

February 25, 2021

Mr. Justin Starr, PG
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau C
625 Broadway
Albany, NY 12233-70134

Re: National Grid Kingsley Avenue Site Rome, New York 2020 3rd Quarter OM&M Report

Dear Mr. Starr:

Enclosed for your review is the 2020 4th Quarter Operation, Maintenance, and Monitoring (OM&M) Report for the National Grid Rome (Kingsley Avenue) Site. OM&M is being conducted in accordance with the Site Management Plan (SMP). National Grid submitted the SMP and Final Engineering Report (FER) on November 30, 2019. The NYSDEC approved the SMP and FER on May 8, 2020.

The completed quarterly OM&M activities included:

- A quarterly site inspection;
- Collection of quarterly static water level measurements of site wells;
- Collection and laboratory analysis of quarterly groundwater samples from OU-1 groundwater wells;
- Collection and laboratory analysis of quarterly groundwater extraction system samples; and
- Monitoring and/or collection of light non-aqueous phase liquid and dense nonaqueous phase liquid at site wells.

The groundwater extraction system is operating continuously and discharging to the sanitary sewer under the existing City of Rome Water Pollution Control Authority discharge permit. A chemical treatment system to minimize iron fouling within the groundwater extraction manhole, submersible pump, and piping also operates continuously.

Mr. Justin Starr, PG February 25, 2021 Page 2 of 2

If you have any questions regarding the report or the scheduled activities, feel free to contact me at (315) 428-5652.

Very truly yours,

for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer National Grid

Enclosures

Cc: Devin Shay - Groundwater & Environmental Services, Inc.

National Grid

2020 4th Quarter Operations, Maintenance, and Monitoring Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

February 2021

Version 1

2020 4th Quarter OM&M Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by: Groundwater & Environmental Services, Inc. 5 Technology Place, Suite 4

East Syracuse, NY 13057 TEL: 800-220-3069 www.gesonline.com

GES Project: 0603200.134400.221

Date:

February 25, 2021

Devin T. Shay, PG Program Manager / Principal Hydrogeologist

Table of Contents

1	In	troduction	. 1
	1.1	Overview	. 1
	1.2	Site Description	. 1
	1.3	Site History	. 2
2	Ο	peration, Maintenance, and Monitoring Activities	. 5
	2.1	Quarterly Site Inspection	. 5
	2.2	Quarterly Static Water Level Measurements	. 5
	2.3	Quarterly Groundwater Monitoring Event	. 5
	2.4	Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event	
	2.5	Quarterly Groundwater Extraction System Discharge Sampling Event	. 7
	2.6	Groundwater Extraction System Discharge Flow and Operation, Maintenance, ar Monitoring	
	2.7	Vegetation Management and Snow Removal	.8
3	C	onclusions, Recommendations, and Certifications	.9
	3.1	Conclusions	.9
	3.2	Recommendations	.9
	3.3	Certifications	10

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Site Map – West

Figure 4 – Site Map – East

Figure 5 – Barrier Wall Profile

Tables

Table 1 – Groundwater Extraction System Discharge Flow

Table 2 – Site Monitoring Wells

Table 3 – Historical Groundwater Data

Table 4 – Groundwater Analytical Data

Table 5 – Discharge Analytical Data

Appendices

Appendix A – Field Inspection Report

Appendix B - Quarterly Gauging Data

Appendix C - Well Sampling Field Data

Appendix D - Data Usability Summary Report and Analytical Data

Acronyms

AWQS	Ambient Water Quality Standards	OM&M	Operations, Maintenance, and Monitoring
BTEX	Benzene, Toluene, Ethylbenzene, and Total Xylenes	OU	Operable Unit
DNAPL	Dense Non-Aqueous Phase Liquid	Pace	Pace Analytical Services, LLC
DUSR	Data Usability Summary Report	PAH	Polycyclic Aromatic Hydrocarbons
GES	Groundwater & Environmental Services,	POTW	Publically Owned Treatment Works
020	Inc.	QA/QC	Quality Assurance / Quality Control
gpm	Gallons per Minute	ROD	Record of Decision
IRM	Interim Remedial Measures	SMP	Site Management Plan
LNAPL	Light Non-Aqueous Phase Liquid	USEPA	United States Environmental Protection
MGP	Manufactured Gas Plant		Agency
NYSDEC	New York State Department of Environmental Conservation	WPCF	Water Pollution Control Facility

1 Introduction

1.1 Overview

Groundwater & Environmental Services, Inc. (GES) has prepared this 2020 4th Quarter Operations, Maintenance, and Monitoring Report (OM&M) on behalf of National Grid. This report compiles the OM&M activities completed in the 4th quarter of 2020 at the Former Kingsley Avenue Manufactured Gas Plant (MGP) Site (the Site), located in Rome, New York. The Site has been classified as a Class 2 inactive hazardous waste disposal site by the New York State Department of Environmental Conservation (NYSDEC) and is identified as Site No. 633043.

In accordance with the Record of Decision (March 2002) and following successful completion of the selected remedy, long-term OM&M is required at the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) for Operable Unit (OU) -1 and OU-2 were submitted to NYSDEC on November 30, 2019. The NYSDEC approved the SMP and the FER on May 8, 2020.

The following long-term OM&M activities are conducted in accordance with the SMP to monitor the effectiveness of the remediation previously conducted:

- Quarterly inspection of the Site (March, June, September, December);
- Collection of quarterly static water level measurements at the 34 site wells (16 Operable Unit [OU]-1 shallow and deep groundwater wells, eight dense non-aqueous phase liquid (DNAPL) wells, five OU-2 groundwater wells, and five extraction trench monitoring wells);
- Collection of quarterly groundwater samples from the 16 OU-1 shallow and deep groundwater wells and laboratory analysis of samples;
- Monitoring and/or collection of light non-aqueous phase liquid (LNAPL) and DNAPL monitoring at the 34 site wells, as needed. Offsite disposal of collected DNAPL at least once every 12 months;
- Removal of vegetation and snow, as necessary, to allow for access to the Site; and
- Submittal of quarterly OM&M reports to NYSDEC.

The groundwater extraction system is fully operational and discharges to the nearby sanitary sewer under an existing City of Rome Water Pollution Control Facility (WPCF) discharge permit. Discharge water samples are collected and analyzed quarterly for comparison to the permit limits as part of OM&M.

This OM&M Quarterly Report covers OM&M activities conducted during October, November, and December 2020.

1.2 Site Description

The Site is located within the City of Rome, Oneida County, New York. Refer to **Figure 1** for the Site location map. The Site consists of an approximately 22 acre parcel owned by National Grid.

MGP operations formerly covered the northern half of the Site. The southern portion of the Site consists of a National Grid electric substation, where some MGP impacts were left in place due to the inability to excavate on an active substation. National Grid presently operates and maintains a natural gas valving station located adjacent to the terminus of Kingsley Avenue.

The Site is located south of East Dominick Street, bordering a historic commercial and residential district, approximately 2,000 feet north of the confluence of the Mohawk River with the New York State Barge Canal. It is bounded by the Genesee and Mohawk Valley Railroad to the north, and the Mohawk River forms the western boundary of the Site. Whitesboro Street terminates near the southern boundary of the Site. The City of Rome Department of Public Works facility is located to the east and southeast of the Site. Residential properties are located near the Site entrance on Kingsley Avenue.

The Site is relatively flat, with existing grades ranging from 430 to 442 feet above mean sea level. The primary surface water feature in the area is the Mohawk River, which discharges into the Barge Canal approximately 2,000 feet downstream toward the south. The groundwater flow direction in both the water table aquifer (near surface) and deep aquifer (within the overburden above the clay) is toward the south-southwest. Depth to groundwater generally ranges from 2 to 15 feet below ground surface at the Site.

1.3 Site History

The Kingsley Avenue MGP was constructed in 1917. Gas production began at the Site in 1917 and peaked in 1927. Manufactured gas was produced at the Site using the coal gas and water gas processes. Coal carbonization produced coal gas by heating coal in retorts or beehive ovens. The water gas process involved the passage of steam through burning coal. This formed a gaseous mixture that was passed through a super heater into which an oil feed stock was sprayed. In each process, the gas produced was condensed and purified prior to distribution. The production of manufactured gas created many by-products, some of which remain onsite. A dense, oily liquid known as coal tar condensed out of the gas at various stages during its production, purification, and distribution. Although much of the coal tar produced was reused, recovery of the coal tar waste was incomplete. Substantial amounts of coal tar leaked from storage and processing facilities, contaminating surface and subsurface soils, as well as groundwater. Another by-product includes the discarded lime and/or wood chips treated with iron oxides to remove cyanide and sulfur from the gas (known as purifier waste).

By 1930, production of gas at the Kingsley Avenue MGP was limited to emergency capacity, as the supply of gas for the City of Rome came from other facilities. Between 1938 and 1941, the retort house and relief holder were decommissioned. By 1949, gas manufacturing equipment had been removed from the central building. In 1959, the main gas holder was dismantled.

Environmental concerns at the Site caused NYSDEC and the United States Environmental Protection Agency (USEPA) to evaluate the need for investigation and remedial action. Regulators typically define a single site into a number of OUs. An OU, for technical or administrative reasons, can be addressed separately to eliminate or mitigate a release, threat of release, or exposure pathway resulting from the Site contamination. The lead agency, NYSDEC, defined OUs: OU-1 and OU-2. NYSDEC continues to administer the Site under a Consent Order

with National Grid. OU-1 includes the former Kingsley Avenue MGP property, the surface soils of a small contiguous area of undeveloped New York State-owned land along the Mohawk River, and sediments in a backwater area west of the Site. OU-2 includes an approximate 2-acre area between the National Grid property and the eastern shore of the Mohawk River. Additionally, OU-2 includes the area beneath the Mohawk River and property west of the Mohawk River to East Westboro Street. OU-2 encompasses approximately 20 acres of land. Refer to **Figure 2** for a depiction of OU-1 and OU-2.

This report is focused on OU-1. The following provides a general chronology of key events related to OU-1.

- 1987 USEPA Preliminary Assessment
- 1992 Preliminary Site Assessment/Interim Remedial Measures (IRM) Work Plan
- May 1994 Concentrator House IRM
- July 1994 Start of Remedial Investigation
- January 1995 Purifier Disposal Area IRM
- July 1998 Light non-aqueous phase liquid (LNAPL) Removal IRM initiated
- March 1999 Remedial Investigation Report
- December 2001 Offsite Remedial Investigation Report complete
- January 2002 OU-1 Feasibility Study complete
- March 2002 OU-1 Record of Decision (ROD) issued by NYSDEC
- August 2006 Remedial Design approved
- August 2007 Remedial Action started
- December 2010 Remedial Action completed
- January 2011 long-term groundwater and LNAPL and DNAPL monitoring commenced
- December 2011 long-term groundwater extraction system OM&M commenced
- November 2012 chemical treatment system for the extraction manhole completed

The remedial elements for OU-1 that have been completed include:

- Utility relocation.
- DNAPL and LNAPL source area soil removal and offsite thermal treatment/disposal.
- Purifier waste material removal and offsite disposal.
- River bank soil removal and offsite disposal.
- Demolition and offsite disposal of the MGP tar well and holder foundations.
- Installation of a sheet pile cutoff wall to contain and minimize offsite migration of DNAPL.

- Installation of a groundwater extraction trench with passive recovery pipe along the upgradient side of the wall. The trench includes a series of collection manholes/sumps. Submersible pumps deliver untreated groundwater to a sanitary manhole under an existing City of Rome WPCF.
- Installation of a 14-acre soil cover in the northern portion of the Site.
- The two foot thick vegetative cover (clean soil above geotextile layer).
- Installation of eight DNAPL collection wells within known source areas.
- Installation of five groundwater monitoring wells along the extraction trench.
- Installation of 16 groundwater monitoring wells to monitor shallow and deep aquifers.
- Installation of five groundwater monitoring wells within the OU-2 area.
- An Environmental Easement has been placed on the property and is included with the final Site Management Plan.

Figure 3 presents the monitoring well locations for the western portion of the Site. **Figure 4** presents monitoring well locations for the eastern portion of the Site.

Following start-up of the groundwater extraction system, it became apparent that iron fouling would be an operational issue. Therefore, National Grid installed a chemical treatment system to help protect the groundwater wells, piping, and submersible pump associated with the groundwater extraction system. As part of the chemical treatment system, a weather-proof structure was installed adjacent to the groundwater pumping manhole and houses a chemical tote and chemical feed pump. An environmental friendly iron inhibitor (REDUX 340) is injected into the pumping manhole to protect the submersible pump, piping, and metering instruments. This chemical is used at similar National Grid sites across central and eastern New York State in order to minimize iron fouling and reduce operation and maintenance costs and has been approved by the City of Rome publicly owned treatment works (POTW). The chemical treatment system became operational in November 2012.

2 Operation, Maintenance, and Monitoring Activities

2.1 Quarterly Site Inspection

GES conducted the 2020 4th quarter site inspection on December 3, 2020. Inspections are generally conducted in March, June, September, and December of each year. The Site inspection included the Site wells, security perimeter fence/gates, drainage system, vegetation, and the Site access road. In general, the Site was noted to be in compliance during the inspection. Refer to **Appendix A** for the Site Inspection Form.

There are 34 total site wells that were inspected as part of this event. **Figures 3** and **4** show the well locations. **Table 2** details each well in terms of horizontal location, vertical elevation, diameter, material, and screen elevation.

2.2 Quarterly Static Water Level Measurements

Quarterly static water level measurements were collected from the 34 wells on December 3 and 4, 2020. **Table 3** presents historical and recent static water level measurements. Refer to **Appendix B** for the field log sheet with water level measurements.

Prior to the construction of the barrier wall and groundwater extraction trench/system remedy, groundwater generally flowed northwesterly toward the Mohawk River. The remedy was designed and constructed to intercept that groundwater flow pattern and minimize migration of site-related DNAPL from the upgradient side of the barrier wall to the river. To ensure that the barrier wall meets the intent of the remedial action, it was agreed by NYSDEC and National Grid that the long-term compliance mechanism would be to compare the top of steel sheeting barrier wall (generally 435 to 437 feet above sea level) with the groundwater levels immediately upgradient of the barrier wall.

Eight manholes (MH-2, MH-3, MH-4, MH-5, MH-6, MH-6A, MH-7, and MH-8) and ten groundwater monitoring wells (DNAPL-2, DNAPL-3, DNAPL-4, DNAPL-5, DNAPL-6, VTW-1, VTW-2, VTW-3, VTW-4, and VTW-5) were constructed immediately upgradient of the barrier wall within the gravel extraction trench. The static water levels in each of the upgradient groundwater monitoring wells were measured and found to be between 425 and 431 (Table 3) feet above sea level since start-up of the groundwater extraction system. Groundwater does not overtop the barrier wall. Figure 5 presents the groundwater levels compared to the barrier wall profile. Gauging data for all 34 wells and containment data for the 10 upgradient groundwater monitoring wells are presented in Appendix B.

2.3 Quarterly Groundwater Monitoring Event

The 2020 4th quarter groundwater monitoring event was conducted on December 3 and 4, 2020. Sixteen groundwater monitoring wells were sampled (LTMW-D01, LTMW-S01, LTMW-D02, LTMW-S02, LTMW-D03, LTMW-S03, LTMW-D04, LTMW-S04, LTMW-D05, LTMW-S05, LTMW-D06, LTMW-S06, LTMW-S07, LTMW-S08, LTMW-S09, LTMW-S10).

The wells were sampled in accordance with USEPA Low-Flow Groundwater Sampling Procedures [1996]. Purge water was contained and subsequently discharged to the onsite groundwater extraction system which discharges water to the City of Rome WPCF. Field measurements (temperature, pH, oxidation-reduction potential, conductivity, turbidity, dissolved oxygen, and total dissolved solids) were recorded at each well during the sampling using a water quality meter and are presented in **Appendix C**.

In addition to the 16 water samples collected, four quality assurance/quality control (QA/QC) samples were collected, including one Matrix Spike sample, one Matrix Spike Duplicate sample, one field duplicate sample, and one trip blank sample. Twenty total samples were shipped on ice to the Pace Analytical Services, LLC (Pace) of Greensburg, Pennsylvania, for laboratory analysis. Analyses included: polycyclic aromatic hydrocarbons (PAHs) via USEPA Method 8270D; benzene, toluene, ethylbenzene, and total xylenes (BTEX) via USEPA Method 8260C; heavy metals via USEPA Method 200.7; and total cyanide via USEPA Method 335.4.

The analytical results included detections of BTEX, acenaphthene, benzo(a)anthracene, chrysene, cyanide, fluorene, and naphthalene above the New York State regulatory maximum allowable limits. Analytical results at LTMW-S03 indicated zinc levels above the guidance value provided in NYSDEC's Technical and Operational Guidance Series section 1.1.1. A summary of laboratory analytical results is provided in **Table 4**. Of the 16 wells sampled, LTMW-D01, LTMW-S01, and LTMW-D03 had BTEX concentrations above the New York State Groundwater Ambient Water Quality Standards (AWQS). Results indicated no detections of any compound for LTMW-D04, LTMW-D05, LTMW-S07 and LTMW-S10.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The data validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. In summary, sample results are usable as reported. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.4 Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event

Each of the 34 wells was monitored for LNAPL and DNAPL in December for this quarter. The gauging data for these events are presented in **Appendix B**. This activity is conducted in conjunction with the collection of static water level measurements. A probe is lowered to the water level in the well and inspected for LNAPL. The probe is then lowered to the bottom of the well and inspected for DNAPL. If LNAPL or DNAPL is discovered in measurable quantities, product is removed from the well using a submersible pump. The removed product/water mixture is subsequently containerized in a properly labeled NYSDOT-approved 55-gallon drum for future offsite disposal. DNAPL in measurable quantities was noted in four site wells: MW-OU2-1, MW-OU2-2 and MW-OU2-4.

As part of the NAPL monitoring/collection event, a total of 5.5 gallons of DNAPL were collected (3.0 gallons from MW-OU2-1, and 2.5 gallons from MW-OU2-4) during this quarter.

Since the start of the NAPL monitoring/collection program, a total of 563.5 gallons of DNAPL have been removed for offsite disposal. Zero gallons of LNAPL have been detected/recovered.

2.5 Quarterly Groundwater Extraction System Discharge Sampling Event

Under an existing City of Rome WPCF discharge permit, quarterly sampling, analysis, and reporting of the groundwater extraction system discharge to the local sewer system is required. A water sample was collected on December 3, 2020, and analyzed by Pace for the permit-specified parameters. No detections above permit limits were noted. **Table 5** provides the analytical results compared to the permit limits.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. The review stated that field sample analyte values/reporting limits were usable as reported. The laboratory result for pH is always considered estimated as the EPA recommended short hold time of 15 minutes can only be met by in-field measurements. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.6 Groundwater Extraction System Discharge Flow and Operation, Maintenance, and Monitoring

The groundwater extraction system consists of a gravel trench, a pumping manhole, dual submersible pumps, and below ground piping. The piping enters the onsite groundwater treatment building where flow measurements, discharge sampling, pressure measurements, and other OM&M activities can be conducted. The piping then continues below ground from the nearby sanitary sewer manhole to the City of Rome WPCF.

A mechanical flow meter is located within the Site building and serves as the recording device for the effluent water. During this reporting period, 3,216,081 gallons (average flow ~ 24.6 gpm) were discharged. Since the groundwater extraction system was installed, approximately 169 million gallons have been discharged. Below is a summary table for the groundwater extraction system discharge flow:

Table 1 – Groundwater Extraction System Discharge Flow

Time Period	Discharge Flow (gallons)
2010	11,600,000
2011	14,400,000
2012	19,900,000
2013	19,500,000
2014	16,500,000
2015	16,686,700
2016	13,695,010
2017	13,874,930
2018	13,208,189
2019	15,989,356
2020 1st Quarter	3,775,177
2020 2 nd Quarter	3,513,675
2020 3 rd Quarter	3,205,924
2020 4 th Quarter	3,216,081
TOTAL	169,065,042

The previous consultant conducted an evaluation of the groundwater extraction system, including inspections of the extraction manhole, submersible pumps, valving/controls, and clean-outs. Iron fouling throughout the system, particularly scaling on the submersible pumps, piping, and metering instruments, had been observed. As such, a chemical scale inhibitor (Redux 340) system, which applies the Redux 340 at the groundwater extraction manhole/submersible pumps, was installed and became operational in November 2012. A heating element located at the pumping manhole was installed in June 2012. Electrical power and building lighting/heating was installed in August/September 2012. Information regarding the environmentally-friendly, iron scale inhibitor was previously provided to the City of Rome POTW. The groundwater treatment system (including pumping station, conveyance piping, and flow meters) was cleaned (water lancing) during September 2012 in order to remove iron scale build-up in advance of the chemical treatment system installation.

2.7 Vegetation Management and Snow Removal

Vegetation management and snow removal activities were conducted during the 4th quarter 2020 as needed.

3 Conclusions, Recommendations, and Certifications

3.1 Conclusions

Based on data collected from the 2020 4th quarter OM&M activities, the following conclusions were made:

- Overall, the site is in regulatory compliance. Vegetation maintenance and snow removal was conducted as needed during 4th quarter 2020.
- Quarterly static water level measurements were collected at ten groundwater monitoring wells
 upgradient of the steel sheeting barrier within the gravel extraction trench. The static water
 levels of the upgradient wells (ranging between 425 to 429 feet above sea level) did not
 overtop the barrier wall (top of wall ranges between 435 to 437 feet above sea level).
- Site groundwater contained detectable concentrations of BTEX, acenaphthene, benzo(a)anthracene, chrysene, cyanide, fluorene, and naphthalene above the New York State regulatory maximum allowable limits. Additionally, analytical results for well LTMW-S03 indicated zinc above the NYSDEC AWQS guidance values. Five of the 16 wells (LTMW-D01, LTMW-S01, LTMW-D03, LTMW-S03, and LTMW-S04) sampled had at least one detection of a site-related constituent above the New York State limits.
- The total quarterly volume of DNAPL collected (5.5 gallons) was removed from two wells (MW-OU2-1 and MW-OU2-4). 563.5 gallons of DNAPL have been removed from the site wells since the inception of the program. LNAPL has not been observed in any site wells to date.
- The groundwater extraction system operated continuously at an average flow rate of approximately 24.6 gpm, and a quarterly total of 3,216,081 gallons were discharged to the local sanitary sewer in accordance with the City of Rome WPCF discharge permit. A quarterly effluent water sample was collected and analyzed. There were no permit limit exceedances. Since December 2011, approximately 169 million gallons of water have been discharged without any permit limit exceedances.

