### **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

January 22, 2019; Revised February 26, 2019

Jocelyn Martin CDM Smith 4 Highland Rd Suite 1 Massena, NY 13662

RE:

Validation of the West Plant Emerging Contaminant Analytical Laboratory Data

Alpha Analytical SDG Nos. L1843279, L1843740, and L1845940

Dear Ms. Martin:

Review has been completed for the data packages generated by Alpha Analytical that pertain to aqueous samples collected between 10/23/18 and 11/07/18 at the West Plant site. Twenty one aqueous samples, three field duplicates, and six field blanks were processed for per-and polyfluoroalkyl substances (PFAS) by a modified USEPA method 537, and 1,4-dioxane for USEPA method 8270D SIM.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology.

The following items were reviewed:

- \* Data Completeness
- \* Case Narrative
- \* Custody Documentation/Sample Receipt
- \* Holding Times
- \* Surrogate, Isotopic Dilution, and Internal Standard Recoveries
- \* Preparation and Field Blanks
- \* Matrix Spike Recoveries/Duplicate Correlations
- \* Blind Field Duplicate Correlations
- \* Laboratory Control Sample (LCS)
- \* Instrumental Tunes
- \* Initial and Continuing Calibration Standards
- \* Method Compliance
- \* Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS

DER-10 Appendix B section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

**In summary**, results for target analytes are usable either as reported or with minor qualification or edit. Accuracy, precision, data completeness, sensitivity, comparability, and representativeness are acceptable.

Client sample identifications are attached to this text, and should be reviewed in conjunction with this report. Also included in this report are the laboratory EQuIS EDDs with recommended qualifiers/edits applied in red.

MW-06-1018FB was reported by the laboratory as MW-06-101FB.

### **Blind Field Duplicate Correlations**

The blind field duplicate evaluations were performed on MW-01-1018 FD, MW-362-1018 FD, and MW-031-1118 FD, and show correlations that fall within validation guidelines.

### 1,4-Dioxane by EPA 8270D SIM

Surrogate and internal standard recoveries are within laboratory and protocol acceptance ranges. Holding times were met.

Matrix spikes of MW-335-1018P, MW-015-1018P, and MW-303-1018P show recoveries and correlations within laboratory acceptance ranges.

One of the matrix spikes of MW-031-1118P shows no recovery, while the other recovered at 119%. The parent sample and matrix spikes were reextracted, but well beyond a holding time for usable data. The reextracted spikes show acceptable recovery. It is suspected that the matrix spike was not actually spiked during the initial extraction. No qualification to the parent result is indicated.

Calibration standards show acceptable responses that are within validation guidelines.

### PFAS by Modified EPA Method 537

PFAS compounds are identified by their common acronyms in this report. The report forms reference both the technical names and the acronyms.

The result for PFPeA in MW-257-1018P has been rejected due to the failure of its associated isotopic dilution standard to recover. A matrix effect is suspected.

Due to presence in the associated blanks, the following detections are considered external contamination and edited to reflect non-detection:

- PFOA in MW-292-1018P and MW-262-1018P
- NMeFOSAA in MW-127-1018P
- 6:2FTS in MW-127-1018P, MW-335-1018P, and MW-262-1018P, and in all samples reported in SDG L1843740

Matrix spikes of MW-015-1018P, MW-202-1018P, MW-031-1118BP, and MW-335-1018P show recoveries and correlations within validation action guidelines.

Holding times were met, and LCS recoveries are compliant.

Some of the samples were processed at dilution due to the sample matrix. This resulted in elevated reporting limits. These should have been noted in the laboratory case narrative.

The NYSDEC Category B data package for L1845940 does not include the QC summary forms for either the isotopic/surrogate standards or the internal standards. The recoveries and their relativity to the acceptance ranges were evaluated during validation by review of the raw data.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Att:

Validation Qualifier Definitions

Client and Laboratory Sample Identifications

Qualified Laboratory EQuIS EDDs

### VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- The results do not meet all criteria for a confirmed identification.

  The quantitative value represents the Estimated Maximum Possible

  Concentration of the analyte in the sample.

### **Client and Laboratory Sample IDs**

**Project Name:** 

W PLANT EMERGING CONTAMINANTS

**Project Number:** 

232785

Lab Number: Report Date:

L1843279 11/13/18

| Alpha       |              |        | Samula             | Callagtion              |              |
|-------------|--------------|--------|--------------------|-------------------------|--------------|
| Sample ID   | Client ID    | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
| L1843279-01 | MW-228-1018P | WATER  | NY                 | 10/23/18 10:00          | 10/23/18     |
| L1843279-02 | MW-292-1018P | WATER  | NY                 | 10/23/18 09:15          | 10/23/18     |
| L1843279-03 | MW-293-1018P | WATER  | NY                 | 10/23/18 09:35          | 10/23/18     |
| L1843279-04 | MW-333-1018P | WATER  | NY                 | 10/23/18 11:00          | 10/23/18     |
| L1843279-05 | MW-262-1018P | WATER  | NY                 | 10/23/18 08:30          | 10/23/18     |
| L1843279-06 | MW-335-1018P | WATER  | NY                 | 10/23/18 08:00          | 10/23/18     |
| L1843279-07 | MW-343-1018P | WATER  | NY                 | 10/23/18 11:10          | 10/23/18     |
| L1843279-08 | MW-127-1018P | WATER  | NY                 | 10/23/18 10:30          | 10/23/18     |
| L1843279-09 | MW-04-1018FB | WATER  | NY                 | 10/23/18 10:45          | 10/23/18     |
| L1843279-10 | MW-05-1018FB | WATER  | NY                 | 10/23/18 08:15          | 10/23/18     |

Project Name: W PLAN

W PLANT EMERGING CONTAMINANTS

Project Number:

85906

Lab Number: Report Date: L1843740 11/15/18

| Alpha<br>Sample ID | Client ID    | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|--------------|--------|--------------------|-------------------------|--------------|
| L1843740-01        | MW-331-1018P | WATER  | NY                 | 10/24/18 08:40          | 10/25/18     |
| L1843740-02        | MW-038-1018P | WATER  | NY                 | 10/24/18 09:30          | 10/25/18     |
| L1843740-03        | MW-362-1018P | WATER  | NY                 | 10/24/18 11:30          | 10/25/18     |
| L1843740-04        | MW-257-1018P | WATER  | NY                 | 10/24/18 09:10          | 10/25/18     |
| L1843740-05        | MW-288-1018P | WATER  | NY                 | 10/25/18 08:15          | 10/25/18     |
| L1843740-06        | MW-298-1018P | WATER  | NY                 | 10/25/18 10:45          | 10/25/18     |
| L1843740-07        | MW-022-1018P | WATER  | NY                 | 10/25/18 08:30          | 10/25/18     |
| L1843740-08        | MW-306-1018P | WATER  | NY                 | 10/25/18 07:45          | 10/25/18     |
| L1843740-09        | MW-01-1018FD | WATER  | NY                 | 10/25/18 09:10          | 10/25/18     |
| L1843740-10        | MW-02-1018FD | WATER  | NY                 | 10/24/18 11:45          | 10/25/18     |
| L1843740-11        | MW-03-1018FB | WATER  | NY                 | 10/24/18 09:00          | 10/25/18     |
| L1843740-12        | MW-06-101FB  | WATER  | NY                 | 10/24/18 09:45          | 10/25/18     |
| L1843740-13        | MW-07-1018FB | WATER  | NY                 | 10/25/18 09:15          | 10/25/18     |
| L1843740-14        | MW-303-1018P | WATER  | NY                 | 10/25/18 08:50          | 10/25/18     |
| L1843740-15        | MW-015-1018P | WATER  | NY                 | 10/24/18 08:20          | 10/25/18     |
| L1843740-16        | MW-060-1018P | WATER  | NY                 | 10/25/18 09:15          | 10/25/18     |

Project Name:

WEST PLANT EMERGING CONTAMINAN

**Project Number:** 

85904

Lab Number:

L1845940

Report Date:

11/29/18

| Alpha<br>Sample ID | Client ID     | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|---------------|--------|--------------------|-------------------------|--------------|
| L1845940-01        | MW-280-1118P  | WATER  | MASSENA, NY        | 11/07/18 15:20          | 11/08/18     |
| L1845940-02        | MW-031-1118P  | WATER  | MASSENA, NY        | 11/07/18 15:50          | 11/08/18     |
| L1845940-03        | MW-17-1118 FD | WATER  | MASSENA, NY        | 11/07/18 16:10          | 11/08/18     |
| L1845940-04        | MW-18-1118 FB | WATER  | MASSENA, NY        | 11/07/18 15:30          | 11/08/18     |



### Memorandum

To: Todd Furnia

From: Ryan Kingsley

Date: January 31, 2019

Subject: Arconic Inc.- Massena West Plant

**Emerging Contaminants Sampling Summary Memorandum** 

Site# 645001 – Potliner Disposal Site "A" Site# 645002 – General Refuse Landfill Site# 645003 – Potliner Disposal Site "I"

Site# 645004 - Dennison Road

Site #645005-OU1 Former Soluble Oil Lagoon

Site #645005-OU2 Former Waste Lubricating Oil Lagoon

Site #645005-OU3 Primary Lagoon and Dredge Spoils Area (PLDSA)

Site #645005-OU4 Former 60 Acre Lagoon Site #645005-OU5 Former Sanitary Lagoon

Site# 645016 – Oily Waste Landfill Site# 645023 – Storage Tank 51 Site# 645024 – HPM Press Area Site# 645025 – West Fill Area Site# 645026 – Landfill Annex

This memo provides a brief summary of the recent emerging contaminant groundwater sampling performed at the Arconic Massena West Plant.

