/19/16	7.15	425.73	09/19/16	7.84	425.62
06/07/16	9.45	426.27	06/07/16	10.28	426.12	06/07/16	6.95	426.01	06/07/16	6.87	426.01	06/07/16	7.57	425.89
03/07/16	8.45	427.27	03/07/16	9.28	427.12	03/07/16	5.91	427.05	03/07/16	5.82	427.06	03/07/16	6.49	426.97
12/02/15	9.30	426.42	12/02/15	10.19	426.21	12/02/15	6.85	426.11	12/02/15	6.77	426.11	12/02/15	7.44	426.02
09/16/15	9.66	426.06	09/16/15	10.47	425.93	09/16/15	7.15	425.81	09/16/15	7.05	425.83	09/16/15	7.74	425.72
06/03/15	9.34	426.38	06/03/15	9.73	426.67	06/03/15	6.41	426.55	06/03/15	6.34	426.54	06/03/15	6.95	426.51
04/08/15	8.63	427.09	04/08/15	9.29	427.11	04/08/15	6.14	426.82	04/08/15	5.96	426.92	04/08/15	6.98	426.48
12/01/14	9.32	426.40	12/01/14	9.84	426.56	12/01/14	6.49	426.47	12/01/14	6.41	426.47	12/01/14	7.08	426.38
09/10/14	9.49	426.23	09/10/14	9.89	426.51	09/10/14	7.02	425.94	09/10/14	6.95	425.93	09/10/14	7.63	425.83
06/12/14	9.58	426.14	06/12/14	10.33	426.07	06/12/14	6.99	425.97	06/12/14	6.94	425.94	06/12/14	7.63	425.83
03/25/14	9.12	426.60	03/25/14	10.22	426.18	03/25/14	6.75	426.21	03/25/14	6.85	426.03	03/25/14	7.24	426.22
12/12/13	8.47	427.25	12/12/13	9.35	427.05	12/12/13	5.92	427.04	12/12/13	5.84	427.04	12/12/13	6.51	426.95
09/23/13	9.52	426.20	09/23/13	10.32	426.08	09/23/13	7.08	425.88	09/23/13	6.98	425.90	09/23/13	7.63	425.83
06/10/13	8.46	427.26	06/10/13	9.32	427.08	06/10/13	5.78	427.18	06/10/13	5.68	427.20	06/10/13	5.35	428.11
03/27/13	9.30	426.42	03/27/13	10.11	426.29	03/27/13	6.78	426.18	03/27/13	6.95	425.93	03/27/13	7.42	426.04
12/03/12	9.49	426.23	12/03/12	10.33	426.07	12/03/12	7.02	425.94	12/03/12	6.93	425.95	12/03/12	7.70	425.76
09/12/12	9.75	425.97	09/12/12	10.63	425.77	09/12/12	7.32	425.64	09/12/12	7.25	425.63	09/12/12	8.02	425.44
06/18/12	9.51	426.21	06/18/12	10.36	426.04	06/18/12	7.05	425.91	06/18/12	6.95	425.93	06/18/12	7.69	425.77
03/19/12	8.88	426.84	03/19/12	9.79	426.61	03/19/12	6.46	426.50	03/19/12	6.32	426.56	03/19/12	7.13	426.33
12/05/11	9.10	426.62	12/05/11	9.84	426.56	12/05/11	6.72	426.24	12/05/11	6.73	426.15	12/05/11	7.50	425.96
09/26/11	9.31	426.41	09/26/11	10.11	426.29	09/26/11	6.64	426.32	09/26/11	6.68	426.20	09/26/11	7.35	426.11
06/13/11	9.29	426.43	06/13/11	10.07	426.33	06/13/11	6.71	426.25	06/13/11	7.87	425.01	06/13/11	7.33	426.13
03/29/11	8.64	427.08	03/29/11	9.43	426.97	03/29/11	6.04	426.92	03/29/11	5.93	426.95	03/29/11	6.68	426.78

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 3

Historical Groundwater Data

DNAPL Wells

Well	DN.	APL-02	Well	DN	APL-03	Well	DN.	APL-04	Well	DN	APL-05
	TOC =	436.81		TOC =	437.23		TOC =	438.50		TOC =	440.60
Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.
											İ
03/20/20	8.10	428.71	03/20/20	8.55	428.68	03/20/20	9.70	428.80	03/20/20	11.32	429.28
12/05/19	9.20	427.61	12/05/19	9.60	427.63	12/05/19	10.85	427.65	12/05/19	12.92	427.68
09/19/19	9.54	427.27	09/19/19	8.85	428.38	09/19/19	11.14	427.36	09/19/19	13.20	427.40
06/06/19	9.10	427.71	06/06/19	9.25	427.98	06/06/19	10.60	427.90	06/06/19	12.70	427.90
03/21/19	8.20	428.61	03/21/19	8.45	428.78	03/21/19	9.70	428.80	03/21/19	11.80	428.80
12/05/18	8.10	428.71	12/05/18	8.70	428.53	12/05/18	9.65	428.85	12/05/18	11.75	428.85
09/13/18	9.60	427.21	09/13/18	9.70	427.53	09/13/18	11.00	427.50	09/13/18	13.08	427.52
06/07/18	9.70	427.11	06/07/18	10.00	427.23	06/07/18	11.26	427.24	06/07/18	13.34	427.26
03/22/18	9.35	427.46	03/22/18	9.60	427.63	03/22/18	10.90	427.60	03/22/18	12.99	427.61
12/06/17			12/06/17	9.31	427.92	12/06/17	10.59	427.91	12/06/17	12.65	427.95
09/01/17			09/01/17	10.00	427.23	09/01/17	11.36	427.14	09/01/17	13.44	427.16
06/23/17			06/23/17	9.56	427.67	06/23/17	10.90	427.60	06/23/17	13.00	427.60
03/08/17	8.92	427.89	03/08/17	9.19	428.04	03/08/17	10.51	427.99	03/08/17	12.57	428.03
12/15/16	8.33	428.48	12/15/16	8.60	428.63	12/15/16	9.89	428.61	12/15/16	11.98	428.62
09/19/16	9.56	427.25	09/19/16	9.88	427.35	09/19/16	11.20	427.30	09/19/16	13.27	427.33
06/07/16	9.41	427.40	06/07/16	9.73	427.50	06/07/16	11.05	427.45	06/07/16	13.12	427.48
03/07/16	8.45	428.36	03/07/16	8.73	428.50	03/07/16	10.05	428.45	03/07/16	12.10	428.50
12/02/15	9.41	427.40	12/02/15	9.71	427.52	12/02/15	11.01	427.49	12/02/15	13.09	427.51
09/16/15	9.91	426.90	09/16/15	10.21	427.02	09/16/15	11.51	426.99	09/16/15	13.58	427.02
06/03/15	8.33	428.48	06/03/15	8.84	428.39	06/03/15	10.15	428.35	06/03/15	12.24	428.36
04/08/15	8.39	428.42	04/08/15	8.68	428.55	04/08/15	9.96	428.54	04/08/15	12.07	428.53
12/01/14	9.16	427.65	12/01/14	9.45	427.78	12/01/14	10.75	427.75	12/01/14	12.81	427.79
09/10/14	9.25	427.56	09/10/14	9.55	427.68	09/10/14	10.62	427.88	09/10/14	12.70	427.90
06/12/14	9.90	426.91	06/12/14	10.20	427.03	06/12/14	11.41	427.09	06/12/14	13.56	427.04
03/25/14	9.52	427.29	03/25/14	9.81	427.42	03/25/14	11.15	427.35	03/25/14	13.21	427.39
12/12/13	8.71	428.10	12/12/13	9.03	428.20	12/12/13	10.35	428.15	12/12/13	12.41	428.19
09/23/13	9.92	426.89	09/23/13	10.25	426.98	09/23/13	11.56	426.94	09/23/13	13.61	426.99
06/10/13	8.27	428.54	06/10/13	8.62	428.61	06/10/13	9.91	428.59	06/10/13	11.98	428.62
03/27/13	9.51	427.30	03/27/13	9.81	427.42	03/27/13	11.15	427.35	03/27/13	13.21	427.39
12/03/12	9.19	427.62	12/03/12	10.10	427.13	12/03/12	11.45	427.05	12/03/12	13.48	427.12
09/12/12	10.14	426.67	09/12/12	10.48	426.75	09/12/12	11.81	426.69	09/12/12	13.84	426.76
06/18/12	9.46	427.35	06/18/12	9.80	427.43	06/18/12	11.15	427.35	06/18/12	13.24	427.36
03/19/12	9.02	427.79	03/19/12	9.35	427.88	03/19/12	10.69	427.81	03/19/12	12.74	427.86
12/05/11	9.46	427.35	12/05/11	9.79	427.44	12/05/11	11.13	427.37	12/05/11	13.30	427.30
09/26/11	9.36	427.45	09/26/11	9.70	427.53	09/26/11	11.09	427.41	09/26/11	13.08	427.52
06/13/11	9.18	427.63	06/13/11	9.54	427.69	06/13/11	10.84	427.66	06/13/11	12.89	427.71
03/29/11	8.41	428.40	03/29/11	8.72	428.51	03/29/11	10.05	428.45	03/29/11	12.11	428.49

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 3

Historical Groundwater Data

DNAPL Wells

Well	DN	APL-06	Well	DN	APL-07	Well	DN	APL-08	Well	DN	APL-09
	TOC =	439.71		TOC =	441.46		TOC =	441.80		TOC =	442.63
Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.
			2								
03/20/20	10.90	428.81	03/20/20	11.80	429.66	03/20/20	12.10	429.70	03/20/20	13.05	429.58
12/05/19	11.96	427.75	12/05/19	12.81	428.65	12/05/19	13.25	428.55	12/05/19	14.15	428.48
09/19/19	12.27	427.44	09/19/19	13.14	428.32	09/19/19	13.58	428.22	09/19/19	14.50	428.13
06/06/19	6.23	433.48	06/06/19	12.25	429.21	06/06/19	12.75	429.05	06/06/19	13.70	428.93
03/21/19	10.90	428.81	03/21/19	11.50	429.96	03/21/19	12.00	429.80	03/21/19	12.90	429.73
12/05/18	10.70	429.01	12/05/18	11.70	429.76	12/05/18	12.10	429.70	12/05/18	13.00	429.63
09/13/18	12.15	427.56	09/13/18	13.20	428.26	09/13/18	13.65	428.15	09/13/18	14.50	428.13
06/07/18	12.33	427.38	06/07/18	13.18	428.28	06/07/18	13.61	428.19	06/07/18	14.50	428.13
03/22/18	12.00	427.71	03/22/18	12.67	428.79	03/22/18	13.16	428.64	03/22/18	14.06	428.57
12/06/17	11.74	427.97	12/06/17	12.55	428.91	12/06/17	13.00	428.80	12/06/17	13.91	428.72
09/01/17	12.40	427.31	09/01/17	13.40	428.06	09/01/17	13.80	428.00	09/01/17	14.69	427.94
06/23/17	3/17 11.97 427.74		06/23/17	12.70	428.76	06/23/17	13.15	428.65	06/23/17	14.07	428.56
03/08/17			03/08/17	12.37	429.09	03/08/17	12.75	429.05	03/08/17	13.65	428.98
12/15/16	11.05	428.66	12/15/16	10.80	430.66	12/15/16	12.24	429.56	12/15/16	13.15	429.48
09/19/16			09/19/16	13.22	428.24	09/19/16	13.64	428.16	09/19/16	14.55	428.08
06/07/16	12.15	427.56	06/07/16	12.98	428.48	06/07/16	13.44	428.36	06/07/16	14.32	428.31
03/07/16	11.17	428.54	03/07/16	11.91	429.55	03/07/16	12.36	429.44	03/07/16	13.25	429.38
12/02/15	12.21	427.50	12/02/15	13.03	428.43	12/02/15	13.49	428.31	12/02/15	14.39	428.24
09/16/15	12.69	427.02	09/16/15	13.32	428.14	09/16/15	13.78	428.02	09/16/15	14.67	427.96
06/03/15	11.36	428.35	06/03/15	11.88	429.58	06/03/15	12.37	429.43	06/03/15	13.29	429.34
04/08/15	11.19	428.52	04/08/15	11.71	429.75	04/08/15	12.19	429.61	04/08/15	13.12	429.51
12/01/14	11.92	427.79	12/01/14	12.55	428.91	12/01/14	12.98	428.82	12/01/14	13.88	428.75
09/10/14	11.76	427.95	09/10/14	12.91	428.55	09/10/14	13.35	428.45	09/10/14	14.29	428.34
06/12/14	12.61	427.10	06/12/14	13.12	428.34	06/12/14	13.60	428.20	06/12/14	14.57	428.06
03/25/14	12.25	427.46	03/25/14	13.01	428.45	03/25/14	13.44	428.36	03/25/14	14.21	428.42
12/12/13	11.51	428.20	12/12/13	12.19	429.27	12/12/13	12.63	429.17	12/12/13	13.51	429.12
09/23/13	12.71	427.00	09/23/13	13.26	428.20	09/23/13	13.75	428.05	09/23/13	13.91	428.72
06/10/13	11.07	428.64	06/10/13	11.85	429.61	06/10/13	12.28	429.52	06/10/13	13.16	429.47
03/27/13	12.31	427.40	03/27/13	12.80	428.66	03/27/13	13.26	428.54	03/27/13	14.20	428.43
12/03/12	12.61	427.10	12/03/12	13.75	427.71	12/03/12	13.71	428.09	12/03/12	14.65	427.98
09/12/12	12.91	426.80	09/12/12	13.76	427.70	09/12/12	14.21	427.59	09/12/12	15.11	427.52
06/18/12	12.28	427.43	06/18/12	13.11	428.35	06/18/12	13.56	428.24	06/18/12	14.47	428.16
03/19/12	11.84	427.87	03/19/12	12.61	428.85	03/19/12	13.95	427.85	03/19/12	13.05	429.58
12/05/11	12.28	427.43	12/05/11	12.88	428.58	12/05/11	13.36	428.44	12/05/11	14.28	428.35
09/26/11	10.18	429.53	09/26/11	12.86	428.60	09/26/11	13.35	428.45	09/26/11	14.25	428.38
06/13/11	11.94	427.77	06/13/11	12.84	428.62	06/13/11	13.27	428.53	06/13/11	14.14	428.49
03/29/11	11.12	428.59	03/29/11	12.25	429.21	03/29/11	12.66	429.14	03/29/11	13.75	428.88