3.2 Recommendations

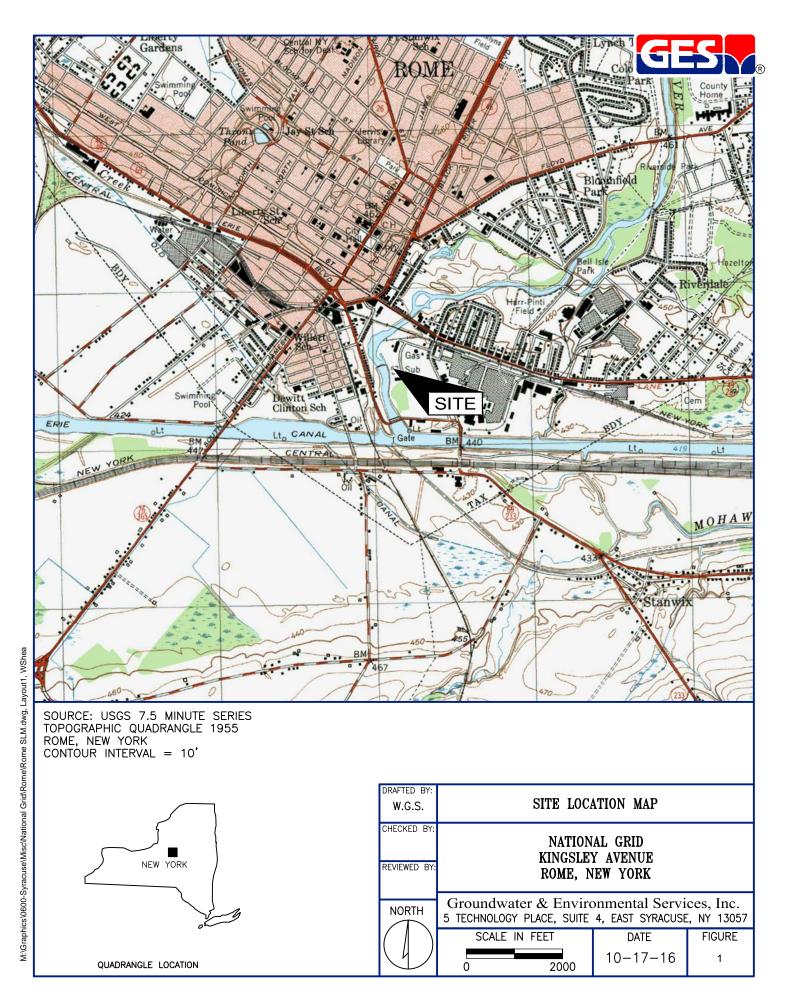
It is recommended that all OM&M activities continue.

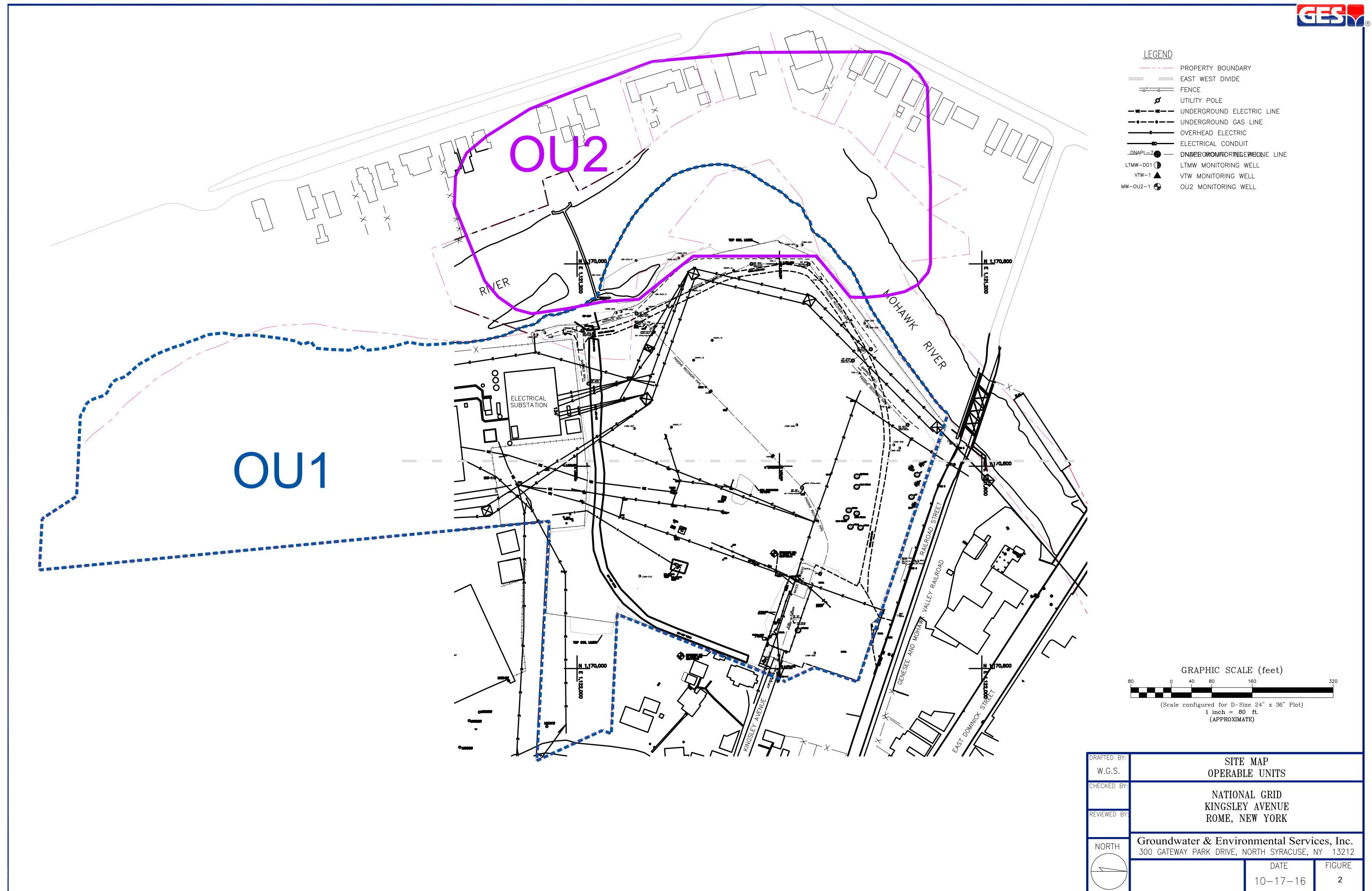
2020 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

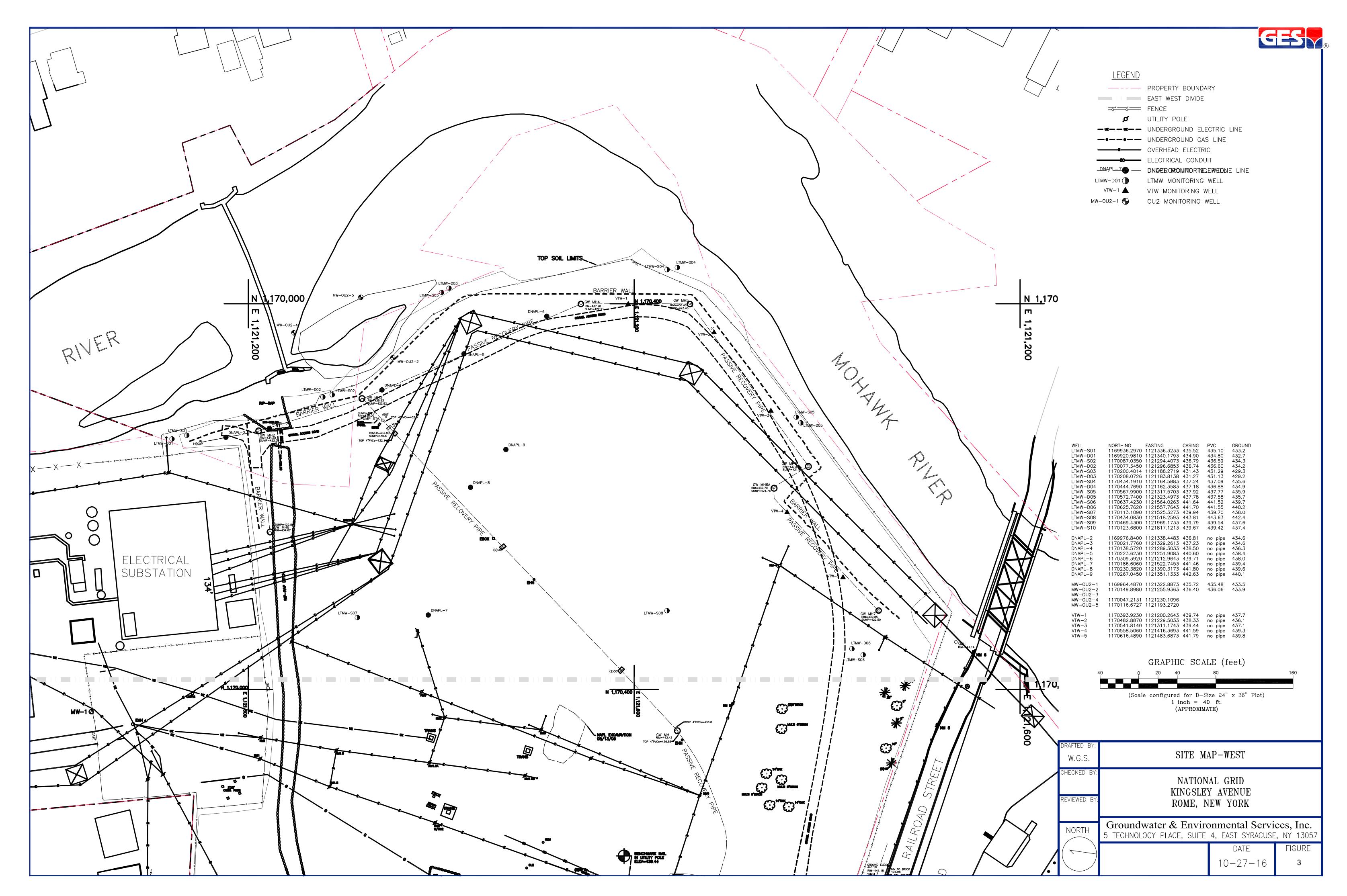
3.3 Certifications

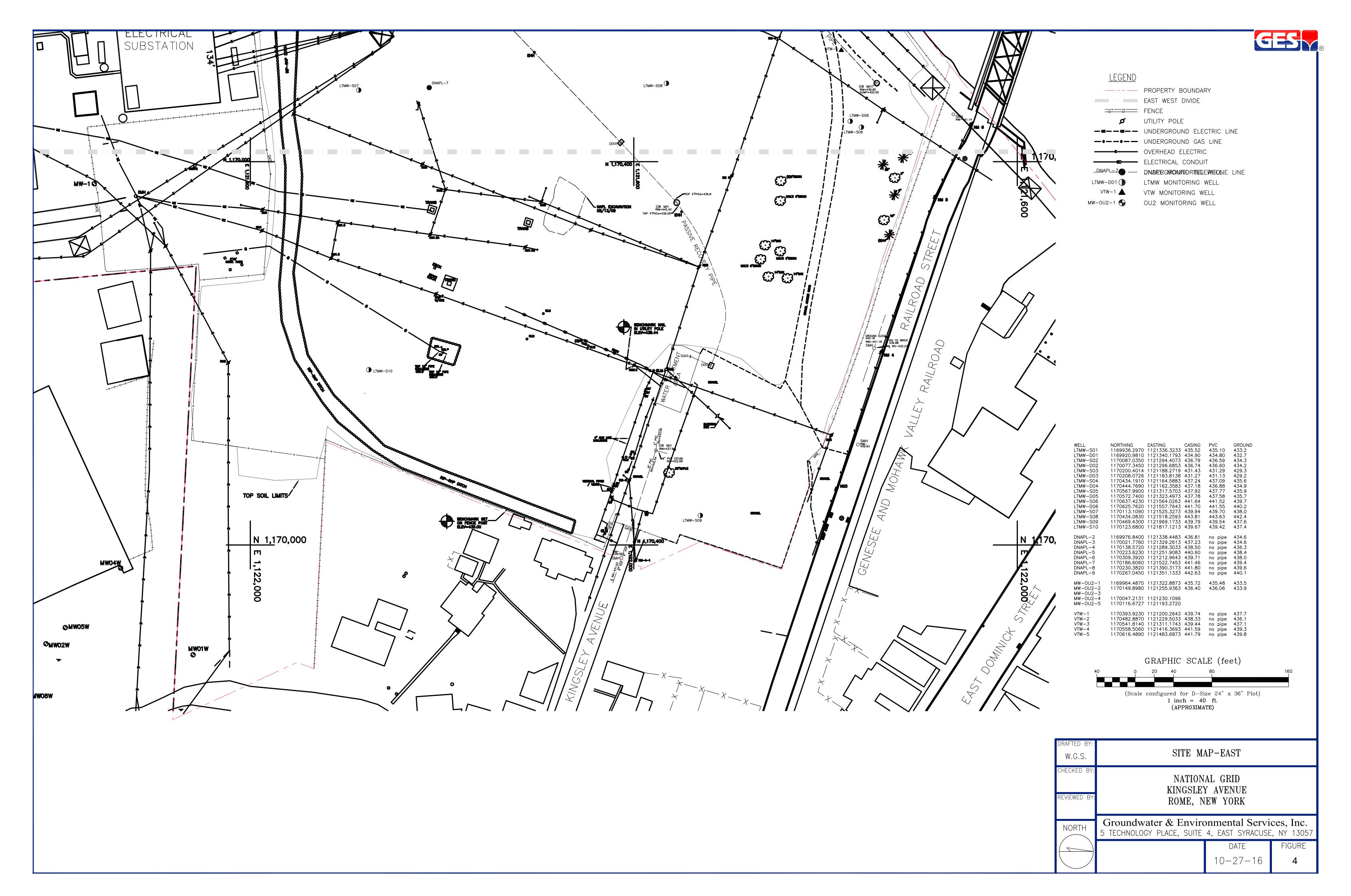
I certify the following:

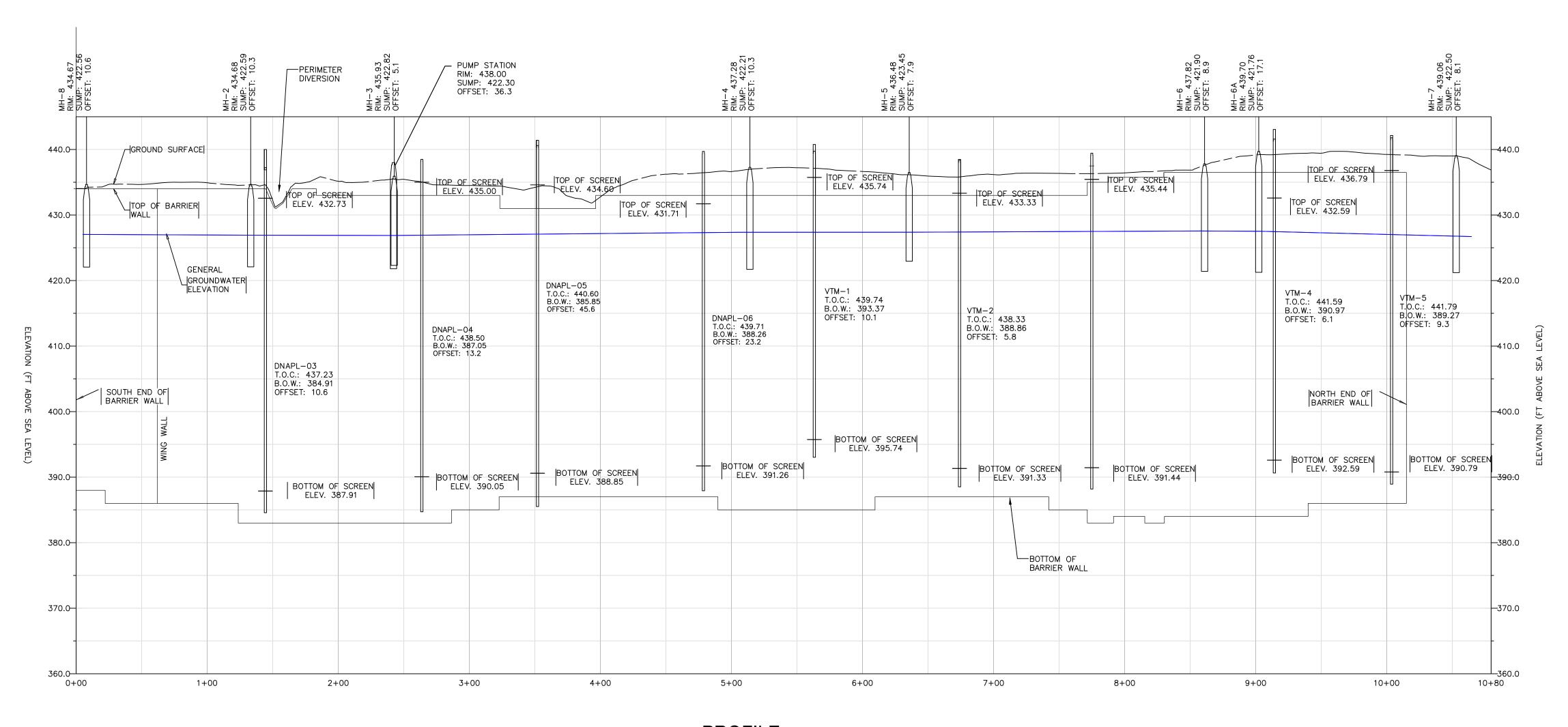
- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional controls and engineering controls employed at this site are unchanged from the date the controls were put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any SMP for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of the controls;
- Use of the Site is compliant with the Declarations of Covenants and Restrictions;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this
 certification are in accordance with the requirements of the Site remedial program; and
- The information presented in this report is accurate and complete.


Company: Groundwater & Environmental Services, Inc.


Signature	Date
Name: Gerald H. Cresap, P.E. Title: Director of Engineering	


2020 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440


Figures



Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome SM.dwg, D-40-W, WShea

M:\Graphics\0600-Syracuse\Misc\National Grid\Rome\Rome SM.dwg, D-40-E, WSF

PROFILE

HORIZONTAL: 1" = 50'

VERTICAL: 1" = 10'

LEGEND

T.O.C. TOP OF CASING

B.O.W. BOTTOM OF WELL

TOP OF WALL

GROUNDWATER ELEVATION (JUNE 2012)

NOTES

1. THE DEPTH OF THE BARRIER WALL IS APPROXIMATELY 50 FEET.

2. GROUNDWATER ELEVATION MEASUREMENTS TAKEN JUNE 2012.

DRAFTED BY: W.G.S.	BARRIER WA	ALL PROFILE	
CHECKED BY: REVIEWED BY:	KINGSLE	AL GRID Y AVENUE IEW YORK	
NORTH	Groundwater & Environment 500 GATEWAY PARK DRIVE, N		,
		DATE 10-17-16	FIGURE 5

M:\Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome Profile.dwg, D., WShea

