

March 3, 2022

Mr. Justin Starr, PG
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau C
625 Broadway
Albany, NY 12233-70134

Re: National Grid Kingsley Avenue Site Rome, New York 2021 4th Quarter OM&M Report

Dear Mr. Starr:

Enclosed for your review is the 2021 4th Quarter Operation, Maintenance, and Monitoring (OM&M) Report for the National Grid Rome (Kingsley Avenue) Site. OM&M is being conducted in accordance with the Site Management Plan (SMP). National Grid submitted the SMP and Final Engineering Report (FER) on November 30, 2019. The NYSDEC approved the SMP and FER on May 8, 2020.

The completed quarterly OM&M activities included:

- A quarterly site inspection;
- Collection of quarterly static water level measurements of site wells;
- Collection and laboratory analysis of quarterly groundwater samples from OU-1 groundwater wells;
- Collection and laboratory analysis of quarterly groundwater extraction system samples; and
- Monitoring and/or collection of light non-aqueous phase liquid and dense nonaqueous phase liquid at site wells.

The groundwater extraction system is operating continuously and discharging to the sanitary sewer under the existing City of Rome Water Pollution Control Authority discharge permit. A chemical treatment system to minimize iron fouling within the groundwater extraction manhole, submersible pump, and piping also operates continuously.

Mr. Justin Starr, PG March 3, 2022 Page 2 of 2

If you have any questions regarding the report or the scheduled activities, feel free to contact me at (315) 428-5652.

Very truly yours,

for SPS

Steven P. Stucker, C.P.G. Lead Environmental Engineer National Grid

Enclosures

Cc: Devin Shay - Groundwater & Environmental Services, Inc.

National Grid

2021 4th Quarter Operations, Maintenance, and Monitoring Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

March 2022

Version 1

2021 4th Quarter OM&M Report

National Grid Rome Former MGP Site 233 Kingsley Avenue Rome, NY 13440

Prepared for: National Grid 300 Erie Boulevard West, C-1 Syracuse, NY 13202

Prepared by: Groundwater & Environmental Services, Inc. 6780 Northern Boulevard, Suite 100 East Syracuse, NY 13057 TEL: 800-220-3069

GES Project: 0603275.134400.221

www.gesonline.com

Date:

March 3, 2022

Devin T. Shay, PG Program Manager / Principal Hydrogeologist

Table of Contents

1	In	troduction	. 1
	1.1	Overview	. 1
	1.2	Site Description	. 1
	1.3	Site History	. 2
2	Ο	peration, Maintenance, and Monitoring Activities	. 5
	2.1	Quarterly Site Inspection	. 5
	2.2	Quarterly Static Water Level Measurements	. 5
	2.3	Quarterly Groundwater Monitoring Event	. 5
	2.4	Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event	
	2.5	Quarterly Groundwater Extraction System Discharge Sampling Event	. 7
	2.6	Groundwater Extraction System Discharge Flow and Operation, Maintenance, ar Monitoring	
	2.7	Vegetation Management and Snow Removal	. 8
3	C	onclusions, Recommendations, and Certifications	. 9
	3.1	Conclusions	. 9
	3.2	Recommendations	. 9
	3.3	Certifications	10

Figures

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Site Map – West

Figure 4 – Site Map – East

Figure 5 – Barrier Wall Profile

Tables

Table 1 – Groundwater Extraction System Discharge Flow

Table 2 – Site Monitoring Wells

Table 3 – Historical Groundwater Data

Table 4 – Groundwater Analytical Data

Table 5 – Discharge Analytical Data

Appendices

Appendix A – Field Inspection Report

Appendix B - Quarterly Gauging Data

Appendix C - Well Sampling Field Data

Appendix D - Data Usability Summary Report and Analytical Data

Acronyms

AWQS	Ambient Water Quality Standards	OM&M	Operations, Maintenance, and Monitoring
BTEX	Benzene, Toluene, Ethylbenzene, and Total Xylenes	OU	Operable Unit
DNAPL	Dense Non-Aqueous Phase Liquid	Pace	Pace Analytical Services, LLC
DUSR	Data Usability Summary Report	PAH	Polycyclic Aromatic Hydrocarbons
GES	Groundwater & Environmental Services,	POTW	Publically Owned Treatment Works
020	Inc.	QA/QC	Quality Assurance / Quality Control
gpm	Gallons per Minute	ROD	Record of Decision
IRM	Interim Remedial Measures	SMP	Site Management Plan
LNAPL	Light Non-Aqueous Phase Liquid	USEPA	United States Environmental Protection
MGP	Manufactured Gas Plant		Agency
NYSDEC	New York State Department of Environmental Conservation	WPCF	Water Pollution Control Facility

1 Introduction

1.1 Overview

Groundwater & Environmental Services, Inc. (GES) has prepared this 2021 4th Quarter Operations, Maintenance, and Monitoring Report (OM&M) on behalf of National Grid. This report compiles the OM&M activities completed in the 4th quarter of 2021 at the Former Kingsley Avenue Manufactured Gas Plant (MGP) Site (the Site), located in Rome, New York. The Site has been classified as a Class 2 inactive hazardous waste disposal site by the New York State Department of Environmental Conservation (NYSDEC) and is identified as Site No. 633043.

In accordance with the Record of Decision (March 2002) and following successful completion of the selected remedy, long-term OM&M is required at the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) for Operable Unit (OU) -1 and OU-2 were submitted to NYSDEC on November 30, 2019. The NYSDEC approved the SMP and the FER on May 8, 2020.

The following long-term OM&M activities are conducted in accordance with the SMP to monitor the effectiveness of the remediation previously conducted:

- Quarterly inspection of the Site (March, June, September, December);
- Collection of quarterly static water level measurements at the 34 site wells (16 Operable Unit [OU]-1 shallow and deep groundwater wells, eight dense non-aqueous phase liquid (DNAPL) wells, five OU-2 groundwater wells, and five extraction trench monitoring wells);
- Collection of quarterly groundwater samples from the 16 OU-1 shallow and deep groundwater wells and laboratory analysis of samples;
- Monitoring and/or collection of light non-aqueous phase liquid (LNAPL) and DNAPL monitoring at the 34 site wells, as needed. Offsite disposal of collected DNAPL at least once every 12 months;
- Removal of vegetation and snow, as necessary, to allow for access to the Site; and
- Submittal of quarterly OM&M reports to NYSDEC.

The groundwater extraction system is fully operational and discharges to the nearby sanitary sewer under an existing City of Rome Water Pollution Control Facility (WPCF) discharge permit. Discharge water samples are collected and analyzed quarterly for comparison to the permit limits as part of OM&M.

This OM&M Quarterly Report covers OM&M activities conducted during October, November, and December 2021.

1.2 Site Description

The Site is located within the City of Rome, Oneida County, New York. Refer to **Figure 1** for the Site location map. The Site consists of an approximately 22 acre parcel owned by National Grid.

MGP operations formerly covered the northern half of the Site. The southern portion of the Site consists of a National Grid electric substation, where some MGP impacts were left in place due to the inability to excavate on an active substation. National Grid presently operates and maintains a natural gas valving station located adjacent to the terminus of Kingsley Avenue.

The Site is located south of East Dominick Street, bordering a historic commercial and residential district, approximately 2,000 feet north of the confluence of the Mohawk River with the New York State Barge Canal. It is bounded by the Genesee and Mohawk Valley Railroad to the north, and the Mohawk River forms the western boundary of the Site. Whitesboro Street terminates near the southern boundary of the Site. The City of Rome Department of Public Works facility is located to the east and southeast of the Site. Residential properties are located near the Site entrance on Kingsley Avenue.

The Site is relatively flat, with existing grades ranging from 430 to 442 feet above mean sea level. The primary surface water feature in the area is the Mohawk River, which discharges into the Barge Canal approximately 2,000 feet downstream toward the south. The groundwater flow direction in both the water table aquifer (near surface) and deep aquifer (within the overburden above the clay) is toward the south-southwest. Depth to groundwater generally ranges from 2 to 15 feet below ground surface at the Site.

1.3 Site History

The Kingsley Avenue MGP was constructed in 1917. Gas production began at the Site in 1917 and peaked in 1927. Manufactured gas was produced at the Site using the coal gas and water gas processes. Coal carbonization produced coal gas by heating coal in retorts or beehive ovens. The water gas process involved the passage of steam through burning coal. This formed a gaseous mixture that was passed through a super heater into which an oil feed stock was sprayed. In each process, the gas produced was condensed and purified prior to distribution. The production of manufactured gas created many by-products, some of which remain onsite. A dense, oily liquid known as coal tar condensed out of the gas at various stages during its production, purification, and distribution. Although much of the coal tar produced was reused, recovery of the coal tar waste was incomplete. Substantial amounts of coal tar leaked from storage and processing facilities, contaminating surface and subsurface soils, as well as groundwater. Another by-product includes the discarded lime and/or wood chips treated with iron oxides to remove cyanide and sulfur from the gas (known as purifier waste).

By 1930, production of gas at the Kingsley Avenue MGP was limited to emergency capacity, as the supply of gas for the City of Rome came from other facilities. Between 1938 and 1941, the retort house and relief holder were decommissioned. By 1949, gas manufacturing equipment had been removed from the central building. In 1959, the main gas holder was dismantled.

Environmental concerns at the Site caused NYSDEC and the United States Environmental Protection Agency (USEPA) to evaluate the need for investigation and remedial action. Regulators typically define a single site into a number of OUs. An OU, for technical or administrative reasons, can be addressed separately to eliminate or mitigate a release, threat of release, or exposure pathway resulting from the Site contamination. The lead agency, NYSDEC, defined OUs: OU-1 and OU-2. NYSDEC continues to administer the Site under a Consent Order

with National Grid. OU-1 includes the former Kingsley Avenue MGP property, the surface soils of a small contiguous area of undeveloped New York State-owned land along the Mohawk River, and sediments in a backwater area west of the Site. OU-2 includes an approximate 2-acre area between the National Grid property and the eastern shore of the Mohawk River. Additionally, OU-2 includes the area beneath the Mohawk River and property west of the Mohawk River to East Westboro Street. OU-2 encompasses approximately 20 acres of land. Refer to **Figure 2** for a depiction of OU-1 and OU-2.

This report is focused on OU-1. The following provides a general chronology of key events related to OU-1.

- 1987 USEPA Preliminary Assessment
- 1992 Preliminary Site Assessment/Interim Remedial Measures (IRM) Work Plan
- May 1994 Concentrator House IRM
- July 1994 Start of Remedial Investigation
- January 1995 Purifier Disposal Area IRM
- July 1998 Light non-aqueous phase liquid (LNAPL) Removal IRM initiated
- March 1999 Remedial Investigation Report
- December 2001 Offsite Remedial Investigation Report complete
- January 2002 OU-1 Feasibility Study complete
- March 2002 OU-1 Record of Decision (ROD) issued by NYSDEC
- August 2006 Remedial Design approved
- August 2007 Remedial Action started
- December 2010 Remedial Action completed
- January 2011 long-term groundwater and LNAPL and DNAPL monitoring commenced
- December 2011 long-term groundwater extraction system OM&M commenced
- November 2012 chemical treatment system for the extraction manhole completed

The remedial elements for OU-1 that have been completed include:

- Utility relocation.
- DNAPL and LNAPL source area soil removal and offsite thermal treatment/disposal.
- Purifier waste material removal and offsite disposal.
- River bank soil removal and offsite disposal.
- Demolition and offsite disposal of the MGP tar well and holder foundations.
- Installation of a sheet pile cutoff wall to contain and minimize offsite migration of DNAPL.

- Installation of a groundwater extraction trench with passive recovery pipe along the upgradient side of the wall. The trench includes a series of collection manholes/sumps. Submersible pumps deliver untreated groundwater to a sanitary manhole under an existing City of Rome WPCF.
- Installation of a 14-acre soil cover in the northern portion of the Site.
- The two foot thick vegetative cover (clean soil above geotextile layer).
- Installation of eight DNAPL collection wells within known source areas.
- Installation of five groundwater monitoring wells along the extraction trench.
- Installation of 16 groundwater monitoring wells to monitor shallow and deep aquifers.
- Installation of five groundwater monitoring wells within the OU-2 area.
- An Environmental Easement has been placed on the property and is included with the final Site Management Plan.

Figure 3 presents the monitoring well locations for the western portion of the Site. **Figure 4** presents monitoring well locations for the eastern portion of the Site.

Following start-up of the groundwater extraction system, it became apparent that iron fouling would be an operational issue. Therefore, National Grid installed a chemical treatment system to help protect the groundwater wells, piping, and submersible pump associated with the groundwater extraction system. As part of the chemical treatment system, a weather-proof structure was installed adjacent to the groundwater pumping manhole and houses a chemical tote and chemical feed pump. An environmental friendly iron inhibitor (REDUX 340) is injected into the pumping manhole to protect the submersible pump, piping, and metering instruments. This chemical is used at similar National Grid sites across central and eastern New York State in order to minimize iron fouling and reduce operation and maintenance costs and has been approved by the City of Rome publicly owned treatment works (POTW). The chemical treatment system became operational in November 2012.

2 Operation, Maintenance, and Monitoring Activities

2.1 Quarterly Site Inspection

GES conducted the 2021 4th quarter site inspection on December 3, 2021. Inspections are generally conducted in March, June, September, and December of each year. The Site inspection included the Site wells, security perimeter fence/gates, drainage system, vegetation, and the Site access road. In general, the Site was noted to be in compliance during the inspection. Refer to **Appendix A** for the Site Inspection Form.

There are 34 total site wells that were inspected as part of this event. **Figures 3** and **4** show the well locations. **Table 2** details each well in terms of horizontal location, vertical elevation, diameter, material, and screen elevation.

2.2 Quarterly Static Water Level Measurements

Quarterly static water level measurements were collected from the 34 wells on December 2 and 3, 2021. **Table 3** presents historical and recent static water level measurements. Refer to **Appendix B** for the field log sheet with water level measurements.

Prior to the construction of the barrier wall and groundwater extraction trench/system remedy, groundwater generally flowed northwesterly toward the Mohawk River. The remedy was designed and constructed to intercept that groundwater flow pattern and minimize migration of site-related DNAPL from the upgradient side of the barrier wall to the river. To ensure that the barrier wall meets the intent of the remedial action, it was agreed by NYSDEC and National Grid that the long-term compliance mechanism would be to compare the top of steel sheeting barrier wall (generally 435 to 437 feet above sea level) with the groundwater levels immediately upgradient of the barrier wall.

Eight manholes (MH-2, MH-3, MH-4, MH-5, MH-6, MH-6A, MH-7, and MH-8) and ten groundwater monitoring wells (DNAPL-2, DNAPL-3, DNAPL-4, DNAPL-5, DNAPL-6, VTW-1, VTW-2, VTW-3, VTW-4, and VTW-5) were constructed immediately upgradient of the barrier wall within the gravel extraction trench. The static water levels in each of the upgradient groundwater monitoring wells were measured and found to be between 425 and 435 (**Table 3**) feet above sea level since start-up of the groundwater extraction system. Groundwater does not overtop the barrier wall. **Figure 5** presents the groundwater levels compared to the barrier wall profile. Gauging data for all 34 wells and containment data for the 10 upgradient groundwater monitoring wells are presented in **Appendix B**.

2.3 Quarterly Groundwater Monitoring Event

The 2021 4th quarter groundwater monitoring event was conducted on December 2 and 3, 2021. Sixteen groundwater monitoring wells were sampled (LTMW-D01, LTMW-S01, LTMW-D02, LTMW-S02, LTMW-D03, LTMW-S03, LTMW-D04, LTMW-S04, LTMW-D05, LTMW-S05, LTMW-D06, LTMW-S06, LTMW-S07, LTMW-S08, LTMW-S09, LTMW-S10).

The wells were sampled in accordance with USEPA Low-Flow Groundwater Sampling Procedures [1996]. Purge water was contained and subsequently discharged to the onsite groundwater extraction system which discharges water to the City of Rome WPCF. Field measurements (temperature, pH, oxidation-reduction potential, conductivity, turbidity, dissolved oxygen, and total dissolved solids) were recorded at each well during the sampling using a water quality meter and are presented in **Appendix C**.

In addition to the 16 water samples collected, four quality assurance/quality control (QA/QC) samples were collected, including one Matrix Spike sample, one Matrix Spike Duplicate sample, one field duplicate sample, and one trip blank sample. Twenty total samples were shipped on ice to the Pace Analytical Services, LLC (Pace) of Greensburg, Pennsylvania, for laboratory analysis. Analyses included: polycyclic aromatic hydrocarbons (PAHs) via USEPA Method 8270D; benzene, toluene, ethylbenzene, and total xylenes (BTEX) via USEPA Method 8260C; heavy metals via USEPA Method 200.7; and total cyanide via USEPA Method 335.4.

The analytical results included detections of BTEX, acenaphthene, benzo(a)anthracene, chrysene, cyanide, fluorene, and zinc above the New York State regulatory maximum allowable limits. A summary of laboratory analytical results is provided in **Table 4**. Zinc levels above the guidance value provided in NYSDEC's Technical and Operational Guidance Series section 1.1.1. were only observed at LTMW-S03. Of the 16 wells sampled, two (2) wells (LTMW-D01 and LTMW-D03) had BTEX concentrations above the New York State Groundwater Ambient Water Quality Standards (AWQS) and four (4) wells (LTMW-D01, LTMW-S01, LTMW-D03, and LTMW-S03) had semi-volatile organic compound detections above the AWQS. Cyanide concentrations were detected above the AWQS in LTMW-S04 and LTMW-S08. Results indicated no detections of any compound for LTMW-D04, LTMW-D05, LTMW-D06, LTMW-S07, LTMW-S09, and LTMW-S10.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The data validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. In summary, sample results are usable as reported. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.4 Quarterly Light Non-Aqueous Phase Liquid and Dense Non-Aqueous Phase Liquid Monitoring/Collection Event

Each of the 34 wells was monitored for LNAPL and DNAPL in December for this quarter. The gauging data for these events are presented in **Appendix B**. This activity is conducted in conjunction with the collection of static water level measurements. A probe is lowered to the water level in the well and inspected for LNAPL. The probe is then lowered to the bottom of the well and inspected for DNAPL. If LNAPL or DNAPL is discovered in measurable quantities, product is removed from the well using a submersible pump. The removed product/water mixture is subsequently containerized in a properly labeled NYSDOT-approved 55-gallon drum for future offsite disposal. DNAPL in measurable quantities was noted in two site wells: MW-OU2-1, and MW-OU2-4.

As part of the NAPL monitoring/collection event, a total of 5.0 gallons of DNAPL were collected (2.0 gallons from MW-OU2-1, and 3.0 gallons from MW-OU2-4) during this quarter.

Since the start of the NAPL monitoring/collection program, a total of approximately 595 gallons of DNAPL have been removed for offsite disposal. Zero gallons of LNAPL have been detected/recovered.

2.5 Quarterly Groundwater Extraction System Discharge Sampling Event

Under an existing City of Rome WPCF discharge permit, quarterly sampling, analysis, and reporting of the groundwater extraction system discharge to the local sewer system is required. A water sample was collected December 2, 2021, and analyzed by Pace for the permit-specified parameters. No detections above permit limits were noted. **Table 5** provides the analytical results compared to the permit limits.

The analytical data report was validated by GES. The primary objective of the data validation is to identify any questionable or invalid laboratory processes or data. The validator reviewed the summary form information, the raw sample data, and a limited review of associated raw QC data. The review stated that field sample analyte values/reporting limits were usable as reported. The laboratory result for pH is always considered estimated as the EPA recommended short hold time of 15 minutes can only be met by in-field measurements. Qualifications are detailed in Table 1 of **Appendix D**, which presents the Data Usability Summary Report (DUSR) including the validated laboratory data.

2.6 Groundwater Extraction System Discharge Flow and Operation, Maintenance, and Monitoring

The groundwater extraction system consists of a gravel trench, a pumping manhole, dual submersible pumps, and below ground piping. The piping enters the onsite groundwater treatment building where flow measurements, discharge sampling, pressure measurements, and other OM&M activities can be conducted. The piping then continues below ground from the nearby sanitary sewer manhole to the City of Rome WPCF.

A mechanical flow meter is located within the Site building and serves as the recording device for the effluent water. During this reporting period, 3,209,594 gallons (average flow ~ 24.6 gpm) were discharged. Since the groundwater extraction system was installed, approximately 182.1 million gallons have been discharged. Below is a summary table for the groundwater extraction system discharge flow:

Table 1 – Groundwater Extraction System Discharge Flow

Time Period	Discharge Flow (gallons)
2010	11,600,000
2011	14,400,000
2012	19,900,000
2013	19,500,000
2014	16,500,000
2015	16,686,700
2016	13,695,010
2017	13,874,930
2018	13,208,189
2019	15,989,356
2020	13,710,857
2021 1 st Quarter	3,337,395
2021 2 nd Quarter	3,105,148
2021 3 rd Quarter	3,430,816
2021 4 th Quarter	3,209,594
TOTAL	182,147,995

The previous consultant conducted an evaluation of the groundwater extraction system, including inspections of the extraction manhole, submersible pumps, valving/controls, and clean-outs. Iron fouling throughout the system, particularly scaling on the submersible pumps, piping, and metering instruments, had been observed. As such, a chemical scale inhibitor (Redux 340) system, which applies the Redux 340 at the groundwater extraction manhole/submersible pumps, was installed and became operational in November 2012. A heating element located at the pumping manhole was installed in June 2012. Electrical power and building lighting/heating was installed in August/September 2012. Information regarding the environmentally-friendly, iron scale inhibitor was previously provided to the City of Rome POTW. The groundwater treatment system (including pumping station, conveyance piping, and flow meters) was cleaned (water lancing) during September 2012 in order to remove iron scale build-up in advance of the chemical treatment system installation.

2.7 Vegetation Management and Snow Removal

Vegetation management activities were conducted during the 4th quarter 2021 as needed.

3 Conclusions, Recommendations, and Certifications

3.1 Conclusions

Based on data collected from the 2021 4th quarter OM&M activities, the following conclusions were made:

- Overall, the site is in regulatory compliance. Vegetation maintenance was conducted as needed during 4th guarter 2021.
- Quarterly static water level measurements were collected at ten groundwater monitoring wells
 upgradient of the steel sheeting barrier within the gravel extraction trench. The static water
 levels of the upgradient wells (ranging between 425 to 429 feet above sea level) did not
 overtop the barrier wall (top of wall ranges between 435 to 437 feet above sea level).
- Site groundwater contained detectable concentrations of BTEX, acenaphthene, benzo(a)anthracene, chrysene, cyanide, and fluorene above the New York State regulatory maximum allowable limits. Additionally, analytical results for well LTMW-S03 indicated zinc above the NYSDEC AWQS guidance values. Six (6) of the 16 wells (LTMW-D01, LTMW-S01, LTMW-D03, LTMW-S03, LTMW-S04, and LTMW-S08) sampled had at least one detection of a site-related constituent above the New York State limits.
- The total quarterly volume of DNAPL collected (5.0 gallons) was removed from two wells (MW-OU2-1 and MW-OU2-4). Approximately 595 gallons of DNAPL have been removed from the site wells since the inception of the program. LNAPL has not been observed in any site wells to date.
- The groundwater extraction system operated continuously at an average flow rate of approximately 24.6 gpm, and a quarterly total of 3,209,594 gallons were discharged to the local sanitary sewer in accordance with the City of Rome WPCF discharge permit. A quarterly effluent water sample was collected and analyzed. There were no permit limit exceedances. Since December 2011, approximately 182.1 million gallons of water have been discharged without any permit limit exceedances.

3.2 Recommendations

It is recommended that all OM&M activities continue.

