Quarterly Progress Report No. 2 Vestal Well 1-1 Superfund Site Area 4

#### QUARTERLY PROGRESS REPORT NO. 2 (October 1 through December 31, 2003)

#### FULL SCALE IN-SITU SOIL VAPOR EXTRACTION SYSTEM VESTAL AREA 4, VESTAL, NEW YORK

Prepared by:

SEVENSON PRAC TEAM MEMBER Envirogen/Shaw, Inc. 103 College Ave SE Grand Rapids, MI 49503

Submitted by:

SEVENSON ENVIRONMENTAL SERVICES, INC. 2749 Lockport Road Niagara Falls, New York 14305

February 23, 2004

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006



February 26, 2004

Stephen J. DeNardis, P.E. Resident Engineer West Point Area Office New York District U.S. Army Corps of Engineers Building 667A 3<sup>rd</sup> Floor West Point, New York 10996

Attention: Mr. Nicholas Patsis, P.E.

RE: Quarterly Progress Report No. 2 Contract # DACA41-01-D-001-0006 Vestal Wellfield 1-1, Area 4, Vestal, New York

Sirs:

Enclosed is Quarterly Progress Report No. 1 for the referenced contract. This report covers system operations during October, November, and December 2003. O&M activities for the period as well as sampling activities are summarized in this report. Copies of the analytical data are included.

Please email me at <u>cmarshall@sevensonphilly.com</u> or call at 610-388-0721 if you've any questions.

Sincerely, Sevenson Environmental Services, Inc.

Cassandra T. Marshall Project Manager

CTM/1

cc: A. LaGreca (Sevenson) J. Singer (Sevenson) D. Callahan (Envirogen) B. Buckrucker (USACE) F. Bales (USACE) S. Trocher (USEPA) M. Dunham (NYSDEC)



(716) 284-0431 2749 Lockport Road, Niagara Falls, New York 14305 An Equal Opportunity Employer

| TR                                                                                      | AI AL OF SHOP DRAWINGS, EC<br>MANUFACTURER'S CER<br>(Read Instructions on the rever     | QUIPMENT DA<br>FIFICATES O<br>rse side prior 1 | ATA, MATERIA<br>F COMPLIANCE<br>to initiating this form) | .ES, O                       | R                                    | DATE             | 2/26/                                       | 04                                                                       | X New Sub.                                                     |                         |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------|--------------------------------------|------------------|---------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|
| Section 1                                                                               | REQUEST FOR A                                                                           | PPROVAL O                                      | F THE FOLLOWING ITE                                      | MS (Th                       | is secti                             | ion will be      | e initiate                                  | d by the contra                                                          | ctor)                                                          |                         |
| TO:<br>USACE W                                                                          | Vest Point Area Office                                                                  | FROM:<br>Sevenson E                            | Environmental Services Inc. CONTRAC                      |                              | RACT NO. DACA-41-01-D-<br>T.O.# 0006 |                  | TRANSMITTAL NO.<br>18                       |                                                                          |                                                                |                         |
| New York District2749 LockBuilding 667A 3rd FloorNiagara FiWest Point, New York10996    |                                                                                         |                                                | bort Rd.<br>Ils, N.Y. 14302                              |                              |                                      |                  |                                             |                                                                          | PREVIOUS TRANS. NO.<br>(If Any)                                |                         |
| SPECIFIC<br>transmittal)                                                                | CATION SEC. NO. (Cover only one section w                                               | ith each                                       | PROJECT TITLE AND<br>System, Broome Count                | LOCA <sup>-</sup><br>ty, New | TION: \<br>v York                    | /estal Wo        | ell 1-1 S                                   | Superfund Site,                                                          | Area 2 Soil Vapor E                                            | Extraction              |
| ITEM DESCRIPTION OF ITEMS SUBMITTED<br>NO. (Type, size, model number, etc.)             |                                                                                         |                                                | MFG. OR CONTR. NO. O<br>CAT., CURVE COPIE                |                              | ). OF CONTRACT REFEREN               |                  | EFERENCE<br>MENT                            | VARIATIONS FOR (<br>(See instruction No. USI<br>6)                       |                                                                |                         |
|                                                                                         |                                                                                         |                                                | DRAWING OR<br>BROCHURE NO.<br>(See instruction No. 8)    |                              |                                      | SPEC<br>PARA. I  | PEC. DRAWING<br>RA. NO. SHEET NO.           |                                                                          |                                                                |                         |
| <u>a.</u>                                                                               | D.                                                                                      |                                                | <u> </u>                                                 |                              | <u></u> _                            | <u>e</u> .       |                                             | <u>t.</u>                                                                | <u>g</u>                                                       | <u>n.</u>               |
|                                                                                         |                                                                                         |                                                |                                                          |                              |                                      |                  |                                             |                                                                          |                                                                |                         |
|                                                                                         |                                                                                         |                                                |                                                          |                              |                                      |                  |                                             |                                                                          |                                                                |                         |
| REMARKS<br>Sent via Fe<br>2 copies to                                                   | S:<br>ederal Express:<br>cENWK                                                          |                                                |                                                          |                              |                                      | l c<br>are<br>sp | ertify that t<br>e correct a<br>ecification | he above submitted in<br>nd in strict conformar<br>s except as otherwise | terns have been reviewed ince with the contract drawin stated. | n detail and<br>ngs and |
| 1 copy to USEPA Region II<br>1 copy to N.Patsis<br>1 copy to NYSDEC<br>1 copy to NYSDEC |                                                                                         |                                                |                                                          |                              |                                      |                  |                                             | of CONTRACTOR                                                            |                                                                |                         |
| Section II                                                                              |                                                                                         | <u> </u>                                       | APPBOVAL ACTION                                          |                              |                                      | L                | . <u> </u>                                  | U Maishal                                                                |                                                                |                         |
| INCLOSU                                                                                 | INCLOSURES RETURNED (List by Item No.) NAME, TITLE AND SIGNATURE OF APPROVING AUTHORITY |                                                |                                                          |                              |                                      |                  | DATE                                        |                                                                          |                                                                |                         |
| ENG FOR                                                                                 | IM 4025, Oct 84 (ER 415-1-10) ED                                                        | TION OF JUL                                    | 81 IS OBSOLETE                                           |                              |                                      |                  |                                             |                                                                          |                                                                | OF                      |

C:\Documents and Settings\marshall\My Documents\Vestal\Reports\2nd Quarterly\Transmittal to DeNardis Second Quarterly Monthly.wpd

### QUARTERLY PROGRESS REPORT NO. 2 (October 1 through December 31, 2003)

#### FULL SCALE IN-SITU SOIL VAPOR EXTRACTION SYSTEM VESTAL AREA 4, VESTAL, NEW YORK

Prepared by:

SEVENSON PRAC TEAM MEMBER Envirogen/Shaw, Inc. 103 College Ave SE Grand Rapids, MI 49503

Submitted by:

SEVENSON ENVIRONMENTAL SERVICES, INC. 2749 Lockport Road Niagara Falls, New York 14305

February 23, 2004

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

# TABLE OF CONTENTS

| SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISVE SYSTEM MONITORING AND ADJUSTMENTS                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pressure/Vacuum Readings                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1.1 Air Blowers                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1.2 Carbon Units                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1.3 Well Field                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperatures                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Process Air Flows                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .3.1 Total System Process Air Flow                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .3.2 ISVE Well Process Air Flow                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Process Air VOC Concentrations                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .4.1 ISVE Withdrawal Wells                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .4.2 Carbon Process Air Control Samples                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .4.3 QA/QC Process Air Samples                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VOC YIELD                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ISVE Withdrawal Well VOC Yields                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total System VOC Yield                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| QUARTERLY REPORT No. 2 ANALYSIS OF MONITORING DATA          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total System                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RESPECTIVE CORRECTIVE MEASURES                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ANTICIPATED ACTIVITIES                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AUTHOR IDENTIFICATION                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                             | SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD<br>ISVE SYSTEM MONITORING AND ADJUSTMENTS<br>Pressure/Vacuum Readings<br>1.1 Air Blowers<br>1.2 Carbon Units<br>1.3 Well Field<br>Temperatures<br>Process Air Flows<br>3.1 Total System Process Air Flow<br>3.2 ISVE Well Process Air Flow<br>Process Air VOC Concentrations<br>4.1 ISVE Withdrawal Wells<br>4.2 Carbon Process Air Control Samples<br>4.3 QA/QC Process Air Samples<br>VOC YIELD<br>ISVE Withdrawal Well VOC Yields<br>Total System VOC Yield<br>QUARTERLY REPORT No. 2 ANALYSIS OF MONITORING DATA<br>Total System<br>PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND<br>RESPECTIVE CORRECTIVE MEASURES<br>ANTICIPATED ACTIVITIES<br>AUTHOR IDENTIFICATION |

#### LIST OF FIGURES

- 1 SVE System Layout
- 2 Total Target VOC Concentration, December 2-4, 2003
- 3 1,1,1 TCA Concentration (ppm), December 2-4, 2003
- 4 TCE Concentration (ppm), December 2-4, 2003
- 5 Carbon System Sampling Diagram
- 6 Concentration (ppmv) And Yield Rate (lbs/day) Of Total Target VOCs Vs. Time, Total System Sample, Vestal Area 4
- 7 Total Target VOC Yield (lbs/day), December 2-4, 2003
- 8 1,1,1 TCA Yield (lbs/day), December 2-4, 2003
- 9 TCE Yield (lbs/day), December 2-4, 2003
- 10 Total Target Contaminant Yield Start-Up to Date (lbs.) Vs. Time, Total System Sample, Vestal Area 4
- 11 Proposed SVE Well Polarity Changes

#### LIST OF TABLES

- Table 1SVE Well Status, Vestal Area 4, October 15, November 19, & December 2-4, 2003
- Table 2Analytical Results Of Concentrations Of Target Compounds, Vestal Area 4
- Table 3Contaminant Concentrations And Yields, December 2-4, 2003, Vestal Area 4
- Table 4Target Contaminant Yield, Vestal Area 4
- Table 5Total Target Contaminant Yield To Date, Vestal Area 4
- Table 6SVE Well Proposed Changes, Vestal Area 4

#### LIST OF APPENDICES

- Appendix A Operation and Maintenance Data (Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)
- Appendix B Sampling and Analytical Data Process Air Data (Including Laboratory Data Summary Sheets, Chain-of-Custody Forms, and Field Sample Log Book Notes)
- Appendix C Summary of Operation Data/Contaminant Yield Calculation

# **1.0 INTRODUCTION**

Sevenson Environmental Services, Inc. and their subcontractor (Shaw Environmental and Infrastructures (SHAW), formerly Envirogen, Inc. of Lansing, Michigan), has prepared this Quarterly Report No. 2 for the Full Scale Soil Vapor Extraction System (SVE System or System) at the Vestal Area 4 Site in Vestal, NY (Site). This report was prepared on behalf of the United States Environmental Protection Agency (USEPA) and the United States Army Corps of Engineers (USACE) who are conducting the Remedial Action for the Vestal Area 4 Site. This report was prepared under contract DACA41-01-D-0001-0006. Sevenson's remedial action work is under supervision of the USEPA and USACE. The second Quarterly Progress Report in provided and prepared in accordance with the approved Workplan. This report discusses the System operation based on data collected during October, November, and December 2003, and also discusses System operation and maintenance during these months.

Figure 1 (shown at the end of this report) is a Site plan showing the SVE System treatment area, cell distribution buildings, and the main SVE treatment building. Construction of the SVE System began in mid-April 2003 and was completed on June 23, 2003. The remedial action began on June 27, 2003, after completion of a successful start-up sequence. The SVE System is operated in accordance with the approved Workplan, O&M Manual and the Final Design documents.

Figure 1 depicts System and SVE well polarity (withdrawal, active injection or temporarily off-line) following the System installation.

Section 2.0 of this report summarizes general activities conducted during the reporting period. Section 3.0 summarizes System monitoring and adjustments. Section 4.0 discusses volatile organic compound (VOC) contaminant yields based on process air analytical data. Section 5.0 discusses analysis of data specific to the Quarterly Report period between October and December 2003. Section 6.0 discusses problems encountered during the reporting period and their respective corrective measures. Section 7.0 lists anticipated future activities.

# 2.0 SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD

The O&M inspections/site visits were performed on October 1, 9, 15, and 28; November 5, 6, 11, and 19; and December 2 and 4, 2003. Air flow and Photo Ionic Detector (PID) readings were measured throughout the System on October 15, November 19, and December 2 and 4, 2003. A full round of process air samples was collected from withdrawal wells on December 2 and 4, 2003.

Samples of process air through the carbon treatment system were collected on October 9, 15, and 28; November 11 and 19; and December 4, 2003.

On October 1, 2003, samples were taken and shipped to the lab. The cooler was returned to the site labeled 'No Delivery Address.' Samples were retaken on October 9, 2003.

On October 9, the system was shut down to rotate the carbon beds. Carbon bed #1 broke through and subsequently taken offline. Carbon bed #2 was moved to the one position and the spare was changed to the number two carbon position.

System process water (approximately 950 gallons per event) was removed on November 5, 2003.

Carbon vessels 1 and 2 were containerized and replaced on November 6, 2003, (approximately 2000 pounds per event).

On December 3, 2003 site technicians shut the System down for site maintenance.

The System shut down on December 9 and 10, 2003, due to a faulty thermocouplesensing unit on the vacuum line. The unit was replaced and the System restarted.

The System was down December 14, 15, 18, and 22, 2003, due to high water in the main vacuum lines, which reduced the vacuum flows.

Envirogen technicians shut the System down from December 23 through December 29, 2003, due to excessive water on the Site.

Physical monitoring of the System parameters, such as PID readings, temperature, and air flow measurements, along with routine maintenance of the System, was conducted during the October through December reporting period in accordance with the O&M Manual. These O&M measurements and activities were recorded on daily O&M logs, which are provided in Appendix A.

The System operated for 34 days from September 24 to October 28, 25 days from October 28 to November 30, and 16 days in December 2003 bringing the total operational time to approximately 145 days since the June 23, 2003, start-up.

Health and Safety (H&S) monitoring was conducted as outlined in the Site Safety and Health Plan (SSHP). No significant events were observed during this monitoring period.

## 3.0 SVE SYSTEM MONITORING AND ADJUSTMENTS

This section summarizes monitoring of and adjustments made to the SVE System during the reporting period. Monitoring of the System included pressure/vacuum readings, PID and temperature measurements, air flow measurements, and process air sampling and associated VOC analysis. The locations of the SVE wells are illustrated in Figure 1. System parameters were recorded on O&M daily log sheets, which are provided in Appendix A. The chain-ofcustody forms and laboratory data summary sheets are provided in Appendix B. Monitoring and adjustments were performed in accordance with the O&M Manual.

#### 3.1 Pressure/Vacuum Readings

Pressure/vacuum measurements were taken across the air blowers and carbon units, and recorded on the daily log sheets (Appendix A). These measurements were collected on October 9, 15, and 28; November 5, 6, 18, 19, and 25; and December 2 and 4, 2003.

#### 3.1.1 Vacuum Blowers

Pressure drops were measured across the vacuum blowers and filter during System operation. The pressure across the vacuum blower and filter ranged between 9 and 28 inches of water ( $H_2O$ ).

#### 3.1.2 Carbon Units

The total pressure drop across the two carbon units averaged 24.3 inches of  $H_2O$  during the reporting period. This pressure drop includes the carbon units and the connecting piping and fittings.

#### 3.1.3 Well Field

Vacuum flow rate and PID reading for the individual SVE wells on October 15, November 19, and December 2 and 4, 2003, are listed in Table 1. On October 15 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 25 standard cubic feet per minute (scfm) for Cell 1 and less than 5 to 10 scfm for Cell 2. Injection flow rates ranged from: less than 5 to 15 scfm for Cell 1 to less than 5 to 8 in Cell 2.

On November 19, 2003 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 20 scfm for Cell 1 and less than 5 to 9 scfm for Cell 2. Injection flow rates ranged from: less than 5 to 15 scfm for Cell 1 to 4 to 8 in Cell 2.

On December 2 and 4, 2003 (the quarterly monitoring event) vacuum pressures at the cell distribution buildings manifolds ranged from 84 inches of  $H_2O$  for Cell 1 to 86 inches of  $H_2O$  for Cell 2. Injection pressure was 40 inches of  $H_2O$  for both Cell 1 and Cell 2.

#### 3.2 Temperatures

Process air stream temperatures, measured at the discharge of the air blowers and across the carbon treatment system, were recorded on the O&M daily log sheets (Appendix A).

Temperature measurements at the vacuum air blowers did not exceed 180°F, which was below the design settings of 220°F. The temperature at the discharge of the vacuum blower was measured at an average of 166°F, and the temperature at the discharge of the injection blower was measured at an average of 125°F. Temperature at the vacuum header within the Cell distribution buildings ranged from 60°F to 86°F, and ranged between 48°F and 58°F at the injection header. The carbon treatment system influent air stream temperatures ranged from 72°F to 135°F. The carbon treatment system influent exceeded the air stream temperatures design specification of 130°F by 5°F on December 2, 3003. This was due to the internal circuit breaker within the heat exchanger "tripping" shutting down the unit. The heat exchanger was restarted on December 4, 2003 and no further problems have occurred.

# 3.3 Process Air Flows

This section discusses process air flow measurements and balancing throughout the entire System and for the individual SVE wells. Individual SVE withdrawal and injection well process air flow measurements are provided in Table 1 for October 15, November 19 and December 2, 2003.

# 3.3.1 Total System Process Air Flow

During the reporting period, air flow throughout the entire System was measured as outlined in the O&M Manual. The air flow through the System was calculated by measuring the pressure drop across the blowers, and using this value to obtain the air flow from the blower curve computer model supplied by the manufacturer. Calculated air flow rates are contained in Table 2. Based on this data, the calculated air flow through the entire System between October and December 2003 averaged 512 scfm. The bypass air flow for October 15, November 19, and December 2 was 225 scfm (Table 1). The entire system flow is a culmination of the bypass flow and the individual flow rates. Estimated wellfield airflow was 287.

