Periodic Review Report (PRR)

North Lawrence Oil Dump McAuslen Road North Lawrence St. Lawrence County, NY 12967 Site ID # 645013 Work Assignment # D116130-21

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233

Prepared by:

HRP Engineering, P.C. 1 Fairchild Square Suite 110 Clifton Park, NY 12065 518.877.7101

Submitted: March 4, 2012

Table of Contents

1.0	INT	ROI	DUCTION	. 1
2.0	SIT	E O	VERVIEW	. 1
2.	.1	Site	Description	. 2
2.	.2	Site	History	. 2
	2.2.	1	Previous Investigations	3
	2.2.	2	Record of Decision	. 4
	2.2.	3	Disposal Cell Closure Activities	. 4
			ATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND ENESS	5
3.	.1	Ren	nedial Action Objectives	. 5
3.	.2	Inst	itutional and Engineering Control Plan Compliance	. 6
	3.2.	1	Description of Institutional Control	. 6
	3.2.	2	Description of Engineering Control.	. 6
	3.2.	3	Institutional and Engineering Control Plan Compliance Status	. 7
3.	.3	Soil	Management Plan Compliance	. 7
	3.3.	1	Excavation Work Plan	. 7
	3.3.	2	Description of Groundwater Use On-Site	. 7
3.	.4	Site	Monitoring Plan Compliance	. 7
	3.4.	1	Description of Site Inspections	. 8
	3.4.	2	Performance and Effectiveness Monitoring.	. 8
	3.4.	2.1	Leachate Sampling and Analysis	. 8
	3.4.	2.2	Tracking of Leachate Removal and Disposal	
	3.4.	2.3	Water Level Monitoring	. 9
	3.4.	2.4	Groundwater Sampling and Analysis	10
	3.4.	2.5	Surface Water Sampling and Analysis	11
4.0	COS	ST E	VALUATION	12
5.0	FIN	DIN	GS, CONCLUSIONS AND RECOMMENDATIONS	12
5.	.1	Fino	lings	12
5.	.2	Con	clusions	13
5	3	Rec	ommendations	13

REFERENCES:

List of Appendices

Appendix A - Metes and Bounds

Appendix B - Instructional and Engineering Certifications Form

Appendix C- Post-Closure Site Inspection Checklist

Appendix D- Field Forms

Appendix E - Analytical Results

List of Figures

Figure 1- Site Location Map

Figure 2- Groundwater Contour Map

Figure 3- Groundwater Samples for VOCs

Figure 4 -Groundwater Samples Analyzed for Metals

List of Tables

- 1 Groundwater Samples Analyzed for VOCs by EPA Method 624
- 2 Groundwater Samples Analyzed for SVOCs EPA Method 8270 C
- 3 Groundwater Samples Analyzed for Metals by EPA Methods 6010B/7471A
- 4 Groundwater Samples Analyzed for Pesticides and PCBs Methods 8082/8081A

Periodic Review Report (PRR)

North Lawrence Oil Dump (Site ID #645013)

McAuslen Road

North Lawrence, St. Lawrence County, New York 12967

Report Submittal Date: March 4, 2012

Prepared by:

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, New York 12065

Phone: (518) 877-7101 / Fax: (518) 877-8561

Project Address: McAuslen Road, North Lawrence, New York

I (we) certify that regarding the above referenced project and/or environmental assessment work:

Certification

For each instructional control identified for the site, I certify that all of the following statements are true;

- (a) the intuitional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER:
- (b) nothing has occurred that would impair the ability of such a control to protect public health and the environment;
- (c) nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control; and
- (d) access to the site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintains of this control.

Environmental Contractor: HRP Engineering, P.C.

Nancy Garry, P.E

By: Many Lay

EXECUTIVE SUMMARY

An inspection of the engineering control (ECs) and institutional controls (ICs) (i. e. fence and cap) was conducted from July 12, 2011 to July 13, 2011 by a qualified environmental professional experienced in landfill inspection.

The site ECs are in compliance with the requirements stated in the Site Management Plan (SMP).

ICs in the form of environmental deed restrictions cannot be certified because during the review period they were not obtained. Instead of environmental deed restrictions, environmental notices will be filed with the St. Lawrence County Clerk during 2012.

Groundwater monitoring at 20 locations was conducted on July 12 through 13, 2011. A trip blank and field duplicate sample were included for analysis. Aside from the fact that seven (7) monitoring wells/ piezometers were not located during the July 2011 sampling event, no monitoring deficiencies were noted. Analytical results for volatile organic compounds (VOCs) and metals were found at levels above groundwater quality standards. Semi-volatile organic compounds (SVOCs), pesticides and polychlorinated biphenyl (PCBs) did not exceed NYSDEC Class GA Criteria. Groundwater flow through the shallow site aquifer is to the southeast.

The disposal cell appears intact and is maintaining at least a 2-foot separation between the high seasonal groundwater and the bottom of the disposal cell. The wetlands plan that restored areas of the wetlands damaged during construction appears to be sufficient. The Long-Term Monitoring Plan (LTMP) is being implemented to conduct monitoring of the site in accordance with the SMP and The Record of Decision (ROD). No Operations, Monitoring and Maintenance (OM&M) deficiencies were reported during the reporting period. Analysis of organic and inorganic natural attenuation parameter data suggests that both biodegradation and a biotic degradation of parent VOCs are occurring at the Site. Analytical data collected during the July 2011 monitoring event supports the natural attenuation conclusions and the analytical results from the site show a stable, decreasing trend.

1.0 INTRODUCTION

This Periodic Review Report (PRR) has been prepared to evaluate the overall effectiveness of the remedies chosen, and their implementation at the North Lawrence Oil Dump (hereinafter referred to as the "Site" or NLOD). HRP Engineering P.C. (HRP) services the New York State Department of Environmental Conservation (NYSDEC) under Work Assignment D006130-21 of the Remediation Standby Contract. This document is required as an element of the remedial program at the Site located at McAuslen Road, North Lawrence, St. Lawrence County, New York, under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program administered by NYSDEC. The Site was remediated in accordance with the signed Record of Decision (ROD), Site # 645013, which was executed on March 1993. This report is intended to meet the requirements of the Site's Operations, Monitoring and Maintenance (OM&M) Plan and Site Management Plan (SMP) (HRP Engineering, PC – February 24,

2012) as defined in Regulation 6 NYCRR 375-1.2 and in accordance with Technical Guidance for Site Investigation and Remediation (DER-10), dated May 2010.

Remediation effectiveness sampling and disposal cell monitoring was completed at the Site on July 12 and 13, 2011 in accordance with the Site's OM&M Plan to evaluate current groundwater conditions. Soil and groundwater cleanup criteria have been established for the site based on site conditions, NYSDEC 6 NYCRR Part 375 (December 2006), and NYSDEC Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards and Guidance Values, October 1993. Groundwater sampling is performed every five quarters (15 months) to monitor the effects of the remedy on groundwater contamination. The last groundwater monitoring event occurred in July 2011 and the next event will occur in October 2012.

2.0 SITE OVERVIEW

The Site is an inactive hazardous waste disposal site which consists primarily of a disposal cell. The 19.4± acre Site is a former non-regulated municipal dump and gravel pit. The Site is approximately 390 feet above sea level, with the higher terrain south of the Site. The former lagoon area, located north of the disposal cell, was approximately 600-feet long and 75-feet wide and is immediately adjacent to a NYSDEC regulated 150-acre wetlands. The Site occupies portions of two private properties.

The NLOD reportedly was operated as a gravel pit before the disposal of waste oil. The excavation operation apparently shaped the Site into a depression with a mounded perimeter. During the middle to late 1960s, the NLOD apparently was used for the disposal of waste oil and oil sludge. Evidence of oil deposits were observed on low of the perimeter berm at the southwestern end and on vegetation in adjacent wetland areas suggests the dump was operated as a lagoon. During periods of high water, free-floating oil escaped from the topographically low areas. Contaminants of concern detected in lagoon sludge and soil included PCBs, various volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), and lead.

Generally, due to historic operations at the site the sampling conducted during the first, second, and third phases of the RI at the Site revealed the presence of contaminants in the soil, groundwater, lagoon sludge, and lagoon surface water. Contaminants of concern detected in lagoon sludge and soil include polychlorinated biphenyl (PCBs), various VOCs, SVOCs, and lead. Historically, groundwater contamination showed that migration of contaminants through groundwater is limited to the immediate lagoon area.

2.1 Site Description

This Site is located off of McAuslen Road in the Town of North Lawrence, St. Lawrence County, New York and is identified on the North Lawrence Tax Maps on two parcels 36.003 and 36.004. The Site is an approximately 19.4-acre area bound by woodlands and wetlands to the east, south and west, and McAuslen Road to the north (see Figure 1). The boundaries of the Site are more fully described in Appendix A - Metes and Bounds.

Topography is generally flat, sloping downward to the north and northwest with an approximate 1 percent grade. Wetlands occupy much of the surrounding landscape to the south and south-east. Drainage from the Site area is directly southwest by surface topography and enters a NYSDEC regulated 150-acre wetland south of the Site. Drainage is then directed northward via tributaries of Redwater Brook, which discharges to Deer River approximately 5 miles downstream of the Site. Groundwater is the primary source of drinking water in the area.

The Site remains unimproved with structures. A gated and locked, unpaved access road, oriented in a north-south direction, approximately 0.25 miles long exists connecting the Site to McAuslen Road. The area south of the disposal area, abutting the wetland area is maintained by the adjacent property owners. The surrounding area is undeveloped and characterized by stands of spruce, white pine, and mixed hardwoods. Two (2) houses are located approximately 0.8 and one-mile from the Site, respectively. The only known human uses of the site are hunting or infrequent trespassing.

2.2 Site History

In 1980, oil stains on vegetation 18-inches above the water in the southeastern end of the lagoon were observed by NYSDEC personnel and, upon analysis, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in the lagoon sediment samples. Since 1980, numerous inspections of the Site have occurred. A New York State Superfund Phase 1 Study for the Site was completed in August 1985. The NYSDEC contracted E. C. Jordan Co. in October 1988 to complete a Phased Remedial Investigation and Feasibility Study (RI/FS) to determine the extent of Site contamination and to recommend an appropriate remedial action. The first and second RI/FS, generated in 1989 and 1991 respectively, included a geophysical investigation, installation of eight (8) piezometers (five [5] shallow and three [3] deep) and the installation of 16 overburden monitoring wells (five [5] paired wells and six [6] single shallow wells), completion of 41 test borings in the lagoon, air monitoring, in-situ hydraulic conductivity testing in the 16 monitoring wells, collection of air, groundwater, surface water, surface and subsurface soils sediment, and biota tissue samples for laboratory analysis.

The Final Remedial Investigation and Feasibility Study Reports were submitted in March 1993. The remedial investigation confirmed extensive contamination in the lagoon and wetlands, primarily with PCBs and lead. Based on the Feasibility Study, a Record of Decision (ROD) was issued in March 1993, which required on-site excavation of the lagoon and the adjacent impacted wetland areas and solidification/stabilization of the contaminants.

Between 1996 and 1997, excavation of the top 2 to 4 feet of soils in the lagoon contaminated with oil, PCBs, lead and volatile organic chemicals, and 12" of sediment from selected areas of the adjacent wetland contaminated with PCBs, mercury and lead occurred. The excavation of approximately 7,400 cubic yards of contaminated soil and sediment were excavated, solidified, and placed in the on-Site disposal cell under an impermeable cap. The disposal cell was constructed to maintain at least 2 to 3 feet separation between the high seasonal groundwater elevation and the bottom of the disposal cell. Remediation activities

were completed in 1997 and the Site was reclassified by the NYSDEC from class 2 to class 4 in 1998.

2.2.1 Previous Investigations

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in the following reports:

- Record of Decision 1993;
- North Lawrence Oil Dump Site, Final Feasibility Study March 1993, by EC Jordon Company;
- North Lawrence Oil Dump Site, Baseline Ecological and Public Health Risk Assessment - March 1993, by EC Jordon Company;
- Stabilization Treatability Study for NLOD sediment materials 1992, by EC Jordon Company;
- Plan of Operations prepared by IEM Sealand dated August 1996;
- Construction Management Work Plan prepared by ABB Environmental services dated July 1996;
- NYSDEC Fact Sheet, December 1997, Remedial Work Completed; and
- Long Term Monitoring Plan (LTMP) prepared by Harding Lawson Associates dated August 1998.

The Baseline Ecological Risk Assessment, approved by NYSDEC in 1990, determined that lagoon sludge and soil would need to be remediated for PCB contamination. Since many contaminants within the lagoon are physically contaminated with PCBs, it was determined that removal or treatment of PCB-contaminated lagoon materials would address the cleanup of remaining contaminants in the lagoon.

The Long Term Monitoring Plan (LTMP), dated August 1998, identified tasks to monitor the long-term effectiveness of the remedial actions at the NLODS. Long-term monitoring of this site is assumed to extended for 30 years, or until 2028, and is to be conducted in accordance with the requirements of the SMP. The LTMP describes: (1) procedures, including visual inspection activities; the collection of groundwater samples; required analytical parameters and laboratory methods; the reporting requirements to be followed to monitor the long-term effectiveness of the remedial action; and (2) maintenance activities and corrective measures to be undertaken should monitoring data indicate they are necessary .

2.2.2 Record of Decision

Based on the RI/FS Reports completed for the site in 1993, the NYSDEC issued a Record of Decision (ROD) that required site remediation. Requirements listed in the ROD can be found in Section 1.4 (Summary of Remedial Actions) in the SMP.

As per the SMP, a Periodic Review Report (PRR) will be submitted to the NYSDEC every fifteen (15) months. The report will be submitted in accordance with the NYSDEC DER-10 and will be submitted within 45 days of the end of each certification period.

2.2.3 Disposal Cell Closure Activities

Disposal cell closure activities include; cover maintenance, erosion control, settlement and subsidence control maintenance, and maintenance of gas vents and post closure monitoring.

The vegetative cover on the disposal cell and abutting areas as well as the area around the access gate for the disposal cell and the main gate will be mowed at least once a year in late summer or fall to prevent the growth of deep rooted, woody species, and to encourage the development of good grass growth.

Erosion of the cover system, identified during Site inspections, shall be repaired as needed in a manner that provides a long-term solution to such damage. The activities required to repair erosive damage to the cover system will depend on the extent of erosion into the cover.

The grades and slopes of the disposal cell are expected to be sufficient to provide positive drainage slopes even after the anticipated subsidence. Should excessive post-closure settlement or damage to the cap as a result of settlement be identified during Site inspections, repair of the cap will be implemented as necessary to confirm that the cover system layers remain continuous, that a positive slope is maintained, and that ponding does not occur. Subsidence will typically occur gradually. Therefore, a semiannual or annual inspection frequency will be sufficient to identify settlement problems.

As part of the Post-Closure Site Inspection Checklist, explosive gas sampling will be performed every six months, concurrent with the disposal cell inspection or the groundwater sampling event. The sample location, method of detection, along with notes on the vent pipes condition will be recorded. A gas meter, a MR-505Sid Portable Gas Detector or similar type meter, was utilized to collect readings as to the levels, if present, or $\%O_2$ (oxygen), %LEL (lower explosive limit), and hydrogen sulfide. Olfactory observations were noted on the checklist and in the field book at that time. The gas vents will require maintenance consisting of inspection and possibly replacement of damaged vent riser pipe.

3.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

3.1 Remedial Action Objectives

The Site contains contamination not removed during the previous remedial action. Engineering Controls have been incorporated into the Site remedy to control exposure to remaining contamination during the use of the Site to ensure protection of public health and the environment. An Environmental Deed Restriction was being pursued by the DEC in 2011. During the reporting period it was not obtained."

The SMP provides a detailed description of all procedures required to manage remaining contamination at the Site after completion of the remedial action, including: (1) implementation and management of all Engineering and Institutional Controls; (2) media monitoring; (3) performance of periodic inspections, certification of results, and submittal of this Periodic Review Reports; and (4) defining criteria for termination of oversight operations.

3.2 Institutional and Engineering Control Plan Compliance

The EC/IC plan describes the procedures for the implementation and management of all EC/ICs at the Site. The plan is described in the February 2012 SMP and is subject to revision by NYSDEC. Please refer to the SMP for a full description of the EC/IC control plan compliance.

3.2.1 Description of Institutional Control

A series of Institutional Controls (IC) is required by the ROD to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) restrict the use and development of the Site. Adherence to these Institutional controls on the Site is required, during the reporting period, the documents describing these controls were still being developed

3.2.2 Description of Engineering Control

The engineering control (EC) at the site consists of a soil cover system placed over the Site to prevent exposure to remaining contamination in soil/fill and fencing/access control at the Site. This cover system is comprised of a vegetative, low-permeability cap constructed over the treated material to minimize the effects of rain and snow melt on the treated material and to reduce leachate formation The cap consists of a 6-inch vegetative soil layer overlying 30 inches of barrier protection made of soils, a polyethylene liner, a geotextile fabric and a 12-inch gas venting layer. Procedures for the inspection and maintenance of this cover are provided in the SMP.

The NYSDEC is working to obtain environmental notices to be attached to the site's real estate parcels. Deed Restrictions were not successfully obtained in 2011. Completion and implementation of environmental notices is expected in 2012. Once obtained, the notices will be included in the SMP."

3.2.3 Institutional and Engineering Control Plan Compliance Status

The site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/soil vapor extraction systems, to protect public health and the environment. Therefore, the engineering control plan compliance status of such components is not included in this PRR.

Current certification that the site ECs are in compliance with the requirements stated above. However, certification of the ICs cannot be completed because of the following deficiencies:

- The Environmental Notices is pending.
- However, certification of the ICs cannot be completed because the institutional controls are still being developed."

An inspection of the ICs/ECs currently present at the Site was conducted on July 12, 2011. During the inspection, no deficiencies were observed. An Instructional and Engineering Certifications Form is provided in Appendix B.

Also, as part of the site groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards to have become asymptotic at an acceptable level over an extended period. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic as a level that is not acceptable to the NYSDEC, additional source material removal, treatment and to control measures will be evaluated.

3.3 Soil Management Plan Compliance

Soil Management Plan compliance is included in the institutional controls in the form of Site restrictions. Site restrictions prohibit the use of the soil underlying the property. Refer to Section 2.1.3., Landfill Closure Activities of the SMP, for additional information.

Adherence to these institutional controls is required by the pending Environmental Deed restriction, which will be included in the SMP upon issuance. There is not a deed restriction in place as of April 2012; however deed restriction approval is expected in 2012.

3.3.1 Excavation Work Plan

The pending deed restriction will restrict excavation activities at the Site to NYSDEC approved excavations only. Any future intrusive work that will penetrate the soil cover or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the Excavation Work Plan (EWP), found in Appendix A of the SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the Site. A HASP is included as Appendix C of the SMP that is in current compliance with Technical Guidance for Site Investigation and Remediation (DER-10), dated May 2010, and 29 CFR 1910, 29 CFR 1926.

3.3.2 Description of Groundwater Use On-Site

Site restrictions prohibit the use of the groundwater underlying the property. Refer to Section 3.2.1, Description of Institutional Control, for additional information. Human exposure to groundwater or soil is not expected at this site.

3.4 Site Monitoring Plan Compliance

Components of the PRR for the disposal cell are:

- Visual inspection of the disposal cell and surrounding fenced in areas;
- Visual inspection of the wetlands;
- Groundwater sampling and analysis;
- Gas monitoring;
- Data evaluation; and
- Report preparation.

3.4.1 Description of Site Inspections

3.4.1.1 Disposal Cell Monitoring

This subsection presents the PRR site inspection checklists for the disposal cell monitoring. The purposes of the PRR is to monitor the performance of the disposal cell cover and appurtenances to confirm they perform as designed and that maintenance issues are identified and responded to appropriately.

On July 13, 2011, a qualified environmental professional experienced in landfill inspection completed the Post-Closure Site Inspection. The completed Post-Closure Site Inspection Checklist is attached in Appendix C. The observations were writing in quantitatively as practical and photographs were taken as a supplement if deemed appropriate by the inspector. During the disposal cell inspection, erosion channels, depressions, seeps, or animal burrows were not noted. Vegetative stress or rooted species of vegetation were not noted, and the vegetation was healthy. Explosive gas was monitored for utilizing a MR-505Sid Portable Gas Detector or similar meter. The levels were found to be in compliance for %LEL (lower explosive limit), with all four %LEL readings being 0.0 ppm. Of note, %O₂ (oxygen) and hydrogen sulfide were not monitored on July 13, 2011. Ponding water or leachate was not observed during the July 2011 sample event. Sheen was not observed in the wetlands area and the vegetation was noted to be healthy. Additionally, the condition of the security fence, posts, gates, and locks were observed to be in working, the warning signs and sign posted at the front gate were noted to be legible.

The condition of groundwater monitoring wells and gas vents were assessed during the sampling rounds. Monitoring well identification labels were relabeled, and the general condition of the well and protective casing was noted to be satisfactory. The condition of the gas vents was noted to be satisfactory. No additional potential causes of any damage were noted and repair and preventative measures were not recommended based on the July 13, 2011 observations.

3.4.2 Performance and Effectiveness Monitoring

3.4.2.1 Leachate Sampling and Analysis

Leachate sampling and analysis are not performed at the Site.

3.4.2.2 Tracking of Leachate Removal and Disposal

Tracking of leachate removal and disposal are not performed at the Site. .

3.4.2.3 Water Level Monitoring

The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the Site (Figure 2). Groundwater monitoring will be performed every 15 months (January 2011 through March 2012) to assess the performance of the remedy and in compliance with the SMP and DER-10. The next groundwater sampling event will occur in October 2012.