3.3 Certifications

I certify the following:

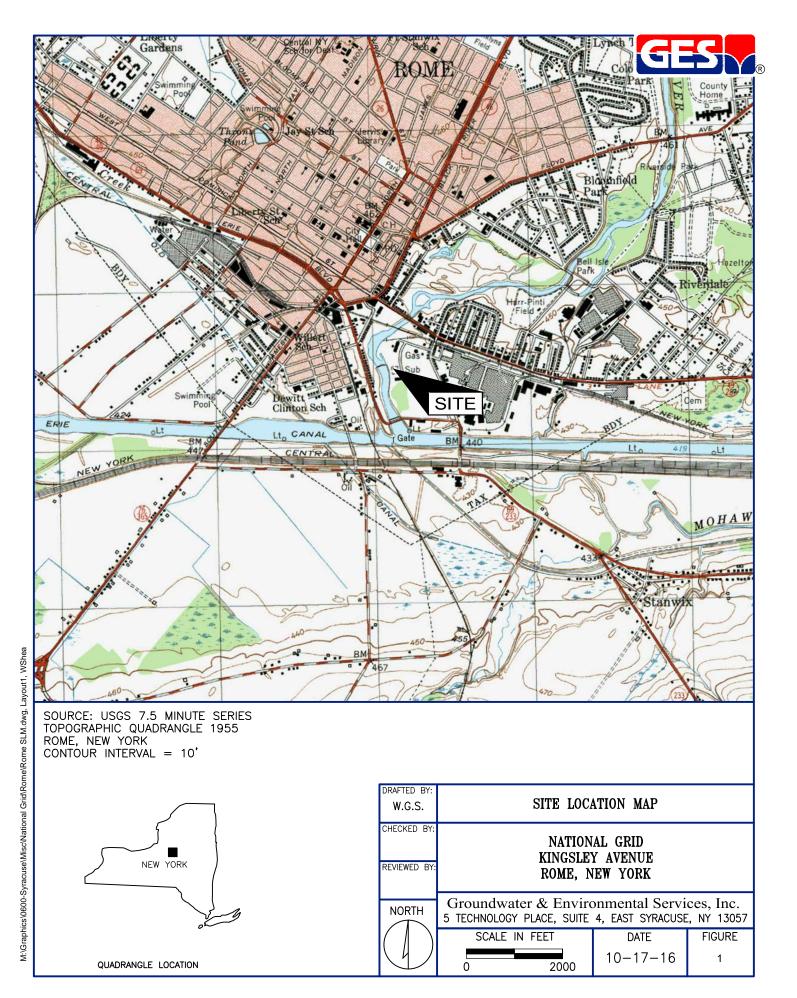
- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional controls and engineering controls employed at this site are unchanged from the date the controls were put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any SMP for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of the controls;
- Use of the Site is compliant with the Declarations of Covenants and Restrictions;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this
 certification are in accordance with the requirements of the Site remedial program; and

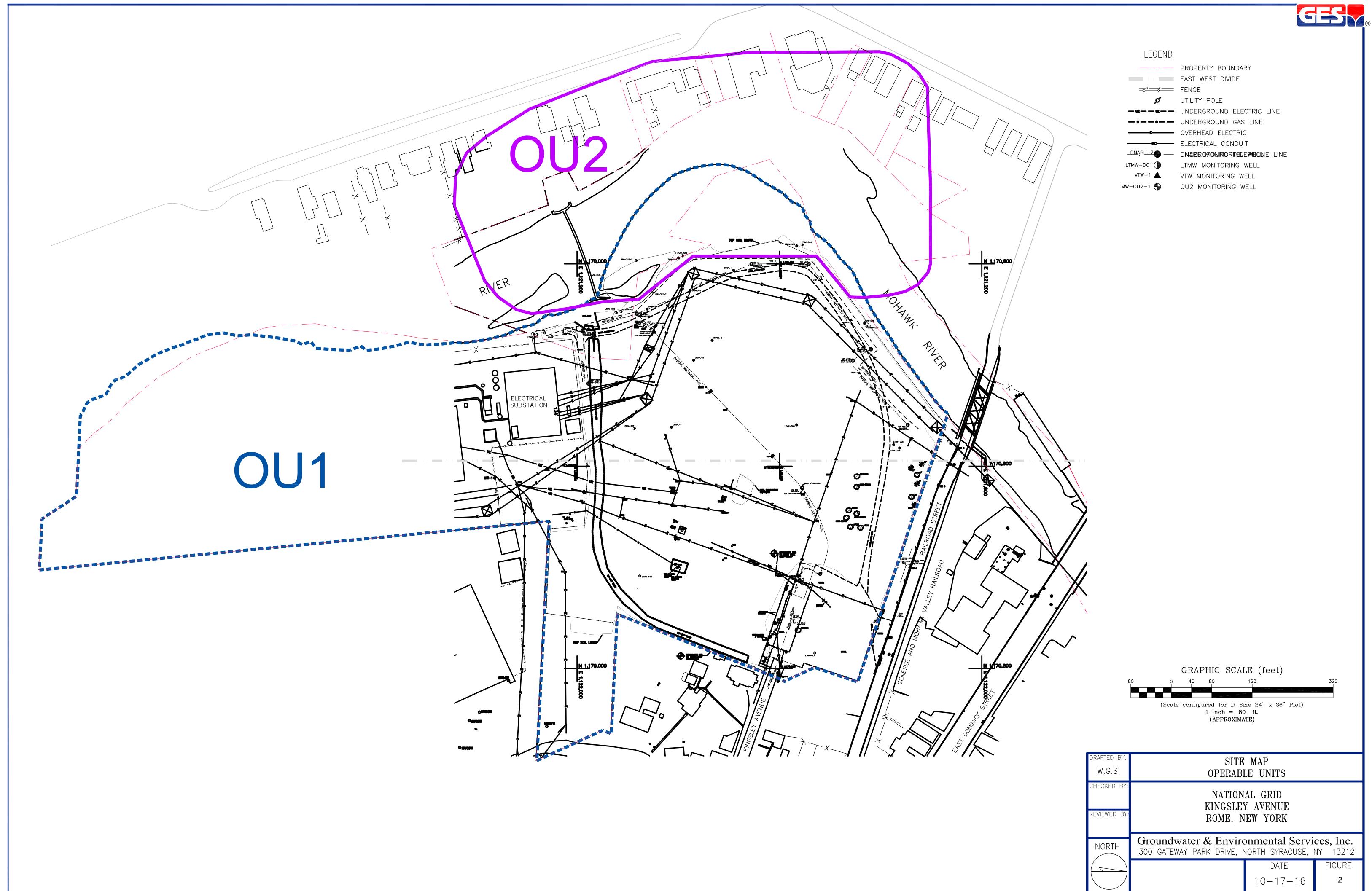
The information presented in this report is accurate and complete.

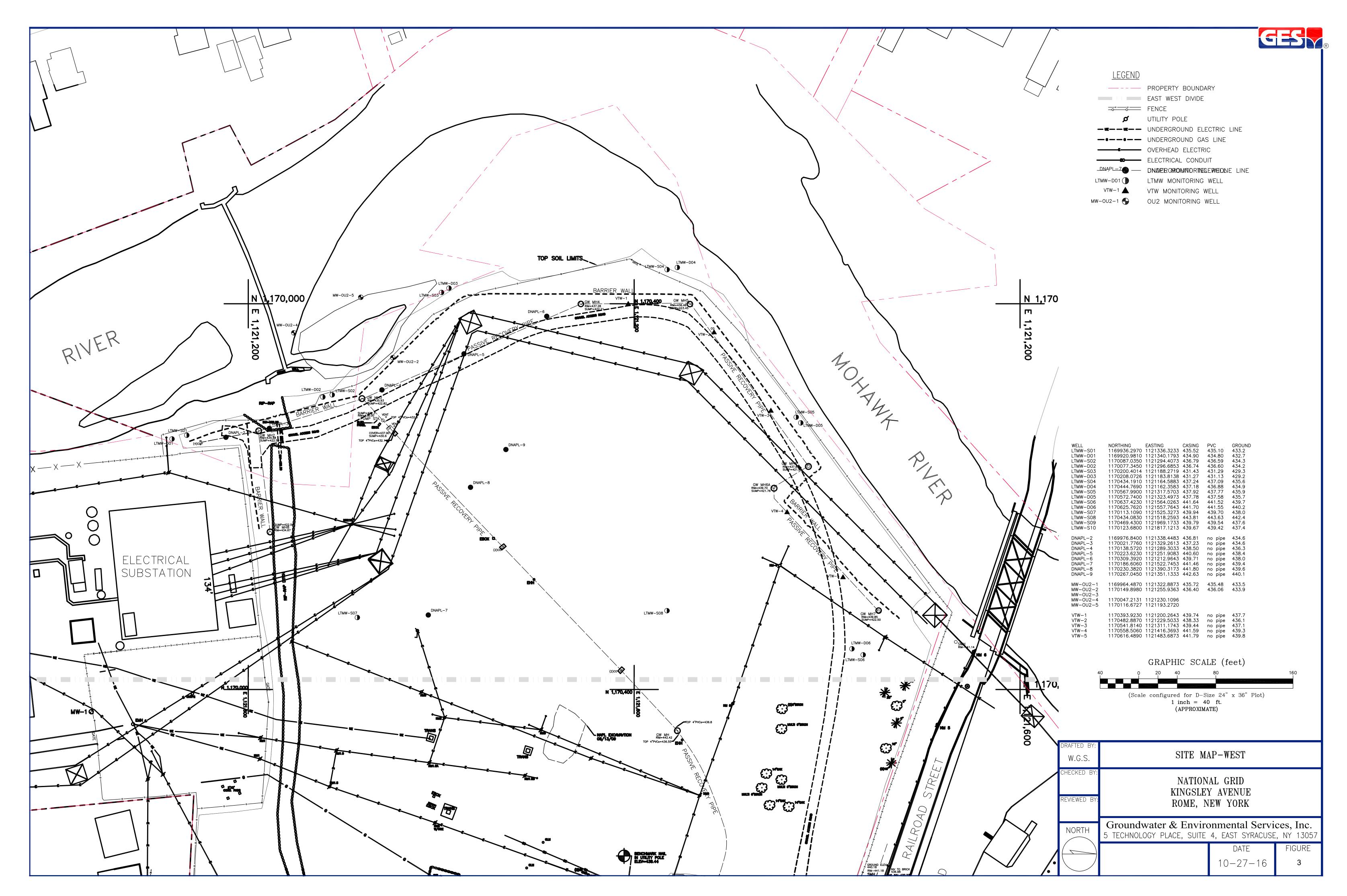
Signature |

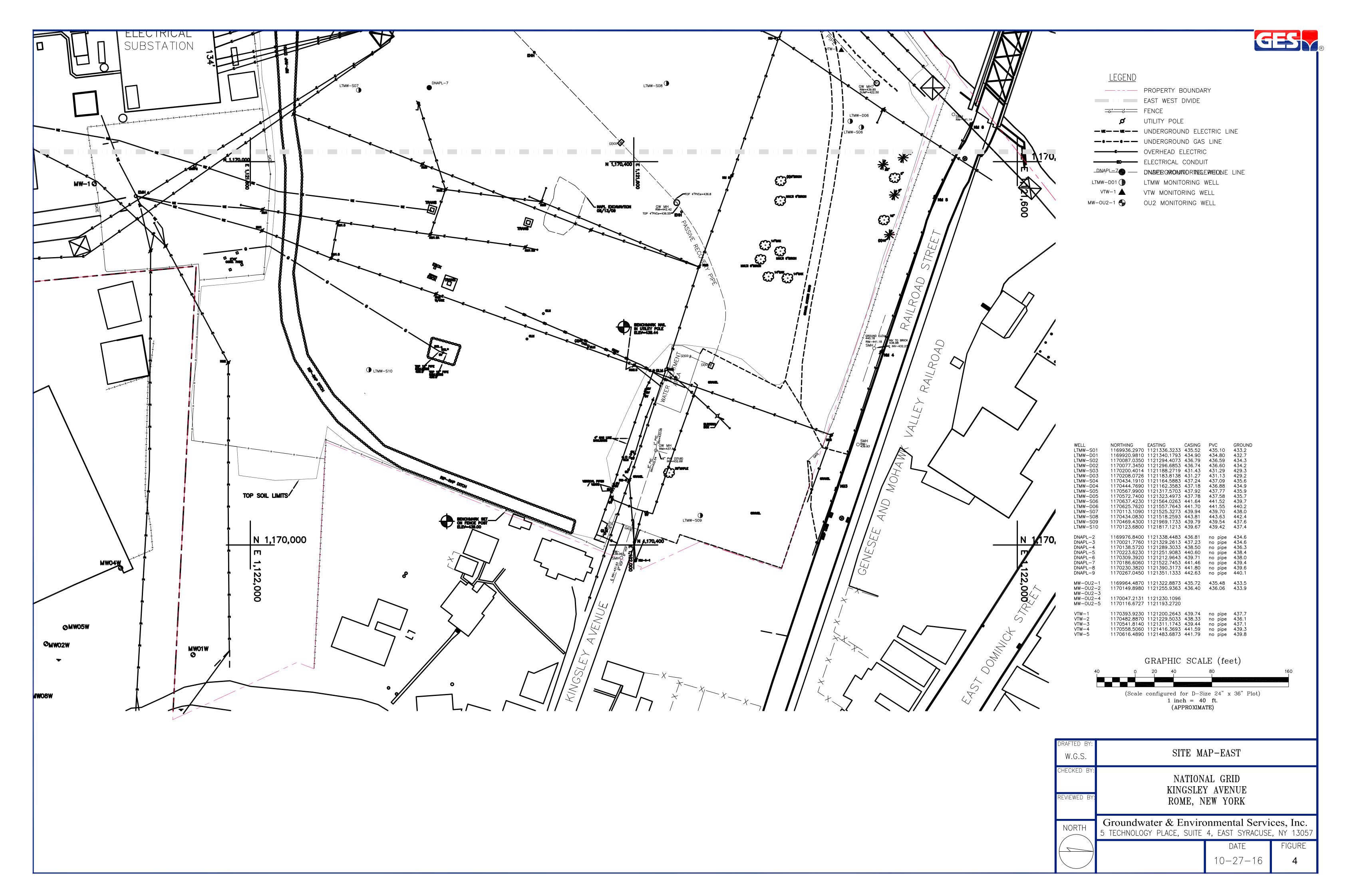
Name: Gerald H. Cresap, P.E. Title: Director of Engineering

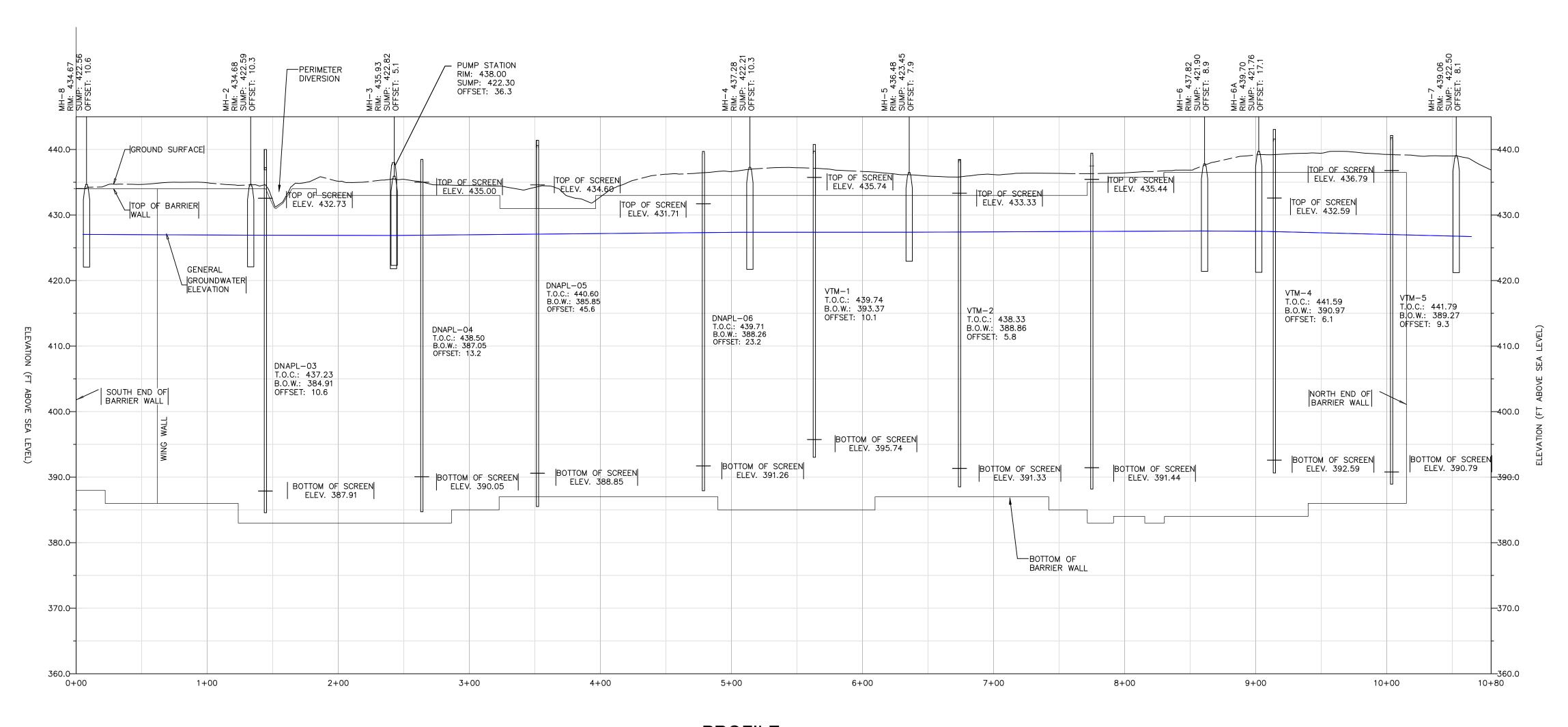
Company: Groundwater & Environmental Services, Inc.


3-2-2022


Date


2021 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440


Figures



Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome SM.dwg, D-40-W, WShea

M:\Graphics\0600-Syracuse\Misc\National Grid\Rome\Rome SM.dwg, D-40-E, WSF

PROFILE

HORIZONTAL: 1" = 50'

VERTICAL: 1" = 10'

LEGEND

T.O.C. TOP OF CASING

B.O.W. BOTTOM OF WELL

TOP OF WALL

GROUNDWATER ELEVATION (JUNE 2012)

NOTES

1. THE DEPTH OF THE BARRIER WALL IS APPROXIMATELY 50 FEET.

2. GROUNDWATER ELEVATION MEASUREMENTS TAKEN JUNE 2012.

DRAFTED BY: W.G.S.	BARRIER WA	ALL PROFILE	
CHECKED BY: REVIEWED BY:	KINGSLE	AL GRID Y AVENUE IEW YORK	
NORTH	Groundwater & Environment 500 GATEWAY PARK DRIVE, N		,
		DATE 10-17-16	FIGURE 5

M:\Graphics\0600-Syracuse\Wisc\National Grid\Rome\Rome Profile.dwg, D., WShea

2021 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Tables

Table 2 Site Monitoring Wells

Well ID	Northing	Easting	Elevation of Ground	Elevation Top of Outer Casing	Elevation Top of Inner Casing	Nominal Well Diameter (inches)	Well Material	Well Sump Depth (ft)	Depth to Bottom of Well (ft)	Elevation Bottom of Well	Depth to Top Screen (ft)	Elevation Top Screen	Depth to Bottom Screen (ft)	Elevation Botton Screen	Action
MW-OU2-1	1169964.4870	1121322.8873	433.5	435.72	435.48	4	SS	3.0	46.12	389.36	33.0	402.48	43.0	392.48	Quarterly Inspection; Quarterly Static Water Leve Measurement
MW-0U2-2	1170149 8980	1121255.9363	433.9	436.40	436.06	4	SS	3.0	49.60	386.46	39.0	397.06	49.0	387.06	Quarterly Inspection; Quarterly Static Water Leve Measurement
MW-0U2-3	1170101.2208	1121177.4485	430.63	433.25	430.00	4	SS	3.0	35.15	397.81	31.0	401.96	49.0	391.96	Quarterly Inspection; Quarterly Static Water Leve Measurement (Surveyed in January 2014)
						·									Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-4	1170149.6326	1121136.1811	430.63	433.05	432.88	4	SS	3.0	38.85	394.03	31.0	401.88	41.0	391.88	Measurement (Surveyed in January 2014) Quarterly Inspection; Quarterly Static Water Leve
MW-OU2-5	1170167.9650	1121091.2658	431.23	433.77	433.46	4	SS	3.0	36.34	397.12	31.0	402.46	41.0	392.46	Measurement (Surveyed in January 2014)
DNAPL-02	1169976.8400	1121338.4483	434.6	436.81	NA	6	SS	3.0	50.40	386.41	4.0	432.81	46.0	389.41	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-03	1170021.7760	1121329.2613	434.6	437.23	NA	6	SS	3.0	52.32	384.91	4.5	432.73	46.5	387.91	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
															Quarterly Inspection; Quarterly Static Water Level
DNAPL-04	1170138.5720	1121289.3033	436.3	438.50	NA	6	SS	3.0	51.45	387.05	3.5	435.00	47.5	390.05	Measurement; DNAPL Monitoring/Collection
DNAPL-05	1170223.6230	1121251.9083	438.4	440.60	NA	6	SS	3.0	54.75	385.85	6.0	434.60	50.0	388.85	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-06	1170309.3920	1121212.9643	438	439.71	NA	6	SS	3.0	51.45	388.26	8.0	431.71	48.0	391.26	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-07	1170186.6060	1121522.7453	439.4	441.46	NA	6	SS	3.0	53.60	387.86	5.0	436.46	55.5	390.86	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-08	1170230.3820	1121390.3173	439.6	441.80	NA	6	SS	3.0	58.01	383.79	7.0	434.80	53.0	386.79	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
DNAPL-09	1170267.0450	1121351.1333	440.1	442.63	NA	6	SS	3.0	57.58	385.05	5.0	437.63	53.2	388.05	Quarterly Inspection; Quarterly Static Water Level Measurement; DNAPL Monitoring/Collection
VTM-1	1170393.9230	1121200.2643	437.7	439.74	NA	6	SS	NA	46.37	393.37	4.0	435.74	44.0	395.74	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-2	1170482.8870	1121229.5033	436.1	438.33	NA	6	SS	NA	49.47	388.86	5.0	433.33	47.0	391.33	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-3	1170541.8140	1121311.1743	437.1	439.44	NA	6	SS	NA	50.91	388.53	4.0	435.44	48.0	391.44	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-4	1170558.5060	1121416.3693	439.3	441.59	NA	6	SS	NA	50.62	390.97	9.0	432.59	49.0	392.59	Quarterly Inspection; Quarterly Static Water Leve Measurement
VTM-5	1170616.4890	1121483.6873	439.8	441.79	NA	6	SS	NA	52.52	389.27	5.0	436.79	51.0	390.79	Quarterly Inspection; Quarterly Static Water Leve Measurement
LTMW-D01	1169920.9810	1121340.1793	432.7	434.90	434.80	2	PVC	NA	46.84	387.96	34.0	400.80	44.0	390.80	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S01	1169936.2970	1121336.3233	433.2	435.52	435.10	2	PVC	NA	16.92	418.18	5.0	430.10	15.0	420.10	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D02	1170077.3450	1121296.6853	434.2	436.74	436.60	2	PVC	NA	40.29	396.31	30.0	406.60	40.0	396.60	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S02	1170087.0350	1121294.4073	434.3	436.79	436.59	2	PVC	NA	17.98	418.61	5.0	431.59	15.0	421.59	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D03	1170208.0726	1121183.8138	429.2	431.27	431.13	2	PVC	NA	40.73	390.40	29.0	402.13	39.0	392.13	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S03	1170200.4014	1121188.2719	429.3	431.43	431.29	2	PVC	NA	13.70	417.59	2.0	429.29	12.0	419.29	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D04	1170444.7690	1121162.3583	434.9	437.18	436.88	2	PVC	NA.	46.36	390.52	34.0	402.88	44.0	392.88	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S04	1170434.1910	1121164.5883	435.6	437.24	437.09	2	PVC	NA NA	17.26	419.83	5.0	432.09	15.0	422.09	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D05	1170572.7400	1121323.4973	435.7	437.78	437.58	2	PVC	NA	46.53	391.05	35.0	402.58	45.0	392.58	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S05	1170567.9900	1121317.5703	435.9	437.92	437.77	2	PVC	NA	16.83	420.94	5.0	432.77	15.0	422.77	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-D06	1170625.7620	1121557.7643	440.2	441.70	441.55	2	PVC	NA NA	52.22	389.33	40.0	401.55	50.0	391.55	Quarterly Inspection; Quarterly Static Water Leve Measurement; Quarterly Sampling
LTMW-S06			439.7	441.64	441.52	2	PVC	NA NA	17.60			436.52			Quarterly Inspection; Quarterly Static Water Leve
	1170637.4230	1121564.0263								423.92	5.0		15.0	426.52	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S07	1170113.1090	1121525.3273	438	439.94	439.70	2	PVC	NA	17.82	421.88	5.0	434.70	15.0	424.70	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S08	1170434.0830	1121518.2593	442.4	443.81	443.63	2	PVC	NA	17.39	426.24	5.0	438.63	15.0	428.63	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S09	1170469.4300	1121969.1733	437.6	439.79	439.54	2	PVC	NA	16.92	422.62	5.0	434.54	15.0	424.54	Measurement; Quarterly Sampling Quarterly Inspection; Quarterly Static Water Leve
LTMW-S10	1170123.6800	1121817.1213	437.4	439.67	439.42	2	PVC	NA	17.18	422.24	5.0	434.42	15.0	424.42	Measurement; Quarterly Sampling

- Notes:

 1) Shallow monitoring wells were sampled with a low flow peristaltic pump with battery pa
 2) Deep monitoring wells were sampled with a low flow submersible pump with genera
 3) Static water level measurements were taken from top of inner casing. If the well has no inner casing, the measurement will be taken from the top of outer ca

