June 15, 2005

Stephen J. DeNardis, P.E. Resident Engineer West Point Area Office New York District U.S. Army Corps of Engineers Building 667A 3rd Floor West Point, New York 10996

Sevenson

Environmental Services, Inc.

Attention: Mr. Nicholas Patsis, P.E.

RE: Quarterly Progress Report No. 7 Contract # DACW41-01-D-001-0006 Vestal Wellfield 1-1, Area 4, Vestal, New York

Sirs:

Enclosed is Quarterly Progress Report No. 7 for the referenced contract. This report covers system operations during January, February, and March 2005. O&M activities for the period as well as sampling activities are summarized in this report. Copies of the analytical data are included.

Please email me at <u>cmarshall@sevensonphilly.com</u> or call at 610-388-0721 if you've any questions.

Sincerely, Sevenson Environmental Services, Inc.

1andi

Cassandra T. Marsiall Project Manager

CTM/1

cc: A. LaGreca (Sevenson) J. Singer (Sevenson) D. Callahan (Envirogen) B. Buckrucker (USACE) F. Bales (USACE) S. Trocher (USEPA) M. Dunham (NYSDEC)

		V	E	
JUN	17	200	5	

l		<u> </u>	<u>i i i</u>	•	<u>k</u>	1	<u> </u>	<u> </u>	<u> </u>
TF	RANSMITTAL OF SHOP DRAWINGS, MANUFACTURER'S CE (Read instructions on the re	EQUIPMENT D RTIFICATES O verse side prior	ATA, MATERIAL SAMPL F COMPLIANCE to initiating this form)	.es, or	DATI	E 6/15	/05	X New Submittal	
Section -	1 REQUEST FOR	APPROVAL O	F THE FOLLOWING ITE	MS (This s	ection will b	e initiat	ed by the contra	ictor)	
TO: USACE New Yo Building West Po	West Point Area Office rk District 667A 3rd Floor Int, New York 10996	Environmental Services in ort Rd. is, N.Y. 14302	c. CC 00	CONTRACT NO. DACW-41-01-D- 0001 T.O.# 0006			TRANSMITTAL NO. 40 PREVIOUS TRANS, NO. (If Any)		
SPECIFI transmittal	ICATION SEC. NO. (Cover only one section)	n with each	PROJECT TITLE AND System, Broome Count	LOCATIO	N: Vestal W rk	ell 1-1 :	Superfund Site,	Area 2 Soil Vapor 8	Extraction
ITEM NO.	DESCRIPTION OF ITEMS SUB (Type, size, model number, etc	MFG. OR CONTR. CAT., CURVE DRAWING OR BROCHURE NO. (See instruction No. 8)	NO. OF COPIES	OF CONTRACT REFERENCE DOCUMENT SPEC. DRAW PARA. NO. SHEET		REFERENCE MENT DRAWING SHEET NO.	VARIATIONS (See instruction No. 6) COD	FOR C E USE CODE	
a .	b		<u> </u>	<u>d.</u>	e.		<u>f.</u>	<u> </u>	<u>h.</u>
1.	Quarterly Report No. 7			1		<u></u>			
<u></u>		<u></u>				<u> </u>			
			······	1			4		
REMARK Sent via F 2 copies to 1 copy to 1 copy to 1 copy to	KS: Federal Express: to CENWK USEPA Region II N.Patsis NYSDEC			.	i a sy N	certify that re correct becification A A A A A A A A A A A A A A A A A A A	the above submitted in and in strict conformations except as otherwise the <u>J</u> Man (ND SIGNATURE Second son (tems have been reviewed nee with the contract drawi e stated. OF CONTRACTOR	in detail and ings and Jilly , fre.
Section II			APPHOVAL ACTION						
INCLOSU	JRES RETURNED (List by Item No.)	NAME, TITLE AN	D SIGNATURE OF APPRO	VING AUTH	IORITY			DATE	
ENG FO	RM 4025, Oct 84 (ER 415-1-10) E CEEC-CE)		81 IS OBSOLETE						OF

C:\Documents and Settings\marshall\My Documents\Vestal\Reports\7th Quarterly\Transmittal to DeNardis 7th Quarterly.wpd

QUARTERLY PROGRESS REPORT NO. 7 (January 1 through March 31, 2005)

FULL SCALE IN-SITU SOIL VAPOR EXTRACTION SYSTEM VESTAL AREA 4, VESTAL, NEW YORK

Prepared by:

SEVENSON PRAC TEAM MEMBER Envirogen/Shaw, Inc. 103 College Ave SE Grand Rapids, MI 49503

Submitted to:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

15 June 2005

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

TABLE OF CONTENTS

1.0	INTRODUCTION	L
2.0	SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD	Į
3.0	SVE SYSTEM MONITORING AND ADJUSTMENTS23.1Pressure/Vacuum Readings3.1.1Vacuum Blowers3.1.2Carbon Units3.1.3Well Field3.2Temperatures3.3Process Air Flows3.1Total System Process Air Flow3.2SVE Well Process Air Flow3.3AProcess Air VOC Concentrations3.4SVE Withdrawal Wells3.4.1SVE Withdrawal Wells3.4.3QA/QC Process Air Samples	233334444555
4.0	VOC YIELD64.1SVE Withdrawal Well VOC Yields4.2Total System VOC Yield7	-) -) 7
5.0	QUARTERLY REPORT No. 7 ANALYSIS OF MONITORING DATA	;;
6.0	PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND RESPECTIVE CORRECTIVE MEASURES	,
7.0	ANTICIPATED ACTIVITIES)
8.0	AUTHOR IDENTIFICATION)

LIST OF FIGURES

- 1 SVE System Layout
- 2 Total Target VOC Concentration, March 22 & 23, 2005
- 3 1,1,1 TCA Concentration (ppm), March 22 & 23, 2005
- 4 TCE Concentration (ppm), March 22 & 23, 2005
- 5 Carbon System Sampling Diagram
- 6 Concentration (ppmv) And Yield Rate (lbs/day) Of Total Target VOCs Vs. Time, Total System Sample, Vestal Area 4
- 7 Total Target VOC Yield (lbs/day), March 22 & 23, 2005
- 8 1,1,1 TCA Yield (lbs/day), March 22 & 23, 2005
- 9 TCE Yield (lbs/day), March 22 & 23, 2005
- 10 Total Target Contaminant Yield Start-Up to Date (lbs.) Vs. Time, Total System Sample, Vestal Area 4

LIST OF TABLES

- Table 1SVE Well Status, Vestal Area 4, January 12, February 9, and March 22 & 23, 2005
- Table 2Analytical Results of Concentrations Of Target Compounds, Vestal Area 4
- Table 3Contaminant Concentrations and Yields, March 22 & 23, 2005, Vestal Area 4
- Table 4Target Contaminant Yield, Vestal Area 4
- Table 5Total Target Contaminant Yield To Date, Vestal Area 4
- Table 6SVE Well Proposed Changes, Vestal Area 4

LIST OF APPENDICES

- Appendix A Operation and Maintenance Data (Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)
- Appendix B Sampling and Analytical Data Process Air Data (Including Laboratory Data Summary Sheets, Chain-of-Custody Forms, and Field Sample Log Book Notes)
- Appendix C Summary of Operation Data/Contaminant Yield Calculation

1.0 INTRODUCTION

Sevenson Environmental Services, Inc. and their subcontractor (Shaw Environmental and Infrastructure (SHAW), formerly Envirogen, Inc. of Lansing, Michigan), has prepared this Quarterly Report No. 7 for the Full Scale Soil Vapor Extraction System (SVE System or System) at the Vestal Area 4 Site in Vestal, NY (Site). This report was prepared on behalf of the United States Environmental Protection Agency (USEPA) and the United States Army Corp of Engineers (USACE) who are conducting the Remedial Action for the Vestal Area 4 Site. This report was prepared under contract DACA41-01-D-0001-0006. Sevenson's remedial action work is under supervision of the USEPA and USACE. The seventh Quarterly Progress Report is provided and prepared in accordance with the approved Workplan. This report discusses the System operation based on data collected during January, February, and March 2005, and also discusses System operation and maintenance during these months.

Figure 1 (shown at the end of this report) is a Site plan showing the SVE System treatment area, cell distribution buildings, and the main SVE treatment building. Construction of the SVE System began in mid-April 2003 and was completed on June 23, 2003. The remedial action began on June 27, 2003, after completion of a successful start-up sequence. The SVE System is operated in accordance with the approved Workplan, O&M Manual and the Final Design documents.

Figure 1 depicts System and SVE well polarity (withdrawal, active injection or temporarily off-line) following the System installation.

Section 2.0 of this report summarizes general activities conducted during the reporting period. Section 3.0 summarizes System monitoring and adjustments. Section 4.0 discusses volatile organic compound (VOC) contaminant yields based on process air analytical data. Section 5.0 discusses analysis of data specific to the Quarterly Report period between January and March 2005. Section 6.0 discusses problems encountered during the reporting period and their respective corrective measures. Section 7.0 lists anticipated future activities.

2.0 SUMMARY OF ACTIVITIES CONDUCTED DURING THE REPORTING PERIOD

The O&M inspections/site visits were performed on January 12, February 9, and March 22 & 23, 2005. Air flow and Photo Ionic Detector (PID) readings were measured throughout the System on January 12, February 9, and March 22 & 23, 2005. A full round of process air samples was collected from withdrawal wells on March 22 and 23, 2005.

Samples of process air through the carbon treatment system were collected on January 12, February 9, and March 22 & 23, 2005.

The SVE System at the Vestal Area 4 Site ran approximately 30 days during the period January 1, 2005 to January 31, 2005, without incident.

The first Interim Soil Sampling Event as well as the normal monthly air sampling was conducted on February 9, 2005. Shaw technicians also inspected a reported caved in monitoring well on February 9, 2005 and temporarily backfilled with cold patch up to grade level. This inspection did not yield much data, other than the fact that the well has been knocked over and sits at 45° .

The SVE System at the Vestal Area 4 Site ran approximately 28 days during the period February 1, 2005 to February 28, 2005.

A report of the Interim Sampling Event activities and results was prepared and submitted on March 8, 2005. Following a conference call with USACE and USEPA to discuss the results, the SVE System was reconfigured on March 17, 2005. Wells D2, D3, E2, and F2 were changed from vacuum to injection. Wells E1 and F1 were changed from injection to vacuum. The SVE System at the Vestal Area 4 Site ran approximately 30 days during the period March 1, 2005 to March 31, 2005.

Physical monitoring of the System parameters, such as PID readings, temperature, and air flow measurements, along with routine maintenance of the System, was conducted during the January through March reporting period in accordance with the O&M Manual. These O&M measurements and activities were recorded on daily O&M logs, which are provided in Appendix A.

The System operated for 30 days in January, 28 days in February, and 30 days during March 2005 bringing the total operational time to approximately 532 days since the June 23, 2003, start-up.

Health and Safety (H&S) monitoring was conducted as outlined in the Health and Safety Plan (HASP). No significant events were observed during this monitoring period.

3.0 SVE SYSTEM MONITORING AND ADJUSTMENTS

This section summarizes monitoring of and adjustments made to the SVE System during the reporting period. Monitoring of the System included pressure/vacuum readings, PID and temperature measurements, air flow measurements, and process air sampling and associated VOC analysis. The locations of the SVE wells are illustrated in Figure 1. System parameters were recorded on O&M daily log sheets, which are provided in Appendix A. The chain-of-custody forms and laboratory data summary sheets are provided in Appendix B. Monitoring and adjustments were performed in accordance with the O&M Manual.

3.1 Pressure/Vacuum Readings

Pressure/vacuum measurements were taken across the air blowers and carbon units, and recorded on the daily log sheets (Appendix A). These measurements were collected on January 12, February 9, and March 22 & 23, 2005.

3.1.1 Vacuum Blowers

Pressure drops were measured across the vacuum blowers and filter during System operation. The pressure across the vacuum blower and filter ranged between 4 and 6 inches of water (H_2O).

3.1.2 Carbon Units

The total pressure drop across the two carbon units averaged 11 inches of H_2O during the reporting period. This pressure drop includes the carbon units and the connecting piping and fittings.

3.1.3 Well Field

Vacuum flow rate and PID reading for the individual SVE wells on January 12, February 9, and March 22 & 23, 2005, are listed in Table 1. On January 12 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 22 standard cubic feet per minute (scfm) for Cell 1 and less than 5 to 20 scfm for Cell 2. Injection flow rates ranged from 8 to 16 scfm for Cell 1 from 6 to 7 in Cell 2.

On February 9, 2005 vacuum flow rates at the cell distribution buildings ranged from less than 5 to 20 scfm for Cell 1 and less than 5 to 20 scfm for Cell 2. Injection flow rates ranged from 6 to 20 scfm for Cell 1 and from less than 5 to 5 scfm in Cell 2.

On March 22 & 23, 2005 (the quarterly monitoring event) vacuum pressures at the cell distribution buildings manifolds ranged from 76 inches of H_2O for Cell 1 to 85 inches of H_2O for Cell 2. Injection pressure ranged from 82 inches of H_2O for Cell 1 and 85 inches of H_2O for Cell 2.

3.2 Temperatures

Process air stream temperatures, measured at the discharge of the air blowers and across the carbon treatment system, were recorded on the O&M daily log sheets (Appendix A).