Twenty-seven (27) on-site permanent overburden groundwater monitoring wells are associated with the Site. Eight (8) Geoprobe® points (PZ-1 through PZ-8) were installed in March 1989. Twelve (12) monitoring wells (MW-101A, MW-101B, MW-102A, MW-102B, MW-103, MW-104A, MW-104B, MW-105A, MW-105B, MW-106, MW-107A, and MW-107B) were installed in March and April 1989. In November 1991, four (4) additional monitoring wells (MW-201 through MW-204) were installed offsite to assess the extent of potential contaminate migration toward the wetland downgradient of the former lagoon. In July 1997, three (3) monitoring wells (MW-301 through MW-303) were installed upgradient, sidegradient, and downgradient of the disposal cell to complete the horizontal profile of the disposal cell area.

All monitoring well sampling activities was recorded in a field book and in a groundwater-sampling log presented in Appendix D. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

Groundwater sampling was performed during regular sampling activities. Prior to collecting the samples, depth to groundwater will be measured. Depth to water measurements will be collected to the nearest 0.01 foot from the surveyed points identified on the well risers. Water levels were measured using an interface probe capable of detecting a separate phase liquid. Until deemed unnecessary, in addition to measuring the water level, the wells will be checked for both light and dense non-aqueous phase liquids (LNAPLs and DNAPLs) using the interface probe.

The water level data, well diameter, and depth were used to calculate the volume of water in each well. The wells were then sampled following USEPA low-flow techniques. Groundwater will be monitored in the field for the presence of non-aqueous phase liquids, pH, temperature, conductivity, dissolved oxygen, turbidity, and oxidation-reduction potential. The field data will be recorded on field logs. Purge water was discharged adjacent to each well of origin for the water to return to the shallow aquifer of origin. All sampling equipment was appropriately decontaminated between sampling locations or properly disposed.

3.4.2.4 Groundwater Sampling and Analysis

Twenty (20) groundwater samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), TAL RCRA Metals, Pesticides, and PCBs. A summary of the samples to be collected and their respective analysis is presented in the QAPP, found in the SMP. All samples were sent to an ELAP certified laboratory. Samples were collected from all groundwater wells currently onsite to verify that groundwater meets class criteria prior to properly abandoning several of the historically non-contaminated groundwater monitoring wells.

Groundwater monitoring was conducted on July 12 through 13, 2011 to satisfy the sampling frequency requirement as defined in the Site Management Plan. Annual groundwater monitoring consists of the sampling of the five (5) existing monitoring wells (MW-102A, MW-102B, and MW-301 through MW-303). Additionally, groundwater sampling analyzed for VOCs by Method 624 was conducted at monitoring wells (PZ-I, PZ-4 through PZ-8, MW-103, MW-104A, MW-104B, MW-105A, MW-105B, MW-106, MW-107A, and MW-107B, and MW-203) in support of the proper abandonment of these monitoring wells. Monitoring wells PW-2, PZ-3, MW-101A, MW-101B, MW-201, MW-202, and MW-204 were not located during the July 2011 sampling event.

3.4.2.5 Surface Water Sampling and Analysis

Surface water sampling and analysis are not preformed at NLOD.

3.5 Summary of Groundwater Monitoring

Groundwater monitoring was conducted on July 12 and 13, 2011, for the monitoring period of January 2011 through March 2012, and included the collection of twenty (20) groundwater samples from monitoring wells PZ-l, PZ-4 through PZ-8, MW-102A, MW-102B, MW-103, MW-104A, MW-104B, MW-105A, MW-105B, MW-106, MW-107A, MW-107B, MW-203, and MW-301 through MW-303. Prior to collecting the samples, depth to groundwater was measured from the notched point on the top of casing of each monitoring well. The water level data, well diameter and depth were used to calculate the volume of water in each well. The wells were purged of at least three (3)

well volumes and sampled following USEPA low-flow techniques, after the well was recharged to 90 percent of original depth to groundwater.

A field duplicate was collected from MW-301. A trip blank was also submitted to the laboratory. All groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B. Groundwater samples were compared to NYSDEC's Division of Water Technical and Operations Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Water Class GA.

Table 1 through Table 4 (following text) provides a summary of the groundwater sample analytical results for the July 2011 event. Depth to groundwater was measured at the time of sample collection. Laboratory analytical data can be found in Appendix E.

Groundwater flow was determined to be to the south in the unconsolidated saturated zone. Groundwater flow direction is consistent with previous flow direction measurements.

Results for Groundwater Monitoring

As shown in Table 1 and Table 4, VOCs and metals, respectively, were found at levels above groundwater quality standards. Groundwater samples collected from monitoring wells returned results above NYSDEC standards for several VOCs tested. Cis-1,2-Dichloroethene was detected in PZ-6 (20 ug/L), PZ-8 (50 J ug/L), MW-104B (42 ug/L), MW-107A (50 ug/L), and MW-301 (15 ug/L). Methylene chloride was detected in PZ-4 (12 ug/L), tetrachloroethene was detected in PZ-6 (9.5 ug/L) and in MW-104B (34 ug/L). Trichloroethene was detected in PZ-6 (5.6 ug/L) and in MW-104B (86 ug/L).

Groundwater samples collected from monitoring wells returned results above NYSDEC standards for several metals tested. Total aluminum was detected above NYSDEC Class GA criteria in MW-302 (111 ug/L). Cadmium was detected in MW-301 (72,100 micrograms per liter [ug/L]), MW-302 (84,800 ug/L) and MW-303 (97,700 ug/L) and total sodium was detected in MW-301 (17,800 ug/L). Barium, iron, magnesium, and manganese were detected above standards at each of the monitoring well sampled [MW-201A (121 ug/L, 1,300 ug/L, 29,200 ug/L, and 42.2 ug/L), MW-102B (51.2 ug/L, 811 ug/L, 21,800 ug/L, and 171 ug/L), MW-301 (525 ug/L, 1,380 ug/L, 28,300 ug/L, and 227 ug/L), MW-302 (615 ug/L, 4,070 ug/L, 25,200 ug/L, and 653 ug/L), and MW-303 (193 ug/L, 92.3 ug/L, 25,600 ug/L, and 187 ug/L)], respectively. Of note, SVOCs, pesticides and PCBs did not exceed NYSDEC Class GA Criteria.

Monitoring Deficiencies

No monitoring deficiencies were noted. However, the following should be noted:

• Monitoring wells PW-2, PZ-3, MW-101A, MW-101B, MW-201, MW-202, and MW-204 were not located during the July 2011 sampling event.

• %O₂ (oxygen) and hydrogen sulfide were not monitored in July 2011.

4.0 COST EVALUATION

Sampling costs, including all technician time, disposal cell inspection and monitoring costs, laboratory costs, and Periodic Review Report preparation are expected to be approximately \$4,800.00 per event (every fifteen months). Disposal cell inspection will occur twice a year, once concurrently with the sampling event and in the opposite half of the year at a cost of approximately \$1,100 an event. Two (2) mowing events will occur each fiscal year. The mowing events have historically been completed by the local NYSDEC office at an unknown cost. Based on the sampling events scheduled every 15 months, every fourth fiscal year, starting in 2014, will not have to budget sampling costs, just mowing and disposal cell inspection costs.

The total spent to date as of April 2012 under HRP's Work Assignment is \$63,281. In 2012, monitoring well abandonment will cost \$2,453, and is approved under HRP's Work Assignment Number D006130-21. Disposal cell maintenance and road maintenance may also be required in the future at an unevaluated cost.

5.0 FINDINGS, CONCLUSIONS AND RECOMMENDATIONS

5.1 Findings

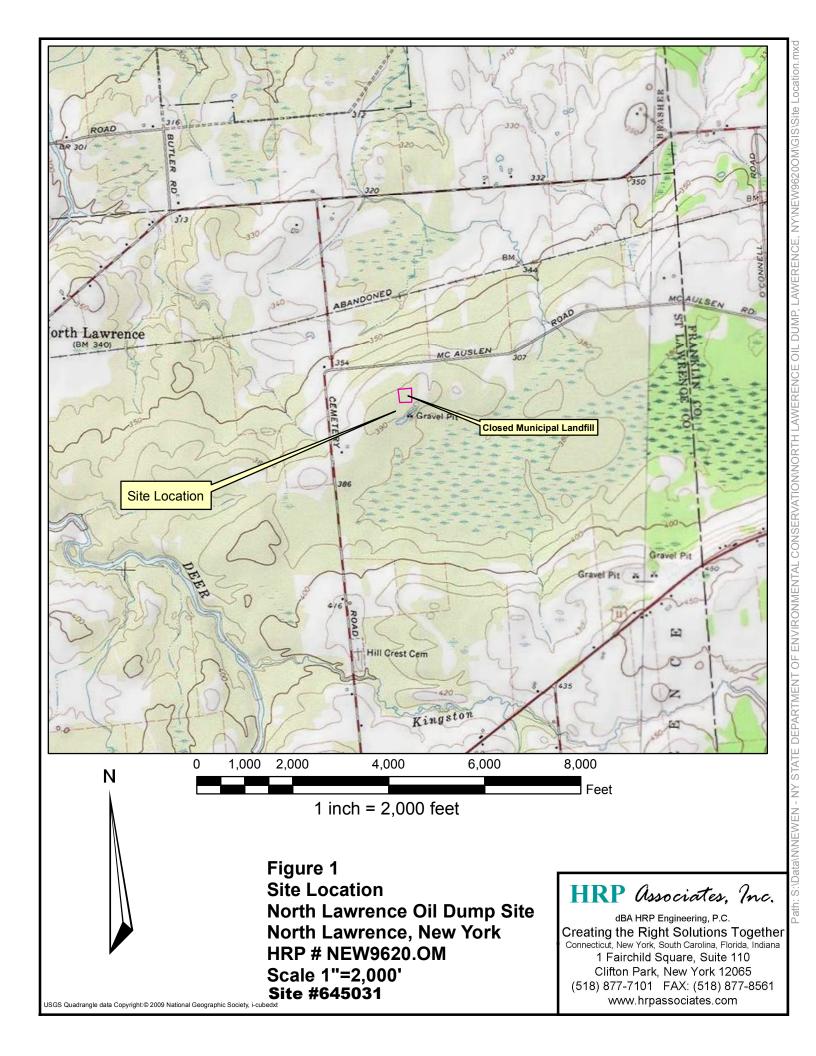
Based on HRP's July 12 and 13, 2011 site inspection and groundwater monitoring event previously described in the NYSDEC January 25, 2005 Monitoring Plan and the February 2012 Site Management Plan (SMP). The disposal cell appears intact and is maintaining at least a 2-foot separation between the high seasonal groundwater and the bottom of the disposal cell. The wetlands plan that restored areas of the wetlands damaged during construction appears to be sufficient. The long-term monitoring plan is being implemented to conduct monitoring of the site in accordance with the SMP and The Record of Decision (ROD). No O&M deficiencies were reported during the reporting period.

Analysis of organic and inorganic natural attenuation parameter data suggests that both biodegradation and a biotic degradation of parent VOCs is occurring at the Site. Analytical data collected during the July 2011 monitoring event supports the natural attenuation conclusions and the analytical results on site shows a stable, decreasing trend.

5.2 Conclusions

Based on historical data and the results of the July 2011 groundwater sampling event, HRP makes the following conclusions regarding the groundwater quality at the North Lawrence Oil Dump in Lawrence, New York:

- Groundwater flow through the shallow Site aquifer is to the south-southeast. Groundwater elevations, estimated flow gradients and linear velocities are consistent with historic determinations;
- The most recent organic and inorganic data from the groundwater and surface water samples indicate that VOCs are continuing to degrade under natural conditions present at the Site. During the current monitoring event, four (4) VOCs (cis-1,2-Dichloroethene, methylene chloride, o-Xylene, and trichloroethene) were detected in groundwater at concentrations above their respective NYSDEC Class GA Criteria in eight (8) monitoring wells. Seven (7) metals (total aluminum, barium, cadmium, iron, magnesium, manganese and total sodium) were detected in groundwater at concentrations above their respective NYSDEC Class GA Criteria in six (6) monitoring wells. VOC impacts were comparable to past historical sampling events;
- After the remedy was implemented, Site groundwater quality improved and there
 are now favorable conditions for natural degradation; the contaminant source
 affecting soil and groundwater has been removed; soil and groundwater impact
 has been delineated on-site through past activities discussed in the SMP; no private
 or public supply wells exist hydraulically downgradient of the Site within an
 approximate 0.8 mile distance; and with respect to public health, exposures now or
 in the future are unlikely to occur.;
- the source of soil and groundwater impact has been removed;
- soil and groundwater impact has been delineated on-site;
- no private or public supply wells exist hydraulically downgradient of the Site within an approximate 0.8 mile area; and
- unacceptable exposure to public health now or in the future is unlikely.


5.3 Recommendations

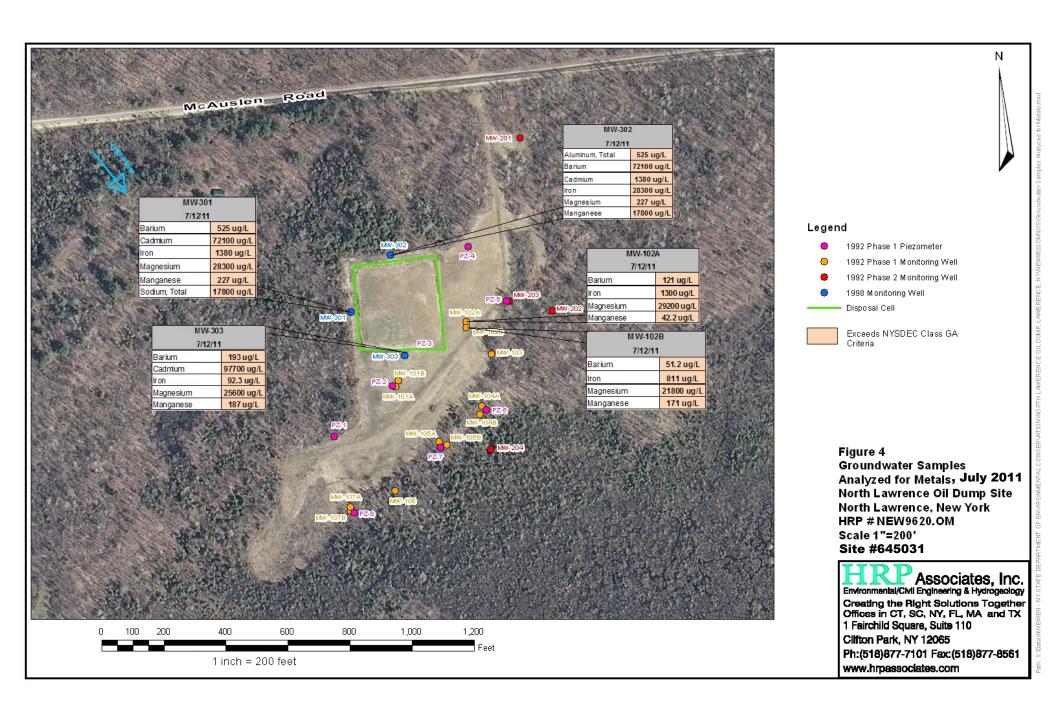
The July 11 and 12, 2011 groundwater sampling confirms the results of the historical groundwater sampling at the site. Target contaminants of previous sampling events indicate residual contamination. An overall decreasing trend in VOC target compound concentrations is observed at the Site due to the previously mentioned remedial efforts as well as presumed, ongoing natural attenuation and other processes.

Based on our review of historic soil and groundwater analytical data, as well as the July 2011 groundwater analytical data, rebounding of volatile organics in groundwater is not evident. In addition, based on our review of analytical data from groundwater monitoring events from 2005 to 2011, an overall decreasing trend in VOC targets compounds concentrations is observed at the Site due to the previously mentioned remedial efforts, as well as presumed, ongoing natural attenuation.

No adverse groundwater impacts were noted in the results of the 2011 groundwater sampling event and detected groundwater analytes were consistent or less than analytical results from groundwater sampling collected during previous groundwater sampling events. As such, we are recommending continuing with the current approved sampling schedule of monitoring wells. Conditions at the Site remain fully protective of public health and the environment.

Additionally, twenty (20) groundwater monitoring wells (PZ-l, PZ-4 through PZ-8, MW-103, MW-104A, MW-104B, MW-105A, MW-105B, MW-106, MW-107A, and MW-107B, and MW-203) will be properly decommissioned (as per Monitoring Plan), if an event renders the wells unusable, in accordance with DER CP-43. The NYSDEC will be notified prior to decommissioning of monitoring wells, and decommissioning and replacement without replacement will be done only with the prior approval of the NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures."

Legend


- 1992 Phase 1 Piezometer
- 1992 Phase 1 Monitoring Well
- 1992 Phase 2 Monitoring Well
- 1998 Monitoring Well

— Disposal Cell

1 ft. Groundwater contour lines

Figure 2
Groundwater Contour Map
July 12 2011
North Lawrence Oil Dump Site
North Lawrence, New York
HRP # NEW96 20. OM
Scale 1"=200'
Site #645031

Associates, Inc.
Environmental/CMI Engineering & Hydrogeology
Creating the Right Solutions Together
Offices in CT, SC, NY, FL, MA and TX
1 Fairchild Square, Suite 110
Clifton Park, NY 12065
Ph:(518)877-7101 Fax:(518)877-8561
www.hrpassociates.com

Table 1 North Lawerence Oil Dump, Site #645031 McAuslen Road North Lawrence, New York 7/12-13/2011 Groundwater Samples - Analyzed for VOCs EPA Method 624

Groundwater Sample ID		PZ-1	PZ-4	PZ-5	PZ-6	PZ-7	PZ-8	MW-102A	MW-102B	MW-103	MW-104A	MW-104B	MW-105A	MW-105B	MW-106	MW-107A	MW-107B	MW-203	MW-301	MW-302	MW-303	Duplicate	Duplicate	NYSDEC Class GA Criteria
Date Collected		7/13/11	7/12/11	7/12/11	7/13/11	7/13/11	7/13/11	7/12/11	7/12/11	7/12/11	7/13/11	7/13/11	7/13/11	7/13/11	7/13/11	7/13/11	7/13/11	7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	7/13/11	Onteria
VOCs 624 (ug/L)	CAS#																					•		
1,1,1-Trichloroethane	71-55-6	ND	ND	5																				
1,1,2,2-Tetrachloroethane	79-34-5	ND	ND	5																				
1,1,2-Trichloroethane	79-00-5	ND	ND	1																				
1,1-Dichloroethane	75-34-3	ND	ND	5																				
1,1-Dichloroethene	107-06-2	ND	ND	0.6																				
1,2-Dichlorobenzene	95-50-1	ND	ND	3																				
1,2-Dichloroethane	107-06-2	ND	ND	0.6																				
1,2-Dichloropropane	78-87-5	ND	ND	1																				
1,3-Dichlorobenzene	541-73-1	ND	ND	3																				
Acrolein	107-02-8	ND	ND	5																				
Acrylonitrile	107-13-1	ND	ND	5																				
Benzene	71-43-2	ND	ND	1																				
Bromodichloromethane	75-27-4	ND	ND	50																				
Bromoform	75-25-2	ND	ND	50																				
Bromomethane	74-83-9	ND	ND	5																				
Carbon tetrachloride	56-23-5	ND	ND	5																				
Chlorobenzene	108-90-7	ND	ND	5																				
Chloroethane	75-00-3	ND	ND	5																				
Chloroform	67-66-3	ND	ND	7																				
Chloromethane	74-87-3	ND	ND	5																				
cis-1,2-Dichloroethene	156-59-2	ND	ND	ND	20	ND	50 J	ND	ND	ND	ND	42	ND	ND	ND	ND	50	ND	15	2 J	ND	14	18	5
cis-1,3-Dichloropropene		ND	ND	0.4																				
Ethylbenzene	100-41-4	ND	ND	5																				
m/p-Xylenes	179601-23-1	ND	ND	5																				
Methylene chloride	75-09-2	ND	12	ND	2 J	ND	ND	ND	ND	ND	5													
o-Xylene	95-47-6	ND	ND	5																				
Tetrachloroethene	127-18-4	ND	ND	ND	9.5	ND	ND	ND	ND	ND	ND	34	ND	10	5									
Toluene	108-88-3	ND	ND	5																				
trans-1,2-Dichloroethene		ND	ND	5																				
trans-1,3-Dichloropropene		ND	ND	0.4																				
Trichloroethene		ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND	86	2 J	ND	7.2	5								
Trichlorofluoromethane	75-69-4	ND	ND	5																				
Vinyl chloride	75-01-4	ND	ND	2																				

NYSDEC class GA criteria are from NYSDEC Technical and Operational Guidance Series (TOGS 1.1.1), Ambient water quality,

class GA standards/guidance values from Table 1.

Bold Sample Exceeds NYSDEC Class GA Criteria

Bold Sample is above Non-Detect Value but Below N

J an estimated concentration Sample is above Non-Detect Value but Below NYSDEC Class GA Criteria

an estimated concentration

Indicates the stated minimum detectable level exceeds an RSR criteria.