### **Emerging Contaminants Sampling Plan**

In letters dated April 27, 2018, the New York State Department of Environmental Conservation (NYSDEC) requested sampling for emerging contaminants (EC) in groundwater at the above-referenced sites. During a meeting on April 29, 2018 with representatives of NYSDEC, a targeted approach to identify representative locations for EC at the facility was discussed. NYSDEC indicated that such an approach would be acceptable assuming appropriate supporting rationale would be included in the plan.

On June 22, 2018, Arconic submitted an emerging contaminant sampling workplan to the NYSDEC. In a letter dated July 4, 2018, the NYSDEC provided comments on the workplan, and requested that Arconic revise and resubmit. An updated sampling plan, addressing all of the Department's comments was submitted on August 27, 2018. In a letter dated August 31, 2018, the NYSDEC approved the updated workplan for the groundwater sampling for emerging contaminants.

On October 1, 2018, CDM Smith discovered that MW-208A at the Landfill Annex was damaged and not in sampleable condition. In an updated groundwater sampling plan dated October 3, 2018,

Todd Furnia January 31, 2019 Page 2

submitted via email, Arconic notified the Department of the damaged well, and requested to sample MW-113 as a replacement well. The same day, the department responded via email requesting that MW-022 at the Landfill Annex be sampled as the replacement for MW-208A. CDM Smith investigated MW-022 and found it in sampleable condition. Responding to the department's email on October 3, 2018, Arconic confirmed that MW-022 would be sampled as the replacement for MW-208A.

### **Emerging Contaminants Groundwater Sampling Event**

From October 22, 2018 through October 25, 2018, CDM Smith performed the emerging contaminants groundwater sampling event, as committed in the workplan. All guidance, precautions and protocol provided via email by the NYSDEC on October 11, 2018 were followed. The NYSDEC observed the collection of samples at MW-362 on October 24, 2018.

During the four-day sampling event, MW-227 at Potlining Pile I (PPI) and MW-006A at the Former Waste Lubricating Oil Lagoon (WLOL) were dry, and samples were not able to be collected. On October 31, 2018, Arconic submitted a letter proposing MW-280 at PPI and MW-031 at the WLOL be sampled as replacement wells for MW-277 and MW-006A. In a letter dated November 1, 2018, the NYSDEC approved the proposed replacement wells. CDM Smith proceeded to sample these wells on November 7, 2018. A summary of the sampling dates for each well can be found on *Table 1* attached to this memorandum. Individual site maps, with each of the sampled wells highlighted, can be found in *Appendix A*.

### **Emerging Contaminants Analytical Results**

As requested by the NYSDEC, all samples were analyzed by Alpha Analytical Laboratory, which holds the required ELAP certification. Modified EPA Method 537 was used to analyze the groundwater samples for PFOA and PFOS to achieve the 2  $\rm ng/L$  (ppt) detection limit. EPA Method 8270 with selective ion monitoring (SIM) was used to analyze the groundwater samples for 1,4-Dioxane to achieve the 0.28  $\rm ng/L$  (ppb) detection limit. The lab prepared a full category B deliverable and a DUSR was prepared by a data validator.

On January 25, 2018, the qualified analytical results were submitted by electronic data submission, following the requirements provided at: <a href="https://www.dec.ny.gov/chemical/62440.html">https://www.dec.ny.gov/chemical/62440.html</a>. In addition, Arconic provided a letter of competition and the DUSR to the Department via email. A summary of the qualified analytical results are provided in *Table 2*.

RK:jhm

Attachments

cc: Ernest Ashley, CDM Smith Paul Rodrigue, CDM Smith p:\west\pc\2019\19016.doc

| Site                       | Site Number | Well   | Date Sampled | Comments                            |
|----------------------------|-------------|--------|--------------|-------------------------------------|
| General Refuse Landfill    | 645002      | MW-303 | 10/25/2018   | MS/MSD and MW-01-1018FD             |
|                            |             |        |              |                                     |
| Potliner Disposal Site "A" | 645001      | MW-015 | 10/24/2018   | MS/MSD                              |
|                            |             | MW-280 | 11/7/2018    |                                     |
| Potliner Disposal Site "I" | 645003      | MW-228 | 10/23/2018   |                                     |
|                            |             | MW-292 | 10/23/2018   |                                     |
| Dennison Road              | 645004      | MW-293 | 10/23/2018   |                                     |
|                            |             |        |              |                                     |
| Former Soluble Oil Lagoon  | 645005-OU1  | MW-060 | 10/25/2018   |                                     |
| Former Waste Lubricating   |             |        |              |                                     |
| Oil Lagoon                 | 645005-OU2  | MW-031 | 11/7/2018    | MW-17-1118FD and MS/MSD             |
| Primary Lagoon & Dredge    |             |        |              |                                     |
| Spoils Area                | 645005-OU3  | MW-331 | 10/24/2018   |                                     |
|                            |             | MW-038 | 10/24/2018   |                                     |
| Former 60 Acre Lagoon      | 645005-OU4  | MW-362 | 10/24/2018   | NYSDEC Observation and MW-02-1018FD |
| Former Sanitary Lagoon     | 645005-OU5  | MW-257 | 10/24/2018   |                                     |
| Oily Waste Lagoon          | 645016      | MW-288 | 10/25/2018   |                                     |
| Storage Tank 51            | 645023      | MW-333 | 10/23/2018   |                                     |
| Hydraulic Press            |             |        |              |                                     |
| Manufacturing Area         | 645024      | MW-298 | 10/25/2018   |                                     |
|                            |             | MW-262 | 10/23/2018   |                                     |
|                            |             | MW-335 | 10/23/2018   | MS/MSD                              |
| West Fill Area             | 645025      | MW-343 | 10/23/2018   |                                     |
|                            |             | MW-022 | 10/25/2018   |                                     |
| Landfill Annex             | 645026      | MW-306 | 10/25/2018   |                                     |
| West Plant Background      |             |        |              |                                     |
| Well (East of Secure       |             |        |              |                                     |
| Landfill)                  | N/A         | MW-127 | 10/23/2018   |                                     |

| Well                                                      |       | MW-127       | MW-303       | MW-015       | MW-228       | MW-280 <sup>1</sup> | MW-292       |
|-----------------------------------------------------------|-------|--------------|--------------|--------------|--------------|---------------------|--------------|
| Location                                                  |       | Backround    | GRL          | PPA          | PPI          | PPI                 | Dennison     |
| Sample ID                                                 |       | MW-127-1018P | MW-303-1018P | MW-015-1018P | MW-228-1018P | MW-280-1118P        | MW-292-1018P |
| Sample date                                               | Units | 10/23/2018   | 10/25/2018   | 10/24/2018   | 10/23/2018   | 11/7/2018           | 10/23/2018   |
| Analyte                                                   |       |              |              |              |              |                     |              |
| 1,4-Dioxane                                               | ng/l  | 144U         | 144U         | 4650         | 150U         | 160U                | 388          |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)         | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)         | ng/l  | 1.47U        | 1.8U         | 2.02U        | 101          | 25U                 | 1.83U        |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)  | ng/l  | 0.366J       | 1.8U         | 2.02U        | 1.82U        | 8.1J                | 1.83U        |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorobutanesulfonic Acid (PFBS)                       | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorobutanoic Acid (PFBA)                             | ng/l  | 1.79U        | 1.8U         | 28.4         | 4.32         | 25U                 | 0.949J       |
| Perfluorodecanesulfonic Acid (PFDS)                       | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorodecanoic Acid (PFDA)                             | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorododecanoic Acid (PFDoA)                          | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluoroheptanesulfonic Acid (PFHpS)                     | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluoroheptanoic Acid (PFHpA)                           | ng/l  | 1.79U        | 1.8U         | 0.899J       | 0.64J        | 25U                 | 1.83U        |
| Perfluorohexanesulfonic Acid (PFHxS)                      | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorohexanoic Acid (PFHxA)                            | ng/l  | 1.79U        | 1.8U         | 10.6         | 2.74         | 7.25J               | 1.83U        |
| Perfluorononanoic Acid (PFNA)                             | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorooctanesulfonamide (FOSA)                         | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorooctanesulfonic Acid (PFOS)                       | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorooctanoic Acid (PFOA)                             | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | <b>7</b> J          | 1.83U        |
| Perfluoropentanoic Acid (PFPeA)                           | ng/l  | 1.79U        | 1.8U         | 78.6         | 1.82U        | 25U                 | 1.83U        |
| Perfluorotetradecanoic Acid (PFTA)                        | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluorotridecanoic Acid (PFTrDA)                        | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |
| Perfluoroundecanoic Acid (PFUnA)                          | ng/l  | 1.79U        | 1.8U         | 2.02U        | 1.82U        | 25U                 | 1.83U        |

<sup>&</sup>lt;sup>1</sup>The sample has elevated detection limits due to the dilution required by the sample matrix

B- The analyte was detected above the reporting limit in the associated method blank.

J- The associated numerical value is an approximate concentraiton of the analyte in the sample

U-Analyte was not detected above the level of the associated reported quantitation limit.