2020 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Tables

Table 2 Site Monitoring Wells

Well ID	Northing	Easting	Elevation of Ground	Elevation Top of Outer Casing	Elevation Top of Inner Casing	Nominal Well Diameter (inches)	Well Material	Well Sump Depth (ft)	Depth to Bottom of Well (ft)	Elevation Bottom of Well	Depth to Top Screen (ft)	Elevation Top Screen	Depth to Bottom Screen (ft)	Elevation Botton Screen	Action
MW-OU2-1	1169964.4870	1121322.8873	433.5	435.72	435.48	4	SS	3.0	46.12	389.36	33.0	402.48	43.0	392.48	Quarterly Inspection; Quarterly Static Water Leve Measurement
	1170149.8980	1121255.9363	433.9	436.40	436.06	4	SS	3.0	49.60		39.0	397.06	49.0	392.46	Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-2						-				386.46					Measurement Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-3	1170101.2208	1121177.4485	430.63	433.25	432.96	4	SS	3.0	35.15	397.81	31.0	401.96	41.0	391.96	Measurement (Surveyed in January 2014) Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-4	1170149.6326	1121136.1811	430.63	433.05	432.88	4	SS	3.0	38.85	394.03	31.0	401.88	41.0	391.88	Measurement (Surveyed in January 2014) Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-5	1170167.9650	1121091.2658	431.23	433.77	433.46	4	SS	3.0	36.34	397.12	31.0	402.46	41.0	392.46	Measurement (Surveyed in January 2014)
DNAPL-02	1169976.8400	1121338.4483	434.6	436.81	NA	6	SS	3.0	50.40	386.41	4.0	432.81	46.0	389.41	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-03	1170021.7760	1121329.2613	434.6	437.23	NA	6	SS	3.0	52.32	384.91	4.5	432.73	46.5	387.91	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
								0.0							Quarterly Inspection; Quarterly Static Water Level
DNAPL-04	1170138.5720	1121289.3033	436.3	438.50	NA	6	SS	3.0	51.45	387.05	3.5	435.00	47.5	390.05	Measurement; DNAPL Monitoring/Collection
DNAPL-05	1170223.6230	1121251.9083	438.4	440.60	NA	6	SS	3.0	54.75	385.85	6.0	434.60	50.0	388.85	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-06	1170309.3920	1121212.9643	438	439.71	NA	6	SS	3.0	51.45	388.26	8.0	431.71	48.0	391.26	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-07	1170186.6060	1121522.7453	439.4	441.46	NA	6	SS	3.0	53.60	387.86	5.0	436.46	55.5	390.86	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-08	1170230.3820	1121390.3173	439.6	441.80	NA	6	SS	3.0	58.01	383.79	7.0	434.80	53.0	386.79	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-09	1170267.0450	1121351.1333	440.1	442.63	NA	6	SS	3.0	57.58	385.05	5.0	437.63	53.2	388.05	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
VTM-1	1170393.9230	1121200.2643	437.7	439.74	NA	6	SS	NA	46.37	393.37	4.0	435.74	44.0	395.74	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-2	1170482.8870	1121229.5033	436.1	438.33	NA	6	SS	NA	49.47	388.86	5.0	433.33	47.0	391.33	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-3	1170541.8140	1121311.1743	437.1	439.44	NA	6	SS	NA	50.91	388.53	4.0	435.44	48.0	391.44	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-4	1170558.5060	1121416.3693	439.3	441.59	NA	6	SS	NA	50.62	390.97	9.0	432.59	49.0	392.59	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-5	1170616.4890	1121483.6873	439.8	441.79	NA	6	SS	NA	52.52	389.27	5.0	436.79	51.0	390.79	Quarterly Inspection; Quarterly Static Water Leve Measurement
LTMW-D01	1169920.9810	1121340.1793	432.7	434.90	434.80	2	PVC	NA NA	46.84	387.96	34.0	400.80	44.0	390.80	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
		1121346.1793	433.2	434.90	435.10	2	PVC		16.92			430.10			Quarterly Inspection; Quarterly Static Water Leve
LTMW-S01	1169936.2970					_		NA		418.18	5.0		15.0	420.10	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-D02	1170077.3450	1121296.6853	434.2	436.74	436.60	2	PVC	NA	40.29	396.31	30.0	406.60	40.0	396.60	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S02	1170087.0350	1121294.4073	434.3	436.79	436.59	2	PVC	NA	17.98	418.61	5.0	431.59	15.0	421.59	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-D03	1170208.0726	1121183.8138	429.2	431.27	431.13	2	PVC	NA	40.73	390.40	29.0	402.13	39.0	392.13	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S03	1170200.4014	1121188.2719	429.3	431.43	431.29	2	PVC	NA	13.70	417.59	2.0	429.29	12.0	419.29	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-D04	1170444.7690	1121162.3583	434.9	437.18	436.88	2	PVC	NA	46.36	390.52	34.0	402.88	44.0	392.88	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S04	1170434.1910	1121164.5883	435.6	437.24	437.09	2	PVC	NA	17.26	419.83	5.0	432.09	15.0	422.09	Measurement; Quarterly Sampling
LTMW-D05	1170572.7400	1121323.4973	435.7	437.78	437.58	2	PVC	NA	46.53	391.05	35.0	402.58	45.0	392.58	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S05	1170567.9900	1121317.5703	435.9	437.92	437.77	2	PVC	NA	16.83	420.94	5.0	432.77	15.0	422.77	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D06	1170625.7620	1121557.7643	440.2	441.70	441.55	2	PVC	NA	52.22	389.33	40.0	401.55	50.0	391.55	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S06	1170637.4230	1121564.0263	439.7	441.64	441.52	2	PVC	NA	17.60	423.92	5.0	436.52	15.0	426.52	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S07	1170137.4230	1121525.3273	438	439.94	439.70	2	PVC	NA NA	17.82	421.88	5.0	434.70	15.0	424.70	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
						2									Quarterly Inspection; Quarterly Static Water Leve
LTMW-S08	1170434.0830	1121518.2593	442.4	443.81	443.63	_	PVC	NA	17.39	426.24	5.0	438.63	15.0	428.63	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S09	1170469.4300	1121969.1733	437.6	439.79	439.54	2	PVC	NA	16.92	422.62	5.0	434.54	15.0	424.54	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S10	1170123.6800	1121817.1213	437.4	439.67	439.42	2	PVC	NA	17.18	422.24	5.0	434.42	15.0	424.42	Measurement; Quarterly Sampling

- Notes:

 1) Shallow monitoring wells were sampled with a low flow peristaltic pump with battery pa
 2) Deep monitoring wells were sampled with a low flow submersible pump with genera
 3) Static water level measurements were taken from top of inner casing. If the well has no inner casing, the measurement will be taken from the top of outer casing.

Table 3

Historical Groundwater Data
Operable Unit 2 Wells

Well	MW.	OU2-1	Well	MW.	OU2-2	Well	l MW	/-OU2-3	Well	MW	/-OU2-4	Well	MW	/-OU2-5
weii	TOC =	435.72	weii	TOC =	436.40	weii	TOC =	432.96	vveii	TOC =	432.88	vveii	TOC =	433.46
Date	DTW	Water El.												
12/03/20	9.40	435,72	12/03/20	10.29	426.11	12/03/20	6.91	426.05	12/03/20	6.88	426.00	12/03/20	7.59	425.87
09/11/20	9.66	426.06	09/11/20	10.62	425.78	09/11/20	7.25	425.71	09/11/20	7.20	425.68	09/11/20	7.91	425.55
06/11/20	10.06	425.66	06/11/20	10.82	425.58	06/11/20	7.10	425.86	06/11/20	7.10	425.78	06/11/20	7.75	425.71
03/20/20	8.10	427.62	03/20/20	9.25	427.15	03/20/20	6.40	426.56	03/20/20	5.40	427.48	03/20/20	6.05	427.41
12/05/19	9.20	426.52	12/05/19	10.10	426.30	12/05/19	6.70	426.26	12/05/19	6.68	426.20	12/05/19	7.37	426.09
09/19/19	9.54	426.18	09/19/19	10.90	425.50	09/19/19	6.95	426.01	09/19/19	6.90	425.98	09/19/19	7.60	425.86
06/06/19	8.90	426.82	06/06/19	9.60	426.80	06/06/19	6.18	426.78	06/06/19	6.05	426.83	06/06/19	6.23	427.23
03/21/19	8.65	427.07	03/21/19	9.80	426.60	03/21/19	6.00	426.96	03/21/19	5.90	426.98	03/21/19	6.50	426.96
12/05/18	8.90	426.82	12/05/18	9.05	427.35	12/05/18	5.69	427.27	12/05/18	5.60	427.28	12/05/18	6.25	427.21
09/13/18	9.58	426.14	09/13/18	10.40	426.00	09/13/18	7.02	425.94	09/13/18	7.06	425.82	09/13/18	7.72	425.74
06/07/18	9.53	426.19	06/07/18	10.25	426.15	06/07/18	7.90	425.06	06/07/18	6.90	425.98	06/07/18	7.56	425.90
03/22/18	9.15	426.57	03/22/18	9.85	426.55	03/22/18	6.60	426.36	03/22/18	6.55	426.33	03/22/18	7.20	426.26
12/06/17	9.37	426.35	12/06/17	9.96	426.44	12/06/17	6.60	426.36	12/06/17	6.50	426.38	12/06/17	7.20	426.26
09/01/17	9.53	426.19	09/01/17	10.35	426.05	09/01/17	NM	-	09/01/17	6.98	425.90	09/01/17	7.73	425.73
06/23/17	9.35	426.37	06/23/17	10.02	426.38	06/23/17	7.10	425.86	06/23/17	6.70	426.18	06/23/17	7.15	426.31
03/08/17	8.68	427.04	03/08/17	5.94	430.46	03/08/17	5.93	427.03	03/08/17	5.94	426.94	03/08/17	6.62	426.84
12/15/16	8.91	426.81	12/15/16	9.80	426.60	12/15/16	6.42	426.54	12/15/16	6.35	426.53	12/15/16	7.02	426.44
09/19/16	9.58	426.14	09/19/16	10.52	425.88	09/19/16	7.29	425.67	09/19/16	7.15	425.73	09/19/16	7.84	425.62
06/07/16	9.45	426.27	06/07/16	10.28	426.12	06/07/16	6.95	426.01	06/07/16	6.87	426.01	06/07/16	7.57	425.89
03/07/16	8.45	427.27	03/07/16	9.28	427.12	03/07/16	5.91	427.05	03/07/16	5.82	427.06	03/07/16	6.49	426.97
12/02/15	9.30	426.42	12/02/15	10.19	426.21	12/02/15	6.85	426.11	12/02/15	6.77	426.11	12/02/15	7.44	426.02
09/16/15	9.66	426.06	09/16/15	10.47	425.93	09/16/15	7.15	425.81	09/16/15	7.05	425.83	09/16/15	7.74	425.72
06/03/15	9.34	426.38	06/03/15	9.73	426.67	06/03/15	6.41	426.55	06/03/15	6.34	426.54	06/03/15	6.95	426.51
04/08/15	8.63	427.09	04/08/15	9.29	427.11	04/08/15	6.14	426.82	04/08/15	5.96	426.92	04/08/15	6.98	426.48
12/01/14	9.32	426.40	12/01/14	9.84	426.56	12/01/14	6.49	426.47	12/01/14	6.41	426.47	12/01/14	7.08	426.38
09/10/14	9.49	426.23	09/10/14	9.89	426.51	09/10/14	7.02	425.94	09/10/14	6.95	425.93	09/10/14	7.63	425.83
06/12/14	9.58	426.14	06/12/14	10.33	426.07	06/12/14	6.99	425.97	06/12/14	6.94	425.94	06/12/14	7.63	425.83
03/25/14	9.12	426.60	03/25/14	10.22	426.18	03/25/14	6.75	426.21	03/25/14	6.85	426.03	03/25/14	7.24	426.22
12/12/13	8.47	427.25	12/12/13	9.35	427.05	12/12/13	5.92	427.04	12/12/13	5.84	427.04	12/12/13	6.51	426.95
09/23/13	9.52	426.20	09/23/13	10.32	426.08	09/23/13	7.08	425.88	09/23/13	6.98	425.90	09/23/13	7.63	425.83
06/10/13	8.46	427.26	06/10/13	9.32	427.08	06/10/13	5.78	427.18	06/10/13	5.68	427.20	06/10/13	5.35	428.11
03/27/13	9.30	426.42	03/27/13	10.11	426.29	03/27/13	6.78	426.18	03/27/13	6.95	425.93	03/27/13	7.42	426.04
12/03/12	9.49	426.23	12/03/12	10.33	426.07	12/03/12	7.02	425.94	12/03/12	6.93	425.95	12/03/12	7.70	425.76
09/12/12	9.75	425.97	09/12/12	10.63	425.77	09/12/12	7.32	425.64	09/12/12	7.25	425.63	09/12/12	8.02	425.44
06/18/12	9.51	426.21	06/18/12	10.36	426.04	06/18/12	7.05	425.91	06/18/12	6.95	425.93	06/18/12	7.69	425.77
03/19/12	8.88	426.84	03/19/12	9.79	426.61	03/19/12	6.46	426.50	03/19/12	6.32	426.56	03/19/12	7.13	426.33
12/05/11	9.10	426.62	12/05/11	9.84	426.56	12/05/11	6.72	426.24	12/05/11	6.73	426.15	12/05/11	7.50	425.96
09/26/11	9.31	426.41	09/26/11	10.11	426.29	09/26/11	6.64	426.32	09/26/11	6.68	426.20	09/26/11	7.35	426.11
06/13/11	9.29	426.43	06/13/11	10.07	426.33	06/13/11	6.71	426.25	06/13/11	7.87	425.01	06/13/11	7.33	426.13
03/29/11	8.64	427.08	03/29/11	9.43	426.97	03/29/11	6.04	426.92	03/29/11	5.93	426.95	03/29/11	6.68	426.78

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

EI. = Elevation in Feet

Table 3 Historical Groundwater Data DNAPL Wells

Well	DN.	APL-02	Well	DN	APL-03	Well	DN	APL-04	Well	DN	IAPL-05
	TOC =	436.81		TOC =	437.23		TOC =	438.50		TOC =	440.60
Date	DTW	Water El.									
12/03/20	9.40	427.41	12/03/20	9.76	427.47	12/03/20	10.90	427.60	12/03/20	13.05	427.55
09/11/20	7.95	428.86	09/11/20	9.35	427.88	09/11/20	11.65	426.85	09/11/20	13.13	427.47
06/11/20	10.06	426.75	06/11/20	10.29	426.94	06/11/20	11.67	426.83	06/11/20	13.76	426.84
03/20/20	8.10	428.71	03/20/20	8.55	428.68	03/20/20	9.70	428.80	03/20/20	11.32	429.28
12/05/19	9.20	427.61	12/05/19	9.60	427.63	12/05/19	10.85	427.65	12/05/19	12.92	427.68
09/19/19	9.54	427.27	09/19/19	8.85	428.38	09/19/19	11.14	427.36	09/19/19	13.20	427.40
06/06/19	9.10	427.71	06/06/19	9.25	427.98	06/06/19	10.60	427.90	06/06/19	12.70	427.90
03/21/19	8.20	428.61	03/21/19	8.45	428.78	03/21/19	9.70	428.80	03/21/19	11.80	428.80
12/05/18	8.10	428.71	12/05/18	8.70	428.53	12/05/18	9.65	428.85	12/05/18	11.75	428.85
09/13/18			09/13/18	9.70	427.53	09/13/18	11.00	427.50	09/13/18	13.08	427.52
06/07/18			06/07/18	10.00	427.23	06/07/18	11.26	427.24	06/07/18	13.34	427.26
03/22/18			03/22/18	9.60	427.63	03/22/18	10.90	427.60	03/22/18	12.99	427.61
12/06/17	9.00	427.81	12/06/17	9.31	427.92	12/06/17	10.59	427.91	12/06/17	12.65	427.95
09/01/17	9.75	427.06	09/01/17	10.00	427.23	09/01/17	11.36	427.14	09/01/17	13.44	427.16
06/23/17	9.30	427.51	06/23/17	9.56	427.67	06/23/17	10.90	427.60	06/23/17	13.00	427.60
03/08/17	8.92	427.89	03/08/17	9.19	428.04	03/08/17	10.51	427.99	03/08/17	12.57	428.03
12/15/16	8.33	428.48	12/15/16	8.60	428.63	12/15/16	9.89	428.61	12/15/16	11.98	428.62
09/19/16	9.56	427.25	09/19/16	9.88	427.35	09/19/16	11.20	427.30	09/19/16	13.27	427.33
06/07/16	9.41	427.40	06/07/16	9.73	427.50	06/07/16	11.05	427.45	06/07/16	13.12	427.48
03/07/16	8.45	428.36	03/07/16	8.73	428.50	03/07/16	10.05	428.45	03/07/16	12.10	428.50
12/02/15	9.41	427.40	12/02/15	9.71	427.52	12/02/15	11.01	427.49	12/02/15	13.09	427.51
09/16/15	9.91	426.90	09/16/15	10.21	427.02	09/16/15	11.51	426.99	09/16/15	13.58	427.02
06/03/15	8.33	428.48	06/03/15	8.84	428.39	06/03/15	10.15	428.35	06/03/15	12.24	428.36
04/08/15	8.39	428.42	04/08/15	8.68	428.55	04/08/15	9.96	428.54	04/08/15	12.07	428.53
12/01/14	9.16	427.65	12/01/14	9.45	427.78	12/01/14	10.75	427.75	12/01/14	12.81	427.79
09/10/14	9.25	427.56	09/10/14	9.55	427.68	09/10/14	10.62	427.88	09/10/14	12.70	427.90
06/12/14	9.90	426.91	06/12/14	10.20	427.03	06/12/14	11.41	427.09	06/12/14	13.56	427.04
03/25/14	9.52	427.29	03/25/14	9.81	427.42	03/25/14	11.15	427.35	03/25/14	13.21	427.39
12/12/13	8.71	428.10	12/12/13	9.03	428.20	12/12/13	10.35	428.15	12/12/13	12.41	428.19
09/23/13	9.92	426.89	09/23/13	10.25	426.98	09/23/13	11.56	426.94	09/23/13	13.61	426.99
06/10/13	8.27	428.54	06/10/13	8.62	428.61	06/10/13	9.91	428.59	06/10/13	11.98	428.62
03/27/13	9.51	427.30	03/27/13	9.81	427.42	03/27/13	11.15	427.35	03/27/13	13.21	427.39
12/03/12	9.19	427.62	12/03/12	10.10	427.13	12/03/12	11.45	427.05	12/03/12	13.48	427.12
09/12/12	10.14	426.67	09/12/12	10.48	426.75	09/12/12	11.81	426.69	09/12/12	13.84	426.76
06/18/12	9.46	427.35	06/18/12	9.80	427.43	06/18/12	11.15	427.35	06/18/12	13.24	427.36
03/19/12	9.02	427.79	03/19/12	9.35	427.88	03/19/12	10.69	427.81	03/19/12	12.74	427.86
12/05/11	9.46	427.35	12/05/11	9.79	427.44	12/05/11	11.13	427.37	12/05/11	13.30	427.30
09/26/11	9.36	427.45	09/26/11	9.70	427.53	09/26/11	11.09	427.41	09/26/11	13.08	427.52
06/13/11	9.18	427.63	06/13/11	9.54	427.69	06/13/11	10.84	427.66	06/13/11	12.89	427.71
03/29/11	8.41	428.40	03/29/11	8.72	428.51	03/29/11	10.05	428.45	03/29/11	12.11	428.49

= Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet TOC DTW

EI.

Table 3 Historical Groundwater Data DNAPL Wells

Well	DN	APL-06	Well	DN	APL-07	Well	DN	APL-08	Well	DN	APL-09
	TOC =	439.71		TOC =	441.46		TOC =	441.80		TOC =	442.63
Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.	Date	DTW	Water El.
12/03/20	12.16	427.55	12/03/20	12.91	428.55	12/03/20	13.28	428.52	12/03/20	14.19	428.44
09/11/20	12.80	426.91	09/11/20	13.57	427.89	09/11/20	14.02	427.78	09/11/20	14.82	427.81
06/11/20	12.73	426.98	06/11/20	13.36	428.10	06/11/20	13.85	427.95	06/11/20	14.73	427.90
03/20/20	10.90	428.81	03/20/20	11.80	429.66	03/20/20	12.10	429.70	03/20/20	13.05	429.58
12/05/19	11.96	427.75	12/05/19	12.81	428.65	12/05/19	13.25	428.55	12/05/19	14.15	428.48
09/19/19	12.27	427.44	09/19/19	13.14	428.32	09/19/19	13.58	428.22	09/19/19	14.50	428.13
06/06/19	6.23	433.48	06/06/19	12.25	429.21	06/06/19	12.75	429.05	06/06/19	13.70	428.93
03/21/19	10.90	428.81	03/21/19	11.50	429.96	03/21/19	12.00	429.80	03/21/19	12.90	429.73
12/05/18	10.70	429.01	12/05/18	11.70	429.76	12/05/18	12.10	429.70	12/05/18	13.00	429.63
09/13/18			09/13/18	13.20	428.26	09/13/18	13.65	428.15	09/13/18	14.50	428.13
06/07/18			06/07/18	13.18	428.28	06/07/18	13.61	428.19	06/07/18	14.50	428.13
03/22/18	/22/18 12.00 42		03/22/18	12.67	428.79	03/22/18	13.16	428.64	03/22/18	14.06	428.57
12/06/17	11.74	427.97	12/06/17	12.55	428.91	12/06/17	13.00	428.80	12/06/17	13.91	428.72
09/01/17	12.40	427.31	09/01/17	13.40	428.06	09/01/17	13.80	428.00	09/01/17	14.69	427.94
06/23/17	11.97	427.74	06/23/17	12.70	428.76	06/23/17	13.15	428.65	06/23/17	14.07	428.56
03/08/17	11.57	428.14	03/08/17	12.37	429.09	03/08/17	12.75	429.05	03/08/17	13.65	428.98
12/15/16	11.05	428.66	12/15/16	10.80	430.66	12/15/16	12.24	429.56	12/15/16	13.15	429.48
09/19/16	12.31	427.40	09/19/16	13.22	428.24	09/19/16	13.64	428.16	09/19/16	14.55	428.08
06/07/16	12.15	427.56	06/07/16	12.98	428.48	06/07/16	13.44	428.36	06/07/16	14.32	428.31
03/07/16	11.17	428.54	03/07/16	11.91	429.55	03/07/16	12.36	429.44	03/07/16	13.25	429.38
12/02/15	12.21	427.50	12/02/15	13.03	428.43	12/02/15	13.49	428.31	12/02/15	14.39	428.24
09/16/15	12.69	427.02	09/16/15	13.32	428.14	09/16/15	13.78	428.02	09/16/15	14.67	427.96
06/03/15	11.36	428.35	06/03/15	11.88	429.58	06/03/15	12.37	429.43	06/03/15	13.29	429.34
04/08/15	11.19	428.52	04/08/15	11.71	429.75	04/08/15	12.19	429.61	04/08/15	13.12	429.51
12/01/14	11.92	427.79	12/01/14	12.55	428.91	12/01/14	12.98	428.82	12/01/14	13.88	428.75
09/10/14	11.76	427.95	09/10/14	12.91	428.55	09/10/14	13.35	428.45	09/10/14	14.29	428.34
06/12/14	12.61	427.10	06/12/14	13.12	428.34	06/12/14	13.60	428.20	06/12/14	14.57	428.06
03/25/14	12.25	427.46	03/25/14	13.01	428.45	03/25/14	13.44	428.36	03/25/14	14.21	428.42
12/12/13	11.51	428.20	12/12/13	12.19	429.27	12/12/13	12.63	429.17	12/12/13	13.51	429.12
09/23/13	12.71	427.00	09/23/13	13.26	428.20	09/23/13	13.75	428.05	09/23/13	13.91	428.72
06/10/13	11.07	428.64	06/10/13	11.85	429.61	06/10/13	12.28	429.52	06/10/13	13.16	429.47
03/27/13	12.31	427.40	03/27/13	12.80	428.66	03/27/13	13.26	428.54	03/27/13	14.20	428.43
12/03/12	12.61	427.10	12/03/12	13.75	427.71	12/03/12	13.71	428.09	12/03/12	14.65	427.98
09/12/12	12.91	426.80	09/12/12	13.76	427.70	09/12/12	14.21	427.59	09/12/12	15.11	427.52
06/18/12	12.28	427.43	06/18/12	13.11	428.35	06/18/12	13.56	428.24	06/18/12	14.47	428.16
03/19/12	11.84	427.87	03/19/12	12.61	428.85	03/19/12	13.95	427.85	03/19/12	13.05	429.58
12/05/11	12.28	427.43	12/05/11	12.88	428.58	12/05/11	13.36	428.44	12/05/11	14.28	428.35
09/26/11	10.18	429.53	09/26/11	12.86	428.60	09/26/11	13.35	428.45	09/26/11	14.25	428.38
06/13/11	11.94	427.77	06/13/11	12.84	428.62	06/13/11	13.27	428.53	06/13/11	14.14	428.49
03/29/11	11.12	428.59	03/29/11	12.25	429.21	03/29/11	12.66	429.14	03/29/11	13.75	428.88

= Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet TOC DTW

EI.

