

**Broome County Division of Solid Waste Management** 

Operational Year 11 Semi-Annual Monitoring Report

March 2013



Paul Martorano, P.E. Staff Engineer

Kenneth Zegel, P.E. Senior Engineer

Steven M. Feldman Project Director Operational Year 11 Semi-Annual Monitoring Report

Colesville Landfill, Broome County, New York NYSDEC Site 704010

Prepared for:

Broome County Division of Solid Waste Management

Prepared by:
ARCADIS of New York, Inc.
Two Huntington Quadrangle
Suite 1S10
Melville
New York 11747
Tel 631 249 7600
Fax 631 249 7610

Our Ref.:

NY000949.0026.00004

Date:

September 23, 2013

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

## **Table of Contents**



| 1.  | introdu | ction                                                  | 1  |
|-----|---------|--------------------------------------------------------|----|
| 2.  | Method  | ology                                                  | 1  |
|     | 2.1     | Groundwater Monitoring                                 | 1  |
|     | 2.2     | Surface Water Monitoring                               | 2  |
|     | 2.3     | Spring Water and Sediment Monitoring                   | 2  |
|     | 2.4     | Spring Water Remediation System Performance Monitoring | 3  |
| 3.  | Ground  | water Flow                                             | 3  |
| 4.  | Ground  | water Quality                                          | 3  |
| 5.  | Discon  | tinuation Pilot Test                                   | 4  |
|     | 5.1     | Discontinuation Pilot Test Objectives                  | 4  |
|     | 5.2     | Monitoring Results and Evaluation                      | 5  |
| 6.  | Spring  | Water Quality                                          | 7  |
| 7.  | Sedime  | nt Quality                                             | 8  |
| 8.  | Surface | Water Quality                                          | 8  |
| 9.  | Spring  | Water Remediation System Performance                   | 9  |
| 10. | Conclu  | sions                                                  | 9  |
| 11. | Recom   | mendations                                             | 10 |
| 12. | Project | Schedule                                               | 11 |
| 13. | Referer | nces                                                   | 12 |

## **Table of Contents**



## **Tables**

| Table 1 | Water-Level Measurements, Colesville Landfill, Broome County, New York.                                                                                                         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2 | Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.                                                             |
| Table 3 | Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.                               |
| Table 4 | Concentrations of Volatile Organic Compounds and Selected Metals Detected in Surface Water, Colesville Landfill, Broome County, New York.                                       |
| Table 5 | Concentrations of Volatile Organic Compounds and Selected Metals Detected in Spring Water, Colesville Landfill, Broome County, New York.                                        |
| Table 6 | Concentrations of Metals Detected in Sediment Samples Associated with Springs, Colesville Landfill, Broome County, New York.                                                    |
| Table 7 | Concentrations of Volatile Organic Compounds Detected in Aqueous Samples Collected from the SP-5 Spring Water Remediation System, Colesville Landfill, Broome County, New York. |
| Table 8 | SP-5 Spring Water Remediation System Mass Removal Rate of Volatile Organic Compounds, Colesville Landfill, Broome County, New York.                                             |
|         |                                                                                                                                                                                 |

## **Figures**

Figure 1 Long-Term Effectiveness Monitoring Locations, Colesville Landfill, Broome County, New York.

# **Appendices**

- A Degradation Trend Figures
- B Groundwater Sampling Logs



Colesville Landfill Broome County, New York NYSDEC Site 704010

### 1. Introduction

This Monitoring Report (report) was prepared on behalf of the Broome County Division of Solid Waste Management for the Colesville Landfill, located in Broome County, New York (site) to evaluate and document long-term monitoring (LTM) activities at the site. Remediation and monitoring activities are being conducted pursuant to the Record of Decision (ROD) issued in March 1991 and Explanation of Significant Differences (ESD) that were issued in September 2000 and July 2004, respectively. LTM activities (which include environmental effectiveness and remediation system performance monitoring) were performed in accordance with the LTM Plan (ARCADIS G&M, Inc. 2002), LTM Plan Addendum for Spring Water Remediation Systems (ARCADIS G&M. Inc. 2003), Interim Remedial Action Report (ARCADIS G&M, Inc. 2004), the Proposed Modifications to the Long Term Monitoring Program (ARCADIS G&M, Inc. 2005), and the In-Situ Reactive Zone Discontinuation Pilot Test Work Plan (hereinafter referred to as the "discontinuation pilot test" [ARCADIS of New York Inc. 2012]), which were approved by the United States Environmental Protection Agency (USEPA) and New York State Department of Environmental Conservation (NYSDEC). These documents provide a detailed description of the LTM program, methodology, and rationale. Where applicable these elements are either summarized or incorporated by reference herein.

This report describes the results of the December 2012 and March 2013 groundwater quality monitoring, pilot test activities and data evaluation event conducted during Operational Year 11, Quarter Numbers 1 and 2 (October 1, 2012 to March 31, 2013) (hereinafter referred to as the reporting period). Following the detailed data analysis and discussion is a summary of findings, conclusions, and recommendations.

### 2. Methodology

The following section provides a summary of the environmental effectiveness and discontinuation pilot test monitoring methodology for the reporting period. A site plan showing the monitoring locations is provided on Figure 1.

#### 2.1 Groundwater Monitoring

Groundwater monitoring performed during the reporting period included the following:

 Water-level (hydraulic) measurements were collected from 23 monitoring wells on March 26, 2013 (Table 1).



Colesville Landfill Broome County, New York NYSDEC Site 704010

- Groundwater samples were collected from the five quarterly monitoring wells (GMMW-2, GMMW-5, GMMW-6, PW-4 and TW-1) during the week of December 18, 2012) and from the six semi-annual monitoring wells (quarterly list of wells plus PW-7) during the week of March 25, 2013. The samples were selectively analyzed for volatile organic compounds (VOCs), dissolved gases, alternate electron acceptors (dissolved iron, dissolved manganese, total iron, total manganese, nitrate, nitrite and sulfate), and total organic carbon (TOC). Field parameters were also recorded at these monitoring locations (Table 2 and 3).
- Groundwater samples were collected from select injection wells (IW-3, IW-8 and IW-13) the weeks of December 18, 2012 and March 25, 2013. The samples were analyzed for TOC. Field parameters were also recorded at these monitoring locations (Table 3).

Groundwater samples were collected from monitoring wells utilizing passive diffusive bag (PDB) samplers (VOCs and dissolved gases) or as grab samples utilizing bailers or whale pump (TOC and alternate electron acceptors) in accordance with the LTM Plan (ARCADIS G&M, Inc. 2002) and/or the Proposed Modifications to the Long-Term Monitoring Program (ARCADIS G&M, Inc. 2005).

## 2.2 Surface Water Monitoring

Surface water samples were collected at the SW-2, SW-3, SW-4, and F-6 locations during the week of March 25, 2013. The samples were analyzed for VOCs and metals (Table 4). Field parameters were also recorded at these surface water locations (Appendix A). Surface water samples were collected mid-stream as grab samples in accordance with the LTM Plan (ARCADIS G&M, Inc. 2002) and/or the Proposed Modifications to the Long-Term Monitoring Program (ARCADIS G&M, Inc. 2005).

## 2.3 Spring Water and Sediment Monitoring

Spring water samples were collected at the SP-2, SP-3, and SP-4 sampling locations during the weeks of December 18, 2012 and March 25, 2013. The samples were analyzed for VOCs and metals (Table 5). Field parameters were also recorded at these spring locations (Appendix B). Spring water samples were collected as grab samples, where feasible, or with a peristaltic pump.

A sediment sample was collected at the SP-3 spring water location during the week of March 25, 2013. The sample was analyzed for metals (Table 6). Sediment samples



Colesville Landfill Broome County, New York NYSDEC Site 704010

were collected as grab samples from a sample matrix that was homogenized in a stainless steel bowl.

### 2.4 Spring Water Remediation System Performance Monitoring

SP-5 Spring Water Remediation System OM&M was conducted on December 19, 2012 and March 28, 2013. System OM&M was conducted in accordance with the LTM Plan Addendum for Spring Water Remediation Systems (ARCADIS G&M, Inc. 2003) and consisted of the collection of influent and effluent spring water samples for analysis of VOCs. The influent sample was collected after removing three well volumes from the influent monitoring well, which is located within the SP-5 treatment unit and screened below the liquid phase granular activated carbon (LPGAC) zone. The treatment system effluent sample was collected as a grab sample from the discharge pipe prior to entering the outfall stone apron. All spring water samples were analyzed for VOCs using USEPA Method 8260.

#### 3. Groundwater Flow

Water-level measurements were made from existing wells on March 26, 2013. The measurements are provided in Table 1. Water-level elevation data for this reporting period was similar to prior rounds of data. Seasonal fluctuations are observed during each operating quarter; however, the data indicate groundwater flow directions consistent with the conceptual site model (CSM) of groundwater flow toward the discharge boundaries of the North Stream and Susquehanna River.

## 4. Groundwater Quality

Groundwater analytical results are provided in Tables 2 (VOCs) and 3 (general chemistry, field parameters and dissolved gases). Where applicable, the previous round of analytical results for the respective sampling location has been provided in the same table for comparative purposes. In addition, Figures A-1 through A-8 provided in Appendix A present the concentration of tetrachloroethylene (PCE)-related degradation compounds versus time or trichloroethane (TCA)-related degradation compounds versus time for monitoring wells GMMW-2, GMMW-5, GMMW-6, and TW-1. The concentration of VOCs has been converted into micromoles per liter (umol/L) by dividing the mass based concentration of a compound by the molecular weight. This conversion allows for the VOCs to be compared on a molecular basis as opposed to a mass basis. Because anaerobic in-situ reactive zones (IRZs) are constantly releasing adsorbed phase mass and degrading mass to daughter compounds with different



Colesville Landfill Broome County, New York NYSDEC Site 704010

molecular weights, the evaluation of anaerobic IRZs on a molecular basis is the appropriate methodology for analyzing the data.

As shown in Table 2 and on Figures A-1 through A-8, total VOC (TVOC) concentrations in all monitoring wells sampled during the reporting period remained stable to decreasing when comparing the March 2013 data to historical data. Specifically, the March 2013 TVOC concentration in mid-plume monitoring wells GMMW-2, GMMW-6, GMMW-5, TW-1, and PW-4 were 147 ug/L, 322 ug/L, 34 ug/L, 83 ug/L, and 22 ug/L, respectively. TVOC concentrations in landfill perimeter monitoring well PW-7 remained stable at a concentration of 400 µg/L.

The data continue to indicate that the dissolved phase plume is stable to decreasing in size. Furthermore, the data indicate that shutdown of the groundwater extraction and treatment and automated injection systems have not resulted in an adverse impact to groundwater quality.

Further discussion of groundwater quality, including a discussion of general chemistry and dissolved gas analytical data is provided in Section 5.

### 5. Discontinuation Pilot Test

The following section describes objectives and results of the discontinuation pilot test.

### 5.1 Discontinuation Pilot Test Objectives

Initiation of the discontinuation pilot test began in October 2012. As discussed in the discontinuation pilot test work plan (ARCADIS of New York Inc. 2012), the pilot test includes the temporary discontinuation of carbon injections and temporary shutdown of the groundwater extraction system to evaluate the resulting effect on groundwater and spring water quality. The objectives of the discontinuation pilot test are to:

- Demonstrate that there is little to no benefit to groundwater quality by continuing injections and groundwater extraction and treatment.
- Document the response of groundwater geochemistry including the evaluation of alternate electron acceptors such as dissolved iron and manganese.



Colesville Landfill Broome County, New York NYSDEC Site 704010

- Evaluate if nearby springs (e.g., SP-3) have a positive response to the discontinuation of injections, including a reduction in visible iron staining and reduction in overall spring water volume.
- Evaluate VOC and metals concentration trends in spring water relative to NYSDEC Division of Technical and Operational Guidance Series (TOGS) 1.1.1 Water Quality Standards and Guidance Values (NYS WQS); and,
- Evaluate metals concentration trends in sediment relative to NYSDEC Technical Guidance for Screening Contaminated Sediments (NYSDEC 1999) and Draft Screening and Assessment of Contaminated Sediments (NYSDEC 2013).

A discussion of the performance monitoring results relative to the discontinuation pilot test objectives is provided below.

## 5.2 Monitoring Results and Evaluation

The primary monitoring wells that are used to monitor and evaluate the discontinuation pilot test include monitoring wells GMMW-2, GMMW-5, GMMW-6, and TW-1. In addition, monitoring well PW-7, which is located upgradient of the discontinuation pilot test area, will be used as a background well to document the geochemistry of landfill impacted groundwater. Table 3 provides a summary of the geochemical monitoring results including general chemistry and dissolved gas parameters. In order to evaluate the geochemical analytical results relative to baseline conditions, the December 7, 1998 analytical results for monitoring well GMMW-5 have been provided in the same table. These historical data were collected to establish baseline conditions during the Enhanced Reductive Dechlorination Pilot Test (ARCADIS G&M, Inc. 1999) and are representative of conditions prior to the initiation of the IRZ injections.

Geochemical analytical data collected during the reporting period indicate that the groundwater geochemistry remains moderately to strongly anaerobic in and immediately downgradient of the reagent injection wells despite the discontinuation of reagent injections on May 1, 2012. Dissolved methane data from select wells located closest to the injection network indicate that the groundwater system is transitioning from strongly anaerobic to mild/moderately anaerobic. The concentration and speciation of chlorinated VOCs and end-products (ethene and ethane) support that enhanced natural attenuation processes (e.g., biologically mediated complete reductive dechlorination) continue to occur. These observations are supported by the following:



Colesville Landfill Broome County, New York NYSDEC Site 704010

- Nitrate concentrations in groundwater monitoring wells in close proximity and downgradiant of the anaerobic IRZ are low and considerably below the baseline concentration of 0.632 mg/L. The highest concentration (0.11 mg/L) is observed in close proximity to the anaerobic IRZ at monitoring well TW-1. The lowest concentration (0.039 mg/L) is observed downgradient of the discontinuation pilot test area at mid-plume monitoring well GMMW-2. The absence of nitrate is an indicator of reducing conditions.
- Dissolved (filtered) iron concentrations remained elevated and significantly higher than baseline conditions in close proximity to the anaerobic IRZ and downgradient flow path. The highest dissolved iron concentrations are observed in close proximity to the injection well network at monitoring wells GMMW-5 (23.8 mg/l) and TW-1 (87.3 mg/l) and slightly downgradient at GMMW-6 (14.8 mg/l). The concentration of dissolved iron at downgradient monitoring well GMMW-2 (<0.05 mg/l) is similar to the baseline data from GMMW-5. The presence of elevated dissolved iron is an indicator of reducing conditions.</li>
- Dissolved (filtered) manganese concentrations remained elevated and significantly higher than baseline conditions in close proximity to the anaerobic IRZ and downgradient flow path. The highest dissolved manganese concentrations are observed in close proximity to the injection well network at monitoring well TW-1 (7.4 mg/l) and slightly downgradient at GMMW-6 (8.7 mg/l). The concentration of dissolved manganese at downgradient monitoring well GMMW-2 (1.5 mg/l) is similar to the baseline data from GMMW-5. The presence of elevated dissolved manganese is an indicator of reducing conditions.
- Methane concentrations remained elevated and significantly higher when compared to baseline conditions in close proximity to the anaerobic IRZ and downgradient flow path. The presence of methane at elevated concentrations is an indicator of strongly reducing conditions. However, methane concentrations are decreasing when comparing the analytical results from the March 2013 sampling event to the September 2012 sampling event at monitoring wells GMMW-5, GMMW-6, and TW-1. These data indicate that the groundwater geochemistry is beginning to shift from strongly to mild or moderately reducing conditions in wells closest to the injection well network.
- Ethene and/or ethane were detected at elevated concentrations at all monitoring
  wells located in close proximity to the anaerobic IRZ. As referenced in Section 5,
  the concentration of PCE, TCE, cis-1,2-DCE, and VC remain stable to decreasing.



Colesville Landfill Broome County, New York NYSDEC Site 704010

When combined with geochemical data, the results indicate that enhanced natural attenuation continue to occur through an anaerobic biologically mediated pathway.

• The concentration of TOC within injection and monitoring wells located in the vicinity of the injection network (e.g., GMMW-5, TW-1, IW-3, IW-8, and IW-13) decreased during the reporting period and ranged from below the limits of detection (TW-1) to 65.9 mg/L (IW-8) during the March 2013 sampling event. The data indicate that TOC remains at concentrations appropriate to support reductive dechlorination, but is limited to the general vicinity of the injection wells.

An evaluation of groundwater quality relative to shutdown of the extraction system will be completed during the next reporting period based upon the sampling results from the shut down recovery wells (GMPW-3, GMPW-4 and GMPW-5) and nearby monitoring wells (i.e., PW-3, PW-4, and W-18).

Based on quarterly site inspections of the presence of springs since the beginning of the pilot test, no trend in spring conditions has been discerned. A description and evaluation of spring water and sediment quality relative to the discontinuation pilot test is provided in Sections 6 and 7, respectively.

## 6. Spring Water Quality

The embankment of the North Stream was inspected for springs during the OM&M site visits on December 19, 2012 and March 28, 2013. During the December 19 inspection, no spring water was observed around the SP-4 area. Minor iron hydroxide staining was observed around the SP-2 and SP-4 area, with a higher degree of staining observed at the SP-3 area. During the March 28, 2013 inspection, spring water and iron hydroxide staining was observed in the SP-2 and SP-3 areas, with the SP-3 area being the most highly impacted with iron hydroxide staining. Minor iron staining was also observed in the SP-4 area. These observations have been generally consistent with conditions prior to the beginning of the pilot test.

Spring water samples were collected at the SP-2, SP-3 and SP-4 locations during the March 28, 2013 inspection. Spring water quality analytical results are summarized in Table 5. As shown in Table 5, spring water at the SP-2 location was non-detect for VOCs and consistent with the baseline round of monitoring data (ARCADIS of New York Inc. 2012). TVOC concentrations decreased at the SP-3 spring water location when compared to the previous rounds; however, several VOCs were detected at concentrations above NYSDEC Part 703 Water Quality Standards (WQS). Spring



Colesville Landfill Broome County, New York NYSDEC Site 704010

water at the SP-4 location exhibited higher concentrations of select VOCs when compared to previous rounds and historical data and several VOCs were also detected at concentrations above the NYSDEC WQS. Despite the presence of VOCs in spring water, non-detect to trace concentrations of VOCs are present in the surface water. These data continue to demonstrate that VOCs detected in the spring water are not adversely impacting surface water quality in the North Stream.

## 7. Sediment Quality

In conjunction with the spring water sampling effort in March 28, 2013, a sediment sample was collected within the North Stream in the vicinity of SP-3. Sediment quality analytical results are summarized in Table 6. As shown in Table 6, the sediment sample (SP-3C-SED) collected during the reporting period has metals concentrations that are generally consistent with the background sediment sample (SP-2-SED [opposite bank]), with the exception of significantly higher manganese concentrations. With respect to the NYSDEC Freshwater Sediment Screening Values, concentrations of arsenic, copper, iron, and nickel were detected below the Severe Effect Level (SEL) during the reporting period, but slightly higher than the Lowest Effect Level (LEL). The concentration of manganese of 1,140 mg/kg marginally exceeded the SEL screening criteria of 1,100 mg/kg.

The metals results for SP-3C-SED were also evaluated relative to Table 1a of the NYSDEC Draft Screening and Assessment of Contaminated Sediment document (NYSDEC 2013), which characterizes freshwater sediment as either Class A (low risk to aquatic life), Class B (slightly to moderately contaminated and additional testing is required to evaluate the potential risks to aquatic life, and Class C (sediments are considered to be highly contaminated and likely to pose a risk to aquatic life). The metals concentrations exhibited at the SP-3C-SED location fall under the Class A designation, with the exception of two metals that only slightly exceed the limits of the Class A designation. Specifically, arsenic exhibited a concentration of 10.2 mg/kg (with a Class A limit of < 10 mg/kg) and the nickel concentration was 23.0 mg/kg (with a Class A limit of < 23 mg/kg).

## 8. Surface Water Quality

Surface water quality analytical results are summarized in Table 4. As shown in Table 4, surface water quality remained consistent when compared to historical data. Specifically, the TVOC concentrations at the F-6, SW-2, and SW-3 sampling locations were below the limits of detection. The TVOC concentration at the SW-4 sampling



Colesville Landfill Broome County, New York NYSDEC Site 704010

location was 0.49 ug/L. The metals concentrations at the F-6, SW-3 and SW-4 sampling locations were also consistent with upgradient sample SW-2. These data indicate that surface water quality is not being adversely impacted by the landfill.

## 9. Spring Water Remediation System Performance

SP-5 Spring Water Remediation System OM&M was conducted on December 19, 2012 and March 28, 2013 in accordance with the LTM Plan Addendum for Spring Water Remediation Systems (ARCADIS G&M, Inc. 2003). SP-5 Spring Water Remediation System analytical results for this reporting period are provided in Table 7. As shown in Table 7, all effluent VOCs were treated to below their respective BPJ limits via the LPGAC; however, effluent TVOC analytical data (6.4  $\mu$ g/L in December 2012 and 26.57  $\mu$ g/L in March 2013) indicate that the LPGAC has achieved breakthrough and may require replacement. Influent TVOC concentrations remained stable when compared to September 2012 analytical data.

Table 8 contains the SP-5 spring water remediation system operating parameters recorded during the reporting period. As shown in Table 8, approximately 256,341 gallons of spring water was treated and approximately 0.08 lbs of mass was recovered during the reporting period. An estimated 3,941,582 gallons of spring water has been treated and an estimated 2.0 lbs of VOC mass has been recovered since system startup.

#### 10. Conclusions

Based on the data obtained from the reporting period monitoring, ARCADIS concludes the following:

- Water level measurements in the project area (i.e., adjacent to the landfill western perimeter) and site-wide in the March 2013 round were consistent with previous rounds. The groundwater flow direction in the project area is toward the southwest from the western perimeter of the landfill. The groundwater flow direction in areas further to the east of the project area is toward the south/southwest.
- The concentration of VOCs remained stabled to decreasing during the reporting period when compared with historical data.
- Enhanced natural attenuation mechanisms (e.g., completed reductive dechlorination completed through a biologically mediated pathway) continue to



Colesville Landfill Broome County, New York NYSDEC Site 704010

degrade chlorinated VOCs within the discontinuation pilot test area despite the discontinuation of carbon injections as evidenced by stable to decreasing VOC concentrations and elevated ethene and/or ethane.

- The presence of elevated concentrations of reduced forms of alternate electron acceptors (e.g., dissolved iron, dissolved manganese, and dissolved methane) indicate that the groundwater geochemistry was strongly anaerobic during the reporting period. However, the concentration of methane declined at monitoring wells located closest to the injection well network which indicate that the geochemistry is transitioning from strongly anaerobic to mildly or moderately anaerobic.
- The concentration of TOC within injection and monitoring wells decreased during
  the reporting period and ranged from below the limits of detection (TW-1) to 65.9
  mg/L (IW-8) during the March 2013 sampling event. The data indicate that TOC
  remains at concentrations appropriate to support reductive dechlorination, but is
  limited to the general vicinity of the injection wells.
- There have not been any discernible trends in the appearance of spring areas thus far relative to the implementation of the pilot test.
- VOC and metals concentrations in surface water continue to be low or non-detect and consistent with historical data, despite the presence of VOCs and metals in the spring water at concentrations above NYSDEC WQS.
- The sediment sample collected during the reporting period exhibited similar concentrations when compared with previous rounds, and these concentrations are generally consistent with the background sediment sample (SP-2-SED [opposite bank]) with the exception of manganese. The results indicate that the sediment is generally categorized as Class A (low risk to aquatic life).

### 11. Recommendations

The following recommendations are made for this reporting period:

 Continue the IRZ Discontinuation Pilot Test and evaluate the resultant response on geochemical conditions in groundwater, volatile organic compound (VOC) concentration trends, and groundwater / surface water interactions.



Colesville Landfill Broome County, New York NYSDEC Site 704010

- Continue to inspect the former spring locations and the embankment of the North Stream.
- Collect a background sediment sample upstream of the SP-2 area to confirm background concentrations for the full suite of metals.

## 12. Project Schedule

Groundwater environmental effectiveness monitoring is scheduled to be conducted for Operational Year 12 on the quarterly schedule set forth in Table 4 of the discontinuation pilot test (ARCADIS of New York Inc. 2012). OM&M of the ARI and PT systems is temporarily discontinued as part of the IRZ Discontinuation Pilot Test Work Plan and will be restarted at the completion of the pilot test, or sooner if groundwater quality data indicates restart of the systems is necessary for the protection of public health or the environment.



Colesville Landfill Broome County, New York NYSDEC Site 704010

### 13. References

- ARCADIS G&M, Inc. 2002. Long-Term Monitoring Plan, Colesville Landfill, Broome County, New York, NYSDEC Site 704010. June 28, 2002.
- ARCADIS G&M, Inc. 2003. Long-Term Monitoring Plan Addendum for Spring Water Remediation Systems, Colesville Landfill, Broome County, New York, NYSDEC Site 704010. November 3, 2003.
- ARCADIS G&M, Inc. 2004. Interim Remedial Action Report, Colesville Landfill, Broome County, New York, NYSDEC Site 704010. September 22, 2004.
- ARCADIS G&M, Inc. 2005. Proposed Modifications to Long-Term Monitoring Program, Broome County, New York, NYSDEC Site 704010. June 28, 2005.
- ARCADIS of New York, Inc. 2012. In-Situ Reactive Zone Discontinuation Pilot Test Work Plan, Colesville Landfill Superfund Site, Colesville, New York. October 11, 2012.
- New York State Department of Environmental Conservation (NYSDEC) 1999.

