

BUILDING 57 INTERIM REMEDIAL MEASURE (IRM) COMPLETION REPORT OPERABLE UNIT #5/BUILDING 57 AREA

Union and Endicott, New York AOC Index # A7-0502-0104 Site # 704014

> Prepared for IBM File No. 2466.02 November 2012

8976 Wellington Road Manassas, VA 20109

November 30, 2012

Alex Czuhanich Engineering Geologist New York State Department of Environmental Conservation Division of Environmental Remediation Bureau E 625 Broadway, 12th Floor Albany, NY 12233-7017

Re: Transmittal of Documentation Building 57 Interim Remedial Measure (IRM) Completion Report Operable Unit #5/Building 57 Area Union and Endicott, New York AOC Index # A7-0502-0104, Site # 704014, Endicott, New York

Dear Mr. Czuhanich:

The attached report and documentation summarizes the completion of Interim Remedial Measure (IRM) of in-situ thermal treatment by Electrical Resistance Heating at Building 57 of Operable Unit#5 in Union and Endicott, New York. The IRM implementation activities were completed in accordance with the approved June 24, 2011 IRM Work Plan.

Should you have any questions, please contact Kevin Whalen at 703-257-2582 or me at 703-257-2587.

Sincerely,

M. E. Meyers

Mitch Meyers Program Manager

cc: K. Anders, NYSDOH - Troy
K. Lynch, NYSDEC Region 7
D. Tuohy, NYSDEC – Albany, w/out enclosure
C. Edwards, Broome County Health Department
C.Pelto, Endicott Interconnect

Encl. Building 57 Interim Remedial Measure (IRM) Completion Report

20 Foundry Street Concord, NH 03301

Mr. Mitchell Meyers IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, Virginia 20109 November 30, 2012 File No. 2466.02

Re: Building 57 Interim Remedial Measure (IRM) Completion Report Operable Unit #5/Building 57 Area Union and Endicott, New York AOC Index # A7-0502-0104, Site # 704014, Endicott, New York

Dear Mr. Meyers:

Enclosed please find the subject Building 57 Interim Remedial Measure (IRM) Completion Report for the Operable Unit #5/Building 57 Area, which documents the completion of Interim Remedial Measure (IRM) of in situ thermal treatment (ISTT) by Electrical Resistance Heating at Building 57. This report was prepared for submission to, and approval by, the New York State Department of Environmental Conservation and the New York State Department of Health.

This report was prepared under my direction as a Professional Engineer registered in the State of New York.

Please contact us with any questions.

Very truly yours, Sanborn, Head & Associates, Inc.

Jonathan Ordway, P.E. Senior Project Director 20 Foundry Street Concord, New Hampshire

AVK/LJJ/JO/DBC: avk

Encl. Building 57 Interim Remedial Measure Completion Report

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\20121130 Cover Letter.docx

TABLE OF CONTENTS

1.0 INTRODUCTION1
2.0 BACKGROUND 2 2.1 In-Situ Thermal Treatment – Electrical Resistance Heating Technology 2 2.2 ERH Design Basis 2 2.3 ERH System Components 2
3.0 SYSTEM INSTALLATION4
4.0 SYSTEM OPERATION
5.0 SYSTEM MONITORING AND ASSESSMENT
6.0 QUALITY CONTROL AND DATA VALIDATION
7.0 SYSTEM DECOMMISSIONING & SITE RESTORATION
8.0 SUMMARY
FIGURES Figure 1 Source Zone Summary Figure 2 ERH Location Plan Figure 3 (A) through 3 (D) Confirmatory Soil Sampling Summary (by treatment area)
 APPENDICES Appendix A – Limitations Appendix B – TRS Group Final Report, Electrical Resistance Heating Appendix C – Drilling and Installation Details for Electrodes, Chimney Wells & Temperature Monitoring Points Appendix D – Electrical Resistance Heating (ERH) Treatment Performance Monitoring Appendix E – Community Air Monitoring Program Appendix F – Tracer Monitoring Appendix G – Quality Assurance/Quality Control Data Review Appendix H – Analytical Reports (Provided on Disc)

1.0 INTRODUCTION

Sanborn Head & Associates, Inc. (Sanborn Head) prepared this report on behalf of IBM Corporation (IBM), to document completion of the Interim Remedial Measure (IRM) of insitu thermal treatment (ISTT) by Electrical Resistance Heating (ERH), at the Operable Unit #5 (OU#5)/Building 57 Area (Site) of the former IBM Endicott facility in Union & Endicott, NY. OU#5 is defined in the Administrative Order on Consent (AOC)¹. This report summarizes the implementation and monitoring of the IRM, and presents data to confirm the objectives were achieved. The findings and conclusions presented in this report are subject to the limitations presented in Appendix A.

The IRM was designed for removal of volatile organic compound (VOC) mass from four identified "source zones" identified on Figure 1 that were contributing to the presence of VOCs in groundwater. This work was completed in accordance with the ISTT IRM Work Plan² approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH), which are hereinafter referred to together as the Agencies.

The Remedial Action Objectives (RAOs) for ERH, as established in the IRM Work Plan, were to achieve Commercial Use Soil Cleanup Objectives (SCOs)³ for the key VOCs identified in Exhibit 1.

Exhibit 1 – RAOs, Commercial Use SCOs presented in units of milligrams per kilogram (mg/Kg), equivalent to parts per million by volume (ppmv)

Trichloroethene (TCE)	1,1,1-Trichloroethane (TCA)	CFC-113
200 mg/Kg	500 mg/Kg	500 mg/Kg

Following application of approximately 70%, 85%, and 100% of budgeted power, confirmatory soil samples were collected from locations within each source zone to assess the remediation progress. The results from these sampling events indicate that IBM not only achieved the RAOs of Commercial Use SCOs, but also achieved "Unrestricted" SCOs within all four treatment zones.

The work documented in this report was successfully completed on IBM's behalf through collaborative efforts of Sanborn Head, O'Brien & Gere (OBG), TRS Group, Inc. (TRS) and Groundwater Sciences Corporation (GSC).

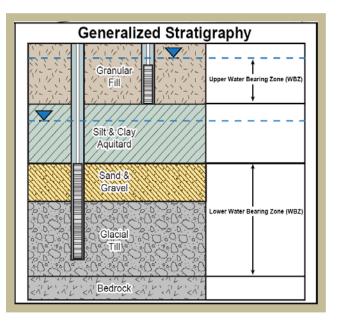
¹ Administrative Order on Consent Index # A7-0502-0104 (AOC) between the New York State Department of Environmental Conservation (NYSDEC) and IBM, executed on August 4, 2004 and effective on August 14, 2004.

² Sanborn, Head Engineering, P.C., June 24, 2011, "In Situ Thermal Treatment IRM Work Plan – Operable Unit #5, Building 57, Former IBM Facility, Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".

³ Presented in 6 NYCRR Table 375-6.8(a) for primary VOCs and breakdown products with the exception of CFC-113, which was presented as a supplemental soil clean-up objective in NYSDEC Soil Cleanup Guidance, CP-51, dated October 21, 2010.

Page 2 2466.02

2.0 BACKGROUND


The subsurface data on which the IRM was designed were collected during the Supplemental Remedial Investigation (SRI) and follow-up exploration and testing described in the SRI Report⁴. The presence of six source zones were inferred from the findings of the SRI, as identified on Figure 1:

- 1. Building 57A Area (B57A Area);
- 2. Former Waste Solvent Area (Waste Solvent Area);
- 3. Former TCA Above Ground Storage Tank (AST) Area (TCA Area);
- 4. Former Chlorofluorocarbon-113 (CFC-113) AST Area (CFC Area);
- 5. Building 57 Area (B57 Area); and
- 6. Former Huron Lot #26 Area (Lot 26), which has since been purchased and redeveloped by Gault Toyota.

The first four source zones listed above were targeted for ERH. The B57 Area was considered a *de minimis* source and no remediation was required. Lot 26 was subject to a limited program of targeted soil excavation⁵ and will continue to be addressed through groundwater extraction and treatment.

Although there were variations noted in Report. the SRI the generalized stratigraphy beneath the site consisted of bedrock (Shale) overlain by glacial till, overlain by alluvial deposits of silt, sand, and gravel, overlain by a local silt and clay aquitard, overlain by granular fill. The silt and clay aquitard separated two water bearing zones (upper and lower). Although the aquitard restricted the flow of groundwater between the two water bearing zones (WBZs), it did not prevent the migration of VOCs into the silt and clay and the lower WBZ soil.

As described in the SRI report, the primary VOCs present within the source

⁴ Sanborn, Head Engineering, P.C., March 11, 2010, "Report of Findings, Supplemental Remedial Investigation, Operable Unit #5, Building 57 Area, Union and Endicott, New York." Agency approval provided in a letter dated April 13, 2010.

⁵ Sanborn, Head Engineering, P.C., July 12, 2011 "IRM Completion Report - Lot # 26 Excavation – Operable Unit#5, Lot 26 Area, Union and Endwell, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".

zones were chlorinated ethenes (TCE and associated biochemical degradation byproducts), chlorinated ethanes (111-TCA and breakdown products) and CFCs. The quantity and distribution of VOC mass varied between source zones, media (soil and groundwater), and depth. Due to the unknown circumstances of release, and the variability within which VOCs were detected during the SRI, the removal or treatment of all contamination was not feasible with ERH or excavation. Thus the goal of this IRM was to remove VOC mass from the soil within the identified source zones to the extent practicable.

2.1 In-Situ Thermal Treatment – Electrical Resistance Heating Technology

ERH technology involves application of electrical current through a network of subsurface electrodes. The soil and groundwater act as a resistor to the path of electrical current, which results in heat generation. ERH technology is capable of heating the subsurface to the boiling point of water (100 degrees Celsius [°C]) which is sufficient for removal of key site-specific VOCs that have boiling points below 100 °C.

Through these processes, the contaminants were transferred into the vapor phase where they were carried to vapor recovery (VR) points (slotted subsurface piping) with the assistance of steam generation and a differential pressure induced by vacuum extraction. The extracted subsurface gas and steam were directed through a condenser/cooling tower system that was followed by the vacuum blowers and vapor phase granular activated carbon. Following treatment, the extracted gas was discharged through a 55-foot high stack to ambient air. Liquid condensate was diverted to the Clark Street groundwater treatment facility (GTF) for treatment.

2.2 ERH Design Basis

As discussed in the IRM Work Plan, the ERH system was designed to:

- Raise and maintain the temperature of soil and groundwater to the boiling point of water (100°C) across the treatment zone soil profile;
- Recover gas, steam, and water from the subsurface for treatment;
- Separate water condensate from the extracted vapor stream and treat the resultant gas stream for VOCs prior to discharge; and
- Direct the water condensate to the Clark Street GTF.

The four ISTT treatment zones comprised an area of about 36,000 square feet with an average depth of treatment of 20 feet. The estimated volume of in-place soil in the treatment zones is about 27,000 cubic yards.

2.3 ERH System Components

The primary components of the ERH system are summarized in Exhibit 2. For details on ERH system components, refer to the final report summarizing ERH operations provided by TRS, included as Appendix B.

Component Description	Quantity
2000 kW Power Control Units	2
Monitoring, Control, and Data Acquisition System	1
Remote Access and Control System	1
Electrodes	1281
Temperature Monitoring Points (TMP)	23
Thermocouples	110
Vapor Recovery Points, Co-located with Electrodes	125
Chimney Wells ⁶	20
Condenser and Cooling Towers	2
Vacuum Blowers	2
Vapor-Phase Granular Activated Carbon (GAC) Vessels	4

Exhibit 2 –ERH System Components

¹ Plus a sheet pile wall in the Waste Solvent Area roughly equivalent to 10 electrodes.

3.0 SYSTEM INSTALLATION

Sanborn Head, OBG & TRS completed installation of subsurface ERH components, which included chimney wells, temperature monitoring points, bored electrodes, and sheet pile electrodes identified on Figure 2. Subsurface installation was completed between August 1 and November 11, 2011.

The installation of subsurface ERH components was generally consistent with the design documents provided in the IRM Work Plan, with few exceptions. The sheet pile wall was re-designed from that included in the 30% design and IRM Work Plan, following the soil assessment in the Waste Solvent Area⁷. As-built documentation is provided in Appendix C. Additionally, vertical bored electrodes were substituted for the angled bored electrodes in the Waste Solvent Area and CFC Areas, and a pair of bored electrodes was substituted for a sheet pile electrode pair in B57A Area. These variations from the original design did not change the system effectiveness and were not considered significant. Based on the results of confirmatory soil sampling (discussed below), TRS installed 12 additional electrodes within the B57A and Waste Solvent Areas (refer to Figure 2) where confirmatory soil samples and temperature monitoring data indicated that remedial objectives would not be met within a reasonable timeframe.

Refer to Appendix C for detailed documentation of ERH system installation, including drilling documentation and installation records.

⁶ Chimney wells are borings extended into the lower WBZ and backfilled with sand, used to provide a path for vapor to migrate more readily from the lower WBZ, through the silt and clay aquitard, and into the unsaturated vapor recovery zone.

 ⁷ Sanborn, Head Engineering, P.C., October 14, 2011, "Building 57 Waste Solvent Area Excavation Report, Operable Unit #5/Building 57 Area, Union and Endicott, New York." Agency approval provided in a letter dated April 26, 2012.

Surface completions, above-grade piping and cable installation, set-up of treatment equipment, and other components of final system construction and installation were completed by OBG and TRS between November 2011 and February 2012. Details about system construction are included in the TRS final report, provided in Appendix B.

4.0 SYSTEM OPERATION

The ERH System was designed and operated by TRS. Testing in advance of full system operation included quality assurance inspection of piping and electrical connections; testing of data recording and management systems, system interlocks, and communication protocols; testing of operating conditions against design documents and standard procedures; and voltage safety testing. During ERH operation, TRS monitored soil temperatures, system operational parameters, and field screening and laboratory analytical data, and adjusted system configuration and operation to meet remediation goals. Details on ERH system operation are provided in the TRS final report (Appendix B).

5.0 SYSTEM MONITORING AND ASSESSMENT

Upon completion of ERH treatment, we estimated that approximately 7,000 pounds of VOC mass were recovered comprising mainly CFC-113 and TCE. Refer to Appendix D for a detailed summary of estimated weekly mass removed during treatment and a breakdown of mass removed by key VOC constituents.

5.1 Treatment System Monitoring

Sanborn Head monitored the performance and progress of ERH implementation through routine system measurements and confirmatory soil sampling, generally according to the IRM Work Plan. Treatment system and performance monitoring included:

- Routine field measurement of total VOCs and CFC-113 in vapor at various stages of the treatment system (influent and effluent from each GAC vessel and the combined stack discharge);
- Collection of vapor samples at various stages of the treatment system and submittal for laboratory analysis of VOCs;
- Collection of vapor samples from individual source zone headers (prior to condenser and cooling units) and submittal for laboratory analysis of VOCs;
- Continuous monitoring for VOCs within the building and VOCs at the downwind property boundary as required by the approved Community Air Monitoring Program (CAMP);
- Collection of condensate samples and submittal to a laboratory for VOC analysis;
- Collection and field screening of groundwater for bromide and temperature at downgradient sentinel monitoring wells; and

 Performing three rounds of confirmatory soil sampling at 70%, 85% and 100% of budgeted power use. Sampling included advancement of direct-push soil borings within each treatment zone and collection of soil samples (generally one sample from each stratum) for laboratory analysis.

Refer to Appendix D for a more detailed description of system monitoring and relevant field documentation.

5.2 Treatment System Vapor Screening

Field and laboratory analysis of vapor samples was performed to assess the effectiveness of the treatment system, appropriate times to change out the carbon vessels, and to estimate the rate of VOC mass removal by the system. Vapor screening data and mass removal estimates over the course of ERH treatment are summarized in Appendix D. For several weeks leading up to the 70% confirmatory soil sampling event we collected and analyzed vapor samples from individual treatment zone headers so that we could better assess the rate of VOC mass contribution to the system (most screening and laboratory sampling was conducted after the condensers where the vapor stream characteristics represented a combination of two areas). Note that the analytical results for samples collected after the condensers are more reliable than before the condensers due to water vapor interference.

5.3 Community Air Monitoring Program (CAMP)

Air monitoring according to the IRM Work Plan and Agency-approved Revised CAMP⁸ was performed during installation and operation of ERH. The CAMP included monitoring dust or particulate matter and VOC presence during excavation ERH construction activities. During ERH implementation, the CAMP comprised continuous air monitoring for total VOCs and CFC-113 inside the building (the loading dock area between Building 57 and Building 57A), and continuous monitoring for total VOCs at the downwind property boundary. The system was configured to send an alarm notification and shut down the electrodes if the concentrations exceeded predetermined levels. Refer to Appendix E for documentation summary of CAMP procedures and recorded data.

5.4 Sodium Bromide Tracer Monitoring

Due to the generation of steam, thermal treatment typically causes a "sink" effect on groundwater flow, particularly in low permeability formations like at OU#5. A concern prior to implementing ERH was that VOCs may become more mobile in groundwater as the ground temperature rises, but before steam would be generated and extracted.

Prior to initiating the ERH treatment, Sanborn Head injected sodium bromide (NaBr) tracer through each of the three groundwater extraction wells (after pumping was discontinued). During ERH operations we monitored NaBr concentrations and temperature in sentinel monitoring wells to assess the potential for groundwater migration. As indicated in the IRM Work Plan, detection of elevated NaBr at the sentinel wells would trigger a broader assessment of groundwater quality. We found no NaBr or temperature evidence

⁸ Sanborn, Head Engineering, P.C., February 2, 2012. "Appendix E (Revised Feburary 2, 2012) – Community Air Monitoring Plan," IRM Work Plan, Operable Unit #5/Building 57 Area, Union and Endicott, New York.

	Page 7
20121130 B57 IRM Completion Report.docx	2466.02

suggesting groundwater migrated to the sentinel wells. The injection and sentinel wells are shown on Figure 2. Refer to Appendix F for detailed field method summary and Table F.1 for data collected during tracer monitoring.

5.5 Confirmatory Soil Sampling

Confirmatory soil sampling was completed in accordance with the IRM Work Plan. Soil samples were collected from multiple depths at each of the sampling locations indicated on Figure 2, and Figures 3 (A) through 3 (D). As discussed in the IRM Work Plan, confirmatory sampling locations were selected based on criteria including historical detections of higher VOC concentrations; mid-point locations between electrodes, which are typically the last to reach treatment temperatures; and areas where the silt and clay aquitards thickness is greatest. The soil samples were analyzed for VOCs and the results were compared to the RAOs. To assess progress and re-focus the application of energy, we conducted interim sampling (when approximately 70% and 85% of TRS's design power budget had been applied). Based on the results of initial sampling at each soil boring, we concluded that the RAOs (Commercial SCOs) had been met in all four treatment zones. In addition, most of the soil concentrations were below the Unrestricted SCOs.

IBM chose to continue treatment until soil within the treatment zone met the Unrestricted SCOs. After the 85% confirmatory soil sampling, TRS installed 12 additional electrodes to increase the rate of VOC removal in areas where the remedial progress appeared stalled. Based on the 100% confirmatory soil sampling event, we were able to conclude that unrestricted SCOs have been met at all four treatment zones.

Detailed documentation of the confirmatory sampling program is provided in Appendix D.

6.0 QUALITY CONTROL AND DATA VALIDATION

As outlined in the IRM Work Plan, Sanborn Head followed the QA/QC plan and completed QC analysis of Summa®-type vapor samples and condensate samples collected from both process treatment trains. A summary of QC analysis and data quality objectives for performance monitoring is provided in Appendix G. All laboratory analytical reports are provided in Appendix H (on disc).

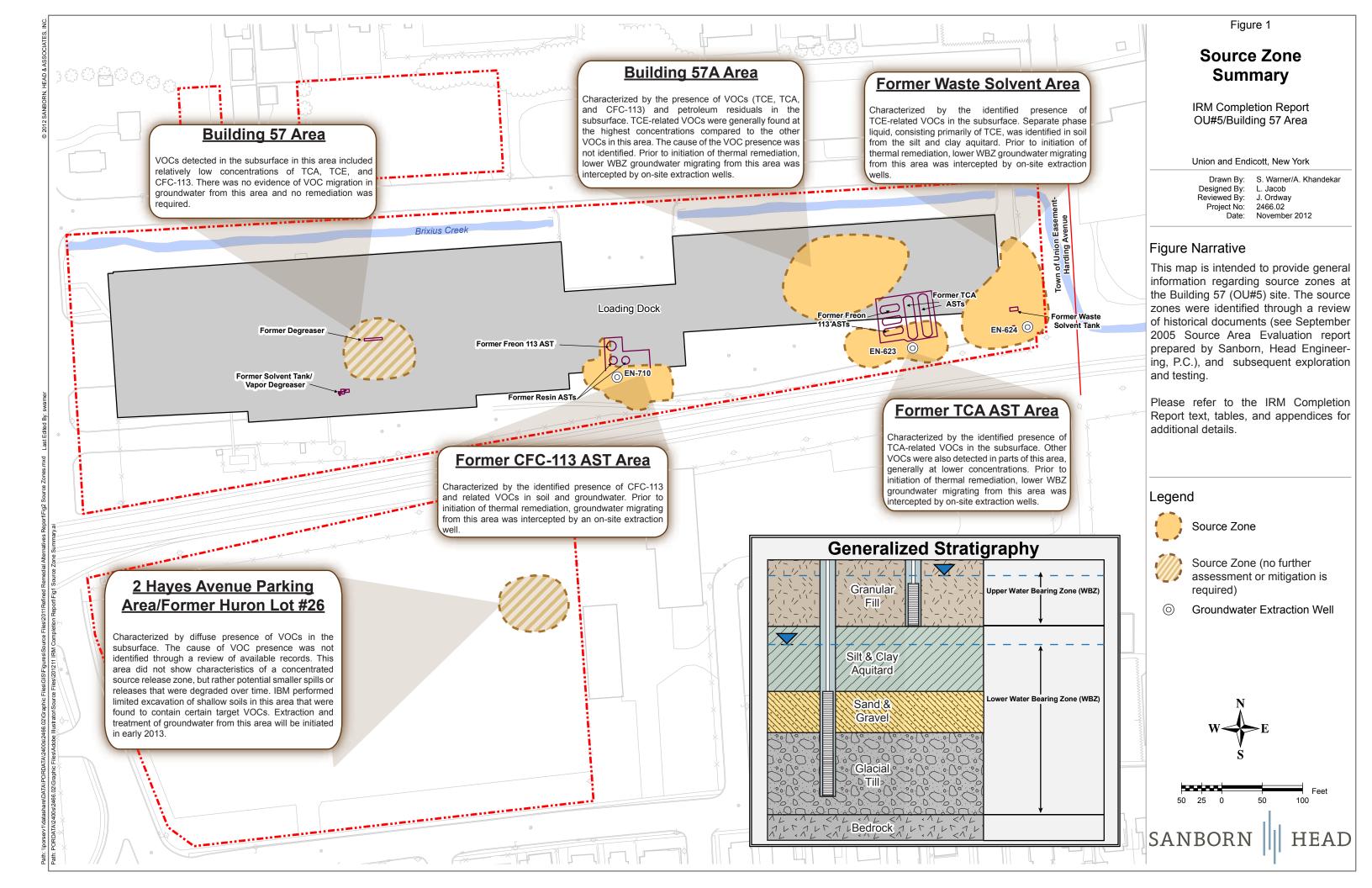
Data validation and usability assessment of confirmatory soil sample data was completed by New Environmental Horizons (NEH) of Arlington, MA, a third party consultant to Sanborn Head. All final results were deemed valid and usable for project decisions. Refer to individual validation reports provided in Appendix H for additional information. Validated soil quality data are summarized in Appendix D (Table D.5).

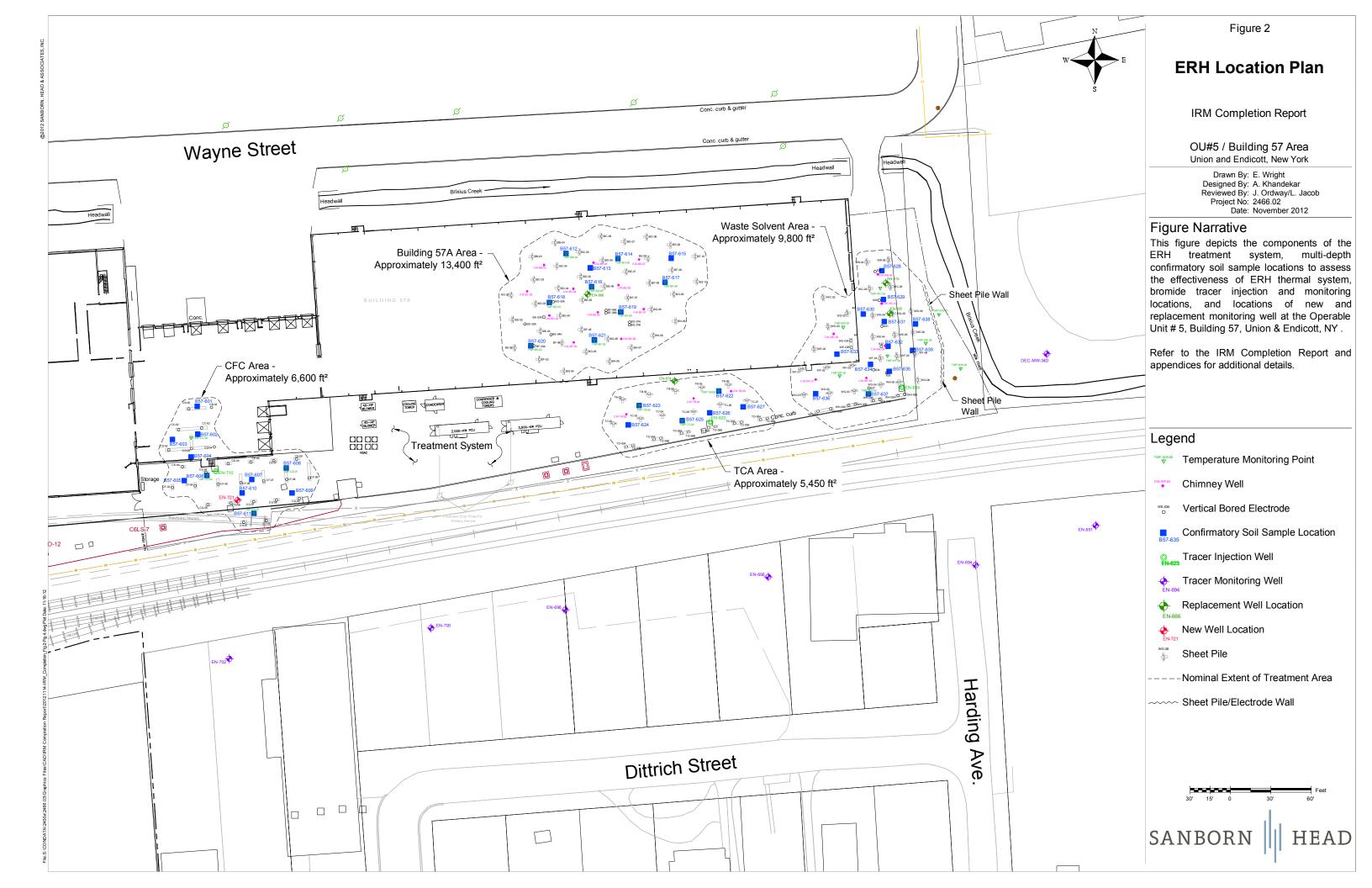
7.0 SYSTEM DECOMMISSIONING & SITE RESTORATION

Following confirmation that soil samples collected within ERH treatment zones met Unrestricted SCOs for key VOCs, TRS discontinued power application to the subsurface on September 24, 2012. The vapor recovery system continued to operate for a two week period to continue capturing subsurface vapor as the ground began cooling. Complete system demobilization for all treatment equipment was completed by TRS on October 17, 2012.

Site restoration commenced upon demobilization and will continue into 2013. As described in the IRM Work Plan, electrodes will remain in place. Vapor extraction points above the electrodes have been or will be sealed by injection of bentonite/cement grout. The floor slab within the building has been or will be repaired.

Exterior paved surfaces within the work area will be milled and repaved in early 2013. Original property line fencing will be restored. Drilling and installation of replacement and new groundwater monitoring wells is planned in 2013 as indicated in the IRM Work Plan. The restoration plans east of the Waste Solvent Area will focus on establishing a vegetative community that enhances soil stabilization and limits the re-colonization of non-native and invasive species.


8.0 SUMMARY


Nearly 7,000 pounds of VOCs were estimated to have been extracted from the ground in vapor form. With the application of ERH treatment, all remedial objectives as established in the IRM Work Plan were met. Additionally, soil conditions for samples collected within the treatment zones indicate that Unrestricted Use SCOs have also been met. The site will be restored for subsequent use, and IBM will continue to monitor groundwater quality conditions in keeping with Agency-approved, area-wide water quality monitoring.

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\20121130 B57 IRM Completion Report.docx

FIGURES

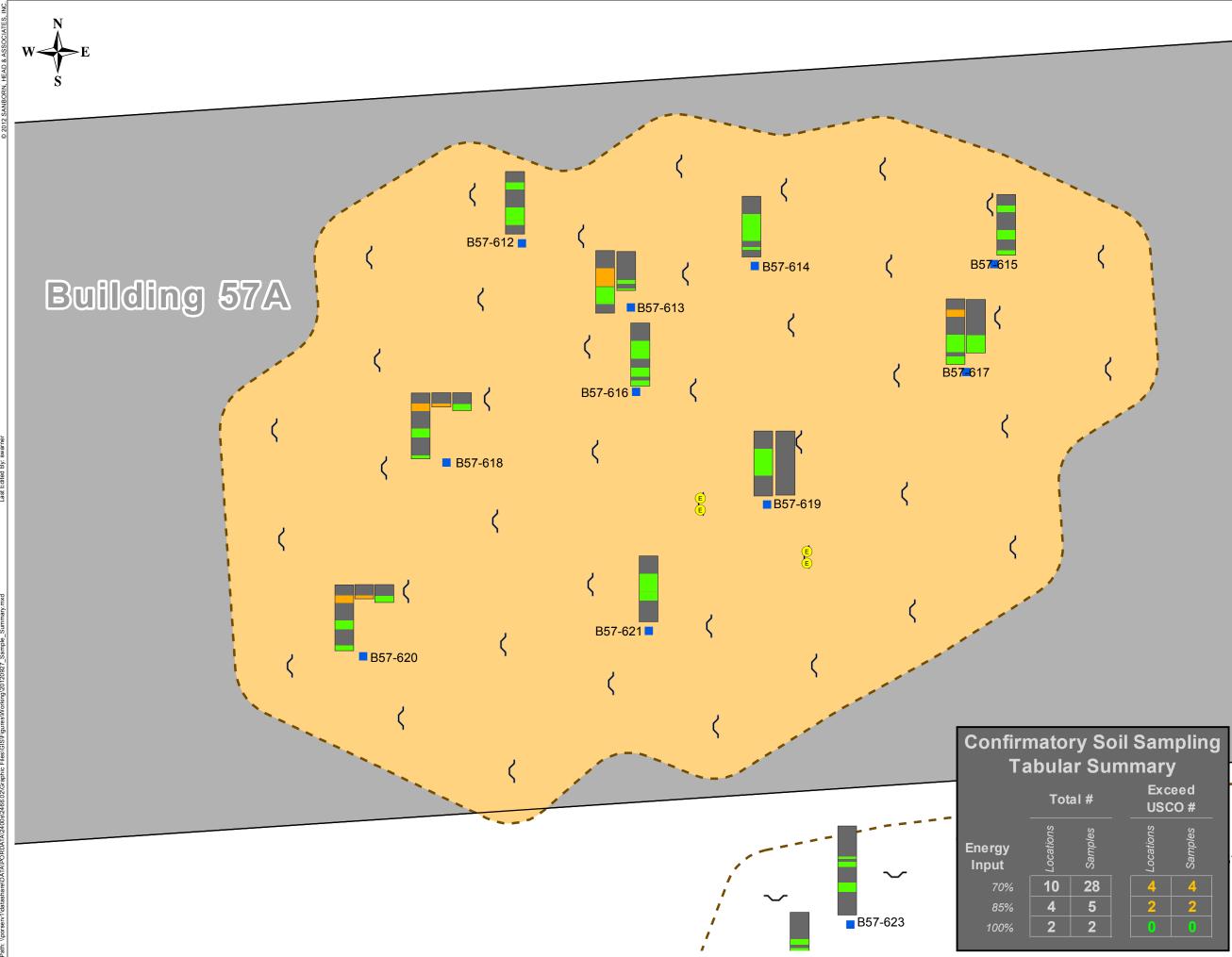


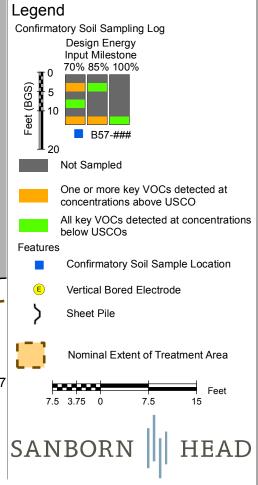
Figure 3A

Confirmatory Soil Sampling Summary B57A Area

IRM Completion Report

OU#5 Building 57 Area

Union and Endicott, New York


Drawn By:	5
Designed By:	ę
Reviewed By:	
Project No:	2
Date:	1

S. Warner S. Warner J. Ordway/L. Jacob 2466.02 November, 2012

Figure Narrative

This figure is intended to show the distribution and summarize findings of confirmatory soil sampling conducted to assess the progress of electrical resistance heating at Operable Unit #5/Building 57. Confirmatory sampling was conducted at milestones corresponding to the application of 70%, 85%, and 100% of the design energy input. The graphical logs depict the relative depth below ground surface where samples were collected, and whether any of five key, site-specific VOCs were detected in exceedance of New York State Unrestricted Soil Clean Up Objectives (USCO). At locations and depths within the thermal treatment zones for which one or more key VOCs exceeded USCOs, subsequent samples were collected following additional treatment to confirm all remedial objectives were met.

See IRM report text and Appendix C for additional information.

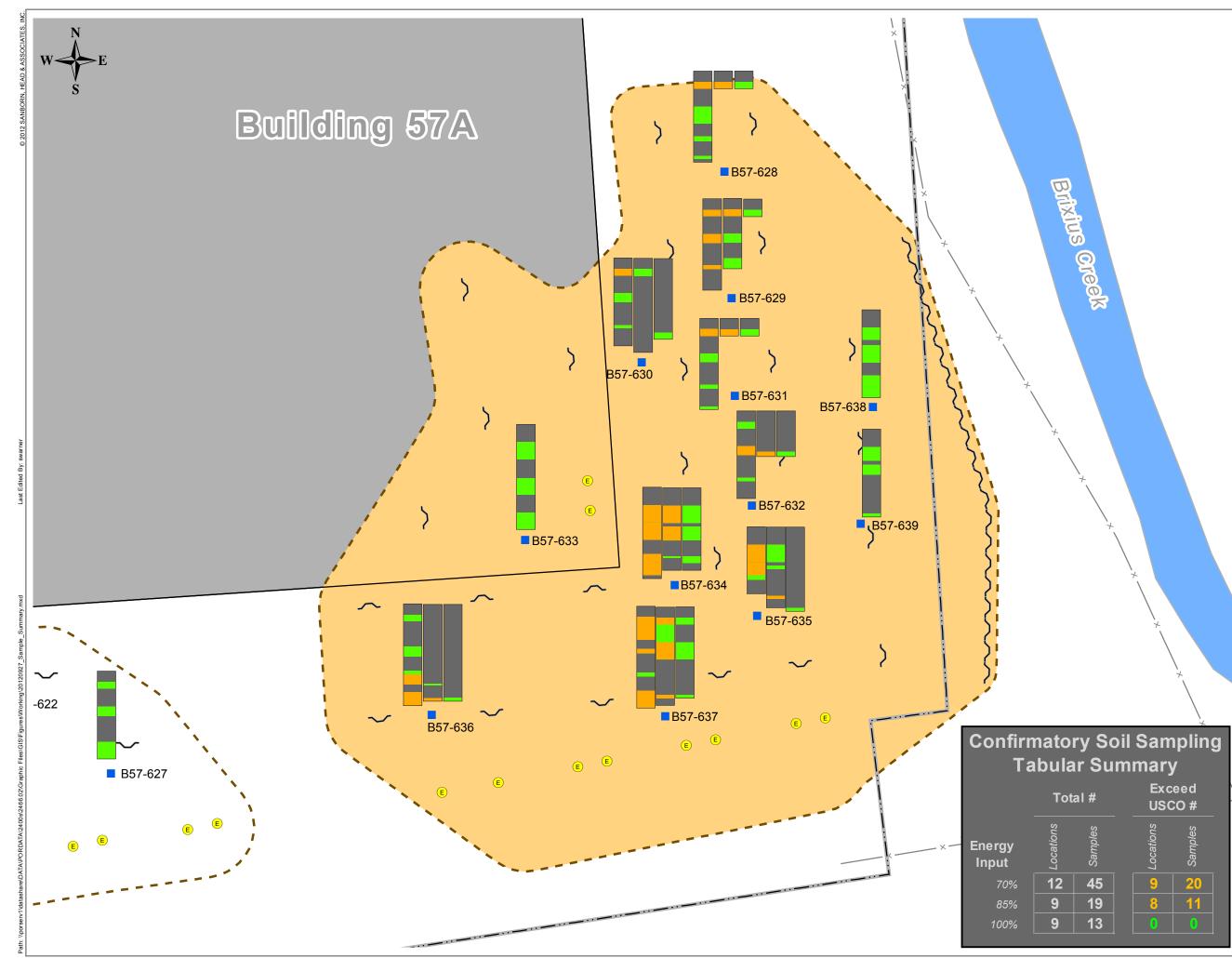


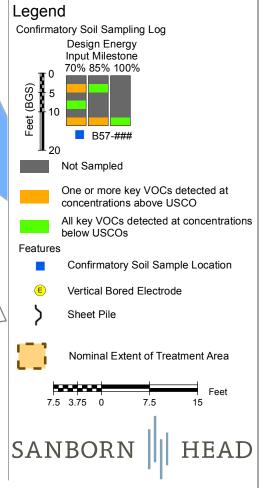
Figure 3B

Confirmatory Soil Sampling Summary Waste Solvent Area

IRM Completion Report

OU#5 Building 57 Area

Union and Endicott, New York


Drawn By: S. Warner Designed By: S. Warner Reviewed By:

J. Ordway/L. Jacob Project No: 2466.02 Date: November, 2012

Figure Narrative

This figure is intended to show the distribution and summarize findings of confirmatory soil sampling conducted to assess the progress of electrical resistance heating at Operable Unit #5/Building 57. Confirmatory sampling was conducted at milestones corresponding to the application of 70%, 85%, and 100% of the design energy input. The graphical logs depict the relative depth below ground surface where samples were collected, and whether any of five key, site-specific VOCs were detected in exceedance of New York State Unrestricted Soil Clean Up Objectives (USCO). At locations and depths within the thermal treatment zones for which one or more key VOCs exceeded USCOs, subsequent samples were collected following additional treatment to confirm all remedial objectives were met.

See IRM report text and Appendix C for additional information.

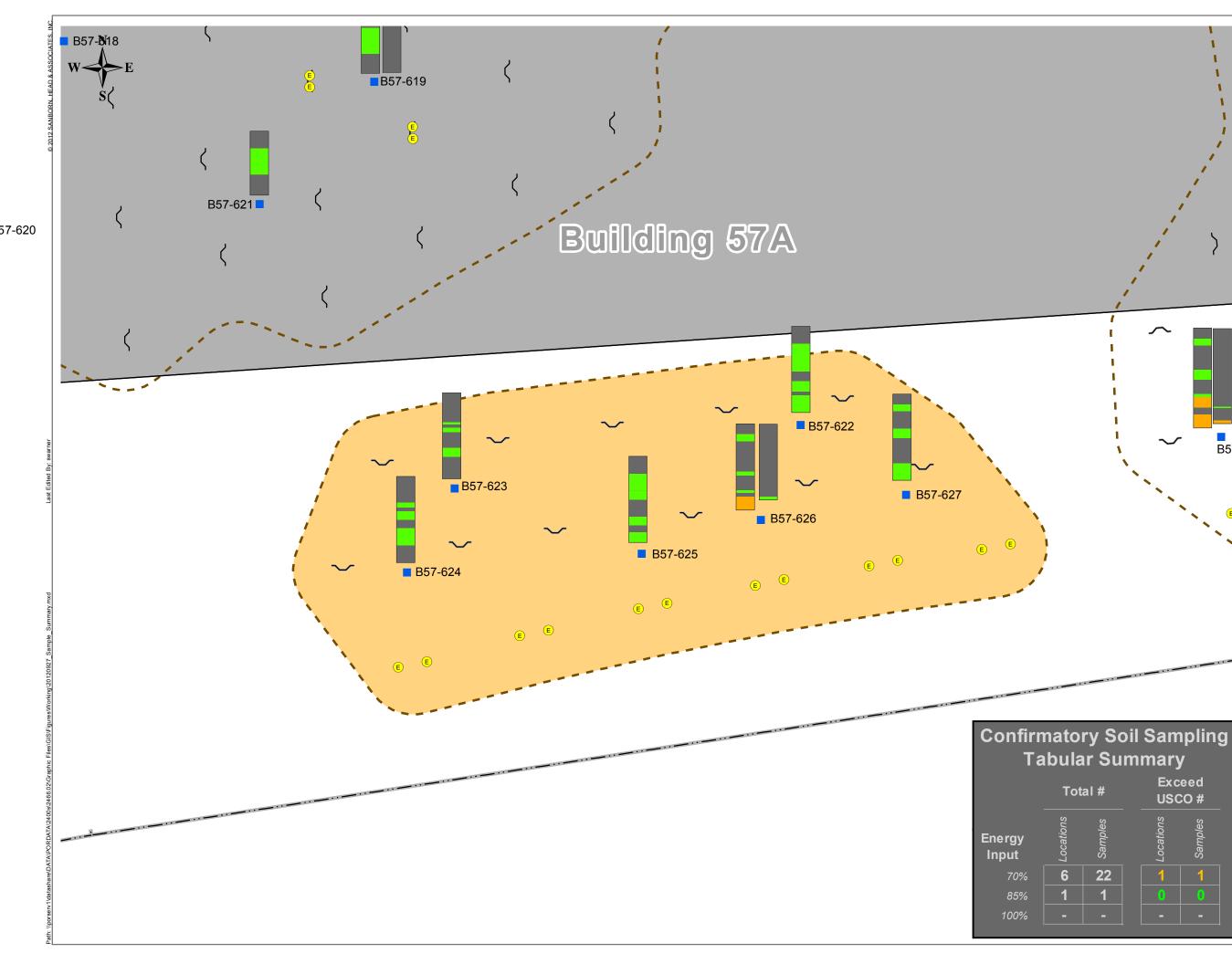
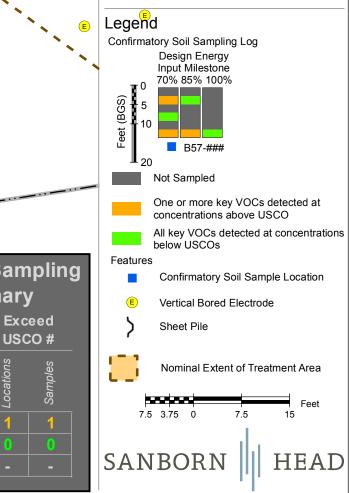


Figure 3C

Confirmatory Soil Sampling Summary TCA Area

IRM Completion Report

OU#5 Building 57 Area


Union and Endicott, New York

Drawn By: S. Warner Designed By: S. Warner Reviewed By: J. Ordway/L. Jacob Project No: 2466.02 Date: November, 2012

Figure Narrative

This figure is intended to show the distribution and summarize findings of confirmatory soil sampling conducted to assess the progress of electrical resistance heating at Operable Unit #5/Building 57. Confirmatory sampling was conducted at milestones corresponding to the application of 70%, 85%, and 100% of the design energy input. The graphical logs depict the relative depth below ground surface where samples were collected, and whether any of five key, site-specific VOCs were detected in exceedance of New York State Unrestricted Soil Clean Up Objectives (USCO). At locations and depths within the thermal treatment zones for which one or more key VOCs exceeded USCOs, subsequent samples were collected following additional treatment to confirm all B57-62 medial objectives were met.

> See IRM report text and Appendix C for additional information.

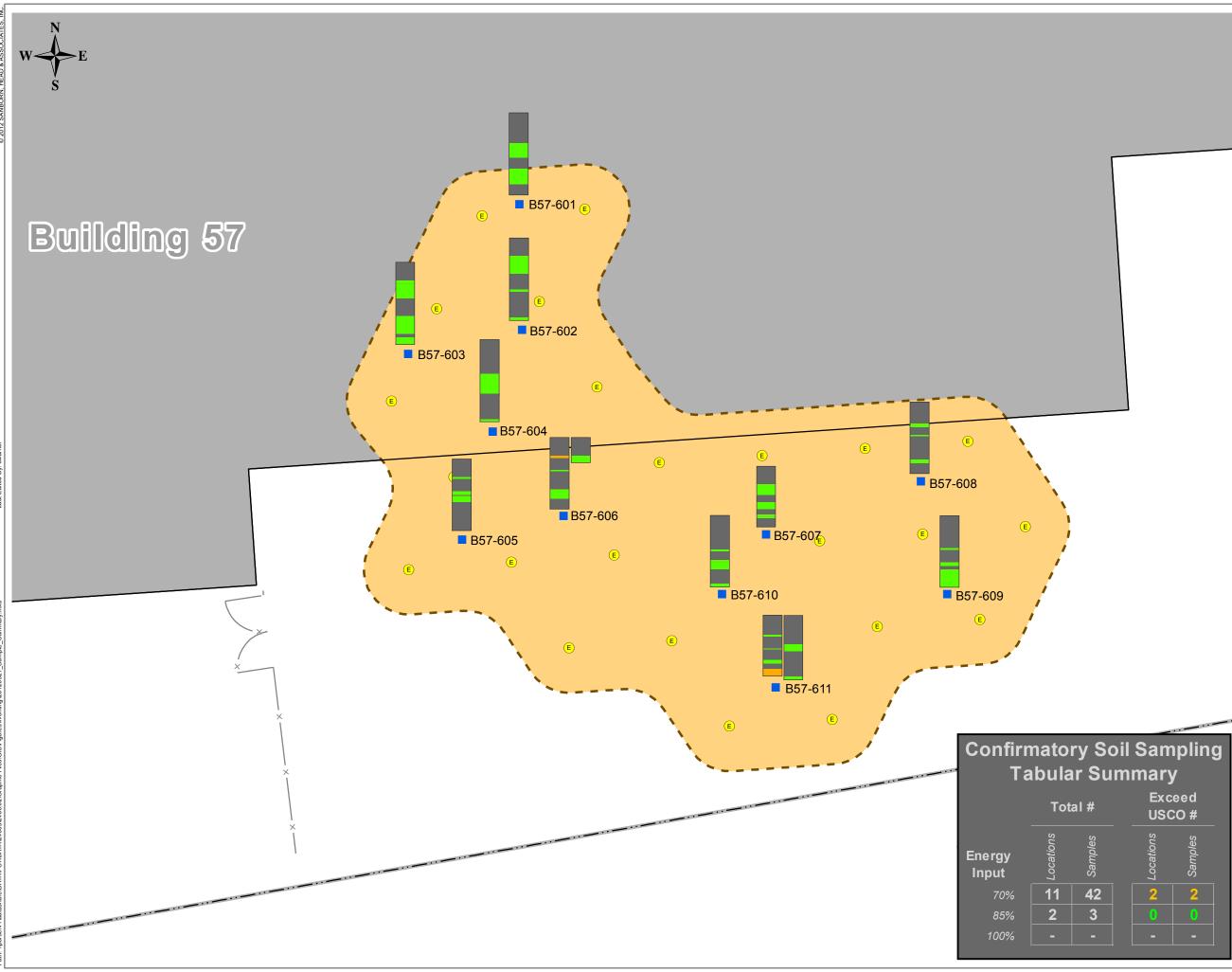


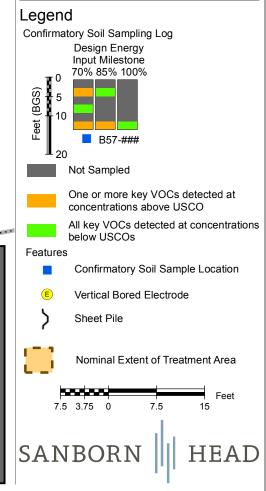
Figure 3D

Confirmatory Soil Sampling Summary **CFC** Area

IRM Completion Report

OU#5 Building 57 Area

Union and Endicott, New York


Drawn By: S. Warner Designed By: S. Warner

Reviewed By: J. Ordway/L. Jacob Project No: 2466.02 Date: November, 2012

Figure Narrative

This figure is intended to show the distribution and summarize findings of confirmatory soil sampling conducted to assess the progress of electrical resistance heating at Operable Unit #5/Building 57. Confirmatory sampling was conducted at milestones corresponding to the application of 70%, 85%, and 100% of the design energy input. The graphical logs depict the relative depth below ground surface where samples were collected, and whether any of five key, site-specific VOCs were detected in exceedance of New York State Unrestricted Soil Clean Up Objectives (USCO). At locations and depths within the thermal treatment zones for which one or more key VOCs exceeded USCOs, subsequent samples were collected following additional treatment to confirm all remedial objectives were met.