Table 3 Historical Groundwater Data Operable Unit 2 Wells

Well	MW-	OU2-1	Well	MW-	OU2-2	Well	MW	/-OU2-3	Well	MW	-OU2-4	Well	MW	/-OU2-5
	TOC =	435.72		TOC =	436.40		TOC =	432.96		TOC =	432.88		TOC =	433.46
Date	DTW	Water El.												
12/03/21	8.95	426.77	12/03/21	9.93	426.47	12/03/21	6.50	426.46	12/03/21	6.45	426.43	12/03/21	7.05	426.41
09/22/21	4.35	431.37	09/22/21	10.25	426.15	09/22/21	6.92	426.04	09/22/21	6.89	425.99	09/22/21	7.62	425.84
06/09/21	10.34	425.38	06/09/21	9.45	426.95	06/09/21	7.03	425.93	06/09/21	6.98	425.90	06/09/21	7.89	425.57
03/18/21	9.29	426.43	03/18/21	10.16	426.24	03/18/21	6.87	426.09	03/18/21	6.81	426.07	03/18/21	7.53	425.93
12/03/20	9.40	426.32	12/03/20	10.29	426.11	12/03/20	6.91	426.05	12/03/20	6.88	426.00	12/03/20	7.59	425.87
09/11/20	9.66	426.06	09/11/20	10.62	425.78	09/11/20	7.25	425.71	09/11/20	7.20	425.68	09/11/20	7.91	425.55
06/11/20	10.06	425.66	06/11/20	10.82	425.58	06/11/20	7.10	425.86	06/11/20	7.10	425.78	06/11/20	7.75	425.71
03/20/20	8.10	427.62	03/20/20	9.25	427.15	03/20/20	6.40	426.56	03/20/20	5.40	427.48	03/20/20	6.05	427.41
12/05/19	9.20	426.52	12/05/19	10.10	426.30	12/05/19	6.70	426.26	12/05/19	6.68	426.20	12/05/19	7.37	426.09
09/19/19	9.54	426.18	09/19/19	10.90	425.50	09/19/19	6.95	426.01	09/19/19	6.90	425.98	09/19/19	7.60	425.86
06/06/19	8.90	426.82	06/06/19	9.60	426.80	06/06/19	6.18	426.78	06/06/19	6.05	426.83	06/06/19	6.23	427.23
03/21/19	8.65	427.07	03/21/19	9.80	426.60	03/21/19	6.00	426.96	03/21/19	5.90	426.98	03/21/19	6.50	426.96
12/05/18	8.90	426.82	12/05/18	9.05	427.35	12/05/18	5.69	427.27	12/05/18	5.60	427.28	12/05/18	6.25	427.21
09/13/18	9.58	426.14	09/13/18	10.40	426.00	09/13/18	7.02	425.94	09/13/18	7.06	425.82	09/13/18	7.72	425.74
06/07/18	9.53	426.19	06/07/18	10.25	426.15	06/07/18	7.90	425.06	06/07/18	6.90	425.98	06/07/18	7.56	425.90
03/22/18	9.15	426.57	03/22/18	9.85	426.55	03/22/18	6.60	426.36	03/22/18	6.55	426.33	03/22/18	7.20	426.26
12/06/17	9.37	426.35	12/06/17	9.96	426.44	12/06/17	6.60	426.36	12/06/17	6.50	426.38	12/06/17	7.20	426.26
09/01/17	9.53	426.19	09/01/17	10.35	426.05	09/01/17	NM	-	09/01/17	6.98	425.90	09/01/17	7.73	425.73
06/23/17	9.35	426.37	06/23/17	10.02	426.38	06/23/17	7.10	425.86	06/23/17	6.70	426.18	06/23/17	7.15	426.31
03/08/17	8.68	427.04	03/08/17	5.94	430.46	03/08/17	5.93	427.03	03/08/17	5.94	426.94	03/08/17	6.62	426.84
12/15/16	8.91	426.81	12/15/16	9.80	426.60	12/15/16	6.42	426.54	12/15/16	6.35	426.53	12/15/16	7.02	426.44
09/19/16	9.58	426.14	09/19/16	10.52	425.88	09/19/16	7.29	425.67	09/19/16	7.15	425.73	09/19/16	7.84	425.62
06/07/16	9.45	426.27	06/07/16	10.28	426.12	06/07/16	6.95	426.01	06/07/16	6.87	426.01	06/07/16	7.57	425.89
03/07/16	8.45	427.27	03/07/16	9.28	427.12	03/07/16	5.91	427.05	03/07/16	5.82	427.06	03/07/16	6.49	426.97
12/02/15	9.30	426.42	12/02/15	10.19	426.21	12/02/15	6.85	426.11	12/02/15	6.77	426.11	12/02/15	7.44	426.02
09/16/15	9.66	426.06	09/16/15	10.47	425.93	09/16/15	7.15	425.81	09/16/15	7.05	425.83	09/16/15	7.74	425.72
06/03/15	9.34	426.38	06/03/15	9.73	426.67	06/03/15	6.41	426.55	06/03/15	6.34	426.54	06/03/15	6.95	426.51
04/08/15	8.63	427.09	04/08/15	9.29	427.11	04/08/15	6.14	426.82	04/08/15	5.96	426.92	04/08/15	6.98	426.48
12/01/14	9.32	426.40	12/01/14	9.84	426.56	12/01/14	6.49	426.47	12/01/14	6.41	426.47	12/01/14	7.08	426.38
09/10/14	9.49	426.23	09/10/14	9.89	426.51	09/10/14	7.02	425.94	09/10/14	6.95	425.93	09/10/14	7.63	425.83
06/12/14	9.58	426.14	06/12/14	10.33	426.07	06/12/14	6.99	425.97	06/12/14	6.94	425.94	06/12/14	7.63	425.83
03/25/14	9.12	426.60	03/25/14	10.22	426.18	03/25/14	6.75	426.21	03/25/14	6.85	426.03	03/25/14	7.24	426.22
12/12/13	8.47	427.25	12/12/13	9.35	427.05	12/12/13	5.92	427.04	12/12/13	5.84	427.04	12/12/13	6.51	426.95
09/23/13	9.52	426.20	09/23/13	10.32	426.08	09/23/13	7.08	425.88	09/23/13	6.98	425.90	09/23/13	7.63	425.83
06/10/13	8.46	427.26	06/10/13	9.32	427.08	06/10/13	5.78	427.18	06/10/13	5.68	427.20	06/10/13	5.35	428.11
03/27/13	9.30	426.42	03/27/13	10.11	426.29	03/27/13	6.78	426.18	03/27/13	6.95	425.93	03/27/13	7.42	426.04
12/03/12	9.49	426.23	12/03/12	10.33	426.07	12/03/12	7.02	425.94	12/03/12	6.93	425.95	12/03/12	7.70	425.76
09/12/12	9.75	425.97	09/12/12	10.63	425.77	09/12/12	7.32	425.64	09/12/12	7.25	425.63	09/12/12	8.02	425.44
06/18/12	9.51	426.21	06/18/12	10.36	426.04	06/18/12	7.05	425.91	06/18/12	6.95	425.93	06/18/12	7.69	425.77
03/19/12	8.88	426.84	03/19/12	9.79	426.61	03/19/12	6.46	426.50	03/19/12	6.32	426.56	03/19/12	7.13	426.33
12/05/11	9.10	426.62	12/05/11	9.84	426.56	12/05/11	6.72	426.24	12/05/11	6.73	426.15	12/05/11	7.50	425.96
09/26/11	9.31	426.41	09/26/11	10.11	426.29	09/26/11	6.64	426.32	09/26/11	6.68	426.20	09/26/11	7.35	426.11
06/13/11	9.29	426.43	06/13/11	10.07	426.33	06/13/11	6.71	426.25	06/13/11	7.87	425.01	06/13/11	7.33	426.13
03/29/11	8.64	427.08	03/29/11	9.43	426.97	03/29/11	6.04	426.92	03/29/11	5.93	426.95	03/29/11	6.68	426.78

TOC = Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet DTW

EI.

Table 3 **Historical Groundwater Data** DNAPL Wells

Well	DN	APL-02	Well	DN	APL-03	Well	DN	APL-04	Well	DN	APL-05
	TOC =	436.81		TOC =	437.23		TOC =	438.50		TOC =	440.60
Date	DTW	Water El.									
12/03/21	9.08	427.73	12/03/21	9.38	427.85	12/03/21	10.56	427.94	12/03/21	12.73	427.87
09/22/21	9.69	427.12	09/22/21	9.06	428.17	09/22/21	11.23	427.27	09/22/21	13.36	427.24
06/09/21	9.43	427.38	06/09/21	9.72	427.51	06/09/21	10.98	427.52	06/09/21	13.12	427.48
03/18/21	9.32	427.49	03/18/21	9.54	427.69	03/18/21	10.77	427.73	03/18/21	13.96	426.64
12/03/20	9.40	427.41	12/03/20	9.76	427.47	12/03/20	10.90	427.60	12/03/20	13.05	427.55
09/11/20	7.95	428.86	09/11/20	9.35	427.88	09/11/20	11.65	426.85	09/11/20	13.13	427.47
06/11/20	10.06	426.75	06/11/20	10.29	426.94	06/11/20	11.67	426.83	06/11/20	13.76	426.84
03/20/20	8.10	428.71	03/20/20	8.55	428.68	03/20/20	9.70	428.80	03/20/20	11.32	429.28
12/05/19	9.20	427.61	12/05/19	9.60	427.63	12/05/19	10.85	427.65	12/05/19	12.92	427.68
09/19/19	9.54	427.27	09/19/19	8.85	428.38	09/19/19	11.14	427.36	09/19/19	13.20	427.40
06/06/19	9.10	427.71	06/06/19	9.25	427.98	06/06/19	10.60	427.90	06/06/19	12.70	427.90
03/21/19	8.20	428.61	03/21/19	8.45	428.78	03/21/19	9.70	428.80	03/21/19	11.80	428.80
12/05/18	8.10	428.71	12/05/18	8.70	428.53	12/05/18	9.65	428.85	12/05/18	11.75	428.85
09/13/18	9.60	427.21	09/13/18	9.70	427.53	09/13/18	11.00	427.50	09/13/18	13.08	427.52
06/07/18	9.70	427.11	06/07/18	10.00	427.23	06/07/18	11.26	427.24	06/07/18	13.34	427.26
03/22/18	9.35	427.46	03/22/18	9.60	427.63	03/22/18	10.90	427.60	03/22/18	12.99	427.61
12/06/17	9.00	427.81	12/06/17	9.31	427.92	12/06/17	10.59	427.91	12/06/17	12.65	427.95
09/01/17	9.75	427.06	09/01/17	10.00	427.23	09/01/17	11.36	427.14	09/01/17	13.44	427.16
06/23/17	9.30	427.51	06/23/17	9.56	427.67	06/23/17	10.90	427.60	06/23/17	13.00	427.60
03/08/17	8.92	427.89	03/08/17	9.19	428.04	03/08/17	10.51	427.99	03/08/17	12.57	428.03
12/15/16	8.33	428.48	12/15/16	8.60	428.63	12/15/16	9.89	428.61	12/15/16	11.98	428.62
09/19/16	9.56	427.25	09/19/16	9.88	427.35	09/19/16	11.20	427.30	09/19/16	13.27	427.33
06/07/16	9.41	427.40	06/07/16	9.73	427.50	06/07/16	11.05	427.45	06/07/16	13.12	427.48
03/07/16	8.45	428.36	03/07/16	8.73	428.50	03/07/16	10.05	428.45	03/07/16	12.10	428.50
12/02/15	9.41	427.40	12/02/15	9.71	427.52	12/02/15	11.01	427.49	12/02/15	13.09	427.51
09/16/15	9.91	426.90	09/16/15	10.21	427.02	09/16/15	11.51	426.99	09/16/15	13.58	427.02
06/03/15	8.33	428.48	06/03/15	8.84	428.39	06/03/15	10.15	428.35	06/03/15	12.24	428.36
04/08/15	8.39	428.42	04/08/15	8.68	428.55	04/08/15	9.96	428.54	04/08/15	12.07	428.53
12/01/14	9.16	427.65	12/01/14	9.45	427.78	12/01/14	10.75	427.75	12/01/14	12.81	427.79
09/10/14	9.25	427.56	09/10/14	9.55	427.68	09/10/14	10.62	427.88	09/10/14	12.70	427.90
06/12/14	9.90	426.91	06/12/14	10.20	427.03	06/12/14	11.41	427.09	06/12/14	13.56	427.04
03/25/14	9.52	427.29	03/25/14	9.81	427.42	03/25/14	11.15	427.35	03/25/14	13.21	427.39
12/12/13	8.71	428.10	12/12/13	9.03	428.20	12/12/13	10.35	428.15	12/12/13	12.41	428.19
09/23/13	9.92	426.89	09/23/13	10.25	426.98	09/23/13	11.56	426.94	09/23/13	13.61	426.99
06/10/13	8.27	428.54	06/10/13	8.62	428.61	06/10/13	9.91	428.59	06/10/13	11.98	428.62
03/27/13	9.51	427.30	03/27/13	9.81	427.42	03/27/13	11.15	427.35	03/27/13	13.21	427.39
12/03/12	9.19	427.62	12/03/12	10.10	427.13	12/03/12	11.45	427.05	12/03/12	13.48	427.12
09/12/12	10.14	426.67	09/12/12	10.48	426.75	09/12/12	11.81	426.69	09/12/12	13.84	426.76
06/18/12	9.46	427.35	06/18/12	9.80	427.43	06/18/12	11.15	427.35	06/18/12	13.24	427.36
03/19/12	9.02	427.79	03/19/12	9.35	427.88	03/19/12	10.69	427.81	03/19/12	12.74	427.86
12/05/11	9.46	427.35	12/05/11	9.79	427.44	12/05/11	11.13	427.37	12/05/11	13.30	427.30
09/26/11	9.36	427.45	09/26/11	9.70	427.53	09/26/11	11.09	427.41	09/26/11	13.08	427.52
06/13/11	9.18	427.63	06/13/11	9.54	427.69	06/13/11	10.84	427.66	06/13/11	12.89	427.71
03/29/11	8.41	428.40	03/29/11	8.72	428.51	03/29/11	10.05	428.45	03/29/11	12.11	428.49

= Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet TOC DTW

EI.

Table 3 **Historical Groundwater Data** DNAPL Wells

Well		APL-06	Well		APL-07	Well		APL-08	Well		APL-09
	TOC =	439.71		TOC =	441.46		TOC =	441.80		TOC =	442.63
Date	DTW	Water El.									
12/03/21	11.86	427.85	12/03/21	12.21	429.25	12/03/21	12.89	428.91	12/03/21	13.8	428.83
09/22/21	12.47	427.24	09/22/21	12.86	428.60	09/22/21	13.39	428.41	09/22/21	14.33	428.30
06/09/21	12.24	427.47	06/09/21	12.78	428.68	06/09/21	13.29	428.51	06/09/21	14.19	428.44
03/18/21	12.06	427.65	03/18/21	12.56	428.90	03/18/21	13.04	428.76	03/18/21	13.95	428.68
12/03/20	12.16	427.55	12/03/20	12.91	428.55	12/03/20	13.28	428.52	12/03/20	14.19	428.44
09/11/20	12.80	426.91	09/11/20	13.57	427.89	09/11/20	14.02	427.78	09/11/20	14.82	427.81
06/11/20	12.73	426.98	06/11/20	13.36	428.10	06/11/20	13.85	427.95	06/11/20	14.73	427.90
03/20/20	10.90	428.81	03/20/20	11.80	429.66	03/20/20	12.10	429.70	03/20/20	13.05	429.58
12/05/19	11.96	427.75	12/05/19	12.81	428.65	12/05/19	13.25	428.55	12/05/19	14.15	428.48
09/19/19	12.27	427.44	09/19/19	13.14	428.32	09/19/19	13.58	428.22	09/19/19	14.50	428.13
06/06/19	6.23	433.48	06/06/19	12.25	429.21	06/06/19	12.75	429.05	06/06/19	13.70	428.93
03/21/19	10.90	428.81	03/21/19	11.50	429.96	03/21/19	12.00	429.80	03/21/19	12.90	429.73
12/05/18	10.70	429.01	12/05/18	11.70	429.76	12/05/18	12.10	429.70	12/05/18	13.00	429.63
09/13/18	12.15	427.56	09/13/18	13.20	428.26	09/13/18	13.65	428.15	09/13/18	14.50	428.13
06/07/18	12.33	427.38	06/07/18	13.18	428.28	06/07/18	13.61	428.19	06/07/18	14.50	428.13
03/22/18	12.00	427.71	03/22/18	12.67	428.79	03/22/18	13.16	428.64	03/22/18	14.06	428.57
12/06/17	11.74	427.97	12/06/17	12.55	428.91	12/06/17	13.00	428.80	12/06/17	13.91	428.72
09/01/17	12.40	427.31	09/01/17	13.40	428.06	09/01/17	13.80	428.00	09/01/17	14.69	427.94
06/23/17	11.97	427.74	06/23/17	12.70	428.76	06/23/17	13.15	428.65	06/23/17	14.07	428.56
03/08/17	11.57	428.14	03/08/17	12.37	429.09	03/08/17	12.75	429.05	03/08/17	13.65	428.98
12/15/16	11.05	428.66	12/15/16	10.80	430.66	12/15/16	12.24	429.56	12/15/16	13.15	429.48
09/19/16	12.31	427.40	09/19/16	13.22	428.24	09/19/16	13.64	428.16	09/19/16	14.55	428.08
06/07/16	12.15	427.56	06/07/16	12.98	428.48	06/07/16	13.44	428.36	06/07/16	14.32	428.31
03/07/16	11.17	428.54	03/07/16	11.91	429.55	03/07/16	12.36	429.44	03/07/16	13.25	429.38
12/02/15	12.21	427.50	12/02/15	13.03	428.43	12/02/15	13.49	428.31	12/02/15	14.39	428.24
09/16/15	12.69	427.02	09/16/15	13.32	428.14	09/16/15	13.78	428.02	09/16/15	14.67	427.96
06/03/15	11.36	428.35	06/03/15	11.88	429.58	06/03/15	12.37	429.43	06/03/15	13.29	429.34
04/08/15	11.19	428.52	04/08/15	11.71	429.75	04/08/15	12.19	429.61	04/08/15	13.12	429.51
12/01/14	11.92	427.79	12/01/14	12.55	428.91	12/01/14	12.98	428.82	12/01/14	13.88	428.75
09/10/14	11.76	427.95	09/10/14	12.91	428.55	09/10/14	13.35	428.45	09/10/14	14.29	428.34
06/12/14	12.61	427.10	06/12/14	13.12	428.34	06/12/14	13.60	428.20	06/12/14	14.57	428.06
03/25/14	12.25	427.46	03/25/14	13.01	428.45	03/25/14	13.44	428.36	03/25/14	14.21	428.42
12/12/13	11.51	428.20	12/12/13	12.19	429.27	12/12/13	12.63	429.17	12/12/13	13.51	429.12
09/23/13	12.71	427.00	09/23/13	13.26	428.20	09/23/13	13.75	428.05	09/23/13	13.91	428.72
06/10/13	11.07	428.64	06/10/13	11.85	429.61	06/10/13	12.28	429.52	06/10/13	13.16	429.47
03/27/13	12.31	427.40	03/27/13	12.80	428.66	03/27/13	13.26	428.54	03/27/13	14.20	428.43
12/03/12	12.61	427.10	12/03/12	13.75	427.71	12/03/12	13.71	428.09	12/03/12	14.65	427.98
09/12/12	12.91	426.80	09/12/12	13.76	427.70	09/12/12	14.21	427.59	09/12/12	15.11	427.52
06/18/12	12.28	427.43	06/18/12	13.11	428.35	06/18/12	13.56	428.24	06/18/12	14.47	428.16
03/19/12	11.84	427.87	03/19/12	12.61	428.85	03/19/12	13.95	427.85	03/19/12	13.05	429.58
12/05/11	12.28	427.43	12/05/11	12.88	428.58	12/05/11	13.36	428.44	12/05/11	14.28	428.35
09/26/11	10.18	429.53	09/26/11	12.86	428.60	09/26/11	13.35	428.45	09/26/11	14.25	428.38
06/13/11	11.94	427.77	06/13/11	12.84	428.62	06/13/11	13.27	428.53	06/13/11	14.14	428.49
03/29/11	11.12	428.59	03/29/11	12.25	429.21	03/29/11	12.66	429.14	03/29/11	13.75	428.88

= Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet = Elevation in Feet TOC DTW

EI.

Table 3 **Historical Groundwater Data** Trench Wells

Well	V	TM-1	Well	V	TM-2	Well	l v	TM-3	Well	l v	/TM-4	Well	l v	TM-5
Well	TOC =	439.74	Weii	TOC =	438.33	Well	TOC =	439.44	Weii	TOC =	441.59	Weii	TOC =	441.79
Date	DTW	Water El.												
12/03/21	11.62	428.12	12/03/21	10.01	428.32	12/03/21	11.16	428.28	12/03/21	13.03	428.56	12/03/21	13.15	428.64
09/22/21	12.28	427.46	09/22/21	10.73	427.60	09/22/21	11.8	427.64	09/22/21	13.64	427.95	09/22/21	13.74	428.05
06/09/21	12.10	427.64	06/09/21	10.57	427.76	06/09/21	11.74	427.70	06/09/21	13.54	428.05	06/09/21	13.68	428.11
03/18/21	11.71	428.03	03/18/21	10.11	428.22	03/18/21	11.27	428.17	03/18/21	13.24	428.35	03/18/21	13.39	428.40
12/03/20	12.02	427.72	12/03/20	10.54	427.79	12/03/20	11.70	427.74	12/03/20	13.54	428.05	12/03/20	13.62	428.17
09/11/20	12.73	427.01	09/11/20	11.18	427.15	09/11/20	12.22	427.22	09/11/20	14.07	427.52	09/11/20	14.26	427.53
06/11/20	10.06	429.68	06/11/20	10.85	427.48	06/11/20	11.97	427.47	06/11/20	13.85	427.74	06/11/20	14.00	427.79
03/20/20	8.10	431.64	03/20/20	9.10	429.23	03/20/20	10.20	429.24	03/20/20	12.05	429.54	03/20/20	12.15	429.64
12/05/19	9.20	430.54	12/05/19	10.22	428.11	12/05/19	11.39	428.05	12/05/19	13.44	428.15	12/05/19	13.61	428.18
09/19/19	9.54	430.20	09/19/19	10.69	427.64	09/19/19	11.86	427.58	09/19/19	13.68	427.91	09/19/19	13.88	427.91
06/06/19	11.60	428.14	06/06/19	10.00	428.33	06/06/19	11.20	428.24	06/06/19	13.00	428.59	06/06/19	6.23	435.56
03/21/19	10.60	429.14	03/21/19	9.00	429.33	03/21/19	10.20	429.24	03/21/19	12.50	429.09	03/21/19	12.25	429.54
12/05/18	10.55	429.19	12/05/18	8.95	429.38	12/05/18	10.05	429.39	12/05/18	12.00	429.59	12/05/18	12.15	429.64
09/13/18	12.20	427.54	09/13/18	10.65	427.68	09/13/18	11.80	427.64	09/13/18	13.70	427.89	09/13/18	13.85	427.94
06/07/18	12.14	427.60	03/22/18	10.46	427.87	03/22/18	11.62	427.82	06/07/18	13.61	427.98	03/22/18	13.75	428.04
03/22/18	11.86	427.88	03/22/18	10.41	427.92	03/22/18	11.36	428.08	03/22/18	13.31	428.28	03/22/18	13.45	428.34
12/06/17	11.65	428.09	12/06/17	10.07	428.26	12/06/17	11.22	428.22	12/06/17	13.17	428.42	12/06/17	13.32	428.47
09/01/17	12.10	427.64	09/01/17	10.40	427.93	09/01/17	10.55	428.89	09/01/17	13.60	427.99	09/01/17	13.77	428.02
06/23/17	11.80	427.94	06/23/17	10.10	428.23	06/23/17	11.21	428.23	06/23/17	13.15	428.44	06/23/17	13.29	428.50
03/08/17	11.24	428.50	03/08/17	9.52	428.81	03/08/17	10.65	428.79	03/08/17	12.58	429.01	03/08/17	12.76	429.03
12/15/16	10.99	428.75	12/15/16	9.33	429.00	12/15/16	10.49	428.95	12/15/16	12.49	429.10	12/15/16	12.54	429.25
09/19/16	12.23	427.51	09/19/16	10.56	427.77	09/19/16	11.71	427.73	09/19/16	13.65	427.94	09/19/16	13.82	427.97
06/07/16	11.98	427.76	06/07/16	10.29	428.04	06/07/16	11.43	428.01	06/07/16	13.44	428.15	06/07/16	13.61	428.18
03/07/16	10.98	428.76	03/07/16	9.25	429.08	03/07/16	10.36	429.08	03/07/16	12.32	429.27	03/07/16	12.49	429.30
12/02/15	12.12	427.62	12/02/15	10.53	427.80	12/02/15	11.68	427.76	12/02/15	13.58	428.01	12/02/15	13.74	428.05
09/16/15	12.55	427.19	09/16/15	10.75	427.58	09/16/15	11.85	427.59	09/16/15	13.73	427.86	09/16/15	14.67	427.12
06/03/15	11.21	428.53	06/03/15	9.55	428.78	06/03/15	10.72	428.72	06/03/15	12.68	428.91	06/03/15	12.86	428.93
04/08/15	11.06	428.68	04/08/15	9.49	428.84	04/08/15	11.65	427.79	04/08/15	12.65	428.94	04/08/15	12.81	428.98
12/01/14	11.55	428.19	12/01/14	9.79	428.54	12/01/14	10.92	428.52	12/01/14	12.91	428.68	12/01/14	13.09	428.70
09/10/14	11.62	428.12	09/10/14	9.91	428.42	09/10/14	11.10	428.34	09/10/14	13.14	428.45	09/10/14	13.31	428.48
06/12/14	11.94	427.80	06/12/14	10.28	428.05	06/12/14	11.45	427.99	06/12/14	13.48	428.11	06/12/14	13.63	428.16
03/25/14	11.69	428.05	03/25/14	10.01	428.32	03/25/14	11.17	428.27	03/25/14	13.32	428.27	03/25/14	13.35	428.44
12/12/13	10.91	428.83	12/12/13	9.31	429.02	12/12/13	10.46	428.98	12/12/13	12.51	429.08	12/12/13	12.56	429.23
09/23/13	12.19	427.55	09/23/13	10.63	427.70	09/23/13	11.79	427.65	09/23/13	15.75	425.84	09/23/13	13.91	427.88
06/10/13	10.45	429.29	06/10/13	8.75	429.58	06/10/13	9.98	429.46	06/10/13	12.08	429.51	06/10/13	13.16	428.63
03/27/13	11.83	427.91	03/27/13	10.82	427.51	03/27/13	11.48	427.96	03/27/13	13.51	428.08	03/27/13	13.69	428.10
12/03/12	12.31	427.43	12/03/12	10.82	427.51	12/03/12	11.98	427.46	12/03/12	13.84	427.75	12/03/12	14.06	427.73
06/18/12	12.01	427.73	06/18/12	10.46	427.87	06/18/12	11.66	427.78	06/18/12	13.70	427.89	06/18/12	13.89	427.90
03/19/12	11.49	428.25	03/19/12	9.91	428.42	03/19/12	11.11	428.33	03/19/12	13.16	428.43	03/19/12	13.33	428.46
12/05/11	12.01	427.73	12/05/11	10.48	427.85	12/05/11	11.62	427.82	12/05/11	13.61	427.98	12/05/11	13.81	427.98
09/26/11	11.95	427.79	09/26/11	10.41	427.92	09/26/11	11.61	427.83	09/26/11	13.66	427.93	09/26/11	13.82	427.97
06/13/11	11.74	428.00	06/13/11	10.15	428.18	06/13/11	11.32	428.12	06/13/11	13.39	428.20	06/13/11	13.59	428.20
03/29/11	11.02	428.72	03/29/11	9.48	428.85	03/29/11	10.65	428.79	03/29/11	12.81	428.78	03/29/11	12.97	428.82