Temperature measurements at the vacuum air blowers did not exceed 170°F, which was below the design settings of 220°F. The temperature at the discharge of the vacuum blower was

measured at an average of 163°F, and the temperature at the discharge of the injection blower was measured at an average of 157°F. Temperature at the vacuum header within the Cell distribution buildings ranged from 48°F to 58°F, and ranged between 46°F and 52°F at the injection header. The carbon treatment system influent air stream temperatures ranged from 70°F to 90°F.

3.3 Process Air Flows

This section discusses process air flow measurements and balancing throughout the entire System and for the individual SVE wells. Individual SVE withdrawal and injection well process airflow measurements are provided in Table 1 for January 12, February 9, and March 22 & 23, 2005.

3.3.1 Total System Process Air Flow

During the reporting period, air flow throughout the entire System was measured as outlined in the O&M Manual. The air flow through the System was calculated by measuring the pressure drop across the blowers, and using this value to obtain the air flow from the blower curve computer model supplied by the manufacturer. Calculated air flow rates are contained in Table 2. Based on this data, the calculated airflow through the entire System between January and March 2005 averaged 512 scfm. The bypass airflow for January 12, February 9, and March 22 & 23, 2005 was 210 scfm (table 1). The entire system flow is a culmination of the bypass flow and the individual flow rates. Estimated wellfield airflow was 453.

3.3.2 SVE Well Process Air Flow

Individual SVE withdrawal and injection well process airflow measurements were recorded on January 12, February 9, and March 22 & 23, 2005. This data is contained in Table 1.

Total SVE well air flow on the withdrawal side of the System was 512 scfm January 12, February 9, and March 22 & 23, 2005.

3.4 Process Air VOC Concentrations

Process air samples were collected during the reporting period on January 12, February 9, and March 23, 2005. Samples were collected and analyzed in accordance with the O&M Manual. The withdrawal well process air analytical results and the carbon treatment system process air analytical results are contained in Table 2. Quality Assurance/Quality Control (QA/QC) analytical results are also presented in Table 3. The laboratory data summary sheets, chain-of-custody forms, and field sample log book notes are provided in Appendix B.

3.4.1 SVE Withdrawal Wells

Quarterly sampling of the SVE withdrawal wells occurred on March 22 and 23, 2005. Concentrations of total targeted VOCs at individual wells ranged from non-measurable in wells A3; B3; C3; F5 and F5; G1; H1; I1, I3, and I5; J2, J3, and J5; K5; L2; and M2, to 6.72 ppm_v in well K3 (Table 3). Trichloroethene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA) show the highest concentrations.

The total targeted VOC concentration contours using the March analytical data are illustrated in Figure 2. Figures 3 and 4 show individual contaminant concentrations of 1,1,1-TCA and TCE, respectively. The highest VOC concentrations were located in the areas of cell 1 between wells C2 and D1.

3.4.2 Carbon Process Air Control Samples

Carbon treatment system process air control samples were collected from three (3) sample ports identified and illustrated on Figure 5.

Total System VOC samples are collected prior to the combined process air stream entering the carbon treatment system. System samples were labeled "INFLUENT", "MID", and "EFFLUENT".

Total System samples were collected on January 12, February 9, and March 23, 2005. The total targeted influent VOC concentration averaged 2.05 ppm_v over the reporting period (Table 2). TCE and 1,1,1-TCA constitute the majority of the VOC mass in the process air stream. Concentrations of target VOCs in the total System samples collected since the initial startup of the System in June 2003 are shown in Figure 6.

Between carbon bed ("MID") and after carbon bed ("EFFLUENT") samples were also collected on the same days as the total System sample to evaluate VOC breakthrough and to determine when carbon change-outs should be performed.

3.4.3 QA/QC Process Air Samples

QA/QC process air samples, including duplicates, sample pump blanks, trip blanks, and instrument blanks, were collected during the sampling events. Duplicates of withdrawal well samples E4 and K3 were collected and analyzed for the targeted VOCs. The results of the analysis are show on Table 3. The sample pump blank concentrations of total targeted compounds were below the detection limit (0.05 ppm_v). The trip and instrument blanks concentrations were also below the detection limit for total targeted compounds.

4.0 VOC YIELD

This section details the System VOC yield distribution based on the individual SVE withdrawal well samples collected during the March 22 & 23, 2005 sampling event. Also discussed in this section is the total System VOC yield based on the air flow through the blowers and the composite/total System VOC analytical results.

4.1 SVE Withdrawal Well VOC Yields

The VOC yield rate for each SVE withdrawal well was calculated using the Ideal Gas Law, the average molecular weight of the targeted compounds, the flow rate for each individual withdrawal well, and the total targeted VOC concentration for each well. Table 3 summarizes the yield rate in pounds per day (lbs/day) for each SVE withdrawal well as measured during the March sampling event.

The VOC yield rates varied from non-measurable to 0.02 lbs/day (well E4 and K3). Wells B2, C2 and C3; D1, E1, F1 and F4; H1, I1 and I3; J2 and J5; K4 and K5; L2, and M2 had a non-measurable yield because of only low VOC concentration (PID reading less than 10 ppm), and no wells had a non-measurable yield due to only very low air flow (5 scfm or lower) only. Well F5 had a non-measurable yield due to a low VOC concentration and low flow. The table below (see below) summarizes the wells with non-measurable VOC yield rates.

At this time, some wells located in areas with high contaminant concentrations (as shown in the Pre-Remediation Geoprobe Sampling Summary Report, Vestal Well 1-1, Operable Unit 2, Area 4, March 21, 2002), currently show low VOC yield rates. Air flow rates and VOC contaminant levels with this off-gas data may be limited by subsurface geologic conditions (silt lenses), preferential air flow patterns, and soil moisture content. These conditions are unpredictable and change with varying Site conditions.

Figure 7 illustrates SVE withdrawal well total targeted VOC yield rate contours for the March sampling event. Figures 8 and 9 show individual contaminant yield rates of 1,1,1- TCA and TCE, respectively. All of the withdrawal wells in the treatment area indicate a yield of less than 0.05 lbs/day total targeted VOC.

	SUMMARY OF WELLS WITH LOW YIELD RATES										
SVE WELL #	FLOW RATE	PID READINGS	LOW FLOW	LOW PID (<10ppm)	Soll Concentrations	Proposed Actions to improve	Notes/Action List				
B2	5	7.5		X	Low	None	See paragraph below.				
C2	5	0.9		X	Medium	None	See paragraph below.				
C3	5	6.2		X	Medium	None	See paragraph below.				
D1	5	1.3		X	Low	None	See paragraph below.				
E1	5	1.2		X	Low	None	See paragraph below.				

	SUMMARY OF WELLS WITH LOW YIELD RATES										
SVE WELL #	FLOW RATE	PID READINGS	LOW FLOW	LOW PID (<10ppm)	Soil Concentrations	Proposed Actions to improve	Notes/Action List				
F1	8	1.0		X	Low	None	See paragraph below.				
F4	5	4.4		X	Low	None	See paragraph below.				
F5	2	1.8	X	X	Low	None	See paragraph below.				
H1	5	5.8		X	Low	None	See paragraph below.				
l1	5	4.6		X	Low	None	See paragraph below.				
13	5	9.8		X	Medium	None	See paragraph below.				
J2	5	2.0		X	Medium	None	See paragraph below.				
J5	5	7.2		x	High	None	See paragraph below.				
 K4	5	1.7		X	Medium	None	See paragraph below.				
K5	5	1.8		Х	High	None	See paragraph below.				
L2	5	1.9		X	High	None	See paragraph below.				
M2	5	1.9		Х	Low	None	See paragraph below.				

There are no proposed actions to improve the System (Table 6). The new configuration (as of March 17, 2005) of the System focuses on Cell 1. There have been elevated sustained contaminant concentrations and yields for the majority of 'hot spots' in Cell 1. We will monitor the individual wells and recommend action if the concentrations and yields drop substantially for an extended period of time.

4.2 Total System VOC Yield

The total System VOC yield (Table 4) was calculated using the total System air flow rate (Section 3.3.1) and the influent System sample ("INFLUENT") analytical results. Based on these calculations, the System has yielded approximately 2,072 pounds of VOCs through the March 23, 2005 sampling event (Table 5). Therefore, the average yield rate of the System between June 23, 2003 and March 23, 2005, is 3.91 lbs/day. TCE constitutes approximately 46 percent and 1,1,1-TCA approximately 54 percent of the total VOC yield since the beginning of the SVE System operation. The increasing mass of total targeted VOCs removed from the treatment area is illustrated in Figure 10.

5.0 QUARTERLY REPORT No. 7 ANALYSIS OF MONITORING DATA

This section provides additional analysis of operational data collected between January and March 2005. Total System data was evaluated for this time period. The following evaluations were performed: analyses of total targeted VOC concentrations and yield rates vs. time and Total Targeted Contaminant Yield start-up to March 23, 2005.

5.1 Total System

Table 2 summarizes the total System VOC concentrations and Table 4 summarizes the total contaminant yield per day of each VOC within the process air stream. Figure 6 illustrates concentration and daily yield rates of targeted contaminant vs. time, and Figure 10 illustrates total targeted contaminant yield from start-up to June 22, 2004. As expected, the yield rate and concentration trends closely match.

1-1-1,TCA is the dominant compound detected (Table 4), ranging from 56 to 71 percent of the VOC component of the total System process air stream. TCE ranged from approximately 29 to 48 percent of the total (Table 4).

There is a decrease of the average contaminant yield rate from quarter 6 through quarter 7 (3.01 lbs/day and 0.51 lbs/day, respectively).

After reconfiguration of the SVE well polarity and subsequent reduction of flow rates/vacuum pressure to treatment area number 2 the yield ratio of TCE to 1-1-1,TCA from individual wells has significantly increased (Figures 8 and 9). This is due to the ability of 1-1-1,TCA to be released from inter soil pore spaces at a faster rate than TCE.

The total System air flow continues at a stable rate (512 scfm), which was within 2 to 3 percent of the target air flow rate of 500 scfm.

6.0 PROBLEMS ENCOUNTERED DURING THE REPORTING PERIOD AND RESPECTIVE CORRECTIVE MEASURES

With the exceptions of problems discussed in Section 2.0 and in this section the System operated well throughout the seventh quarter.

During this reporting period, some wells were recorded with limited flow. These problems are related to the presence of condensate water in the process piping. Maintenance activities have been performed to remove (increased vacuum to selected wells) and control the amount of water being drawn into the treatment System (closing of selected wells). Should the site soils begin producing substantial quantities of condensate, the pump-out time will be increased in wells constructed with condensate drop legs.

7.0 ANTICIPATED ACTIVITIES

We will be closely monitoring the effectiveness of the most recent reconfiguration and evaluating the system for additional reconfiguration opportunities to maximize contaminant removal as well as planning for and implementing an interim sampling event. We understand that we will need to provide an assessment of the removal productivity in order to make a recommendation to the EPA on whether or not to extend the system operation beyond June 2005. To that end, the following activities are anticipated for the next reporting period:

- Review of all system specific data regarding flow rates, contaminant concentrations and weather conditions at the site, make adjustments as deemed necessary;
- Development of additional system operation time, and/or further reconfiguration to USACE and EPA, based upon soil sampling data;
- Continue operations and maintenance of the SVE system;
- The next quarterly sampling event is scheduled for June 2005; and
- A carbon change out is anticipated during the next quarter.

In addition, we note that the operating funds for this most recent 150 days is due to run out in early June.