See IRM report text and Appendix C for additional information.

APPENDIX A

LIMITATIONS

APPENDIX A LIMITATIONS

- 1. The findings presented in this report were based solely upon the services described herein, and not on scientific tasks or procedures beyond the scope of described services.
- 2. Quantitative laboratory analyses were performed during IRM implementation and monitoring, as noted in the report. The analyses were performed for specific constituents of interest that were selected during the course of this study.
- 3. Quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, Sanborn Head has relied upon the data provided, and the opinion and findings of third party validation by qualified laboratory professional. The conclusions and recommendations contained in this report are based in part upon various types of chemical data. While Sanborn Head has reviewed the data and information as stated in this report, any of Sanborn Head's interpretations, conclusions, and recommendations that have relied on that information will be contingent on its validity. Should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by Sanborn Head and the interpretations, conclusions presented herein should be modified accordingly.
- 4. This report is prepared for, and is intended for the exclusive use of, the IBM Corporation for specific application to the Operable Unit #5/Building 57 Area in accordance with generally accepted professional practice. The contents of this report shall not be relied upon by any party other than IBM without the express written consent of IBM and Sanborn Head. No other warranty, express or implied, is made.
- 5. Sanborn Head is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or re-use of the subsurface data or engineering analyses without the express written authorization of Sanborn Head.

 $S:\ONDATA\2400s\2466.02\Source\ Files\2012\ IRM\ Completion\ Report\Appendix\ A\ -\ Limitations\20121130\ Appendix\ A\ -\ Limitations.docx\ A \ -\ Limitations\20121130\ Appendix\ A\ -\ Appendix\ A\ -\$

APPENDIX B

TRS GROUP FINAL REPORT, ELECTRICAL RESISTANCE HEATING

SANBORN || HEAD

Final Report Electrical Resistance Heating

IBM OU-5 6 Hayes Avenue Endicott, NY

Issued: November 30, 2012

TRS Group, Inc. PO Box 737 Longview, WA 98632 www.thermalrs.com

TABLE OF CONTENTS

EXECUTIV	E SUMMARY	.6
1.0 INTE	RODUCTION	.7
2.0 PRO	JECT OBJECTIVES	.7
3.0 THE	ERH PROCESS	.7
4.0 SITE	SPECIFIC ERH DESIGN	. 8
4.1. EF	H System Components	.9
4.1.1.	Power Control Units	.9
4.1.2.	Electrodes	9
4.1.3.	Electrode Drip Water	10
4.1.4.	Temperature Monitoring Points	
4.1.5.	Vapor Recovery System	
4.1.6.	Site Security	
4.1.7.	Ambient Air Monitoring	
5.0 SYS'	TEM CONSTRUCTION	
6.0 ERH	SYSTEM STARTUP	12
6.1. Pr	E-STARTUP TASKS	12
6.2. Sy	STEM STARTUP AND OPTIMIZATION	12
6.3. Vo	DLTAGE SURVEY	13
	OPERATIONS	
7.1. EF	H TREATMENT SYSTEM OPERATIONAL PARAMETERS	13
7.1.1.	Electrical Energy Application	-
7.1.2.	Subsurface Temperatures	
7.1.3.	Vapor Recovery	
	CH SYSTEM OPTIMIZATION	
7.2.1.	Vapor Recovery Optimization	
7.2.2.	Soil Sampling Optimization.	
7.2.3.	Supplemental Electrode Installation	
8.0 REM	EDIATION RESULTS	17
8.1. Sc	IL RESULTS1	17
9.0 CON	CLUSIONS	17

List of Tables

Table 1 NYDEC Unrestricted SCO	5
Table 2 Treatment Zones.	6
Table 3 Treatment System Components	7
Table 4 Energy Data	12
Table 5 Temperature Data	13
Table 6 Water Management	13
Table 7 Soil Data	15

List of Figures

Figure	1 –	Legend
--------	-----	--------

- Figure 2 Site Map
- Figure 3 Process Flow Diagram Train 1
- Figure 4 Process Flow Diagram Train 2
- Figure 5 Sheet Pile Electrode Design
- Figure 6 Bored Electrode Design
- Figure 7 TMP Design
- Figure 8 Chimney Well Design
- Figure 9 Average Subsurface Temperature vs. Time CFC
- Figure 10 Average Subsurface Temperature vs. Time B57A
- Figure 11 Average Subsurface Temperature vs. Time TCA
- Figure 12 Average Subsurface Temperature vs. Time WSA
- Figure 13 Soil Sampling Locations in CFC Treatment Area
- Figure 14 Soil Sampling Locations in WSA Treatment Area
- Figure 15 Soil Sampling Location in B57A/TCA Treatment Area
- Figure 16 Site Map (Additional Electrode Locations)

APPENDICES

Appendix A: Site Photos

Abbreviations and Acronyms

bgs	below grade surface
B57A	building 57A
°C	degrees Celsius
CAMP	Community Air Monitoring Plan
CFC	chlorofluorocarbon
COC	Contaminants of concern
CPVC	chlorinated polyvinyl chloride
CVOC	Chlorinated Volatile Organic Compounds
DCE	cis-1,2-Dichloroethene
ERH	electrical resistance heating
Freon 113	Trichlorotrifluoroethane
°F	degrees Fahrenheit
ft^2	square feet
ft bgs	feet below grade surface
gpm	gallons per minute
hp	horsepower
in Hg	inches of mercury vacuum
kW	kilowatt
kWh	kilowatt hour
mg/kg	Milligrams per kilograms
MW	monitoring well
NYDEC	New York State Department of Environmental Conservation
NYSEG	New York State Electric and Gas
OBG	O'Brien and Gere Inc. of North America
OU	Operable Unit
PCU	power control unit
PID	photo-ionization detector
ppb	parts per billion
PVC	polyvinyl chloride
SCO	soil cleanup objectives
scfm	standard cubic feet per minute
Sanborn Head	Sanborn, Head & Associates, Inc.
TCA	1,1,1-Trichloroethane
TCE	Trichloroethene
TMP	temperature monitoring point
TRS	TRS Group, Inc
VC	Vinyl Chloride
VGAC	Vapor-Phase Granular Activated Carbon
VOC	volatile organic compounds

VR	vapor recovery
WSA	Waste Solvent Area
yd³	cubic yards

Executive Summary

This report presents the results of the electrical resistance heating (ERH) remediation performed at Operable Unit 5 (OU-5) at the Former IBM Facility in Endicott, New York (Site). Contaminants of concern (COCs) for OU-5 included trichloroethene (TCE), cis-1, 2-dichloroethene (DCE), 1,1,1trichloroethane (TCA), vinyl chloride (VC) and Trichlorotrifluoroethane (Freon 113). The goal of the ERH remediation system was to reduce the above mentioned compounds to below New York State Department of Environmental Conservation (NYDEC) unrestricted use soil cleanup objectives (SCOs). Prior to the remediation, the project team estimated that approximately 1,668 lbs of Chlorinated Volatile Organic Compounds (CVOCs) were present in the treatment volume. The cleanup criteria (mg/kg) for each COC are; TCE (0.47), DCE (0.25), TCA (0.68), VC (0.02) and Freon 113 (6). Based on detection frequency, observed concentration and toxicity, TCE and Freon 113 were considered the two primary COCs in soil. The Site soil lithology is described as bedrock(shale) overlain with glacial till, overlain by alluvial deposits of silt, sand and gravel, overlain by local silt and clay aquitard, overlain by granular fill. The silt and clay aquitard separates two water bearing zones (upper and lower). Although the aquitard restricts the flow of groundwater between the two water bearing zones, it has not restricted the migration of COCs into the silt and clay in the lower water bearing zone.

The remediation had four distinct treatment areas separated by between 20 and 150 feet that were operated simultaneously. Each treatment area had a different COC or controlling characteristic. The areas are referred to as the waste solvent area (WSA), TCA area, building 57A area (B57A) and the chlorofluorocarbon (CFC) area.

Surface construction of the ERH system began in October 2011 and the system started normal operations on February 10, 2012. The system incorporated 128 individual electrodes with co-located vapor recovery (VR) wells and a 70 ft long sheet pile wall to treat a soil volume of approximately 27,000 cubic yards (yd³). The shallow extent of treatment began between 3 to 5 feet below grade surface (ft bgs) depending on the area and extended to between 16 and 26 ft bgs. The variable depth of treatment approach was used to target COCs only where they were present, increasing the efficiency of the remediation. Subsurface temperatures were measured at 23 temperature monitoring points (TMPs), each containing thermocouples spaced vertically at 5-foot intervals through the heated interval. A total of 110 thermocouples provided a detailed subsurface temperature profile throughout the project.

The ERH system operated for a total of 228 days and applied a total of 7,951,699 kilowatt hours (kWh) of energy to the four treatment areas. The combined average rate of power application was 1,453 kilowatts (kW). On average, subsurface temperatures increased at a rate of 0.7 degrees Fahrenheit (°F) per day as the treatment area temperature increased from ambient to 203° (°F).

Soil sampling was conducted during the remediation at the applied energy intervals of 72%, 92% and 113% (percentages based on the actual vs. design energy input of 6,920,000 kWh). Soil samples were collected at multiple depths in 39 locations based on pre-ERH sample results and field screening. To increase the efficiency of the remediation, approximately 50% of the total treatment volume was decommissioned at the 72% energy mark based on sample results that demonstrated meeting the unrestricted SCOs within portions of each treatment area. Baseline soil sample concentrations ranged between 6 to 11,000 mg/kg for all CVOCs and averaged 793 mg/kg. Upon project completion, confirmatory soil sampling results from all intervals within the ERH treatment area were measured below New York State unrestricted soil clean up criteria and averaged 0.099 mg/kg or a reduction of 99.99% from baseline.

Vapor samples were collected weekly and submitted for laboratory analysis. Based on sample results and flow rates, it is estimated that 6,968 pounds of CVOCs were extracted from the treatment volume.

1.0 INTRODUCTION

This report provides a summary of the design, installation, operation, sampling, and decommissioning of the electrical resistance heating (ERH) treatment system at Operable Unit #5 (OU-5) at the Former IBM Facility in Endicott, New York (herein referred to as the "Site"). The information presented in this report is based on data collected by TRS or reported by Sanborn, Head & Associates, Inc. (Sanborn Head) from various media before, during, and after the ERH remediation. The report documents system performance and the achievement of specified project goals.

TRS was contracted by Sanborn Head to design the system and by O'Brien and Gere Inc. of North America (OBG) to install, operate and maintain the ERH system at the Site. Sanborn Head and OBG were contracted by IBM to manage environmental affairs at the Site. Sanborn Head and OBG were responsible for all permits, waste management, sub-surface installation and sampling at the Site.

The Site is located in a mixed industrial and residential area at 6 Hayes Avenue in Endicott, New York. The property is a level 200-foot wide by 600-foot long rectangle that covers approximately 2.8 acres. The northern three quarters of the facility contains a warehouse with a paved parking area covering the southern portion. A legend for ERH design symbols is provided on Figure 1. The ERH treatment area is delineated on the General Site Map on Figure 2. Select project photographs are provided in Appendix A.

2.0 PROJECT OBJECTIVES

The cleanup standards for the remediation were designed to remove the contaminant source from the soil which would in turn decrease the size and lifespan of the offsite plume. Reducing the impact of the plume would reduce potential human health impact from vapor intrusion or direct contact pathways. The project remedial objective was to:

• Reduce the concentration of TCE, DCE, TCA, VC, and CFC 113 in soil to below New York State Department of Environmental Conservation (NYDEC) unrestricted use soil cleanup objectives (SCO). Cleanup Criteria for each COC are detailed in Table 1.

	TCE	TCA	DCE	CFC 113	Vinyl Chloride
Cleanup Criteria (mg/kg)	0.47	0.68	0.25	6	0.02

Table 1. NYDEC SCO

3.0 THE ERH PROCESS

ERH is a process whereby soils and groundwater are heated by passing an electrical current through the subsurface volume to be remediated. Electrical energy is introduced to the subsurface at electrodes, and it is the resistance by the soil matrix to the flow of electricity between electrodes that heats the subsurface and boils a portion of the soil moisture into steam. This *in situ* steam generation

occurs in all soil types, regardless of permeability. The heat generated by resistance to the induced electrical current also evaporates the target contaminants. The *in situ* steam generated by ERH acts as a carrier gas to sweep VOCs to negative pressure vapor recovery (VR) wells.

Once the *in situ* production of steam starts, it becomes the driving mechanism for the transport of contaminant vapors in the subsurface. Because steam is produced *in situ* and not injected during ERH, the only driving force for steam migration is gravity, producing a buoyancy affect. The effect of buoyancy on steam below the water table is to force it directly upward toward the surface similar to bubbles rising through a column of water. The buoyancy force is very strong and will cause the steam to find an upward path to the VR system.

Steam, contaminant vapors, and entrained groundwater are recovered from the subsurface into the VR system during ERH. The VR system includes either separate VR wells (chimney wells) or VR wells co-located with the electrodes and a header collection system. The header system consist of a network of chlorinated polyvinyl chloride (CPVC) pipes that progressively increase from 1-inch in diameter to a maximum of 8-inches in diameter before entering the steam condensing unit. The steam, air and soil vapors are transported by CPVC piping to the steam condenser where the recovered mixture passes through a vapor/liquid separator and heat exchanger. Condensate accumulated in the vapor/liquid separator tanks within the condenser and is used as cooling water within the condensing unit. Surplus water accumulated within the condenser cooling loop is discharged to the onsite water treatment system or re-injected into the electrode to rehydrate the soil electrode interface. Recovered soil vapors are routed through vapor phase granular activated carbon (VGAC) vessels prior to discharge to the atmosphere.

4.0 SITE SPECIFIC ERH DESIGN

The ERH treatment volume at the Site was approximately 27,000 cubic yards (yd^3) . The treatment area covered approximately 36,000 square feet (ft^2) . The Site was separated into four treatment areas that were separated by 20 to 150 feet. The size of the individual treatment areas and the extent of contamination are summarized in Table 2. The depth of the treatment volume varies between the four treatment areas. The maximum extend of the remediation is from 3 to 26 feet below ground surface (ft bgs). Figure 2 displays the Site plot plan detailing the four treatment zones, the electrode layout and the TMP layout.

	CFC	B57 A	TCA	WSA
ERH Treatment Area (ft ²)	6,650	13,400	5,450	10,600
Shallow Extent of ERH	5	3	3	3
Average Deep Extent of ERH	21	16	24	26
Number of Electrodes	27	46	17	48*
Contaminant of Concern (COC)	Freon	TCE	TCA	TCE

Table 2. Treatment Area

*The sheet pile wall in the WSA area is roughly equivalent to 10 individual sheet pile electrodes.

4.1. ERH System Components

A list of the ERH system components is located in Table 3. A summary of the ERH process and supporting ancillary system components is also provided in the process flow diagram (PFD) illustrated on Figures 3 and 4.

System Component	Quantity
2,000-kW PCUs	2
Step-Down Transformers	5
Monitoring, control, and data acquisition system	1
Remote access and control systems	2
Electrodes	138*
Steam condensers	2
40-hp vapor recovery blowers	2
1,800-2,200-pound vapor GAC vessels	10
3,000-pound permanganate polish vessel	2
TMPs	23
Vapor recovery wells, co-located with electrodes	125
Chimney Wells	20
Electrode wetting systems	2

Table 3. Treatment System Components

*The sheet pile wall in the WSA area is roughly equivalent to 10 individual sheet pile electrodes.

4.1.1. Power Control Units

The ERH system used two 2,000 kW power control units (PCU) to deliver energy to the electrodes for subsurface heating. Each PCU is a variable voltage transformer system capable of providing three phase power output at adjustable levels between 100 to 860 volts. The PCUs are housed in steel enclosures that provide security and electrical insulation.

New York State Electric and Gas (NYSEG) provided a 12,475-volt electrical service that was split between the two units. Each unit was connected to the utility service by a New York state licensed electrician. All ancillary ERH system equipment was powered from the PCUs through an internal auxiliary transformer and electrical distribution panel. Power output from one of the PCUs was routed directly to the CFC and B57A treatment areas' 68 electrodes. Power was routed through step-down transformers used to modify the voltage to selected subsurface areas in the WSA and TCA treatment areas.

4.1.2. Electrodes

A total of 138 electrodes (128 individual electrode locations and a sheet pile wall in the WSA area which acted as 10 additional electrodes) were used to deliver energy to the subsurface within the treatment areas as shown on Figure 1. The electrodes design and layout concentrated energy to areas of known contamination; this approach conserves energy and increasing the efficiency of

END21 FR 113012 acf

the remediation. The treatment area was divided into four zones that were delineated by the depth of contamination. A summary of the treatment intervals is presented in Table 2.Typical construction details for each electrode design are shown on Figures 5 and 6. The spacing between electrodes was approximately 17.5 to 19.5 feet.

The ERH system employed two types of electrodes within the design: Sheet pile electrodes were employed in portions of the B57A, TCA and WSA treatment areas. The sheet pile electrode consisted of two sheet piles welded together to form an electrode. They were driven by means of a vibrating pile driver to bedrock refusal within each treatment area. The average depth of the sheet pile installation in each treatment area is summarized in Table 2.

Bored electrodes were employed exclusively in the CFC area and in portions of the B57A, TCA and WSA where overhead restriction or shallow refusal prevented the installation of sheet pile electrodes. In the CFC area, 12- inch bored electrodes were installed via roto-sonic drilling methods. This was necessary to extend the electrodes five feet into the shallow fractured bedrock that was present from 20 to 25 ft bgs within the treatment area.

The WSA treatment area included a 140 foot sheet pile wall on the eastern end of the site. The sheet pile wall was employed to prevent the flow of heated water into Brixius creek from the shallow water-bearing zone. The southern 70 feet of the wall was used as an electrode to conduct energy within the WSA treatment area. The northern 70 feet was not part of the heating system and was used to stop water migration.

4.1.3. Electrode Drip Water

During operation, the area immediately surrounding each electrode has the potential for drying out, which may reduce the effectiveness of the electrode. This dry-out condition is addressed by periodically adding drip water to the electrodes. The ERH system utilized drip water to combat the effects of dry-out during ERH operations.

4.1.4. Temperature Monitoring Points

The ERH system used 23 TMPs to track the progress of the ERH remedial efforts. The TMPs locations are shown on Figure 2. Each TMP casing was constructed of 1.25 inch CPVC pipe and installed to a depth of the corresponding depth of remediation in the four specific treatment areas. A string of thermocouples was inserted into the casing with each thermocouple spaced out every five vertical feet from the bottom of treatment. After each thermocouple was tested and found to be functional, the annular space of the TMP casing was filled with cement slurry. The cement provides a thermal connection to the surrounding treatment area. Construction details of the TMPs are shown on Figure 7. Two of the TMPs were installed on the eastern side of the sheet pile wall to monitor for hot water migration outside of the sheet pile wall bordering Brixius Creek.

4.1.5. Vapor Recovery System

The site was designed with two independent vapor recovery systems. The first vapor recovery system was referred to as "Train 1" and encompassed the WSA and TCA treatment areas. The second vapor recovery system was referred to as "Train 2" and encompassed the CFC and B57A treatment areas. Each train had a 40-hp rotary lobe positive displacement blower which was used to apply vacuum to the VR wells through a CPVC conveyance piping system. The conveyance piping was connected to vapor recovery screens place above the electrodes within the four treatment areas.

Chimney wells were located strategically within the WSA, TCA and B57A treatment areas to provide supplemental vapor recovery. Six inch borings were advanced to the bottom of the treatment area and backfilled with sand. A stainless steel vapor recovery screen was inserted into the sand pack above the water table and attached to the vapor recovery system. Chimney well details are presented in

Figure 8. Vapor recovery piping was sized from one-inch up to eight inch CPVC pipe to move the vapor stream towards the ERH treatment equipment. A special feature within the WSA treatment area was the installation of a vapor recovery plenum made of low density polyethylene plastic sheeting to supplement vapor capture in the vicinity of the sheet pile wall. The vapor stream consisted of steam, air, and CVOC vapors and passed through the conveyance piping system to the ERH condenser units. Once the vapor stream passed through the ERH condenser and blower, the vapors were treated with the VGAC treatment vessels prior to atmospheric discharge (see Figures 3 and 4 for further details).

The vapor treatment systems for the ERH remediation were installed by TRS and OBG. OBG and Sanborn Head were responsible for the sampling and management of the vapor treatment system. The recovered air and contaminant vapors were treated using vapor-phase granular activated carbon. Two-1,800 lb VGAC vessels configured in series were assigned to treatment Train 1. Two-2,200 lb vessels were used on treatment Train 2. Each treatment train had a final polish vessel filled with approximately 3,000 lb of potassium permanganate infused GAC. Potassium permanganate was chosen as a final polish to treat vinyl chloride. Based on field readings and the decreasing concentration of vinyl chloride in the waste streams, the polish vessel for train 1 was removed from service on April 5, 2012 and the polish vessel for train 2 was removed from service on February 28, 2012.

4.1.6. Site Security

A chain link fence was installed prior to construction and operation of the ERH treatment system. A wireless, cellular based alarm system was installed by TRS around the perimeter of the ERH treatment area. Motion sensors were placed around the inside of the security fence and each sensor was equipped with dual beam infra-red detection. The base unit was located next to the PCU in a weather-resistant container. The security alarm system was interlocked with each PCU and was set to de-energize the electrodes in the event of unauthorized entry.

4.1.7. Ambient Air Monitoring

To ensure compliancy with the Community Air Monitoring Program (CAMP), Sanborn Head installed a CFC monitor and photo-ionization detector (PID) inside the CFC area, where daily work was performed. Approximately 400 feet east, a second PID was installed to monitor the air quality above the exterior portion of the ERH system. All three meters were interlocked to the PCUs so that any exceedance would remove power from the electrodes.

5.0 SYSTEM CONSTRUCTION

Sub-surface construction activities commenced at the Site on August 5, 2011. The first activity to occur was the installation of the temperature monitoring points and chimney wells. The drilling and installation of the bored electrodes in the CFC, TCA and WSA areas commenced on September 29, 2011. Drilling operations concluded on November 11, 2011. Sheet pile electrode installation commenced on October 5, 2011 and was completed on November 10, 2011.

OBG pressure tested and decommissioned the fire line that runs along the southern side of the building through all four treatment areas. OBG performed site utility mark outs during subsurface installation activities.

Surface installation commenced in November 2011 with the installation of the vapor recovery piping. The following surface installation activities occurred between October 13, 2011 and February 10, 2012:

- Mobilization of ERH equipment to the Site.
- Installation of vapor treatment equipment
- Completion of all cabling and above ground piping.
- Installation of vapor treatment system.
- Electrode cable connection.
- Drip system installation.
- Installation of liner in WSA treatment area.
- Primary power service installation and termination to the PCUs.
- Connection of thermocouples and system data transmitters to the ERH data logging system.
- Installation and testing of the interlocks, site security system, and communications system.
- Installation of ambient air monitoring systems.

6.0 ERH SYSTEM STARTUP

The ERH system startup occurs between construction and operations and includes: system shakedown, start-up testing, personnel safety testing, and personnel training. System shakedown began on January 30, 2012, with functionality testing of the ERH equipment and equipment interlocks, and the initial evaluation of energy application to the subsurface. Unattended ERH system operations commenced on February 10, 2012 after proper verification of all systems was made.

6.1. Pre-startup Tasks

Prior to installation and start-up, a final quality assurance inspection of all piping and electrical connections were completed. Quality assurance inspections and testing were completed on the electrode cable connections, condenser components, transformer connections, TMP field box connections, VR blower, and PCUs. TRS also completed Part I of the internal *TRS Start-up Safety Checklist* and all associated tasks prior to commencing start-up operations.

All equipment were visibly inspected for weld cracks or breaks, scrapes of protective coating, corrosion, structural damage, and inadequate installation or construction such as cracks, punctures, and damaged fittings. No discrepancies were identified. After review by IBM and OBG, the ERH Hazards notification letter was sent to the neighboring property owners on November 18, 2011.

6.2. System Startup and Optimization

The first phase of ERH system startup consisted of vapor recovery and treatment system operation without the application of electrical energy to the subsurface. The sumps of the condenser cooling towers and condenser vapor/liquid separators were filled with potable water and condenser operations were initiated. The ERH condensers and cooling towers and VR system were confirmed operational and optimized before the application of energy commenced. All pressure, temperature, flows, and remote monitoring equipment was verified for correct operation. Once the functionality of the system components was established, equipment interlocks testing commenced. The data recording and management systems and communication protocols were tested and refined. Functionality testing of the ERH equipment interlocks, and the evaluation of energy application to the subsurface followed. ERH system process flow diagrams are presented as Figure 3 and 4.

Energy was first applied at a very low voltage to the subsurface on January 30, 2011 to evaluate the electrical conductivity characteristics of the soil matrix in the treatment volume. This evaluation

included observing cable and electrode amperages at various applied voltages. Concurrent with these evaluations, TRS performed step-and-touch and step-and-step voltage safety tests on the surface of the treatment area and the portions of the Site immediately adjacent to the treatment area. Initial power application and voltage survey protocols were performed consistent with TRS internal standard operating procedures (SOPs) 1.2 (Application of Electrical Power to ERH Sites) and 1.3 (Voltage Surveys).

Once all operating conditions were within accepted standards as outlined in design documents and TRS SOPs, the voltage to the electrode field was slowly increased. With each significant increase in applied voltage, operating parameters were reviewed, and step-and-touch and step-and-step voltage surveys were repeated.

As power application levels reached optimum design conditions, final safety inspections and data quality checks were completed. Part II of the internal *TRS Start-up Safety Checklist* was completed and the ERH system began continuous energy application and operation on February 10, 2012

6.3. Voltage Survey

The step-and-touch voltage safety test is a critical step in the application of the ERH technology. "Step-and-Touch" is the name given to the measurement of the voltage potential between objects near enough to one another that project staff, or a project visitor, could contact both objects at the same time. Contact could be with the hands, the feet, or between a hand and a foot. The TRS administrative electrical safety policy limit for exposed voltage is:

- 15 volts alternating current (VAC) for all Touch Potentials
- 30 VAC for all Step-and-Step Potentials

This maximum limit is less than the 50 VAC standard set by the Occupational Safety and Health Administration (OSHA) for worker exposure to voltage potentials.

During startup testing, TRS addressed a step-and-touch voltage exceedance along the northeastern fence and gate area by applying a surface neutral wire mesh to the adjacent ground and then bonding it to the chain link fence. Voltage mitigation was performed along the southern and eastern fence line where the three rows of barbed wire above the chain link were removed. After these mitigation measures were implemented, no voltages exceeding of the TRS 15 VAC/30 VAC limits were found under dry or wet conditions and the ERH system was deemed electrically safe and ready for uninterrupted operations. Step-and-touch and step-and-step voltage surveys were conducted throughout operations and whenever the applied voltage to the subsurface was increased.

7.0 ERH OPERATIONS

During ERH operations, TRS closely monitored operational parameters, soil temperatures, and laboratory analytical data to alter system configuration and operation to meet remedial goals at the Site. The following subsections describe major changes to the system that occurred during the ERH operational phase.

7.1. ERH Treatment System Operational Parameters

Steady state system operations began on February 10, 2012. Operational parameters such as power input, subsurface temperatures, steam production, vapor stream parameters, and CVOC concentrations in the recovered soil vapors were measured. This data was used to assess the efficiency of the ERH system and allow TRS personnel to target specific areas of the site and

optimize system performance. Personnel monitored and recorded data in accordance with the weekly Site Specific Inspection, Maintenance, Sampling and Monitoring Schedule. TRS monitored the following ERH system parameters daily: Daily energy delivery, average applied power, condensate water generated, condensate water discharged, average daily heat up rate, Site average temperature, vapor stream vacuum, and vapor stream flow rate. OBG was responsible for management of the VGAC vessels and all waste generated during the ERH project. Sanborn Head was responsible for monitoring all soil, water, and air sampling of the ERH system.

7.1.1. Electrical Energy Application

The application of electrical energy to the subsurface was optimized throughout the project in an effort to achieve the most efficient CVOC phase change in the subsurface per unit of energy applied. Through weekly analysis of power input, subsurface temperatures, and CVOC recovery data, the optimal rate of energy application was determined. Continuous adjustments were made to the ERH system to maintain an optimal processing rate within system limitations.

All four treatment areas used a total of 7,929,744 kilowatt-hours (kWh) of energy application between startup and project's completion on September 24, 2012. The pre-remediation estimate was 6,920,000 kWh and the system exceeded that estimate by 15%. The initial site assessment indicated that there was approximately 1,668 lb of contaminate within the four treatment areas. Based on final analytical data provided by Sanborn Head, the total amount of mass removed was 6,968 pounds. The additional mass in the subsurface affected the amount of energy required to meet the project goals. Both PCUs averaged 1,449 kW of applied power to the treatment volume over the 228 day operational period, including down time. A breakdown of energy application by treatment area is presented in Table 4.

	WSA	TCA	B57A	CFC	Total
Average Power (kW)	645	200	400	204	1,449
Cumulative Energy Applied (kWh)	3,530,311	1,094,749	2,188,380	1,116,304	7,929,744
Estimated Energy Required (kWh)	2,943,784	939,121	2,107,003	930,091	6,920,000
Percentage of Applied Energy	120%	117%	104%	120%	115%

Table 4. Energy Data by Treatment Area

7.1.2. Subsurface Temperatures

The ERH system measured a baseline site temperature of 59 °F on February 10, 2012 and increased the temperature to a maximum average of 205 °F. The thermal performance details for each area are illustrated in Table 5. Graphs of the site average subsurface temperature over time are presented as Figure 9-12.

	WSA	TCA	B57 A	CFC
Max Temp (°F)	225	221	216	218
Max average Temp (°F)	214	212	196	193
Average Heat Up Rate / day (°F)	0.7	1.0	0.7	0.9
Boiling Point for Primary COC (°F)	188	165	188	118

Table 5. Treatment Area Temperature Data

7.1.3. Vapor Recovery

The ERH vapor recovery system was separated into two separate treatment trains. Train 1 comprised the WSA and TCA treatment areas. Train 2 comprised the CFC and B57A treatment areas. During heating, the average vacuum applied to the subsurface was approximately 4.5 inches of mercury (in Hg). The combined air flow rate through the ERH condensers averaged 1,379 scfm over 228 days of ERH system operations, which includes all blower downtime. The ERH system generated 1,033,420 gallons of condensate during operations at an average rate of 3.1 gpm. The majority of the condensate water was reused by the system as cooling water and evaporated to the atmosphere with some re-injected as drip water to the electrodes. The system discharged 93,469 gallons at an average 0.3 gpm during ERH operations to the IBM Clark Street groundwater treatment facility. Totals for treatment train 1 and treatment train 2 are presented in Table 6.

Recovered soil vapors were sampled daily prior to treatment with VGAC, with a Mini Rae Photo ionization detector (PID) and Sapphire CFC detector at the influent, midpoint, and effluent of the VGAC vessels. Sanborn Head was responsible for all vapor sampling. Samples for laboratory analysis were also collected based on PID results of permit requirements. The results of the laboratory sampling events were used to calculate the total mass of CVOCs removed during ERH for monitoring the overall performance and effectiveness of the remediation effort.

Table 6. Water Management

	Train 1 (WSA/TCA)	Train 2 (CFC/B57A)
Total Condensate (gallons)	601,461	431,959
Condensate Rate (gpm)	1.8	1.3
Total Discharge Water (gallons)	26,794	66,675
Discharge Rate (gpm)	0.08	0.2

Automated condensate pumping functions were monitored, controlled, and recorded by the PCU computer and monitored on site and remotely by project staff. Sanborn Head was responsible for all water samples.

7.2. ERH System Optimization

7.2.1. Vapor Recovery Optimization

This section summarized changes the project team implemented during operations to adapt to site conditions that differed from the design model and anticipated mode of operations or to increase remediation efficiency.

Within two weeks of beginning heating, the CVOC mass removal rate was higher than anticipated to the point that the vapor treatment system could not handle the volume of mass being extracted from the subsurface. The project team recommended larger VGAC vessels on Train 2 to handle the mass and they were increased from 1,800 to 2,200-lb vessels. The vessel interconnect system was also reconfigured to allow for faster change-outs.

Concerns related to the potential shutdown of the vapor recovery blowers required the installation of vacuum switches in the interior portions of the vapor recovery manifold. If vacuum decreased below a pre-set limit, the electrodes would be de-energized.

A vapor recovery train cross link was installed to prevent the loss of vapor recovery on either independent treatment train while the blower was shut off for maintenance. In the event either blower stopped working, the cross link would open and maintain limited vapor recovery to the entire site.

7.2.2. Soil Sampling Optimization

On ERH sites, TRS proposes interim sampling events to potentially save time, energy, and ultimately client costs. The first round of soil sampling is generally conducted when remediation is 50-70 percent complete based on energy application and temperature profiles. TRS will then shut down the portions of the site where the remediation goals have been met and concentrate energy and efforts on those portions of the site that still contain significant contamination. This section describes the various interim and final sampling events and subsequent changes to the size of the ERH treatment volume.

The first interim soil sampling was performed during the weeks of June 18, 2012 at the 73% mark of the remediation based on energy. Laboratory analytical reports indicated that 22 of the 39 sampling locations had achieved the New York State unrestricted soil clean up standard for their respective COC. ERH soil sample locations are presented in Figures 13 - Figure 15. Based on these results, approximately 50% of the electrodes in the B57A, 75% of the TCA and 12% of the WSA treatment area were removed from service. Although all but one of the CFC samples had met the SCOs, the entire CFC area was left online due to the extracted vapor concentrations.

The second interim soil sampling was performed during the week of July 23, 2012 at the 93% mark of the remediation based on energy. Laboratory analytical reports indicated that an additional five (27 total) of the 39 sampling locations had achieved the New York State unrestricted soil clean up standard for their respective COC. TRS removed all the electrodes in the CFC and TCA treatment areas based on these results. This represented approximately a 50% reduction in the size of the electrode field for the entire site.

7.2.3. Supplemental Electrode Installation

A total of 12 supplementary bored electrodes were installed after the July 2012 soil sampling event. The 12 electrodes were installed in areas that needed to have higher energy concentrations in order to achieve the New York State SCOs within the contracted time that the system was scheduled to operate. Five of the 12 electrodes were installed on August 9, 2012 in the B57A area. The B57A

electrodes were installed near sample locations 618 and 620, with a targeted treatment interval of two to seven ft bgs.

The remaining seven electrodes were installed in the WSA area. The four electrodes installed on August 9, 2012 near sample locations 628, 629, 631, and 632 had a targeted treatment interval of two to seven ft bgs. The three electrodes installed during week of August 13, 2012 near sample locations 634, 635, and 637 had a targeted treatment interval of 2 to 32 ft bgs. New electrode installation locations are presented in Figure 14 and Figure 15.

All 12 electrodes were completed above grade and were electrically isolated with either a 4-inch or 8inch diameter chlorinated polyvinyl chloride (CPVC) over-sleeve grouted in place. The over-sleeve was then secured with a PVC cap to completely isolate the electrode electrical connection for safety. The new electrodes reduced the electrode spacing to approximately 10 to 12 feet in the targeted areas.

8.0 REMEDIATION RESULTS

8.1. Soil Results

The ERH system successfully reduced the COC soil concentrations within the treatment area to below New York State Department of Environmental Conservation (NYDEC) unrestricted use soil cleanup objectives (SCO). Representative ERH performance soil data is provided in Table 7. Thirty-nine locations were selected for confirmatory soil sampling. All thirty-nine sample locations were ultimately reduced to below the objective of each COC at all depth intervals as verified by the data from the three different sampling events. A total of 187 soil samples were taken.

	WSA(ICE)	ICA(ICA)	B5/A(ICE)	CFC(Freon)
Ave. Pre-ERH Concentration (mg/kg)	1,118	3.2	4,775	1,467
Maximum Pre-ERH Concentration (mg/kg)	11,000	12	19	7,200
Ave. Post ERH Concentration (mg/kg)	0.07	0.003	0.07	0.2

Table 7. Pre and Post ERH Ave. CVOC Concentration.

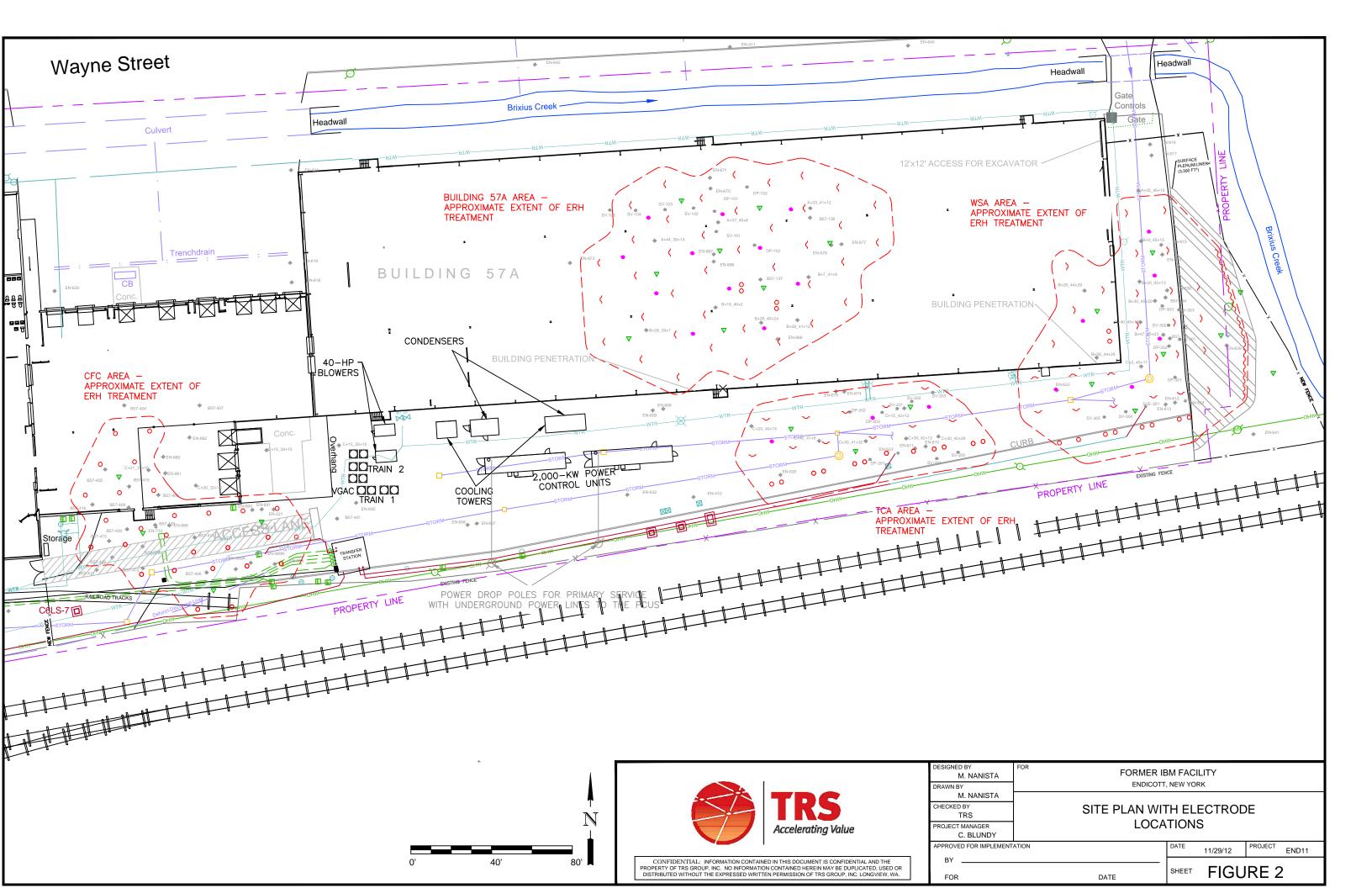
WSA(TCE) TCA(TCA) D57A(TCE) CEC(Emoor)

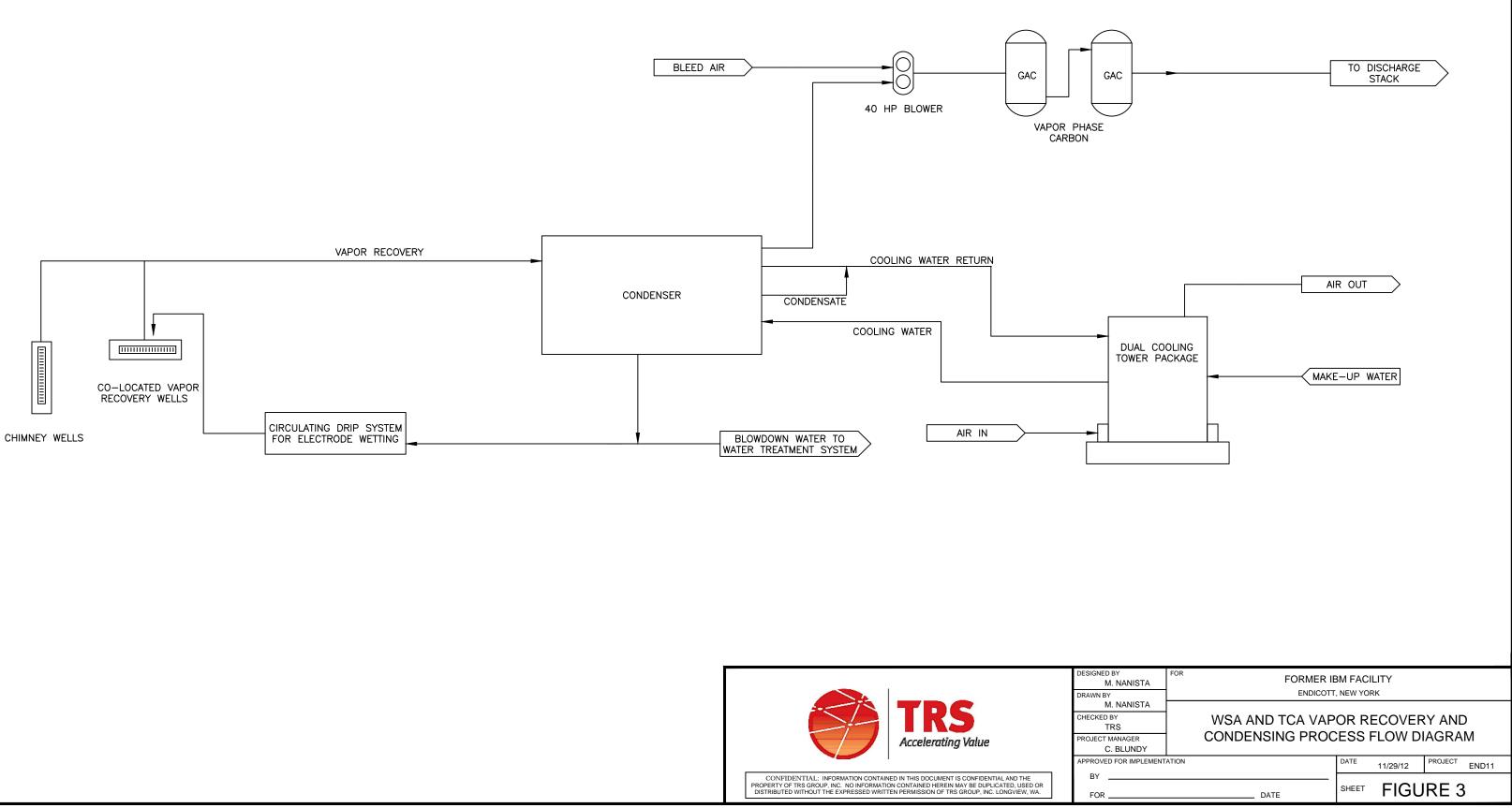
The ERH system removed an estimated total of 6,968 lbs of COCs from both treatment trains. Treatment Train 1 (WSA/TCA) removed an estimated total of 1,346 pounds of COCs. The pre-ERH mass estimate for train 1 was 916 lb of total VOCs. Treatment train 2 removed an estimated total of 5,622 pounds of COCs. The pre-ERH mass estimate for Train 2 was 752 lb of COCs.

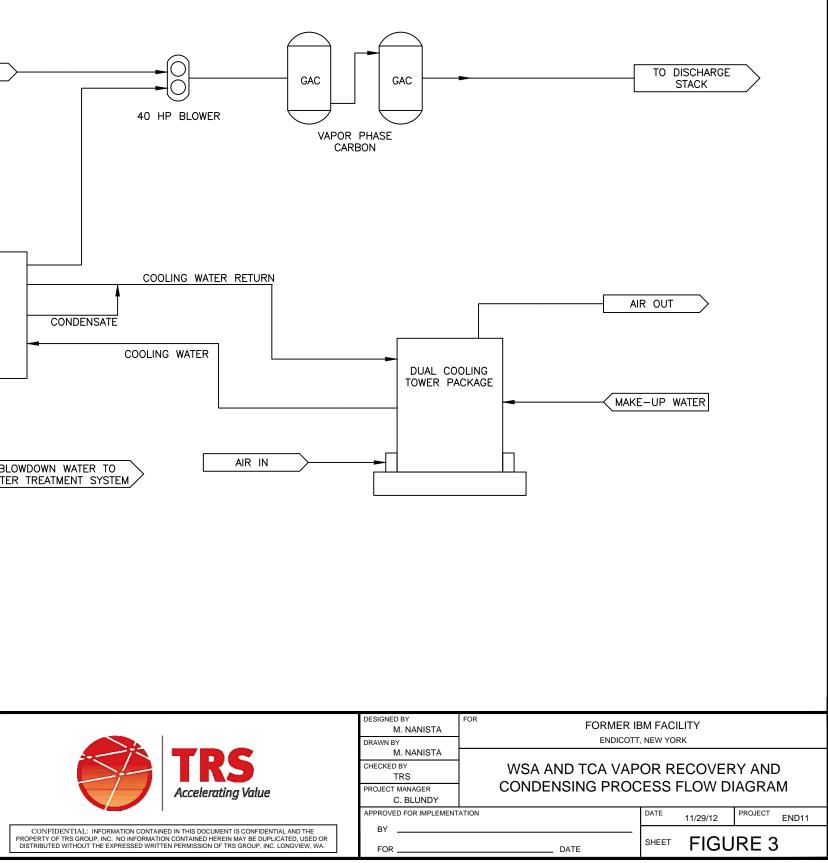
9.0 CONCLUSIONS

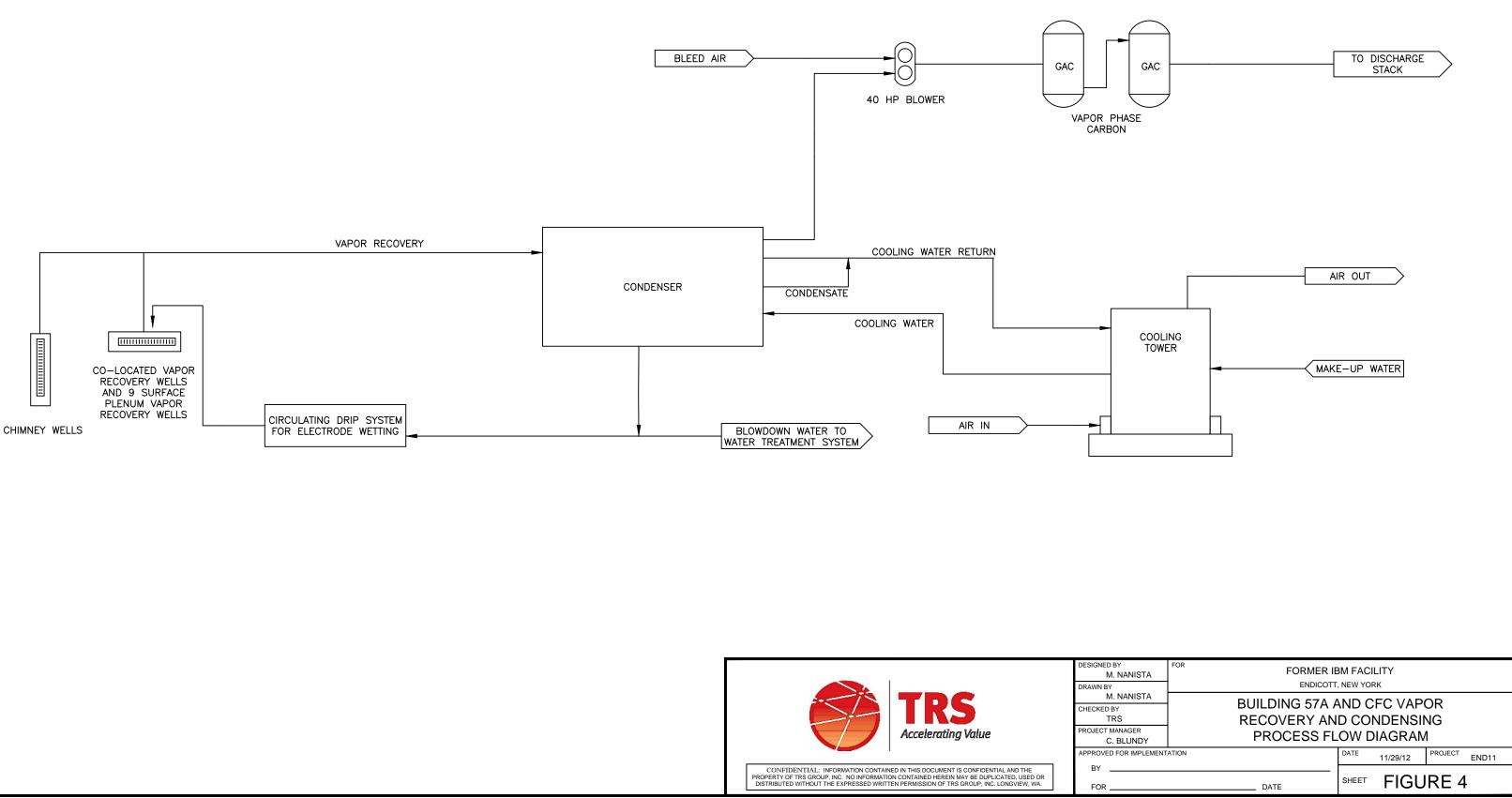
1. The ERH system achieved the soil remediation goals for all COCs, reducing soil concentrations to below New York State Department of Environmental Conservation (NYDEC) unrestricted use soil cleanup objectives.