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 3

Historical Groundwater Data
Trench Wells

Well	V	TM-1	Well	V	TM-2	Well	V	TM-3	Well	l v	TM-4	Well	V	TM-5
	TOC =	439.74		TOC =	438.33		TOC =	439.44		TOC =	441.59		TOC =	441.79
Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.
		Ì							Ì			Ì		1
03/20/20	10.68	429.06	03/20/20	9.10	429.23	03/20/20	10.20	429.24	03/20/20	12.05	429.54	03/20/20	12.15	429.64
12/05/19	11.81	427.93	12/05/19	10.22	428.11	12/05/19	11.39	428.05	12/05/19	13.44	428.15	12/05/19	13.61	428.18
09/19/19	12.22	427.52	09/19/19	10.69	427.64	09/19/19	11.86	427.58	09/19/19	13.68	427.91	09/19/19	13.88	427.91
06/06/19	11.60	428.14	06/06/19	10.00	428.33	06/06/19	11.20	428.24	06/06/19	13.00	428.59	06/06/19	6.23	435.56
03/21/19	10.60	429.14	03/21/19	9.00	429.33	03/21/19	10.20	429.24	03/21/19	12.50	429.09	03/21/19	12.25	429.54
12/05/18	10.55	429.19	12/05/18	8.95	429.38	12/05/18	10.05	429.39	12/05/18	12.00	429.59	12/05/18	12.15	429.64
09/13/18	12.20	427.54	09/13/18	10.65	427.68	09/13/18	11.80	427.64	09/13/18	13.70	427.89	09/13/18	13.85	427.94
06/07/18	12.14	427.60	03/22/18	10.46	427.87	03/22/18	11.62	427.82	06/07/18	13.61	427.98	03/22/18	13.75	428.04
03/22/18	11.86	427.88	03/22/18	10.41	427.92	03/22/18	11.36	428.08	03/22/18	13.31	428.28	03/22/18	13.45	428.34
12/06/17	11.65	428.09	12/06/17	10.07	428.26	12/06/17	11.22	428.22	12/06/17	13.17	428.42	12/06/17	13.32	428.47
09/01/17	12.10	427.64	09/01/17	10.40	427.93	09/01/17	10.55	428.89	09/01/17	13.60	427.99	09/01/17	13.77	428.02
06/23/17	11.80	427.94	06/23/17	10.10	428.23	06/23/17	11.21	428.23	06/23/17	13.15	428.44	06/23/17	13.29	428.50
03/08/17	11.24	428.50	03/08/17	9.52	428.81	03/08/17	10.65	428.79	03/08/17	12.58	429.01	03/08/17	12.76	429.03
12/15/16	10.99	428.75	12/15/16	9.33	429.00	12/15/16	10.49	428.95	12/15/16	12.49	429.10	12/15/16	12.54	429.25
09/19/16	12.23	427.51	09/19/16	10.56	427.77	09/19/16	11.71	427.73	09/19/16	13.65	427.94	09/19/16	13.82	427.97
06/07/16	11.98	427.76	06/07/16	10.29	428.04	06/07/16	11.43	428.01	06/07/16	13.44	428.15	06/07/16	13.61	428.18
03/07/16	10.98	428.76	03/07/16	9.25	429.08	03/07/16	10.36	429.08	03/07/16	12.32	429.27	03/07/16	12.49	429.30
12/02/15	12.12	427.62	12/02/15	10.53	427.80	12/02/15	11.68	427.76	12/02/15	13.58	428.01	12/02/15	13.74	428.05
09/16/15	12.55	427.19	09/16/15	10.75	427.58	09/16/15	11.85	427.59	09/16/15	13.73	427.86	09/16/15	14.67	427.12
06/03/15	11.21	428.53	06/03/15	9.55	428.78	06/03/15	10.72	428.72	06/03/15	12.68	428.91	06/03/15	12.86	428.93
04/08/15	11.06	428.68	04/08/15	9.49	428.84	04/08/15	11.65	427.79	04/08/15	12.65	428.94	04/08/15	12.81	428.98
12/01/14	11.55	428.19	12/01/14	9.79	428.54	12/01/14	10.92	428.52	12/01/14	12.91	428.68	12/01/14	13.09	428.70
09/10/14	11.62	428.12	09/10/14	9.91	428.42	09/10/14	11.10	428.34	09/10/14	13.14	428.45	09/10/14	13.31	428.48
06/12/14	11.94	427.80	06/12/14	10.28	428.05	06/12/14	11.45	427.99	06/12/14	13.48	428.11	06/12/14	13.63	428.16
03/25/14	11.69	428.05	03/25/14	10.01	428.32	03/25/14	11.17	428.27	03/25/14	13.32	428.27	03/25/14	13.35	428.44
12/12/13	10.91	428.83	12/12/13	9.31	429.02	12/12/13	10.46	428.98	12/12/13	12.51	429.08	12/12/13	12.56	429.23
09/23/13	12.19	427.55	09/23/13	10.63	427.70	09/23/13	11.79	427.65	09/23/13	15.75	425.84	09/23/13	13.91	427.88
06/10/13	10.45	429.29	06/10/13	8.75	429.58	06/10/13	9.98	429.46	06/10/13	12.08	429.51	06/10/13	13.16	428.63
03/27/13	11.83	427.91	03/27/13	10.82	427.51	03/27/13	11.48	427.96	03/27/13	13.51	428.08	03/27/13	13.69	428.10
12/03/12	12.31	427.43	12/03/12	10.82	427.51	12/03/12	11.98	427.46	12/03/12	13.84	427.75	12/03/12	14.06	427.73
06/18/12	12.01	427.73	06/18/12	10.46	427.87	06/18/12	11.66	427.78	06/18/12	13.70	427.89	06/18/12	13.89	427.90
03/19/12	11.49	428.25	03/19/12	9.91	428.42	03/19/12	11.11	428.33	03/19/12	13.16	428.43	03/19/12	13.33	428.46
12/05/11	12.01	427.73	12/05/11	10.48	427.85	12/05/11	11.62	427.82	12/05/11	13.61	427.98	12/05/11	13.81	427.98
09/26/11	11.95	427.79	09/26/11	10.41	427.92	09/26/11	11.61	427.83	09/26/11	13.66	427.93	09/26/11	13.82	427.97
06/13/11	11.74	428.00	06/13/11	10.15	428.18	06/13/11	11.32	428.12	06/13/11	13.39	428.20	06/13/11	13.59	428.20
03/29/11	11.02	428.72	03/29/11	9.48	428.85	03/29/11	10.65	428.79	03/29/11	12.81	428.78	03/29/11	12.97	428.82

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	LTN	IW-D01	LTN	IW-S01	LTN	IW-D02	LTN	1W-S02	LTN	/W-D03	LTN	/W-S03	LTN	/IW-D04	LTN	/IW-S04
Well	TOC =	434.90	TOC =	435.52	TOC =	436.74	TOC =	436.79	TOC =	431.27	TOC =	431.43	TOC =	437.18	TOC =	437.24
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
Duto		Trate: Zii	2	Trato. Lii		Trator III	2	Trace: Z.:		Truto: Lii	2	Trace: Z.:	J	Truto: Lii	2	Trator Em
03/20/20	7.50	427.40	8.30	427.22	8.90	427.84	8.20	428.59	3.50	427.77	1.80	429.63	8.25	428.93	7.10	430.14
12/05/19	8.42	426.48	8.47	427.05	10.50	426.24	10.17	426.62	4.93	426.34	3.95	427.48	9.65	427.53	9.39	427.85
09/19/19	8.63	426.27	8.70	426.82	10.60	426.14	10.17	426.34	5.20	426.07	4.20	427.23	9.90	427.28	9.55	427.69
								426.34					6.23			
06/06/19	7.80	427.10	8.00	427.52	9.70	427.04	9.33		4.25	427.02	2.90	428.53		430.95	8.12	429.12
03/21/19	8.00	426.90	8.20	427.32	10.15	426.59	9.77	427.02	4.45	426.82	3.63	427.80	9.35	427.83	8.90	428.34
12/05/18	7.54	427.36	7.54	427.98	9.29	427.45	8.95	427.84	5.75	425.52	2.40	429.03	8.64	428.54	7.78	429.46
09/13/18	8.81	426.09	43356.00	-42920.48	10.60	426.14	10.36	426.43	5.48	425.79	4.18	427.25	10.02	427.16	9.35	427.89
06/07/18	8.55	426.35	8.70	426.82	10.35	426.39	10.32	426.47	4.32	426.95	4.11	427.32	9.78	427.40	9.48	427.76
03/22/18	8.22	426.68	9.41	426.11	10.21	426.53	9.98	426.81	5.65	425.62	3.60	427.83	9.35	427.83	9.05	428.19
12/06/17	8.17	426.73	8.16	427.36	10.07	426.67	9.61	427.18	4.76	426.51	3.30	428.13	9.35	427.83	8.35	428.89
09/01/17	8.75	426.15	8.74	426.78	10.64	426.10	10.31	426.48	5.23	426.04	4.15	427.28	9.99	427.19	9.50	427.74
06/23/17	8.30	426.60	8.53	426.99	10.45	426.29	10.27	426.52	4.91	426.36	4.05	427.38	9.58	427.60	9.45	427.79
03/08/17	8.13	426.77	8.27	427.25	10.11	426.63	9.79	427.00	4.48	426.79	3.53	427.90	9.00	428.18	8.79	428.45
12/15/16	8.11	426.79	8.02	427.50	10.03	426.71	9.73	427.06	4.55	426.72	3.28	428.15	9.32	427.86	8.41	428.83
09/19/16	8.78	426.12	8.73	426.79	10.70	426.04	10.41	426.38	5.26	426.01	4.25	427.18	10.03	427.15	9.61	427.63
06/07/16	8.56	426.34	7.85	427.67	10.16	426.58	10.21	426.58	4.75	426.52	4.07	427.36	9.47	427.71	9.38	427.86
03/07/16	7.75	427.15	7.18	428.34	9.05	427.69	9.15	427.64	3.69	427.58	2.45	428.98	8.55	428.63	7.85	429.39
12/03/15	7.71	427.19	8.29	427.23	9.85	426.89	9.74	427.05	4.38	426.89	3.51	427.92	9.63	427.55	8.65	428.59
09/16/15	8.30	426.60	8.76	426.76	10.29	426.45	10.32	426.47	4.91	426.36	4.15	427.28	9.69	427.49	9.52	427.72
06/03/15	8.07	426.83	8.03	427.49	10.02	426.72	10.13	426.66	4.45	426.82	3.92	427.51	9.35	427.83	9.27	427.97
04/08/15	7.34	427.56	7.99	427.53	9.58	427.16	9.71	427.08	4.01	427.26	3.54	427.89	8.85	428.33	8.75	428.49
12/01/14	7.94	426.96	8.15	427.37	9.75	426.99	9.64	427.15	4.11	427.16	3.13	428.30	9.09	428.09	8.57	428.67
09/10/14	8.14	426.76	8.12	427.40	9.99	426.75	9.64	427.15	4.58	426.69	3.19	428.24	9.30	427.88	8.70	428.54
06/12/14	8.68	426.22	8.24	427.28	10.57	426.17	10.26	426.53	4.71	426.56	4.11	427.32	9.60	427.58	9.42	427.82
03/25/14	8.22	426.68	8.50	427.02	10.11	426.63	10.19	426.60	4.71	426.56	4.09	427.34	9.56	427.62	9.43	427.81
12/12/13	7.61	427.29	7.64	427.88	9.19	427.55	8.75	428.04	3.97	427.30	1.99	429.44	8.57	428.61	7.45	429.79
09/23/13 06/10/13	8.36 7.17	426.54 427.73	8.75 7.52	426.77 428.00	10.28 9.09	426.46 427.65	10.28 8.73	426.51 428.06	5.11 3.52	426.16 427.75	4.05 2.18	427.38 429.25	9.84 7.99	427.34 429.19	9.52 6.99	427.72 430.25
03/27/13	8.27	426.63	8.64	426.88	10.28	426.46	9.98	426.81	4.84	426.43	3.87	429.25	9.61	427.57	9.36	430.23
12/03/12	8.65	426.25	8.60	426.92	10.42	426.32	9.90	426.89	5.08	426.19	3.80	427.63	9.85	427.33	9.91	427.33
09/12/12	8.84	426.06	8.91	426.61	10.76	425.98	10.35	426.44	5.39	425.88	4.17	427.26	10.20	426.98	9.62	427.62
06/18/12	8.35	426.55	8.61	426.91	10.35	426.39	10.26	426.53	5.10	426.17	4.08	427.35	8.76	428.42	9.48	427.76
03/19/12	8.01	426.89	8.11	427.41	9.92	426.82	9.46	427.33	4.50	426.77	3.04	428.39	9.24	427.94	8.29	428.95
12/05/11	8.16	426.74	8.31	427.21	10.12	426.62	9.61	427.18	4.63	426.64	3.35	428.08	9.39	427.79	8.81	428.43
09/26/11	8.38	426.52	8.45	427.07	10.45	426.29	10.18	426.61	4.71	426.56	3.93	427.50	9.45	427.73	9.44	427.80
06/13/11	7.61	427.29	8.36	427.16	10.27	426.47	9.95	426.84	4.78	426.49	3.75	427.68	9.42	427.76	9.17	428.07
03/28/11	7.83	427.07	7.85	427.67	9.68	427.06	9.43	427.36	4.41	426.86	3.34	428.09	9.07	428.11	8.91	428.33

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	LTN	1W-D05	LTN	/W-S05	LTN	1W-D06	LTN	1W-S06	LTN	/IW-S07	LTN	1W-S08	LTN	/W-S09	LTN	/W-S10
	TOC =	437.78	TOC =	437.92	TOC =	441.70	TOC =	441.64	TOC =	439.70	TOC =	443.81	TOC =	439.79	TOC =	439.67
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
		İ	İ			İ		İ	İ	ĺ		İ				i
03/20/20	7.50	430.28	7.80	430.12	11.00	430.70	11.70	429.94	9.75	429.95	14.15	429.66	9.00	430.79	9.60	430.07
12/05/19	9.30	428.48	9.73	428.19	12.29	429.41	13.12	428.52	10.80	428.90	15.45	428.36	9.73	430.06	10.29	429.38
09/19/19	9.44	428.34	9.86	428.06	11.45	430.25	13.40	428.24	11.20	428.50	15.80	428.01	10.03	429.76	10.70	428.97
06/06/19	8.35	429.43	8.65	429.27	11.60	430.10	12.55	429.09	10.15	429.55	14.94	428.87	9.26	430.53	9.74	429.93
03/21/19	8.92	428.86	9.38	429.27	1	429.90	12.50	429.09	10.13	429.62	1	429.73	9.15	430.53	9.74	430.15
					11.80						14.08					
12/05/18	8.18	429.60	7.30	430.62	11.10	430.60	11.55	430.09	8.55	431.15	13.90	429.91	8.70	431.09	9.20	430.47
09/13/18	9.67	428.11	9.68	428.24	12.70	429.00	13.35	428.29	11.55	428.15	15.80	428.01	10.23	429.56	10.75	428.92
06/07/18	9.47	428.31	9.64	428.28	12.42	429.28	13.26	428.38	11.06	428.64	15.70	428.11	10.10	429.69	10.64	429.03
03/22/18	8.95	428.83	8.80	429.12	12.10	429.60	12.92	428.72	10.40	429.30	15.30	428.51	9.50	430.29	10.15	429.52
12/06/17	9.02	428.76	9.16	428.76	12.00	429.70	12.25	429.39	10.67	429.03	15.10	428.71	9.58	430.21	10.10	429.57
09/01/17	9.51	428.27	9.60	428.32	12.62	429.08	13.50	428.14	12.60	427.10	15.78	428.03	10.38	429.41	10.96	428.71
06/23/17	9.14	428.64	9.60	428.32	12.07	429.63	12.88	428.76	10.73	428.97	15.22	428.59	12.88	426.91	10.18	429.49
03/08/17	8.26	429.52	7.54	430.38	11.52	430.18	11.78	429.86	10.39	429.31	14.69	429.12	9.21	430.58	9.98	429.69
12/15/16	8.80	428.98	9.00	428.92	12.28	429.42	11.70	429.94	9.89	429.81	14.50	429.31	8.60	431.19	9.30	430.37
09/19/16	9.63	428.15	9.65	428.27	12.61	429.09	13.24	428.40	11.44	428.26	15.59	428,22	9.82	429.97	10.68	428.99
06/07/16	8.82	428.96	9.53	428.39	11.98	429.72	13.03	428.61	11.01	428.69	15.36	428.45	9.81	429.98	10.41	429.26
03/07/16	7.85	429.93	8.27	429.65	11.16	430.54	12.13	429.51	9.94	429.76	14.48	429.33	9.05	430.74	9.65	430.02
12/02/15	8.77	429.01	9.21	428.71	12.31	429.39	13.20	428.44	11.55	428.15	15.67	428.14	10.40	429.39	10.95	428.72
09/16/15	8.97	428.81	9.51	428.41	12.58	429.12	13.25	428.39	11.54	428.16	15.65	428.16	9.89	429.90	10.65	429.02
06/03/15	9.25	428.53	9.41	428.51	12.15	429.55	12.93	428.71	10.81	428.89	15.21	428.60	9.15	430.64	9.93	429.74
04/08/15	8.74	429.04	9.36	428.56	11.67	430.03	12.55	429.09	10.06	429.64	14.85	428.96	8.89	430.90	9.54	430.13
12/01/14	8.28	429.50	8.91	429.01	11.77	429.93	12.49	429.15	10.97	428.73	14.78	429.03	9.31	430.48	9.93	429.74
09/10/14	8.85	428.93	8.97	428.95	11.91	429.79	12.68	428.96	10.96	428.74	15.34	428.47	9.35	430.44	10.29	429.38
06/12/14	9.02	428.76	9.52	428.40	12.28	429.42	13.08	428.56	11.14	428.56	15.34	428.47	9.63	430.16	10.46	429.21
03/25/14	9.03	428.75	8.50	429.42	11.95	429.75	12.81	428.83	10.85	428.85	15.03	428.78	9.11	430.68	9.93	429.74
12/12/13	7.96	429.82	7.85	430.07	11.20	430.50	11.87	429.77	10.16	429.54	14.11	429.70	8.95	430.84	9.63	430.04
09/23/13 06/10/13	8.94 7.55	428.84 430.23	9.52	428.40 430.44	12.36	429.34 430.55	13.21 11.78	428.43 429.86	11.39 10.27	428.31 429.43	15.46	428.35	9.86	429.93 430.36	10.64 10.17	429.03 429.50
06/10/13	9.13	430.23 428.65	7.48 9.45	430.44	11.15 12.16	430.55 429.54	13.10	429.86 428.54	10.27	429.43	14.12 15.27	429.69 428.54	9.43 9.55	430.36	10.17	429.50 429.36
12/03/12	9.13	428.27	9.45	428.44	13.43	429.54	12.78	428.86	11.59	428.11	15.72	428.09	10.25	430.24	10.31	429.36
09/12/12	9.76	428.02	9.64	428.28	12.81	428.89	13.69	427.95	11.97	427.73	15.72	427.86	10.58	429.21	11.27	428.40
06/18/12	9.26	428.52	9.51	428.41	12.41	429.29	13.23	428.41	11.31	428.39	15.40	428.41	9.81	429.98	10.56	429.11
03/19/12	8.79	428.99	9.04	428.88	12.12	429.58	12.99	428.65	11.05	428.65	15.19	428.62	9.73	430.06	10.43	429.24
12/05/11	9.02	428.76	9.08	428.84	12.22	429.48	13.04	428.60	10.97	428.73	15.19	428.62	9.58	430.21	10.34	429.33
09/26/11	9.32	428.46	9.53	428.39	12.40	429.30	13.20	428.44	11.01	428.69	15.21	428.60	9.55	430.24	10.31	429.36
06/13/11	8.91	428.87	9.34	428.58	11.99	429.71	12.88	428.76	10.79	428.91	15.03	428.78	9.49	430.30	10.29	429.38
03/28/11	8.08	429.70	9.12	428.80	11.62	430.08	12.41	429.23	10.08	429.62	14.46	429.35	10.14	429.65	9.75	429.92