TOC DTW EI. = Top of Inner Well Casing Elevation in Feet = Depth to Water from Top of Casing in Feet

= Elevation in Feet

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	I ITN	/W-D01	LTN	/W-S01	LTN	/W-D02	LITA	/IW-S02	LTN	/W-D03	I I TN	MW-S03	LITA	/W-D04	I I TN	1W-S04
· · ·	TOC =	434.90	TOC =	435.52	TOC =	436.74	TOC =	436.79	TOC =	431.27	TOC =	431.43	TOC =	H 437.18	TOC =	437.24
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
12/03/21	8.18	426.72	8.28	427.24	10.17	426.57	9.91	426.88	4.69	426.58	3.62	427.81	9.57	427.61	9.27	427.97
09/22/21	8.63	426.27	8.82	426.70	10.83	425.91	10.62	426.17	5.28	425.99	4.57	426.86	10.54	426.64	10.13	427.11
06/09/21	8.58	426.32	8.68	426.84	10.67	426.07	9.59	427.20	7.33	423.94	4.27	427.16	9.94	427.24	9.64	427.60
03/18/21	8.55	426.35	8.58	426.94	10.57	426.17	10.31	426.48	5.03	426.24	4.13	427.30	9.81	427.37	9.54	427.70
12/03/20	8.80	426.10	8.60	426.92	10.60	426.14	10.38	426.41	5.15	426.12	4.15	427.28	9.75	427.43	9.44	427.80
09/11/20	8.85	426.05	8.85	426.67	10.77	425.97	10.45	426.34	6.46	424.81	4.30	427.13	10.25	426.93	9.68	427.56
06/11/20	10.06	424.84	8.88	426.64	11.69	425.05	10.46	426.33	5.23	426.04	4.28	427.15	10.05	427.13	9.70	427.54
03/20/20	8.10	426.80	8.30	427.22	8.90	427.84	8.20	428.59	3.50	427.77	1.80	429.63	8.25	428.93	7.10	430.14
12/05/19	9.20	425.70	8.47	427.05	10.50	426.24	10.17	426.62	4.93	426.34	3.95	427.48	9.65	427.53	9.39	427.85
09/19/19	9.54	425.36	8.70	426.82	10.60	426.14	10.45	426.34	5.20	426.07	4.20	427.23	9.90	427.28	9.55	427.69
06/06/19	7.80	427.10	8.00	427.52	9.70	427.04	9.33	427.46	4.25	427.02	2.90	428.53	6.23	430.95	8.12	429.12
03/21/19	8.00	426.90	8.20	427.32	10.15	426.59	9.77	427.02	4.45	426.82	3.63	427.80	9.35	427.83	8.90	428.34
12/05/18	7.54	427.36	7.54	427.98	9.29	427.45	8.95	427.84	5.75	425.52	2.40	429.03	8.64	428.54	7.78	429.46
09/13/18	8.81	426.09	8.67	426.85	10.60	426.14	10.36	426.43	5.48	425.79	4.18	427.25	10.02	427.16	9.35	427.89
06/07/18	8.55	426.35	8.70	426.82	10.35	426.39	10.30	426.43	4.32	426.95	4.10	427.32	9.78	427.10	9.33	427.76
03/22/18	8.22	426.68	9.41	426.11	10.21	426.53	9.98	426.81	5.65	425.62	3.60	427.83	9.35	427.83	9.05	428.19
12/06/17	8.17	426.73	8.16	427.36	10.07	426.67	9.61	427.18	4.76	426.51	3.30	428.13	9.35	427.83	8.35	428.89
09/01/17	8.75	426.15	8.74	426.78	10.64	426.10	10.31	426.48	5.23	426.04	4.15	427.28	9.99	427.19	9.50	427.74
06/23/17	8.30	426.60	8.53	426.99	10.45	426.29	10.27	426.52	4.91	426.36	4.05	427.38	9.58	427.60	9.45	427.79
03/08/17	8.13	426.77	8.27	427.25	10.11	426.63	9.79	427.00	4.48	426.79	3.53	427.90	9.00	428.18	8.79	428.45
12/15/16	8.11	426.79	8.02	427.50	10.03	426.71	9.73	427.06	4.55	426.72	3.28	428.15	9.32	427.86	8.41	428.83
09/19/16	8.78	426.12	8.73	426.79	10.70	426.04	10.41	426.38	5.26	426.01	4.25	427.18	10.03	427.15	9.61	427.63
06/07/16	8.56	426.34	7.85	427.67	10.16	426.58	10.21	426.58	4.75	426.52	4.07	427.36	9.47	427.71	9.38	427.86
03/07/16	7.75	427.15	7.18	428.34	9.05	427.69	9.15	427.64	3.69	427.58	2.45	428.98	8.55	428.63	7.85	429.39
12/03/15	7.71	427.19	8.29	427.23	9.85	426.89	9.74	427.05	4.38	426.89	3.51	427.92	9.63	427.55	8.65	428.59
09/16/15	8.30	426.60	8.76	426.76	10.29	426.45	10.32	426.47	4.91	426.36	4.15	427.28	9.69	427.49	9.52	427.72
06/03/15	8.07	426.83	8.03	427.49	10.02	426.72	10.13	426.66	4.45	426.82	3.92	427.51	9.35	427.83	9.27	427.97
04/08/15	7.34	427.56	7.99	427.53	9.58	427.16	9.71	427.08	4.01	427.26	3.54	427.89	8.85	428.33	8.75	428.49
12/01/14	7.94	426.96	8.15	427.37	9.75	426.99	9.64	427.15	4.11	427.16	3.13	428.30	9.09	428.09	8.57	428.67
09/10/14	8.14	426.76	8.12	427.40	9.99	426.75	9.64	427.15	4.58	426.69	3.19	428.24	9.30	427.88	8.70	428.54
06/12/14	8.68	426.22	8.24	427.28	10.57	426.17	10.26	426.53	4.71	426.56	4.11	427.32	9.60	427.58	9.42	427.82
03/25/14	8.22	426.68	8.50	427.02	10.11	426.63	10.19	426.60	4.71	426.56	4.09	427.34	9.56	427.62	9.43	427.81
12/12/13	7.61	427.29	7.64	427.88	9.19	427.55	8.75	428.04	3.97	427.30	1.99	429.44	8.57	428.61	7.45	429.79
09/23/13	8.36	426.54	8.75 7.52	426.77 428.00	10.28 9.09	426.46	10.28 8.73	426.51	5.11	426.16 427.75	4.05 2.18	427.38 429.25	9.84 7.99	427.34 429.19	9.52 6.99	427.72 430.25
06/10/13 03/27/13	7.17 8.27	427.73 426.63	7.52 8.64	428.00 426.88	10.28	427.65 426.46	9.98	428.06 426.81	3.52 4.84	427.75	3.87	429.25 427.56	7.99 9.61	429.19 427.57	9.36	430.25
12/03/12	8.65	426.25	8.60	426.92	10.42	426.32	9.90	426.89	5.08	426.43	3.80	427.63	9.85	427.33	9.30	427.33
09/12/12	8.84	426.06	8.91	426.61	10.76	425.98	10.35	426.44	5.39	425.88	4.17	427.05	10.20	426.98	9.62	427.62
06/18/12	8.35	426.55	8.61	426.91	10.75	426.39	10.26	426.53	5.10	426.17	4.08	427.35	8.76	428.42	9.48	427.76
03/19/12	8.01	426.89	8.11	427.41	9.92	426.82	9.46	427.33	4.50	426.77	3.04	428.39	9.24	427.94	8.29	428.95
12/05/11	8.16	426.74	8.31	427.21	10.12	426.62	9.61	427.18	4.63	426.64	3.35	428.08	9.39	427.79	8.81	428.43
09/26/11	8.38	426.52	8.45	427.07	10.45	426.29	10.18	426.61	4.71	426.56	3.93	427.50	9.45	427.73	9.44	427.80
06/13/11	7.61	427.29	8.36	427.16	10.27	426.47	9.95	426.84	4.78	426.49	3.75	427.68	9.42	427.76	9.17	428.07
03/28/11	7.83	427.07	7.85	427.67	9.68	427.06	9.43	427.36	4.41	426.86	3.34	428.09	9.07	428.11	8.91	428.33

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

El. = Elevation in Feet

Table 3

Historical Groundwater Data
Operable Unit 1 Wells

Well	LTN	1W-D05	LTN	/W-S05	LTN	/W-D06	LTN	/W-S06	LTN	/W-S07	LTN	/W-S08	LTI	MW-S09	LTN	/W-S10
	TOC =	437.78	TOC =	437.92	TOC =	441.70	TOC =	441.64	TOC =	439.70	TOC =	443.81	TOC =	439.79	TOC =	439.67
Date	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.	DTW	Water El.
12/03/21	9.10	428.68	9.78	428.14	12.08	429.62	12.81	428.83	10.31	429.39	15.14	428.67	9.32	430.47	9.89	429.78
09/22/21	9.75	428.03	10.71	427.21	12.55	429.15	13.44	428.20	11.13	428.57	15.78	428.03	9.29	430.50	10.37	429.30
06/09/21	9.58	428.20	9.90	428.02	12.44	429.26	13.22	428.42	10.88	428.82	15.59	428.22	9.55	430.24	9.75	429.92
03/18/21	9.07	428.71	9.85	428.07	12.25	429.45	13.00	428.64	11.04	428.66	15.27	428.54	9.37	430.42	9.95	429.72
12/03/20	9.60	428.18	10.79	427.13	12.45	429.25	13.20	428.44	10.97	428.73	15.58	428.23	9.82	429.97	10.30	429.37
09/11/20	10.82	426.96	9.95	427.97	12.90	428.80	13.65	427.99	11.70	428.00	16.60	427.21	10.55	429.24	11.07	428.60
06/11/20	9.67	428.11	9.93	427.99	12.61	429.09	13.51	428.13	11.43	428.27	15.95	427.86	10.12	429.67	10.86	428.81
03/20/20	7.50	430.28	7.80	430.12	11.00	430.70	11.70	429.94	9.75	429.95	14.15	429.66	9.00	430.79	9.60	430.07
12/05/19	9.30	428.48	9.73	428.19	12.29	429.41	13.12	428.52	10.80	428.90	15.45	428.36	9.73	430.06	10.29	429.38
09/19/19	9.44	428.34	9.86	428.06	11.45	430.25	13.40	428.24	11.20	428.50	15.80	428.01	10.03	429.76	10.70	428.97
06/06/19	8.35	429.43	8.65	429.27	11.60	430.10	12.55	429.09	10.15	429.55	14.94	428.87	9.26	430.53	9.74	429.93
03/21/19	8.92	428.86	9.38	428.54	11.80	429.90	12.50	429.14	10.08	429.62	14.08	429.73	9.15	430.64	9.52	430.15
12/05/18	8.18	429.60	7.30	430.62	11.10	430.60	11.55	430.09	8.55	431.15	13.90	429.91	8.70	431.09	9.20	430.47
09/13/18	9.67	428.11	9.68	428.24	12.70	429.00	13.35	428.29	11.55	428.15	15.80	428.01	10.23	429.56	10.75	428.92
06/07/18							13.35									428.92
	9.47	428.31	9.64	428.28	12.42	429.28		428.38	11.06	428.64	15.70	428.11	10.10	429.69	10.64	
03/22/18	8.95	428.83	8.80	429.12	12.10	429.60	12.92	428.72	10.40	429.30	15.30	428.51	9.50	430.29	10.15	429.52
12/06/17	9.02	428.76	9.16	428.76	12.00	429.70	12.25	429.39	10.67	429.03	15.10	428.71	9.58	430.21	10.10	429.57
09/01/17	9.51	428.27	9.60	428.32	12.62	429.08	13.50	428.14	12.60	427.10	15.78	428.03	10.38	429.41	10.96	428.71
06/23/17	9.14	428.64	9.60	428.32	12.07	429.63	12.88	428.76	10.73	428.97	15.22	428.59	12.88	426.91	10.18	429.49
03/08/17	8.26	429.52	7.54	430.38	11.52	430.18	11.78	429.86	10.39	429.31	14.69	429.12	9.21	430.58	9.98	429.69
12/15/16	8.80	428.98	9.00	428.92	12.28	429.42	11.70	429.94	9.89	429.81	14.50	429.31	8.60	431.19	9.30	430.37
09/19/16	9.63	428.15	9.65	428.27	12.61	429.09	13.24	428.40	11.44	428.26	15.59	428.22	9.82	429.97	10.68	428.99
06/07/16	8.82	428.96	9.53	428.39	11.98	429.72	13.03	428.61	11.01	428.69	15.36	428.45	9.81	429.98	10.41	429.26
03/07/16	7.85	429.93	8.27	429.65	11.16	430.54	12.13	429.51	9.94	429.76	14.48	429.33	9.05	430.74	9.65	430.02
12/02/15	8.77	429.01	9.21	428.71	12.31	429.39	13.20	428.44	11.55	428.15	15.67	428.14	10.40	429.39	10.95	428.72
09/16/15	8.97	428.81	9.51	428.41	12.58	429.12	13.25	428.39	11.54	428.16	15.65	428.16	9.89	429.90	10.65	429.02
06/03/15	9.25	428.53	9.41	428.51	12.15	429.55	12.93	428.71	10.81	428.89	15.21	428.60	9.15	430.64	9.93	429.74
04/08/15	8.74	429.04	9.36	428.56	11.67	430.03	12.55	429.09	10.06	429.64	14.85	428.96	8.89	430.90	9.54	430.13
12/01/14	8.28	429.50	8.91	429.01	11.77	429.93	12.49	429.15	10.97	428.73	14.78	429.03	9.31	430.48	9.93	429.74
09/10/14	8.85	428.93	8.97	428.95	11.91	429.79	12.68	428.96	10.96	428.74	15.34	428.47	9.35	430.44	10.29	429.38
06/12/14	9.02	428.76	9.52	428.40	12.28	429.42	13.08	428.56	11.14	428.56	15.34	428.47	9.63	430.16	10.46	429.21
03/25/14	9.03	428.75	8.50	429.42	11.95	429.75	12.81	428.83	10.85	428.85	15.03	428.78	9.11	430.68	9.93	429.74
12/12/13	7.96	429.82	7.85	430.07	11.20	430.50	11.87	429.77	10.16	429.54	14.11	429.70	8.95	430.84	9.63	430.04
09/23/13	8.94	428.84	9.52	428.40	12.36	429.34	13.21	428.43	11.39	428.31	15.46	428.35	9.86	429.93	10.64	429.03
06/10/13	7.55	430.23	7.48	430.44	11.15	430.55	11.78	429.86	10.27	429.43	14.12	429.69	9.43	430.36	10.17	429.50
03/27/13	9.13	428.65	9.45	428.47	12.16	429.54	13.10	428.54	10.92	428.78	15.27	428.54	9.55	430.24	10.31	429.36
12/03/12 09/12/12	9.51 9.76	428.27 428.02	9.48 9.64	428.44 428.28	13.43 12.81	428.27 428.89	12.78 13.69	428.86 427.95	11.59	428.11 427.73	15.72 15.95	428.09 427.86	10.25 10.58	429.54 429.21	10.91 11.27	428.76 428.40
09/12/12	9.76	428.02 428.52	9.64	428.28 428.41	12.81	428.89 429.29	13.69	427.95 428.41	11.97	427.73	15.40	427.86	9.81	429.21	10.56	428.40 429.11
03/19/12	8.79	428.99	9.04	428.88	12.41	429.29	12.99	428.65	11.05	428.65	15.40	428.62	9.73	430.06	10.43	429.11
12/05/11	9.02	428.76	9.08	428.84	12.22	429.48	13.04	428.60	10.97	428.73	15.19	428.62	9.58	430.21	10.34	429.33
09/26/11	9.32	428.46	9.53	428.39	12.40	429.30	13.20	428.44	11.01	428.69	15.21	428.60	9.55	430.24	10.31	429.36
06/13/11	8.91	428.87	9.34	428.58	11.99	429.71	12.88	428.76	10.79	428.91	15.03	428.78	9.49	430.30	10.29	429.38
03/28/11	8.08	429.70	9.12	428.80	11.62	430.08	12.41	429.23	10.08	429.62	14.46	429.35	10.14	429.65	9.75	429.92

TOC = Top of Inner Well Casing Elevation in Feet
DTW = Depth to Water from Top of Casing in Feet

El. = Elevation in Feet

Table 4 Groundwater Analytical Data LTMW-D01

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	8,990	5,800	5,290	2,470	4,250	5,460	3,440	3,900	1,410	7,360	6,290	2,370	3,400	4,310	2,060	1,600	3,400	4,780	2,720	4,670	3,360
Toluene	1,000	5	1	2,080	1,320	1,470	809	1,230	1,140	992	1,080	1,740	2,200	1,410	630	876	183	392	202	247	727	172	532	291
Ethylbenzene	700	5	1	241	145	137	179	177	95.0	119	163	203	202	170	142	222	1,120	96.3	101	179	195	106	247	238
Xylene (total)	10,000	5	2	254	206	201	157	187	135	155	164	214.5	339	229	134.8	180.8	277	134	109	152	209	135	205	175.8
Acenaphthene	N/A	20	4.9	0.43	0.19	0.10	0.19	0.35	0.18	0.19	0.14	0.40	0.48	0.23	0.21	0.33	0.47	0.16	0.22	0.36	0.44	0.30	0.51	0.57
Acenaphthylene	N/A	NA	4.9	6.2	0.31	0.11	0.36	7.1	3.1	1.1	1.9	7.1	8.6	2.3	0.51	2.8	5.9	0.17	1.5	4.4	3.9	1.4	2.4	1.7
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	14	11	ND	ND	ND	10	ND	ND	15	ND	ND	ND	ND	14	ND	ND	12	5.65	ND	ND	ND
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	0.35	0.15	ND	ND	0.41	0.17	0.14	0.10	0.30	0.55	0.16	ND	0.20	0.47	0.11	0.12	0.24	0.28	0.17	0.23	0.22
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	229	ND	ND	ND	7.2	94.6	0.44	0.83	170	381	8.3	ND	4.3	121	ND	0.17	20.6	14.9	ND	ND	ND
Phenanthrene	N/A	50	4.9	ND	ND	ND	ND	107	ND															
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND	ND	ND	ND	6.9	ND	6.8	9.1	ND	ND	ND	9.1	6.2	6.6	9.7	8.1	8.6	6.6	10.6	10.5	11.1
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

 Animent Water Quality Statutarius
 Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak aree
 Estimated Concentration Yalue
 values indicate exceedance of the NYSDEC AWQS μg/L ND H J

Bolded

Table 4

Groundwater Analytical Data LTMW-S01

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (μg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	ND	1.9	ND	1.9	ND	ND	1.2	ND	ND	2.3	ND										
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	1.2	ND																			
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	91.2	69.4	56.4	105	75.1	56.5	68.1	101	64.4	53.1	70.6	69.0	74.5	63.7	46.9	88.3	108.0	95.3	102	98	94.3
Acenaphthylene	N/A	NA	4.9	3	3.2	2.5	3.6	2.7	2.2	3.3	4.4	2.6	2	2.7	3.2	3.3	2.3	1.7	3.3	4.3	3.5	4.0	4.0	3.4
Anthracene	N/A	NA	4.9	0.38	0.52	0.28	0.40	0.34	0.27	0.37	0.47	0.35	0.25	0.47	0.41	0.44	0.24	0.17	0.4	0.4	0.34	0.35	0.41	0.31
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	13	55	18	12	15	11	17	19	14	14	16	18	18	25	25	26	19	11.6	14	24	ND
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	4	3.6	2.8	4.8	3.5	2.4	3.7	6.1	3.6	2.6	3.8	5.4	5.0	2.8	2.7	5.4	5.7	3.9	5.0	6.0	4.7
Fluorene	N/A	0.002	4.9	27.6	19.9	12.6	28.5	19.2	15.4	18.1	28.3	15.6	13.6	18	22.9	19.6	14.3	12.7	26.1	29.7	26.6	28.6	30.4	23.3
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	0.38	0.4	0.15	0.24	0.31	ND	0.23	ND	0.31	0.15	0.26	0.23	0.27	0.25	ND	0.16	0.3	0.29	0.28	0.2	0.19
Phenanthrene	N/A	50	4.9	0.74	1.7	ND	0.14	0.20	0.26	0.13	0.20	0.16	0.11	0.41	0.13	0.17	0.13	ND	0.16	0.17	0.17	0.14	0.13	0.13
Pyrene	N/A	50	4.9	4.2	3.6	2.7	4.9	3.7	2.5	3.8	6.6	4.4	2.7	3.9	5.7	5.3	3.0	2.9	5.7	6.1	4.3	5.2	6.2	5.2
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND	11.5	ND	ND	ND	ND	ND	ND													

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

- Annibert Water Quality Standards
- Micrograms per Liter
= Not detected above laboratory reporting limits
- Quantitated using peak height rather than peak area
- Estimated Concentration Value
- values indicate exceedance of the NYSDEC AWQS μg/L ND H Bolded

Table 4 Groundwater Analytical Data LTMW-D02

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	2.2	1.6	ND	2.0	0.97	1.2	1.0	0.91	0.23	0.36	0.25	0.15	ND								
Acenaphthylene	N/A	NA	4.9	0.43	0.39	ND	0.48	0.22	0.29	0.31	0.24	ND												
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	150	200	ND	160	160	160	150	140	10	140	140	110	ND	130	11	ND	140	82.7	12	26	78
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H

 Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Table 4

Groundwater Analytical Data LTMW-S02

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND	ND	ND	ND	ND	ND	0.13	ND													
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	130	75	73	110	90	60	59	110	10	57	71	70	73	76	64	94	96	46.4	82	68	57
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND	7.7	ND	ND	7.6	ND	7.1	7.2	ND	ND	ND	5.1	6.3	ND	9.1	7.2	7.5	ND	ND	ND	ND
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

- Annibert Water Quality Standards
- Micrograms per Liter
= Not detected above laboratory reporting limits
- Quantitated using peak height rather than peak area
- Estimated Concentration Value
- values indicate exceedance of the NYSDEC AWQS μg/L ND H