R- Sample results are Rejected due to deficiencies in meeting quality control limits.

| Well                                                      |       | MW-293       | MW-060       | MW-031       | MW-331       | MW-038 <sup>1</sup> | MW-362       |
|-----------------------------------------------------------|-------|--------------|--------------|--------------|--------------|---------------------|--------------|
| Location                                                  |       | Dennison     | SOL          | WLOL         | PLDSA        | 60 Acre             | 60 Acre      |
| Sample ID                                                 |       | MW-293-1018P | MW-060-1018P | MW-031-1118P | MW-331-1018P | MW-038-1018P        | MW-362-1018P |
| Sample date                                               | Units | 10/23/2018   | 10/25/2018   | 11/7/2018    | 10/24/2018   | 10/24/2018          | 10/24/2018   |
| Analyte                                                   |       |              |              |              |              |                     |              |
| 1,4-Dioxane                                               | ng/l  | 3390         | 144U         | 144U         | 144U         | 2490                | 147U         |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)         | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)         | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)  | ng/l  | 0.414J       | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorobutanesulfonic Acid (PFBS)                       | ng/l  | 0.785J       | 1.75U        | 1.95U        | 0.488J       | 50U                 | 0.752J       |
| Perfluorobutanoic Acid (PFBA)                             | ng/l  | 26.1         | 1.16J        | 1.22J        | 1.84J        | 50U                 | 2.69         |
| Perfluorodecanesulfonic Acid (PFDS)                       | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorodecanoic Acid (PFDA)                             | ng/l  | 1.82U        | 0.615J       | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorododecanoic Acid (PFDoA)                          | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluoroheptanesulfonic Acid (PFHpS)                     | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluoroheptanoic Acid (PFHpA)                           | ng/l  | 3.19         | 0.49J        | 1.95U        | 2.08U        | 50U                 | 0.947J       |
| Perfluorohexanesulfonic Acid (PFHxS)                      | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 0.855J       |
| Perfluorohexanoic Acid (PFHxA)                            | ng/l  | 6.56         | 1.49J        | 1.95U        | 2.08U        | 50U                 | 1.2J         |
| Perfluorononanoic Acid (PFNA)                             | ng/l  | 0.4J         | 0.423J       | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorooctanesulfonamide (FOSA)                         | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorooctanesulfonic Acid (PFOS)                       | ng/l  | 1.2J         | 0.78J        | 1.18J        | 2.08U        | 50U                 | 1.19J        |
| Perfluorooctanoic Acid (PFOA)                             | ng/l  | 5.99         | 1.62J        | 1.95U        | 0.479J       | 50U                 | 1.8          |
| Perfluoropentanoic Acid (PFPeA)                           | ng/l  | 8.77         | 0.867J       | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorotetradecanoic Acid (PFTA)                        | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluorotridecanoic Acid (PFTrDA)                        | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |
| Perfluoroundecanoic Acid (PFUnA)                          | ng/l  | 1.82U        | 1.75U        | 1.95U        | 2.08U        | 50U                 | 1.77U        |

<sup>&</sup>lt;sup>1</sup>The sample has elevated detection limits due to the dilution required by the sample matrix

B- The analyte was detected above the reporting limit in the associated method blank.

J- The associated numerical value is an approximate concentraiton of the analyte in the sample

U-Analyte was not detected above the level of the associated reported quantitation limit.

R- Sample results are Rejected due to deficiencies in meeting quality control limits.

| Well                                                      |       | MW-257          | MW-288       | MW-333       | MW-298       | MW-262       | MW-335       |
|-----------------------------------------------------------|-------|-----------------|--------------|--------------|--------------|--------------|--------------|
| Location                                                  |       | Sanitary Lagoon | OWL          | ST-51        | НРМ          | WFA          | WFA          |
| Sample ID                                                 |       | MW-257-1018P    | MW-288-1018P | MW-333-1018P | MW-298-1018P | MW-262-1018P | MW-335-1018P |
| Sample date                                               | Units | 10/24/2018      | 10/25/2018   | 10/23/2018   | 10/25/2018   | 10/23/2018   | 10/23/2018   |
| Analyte                                                   |       |                 |              |              |              |              |              |
| 1,4-Dioxane                                               | ng/l  | 144U            | 147U         | 23100        | 422          | 144U         | 147U         |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)         | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)         | ng/l  | 1.82U           | 5.67U        | 8.91         | 1.8U         | 1.82U        | 2.64U        |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)  | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorobutanesulfonic Acid (PFBS)                       | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.3J         | 1.82U        | 1.78U        |
| Perfluorobutanoic Acid (PFBA)                             | ng/l  | 3.55            | 2.16U        | 13.2         | 18.3         | 3.8          | 0.498J       |
| Perfluorodecanesulfonic Acid (PFDS)                       | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorodecanoic Acid (PFDA)                             | ng/l  | 1.82U           | 2.16U        | 3.56         | 1.8U         | 1.82U        | 1.78U        |
| Perfluorododecanoic Acid (PFDoA)                          | ng/l  | 1.82U           | 2.16U        | 0.588J       | 1.8U         | 1.82U        | 1.78U        |
| Perfluoroheptanesulfonic Acid (PFHpS)                     | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluoroheptanoic Acid (PFHpA)                           | ng/l  | 1.69J           | 2.16U        | 11.4         | 5.06         | 0.358J       | 1.78U        |
| Perfluorohexanesulfonic Acid (PFHxS)                      | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorohexanoic Acid (PFHxA)                            | ng/l  | 1.34J           | 2.16U        | 44.7         | 16           | 0.456J       | 1.78U        |
| Perfluorononanoic Acid (PFNA)                             | ng/l  | 0.487J          | 2.78         | 2.88         | 1.32J        | 1.82U        | 1.78U        |
| Perfluorooctanesulfonamide (FOSA)                         | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorooctanesulfonic Acid (PFOS)                       | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorooctanoic Acid (PFOA)                             | ng/l  | 1.45J           | 0.793J       | 45           | 6.51         | 1.82U        | 1.78U        |
| Perfluoropentanoic Acid (PFPeA)                           | ng/l  | R               | 2.16U        | 40.5         | 37.4         | 1.82U        | 1.78U        |
| Perfluorotetradecanoic Acid (PFTA)                        | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluorotridecanoic Acid (PFTrDA)                        | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |
| Perfluoroundecanoic Acid (PFUnA)                          | ng/l  | 1.82U           | 2.16U        | 1.79U        | 1.8U         | 1.82U        | 1.78U        |

<sup>&</sup>lt;sup>1</sup>The sample has elevated detection limits due to the dilution required by the sample matrix

B- The analyte was detected above the reporting limit in the associated method blank.

J- The associated numerical value is an approximate concentraiton of the analyte in the sample

U-Analyte was not detected above the level of the associated reported quantitation limit.

R- Sample results are Rejected due to deficiencies in meeting quality control limits.

| Well                                                      |       | MW-343       | MW-022       | MW-306       | Field Dup 01 | Field Dup 02 | Field Dup 17  |
|-----------------------------------------------------------|-------|--------------|--------------|--------------|--------------|--------------|---------------|
| Location                                                  |       | WFA          | LA           | LA           | MW-303       | MW-362       | MW-031        |
| Sample ID                                                 |       | MW-343-1018P | MW-022-1018P | MW-306-1018P | MW-01-1018FD | MW-02-1018FD | MW-17-1118 FD |
| Sample date                                               | Units | 10/23/2018   | 10/25/2018   | 10/25/2018   | 10/25/2018   | 10/24/2018   | 11/7/2018     |
| Analyte                                                   |       |              |              |              |              |              |               |
| 1,4-Dioxane                                               | ng/l  | 743          | 10800        | 147U         | 144U         | 144U         | 147U          |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)         | ng/l  | 6.25         | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)         | ng/l  | 155          | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)  | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluorobutanesulfonic Acid (PFBS)                       | ng/l  | 0.905J       | 1.78U        | 1.82U        | 1.82U        | 0.746J       | 1.91U         |
| Perfluorobutanoic Acid (PFBA)                             | ng/l  | 48.4         | 0.722J       | 7.9          | 1.82U        | 2.68         | 1J            |
| Perfluorodecanesulfonic Acid (PFDS)                       | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluorodecanoic Acid (PFDA)                             | ng/l  | 0.571J       | 1.78U        | 1.7J         | 1.82U        | 1.81U        | 1.91U         |
| Perfluorododecanoic Acid (PFDoA)                          | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluoroheptanesulfonic Acid (PFHpS)                     | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluoroheptanoic Acid (PFHpA)                           | ng/l  | 161          | 1.78U        | 6.55         | 1.82U        | 1.02J        | 1.91U         |
| Perfluorohexanesulfonic Acid (PFHxS)                      | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 0.768J       | 1.91U         |
| Perfluorohexanoic Acid (PFHxA)                            | ng/l  | 103          | 1.78U        | 20.5         | 1.82U        | 1.32J        | 1.91U         |
| Perfluorononanoic Acid (PFNA)                             | ng/l  | 31.6         | 1.78U        | 1.44J        | 1.82U        | 1.81U        | 1.91U         |
| Perfluorooctanesulfonamide (FOSA)                         | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluorooctanesulfonic Acid (PFOS)                       | ng/l  | 1.84         | 1.78U        | 1.82U        | 1.82U        | 1.28J        | 1.2J          |
| Perfluorooctanoic Acid (PFOA)                             | ng/l  | 193          | 1.78U        | 12.3         | 1.82U        | 1.73J        | 1.91U         |
| Perfluoropentanoic Acid (PFPeA)                           | ng/l  | 151          | 1.78U        | 29.4         | 1.82U        | 1.35J        | 1.91U         |
| Perfluorotetradecanoic Acid (PFTA)                        | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluorotridecanoic Acid (PFTrDA)                        | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |
| Perfluoroundecanoic Acid (PFUnA)                          | ng/l  | 1.83U        | 1.78U        | 1.82U        | 1.82U        | 1.81U        | 1.91U         |

<sup>&</sup>lt;sup>1</sup>The sample has elevated detection limits due to the dilution required by the sample matrix

B- The analyte was detected above the reporting limit in the associated method blank.