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

Table 4 Groundwater Analytical Data LTMW-D01

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	540	5,100	1,700	1,500	4,800	1,700	5,310	8,990	5,800	5,290	2,470	4,250	5,460	3,440	3,900	1,410	7,360	6,290	2,370	3,400	4,310
Toluene	1,000	5	1	300	1,300	430	340	1,100	340	1,090	2,080	1,320	1,470	809	1,230	1,140	992	1,080	1,740	2,200	1,410	630	876	183
Ethylbenzene	700	5	1	26	84	53	54	82	ND	167	241	145	137	179	177	95.0	119	163	203	202	170	142	222	1,120
Xylene (total)	10,000	5	2	68	160	ND	ND	170	ND	176	254	206	201	157	187	135	155	164	214.5	339	229	134.8	180.8	277
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	0.59	0.43	0.19	0.10	0.19	0.35	0.18	0.19	0.14	0.40	0.48	0.23	0.21	0.33	0.47
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	5.0	6.2	0.31	0.11	0.36	7.1	3.1	1.1	1.9	7.1	8.6	2.3	0.51	2.8	5.9
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	13	ND	ND	14	11	ND	ND	ND	10	ND	ND	15	ND	ND	ND	ND	14
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	0.51	0.35	0.15	ND	ND	0.41	0.17	0.14	0.10	0.30	0.55	0.16	ND	0.20	0.47
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	97.1	229	ND	ND	ND	7.2	94.6	0.44	0.83	170	381	8.3	ND	4.3	121
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	107	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.9	ND	6.8	9.1	ND	ND	ND	9.1	6.2	6.6
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2.000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

= Micrograms per Liter

μg/L ND H J wardug aims per Litel
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Table 4 Groundwater Analytical Data LTMW-S01

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	1.9
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	70	68	72	79 E	76	120	125	91.2	69.4	56.4	105	75.1	56.5	68.1	101	64.4	53.1	70.6	69.0	74.5	63.7
Acenaphthylene	N/A	NA	4.9	ND	4.7	ND	ND	ND	ND	4.1	3	3.2	2.5	3.6	2.7	2.2	3.3	4.4	2.6	2	2.7	3.2	3.3	2.3
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	0.44	0.38	0.52	0.28	0.40	0.34	0.27	0.37	0.47	0.35	0.25	0.47	0.41	0.44	0.24
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	23	16	23	20	20	21	ND	13	55	18	12	15	11	17	19	14	14	16	18	18	25
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	4.9	4	3.6	2.8	4.8	3.5	2.4	3.7	6.1	3.6	2.6	3.8	5.4	5.0	2.8
Fluorene	N/A	0.002	4.9	18	26	25	23	21	28	34.1	27.6	19.9	12.6	28.5	19.2	15.4	18.1	28.3	15.6	13.6	18	22.9	19.6	14.3
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	0.2	0.38	0.4	0.15	0.24	0.31	ND	0.23	ND	0.31	0.15	0.26	0.23	0.27	0.25
Phenanthrene	N/A	50	4.9	ND	9.4	ND	ND	ND	ND	0.25	0.74	1.7	ND	0.14	0.20	0.26	0.13	0.20	0.16	0.11	0.41	0.13	0.17	0.13
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	5.0	4.2	3.6	2.7	4.9	3.7	2.5	3.8	6.6	4.4	2.7	3.9	5.7	5.3	3.0
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	8.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

 Ambient Water Quality Standards
 Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS μg/L ND H J

Table 4 Groundwater Analytical Data LTMW-D02

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	5.8	ND	ND	ND	ND	ND	3.3	2.2	1.6	ND	2.0	0.97	1.2	1.0	0.91	0.23	0.36	0.25	0.15	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	0.8	0.43	0.39	ND	0.48	0.22	0.29	0.31	0.24	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	130	110	16	ND	93	85	ND	150	200	ND	160	160	160	150	140	10	140	140	110	ND	130
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2.000	10	ND	22	110	11	13	61	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND

EPA = Environmental Protection Agency

NYSDEC AWQS = New York State Department of Environmental Conservation = Ambient Water Quality Standards

μg/L ND H J Micrograms per Liter
 Not detected above laboratory reporting limits
 Cuantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Table 4 **Groundwater Analytical Data** LTMW-S02

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	81	35	190	120	130	150	ND	130	75	73	110	90	60	59	110	10	57	71	70	73	76
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	0.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	15	15	5.1	ND	7.7	ND	ND	7.6	ND	7.1	7.2	ND	ND	ND	5.1	6.3	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

 Ambient Water Quality Standards
 Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS μg/L ND H J

Table 4 Groundwater Analytical Data LTMW-D03

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	6.7	9.3	9.3	10	8.9	20	15.9	27.1	10.2	8.5	8.9	9.5	4.7	6.4	5.4	8.4	6.2	9.6	6.2	2.5	3.3
Toluene	1,000	5	1	2	3.4	2.2	ND	ND	20	13.9	55	5.9	1.9	1.9	5.4	ND	1.2	2.0	3.9	18.2	5.6	2.0	ND	11.0
Ethylbenzene	700	5	1	73	100	87	76	86	58	69.6	23.9	63.7	44	49.0	40.2	26.0	34.1	23.6	22.2	3	20.7	16.5	11.3	ND
Xylene (total)	10,000	5	2	15	22	16	16	14	42	30.1	25.7	13.5	5.6	7.5	8.4	4.0	4.4	5.5	6.2	7.1	8.4	1.4	ND	ND
Acenaphthene	N/A	20	4.9	10	14	16	12	11	ND	411.9	ND	10.7	3.70	10.2	5.9	5.8	8.3	5.7	6.2	8.0	6.0	7.90	4.3	4.3
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	34.7	10.6	3.1	2.5	2.2	1.5	1.3	2.0	1.6	2.8	2.2	2.1	1.4	0.89	0.54
Anthracene	N/A	NA	4.9	ND	5.6	5.4	ND	ND	ND	5.2	ND	5.6	0.3	3.7	2.4	2.2	2.8	2.1	2	2.1	1.6	1.6	0.9	0.45
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	0.43	ND	0.42	ND	0.40	0.26	0.30	0.34	0.29	0.28	0.4	0.38	0.41	0.26	0.23
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	0.21	ND	0.25	ND	0.24	0.18	0.17	0.19	0.18	0.16	0.21	0.23	0.25	0.17	0.15
Cyanide	N/A	200	10	64	67	78	71	75	93	77	79	84	76	66	78	64	66	62	62	65	72	60	53	67
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	6.7	6.6	5.6	6.2	ND	6.2	ND	6.1	2.9	5.9	3.7	4.1	4.7	4.0	3.5	5.1	4.2	5.4	3.2	3.4
Fluorene	N/A	0.002	4.9	6.8	11	10	9.3	7.8	ND	11.5	ND	7.1	13.2	6.2	3.7	3.6	5.1	3.5	3.8	5.1	3.6	4.9	2.8	2.3
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	9.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	14	47	29	24	13	81	556	284	32.2	0.15	10.0	16.5	3.9	3.7	6.9	12.7	9.8	10.6	3.5	0.5	0.3
Phenanthrene	N/A	50	4.9	17	28	30	25	27	25	29.5	1.5	30.3	0.11	24.1	15.2	16.3	18.1	18.1	17.9	19.9	15.2	19.6	8.5	2.9
Pyrene	N/A	50	4.9	6	8.9	8.6	7.2	8.3	8.3	8.3	1.2	7.6	2.8	7.6	4.8	5.5	6.0	5.3	5.1	6.6	5.3	6.9	4	4.6
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

EPA = Environmental Protection Agency

NYSDEC AWQS = New York State Department of Environmental Conservation = Ambient Water Quality Standards

μg/L ND H J Micrograms per Liter
 Not detected above laboratory reporting limits
 Cuantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Table 4 Groundwater Analytical Data LTMW-S03

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	0.16	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.3	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	15	30	5.9	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	5,600	7,300	5,500	4,400	4,600	4,300	4,300	4,600	5,330	4,250	3,740	3,620	4,070	3,660	3,060	5,620	4,040	3,740	3,710	4,160	3,840

EPA = Environmental Protection Agency

NYSDEC AWQS = New York State Department of Environmental Conservation = Ambient Water Quality Standards

μg/L ND H J Micrograms per Liter
 Not detected above laboratory reporting limits
 Cuantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Table 4 Groundwater Analytical Data LTMW-D04

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	13	15	14	11.5	10	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	11
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	35.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2.000	10	ND	ND	ND	490	490	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 Groundwater Analytical Data LTMW-S04

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	870	400	800	170	450	600	59	2,000	900	1,200	200	1,300	400	230	220	1,300	860	660	190	120	1,700
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	180	610	140	ND	510	340	23	618	358	108	128	472	472	267	179	230	242	184	156	156	44.4

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 Groundwater Analytical Data LTMW-D05

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a.h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Groundwater Analytical Data LTMW-S05

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	5,800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	1,320	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	145	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	206	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	140	190	220	160	450	250	16	830	510	570	270	380	430	120	89	260	120	230	65	170	150
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	11	ND	ND	ND	ND	ND	ND	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	75	ND	27	ND	ND	19	23	ND	27.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

EPA = Environmental Protection Agency

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H = Micrograms per Liter = Not detected above laboratory reporting limits = Quantitated using peak height rather than peak area = Estimated Concentration Value = values indicate exceedance of the NYSDEC AWQS

Table 4 Groundwater Analytical Data LTMW-D06

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	ND	ND	92	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	ND
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	8.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	0.64	ND	ND	8.1	8.5	8.0	6.0	12.0	10.4	7.3	5.7	ND	9.2	8.8	9.6
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-S06

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	100	ND	32	19	32	66	31	ND	190	79	14	18	64	55	19	110	66	11	54	84	53
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	0.01	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Groundwater Analytical Data LTMW-S07

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	96.8	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Groundwater Analytical Data LTMW-S08

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.21	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	ND
Cyanide	N/A	200	10	560	120	100	100	280	120	120	140	240	16	140	16	200	150	80	250	30	10	62	180	380
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.51	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.26	ND	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.46	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12.5	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-S09

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.11	ND
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	5.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2.000	10	22	17	45	ND	ND	10	13	23.2	97.6	24.4	ND	15.3	ND	ND	10.7	27.6	ND	14.3	10.1	ND	12.7

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-S10

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	04/08/15	06/03/15	09/16/15	12/03/15	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20
Benzene	5	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	1,000	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	700	5	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (total)	10,000	5	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	N/A	20	4.9	21	17	36	29	6.3	6.3	23	17.4	3.1	4.30	11.0	6.8	2.3	9.7	11.8	5.7	10.8	5.1	13.60	7.70	8.80
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	0.9	0.96	0.2	0.23	0.73	0.54	0.20	0.51	0.61	0.39	0.74	0.42	0.67	0.63	0.38
Anthracene	N/A	NA	4.9	ND	ND	ND	ND	ND	ND	0.17	0.12	0.12	ND	0.11	ND	ND	ND	0.14	ND	0.13	0.11	0.15	0.13	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	N/A	ND	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide	N/A	200	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	2.1	1.5	0.5	0.62	2.0	1.4	0.71	1.3	1.8	1.1	1.6	1.3	2.1	1.9	1.1
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	ND	ND	1.5	1.1	0.17	0.35	1.1	0.73	0.25	0.71	1.0	0.7	1.2	0.6	1.3	1.0	0.8
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.17	ND	ND	0.20	9.1	ND	ND	1.5	0.37	0.13	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	1.4	0.94	ND	0.22	0.73	0.43	0.12	0.32	0.76	0.32	0.62	0.26	0.86	0.53	0.39
Pyrene	N/A	50	4.9	ND	ND	ND	ND	ND	ND	2.6	1.9	0.45	0.71	2.4	1.7	0.90	1.7	2.3	1.5	2	1.6	2.70	2.40	1.4
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	N/A	25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	N/A	2,000	10	0.011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 5

Discharge Analytical Data

Groundwater Extraction System Effluent Concentrations

Parameter	City of Rome WPCF Permit Max Daily Limit (mg/L)	09/14/15	12/03/15	03/07/16	06/06/16	09/12/16	01/05/17	03/09/17	06/07/17	09/21/17	12/06/17	03/27/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20
Benzene	0.13	0.04	0.044	0.037	0.063	0.043	0.0393	0.0536	0.0611	0.0360	0.0200	0.0274	0.0315	0.0239	0.0297	0.0618	0.0359	0.0423	0.0527	0.0315
Ethylbenzene	1.59	0.0042	0.003	0.0021	0.0049	0.0042	0.0025	0.0045	0.0050	0.0052	0.0019	0.0024	0.0040	0.0024	0.0024	0.0046	0.0047	0.0050	0.0065	0.0042
Toluene	1.35	0.0013	0.0011	0.0038	0.0087	0.0021	0.0019	0.0028	0.0095	ND (<0.001)	0.0017	0.0025	0.0025	0.0037	0.0026	0.0113	0.0058	0.0082	0.0079	0.0056
Xylene	1.35	ND (<0.001)	ND (<0.001)	ND (<0.001)	0.0011	ND (<0.001)	ND (<0.001)	ND (<0.0030)	0.0034	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	0.0042	0.0011	0.0011	0.0039	ND (<0.0030)
Total BTEX	2.87	0.05	0.048	0.043	0.078	0.049	0.0437	0.0609	0.0790	0.0412	0.0236	0.0323	0.0380	0.0300	0.0347	0.0777	0.0475	0.0566	0.0710	0.0412
Arsenic	0.1	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.0050)	ND (<0.010)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.012	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)
Cadmium	0.11	0.0017	ND (<0.001)	ND (<0.001)	ND (<0.001)	ND (<0.0030)	ND (<0.0025)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	0.0054	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)
Chromium	2.77	ND (<0.0040)	ND (<0.0040)	ND (<0.0040)	ND (<0.0040)	ND (<0.0050)	ND (<0.010)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)
Copper	1.3	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.0050)	ND (<0.025)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.08	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)
Cyanide	1.2	0.075	0.075	0.11	0.11	0.062	ND (<0.010)	0.090	0.084	0.056	0.074	0.069	0.070	0.059	0.086	0.067	0.097	0.083	0.098	0.11
Lead	1.1	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.0071	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)
Mercury	0.2	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)
Nickel	1.9	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.04)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)
Silver	0.43	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0060)	ND (<0.010)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)	ND (<0.0060)
Zinc	2.6	ND (<0.010)	0.018	0.018	0.018	ND (<0.010)	0.0241	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.13	ND (<0.010)	ND (<0.010)	ND (<0.010)
Oil & Grease	100	ND (<5.0)	ND (<5.0)	ND (<5.0)	ND (<5.0)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
CBOD5	250	ND (<2.0)	ND (<2.0)	ND (<2.0)	ND (<2.0)	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
pH	5.5 - 11.5 su	6.88	6.98	7.06	6.91	6.8	6.8	6.7	6.9	6.8	6.8	6.8	6.7	6.9	7.1	6.9	6.9	6.9	7	6.9

Results in mg/L.

= Milligrams per Liter = Water Pollution Control Facility = Not Sampled = Not Analyzed

mg/L WPCF NS NA

Appendix A – Field Inspection Report

Field Inspection Report Former MGP Site Kingsley Avenue

Date:	3/20/2020	Rome, New York	Time:	8:30
Technician:	PD		Weather:	Partly Cloudy

Site Controls									
Fence Condition	GOOD	F۸	ΙR	DAMAGED	COMMENTS				
Kingsley Ave Gate	GOOD	FΑ	ΙR	DAMAGED	COMMENTS:				
Padlock-NG/GES	OPERATIO	NAL	NON-C	PERATIONAL	COMMENTS:				
Railroad Ave Gate	GOOD	FA	.IR	DAMAGED	COMMENTS:				
Padlock-NG/GES	OPERATIO	NAL	NON-0	PERATIONAL	COMMENTS:				

	Vegetation	on (Surface (Cover System	n)
Condition of Grass	GOOD	FAIR	POOR	COMMENTS:
Site Trees	NONE	MINOR	SIGNIFICANT	COMMENTS:
Surface Erosion	NONE	MINOR	SIGNIFICANT	COMMENTS:

Stoned Areas								
Condition of Main Access Road	GOOD	FAIR	POOR	COMMENTS:				
Condition of Main Staging Area	GOOD	FAIR	POOR	COMMENTS:				
Condition of Rear Turn Around Area	GOOD	FAIR	POOR	COMMENTS:				

	Drainage Systems									
Rip Rap Area	Culvert	UNOBSTRUC	CTED	ОВ	STRUCTED					
	Flow	NONE	LIT	TLE	SIGNIFICANT	COMMENTS:				
	Outlet Channel	OPERATIO	OPERATIONAL		OPERATIONAL	COMMENTS:				

		Misc	ellane	ous	
Evidence of Trespassing	NO			YES	COMMENTS:
Litter	NONE	MIN	IOR	SIGNIFICANT	COMMENTS:

General Comments:

2020 1st Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix B – Quarterly Gauging and Containment Data

Quarterly Well Data Kingsley Avenue, Former MGP Site Utica, New York

WELL ID.	DTW	DTP	DTB	Comments
MW-OU2-1	7.85	40.00	45.81	Removed 4 gallons of DNAPL
MW-OU2-2	9.25	46.00	47.53	
MW-OU2-3	6.40	NP	34.18	
MW-OU2-4	5.40	35.80	39.55	Removed 2.5 gallons of DNAPL
MW-OU2-5	6.05	NP	36.01	
DNAPL-02	8.10	NP	50.40	
DNAPL-03	8.55	51.50	52.32	
DNAPL-04	9.70	NP	51.45	
DNAPL-05	11.32	NP	54.75	
DNAPL-06	10.90	NP	51.45	
DNAPL-07	11.80	NP	53.60	
DNAPL-08	12.10	NP	58.01	
DNAPL-09	13.05	NP	57.58	
VTM-1	10.68	NP	46.37	
VTM-2	9.10	NP	49.47	
VTM-3	10.20	NP	50.91	
VTM-4	12.05	NP	50.62	
VTM-5	12.15	NP	52.52	
LTMW-D01	7.50	NP	46.84	
LTMW-S01	8.30	NP	16.92	
LTMW-D02	8.90	NP	40.29	
LTMW-S02	8.20	NP	17.98	
LTMW-D03	3.50	NP	40.73	
LTMW-S03	1.80	NP	13.70	
LTMW-D04	8.25	NP	46.36	
LTMW-S04	7.10	NP	17.26	
LTMW-D05	7.50	NP	46.53	
LTMW-S05	7.80	NP	16.83	
LTMW-D06	11.00	NP	52.22	
LTMW-S06	11.70	NP	17.60	
LTMW-S07	9.75	NP	17.82	
LTMW-S08	14.15	NP	17.39	
LTMW-S09	9.00	NP	16.92	
LTMW-S10	9.60	NP	17.18	