  Technical Guidance for Screening Contaminated Sediments. January 25, 1999.
- New York State Department of Environmental Conservation (NYSDEC) 2013. Draft Screening and Assessment of Contaminated Sediment. Draft version 4.0, January 24, 2013



**Tables** 



Table 1. Water-Level Measurements, Colesville Landfill, Broome County, New York.

| Well<br>Identification | MP Elevatior (feet above msl) | 3/26/2013<br>Depth to Water<br>(feet below MP) | 3/26/2013<br>Water-Table Elevatior<br>(feet above msl | MP<br>Description |
|------------------------|-------------------------------|------------------------------------------------|-------------------------------------------------------|-------------------|
| GMMW-2                 | 1,030.95                      | 37.03                                          | 993.92                                                | Inner casing      |
| GMMW-3                 | 1,028.02                      | 34.74                                          | 993.28                                                | Inner casing      |
| GMMW-4                 | 1,042.90                      | 46.14                                          | 996.76                                                | Inner casing      |
| GMMW-5                 | 1,043.66                      | 49.61                                          | 994.05                                                | Inner casing      |
| GMMW-6                 | 1,033.56                      | 38.92                                          | 994.64                                                | Inner casing      |
| GMMW-7                 | 1,045.43                      | 48.22                                          | 997.21                                                | Inner casing      |
| PW-1                   | 976.23                        | 14.63                                          | 961.60                                                | Inner casing      |
| PW-2                   | 975.28                        | 5.88                                           | 969.40                                                | Inner casing      |
| PW-3                   | 988.92                        | 11.91                                          | 977.01                                                | Inner casing      |
| PW-4                   | 1,001.75                      | 17.37                                          | 984.38                                                | Inner casing      |
| PW-5                   | 986.12                        | 0.5                                            | 985.62                                                | Inner casing      |
| PW-7                   | 1,042.47                      | 41.00                                          | 1,001.47                                              | Inner casing      |
| PW-10 <sup>(1)</sup>   | 1,049.29                      |                                                |                                                       | Inner casing      |
| PW-11                  | 1,052.37                      | 53.60                                          | 998.77                                                | Inner casing      |
| PW-13                  | 1,072.41                      | 62.59                                          | 1,009.82                                              | Inner casing      |
| V-5                    | 1,051.41                      | 52.74                                          | 998.67                                                | Inner casing      |
| V-6                    | 1,050.38                      | 50.97                                          | 999.41                                                | Inner casing      |
| V-7                    | 1,049.12                      | 43.47                                          | 1,005.65                                              | Inner casing      |
| V-13                   | 1,053.43                      | 46.50                                          | 1,006.93                                              | Inner casing      |
| V-14S                  | 957.68                        | 5.77                                           | 951.91                                                | Inner casing      |
| V-16S                  | 990.33                        | 9.31                                           | 981.02                                                | Outer casing      |
| V-17S                  | 959.13                        | 9.06                                           | 950.07                                                | Inner casing      |
| V-18                   | 973.56                        | 10.15                                          | 963.41                                                | Inner casing      |
| V-20S                  | 952.88                        | 8.45                                           | 944.43                                                | Inner casing      |

1. Measurement not collected due to obstruction in well at 11.21 feet below  ${\tt N}$ 

msl Mean sea level MP Measuring point -- Not measured



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Constituents                     | Sample ID: | GMMW-2             | GMMW-2             | GMMW-2             | GMMW-5       |
|----------------------------------|------------|--------------------|--------------------|--------------------|--------------|
| (units in ug/L)                  | Date:      | 9/19/2012          | 12/18/2012         | 3/27/2013          | 9/20/2012    |
| 1,1,1-Trichloroethane            |            | 1.6                | 1.2                | 1.4                | <2.0         |
| 1,1,2,2-Tetrachloroethane        |            | <1.0               | <1.0               | <1.0               | <2.0         |
| 1,1,2-trichloro-1,2,2-trifluoroe | ethane     | <1.0               | <1.0               | <1.0               | <2.0         |
| 1,1,2-Trichloroethane            |            | <1.0               | <1.0               | <1.0               | <2.0         |
| 1,1-Dichloroethane               |            | 55                 | 49                 | 49                 | <2.0         |
| I,1-Dichloroethene               |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,2,4-Trichlorobenzene            |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,2-Dibromo-3-chloropropan        | е          | <1.0               | <1.0               | <1.0               | <2.0         |
| ,2-Dibromoethane                 |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,2-Dichlorobenzene               |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,2-Dichloroethane                |            | <1.0               | 0.37 J             | <1.0               | 0.66 J       |
| ,2-Dichloropropane               |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,3-Dichlorobenzene               |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ,4-Dichlorobenzene               |            | <1.0               | <1.0               | <1.0               | <2.0         |
| P-Butanone                       |            | <10                | <10                | <10                | <20          |
| ?-Hexanone                       |            | <5.0               | <5.0               | <5.0               | <10          |
| -Methyl-2-pentanone              |            | <5.0               | <5.0               | <5.0               | <10          |
| cetone                           |            | <10                | <10                | <10                | <20          |
| Benzene                          |            | 2.2                | 2.1                | 2.1                | 1.4 J        |
| Bromodichloromethane             |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Bromoform                        |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Bromomethane                     |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Carbon Disulfide                 |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Carbon Tetrachloride             |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Chlorobenzene                    |            | 28                 | 25                 | 29                 | 14           |
| Chloroethane                     |            | 30                 | 14                 | 18                 | 86           |
| Chloroform                       |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Chloromethane                    |            | <1.0               | <1.0               | <1.0               | <2.0         |
| sis-1,2-Dichloroethene           |            | 24                 | 20                 | 27                 | <2.0         |
| is-1,3-Dichloropropene           |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Cyclohexane                      |            | 0.32 J             | <1.0               | 0.53 J             | 1.9 J        |
| Dibromochloromethane             |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Dichlorodifluoromethane          |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Ethylbenzene                     |            | <1.0               | <1.0               | <1.0               | <2.0         |
| sopropylbenzene                  |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Methyl acetate                   |            | <1.0               | <1.0               | <1.0               | <2.0         |
| lethyl tert-butyl ether          |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Methylcyclohexane                |            | <1.0               | <1.0               | <1.0               | <2.0         |
| Methylene Chloride               |            | 0.52 J             | <1.0               | <1.0               | <2.0         |
| Styrene                          |            | <1.0               | <1.0               | <1.0               | <2.0         |
| etrachloroethene                 |            | <1.0               | <1.0               | <1.0               | <2.0         |
| oluene                           |            | <1.0               | <1.0               | <1.0               | 18           |
| ans-1,2-Dichloroethene           |            | <1.0               | <1.0               | <1.0               | <2.0         |
| ans-1,3-Dichloropropene          |            | <1.0               | <1.0               | <1.0               | <2.0         |
| richloroethene                   |            | 16                 | 13                 | 14                 | <2.0         |
| richlorofluoromethane            |            | <1.0               | <1.0               | <1.0               | <2.0         |
| /inyl Chloride                   |            | 6.5                | 6.1                | <b>6.2</b>         | <2.0<br><2.0 |
| (ylenes (total)                  |            | <b>6.5</b><br><2.0 | <b>6.1</b><br><2.0 | <b>6.2</b><br><2.0 | <2.0<br><4.0 |
| .,                               |            | 72.0               | 72.0               |                    | <b>\-1.0</b> |



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Constituents<br>(units in ug/L) | Sample ID:<br>Date: | GMMW-5<br>12/18/2012 | GMMW-5<br>3/26/2013 | GMMW-6<br>9/19/2012 | GMMW-6<br>12/18/2012 |
|---------------------------------|---------------------|----------------------|---------------------|---------------------|----------------------|
| 1,1,1-Trichloroethane           |                     | <1.0                 | <1.0                | <1.0                | 0.92 J               |
| 1,1,2,2-Tetrachloroethane       |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| 1,1,2-trichloro-1,2,2-trifluoro | ethane              | <1.0                 | <1.0                | <1.0                | <1.0                 |
| 1,1,2-Trichloroethane           |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| 1,1-Dichloroethane              |                     | <1.0                 | 0.43 J              | 110 D               | 120 D                |
| 1,1-Dichloroethene              |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,2,4-Trichlorobenzene           |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,2-Dibromo-3-chloropropar       | ne                  | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,2-Dibromoethane                | .0                  | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,2-Dichlorobenzene              |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,2-Dichloroethane               |                     | 0.21 J               | <1.0                | 0.85 J              | 0.81 J               |
| ,2-Dichloropropane              |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,3-Dichlorobenzene              |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| ,4-Dichlorobenzene              |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| 2-Butanone                      |                     | <10                  | <10                 | <10                 | <10                  |
| 2-Butanone<br>2-Hexanone        |                     | <5.0                 | <5.0                | <5.0                | <5.0                 |
| I-Methyl-2-pentanone            |                     | <5.0<br><5.0         | <5.0<br><5.0        | <5.0<br><5.0        | <5.0<br><5.0         |
|                                 |                     | <10                  | <10                 | <10 B               | <10                  |
| Acetone<br>Benzene              |                     | 0.69 J               | <1.0                | 5.9                 | <b>5.2</b>           |
|                                 |                     |                      |                     |                     |                      |
| Bromodichloromethane            |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Bromoform                       |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Bromomethane                    |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Carbon Disulfide                |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Carbon Tetrachloride            |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Chlorobenzene                   |                     | 10                   | 4.2 J               | 26                  | 22                   |
| Chloroethane                    |                     | 27                   | 29                  | 240 D               | 140 D                |
| Chloroform                      |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Chloromethane                   |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| sis-1,2-Dichloroethene          |                     | <1.0                 | <1.0                | 9.6                 | 8.3                  |
| sis-1,3-Dichloropropene         |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Cyclohexane                     |                     | 0.30 J               | <1.0                | <1.0                | 2.9                  |
| Dibromochloromethane            |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Dichlorodifluoromethane         |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Ethylbenzene                    |                     | <1.0                 | <1.0                | 0.89 J              | <1.0                 |
| sopropylbenzene                 |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Methyl acetate                  |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Methyl tert-butyl ether         |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Methylcyclohexane               |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| Methylene Chloride              |                     | <1.0                 | <1.0                | 3.9                 | 3.2                  |
| Styrene                         |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| etrachloroethene                |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| oluene                          |                     | 2.7                  | <1.0                | 2.8                 | 2.1                  |
| ans-1,2-Dichloroethene          |                     | <1.0                 | <1.0                | 0.93 J              | <1.0                 |
| rans-1,3-Dichloropropene        |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| richloroethene                  |                     | <1.0                 | 0.49 J              | 3.3                 | 7.1                  |
| richlorofluoromethane           |                     | <1.0                 | <1.0                | <1.0                | <1.0                 |
| /inyl Chloride                  |                     | <1.0                 | <1.0                | 11                  | 7.8                  |
| (ylenes (total)                 |                     | 1.6 J                | <1.0                | 1.7 J               | 1.2 J                |
| Total VOCs                      |                     | 43 J                 | 34 J                | 417 DJ              | 322 DJ               |



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

|                                        | Sample ID: | GMMW-6             | PW-4              | PW-4              | PW-4              |
|----------------------------------------|------------|--------------------|-------------------|-------------------|-------------------|
| (units in ug/L)                        | Date:      | 3/26/2013          | 9/19/2012         | 12/18/2012        | 3/26/2013         |
| 1,1,1-Trichloroethane                  |            | <2.0               | 6.0               | 5.8               | 4.5               |
| 1,1,2,2-Tetrachloroethane              |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,1,2-trichloro-1,2,2-trifluoroetha    | ane        | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,1,2-Trichloroethane                  |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,1-Dichloroethane                     |            | 110 J              | 9.7               | 7.7               | 4.8               |
| 1,1-Dichloroethene                     |            | <2.0               | <1.0              | 0.30 J            | <1.0              |
| 1,2,4-Trichlorobenzene                 |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,2-Dibromo-3-chloropropane            |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,2-Dibromoethane                      |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,2-Dichlorobenzene                    |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,2-Dichloroethane                     |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,2-Dichloropropane                    |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,3-Dichlorobenzene                    |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 1,4-Dichlorobenzene                    |            | <2.0               | <1.0              | <1.0              | <1.0              |
| 2-Butanone                             |            | <20                | <10               | <10               | <10               |
| 2-Hexanone                             |            | <10                | <5.0              | <5.0              | <5.0              |
| 4-Methyl-2-pentanone                   |            | <10                | <5.0              | <5.0              | <5.0              |
| Acetone                                |            | <20                | <10               | <10               | <10               |
| Benzene                                |            | 5.0                | <1.0              | <1.0              | <1.0              |
| Bromodichloromethane                   |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Bromoform                              |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Bromomethane                           |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Carbon Disulfide                       |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Carbon Tetrachloride                   |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Chlorobenzene                          |            | 26                 | <1.0              | <1.0              | <1.0              |
| Chloroethane                           |            | 150                | 3.5               | 1.0               | <1.0              |
| Chloroform                             |            | <2.0               | 0.56 J            | 0.53 J            | <1.0              |
| Chloromethane                          |            | <2.0               | <1.0              | <1.0              | <1.0              |
| cis-1,2-Dichloroethene                 |            | 13                 | 5.2               | 4.4               | 2.9               |
| cis-1,3-Dichloropropene                |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Cyclohexane                            |            | <2.0               | <1.0              | 0.69 J            | <1.0              |
| Dibromochloromethane                   |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Dichlorodifluoromethane                |            | <2.0               | 1.8               | <1.0              | <1.0              |
| Ethylbenzene                           |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Isopropylbenzene                       |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Methyl acetate                         |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Methyl tert-butyl ether                |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Methylcyclohexane                      |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Methylene Chloride                     |            | 4.6                | <1.0              | <1.0              | <1.0              |
| Styrene                                |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Tetrachloroethene                      |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Toluene                                |            | <2.0               | <1.0              | <1.0              | <1.0              |
| trans-1,2-Dichloroethene               |            | <2.0               | <1.0              | <1.0              | <1.0<br><1.0      |
| rans-1,3-Dichloropropene               |            | <2.0               | <1.0              | <1.0              | <1.0              |
| Trichloroethene                        |            | <2.0<br><b>5.3</b> | <1.0<br><b>15</b> | <1.0<br><b>14</b> | <1.0<br><b>10</b> |
| Trichloroethene Trichlorofluoromethane |            | <b>5.3</b><br><2.0 | <1.0              | <1.0              | <1.0              |
| Vinyl Chloride                         |            | <2.0<br><b>7.7</b> | <1.0<br><1.0      | <1.0              | <1.0<br><1.0      |
| Xylenes (total)                        |            | <4.0               | <1.0<br><2.0      | <1.0<br><2.0      | <1.0<br><2.0      |
| ryionos (total)                        |            | <b>\7.0</b>        | \Z.U              | <b>\</b> 2.0      | <b>\2.0</b>       |



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Constituents<br>(units in ug/L)   | Sample ID:<br>Date: | PW-7<br>9/19/2012 | PW-7<br>3/27/2013  | TW-1<br>9/20/2012  | TW-1<br>12/18/2012 |
|-----------------------------------|---------------------|-------------------|--------------------|--------------------|--------------------|
|                                   |                     |                   |                    |                    |                    |
| 1,1,1-Trichloroethane             |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| 1,1,2,2-Tetrachloroethane         |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| 1,1,2-trichloro-1,2,2-trifluoro   | ethane              | <1.0              | <2.0               | <1.0               | <1.0               |
| 1,1,2-Trichloroethane             |                     | 0.51 J            | 0.49 J             | <1.0               | <1.0               |
| 1,1-Dichloroethane                |                     | 160 D             | 180                | <1.0               | <1.0               |
| 1,1-Dichloroethene                |                     | 0.38 J            | <2.0               | <1.0               | <1.0               |
| 1,2,4-Trichlorobenzene            |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| 1,2-Dibromo-3-chloropropar        | ne                  | <1.0              | <2.0               | <1.0               | <1.0               |
| ,2-Dibromoethane                  |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| ,2-Dichlorobenzene                |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| ,2-Dichloroethane                 |                     | 1.1               | <2.0               | <1.0               | 0.25 J             |
| ,2-Dichloropropane                |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| ,3-Dichlorobenzene                |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| ,4-Dichlorobenzene                |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| 2-Butanone                        |                     | <10               | <20                | 2.9 J              | <10                |
| -Hexanone                         |                     | <5.0              | <10                | <5.0               | <5.0               |
| -Methyl-2-pentanone               |                     | <5.0              | <10                | <5.0               | <5.0               |
| Acetone                           |                     | <10               | <20                | <10                | <10                |
| Benzene                           |                     | 1.1               | 1.9 J              | 2.2                | 3.1                |
| Bromodichloromethane              |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Bromoform                         |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Bromomethane                      |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Carbon Disulfide                  |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Carbon Tetrachloride              |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Chlorobenzene                     |                     | 34                | 15                 | 7.7                | 5.5                |
| Chloroethane                      |                     | 71                | 81                 | 100 D              | 63                 |
| Chloroform                        |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Chloromethane                     |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| cis-1,2-Dichloroethene            |                     | 75                | 79                 | 1.8                | 1.7                |
| sis-1,3-Dichloropropene           |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Cyclohexane                       |                     | <1.0              | <2.0               | 7.7                | 1.4                |
| Dibromochloromethane              |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Dichlorodifluoromethane           |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Ethylbenzene                      |                     | 13                | <2.0               | <1.0               | <1.0               |
| sopropylbenzene                   |                     | 1.3               | <2.0               | <1.0               | <1.0               |
| Methyl acetate                    |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Methyl tert-butyl ether           |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| Methylcyclohexane                 |                     | <1.0              | <2.0<br><2.0       | <1.0               | <1.0<br><1.0       |
| Methylene Chloride                |                     | 0.68 J            | <b>2.0</b>         | <1.0               | <1.0<br><1.0       |
| Styrene                           |                     | <1.0              | <b>2.0</b><br><2.0 | <1.0               | <1.0<br><1.0       |
| etrachloroethene                  |                     | 0.52 J            | <2.0               | <1.0               | <1.0<br><1.0       |
| oluene                            |                     |                   |                    |                    |                    |
|                                   |                     | <1.0              | <2.0               | <b>6.1</b>         | 0.85 J             |
| rans-1,2-Dichloroethene           |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| rans-1,3-Dichloropropene          |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| richloroethene                    |                     | 11                | 9.4                | 1.4                | 0.81 J             |
| richlorofluoromethane             |                     | <1.0              | <2.0               | <1.0               | <1.0               |
| /inyl Chloride<br>(ylenes (total) |                     | 44<br>0.87 J      | <b>31</b><br><4.0  | <b>1.6</b><br><2.0 | <b>1.1</b> <2.0    |
|                                   |                     |                   |                    |                    |                    |
| Total VOCs                        |                     | 414 DJ            | 400 J              | 131 DJ             | 78 J               |



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Constituents                     | Sample ID: | TW-1                  |
|----------------------------------|------------|-----------------------|
| (units in ug/L)                  | Date:      | 3/27/2013             |
| 1,1,1-Trichloroethane            |            | <1.0                  |
| 1,1,2,2-Tetrachloroethane        |            | <1.0                  |
| 1,1,2-trichloro-1,2,2-trifluoroe | ethane     | <1.0                  |
| 1,1,2-Trichloroethane            |            | <1.0                  |
| 1,1-Dichloroethane               |            | <1.0                  |
| 1,1-Dichloroethene               |            | <1.0                  |
| 1,2,4-Trichlorobenzene           |            | <1.0                  |
| 1,2-Dibromo-3-chloropropane      | Α          | <1.0                  |
| 1,2-Dibromoethane                | 0          | <1.0                  |
| 1,2-Dichlorobenzene              |            | <1.0                  |
| 1,2-Dichloroethane               |            | <1.0                  |
| 1,2-Dichloropropane              |            | <1.0                  |
| 1,3-Dichlorobenzene              |            | <1.0                  |
| 1,4-Dichlorobenzene              |            | <1.0                  |
| •                                |            | <1.0                  |
| 2-Butanone                       |            |                       |
| 2-Hexanone                       |            | <5.0                  |
| 4-Methyl-2-pentanone             |            | <5.0                  |
| Acetone                          |            | <10                   |
| Benzene                          |            | 3.6                   |
| Bromodichloromethane             |            | <1.0                  |
| Bromoform                        |            | <1.0                  |
| Bromomethane                     |            | <1.0                  |
| Carbon Disulfide                 |            | <1.0                  |
| Carbon Tetrachloride             |            | <1.0                  |
| Chlorobenzene                    |            | 4.3                   |
| Chloroethane                     |            | 70                    |
| Chloroform                       |            | <1.0                  |
| Chloromethane                    |            | <1.0                  |
| cis-1,2-Dichloroethene           |            | 1.4                   |
| cis-1,3-Dichloropropene          |            | <1.0                  |
| Cyclohexane                      |            | <1.0                  |
| Dibromochloromethane             |            | <1.0                  |
| Dichlorodifluoromethane          |            | <1.0                  |
| Ethylbenzene                     |            | <1.0                  |
| Isopropylbenzene                 |            | <1.0                  |
| Methyl acetate                   |            | <1.0                  |
| Methyl tert-butyl ether          |            | <1.0                  |
| Methylcyclohexane                |            | <1.0                  |
| Methylene Chloride               |            | <1.0                  |
| Styrene                          |            | <1.0                  |
| Tetrachloroethene                |            | <1.0                  |
| Toluene                          |            | 0.75 J                |
| trans-1,2-Dichloroethene         |            | <1.0                  |
| trans-1,3-Dichloropropene        |            | <1.0                  |
| Trichloroethene                  |            | 0.55 J                |
| Trichlorofluoromethane           |            | <b>0.55 J</b> <1.0    |
| Vinyl Chloride                   |            | <1.0<br><b>0.92 J</b> |
| Xylenes (total)                  |            | 0.92 J<br>1.5 J       |
|                                  |            |                       |
| Total VOCs                       |            | 83 J                  |



Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater, Colesville Landfill, Broome County, New York.

## **Notes and Abbreviations:**

## Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

D Concentration is based on a diluted sample analysis.

J Estimated value.
ug/L Micrograms per liter.

VOCs Volatile organic compounds.
< Analyte below detection limit.



Table 3. Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Parameters                                           |                                     | Typical Baseline Values for Discontinuation Pilot Test Area (1)  Sample ID: Date: | GMMW-2<br>9/19/2012    | GMMW-2<br>12/18/2012   | GMMW-2<br>3/27/2013                      | GMMW-5<br>9/20/2012   | GMMW-5<br>12/18/2012  | GMMW-5<br>3/26/2013            |
|------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|------------------------|------------------------|------------------------------------------|-----------------------|-----------------------|--------------------------------|
| GENERAL CHEMISTR                                     | <u>Units</u><br>Y                   |                                                                                   |                        |                        |                                          |                       |                       |                                |
| Total Organic Carbon                                 | mg/L                                | 6.6                                                                               | <1.0                   | 1.5                    | 2.6                                      | 19.2                  | 17.3                  | 12.4                           |
| FIELD PARAMETERS                                     |                                     |                                                                                   |                        |                        |                                          |                       |                       |                                |
| pH<br>Specific Conductance<br>Temperature            | Standard units<br>mmhos/cm<br>deg C | 6.88<br>0.420<br>13                                                               | 6.36<br>0.560<br>11.8  | 6.50<br>0.622<br>9.9   | 6.83<br>0.619<br>10.4                    | 6.54<br>0.710<br>14.2 | 6.42<br>0.299<br>9.9  | 6.46<br>0.336<br>9.3           |
| DISSOLVED GASES Ethane Ethene Methane                | ng/L<br>ng/L<br>ug/L                | 2,590<br>7,700<br>0.45                                                            | 910<br>3,600<br>14,000 | 380<br>3,000<br>13,000 | 420<br>1,900<br>12,000                   | 8,900<br>35<br>18,000 | 7,900<br>53<br>12,000 | 8,300<br>150<br>4,500          |
| MISCELLANEOUS                                        |                                     |                                                                                   |                        |                        |                                          |                       |                       |                                |
| Ferrous Iron<br>Iron<br>Iron (Filtered)<br>Manganese | mg/L<br>mg/L<br>mg/L<br>mg/L        | 0.27<br>0.493<br>0.455<br>2.15                                                    | <br><br>               | <br><br>               | <br><b>0.200</b><br><0.05<br><b>1.50</b> | <br><br>              | <br><br>              | <br>19.4 J<br>23.8 J<br>1.20 J |
| Manganese (Filtered) Nitrate                         | mg/L<br>mg/L                        | 1.79<br>0.632                                                                     | <br><br>               | <br><br>               | 1.5<br>0.039 J                           | <br><br>              | <br><br>              | 1.6 J<br>0.051                 |
| Nitrite<br>Sulfate                                   | mg/L<br>mg/L                        | 0.026<br>4.38                                                                     |                        | <br>                   | R<br><b>4.7 J</b>                        |                       |                       | R<br><b>3.9 J</b>              |

#### Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

deg C Degrees Celsius.

R The sample results are rejected; due to significant quality control problems, the analysis is invalid and provides no information as to whether the compound

is present or not.

J Estimated value.
mg/L Milligrams per liter.
mmhos/cm Millimhos per centimeter.

mV Millivolts.

<sup>1.</sup> Value represent data from monitoring well GMMW-5 collected on December 7, 1998.



Table 3. Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Parameters                                |                                     | Typical Baseline Values for Discontinuation Pilot Test Area (1) Sample ID: Date: | GMMW-6<br>9/19/2012      | GMMW-6<br>12/18/2012      | GMMW-6<br>3/26/2013       | PW-4<br>9/19/2012     | PW-4<br>12/18/2012    | PW-4<br>3/26/2013    |
|-------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------|-----------------------|-----------------------|----------------------|
| GENERAL CHEMISTR                          | <u>Units</u><br>Y                   |                                                                                  |                          |                           |                           |                       |                       |                      |
| Total Organic Carbon                      | mg/L                                | 6.6                                                                              | 2.6                      | 3.1                       | 3.8                       | <1.0                  | <1.0                  | 2.8                  |
| FIELD PARAMETERS                          |                                     |                                                                                  |                          |                           |                           |                       |                       |                      |
| pH<br>Specific Conductance<br>Temperature | Standard units<br>mmhos/cm<br>deg C | 6.88<br>0.420<br>13                                                              | 6.63<br>0.930<br>12.0    | 6.58<br>0.858<br>9.9      | 6.72<br>0.826<br>9.0      | 7.01<br>0.330<br>17.2 | 6.73<br>0.531<br>10.9 | 6.39<br>0.541<br>9.0 |
| DISSOLVED GASES                           |                                     |                                                                                  |                          |                           |                           |                       |                       |                      |
| Ethane<br>Ethene<br>Methane               | ng/L<br>ng/L<br>ug/L                | 2,590<br>7,700<br>0.45                                                           | 7,800<br>5,100<br>13,000 | 16,000<br>12,000<br>9,000 | 11,000<br>15,000<br>4,600 | 11 J<br>27<br>0.13    | 98<br>22 J<br>3.0     | 33<br>47<br>1.1      |
| MISCELLANEOUS                             |                                     |                                                                                  |                          |                           |                           |                       |                       |                      |
| Ferrous Iron<br>Iron                      | mg/L<br>mg/L                        | 0.27<br>0.493                                                                    |                          |                           | <br>17.8                  |                       |                       |                      |
| Iron (Filtered)                           | mg/L                                | 0.455                                                                            |                          |                           | 14.8                      |                       |                       |                      |
| Manganese (Filtered)                      | mg/L                                | 2.15                                                                             |                          |                           | 8.50<br>8.7               |                       |                       |                      |
| Manganese (Filtered) Nitrate              | mg/L<br>mg/L                        | 1.79<br>0.632                                                                    |                          |                           | <b>8.7</b><br>R           | <del></del>           |                       |                      |
| Nitrite                                   | mg/L                                | 0.032                                                                            | <br>                     | <br>                      | R                         | <br>                  | <br>                  | <br>                 |
| Sulfate                                   | mg/L                                | 4.38                                                                             |                          |                           | 13.4 J                    |                       |                       |                      |

#### Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

deg C Degrees Celsius.