# 3.3.2 SVE Well Process Air Flow

Individual SVE withdrawal and injection well process air flow measurements were recorded on October 15, November 19, and December 2, 2003. This data is contained in Table 1.

Total SVE well air flow on the withdrawal side of the System was 512 scfm on October 15, November 19 and December 2, 2003.

# 3.4 **Process Air VOC Concentrations**

Process air samples were collected during the reporting period on October 9, 15 and 28; November 11 and 19; and December 4, 2003. Samples were collected and analyzed in accordance with the O&M Manual. The withdrawal well process air analytical results and the carbon treatment system process air analytical results are contained in Table 2. Quality Assurance/Quality Control (QA/QC) analytical results are also presented in Table 3. The laboratory data summary sheets, chain-of-custody forms, and field sample log book notes are provided in Appendix B.

# 3.4.1 SVE Withdrawal Wells

Quarterly sampling of the SVE withdrawal wells occurred on December 2 through 4, 2003. Concentrations of total targeted VOCs at individual wells ranged from 0.00 parts per million by volume ( $ppm_v$ ) in wells B1, F1, H1, I5, J6 and K5, to 184.97  $ppm_v$  in well C3 (Table 3). Trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) show the highest concentrations.

The total targeted VOC concentration contours using the December analytical data are illustrated in Figure 2. Figures 3 and 4 show individual contaminant concentrations of 1,1,1-TCA and TCE, respectively. The highest VOC concentrations were located in the areas of cell 1 between wells B3 and C3, D1, and F4; and cell 2 of the treatment area in the vicinity of wells K3 and J1.

# 3.4.2 Carbon Process Air Control Samples

Carbon treatment system process air control samples were collected from three (3) sample ports identified and illustrated on Figure 5.

Total System VOC samples are collected prior to the combined process air stream entering the carbon treatment system. System samples were labeled "INFLUENT", "MID", and "EFFLUENT".

Total System samples were collected October 9, 15 and 28; November 11 and 19; and December 4, 2003. The total targeted influent VOC concentration averaged 13.12  $ppm_v$  over the reporting period (Table 2). TCE and 1,1,1-TCA constitute the majority of the VOC mass in the process air stream. Concentrations of target VOCs in the total System samples collected since the initial startup of the System in June 2003 are shown in Figure 6.

Between carbon bed ("MID") and after carbon bed ("EFFLUENT") samples were also collected on the same days as the total System sample to evaluate VOC breakthrough and to determine when carbon change-outs should be performed.

# 3.4.3 QA/QC Process Air Samples

QA/QC process air samples, including duplicates, sample pump blanks, trip blanks, and instrument blanks, were collected during the sampling events. Duplicates of withdrawal well samples E4 and K3 were collected and analyzed for the targeted VOCs. The results of the analysis are show on Table 3. The sample pump blank concentrations of total targeted compounds were below the detection limit (0.05 ppm<sub>v</sub>). The trip and instrument blanks concentrations were also below the detection limit for total targeted compounds.

## 4.0 VOC YIELD

This section details the System VOC yield distribution based on the individual SVE withdrawal well samples collected during the December 2 and 4, 2003 sampling event. Also discussed in this section is the total System VOC yield based on the air flow through the blowers and the composite/total System VOC analytical results.

#### 4.1 SVE Withdrawal Well VOC Yields

The VOC yield rate for each SVE withdrawal well was calculated using the Ideal Gas Law, the average molecular weight of the targeted compounds, the flow rate for each individual withdrawal well, and the total targeted VOC concentration for each well. Table 3 summarizes the yield rate in pounds per day (lbs/day) for each SVE withdrawal well as measured during the December sampling event.

The VOC yield rates varied from non-measurable to 0.18 lbs/day (well C-3). Wells A2, B1, C1, and F1 had a non-measurable yield because of low VOC concentration (PID reading less than 10 ppm), and wells H2, I3, I5, J3, L1, M1, N1, and N2 had a non-measurable yield due to very low air flow (5 scfm or lower). Wells D4, H1, J6, K5, L4, and N3 had a non-measurable yield due to both a low VOC concentration and very low air flow. The table below (see next page) summarizes the wells with non-measurable VOC yield rates. Actions to improve flow in wells are noted, but largely the effort is to try to dry out the area to decrease possible entrained moisture. (See Section 7.0 for further detail.)

At this time, some wells located in areas with high contaminant concentrations (as shown in the Pre-Remediation Geoprobe Sampling Summary Report, Vestal Well 1-1, Operable Unit 2, Area 4, March 21, 2002), currently show low VOC yield rates. Air flow rates and VOC contaminant levels with this off-gas data may be limited by subsurface geologic conditions (silt lenses), preferential air flow patterns, and soil moisture content. These conditions are unpredictable and change with varying Site conditions.

Figure 7 illustrates SVE withdrawal well total targeted VOC yield rate contours for the December sampling event. Figures 8 and 9 show individual contaminant yield rates of 1,1,1-TCA and TCE, respectively. Most of the withdrawal wells in the treatment area indicate a yield of less than 0.10 lbs/day total targeted VOC. Higher yield rates were observed in the vicinity of wells B-3, C-3, D-1, and F-4.

|               | SUMMARY OF WELLS WITH LOW YIELD RATES |                 |                     |                     |                        |                                |                                                                           |  |  |  |
|---------------|---------------------------------------|-----------------|---------------------|---------------------|------------------------|--------------------------------|---------------------------------------------------------------------------|--|--|--|
| SVE<br>WELL # | FLOW<br>RATE                          | PID<br>READINGS | LOW<br>FLOW         | LOW PID<br>(<10ppm) | Soil<br>Concentrations | Proposed Actions to<br>improve | Notes/Action List                                                         |  |  |  |
| F1            | 20                                    | 1.4             | <u>. 635 0850</u> 8 | X                   | Low                    | Alter flow rates               | Attempt to dry out area                                                   |  |  |  |
| C1            | 10                                    | 5.9             |                     | X                   | Low                    | Alter flow rates               | Reduce flow rate and allow area to dry                                    |  |  |  |
| A2            | 15                                    | 2.1             |                     | X                   | Low                    | Alter flow rates               | Goals may be attained                                                     |  |  |  |
| B1            | 15                                    | 1.0             |                     | X                   | Low                    | Alter flow rates               | Attempt to dry out area                                                   |  |  |  |
| D4            | 2                                     | 4.3             | х                   | X                   | High                   | Alter flow rates               | Concentrate more vacuum flow to well                                      |  |  |  |
| K5            | 2                                     | 1.1             | Х                   | X                   | High                   | Alter flow rates               | Concentrate more vacuum flow to well                                      |  |  |  |
| L4            | 2                                     | 4.3             | х                   | X                   | Low                    | Alter flow rates               | Concentrate more vacuum flow to well                                      |  |  |  |
| L1            | 2                                     | 13.6            | Х                   |                     | Low                    | Inject air                     | Concentrate more vacuum flow to well                                      |  |  |  |
| N1            | 2                                     | 11.6            | х                   |                     | Low                    | Inject air                     | Reduce flow rate and allow area to dry                                    |  |  |  |
| N2            | 2                                     | 23.0            | х                   |                     | Low                    | Inject air                     | Reduce flow rate and allow area to dry                                    |  |  |  |
| N3            | 2                                     | 7.3             | Х                   | X                   | Low                    | Alter flow rates               | Reduce flow rate and allow area to dry                                    |  |  |  |
| M1            | 2                                     | 26.1            | х                   |                     | Low                    | Inject air                     | Concentrate more vacuum flow to well                                      |  |  |  |
| J6            | 2                                     | 1.8             | x                   | X                   | High                   | Alter flow rates               | Low PID reading is unexpected at this location of high site contamination |  |  |  |
| J3            | 2                                     | 143.3           | x                   |                     | High                   | Inject air                     | Concentrate more vacuum flow to well                                      |  |  |  |
| 15            | 2                                     | 13.1            | х                   |                     | High                   | Inject air                     | Concentrate more vacuum flow to well                                      |  |  |  |
| H2            | 2                                     | 10.6            | Х                   |                     | Low                    | Inject air                     | Concentrate more vacuum flow to well                                      |  |  |  |
| 13            | 2                                     | 14.2            | Х                   |                     | Medium                 | Inject air                     | Reverse air flow patterns                                                 |  |  |  |
| H1            | 2                                     | 5.3             | Х                   | X                   | Low                    | Alter flow rates               | Reduce flow rate and allow area to dry                                    |  |  |  |

#### 4.2 Total System VOC Yield

The Total System VOC yield (Table 4) was calculated using the total System air flow rate (Section 3.3.1) and the influent System sample ("INFLUENT") analytical results. Based on these calculations, the System has yielded approximately 920 pounds of VOCs through the December 4, 2003 sampling event (Table 5). Therefore, the average yield rate of the System between June 23 and December 4, 2003, is 6.97 lbs/day. TCE constitutes approximately 42 percent and 1,1,1-TCA approximately 58 percent of the total VOC yield since the beginning of the SVE System operation. The increasing mass of total targeted VOCs removed from the treatment area is illustrated in Figure 10.

# 5.0 QUARTERLY REPORT No. 2 ANALYSIS OF MONITORING DATA

This section provides additional analysis of operational data collected between October and December 2003. Total System data was evaluated for this time period. The following evaluations were performed: analyses of total targeted VOC concentrations and yield rates vs. time and Total Targeted Contaminate Yield start-up to December 4, 2003.

#### 5.1 Total System

Table 2 summarizes the total System VOC concentrations and Table 4 summarizes the Total Contaminate yield per day of each VOC within the process air stream. Figure 6 illustrates concentration and daily yield rates of targeted contaminate vs. time, and Figure 10 illustrates Total Targeted Contaminate Yield from start-up to December 4, 2003. As expected, the yield rate and concentration trends closely match.

1,1,1-TCA is the dominant compound detected (Table 4), ranging from 44 to 62 percent of the VOC component of the total System process air stream. TCE ranged from approximately 38 to 56 percent of the total (Table 4).

The total System air flow rate has been very stable throughout the life of the System at 512 scfm, which was within 2 to 3 percent of the target air flow rate of 500 scfm.

# 6.0 PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND RESPECTIVE CORRECTIVE MEASURES

As Discussed in section 2.0 of this report, a faulty thermocouple-sensing unit on the vacuum line was replaced on December 10, 2003. The System was down later in December 2003, due to high water in the main vacuum lines, which reduced the vacuum flows.

During this reporting period, several wells were recorded with no air flow. These problems are related to the presence of condensate water in the process piping. Maintenance activities have been performed to remove (increased vacuum to selected wells) and control the amount of water being drawn into the treatment System (closing of selected wells). Should the site soils begin producing substantial quantities of condensate, the pump-out time will be increased in wells constructed with condensate drop legs.

# 7.0 ANTICIPATED ACTIVITIES

The following activities are anticipated for the next reporting period:

- Continue operations and maintenance of the SVE system,
- Review of SVE well flow patterns and VOC removal (adjustments if necessary),
- The next quarterly sampling event is scheduled for March 2004, and
- To try to improve system well airflow and yields, we propose a SVE well reconfiguration to focus the SVE system on the areas of higher contaminant concentration (as shown in the Pre-Remediation Geoprobe Sampling Summary Report, Vestal Well 1-1, Operable Unit 2, Area 4, March 21, 2002). Under the new configuration, wells A1, A2, C1, E1, F1, K1, and L1 will be changed from vacuum to injection. Wells B2, C2, D2, E2, J2, J4, K2, K4, and M3 will be changed from injection to vacuum. Wells F6, H2, I1, I2, I4, J1, M1, M4, N1, N2, and N3 will be temporarily shut off. This re-configuration tries to preserve the status of wells that are currently yielding contaminant. Table 6 depicts the proposed SVE well polarity changes, and Figure 11 shows the site layout under the proposed conditions. We would propose this configuration for a minimum of 3 months, observe selected wells via PID readings, and then re-evaluate the configuration. Reconfiguration of these wells will occur during the first week of February 2004.

## 8.0 AUTHOR IDENTIFICATION

This report was prepared and checked by:

Douglas C. Callahan Project Manager Envirogen/Shaw Inc.

Camandia J.M. hall

Cassandra T. Marshall Project Manager Sevenson Environmental Services, Inc.



Sevenson Environmental Services, Inc. DACA41-01-D-0001-0006



| FIGURE 1<br>SVE SYSTEM LAYOUT | SITD VESTAL AREA 4<br>TOWN OF VESTAL BROOME COUNTY, NEW YORK | SCALE IN FEET |  |
|-------------------------------|--------------------------------------------------------------|---------------|--|
| <b>11 11 11 11</b>            | SCHLD AS SHOWN                                               |               |  |









Quarterly Progress Report No. 2 Vestal Well 1-1 Superfund Site Area 4





Sevenson Environmental Services, Inc. DACA41-01-0001-0006



-



![](_page_28_Figure_0.jpeg)

Quarterly Progress Report No. 2 Vestal Well 1-1 Superfund Site Area 4

![](_page_29_Figure_1.jpeg)

Sevenson Environmental Services, Inc. DACA41-01-0001-0006

![](_page_30_Figure_0.jpeg)

Sevenson Environmental Services, Inc. DACA41-01-D-0001-0006

**TABLES** 

# TABLE 1 SVE WELL STATUS VESTAL AREA 4 OCTOBER 15, 2003

| SVE WELL #    | VAC<br>WELL | INJ<br>WELL | FLOW<br>RATE | STATUS      | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|---------------|-------------|-------------|--------------|-------------|-----------------|------------------------------------|
|               |             |             |              |             |                 |                                    |
| Bypass Flow R | ate         |             | 225          |             |                 |                                    |
| INFLUENT      |             |             | 512          |             | 13.7            |                                    |
| MIDDLE        |             |             | 512          |             | 2.4             |                                    |
| EFFLUENT      |             |             | 512          |             | 0.4             |                                    |
| A1            | X           |             | 18           | OPEN        | 7.4             | LOW                                |
| A2            | X           |             | 20           | OPEN        | 2.9             | LOW                                |
| A3            | X           |             | <5           | LF          | 65.2            | LOW                                |
| B1            | X           |             | 25           | <b>OPEN</b> | 2.3             | LOW                                |
| B2            |             | X           | 5            | NA          | NA              | LOW                                |
| B3            | X           |             | 3            | LF          | 29.2            | LOW                                |
| C1            | X           |             | 6            | OPEN        | 4.1             | LOW                                |
| C2            |             | X           | 12           | NA          | NA              | MEDIUM                             |
| C3            | X           |             | 5            | LF          | 93.2            | MEDIUM                             |
| D1            | X           |             | <5           | LF          | 39.7            | LOW                                |
| D2            |             | X           | <5           | NA          | NA              | MEDIUM                             |
| D3            | <b>X</b>    |             | <5           | LF          | 44.2            | HIGH                               |
| D4            | X           |             | 5            | OPEN        | 6.1             | HIGH                               |
| E1            | X           |             | 12           | OPEN        | 27.5            | LOW                                |
| E2            |             | X           | 15           | NA          | NA              | MEDIUM                             |
| E3            | X           |             | <5           | LF          | 319.8           | HIGH                               |
| E4            | X           |             | 11           | ĒF          | 14.1            | HIGH                               |
| E5            | X           |             | <5           | OPEN        | 603.0           | HIGH                               |
| F1            | X           |             | 15           | OPEN        | 1.5             | LOW                                |
| F2            | X           |             | 11           | OPEN        | 103.9           | MEDIUM                             |
| F3            | X           |             | <5           | OPEN        | 2.3             | MEDIUM                             |
| F4            | X           |             | 7            | OPEN        | 34.1            | LOW                                |
| F5            | X           |             | <5           | LF          | 6.3             | LOW                                |
| F6            | X           |             | <5           | LF          | 2.1             | LOW                                |
| G1            | X           |             | FULL         | WATER       | NA              | LOW                                |
| G2            | X           |             | 8            | OPEN        | 157.3           | LOW                                |
| H1            | X           |             | <5           | LF          | 3.9             | LOW                                |
| H2            | X           |             | <5           | LF _        | 81.7            | LOW                                |
| 1             | X           |             | FULL         | WATER       | NA              | LOW                                |
| 12            | X           |             | <5           | LF          | 44.1            | LOW                                |
| 13            | X           |             | <5           | LF_         | 22.4            | MEDIUM                             |
| 4             |             | X           | <5           | NA          | NA              | MEDIUM                             |
| 15            | X           |             | <5           | LF_         | 1.6             | HIGH                               |
| J1            | X           |             | <5           | LF          | 52.1            | LOW                                |
| J2            |             | X           | 7            | NA          | NA              | MEDIUM                             |
| J3            | X           |             | 6            | LF          | 151.8           | HIGH                               |

Sevenson Environmental Services, Inc. DACA41-01-0001-0006

# TABLE 1 SVE WELL STATUS VESTAL AREA 4 OCTOBER 15, 2003

| SVE WELL # | VAC<br>WELL | INJ<br>WELL | FLOW<br>RATE | STATUS | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|------------|-------------|-------------|--------------|--------|-----------------|------------------------------------|
|            |             | X           | 7            | LF     | NA              | HIGH                               |
| J5         | X           |             | 10           | OPEN   | 17.3            | HIGH                               |
| J6         | Х           |             | 6            | OPEN   | 2.9             | HIGH                               |
| K1         | X           |             | <5           | LF     | 72.1            | LOW                                |
| K2         |             | Х           | 8            | NA     | NA              | LOW                                |
| K3         | Х           |             | <5           | LF     | 42.9            | MEDIUM                             |
| K4         |             | Х           | <5           | NA     | NA              | MEDIUM                             |
| K5         | X           |             | 7            | LF     | 37.1            | HIGH                               |
| L1         | Х           |             | <5           | LF     | 66.2            | LOW                                |
| L2         | X           |             | 6            | OPEN   | 8.8             | HIGH                               |
| L3         |             | X           | 4            | NA     | NA              | LOW                                |
| L4         | X           |             | 4            | LF     | 1.4             | LOW                                |
| M1         | X           |             | <5           | LF     | 41.8            | LOW                                |
| M2         | X           |             | <5           | LF     | 2.3             | LOW                                |
| M3         |             | X           | <5           | NA     | NA              | LOW                                |
| M4         | X           |             | FULL         | WATER  | NA              | LOW                                |
| N1         | X           |             | <5           | LF     | 56.4            | LOW                                |
| N2         | X           |             | <5           | LF     | 19.3            | LOW                                |
| N3         | X           |             | <5           | LF     | 2.1             | LOW                                |

NOTE:

LF= limited airflow

Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

<sup>1</sup>Concentrations noted here are from the Geoprobe investigation Drawing 4 "Soil Sample Results Total Targeted VOCs", Feb 2002. These concentration assessments may not reflect current VOC concentrations as the system operates.