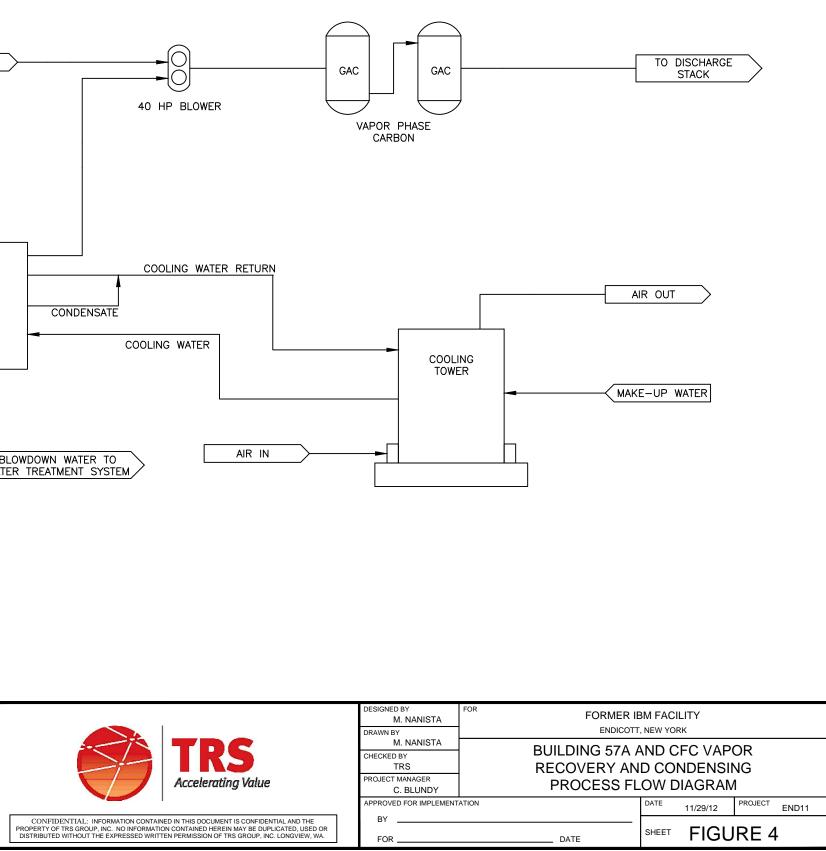
- 2. The estimate of total COC mass in the source area prior to heating was approximately 1,668 pounds. Based upon chemical analysis of soil vapors recovered during ERH operations, approximately 6,968 pounds of COCs were removed from the treatment volume during the remediation.
- 3. At the start of the project, it was estimated that 6,920,000 kWh of energy applied over a period of up to 160 days would be required to reach the project clean-up goal. The actual requirements to achieve the reported clean-up results were 7,929,744 kWh of energy applied over 228 days.
- 4. The ERH system was able to heat and remediate underlying shale bedrock within treatment zone and treatment depth.
- 5. The ERH system removed condensate at a rate of 3.1 gpm and required no dewatering for the technology to operate normally.
- 6. The maximum subsurface temperature achieved was 225.5°F at TMP BD-08 on August 13, 2012, while the highest average subsurface temperature within the ERH treatment volume was 204.8°F on August 23, 2012. These temperatures were suitable for producing a phase change of CVOC contamination in the treatment volume resulting in a successful application of the ERH technology.
- 7. Throughout the project, site and public safety were maintained at all times and the project was compliant with all permits and regulations.