J- The associated numerical value is an approximate concentraiton of the analyte in the sample

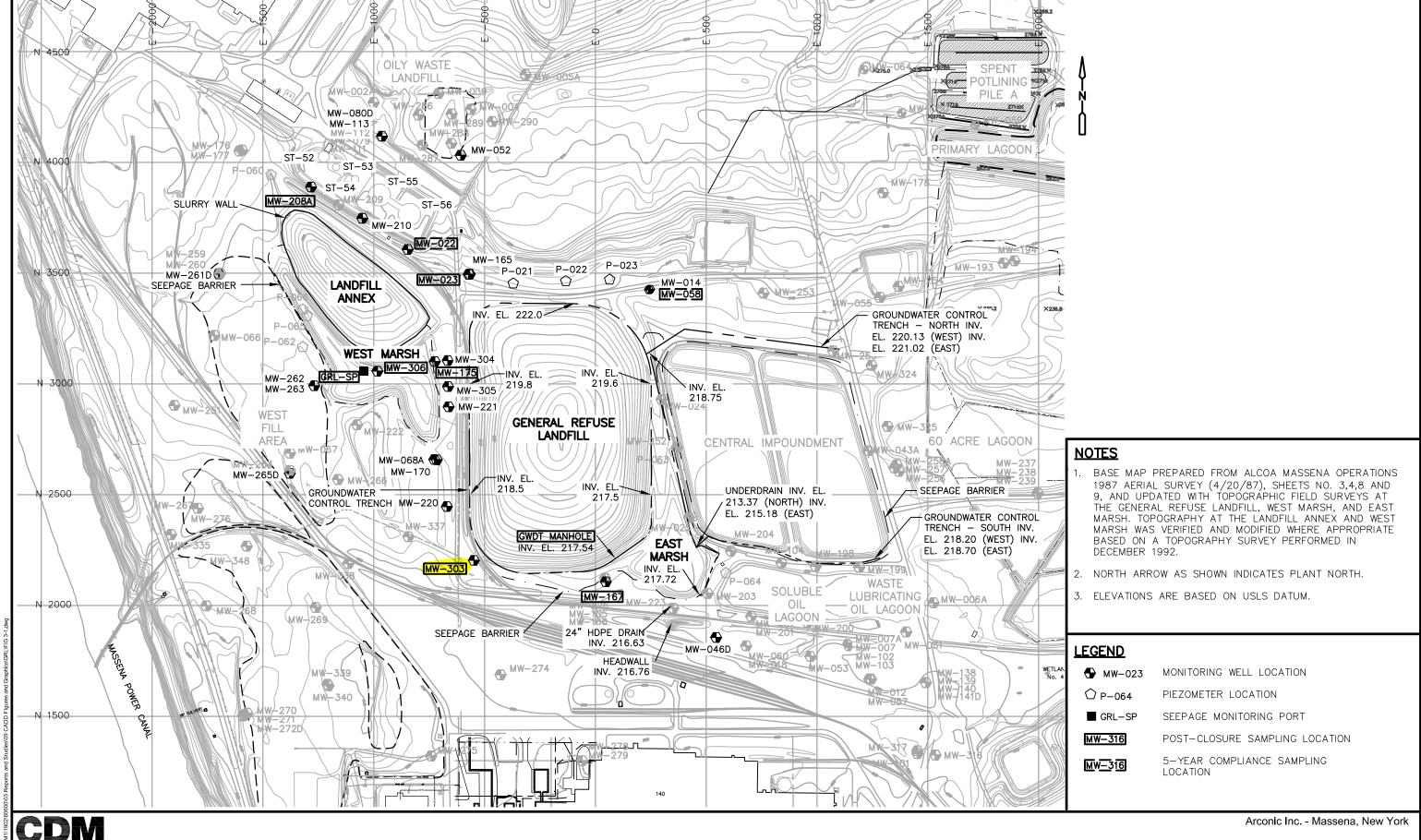
U-Analyte was not detected above the level of the associated reported quantitation limit.

R- Sample results are Rejected due to deficiencies in meeting quality control limits.

| Well                                                      |       | Field Blank 04 | Field Blank 05 | Field Blank 06 | Field Blank 07 | Field Blank 18 | Field Blank 03 |
|-----------------------------------------------------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|
| Location                                                  |       |                |                |                |                |                |                |
| Sample ID                                                 |       | MW-04-1018FB   | MW-05-1018FB   | MW-06-101FB    | MW-07-1018FB   | MW-18-1118FB   | MW-03-1018FB   |
| Sample date                                               | Units | 10/23/2018     | 10/23/2018     | 10/24/2018     | 10/25/2018     | 11/7/2018      | 10/24/2018     |
| Analyte                                                   |       |                |                |                |                |                |                |
| 1,4-Dioxane                                               | ng/l  | 142U           | 153U           | 153U           | 153U           | 144U           | 147U           |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)         | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)         | ng/l  | 0.993J         | 0.586J         | 3.28B          | 3.48B          | 1.89U          | 3.78B          |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)  | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) | ng/l  | 0.376J         | 1.75U          | 1.78U          | 1.82U          | 0.402J         | 1.79U          |
| Perfluorobutanesulfonic Acid (PFBS)                       | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorobutanoic Acid (PFBA)                             | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorodecanesulfonic Acid (PFDS)                       | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorodecanoic Acid (PFDA)                             | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorododecanoic Acid (PFDoA)                          | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluoroheptanesulfonic Acid (PFHpS)                     | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluoroheptanoic Acid (PFHpA)                           | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorohexanesulfonic Acid (PFHxS)                      | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorohexanoic Acid (PFHxA)                            | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorononanoic Acid (PFNA)                             | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorooctanesulfonamide (FOSA)                         | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorooctanesulfonic Acid (PFOS)                       | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorooctanoic Acid (PFOA)                             | ng/l  | 0.431J         | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluoropentanoic Acid (PFPeA)                           | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorotetradecanoic Acid (PFTA)                        | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluorotridecanoic Acid (PFTrDA)                        | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |
| Perfluoroundecanoic Acid (PFUnA)                          | ng/l  | 1.82U          | 1.75U          | 1.78U          | 1.82U          | 1.89U          | 1.79U          |

<sup>&</sup>lt;sup>1</sup>The sample has elevated detection limits due to the dilution required by the sample matrix

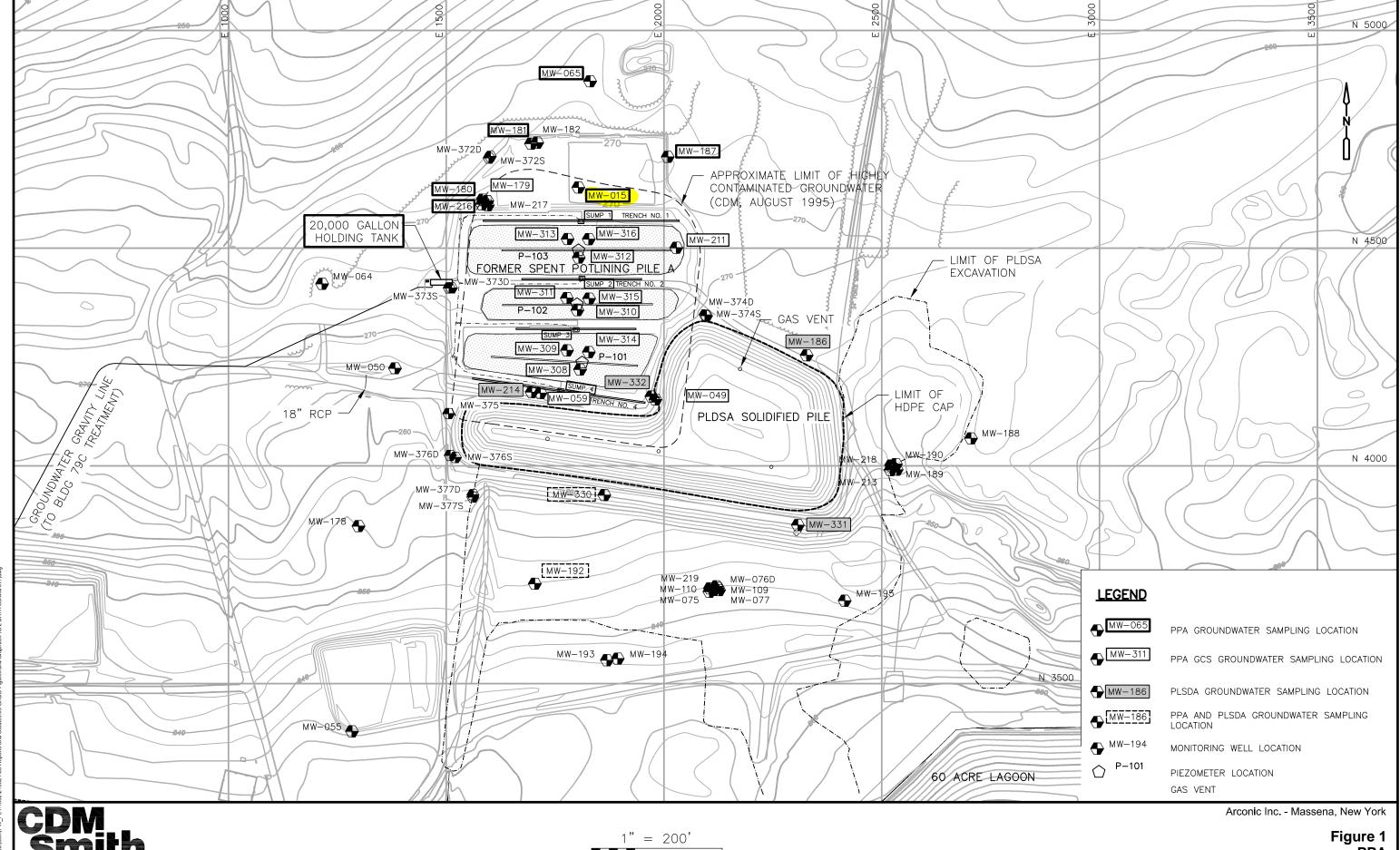
B- The analyte was detected above the reporting limit in the associated method blank.