Table 3 Historical Groundwater Data Trench Wells

Well	l v	TM-1	Well	l v	TM-2	Well	l v	TM-3	Well	l v	TM-4	Well	l v	TM-5
	TOC =	439.74		TOC =	438.33		TOC =	439.44		TOC =	441.59		TOC =	441.79
Date	DTW	Water El.												
12/03/20	12.02	427.72	12/03/20	10.54	427.79	12/03/20	11.70	427.74	12/03/20	13.54	428.05	12/03/20	13.62	428.17
09/11/20	12.73	427.01	09/11/20	11.18	427.15	09/11/20	12.22	427.22	09/11/20	14.07	427.52	09/11/20	14.26	427.53
06/11/20	10.06	429.68	06/11/20	10.85	427.48	06/11/20	11.97	427.47	06/11/20	13.85	427.74	06/11/20	14.00	427.79
03/20/20	8.10	431.64	03/20/20	9.10	429.23	03/20/20	10.20	429.24	03/20/20	12.05	429.54	03/20/20	12.15	429.64
12/05/19	9.20	430.54	12/05/19	10.22	428.11	12/05/19	11.39	428.05	12/05/19	13.44	428.15	12/05/19	13.61	428.18
09/19/19	9.54	430.20	09/19/19	10.69	427.64	09/19/19	11.86	427.58	09/19/19	13.68	427.91	09/19/19	13.88	427.91
06/06/19	11.60	428.14	06/06/19	10.00	428.33	06/06/19	11.20	428.24	06/06/19	13.00	428.59	06/06/19	6.23	435.56
03/21/19	10.60	429.14	03/21/19	9.00	429.33	03/21/19	10.20	429.24	03/21/19	12.50	429.09	03/21/19	12.25	429.54
12/05/18	10.55	429.19	12/05/18	8.95	429.38	12/05/18	10.05	429.39	12/05/18	12.00	429.59	12/05/18	12.15	429.64
09/13/18	12.20	427.54	09/13/18	10.65	427.68	09/13/18	11.80	427.64	09/13/18	13.70	427.89	09/13/18	13.85	427.94
06/07/18	12.14	427.60	03/22/18	10.46	427.87	03/22/18	11.62	427.82	06/07/18	13.61	427.98	03/22/18	13.75	428.04
03/22/18	11.86	427.88	03/22/18	10.41	427.92	03/22/18	11.36	428.08	03/22/18	13.31	428.28	03/22/18	13.45	428.34
12/06/17	11.65	428.09	12/06/17	10.07	428.26	12/06/17	11.22	428.22	12/06/17	13.17	428.42	12/06/17	13.32	428.47
09/01/17	12.10	427.64	09/01/17	10.40	427.93	09/01/17	10.55	428.89	09/01/17	13.60	427.99	09/01/17	13.77	428.02
06/23/17	11.80	427.94	06/23/17	10.10	428.23	06/23/17	11.21	428.23	06/23/17	13.15	428.44	06/23/17	13.29	428.50
03/08/17	11.24	428.50	03/08/17	9.52	428.81	03/08/17	10.65	428.79	03/08/17	12.58	429.01	03/08/17	12.76	429.03
12/15/16	10.99	428.75	12/15/16	9.33	429.00	12/15/16	10.49	428.95	12/15/16	12.49	429.10	12/15/16	12.54	429.25
09/19/16	12.23	427.51	09/19/16	10.56	427.77	09/19/16	11.71	427.73	09/19/16	13.65	427.94	09/19/16	13.82	427.97
06/07/16	11.98	427.76	06/07/16	10.29	428.04	06/07/16	11.43	428.01	06/07/16	13.44	428.15	06/07/16	13.61	428.18
03/07/16	10.98	428.76	03/07/16	9.25	429.08	03/07/16	10.36	429.08	03/07/16	12.32	429.27	03/07/16	12.49	429.30
12/02/15	12.12	427.62	12/02/15	10.53	427.80	12/02/15	11.68	427.76	12/02/15	13.58	428.01	12/02/15	13.74	428.05
09/16/15	12.55	427.19	09/16/15	10.75	427.58	09/16/15	11.85	427.59	09/16/15	13.73	427.86	09/16/15	14.67	427.12
06/03/15	11.21	428.53	06/03/15	9.55	428.78	06/03/15	10.72	428.72	06/03/15	12.68	428.91	06/03/15	12.86	428.93
04/08/15	11.06	428.68	04/08/15	9.49	428.84	04/08/15	11.65	427.79	04/08/15	12.65	428.94	04/08/15	12.81	428.98
12/01/14	11.55	428.19	12/01/14	9.79	428.54	12/01/14	10.92	428.52	12/01/14	12.91	428.68	12/01/14	13.09	428.70
09/10/14	11.62	428.12	09/10/14	9.91	428.42	09/10/14	11.10	428.34	09/10/14	13.14	428.45	09/10/14	13.31	428.48
06/12/14	11.94	427.80	06/12/14	10.28	428.05	06/12/14	11.45	427.99	06/12/14	13.48	428.11	06/12/14	13.63	428.16
03/25/14	11.69	428.05	03/25/14	10.01	428.32	03/25/14	11.17	428.27	03/25/14	13.32	428.27	03/25/14	13.35	428.44
12/12/13	10.91	428.83	12/12/13	9.31	429.02	12/12/13	10.46	428.98	12/12/13	12.51	429.08	12/12/13	12.56	429.23
09/23/13	12.19	427.55	09/23/13	10.63	427.70	09/23/13	11.79	427.65	09/23/13	15.75	425.84	09/23/13	13.91	427.88
06/10/13	10.45	429.29	06/10/13	8.75	429.58	06/10/13	9.98	429.46	06/10/13	12.08	429.51	06/10/13	13.16	428.63
03/27/13	11.83	427.91	03/27/13	10.82	427.51	03/27/13	11.48	427.96	03/27/13	13.51	428.08	03/27/13	13.69	428.10
12/03/12	12.31	427.43	12/03/12	10.82	427.51	12/03/12	11.98	427.46	12/03/12	13.84	427.75	12/03/12	14.06	427.73
06/18/12	12.01	427.73	06/18/12	10.46	427.87	06/18/12	11.66	427.78	06/18/12	13.70	427.89	06/18/12	13.89	427.90
03/19/12	11.49	428.25	03/19/12	9.91	428.42	03/19/12	11.11	428.33	03/19/12	13.16	428.43	03/19/12	13.33	428.46
12/05/11	12.01	427.73	12/05/11	10.48	427.85	12/05/11	11.62	427.82	12/05/11	13.61	427.98	12/05/11	13.81	427.98
09/26/11	11.95	427.79	09/26/11	10.41	427.92	09/26/11	11.61	427.83	09/26/11	13.66	427.93	09/26/11	13.82	427.97
06/13/11	11.74	428.00	06/13/11	10.15	428.18	06/13/11	11.32	428.12	06/13/11	13.39	428.20	06/13/11	13.59	428.20
03/29/11	11.02	428.72	03/29/11	9.48	428.85	03/29/11	10.65	428.79	03/29/11	12.81	428.78	03/29/11	12.97	428.82

= Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet TOC DTW

EI.

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	LTN	/W-D01	LTN	/IW-S01	LTN	/W-D02	LTN	/W-S02	LTN	/W-D03	LTN	1W-S03	LTN	/IW-D04	LTN	/W-S04
	TOC =	434.90	TOC =	435.52	TOC =	436.74	TOC =	436.79	TOC =	431.27	TOC =	431.43	TOC =	437.18	TOC =	437.24
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
12/03/20	8.80	426,10	8.60	426.92	10.60	426.14	10.38	426,41	5.15	426.12	4,15	427,28	9.75	427.43	9,44	427.80
09/11/20	8.85	426.05	8.85	426.67	10.77	425.97	10.45	426.34	6.46	424.81	4.30	427.13	10.25	426.93	9.68	427.56
06/11/20	10.06	424.84	8.88	426.64	11.69	425.05	10.46	426.33	5.23	426.04	4.28	427.15	10.05	427.13	9.70	427.54
03/20/20	8.10	426.80	8.30	427.22	8.90	427.84	8.20	428.59	3.50	427.77	1.80	429.63	8.25	428.93	7.10	430.14
12/05/19	9.20	425.70	8.47	427.05	10.50	426.24	10.17	426.62	4.93	426.34	3.95	427.48	9.65	427.53	9.39	427.85
09/19/19	9.54	425.36	8.70	426.82	10.60	426.14	10.45	426.34	5.20	426.07	4.20	427.23	9.90	427.28	9.55	427.69
06/06/19	7.80	427.10	8.00	427.52	9.70	427.04	9.33	427.46	4.25	427.02	2.90	428.53	6.23	430.95	8.12	429.12
03/21/19	8.00	426.90	8.20	427.32	10.15	426.59	9.77	427.02	4.45	426.82	3.63	427.80	9.35	427.83	8.90	428.34
12/05/18	7.54	427.36	7.54	427.98	9.29	420.39	8.95	427.84	5.75	425.52	2.40	429.03	8.64	428.54	7.78	429.46
											1				1	
09/13/18	8.81	426.09	8.67	426.85	10.60	426.14	10.36	426.43	5.48	425.79	4.18	427.25	10.02	427.16	9.35	427.89
06/07/18	8.55	426.35	8.70	426.82	10.35	426.39	10.32	426.47	4.32	426.95	4.11	427.32	9.78	427.40	9.48	427.76
03/22/18	8.22	426.68	9.41	426.11	10.21	426.53	9.98	426.81	5.65	425.62	3.60	427.83	9.35	427.83	9.05	428.19
12/06/17	8.17	426.73	8.16	427.36	10.07	426.67	9.61	427.18	4.76	426.51	3.30	428.13	9.35	427.83	8.35	428.89
09/01/17	8.75	426.15	8.74	426.78	10.64	426.10	10.31	426.48	5.23	426.04	4.15	427.28	9.99	427.19	9.50	427.74
06/23/17	8.30	426.60	8.53	426.99	10.45	426.29	10.27	426.52	4.91	426.36	4.05	427.38	9.58	427.60	9.45	427.79
03/08/17	8.13	426.77	8.27	427.25	10.11	426.63	9.79	427.00	4.48	426.79	3.53	427.90	9.00	428.18	8.79	428.45
12/15/16	8.11	426.79	8.02	427.50	10.03	426.71	9.73	427.06	4.55	426.72	3.28	428.15	9.32	427.86	8.41	428.83
09/19/16	8.78	426.12	8.73	426.79	10.70	426.04	10.41	426.38	5.26	426.01	4.25	427.18	10.03	427.15	9.61	427.63
06/07/16	8.56	426.34	7.85	427.67	10.16	426.58	10.21	426.58	4.75	426.52	4.07	427.36	9.47	427.71	9.38	427.86
03/07/16	7.75	427.15	7.18	428.34	9.05	427.69	9.15	427.64	3.69	427.58	2.45	428.98	8.55	428.63	7.85	429.39
12/03/15	7.71	427.19	8.29	427.23	9.85	426.89	9.74	427.05	4.38	426.89	3.51	427.92	9.63	427.55	8.65	428.59
09/16/15	8.30	426.60	8.76	426.76	10.29	426.45	10.32	426.47	4.91	426.36	4.15	427.28	9.69	427.49	9.52	427.72
06/03/15	8.07	426.83	8.03	427.49	10.02	426.72	10.13	426.66	4.45	426.82	3.92	427.51	9.35	427.83	9.27	427.97
04/08/15	7.34	427.56	7.99	427.53	9.58	427.16	9.71	427.08	4.01	427.26	3.54	427.89	8.85	428.33	8.75	428.49
12/01/14	7.94	426.96	8.15	427.37	9.75	426.99	9.64	427.15	4.11	427.16	3.13	428.30	9.09	428.09	8.57	428.67
09/10/14	8.14	426.76	8.12	427.40	9.99	426.75	9.64	427.15	4.58	426.69	3.19	428.24	9.30	427.88	8.70	428.54
06/12/14	8.68	426.22	8.24	427.28	10.57	426.17	10.26	426.53	4.71	426.56	4.11	427.32	9.60	427.58	9.42	427.82
03/25/14	8.22	426.68	8.50	427.02	10.11	426.63	10.19	426.60	4.71	426.56	4.09	427.34	9.56	427.62	9.43	427.81
12/12/13	7.61	427.29	7.64	427.88	9.19	427.55	8.75	428.04	3.97	427.30	1.99	429.44	8.57	428.61	7.45	429.79
09/23/13 06/10/13	8.36 7.17	426.54 427.73	8.75 7.52	426.77 428.00	10.28 9.09	426.46 427.65	10.28 8.73	426.51 428.06	5.11 3.52	426.16 427.75	4.05 2.18	427.38 429.25	9.84 7.99	427.34 429.19	9.52 6.99	427.72 430.25
03/27/13	8.27	427.73	8.64	426.88	10.28	427.65	9.98	426.81	4.84	427.75	3.87	429.25	9.61	429.19	9.36	430.25
12/03/12	8.65	426.25	8.60	426.92	10.42	426.32	9.90	426.89	5.08	426.19	3.80	427.63	9.85	427.33	9.91	427.33
09/12/12	8.84	426.06	8.91	426.61	10.76	425.98	10.35	426.44	5.39	425.88	4.17	427.26	10.20	426.98	9.62	427.62
06/18/12	8.35	426.55	8.61	426.91	10.35	426.39	10.26	426.53	5.10	426.17	4.08	427.35	8.76	428.42	9.48	427.76
03/19/12	8.01	426.89	8.11	427.41	9.92	426.82	9.46	427.33	4.50	426.77	3.04	428.39	9.24	427.94	8.29	428.95
12/05/11	8.16	426.74	8.31	427.21	10.12	426.62	9.61	427.18	4.63	426.64	3.35	428.08	9.39	427.79	8.81	428.43
09/26/11	8.38	426.52	8.45	427.07	10.45	426.29	10.18	426.61	4.71	426.56	3.93	427.50	9.45	427.73	9.44	427.80
06/13/11	7.61	427.29	8.36	427.16	10.27	426.47	9.95	426.84	4.78	426.49	3.75	427.68	9.42	427.76	9.17	428.07
03/28/11	7.83	427.07	7.85	427.67	9.68	427.06	9.43	427.36	4.41	426.86	3.34	428.09	9.07	428.11	8.91	428.33

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

El. = Elevation in Feet

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	I ITM	IW-D05	I I TA	1W-S05	LTM	/W-D06	I ITA	/W-S06	I ITM	1W-S07	I ITM	1W-S08	I ITN	/W-S09	I I TA	/W-S10
••cii	TOC =	437.78	TOC =	437.92	TOC =	441.70	TOC =	441.64	TOC =	439.70	TOC =	443.81	TOC =	439.79	TOC =	439.67
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
12/03/20	9.60	428.18	10.79	427.13	12.45	429,25	13.20	428.44	10.97	428.73	15.58	428.23	9.82	429.97	10.30	429.37
09/11/20	10.82	426.96	9.95	427.97	12.90	428.80	13.65	427.99	11.70	428.00	16.60	427.21	10.55	429.24	11.07	428.60
06/11/20	9.67	428.11	9.93	427.99	12.61	429.09	13.51	428.13	11.43	428.27	15.95	427.86	10.12	429.67	10.86	428.81
03/20/20	7.50	430.28	7.80	430.12	11.00	430.70	11.70	429.94	9.75	429.95	14.15	429.66	9.00	430.79	9.60	430.07
12/05/19	9.30	428.48	9.73	428.19	12.29	429.41	13.12	428.52	10.80	428.90	15.45	428.36	9.73	430.06	10.29	429.38
09/19/19	9.44	428.34	9.73	428.06	11.45	430.25	13.40	428.24	11.20	428.50	15.45	428.01	10.03	429.76	10.29	429.36
06/06/19	8.35	429.43	8.65	429.27	11.60	430.10	12.55	429.09	10.15	429.55	14.94	428.87	9.26	430.53	9.74	429.93
03/21/19	8.92	428.86	9.38	428.54	11.80	429.90	12.50	429.14	10.08	429.62	14.08	429.73	9.15	430.64	9.52	430.15
12/05/18	8.18	429.60	7.30	430.62	11.10	430.60	11.55	430.09	8.55	431.15	13.90	429.91	8.70	431.09	9.20	430.47
09/13/18	9.67	428.11	9.68	428.24	12.70	429.00	13.35	428.29	11.55	428.15	15.80	428.01	10.23	429.56	10.75	428.92
06/07/18	9.47	428.31	9.64	428.28	12.42	429.28	13.26	428.38	11.06	428.64	15.70	428.11	10.10	429.69	10.64	429.03
03/22/18	8.95	428.83	8.80	429.12	12.10	429.60	12.92	428.72	10.40	429.30	15.30	428.51	9.50	430.29	10.15	429.52
12/06/17	9.02	428.76	9.16	428.76	12.00	429.70	12.25	429.39	10.67	429.03	15.10	428.71	9.58	430.21	10.10	429.57
09/01/17	9.51	428.27	9.60	428.32	12.62	429.08	13.50	428.14	12.60	427.10	15.78	428.03	10.38	429.41	10.96	428.71
06/23/17	9.14	428.64	9.60	428.32	12.07	429.63	12.88	428.76	10.73	428.97	15.22	428.59	12.88	426.91	10.18	429.49
03/08/17	8.26	429.52	7.54	430.38	11.52	430.18	11.78	429.86	10.39	429.31	14.69	429.12	9.21	430.58	9.98	429.69
12/15/16	8.80	428.98	9.00	428.92	12.28	429.42	11.70	429.94	9.89	429.81	14.50	429.31	8.60	431.19	9.30	430.37
09/19/16	9.63	428.15	9.65	428.27	12.61	429.09	13.24	428.40	11.44	428.26	15.59	428.22	9.82	429.97	10.68	428.99
06/07/16	8.82	428.96	9.53	428.39	11.98	429.72	13.03	428.61	11.01	428.69	15.36	428.45	9.81	429.98	10.41	429.26
03/07/16	7.85	429.93	8.27	429.65	11.16	430.54	12.13	429.51	9.94	429.76	14.48	429.33	9.05	430.74	9.65	430.02
12/02/15	8.77	429.01	9.21	428.71	12.31	429.39	13.20	428.44	11.55	428.15	15.67	428.14	10.40	429.39	10.95	428.72
09/16/15	8.97	428.81	9.51	428.41	12.58	429.12	13.25	428.39	11.54	428.16	15.65	428.16	9.89	429.90	10.65	429.02
06/03/15	9.25	428.53	9.41	428.51	12.15	429.55	12.93	428.71	10.81	428.89	15.21	428.60	9.15	430.64	9.93	429.74
04/08/15	8.74	429.04	9.36	428.56	11.67	430.03	12.55	429.09	10.06	429.64	14.85	428.96	8.89	430.90	9.54	430.13
12/01/14	8.28	429.50	8.91	429.01	11.77	429.93	12.49	429.15	10.97	428.73	14.78	429.03	9.31	430.48	9.93	429.74
09/10/14	8.85	428.93	8.97	428.95	11.91	429.79	12.68	428.96	10.96	428.74	15.34	428.47	9.35	430.44	10.29	429.38
06/12/14	9.02	428.76	9.52	428.40	12.28	429.42	13.08	428.56	11.14	428.56	15.34	428.47	9.63	430.16	10.46	429.21
03/25/14	9.03	428.75	8.50	429.42	11.95	429.75	12.81	428.83	10.85	428.85	15.03	428.78	9.11	430.68	9.93	429.74
12/12/13	7.96	429.82	7.85	430.07	11.20	430.50	11.87	429.77	10.16	429.54	14.11	429.70	8.95	430.84	9.63	430.04
09/23/13	8.94	428.84	9.52	428.40	12.36	429.34	13.21	428.43	11.39	428.31	15.46	428.35	9.86	429.93	10.64	429.03
06/10/13	7.55	430.23	7.48	430.44	11.15	430.55	11.78	429.86	10.27	429.43	14.12	429.69	9.43	430.36	10.17	429.50
03/27/13	9.13	428.65	9.45	428.47	12.16	429.54	13.10	428.54	10.92	428.78	15.27	428.54	9.55	430.24	10.31	429.36
12/03/12 09/12/12	9.51 9.76	428.27 428.02	9.48 9.64	428.44 428.28	13.43 12.81	428.27 428.89	12.78 13.69	428.86 427.95	11.59 11.97	428.11 427.73	15.72 15.95	428.09 427.86	10.25 10.58	429.54 429.21	10.91 11.27	428.76 428.40
09/12/12	9.76	428.02	9.64	428.28	12.81	428.89 429.29	13.69	427.95 428.41	11.97	427.73	15.95	427.86	9.81	429.21	10.56	428.40
03/19/12	8.79	428.99	9.04	428.88	12.41	429.29	12.99	428.65	11.05	428.65	15.40	428.62	9.73	430.06	10.30	429.11
12/05/11	9.02	428.76	9.08	428.84	12.22	429.48	13.04	428.60	10.97	428.73	15.19	428.62	9.58	430.21	10.43	429.33
09/26/11	9.32	428.46	9.53	428.39	12.40	429.30	13.20	428.44	11.01	428.69	15.21	428.60	9.55	430.24	10.31	429.36
06/13/11	8.91	428.87	9.34	428.58	11.99	429.71	12.88	428.76	10.79	428.91	15.03	428.78	9.49	430.30	10.29	429.38
03/28/11	8.08	429.70	9.12	428.80	11.62	430.08	12.41	429.23	10.08	429.62	14.46	429.35	10.14	429.65	9.75	429.92

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

El. = Elevation in Feet

Table 4

Groundwater Analytical Data LTMW-D01

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	4,800	1,700	5,310	8,990	5,800	5,290	2,470	4,250	5,460	3,440	3,900	1,410	7,360	6,290	2,370	3,400	4,310	2,060	1,600	3,400
Toluene	1,000	5	1	1,100	340	1,090	2,080	1,320	1,470	809	1,230	1,140	992	1,080	1,740	2,200	1,410	630	876	183	392	202	247
Ethylbenzene	700	5	1	82	ND	167	241	145	137	179	177	95.0	119	163	203	202	170	142	222	1,120	96.3	101	179
Xylene (total)	10,000	5	2	170	ND	176	254	206	201	157	187	135	155	164	214.5	339	229	134.8	180.8	277	134	109	152
Acenaphthene	N/A	20	4.9	ND	ND	0.59	0.43	0.19	0.10	0.19	0.35	0.18	0.19	0.14	0.40	0.48	0.23	0.21	0.33	0.47	0.16	0.22	0.36
Acenaphthylene	N/A	NA	4.9	ND	ND	5.0	6.2	0.31	0.11	0.36	7.1	3.1	1.1	1.9	7.1	8.6	2.3	0.51	2.8	5.9	0.17	1.5	4.4
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	13	ND	ND	14	11	ND	ND	ND	10	ND	ND	15	ND	ND	ND	ND	14	ND	ND	12
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND	ND	0.51	0.35	0.15	ND	ND	0.41	0.17	0.14	0.10	0.30	0.55	0.16	ND	0.20	0.47	0.11	0.12	0.24
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	97.1	229	ND	ND	ND	7.2	94.6	0.44	0.83	170	381	8.3	ND	4.3	121	ND	0.17	20.6
Phenanthrene	N/A	50	4.9	ND	107	ND																	
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND	6.9	ND	6.8	9.1	ND	ND	ND	9.1	6.2	6.6	9.7	8.1	8.6						
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND																			