Bolded

Table 4 Groundwater Analytical Data LTMW-D03

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	27.1	10.2	8.5	8.9	9.5	4.7	6.4	5.4	8.4	6.2	9.6	6.2	2.5	3.3	4.6	2.5	5.0	3.0	4.4	4.7	3.5
Toluene	1,000	5	1	55	5.9	1.9	1.9	5.4	ND	1.2	2.0	3.9	18.2	5.6	2.0	ND	11.0	2.6	ND	ND	ND	3.1	1.2	ND
Ethylbenzene	700	5	1	23.9	63.7	44	49.0	40.2	26.0	34.1	23.6	22.2	3	20.7	16.5	11.3	ND	11.8	10.4	10.4	8.2	6.0	6.6	6.8
Xylene (total)	10,000	5	2	25.7	13.5	5.6	7.5	8.4	4.0	4.4	5.5	6.2	7.1	8.4	1.4	ND	ND	3.4	ND	ND	ND	3.5	ND	ND
Acenaphthene	N/A	20	4.9	ND	10.7	3.70	10.2	5.9	5.8	8.3	5.7	6.2	8.0	6.0	7.90	4.3	4.3	6.8	5.4	8.8	2.4	6.5	5.4	6.8
Acenaphthylene	N/A	NA	4.9	10.6	3.1	2.5	2.2	1.5	1.3	2.0	1.6	2.8	2.2	2.1	1.4	0.89	0.54	1.8	1.9	1.5	0.29	0.33	0.49	0.56
Anthracene	N/A	NA	4.9	ND	5.6	0.3	3.7	2.4	2.2	2.8	2.1	2	2.1	1.6	1.6	0.9	0.45	0.73	2.80	0.68	0.32	0.50	ND	0.26
Benzo(a)anthracene	N/A	0.002	4.9	ND	0.42	ND	0.40	0.26	0.30	0.34	0.29	0.28	0.4	0.38	0.41	0.26	0.23	0.31	3.6	0.45	0.29	0.30	0.29	0.27
Benzo(a)pyrene	N/A	ND	4.9	ND	2.4	ND	ND	ND	ND	ND														
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	1.7	ND	ND	ND	ND	ND														
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	0.8	ND	ND	ND	ND	ND														
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	0.68	ND	ND	ND	ND	ND														
Chrysene	N/A	0.002	4.9	ND	0.25	ND	0.24	0.18	0.17	0.19	0.18	0.16	0.21	0.23	0.25	0.17	0.15	0.18	2.10	0.24	0.19	0.18	0.17	0.17
Cyanide	N/A	200	10	79	84	76	66	78	64	66	62	62	65	72	60	53	67	62	63	58	55.7	50	49	43
Dibenzo(a,h)anthracene	N/A	50	4.9	ND	0.2	5.4	ND	ND	ND	ND														
Fluoranthene	N/A	50	4.9	ND	6.1	2.9	5.9	3.7	4.1	4.7	4.0	3.5	5.1	4.2	5.4	3.2	3.4	4.2	12.3	5.6	3.9	4.2	3.7	4.0
Fluorene	N/A	0.002	4.9	ND	7.1	13.2	6.2	3.7	3.6	5.1	3.5	3.8	5.1	3.6	4.9	2.8	2.3	4.1	5.2	5.6	3.0	4.1	3.4	3.7
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	9.4	ND	0.68	ND	ND	ND	ND	ND													
Naphthalene	N/A	10	4.9	284	32.2	0.15	10.0	16.5	3.9	3.7	6.9	12.7	9.8	10.6	3.5	0.5	0.3	13.2	2.5	8.1	ND	0.11	0.70	2.90
Phenanthrene	N/A	50	4.9	1.5	30.3	0.11	24.1	15.2	16.3	18.1	18.1	17.9	19.9	15.2	19.6	8.5	2.9	15.9	22.2	20.1	8.7	15.3	12.8	14.5
Pyrene	N/A	50	4.9	1.2	7.6	2.8	7.6	4.8	5.5	6.0	5.3	5.1	6.6	5.3	6.9	4	4.6	5.5	17.4	7.0	3.4	5.3	4.7	5.2
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND	17	ND	ND	ND	ND	ND														

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Table 4

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND	0.13	ND	0.14	0.26																
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND	10	ND																		
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND	0.15	ND	0.099																	
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	0.17	ND	0.11	ND	0.23	0.39															
Phenanthrene	N/A	50	4.9	ND	0.11	ND	0.12	ND	0.11	0.21														
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND	ND	ND	ND	ND	ND	7.3	ND													
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	4,600	5,330	4,250	3,740	3,620	4,070	3,660	3,060	5,620	4,040	3,740	3,710	4,160	3,840	3,550	3,160	3,640	4,180	3,580	3,470	4,390

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Table 4 Groundwater Analytical Data LTMW-D04

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND	11	ND	ND	ND	ND	ND	19	ND												
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND	ND	35.3	ND	22.5	ND	ND	ND	ND	ND											
Lead	N/A	25	5	ND	32	ND	ND	ND	ND	ND	ND													
Zinc	N/A	2,000	10	ND																				

= Environmental Protection Agency = New York State Department of Environmental Conservation = Ambient Water Quality Standards EPA NYSDEC

AWQS

 Aminorin water Quality Standards
 Micrograms per Liter
 Not detected above laboratory reporting limit:
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS μg/L ND H J

Bolded

Table 4 Groundwater Analytical Data LTMW-S04

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/10/21	09/23/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	2,000	900	1,200	200	1,300	400	230	220	1,300	860	660	190	120	1,700	440	470	1,700	801	570	620	2,500
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	618	358	108	128	472	472	267	179	230	242	184	156	156	44.4	122	113	384	222	217	45.8	160

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H

- Annibert Water Quality Standards
- Micrograms per Liter
= Not detected above laboratory reporting limits
- Quantitated using peak height rather than peak area
- Estimated Concentration Value
- values indicate exceedance of the NYSDEC AWQS Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (μg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND																				
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND	5,800	ND																		
Toluene	1,000	5	1	ND	1,320	ND																		
Ethylbenzene	700	5	1	ND	145	ND																		
Xylene (total)	10,000	5	2	ND	206	ND																		
Acenaphthene	N/A	20	4.9	ND	0.19	ND																		
Acenaphthylene	N/A	NA	4.9	ND	0.31	ND																		
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	830	510	570	270	380	430	120	89	260	120	230	65	170	150	110	110	76	44.8	94	110	120
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND	0.15	ND																		
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND	5.4	ND																		
Zinc	N/A	2,000	10	ND	27.5	ND	18.6	ND	ND	ND														

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Table 4

Groundwater Analytical Data LTMW-D06

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	92	ND	11	ND																	
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND	8.1	ND																		
Arsenic	N/A	25	10	ND	ND	8.1	8.5	8.0	6.0	12.0	10.4	7.3	5.7	ND	9.2	8.8	9.6	7.1	7.5	8.8	8.1	ND	ND	ND
Lead	N/A	25	5	ND																				
Zinc	N/A	2.000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND	190	79	14	18	64	55	19	110	66	11	54	84	53	82	40	72	77.7	73	120	130
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	9	ND																			
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND																				

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/23/21	12/02/21
Benzene	5	1	1	ND	1.1	ND	ND	ND	ND	ND														
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND																				
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND	0.16	ND																		
Phenanthrene	N/A	50	4.9	ND																				
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND	8.8	ND																		
Lead	N/A	25	5	ND	24	ND																		
Zinc	N/A	2,000	10	ND	96.8	ND																		

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND	0.19	ND																		
Benzo(a)pyrene	N/A	ND	4.9	ND	0.21	ND																		
Benzo(b)fluoranthene	N/A	0.002	4.9	ND	0.31	ND																		
Benzo(g,h,i)perylene	0.2	NA	4.9	ND	0.15	ND																		
Benzo(k)fluoranthene	N/A	0.002	4.9	ND	0.26	ND																		
Chrysene	N/A	0.002	4.9	ND	0.14	ND																		
Cyanide	N/A	200	10	140	240	16	140	16	200	150	80	250	30	10	62	180	380	110	110	180	ND	160	110	250
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND	0.51	ND	ND	ND	0.13	0.12	ND	ND	ND	ND										
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND	0.12	ND																		
Naphthalene	N/A	10	4.9	0.12	ND																			
Phenanthrene	N/A	50	4.9	ND	0.26	ND	ND	ND	ND	0.15	ND	ND	ND	ND										
Pyrene	N/A	50	4.9	ND	0.46	ND	ND	ND	0.11	0.14	ND	ND	ND	ND										
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND	12.5	ND																		

= Environmental Protection Agency

EPA NYSDEC = New York State Department of Environmental Conservation

AWQS

 New York Slate Department of Environmental Conser
 Ambient Water Quality Standards
 Micrograms per Liter
 Not delected above laboratory reporting limits
 Quantitated using peak height rather than peak ares
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS μg/L ND H Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	ND																				
Acenaphthylene	N/A	NA	4.9	ND																				
Anthracene	N/A	NA	4.9	ND																				
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND																				
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	ND																				
Fluorene	N/A	0.002	4.9	ND																				
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND																				
Phenanthrene	N/A	50	4.9	ND	0.11	ND																		
Pyrene	N/A	50	4.9	ND																				
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	23.2	97.6	24.4	ND	15.3	ND	ND	10.7	27.6	ND	14.3	10.1	ND	12.7	ND	ND	10.3	17.5	ND	ND	ND

= Environmental Protection Agency = New York State Department of Environmental Conservation = Ambient Water Quality Standards EPA NYSDEC

AWQS

μg/L ND H J Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS

Bolded

Parameter	EPA - Maximum Allowable (ug/L)	NYSDEC AWQS (µg/L)	Reporting Level (µg/L)	12/07/16	03/08/17	06/07/17	09/21/17	12/06/17	03/21/18	06/07/18	09/13/18	12/05/18	03/21/19	06/06/19	09/19/19	12/05/19	03/18/20	06/11/20	09/10/20	12/03/20	03/18/21	06/09/21	09/22/21	12/02/21
Benzene	5	1	1	ND																				
Toluene	1,000	5	1	ND																				
Ethylbenzene	700	5	1	ND																				
Xylene (total)	10,000	5	2	ND																				
Acenaphthene	N/A	20	4.9	17.4	3.1	4.30	11.0	6.8	2.3	9.7	11.8	5.7	10.8	5.1	13.60	7.70	8.80	19.30	18.10	ND	0.12	12.5	10.0	ND
Acenaphthylene	N/A	NA	4.9	0.96	0.2	0.23	0.73	0.54	0.20	0.51	0.61	0.39	0.74	0.42	0.67	0.63	0.38	0.63	0.64	ND	ND	0.28	0.35	ND
Anthracene	N/A	NA	4.9	0.12	0.12	ND	0.11	ND	ND	ND	0.14	ND	0.13	0.11	0.15	0.13	ND	0.11	0.16	ND	ND	ND	ND	ND
Benzo(a)anthracene	N/A	0.002	4.9	ND																				
Benzo(a)pyrene	N/A	ND	4.9	ND																				
Benzo(b)fluoranthene	N/A	0.002	4.9	ND																				
Benzo(g,h,i)perylene	0.2	NA	4.9	ND																				
Benzo(k)fluoranthene	N/A	0.002	4.9	ND																				
Chrysene	N/A	0.002	4.9	ND																				
Cyanide	N/A	200	10	ND	13	ND																		
Dibenzo(a,h)anthracene	N/A	50	4.9	ND																				
Fluoranthene	N/A	50	4.9	1.5	0.5	0.62	2.0	1.4	0.71	1.3	1.8	1.1	1.6	1.3	2.1	1.9	1.1	1.4	1.4	ND	ND	ND	ND	ND
Fluorene	N/A	0.002	4.9	1.1	0.17	0.35	1.1	0.73	0.25	0.71	1.0	0.7	1.2	0.6	1.3	1.0	0.8	1.6	1.5	ND	ND	0.75	0.63	ND
Indeno(1,2,3-cd)pyrene	N/A	50	4.9	ND																				
Naphthalene	N/A	10	4.9	ND	0.2	0.17	ND	ND	0.20	9.1	ND	ND	1.5	0.37	0.13	ND	ND	1.9	ND	ND	ND	0.29	0.37	ND
Phenanthrene	N/A	50	4.9	0.94	ND	0.22	0.73	0.43	0.12	0.32	0.76	0.32	0.62	0.26	0.86	0.53	0.39	0.76	0.58	ND	ND	0.15	ND	ND
Pyrene	N/A	50	4.9	1.9	0.45	0.71	2.4	1.7	0.90	1.7	2.3	1.5	2	1.6	2.70	2.40	1.4	1.9	1.8	ND	ND	ND	ND	ND
Arsenic	N/A	25	10	ND																				
Lead	N/A	25	5	ND																				
Zinc	N/A	2,000	10	ND	17.9	ND	ND	ND																

EPA NYSDEC = Environmental Protection Agency = New York State Department of Environmental Conservation

AWQS = Ambient Water Quality Standards

μg/L ND H

 Micrograms per Liter
 Not detected above laboratory reporting limits
 Quantitated using peak height rather than peak area
 Estimated Concentration Value
 values indicate exceedance of the NYSDEC AWQS Bolded

Table 5

Discharge Analytical Data
Groundwater Extraction System Effluent Concentrations

Parameter	City of Rome WPCF Permit Max Daily Limit (mg/L)	09/21/17	12/06/17	03/27/18	06/07/18	09/13/18	12/06/18	03/21/19	06/06/19	09/19/19	12/05/19	03/19/20	06/11/20	09/10/20	12/04/20	03/18/21	06/09/21	09/23/21	12/02/21
Benzene	0.13	0.0360	0.0200	0.0274	0.0315	0.0239	0.0297	0.0618	0.0359	0.0423	0.0527	0.0315	0.034	0.0254	0.0499	0.0881	0.0761	0.0608	0.0709
Ethylbenzene	1.59	0.0052	0.0019	0.0024	0.0040	0.0024	0.0024	0.0046	0.0047	0.0050	0.0065	0.0042	0.0052	0.0041	0.0056	0.0070	0.0081	0.0064	0.0067
Toluene	1.35	ND (<0.001)	0.0017	0.0025	0.0025	0.0037	0.0026	0.0113	0.0058	0.0082	0.0079	0.0056	0.0036	0.002	0.0048	0.0217	0.0112	0.0084	0.0077
Xylene	1.35	ND (<0.0030)	0.0042	0.0011	0.0011	0.0039	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	ND (<0.0030)	0.0058	0.0053	0.0036	0.0038					
Total BTEX	2.87	0.0412	0.0236	0.0323	0.0380	0.0300	0.0347	0.0777	0.0475	0.0566	0.0710	0.0412	0.0428	0.0315	0.0602	0.1230	0.1007	0.0792	0.0891
Arsenic	0.1	ND (<0.0050)	0.012	ND (<0.0050)	ND(<0.0050)	ND (<0.0050)	ND (<0.010)	ND (<0.010)	ND (<0.010)										
Cadmium	0.11	ND (<0.0030)	0.0054	ND (<0.0030)	ND(<0.0030)	ND(<0.0030)	ND (<0.002)	ND (<0.0025)	ND (<0.0025)										
Chromium	2.77	ND (<0.0050)	ND(<0.0050)	ND(<0.0050)	ND (<0.010)	ND (<0.010)	ND (<0.010)												
Copper	1.3	ND (<0.0050)	0.08	ND (<0.0050)	ND (<0.0050)	ND (<0.0050)	0.016	ND (<0.0050)	ND(<0.0050)	ND(<0.0050)	ND (<0.010)	ND (<0.025)	ND (<0.025)						
Cyanide	1.2	0.056	0.074	0.069	0.070	0.059	0.086	0.067	0.097	0.083	0.098	0.11	0.079	0.076	0.078	0.0637	0.050	0.060	ND (<0.010)
Lead	1.1	ND (<0.0050)	0.0071	ND (<0.0050)	ND(<0.0050)	ND(<0.0050)	ND (<0.005)	ND (<0.005)	ND (<0.005)										
Mercury	0.2	ND (<0.00020)	ND(<0.00020)	ND(<0.00020)	ND (<0.00020)	ND (<0.00020)	ND (<0.00020)												
Nickel	1.9	ND (<0.010)	ND(<0.10)	ND(<0.10)	ND (<0.010)	ND (<0.040)	ND (<0.040)												
Silver	0.43	ND (<0.0060)	ND(<0.0060)	ND(<0.0060)	ND (<0.005)	ND (<0.010)	ND (<0.010)												
Zinc	2.6	ND (<0.010)	0.13	ND (<0.010)	ND (<0.010)	ND (<0.010)	0.015	ND (<0.010)	ND(<0.010)	ND(<0.010)	ND (<0.50)	ND (<0.020)	ND (<0.020)						
pH	5.5 - 11.5 SU	6.8	6.8	6.8	6.7	6.9	7.1	6.9	6.9	6.9	7	6.9	6.7	6.9	6.8	7.7	6.9	6.9	7.1

Results in mg/L.

SU

mg/L

= Standard Units

= Milligrams per Liter = Water Pollution Control Facility = Not Sampled = Not Analyzed WPCF NS NA

Appendix A – Field Inspection Report

Field Inspection Report Former MGP Site Kingsley Avenue

Date:	12/3/2021	Rome, New York	Time:	7:30
Technician:	KL		Weather:	Cloudy 35

Site Controls										
Fence Condition	GOOD FAIR		JR	DAMAGED	COMMENTS					
Kingsley Ave Gate	GOOD	FΑ	JR	DAMAGED	COMMENTS:					
Padlock-NG/GES	OPERATIO	VAL	NON-0	DPERATIONAL	COMMENTS:					
Railroad Ave Gate	GOOD	FAIR		DAMAGED	COMMENTS:					
Padlock-NG/GES	OPERATIO	NAL	NON-0	PERATIONAL	COMMENTS:					

Vegetation (Surface Cover System)									
Condition of Grass	Condition of Grass GOOD FAIR POOR COMMENTS:								
Site Trees	NONE	MINOR	SIGNIFICANT	COMMENTS:					
Surface Erosion	NONE	MINOR	SIGNIFICANT	COMMENTS:					

Stoned Areas									
Condition of Main Access Road	GOOD	FAIR	POOR	COMMENTS:					
Condition of Main Staging Area	GOOD	FAIR	POOR	COMMENTS:					
Condition of Rear Turn Around Area	GOOD	FAIR	POOR	COMMENTS:					

Drainage Systems										
Rip Rap Area	Culvert	UNOBSTRUC	CTED	ОВ	STRUCTED					
	Flow	NONE	NONE LIT		SIGNIFICANT	COMMENTS:				
	Outlet Channel	OPERATIO	NAL	NON-0	PERATIONAL	COMMENTS:				

Miscellaneous									
Evidence of Trespassing	NO		YES		COMMENTS:				
Litter	NONE	MIN	IOR	SIGNIFICANT	COMMENTS:				

General Comments:

2021 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix B – Quarterly Gauging and Containment Data

Quarterly Well Data Kingsley Avenue, Former MGP Site Utica, New York

WELL ID.	DTW	DTP	DTB	Comments
MW-OU2-1	8.95	43.20	45.81	Removed 2 gallons of DNAPL
MW-OU2-2	9.93	NP	47.53	trace on probe
MW-OU2-3	6.50	NP	34.18	
MW-OU2-4	6.45	35.05	39.55	Removed 3.0 gallons of DNAPL
MW-OU2-5	7.05	NP	36.01	
DNAPL-02	9.08	NP	50.40	
DNAPL-03	9.38	NP	52.32	trace on probe
DNAPL-04	10.56	NP	51.45	
DNAPL-05	12.73	NP	54.75	
DNAPL-06	11.86	NP	51.45	
DNAPL-07	12.21	NP	53.60	
DNAPL-08	12.89	NP	58.01	
DNAPL-09	13.80	NP	57.58	
VTM-1	11.62	NP	46.37	
VTM-2	10.01	NP	49.47	
VTM-3	11.16	NP	50.91	
VTM-4	13.03	NP	50.62	
VTM-5	13.15	NP	52.52	
LTMW-D01	8.18	NP	46.84	
LTMW-S01	8.28	NP	16.92	
LTMW-D02	10.17	NP	40.29	
LTMW-S02	9.91	NP	17.98	
LTMW-D03	4.69	NP	40.73	
LTMW-S03	3.62	NP	13.70	
LTMW-D04	9.57	NP	46.36	
LTMW-S04	9.27	NP	17.26	
LTMW-D05	9.10	NP	46.53	
LTMW-S05	9.78	NP	16.83	
LTMW-D06	12.08	NP	52.22	
LTMW-S06	12.81	NP	17.60	
LTMW-S07	10.31	NP	17.82	
LTMW-S08	15.14	NP	17.39	
LTMW-S09	9.32	NP	16.92	
LTMW-S10	9.89	NP	17.18	

Containment

Well Id.	Elevation	DTW	Water Elevation	Positive Delta
DNAPL-02	436.81	9.08	427.73	2.11
Top Steel Sheet Wall	433.84			6.11
DNAPL-03	437.23	9.38	427.85	3.36
Top Steel Sheet Wall	431.21			3.30
DNAPL-04	438.50	10.56	427.94	4.88
Top Steel Sheet Wall	432.82			4.00
DNAPL-05	440.60	12.73	427.87	2.33
Top Steel Sheet Wall	430.20			2.33
DNAPL-06	439.71	11.86	427.85	5.70
Top Steel Sheet Wall	433.55			3.70
VTM-1	439.74	11.62	428.12	3.70
Top Steel Sheet Wall	431.82			3.70
VTM-2	438.33	10.01	428.32	4.38
Top Steel Sheet Wall	432.70			4.30
VTM-3	439.44	11.16	428.28	8.64
Top Steel Sheet Wall	436.92			8.04
VTM-4	441.59	13.03	428.56	4.98
Top Steel Sheet Wall	433.54			4.30
VTM-5	441.79	13.15	428.64	7.36
Top Steel Sheet Wall	436.00			7.30

Appendix C – Well Sampling Field Data

Well ID	Sample ?	Well Size	DTW	DTP	DTB	Comments
MW-QU2-1	No	4"	8.95	43.20	45.81	2 gallons WARL Renoved
MW-OU2-2	No	4"	9.83	Trace	47.53	
MW-OU2-3	No	4"	6.50		34.18	
MW-OU2-4	No	4"	6.45	J5: 25"	39.55	
MW-0U2-5	No	4"	7.05		36.01	
DNAPL-02	No	6"	9.08	_	50.40	
DNAPL-03	No	6"	7.38	Trace	52.32	
DNAPL-04	No	6"	10.56	7	51.45	
DNAPL-05	No	6"	12.73		54.75	
DNAPL-06	No	6"	11.86	Summer	51.45	
DNAPL-07	No	6"	12.21		53.60	
DNAPL-08	No	6"	12.89		58.01	
DNAPL-09	No	6"	13.80		57.58	
				<u></u>		
VTM-1	No	6"	11.62		46.37	
VTM-2	No	6"	10.0]		49.47	
VTM-3	No	6"	11.16		50.91	
VTM-4	No	6"	13.03		50.62	
VTM-5	No	6"	13.15	es ers	52.52	
LTMW-D01	Yes	2"	8.18		46.84	
LTMW-S01	Yes	2"	8 28		16.92	
LTMW-D02	Yes	2"	10.17		40.29	
LTMW-S02	Yes	2"	9.91		17.98	
LTMW-D03	Yes	2"	469		40.73	
LTMW-S03	Yes	2"	957	3.62	13.70	
LTMW-D04	Yes	2"	957		46.36	
LTMW-S04	Yes	2"	9.27	•	17.26	
LTMW-D05	Yes	2"	9.10		46.53	1.
LTMW-S05	Yes	2"	9.78		16.83	
LTMW-D06	Yes	2"	12.08		52.22	
LTMW-S06	Yes	2"	12.81		17.60	
LTMW-S07	Yes	2"	10.31		17.82	
LTMW-S08	Yes	2"	15.14		17.39	
LTMW-S09	Yes	2"	9.32		16.92	Dup
LTMW-S10	Yes	2"	9.89		17.18	MS/MSD

DTW -depth to water
DTP -depth to product
DTB -depth to bottom
All from top of casing

Pace Analytical

Greensburg, PA

Laboratory:

Comments/Notes:

Kingsley Avenue, Rome, New York	
Sampling Personnel:	Date: 12/2/2(
Job Number: 0603275-134400-221	Weather: Classy 37
Well Id. LTMW-S01	Time In: 09.45 Time Out:
Well Information	Well Type: Flushmount Stick-Up
TOC Other	Well Locked: Yes No
Depth to Water: (feet) 8.29 Depth to Bottom: (feet) 16.92	Measuring Point Marked: Yes No No
Depth to Bottom: (feet) 16.92 Depth to Product: (feet)	Well Material: PVC SS Other:
Length of Water Column: (feet)	Well Diameter: 1" 2" Other:
Volume of Water in Well: (gal) 1.390	Comments:
Three Well Volumes: (gal)	
Purging Information	
	Conversion Factors Un 1" ID 2" ID 4" ID 6" ID
Purging Method.	gal/ft.
Tubing/baller iviaterial.	olyethylene of water 0.04 0.16 0.66 1.47
Sampling Metriod.	1 gallon=3.785L=3785mL=1337cu. feet
Average Pumping Rate: (ml/min) 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Total Volume Removed: (gal) 2 Did well go dry	y? Yes No
Horiba U-52 Water Quality Meter Used?	
Tioriba 0-02 Vidior dudiny	
Time DTW Temp pH ORP	Conductivity Turbidity DO TDS
(feet) (°C) (mV)	(mS/cm) (NTU) (mg/L) (g/L) (2:373 419 0.20 0.247
19:50 9:33 12:50 8:57 -133	0.740 14.6 0.00 0.473
09.55 0 38 13.29 8.06 -104 10:0 8.30 13.21 7.94 -104	0.000 1.7 0.00 G.SIL
10:5 8 39 13 28 7.98 -103	0.801 0.0 0.0 0.515
10:10 8:35 13:33 7.85 - 104	0.823 6.00 6.00 0527
10:15 6 36 13.36 7.82 -104	0.824 0.0 0.00 0.527
10:20 9.38 13.38 7.19 -104	0.021 0.0
Sampling Information:	
OVOC PAHIO	2 - 100ml ambers Yes No
EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX	3 - 40 ml vials Yes No
EPA Method 335.4 Cyanide	1 - 250 ml plastic Yes No
EPA Method 200.7 Metals	1 - 250 ml plastic Yes ☑ No ☑
	Shipped: Pace Courier Pickup
Sample ID: LTMW-S01-1221 Duplicate? Yes No	
Sample Time. V 20	Laboratory: Pace Analytical
Comments/Notes:	Greensburg, PA
	Page 8 of 1