R The sample results are rejected; due to significant quality control problems, the analysis is invalid and provides no information as to whether the compound

is present or not.

J Estimated value.
mg/L Milligrams per liter.
mmhos/cm Millimhos per centimeter.

mV Millivolts.

<sup>1.</sup> Value represent data from monitoring well GMMW-5 collected on December 7, 1998.



Table 3. Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Parameters                                                       |                                      | Typical Baseline Values for Discontinuation Sample ID: Pilot Test Area (1) Date: | PW-7<br>9/19/2012     | PW-7<br>3/27/2013             | TW-1<br>9/20/2012      | TW-1<br>12/18/2012    | TW-1<br>3/27/2013                   | IW-3<br>9/20/2012     |
|------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------|-----------------------|-------------------------------------|-----------------------|
| GENERAL CHEMISTR                                                 | <u>Units</u>                         |                                                                                  |                       |                               |                        |                       |                                     |                       |
| Total Organic Carbon                                             | <u>·</u><br>mg/L                     | 6.6                                                                              |                       | <1.0                          | 14.8                   | 24.5                  | <1.0                                | 7.8                   |
| FIELD PARAMETERS                                                 | J                                    |                                                                                  |                       |                               |                        |                       |                                     |                       |
| pH<br>Specific Conductance<br>Temperature                        | Standard units<br>mmhos/cm<br>deg C  | 6.88<br>0.420<br>13                                                              | 6.12<br>0.360<br>14.3 | 6.35<br>0.306<br>11.2         | 6.37<br>0.940<br>14.4  | 6.34<br>1.099<br>10.6 | 6.71<br>1.137<br>9.1                | 6.29<br>0.740<br>14.4 |
| DISSOLVED GASES                                                  |                                      |                                                                                  |                       |                               |                        |                       |                                     |                       |
| Ethane<br>Ethene<br>Methane                                      | ng/L<br>ng/L<br>ug/L                 | 2,590<br>7,700<br>0.45                                                           | <br><br>              | 260<br>2,000<br>500           | 4,900<br>700<br>10,000 | 6,500<br>260<br>9,500 | 4,100<br>400<br>7,400               | <br><br>              |
| MISCELLANEOUS                                                    |                                      |                                                                                  |                       |                               |                        |                       |                                     |                       |
| Ferrous Iron Iron Iron (Filtered) Manganese Manganese (Filtered) | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.27<br>0.493<br>0.455<br>2.15<br>1.79                                           | <br><br><br>          | <br>189<br>20.5<br>7.5<br>7.2 | <br><br><br>           | <br><br><br>          | <br>87.9<br>87.3<br>5.20 J<br>7.4 J | <br><br><br>          |
| Nitrate                                                          | mg/L                                 | 0.632                                                                            |                       | 0.55 J                        |                        |                       | 0.11 J                              |                       |
| Nitrite<br>Sulfate                                               | mg/L<br>mg/L                         | 0.026<br>4.38                                                                    |                       | R<br><b>18.4 J</b>            | <br>                   | <br>                  | R<br><b>24.1 J</b>                  | <br>                  |

#### Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

deg C Degrees Celsius.

R The sample results are rejected; due to significant quality control problems, the analysis is invalid and provides no information as to whether the compound

is present or not.

J Estimated value.
mg/L Milligrams per liter.
mmhos/cm Millimhos per centimeter.

mV Millivolts.

<sup>1.</sup> Value represent data from monitoring well GMMW-5 collected on December 7, 1998.



Table 3. Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.

| Parameters           |                   | Typical Baseline Values for Discontinuation Pilot Test Area (1) Sample ID: Date: | IW-3<br>12/18/2012 | IW-3<br>3/28/2013 | IW-8<br>12/19/2012 | IW-8<br>9/20/2012 | IW-8<br>3/27/2013 | IW-13<br>9/20/2012 |
|----------------------|-------------------|----------------------------------------------------------------------------------|--------------------|-------------------|--------------------|-------------------|-------------------|--------------------|
| GENERAL CHEMISTR     | <u>Units</u><br>Y |                                                                                  |                    |                   |                    |                   |                   |                    |
| Total Organic Carbon | mg/L              | 6.6                                                                              | 9.1                | 6.4               | 113                | 328               | 65.9              | 97.1               |
| FIELD PARAMETERS     |                   |                                                                                  |                    |                   |                    |                   |                   |                    |
| pH                   | Standard units    | 6.88                                                                             | 6.13               | 6.68              | 6.24               | 5.92              | 6.65              | 6.16               |
| Specific Conductance | mmhos/cm          | 0.420                                                                            |                    | 0.600             |                    | 1.380             | 1.048             | 1.030              |
| Temperature          | deg C             | 13                                                                               |                    | 8.1               |                    | 16.6              | 10.4              | 15.7               |
| DISSOLVED GASES      |                   |                                                                                  |                    |                   |                    |                   |                   |                    |
| Ethane               | ng/L              | 2,590                                                                            |                    |                   |                    |                   |                   |                    |
| Ethene               | ng/L              | 7,700                                                                            |                    |                   |                    |                   |                   |                    |
| Methane              | ug/L              | 0.45                                                                             |                    |                   |                    |                   |                   |                    |
| MISCELLANEOUS        |                   |                                                                                  |                    |                   |                    |                   |                   |                    |
| Ferrous Iron         | mg/L              | 0.27                                                                             |                    |                   |                    |                   |                   |                    |
| lron                 | mg/L              | 0.493                                                                            |                    |                   |                    |                   |                   |                    |
| Iron (Filtered)      | mg/L              | 0.455                                                                            |                    |                   |                    |                   |                   |                    |
| Manganese            | mg/L              | 2.15                                                                             |                    |                   |                    |                   |                   |                    |
| Manganese (Filtered) | mg/L              | 1.79                                                                             |                    |                   |                    |                   |                   |                    |
| Vitrate              | mg/L              | 0.632                                                                            |                    |                   |                    |                   |                   |                    |
| Nitrite              | mg/L              | 0.026                                                                            |                    |                   |                    |                   |                   |                    |
| Sulfate              | mg/L              | 4.38                                                                             |                    |                   |                    |                   |                   |                    |

#### Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

deg C Degrees Celsius.

R The sample results are rejected; due to significant quality control problems, the analysis is invalid and provides no information as to whether the compound

is present or not.

J Estimated value.

mg/L Milligrams per liter.

mmhos/cm Millimhos per centimeter.

mV Millivolts.

<sup>1.</sup> Value represent data from monitoring well GMMW-5 collected on December 7, 1998.



Table 3. Concentrations of General Chemistry, Field Parameters, and Dissolved Gases Detected in Groundwater, Colesville Landfill, Broome County, New York.

|                                   |                | Typical Baseline                                              |              |                    |
|-----------------------------------|----------------|---------------------------------------------------------------|--------------|--------------------|
| Parameters                        |                | Values for Discontinuation Sample ID Pilot Test Area (1) Date |              | IW-13<br>3/28/2013 |
|                                   |                | Thot Toot Alloa                                               | . 12/10/2012 | 0,20,2010          |
|                                   | <u>Units</u>   |                                                               |              |                    |
| GENERAL CHEMISTRY                 | <u>(</u>       |                                                               |              |                    |
| Total Organic Carbon              | mg/L           | 6.6                                                           | 61.1         | 46.2               |
| FIELD PARAMETERS                  |                |                                                               |              |                    |
| рН                                | Standard units | 6.88                                                          | 6.28         | 6.66               |
| Specific Conductance              | mmhos/cm       | 0.420                                                         |              | 0.921              |
| Temperature                       | deg C          | 13                                                            |              | 10.3               |
| <b>DISSOLVED GASES</b>            |                |                                                               |              |                    |
| Ethane                            | ng/L           | 2,590                                                         |              |                    |
| Ethene                            | ng/L           | 7,700                                                         |              |                    |
| Methane                           | ug/L           | 0.45                                                          |              |                    |
| MISCELLANEOUS                     |                |                                                               |              |                    |
| Ferrous Iron                      | mg/L           | 0.27                                                          |              |                    |
| Iron                              | mg/L           | 0.493                                                         |              |                    |
| Iron (Filtered)                   | mg/L           | 0.455                                                         |              |                    |
| Manganese<br>Manganese (Filtered) | mg/L           | 2.15<br>1.79                                                  |              | <br>               |
| Nitrate                           | mg/L<br>mg/L   | 0.632                                                         |              |                    |
| Nitrite                           | mg/L           | 0.026                                                         | <del></del>  |                    |
| Sulfate                           | mg/L           | 4.38                                                          |              |                    |

#### Bold constituent detected above method detection limit.

B Compound considered non-detect at the listed value due to associated blank contamination.

deg C Degrees Celsius.

R The sample results are rejected; due to significant quality control problems, the analysis is invalid and provides no information as to whether the compound

is present or not.

Estimated value.

Milligrams per liter.

mmhos/cm Millimhos per centimeter.

mV Millivolts.

mg/L

<sup>1.</sup> Value represent data from monitoring well GMMW-5 collected on December 7, 1998.



Table 4. Concentrations of Volatile Organic Compounds and Selected Metals Detected in Surface Water, Colesville Landfill, Broome County, New York.

| Sample ID:<br>Constituents Date:            |         | SW-2<br>3/28/2013 | SW-3<br>3/28/2013 | SW-4<br>3/28/2013 |  |
|---------------------------------------------|---------|-------------------|-------------------|-------------------|--|
| Volatile organic compounds (VOCs) (Units in | ı ug/L) |                   |                   |                   |  |
| 1,1,1-Trichloroethane                       | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,1,2,2-Tetrachloroethane                   | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,1,2-trichloro-1,2,2-trifluoroethane       | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,1,2-Trichloroethane                       | <1.0    | <1.0              | <1.0              | <1.0              |  |
| I,1-Dichloroethane                          | <1.0    | <1.0              | <1.0              | 0.49 J            |  |
| 1,1-Dichloroethene                          | <1.0    | <1.0              | <1.0              | <1.0              |  |
| ,2,4-Trichlorobenzene                       | <1.0    | <1.0              | <1.0              | <1.0              |  |
| ,2-Dibromo-3-chloropropane                  | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,2-Dibromoethane                           | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,2-Dichlorobenzene                         | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,2-Dichloroethane                          | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,2-Dichloropropane                         | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,3-Dichlorobenzene                         | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 1,4-Dichlorobenzene                         | <1.0    | <1.0              | <1.0              | <1.0              |  |
| 2-Butanone                                  | <10     | <10               | <10               | <10               |  |
| 2-Hexanone                                  | <5.0    | <5.0              | <5.0              | <5.0              |  |
| 4-Methyl-2-pentanone                        | <5.0    | <5.0              | <5.0              | <5.0              |  |
| Acetone                                     | <10     | <10               | <10               | <10               |  |
| Benzene                                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Bromodichloromethane                        | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Bromoform                                   | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Bromomethane                                | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Carbon Disulfide                            | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Carbon Tetrachloride                        | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Chlorobenzene                               | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Chloroethane                                | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Chloroform                                  | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Chloromethane                               | <1.0    | <1.0              | <1.0              | <1.0              |  |
| cis-1,2-Dichloroethene                      | <1.0    | <1.0              | <1.0              | <1.0              |  |
| cis-1,3-Dichloropropene                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Cyclohexane                                 | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Dibromochloromethane                        | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Dichlorodifluoromethane                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Ethylbenzene                                | <1.0    | <1.0              | <1.0              | <1.0              |  |
| sopropylbenzene                             | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Methyl acetate                              | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Methyl tert-butyl ether                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Methylcyclohexane                           | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Methylene Chloride                          | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Styrene                                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Tetrachloroethene                           | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Γoluene                                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| rans-1,2-Dichloroethene                     | <1.0    | <1.0              | <1.0              | <1.0              |  |
| rans-1,3-Dichloropropene                    | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Trichloroethene                             | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Trichlorofluoromethane                      | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Vinyl Chloride                              | <1.0    | <1.0              | <1.0              | <1.0              |  |
| Kylenes (total)                             | <2.0    | <2.0              | <2.0              | <2.0              |  |
| Fotal VOCs                                  | NA      | NA                | NA                | 0.49 J            |  |
| Metals (Units in mg/L)                      |         |                   |                   |                   |  |
| Aluminum                                    | 0.077 J | 0.13 J            | 0.11 J            | 0.085 J           |  |
| Antimony                                    | <0.020  | <0.020            | <0.020            | <0.020            |  |
| Arsenic                                     | <0.010  | <0.010            | <0.010            | <0.010            |  |
| Barium                                      | 0.0066  | 0.0067            | 0.0065            | 0.0066            |  |
| Beryllium                                   | <0.0020 | <0.0020           | <0.0020           | <0.0020           |  |
| Cadmium                                     | <0.0010 | <0.0010           | <0.0010           | <0.0010           |  |
| Calcium                                     | 8.7     | 5.3               | 7.2               | 7.9               |  |

See notes on last page.



Table 4. Concentrations of Volatile Organic Compounds and Selected Metals Detected in Surface Water, Colesville Landfill, Broome County, New York.

| Constituents           | Sample ID:<br>Date: | F-6<br>3/28/2013 | SW-2<br>3/28/2013 | SW-3<br>3/28/2013 | SW-4<br>3/28/2013 |
|------------------------|---------------------|------------------|-------------------|-------------------|-------------------|
| Constituents           | Date.               | 3/20/2013        | 3/20/2013         | 3/20/2013         | 3/20/2013         |
|                        |                     |                  |                   |                   |                   |
| Metals (Units in mg/L) | (Continued)         |                  |                   |                   |                   |
| Chromium               |                     | < 0.0040         | <0.0040           | < 0.0040          | <0.0040           |
| Cobalt                 |                     | < 0.0040         | < 0.0040          | < 0.0040          | < 0.0040          |
| Copper                 |                     | < 0.010          | < 0.010           | < 0.010           | < 0.010           |
| ron                    |                     | 0.16             | 0.16              | 0.13              | 0.18              |
| Lead                   |                     | < 0.0050         | < 0.0050          | < 0.0050          | < 0.0050          |
| Magnesium              |                     | 2.4              | 1.9               | 2.2               | 2.3               |
| langanese              |                     | 0.064            | 0.025             | 0.021             | 0.061             |
| ercury                 |                     | < 0.00020        | < 0.00020         | <0.00020          | < 0.00020         |
| ickel                  |                     | < 0.010          | < 0.010           | < 0.010           | < 0.010           |
| otassium               |                     | 0.87             | 0.92              | 0.91              | 0.87              |
| Selenium               |                     | <0.015           | < 0.015           | < 0.015           | < 0.015           |
| Silver                 |                     | < 0.0030         | < 0.0030          | < 0.0030          | < 0.0030          |
| Sodium                 |                     | 5.1              | 4.9               | 5.0               | 5.0               |
| hallium                |                     | <0.020           | <0.020            | <0.020            | < 0.020           |
| anadium                |                     | < 0.0050         | < 0.0050          | < 0.0050          | < 0.0050          |
| Zinc                   |                     | < 0.010          | 0.0016 J          | <0.010            | < 0.010           |

### Bold constituent detected above method detection limit.

J Estimated value.
mg/L Milligrams per liter.
NA Not applicable.
ug/L Micrograms per liter.
< Analyte below detection limit.
-- Not analyzed or collected.



Table 5. Concentrations of Volatile Organic Compounds and Selected Metals Detected in Spring Water, Colesville Landfill, Broome County, New York.

| Constituents<br>(units in ug/L)                       | Sample ID:<br>Date:    | SP-2<br>7/13/2012 | SP-2<br>3/28/2013 | SP-3<br>7/13/2012   | SP-3<br>3/28/2013  | SP-4<br>9/20/2012 | SP-4<br>3/28/2013 |
|-------------------------------------------------------|------------------------|-------------------|-------------------|---------------------|--------------------|-------------------|-------------------|
| 1                                                     | NYSDEC<br>Part 703 WQS |                   |                   |                     |                    |                   |                   |
| 1,1,1-Trichloroethane                                 | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,1,2,2-Tetrachloroethane                             | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,1,2-trichloro-1,2,2-trifluoroethane                 |                        | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| 1,1,2-Trichloroethane                                 | 1                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,1-Dichloroethane                                    | 5                      | <5.0              | <1.0              | 76                  | 41                 | 1.8               | 14                |
| 1,1-Dichloroethene                                    | 5<br>5                 | <5.0              | <1.0              | <5.0<br><5.0 Q      | <1.0               | <1.0              | <1.0              |
| 1,2,4-Trichlorobenzene<br>1,2-Dibromo-3-chloropropane | o.04                   | <5.0 Q<br><5.0    | <1.0<br><1.0      | <5.0 Q<br><5.0      | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0      |
| 1,2-Dibromoethane                                     | 0.0006                 | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,2-Dichlorobenzene                                   | 3                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,2-Dichloroethane                                    | 0.6                    | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | 0.51 J            |
| 1,2-Dichloropropane                                   | 1                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,3-Dichlorobenzene                                   | 3                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 1,4-Dichlorobenzene                                   | 3                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| 2-Butanone                                            | 50                     | <10               | <10               | <10                 | <10                | <10               | <10               |
| 2-Hexanone                                            | 50                     | <10               | <5.0              | <10                 | <5.0               | <5.0              | <5.0              |
| 4-Methyl-2-pentanone                                  | NA                     | <10               | <5.0              | <10                 | <5.0               | <5.0              | <5.0              |
| Acetone                                               | 50                     | <10               | <10               | <10                 | <10                | <10               | <10               |
| Benzene                                               | 10                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Bromodichloromethane                                  | 50                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Bromoform                                             | 50                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Bromomethane                                          | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Carbon Disulfide                                      | 60                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Carbon Tetrachloride                                  | 5<br>5                 | <5.0 Q            | <1.0              | <5.0 Q<br><b>42</b> | <1.0               | <1.0              | <1.0              |
| Chlorobenzene<br>Chloroethane                         | 5<br>5                 | <5.0<br><5.0      | <1.0<br><1.0      | 18                  | 3.5<br>7.0         | <1.0<br><1.0      | 4.0<br>55         |
|                                                       | 5<br>7                 |                   |                   | <5.0                |                    |                   |                   |
| Chloroform<br>Chloromethane                           | <i>7</i><br>5          | <5.0<br><5.0 Q    | <1.0<br><1.0      | <5.0 Q              | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0      |
| cis-1,2-Dichloroethene                                | 5                      | <5.0 Q            | <1.0              | 24 Q                | 14                 | <1.0              | 0.88 J            |
| cis-1,3-Dichloropropene                               | 0.4                    | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Cyclohexane                                           | NA                     | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Dibromochloromethane                                  | 50                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Dichlorodifluoromethane                               | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Ethylbenzene                                          | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| sopropylbenzene                                       | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Methyl acetate                                        | NA                     | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Methyl tert-butyl ether                               | 10                     | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Methylcyclohexane                                     | NA                     | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Methylene Chloride                                    | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Styrene                                               | 50                     | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| Tetrachloroethene                                     | 5                      | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Toluene                                               | 6000                   | 12                | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| trans-1,2-Dichloroethene                              | 5                      | <5.0              | <1.0              | <5.0                | <1.0               | <1.0              | <1.0              |
| trans-1,3-Dichloropropene                             | 0.4                    | <5.0 Q            | <1.0              | <5.0 Q              | <1.0               | <1.0              | <1.0              |
| Trichloroethene                                       | 5                      | <5.0              | <1.0              | 7.0                 | 4.8                | <1.0              | 0.78 J            |
| Trichlorofluoromethane<br>Vinyl Chloride              | 0.4<br>2               | <5.0 Q            | <1.0              | <5.0 Q              | <1.0<br><b>2.1</b> | <1.0              | <1.0              |
| Xylenes (total)                                       | 5                      | <5.0<br><5.0      | <1.0<br><2.0      | <b>21</b><br><5.0   | <2.0               | <1.0<br><2.0      | <1.0<br><2.0      |
| Total VOCs                                            | NA                     | 12                | NA                | 188                 | 72                 | 1.8               | 75 J              |
| Metals (Units in mg/L)                                |                        |                   |                   |                     |                    |                   |                   |
| Aluminum                                              | 0.100                  | NA                | 0.39              | NA                  | <0.20              |                   | <0.20             |
| Antimony                                              | 0.003                  | NA                | <0.020            | NA                  | <0.020             |                   | < 0.020           |
| Arsenic                                               | 0.15                   | NA                | <0.010            | NA                  | <0.010             |                   | 0.023             |
| Barium                                                | 1                      | NA                | 0.0087            | NA                  | 0.015              |                   | 0.065             |
| Beryllium                                             | 0.003                  | NA                | <0.0020           | NA                  | <0.0020            |                   | < 0.0020          |
| Cadmium                                               | 0.01                   | NA                | < 0.0010          | NA                  | < 0.0010           |                   | < 0.0010          |
| Calcium                                               | NA                     | NA                | 7.20              | NA                  | 21.3               |                   | 61.8              |
| Chromium                                              | 0.05                   | NA                | <0.0040           | < 0.0500            | <0.0040            |                   | <0.0040           |
| Cobalt                                                | 0.005                  | NA                | < 0.0040          | < 0.0500            | 0.0013 J           |                   | 0.0012 J          |

See notes on last page.



Table 5. Concentrations of Volatile Organic Compounds and Selected Metals Detected in Spring Water, Colesville Landfill, Broome County, New York.

| Constituents    | Sample ID:             | SP-2      | SP-2      | SP-3      | SP-3      | SP-4      | SP-4      |  |
|-----------------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| (units in ug/L) | Date:                  | 7/13/2012 | 3/28/2013 | 7/13/2012 | 3/28/2013 | 9/20/2012 | 3/28/2013 |  |
|                 | NYSDEC<br>Part 703 WQS |           |           |           |           |           |           |  |

## Metals (Units in mg/L) (Continued)

| Copper    | NA        | NA | <0.010   | NA       | <0.010   | <br><0.010   |
|-----------|-----------|----|----------|----------|----------|--------------|
| Iron      | 0.3       | NA | 0.51     | 16.0     | 0.84     | <br>7.1      |
| Lead      | 0.025     | NA | <0.0050  | NA       | <0.0050  | <br><0.0050  |
| Magnesium | 35        | NA | 2.0      | 7.00     | 5.0      | <br>14.7     |
| Manganese | 0.3       | NA | 0.12     | 4.40     | 1.4      | <br>4.7      |
| Mercury   | 0.0000007 | NA | <0.00020 | NA       | <0.00020 | <br><0.00020 |
| Nickel    | 0.1       | NA | < 0.010  | NA       | 0.0019 J | <br>< 0.010  |
| Potassium | NA        | NA | 0.75     | NA       | 1.1      | <br>1.3      |
| Selenium  | 0.0046    | NA | < 0.015  | NA       | < 0.015  | <br>< 0.015  |
| Silver    | 0.0001    | NA | < 0.0030 | < 0.0500 | < 0.0030 | <br>< 0.0030 |
| Sodium    | 20        | NA | 4.5      | NA       | 3.8      | <br>9.4      |
| Thallium  | 0.008     | NA | < 0.020  | NA       | < 0.020  | <br>< 0.020  |
| Vanadium  | 0.014     | NA | < 0.0050 | < 0.300  | < 0.0050 | <br>< 0.0050 |
| Zinc      | 0.066     | NA | 0.0023 J | NA       | 0.0020 J | <br><0.010   |

### Notes and Abbreviations:

### Bold constituent detected above method detection limit.

Exceeds WQS.

J Estimated value.
mg/L Milligrams per liter.
NA Not applicable

VOCs Volatile organic compounds.
ug/L Micrograms per liter.
< Analyte below detection limit.
-- Not analyzed or collected.

Q Outyling QC recoveries were associated with this parameter, as noted in the Upsate Laboratories, Inc. analytical report.