8.0 AUTHOR IDENTIFICATION

This report was prepared and checked by:

Soughers Callaban

Douglas C. Callahan Shaw Environmental, Inc. Project Manager

mandia Man liel

Cassandra T. Marshall Sevenson Environmental Services, Inc. Project Manager

FIGURES

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

R. %

SAMPLING DIAGRAM	TOWN OF VESTAL AREA 4		IVENT CARBON	PRESSURE GAUGE	
DEWING NUMES VES A4-5 SHEET 5 0F 10	SCALE AS SHOWN REVISION AS BUILT MOLECT NUMBOR				

Sevenson Environmental Services, Inc. DACW-41-01-D-0001-0006

Vestal Wells 1-1 Superfund Site Area 4

Quarterly Report No. 7

15 June 2005

-

- 36" High by 12" Wide Concrete Wall w/ Patio
KSCO NAC NAC NAC NAC NAC NAC NAC NAC NAC NAC
Edge of Asphalt Parking (Typical)
a/day) 1.1 TOA Yeed 1.1,1 TOA Yeed 1.1,1 TOA Yeed 1.1,1 TOA Yeed SCALE IN FEET
VESTAL AREA 4 TOWN OF VESTAL, BROOME COUNTY, NEW YORK TITLD TCE YIELD (Ibs/day) MARCH 22 & 23, 2005 TCE YIELD (Ibs/day) MARCH 22 & 23, 2005 TCE YIELD (Ibs/day) TCE YIELD (Ibs/day) T

Sevenson Environmental Services, Inc. DACW-41-01-D-0001-0006

15 June 2005

TABLES

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

TABLE 1 SVE WELL STATUS VESTAL AREA 4 January 12, 2005

SVE WELL #	VAC			FLOW STATUS		SOIL
SVE WELL #	WELL		RATE	STATUS	READINGS	CONCENTRATIO
Bypass Flow Ra	ate		210			
INFLUENT			512		10.9	
MIDDLE			512		0.9	
EFFLUENT			512		0.6	
A1		X	10	OPEN	NA	LOW
A2		X	8	OPEN	NA	LOW
A3	X		5	OPEN	31.8	LOW
B1	<u> </u>		NA	WATER	NA	LOW
B2			NA	WATER	NA NA	LOW
B3	X		<5	LF	20.6	LOW
C1		X	15	OPEN	NA	LOW
C2	X		<5	LF	82.5	MEDIUM
C3			5	OPEN	6.2	MEDIUM
D1			6	OPEN	110.5	LOW
D2	X		8	OPEN	4.7	MEDIUM
D3	x	<u> </u>	<5	LF	70.6	HIGH
D4	<u> </u>	1	22	OPEN	8.1	HIGH
E1		X	10	OPEN	9.4	LOW
E2	X		NA	WATER	NA	MEDIUM
E3	X		8	OPEN	10.9	HIGH
E4	X		<5	LF	3.4	HIGH
E5	X		<5	LF	26.4	HIGH
		X	16	OPEN	NA	LOW
F2	X		NA	WATER	NA	MEDIUM
F3	<u> </u>		<5	LF	2.7	MEDIUM
F4	X		NA	WATER	NA	LOW
F5	X		<5	LF	6.2	LOW
F6	X		7	OPEN	11.4	LOW
G1	X		<5	LF	17.3	LOW
G2	X			OPEN	42.3	LOW
H1	X		<5	LF_	5.1	LOW
H2			NA	OFF	NA	LOW
11	X		<5	LF	3.3	LOW
2			NA	OFF	NA	LOW
13	X		NA	WATER	NA	MEDIUM
4		X	7	OPEN	NA	MEDIUM
15	X		6	OPEN	12.4	HIGH
J1			NA	OFF	NA	LOW
J2	X		<5	LF	4.0	MEDIUM
J3	X		8	OPEN	15.7	HIGH
	<u> </u>		6	OPEN	44.1	HIGH

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

TABLE 1 SVE WELL STATUS VESTAL AREA 4 January 12, 2005

SVE WELL #	VAC WELL	INJ WELL	FLOW RATE	STATUS	PID READINGS	SOIL CONCENTRATION
J5	<u> </u>	<u>†</u> −−−†	10	OPEN	10.6	HIGH
J6	X	1 1	<5	LF	20.8	HIGH
K1		X	6	OPEN	NA	LOW
K2	<u> </u>		<5	LF	1.5	LOW
К3	X		7	OPEN	11.1	MEDIUM
K4			NA	OFF	NA	MEDIUM
K5	X		<5	LF	15.6	HIGH
<u>L1</u>		X	6	OPEN	NA	LOW
12	X		\	LF	13.9	HIGH
L3		X	7	OPEN	NA	LOW
L4	X		NA	WATER	NA	LOW
M1			NA	OFF	NA	LOW
M2	X		<5	LF	20.7	LOW
M3	X		<5	LF	4.2	LOW
	_		NA	OFF	NA	LOW
N1			NA	OFF	NA	LOW
N2			NA	OFF_	NA	LOW
N3			NA	OFF	NA	LOW

NOTE:

Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 1 SVE WELL STATUS VESTAL AREA 4 February 9, 2005

SVE WELL #	VAC		FLOW	STATUS	PID	SOIL
	WELL		<u>RATE_</u>	314103	<u>READINGS</u>	CONCENTRATION
Bypass Flow Ra	ate		210			
INFLUENT			512		12.3	
MIDDLE			512		1.9	
EFFLUENT			512		1.3	
A1		X	9	OPEN	NA	LOW
A2		X	6	OPEN	NA	LOW
A3	<u> </u>		5	OPEN	30.6	LOW
B1	X		NA	WATER	NA	LOW
B2	<u> </u>	-	NA	WATER	NA	LOW
B3			<5	LF	22.6	LOW
C1		X	10	OPEN	NA	LOW
C2	X		5	OPEN	90.6	MEDIUM
C3	X		<5	LF	3.0	MEDIUM
D1	X		6	OPEN	100.3	LOW
D2	<u> </u>		9	OPEN	19.3	MEDIUM
D3	<u> </u>		<5	LF	70.3	HIGH
D4	<u> </u>		20	OPEN	16.7	HIGH
E1		X	10	OPEN	NA	LOW
E2	X		NA	WATER	NA	MEDIUM
E3	x		NA	WATER	NA	HIGH
E4	X		6	OPEN	8.3	HIGH
E5	<u> </u>		5	OPEN	18.8	HIGH
—— <u>F1</u>		x	20	OPEN	NA	LOW
F2	X		NA	WATER	NA	MEDIUM
F3	X		NA	WATER	NA	MEDIUM
F4	X		<5	LF	6.3	LOW
F5	X		NA	WATER	NA	LOW
F6	X		7	OPEN	4.6	LOW
G1	X		<5	LF	25.1	LOW
G2	X		20	OPEN	38.5	LOW
H1	X		NA	WATER	NA	LOW
H2			NA	OFF	NA	LOW
1	X		5	OPEN	3.2	LOW
12			NA	OFF	NA	LOW
13	X		7	OPEN	13.5	MEDIUM
14			6	OPEN	NA	MEDIUM
15	X		<5	LF	19.6	HIGH
J1			NA	OFF	NA	LOW
J2	X		<5	LF	4.9	MEDIUM
J3	X		8	OPEN	14.3	HIGH
J4	X		9	OPEN	40.8	HIGH

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

15 June 2005

TABLE 1 SVE WELL STATUS VESTAL AREA 4 February 9, 2005

SVE WELL #	VAC	INJ WELL	FLOW	STATUS	PID	SOIL
	WELL				<u>READINGS</u>	CONCENTRATION
J5	<u> </u>		10	OPEN	6.4	HIGH
J6	X		<5	LF	22.6	HIGH
K1		X	5	OPEN	NA	LOW
K2	X		6	OPEN	3.8	LOW
K3	X		<5	LF	16.3	MEDIUM
K4			NA	OFF	NA	MEDIUM
K5	X		<5	LF	15.9	HIGH
L1		X	5	OPEN	NA	LOW
L2	X		5	OPEN	16.3	HIGH
L3		X	<5	OPEN	ŇA	LOW
L4	x		NA	WATER	NA	LOW
M1			NA	OFF	NA	LOW
M2	X		<5	LF	21.4	LOW
M3	X		<5	LF	9.1	LOW
M4			NA	OFF	NA	LOW
N1			NA	OFF	NA	LOW
N2			NA	OFF	NA	LOW
N3			NA	OFF	 NĀ	LOW

NOTE:

Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

TABLE 1SVE WELL STATUSVESTAL AREA 4March 22 & 23, 2005

SVE WELL #	VAC		FLOW	STATUS	PID	SOIL
	WELL		RATE		READINGS	CONCENTRATION
Bypass Flow Ra	ate		210			
INFLUENT			512		9.6	
MIDDLE			512		0.6	
EFFLUENT			512		0.6	
A1		X	9	OPEN	NA	LOW
A2		X	6	OPEN	NA	LOW
A3	X		5	OPEN	15.4	LOW
B1	X		NA	WATER	NA	LOW
B2	X		5	OPEN	7.5	LOW
B3	X		5	OPEN	20.1	LOW
C1		X	10	OPEN	NA	LOW
C2	X		5	OPEN	0.9	MEDIUM
C3	X		5	OPEN	6.2	MEDIUM
D1	<u> </u>	1	5	OPEN	1.3	LOW
D2		X	9	OPEN	NA	MEDIUM
D3		X	<5	OPEN	ŇA	HIGH
D4	X		NA	WATER	NA	HIGH
E1	X		5	OPEN	1.2	LOW
E2		X	NA	OPEN	NA	MEDIUM
E3	X		20	OPEN	3.2	HIGH
E4	<u> </u>		25	OPEN	6.4	HIGH
E5	<u> </u>		NA	WATER	NA	HIGH
F1	X		8	OPEN	1.0	LOW
F2		X	NA	OPEN	NA	MEDIUM
F3	X		NA	WATER	NA	MEDIUM
F4	X		5	OPEN	4.4	LOW
F5	<u> </u>		<5	LF	1.8	LOW
F6	X		NA	WATER	NA	LOW
G1	X		5	OPEN	17.4	LOW
G2	X		25	OPEN	21.1	LOW
H1	X		5	OPEN	5.8	LOW
H2			NA	OFF	NA	LOW
11	X		5	OPEN	4.6	LOW
12			NA	OFF	NA	LOW
13	X		5	OPEN	9.8	MEDIUM
4			NA	OFF	NA	MEDIUM
15	X		5	OPEN	19.1	HIGH
			NA	OFF	NA	LŌW
J2	<u> </u>		5	OPEN	2.0	MEDIUM
J3	X		5	OPEN	15.5	HIGH
J4	X		5	OPEN	13.3	HIGH

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

TABLE 1SVE WELL STATUSVESTAL AREA 4March 22 & 23, 2005

SVE WELL #	VAC	INJ WELL	FLOW	STATUS	PID	SOIL CONCENTRATION	
	<u>WELL</u>		RATE		READINGS		
J5	X		5	OPEN	7.2	HIGH	
J6	X		NA	WATER	NA	HIGH	
K1		X	5	OPEN	NA	LŌW	
K2	X		5	OPEN	12.3	LOW	
K3	X		5	OPEN	4.5	MEDIUM	
K4	<u> </u>		5	OPEN	1.7	MEDIUM	
K5	X		5	OPEN	1.8	HIGH	
L1		X	5	OPEN	NA	LOW	
L2	<u> </u>		5	OPEN	1.9	HIGH	
L3		X	<5	OPEN	NA	LOW	
L4	<u> </u>		NĀ	WATER	NA	LOW	
M1			NA	OFF	NA	LOW	
M2	X		5	OPEN	1.9	LOW	
M3	<u> </u>		NĀ	WATER	NA	LOW	
M4			NA	OFF	NA	LŌW	
N1			NA	OFF	NA	LOW	
N2			NA	OFF	NA	LOW	
N3			NA	OFF	NA	LOW	

NOTE:

Total System Flow calculated by Roots Blower program with climate variables of the day of sampling.

LF= limited airflow

æ

h

TABLE 2 ANALYTICAL RESULTS OF CONCENTRATIONS OF TARGET COMPOUNDS VESTAL AREA 4

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	FLOW RATE (SCFM)	PID READINGS (ppm)	1,1,1 TCA (ppmv)	TCE (ppmv)	TOTAL TARGET VOCs (ppmv)
1/12/05	VS-SVE-INF-011205-0498	INF	512	10.9	1.13	0.79	1.92
1/12/05	VS-SVE-MID-011205-0499	MID	512	0.9	0.15	0.00	0.15
1/12/05	VS-SVE-EFF-011205-0500	EFF	512	0.6	0.00	0.00	0.00
1/12/05	VS-SVE-TB-011205-0502	ТВ	NA	0.3	0.00	0.00	0.00
2/9/05	VS-SVE-INF-020905-0503	INF	512	12.3	2.29	0.94	3.23
2/9/05	VS-SVE-MID-020905-0504	MID	512	1.9	0.89	0.00	0.89
2/9/05	VS-SVE-EFF-020905-0505	EFF	512	1.3	0.00	0.00	0.00
2/9/05	VS-SVE-TB-020905-0507	ТВ	NA	1.0	0.00	0.00	0.00
3/23/05	VS-SVE-INF-032305-0551	INF	512	9.6	0.54	0.46	1.00
3/23/05	VS-SVE-MID-032305-0552	MID	512	0.6	1.23	0.00	1.23
3/23/05	VS-SVE-EFF-032305-0553	EFF	512	0.6	0.31	0.00	0.31
3/23/05	VS-SVE-TB-6-032305-0555	TB	NA	NA	0.00	0.00	0.00

NOTE 1: 1,1,1 TCA= 1,1,1-Trichloroethane

TCE= Trichloroethene NA = Not Applicable

NOTE 2:

2

INF= Influent MID= Middle Carbon EFF= Effluent TB= Trip Blank

TABLE 3CONTAMINANT CONCENTRATIONS AND YIELDSMARCH 22 & 23, 2005

VESTAL, AREA 4

SAMPLE DATE	SAMPLE ID	FLOW (CFM)	PID READING	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA	LBS OF TCE	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY
3/22/05	E1	5	1.2	0.12	0.00	0.12	0.00	0.00	0.00
3/22/05	C2	5	0.9	0.00	0.12	0.12	0.00	0.00	0.00
3/22/05	F1	8	1.0	0.22	0.00	0.22	0.00	0.00	0.00
3/22/05	B2	5	7.5	0.66	0.62	1.28	0.00	0.00	0.00
3/22/05	TB-1	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	D1	5	1.3	0.00	0.06	0.06	0.00	0.00	0.00
3/22/05	E4	25	6.4	0.81	0.75	1.56	0.01	0.01	0.02
3/22/05	E4-D	25	6.4	0.96	0.83	1.79	0.01	0.01	0.02
3/22/05	F4	5	4.4	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	F5	2	1.8	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	TB-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	C3	5	6.2	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	B3	5	20.1	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	A3	5	15.4	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	TB-3	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
3/22/05	PB-1	NA	NA	0.00	0,00	0.00	0.00	0.00	0.00
3/23/05	J4	5	13.3	1.70	0.66	2.36	0.00	0.00	0.01
3/23/05	J2	5	2.0	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	L2	5	1.9	0.14	0.00	0.14	0.00	0.00	0.00
3/23/05	K5	5	1.8	0.07	0.00	0.07	0.00	0.00	0.00
3/23/05	K4	5	1.7	0.06	0.06	0.12	0.00	0.00	0.00
3/23/05	K2	5	12.3	3.27	2.15	5.43	0.01	0.01	0.01
3/23/05	K3	5	4.5	6.59	0.13	6.72	0.02	0.00	0.02
3/23/05	K3-D	5	5	5.89	0.08	5.98	0.01	0.00	0.01

.