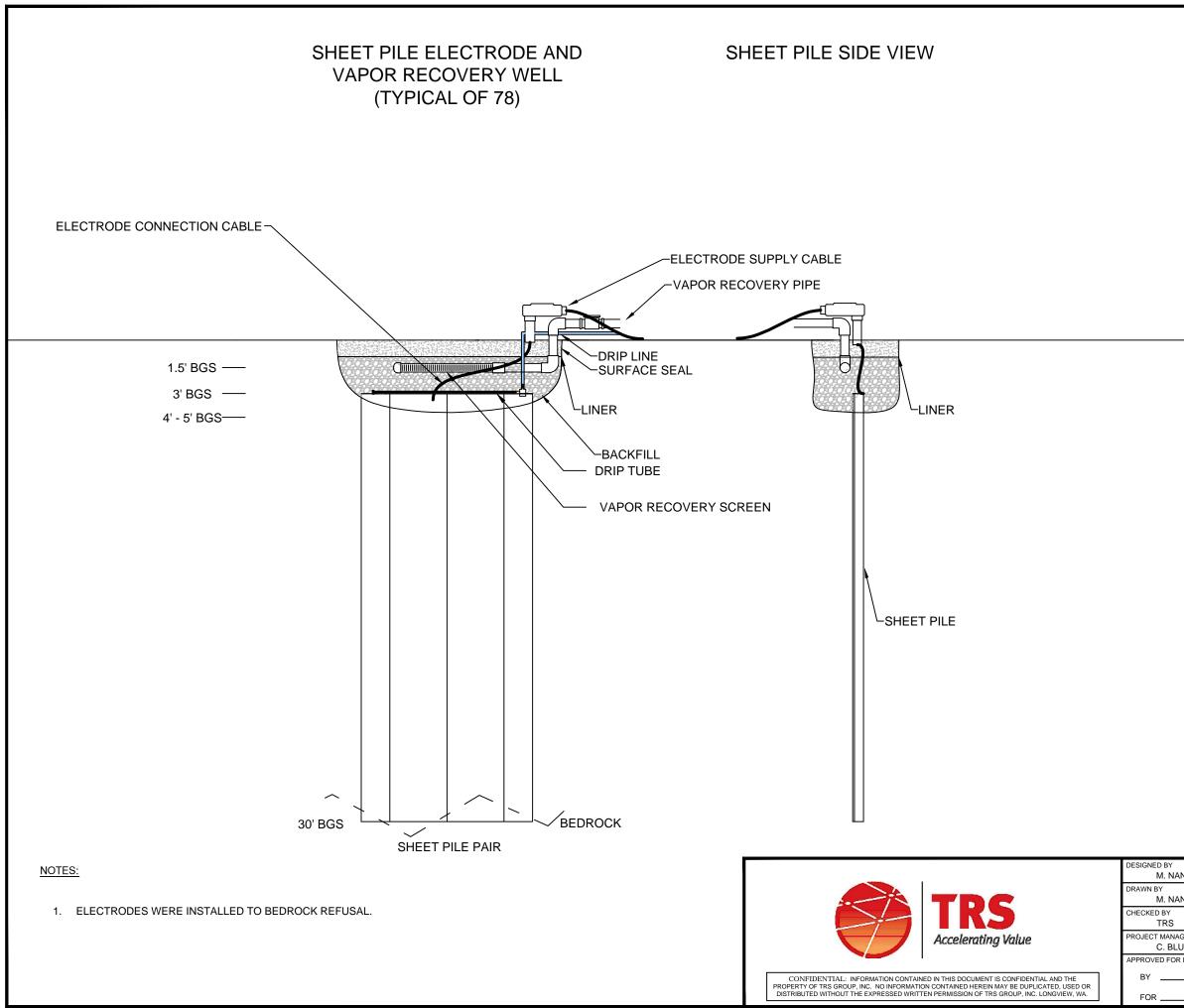

FIGURES



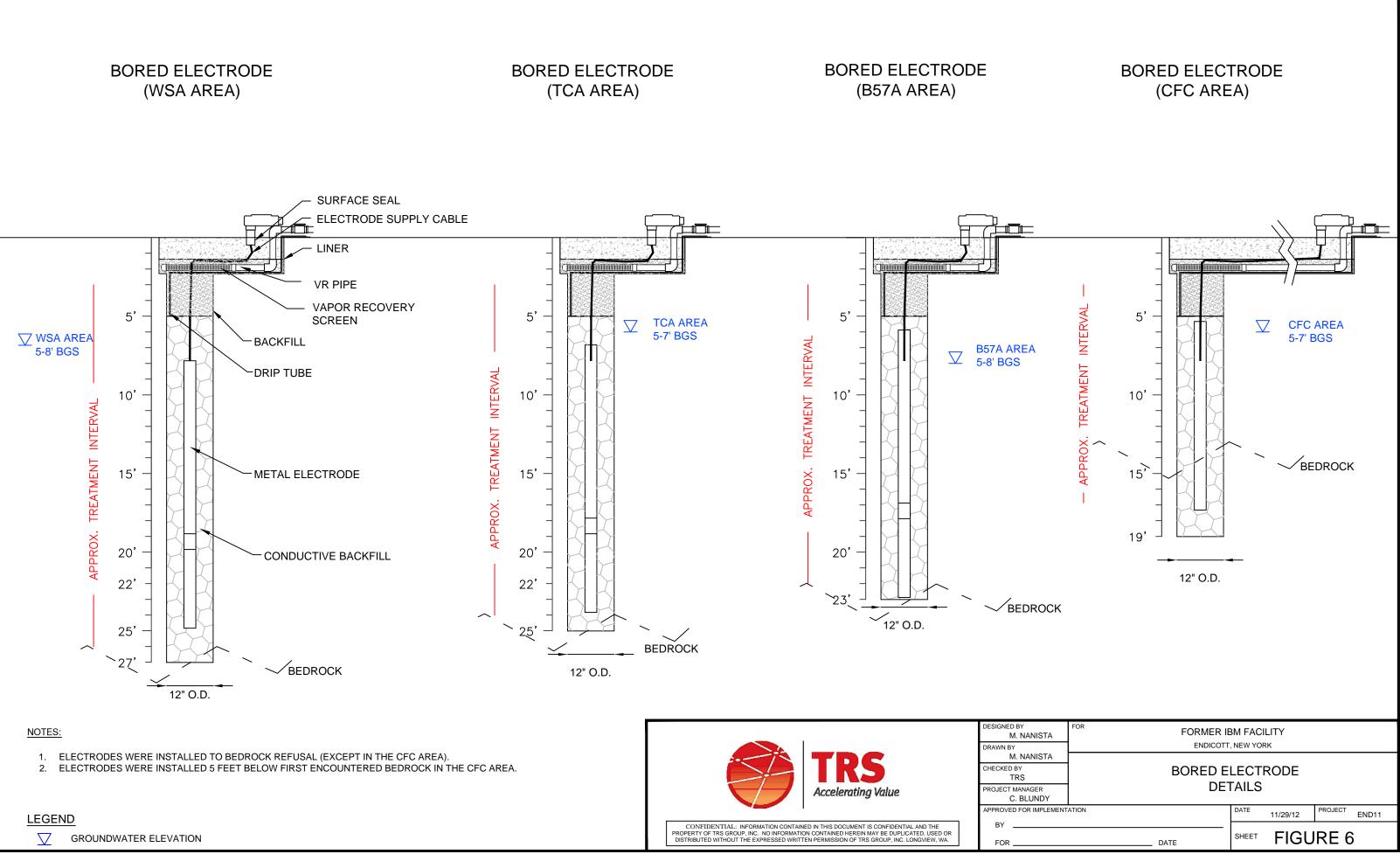

SYMBOLS		LINE TYPES	2	HATCHES	
• •	BORED ELECTRODE (53)	x	EXISTING FENCE		ACCESS LANE
•	ADDITIONAL BORED ELECTRODE (12)	x	NEW FENCE		SURFACE PLENUM
<u>~</u> ~	SHEET PILE ELECTRODE (72)	· ·	UNDERGROUND STORM DRAIN LINE		
~~~	SHEET PILE WALL (1)		BRIXIUS CREEK		
$\nabla$ $\nabla$	TEMPERATURE MONITORING POINT (22)		BURIED ELECTRIC UTILITY		
ď	FIRE HYDRANT/VALVE		OVERHEAD ELECTRIC LINE		
Ø	UTILITY POLE		PROPERTY LINE		
• •	CHIMNEY WELL (20)		WATER LINE		
	CLEANOUT LOCATION		WELL PIPING		
\$	MONITORING WELL		RAILROAD TRACKS		
0	EXTRACTION WELL		APPROXIMATE EXTENT OF ERH TREATMENT		
+	SOIL BORING		EDGE OF PAVEMENT		
0	DUAL PHASE WELL		STORM SEWER PIPING		
	CATCH BASIN		TRENCH		
I	I-BEAM		DEFUNCT DISCHARGE LINE		
I	I-BEAM WITH 3' OFFSET		WATER LINE (BUTLER SURVEYORS)		
CFC 113 2,800 MG/KG	HIGHEST CONCENTRATION LOCATION WITH PRIMARY CONTAMINANT IN MG/KG		CURB LINE		
	CONCRETE CUTTING				
MN MN	BELOW GRADE ISOLATION VALVE (FIRE SUPRESSION SYSTEM)				
D	DRAIN MANHOLE COVER				
2	SWING GATE				
	LOADING DOCK LEVELER				
ATX SDTX	FIELD LOCATED TRANSFORMER				

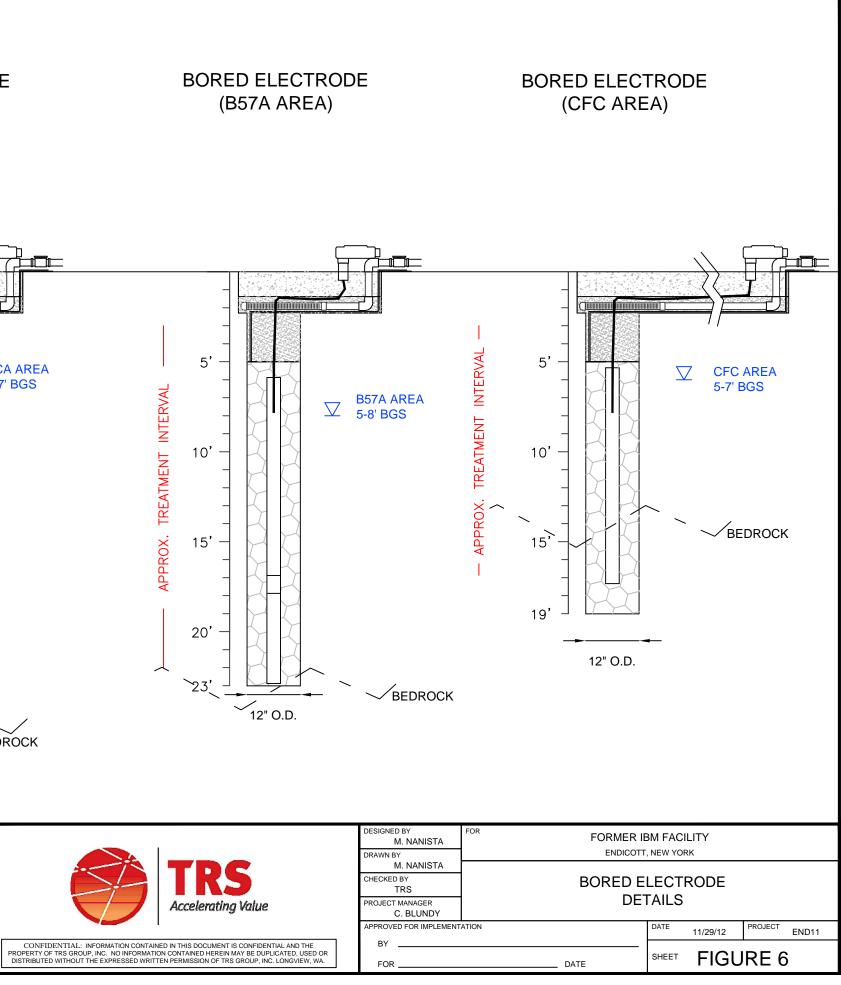




TA FORMER IBM FACILITY ENDICOTT, NEW YORK					
GENERIC SITE PLAN LEGEND					
LEMENTATION DATE 11/29/12 PROJECT END11	_				
DATE SHEET FIGURE 1					





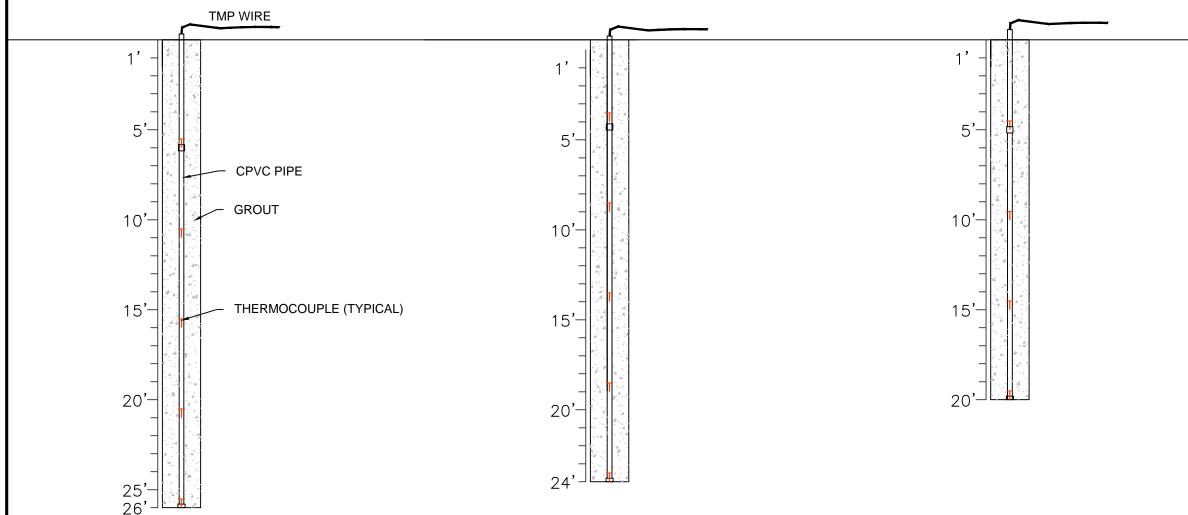





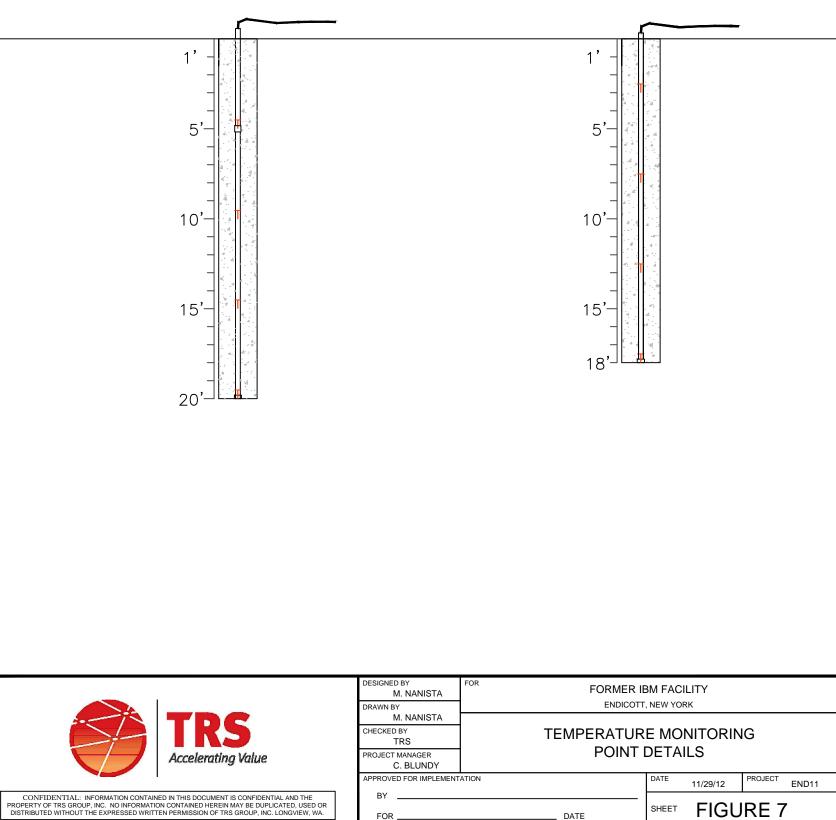



NISTA	FOR FORMER IE ENDICOTT	-			
NISTA Ger INDY	SHEET PILE DE	ELEC TAIL	CTRODE		
IMPLEMENT	ATION	DATE	11/29/12	PROJECT	END11
	DATE	SHEET	FIGU	RE 5	1

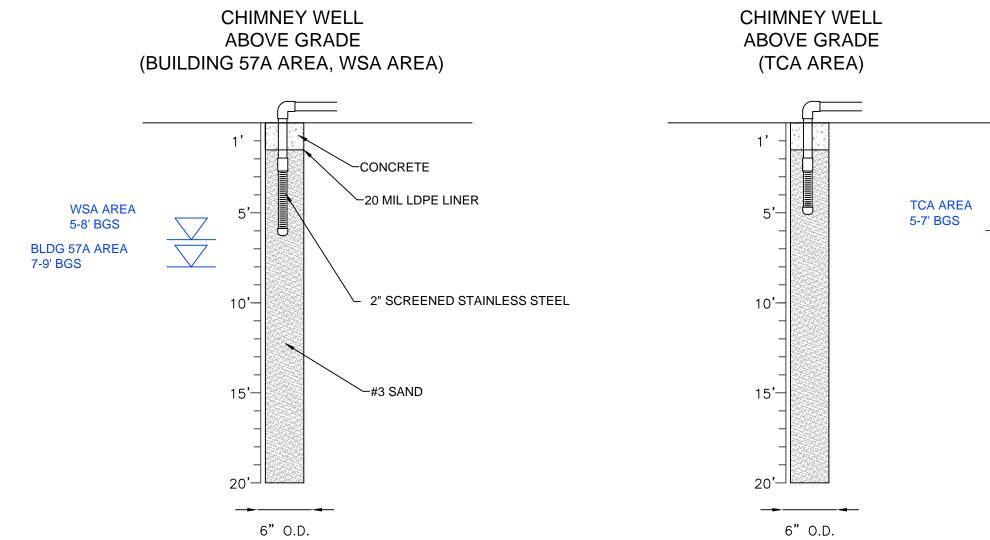





# TEMPERATURE MONITORING POINT (TYPICAL OF 8 - WSA AREA)


# TEMPERATURE MONITORING POINT (TYPICAL OF 3 - TCA AREA)

## TEMPERATURE MONITORING POINT (TYPICAL OF 8 - BUILDING 57A AREA)




#### NOTES:

- 1. THE FINAL DEPTH OF THE TEMPERATURE MONITORING POINTS WAS BASED ON THE AVERAGE DEPTH OF THE SURROUNDING ELECTRODES.
- 2. THE TMP IN THE LOADING DOCK AREA HAD AN OFFSET EXIT.
- 3. THE CASING WAS GROUTED IN PLACE AFTER THE THERMOCOUPLES WERE SET TO THE CORRECT DEPTH.

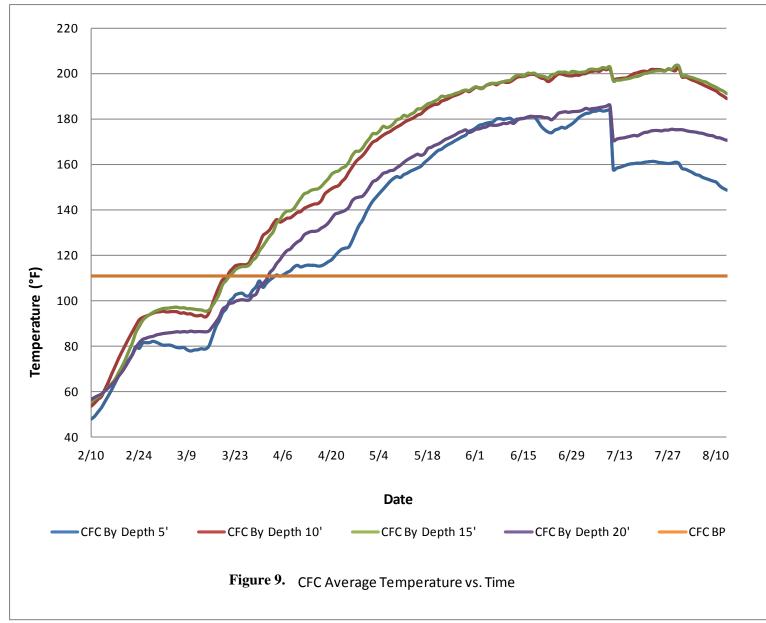


# TEMPERATURE MONITORING POINT (TYPICAL OF 4 - CFC AREA)

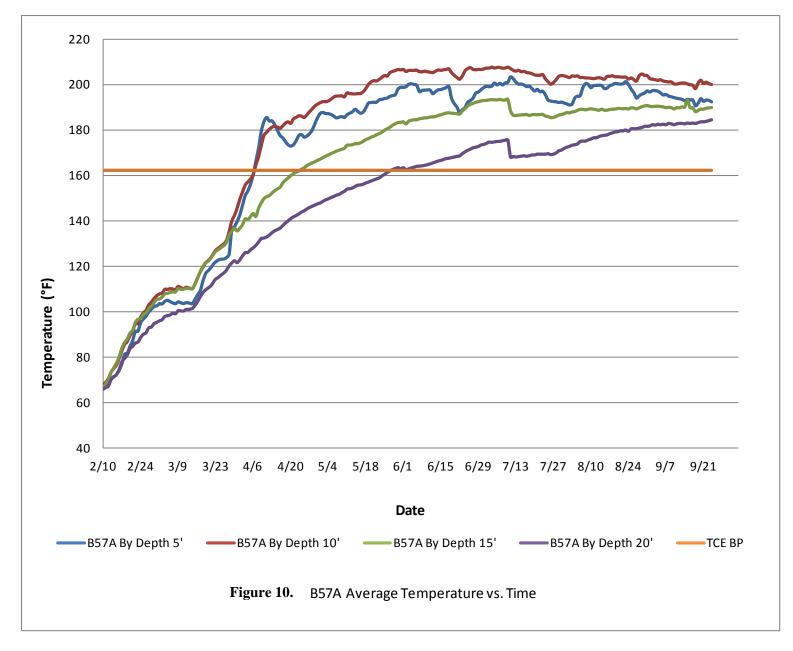




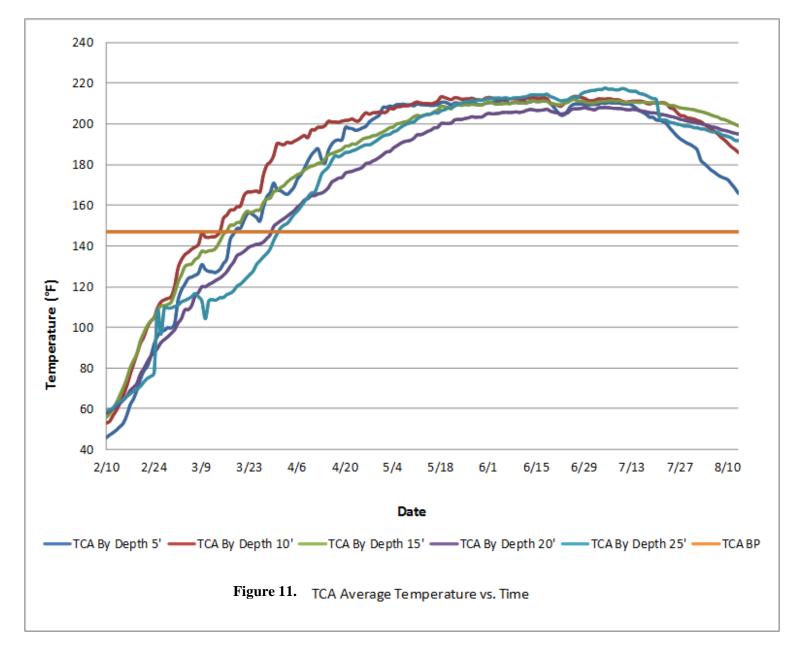
NOTES:


1. THE BOTTOM OF THE SCREENED INTERVAL WAS A MINIMUM OF 2' ABOVE THE TOP OF THE HIGHEST WATER TABLE FOR THE AREA.

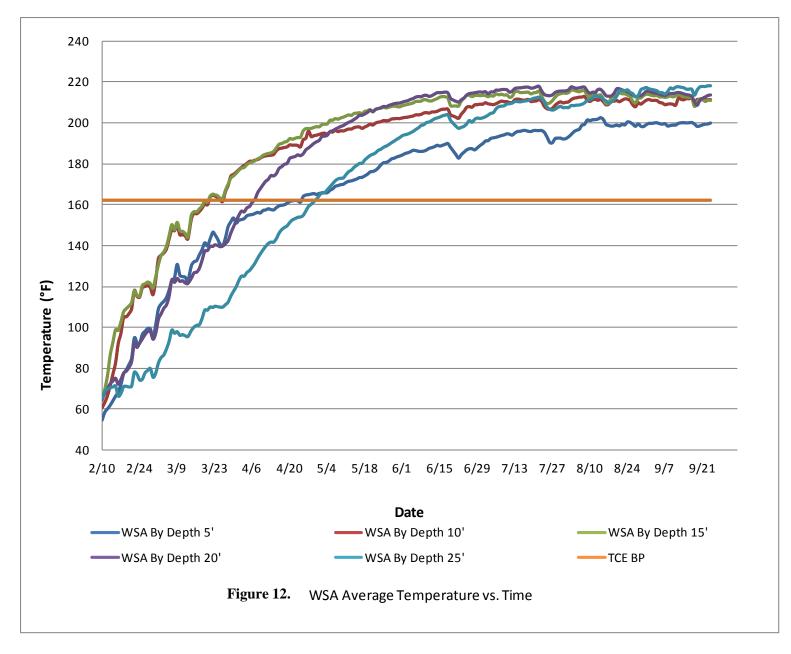
# LEGEND


GROUNDWATER ELEVATION

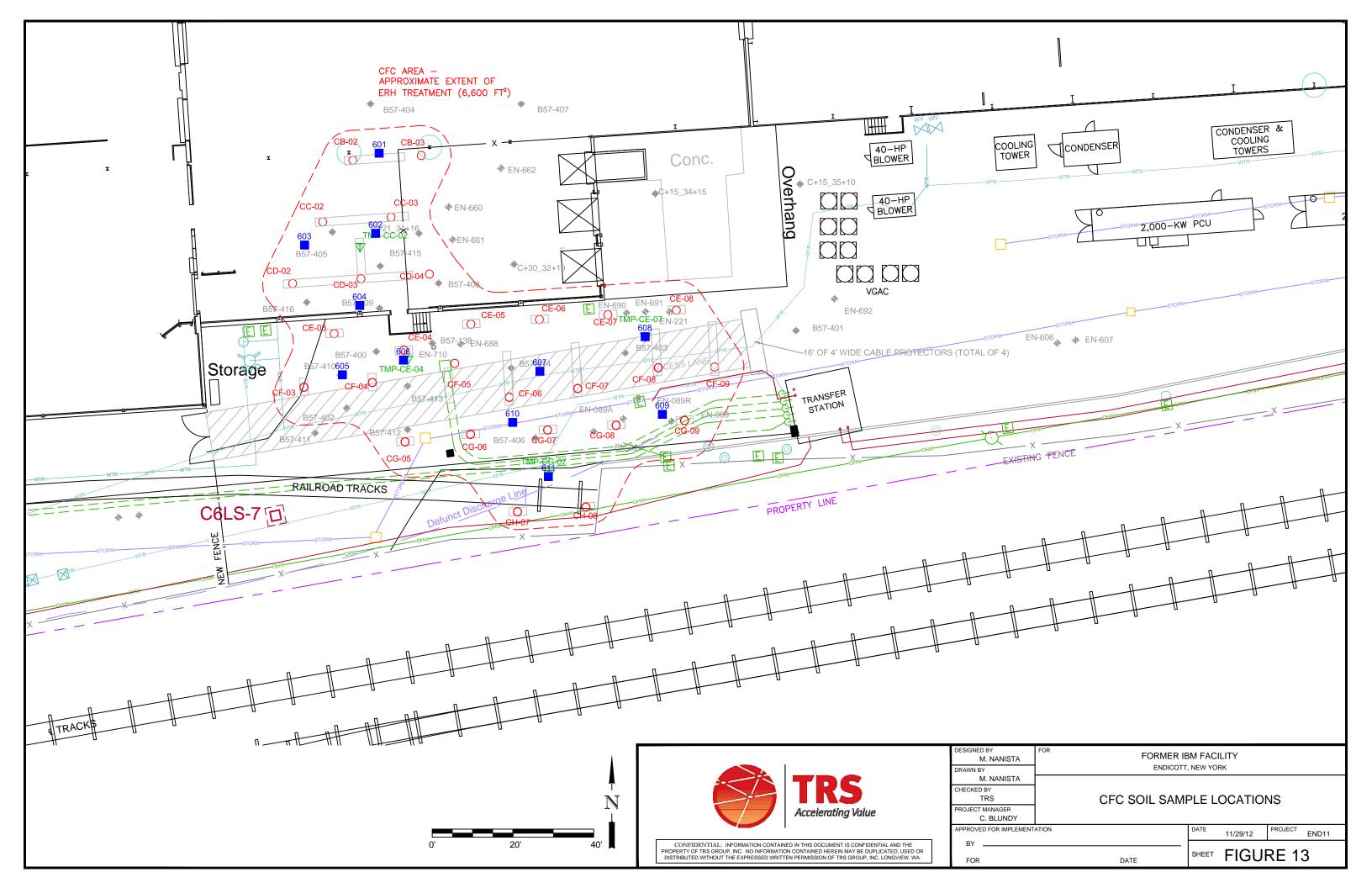
NISTA	FOR	FORMER IBM FACILITY				
NISTA	ENDICOTT, NEW YORK					
	CHIMNEY WELL DETAILS					
ger JNDY						
IMPLEMENT	ATION		DATE	11/29/12	PROJECT	END11
		DATE	SHEET	FIGU	RE 8	-

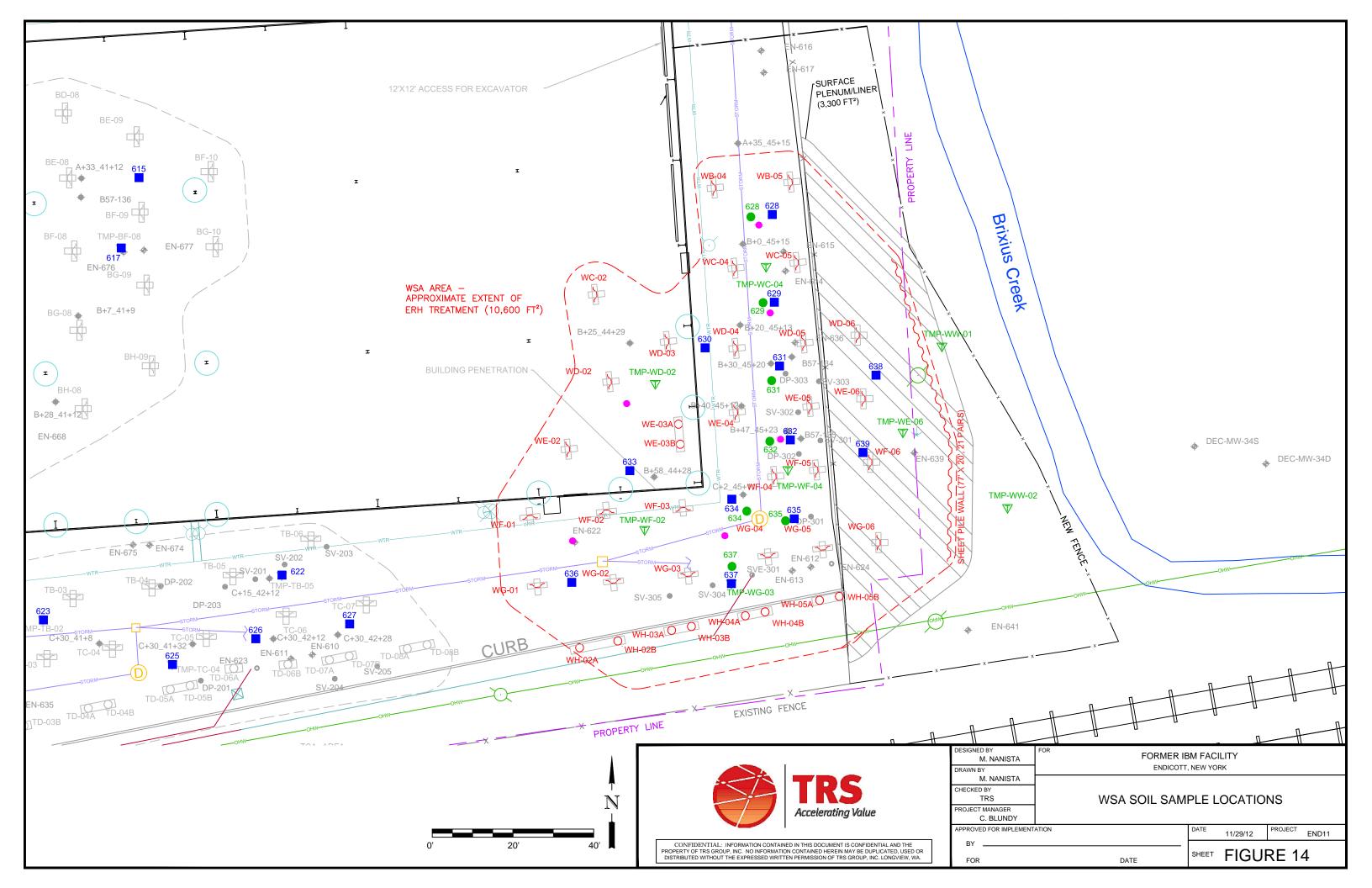

 $\bigtriangledown$ 

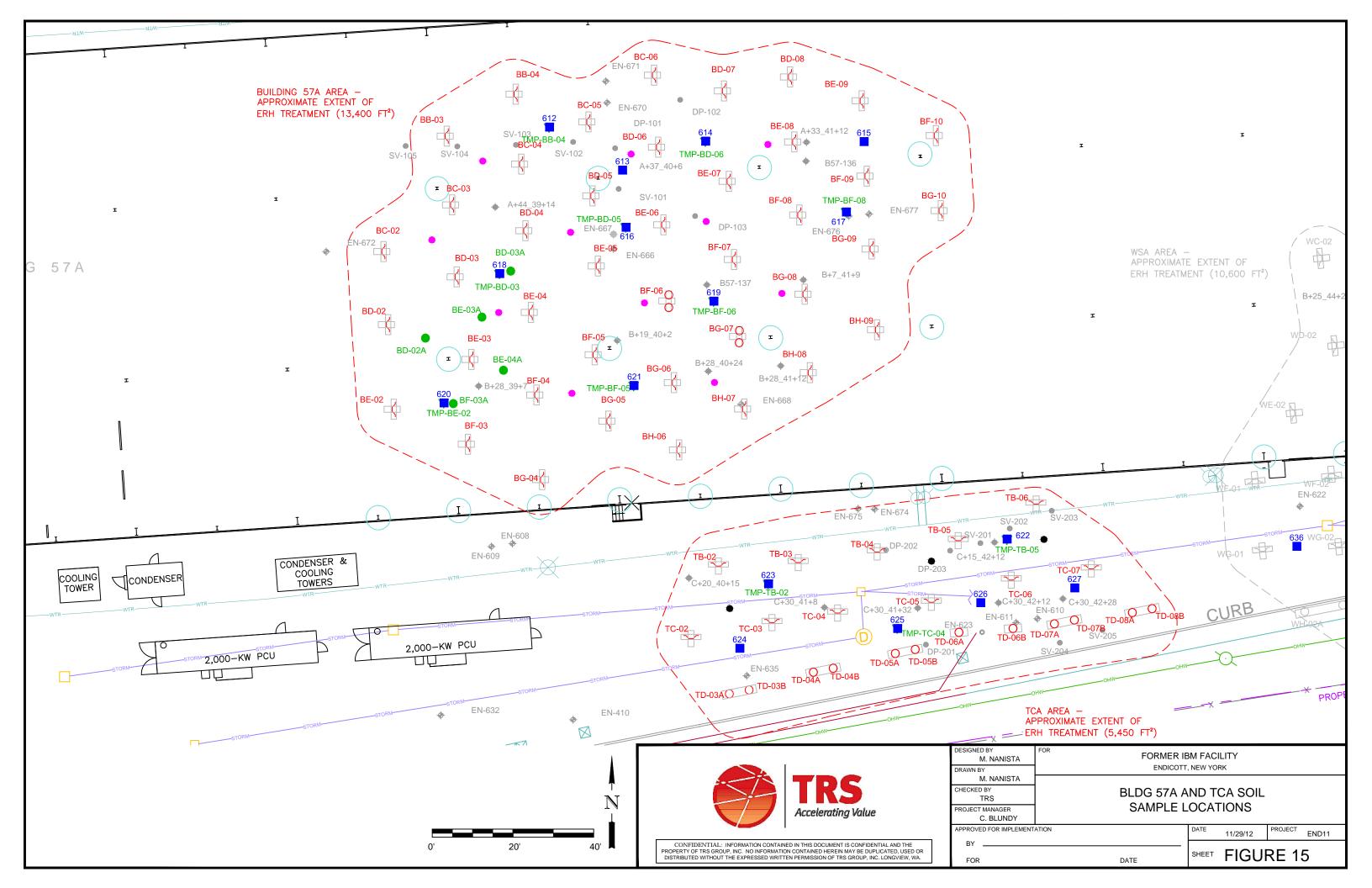


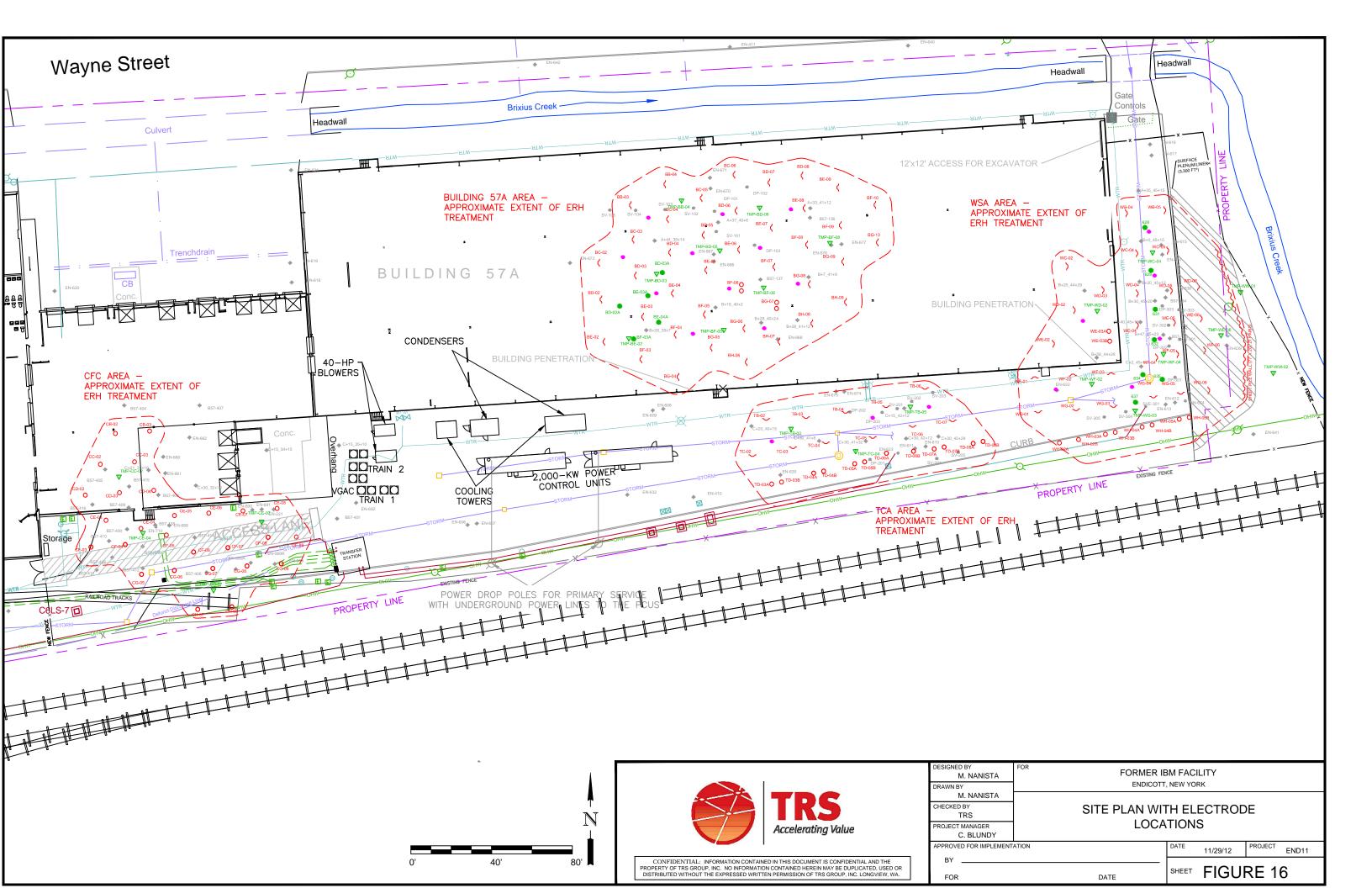















# Appendix A Site Photos





1. Equipment Compound



2. CFC Treatment Area





3. Equipment Compound with Vapor Treatment Vessels



4. TCA and WSA treatment Area



# **APPENDIX C**

# DRILLING AND INSTALLATION DETAILS FOR ELECTRODES, CHIMNEY WELLS & TEMPERATURE MONITORING POINTS

SANBORN || HEAD

# **APPENDIX C**

# DRILLING AND INSTALLATION DETAILS FOR ELECTRODES, CHIMNEY WELLS & TEMPERATURE MONITORING POINTS OPERABLE UNIT #5/BUILDING 57 AREA, UNION AND ENDICOTT, NY

# TABLE OF CONTENTS

C.1	Scope of Services	1
C.2	Methods	2
C.2.1	Vacuum Excavations for Utility Clearance	2
C.2.2	2 Drilling & ERH Installation	3
	C.2.2.1 Vertical Bored Electrodes	3
	C.2.2.2 Temperature Monitoring Point	4
	C.2.2.3 Chimney Well	5
С.З	Soil Characterization and Sampling	5
C.4	Sheet Pile Electrode Installation	
C.5	Waste Handling	7

### TABLES

Table C.1	Summary of Drilling Activities – Bored Electrodes
Table C.2	Summary of Drilling Activities – Temperature Monitoring Points and Chimney
	Wells
Table C.3	Sheet Pile Installation Summary (O'Brien & Gere)
Table C.4	Supplemental Electrode Installation Summary (TRS Group)

### FIGURES

Figure C.1	ERH Syst	tem Components and Treatment Location Plan		
Figure C.2 (	(A&B) S	Site Plan & Cross Section Details for Sheet pile Wall (O'	Brien & G	ere)

### ATTACHMENT

Attachment C.1 Chimney Well – Temperature Monitoring Point Boring Logs (on disc)

This Appendix summarizes the drilling and installation of bored/sheet pile electrodes, chimney wells (CWs), and temperature monitoring points (TMPs) for Electrical Resistance Heating (ERH) thermal treatment system completed by Sanborn Head & Associates, Inc. (Sanborn Head), O'Brien & Gere (OBG) and TRS Group, Inc. (TRS) at Building 57 (Site) located in IBM Operable Unit # 5, Union & Endicott, NY.

The work described herein was performed in accordance with the agency approved Interim Remedial Measure (IRM) Work Plan¹. This Appendix is subject to limitations as described in Appendix A.

## C.1 SCOPE OF SERVICES

The Scope of work completed by Sanborn Head from August 1, 2011 through November 11, 2011 for ERH installation included:

- Performing vacuum excavation for utility clearance at exterior locations where the potential presence of utilities was anticipated, to a depth of seven feet below ground surface (bgs) or to the top of the site silt/clay aquitard;
- Observation and documentation of drilling of ninety-seven (97) soil borings using the rotosonic drilling technique. Borings were completed in four source zones: Building 57A Area (B57A), CFC Area, TCA Area, and Waste Solvent Area (WSA), as identified on Figure C.1. Total borings completed in each area are listed in Exhibit 1 below;
- Characterization and field screening of soil samples;
- Observation of drilling and documentation of construction of bored electrodes, TMPs, and CWs;
- Conducting a Community Air Monitoring Program during excavation activities in interior and exterior locations;
- Containerization of all drill cuttings and excavated soils into roll-off containers provided by OBG; and
- Containerization of decontamination wash water in polypropylene storage tanks provided by Groundwater Sciences Corporation (GSC).

The general scope of work completed by OBG for ERH installation included:

- Completing subsurface trenching for all locations to allow for installation of sub-surface conveyance connections; and
- Observation and documentation of installation of sheet pile electrodes.

¹ Sanborn, Head Engineering, P.C., June 24, 2011 "In situ Thermal Treatment IRM Work Plan – Operable Unit #5, Building 57, Former IBM Facility, Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".

Page 2 2466.02

TRS provided materials for the construction of bored electrodes, CWs and TMPs. Field method details are provided in Sections B.2 through B.5.

Source Zone	B57A Area ²	CFC Area	TCA Area	WSA
Vertical bored electrodes	4	27	12	10
Chimney wells	11	0	3	6
Temperature monitoring points	8	4	3	9
Total Borings	23	31	18	25

Exhibit 1: Total borings completed in each source zone by Sanborn Head (2011)

During ERH implementation and based on results of 85% confirmatory soil sampling in July 2012, TRS added 12 additional electrodes in August 2012 using auger and rotosonic drilling techniques (refer to Figure C.1 and Table C.4 for locations). These electrodes were installed in order to supplement energy input and enhance remediation progress near confirmatory soil sampling locations exceeding the New York State Department of Environmental Conservation Soil Cleanup Objectives for Unrestricted Use. Additional electrode details are provided in Exhibit 2.

Exhibit 2: Total borings completed in each source zone by TRS (2012)

Source Zone	B57A Area	WSA
Shallow Electrodes	5	4
Deep Electrodes	0	3
Total Borings	5	7

### C.2 METHODS

### C.2.1 Vacuum Excavations for Utility Clearance

Sanborn Head retained the services of Crawford Drilling Services, LLC (Crawford) of Westminster, MA to perform vacuum excavation to identify sub-surface utilities using air knife and hand auger methods at exterior locations in the CFC, TCA, and Waste Solvent Areas where the potential presence of utilities was anticipated. The vacuum excavation was performed either:

 Until encountering an underground utility at which point the boring was terminated and or/relocated;

² Sheet pile electrodes BF-06 and BG-07 were replaced by vertical bored electrode pairs [BF-06(A&B)] and [BG-07(A&B)] due to early refusal from secondary concrete layer.

- Until reaching a depth of 7 feet bgs; or
- Until encountering the top of the silt and clay inferred aquitard, which separates the upper water bearing zone (UWBZ) and lower water bearing zone (LWBZ).

The vacuum excavations were later backfilled with the excavated material and the surface was completed with cold patch asphalt or native soil, as appropriate.

### C.2.2 Drilling & ERH Installation

The drilling and installation of bored electrodes, CWs, and TMPs was performed by Boart Longyear (BLY) of Marietta, Ohio using a Boart LongyearTM Minisonic rig with sonic drilling capabilities. The sonic drilling method was selected due to anticipated difficult subsurface conditions, faster speed of drilling through the overburden material, and the ability to obtain continuous undisturbed core samples.

Summaries of drilling activities and stratigraphic observations for bored electrodes and TMPs/CWs are provided in Tables C.1 and Table C.2, respectively. A summary of sheet piles installed by OBG is provided in Table C.3, and a summary of supplemental bored electrodes installed by TRS is provided in Table C.4. CW and TMP boring logs are provided in Attachment C.1 (on disc).

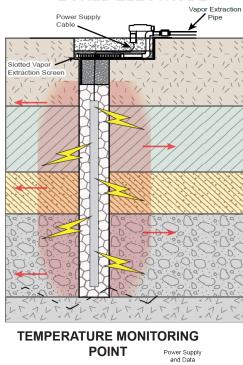
### C.2.2.1 Vertical Bored Electrodes

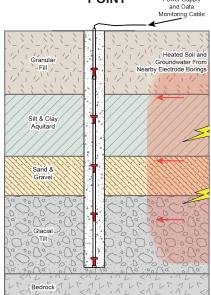
Prior to drilling of each vertical bored electrode location, OBG completed subsurface trenching (2 feet square by 2.5 feet deep) using a Takeuchi TB235 mini excavator to allow for TRS installation of sub-surface convevance connections following electrode construction. Each bored electrodes was drilled by first advancing an 8-inch (-in.) core barrel followed by a 12-in. core barrels. The core barrels were brought to the surface by BLY for sample core retrieval. The boring was then completed by driving the core barrel and override 12-in. casing to the desired depths.



Installation of Bored Electrode by Boart Longyear in Waste Solvent Area

Vertical bored electrodes were driven through the overburden typically 1 foot into bedrock in the B57A, TCA and Waste Solvent Areas, and 5 feet into bedrock in the CFC Area. A copper electrode element was placed inside the borehole, which was then backfilled using graphite and steel shot in ratio of 2:1 from the bottom of borehole to approximately 5 feet bgs. A drip tube (½-in. slotted copper pipe) was placed from approximately 2 to 5 feet bgs to ensure the soil-electrode interface remained moist and electrically-conductive during ERH operation. The electrode was then backfilled using grade 3 sand from approximately 2 to 5 feet bgs.


TRS completed the surface of each bored electrode with a two-foot thickness of pea gravel in the trench. A colocated horizontal vapor recovery point consisting of a 2-foot section of 1½-inch stainless steel pipe was installed in the top of the pea-gravel. The down-hole vertical drip tube was then connected to a ½-inch cross-linked polyethylene (PEX) water line. A 20 millimeter low density polyethylene (LDPE) liner was placed over the top; and the trench was then backfilled with approximately 1.5 feet of concrete to create an effective vapor seal.

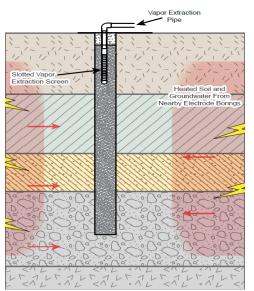

### C.2.2.2 Temperature Monitoring Point

Temperature monitoring points were advanced by BLY using 5-in. or 6-in. core barrels through the overburden soil typically 1 foot into bedrock in the B57A, TCA, and Waste Solvent Areas and 5 feet into bedrock in the CFC Area. Chlorinated polyvinyl chloride (CPVC) pipe (1¼-in. diameter) was placed inside each borehole, which was then backfilled using Type II Portland cement grout from the bottom of the boring to 1 foot bgs.

TRS placed approximately 4 to 5 thermocouples in each TMP to measure and record the subsurface temperatures during treatment within each source zone. Thermocouples were placed evenly at 5 foot depth intervals within the CPVC pipe between the extents of treatment zone. Cement grout was placed into the casing to prevent unwarranted movement or groundwater water entering the TMP, and to create an effective vapor seal.








### C.2.2.3 Chimney Well

Chimney wells were advanced by BLY using 6-in. core barrels through the overburden soil typically 1 foot into bedrock in the B57A, TCA and Waste Solvent Areas. Each borehole was backfilled using grade 3 sand from bottom of borehole to just above the water table, as observed from the presence of water in soil sample cores collected during drilling activities. A 2-in. stainless steel screen/riser with 0.010-in. slots was placed above the water table and the boring was backfilled with grade 3 sand to approximately 1 foot bgs.

The CW was completed at the ground surface with cement grout to create an effective vapor seal. CWs were used in addition to the electrode vapor recovery screens to improve vertical migration of steam within the treatment zones and to allow for adequate vapor recovery capture.

#### CHIMNEY WELL



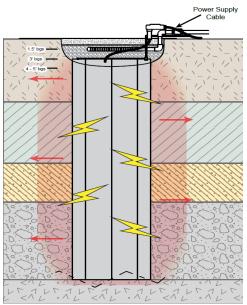
### C.3 Soil Characterization and Sampling

During drilling of bored electrodes, TMPs, and CWs, soil samples were retrieved by BLY from the core barrels and collected using disposable plastic sleeves. Sanborn Head representatives observed, photographed, and characterized soils according to the modified Burmeister method.

The generalized statigraphy observed during drilling in the four source zones consisted of granular fill material mainly composed of sand, gravel, and cobbles, with traces of cultural materials (e.g., bricks, slag, wood fragments, concrete and metal debris) in the uppermost layer. Cohesive soils, indicative of the previously identified silt and clay aquitard, were typically encountered below the granular fill material, and separate the UWBZ from the LWBZ. Glacial till was observed below the silt and clay aquitard in the LWBZ, and was observed to consist primarily of gravels (typically composed of fractured shale) with variable amounts of sand, silt and clay. Glacial till is underlain by weathered shale bedrock.

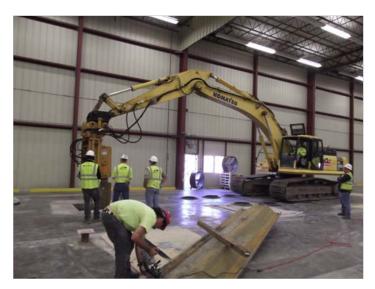
Soil samples were collected in Ziploc® bags and field screened for volatile organic compounds using a ppb Rae 3000 photoionization detector. No soil samples were collected for laboratory analysis.

### C.4 Sheet Pile Electrode Installation


OBG contracted Abscope Environmental, Inc. (Abscope) to complete the installation of sheet pile electrodes in the B57A, TCA and Waste Solvent Areas, and a sheet pile wall east of the Waste Solvent Area (refer to Figures C.1 & C.2 for locations and details). The sheet pile installation was completed by Abscope using a Komatsu PC 300 LC excavator installed with a modified hydraulic head for driving sheet piles.

Sheet piles were installed as welded pairs in the B57A, TCA, and Waste Solvent Areas; and as individual sheet piles in the sheet pile wall. Sheet piles installed in each of the three sources zones are summarized in Exhibit 3 below.

Sheet pile electrodes were completed at the ground surface by TRS in a similar manner to the vertical bored electrodes with the exception of a horizontal  $\frac{1}{2}$ -in. slotted copper (instead of vertical) placed as a drip line and then connected to a  $\frac{1}{2}$ -inch cross-linked PEX water line.


Surface completion of sheet pile wall in WSA differed from the vertical bored and sheet pile electrodes. A combination of artificial fill material and pea gravel was placed at the ground surface over the sheet pile wall, and used for leveling the area. Horizontal

#### SHEET PILE ELECTRODE AND VAPOR RECOVERY WELL



vapor capture lines were placed in the fill material. A LDPE liner was then placed over the fill and gravel to provide an effective vapor seal.

Source Zone	B57A Area	TCA Area	WSA	Total
Sheet Pile Electrode Welded Pairs	39	11	26	76
Sheet Pile Wall ³	0	0	66	66



Sheet Pile Installation by Abscope in the Building 57A Area

³ Energized portion of sheet pile wall equivalent to 10 electrodes (See Appendix B for additional details).

C.5 Waste Handling

All drill cuttings and excavated soils were contained in roll-off containers provided by OBG. Sanborn Head assisted OBG in waste characterization sampling of roll-off contents by collecting composite soil samples and submittal for laboratory analysis. Roll-off contents were later transported to the Broome County Landfill with approval following the receipt of laboratory analytical data by OBG.

The decontamination wash water stored in polypropylene storage tanks was transferred by GSC to the Clark Street Groundwater Treatment Facility for treatment when full.



Roll off Containers with stored drill cuttings awaiting disposal

CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix C - Field Summary - B57 Drilling & Installation\20121115 Appendix C - ERH Drilling & Installation.docx

### TABLE C.1 (A) Summary of Drilling Activities - Bored Electrodes CFC Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Start Date	Completion Date	Top Depth (Feet)	Bottom Depth (Feet)	General Lithologic Description	PID Reading (ppmv
				0.6	6.5	Fill	0.7
CB-02 Interi				6.5 7.5	7.5 11.5	<u>Concrete</u> Fill	NM 0.1
	Interior	11/1/2011	11/1/2011	11.5	11.5	Silt and Clay	0.1
				15	20	Glacial Till + Shale	0.3
			20	23.3	Weathered Shale	0.5	
				2.5 5	5	<u>Concrete</u> Fill	NM 0.1
				5 6.8	6.8 7.3	Silt and Clay	0.1
				7.3	9.5	Glacial Till	0.0
CD 02	Test surfaces	10/26/2011	10/26/2011	9.5	10.5	Silt and Clay	NM
СВ-03	Interior	10/26/2011	10/26/2011	10.5	13	Glacial Till	0.5
				13	15	Silt and Clay	ND
				15	20	Glacial Till	ND 0.1
				20 24.5	24.5 25	Severely Weathered Shale Competent Shale	0.1 NM
				2.5	3.6	Fill	0.8
				3.6	3.8	Concrete	NM
				3.8	9.3	Fill	1.2
<i>CC-02</i>	Interior	11/1/2011	11/2/2011	9.3	9.8	Silt and Clay + Organic Peat	1.4
0002			11/2/2011	9.8	15	Silt and Clay	0.5
				15 18	18 20	Glacial Till Competent Shale	0.4
				20	20	Very Severely Weathered Shale	0.4
				2.5	10	Fill	0.8, 0.
				10	10	Silt and Clay	0.3
				14	18	Glacial Till + Shale	0.3, 0.
CC-03	Interior	11/2/2011	11/7/2011	18	19	Sand and Gravel	4.1
				19	20	Glacial Till + Shale	0.2
				20	20.5	Competent Shale	0.4
				20.5	23 Г	Severely Weathered Shale	0.2
				2.5 5	5 10	Shale Fill	NM ND, 0.
				5 10	10	Silt and Clay	0.3
CD-02	Interior	11/7/2011	11/7/2011	10	19.2	Glacial Shale + Till	0.5 0.2, N
				19.2	20	Moderately Weathered Shale	ND
				19.2	25	Very Severely Weathered Shale	3.6, 2
			11/8/2011	2.5	4	Fill	NM
				4	5	Concrete	NM
				5	11.3	Fill	0.5, 1.
CD-03	Interior	11/7/2011		11.3 15	15 20.5	Silt and Clay Glacial Till + Shale	2, 4 3.2, 0
				20.5	20.5	Severely Weathered Shale	3.2, 0.
				22.6	23.5	Competent Shale	NM
				23.5	25.6	No Recovery	NM
				2.5	5	Concrete	NM
				5	10	Fill	0.3, 1.
				10	15	Silt and Clay	2.1
CD-04	Interior	11/8/2011	11/10/2011	15	18.5	Glacial Till	2.3
			, , , ,	18.5 19.4	19.4 20	Glacial Till + Shale Competent Shale	3.8 NM
				20	24.6	Very Severely Wea. Shale	3.1
				24.6	25	Competent Shale	NM
				2	6.3	Fill	0.5
				6.3	10	Silt and Clay	1.9
				10	11.3	Glacial Till	0.3
CE-03	Exterior	10/17/2011	10/17/2011	11.3 13.5	13.5	Glacial Till + Shale	0.3
		, .,	, ,	13.5	14 14.5	Competent Shale Shale + Glacial Till	NM NM
				14.5	14.5	Severely Weathered Shale	1.7
				18.5	20	Moderately Weathered Shale	NM
				2	6.5	Fill	0.4
			10/17/2011	6.5	10	Silt and Clay	0.8
				10	13	Glacial Till	0.4
CE-04	Exterior	10/17/2011		13	13.6	Glacial Till + Shale	0.4
				13.6 15	15 17	Competent Shale Glacial Till	0.1 NM
				15	17	Shale + Glacial Till	0.6
				18	20	Severely Weathered Shale	0.6
		<i>xterior</i> 10/16/2011		2	7	Fill	0.6
				7	10	Silt and Clay	0.4
CE-05	Exterior		10/17/2011	10	13	Glacial Till	1.7
				13 13.8	13.8 14	Moderately Weathered Shale	0.2
				13.8	14 20	Competent Shale Completely Weathered Shale	NM NM
				2	6.9	Fill	ND
				6.9	10	Silt and Clay	0.5
				10	15	Shale + Glacial Till	ND
CE-06	Exterior	10/16/2011	10/16/2011	15	15.3	Competent Shale	5.9
CE-06 Exterior	LAUTION	aterior 10/16/2011	10/16/2011	15.3	16	Shale + Glacial Till	5.9
				16	18	Competent Shale + Glacial Till	NM
				18 19 E	18.5	Competent Shale	NM
				18.5 2	20 6	Severely Weathered Shale Fill	NM NM
				6	10	Silt and Clay	NM
CE-07	Exterior	10/15/2011	10/16/2011	10	13	Glacial Till	NM
- • - •				13	15	Moderately Weathered Shale	NM
				15	20	Completely Weathered Shale	NM
				2	6.4	Fill	0.2
		ior 10/15/2011	10/15/2011	6.4	10	Silt and Clay	0.2
CE-08	Exterior			10	13	Glacial Till	0.7
CE-08			.,,,, _	13 16	16	Shale + Glacial Till	0.3
	-			16	16.9	Moderately Weathered Shale	1.4

### TABLE C.1 (A) Summary of Drilling Activities - Bored Electrodes CFC Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Start Date	Completion Date	Top Depth (Feet)	Bottom Depth (Feet)	General Lithologic Description	PID Readings (ppmv)
				2	6.8	Fill	0.1
				6.8	10	Silt and Clay	1.7
CF-03 Exterior				10	11	Competent Shale + Glacial Till	NM
	Exterior	10/17/2011	10/18/2011	11	12.9	Weathered Shale + Glacial Till	0.9
	10/11/2011	10/10/2011	12.9	13.4	Competent Shale + Glacial Till	NM	
			13.4	15	Shale + Glacial Till (Dry)	NM	
			15	19.2	Shale + Glacial Till (Wet)	1.4	
				19.2	20	Severely Weathered Shale	0.9
				2	6.6	Fill	2.5
				6.6	10	Silt and Clay	4.4
CF-04	Exterior	10/18/2011	10/18/2011	10	14.5	Shale + Glacial Till	0.7
			14.5	15	Competent Shale	NM	
				15	20	Completely Weathered Shale	10
				2	3.5	Fill	NM
				3.5	10	Silt and Clay	1
				10	11.3	Glacial Till	0.3
CF-05	Exterior	10/25/2011	10/26/2011	11.3	15	Shale + Glacial Till	0.3
				15	17	Severely Weathered Shale	0.3
				17	19	Glacial Till	0.9
				19	20	Competent Shale	NM
				2	5	Fill	0.1
			ĺ	5	10	Silt and Clay	5.5
<b>6-</b>		10/07/07	10/01/07	10	11	Glacial Till	0.1
CF-06	Exterior	10/24/2011	10/24/2011	11	15	Shale + Glacial Till	0.1
				15	15.7	Completely Weathered Shale	1.2
				15.7	19	Competent Shale	NM
				19	20	Completely Weathered Shale	NM
			10/25/2011	2	5	Fill	NM
				5	10	Silt and Clay	0.3
CF-07	Exterior	10/24/2011		10	11.6	Glacial Till (sand & gravel)	0.1
	Enterior	10/21/2011		11.6	13.3	Glacial Till (silt & gravel)	0.2
				13.3	15	Shale + Glacial Till	NM
		<u> </u>	15	20	Completely Weathered Shale	7.8	
				2	4.9	Fill	NM
				4.9	10.6	Silt and Clay	0.3
			10.6	14.2	Glacial Till (sand & gravel)	0.4	
CF-08	Exterior	10/25/2011	10/25/2011	14.2	15.3	Shale + Glacial Till	0.1
CF-00	Exterior	10/25/2011	10/25/2011	15.3	16.3	Completely Weathered Shale	1.9
			16.3	17	Competent Shale	NM	
				17	19.7	Completely Weathered Shale	NM
			19.7	20	Competent Shale	NM	
				2	5	Fill	NM
				5	11	Silt and Clay	ND
		10/25/2011	10/25/2011	11	11.5	Glacial Till (silt and clay; sand & gravel)	0.1
CF-09	Exterior			11.5	14.5	Glacial Till (silt & sand-gravel)	0.2
				14.5	15	Glacial Till (silt and clay; sand & gravel)	NM
				15	16.5	Shale + Glacial Till	0.5
				16.5	20	Severely Weathered Shale	1.7
				2	8.2	Fill	1.5
		xterior 10/18/2011		8.2	10	Silt and Clay	4.6
			10/18/2011	10	12.5	Glacial Till	3.2
CG-05	Exterior			12.5	13	Competent Shale	NM
				13	15	Shale + Glacial Till	4.1
				15	19.2	Completely Weathered Shale	7.5
				19.2	20	Competent Shale	NM
			11 10/24/2011	2	6.9	Fill	0.2
CG-06	Exterior	xterior 10/24/2011		6.9	11	Silt and Clay	4.3
24 00	2			11	15	Glacial Till	0.2
				15	20	Severely Weathered Shale	4.6
		xterior 10/19/2011	10/19/2011	2	6	Fill	1.5
CG-07	Exterior			6	9.7	Silt and Clay	3.6
54.07	2			9.7	16	Glacial Till	0.4
				16	20	Completely Weathered Shale	18
				2	7.5	Fill	1.6
		xterior 10/4/2011		7.5	10	Silt and Clay	1.8
CG-08	Exterior		10/4/2011	10	15	Glacial Till	0.2
	LAULT IUI		10/4/2011	15	16.5	Weathered Shale	3
				16.5	17.8	Shale + Glacial Till	1.9
				17.8	20	Weathered Shale	2.3
		rior 10/4/2011 10		2	8.2	Fill	0.6
			10/4/2011	8.2	10.5	Silt and Clay	1.8
CG-09	Exterior			10.5	15.8	Glacial Till	1.7
				15.8	17.2	Moderately Weathered Shale	1.4
				17.2	20	Completely Weathered Shale	0.8
CH-07 Exterior				2	6.6	Fill	1
		xterior 10/3/2011	10/4/2011	6.6	13.2	Silt and Clay	0.8
	Exterior			13.2	15	Glacial Till	0.9
				15	16	Competent Shale	NM
				16	20	Weathered Shale	3
				0	11.2	Fill	0.3
<b>~~</b>				11.2	15	Silt and Clay	0.0
CH-08 Ext	Exterior	10/3/2011	10/3/2011	11.2	19.2	Glacial Till	1.2
		1		19.2	23	Severely Weathered Shale	9.7

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval.

ND: Indicates non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 7 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

4) CE-04 was initially designed as bored angled electrode but was drilled as vertical bored electrode.

#### Table C.1 (B) Summary of Drilling Activities - Bored Electrodes B57A Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Start Date	Completion Date	Top Depth (Feet)	Bottom Depth (Feet)	General Lithologic Description	PID Readings (ppmv)
BF-06A		10/28/2011	10/28/2011	3.5	7	Fill	3.2
				7	9	Concrete	0.1
	Interior			9	17	Silt and Clay	0.8
				17	19	Glacial Till	18
				19	20	Competent Rock	NM
BF-06B Inte		10/28/2011	10/29/2011	3.5	9	Fill	NM
	Interior			9	17	Silt and Clay	NM
	Interior			17	18	Glacial Till	NM
				18	20	Competent Rock	NM
BG-07A	Interior	10/27/2011	10/27/2011	3.5	7.5	Fill	0.7
				7.5	8.5	Concrete	NM
				8.5	10	Fill	0.5
				10	17	Silt and Clay	1.7, 0.8
				17	20	Glacial Till (little Severely Weathered Shale)	31
BG-07B	Interior	10/27/2011	10/28/2011			Samples not observed. (Profile assumed similar to BG-07A)	

Notes:

1) Locations indicated above were initially planned as sheet pile electrodes; however due to secondary concrete encountered at these locations, they were drilled as vertical bored electrodes.

2) ) NM: Indicates PID reading not measured for the indicated depth interval. ND: Indicated non-detect PID reading for the indicated depth interval.

3) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

4) Depth to groundwater varies from 7 to 9 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

5) Bedrock not observed for locations BG-07A & BG-07B.

## Table C.1 (C) Summary of Drilling Activities - Bored Electrodes Waste Solvent Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Start Date	Completion Date	Top Depth (Feet)	Bottom Depth (Feet)	General Lithologic Description	PID Readings (ppmv)
				0	0.6	Concrete	NM
				0.6	15	Fill	0.1, 0.9
WE-03A	Intonion	10/21/2011	11/1/2011	15	20	Clay and Silt	0.3
WE-U3A	Interior	10/31/2011	11/1/2011	20	24	Glacial Till	0.3
				24	25	Weathered-	0.1
				24	25	<b>Competent Shale</b>	0.1
				0	0.6	Concrete	NM
				0.6	10	Fill	1.3
WE-03B	Intonion	10/21/2011	10/21/2011	10	14.5	No Recovery	NM
WE-03B	Interior	10/31/2011	10/31/2011	14.5	20	Silt and Clay	119
				20	23.5	Glacial Till	7.7
				23.5	25.5	Weathered Shale	4.1
				0	11	Fill	NM
				11	18.4	Silt and Clay	NM
<i>WH-02A</i>	Exterior	9/29/2011	9/29/2011	18.4	23	Glacial Till	NM
		-,,	-,,			Severe-Slightly	
				23	28	Weathered Shale	NM
				0	9	Fill	0.7
				9	10	Concrete	NM
				10	11.3	Fill	NM
WH-02B	Exterior	9/28/2011	9/29/2011	11.3	17.3	Silt and Clay	0.2, 0.4
				17.3	21.4	Glacial Till	0.2, 0.2
				04.4	20	Severe-Slightly	
				21.4	28	Weathered Shale	0.4
				0	11.5	Fill	NM
				11.5	15	Clay and Silt	NM
				15	18	Silt and Clay	NM
WH-03A	Exterior	9/28/2011	9/28/2011	18	23	Glacial Till	NM
		- / - / -	- / - / -	23	26	Competent Shale	NM
						Severely	
				26	28	Weathered Shale	NM
				0	10	Fill	5
				10	10.5	Organic Peat	6.6
				10.5	15.5	Clay and Silt	1.5, 2.1
WH-03B	Exterior	9/27/2011	9/28/2011	15.5	25	Glacial Till	4.7, 5.9
				15.5	23	Severely	т.7, Ј.7
				25	28.4	Weathered Shale	11, 14, 0.8
				0	10	Fill	0.6
				10	10		1.1
						Organic Peat	
WH-04A	Exterior	9/27/2011	9/27/2011	12.1	15	Fill Clow and Silt	2.1
				15	18.5	Clay and Silt	0.2
				18.5	25	Glacial Till	1.2, 3.3
				25	28	Weathered Shale	0.6, 2.2
				0	9.7	Fill	2
				9.7	10	Organic Peat	0.9
				10	12.5	Silt and Clay	0.5
				12.5	15	Clay and Silt	0.3
WH-04B	Exterior	9/26/2011	9/27/2011	15	18.5	Silt and Clay	0.2
				18.5	26.5	Glacial Till	0.2, 3.3, 13.6, 2.1, 2.4
				26.5	28	Moderate - Severely Weathered Shale	2.4, 0.4
				0	14.5	Fill	1.1
				14.5	20	Silt and Clay	1.8
WH-05A	Exterior	9/30/2011	9/30/2011	20	25	Glacial Till	2.5
		-,,	-, -, -, -, -, -, -, -, -, -, -, -, -, -	25	27	Weathered Shale	0.9
				23	28	Competent Shale	0.8, 2, NM
				0	10	Fill	0.8, 2, NM NM
	Exterior	0/20/2011	0/20/2011	10	15	Silt and Clay	NM
WH-05B	Exterior	9/29/2011	9/30/2011	15	22.5	Glacial Till	NM
				22.5	28	Severely Weathered	NM

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval.

ND: Indicates non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on samples observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 8 ft below ground surface (ft bgs) and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

4) WH-02B, WH-03 (A&B), WH-04 (A& B), and WH-05 (A &B) were initially designed as bored angled electrodes; however after field survey were drilled as vertical bored electrodes.

## Table C.1 (D) Summary of Drilling Activities - Bored Electrodes TCA Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Start Date	Completion Date	Top Depth (Feet)	Bottom Depth (Feet)	General Lithologic Description	PID Readings (ppmv)
				2	10	Fill	0.7
				10	15	Silt and Clay	0.5
		10/15/2011		15	16	Shale + Glacial Till	0.1
TD-03A	Exterior		10/15/2011	16	18.5	Glacial Till	NM
				18.5	22	Shale + Glacial Till	ND
				22	23.5	Moderate Weathered Shale	ND
				23.5	25	Completely Weathered Shale	NM
TD-03B	Exterior	10/14/2011	10/14/2011			Samples not observed. (Profile assumed similar to TD-03A)	
				2	9	Fill	0.7
				9	15	Silt and Clay	0.3
				15	16	Glacial Till	0.1
TD-04A	Exterior	10/14/2011	10/14/2011	16	16.5	Severely Weathered Shale	0.1
10-044	LALCIIOI	10/14/2011	10/14/2011	16.5	17.7	Stream Deposits	0.2
				17.7	20	Glacial Till	1.4
				20	23.5	Glacial Till + Shale	ND
				23.5	25	Competent Shale	NM
						Samples not observed.	
TD-04B	Exterior	10/13/2011	10/13/2011			(Profile assumed similar to TD-04A)	
				2	10	Fill	1
				10	14.6	Silt and Clay	22
TD-05A	Exterior	10/13/2011	10/13/2011	14.6	18	Glacial Till	0.4
				18	20	Moderately Weathered Shale	0.3
				20	25	Completely Weathered Shale	NM
				2	10	Fill	0.2
				10	14.6	Silt and Clay	11
TD-05B	Exterior	10/12/2011	10/12/2011	14.6	17.7	Glacial Till	3.3
				17.7	20	Moderately Weathered Shale	0.2
				20	25	Completely Weathered Shale	0.5
				2	12.9	Fill	0.9
		10/10/0011	40/40/0044	12.9	15	Silt and Clay	2.1
TD-06A	Exterior	10/10/2011	10/12/2011	15	20	Glacial Till	1.2
				20	25	Competent Shale	NM
				2	12	Fill	NM
				12	14.5	Silt and Clay	NM
TD-06B	Exterior	10/10/2011	10/10/2011	14.5	22.5	Glacial Till	NM
				22.5	25	Severely Weathered Shale	NM
				2	11	Fill	2.1
				11	17.7	Silt and Clay	0.6
TD-07A	Exterior	10/2/2011	10/5/2011	17.7	19.4	Glacial Till	3.7
12 0/11	Litterior	10/2/2011	10/0/2011	19.4	24.1	Completely Weathered Shale	4.4
				24.1	25	Competent Shale	NM
				24.1	11	Fill	0.5
				11	11	Silt and Clay	<u> </u>
						Glacial Till	2.1
TD-07B	Exterior	10/2/2011	10/2/2011	16.8	19		
				19	20	Moderately Weathered Shale	6
				20	23.5	Completely Weathered Shale	94
				23.5	25	Competent Shale	NM
				2	10	Fill	NM
TD-08A	Exterior	10/1/2011	10/1/2011	10	17	Silt and Clay	NM
		, ,	, ,	17	20	Glacial Till	NM
				20	24.7	Moderately Weathered Shale	NM
				2	12	Fill	NM
TD-08B	Exterior	9/30/2011	10/1/2011	12	17	Silt and Clay	0.8
1 <i>D</i> -00D	LALCIIUI	5/30/2011	10/1/2011	17	23.8	Glacial Till	NM
				23.8	25	Competent Shale	NM

	20.0	20	dompe	cent bilaic	1111

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval. ND: Indicates non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 7 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

### Table C.2 (A) Summary of Drilling Activities - Temperature Monitoring Points CFC Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Completion Date	Top Depth (feet)	Bottom Depth (feet)	General Lithologic Description	PID Readings (ppmv)
			0	0.7	Concrete	NM
			0.7	6.5	Fill	2.2, 5.7
TMP-CC-02	Interior	8/8/2011	6.5	11.9	Silt and Clay	1.1, 1.5
			11.9	20.1	Glacial Till	1.3, 1.7, 1.3
			20.1	25	Severe Weathered Shale	1.7
			0	0.4	Asphalt	NM
			0.4	5	Fill	NM
TMP-CE-07	Exterior	8/9/2011	5	9.2	Silt and Clay	1, 1.2
			9.2	16.8	Glacial Till	1.1, 2.6
			16.8	22	Severe Weathered Shale	3.6, 1.4
	Exterior	8/9/2011	0	0.4	Asphalt	NM
			0.4	6.5	Fill	NM
TMP-CE-04			6.5	10.2	Silt and Clay	1.9, 0.7
			10.2	18.2	Glacial Till	0.8, 1.6
			18.2	23	Severe Weathered Shale	3.3, 4.3
			0	4	Fill	0.2, 0.2
		8/9/2011	4	8.8	Silt and Clay	0.7, 0.4
TMP-CG-07	Exterior		8.8	16.7	Glacial Till	0.3, 0.5, 1.8
1/4/2-06-07			16.7	18.4	Moderate Weathered Shale	3
			18.4	20	Severe Weathered Shale	1.7
			20	22	Moderate Weathered Shale	0.9

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval. ND: Indicates non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 7 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

## Table C.2 (B) Summary of Drilling Activities - Temperature Monitoring Points and Chimney Wells B57A Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Completion Date	Top Depth (feet)	Bottom Depth (feet)	General Lithologic Description	PID Readings (ppmv)
			0	0.8	Concrete	3.7
			0.8	7.6	Fill Silt and Clay	5.8, 87
CW-BB-03	Interior	8/8/2011	7.6 10.3	10.3 21.3	Silt and Clay Glacial Till	270,68
			21.3	21.3	Severely Weathered Shale	47, 11, 39 33, 1.8, 2.1
			21.3	30	Moderate Weathered Shale	0.9
			0	0.7	Concrete	NM
			0.7	10.5	Fill	4.3, 221
		0.10.1001.1	10.5	15.4	Clay and Silt	19, 75
<i>CW-BC-02</i>	Interior	8/8/2011	15.4	21.5	Glacial Till	56, 39, 1.5
			21.5	33.7	Severely Weathered Shale	1.5, 1.4
			33.7	35	Moderate Weathered Shale	1.3, 1.1
			0	1	Concrete	NM
			1	7.3	Fill	0.3, 2.8, 2.3
			7.3	8	Concrete	NM
<i>CW-BC-05</i>	Interior	8/3/2011	8	10	Fill	NM
011 20 00		0,0,2011	10	11.3	Silt and Clay	51
			11.3	20	Glacial Till	0.6, 0.4, 0.8, 0.4
			20	28	Severely Weathered Shale	1.2, 1.5
			0	0.8	Concrete	NM
			0.8	8.6	Fill	0.4, 14, 1.3
			8.6	12.1	Stream Deposits	0.7, 1.3
			12.1	17.4	Clay and Silt	0.6, 4.2
			17.4	19.1	Silt and Clay	0.6
CW-BD-03	Interior	8/4/2011	17.4	20	Glacial Till	3.0
			20	23.6	Clay and Silt	3.9
			23.6	30	Glacial Till	12, 0.8
			30	36.4	Severely Weathered Shale	0.5, 0.5
			36.4	38	Moderate Weathered Shale	0.5, 0.5
			0	0.5	Concrete	NM
			0.5	0.5	Fill	1.1, 19, 23
CW-BD-04	Interior	8/7/2011	0.5	11.4	Silt and Clay	<u> </u>
CW-DD-04	Interior	0///2011	11.4	22.4	Glacial Till	14, 23, 10, 32
			22.4	22.4	Slight Weathered Shale	2
				0.5	Concrete	NM
			0.5	10	Fill	0.8, 15, 1.2, 0.2
CW-BD-07	Interior	8/2/2011	10	15	Silt and Clay	0.2, 0.2
CW-DD-07	Interior	0/2/2011	10	15.7	Glacial Till	0.2, 0.2
			15.7	20	Moderate Weathered Shale	0.1
			0	0.8	Concrete	NM
			0.8	6.7	Fill	0.5, 11, 6.9
			6.7	7.2	Concrete	0.5, 11, 6.9 NM
			7.2	10	Fill	NM
CW-BE-05	Interior	8/3/2011	10	15	Clay	0.1
			15	19.1	Glacial Till	0.5, 23
			19.1	20.9	Severely Weathered Shale	66, 31
			20.9	22.5	Slight Weathered Shale	2
			0	0.8	Concrete	NM
			0.8	6.5	Fill( Steel at 4.5 Ft)	0.1, 0.3
			6.5	7.5	Concrete	NM
CW-BE-06	Interior	8/3/2011	7.5	10	Fill	NM
		-,-,	10	15	Silt and Clay	21
			15	18.1	Glacial Till	0.2
			18.1	20	Severely Weathered Shale	0.2
			0	1	Concrete	NM
			1	10	Fill	1.7
CW-BF-04	Interior	10/30/2011	10	20	Silt and Clay	1.5
			20	21.5	Glacial Till	1.7
			21.5	22	Severely Weathered Shale	2.8
			0	0.5	Concrete	NM
			0.5	10	Fill	0.3, 3, 1.3, 0.3
			10	15	Clay and Silt	0.3, 3, 1.3, 0.3
<i>CW-BF-07</i>	Interior	8/3/2011	15	15.8	Silt and Clay	0.2
			15.8	21.7	Glacial Till	0.5, 0.6
			21.7	23	Severely Weathered Shale	0.2
			0	0.5	Concrete	NM
			0.5	8.8	Fill	1.8
<b>a a a a a a a a a a</b>		10/00/	8.8	16.1	Silt and Clay	4
<i>CW-BG-06</i>	Interior	10/29/2011	16.1	20	Glacial Till	45
			20	20	No Recovery	NM
			21	22	Severely Weathered Shale	66
			0	0.8	Concrete	NM
			0.8	6.4	Fill	0.7, 22, 0.7
			6.4	13.6	Silt and Clay	0.6, 0.8, 0.5, 0.9, 0.
TMP-BB-04	Interior	8/5/2011	13.6	20	Glacial Till	0.6, 0.9
тмр-вв-04			20	20	Very Severely Weathered Shale	0.4, 0.3
			20	30	Moderate Weathered Shale	0.4, 0.3
			0	1.2	Concrete	0.1 NM
	-			6.6	Fill	0.5, 16, 3.2
					ГШ	U.S, 10, S.Z
			1.2			
TMP-BD-03	Interior	8/4/2011	6.6	11	Stream Deposits	14, 0.7, 9.1
TMP-BD-03	Interior	8/4/2011				

CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix C - Field Summary - B57 Drilling & Installation\ Tables\20121130 Table C.2 - TMPs- CW Installation Summary.xlsx Page 1 of 2

## Table C.2 (B) Summary of Drilling Activities - Temperature Monitoring Points and Chimney Wells B57A Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

	Interior/	Completion	Top Depth	Bottom Depth	General Lithologic	PID
Boring Name	Exterior	Date	(feet)	(feet)	Description	Readings (ppmv)
			0	0.7	Concrete	NM
			0.7	10	Fill	1.2, 22, 91, 162
TMP-BD-05	Interior	8/7/2011	10	16.1	Silt and Clay	8.5, 76
1MF-DD-05	111101 101		16.1	23.8	Glacial Till	2.8, 48
			23.8	38.5	Severely Weathered Shale	23, 0.9, 1.1, 0.6
			38.5	39	Moderate Weathered Shale	0.7
			0	1.1	Concrete	NM
			1.1	10	Fill	0.5, 3.0, 2.4, 1.4
			10	11.9	Clay and Silt	0.5
		0/5/2011	11.9	15	Silt and Clay	0.5
TMP-BD-06	Interior	8/5/2011	15	21	Glacial Till	0.6, 0.3
			21	22.4	Moderate Weathered Shale	0.4
			22.4	33.9	Severely Weathered Shale	0.3, 0.3, 0.4, 0.3
			33.9	35	Slight Weathered Shale	0.6
			0	0.6	Concrete	NM
			0.6	10	Fill	4.2
TMP-BE-02	Interior	10/31/2011	10	17.7	Silt and Clay	1.4
			17.7	20	Glacial Till	1.7
			20	22.5	Severely Weathered Shale	1.2, 0.5
			0	0.5	Concrete	NM
			0.5	9.5	Fill	0.7
TMP-BF-05	Interior	10/30/2011	9.5	18.1	Silt and Clay	ND
			18.1	21	Glacial Till	18
			21	23	Severely Weathered Shale	69
			0	0.7	Concrete	NM
			0.7	7.3	Fill	5.9, 9.2, 3.7
		8/6/2011	7.3	8.2	Concrete	NM
			8.2	10	Fill	NM
TMP-BF-06	Interior		10	20	Clay and Silt	1.8, 3.3
			20	25	Glacial Till	17, 52, 51
			25	43.1	Severely Weathered Shale	63, 30, 0.9
			43.1	44	Slight Weathered Shale	1.1
			0	0.7	Concrete	NM
			0.7	4.6	Fill	1.9, 10
			4.6	5	Concrete	NM
			5	7.5	Fill	5.7
TMP-BF-08	Interior	8/6/2011	7.5	10	Clay and Silt	3.1
		0,0,2011	10	15.7	Clay	1.9, 2.4
			15.7	23.8	Glacial Till	4.5, 3.3
			23.8	28.4	Severely Weathered Shale	2.1, 1.2
			28.4	30	Moderate Weathered Shale	1.3

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval.

ND: Indicates non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 7 to 9 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

### Table C.2 (C) Summary of Drilling Activities - Temperature Monitoring Points and Chimney Wells TCA Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Union and Endicott, NY										
Boring Name	Interior/ Exterior	Completion Date	Top Depth (feet)	Bottom Depth (feet)	General Lithologic Description	PID Readings (ppmv)				
			0	0.4	Asphalt	NM				
			0.4	7.5	Fill	3.3, 1.7, 3				
			7.5	11.5	Clay and Silt	0.4, 0.3				
			11.5	14.4	Silt and Clay	0.4				
			14.4	15	Sand and Gravel	0.3				
	Frat and a m	0/15/2011	15	15.5	Stream Deposits	0.4				
<i>CW-TB-02</i>	Exterior	8/15/2011	15.5	17	Glacial Till	0.5				
			17	18.9	Shale	1.1				
			18.9	20	Clayey Silt	1.1				
			20	22.5	Sand	1.3				
			22.5	23.5	Weathered Shale	1.1				
			23.5	25	Fresh Shale	1.5				
			0	0.5	Asphalt	NM				
			0.5	9.1	Fill	0.3, 0.8, 0.9, 0.3, 0.3, 0.4				
			9.1	10.5	Clayey Silt	0.4, 0.3				
			10.5	15	Silt and Clay	0.2				
CW-TB-04	Exterior	0/15/2011	15	16	Stream Deposits	0.2				
CW-1D-04	Exterior	8/15/2011	16	20	Glacial Till	0.4, 0.3				
			20	24.3	Stream Deposits	0.4, 0.7				
			24.3	24.6	Slightly Weathered Shale	4.5				
			24.6	28.5	Glacial Till	3.3, 9.1				
			28.5	30	Slightly Weathered Shale	7.6				
			0	0.5	Asphalt	NM				
			0.5	10	Fill	4.6, 1.3, 0.8, 0.5, 0.4, 0.5				
		8/15/2011	10	16	Clay and Silt	0.5, 0.9, 0.5				
<i>CW-TB-06</i>	Exterior		16	20	Stream Deposits	0.4, 0.5				
			20	25	Glacial Till	0.3, 0.6				
			25	28	Completely Weathered Shale	0.8				
			28	30	Severe Weathered Shale	1.3				
			0	0.3	Asphalt	NM				
			0.3	9.5	Fill	0.6, 0.4, 0.6, 5				
TMP-TB-02	Exterior	0/0/2011	9.5	14.3	Silt and Clay	1.3, 0.9				
1MP-1D-02	Exterior	8/9/2011	14.3	20	Glacial Till	0.6, 2.2				
			20	22.9	Severe Weathered Shale	1				
			22.9	25	Moderate Weathered Shale	0.8				
			0	0.4	Asphalt	NM				
			0.4	7.5	Fill	0.7, 0.4, 0.3, 0.3				
TMP-TB-05	Exterior	8/10/2011	7.5	15	Silt and Clay	0.2, 0.3				
			15	20.8	Glacial Till	0.4, 0.7				
			20.8	25	Severe Weathered Shale	0.3				
			0	0.4	Asphalt	0.2, 0.2				
			0.4	7.8	Fill	0.7, 0.4				
			7.8	8.5	Organic Peat	2.3				
TMP-TC-04	Exterior	8/9/2011	8.5	15	Silt and Clay	1.2				
1111-10-04	LALCI IUI	0/ 9/ 2011	15	19	Glacial Till	1.9				
			19	19.8	Severe Weathered Shale	0.9				
			19.8	20	Hard Fresh Gray Shale	0.6				
			20	25	Severe Weathered Shale	1.3				

### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval.

ND: Indicated non-detect PID reading for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 8 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

## Table C.2 (D) Summary of Drilling Activities - Temperature Monitoring Points and Chimney Wells Waste Solvent Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

	-		-	Union and En		
Boring Name	Interior/ Exterior	Completion Date	Top Depth (feet)	Bottom Depth (feet)	General Lithologic Description	PID Readings (ppmv)
			0	0.5	Asphalt	NM
			0.5	10	Fill	3, 21, 48, 1.4, 1
			10	11.5	Clay and Silt	1.1
			11.5	15	Silt and Clay	0.6
<i>CW-WB-04</i>	Exterior	8/16/2011	15	15.9	Silt	0.9
			15.9	19	Clay and Silt	0.7
			19	20	Silt and Clay	0.7
			20	25.5	Glacial Till	0.7, 0.5, 0.5
			25.5	30	Shale	0.4, 0.4
			0	0.5	Asphalt	NM
			0.5	9.2	Fill	11, 28, 14, 4
			9.2	10	Concrete	NM
			10	19.1	Silt and Clay	2.2, 84, 110, 58
<i>CW-WC-04</i>	Exterior	8/16/2011	19.1	25	Sand and Gravel	22, 10, 3, 2.5
			25	27	Fresh Shale	NM
			27	29	Completely Weathered Shale	1.4
			29	30	Fresh Shale	NM
			0	0.5	Concrete	NM
			0.5	9	Fill	0.5, 2.4
			9	10	Concrete	NM
<i>CW-WD-02</i>	Interior	10/31/2011	10	11.2	Fill	2.3
5#-# <i>D*</i> 04	111001101	10/31/2011	10	20	Silt and Clay	10
			20	20	Glacial Till	5.8