Quarterly Progress Report No. 2 Vestal Well 1-1 Superfund Site Area 4

# TABLE 1 SVE WELL STATUS VESTAL AREA 4 NOVEMBER 19, 2003

| SVE WELL #    | VAC WELL | INJ<br>WELL | FLOW<br>RATE | STATUS | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|---------------|----------|-------------|--------------|--------|-----------------|------------------------------------|
|               |          |             |              |        |                 |                                    |
| Bypass Flow R | ate      |             | 225          |        |                 |                                    |
| INFLUENT      |          |             | 512          |        | 12.1            |                                    |
| MIDDLE        |          |             | 512          |        | 0.6             |                                    |
| EFFLUENT      |          |             | 512          |        | 0.4             |                                    |
| A1            | X        |             | 18           | OPEN   | 4.1             | LOW                                |
| A2            | X        |             | 17           | OPEN   | 2.9             | LOW                                |
| A3            | X        |             | FULL         | WATER  | NA              | LOW                                |
| B1            | X        |             | 20           | OPEN   | 1.7             | LOW                                |
| B2            |          | X           | 5            | NA     | NA              | LOW                                |
| B3            | X        |             | 4            | LF     | 44.8            | LOW                                |
| C1            | X        |             | 8            | OPEN   | 5.2             | LOW                                |
| C2            |          | X           | 12           | NA     | NA              | MEDIUM                             |
| C3            | X        |             | 5            | LF     | 95.7            | MEDIUM                             |
| D1            | X        |             | <5           | LF     | 62.8            | LOW                                |
| D2            |          | X           | <5           | NA     | NA              | MEDIUM                             |
| D3            | <b>X</b> |             | <5           | LF     | 30.1            | HIGH                               |
| D4            | X        |             | <5           | OPEN   | 5.9             | HIGH                               |
| E1            | X        |             | 11           | OPEN   | 13.7            | LOW                                |
| E2            |          | X           | 15           | NA     | NA              | MEDIUM                             |
| E3            | X        |             | <5           | LF     | 171.5           | HIGH                               |
| E4            | X        |             | <5           | LF     | 12.9            | HIGH                               |
| E5            | X        |             | 6            | OPEN   | 501.9           | HIGH                               |
| F1            | X        |             | 18           | OPEN   | 1.4             | LOW                                |
| F2            | X        |             | 12           | OPEN   | 102.6           | MEDIUM                             |
| F3            | X        |             | FULL         | WATER  | NA              | MEDIUM                             |
| F4            | X        |             | 6            | OPEN   | 52.1            | LOW                                |
| F5            | X        |             | <5           | LF     | 5.8             | LOW                                |
| F6            | X        |             | <5           | LF     | 4.1             | LOW                                |
| G1            | X        |             | 6            | LF     | 21.1            |                                    |
| G2            | X        |             | FULL         | WATER  | NA              | LOW                                |
| H1            | <u>x</u> |             | <5           | LF     | 4.2             | LOW                                |
| H2            | X        |             | <5           | LF     | 37.7            | LOW                                |
| 1             | X        |             | FULL         | WATER  | NA              | LOW                                |
| 12            | X        |             | <5           | LF_    | 97.2            | LOW                                |
| 13            | X        |             |              | LF     | 18.3            | MEDIUM                             |
| 14            |          | Χ           | <5           | NA     | NA              | MEDIUM                             |
| 15            | X        |             | <5           | LF     | 9.3             | HIGH                               |
| J1            | <u>x</u> |             | <5           | LF     | 31.8            | LOW                                |
| J2            |          | X           | 7            | NA     | NA              | MEDIUM                             |
| J3            | X        |             | <5           | LF     | 152.3           | HIGH                               |

# TABLE 1 SVE WELL STATUS VESTAL AREA 4 NOVEMBER 19, 2003

| SVE WELL # | VAC WELL | INJ<br>WELL | FLOW<br>RATE | STATUS | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|------------|----------|-------------|--------------|--------|-----------------|------------------------------------|
| J4         |          | X           | 7            | LF     | NA              | HIGH                               |
| J5         | X        |             | 9            | OPEN   | 12.9            | HIGH                               |
| J6         | X        |             | 6            | OPEN   | 2.3             | HIGH                               |
| K1         | X        |             | <5           | LF     | 47.1            | LOW                                |
| K2         |          | X           | 8            | NA     | NA              | LOW                                |
| K3         | X        |             | <5           | LF     | 41.0            | MEDIUM                             |
| K4         |          | X           | <5           | NA     | NA              | MEDIUM                             |
| K5         | X        |             | <5           | LF     | 29.2            | HIGH                               |
| L1         | X        |             | <5           | LF     | 41.9            | LOW                                |
| L2         | X        |             | 5            | OPEN   | 7.1             | HIGH                               |
| L3         |          | X           | 4            | NA     | NA              | LOW                                |
| L4         | X        |             | 4            | LF     | 3.3             | LOW                                |
| M1         | X        |             | <5           | LF     | 33.5            | LOW                                |
| M2         | X        |             | <5           | LF     | 4.1             | LOW                                |
| M3         |          | X           | <5           | NA     | NA              | LOW                                |
| M4         | X        |             | FULL         | WATER  | NA              | LOW                                |
| N1         | X        |             | <5           | LF     | 43.8            | LOW                                |
| N2         | X        |             | <5           | LF     | 20.3            | LOW                                |
| N3         | X        |             | <5           | LF     | 5.8             | LOW                                |

NOTE: LF= limited airflow Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

<sup>1</sup>Concentrations noted here are from the Geoprobe investigation Drawing 4 "Soil Sample Results Total Targeted VOCs", Feb 2002. These concentration assessments may not reflect current VOC concentrations as the system operates.
# TABLE 1 SVE WELL STATUS VESTAL AREA 4 DECEMBER 2- 4, 2003

| SVE WELL #     | VAC<br>WELL | INJ<br>WELL | FLOW<br>RATE | STATUS | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|----------------|-------------|-------------|--------------|--------|-----------------|------------------------------------|
|                |             |             |              |        |                 |                                    |
| Bypass Flow Ra | ate         |             | 225          |        |                 |                                    |
| INFLUENT       |             |             | 512          |        | 7.7             |                                    |
| MIDDLE         |             |             | 512          |        | 4.2             |                                    |
| EFFLUENT       |             |             | 512          |        | 0.6             |                                    |
| A1             | Х           |             | 18           | OPEN   | 3.0             | LOW                                |
| A2             | Х           |             | 15           | OPEN   | 2.1             | LOW                                |
| A3             | X           |             | FULL         | WATER  | NA              | LOW                                |
| B1             | Х           |             | 15           | OPEN   | 1.0             | LOW                                |
| B2             |             | X           | <5           | NA     | NA              | LOW                                |
| B3             | Х           |             | <5           | LF     | 52.3            | LOW                                |
| C1             | X           |             | 10           | OPEN   | 5.9             | LOW                                |
| C2             |             | Х           | 10           | NA     | NA              | MEDIUM                             |
| C3             | X           |             | <5           | LF     | 98.2            | MEDIUM                             |
| D1             | X           |             | <5           | LF     | 73.2            | LOW                                |
| D2             |             | Х           | <5           | NA     | NA              | MEDIUM                             |
| D3             | X           |             | FULL         | WATER  | NA              | HIGH                               |
| D4             | X           |             | <5           | LF     | 4.3             | HIGH                               |
| E1             | X           |             | 10           | OPEN   | 10.2            | LOW                                |
| E2             |             | Х           | 12           | NA     | NA              | MEDIUM                             |
| E3             | X           |             | FULL         | WATER  | NA              | HIGH                               |
| E4             | X           |             | <5           | LF     | 6.5             | HIGH                               |
| E5             | Χ           |             | FULL         | WATER  | NA              | HIGH                               |
| F1             | X           |             | 20           | OPEN   | 1.4             | LOW                                |
| F2             | X           |             | FULL         | WATER  | NA              | MEDIUM                             |
| F3             | X           |             | FULL         | WATER  | NA              | MEDIUM                             |
| F4             | X           |             | <5           | OPEN   | 60.6            | LOW                                |
| F5             | X           |             | FULL         | WATER  | NA              | LOW                                |
| F6             | X           |             | FULL         | WATER  | NA              | LOW                                |
| G1             | X           |             | 6            | OPEN   | 28.0            | LOW                                |
| G2             | X           |             | <u>FULL</u>  | WATER  | NA              | LOW                                |
| H1             | X           |             | <5           | LF     | 5.3             | LOW                                |
| H2             | X           |             | <5           | LF     | 10.6            | LOW                                |
| 11             | X           |             | FULL         | WATER  | NA              | LOW                                |
| 12             | X           |             | <5           |        | 17.8            | LOW                                |
| 13             | X           |             | <5           | LF     | 14.2            | MEDIUM                             |
| 4              |             | X           | <5           | NA     | NA              | MEDIUM                             |
| 15             | X           |             | <5           |        | 13.1            | HIGH                               |
| J1             | <u>X</u>    |             | <5           |        | 10.5            | LOW                                |
| J2             |             | X           | 8            | NA     | <u>NA</u>       | MEDIUM                             |
| J3             | X           |             | <5           | LF     | 143.3           | HIGH                               |

# TABLE 1 SVE WELL STATUS VESTAL AREA 4 DECEMBER 2- 4, 2003

| SVE WELL # | VAC<br>WELL | INJ<br>WELL | FLOW<br>RATE | STATUS | PID<br>READINGS | SOIL<br>CONCENTRATION <sup>1</sup> |
|------------|-------------|-------------|--------------|--------|-----------------|------------------------------------|
| J4         |             | X           | <5           | NA     | NA              | HIGH                               |
| J5         | X           |             | 8            | OPEN   | 8.6             | HIGH                               |
| J6         | X           |             | <5           | OPEN   | 1.8             | HIGH                               |
| K1         | Х           |             | <5           | LF     | 16.8            | LOW                                |
| K2         |             | X           | 9            | NA     | NA              | LOW                                |
| K3         | X           |             | <5           | LF     | 40.3            | MEDIUM                             |
| K4         |             | Х           | <5           | NA     | NA              | MEDIUM                             |
| K5         | X           |             | <5           | LF     | 1.1             | HIGH                               |
| L1         | X           |             | <5           | LF     | 13.6            | LOW                                |
| L2         | X           |             | <5           | LF     | 5.0             | HIGH                               |
| L3         |             | X           | 4            | NA     | NA              | LOW                                |
| L4         | X           |             | <5           | LF     | 4.3             | LOW                                |
| M1         | X           |             | <5           | LF     | 26.1            | LOW                                |
| M2         | X           |             | <5           | LF     | 5.0             | LOW                                |
| M3         |             | X           | <5           | NA     | NA              | LOW                                |
| M4         | X           |             | FULL         | WATER  | NA              | LOW                                |
| N1         | X           |             | <5           | LF     | 11.6            | LOW                                |
| N2         | X           |             | <5           | LF     | 23.0            | LOW                                |
| N3         | X           |             | <5           | LF     | 7.3             | LOW                                |

NOTE: LF= limited airflow

Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

<sup>1</sup>Concentrations noted here are from the Geoprobe investigation Drawing 4 "Soil Sample Results Total Targeted VOCs", Feb 2002. These concentration assessments may not reflect current VOC concentrations as the system operates. Quarterly Progress heport No. 2 Vestal Well 1-1 Superfund Site Area 4

# TABLE 2 ANALYTICAL RESULTS OF CONCENTRATIONS OF TARGET COMPOUNDS VESTAL AREA 4

| SAMPLE<br>DATE | SAMPLE NUMBER           | WELL<br>NUMBER | FLOW RATE<br>(SCFM) | PID<br>READINGS<br>(ppm) | 1,1,1 TCA<br>(ppmv) | TCE (ppmv) | TOTAL TARGET<br>VOCs (ppmv) |
|----------------|-------------------------|----------------|---------------------|--------------------------|---------------------|------------|-----------------------------|
| 10/9/2003      | VS-SVE-INF-100903-0109  | INF            | 512                 | 14.2                     | 7.49                | 6.01       | 13.50                       |
| 10/9/2003      | VS-SVE-MID-100903-0110  | MID            | 512                 | 2.2                      | 0.00                | 0.00       | 0.00                        |
| 10/9/2003      | VS-SVE-EFF-100903-0111  | EFF            | 512                 | 0.4                      | 2.04                | 0.00       | 2.04                        |
| 10/9/2003      | VS-SVE-TB-100903-0113   | TB             | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |
| 10/15/2003     | VS-SVE-INF-101503-0114  | INF            | 512                 | 13.7                     | 11.02               | 8.98       | 20.00                       |
| 10/15/2003     | VS-SVE-MID-101503-0115  | MID            | 512                 | 2.4                      | 12.36               | 0.00       | 12.36                       |
| 10/15/2003     | VS-SVE-EFF-101503-0116  | EFF            | 512                 | 0.4                      | 0.00                | 0.00       | 0.00                        |
| 10/15/2003     | VS-SVE-TB-101503-0118   | TB             | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |
| 10/28/2003     | VS-SVE-INF-102803-0119  | INF            | 512                 | 16.4                     | 10.36               | 8.80       | 19.16                       |
| 10/28/2003     | VS-SVE-MID-102803-0120  | QIM            | 512                 | 15.2                     | 17.75               | 8.58       | 26.33                       |
| 10/28/2003     | VS-SVE-EFF-102803-0121  | EFF            | 512                 | 8.6                      | 12.32               | 0.00       | 12.32                       |
| 10/28/2003     | VS-SVE-TB-102803-0123   | TB             | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |
| 11/11/2003     | VS-SVE-INF-111103-0124  | INF            | 512                 | 7.9                      | 3.89                | 5.81       | 9.70                        |
| 11/11/2003     | VS-SVE-MID-111103-0125  | MID            | 512                 | 2.7                      | 14.77               | 0.00       | 14.77                       |
| 11/11/2003     | VS-SVE-EFF-111103-0126  | EFF            | 512                 | 0.4                      | 0.00                | 0.00       | 0.00                        |
| 11/11/2003     | VS-SVE-TB-111103-0128   | TB             | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |
| 11/19/2003     | VS-SVE-INF-111903-0129  | INF            | 512                 | 12.1                     | 4.96                | 5.51       | 10.47                       |
| 11/19/2003     | VS-SVE-MID-111903-0130  | DIM            | 512                 | 0.6                      | 0.00                | 0.00       | 0.00                        |
| 11/19/2003     | VS-SVE-EFF-111903-0131  | EFF            | 512                 | 0.4                      | 0.00                | 00.0       | 0.00                        |
| 11/19/2003     | VS-SVE-TB-111903-0133   | TB             | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |
| 12/4/2003      | VS-SVE-INF-120403-0187  | INF            | 512                 | 7.7                      | 2.89                | 3.03       | 5.92                        |
| 12/4/2003      | VS-SVE-MID-120403-0188  | MID            | 512                 | 4.2                      | 15.31               | 0.00       | 15.31                       |
| 12/4/2003      | VS-SVE-EFF-120403-0189  | EFF            | 512                 | 0.6                      | 0.00                | 0.00       | 0.00                        |
| 12/4/2003      | VS-SVE-TB-7-120403-0190 | B              | NA                  | NA                       | 0.00                | 0.00       | 0.00                        |