J- The associated numerical value is an approximate concentraiton of the analyte in the sample

U-Analyte was not detected above the level of the associated reported quantitation limit.

R- Sample results are Rejected due to deficiencies in meeting quality control limits.

# Appendix A Site Maps


### General Refuse Landfill Site# 645002



 $= 400^{\circ}$ 

FIGURE 3-1 GENERAL REFUSE LANDFILL AND LANDFILL ANNEX MONITORING LOCATION PLAN

| Potliner Disposal Site "A" |
|----------------------------|
| Site# 645001               |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |
|                            |



AKEFS: [F17X17, CS.IFL] mages: I]
Last saved by: KOSKIAR Time: 4/17/2018 5/43:05 PM
pw:\pw.cdmsmith.com:PW\_PL11902/219821/03 Reports and Stuc

PPA
Monitoring Well Location to be Decommissioned

| Potliner Disposal Site "I" |  |
|----------------------------|--|
| Site# 645003               |  |

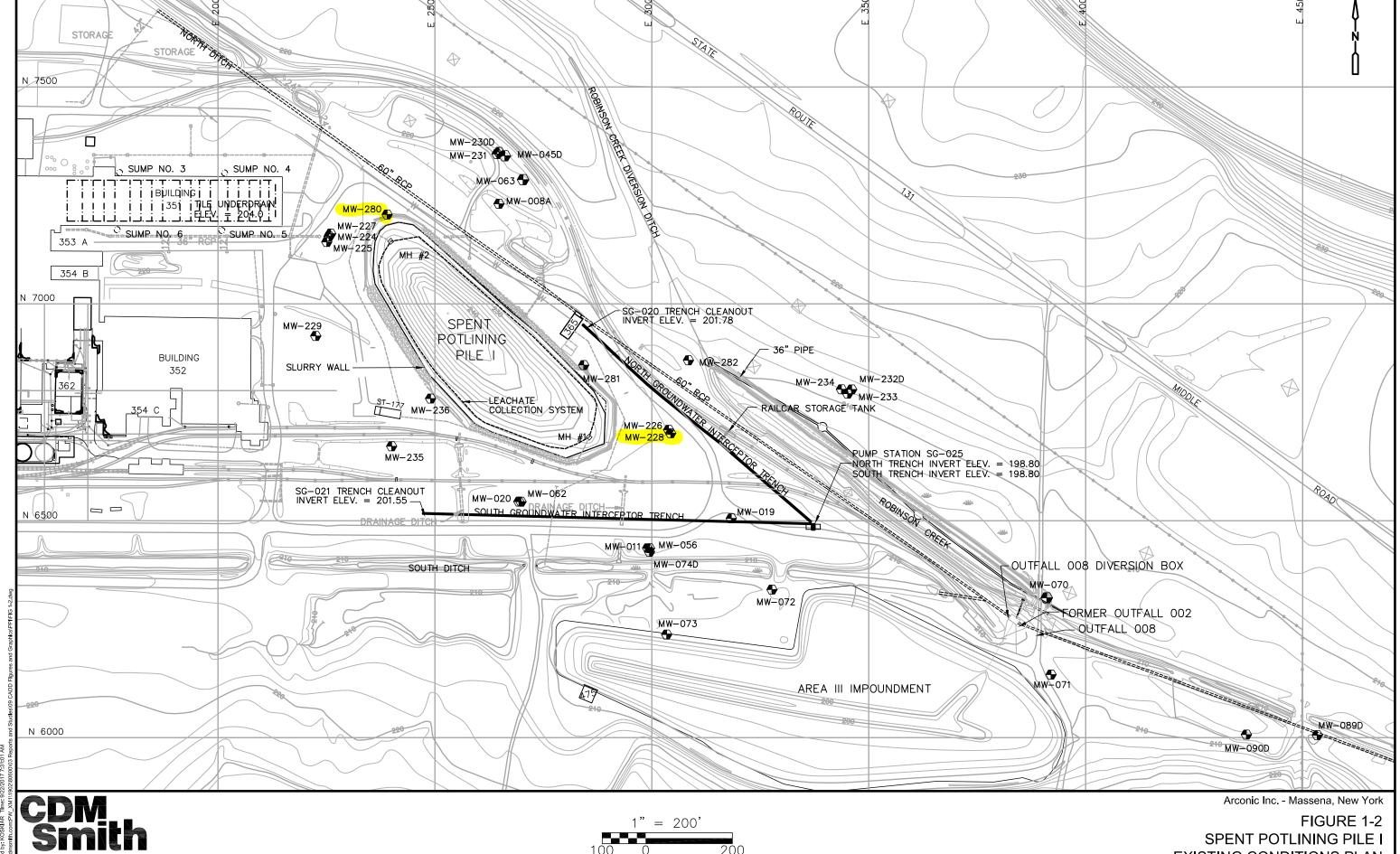
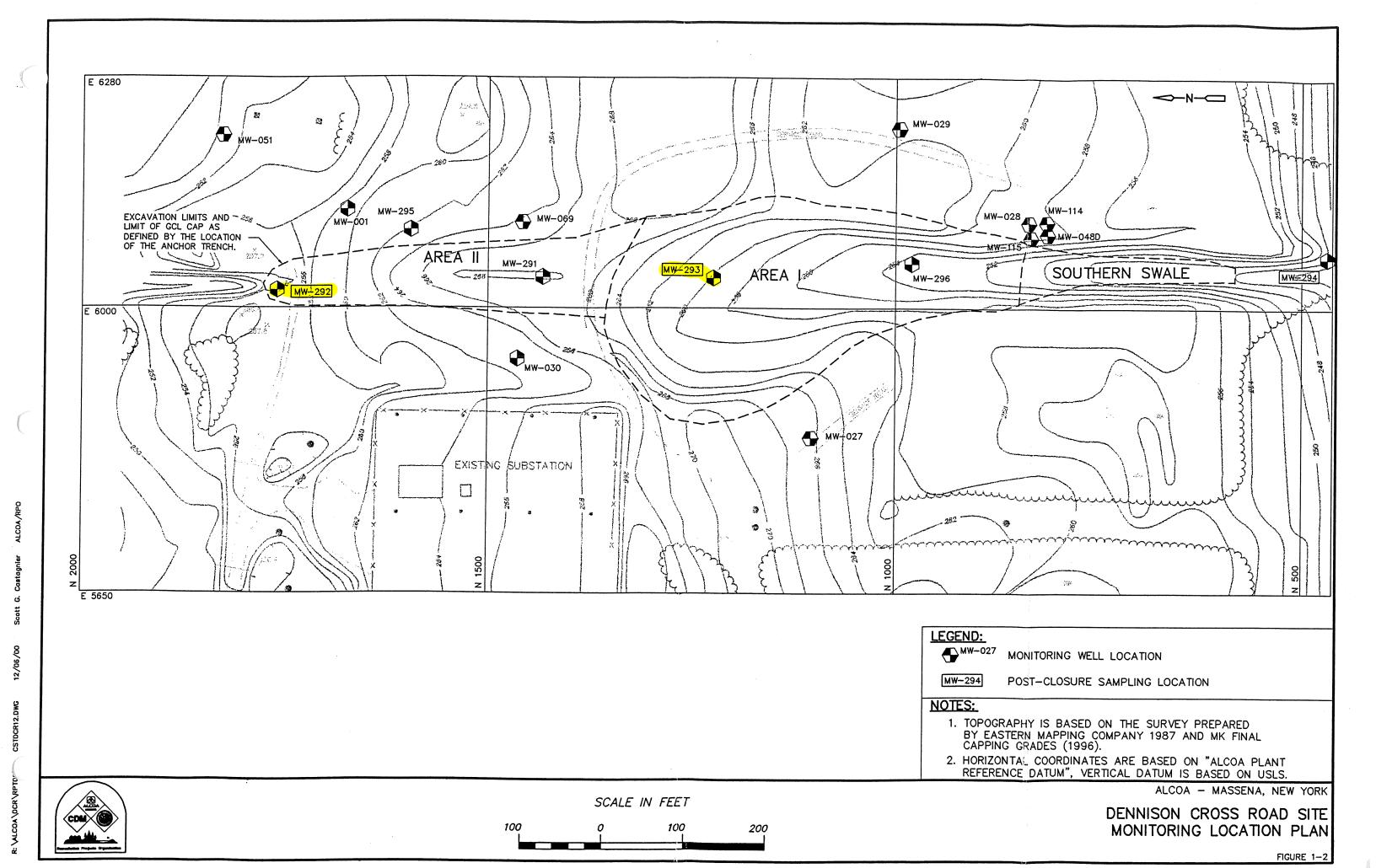