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

= Micrograms per Liter

μg/L ND H J wardug aims per Litel
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Table 4 **Groundwater Analytical Data** LTMW-S01

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND	1.9	ND	1.9	ND	ND	1.2													
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND	ND	ND	1.2	ND															
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	76	120	125	91.2	69.4	56.4	105	75.1	56.5	68.1	101	64.4	53.1	70.6	69.0	74.5	63.7	46.9	88.3	108.0
Acenaphthylene	N/A	NA	4.9	ND	ND	4.1	3	3.2	2.5	3.6	2.7	2.2	3.3	4.4	2.6	2	2.7	3.2	3.3	2.3	1.7	3.3	4.3
Anthracene	N/A	NA	4.9	ND	ND	0.44	0.38	0.52	0.28	0.40	0.34	0.27	0.37	0.47	0.35	0.25	0.47	0.41	0.44	0.24	0.17	0.4	0.4
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	20	21	ND	13	55	18	12	15	11	17	19	14	14	16	18	18	25	25	26	19
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND	ND	4.9	4	3.6	2.8	4.8	3.5	2.4	3.7	6.1	3.6	2.6	3.8	5.4	5.0	2.8	2.7	5.4	5.7
Fluorene	N/A	0.002	4.9	21	28	34.1	27.6	19.9	12.6	28.5	19.2	15.4	18.1	28.3	15.6	13.6	18	22.9	19.6	14.3	12.7	26.1	29.7
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	0.2	0.38	0.4	0.15	0.24	0.31	ND	0.23	ND	0.31	0.15	0.26	0.23	0.27	0.25	ND	0.16	0.3
Phenanthrene	N/A	50	4.9	ND	ND	0.25	0.74	1.7	ND	0.14	0.20	0.26	0.13	0.20	0.16	0.11	0.41	0.13	0.17	0.13	ND	0.16	0.17
Pyrene	N/A	50	4.9	ND	ND	5.0	4.2	3.6	2.7	4.9	3.7	2.5	3.8	6.6	4.4	2.7	3.9	5.7	5.3	3.0	2.9	5.7	6.1
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND	11.5	ND	ND																

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Groundwater Analytical Data LTMW-D02

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND	ND	3.3	2.2	1.6	ND	2.0	0.97	1.2	1.0	0.91	0.23	0.36	0.25	0.15	ND	ND	ND	ND	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	0.8	0.43	0.39	ND	0.48	0.22	0.29	0.31	0.24	ND								
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	93	85	ND	150	200	ND	160	160	160	150	140	10	140	140	110	ND	130	11	ND	140
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	0.16	ND																
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	13	61	ND																	

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-S02

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND	0.13	ND																	
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	130	150	ND	130	75	73	110	90	60	59	110	10	57	71	70	73	76	64	94	96
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	0.15	ND																
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	15	15	5.1	ND	7.7	ND	ND	7.6	ND	7.1	7.2	ND	ND	ND	5.1	6.3	ND	9.1	7.2	7.5
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND																			

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Groundwater Analytical Data LTMW-D03

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	8.9	20	15.9	27.1	10.2	8.5	8.9	9.5	4.7	6.4	5.4	8.4	6.2	9.6	6.2	2.5	3.3	4.6	2.5	5.0
Toluene	1,000	5	1	ND	20	13.9	55	5.9	1.9	1.9	5.4	ND	1.2	2.0	3.9	18.2	5.6	2.0	ND	11.0	2.6	ND	ND
Ethylbenzene	700	5	1	86	58	69.6	23.9	63.7	44	49.0	40.2	26.0	34.1	23.6	22.2	3	20.7	16.5	11.3	ND	11.8	10.4	10.4
Xylene (total)	10,000	5	2	14	42	30.1	25.7	13.5	5.6	7.5	8.4	4.0	4.4	5.5	6.2	7.1	8.4	1.4	ND	ND	3.4	ND	ND
Acenaphthene	N/A	20	4.9	11	ND	411.9	ND	10.7	3.70	10.2	5.9	5.8	8.3	5.7	6.2	8.0	6.0	7.90	4.3	4.3	6.8	5.4	8.8
Acenaphthylene	N/A	NA	4.9	ND	ND	34.7	10.6	3.1	2.5	2.2	1.5	1.3	2.0	1.6	2.8	2.2	2.1	1.4	0.89	0.54	1.8	1.9	1.5
Anthracene	N/A	NA	4.9	ND	ND	5.2	ND	5.6	0.3	3.7	2.4	2.2	2.8	2.1	2	2.1	1.6	1.6	0.9	0.45	0.73	2.80	0.68
Benzo(a)anthracene	N/A	0.002	4.9	ND	ND	0.43	ND	0.42	ND	0.40	0.26	0.30	0.34	0.29	0.28	0.4	0.38	0.41	0.26	0.23	0.31	3.6	0.45
Benzo(a)pyrene	N/A	ND	4.9	ND	2.4	ND																	
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	1.7	ND																	
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	0.8	ND																	
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	0.68	ND																	
Chrysene	N/A	0.002	4.9	ND	ND	0.21	ND	0.25	ND	0.24	0.18	0.17	0.19	0.18	0.16	0.21	0.23	0.25	0.17	0.15	0.18	2.10	0.24
Cyanide	N/A	200	10	75	93	77	79	84	76	66	78	64	66	62	62	65	72	60	53	67	62	63	58
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	0.2	5.4																	
Fluoranthene	N/A	50	4.9	6.2	ND	6.2	ND	6.1	2.9	5.9	3.7	4.1	4.7	4.0	3.5	5.1	4.2	5.4	3.2	3.4	4.2	12.3	5.6
Fluorene	N/A	0.002	4.9	7.8	ND	11.5	ND	7.1	13.2	6.2	3.7	3.6	5.1	3.5	3.8	5.1	3.6	4.9	2.8	2.3	4.1	5.2	5.6
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	ND	ND	9.4	ND	0.68	ND													
Naphthalene	N/A	10	4.9	13	81	556	284	32.2	0.15	10.0	16.5	3.9	3.7	6.9	12.7	9.8	10.6	3.5	0.5	0.3	13.2	2.5	8.1
Phenanthrene	N/A	50	4.9	27	25	29.5	1.5	30.3	0.11	24.1	15.2	16.3	18.1	18.1	17.9	19.9	15.2	19.6	8.5	2.9	15.9	22.2	20.1
Pyrene	N/A	50	4.9	8.3	8.3	8.3	1.2	7.6	2.8	7.6	4.8	5.5	6.0	5.3	5.1	6.6	5.3	6.9	4	4.6	5.5	17.4	7.0
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND	17	ND																	

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND	11	ND	10	ND	ND	ND													
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	0.15	ND														
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	0.16	0.17	ND															
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	0.11	ND														
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND	7.3	ND																	
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	4,600	4,300	4,300	4,600	5,330	4,250	3,740	3,620	4,070	3,660	3,060	5,620	4,040	3,740	3,710	4,160	3,840	3,550	3,160	3,640

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-D04

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	10	ND	10	ND	11	ND	ND	ND												
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	35.3	ND	22.5	ND											
Lead	N/A	25	5	ND	32	ND	ND																
Zinc	N/A	2,000	10	490	ND																		

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/20/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	450	600	59	2,000	900	1,200	200	1,300	400	230	220	1,300	860	660	190	120	1,700	440	470	1,700
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	510	340	23	618	358	108	128	472	472	267	179	230	242	184	156	156	44.4	122	113	384

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-D05

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND	13	ND																	
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND																			

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND	ND	ND	ND	5,800	ND														
Toluene	1,000	5	1	ND	ND	ND	ND	1,320	ND														
Ethylbenzene	700	5	1	ND	ND	ND	ND	145	ND														
Xylene (total)	10,000	5	2	ND	ND	ND	ND	206	ND														
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	0.19	ND														
Acenaphthylene	N/A	NA	4.9	ND	ND	ND	ND	0.31	ND														
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	450	250	16	830	510	570	270	380	430	120	89	260	120	230	65	170	150	110	110	76
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND	ND	ND	ND	0.15	ND														
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND	ND	ND	ND	5.4	ND														
Zinc	N/A	2.000	10	ND	19	23	ND	27.5	ND														

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND	ND	ND	92	ND	11	ND	ND	ND	ND	ND	ND								
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND	ND	ND	ND	8.1	ND														
Arsenic	N/A	25	10	ND	ND	0.64	ND	ND	8.1	8.5	8.0	6.0	12.0	10.4	7.3	5.7	ND	9.2	8.8	9.6	7.1	7.5	8.8
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND																			

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	32	66	31	ND	190	79	14	18	64	55	19	110	66	11	54	84	53	82	40	72
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND	ND	ND	9	ND															
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	18	ND																		

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND	1.1	ND																	
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND																			
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	0.16	ND																	
Phenanthrene	N/A	50	4.9	ND																			
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND	8.8	ND																	
Lead	N/A	25	5	ND	24	ND																	
Zinc	N/A	2,000	10	ND	96.8	ND																	

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND	0.19	ND	ND	ND	ND	ND													
Benzo(a)pyrene	N/A	ND	4.9	ND	0.21	ND	ND	ND	ND	ND													
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	0.31	ND	ND	ND	ND	ND													
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	0.15	ND	ND	ND	ND	ND													
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	0.26	ND	ND	ND	ND	ND													
Chrysene	N/A	0.002	4.9	ND	0.14	ND	ND	ND	ND	ND													
Cyanide	N/A	200	10	280	120	120	140	240	16	140	16	200	150	80	250	30	10	62	180	380	110	110	180
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND	0.51	ND	ND	ND	0.13	0.12													
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	0.12	ND	ND	ND	ND	ND													
Naphthalene	N/A	10	4.9	ND	ND	ND	0.12	ND															
Phenanthrene	N/A	50	4.9	ND	0.26	ND	ND	ND	ND	0.15													
Pyrene	N/A	50	4.9	ND	0.46	ND	ND	ND	0.11	0.14													
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND	12.5	ND	ND	ND	ND	ND													

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 4 **Groundwater Analytical Data** LTMW-S09

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/19/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	ND																			
Acenaphthylene	N/A	NA	4.9	ND																			
Anthracene	N/A	NA	4.9	ND																			
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND																			
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND																			
Fluorene	N/A	0.002	4.9	ND																			
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND																			
Phenanthrene	N/A	50	4.9	ND	0.11	ND	ND	ND	ND														
Pyrene	N/A	50	4.9	ND																			
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND	10	13	23.2	97.6	24.4	ND	15.3	ND	ND	10.7	27.6	ND	14.3	10.1	ND	12.7	ND	ND	10.3

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Parameter	EPA - Maximum Allowable (µg/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	03/04/16	06/09/16	09/21/16	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20
Benzene	5	1	1	ND																			
Toluene	1,000	5	1	ND																			
Ethylbenzene	700	5	1	ND																			
Xylene (total)	10,000	5	2	ND																			
Acenaphthene	N/A	20	4.9	6.3	6.3	23	17.4	3.1	4.30	11.0	6.8	2.3	9.7	11.8	5.7	10.8	5.1	13.60	7.70	8.80	19.30	18.10	ND
Acenaphthylene	N/A	NA	4.9	ND	ND	0.9	0.96	0.2	0.23	0.73	0.54	0.20	0.51	0.61	0.39	0.74	0.42	0.67	0.63	0.38	0.63	0.64	ND
Anthracene	N/A	NA	4.9	ND	ND	0.17	0.12	0.12	ND	0.11	ND	ND	ND	0.14	ND	0.13	0.11	0.15	0.13	ND	0.11	0.16	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND																			
Benzo(a)pyrene	N/A	ND	4.9	ND																			
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																			
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																			
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																			
Chrysene	N/A	0.002	4.9	ND																			
Cyanide	N/A	200	10	ND	13	ND	ND	ND															
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																			
Fluoranthene	N/A	50	4.9	ND	ND	2.1	1.5	0.5	0.62	2.0	1.4	0.71	1.3	1.8	1.1	1.6	1.3	2.1	1.9	1.1	1.4	1.4	ND
Fluorene	N/A	0.002	4.9	ND	ND	1.5	1.1	0.17	0.35	1.1	0.73	0.25	0.71	1.0	0.7	1.2	0.6	1.3	1.0	0.8	1.6	1.5	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																			
Naphthalene	N/A	10	4.9	ND	ND	ND	ND	0.2	0.17	ND	ND	0.20	9.1	ND	ND	1.5	0.37	0.13	ND	ND	1.9	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	1.4	0.94	ND	0.22	0.73	0.43	0.12	0.32	0.76	0.32	0.62	0.26	0.86	0.53	0.39	0.76	0.58	ND
Pyrene	N/A	50	4.9	ND	ND	2.6	1.9	0.45	0.71	2.4	1.7	0.90	1.7	2.3	1.5	2	1.6	2.70	2.40	1.4	1.9	1.8	ND
Arsenic	N/A	25	10	ND																			
Lead	N/A	25	5	ND																			
Zinc	N/A	2,000	10	ND																			

= Environmental Protection Agency EPA

NYSDEC = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

Table 5

Discharge Analytical Data
Groundwater Extraction System Effluent Concentrations

Parameter	City of Rome WPCF Permit Max Daily Limit (mg/L)	01/05/17	03/09/17	06/07/17	09/21/17	12/06/17	03/27/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/04/20
Benzene	0.13	0.0393	0.0536	0.0611	0.0360	0.0200	0.0274	0.0315	0.0239	0.0297	0.0618	0.0359	0.0423	0.0527	0.0315	0.034	0.0254	0.0499
Ethylbenzene	1.59	0.0025	0.0045	0.0050	0.0052	0.0019	0.0024	0.0040	0.0024	0.0024	0.0046	0.0047	0.0050	0.0065	0.0042	0.0052	0.0041	0.0056
Toluene	1.35	0.0019	0.0028	0.0095	ND (<0.001)	0.0017	0.0025	0.0025	0.0037	0.0026	0.0113	0.0058	0.0082	0.0079	0.0056	0.0036	0.002	0.0048
Xylene	1.35	ND (<0.001)	ND (<0.0030)	0.0034	ND (<0.0030)	0.0042	0.0011	0.0011	0.0039	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)					
Total BTEX	2.87	0.0437	0.0609	0.0790	0.0412	0.0236	0.0323	0.0380	0.0300	0.0347	0.0777	0.0475	0.0566	0.0710	0.0412	0.0428	0.0315	0.0602
Arsenic	0.1	ND (<0.010)	ND (<0.0050)	0.012	ND (<0.0050)	ND(<0.0050)												
Cadmium	0.11	ND (<0.0025)	ND (<0.0030)	0.0054	ND (<0.0030)	ND(<0.0030)												
Chromium	2.77	ND (<0.010)	ND (<0.0050)	ND(<0.0050)														
Copper	1.3	ND (<0.025)	ND (<0.0050)	0.08	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.016	ND (<0.0050)	ND(<0.0050)								
Cyanide	1.2	ND (<0.010)	0.090	0.084	0.056	0.074	0.069	0.070	0.059	0.086	0.067	0.097	0.083	0.098	0.11	0.079	0.076	0.078
Lead	1.1	ND (<0.0050)	0.0071	ND (<0.0050)	ND(<0.0050)													
Mercury	0.2	ND (<0.00020)	ND(<0.00020)															
Nickel	1.9	ND (<0.04)	ND (<0.010)	ND(<0.10)														
Silver	0.43	ND (<0.010)	ND (<0.0060)	ND(<0.0060)														
Zinc	2.6	0.0241	ND (<0.010)	0.13	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.015	ND (<0.010)	ND(<0.010)								
pH	5.5 - 11.5 su	6.8	6.7	6.9	6.8	6.8	6.8	6.7	6.9	7.1	6.9	6.9	6.9	7	6.9	6.7	6.9	6.8

Results in mg/L.

= Milligrams per Liter = Water Pollution Control Facility = Not Sampled = Not Analyzed

mg/L WPCF NS NA

Appendix A – Field Inspection Report

Field Inspection Report Former MGP Site Kingsley Avenue

Date:	12/4/2020	Rome, New York	Time:	8:00
Technician:	KL		Weather:	Cloudy 38

		Site	Contr	ols	
Fence Condition	GOOD	FA	JR	DAMAGED	COMMENTS
Kingsley Ave Gate	GOOD	FA	JR	DAMAGED	COMMENTS:
Padlock-NG/GES	OPERATION	NAL	NON-0	DPERATIONAL	COMMENTS:
Railroad Ave Gate	GOOD	FA	JR	DAMAGED	COMMENTS:
Padlock-NG/GES	OPERATION	NAL	NON-0	OPERATIONAL	COMMENTS:

	Vegetation	on (Surface (Cover Systen	1)
Condition of Grass	GOOD	FAIR	POOR	COMMENTS:
Site Trees	NONE	MINOR	SIGNIFICANT	COMMENTS:
Surface Erosion	NONE	MINOR	SIGNIFICANT	COMMENTS:

		Stoned Are	eas	
Condition of Main Access Road	GOOD	FAIR	POOR	COMMENTS:
Condition of Main Staging Area	GOOD	FAIR	POOR	COMMENTS:
Condition of Rear Turn Around Area	GOOD	FAIR	POOR	COMMENTS:

Drainage Systems						
Rip Rap Area	Culvert	UNOBSTRUC	CTED	ОВ	STRUCTED	
	Flow	NONE	LIT	TLE	SIGNIFICANT	COMMENTS:
	Outlet Channel	OPERATIO	NAL	NON-0	OPERATIONAL	COMMENTS:

		Misc	ellane	ous	
Evidence of Trespassing	NO			YES	COMMENTS:
Litter	NONE	MIN	IOR	SIGNIFICANT	COMMENTS:

General Comments:

2020 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix B – Quarterly Gauging and Containment Data

Quarterly Well Data Kingsley Avenue, Former MGP Site Utica, New York

WELL ID.	DTW	DTP	DTB	Comments
MW-OU2-1	9.40	42.40	45.81	Removed 3.0 gallons of DNAPL
MW-OU2-2	10.29	47.35	47.53	
MW-OU2-3	6.91	NP	34.18	
MW-OU2-4	6.88	35.10	39.55	Removed 2.5 gallons of DNAPL
MW-OU2-5	7.59	NP	36.01	
DNAPL-02	9.40	NP	50.40	
DNAPL-03	9.76	NP	52.32	trace on probe
DNAPL-04	10.90	NP	51.45	
DNAPL-05	13.05	NP	54.75	
DNAPL-06	12.16	NP	51.45	
DNAPL-07	12.81	NP	53.60	
DNAPL-08	13.28	NP	58.01	
DNAPL-09	14.19	NP	57.58	
VTM-1	12.02	NP	46.37	
VTM-2	10.54	NP	49.47	
VTM-3	11.70	NP	50.91	
VTM-4	13.54	NP	50.62	
VTM-5	13.62	NP	52.52	
LTMW-D01	8.80	NP	46.84	
LTMW-S01	8.60	NP	16.92	
LTMW-D02	10.60	NP	40.29	
LTMW-S02	10.38	NP	17.98	
LTMW-D03	5.15	NP	40.73	
LTMW-S03	4.15	NP	13.70	
LTMW-D04	9.75	NP	46.36	
LTMW-S04	9.44	NP	17.26	
LTMW-D05	9.60	NP	46.53	
LTMW-S05	10.79	NP	16.83	
LTMW-D06	12.45	NP	52.22	
LTMW-S06	13.20	NP	17.60	
LTMW-S07	10.97	NP	17.82	
LTMW-S08	15.58	NP	17.39	
LTMW-S09	9.82	NP	16.92	
LTMW-S10	10.30	NP	17.18	

Containment

Well Id.	Elevation	DTW	Water Elevation	Positive Delta
DNAPL-02	436.81	9.40	427.41	6.43
Top Steel Sheet Wall	433.84			0.43
DNAPL-03	437.23	9.76	427.47	3.74
Top Steel Sheet Wall	431.21			5.74
DNAPL-04	438.50	10.90	427.60	5.22
Top Steel Sheet Wall	432.82			3.22
DNAPL-05	440.60	13.05	427.55	2.65
Top Steel Sheet Wall	430.20			2.05
DNAPL-06	439.71	12.16	427.55	6.00
Top Steel Sheet Wall	433.55			0.00
VTM-1	439.74	12.02	427.72	4.10
Top Steel Sheet Wall	431.82			4.10
VTM-2	438.33	10.54	427.79	4.91
Top Steel Sheet Wall	432.70			4.51
VTM-3	439.44	11.70	427.74	9.18
Top Steel Sheet Wall	436.92			9.10
VTM-4	441.59	13.54	428.05	5.49
Top Steel Sheet Wall	433.54			5.49
VTM-5	441.79	13.62	428.17	7.83
Top Steel Sheet Wall	436.00			7.83