Monitor Well

() MW PZ NE Piezometer Not Established ND J Non Detect

Indicates an estimated value. micrograms per liter
Chemical Abstract Number Volatile Organic Compounds

Table 2 North Lawerence Oil Dump, Site #645031 McAuslen Road North Lawerence, New York July 12, 2011

Groundwater Samples - Analyzed for SVOCs EPA Method 8270C

Groundwater Sample ID	MW-102A	MW-102B	MW-301	MW-302	MW-303	Duplicate	NYSDEC Class GA Criteria	
Date Collected		7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	
SVOCs 8270C (ug/L)	CAS#							
Acenaphthene	83-32-9	ND	ND	ND	ND	ND	ND	20
Anthracene	120-12-7	ND	ND	ND	ND	ND	ND	50
Benzo(a)anthracene	56-55-3	ND	ND	ND	ND	ND	ND	0.002
Benzo(a)pyrene	50-32-8	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	205-99-2	ND	ND	ND	ND	ND	ND	0.002
Benzo(ghi)perylene	191-24-2	ND	ND	ND	ND	ND	ND	NE
Benzo(k)fluoranthene	207-08-9	ND	ND	ND	ND	ND	ND	0.002
Chrysene	218-01-9	ND	ND	ND	ND	ND	ND	0.002
Dibenzo(a,h)anthracene	53-70-3	ND	ND	ND	ND	ND	ND	NE
Fluoranthene	206-44-0	ND	ND	ND	ND	ND	ND	50
Fluorene	86-73-7	ND	ND	ND	ND	ND	ND	50
Indeno(1,2,3-cd)pyrene	193-39-5	ND	ND	ND	ND	ND	ND	0.002
Phenanthrene	85-01-8	ND	ND	ND	ND	ND	ND	50
Pyrene	129-00-0	ND	ND	ND	ND	ND	ND	50

NYSDEC class GA criteria are from NYSDEC Technical and Operational Guidance Series (TOGS 1.1.1), Ambient water quality, class GA standards/guidance values from Table 1.

Bold Sample Exceeds NYSDEC Class GA Criteria

Bold Sample is above Non-Detect Value but Below NYSDEC Class GA Criteria

J an estimated concentration

() Indicates the stated minimum detectable level exceeds an RSR criteria.

MW Monitor Well

NE Not Established

ND Not detected

mg/l milligrams per liter

ug/l micrograms per liter

CAS Chemical Abstract Number

SVOCs Semi Volatile Organic Compounds

Table 3 North Lawerence Oil Dump, Site #645031 McAuslen Road North Lawerence, New York July 12, 2011

Groundwater Samples - Analyzed for Metals by EPA Methods 6010B/7471A

Groundwater Sample ID		MW-102A	MW-102B	MW-301	MW-302	MW-303	Duplicate	NYSDEC Class GA Criteria
Date Collected		7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	OA OIIICIIa
Metals (mg/L)	CAS#							
Aluminum, Total	7429-90-5	ND	ND	ND	111	ND	ND	0.1
Antimony	7440-36-0	ND	ND	ND	ND	ND	ND	0.003
Arsenic	7440-38-2	ND	ND	ND	ND	ND	ND	0.025
Barium	7440-39-3	121	51.2	525	615	193	526	1
Beryllium	7440-41-7	ND	ND	ND	ND	ND	ND	0.003
Cadmium	7440-43-9	ND	ND	72100	84800	97700	ND	0.005
Calcium	7440-70-2	62700	51400	ND	ND	ND	ND	NE
Chromium, Total	7440-47-3	ND	ND	ND	ND	ND	ND	0.05
Cobalt	7440-48-4	ND	ND	ND	ND	ND	ND	NE
Copper	7440-50-8	ND	ND	ND	ND	ND	ND	0.2
Iron	7439-89-6	1300	811	1380	4070	92.3	1320	0.3
Lead	7439-92-1	ND	ND	ND	ND	ND	ND	0.025
Magnesium	7439-95-4	29200	21800	28300	25200	25600	28200	35
Manganese	7439-96-5	42.2	171	227	653	187	230	0.3
Mercury	7439-97-6	ND	ND	ND	ND	ND	ND	0.0007
Nickel	7440-02-0	ND	ND	ND	ND	ND	ND	0.1
Potassium, Total	7440-09-7	ND	ND	ND	ND	ND	ND	NE
Selenium	7782-49-2	ND	ND	ND	ND	ND	ND	0.01
Silver	7440-22-4	ND	ND	ND	ND	ND	ND	0.05
Sodium, Total	7440-23-5	ND	ND	17800	ND	ND	17700	20
Thallium	7440-28-0	ND	ND	ND	ND	ND	ND	0.0005
Vanadium	7440-62-2	ND	ND	ND	ND	ND	ND	NE
Zinc	7440-66-6	ND	ND	ND	ND	ND	ND	2
Cyanide, Total	57-12-5	ND	ND	ND	ND	ND	ND	0.2

NYSDEC class GA criteria are from NYSDEC Technical and Operational Guidance Series (TOGS 1.1.1), Ambient water quality, class GA standards/guidance values from Table 1.

Bold	Sample Exceeds NYSDEC Class GA Criteria
Bold	Sample is above Non-Detect Value but Below NYSDEC Class GA Criteria
J	an estimated concentration
()	Indicates the stated minimum detectable level exceeds an RSR criteria.
MW	Monitor Well
NE	Not Established
ND	Not detected
mg/l	milligrams per liter
CAS	Chemical Abstract Number

Table 4 North Lawerence Oil Dump, Site #645031 McAuslen Road

North Lawerence, New York July 12, 2011

Groundwater Samples - Analyzed for Pesticides and PCBs Methods 8082/8081A

Groundwater Sample ID		MW-102A	MW-102B	MW-301	MW-302	MW-303	Duplicate	NYSDEC Class
								GA Criteria
Date Collected		7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	7/12/11	
Pesticides and PCBs (ug/L)	CAS#							
4,4'-DDD	72-54-8	ND	ND	ND	ND	ND	ND	0.3
4,4'-DDE	72-55-9	ND	ND	ND	ND	ND	ND	0.2
4,4'-DDT	50-29-3	ND	ND	ND	ND	ND	ND	0.2
Aldrin	309-00-2	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	319-84-6	ND	ND	ND	ND	ND	ND	0.01
Alpha-chlordane	5103-71-9	ND	ND	ND	ND	ND	ND	NE
Aroclor 1016		ND	ND	ND	ND	ND	ND	NE
Aroclor 1221		ND	ND	ND	ND	ND	ND	NE
Aroclor 1232		ND	ND	ND	ND	ND	ND	NE
Aroclor 1242		ND	ND	ND	ND	ND	ND	NE
Aroclor 1248		ND	ND	ND	ND	ND	ND	NE
Aroclor 1254		ND	ND	ND	ND	ND	ND	NE
Aroclor 1260		ND	ND	ND	ND	ND	ND	NE
Aroclor 1262		ND	ND	ND	ND	ND	ND	NE
Aroclor 1268		ND	ND	ND	ND	ND	ND	NE
beta-BHC	319-85-7	ND	ND	ND	ND	ND	ND	0.04
delta-BHC	319-86-8	ND	ND	ND	ND	ND	ND	0.04
Dieldrin	60-57-1	ND	ND	ND	ND	ND	ND	0.004
Endosulfan I	959-98-8	ND	ND	ND	ND	ND	ND	NE
Endosulfan II	33213-65-9	ND	ND	ND	ND	ND	ND	NE
Endosulfan Sulfate	1031-07-8	ND	ND	ND	ND	ND	ND	NE
Endrin	72-20-8	ND	ND	ND	ND	ND	ND	ND
Endrin Aldehyde	7421-93-4	ND	ND	ND	ND	ND	ND	5
Endrin ketone	53494-70-5	ND	ND	ND	ND	ND	ND	5
gamma-BHC (Lindane)	58-89-9	ND	ND	ND	ND	ND	ND	0.05
Heptachlor	76-44-8	ND	ND	ND	ND	ND	ND	0.04
Heptachlor Epoxide	1024-57-3	ND	ND	ND	ND	ND	ND	0.03
Methoxychlor	72-43-5	ND	ND	ND	ND	ND	ND	35
Toxaphene	8001-35-2	ND	ND	ND	ND	ND	ND	0.06

NYSDEC class GA criteria are from NYSDEC Technical and Operational Guidance Series (TOGS 1.1.1), Ambient water quality,

class GA standards/guidance values from Table 1.

Bold	Sample Exceeds NYSDEC Class GA Criteria
Bold	Sample is above Non-Detect Value but Below NYSDEC Class GA Criteria
J	an estimated concentration
()	Indicates the stated minimum detectable level exceeds an RSR criteria.
MW	Monitor Well
NE	Not Established
ND	Not detected
ug/l	micrograms per liter
CAS	Chemical Abstract Number
PCBs	Polychlorinated Biphenyl

Appendix A

Metes and Bounds

Appendix B

Instructional and Engineering Certifications Form

Enclosure 1 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

	Site	No.	645031	Site Details	Во	к 1	
			orth Lawrence Oil Du	ımp			
			McAuslen Road	Zip Code: 12967			
			wn of North Lawrence	·			
	_	ınty:St. La					•
		•		s not address local zoning): None			
		Acreage:			•		
-	_			Verification of Site Details			x 2
						YES	NO
	1.	Are the Si	te Details above, corre	ect?			×
		If NO, are	changes handwritten	above or included on a separate s	sheet?		
	2.			erty been sold, subdivided, merge initial/last certification?	d, or undergone a		Ą
			documentation or evidence included with this cer	dence that documentation has bee tification?	n previously		
	3.			local permits (e.g., building, dischainitial/last certification?	arge) been issued		×
			documentation (or evi i) included with this ce	idence that documentation has be	en previously		
	4.	If use of the restriction		the current use of the site consiste	ent with those	A	
		If NO, is a	ın explanation include	ed with this certification?			
	5.	has any r	new information reveal	nfield Cleanup Program Sites subj led that assumptions made in the o ontamination are no longer valid?	Qualitative Exposu		
			the new information of included with this Ce	or evidence that new information he ertification?	as been previously		
	6.	For non-significant-threat Brownfield Cleanup Program Sites subject to ECL 27-1415 are the assumptions in the Qualitative Exposure Assessment still valid (must be certified every five years)?					
		If NO, are	changes in the asses	ssment included with this certificat	ion?		

SITE NO. 645031 Box 3

Description of Institutional Controls

<u>Parcel</u>

Institutional Control

S_B_L Image: 36.003 and

36.004

Deed Restriction

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

S_B_L Image: 36.003 and 36.004

Cover System Fencing/Access Control

Attach documentation if IC/ECs cannot be certified or why IC/ECs are no longer applicable. (See instructions)

Control Description for Site No. 645031

Parcel: 36.003 and 36.004

В	OΥ	5

	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene	in this ce rally acc	ertification epted
	engineering practices; and the information presented is accurate and compete.	YES	NO
		×	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below the following statements are true:	each In at all of ti	stitutional ne
	(a) the Institutional Control and/or Engineering Control(s) employed at this site in the date that the Control was put in-place, or was last approved by the Department		nged since
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	e the ren	nedy,
	(d) nothing has occurred that would constitute a violation or failure to comply with Management Plan for this Control; and	th the S	ite
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in t		
		YES	NO
		口	×
3.	If this site has an Operation and Maintenance (O&M) Plan (or equivalent as required in Document);	n the De	ecision
	I certify by checking "YES" below that the O&M Plan Requirements (or equivalent as re-	quired in	the
	Decision Document) are being met.	YES	NO
		'M	
4.	If this site has a Monitoring Plan (or equivalent as required in the remedy selection do	cument)	;
	I certify by checking "YES" below that the requirements of the Monitoring Plan (or equiv	alent as	required
	in the Decision Document) is being met.	YES	NO
		×	
L			

:

IC CERTIFICATIONS SITE NO. 645031

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 2 and/or 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. print name at ______ print business address (Owner or Remedial Party) am certifying as _____ for the Site named in the Site Details Section of this form. Signature of Owner or Remedial Party Rendering Certification IC/EC CERTIFICATIONS Box 7 QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. print name print business address am certifying as a Qualified Environmental Professional for the ______ (Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Qualified Environmental Professional, for Stamp (if Required) Date

the Owner or Remedial Party, Rendering Certification

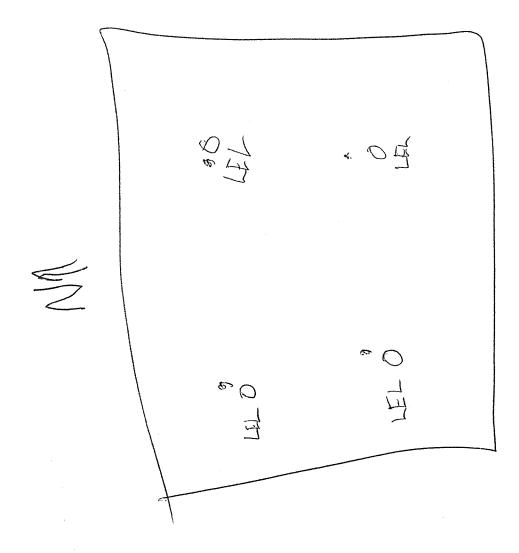
Appendix C

Post-Closure Site Inspection Checklist

Figure 3-1

Post-Closure Site Inspection Checklist North Lawrence Oil Dump Site

1101						
Date:	500 NY 1-107					
Weather:		- (HRF)		************		
Personnel (Organizat	ion): <u>M. Wrakt</u> nplete the checklist of vi	mal archief	itame and	then complete sp	ecific data items. Field	
Instructions: Cor	nplete the checklist of vi	Suar evaruacion	tone ond r	noted on a site nia	n. Estimated measureme	nts
mea	asurements should be ma	ide will a cioui	tape anu i	who to the cite nle	en to further define condi	tion
sho	uld be so noted. Attach	nand sketches (or buorogra	thus to me are bu	n to further define condi	
or I	problems.			i		
				ļ		
I. VISUAL EVALA	UTION ITEMS		TONE /OF	4.5		
			ION: (Ch			i
j.		Not		equired?	DEL CADRE	
	<u>Acceptable</u>	<u>Acceptable</u>	<u>Yes</u>	<u>No</u>	<u>REMARKS</u>	
1) Vegetative Cover		_				
a) Disposal Cell	<u> </u>				•	
b) Lagoon					•	
c) Wetland	Υ					
2) Site Drainage			-		•	
a) Sediment Buil	Id-Tin 7					
b) Pooling or Po	nding $\frac{1}{4}$					
o) Fulling of Lo	hu J					
c) Slope Integri	otion \\\					
d) Erosion Prote						
(Riprap, grou	•					
vegetation)	٠. ۾					
e) Obstruction o	Λ					
Culverts					i	
3) Condition of Acc	ess 🥕					
a) Road Conditi	on				i e	
b) Gates/Locks/		-				
4) Integrity of Grou	nd 🗸					
Water Monitorin	g Wells					
5) Integrity of Cap	,					
a) Erosion Dama	ige <u>+</u>					
b) Leachate Brea	ık-	-				
through	<u> </u>		-			
c) Settlement	<u> </u>	<u> </u>				
6) Gas Venting Sys	item					
a) Vents free of	•					
obstructions						
b) Gas readings	•	1/	 - 1	0.1.	o love	
(measure)	1 · ALL	YL	E <u>L</u>	Keroing	0 (000)
7) Other (e.g., Litte	er			_	_	
Unauthorized D	umning			-		
					•	
etc.)						
				_		
- annowio DA	TA ITEMS (Write N.A.	if not applicab	1e)	Δ		
II. SPECIFIC DA	A I CIVID (WITHE INC.	II Ifoe appress	، ۱۷۰	/ \		
A. Erosion and Se	mement:	aran/a) (Tiet S	anamtely)			
1) Approximate si	ze in feet of eroded cap	atea(s). (The c	characti			
afeet b	yieet					
h ieti	DY1001					
cfeet l	oy reet	••.		the edineant	murface (List Senarately)	١.
2) How deep is in	e most extreme point of	erosion when n	neasured I	tota me anjacetti:	surface. (List Separately)	,
afeet						
b. feet	£ **					
feet	•					


G:\projects\nysdec\nlconstr\o&m\figure3-1.doc

1

是是这个人的,可以是是有一种的人的。 医二十二氏 医二十二氏 医二种原子的

Post-Closure Site Inspection Checklist North Lawrence Oil Dump Site (continued)

3) Approximate size in feet of eroded areas outside the soil cap area such as drainage ditches, roads or slopes.	
4) Attach a hand sketch or photograph to be attached to this report, showing location(s) of the eroded area(s). Iden	itify
each area by using the letter a, b, c, etc. from Question 1.	
5) Approximate size in feet of leachate breakout(s). (List Separately)	
afeet byfeet	
b feet by feet	
c feet by feet 6) Approximate size in feet of any settlement area within the soil cap area. (List Separately)	
a feet by feet	
b feet by feet	
cfeet byfeet	
7) Approximate depth of each settlement area when measured from the adjacent surface. (List Separately)	
afeet	•
b feet	
cfeet	
8) Attach a hand sketch or photograph to the attached site plan showing the location of the settlement area(s). Idea	nuty
each area by using letter a, b, or c, etc. from Question 6.	
May MMM.	
1 1 W W W W	
Signature of Inspector(s)	
·	•
Attachments	
Yes No	

Appendix D

Field Forms

HRP Engir 1 Fairchild Clifton Par (518) 877-	Square, S k, NY 1206 7101	uite 110 65	GROUNDWATER WELL SAMPLING FORM					DEPARTMENT	NVIRONME,	APT CONSERVATION		
Project: North	n Lawrence O	il Dump	WAS #: D00	6130-21		Field Personnel: James Charter and Mark Wright						
Location: McA Lawrence, Ne		North	Well ID.: PZ	1		Weath	er: Suni	ny 80F				
Sounding Me	thod: Interfac	e Meter	Gauge Date	: 7/13/2012		Measurement Ref: Black Mark on top of PVC						
Stick Up/Dow	vn (ft): Stick u	p~4ft.	Gauge Time	: 12:09		Well D	Well Diameter (in): 1 inch					
Purge Date:		7/1	13/2011		Purge Time:	12:09						
Purge Method	d:	Perist	altic Pump		Field Techni	cian:		Jar	nes Charter			
1) Well Depth	n (ft): 30 ft.		4) Well Diam	neter (in): 1 inc	h	7) Five	e Well V	olumes (gal):			
2) Depth to W	/ater (ft): 6.69) ft.	5) Well Volu	me / Foot (gal)	(d ² x.0408):	Depth	/Height o	of Top of P\	/C:			
3) Height of F 23.31 ft.	l₂O Column (1-2) (ft):	6) Total Well gallons	l Volume (gal)	(3x5): 11.4	Pump	Type: P	eristaltic Pu	ımp			
			,	Water Qualit	y Paramete	ers						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)		
12:09			~250	7.53	.418	_	61	0	21.37	-50		
12:12				7.47	0.459	_	33	0	18.86	-93		
12:15				7.47	0.468		46	0	18.5	<u>-96</u>		
12:18				7.46	0.472	_	46	0	18.69	<u>-98</u>		
12:21 12:24				7.44 7.46	0.472 0.476		20 50	<u>0</u> 0	18.97 18.31	<u>-95</u> -97		
12:27				7.47	0.476		12	0	18.04	<u>-97</u> -97		
12:30				7.47	0.47		2	0	17.77	-99		
12:40				7.47	0.463	+	27	0	18.11	-96		
12:43				7.47	0.463		25	0	18.05	-96		
12:45				7.47	0.463		24	0	18.17	-90 -94		
12.40	l			7.77	0.400		.т	- 0	10.17	J-T		
Total Quantity	y of Water Re	emoved (Gallo	ns): 11.4			Sam	pling Tin	ne:	12:52			
Samplers:	James	Charter				Split	Sample	With:	NA			
Sampling Dat	te:	7/13/2011				Sam	ple Type): 				
			lup :									
NR - Not Registering COMMENTS AND OBSERVATIONS:												

1 Fairchild	neering, P.0 I Square, Surk, NY 1206 7101	uite 110	GROUNDWATER WELL SAMPLING FORM					DEPARTMENT	W YORK ST	ARY COMSERVATION.	
Project: North	h Lawrence Oi	il Dump	WAS #: D00	6130-21		Field Personnel: James Charter and Mark Wright					
Location: McA	Auslen Road, ew York	North	Well ID.: PZ-	-7		Weath	ner: Sun	ny 80F			
Sounding Me	ethod: Interface	e Meter	Gauge Date:	: 7/13/2012		Measurement Ref: Black Mark on top of PVC					
Stick Up/Dow	vn (ft): Stick up	⊃~4ft.	Gauge Time	: 10:30		Well D	iametei	r (in): 1 inch			
Purge Date:		7/1	13/2011		Purge Time:				10:30		
Purge Method	d:	Perist	altic Pump		Field Technic	cian:		Jan	nes Charter		
1) Well Depth	h (ft): 30.98 ft.		4) Well Dian	neter (in): 1 inc	zh	7) Five Well Volumes (gal):					
2) Depth to W	Vater (ft): 5.31	ft.	5) Well Volume / Foot (gal) (d ² x.0408): Depth/Height of Top of PVC: 0.48				/C:				
3) Height of H 25.67 ft.	H ₂ O Column (1	1-2) (ft):		ll Volume (gal)	(3x5): 1.3	Pump	Pump Type: Peristaltic Pump				
			,	Water Quality	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	(n	tu)	DO (ug/L)	Temperature (oC)	ORP (mV)	
10:30 10:34	NA		 	7.40 7.58	0.392	_	.8	4.43 1.53	20.96	-25 -30	
10:34			<u> </u>	7.33	0.514		.9	0	18.45	-83	
10:42				7.23	0.541		.2	0	18.41	-83	
10:46				7.2	0.544		.5	0	18.58	-83	
10:50			<u> </u>	7.18	0.547	2	2	0	18.51	-83	
				 	<u> </u>	 					
Total Quantity	y of Water Rei	moved (Gallo	ns): 1.3			Sam	pling Tir	me:	10:54		
Samplers:	James	Charter				Split	Sample	e With:	NA		
Sampling Dat	te:	7/13/2011				Sam	ple Type	e:			
Groundwater not measure during purging due to diameter COMMENTS AND OBSERVATIONS:						meter of the	well.				