			20	25	Severely Weathered Shale	5.8
			0	0.5	Asphalt	5.3 NM
			0.5	0.5	Fill	
						8.5, 92, 6.5, 13
			7	7.5	Concrete Silt and Clay	NM
CW 105 0 4	Free 1	0/16/0011	7.5	11	Silt and Clay	421, 435
<i>CW-WE-04</i>	Exterior	8/16/2011	11	14.6	Clay and Silt	1241, 488
			14.6	22	Stream Deposits	249, 250, 94
			22	23	Glacial Till	22
			23	24	Very Slightly Weathered Shale	4.7
			24	25	Glacial Till	3.0
			0	0.4	Asphalt	NM
			0.4	8.5	Fill	0.7, 0.4, 0.6, 0.5
			8.5	11.9	Clay and Silt	0.3, 0.3
<i>CW-WF-01</i>	Exterior	8/15/2011	11.9	17	Silt and Clay	0.3, 0.4, 0.3
			17	21	Sand	3.7, 0.9
			21	23.5	Slight Weathered Shale	7.1
			23.5	25	Very Severely Weathered Shale	0.5
			0	0.5	Asphalt	NM
			0.5	9	Fill	0.1, 2.2, 8.8, 13, 47
			9	9.4	Organic Peat	53
			9.4	17.8	Silt and Clay	43, 77, 96, 111, 134
<i>CW-WF-03</i>	Exterior	8/15/2011	17.8	20	Sand and Gravel	2.5
		, ,	20	21.5	Silt and Clay	36
			21.5	22.5	Sand and Gravel	7.9
			22.5	25	Glacial Till	1.2
			25	30	Very Slightly Weathered Shale	1.7
			0	0.4	Asphalt	NM
			0.4	9	Fill	16, 14, 16, 4.5
			9	10.9	Clay and Silt	0.7, 0.7
			10.9	10.9	Silt and Clay	0.7, 1.4, 5.3, 4.1
TMP-WC-04	Exterior	8/16/2011	10.9	20	Sand and Gravel	0.7, 1.4, 5.3, 4.1
			20	20	Sand and Graver	0.5
			20	23.5	Fresh Shale	NM
			23.5	23.5	Very Severely Weathered Shale	0.3
			23.5 0	0.6	Concrete	NM
			0.6	8.8	Fill	2, 11
			0.6	8.8 17.9	Silt and Clay	2, 11 2.9, 1.8, 32, 116
MP-WD-02	Interior	8/6/2011	8.8 17.9	25	Glacial Till	
						82, 1.7, 2.6
			25	41.9	Severe Weathered Shale	1.8, 1.2, 1.4, 1.7, 1.5, 1.1
			41.9	43	Slight Weathered Shale	1.8
			0	1.5	Topsoil	0.8
			1.5	3.5	Fill	1.0
			3.5	5	Concrete	NM
			5	7	Concrete (Not Confirmed)	NM
	<b>.</b>	0.440.555	7	12.5	No Recovery	NM
MP-WD-05	Exterior	8/18/2011	12.5	15.5	Concrete (Not Confirmed)	NM
			15.5	20	Silt and Clay	59
			20	21	Clay and Silt	274
			21	27.4	Sand and Gravel	12, 3.3
			27.4	29	Glacial Till	3.5, 5.1
			29	30	Shale	0.5
	Ι		0	5	No Recovery	NM
			5	10	Fill	4.1
			10	15	No Recovery	NM
	Exterior	11/10/2011	15	19	Glacial Till	232
TMP-WE-06						
TMP-WE-06			19	22.7	Sand and Gravel	13, 32
TMP-WE-06			19 22.7	22.7	Glacial Till	13, 32

## Table C.2 (D) Summary of Drilling Activities - Temperature Monitoring Points and Chimney Wells Waste Solvent Area Operable Unit # 5/ Building 57 Area Union and Endicott, NY

Boring Name	Interior/ Exterior	Completion Date	Top Depth (feet)	Bottom Depth (feet)	General Lithologic Description	PID Readings (ppmv)
			0	0.5	Asphalt	NM
			0.5	8.2	Fill	0.7, 0.8, 0.9, 1.0
TMP-WF-02	Exterior	8/10/2011	8.2	18.9	Silt and Clay	0.6, 0.5, 0.4
			18.9	21.7	Glacial Till	0.3, 3.4
			21.7	25	Severe Weathered Shale	1.6
			0	0.6	Asphalt	NM
			0.6	11	Fill	13, 15, 11, 3.4, 9.2, 24
			11	12.7	Clayey Silt	181
			12.7	14.4	Clay and Silt	460
TMP-WF-04	Exterior	(8-17-2011)	14.4	17.7	Silt and Clay	609, 905, 359
			17.7	18.7	Clay and Silt	312
			18.7	22.6	Sand and Gravel	21, 191
			22.6	39.5	Glacial Till	11, 2.1, 2.8, 4.8, 1.3
			39.5	42	Shale	0.3, 0.2
		rior 8/18/2011	0	0.4	Asphalt	NM
			0.6	10	Fill	0.7, 1.3, 1.0, 4.0, 19, 69
			10	10.9	Clay and Silt	35
TMP-WG-03	Exterior		10.9	16.3	Silt and Clay	40, 34
1MP-WG-03			16.3	18.4	Clayey Silt	49
			18.4	22.4	Sand and Gravel	8.1, 1.1
			22.4	41.5	Till/Completely Weathered Shale	3.9, 2.7, 3.7, 1.3, 1.7, 0.9, 0.4
			41.5	42.7	Shale	NM
			0	9	Fill	0.6, 5.4, 3.6
			9	15	Silt and Clay	999, 68
			15	23	No Recovery	NM
TMP-WW-01	Exterior	11/11/2011	23	24.5	Sand and Gravel	4.6
			24.5	25	Glacial Till	4.7
			25	27.5	No Recovery	NM
			27.5	30.6	Severely Weathered Shale	6.1
			0	5	Fill	1.2
TMP-WW-02	Exterior	11/10/2011	5	14.3	Silt and Clay	8.9
1.11 000 02	LACTION	11/10/2011	14.3	23.7	Glacial Till	0.8, 32, NM, NM
			23.7	30.4	Severely Weathered Shale	40

#### Notes:

1) NM: Indicates PID reading not measured for the indicated depth interval.

2) Lithology descriptions are based on sample cores observed during drilling program; deviations are possible from actual depths for subsurface conditions.

3) Depth to groundwater varies from 5 to 8 ft bgs and is based on data available from past groundwater sampling events; deviations are possible due to seasonal variations.

### Table C.3 (A) Summary of Sheet Pile Electrode Installation - Building 57A Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Pile ID #	Pile Length	Top Depth (Below Floor Surface [installed])	Sheet top depth upon completion ( post cutoff)	Bottom Depth (Below Floor Surface [installed])	Driven Date	Plumbness / Alignment / Obstruction Notes
BB-03	17'-6"	1"		17'-7"	10/17/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BB-04	17'-6"	3'		20'-6"	10/17/2011	Sheet pile plumbness was maintained with a 3' level.
BC-02	17'-6"	2"		17'-8"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BC-03	17'-6"	(1')		16'-6"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BC-04	17'-6"	1"	2'-6"	17'-7"	10/17/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BC-05	17'-6"	1"	2'-6"	17'-7"	10/18/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BC-06	17'-6"	1"	2'-6"	17'-7"	10/18/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-02	17'-6"	2'-6"		20'	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-03	17'-6"	1'-6"		19'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-04	17'-6"	1'		18'-6"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-05	17'-6"	1"	2'-6"	17'-7"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-06	17'-6"	(2")	2'-6"	17'-4"	10/18/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-07	17'-6"	(1'-6")	2'-6"	16'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BD-08	17'-6"	(1'-6")	2'-6"	16'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-02	17'-6"	2'-6"		20'	10/21/2011 &	was removed to avoid toppling. Re-attempted @ 10:55 A.M. on 10/24/11. Sheeting was driven
BE-03	17'-6"	2'-6"		20'	10/24/2011 10/21/2011	without any observed obstructions. Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-04	17'-6"	1'		18'-6"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-05	17'-6"	1'-6"		19'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-06	17'-6"	2"		17'-8"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-07	17'-6"	0	2'-6"	17'-6"	10/20/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-08	17'-6"	(6")	2'-6"	17'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BE-09	17'-6"	(1'-6")	2'-6"	16'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BF-03	17'-6"	1'-3"		18'-9"	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 18'-9" and could not drive through.
BF-04	17'-6"	7"		18'-1"	10/21/2011	Concrete obstruction would allow sheet pile insertion at one side of excavation only. Pile was driven as deep as machine head would allow.
BF-05	17'-6"	1'-6"		19'	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 19' and could not drive through.
BF-06					10/20/2011	Attempted to drive sheet pile @ 8:00 A.M. Refusal encountered at 8' depth. Sheet pile was removed to avoid toppling.
BF-07	17'-6"	(2")		17'-4"	10/20/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 17'-4" and could not drive through.
BF-08	17'-6"	10"		18'-4"	10/20/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 18' and could not drive through.
BF-09	17'-6"	11"		18'-5"	10/20/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 18'-5" and could not drive through.
BF-10	17'-6"	6"	2'-6"	18'	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BG-04	17'-6"	2'-6"		20'	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BG-05	17'-6"	2'-6"		20'	10/24/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BG-06	17'-6"	2'-6"		20'	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.
BG-07	17'-6"				10/21/2011	Attempted to drive sheet pile @ 9:27 A.M. Refusal encountered at 8' depth. Sheet pile was removed to avoid toppling.
BG-08	17'-6"	2'-6"		20'	10/18/2011	Sheet pile plumbness was maintained with a 3' level. Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed
BG-09	17'-6"	1'-5"		18'-11"	10/20/2011	driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 18' and could not drive through.
BG-10	17'-6"	1'-8"		19'-2"	10/20/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 19'-2" and could not drive through.
BH-06	17'-6"	1'-8"		19'-2"	10/21/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.25 in/min.Hit hard till @ $\sim$ 19'-2" and could not drive through.
BH-07 BH-08	17'-6" 17'-6"	2'-6" 2'-6"		20' 20'	10/21/2011 10/19/2011	Monitoring well was removed from sheet pile pair location. Sheet pile plumbness was maintained with a 3' level.
BH-09	17'-6"	1'-8"		19'-2"	10/19/2011	Sheet pile plumbness was maintained with a 3' level. Sheet Pile was driven until hard till slowed driving velocity to approximately 0.5 in/min.

#### Notes:

1) Sheet pile electrode data provided by O' Brien & Gere of Syracuse, NY. All sheet piles installed as single sheet piles.

2) Sheet pile electrodes BG-07 and BF-06 replaced as vertical bored electrodes as sheet piles encountered early refusal due to secondary concrete layer.

### Table C.3 (B) Summary of Sheet Pile Electrode Installation - TCA Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Location	Existing Grade El.	Top of Pile Installation Below Exist. Grade	Bottom of Pile Installation Below Exist. Grade	Final Length of Pile	Installation Date
TB-02		-3'-0"	-24'-0"	21'-0"	11/10/2011
TB-03		-3'-0"	-26'-0"	23'-0"	11/10/2011
TB-04		-3'-0"	-20'-0"	17'-0"	11/10/2011
TB-05		-3'-0"	-26'-0"	23'-0"	11/10/2011
TB-06		-3'-0"	-21'-0"	18'-0"	11/10/2011
TC-02		-3'-0"	-26'-0"	23'-0"	11/10/2011
TC-03		-3'-0"	-26'-0"	23'-0"	11/10/2011
TC-04		-3'-0"	-26'-0"	23'-0"	11/10/2011
TC-05		-3'-0"	-26'-0"	23'-0"	11/10/2011
TC-06		-2'-10"	-25'-10"	23'-0"	11/10/2011
TC-07		-2'-11"	-25'-11"	23'-0"	11/9/2011

#### Notes:

1) Sheet pile data provided by O' Brien & Gere of Syracuse, NY. All sheet piles installed in pairs.

## Table C.3 (C) Summary of Sheet Pile Electrode Installation - Waste Solvent Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Location	Existing Grade El.	Top of Pile Installation Below Exist. Grade	Bottom of Pile Installation Below Exist. Grade	Final Length of Pile	Installation Date
WB-04		-3'-0"	-26'-0"	23'	11/8/2011
WB-05		-3'-0"	-26'-0"	23'	11/8/2011
WC-02		-2'-6"	25'-0"	22'-6"	
WC-04		-3'-0"	-26'-0"	23'	11/8/2011
WC-05		-3'-0"	-26'-0"	23'	11/8/2011
WD-02		-2'-6"	25'-0"	22'-6"	
WD-03		-2'-6"	25'-0"	22'-6"	
WD-04		-3'-0"	-26'-0"	23'	11/8/2011
WD-05		-3'-0"	-26'-0"	23'	11/8/2011
WD-06		-3'-0"	-26'-0"	23'	11/7/2011
WE-02		-2'-6"	25'-0"	22'-6"	
WE-04		-3'-0"	-26'-0"	23'	11/8/2011
WE-05		-3'-0"	-26'-0"	23'	11/8/2011
WE-06		-3'-0"	-26'-0"	23'	11/7/2011
WF-01		-3'-0"	-26'-0"	23'	11/9/2011
WF-02		-3'-0"	-26'-0"	23'	11/9/2011
WF-03		-3'-0"	-26'-0"	23'	11/8/2011
WF-04		-3'-0"	-26'-0"	23'	11/8/2011
WF-05		-3'-0"	-26'-0"	23'	11/8/2011
WF-06		-3'-0"	-26'-0"	23'	11/7/2011
WG-01		-2'-11"	-30'-11"	28'	11/9/2011
WG-02		-3'-0"	-31'-0"	28'	11/8/2011
WG-03		-3'-0"	-31'-0"	28'	11/8/2011
WG-04		-3'-0"	-31'-0"	28'	11/8/2011
WG-05		-3'-0"	-31'-0"	28'	11/7/2011
WG-06		-3'-0"	-31'-0"	28'	11/7/2011

Notes:

1) Sheet pile data provided by O' Brien & Gere of Syracuse, NY. All sheet piles installed in pairs.

## Table C.3 (D) Summary of Sheet Pile Wall Installation - Waste Solvent Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Pile ID #	Pile Length	Top El. (installed)	Bottom El. (installed)	Installation Began	Installation Completed	Plumbness / Alignment / Obstruction Notes
1 - N of 3' Gap	15'-3"	839'	823'-9"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joint of neighboring sheet pile.
2 - N of 3' Gap	15'-3"	839'-1"	823'-10"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
3 - N of 3' Gap	14'	839'-1"	825'-1"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
4 - N of 3' Gap	14'	839'-2"	825'-2"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
5 - N of 3' Gap	15'	839'-2"	824'-2"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
6 - N of 3' Gap	15'	839'-3"	824'-3"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
7 - N of 3' Gap	15'-1"	839'-3"	824'-2"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
8 - N of 3' Gap	15'-1"	839'-4"	824'-3"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
9 - N of 3' Gap	14'	839'-4"	825'-4"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
10 - N of 3' Gap	14'	839'-5"	825'-5"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
11 - N of 3' Gap	15'	839'-5"	824'-5"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
12 - N of 3' Gap	15'	839'-6"	824'-6"	10/5/2011	10/5/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
13 - N of 3' Gap	10'	839'-6"	829'-6"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
14 - N of 3' Gap	10'	839'-6"	829'-6"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
15 - N of 3' Gap	10'	839'-6"	829'-6"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
16 - N of 3' Gap	10'-1"	839'-6"	829'-5"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
17 - N of 3' Gap	10'-1"	839'-6"	829'-5"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
18 - N of 3' Gap	10'	839'-6"	829'-6"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
19 - N of 3' Gap	10'	839'-7"	829'-7"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
20 - N of 3' Gap	10'	839'-7"	829'-7"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
21 - N of 3' Gap	10'	839'-9"	829'-9"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
22 - N of 3' Gap	10'	839'-9"	829'-9"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
23 - N of 3' Gap	10'	839'-10"	829'-10"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
24 - N of 3' Gap	10'	839'-10"	829'-10"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
25 - N of 3' Gap	10'	839'-11"	829'-11"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
26 - N of 3' Gap	10'	839'-11"	829'-11"	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
27 - N of 3' Gap	10'	840'	830'	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
28 - N of 3' Gap	10'	840'	830'	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joints of neighboring sheet piles.
29 - N of 3' Gap	10'	840'	830'	10/6/2011	10/6/2011	Leveled on vertical planes prior to driving (3' Level). Caulking was applied between joint of neighboring sheet pile.

## Table C.3 (D) Summary of Sheet Pile Wall Installation - Waste Solvent Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Pile ID #	Pile Length	Top El. (installed)	Bottom El. (installed)	Installation Began	Installation Completed	Plumbness / Alignment / Obstruction Notes
30 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joint between neighboring sheet pile. Sheet pile was welded to neighboring pile (top 4"-6" of joint).
31 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
32 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
33 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
34 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
35 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
36 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
37 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
38 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
39 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
40 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
41 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
42 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
43 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
44 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
45 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
46 - S of 3' Gap	21'	839'	818'	10/7/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
47 - S of 3' Gap	21'	839'	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
48 - S of 3' Gap	21'	839'	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
49 - S of 3' Gap	21'	839'	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
50 - S of 3' Gap	21'	839'	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
51 - S of 3' Gap	20'-10"	838'-10"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).

### Table C.3 (D) Summary of Sheet Pile Wall Installation - Waste Solvent Area Operable Unit # 5/Building 57 Area Union and Endicott, New York

Pile ID #	Pile Length	Top El. (installed)	Bottom El. (installed)	Installation Began	Installation Completed	Plumbness / Alignment / Obstruction Notes
52 - S of 3' Gap	20'-8"	838'-8"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
53 - S of 3' Gap	20'-5"	838'-5"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
54 - S of 3' Gap	20'-3"	838'-3"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
55 - S of 3' Gap	20'-1"	838'-1"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
56 - S of 3' Gap	19'-11"	837'-11"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
57 - S of 3' Gap	19'-8"	837'-8"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
58 - S of 3' Gap	19'-6"	837'-6"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
59 - S of 3' Gap	19'-3"	837'-3"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
60 - S of 3' Gap	19'-1"	837'-1"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
61 - S of 3' Gap	19'-4"	836'-11"	817'-7"	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
62 - S of 3' Gap	18'-9"	836'-9"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
63 - S of 3' Gap	18'-7"	836'-7"	818'	10/10/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
64 - S of 3' Gap	18'-5"	836'-5"	818'	10/11/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
65 - S of 3' Gap	18'-2"	836'-2"	818'	10/11/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joints between neighboring sheet piles. Sheet pile was welded to neighboring piles (top 4"-6" of joints).
66 - S of 3' Gap	18'	836'	818'	10/11/2011	10/12/2011	Leveled on vertical planes prior to driving and at 10' depth (3' Level). No caulking of joint between neighboring sheet pile. Sheet pile was welded to neighboring pile (top 4"-6" of joint).

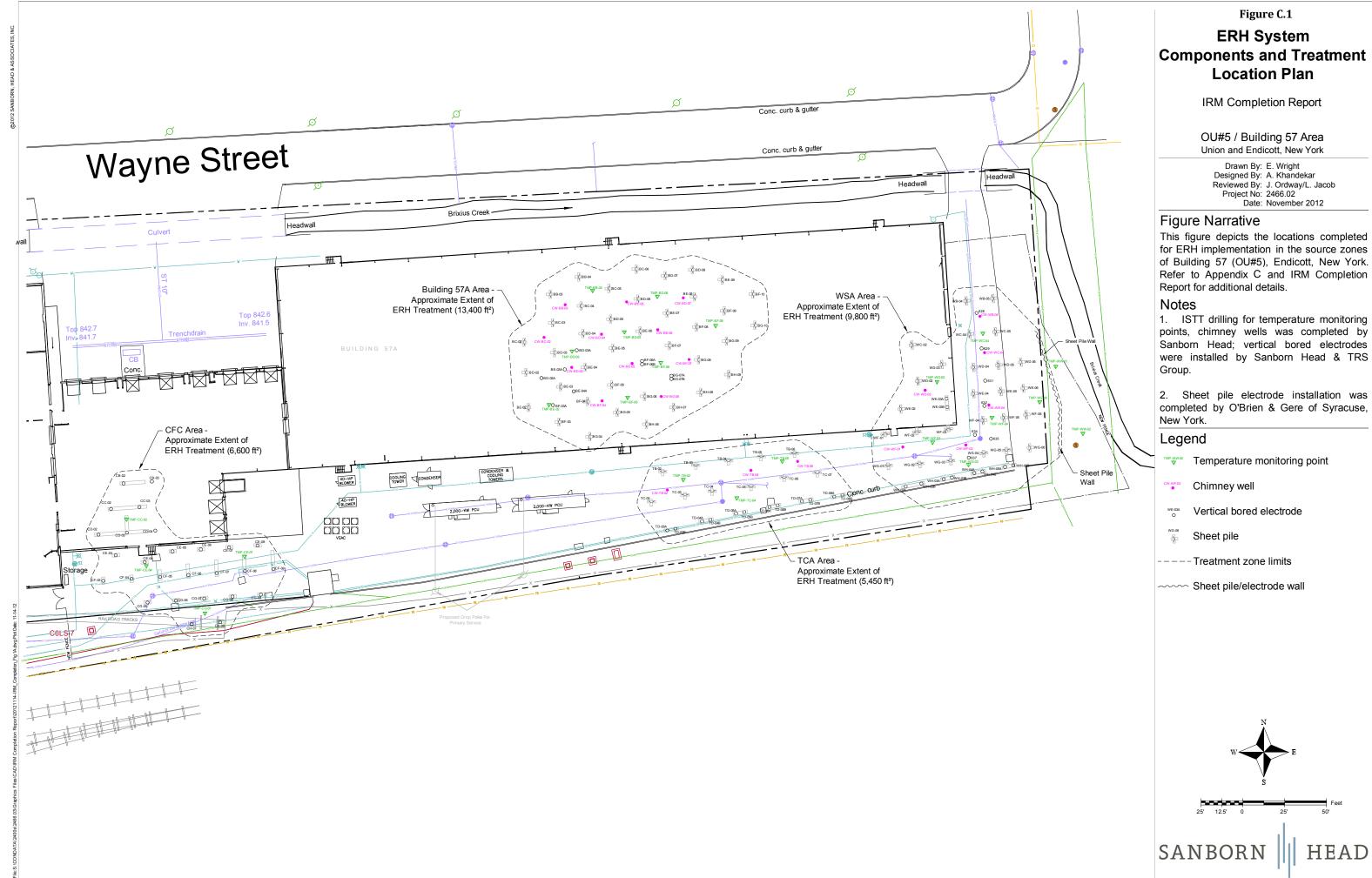
Notes:

1) Sheet pile data provided by O' Brien & Gere of Syracuse, NY. All sheet piles installed as single sheet piles.

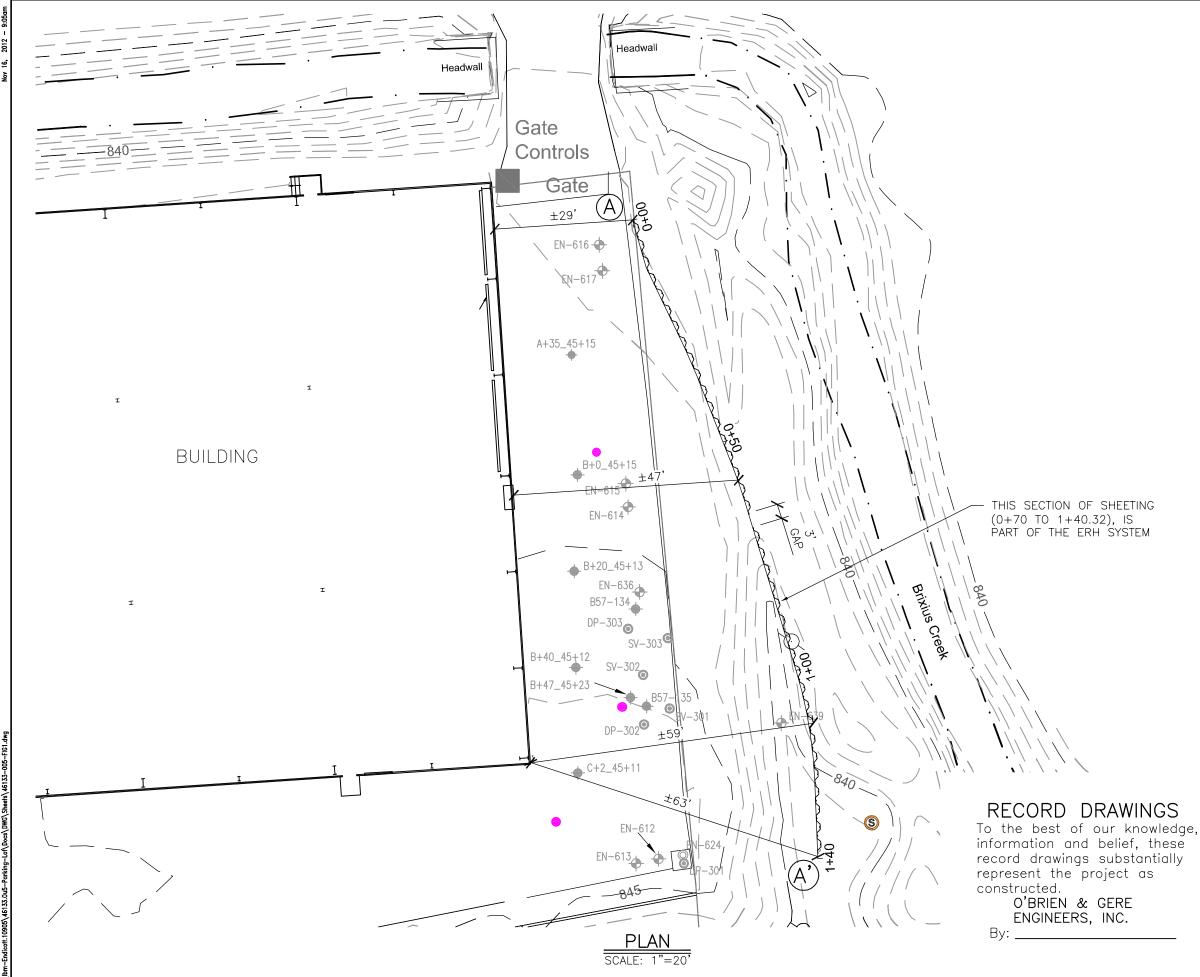
## Table C.4 (A) Supplemental Electrode Installation Summary (by TRS Group) B57A Area Operable Unit # 5/Building 57 Area Union and Endicott, NY

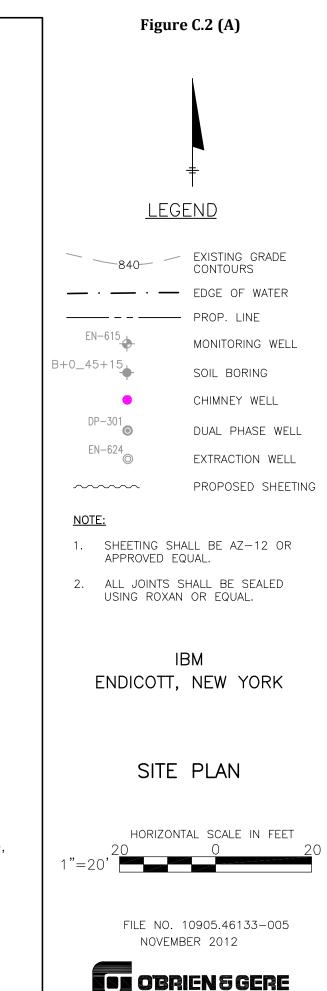
Location	Top of Bored Electrode - feet below ground surface	Top of Bored Electrode - feet below ground surface	Final length of electrode	Installation Date
BD-03A	2	7	5	8/9/2012
BE-03A	2	7	5	8/9/2012
BE-04A	2	7	5	8/9/2012
BF-03A	2	7	5	8/9/2012
BD-02A	2	7	5	8/9/2012

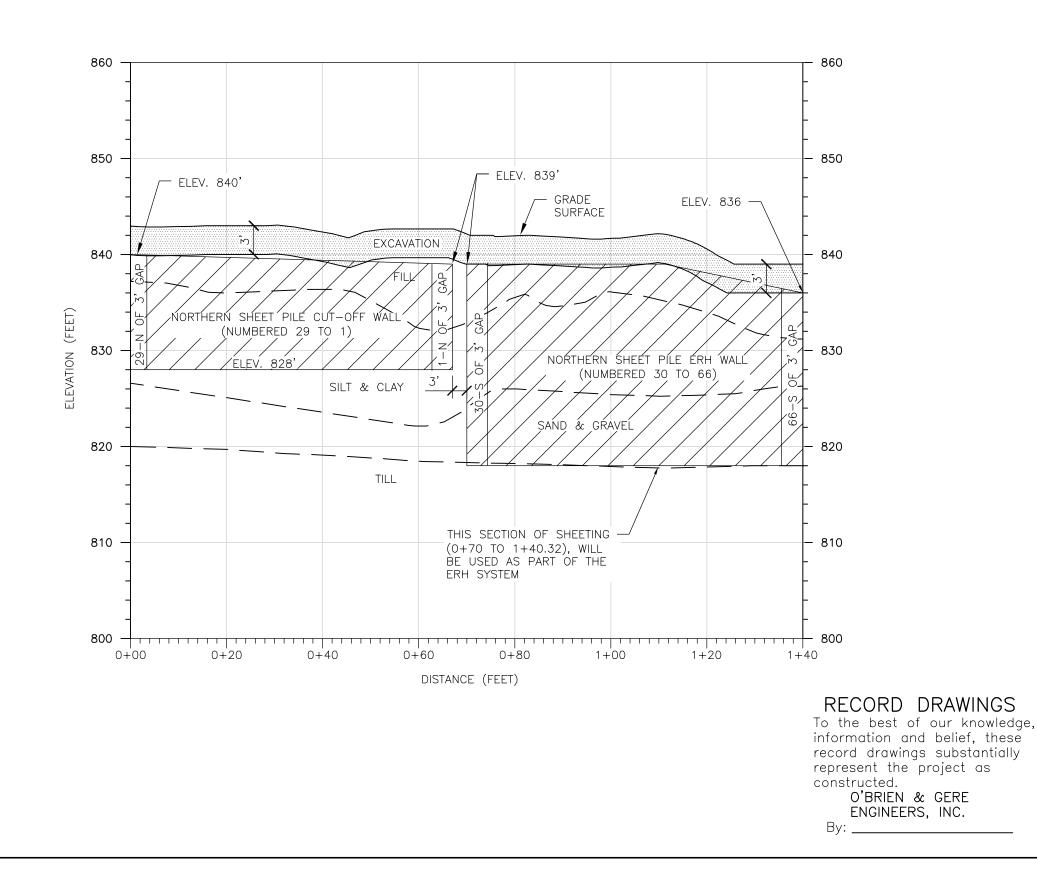
#### Notes:

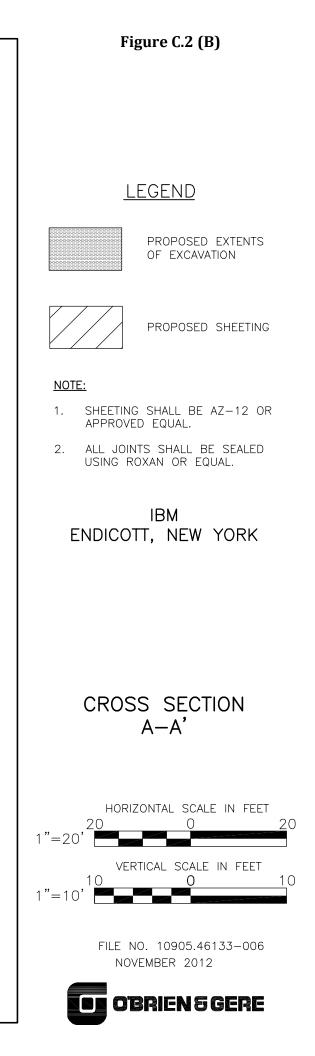

1) Bored electrodes were installed by TRS Group of Longview, WA on dates indicated.

## Table C.4(B) Supplemental Electrode Installation Summary (by TRS Group) Waste Solvent Area Operable Unit # 5/Building 57 Area Union and Endicott,NY


Location	Top of Bored Electrode - feet below ground surface	Top of Bored Electrode - feet below ground surface	Final length of electrode in feet	Installation date of electrodes
628	2	7	5	8/9/2012
629	2	7	5	8/9/2012
630	2	7	5	8/9/2012
631	2	7	5	8/9/2012
632	2	7	5	8/9/2012
633	2	7	5	8/9/2012
634	2	32	30	8/17/2012
635	2	32	30	8/15/2012
637	2	32	30	8/16/2012


#### Notes:


1) Bored electrodes were installed by TRS Group of Longview, WA on dates indicated.




Drawn By:	E. Wright
Designed By:	A. Khandekar
Reviewed By:	J. Ordway/L. Jacob
Project No:	2466.02
Date:	November 2012











## Log of Chimney Well CW-BB-03

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/08/11

Date Finished: 08/08/11 Checked Bv: EMB/JSP

oggeo	d By: AV	(/EMB		Che	cked By: EM	IB/JSI	Ρ			
		Sample	Informa				Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 5		5/5		P A A	0' CONCRETE	(0 to 0.8'): Concrete.		
_ 2 —					PID: 3.7 ppmv		0.8'	S-1A (0.8 to 3.7'): Light brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 t 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9')
_ 4 —					PID: 5.8 ppmv		FILL	S-1B (3.7 to 5'): Dark brown, fine to coarse SAND, little Gravel, little Silt. Sub-angular to rounded. Moist. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010 Slots) (1.9 to 4.9')
-	S-2	5 - 10		5/5	PID: 87 ppmv			S-2A (5 to 7.6'): Dark brown to black, fine to medium SAND, trace Silt, trace Gravel, black staining from 7.2 to 7.6' bgs. Sub-rounded to sub-angular. FILL.		2" Dia. Sch. 40 CPVC Er Cap (4.9 to 5')
-					PID: 270 ppmv		7.6'	S-2B (7.6 to 10'): Olive gray, CLAY & SILT. Wet.		
_							SILT & CLAY			
)	S-3	10 - 15		5/5	PID: 68 ppmv PID: 47 ppmv		10.3'	S-3A (10 to 10.3'): Grayish tan, CLAY & SILT, extensive red mottling. S-3B (10.3 to 15'): Olive gray, SILT & CLAY, little	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	
2					- <b>-</b> -			fine Sand, little Gravel, and Cobbles. Sub-rounded to angular. Moist.		
4 —										
- 6	S-4	15 - 20		5/5	PID: 11 ppmv	00000	TILL	S-4 (15 to 20'): Olive tan & brown, SILT & CLAY, little fine Sand, little , Gravel and Cobbles. Sub-rounded to angular. Moist. TILL.		#3 Sand (1.5 to 30')
- 3						2 < 0 o o				
_						0000				
)	S-5	20 - 25		5/5	PID: 39 ppmv PID: 33		21.3'	S-5A (20 to 21.3'): Olive tan, Clayey SILT, some , Gravel and Cobbles, trace Sand. Sub-rounded to angular. Moist.		
2—					ppmv			S-5B (21.3 to 25'): Soft, very severely weathered, gray, aphanitic SHALE.		
4-							SHALE			

# APPENDIX A LIMITATIONS

- 1. The findings presented in this report were based solely upon the services described herein, and not on scientific tasks or procedures beyond the scope of described services.
- 2. Quantitative laboratory analyses were performed during IRM implementation and monitoring, as noted in the report. The analyses were performed for specific constituents of interest that were selected during the course of this study.
- 3. Quantitative laboratory testing was performed by others as part of the investigation as noted within the report. Where such analyses have been conducted by an outside laboratory, unless otherwise stated in the report, Sanborn Head has relied upon the data provided, and the opinion and findings of third party validation by qualified laboratory professional. The conclusions and recommendations contained in this report are based in part upon various types of chemical data. While Sanborn Head has reviewed the data and information as stated in this report, any of Sanborn Head's interpretations, conclusions, and recommendations that have relied on that information will be contingent on its validity. Should additional chemical data, historical information, or hydrogeologic information become available in the future, such information should be reviewed by Sanborn Head and the interpretations, conclusions presented herein should be modified accordingly.
- 4. This report is prepared for, and is intended for the exclusive use of, the IBM Corporation for specific application to the Operable Unit #5/Building 57 Area in accordance with generally accepted professional practice. The contents of this report shall not be relied upon by any party other than IBM without the express written consent of IBM and Sanborn Head. No other warranty, express or implied, is made.
- 5. Sanborn Head is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or re-use of the subsurface data or engineering analyses without the express written authorization of Sanborn Head.

 $S:\ONDATA\2400s\2466.02\Source\ Files\2012\ IRM\ Completion\ Report\Appendix\ A\ -\ Limitations\20121130\ Appendix\ A\ -\ Limitations.docx$ 



## Log of Chimney Well CW-BB-03

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/08/11

Logged By: AVK/EMB

Date Finished: 08/08/11 Checked By: EMB/JSP

		Sample	Informa	ation	-		Stratum			
Depth	0		Spoon		Field			Geologic Description	Well	Well Decorintion
(ft)	Sample No.	Depth (ft)	Blows per 6 in	Rec	Testing Data	Log	Description	Geologic Description	Diagram	Well Description
_	S-6	25 - 30	perom	5/5	PID: 1.8 ppmv			S-6A (25 to 25.9'): Soft, very severely weathered,		
26 —					PID: 2.1 ppmv			gray, aphanitic SHALE. S-6B (25.9 to 27.4'): Soft, severely weathered, gray, aphanitic SHALE. Increasing number of hard,		
_					PID: 0.9		SHALE	slightly weathered Shale fragments with depth. S-6C (27.4 to 30'): Moderately hard, moderately		
8—					ppmv			weathered, gray, aphanitic SHALE.		
_							201			
0							30'	Boring terminated at 30 feet. No refusal encountered.		
2—								NOTES: 1. Soil samples were screened for volatile organic compounds (/(OCs) using a MiniPag2000		
_								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response		
4								factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		
_								screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		
6—								2. Groundwater observed at about 7.6 ft. bgs during drilling.		
8—								<ol> <li>Weathered bedrock observed at about 21.3 ft. bgs, more competent bedrock encountered at about 27.4 ft. bgs.</li> </ol>		
_										
)—										
_										
2—										
1										
4 — _										
<u>3</u> —										
-										
3—										
-										
0—										



## Log of Chimney Well CW-BC-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/07/11

Date Finished: 08/07/11

		Sample	e Informa	ation			Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 7		7/2			0' CONCRETE	(0 to 0.7'): Concrete.		
_					PID: NA	A 4 	0.7'	S-1A (0.7 to 3'): Light brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-angular to sub-round. Dry.	-22	Concrete - to be
						[,/~		GRAVEL, trace Silt. Sub-angular to sub-round. Dry. FILL.		completed by others. (0 1.5')
2 —							FILL			2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9')
_							3'	(3 to 4'): Concrete. FILL.		
						A A A	CONCRETE			2" Dia. Sch. 40 Stainless Steel Well Screen (0.010
4 —						- / -	4'	(4 to 5'): No recovery.		Slots) (1.9 to 4.9')
_					PID: 4.3	$\left  \right\rangle$		S-1B (5 to 7'): Dark brown, fine to coarse SAND,		2" Dia. Sch. 40 CPVC E Cap (4.9 to 5')
6 —					ppmv	[,/~ /		little Gravel, little Silt. Sub-angular to rounded. Moist. FILL.		oup (1.0 to 0)
Ŭ						, `-				
-							FILL	(7 to 10'): No recovery.		
8 —										
-										
10—	S-2	10 - 15		5/5	PID: 221			S-2A (10 to 10.5'): Dark brown to black, fine to		
		10 10		0/0	ppmv PID: 19		10.5'	Cobbles. Sub rounded. Moist. Black sludge		
_					ppmv			observed. FILL.		
12—								S-2B (10.5 to 15'): Olive gray, CLAY & SILT. Wet.		
_							SILT & CLAY			
14 —										
_	S-3	15 - 20		5/5	PID: 75			S-3 (15 to 15.4'): Olive gray, CLAY & SILT. Moist.		
	3-3	15 - 20		5/5	ppmv	F24	15.4'	(15.4 to 20'): Not recorded.		
16										
_										
18—										
10										#3 Sand (1.5 to 35')
-										
20—		20 25		E/E			20'			
	S-4	20 - 25		5/5	PID: 56 ppmv	$\circ$		S-4A (20 to 21.5'): Olive gray, fine to coarse SAND and Clayey Silt, trace Gravel, trace Cobbles. Sub-angular. Moist.		
-						00				
22—					PID: 39 ppmv	$\circ$		S-4B (21.5 to 25'): Gray, fine to coarse SAND & GRAVEL and Clayey Silt, trace Cobbles.		
						000	TILL	Sub-rounded. Moist.		
-						$\mathcal{O}$				
24 —						00				
						P.U				



## Log of Chimney Well CW-BC-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Foreman: L. Hunsberger Date Started: 08/07/11 Date

#### Date Finished: 08/07/11 Checked By: EMB/JSP

Simple formation         Strutum         Geologic Description         Well Description           10         Sample formation         Felding Log Description         Geologic Description         Well Description           28         S.5         25 - 30         S5         IPID: 1.5 ppmv         S.6 (25 to 207): Soft very averely weathered gray, ppmv         S.6 (25 to 207): Soft very averely weathered gray, ppmv         S.6 (25 to 207): Soft very averely weathered gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft very averely weathered, gray, ppmv         S.6 (25 to 207): Soft severely weathered, gray, ppmv		Started: 08 ed By: AVI				e Finished: 08 ecked By: EM				
Bit State         Profit         Field         Log         Description         Well Description           28         3.5         25 - 30         55         PD:1.5        25	Logge			Informa		CREU Dy. EM	-			
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	Depth (ft)	Sample	Depth	Spoon Blows	Pen/ Rec	Testing			Geologic Description	Well Description
30       S-6       30 - 35       5'       PID. 1.4 ppmv       SHALE       SHALE       S-6A (30 to 33.7): Soft, severely weathered, gray, aphanic SHALE. F. severely weathered pieces of hard, signify weathered Shale.         36      35'      35'       S-6B (33.7 to 35'): Medium hard, moderately weathered, gray, aphanic SHALE. Frequent pieces of hard, signify weathered Shale.         38	- 26—	S-5	25 - 30		5/5			25'	S-5 (25 to 30'): Soft, very severely weathered, gray, aphanitic SHALE. Hard, slightly weathered Shale boulder from 28 to 29'. Moist.	
32       PID: 1 ppmv         34	28— - 30—	- S-6	30 - 35		5/			SHALE	S-6A (30 to 33.7'): Soft, severely weathered, gray,	
<ul> <li>weathered, gray, aphatered Shale.</li> <li>Boring terminated at 35 feet. No refusal encountered.</li> <li>Boring terminated at 35 feet. No refusal encountered.</li> <li>NOTES: <ol> <li>Solid samples were screened for volatile organic compounds (VOCs) using a MinRea3000</li> <li>Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (pmv) isobutylene-in air standard using a response factor of 1.0. Results are presented in prov. the pipel detected in limit is 1 ppmv. ND indicates not detected. NA indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected in limit is 1 ppmv. ND indicates not detected is a reve as a relative indicator for the presence of VOCs.</li> <li>Conundwater observed at about 10.5 ft. bgs during drilling.</li> <li>Weathered bedrock encountered at about 21.5 ft. bgs. more competent bedrock encountered at about 33.7 bgs.</li> </ol></li></ul>	- 32—	-				ppmv			aphanitic SHALE.	
36	34 —	-				PID: 1 ppmv		35'	weathered, gray, aphanitic SHALE. Frequent pieces of hard, slightly weathered Shale. Boring terminated at 35 feet. No refusal	
(ppm) isobutyleme-in-air standard using a response factor of 1.0. Results are presented in ppmy: the typical detection limit is 1 ppmy. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCS. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCS. 2. Groundwater observed at about 10.5 ft. bgs during drilling. 3. Weathered bedrock encountered at about 21.5 ft. bgs, more competent bedrock encountered at about 33.7' bgs.	36-	-							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,</li> </ol>	
<ul> <li>42</li></ul>	38— - 40—	-							(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC	
44	- 42	-							results can serve as a rélative indicator for the presence of VOCs. 2. Groundwater observed at about 10.5 ft. bgs during drilling.	
	- 44	-							bgs, more competent bedrock encountered at about	
	-									
	-	-								
	48	-								



## Log of Chimney Well CW-BC-05

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/03/11

Date Finished: 08/03/11 Checked Bv: EMB/JSP

	tarted: 08 d By: AVF				e Finished: 0 cked By: EM					
.ogge	u by. Avi		Informa		CREU Dy. LIV	-	Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 5		5/5		2 9 4 2 N 9 4 2	0' CONCRETE	(0 to 1'): Concrete.		Concrete - to be
2 —					PID: 0.3 ppmv		1'	S-1A (1 to 3.1'): Light brown, fine to coarse SAND, some Silt, little Gravel, little Cobbles. Rounded to sub-angular. Dry. FILL.		completed by others. (0 to 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
-					PID: 2.8 ppmv		FILL	S-1B (3.1 to 5'): Dark brown, fine to coarse SAND, some Silt, little Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010 Slots) (1.7 to 5.9')
-	S-2	5 - 10		5/3	PID: 2.3 ppmv			S-2 (5 to 7.3'): Dark brown, fine to coarse SAND and Silt, little Gravel, trace Cobbles. Rounded to sub-angular. Moist. FILL.		2" Dia. Sch. 40 CPVC En Cap (5.9 to 6')
-							7.3' CONCRETE	(7.3 to 8'): Concrete. FILL.		
3 —							8'	(8 to 10'): No recovery.		
_							FILL			
0—	S-3	10 - 15		5/5	PID: 51 ppmv		10'	S-3A (10 to 11.3'): Dark gray, SILT & CLAY. Moist.		
_ 2—					PID: 0.6 ppmv		SILT & CLAY	S-3B (11.3 to 15'): Light gray, Clayey SILT, with reddish mottling. Moist.		
4										
_	S-4	15 - 20		5/5	PID: 0.4 ppmv		15'	S-4A (15 to 16.1'): Light gray, SILT & CLAY, little Gravel, trace Cobbles, trace reddish mottling		#3 Sand (1.5 to 28.5')
6 — _					PID: 0.8 ppmv			observed. Sub-angular to angular. Moist. S-4B (16.1 to 18.7'): Gray, SILT & CLAY, little fine to coarse Sand, trace Gravel. Sub-angular to angular. Moist.		
8							TILL			
_					PID: 0.4 ppmv			S-4C (18.7 to 20'): Gray, SILT & CLAY, some fine to coarse Sand, some Silt, trace Gravels. Sub-angular to angular. Dry.		
)	S-5	20 - 23		3/3	PID: 1.2 ppmv PID: 1.5 ppmv		20'	S-5A (20 to 20.1'): Medium hard, very severely weathered, dark gray, aphanitic SHALE. S-5B (20.1 to 23'): Medium hard, very severely		
2—							SHALE	weathered, dark gray, aphanitic SHALE.		
-	S-6	23 - 28		5/5	PID: ND		_ / 0 tala	S-6A (23 to 26.9'): Medium hard, very severely weathered, dark gray, aphanitic SHALE.		
4—										



## Log of Chimney Well CW-BC-05

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/03/11 Logged By: AVK/EMB Date Finished: 08/03/11 Checked By: EMB/JSP

20990	a By: Avi		Informa		EKEd BY: EN		Stratum			
Depth (ft)	Sample	Depth	Spoon Blows	Pen/	Field		Description	Geologic Description	Well Diagram	Well Description
(11)	No.	(ft)	per 6 in		Testing Data	Log	Description		Diagram	
-										
						===	-			
26—							0.00			
						===	SHALE			
					PID: ND			S-6B (26.9 to 28'): Medium hard, very severely weathered, dark gray, aphanitic SHALE.		
28—							28'		an land a start and a start	
								Boring terminated at 28.5 feet. No refusal		
-								encountered.		
								NOTES:		
30-								1. Soil samples were screened for volatile organic		
_								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		
								calibrated to a 100 parts per million by volume		
32—								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		
								typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID		
-								measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC		
34 —								concentrations or identify individual compounds, the		
5-								results can serve as a relative indicator for the presence of VOCs.		
_								2. Groundwater observed at <10 ft. bgs during		
								drilling (no recovery from 8 to 10 ft. bgs). 3. Borehole inadvertently deepened to 28.5 ft. bgs		
36 —								prior to backfilling (no recovery).		
								<ol> <li>Weathered bedrock encountered at about 20.0 ft bgs, more competent bedrock not encountered</li> </ol>		
-								before 28.5 ft. bgs.		
38										
_										
40-										
42										
-										
44										
_										
46 —										
-										
40										
48										
-										
50-										Sheet: 2 of 2



## Log of Chimney Well CW-BD-03

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/04/11

Date Finished: 08/04/11 Checked Bv: EMB/JSP

	tarted: 08 d By: AV				e Finished: ( cked By: EN					
- 33 -			e Informa			_	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —  2 —	S-1	0 - 5		5/4	PID: 0.4 ppmv		0' CONCRETE 0.8'	(0 to 0.8'): Concrete. S-1A (0.8 to 3.6'): Light brown, fine to coarse SAND & GRAVEL, little Silt, little Cobbles. Rounded to angular. Dry. FILL.		Concrete - to be completed by others. (0 to 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
- 4 — -	S-2	5 - 10		5/5	PID: 14 ppmv PID: 1.3 ppmv		FILL	S-1B (3.6 to 5'): Dark gray, fine to coarse SAND, some Gravel, little Silt, trace Cobbles. Sub-rounded to angular. Moist. FILL. S-2A (5 to 8.6'): Dark gray, fine to coarse SAND, little Gravel, little Silt, trace Cobbles, trace Organic		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" - Slots) (1.7 to 5.9')
6 — - 8 —							8.6'	PEAT. Sub-rounded to angular. Moist. FILL.		2" Dia. Sch. 40 CPVC End- Cap (5.9 to 6') -
- 10	S-3	10 - 15		5/5	PID: 0.7 ppmv PID: 1.3 ppmv		STREAM DEPOSITS	S-2B (8.6 to 10'): Dark gray, SILT & CLAY, some fine to coarse Sand, little Silt, trace Gravels. Rounded to sub-angular. Wet. STEAM DEPOSITS. S-3A (10 to 12.1'): Dark gray, SILT & CLAY, some fine to coarse Sand, little Gravel, trace Cobbles, trace Organic Peat, trace Glass. Rounded to		-
- 12					PID: 0.6 ppmv	0.0	12.1'	sub-angular. Moist. STEAM DEPOSITS. S-3B (12.1 to 15'): Dark gray, CLAY & SILT, trace fine to coarse Sand, trace Gravel. Sub-angular. Moist.		-
14— - 16—	S-4	15 - 20		5/5	PID: 4.2 ppmv		SILT & CLAY	S-4A (15 to 17.4'): Light gray, CLAY & SILT, trace fine to coarse Sand. Sub-angular to angular. Wet.		-
- 18					PID: 0.6 ppmv			S-4B (17.4 to 19.1'): Light gray, SILT & CLAY, reddish mottling observed. Moist.		-
- 20	S-5	20 - 25		5/5	PID: 3.0 ppmv PID: 3.9 ppmv		19.1' SAND & GRAVEL 20'	S-4C (19.1 to 20'): Tan, fine to coarse SAND, some Gravel, trace Silt, trace Cobbles. Sub-angular to angular. Dry. S-5A (20 to 23.6'): Light gray, CLAY & SILT, trace fine to medium Sand, trace Cobbles. Sub-angular to		#3 Sand (1.7 to 38') _
- 22— -	-						SILT & CLAY	angular. Moist.		-
24—					PID: 12 ppmv		23.6' SAND & GRAVEL	S-5B (23.6 to 25'): Gray & tan, fine to coarse SAND, trace Gravel, trace Cobbles, trace Silt. Sub-angular to angular. Moist.		-



## Log of Chimney Well CW-BD-03

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

 Date Started: 08/04/11
 Date Finished: 08/04/11

 Logged By: AVK/EMB
 Checked By: EMB/JSP

Served No.     Depth Berser, Ref. (10)     Sport Parts (10)     Field Data     Col Description     Geologic Description     Weil Description       S-8     25 - 30     56     PD 1.8 ppmv     Set (25 in 20): Lipit gray, CLAY & SLT and fine to coarse Sand. Fines Gravel, finite Cobbis. Sub-angular. Molet.     Set (25 in 20): Lipit gray, CLAY & SLT and fine to coarse Sand. Final Gravel, finite Cobbis. Sub-angular. Molet.     Set (25 in 20): Lipit gray, CLAY & SLT and fine to coarse Sand. Final Gravel, finite Cobbis. Sub-angular. Molet.       S-7     30 - 35     56     PID. 0.5 ppmv     Set (25 in 20): Very soft, severely weathered, diark gray, aphantic SHALE. Tran, gravely zone at 33.0 - 34.2.       S-8     35 - 38     33     PID. 0.5     SHALE       S-8     35 - 38     33     PID. 0.5     SHALE       S-8     35 - 38     33     PID. 0.7     SHALE       S-9     33     PID. 0.7     SHALE       S-8     35 - 38     33     PID. 0.7     SHALE       S-9     SHALE     SHALE     SHALE       S-8     36 - 38     SHALE     SHALE       S-9     SHALE     SHALE   <	oggea E			Informa		CKEC BY: EN		Stratum			
No.         (h)         Born Rec         Testing         Log bescription         Description           S-6         25 - 30         95         PID. 0.8         Sel (25 to 307); Light pays, CLAY & SILT and fine to 53.0-30.000 (100, 100, 100, 100, 100, 100, 100,	epth S	ample	-	Spoon	Pen/				Geologic Description		Well Description
S-7       30 - 35       55       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-84 (35 is 0.8.4"). Vory soft, severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.7       Pipmv      30"         Boing terminated at 38 feet. No refusal error vortal e			(f+)				Log	Description		Diagram	
S-7       30 - 35       55       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-7 (30 is 35") Vory soft severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.5      30"       S-84 (35 is 0.8.4"). Vory soft, severely weathered, dark gray, sphanic SHALE. Tax, gravely zone at 33.9 - 34".         S-8       35 - 38       3/3       PID . 0.7       Pipmv      30"         Boing terminated at 38 feet. No refusal error vortal e	-	S-6	25 - 30		5/5	PID [.] 0.8			S-6 (25 to 30'): Light gray, CLAY & SILT and fine to	*	
S-7       30 - 35       5/5       PID. 0.5		0-0	20-50		5,5		•		coarse Sand, trace Gravel, trace Cobbles.		
S-7       30 - 35       56       PD 0.0.5      30*	.6-								Sub-angular to angular. Moist.		
S-7       30 - 35       565       PID. 0.5      30"											
S-7       30 - 35       565       PID. 0.5      30"	_										
Sr7       30 - 35       565       PID: 0.05      30'       Sr7(30 to 35): Very soft, severely weathered, dark gray, aphantic SHALE. Tan, gravely zone at 33.9 - 34.2'.         Sr8       35 - 38       363       PID: 0.05       SHALE       Stall         Sr8       35 - 38       363       PID: 0.05       SHALE       Stall         Sr8       35 - 38       363       PID: 0.07       SHALE       Stall         Sr8       35 - 38       363       PID: 0.07       Stall       Stall         Diright       PID: 0.07       PID: 0.07       Stall       Stall         Sr8       36 - 38       363       PID: 0.07       Stall       Stall         Diright       PID: 0.07       PID: 0.07       Stall       Stall       Stall         Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall         Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stall       Stal								SAND &			
5-7       30 - 35       5/5       PID: 0.5      30"								GRAVEL			
S-7       30 - 33       30 - 33       90 - Photo 35       S-7 (10 - 05) Very Solt, Severely Vestile 0, takk graph of phantic SHALE. Tan, gravely zone at 33.9 - 34.2         S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.5       SHALE         PID: 0.7       PID: 0.7       SHALE       S-84 (35 to 36.4): Very soft, severely weathered, dark gray, aphantic SHALE. Most         S-8       35 - 38       3/3       PID: 0.7       SHALE         PID: 0.7       PID: 0.7       SHALE       S-88 (36 to 38): Medium hard, moderately weathered, dark gray, aphantic SHALE. Divy, weathered, dark gray, aphantin by volume for to theres	8—										
S-7       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33											
S-7       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33       30 - 33											
S-7       30 - 33       30 - 33       90 - Photo 35       S-7 (10 - 05) Very Solt, Severely Vestile 0, takk graph of phantic SHALE. Tan, gravely zone at 33.9 - 34.2         S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.5       SHALE         PID: 0.7       PID: 0.7       SHALE       S-84 (35 to 36.4): Very soft, severely weathered, dark gray, aphantic SHALE. Most         S-8       35 - 38       3/3       PID: 0.7       SHALE         PID: 0.7       PID: 0.7       SHALE       S-88 (36 to 38): Medium hard, moderately weathered, dark gray, aphantic SHALE. Divy, weathered, dark gray, aphantin by volume for to theres											