SAMPLE DATE	SAMPLE ID	FLOW (CFM)	PID READING	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA	LBS OF TCE	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY
3/23/05	TB-4	NA	0.9	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	M2	5	1.9	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	J3	5	15.5	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	G1	5	17.4	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	15	5	19.1	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	G2	25	21.1	0.14	0.25	0.39	0.00	0.00	0.00
3/23/05	13	5	9.8	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	H1	5	5.8	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	TB-5	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	J5	5	7.2	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	11	5	4.6	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	INF	512	9.6	0.54	0.46	1.00	0.14	0.12	0.25
3/23/05	MID	512	0.6	1.23	0.00	1.23	0.31	0.00	0.31
3/23/05	EFF	512	0.6	0.31	0.00	0.31	0.08	0.00	0.08
3/23/05	PB-2	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00
3/23/05	TB-6	NA	NA	0.00	0.00	0.00	0.00	0.00	0.00

Note: Flows of less than 5 CFM were recorded as 2.

h

1

TABLE 4 TARGET CONTAMINANT YIELD VESTAL AREA 4

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (Ibs/day)	TCE (Ibs/day)	TOTAL TARGET VOCs (Ibs/day)
6/23/2003	VS-SS-INFL-062303-0	INF	9.58	7.18	16.76
6/23/2003	VS-SS-INFL-062303-1	INF	6.37	4.85	11.22
	INFLUENT AVG PER DAY FO	R PERIOD	7.98	6.02	13.99
	TOTAL YIELD (lbs) FOR PER	0.56			
6/23/2003	VS-SS-/NFL-062303-1	INF	6.37	4.85	11.22
6/23/2003	VS-SS-INFL-062303-4	INF	5.23	5.42	10.66
	INFLUENT AVG PER DAY FO	DR PERIOD	5.80	5.14	10.94
	TOTAL YIELD (lbs) FOR PER	IOD (6/23-6/23	3)		1.42
6/23/2003	VS-SS-INFL-062303-4	INF	5.23	5.42	10.66
6/23/2003	VS-SS-INFL-062303-8	INF	4.10	4.33	8.43
	INFLUENT AVG PER DAY FO	DR PERIOD	4.67	4.88	9.55
	TOTAL YIELD (lbs) FOR PEF	RIOD (6/23-6/2	3)		1.62
6/23/2003	VS-SS-INFL-062303-8	INF	4.10	4.33	8.43
6/24/2003	VS-SS-INF-062403	INF	4.52	6.18	10.70
	INFLUENT AVG PER DAY FO	R PERIOD	4.31	5.26	9.57
	TOTAL YIELD (lbs) FOR PER	IOD (6/23-6/24	l)		11.19
6/24/2003	VS-SS-INF-062403		4.52	6.18	10.70
6/25/2003	VS-SS-INF-062503	INF	2.28	2.21	4.48
	INFLUENT AVG PER DAY FC	3.40	4.20	7.59	
	TOTAL YIELD (lbs) FOR PER	4.40			
6/25/2003	VS-SS-INF-062503	INF	2.28	2.21	4.48
6/27/2003	VS-SVE-INF-062703	INF	3.28	3.26	6.53
	INFLUENT AVG PER DAY FC	R PERIOD	2.78	2.74	5.51
	TOTAL YIELD (lbs) FOR PER	10.79			
6/27/2003	VS-SVE-INF-062703	INF	3.28	3.26	6.53
7/7/2003	VS-SVE-INF-070703-0001	INF	6.87	5.04	11.91
	INFLUENT AVG PER DAY FO	RPERIOD	5.08	4.15	9.22
	TOTAL YIELD (lbs) FOR PEF	92.57			
7/7/2003	VS-SVE-INF-070703-0001	INF	6.87	5.04	11.91
7/9/2003	VS-SVE-INF-070903-0006	INF	19.45	17.96	36.92
1	INFLUENT AVG PER DAY FC	24.42			
	TOTAL YIELD (lbs) FOR PER	47.85			
7/9/2003	VS-SVE-INF-070903-0006	INF	19.45	17.96	36.92
7/17/2003	VS-SVE-INF-071703-0011	INF	8.60	5.65	14.25
	INFLUENT AVG PER DAY FC	RPERIOD	14.03	11.81	25.59
	TOTAL YIELD (lbs) FOR PER	IOD (7/9-7/17)			114.11
SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (Ibs/day)	TOTAL TARGET VOCs (lbs/day)
----------------	---------------------------	----------------	--	------------------	--------------------------------
7/17/2003	VS-SVE-INF-071703-0011	INF	8.60	5.65	14.25
7/29/2003	VS-SVE-INF-072903-0016	INF	2.70	1.88	4.67
	INFLUENT AVG PER DAY FO	R PERIOD	5.65	3.77	9.46
	TOTAL YIELD (lbs) FOR PER	IOD (7/17-7/29	9)	:	<u> </u>
7/29/2003	VS-SVE-INF-072903-0016	INF	2.70	1.88	4.67
8/12/2003	VS-SVE-INF-081203-0026	INF	4.07	2.34	6.40
	INFLUENT AVG. PER DAY FO	OR PERIOD	3.39	2.11	5.54
	TOTAL YIELD (lbs) FOR PER	IOD (7/29-8/12	2)		_ 30.33
8/12/2003	VS-SVE-INF-081203-0026	INF	4.07	2.34	6.40
8/25/2003	VS-SVE-INF-082503-0031	INF	6.23	5.06	11.28
	INFLUENT AVG. PER DAY FO	DR PERIOD	5.15	3.70	8.84
	TOTAL YIELD (lbs) FOR PER	IOD (8/12-8/25	5)		90.08
8/25/2003	VS-SVE-INF-082503-0031	INF	6.23	5.06	11.28
9/3/2003	VS-SVE-INF-090303-0036	INF	8.45	4.01	12.46
	INFLUENT AVG. PER DAY FO	DR PERIOD	7.34	4.54	11.87
	TOTAL YIELD (lbs) FOR PER	IOD (8/25-9/3)	······································		103.74
9/3/2003	VS-SVE-INF-090303-0036	INF	8.45	4.01	12.46
9/8/2003	VS-SVE-INF-090803-0041	INF	4.23	2.46	6.70
4	INFLUENT AVG. PER DAY FO	OR PERIOD	6.34	3.24	9.58
	TOTAL YIELD (Ibs) FOR PER	IOD (9/3-9/8)			_38.51
9/8/2003	VS-SVE-INF-090803-0041	INF	4.23	2.46	6.70
9/24/2003	VS-SVE-INF-092403-0099	INF	2.74	1.30	4.04
	INFLUENT AVG. PER DAY FO	DR PERIOD	3.48	1.88	5.37
	TOTAL YIELD (lbs) FOR PER	IOD (9/8-9/24)			72.89
9/24/2003	VS-SVE-INF-092403-0099	INF	2.74	1.30	4.04
10/9/2003	VS-SVE-INF-100903-0109	INF	1.91	1.51	3.42
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.32	1.40	3.73
	TOTAL YIELD (lbs) FOR PER	IOD (9/24-10/9)		55.77
10/9/2003	VS-SVE-INF-100903-0109	INF	1.91	1.51	3.42
10/15/2003	VS-SVE-INF-101503-0114	INF	2.82	2.26	5.08
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.37	1.89	4.25
	TOTAL YIELD (lbs) FOR PER	IOD (10/9-10/1	15)		25.50
10/15/2003	VS-SVE-INF-101503-0114	INF	2.82	2.26	5.08
10/28/2003	VS-SVE-INF-102803-0119	INF	2.65	2.21	4.86
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.74	2.24	4.97
	TOTAL YIELD (Ibs) FOR PER	IOD (10/15-10	/28)		64.91

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (Ibs/day)	TOTAL TARGET VOCs (lbs/day)
10/28/2003	VS-SVE-INF-102803-0119	2.21	4.86		
11/11/2003	VS-SVE-INF-111103-0124	INF	0.99	1.46	2.45
	INFLUENT AVG. PER DAY FO	or Period	1.82	1.84	3.66
	TOTAL YIELD (Ibs) FOR PER	25.11			
11/11/2003	VS-SVE-INF-111103-0124	INF	0.99	1.46	2.45
11/19/2003	VS-SVE-INF-111903-0129	INF	1.27	1.39	2.65
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.13	1.43	2.55
	TOTAL YIELD (Ibs) FOR PER	IOD (11/11-11.	/19)		19.74
11/19/2003	VS-SVE-INF-111103-0124	INF	1.27	1.39	2.65
12/4/2003	VS-SVE-INF-111903-0129	INF	0.74	0.76	1.50
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.01	1.08	2.08
	TOTAL YIELD (lbs) FOR PER	IOD (11/19-12	/4)		32.56
12/4/2003	VS-SVE-INF-111903-0129	INF	0.74	0.76	1.50
1/14/2004	VS-SVE-INF-011404-0197	INF	0.69	0.90	1.59
	INFLUENT AVG. PER DAY FO	DR PERIOD	0.72	0.83	1.55
	TOTAL YIELD (lbs) FOR PER	IOD (12/4-1/14	!)		12.13
1/14/2004	VS-SVE-INF-011404-0197	INF	0.69	0.90	1.59
1/26/2004	VS-SVE-INF-012604-0202	INF	1.63	1.79	3.42
	INFLUENT AVG. PER DAY FO	DR PERIOD	1.16	1.35	2.51
	TOTAL YIELD (lbs) FOR PER	IOD (1/14-1/26	6)		24.17
1/26/2004	VS-SVE-INF-012604-0202	INF	1.63	1.79	3.42
2/9/2004	VS-SVE-INF-020904-0207	INF	3.09	3.10	6.20
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.36	2.45	4.81
	TOTAL YIELD (lbs) FOR PER	IOD (1/26-2/9)			55.27
2/9/2004	VS-SVE-INF-020904-0207	INF	3.09	3.10	6.20
2/24/2004	VS-SVE-INF-022404-0212	INF	3.72	2.91	6.63
	INFLUENT AVG. PER DAY FO	DR PERIOD	3.41	3.01	6.42
	TOTAL YIELD (Ibs) FOR PER	IOD (2/9-2/24)			95.58
2/24/2004	VS-SVE-INF-022404-0212	INF	3.72	2.91	6.63
3/10/2004	VS-SVE-INF-031004-0262	INF	2.23	2.54	4.78
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.98	2.73	5.71
	TOTAL YIELD (lbs) FOR PER	IOD (2/24-3/10))		45.58
3/10/2004	VS-SVE-INF-031004-0262	INF	2.23	2.54	4.78
4/5/2004	VS-SVE-INF-040504-0267	INF	2.51	2.56	5.07
	INFLUENT AVG. PER DAY FO	DR PERIOD	2.37	2.55	4.93
	TOTAL YIELD (lbs) FOR PER	IOD (3/10-4/5)			75.11

....