Kingsley Avenue	5, 1701116, 17011							
	- O1				Date: はん	121		
Sampling Perso		w byin				o dules	s}	
Job Number:	0603275-1344	00-221		<u></u>			Time Out 4	425
Well Id. LT	MW-D02				Time In: 134	طرا	Time Out: /	723
vvenia.								
Well Infor	mation							
77011111011			TOC	Other	Well Type:		···	ick-Up
Depth to Water		(feet)	0.17		Well Locked		Yes	No No
Depth to Botton		(feet)	40.29	36.50	Measuring Po		Yes X SS Othe	<u> </u>
Depth to Produ		(feet)			Well Materia		2" Othe	
Length of Wate		(feet)	30.12		Well Diamet	er: 1"["·]
Volume of Water			4.81		Comments:			1
Three Well Vol		(gal)	14.015	14.45			<u> </u>	
Purging Inf	formation							
T digitig it						ļ	Conversion F	
Purging Metho	q.	Bailer	Perista	altic Grundf	os Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID
Tubing/Bailer		Teflon	Stainless	St. Poly	/ethylene	of	0.46	0.66 1.47
Sampling Meth		Bailer	Perist	altic Grundt	fos Pump	water	0.04 0.16	
Average Pump		(ml/min)	# 200			1 gallo	on=3.785L=3785m	L=1337cu. leet
Duration of Pu		(min)	20 30		.——— г	- -		
Total Volume I		(gal)		Did well go dry?	Yes No	즤]
			,	Yes No				ì
Horiba U-52 W	Vater Quality M	leter Used?		Tes Z Tro			THE TELESCOPE, THE	
Horiba U-52 W					L Conductivity	Turbidity	DO	TDS
Horiba U-52 W	DTW	Temp	рН	ORP	Conductivity (mS/cm)	Turbidity (NTU)	DO (mg/L)	TDS (g/L)
	DTW (feet)	Temp (°C)	рН	ORP (mV)	(mS/cm)	(NTU)		(g/L)
Time /350	DTW (feet)	Temp (°C) <i>j.2.4</i> %	рН 7.33	ORP (mV) -36	(mS/cm)	(NTU)	(mg/L)	(g/L)
7350 7355	DTW (feet) //.63	Temp (°C) /2.48 /2.37	pH 7.33 7.21	ORP (mV) -36 -24	(mS/cm) 0.176 .162	(NTU) 21/ 1.8	(mg/L) 2.40	(g/L) 0.1/4 .103 .103
Time /350 /375 //06	DTW (feet) //.63 //.97 /2.16	Temp (°C) 12.48 12.37 12.32	7.33 7.21 7./2	ORP (mV) -36 -24 -39	(mS/cm) 0.176 .162 .157	(NTU) 211 1.8 0.0	(mg/L) 2. Yo 2. zo	(g/L) 0.1/4 .105
Time 1350 1355 1706 1405	DTW (feet) //.63 //.99 /2.16 /2.23	Temp (°C) 12.48 12.37 12.32 12.30	PH 7.33 7.21 7.14 7.16	ORP (mV) -36 -24 -39 -47	(mS/cm) 0.176 .162 .157 .156	(NTU) 7.1 1.8 0.0 0.0	(mg/L) 2.40 2.20 1.46 1.25	(g/L) 0.1/4 .105 .102 .101
Time /350 /355 //66 //65	DTW (feet) //.63 //.97 /2.16 /2.23	Temp (°C) 12.48 12.37 12.32 12.30 12.26	pH 7.33 7.21 7.14 7.16 7.15	ORP (mV) -36 -24 -39 -42 -53	(mS/cm) 0.176 .16d .157 .154	(NTU) 7.1 1.8 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.30	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .105 .102 .101
Time /350 /355 //66 //65	DTW (feet) //.63 //.97 /2.16 /2.23	Temp (°C) 12.48 12.37 12.32 12.30 12.26	pH 7.33 7.21 7.14 7.16 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .16d .157 .154	(NTU) 7.1 1.8 0.0 0.0	(mg/L) 2.40 2.20 1.46 1.25	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.30	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.30	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.30	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.30	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /966 /905 /110 /115 /420	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.32 12.43	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /405 /405 /415	DTW (feet) 11.63 11.97 12.16 12.23 12.30 12.32 12.43	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.26	7.33 7.21 7.12 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 2.1 1.8 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.99	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 //66 //65 ///05 //0	DTW (feet) 11.63 11.99 12.16 12.23 12.30 12.32 12.43	Temp (°C) 12.48 12.37 12.32 12.30 12.26 12.27 12.21	pH 7.33 7.21 7.14 7.16 7.15 7.15	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU) 7.1 1.8 0.0 0.0 0.0 0.0	(mg/L) 2.40 2.50 1.46 1.25 0.97 0.93 0.87	(g/L) 0.1/4 .103 .103 .101 .101
Time /350 /355 /966 /905 /1/0 /1/5 /420 Sampling In	DTW (feet) //.63 //.97 /2.16 /2.23 /2.30 /2.30 /2.43 formation:	Temp (°C) 12.48 12.37 12.30 12.30 12.26 12.27 12.21	PAH's	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU)	(mg/L) 2.40 2.50 1.46 1.25 0.99 0.93 0.87	(g/L) 0.1/4 .103 .103 .101 .100 .099 .099
Time /350 /355 //66 /405 /1/0 /1/5 /1/0 /1/35 /1/0 Sampling In EPA SW-8 EPA SW-8	DTW (feet) 11.63 11.97 12.16 12.23 12.33 12.32 12.43 formation: 346 Method 8270 346 Method 8260	Temp (°C) 12.48 12.37 12.30 12.30 12.27 12.21 SVOC VOC's	PAH'S BTEX	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU)	(mg/L) 2.40 2.50 1.46 1.25 0.97 0.93 0.87	(g/L) 0.1/4 .105 .103 .10i .10i .100 .099 .099
Time /350 /355 //66 /405 /4/00 /4/05 /4/00 Sampling In EPA SW-8 EPA M-8	DTW (feet) //.63 //.99 /2.16 /2.23 /2.30 /2.32 /2.43 formation: 346 Method 8270 846 Method 8260 Method 335.4	Temp (°C) 12.48 12.37 12.30 12.26 12.27 12.21 SVOC VOC's Cya	PAH's BTEX nide	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .152	(NTU)	(mg/L) 2. 40 2. 50 1. 46 1.25 0.97 0. 93 0. 87	(g/L) 0.1/4 .103 .103 .103 .103 .103 .103 .103 .103
Time /350 /355 //66 /405 /4/00 /4/05 /4/00 Sampling In EPA SW-8 EPA M-8	DTW (feet) 11.63 11.97 12.16 12.23 12.33 12.32 12.43 formation: 346 Method 8270 346 Method 8260	Temp (°C) 12.48 12.37 12.30 12.30 12.27 12.21 SVOC VOC's	PAH's BTEX nide	ORP (mV) -36 -24 -39 -47 -53 -57	(mS/cm) 0.176 .162 .157 .154 .154	(NTU)	(mg/L) 2. 40 2. 50 1. 46 1.25 0.97 0. 93 0. 87	(g/L) 0.1/4 .105 .103 .10i .10i .100 .099 .099
Time /350 /355 //66 /405 /4/00 /4/05 /4/00 Sampling In EPA SW-8 EPA M-8	DTW (feet) //.63 //.97 /2.16 /2.23 /2.30 /2.30 /2.32 /2.43 formation: 846 Method 8270 846 Method 8260 Method 335.4 Method 200.7	Temp (°C) 12.48 12.37 12.30 12.26 12.27 12.21 SVOC VOC's Cya Me	PAH's BTEX nide tals	ORP (mV) -36 -24 -39 -47 -53 -57 -60	(mS/cm) 0.176 .162 .163 .157 .154 .152 .153	(NTU)	(mg/L) 2. 40 2. 50 1. 46 1.25 0.97 0. 93 0. 87	(g/L) 0.1/4 .103 .10i .10i .10i .099 .099 .099 .099
Time /350 /355 //66 /405 /4/00 /4/05 /4/00 Sampling In EPA SW-8 EPA M-8	DTW (feet) 11.63 11.97 12.16 12.23 12.33 12.32 12.43 formation: 846 Method 8270 846 Method 8260 Method 335.4 Method 200.7 LTMW-D02	Temp (°C) /2. 48 /2. 37 /2. 34 /2. 30 /2. 26 /2. 27 /2. 21 SVOC VOC's Cya Me	PAH's BTEX nide tals	ORP (mV) -36 -24 -37 -47 -53 -57 -60	(mS/cm) 0.176 .162 .163 .157 .154 .152 .153	(NTU)	(mg/L) 2. 40 2. 50 1. 46 1.25 0. 93 0. 93 0. 87 bers Yeastic Yeastic Yeastic Years	(g/L) 0.1/4 .103 .103 .101 .100 .099 .099 .099 .099 .099
Time /350 /355 //66 /405 /1/0 /1/5 /400 Sampling In EPA SW-8 EPA M EPA M	DTW (feet) 11.63 11.97 12.16 12.23 12.33 12.32 12.43 formation: 346 Method 8270 846 Method 8260 Method 335.4 Method 200.7 LTMW-D02	Temp (°C) /2. 48 /2. 37 /2. 34 /2. 30 /2. 26 /2. 27 /2. 21 SVOC VOC's Cya Me	PAH's BTEX nide tals	ORP (mV) -36 -24 -39 -47 -53 -57 -60	(mS/cm) 0.176 .162 .163 .157 .154 .152 .153	(NTU)	bers Yeastic Yeastic Years Courier Pictoff Albany Service (mg/L) 2. 40	(g/L) 0.1/4 .103 .10i .10i .099 .099 .099 .099 .one No No No No No Ckup Ce Center
Time /350 /355 //66 /405 /1/0 /1/5 /1/0 /1/5 /1/0 Sampling In EPA SW-8 EPA M EPA M Sample ID:	DTW (feet) 11.63 11.97 12.16 12.23 12.33 12.32 12.43 formation: 846 Method 8270 846 Method 8260 Method 335.4 Method 200.7 LTMW-D02 11/2 6	Temp (°C) /2. 48 /2. 37 /2. 34 /2. 30 /2. 26 /2. 27 /2. 21 SVOC VOC's Cya Me	PAH's BTEX nide tals	ORP (mV) -36 -24 -37 -47 -53 -57 -60	(mS/cm) 0.176 .162 .163 .157 .154 .152 .153	(NTU)	bers Yeastic Yeastic Yeastic Years Albany Service Pace A	(g/L) 0.1/4 .103 .103 .101 .100 .099 .099 .099 .099 .099

Kingsley Avenue, Rome, Ne	W 1011							
Sampling Personnel:	Peter you		Date: 13/2/11					
Job Number: 0603275-13	•				10° Clondy			
Weil Id. LTMW-S02				Time In: 14	129	Time Out:	1505	
vveirid. Listvi-coz								
Well Information					Florale		ck-lin 🔀	
			Other	Well Type: Flushmount Stick-Up Well Locked: Yes Measuring Point Marked: Yes				
Depth to Water:		, 9/ 17.98 <i>18</i>	.00					
Depth to Bottom: Depth to Product:	(feet)	- 17.00	<u> </u>	Well Materia	il: PVC	SSOthe		
Length of Water Column:		.07		Well Diamet	er: 1"_	2" \(\sum_\) Othe	r:	
Volume of Water in Well:		.29		Comments:			1	
Three Well Volumes:	(gal)	3.87		<u> </u>	<u> </u>			
			<u> </u>					
Purging Information								
Purging information	-	_				Conversion Fa		
Purging Method:	Bailer	Peristaltic		os Pump	gal/ft.	1" ID 2" ID	4" ID 6" ID	
Tubing/Bailer Material:	Teflon	Stainless St.		ethylene	of water	0.04 0.16	0.66 1.47	
Sampling Method:	Bailer	Peristaltic	Grundte	os Pump		n=3.785L=3785ml		
Average Pumping Rate: Duration of Pumping:	(ml/min) (min)	30						
Total Volume Removed:	(gal)	<u> </u>	id well go dry?	Yes No	₹		·	
Horiba U-52 Water Quality		Yes	No					
Horiba 0-52 Water Quality	- Wictor Cood.							
Time DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS	
(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L) . 505	
1436 10.12	12.61	6.87	-84	-790	152	2.55 0.84	-503	
1435 10.12	12.78	6.85	-95 -108	.786	66.1	0.60	,499	
1110 10.11	12.71	6.84 6.83	-114	.774	39.3	0.64	.495	
1445 10.11	12.79	6.82	-116	.77/	30.0	0.66	.493	
1455 10.11	12.29	6,82	-116	. 7-86	27.6	0.66	0492 0490	
1500 10.11	12.78	6.82	-116	.766	33.8	0.67	2770	
			<u> </u>	<u> </u>				
			<u> </u>					
								
Sampling Information:								
					0. 400mml ampl	orn Vos		
EPA SW-846 Method 82					2 - 100ml amb 3 - 40 ml via			
EPA SW-846 Method 82					1 - 250 ml pla			
EPA Method 335.4	Cyar Met				1 - 250 ml pla		s⊠No□	
EPA Method 200.7	Mich			- 3				
Sample ID: LTMW-S		uplicate?	Yes No	SI SI		Pace Courier Pic		
Sample Time: 1500	<u> </u>	S/MSD?	Yes No		Drop-	off Albany Servic		
Comments/Notes:					Laboratory:	Pace Ar	-	
						Greensb	urg, PA Page 10 of	

Pace Analytical

Greensburg, PA

Laboratory:

\\svrrmt88-vm3\syracuse-01\Dashboard\Planning\897082.xlsm

Comments/Notes:

Weather: CLCACH Time Out 12 CC		121010
Veli Information	Sampling Personnel:	Date: 12/2/21
Well Information	Job Number: 0603275-134400-221	
Depth to Water	Well ld. LTMW-S03	Time In: 11: 25 Time Out: 12:00
Depth to Water		
Depth to Water Gen		Well Type: Flushmount Stick-Up
Depth to Bottom: (teet) 13.70		
Depth to Product (feet)		Measuring Point Marked: Yes No No
Length of Water Column:	Deptil to Bottom:	
Purging Information		Well Diameter: 1" 2" Other:
Purging Information		Comments:
Purging Method:	Three Well Volumes: (gal) 4.83	
Purging Method:		
Purging Method:		
Purging Method:	Purging Information	
Purpling Method:		
Sampling Method: Baller Peristaltic Grundfos Pump water 0.04 0.16 0.66 1.47 Average Pumping Rate: (mlmin) 3	Fulging Wethod:	Indios Fump
Sampling Method: Date Persent Date	Tubility/Daller Material.	
Duration of Pumping:	Sampling Method:	indios i dirip
Total Volume Removed: (gal) Did well go dry? Yes No No No No No No No No No No		galion-3.765L-3765mL-1557cd. leet
No	11	ng You No
Time	Total Volume (Volume 1)	yr resnv
Sample DTW Territy PT (mw) (ms/cm) (NTU) (mg/L) (g/L)	Horiba U-52 Water Quality Meter Used? Yes No	
Sample DTW Territy PT (mw) (ms/cm) (NTU) (mg/L) (g/L)		
(feet)	Time DTW Temp pH ORP	Conductivity Landidary
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's SVOC P		
Sampling Information: Sampling Information:		
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's SVOC P	11:30 3.65 10.23 8.10 -51	
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's SVOC	11/1:25 7.65 10.28 1 794 1 -30	
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's 2 - 100ml ambers Yes No No PAH's Yes No PAH's		
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No		
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metais Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA		
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's 2 - 100ml ambers Yes No No PAH's 3 - 40 ml vials Yes No No PAH's 40 ml vials Yes No P	11.35 3.65 10.03 +.80 3 +	= 0.331 130 2 100 0.313
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's 2 - 100ml ambers Yes No No PAH's 3 - 40 ml vials Yes No No PAH's 40 ml vials Yes No P		
Sampling Information: EPA SW-846 Method 8270 SVOC PAH's 2 - 100ml ambers Yes No No PAH's 3 - 40 ml vials Yes No No PAH's 40 ml vials Yes No P		
EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Comments/Notes: Comments/Notes: 2 - 100ml ambers Yes No	1	
EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Comments/Notes: Comments/Notes: 2 - 100ml ambers Yes No		
EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Comments/Notes: Comments/Notes: 2 - 100ml ambers Yes No	Causaling Information:	
EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Drop-off Albany Service Center Drop-off Albany Service Center Greensburg, PA Laboratory: Pace Analytical Greensburg, PA	Sampling Information.	ì
EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Drop-off Albany Service Center Comments/Notes: Sample Time: Pace Analytical Greensburg, PA	FDA CIAL BAG Mothod 9370 SVOC PAH's	2 - 100ml ambers Yes No No
EPA Method 335.4 Cyanide EPA Method 200.7 Metals Sample ID: LTMW-S03-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA		
EPA Method 200.7 Metals 1 - 250 ml plastic Yes No Sample ID: LTMW-S03-1221 Duplicate? Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA	[
Sample ID: LTMW-S03-1221 Duplicate? Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA		
Sample Time: Sample Time: Line Drop-off Albany Service Center Comments/Notes: Laboratory: Pace Analytical Greensburg, PA	EFA INIGIIIOU 200.7	
Sample Time: // S MS/MSD? Yes No Drop-off Albany Service Center Laboratory: Pace Analytical Greensburg, PA	Sample ID: LTMW-S03-1221 Duplicate? Yes No	
Comments/Notes: Laboratory: Pace Analytical Greensburg, PA		Drop-off Albany Service Center
Greensburg, PA	Sumple Title	Laboratory: Pace Analytical
	Comments/Notes:	1
AND THE CONTRACT OF THE LAND OF THE CONTRACT O	\\svrrmt88-vm3\syracuse-01\Dashboard\Planning\897082.xlsm	Page 12 of

Kingsley Avenu	e, Rome, New	YOIK						<u> </u>					
Sampling Perso	onnel: Pubs	40			Date: 12/02/21								
	0603275-1344	1			Weather: 3	9º Heavy 1	din						
	TMW-D04				Time In: 11	00	Time Out:	1140					
vveiria. L	11010-20-							· 					
Well Infor	rmation	<u></u>	·										
			TOC	Other	Well Type:		- 7	tick-Up					
Depth to Water	r:		9.57	21/ 2=	Well Locked: Yes No								
Depth to Bottor				46.20	Well Materia	K	SSOth	· · · · · · · · · · · · · · · · · · ·					
Depth to Produ		(feet)	36.79		Well Diame	···· •	2" Oth	er:					
Length of Wate		(feet)	5.88		Comments:	•							
Three Well Vol		(gal)	17.65		·	<u> </u>							
111100 11011 101					<u> </u>								
													
Purging In	formation					<u> </u>	O-warrian F	Tootoro Too					
				1 23	_		Conversion F	4" ID 6" ID					
Purging Metho		Bailer	Peristal Stainless	·· <u>/</u> -	os Pump rethylene	gal/ft. of	1 10 2 10						
Tubing/Bailer I		Teflon Bailer	Stainless S Peristal	—	os Pump	water	0.04 0.16	0.66 1.47					
Sampling Meth Average Pump		(ml/min)	- Custai	S. G. G.			on=3.785L=3785m	nL=1337cu. feet					
Duration of Pu		(min)					 -						
Total Volume		(gal)		Did well go dry?	Yes No	X							
II	Vater Quality N		Y	es No									
Horiba U-52 V	valer Quality iv	leter Osea:			<u> </u>	· · · · · · · · · · · · · · · · · · ·							
Time	DTW	Temp	pН	ORP	Conductivity	Turbidity	DO	TDS					
Time	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)						
1105	10.30	11.72	6.34	186	.612	.612 47.5 8.90 .40;							
1116	10.26	11.05	7.69	193	628	1/. 3	1.91	-40/					
1115	10.41	11.02	7.74	202	- 625	2./	0.87	-400					
1130	1032	10.99	7.79	128	, 681	0-3 1.2	-82	.461					
1125	10.31	10.97	7.81	-31	.730	0.0	.76	.468					
1/30	10.31	10.92	7.81	- 29	.732	0.0	181	.468					
1135	10.31	70,81	7.01		57.00								
								<u> </u>					
							<u> </u>						
							<u> </u>						
Sampling In	formation:												
						2 - 100ml ami	ore Ve	s⊠ио□					
II	46 Method 8270					3 - 40 ml via		s No					
ll l	346 Method 8260					1 - 250 mi pla		s No					
ii.	Method 335.4	Cyar Met				1 - 250 ml pla		s No					
EPA M	lethod 200.7	iviet	aið			į							
Sample ID:	LTMW-D04	-1221 D	uplicate?	Yes No D	S s		Pace Courier Pic						
Sample Time:	1/35		S/MSD?	Yes No		Drop-	off Albany Servi	ce Center					
			·			Laboratory:	Pace A	nalytical					
Comments/N	iotes:					•		ourg, PA					
					<u> </u>			Page 13-of					

National Grid								
Kingsley Avenue,	Rome, New Y	ork 			13/2	/		
	not Place	1420			Date: /2/2/	2 - 40 - 10 5	L	
Sampling Person	603275-13440	0-221			Weather: 40		Time Out: اما	30
000:		<u> </u>			Time In: 115	<u> </u>	Time Out. 102	<u></u>
Well ld. LT	MW-S04							
Depth to Water: Depth to Bottom Depth to Product Length of Wate	n: ot: r Column:	(feet) 7 (feet) 1 (feet) (feet) 7	17	2.3	Well Type: Well Locked: Measuring Poir Well Material Well Diamete Comments:	: PVC	Yes Yes	
Volume of Water	er in Well:	(3-7	£ 3					
Three Well Vol	umes.							
Purging Information Purging Methor Tubing/Bailer I Sampling Methor Average Pump Duration of Puthors Total Volume	d: Material: nod: ping Rate: imping:	(min) (gal)		Polye	s Pump ethylene os Pump Yes No	gal/ft. of water 1 gallo		4" ID 6" ID 0.66 1.47
Horiba U-52 V	valer duality is					Turbidity	DO	TDS
Time	DTW	Temp	рΗ	ORP (mV)	Conductivity (mS/cm)	(NTU)	(mg/L)	(g/L)
	(feet)	(°C)	6.37	321	.665	0.0	4.32	, 126
1155	9.46	11.60	6.36		. 663	0.0	4.25	.424
1200	9.42	11.58	6.37	336	.664	0.0	4.23 4.15	.427
1205	9.17	11.71	6.37	347	,667	0.0	3.98	.428
1210	9.47	11.74	6.37	349	.669	0.0	3.74	.429
1220	9.12	11.82	6.36	349	,670	0.0	3.92	.430
1225	9.42	11.79	6.36	348	,614			
			 					
								
			<u> </u>	<u></u>	<u></u>			
EPA SW- EPA SW- EPA EPA	nformation: 846 Method 827 846 Method 826 Method 335.4 Method 200.7	60 VOC's Cya Me	BTEX	Yes No	∑ s		als Ye astic Ye astic Ye Pace Courier Pic	No No Ckup
Sample ID: Sample Time			AS/MSD?	Yes No	<u> </u>	·	off Albany Servi	
Comments/						Laboratory:		nalytical burg, PA

Kingsley Avenue, Rome, New York									
Date:	Date: 12/2/2/								
Sampling Personnel: Weather Weather	Weather: Cwy 57								
Job Number: 0603275-134400-221	Time In: 09:45 Time Out:								
Well Id. LTMW-D05									
Well Information TOC Other Well Ty									
Ponth to Water: (feet) 9-40 Well Lo									
Donth to Rottom: (feet) 46.53 Measuring	ig Folint Walked.								
Depth to Product: (feet) Well Ma									
Length of Water Column: (teet) 5 + 95									
Volume of Water in Well: (gai)									
Three Well Volumes: (gal) 1 + 10									
Purging Information Bailer Peristaltic Grundfos Pump	Conversion Factors gal/ft. 1" ID 2" ID 4" ID 6" ID								
Purging Method: Tubing/Bailer Material: Bailer Penstaltic Guidios Fump Stainless St. Polyethylene	of								
Sampling Method: Bailer Peristaltic Grundfos Pump	water 0.04 0.16 0.66 1.47								
Average Pumping Rate: (ml/min) 200	1 gallon=3.785L=3785mL=1337cu. feet								
Duration of Pumping: (min) 3 o	Note								
I Total Volume Removed. (gai)	No Lap								
Horiba U-52 Water Quality Meter Used?									
	TDC T								
Time DTW Temp pH ORP Conductive	1 / 6 1 / 2 8 1 1								
(feet) (°C) (mV) (mS/cm									
1650 7.68 13.11 3.65 141 6.31	7 2 4 23 5								
12:35 11:65 12:11									
13.00 12.00 12.10 6.26 60 6.33	0.0 0.62 0.218								
13:10 14.25 12.19 9.32 05 0.33									
10 10 10 10 10 10 10 10 10 10 10 10 10 1									
13:20 15:30 12:17 8:35 59 0.330	0.0 0.25 0.25								
Sampling Information:									
EDA SW-846 Method 8270 SVOC PAH's	2 - 100ml ambers Yes No								
ELY 244-0-10 Monage 27.	3 - 40 ml vials Yes No								
EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide	1 - 250 ml plastic Yes No								
EPA Method 333.4 Systilla Syst	1 - 250 ml plastic Yes No								
	Obligated Blades Sourier Biatrus								
Sample ID: LTMW-D05-1221 Duplicate? Yes No	Shipped: Pace Courier Pickup Drop-off Albany Service Center								
Sample Time: 13:20 MS/MSD? Yes No	- · · · · · · · · · · · · · · · · · · ·								
Comments/Notes:	Laboratory: Pace Analytical								
COMMINGHOUSE.	Greensburg, PA								