NOTE 1: 1,1,1 TCA= 1,1,1-Trichloroethane

TCE= Trichloroethene NA = Not Applicable INF= Influent

NOTE 2: INF= I MID= I

MID= Middle Carbon EFF= Effluent TB= Trip Blank

# TABLE 3

# CONTAMINANT CONCENTRATIONS AND YIELDS

# **DECEMBER 2-4, 2003**

#### **VESTAL, AREA 4**

| SAMPLE DATE | SAMPLE ID | FLOW<br>(CFM) | PID<br>READING | 1,1,1-TCA<br>(ppmv) | TCE<br>(ppmv) | TOTAL<br>TARGETED<br>CONTAMINANTS<br>(ppmv) | LBS OF<br>1,1,1-TCA | LBS OF<br>TCE | LBS OF TOTAL<br>TARGETED<br>CONTAMINANTS<br>PER DAY |
|-------------|-----------|---------------|----------------|---------------------|---------------|---------------------------------------------|---------------------|---------------|-----------------------------------------------------|
| 12/2/2003   | A1        | 18            | 3.0            | 0.64                | 0.00          | 0.64                                        | 0.01                | 0.00          | 0.01                                                |
| 12/2/2003   | E1        | 10            | 10.2           | 5.23                | 8.65          | 13.88                                       | 0.03                | 0.04          | 0.07                                                |
| 12/2/2003   | D1        | 2             | 73.2           | 48.39               | 63.46         | 111.85                                      | 0.05                | 0.06          | 0.11                                                |
| 12/2/2003   | F1        | 20            | 1.4            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | E4        | 2             | 6.5            | 8.64                | 5.04          | 13.68                                       | 0.01                | 0.00          | 0.01                                                |
| 12/2/2003   | E4-D      | 2             | 6.5            | 8.58                | 4.63          | 13.21                                       | 0.01                | 0.00          | 0.01                                                |
| 12/2/2003   | TB-1      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | F4        | 2             | 60.6           | 41.38               | 72.39         | 113.77                                      | 0.04                | 0.07          | 0.11                                                |
| 12/2/2003   | C1        | 10            | 5.9            | 0.85                | 0.00          | 0.85                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | C3        | 2             | 98.2           | 62.51               | 122.46        | 184.97                                      | 0.06                | 0.12          | 0.18                                                |
| 12/2/2003   | B3        | 2             | 52.3           | 41.12               | 79.95         | 121.07                                      | 0.04                | 0.08          | 0.12                                                |
| 12/2/2003   | TB-2      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | A2        | 15            | 2.1            | 0.17                | 0.00          | 0.17                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | B1        | 15            | 1.0            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | D4        | 2             | 4.3            | 2.19                | 2.85          | 5.04                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | TB-3      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/2/2003   | PB-1      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | K1        | 2             | 16.8           | 8.39                | 5.68          | 14.07                                       | 0.01                | 0.01          | 0.01                                                |
| 12/4/2003   |           | 2             | 10.5           | 8.79                | 6.59          | 15.38                                       | 0.01                | 0.01          | 0.02                                                |
| 12/4/2003   | K5        | 2             | 1.1            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | L4        | 2             | 4.3            | 0.18                | 0.66          | 0.84                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | L1        | 2             | 13.6           | 6.87                | 7.85          | 14.72                                       | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | TB-4      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | K3        | 2             | 40.3           | 41.32               | 0.00          | 41.32                                       | 0.04                | 0.00          | 0.04                                                |
| 12/4/2003   | K3-D      | 2             | 40.3           | 42.32               | 0.00          | 42.32                                       | 0.04                | 0.00          | 0.04                                                |
| 12/4/2003   | N1        | 2             | 11.6           | 0.23                | 0.45          | 0.68                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | N2        | 2             | 23.0           | 2.30                | 1.74          | 4.04                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | M2        | 2             | 5.0            | 3.79                | 3.28          | 7.07                                        | 0.00                | 0.00          | 0.01                                                |
| 12/4/2003   | N3        | 2             | 7.3            | 1.33                | 1.26          | 2.59                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | M1        | 2             | 26.1           | 6.17                | 6.68          | 12.85                                       | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | J6        | 2             | 1.8            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | TB-5      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | J3        | 2             | 143.3          | 0.75                | 0.00          | 0.75                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | G1        | 6             | 28.0           | 0.16                | 0.55          | 0.71                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | 15        | 2             | 13.1           | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | H2        | 2             | 10.6           | 0.15                | 0.34          | 0.49                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | 12        | 2             | 17.8           | 8.83                | 8.79          | 17.62                                       | 0.01                | 0.01          | 0.02                                                |
| 12/4/2003   | 13        | 2             | 14.2           | 0.11                | 0.49          | 0.60                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | TB-6      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | H1        | 2             | 5.3            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | J5        | 8             | 8.6            | 8.38                | 3.58          | 11.96                                       | 0.03                | 0.01          | 0.05                                                |
| 12/4/2003   | INF       | 512           | 7.7            | 2.89                | 3.03          | 5.92                                        | 0.74                | 0.76          | 1.50                                                |
| 12/4/2003   | MID       | 512           | 4.2            | 15.31               | 0.00          | 15.31                                       | 3.91                | 0.00          | 3.91                                                |
| 12/4/2003   | EFF       | 512           | 0.6            | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | TB-7      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |
| 12/4/2003   | PB-2      | NA            | NA             | 0.00                | 0.00          | 0.00                                        | 0.00                | 0.00          | 0.00                                                |

Note: Flows of less than 5 CFM were recorded as 2.

#### TABLE 4 TARGET CONTAMINANT YIELD VESTAL AREA 4

| SAMPLE<br>DATE | SAMPLE NUMBER            | WELL<br>NUMBER  | 1,1,1 TCA<br>(Ibs/day) | TCE<br>(Ibs/day) | TOTAL TARGET VOCs<br>(Ibs/day) |
|----------------|--------------------------|-----------------|------------------------|------------------|--------------------------------|
| 6/23/2003      | VS-SS-INFL-062303-0      | INF             | 9.58                   | 7.18             | 16.76                          |
| 6/23/2003      | VS-SS-INFL-062303-1      | INF             | 6.37                   | 4.85             | 11.22                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 7.98                   | 6.02             | 13.99                          |
|                | TOTAL YIELD (lbs) FOR PE | ERIOD (6/23-6/2 | 23)                    |                  | 0.56                           |
| 6/23/2003      | VS-SS-INFL-062303-1      | INF             | 6.37                   | 4.85             | 11.22                          |
| 6/23/2003      | VS-SS-INFL-062303-4      | INF             | 5.23                   | 5.42             | 10.66                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 5.80                   | 5.14             | 10.94                          |
|                | TOTAL YIELD (lbs) FOR PE | ERIOD (6/23-6/2 | 23)                    |                  | 1.42                           |
| 6/23/2003      | VS-SS-INFL-062303-4      | INF             | 5.23                   | 5.42             | 10.66                          |
| 6/23/2003      | VS-SS-INFL-062303-8      | INF             | 4.10                   | 4.33             | 8.43                           |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 4.67                   | 4.88             | 9.55                           |
|                | TOTAL YIELD (lbs) FOR P  | ERIOD (6/23-6/  | 23)                    |                  | 1.62                           |
| 6/23/2003      | VS-SS-INFL-062303-8      | INF             | 4.10                   | 4.33             | 8.43                           |
| 6/24/2003      | VS-SS-INF-062403         | INF             | 4.52                   | 6.18             | 10.70                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 4.31                   | 5.26             | 9.57                           |
|                | TOTAL YIELD (lbs) FOR PE | 11.19           |                        |                  |                                |
| 6/24/2003      | VS-SS-INF-062403         | INF             | 4.52                   | 6.18             | 10.70                          |
| 6/25/2003      | VS-SS-INF-062503         | INF             | 2.28                   | 2.21             | 4.48                           |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 3.40                   | 4.20             | 7.59                           |
|                | TOTAL YIELD (Ibs) FOR PE | ERIOD (6/24-6/2 | 25)                    |                  | 4.40                           |
| 6/25/2003      | VS-SS-INF-062503         | INF             | 2.28                   | 2.21             | 4.48                           |
| 6/27/2003      | VS-SVE-INF-062703        | INF             | 3.28                   | 3.26             | 6.53                           |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 2.78                   | 2.74             | 5.51                           |
|                | TOTAL YIELD (Ibs) FOR PE | ERIOD (6/25-6/2 | 27)                    |                  | 10.79                          |
| 6/27/2003      | VS-SVE-INF-062703        | INF             | 3.28                   | 3.26             | 6.53                           |
| 7/7/2003       | VS-SVE-INF-070703-0001   | INF             | 6.87                   | 5.04             | 11.91                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 5.08                   | 4.15             | 9.22                           |
|                | TOTAL YIELD (lbs) FOR P  | ERIOD (7/27-7/  | 7)                     |                  | 92.57                          |
| 7/7/2003       | VS-SVE-INF-070703-0001   | INF             | 6.87                   | 5.04             | 11.91                          |
| 7/9/2003       | VS-SVE-INF-070903-0006   | INF             | 19.45                  | 17.96            | 36.92                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 13.16                  | 11.50            | 24.42                          |
|                | TOTAL YIELD (lbs) FOR PE | ERIOD (7/7-7/9) |                        |                  | 47.85                          |
| 7/9/2003       | VS-SVE-INF-070903-0006   | INF             | 19.45                  | 17.96            | 36.92                          |
| 7/17/2003      | VS-SVE-INF-071703-0011   | INF             | 8.60                   | 5.65             | 14.25                          |
|                | INFLUENT AVG PER DAY     | FOR PERIOD      | 14.03                  | 11.81            | 25.59                          |
|                | TOTAL YIELD (lbs) FOR PE | ERIOD (7/9-7/17 | 7)                     |                  | 114.11                         |

| 7/17/2003  | VS-SVE-INF-071703-0011   | INF            | 8.60                                         | 5.65 | 14.25  |
|------------|--------------------------|----------------|----------------------------------------------|------|--------|
| 7/29/2003  | VS-SVE-INF-072903-0016   | INF            | 2.70                                         | 1.88 | 4.67   |
|            | INFLUENT AVG PER DAY F   | OR PERIOD      | 5.65                                         | 3.77 | 9.46   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (7/17-7/2 | 29)                                          |      | 76.91  |
| 7/29/2003  | VS-SVE-INF-072903-0016   | INF            | 2.70                                         | 1.88 | 4.67   |
| 8/12/2003  | VS-SVE-INF-081203-0026   | INF            | 4.07                                         | 2.34 | 6.40   |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD     | 3.39                                         | 2.11 | 5.54   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (7/29-8/1 | 2)                                           |      | 30.33  |
| 8/12/2003  | VS-SVE-INF-081203-0026   | INF            | 4.07                                         | 2.34 | 6.40   |
| 8/25/2003  | VS-SVE-INF-082503-0031   | INF            | 6.23                                         | 5.06 | 11.28  |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD     | 5.15                                         | 3.70 | 8.84   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (8/12-8/2 | 25)                                          |      | 90.08  |
| 8/25/2003  | VS-SVE-INF-082503-0031   | INF            | 6.23                                         | 5.06 | 11.28  |
| 9/3/2003   | VS-SVE-INF-090303-0036   | INF            | 8.45                                         | 4.01 | 12.46  |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD     | 7.34                                         | 4.54 | 11.87  |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (8/25-9/3 | 3)                                           |      | 103.74 |
| 9/3/2003   | VS-SVE-INF-090303-0036   | INF            | 8.45                                         | 4.01 | 12.46  |
| 9/8/2003   | VS-SVE-INF-090803-0041   | INF            | 4.23                                         | 2.46 | 6.70   |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD     | 6.34                                         | 3.24 | 9.58   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (9/3-9/8) |                                              |      | 38.51  |
| 9/8/2003   | VS-SVE-INF-090803-0041   | INF            | 4.23                                         | 2.46 | 6.70   |
| 9/24/2003  | VS-SVE-INF-092403-0099   | INF            | 2.74                                         | 1.30 | 4.04   |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD     | 3.48                                         | 1.88 | 5.37   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (9/8-9/24 | <u>)                                    </u> |      | 72.89  |
| 9/24/2003  | VS-SVE-INF-092403-0099   | INF            | 2.74                                         | 1.30 | 4.04   |
| 10/9/2003  | VS-SVE-INF-100903-0109   | INF            | 1.91                                         | 1.51 | 3.42   |
|            | INFLUENT AVG. PER DAY I  | FOR PERIOD     | 2.32                                         | 1.40 | 3.73   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (9/24-10/ | /9)                                          |      | 55.77  |
| 10/9/2003  | VS-SVE-INF-100903-0109   | INF            | 1.91                                         | 1.51 | 3.42   |
| 10/15/2003 | VS-SVE-INF-101503-0114   | INF            | 2.82                                         | 2.26 | 5.08   |
|            | INFLUENT AVG. PER DAY    | OR PERIOD      | 2.37                                         | 1.89 | 4.25   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (10/9-10/ | /15)                                         |      | 25.50  |
| 10/15/2003 | VS-SVE-INF-101503-0114   | INF            | 2.82                                         | 2.26 | 5.08   |
| 10/28/2003 | VS-SVE-INF-102803-0119   | INF            | 2.65                                         | 2.21 | 4.86   |
|            | INFLUENT AVG. PER DAY    | OR PERIOD      | 2.74                                         | 2.24 | 4.97   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (10/15-10 | 0/28)                                        |      | 64.91  |
| 10/28/2003 | VS-SVE-INF-102803-0119   | INF            | 2.65                                         | 2.21 | 4.86   |
| 11/11/2003 | VS-SVE-INF-111103-0124   | INF            | 0.99                                         | 1.46 | 2.45   |
|            | INFLUENT AVG. PER DAY    | OR PERIOD      | 1.82                                         | 1.84 | 3.66   |
|            | TOTAL YIELD (lbs) FOR PE | RIOD (10/28-1  | 1/11)                                        |      | 25.11  |

| 11/11/2003 | VS-SVE-INF-111103-0124   | INF         | 0.99  | 1.46 | 2.45   |
|------------|--------------------------|-------------|-------|------|--------|
| 11/19/2003 | VS-SVE-INF-111903-0129   | INF         | 1.27  | 1.39 | 2.65   |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD  | 1.13  | 1.43 | 2.55   |
|            | TOTAL YIELD (lbs) FOR PE |             | 19.74 |      |        |
| 11/19/2003 | VS-SVE-INF-111103-0124   | INF         | 1.27  | 1.39 | 2.65   |
| 12/4/2003  | VS-SVE-INF-111903-0129   | INF         | 0.74  | 0.76 | 1.50   |
|            | INFLUENT AVG. PER DAY    | FOR PERIOD  | 1.01  | 1.08 | 2.08   |
|            | 32.56                    |             |       |      |        |
|            | TOTAL YIELD TO F         | REPORTED DA | TE    |      | 920.57 |

- Note 1: Beginning and ending period influent yields are averaged and then multiplied by the number of operational days during the reporting period.
- Note 2: 1,1,1 TCA= 1,1,1-Trichloroethane TCE= Trichloroethene
- Note 3: INF= Influent

#### TABLE 5

#### TOTAL TARGET CONTAMINANT YIELD TO DATE VESTAL AREA 4

| SAMPLE DATE | 1,1,1 TCA (lbs) | TCE (lbs) | TOTAL TARGET VOCs<br>(lbs) |
|-------------|-----------------|-----------|----------------------------|
| 6/23/2003   | 0.00            | 0.00      | 0.00                       |
| 6/23/2003   | 0.33            | 0.25      | 0.58                       |
| 6/23/2003   | 1.06            | 0.89      | 1.95                       |
| 6/23/2003   | 1.84            | 1.71      | 3.54                       |
| 6/24/2003   | 6.87            | 7.83      | 14.70                      |
| 6/25/2003   | 8.85            | 10.28     | 19.13                      |
| 6/27/2003   | 14.28           | 15.63     | 29.92                      |
| 7/7/2003    | 65.21           | 57.31     | 122.52                     |
| 7/9/2003    | 90.98           | 79.35     | 170.33                     |
| 7/17/2003   | 153.51          | 130.86    | 284.38                     |
| 7/29/2003   | 199.85          | 161.45    | 361.30                     |
| 8/12/2003   | 218.64          | 172.99    | 391.63                     |
| 8/25/2003   | 271.09          | 210.67    | 481.76                     |
| 9/3/2003    | 335.21          | 250.27    | 585.48                     |
| 9/8/2003    | 360.71          | 263.28    | 623.99                     |
| 9/24/2003   | 408.05          | 288.83    | 696.88                     |
| 10/9/2003   | 442.85          | 309.83    | 752.68                     |
| 10/15/2003  | 457.04          | 321.14    | 778.18                     |
| 10/28/2003  | 492.69          | 350.33    | 843.02                     |
| 11/11/2003  | 505.20          | 362.94    | 868.14                     |
| 11/19/2003  | 513.95          | 373.96    | 887.91                     |
| 12/4/2003   | 529.68          | 390.80    | 920.48                     |

NOTE 1:

1,1,1 TCA= 1,1,1-Trichloroethane TCE= Trichloroethene

|            | CURREN   | T STATUS |                |                             | PROPOSED CHANGES                                                                                                                           |
|------------|----------|----------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| SVE WELL # | VAC WELL | INJ WELL | FLOW<br>STATUS | PROPOSED<br>FLOW<br>CHANGES | REASON                                                                                                                                     |
|            | 1        |          |                |                             |                                                                                                                                            |
| INFLUENT   |          |          |                |                             |                                                                                                                                            |
| MIDDLE     |          |          |                |                             |                                                                                                                                            |
| EFFLUENT   |          |          |                |                             |                                                                                                                                            |
| A1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drying the treatment zone                                                            |
| A2         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drying the treatment zone                                                            |
| A3         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |
| B1         | x        |          | TBD            |                             | Historic data show a sustained contaminant vield. Leave in the current configuration.                                                      |
| B2         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area. |
| В3         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |
| C1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drving the treatment zone                                                            |
| C2         | -        | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area. |
| СЗ         | x        |          | TBD            |                             | Historic data show a sustained contaminant vield. Leave in the current configuration.                                                      |
| D1         | x        |          | TBD            |                             | Historic data show a sustained contaminant vield. Leave in the current configuration.                                                      |
| D2         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area. |
| D3         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |
| D4         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |
| E1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drying the treatment zone                                                            |
| E2         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area. |
| E3         | x        |          | TBD            |                             | Historic data show a sustained contaminant yield. Leave in the current configuration.                                                      |
| E4         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |
| E5         | X        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                   |

|            | CURREN   | T STATUS |                |                             | PROPOSED CHANGES                                                                                                                                                                                                                                                                   |
|------------|----------|----------|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVE WELL # | VAC WELL | INJ WELL | FLOW<br>STATUS | PROPOSED<br>FLOW<br>CHANGES | REASON                                                                                                                                                                                                                                                                             |
| F1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drying the treatment zone                                                                                                                                                                                                    |
| F2         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| F3         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| F4         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| F5         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| F6         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| G1         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| G2         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| H1         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| H2         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| 11         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| 12         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| 13         | X        |          | TBD            |                             | vield. Leave in the current configuration.                                                                                                                                                                                                                                         |

|            | CURREN   | T STATUS |                |                             | PROPOSED CHANGES                                                                                                                                                                                                                                                                   |
|------------|----------|----------|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVE WELL # | VAC WELL | INJ WELL | FLOW<br>STATUS | PROPOSED<br>FLOW<br>CHANGES | REASON                                                                                                                                                                                                                                                                             |
| 14         |          | x        | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| 15         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| J1         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| J2         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area.                                                                                                                                         |
| J3         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| J4         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area.                                                                                                                                         |
| J5         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| J6         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| K1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drving the treatment zone                                                                                                                                                                                                    |
| К2         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area.                                                                                                                                         |
| КЗ         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| К4         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area.                                                                                                                                         |
| К5         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| L1         | x        |          | TBD            | Injection                   | Alter air flow patterns within soils and assist in<br>drying the treatment zone                                                                                                                                                                                                    |
| L2         | x        |          | TBD            |                             | Historic data show a sustained contaminant yield. Leave in the current configuration.                                                                                                                                                                                              |
| L3         |          | x        | TBD            |                             | Historic data show a sustained contaminant vield. Leave in the current configuration.                                                                                                                                                                                              |

|            | CURREN   | TSTATUS  |                |                             | PROPOSED CHANGES                                                                                                                                                                                                                                                                   |
|------------|----------|----------|----------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SVE WELL # | VAC WELL | INJ WELL | FLOW<br>STATUS | PROPOSED<br>FLOW<br>CHANGES | REASON                                                                                                                                                                                                                                                                             |
| L4         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>yield. Leave in the current configuration.                                                                                                                                                                                           |
| M1         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| М2         | x        |          | TBD            |                             | Historic data show a sustained contaminant<br>vield. Leave in the current configuration.                                                                                                                                                                                           |
| МЗ         |          | x        | TBD            | Vacuum                      | Alter vacuum rates within the soils creating<br>alternate flow paths assisting in contaminant<br>removal and drying of the treatment area.                                                                                                                                         |
| М4         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| N1         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| N2         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |
| N3         | x        |          | TBD            | Off                         | Well produces a limited amount of contaminant<br>yield. Due to low flow rate or low contaminant<br>levels within the airstreams. Closing of well<br>allows additional air flow to be redirected to<br>areas of the site that currently produce or have<br>the potential to produce |