Appendix C – Well Sampling Field Data

Well ID	Sample ?	Well Size	DTW	DTP	DTB	Comments
MW-OU2-1	No	4"	9.40	42.40	45.81	Removed 3.0 gallons of DNAPL
MW-OU2-2	No	4"	10.29	47.35	47.53	
MW-OU2-3	No	4"	6.91	NP	34.18	
MW-OU2-4	No	4"	6.88	35.10	39.55	Removed 2.5 gallons of DNAPL
MW-OU2-5	No	4"	7.59	NP	36.01	
DNAPL-02	No	6"	9.40	NP	50.40	
DNAPL-03	No	6"	9.76	NP	52.32	trace on probe
DNAPL-04	No	6"	10.90	NP	51.45	
DNAPL-05	No	6"	13.05	NP	54.75	
DNAPL-06	No	6"	12.16	NP	54.45	
DNAPL-07	No	6"	12.81	NP	53.60	
DNAPL-08	No	6"	13.28	NP	58.01	
DNAPL-09	No	6"	14.19	NP	57.58	
VTM-1	No	6"	12.02	NP	46.37	
VTM-2	No	6"	10.54	NP	49.47	
VTM-3	No	6"	11.70	NP	50.91	
VTM-4	No	6"	13.54	NP	50.62	
VTM-5	No	6"	13.62	NP	52.52	
LTMW-D01	Yes	2"	8.80	NP	46.84	
LTMW-S01	Yes	2"	8.60	NP	16.96	
LTMW-D02	Yes	2"	10.60	NP	40.29	
LTMW-S02	Yes	2"	10.38	NP	17.98	
LTMW-D03	Yes	2"	5.15	NP	40.73	
LTMW-S03	Yes	2"	4.15	NP	13.70	
LTMW-D04	Yes	2"	9.75	NP	46.36	
LTMW-S04	Yes	2"	9.44	NP	17.26	
LTMW-D05	Yes	2"	9.60	NP	46.53	
LTMW-S05	Yes	2"	10.79	NP	16.83	
LTMW-D06	Yes	2"	12.45	NP	52.22	
LTMW-S06	Yes	2"	13.20	NP	17.60	
LTMW-S07	Yes	2"	10.97	NP	17.82	
LTMW-S08	Yes	2"	15.58	NP	17.39	
LTMW-S09	Yes	2"	9.82	NP	16.92	DUP
LTMW-S10	Yes	2"	10.30	NP	17.18	MS/MSD

DTW -depth to water **DTP** -depth to product **DTB** -depth to bottom All from top of casing

National Gr	d enue, Rome, Nev	York						
, angolo , A						10/0/2	7	
Sampling F	ersonnel:				Date:	12/3/20		
Job Numbe	: 0603200-134	400-221		···	Weather	Ciriny		
Well Id.	LTMW-D01				Time In:	13:30	Time Out: /4 . (<u> </u>
Well	nformation	-						a
				Other	Well Typ		hmount Stick-Up	
Depth to V			, 60 1001		Well Loc	ked: g Point Marked:	Yes No	┨ ┃
Depth to B		(feet)	46.84		Well Ma	Γ	SS Other:	
Depth to P	/ater Column:	(feet) 29	3.04		Well Dia		2" Other:	
	Water in Well:		.08		Commer	nts:		
Three Well		(gal)	1.25					
					=			
					441			
Purgi <u>r</u>	Information						Conversion Factors	
Purging M	1	Bailer	Peristaltic	Grundfe	os Pump	gal/ft.		6" ID
	er Material:	Teflon	Stainless St.	;	ethylene	of		
Sampling		Bailer	Peristaltic		os Pump	water		1.47
	ımping Rate:		200			1 gal	on=3.785L=3785mL=1337cu.	feet
Duration o		(min)	<u>30</u>		,	. N		
Total Volu	ne Removed:	(gal)		id well go dry?	Yes	10 A		
Horiba U-	2 Water Quality	leter Used?	Yes	No.			<u> </u>	
			-11	ORP	Conductivi	ty Turbidity	DO TD	s II
Time	DTW (feet)	Temp (°C)	pН	(mV)	(mS/cm)	(NTU)	(mg/L) (g/L	111
12.2	9.16	14.63	6.69	- 39	0535		1.72 0.30	23
13.70	11.49	14.31	7.43	-152	<i>()</i> . 352		3.77 0.20	
13.45	13.98	14.16	7.63	-178	0.345	4.4	5.30 0.2	
13.50	19.02	1 1 1 1 1 L	7 43.7	1-179	70 スロコ	1 9.0	5.13 0.25	
		17.77	-1 ~ T	101	2 2 4	2 0		
13:51	16.48	14.07	7.91	-191	0.341	3.9	4.96 0.2	22
13:55		14.07	7.91	-191 -184 1.88	0.341	38		22 24
14:00	16.48	14.07 13.97 13.91	7.94	-191 -184 1.88		38	4.96 0.2	22 24
1450, 14,75 13:21	16.48	14.07	7.96			38	4.96 0.2	22 24
17:00	16.48	14.07 13.94 13.91	7.94			38	4.96 0.2	22 24
17:50	16.48	14.07	7.96			38	4.96 0.2	22 24
17:50	16:48 17:59 19:60	14.07 13.97 13.91	7.97			38	4.96 0.2	22 24
13:51 14:00 14:00	16.48	14.07	7.97 7.96			38	4.96 0.2	22 24
	16:48 17:59 19:40	14.07 13.97 13.91	7.97 7.99 7.96			38	4.96 0.25 4.91 0.25 4.76 0.05	22 24
EPA \$	16:48 17:59 19:60	73.91 svoc F				3.8	4.96 0.25 4.91 0.35 4.76 0.35 bers Yes No No	22 24
EPA S	16:48 17:59 19:40 Information:	73.91 svoc F	BTEX			2 - 100ml am 3 - 40 ml vi 1 - 250 ml pla	bers Yes No No astic Yes No No	22 24
EPA S EPA S	/(c : 48 /7. 59 /9. (c) Information: N-846 Method 8276 W-846 Method 8276	5VOC F	BTEX de			2 - 100ml am 3 - 40 ml vi	bers Yes No No astic Yes No No	22 24
EPA S EPA S EP EI	/(c . 48 /7.59 /9.66 /	SVOC F VOC's E Cyani Meta	BTEX de ils	1.88		2 - 100ml am 3 - 40 ml vi 1 - 250 ml pla 1 - 250 ml pla	bers Yes No No astic Yes No No Yes No No	22 24
EPA S EPA S E E Sample I	/(c . 48 /7. 59 /9. (c) /9. (c)	SVOC F VOC's E Cyani Meta	BTEX de als plicate?	/- 88 Yes No		2 - 100ml am 3 - 40 ml vi 1 - 250 ml pla 1 - 250 ml pla Shipped:	bers Yes No No astic Yes No No	22 24
EPA S EPA S Ei Ei Sample I Sample T	Information: N-846 Method 827 W-846 Method 335.4 A Method 200.7 LTMW-D0 ne:	SVOC F VOC's E Cyani Meta	BTEX de ils	1.88		2 - 100ml am 3 - 40 ml vi: 1 - 250 ml pl: 1 - 250 ml pl: Shipped:	bers Yes No No astic Yes No No Pace Courier Pickup off Albany Service Center	22 24
EPA S EPA S E E Sample I	Information: N-846 Method 827 W-846 Method 335.4 A Method 200.7 LTMW-D0 ne:	SVOC F VOC's E Cyani Meta	BTEX de als plicate?	/- 88 Yes No		2 - 100ml am 3 - 40 ml vi 1 - 250 ml pla 1 - 250 ml pla Shipped:	bers Yes No No astic Yes No No Pace Courier Pickup Pace Analytical	22 24
EPA S EPA S E) El Sample I Sample T	Information: N-846 Method 827 W-846 Method 335.4 A Method 200.7 LTMW-D0 ne:	SVOC F VOC's E Cyani Meta	BTEX de als plicate?	/- 88 Yes No		2 - 100ml am 3 - 40 ml vi: 1 - 250 ml pl: 1 - 250 ml pl: Shipped:	bers Yes No No astic Yes No No Pace Courier Pickup off Albany Service Center	22 24

Veli Id	National Gri I Kingsley Avenue, Rome, Nev	York	
Time In Time In Time Out	Sampling Personnel:	Date:	
Viel Information	Job Number 0603200-134	00-221 <u>Weat</u>	ther: 5 mg 45
Depth to Witter:	Well Id. LTMW-S01	<u>Time</u>	In: 14:00 Time Out:
Conversion Factors	Depth to W. ter: Depth to Bc tom: Depth to Pri duct: Length of V ater Column: Volume of V ater in Well:	(feet) DoCO Well (feet) 16.92 Meass (feet) Well (feet) Well (gal) 1:33 Company	Locked: Yes No
(feet)	Purging Me nod: Tubing/Baill r Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed:	Teflon Stainless St. Polyethylene Shailer Peristaltic Grundfos Pump (ml/min) 30 (gal) Did well go dry? Yes	gal/ft. 1" ID 2" ID 4" ID 6" ID of water 0.04 0.16 0.66 1.47 1 gallon=3.785L=3785mL=1337cu. feet
EPA SW 846 Method 8270 SVOC PAH's 2 - 100ml ambers Yes No EPA SV 846 Method 8260 VOC's BTEX 3 - 40 ml vials Yes No EPA Method 335.4 Cyanide 1 - 250 ml plastic Yes No EPA Method 200.7 Metals 1 - 250 ml plastic Yes No Sample ID LTMW-S01- 220 Duplicate? Yes No Shipped: Pace Courier Pickup	(feet) 14:15 8.46 14:25 8.68 14:30 8.68 14:30 8.68 14:30 8.68	(°C) (mV) (mS/c) (13.35 7-21 -100 0.48 1/3.55 6.84 -98 0.83 1/3.56 6.79 -97 0.83 1/3.56 6.77 -98 0.83 1/3.54 6.76 -98 0.85 1/3.46 6.75 -98 0.86	(my/L) (mg/L) (g/L) (mg/L) (g
Comments Notes: Laboratory: Pace Analytical Greensburg, PA	EPA SW 846 Method 8270 EPA SW -846 Method 8260 EPA Method 335.4 EPA Method 200.7 Sample ID LTMW-S01 Sample Time:	VOC's BTEX Cyanide Metals 220 Duplicate? Yes No MS/MSD? Yes No	3 - 40 ml vials 1 - 250 ml plastic Yes No No No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical

National Grid Kingsley Avenue, Rome, New	York		
		Date: /	2/3/20
Sampling Pe sonnel:	100 004	Weather:	5my 48
Job Number 0603200-134	100-221	Time In:	7:50 Time Out:
Well id. LTMW-D02		Time III.	
Well Information			
VVeir in Offination	TOC	Other Well Type	
Depth to Water:	(feet) 10 · 60	Well Lock	
Depth to Bot cm:	(feet) 40.29	Weasuring Well Mat	Politi Walked.
Depth to Product: Length of Water Column:	(feet) 29.69	Well Diar	1
Volume of V ater in Well:	(gal) 4.75	Commen	ts:
Three Well Yolumes:	(gal) 14.25		
Purging Information			
Purging information			Conversion Factors
Purging Memod:	Bailer Peristaltic	—	gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bail r Material:	Teflon Stainless St.	Polyethylene Grundfos Pump	of water 0.04 0.16 0.66 1.47
Sampling Method:	Bailer Peristaltic	Grunatos Pump	1 gallon=3.785L=3785mL=1337cu. feet
Average Pumping Rate: Duration of Pumping:	(ml/min) 200 (min) 33		
Total Volume Removed:	(gal) Z Di	id well go dry? Yes 1	
Horiba U-5. Water Quality N	leter Used? Yes	No □	
Time DTW	Temp pH	ORP Conductivit	7
(feet)	(°C)	(mV) (mS/cm)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14.55 11.20 1800 12.21	13.14 7.18		9.3 1.24 0.134
180 12.21	ルフ・ダム ト・オ・ベト	-98 0.207	
	12.90 7.31	-79 0.204	97 0.84 0.134
15:05 13.25		-99 0.209 -93 0.479	97 0.84 0.134
15:05 13.25 15:10 13:30 15:15 13.98	12.66 7.36 12.47 7.16 11.29 7.17	-99 0.207 -92 0.479 -100 0.613	97 0.84 0.134
15:05 13.25 15:10 13:30 15:15 13:98 15:20 14:00	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:23 14:06 15:25 14:21	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:20 14:00	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:23 14:00 15:25 14:31	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:23 14:00 15:25 14:31	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:20 14:00 15:25 14.21	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	97 0.84 0.134 99 7.24 0.322 91 7.10 0.294 69 69 699 0.441
15:05 13.25 15:10 13:30 15:15 13:98 15:23 14:00 15:25 14:31	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	9.7 0.84 0.134 9.9 7.24 0.322 9.1 7.10 0.294 6.9 6.99 0.441 5.9 6.08 0.468
13.25 13.10 13.30 15:15 13.98 15:20 14.00 15:15 14.00 15:15 14.00 15:15 14.00 15:15 16:15 16:1	12.66 7.36 12.47 7.16 11.29 7.17 12.06 7.19 11.88 7.19	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	2-100ml ambers 9-7-0-84 0.134 0.322 9-1-7-0-0-322 9-1-7-0-0-327 0
13.25 13.25 15:10 13.30 15:15 13.90 15:20 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 15:2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.88 7.19 SVOC PAH'S VOC'S BTEX	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	2 - 100ml ambers Yes No
13.25 13.25 15.10 13.30 15.15 13.98 15.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.00 14.25 14.2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.88 7.19 SVOC PAH's VOC'S BTEX Cyanide	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	2 - 100ml ambers Yes No
13.25 13.25 15:10 13.30 15:15 13.90 15:20 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 15:2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.88 7.19 SVOC PAH'S VOC'S BTEX	- 79 0.209 -93 0.479 -100 0.613 -102 0.683	2 - 100ml ambers Yes No
13.25 13.25 15.10 13.30 15.15 13.90 15.20 14.00 15.25 14.00 15.25 14.00 15.25 14.00 15.25 14.00 15.25 14.00 15.25 14.00 15.25 14.00 15.25 15.2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.85 7.19 SVOC PAH's VOC's BTEX Cyanide Metals 1220 Duplicate?	- 79 0.207 -93 0.479 -100 0.695 -103 0.718	2 - 100ml ambers Yes No No No No No Shipped: Pace Courier Pickup
Sampling Information: Sampling Information: EPA SV-846 Method 827 EPA Method 335.4 EPA Method 200.7	12.66 7.36 12.44 7.16 11.29 7.17 12.06 7.19 11.85 7.19 SVOC PAH's VOC's BTEX Cyanide Metals	- 79 0.204 -93 0.479 -100 0613 -102 0.603 -103 0.319	2 - 100ml ambers Yes No
13.25 13.25 15.10 13.30 15.15 13.90 15.20 14.00 15.20 14.00 15.20 14.00 15.20 14.00 15.20 14.00 15.20 14.00 15.20 14.00 15.2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.85 7.19 SVOC PAH's VOC's BTEX Cyanide Metals 1220 Duplicate?	- 79 0.207 -93 0.479 -100 0.695 -103 0.718	2 - 100ml ambers Yes No 3 - 40 ml vials Yes No 1 - 250 ml plastic Yes No 1 - 250 ml plastic Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical
13.25 13.25 13.30 15:15 13.96 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 14.00 15:25 15:2	12.66 7.36 12.47 7.16 12.29 7.17 12.06 7.19 11.85 7.19 SVOC PAH's VOC's BTEX Cyanide Metals 1220 Duplicate?	- 79 0.207 -93 0.479 -100 0.695 -103 0.718	2 - 100ml ambers Yes No

National Grid Kingsley Ave	nue, Rome, New	York			
Sampling Pe	rsonnel: Peter	<u>Lyon</u>		ما :Date	2/03/20
Job Number	11	•		Weather:	CAC
Well Id.	LTMW-S02			Time in:	1450 Time Out: 1536
Well Id.					
Well	formation			Well Type	e: Flushmount Stick-Up
		TOC		Well Loci	
Depth to W		(feet) 10 · 3 · (feet) 17.98			g Point Marked: Yes No No
Depth to Bo Depth to Pr		(feet)		Well Mat	
Length of V	ater Column:	(feet) 7.6		Well Dia	<u> </u>
Volume of	Vater in Well:	(gal) 1.21		Commen	nts:
Three Well		(gal) 3.6			
				<u></u>	
Purgin	nformation				Conversion Factors
	th and	Bailer	Peristaltic Grundf	os Pump	gai/ft. 1" ID 2" ID 4" ID 6" ID
Purging M	er Material:			yethylene X	of 0.40 0.00 4.47
Sampling	lethod:	Bailer	Peristaltic Grund	fos Pump	water 0.04 0.16 0.66 1.47 1 gallon=3.785L=3785mL=1337cu. feet
Average P	imping Rate:	(ml/min)			1 gallon=3./85L=3/85IIIL=133/cu. 1881
Duration o	Pumping:	(min)		Yes	No.
Total Volu	ne Removed:	(gal)	Did well go dry?	1es[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Horiba U-	2 Water Quality	leter Used?	Yes No		
				To the	/ty Turbidity DO TDS
Time	DTW	Temp	pH ORP	Conductivi (mS/cm)	/ky Turbidity
	(feet)	(°C)	(mV) 5.58 -3	0657	<u> </u>
1453	1030		6.49 -21	065	K 10.7 7.25 .42/
1500	10.49	12.18	6.49 -47	0668	8 304 785.72 0430
1505	12/10/0		6.50 -70	.697	
1515	10.47	11.99	6.49 -77	• 70	
15 20	10.47	11.90 6	5.47 -80	0 708	10.9 3.15 .453
1525	10.47				
	 	 			
<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Samplir	g Information:				2 - 100ml ambers Yes No
	W-846 Method 827				3 - 40 ml vials Yes No
11 1	W-846 Method 826		X		1 - 250 ml plastic Yes No
11 1	PA Method 335.4	Cyanide Metals			1 - 250 ml plastic Yes No
	PA Method 200.7	Microra			
Sample	D: LTMW-S	2-1220 Duplio		 	Shipped: Pace Courier Pickup Drop-off Albany Service Center
Sample		MS/M	SD? Yes No	<u> </u>	<u>.</u>
	ts/Notes:				Laboratory: Pace Analytical
Comme	10.00				Greensburg, PA
	- 1				
1		hboard\Planning\84805	20 Jane		Page 9

National Grid Kingsley Ave	nue, Rome, New	/ork						
Cline Da	sonnel: Pete	1 700	, we		/ 2ر: Date:	03/20		
		. ~			Weather:	- '		
Job Number	0603200-1344	00-221			Time In:	950	Time Out:	n KO
Well Id.	LTMW-D03				time in:	7700	Time Out.	<u> </u>
		· <u>·</u>						
Well I	formation	•				Fluck	mount Sti	ick-Up
				Other	Well Type		Yes	No
Depth to Wa	ter:		,15		Well Lock		Yes	No No
Depth to Bo		(feet)	40.73		Well Mate	Point Marked: rial: PVC		
Depth to Pro	duct:	(feet)			Well Dian	i	2" Othe	
	ater Column:		5.58	10	Comment			
	ater in Well:		9.90 5.0		Common	·		
Three Well	/φlumes:	(gal) //	9-34 12	02				
L				<u>, , , , , , , , , , , , , , , , , , , </u>				
					 			
Purging	Information						Conversion Fa	actors
	1	-, <u>, , , , , , , , , , , , , , , , , , </u>	Peristaltic	Grundfo	s Pump	gai/ft.	1" ID 2" ID	4" ID 6" ID
Purging Me	npd:	Bailer Teflon	Stainless St.	<u> </u>	ethylene	gai/it.		
Tubing/Bail		┣╼ ┩	Peristaltic	. 		water	0.04 0.16	0.66 1.47
Sampling N		Bailer	Penstanic	Ciandio		1 gallo	n=3.785L=3785ml	_=1337cu. feet
11	mping Rate:	(mi/min) (min)						
Duration of		(gal)		d well go dry?	Yes N	o Z		
	e Removed:			No ☐				
Horiba U-5	Water Quality M	eter Used?	Yes					
			·		0 1 45 45	/ Turbidity	DO	TDS
Time	DTW	Temp	pН	ORP	Conductivit	(NTU)	(mg/L)	(g/L)
	(feet)	(°C)		(mV) -66	(mS/cm) 1.13	(810)	, 90	.728
1010	6.31	11.05	6.67	-118	1.17	0	.21	246
1015	2.38	10.85	7.02	-132	1,15	0	0.00	. 7.36
1020		10,80	7.10	-135	1.05	0	0.00	-667
1025	8.46	10.80					I	
1030			216	-140	.934	0		6.98
	8.62	1079	3.16	-140	.934	0	0	.620
10.90	3 8.72	10.79	717	-142	.934 .968			
1040		1079			.968	0	0	.620
	3 8.72	10.79	717	-142	.968	0	0	.620
	3 8.72	10.79	717	-142	.968	0	0	.620
	3 8.72	10.79	717	-142	.968	0	0	.620
	3 8.72	10.79	717	-142	.968	0	0	.620
1040	8.72	10.79	717	-142	.968	0	0	.620
1040	3 8.72	10.79	717	-142	.968		0	.620
Sampling	8.72	10.79	314	-142	.968	2 - 1,00ml amb	oers Yes	.620 .645
Sampling EPA S	8, 7-2 8, 85	10.79 10.79 10.79	217 316	-142	.968	2 - 1,00ml amb 3 - 40 ml via	pers Yes	620 .645 No No
Sampling EPA S EPA S EFA S	Method 335.4	10.79 10.79 10.79 SVOC VOC's Cyar	PAH's BTEX nide	-142	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla	pers Yes	.620 .645
Sampling EPA S EPA S EF	8, 22 8, 85 Information: V-846 Method 8270 V-846 Method 8260	10,79 10.79 10.79 SVOC VOC's	PAH's BTEX nide	-142	.968	2 - 1,00ml amb 3 - 40 ml via	pers Yes	620 .645 No No
Sampling EPA S EPA S EFF	Method 200.7	10.79 10.79 10.79 SVOC VOC's Cyar Met	PAH's BTEX nide	-143	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla	pers Yes	620 .645 No No No No
Sampling EPA S EPA S EFF Sample I	Method 335.4 A Method 200.7 LTMW-D03	10,79 10.79 10.79 SVOC VOC's Cyar Met	PAH's BTEX nide als uplicate?	-/43 -/43 Yes No	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla	pers Yes	.620 .645
Sampling EPA S EPA S EFF	Method 335.4 Method 200.7 LTMW-D03	10,79 10.79 10.79 SVOC VOC's Cyar Met	PAH's BTEX nide	-143	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yes als Yes stic Yes stic Yes ace Courier Pic off Albany Service	S No
Sampling EPA S EPA S EPE Sample II Sample Til	Method 335.4 A Method 200.7 LTMW-D03 Method 200.7	10,79 10.79 10.79 SVOC VOC's Cyar Met	PAH's BTEX nide als uplicate?	-/43 -/43 Yes No	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla	pers Yes stic Yes stic Yes Pace Courier Pic off Albany Servic	No N
Sampling EPA S EPA S EFF Sample I	Method 335.4 A Method 200.7 LTMW-D03 Method 200.7	10,79 10.79 10.79 SVOC VOC's Cyar Met	PAH's BTEX nide als uplicate?	-/43 -/43 Yes No	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yes als Yes stic Yes stic Yes ace Courier Pic off Albany Service	No N
Sampling EPA S EPA S EFF Sample II Sample Til Commen	Method 335.4 A Method 200.7 LTMW-D03 Method 200.7	10.79 10.79 10.79 SVOC VOC's Cyan Met	PAH's BTEX nide als uplicate?	-/43 -/43 Yes No	.968	2 - 100ml amb 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yes stic Yes stic Yes Pace Courier Pic off Albany Servic	No N