Containment

Well Id.	Elevation	DTW	Water Elevation	Positive Delta
DNAPL-02	436.81	8.10	428.71	5.13
Top Steel Sheet Wall	433.84			5.15
DNAPL-03	437.23	8.55	428.68	2.53
Top Steel Sheet Wall	431.21			2.55
DNAPL-04	438.50	9.70	428.80	4.02
Top Steel Sheet Wall	432.82			4.02
DNAPL-05	440.60	11.32	429.28	0.92
Top Steel Sheet Wall	430.20			0.92
DNAPL-06	439.71	10.90	428.81	4.74
Top Steel Sheet Wall	433.55			4.74
VTM-1	439.74	10.68	429.06	2.76
Top Steel Sheet Wall	431.82			2.70
VTM-2	438.33	9.10	429.23	3.47
Top Steel Sheet Wall	432.70			5.47
VTM-3	439.44	10.20	429.24	7.68
Top Steel Sheet Wall	436.92			7.00
VTM-4	441.59	12.05	429.54	4.00
Top Steel Sheet Wall	433.54			4.00
VTM-5	441.79	12.15	429.64	6.36
Top Steel Sheet Wall	436.00			0.30

Appendix C – Well Sampling Field Data

W 11.15)	DTM	DTD	D.T.D.	
Well ID	Sample ?	Well Size	DTW	DTP	DTB	Comments
MW-OU2-1	No	4"	7.85	40.00	45.81	Removed 4.5 gallons of DNAPL
MW-OU2-2	No	4"	9.25	46.00	47.53	
MW-OU2-3	No	4"	6.40	NP	34.18	
MW-OU2-4	No	4"	5.40	35.80	39.55	Removed 2.5 gallons of DNAPL
MW-OU2-5	No	4"	6.05	NP	36.01	
DNAPL-02	No	6"	8.10	NP	50.40	
DNAPL-03	No	6"	8.55	51.50	52.32	
DNAPL-04	No	6"	9.70	NP	51.45	
DNAPL-05	No	6"	11.32	NP	54.75	
DNAPL-06	No	6"	10.90	NP	54.45	
DNAPL-07	No	6"	11.80	NP	53.60	
DNAPL-08	No	6"	12.10	NP	58.01	
DNAPL-09	No	6"	13.05	NP	57.58	
VTM-1	No	6"	10.68	NP	46.37	
VTM-2	No	6"	9.10	NP	49.47	
VTM-3	No	6"	10.20	NP	50.91	
VTM-4	No	6"	12.05	NP	50.62	
VTM-5	No	6"	12.15	NP	52.52	
LTMW-D01	Yes	2"	7.50	NP	46.84	
LTMW-S01	Yes	2"	8.30	NP	16.96	
LTMW-D02	Yes	2"	8.90	NP	40.29	
LTMW-S02	Yes	2"	8.20	NP	17.98	
LTMW-D03	Yes	2"	3.50	NP	40.73	
LTMW-S03	Yes	2"	1.80	NP	13.70	
LTMW-D04	Yes	2"	8.25	NP	46.36	
LTMW-S04	Yes	2"	7.10	NP	17.26	
LTMW-D05	Yes	2"	7.50	NP	46.53	
LTMW-S05	Yes	2"	7.80	NP	16.83	
LTMW-D06	Yes	2"	11.00	NP	52.22	
LTMW-S06	Yes	2"	11.70	NP	17.60	
LTMW-S07	Yes	2"	9.75	NP	17.82	
LTMW-S08	Yes	2"	14.15	NP	17.39	
LTMW-S09	Yes	2"	9.00	NP	16.92	DUP
LTMW-S10	Yes	2"	9.60	NP	17.18	MS/MSD

DTW -depth to water **DTP** -depth to product **DTB** -depth to bottom All from top of casing

- 1		

Date: Date		60			Date:	3/19		
Well Information	Joh Number: 0603123-134	400-221			Weather:	P.C		
Well Information		400-221		-			Time Out:	Dra
Depth to Water:	Weilid. LIMW-DOI				Taile III.	, 017	Time Out.	02/
Depth to Water:	Well Information		TOC	Othor	Wall Type:	Flux	hmount 0	Stick Ha
Depth to Bottom:	Denth to Water:	(foot)		Other				
Depth to Product:		1						
Length of Water Column: (feet)								
Volume of Water in Well:			I W I					
Purging Information								-
Conversion Factors Grundfos Pump Facto					-		-	
Conversion Factors Grundfos Pump Grundfo								•
Purging Method: Tubing/Bailer Teffon Stainless St. Sampling Method: Sampling Method: Sampling Method: Sampling Method: Sampling Method: Peristaltic Peristaltic Peristaltic Sampling Method: Peristaltic Peristaltic Peristaltic Peristaltic Sampling Method: Peristaltic Peristaltic Peristaltic Peristaltic Sampling Method: Peristaltic	Purging Information							. /
Tubing/Bailer Material: Teflon Stainless St. Sampling Method: Peristaltic Peristaltic Grundfos Pump Average Pumping Rate: (ml/min) \(\frac{70}{20} \) Total Volume Removed: (gal) 2.5 Did well go dry? Yes No	D 1 14 11 1							
Sampling Method: Bailer Peristaltic Grundfos Pump							1 10 2 10	4" ID 6" ID
Average Pumping Rate:							004 016	0.66 1.47
Duration of Pumping: (min) 70 Total Volume Removed: (gal) 2.5 Horiba U-52 Water Quality Meter Used? Yes No Time DTW Temp pH ORP Conductivity Turbidity (feet) (°C) (mV) (mS/cm) (NTU) (mg/L) (g/L) (g/L) OBJL Q.O B.BO 1.34 -10 L4(9 3.2 9.22 .202 6821 10.00 2.44 9.49 -114 1404 3.2 8.78 .262 OBJL 2.60 8.46 9.20 -134 .394 3.2 8.04 .224 OBJL 12.60 8.46 9.20 -134 .394 3.2 8.04 .244 OBJL 12.80 8.7 10.10 -194 .426 3.5 8.7 1.263 OBJL 13.21 8.90 10.00 -142 .414 3.5 8.7 1.263 OBJL 18.20 8.7 10.10 -194 .426 3.6 8.0 .217 OBJL 18.20 8.7 10.00 -194 .426 3.6 8.0 .217 OBJL 18.20 8.7 10.00 -193 .434 3.1 9.45 .251 OBJL 18.20 8.7 10.00 1439 3.0 9.27 .256 Sampling Information: EPA SW-846 Method 8270 SVOC PAH's Yes PASW-846 Method 8260 VOC's BTEX 3-40 ml vials Yes No Pass No P				Grund	tos Pump			
Total Volume Removed: (gal) 2.5 Did well go dry? Yes No No No No No No No No No No No No No						_ 1 gaii	on=3.785L=3785H	iL=133/cu. leet
Horiba U-52 Water Quality Meter Used? Yes No			-	id woll go day	Vac Na	MC		
Time DTW Temp pH ORP Conductivity Turbidity DO TDS (feet) (°C) (mV) (mS/cm) (NTU) (mg/L) (g/L) O972 Q O 3 80 T 34 - 18 II4(9 3.3 9.32 3.2 8.48 .262 0932 2.60 8.46 9.20 - 134 .394 3.2 8.48 .262 0834 3.21 8.90 0.00 - 142 .4414 3.3 8.74 .263 0842 2.80 8.87 0.10 - 154 .426 3.6 8.87 2.47 0847 7.20 9.83 0.34 - 168 1434 3.1 9.45 .262 0892 8.20 8.34 0.51 - 168 1439 3.0 9.27 .736 0.892 8.20 8.34 0.51 - 168 1439 3.0 9.27 .736 0.892 8.20 8.34 0.51 - 168 1439 3.0 9.27 .736 0.892 0.892 0.892 0.892 0.893 0.					TesINO[
Column	Horiba U-52 Water Quality Me	eter Used?	Yes	No				
(feet)								
OBIT 0,0 380 7.34 -18 1469 3.5 9.32 3.25 6827 1060 894 949 -116 494 3.2 8.78 262 2632 12.60 8.96 9.20 -137 396 3.2 8.67 267 263 2637 3.21 8.90 10.00 -194 426 3.6 8.86 .217 0847 15.80 8.87 10.10 -194 426 3.6 8.88 .217 0847 17.20 9.85 10.39 -188 434 3.1 9.45 .282 0892 18.20 8.79 10.51 -160 1439 3.0 9.27 .236 .236 .236 .237 .236 .236 .237 .236 .236 .237 .237	Time DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
Sampling Information: Samp		(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(0/1)
Sampling Information:					-			
Sampling Information: Sampling Information: Sampling Information: Sampling Information Sampling Information Svoc PAH's Sv		3.80		-18	1469	3.3	9.32	
O842 15.80 8.87 10.10 -154 .426 3.6 8.98 .217 O847 17.00 9.43 0.39 -168 .434 3.1 9.45 .287 O892 18.00 9.79 0.51 -160 1439 3.0 9.27 .735 Sampling Information: EPA SW-846 Method 8270 SVOC PAH's 2-1 liter ambers Yes No EPA SW-846 Method 8260 VOC's BTEX 3-40 ml vials Yes No	0912 9,0	894	849	-18	1469	3.3	9.32	
Sampling Information: Sampling Information: Sampling Information: Sampling Information:	0827 10.60	380	9.20	-116	1409	3.3	9.32	1262
Sampling Information: Sampling Information: Syoc Pah's 2 - 1 liter ambers Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes No Pah SW-846 Method 8260 YoC's BTEX 3 - 40 ml vials Yes	0827 10.60 0832 12.60 0837 13.21	380	9.20	-116 -137 -142	1409	3.3	9.32 8.78 8.67 8.77	1262 1262 1263
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX 2 - 1 liter ambers 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80	3-80 294 3-90 8-90	10.00	-116 -137 -142 -154	1469	3.3 3.2 3.3 3.6	9.32 8.78 8.07 8.71 8.88	1262 1262 1263 1217
EPA SW-846 Method 8270 SVOC PAH's 2 - 1 liter ambers Yes No PAH's SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
EPA SW-846 Method 8270 SVOC PAH's 2 - 1 liter ambers Yes No PAH's SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
EPA SW-846 Method 8270 SVOC PAH's 2 - 1 liter ambers Yes No PAH's SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
EPA SW-846 Method 8270 SVOC PAH's 2 - 1 liter ambers Yes No PAH's SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
EPA SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
EPA SW-846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 17.20 0892 18,20	3 80 2 94 3 90 8 97 9 93	0.49 9.20 10.00 10.10 0.39	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3	9.32 8.78 8.67 8.67 8.71 8.73 9.45	263 1263 1217 1217 1217
	0812 9,0 6827 10.60 0832 12.60 0837 13.21 0842 15.80 0847 1.20 0892 18,20	8-90 8-90 8-90 8-87 9-93 9-79	0.49 9.20 10.00 10.10 0.39 0.51	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3 3.2 3.3 3.6 3.1	9.32 8.78 8.07 8.71 8.88 9.45 9.27	,203 ,262 ,263 ,217 ,217 ,2182 ,236
4 000 1 1 11	0812	8-90 8-90 8-90 8-87 9-93 8-79	9.49 9.20 10.00 10.10 0.39 [0.5]	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3 3.2 3.3 3.6 3.1 3.0	9.32 8.78 8.07 8.71 8.98 9.45 9.27	263 ,263 ,263 ,217 ,282 ,286
	0812	8,90 8,90 8,90 8,90 8,79 8,79	9.49 9.20 10.00 10.10 0.39 0.51	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3 3.2 3.3 3.6 3.1 3.0	9.32 8.78 8.07 8.71 8.98 9.45 9.27 ers Yes	263 ,263 ,263 ,217 ,222 ,236
EPA Method 200.7 Metals 1 - 250 ml plastic Yes No	0812	\$ 80 8 94 8 90 8 87 9 93 8 79 8 79 8 79 8 79 8 79 8 79 8 79 8 79	9.49 9.20 10.00 10.10 0.39 0.51	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3 3.2 3.3 3.6 3.1 3.0 2-1 liter amb 3-40 ml via 1-250 ml pla	9.32 8.78 8.71 8.71 8.73 9.45 9.27 ers Yes stic Yes	263 ,263 ,263 ,217 ,222 ,236
Sample ID: LTMW-D01-0320 Duplicate? Yes No Shipped: Pace Courier Pickup Sample Time: No No Drop-off Albany Service Center	0812	\$ 80 8 94 8 90 8 87 9 93 8 79 8 79 8 79 8 79 8 79 8 79 8 79 8 79	9.49 9.20 10.00 10.10 0.39 0.51	-116 -137 -142 -154 -168	1469 1404 1396 1414 1426	3.3 3.2 3.3 3.6 3.1 3.0 2-1 liter amb 3-40 ml via 1-250 ml pla	9.32 8.78 8.71 8.71 8.73 9.45 9.27 ers Yes stic Yes	263 ,263 ,263 ,217 ,222 ,236

NONE

Comments/Notes:

Laboratory: Pace Analytical Greensburg, PA

Comments/Notes: MNE

Laboratory: Pace Analytical Greensburg, PA

Sampling Personnel:	Pr			Date:	3/19		
Job Number: 0603123-134	400-221			Weather:	P.C-		
Well Id. LTMW-D02	400-221			Time In: /	026	Time Out:	1108
Well Information							
vveii information		TOC	Other	Well Type:	Flus	hmount	Stick-Up
Depth to Water:	(feet)	8.90		Well Locke		Yes	No
Depth to Bottom:	(feet)	40.29		Measuring P	oint Marked:	Yes	No
Depth to Product:	(feet)	NP	,	Well Materi	al: PVC	SS Oth	er:
Length of Water Column:	(feet)	31.39		Well Diame	eter: 1"	2" Oth	er:
Volume of Water in Well:	(gal)	5		Comments			
Three Well Volumes:	(gal)	15					
Purging Information						Conversion F	actors
Purging Method:	Bailer	Peristaltic	Grund	os Pump	116	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material:	Teflon			vethylene	gal/ft.	1 10 2 10	4 10 0 10
Sampling Method:	Bailer			os Pump	water	0.04 0.16	0.66 1.47
Average Pumping Rate:		220	orana.	oo r amp		on=3.785L=3785m	
Duration of Pumping:	(min)	30					
Total Volume Removed:	(gal)		Did well go dry?	Yes No	\bowtie		
Horiba U-52 Water Quality Me			No No				
Time DTW	Temp	pН	ORP	Conductivity	Turbidity	DO	TDS
(feet)	(°C)	10.0	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
7.4.27	1		-154	11/1/			1166
1030 10.00	6.57	10.95		0.260	31	12.47	
1030 10.00	7.05	10.51	-116	1228	16	11.63	148
1030 10.00 1035 12:00 1040 12:50	7.33	10.51	-116	1228	16	10.00	148
1030 10.00 1035 12:00 1040 12:50 1045 13:00	7.05	10.51	-116 -110 -107	1228	13	10.00	148
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1090 13.00	7.05 7.33 7.53	10.51	-116 -110 -107 -114	1228	16 13 11.5 12	10.00	,148 ,149 ,148
1030 10.00 1035 12:00 1040 12:50 1045 13:00 1055 13:00	7.05 7.33 7.67 7.91	10.51 10.22 10.10 10.05 9,75	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7	11.63 10.00 10.36 10.64 10.31	,148 ,149 ,148 ,148
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1090 13.00	7.05 7.33 7.53	10.51	-116 -110 -107 -114	1228	16 13 11.5 12	10.00	,148 ,149 ,148
1030 10.00 1035 12:00 1040 12:50 1045 13:00 1055 1300	7.05 7.33 7.67 7.91	10.51 10.22 10.10 10.05 9,75	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7	11.63 10.00 10.36 10.64 10.31	,148 ,149 ,148 ,148
1030 10.00 1035 12:00 1040 12:50 1045 13:00 1055 1300	7.05 7.33 7.67 7.91	10.51 10.22 10.10 10.05 9,75	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7	11.63 10.00 10.36 10.64 10.31	,148 ,149 ,148 ,148
1030 10.00 1035 12:00 1040 12:50 1045 13:00 1050 13:00 1055 1300 1100 13:00	7.05 7.33 7.67 7.91	10.51 10.22 10.10 10.05 9,75	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7	11.63 10.00 10.36 10.64 10.31	,148 ,149 ,148 ,148
1030 10.00 1035 12:00 1040 12:50 1045 13:00 1055 1300	7.05 7.33 7.67 7.91	10.51 10.22 10.10 10.05 9,75	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7	11.63 10.00 10.36 10.64 10.31	,148 ,149 ,148 ,148
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1055 1300 1100 13.00 10	7.33 7.53 7.67 7.91 8.06	10.51 10.22 10.10 10.05 9.75 9.70	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7 6.3	11.63 10.36 10.64 10.03	,148 ,149 ,148 ,223 ,1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1055 13.00 1055 13.00 100 13.00 100 13.00 100 100 13.00 100	7.33 7.53 7.67 7.91 8.06	10.51 10.22 10.10 10.05 9.75 9.70	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7 6.3	11.63 10.00 10.36 10.64 10.03 10.03	148 149 ,148 ,223 ,1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1055 13.00 1100 13.00 1100 13.00 1100 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.0	7.05 7.33 7.67 7.91 8.06 svoc 1	10.51 10.22 10.10 10.05 9.75 9.70	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12- 8.7 6.3 2-1 liter amb 3-40 ml via	11.62 10.00 10.36 10.64 10.03 10.03	148 149 148 ,148 ,223 1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1055 13.00 1055 13.00 100 13.00 100 13.00 100 100 13.00 100	7.33 7.53 7.67 7.91 8.06	10.51 10.22 10.10 10.05 9.75 9.70 PAH's BTEX ide	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12 8.7 6.3	11.62 10.00 10.36 10.64 10.03 10.03	148 149 ,148 ,223 1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1056 13.00 1056 13.00 100 100 13.00 100 100 13.00 100	7.33 7.53 7.67 7.91 8.06 SVOC VOC's Cyan	10.51 10.22 10.10 10.05 9.75 9.70 PAH's BTEX ide	-116 -110 -107 -114 -129	1228 1229 1229 1223 1330	16 13 11.5 12- 8.7 6.3 2-1 liter ambo 3-40 ml vial 1-250 ml plas	11.62 10.36 10.64 10.03 10.03 ers Yes	148 149 ,148 ,223 1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 13.00 1055 1	7.33 7.67 7.91 8.06 SVOC VOC's Cyan Meta	10.51 10.22 10.10 10.05 9.75 9.70 PAH's BTEX ide	-116 -110 -107 -114 -129 -163	1229 1229 1223 1330 1472	2-1 liter ambors 3-40 ml vial 1-250 ml plastipped:	11.62 10.36 10.64 10.31 10.03 ers Yes stic Yes stic Yes	148 149 ,148 ,223 ,1230
1030 10.00 1035 12.00 1040 12.50 1045 13.00 1050 13.00 1055 13.00 1100 13.00 1100 13.00 1100 13.00 12.50 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00 12.50 13.00	7.33 7.67 7.91 8.06 SVOC VOC's Cyan Meta	10.51 10.22 10.10 10.05 9.75 9.70 PAH's BTEX ide	-116 -110 -107 -114 -129 -163	1228 1229 1229 1223 1330 1472	2-1 liter ambors 3-40 ml vial 1-250 ml plastipped:	11.62 10.00 10.36 10.64 10.31 10.03 ers Yes stic Yes stic Yes	148 149 ,148 ,223 ,123 0