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (Ibs/day)	TCE (lbs/day)	TOTAL TARGET VOCs (lbs/day)
4/5/2004	VS-SVE-INF-040504-0267	INF	2.51	2.56	5.07
4/27/2004	VS-SVE-INF-042704-0272	INF	1.47	1.64	3.11
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.99	2.10	4.09
	TOTAL YIELD (lbs) FOR PER	IOD (4/5-4/27)			60.45
4/27/2004	VS-SVE-INF-042704-0272	INF	1.47	1.64	3.11
5/11/2004	VS-SVE-INF-051104-0277	INF	2.35	2.77	5.12
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.91	2.21	4.12
	TOTAL YIELD (lbs) FOR PER	IOD (4/27-5/11)		54.36
5/11/2004	VS-SVE-INF-051104-0277	INF	2.35	2.77	5.12
6/1/2004	VS-SVE-INF-060104-0282	INF	2.10	2.59	4.69
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.23	2.68	4.91
	TOTAL YIELD (lbs) FOR PER	IOD (5/11-6/1)			94.18
6/1/2004	VS-SVE-INF-060104-0282	INF	2.10	2.59	4.69
6/22/2004	VS-SVE-INF-062204-0332	INF	1.30	1.11	2.40
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.70	1.85	3.55
	TOTAL YIELD (lbs) FOR PER	IOD (6/1-6/22)			73.91
6/22/2004	VS-SVE-INF-062204-0332	INF	1.30	1.11	2.40
7/13/2004	VS-SVE-INF-071304-0337	INF	4.61	3.23	7.84
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.96	2.17	5.12
	TOTAL YIELD (lbs) FOR PER	IOD (6/22-7/13	3)		107.37
7/13/2004	VS-SVE-INF-071304-0337	INF	4.61	3.23	7.84
7/22/2004	VS-SVE-INF-072204-0342	INF	3.63	3.46	7.09
	INFLUENT AVG. PER DAY FO	OR PERIOD	4.12	3.35	7.47
	TOTAL YIELD (lbs) FOR PER	IOD (7/13-7/22	2)		46.95
7/22/2004	VS-SVE-INF-072204-0342	INF	3.63	3.46	7.09
8/16/2004	VS-SVE-INF-081604-0347	INF	0.54	0.63	1.17
	INFLUENT AVG. PER DAY FO	OR PERIOD	2.09	2.05	4.13
	TOTAL YIELD (lbs) FOR PER	IOD (7/22-8/16	s)		68.02
8/16/2004	VS-SVE-INF-081604-0347	INF	0.54	0.63	1.17
9/28/2004	VS-SVE-INF-092804-0423	INF	0.37	0.62	0.98
	INFLUENT AVG. PER DAY FO	OR PERIOD	0.46	0.63	1.08
	TOTAL YIELD (Ibs) FOR PER	IOD (8/16-9/28	3)		46.06
9/28/2004	VS-SVE-INF-092804-0423	INF	0.37	0.62	0.98
10/19/2004	VS-SVE-INF-101904-0428	INF	3.15	2.40	5.56
	INFLUENT AVG. PER DAY FO	OR PERIOD	1.76	1.51	3.27
	TOTAL YIELD (lbs) FOR PER	IOD (9/28-10/1	9)		68.67

SAMPLE DATE	SAMPLE NUMBER	WELL NUMBER	1,1,1 TCA (lbs/day)	TCE (Ibs/day)	TOTAL TARGET VOCs (lbs/day)
10/19/2004	VS-SVE-INF-101904-0428	INF	3.15	2.40	5.56
11/17/2004	VS-SVE-INF-111704-0433	INF	1.69	1.20	2.89
	INFLUENT AVG. PER DAY F	OR PERIOD	2.42	1.80	4.23
	TOTAL YIELD (lbs) FOR PER	RIOD (10/19-11)	/17)		122.53
11/17/2004	VS-SVE-INF-111704-0433	INF	1.69	1.20	2.89
12/21/2004	VS-SVE-INF-122104-0493	INF	0.07	0.12	0.19
	INFLUENT AVG. PER DAY F	OR PERIOD	0.88	0.66	1.54
	TOTAL YIELD (lbs) FOR PER	IOD (11/17-12	/21)		52.22
12/21/2004	VS-SVE-INF-122104-0493	INF	0.07	0.12	0.19
1/12/2005	VS-SVE-INF-011205-0498	INF	0.29	0.20	0.49
	INFLUENT AVG. PER DAY F	OR PERIOD	0.18	0.16	0.34
	TOTAL YIELD (lbs) FOR PER	NOD (12/21-1/1	2)		7.49
1/12/2005	VS-SVE-INF-011205-0498	INF	0.29	0.20	0.49
2/9/2005	VS-SVE-INF-020905-0503	INF	0.58	0.24	0.82
	INFLUENT AVG. PER DAY F	OR PERIOD	0.44	0.22	0.66
	TOTAL YIELD (lbs) FOR PER	liod (1/12-2/9)			18.29
2/9/2005	VS-SVE-INF-020905-0503	INF	0.58	0.24	0.82
3/23/2005	VS-SVE-INF-032305-0551	INF	0.14	0.12	0.25
	INFLUENT AVG. PER DAY F	OR PERIOD	0.36	0.18	0.54
	TOTAL YIELD (Ibs) FOR PER	IOD (2/9-3/23)	·		22.46
	TOTAL YIELD TO F	REPORTED D	ATE		2071.38

Note 1: Beginning and ending period influent yields are averaged and then multiplied by the number of operational days during the reporting period.

- Note 2: 1,1,1 TCA= 1,1,1-Trichloroethane TCE= Trichloroethene
- Note 3: INF= Influent

TABLE 5
TOTAL TARGET CONTAMINANT YIELD TO DATE
VESTAL AREA 4

SAMPLE DATE	1,1,1 TCA (lbs)	TCE (Ibs) TOTAL TARGET VC (Ibs)	
6/23/2003	0.00	0.00	0.00
6/23/2003	0.33	0.25	0.58
6/23/2003	1.06	0.89	1.95
6/23/2003	1.84	1.71	3.54
6/24/2003	6.87	7.83	14.70
6/25/2003	8.85	10.28	19.13
6/27/2003	14.28	15.63	29.92
7/7/2003	65.21	57.31	122.52
7/9/2003	90.98	79.35	170.33
7/17/2003	153.51	130.86	284.38
7/29/2003	199.85	161.45	361.30
8/12/2003	218.64	172.99	391.63
8/25/2003	271.09	210.67	481.76
9/3/2003	335.21	250.27	585.48
9/8/2003	360.71	263.28	623.99
9/24/2003	408.05	288.83	696.88
10/9/2003	442.85	309.83	752.68
10/15/2003	457.04	321.14	778.18
10/28/2003	492.69	350.33	843.02
11/11/2003	505.20	362.94	868.14
11/19/2003	513.95	373.96	887.91
12/4/2003	529.68	390.80	920.48
1/14/2004	535.30	397.32	932.62
1/26/2004	546.51	410.29	956.80
2/9/2004	573.66	438.42	1012.08
2/24/2004	624.45	483.19	1107.65
3/10/2004	648.24	504.97	1153.22
4/5/2004	684.38	543.87	1228.25
4/27/2004	713.77	574.92	1288.69
5/11/2004	739.02	604.07	1343.09
6/1/2004	781.81	655.48	1437.29
6/22/2004	817.27	693.97	1511.24
7/13/2004	879.24	739.47	1618.71
7/22/2004	905.17	760.52	1665.69
8/16/2004	939.55	794.17	1733.72
9/28/2004	959.14	820.79	1779.93
10/19/2004	996.13	852.47	1848.60
11/17/2004	1066.51	904.73	1971.24
12/21/2004	1096.44	927.00	2023.44
1/12/2005	1100.43	930.44	2030.87
2/9/2005	1112.63	936.50	2049.13
3/23/2005	1127.81	943.89	2071.71

NOTE 1:

1,1,1 TCA= 1,1,1-Trichloroethane TCE= Trichloroethene

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

QuarterlyRreport No. 7 Vestal Wells 1-1 Superfund Site Area 4

TABLE 6 SVE WELL PROPOSED CHANGES VESTAL AREA 4

	CURR	ENT STATUS	S	PROPOSED CHANGES			
SVE WELL #		INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW <u>CHANGES</u>	REASON	
INFLUENT			J				
MIDDLE	_	└───	┨				
EFFLUENI		ļ	┫━━━━━┤	L			
A1		X		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
A2		X		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
АЗ	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
B1	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
B2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
B3	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C1		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
C3	x			OPEN	None	Leave in the current configuration to	
D1	x			OPEN	None	Leave in the current configuration to	
 D2	<u>+</u>	x		OPEN	None	Leave in the current configuration to	
 D3		x	 	OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
 D4	x	F		WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
E1	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E2		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E3	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E4	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
E5	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	

TABLE 6SVE WELL PROPOSED CHANGESVESTAL AREA 4

		CURR	ENT STATUS	3		PROPOSED CHANGES			
	SVE WELL #	VAC WELL	INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW CHANGES	REASON		
	F1	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
_	F2		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	F3	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.		
-	F4	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	F5	x			LF	None	Leave in the current configuration to focus on the area in Cell 1.		
-	F6	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.		
	G1	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	G2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
-	H1	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	H2			x	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
-	11	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
_	12			x	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
	13	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
-	14			x	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
	15	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	J1			x	OFF	None	Leave in the current configuration to focus on the area in Cell 1.		
-	J2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	J3	X			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
-	J4	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		
	J5	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.		

TABLE 6SVE WELL PROPOSED CHANGESVESTAL AREA 4

		CURR	ENT STATUS	\$	PROPOSED CHANGES			
	SVE WELL #	VAC WELL	INJ WELL	OFF	FLOW STATUS	PROPOSED FLOW CHANGES	REASON	
	J6	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
	К1		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	К2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
-	кз	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	K4	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	K5	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
_	L1		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	12	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
-	L3		x		OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	L4	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
	M1			X	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
_	M2	x			OPEN	None	Leave in the current configuration to focus on the area in Cell 1.	
	M3	x			WATER	None	Leave in the current configuration to focus on the area in Cell 1.	
	M4			X	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
	N1			X	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
	N2			X	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	
-	N3			x	OFF	None	Leave in the current configuration to focus on the area in Cell 1.	

-

APPENDIX A Operation and Maintenance Data

(Including Daily O&M Records, Routine Maintenance and Inspection Forms, and Field Notes)

	VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG
	DATE: / 1/2/25 ARRIVAL TIME: 0900 FAULT LIGHTS ON (list): "NONE"
	REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): CARBON BED OU Sompling + STE CHECK.
	TASK PERFORMED: Fuen Of Somples From Lafflient MiD - CARBON, AND EFFLUENT: CHECKED OUT THE STE READINGS OF MANIFALDS IN THE CALLS: TOOK READINGS AT THE BLOWERS AND CALLOW BEDS:
-	MAIN EQUIPMENT BUILDING
	MAIN CONTROL PANEL CONTROL BOX LOCKED CONTROL DOOR LOCKED HOUR METER: SVE UNIT 11032.5428.
-	SVE PUMPING UNIT
	INJECTION BLOWER TEMP: <u>130°</u> F INJECTION BLOWER TEMP SETTING: <u>230°</u> F PRESSURE AFTER INJECTION BLOWER <u>8</u> "#25"//6
-	VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: 5 "H20'H6
-	GREASE SEALS CHECKED: \int DATE OF LAST GREASE: $1 \frac{1}{2} - 14 \frac{1}{2} \frac{4}{3}$
-	OIL LEVEL CHECKED: DATE OF LAST OIL CHANGE: $13 - 14 - 54$
-	BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

DATE; 11/21 05

PAGE 2

CARBON BED SYSTEM

CHECK ALL ABOVE-GROUND PIPIING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1

PRESSURE BETWEEN GAC UNIT 1 AND 2

PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2

i20

10_"H20

WATER STORAGE UNIT

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> VOLUME OF WATER IN STORAGE TANK: ______ GALLONS WATER IN CONTAINMENT VESSEL: YES _____ NO ____ AMOUNT: _____ INCHES

PAGE 3

.

CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
VACUUM STATUS LIGHT: ON OFF
CONTROL BOX LOCKED
ELECTRICAL HEAT BREAKER: ON OFF
ELECTRICAL HEATER THERMOSTAT SETTING: <u>JS</u> F
PRESSURE AT INJECTION MANIFOLD: 76 "H2O
TEMP AT INJECTION MANIFOLD: 48° F
VACUUM AT VACUUM MANIFOLD: 55 "H20
TEMP AT VACUUM MANIFOLD: <u>53</u> [°] F
WATER PUMP PRESSURE RELIEF SETTING:Psi

PAGE 4

CELL 2 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
VACUUM STATUS LIGHT: ON OFF
CONTROL BOX LOCKED
ELECTRICAL HEAT BREAKER: ON OFF
ELECTRICAL HEATER THERMOSTAT SETTING: 55 F
PRESSURE AT INJECTION MANIFOLD: 28" "H2O
TEMP AT INJECTION MANIFOLD: 50 F
VACUUM AT VACUUM MANIFOLD: <u>62"</u> "H2O
TEMP AT VACUUM MANIFOLD: 56 F
WATER PUMP PRESSURE RELIEF SETTING:

-

		GENER	AL OIL UBO	ENVATIONS	PA	NGE (
CHEC	AND NOTE	CONDITION O	F SITE:	LOOKS 60	2007	
FIELD	ACTIVITY CH	<u>ECKLIST</u>				
	SVE WELLHE SVE WELLS CARBON CHA WATER REMO EXTERIOR OI INSPECT MAI	AD AIR FLOWS I SAMPLED: Y ANGEOUT PERFO OVAL PERFORM F MAIN AND CEL	Measured:NO /EsNO DRMED: Ed: L Buildings In: Telephone Lin	_YESNO SPECTED:		
SUMMEI	RY OF PROCES	SAIR SAMPLING	D Conson	06 Samples	Fran Is	Ā
				2 '		
SUMMAI	RY OF OTHER A	CTIVITIES: <u>7</u>	a pu k	epoings 74	up EASTURE	Y_
2000	TRESSU,					
COMME	NTS:					
COMME	NTS:					
COMME	NTS:					
COMME	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			
SIGNAT	NTS:	TIONS TECHNIC	IAN(S):			

۰.	
	VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG
DATE	219105 ARRIVAL TIME: 0900 FAULT LIGHTS ON (list): "NONE
REAS OTHE	ON FOR VISIT: MONTHLY QUARTERLY OTHER R (define): CARADO BEO OG SAMPLING (MITISLY)
TASK A-NI	PERFORMED: JULIED OF SAMPLES FROM TARGET, MID GRBAN
	MAIN EQUIPMENT BUILDING
MAIN HOUR SVE P	CONTROL PANEL CONTROL BOX LOCKED CONTROL DOOR LOCKED
	INJECTION BLOWER TEMP: <u>160°</u> F INJECTION BLOWER TEMP SETTING: <u>230</u> F PRESSURE AFTER INJECTION BLOWER <u>8</u> "
	VACUUM BLOWER TEMP: <u>160°</u> F VACUUM BLOWER TEMP SETTING: <u>220</u> F VACUUMAFTER FILTER <u>5 "H20</u> H6 PRESSURE AFTER VACUUM BLOWER: <u>6 "H20</u> H6
	GREASE SEALS CHECKED: DATE OF LAST GREASE: 1-12-05
	OIL LEVEL CHECKED: DATE OF LAST OIL CHANGE: 12-14-04
	BELTS CHECKED FOR WEAR: BELT GUARD IN PLACE:

DATE; 219105

PAGE 2

CARBON BED SYSTEM

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1

"H2O

PRESSURE BETWEEN GAC UNIT 1 AND 2

PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2

// "H20

WATER STORAGE UNIT

CHECK ALL ABOVE-GROUND PIP[ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> VOLUME OF WATER IN STORAGE TANK: ______ GALLONS WATER IN CONTAINMENT VESSEL: YES _____ NO____ AMOUNT: _____ INCHES

PAGE 3

CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
CONTROL BOX LOCKED
ELECTRICAL HEATER THERMOSTAT SETTING: 55 F
PRESSURE AT INJECTION MANIFOLD: 76 "H2O
TEMP AT INJECTION MANIFOLD: 49° F
VACUUM AT VACUUM MANIFOLD: 54_"H20
TEMP AT VACUUM MANIFOLD: 520 F
VACUUM AT KNOCKOUT TANK: <u>JA</u> "Hg
WATER PUMP PRESSURE RELIEF SETTING:Psi

	PAGE 4
<u>Cel</u> Chec Or Li	L 2 DISTRIBUTION CENTER CK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CI EAKS AND ADIQUCY OF SEALS.
	CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
	SELECTOR SWITCH: MANUAL OFF AUTO
	VACUUM STATUS LIGHT: ON OFF
	CONTROL BOX LOCKED
	ELECTRICAL HEAT BREAKER: ON OFF
	ELECTRICAL HEATER THERMOSTAT SETTING:
	PRESSURE AT INJECTION MANIFOLD: <u>25</u> " "H2O
	TEMP AT INJECTION MANIFOLD: <u>51</u> ² F
	VACUUM AT VACUUM MANIFOLD: 60_"H2O
	TEMP AT VACUUM MANIFOLD: <u>56</u> F
	VACUUM AT KNOCKOUT TANK: N/A "Hg

GENERAL SITE OBSERVATIONS PAGE 5 STA LOOKS GODD. CHECK AND NOTE CONDITION OF SITE: FIELD ACTIVITY CHECKLIST SVE WELLHEAD AIR FLOWS MEASURED: YES NO SVE WELLS SAMPLED: YES NO CARBON CHANGEOUT PERFORMED: WATER REMOVAL PERFORMED: EXTERIOR OF MAIN AND CELL BUILDINGS INSPECTED: INSPECT MAIN POWER AND TELEPHONE LINE: singles FRON SUMMERY OF PROCESS AIR SAMPLING: PLUED DE INFLIENT, MID-GARBON AND EFFLU SUMMARY OF OTHER ACTIVITIES: ADjusted Tuicketion AND VACUUM OUT THE CEUS. CHANGED JONE HOSES AND CLEANED SPILLE eu #2 MELERA IN COMMENTS: D. Coursen + J. Kotus on Site ELENSON SORKING Wi Isking Cope Austas NEED THE BUCKLOW BADRO SIGNATURE OF OPERATIONS TECHNICIAN(S):

VESTAL AREA 4 SITE INSPECTION AND OPERATION/MAINTANCE LOG 23/05 DATE: 3 122105 ARRIVAL TIME: 1230 FAULT LIGHTS ON (list): "JOHE" REASON FOR VISIT: MONTHLY QUARTERLY OTHER OTHER (define): OTALy. OG SAMPLING EVENT. TASK PERFORMED: Palles OC AMPLES FROM DESIGNATED WEL IN FROM 1. TOOK A FULL ROUND OF FLOWS. VAC. CHANGED OIL IN BLOWEN MOTORS 2608. go/100 MAIN EQUIPMENT BUILDING CONTROL DOOR LOCKED CONTROL BOX LOCKED MAIN CONTROL PANEL HOUR METER: SVE UNIT 12687.2 408. 12710.4+128. 3/23 SVE PUMPING UNIT 3/23 INJECTION BLOWER TEMP: 175 **INJECTION BLOWER TEMP SETTING:** PRESSURE AFTER INJECTION BLOWER 170 VACUUM BLOWER TEMP: VACUUM BLOWER TEMP SETTING: VACUUMAFTER FILTER PRESSURE AFTER VACUUM BLOWER: GREASE SEALS CHECKED: DATE OF LAST GREASE: 3-17-105 DATE OF LAST OIL CHANGE: 3-22-65 BELT GUARD IN PLACE: V BELTS CHECKED FOR WEAR:

DATE: 302105

PAGE 2

CARBON BED SYSTEM

CHECK ALL ABOVE-GROUND PIP(ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> PRESSURE BEFORE GAC UNIT 1 TEMPERATURE BEFORE GAC 1

PRESSURE BETWEEN GAC UNIT 1 AND 2

H20

PRESSURE AFTER GAC UNIT 2 TEMPERATURE AFTER GAC 2

"H2O

WATER STORAGE UNIT

CHECK ALL ABOVE-GROUND PIP(ING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS; CHECK CARBON BEDS CONNECTIONS AND ASSOCIATED INSTRUMENTATION.

> VOLUME OF WATER IN STORAGE TANK: _____ GALLONS WATER IN CONTAINMENT VESSEL: YES ____ NO___ AMOUNT: ____ INCHES

PAGE 3

CELL 1 DISTRIBUTION CENTER

CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS.

CONTROL BOX DISCONNECT ON: 240-VOLT DISCONNECT ON
SELECTOR SWITCH: MANUAL OFF AUTO
VACUUM STATUS LIGHT: ON OFF
CONTROL BOX LOCKED
ELECTRICAL HEAT BREAKER: ON OFF
ELECTRICAL HEATER THERMOSTAT SETTING:
PRESSURE AT INJECTION MANIFOLD: 82 "H2O
TEMP AT INJECTION MANIFOLD: 46 F
VACUUM AT VACUUM MANIFOLD: 76 "H20
TEMP AT VACUUM MANIFOLD:F
VACUUM AT KNOCKOUT TANK:A""Hg
WATER PUMP PRESSURE RELIEF SETTING: N/A psi

PAGE 4 **CELL 2 DISTRIBUTION CENTER** CHECK ALL ABOVE-GROUND PIPING, VALVES, FITTINGS AND OTHER COMPONETS FOR CRACKS OR LEAKS AND ADIQUCY OF SEALS. CONTROL BOX DISCONNECT ON: ____ 240-VOLT DISCONNECT ON ____ MANUAL ____ OFF ____ AUTO ____ SELECTOR SWITCH: VACUUM STATUS LIGHT: ON // OFF CONTROL BOX LOCKED ELECTRICAL HEAT BREAKER: ON _ OFF ELECTRICAL HEATER THERMOSTAT SETTING: PRESSURE AT INJECTION MANIFOLD: 85 "H20 TEMP AT INJECTION MANIFOLD: 52 F VACUUM AT VACUUM MANIFOLD: 85"H20 TEMP AT VACUUM MANIFOLD: 58°F VACUUM AT KNOCKOUT TANK: 1/19 "Hg WATER PUMP PRESSURE RELIEF SETTING: MAY psi

	GENERAL SITE OBS	SERVATIONS	PA
CHECK AND NO	OTE CONDITION OF SITE:	STE LOURS GOOP	
FIELD ACTIVIT	Y CHECKLIST		
SVE WI SVE WI CARBO WATER EXTERI INSPEC	ELLHEAD AIR FLOWS MEASURED: ELLS SAMPLED: YES NO N CHANGEOUT PERFORMED: REMOVAL PERFORMED: OR OF MAIN AND CELL BUILDINGS IN T MAIN POWER AND TELEPHONE LIN	YESNO	
SUMMERY OF PR	OCESS AIR SAMPLING: Fune	0 06 Samples	FAON VA
SUMMARY OF OT	HER ACTIVITIES: <u>FOOR</u> A FU	in ROUND OF FLO	as / Jac
SUMMARY OF OT	HER ACTIVITIES: <u>TOOK A</u> Fu	CU ROUND OF FLO	is lac
SUMMARY OF OT	HER ACTIVITIES:OOF A FO	M.P. McYner	5
SUMMARY OF OT	HER ACTIVITIES: <u>FOOR A FO</u>	M.P. McYner	
SUMMARY OF OT	HER ACTIVITIES: A Fo	M.P. Mcguero	
SUMMARY OF OT	HER ACTIVITIES:A FO	M.P. McYner	
SUMMARY OF OT	HER ACTIVITIES:A FO	M.P. McYngo	

- -
- -

APPENDIX B Sampling and Analytical Data — Process Air Data

(Including QC Data, Laboratory Data Summary Sheets, Chain of Custody Forms, Field Sample Log Book Notes)

QA/QC Report for Vestal Samples (Sample Date: 1/12/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report					
Sample ID: VS-SVE-INF-011205-0498					
Sample Date	Analytes	Data1	Data2	RPD (%)	RPD Acceptable?
1/12/05	TCE	1.073	1.037	3.4	YES
1/12/05	1,1,1-TCA	1.573	1.589	1.0	YES

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

AT

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

QA/QC Report for Vestal Samples (Sample Date: 2/9/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report						
Sample ID: VS-SVE-MID-020905-0504						
Sample Date	Analytes	Data1	Data2	RPD (%)	RPD Acceptable?	
2/9/05	1,1,1-TCA	1.242	1.06	15.8	YES	

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

UME

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

QA/QC Report for Vestal Samples (Sample Date: 3/22/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report					
Sample ID: VS-SVE-B2-032205-0511					
Sample Date	Analytes	Data1	Data2	RPD (%)	RPD Acceptable?
3/22/05	TCE	0.915	0.845	8.0	YES
3/22/05	1,1,1-TCA	0.943	0.917	2.8	YES

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixîn Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

QA/QC Report for Vestal Samples (Sample Date: 3/23/05)

1. Sample Receipt

The samples arrived at the lab were carefully packed in coolers. All of the sample bags in the coolers arrived intact and the labels on the bags were found to be complete. The information on the sample labels agreed with the information on the chain-of-custody forms placed inside the shipping coolers.

2. Sample Holding Times

The required holding times were met according to the lab SOP.

3. Instrument Blank Analysis

The instrument blank analysis indicated the instruments did not contain any target compounds.

4. Lab Duplicate Analysis

Vestal Duplicate Sample RPD Report						
Sample ID: VS-SVE-E5-120704-0458						
Sample Date	Analytes	Data1	Data2	RPD (%)	RPD Acceptable?	
3/23/05	TCE	0.907	0.997	9.5	YES	
3/23/05	1,1,1-TCA	2.359	2.348	0.5	YES	

5. GC Calibrations

The instruments performed target compound standards calibration check each analysis day, or re-run the standards. The results met the requirement in the lab SOP.

6. Lab Authentication Statement

I certify, to the best of my knowledge, that the information in this QA/QC report is true, accurate and complete.

Yixin Li Chemist Shaw E & I 14155 Farmington Rd. Livonia, MI 48154

SAMPLE DATE	SAMPLE ID	1,1,1-TCA (ppm)	TCE (ppm)	Detection Limits (ppm)		
12-Jan-05	INSTRUMENT BLANK	0.00	0.00	0.05		
12-Jan-05	VS-SVE-TB-011205-0502	0.00	0.00	0.05		
09-Feb-05	INSTRUMENT BLANK	0.00	0.00	0.05		
09-Feb-05	VS-SVE-TB-020905-0507	0.00	0.00	0.05		
22-Mar-05	INSTRUMENT BLANK	0.00	0.00	0.05		
22-Mar-05	VS-SVE-TB-1-032205-0513	0.00	0.00	0.05		
22-Mar-05	VS-SVE-TB-2-032205-0521	0.00	0.00	0.05		
22-Mar-05	VS-SVE-TB-3-032205-0528	0.00	0.00	0.05		
23-Mar-05	INSTRUMENT BLANK	0.00	0.00	0.05		
23-Mar-05	VS-SVE-TB-4-032305-0538	0.00	0.00	0.05		
23-Mar-05	VS-SVE-TB-5-032305-0547	0.00	0.00	0.05		
23-Mar-05	VS-SVE-TB-6-032305-0555	0.00	0.00	0.05		

Vestal Sample Instrument and Trip Blank Results

Notes: 0.00 indicates below detection limit.