1 Fairchild Clifton Par (518) 877-		uite 110 65	GROUNDWATER WELL SAMPLING FORM				THE WINDOWNENT COMES BELL TO THE TOTAL COMES BELL TO T						
Project: North	n Lawrence Oi	I Dump	WAS #: D00	6130-21		Field F	Personn		harter and Mark	Wright			
Location: McA	Auslen Road, ew York	North	Well ID.: PZ-	-8		Weather: Sunny 80F							
Sounding Me	thod: Interface	e Meter	Gauge Date:	: 7/13/2012		Measurement Ref: Black Mark on top of PVC							
Stick Up/Dow	n (ft): Stick up)~4ft.	Gauge Time	: 12:27		Well D	iamete	r (in): 1 inch					
Purge Date:		7/1	13/2011		Purge Time:	: 12:27							
Purge Method	d:	Perist	taltic Pump	cian:		Jan	nes Charter						
1) Well Depth	(ft): 15.96 ft.		4) Well Diameter (in): 1 inch				e Well V	olumes (gal):				
2) Depth to W	/ater (ft): 4.88	ft.	5) Well Volume / Foot (gal) (d²x.0408):				/Height	of Top of P\	/C:				
3) Height of H 11.08 ft.	l₂O Column (1	i-2) (ft):		l Volume (gal)	(3x5): 2.10	Pump	Type: F	Peristaltic Pu	imp				
			,	Water Qualit	y Paramete	ers							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	(nt	oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)			
12:27	NA			7.37	0.549	_	.4	0	19.65	-98			
12:31 12:34			 	7.32 7.3	0.551	2.	.4 .8	<u>0</u> 0	18.4 17.58	<u>-98</u> -107			
12:34			+	7.31	0.559 0.56		.8 .5	0	17.39	-107 -111			
12:40				7.29	0.564	0.		0	17.59	-115			
			<u> </u>										
Total Quantity	y of Water Rei	moved (Gallo	ons): 2.1			Samp	oling Tir	me:	12:44				
Samplers:	James	Charter				Split	Sample	With:	NA				
Sampling Dat	te:	7/13/2011				Samı	ple Type	e:					
,,	7/10/2011								<u> </u>				
COMMENTS	AND OBSER	VATIONS:	NR - Not										

1 Fairchild	neering, P.0 I Square, Sork, NY 1206 7101	uite 110	GROUNDWATER WELL SAMPLING FORM					DEPARTMENTO	NEW YORK	TENTAL CONSERVATION		
Project: North	h Lawrence Oi	il Dump	WAS #: D00	6130-21		Field F	Field Personnel: James Charter and Mark Wright					
Location: Mc/ Lawrence, Ne	Auslen Road, ew York	North	Well ID.: MW	√-104B		Weather: Sunny 80F						
Sounding Me	ethod: Interface	e Meter	Gauge Date:	7/13/2012		Measurement Ref: Black Mark on top of PVC						
Stick Up/Dow	vn (ft): Stick up)~4ft.	Gauge Time	: 10:30		Well D	Diamete	r (in): 2 inche	<u>-</u> es			
Purge Date:		7/1	13/2011		Purge Time:				10:30			
Purge Method	Peristaltic Pump Field Technician: James Charter							nes Charter				
1) Well Depth	h (ft): 11.79 ft.		4) Well Diam	neter (in): 2 inc	:h	7) Five	e Well V	/olumes (gal)):			
2) Depth to W	Vater (ft): 5.52	ft.	5) Well Volur	me / Foot (gal)) (d ² x.0408):	Depth	/Height	of Top of PV	/C:			
3) Height of F ft.	H ₂ O Column (1	i-2) (ft): 6.27		l Volume (gal)	(3x5):	Pump Type: Peristaltic Pump						
			,	Water Quality	y Paramete	ers						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	(n	bidity I tu)	DO (ug/L)	Temperature (oC)	ORP (mV)		
10:30 10:33	5.60		~200	6.81 6.71	.631 0.626	_	.4 .3	0.37	20.08 19.27	-38 0.35		
10:36	5.62		+	6.66	0.621		.s .1	0	19.27	0.35		
10:39				6.64	0.619	_	.9	0	19.71	0.35		
10:42	5.64			6.63	0.614	0	.9	0	19.85	0.34		
		-	<u> </u>	-		\prod_{-}						
					<u> </u>							
Total Quantity	y of Water Rei	moved (Gallo	ons): 3.06			Sam	pling Ti	me:	1045			
Samplers:	James	Charter				Split	Sample	e With:	NA			
Sampling Dat	te:	7/13/2011				Sam	ple Typ	e:				
			NR - Not	t Registerin	g							
COMMENTS	AND OBSER	(VATIONS:										

1 Fairchild Clifton Par (518) 877-	7101	uite 110 55	GROUNDWATER WELL SAMPLING FORM				OR ENVIRONMENTAL CORES					
Project: North Lawrence Oil Dump WAS #: D006130-21 Field Pers Location: McAuslen Road, North Lawrence, New York Sounding Method: Interface Meter Gauge Date: 7/13/2012 Measuren Stick Up/Down (ft): Stick up~4ft. Gauge Time: 11:30 Well Diam Purge Date: 7/13/2011 Purge Time: Purge Method: Peristaltic Pump Field Technician:									harter and Mark	Wright		
		North	Well ID.: MW	<i>I</i> -106		Weather: Sunny 80F						
Sounding Me	thod: Interface	Meter	Gauge Date:	7/13/2012		Measurement Ref: Black Mark on top of PVC						
Stick Up/Dow	n (ft): Stick up)~4ft.	Gauge Time	: 11:30		Well Diameter (in): 2 inches						
Purge Date:		7/1	3/2011		Purge Time:	11:30						
Purge Method	d:	Perist	altic Pump		Field Techni	cian:		Jan	nes Charter			
1) Well Depth	n (ft): 12.0 ft.		4) Well Diam	neter (in): 2 inc	ch .	7) Five	e Well \	/olumes (gal):			
						/Height	of Top of P\	/C:				
3) Height of H	H ₂ O Column (1	-2) (ft): 5.00		Volume (gal)	(3x5): 4.08	Pump	Type: F	Peristaltic Pu	imp			
			,	Water Qualit	y Paramete	ers						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)		
11:30			~200	7.24	.272	_).5	0.17	23.02	99		
11:33	 		 	7.06	0.262	_).3	0	19.69	103		
11:35 11:39			 	7.02 7.01	0.25 0.257	11	1.3	0	19.61 19.6	103 105		
11:42			 	6.99	0.257	_	. ı l.2	0	19.58	105		
11.72				0.00	0.200		.2		10.00	107		
Total Quantity	y of Water Rer	moved (Gallo	ns): 4.08			Samp	pling Ti	me:	11:45			
Samplers:	James	Charter				Split	Sample	e With:	NA			
Sampling Da	te:	7/13/2011				Samp	ple Typ	e:				
	NR - Not Registerin								•			
COMMENTS	AND OBSER	VATIONS:	INIX - INOL									

1 Fairchild Clifton Par (518) 877-		uite 110 65		ROUNDWAT SAMPLING		=					
Project: North	h Lawrence Oi	il Dump	WAS #: D00	6130-21		Field F	Personn				
Location: McA	Auslen Road, ew York										
Sounding Me	ethod: Interface	e Meter	Gauge Date:	: 7/13/2012		Meası	urement	Ref: Black I	Mark on top of P	VC	
Stick Up/Dow	vn (ft): Stick up	>~4ft.	Gauge Time	: 11:40		Well D	Diamete	r (in): 2 inche	es		
Purge Date:		7/1	13/2011		Purge Time:				11:40		
Purge Method	d:	Perist	taltic Pump	Pump Field Technician: James Charte							
1) Well Depth	n (ft): 42.91 ft.		4) Well Diam	neter (in): 2 inc	:h	7) Five	e Well V	/olumes (gal):		
2) Depth to W	Vater (ft): 4.20	ft.	5) Well Volui 6.31	ıme / Foot (gal)) (d ² x.0408):	Depth.	/Height	of Top of PV	/C:		
3) Height of H 38.71 ft.	H ₂ O Column (1	I-2) (ft):		ll Volume (gal)	(3x5): 1.3	Pump	Type: F	Peristaltic Pu	ımp		
			 ,	Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		bidity	DO (ug/L)	Temperature (oC)	ORP (mV)	
11:40	5.55			7.73	.394).7	3.27	17.73	-90	
11:44	6.65	<u> </u>		7.69	0.4).6	0	15.64	-103	
11:48	7.21	<u> </u>		7.66	0.406).4	0	14.84	-123	
11:52	8.02	 	 	7.66	0.41).7	0	14.17	-130	
11:55	8.09		 	7.65	0.411).8	0	14.16	-135 130	
11:58	8.13			7.65	0.412	<u> </u>).8	0	14.08	-139	
				<u> </u>							
						lacksquare					
	<u> </u>	<u> </u>									
Total Quantity	y of Water Rei	moved (Gallo	ons): 1.3			Sam	ıpling Tir	me:	12:02		
Samplers:	James	Charter				Split	Sample	• With:	NA		
Sampling Dat	íe:	7/13/2011				Sam	Sample Type:				
											
COMMENTS	AND OBSER	(VATIONS:									

1 Fairchild	neering, P.0 Square, Sok, NY 1206 7101	uite 110	GROUNDWATER WELL SAMPLING FORM				TOUR STATE . NORK STATE . NO						
Project: North	n Lawrence Oi	il Dump	WAS #: D00	6130-21		Field F	Personn		harter and Mark	Wright			
Location: Mc	Auslen Road, ew York	North	Well ID.: MV	V-107B		Weather: Sunny 80F							
Sounding Me	thod: Interface	e Meter	Gauge Date	: 7/13/2012		Measurement Ref: Black Mark on top of PVC							
Stick Up/Dow	vn (ft): Stick up	o~4ft.	Gauge Time	: 12:05		Well D	Diameter	r (in): 2 inche	es				
Purge Date:		7/1	3/2011		Purge Time:	12:05							
Purge Method: Peristaltic Pump Field Te							d Technician: James Charter						
1) Well Depth	Depth (ft): 11.92 ft. 4) Well Diameter (in): 2 inch 7) Five Well Volumes (gal):												
2) Depth to W	Vater (ft): 5.25								/C:				
3) Height of H	H ₂ O Column (1	1-2) (ft): 6.67	6) Total Well gallons	l Volume (gal)	(3x5): 1.1	Pump	Type: F	eristaltic Pu	imp				
			,	Water Qualit	y Paramete	ers							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)			
12:05	5.95			7.33	0.556		.2	0	18.78	-105			
12:09	6			7.23	0.565		.7	0	17.38	<u>-111</u>			
12:12 12:16	6.02 6.05			7.23 7.24	0.569 0.567		.8 .3	0	17.4 17.01	-119 -122			
12:10	6.06			7.24	0.569	_	.3	0	17.01	-122 -125			
12.13	0.00			7.20	0.509		.5		17.21	-125			
Total Quantity	y of Water Re	moved (Gallo	ns): 1.1			Sam	pling Tir	me:	12:22				
Samplers:	James	Charter				Split	Sample	With:	NA				
Sampling Date	to:	7/13/2011				Sample Type:							
	ı c .	1/13/2011				Sam	pie rype	.	1				
COMMENTS	DMMENTS AND OBSERVATIONS:												

1 Fairchild	neering, P.0 Square, S k, NY 1206 7101	Suite 110		ER WELL FORM		TENVIRONMENTAL CONSERVANTAL CON					
Project: North	n Lawrence O	il Dump	WAS #: D00	6130-21		Field F	Personn	nel: James C	harter and Mark	Wright	
Location: Mc	Auslen Road, ew York	North	Well ID.: PZ-	-4		Weath	ner: Sun	iny 80F			
Sounding Me	thod: Interface	e Meter	Gauge Date:	: 7/12/2012		Measurement Ref: Black Mark on top of PVC					
Stick Up/Dow	vn (ft): Stick up	ρ∼4ft.	Gauge Time	: 1453		Well D	Diamete	r (in): 2 inche	<u> </u>		
Purge Date:		7/1	12/2011		Purge Time:				1453		
Purge Metho	d:	Perist	taltic Pump		Field Technic	cian:		Jan	nes Charter		
1) Well Depth	n (ft): 17.48 ft.		4) Well Diam	neter (in): 1 inc	zh	7) Five Well Volumes (gal):					
2) Depth to V	Vater (ft): 8.90	ft.	5) Well Volur 0.35	me / Foot (gal)) (d ² x.0408):						
3) Height of H 13.35 ft.	H ₂ O Column (1	1-2) (ft):		ll Volume (gal)	(3x5): 1.40	Pump	Pump Type: Peristaltic Pump				
				Water Quality	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	(n	bidity	DO (ug/L)	Temperature (oC)	ORP (mV)	
1453 1458	NA NA			6.65 6.52	0.535	+	0.3 .7	2.30	25.36	93 82	
1503	NA NA			5.52	0.55 0.563		. <i>1</i>).7	0	23.78 21.14	82 82	
1507	NA			6.52	0.58	_).3	0	20.99	86	
1511	NA		T	6.53	0.583	0).4	0	20.77	88	
						\blacksquare					
			 	 	 	#					
				+	 	+			+	. <u></u>	
Total Quantit	y of Water Re	emoved (Gallor	ons): 1.4			Sam	ıpling Tiı	me:	1515		
			L				·				
Samplers:	James	Charter				Split	Sample	With:	NA		
Sampling Da	te:	7/12/2011				Sam	ple Type	e:			
			INIA – Gr	ounwater le	wels not co	Naleta:	d from	well durin	a puraina di	lo to small	
NA = Grounwater levels not colelcted from diameter of well. COMMENTS AND OBSERVATIONS:					Well daili	g parging ac	le to sman				

1 Fairchild	neering, P.0 Square, S k, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING								
Project: North	n Lawrence O	il Dump	WAS #: D00	6130-21		Field F	Personn	el: James C	harter and Mark	Wright		
Location: Mc.	Auslen Road, ew York	North	Well ID.: MV	V-103		Weath	er: Sun	ny 80F				
,	thod: Interface	e Meter	Gauge Date	: 7/12/2012		Measurement Ref: Black Mark on top of PVC						
Stick Up/Dow	vn (ft): Stick up	o~4ft.	Gauge Time	: 1457		Well D	iametei	r (in): 2 inch	es			
Purge Date:		7/1	2/2011		Purge Time:		1457					
Purge Metho	d:	Perist	altic Pump		Field Techni	cian: James Charter						
1) Well Depth	n (ft): 7.95 ft.		4) Well Diameter (in): 2 inch				e Well V	olumes (gal):			
2) Depth to V	Vater (ft): 5.63	ft.		me / Foot (gal) (d ² x.0408):	Depth/	Height	of Top of P\	/C:			
3) Height of I ft.	H ₂ O Column (1-2) (ft): 2.32	0.37 6) Total Well Volume (gal) (3x5): 1.40 Pump Type: Perista gallons					Peristaltic Pu	ımp			
			,	Water Qualit	y Paramete	ers						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	Turb (nt		DO (ug/L)	Temperature (oC)	ORP (mV)		
1457	na			7.13	.455	6.	.3	0	20.08	-15		
1500	na			6.61	0.508	1	.6	0	19.5	-63		
1503	na			6.51	0.567	1.	_	0	19.4	-62 57		
1506	na			6.49	0.585	0.		0	18.82	<u>-57</u>		
1509 1515	na			6.49 6.49	0.593 0.593	0.		0	18.51 18.09	<u>-55</u> -51		
1518	na na			6.44	0.593	0.		0	18.11	-31 -48		
1521	na			6.44	0.596	0.		0	18.08	-46		
Total Quantit	y of Water Re	moved (Gallor	ns): 16.4			Samp	oling Tir	me:	1525			
Samplers:	Wark V	Vright				Split	Sample	With:	NA			
Sampling Da	te:			Samp	ole Type	e:						
COMMENTS	AND OBSER	EVATIONS:	NA = Gro		inwater levels not colelcted from well during purging due to of well.							

1 Fairchild	neering, P.0 Square, S k, NY 1206 7101	uite 110		ROUNDWAT SAMPLING							
Project: Norti	n Lawrence O	il Dump	WAS #: D006	6130-21		Field F	Personn	iel: James C	harter and Mark	Wright	
Location: Mc. Lawrence, No	Auslen Road, ew York	North	Well ID.: MW	/-105A		Weath	er: Sun	ny 80F			
	thod: Interfac	e Meter	Gauge Date:	7/13/2012		Measurement Ref: Black Mark on top of PVC					
Stick Up/Dow	vn (ft): Stick up)~4ft.	Gauge Time:	: 924		Well Diameter (in): 2 inches					
Purge Date:		7/1	3/2011		Purge Time:				924		
Purge Metho	d:	Perista	altic Pump		Field Technic	cian: James Charter					
1) Well Depth	n (ft): 41.82 ft.		4) Well Diam	neter (in): 2 inc	:h	7) Five	e Well V	/olumes (gal):		
2) Depth to V	Vater (ft): 5.61	ft.	5) Well Volur 5.86	me / Foot (gal)	(d ² x.0408):	Depth	/Height	of Top of PV	/C:		
3) Height of H 13.85 ft.	H ₂ O Column (I-2) (ft):		Volume (gal)	(3x5): 15.40	15.40 Pump Type: Peristaltic Pump					
			1	Water Qualit	y Paramete	rs					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)	
924	6.89			8.46	0.311	3	.5	9.98	19.47	90	
928	7.43			8.53	0.307	2	.8	6.83	16.52	100	
932	7.82			8.53	0.31		.8	5.52	15.29	102	
936	7.91			8.51	0.312		.5	5.04	15.55	105	
940	7.95			8.48	0.314		.1	4.92	15.65	107	
944	8.02			8.47	0.315	1	.9	4.75	15.72	108	
			<u> </u>								
Total Quantit	y of Water Re	moved (Galloi	ns): 1.6			Sam	pling Ti	me:	948		
Samplers:	James	Charter				Split	Sample	e With:	NA		
									1		
Sampling Da	te:	7/13/2011					Sample Type: MS/MSD				
			IMS/MSD	taken from	this location	<u> </u>					
COMMENTS	AND OBSER	VATIONS:	INIO/INIOD	tanen HUII	i uno iocali	JII					

1 Fairchild	neering, P.C I Square, St rk, NY 1206 -7101	uite 110		ROUNDWAT SAMPLING							
Project: North	h Lawrence Oi	I Dump	WAS #: D006	6130-21		Field F	ersonn	iel: James Cl	harter and Mark	Wright	
Location: Mc. Lawrence, No.	Auslen Road, l	North	Well ID.: PZ-	2		Weather: Sunny 80F					
Sounding Me	ethod: Interface	e Meter	Gauge Date:	7/13/2012		Measu	irement	Ref: Black N	Mark on top of P	VC	
Stick Up/Dow	vn (ft): Stick up)~4ft.	Gauge Time:	: 939		Well Diameter (in): 2 inches					
Purge Date:		7/1	3/2011		Purge Time:	939					
Purge Metho	d:	Perist	altic Pump		Field Technic	ician: James Charter					
1) Well Depth	h (ft): 16.41 ft.		4) Well Diameter (in): 2 inch				Well V	/olumes (gal)):		
2) Depth to V	Vater (ft): 5.49	ft.	5) Well Volur 1.77	Depth/	Depth/Height of Top of PVC:						
3) Height of H 10.92 ft.	H₂O Column (1	-2) (ft):	6) Total Well gallons	Pump	Type: F	Peristaltic Pu	mp				
			1	Water Qualit	y Paramete						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	(nt	oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)	
939	5.49			6.90	.387	3.		8.54	18.19	63	
942	na	 		6.74	0.386		.5	4.07	17.6	47	
945	na		 	6.69	0.386	_	.9	2.72	17.61	47	
948	na		 	6.66	0.388	1		1.93	18.12	49 52	
951 957	na na			6.664 6.66	0.389 0.391	0.	.1 .9	1.31 1.28	18.5 18.5	53	
					-	 					
						 					
Total Quantit	y of Water Rer	moved (Gallo	ns): 5.33			Samı	pling Tir	me:	1000		
Samplers:	James	Charter				Split	Sample	• With:	NA		
								-			
Sampling Da	te:	7/13/2011				Samp	ple Type	e:	Dulpicate		
COMMENTS	S AND OBSER	VATIONS:	Collected	d Field Dupl	lciate from	this lo	cation	1			

1 Fairchild	neering, P.0 Square, Suk, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING						
Project: North	n Lawrence Oi	l Dump	WAS #: D00	6130-21		Field Personnel: James Charter and Mark Wright				
Location: Mc	Auslen Road, ew York	North	Well ID.: MW-104A			Weather	: Sunny 80)F		
Sounding Me	thod: Interface	Meter	Gauge Date	: 7/13/2012	Measurement Ref: Black Mark on top of P					VC
Stick Up/Dow	vn (ft): Stick up)~4ft.	Gauge Time: 1009			Well Dia	meter (in):	2 inche	es	
Purge Date:		7/1	13/2011 Purge Time:			Į.			1009	
Purge Metho				taltic Pump Field Technici				Jan	nes Charter	
1) Well Depth	n (ft): 40.00 ft.		4) Well Diam	neter (in): 2 inc	zh	7) Five V	Vell Volum	es (gal)):	
2) Depth to V	2) Depth to Water (ft): 5.23 ft.			me / Foot (gal)) (d ² x.0408):	Depth/Height of Top of PVC:				
3) Height of F 34.77 ft.	3) Height of H ₂ O Column (1-2) (ft): 34.77 ft.			6) Total Well Volume (gal) (3x5): 17.82 I gallons			/pe: Perista	altic Pu	mp	
			,	Water Qualit	y Paramete	rs				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	Turbidi (ntu)) (DO ug/L)	Temperature (oC)	ORP (mV)
1009	5.25		gallons Water Quality Param Rate pH Conductivi			2.3		0	18.51	-155
1012 1015	na					2.3 2.3		0	18.61 18.7	-160 -168
1013	na 5.33					2.3		0	18.86	-100 -172
1010	3.33			7.51	0.501	2.0		U	10.00	-112
Total Quantit	y of Water Rer	moved (Gallo	ns): 17.8	2		Sampli	ng Time:		1020	
	1.								INIA	
Samplers:	James	Charter				Split Sa	ample With	1:	NA	
Sampling Da	te:	7/13/2011				Sample	е Туре:		normal	
COMMENTS	AND OBSER	VATIONS:								