S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.7       SHALE         PD: 0.7       Ppmv       SHALE       S-84 (36 to 36.4): Very soft, severely weathered, dark gray, aphantic SHALE. Most.         S-8       36 - 38       3/3       PID: 0.7       SHALE         S-8       36 - 0.80; Medium hard, modorately weathered, dark gray, aphantic SHALE. Dry,       SHALE         S-8       36 - 0.80; Medium hard, modorately weathered, dark gray, aphantic SHALE. Dry,       SHALE         S-8       36 - 0.80; Medium hard, modorately weathered, dark gray, aphantic SHALE. Dry,       SHALE         Boring terminated at 38 feet. No refusal       encountered.         NOTES:       1. Soll samples were screened for volatile organic compounds (VOCs) using a MiRe3000         Photoinization Detector (PID) with a 10.6 eV lamp, calibrate to a for top parts primitive level of VOCs.         Structure       10.6 Basilis are presented in pmv; the pipel detection of available. The PID measures failable. The PID measures failable week of VOCS. Although PID screening cannot be used directly to quantify VOC concentration of useful in widdato for the presented in the presented in the presented in pmv; the pipel detection the detected. Na indicater of t	0-	S-7	30 - 35		5/5	PID: 0.5		30'	S-7 (30 to 35'): Very soft, severely weathered, dark		
S-8       35 - 38       3/3       PID: 0.5       SHALE         S-8       35 - 38       3/3       PID: 0.7       Bridge and the state of						ppmv			gray, aphanitic SHALE. Tan, gravelly zone at 33.9 -		
S-8 35 - 38 37 PID: 0.5 PID: 0.7 PID: 0.7 P	-								34.2.		
SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE SHALE Moist SHALE Moist SHALE Moist SHALE Dy. SHALE DY.											
S-8       35 - 38       3/3       PID: 0.5       PID: 0.7       PID: 0.7 </td <td>2-</td> <td></td>	2-										
S-8       35 - 38       3/3       PID: 0.5       PID: 0.7       PID: 0.7 </td <td></td>											
S-8       35 - 38       3/3       PID: 0.5       PID: 0.7       PID: 0.7 </td <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>==</td> <td></td> <td></td> <td></td> <td></td>	_						==				
S-8       35 - 38       3/3       PID: 0.5       PID: 0.7       PID: 0.7 </td <td></td>											
S-8       35 - 38       3/3       PID: 0.5       PID: 0.7       PID: 0.7 </td <td>ı —</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SHALE</td> <td></td> <td></td> <td></td>	ı —							SHALE			
a       ppmv         PID: 0.7         ppmv	• ]							31 MLE		100 100 100 100 100 100 100 100 100 100	
a       ppmv         PID: 0.7         ppmv							EE.				
PID: 0.7 ppmv PID: 0.7 PID: 0.7 PID	1	S-8	35 - 38		3/3		ĒĒ				
S-8B (36.4 to 39): Medium hard, moderately weathered, dark gray, aphantic SHALE. Dry. Boring terminated at 38 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniTea3000 Protoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts presented in ppmy, the typical detection limit is 1 ppm. ND indicates not detected. NA indicates not indicately output indicates not detected. NA indicates or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater bedrock encountered at about 30.6 ft. 3. Weathered bedrock encountered at about 30.0 ft. bgs. more competent bedrock encountered at about 36.4 ft. bgs.						ppmv	==		dark gray, aphanitic SHALE. Moist.		
	<u>3</u> —										
Booling terminated at 36 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-li-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limits 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCS. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.	-					ppmv			weathered, dark gray, aphanitic SHALE. Dry.		
Booling terminated at 35 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts perilition by volume (ppmv) isobutylene-linair standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limits 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used forcely to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.											
encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCS) using a MiniRae3000 Photoionization Detector (PLD) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmy) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmy; the typical detection limit is 1 ppmy. ND indicates not detected. WA indicates not available. The PID measures relative levels of VOCS. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs. more competent bedrock encountered at about 36.4 ft. bgs.	в—							38'	Boring terminated at 38 feet No refusal		
<ul> <li>1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000</li> <li>Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobulylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 36.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>											
<ul> <li>1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000</li> <li>Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobulylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 36.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>	4										
<ul> <li>compounds (VOCs) using a MiniRea3000</li> <li>Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmV) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmV; the typical detection limit is 1 ppmV. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCS. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>									NOTES:		
<ul> <li>compounds (VOCs) using a MiniRea3000</li> <li>Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmV) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmV; the typical detection limit is 1 ppmV. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCS. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>	<b>_</b>								1. Soil samples were screened for volatile organic		
<ul> <li>calibrate to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>	-								compounds (VOCs) using a MiniRae3000		
(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv, the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.											
<ul> <li>typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>									(ppmv) isobutylene-in-air standard using a response		
<ul> <li>detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>									factor of 1.0. Results are presented in ppmv; the		
<ul> <li>measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>	2								detected. NA indicates not available. The PID		
<ul> <li>concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 8.6 ft. bgs during drilling.</li> <li>3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.</li> </ul>									measures relative levels of VOCs. Although PID		
results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.	-								screening cannot be used directly to quantity VOC concentrations or identify individual compounds the		
2. Groundwater observed at about 8.6 ft. bgs during drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.									results can serve as a relative indicator for the		
drilling. 3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.	·								•		
3. Weathered bedrock encountered at about 30.0 ft. bgs, more competent bedrock encountered at about 36.4 ft. bgs.											
bgs, more competent bedrock encountered at about 36.4 ft. bgs.	-								5		
	s—										
	,										
	3										
	-										



## Log of Chimney Well CW-BD-04

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Forem

		ny: Boart	Longyea	r						
	ian: L. Hu Started: 08	nsberger		Det	e Finished: 0	Q/07/	14			
	d By: EM				cked By: EM					
	 		Informa		<u>-</u>	-	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0										
	S-1	0 - 5		5/5		P A	CONCRETE	(0 to 0.5'): Concrete.		
-	-				PID: 1.1 ppmv		0.0	S-1A (0.5 to 2.3'): Light brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-angular to rounded. Moist. FILL.		Concrete - to be completed by others. (0 to $^-$ 1.5')
2 —	-					1./~				2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
-	-				PID: 19 ppmv			S-1B (2.3 to 5'): Dark brown, fine to coarse SAND, little Gravel, little Silt. Sub-angular to rounded. Moist. FILL.		-
										2" Dia. Sch. 40 Stainless
4										Steel Well Screen (0.010" Slots) (1.7 to 5.9')
-	S-2	5 - 10		5/0				S-2 (5 to 10'): No recovery.		-
6							FILL			2" Dia. Sch. 40 CPVC End— Cap (5.9 to 6')
1						-)_				
	1					r'. I				-
						1.)-				
8	1					Ύ.				
						1,/-				
	1					ľ.				-
						1./-				
10-	S-3	10 - 15		5/5	PID: 23			S-3A (10 to 11.4'): Dark brown, fine to coarse SAND,		
					ppmv	1.1-		little Gravel, trace Silt. Sub-angular to rounded. Moist. FILL.		
	1						11.4'			#3 Sand (1.5 to 20.7') -
					PID: 11 ppmv		11.4	S-3B (11.4 to 15'): Gray, SILT & CLAY. Wet.		
<u>5</u>   12—	1				pp					
2										
	1						SILT & CLAY			-
14—	1									_
3	S-4	15 - 17.5		3/3	PID: 7.1	K	15.3'	S-4A (15 to 15.3'): Olive gray, CLAY & SILT. Moist.	1	-
2 16-	-				ppmv PID: 14 ppmv			S-4B (15.3 to 16'): Olive gray, Clayey SILT, trace Gravel. Sub-rounded to angular. Moist.		_
					PID: 23 ppmv	00		S-4C (16 to 17.5'): Gray, hard, slightly weathered, gray, aphanitic SHALE (Boulder). Dry.		
-	1					o.C		gray, aprianing STALE (DUUIUEL). DLY.		-
18-	S-5	17.5 - 20		3/3	PID: 10 ppmv	0000		S-5 (17.5 to 20'): Olive gray, Silty CLAY, trace Gravel, and Cobbles, trace Sand. Angular Moist.		_

TILL

-22.4'

SHALE

S-6A (20 to 22.4'): Olive gray, CLAY & SILT, some Gravel, trace Sand. Angular Dry.

S-6B (22.4 to 25'): Hard, slightly weathered, gray,

aphanitic SHALE.

PID: 32 ppmv

PID: 2 ppmv

C

0.

5/

20

22

24

S-6

20 - 25



## Log of Chimney Well CW-BD-04

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11 Logged By: EMB

Date Finished: 08/07/11 Checked By: EMB/JSP

Logge	d By: EM		Informa		cked By: EM	-	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
_							25'	Boring terminated at 25 feet. No refusal encountered.		
26—										
_								NOTES: 1. Soil samples were screened for volatile organic		
28—								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
_								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID		
30—								measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
-								results can serve as a relative indicator for the presence of VOCs.		
32—								<ol> <li>Groundwater observed &lt;10' bgs during drilling (no recovery from 5 to 10 ft bgs).</li> <li>Bedrock encountered at about 22.4 ft bgs,</li> </ol>		
								weathered Shale not encountered.		
34 —										
_										
6—										
_										
38 —										
-0										
_										
2—										
_										
4										
_										
6										
6										
_										
8-										
-										
io—										



## Log of Chimney Well CW-BD-07

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

BORING LOG S:/PORDATA/2400S/2466.02/WORKILOGS/2466.01_LOGS/GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 8/29/12

	an: L. Hu	-		_						
	Started: 08				e Finished: 0					
Logge	d By: AVI				cked By: EN	_				
Depth (ft)	Sample No.	Sample Depth (ft)	e Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Stratum Description	Geologic Description	Well Diagram	Well Description
0						2.52.272	0'			
	S-1	0 - 5		5/5		P 4	0' CONCRETE 0.5'	(0 to 0.5'): Concrete.	$- \otimes \otimes$	
-	-				PID: 0.8 ppmv			S-1A (0.5 to 3.7'): Dark brown, fine to coarse SAND, little Gravel, trace Silt. Rounded to sub-angular. Dry. FILL.		Concrete - to be completed by others. (0 to - 1.5')
2	-									2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
4	_				PID: 15 ppmv			S-1B (3.7 to 5'): Gray, SILT, trace Gravel. Dry. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.7 to 5.9')
-	S-2	5 - 10		5/5	PID: 1.2 ppmv		FILL	S-2A (5 to 8.2'): Dark brown, fine to coarse SAND, little Silt, trace Gravel. Rounded to sub-angular.		-
6								Moist. FILL.		2" Dia. Sch. 40 CPVC End-
-	-									Cap (5.9 to 6') -
8					PID: 0.2			S-2B (8.2 to 10'): Gray, SILT and fine to coarse		
-	-				ppmv	1./~		Sand, little Gravel. Rounded to sub-angular. Dry. FILL.		-
10-	S-3	10 - 15		5/5	PID: 0.2		10'	S-3A (10 to 13.5'): Gray, CLAY & SILT. Moist.		
					ppmv					
-										#3 Sand (1.5 to 20.7')
12-										—
							SILT & CLAY			
-										-
14-					PID: 0.2 ppmv			S-3B (13.5 to 15'): Light gray, SILT & CLAY, trace Cobbles, reddish mottling. Sub-angular to angular.		_
								Moist.		
-	S-4	15 - 20		5/7	PID: 0.1 ppmv	0 0	15' TILL 15.7'	S-4A (15 to 15.7'): SILT & CLAY, trace Gravel. Sub-angular to angular. Moist.		-
16-					PID: 0.4 ppmv	Ē	10.7	S-4B (15.7 to 20'): Medium hard, slightly weathered,		
								dark gray, aphanitic SHALE. Moist.		_
						==				_
18-	-						SHALE			
							OTIVILL			
-										-
20-										_
							20.7'			
-							20.1	Boring terminated at 20.7 feet. No refusal encountered.		-
22-								NOTES:		
_								1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000		-
								Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
24—								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		
								· · · · ·		
										Sheet: 1 of 2

## Sheet: 1 of 2



## Log of Chimney Well CW-BD-07

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

 Foreman: L. Hunsberger

 Date Started: 08/02/11

 Logged By: AVK/EMB

Date Finished: 08/02/11 Checked By: EMB/JSP

		Sample	Informa	ation			Stratum		M/- !!	
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
- 26	-							typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		
28—	-							<ol> <li>presence of VOCs.</li> <li>Groundwater observed at approximately 10 ft bgs during drilling.</li> <li>Borehole inadvertently deepened to 20.7 ft bgs</li> </ol>		
- 30 —	-							prior to backfilling (no recovery). 4. Weathered bedrock encountered at about 15.7 ft bgs, more competent bedrock not encountered before 20.7 ft bgs.		
_	-									
2—	-									
-										
_										
6—	-									
	-									
-	-									
0—	-									
2	-									
_	-									
4 —										
6—										
-										
8										
i0—										



## Log of Chimney Well CW-BE-05

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/03/11 Date Finished: 08/03/11

	d By: AV				e Finished: 08					
33-	<b>,</b>		Informa		<b>,</b>	1	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —  2 —	S-1	0 - 5		5/5	PID: 0.5 ppmv		0' CONCRETE 0.8'	(0 to 0.8'): Concrete. S-1A (0.8 to 3.1'): Light brown, fine to coarse SAND, some Silt, some Gravel, some Cobbles. Rounded to sub-angular. Dry. FILL.		Concrete - to be completed by others. (0 to 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
- 4 —					PID: 11 ppmv		FILL	S-1B (3.1 to 5'): Dark brown, SILT, some Gravel, little Cobbles, trace, fine to coarse Sand. Steel nail observed. Sub-rounded to sub-angular. Moist. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.7 to 5.9')
6	S-2	5 - 10		5/2	PID: 6.9 ppmv			S-2 (5 to 6.7'): Dark brown, fine to medium SAND and Silt, trace Gravel. Sub-rounded. Moist. FILL.		2" Dia. Sch. 40 CPVC End- Cap (5.9 to 6')
							6.7' CONCRETE	(6.7 to 7.2'): Concrete. FILL.		
-	1						7.2'	(0.7 to 7.2). Concrete. The (7.2 to 10'): No recovery.		
8 —	-						FILL			
_	]									
10—	S-3	10 - 15		5/5	PID: 0.1 ppmv		10'	S-3 (10 to 13.5'): Gray, CLAY & SILT. Moist.		
12— - 14—	-						SILT & CLAY			#3 Sand (1.5 to 22.5')
-	S-4	15 - 20		5/5	PID: 0.5 ppmv		15.7'	S-4A (15 to 15.7'): SILT & CLAY, trace Gravel. Sub-angular to angular. Moist.		
16—					PID: 23 ppmv			S-4B (15.7 to 19.1'): Fine to coarse SAND, little Gravel, trace Silt, trace Cobbles. Rounded to angular. Moist.		
18—	-						SAND & GRAVEL			
-					PID: 66 ppmv		19.1'	S-4C (19.1 to 20'): Medium hard, very severely weathered, dark gray, aphanitic SHALE. Moist.		
20	S-5	20 - 22.5			PID: 31 ppmv PID: 2 ppmv		SHALE	S-5A (20 to 20.9'): Medium hard, severely weathered, dark gray, aphanitic SHALE. S-5B (20.9 to 22.5'): Medium hard, slightly		
2—	-						22.5'	weathered, light gray, aphanitic SHALE. Dry.		
_								Boring terminated at 22.5 feet. No refusal encountered.		
24 —								NOTES: 1. Soil samples were screened for volatile organic		



## Log of Chimney Well CW-BE-05

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Foreman: L. HunsbergerDate Started: 08/03/11Date Started: 08/03/11

Date Finished: 08/03/11 Checked Bv: EMB/JSP

oaaec	d By: AVM	(/EMB			e Finished: 0 cked By: EN					
.09900			e Informa		okou by: Eli	_	Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
_ 26— _								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC		
28— _ 30—								<ul><li>concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li><li>2. Groundwater observed at &lt;10 ft bgs during drilling (no recovery from 7.2 to 10 ft bgs).</li></ul>		
_								<ol> <li>Weathered bedrock encountered at about 19.1 ft bgs, more competent bedrock encountered at approximately 20.9 ft. bgs.</li> </ol>		
32—										
- 34										
-										
36—										
_										
38										
40—										
_										
42										
44 —										
_										
46										
48—										
-										



## Log of Chimney Well CW-BE-06

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/03/11

Date Finished: 08/03/11

		Sample	Informa	ation			Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0	S-1	0 - 5		5/5	PID: 0.1 ppmv		0' CONCRETE 0.8'	(0 to 0.8'): Concrete. S-1A (0.8 to 3.1'): Brown, fine to coarse SAND and Silt, some Gravel, little Cobbles. Rounded to sub-rounded. Moist. FILL.		Concrete - to be completed by others. (0 t 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.7')
4 —					PID: 0.3 ppmv		FILL	S-1B (3.1 to 5.2'): Dark brown, fine to coarse SAND, some Silt, little Gravel, trace Cobbles. Steel piece at 4.5'. Rounded to sub-angular. Moist. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010 Slots) (1.7 to 5.9')
<u> 5</u> —	S-2	5 - 10		5/2			6.5'	S-2 (6.5 to 7.5'): Concrete. FILL.		2" Dia. Sch. 40 CPVC E Cap (5.9 to 6')
_						4444	CONCRETE	(7.5 to 10'): No recovery.		
8 —							FILL			
0— _ 2—	S-3	10 - 15		5/5	PID: 21 ppmv		10'	S-3 (10 to 15'): Gray, CLAY & SILT. Some red mottling. Odor noted throughout core immediately upon opening plastic liner. Moist.		#3 Sand (1.5 to 20')
4	S-4	15 - 20		5/5	PID: 0.2		SILT & CLAY	S-4A (15 to 18.1'): Gray, SILT & CLAY. Some		
6—					ppmv			reddish mottling. Odor noted from 15 to approximately 16' bgs. Moist.		
8					PID: 0.2 ppmv		18.1' SHALE	S-4B (18.1 to 20'): Medium hard, severely weathered, light gray, aphanitic SHALE. Dry.		
0							20'	Boring terminated at 20 feet. No refusal encountered.		
-2								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
24								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		



## Log of Chimney Well CW-BE-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/03/11

Logged By: AVK/EMB

Date Finished: 08/03/11 Checked By: EMB/JSP

			Informa		скеа Бу: Еілі		Stratum			
Depth (ft)	Comula	Danth	Spoon	Pen/	Field		Stratum	Geologic Description	Well	Well Description
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec (in)	Testing Data	Log	Description	Geologic Description	Diagram	Wen Description
-								screening cannot be used directly to quantify VOC		
								screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
26—								results can serve as a relative indicator for the presence of VOCs.		
_								2. Weathered bedrock encountered at about 18.1 ft bgs, more competent bedrock not encountered		
								before 20.0 ft bgs		
28—										
-										
30—										
-										
20										
32 —										
_										
34 —										
_										
36 —										
-										
38—										
_										
40—										
-0										
-										
42 —										
_										
44 —										
_										
46 —										
-										
48										
-										



# Log of Chimney Well CW-BF-04

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

	an: L. Hu Started: 10	nsberger 0/30/11		Date	e Finished: 1	10/30/ [,]	11			
Logge	d By: AV	ĸ		Che	cked By: EN	/IB/JSI	P			
Depth (ft)	Sample No.	Sample Depth (ft)	e Informa Spoon Blows	Pen/ Rec	Field Testing		Stratum Description	Geologic Description	Well Diagram	Well Description
		(,	per 6 in	(in)	Data					
0	1	0 - 1				P 4	0' CONCRETE	(0 to 1'): Concrete.		
						۵ م م م	1'			Concrete - to be
	S-1	1 - 10			PID: 1.7 ppmv			S-1 (1 to 10'): Dark brown, fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Moist. FILL.		completed by others. (0 to - 1.5')
2	-									2" Dia. Sch. 40 CPVC Riser (0 to 2.9')
						- 1/-				Nisel (0 to 2.9)
-	-									-
4						1				_
						<u> </u>				2" Dia. Sch. 40 Stainless
	-									Steel Well Screen (0.010" Slots) (2.9 to 5.9')
						\	FILL			
6	-									2" Dia. Sch. 40 CPVC End— Cap (5.9 to 6')
-										
8						ţ,/-				_
8	-									_
						1				
-	-									-
10-							10'			_
10	S-2	10 - 20			PID: 1.5 ppmv		10'	S-2A (10 to 18.1'): Gray with red mottling, SILT & CLAY. Moist. SILT & CLAY.		_
	-									-
										#3 Sand (1.5 to 22')
12-	-									
12	-									_
5										
	-						SILT & CLAY			-
16-										
16-										
-	-									-
18-	-							S-2B (18.1 to 20'): SILT & CLAY, trace Cobbles.		
_								Moist. SILT & CLAY.		-
20-	S-3	20 - 21.5			PID: 1.7	K	20'	S-3 (20 to 21.5'): Gray, fine to coarse SAND &		
					ppmv	6C	TILL	GRAVEL, some Silt & Clay, trace Cobbles. Wet.		
-	-					0	9	TILL.		-
	S-4	21.5 - 22			PID: 2.8 ppmv	VT	21.5' ROCK 22'	S-4 (21.5 to 22'): Soft-medium hard, severely-completely weathered SHALE. Dry.		
					55.14			WEATHERED ROCK.		
-	-							Boring terminated at 22 feet. No refusal encountered.		-
								chocantorou.		
24—								NOTES:		
-								1. Soil samples were screened for volatile organic		_
	•		•							Sheet: 1 of 2



# Log of Chimney Well CW-BF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 10/30/11 Date Finished: 10/30/11

Groundwater Readings												
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing								
Date	Time	to water	Nel. I L.	or oasing								

Depth of Hole

Stab. Time

		Sample	e Informa	tion		Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Well Diagram	Well Description
- 26							compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		
28—							screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		
30—	-						<ol> <li>Groundwater observed at about 9 feet bgs during drilling.</li> <li>Weathered Bedrock observed at about 21.5 bgs.</li> </ol>		
-									
32									
34 —									
- 36—									
-									
38—									
40—									
_									
42									
44 —									
- 46									
-									
48—									
-									



# Log of Chimney Well CW-BF-07

Ref. Pt.

Depth of Casing Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Date

Time to Water

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

	tarted: 08 d By: AVM				e Finished: 08 ecked By: EM					
			Informa				Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0			•				0'			
Ũ	S-1	0 - 5		5/5		P 4	0' CONCRETE 0.5'	(0 to 0.5'): Concrete.		
-					PID: 0.3 ppmv			S-1A (0.5 to 3.6'): Brown, fine to coarse SAND & GRAVEL, some Silt, little Cobbles. Sub-rounded to		Concrete - to be completed by others. (0 to
						Ύ. Γ		sub-angular. Moist. FILL.		1.5')
2 —						į.).				2" Dia. Sch. 40 CPVC
						Ľ.				Riser (0.1 to 1.6')
_						ŀ.)-				
						Ύ, Γ				
4 —					PID: 3 ppmv	t, / -		S-1B (3.6 to 5'): Dark brown, fine to coarse SAND, some Silt, some Gravel, trace Cobbles. Sub-rounded		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010'
						ŔŢ		to sub-angular. Moist. FILL.		Slots) (1.6 to 5.8')
_	6.2	5 - 10		E/F	PID: 1.3	ţ./-		S 24 (5 to 8 01): Dark brown find to coorde CAND		
	S-2	5 - 1U		5/5	ppmv	$\left[ \right]$	FILL	S-2A (5 to 8.9'): Dark brown, fine to coarse SAND, some Silt, little Gravel, trace Cobbles, trace Glass		
6 —						t./~		pieces observed. Sub-rounded to sub-angular.		2" Dia. Sch. 40 CPVC En
						$\langle \cdot \rangle$		Moist. FILL.		Cap (5.8 to 5.9')
_						- <i>\</i> `				
						$\left[ \right]$				
8 —						[,/-				
Ũ						[ \'				
_					PID: 0.3	[\'~		S-2B (8.9 to 10'): Light brown, fine to coarse SAND,		
					ppmv	$\left[ \right]$		some Silt, some Gravel, trace Cobbles. Rounded to		
10 —						$\sqrt{-}$	10'	sub-angular. Moist. FILL.		
10	S-3	10 - 15		5/5	PID: 0.1 ppmv	$\mathbb{V}$		S-3 (10 to 15'): CLAY & SILT, slight reddish mottling		
_					ppini			observed. Moist.		
						$\langle / \rangle$				
12—										
12						$\langle / \rangle$				#3 Sand (1.5 to 23')
							SILT & CLAY			
14										
14—						///				
						///				
	S-4	15 - 20		5/5	PID: 0.2	$\langle / \rangle$		S-4A (15 to 15.8'): Gray, SILT & CLAY, reddish		
6					ppmv PID: 0.5	K	15.8'	mottling observed. Moist.		
16—					ppmv	0.0		S-4B (15.8 to 20'): Light gray, Clayey SILT, little Cobbles, little Gravel, trace Silt. Sub-angular to		
						Poil		angular. Moist.		
_						è.Ô				
						lo C				
18—	1					Po 1	(		1. Sec. 22.	

S-5A (20 to 21.7'): Light gray, Clayey SILT, some Gravel, little Cobbles. Sub-angular to angular. Moist.

S-5B (21.7 to 23'): Medium hard, completely

weathered, dark gray, aphanitic Shale. Moist.

Boring terminated at 23 feet. No refusal encountered.

NOTES:

TILL

-21.7'-

SHALE

PID: 0.6 ppmv

PID: 0.2

ppmv

С

3/3

# BORING LOG S./PORDATA/2400S/2466.02/WORKILOGS/2466.01_LOGS/GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 8/29/12

20

22

24

S-5

20 - 23



# Log of Chimney Well CW-BF-07

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Finished: 08/03/11 Date Started: 08/03/11

Sample Information Stratum		started: 08 d By: AV				e Finished: ( ecked By: EN			
Perform         Signal         Poly         Biology in the training or poly         Perform         Training or poly         Perform         Weil Description         Weil Description           20         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		Sample Information Stratum							
22       compared (VCCs) using a Ministed Coll Compared (VCCs) using Ministed Coll Compa	Depth (ft)		Depth	Spoon Blows	Pen/ Rec	Testing		Geologic Description	Well Description
30	_	-						compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC	
3. Borthole individuality depended to 20.7 ft bgs         32	-	-						<ul><li>concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li><li>2. Groundwater observed at approximately 8.9 ft</li></ul>	
32     -     bgs. more competent bedrock not encountered before 2.0 ft bgs.       34     -       36     -       38     -       38     -       40     -       40     -       40     -       40     -       41     -       42     -       44     -       44     -       44     -       48     -       48     -       48     -       48     -       48     -       48     -       48     -       48     -       48     -       48     -       48     -       -     -	-30							<ol> <li>Borehole inadvertently deepened to 20.7 ft bgs prior to backfilling (no recovery).</li> </ol>	
$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	32—							bgs, more competent bedrock not encountered	
$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	-	-							
	34								
	36—								
	-	-							
	38								
	40—								
	-								
	42								
	44								
	-								
	46								
	48								
	-								



# Log of Chimney Well CW-BG-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Logge		Sample	Informa	ation			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	-				PID: NA	P 4	0' CONCRETE 0.5'	(0 to 0.5'): Concrete.		
_	S-1	0.5 - 8.8			PID: 1.8 ppmv		0.5'	S-1 (0.5 to 8.8'): Dark brown, fine to coarse SAND & GRAVEL, trace Cobbles. Sub-angular to angular. Moist. FILL. (Water table at approximately 8.8 ft).		Concrete - to be completed by others. (
2 —	-									1.5') 2" Dia. Sch. 40 CPVC Riser (0 to 2.9')
_	-									
4 —										
•							FILL			2" Dia. Sch. 40 Stainle Steel Well Screen (0.0
-										Slots) (2.9 to 5.9')
6 —										2" Dia. Sch. 40 CPVC Cap (5.9 to 6')
-										
8 —										
-	S-2	8.8 - 16.1			PID: 4 ppmv		8.8'	S-2 (8.8 to 16.1'): Dark gray, SILT & CLAY. Moist. SILT & CLAY.		
10 —	-									
_	-									
12—	-									#3 Sand (1.5 to 21.9')
_							SILT & CLAY			
14—										
-	-									
16—	S-3	16.1 - 20			PID: 45		16.1'	S-3 (16.1 to 20'): Gray, Clayey SILT, little Gravel,		
_					ppmv			trace Cobbles. Sub-angular to angular. Moist. TILL.		
18—							TILL			
_						0.0				
20—	-				PID: 66	) 0 1	20'	(20 to 21'): No recovery.		
_	S-4	21 - 21.9			ppmv					
22—		21-21.9				V 1 V 1	WEATHERED ROCK 21.9'	S-4 (21 to 21.9'): Soft, severely weathered, aphinatic SHALE. Moist. ROCK. Boring terminated at 21.9 feet. No refusal		
								encountered.		
-								NOTES: 1. Soil samples were screened for volatile organic		
24 —	1							compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		

SANBORN	ψ	HEAD
---------	---	------

# Log of Chimney Well CW-BG-06

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Groundwater Readings Depth Depth of Casing Time to Water Ref. Pt.

Depth of Hole

Stab. Time

Foreman: L. Hunsberger Date Started: 10/29/11

Date Finished: 10/29/11 Checked By: EMB/JSP

ogged By: AVK Checked By: EMB/JSP Sample Information Stratum							Cturatu un-		1 1	
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Stratum Description	Geologic Description	Well Diagram	Well Description
- 26— -								calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
28								results can serve as a relative indicator for the presence of VOCs. 2. Groundwaterobserved at about 8.8 feet bgs during drilling.		
30 —								<ol> <li>Severely Weathered bedrock observed at about 21.5 feet bgs.</li> </ol>		
-										
_										
4										
ő—										
_										
8										
)—										
2										
_										
↓ -										
;										

Date



# Log of Chimney Well CW-TB-02

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings													
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole								

Stab. Time

	d By: AV		c	Che	cked By: EM	B/ 190				
Logge			e Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2				7	ASPHALT	(0 to 0.4'): Asphalt.		_
_					PID: 3.3 ppmv		0.4	S-1 (0.4 to 2'): Brown, fine to coarse SAND & GRAVEL, little Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 to 1.5')
2 —	S-2	2 - 4			PID: 1.7 ppmv			S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, little Silt. Sub-rounded to angular. Moist. FILL.		2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9')
4 —	S-3	4 - 7			PID: 3 ppmv		FILL	S-3 (4 to 7'): Brown, fine to coarse SAND & GRAVEL, little Silt. Sub-rounded to angular. Moist. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.9 to 4.9') 2" Dia. Sch. 40 CPVC End
6 —										Cap (4.9 to 5') —
8 —	S-4	7 - 10			PID: 0.4 ppmv		7'	S-4 (7 to 10'): Gray, CLAY & SILT, trace fine to coarse Sand, brown mottling. Rounded. Moist.		
_										
10	S-5	10 - 15			PID: 0.3 ppmv		SILT & CLAY	S-5A (10 to 11.5'): Gray, CLAY & SILT, trace fine to coarse Sand, brown mottling. Rounded. Moist.		-
12—					PID: 0.4 ppmv			S-5B (11.5 to 14.4'): Gray to light brown, SILT & CLAY, trace Gravel, trace fine to coarse Sand, trace Cobbles, extreme light brown mottling. Rounded to sub-rounded. Moist.		-
14—							14.4			#3 Sand (1.5 to 25')
-	S-6	15 - 20			PID: 0.3 ppmv PID: 0.4 ppmv	2	14.4' SAND & GRAVEL 15.5'	S-5C (14.4 to 15'): Gray, fine to coarse SAND & GRAVEL, some Silt. Rounded to sub-rounded. Wet. S-6A (15 to 15.5'): Gray - brown, SAND & GRAVEL,		
16—					PID: 0.5 ppmv		TILL	some Cobbles, little Silf. Rounded to sub-angular. Wet. STREAM DEPOSITS. S-6B (15.5 to 17'): Gray, SILT & CLAY, little fine to coarse Sand, little Gravel. Sub-rounded to angular.		-
18—					PID: 1.1 ppmv		SLIGHTLY WEATHERED SHALE	Moist. TILL. S-6C (17 to 18.9'): Gray, moderately hard, slightly weathered, aphanitic SHALE. Dry.		-
-					PID: 1.1 ppmv		18.9' CLAYEY SILT	S-6D (18.9 to 20'): Gray, Clayey SILT, some fine to coarse Sand, trace Gravel. Sub-rounded to sub-angular. Wet.		
20	S-7	20 - 25			PID: 1.3 ppmv		20' SAND	S-7A (20 to 22.5'): Brown, fine to coarse SAND, trace Gravel, trace Silt. Sub-rounded to sub-angular. Wet.		-
22—							22.5'	0.7D /00 E 40.00 E ⁽¹⁾ , Orm: OII T E 4		-
_					PID: 1.1 ppmv PID: 1.5		SHALE	S-7B (22.5 to 23.5'): Gray, SILT, some fine to coarse Sand, trace Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. WEATHERED BEDROCK. S-7C (23.5 to 25'): Gray, moderately hard, fresh,		
24—					ppmv		_	aphanitic SHALE. Dry.		-



# Log of Chimney Well CW-TB-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Date

Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

ogge		-						1	
epth (ft)	Sample No.	Sample Depth (ft)	e Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Stratum Description	Geologic Description	Well Diagram	Well Description
-	-					25'	Boring terminated at 25 feet. No refusal encountered.		
6—							NOTES:		
- 8—	-						1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		
- 0	-						typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
_	-						results can serve as a relative indicator for the presence of VOCs. 2. Weathered bedrock observed at about 17' bgs, more competent rock encountered at 23/5' bgs.		
2									
i4 —	-								
_	-								
36 —	-								
-	-								
8									
0—									
_									
2—									
-									
1									

48

50



# Log of Chimney Well CW-TB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings												
<b>_</b> .		Depth		Depth	Depth							
Date	Time	to Water	Ref. Pt.	of Casing	of Hole							

Stab. Time

Logged By: AVK/JSP/JWC Sample Information Stratum Depth Field Well Spoon Pen/ **Geologic Description** Well Description Depth Sample Log Description (ft) Blows Rec Testing Diagram No. (ft) per 6 in (in) Data 0 -----0'-----S-1 0 - 2 (0 to 0.5'): Asphalt. ASPHALT -0.5'--PID: 0.3 S-1 (0.5 to 2'): Brown, fine to coarse SAND & GRAVEL, some Silt, little Cobbles. Rounded to ppmv Concrete - to be sub-rounded. Moist. FILL. completed by others. (0 to 15) 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9') 2 PID: 0.8 S-2 2 - 4 S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, some Silt, little Cobbles. Rounded to --vmqq sub-rounded. Moist. FILL. 2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.9 to 4.9') 4 S-3 4 - 7 PID: 0.9 S-3 (4 to 7'): Fine to coarse SAND & GRAVEL, --ppmv some Silt, little Cobbles. Rounded to sub-angular. Moist. FILL. FILL -2" Dia. Sch. 40 CPVC End Cap (4.9 to 5') 6 S-4 7 - 10 PID: 0.3 S-4A (7 to 8'): Brown, fine to coarse SAND & ppmv GRAVEL, little Silt. Sub-rounded to sub-angular. Wet. FILL 8 S-4B (8 to 8.7'): Brown, fine to coarse SAND & GRAVEL, some Silt, trace , Roots/Organics, trace Steel. Sub-rounded to sub-angular. Wet. FILL. PID: 0.3 ppmv S-4C (8.7 to 9.1'): Black/dark brown, fine to coarse SAND (Asphalt), trace Gravel. Sub-rounded to PID: 0.4 ppmv angular. Wet. FILL. -9.1'---PID: 0.4 S-4D (9.1 to 10'): Gray, Clayey SILT, trace fine to ppmv medium Sand, trace Roots. Moist. SILT & CLAY



# Log of Chimney Well CW-TB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings											
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole						

Stab. Time

_		Sample	Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
10—	S-5	10 - 15			PID: 0.3 ppmv			S-5A (10 to 10.5'): Gray, Clayey SILT, trace fine to medium Sand, trace Roots. Moist.		
					PID: 0.2 ppmv			S-5B (10.5 to 15'): Gray, SILT & CLAY, trace Roots (at 12.5 to 12.8'), brown mottling. Moist.		
_										
40										
12—										
							SILT & CLAY			
-										
14										
-	S-6	15 - 20			PID: 0.2 ppmv		15'	S-6A (15 to 16'): Gray, SAND and Gravel, some Silt, trace Cobbles. Rounded to sub-rounded. Wet.		
							SAND & GRAVEL	STREAM DEPOSITS.		//2.0.   // E / . 001)
16—						, Ç	16'	S-6B (16 to 20'): Olive brown to gray, SILT & CLAY, some fine to coarse Sand, some Gravel (Broken		#3 Sand (1.5 to 30')
						$\circ$		some fine to coarse Sand, some Gravel (Broken Shale), trace Cobbles, little brown mottling. Sub-rounded to angular. Moist. TILL.		
					PID: 0.4 ppmv	00				
_						000				
						000				
18—	-					2000	TILL			
_						000				
						000				
					PID: 0.3 ppmv	000				



# Log of Chimney Well CW-TB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/15/11 Cheeked By EMB/ ICD

Groundwater Readings										
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing						

Depth of Hole Stab. Time

	tarted: 08 d By: AV	(JSP/JW	с		e Finished: ( cked By: EN					
	_	Sample	e Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
20—	S-7	20 - 25			PID: 0.4 ppmv		20'	S-7A (20 to 23.6'): Fine to coarse SAND and Gravel, trace Cobbles, trace Silt. Rounded to sub-rounded Wet. STREAM DEPOSITS.		
- 22—										
							SAND & GRAVEL			
-					PID: 0.7 ppmv			S-7B (23.6 to 24.3'): Olive brown to gray, SILT & CLAY, some fine to coarse Sand, some Gravel, trace Cobbles, little brown mottling. Sub-rounded to		
24 —					PID: 4.5 ppmv		24.3' SHALE	angular. Wet. STREAM DEPOSITS. S-7C (24.3 to 24.6'): Dark gray, moderately hard, slightly weathered, SHALE. Moist.		
_		05 00			PID: NA		24.6'	S-7D (24.6 to 25'): Dark gray, SILT & CLAY, little Gravel, trace fine to coarse Sand. Sub-angular to angular. Moist.		
26—	S-8	25 - 30			PID: 3.3 ppmv			S-8A (25 to 26.5'): Gray, fine to coarse SAND, some Silt, little Gravel. Rounded. Wet. (More washed out to coarse Sand & Gravel at bottom).		
_					PID: 9.1 ppmv		TILL	S-8B (26.5 to 28.5'): Gray, Clayey SILT, some medium to coarse Sand, little Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist.		
28—										
_					PID: 7.6 ppmv		28.5'	S-8C (28.5 to 30'): Dark gray, hard, slightly weathered (at top) to very severely weathered, SHALE. Moist.		
							SHALE			
_30—										Sheet: 3 of 4



# Log of Chimney Well CW-TB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/07/11

BORING LOG S:/PORDATA/24005/2466.02/WORK/LOGS/2466.01_LOGS/GFJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 8/29/12

Date Finished: 08/15/11

Groundwater Readings Depth I Date Time to Water Ref. Pt. of

Depth of Casing Depth Stab. of Hole Time

	d By: AV		с		e Finisned: 0 ecked By: EM					
. 330	,		- e Informa			-	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
30—	-						30'	Boring terminated at 30 feet. No refusal encountered.		
- 32—								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
								<ol> <li>results can serve as a relative indicator for the presence of VOCs.</li> <li>Groundwater first observed at about 7' bgs.</li> <li>Competent bedrock observed at 28.5' bgs.</li> </ol>		
_								o. Competent bearook observed at 20.0 bys.		
34 —										
-										
36 —	-									
_										
88										
_										
0—										Sheet: 4 of 4



# Log of Chimney Well CW-TB-06

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/15/11

Groundwater Readings										
		Depth		Depth	Depth					
Date	Time	to Water	Ref. Pt.	of Casing	of Hole					

Stab. Time

Image: Construction oper 6 in (in)       Blows per 6 in (in)       Rec parts       Log Description       Description         0       S-1       0 - 2         PID: 4.6 ppmv               S-1 (0.5 to 2'): Light brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to sub-rounded. Wet. FILL.       S-1 (0.5 to 2'): Light brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to sub-rounded to sub-rounded. Wet. FILL.       Concrete - to be completed by others. (1.5')         2       S-2       2 - 4        PID: 1.3 ppmv        S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to sub-rounded to       2" Dia. Sch. 40 Stainle Steel Well Screen (0.0 Slots) (1.9 to 4.9')	Logge	d By: AVI	K/JSP/JW	с	Che	cked By: EM	B/JSI	2		
(ft)         Simple			Sample					Stratum		
2         S:2         24         -         PID: 1.3 ppmv         -         -         PID: 1.3 ppmv         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< th=""><th>Depth (ft)</th><th></th><th>Depth (ft)</th><th>Blows</th><th>Rec</th><th>Testing</th><th>Log</th><th>Description</th><th>Geologic Description</th><th>Well Description</th></td<>	Depth (ft)		Depth (ft)	Blows	Rec	Testing	Log	Description	Geologic Description	Well Description
2         S.2         2-4	0 —	S_1	0-2				- h	0'	(0 to 0.5'): Asphalt	_
-       5-2       2-4        PID: 1.3       S2 (2 64): Brown, fine to cares SAND & GRAVEL, some Sand, and an exampler. Wet: FiLL Secondary Apphal at 27 bp.       Riser (0.1 to 1.9)         4       -       S-3       4-7        PID: 0.8       S2 (2 64): Brown, fine to cares SAND and Sit, Soundad To sub-angular. Wet: FiLL Secondary Apphal at 27 bp.       Riser (0.1 to 1.9)         6       -        PID: 0.4       S.4 (1 5 0 * 7): Olive brown, SAND & GRAVEL, Bit Secondary Apphal at 27 bp.       S.4 (1 5 0 * 7): Olive brown, SAND & GRAVEL, Bit Secondary Apphal at 27 bp.         8       -       -       PID: 0.4       S.4 (7 to 9): Olive brown, SAND & GRAVEL, Bit Secondary Applat at 27 bp.       S.4 (7 to 9): Olive brown, SAND & GRAVEL, Bit Secondary Applat at 27 bp.         10       -       S.4 (7 to 9): Olive brown, SAND & GRAVEL, Bit Secondary Applat at 27 bp.       S.4 (7 to 9): Olive brown, SAND & GRAVEL, Bit Secondary Applat Bi	_		0-2					ASPHALT 0.5'	S-1 (0.5 to 2'): Light brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to	completed by others. (0 to
4       S-3       4 - 7        PID: 0.8 ppmv       S.3 (4 to 7): Brown, fine to coarse SAND and Sit, sub-angular. Wet, FiLL       Statel Weil Screen (0.0 Sub-counded to sub-angular. Wet, FiLL         6       -       -       PID: 0.5 ppmv       -       -       PID: 0.5 ppmv       -       -       S.3 (4 to 7): Brown, fine to coarse SAND and Sit, sub-angular. Wet, FiLL       -       Statel Weil Screen (0.0 sub-angular. Wet, FiLL         8       -       -       PID: 0.5 ppmv       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	2 —	S-2	2 - 4						GRAVEL, some Silt, trace Cobbles. Rounded to	2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9')