Table 6. Concentrations of Metals Detected in Sediment Samples Associated with Springs, Colesville Landfill, Broome County, New York.

|                             |                               |                                         | Location ID:<br>Sample ID:<br>Date: | SED-2<br>SP-2-SED<br>(Opposite Bank)<br>7/13/2012 (1) | SED-2<br>SP-2-SED<br>7/13/2012 | SED-3<br>SP-3-SED<br>7/13/2012 (2) | SED-3<br>SP-3-SED<br>(Outlet)<br>8/8/2012 (3) | SED-3<br>SP-3-SED<br>(Stream Sediment)<br>8/8/2012 <sup>(4)</sup> | SED-3<br>SP-3C-SED<br>3/28/2013 <sup>(5</sup> |
|-----------------------------|-------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------|--------------------------------|------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|
|                             |                               | water Sediment<br>g Values <sup>a</sup> | Duto.                               | 1710/2012                                             | 1710/2012                      | 1710/2012                          | 0/0/2012                                      | 0/0/2012                                                          | 0/20/2010                                     |
|                             | Lowest Effects<br>Level (LEL) | Severe Effects<br>Level (SEL)           | NOAA SQuiRT<br>values <sup>b</sup>  |                                                       |                                |                                    |                                               |                                                                   |                                               |
| Constituents                |                               |                                         |                                     |                                                       |                                |                                    |                                               |                                                                   |                                               |
| Metals (Units in mg/kg)     |                               |                                         |                                     |                                                       |                                |                                    |                                               |                                                                   |                                               |
| Aluminum                    | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | 9,000                                         | 8,100                                                             | 9,360                                         |
| Antimony                    | 2                             | 25                                      | NA                                  |                                                       |                                |                                    | <6.50                                         | <5.60                                                             | <19.4                                         |
| Arsenic                     | 6                             | 33                                      | NA                                  |                                                       |                                |                                    | 16.0                                          | 14.0                                                              | 10.2                                          |
| Barium                      | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | <190 Q                                        | <170 Q                                                            | 44.3                                          |
| Beryllium                   | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | <3.20                                         | <2.80                                                             | 0.39                                          |
| Cadmium                     | 0.6                           | 9                                       | NA                                  |                                                       |                                |                                    | <3.20                                         | <2.80                                                             | 0.19 J                                        |
| Calcium                     | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | 810                                           | 630                                                               | 917                                           |
| Chromium                    | 26                            | 110                                     | NA                                  | 15.0 J                                                | 18.0 J                         | 34.0 J                             | 18.0 J                                        | 15.0 J                                                            | 13.2                                          |
| Cobalt                      | NA                            | NA                                      | 50+ <sup>c</sup>                    | <32.0                                                 | <32.0                          | <83.0                              | <32.0                                         | <28.0                                                             | 10.3                                          |
| Copper                      | 16                            | 110                                     | NA                                  |                                                       |                                |                                    | 21.0                                          | 19.0                                                              | 18.9                                          |
| Iron                        | 20,000                        | 40,000                                  | NA                                  | 19,000 B                                              | 23,000 B                       | 55,000 B                           | 24,000                                        | 19,000                                                            | 23,100                                        |
| Lead                        | 31                            | 110                                     | NA                                  |                                                       |                                |                                    | 12.0                                          | 19.0                                                              | 14.1                                          |
| Magnesium                   | NA                            | NA                                      | NA                                  | 2,700                                                 | 2,800                          | 4,600                              | 2,900                                         | 2,500                                                             | 3,260                                         |
| Manganese                   | 460                           | 1100                                    | NA                                  | 300                                                   | 1,200                          | 10,000                             | 640                                           | 490                                                               | 1,140                                         |
| Mercury                     | 0.15                          | 1.3                                     | NA                                  |                                                       |                                |                                    | <0.112                                        | <0.0911                                                           | <0.026                                        |
| Nickel                      | 16                            | 50                                      | NA                                  |                                                       |                                |                                    | 17.0 QJ                                       | 15.0 QJ                                                           | 23.0                                          |
| Potassium                   | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | 730                                           | 490                                                               | 793                                           |
| Selenium                    | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | <3.90 Q                                       | <3.40 Q                                                           | 0.60 J                                        |
| Silver                      | 1                             | 2.2                                     | NA                                  | <32.0 Q                                               | <32.0 Q                        | <83.0 Q                            | <32.0                                         | <28.0                                                             | < 0.65                                        |
| Sodium                      | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | <320                                          | <280                                                              | 30.0 J                                        |
| Thallium                    | NA                            | NA                                      | NA                                  |                                                       |                                |                                    | <3.90                                         | <3.40                                                             | <7.8                                          |
| Vanadium                    | NA                            | NA                                      | NA                                  | <190                                                  | <190                           | <500                               | <190                                          | <170                                                              | 13.0                                          |
| Zinc                        | 120                           | 270                                     | NA                                  |                                                       |                                |                                    | 47.0                                          | 45.0                                                              | 59.6                                          |
| <u>Miscellaneous</u>        |                               |                                         |                                     |                                                       |                                |                                    |                                               |                                                                   |                                               |
| Percent Moisture (% by wt.) | NA                            | NA                                      | NA                                  | 20.8                                                  | 21.1                           | 70                                 | 27.7                                          | 18.4                                                              | 27.0                                          |
|                             |                               |                                         |                                     |                                                       |                                |                                    |                                               |                                                                   |                                               |

See acronyms and notes on the last page.



Table 6. Concentrations of Metals Detected in Sediment Samples Associated with Springs, Colesville Landfill, Broome County, New York.

#### **Notes and Abbreviations:**

3.

|   | 1/1 1/1 1/1 1/05=0 /444          |                                                          |
|---|----------------------------------|----------------------------------------------------------|
| 2 | Values obtained from NVSDEC 1000 | Technical Guidance for Screening Contaminated Sediments. |
|   |                                  |                                                          |

b Values obtained from NOAAs Screening Quick Reference Tables (Buchman, MF. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1,

Seattle, WA. Office of Response and Restoration Division, NOAA, 34 pp.)

c Value from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, Canada. Aug 1993. Value is Lowest Effects Level (LEL)

from Canadian Sediment Guidelines.

1. Background sediment sample collected by Broome County upstream and on the opposite bank from SP-2 spring sample location.

2. Sediment/iron oxide film composite sample collected by Broome County from the SP-3 spring sample location.

Sample collected by Broome County from the SP-3 spring outlet area in close proximity to the North Stream.

4. Sample collected by Broome County from North Stream sediment at the SP-3 spring area.

5. Sediment composite sample collected by ARCADIS from SP-3 spring sample location as part of the spring water and sediment monitoring program of the In-Situ Reactive Zone

Discontinuation Pilot Test.

#### Bold constituent detected above method detection limit.

B Analyte detected in the associated Method Blank.

J Analyte detected below qantitation limit.

mg/kg Milligrams per kilogram.

NA Not applicable.

Q Outlying QC recoveries were associates with this parameter.

Exceeds Lowest Effects Level.

Exceeds Severe Effects Level.

Analyte below detection limit.

Constituent not analyzed.



Table 7. Concentrations of Volatile Organic Compounds Detected in Aqueous Samples Collected from the SP-5 Spring Water Remediation System, Colesville Landfill, Broome County, New York.

| Constituents                          | Model<br>Technology Sample ID:  | SP-5 INF. | SP-5 INF.  | SP-5 INF. | SP-5 EFF. | SP-5 EFF.  | SP-5 EFF  |
|---------------------------------------|---------------------------------|-----------|------------|-----------|-----------|------------|-----------|
| (units in ug/L)                       | BPJ Limits <sup>1,2</sup> Date: | 9/20/2012 | 12/19/2012 | 3/28/2013 | 9/20/2012 | 12/19/2012 | 3/28/2013 |
| VOCs                                  |                                 |           |            |           |           |            |           |
| 1,1,1-Trichloroethane                 | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,1,2,2-Tetrachloroethane             | 50                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,1,2-trichloro-1,2,2-trifluoroethane | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,1,2-Trichloroethane                 | 100                             | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| ,1-Dichloroethane                     | 10                              | 12        | 12         | 12        | 1.7       | 1.1        | 8.5       |
| 1,1-Dichloroethene                    | 10-100                          | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,2,4-Trichlorobenzene                | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| ,2-Dibromo-3-chloropropane            | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,2-Dibromoethane                     | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| ,2-Dichlorobenzene                    | 10-50                           | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| ,2-Dichloroethane                     | 10-100                          | 0.33 J    | 0.32 J     | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,2-Dichloropropane                   | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,3-Dichlorobenzene                   | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 1,4-Dichlorobenzene                   | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| 2-Butanone                            | NA                              | <10       | <10        | <10       | <10       | <10        | <10       |
| 2-Hexanone                            | NA                              | <5.0      | <5.0       | <5.0      | <5.0      | <5.0       | <5.0      |
| 1-Methyl-2-pentanone                  | NA                              | <5.0      | <5.0       | <5.0      | <5.0      | <5.0       | <5.0      |
| Acetone                               | NA                              | <10       | <10        | <10       | <10       | <10        | <10       |
| Benzene                               | 5                               | 1.3       | 1.4        | 1.4       | <1.0      | <1.0       | 0.97 J    |
| Bromodichloromethane                  | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Bromoform                             | 50                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Bromomethane                          | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Carbon Disulfide                      | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Carbon Tetrachloride                  | 10-50                           | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Chlorobenzene                         | 10-25                           | 20        | 17         | 19        | <1.0      | <1.0       | 15        |
| Chloroethane                          | 10                              | 9.7       | 2.0        | 0.65 J    | 5.3       | 5.3        | <1.0      |
| Chloroform                            | 100                             | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Chloromethane                         | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| cis-1,2-Dichloroethene                | 10                              | 1.6       | 1.5        | 0.97 J    | <1.0      | <1.0       | <1.0      |
| cis-1,3-Dichloropropene               | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Cyclohexane                           | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Dibromochloromethane                  | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Dichlorodifluoromethane               | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Ethylbenzene                          | 5                               | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| sopropylbenzene                       | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Methyl acetate                        | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Methyl tert-butyl ether               | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Methylcyclohexane                     | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Methylene Chloride                    | 10-100                          | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Styrene                               | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Γetrachloroethene                     | 10-50                           | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Foluene                               | 5                               | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| rans-1,2-Dichloroethene               | 10-100                          | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| rans-1,3-Dichloropropene              | NA                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Frichloroethene                       | 10                              | 2.6       | 2.5        | 2.7       | <1.0      | <1.0       | 2.1       |
| Frichlorofluoromethane                | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Vinyl Chloride                        | 10                              | <1.0      | <1.0       | <1.0      | <1.0      | <1.0       | <1.0      |
| Xylenes (total)                       | NA                              | <2.0      | <2.0       | <2.0      | <2.0      | <2.0       | <2.0      |
| Fotal VOCs                            |                                 | 48 J      | 37 J       | 37 J      | 7.0       | 6.4        | 27 J      |

- 1. Model Technology Best Professional Judgment (BPJ) Limits recommended for carbon adsorption with appropriate pretreatment from Attachment C of TOGS 1.2.1.
- 2. When a range is listed for the BPJ limit, a variation in available references was found. Recommended daily maximum limits should be in this range.

### Bold constituent detected above method detection limit.

< Analyte below detection limit.

EFF. Effluent.
INF. Influent.
J Estimated value.
NA No BPJ limit listed.
ug/L Micrograms per liter.
VOCs Volatile organic compounds.



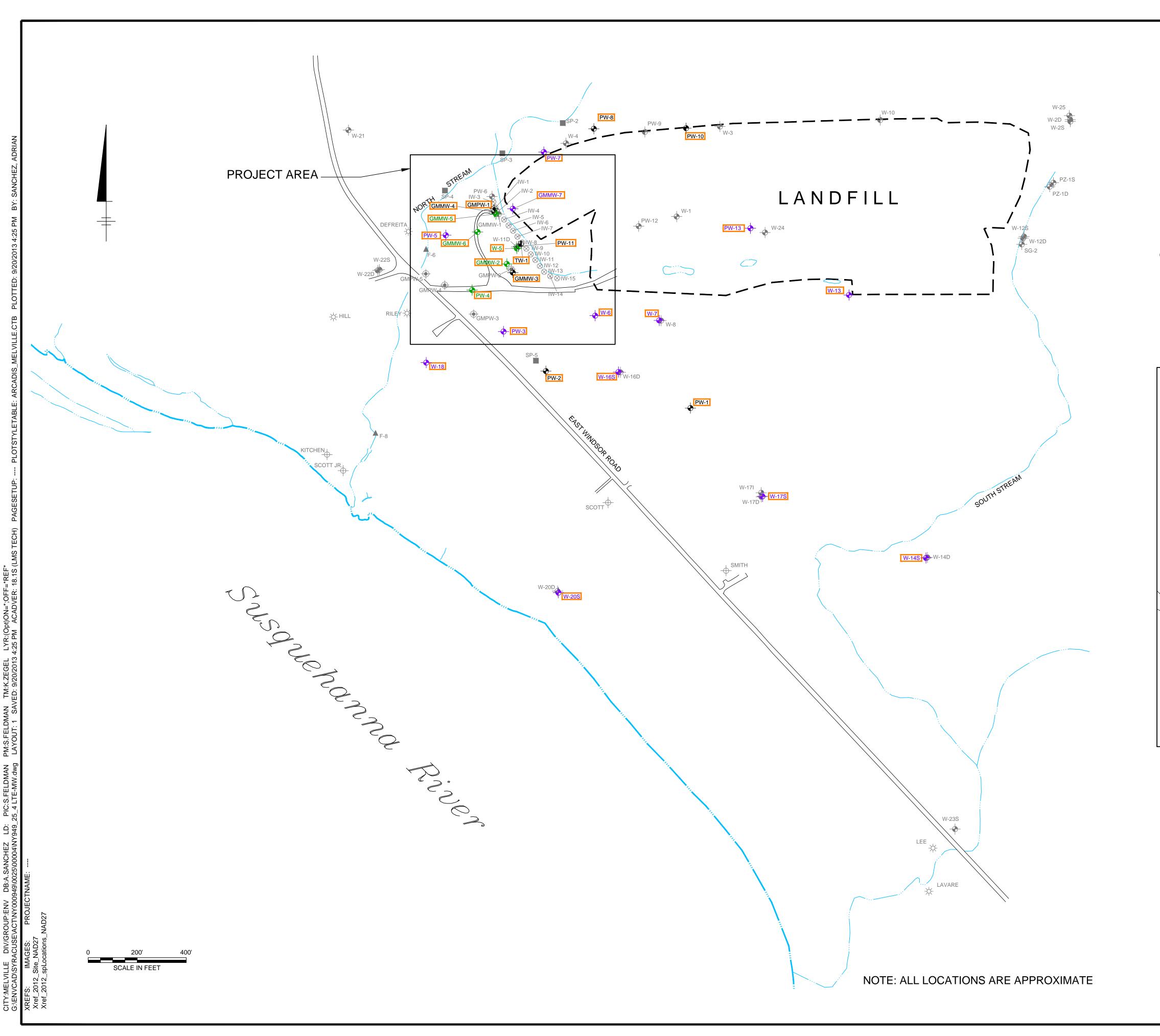
Table 8. SP-5 Spring Water Remediation System Mass Removal Rate of Volatile Organic Compounds, Colesville Landfill, Broome County, New York.

| Date Sampled | Total VOC<br>Influent Concentration<br>(ug/L) | Effluent<br>Flowrate<br>(gpm) | Depth<br>to Water<br>(feet btc) | Total Spring Water Treated <sup>(1)</sup> Between Sampling Intervals (gal) | Influent Concentration (2) Geometric Mean (ug/L) | Total Estimated Mass <sup>(3)</sup> Removed (lbs) |
|--------------|-----------------------------------------------|-------------------------------|---------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|
| 9/20/2012    | 48                                            | 0.29                          | NM                              | NA                                                                         | NA                                               | NA                                                |
| 12/19/2012   | 37                                            | 1.1                           | 0.00                            | 71,823                                                                     | 42                                               | 0.025                                             |
| 3/28/2013    | 37                                            | 1.6                           | 0.30                            | 184,517                                                                    | 37                                               | 0.057                                             |

Total Estimated Mass Removed During Reporting Period (lbs) = 0.082

Total Estimated Mass Removed Since System Startup (lbs) = 2.0

Total Effluent Treated During Reporting Period (gallons) = 256,341


Total Effluent Treated Since System Startup (gallons) = 3,941,582

#### **Notes and Abbreviations:**

- 1. Total Spring Water Treated Between Sampling Intervals = Effluent Flowrate Geometric Mean x 1440 min/day x days between sampling events.
- 2. Influent Concentration Geometric Mean = (Influent Concentration for prior sampling event x Influent Concentration for current sampling event)^(1/2).
- 3. Total Mass Removed = (Total Groundwater Treated Between Sampling Intervals) x Influent Concentration Geometric Mean x 3.7854 L/gal x (1 lbs / 453,592,370 ug).
- btc Below top of casing.
- gal Gallons.
- gpm Gallons per minute.
- lbs Pounds.
- NA Not applicable.
- NM Not measured.
- ug/L Micrograms per liter.
- VOC Volatile organic compound.



**Figures** 



## **EXPLANATION**

## LONG-TERM MONITORING PLAN DESIGNATIONS

UCATION AND DESIGNATION OF MONITORING WELL

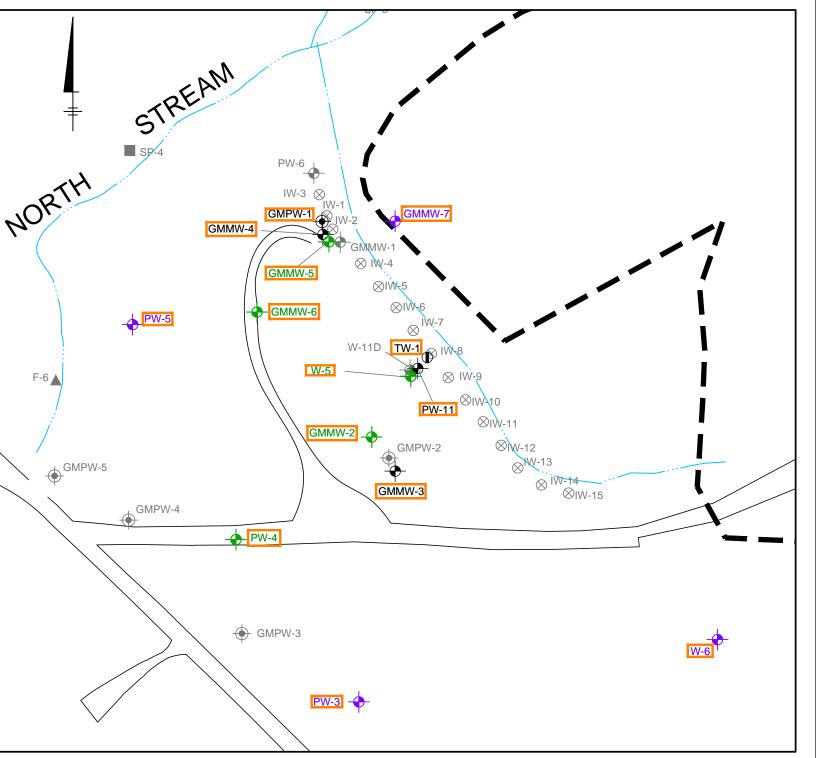
LOCATION AND DESIGNATION OF EXISTING HOMEOWNER WELL