Quarterly Progress Report No. 2 Vestal Well 1-1 Superfund Site Area 4

# APPENDIX A Operation and Maintenance Data

(Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)

Sevenson Environmental Services, Inc. DACA41-01-D-0001-0006

# VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG DATE: 1019 103 ARRIVAL TIME: 0830 FAULT LIGHTS ON (list): "NONE" REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): CARBON BED OF Sampling, CHANGE CARBON BED HOOK. 4P TASK PERFORMED: (HANGED OVER, DARE BECOMED THRONGH. # BECOMES # / AND. OF 00 SAMPLES THOM THE GARBON PABOS CANPED KO TANK WHILE ISVESUSTER WAS SHUT VOWN. (200 300 9ALS THE DEVE SUSTEM AND TOOK LEADING AND sould MAIN EQUIPMENT BUILDING CONTROL BOX LOCKED CONTROL DOOR LOCKED MAIN CONTROL PANEL HOUR METER: SVE UNIT SVE PUMPING UNIT INJECTION BLOWER TEMP: INJECTION BLOWER TEMP SETTING: F "H2O Ka PRESSURE AFTER INJECTION BLOWER 30 VACUUM BLOWER TEMP: LOWVAC = 9 VACUUM BLOWER TEMP SETTING: "H2O 📈 VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: "H2O K/A GREASE SEALS CHECKED: $\checkmark$ DATE OF LAST GREASE: 9-23-03DATE OF LAST OIL CHANGE: 85-03 OIL LEVEL CHECKED: BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

FAGE = 2

CARBON BED SUSTEM !

PRESS. BEFORE GAC UNIT 1 = 40 - 420 TEAND. 11 11 11 = 800 - F

MESS. BETWEEN GAC UNITS HJ = 30-H20

PEOS AFTER GAC UNIT 2 = 14-420 TEMP AFTER GAR UNIT 2 = 74°-F.

WATER STORAGE UNIT, -VOLUME OF WATER IN TANK - 200 GALS WATER IN CONTAIN. VASSEL NO

INF. 14.2 MIL - 2.2

CONTROL BOX DISCONNECT ON: \_\_\_\_\_ 240-VOLT DISCONNECT ON \_\_\_\_\_ MANUAL \_\_\_\_ OFF \_\_\_\_ AUTO SELECTOR SWITCH: VACUUM STATUS LIGHT: ON \_\_\_\_\_ OFF \_\_\_\_ CONTROL BOX LOCKED ELECTRICAL HEAT BREAKER: ON \_\_\_\_ OFF ELECTRICAL HEATER THERMOSTAT SETTING: 55 F PRESSURE AT INJECTION MANIFOLD: 36 "H2O TEMP AT INJECTION MANIFOLD: SP F VACUUM AT VACUUM MANIFOLD: 76 "H2O TEMP AT VACUUM MANIFOLD: \_\_\_\_\_\_F VACUUM AT KNOCKOUT TANK: \_\_\_\_/\_\_ "Hg WATER PUMP PRESSURE RELIEF SETTING: M/ psi

PAGE 3

\* a - 2%

#### **CELL 1 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

PAGE 4

# **CELL 2 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |
|---------------------------------------------------|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |
| VACUUM STATUS LIGHT: ON OFF                       |
|                                                   |
| ELECTRICAL HEAT BREAKER: ON OFF                   |
| ELECTRICAL HEATER THERMOSTAT SETTING: 55 F        |
| PRESSURE AT INJECTION MANIFOLD: 35 "H2O           |
| TEMP AT INJECTION MANIFOLD: 56 F                  |
| VACUUM AT VACUUM MANIFOLD: 76 "H2O                |
| TEMP AT VACUUM MANIFOLD: 60 F                     |
|                                                   |
| WATER PUMP PRESSURE RELIEF SETTING:               |

**GENERAL SITE OBSERVATIONS** PAGE 5 CHECK AND NOTE CONDITION OF SITE: SIN GOD FIELD ACTIVITY CHECKLIST SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_\_YES \_\_\_\_\_NO SVE WELLS SAMPLED: \_\_\_\_ YES \_\_\_\_ NO CARBON CHANGEOUT PERFORMED: WATER REMOVAL PERFORMED: EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: INSPECT MAIN POWER AND TELEPHONE LINE: SUMMERY OF PROCESS AIR SAMPLING: NID CARBON / AND 00 · Poling QUE MONTORING 200 SUMMARY OF OTHER ACTIVITIES: TURNED THERMOSTATS 70 COMMENTS: SIJEN OPENALING GOOD. 20.00 THE. SIGNATURE OF OPERATIONS TECHNICIAN(S):

# **VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG** "NONE" DATE: / በ / ይገ ARRIVAL TIME: <u>በይ</u> FAULT LIGHTS ON (list):\_\_\_\_ REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): CARBON BED OG SAMPLINK (le SAMPLE FROM 10/9/03) TASK PERFORMED: AND EFFLUENT = INF. 13. EFFLUENT-MAIN EQUIPMENT BUILDING CONTROL DOOR LOCKED CONTROL BOX LOCKED MAIN CONTROL PANEL 2198.6 403. HOUR METER: SVE UNIT SVE PUMPING UNIT **INJECTION BLOWER TEMP:** INJECTION BLOWER TEMP SETTING: PRESSURE AFTER INJECTION BLOWER VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: DATE OF LAST GREASE: ノローダー 03 GREASE SEALS CHECKED: DATE OF LAST OIL CHANGE: 85-03 OIL LEVEL CHECKED: BELT GUARD IN PLACE: BELTS CHECKED FOR WEAR:

PAGE 3

#### CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: \_\_\_\_ 240-VOLT DISCONNECT ON \_\_\_\_

SELECTOR SWITCH: MANUAL \_\_\_\_ OFF \_\_\_\_ AUTO \_\_\_\_

VACUUM STATUS LIGHT: ON \_\_\_\_ OFF \_\_\_\_

CONTROL BOX LOCKED

ELECTRICAL HEAT BREAKER: ON \_\_\_\_\_ OFF \_\_\_\_

ELECTRICAL HEATER THERMOSTAT SETTING: \_\_\_\_\_F

PRESSURE AT INJECTION MANIFOLD: "H2O

TEMP AT INJECTION MANIFOLD: \_\_\_\_\_F

VACUUM AT VACUUM MANIFOLD: \_\_\_\_\_"H2O

TEMP AT VACUUM MANIFOLD: \_\_\_\_\_ F

VACUUM AT KNOCKOUT TANK: \_\_\_\_\_\_ "Hg

WATER PUMP PRESSURE RELIEF SETTING: \_\_\_\_\_ psi

#### PAGE 4

#### **CELL 2 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |
|---------------------------------------------------|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |
| VACUUM STATUS LIGHT: ON OFF                       |
| CONTROL BOX LOCKED                                |
| ELECTRICAL HEAT BREAKER: ON OFF                   |
| ELECTRICAL HEATER THERMOSTAT SETTING:F            |
| PRESSURE AT INJECTION MANIFOLD: "H2O              |
| TEMP AT INJECTION MANIFOLD:F                      |
| VACUUM AT VACUUM MANIFOLD:"H2O                    |
| TEMP AT VACUUM MANIFOLD: F                        |
| VACUUM AT KNOCKOUT TANK: "Hg                      |

WATER PUMP PRESSURE RELIEF SETTING: \_\_\_\_\_ psi

**GENERAL SITE OBSERVATIONS** PAGE 5 0000 8×000 CHECK AND NOTE CONDITION OF SITE: FIELD ACTIVITY CHECKLIST \_YES \_\_\_NO SVE WELLHEAD AIR FLOWS MEASURED: V NO SVE WELLS SAMPLED: YES CARBON CHANGEOUT PERFORMED: ~0 WATER REMOVAL PERFORMED: 20 EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: INSPECT MAIN POWER AND TELEPHONE LINE: FROM IN FLIGHT, SUMMERY OF PROCESS AIR SAMPLING: UN CARGON AND EFFLIGAT nowal RW SUMMARY OF OTHER ACTIVITIES: Took · atte SRAON 126 6D . STOCACE TANK. COMMENTS: 19HH 10NJFILENTLUS WAG UERUTHING Sancling ANF . ARE AA 6.0 SIGNATURE OF OPERATIONS TECHNICIAN(S):

DATE: 10 128 03 ARRIVAL TIME: 0830 FAULT LIGHTS ON (list): "None" REASON FOR VISIT: MONTHLY\_QUARTERLY\_OTHER\_ OTHER (define): 3-4Kly CARBON BED 00-TASK PERFORMED: JULEO OF SAMPLES FROM EFFLUENT, INFLUENT, AND MIDDLE CA MAIN EQUIPMENT BUILDING CONTROL BOX LOCKED CONTROL DOOR LOCKED MAIN CONTROL PANEL HOUR METER: SVE UNIT 25/2.0 +125. SVE PUMPING UNIT **INJECTION BLOWER TEMP: INJECTION BLOWER TEMP SETTING:** PRESSURE AFTER INJECTION BLOWER VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER <u>"H20</u> PRESSURE AFTER VACUUM BLOWER: GREASE SEALS CHECKED: DATE OF LAST GREASE: 10-15-03 OIL LEVEL CHECKED: \_\_\_\_ DATE OF LAST OIL CHANGE: 8-5-03 BELTS CHECKED FOR WEAR: \_\_\_\_\_ BELT GUARD IN PLACE: \_\_\_\_\_

PAGE-2

CAMBON BED SySTEM

-INFLUENT - 72° - 38° 420 Mid GRBON - - - 28" #20 EPFLUENT - 64° - 14" 420

PAGE 3

#### CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |
|---------------------------------------------------|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |
| VACUUM STATUS LIGHT: ON 🦯 OFF                     |
|                                                   |
| ELECTRICAL HEAT BREAKER: ON OFF                   |
| ELECTRICAL HEATER THERMOSTAT SETTING: 50 F        |
| PRESSURE AT INJECTION MANIFOLD: 34 "H2O           |
| TEMP AT INJECTION MANIFOLD: 56 F                  |
| VACUUM AT VACUUM MANIFOLD: <u>86</u> "H2O         |
| TEMP AT VACUUM MANIFOLD: 56 F                     |
|                                                   |
| WATER PUMP PRESSURE RELIEF SETTING: psi           |
|                                                   |

PAGE 4

| CELL 2 DISTRIBL | TION CENTER |
|-----------------|-------------|
|-----------------|-------------|

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |
|---------------------------------------------------|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |
| VACUUM STATUS LIGHT: ON OFF                       |
|                                                   |
| ELECTRICAL HEAT BREAKER: ON OFF                   |
| ELECTRICAL HEATER THERMOSTAT SETTING:F            |
| PRESSURE AT INJECTION MANIFOLD: 34 "H2O           |
| TEMP AT INJECTION MANIFOLD: <u>52</u> F           |
| VACUUM AT VACUUM MANIFOLD: 70 "H20 (FCUETORT, ON) |
| TEMP AT VACUUM MANIFOLD:F                         |
| VACUUM AT KNOCKOUT TANK: "Hg                      |
| WATER PUMP PRESSURE RELIEF SETTING: psi           |

#### GENERAL SITE OBSERVATIONS

PAGE 5

CLOOKS GOO

CHECK AND NOTE CONDITION OF SITE:

#### FIELD ACTIVITY CHECKLIST

SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_YES \_\_\_NO SVE WELLS SAMPLED: \_\_\_YES \_\_\_NO CARBON CHANGEOUT PERFORMED: \_\_\_\_O WATER REMOVAL PERFORMED: \_\_\_\_O EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: \_\_\_\_\_ INSPECT MAIN POWER AND TELEPHONE LINE: \_\_\_\_\_

ares FRAN SUMMERY OF PROCESS AIR SAMPLING: INFLUENT, MID CARGON

SUMMARY OF OTHER ACTIVITIES:

111 - Budatia) COMMENTS: TALKED TOOL Logs. TOLD THEM THE UGNIT CONTO su AFD How BHADal,

SIGNATURE OF OPERATIONS TECHNICIAN(S): \_

DATE: 11 19103 ARRIVAL TIME: 0830 FAULT LIGHTS ON (list): 1015 REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): CHANGE GNFIG OF GARDIN BED #1-BROKEN THUL TASK PERFORMED: TOK BED #2 OFF LINE (FAFWENT) MADE #3 INFLUENT AND #/ MID GARDON CHANGED AIL IN BLOWER HOTOR. PO SAMPLES FROM INFLIENT / MID CARBON / F.F. FLUENT. CHECKE TOSIC Rolas. - Took SILE AND CELLS ALHOLING -MAIN EQUIPMENT BUILDING CONTROL DOOR LOCKED CONTROL BOX LOCKED MAIN CONTROL PANEL HOUR METER: SVE UNIT 1862.1 HB. SVE PUMPING UNIT INJECTION BLOWER TEMP: INJECTION BLOWER TEMP SETTING: PRESSURE AFTER INJECTION BLOWER VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: GREASE SEALS CHECKED: \_\_\_\_ DATE OF LAST GREASE: //-0'63 OIL LEVEL CHECKED: \_\_\_\_\_ DATE OF LAST OIL CHANGE: 8/5/03 - 1/19/03 BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

TAGE #2

CARBON BED SYSTEM " <u>H20</u> 38 " TNFLUENT -- <u>ТЕмр.</u> - 82° MID- CARBON -*38* " EFFLUENT -15" 80°

PAGE 3

#### CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

PAGE 4

#### **CELL 2 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONN                   | ITROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |               |      |  |
|---------------------------------------|-------------------------------------------------|---------------|------|--|
| SELECTOR SWITCH:                      | MANUAL                                          | OFF           | AUTO |  |
| VACUUM STATUS LIGHT:                  | ON OFF                                          |               |      |  |
| CONTROL BOX LOCKED                    | _                                               |               |      |  |
| ELECTRICAL HEAT BREAKER: ON 🦯 OFF     |                                                 |               |      |  |
| ELECTRICAL HEATER THERMOSTAT SETTING: |                                                 |               |      |  |
| PRESSURE AT INJECTION                 | MANIFOLD: 3                                     | <b>∲</b> "H2O |      |  |
| TEMP AT INJECTION MANIF               | FOLD: <u>57°</u> F                              |               |      |  |
| VACUUM AT VACUUM MAN                  | IFOLD: <u>60</u> "H2C                           | )             |      |  |
| TEMP AT VACUUM MANIFO                 | old: <u>54</u> F                                |               |      |  |
| VACUUM AT KNOCKOUT TA                 |                                                 | . /           |      |  |
| WATER PUMP PRESSURE                   | RELIEF SETTING: _                               | N/A psi       |      |  |

#### **GENERAL SITE OBSERVATIONS**

PAGE 5

toke 600 CHECK AND NOTE CONDITION OF SITE:

FIELD ACTIVITY CHECKLIST

SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_YES \_\_\_\_NO SVE WELLS SAMPLED: \_\_\_YES \_\_\_\_NO CARBON CHANGEOUT PERFORMED: \_\_\_\_ WATER REMOVAL PERFORMED: \_\_\_\_ EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: \_\_\_\_ INSPECT MAIN POWER AND TELEPHONE LINE: \_\_\_\_

SUMMERY OF PROCESS AIR SAMPLING: Pulled ñK NELIGIT MID. CAPBON AND EFTLUENT.

SUMMARY OF OTHER ACTIVITIES: CARAGED DIL IN BLOWER MOTORS SAE-18W30 NON-DESGRA DER BLOWER. 1807

COMMENTS: FIED VÆBNE, HF.

SIGNATURE OF OPERATIONS TECHNICIAN(S): \_\_\_\_

レッ

| DATE: 11 125 103 ARRIVAL TIME: 0900 FAULT LIGHTS ON (list): "Sur )our"                                                                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| REASON FOR VISIT: MONTHLY QUARTERLY OTHER<br>OTHER (define): Auto-DioLen Called AT ODICHOR.                                                             |  |  |  |  |
| TASK PERFORMED: WITCH STORAGE TANK is FULL. PUNPED AND SOUGALD. INTS<br>RESERVE TANK OUTCIDE. EMPTIED KO TANK AND RESTROTED ISVE<br>SUSTEM AT 1100 HAS. |  |  |  |  |
| MAIN EQUIPMENT BUILDING                                                                                                                                 |  |  |  |  |
| MAIN CONTROL PANEL CONTROL BOX LOCKED CONTROL DOOR LOCKED<br>HOUR METER: SVE UNIT                                                                       |  |  |  |  |
| SVE PUMPING UNIT                                                                                                                                        |  |  |  |  |
| INJECTION BLOWER TEMP: F<br>INJECTION BLOWER TEMP SETTING: F<br>PRESSURE AFTER INJECTION BLOWER "H2O                                                    |  |  |  |  |
| VACUUM BLOWER TEMP: <u>175</u> F<br>VACUUM BLOWER TEMP SETTING: <u>200</u> F<br>VACUUMAFTER FILTER "H2O<br>PRESSURE AFTER VACUUM BLOWER: "H2O           |  |  |  |  |
| GREASE SEALS CHECKED: DATE OF LAST GREASE: 11-19-03                                                                                                     |  |  |  |  |
| OIL LEVEL CHECKED: DATE OF LAST OIL CHANGE:                                                                                                             |  |  |  |  |
| BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:                                                                                                            |  |  |  |  |
|                                                                                                                                                         |  |  |  |  |

.