Sampling Pers	onnel:	1	PD		Date:	3/19		
Job Number:	0603123-134	1400-221			Weather:	min		
	TMW-S02				Time In:	0945	Time Out:	1025
Well Info	rmation							
			TOC	Other	Well Type:	Flus	shmount	Stick-Up
Depth to Wate		(feet)	8,20		Well Locke	d:	Yes	No
Depth to Botto		(feet)	17.98		Measuring P		Yes	No
Depth to Produ		(feet)	VP		Well Materi		X SS Oth	
ength of Wate		(feet)	9178		Well Diame		2" X Oth	ier:
Volume of War		(gal)	115		Comments:			
Three Well Vo	lumes:	(gal)	4.7				***	
Purging In	formation	1	,					
ruiging in	IOIIIIaliOII	1					Conversion F	actore
Purging Metho	d-	Baile	Peristaltic	Grund	fos Pump	116	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer I		Teflor			yethylene	gal/ft.	1 10 2 10	4 10 0 10
Sampling Meth		Baile			fos Pump	of water	0.04 0.16	0.66 1.47
Average Pump		(ml/min)	~220	Ordina	los i dilip		on=3.785L=3785m	
Ouration of Pu		(min)	30			1 gair	011-3.703E-3703II	1L-1337Cd. leet
Total Volume F		(gal)		d well go dry?	Yes No	ব		
					169 140	7		
Horiba U-52 W	ater Quality M	leter Used?	Yes	No No				
Time	DTW	Temp	pH	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
0947	845	7.26	10.90	-89	1534	500	12.37	,338
0992	845	694	10.74	-67	1435	760	11.75	,282
957	845	6.48	10.91	-76	,428	43	11.16	1278
1002	8.45	6.58	11.03	-82	.423	14	10.83	1275
1007	8.45	6.56	11.10	-88	1420	10	10.50	1272
1012	8.45	6.53	11.14	-98	.416	8	10.25	
1017	8.45	6.53	11.11	-123	,421	4	10:07	1271
10 1 7	0.17.	(0.5)	1,,,,,	2(0)	, , _ ,		70-7	-,,
			-					
-								
Sampling Info	ormation:							
	6 Method 8270	SVOC	PAH's			2 - 1 liter amb	ers Yes	No
EPA SW-84	O MELITOU 0210	VOC's	BTEX			3 - 40 ml vial	s Yes	No
	6 Method 8260	VOCS	012/					
EPA SW-84		Cyan				1 - 250 ml plas	stic Yes	No
EPA SW-84	6 Method 8260		ide			1 - 250 ml plas 1 - 250 ml plas		No No
EPA SW-84 EPA Me	6 Method 8260 ethod 335.4 ethod 200.7	Cyan Meta	ide als	Vas No V] en	1 - 250 ml plas	stic Yes	No _
EPA SW-84 EPA Me EPA Me	16 Method 8260 ethod 335.4	Cyan Meta	ide als uplicate?	Yes No X	Sh	1 - 250 ml plas		up X
EPA SW-84	16 Method 8260 ethod 335.4 ethod 200.7 LTMW-S02-	Cyan Meta	ide als uplicate?			1 - 250 ml plas	stic Yes ace Courier Pick	up Center

0	sonnel: PO	2			Date:	3/18		
Sampling Pers	,					P.C.		-
Job Number:	0603123-134	-			Weather:			12-11
Well Id.	LTMW-905	203			Time In:	1140	Time Out:	1224
Well Info	ormation	•						
Depth to Wate	\r'	(feet)	3.50	Other	Well Type: Well Locked		hmount Yes	Stick-Up No
Depth to Botto		(feet)	13.70 4073		Measuring P		Yes	No
Depth to Prod		(feet)	NP		Well Materi		X ss Oth	
Length of Wat			34.23		Well Diame		2" Oth	
Volume of Wa		(gal)	5.9		Comments:			
Three Well Vo		(gal)	179		Commonto.			
THICC WOIL VO	names.	(gai)	17.75					
Duraina la	of a marking							
Purging in	nformation						Conversion F	actors
Purging Metho	od.	Bailer	Peristaltic	Grund	fos Pump	001/54	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflon	Stainless St.		yethylene	gal/ft.	1 10 2 10	7 15 0 15
Sampling Met		Bailer	Peristaltic		fos Pump	water	0.04 0.16	0.66 1.47
Average Pum			VZE -	Grand	ios Fullip		on=3.785L=3785m	
Duration of Pu			30			1 gain	511-3.765L-3765II	IL-1337cu. leet
Total Volume		(min)		oid well go dry	Yes No	2		
Total volume	Removed.	(gal)			resno			
Horiba U-52 V	Vater Quality M	leter Used?	Yes	No No				
Time	DTW	Temp	pH	ORP	Conductivity	Turbidity	DO	TDS
111110	(feet)	(°C)	μ	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1144	5:10	12,29	9,04	-105	.937	4.2	10.80	,604
1149	6.40	11.91	9.88	-117	1.04	5.5	10.44	.462
1154	6.80	12.14	9.68	-121	1,02	3.6	9,63	.655
1159	7.00	11.94	9.66	-121	1103	3.5	9.54	.660
	7.30	12.18	9.00	-123		3.7	9.23	.545
1204		12.56	9.05	-123	190	3.1	8.94	1506
1209	7.50		8.46	-125	1821	215	8.65	,576
1217	7.70	12.84	0.10	-105	1001	2(5)	-07	···Cre
Sampling Int	formation:					-		
F 3								
EPA SW-8	46 Method 8270	SVOC F	PAH's			2 - 1 liter amb	ers Yes	No
	46 Method 8260	VOC's E				3 - 40 ml vial		No
	lethod 335.4	Cyani				1 - 250 ml plas		No
	lethod 200.7	Meta				1 - 250 ml plas		No
EFA IV		ivieta				200 IIII pias	163	
Sample ID:	D63 LTMW- 30 3-	0320	plicate?	Yes No	7 Sh	ipped: P	ace Courier Pick	un 🖂
Sample ID: Sample Time:	1214		S/MSD?	Yes No	Sn		ff Albany Service	
Comments/No	otes:					Laboratory:	Pace Ana	alytical

Comments/Notes:

Laboratory:

Pace Analytical Greensburg, PA

National Grid Kingsley Avenue, Rome, New York	
Sampling Personnel:	Date: 3/18
Job Number: 0603123-134400-221	Weather: PiC
Well Id. LTMW-S04	Time In: 1010 Time Out: 1050
Well Id. LIMW-304	Time III. 1010 Time Out. 1020
Well Information TOC Other	Well Type: Flushmount Stick-Up
Depth to Water: (feet) 7.10	Well Locked: Yes No
Depth to Bottom: (feet) 17.26	Measuring Point Marked: Yes No
Depth to Product: (feet)	Well Material: PVC SS Other:
Length of Water Column: (feet) 0.16	Well Diameter: 1" 2" Other:
Volume of Water in Well: (gal)	Comments:
Three Well Volumes: (gal) 4, 8	
Purging Information	Conversion Factors
	Grundfos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bailer Material: Teflon Stainless St.	Polyethylene Of OA OAS OCC 4.47
	Grundfos Pump water 0.04 0.16 0.66 1.47
Average Pumping Rate: (ml/min) ~245 Duration of Pumping: (min) 30	1 gallon=3.785L=3785mL=1337cu. feet
Total Volume Removed: (gal) 2.5 Did well go	o dry? Yes No
	7 diyi los
Horiba U-52 Water Quality Meter Used? Yes No	
Time DTW Temp pH ORI	P Conductivity Turbidity DO TDS
(feet) (°C) (mV	
1012 7.20 7.37 7.09 26	
1017 7.30 1.07 1.20 21	1 ,330 2.6 11.72 ,215
1022 7.35 6.86 7.15 15	
1027 7.35 6.89 7.16 25	
	2 .334 7.5 11.55 ,218
	7 335 27 11.50 218
1042 7-35 6.92 7-37 29	7 -336 2.5 11.51 1218
Sampling Information:	
EPA SW-846 Method 8270 SVOC PAH's	2 - 1 liter ambers Yes No
EPA SW-846 Method 8260 VOC's BTEX	3 - 40 ml vials Yes No
EPA Method 335.4 Cyanide	1 - 250 ml plastic Yes No
EPA Method 200.7 Metals	1 - 250 ml plastic Yes No
	No Shipped: Pace Courier Pickup
Sample Time: 042 MS/MSD? Yes N	No Drop-off Albany Service Center

Comments/Notes: Note:

Laboratory: Pace Analytical Greensburg, PA

National Grid Kingsley Aven	ue, Rome, Ne	w York						
Sampling Pers	sonnel:	00			Date:	3/18		
Job Number:	0603123-134	1400-221		W	Weather:	DC.		
		1-100-221		-	A		Time Out:	AZ5
Well Id.	LTMW-D04				Time In: (0.51	Time Out:	11 //
Well Info	ormation		TOC	Other	Well Type:	Flu	shmount	Stick-Up
Depth to Water	er:	(feet)	8,25		Well Locke	d:	Yes	No
Depth to Botto	m:	(feet)	46.36		Measuring P	oint Marked:	Yes	No
Depth to Prod		(feet)	NP		Well Materi		SS_Oth	ier:
Length of Wat		(feet)	38.11		Well Diame		2" X Oth	ier:
Volume of Wa		(gal)	6		Comments:			
Three Well Vo	olumes:	(gal)	18					
Purging Methor Tubing/Bailer Sampling Methor Average Pump Duration of Put Total Volume	Material: hod: ping Rate: imping:	(min) (gal)	Stainless St. Peristaltic	Pol	fos Pump yethylene fos Pump Yes No		Conversion F 1" ID 2" ID 0.04 0.16 lon=3.785L=3785n	4" ID 6" ID 0.66 1.47
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
11110	(feet)	(°C)	p.,	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1054	9.20	9,20	7.19	263	1540	3,2	1117	1346
1059	9.40	9,52	7.30	111	. 582	3.0	10.15	,400
1104	9.50	9,79	7.53	-16	. 631	2,5	9.88	,404
1105	9,50	9.95	7.89	-27	1612	84	9.62	.392
1114	9.50	10.13	8.01	-4(1629	29	9.23	1403
1119	9,50	10.06	8.15	- 43	.632	23	9.14	,404
1124	9,50	10:13	8.19	-55	633	2.1	9.04	.405
	46 Method 8270	SVOC F				2 - 1 liter amb		No 🗌
	46 Method 8260					3 - 40 ml via		
	ethod 335.4	Cyani				1 - 250 ml pla		
EPA M	ethod 200.7	Meta	IS			1 - 250 ml pla	stic Yes	No No

Comments/Notes: NOTE

LTMW-D04-0320

Duplicate?

MS/MSD?

Sample ID:

Sample Time:

Laboratory: Pace Analytical Greensburg, PA

Pace Courier Pickup

Drop-off Albany Service Center

Shipped:

Purging Information						0		4	
						Conve	ersion F	actors	
Purging Method:	Bailer	Peristaltic	Grundfos Pu	mp	gal/ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Teflon	Stainless St.	Polyethyle	ene	of				
Sampling Method:	Bailer	Peristaltic	Grundfos Pu	mp	water	0.04	0.16	0.66	1.47
Average Pumping Rate:	(ml/min) 52	10			1 galle	on=3.785	L=3785m	L=1337c	u. feet
Duration of Pumping:	(min)	30							
Total Volume Removed:	(gal) 2	Did we	ll go dry?	es No					
Horiba U-52 Water Quality M	eter Used?	Yes	No O						

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)	-	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1350	7.50	1269	[0.0]	25	1252	9.9	7.76	1228
1395	7.50	13.09	4.3%	89	1230	613	7,50	1214
1400	7.50	1268	8.99	117	1326	6.2	7,70	,212
1405	7.50	12.24	8.91	144	. 288	417	8.48	1186
1410	7.50	11.94	9.49	159	1212	3.4	8.62	1180
1415	7.50	11.44	8.39	175	1245	3.2	8,70	1179
1420	7.50	11.57	3.49	192	1275	3,3	874	1178
						_		

Sampling Information:				
EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 335.4 EPA Method 200.7	SVOC PAH's VOC's BTEX Cyanide Metals		2 - 1 liter ambers 3 - 40 ml vials 1 - 250 ml plastic 1 - 250 ml plastic	Yes No No No Yes No No
Sample ID: LTMW-S05-0320 Sample Time:	Duplicate? MS/MSD?	Yes No No	• • • • • • • • • • • • • • • • • • • •	Courier Pickup bany Service Center
Comments/Notes:			Laboratory:	Pace Analytical Greensburg, PA