1 Fairchild	neering, P.0 Square, Sok, NY 1206 7101	uite 110		ROUNDWAT SAMPLING							
Project: North	n Lawrence Oi	il Dump	WAS #: D006	6130-21		Field F	Field Personnel: James Charter and Mark Wright				
Location: Mc/ Lawrence, Ne	Auslen Road, ew York	North	Well ID.: MW-105B			Weath	ner: Sun	ny 80F			
Sounding Me	thod: Interface	e Meter	Gauge Date: 7/13/2012			Measu	rement	Ref: Black N	Mark on top of P	VC	
Stick Up/Dow	vn (ft): Stick up	o~4ft.	Gauge Time: 1004			Well D	iameter	r (in): 2 inche	es		
Purge Date:		7/1	13/2011 Purge Time:						1004		
Purge Method	d :	Perist	altic Pump		Field Technic	cian:		Jan	nes Charter		
1) Well Depth) Well Depth (ft): 11.77 ft.			neter (in): 2 inc	:h	7) Five	e Well V	olumes (gal)):		
2) Depth to Water (ft): 6.61 ft.			5) Well Volume / Foot (gal) (d ² x.0408): 0.84			Depth/Height of Top of PVC:					
3) Height of F ft.	3) Height of H_2O Column (1-2) (ft): 5.1 t.			6) Total Well Volume (gal) (3x5): 1.40 gallons			Type: P	Peristaltic Pu	mp		
	gallons Water Qua				y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)		oidity tu)	DO (ug/L)	Temperature (oC)	ORP (mV)	
1004	7.41			7.54	0.587		1	5.13	19.06	-88	
1008	7.32			6.9	0.614		.6	0	18.72	-79	
1012	7.31		<u> </u>	6.8	0.607		.9	0	18.36	-81	
1016	7.28			6.77	0.601	1.		0	18.44	-83	
1020	7.29			6.75	0.598	0.	.7	0	18.51	-79	
						 					
Tatal Quantity	f Mator Do						- U- a Tie		1024		
Total Quantity	/ Of Water Ker	emoved (Gallor	ns): 1.4			Sam	pling Tir	ne:	1024		
Samplers:	James	Charter				Split	Sample	With:	NA		
Sampling Dat	ie:	7/13/2011				Samı	ple Type	 ∋:	MS/MSD		
			NR - Not	t Registering	g						
COMMENTS	AND OBSER	:VATIONS:		J	J						

HRP Engir 1 Fairchild Clifton Par (518) 877-	Square, S k, NY 1206	Suite 110	GROUNDWATER WELL SAMPLING FORM					PEPARTMENTO	NI FORK STATE.		
Project: North	1 Lawrence C	il Dump	WAS #: D00)6130-21		Field Pe	Field Personnel: James Charter and Mark Wright				
Location: Mc/ Lawrence, Ne		North	Well ID.: MW-303			Weathe	r: Sunn	y 80F			
Sounding Me	thod: Interfac	e Meter	Gauge Date: 7/12/2012			Measur	ement F	Ref: Black I	Mark on top of P	VC	
Stick Up/Dow	'n (ft): Stick u	p~4ft.	Gauge Time:947			Well Dia	ameter	(in): 2 inche	es		
Purge Date:		7/1	12/2011		Purge Time:				9:47		
Purge Method	d:	Perist	taltic Pump	1	Field Technic	cian:		Jan	nes Charter		
1) Well Depth	ı (ft): 17.87 ft.		4) Well Dian	meter (in): 2 inc	:h	7) Five '	Well Vo	lumes (gal):		
2) Depth to W	/ater (ft): 6.64	1 ft.	5) Well Volume / Foot (gal) (d ² x.0408): 0.183			Depth/Height of Top of PVC:					
3) Height of H_2O Column (1-2) (ft): 13.35 ft.			6) Total Well Volume (gal) (3x5): 5.49 gallons			Pump T	ype: Pe	eristaltic Pu	ımp		
Water Quality Param					y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	Turbid (ntu	ı)	DO (ug/L)	Temperature (oC)	ORP (mV)	
947	7.25			7.31	0.607	1.1		2.06	22.71	107	
952	7.25	<u> </u>	 	7.11	0.595	0.9		0.47	20.35	120	
958	7.39	 	 	6.83	0.583	0.8		0	18.47	126	
1002 1007	7.46 7.5	 	+	6.83 6.84	0.57 0.561	0.7		0	18.29 18.21	<u>112</u> 97	
1012	7.54	+	+	6.85	0.555	0.6		0	18.12	<u>97</u> 88	
1017	7.55	+	+	6.85	0.551	0.4		0	18.01	84	
1022	7.56			6.86	0.548	0.3		0	17.88	80	
		<u></u>			<u></u>				Linea		
Total Quantity	y of Water Re	emoved (Gallo	ons): 5.49)		Sampl	ing Tim	e:	1030		
Samplers:	James	s Charter				Split S	ample \	With:	NA		
Sampling Dat	te:	7/12/2011				Sampl	e Type:		MS/MSD		
			INAC/NACE	Takon fran	a thia laast!	<u></u>					
COMMENTS	AND OBSEF	RVATIONS:	INIO/INIOL	O taken from	i triis locatio	on					

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101		GROUNDWATER WELL SAMPLING FORM			OF ENVIRONMENTAL COLES ENV					
Project: North Lawrence Oil Dump	WAS #: D006130-21		Field Personnel: James Charter and Mark Wright							
Location: McAuslen Road, North Lawrence, New York	Well ID.: MW-102A		Weather: Sunny 80F							
Sounding Method: Interface Meter	Gauge Date: 7/12/2012		Measure	ment Ref: Black I	Mark on top of P	VC				
Stick Up/Down (ft): Stick up~4ft.	Gauge Time: 10:20	Well Diar	neter (in): 2 inche	es						
Purge Date: 7/	12/2011	Purge Time: 10:20								
Purge Method: Peris	taltic Pump	Field Technic	cian:	Jan	nes Charter					
1) Well Depth (ft): 41.87 ft.	4) Well Diameter (in): 2 incl	'n	7) Five W	/ell Volumes (gal):					
2) Depth to Water (ft): 8.32 ft.	5) Well Volume / Foot (gal) 5.46	(d ² x.0408):	Depth/Height of Top of PVC:							
3) Height of H ₂ O Column (1-2) (ft): 13.35 ft.		6) Total Well Volume (gal) (3x5): 16.40 P			mp					
	Water Quality	/ Parameter	rs							
(hrs) (ft btoc) (liters) 1020 8.32 1025 12.2 1030 13.35 1035 14.17 1040 14.65 1045 15.15	(mL/m) (pH units) 7.13 7.47 7.42 7.36 7.33 7.29	NR 0.496 1.493 0.47 0.494 0.49	(ntu) NR 2.3 2.4 1 1 1.1	(ug/L) NR 0 0 0 0 0	(oC) NR 13.01 12.66 12.88 12.71 13	(mV) NR -118 -117 -115 -112 -111				
Total Quantity of Water Removed (Galle	ons): 16.4		Samplin	ng Time:	1045					
Samplers: James Charter			Split Sa	mple With:	NA					
Sampling Date: 7/12/2011	I		Sample	Туре:						
COMMENTS AND OBSERVATIONS:										

1 Fairchild Clifton Par	Square, Suk, NY 1206	uite 110	GF	ROUNDWAT SAMPLING		TO THE WINDS AND TO THE WORK STATE						
Project: North	cation: McAuslen Road, North wrence, New York unding Method: Interface Meter ck Up/Down (ft): Stick up~4ft. rge Date: 7/12 rge Method: Peristal Well Depth (ft): 17.56 ft. 4 Depth to Water (ft): 6.14 ft. 1 Height of H ₂ O Column (1-2) (ft): 42 ft. 9 Time (hrs) (ft btoc) (liters) 1357 7.25 1402 8.41 1407 9.15 1411 9.21 1415 9.25 1419 9.27 tal Quantity of Water Removed (Gallons mplers: James Charter		WAS #: D00	6130-21		Field P	Field Personnel: James Charter and Mark Wright					
		North	Well ID.: MV	V-302		Weather: Sunny 80F						
Sounding Me	thod: Interface	Meter	Gauge Date	: 7/12/2012		Measu	rement	Ref: Black I	Mark on top of P	VC		
Stick Up/Dow	vn (ft): Stick up	~4ft.	Gauge Time: 1357			Well Di	ameter	(in): 2 inche	es			
Purge Date:		7/	12/2011		Purge Time:				1357			
Purge Metho	d:	Peris	taltic Pump		Field Techni	cian:		Jar	nes Charter			
1) Well Depth	n (ft): 17.56 ft.		4) Well Dian	neter (in): 2 inc	ch	7) Five	Well V	olumes (gal):			
2) Depth to W	Vater (ft): 6.14	ft.		me / Foot (gal)) (d ² x.0408):	Depth/	Height	of Top of P\	/C:			
3) Height of H 11.42 ft.	1.86) Height of H ₂ O Column (1-2) (ft): 6) Total Well Volume (ga				(3x5): 5.58	Pump Type: Peristaltic Pump						
				Water Qualit	y Paramete	ers						
	(ft btoc)		Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	Turbi (nt		DO (ug/L)	Temperature (oC)	ORP (mV)		
				6.74	0.468	10		0.70	25.53	-47		
			-	6.68	0.484	9.		0	23	<u>-53</u>		
			+	6.63 6.63	0.499 0.493	8. 8.		<u>0</u> 0	21.74 21.7	-56 -42		
			+	6.63	0.49	8.		0	21.63	-38		
			+	6.63	0.488	7.		0	21.57	-35 -35		
1413	5.21			0.00	0.400	, ·	J	<u> </u>	21.01			
			<u> </u>									
Total Quantity	v of Water Rer	moved (Gallo	ons): 1.3			Samr	ling Tir	ne.	1422			
Total Quality	y or water rea		71.0			Camp	9					
Samplers:	James	Charter				Split S	Sample	With:	NA			
Sampling Da	te:	7/12/2011				Samp	le Type	e:				
COMMENTS	AND OBSER	VATIONS:										

1 Fairchild Clifton Par	Square, Su k, NY 1206	uite 110	GI	ROUNDWAT SAMPLING				70	NUIRONMENTAL COLUMN SERVICE SE			
Project: North	Cation: McAuslen Road, North Wrence, New York Cation: McAuslen Road, North Wrence, New York Cation Cation		WAS #: D00	06130-21		Field Personnel: James Charter and Mark Wright						
		North	Well ID.: MV	V-203		Weath	Weather: Sunny 80F					
Sounding Me	thod: Interface	Meter	Gauge Date	: 7/12/2012		Measu	rement	Ref: Black	Mark on top of P	/C		
Stick Up/Dow	n (ft): Stick up)~4ft.	Gauge Time: 1421			Well Di	ameter	(in): 2 inch	es			
Purge Date:		7/	/12/2011 Purge Time:						1421			
Purge Metho	d:	Peris	taltic Pump	1	Field Techni	ician:		Jar	nes Charter			
1) Well Depth	ı (ft): 20.15 ft.		4) Well Dian	neter (in): 2 inc	ch	7) Five	Well V	olumes (gal):			
2) Depth to V	Vater (ft): 8.35	ft.		me / Foot (gal)) (d ² x.0408):	Depth/l	Height o	of Top of P\	/C:			
$\begin{array}{c} \text{3) Well Volume 7 To} \\ \text{1.92} \\ \text{3) Height of H}_2\text{O Column (1-2) (ft):} \\ \text{11.80 ft.} \end{array}$			l Volume (gal)	(3x5): 5.77 Pump Type: Peristaltic Pump				ımp				
	_			Water Qualit	y Paramete	ers						
			Rate (mL/m)	pH (pH units)	Conductivity: (uS/cm)	Turbi (nt		DO (ug/L)	Temperature (oC)	ORP (mV)		
				6.82	.667	3.		0	18.61	-83		
				6.74	0.656	3.		0	18.18	-82		
				6.67	0.658	3.		<u>0</u> 0	17.89	<u>-71</u>		
				6.63 6.57	0.695 0.747	1.		0	17.89 17.57	<u>-38</u> -12		
1436	8.35			6.55	0.747	1.	_	0	17.57	<u>-12</u> -7		
1439	8.33			6.55	0.749	1.		0	17.04	-3		
					l	1			1			
Total Quantit	y of Water Rer	noved (Gallo	ons): 16.4	ļ		Samp	ling Tin	ne:	1440			
Samplers:	James	Charter				Split S	Sample	With:	NA			
Sampling Da	te:	7/12/2011				Samp	le Туре):				
			1						•			
COMMENTS	AND OBSER	VATIONS:										

Appendix E

Analytical Results

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-303(7/12/11)

Lab Order:

U1107313

Project:

Collection Date: 7/12/2011 10:30:00 AM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-001

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual U	Inits	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_	w		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,1,2-Trichloroethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,1-Dichloroethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,1-Dichloroethene	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,2-Dichlorobenzene	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,2-Dichloroethane	ND	3.0	μg	g/L	1	7/22/2011 1:26:00 PM
1,2-Dichloropropane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,3-Dichlorobenzene	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
1,4-Dichlorobenzene	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Acrolein	ND	50	μ	g/L	1	7/22/2011 1:26:00 PM
Acrylonitrile	ND	50	μ	g/L	1	7/22/2011 1:26:00 PM
Benzene	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Bromodichloromethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Bromoform	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Bromomethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Carbon tetrachloride	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Chlorobenzene	ND	3.0		- g/L	1	7/22/2011 1:26:00 PM
Chloroethane	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Chloroform	ND	3.0	μ	g/L	1	7/22/2011 1:26:00 PM
Chloromethane	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
cis-1,2-Dichloroethene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
cis-1,3-Dichloropropene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Dibromochloromethane	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Dichlorodifluoromethane	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Ethylbenzene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
m,p-Xylene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Methylene chloride	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
o-Xylene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Tetrachloroethene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
Toluene	ND	3.0		g/L	1	7/22/2011 1:26:00 PM
trans-1,2-Dichloroethene	ND	3.0		₉ . – g/L	1	7/22/2011 1;26:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg		1	7/22/2011 1:26:00 PM
Trichloroethene	ND	3.0	μg		1	7/22/2011 1:26:00 PM
Trichlorofluoromethane	ND	3.0		₉ , _ g/L	1	7/22/2011 1:26:00 PM
Vinyl chloride	ND	2.0	μς		1	7/22/2011 1:26:00 PM
TIC: unknown	6.4	0	В из		1	7/22/2011 1:26:00 PM

Approved	By:	PFF	Date:	8-11-11
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in t

- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Page 1 of 48

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-303(7/12/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011 10:30:00 AM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-001

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	SP 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	ND	100	μg/L	1	8/10/2011 9:01:58 AM
Barium	193	50.0	μg/L	1	8/10/2011 9:01:58 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:01:58 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:01:58 AM
Calcium	97700	5000	μg/L	1	8/10/2011 9:01:58 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:01:58 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:01:58 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:01:58 AM
Iron	92.3	60.0	μg/L	1	8/10/2011 9:01:58 AM
Magnesium	25600	5000	μg/L	1	8/10/2011 9:01:58 AM
Manganese	187	10.0	μg/L	1	8/10/2011 9:01:58 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:01:58 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:01:58 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:01:58 AM
Sodium	ND	5000	μg/L	1	8/10/2011 9:01:58 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:01:58 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:01:58 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	1 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
TOTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM
SEMIVOLATILE STARS LIST BY NYS			270_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Fluorene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Phenanthrene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Anthracene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Fluoranthene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Pyrene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Benz(a)anthracene	ND	8.3	µg/L	1	8/2/2011 4:13:00 PM
Chrysene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Benzo(b)fluoranthene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Benzo(k)fluoranthene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM
Benzo(a)pyrene	ND	8.3	μg/L	1	8/2/2011 4:13:00 PM

Approved I	sy:	2	-
------------	-----	---	---

Qualifiers:

Accreditation not offered by NYS DOH for this parameter

Value exceeds Maximum Contaminant Value

Value above quantitation range

Analyte detected below quantitation limits

Outlying QC recoveries were associated with this parameter

Date: 8-11-11 Page 2 of 48

Low Level

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-303(7/12/11)

Lab Order:

U1107313

Collection Date: 7/12/2011 10:30:00 AM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-001

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	70_A	SPPET_W	(SW3520)	Analyst: LD
Dibenz(a,h)anthracene	ND	8.3		μg/L	1	8/2/2011 4:13:00 PM
Benzo(g,h,i)perylene	ND	8.3		μg/L	1	8/2/2011 4:13:00 PM
Indeno(1,2,3-cd)pyrene	ND	8.3		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (13.22)	160	0	В	μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (13.31)	200	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (13.42)	130	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (13.76)	360	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (13.91)	840	0	В	μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (14.09)	140	0		µg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (14.35)	92	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (14.68)	250	0	В	μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (14.85)	620	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (15.83)	370	0	В	μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (15.91)	140	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (16.04)	120	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (16.45)	160	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (16.75)	160	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (16.86)	130	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (17.36)	120	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (17.59)	190	0		μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (17.85)	990	0	В	μg/L	1	8/2/2011 4:13:00 PM
TIC: unknown (18.12)	100	0		μg/L	, 1	8/2/2011 4:13:00 PM
TIC: unknown (18.31)	120	0		μg/L	1	8/2/2011 4:13:00 PM

Approved By:		By:	PFF	Date:	8-11-11	Page 3 of 48	
Qual	ualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level		
	** Value exceeds Maximum Contaminant Value		Value exceeds Maximum Contaminant Value	В	Analyte detected in the associate	d Method Blank	
		E	Value above quantitation range	Н	Holding times for preparation or	analysis exceeded	
		J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Li	imit	
Q		Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted	l recovery limits	
Qual	ualifiers:	_	Value exceeds Maximum Contaminant Value Value above quantitation range Analyte detected below quantitation limits	Н	Analyte detected in the associate Holding times for preparation or Not Detected at the Reporting Li	analysis exceeded	

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-102A(7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/12/2011 10:45:00 AM

Project:

01107313

Lab ID:

New9620.OM/N. Lawrence Oil Dump U1107313-002

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624			Analyst: EM Z
1,1,1-Trichloroethane	ND	3.0		_ μg/L	1	7/22/2011 3:29:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 3:29:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 3:29:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Chloroform	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Chloromethane	ND	3.0		μg/L	, 1	7/22/2011 3:29:00 PM
cis-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Methylene chloride	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
o-Xylene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Toluene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/22/2011 3:29:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/22/2011 3:29:00 PM
TIC: unknown	7.4	0		μg/L	1	7/22/2011 3:29:00 PM

Approved By:		: PFF		8-11-11	Page 4 of 48	
Qualifiers: #		Accreditation not offered by NYS DOH for this parameter	*	Low Level		
**		* Value exceeds Maximum Contaminant Value		Analyte detected in the associated Method Blank		
	Е	Value above quantitation range	Н	Holding times for preparation or ana	dysis exceeded	
J Q		Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit		
		Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted rec	covery limits	

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-102A(7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/12/2011 10:45:00 AM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-002 Matrix: GROUNDWATER

S Spike Recovery outside accepted recovery limits

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	P 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	ND	100	μg/L	1	8/10/2011 9:19:41 AM
Barium	121	50.0	μg/L	1	8/10/2011 9:19:41 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:19:41 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:19:41 AM
Calcium	62700	5000	μg/L	1	8/10/2011 9:19:41 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:19:41 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:19:41 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:19:41 AM
Iron	1300	60.0	μg/L	1	8/10/2011 9:19:41 AM
Magnesium	29200	5000	μg/L	1	8/10/2011 9:19:41 AM
Manganese	42.2	10.0	μg/L	1	8/10/2011 9:19:41 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:19:41 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:19:41 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:19:41 AM
Sodium	ND	5000	μg/L	1	8/10/2011 9:19:41 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:19:41 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:19:41 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	· 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
OTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM
EMIVOLATILE STARS LIST BY NYSI			70_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Fluorene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Phenanthrene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Anthracene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Pyrene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Chrysene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	8/2/2011 5:25:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 5 of 48	
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level		
**		Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank		
	E	Value above quantitation range	H Holding times for preparation or analysis		nalysis exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lin	nit	

Outlying QC recoveries were associated with this parameter

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-102A(7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/12/2011 10:45:00 AM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-002

Analyses	Result	Limit	Qua	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	.70_A	SPPET_W	(SW3520)	Analyst: LD
Dibenz(a,h)anthracene	ND	5.0	_	μg/L	1 1	8/2/2011 5:25:00 PM
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	8/2/2011 5:25:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.08)	64	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.23)	50	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.33)	120	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.42)	69	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.67)	52	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.77)	350	0	В	μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (13.92)	200	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.11)	86	0	В	μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.26)	60	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.3)	53	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.45)	50	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.69)	140	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (14.82)	46	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (15.02)	59	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (15.39)	63	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (16.03)	50	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (17.18)	50	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (17.28)	160	0		μg/L	1	8/2/2011 5:25:00 PM
TIC: unknown (17.38)	44	0		μg/L	. 1	8/2/2011 5:25:00 PM
TIC: unknown (17.85)	650	0	В	μg/L	1	8/2/2011 5:25:00 PM

Approved	By:	PFF		8-11-11	Page 6 of 48	
Qualifiers: #		Accreditation not offered by NYS DOH for this parameter	*	* Low Level		
**		Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank		
	E	Value above quantitation range	Н	H Holding times for preparation or analysis exceeded		
J		Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim	it	
Q		Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits	

Analytical Report

CLIENT: HRP Engineering, P.C.