PAGE 3

#### CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: \_\_\_\_ 240-VOLT DISCONNECT ON \_\_\_\_

SELECTOR SWITCH: MANUAL \_\_\_\_ OFF \_\_\_\_ AUTO \_\_\_\_

VACUUM STATUS LIGHT: ON \_\_\_\_ OFF \_\_\_\_

CONTROL BOX LOCKED \_\_\_\_

ELECTRICAL HEAT BREAKER: ON \_\_\_\_\_ OFF \_\_\_\_

ELECTRICAL HEATER THERMOSTAT SETTING: \_\_\_\_\_F

PRESSURE AT INJECTION MANIFOLD: \_\_\_\_\_ "H2O

TEMP AT INJECTION MANIFOLD: \_\_\_\_\_F

VACUUM AT VACUUM MANIFOLD: \_\_\_\_\_"H2O

TEMP AT VACUUM MANIFOLD: \_\_\_\_\_ F

VACUUM AT KNOCKOUT TANK: \_\_\_\_\_\_ "Hg

WATER PUMP PRESSURE RELIEF SETTING: \_\_\_\_\_ psi

PAGE 4

#### CELL 2 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |
|---------------------------------------------------|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |
| VACUUM STATUS LIGHT: ON OFF                       |
| CONTROL BOX LOCKED                                |
| ELECTRICAL HEAT BREAKER: ON OFF                   |
| ELECTRICAL HEATER THERMOSTAT SETTING:F            |
| PRESSURE AT INJECTION MANIFOLD: "H2O              |
| TEMP AT INJECTION MANIFOLD:F                      |
| VACUUM AT VACUUM MANIFOLD:"H2O                    |
| TEMP AT VACUUM MANIFOLD:F                         |
| VACUUM AT KNOCKOUT TANK: "Hg                      |
| WATER PUMP PRESSURE RELIEF SETTING: psi           |

#### **GENERAL SITE OBSERVATIONS**

PAGE 5

CHECK AND NOTE CONDITION OF SITE:\_\_\_\_\_

#### FIELD ACTIVITY CHECKLIST

SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_YES \_\_\_\_NO SVE WELLS SAMPLED: \_\_\_\_YES \_\_\_\_NO CARBON CHANGEOUT PERFORMED: \_\_\_\_ WATER REMOVAL PERFORMED: \_\_\_\_ EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: \_\_\_\_\_ INSPECT MAIN POWER AND TELEPHONE LINE: \_\_\_\_\_

SUMMERY OF PROCESS AIR SAMPLING: \_\_\_\_\_\_

SUMMARY OF OTHER ACTIVITIES: \_\_\_\_\_

COMMENTS: \_\_\_\_\_

SIGNATURE OF OPERATIONS TECHNICIAN(S):
| VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE: 12/2/03 ARRIVAL TIME: 0800 FAULT LIGHTS ON (list): "Norte"                                                                                                  |
| CTHER (define):                                                                                                                                                   |
| TASK PERFORMED:                                                                                                                                                   |
|                                                                                                                                                                   |
| MAIN EQUIPMENT BUILDING                                                                                                                                           |
| MAIN CONTROL PANEL CONTROL BOX LOCKED CONTROL DOOR LOCKED<br>HOUR METER: SVE UNIT                                                                                 |
| SVE PUMPING UNIT                                                                                                                                                  |
| INJECTION BLOWER TEMP: <u>130°</u> F<br>INJECTION BLOWER TEMP SETTING: <u>220</u> F<br>PRESSURE AFTER INJECTION BLOWER "H2O                                       |
| VACUUM BLOWER TEMP: <u>160</u> F<br>VACUUM BLOWER TEMP SETTING: <u>220</u> F<br>VACUUMAFTER FILTER <u>13</u> "H20<br>PRESSURE AFTER VACUUM BLOWER: <u>10</u> "H20 |
| GREASE SEALS CHECKED: DATE OF LAST GREASE:                                                                                                                        |
| OIL LEVEL CHECKED: DATE OF LAST OIL CHANGE: 11-19-03                                                                                                              |
| BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:                                                                                                                      |
|                                                                                                                                                                   |

.

DATE;\_\_/\_\_/\_\_\_

PAGE 2

### CARBON BED SYSTEM

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1

PRESSURE BETWEEN GAC UNIT 1 AND 2

120

"H20

PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2

#### WATER STORAGE UNIT

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> VOLUME OF WATER IN STORAGE TANK: \_\_\_\_\_\_ GALLONS WATER IN CONTAINMENT VESSEL: YES \_\_\_\_\_ NO\_\_\_\_\_ AMOUNT: \_\_\_\_\_ INCHES

PAGE 3

### **CELL 1 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: \_\_\_\_ 240-VOLT DISCONNECT ON \_\_\_\_

SELECTOR SWITCH: MANUAL \_\_\_\_ OFF \_\_\_\_ AUTO \_\_\_\_

VACUUM STATUS LIGHT: ON \_\_\_\_\_ OFF \_\_\_\_

CONTROL BOX LOCKED \_\_\_\_\_

ELECTRICAL HEAT BREAKER: ON \_\_\_\_\_ OFF \_\_\_\_

ELECTRICAL HEATER THERMOSTAT SETTING: \_\_\_\_\_F

PRESSURE AT INJECTION MANIFOLD: <u>40</u> "H2O

TEMP AT INJECTION MANIFOLD: 54 F

VACUUM AT VACUUM MANIFOLD: <u>25</u>"H2O

TEMP AT VACUUM MANIFOLD: 55 F

WATER PUMP PRESSURE RELIEF SETTING: \_\_\_\_\_ psi

PAGE 4

#### **CELL 2 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON:
240-VOLT DISCONNECT ON

SELECTOR SWITCH:
MANUAL
OFF

VACUUM STATUS LIGHT:
ON
OFF

CONTROL BOX LOCKED
\_\_\_\_\_\_

ELECTRICAL HEAT BREAKER:
ON
OFF

ELECTRICAL HEAT BREAKER:
ON
OFF

F
PRESSURE AT INJECTION MANIFOLD:
<u>40</u> "H20

TEMP AT INJECTION MANIFOLD:
<u>50</u> F

VACUUM AT VACUUM MANIFOLD:
<u>49</u> F

VACUUM AT KNOCKOUT TANK:
\_\_\_\_\_\_\_"Hg

WATER PUMP PRESSURE RELIEF SETTING:
\_\_\_\_\_\_ psi

### **GENERAL SITE OBSERVATIONS**

PAGE 5

CHECK AND NOTE CONDITION OF SITE:\_\_\_\_\_

### FIELD ACTIVITY CHECKLIST

SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_YES \_\_\_\_NO SVE WELLS SAMPLED: \_\_\_YES \_\_\_NO CARBON CHANGEOUT PERFORMED: \_\_\_\_ WATER REMOVAL PERFORMED: \_\_\_\_ EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: \_\_\_\_ INSPECT MAIN POWER AND TELEPHONE LINE: \_\_\_\_

SUMMERY OF PROCESS AIR SAMPLING: \_\_\_\_\_

SUMMARY OF OTHER ACTIVITIES: \_\_\_\_\_

COMMENTS: \_\_\_\_\_

SIGNATURE OF OPERATIONS TECHNICIAN(S): \_\_\_\_\_\_

VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG DATE: 121413 ARRIVAL TIME: DE FAULT LIGHTS ON (list): "Norte" WLE OF VAR LIGUE. REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): Major Sampling TASK PERFORMED: MAIN EQUIPMENT BUILDING CONTROL BOX LOCKED CONTROL DOOR LOCKED MAIN CONTROL PANEL HOUR METER: SVE UNIT 3167-2-413 SVE PUMPING UNIT INJECTION BLOWER TEMP: INJECTION BLOWER TEMP SETTING: PRESSURE AFTER INJECTION BLOWER <del>120</del> HC VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER "H20 H6 PRESSURE AFTER VACUUM BLOWER: GREASE SEALS CHECKED: V DATE OF LAST GREASE: DATE OF LAST OIL CHANGE: パー19-03 OIL LEVEL CHECKED: BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

### DATE; 14103

PAGE 2

### CARBON BED SYSTEM

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1

120

PRESSURE BETWEEN GAC UNIT 1 AND 2

PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2

"H2O

32 "H20

#### WATER STORAGE UNIT

CHECK ALL ABOVE-GROUND PIPIING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> VOLUME OF WATER IN STORAGE TANK: \_\_\_\_\_/SO\_\_\_\_ GALLONS WATER IN CONTAINMENT VESSEL: YES \_\_\_\_\_ NO\_\_\_\_ AMOUNT: \_\_\_\_\_ INCHES

PAGE 3

### **CELL 1 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: \_\_\_\_ 240-VOLT DISCONNECT ON \_\_\_\_

SELECTOR SWITCH: MANUAL \_\_\_\_ OFF \_\_\_\_ AUTO \_\_\_\_

VACUUM STATUS LIGHT: ON \_\_\_\_\_ OFF \_\_\_\_

CONTROL BOX LOCKED \_\_\_\_

ELECTRICAL HEAT BREAKER: ON \_\_\_\_\_ OFF \_\_\_\_

ELECTRICAL HEATER THERMOSTAT SETTING: \_\_\_\_\_F

PRESSURE AT INJECTION MANIFOLD: 40 "H2O

TEMP AT INJECTION MANIFOLD:

VACUUM AT VACUUM MANIFOLD: 84 "H2O

TEMP AT VACUUM MANIFOLD: 54 F

VACUUM AT KNOCKOUT TANK: \_\_\_\_/A\_\_\_"Hg

WATER PUMP PRESSURE RELIEF SETTING: \_\_\_\_\_\_psi

PAGE 4

### **CELL 2 DISTRIBUTION CENTER**

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

| CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|
| SELECTOR SWITCH: MANUAL OFF AUTO                  |  |  |  |  |  |
| VACUUM STATUS LIGHT: ON OFF                       |  |  |  |  |  |
| CONTROL BOX LOCKED                                |  |  |  |  |  |
| ELECTRICAL HEAT BREAKER: ON OFF                   |  |  |  |  |  |
| ELECTRICAL HEATER THERMOSTAT SETTING:F            |  |  |  |  |  |
| PRESSURE AT INJECTION MANIFOLD: 40_"H2O           |  |  |  |  |  |
| TEMP AT INJECTION MANIFOLD: $48$ F                |  |  |  |  |  |
| VACUUM AT VACUUM MANIFOLD: 86 "H20                |  |  |  |  |  |
| TEMP AT VACUUM MANIFOLD: 48 F                     |  |  |  |  |  |
| VACUUM AT KNOCKOUT TANK: "Hg                      |  |  |  |  |  |
| WATER PUMP PRESSURE RELIEF SETTING: psi           |  |  |  |  |  |

### **GENERAL SITE OBSERVATIONS**

PAGE 5

CHECK AND NOTE CONDITION OF SITE:

### FIELD ACTIVITY CHECKLIST

SVE WELLHEAD AIR FLOWS MEASURED: \_\_\_\_YES \_\_\_\_NO SVE WELLS SAMPLED: \_\_\_YES \_\_\_\_NO CARBON CHANGEOUT PERFORMED: \_\_\_\_ WATER REMOVAL PERFORMED: \_\_\_\_ EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: \_\_\_\_ INSPECT MAIN POWER AND TELEPHONE LINE:

SUMMERY OF PROCESS AIR SAMPLING:

SUMMARY OF OTHER ACTIVITIES: \_\_\_\_\_\_

COMMENTS:

SIGNATURE OF OPERATIONS TECHNICIAN(S): \_\_\_\_\_

# APPENDIX B Sampling and Analytical Data — Process Air Data

(Including QC Data, Laboratory Data Summary Sheets, Chain of Custody Forms, Field Sample Log Book Notes)

Sevenson Environmental Services, Inc. DACA41-01-D-0001-0006

| Client: Sevenson/U<br>Analysis Date: 10/<br>Detection Limit: So<br>Analyst: YL | JSACE<br>10/2003<br>ee below | Client Code: 6810<br>Sample Date: 10/9<br>Units: ppmv<br>Project Manager: | 86<br>9/03<br>D. Callahan |
|--------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|---------------------------|
| SAMPLE ID                                                                      | 1,1,1-TCA                    | TCE                                                                       | DL                        |
| VS-SVE-INF-100903-0109                                                         | 7.49                         | 6.01                                                                      | 0.05                      |
| VS-SVE-MID-100903-0110                                                         | 0.00                         | 0.00                                                                      | 0.05                      |
| VS-SVE-EFF-100903-0111                                                         | 2.04                         | 0.00                                                                      | 0.05                      |
| VS-SVE-SP-100903-0112                                                          | 0.00                         | 0.00                                                                      | 0.05                      |
| VS-SVE-TB-100903-0113                                                          | 0.00                         | 0.00                                                                      | 0.05                      |

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Tuesday, October 14, 2003

| -                        | 0                 | HAIN - OI           | F - CUSIO               | DY for AIR        | SAMPLES                | ~                           |  |
|--------------------------|-------------------|---------------------|-------------------------|-------------------|------------------------|-----------------------------|--|
| Hour Meter:              | 2054.6            |                     |                         | Client: Every     | JUSACE Client          | : Code:                     |  |
| Flow Meter- Type         |                   | Range (cfm):        |                         | Site Address: 210 | MOCK, US               | 5851 MM 7885                |  |
| Withdrawl blowe          | sr - Vacuum :     | Pressure:           |                         | Project Manager:  | D. Calleurs            |                             |  |
| Injection blower         | - Vacuum:         | Pressure:           |                         | System Status :   | "0,02M07               | oual "                      |  |
| Sample ID.               | Date              | Time                | Indicated Flow<br>(cfm) | Carbon Dioxide    | Analysis<br>Requested  | Notes                       |  |
| 1/5:51/6-0109            | 10-9-03           | 0560                | 661                     | 12.9.21           | 1-014 4                | turent                      |  |
| 2 125,548 -0110          |                   | 0945                |                         | 3.000             |                        | Mid- Assau                  |  |
| 3 15.51E-0111            | /                 | 10/0/               |                         | 0.3 PM            |                        | EFFLUENT                    |  |
| 4 INSUE-OIL              |                   | 0915                |                         | nas Erola.        | /                      | Smole Purp                  |  |
| \$ 1551/6-0113           |                   | The Block           |                         | MAN G. Z NOW      | <u>ر</u>               | Ten Black                   |  |
| 6                        |                   |                     |                         | ad a              |                        |                             |  |
| 7                        |                   |                     |                         |                   |                        |                             |  |
| 80                       |                   |                     |                         |                   |                        |                             |  |
| 6                        |                   |                     |                         |                   |                        |                             |  |
| 10                       |                   |                     |                         |                   |                        |                             |  |
| 11                       |                   |                     |                         |                   |                        |                             |  |
| 12                       |                   |                     |                         |                   |                        |                             |  |
| Collected By: M          | Source / Co       | 1284200             | Date: 10 9-03           | Time: 295         | Envirogen              | , Inc.                      |  |
| Delivered By:            | 4.25.             |                     | Date: 10-03             | Time:             | New Solutions to Haza  | rdous Waste Problems        |  |
| Received By:             | MEL               |                     | Date: 10-16-03          | Time: 10:10       | 5126 West Grand Rive   | r, Lansing, Michigan. 48906 |  |
| Remarks:                 |                   |                     |                         |                   | Phone # : (517) 886-56 | 00 Fax #: (517) 886-5700    |  |
| White copy = Labora<br>) | ttory Yellow copy | = Technical Analyst | Pink copy = Operatic    | bn Technicians    |                        |                             |  |
|                          |                   |                     |                         |                   |                        |                             |  |

| Client: Sevenson/US<br>Analysis Date: 10/10<br>Detection Limit: Sec<br>Analyst: YL | SACE<br>6/2003<br>e below | Client Code: 681086<br>Sample Date: 10/15/03<br>Units: ppmv<br>Project Manager: D. Callahan |      |  |
|------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|------|--|
| SAMPLE ID                                                                          | 1,1,1-TCA                 | TCE                                                                                         | DL   |  |
| VS-SVE-INF-101503-0114                                                             | 11.02                     | 8.98                                                                                        | 0.05 |  |
| VS-SVE-MID-DUP-101503-0115                                                         | 11.73                     | 0.00                                                                                        | 0.05 |  |
| VS-SVE-MID-101503-0115                                                             | 12.36                     | 0.00                                                                                        | 0.05 |  |
| VS-SVE-EFF-101503-0116                                                             | 0.00                      | 0.00                                                                                        | 0.05 |  |
| VS-SVE-SP-101503-0117                                                              | 0.00                      | 0.00                                                                                        | 0.05 |  |
| VS-SVE-TB-101503-0118                                                              | 0.00                      | 0.00                                                                                        | 0.05 |  |
| INSTRUMENT BLANK                                                                   | 0.00                      | 0.00                                                                                        | 0.05 |  |