32.27 7.7011	ue, Rome, Ne	WYOIK						
Sampling Pers	sonnel: PD			,	Date: 3	118		
Job Number:	0603123-134	1400-221			Weather:	P.C		
	LTMW-D05					1310	Time Out:	1348
Well Info	ormation		TOC	Other	Well Type:	Flus	hmount	Stick-Up
Depth to Water	er:	(feet)	7.80	Other	Well Locke		Yes	No No
Depth to Botto		(feet)	46.53		Measuring P		Yes	No
Depth to Product: (feet) NP					Well Materi	al: PVC	SSOth	er:
Length of Wat	ter Column:	(feet)	38:73	Well Diame	eter: 1"	2"XOth	er:	
Volume of Wa	ter in Well:	(gal)	61		Comments			
Three Well Vo	olumes:	(gal)	18.5					
Purging Ir	nformation	-						
							Conversion F	actors
Purging Metho	od:	Bailer	Peristaltic	Grund	fos Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer	Material:	Teflon			yethylene	of		
Sampling Met		Bailer		Grund	fos Pump	water	0.04 0.16	0.66 1.47
Average Pum		(ml/min)	220			1 gallo	on=3.785L=3785m	L=1337cu. feet
Duration of Pu		(min)	30		🗖 [
Total Volume	Removed:	(gal)		id well go dry?	Yes No	X		
Horiba U-52 V	Vater Quality N	Meter Used?	Yes	No.	444 M 444 M			
Time	DTW	Temp	pH	ORP	Conductivity	Turbidity	DO	TDS
11110	5		P					
	(feet)	(°C)	-	(mv)	(mS/cm)	(NTU)	(mg/L)	(g/L)
1313	(feet)	(°C)	7.35	(mV) - 42	(mS/cm)	(NTU)	(mg/L) 7.67	(g/L)
	8.90	(°C) 11.83 12.10	7.35	-82 -91	1366	511	7.67	·236
1318	(feet) 8.90 10 :30 12.0	11.83		-82	1			
1318	10.30	11.83	8.00	-92 -91 -93	1366	5.1	7.67	1227
1323	10.30 12.0 13.40	11.93 12.10 12.91 13.17	8.00	-82	1366	5.1	7.67 7.50 7.60 4.98	1227 1227 1219 1218 1218
1318 1323 1328 1333	10 13 0 12.0 13.40 14130	11.93 12.10 12.91 13:17 13:14	8.00 8.54 9.14	-82 -91 -93 -74	1366 1342 1337 1334 1335	5.1 4.8 3.5 2.4	7.67	1227 1227 1219 1218 1218
1323	10.30 12.0 13.40	11.93 12.10 12.91 13.17	8:00 8:54 9:14 9:47	-82 -91 -93 -74 -61	1366 1342 1337 1334	5.1 4.8 3.5 2.4 2.0	7.67 7.50 7.10 6.98	1227 1227 1219 1218
1318 1323 1328 1333 1338	9.90 10.30 12.0 13.40 14.30	11.83 12.10 12.91 13.17 13.140 13.52	8:00 8:54 9:14 9:47 9:49	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88	1227 1217 1219 1218 1218 1217
1318 1323 1328 1333 1338	9.90 10.30 12.0 13.40 14.30	11.83 12.10 12.91 13.17 13.140 13.52	8:00 8:54 9:14 9:47 9:49	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88	1227 1217 1219 1218 1218 1217
1318 1323 1328 1333 1338	9.90 10.30 12.0 13.40 14.30	11.83 12.10 12.91 13.17 13.140 13.52	8:00 8:54 9:14 9:47 9:49	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88	1227 1217 1219 1218 1218 1217
1318 1323 1328 1333 1338 1343	8.90 10.30 12.0 13.40 14.30 15 15,40	11.83 12.10 12.91 13.17 13.140 13.52	8:00 8:54 9:14 9:47 9:49	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88	1227 1217 1219 1218 1218 1217
1318 1323 1328 1333 1338	8.90 10.30 12.0 13.40 14.30 15 15,40	11.83 12.10 12.91 13.17 13.140 13.52	8:00 8:54 9:14 9:47 9:49	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88	1227 1217 1219 1218 1218 1217
1318 1323 1328 1333 1338 1343	9.90 10.30 12.0 13.40 14.30 15 15,40	11.93 12.10 12.91 13.17 13.40 13.52 13.69	8.00 8.54 9.14 9.47 9.49 9.51	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	5.1 4.8 3.5 2.4 2.0 2.0	7.67 7.50 7.10 6.98 6.88 6.79 6.70	1227 1217 1219 1218 1218 1217 1216
1318 1323 1328 1333 1338 1343 Sampling Inf	9.90 10.30 12.0 13.40 14.30 15 15,40 formation:	11.93 12.10 12.91 13.17 13.40 13.52 13.69	8:00 8:54 9:14 9:49 9:49 9:51	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	2.4 2.0 2.1	7.67 7.50 7.10 6.98 6.88 6.79 6.70	1227 1219 1218 1218 1217 1216
1318 1323 1328 1333 1338 1343 1343 EPA SW-8 EPA SW-8	9.90 10.30 12.0 13.40 14.30 15 15,40 formation:	11.93 12.10 12.91 13.17 13.140 13.52 13.69	8.00 8.54 9.14 9.47 9.49 9.61	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	2.4 2.0 2.0 2.1 2.0 2.1 2.0 2.1	7.67 7.50 7.10 6.98 6.88 6.79 6.70	1227 1219 1218 1218 1218 1217 1216
1318 1323 1328 1333 1336 1343 1343 EPA SW-8 EPA SW-8	9.90 10.30 12.0 13.40 14.30 15 15,40 formation:	11.93 12.10 12.91 13.17 13.40 13.52 13.69	8.00 8.54 9.14 9.47 9.49 9.51 PAH's BTEX side	-82 -91 -93 -74 -61 -57	1366 1342 1337 1334 1336 1336	2.4 2.0 2.1	7.67 7.50 7.10 6.98 6.88 6.79 6.70 6.70 ers Yes stic Yes	1227 1217 1219 1218 1217 1217 1216
1318 1323 1328 1333 1336 1342 1342 EPA SW-8 EPA SW-8	9.90 10.30 12.0 13.40 14.30 15 15,40 46 Method 8270 46 Method 8260 46 Method 8260 46 Method 335.4 46 Method 200.7	1/, 93 12,/0 12,9/ 13,17 13,40 13,52 13,69 SVOC VOC's Cyan Meta	8.00 8.54 9.14 9.47 9.49 9.61 PAH's BTEX	-82 -91 -93 -74 -61 -57 -45	1366 1342 1337 1334 1336 1372	2-1 liter amborated and a second seco	7.67 7.50 7.10 6.98 6.88 6.79 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70	1227 1219 1218 1218 1218 1217 1216
1318 1323 1328 1333 1336 1342 1342 EPA SW-8 EPA M EPA M	9.90 10.30 12.0 13.40 14.30 15 19.40 formation: 46 Method 8270 46 Method 8260 lethod 335.4	1/, 93 12,/0 12,9/ 13,17 13,40 13,52 13,69 SVOC VOC's Cyan Meta	PAH's BTEX side als	-82 -91 -93 -74 -61 -57 -45	1366 1342 1337 1334 1336 1372	2-1 liter ambors 3-40 ml vial 1-250 ml plas ipped:	T.67 T.50 T.10 U-98 U-98 U-19 U-17 U-17 U-17 U-17 U-17 U-17 U-17 U-17	236 1227 ,219 ,218 ,218 ,217 ,216 No No No
1318 1323 1328 1333 1338 1342 1342 1342 EPA SW-8 EPA M	9.90 10.30 12.0 13.40 14.30 15 15,40 46 Method 8270 46 Method 8260 46 Method 8260 46 Method 335.4 46 Method 200.7	1/, 93 12,/0 12,9/ 13,17 13,40 13,52 13,69 SVOC VOC's Cyan Meta	PAH's BTEX side als	-82 -91 -93 -74 -61 -57 -45	1366 1342 1337 1334 1336 1372	2-1 liter ambors 3-40 ml vial 1-250 ml plas ipped:	7.67 7.50 7.10 6.98 6.88 6.79 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70	236 1227 ,219 ,218 ,218 ,217 ,216 No No No
1318 1323 1328 1333 1336 1342 1342 1342 EPA SW-8 EPA M EPA M	9.90 10.30 12.0 13.40 14.30 15 19.40 formation: 46 Method 8270 46 Method 8260 lethod 335.4 lethod 200.7 LTMW-D05	1/, 93 12,/0 12,9/ 13,17 13,40 13,52 13,69 SVOC VOC's Cyan Meta	PAH's BTEX side als	-82 -91 -93 -74 -61 -57 -45	1366 1342 1337 1334 1336 1372	2-1 liter ambors 3-40 ml vial 1-250 ml plas ipped:	T.67 T.50 T.10 U-98 U-98 U-19 U-17 U-17 U-17 U-17 U-17 U-17 U-17 U-17	236 227 219 218 218 217 215 No No No No

Sampling Personnel:		PIS		Date: 3/19				
Job Number: 0603123-134	400-221			Weather: Pic				
Well Id. LTMW-D06			Time In: //52 Time Out: /245					
Well Information								
		TOC	Other	Well Type: Flushmount Stick-Up				
Depth to Water:	(feet)	11.00		Well Locked: Yes No				
Depth to Bottom:	(feet)	52.22		Measuring Point Marked: Yes No				
Depth to Product:	(feet)	NP		Well Material: PVC SS Other:				
Length of Water Column:	(feet)	41.22		Well Diameter: 1" 2" Other:				
Volume of Water in Well:	(gal)	6.5		Comments:				
Three Well Volumes:	(gal)	19.7						

Purging Information								
					Conve	ersion F	actors	
Purging Method:	Baile	Peristaltic	Grundfos Pump	gal/ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Teflor	n Stainless St.	Polyethylene	of				
Sampling Method:	Baile	Peristaltic X	Grundfos Pump	water	0.04	0.16	0.66	1.47
Average Pumping Rate:	(ml/min)	V220		1 gallo	on=3.785	L=3785m	L=1337c	u. feet
Duration of Pumping:	(min)	30		_				
Total Volume Removed:	(gal)	2.5 Did we	Il go dry? Yes No	2_				
Horiba U-52 Water Quality Me	ter Used?	Yes N	lo					

Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
155	11.60	9.29	4.63	-40	1633	4	10.95	,391
1200	12.10	10.48	10.11	-92	1437	2,3	10.01	1234
1205	12.20	10,67	10.20	-79	,444	2.1	9.51	1289
1210	12.20	10,73	10.13	-68	,469	2.1	9117	1305
1215	12.20	10.86	10.11	-62	,489	20	8.82	,318
1220	12.20	10.91	10.10	-60	,494	2	8,62	1322
1225	12.20	10.95	10.06	-59	,506	2	8.45	1324

Sampling Information:				
EPA SW-846 Method 8270 EPA SW-846 Method 8260 EPA Method 335.4 EPA Method 200.7	SVOC PAH's VOC's BTEX Cyanide Metals		2 - 1 liter ambers 3 - 40 ml vials 1 - 250 ml plastic 1 - 250 ml plastic	Yes No No No Yes No No No No
Sample ID: LTMW-D06-0320 Sample Time: 125	Duplicate? MS/MSD?	Yes No No		rier Pickup v Service Center
Comments/Notes: NONE				eensburg, PA

Kingsley Aver	nue, Rome, Nev	VYORK						
Sampling Per	sonnel:	PC)		Date:	3/19		
Job Number:	0603123-134	400-221			Weather:	P.C.		
	LTMW-S06	100 221			Time In:	1110	Time Out:	1151
well iu.	L111114-300				Timo in.	1110	Timo Out.	111
Well Inf	ormation							
			TOC	Other	Well Type:		hmount	Stick-Up
Depth to Water		(feet)	11.70		Well Locked		Yes	No
Depth to Botto		(feet)	17.60		Measuring Power Well Materia		Yes X Oth	No
Depth to Prod Length of Wa		(feet)	5.9		Well Diame		2" Oth	
Volume of Wa		(gal)	19		Comments:			
Three Well V	olumes:	(gal)	2.8					
Purging I	nformation						Conversion F	antono I
Purging Meth	od:	Bailer	Peristaltic	Grund	fos Pump	- 146	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflon			yethylene	gal/ft.	1 10 2 10	4 15 0 15
Sampling Me		Bailer			fos Pump	water	0.04 0.16	0.66 1.47
Average Pum	ping Rate:	(ml/min) V	220			1 gall	on=3.785L=3785m	L=1337cu. feet
Duration of P	umping:	(min)	30			_		
Total Volume	Removed:	(gal)	2.5 D	id well go dry?	Yes No			
Horiba U-52	Water Quality M	leter Used?	Yes	No No				
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
111/2	(feet)	(°C)	1001	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
11/5	11,70	8.60	10.06	-61	1,20	300	7.74	1773
1118	11:70	8.54	9.85	-46	1,21	3	7.61	,775
1174	11,70	8.55	9.81	-46	1121	5	7.74	773
1133	11,70	8.57	9.76	-42	1120	3.3	7.70	1770
138	11,70	8.58	9,78	-44	1.19		8.33	,764
1143	11,70	8.58	9,76	-43	1,19	3.6	849	1762
				-				
<u> </u>				-				
Sampling In	formation:							*** 30 '00. 0
Camping	normation.							
EPA SW-8	846 Method 8270	SVOC I	PAH's			2 - 1 liter amb	ers Yes	No
EPA SW-8	846 Method 8260	VOC's	BTEX			3 - 40 ml via	ls Yes	No
EPA N	Method 335.4	Cyan	ide			1 - 250 ml pla	stic Yes	No
EPA N	Method 200.7	Meta	als			1 - 250 ml pla	stic Yes	No
0	I THEM OCC	0220	unlineta O	V	7 04	inned:	less Causies B' I	
Sample ID: Sample Time:	1143		•	Yes No X	Sh	• •	ace Courier Pick	
	-114		JANIOD!	Les MO Z	7			- Innerent
Comments/N	otes:	Vć				Laboratory:	Pace Ana Greensbu	

Kingsley Avenu	le, Rome, New	TOIK						
Sampling Person	onnel: PD				Date: 5	18		
Job Number:	0603123-134	400-221			Weather:	Pic-		
Well Id. L	TMW-S07				Time In: 0	840	Time Out:	0920
Well Info	rmation		T00	0"	M. II T	-		
Depth to Water		(5	TOC 9.75	Other	Well Type: Well Locked		shmount Yes	Stick-Up
Depth to Botton		(feet)	17.82		Measuring P		Yes	No No
Depth to Produ		(feet)	NP		Well Materi		SS Oth	
Length of Wate			8.57		Well Diame		2" \ Oth	
Volume of Water		(gal)	1,2-		Comments:			
Three Well Vol		(gal)	3.8				<u>,</u>	
Purging Inf		Bailer	Peristaltic	Grund	fos Pump	gal/ft.	Conversion F	actors
Tubing/Bailer M		Teflon	Stainless St.		yethylene	of		
Sampling Meth		Bailer	Peristaltic	Grund	fos Pump	water	0.04 0.16	0.66 1.47
Average Pump	ing Rate:	(ml/min)	4220			1 gall	on=3.785L=3785n	nL=1337cu. feet
Duration of Pur	mping:	(min)	30		prompt p	_		
Total Volume F	Removed:	(gal)	216 D	id well go dry?	Yes No	X		
Horiba U-52 W	ater Quality M	eter Used?	Yes	No No				
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
0842	10.40	7.51	8.79	35	1698	11.8	10.94	,442
0847	11.30	7.43	8.50	-11	1637	912	11.08	1406
0352	11.30	7.45	8.39	-6	1637	7.7	10.81	1,408
085+	11:35	7.54	8.26	-14	4650	7.7	11.39	1416
0902	11.45	7.69	8.30	-22	1657	4.9	11.20	1921
090+	11:50	7.82	8.29	-22	16/4	5	11.12	1429
0917	11.55	7.93	8.31	-24	,664	5	11.00	1415
Sampling Info	ormation:	-	18.			11,000		
EPA SW-846	6 Method 8270	SVOC P	AH's			2 - 1 liter amb		No
	6 Method 8260	VOC's B				3 - 40 ml via		No
	thod 335.4 thod 200.7	Cyanio Metal				1 - 250 ml plas 1 - 250 ml plas		No No
Sample ID: Sample Time:	LTMW-S07-			Yes No X	Sh		ace Courier Pick	-
Comments/Not	tes: A	JOAR				Laboratory:	Pace An	alvtical

Greensburg, PA

Kingsley Avenu	ie, Rome, New	York						
Sampling Person	onnel:	0			Date:	3/18		
Job Number:	0603123-1344	100-221			Weather:	P.C.		
	TMW-S08	100 22 1	101-1101-010		Time In: 0	923	Time Out:	1008
vveiriu. L	110144-200				Time in. o		Time Out.	
Well Info	rmation		тос	Other	Well Type:	Flus	hmount	Stick-Up
Depth to Water		(feet)	4.15		Well Locke		Yes	No
Depth to Bottor	n:	(feet)	17.39		Measuring P		Yes	No
Depth to Produ		(feet)	NP		Well Materi		SSOth	
Length of Water		(feet)	3124		Well Diame		2" X Oth	er:
Volume of Wat		(gal)	,48		Comments			
Three Well Vol	umes:	(gal)	115					
Purging In	formation						Conversion F	inotoro
Purging Metho	d·	Bailer	Peristaltic	Grund	fos Pump	1/54	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer N		Teflon	Stainless St.		yethylene	gal/ft.	1 10 2 10	4 15 0 15
Sampling Meth		Bailer			fos Pump	water	0.04 0.16	0.66 1.47
Average Pump		(ml/min)	voro	O Grand			on=3.785L=3785m	
Duration of Pur		(min)	30			, ga	011 011 001	
Total Volume F		(gal)		id well go dry?	Yes No	XI.		
	ater Quality Me			No				
Horiba O-32 VV	ater Quality ivie	tel Oseu:	165					
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
0925	14:20	8-66	7.98	0	1559	10	12.85	1348
0930	14:20	8.63	7.73	50	1540	4.9	12.72	.345
0935	14:20	8:69	7.26	206	(940	315	1339	, 345
940	14,20	8,75	7.20	731	1944	3.1	13.18	-349
945	14.20	9.16	7.12	244	.542	2.8	11.99	,347
950	14.20	9:37	7.03	252	1552	27	12.21	,354
955	14.20	9.40	7.0	296	,650	241	12/15	.357
							·	
Sampling Info	ormation:							
- Carrying in								
	6 Method 8270	SVOC I				2 - 1 liter amb		
	16 Method 8260	VOC's				3 - 40 ml via		
	ethod 335.4	Cyan				1 - 250 ml plas		No
EPA Me	ethod 200.7	Meta	als			1 - 250 ml plas	stic Yes	No
Sample ID:	LTMW-S08-0	0320 Du	iplicate?	Yes No No	Sh	ipped: P	ace Courier Pick	kup 🔀
Sample Time:	090	5 MS	S/MSD?	Yes No No		Drop-o	ff Albany Service	e Center
Comments/No	ites:					Laboratory:	Pace An	alytical