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 1/13/2005 Detection Limit: See below Analyst: YL Client Code: 681086 Sample Date: 1/12/05 Units: ppmv Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-011205-0498	1.13	0.79	0.05
VS-SVE-MID-011205-0499	0.15	0.00	0.05
VS-SVE-EFF-011205-0500	0.00	0.00	0.05
VS-SVE-SP-011205-0501	0.00	0.00	0.05
VS-SVE-TB-011205-0502	0.00	0.00	0.05

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Page 1 of 1

Hour Meter:	11032-5	448		Client: Sevenson / (ISAE Client	Code: #681086
Flow Meter- Type : Range (cfm):				Site Address: 210 STAGE RD, VESTAL NY		
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:	. Court	man
Injection blower -		Pressure:		System Status :	"DPER	ATING"
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide	Analysis Requested	Notes
VS-SVE-0498	1-12-105	1037		10.9 ppm	To14, A	THELUGAT
S-SUE-0499)	1051		O19 ppm		MiD Carbon
15-5VE-0500	/	1110		O.6ppm		EFFLUENT
55VE-0501		Pump BLANK		O.3 AMB		PUMP BLANK
155VE-0502		Thip BLANK	· ·	03	*	TRIP BLANK
		1				
		······································	х. 			
· · · · · · · · · · · · · · · · · · ·		·				· · · · · · · · · · · · · · · · · · ·
	·					
						· · · · · · · · · · · · · · · · · · ·
Collected By:	LASUEDO /	MEGuire	Date: 1-12-25	Time: <u>/000</u>	Envirogen	, Inc.
Delivered By:			Date:	Time: 1	New Solutions to Hazar	rdous Waste Problems
Received By: _	NA		Date: 1/13/05	Time: 10 10	5126 West Grand River	r, Lansing, Michigan. 48906
					00 m. H. (F17) 006 F700	

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 2/10/2005 Detection Limit: See below Analyst: YL Client Code: 681086 Sample Date: 2/9/2005 Units: ppmv Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-INF-020905-0503	2.29	0.94	0.05
VS-SVE-MID-020905-0504	0.89	0.00	0.05
VS-SVE-EFF-020905-0505	0.00	0.00	0.05
VS-SVE-SP-020905-0506	0.00	0.00	0.05
VS-SVE-TB-020905-0507	0.00	0.00	0.05

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
 [2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
 [3] DL = Detection Limit.

Page 1 of 1

Hour Meter: 11702-842				Client: Sevenson /45ACE Client Code: #60/086		
Flow Meter- Type :]	Range (cfm):		Site Address: 210	SASE RD. VE	STRE, NY
Withdrawl blower -	Vacuum :	Pressure:		Project Manager:	D. CALLAND	w
Injection blower - V	acuum:	Pressure:		System Status :	" OPENATIN	`С <u>"</u>
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide PSD (ppm) PSD	Analysis Requested	Notes
KSSVE -0503	2-9-05	1010		12.3 ppm	1014,A	INFLICENT
USSVE-050A		1005		1.9 ppm	\ .	mi)-GARGON
NS-SVE-0505	_(1050		11.3ppm	/	EFFLUENT
125-51E-9506		0920		1. Oppor		Pump BLANK
15-54E-0507		TRIP BLANK		pre 1.0 ppre	- 4	Trep Blank
	- .					
			·			
Collected By:	suedo /4	Guitte	Date: 2-9-65	Time: 1900	Envirogen	, Inc.
Delivered By:			Date:	Time:	New Solutions to Hazar	dous Waste Problems
Received By:	m_		Date: 2/10/05	Time: 9245	5126 West Grand River	, Lansing, Michigan. 48906
Remarks:			·	Phone # : (517) 886-5600 Fax #: (517) 886-5700		

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

,

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 3/23/2005 Detection Limit: See below Analyst: YL Client Code: 681086 Sample Date: 3/22/2005 Units: ppmv Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-E1-032205-0508	0.12	0.00	0.05
VS-SVE-C2-032205-0509	0.00	0.12	0.05
VS-SVE-F1-032205-0510	0.22	0.00	0.05
VS-SVE-B2-032205-0511	0.66	0.62	0.05
VS-SVE-TB-1-032205-0513	0.00	0.00	0.05
VS-SVE-D1-032205-0514	0.00	0.06	0.05
VS-SVE-E4-032205-0516	0.81	0.75	0.05
VS-SVE-E4-D-032205-0517	0.96	0.83	0.05
VS-SVE-F4-032205-0518	0.00	0.00	0.05
VS-SVE-F5-032205-0519	0.00	0.00	0.05
VS-SVE-TB-2-032205-0521	0.00	0.00	0.05
VS-SVE-C3-032205-0522	0.00	0.00	0.05
VS-SVE-B3-032205-0523	0.00	0.00	0.05
VS-SVE-A3-032205-0524	0.00	0.00	0.05
VS-SVE-TB-3-032205-0528	0.00	0.00	0.05
VS-SVE-PB-1-032205-0529	0.00	0.00	0.05

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
[2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
[3] DL = Detection Limit.

Page 1 of 1

Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 3/24/2005 Detection Limit: See below Analyst: YL Client Code: 681086 Sample Date: 3/23/05 Units: ppmv Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	ТСЕ	DL
VS-SVE-J4-032305-0530	1.70	0.66	0.05
VS-SVE-J2-032305-0531	0.00	0.00	0.05
VS-SVE-L2-032305-0532	0.14	0.00	0.05
VS-SVE-K5-032305-0533	0.07	0.00	0.05
VS-SVE-K4-032305-0534	0.06	0.06	0.05
VS-SVE-K2-032305-0535	3.27	2.15	0.05
VS-SVE-K3-032305-0536	6.59	0.13	0.05
VS-SVE-K3-D-032305-0537	5.89	0.08	0.05
VS-SVE-TB-4-032305-0538	0.00	0.00	0.05
VS-SVE-M2-032305-0539	0.00	0.00	0.05
VS-SVE-J3-032305-0541	0.00	0.00	0.05
VS-SVE-G1-032305-0542	0.00	0.00	0.05
VS-SVE-I5-032305-0543	0.00	0.00	0.05
VS-SVE-G2-032305-0544	0.14	0.25	0.05
VS-SVE-I3-032305-0545	0.00	0.00	0.05
VS-SVE-H1-032305-0546	0.00	0.00	0.05
VS-SVE-TB-5-032305-0547	0.00	0.00	0.05
VS-SVE-J5-032305-0548	0.00	0.00	0.05
VS-SVE-I1-032305-0549	0.00	0.00	0.05
VS-SVE-INF-032305-0551	0.54	0.46	0.05
VS-SVE-MID-032305-0552	1.23	0.00	0.05
VS-SVE-EFF-032305-0553	0.31	0.00	0.05

Page 1 of 2
Shaw E & I Lab Analytical Results

Client: Sevenson/USACE Analysis Date: 3/24/2005 Detection Limit: See below Analyst: YL Client Code: 681086 Sample Date: 3/23/05 Units: ppmv Project Manager: D. Callahan

SAMPLE ID	1,1,1-TCA	TCE	DL
VS-SVE-PB-2-032305-0554	0.00	0.00	0.05
VS-SVE-TB-6-032305-0555	0.00	0.00	0.05

Notes:

[1] TVOC: estimated value. TVOC was calculated by the average response factor of the known contaminants.
[2] 0.00 indicates BELOW DETECTION LIMIT. (For TVOC, the Detection Limit is 1.0 ppmv.)
[3] DL = Detection Limit.

Page 2 of 2

Coolan # 1 105-TRACKING # 2 614 567 32 1000 2	307 CI	HAIN - OI	F - CUSTO	DY for AIR S	SAMPLES	
Hour Meter:	12687.J	uns?	_	Client: SeventSon	USACE Client	t Code: #69/086
Flow Meter- Type	:R	ange (cfm):		Site Address: 210.	SASER. VE	STOL NY
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:	D. Callaum	J
Injection blower -	Vacuum:	Pressure:		System Status :	DPERATING	
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide Red (ppm) Profi	Analysis Requested	Notes
1 VS-51E-0508	3-22-05	1015	-5 =	- 1.2 popul	TOA.A	WEAK E-1 # NEW
2 1/5-51/8-0509		1021	-5	- 0.900m	Y	6-2
3 15515-0570		1027	8	E 1.0 open		F-1 # NEW
4 VS-SVE-0511		1032	-5	- 7.5 AA	e /	B-2
5 US-5/1E-0512		N/5 +20	0/5 420	and they		N/S D-4 420
SUSSJED513					1	-TB#1
7						
8						
9						
10						
11						
12						
Collected By	ABURROO/M	= Guine	Date: 3-22-05	Time: 0900	Envirogen	n, Inc.
Delivered By:	r		Date:	Time:	New Solutions to Haza	rdous Waste Problems
Received By:	R		Date: 3/23/05	Time: 9:30	5126 West Grand Rive	r, Lansing, Michigan. 48906
Remarks:					Phone # : (517) 886-56	500 Fax #: (517) 886-5700
	* ; * _ * / _ ;					

į i

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

. **.**

l

Flow Meter- Type :		Range (cfm):						
Withdrawl blower -	Vacuum :	Pressure:		Project Manager:	D. Coupits	4N		
Injection blower - V	acuum:	Pressure:		System Status :	"OPERATI	vc''		
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide FED (ppm) FED	Analysis Requested	Notes		
1 U.S-SVE-0514 _	3-22-05	1041	-5	1.3 com	TO14, A	D-1		
2 VS-JUE-0515	1	NIS 100	20	3.2 ppm	- \	WESK E-3 plus		
15-5UE-0516		1048	25%	6.4 pom	_)	E-4		
* USS/E-0517		1050		6.4ppm	- /	E-4-D		
5 US-SIE-0518		1056	-5	4.4 optie	-	F-4		
6 KSJ/E-0519	T	,1103	NR	1.8000		LEAN F-5		
1551E.0570		N/5(#20)	-5	NICTO		WEAK F-6 NS		
15516-0571						-B#J		
9								
0								
1								
2						· · ·		
Collected By:	ASURDO / N	1-Guint	Date: 3-22-45	Time: 0900	Enviroger	n, Inc.		
Delivered By:			Date:	Time:	New Solutions to Haza	ardous Waste Problems		
				•				

B

B

 ~ 2

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

Hour Meter:	12687-	2 428 '	-	Client: Sevensor/	USACE Client	Code: <u>*68/08</u> 6
Flow Meter- Type :	: R	ange (cfm):		Site Address:	STACE AD.,	VESTEL, NY
Withdrawl blower	- Vacuum :	Pressure:	·	Project Manager:	D. Cours	Istal
Injection blower -	Vacuum:	Pressure:		System Status :	" OPERATING	5
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide Pal (ppm) Pal)	Analysis Requested	Notes
US=51E-3522	3-22-05	1155	-5		1014.A	C-3
15516-0523		1201	-5_		<u> </u>	B-3
SS/E-0524		1207	-5			A-3
US-5/E-0525		NROMED	Disc.			B-1 1
USS/E-0,516		NIR 420	13			E-5 N/
VS=51E-0527		NRHITE	13			F-3 N/4
VS SVE-0578		/				TB#3
VS-51/E-0529	4					Sampletum
Collected By:	(284200 / a	GuRE	Date: <u>3-77-85</u>	Time: 0900	Envirogen	, Inc.
Delivered By:			Date:	Time:	New Solutions to Hazar	dous Waste Problems

.

.

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

our Meter:	12710.4	411 <u>8</u> `		Client: EVENSON	USACE Client	Code:661086
ow Meter- Type :	R	ange (cfm):	·	Site Address: 2/0	STAGE B	VESTAL, NY
Vithdrawl blower -	Vacuum :	Pressure:		Project Manager:	D. Cour	44MN
njection blower - V	acuum:	Pressure:		System Status :	"OPEAR	TING "
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide fr) (ppm) fr)	Analysis Requested	Notes
S-JUE- 0530	3-23-65	1010	-5	13.3 ppm	To14, A	J-4
5-546-0531		10/4	-5	2.0		J-2
5-5VE-0532		1019	-5	1.9		1-2
5-516-0533		1025	-5	1.8		K-5
5-5/E-0534		1029	-5	1.7		K-4
551E-0535		1041	-5	12.3		K-3
551E-0536		1045	-5	4.52		K-3
5-51/8-0537		1047		4.55		K-3-D
55VE-0538	\downarrow			0.9 Amb.	4	-1B#4
Collected By:	113-1200 / OM	GURE	Date: <u>3-13-05</u>	Time:	Envirogen	, Inc.
Delivered By:			_ Date:	Time:	New Solutions to Hazar	rdous Waste Problems
- · · ·	NA /		nu 3/24/05	Time: (2) 30	5126 West Grand Dive	Lansing Michigan 48006

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

i

Hour Meter:	12710.4	HES '		Client: Starten Son	14.SACE Clien	t Code: #681086
Flow Meter- Type :	: R	ange (cfm):		Site Address: 210	STAGE R	VESTEC, NY
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:	D. Coup	WAL
Injection blower -	Vacuum:	Pressure:		System Status :	OPERA	TING
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide ffD (ppm) ff)	Analysis Requested	Notes
V55VE-0539	3-23-05	1055	-5	1.900m	-TO14, A	4-2
VS516-0540		N/R-HZO	-5	N/R - H20		J-6 N/2 #2
15-50E-0541		1101	-5			J-3
15-51E-0592		1108	-5			G-1
USSUE-0543		1113	-5		(I-5
US-516-0544		1/20	0/5			6-2
15-21E-0545		1125	-5			I-3
US=SVE-0546		1136	-5	~		H-1
USSVE-05917	+			•		TB=5
Collected By: Col	ASTERDO / N	5-GUINE	Date: <u>3-23-'05</u>	Time: 0930	Enviroger	<i>i</i> , <i>Inc</i> .
Delivered By:			Date:	Time:	New Solutions to Haz	ardous Waste Problems
	de 1		Day 3/W/DS	-Time: 9:30	5126 West Grand Riv	er Lansing Michigan 48006

B

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

ł

Hour Meter:	12710.	4 mg .	_	Client: Siten GN	145ACE Client	Code: #681086
Flow Meter- Type :	R	ange (cfm):		Site Address:	STAGE B	VESTAC NY
Withdrawl blower	- Vacuum :	Pressure:		Project Manager:	D. Court	AN
Injection blower -	Vacuum:	Pressure:	·	System Status :	OP ÉR	ATING
Sample ID.	Date	Time	Indicated Flow (cfm)	Carbon Dioxide	Analysis Requested	Notes
155/E-0548	3-23-05	1150	-5		1014,A	J:5
USS/E-0599		/156	-5)´	I-1 ,
V55/E-0550		N/SH20	-5			M-3 N/S H.
1551/E-0551		1210				INFLIGNT
115.5/E-0552		1218_				MID-GARBON
USS/E-0553		1229				EFFLYENT
USSUE assa						Some E PUNIP
US-SUE-0555	4				-	TRIP BLANK #6
		•				
	,					
Collected By:	ASUPPO /M	Eburke_	Date: 3-23-05	Time: 0930	Envirogen	, Inc.
Delivered By:			_ Date:	Time:	New Solutions to Hazar	rdous Waste Problems
	An -		3/ut/a-	9.20		

. . .