6       -       PID: 0.5       ppmV       -       PID: 0.5       static Rounded to sub-rounded. Wet, FILL         8       -       -       PID: 0.5       ppmV       -       -       S-48 (9 to 9.5): Olive brown, SAND & GRAVEL, little         10       -       S.5       10 - 15       -       -       PID: 0.5       -       -       -       S-48 (9 to 9.5): Olive brown, SAND & GRAVEL, little       S-48 (9 to 9.5): Olive brown, SUT, some Gravel, little         12       -       -       -       -       -       -       S-46 (15 to 15): Gray, CLAY & SUT, brown mottling starting at -12.5' bgs. Molst.       -       -       -       S-64 (15 to 15): Gray, CLAY & SUT, brown mottling starting at -12.5' bgs. Molst.       #3 Sand (1.5 to 30')         14       -       -       -       PID: 0.5 ppmV       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	4 —	S-3	4 - 7					FILL	some Gravel, trace Cobbles. Sub-rounded to	2" Dia. Sch. 40 CPVC End -
10-       S-5       10 - 15        PID: 0.4 pprov PD: 0.5 pprov PID: 0.5 pprov PID: 0.5 pprov      10       S-8 (10 9.5)' Olive brown. SILT. some Gravel, itile fine to carse Sand, trace Roots, trace Cobbles, Rounded to sub-rounded. Wet, FILL.       S-4 (20 5 to 17): Black, fine to carse Sand, wet, FILL.         12-         PID: 0.4 pprov PID: 0.5 pprov        S-5 (10 to 15): Gray, CLAY & SILT, brown motting         14-         PID: 0.8 pprov PID: 0.5 pprov       SILT & CLAY       S-6A (15 to 16)': Gray, CLAY & SILT, brown motting         16-        PID: 0.8 pprov PID: 0.5 pprov         S-6A (15 to 16)': Gray, CLAY & SILT, brown motting         18-        PID: 0.5 pprov         S-6B (16 to 17.9)': Gray, SAND & GRAVEL, some Sitt, tilt Cobbes, Rounded to sub-angular. Wet.       S-6B (16 to 17.9)': Gray, SAND & GRAVEL, some Sitt, tilt Cobbes, Rounded to sub-angular. Wet.         18-        PID: 0.5 pprov        PID: 0.5 pprov       S-6C (17 9 to 20'): Olive brown to gray, SILT & CLAY and fine to carse Sand, title Gravel, Angular to sub-angular. Wet.         20-       S-7       20 - 25        PID: 0.3 pprov           22-       S-7       20 - 25        PID: 0.6 pprov       S-7B (23 to 25'): Light gray, SILT & CLAY, ittle CLAY and fine to carse Sand, ittle Gravel, Inace	-	S-4	7 - 10							
12-       -       S-5 (10 to 15): Gray, CLAY & SILT, brown mottling         14-       -       S-6 (15 - 20)          16-       -       PID: 0.8         ppmv       PID: 0.7       PiD: 0.7         ppmv       PID: 0.4      16'         18-       -       PID: 0.5         20-       S-7       20 - 25          S-7       20 - 25          PID: 0.6          PID: 0.6          PID: 0.6       PID: 0.6         PID: 0.6       PID: 0.6         PID: 0.6       PID: 0.6         PID: 0.6       PID: 0.6         S-74       20 - 25         S-7       20 - 25         S-7       PID: 0.6         PID: 0.6       PID: 0.6 </td <td>- 10—</td> <td>S-5</td> <td>10 - 15</td> <td></td> <td></td> <td>ppmv PID: 0.5 ppmv PID: 0.5</td> <td></td> <td>10'</td> <td>little fine to coarse Sand, trace Roots, trace Cobbles. Rounded to sub-rounded. Wet. FILL. S-4C (9.5 to 10'): Black, fine to coarse Sand (Asphalt), trace Gravel. Angular to sub-angular. Wet.</td> <td>-</td>	- 10—	S-5	10 - 15			ppmv PID: 0.5 ppmv PID: 0.5		10'	little fine to coarse Sand, trace Roots, trace Cobbles. Rounded to sub-rounded. Wet. FILL. S-4C (9.5 to 10'): Black, fine to coarse Sand (Asphalt), trace Gravel. Angular to sub-angular. Wet.	-
S-6       15 - 20        PID: 0.8 ppmv PID: 0.5 ppmv       S-6A (15 to 16'): Gray, CLAY & SILT, brown motting. Moist.       #3 Sand (1.5 to 30')         16	12—	-						SILT & CLAY	S-5 (10 to 15'): Gray, CLAY & SILT, brown mottling	-
18     PID: 0.5     SAND & GRAVEL     SOUCH OF (7.9). Glay, SAND & GRAVEL, Solite       18     PID: 0.5     PID: 0.5     SAND & GRAVEL     S-6C (17.9 to 20'): Olive brown to gray, SILT & CLAY, some Gravel, little Cables. Rounded to angular. Moist. STREAM DEPOSITS.       20     S-7     20 - 25      PID: 0.3     S-7A (20 to 23'): Brownish gray, SILT & CLAY and fine to coarse Sand, little Gravel. Angular to sub-angular. Wet.       22      PID: 0.6     TILL     S-7B (23 to 25'): Light gray, SILT & CLAY, little Gravel. Angular to sub-angular. Wet.	_	S-6	15 - 20			ppmv PID: 0.5 ppmv		16'	mottling. Moist.	#3 Sand (1.5 to 30')
10       PID: 0.5       GRAVEL       S-6C (17.9 to 20): Olive brown to gray, SIL1 & CLAY, some Gravel, little Sand. Rounded to angular. Moist. STREAM DEPOSITS.         20       S-7       20 - 25        PID: 0.3 ppmv       S-7A (20 to 23'): Brownish gray, SILT & CLAY and fine to coarse Sand, little Gravel. Angular to sub-angular. Wet.         22       PID: 0.6 ppmv       TILL       S-7B (23 to 25'): Light gray, SILT & CLAY, little Gravel to sub-angular to s	-	-							Silt, little Cobbles. Rounded to sub-angular. Wet.	
22- PID: 0.6 ppmv PID: 0.6 PID: 0.6 ppmv PID: 0.6 PID: 0.6 ppmv PID: 0.6 PID: 0.6 P	18	-						SAND & GRAVEL	CLAY, some Gravel, little Sand. Rounded to angular.	-
PID: 0.6     O     TILL       PID: 0.6     O     S-7B (23 to 25'): Light gray, SILT & CLAY, little       Gravel, trace Sand, trace Cobbles. Angular to     Sub angular Mainter Sub angular to	20	S-7	20 - 25					20'	fine to coarse Sand, little Gravel. Angular to	-
ppmv Gravel, trace Sand, trace Cobbles. Angular to	22—	-						TILL	S-7R (23 to 251): Light grav SILT & CLAV little	-
	24—	-					$b \sim$		Gravel, trace Sand, trace Cobbles. Angular to	_



# Log of Chimney Well CW-TB-06

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings									
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing					

Depth of Hole Stab. Time

Depth		Sample			Field		Stratum		Well	
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Diagram	Well Description
- 26	S-8	25 - 30			PID: 0.8 ppmv		25'	S-8A (25 to 28'): Gray, CLAY & SILT, some fine to coarse Sand, some Gravel, trace Cobbles. Angular to sub-rounded. Wet. WEATHERED BEDROCK.		
28—					PID: 1.3 ppmv		SHALE	S-8B (28 to 30'): Gray, moderately hard, very severely to slightly weathered, aphanitic SHALE. Angular. Moist.		
30—							30'	Boring terminated at 30 feet. No refusal encountered.		
- 32-								NOTES: 1. Soil samples were screened for volatile organic		
-	-							compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per milion by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		
34 —								typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
36—	_							<ul><li>results can serve as a relative indicator for the presence of VOCs.</li><li>2. Discernable groundwater level was not observed. All fill was wet.</li></ul>		
								3. Weathered bedrock observed at 25' bgs, more competent rock encountered at 28' bgs.		
-	-									
40—	-									
- 42										
-										
44 —										
- 46										
-										
48—										
-										



# Log of Chimney Well CW-WB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

Ground	water Readings				
-	Depth		Depth	Depth	Stab.
Date	Time to Water	Ref. Pt.	of Casing	of Hole	Time

		Comula	Informa	tion		Stratum			
Depth (ft)	Sample No.	Depth (ft)	Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Stratum Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2				0' ASPHALT	(0 to 0.5'): Asphalt.		
_					PID: 3 ppmv	0.5'	S-1 (0.5 to 2'): Dark brown, fine to coarse SAND & GRAVEL, trace Silt, trace Cobbles. Rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 to 1.5') 2" Dia. Sch. 40 CPVC
2	S-2	2 - 4			PID: 21 ppmv		S-2 (2 to 4'): Dark brown, fine to coarse SAND & GRAVEL, trace Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Riser (0.1 to 1.9')
4 —	S-3	4 - 6			PID: 48 ppmv		S-3 (4 to 6'): Dark brown to gray, fine to coarse SAND & GRAVEL, trace Clayey Silt. Sub-rounded to		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.9 to 4.9')
_						FILL	sub-angular. Moist. FILL. Concrete Fill at 6' bgs.		2" Dia. Sch. 40 CPVC End Cap (4.9 to 5')
6 —	S-4	6 - 10			PID: 1.4 ppmv		S-4A (6 to 6.7'): Brown, fine to coarse SAND & GRAVEL, some Silt. Rounded to sub-angular. Wet. FILL.		
- 8					PID: 1 ppmv		S-4B (6.7 to 10'): Brown to gray, SILT & CLAY, little fine to coarse Sand, trace Gravel, trace Cobbles, trace Roots. Rounded to sub-angular. Moist. FILL.		
_									
10—	S-5	10 - 15			PID: 1.1 ppmv	10'	S-5A (10 to 11.5'): Gray, CLAY & SILT. Moist.		
- 12—					PID: 0.6 ppmv		S-5B (11.5 to 15'): Gray, SILT & CLAY, brown mottling increasing with depth. Moist.		
_									
14 —									#3 Sand (1.5 to 27.5')
_	S-6	15 - 20			PID: 0.9 ppmv	SILT & CLAY	S-6A (15 to 15.9'): Brownish gray, Clayey SILT, some Gravel, little fine to coarse Sand. Rounded to sub-rounded. Wet.		
16					PID: 0.7 ppmv		S-6B (15.9 to 19'): Gray, CLAY & SILT, little brown mottling; dark brown - black staining (18 to 19' bgs). Moist.		
18—									
-					PID: 0.7 ppmv		S-6C (19 to 20'): Blueish-gray, SILT & CLAY, trace Gravel, trace fine to coarse Sand, trace fossil Shells.		



# Log of Chimney Well CW-WB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

ater Rea	adings		
	Depth		Depth
Time	to Water	Ref. Pt.	of Casing

Depth of Hole

Stab. Time

Checked By: EMB/JSP Logged By: AVK/JSP/JWC Sample Information Stratum Depth Well Spoon Pen/ Field **Geologic Description** Well Description Sample Depth (ft) Blows Rec Testing Log Description Diagram No. (ft) per 6 in (in) Data 20 -20'--S-7 20 - 25 S-7 (20 to 25'): Gray, CLAY & SILT, little fine to coarse Sand, little Gravel (broken Shale), trace Cobbles. Angular to sub-angular. Moist/Wet (22.9 to 23.5' bgs). 22 PID: 0.7 ppmv TILL PID: 0.5 ppmv 24 -25'-TILL PID: 0.5 S-8A (25 to 25.5'): Gray brown, SILT & CLAY, little S-8 25 - 30 ---8/29/12 Gravel (various lithologies), trace fine to coarse ppmv -25.5 Sand. Rounded to sub-rounded. Moist 26 S-8B (25.5 to 30'): Gray, hard, fresh, aphanitic SHALE. Slightly more weathered at bottom. Dry. SHALE 28 **Benseal Bentonite** (hydrated) (27.5 to 30') 30 --30'-Boring terminated at 30 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, 32 calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC 34 concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Discrete water table not observed. Soils below about 4' bgs were wet. 3. Competent bedrock observed at 25.5' bgs. 36 38

Groundw

Date



# Log of Chimney Well CW-WC-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11 Checked By: EMB/JSP

Groundwater Readings												
		Depth		Depth	Depth							
Date	Time	to Water	Ref. Pt.	of Casing	of Hole							

Stab. Time

UV         No.         (ff)         Bites         Testing         Log Description         Description           0         S-1         0-2         S         0         S         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </th <th>.ogge</th> <th>a By: AVk</th> <th>K/JSP/JW</th> <th></th> <th></th> <th>ecked By: EM</th> <th>B/JSF</th> <th>•</th> <th></th> <th></th> <th></th>	.ogge	a By: AVk	K/JSP/JW			ecked By: EM	B/JSF	•			
(iii)         No.         (iii)         Boxe         Test mining         Log Description         Output           0         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th></th> <th>Sample</th> <th></th> <th>Spoon</th> <th>Pen/</th> <th></th> <th></th> <th></th> <th>Geologic Description</th> <th></th> <th>Well Description</th>		Sample		Spoon	Pen/				Geologic Description		Well Description
2         5-2         2-4          PID: 11 ppmv          5-1 (0.5 to 2); Gray, fine to coarse SAND & GRAVEL, lifts three Cabbles. Sub-rounded. Most FiLL         S-1 (0.5 to 2); Gray, fine to coarse SAND & GRAVEL, lifts three Cabbles. Sub-rounded.         Completed by three. 15; fine Cabbles. Sub-rounded.           4         S-3         4-6          PID: 28 ppmv         FiLL         S-2 (2 to 4); Brown, fine to coarse SAND and Clayey Sti, trace Gravel. Tace CAbbles. Sub-rounded.         Completed by three. 15; fina Cabbles. Sub-rounded.           6         S-4         6-10          PID: 4 pomv         FiLL         S-3 (4 to 6); Capyey SILT and fine to coarse Gravel. Sub-angular. Most FiLL         S-3 (4 to 6); Capyey SILT and fine to coarse Gravel.           8          PID: 4 pomv          PID. 40 (2 to 7); Concrete: Te         S-48 (6 to 10); Concrete. FiLL            10         S-5         10 - 15          PID. 14 pomv         S-48 (9.2 to 10); Concrete. FiLL            12          PID. 14 pomv          PID. 14 pomv         S-48 (15 to 17.6); Gray, CLAY & SILT, brown motiling starting at -12.5 bgs. Moist.         #-           14           PID. 10 pomv         S-61 (10 to 70); Gray, CLAY & SILT, ittle brown motiling. Most.         S-62 (10 to 70); Gray, GLAY & SILT, ittle brown motiling. Most.	(ft)						Log	Description	<u>-</u>	Diagram	
2         S-2         2 - 4         -         PID. 11 ppmiv         -         -         S-1 (0.5 to 27) Gray, fine to coarse SAND & GRAVEL, lifte 31 trace Coables. Sub-rounded. Model Full.         Completed by others. Sub-angular. Model Full.           4         S-3         4 - 6         -         PID. 18 ppmiv         -         Full.         S-2 (2 to 12) Gray, fine to coarse SAND and Clayey Sub-angular. Model Full.         S-2 (2 to 12) Gray, Full.         S-3 (4 to 67) Gray others. Sub-angular. Model Full.           6         S-4         6 - 10         -         PID. 4 ppmiv         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>0 —</td> <td>S-1</td> <td>0 - 2</td> <td></td> <td></td> <td></td> <td>1</td> <td>0' ASPHALT</td> <td>(0 to 0.5'): Asphalt.</td> <td></td> <td>-</td>	0 —	S-1	0 - 2				1	0' ASPHALT	(0 to 0.5'): Asphalt.		-
S-2       2-4        PID.28       PID.14         4       S-3       4-6        PID.14         6       S-4       6-10        PID.14         6       S-4       6-10        PID.14         8        PID.14       S-3 (4 to 6): Clayey SILT and fine to coarse Gravel.       S-3 (4 to 6): Clayey SILT and fine to coarse Gravel.         8        PID.14        PID.14       S-3 (4 to 6): Clayey SILT and fine to coarse Gravel.         8        PID.14        FIL       S-44 (6 to 9.2): Brown, SILT & CLAY, little fine to mature State (10 to 4.5)         8        PID.14        PID.14       S-48 (6 to 9.2): Brown, SILT & CLAY, little fine to mature State (10 to 5): Clayer SILT & CLAY, little fine to mature State (10 to 15): Clayer SILT & CLAY, little fine to mature State (10 to 15): Clayer SILT & CLAY, little fine to mature State (10 to 15): Clayer SILT & CLAY, little fine to mature State (10 to 15): Clayer SILT & CLAY, little fine to mature State (15 to 17.6): Clayer SILT, some fine to coarse State (15 to 28)         16-       -       PID. 10       PID. 14       S-64 (15 to 17.6): Clayer SILT, some fine to coarse State (15 to 28)         18-       -       PID. 10       PID. 10       S-67 (10 to 15): Clayer CLAY & SILT, little brown motiling. State (15 to 27): Clayer SILT & CLAY, little Gravet. Recobles. Ro	_							0.5'	GRAVEL, little Silt, trace Cobbles. Sub-rounded.		completed by others. (0 to
4       S.3       4 - 6	2 —	S-2	2 - 4						Silt, trace Gravel, trace Cobbles. Sub-rounded.		2" Dia. Sch. 40 CPVC - Riser (0.1 to 1.9')
3       S-4       6 - 10        PID. 4 ppmv       S-4A (6 to 9.2): Brown, SILT & CLAY, little fine to medium Sand, trace Gravel, trace Roots, Rounded       Cap (4.9 to 5)         3        PID. NA         S-4B (9.2 to 10): Concrete. Fill.         4        PID. NA        S-4B (9.2 to 10): Concrete. Fill.       S-4B (9.2 to 10): Concrete. Fill.         2        PID. 10       PID. 2.2 ppmv       S-5 (10 to 15): Gray, CLAY & SILT, brown motiling starting at -12.5' bgs. Molst.       S-6A (15 to 17.6'): Gray, CLAY & SILT, intue brown motiling.         6        PID. 110       SILT & CLAY       S-6B (17.6 to 19.1'): Blue-gray, SILT & CLAY, little Gravel, trace Gravel, trace Gravel, trace Cubles, Rounded.       #3 Sand (1.5 to 28')         8        PID. 10       S-10       S-6B (17.6 to 19.1'): Blue-gray, SILT & CLAY, little Gravel, trace Cubles, Rounded.         0       S-7       20 - 25        PID. 10       S-6A (15 to 17.6'): Gray, CLAY & SILT, some fine to corres Sand, IIII: Gravel, trace Cubles, Rounded.         2        PID: 10      19.1'       S-6C (10 1 to 20'): Gray, CLAY & SILT, some fine to corres Sand, IIII: Gravel, trace Cubles, Rounded.       Wet. STREAM DEPOSITS.         2        PID: 10       S-MD.8       S-MD.8       S-MD.8       S-A (15 to 20'): Gray, CLAY		S-3	4 - 6								
S-4       6 - 10        PID. 4 ppmv                               S-4A (10 to S.2.) growin, SL1 & CORRETE	_							FILL			2" Dia. Sch. 40 CPVC End Cap (4.9 to 5')
0       8-5       10 - 15        PID: NA        9.2'	; — -	S-4	6 - 10			PID: 4 ppmv			medium Sand, trace Gravel, trace Roots. Rounded		
0-       S-5       10-15        PID: 22      10'       S-5 (10 to 15): Gray, CLAY & SILT, brown mottling starting at -12.5 bgs. Moist.         2-        PID: 22       ppmv       SILT & CLAY       S-6A (15 to 17.6): Gray, CLAY & SILT, brown mottling starting at -12.5 bgs. Moist.       #3 Sand (1.5 to 28)         4-        PID: 10       PID: 10       SILT & CLAY       S-6A (15 to 17.6): Gray, CLAY & SILT, little brown mottling.         6-        PID: 10       PID: 10       PID: 10       S-6A (15 to 17.6): Gray, CLAY & SILT, little brown mottling. Moist.         8-        PID: 10       PID: 22        PID: 10         9       PID: 22      19.1'       S-6C (19.1 to 20'): Gray, CLAY & SILT, some fine to coarse Sand, little Gravel, trace fine Sand. Rounded. Moist.         12-        PID: 10       PID: 10       SAND & GRAVEL         2-        PID: 10       SAND & GRAVEL       S-AND & GRAVEL	8 —										
5-5       10-15        SS (10 Ib 15) Gray, CLAY & SILT, brown motung starting at -12.5 bgs. Moist.         2-        PID: 2.2 ppmv       PID: 84 ppmv         6-        PID: 110 ppmv       SILT & CLAY         6-        PID: 110 ppmv       SILT & CLAY         8-        PID: 16 ppmv       SILT & CLAY         8-        PID: 10 ppmv       SILT & CLAY         90-       S-7       20 - 25          91D: 10 ppmv       PID: 22 ppmv      19.1'         S-66 (17.6 to 19.1): Blue-gray, SILT & CLAY, little Gravel, trace fine Sand. Rounded. Moist.       S-68 (17.6 to 19.1): Blue-gray, SILT & CLAY, little Gravel, trace fine Sand. Rounded. Moist.         90-       S-7       20 - 25          91D: 10 ppmv       PID: 10 ppmv       S-66 (19.1 to 20?): Gray, Clayey SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded. Wet. STREAM DEPOSITS.         92-        SAND & GRAVEL       SAND & GRAVEL	_					PID: NA		CONCRETE	S-4B (9.2 to 10'): Concrete. FILL.		
2-       -       PID: 84       PID: 84       PiD: 84       PiD: 84       PiD: 84       PiD: 110       Sill T & CLAY       S-6A (15 to 17.6'): Gray, CLAY & SILT, little brown motting. Moist.       #3 Sand (1.5 to 28')         6-       -       PID: 58       PiD: 58       PiD: 58       S-6B (17.6 to 19.1'): Blue-gray, SILT & CLAY, little Gravel, trace fine Sand. Rounded. Moist.       #3 Sand (1.5 to 28')         0-       S-7       20 - 25        PID: 10       S-6C (19.1 to 20'): Gray, Clayey SILT, some fine to coarse Sand, little Gravel, trace Cobles. Rounded. Wet. STREAM DEPOSITS.       S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.	0	S-5	10 - 15					10'	S-5 (10 to 15'): Gray, CLAY & SILT, brown mottling starting at ~12.5' bgs. Moist.		
A-       S-6       15 - 20        PID: 110       SILT & CLAY       S-6A (15 to 17.6'): Gray, CLAY & SILT, little brown mottling. Moist.       #3 Sand (1.5 to 28')         B-        PID: 58       ppmv       S-6B (17.6 to 19.1'): Blue-gray, SILT & CLAY, little Gravel, trace fine Sand. Rounded. Moist.       #3 Sand (1.5 to 28')         B-        PID: 22         19.1'       S-6C (19.1 to 20'): Gray, Clayey SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded. Wet. STREAM DEPOSITS.       S-7A (20 to 23'): Oilte Gravel, trace Cobbles. Rounded to sub-angular. Wet. STREAM DEPOSITS.         2-       SAND & GRAVEL       SAND & GRAVEL       SAND &	2—					ppmv					
<ul> <li>S-6 15 - 20</li> <li>PID: 110 ppmv</li> <li>PID: 58 ppmv</li> <li>PID: 58 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 10 ppmv</li> <li>S-6B (17.6 to 19.1'): Blue-gray, SILT &amp; CLAY, little Gravel, trace fine Sand. Rounded. Moist.</li> <li>S-6C (19.1 to 20'): Gray, Clayey SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded. Wet. STREAM DEPOSITS.</li> <li>S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.</li> </ul>	- 4										
<ul> <li>B - PID: 58 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 22 ppmv</li> <li>PID: 10 ppmv</li> <li>PID: 10 ppmv</li> <li>S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded. Wet. STREAM DEPOSITS.</li> <li>S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel, Rounded to sub-angular. Wet. STREAM DEPOSITS.</li> </ul>	_	S-6	15 - 20					SILT & CLAY			#3 Sand (1.5 to 28')
Gravel, trace fine Sand. Rounded. Moist. Gravel, trace fine Sand. Rounded. Moist. Gravel, trace fine Sand. Rounded. Moist. S-6C (19.1 to 20'): Gray, Clayey SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded. Wet. STREAM DEPOSITS. S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.	6										
0 -       S-7       20 - 25        PID: 22 ppmv       S-0C (19.110 20): Gray, Clayey SLT, some fine to coarse Sand, little Gravel, trace Cobles. Rounded. Wet. STREAM DEPOSITS.         2 -       -       PID: 10 ppmv       SAND & GRAVEL       S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.	8—								S-6B (17.6 to 19.1'): Blue-gray, SILT & CLAY, little Gravel, trace fine Sand. Rounded. Moist.		
S-7       20 - 25        PID: 10 ppmv       S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.         2	-							19.1'	coarse Sand, little Gravel, trace Cobbles. Rounded.		
GRAVEL	_	S-7	20 - 25						S-7A (20 to 23'): Olive brown, SILT, some fine to coarse Sand, little Gravel. Rounded to sub-angular.		
	2—										
Cobbles, trace fine to coarse Sand. Rounded to sub-rounded. Wet. STREAM DEPOSITS.						PID: 3 ppmv					



# Log of Chimney Well CW-WC-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

Ground	water Rea	adings		
		Depth		Depth
Date	Time	to Water	Ref. Pt.	of Casing

g

Depth of Hole Stab. Time

		Sample	e Informa	ation		Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Well Diagram	Well Description
- 26-	S-8	25 - 30			PID: 2.5 ppmv	25'	S-7C (24.8 to 25'): Olive brown, fine to medium SAND, some Silt, little Gravel, trace Cobbles. Rounded to sub-angular. Wet. STREAM DEPOSITS.		
_	-				PID: 1.4		S-8A (25 to 27'): Dark gray, hard, fresh, fine-grained SHALE. Wet. S-8B (27 to 29'): Gray, SILT & CLAY, some fine to		
28—	-				ppmv	SHALE	coarse Sand, little Gravel (broken Shale). Angular to sub-angular Wet.		
_						001	S-8C (29 to 30'): Gray, moderately hard, fresh, fine-grained Shale. Wet.		Benseal Bentonite (hydrated) (28 to 30')
30						30'	Boring terminated at 30 feet. No refusal encountered.		
							NOTES:		
32—							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the</li> </ol>		
34 —							typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
36—	-						<ul><li>results can serve as a relative indicator for the presence of VOCs.</li><li>2. Competent rock observed at around 25' bgs, transitioning to more weathered rock from about 27 to 29' ngs, followed by more competent rock at 29'</li></ul>		
38—	-						bgs.		
_	-								
40—	-								
_	-								
42—	-								
-									
44 —									
-									
46—									
-									
48									
-	-								



# Log of Chimney Well CW-WD-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 10/31/01	Date Finished: 10/31/11
Logged By: AVK	Checked By: EMB/JSP

	tarted: 10 d By: AVł				Finished: 1 cked By: EN					
			Informa	ation		_	Stratum		) M/- II	
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —		0 - 0.5				P 4 4	0' CONCRETE 0.5'	(0 to 0.5'): Concrete.		
- 2 —	S-1	0.5 - 5			PID: 0.5 ppmv		0.5'	S-1 (0.5 to 5'): Light brown, fine to coarse SAND & GRAVEL, little Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 to 1.5') 2" Dia, Sch. 40 CPVC
- 4 6 -	S-2	5 - 9			PID: 2.4 ppmv		FILL	S-2 (5 to 9'): Gray, SILT & CLAY, trace Gravel. Sub-rounded. Moist. FILL.		Riser (0 to 1.9') 2" Dia. Sch. 40 Stainless Steel Well Screen (0.010' Slots) (1.9 to 4.9') 2" Dia. Sch. 40 CPVC En Cap (4.9 to 5')
8 —	S-3	9 - 10			PID: NA		9'	S-3 (9 to 10'): (9 to 10'): Concrete. Secon Conc		
10	S-4	10 - 11.2			PID: NA		CONCRETE	FILL. S-4 (10 to 11.2'): Gray, SILT & CLAY. Sub-rounded.		
_							FILL	Moist. FILL.		
2—	S-5	11.2 - 17.5			PID: 2.3 ppmv		1.2	S-5 (11.2 to 17.5'): SILT & CLAY. Moist. SILT & CLAY.		
4—										#3 Sand (1.5 to 27')
6							SILT & CLAY			
- 8—	S-6	17.5 - 20			PID: 10 ppmv			S-6 (17.5 to 20'): SILT & CLAY, trace Cobbles, trace, medium-hard SHALE. Moist. SILT & CLAY.		
_										
0	S-7	20 - 25			PID: 5.8 ppmv	0000	20'	S-7A (20 to 24.5'): Fine to coarse SAND & GRAVEL. Sub-angular Moist to wet. TILL.		
2—						0.0				
_						000	GLACIAL TILL			
4 —										
						° C		S-7B (24.5 to 25'): Fine to coarse SAND & GRAVEL.		



# Log of Chimney Well CW-WD-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 10/31/01 Logged By: AVK

Date Finished: 10/31/11 Checked By: EMB/JSP

			Informa	tion			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
26—	S-8	25 - 27			PID: 5.3 ppmv	4 4 4 4 7 7 7 7	25' WEATHERED BEDROCK	Sub-angular Moist. TILL. S-8 (25 to 27'): Soft, severely weathered aphinatic SHALE. Dry. ROCK.		
-						1	27'	Boring terminated at 27 feet. No refusal encountered.		
28—								NOTES:		
_								<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume</li> </ol>		
30								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID		
32—								measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		
34—								2. Groundwater observed at about 5.8 feet bgs during drilling.		
_								<ol> <li>Severely Weathered bedrock observed at about 25 feet.</li> </ol>		
36—										
-										
38 —										
_										
l0 —										
- 12										
_										
4—										
-										
6—										
-										
8										
-										



# Log of Chimney Well CW-WE-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

1 Date Finished: 08/16/11

Groundwater Readings											
		Depth		Depth	Depth						
Date	Time	to Water	Ref. Pt.	of Casing	of Hole						

Stab. Time

Logge	d By: AVI	K/JSP/JW	C	Che	ecked By: EM	B/JSI	2			
		Sample	Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2					0' ASPHALT 0.5'	(0 to 0.5'): Asphalt.		-
-					PID: 8.5 ppmv		0.5'	S-1 (0.5 to 2'): Brown, fine to coarse SAND & GRAVEL, little Silt, little Cobbles. Rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 to $^-$ 1.5')
2	S-2	2 - 4			PID: 92 ppmv			S-2 (2 to 4'): Dark brown, fine to coarse SAND & GRAVEL, trace Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		2" Dia. Sch. 40 CPVC — Riser (0.1 to 1.9')
4 —	S-3	4 - 6			PID: 6.5 ppmv		FILL	S-3 (4 to 6'): Gray, SILT & CLAY and fine to coarse Sand, little Gravel. Sub-angular. Moist. FILL. Steel plates at 4.7' bgs.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.9 to 4.9') 2" Dia. Sch. 40 CPVC End - Cap (4.9 to 5')
6 —	S-4	6 - 10			PID: 13 ppmv		7	S-4A (6 to 7'): Gray, SILT & CLAY and fine to coarse Sand, little Gravel. Sub-angular. Moist. FILL.		
	]					P A	CONCRETE	S-4B (7 to 7.5'): Concrete. FILL.		
8 —	-				PID: 421 ppmv		1.0	S-4C (7.5 to 10'): Blocked by Concrete plug, unable to get representative sample. Gray, SILT & CLAY pushed up around plug. Petroleum odor. Wet.		-
10-	S-5	10 - 15			PID: 435 ppmv		SILT & CLAY	S-5A (10 to 11'): Gray, SILT & CLAY. Moist.		_
12—	-				PID: 1241 ppmv		SILT & CLAT	S-5B (11 to 13.6'): Gray, CLAY & SILT, brown mottling and some black staining. Moist.		
- 14—	-				PID: 488 ppmv PID: 249		14.6'	S-5C (13.6 to 14.6'): Brownish gray, CLAY & SILT, some fine to coarse Sand, little Gravel, trace Cobbles. Rounded to angular. Moist.		#3 Sand (1.5 to 25')
- 16—	S-6	15 - 21		6/2	PID: 250 PID: 250 ppmv			S-5D (14.6 to 15'): Gray, Clayey SILT, some fine to coarse Sand, some Gravel, trace Cobbles. Rounded to sub-rounded. Moist to wet. STREAM DEPOSITS. S-6 (15 to 21'): Gray - olive brown, SILT & CLAY, little fine to medium Sand, trace Gravel, trace		
18—	-						SAND & GRAVEL	Cobbles. Rounded to sub-rounded. Wet. STREAM DEPOSITS.		
20—	-									_
- 22—	S-7	21 - 25			PID: 94 ppmv PID: 22	o Q	22'	S-7A (21 to 22'): Olive brown - gray, SILT & CLAY and fine to coarse Sand, little Gravel, trace Cobbles. Rounded to sub-rounded. Wet. STREAM DEPOSITS.		-
-	-				ppmv PID: 4.7 ppmv		TILL 23'	S-7B (22 to 23'): Olive brown - gray, SILT & CLAY, little fine to coarse Sand, little Gravel. Sub-angular to angular. Moist.		-
24—	-				PID: 3 ppmv		SHALE	S-7C (23 to 24'): Dark gray, moderately hard, very slightly weathered, aphanitic SHALE. Dry. S-7D (24 to 25'): Gray, SILT & CLAY, little fine to		-
26—	-							coarse Sand, little Gravel. Angular. Moist. WEATHERED BEDROCK.		_
-	-							Boring terminated at 25 feet. No refusal encountered.		-
	-									Sheet: 1 of 2



# Log of Chimney Well CW-WE-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

ndwater Rea	adings			
Time	Depth to Water	Ref. Pt.	Depth of Casing	

Depth of Hole

Stab. Time

		Sample	Informa	tion		Stratum			
epth ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Well Diagram	Well Description
28-			-				NOTES:		
_							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		
0							calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not		
<u></u>							detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
_							results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 7.5' bgs during		
 							drilling. 3. Competent bedrock observed at about 23' bgs.		
;							<ol> <li>S-6 is a composite of 1.5' recovery over 5' of depth. Driller was unable to get soil to stay in the core barrel. Drilling action indicated wet and/or softer soils.</li> </ol>		
_									
_									
_									
_									
_									
_									
_									
_									
_									

Grour

Date



# Log of Chimney Well CW-WF-01

Stab. Time

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/09/11

Date Finished: 08/15/11

Groundw	ater Rea				
		Depth		Depth	Depth
Date	Time	to Water	Ref. Pt.	of Casing	of Hole

Logge	Logged By: AVK/JSP/JWC Checked By: EMB/JSP									
		Sample	Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0	S-1	0 - 2					ASPHALT	(0 to 0 4'): Apphalt		_
-	5-1	0-2			PID: 0.7 ppmv		ASPHALT 0.4	(0 to 0.4'): Asphalt. S-1 (0.4 to 2'): Brown, fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Rounded to sub-angular. Moist. FILL.		Concrete - to be completed by others. (0 to $^-$ 1.5')
2 —	S-2	2 - 4			PID: 0.4 ppmv			S-2 (2 to 4'): Brown, SILT & CLAY and fine to coarse Sand, little Gravel. Sub-angular. Moist. FILL.		2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9')
4 —	S-3	4 - 6			PID: 0.6 ppmv		FILL	S-3 (4 to 6'): Brown, SILT & CLAY, some fine to coarse Sand, trace Gravel. Sub-angular. Wet. FILL.		2" Dia. Sch. 40 Stainless Steel Well Screen (0.010" Slots) (1.9 to 4.9')
-	S-4	5 - 10								2" Dia. Sch. 40 CPVC End – Cap (4.9 to 5')
6	-				PID: 0.5 ppmv			S-4A (6 to 8.5'): Brown, SILT and fine to coarse Sand, little Gravel (fining downward). Rounded to sub-angular. Wet. FILL.		-
8 —	-						8.5'			-
8 — - 10 —	-				PID: 0.3 ppmv			S-4B (8.5 to 10'): Brownish-gray, CLAY & SILT, little Gravel, trace Sand, trace Organics. Peat-layering. Moist.		-
10-	S-5	10 - 15			PID: NA			S-5A (10 to 11'): Gray, CLAY & SILT, little Gravel, trace Sand, trace Organics. Moist.		-
-	-				PID: 0.3 ppmv			S-5B (11 to 11.9'): CLAY & SILT. Moist.		-
12	-				PID: 0.3 ppmv		SILT & CLAY	S-5C (11.9 to 15'): Gray, SILT & CLAY, trace fine to medium Sand. Brown mottling. Moist.		-
14—	-									#3 Sand (1.5 to 25')
-	S-6	15 - 20			PID: 0.4 ppmv			S-6A (15 to 16'): Gray, SILT & CLAY, little fine to coarse Sand, trace Gravel, trace Roots. Wet.		-
16—	-				PID: 0.3 ppmv			S-6B (16 to 17'): Gray, SILT & CLAY, trace fine to medium Sand, trace Gravel. Brown mottling. Moist.		_
-	-				PID: 3.7 ppmv		17'	S-6C (17 to 20'): Gray, Clayey SILT, some Sand, some Gravel, trace Cobbles. Rounded to sub-angular. Wet. STREAM DEPOSITS.		-
18							SAND &			_
20-		00.05					GRAVEL			_
18	S-7	20 - 25			PID: 0.9 ppmv PID: 7.1		21'	S-7A (20 to 21'): Gray, Clayey SILT, some Sand, some Gravel, trace Cobbles. Rounded to sub-angular. Wet. STREAM DEPOSITS.		-
22—	-				ppmv			S-7B (21 to 23.5'): Dark gray, moderately hard, slightly weathered SHALE (becoming more weathered with depth). Dry.		_
-	_						SHALE			-
24-					PID: 0.5 ppmv			S-7C (23.5 to 25'): Dark gray, moderately hard, very severely weathered SHALE (solid rock fragments in weathered soil matrix). Wet.		_
_	1		I		L				· · · · · · · · · · · · · · · · · · ·	Sheet: 1 of 2



# Log of Chimney Well CW-WF-01

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/09/11 Logged By: AVK/JSP/JWC Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings											
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole						
				0							

Stab. Time

		Sample	Informa	tion			Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
_				_ <u>,y</u>	2314		25'	Boring terminated at 25 feet. No refusal		
26—								encountered.		
20								NOTES:		
-								<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,</li> </ol>		
28—								calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response		
_								factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not		
								detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		
30 —								screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		
-								presence of VOCs. 2. Competent bedrock observed at about 21' bgs.		
32 —								2. Competent Devicer Observed at about 21 bys.		
_										
_										
4 —										
-										
86										
_										
38 —										
-										
40 —										
10										
-										
2—										
_										
4										
-										
6										
-										
18 —										
-										
50—										



# Log of Chimney Well CW-WF-03

Stab. Time

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/09/11

Date Finished: 08/15/11

Groundwater Readings										
		Depth		Depth	Depth					
Date	Time	to Water	Ref. Pt.	of Casing	of Hole					

Checked By: EMB/JSP Logged By: AVK/JSP/JWC Sample Information Stratum Depth Well Spoon Pen Field Well Description Geologic Description Sample Depth (ft) Blows Rec Testing Log Description Diagram No. (ft) per 6 in (in) Data 0 -----0'-----ASPHALT -----0.5'----S-1 0 - 2  $\overline{\mathbf{v}}$ (0 to 0.5'): Asphalt. PID: 0.1 S-1 (0.5 to 2'): Brown, fine to coarse SAND & Concrete - to be ppmv GRAVEL, trace Silt, trace Cobbles, Sub-rounded, completed by others. (0 to Moist. FILL. 1.5') 2" Dia. Sch. 40 CPVC Riser (0.1 to 1.9') 2 S-2 2 - 4 PID: 2.2 S-2 (2 to 4'): Gray, fine to coarse SAND & GRAVEL, ppmv some Clayey Silt. Sub-angular. Moist. FILL. 2" Dia Sch 40 Stainless Steel Well Screen (0.010" FILL 4 Slots) (1.9 to 4.9') S-3 4 - 6 PID: 8.8 S-3 (4 to 6'): Gray, CLAY & SILT, some fine to ppmv coarse Sand, reddish mottling. Sub-angular. Moist. FILL 2" Dia. Sch. 40 CPVC End Cap (4.9 to 5') 6 S-4 6 - 10 PID: 13 S-4A (6 to 7'): Olive brown, SILT & CLAY, some fine ppmv to coarse Sand, little Gravel. Rounded to sub-rounded. Moist. FILL. PID: 47 S-4B (7 to 9'): Gray, CLAY & SILT, trace Gravel, little black staining. Sub-rounded to sub-angular. ppmv 8 SILT & CLAY Moist. PID: 53 PEAT S-4C (9 to 9.4'): Black, CLAY & SILT, some Organic Material (Wood, Roots), trace Metal. Slight petroleum odor. Moist. PEAT. ppmv PID: 43 10 ppmv PID: 77 S-5 10 - 15 ____ S-4D (9.4 to 10'): Olive brown to gray, SILT & CLAY, little Gravel, trace fine to coarse Sand, trace Roots. ppmv Sub-angular to angular. Moist. S-5 (10 to 15'): Gray, SILT & CLAY, brown mottling at 12' bgs. Slight petroleum order at 12' bgs. Moist. 12 SILT & CLAY 14 PID: 96 ppmv S-6 15 - 20 PID: 111 S-6A (15 to 16.7'): Gray, SILT & CLAY, brown ppmv mottling, visible staining at top. Moist. #3 Sand (1.5 to 30') 16 S-6B (16.7 to 17.8'): Grayish brown, SILT & CLAY, little Gravel, trace Sand. Rounded to sub-rounded. PID: 134 ppmv Moist 17.8 18 PID: 2.5 S-6C (17.8 to 20'): Gray, fine to coarse SAND, some ppmv Silt, some Gravel, trace Cobbles. Rounded to sub-rounded. Wet. STREAM DEPOSITS. 20 SAND & S-7A (20 to 21.5'): Gray, SILT & CLAY, little Gravel, trace Sand, trace Cobbles. Rounded to sub-angular. S-7 PID: 36 20 - 25 GRAVEL ppmv Moist, STREAM DEPOSITS. S-7B (21.5 to 22.5'): Fine to coarse SAND, some Gravel, some Silt. Rounded to sub-angular. Wet. PID: 7.9 22 ppmv SAND & GRAVEL -22.5 PID: 1.2 S-7C (22.5 to 25'): Gray, SILT & CLAY, little Gravel ppmv (broken Shale), trace fine to coarse Sand. Angular to sub-angular. Moist. TILL C. 24



# Log of Chimney Well CW-WF-03

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Hand Auger (0 - 7')/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger

Date Started: 08/09/11 Logged By: AVK/JSP/JWC

Date Finished: 08/15/11 Checked By: EMB/JSP

Groundwater Readings											
_		Depth		Depth	Depth	Stab.					
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time					

Sample Information Stratum Depth Well Spoon Pen/ Field **Geologic Description** Well Description Sample Depth Testing (ft) Blows Rec Log Description Diagram No. (ft) per 6 in (in) Data -25'--S-8 (25 to 30'): Gray, hard to moderately hard, very slightly weathered, aphanitic SHALE. 27 - 28.5' S-8 25 - 30 PID: 1.7 ppmv increased Clay weathering. Wet. 26 SHALE 28 30 -30'-Boring terminated at 30 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, 32 calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not 34 detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 36 2. Competent bedrock observed at about 25' bgs. 38 40 42 44 46 48



# Log of Temperature Monitoring Point TMP-BB-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/05/11

Groundwater Readings											
		Depth		Depth							
Date	Time	to Water	Ref. Pt.	of Casing							

Depth of Hole

Stab. Time

oggeo	, <u>,</u>	Sample	e Informa	ation			Stratum		1			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	We Diag		Well Description	
0			perom	(11)	Dala		0'			_		
Ŭ	S-1	0 - 5		5/5			CONCRETE	(0 to 0.8'): Concrete.				
_					PID: 0.7 ppmv		0.8'	S-1A (0.8 to 1.9'): Light brown, fine to coarse SAND, some Gravel, little Silt, trace Cobbles. Sub-rounded	$\neg$		1¼" Dia. CPVC Riser (0 to 29.9')	
						1		to angular. Dry. FILL.	$\times$	$\mathbb{K}$	Portland Cement Grout (1.6 to 30')	
2 —					PID: 22 ppmv	·, ·-		S-1B (1.9 to 5'): Dark brown, fine to coarse SAND, little Silt, trace Gravel, trace Cobbles. Sub-rounded			(1.6 (0 30 )	
_								to sub-angular. Moist. FILL.		$\mathbb{N}$		
							FILL					
4 —						- \/-						
_	S-2	5 - 10		E/E	PID: 0.7			C 24 (E to 6 4!)) Dark brown find to coorde CAND		Ň	Thermocouple installed	
	5-2	5-10		5/5	ppmv			S-2A (5 to 6.4'): Dark brown, fine to coarse SAND, little Gravel, little Silt, trace Cobbles. Sub-rounded to			(5')	
6 —							6.4'	sub-angular. Moist. FILL.				
_					PID: 0.5 ppmv		0.4	S-2B (6.4 to 7.2'): Gray, CLAY & SILT, little fine to coarse Sand, trace Gravel, trace Cobbles. Rounded	$\bigotimes$			
					PID: 0.8 ppmv			to sub-angular. Moist. S-2C (7.2 to 7.8'): Clayey SILT and fine Sand, trace	$\mathbb{X}$	$\mathbb{N}$		
8 —					PID: 0.5 ppmv			Gravel. Sub-rounded. Wet.				
_					PP			S-2D (7.8 to 10'): Gray, CLAY & SILT, trace fine to medium Sand, trace Gravel. Sub-angular. Moist.	$\bigotimes$			
10—	S-3	10 - 15		5/5	PID: 0.9		SILT & CLAY	S-3A (10 to 11.2'): Dark gray, fine SAND and SILT,		Ø	Thermocouple installed	
					ppmv			trace Gravel. Sub-angular. Wet.	Ň	Ň	(10')	
-					PID: 0.7			S-3B (11.2 to 13.6'): Gray & tan, fine SAND and				
12—					ppmv			SILT, trace Gravel. Sub-angular. Moist.				
									×.	$\otimes$		
-												
14—					PID: 0.6 ppmv		13.6'	S-3C (13.6 to 15'): Brown, fine CLAY & SILT, trace medium to coarse Sand, trace Cobbles. Angular.				
					ppini	Pol		Moist.	×.			
_	S-4	15 - 20		5/5	PID: 0.9	0.0		S-4 (15 to 20'): Brown, Clayey SILT, little Gravel,		K	Thermocouple installed (15')	
16—					ppmv			trace Sand, Gray Weathered Bedrock in tip of core barrel. Angular. Moist.			()	
						00						
-						201	TILL					
18—						00						
						201			Ň			
_						00						
20						Port	201					
20	S-5	20 - 25		5/6	PID: 0.4 ppmv		20'	S-5 (20 to 25'): Soft, very severely weathered, gray, aphanitic SHALE with some gravel-sized Shale	Ň	Ň	Thermocouple installed (20')	
_						畐		fragments.	$\mathbb{X}$	$\mathbb{K}$		
22—						Ē	SHALE					
_							J. 7 \LL		$\mathbb{N}$	$\ $		
24—						臣			$\bigotimes$	$\bowtie$		
			1			<u> </u>				NЛ		



# Log of Temperature Monitoring Point TMP-BB-04

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Logged By: EMB/AVK

Date Finished: 08/05/11 Date Started: 08/05/11

Checked By: EMB/JSP

Jonth		Sample	Informa		<b>_</b>		Stratum		Wall	
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
- 26	S-6	25 - 30		5/5	PID: 0.3 ppmv			S-6A (25 to 27'): Soft, very severely weathered, gray, aphanitic SHALE with some gravel-sized Shale fragments.		Thermocouple installed (25')
_ 28—					PID: 0.1 ppmv		SHALE	S-6B (27 to 30'): Moderately hard, moderately weathered, gray, aphanitic SHALE.		
- 30—							30'	Boring terminated at 30 feet. No refusal		
_								encountered.		
32—								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
34 —								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC		
36 —								concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 7.5 ft bgs during		
- 38-								drilling. 3. Weathered bedrrock encountered at about 20.0 ft bgs, more competent bedrock encountered at about 27.0 ft bgs.		
_										
40—										
_										
42										
-										
44 —										
46—										
_										
48—										
-										
50 —	-									Sheet: 2 of 2



# Log of Temperature Monitoring Point TMP-BD-03

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/04/11

Date Finished: 08/04/11

		Sample	Informa	ation		Stratu	m				
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Log Desc		Geologic Description	Well Diagram	Well Description	
0 —	S-1	0 - 5		5/5		CON	0' CRETE	(0 to 1.2'): Concrete.		1¼" Dia. CPVC Riser (( to 40.9')	
2 —					PID: 0.5 ppmv	<u>a</u>	.2'	S-1A (1.2 to 2.9'): Light brown, fine to coarse SAND, some Gravel, trace Cobbles, trace Silt. Rounded to sub-angular. Dry. FILL.		Portland Cement Grout (1.4 to 41')	
- 4					PID: 16 ppmv		ILL	S-1B (2.9 to 5'): Dark brown, fine to coarse SAND & GRAVEL, little Silt, trace Brick. Rounded to angular. Moist. FILL.			
4 _	S-2	5 - 10		5/5	PID: 3.2			S-2A (5 to 6.6'): Dark brown, fine to coarse SAND,		Thermocouple installed (5')	