U1107313

Lab Order: Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-003

Date: 11-Aug-11

Client Sample ID: Duplicate

Collection Date: 7/12/2011

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624	4_W		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 4:10:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 4:10:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Chloroform	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Chloromethane	ND	3.0		μg/L	. , 1	7/22/2011 4:10:00 PM
cis-1,2-Dichloroethene	14	3.0		μg/L	1	7/22/2011 4:10:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Methylene chloride	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
o-Xylene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Toluene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/22/2011 4:10:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/22/2011 4:10:00 PM
TIC: unknown	4.7	0		μg/L	1	7/22/2011 4:10:00 PM

	Approved	By:	PFF	Date:	8-11-11	Page 7 of 48	
	Qualifiers: #		Accreditation not offered by NYS DOH for this parameter	*	Low Level		
*		**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank		
		E	Value above quantitation range	Н	Holding times for preparation or ar	nalysis exceeded	
		J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim	it	
	•	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits	

Analytical Report

CLIENT: HRP Engineering, P.C.

U1107313

Lab Order: Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-003

Date: 11-Aug-11

Client Sample ID: Duplicate

Collection Date: 7/12/2011

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	SP 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	ND	100	μg/L	1	8/10/2011 9:25:57 AM
Barium	526	50.0	μg/L	1	8/10/2011 9:25:57 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:25:57 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:25:57 AM
Calcium	72800	5000	μg/L	1	8/10/2011 9:25:57 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:25:57 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:25:57 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:25:57 AM
Iron	1320	60.0	μg/L	1	8/10/2011 9:25:57 AM
Magnesium	28200	5000	μg/L	1	8/10/2011 9:25:57 AM
Manganese	230	10.0	μg/L	1	8/10/2011 9:25:57 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:25:57 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:25:57 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:25:57 AM
Sodium	17700	5000	μg/L	1	8/10/2011 9:25:57 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:25:57 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:25:57 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	· ' 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	µg/L	1	8/10/2011 8:21:00 AM
TOTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM
SEMIVOLATILE STARS LIST BY NYSI	DEC ASP 2005	82	270_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Fluorene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Phenanthrene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Anthracene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Pyrene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Chrysene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	8/2/2011 5:49:00 PM

Approvea	By:	ירו	-	ĺ

Qualifiers:

- Accreditation not offered by NYS DOH for this parameter
- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 8-11-11 Page 8 of 48

- Low Level
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Lab Order: U

U1107313

New9620.OM/N. Lawrence Oil Dump

Project: Lab ID:

U1107313-003

Date: 11-Aug-11

Client Sample ID: Duplicate

Collection Date: 7/12/2011

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	70_A	SPPET_W	(SW3520)	Analyst: LD
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	8/2/2011 5:49:00 PM
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	8/2/2011 5:49:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0		μg/L	1	8/2/2011 5:49:00 PM
TIC: Docosane	410	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: Pentacosane	370	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (13.46)	43	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (13.64)	32	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (13.77)	210	0	В	μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (14.07)	46	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (14.11)	26	0	В	μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (14.27)	30	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (14.69)	210	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (15.24)	38	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (15.49)	92	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (15.85)	33	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (16.04)	29	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (16.33)	38	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (16.81)	25	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (16.95)	27	0		µg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (17.42)	27	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (17.6)	26	0		μg/L	1	8/2/2011 5:49:00 PM
TIC: unknown (17.85)	280	0	В	μg/L	, 1	8/2/2011 5:49:00 PM
TIC: unknown (18.38)	27	0		μg/L	` 1	8/2/2011 5:49:00 PM

Approved By:	: PFF		8-11-11	Page 9 of 48	
Qualifiers: #	Accreditation not offered by NYS DOH for this parameter	*	Low Level		
**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank		
E	Value above quantitation range	Н	H Holding times for preparation or analysis exce		
J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limi	it	
Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits	

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-301(7/12/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011 12:04:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-004

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		62	4_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 4:52:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 4:52:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Chloroform	ND	3.0		µg/L	1	7/22/2011 4:52:00 PM
Chloromethane	ND	3.0		μg/L	, 1	7/22/2011 4:52:00 PM
cis-1,2-Dichloroethene	15	3.0		μg/L	1	7/22/2011 4:52:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Methylene chloride	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
o-Xylene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Toluene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/22/2011 4:52:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/22/2011 4:52:00 PM
TIC: unknown	4.1	0	В	μg/L	1	7/22/2011 4:52:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 10 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	-	X7-11	* *	TY 11' (' C	

- Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter
- Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-301(7/12/11)

Lab Order:

U1107313

Collection Date: 7/12/2011 12:04:00 PM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-004

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	P 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	ND	100	μg/L	1	8/10/2011 9:32:04 AM
Barium	525	50.0	μg/L	1	8/10/2011 9:32:04 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:32:04 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:32:04 AM
Calcium	72100	5000	μg/L	1	8/10/2011 9:32:04 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:32:04 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:32:04 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:32:04 AM
Iron	1380	60.0	μg/L	1	8/10/2011 9:32:04 AM
Magnesium	28300	5000	μg/L	1	8/10/2011 9:32:04 AM
Manganese	227	10.0	μg/L	1	8/10/2011 9:32:04 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:32:04 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:32:04 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:32:04 AM
Sodium	17800	5000	μg/L	1	8/10/2011 9:32:04 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:32:04 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:32:04 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	· 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
TOTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM
SEMIVOLATILE STARS LIST BY NYSI			70_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Fluorene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Phenanthrene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Anthracene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Pyrene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Chrysene	ND	5.0	μg/L	1	8/2/2011 6:13;00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	8/2/2011 6:13:00 PM

Approved	By:	0	- ·	C
----------	-----	---	-----	---

Qualifiers:

Accreditation not offered by NYS DOH for this parameter

- ** Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Q Outlying QC recoveries were associated with this parameter

Date: 8-11-11

Page 11 of 48

- Low Level
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C.

Client Sample ID: MW-301(7/12/11)

CLIENT: Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011 12:04:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-004

Analyses	Result	Limit	Qua	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	70_A	SPPET_W	(SW3520)	Analyst: LD
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	8/2/2011 6:13:00 PM
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	8/2/2011 6:13:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.09)	20	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.22)	49	0	В	μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.34)	48	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.45)	47	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.77)	150	0	В	μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (13.91)	130	0	В	μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (14.11)	31	0	В	μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (14.4)	19	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (14.69)	26	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (14.93)	60	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (15.65)	27	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (15.71)	29	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (15.95)	23	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (16.47)	21	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (16.6)	30	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (17.46)	24	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (17.85)	170	0	В	μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (18.07)	30	0		μg/L	1	8/2/2011 6:13:00 PM
TIC: unknown (18.24)	26	0		μg/L	, 1	8/2/2011 6:13:00 PM
TIC: unknown (18.41)	36	0		μg/L	1	8/2/2011 6:13:00 PM

By:	PFF	Date:	8-11-11 Page 12 of 48	
#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank	
E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	
J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted recovery limits	
	#	# Accreditation not offered by NYS DOH for this parameter ** Value exceeds Maximum Contaminant Value E Value above quantitation range J Analyte detected below quantitation limits	# Accreditation not offered by NYS DOH for this parameter ** Value exceeds Maximum Contaminant Value B Value above quantitation range H Analyte detected below quantitation limits	# Accreditation not offered by NYS DOH for this parameter ** Value exceeds Maximum Contaminant Value B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit

Analytical Report

CLIENT: HRP Engineering, P.C.

P Engineering, P.C. Client Sample ID: MW-102B(7/12/11)
07313 Collection Date: 7/12/2011 12:35:00 PM

Date: 11-Aug-11

Lab Order: U1107313

Project: New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-005 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0	<u> </u>	· 1	7/22/2011 5:33:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Acrolein	ND	50	μg/L	1	7/22/2011 5:33:00 PM
Acrylonitrile	ND	50	μg/L	1	7/22/2011 5:33:00 PM
Benzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Bromoform	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Bromomethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Chloroethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Chloroform	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Chloromethane	ND	3.0	μg/L	, 1	7/22/2011 5:33:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
o-Xylene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Toluene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/22/2011 5:33:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/22/2011 5:33:00 PM
TIC: Disulfide, dimethyl	2.7	0	μg/L	1	7/22/2011 5:33:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 13 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	e exceeds Maximum Contaminant Value B Analyte detected in the associated M		Method Blank
	E	Value above quantitation range	H	Holding times for preparation or analysis exceeded	
	J	Analyte detected below quantitation limits	ND Not Detected at the Reporting Limit		it
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits

Analytical Report

HRP Engineering, P.C. **CLIENT:**

Client Sample ID: MW-102B(7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/12/2011 12:35:00 PM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-005

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	P 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	ND	100	μg/L	1	8/10/2011 9:38:20 AM
Barium	51.2	50.0	μg/L	1	8/10/2011 9:38:20 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:38:20 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:38:20 AM
Calcium	51400	5000	μg/L	1	8/10/2011 9:38:20 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:38:20 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:38:20 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:38:20 AM
Iron	811	60.0	μg/L	1	8/10/2011 9:38:20 AM
Magnesium	21800	5000	μg/L	1	8/10/2011 9:38:20 AM
Manganese	171	10.0	μg/L	1	8/10/2011 9:38:20 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:38:20 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:38:20 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:38:20 AM
Sodium	ND	5000	μg/L	1	8/10/2011 9:38:20 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:38:20 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:38:20 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	¹ ¹ 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
TOTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM

ву:	PEF	Date:	8 - 11 - 11 Page 14 of 48	
#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank	
E	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	
J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted recovery limits	
	#	# Accreditation not offered by NYS DOH for this parameter ** Value exceeds Maximum Contaminant Value E Value above quantitation range J Analyte detected below quantitation limits	# Accreditation not offered by NYS DOH for this parameter * Value exceeds Maximum Contaminant Value B E Value above quantitation range H J Analyte detected below quantitation limits ND	# Accreditation not offered by NYS DOH for this parameter * Value exceeds Maximum Contaminant Value B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** PZ-5(7/12/11)

Lab Order:

U1107313

Collection Date: 7/12/2011 1:52:00 PM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-006

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUTA	ANTS BY 624		624_W		Analyst: EM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Acrolein	ND	50	μg/L	1	7/22/2011 6:14:00 PM
Acrylonitrile	, ND	50	μg/L	1	7/22/2011 6:14:00 PM
Benzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Bromoform	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Bromomethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Chloroethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Chloroform	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Chloromethane	ND	3.0	μg/L	, 1	7/22/2011 6:14:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
o-Xylene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Toluene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/22/2011 6:14:00 PM
	ND	2.0	μg/L	1	7/22/2011 6:14:00 PM

Approved	Bv:
	-, ,

Page 15 of 48

Qualifiers: Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date:

- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND

8-11-11

Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-302(7/12/11) **Collection Date:** 7/12/2011 2:22:00 PM

Date: 11-Aug-11

Lab Order: U1107313 New9620.OM/N. Lawrence Oil Dump Project:

Lab ID: U1107313-007 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUT	ANTS BY 624		624_W		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0	 μg/L	1	7/22/2011 6:55:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Acrolein	ND	50	μg/L	1	7/22/2011 6:55:00 PM
Acrylonitrile	ND	50	μg/L	1	7/22/2011 6:55:00 PM
Benzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Bromoform	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Bromomethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Chloroethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Chloroform	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Chloromethane	ND	3.0	μg/L	、 1	7/22/2011 6:55:00 PM
cis-1,2-Dichloroethene	2	3.0	J μg/L	1	7/22/2011 6:55:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
o-Xylene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Toluene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/22/2011 6:55:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/22/2011 6:55:00 PM

TICS: No compounds were detected.

Approved By	7 : _	PFF	Date:	8-11-11	Page 16 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
*	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank	
]	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	
,	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
(Q .	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted recovery limits	

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-302(7/12/11) Collection Date: 7/12/2011 2:22:00 PM

Date: 11-Aug-11

Lab Order: U1107313 Project: New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-007 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ICP METALS, TOTAL BY NYSDEC AS	SP 2005		200.7WTASP	(E200.7)	Analyst: ALW
Aluminum	111	100	μg/L	1	8/10/2011 9:44:37 AM
Barium	615	50.0	μg/L	1	8/10/2011 9:44:37 AM
Beryllium	ND	3.00	μg/L	1	8/10/2011 9:44:37 AM
Cadmium	ND	5.00	μg/L	1	8/10/2011 9:44:37 AM
Calcium	84800	5000	μg/L	1	8/10/2011 9:44:37 AM
Chromium	ND	10.0	μg/L	1	8/10/2011 9:44:37 AM
Cobalt	ND	20.0	μg/L	1	8/10/2011 9:44:37 AM
Copper	ND	10.0	μg/L	1	8/10/2011 9:44:37 AM
Iron	4070	60.0	μg/L	1	8/10/2011 9:44:37 AM
Magnesium	25200	5000	μg/L	1	8/10/2011 9:44:37 AM
Manganese	653	10.0	μg/L	1	8/10/2011 9:44:37 AM
Nickel	ND	30.0	μg/L	1	8/10/2011 9:44:37 AM
Potassium	ND	5000	μg/L	1	8/10/2011 9:44:37 AM
Silver	ND	10.0	μg/L	1	8/10/2011 9:44:37 AM
Sodium	ND	5000	μg/L	1	8/10/2011 9:44:37 AM
Vanadium	ND	30.0	μg/L	1	8/10/2011 9:44:37 AM
Zinc	ND	10.0	μg/L	1	8/10/2011 9:44:37 AM
ASP TOTAL METALS BY ICP-MS			200.8ASP	(E200.8)	Analyst: ALW
Antimony	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Arsenic	ND	5.0	μg/L	1	8/10/2011 8:21:00 AM
Lead	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
Selenium	ND	3.0	μg/L	` 1	8/10/2011 8:21:00 AM
Thallium	ND	3.0	μg/L	1	8/10/2011 8:21:00 AM
OTAL MERCURY WATERS ASP			245.2WTASP	(E245.2)	Analyst: ALW
Mercury	ND	0.200	μg/L	1	8/3/2011 10:57:00 AM
EMIVOLATILE STARS LIST BY NYS			70_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Fluorene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Phenanthrene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Anthracene	ND	5.0	µg/L	1	8/2/2011 6:37:00 PM
Fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Pyrene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Benz(a)anthracene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Chrysene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Benzo(b)fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Benzo(k)fluoranthene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM
Benzo(a)pyrene	ND	5.0	μg/L	1	8/2/2011 6:37:00 PM

Approved By: PFF	Date: 8 - 11 - 11	Page 17 of 48
Qualifiers: # Accreditation not offered by NVS DOH for this parameter	ar * Love Love1	

Value exceeds Maximum Contaminant Value

Ε Value above quantitation range

Analyte detected below quantitation limits

Outlying QC recoveries were associated with this parameter

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C. **CLIENT:**

Client Sample ID: MW-302(7/12/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011 2:22:00 PM

Lab ID:

New9620.OM/N. Lawrence Oil Dump U1107313-007

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	70_A	SPPET_W	(SW3520)	Analyst: LD
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	8/2/2011 6:37:00 PM
Benzo(g,h,i)perylene	ND	5.0		µg/L	1	8/2/2011 6:37:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.07)	20	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.22)	38	0	В	μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.31)	10	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.5)	10	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.62)	7.8	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.76)	87	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (13.91)	59	0	В	μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (14.06)	11	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (14.46)	20	0	В	μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (14.69)	24	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (14.83)	10	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (15.02)	8.0	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (15.5)	13	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (16.08)	11	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (16.56)	8.4	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (17.1)	7.8	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (17.17)	15	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (17.56)	11	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (17.84)	140	0		μg/L	1	8/2/2011 6:37:00 PM
TIC: unknown (18.1)	8.9	. 0		μg/L	1	8/2/2011 6:37:00 PM

Appro	ved By:	PFF	Date:	8-11-11	Page 18 of 48
Qualifie	rs: #	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associa	ted Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation of	or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting l	Limit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepte	ed recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-203(7/12/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011 2:40:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-008

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624	L_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 7:36:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 7:36:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Chloroform	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Chloromethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
cis-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Ethylbenzene	ND	3.0		µg/L	1	7/22/2011 7:36:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Methylene chloride	2	3.0	j	μg/L	1	7/22/2011 7:36:00 PM
o-Xylene	ND	3.0		µg/L	1	7/22/2011 7:36:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Toluene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/22/2011 7:36:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/22/2011 7:36:00 PM
TIC: unknown	3.5	0		μg/L	1	7/22/2011 7:36:00 PM

Approved	By:
----------	-----

PFF

- Accreditation not offered by NYS DOH for this parameter

Date:

- Qualifiers:
- Value exceeds Maximum Contaminant Value
- В Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Η

Page 19 of 48

E Value above quantitation range

> ND Not Detected at the Reporting Limit

8-11-11

- Analyte detected below quantitation limits Outlying QC recoveries were associated with this parameter
- Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C. **CLIENT:**

Client Sample ID: PZ-4(7/12/11)

Lab Order:

Project:

U1107313

Collection Date: 7/12/2011 3:15:00 PM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-009

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLL	JTANTS BY 624		624	4_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 8:17:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 8:17:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Chloroform	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Chloromethane	ND	3.0		μg/L	. , 1	7/22/2011 8:17:00 PM
cis-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Methylene chloride	12	3.0		μg/L	1	7/22/2011 8:17:00 PM
o-Xylene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Toluene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/22/2011 8:17:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/22/2011 8:17:00 PM
TIC: unknown	4.3	0	В	μg/L	1	7/22/2011 8:17:00 PM

wh	'nι	UV	cu	ьу	٠

PFF

Page 20 of 48

- Qualifiers:
- # Accreditation not offered by NYS DOH for this parameter
- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date:

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND

8-11-11

Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-103(7/12/11)

Lab Order:

U1107313

Collection Date: 7/12/2011 3:25:00 PM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-010

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUT	ANTS BY 624		624_W		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0	<u> </u>	1	7/22/2011 8:58:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Acrolein	ND	50	μg/L	1	7/22/2011 8:58:00 PM
Acrylonitrile	ND	50	μg/L	1	7/22/2011 8:58:00 PM
Benzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Bromoform	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Bromomethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Chloroethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Chloroform	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Chloromethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
m,p-Xylene	ND	3.0	μg/L	. 1	7/22/2011 8:58:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
o-Xylene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Toluene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/22/2011 8:58:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/22/2011 8:58:00 PM

Approved	By:
Qualifiers:	#

Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 8-11-11

Page 21 of 48

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C.

Client Sample ID: ULI Trip Blank

CLIENT: Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/12/2011

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-011

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	TANTS BY 624		624_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Acrolein	ND	50	μg/L	1	7/22/2011 9:39:00 PM
Acrylonitrile	ND	50	μg/L	1	7/22/2011 9:39:00 PM
Benzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Bromoform	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Bromomethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Chloroethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Chloroform	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Chloromethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
o-Xylene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Toluene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/22/2011 9:39:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/22/2011 9:39:00 PM
TIC: unknown (5.17)	3.7	0	μg/L	1	7/22/2011 9:39:00 PM
TIC: unknown (5.19)	3.1	0	μg/L	1	7/22/2011 9:39:00 PM

Approved	By:
Qualifiers:	#

PFF

Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 8-11-11 Page 22 of 48

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C.

C Engineering, 1.C.