Kingsley Avenue, Rome, New 10					21-1-1								
Sampling Personnel:				Date: [2]2[2]									
	0-221	<u> </u>		Weather: (Cwpn 3		<u> </u>						
	<u></u>			Time In:	2:05	Time Out:							
Well Id. LTMW-S05													
Well Information													
Wen mornida			Other	Well Type:	Flushmo	Yes X	k-Up X						
Depth to Water:	(feet)	7.78		Well Locke	· u .	Yes	No						
Depth to Bottom:	(feet)	16.83		Measuring Point Marked: Yes No Other:									
Depth to Product:	(feet)			Well Diameter: 1" 2" Other:									
Length of Water Column:	(feet) (gal)			Comments:									
Volume of Water in Well: Three Well Volumes:	(gal)												
Trilee Weil Volumes.													
Purging Information						onversion Fa	ctors						
	-	 1	5 7 - "		 		4" ID 6" ID						
Purging Method:	Bailer	1		os Pump yethylene	gal/ft. 1								
Tubing/Bailer Material:	Teflon	 1	- 	fos Pump	3 -).04 0 <u>.16</u>	0.66 1.47						
Sampling Method:	Bailer				1 gallon=	3.785L=3785mL	=1337cu. feet						
Average Pumping Rate:	(ml/min) (min)	200		_	-								
Duration of Pumping: Total Volume Removed:	(gal)		id well go dry?	Yes No									
		Yes	No □										
Horiba U-52 Water Quality Me	ter Useu?	100					1						
		الم	ORP	Conductivity	Turbidity	DO	TDS						
Time DTW	Temp (°C)	pН	(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)						
(feet) 9.97	10-72	7.86	53	0528	136		0.338						
12:15 10:00	11.25	168	37	0-564	3.1	128	0.357						
17:20 10:00	11.29	7.52	68	0.564	60	0.4	0.36/						
17:25 10.00	11-67	7.47	97	0.56.3		2.01	0.362						
12,730 16,00	71,72	7.45	100	0.565		0.00	0.362						
12:35 10:00	11.84	7.43	102	0.565		D. OO	M. 367						
(2:40 10·ce)	11.93	7.41	101	0.566	10.0	<u></u>							
					 								
	 												
		-					<u> </u>						
11													
Sampling Information:							 						
Sampling miorination.													
EPA SW-846 Method 8270	SVOC	PAH's			2 - 100ml ambe		No No						
EPA SW-846 Method 8260	VOC's	BTEX			3 - 40 ml vials		K 						
EPA Method 335.4	•	nide			1 - 250 ml plast 1 - 250 ml plast		K>1						
EPA Method 200.7	Me	tals			1 - 200 Hil plasi		ا المالات						
	4004	\unlianta?	Yes No	7 1	Shipped: Pa	ice Courier Picl	kup 🔀						
Sample ID: LTMW-S05-		Ouplicate? //S/MSD?	Yes No	}i	- · · · - · · · ·	f Albany Servic							
Sample Time: 12:4	<u> </u>	NOTIVIOD :	, 50°[], 10° [2		Laboratory:	Pace An	alvtical						
Comments/Notes:				ļ	Laporatory.	Greensb							
				-		Greenan	Page 16 of						

Kingsley Avenue, Rome, New York	tala la								
Sampling Personnel: Date:	Date: 12/2/21								
Job Number: 0603275-134400-221 Weath	SI. CASWE								
Time Ir	n: 1450 Time Out: 15:37								
Well Id. LTMW-D06									
Well Information TOC Other Well T	ype: Flushmount Stick-Up								
Well L	Well Locked: Yes No No								
Deptil to Water: Measure (feet) 52.22 Measure	Measuring Point Marked: Yes No No								
Depth to Broduct: (feet) Well N	flaterial: PVC SS Other:								
West Column: (feet) 10.14	Marricion.								
Volume of Water in Well: (gal) 47-47- 6.92	ents:								
Three Well Volumes: (gal) 19-26									
Purging Information	Conversion Factors								
Railer Peristaltic Grundfos Pump	gal/ft. 1" ID 2" ID 4" ID 6" ID								
Purging Method:									
Tubing/Bailer Material:	water 0.04 0.16 0.66 1.47								
Sampling Method:	1 gallon=3.785L=3785mL=1337cu. feet								
(min) Zan									
Duration of Pumping: (min) 50 Total Volume Removed: (gal) 1 Did well go dry? Yes] No 🔯								
Total volume Removed:									
Horiba U-52 Water Quality Meter Used?									
Tomp PH ORP Conduc	tivity Turbidity DO TDS								
Time DIVV Temp (m)0 (mS/c	m (NTU) (mg/L) (g/L)								
(feet)	5 (12 (176)								
111.1667 to 117.511 117.7 to 35.1 <u>- 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </u>	9 00 000 0.33								
14:00 12.40 17.49 3.05 -97 0.4	20 0-0 0.00 0.2+5								
1391 12 50 511 -89 0.4	9 00 00 0.273								
16.285 17.80 17.41 8.17 -91 6.4°	11 0.0 0.00 0.287								
12.35 12.80 12-42 8.17 -90 6.40	14 0.0 0.00 0.389								
Sampling Information:									
	2 - 100ml ambers Yes No								
EPA SW-846 Method 8270 SVOC PAH's	3 - 40 ml vials Yes No								
EPA SW-846 Method 8260 VOC's BTEX	1 - 250 ml plastic Yes No								
EPA Method 335.4 Cyanide	1 - 250 ml plastic Yes No								
EPA Method 200.7 Metals									
Sample ID: 1 TMW-D06-1221 Duplicate? Yes No	Shipped: Pace Courier Pickup								
Sample ID: ETHING DO NO.	Drop-off Albany Service Center								
Sample Time: MS/MSD? Yes NO	Laboratory: Pace Analytical								
	Laboratory. 1 acc Arialytica.								
Comments/Notes:	Greensburg, PA								

Kingsley Avenue, Nome, New York	
Sampling Personnel:	Date: /2 /2 /2 /
Job Number: 0603275-134400-221	Weather: Cara, 39
Well Id. LTMW-S06	Time In: 14: 13 Time Out:
7.00.10.	
Well Information	Other Well Type: Flushmount Stick-Up
TOC	Other Well Type: Flushmount Stick-Up X Well Locked: Yes No
Depth to Water: (feet) /2, 61 Depth to Bottom: (feet) 17.60	Measuring Point Marked: Yes No
Depth to Bottom: (feet) 17.60 Depth to Product: (feet)	Well Material: PVC SS Other:
Length of Water Column: (feet)	Well Diameter: 1" 2" Other:
Volume of Water in Well: (gal)	Comments:
Three Well Volumes: (gal)	
Purging Information	
Puiging morniation	Conversion Factors
II I diging Modios.	staltic Grundfos Pump gal/ft. 1" ID 2" ID 4" ID 6" ID
Tubing/Bailer Material: Teflon Stainle	
Camping Meason.	staltic Grundfos Pump water 0.04 0.16 0.66 1.47 1 gallon=3.785L=3785mL=1337cu. feet
Average Pumping Rate: (ml/min) 700 Duration of Pumping: (min) 30	
Total Volume Removed: (gal) 2	Did well go dry? Yes No
Horiba U-52 Water Quality Meter Used?	Yes No
Horiba 0-32 Water Quality Motor 3550.	
Time DTW Temp pH	ORP Conductivity Turbidity DO TDS
(feet) (°C)	(mV) (mS/cm) (NTU) (mg/L) (g/L)
	8 51 0.869 27-7-1.03 0.557
14:30 12.98 13.59 7.0 14:36 12.90 13.60 7.0	862.0000.0000.638
	8 -8 0.984 0.0 0.00 0.630
14.45 12.96 13.61 7.1	07 -8 6.984 0.0 0.00 0630
Sampling Information:	
	Yes Na Na
EPA SW-846 Method 8270 SVOC PAH's	2 - 100ml ambers Yes No No 3 - 40 ml vials Yes No
EPA SW-846 Method 8260 VOC's BTEX	1 - 250 ml plastic Yes No
EPA Method 335.4 Cyanide EPA Method 200.7 Metals	1 - 250 ml plastic Yes No
EPA Method 200.7 Metals	
Sample ID: LTMW-S06-1221 Duplicate?	Yes No Shipped: Pace Courier Pickup
Sample Time: 17.3 MS/MSD?	Yes No Drop-off Albany Service Center
Comments/Notes:	Laboratory: Pace Analytical
2)	Greensburg, PA

 $\verb|\syrrmt88-vm3| syracuse-01| Dashboard Planning 897082.x | syracuse | syra$

Kingsley Avent	ie, kome, ivev	/ TOIK												
Sampling Pers	onnel: ?	cter Lybr	`		Date: 12/2/21									
Job Number:		•		, -	Weather:	40° overca	5t							
	TMW-S07	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	· · · · · · · · · · · · · · · · · · ·		Time In: 🎉 🕏	153	Time Out:	1330						
veilla. L	3 14144-007													
Well Info	ormation	· · · · · · · · · · · · · · · · · · ·		•										
			TOC	Well Type:			tick-Up							
Depth to Wate	r:	(feet)	10,31		Well Locked: Yes No No No No									
Depth to Botto		(feet)	17.82	7.60	Measuring Point Marked: Yes No No Well Material: PVC SS Other:									
Depth to Produ		(feet)	7.51		Well Diame	1	2" \ Othe							
Length of Wat			1,20		Comments:									
Three Well Vo			3.60				ĝ;							
														
Purging Ir	nformation						Conversion	notore						
					aa Duma		Conversion F	4" ID 6" ID						
Purging Metho		Bailer Teflon	 1		os Pump rethylene	gal/ft.	110 2 15	- 10 10 10						
Tubing/Bailer Sampling Met		Bailer	├ ─┤ ̄¨	k	os Pump	water	0.04 0.16	0.66 1.47						
Average Pum		(ml/min)	200		· <u></u>	1 gall	on=3.785L=3785m	L=1337cu. feet						
Duration of Pu		(min)	30											
Total Volume		(gal)		Did well go dry?	Yes No	<u> </u>								
Horiba U-52 V	Vater Quality N	/leter Used?	Ye	s No										
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS (g/L)						
	(feet)	(°C)_		(mV)	(mS/cm)									
1255	11.23	12.28	6.97	- 72	.800	4.3	0.89	-5/2						
1300	11.45	12.99	6.97	-123	- 798	0.5 0.4	0.94	2517						
1305_	11.55	13.06	6.96	-132	1808 °	0.0	0.87	-5/9						
1310	11.76	13.12	6.94	-135 -137	.812	00	0.84	.520						
1320	11.81	13.16	6.93	-137_	. 815	0.0	0.78	1521						
1325	11.89	13.20	6.92	-137	1815	0.0	0.82	~5dd						
								 						
			<u> </u>					 						
			 											
	<u> </u>		1		<u> </u>									
Samulian In	formation:		<u> </u>											
Sampling In	normation.													
EPA SW-8	346 Method 8270	svoc	PAH's			2 - 100ml ami	oers Yes	No No						
1	346 Method 826					3 - 40 ml via		No No						
ll .	Method 335.4	Cyar	nide			1 - 250 ml pla		₩						
15	Method 200.7	Met	als			1 - 250 ml pla	istic Yes	No No						
	. .			Vaa Disa N	7 1 e.	nipped: F	Pace Courier Pic	kup 🖂						
Sample ID:	LTMW-S07		uplicate? S/MSD?	Yes No X	-≯	E: 1	off Albany Service	· — I						
Sample Time:	13.25		STIVISD!	I ES MINO K		·	·							
Comments/N	lotes:			A Na		Laboratory:	Pace An	·						
					ll l		Greensb	utg, FA						

 $\verb|\syracuse-01|Dashboard\Planning\897082.x| sm$

Sampling Per	sonnel: Pel	res Lyon				ite: 12/03/31								
Job Number:					Weather:	390 OVEICE	St							
	LTMW-S08				Time In: 1	518	Time Out:	11 06						
73011 Tu.														
Well Inf	ormation							5-7						
			TOC	Other	Well Type:			Stick-Up						
Depth to Wat		(feet)	15-14	10.0	Well Locked: Yes No									
Depth to Bott		(feet)	17.39	17.30	Measuring F Well Mater		Yes Oth	No No						
Depth to Proc Length of Wa		(feet)	2.25		Well Diam		2" Oth							
Volume of Wa			0.36		Comments									
Three Well V		(gal)	1.08											
Purging I	nformation	•												
				⊠	, <u> </u>		Conversion F	actors 4" ID 6" ID						
Purging Meth		Bailer	Peristaltic		fos Pump yethylene	gal/ft.	1 10 2 10	4 10 6 10						
Tubing/Bailer Sampling Me		Teflon Bailer	Stainless St. Peristaltic	·	fos Pump	of water	0.04 0.16	0.66 1.47						
Average Pur		(ml/min)	r erisiailic محو کر	Ciulo	los i dilip[on=3.785L=3785m	 						
Duration of P		(min)	30											
Total Volume	***************************************	(gal)		id well go dry?	Yes No	X								
Horiba II-52	Water Quality I	Meter Used?	Yes	No										
Tionba o oz						· · · · · · · · · · · · · · · · · · ·								
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO	TDS						
	(feet)	(°C)	·	(mV)	(mS/cm)	(mS/cm) (NTU) (mg/L)								
1020	15.21	11.40	6.85	1/3	.522	35.2	11.50	-327						
1025	15.21	11.53	6.80	joi	.487	50.2	6.03	•3/3						
10.30	15.24	11.92	6.75	131	.530	29.3	3.73	+339						
1055	15.25	11.97	6.75	136	.548	27.3 19.4	4.01 2.87	,352 ,365						
1040	15.23	11.96	6.75	140	-599	139	2.42	.384						
1045	15.23	11.87	6.75	126	.616	12.5	2.79	. 395-						
-/ <u>5.5</u> 0-	1,0.	1//2												
				<u> </u>										
<u> </u>							·							
Sampling In	formation:													
						0 400ml amb	Van	No No						
1	346 Method 8270					2 - 100ml amb 3 - 40 ml via								
II	846 Method 826					1 - 250 ml pla								
	Viethod 335.4 Viethod 200.7	Cyan Meta				1 - 250 ml pla								
I CFA	VIGUIOU 200./	iviale				. 200 1111 1010								
Sample ID:	LTMW-S08	3- 1221 Du	plicate?	Yes No No	SI SI	nipped: P	ace Courier Pick	kup 🔀						
Sample Time:	1050	****	S/MSD?	Yes No No		Drop-c	off Albany Servic	e Center						
Comments/N						Laboratory:	Pace An	alytical						
Comments/iv	10100,						Greensb	•						
		Olonoina \ 007			I			D 30 -f						

 $\verb|\syracuse-01\Dashboard\Planning\897082.x| sm$

	1010
Sampling Personnel:	Date: /2/2/4
Job Number: 0603275-134400-221	Weather: Clown 39
Well Id. LTMW-S09	Time In: 13:25 Time Out:
Well Information TOC Other Depth to Water: (feet) 9.32	Well Type: Flushmount Stick-Up Well Locked: Yes No
Depth to Bottom: (feet) 16.92 Depth to Product: (feet)	Measuring Point Marked: Yes No No Other:
Depth to Product: (feet) Length of Water Column: (feet)	Well Diameter: 1" 2" Other:
Volume of Water in Well: (gal) 1.7.	Comments:
Three Well Volumes: (gal) 3.44	
1,500	
Purging Information Purging Method: Tubing/Bailer Material: Sampling Method: Average Pumping Rate: Duration of Pumping: Total Volume Removed: (gal) Peristaltic Stainless St. Polyeth Peristaltic Grundfos R On the stainless St. Polyeth Peristaltic Stainless St. Polyeth Peristaltic Stainless St. Polyeth Peristaltic On the stainless St. Polyet	ylene of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conductivity Turbidity DO TDS (mS/cm) (NTU) (mg/L) (g/L) 2.665 87-3 2.77-0.728 2.744 6.0 1.77-0.464 2.744 6.0 1.28 0.501 3.843 0.0 1.11 0.540 2.843 0.0 0.91 6.843
EPA SW-846 Method 8270 SVOC PAH's EPA SW-846 Method 8260 VOC's BTEX EPA Method 335.4 Cyanide EPA Method 200.7 Metals Field Duplicate 1221 Sample ID: LTMW-S09-1221 Duplicate? Yes No Sample Time: MS/MSD? Yes No Comments/Notes:	4 - 100ml ambers Yes No 3 - 40 ml vials Yes No 1 - 250 ml plastic Yes No 1 - 250 ml plastic Yes No Shipped: Pace Courier Pickup Drop-off Albany Service Center Laboratory: Pace Analytical

Kingsley Aven	iue, Rome, Nev	v York												
Sampling Pers	sonnel: P.L.	· Laon			Date: 12/	12/02/21								
Job Number:	0603275-134	· •			Weather:	39° OV4 C	est							
	LTMW-S10				Time In:()91	4	Time Out:	0950						
vvenia.	LIMIT - O TO													
Well Info	ormation													
			TOC	Other	Well Type:		- 3	tick-Up						
Depth to Wate	er:	(feet)	· ·	Well Locked: Yes No										
Depth to Botto		(feet)	Measuring Point Marked: Yes No No No Other:											
Depth to Prod		(feet)	7.29		Well Diame									
Length of Wa			1.32		Comments:	· · ·								
Three Well Vo			3.97											
														
Purging I	nformation													
				.	🖂		Conversion F	actors 4" ID 6" ID						
Purging Meth		Bailer Teflon	Peristaltic Stainless St.		fos Pump yethylene	gal/ft. of	טו צן טוּ וּ	ן טו ט ט טי ד						
Tubing/Bailer Sampling Met		Bailer	Peristaltic		fos Pump	water	0.04 0.16	0.66 1.47						
Average Pum			200	<u> </u>			on=3.785L=3785m	L=1337cu. feet						
Duration of Pumping: (min) 30														
Total Volume		(gal)	2 D	id well go dry?	Yes No.	<u>X</u>]								
Horiba U-52 \	Water Quality N	Neter Used?	Yes	No 🗌										
		<u> </u>	<u> </u>											
Time	DTW	Temp	рН	ORP	Conductivity	Turbidity	DO TDS							
	(feet)	(°C)		(mV)	(mS/cm)	(NTU)	(mg/L)	(g/L)						
0915	10.20	9.37	7.66	203	<i>3786</i>	34.8	8.59	0.629						
0920	10.31	11.29	6.95	199	•983 •983	25.4	6,90 6.86	0.629						
0985	10.42	11.73	6.92	183	.981	38,2	6.55	0.628						
<u>0930</u> <u>0935</u>	10.51	12.27	6.91	178	.983	9.5	6.27 0.629							
0990	10.61	12.07	6.90	175	,981	13.0	6.04	0.627						
0945	10.61	12.08	6.90	177	.983	6.8	5,77	0.629						
						······								
						· · · · · · · · · · · · · · · · · · ·								
<u> </u>	<u> </u>		<u> </u>	<u> </u>										
Sampling In	formation:			· · · · · · · · ·										
Camping in	nomiadon.													
		svoc	PAH's			6 - 100ml amb	ers Yes	No∏						
EPA SW-8	346 Method 8270		RTEY			3 - 40 ml via								
II		VOC's	EFA 3VV-040 Method 0200 VOO'S BTEX											
EPA SW-8						•								
EPA SW-8 EPA M EPA M	846 Method 8260 Method 335.4 Method 200.7	Cyan Meta	ide als			1 - 250 ml pla 1 - 250 ml pla								
EPA SW-8 EPA M EPA M LTMV	846 Method 8260 Method 335.4 Method 200.7 V-S10-MS-122	Cyan Meta 1 LTMW	ide als -S10-MSD-122		71 en	1 - 250 ml pla	stic Yes	; No						
EPA SW-8 EPA M EPA M LTMV Sample ID:	846 Method 8260 Method 335.4 Method 200.7 V-S10-MS-122 LTMW-S10	Cyan Meta 1 LTMW 1-1221 Du	ide als - S10-MSD-122 uplicate?	Yes No No	∑ sh	1 - 250 ml pla		; No						
EPA SW-8 EPA M EPA M LTMV Sample ID: Sample Time:	846 Method 8260 Method 335.4 Method 200.7 V-S10-MS-122 LTMW-S10	Cyan Meta 1 LTMW 1-1221 Du	ide als -S10-MSD-122		Sh	1 - 250 ml pla ipped: P Drop-c	stic Yes ace Courier Pic off Albany Servic	No No Cup						
EPA SW-8 EPA M EPA M LTMV Sample ID:	846 Method 8260 Method 335.4 Method 200.7 V-S10-MS-122 LTMW-S10	Cyan Meta 1 LTMW 1-1221 Du	ide als - S10-MSD-122 uplicate?	Yes No No	Sh	1 - 250 ml pla	stic Yes ace Courier Pic	No No No Cape Center Alytical						

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B			Section C																	- #	age:	1 of 1	
Required Client Information:	Required Project Information:			nvoice info										\neg								0.001		
Company: GES - Syracuse	Report To: Devin Shay (GES) dshay@gesonline.com					yable via emai												-				GENCY		
Address: 6780 Northern BLVD, Suite 100	Report To: Tim Beaumont (GES) theaumont@gesonline.com					ndwater & Env									NPDES	3	GRO		WATE	R		IG WATE	к	1
East Syracuse, New York 13057	Quarterly System Ef	fluen	it /	Address: 5	Technology	Place, Suite 4	East Syracu	se NY 13	3057					_	UST		RCR	,			OTF:			
Email To: dshay@gesonline.com	Purchase Order No.:			Pace Quote	Reference:										Ì	SIT	ΓE			GA	IL	IN	М	NC
Phone: 800.220.3089	Project Name: National Grid - Ro Kingsley Ave. Site, Rome, NY	me		Pace Projec	t Manager:	Rachel Christi	ner							_	LOCATI	ON				OH 7	sc w other			
Requested Due Date/TAT: Standard	Project Number: 0603275-134400-221-1106			Pace Profile	Pace Profile #:					Filtered (Y/	N)				+	//,	/ / ,	4/	<i>/</i> /-i					
Section D Required Client Information SAMPLE ID One Character per box. (A-2, 0-9.7-) Samples IDs MUST BE UNIQUE	Valid Martin Cooles Demanda Valid Demanda Valid	MATRIX CODE	SAMPLETYPE GIGRAB C=COMP	COMPOSITEST		GME DATE	TIME	SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	Unpreserved	H,SO,	TO SHOW		Methanol	Requested Analysis:							\/// ///	Pac	ce Project Number Lab I.D.
Effluent System	1221	WT	G			12/2/26	O2 3		10	5	1	3	1			3	4 1	1 1	11	Ш	44	<u> </u>		
Trip Blan		WT				V			3			3				з		\perp	Ц	4				
END OF REC		T														1.4	1	┶	$\perp \downarrow$	4		<u> </u>		
G		Т	Π						<u> </u>	Ш		Ц	Ц			11		1	1	1	_	<u> </u>		
		Ţ								1.	1	1	\perp	1		Н	\vdash		\sqcup	-	-	<u> </u>		
		Γ							<u> </u>		Ш	1	Ш			1	\sqcup	+	1	╁		—		
8		Ī						<u> </u>			Ш					L		┸	\sqcup		4	<u> </u>		
^		1	Т						L		Ц.		Ц					_	\sqcup	\bot	Ц.,			
3		1														Ш	Ц		Ш	1				
10		╁┈	1			****		1		Т			П					l	Ш					
11		┪	 				 						П				П			L		<u> </u>		
12		 RE	uvas	KSHEDIRA	AFF LIATE	116	EATE	10VE	ACC	EPTEU) (St. F	AFFIL.					5,4				SAMF	LE CON	DITION	IS
Additional Comments:			7/				elzi	15.3											Π			¥.	¥	*
SAMPLES WILL ARRIVE IN #	COOLERS.		_				7/3-	10.7	+	_							Г					Z.	¥.	YW
<u> </u>		┝					 	 	1								Г	-				Ž.	N/A	X.
Please send reports to: dshay@gesonline.com, t	beaumont@gesonline.com	\vdash				·	+	 	 			_							1			Z.	₹.	Y.
NERegion@gesonline.com, ges@equisonli SPECIFIC EDD NAME:	ne.com	<u>L</u>			SAMPLE PRINT INTO	R NAME AN	SIGNATU	ŽE T		9			DATE	Signed	my 50,1773	<i>j</i> _	./				Temp in °C	Received on Ice	Custody Sealed Cooler	Samples Intact
NGRome-habmumber.28351.EQEDD.zip						<i>y</i>	7	7	<i>I</i> _				<u> </u>	12	1-7/	-2	(<u>I.</u>	4		1 W