Greensburg, PA

Sampling Personnel:	PC			Date:	3/19/-	20	
Job Number: 0603123-13	34400-221			Weather:	rain		
Well Id. LTMW-S09				Time In:	7720	Time Out:	0815
Well Information				10.0			
D. d. v. Mari		TOC	Other	Well Type:			Stick-Up
Depth to Water: Depth to Bottom:	(feet)	16.92		Well Locke		Yes	No
Depth to Product:	(feet)	10.92		Well Mater	oint Marked:	Yes X Oth	No
Length of Water Column:	(feet)	2.96		Well Diame		2" \ Oth	
Volume of Water in Well:	(gal)	112		Comments			
Three Well Volumes:	(gal)	3.8					
Purging Information	_						
D 1 14 1 1						Conversion F	
Purging Method:	Baile		-	ifos Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer Material: Sampling Method:	Teflo Baile			lyethylene Ifos Pump	of water	0.04 0.16	0.66 1.47
Average Pumping Rate:	(ml/min)	~~~~	Grund	nos Pump			
Average i uniping itate.	(1111/1111111)				1 nall	on=3 7851 =3785m	1 =133/cu toot
Duration of Pumping:					1 gall	on=3.785L=3785m	nL=133/cu. feet
Duration of Pumping: Total Volume Removed:	(min)	30	oid well go dry	? Yes No		on=3.785L=3785n	nL=133/cu. feet
Duration of Pumping: Total Volume Removed: Horiba U-52 Water Quality	(min) (gal)	2.5	id well go dry	? Yes No		on=3.785L=3785m	nL=1337cu. feet
Total Volume Removed:	(min) (gal)	2.5		? Yes No		on=3.785L=3785m	nL=133/cu. feet
Total Volume Removed: Horiba U-52 Water Quality Time DTW	(min) (gal) Meter Used?	2.5	No ORP	Conductivity	Turbidity	DO	TDS
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet)	(min) (gal) Meter Used?	2.5 C Yes	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	TDS (g/L)
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (.0	(min) (gal) Meter Used? Temp (°C)	30 2.5 D Yes	ORP (mV)	Conductivity (mS/cm)	Turbidity (NTU) 3,8	DO (mg/L) 13.04	TDS (g/L)
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (.0	(min) (gal) Meter Used? Temp (°C) [2.1] 1/ 09	2.5 D Yes PH 4.63 7.41	ORP (mV) 182	Conductivity (mS/cm) 1597	Turbidity (NTU) 3,8 4,7	DO (mg/L) 13.04 11.57	TDS (g/L) '383
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (.o 0735 9.D 0740 9.0	(min) (gal) Meter Used? Temp (°C) [2.1\ 11.09 10.79	30 2.5 D Yes	ORP (mV) 182 191 195	Conductivity (mS/cm) 1597- 1477- 1694	Turbidity (NTU) 3,8 4,7 3,6	DO (mg/L) 13.04 /1.57 /1.85	TDS (g/L) '383 '431 -444
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0735 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) [2.1\ 11.09 10.79 16.44	30 2.5 C Yes PH 4.63 7.41 7.31 7.24	ORP (mV) 182 191 195 198	Conductivity (mS/cm) 1597 1477 1694 1716	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3	DO (mg/L) 13.04 11.57 11.85 11.66	TDS (g/L) '383 '431 .444 .458
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2.1\ 11.09 0.749 16.44	7.31 7.24 7.24	ORP (mV) 182 191 195 198	Conductivity (mS/cm) 1597- 1697- 1694 1716	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 7	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 .431 .444 .458
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (1.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0734 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2.1\ 11.09 0.749 16.44	7.31 7.24 7.24	ORP (mV) 182 191 195 198	Conductivity (mS/cm) 1597- 1697- 1694 1716	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 7	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 .431 .444 .458
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (1.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (1.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (1.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0740 9.0 0740 9.0 0745 9.0 0755 9.0 0755 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 (1.0 0735 9.0 0740 9.0 0745 9.0 0745 9.0	(min) (gal) Meter Used? Temp (°C) 2. \ 11.09 0.79 0.74 0.74 0.74 0.74	7.41 7.41 7.24 7.24 7.18	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 3 2, 9 2, 9	DO (mg/L) 13.04 11.57 11.85 11.66 11.35	TDS (g/L) '383 '431 .444 .458 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0740 9.0 0740 9.0 0745 9.0 0745 9.0 0745 9.0 070 9.0 070 9.0	(min) (gal) Meter Used? Temp (°C) [2.1\ 11.09 10.749 10.744 10.744 10.744	7.41 7.41 7.24 7.24 7.24 7.20	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4,7 3,6 3,3 2,9 2,9 2,9 3,2	DO (mg/L) 13.04 11.57 11.66 11.35 11.25 11.18	TDS (g/L) '383 '431 .444 .458 .483 .480
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0740 9.0 0740 9.0 0745 9.0 0755 9.0 0700 9.0 Sampling Information:	(min) (gal) Meter Used? Temp (°C) [2.1) 11.09 10.79 10.14 10.04 10.04 10.04 10.04 10.04 10.06 9.88	7.63 7.41 7.31 7.24 7.24 7.22 7.18 7.20	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 7 2, 9 2, 9 3, 2	DO (mg/L) 13.04 11.57 11.85 11.66 11.35 11.18	TDS (g/L) '383 '431 .444 '458 .493 .493
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0740 9.0 0740 9.0 0745 9.0 0756 9.0 0756 9.0 0800 9.0 Sampling Information: EPA SW-846 Method 827 EPA SW-846 Method 826	(min) (gal) Meter Used? Temp (°C) 12.1\ 11.09 10.74 10.14 10.0 10.0 10.0 10.0 10.0 10.0 10	PAH's BTEX	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 7 2, 9 2, 9 2, 9 3, 2	DO (mg/L) 13.04 11.57 11.66 11.35 11.18	TDS (g/L) '383 '431 .444 .458 *433 .480 .483
Total Volume Removed: Horiba U-52 Water Quality Time DTW (feet) 0730 9.0 0740 9.0 0740 9.0 0745 9.0 0756 9.0 0756 9.0 0756 9.0 0757 9.0	(min) (gal) Meter Used? Temp (°C) [2.1) 11.09 10.79 10.14 10.04 10.04 10.04 10.04 10.04 10.06 9.88	PAH's BTEX nide	ORP (mV) 182 191 195 198 199 200	Conductivity (mS/cm) 1597- 1694 1716 1753	Turbidity (NTU) 3, 8 4, 7 3, 6 3, 7 2, 9 2, 9 3, 2	DO (mg/L) 13.04 11.57 11.05 11.25 11.18 ers Yes stic Yes	TDS (g/L) '383 '431 .444 .458 *433 .480 .483

Comments/Notes:

Laboratory:

Pace Analytical Greensburg, PA

Sampling Personnel: VD)			Date: 3/18	
Job Number: 0603123-134	400-221			Weather: P.C	
Well Id. LTMW-S10				Time In: 740	Time Out: 838
Well Information	*				
		TOC	Other	Well Type:	Flushmount Stick-Up
Depth to Water:	(feet)	9.60		Well Locked:	Yes No
Depth to Bottom:	(feet)	17.18		Measuring Point Marked:	Yes No
Depth to Product:	(feet)	MP		Well Material: P	VC SS Other:
Length of Water Column:	(feet)	7.98		Well Diameter:	1" 2" Other:
Volume of Water in Well:	(gal)	112		Comments:	
Three Well Volumes:	(gal)	3.6			

Purging Information									
	_	_				Conve	ersion F	actors	
Purging Method:	Baile	Peris	staltic	Grundfos Pump	gal/ft.	1" ID	2" ID	4" ID	6" ID
Tubing/Bailer Material:	Teflor	Stainle	ss St.	Polyethylene	of				
Sampling Method:	Baile	Peris	staltic	Grundfos Pump	water	0.04	0.16	0.66	1.47
Average Pumping Rate:	(ml/min)	220			1 galle	on=3.785	L=3785m	L=1337c	u. feet
Duration of Pumping:	(min)	30							
Total Volume Removed:	(gal)	~2i5	Did we	ell go dry? Yes No					
Horiba U-52 Water Quality Met	er Used?		Yes	No					

Time	DTW	Temp	рΗ	ORP	Conductivity	Turbidity	DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
0745	900	8.20	6.62	10	1.08	129	12.47	.692
750	4.70	8.17	6.62	-6	1.09	70	12.06	1695
755	9: 70	8.12	6.85	-17	1.09	36	11.66	1699
800	9,70	8.10	7.22	-31	1110	18	11.08	, 703
805	9,90	8.11	7.61	41	1110	13	10.87	1704
810	9.90	8.13	8.08	-42	1,10	8	10.63	704
814	9,90	8:20	8.10	-43	1110	5	10.44)	1703

Sampling Information:		
EPA SW-846 Method 8270	SVOC PAH's	2 - 1 liter ambers Yes No
EPA SW-846 Method 8260	VOC's BTEX	3 - 40 ml vials Yes No
EPA Method 335.4	Cyanide	1 - 250 ml plastic Yes No
EPA Method 200.7	Metals	1 - 250 ml plastic Yes No
LTMW-S10-MS-0320	LTMW-S10-MSD-0320	
Sample ID: LTMW-S10-0320	Duplicate? Yes No	Shipped: Pace Courier Pickup
Sample Time: UBIS	MS/MSD? Yes No	Drop-off Albany Service Center
Comments/Notes: NONE		Laboratory: Pace Analytical Greensburg, PA

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B			Section C	:																			Page:	1 of	1
	ed Client Information:	Required Project Information:			Invoice Info	mation:																					
	ny: GES - Syracuse	Report To: Devin Shay (GES) dshay@gesonline.com			Attention:	Accounts Pa	yable via em	ail at ges-invo	oices@ge	sonline.d	om											REC	GULA	TÖRY	AGENC	Y	
	s: 5 Technology Place, Suite 4	Report To: Tim Beaumont (GES) tbeaumont@gesonline.com			Company N	lame: Groui	ndwater & Er	vironmental (Services,	Inc.							۲	VPDE	\$	GR)([WAT	ER	DRIN	ı⊏ıg wat	rer	
East S	rracuse, New York 13057	Quarterly System Ef	flue	nt	Address: 5	Technology	Place, Suite	4. East Syrac	cuse, NY	13057							-	UST		RÇF				ОТН	EI	_	
	o: dshay@gesonline.com	Purchase Order No.:			Pace Quot	e Reference:						-				1 1			SI	TE		F	GA	l" IL	T IN C	MI	NC
Phone: x4051	800.220,3069 Fax: None	Project Name: National Grid - Ro Kingsley Ave. Site, Rome, NY	me		Pace Proje	ct Manager:	Rachel Chris	tner]]	LO	CAT	ION			Г	ОН	T so	or wir	- OTHE	R
	sted Due Date/TAT: Standard	Project Number: 0603123-134400-221-1106			Pace Profil	e #:			•								Filtere	ed (Y/I	N)				$\overline{}$	///	77 ,	7777	777
1 3 4	Section D Required Client Information SAMPLE ID One Character per box. (A-Z, 0-9 / -) Samples IDs MUST BE UNIQUE Effluent System Trip Blank		A MATRIX CODE		COMPOSITES!		DATE 3119	TIME 30 0	SAMPLE TEMP AT COLLECTION	S #OF CONTAINERS	th Unpreserved	1/2004 T. NAMO.	DH 3		Na;5;2,3,	Olher	Reque			4					0	P1	ace Project Number Lab I.D.
5	LIND OF REGI	JRD	.	ļ			····							\vdash	+				Н	+	+	${\dagger}{\dagger}$	+	++	+	***************************************	
6										l	Н	+	-				11								!	William	State -
7			T							\vdash	П	\dashv	+		Ŋ			•		J	K) é	,6	80	J		
8								İ			-					111		П	IIII		П						
G												-															
10															30	35	568	0									
11									ļ	<u> </u>							erreste		1 1 1 1 1 1 1 1 1	1648164	10000						
12																							\perp				
Additio	onal Comments:		REL	INQUI	SHED BY /	AFFILIATIO		DATE	TIME	ACCE	PTED	BY/	AFFILI	ATIO	٧					ÐΑ	TE	ΤI	IME	SAM	PLE CO	VOITION	NS.
SAMI	PLES WILL ARRIVE IN #	COOLERS.		\frac{1}{2}	16 t.	<i>\\'</i> (503	3119	11430		7	_		ہ د۔	<u> </u>		,			3-1	_	4	₹ €		N.	N/X	Ϋ́
	and the state of t		6		, ^			3.19	325	M	L8	H	F	W	W	>>	·/R	au	2	/20	تروا	تناو	045	\$5 i	Z C	Š	Š
Pleas	e send reports to: dshay@gesonline.com, tbe	aumont@gesonline.com			L		•			T .											-				X.	*	Z X
υ NER	egion@gesonline.com, ges@equisonline	:.com															•								Z.	X.	Z >
D D	· - ·					SAMPLER	NAME AND	SIGNATUR	RE															ပ္	5	ofer	
SPE	CIFIC EDD NAME:					PRINT Name o	SAMPLER:	Dull)										_						Temp in °C	Received of the	Custody Sealed Cooter	Samples Intact
NGR	ome-labnumber.28351.EQEDD.zip					SIGNATURE o	SAMPLER:	()			`			DATE:	Signed ((MM / I	00/120	, 1	A	12	À	<u> </u>] _i	Rec	Seak	Samı
7	-						•	1										ì		(E-File	(ALLQ020	0rev.3.31Ma	ar05), 13/ur	2005

CHAIN The Chain-c WO#: 30355667

vices, Inc.	
es@gesonline.com	REGULATORY AGE
	Pag

Secti Regui	on A ired Client Information:	Section B			Section (303	35566	7													Page:	1 of	2
	any: GES - Syracuse	Required Project Information: Report To: Devin Shay (GES)			Invoice Info		ayable via en	noit of the line																	
<u></u>	ss: 5 Technology Place, Suite 4	dshay@gesonline.com			L.						mos									REGU	JLAT	ORY A	AGENC	Υ	
		Report To: Tim Beaumont (GES tbeaumont@gesonline.com)		Company N	Name: Gro	undwater & E	nvironmental	Services,	Inc.					\neg	☐ NPT	DES	FGR	OUND	WATE	R [_ DRINI	KING WA	ATER	
	Syracuse, New York 13057			***************************************	Address: 5	Technolog	y Place, Suite	4, East Syra	scuse, NY	13057					-	│ □ us	Ŧ	□ RC	RA		ſ	— ОТН!	ER		
	To: dshay@gesonline.com	Purchase Order No.:			Pace Quot	e Referenc	e:								一		5	SITE		Γ (3A [- _{iL}			Гз
Phone x4051	: 800.220.3069 Fax: None	Project Name: National Grid - Ro Kingsley Ave. Site, Rome, NY	me		Pace Proje	ct Manager	r: Rachel Chri	stner								LOCA				Γ.	эн і	- sc	- M	THE	ρ
Reque	ested Due Date/TAT: Standard	Project Number:						u i o rt o r	dv G	MC					\dashv						7	-7 /	, ,,	777	777
	Saction D	0603123-134400-221-1106 Valid Motrix Codes	т —	T				uarter	ly G	WO	_					Filtered (\bot	//	/		
ITEM#	Section D Required Client Information SAMPLE ID One Character per box. (A-Z, 0-9 / -) Samples IDs MUST BE UNIQUE	MATRIX CODE INTERPOLATION WITH WATER WITH WATER WITH PRODUCT PARTY OF COLUMN ASSESSMENT OF C	MATRIX CODE	SAMPLE TYPE G+GRAB G=COMP	COMPOSITE ST		ORAS DATE	TIME	SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	hpreserved	TSSC4	eserva	***************************************	ifethanol	Requeste Analysis:								P:	ce Project Number Lab I.D.
	LTMW-D01-0	320	wτ	G			3119	0992	_	7	2	1		2 2	= 0	2	3	1 1] [ff	11	<u></u>	001	cao i.b.
2	LTMW-S01-0:	320	WT				3119	0935		7	2	1		<u>.</u>	\dashv		3				\vdash	-		wa	
3	LTMW-D02-0		WT	G			3119	1100		7	2	1		<u>'</u>	+	_		2 1	++	+		-		003	
4	LTMW-S02-0		WT				3119	1017	1	7	2	1			-		3	T			H			004	
5	LTMW-D03-0:	320	wr				3118	1214		7	2	1				 		2 1		_	$\dagger \dagger$	+		105	
6	LTMW-S03-03	320	wr				3118	1258	 	7	2	1			+	-	3			_			1	00 ie	-
7	LTMW-D04-0:		WT	G			3118	1124		7	2	1	3			1	1		++	+	\vdash		_	00 7	
8	LTMW-S04-03	320	WT	G			3118	1042	1	7	2	1				 	3			+	+	+		00 g	
9	LTMW-D05-03		WT	G			311	1343		7	2	1	3			1		2 1			H			00 9	
10	LTMW-S05-03		WT	G			3/18	1420		7	2	1	3	\Box			3			+	\vdash	_		<u>00 r</u> 010	
11	LTMW-D06-03	320	wr	G			3119	1226	1 -	7	2	1	3	\Box	_	1	3	1-1-		+	\vdash			<u>ภ เโ</u>	
12	LTMW-S06-03	320	WT	G			3/19	1143		7	2	 	3		_		3		++	\top	\vdash			019	
Additio	onal Comments:		REL	NQUE	SHED BY / /	AFFILIATIO		DATE	TIME	ACCEF		BY / AF	FILIA	ION			J	DAT		TIME	s	AMPL		NDITION	s
SAMI	PLES WILL ARRIVE IN #	COOLERS.	Į į	Val	- () <u>.</u>	10th	3	3/19	1430	کے		_		-	,			34	~	143			N.		
			-		,	<u></u>		7-19	12°C		24	201		The said	1/1	MIM	11/			20 0s	\rightarrow	s	<u>~</u> §	**************************************	20
Please	e send reports to: dshay@gesonline.com, tbea	umont@gesonline.com			<u> </u>			T- (L			<u>را مر</u>		-		عي س	<u> </u>	<u>/_</u>	J-08/	1000	~U U1	<u> </u>	,-u	⊗ N×	<u>@</u>	N.
	eaion@gesonline.com, ges@equisonline.				•														-		_		N.	J. NIIA	N/A
			·			SAMPLER	R NAME AND	SIGNAT <u>U</u> F	: RE									<u> </u>					ь Б		
SPEC	CIFIC EDD NAME:						SAMPLER -	() () (va)														o in °C	ved o	Stody	ss ints
NGR	tome-labnumber.28351.EQEDD.zip				į	SIGNATURE o			Ţ	_			Đ	TE Signe	ed (MM)	19/m/ C		W	,			Temp in	Received Ice	Custody Sealed Cooler	Samples intact