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Thursday, October 16, 2003

| Hour Meter:                         | 2178 5 m            | HAIN - OI           | r - custo               | DY for AIR S                    | SAMPLES                | Code: 681086               |  |
|-------------------------------------|---------------------|---------------------|-------------------------|---------------------------------|------------------------|----------------------------|--|
| Flow Meter- Type<br>Withdrawl blowe | e:F                 | Range (cfm):        | •                       | Site Address: 2/0               | mace B. 16             | 2504, NY 13850             |  |
| Injection blower                    | - Vacuum:           | Pressure:           |                         | System Status :                 | Destantion             | × .'                       |  |
| Sample ID.                          | Date                | Time                | Indicated Flow<br>(cfm) | Carbon Dioxide<br>PA (ppm) Pzip | Analysis<br>Requested  | Notes                      |  |
| 1 15516-0114                        | 10-15-03            | 0520                |                         | 13.7004                         | Toldra                 | - Contractor               |  |
| 2110-315-2115                       |                     | 1005                |                         | 2.400W-                         |                        | His Cacan                  |  |
| 3 15-51/2-01 16                     |                     | 1030                |                         | Odopiu                          | /                      | EFRANENT                   |  |
| 4 15-5VE -0117                      |                     | 0230                |                         | 03000                           |                        | FUND BLANK                 |  |
| 5 15-3VE-0118                       | ->                  | These Blanist       |                         | 0.3 open                        | ->                     | They Blank                 |  |
| 6                                   |                     |                     |                         |                                 |                        |                            |  |
| 7                                   |                     |                     |                         |                                 |                        |                            |  |
| 8                                   |                     |                     |                         |                                 |                        |                            |  |
| 6                                   |                     |                     |                         |                                 |                        |                            |  |
| 10                                  |                     |                     |                         |                                 |                        |                            |  |
| 11                                  |                     |                     |                         |                                 |                        |                            |  |
| 12                                  |                     |                     |                         |                                 |                        |                            |  |
| Collected By:                       | 1560, ner / Con     | QOUNSKY             | Date: 10-15-03          | Time: 0230                      | Envirogen              | , Inc.                     |  |
| Delivered By:                       |                     |                     | Date:                   | Time:                           | New Solutions to Haza  | rdous Waste Problems       |  |
| Received By:                        | 12                  |                     | Date: 10/16/03          | Time: 9:30                      | 5126 West Grand River  | ; Lansing, Michigan. 48906 |  |
| Remarks:                            |                     |                     |                         |                                 | Phone # : (517) 886-56 | 00 Fax #: (517) 886-5700   |  |
| White copy = Labora                 | ttory Yellow copy = | = Technical Analyst | Pink copy = Operatio    | n Technicians                   |                        |                            |  |
|                                     |                     |                     |                         |                                 |                        | <b>—</b> .                 |  |

E00 2

→ GRAND RAPIDS

SHAW E&I/EMCON/OWT

11964234871 XAN 18:11 8002/#1/11

| Client: Sevenson/U<br>Analysis Date: 10<br>Detection Limit: Se<br>Analyst: YL | SACE<br>9/29/2003<br>se below | Client Code: 6810<br>Sample Date: 10/2<br>Units: ppmv<br>Project Manager: | 986<br>28/03<br>D. Callahan |
|-------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------|-----------------------------|
| SAMPLE ID                                                                     | 1,1,1-TCA                     | TCE                                                                       | DL                          |
| VS-SVE-INF-102803-0119                                                        | 10.36                         | 8.80                                                                      | 0.05                        |
| VS-SVE-MID-102803-0120                                                        | 17.75                         | 8.58                                                                      | 0.05                        |
| VS-SVE-EFF-102803-0121                                                        | 12.32                         | 0.00                                                                      | 0.05                        |
| VS-SVE-SP-102803-0122                                                         | 0.00                          | 0.00                                                                      | 0.05                        |
| VS-SVE-TB-102803-0123                                                         | 0.00                          | 0.00                                                                      | 0.05                        |

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Thursday, October 30, 2003

| ~                   | 0                | HAIN - OI             | F - CUSTO               | DY for AIR S         | SAMPLES                | -                           |
|---------------------|------------------|-----------------------|-------------------------|----------------------|------------------------|-----------------------------|
| Hour Meter:         | 2513.0           |                       |                         | Client: Cherlend     | 48ALE Client           | Code: 69/06                 |
| Flow Meter- Type    |                  | Range (cfm):          |                         | Site Address: 210    | Since b                | 168724-114 13 050           |
| Withdrawl blower    | r - Vacuum :     | Pressure:             |                         | Project Manager:     | D. Carlan              | a. /                        |
| Injection blower -  | Vacuum:          | Pressure:             |                         | System Status :      | " openatio             | "JAL"                       |
| Sample ID.          | Date             | Time                  | Indicated Flow<br>(cfm) | Carbon Dioxide       | Analysis<br>Requested  | Notes                       |
| 1 VS-SUE- 0119      | 10-20-03         | 000/                  |                         | wdd <del>c</del> .9/ | I old A                | TURNENT                     |
| 2 US-5/6-0120       |                  | 1015                  |                         | 14.6ppm              | _                      | Nil Carend                  |
| 1-EVE- 2NS-SN :     | /                | SE0/                  |                         | 3.000                |                        | EFFLUENT                    |
| 4 US-51/6-0122      |                  | 0240                  |                         | -vddb.0              |                        | Punp BLANK                  |
| 5 W - 315 2013      | ->               | The Chark             |                         | ~ -4 p. ~            | ~                      | The BLANK                   |
| 6                   |                  |                       |                         |                      |                        |                             |
| 7                   |                  |                       |                         |                      |                        |                             |
| 8                   |                  |                       |                         |                      |                        |                             |
| 6                   |                  |                       |                         |                      |                        |                             |
| 10                  |                  |                       |                         |                      |                        |                             |
| 11                  |                  |                       |                         |                      |                        |                             |
| 12                  |                  |                       |                         |                      |                        |                             |
| Collected By:       | 1984D01          | 1N50mile              | Date: 10: 18-03         | Time: 0940           | Envirogen              | , Inc.                      |
| Delivered By:       |                  |                       | Date:                   | Time:                | New Solutions to Haza  | rdous Waste Problems        |
| Received By:        | the -            |                       | Date: 10/29/03          | Time: 7,30           | 5126 West Grand Rive   | r, Lansing, Michigan. 48906 |
| Remarks:            |                  |                       |                         |                      | Phone # : (517) 886-56 | 00 Fax #: (517) 886-5700    |
| White copy = Labora | tory Yellow copy | r = Technical Analyst | Pink copy = Operatic    | on Technicians       |                        |                             |
| •                   |                  |                       | (                       |                      |                        | 1                           |

Client: Sevenson/USACE Client Code: 681086 Sample Date: 11/11/2003 Analysis Date: 11/12/2003 Detection Limit: See below Units: ppmv Analyst: YL Project Manager: D. Callahan SAMPLE ID 1,1,1-TCA TCE **TVOC** VS-SVE-INF-111103-0124 5.81 11.13 3.89 VS-SVE-MID-111103-0125 14.77 0.00 17.31 VS-SVE-EFF-111103-0126 0.00 0.00 0.00 VS-SVE-SP-111103-0127 0.00 0.00 0.00 VS-SVE-TB-111103-0128 0.00 0.00 0.00

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.

[2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)

Thursday, November 13, 2003

Page 1 of 1

DL

0.05

0.05

0.05

0.05

0.05

20 . Client: Laten Son/UDACE Client Code: 68/086 Site Address: 310 Space B - 168 Tax, NY 1393 4200 5126 West Grand River, Lansing, Michigan, 48906 ÷ EFRUENT UND BLAN Phone # : (517) 886-5600 Fax #: (517) 886-5700 Notes TAPPUEN New Solutions to Hazardous Waste Problems MiDC " Operational" Envirogen, Inc. Project Manager: . Colla Han CHAIN - OF - CUSTODY for AIR SAMPLES Requested 04.4 Analysis 177 (unda) fr Indicated Flow 201 Carbon Dioxide System Status : Ż Date: 1/12/03 Time: 9:30 7.9 124-1 PPU White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians 5400M Time Time: Date: //-//-03 (cfm) Date: Pressure: Per Black Pressure: alulon 0/01 SEON 1040 Range (cfm): \_ 0001 Time ÷. 4.4. 2676.9 20-11-1 Withdrawl blower - Vacuum : Date Injection blower - Vacuum: Flow Meter- Type : IS-SVE-OIDE -SVE-012A US-SUF-OUT TUE'DUT 2 ILSS VE- DIS 7 Collected By: Hour Meter: Sample ID. Delivered By: Received By. Ì Remarks: 12 10 Π Ś 5 × 6

910/800 团

•

| Client: Sevenson/A<br>Analysis Date: 11/2<br>Detection Limit: S<br>Analyst: YL | USACE<br>20/2003<br>ee below | Client Code:<br>Sample Date<br>Units: ppmv<br>Project Man | 681086<br>2: 11/19/03<br>,<br>ager: D. Call | ahan |
|--------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|---------------------------------------------|------|
| SAMPLE ID                                                                      | 1,1,1-TCA                    | TCE                                                       | TVOC                                        | DL   |
| VS-SVE-INF-111903-0129                                                         | 4.96                         | 5.51                                                      | 12.36                                       | 0.05 |
| VS-SVE-MID-111903-0130                                                         | 0.00                         | 0.00                                                      | 0.00                                        | 0.05 |
| VS-SVE-EFF-111903-0131                                                         | 0.00                         | 0.00                                                      | 0.00                                        | 0.05 |
| VS-SVE-SP-111903-0132                                                          | 0.00                         | 0.00                                                      | 0.00                                        | 0.05 |
| VS-SVE-TB-111903-0133                                                          | 0.00                         | 0.00                                                      | 0.00                                        | 0.05 |

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants. [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.) [3] DL = Detection Limit.

Friday, November 21, 2003

4. : Ĵ, TEND BLANK Mill - CARBON MUND (LANK EFFLUENT 4:10.PM . 5126 West Grand River, Lansing, Michigan. 48906 INFLUENT Phone # : (517) 886-5600 Fax #: (517) 886-5700 Notes New Solutions to Hazardous Waste Problems Site Address: 210 STAGE R. VESTAC, NV Client: Sevention / USACE Client Code: 2010 Envirogen, Inc. "OPERATIONAL" D. Courses)-; CHAIN - OF - CUSTODY for AIR SAMPLES Requested Analysis A 410 2 0,400 M Neal-11 d:Soom NOO P (nom) P Project Manager: 0300 Indicated Flow NI Carbon Dioxide 200, System Stafus : White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians 13 1 SW HUDS .O M00:5-0 naø HODP C Date: 11/20 /03 Time: 0LASURDO /H= 6412 Date: 11-19-03 Time. Time: --. (cfm) Pressure: Date: Range (cfm): d-JS Pressure: 202 1004 0 22 220 Time 1962. 7 11-19-03 227 Withdrawl blower - Vacuum : Date Me. ( Injection blower - Vacuum: Flow Meter- Type : ULSUE - 0130 KS-SUE-0129 EEID-JUS-SM KEVE-DIZX 1510-312-51 Collected By: Received By: Hour Meter: Sample ID. Delivered By: Remarks: 3 01 = 5 \$ -9

| Client: Sevenson/C<br>Analysis Date: 12/3<br>Detection Limit: S<br>Analyst: YL | USACE<br>3/2003<br>lee below | Client Code:<br>Sample Date<br>Units: ppm<br>Project Man | : 681086<br>2: 12/2/03<br>y<br>ager: D. Call | ahan |
|--------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------------------|------|
| SAMPLE ID                                                                      | 1,1,1-TCA                    | TCE                                                      | TVOC                                         | DL   |
| VS-SVE-A1-120203-0134                                                          | 0.64                         | 0.00                                                     | 2.94                                         | 0.05 |
| VS-SVE-E1-120203-0135                                                          | 5.23                         | 8.65                                                     | 14.96                                        | 0.05 |
| VS-SVE-D1-120203-0136                                                          | 48.39                        | 63.46                                                    | 118.24                                       | 0.12 |
| VS-SVE-F1-120203-0138                                                          | 0.00                         | 0.00                                                     | 1.13                                         | 0.05 |
| VS-SVE-E4-120203-0140                                                          | 8.64                         | 5.04                                                     | 15.27                                        | 0.05 |
| VS-SVE-E4-D-120203-0141                                                        | 8.58                         | 4.63                                                     | 14.29                                        | 0.05 |
| VS-SVE-TB-1-120203-0142                                                        | 0.00                         | 0.00                                                     | 0.00                                         | 0.05 |
| VS-SVE-F4-120203-0143                                                          | 41.38                        | 72.39                                                    | 118.79                                       | 0.12 |
| VS-SVE-C1-120203-0147                                                          | 0.85                         | 0.00                                                     | 2.79                                         | 0.05 |
| VS-SVE-C3-120203-0148                                                          | 62.51                        | 122.46                                                   | 222.14                                       | 0.25 |
| VS-SVE-B3-120203-0149                                                          | 41.12                        | 79.95                                                    | 126.51                                       | 0.12 |
| VS-SVE-TB-2-120203-0150                                                        | 0.00                         | 0.00                                                     | 0.00                                         | 0.05 |
| VS-SVE-A2-120203-0152                                                          | 0.17                         | 0.00                                                     | 1.44                                         | 0.05 |
| VS-SVE-B1-120203-0153                                                          | 0.00                         | 0.00                                                     | 1.02                                         | 0.05 |
| VS-SVE-D4-120203-0156                                                          | 2.19                         | 2.85                                                     | 6.33                                         | 0.05 |
| VS-SVE-TB-3-120203-0157                                                        | 0.00                         | Q.00                                                     | 0.00                                         | 0.05 |
| VS-SVE-PB-1-120203-0158                                                        | 0.00                         | 0.00                                                     | 0.00                                         | 0.05 |

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Monday, December 08, 2003

| Client: Sevenson/U<br>Analysis Date: 12/5<br>Detection Limit: S<br>Analyst: YL | USACE<br>5/2003<br>ee below | Client Code:<br>Sample Date<br>Units: ppmv<br>Project Man | 681086<br>: 12/4/03<br>,<br>ager: D. Calla | ahan |
|--------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------|--------------------------------------------|------|
| SAMPLE ID                                                                      | 1,1,1-TCA                   | TCE                                                       | TVOC                                       | DL   |
| VS-SVE-K1-120403-0159                                                          | 8.39                        | 5.68                                                      | 24.39                                      | 0.05 |
| VS-SVE-J1-120403-0160                                                          | 8.79                        | 6.57                                                      | 27.71                                      | 0.05 |
| VS-SVE-K5-120403-0163                                                          | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |
| VS-SVE-L4-120403-0164                                                          | 0.18                        | 0.66                                                      | 4.66                                       | 0.05 |
| VS-SVE-L1-120403-0165                                                          | 6.87                        | 7.85                                                      | 27.89                                      | 0.05 |
| VS-SVE-TB-4-120403-0166                                                        | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |
| VS-SVE-K3-120403-0167                                                          | 41.32                       | 0.00                                                      | 53.40                                      | 0.12 |
| VS-SVE-K3-D-120403-0168                                                        | 42.32                       | 0.00                                                      | 56.55                                      | 0.12 |
| VS-SVE-N1-120403-0169                                                          | 0.23                        | 0.45                                                      | 2.38                                       | 0.05 |
| VS-SVE-N2-120403-0170                                                          | 2.30                        | 1.74                                                      | 12.03                                      | 0.05 |
| VS-SVE-M2-120403-0171                                                          | 3.79                        | 3.28                                                      | 20.68                                      | 0.05 |
| VS-SVE-N3-120403-0172                                                          | 1.33                        | 1.26                                                      | 15.87                                      | 0.05 |
| VS-SVE-M1-120403-0173                                                          | 6.17                        | 6.68                                                      | 22.71                                      | 0.05 |
| VS-SVE-J6-120403-0174                                                          | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |
| VS-SVE-TB-5-120403-0175                                                        | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |
| VS-SVE-J3-120403-0176                                                          | 0.75                        | 0.00                                                      | 21.36                                      | 0.05 |
| VS-SVE-G1-120403-0177                                                          | 0.16                        | 0.55                                                      | 2.26                                       | 0.05 |
| VS-SVE-I5-120403-0178                                                          | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |
| VS-SVE-H2-120403-0179                                                          | 0.15                        | 0.34                                                      | 1.77                                       | 0.05 |
| VS-SVE-I2-120403-0180                                                          | 8.83                        | 8.79                                                      | 29.53                                      | 0.05 |
| VS-SVE-I3-120403-0182                                                          | 0.11                        | 0.49                                                      | 5.96                                       | 0.05 |
| VS-SVE-TB-6-120403-0183                                                        | 0.00                        | 0.00                                                      | 0.00                                       | 0.05 |

Wednesday, December 10, 2003

| Client: Sevenson/<br>Analysis Date: 12/<br>Detection Limit: S<br>Analyst: YL | USACE<br>5/2003<br>lee below | Client Code:<br>Sample Date<br>Units: ppmv<br>Project Man | 681086<br>: 12/4/03<br>,<br>ager: D. Call | ahan |
|------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|-------------------------------------------|------|
| SAMPLE ID                                                                    | 1,1,1-TCA                    | TCE                                                       | TVOC                                      | DL   |
| VS-SVE-H1-120403-0184                                                        | 0.00                         | 0.00                                                      | 0.00                                      | 0.05 |
| VS-SVE-J5-120403-0185                                                        | 8.38                         | 3.58                                                      | 15.17                                     | 0.05 |
| VS-SVE-INF-120403-0187                                                       | 2.89                         | 3.03                                                      | 7.12                                      | 0.05 |
| VS-SVE-MID-120403-0188                                                       | 15.31                        | 0.00                                                      | 19.54                                     | 0.05 |
| VS-SVE-EFF-120403-0189                                                       | 0.00                         | 0.00                                                      | 0.00                                      | 0.05 |
| VS-SVE-TB-7-120403-0190                                                      | 0.00                         | 0.00                                                      | 0.00                                      | 0.05 |
| VS-SVE-PB-2-120403-0191                                                      | 0.00                         | 0.00                                                      | 0.00                                      | 0.05 |

Notes:

[4] VS-SVE-L2-120403-0162 was not analyzed due to the excess water in the bag.