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Required Client Information: Required Project Information: Invoice Information: Invoice Information: Accounts Payable via email at ges-Invoices@gesonline.com Address: 6780 Northern BLVD, Suite 100 Report To: Tim Beaumont (GES) Address: 6780 Northern BLVD, Suite 100 Report To: Tim Beaumont (GES) Beats Syracuse, New York 13057 Email To: dshay@gesonline.com Purchase Order No.: Email To: dshay@gesonline.com Project Normer: National Grid - Rome Kingsley Ave. Site, Rome, NY Requested Due Date/TAT: Standard Project Number: Occupancy Research Standard Project Number: Occupancy Research Standard Section D Required Client Information SAMPLE ID One Character per box. (A:Z09 4). Samples IDs MUST BE UNIQUE **Beat Syracuse** **Beat Syracuse** **Project Number: Occupancy Research Standard **COLLECTED . **Beat Syracuse** **Project Number: Occupancy Research Standard **Project Number: Occupancy Research Standa	0-4	Section B		Se	ection C																			age:	1 of 2			
March Color Color Specials March Color C					invoice information:																							
Address Proceedings Process		vracuse Report To: Devin Shay (GES)																										
Address Serious presson, Assis East Serious Se	Address: 6780 Northern BLVD, Suite 100 Report To: Tim Beaumont (GES)																											
Page Proceed Processed												_	1 00															
Process Proc	Email To: dshay@gesonline.com													****											1			
Section D Regiment Client Information Section D Collection Section D		Project Name: National Grid - Rom Kingsley Ave. Site, Rome, NY	le Pace Project Manager: Rachel Christner								_		OCATI	ION			3C	//	1HER	-								
Section D Required Chest Martin Section D Required Chest Agriculture Section D Required Chest Materials Section D Report Mater		Project Number:			Quarterly GWS																			//////				
LTMW-D01-1221 WT G LO:	SAMPLE ID One Character per box. (A-Z, 0-91,-) Samples iDs MUST BE UNIQUE	WATER CORE		G+GRAB		भा	₽ AB		SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	Unpreserved			ő	Methanoi	Ans									Pac	e Project Number Lab I.D.		
Continue of the second comments: Column Figure Fi			WT	G				09:40		7	2		3	1	Ш			3	2	1 1	1-1-	1-1						
LTMW-D02-1221				G				10:20		7	2	1	1 3	1	Ш			3	2	1 1	\sqcup	41						
LTMW-D03-1221 WT G USS 7 2 1 3 1 3 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 2 2 1 1 1 1	1 THE DOC 4004							14:20		7	2		1 3	1		\perp		3	2	1 1		\perp	_					
LTMW-003-1221 WT G LTMW-S03-1221 WT G LTMW-S04-1221 WT G LTMW-S04-1221 WT G LTMW-S04-1221 WT G LTMW-S04-1221 WT G LTMW-S05-1221 WT G G LTMW-S05-1221 WT G G LTMW-S05-1221 WT G G G G G G G G G G G G G G G G G G								1510		7	2		1 3	1				3	2	1 1								
COOLERS.	1 THAIL DOG 4004							,		7	2		1 3	1	$\perp \downarrow$	_		3	2	1 1	1-1	44	-					
LTMW-S04-1221 WT G	L TABLE 002 4224		WT	G				11:65		7	2		1 3	1	\perp			3	2	1 1	1-	+						
Section State St								11:35		7_	2		1 3	1		\perp		3	2	1 1	$\bot \downarrow$	Ш						
SAMPLES WILL ARRIVE IN	L TRUST COA 4004		1					17:25		7	2		1 3	1		_		3	2	1 1	↓ ↓	4						
10 LTMW-S05-1221 WT G	1 THE R. D. C. 4004		WT	G				13:20		7	2		1 3	1	Ш			3	2	1 1	 		-	ļ <u>.</u>				
LTMW-D06-1221 LTMW-S06-1221 Additional Comments: SAMPLES WILL ARRIVE IN # COOLERS. Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com, ges@equisonline.com SPECIFIC EDD NAME: NGRome-labit ber.28351.EQEDD.zip	L TRANS COE 4004		WT	G				12:40		7	2		1 3	1				3	2	1 1	+							
LTMW-S06-1221 WT G IU: 45 7 2 1 3 1 1 3 2 1 1 1 Additional Comments: SAMPLES WILL ARRIVE IN Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com, ges@equisonline.com SPECIFIC EDD NAME: NGRome-labi ber, 28351, EQEDD.zip PATE SAMPLER :: AWE AND SIGNATURE SIGNATURE SAMPLER :: AWE AND SIGNATURE SIGNATURE SIGNATURE SIGNATURE SAMPLER :: AWE AND SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE DATE SAMPLE CONDITIONS SAMPLE CONDITIONS AND I SAMPLE CONDITIONS SAMPLE CONDITIONS AND I SAMPLE C			WT	G				15:25	1	7	2		1 3	1	1	1		3	2	1 1		-		<u> </u>				
Additional Comments: SAMPLES WILL ARRIVE IN # COOLERS. Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com, ges@equisonline.com S-MPLER N-AWE AND SIGNATURE PRINT Number of SAMPLER SIGNATURE DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATI	LTMW-S06-1221		WT	G				14:45										3	1						DITION			
SAMPLES WILL ARRIVE IN # COOLERS. Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com. ges@equisonline.com SAMPLER !: SME AND SIGNATURE PRINT Name of SAMPLER SIGNATURE PRINT Name of SAMPLER SIGNATURE DATE SAMPLED D. Zip	Additional Comments:		REL	NQUE	SHED BY :	AFFILIATIO	h:	1		Ų.	EPTED	BY;	AFFIL.	ATION	1					AIE		VI⊏	SAMIF			,		
Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com, qes@equisonline.com SAMPLER !:AWE AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE PRINT Name of SAMPLER: SIGNATURE DATE SIAMALIFICATION DATE SIAMALIFICATION DATE SIAMALIFICATION DATE SIAMALIFICATION SO ON	SAMPLES WILL ARRIVE IN #	COOLERS.	1/2	<u>_</u>			رسے	12/1	153	≯									┼		+							
Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com NERegion@gesonline.com. ges@equisonline.com SHMPLER NAME AND SIGNATURE PRINT Name of SAMPLER SIGNATURE SIGNATURE DATE SAMPLAND SIGNATURE SIGNATURE OF SAMPLAND SIGNATURE PRINT Name of SAMPLAND SIGNATURE SIGNATURE OF SAMPLAND SIGNATURE OF SAMPLAND SIGNATURE OF SAMPLAND SIGNATURE OF SAMPLAND SIGNATURE SIGNATURE OF SAMPLAND SIGNATU		/	L					<u> </u>	<u> </u>	<u> </u>									+							1		
NERegian@gesonline.com_ges@equisonline.com SAMPLER !:AWE AND SIGNATURE SPECIFIC EDD NAME: NGRome-labs ber.28351.EQEDD.zip	Please send reports to: dshay@gesonline.com, tbeaumont@gesonline.com																		+-		-				_			
SPECIFIC EDD NAME: SPECIFIC EDD NAME: NGRome-labi ber.28351.EQEDD.zip																												
	SPECIFIC EDD NAME: PRINT type of SAMPLER: DATE Symptom (TODY) DATE SYMPTOM (TODY)									-	- Femp	Received																

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Section B	8	Section C																						Pa	ge:	2 of 2	<u>!</u>
Section A Required Client information:	Required Project information:	ie	invoice infor	mation:										_	_			_			-							
Company: GES - Syracuse	1	Attention: Accounts Payable via email at ges-involces@gesonline.com									REGULATORY						-											
Address: 6780 Northern BLVD, Suite 100	- 1	Company Name: Groundwater & Environmental Services, Inc.								III DEG						NKING WATER												
East Syracuse, New York 13057	tbeaumont@gesonline.com		Address: 5 1	echnology F	lace, Suite 4,	East Syracus	se, NY 13	057							L	US	ST.		RCF	₹A				TH	IER_			
Email To: dshay@gesonline.com	Purchase Order No.:	-	Pace Quote	Reference:											ı			SI	ſΕ		ı	3/	١.	L				
Phone: 800.220.3069	Project Name: National Grid - Rome K	Kingsley I	Pace Projec	t Manager: F	Rachel Christr	780										LOC	ATIC	NC				ال	1	;c	; -	A	'HER_	
x4051 Requested Due Date/TAT: Standard	Ave, Site, Rome, NY Project Number:				Qı	uarterly	y GV	VS							F	iltered	(Y/N)	}					\angle	\angle	[[[[4
Section D Required Client information	0603275-134400-221-1106 Valid Matrix Codes MATRIX CODE TOTAL CODE DN			COLL	ECTED .		1			<i>,</i>	Prese	rvativ	es		_	eques nalysi						/	$^{\prime}/$	//	Ι,	///	///	
SAMPLE ID One Character per box. (A-Z, 0-97,-) Samples IDs MUST BE UNIQUE	Consolicity wat the Conviction of Conviction	MATRIX CODE SAMPLE TYPE G+GRAB C=COMP	COMPOSITE ST	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	#OF CONTAINERS	Unpreserved	H ₂ SO,	HNO ₃	NaOH	Na ₂ S ₂ O ₃	Methanol	Offier									////			Pa	ce Projec Numb Lab I.i
LTMW-S0	7-12 2 1 v	WT G			12/2/21	13:25		7	2		1	3 1	-	\sqcup	-{			3	2	+	1	+	╁┤	\vdash	+			
LTMW-S0		WT G			}	10:30		. 7	2	\sqcup	1	3 1	╀	\vdash	\dashv			3	2	1	+	+-	+-'	$\vdash \vdash$	+			
LTMW-S0		WT G				14/0		7	2	-	1	3 1	-					3	2	1	4	+	+	$\vdash \vdash$	+			
LTMW-S1		WT G				09:45		7	2	\sqcup	1	3 1	-		_			3	2	1	1	+	十	\vdash	\dashv			
LTMW-S10-		WT G				09:45		. 7	2	\vdash	1	3 1	4		Ц			3	1	1	1	+	+-	$\vdash \vdash$	_			
LTMMA C10 N		WT G				09:45		7	2	\sqcup	1	3 1	4-					3	2	1	1	+	+	\vdash	H			
Field Duplic		WT G						7	2	\sqcup	1	3	4	1	\sqcup			3	2	1	1	+	+	┼┤				
Trin DI		WT Lab	bi		1			2	1	\sqcup		2	4-		Н			2	-	\vdash		+	+	+-4	⊢┪		··-	
8END OF R					\mathbb{V}		<u> </u>	_				-	-	<u> </u>	Ц			+	\vdash		\dashv		+	╁┤				
10																				DATE		TIN	AE	SA	MP	E CO	IDITIO	4S
Additional Comments:		RELINCU	UISHED BY	/ AFFILIAT C		DATE	TIME		EPTE	D BY	/ AFI	FILIA	TION		_					JATE.				+		₹	₹ ¥	Ĭ,
SAMPLES WILL ARRIVE IN #	COOLERS.					12/2/21	15:3	4											╀					十		<u>-≻</u> 	<u>}</u>	× × ×
						<u> </u>		 -											+-		-			十	\dashv	Y.N.Y	Z ×	<u> </u>
Please send reports to: dshay@gesonline.com	n, tbeaumont@gesonline.com							-											+					T		X.N.	\ <u>\f</u>	\ \ \ \
NERegion@gesonline.com, ges@equisor	l l	<u> </u>		SAMPLE PRINT Name	R NAME AN	D SIGNATU	RE							Ţ											Temp in °C	aived on	Custody Sealed Cooler	
SPECIFIC EDD NAME:	t			SIGNATURE	of SAMPLER!	100	<u> </u>	_				_	DATE S	900d	uny 2	2/3	7							1	Ten	Reck	Seak	Sam
NGRome-lab: iber.28351.EQEDD.2	zip			i											_							E-l	File,(A	LLQ02	20rev.:	3,31Mar(15), 13Juní	:005

2021 4th Quarter OM&M Report National Grid Rome Former MGP Site 233 Kingsley Avenue, Rome, NY 13440

Appendix D – Data Usability Summary Report and Analytical Data

Groundwater & Environmental Services, Inc.

708 North Main Street, Suite 201 Blacksburg, VA 24060

T. 800.662.5067

February 14, 2022

Devin Shay Groundwater & Environmental Services, Syracuse 6780 Northern Blvd., Suite 100 East Syracuse, NY 13057.

RE: Data Usability Summary Report for National Grid- Rome Kingsley Avenue Site Data Packages Pace Analytical Job Nos. 30453471, 30453473

Groundwater & Environmental Services, Inc. (GES) reviewed two data packages (Laboratory Project Number 30453471, 30453473) from Pace Analytical Services, Inc., for the analysis of an effluent sample and trip blank as well as groundwater samples collected in December 2021 from monitoring wells located at the National Grid: Rome Kingsley Avenue Site. Sixteen aqueous samples and a field duplicate were analyzed for BTEX, PAHs, arsenic, lead, zinc, and total cyanide. The effluent system sample was processed for volatiles, eight metals, mercury, pH and total cyanide. Methodologies utilized are those of the USEPA 200.7, 335.4, SM 4500H+B, the USEPA SW846 methods 8260C/8270D(SIM) with additional QC requirements of the NYSDEC ASP.

The data are reported as part of a complete full deliverable type B data validation. This usability report is generated from review of the following:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate (MS/MSD) Correlations
- Field Duplicate Correlations
- Laboratory Control Sample (LCS)
- Preparation/Calibration Blanks
- Calibration/Low Level Standard Responses
- Instrumental Tunes
- Instrument MDLs
- Sample Quantitation and Identification

The items listed above which show deficiencies are discussed within the text of this narrative.

All of the other items are determined to be acceptable for the DUSR level review.

Table 1 - Data Qualifications

Sample ID	Qualifier	Analyte	Reason for qualification
	J	рН	Analyzed after holding time
Effluent	J	Acetone	Low RRF
	J	Bromomethane	RPD>30%
LTMW-S01	UJ-	Cyanide	Low MS/MSD recovery

In summary, sample results are usable as reported, with non-compliances noted. The result for pH in all applicable samples was qualified by the laboratory as estimated due to the short hold time of 15 minutes. Qualifications are detailed in Table 1.

The laboratory case narratives and sample identification summary forms are attached to this text, and should be reviewed in conjunction with this report.

Custody Documentation

All samples arrived within the EPA acceptable range of 4°C ± 2°C.

BTEX and TCL Volatiles by EPA 8260C/NYSDEC ASP

Sample holding times for groundwater and effluent samples and instrumental tune fragmentations are within acceptance ranges. Surrogate and internal standard recoveries are within required limits.

The relative response factor for acetone in the initial calibration associated with the analysis of the effluent sample was below minimum requirements. Acetone is qualified as estimated in all associated samples. Calibrations standards show acceptable responses within analytical protocol and validation action limits with the exception of high recovery for non-detected analytes associated with the effluent and effluent samples. The compounds were not reported above detections limit; no qualification was required.

The LCS associated with the effluent samples reported high recoveries for acetone, chloroethane, and vinyl chloride. The sample did not report positive detections for these compounds, and no data is qualified.

Matrix spike and matrix spike recoveries were within laboratory specified criteria with the following exceptions:

 For the MS/MSD associated with the effluent sample, RPDs were out of specification for boromomethane.

- For the MS/MSD associated with the effluent sample, recoveries were low in the below analytes:
 - 2-Hexanone
 - MIBK

There were no positive detections of the above analytes in the effluent sample, and the data is not affected.

PAHs by EPA8270D/NYSDEC ASP

Holding times are met. Instrumental tune fragmentations are within acceptance ranges. Surrogate recoveries are within analytical and validation guidelines Blanks show no contamination. Calibration standards, both initial and continuing, show acceptable responses within analytical method protocols and validation guidelines with the following exceptions:

The blind field duplicate correlations of LTMW-S09 were not calculated, as there were no detections above reporting limit.

The laboratory control spike recoveries and precision indicate the method is within laboratory control, with the exception of a high recovery for Dibenz(a,h)anthracene. The samples were nod-detect for this analyte, and the high bias does not affect reported results. Matrix spike and matrix spike recoveries were within laboratory specified criteria or, with the exception of a variety of high recoveries for analytes that did not have associated positive detections in the samples. Naphthalene in the effluent sample reported a high recovery in the MSD. The detected concentration for this analyte is qualified as estimated with a possible high bias.

Benzo(b)fluoranthene and Benzo(k)fluoranthene are not sufficiently separated in the chromatogram, and should be noted that any quantification is qualified as estimated.

Metals by EPA 200.7/EPA 245.3/NYSDEC ASP

The matrix spikes and post digestion spikes show acceptable accuracy and precision. Initial and continuing calibration recoveries were within criteria. CRDL Check standard recoveries were within criteria, and there was no indication of any interfering component affecting the data. The blind field duplicate correlations of LTMW-S09 were not calculated, as there were no detections above reporting limit.

Instrument performance is compliant, and blanks show no contamination above the reporting limit.

Wet Chemistry-Total Cyanide by 9012B and pH

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure. All are acceptable for the validated sample. Calibration standard responses are compliant. Blanks show no detections above the reporting limits.

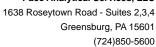
The pH for the Effluent sample is qualified as estimated due to outlying holding time, as noted in the laboratory case narrative.

The recoveries for cyanide in the MS/MSD associated with the LTMW-S01-1221 reported low. Cyanide is qualified as estimated with a possible low bias.

All other associated matrix spikes and/or laboratory duplicates of total cyanide show acceptable recoveries. Qualifications are noted in Table 1.

Data Package Completeness

Complete NYSDEC Category B deliverables were included in the laboratory data package, all information required for validation of the data is present.

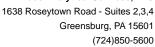

Please do not hesitate to contact me if you have comments or questions regarding this report.

Sincerely,

Bonnie Janowiak, Ph.D.

fartwick >

Senior Chemist



SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30453473001	LTMW-D01-1221	Water	12/02/21 09:40	12/04/21 09:54
30453473002	LTMW-S01-1221	Water	12/02/21 10:20	12/04/21 09:54
30453473003	LTMW-D02-1221	Water	12/02/21 14:20	12/04/21 09:54
30453473004	LTMW-S02-1221	Water	12/02/21 15:00	12/04/21 09:54
30453473005	LTMW-D03-1221	Water	12/02/21 11:15	12/04/21 09:54
30453473006	LTMW-S03-1221	Water	12/02/21 11:55	12/04/21 09:54
30453473007	LTMW-D04-1221	Water	12/02/21 11:35	12/04/21 09:54
30453473008	LTMW-S04-1221	Water	12/02/21 12:25	12/04/21 09:54
30453473009	LTMW-D05-1221	Water	12/02/21 13:20	12/04/21 09:54
30453473010	LTMW-S05-1221	Water	12/02/21 12:40	12/04/21 09:54
30453473011	LTMW-D06-1221	Water	12/02/21 15:25	12/04/21 09:54
30453473012	LTMW-S06-1221	Water	12/02/21 14:45	12/04/21 09:54
30453473013	LTMW-S07-1221	Water	12/02/21 13:25	12/04/21 09:54
30453473014	LTMW-S08-1221	Water	12/02/21 10:50	12/04/21 09:54
30453473015	LTMW-S09-1221	Water	12/02/21 14:00	12/04/21 09:54
30453473016	LTMW-S10-1221	Water	12/02/21 09:45	12/04/21 09:54
30453473017	LTMW-S10-MS-1221	Water	12/02/21 09:45	12/04/21 09:54
30453473018	LTMW-S10-MSD-1221	Water	12/02/21 09:45	12/04/21 09:54
30453473019	Field Duplicate-1221	Water	12/02/21 00:01	12/04/21 09:54
30453473020	Trip Blank	Water	12/02/21 00:01	12/04/21 09:54

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 20, 2021

General Information:

19 samples were analyzed for EPA 200.7 by Pace Analytical Services Long Island. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

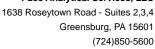
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 20, 2021

General Information:

19 samples were analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

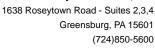
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 20, 2021

General Information:

20 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

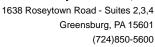
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 20, 2021

General Information:

19 samples were analyzed for EPA 335.4 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 475175

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30448505005,30453473002

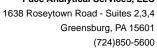
ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2295521)
 - Cyanide
- MS (Lab ID: 2295690)
 - Cyanide
- MSD (Lab ID: 2295522)
 - Cyanide
- MSD (Lab ID: 2295691)
 - Cyanide

QC Batch: 475541

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30453473010,30453473019

MH: Matrix spike recovery and/or matrix spike duplicate recovery was above laboratory control limits. Result may be biased high.


- MS (Lab ID: 2297147)
 - Cyanide

QC Batch: 476140

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30453473016,30454588001

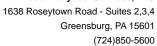
ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2299934)
 - Cyanide

Project: National Grid - Rome Kingsley

Pace Project No.: 30453473

Method: EPA 335.4

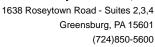

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 20, 2021

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



SAMPLE SUMMARY

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30453471001	Effluent System 1221	Water	12/02/21 08:00	12/04/21 09:54
30453471002	Trip Blank	Water	12/02/21 00:01	12/04/21 09:54

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 200.7

Description: 200.7 Metals, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

1 sample was analyzed for EPA 200.7 by Pace Analytical Services Long Island. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 200.7 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

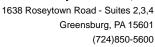
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 236835

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 70197395001,70197480001


M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1195792)
 - Copper

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 245.1 Description: 245.1 Mercury

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

1 sample was analyzed for EPA 245.1 by Pace Analytical Services Long Island. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 245.1 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

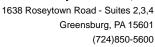
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 8270D by SIM

Description: 8270D PAH SIM Reduced Volume

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

1 sample was analyzed for EPA 8270D by SIM by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

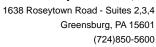
Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

2 samples were analyzed for EPA 8260C by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

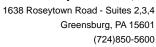
All criteria were within method requirements with any exceptions noted below.

QC Batch: 476526

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- BLANK (Lab ID: 2301993)
 - Chloroethane
 - Vinyl chloride
- Effluent System 1221 (Lab ID: 30453471001)
 - Chloroethane
 - · Vinyl chloride
- LCS (Lab ID: 2301994)
 - Chloroethane
 - Vinyl chloride
- MS (Lab ID: 2302812)
 - Chloroethane
 - Vinyl chloride
- MSD (Lab ID: 2302813)
 - Chloroethane
 - Vinyl chloride
- Trip Blank (Lab ID: 30453471002)
 - Chloroethane
 - Vinyl chloride

Internal Standards:


All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 8260C Description: 8260C MSV

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 476526

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

- LCS (Lab ID: 2301994)
 - 1,1,2,2-Tetrachloroethane
 - Chloroethane
 - Vinyl chloride

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 476526

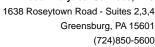
A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30453471001

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2302812)
 - 2-Hexanone
 - 4-Methyl-2-pentanone (MIBK)
- MSD (Lab ID: 2302813)
 - 2-Hexanone
 - 4-Methyl-2-pentanone (MIBK)

R1: RPD value was outside control limits.

- MSD (Lab ID: 2302813)
 - Bromomethane


Additional Comments:

Analyte Comments:

QC Batch: 476526

1c: The analyte did not meet the method recommended minimum RF.

- BLANK (Lab ID: 2301993)
 - Acetone
- Effluent System 1221 (Lab ID: 30453471001)
 - Acetone
- LCS (Lab ID: 2301994)
 - Acetone
- MS (Lab ID: 2302812)
 - Acetone
- MSD (Lab ID: 2302813)
 - Acetone
- Trip Blank (Lab ID: 30453471002)
 - Acetone

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: SM 4500H+B-2011

Description: 4500H+ pH, Electrometric

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

1 sample was analyzed for SM 4500H+B-2011 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H3: Sample was received or analysis requested beyond the recognized method holding time.

• Effluent System 1221 (Lab ID: 30453471001)

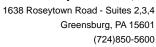
H6: Analysis initiated outside of the 15 minute EPA required holding time.

• Effluent System 1221 (Lab ID: 30453471001)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: National Grid - Rome Kingsley

Pace Project No.: 30453471

Method: EPA 335.4

Description: 335.4 Cyanide, Total

Client: Groundwater & Environmental Services, Inc. (Syracuse)

Date: December 27, 2021

General Information:

1 sample was analyzed for EPA 335.4 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 335.4 with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 475175

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30448505005,30453473002

ML: Matrix spike recovery and/or matrix spike duplicate recovery was below laboratory control limits. Result may be biased low.

- MS (Lab ID: 2295521)
 - Cvanide
- MS (Lab ID: 2295690)
 - Cyanide
- MSD (Lab ID: 2295522)
 - Cyanide
- MSD (Lab ID: 2295691)
 - Cyanide

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.