Lab Order:

CLIENT:

U1107313

New9620.OM/N. Lawrence Oil Dump

Project: Lab ID:

U1107313-011

Date: 11-Aug-11

Client Sample ID: ULI Trip Blank

Collection Date: 7/12/2011

Matrix: WATER

Analyses	Result	•	ual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUTAI TIC: unknown (7.97)	NTS BY 624 3.5	0	624_W μg/L	1	Analyst: EMZ 7/22/2011 9:39:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 23 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or a	nalysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lin	nit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted	recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-105A(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 9:48:00 AM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-012

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624	333333333333333333333333333333333333333	624	4_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	3.0		_ μg/L	1	7/25/2011 2:02:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,2-Dichloroethane	ND	3.0		µg/L	1	7/25/2011 2:02:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Acrolein	ND	50		μg/L	1	7/25/2011 2:02:00 PM
Acrylonitrile	ND	50		μg/L	1	7/25/2011 2:02:00 PM
Benzene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Bromoform	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Bromomethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Chlorobenzene	ND	3.0		µg/L	1	7/25/2011 2:02:00 PM
Chloroethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Chloroform	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Chloromethane	ND	3.0		μg/L	. , 1	7/25/2011 2:02:00 PM
cis-1,2-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Methylene chloride	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
o-Xylene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Toluene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Trichloroethene	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/25/2011 2:02:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/25/2011 2:02:00 PM
TIC: unknown	4.9	0	В	μg/L	1	7/25/2011 2:02:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 24 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	B Analyte detected in the associated Method Blank	
	E	Value above quantitation range	Н	H Holding times for preparation or analysis exceeded	
	J	Analyte detected below quantitation limits	ND	ND Not Detected at the Reporting Limit	
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted r	ecovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** PZ-6(7/13/11)

Lab Order:

U1107313

Collection Date: 7/13/2011 10:00:00 AM

Project:

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-013 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624	· W		Analyst: EM Z
1,1,1-Trichloroethane	ND	3.0		_ μg/L	1	7/22/2011 10:20:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,2-Dichloroethane	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Acrolein	ND	50		μg/L	1	7/22/2011 10:20:00 PM
Acrylonitrile	ND	50		μg/L	1	7/22/2011 10:20:00 PM
Benzene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Bromoform	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Bromomethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Chloroethane	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Chloroform	ND	3.0		μg/L	1	7/22/2011 10:20:00 PM
Chloromethane	ND	3.0		μg/L	, 1	7/22/2011 10:20:00 PM
cis-1,2-Dichloroethene	20	3.0		µg/L	1	7/22/2011 10:20:00 PM
cis-1,3-Dichloropropene	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
Dibromochloromethane	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
Dichlorodifluoromethane	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
Ethylbenzene	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
m,p-Xylene	ND	3.0		µg/L	1	7/22/2011 10:20:00 PM
Methylene chloride	ND	3.0		ug/L	1	7/22/2011 10:20:00 PM
o-Xylene	ND	3.0		ug/L	1	7/22/2011 10:20:00 PM
Tetrachloroethene	9.5	3.0		ug/L	1	7/22/2011 10:20:00 PM
Toluene	ND	3.0		ug/L	1	7/22/2011 10:20:00 PM
trans-1,2-Dichloroethene	ND	3.0		-g/L ug/L	1	7/22/2011 10:20:00 PM
trans-1,3-Dichloropropene	ND	3.0		ug/L	1	7/22/2011 10:20:00 PM
Trichloroethene	5.6	3.0		ug/L	1	7/22/2011 10:20:00 PM
Trichlorofluoromethane	ND	3.0		ug/L	1	7/22/2011 10:20:00 PM
Vinyl chloride	ND	2.0		ug/L	1	7/22/2011 10:20:00 PM
TIC: unknown	3.4	0		ıg/L	1	7/22/2011 10:20:00 PM

Appro	ved B	y :	-
-------	-------	------------	---

Qualifiers:

Accreditation not offered by NYS DOH for this parameter

Value exceeds Maximum Contaminant Value

- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 11-11-8

Page 25 of 48

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

RP Engineering, P.C. Client Sample ID: MW-104A(7/13/11)

Date: 11-Aug-11

Lab Order:U1107313Collection Date: 7/13/2011 10:20:00 AMProject:New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-014 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624	· W		Analyst: EMZ
1,1,1-Trichloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,1,2,2-Tetrachloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,1,2-Trichloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,1-Dichloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,1-Dichloroethene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,2-Dichlorobenzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,2-Dichloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,2-Dichloropropane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,3-Dichlorobenzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
1,4-Dichlorobenzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
2-Chloroethyl vinyl ether	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Acrolein	ND	100		μg/L	2	7/25/2011 4:05:00 PM
Acrylonitrile	ND	100		μg/L	2	7/25/2011 4:05:00 PM
Benzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Bromodichloromethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Bromoform	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Bromomethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Carbon tetrachloride	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Chlorobenzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Chloroethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Chloroform	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Chloromethane	ND	6.0		μg/L	、 2	7/25/2011 4:05:00 PM
cis-1,2-Dichloroethene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
cis-1,3-Dichloropropene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Dibromochloromethane	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Dichlorodifluoromethane	ND	6.0	į	μg/L	2	7/25/2011 4:05:00 PM
Ethylbenzene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
m,p-Xylene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Methylene chloride	ND	6.0		µg/L	2	7/25/2011 4:05:00 PM
o-Xylene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Tetrachloroethene	ND	6.0		μg/L	2	7/25/2011 4:05:00 PM
Toluene	ND	6.0		ug/L	2	7/25/2011 4:05:00 PM
trans-1,2-Dichloroethene	ND	6.0		µg/L	2	7/25/2011 4:05:00 PM
trans-1,3-Dichloropropene	ND	6.0		µg/L	2	7/25/2011 4:05:00 PM
Trichloroethene	ND	6.0		ug/L	2	7/25/2011 4:05:00 PM
Trichlorofluoromethane	ND	6.0	•	ug/L	2	7/25/2011 4:05:00 PM
Vinyl chloride	ND	4.0		ug/L	2	7/25/2011 4:05:00 PM
TIC: unknown	24	0	•	-∍⁄ – ug/L	2	7/25/2011 4:05:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 26 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associate	d Method Blank
	E	Value above quantitation range	Н	H Holding times for preparation or analysis exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Li	mit

Outlying QC recoveries were associated with this parameter S Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C.

Client Sample ID: MW-104A(7/13/11)

CLIENT:

Lab Order:

U1107313

Collection Date: 7/13/2011 10:20:00 AM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-014

Matrix: GROUNDWATER

Analyses

Result

Limit Qual Units

624_W

DF

Date Analyzed

Analyst: EMZ

PURGEABLES PRIORITY POLLUTANTS BY 624

NOTES:

The reporting limits were raised due to matrix interference.

Sample foamed during purging procedure.

Approved	By:	PFF	Date:	8-11-11	Page 27 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	. В	Analyte detected in the associated Method Blank	
	E	Value above quantitation range	Н	Holding times for preparation	or analysis exceeded
	J	Analyte detected below quantitation limits	ND	D Not Detected at the Reporting Limit	
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accep	ted recovery limits

Analytical Report

Project:

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-105B(7/13/11) **Collection Date:** 7/13/2011 10:24:00 AM

Date: 11-Aug-11

Lab Order: U1107313

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-015 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUT	ANTS BY 624		624	1_W		Analyst: EM2
1,1,1-Trichloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,1,2-Trichloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,1-Dichloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,1-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,2-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,2-Dichloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,2-Dichloropropane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,3-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
1,4-Dichlorobenzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
2-Chloroethyl vinyl ether	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Acrolein	ND	50		μg/L	1	7/25/2011 4:46:00 PM
Acrylonitrile	ND	50		μg/L	1	7/25/2011 4:46:00 PM
Benzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Bromodichloromethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Bromoform	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Bromomethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Carbon tetrachloride	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Chlorobenzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Chloroethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Chloroform	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Chloromethane	ND	3.0		μg/L	, 1	7/25/2011 4:46:00 PM
cis-1,2-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
cis-1,3-Dichloropropene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Dibromochloromethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Dichlorodifluoromethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Ethylbenzene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
m,p-Xylene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Methylene chloride	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
o-Xylene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Tetrachloroethene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Toluene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
trans-1,2-Dichloroethene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
trans-1,3-Dichloropropene	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Trichloroethene	2	3.0		μg/L	1	7/25/2011 4:46:00 PM
Trichlorofluoromethane	ND	3.0		μg/L	1	7/25/2011 4:46:00 PM
Vinyl chloride	ND	2.0		μg/L	1	7/25/2011 4:46:00 PM

1100.11	io comp	ounus w	CIC GC	ecteu.

Approved By:

Approved	By:	PFF
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- E Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

8-11-11 Date:

Page 28 of 48

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C. CLIENT:

Client Sample ID: MW-104B(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 10:45:00 AM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-016

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EM Z
1,1,1-Trichloroethane	ND	15	_ μg/L	5	7/26/2011 2:19:00 PM
1,1,2,2-Tetrachloroethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,1,2-Trichloroethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,1-Dichloroethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,1-Dichloroethene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,2-Dichlorobenzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,2-Dichloroethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,2-Dichloropropane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,3-Dichlorobenzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
1,4-Dichlorobenzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
2-Chloroethyl vinyl ether	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Acrolein	ND	250	μg/L	5	7/26/2011 2:19:00 PM
Acrylonitrile	ND	250	μg/L	5	7/26/2011 2:19:00 PM
Benzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Bromodichloromethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Bromoform	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Bromomethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Carbon tetrachloride	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Chlorobenzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Chloroethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Chloroform	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Chloromethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
cis-1,2-Dichloroethene	42	. 15	μg/L	. 5	7/26/2011 2:19:00 PM
cis-1,3-Dichloropropene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Dibromochloromethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Dichlorodifluoromethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Ethylbenzene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
m,p-Xylene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Methylene chloride	ND	15	μg/L	5	7/26/2011 2:19:00 PM
o-Xylene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Tetrachloroethene	34	15	μg/L	5	7/26/2011 2:19:00 PM
Toluene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
trans-1,2-Dichloroethene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
trans-1,3-Dichloropropene	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Trichloroethene	86	15	μg/L	5	7/26/2011 2:19:00 PM
Trichlorofluoromethane	ND	15	μg/L	5	7/26/2011 2:19:00 PM
Vinyl chloride	ND	10	μg/L	5	7/26/2011 2:19:00 PM

Approved By:		PFF	Date:	8-11-11	Page 29 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	d Method Blank
E Value above quantitation range		Value above quantitation range	Н	Holding times for preparation or	analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lin	mit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted	recovery limits

Analytical Report

HRP Engineering, P.C.

CLIENT:

U1107313

Client Sample ID: MW-104B(7/13/11)

Lab Order:

Collection Date: 7/13/2011 10:45:00 AM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-016

Matrix: GROUNDWATER

Analyses

Result

Limit Qual Units

DF

Date Analyzed

PURGEABLES PRIORITY POLLUTANTS BY 624

624_W

Analyst: EMZ

NOTES:

The reporting limits were raised due to the high concentration of target compounds.

TICS: No compounds were detected.

Approved By:		PFF	Date:	8-11-11	Page 30 of 48	
Qualifier	rs: #	Accreditation not offered by NYS DOH for this parameter	*	Low Level		
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank	
	E	Value above quantitation range	Н	Holding times for preparation or ar	nalysis exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim	it	
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits	

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** PZ-7(7/13/11)

Lab Order:

U1107313

Project:

Collection Date: 7/13/2011 10:54:00 AM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-017

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0	<u>μ</u> g/L	1	7/25/2011 6:07:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,1-Dichloroethene	ND	3.0	µg/L	1	7/25/2011 6:07:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Acrolein	ND	50	μg/L	1	7/25/2011 6:07:00 PM
Acrylonitrile	ND	50	μg/L	1	7/25/2011 6:07:00 PM
Benzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Bromoform	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Bromomethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Chloroethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Chloroform	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Chloromethane	ND	3.0	μg/L	、 1	7/25/2011 6:07:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
o-Xylene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Toluene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/25/2011 6:07:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/25/2011 6:07:00 PM
NOTES:		,	I- Q	,	

Approved	By:
Qualifiers:	#

TICS: No compounds were detected.

Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 8-11-11

Page 31 of 48

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: MW-106(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 11:45:00 AM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-018

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Acrolein	ND	50	μg/L	1	7/25/2011 6:48:00 PM
Acrylonitrile	ND	50	μg/L	1	7/25/2011 6:48:00 PM
Benzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Bromoform	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Bromomethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Chloroethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Chloroform	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Chloromethane	ND	3.0	μg/L	, 1	7/25/2011 6:48:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/25/2011 6;48;00 PM
Methylene chloride	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
o-Xylene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Toluene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/25/2011 6:48:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/25/2011 6:48:00 PM
NOTES:				•	

Ous	lif	iers:

Date:

Approved By:

- Accreditation not offered by NYS DOH for this parameter
- ** Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter
- Analyte detected in the associated Method Blank В

Page 32 of 48

- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

8-11-11

Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: Duplicate

Lab Order:

U1107313

Collection Date: 7/13/2011

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-019

Matrix: GROUNDWATER

Date: 11-Aug-11

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EM Z
1,1,1-Trichloroethane	ND	3.0	_ μg/L	1	7/25/2011 7:29:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,1-Dichloroethene	ND	3.0	µg/L	1	7/25/2011 7:29:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Acrolein	ND	50	μg/L	1	7/25/2011 7:29:00 PM
Acrylonitrile	ND	50	μg/L	1	7/25/2011 7:29:00 PM
Benzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Bromoform	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Bromomethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Chloroethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Chloroform	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Chloromethane	ND	3.0	μg/L	. , 1	7/25/2011 7:29:00 PM
cis-1,2-Dichloroethene	18	3.0	μg/L	1	7/25/2011 7:29:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
o-Xylene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Tetrachloroethene	10	3.0	μg/L	1	7/25/2011 7:29:00 PM
Toluene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L μg/L	1	7/25/2011 7:29:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 7:29:00 PM
Trichloroethene	7.2	3.0	μg/L	1	7/25/2011 7:29:00 PM
Trichlorofluoromethane	VD	3.0	μg/L	1	7/25/2011 7:29:00 PM
Vinyl chloride	ND ND	2.0	μg/L μg/L	1	7/25/2011 7:29:00 PM
NOTES:	ND	2.0	µg/L	I	112312011 1.28.00 PW

TICS: No compounds were detected.

Approve	d By:	PFF	Date:	8-11-11	Page 33 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associate	d Method Blank
	Ε	Value above quantitation range	Н	Holding times for preparation or	analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Li	imit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted	l recovery limits

Analytical Report

Lab Order:

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-107A(7/13/11) U1107313 Collection Date: 7/13/2011 12:02:00 PM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump Project:

Lab ID: U1107313-020 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLI	JTANTS BY 624		624 W		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0	<u> </u>	1	7/25/2011 8:10:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Acrolein	ND	50	μg/L	1	7/25/2011 8:10:00 PM
Acrylonitrile	ND	50	μg/L	1	7/25/2011 8:10:00 PM
Benzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Bromoform	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Bromomethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Chloroethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Chloroform	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Chloromethane	ND	3.0	μg/L	, 1	7/25/2011 8:10:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
o-Xylene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Toluene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/25/2011 8:10:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/25/2011 8:10:00 PM
NOTES:	140	2.0	⊬9/ ∟	ı	112012011

TICS: No compounds were detected.

Approved By:

	-	
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter
	**	77.1

- Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range

PFF

- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

8-11-11 Date:

Page 34 of 48

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
 - Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C. **CLIENT:**

Client Sample ID: MW-107B(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 12:22:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-021

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLL	JTANTS BY 624		624_W		Analyst: EMZ
1,1,1-Trichloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,1,2,2-Tetrachloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,1,2-Trichloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,1-Dichloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,1-Dichloroethene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,2-Dichlorobenzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,2-Dichloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,2-Dichloropropane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,3-Dichlorobenzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
1,4-Dichlorobenzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
2-Chloroethyl vinyl ether	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Acrolein	ND	500	μg/L	10	7/25/2011 8:50:00 PM
Acrylonitrile	ND	500	μg/L	10	7/25/2011 8:50:00 PM
Benzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Bromodichloromethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Bromoform	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Bromomethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Carbon tetrachloride	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Chlorobenzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Chloroethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Chloroform	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Chloromethane	ND	30	μg/L	. 10	7/25/2011 8:50:00 PM
cis-1,2-Dichloroethene	50	. 30	μg/L	. 10	7/25/2011 8:50:00 PM
cis-1,3-Dichloropropene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Dibromochloromethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Dichlorodifluoromethane	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Ethylbenzene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
m,p-Xylene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Methylene chloride	ND	30	μg/L	10	7/25/2011 8:50:00 PM
o-Xylene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Tetrachloroethene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Toluene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
trans-1,2-Dichloroethene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
trans-1,3-Dichloropropene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Trichloroethene	ND	30	μg/L	10	7/25/2011 8:50:00 PM
Trichlorofluoromethane	ND	30	µg/L	10	7/25/2011 8:50:00 PM
Vinyl chloride	ND	20	μg/L	10	7/25/2011 8:50:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 35 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated M	lethod Blank
	E	Value above quantitation range	H	Holding times for preparation or ana	lysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
	0	Outlying OC recoveries were associated with this parameter	S	Spike Recovery outside accepted rec	overy limits

Analytical Report

HRP Engineering, P.C.

CLIENT:

Client Sample ID: MW-107B(7/13/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/13/2011 12:22:00 PM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-021

Matrix: GROUNDWATER

Analyses

Result

Limit Qual Units

624_W

DF **Date Analyzed**

Analyst: EMZ

PURGEABLES PRIORITY POLLUTANTS BY 624

NOTES:

The reporting limits were raised due to matrix interference.

TICS: No compounds were detected. Sample foamed during purging procedure.

Approved	By:	PFF	Date:	8-11-11	Page 36 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associa	ted Method Blank
	E	Value above quantitation range	Н	Holding times for preparation of	or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting l	Limit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepte	ed recovery limits

Analytical Report

HRP Engineering, P.C. **CLIENT:**

Client Sample ID: PZ-8(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 12:44:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-022 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUT	ANTS BY 624		624	w		Analyst: EMZ
1,1,1-Trichloroethane	ND	60		 μg/L	20	7/25/2011 9:32:00 PM
1,1,2,2-Tetrachloroethane	ND	60	1	μg/L	20	7/25/2011 9:32:00 PM
1,1,2-Trichloroethane	ND	60	i	μg/L	20	7/25/2011 9:32:00 PM
1,1-Dichloroethane	ND	60	ı	μg/L	20	7/25/2011 9:32:00 PM
1,1-Dichloroethene	ND	60	ı	µg/L	20	7/25/2011 9:32:00 PM
1,2-Dichlorobenzene	ND	60	ı	μg/L	20	7/25/2011 9:32:00 PM
1,2-Dichloroethane	ND	60	i	μg/L	20	7/25/2011 9:32:00 PM
1,2-Dichloropropane	ND	60		μg/L	20	7/25/2011 9:32:00 PM
1,3-Dichlorobenzene	ND	60		ug/L	20	7/25/2011 9:32:00 PM
1,4-Dichlorobenzene	ND	60		ug/L	20	7/25/2011 9:32:00 PM
2-Chloroethyl vinyl ether	ND	60		µg/L	20	7/25/2011 9:32:00 PM
Acrolein	ND	1000		ug/L	20	7/25/2011 9:32:00 PM
Acrylonitrile	ND	1000		ug/L	20	7/25/2011 9:32:00 PM
Benzene	ND	60		ug/L	20	7/25/2011 9:32:00 PM
Bromodichloromethane	ND	60		ug/L	20	7/25/2011 9:32:00 PM
Bromoform	ND	60		ug/L	20	7/25/2011 9:32:00 PM
Bromomethane	ND	60		ug/L	20	7/25/2011 9:32:00 PM
Carbon tetrachloride	ND	60	-	ug/L	20	7/25/2011 9:32:00 PM
Chlorobenzene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Chloroethane	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Chloroform	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Chloromethane	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
cis-1,2-Dichloroethene	50	60		ıg/L .	20	7/25/2011 9:32:00 PM
cis-1,3-Dichloropropene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Dibromochloromethane	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Dichlorodifluoromethane	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Ethylbenzene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
m,p-Xylene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Methylene chloride	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
o-Xylene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Tetrachloroethene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Toluene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
trans-1,2-Dichloroethene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
trans-1,3-Dichloropropene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Trichloroethene	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Trichlorofluoromethane	ND	60		ıg/L	20	7/25/2011 9:32:00 PM
Vinyl chloride	ND	40		ıg/L	20	7/25/2011 9:32:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 37 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or a	nalysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lin	nit
	O	Outlying OC recoveries were associated with this parameter	S	Snike Recovery outside accepted	ecovery limits

Analytical Report

HRP Engineering, P.C.

Client Sample ID: PZ-8(7/13/11)

CLIENT: Lab Order:

U1107313

Project:

Collection Date: 7/13/2011 12:44:00 PM

DF

Date: 11-Aug-11

Lab ID:

New9620.OM/N. Lawrence Oil Dump

Result

Matrix: GROUNDWATER

Analyses

U1107313-022

PURGEABLES PRIORITY POLLUTANTS BY 624

624_W

Limit Qual Units

Analyst: EMZ

Date Analyzed

NOTES:

The reporting limits were raised due to matrix interference.

TICS: No compounds were detected.

Sample foamed during purging procedure.

Approved	By:	PFF	Date:	8-11-11	Page 38 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associate	d Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or	analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Li	mit
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted	recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** PZ-1(7/13/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/13/2011 12:52:00 PM

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-023

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual U	nits	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	ITANTS BY 624		624_	w		Analyst: EM 2
1,1,1-Trichloroethane	ND	3.0		g/L	1	7/25/2011 10:12:00 PN
1,1,2,2-Tetrachloroethane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PN
1,1,2-Trichloroethane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PN
1,1-Dichloroethane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,1-Dichloroethene	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,2-Dichlorobenzene	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,2-Dichloroethane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,2-Dichloropropane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,3-Dichlorobenzene	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
1,4-Dichlorobenzene	ND	3.0	μί	g/L	1	7/25/2011 10:12:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
Acrolein	ND	50	μ	g/L	1	7/25/2011 10:12:00 PM
Acrylonitrile	ND	50	μ	g/L	1	7/25/2011 10:12:00 PM
Benzene	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
Bromodichloromethane	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
Bromoform	ND	3.0	μ	g/L	1	7/25/2011 10:12:00 PM
Bromomethane	ND	3.0	μς	g/L	1	7/25/2011 10:12:00 PM
Carbon tetrachloride	ND	3.0	μς	g/L	1	7/25/2011 10:12:00 PM
Chlorobenzene	ND	3.0	μς	g/L	1	7/25/2011 10:12:00 PM
Chloroethane	ND	3.0	μς	g/L	1	7/25/2011 10:12:00 PM
Chloroform	ND	3.0	μς	g/L	1	7/25/2011 10:12:00 PM
Chloromethane	ND	3.0	μς	J/L	、 1	7/25/2011 10:12:00 PM
cis-1,2-Dichloroethene	ND	3.0	μς	g/L .	1	7/25/2011 10:12:00 PM
cis-1,3-Dichloropropene	ND	3.0	μο	_J /L	1	7/25/2011 10:12:00 PM
Dibromochloromethane	ND	3.0	μς	J/L	1	7/25/2011 10:12:00 PM
Dichlorodifluoromethane	ND	3.0	μο	ı/L	1	7/25/2011 10:12:00 PM
Ethylbenzene	ND	3.0	μς	ı/L	1	7/25/2011 10:12:00 PM
m,p-Xylene	ND	3.0	μς	ı/L	1	7/25/2011 10:12:00 PM
Methylene chloride	ND	3.0	μς	ı/L	1	7/25/2011 10:12:00 PM
o-Xylene	ND	3.0	μς	ı/L	1	7/25/2011 10:12:00 PM
Tetrachloroethene	ND	3.0	μο	ı/L	1	7/25/2011 10:12:00 PM
Toluene	ND	3.0	μο	ı/L	1	7/25/2011 10:12:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg	ı/L	1	7/25/2011 10:12:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg		1	7/25/2011 10:12:00 PM
Trichloroethene	ND	3.0	μg		1	7/25/2011 10:12:00 PM
Trichlorofluoromethane	ND	3.0	μg		1	7/25/2011 10:12:00 PM
Vinyl chloride	ND	2.0	μg	/L	1	7/25/2011 10:12:00 PM
NOTES: TICS: No compounds were detected.						