LOCATION AND DESIGNATION OF FORMER HOMEOWNER WELL

LOCATION AND DESIGNATION OF INJECTION WELL

LOCATION AND DESIGNATION OF PRODUCTION WELL

LOCATION AND DESIGNATION OF TEST MONITORING WELL


F-6 ▲ LOCATION AND DESIGNATION OF SURFACE WATER SAMPLE

SP-2 LOCATION AND DESIGNATION OF SPRING SAMPLE

CMMW-5- LOCATION AND DESIGNATION OF QUARTERLY MONITORING WELL

PW-3 - LOCATION AND DESIGNATION OF ANNUAL MONITORING WELL

LOCATION AND DESIGNATION OF
WELLS INCLUDED IN ANNUAL
HYDRAULIC MEASUREMENT PROGRAM



SITE PLAN SHOWING PROJECT AREA

COLESVILLE LANDFILL COLESVILLE, NEW YORK SEMI-ANNUAL MONITORING REPORT

LONG-TERM EFFECTIVENESS MONITORING LOCATIONS



FIGURE



Appendix A

Degradation Trend Figures

Figure A-1. Concentrations of PCE Daughter Products Versus Time in GMMW-05

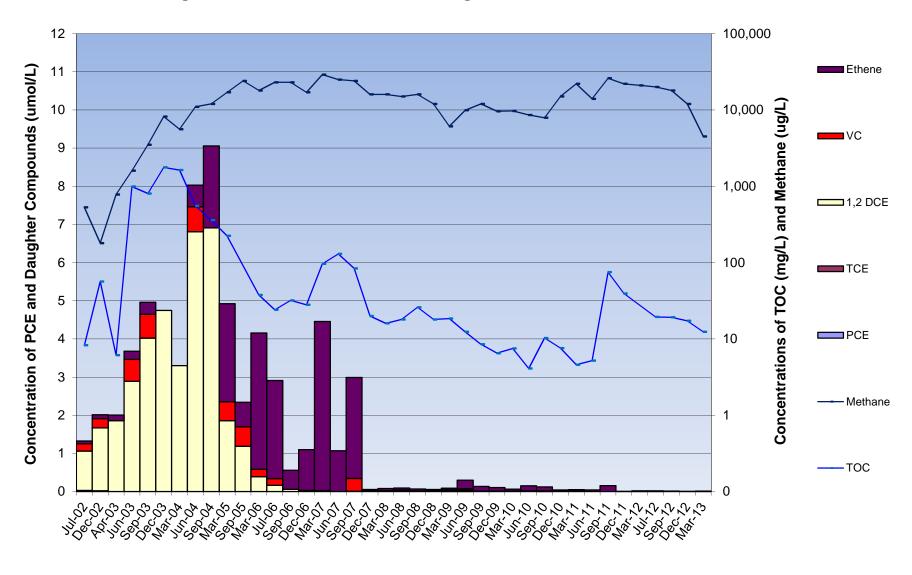



Figure A-2. Concentrations of PCE Daughter Products Versus Time in GMMW-06

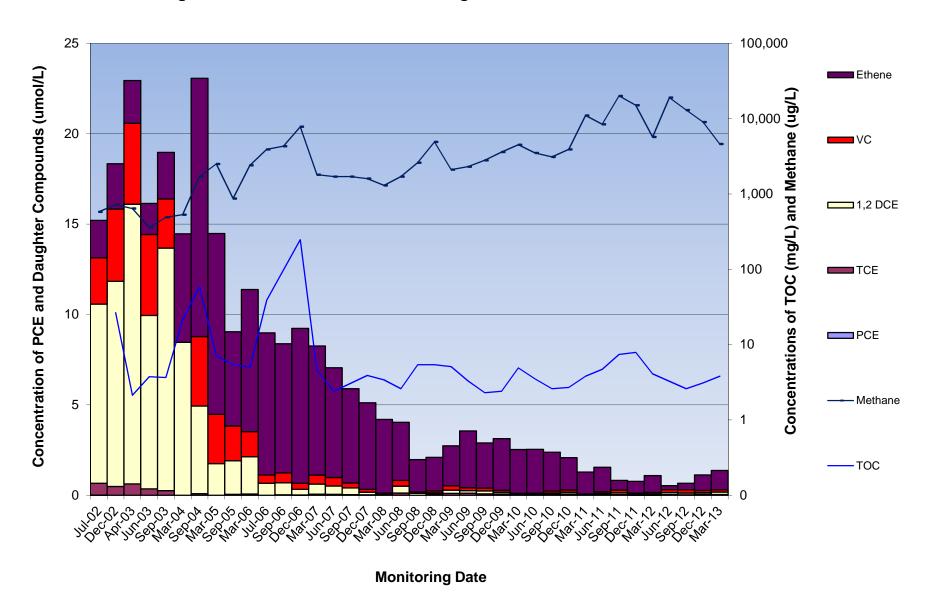



Figure A-3. Concentrations of PCE Daughter Products Versus Time in GMMW-02

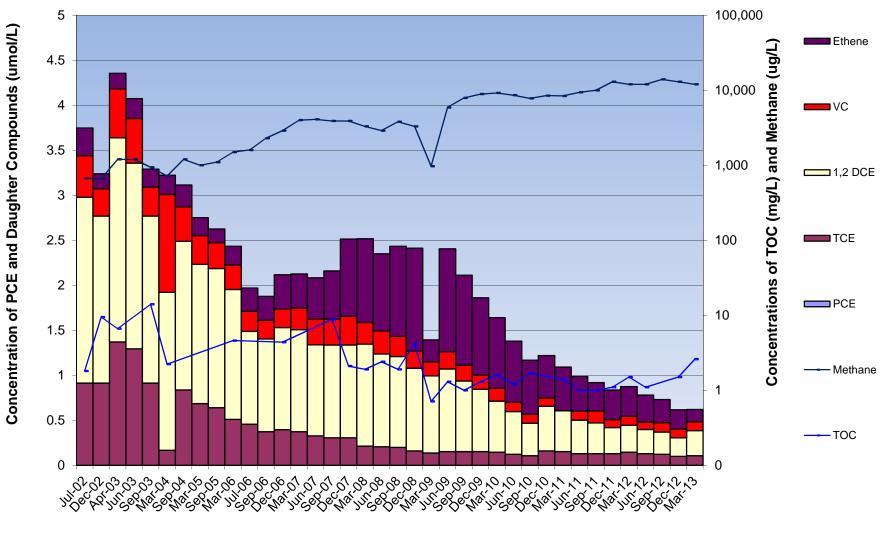



Figure A-4. Concentrations of PCE Daughter Products Versus Time in TW-1

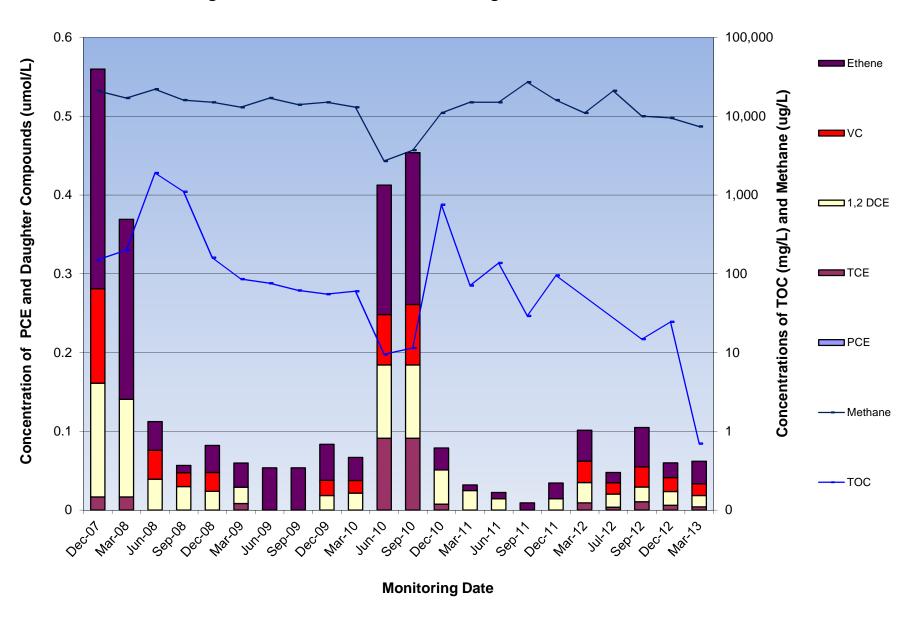



Figure A-5. Concentrations of 1,1,1-TCA Daughter Products Versus Time in GMMW-05

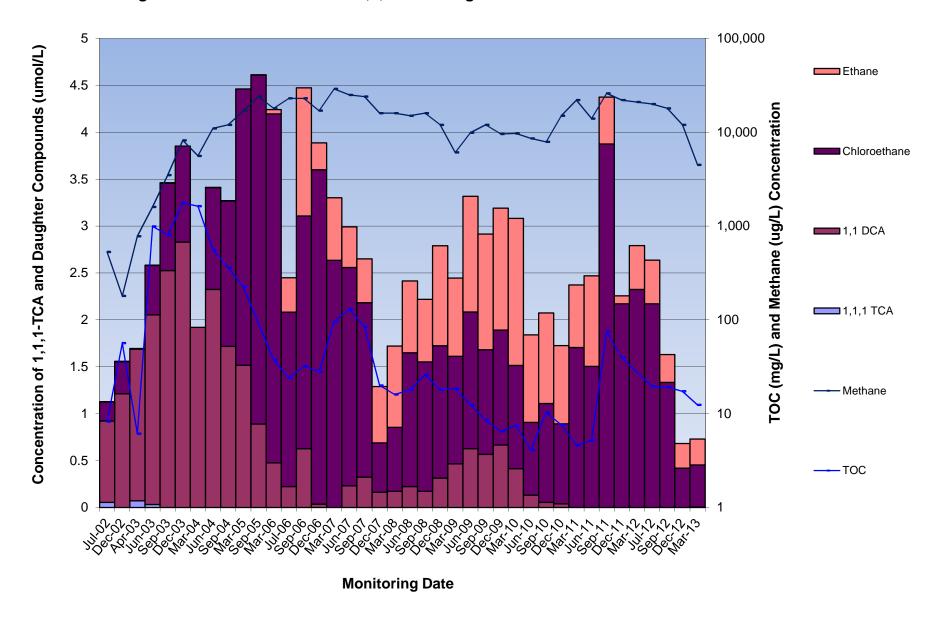



Figure A-6. Concentrations of 1,1,1-TCA Daughter Products Versus Time in GMMW-06

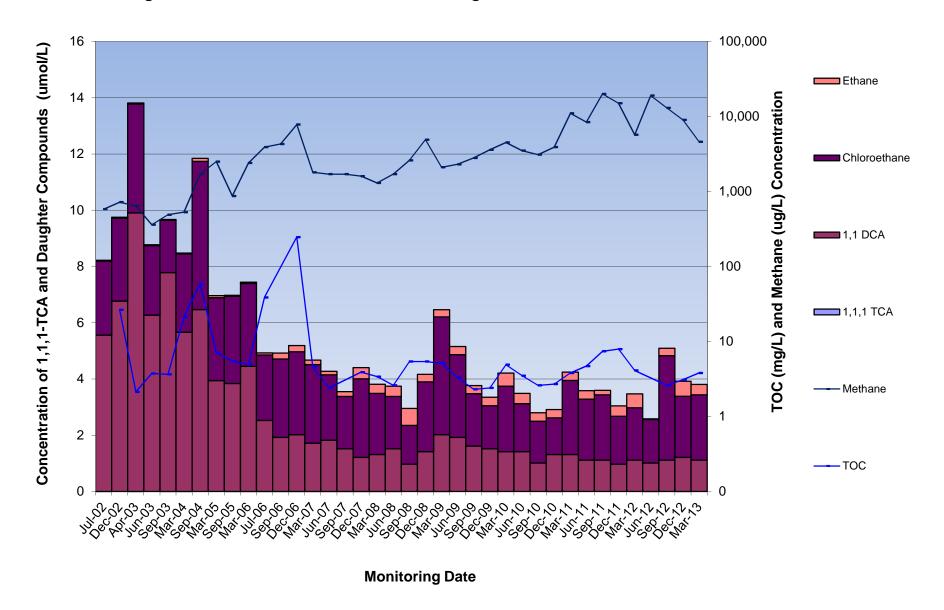



Figure A-7. Concentrations of 1,1,1-TCA Daughter Products Versus Time in GMMW-02

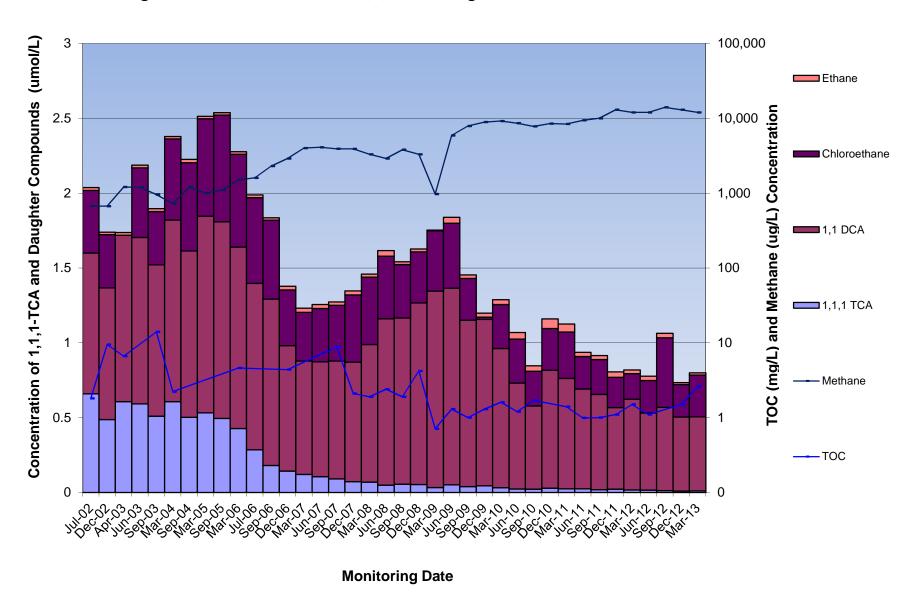
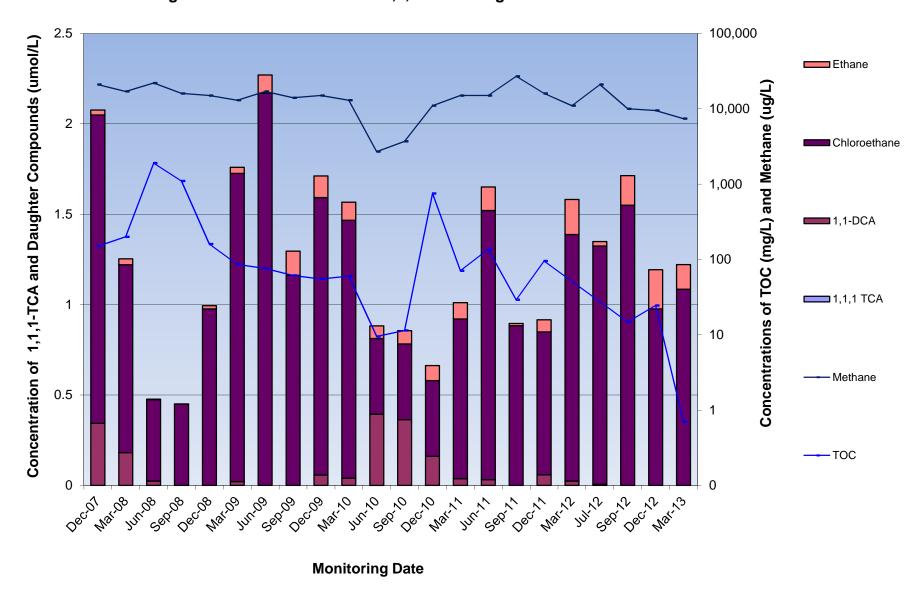




Figure A-8. Concentrations of 1,1,1-TCA Daughter Products Versus Time in TW-1





Appendix **B** 

**Groundwater Sampling Logs** 

| Colesville Colesville                                                                    | e Landfill           | Project No.                        | NY000949.0                            | <u>)025                                    </u>                                               | ge 1 of 1       |
|------------------------------------------------------------------------------------------|----------------------|------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|
| Site Location _ Colesville                                                               | e, NY                |                                    |                                       | Dat                                                                                           | e 12/18/12      |
| Site/Well No. <u>Gmm</u>                                                                 |                      | Replicate No.                      | ,                                     |                                                                                               | de No.          |
| Weather Cloud                                                                            | 4 40°                | Sampling Time                      | : Begin                               |                                                                                               | .000            |
| Evacuation Data                                                                          |                      |                                    | Field Param                           | eters                                                                                         | T <sub>e</sub>  |
| Measuring Point                                                                          |                      |                                    | Color                                 | C                                                                                             | doruss          |
| MP Elevation (ft)                                                                        | 68                   |                                    | Odor                                  |                                                                                               | JOW.            |
| Land Surface Elevation (ft                                                               | ·)                   |                                    | Appearance                            |                                                                                               | ivar            |
| Sounded Well Depth (ft br                                                                | np)                  |                                    | pH (s.u.)                             |                                                                                               | <i>6.</i> 50    |
| Depth to Water (ft bmp)                                                                  | 37.36                | _                                  | Conductivity (mS/cm)                  |                                                                                               | ),622           |
| Water-Level Elevation (ft)                                                               |                      |                                    | (µmhos/c                              |                                                                                               |                 |
| Water Column in Well (ft)                                                                |                      | <del></del>                        | Turbidity (NT                         |                                                                                               |                 |
| Casing Diameter/Type                                                                     | 2"                   | <del></del>                        | remperature                           | · —                                                                                           | 9 87            |
| Gallons in Well                                                                          |                      | ·                                  | Dissolved Ox                          |                                                                                               | -               |
| Gallons Pumped/Bailed<br>Prior to Sampling                                               |                      |                                    | DRP                                   |                                                                                               |                 |
| Sample Pump Intake<br>Setting (ft bmp)                                                   | •                    |                                    | Sampling Me                           | an and a second                                                                               | / Bailer        |
| Purge Time                                                                               | begin end            |                                    | Remarks 👤                             | eclep byod                                                                                    | a 90B           |
| Pumping Rate (gpm)                                                                       | end                  |                                    |                                       |                                                                                               |                 |
| Evacuation Method                                                                        | 2" Disposable poly b | ailer                              |                                       |                                                                                               |                 |
| Constituents Sampled                                                                     | Container            | Description                        | Nu                                    | ımber                                                                                         | Preservative    |
| 8260B VOLATILES                                                                          | 40 ML V              | OA Vials                           |                                       | 3                                                                                             |                 |
| Ethene, Ethane, Methane                                                                  | 40 ML V              |                                    |                                       | <u> </u>                                                                                      | HCL<br>Ne2DO4   |
| тос                                                                                      | 40 ML V              |                                    | _                                     | 7                                                                                             | Na3PO4<br>H2SO4 |
| Total Iron                                                                               | 500 ml               |                                    |                                       |                                                                                               | HNO3            |
|                                                                                          | 3                    |                                    |                                       | <del></del>                                                                                   |                 |
| Sampling Personnel                                                                       | КВ                   |                                    |                                       | 6                                                                                             |                 |
| Well Casing V                                                                            |                      |                                    |                                       |                                                                                               |                 |
| 3al./Ft. 1-½" = 0.06<br>1-½" = 0.09                                                      |                      | 0.37 4" = 0.6<br>' = 0.50 6" = 1.4 |                                       |                                                                                               |                 |
| below measuring point C Degrees Celsius feet Gallons per minute mg/L Miligrams per liter | ml mililiter         | per centimeter<br>evel<br>ole      | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Nephelometric T<br>Polyvinyl chlorid<br>Standard units<br>Micromhos per c<br>Volatile Organic | e<br>centimeter |

| Project                  | Colesville                 | andfill                         | Proje                                                                               | ct No. $\underline{I}$ | 17000949.00                           | 25 Page                                                                                        | 1 of 1          | •       |
|--------------------------|----------------------------|---------------------------------|-------------------------------------------------------------------------------------|------------------------|---------------------------------------|------------------------------------------------------------------------------------------------|-----------------|---------|
| Site Location            | Colesville,                | NY                              |                                                                                     |                        |                                       | Date                                                                                           | 12/18/12        |         |
| Site/Well No.            | Gmm                        | w-5                             | Repli                                                                               | cate No. 🧴             | 2EPV 1218                             | Code                                                                                           | No              |         |
| Weather                  | Cloud                      | y 400                           | Samp                                                                                | oling Time:            | Begin <u>M</u> 4                      | <u> </u>                                                                                       | 1150            | _       |
| Evacuation D             | ata                        |                                 |                                                                                     | ı                      | ield Parame                           | ters                                                                                           | ,               |         |
| Measuring Poi            | int                        |                                 |                                                                                     | (                      | Color                                 | colori                                                                                         | ess / Sigur     | gellow  |
| MP Elevation (           | (ft)                       |                                 |                                                                                     | (                      | Odor                                  | SL                                                                                             | ight            |         |
| Land Surface             | Elevation (ft)             | . 2                             |                                                                                     | ,                      | Appearance                            |                                                                                                | ear             |         |
| Sounded Well             | Depth (ft bm               | p)                              |                                                                                     | ı                      | oH (s.u.)                             |                                                                                                | 6.42            |         |
| Depth to Wate            | er (ft bmp)                | ųο                              | 1.05                                                                                | (                      | Conductivity<br>(mS/cm)               |                                                                                                | 0.299           | _       |
| Water-Level E            | levation (ft)              |                                 |                                                                                     |                        | (µmhos/cr                             | n)                                                                                             |                 |         |
| Water Column             | in Well (ft)               |                                 |                                                                                     | -                      | Furbidity (NT                         | J)                                                                                             | <u> </u>        |         |
| Casing Diame             | ter/Type                   | 2"                              |                                                                                     | -                      | Temperature (                         | (°C)                                                                                           | 9,93            |         |
| Gallons in We            |                            |                                 | <u> </u>                                                                            | ι                      | Dissolved Oxy                         | /gen (mg/L)                                                                                    |                 |         |
| Gallons Pump<br>Prior to | ed/Bailed<br>Sampling      |                                 |                                                                                     |                        | ORP                                   |                                                                                                |                 |         |
| Sample Pump<br>Setting   |                            | 65                              | .50                                                                                 |                        | Sampling Met                          | hod PDB                                                                                        | whale pump      |         |
| Purge Time               |                            | begin <u> ໃ ທ່າ</u>             | end                                                                                 |                        |                                       | ,                                                                                              |                 | •       |
| Pumping Rate             | (gpm)                      |                                 | -                                                                                   |                        |                                       |                                                                                                |                 |         |
| Evacuation Me            | ethod                      | PDB/ Whal                       | e pump                                                                              | 59<br>V                |                                       |                                                                                                |                 |         |
| Constituents S           | Sampled                    |                                 | Container Descr                                                                     | iption                 |                                       | mber                                                                                           | Preservative    |         |
| 8260B VOLAT              | ILES                       |                                 | 40 ML VOA Vi                                                                        | als                    |                                       | 13                                                                                             | HCL             | 909     |
| Ethene, Ethan            | e, Methane                 |                                 | 40 ML Vials                                                                         |                        |                                       | 2                                                                                              | Na3PO4          |         |
| TOC                      |                            |                                 | 40 ML Vials                                                                         |                        |                                       | 2                                                                                              | H2SO4 (Who      | te purp |
| TAL Metals               |                            |                                 | 250 ml plastic                                                                      |                        |                                       |                                                                                                |                 |         |
| Sampling Pers            | sonnel                     | KB                              |                                                                                     |                        |                                       |                                                                                                |                 |         |
|                          | Well Casing V              | olumes                          |                                                                                     |                        |                                       |                                                                                                |                 | ı       |
|                          | 1-¼" = 0.06<br>1-½" = 0.09 | 2" = 0.10<br>2-½" = 0           |                                                                                     | 4" = 0<br>6" = 1       |                                       |                                                                                                |                 | ı       |
| °C Degrees ft feet       | per minute                 | mI<br>mS/cm<br>msl<br>N/A<br>NR | mililiter<br>Milisiemens per ce<br>mean sea-level<br>Not Applicable<br>Not Recorded | ntimeter               | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Nephelometric T<br>Polyvinyl chloride<br>Standard units<br>Micromhos per o<br>Volatile Organic | e<br>centimeter |         |

| Project Colesville                                                                                   | Landfill F                                                                               | Project No. <u>N</u> | IY000949.0025                                     | Page <u>1</u> of <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Location Colesville,                                                                            | NY                                                                                       |                      |                                                   | Date 12/18/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Site/Well No. GMMU                                                                                   | <i>ن</i> ( <i>Q</i>                                                                      | Replicate No.        | as imso                                           | Code No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Weather <u>Cloudy</u>                                                                                | e <u>6</u> p                                                                             | Sampling Time:       | Begin 12 ZC                                       | End 1235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Evacuation Data                                                                                      |                                                                                          | F                    | ield Parameters                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring Point                                                                                      |                                                                                          | c                    | olor                                              | Colereless Slight yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MP Elevation (ft)                                                                                    |                                                                                          | c                    | dor                                               | - No Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Land Surface Elevation (ft)                                                                          |                                                                                          | A                    | ppearance                                         | Clear / Trace particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sounded Well Depth (ft bm)                                                                           | p)                                                                                       | р                    | H (s.u.)                                          | (0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Depth to Water (ft bmp)                                                                              | 39.62                                                                                    | c                    | onductivity<br>(mS/cm)                            | 0.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Water-Level Elevation (ft)                                                                           | - 9                                                                                      |                      | (µmhos/cm)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Water Column in Well (ft)                                                                            |                                                                                          | т                    | urbidity (NTU)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Casing Diameter/Type                                                                                 | 2"                                                                                       | T                    | emperature (°C)                                   | 9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gallons in Well                                                                                      |                                                                                          | D                    | issolved Oxygen                                   | n (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gallons Pumped/Bailed<br>Prior to Sampling                                                           |                                                                                          | _                    | RP                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Pump Intake<br>Setting (ft bmp)                                                               |                                                                                          |                      | ampling Method emarks                             | PDB / Bailer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Purge Time                                                                                           | begin end                                                                                |                      | Redenle                                           | and a DDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pumping Rate (gpm)                                                                                   |                                                                                          |                      |                                                   | The state of the s |
| Evacuation Method                                                                                    | 2" Disposable poly baile                                                                 | <u>er</u>            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Constituents Sampled                                                                                 | Container De                                                                             | escription           | Numbe                                             | Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8260B VOLATILES                                                                                      | 40 ML VOA                                                                                | ₹ Vials              | 3 3                                               | 3 HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ethene, Ethane, Methane                                                                              | 40 ML Vials                                                                              | s                    | _ '2'                                             | Na3PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| тос                                                                                                  | 40 ML Vials                                                                              | S                    | _ 2                                               | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Iron                                                                                           | 500 ml pla                                                                               | astic                | ***************************************           | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sampling Personnel                                                                                   | КВ                                                                                       |                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Well Casing Vo                                                                                       | olumes                                                                                   |                      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Gal./Ft.</b> $1-\frac{1}{2}$ " = 0.06 $1-\frac{1}{2}$ " = 0.09                                    | 2" = 0.16 $3" = 0.2-\frac{1}{2}" = 0.26 3-\frac{1}{2}" =$                                |                      | =                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bmp below measuring point °C Degrees Celsius ft feet gpm Gallons per minute mg/L Miligrams per liter | ml mililiter mS/cm Milisiemens per msl mean sea-level N/A Not Applicable NR Not Recorded | r centimeter         | NTU Nep<br>PVC Poly<br>s.u. Star<br>umhos/cm Mice | phelometric Turbidity Units<br>gvinyl chloride<br>ndard units<br>romhos per centimeter<br>atile Organic Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Project Colesville Lar                                                                                 | idili Pro                                                                                  | oject No.    | NY000949.00                           | 025 Page                                                                                       | : <u>1</u> of <u>1</u> |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|---------------------------------------|------------------------------------------------------------------------------------------------|------------------------|
| Site Location Colesville, NY                                                                           | <u>,                                      </u>                                             |              |                                       | Date                                                                                           | 21/8/15/               |
| Site/Well No. Dw-4                                                                                     | Re                                                                                         | plicate No.  | _                                     | Code                                                                                           | No.                    |
| Weather <u>Rain</u> 4                                                                                  | O°S Sa                                                                                     | mpling Time  | e: Begin <u>13</u>                    | End                                                                                            | 1310                   |
| Evacuation Data                                                                                        |                                                                                            |              | Field Parame                          | eters                                                                                          |                        |
| Measuring Point                                                                                        |                                                                                            | _            | Color                                 | Colo                                                                                           | e Loss                 |
| MP Elevation (ft)                                                                                      |                                                                                            | _            | Odor                                  | Co                                                                                             | V6                     |
| Land Surface Elevation (ft)                                                                            |                                                                                            | _            | Appearance                            | Cla                                                                                            | iR                     |
| Sounded Well Depth (ft bmp)                                                                            |                                                                                            | _            | pH (s.u.)                             | Co                                                                                             | .73                    |
| Depth to Water (ft bmp)                                                                                | 18.48                                                                                      | _ 3          | Conductivity (mS/cm)                  | $\bigcirc$                                                                                     | . 53/                  |
| Water-Level Elevation (ft)                                                                             |                                                                                            | _            | (µmhos/c                              | m)                                                                                             |                        |
| Water Column in Well (ft)                                                                              |                                                                                            | _            | Turbidity (NTI                        | J) .                                                                                           |                        |
| Casing Diameter/Type                                                                                   | 2"                                                                                         | _            | Temperature                           | (°C)                                                                                           | 0.93                   |
| Gallons in Well                                                                                        |                                                                                            |              | Dissolved Oxy                         | ygen (mg/L)                                                                                    | -                      |
| Gallons Pumped/Bailed Prior to Sampling                                                                |                                                                                            | # 'S         | ORP                                   |                                                                                                |                        |
| Sample Pump Intake<br>Setting (ft bmp)                                                                 |                                                                                            |              | Sampling Met                          | edeployed                                                                                      | / Bailer               |
| Purge Time beg                                                                                         | in end                                                                                     | _            |                                       | anthropics.                                                                                    | a pap                  |
| Pumping Rate (gpm)                                                                                     |                                                                                            | _            |                                       |                                                                                                | 38                     |
| Evacuation Method 2"                                                                                   | Disposable poly bailer                                                                     | <del>-</del> |                                       |                                                                                                |                        |
| Constituents Sampled                                                                                   | Container Des                                                                              | cription     | Nu                                    | mber                                                                                           | Preservative           |
| 8260B VOLATILES                                                                                        | 40 ML VOA \                                                                                | Vials        |                                       | 3                                                                                              | HCL                    |
| Ethene, Ethane, Methane                                                                                | 40 ML Vials                                                                                |              |                                       | 2                                                                                              | Na3PO4                 |
| TOC                                                                                                    | 40 ML Vials                                                                                |              |                                       | 2                                                                                              | H2SO4                  |
| Total Iron                                                                                             | 500 ml plas                                                                                | tic          |                                       |                                                                                                | HNO3                   |
| Sampling Personnel                                                                                     | <b>-</b> КВ                                                                                |              |                                       |                                                                                                |                        |
| Well Casing Volum                                                                                      | nes                                                                                        |              |                                       |                                                                                                |                        |
| Gal./Ft. 1-¼" = 0.06<br>1-½" = 0.09                                                                    | 2" = 0.16 3" = 0.3<br>2-½" = 0.26 3-½" = 0                                                 |              |                                       |                                                                                                |                        |
| bmp below measuring point  °C Degrees Celsius  ft feet gpm Gallons per minute mg/L Miligrams per liter | ml mililiter mS/cm Milisiemens per o msl mean sea-level N/A Not Applicable NR Not Recorded | centimeter   | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Nephelometric T<br>Polyvinyl chloride<br>Standard units<br>Micromhos per c<br>Volatile Organic | entimeter              |

| Project Col                                                                         | esville Landfill                                         | Project No. 1                                                | NY000949.0025                    | Page <u>1</u> of <u>1</u>                                                                                                   |
|-------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Site Location Col                                                                   | esville, NY                                              |                                                              |                                  | Date 12/18/12                                                                                                               |
| Site/Well No.                                                                       | Iw-                                                      | Replicate No.                                                |                                  | Code No.                                                                                                                    |
| Weather <u>C</u>                                                                    | ondy 400                                                 | Sampling Time:                                               | Begin <u>1125</u>                | End 1130                                                                                                                    |
| Evacuation Data                                                                     |                                                          | ı                                                            | Field Parameters                 | S                                                                                                                           |
| Measuring Point                                                                     |                                                          |                                                              | Color                            | Clear Stight yellow                                                                                                         |
| MP Elevation (ft)                                                                   |                                                          |                                                              | Odor                             | scigns                                                                                                                      |
| Land Surface Eleva                                                                  | tion (ft)                                                |                                                              | Appearance                       | Clear / Trace which particles                                                                                               |
| Sounded Well Dept                                                                   | h (ft bmp)                                               |                                                              | pH (s.u.)                        | 6.34                                                                                                                        |
| Depth to Water (ft b                                                                | mp) <u>52.64</u>                                         | <u>'</u>                                                     | Conductivity<br>(mS/cm)          | 1.899                                                                                                                       |
| Water-Level Elevati                                                                 | on (ft)                                                  |                                                              | (µmhos/cm)                       |                                                                                                                             |
| Water Column in W                                                                   | ell (ft)                                                 |                                                              | Turbidity (NTU)                  |                                                                                                                             |
| Casing Diameter/Ty                                                                  | /pe2"                                                    | <u>-</u>                                                     | Temperature (°C)                 | 10.64                                                                                                                       |
| Gallons in Well                                                                     |                                                          |                                                              | Dissolved Oxyger                 | n (mg/L)                                                                                                                    |
| Gallons Pumped/Ba<br>Prior to Samp                                                  |                                                          |                                                              | ORP                              |                                                                                                                             |
| Sample Pump Intak                                                                   | Δ                                                        | ;                                                            | Sampling Method                  | PDB / whale pump                                                                                                            |
| Setting (ft bm                                                                      |                                                          |                                                              | Remarks <u>d</u>                 | played a PDB                                                                                                                |
| Purge Time                                                                          | begin 10 min end                                         | <del></del>                                                  |                                  |                                                                                                                             |
| Pumping Rate (gpm                                                                   |                                                          |                                                              |                                  |                                                                                                                             |
| Evacuation Method                                                                   | PDB/ Whale pum                                           | ip                                                           |                                  |                                                                                                                             |
| Constituents Sample                                                                 | led Conta                                                | iner Description                                             | Numbe                            | er Preservative                                                                                                             |
| 8260B VOLATILES                                                                     | 40 N                                                     | IL VOA Vials                                                 | 3                                | HCL > PUB                                                                                                                   |
| Ethene, Ethane, Me                                                                  | ethane 40 N                                              | /IL Vials                                                    | <u> </u>                         | Na3PO4 H2SO4 Whala Dung                                                                                                     |
| TOC                                                                                 | 40 N                                                     | //L Vials                                                    |                                  | H2SO4 Whala furt                                                                                                            |
| TAL Metals                                                                          |                                                          | ml plastic                                                   | <del></del> ,                    |                                                                                                                             |
|                                                                                     |                                                          |                                                              |                                  |                                                                                                                             |
| Sampling Personne                                                                   | el KB                                                    |                                                              |                                  |                                                                                                                             |
| Gai./Ft. 1-1/4"                                                                     | Casing Volumes<br>= 0.06 2" = 0.16<br>= 0.09 2-½" = 0.26 | 3" = 0.37                                                    |                                  |                                                                                                                             |
| bmp below measuri °C Degrees Celsii ft feet gpm Gallons per mi mg/L Miligrams per i | us mS/cm Milisier<br>msl mean :<br>nute N/A Not Ap       | r<br>mens per centimeter<br>sea-level<br>plicable<br>ecorded | PVC Po<br>s.u. St<br>umhos/cm Mi | ephelometric Turbidity Units<br>olyvinyl chloride<br>tandard units<br>licromhos per centimeter<br>olatile Organic Compounds |