National Grid Kingsley Ave	nue, Rome, New		,
Sampling Pe	sonnel:		
	I I	Weather: Cwm 34	
Job Number		00-221 Time In: 09.50 Time Out: 10.50	
Well Id.	LTMW-S03	14110 111. 77. 980	
Well I	formation	TOC Other Well Type: Flushmount Stick-Up	
Dordh 40 \0/4		(feet) 4-15 Well Locked: Yes No	
Depth to We Depth to Bo	iam.	(feet) 13.70 Measuring Point Marked: Yes	
Depth to Pr	duct:	(feet) Well Material: PVC SS Other:	
	ater Column:	(feet) 9.55 Well Diarheter: 1" 2" ★Other:	
Volume of V	/ater in Well:	(gal) 1 - 5 2 Comments:	
Three Well	/olumes:	(gal) 4,5'8	
			ļ
Purging	Information	Conversion Factors	
- NA	bod	Bailer Peristaltic Grundfos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID	
Purging Me Tubing/Bai		Today Stainless St Polyethylene Of	
Sampling N			
	nping Rate:	1 gallon=3.785L=3785mL=1337cu. feet	
Duration of		(min) 30	
Total Volum	e Removed:	(gal) 7 Did well go dry? Yes No	
Horiba U-5	Water Quality	eter Used? Yes No	<u> </u>
L			a
Time	I DTW	Temp pH ORP Conductivity Turbidity DO TDS	1
	(feet)	(C) G G G G G G G G G	
10:10	4.17	10-22 + 15 - 40 0 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	
10:15	114.17	10.20 6.07 0 964 3.7 778 0.303	i
10:20	113.12	10.25 655 161 0.473 41 7.38 0.358	
10:30	11,515	10 10 659 -61 0494 39 697 6315	
10 - 30	11/12	10012 10-54 -62 10-489 4.3 10-3> 0.310	
11000	4,12	10.08 654 -62 0.494 4.4 5.95 0.321	
 			╢┃
			11
Ц	 		_
	 		
Samplin	nformation:		
-5.4	N 846 Mothod 8276	SVOC PAH's 2 - 100ml ambers Yes No	
11 11	V-846 Method 8270 N-846 Method 826	VOC's BTEX 3 - 40 ml vials Yes No	
II II	A Method 335.4	Cyanide 1 - 250 ml plastic Yes No	
11 11	A Method 200.7	Metals 1 - 250 ml plastic Yes No	
		Shipped: Pace Courier Pickup	
Sample I		1-1220 Duplicate? Tes Touris Contor	
Sample T	ne: <u>10 = 40</u>	WIS/WISD: Tes	
Commen	s/Notes:	Laboratory: Pace Analytical	
	· ·	Greensburg, PA	
	I	Page 11	of 21

National Grid Kingsley Ave	nue, Rome, New	/ork
		Date: 12 13/20
Sampling Pe	sonnel:	200
Job Number	0603200-1344	10-221 VVeatrick 2000 4
Well Id.	LTMW-D04	Time In: 10.50 Time Out:
Well Ir	ormation	
		TOC Other Well Type Flushmount Stick-Up
Depth to Wa	er:	(feet) 46.36 Well Locked: Yes No Measuring Point Marked: Yes No
Depth to Bot		(Teet) 40.30 Mediatrial: BVC SS Other:
Depth to Pro		(ieei)
	ter Column:	(leet) Selection of the company of t
Three Well	ater in Well:	(gal) 5.75 Comments.
Trilee vveii	diumes.	(921)
<u></u>		
Purging	nformation	
		Conversion Factors
Purging Met	nød:	Bailer Peristaltic Grundfos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Baile	r Material:	Teflon Stainless St. Polyethylene Of
Sampling M		Bailer
Average Pu		(ml/min) 230 1 gallon=3.785L=3785mL=1337cu. feet
Duration of		(min) 30 (gal) 2 Did well go dry? Yes No
1	Removed:	
Horiba U-52	Water Quality Me	ter Used? Yes No
		Town DR Conductivity Turbidity DO TDS
Time	DTW	remp bil Grands Garage
11:00	(feet)	
11:00	10,52	970 6.66 -40 0.532 76.0 10.23 0.343
11.00	10.97	10,02 7.22 -80 0 584 14.3 9.50 0.351
137 00	19.04	999 7.47 - ++ 0.5560 12-2 8.99 0.357
11/20	11.08	4.98 7.46 -87 0.635 13.7 8.32 6.407
11:25	11.10	0.08 7.49 -90 6.644 13.4 7.79 0.412
171:30	11-10	10.20 7.53 -73 6.644 10.6 6.34 0.412
Ш		
Caracilla	nformation:	
Sampling	nformation:	
EDA SV	846 Method 8270	SVOC PAH's 2 - 100ml ambers Yes No
	846 Method 8260	VOC's BTEX 3 - 40 ml vials Yes No
13 1	Method 335.4	Cyanide 1 - 250 ml plastic Yes No
11 1	Method 200.7	Metals 1 - 250 ml plastic Yes No
		D 57
Sample ID	4.0	
Sample Tim	11:30	MICHARDS: 100 IN Z
Comments	Notes:	Laboratory: Pace Analytical
		Greensburg, PA
		pard\Planning\848052.xlsm Page 12 of
11 1	1	

National Grid Kingsley Ave	լսе, Rome, New՝	ʻ ork		·				
					Date: /2/	3/20		<u> </u>
Sampling Pe				-		cloudy 38°		
Job Number:		10-221			Time In:	! '	Time Out:	1/35
Well Id.	LTMW-S04				Time in.	1030	Time Can	
								
Well In	drmation		TOC (Other	Well Type	Flush	mount St	ick-Up
			TOC (Other	Well Lock	ſ	Yes	No
Depth to Wa			17.26			Point Marked:	Yes 🔀	No
Depth to Bot Depth to Pro					Well Mate	: N	✓ SSOthe	 ;
Length of W			.82		Well Dian	eter: 1"L	2" \(\sum_\)Othe	r:
Volume of V			,25		Comment	s:		ļļ
Three Well			1.75					
								
				· · · · · · · · · · · · · · · · · · ·				
Purging	Information						Conversion Fa	actors
				O	os Pump		1" ID 2" ID	4" ID 6" ID
Purging Me		Bailer	Peristaltic		rethylene	gal/ft. of		
Tubing/Bail		Teflon	Stainless St. Peristaltic	_	os Pump	water	0.04 0.16	0.66 1.47
Sampling M	ethod:	(ml/min)	Pensialic	Z Orunar	30 i ap	1 gallo	on=3.785L=3785m	L=1337cu. feet
	mping Rate:	(min)					•	
Duration of	e Removed:	(gal)		id well go dry?	Yes N			i i
11			Ves	No □				1
Horiba U-5	Water Quality M	elei Oseur						
		T - 10 - 10	рН	ORP	Conductivit	/ Turbidity	DO	TDS
Time	DTW (fact)	⁻∵Temp (°C)	Pii	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)
	(feet) タッタ	10,25	6.49	55-	.623	0	4.33	_393
1105	9.84	10,79	6.13	286	.568	0	4.46	-393
1100	9.88	10.97	6,01	332	.573	0	4.40	•367 •37/
1115	*99.9 /	10.99	5.95	342	2579	0	4.31	324
1120	9.91	11.05	5.93	352	-584	-	4.27	.328
1125	9.91	11.15	5.92	356	-590	0	4.13	1381
1130	9.91	11.22	5.91	358	1.575	<u> </u>	1	
<u> </u>			 	 				
			 		<u> </u>			
	 						<u> </u>	<u> </u>
<u> L</u>	▎						-	
Sampline	Information:							ļ
Sampling	inomation.							
EPA S	V-846 Method 8270	SVOC	PAH's			2 - 100ml am		s No
The state of the s	V-846 Method 8260	1	BTEX			3 - 40 ml vi		No No
E	Method 335.4	Cya				1 - 250 ml pla 1 - 250 ml pla		No No
E	Method 200.7	Me	als			i - 250 ini pi	2010 10	
		4000	unlineto?	Yes No D	ZI .	Shipped:	Pace Courier Pic	ckup 🔀 📗
Sample II	LTMW-S0		uplicate? IS/MSD?	Yes No	>	B	off Albany Servi	
Sample Ti	ie: <u>//30</u>	ĮV	13/IVI3D !			·		nalytical
Commen	s/Notes:					Laboratory:		burg, PA
							O CONS	31
	nB\syracuse-01\Dash	heard\ Dianaina\	248052 vlsm					Page 13 of 2
	⊾R\cvracuse-01\Dash	poard\Pianning\@	つべひしつをいわけし			ì		

National Grid Kingsley Ave	nue, Rome, New	12/2/2
Sampling Pe	rsonnel: K	Date: 12/3/25 Weather: 12/3/25
Job Number		
	LTMW-D05	00-221 Time In: 09:00 Time Out: 09:50
Well Id.	L I IVI VV - DOS	
\Mell I	formation	Well Type Flushmount Stick-Up
- VVCII I		TOC Other Well Type.
Depth to W	ter:	(feet) 9.60 Well Locked.
Depth to Bo	tom:	(feet) 46.53 Measuring Point Marked. Vell Material: PVC SS Other:
Depth to Pr	duct:	(feet) Well Diameter: 1" 2" Other:
Length of V	ater Column:	(reet) 3C 75
Volume of Three Well	Vater in Well:	(gal) 5. 70 Gold
I nree vveii	volumes.	(901)
<u> </u>		
Purain	nformation	Conversion Factors
		- 57 - 1" ID 2" ID 4" ID 6" ID
Purging M	thod:	Bailer Peristaltic Grundfos Pump gal/ft.
Tubing/Ba	er Material:	water 0.04 0.16 0.66 1.47
Sampling	lethod:	1 gallon=3,785L=3785mL=1337cu. feet
	Imping Rate:	(ml/min) 200 (min) 30
	Pumping: ne Removed:	(gal) Did well go dry? Yes No
Horiba U-	2 Water Quality	letel Oscur
	DTM I	Temp pH ORP Conductivity Turbidity DO TDS
Time	DTW (feet)	(C) (mV) (mS/cm) (NTU) (mg/L) (g/L)
09:15	10.95	12.69 7.97 -115 0351 69 001 032
09:W	12.20	12.41 7.93 -120 037 # 27 8.6 0 226
09:25	13.35	12.13 4.03 12.24 11.5 10 00 72.7
09:30	14.66	11-11 9 07 -100 10 250 14.3 17.24 10.22 +1
29:35	12.02	11.69 7.29 - 9-1 1/351 4.3 7.12 0.239
00,40	17.50	11.39 1.93 -93 0.353 7.2 7.69 0.230
109.44	1 7.30	
Samplii	g information:	
		2 - 100ml ambers Yes No
	W-846 Method 82	
	SVV-846 Method 826 PA Method 335.4	Cyanide 1 - 250 ml plastic Yes
	PA Method 200.7	Cyanide 1 - 250 ml plastic Yes No
		Shipped: Pace Courier Pickup
Sample	D: LTMW-D	5-1220 Duplicate? Yes No Prop off Albany Service Center
Sample	me: <u>09.1</u>	MS/NSD? Tes NS
Comme	ts/Notes:	Laboratory: Pace Analytical Greensburg, PA
33111110		
		Page 14 of hboard\Planning\848052.xlsm
tod		Annother January 197000 English and the second seco

National Grid Kingsley Ave lue, Rome, New	f ork		. Car
Sampling Personnel: Pcke	Lyon	Date: 13	3 4.9
Job Number 0603200-1344		Weather:	Loudy 34°
		Time In: 🗘	950 Time Out: 950
Well Id. LTMW-S05			
Depth to Water: Depth to Bo om:	TOC Other (feet) 10.79 (feet) 16.83 (feet)	Well Type: Well Locke Measuring P Well Materi	oint Marked: Yes No
Depth to Product: Length of Water Column: Volume of Vater in Well:	(feet) 6.04 (gal) 0,966	Well Diane Comments	· ·
Three Well /olumes:	(gal) 2.87		
Purging Information Purging Me Hod: Tubing/Bailer Material: Sampling Nethod: Average P. mping Rate:	Teflon Stainless St. Poly Bailer Peristaltic Grundf	os Pump vethylene fos Pump	Conversion Factors gal/ft.
Duration of Rumping: Total Volume Removed: Horiba U-52 Water Quality N	(min) 30 (gal) 9 eter Used? Yes No	Yes No	
Time DTW (feet)	Temp pH ORP (°C) (mV)	Conductivi y (mS/cm)	(NTU) (mg/L) (g/L)
0913 10.13	12.43 6.69 207 12.13 6.37 216	.568	2.5 2.77 .35'4 1.1 2.49 .344 0 2.13 .345
092 10.24	11.92 6.22 2.18 11.70 6.16 199 11.45 6.15 160	.539 .547	0 1.59 1350
0936 10.30	177, 17	0624	0 .97 .373
Sampling Information: EPA : W-846 Method 826 EPA : W-846 Method 826 EPA Method 335.4 EPA Method 200.7			2 - 100ml ambers Yes No
Sample D: LTMW-St Sample me: 0945			Drop-off Albany Service Center Laboratory: Pace Analytical
Comme ts/Notes:	hboard\Planning\848052.xlsm		Greensburg, PA Page 15 of 2

National Gri Kingsley Av	rue, Rome, New	York						
On and in a D	rsonnel: Peter	1400		7	Date:	03/20		
1			<u>.</u>		Weather:	' / a		
Job Number]	00-221			Time In:/		Time Out: /	UnD
Well Id.	LTMW-D06		· · · · · · · · · · · · · · · · · · ·		Time in.		11110 0 0 0 1	700
								
Well	formation		TOC	Other	Well Type	: Flush	mount St	ick-Up
Double to W	45		2.45	Other	Well Lock		Yes	No
Depth to W			52.22		Measuring	Point Marked:	Yes	No[]
Depth to Pr		(feet)	_		Well Mate			
	ater Column:	(feet)	39.77	-	Well Diar		2" \sum_Othe	r:
	/ater in Well:	(gal)	6.36 7.08		Commen	ts:		
Three Well	/plumes:	(gal)	1.08	J·				
						* * * * * * * * * * * * * * * * * * * *		
Purgin	Information						Conversion Fa	
Durging M	rlod:	Bailer	Peristaltic	Grundfo	s Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Purging Me Tubing/Bai	nou: Material	Teflon	Stainless St.	_	ethylene X	of		
Sampling N		Bailer	Peristaltic	Grundfo	s Pump	water	0.04 0.16	0.66 1.47
	mping Rate:	(ml/min) 2	00			1 galio	n=3.785L=3785ml	L=1337cu. feet
Duration o	Pumping:	(min)	30_					
Total Volu	e Removed:	(gal)		id well go dry?	YesN	of X 1		
Horiba U-5	Water Quality N	eter Used?	Yes	No □				
<u> </u>		<u> </u>						T TOO TO
Time	DTW	Temp	рН	ORP	Conductivit	F 1	DO (************************************	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L) /.08	(g/L) .5/7
2325	12.89	12.42	6.57	-7	.860	_	.02	.294
1330	/3.31	12,40	7.19	-52 -72	.440	0	0	.286
1335		12.42	7.36	-83	.446	0	0	.290
1340	13.46	1238	7.43	-88	.464	0	0	.302
1345	13.48	12.47	7.43	-88	.490	0	0	.319
1355	13.50	12.50	7.41	-87	.507	0	0	.343
				<u> </u>	<u> </u>			
i			}					
		<u> </u>	<u> </u>	<u> </u>				
	 							
Samplin	nformation:							
	N OAE Mothod 9070	SVOC	PAH's		•	2 - 100ml ami		s No
	V-846 Method 8270 N-846 Method 826					3 - 40 ml via		
11	A Method 335.4	Cyai				1 - 250 ml pla	. =	
	A Method 200.7	Met				1 - 250 ml pla	stic Ye	s No L
					7	Chinned	Pace Courier Pic	kun 🗖 📗
Sample I	LTMW-DO		uplicate?	Yes No	$ \epsilon $		off Albany Service	
Sample T	na: 13.55		IS/MSD?	Yes No No	7	1	-	
Commer	s/Notes:					Laboratory:	Pace Ar	· II
-						<u></u>	Greensb	oury, FA
į		i i jihari 4. M	049052 vlem					Page 16 of 2
\\svrrmt88-	m3\syracuse-01\Das	poard\Planning\	DIGIX. NOTO					

National Grid Kingsley Ave	ιμe, Rome, New	'ork				4 1 2 2 2		
Sampling Pe	sonnel: PcA	r Lyon				103/20		
Job Number:	I 1	,			Weather:	suny 36°		
	LTMW-S06			- .	Time in:	240	Time Out: /	320
Well Id.	L1 14144-200							
Depth to Wa Depth to Bot Depth to Pro Length of W	om: tuct: ter Column: ater in Well:	(feet) /,3 (feet) (feet) (feet) /	TOC 3.20 17.60 - 1.4 704	Other	Well Type Well Lock Measuring Well Mate Well Diam Comment	ed: Point Marked: rial: PVC eter: 1"	Yes Yes	
Tillee vvcii					· · ·			
Purging Me Tubing/Bail Sampling M Average Pu Duration of Total Volur	r Material: ethod: nping Rate:	(min) (gal)		Poly	os Pump ethylene os Pump Yes N		Conversion F. 1" ID 2" ID 0.04 0.16 on=3.785L=3785m	4" ID 6" ID 0.66 1.47
Tioriba o o								T TO T
Time	DTW	Temp	рН	ORP	Conductivit	Turbidity (NTU)	DO (mg/L)	TDS (g/L)
	(feet)	(°C)	- 10	(mV)	(mS/cm)	75.5	7.88	.842
1245	13.38	12.40	6.17	519	1.40	29.7	4.27	. 899
1250	13.39	1250	6.26	-12	1.41	6.5	1.75	.902
1255	 	12.65	6.26	-16	1.41	5.6	1.00	.900
1300		12.62	6.25	-17	1:41	0	0.82	.900
12.05 13.10		12.67	6.25	-18	1.41	2.2	0.68	.901
1315		12.69	6.26	-19	1.41	0	•57	+
				<u> </u>			1	
							1	
	.			 				
			<u></u>	<u>_</u>				
Samplin	nformation:			·				
EPA S	W-846 Method 8270 W-846 Method 826 A Method 335.4 A Method 200.7		BTEX nide		-7	2 - 100ml am 3 - 40 ml vi 1 - 250 ml pl 1 - 250 ml pl	als Ye astic Ye astic Ye	No No No No No
	■ 11	14220 E	uplicate?	Yes No	 31		Pace Courier Pi	F" 1 II
Sample II Sample T			NS/MSD?	Yes No	<u> </u>	· 1	off Albany Serv	
Sample T	ne: <u>1315</u>		· ·	YesNo	<u> </u>	Laboratory:	Pace A	nalytical
Sample T			· ·	Yes No	<u> </u>	· 1	Pace A	

National Grid	iue, Rome, New	ork.
Kingsley Ave	de, Rome, New	OIK
Sampling Pe	sønnel: K	Date: /2/3/20
Job Number:	0603200-1344	
Well Id.	TMW-S07	Time In: (2:40 Time Out: /3-25
Well In	ormation	TOC Other Well Type: Flushmount Stick-Up
Danth to Mo		TOC Other Well Type Flushmount Stick-Up X (feet) 10.91
Depth to Wa Depth to Bot		(feet) 17.82 Measuring Point Marked: Yes No
Depth to Pro		(feet) Well Material: PVC SS Other:
Length of W		(feet) (2.6)5 Well Diameter: 1" 2" Other:
Volume of W		(gal) 1.09 Comments:
Three Well V	plumes.	(gal) 3<28
L		
Purging	nformation	
		Conversion Factors Paristaltic Grundfos Pump Grundfos Pump Grundfos Pump
Purging Met		Bailer Peristaltic Grundfos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID of Grundfos Pump gal/ft.
Tubing/Baile Sampling Me		Bailer Peristaltic Grundfos Pump water 0.04 0.16 0.66 1.47
Average Pur		(ml/min) 200 1 gallon=3.785L=3785mL=1337cu. feet
Duration of	umping:	(min) 3:3
Total Volum		(gal) Z Did well go dry? Yes No
Horiba U-52	Water Quality Me	er Used? Yes No
		Temp DH ORP Conductivity Turbidity DO TDS
Time	DTW (feet)	Temp pH ORP Conductivity Turbidity DO TDS (°C) (mV) (mS/cm) (NTU) (mg/L) (g/L)
12:45	1/120	13.04 6.87 -8 0587 103 6.71 0.389
12:50	12-01	13.48 659 -66 0.724 8.5 6.08 0.464
1255	12.15	3.46 6.59 - 72 6.734 8.0 5.51 0.470 3.56 6.60 - 76 0.722 81 5.03 0.462
13:00	12.43	3.59 6.60 -76 0.722 8.1 3.03 0.962 3.72 6.61 -79 0.713 7.1 4.46 0.456
13:10	12.55	13.62 6.61 -82 0.716 7.1 3.90 0.458
13:15	12 40	3.61 6.61 -92 0.716 6.8 362 0458
Ш		
Sampling	nformation:	
		SVOC PAH's 2 - 100ml ambers Yes No
11 1	846 Method 8270 846 Method 8260	SVOC PAH's 2 - 100ml ambers Yes No
	Method 335.4	Cyanide 1 - 250 ml plastic Yes No
	Vethod 200.7	Metals 1 - 250 ml plastic Yes No
		220 Duplicate? Yes No Shipped: Pace Courier Pickup
Sample ID: Sample Time	LTMW-S07-	Duplicate? Yes No Shipped: Pace Courier Pickup MS/MSD? Yes No Drop-off Albany Service Center
		Laboratory: Pace Analytical
Comments	Nptes:	
		Greensburg, PA
		Greensburg, PA Page 18 of 2