Wednesday, December 10, 2003

Page 2 of 2

mp ~6 £8 29PC This BLANK # Client: Seven / 1154 CE Client Code: 268/096 Notes F-4-1 to Hazardous Waste Problems 5-3 5-1 Site Address: 210 STAGE Q. VESTR. NY 1-1 アーレ 4 イビ 1-616-774-3522 L " ODERATIONAL" Peen, He. 18 TLEGE CALLAHAN. Pione # : [517] 886-5600 Ed CHAIN - OF - CUSTODY for AIR SAMPLES Analysis Requested 014:0 New Solutions 5 126 Wert G ERVER ģ U/S-LIOTEN Carbon Dioxide Project Manager: US-LUATER System Status : Date: 12/3/03 Time: 9:00 White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians 73.7 です o, M 4 8 Joldsuppo/MSOunde Date: 12-0-03 Time: Time: Indicated Flow Z = 567 - S ひーいのシノ Ó (clm) 520 20 Ø Q - C + - C + S - Sond Contraction Flow Meter- Type : Duy & Range (cfm): 0-25 cfm Date: Pressure: Pressure: 600 103 SS ( 1040 ľ, 1045 so/ Time Hour Meter: 3/43.3 E0-6-11 Remarks: 14 horace - E-3 Withdrawl blower - Vacuum : Date N N N Received By: MA- L; Injection blower - Vacuum: VS-SUF-0134 USEVE 0136 · 12551E 0139 K-5 16 0137 BEVE 0138 US-51E 0140 155VE0142 reve olgo Collected By: **C** Clocker - 2-12-51/2-014/ Delivered By: Sample ID. 80 12 2 ŝ 6 Ξ ~

|                                                                       |                                              | <b></b>                 | )            |             | (            | 3           | 34          | 5           |           | 57            | ¥ | <br> |               |                                 |               |                                       |
|-----------------------------------------------------------------------|----------------------------------------------|-------------------------|--------------|-------------|--------------|-------------|-------------|-------------|-----------|---------------|---|------|---------------|---------------------------------|---------------|---------------------------------------|
| code: 2601086                                                         | 41,1                                         | Notes                   | 6-4          | F-J Head    | C-6-120      | F-3 HED     | 0-1         | C-3         | 6-3       | This Blank #2 |   |      | 1130          | WOUT AND<br>Ants Waste Problems | EAVE, JE      | 0 <del>Fur #. (517) 886 5700</del> 25 |
| AMPLES<br>USHE Client                                                 | " Openantion                                 | Analysis<br>Requested   | 1014 A       | ~           | (            |             | /           |             |           | ~             | • |      | Fauradan      | Solutions to Hazarr             | 103 Odled     | Mona#:(517)886-560<br>ノービノビーファダー3     |
| DY for AIR S<br>Client: <u>Seven Jon</u><br>Site Address: <u>200-</u> | Project Manager: <u>1</u><br>System Status : | Carbon Dioxide          | 19.09        | NK-histel   | NS-WARD      | N/S-LINGE   | 5.9         | 98.2        | 52.5      |               |   | -    | Time: //08    | Time.                           | Time: 9 > 00  |                                       |
| - CUSTO                                                               |                                              | Indicated Flow<br>(cfm) | 2-5847       | Leos-5      | 5-257        | Less-S      | 0/          | (235-J      | Lass-r    |               |   |      | Date: 41-4-03 | Date                            | Date: 12/3/03 |                                       |
| HAIN - OF<br>3<br>ange (cfm): 2-2                                     | Pressure:                                    | Time                    | 110B         | WS Wated    | NISWARD      | N/SWATCH    | 1/15        | oell.       | Jell      |               |   |      | HSOURE        |                                 |               |                                       |
| Sidd R                                                                | - Vacuum :<br>Vacuum:                        | Date                    | 80-P-A       |             | /            |             | /           |             |           | -)            |   |      | Laguary /     | 50"                             | NR. L'        |                                       |
| Hour Meter:<br>Flow Meter- Type                                       | Withdrawl blower<br>Injection blower -       | Sample ID.              | 15-SUE O 193 | 15-SVE DIGG | 15-51 F OLDS | IS-SUF OIGH | 15-SUE 0147 | IS-SVE OLAB | X5SVED199 | OZLO ZVZZ     |   |      | Collected Bv: | Delivered Rv.                   | Received By:  | Remarks:                              |

3 34 13950 M A They Blank #3 ling Blank # Client Libridia / USHCF Client Code: # 9109 Notes Site Address: 210 STAGE B. - HERTAL NY L-M LACK HAN 1' acht trever New Solutions to Hazardous N900THUL CHAIN - OF - CUS FODY for AIR SAMPLES Requested Analysis 011 ď F Project Manager: Carbon Dioxid System Status : 120 -441 Date: 143/03 Time: 9:00 White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians Ý Date: 4-03 Time: Time Indicated Flow S-5891 -33-Ń  $\widehat{\mathcal{N}}$ (cfm) D -S83 Ś Date: Flow Meter- Type : Duy EA Range (cfin): 02 S-WORL S-LUMB Pressure: Wards Pressure: N MSGUIR Time 3143-3 R-1-63 Palasuppo S S Withdrawl blower - Vacuum : Ĵ Date Injection blower - Vacuum: NSVE ONB 15-516 0153 KEVIE ONSA INSVE 0176 150 215-51 VS-SUE ONSY BSVE OLS So sher Hour Meter: Sample ID. Collected By: Delivered By: Received By: 9 Remarks: 01 12 Ξ ø × 5

**₱00** 

SHAW E&I/EMCON/OWT

12/08/2003 12:21 EVX 1242249811

8 370mg G 1, 13850 5126 West Grand River, Lansing, Michigan. 48906 Client: Extention / 1194 Client Code: # 61096 Remarks: EXCess water was found in the sample beg of US-SVE-Phone #: (517) 886-5600 Fax #: (517) 886-5700 Notes New Solutions to Hazardous Waste Problems い ) ۱ "OPERATIONAL" Envirogen, Inc. D. Callanar CHAIN - OF - CUSTODY for AIR SAMPLES Requested Analysis 10 Project Manager: Carbon Dioxide 15-WATEN System Status : Date: 145/03 Time: 9200 かい のし 8.9 White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians  $\tilde{O}$ \_ Time:\_ Indicated Flow 2585 5-587 5-587 2-582 1-5837 5-5827 -587 (cfm) Flow Meter- Type : JUYC Range (cfm): Joy CA Date: Pressure: Pressure: 1038 5701 6/01 pro1 1030 2700 Time 1034 2-120403-0162 3167.2 20-2-61 MELI 5 A Withdrawl blower - Vacuum : Dale Injection blower - Vacuum: ISS/E0163 KSVE erbi 1910 JASSA VJ-5VE 0165 Jesut albe WSUE ars? WYJVE 0160 15-5VE 0164 ('oulge #4 Received By: Hour Meter: Delivered By: Sample ID. Collected By: 10 Ξ 12 ß 80

900 🗹



900 🖻

200 🖻

S 8 Site Address: 210 SASE A, VESTER, Ny BBD Ħ ELD BLANK # MID GROOM Fump Black 5126 West Grand River, Lansing, Michigan. 48906 Client Leven Say / What Client Code: 201006 They and EFFLUEN Phone # : (517) 886-5600 Fax #: (517) 886-5700 Notes New Solutions to Hazardous Waste Problems "OPERATIONAL " H Z F Envirogen, Inc. . Coupuan CHAIN - OF - CUSI ODY for AIR SAMPLES Requested Ì Analysis 40 Gurpon Dioxid Project Manager: System Status : \_ - (mdd) 9 7 Date: 12/5/03 Time: 9200 White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians 5 Date: 12-4-03 Time: Time: Indicated Flow 1635-5 (cfm) 1001 Ф Flow Meter- Type : 1 turned Range (cfm): 0-15 00 Date: Pressure: Pressure: EGUILE 6232 6 IPI 0121 1JYS 6201 Lee, Time 3167.2 6-4-03 Collected By: Cal 4 Su 200 Withdrawl blower - Vacuum : Date Injection blower - Vacuum: Wedde 0189 SUE OIBT rs-Sat or BB S/F 0/25 531/2 0/86 5616 0109 551K 0190 J. F 0191 Hour Meter: 10/6 × 7 Sample ID. Delivered By: Received By: Remarks: 9 3 ∞ Ξ 2 6

SHAW E&I/EMCON/OWT

### QA/QC Report for Vestal Samples (Sample Date: 10/9/03 - 10/28/03)

1. Sample Receipt

The samples arrived at the lab carefully packed in coolers and the custody seals on the cooler were intact. All of the sample bags in the cooler arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chainof-custody form placed inside the shipping cooler.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

 Vestal Duplicate Sample

 Analysis Report

 Sample Date
 Data1
 Data2
 Avg
 RPD (%)
 RPD Acceptable?

 10/15/03
 11.73
 12.36
 12.045
 5.2
 YES

### 1) VS-SVE-MID-101503-0115 (1,1,1-TCA)

### 2) VS-SVE-MID-102803-0120

| Vestal Duplicate Sample Analysis<br>Report |                   |        |        |         |         |                        |  |  |
|--------------------------------------------|-------------------|--------|--------|---------|---------|------------------------|--|--|
| Sample Date                                |                   | Data1  | Data2  | Avg     | RPD (%) | <b>RPD</b> Acceptable? |  |  |
| 10/28/03                                   | TCE               | 11.718 | 11.007 | 11.3625 | 6.3     | YES                    |  |  |
| 10/28/03                                   | 1,1, <b>1-TCA</b> | 24.654 | 23.315 | 23.9845 | 5.6     | YES                    |  |  |

### 5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

### 6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

yrant

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

QA/QC Report for Vestal Samples (Sample Date: 11/11/03 - 11/19/03)

#### 1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

#### 4. Lab Duplicate Analysis

| Vestal Duplicate Sample RPD Report |           |        |        |         |                 |  |  |  |
|------------------------------------|-----------|--------|--------|---------|-----------------|--|--|--|
| Sample ID: VS-SVE-MID-111103-0125  |           |        |        |         |                 |  |  |  |
| Sample Date                        | Analytes  | Data1  | Data2  | RPD (%) | RPD Acceptable? |  |  |  |
| 11/11/03                           | 1,1,1-TCA | 20.446 | 20.517 | 0.3     | YES             |  |  |  |

| Vestal Duplicat                   | te Sample RP | D Report |       | na kanan | nigen felse om genom han at an an an an ander an de ser an ander an ander an ander an ander ander an ander ande |  |  |
|-----------------------------------|--------------|----------|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| Sample ID: VS-SVE-INF-111903-0129 |              |          |       |                                                                                                                |                                                                                                                 |  |  |
| Sample Date                       | Analytes     | Data1    | Data2 | RPD (%)                                                                                                        | <b>RPD Acceptable?</b>                                                                                          |  |  |
| 11/19/03                          | TCE          | 3.199    | 3.369 | 5.2                                                                                                            | YES                                                                                                             |  |  |
| 11/19/03                          | 1,1,1-TCA    | 3.078    | 3.012 | 2.2                                                                                                            | YES                                                                                                             |  |  |

#### 5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

### 6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Mout

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

۰.

QA/QC Report for Vestal Samples (Sample Date: 12/2/03 - 12/4/03)

#### 1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and in good condition, except the following sample: VS-SVE-L2-120403-0162. (See below for details). The labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

VS-SVE-L2-120403-0162 was not analyzed due to the excess water in the bag.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report

Sample ID: VS-SVE-E4-D-120203-0141

| Sample Date | Analytes  | Data1  | Data2  | RPD (%) | RPD Acceptable? |
|-------------|-----------|--------|--------|---------|-----------------|
| 12/2/03     | TCE       | 5.986  | 6.331  | 5.6     | YES             |
| 12/2/03     | 1,1,1-TCA | 11.309 | 11,912 | 5,2     | YES             |

| Vestal Duplica                    | te Sample RPI | D Report |        |         |                 |  |  |  |
|-----------------------------------|---------------|----------|--------|---------|-----------------|--|--|--|
| Sample ID: VS-SVE-MID-120403-0188 |               |          |        |         |                 |  |  |  |
| Sample Date                       | Analytes      | Data1    | Data2  | RPD (%) | RPD Acceptable? |  |  |  |
| 12/4/03                           | 1,1,1-TCA     | 20.472   | 21.269 | 3.8     | YES             |  |  |  |

#### 5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.
#### 6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

### APPENDIX C Summary of Operation Data/Contaminant Yield Calculation

Quarteny rieport No. 2 Vestal Well 1-1 Superfund Site Area 4

## Appendix C

# Summary of Operation Data

# Vestal, Area 4

|                                                     | _                 | _                      | _                      | _                      |                        |                        |                        |                        |                        | _                      | _                      |                        |                        | _                      | _                      | _                      |
|-----------------------------------------------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| NUMBER OF<br>DAYS IN<br>PERIOD                      | 1.96              | 10.04                  | 1.96                   | 4.46                   | 8.13                   | 5.48                   | 10.19                  | 8.74                   | 4.02                   | 13.58                  | 20.96                  | 0.00                   | 13.06                  | 6.87                   | 7.74                   | 15.69                  |
| STATION<br>HOUR METER                               | 97.0              | 338                    | 385                    | 492                    | 687.2                  | 818.7                  | 1063.3                 | 1273                   | 1369.5                 | 1695.5                 | 2,198.6                | 2198.6                 | 2512.0                 | 2,676.9                | 2,862.7                | 3167.2                 |
| OPERATION<br>DAYS                                   | 4.04              | 14.08                  | 16.04                  | 20.50                  | 28.63                  | 34.11                  | 44.30                  | 53.0                   | 57.1                   | 70.6                   | 91.6                   | 91.6                   | 104.7                  | 111.5                  | 119.3                  | 132.0                  |
| LBS OF TOTAL<br>TARGETED<br>CONTAMINANTS<br>PER DAY | 6.53              | 11.91                  | 36.92                  | 14.25                  | 4.67                   | 6.40                   | 11.28                  | 12.46                  | 6.70                   | 4.04                   | 5.07                   | 5.07                   | 4.86                   | 2.45                   | 2.65                   | 1.50                   |
| LBS OF<br>TCE per<br>day                            | 3.26              | 5.04                   | 17.46                  | 5.65                   | 1.88                   | 2.34                   | 5.06                   | 4.01                   | 2.46                   | 1.30                   | 2.26                   | 2.26                   | 2.21                   | 1.46                   | 1.39                   | 0.76                   |
| LBS OF<br>1,1,1-TCA<br>per day                      | 3.28              | 6.87                   | 19.45                  | 8.60                   | 2.79                   | 4.07                   | 6.23                   | 8.45                   | 4.23                   | 2.74                   | 2.8150038              | 2.82                   | 2.65                   | 0.99                   | 1.27                   | 0.74                   |
| TOTAL<br>TARGETED<br>CONTAMINANTS<br>(ppmv)         | 25.53             | 46.49                  | 144.21                 | 55.58                  | 18.22                  | 24.97                  | 44.49                  | 49.02                  | 26.37                  | 15.88                  | 20.00                  | 20.00                  | 19.16                  | 9.70                   | 10.47                  | 5.92                   |
| TCE<br>(ppmv)                                       | 12.83             | 19.87                  | 68.79                  | 22.24                  | 7.39                   | 9.20                   | 20.12                  | 15.94                  | 9.80                   | 5.16                   | 8.98                   | 8.98                   | 8.80                   | 5.81                   | 5.51                   | 3.03                   |
| 1,1,1-TCA<br>(ppmv)                                 | 12.70             | 26.62                  | 75.42                  | 33.34                  | 10.83                  | 15.77                  | 24.37                  | 33.08                  | 16.57                  | 10.72                  | 11.02                  | 11.02                  | 10.36                  | 3.89                   | 4.96                   | 2.89                   |
| FLOW<br>(CFM)                                       | 517               | 517                    | 517                    | 517                    | 517                    | 517                    | 512                    | 512                    | 512                    | 512                    | 512                    | 512                    | 512                    | 512                    | 512                    | 512                    |
| REPORT SAMPLE ID                                    | VS-SVE-INF-062703 | VS-SVE-INF-070703-0001 | VS-SVE-INF-070903-0006 | VS-SVE-INF-071703-0011 | VS-SVE-INF-072903-0016 | VS-SVE-INF-081203-0026 | VS-SVE-INF-082503-0031 | VS-SVE-INF-090303-0036 | VS-SVE-INF-090803-0041 | VS-SVE-INF-092403-0099 | VS-SVE-INF-101503-0114 | VS-SVE-INF-101503-0114 | VS-SVE-INF-102803-0119 | VS-SVE-INF-111103-0124 | VS-SVE-INF-111903-0129 | VS-SVE-INF-120403-0187 |
| SAMPLE                                              | INF               | ΪNF                    | ٩Ņ                     | ٩N                     | ٩                      | ٩N                     | INF                    | ΪNF                    | INF                    | ΪNF                    | INF                    | ΪNF                    | ΪNF                    | INF                    | INF                    | INF                    |
| SAMPLE<br>DATE                                      | 6/27/03           | 7/7/2003               | 7/9/2003               | 7/17/2003              | 7/29/2003              | 8/12/2003              | 8/25/2003              | 9/3/2003               | 9/8/2003               | 9/24/2003              | 10/15/2003             | 10/15/2003             | 10/28/2003             | 11/11/2003             | 11/19/2003             | 12/4/2003              |

Quartery Report No. 2 Vestal Well 1-1 Superfund Site Area 4

Appendix C

**Example Calculations** 

Vestal, Area 4

Example: 8/25/03 1,1,1 TCA (ppm) to 1,1,1 TCA (lbs/day) 0.00000374(conversion constant)\* 24.37(ppm)\* 512(flow)\* 133.4(molecular weight) = 6.23 lbs

Example: 8/12/03 to 8/25/03 'Total Target VOCs'

[6.40 (8/12) + 11.28 (8/25)]/2 = 8.84 avg. lbs per day for the period 8.84 (lbs per day) \* 10.19 (days) = 90.08 pounds per reporting period

Calculated Flow Rate: Vacuum Pressure (inches Hg) = 6 Blower Speed (RPM) = 2000 Temperature (degrees F) = 72 Elevation = 1200 feet Based on proprietary Roots, Inc flow rate software for Roots 68 blower, the CFM for these parameters is 512 on 8/25/03 Quarteny Report No. 2 Vestal Well 1-1 Superfund Site Area 4

### Appendix C

# Influent Sample Parameters

## Vestal, Area 4

| > IT (i) |
|----------|
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |
| 9        |