| Project Colesville Landfill                                                                                                                                                              | Project No. N                      | Y000949.0025                           | Page 1 of 1                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Site Location Colesville, NY                                                                                                                                                             | 3                                  |                                        | Date 12 19 12                                                                                                                   |
| Site/Well No. Tw-3                                                                                                                                                                       | Replicate No.                      |                                        | Code No.                                                                                                                        |
| Weather Partly Cloudy 400                                                                                                                                                                | Sampling Time:                     | Begin 110                              | <u> </u>                                                                                                                        |
| Evacuation Data                                                                                                                                                                          | Fi                                 | eld Paramete                           | rs                                                                                                                              |
| Measuring Point                                                                                                                                                                          | Co                                 | olor                                   | gray trot                                                                                                                       |
| MP Elevation (ft)                                                                                                                                                                        |                                    | dor                                    | ned.                                                                                                                            |
| Land Surface Elevation (ft)                                                                                                                                                              | Ap                                 | opearance                              | Clear                                                                                                                           |
| Sounded Well Depth (ft bmp)                                                                                                                                                              | pH                                 | H (s.u.)                               | 6,13                                                                                                                            |
| Depth to Water (ft bmp) 42.2                                                                                                                                                             | Co                                 | onductivity<br>(mS/cm)                 |                                                                                                                                 |
| Water-Level Elevation (ft)                                                                                                                                                               |                                    | (µmhos/cm)                             |                                                                                                                                 |
| Water Column in Well (ft)                                                                                                                                                                | Tu                                 | urbidity (NTU)                         |                                                                                                                                 |
| Casing Diameter/Type 2"                                                                                                                                                                  | <u></u><br>Те                      | emperature (°0                         |                                                                                                                                 |
| Gallons in Well                                                                                                                                                                          | <br>Di:                            | issolved Oxyg                          | en (mg/L)                                                                                                                       |
| Gallons Pumped/Bailed                                                                                                                                                                    | <u>—</u><br>ОІ                     | RP                                     |                                                                                                                                 |
| Prior to Sampling                                                                                                                                                                        |                                    | amaliaa Matha                          | d whole numb                                                                                                                    |
| Sample Pump Intake Setting (ft bmp)  57.5                                                                                                                                                |                                    | ampling Metho                          | d whale pump                                                                                                                    |
|                                                                                                                                                                                          | Re                                 | emarks                                 |                                                                                                                                 |
| Purge Time begin / 6 m Yend                                                                                                                                                              | <del></del>                        |                                        |                                                                                                                                 |
| Pumping Rate (gpm)  Evacuation Method Recirculation                                                                                                                                      |                                    |                                        |                                                                                                                                 |
| Evacuation Method Techculation                                                                                                                                                           |                                    |                                        |                                                                                                                                 |
| Constituents Sampled Container I                                                                                                                                                         | Description                        | Num                                    | per Preservative                                                                                                                |
| 8260B VOLATILES 40 ML VO                                                                                                                                                                 | DA Vials                           |                                        | <u>HCL</u>                                                                                                                      |
| Ethene, Ethane, Methane 40 ML Via                                                                                                                                                        | als                                |                                        | <u>Na3PO4</u>                                                                                                                   |
| TOC 40 ML Via                                                                                                                                                                            | als                                |                                        | H2SO4                                                                                                                           |
| TAL Metals 500 ml p                                                                                                                                                                      | lastic                             |                                        | HNO3                                                                                                                            |
|                                                                                                                                                                                          |                                    |                                        |                                                                                                                                 |
| Sampling Personnel KB                                                                                                                                                                    |                                    |                                        |                                                                                                                                 |
| Well Casing Volumes                                                                                                                                                                      |                                    |                                        |                                                                                                                                 |
| <b>Gal./Ft.</b> $1-\frac{1}{4}$ " = 0.06 2" = 0.16 3" = $1-\frac{1}{2}$ " = 0.09 $2-\frac{1}{2}$ " = 0.26 $3-\frac{1}{2}$ "                                                              | 0.37 4" = 0.69<br>= 0.50 6" = 1.43 | Ē                                      |                                                                                                                                 |
| bmp below measuring point ml mililiter  °C Degrees Celsius ms/cm Milisiemens p ft feet msl mean sea-let gpm Gallons per minute N/A Not Applicab mg/L Miligrams per liter NR Not Recorder | per centimeter<br>vel<br>le        | NTU N<br>PVC F<br>s.u. S<br>umhos/cm M | lephelometric Turbidity Units<br>Polyvinyl chloride<br>Standard units<br>dicromhos per centimeter<br>Volatile Organic Compounds |

| Project _                                                                    | Colesville I               | <u> Landfill</u>                |                                                                 | Project No.   | NY000949.0                            | 025                              | Page                             | 1 or 1                                             |
|------------------------------------------------------------------------------|----------------------------|---------------------------------|-----------------------------------------------------------------|---------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|
| Site Location _                                                              | Colesville,                | NY                              |                                                                 |               |                                       |                                  | Date                             | 12/19/12                                           |
| Site/Well No.                                                                | 工心.                        | - 8                             |                                                                 | Replicate No. | -                                     |                                  | Code                             | No                                                 |
| Weather Ç                                                                    | )aithy                     | cloudy                          | 40°                                                             | Sampling Time | e: Begin <u>1</u>                     | 140                              | End                              | 1150                                               |
| Evacuation Da                                                                | ta                         |                                 |                                                                 |               | Field Param                           | eters                            |                                  |                                                    |
| Measuring Poin                                                               | nt .                       |                                 |                                                                 |               | Color                                 |                                  | Dra                              | sa tost                                            |
| MP Elevation (f                                                              | t)                         |                                 |                                                                 |               | Odor                                  |                                  | 370                              | 40                                                 |
| Land Surface E                                                               | levation (ft)              |                                 |                                                                 |               | Appearance                            | _                                | Civ                              | ar                                                 |
| Sounded Well [                                                               | Depth (ft bm               | p)                              |                                                                 |               | pH (s.u.)                             |                                  |                                  | 6,24                                               |
| Depth to Water                                                               | (ft bmp)                   | 51                              | .89                                                             |               | Conductivity<br>(mS/cm)               |                                  |                                  |                                                    |
| Water-Level Ele                                                              | evation (ft)               |                                 |                                                                 |               | (µmhos/                               | cm)                              |                                  |                                                    |
| Water Column                                                                 | in Well (ft)               |                                 |                                                                 |               | Turbidity (N7                         | ΓU)                              |                                  |                                                    |
| Casing Diamete                                                               | er/Type                    | 2"                              |                                                                 |               | Temperature                           | e(°C)                            |                                  |                                                    |
| Gallons in Well                                                              |                            |                                 |                                                                 |               | Dissolved O                           | xygen (mg                        | /L)                              |                                                    |
| Gallons Pumpe<br>Prior to S                                                  |                            |                                 |                                                                 |               | ORP                                   | _                                |                                  |                                                    |
| Sample Pump I                                                                | Intoko                     |                                 |                                                                 |               | Sampling Me                           | ethod                            | whale                            | pump                                               |
| Setting (1                                                                   |                            | 59                              | .60                                                             |               | Remarks _                             |                                  |                                  |                                                    |
| Purge Time                                                                   |                            | begin <u>15 m</u> ?             | end                                                             |               |                                       |                                  |                                  |                                                    |
| Pumping Rate                                                                 | (gpm)                      |                                 |                                                                 |               |                                       | 45                               |                                  |                                                    |
| Evacuation Me                                                                | thod                       | Recirculation                   | on                                                              |               |                                       |                                  |                                  |                                                    |
| Constituents Sa                                                              | ampled                     |                                 | Containe                                                        | r Description | , N                                   | lumber                           |                                  | Preservative                                       |
| 8260B VOLATI                                                                 | LES                        |                                 | 40 ML \                                                         | VOA Vials     |                                       |                                  | _                                | HCL                                                |
| Ethene, Ethane                                                               | e, Methane                 |                                 | 40 ML                                                           | Vials         |                                       |                                  | <del></del>                      | Na3PO4                                             |
| TOC                                                                          |                            |                                 | 40 ML \                                                         | Vials         |                                       |                                  |                                  | H2SO4                                              |
| TAL Metals                                                                   |                            |                                 | 500 ml                                                          | plastic       |                                       |                                  | _                                | HNO3                                               |
| Sampling Person                                                              | onnel                      | ——<br>КВ                        |                                                                 |               |                                       | _,.                              | _                                |                                                    |
|                                                                              | Well Casing \              |                                 |                                                                 |               |                                       |                                  | -                                |                                                    |
| Gai./Ft.                                                                     | 1-¼" = 0.06<br>1-½" = 0.09 | 2" = 0.1<br>2-½" = (            |                                                                 |               | 0.65<br>1.47                          |                                  |                                  |                                                    |
| bmp below mea<br>°C Degrees (<br>ft feet<br>gpm Gallons pa<br>mg/L Miligrams | er minute                  | mi<br>mS/cm<br>msl<br>N/A<br>NR | mililiter<br>Milisiemen<br>mean sea-<br>Not Applic<br>Not Recor | able          | NTU<br>PVC<br>s.u.<br>umhos/cr<br>VOC | Polyviny<br>Standar<br>m Micromb | /I chlorid<br>d units<br>hos per | Turbidity Units<br>le<br>centimeter<br>c Compounds |

| Project _                                                                    | Colesville L                                       | andfill                                       |                                                                      | Project No.   | NY00094                            | 9.0025                        | Page                                    | <u>1</u> of <u>1</u> |
|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|---------------|------------------------------------|-------------------------------|-----------------------------------------|----------------------|
| Site Location _                                                              | Colesville, I                                      | NY                                            |                                                                      |               |                                    |                               | Date                                    | 12/19/12             |
| Site/Well No.                                                                | IW-1.                                              | 3                                             | _                                                                    | Replicate No. |                                    |                               | Code                                    | No                   |
| Weather _                                                                    | Partly                                             | <u> 104 dy 40</u>                             |                                                                      | Sampling Time | e: Begin                           | 1230                          | End                                     | 1235                 |
| Evacuation Da                                                                | ıta                                                |                                               |                                                                      |               | Field Par                          | ameters                       |                                         |                      |
| Measuring Poir                                                               | nt _                                               |                                               |                                                                      |               | Color                              |                               | Oran                                    | ge fint              |
| MP Elevation (f                                                              | ft) _                                              |                                               |                                                                      |               | Odor                               |                               | med                                     | 0                    |
| Land Surface E                                                               | Elevation (ft)                                     |                                               | -                                                                    |               | Appearan                           | ce _                          | Clea                                    | R                    |
| Sounded Well I                                                               | Depth (ft bmp                                      | )                                             |                                                                      |               | pH (s.u.)                          | -                             | (                                       | 0.28                 |
| Depth to Water                                                               | (ft bmp) _                                         | 55                                            | 5.50                                                                 | ····          | Conductiv                          |                               |                                         |                      |
| Water-Level El                                                               | evation (ft)                                       |                                               |                                                                      |               | (µmho                              | os/cm)                        |                                         |                      |
| Water Column                                                                 | in Well (ft)                                       |                                               |                                                                      |               | Turbidity (                        | (NTU)                         |                                         | <del></del>          |
| Casing Diamete                                                               | er/Type _                                          | 2"                                            |                                                                      |               | Temperat                           | ure (°C)                      |                                         |                      |
| Gallons in Well                                                              | _                                                  |                                               |                                                                      |               | Dissolved                          | Oxygen (n                     | ng/L)                                   |                      |
| Gallons Pumpe<br>Prior to S                                                  |                                                    |                                               |                                                                      |               | ORP                                | -                             |                                         |                      |
|                                                                              |                                                    |                                               |                                                                      |               | Sampling                           | Method                        | PDB /                                   | whale pump           |
| Sample Pump (<br>Setting (                                                   |                                                    | 59                                            | 1.60                                                                 |               | Remarks                            |                               |                                         |                      |
| Purge Time                                                                   | ı                                                  | begin <u>12mW</u>                             | end                                                                  |               |                                    |                               |                                         |                      |
| Pumping Rate                                                                 |                                                    | . <u>.                                   </u> |                                                                      |               |                                    |                               |                                         |                      |
| Evacuation Me                                                                | thod _                                             | PDB/ Whal                                     | e pump                                                               |               |                                    |                               |                                         | 1                    |
| Constituents Sa                                                              | ampled                                             |                                               | Container                                                            | Description   |                                    | Number                        |                                         | Preservative         |
| 8260B VOLATI                                                                 | LES                                                |                                               | 40 ML V                                                              | OA Vials      |                                    |                               |                                         | HCL                  |
| Ethene, Ethane                                                               | e, Methane                                         |                                               | 40 ML V                                                              | ials          |                                    |                               |                                         | Na3PO4               |
| TOC                                                                          |                                                    |                                               | 40 ML V                                                              | ials          |                                    | 2                             |                                         | H2SO4                |
| TAL Metals                                                                   |                                                    |                                               | 250 ml                                                               | plastic       |                                    |                               |                                         | •                    |
|                                                                              |                                                    | _                                             |                                                                      |               |                                    |                               | <del></del>                             |                      |
| Sampling Person                                                              |                                                    | КВ                                            |                                                                      |               |                                    |                               |                                         |                      |
| Gai./Ft.                                                                     | <b>Well Casing V</b><br>1-¼" = 0.06<br>1-½" = 0.09 | olumes<br>2" = 0.19<br>2-½" = (               |                                                                      |               | 0.65<br>1.47                       |                               |                                         |                      |
| bmp below mea<br>°C Degrees C<br>ft feet<br>gpm Gallons po<br>mg/L Miligrams | er minute                                          | mi<br>mS/cm<br>msl<br>N/A<br>NR               | mililiter<br>Milisiemens<br>mean sea-le<br>Not Applica<br>Not Record | bie           | NTU<br>PVC<br>s.u.<br>umhos<br>VOC | Polyvi<br>Stand<br>/cm Microi | nyl chloride<br>ard units<br>mhos per c |                      |

| Project                                                          | Colesville Lar             | dfill                    | Project No.                                                           | NY000949.00                           | 025                               | Page <u>1</u> of <u>1</u> |
|------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------|
| Site Location                                                    | Colesville, NY             | ,                        |                                                                       |                                       |                                   | Date 12/19/12             |
| Site/Well No.                                                    | SP-51                      | 1 Fluent                 | Replicate No                                                          |                                       |                                   | Code No                   |
| Weather                                                          | partly                     | Jordy 40                 | Sampling Tin                                                          | ne: Begin It                          | 105                               | End 1410                  |
| Evacuation Da                                                    | ata                        |                          |                                                                       | Field Parame                          | eters                             |                           |
| Measuring Poi                                                    | nt                         |                          |                                                                       | Color                                 |                                   | ColoRLess                 |
| MP Elevation (                                                   | ft)                        |                          |                                                                       | Odor                                  |                                   | None                      |
| Land Surface B                                                   | Elevation (ft)             |                          | <u> </u>                                                              | Appearance                            |                                   | Clear                     |
| Sounded Well                                                     | Depth (ft bmp)             | <u> 3, 8</u>             | 0                                                                     | pH (s.u.)                             |                                   | 6.31                      |
| Depth to Water                                                   | r (ft bmp)                 | 0.0                      | <u> </u>                                                              | Conductivity (mS/cm)                  | <u> </u>                          | 0.498                     |
| Water-Level El                                                   | evation (ft)               |                          |                                                                       | (µmhos/c                              | m)                                |                           |
| Water Column                                                     | in Well (ft)               | 3.8                      | <u>'O</u>                                                             | Turbidity (NT                         | U)                                |                           |
| Casing Diamet                                                    | er/Type                    | 2"                       |                                                                       | Temperature                           | (°C)                              | 7.67                      |
| Gallons in Wel                                                   | <u> </u>                   | 06                       | ,19                                                                   | Dissolved Ox                          | ygen (mg/                         | 'L)                       |
| Gallons Pumpe                                                    | ed/Bailed<br>Sampling      | 2,0                      |                                                                       | ORP                                   | _                                 |                           |
|                                                                  |                            |                          |                                                                       | Sampling Me                           | thod                              | Bailer                    |
| Sample Pump<br>Setting (                                         |                            |                          |                                                                       | Remarks                               |                                   |                           |
| Purge Time                                                       | beg                        | jin <u> /Ч₺0</u> er      | id 1405                                                               |                                       |                                   |                           |
| Pumping Rate                                                     |                            |                          |                                                                       |                                       |                                   |                           |
| Evacuation Me                                                    | thod <u>2"</u>             | Disposable <sub>l</sub>  | ooly bailer                                                           |                                       |                                   |                           |
| Constituents Sa                                                  | ampled                     | Cor                      | tainer Description                                                    | Nu                                    | umber                             | Preservative              |
| 8260B VOLAT                                                      | LES                        | 40                       | ML VOA Vials                                                          |                                       | 3                                 | HCL                       |
| Ethene, Ethane                                                   | e, Methane                 | 40                       | ML Vials                                                              |                                       | <del>-</del>                      | Na3PO4                    |
| TOC                                                              |                            | 40                       | ML Vials                                                              |                                       | _                                 | H2SO4                     |
| Total Iron                                                       | AL metals                  |                          | 00 ml plastic                                                         |                                       |                                   | HNO3                      |
| Sampling Person                                                  | onnel                      | – <u>—</u><br>КВ         |                                                                       |                                       |                                   |                           |
|                                                                  | Well Casing Volu           | mes                      |                                                                       |                                       |                                   |                           |
| Gal./Ft.                                                         | 1-¼" = 0.06<br>1-½" = 0.09 | 2" = 0.16<br>2-½" = 0.26 |                                                                       | = 0.65<br>= 1.47                      |                                   |                           |
| bmp below mer °C Degrees 0 ft feet gpm Gallons pe mg/L Miligrams | er minute                  | msl mea<br>N/A Not       | ter<br>iemens per centimeter<br>n sea-level<br>Applicable<br>Recorded | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Polyvinyl<br>Standard<br>Micromho |                           |

| Project Colesville Landfill   | Project No. <u>NY000949.0025</u>                   | Page \ of \       |
|-------------------------------|----------------------------------------------------|-------------------|
| Site Location Colesville, NY  |                                                    | Date              |
| Site/Well No. SP. 5 effluent  | Replicate No.                                      | _                 |
| Weather Partly Cloudy         | પુ <sub>0</sub> ે Sampling Time: Begin <u>ડે</u> 5 | 3 End <u>1356</u> |
| Site Conditions               | Field Parameters                                   | 3                 |
| Water Quality Meter: USI      | Color                                              | COLORLISS         |
|                               | Odor                                               | 000               |
| Location Condition:           | Appearance                                         | Clear             |
| Cleared out or                | Oe 4                                               |                   |
|                               | to sampling                                        |                   |
| •                             | pH (s.u.)                                          | 6.15              |
| Vegetation:                   |                                                    |                   |
| doment                        | Conductivity (mS/cr                                | m)                |
|                               |                                                    |                   |
|                               | Temperature (°C)                                   | <u>7.40</u>       |
| Depth of Water:               |                                                    |                   |
| 1.0                           | DO (mg/L)                                          |                   |
| Estimated Flow Rate: 1.5 Se   | C 100 (NTU)                                        |                   |
|                               | ORP                                                |                   |
| Collection Method: Direct c   | ollection Time                                     | <u> </u>          |
|                               |                                                    |                   |
|                               |                                                    |                   |
|                               |                                                    |                   |
| Remarks:                      |                                                    |                   |
| VOCS / TAL Y                  | volals - Submitted                                 |                   |
|                               |                                                    |                   |
| 2                             |                                                    |                   |
|                               |                                                    |                   |
|                               |                                                    |                   |
| Constituents Sampled: See COC | Sampling Personnel:                                | KB                |

## Water Sampling Log

| Project Colesville Lan                                                                            | dfill Proje                                                                                  | ect No. N                | Y000949.00                            | 26 Page                                                                                            | 1 of 1                 |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| Site Location Colesville, NY                                                                      |                                                                                              |                          |                                       | Date                                                                                               | 3/20 27/13             |
| Site/Well No. Gmmw                                                                                | - Z Repli                                                                                    | icate No.                |                                       | Code                                                                                               | No.                    |
| Weather Cloudy                                                                                    | <u>40°</u> Sam                                                                               | pling Time:              | Begin 13                              | 50 End                                                                                             | 1420                   |
| Evacuation Data                                                                                   |                                                                                              | Fie                      | eld Parame                            | ters                                                                                               |                        |
| Measuring Point                                                                                   |                                                                                              | Co                       | olor                                  | <u></u>                                                                                            | RLCSS                  |
| MP Elevation (ft)                                                                                 |                                                                                              | Oc                       | dor                                   | <u></u>                                                                                            | <u> </u>               |
| Land Surface Elevation (ft)                                                                       | ·                                                                                            |                          | pearance                              | _Cle                                                                                               | aR                     |
| Sounded Well Depth (ft bmp)                                                                       | 56.05 T.OF                                                                                   | PUC PH                   | l (s.u.)                              | (c                                                                                                 | .83                    |
| Depth to Water (ft bmp)                                                                           | 38.75                                                                                        | Co                       | nductivity<br>(mS/cm)                 | (0)                                                                                                | 9 uslcm                |
| Water-Level Elevation (ft)                                                                        |                                                                                              |                          | (µmhos/cr                             | n)                                                                                                 |                        |
| Water Column in Well (ft)                                                                         |                                                                                              | Tu                       | rbidity (NTL                          | l)                                                                                                 |                        |
| Casing Diameter/Type                                                                              | 2"                                                                                           | Te                       | mperature (                           | °C)(C                                                                                              | . 4                    |
| Gallons in Well                                                                                   | <u></u>                                                                                      | Dis                      | ssolved Oxy                           | gen (mg/L)                                                                                         |                        |
| Gallons Pumped/Bailed Prior to Sampling                                                           |                                                                                              | OF                       | RP.                                   |                                                                                                    |                        |
| Sample Pump Intake<br>Setting (ft bmp)                                                            | 51'                                                                                          |                          | mpling Methemarks                     | PDB/                                                                                               | Bailer/whak punf       |
| Purge Time beg                                                                                    | in end                                                                                       |                          |                                       |                                                                                                    | 03                     |
| Pumping Rate (gpm)                                                                                | m: 1 (2.0 galp                                                                               | ne                       |                                       |                                                                                                    |                        |
| Evacuation Method 2"                                                                              | Disposable poly bailer                                                                       |                          |                                       |                                                                                                    |                        |
| Constituents Sampled                                                                              | Container Descri                                                                             | ption                    | Nui                                   | mber                                                                                               | Preservative           |
| 8260B VOLATILES                                                                                   | 40 ML VOA Via                                                                                | als                      |                                       | 3                                                                                                  | HCL                    |
| Ethene, Ethane, Methane                                                                           | 40 ML Vials                                                                                  |                          |                                       | 2                                                                                                  | Na3PO4                 |
| TOC                                                                                               | 40 ML Vials                                                                                  |                          |                                       | 2                                                                                                  | H2SO4 BaileR           |
| Total Iron                                                                                        | 500 ml plastic                                                                               | <u> </u>                 |                                       |                                                                                                    | HNO3                   |
| alternate Electron Acceptors                                                                      | -                                                                                            |                          |                                       | 7                                                                                                  | W. punp                |
| Sampling Personnel                                                                                | КВ                                                                                           |                          |                                       |                                                                                                    |                        |
| Well Casing Volum<br>Gal./Ft. 1-¼" = 0.06<br>1-½" = 0.09                                          | nes<br>2" = 0.16 3" = 0.37<br>2-½" = 0.26 3-½" = 0.50                                        | 4" = 0.65<br>0 6" = 1.47 |                                       |                                                                                                    |                        |
| bmp below measuring point  °C Degrees Celsius ft feet  pm Gallons per minute  Miligrams per liter | ml milliter mS/cm Millisiemens per cer msl mean sea-level N/A Not Applicable NR Not Recorded | ntimeter                 | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Nephelometric Tu<br>Polyvinyl chloride<br>Standard units<br>Micromhos per co<br>Volatile Organic ( | entimeter<br>Compounds |