White copy = Laboratory Yellow copy = Technical Analyst Pink copy = Operation Technicians

APPENDIX C Summary of Operation Data/Contaminant Yield Calculation

Sevenson Environmental Services, Inc. DACW41-01-D-0001-0006

QuarterlyRreport No. 7 Vestal Wells 1-1 Superfund Site Area 4

Appendix C Summary of Operation Data Vestal, Area 4

SAMPLE DATE	SAMPLE ID	REPORT SAMPLE ID	FLOW (CFM)	1,1,1-TCA (ppmv)	TCE (ppmv)	TOTAL TARGETED CONTAMINANTS (ppmv)	LBS OF 1,1,1-TCA per day	LBS OF TCE per day	LBS OF TOTAL TARGETED CONTAMINANTS PER DAY	OPERATION DAYS	STATION HOUR METER	NUMBER OF DAYS IN PERIOD
6/27/03	INF	VS-SVE-INF-062703	517	12.70	12.83	25.53	3.28	3.26	6.53	4.04	97.0	1.96
7/7/2003	INF	VS-SVE-INF-070703-0001	517	26.62	19.87	46.49	6.87	5.04	11.91	14.08	338	10.04
7/9/2003	INF	VS-SVE-INF-070903-0006	517	75.42	68.79	144.21	19.45	17.46	36.92	16.04	385	1.96
7/17/2003	INF	VS-SVE-INF-071703-0011	517	33.34	22.24	55.58	8.60	5.65	14.25	20.50	492	4.46
7/29/2003	INF	VS-SVE-INF-072903-0016	517	10.83	7.39	18.22	2.79	1.88	4.67	28.63	687.2	8.13
8/12/2003	INF	VS-SVE-INF-081203-0026	517	15.77	9.20	24.97	4.07	2.34	6.40	34.11	818.7	5.48
8/25/2003	INF	VS-SVE-INF-082503-0031	512	24.37	20.12	44.49	6.23	5.06	11.28	44.30	1063.3	10.19
9/3/2003	INF	VS-SVE-INF-090303-0036	512	33.08	15.94	49.02	8.45	4.01	12.46	53.0	1273	8.74
9/8/2003	INF	VS-SVE-INF-090803-0041	512	16,57	9.80	26.37	4.23	2.46	6.70	57.1	1369.5	4.02
9/24/2003	INF	VS-SVE-INF-092403-0099	512	10.72	5.16	15.88	2.74	1.30	4.04	70.6	1695.5	13.58
10/15/2003	INF	VS-SVE-INF-101503-0114	512	11.02	8.98	20.00	2.82	2.26	5.07	91.6	2,198.6	20.96
10/15/2003	INF	VS-SVE-INF-101503-0114	512	11.02	8.98	20.00	2.82	2.26	5.07	91.6	2198.6	0.00
10/28/2003	INF	VS-SVE-INF-102803-0119	512	10.36	8.80	19.16	2.65	2.21	4.86	104.7	2512.0	13.06
11/11/2003	INF	VS-SVE-INF-111103-0124	512	3.89	5.81	9.70	0.99	1.46	2.45	111.5	2,676.9	6.87
11/19/2003	INF	VS-SVE-INF-111903-0129	512	4.96	5.51	10.47	1.27	1.39	2.65	119.3	2,862.7	7.74
12/4/2003	INF	VS-SVE-INF-120403-0187	512	2.89	3.03	5.92	0.74	0.76	1.50	132.0	3167.2	15.69
1/14/2004	INF	VS-SVE-INF-011404-0197	512	2.71	3.57	6.28	0.69	0.90	1.59	139.8	3,355.7	7.85
1/26/2004	INF	VS-SVE-INF-012604-0202	512	6.39	7.13	13.52	1.63	1.79	3.42	149.5	3,587.2	9.65
2/9/2004	INF	VS-SVE-INF-020904-0207	512	12.11	12.34	24.45	3.09	3.10	6.20	161.0	3,863.0	11.49
2/24/2004	INF	VS-SVE-INF-022404-0212	512	14.57	11.56	26.13	3.72	2.91	6.63	175.9	4,220.7	14.90
3/10/2004	INF	VS-SVE-INF-031004-0262	512	8.74	10.12	18.86	2.23	2.54	4.78	183.9	4,412.5	7.99
4/5/2004	INF	VS-SVE-INF-040504-0267	512	9.82	10.18	19.99	2.51	2.56	5.07	199.1	4778.4	15.25
4/27/2004	INF	VS-SVE-INF-042704-0272	512	5.76	6.54	12.30	1.47	1.64	3.11	213.9	5133	14.78
5/11/2004	INF	VS-SVE-INF-051104-0277	512	9.21	11.02	20.23	2.35	2.77	5.12	227.1	5,450.0	13.21
6/1/2004	INF	VS-SVE-INF-060104-0282	512	8.24	10.29	18.53	2.10	2.59	4.69	246.3	5,910.7	19.20
6/22/2004	INF	VS-SVE-INF-062204-0332	512	5.06	4.40	9.48	1.30	1.11	2.40	267.1	6,411.0	20.85
7/13/2004	INF	VS-SVE-INF-071304-0337	512	18.05	12.86	30.91	4.61	3.23	7.84	288.1	6,914.3	20.97
7/22/2004	INF	VS-SVE-INF-072204-0342	512	14.22	13.76	27.98	3.63	3.46	7.09	294.4	7,065.3	6.29
8/16/2004	INF	VS-SVE-INF-081604-0347	512	2.13	2.49	4.63	0.54	0.63	1.17	310.9	7,460.5	16.47
9/28/2004	INF	VS-SVE-INF-092804-0423	512	1.45	2.45	3.89	0.37	0.62	0.98	353.7	8,489.0	42.85
10/19/2004	INF	VS-SVE-INF-101904-0428	512	12.35	9.55	21.90	3.15	2.40	5.56	374.7	8,993.0	21.00
11/17/2004	INF	VS-SVE-INF-111704-0433	512	6.63	4.76	11.39	1.69	1.20	2.89	403.8	9,690.0	29.04
12/21/2004	INF	VS-SVE-INF-122104-0493	512	0.29	0.46	0.74	0.07	0.12	0.19	437.7	10,503.8	33.91
1/12/2005	INF	VS-SVE-INF-011205-0498	512	1.13	0.79	1.92	0.29	0.20	0.49	459.7	11,032.5	22.03
2/9/2005	INF	VS-SVE-INF-020905-0503	512	2.29	0.94	3.23	0.58	0.24	0.82	487.6	11,702.8	27.93
3/23/2005	INF	VS-SVE-INF-032305-0551	512	0.54	0.46	1.00	0.14	0.12	0.25	529.6	12,710.4	41.98

R

QuarterlyRreport No. 7 Vestal Wells 1-1 Superfund Site Area 4

Appendix C Example Calculations Vestal, Area 4

Example: 8/25/03 1,1,1 TCA (ppm) to 1,1,1 TCA (lbs/day)

0.00000374(conversion constant)* 24.37(ppm)* 512(flow)* 133.4(molecular weight) = 6.23 lbs

Example: 8/12/03 to 8/25/03 'Total Target VOCs'

[6.40 (8/12) + 11.28 (8/25)] / 2 = 8.84 avg. ibs per day for the period 8.84 (ibs per day) * 10.19 (days) = 90.08 pounds per reporting period

Calculated Flow Rate: Vacuum Pressure (Inches Hg) = 6 Blower Speed (RPM) = 2000 Temperature (degrees F) = 72 Elevation = 1200 feet Based on proprietary Roots, Inc flow rate software for Roots 68 blower, the CFM for these parameters Is 512 on 8/25/03

QuarterlyRreport No. 7 Vestal Wells 1-1 Superfund Site Area 4

Appendix C Influent Sample Parameters Vestal, Area 4

h

•

SAMPLE DATE	SAMPLE ID	VACUUM PRESURE (inches Hg)	RPM	TEMPERATURE (degrees F)	FLOW (cfm)	PID	OPERATION DAYS	STATION HOUR METER
6/27/03	VS-SVE-INF-062703	6	2000	68	517	34.0	4.0	97.0
7/7/2003	VS-SVE-INF-070703-0001	6	2000	72	517	153.4	14.1	338
7/9/2003	VS-SVE-INF-070903-0006	6	2000	75	517	87.0	16.0	385
7/17/2003	VS-SVE-INF-071703-0011	6	2000	80	517	79.5	20.5	492
7/29/2003	VS-SVE-INF-072903-0016	6	2000	75	517	20.3	28.6	687.2
8/12/2003	VS-SVE-INF-081203-0026	6	2000	73	517	45.6	34.1	818.7
8/25/2003	VS-SVE-INF-082503-0031	6	2000	72	512	27.5	44.3	1063.3
9/3/2003	VS-SVE-INF-090303-0036	6	2000	70	512	21.3	53.0	1273.0
9/8/2003	VS-SVE-INF-090803-0041	6	2000	70	512	22.8	57.1	1369.5
9/24/2003	VS-SVE-INF-092403-0099	6	2000	70	512	12.6	70.6	1695.5
10/15/2003	VS-SVE-INF-101503-0114	6	2000	62	512	14.2	91.6	2,198.6
10/15/2003	VS-SVE-INF-101503-0114	6	2000	68	512	13.7	91.6	2198.6
10/28/2003	VS-SVE-INF-102803-0119	6	2000	65	512	16.4	104.7	2512.0
11/11/2003	VS-SVE-INF-111103-0124	6	2000	54	512	7.9	111.5	2676.9
11/19/2003	VS-SVE-INF-111903-0129	6	2000	50	512	12.1	119.3	2862.7
12/4/2003	VS-SVE-INF-120403-0187	6	2000	48	512	7.7	132.0	3167.2
1/14/2004	VS-SVE-INF-011404-0197	6	2000	50	512	7.7	139.8	3,355.7
1/26/2004	VS-SVE-INF-012604-0202	6	2000	50	512	12.9	149.5	3,587.2
2/9/2004	VS-SVE-INF-020904-0207	6	2000	40	512	21.3	161.0	3,863.0
2/24/2004	VS-SVE-INF-022404-0212	6	2000	45	512	19.5	175.9	4,220.7
3/10/2004	VS-SVE-INF-031004-0262	6	2000	48	512	10.3	183.9	4,412.5
4/5/2004	VS-SVE-INF-040504-0267	6	2000	66	512	11.9	199.1	4778.4
4/27/2004	VS-SVE-INF-042704-0272	6	2000	68	512	5.0	213.9	5133
5/11/2004	VS-SVE-INF-051104-0277	6	2000	64	512	13.4	227.1	5,450.0
6/1/2004	VS-SVE-INF-060104-0282	6	2000	62	512	14.8	246.3	5,910.7
6/22/2004	VS-SVE-INF-062204-0332	6	2000	68	512	7.7	267.1	6,411.0
7/13/2004	VS-SVE-INF-071304-0337	6	2000	76	512	15.4	288.1	6,914.3
7/22/2004	VS-SVE-INF-072204-0342	6	2000	80	512	16.1	294.4	7,065.3
8/16/2004	VS-SVE-INF-081604-0347	6	2000	75	512	5.4	310.9	7,460.5
9/28/2004	VS-SVE-INF-092804-0423	6	2000	60	512	17.4	353.7	8,489.0
10/19/2004	VS-SVE-INF-101904-0428	6	2000	50	512	66.9	374.7	8,993.0
11/17/2004	VS-SVE-INF-111704-0433	6	2000	51	512	47.9	403.75	9,690.0
12/21/2004	VS-SVE-INF-122104-0493	6	2000	54	512	9.9	437.7	10,503.8
1/12/2005	VS-SVE-INF-011205-0498	6	2000	50	512	10.9	459.7	11,032.5
2/9/2005	VS-SVE-INF-020905-0503	6	2000	52	512	12.3	487.6	11,702.8
3/23/2005	VS-SVE-INF-032305-0551	6	2000	60	512	9.6	529.6	12,710.4