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B			Section C									#	6	3 O 3) 6	6	I		Page:	2 of	2	
Required Client Information: Required Project Information: Company: GES - Syracuse Report To: Devin Shay (GES)				Invoice Information;																					
dshay@gesonline.com				Attention: Accounts Payable via email at ges-invoices@gesonline.com								REGULATORY AGENCY													
Address: 5 Technology Place, Suite 4 Report To: Tim Beaumont (GES) tbeaumont@gesonline.com				Company Name: Groundwater & Environmental Services, Inc.								NPDES SROUND WATER FRINKING WATER													
East Syracuse, New York 13057				Address: 5 Technology Place, Suite 4, East Syracuse, NY 13057								UST FRORA THER													
Email To: dshay@gesonline.com	Purchase Order No.:			Pace Quote	Reference):										s	SITE			ĠΑ	厂L	ſ		_	
Phone: 800.220.3069 Fax: None x4051	Project Name: National Grid - Ro Ave. Site, Rome, NY	me Kir	igsley	Pace Proje	ct Manager:	Rachel Chris	stner								LOCA	TION			Γ	ЭН	∏ ³C	\sqcap n	T'HER		
Requested Due Date/TAT: Standard	Project Number: 0603123-134400-221-1106					Q	uarter	ly G	WS						Filtered (Y/N)					77	77	7//	7/	
Section D Required Client Information	Valid Matrix Codes MATRIX CODE				COLLECTED						Preservatives			· · · · ·	Requested .					//	///		///	7	
SAMPLE ID One Character per box.	DRSKIND WATER ON WATER WT WATER WT WATER WAY PRODUCT 9 SOILUSOUID SU		C=COMP					z			1				Analysis				/		//	///	///	/	
(A-Z, 0-9 / ,-) Samples IDs MUST BE UNIQUE	SOILUSOLID SIL OIL OLWP WIPE AR AIR OT OTHER IS		3 C=C	COMPOSITES	ART	GRAB												/,	//	//	///	///			
	OTHER 15 TISSUE	ODE	G+GRAB	00111001120				SAMPLE TEMP AT COLLECTION	#OF CONTAINERS									/	/- /	//	///	///	//		
		MATRIX CODE	٥					JP AT	VINO										//	/ /s̃	///	///			
	,	MA	J H					E TEA	#0F C			1						//	\ 3 ~ [///	/		
			SAMPLE TYPE					AMPL									/	\\ <u>\</u>		\$\\ /	///				
#			SAM					"		served			6	ē	•	,				///	///	/ /	Pac	o Project	
ITEM				DATE	TIME	DATE	TIME			Jupre	os S	ᄝ	VaOH Va ₂ S ₂ O ₃	иетано	Other Char					//	//			Number Lab I.D.	
1 LTMW-S07-0320		WT	G			3/18	0912		7	2	1	3	1	-		3	1 1	1 1					013		
2 LTMW-S08-0	0320	WT	G			3/18	0955		7	2	1	3	1			3	2	1 1					014		
8 LTMW-S09-0	320	WT	G			3/19	0800		7	2	1	3	1			3	2	1 1					o 15		
4 LTMW-S10-0	0320	WT	G			3118	0815		7	2	1	3	1			3	2	1 1					016		
5 LTMW-S10-M	S0320	wt	G						7	2	1	3	1			3	2	1 1					ا		İ
6 LTMW-S10-MS	D-0320	WT	G						7	2	1	3	1			3	2	1 1					· · ·		
Field Duplicate	-0320	WΤ	G						7	2	1	3	1			3	2	1 1		\perp		<u> </u>	017		
8 Trip Blan	k	WT	Lab						2			2				2							018		
9END OF REC	ORD	<u> </u>	<u> </u>															<u> </u>							
10		L																1				<u> </u>			ĺ
Additional Comments:		REL	.INQU	ISHED BY /	AFFILIATIC	N	DATE	TIME	ACCE	PTED 6	BY/A	FFILIA	MOITA				C	ATE	Ti	ΜE	SAMP	LE CON	DITION	3	
SAMPLES WILL ARRIVE IN #	COOLERS.			ut 1)	60	3	3/19	1430		, <u>-</u>				_		<u> </u>		49				₹	¥	×.	
		4					3-12	120	> >	<i>P</i>	2	11	7	M	MALL		34	10 dl	200	45	GUI	ď	Š	8)
Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com													ľ		* <u></u>	, N	Y/N	N.	300						
NERegion@gesonline.com, ges@equisonline	.com	L																				N.	ΧįΣ	¥ }	
Pagg SPECIFIC EDD NAME:							D SIGNATUR										Ţ				o u	Received on Ice	Custody Sealed Cooler	Intact	
SPECIFIC EDD NAME:				PRINT Name of SAMPHER DAGUE							manuels (0.177) Temp ir annuels (0.177) Temp ir annuels (0.177)						Samples Intact								
ত্ত্বি GRome-labnumber.28351.EQEDD.zip				SIGNATURE of SAMPLER:				DATE Signed (gned (MM	M/00/4975 (19170					R R			Sea	San		
46							Į.										`.		F_E	ا ۱۸ مان	O020rev	3 31Mar05	131::::::::::::::::::::::::::::::::::::	5	

2020 1st Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix D – Data Usability Summary Report and Analytical Data

Groundwater & Environmental Services, Inc.

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

April 15, 2020

Devin Shay Groundwater & Environmental Services, Syracuse 5 Technology Place, Suite 4 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid- Rome Kingsley Avenue Site Data Packages Pace Analytical Job Nos. 30355680, 30355667

Groundwater & Environmental Services, Inc. (GES) reviewed two data packages (Laboratory Project Number 30355680, 30355667) from Pace Analytical Services, Inc., for the analysis of an effluent sample and trip blank as well as groundwater samples collected March 19, 2020 from monitoring wells located at the National Grid: Rome Kingsley Avenue Site. Sixteen aqueous samples and a field duplicate were analyzed for BTEX, PAHs, arsenic, lead, zinc pH, and total cyanide. The effluent system sample was processed for TCL volatiles, eight metals, mercury and total cyanide. Methodologies utilized are those of the USEPA 200.7, 245.1 and 335.4, SM 4500H+B, the USEPA SW846 methods 7470/8260B/8270C with additional QC requirements of the NYSDEC ASP.

The data are reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items are determined to be acceptable for the DUSR level review.

Table 1 – Data Qualifications

Sample ID	Qualifier	Analyte	Reason for qualification
Effluent	J	рН	Analyzed after holding time
LTMW-S04 LTMW-S08 LTMW-S05	J: detects UJ: non- detects	All PAHs	Samples were dechlorinated before analysis
LTMW-S05	J-	Cyanide	Low MS/MSD recovery
LTMW-S10	Acenaphthene	J+	High MS/MSD recovery
LTMW-D04 LTMW-S04	J: detects UJ: non- detects	All PAHs	Low surrogate recoveries
LTMW-S09	R	Zinc	Not confirmed in duplicate sample

In summary, sample results are usable as reported, with non-compliances noted. The result for pH in all applicable samples was qualified by the laboratory as estimated due to the short hold time of 15 minutes. Qualifications are detailed in Table 1.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

Custody Documentation

- The timestamp on the sample LTMW-S10 differed from the recorded time on the COC sample analyses were reported with the COC time. The data was not affected.
- Three bottles broke in transit to the laboratory, LTMW-D05, LTMW-D06, LTMW-S09. There was enough volume to run all analytical tests and the data was not affected.
- All samples arrived within the EPA acceptable range of 4°C ± 2°C.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times for groundwater and effluent samples and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits with the exception of Bromomethane associated with the QC samples. Bromomethane recovered low in the continuing calibration, but bromomethane spike recoveries passed criteria in the LCS and MS/MSD pair. The low calibration standard does not indicate an issue with the data.

Matrix spike and matrix spike recoveries were within laboratory specified criteria.

PAHs by EPA8270D/NYSDEC ASP

Holding times are met. Instrumental tune fragmentations are within acceptance ranges. Surrogate recoveries are within analytical and validation guidelines Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines. The blind field duplicate correlations of LTMW-S09 fall within guidance limits. The laboratory control spike recoveries and precision indicate the method is within laboratory control, Matrix spike and matrix spike recoveries were within laboratory specified criteria, with the exception that the recovery for acenaphthene was high, out-of-specification for the MS/MSD associated with LTM-S10. This resulted in uncertainty in the positive detection reported for LTMW-S10, with acenaphthene results qualified as estimated detect, with a possible high bias.

Three samples required dechlorination before analysis, resulting in a possible low bias in the sample. The PAH data is qualified as estimated for all compounds. Qualifications are detailed in Table 1.

Metals by EPA 200.7/EPA 245.3/NYSDEC ASP

The matrix spikes show acceptable accuracy and precision. The blind field duplicate correlations of LTMW-S09 fall within guidance limits, with the exception that the zinc concentration above the reporting limit in LTMW-S09 was not confirmed in the duplicate sample. Unconfirmed data cannot be considered representative of the sampling location and is qualified as unreliable, and is rejected "R". Qualifications are noted in Table 1.

Instrument performance is compliant, and blanks show no contamination above the reporting limit. The detection of zinc above the reporting limit in LTMW-S09 was not confirmed in the duplicate sample. The data cannot be considered reliable, and is rejected "R". Qualifications are noted in Table 1.

Wet Chemistry-Total Cyanide by 9012B and pH

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All are acceptable for the validated samples, with the exception of a possible low bias for cyanide in LTMW-S05 noted by low recovery in the MSD. Cyanide is qualified as estimated non-detect in that sample. Calibration standard responses are compliant. Blanks show no detections above the reporting limits.

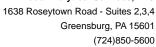
The post digestion spike associated with mercury in the effluent was high, but the sample reported non-detect and the high bias does not affect data quality.

The pH for the Effluent sample is qualified as estimated due to outlying holding time, as noted in the laboratory case narrative.

All other matrix spikes and/or laboratory duplicates of total cyanide show acceptable or correlations. Qualifications are noted in Table 1.

Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.


Please do not hesitate to contact me if you have comments or questions regarding this report.

Sincerely,

Bonnie Janowiak, Ph.D.

antiwisk >

Senior Chemist

SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30355667001	LTMW-D01-0320	Water	03/19/20 08:52	03/20/20 09:55
30355667002	LTMW-S01-0320	Water	03/19/20 09:35	03/20/20 09:55
30355667003	LTMW-D02-0320	Water	03/19/20 11:00	03/20/20 09:55
30355667004	LTMW-S02-0320	Water	03/19/20 10:17	03/20/20 09:55
30355667005	LTMW-D03-0320	Water	03/18/20 12:14	03/20/20 09:55
30355667006	LTMW-S03-0320	Water	03/18/20 12:58	03/20/20 09:55
30355667007	LTMW-D04-0320	Water	03/18/20 11:24	03/20/20 09:55
30355667008	LTMW-S04-0320	Water	03/18/20 10:42	03/20/20 09:55
30355667009	LTMW-D05-0320	Water	03/18/20 13:43	03/20/20 09:55
30355667010	LTMW-S05-0320	Water	03/18/20 14:20	03/20/20 09:55
30355667011	LTMW-D06-0320	Water	03/19/20 12:25	03/20/20 09:55
30355667012	LTMW-S06-0320	Water	03/19/20 11:43	03/20/20 09:55
30355667013	LTMW-S07-0320	Water	03/18/20 09:12	03/20/20 09:55
30355667014	LTMW-S08-0320	Water	03/18/20 09:55	03/20/20 09:55
30355667015	LTMW-S09-0320	Water	03/19/20 08:00	03/20/20 09:55
30355667016	LTMW-S10-0320	Water	03/18/20 08:15	03/20/20 09:55
30355667017	Field Duplicate-0320	Water	03/18/20 00:01	03/20/20 09:55
30355667018	Trip Blank	Water	03/18/20 00:01	03/20/20 09:55

(724)850-5600

PROJECT NARRATIVE

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: 200.7 Rev4.4. 1994 Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

General Information:

17 samples were analyzed for 200.7 Rev4.4, 1994. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with 200.7 Rev4.4, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

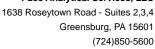
All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

General Information:

17 samples were analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

ip: Benzo(b)fluoranthene and benzo(k)fluoranthene were separated in the check standard but did not meet the resolution criteria in SW846 Method 8270D. Whereas sample results included are reported as individual isomers, the lab and the customer must recognize them as an isomeric pair.

• LTMW-D03-0320 (Lab ID: 30355667005)

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

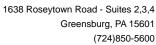
All surrogates were within QC limits with any exceptions noted below.

QC Batch: 389614

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- LTMW-D04-0320 (Lab ID: 30355667007)
 - Terphenyl-d14 (S)
- LTMW-S04-0320 (Lab ID: 30355667008)
 - Terphenyl-d14 (S)

SR: Surrogate recovery was below laboratory control limits. Results may be biased low.


- LTMW-D04-0320 (Lab ID: 30355667007)
 - Terphenyl-d14 (S)
- LTMW-S04-0320 (Lab ID: 30355667008)
 - Terphenyl-d14 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

Matrix Spikes:

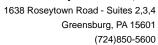
All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 389614

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30355667016

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

• MSD (Lab ID: 1887162) • Acenaphthene


Additional Comments:

Analyte Comments:

QC Batch: 389614

1c: Sample was dechlorinated prior to extraction.

- LTMW-S04-0320 (Lab ID: 30355667008)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- LTMW-S05-0320 (Lab ID: 30355667010)
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Anthracene
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

Analyte Comments: QC Batch: 389614

1c: Sample was dechlorinated prior to extraction.

• LTMW-S05-0320 (Lab ID: 30355667010)

• Fluoranthene

• Indeno(1,2,3-cd)pyrene

NaphthalenePhenanthrene

• Pyrene

• LTMW-S08-0320 (Lab ID: 30355667014)

• 2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Anthracene

• Benzo(k)fluoranthene

• Benzo(g,h,i)perylene

• Benzo(a)anthracene

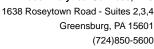
• Benzo(b)fluoranthene

• Benzo(a)pyrene

• Chrysene

• Dibenz(a,h)anthracene

• Fluorene


• Fluoranthene

• Indeno(1,2,3-cd)pyrene

• Naphthalene

• Phenanthrene

• Pyrene

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

General Information:

18 samples were analyzed for EPA 8260C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 389268

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 1885832)
 - Bromomethane
- LCS (Lab ID: 1885833)
 - Bromomethane
- MS (Lab ID: 1886124)
 - Bromomethane
- MSD (Lab ID: 1886125)
 - Bromomethane
- Trip Blank (Lab ID: 30355667018)
 - Bromomethane

Internal Standards:

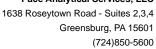
All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355667

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 30, 2020

General Information:

17 samples were analyzed for EPA 335.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

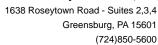
Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 389225

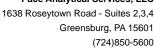

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30355667010,30355667016

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 1885667)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30355680001	Effluent System 0320	Water	03/19/20 13:00	03/20/20 09:55
30355680002	Trip Blank	Water	03/19/20 00:01	03/20/20 09:55

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: 200.7 Rev4.4, 1994 Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

1 sample was analyzed for 200.7 Rev4.4, 1994. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with 200.7 Rev4.4, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

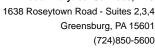
All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: 245.1 Rev. 3.0, 1994 Description: 245.1 Mercury

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

1 sample was analyzed for 245.1 Rev. 3.0, 1994. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with 245.1 Rev. 3.0, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

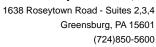
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: 389759

1c: The PDS recovery was outside of the laboratory control limits. Result may be biased high

- Effluent System 0320 (Lab ID: 30355680001)
 - Mercury

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: EPA 8270D by SIM

Description: 8270D MSSV PAH by SIM

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

1 sample was analyzed for EPA 8270D by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

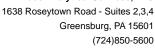
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


QC Batch: 389614

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30355667016

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MSD (Lab ID: 1887162)
 - Acenaphthene

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

2 samples were analyzed for EPA 8260C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

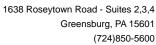
Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 389188

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30354046003

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.


• MS (Lab ID: 1885542)

Acetone

• MSD (Lab ID: 1885543)

Acetone

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: SM 4500H+B-2011

Description: 4500H+ pH, Electrometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

1 sample was analyzed for SM 4500H+B-2011. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received or analysis requested beyond the recognized method holding time.

• Effluent System 0320 (Lab ID: 30355680001)

H6: Analysis initiated outside of the 15 minute EPA required holding time.

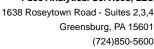
• Effluent System 0320 (Lab ID: 30355680001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30355680

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: March 27, 2020

General Information:

1 sample was analyzed for EPA 335.4. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 389225

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30355667010,30355667016

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 1885667)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.