\* metals - Lab Fitter \*
Pres was rinsed out

| Project Colesville                                                                                   | Landfill             | Project No. <u>NY000</u>                | 0949.0026 Pa                                      | age <u>1</u> of <u>1</u> | _               |
|------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|---------------------------------------------------|--------------------------|-----------------|
| Site Location Colesville                                                                             | e, NY                |                                         | D                                                 | ate 3/26/13              |                 |
| Site/Well No. Gm                                                                                     | w-5                  | Replicate No. 12EP                      | V037613 C                                         | ode No.                  | _               |
| Weather Darth                                                                                        | y youdy 350          | Sampling Time: Be                       | gin 1605 Er                                       | 1630                     |                 |
| Evacuation Data                                                                                      |                      | Field I                                 | Parameters                                        |                          | -               |
| Measuring Point                                                                                      |                      | Color                                   | Col                                               | ORLESS - SLig            | gust Yellow     |
| MP Elevation (ft)                                                                                    |                      | Odor                                    | 19 <u>11 - 1</u>                                  | Scials                   | 702<br><u>4</u> |
| Land Surface Elevation (ft)                                                                          |                      | Appea                                   | ranceC                                            | lear                     | -               |
| Sounded Well Depth (ft bn                                                                            | np) Scoren 53-6      | <u></u>                                 | u.)                                               | 6.46                     | _               |
| Depth to Water (ft bmp)                                                                              | 49.60                | Condu<br>(m                             | ctivity<br>S/cm)                                  | 336 uslem                | _               |
| Water-Level Elevation (ft)                                                                           |                      | <u></u> (µı                             | mhos/cm)                                          |                          | <del>-</del>    |
| Water Column in Well (ft)                                                                            |                      | Turbid                                  | ity (NTU)                                         |                          | _               |
| Casing Diameter/Type                                                                                 | 2"                   | Tempe                                   | erature (°C)                                      | 9.30                     | _               |
| Gallons in Well                                                                                      |                      | Dissol                                  | ved Oxygen (mg/L)                                 | -                        | _               |
| Gallons Pumped/Bailed<br>Prior to Sampling                                                           | 2.5 gallons          | ORP                                     |                                                   | - Marina                 | _               |
| Sample Pump Intake<br>Setting (ft bmp)                                                               | 581                  | Sampi<br>Remai                          | (5.1)                                             | DB/Bailer What           | zung<br>-       |
| Purge Time                                                                                           | begin end            |                                         |                                                   | 0                        | _               |
| Pumping Rate (gpm)                                                                                   |                      |                                         | Jul Parda                                         | ALTING SAND              | ling            |
| Evacuation Method                                                                                    | 2" Disposable poly b | eailer                                  | Rech want                                         | + continued to           | sample          |
| Constituents Sampled                                                                                 | Container            | Description                             | Number                                            | Preservative             |                 |
| 8260B VOLATILES                                                                                      | 40 ML \              | /OA Vials                               | 313                                               | HCL                      | _               |
| Ethene, Ethane, Methane                                                                              | 40 ML V              | /ials                                   |                                                   | Na3PO4                   | <b>-</b> -27    |
| TOC                                                                                                  | 40 ML V              | /ials                                   |                                                   | H2SO4 W.                 | P               |
| Total Iron                                                                                           | 500 ml               | plastic                                 |                                                   | НИОЗ                     | -               |
| alternate Electron Accep                                                                             | otors                | <u> </u>                                | 4                                                 | what pu                  | sp.             |
| Sampling Personnel                                                                                   | КВ                   |                                         |                                                   |                          | -               |
| Well Casing Gal./Ft. 1-¼" = 0.06 1-½" = 0.09                                                         | 2" = 0.16 3" :       | = 0.37 4" = 0.65<br>6" = 0.50 6" = 1.47 |                                                   |                          | -               |
| bmp below measuring point  C Degrees Celsius ft feet gpm Gallons per minute mg/L Miligrams per liter |                      | able um                                 | C Polyvinyl chl . Standard uni hos/cm Micromhos p |                          | -               |

| Project _                                                             | Colesville Lan                               | dfill                           | _            | Project No.                 | NY               | 000949.00                             | 26                               | Page                            | of         | 1           |
|-----------------------------------------------------------------------|----------------------------------------------|---------------------------------|--------------|-----------------------------|------------------|---------------------------------------|----------------------------------|---------------------------------|------------|-------------|
| Site Location _                                                       | Colesville, NY                               |                                 |              |                             |                  |                                       |                                  | Date                            | 3/20       | 113         |
| Site/Well No.                                                         | Gmmw-                                        | 6                               | _            | Replicate No.               | _0               | sims                                  | D                                | Code                            | No         |             |
| Weather                                                               | Clarky ?                                     | So                              | <del>-</del> | Sampling Tim                | ne:              | Begin 15                              | 00                               | End                             | 152C       | <u> </u>    |
| Evacuation Date                                                       | ta                                           |                                 |              |                             | Fiel             | ld Parame                             | eters                            |                                 |            | <del></del> |
| Measuring Point                                                       | <u> </u>                                     |                                 |              |                             | Cole             | or                                    |                                  | dos                             | less       |             |
| MP Elevation (ft                                                      |                                              |                                 |              |                             | Odo              | or                                    |                                  | 000                             | x to       | Slight      |
| Land Surface El                                                       | evation (ft)                                 |                                 |              | <del></del>                 | App              | earance                               | _                                | CN                              | mR_        |             |
| Sounded Well D                                                        | epth (ft bmp)                                | Socree                          | n 40-5       | 0°                          | рΗ               | (s.u.)                                | _                                | (                               | 57.0       | 3387        |
| Depth to Water                                                        | (ft bmp)                                     |                                 |              |                             |                  | nductivity<br>(mS/cm)                 | _                                | 8                               | 26,        | Sim         |
| Water-Level Ele                                                       | vation (ft)                                  |                                 |              |                             |                  | (µmhos/ca                             | m)                               |                                 |            |             |
| Water Column is                                                       | n Well (ft)                                  |                                 |              |                             | Turt             | bidity (NTL                           | J)                               | _                               | _          |             |
| Casing Diamete                                                        | r/Type                                       | 2"                              |              |                             | Ten              | nperature (                           | (°C)                             |                                 | 9.0        |             |
| Gallons in Well                                                       |                                              |                                 |              |                             | Diss             | solved Oxy                            | /gen (mg/                        | L)                              |            | 12.000      |
| Gallons Pumped                                                        |                                              |                                 | 1105         |                             | OR               | P                                     | _                                |                                 | _          |             |
| Prior to S                                                            | ampling                                      | Will                            | 1.25         | <del></del>                 | San              | npling Met                            | hod                              | PDB /                           | Bailer / U | shale our   |
| Sample Pump In<br>Setting (ft                                         |                                              | 45                              | 7            |                             |                  | narks                                 |                                  |                                 | , ,        |             |
| Purge Time                                                            | beg                                          | in                              | end          |                             |                  | Redic                                 | Slowed                           | 0                               | GGO        |             |
| Pumping Rate (g                                                       | gpm)                                         |                                 |              |                             |                  |                                       | , J                              |                                 |            |             |
| Evacuation Meth                                                       | nod <u>2"</u>                                | Disposa                         | ble poly ba  | <u>iler</u>                 | -                | <del></del>                           |                                  |                                 | <u>.</u>   |             |
| Constituents Sar                                                      | mpled                                        |                                 | Container E  | Description                 |                  | Nu                                    | mber                             |                                 | Preserva   | tive        |
| 8260B VOLATIL                                                         | ES                                           | _                               | 40 ML VC     | DA Vials                    |                  | 31                                    | 3 3                              | 4                               | HCL        | msmsD       |
| Ethene, Ethane,                                                       | Methane                                      | _                               | 40 ML Via    | als                         |                  |                                       | 2                                | -                               | Na3PO4     | <del></del> |
| TOC                                                                   |                                              | _                               | 40 ML Via    | als                         |                  |                                       | 2                                | -                               | H2SO4      | Bailer      |
| Total Iron                                                            |                                              | _                               | 500 ml p     | lastic                      |                  |                                       | _                                | -                               | HNO3       |             |
| alternate Elect                                                       | ron Acceptors                                | _                               |              |                             |                  |                                       |                                  | -                               | _wh        | ak pump     |
| Sampling Persor                                                       | nnel                                         | кв                              | ·· <u>·</u>  |                             |                  |                                       |                                  |                                 |            |             |
| Gal./Ft. 1-                                                           | ell Casing Volum<br>'4" = 0.06<br>'2" = 0.09 | mes<br>2" = 0.10<br>2-½" = 0    |              |                             | = 0.65<br>= 1.47 |                                       |                                  |                                 |            |             |
| bmp below meas °C Degrees Ce ft feet gpm Gallons per mg/L Miligrams p | elsius<br>minute                             | ml<br>mS/cm<br>msl<br>N/A<br>NR | mililiter    | per centimeter<br>vel<br>le | !<br>!           | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Polyvinyl<br>Standard<br>Micromh | chloride<br>Lunits<br>os per ce |            |             |

| Project _                                                                         | Colesville Land                               | Ifill                           | Project -                                                                               | No. <u>1</u>       | VY000949.002            | 6 Page                                                                                          | 1of , 1          |
|-----------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|--------------------|-------------------------|-------------------------------------------------------------------------------------------------|------------------|
| Site Location _                                                                   | Colesville, NY                                |                                 |                                                                                         |                    |                         | Date                                                                                            | 3/71/13          |
| Site/Well No.                                                                     | Tu.                                           |                                 | Replica                                                                                 | te No              |                         | Code                                                                                            | No               |
| Weather (                                                                         | partly Cla                                    | udy "                           | 0° Samplir                                                                              | ng Time:           | Begin 144               | 5 End                                                                                           | 1510             |
| Evacuation Dat                                                                    | a                                             |                                 |                                                                                         | ı                  | Field Paramete          | ers                                                                                             |                  |
| Measuring Point                                                                   | <u> </u>                                      |                                 |                                                                                         | (                  | Color                   | Stigh                                                                                           | t wellow tim     |
| MP Elevation (ft)                                                                 |                                               |                                 |                                                                                         | (                  | Odor                    | SLi                                                                                             | ght odor         |
| Land Surface El                                                                   | evation (ft)                                  | SCCOON                          | 50-70                                                                                   | P                  | Appearance              | Clea                                                                                            | 2                |
| Sounded Well D                                                                    |                                               | -                               | - CONT.                                                                                 | þ                  | oH (s.u.)               | _(0                                                                                             | .71              |
| Depth to Water                                                                    | (ft bmp)                                      |                                 |                                                                                         | (                  | Conductivity<br>(mS/cm) |                                                                                                 | 37 us/cm         |
| Water-Level Ele                                                                   | vation (ft)                                   |                                 | ······································                                                  |                    | (µmhos/cm               | )                                                                                               | 2,34             |
| Water Column ir                                                                   | n Well (ft)                                   |                                 |                                                                                         | 1                  | Turbidity (NTU)         |                                                                                                 |                  |
| Casing Diameter                                                                   | r/Type                                        | 2"                              |                                                                                         | 1                  | Temperature (°          | c)                                                                                              | 1.6              |
| Gallons in Well                                                                   |                                               |                                 |                                                                                         |                    | Dissolved Oxyg          | gen (mg/L)                                                                                      | _                |
| Gallons Pumped<br>Prior to Sa                                                     |                                               |                                 |                                                                                         |                    | ORP                     |                                                                                                 | KONEN.           |
| Sample Pump In<br>Setting (ft                                                     |                                               | ري'                             |                                                                                         |                    | Sampling Methor         | Rideolo                                                                                         | Boiler what Pury |
| Purge Time                                                                        | begin                                         | n                               | end                                                                                     |                    |                         | a pos                                                                                           | 5                |
| Pumping Rate (g                                                                   | gpm) <u>Jo</u>                                | ain-                            | 2 gallons                                                                               |                    |                         | •                                                                                               |                  |
| Evacuation Meth                                                                   | nod <u>2" [</u>                               | Disposal                        | ole poly bailer                                                                         |                    | <del> </del>            |                                                                                                 |                  |
| Constituents Sar                                                                  | mpled                                         |                                 | Container Descripti                                                                     | on                 | Num                     | nber                                                                                            | Preservative     |
| 8260B VOLATIL                                                                     | ES                                            | _                               | 40 ML VOA Vials                                                                         |                    | 3                       | 3                                                                                               | HCL              |
| Ethene, Ethane,                                                                   | Methane                                       | _                               | 40 ML Vials                                                                             |                    | 1                       |                                                                                                 | Na3PO4           |
| TOC                                                                               |                                               | _                               | 40 ML Viais                                                                             |                    |                         | 2                                                                                               | H2SO4 W. purp    |
| Total Iron                                                                        |                                               | _                               | 500 ml plastic                                                                          | _                  |                         |                                                                                                 | HNO3             |
| alternate Electi                                                                  | ron Acceptors                                 | -                               |                                                                                         |                    |                         | <del> </del>                                                                                    | July shall purp  |
| Sampling Persor                                                                   | nnel                                          | КВ                              |                                                                                         |                    | <u> </u>                | <u> </u>                                                                                        |                  |
| Gal./Ft. 1-                                                                       | /ell Casing Volum<br>-¼" = 0.06<br>-½" = 0.09 | nes<br>2" = 0.16<br>2-1/2" = 0  |                                                                                         | 4" = 0.<br>6" = 1. |                         |                                                                                                 |                  |
| bmp below meas<br>*C Degrees Co<br>ft feet<br>gpm Gallons per<br>mg/L Miligrams p | elsius<br>r minute                            | ml<br>mS/cm<br>msl<br>N/A<br>NR | mililiter<br>Milisiemens per centir<br>mean sea-level<br>Not Applicable<br>Not Recorded | neter              | PVC<br>s.u.<br>umhos/cm | Nephelometric To<br>Polyvinyl chloride<br>Standard units<br>Micromhos per c<br>Volatile Organic | entimeter        |

| Project Coles                                                                     | ville Landfill                         | Project No.                                    | NY000949.0026                   | Page <u>1</u> of <u>1</u>                                                                     |
|-----------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------|
| Site LocationColes                                                                | ville, NY                              |                                                |                                 | Date 3 26 13                                                                                  |
| Site/Well No.                                                                     | N-4                                    | Replicate No.                                  |                                 | Code No.                                                                                      |
| Weather Cloud                                                                     | y 350 windy                            | Sampling Time                                  | e: Begin <u>147</u>             | 5 End 1435                                                                                    |
| Evacuation Data                                                                   |                                        |                                                | Field Parameter                 | 8                                                                                             |
| Measuring Point                                                                   |                                        |                                                | Color                           | Colorless                                                                                     |
| MP Elevation (ft)                                                                 | ,                                      | ·                                              | Odor                            | et none                                                                                       |
| Land Surface Elevation                                                            | (ft)                                   |                                                | Appearance                      | Cleak                                                                                         |
| Sounded Well Depth (ff                                                            | i bmp)                                 |                                                | pH (s.u.)                       | <b>6</b> ,39                                                                                  |
| Depth to Water (ft bmp)                                                           | )                                      |                                                | Conductivity<br>(mS/cm)         | 541 w/cm                                                                                      |
| Water-Level Elevation (                                                           | (ft)                                   |                                                | (µmhos/cm)                      |                                                                                               |
| Water Column in Well (                                                            | ft)                                    |                                                | Turbidity (NTU)                 |                                                                                               |
| Casing Diameter/Type                                                              | 2"                                     | ***                                            | Temperature (°C)                | 9.0                                                                                           |
| Gallons in Well                                                                   |                                        |                                                | Dissolved Oxyger                | n (mg/L)                                                                                      |
| Gallons Pumped/Bailed<br>Prior to Sampling                                        |                                        |                                                | ORP                             |                                                                                               |
| Sample Pump Intake                                                                |                                        |                                                | Sampling Method                 | PDB / Bailer                                                                                  |
| Setting (ft bmp)                                                                  |                                        |                                                | Remarks                         | Redspiried a                                                                                  |
| Purge Time                                                                        | beginend                               | i                                              | <u></u>                         | 8                                                                                             |
| Pumping Rate (gpm)                                                                | -                                      |                                                |                                 | <del></del>                                                                                   |
| Evacuation Method                                                                 | 2" Disposable po                       | oly bailer                                     |                                 |                                                                                               |
| Constituents Sampled                                                              | Cont                                   | ainer Description                              | Numb                            | er Preservative                                                                               |
| 8260B VOLATILES                                                                   | 40                                     | ML VOA Vials                                   | <u> </u>                        | HCL                                                                                           |
| Ethene, Ethane, Methar                                                            | <u>10</u> 40                           | ML Vials                                       | $-\frac{2}{}$                   | Na3PO4                                                                                        |
| TOC                                                                               | 40                                     | ML Vials                                       |                                 | H2SO4                                                                                         |
| Total Iron                                                                        | 500                                    | 0 ml plastic                                   |                                 | HNO3                                                                                          |
| alternate Electron Ac                                                             | ceptors                                | <del></del>                                    |                                 | <u> </u>                                                                                      |
| Sampling Personnel                                                                | KB                                     |                                                |                                 |                                                                                               |
|                                                                                   | ing Volumes                            |                                                |                                 | •                                                                                             |
| Gal./Ft. 1-1/4" = 0.0<br>1-1/2" = 0.0                                             |                                        | 3" = 0.37 4" = 6<br>3-½" = 0.50 6" =           |                                 |                                                                                               |
| bmp below measuring po<br>°C Degrees Celsius<br>ft feet<br>gpm Gallons per minute | mS/cm Milisie<br>msl mean<br>N/A Not A | emens per centimeter<br>sea-level<br>pplicable | PVC Po<br>s.u. St<br>umhos/cm M | ephelometric Turbidity Units<br>olyvinyl chloride<br>tandard units<br>icromhos per centimeter |
| mg/L Miligrams per liter                                                          | NR Not R                               | ecorded                                        | voc v                           | olatile Organic Compounds                                                                     |

# ARCADIS Water Sampling Log

| Project                                                               | Colesville                                | Landfill                               | - Pro                                                                              | oject No.    | NY000949.00                           | <u> 26 Pag</u>                                                                            | e 1 of 1         |                |      |
|-----------------------------------------------------------------------|-------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------|------------------|----------------|------|
| Site Location _                                                       | Colesville,                               | NY                                     |                                                                                    |              |                                       | Date                                                                                      | 3 27 13          | 3_             |      |
| Site/Well No                                                          | PW-                                       | 7                                      | Re                                                                                 | plicate No.  | *****                                 | Code                                                                                      | e No             |                |      |
| Weather _                                                             | put s                                     | 40                                     | Sai                                                                                | mpling Time: | Begin 1                               | 23 End                                                                                    | 3 1128           | 1600 -         | 1610 |
| Evacuation Da                                                         | ta                                        |                                        |                                                                                    |              | Field Parame                          | iters                                                                                     |                  |                |      |
| Measuring Poin                                                        | t                                         |                                        |                                                                                    | _            | Color                                 | Tusk                                                                                      | oid Red ?        | Nw <u>or</u> E |      |
| MP Elevation (fi                                                      | t)                                        |                                        |                                                                                    | =            | Odor                                  | SU                                                                                        | ralet            |                |      |
| Land Surface E                                                        | levation (ft)                             |                                        | -                                                                                  | <u>.</u>     | Appearance                            | Tusk                                                                                      | Sid              |                |      |
| Sounded Well D                                                        | Depth (ft bmp                             | o) <u>(o</u>                           | .50                                                                                |              | pH (s.u.)                             | 6.                                                                                        | 35               |                |      |
| Depth to Water                                                        | (ft bmp)                                  |                                        |                                                                                    | <b></b>      | Conductivity<br>(mS/cm)               | 30(                                                                                       | o us/cm          | -CT1.91        |      |
| Water-Level Ele                                                       | evation (ft)                              |                                        |                                                                                    | _            | (µmhos/cr                             | n)                                                                                        | -                | 8+             |      |
| Water Column i                                                        | n Well (ft)                               |                                        |                                                                                    |              | Turbidity (NTU                        | J)                                                                                        |                  |                |      |
| Casing Diamete                                                        | er/Type                                   | 2"                                     | - O                                                                                | <u>-</u>     | Temperature (                         | °C)                                                                                       | 11.2             |                |      |
| Gallons in Well                                                       |                                           | N                                      |                                                                                    | _            | Dissolved Oxy                         | rgen (mg/L)                                                                               |                  |                |      |
| Gallons Pumped<br>Prior to S                                          |                                           |                                        |                                                                                    | 10           | ORP                                   |                                                                                           |                  |                |      |
| Sample Pump Ir<br>Setting (ft                                         |                                           | 45'/53'                                |                                                                                    |              | Sampling Meth                         | hod <u>PDB</u>                                                                            | / Bailer / wha   | depump         |      |
| Purge Time                                                            |                                           | begin                                  | end                                                                                | _            |                                       |                                                                                           |                  |                |      |
| Pumping Rate (                                                        | gpm) .                                    | 5 gallons                              | (minTI)                                                                            | _            | very to                               | which while                                                                               | purging          | w              |      |
| Evacuation Meth                                                       | nod .                                     | 2" Disposal                            | ole poly bailer                                                                    | _            | a wha                                 | + pump                                                                                    | wh gubs          | Fast           |      |
| Constituents Sa                                                       | mpled                                     |                                        | Container Desc                                                                     | cription     | Nu                                    | mber                                                                                      | Preservative     |                |      |
| 8260B VOLATIL                                                         | .ES                                       | <u></u>                                | 40 ML VOA \                                                                        | /ials        |                                       | 3                                                                                         | HCL              |                |      |
| Ethene, Ethane,                                                       | Methane                                   |                                        | 40 ML Vials                                                                        |              |                                       | 2                                                                                         | Na3PO4           |                |      |
| TOC                                                                   | <del></del>                               |                                        | 40 ML Viais                                                                        | ·            |                                       | 2_                                                                                        | H2SO4            |                |      |
| Total Iron                                                            |                                           |                                        | 500 ml plas                                                                        | tic          |                                       |                                                                                           | HNO3             |                |      |
| alternate Elect                                                       | ron Accept                                | ors                                    |                                                                                    |              |                                       | 4                                                                                         |                  | <del></del>    |      |
| Sampling Persor                                                       | nnel                                      | КВ                                     |                                                                                    |              |                                       | 0 N C                                                                                     |                  |                |      |
| Gal./Ft. 1                                                            | /ell Casing V<br>-¼" = 0.06<br>-½" = 0.09 | <b>olumes</b><br>2" = 0.10<br>2-½" = 0 |                                                                                    |              |                                       | T                                                                                         |                  | -              |      |
| bmp below meas  C Degrees Co ft feet gpm Gallons per mg/L Miligrams p | r minute                                  | ml<br>mS/cm<br>msł<br>N/A<br>NR        | mililiter<br>Milisiemens per o<br>mean sea-level<br>Not Applicable<br>Not Recorded | centimeter   | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Nephelometric<br>Polyvinyl chloric<br>Standard units<br>Micromhos per<br>Volatile Organic | de<br>centimeter | _              |      |

Let the well Excharge 12-4 pm

| Project                                                                | Colesville Lar                             | <u>ndfill</u>                              | Project                                                               | No. 1                | VY000949.0                            | 026                              | Page                            | 1 of 1       |
|------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|----------------------|---------------------------------------|----------------------------------|---------------------------------|--------------|
| Site Location _                                                        | Colesville, N                              | <u> </u>                                   |                                                                       |                      |                                       |                                  | Date                            | 3 28 13      |
| Site/Well No.                                                          | 58-5 in                                    | Elment                                     | Replica                                                               | te No.               | Marie 1                               |                                  | Code I                          |              |
| Weather                                                                | Cloudy                                     | 400                                        | Samplir                                                               | ng Time:             | Begin 1                               | 130                              | End                             | 1134         |
| Evacuation Da                                                          | ta                                         |                                            |                                                                       | F                    | ield Param                            | eters                            |                                 |              |
| Measuring Poin                                                         | t                                          | -                                          |                                                                       | C                    | Color                                 |                                  | colm                            | 21.255       |
| MP Elevation (fi                                                       | t)                                         | -                                          |                                                                       | c                    | Odor                                  | 2                                | 0                               | sve.         |
| Land Surface E                                                         | levation (ft)                              |                                            |                                                                       | A                    | ppearance                             |                                  | Clo                             | ar           |
| Sounded Well E                                                         | Depth (ft bmp)                             | 4.15                                       | )                                                                     | р                    | H (s.u.)                              |                                  | 165                             | 0.78         |
| Depth to Water                                                         | (ft bmp)                                   | 0.                                         | 30                                                                    | C                    | Conductivity<br>(mS/cm)               |                                  |                                 | 5 uslem      |
| Water-Level Ele                                                        | evation (ft)                               | 37                                         |                                                                       |                      | (µmhos/c                              |                                  |                                 | _            |
| Water Column is                                                        | n Well (ft)                                | 3.85                                       | 5                                                                     | т                    | urbidity (NT                          | U)                               | Ši.                             | -            |
| Casing Diamete                                                         | r/Type                                     | 2"                                         |                                                                       |                      | emperature                            |                                  | 5                               | 5.5          |
| Gallons in Well                                                        |                                            | 0,                                         | 62                                                                    | D                    | issolved Ox                           | <br>ygen (mg                     | /L)                             |              |
| Gallons Pumped<br>Prior to Sa                                          |                                            | 2                                          | .00                                                                   | C                    | RP                                    |                                  | ·                               |              |
| Sample Pump In<br>Setting (ft                                          |                                            |                                            |                                                                       |                      | ampling Me                            | _                                | PĐB-/ (                         | Bailer       |
| Purge Time                                                             | beg                                        | in                                         | end                                                                   |                      |                                       |                                  |                                 |              |
| Pumping Rate (                                                         | gpm)                                       |                                            |                                                                       |                      |                                       |                                  |                                 |              |
| Evacuation Meth                                                        | nod <u>2"</u>                              | Disposable                                 | poly bailer                                                           |                      |                                       |                                  |                                 |              |
| Constituents Sar                                                       | mpled                                      | Co                                         | ontainer Description                                                  | on                   | Νι                                    | umber                            |                                 | Preservative |
| 8260B VOLATIL                                                          | ES                                         |                                            | I0 ML VOA Vials                                                       |                      |                                       | 3                                | _                               | HCL          |
| Ethene, Ethane,                                                        | Methane                                    |                                            | 0 ML Vials                                                            |                      | _                                     |                                  | _                               | Na3PO4       |
| TOC                                                                    |                                            |                                            | 10 ML Vials                                                           |                      |                                       |                                  | _                               | H2SO4        |
| Total Iron                                                             | <u> </u>                                   |                                            | 500 ml plastic                                                        |                      |                                       |                                  |                                 | HNO3         |
| alternate Electr                                                       | on Acceptors                               |                                            |                                                                       |                      | _                                     |                                  |                                 |              |
| Sampling Persor                                                        | nnel                                       | КВ                                         |                                                                       | _                    |                                       |                                  |                                 |              |
| Gal./Ft. 1-1                                                           | ell Casing Volui<br>¼" = 0.06<br>½" = 0.09 | nes<br>2" = 0.16<br>2-1/2" = 0.26          | 3" = 0.37<br>3-½" = 0.50                                              | 4" = 0.6<br>6" = 1.4 | -                                     |                                  |                                 |              |
| bmp below meas °C Degrees Ce ft feet gpm Gallons per mg/L Miligrams pe | uring point<br>Isius<br>minute             | ml mili<br>mS/cm Mili<br>msl me<br>N/A Not | liter<br>siemens per centim<br>an sea-level<br>Applicable<br>Recorded |                      | NTU<br>PVC<br>s.u.<br>umhos/cm<br>VOC | Polyvinyl<br>Standard<br>Micromh | chloride<br>units<br>os per cer | bidity Units |