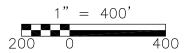

FIGURE 1-2 SPENT POTLINING PILE I **EXISTING CONDITIONS PLAN** 

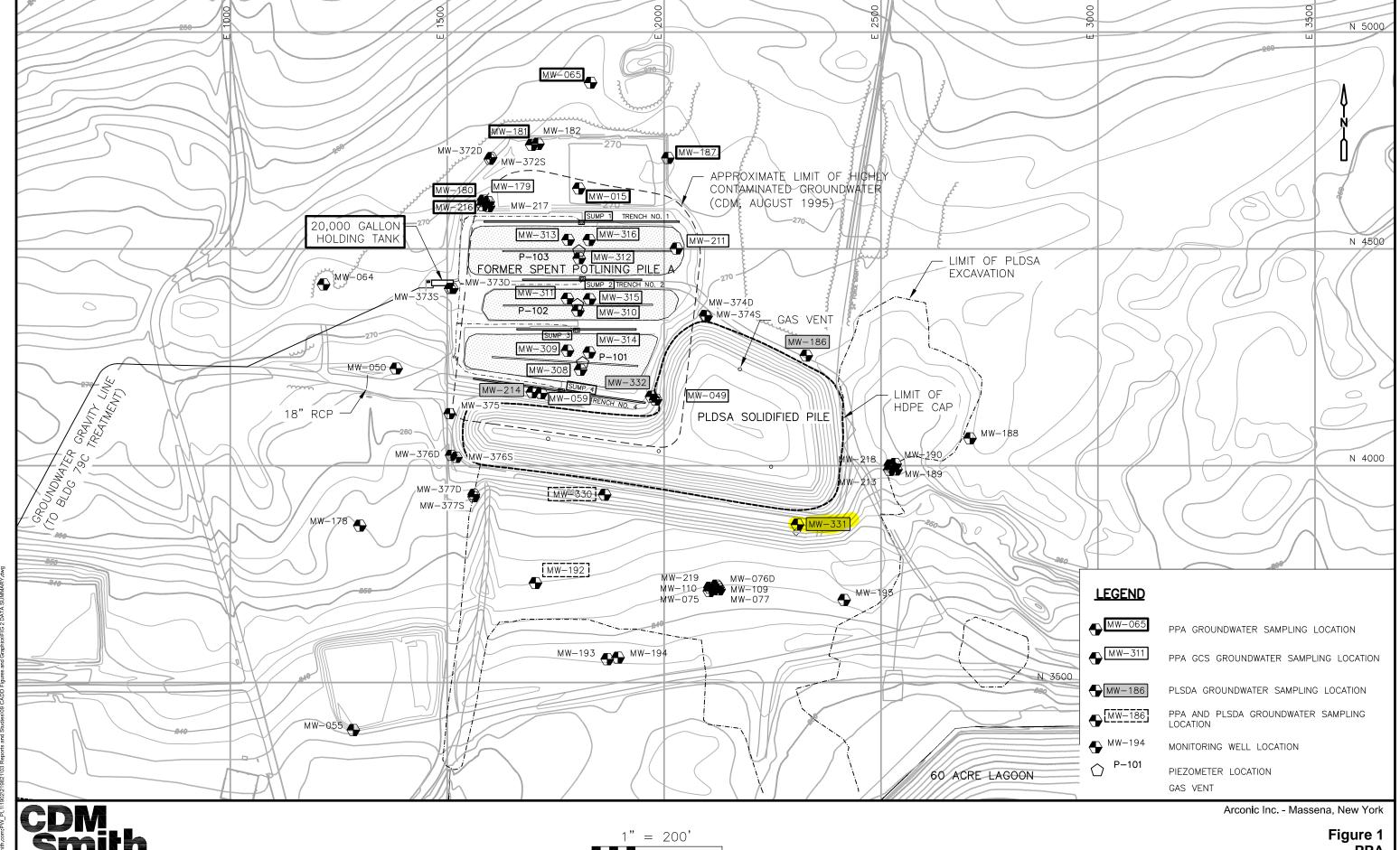
### **Dennison Road**

Site# 645004



### Former Soluble Oil Lagoon Site# 645005-OU1





FIGURE 3-1 **EASTERN CENTRAL VALLEY** SITE FEATURES CONTROLLING SHALLOW GROUNDWATER

# Former Waste Lubricating Oil Lagoon Site# 645005-OU2

1" = 400'

### Primary Lagoon and Dredge Spoils Area

Site# 645005-OU3



**Monitoring Well Location to be Decommissioned** 

Site# 645005-OU4

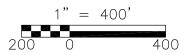
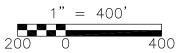
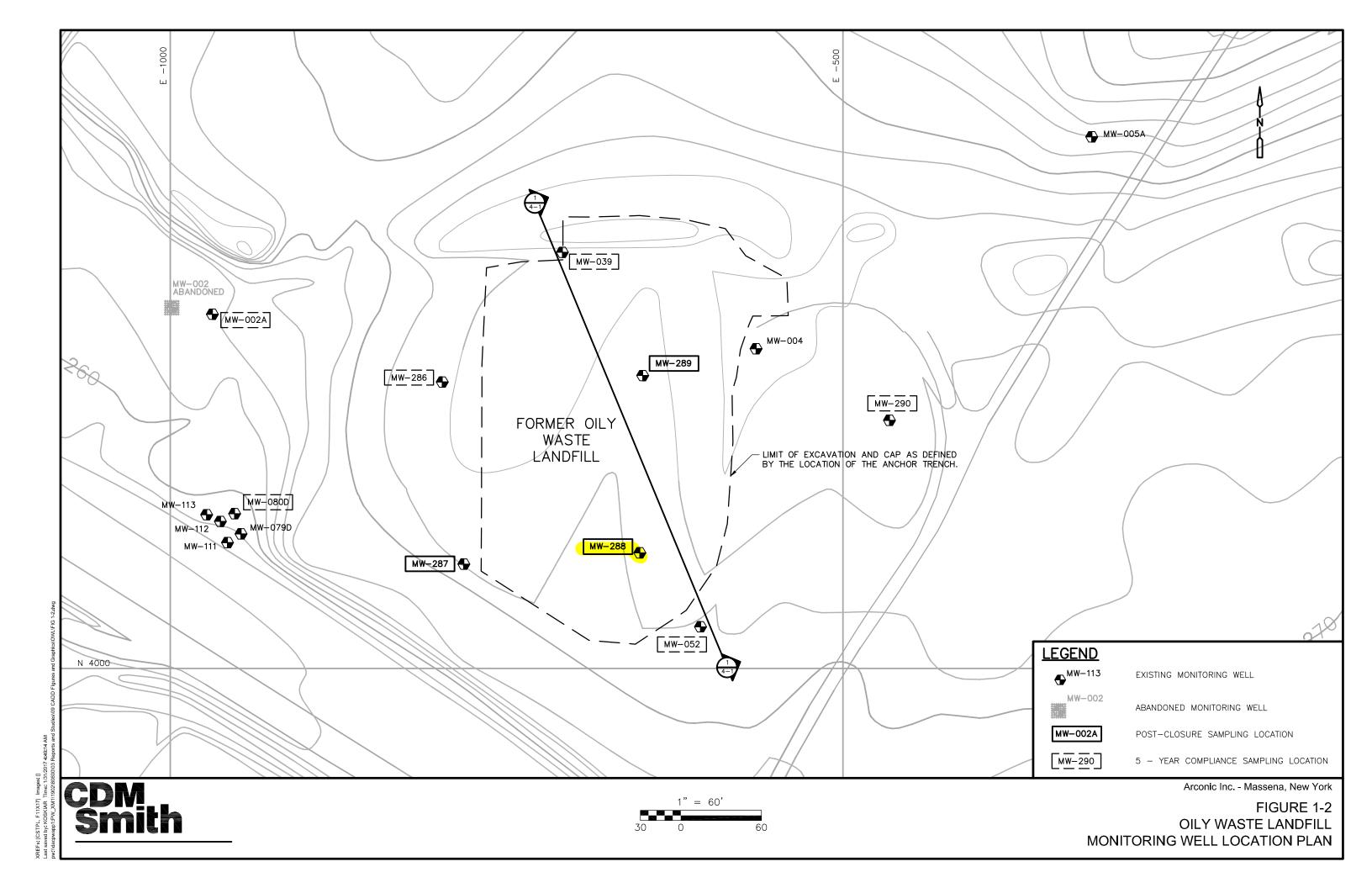
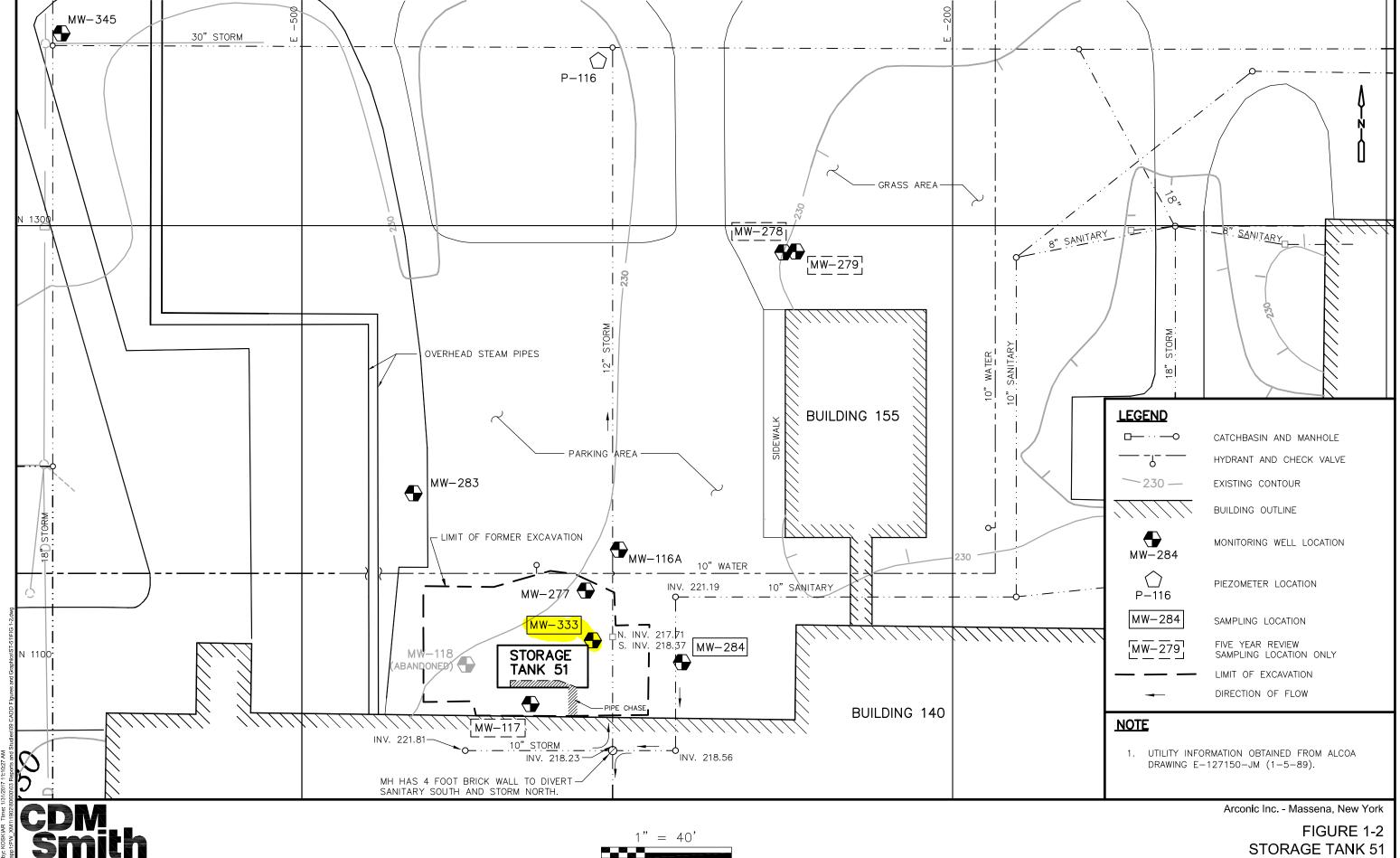