National Grid Kingsley Ave	ue, Rome, New	ork						
			<u> </u>		Date:	/03/20		···_
Sampling Per		y Mar			Weather:			
Job Number:	0603200-1344	0-221		·····			Time Out:	12.40
Well Id.	_TMW-S08			<u></u>	Time In:	55	Time Out.	10-10
Well In	ormation		тос	Other	Well Type:	Flush	mount St	tick-Up
Depth to Wa	et.		.58		Well Lock		Yes	No
Depth to Bot			17.39			oint Marked:	Yes	No
Depth to Pro		(feet)			Well Mate	! · · · · ·	SS Othe	
Length of W			.81		Well Diam	_		"·
Volume of W		1	28		Comments			1
Three Well V	olumes:	(gai)	06			-		
				<u> </u>				
Burging	nformation		XTXT	******				
ruiging	Hormadon						Conversion Fa	
Purging Met	od:	Bailer	Peristaltic	Grundfo	s Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Baile		Teflon	Stainless St.		ethylene	of	0.04	0.66 1.47
Sampling M		Bailer	Peristaltic	Grundfo	s Pump	water	0.04 0.16 n=3.785L=3785m	
Average Pu	nping Rate:		<u> </u>			_ 1 gaild	n=3.785L=3765III	L=1337Cd. leet
Duration of			<u>30 </u>	id well go dry?	Yes No	וסו		
Total Volum	1	(gal)			169	المكا		
Horiba U-52	Water Quality M	ter Used?	Yes	No.			-4	
					0	Turbidity	DO	TDS
Time	DTW	Temp	pН	ORP (mV)	Conductivity (mS/cm)	(NTU)	(mg/L)	(g/L)
	(feet)	(°C) 11.39	6.38	3/0	.269	0	9.20	.170
1200	15.86 15.95	12.42	6.57	264	.220	3.6	7.81	.143
1210	15.98	12.82	6.50	243247	245	0	7.01	0160
1215		12.92	6.42	241	-263	0	6.76	172
1220	16.01	12.94	6.35	242	.295	0	6.38	.193
1225	16.01	12.96	6.31	246	.328	0	5.90 5.71	.222
1230	16.02	12.95	6.30	249	.348		0.77	1.300.7
	1	<u> </u>				 		
			<u> </u>	 				
 								
								
Sampling	nformation:							
							V	s No
EPA SV	-846 Method 8270	SVOC	PAH's			2 - 100ml amb		
	-846 Method 8260					3 - 40 ml via 1 - 250 ml pla		
11 11	Method 335.4	Cyar				1 - 250 ml pla		
∥ EP∤	Method 200.7	Met	ais			, 200 m pio	, <u>-</u>	
Comple ID	LTMW-S08	1220 Di	uplicate?	Yes No X	7	P 1	Pace Courier Pic	
Sample ID Sample Tim			S/MSD?	Yes No	Ž		off Albany Servic	ce Center
						Laboratory:	Pace Ar	nalytical
Comments	rvotes:						Greensb	II
					<u>[</u>			
\\+00	3\syracuse-01\Dash	pard\Planning\8	48052.xlsm					Page 19 of 2

National Grid Kingsley Ave	lue, Rome, New	ork			10	/w /s		
Sampling Pe	sonnel:			 .	Date: 12/	03/20		
Job Number:	1■ 1	0-221			Weather:	Sunny 39"		146
-	LTMW-S09	·			Time In: #		Time Out: 14	45
Well Id.	LI-14144-303						<u> </u>	
N/OIL In	ormation							52
- vveii ii	Offiation		TOC (Other	Well Type	Flush		ck-Up
Depth to Wa	er.		82		Well Lock		Yes	No No
Depth to Bo			16.92			Point Marked: rial: PVC	Yes X SS Other	No[]
Depth to Pro		(feet)			Well Mate		2" Other	 _
Length of W	iter Column:				Well Diam			··
	ater in Well:	(gal)	136		Comment	5 :		
Three Well		(gal)	3.40		 		,	
				*				
							······································	
Purgino	Information					<u> </u>	Conversion Fa	ectors
		L -		- 7				4" ID 6" ID
Purging Me	hod:	Bailer	Peristaltic		os Pump	gal/ft. of	· · · · · · · · · · · · · · · · · · ·	
Tubing/Bail		Teflon	Stainless St.	 .	ethylene	water	0.04 0.16	0.66 1.47
Sampling N	elhod:	Bailer	Peristaltic	Grundio	os Pump		n=3.785L=3785ml	
	nping Rate:	(ml/min)						
Duration of		(min)		d well go dry?	Yes N	·[조]		
Total Volun	e Removed:	(gal)			169			
Horiba U-5	Water Quality _∞ M	eter Used?	Yes	∑ No □				
								TDS
Time	DTW	Temp	рΗ	ORP	Conductivity		DO (mar/l)	(g/L)
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L) 2.5/	.434
1405	9.82	1240	7.07	-16	-651	0.1	3,85	.50)
14 10	9.83	12.97	6.59	74	. 793	2.4	2.94	.483
HIS	9.83		6.57_	103	755	0	234	.470
1420	9.83	13,28	6.57	114	• 734 • 728	0	2.11	.465
1425	9.83	13.28	6.58	121	• 716	0	1.71	. 459
14 30	9.83	13.24	6.60	125	-717	0	1.70	.459
1435	9.93	13.20	6.61	127	1 - 1/4			
 				 	 			
			 	 	 			<u> </u>
<u> </u>	-		<u> </u>	<u> </u>				<u> </u>
Щ	╟┼─── ┤							
								l l
Samplin	Information:							
1	0070	SVOC	PAH's			4 - 100ml am	bers Ye	s No
41	V-846 Method 8270 N-846 Method 8260					3 - 40 ml via		s No No
	A Method 335.4	Cya				1 - 250 ml pla		
	A Method 333.4 A Method 200.7	Me				1 - 250 ml pla	astic Ye	s No L
	Field Duplic				 7	_,	n O - o to - Dis	akun 🔽 📗
Sample I		- 1220 D	uplicate?	Yes No	_	•	Pace Courier Pic off Albany Servi	
Sample T	1.124	N	IS/MSD?	Yes No	<u> </u>	Drop-		
<u> </u>						Laboratory:		nalytical
Commer	s/Notes:						Greensl	burg, PA
				0		<u></u>		Page 20 of 2
\\+00	m3\svracuse-01\Daş	board\Planning\	848052.xlsm				=	
\\cvrrmtxx-								

National Grid Kingsley Ave	ue, Rome, New	ork				Vota		
Sampling Pe	sonnel: 🚜	<u> </u>			Date: 12	_ ·		
Job Number:	0603200-1344	0-221	<u></u>	·	Weather: 5	Emm 39	1	1712/
Well Id.	LTMW-S10				Time In:	1.45	Time Out:	12.91
ven id.	110000							
Well In	ormation			· · ·			-	
			TOC	Other	Well Type)	k 7	tick-Up
Depth to Wa	er:	(feet)	(3)		Well Lock	li e	Yes Yes	No No
Depth to Bot	pm:	(feet)	17.18		Measuring I Well Mate	Point Marked: rial: PVC		··- 🗀 📗
Depth to Pro	luct:	(feet)	<i>C6</i> :		Well Diam	۱٬۰ ۰۰ ۰۰	2" Othe	
Length of W	ter Column:	(feet)	<u>66</u>		Comment	<u> </u>		
	ater in Well:	(gal) /·	·30					
Three Well	olumes:	(gal) 3	-30					
L								
Durging	nformation							
Purging	Hormation						Conversion F	
Purging Met	uod.	Bailer	Peristaltic	Grundfo	os Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bail	Material:	Teflon	Stainless St.	Poly	ethylene	of	0.04	0.66 1.47
Sampling M		Bailer	Peristaltic	Grundfo	os Pump	water	0.04 0.16	
Average Pu		(ml/min)	700			1 gallo	on=3.785L=3785m	IL=1337Cu. leet
Duration of		(min)	30		v			
Total Volum	Removed:	(gal)		id well go dry?	Yes N			
Horiba U-52	Water Quality M	ter Used?	Yes	No□		3		
	H	"" "= ================================						
Time	DTW	Temp	рН	ORP	Conductivity		DO	TDS
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L) (3:387
11:55	10.45	9.80	7.46	-29	0.620	9.1	9.39	0.335
12:00	10.60	10,75	10.92	94	0.514	57	9-240	0326
12:05	10.60	11.20	1 137	131	0.509	69	8.99	0.326
12:10	10.73	11.39	6.86	132	0.510	44	8.86	0.326
12.13	11.74	11.82	6 94	130	0.512	lai	8.65	0.324
12:20	(1),74	17 18	 	7 - 7				コグソークング コロー
12.63		1/2 4/ ()	1 (0.0)	124	0.523	601	8.48	 /// 223
		1610	(0.81	124	0.523	601	8.48	1/4 53.3
<u> </u>		1240	(0.01	129	0.523	(001	8.48	933
		/C-1 ()	(0.0)	124	0.523	601	8.48	4 33.5
		1640	(0.0)	129	0.52-3	(001	9.48	7, 333
		/C10	(0.0)	12.4	0.52-3	601	9.48	2,533
Sampling	Information:	/C10	(0.0)	12.4	0.52-3	(001	9.48	4 53 5
		/C10		12.4	0.52-3			es No
EPA SV	7-846 Method 8270		PAH's	12.4	0.52-3	6 - 100ml aml	pers Ye	es No
EPA SV EPA SV	-846 Method 8270 V-846 Method 8260	VOC's	PAH's BTEX	12.4	0.52-3	6 - 100ml aml	pers Yeals Yeals	` K
EPA SV EPA SV EP	-846 Method 8270 /-846 Method 8260 Method 335.4	VOC's Cyar	PAH's BTEX nide	12.4	0.52-3	6 - 100ml aml 3 - 40 ml via	pers Yeals Yeastic Year	No No
EPA SV EPA SV EP EP	7-846 Method 8270 7-846 Method 8260 Method 335.4 Method 200.7	VOC's Cyar Met	PAH's BTEX nide als		0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla	pers Yeals Yeastic Yeastic Year	No No No No
EPA SV EPA SV EP EP LT	7-846 Method 8270 7-846 Method 8260 Method 335.4 Method 200.7 W-S10-MS-1220	VOC's Cyar Met LTMW	PAH's BTEX nide		0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yeals Yeastic Yeastic Yeastic Years Y	No No No Ckup
EPA SV EPA SV EP EF LT Sample ID	-346 Method 8270 /-846 Method 8260 Method 335.4 Method 200.7 IW-S10-MS-1220 LTMW-S10	VOC's Cyar Met LT MW 1220 D	PAH's BTEX nide als	20	0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yeals Yeastic Yeastic Year	No No No Ckup
EPA SV EPA SV EP EP LT Sample ID Sample Tir	7-846 Method 8270 7-846 Method 8260 Method 335.4 Method 200.7 TW-S10-MS-1220 LTMW-S10 e: /2:25	VOC's Cyar Met LT MW 1220 D	PAH's BTEX nide als /-S10-MSD-12	20 Yes No	0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yeals Yeastic Yeastic Yeastic Yeartic Yeartic Yeartic Yeartic Yeartic Yeartin Yea	No No No Ckup
EPA SV EPA SV EP EF LT Sample ID	7-846 Method 8270 7-846 Method 8260 Method 335.4 Method 200.7 TW-S10-MS-1220 LTMW-S10 e: /2:25	VOC's Cyar Met LT MW 1220 D	PAH's BTEX nide als /-S10-MSD-12	20 Yes No	0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yeals Yeastic Yeastic Yeastic Yeastic Yeastic Yeastic Pace Courier Picoff Albany Servi	No No No Ckup
EPA SV EPA SV EP EP LT Sample ID Sample Tin	7-846 Method 8270 7-846 Method 8260 Method 335.4 Method 200.7 TW-S10-MS-1220 LTMW-S10 e: /2:25	VOC's Cyar Met LTMW 1220 D M	PAH's BTEX nide als /-S10-MSD-12: uplicate? IS/MSD?	20 Yes No	0.52-3	6 - 100ml aml 3 - 40 ml via 1 - 250 ml pla 1 - 250 ml pla Shipped:	pers Yeals Yeastic Yeastic Yeastic Yeastic Yeastic Yeastic Pace Courier Picoff Albany Servi	No No No No Ckup Cce Center

2020 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix D – Data Usability Summary Report and Analytical Data

Groundwater & Environmental Services, Inc.

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

February 22, 2021

Devin Shay Groundwater & Environmental Services, Syracuse 5 Technology Place, Suite 4 East Syracuse, NY 13057

RE: Data Usability Summary Report for National Grid- Rome Kingsley Avenue Site Data Packages Pace Analytical Job Nos. 30395641, 30395641

Groundwater & Environmental Services, Inc. (GES) reviewed two data packages (Laboratory Project Number 30395641, 30395641) from Pace Analytical Services, Inc., for the analysis of an effluent sample and trip blank as well as groundwater samples collected December 3, 2020 from monitoring wells located at the National Grid: Rome Kingsley Avenue Site. Sixteen aqueous samples and a field duplicate are analyzed for BTEX, PAHs, arsenic, lead, zinc pH, and total cyanide. The effluent system sample was processed for TCL volatiles, semivolatiles, eight metals, mercury and total cyanide. Methodologies utilized are those of the USEPA 200.7, 245.1 and 335.4, SM 4500H+B, and the USEPA SW846 methods 7470/8260C/8270D with additional QC requirements of the NYSDEC ASP.

The data are reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items are determined to be acceptable for the DUSR level review.

Table 1 - Data Qualifications

Sample ID	Qualifier	Analyte	Reason for qualification
Effluent	J	рН	Holding time exceedance
Effluent	UJ-	Bromomethane	Low Calibration verification recovery
LTMW-S02 LTMW-D03	J	Benzo(b)fluoranthene Benzo(k)fluoranthene	Co-elution of peaks

In summary, sample results are usable as reported, with non-compliances noted. The result for pH in all applicable samples was qualified by the laboratory as estimated due to the short hold time of 15 minutes. Qualifications are detailed in Table 1.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times for groundwater and effluent samples and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits. Calibrations standards show acceptable responses within analytical protocol and validation action limits, with the exception of bromomethane associated with the effluent, which reported low recoveries. The non-detect data is qualified as estimated non-detect "UJ-".

Matrix spike and matrix spike recoveries were within laboratory specified criteria. The duplicate correlations of LTMW-S09 were not calculated, as there was no detections reported. Qualifications are noted in **Table 1.**

PAHs by EPA8270D/NYSDEC ASP

Holding times are met. Instrumental tune fragmentations are within acceptance ranges. Surrogate recoveries are within analytical and validation guidelines Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines. The laboratory control spike recoveries and precision indicate the method is within laboratory control, Matrix spike and matrix spike recoveries were within laboratory specified criteria. For samples LTMW-S02 and LTMW-D03, the peaks of benzo(b) and benzo(k) fluoranthene did not exhibit appropriate resolution in the standards, and the data is considered a combination of both compounds. The duplicate correlations of LTMW-S09 were not calculated, as there was no detections reported. Qualifications are noted in **Table 1.**

Metals by EPA 200.7/EPA 245.3/NYSDEC ASP

The matrix spikes show acceptable accuracy and precision. The duplicate correlations of LTMW-S09 were not calculated, as there was no detections reported. Instrument performance is compliant, and blanks show no contamination above the reporting limit. The recovery on the post

digestion spike of mercury was high out of specification, however, the reported value was non-detect. The potential high bias does not affect non-detect data.

Wet Chemistry-Total Cyanide by 9012B and pH

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All are acceptable for the validated samples, with the exception of a possible high bias for cyanide in LTMW-S10 noted by high recoveries in the MS/MSD. Calibration standard responses are compliant. Blanks show no detections above the reporting limits.

Cyanide recovered high in the MS/MSD associated with LTMW-S10, but was non-detect in the sample, and the possible high bias does not impact the data.

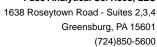
The pH for the Effluent sample is qualified as estimated due to outlying holding time, as noted in the laboratory case narrative.

The duplicate correlations of LTMW-S09 were not calculated, as there was no detections reported.

All other quality control for total cyanide show acceptable recoveries or correlations. Qualifications are noted in **Table 1**.

Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

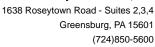

Please do not hesitate to contact me if you have comments or questions regarding this report.

Sincerely,

Bonnie Janowiak, Ph.D.

Januwisk >

Senior Chemist



SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30395641001	Effluent System 1220	Water	12/03/20 08:20	12/04/20 10:30
30395641002	Trip Blank	Water	12/03/20 00:01	12/04/20 10:30

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 200.7 Rev. 4.4, 1994
Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

1 sample was analyzed for EPA 200.7 Rev. 4.4, 1994 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 Rev. 4.4, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

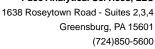
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 245.1 Rev. 3.0, 1994

Description: 245.1 Mercury

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

1 sample was analyzed for EPA 245.1 Rev. 3.0, 1994 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 Rev. 3.0, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

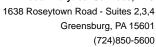
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: 425975

2c: The PDS recovery was outside of the laboratory control limits. Result may be biased high

- Effluent System 1220 (Lab ID: 30395641001)
 - Mercury

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

1 sample was analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 426493

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Analyte Comments:

QC Batch: 426493

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- Effluent System 1220 (Lab ID: 30395641001)
 - Acenaphthene
 - Acenaphthylene
 - Anthracene

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

Analyte Comments: QC Batch: 426493

1c: A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

- Effluent System 1220 (Lab ID: 30395641001)
 - Benzo(k)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(a)anthracene
 - Benzo(b)fluoranthene
 - Benzo(a)pyrene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluorene
 - Fluoranthene
 - Indeno(1,2,3-cd)pyrene
 - Naphthalene
 - Phenanthrene
 - Pyrene

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

2 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 426965

CL: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.

- BLANK (Lab ID: 2063614)
 - Bromomethane
- Effluent System 1220 (Lab ID: 30395641001)
 - Bromomethane
- LCS (Lab ID: 2063615)
 - Bromomethane
- MS (Lab ID: 2063622)
 - Bromomethane
- MSD (Lab ID: 2063623)
 - Bromomethane
- Trip Blank (Lab ID: 30395641002)
 - Bromomethane

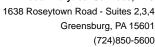
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

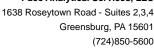
Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

Additional Comments:

Analyte Comments:


QC Batch: 426965

3c: The read back of the low concentration calibration standard for this compound is not within 30% of the true value. The results may be biased high and should be considered estimated.

- BLANK (Lab ID: 2063614)
 - Bromoform
 - Dibromochloromethane
- Effluent System 1220 (Lab ID: 30395641001)
 - Bromoform
 - Dibromochloromethane
- LCS (Lab ID: 2063615)
 - Bromoform
- MS (Lab ID: 2063622)
 - Bromoform
 - Dibromochloromethane
- MSD (Lab ID: 2063623)
 - Bromoform
 - Dibromochloromethane
- Trip Blank (Lab ID: 30395641002)
 - Bromoform
 - Dibromochloromethane

4c: The read back of the low concentration calibration standard for this compound is not within 30% of the true value. The results may be biased low and should be considered estimated.

- LCS (Lab ID: 2063615)
 - Dibromochloromethane

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: SM 4500H+B-2011

Description: 4500H+ pH, Electrometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

1 sample was analyzed for SM 4500H+B-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received or analysis requested beyond the recognized method holding time.

• Effluent System 1220 (Lab ID: 30395641001)

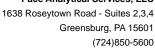
H6: Analysis initiated outside of the 15 minute EPA required holding time.

• Effluent System 1220 (Lab ID: 30395641001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395641

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 18, 2020

General Information:

1 sample was analyzed for EPA 335.4 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

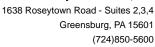
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30395686

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30395686001	LTMW-D01-1220	Water	12/03/20 14:05	12/04/20 10:30
30395686002	LTMW-S01-1220	Water	12/03/20 14:45	12/04/20 10:30
30395686003	LTMW-D02-1220	Water	12/03/20 15:25	12/04/20 10:30
30395686004	LTMW-S02-1220	Water	12/03/20 15:25	12/04/20 10:30
30395686005	LTMW-D03-1220	Water	12/03/20 10:40	12/04/20 10:30
30395686006	LTMW-S03-1220	Water	12/03/20 10:40	12/04/20 10:30
30395686007	LTMW-D04-1220	Water	12/03/20 11:30	12/04/20 10:30
30395686008	LTMW-S04-1220	Water	12/03/20 11:30	12/04/20 10:30
30395686009	LTMW-D05-1220	Water	12/03/20 09:45	12/04/20 10:30
30395686010	LTMW-S05-1220	Water	12/03/20 09:45	12/04/20 10:30
30395686011	LTMW-D06-1220	Water	12/03/20 13:55	12/04/20 10:30
30395686012	LTMW-S06-1220	Water	12/03/20 13:15	12/04/20 10:30
30395686013	LTMW-S07-1220	Water	12/03/20 13:15	12/04/20 10:30
30395686014	LTMW-S08-1220	Water	12/03/20 12:30	12/04/20 10:30
30395686015	LTMW-S09-1220	Water	12/03/20 14:35	12/04/20 10:30
30395686016	LTMW-S10-1220	Water	12/03/20 12:25	12/04/20 10:30
30395686017	LTMW-S10-MS-1220	Water	12/03/20 12:25	12/04/20 10:30
30395686018	LTMW-S10-MSD-1220	Water	12/03/20 12:25	12/04/20 10:30
30395686019	Field Duplicate-1220	Water	12/03/20 00:01	12/04/20 10:30
30395686020	Trip Blank	Water	12/03/20 15:53	12/04/20 10:30

Project: National Grid - Rome Kingsley

Pace Project No.: 30395686

Method: EPA 200.7 Rev. 4.4, 1994
Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 16, 2020

General Information:

19 samples were analyzed for EPA 200.7 Rev. 4.4, 1994 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 Rev. 4.4, 1994 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

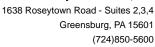
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395686

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 16, 2020

General Information:

19 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

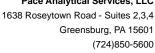
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395686

Method: **EPA 8260C** Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 16, 2020

General Information:

20 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

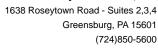
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30395686

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 16, 2020

General Information:

19 samples were analyzed for EPA 335.4 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 426130

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30395686016,7351912002

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.

- MS (Lab ID: 2059453)
 - Cyanide
- MSD (Lab ID: 2059454)
 - Cyanide

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2059383)
 - Cyanide
- MSD (Lab ID: 2059384)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.