| Site Location Colesville, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date 3/28/13                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Site/Well No. SP-S effluint Replicate I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                             |
| Weather Cloudy 40° Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time: Begin 1115 End 1119      |
| Site Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Parameters               |
| Water Quality Meter: Multi- 3401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Color Color Less               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Odor <u>none</u>               |
| Location Condition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Appearance <u>CleaR</u>        |
| Cleared Out Stream bed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                              |
| Stained orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pH (s.u.) <u>6.94</u>          |
| Vegetation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conductivity (ms/cm) 466 us/cm |
| Double of Mateur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temperature (°C) 5.5           |
| Depth of Water:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DO (mg/L)                      |
| Estimated Flow Rate: 100 mg / 1 Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turbidity (NTU)                |
| - Too Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ORP                            |
| Division of the state of the st |                                |
| Collection Method: Direct collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Remarks: snaked out the lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne 3/27/13                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Constituents Sampled: See COC Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oling Personnel: KB            |

| Project Colesville Landfill | Project No. NY0009 | 49.002 <u>6</u>       | Page / of /  |
|-----------------------------|--------------------|-----------------------|--------------|
| Site Location Colesville    | , NY               |                       | Date 3/28/13 |
| Site/Well No                | -2 Replicate No    |                       |              |
| Weather <u>Clo</u>          | Sampling Tin       | ne: Begin <u>1510</u> | End 1513     |
| Site Conditions             |                    | Field Parameters      |              |
| Water Quality Meter:        | multi 290i         | Color                 | ColoRLess    |
|                             |                    | Odor _                | none         |
| Location Condition:         |                    | Appearance            | Char         |
| Cobble                      | to Stone           |                       |              |
|                             |                    | pH (s.u.)             | 7.35         |
| Vegetation:                 |                    |                       | 6            |
| -                           |                    | Conductivity (mS/cm)  | 81 uslem     |
| Depth of Water:             | 4.5"               | Temperature (°C)      | 4.4 1        |
|                             |                    | DO (mg/L)             |              |
| Estimated Flow Rate:        | 5 Sec / 5"         | Turbidity (NTU)       |              |
|                             |                    | ORP                   |              |
| Collection Method:          | Direct collection  | Time                  |              |
|                             |                    |                       |              |
|                             |                    |                       |              |
| Remarks:                    |                    |                       |              |
| -                           |                    |                       |              |
|                             |                    |                       |              |
|                             |                    |                       |              |
|                             |                    |                       |              |
| Constituents Sampled:       | See COC Sampline   | g Personnel: K        | В            |

| Project Colesville Landfill | Project No. NY0009                    | 949.0026                           | Page 1 of 1      |
|-----------------------------|---------------------------------------|------------------------------------|------------------|
| Site Location Colesville    | e, NY                                 |                                    | Date 3 28 / 1 3  |
| Site/Well No. 55 S          | Replicate No                          | ),                                 |                  |
| Weather Cloud               | dy 40° Sampling Tir                   | me: Ведіп <u>1442 <sup>*</sup></u> | End 1443         |
| Site Conditions             | · · · · · · · · · · · · · · · · · · · | Field Parameters                   |                  |
| Water Quality Meter:        | multi 340i                            | Color                              | Colorless        |
|                             |                                       | Odor                               | none             |
| Location Condition:         |                                       | Appearance                         | Clear            |
| Stor                        |                                       |                                    |                  |
|                             | ×                                     | pH (s.u.)                          | 7.70             |
| Vegetation:                 |                                       | Conductivity (mS/cm)               | _97uslem         |
|                             |                                       |                                    | <i>C</i> 2       |
| Depth of Water:             | 3"                                    | Temperature (°C)                   | 5.2              |
|                             |                                       | DO (mg/L)                          |                  |
| Estimated Flow Rate:        | 6.5 5ed 5'                            | Turbidity (NTU)                    | -                |
|                             |                                       | ORP                                | -                |
| Collection Method:          | Direct collection                     | Time                               |                  |
|                             |                                       |                                    |                  |
| Remarks: ¥ SQ               | .3C-SED Collected                     | d 1435                             | 45 <u></u>       |
| Son                         | + growl Brown                         | Cittle Stains                      | ng + build up in |
| San                         | pling alex                            |                                    |                  |
|                             | -                                     |                                    |                  |
|                             |                                       |                                    |                  |
| Constituents Sampled:       | See COC Samplin                       | g Personnel: KE                    | 3                |

| Project Colesville Landfill   | Project No. <u>NY000949.0026</u> | Page \ of \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Location Colesville, NY  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Site/Well No. Sw-4            | Replicate No.                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Weather Chudy 40°             | Sampling Time: Begin 1324        | End 1327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Site Conditions               | Field Parameters                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water Quality Meter:          | 340; Color                       | ColorLess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | Odor                             | 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Location Condition:           | to Stone Appearance              | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Orange Staining               | at 50-4                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                             | рН (s.u.)                        | 7.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vegetation:                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| dormant                       | Conductivity (mS/cm)             | 101 uslam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | Temperature (°C)                 | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth of Water: 5 is          | nches_                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Т с                           | DO (mg/L)                        | - Contracting - |
| Estimated Flow Rate:          | ec (5' Turbidity (NTU)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               | ORP                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Collection Method: Direct c   | collection Time                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Remarks: <u>mid Streau</u>    | M                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                             | 100-21 100 to 5-0 = -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Constituente Sampled: See COC | Compline Developed               | KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Sediment Sampling Form

| F- (o<br>Cloudy 40° | Replicate No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | Date 3/28/13                                                                                                                                          |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                       |
|                     | Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eld Parameters      |                                                                                                                                                       |
| multi 3401          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   | ColoRuss                                                                                                                                              |
|                     | Staining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppearance           | Clear                                                                                                                                                 |
| Forny Just          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i (s.u.)            | 7.65                                                                                                                                                  |
| nand                | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onductivity (mS/cm) | 108 uslam                                                                                                                                             |
| 5,5"                | Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emperature (°C)     | 5.4                                                                                                                                                   |
| 5 Sec. / 5          | Tu Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rbidity (NTU)       |                                                                                                                                                       |
| Direct collection   | o <mark>n T</mark> ìr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | те                  |                                                                                                                                                       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                                                       |
|                     | Store to  Store | e: 5 Sec. 5 1 To    | Color Odor Appearance  Stone to Appearance  Party Tust upstoan pH (s.u.)  Conductivity (ms/cm)  Temperature (°C)  5.5"  DO (mg/L) Turbidity (NTU) ORP |

| NA 1                                |                                  | Project No. <u>NYUUU949</u>             |                      | Page 1 ot 1  Date 3 28 113              |
|-------------------------------------|----------------------------------|-----------------------------------------|----------------------|-----------------------------------------|
| Site Location Site/Well No. Veather | Colesville, NY  SP-2  Cloudy 400 | Replicate No                            |                      | Date 3 28 113                           |
| ite Condition                       | s                                |                                         | Field Parameters     |                                         |
| Vater Quality M                     | Meter: Mult                      | 3401                                    | Color                | ColoRLISS                               |
|                                     |                                  | 3.0000.00000000000000000000000000000000 | Odor                 | none                                    |
| ocation Condit                      | tion:                            |                                         | Appearance           | Clear Trace Organic                     |
| See                                 | Below                            |                                         |                      | Char Trace Organic<br>matter            |
|                                     |                                  |                                         |                      | 3                                       |
|                                     |                                  |                                         | р <b>Н</b> (s.u.)    | 6.88                                    |
| egetation:                          |                                  | '                                       | (,                   |                                         |
| _                                   | sun alger - B                    | au blin                                 | Conductivity (mS/cm) | 87 uslam                                |
| -                                   | 3                                |                                         | , (,                 |                                         |
|                                     |                                  |                                         | Temperature (°C)     | 6.2                                     |
| epth of Water:                      | 7 0.5                            |                                         |                      |                                         |
|                                     |                                  | 1                                       | DO (mg/L)            |                                         |
| stimated Flow                       | Rate:                            | <del></del>                             | Furbidity (NTU)      | <u></u>                                 |
|                                     |                                  | (                                       | ORP                  | -                                       |
| ollection Metho                     | od: D <del>irect co</del> l      | tection .                               | lime                 |                                         |
|                                     |                                  | Hic Punp                                |                      |                                         |
|                                     | 14.00                            |                                         |                      |                                         |
|                                     |                                  |                                         |                      |                                         |
| emarks:                             | Sensled 6                        | w North Sto                             | ean bank             | Spring From under                       |
|                                     | North Pata                       | ning wall                               |                      | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
|                                     |                                  | 3 ~~~                                   |                      |                                         |
|                                     |                                  | 3/1                                     | A                    |                                         |
|                                     |                                  |                                         |                      |                                         |
|                                     |                                  |                                         |                      |                                         |
| onstituents Sai                     | mpled: See COC                   | Sampling F                              |                      | KB                                      |

## Sediment Sampling Form

| Project Colesville Landfill Project No. NY0009                    | 49.0026 Page of \                              |
|-------------------------------------------------------------------|------------------------------------------------|
| Site Location Colesville, NY                                      | Date 3 28 13                                   |
| Site/Well No. 50-30 SP-30 Replicate No.                           |                                                |
| Weather Cloudy 40° Sampling Time                                  | e: Begin <u>1535</u> End <u>1540</u>           |
| Site Conditions                                                   | Field Parameters                               |
| Water Quality Meter:                                              | Color Color Less                               |
|                                                                   | Odor Ook                                       |
| Location Condition:                                               | Appearance Clear Trace orange                  |
| Some orange Straning                                              | Particles.                                     |
| Vegetation:                                                       | pH (s.u.) 6. 78                                |
| Non                                                               | Conductivity (mes/cm) 192 uslcm                |
| Depth of Water:                                                   | Temperature (°C)                               |
| ***                                                               | DO (mg/L)                                      |
| Estimated Flow Rate:                                              | Turbidity (NTU)                                |
| P.                                                                | ORP                                            |
| Collection Method: Direct collection                              | Time                                           |
| Remarks: Collected Sample in water near the NO Flow at SP-3 - Rel | the packet of Flowing 2:p-laps worded to SP-3C |
| Constituents Sampled: See COC Sampling                            | Personnel: KB                                  |

| Veather <u>Cloudy</u> |                               | ne: Begin <u>1350</u>     | End 1355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------|-------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| site Conditions       |                               | Field Parameters          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vater Quality Meter:  | nulti 3401                    | Color                     | Colorless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                               | Odor                      | DODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ocation Condition:    | ting from back                | Appearance                | Clear - w/ trace<br>crange particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Margi Hain            | ma + build up                 |                           | crange particles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| behind Rock           | is .                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               | pH (s.u.)                 | 7.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| egetation:            |                               |                           | 004.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NOUR                  |                               | Conductivity (mS/cm)      | 496 us/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del></del>           |                               |                           | <b>~</b> \$\( \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| South of Minter       | 0.5"                          | Temperature (°C)          | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| epth of Water:        | 0.5                           | DO (ma/L)                 | The Control of the Co |
| stimated Flow Rate:   | _                             | DO (mg/L) Turbidity (NTU) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | Peristaltic Purp              | ORP                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ollection Method:     | <del>Direct collectio</del> n | Time                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| emarks:               | bask                          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XO P13                |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Proje                  | ct                                                     | Colesville                 | Landfili                                                         | Project No.           | NY000949                     | .0026                                                                           | Page        | <u>1</u> of <u>1</u> |
|------------------------|--------------------------------------------------------|----------------------------|------------------------------------------------------------------|-----------------------|------------------------------|---------------------------------------------------------------------------------|-------------|----------------------|
| Site L                 | _ocation                                               | Colesville,                | NY                                                               |                       | 330                          | 1 11                                                                            | Date        | 3/27/13              |
| Site/V                 | Well No.                                               |                            | W-8                                                              | Replicate No          | o                            |                                                                                 | Code        | No                   |
| Weat                   | ther                                                   | Cloudy                     | 400                                                              | Sampling Tir          | me: Begin                    | 1550                                                                            | End         | 1552                 |
| Evac                   | uation D                                               | ata                        |                                                                  |                       | Field Para                   | meters                                                                          |             | <u></u> - ,          |
| Meas                   | suring Poi                                             | int                        |                                                                  |                       | Color                        |                                                                                 | سعال        | nw                   |
| MP E                   | levation (                                             | (ft)                       |                                                                  |                       | Odor                         | _                                                                               | w           | А.                   |
| Land                   | Surface                                                | Elevation (ft)             |                                                                  |                       | Appearanc                    | e _                                                                             | <u> </u>    | leak                 |
| Soun                   | ded Well                                               | Depth (ft bm               | p)                                                               |                       | pH (s.u.)                    |                                                                                 | <u>(</u>    | 65                   |
| Depth                  | h to Wate                                              | er (ft bmp)                |                                                                  |                       | Conductivit<br>(mS/cn        |                                                                                 | IC          | 48 uslem             |
| Wate                   | r-Level E                                              | levation (ft)              |                                                                  |                       | (µmhos                       | s/cm)                                                                           |             | -                    |
| Wate                   | r Column                                               | in Well (ft)               |                                                                  |                       | Turbidity (N                 | NTU)                                                                            |             | mary .               |
| Casin                  | ng Diame                                               | ter/Type                   | 2"                                                               |                       | Temperatu                    | re (°C)                                                                         |             | 10.4                 |
| Gallo                  | ns in We                                               | 11                         |                                                                  |                       | Dissolved (                  | Oxygen (m                                                                       | ig/L)       | _                    |
| Gallo                  |                                                        | ed/Bailed<br>Sampling      |                                                                  |                       | ORP                          | -                                                                               |             | 16                   |
| Samp                   | ole Pump                                               |                            |                                                                  |                       | Sampling N                   | _                                                                               |             | pump                 |
| _                      | Setting                                                | (ft bmp)                   |                                                                  |                       | Remarks                      |                                                                                 |             |                      |
| _                      | Time                                                   |                            | begin                                                            | end                   |                              | <del></del>                                                                     |             |                      |
|                        | oing Rate<br>uation Me                                 |                            | 1537-<br>Recircular                                              | 15.50<br>tion         |                              |                                                                                 |             |                      |
|                        |                                                        |                            |                                                                  |                       |                              |                                                                                 |             |                      |
| Const                  | tituents S                                             | Sampled                    |                                                                  | Container Description |                              | Number                                                                          |             | Preservative         |
| 8260E                  | B VOLAT                                                | ILES                       |                                                                  | 40 ML VOA Vials       | <del></del> .                | -                                                                               |             | HCL                  |
| Ethen                  | ne, Ethan                                              | e, Methane                 |                                                                  | 40 ML Vials           |                              | -                                                                               | _           | Na3PO4               |
| TOC                    |                                                        |                            |                                                                  | 40 ML Vials           |                              | 2                                                                               | _           | H2SO4                |
| TAL                    | Metals                                                 |                            |                                                                  | 500 ml plastic        | <del></del> .                |                                                                                 | _           | HNO3                 |
| Şamp                   | oling Pers                                             | onnel                      | KB                                                               |                       |                              |                                                                                 | <del></del> |                      |
|                        | ,                                                      | Well Casing \              | /olumes                                                          |                       | ·                            | -                                                                               |             |                      |
| Gal./F                 | řt.                                                    | 1-¼" = 0.06<br>1-½" = 0.09 | 2" = 0<br>2-1/2" =                                               |                       | = 0.65<br>= 1.47             |                                                                                 |             |                      |
| bmp<br>°C<br>ft<br>gpm | Degrees Celsius mS/cm Milisiemens feet msl mean sea-le |                            | n Milisiemens per centimeter<br>mean sea-level<br>Not Applicable | s.u.<br>umhos/d       | Polyvi<br>Stand<br>cm Micror | elometric Turbidity Units<br>inyl chloride<br>dard units<br>mhos per centimeter |             |                      |
| mg/L                   | Miligrams                                              | s per liter                | NR                                                               | Not Recorded          | VOC                          | Volatil                                                                         | e Organic   | Compounds            |

| Project                                                             | Colesville Lan           | dfill                               |                                                                             | Project No.                  | NY000949                            | 9.0026                   | _ Page                                                                          | 1 of 1                                |
|---------------------------------------------------------------------|--------------------------|-------------------------------------|-----------------------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------|---------------------------------------------------------------------------------|---------------------------------------|
| Site Location                                                       | Colesville, NY           |                                     |                                                                             | **                           | 3200 1/5                            |                          | Date                                                                            | 3/28/13                               |
| Site/Well No.                                                       | IW-3                     |                                     |                                                                             | Replicate No.                | -                                   |                          | Code                                                                            | No                                    |
| Weather                                                             | Cloudy !                 | υ°                                  |                                                                             | Sampling Time                | : Begin                             | 1017                     | End                                                                             | 1015                                  |
| Evacuation Da                                                       | ıta                      |                                     |                                                                             |                              | Field Para                          | meters                   |                                                                                 |                                       |
| Measuring Poir                                                      | nt                       |                                     |                                                                             | · <del>-</del> · ,           | Color                               |                          | Stial                                                                           | it gray tim                           |
| MP Elevation (1                                                     | (t)                      |                                     |                                                                             |                              | Odor                                |                          | SLigh                                                                           | * odoR                                |
| Land Surface E                                                      | levation (ft)            |                                     |                                                                             |                              | Appearance                          | се                       | Clear                                                                           | ζ                                     |
| Sounded Well I                                                      | Depth (ft bmp)           | 56                                  | .05                                                                         |                              | pH (s.u.)                           |                          | (0.1                                                                            | 80                                    |
| Depth to Water                                                      | (ft bmp)                 | 38.                                 | 75                                                                          |                              | Conductiv                           |                          | 60                                                                              | o uslem                               |
| Water-Level Ele                                                     | evation (ft)             | 38.7                                | 5                                                                           |                              | (µmho                               | s/cm)                    | do Inchesión                                                                    | - Up                                  |
| Water Column                                                        | in Well (ft)             |                                     |                                                                             |                              | Turbidity (                         | NTU)                     |                                                                                 |                                       |
| Casing Diamete                                                      | er/Type                  | 2"                                  |                                                                             | W                            | Temperatu                           | ıre (°C)                 | <u> </u>                                                                        | 1.8                                   |
| Gallons in Well                                                     |                          |                                     |                                                                             |                              | Dissolved                           | Oxygen (                 | mg/L)                                                                           |                                       |
| Gallons Pumpe<br>Prior to S                                         |                          |                                     |                                                                             |                              | ORP                                 |                          |                                                                                 |                                       |
| Sample Pump I<br>Setting (1                                         |                          |                                     |                                                                             |                              | Sampling I<br>Remarks               | Method<br>               | whale                                                                           | pump                                  |
| Purge Time                                                          | beg                      | in                                  | end                                                                         | <del></del>                  |                                     |                          |                                                                                 |                                       |
| Pumping Rate (                                                      | gpm)                     | 955 -                               | 1010                                                                        |                              |                                     |                          |                                                                                 |                                       |
| Evacuation Met                                                      | hod Re                   | circulation                         | <u> </u>                                                                    | <del></del>                  |                                     |                          |                                                                                 |                                       |
| Constituents Sa                                                     | ımpled                   | (                                   | Container D                                                                 | escription                   |                                     | Number                   |                                                                                 | Preservative                          |
| 8260B VOLATII                                                       | LES                      |                                     | 40 ML VC                                                                    | A Vials                      |                                     | _                        |                                                                                 | HCL                                   |
| Ethene, Ethane                                                      | , Methane                |                                     | 40 ML Via                                                                   | ıls                          | <del></del>                         | _                        |                                                                                 | Na3PO4                                |
| TOC                                                                 |                          |                                     | 40 ML Via                                                                   | is                           |                                     | 2                        | <del></del>                                                                     | H2SO4                                 |
| TAL Metals                                                          | <u></u>                  |                                     | 500 ml p                                                                    | lastic                       | <del></del>                         |                          |                                                                                 | HNO3                                  |
| Sampling Perso                                                      | nnel                     | KB                                  |                                                                             |                              | <del></del>                         |                          | <del></del>                                                                     |                                       |
| V                                                                   | Veli Casing Volu         | nes                                 |                                                                             |                              |                                     |                          |                                                                                 | · · · · · · · · · · · · · · · · · · · |
|                                                                     | -¼" = 0.06<br>-½" = 0.09 | 2" = 0.16<br>$2-\frac{1}{2}" = 0.2$ | 3" =<br>26 3-½":                                                            | 0.37 4" = 0<br>= 0.50 6" = 1 |                                     |                          |                                                                                 |                                       |
| bmp below mea  C Degrees C  ft feet  gpm Gallons pe  mg/L Miligrams | er minute                | mS/cm N<br>msl n<br>N/A N           | nililiter<br>Milisiemens p<br>nean sea-lev<br>lot Applicabl<br>lot Recorded | e                            | NTU<br>PVC<br>s.u.<br>umhos/<br>VOC | Poly<br>Stan<br>cm Micro | nelometric Tu<br>vinyl chloride<br>dard units<br>omhos per ce<br>tile Organic ( | entimeter                             |

| Project                                                          | Colesville Lan                        | dfill                       | _                                                                                 | Project No.   | NY00094                             | 9.0026                       | Page                                                                       | of        | 1           |
|------------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------|---------------|-------------------------------------|------------------------------|----------------------------------------------------------------------------|-----------|-------------|
| Site Location                                                    | Colesville, NY                        |                             | 7.9                                                                               | 2             |                                     |                              | Date                                                                       | 3 58      | 13          |
| Site/Well No.                                                    | IW-13                                 | 3                           | F                                                                                 | Replicate No. |                                     |                              | Code                                                                       | No        |             |
| Weather                                                          | Cloudy                                | <u>35°</u>                  |                                                                                   | Sampling Time | e: Begin                            | 1057                         | End                                                                        | 1058      | _           |
| Evacuation Da                                                    | ita                                   |                             | _                                                                                 |               | Field Par                           | ameters                      |                                                                            |           |             |
| Measuring Poin                                                   | nt                                    |                             |                                                                                   |               | Color                               |                              | 40110                                                                      | w tin     | +           |
| MP Elevation (f                                                  | t)                                    |                             |                                                                                   |               | Odor                                |                              | med:                                                                       | wn        |             |
| Land Surface E                                                   | levation (ft)                         |                             |                                                                                   |               | Appearan                            | ce                           | Clear                                                                      | Tin       | y particles |
| Sounded Well [                                                   | Depth (ft bmp)                        |                             |                                                                                   |               | ρΗ (s.u.)                           |                              | 6                                                                          | .66       | <u> </u>    |
| Depth to Water                                                   | (ft bmp)                              |                             |                                                                                   | _             | Conductiv<br>(mS/c                  |                              | 92                                                                         | l us      | 100         |
| Water-Level Ele                                                  | evation (ft)                          |                             |                                                                                   |               | (µmho                               | os/cm)                       |                                                                            |           |             |
| Water Column i                                                   | n Well (ft)                           |                             |                                                                                   |               | Turbidity (                         | (NTU)                        | _                                                                          |           |             |
| Casing Diamete                                                   | er/Type                               | 2"                          |                                                                                   |               | Temperati                           | ure (°C)                     | 10.                                                                        | .3        |             |
| Gallons in Well                                                  |                                       |                             |                                                                                   |               | Dissolved                           | Oxygen (n                    | ng/L)                                                                      |           |             |
| Gallons Pumped<br>Prior to S                                     |                                       |                             |                                                                                   |               | ORP                                 |                              | Ŷ                                                                          | -         | <del></del> |
| Sample Pump In Setting (f                                        |                                       |                             |                                                                                   |               | Sampling<br>Remarks                 | •                            | whale                                                                      | pump      | <del></del> |
| Purge Time                                                       | beg                                   | in                          | end                                                                               | <u> </u>      |                                     |                              |                                                                            |           |             |
| Pumping Rate (                                                   | gpm) <u>10</u>                        | 38-                         | 056                                                                               |               |                                     |                              |                                                                            |           | <del></del> |
| Evacuation Met                                                   | hod Re                                | circulati                   | on                                                                                |               |                                     |                              |                                                                            |           |             |
| Constituents Sa                                                  | mpled                                 |                             | Container De                                                                      | escription    |                                     | Number                       |                                                                            | Preservat | ive         |
| 8260B VOLATIL                                                    | .ES                                   |                             | 40 ML VO                                                                          | A Vials       |                                     | -                            |                                                                            | HCL       |             |
| Ethene, Ethane,                                                  | Methane                               | _                           | 40 ML Vial                                                                        | s             |                                     | _                            | _                                                                          | Na3PO4    |             |
| TOC                                                              | · · · · · · · · · · · · · · · · · · · | _                           | 40 ML Vial                                                                        | s             |                                     | 2                            |                                                                            | H2SO4     |             |
| TAL Metals                                                       |                                       | _                           | 500 ml pla                                                                        | astic         | <del></del>                         |                              |                                                                            | HNO3      |             |
| Sampling Perso                                                   | nnel                                  | -<br>KB                     |                                                                                   |               | <del></del>                         |                              | <del></del>                                                                |           | <del></del> |
| V                                                                | Vell Casing Volur                     | nes                         | <del></del>                                                                       |               | <del></del>                         |                              |                                                                            |           |             |
|                                                                  | -¼" = 0.06<br>-½" = 0.09              | 2" = 0.1<br>$2^{-1/2}" = 0$ |                                                                                   |               |                                     |                              |                                                                            |           |             |
| bmp below mea  C Degrees C ft feet gpm Gallons pe mg/L Miligrams | r minute                              | ml                          | milliliter<br>Millisiemens per<br>mean sea-leve<br>Not Applicable<br>Not Recorded | er centimeter | NTU<br>PVC<br>s.u.<br>umhos/<br>VOC | Polyvi<br>Stand<br>/cm Micro | elometric Tu<br>inyl chloride<br>lard units<br>mhos per ce<br>le Organic C | entimeter |             |