FIGURE 3-1 **EASTERN CENTRAL VALLEY** SITE FEATURES CONTROLLING SHALLOW GROUNDWATER

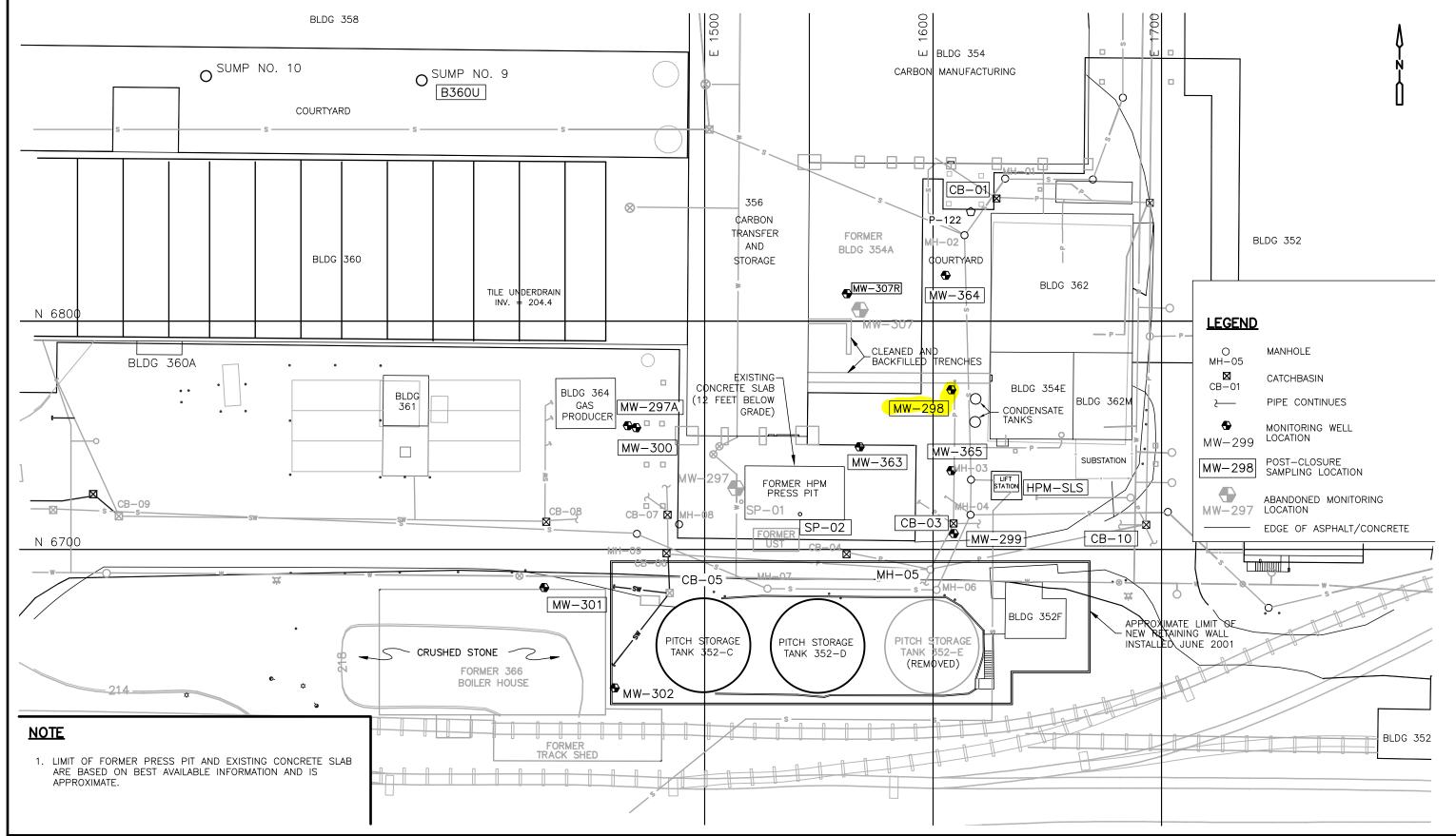
### Former Sanitary Lagoon Site# 645005-OU5

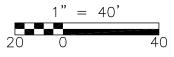


FIGURE 3-1 **EASTERN CENTRAL VALLEY** SITE FEATURES CONTROLLING SHALLOW GROUNDWATER

| Oily Waste Lagoon |
|-------------------|
| Site# 645016      |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |




### Storage Tank 51

Site# 645023

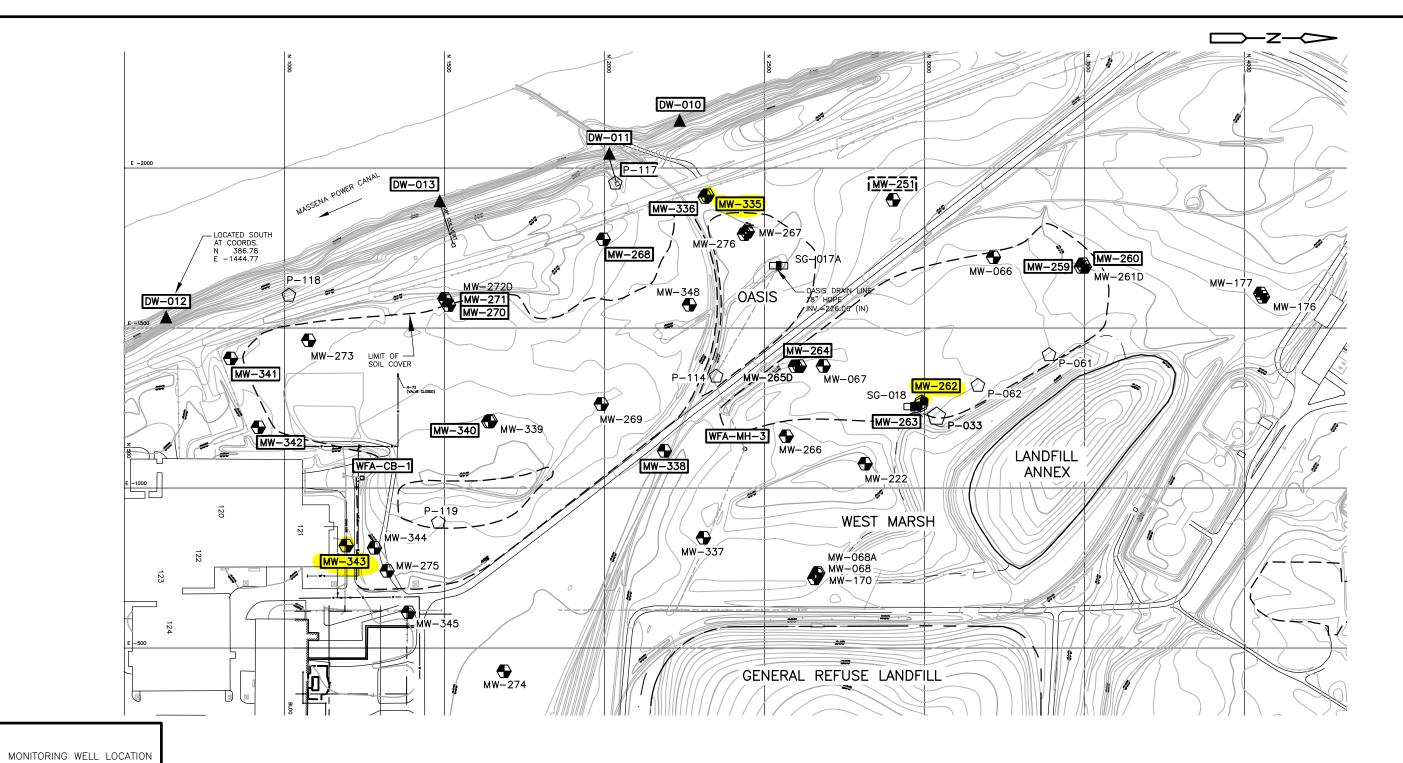



MONITORING WELL LOCATION PLAN

## Hydraulic Press Manufacturing Area Site# 645024



CDM Smith




Arconic Inc. - Massena, New York

FIGURE 1-2 HPM PRESS AREA SITE LAYOUT

### West Fill Area

Site# 645025

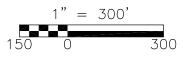


**LEGEND** 

SG-021 STAFF GAUGE LOCATION FIVE YEAR REVIEW SAMPLING LOCATION

PIEZOMETER LOCATION

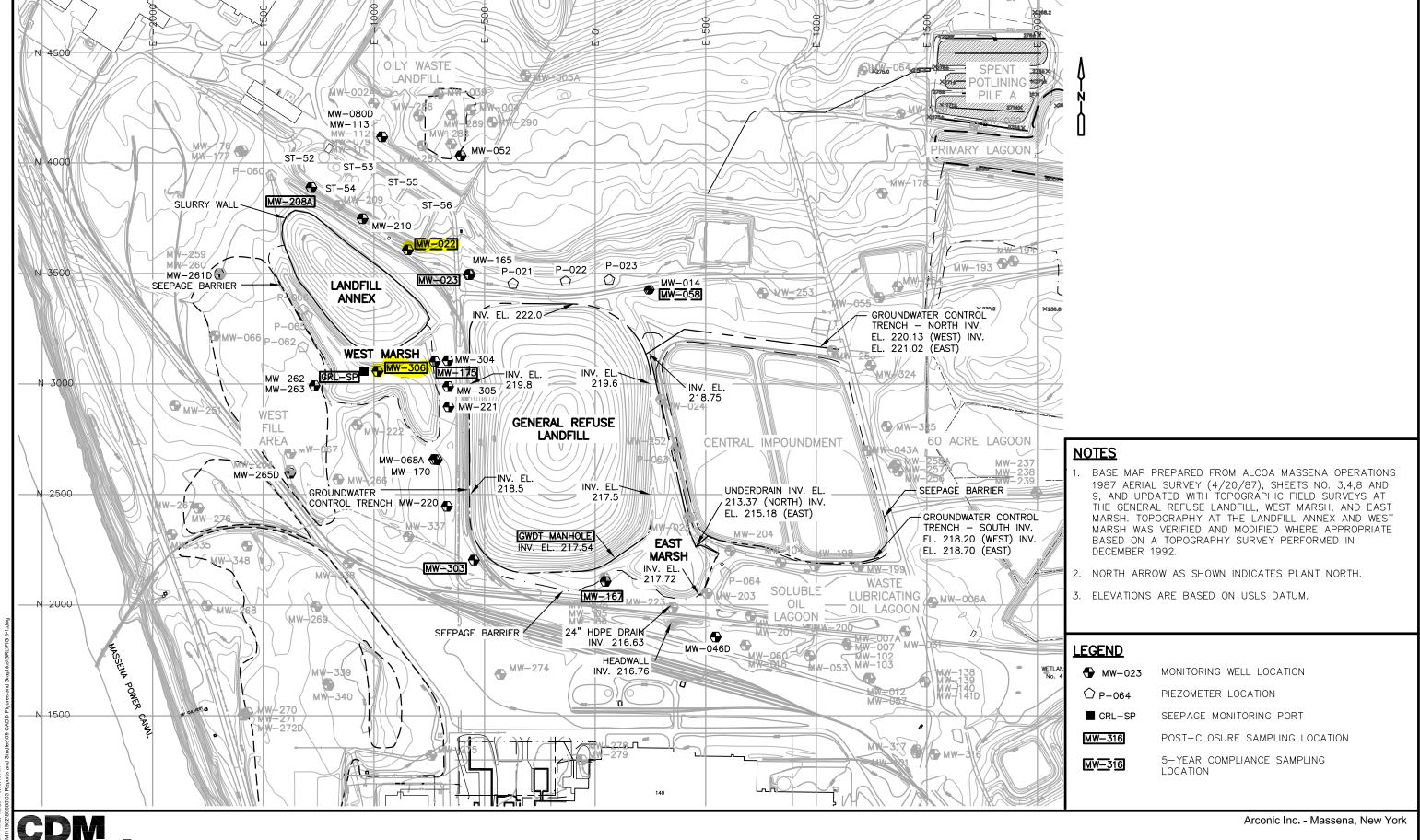
MW-251 MW-260


SAMPLING LOCATION

▲ DW-012 SEEP LOCATION

WFA-CB-1 CATCH BASIN

### <u>NOTES</u>


- 1. WEST FILL AREA TOPOGRAPHY BASED ON 1987 AERIAL SURVEY.
- 2. GENERAL REFUSE LANDFILL TOPOGRAPHY BASED ON MORRISON KNUDSEN SURVEY, FEBRUARY 1995.
- 3. LANDFILL ANNEX/WEST MARSH TOPOGRAPHY BASED ON MORRISON KNUDSEN SURVEY, APRIL 1994.



Arconic Inc. - Massena, New York

FIGURE 3-1 **WEST FILL AREA** MONITORING LOCATION PLAN

| Landfill Annex |
|----------------|
| Site# 645026   |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |
|                |



 $= 400^{\circ}$ 

FIGURE 3-1 GENERAL REFUSE LANDFILL AND LANDFILL ANNEX MONITORING LOCATION PLAN

# Background Monitoring Well East of the Secure Landfill

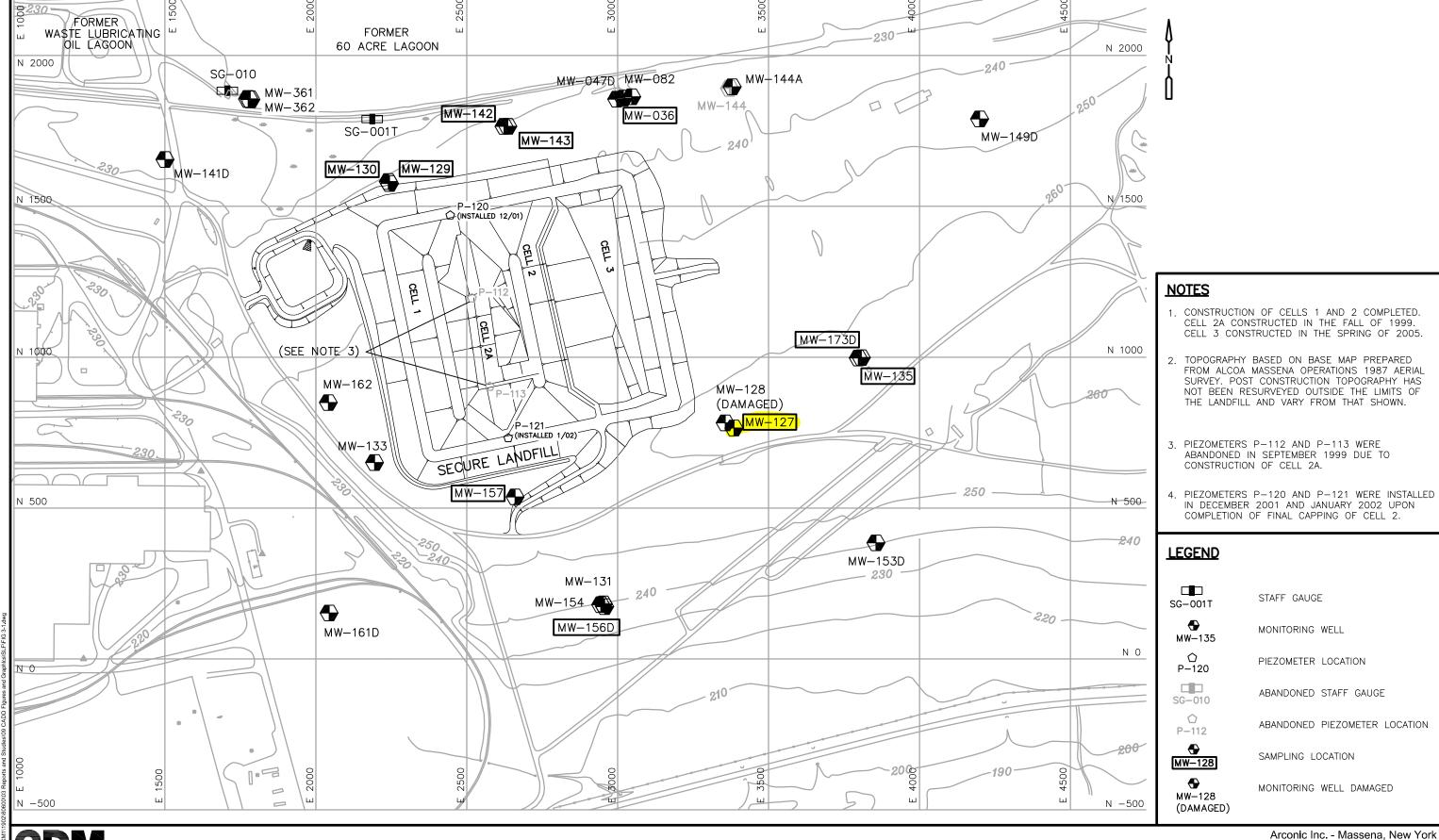



FIGURE 3-1 **SECURE LANDFILL** MONITORING LOCATIONS