Approved	By:
Qualifiers:	#

Accreditation not offered by NYS DOH for this parameter

- ** Value exceeds Maximum Contaminant Value
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

Date: 11-11-8

Page 39 of 48

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: ULI Trip Blank

Lab Order:

U1107313

Project:

Collection Date: 7/13/2011

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-024

Matrix: WATER

Date: 11-Aug-11

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLUT	ANTS BY 624		624_W		Analyst: EM
1,1,1-Trichloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Acrolein	ND	50	μg/L	1	7/26/2011 3:00:00 PM
Acrylonitrile	ND	50	μg/L	1	7/26/2011 3:00:00 PM
Benzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Bromoform	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Bromomethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Chloroethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Chloroform	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Chloromethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
m,p-Xylene	ND	3.0	μg/L	. 1	7/26/2011 3:00:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
o-Xylene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Toluene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/26/2011 3:00:00 PM
	ND	2.0	μg/L	1	7/26/2011 3:00:00 PM

Approved	By:
Qualifiers:	#

Accreditation not offered by NYS DOH for this parameter

- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter

8-11-11 Date:

Page 40 of 48

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: Holding Blank

Lab Order:

Project:

U1107313

Collection Date: 7/18/2011 9:20:00 AM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-025

Matrix: WATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
PURGEABLES PRIORITY POLLU	JTANTS BY 624		624_W		Analyst: EM Z
1,1,1-Trichloroethane	ND	3.0	_ μg/L	1	7/26/2011 3:41:00 PM
1,1,2,2-Tetrachloroethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,1,2-Trichloroethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,1-Dichloroethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,1-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,2-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,2-Dichloroethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,2-Dichloropropane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,3-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
1,4-Dichlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
2-Chloroethyl vinyl ether	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Acrolein	ND	50	μg/L	1	7/26/2011 3:41:00 PM
Acrylonitrile	ND	50	μg/L	1	7/26/2011 3:41:00 PM
Benzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Bromodichloromethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Bromoform	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Bromomethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Carbon tetrachloride	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Chlorobenzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Chloroethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Chloroform	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Chloromethane	ND	3.0	μg/L	、 1	7/26/2011 3:41:00 PM
cis-1,2-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
cis-1,3-Dichloropropene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Dibromochloromethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Dichlorodifluoromethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Ethylbenzene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
m,p-Xylene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Methylene chloride	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
o-Xylene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Tetrachloroethene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Toluene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
trans-1,2-Dichloroethene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
trans-1,3-Dichloropropene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Trichloroethene	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Trichlorofluoromethane	ND	3.0	μg/L	1	7/26/2011 3:41:00 PM
Vinyl chloride	ND	2.0	μg/L	1	7/26/2011 3:41:00 PM
TIC: unknown	16	0	μg/L	1	7/26/2011 3:41:00 PM

Approvec	i By:	P
----------	-------	---

8-11-11 Date:

Page 41 of 48

- Qualifiers:
- Accreditation not offered by NYS DOH for this parameter
- Value exceeds Maximum Contaminant Value
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Outlying QC recoveries were associated with this parameter
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Spike Recovery outside accepted recovery limits

Analytical Report

HRP Engineering, P.C.

CLIENT:

U1107313

Client Sample ID: MW-303 (7/12/11)

Lab Order:

Collection Date: 7/21/2011 12:15:00 PM

Date: 11-Aug-11

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-026

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY EPA 8081A/8082		8081A/8082 ASPW		(SW3510B)	Analyst: EA
4,4´-DDD	ND	0.10	μg/L	1	7/27/2011
4,4´-DDE	ND	0.10	μg/L	1	7/27/2011
4,4´-DDT	ND	0.10	μg/L	1	7/27/2011
Aldrin	ND	0.050	μg/L	1	7/27/2011
alpha-BHC	ND	0.050	μg/L	1	7/27/2011
alpha-Chlordane	ND	0.050	μg/L	1	7/27/2011
Aroclor 1016	ND	1.0	μg/L	1	7/27/2011
Aroclor 1221	ND	1.0	μg/L	1	7/27/2011
Aroclor 1232	ND	1.0	μg/L	1	7/27/2011
Aroclor 1242	ND	1.0	μg/L	1	7/27/2011
Aroclor 1248	ND	1.0	μg/L	1	7/27/2011
Aroclor 1254	ND	1.0	μg/L	1	7/27/2011
Aroclor 1260	ND	1.0	μg/L	1	7/27/2011
Aroclor 1262	ND	1.0	μg/L	1	7/27/2011
Aroclor 1268	ND	1.0	μg/L	1	7/27/2011
beta-BHC	ND	0.050	μg/L	1	7/27/2011
delta-BHC	ND	0.050	μg/L	1	7/27/2011
Dieldrin	ND	0.10	μg/L	1	7/27/2011
Endosulfan I	ND	0.050	μg/L	1	7/27/2011
Endosulfan II	ND	0.10	µg/L	. 1	7/27/2011
Endosulfan sulfate	ND	0.10	μg/L	1	7/27/2011
Endrin	ND	0.10	μg/L	, 1	7/27/2011
Endrin aldehyde	ND	0.10	μg/L	1	7/27/2011
Endrin ketone	ND	0.10	μg/L	1	7/27/2011
gamma-BHC	ND	0.050	μg/L	1	7/27/2011
gamma-Chlordane	ND	0.050	µg/L	1	7/27/2011
Heptachlor	ND	0.050	μg/L	1	7/27/2011
Heptachlor epoxide	ND	0.050	μg/L	1	7/27/2011
Methoxychlor	ND	0.50	μg/L	1	7/27/2011
Toxaphene	ND	5.0	μg/L	1	7/27/2011

Approved	By:	PFF	Date:	8-11-11	Page 42 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or a	nalysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim	it
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. **Client Sample ID:** MW-102A (7/12/11)

Lab Order:

Date: 11-Aug-11

Project:

U1107313

Collection Date: 7/21/2011 11:20:00 AM

New9620.OM/N. Lawrence Oil Dump

Lab ID: U1107313-027

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY I	EPA 8081A/8082	808	31A/8082_ASPW	(SW3510B)	Analyst: EA
4,4´-DDD	ND	0.10	μg/L	1	7/27/2011
4,4´-DDE	ND	0.10	μg/L	1	7/27/2011
4,4´-DDT	ND	0.10	μg/L	1	7/27/2011
Aldrin	ND	0.050	μg/L	1	7/27/2011
alpha-BHC	ND	0.050	μg/L	1	7/27/2011
alpha-Chlordane	ND	0.050	μg/L	1	7/27/2011
Aroclor 1016	ND	1.0	μg/L	1	7/27/2011
Aroclor 1221	ND	1.0	μg/L	1	7/27/2011
Aroclor 1232	ND	1.0	μg/L	1	7/27/2011
Aroclor 1242	ND	1.0	μg/L	1	7/27/2011
Aroclor 1248	ND	1.0	μg/L	1	7/27/2011
Aroclor 1254	ND	1.0	μg/L	1	7/27/2011
Aroclor 1260	ND	1.0	μg/L	1	7/27/2011
Aroclor 1262	ND	1.0	μg/L	1	7/27/2011
Aroclor 1268	ND	1.0	μg/L	1	7/27/2011
beta-BHC	ND	0.050	μg/L	1	7/27/2011
delta-BHC	ND	0.050	μg/L	1	7/27/2011
Dieldrin	ND	0.10	μg/L	1	7/27/2011
Endosulfan I	ND	0.050	μg/L	1	7/27/2011
Endosulfan II	ND	0.10	μg/L	1	7/27/2011
Endosulfan sulfate	ND	0.10	μg/L	1	7/27/2011
Endrin	ND	0.10	μg/L	, 1	7/27/2011
Endrin aldehyde	ND	0.10	μg/L	1	7/27/2011
Endrin ketone	ND	0.10	μg/L	1	7/27/2011
gamma-BHC	ND	0.050	μg/L	1	7/27/2011
gamma-Chlordane	ND	0.050	μg/L	1	7/27/2011
Heptachlor	ND	0.050	μg/L	1	7/27/2011
Heptachlor epoxide	ND	0.050	μg/L	1	7/27/2011
Methoxychlor	ND	0.50	μg/L	1	7/27/2011
Toxaphene	ND	5.0	μg/L	1	7/27/2011

Approved	By:	PFF	Date:	8-11-11	Page 43 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated I	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or an	alysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	t
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits

Analytical Report

HRP Engineering, P.C.

Client Sample ID: Duplicate

CLIENT: Lab Order:

U1107313

Collection Date: 7/21/2011

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-028

Matrix: GROUNDWATER

Date: 11-Aug-11

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY I	EPA 8081A/8082	8081	A/8082_ASPW	(SW3510B)	Analyst: EA
4,4´-DDD	ND	0.10	μg/L	1	7/27/2011
4,4´-DDE	ND	0.10	μg/L	1	7/27/2011
4,4´-DDT	ND	0.10	μg/L	1	7/27/2011
Aldrin	ND	0.050	μg/L	1	7/27/2011
alpha-BHC	ND	0.050	μg/L	1	7/27/2011
alpha-Chlordane	ND	0.050	μg/L	1	7/27/2011
Aroclor 1016	ND	1.0	μg/L	1	7/27/2011
Aroclor 1221	ND	1.0	μg/L	1	7/27/2011
Aroclor 1232	ND	1.0	μg/L	1	7/27/2011
Aroclor 1242	ND	1.0	μg/L	1	7/27/2011
Aroclor 1248	ND	1.0	μg/L	1	7/27/2011
Aroclor 1254	ND	1.0	μg/L	1	7/27/2011
Aroclor 1260	ND	1.0	μg/L	1	7/27/2011
Aroclor 1262	ND	1.0	μg/L	1	7/27/2011
Aroclor 1268	ND	1.0	μg/L	1	7/27/2011
beta-BHC	ND	0.050	μg/L	1	7/27/2011
delta-BHC	ND	0.050	μg/L	1	7/27/2011
Dieldrin	ND	0.10	μg/L	1	7/27/2011
Endosulfan I	ND	0.050	μg/L	1	7/27/2011
Endosulfan II	ND	0.10	μg/L	1	7/27/2011
Endosulfan sulfate	ND	0.10	μg/L	1	7/27/2011
Endrin	ND	0.10	μg/L	, 1	7/27/2011
Endrin aldehyde	ND	0.10	μg/L	1	7/27/2011
Endrin ketone	ND	0.10	μg/L	1	7/27/2011
gamma-BHC	ND	0.050	μg/L	1	7/27/2011
gamma-Chlordane	ND	0.050	μg/L	1	7/27/2011
Heptachlor	ND	0.050	μg/L	1	7/27/2011
Heptachlor epoxide	ND	0.050	μg/L	1	7/27/2011
Methoxychlor	ND	0.50	μg/L	1	7/27/2011
Toxaphene	ND	5.0	μg/L	1	7/27/2011

Approved	By:	PFF	Date:	8-11-11	Page 44 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or ar	nalysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lim	it
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	ecovery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-301 (7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/21/2011 11:53:00 AM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-029

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY I	EPA 8081A/8082	808	1A/8082 ASPW	(SW3510B)	Analyst: EA
4,4´-DDD	ND	0.10	μg/L	1 ′	7/27/2011
4,4´-DDE	ND	0.10	μg/L	1	7/27/2011
4,4´-DDT	ND	0.10	μg/L	1	7/27/2011
Aldrin	ND	0.050	μg/L	1	7/27/2011
alpha-BHC	ND	0.050	μg/L	1	7/27/2011
alpha-Chlordane	ND	0.050	μg/L	1	7/27/2011
Aroclor 1016	ND	1.0	μg/L	1	7/27/2011
Aroclor 1221	ND	1.0	μg/L	1	7/27/2011
Aroclor 1232	ND	1.0	μg/L	1	7/27/2011
Aroclor 1242	ND	1.0	μg/L	1	7/27/2011
Aroclor 1248	ND	1.0	μg/L	1	7/27/2011
Aroclor 1254	ND	1.0	μg/L	1	7/27/2011
Aroclor 1260	ND	1.0	μg/L	1	7/27/2011
Aroclor 1262	ND	1.0	μg/L	1	7/27/2011
Aroclor 1268	ND	1.0	μg/L	1	7/27/2011
beta-BHC	ND	0.050	μg/L	1	7/27/2011
delta-BHC	ND	0.050	μg/L	1	7/27/2011
Dieldrin	ND	0.10	μg/L	1	7/27/2011
Endosulfan I	ND	0.050	μg/L	1	7/27/2011
Endosulfan II	ND	0.10	μg/L	1	7/27/2011
Endosulfan sulfate	ND	0.10	μg/L	1	7/27/2011
Endrin	ND	0.10	μg/L	, 1	7/27/2011
Endrin aldehyde	ND	0.10	μg/L	1	7/27/2011
Endrin ketone	ND	0.10	μg/L	1	7/27/2011
gamma-BHC	ND	0.050	μg/L	1	7/27/2011
gamma-Chlordane	ND	0.050	μg/L	1	7/27/2011
Heptachlor	ND	0.050	μg/L	1	7/27/2011
Heptachlor epoxide	ND	0.050	μg/L	1	7/27/2011
Methoxychlor	ND	0.50	μg/L	1	7/27/2011
Toxaphene	ND	5.0	μg/L	1	7/27/2011

Approved 1	By:	PFF	Date:	8-11-11	Page 45 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated !	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or an	alysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limi	t
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	covery limits

Analytical Report

CLIENT: HRP Engineering, P.C.

Client Sample ID: MW-102B (7/12/11)

Lab Order:

U1107313

Project:

Collection Date: 7/21/2011 11:00:00 AM

Date: 11-Aug-11

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-030

Matrix: GROUNDWATER

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY	EPA 8081A/8082	808	81A/8082_ASPW	(SW3510B)	Analyst: E A
4,4´-DDD	ND	1.0	μg/L	` 10 ′	7/27/2011
4,4´-DDE	ND	1.0	μg/L	10	7/27/2011
4,4´-DDT	ND	1.0	μg/L	10	7/27/2011
Aldrin	ND	0.50	μg/L	10	7/27/2011
alpha-BHC	. ND	0.50	μg/L	10	7/27/2011
alpha-Chlordane	ND	0.50	μg/L	10	7/27/2011
Aroclor 1016	ND	10	μg/L	10	7/27/2011
Aroclor 1221	ND	10	μg/L	10	7/27/2011
Aroclor 1232	ND	10	μg/L	10	7/27/2011
Aroclor 1242	ND	10	μg/L	10	7/27/2011
Aroclor 1248	ND	10	μg/L	10	7/27/2011
Aroclor 1254	ND	10	μg/L	10	7/27/2011
Aroclor 1260	ND	10	μg/L	10	7/27/2011
Aroclor 1262	ND	10	μg/L	10	7/27/2011
Aroclor 1268	ND	10	μg/L	10	7/27/2011
beta-BHC	ND	0.50	μg/L	10	7/27/2011
delta-BHC	ND	0.50	μg/L	10	7/27/2011
Dieldrin	ND	1.0	μg/L	10	7/27/2011
Endosulfan I	ND	0.50	μg/L	10	7/27/2011
Endosulfan II	ND	1.0	μg/L	10	7/27/2011
Endosulfan sulfate	ND	1.0	μg/L	10	7/27/2011
Endrin	ND	1.0	μg/L	. , 10	7/27/2011
Endrin aldehyde	ND	1.0	μg/L	10	7/27/2011
Endrin ketone	ND	1.0	μg/L	10	7/27/2011
gamma-BHC	ND	0.50	μg/L	10	7/27/2011
gamma-Chlordane	ND	0.50	μg/L	10	7/27/2011
Heptachlor	ND	0.50	μg/L	10	7/27/2011
Heptachlor epoxide	ND	0.50	μg/L	10	7/27/2011
Methoxychlor	ND	5.0	μg/L	10	7/27/2011
Toxaphene	ND	50	µg/L	10	7/27/2011
NOTES:					
The reporting limits were raised d	ue to matrix interference.				
SEMIVOLATILE STARS LIST E		827	70_ASPPET_W	(SW3520)	Analyst: LD
Acenaphthene	ND	5.0	μg/L	1	8/2/2011 7:25:00 PM
Fluorene	ND	5.0	μg/L	1	8/2/2011 7:25:00 PM
Phenanthrene	ND	5.0	μg/L	1	8/2/2011 7:25:00 PM
Anthracene	ND	5.0	μg/L	1	8/2/2011 7:25:00 PM
Fluoranthene	ND	5.0	μg/L	1	8/2/2011 7:25:00 PM

Approved	By:	PFF	Date:	8-11-11	Page 46 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated	Method Blank
	E	Value above quantitation range	Н	Holding times for preparation or a	malysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Lin	nit

Outlying QC recoveries were associated with this parameter

Spike Recovery outside accepted recovery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: MW-102B (7/12/11)

Lab Order:

U1107313

Date: 11-Aug-11

Project:

Collection Date: 7/21/2011 11:00:00 AM

Lab ID:

New9620.OM/N. Lawrence Oil Dump

U1107313-030 Matrix: GROUNDWATER

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
SEMIVOLATILE STARS LIST BY	NYSDEC ASP 2005	82	70_AS	SPPET_W	(SW3520)	Analyst: L D
Pyrene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Benz(a)anthracene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Chrysene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Benzo(b)fluoranthene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Benzo(k)fluoranthene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Benzo(a)pyrene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
Indeno(1,2,3-cd)pyrene	ND	5.0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.07)	20	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.22)	7.9	0	В	μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.32)	2.2	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.55)	2.5	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.77)	9.4	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (13.93)	6.5	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.15)	4.0	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.29)	48	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.42)	5.8	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.59)	3.2	0	В	μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.68)	2.5	0	В	μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (14.89)	7.8	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (15.24)	13	0		μg/L	, 1	8/2/2011 7:25:00 PM
TIC: unknown (15.83)	9.7	. 0		µg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (16.51)	2.7	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (17.32)	2.5	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (17.6)	4.0	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (17.85)	27	0		μg/L	1	8/2/2011 7:25:00 PM
TIC: unknown (18.02)	2.4	0		μg/L	1	8/2/2011 7:25:00 PM

Approved By	y: _	PFF	Date:	8-11-11	Page 47 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
:	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated N	lethod Blank
	E	Value above quantitation range	$_{ m H}$	Holding times for preparation or ana	alysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	
1	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted rec	covery limits

Analytical Report

CLIENT: HRP Engineering, P.C. Client Sample ID: MW-302 (7/12/11)

Date: 11-Aug-11

Lab Order:

U1107313

Collection Date: 7/21/2011 11:37:00 AM

Project:

New9620.OM/N. Lawrence Oil Dump

Lab ID:

U1107313-031

Analyses	Result	Limit	Qual Units	DF	Date Analyzed
ASP PEST/PCB WATERS BY E	EPA 8081A/8082	80	81A/8082_ASPW	(SW3510B)	Analyst: EA
4,4´-DDD	ND	0.10	μg/L	1 .	7/27/2011
4,4´-DDE	ND	0.10	μg/L	1	7/27/2011
4,4´-DDT	ND	0.10	μg/L	1	7/27/2011
Aldrin	ND	0.050	μg/L	1	7/27/2011
alpha-BHC	ND	0.050	μg/L	1	7/27/2011
alpha-Chlordane	ND	0.050	μg/L	1	7/27/2011
Aroclor 1016	ND	1.0	μg/L	1	7/27/2011
Aroclor 1221	ND	1.0	μg/L	1	7/27/2011
Aroclor 1232	ND	1.0	μg/L	1	7/27/2011
Aroclor 1242	ND	1.0	μg/L	1	7/27/2011
Aroclor 1248	ND	1.0	μg/L	1	7/27/2011
Aroclor 1254	ND	1.0	μg/L	1	7/27/2011
Aroclor 1260	ND	1.0	μg/L	1	7/27/2011
Aroclor 1262	ND	1.0	μg/L	1	7/27/2011
Aroclor 1268	ND	1.0	μg/L	1	7/27/2011
beta-BHC	ND	0.050	μg/L	1	7/27/2011
delta-BHC	ND	0.050	μg/L	1	7/27/2011
Dieldrin	ND	. 0.10	μg/L	1	7/27/2011
Endosulfan I	ND	0.050	μg/L	1	7/27/2011
Endosulfan II	ND	0.10	μg/L	1	7/27/2011
Endosulfan sulfate	ND	0.10	μg/L	1	7/27/2011
Endrin	ND	0.10	μg/L	, 1	7/27/2011
Endrin aldehyde	ND	0.10	μg/L	1	7/27/2011
Endrin ketone	ND	0.10	μg/L	1	7/27/2011
gamma-BHC	ND	0.050	μg/L	1	7/27/2011
gamma-Chlordane	ND	0.050	μg/L	1	7/27/2011
Heptachlor	ND	0.050	μg/L	1	7/27/2011
Heptachlor epoxide	ND	0.050	μg/L	1	7/27/2011
Methoxychlor	ND	0.50	μg/L	1	7/27/2011
Toxaphene	ND	5.0	μg/L	1	7/27/2011

Approved By:		PFF	Date:	8-11-11	Page 48 of 48
Qualifiers:	#	Accreditation not offered by NYS DOH for this parameter	*	Low Level	
	**	Value exceeds Maximum Contaminant Value	В	Analyte detected in the associated Method Blank	
	Е	Value above quantitation range	H	Holding times for preparation or analysis exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	t
	Q	Outlying QC recoveries were associated with this parameter	S	Spike Recovery outside accepted re	covery limits