6 —					ppmv PID: 14	6	5.6'	little Gravel, little Silt, trace Cinders. Rounded to angular. Moist. FILL. S-2B (6.6 to 8.9'): Dark gray, fine to coarse SAND			
8 —					ppmv			and SILT, little Gravel, little Organics. Rounded to angular. Moist. STREAM DEPOSITS.			
-					PID: 0.7 ppmv		REAM OSITS	S-2C (8.9 to 10'): Light brown, fine to coarse SAND, little Gravel, trace Silt. Rounded to angular. Moist. STREAM DEPOSITS.		Th	
10	S-3	10 - 15		5/5	PID: 9.1 ppmv PID: 68	1	11'	S-3A (10 to 11'): Dark gray, fine to coarse SAND and SILT, little Gravel, little Organics. Rounded to sub-angular. Wet. STREAM DEPOSITS.		Thermocouple installed (10')	
12—					PID: 1.7 ppmv			S-3B (11 to 11.9'): Dark gray, CLAY & SILT, trace fine to coarse Sand, trace Gravel. Sub-angular to angular. Wet. S-3C (11.9 to 15'): Gray, Silty CLAY. Wet.			
14 —						SILT	& CLAY				
- 16	S-4	15 - 20		5/3	PID: 64 ppmv			S-4A (15 to 17.9'): Gray, Silty CLAY, trace coarse Sand, trace Gravel. Sub-angular to angular. Wet.		Thermocouple installed (15')	
_											
18					PID: 2 ppmv PID: 11 ppmv	•1 • () • ()	7.9'	S-4B (17.9 to 18.2'): Hard, slightly weathered, light gray, aphanitic SHALE (Cobble). Dry. S-5A (18.2 to 19.5'): Gray, SILT & CLAY, trace Gravel. Sub-rounded to rounded. Moist.			
20—	S-5	20 - 25		5/7	PID: 8.8 ppmv PID: 26 ppmv	о О О О О О	ILL	S-5B (19.5 to 20.3'): Hard, gray & tan, Clayey SILT, little Gravel. Sub-rounded to sub-angular. Dry. S-5C (20.3 to 22.7'): Gray, CLAY & SILT, little fine to coarse Sand, trace Gravel. Sub-rounded to angular. Wet.		Thermocouple installed (20')	
22—							2.7'				
24—					PID: 13 ppmv		2.7' = IALE	S-5D (22.7 to 25'): Soft, very severely weathered, light gray, aphanitic SHALE.			
24											



# Log of Temperature Monitoring Point TMP-BD-03

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** 

Foreman: L. Hunsberger Date Finished: 08/04/11 Date Started: 08/04/11

### Checked By: EMB/JSP

Logae	d By: AV	<th></th> <th>Che</th> <th>cked By: EM</th> <th>B/JSI</th> <th>2</th> <th></th> <th></th> <th></th>		Che	cked By: EM	B/JSI	2			
33-			Informa		<b>,</b>		Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
- 26—	S-6	25 - 30		5/5	PID: 1.5 ppmv			S-6 (25 to 30'): Soft, very severely weathered, gray, aphanitic SHALE.		Thermocouple installed (25')
- 28— -	-									
30— - 32—	S-7	30 - 35		5/5	PID: 0.5 ppmv			S-7 (30 to 35'): Soft, very severely weathered, gray, aphanitic SHALE. Slightly more competent 32.3 - 32.7' and 34.8 - 35'.		Thermocouple installed (30')
	- - S-8	35 - 39		4/4	PID: 1.9		SHALE	S-8 (35 to 39'); Soft, very severely weathered grav		Thermocouple installed
36— - 38—	-				ppmv			S-8 (35 to 39'): Soft, very severely weathered, gray, aphanitic SHALE. More competent zone from 38.6 - 38.9'.		(35')
- 40—	S-9	39 - 41		2/2	PID: 0.6 ppmv		41'	S-9 (39 to 41'): Soft, severely weathered, gray, aphanitic SHALE. Grading more competent with depth.		Thermocouple installed (40')
42	_						41	Boring terminated at 41 feet. No refusal encountered.		
-	-							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
44 - 46								(ppmv) isobutylene-in-air star finding by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		
48	-							<ol> <li>Groundwater observed at about 10 ft bgs during drilling.</li> <li>Weathered bedrock encountered at about 22.7 ft bgs, more competent bedrock not encountered before 41.0 ft bgs.</li> </ol>		



Date Finished: 08/07/11

# Log of Temperature Monitoring Point TMP-BD-05

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11

Groundwater Readings Depth Depth Depth Stab. Date Time to Water Ref. Pt. of Casing of Hole Time

	Logged By: EMB Checked By: E												
Dauth		Sample	Informa				Stratum		Mall				
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagra				
0	S-1	0 - 5		5/5		P A A A	0' CONCRETE 0.7'	(0 to 0.7'): Concrete.		1¼" Dia. Sch. 40 CPVC — Riser (0 to 38')			
2	-				PID: 1.2 ppmv			S-1A (0.7 to 3.5'): Light brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-rounded to sub-angular. Moist. FILL.		Portland Cement Grout (1.5 to 38')			
4	-				PID: 22 ppmv			S-1B (3.5 to 5'): Dark brown, fine to coarse SAND, little Gravel, little Silt. Sub-rounded to sub-angular. Moist. FILL.		-			
6	S-2	5 - 10		5/5	PID: 91 ppmv		FILL	S-2A (5 to 8.2'): Dark brown to black, fine to coarse SAND, little Gravel, little Silt. Sub-rounded to sub-angular. Wet. Strong odor and black staining from 7.2 - 8.2' bgs. FILL.		Thermocouple installed - (5')			
8-	-				PID: 162 ppmv			S-2B (8.2 to 10'): Olive gray, fine to medium SAND, little Silt, trace Gravel. Sub-rounded to angular. Wet. FILL.		-			
	S-3	10 - 15		5/5	PID: 8.5 ppmv		10'	S-3 (10 to 15'): Gray, Silty CLAY, trace Gravel. Sub-rounded. Wet.		Thermocouple installed — (10') –			
12-	-						SILT & CLAY			-			
14-	- - 	15 - 20		5/5	PID: 76			S-4A (15 to 16.1'): Gray with red mottling, Silty					
16-	-	13 - 20		3/3	PID: 2.8 ppmv		16.1'	CLAY. Moist. S-4B (16.1 to 20'): Olive gray, CLAY & SILT and Gravel, trace Sand. Large Cobble from 18.5 - 20'		(15) —			
18-	-					0000		bgs (gray Shale). Sub-rounded to angular. Moist.		-			
20-	S-5	20 - 25		5/6	PID: 48	0000	TILL	S-5A (20 to 23.8'): Olive gray, CLAY & SILT, little		- Thermocouple installed (20')			
	_				ppmv			Gravel, trace Sand. Sub-rounded to angular. Moist.		-			
	_					0000				-			
24-	_				PID: 23 ppmv		23.8' SHALE	S-5B (23.8 to 25'): Soft, very severely weathered, gray, aphanitic SHALE. Gravel-sized competent Shale fragments.					



Date Finished: 08/07/11

## Log of Temperature Monitoring Point TMP-BD-05

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Foreman: L. Hunsberger

Date Started: 08/07/11

Groundwater Readings												
		Depth		Depth	Depth	Stab.						
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time						

Logged By: EMB Checked By: EMB/JSP Sample Information Stratum Depth Well Spoon Pen/ Field **Geologic Description** Well Description Depth Sample (ft) Blows Rec Testing Log Description Diagram No. (ft) per 6 in (in) Data Thermocouple installed S-6 25 - 30 5/5 PID: 0.9 S-6 (25 to 30'): Soft, very severely weathered, gray, (25') ppmv aphanitic SHALE. Gravel-sized competent Shale fragments. 26 28 S-7 (30 to 35'): Soft, very severely weathered, gray, aphanitic SHALE. Gravel to Cobble-sized Shale fragments. 30 Thermocouple installed S-7 30 - 35 5/5 PID: 1.1 (30') vmqq 32 SHALE 34 Thermocouple installed S-8 35 - 39 4/4 PID: 0.6 S-8A (35 to 38.5'): Medium hard, severely (35') weathered, gray, aphanitic SHALE, more intact Shale pieces than above. ppmv 36 38 Formation Material (38 to PID: 0.7 S-8B (38.5 to 39'): Medium hard, moderately 39') ppmv -39'----weathered, gray, aphanitic SHALE. Boring terminated at 39 feet. No refusal encountered. 40 NOTES 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, 42 calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID 44 screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 8 ft bgs during 46 drilling. 3. Weathered bedrock encountered at about 23.8 ft bgs, more competent bedrock encountered at about 38.5 ft bgs. 48



# Log of Temperature Monitoring Point TMP-BD-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/05/11 D

### Date Finished: 08/05/11 Checked Bv: EMB/JSP

		Sample	e Informa	ation			Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 –	S-1	0 - 5				7 9 4 4	0' CONCRETE	(0 to 1.1'): Concrete.		1¼" Dia. Sch. 40 CPVC Riser (0 to 33')
_ 2 —					PID: 0.5 ppmv		1.1'	S-1A (1.1 to 3.3'): Brown, fine to coarse SAND, little Gravel, little Cobbles, little Silt. Rounded to angular. Dry. FILL.		Portland Cement Grout to 33')
4 —					PID: 3 ppmv			S-1B (3.3 to 5'): Dark brown, fine to coarse SAND, little Silt, little Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		
6 —	S-2	5 - 10			PID: 2.4 ppmv		FILL	S-2A (5 to 7.7'): Dark brown, fine to coarse SAND, little Silt, little Gravel, trace Cobbles. Rounded to sub-rounded. Moist. FILL.		Thermocouple installed (5')
					PID: 1.4 ppmv			S-2B (7.7 to 10'): Fine to coarse SAND and SILT, trace Gravel, trace Cobbles. Sub-rounded to angular. Wet. FILL.		
0	S-3	10 - 15			PID: 0.5 ppmv		10'	S-3A (10 to 11.9'): Dark gray, fine SAND and SILT, trace Gravel. Sub-angular. Wet.		Thermocouple installed (10')
2—					PID: 0.5 ppmv		SILT & CLAY	S-3B (11.9 to 15'): Gray & tan, SILT & CLAY with reddish mottling, trace Gravels, trace medium to coarse Sand, trace Cobbles. Sub-angular to angular. Moist.		
4—	8.4	15 20					15'	S = 4/4E to 20% Light grow 8 ton modium to opprop		Thermocouple installed
6—	S-4	15 - 20			PID: 0.6 ppmv			S-4 (15 to 20'): Light gray & tan, medium to coarse SAND, little Silt & Clay, little Gravel, little Cobbles. Angular. Dry.		(15')
8							TILL			
0	S-5	20 - 25			PID: 0.3 ppmv PID: 0.4		21'	S-5A (20 to 21'): Light gray & tan, fine to coarse SAND, little Silt & Clay, trace Gravel, trace Cobbles. Sub-angular to angular. Moist.		Thermocouple installed (20')
2—					ppmv			S-5B (21 to 22.9'): Medium hard, moderately weathered, gray, aphanitic SHALE with gravel-sized Shale fragments.		
- 4					PID: 0.3 ppmv		SHALE	S-5C (22.9 to 25'): Soft, very severely weathered, gray, aphanitic SHALE.		



# Log of Temperature Monitoring Point TMP-BD-06

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

 Foreman: L. Hunsberger

 Date Started: 08/05/11
 Date

# Date Finished: 08/05/11

Logge	ed By: EM	B/AVK		Che	ecked By: EM	B/JS	P			
Dest		Sample	Inform				Stratum		144	
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
26-	- S-6	25 - 30			PID: 0.3 ppmv			S-6A (25 to 28.7'): Soft, severely weathered, gray, aphanitic SHALE.		Thermocouple installed (25')
28-	-				PID: 0.4 ppmv			S-6B (28.7 to 30'): Very soft, severely weathered, light brown, aphanitic SHALE.		-
30-	S-7	30 - 35			PID: 0.3 ppmv		SHALE	S-7A (30 to 33.9'): Very soft, severely weathered, light brown, aphanitic SHALE, with some gravel-sized Shale fragments.		Thermocouple installed — (30')
34-	-				PID: 0.6			S-7B (33.9 to 35'): Hard, slightly weathered, gray,		Formation Material (33 to
36-	_				ppmv		35'	aphanitic SHALE. Boring terminated at 35 feet. No refusal encountered.		- 35') 
38-	-							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID		-
40-	-							measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		-
42-	-							<ol> <li>Groundwater observed at about 7.7 ft bgs during drilling.</li> <li>Weathered bedrock encountered at about 21.0 ft bgs, more competent bedrock encountered at about 33.9 ft bgs.</li> </ol>		-
44	-									-
46-	-									-
48-	-									-

50



# Log of Temperature Monitoring Point TMP-BE-02

Ref. Pt.

Depth of Casing Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 10/31/11

Date Finished: 10/31/11 Checked Bv: EMB/JSP

Logge	d By: AV	к		Che	cked By: EM	B/JSI	2				
<b>D</b>		Sample	Informa				Stratum				
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description	
2 —										1¼" Dia. CPVC Riser (1 to 22.4')	
4	S-2	5 - 10			PID: 1.4 ppmv		FILL	S-2 (5 to 10'): Dark brown - blackish, fine to coarse SAND & GRAVEL. Sub-angular. Moist. FILL. (Wet at approximately 9.4 ft bgs.).		Thermocouple installed (5')	
- 8 — -											
10	S-3	10 - 17.7			PID: 1.7 ppmv		10'	S-3 (10 to 17.7'): Gray, SILT & CLAY. Moist. SILT & CLAY.		Thermocouple installed (10')	
12— - 14—							SILT & CLAY			Portland Cement Grout (1 to 22.5') Thermocouple installed	
16										(15')	
18—	S-4	17.7 - 20			PID: 1.2 ppmv		17.7'	S-4 (17.7 to 20'): Light gray, Clayey SILT, little medium to coarse Sand, and Gravel, trace Cobbles, trace Weathered SHALE.			
20 — - 22 —	S-5	20 - 22.5			PID: 0.5 ppmv	777777	WEATHERED BEDROCK	S-5 (20 to 22.5'): Soft, severely weathered, aphanitic SHALE. Moist. Weathered BEDROCK.		Thermocouple installed (20')	
_						1 1	22.5'	Boring terminated at 22.5 feet. No refusal encountered.	<u></u>		
24								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume			



# Log of Temperature Monitoring Point TMP-BE-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 10/31/11 Date Fi

Date Finished: 10/31/11 Checked Bv: EMB/JSP

		Sample	Informa	tion		Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Well Diagram	Well Description
26 — _ 28 —							(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
_							<ul><li>results can serve as a relative indicator for the presence of VOCs.</li><li>2. Groundwater observed at about 9.5 feet bgs during drilling.</li></ul>		
30							<ol> <li>Severely Weathered bedrock observed at about 20 feet bgs.</li> </ol>		
32—									
- 34 —									
-									
36 —									
38 —									
- 40—	-								
-									
42									
44									
46 —									
_									
48									
50—									



## Log of Temperature Monitoring Point TMP-BF-05

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 10/29/11 Logged By: AVK

Date Finished: 10/30/11 Checked Bv: EMB/JSP

.ogge	d By: AV				cked By: EM	IB/JSI	P			
epth		· ·	Informa		Field		Stratum		Well	
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Testing Data	Log	Description	Geologic Description	Diagram	Well Description
- 2 — 4 —	-									1¼" Dia. CPVC Riser (1 to 22.5')
- 6	-						FILL			Thermocouple installed (5')
8 — - 10 —	S-2	9.5 - 18.1			PID: ND		9.5'	S-2 (9.5 to 18.1'): Gray & tan, SILT & CLAY, little Gravel, trace Cobbles, trace, weathered, gray,		Thermocouple installed
- 12—								aphanitic SHALE. Sub-angular Moist. TILL.		(10') Portland Cement Grout ( to 22.6')
14— - 16— -	-						SILT & CLAY			Thermocouple installed (15')
18	S-3	18.1 - 20			PID: 18 ppmv		18.1'	S-3 (18.1 to 20'): Gray, SILT & CLAY and fine to coarse Sand, some Gravel. Moist.		
20 —	S-4	20 - 21					TILL	(20 to 21'): No recovery.		Thermocouple installed (20')
- 22—	S-5	21 - 22.6			PID: 69 ppmv	0 47 47 4	WEATHERED BEDROCK	S-4 (21 to 22.6'): Gray, soft, severely weathered, aphanitic SHALE. Dry. ROCK.		
- 24	-						22.6'	Boring terminated at 22.5 feet. No refusal encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		



## Log of Temperature Monitoring Point TMP-BF-05

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 10/29/11 Date Finished: 10/30/11

Depth	Sample	Depth	Informa	Pen/	Field		Stratum	Geologic Description	Well	Well Description
(ft)	No.	(ft)	Blows per 6 in	Rec (in)	Testing Data	Log	Description		Diagram	
26— - 28— -								<ul> <li>(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Groundwater observed at about 9.5 feet bgs during drilling.</li> </ul>		
30—	-							<ol> <li>Severely Weathered bedrock observed at about 21 feet bgs.</li> </ol>		
32—	-									
-										
34 —										
- 36—										
- 30										
38—										
-	-									
40—										
- 42										
-	-									
44 —	-									
-										
46—										
-48										
-										
50—										

Sheet: 2 of 2



### Log of Temperature Monitoring Point TMP-BF-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/06/11

Date Finished: 08/07/11 Cheeked By EMB/ ICD

		Sample	e Informa	ation			Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 5	•	5/5			0' CONCRETE	(0 to 0.7"): Concrete.		1¼" Dia. Sch. 40 CPV( Riser (0 to 43')
- 2 —					PID: 5.9 ppmv		0.7'	S-1A (0.7 to 4.1'): Light brown, fine to coarse SAND, some Silt, some Gravel, little Cobbles. Rounded to angular. Dry. FILL.		Portland Cement Grout (1.5 to 43')
- 4 — -	S-2	5 - 10		5/3	PID: 9.2 ppmv PID: 3.7		FILL	S-1B (4.1 to 5'): Dark brown, fine to coarse SAND, some Gravel, little Silt. Rounded to sub-angular. Moist. FILL.		Thermocouple installed
6 — _					ppmv		7.3'	S-2 (5 to 7.3'): Brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to sub-angular. Moist. FILL.		(5')
8 —						A P A A	CONCRETE	(7.3 to 8.2'): Concrete.		
_						<u>174 - 19</u>	8.2'	(8.2 to 10'): No recovery.		
0— 2—	S-3	10 - 15		5/5	PID: 1.8 ppmv		10'	S-3 (10 to 15'): Gray, CLAY & SILT. Moist.		Thermocouple installed (10')
-4							SILT & CLAY			Thermocouple installed
I6— _	S-4	15 - 20		5/5	PID: 3.3 ppmv			S-4A (15 to 17.1'): Gray & tan, CLAY & SILT with reddish mottling. Moist.		(15')
8—					PID: 17 ppmv		17.1'	S-4B (17.1 to 20'): Gray & tan, Clayey SILT, some medium to coarse Sand, trace Gravel. Sub-angular to angular. Dry.		
-						00	TILL			
20 —	S-5	20 - 25		5/5	PID: 52 ppmv PID: 51		20.9'	S-5A (20 to 20.9'): Gray, SILT & CLAY and fine to coarse Sand, some Gravel. Moist. S-5B (20.9 to 25'): Very soft, very severely		Thermocouple installed (20')
2—					ppmv			weathered, gray, aphanitic SHALE.		
							SHALE			
24 —										

Sheet: 1 of 3



### Log of Temperature Monitoring Point TMP-BF-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/06/11 Date

# Date Finished: 08/07/11

Logged By: AVK/EMB Checked By: EMB/JSP Sample Information Stratum											
Dauth		Sample					Stratum		M/- II		
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description	
- 26	S-6	25 - 30		5/5	PID: 63 ppmv			S-6 (25 to 30'): Very soft, very severely weathered, gray, aphanitic SHALE. Wet from 28.2 to 30' bgs.		Thermocouple installed (25')	_
- 28—											-
30—	S-7	30 - 35		5/5	PID: 30 ppmv			S-7 (30 to 35'): Soft, severely weathered, gray, aphanitic SHALE. Wet from 33.2 - 34.1' bgs. More competent from 31.3 - 32.4' bgs.		Thermocouple installed (30')	_
32											_
34— - 36—	S-8	35 - 40		5/5	PID: NA		SHALE	S-8 (35 to 40'): Soft, severely weathered, gray, aphanitic SHALE.		Thermocouple installed (35')	_
- 38—											_
40—	S-9	40 - 44		4/4	PID: 0.9 ppmv			S-9A (40 to 43.1'): Medium hard, severely weathered, gray, aphanitic SHALE.		Thermocouple installed (40')	_
42— 					PID: 1.1 ppmv		44'	S-9B (43.1 to 44'): Hard, slightly weathered, gray, aphanitic SHALE. Boring terminated at 44 feet. No refusal		Formation Material (43 to 44')	, ,
- 46 48								encountered. NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative layels of VOCs. Although PID			_
								measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		Sheet: 2 of 3	_



## Log of Temperature Monitoring Point TMP-BF-06

Ref. Pt.

Depth of Casing Depth of Hole Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/06/11 Date Finished: 08/07/11

Checked By: EMB/JSP Logged By: AVK/EMB Sample Information Stratum Well Depth Field Spoon | Pen/ Well Description **Geologic Description** Sample Depth Testing Log Description (ft) Blows Rec Diagram No. (ft) per 6 in (in) Data 50 presence of VOCs. 2. Groundwater observed at <10 ft bgs during drilling (no recovery from 8.2 - 10 ft bgs). 3. Weathered bedrock encountered at about 25.0 ft bgs, more competent bedrock encountered at about 43.1 ft bgs. 52 54 56 58 60 62 64 66 68 70 72 74



### Log of Temperature Monitoring Point TMP-BF-08

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/05/11 Date Lagrand Big AV///EMB

# Date Finished: 08/06/11

Logge	d By: AV	(/EMB		Che	cked By: EM	B/JSF	Р			
Denth		Sample	Informa				Stratum		14/-11	
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 5		5/5			0' CONCRETE	(0 to 0.7'): Concrete.		1¼" Dia. Sch. 40 CPVC Riser (0 to 30')
2 —					PID: 1.9 ppmv		0.7'	S-1A (0.7 to 2.8'): Brown, fine to coarse SAND, little Gravel, little Cobbles, trace Silt. Rounded to sub-angular. Moist. FILL.		Portland Cement Grout (1.2 to 30')
- 4					PID: 10 ppmv		FILL	S-1B (2.8 to 4.6'): Dark brown, fine to coarse SAND, little Silt, trace Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		-
_		<b>F</b> 40					CONCRETE	(4.6 to 5'): Concrete. FILL.		Thermocouple installed
6 —	S-2	5 - 10			PID: 5.7 ppmv		FILL	S-2A (5 to 7.5'): Dark brown, fine to coarse SAND, little Silt, trace Gravel, trace Cobbles. Sub-rounded. Moist. FILL.		(5')
8 —					PID: 3.1 ppmv		7.5'	S-2B (7.5 to 10'): Gray, CLAY & SILT, some fine to coarse Sand, trace Gravel, trace Cobbles. Sub-angular to angular. Moist.		-
10	S-3	10 - 15			PID: 1.9 ppmv			S-3A (10 to 11.2'): Dark gray, fine SAND and SILT, trace Gravel. Sub-angular. Wet.		Thermocouple installed - (10')
12—							SILT & CLAY			-
14—										-
	S-4	15 - 20		5/5	PID: 2.4 ppmv PID: 4.5		15.7'	S-4A (15 to 15.7'): Gray, Silty CLAY with reddish mottling. Moist.		(15')
16—					ppmv	0000		S-4B (15.7 to 20'): Clayey SILT and fine to coarse Sand, trace Gravel, trace Cobbles. Sub-rounded to angular. Dry.		-
18										-
20	S-5	20 - 25		5/5	PID: 3.3 ppmv	00000	TILL	S-5A (20 to 23.8'): Clayey SILT, some fine to coarse Sand, trace Gravel, trace Cobbles. Sub-angular to angular. Moist.		Thermocouple installed - (20')
22—										-
24—					PID: 2.1 ppmv		23.8' SHALE	S-5B (23.8 to 25'): Very soft, severely weathered, aphanitic, light gray SHALE.		-



### Log of Temperature Monitoring Point TMP-BF-08

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Foreman: L. Hunsberger

Date Started: 08/05/11 Date Finished: 08/06/11 Logged By: AVK/EMB

Checked By: EMB/JSP

		Sample	Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
- 26	S-6	25 - 30		5/5	PID: 1.2 ppmv			S-6A (25 to 28.4'): Very soft, severely weathered, aphanitic, light gray SHALE.		Thermocouple installed (25')
28					PID: 1.3 ppmv		SHALE	S-6B (28.4 to 30'): Medium hard, moderately weathered, gray, aphanitic SHALE.		
30—	-						30'	Boring terminated at 30 feet. No refusal encountered.		
	-							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000		
- 34 —								Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		
36—								screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Groundwater observed at about 7.5 ft bgs during drilling.		
38—	-							3. Weathered bedrock encountered at about 23.8 ft bgs, more competent bedrock encountered at about 28.4 ft bgs.		
40—	-									
42—										
_										
44 —										
46										
48—										
_50—										



### Log of Temperature Monitoring Point TMP-CC-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

0000	d By: EM	2		Cha	cked By: EM	IR/ ICI	-			
oyye	и ву. сімі		Inform		CREU DY. EN	-				
epth (ft)	Sample No.	Depth (ft)	Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Stratum Description	Geologic Description	Well Diagram	Well Description
0	S-1	0 - 6.5	P	7/7	PID: 2.2 ppmv		0' CONCRETE 0.7'	(0 to 0.7'): Concrete. S-1A (0.7 to 4.4'): Light brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-angular to rounded.		1¼" Dia. Sch. 40 CPVC Riser (0 to 25')
2 —					ppmv		FILL	A GRAVEL, trace Sitt. Sub-angular to founded. Moist. FILL.		Portland Cement Grout (1.5 to 25')
4 —					PID: 5.7 ppmv		4'	S-1B (4.4 to 6.5'): Light gray, Concrete. Dry. FILL.		Thermocouple installed
6 —	S-2	6.5 - 10		3/3	PID: 1.1 ppmv		CONCRETE	S-2 (6.5 to 10'): Gray, CLAY & SILT. Moist.		(5')
8							SILT & CLAY			There equals installed
0	S-3	10 - 15		5/5	PID: 1.5 ppmv			S-3A (10 to 11.9'): Olive gray, CLAY & SILT, red mottling. Wet.		Thermocouple installed (10')
2—					PID: 1.3 ppmv		11.9'	S-3B (11.9 to 15'): Tan & gray, SILT & CLAY, little Gravel. Angular to rounded Moist.		
4— 6—	S-4	15 - 20		5/5	PID: 1.7 ppmv		TILL	S-4 (15 to 20'): Olive tan, Clayey SILT, little Gravel. Round to angular Moist. Wet from 16.9 - 18.4' bgs.		Thermocouple installed (15')
-	S-5	20 - 25		5/6	PID: 1.3 ppmv PID: 1.7		20.1'	S-5A (20 to 20.1'): Olive tan, Clayey SILT, some Gravel. Sub-angular to angular. Moist.		Thermocouple installed (20')

SHALE

22-

24

Sheet: 1 of 2



### Log of Temperature Monitoring Point TMP-CC-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Foreman: L. Hunsberger

Date Started: 08/08/11 Date Finished: 08/08/11 Logged By: EMB

Checked By: EMB/JSP

Party Mode         Depth         Biology Bio	Logge	d By: EM		Inform		ecked By: EM					
(ii)         iii)         Box Res In Unit         Testing Incom         Data         Long Construction         Degram         Construction           28         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>Depth</th><th>Sample</th><th></th><th>Spoon</th><th>Pen/</th><th></th><th></th><th>Stratum</th><th>Geologic Description</th><th></th><th>Well Description</th></t<>	Depth	Sample		Spoon	Pen/			Stratum	Geologic Description		Well Description
28	(ft)		(ft)	Blows per 6 in	Rec (in)	Testing Data	Log	Description	p	Diagram	P
28-       Image: State in the	-							25'			
22-       -         23-       -         24-       -         25-       -         26-       -         27-       -         28-       -         29-       -         20-       -         20-       -         21-       -         22-       -         23-       -         24-       -         25-       -         26-       -         27-       -         28-       -         29-       -         20-       -         21-       -         22-       -         23-       -         24-       -         25-       -         26-       -         27-       -         28-       -         29-       -         29-       -         29-       -         29-       -         29-       -         29-       -         29-       -         29-       -         29-       -	26										
22	20								NOTES:		
22       Photoinization Detector (PD) with a 10.6 eV amp, classing to 10.6 eV amp, classing to a 10.6 eV amp, classi	-	-							compounds (VOCs) using a MiniRae3000		
<ul> <li>(primi skuk/#ene-#-si skuk/ard using a representation in prime, the indication of a prime, the prime, and the indication of a prime, the indication of a prime, the indication of a prime, the prime, and the prime, and</li></ul>	28—	-							calibrated to a 100 parts per million by volume		
30-     according to a second se									factor of 1.0. Results are presented in pomy: the		
30	-								detected. NA indicates not available. The PID		
32	30 —	-							screening cannot be used directly to quantify VOC		
32       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -									results can serve as a relative indicator for the		
									2. Groundwater observed at about 7.5 ft bgs during		
36	32 —								aniling.		
36	_	-									
36											
$ \begin{array}{c}                                     $	34										
$ \begin{array}{c}                                     $	-	-									
$ \begin{array}{c}                                     $	36 —	-									
	-	-									
	38—	-									
	-	-									
	40—	-									
	-	-									
	42										
	74 -										
	-	-									
	44 —	-									
	_										
	46 —	-									
	-	-									
	48	1									
	-										
	_50—										



Date Finished: 08/09/11

### Log of Temperature Monitoring Point TMP-CE-07

Depth of Hole Stab. Time

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/09/11

Date	Time	Depth to Water	Ref. Pt.	Depth of Casing

**Groundwater Readings** 

_ogge	d By: AV	ĸ			ecked By: EME					
		Sample	e Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0	S-1	0 - 2			PID: 0.8 ppmv		0'	(0 to 0.4'): Asphalt. S-1 (0.4 to 2'): Dark brown, fine to coarse SAND & GRAVEL, trace Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		1¼" Dia. Sch. 40 CPVC Riser (0 to 22') Portland Cement Grout
2 —	S-2	2 - 4			PID: 0.3 ppmv		FILL	S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, little Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		(1.5 to 22')
4 —	S-3 S-4	4 - 6 5 - 10		 5/5	PID: 0.5 ppmv			S-3 (4 to 6'): Dark brown, fine to coarse SAND & GRAVEL, some Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Wet. FILL.		Thermocouple installed (5')
6 —	-				PID: 1 ppmv		6'	S-4A (6 to 9.2'): Gray, CLAY & SILT with orange mottling. Wet. SILT & CLAY. Water table at 5' bgs.		
8 — - 10—	S-5	10 - 15		5/4	PID: 1.2 ppmv PID: 1.1 ppmv		SILT & CLAY	S-4B (9.2 to 10'): Tan & gray, Clayey SILT, trace Gravel, trace Sand. Sub-angular to round. Moist. TILL. S-5 (10 to 15'): Tan & gray, Clayey SILT, little		Thermocouple installed (10')
- 12— - 14—	-						TILL	Gravel, trace Sand. Sub-rounded to angular Wet. TILL. Very wet above 12.1' bgs.		
- 16—	S-6	15 - 20		5/5	PID: 2.6 ppmv			S-6A (15 to 16.8'): Tan & gray, Clayey SILT, little Gravel, trace Sand. Sub-rounded to angular Moist. TILL.		Thermocouple installed (15')
- 18—					PID: 3.6 ppmv		16.8'	S-6B (16.8 to 20'): Soft, severely weathered, gray, aphanitic SHALE with fragments of hard, slightly weathered Shale.		
20	S-7	20 - 22		2/2	PID: 1.4 ppmv		SHALE	S-7 (20 to 22'): Soft, severely weathered, gray, aphanitic SHALE with increasing portions of hard, slightly weathered Shale.		Thermocouple installed (20')
22—							22'	Boring terminated at 22 feet. No refusal encountered.		
24—	-							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		



Date Finished: 08/09/11

### Log of Temperature Monitoring Point TMP-CE-07

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/09/11

Groundwater Readings Depth Depth Depth Stab. Date Time to Water Ref. Pt. of Casing of Hole Time

	d By: AV			Che	ecked By: EN	IB/JSI	Р			
		Sample	e Informa	ation			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
- 26— - 28—	-							calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		-
-	-									
30—	-									-
-	-									
32—										-
-	-									
34 —	-									-
-	-									
36—	-									-
-	_									
38—	-									-
-	-									
40—	-									-
-	-									
42—	-									-
-	-									
44 —	-									-
-										
46—	-									-
-										
48—	-									-
-	-									
_50	_									



### Log of Temperature Monitoring Point TMP-CF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Groundw	Groundwater Readings														
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time									

ogge	d By: AV	·			ecked By: EM					
		Sample	Informa			Stratum				
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —							0'			1¼" Dia. Sch. 40 CPVC
-	S-1	0 - 2			PID: 1 ppmv			(0 to 0.4'): Asphalt. S-1 (0.4 to 2'): Brown, fine to coarse SAND & GRAVEL, trace Cobbles, trace Silt. Sub-rounded to sub-angular. Moist. Secondary asphalt layer at 1' bgs. FILL.		Riser (0 to 23') Portland Cement Grout
2	S-2	2 - 4			PID: 0.4 ppmv		FILL	S-2 (2 to 4'): Brown, fine to coarse SAND and Gravel, little Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		(1.5 to 23')
4 —	S-3	4 - 6			PID: 0.9 ppmv			S-3 (4 to 6'): Gray, SILT & CLAY, some fine to coarse Sand, some Gravel. Sub-rounded to angular. Wet. FILL.		Thermocouple installed
6 —	S-4	5 - 10		5/5						(5')
-					PID: 1.9 ppmv		6.5'	S-4A (6 to 6.5'): Gray, SILT & CLAY and fine to coarse Sand, some Gravel. Sub-rounded to angular. Wet. FILL.		
8 —								S-4B (6.5 to 10'): Gray, SILT & CLAY with orange mottling. Wet.		
-							SILT & CLAY			
10—	S-5	10 - 15		5/5	PID: 0.7 ppmv PID: 0.8		10.2'	S-5A (10 to 10.2'): Gray, SILT & CLAY with orange mottling. Wet.		Thermocouple installed (10')
- 12—					ppmv			S-5B (10.2 to 15'): Tan & gray, SILT & CLAY, little Gravel, trace Sand. Angular. Moist.		
- 14 —							TILL			
- 16—	S-6	15 - 20		5/5	PID: 1.6 ppmv			S-6A (15 to 18.2'): Tan & gray, SILT & CLAY, little Gravel, trace Sand. Angular. Wet.		Thermocouple installed (15')
-										
18					PID: 3.3 ppmv		18.2'	S-6B (18.2 to 20'): Soft, very severely weathered, gray, aphanitic SHALE with hard, slightly weathered Shale fragments.		
20 —	S-7	20 - 23		3/	PID: 4.3 ppmv		SHALE	S-7 (20 to 23'): Soft, very severely weathered, gray, aphanitic SHALE with hard, slightly weathered Shale fragments.		Thermocouple installed (20')
- 22 <i>-</i>										
-							23'	Boring terminated at 23 feet. No refusal encountered.		
24 —								Giountereu.		



Date Finished: 08/09/11

### Log of Temperature Monitoring Point TMP-CF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/09/11

Groundwater Readings Depth Depth Depth Stab. Date Time to Water Ref. Pt. of Casing of Hole Time

Logge	d By: AVk			Che	ecked By: EM	B/JS	Р			
		Sample	e Information Stratum				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
								NOTES:		
- 26—								<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID</li> </ol>		-
28—								detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		-
30—	-							2. Groundwater observed at about 4.5 ft bgs during vacuum-assisted excavation.		_
-	-									-
32—	-									_
-	-									-
34 —	-									_
-	-									-
36—	-									_
-										=
38—										_
-										-
40—										_
-										-
42										_
44 —										_
										-
46—										_
_										-
48										_
										Sheet: 2 of 2



## Log of Temperature Monitoring Point TMP-CG-07

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Foreman: L. Hunsberger
Date Started: 08/07/11
Date Finished: 08/07/11
Lagrand Put AVK

Groundwa	ater Rea	adings				
<b>B</b>	-	Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time

Logge	d By: AVł	<b>(</b>			ecked By: EM					
			Informa	Information			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0	S-1	0 - 2			PID: 0.2 ppmv		0'	S-1 (0 to 2'): Dark brown, fine to coarse SAND, some Gravel, trace Silt, trace Cobbles. Sub-angular. M. FILL.		1¼" Dia. Sch. 40 CPVC Riser (0 to 22')
2 —	S-2	2 - 4			PID: 0.2 ppmv		FILL	S-2 (2 to 4'): Gray, SILT & CLAY and fine to coarse Sand, some Gravel, little Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Portland Cement Grout (1.5 to 22')
4 —	S-3	4 - 6			PID: 0.7 ppmv			S-3 (4 to 6'): Gray, SILT & CLAY with little reddish mottling. Moist. FILL.		
-	S-4	5 - 10		5/4		$\overline{(}, \overline{(}, \overline{(}$				Thermocouple installed (5')
6 —					PID: 0.4 ppmv		6'	S-4A (6 to 8.8'): Gray & tan, Silty CLAY with orange mottling. Moist.		
8					PID: 0.3 ppmv		8.8'	S-4B (8.8 to 10'): Gray & tan, CLAY & SILT, little Gravel, trace Sand. Sub-angular to rounded. Moist.		
10	S-5	10 - 15		5/4	PID: 0.5 ppmv			S-5 (10 to 15'): Olive gray, CLAY & SILT, some Gravel, trace Sand. Sub-angular to rounded. Very Wet.		Thermocouple installed (10')
12—							TILL			
14—	S-6	15 - 20		5/5	PID: 1.8 ppmv			S-6A (15 to 16.7'): Olive gray, CLAY & SILT, some Gravel, trace Sand. Sub-angular to rounded. Very		Thermocouple installed (15')
16—					PID: 3 ppmv		16.7'	S-6B (16.7 to 18.4'): Moderately hard, moderately		
18								weathered, gray, aphanitic SHALE.		
-					PID: 1.7 ppmv		SHALE	S-6C (18.4 to 20'): Soft, severely weathered, gray, aphanitic SHALE.		
20	S-7	20 - 22		2/2	PID: 0.9 ppmv			S-7 (20 to 22'): Moderately hard, moderately weathered, gray, aphanitic SHALE.		Thermocouple installed (20')
22—							22'	Boring terminated at 22 feet. No refusal encountered.		
24—								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		



### Log of Temperature Monitoring Point TMP-CG-07

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11

Date Finished: 08/07/11

Groundv	vater Rea	adings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

	d By: AVK	/07/11 (			e Finished: ( cked By: EN						
-33	_ <b>_</b>		Information Stratum								
epth ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description	
_ 26 — _								calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the			
28								results can serve as a relative indicator for the presence of VOCs. 2 Groundwater observed at about 4.5 ft bgs during vacuum-assisted excavation.			
60								<ol> <li>Weathered bedrock encountered at about 16.7 ft bgs, more competent bedrock encountered at about 20 ft bgs.</li> </ol>			
_											
2											
ı —											
_											
; <u> </u>											
-											
;											
)—											
_											
-											
_											
;											
_											



Date Finished: 08/07/11

### Log of Temperature Monitoring Point TMP-TB-02

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11

Groundwa	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time

	tarted: 08 d By: AV				e Finished: 0 cked By: EN					
55-			e Informa			-	Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2				<b>.</b> .	ASPHALT	(0 to 0.3'): Asphalt.		1¼" Dia. Sch. 40 CPVC
-	-				PID: 0.6 ppmv		0.0	S-1 (0.3 to 2'): Brown, fine to coarse SAND & GRAVEL, little Silt, little Cobbles. Rounded to sub-angular. Moist. FILL.		Riser (0 to 25') Portland Cement Grout (1.5 to 25')
2 —	S-2	2 - 4			PID: 0.4 ppmv			S-2 (2 to 4'): Fine to coarse SAND and Silt & Clay, little Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		(1.0 10 20)
4 —	S-3	4 - 6			PID: 0.6 ppmv		FILL	S-3 (4 to 6'): Fine to coarse SAND & GRAVEL, little Cobbles (brick), little Silt. Sub-rounded to sub-angular. Moist. FILL.		-
6 —	S-4	5 - 10		5/4						Thermocouple installed (5')
8 —					PID: 5.0 ppmv			S-4A (7 to 9.5'): Dark brown, fine to coarse SAND, little Gravel, trace Silt. Sub-rounded to angular. Wet. FILL.		-
-					PID: 1.3		9.5'	S-4B (9.5 to 10'): Gray, CLAY & SILT. Wet.	-88	
10	S-5	10 - 15		5/5	ppmv PID: 0.9 ppmv			S-5A (10 to 14.3'): Olive gray, Silty CLAY with orange mottling. Wet.		Thermocouple installed - (10')
12—	-						SILT & CLAY			-
14—	-				PID: 0.6		14.3'	S-5B (14.3 to 15'): Tan & gray, SILT & CLAY, little		-
- 16	S-6	15 - 20		5/5	ppmv PID: 2.2 ppmv			Gravel, trace Sand. Sub-rounded to angular. Wet. S-6 (15 to 20'): Tan & gray, SILT & CLAY, little Gravel, trace Sand. Sub-rounded to angular. Moist.		Thermocouple installed (15')
- 18—	-						TILL			
-										
20	S-7	20 - 25		5/5	PID: 1.0 ppmv		20'	S-7A (20 to 22.9'): Soft, severely weathered, gray, aphanitic SHALE.		Thermocouple installed - (20')
22—							SHALE			-
- 24					PID: 0.8 ppmv			S-7B (22.9 to 25'): Medium hard, moderately weathered, gray, aphanitic SHALE.		-
_										Sheet: 1 of 2



Date Finished: 08/07/11

### Log of Temperature Monitoring Point TMP-TB-02

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11

Date Time to Water Ref. Pt.

Depth

Groundwater Readings

Depth of Casing

n Depth ng of Hole

e Stab. Time

Checked By: EMB/JSP Logged By: AVK Sample Information Stratum Depth Well Spoon Pen/ Field **Geologic Description** Well Description Sample Depth Testing (ft) Blows Rec Log Description Diagram No. (ft) per 6 in (in) Data -----25'-----Boring terminated at 25 feet. No refusal encountered. 26 NOTES: 1. Soil samples were screened for volatile organic Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the 28 typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the 30 presence of VOCs. 2. Groundwater observed at about 5ft bgs during vacuum assisted excavation. 32 3. Weathered bedrock encountered at about 20 ft bgs, more compent bedrock encountered at about 22.9 ft bgs. 34 36 38 40 42 44 46 48



### Log of Temperature Monitoring Point TMP-TB-05

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Groundwa	ter Rea	dings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

	Started: 08 d By: AVM			Che	cked By: EM	IB/JSF	2					
) a m th	Sample Informatio							Stratum			Mall	
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description		
0 —	S-1	0 - 2					0' ASPHALT	(0 to 0.4'): Asphalt.		11/4" Dia. Sch. 40 CPVC		
-	-				PID: 0.7 ppmv		0.4'	S-1 (0.4 to 2'): Brown, fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Rounded to sub-rounded. Moist. FILL.		Riser (0 to 25') Portland Cement Grout		
2 —	S-2	2 - 4			PID: 0.4 ppmv			S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		(1.5 to 25')		
4 —	S-3	4 - 6			PID: 0.3 ppmv		FILL	S-3 (4 to 6'): Brown, Clayey SILT and fine to coarse Sand, trace Gravel, trace Cobbles. Sub-rounded to sub-angular. Wet. FILL.		Thermocouple installed		
6 —	S-4	5 - 10		5/5	PID: 0.3 ppmv			S-4A (6 to 6.9'): Brown, Clayey SILT and fine to coarse Sand, trace Gravel, trace Cobbles. Sub-rounded to sub-angular. Wet. FILL.		(5)		
8 —	-				PID: 0.2 ppmv	$\overline{)}$	7.5'	S-4B (6.9 to 7.5'): Tan, Concrete. Dry. FILL. S-4C (7.5 to 10'): Gray to dark gray, CLAY & SILT, trace Roots. Sub-angular. Moist. Sand & Gravel layer from 9.1 - 9.3'.				
10	S-5	10 - 15		5/5	PID: 0.3 ppmv			S-5 (10 to 15'): Tan & gray, CLAY & SILT. Wet.		Thermocouple installed (10')		
12—	-						SILT & CLAY					
14—	S-6	15 - 20		5/3	PID: 0.4		15'	S-6 (15 to 20'): Tan, fine to coarse SAND and		Thermocouple installed		
16		15 - 20		5/5	ppmv			Clayey Silt, little Gravel, trace Cobbles. Sub-rounded to sub-angular Wet.		(15')		
18—						000000	TILL					
20	S-7	20 - 25		5/7	PID: 0.7 ppmv PID: 0.3		20.8'	S-7A (20 to 20.8'): Tan, fine to coarse SAND and Silt, little Gravel. Sub-rounded to sub-angular Moist. S-7B (20.8 to 25'): Soft to moderately hard, severely		Thermocouple installed (20')		
22—					ppmv			to slightly weathered, gray, aphanitic SHALE. Alternating zones of weathered and more competent zones. WEATHERED BEDROCK.				
- 24—							SHALE					



### Log of Temperature Monitoring Point TMP-TB-05

Ref. Pt.

Depth

of Casing

Depth

of Hole

Stab.

Time

Ground Elevation: Not Available

Depth

Time to Water

Groundwater Readings

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Foreman: L. Hunsberger

Date Finished: 08/10/11

## Date Started: 08/07/11 Checked By: EMB/JSP Logged By: AVK Sample Information Stratum Well Depth Field Spoon Pen/ Well Description **Geologic Description** Sample Depth Testing (ft) Blows Rec Log Description Diagram No. (ft) per 6 in (in) Data -----25'-----Boring terminated at 25 feet. No refusal encountered. 26 NOTES: 1. Soil samples were screened for volatile organic Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the 28 typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the 30 presence of VOCs. 32 34 36 38 40 42 44 46 48



Date Finished: 08/07/11

### Log of Temperature Monitoring Point TMP-TC-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/07/11

Groundw	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time

	tarted: 08 d By: AV				e Finished: 0 cked By: EM						
Denth		Sample	Informa	ation			Stratum		M/-11		
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description	
0 —	S-1	0 - 2			PID: 7.8		0' ASPHALT 0.4'	(0 to 0.4'): Asphalt.		1¼" Dia. Sch. 40 CPVC Riser (0 to 25')	
2 —					ppmv			S-1 (0.4 to 2'): Gray, Clayey SILT and fine to coarse Sand, little Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Portland Cement Grout (1.5 to 25')	
-	S-2	2 - 4			PID: 1.2 ppmv			S-2 (2 to 4'): Fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.			
4 —	S-3	4 - 6			PID: 2.6 ppmv		FILL	S-3 (4 to 6'): Fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Thermocouple installed	
	S-4	5 - 15		10/10						(5')	
6 —								S-4A (6 to 7.8'): Fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.			
8 —					PID: 2.3 ppmv		7.8' PEAT 8.5'	S-4B (7.8 to 8.5'): Dark gray/black, PEAT, trace Sand, trace Silt. Wet.			
_					PID: 1.2 ppmv		0.0	S-4C (8.5 to 15'): Gray to tan & gray, Clayey SILT. Change from gray to tan & gray with orange mottling at 11.6'. Wet.			
10—										Thermocouple installed (10')	
- 12-	-						SILT & CLAY				
_											
14—											
- 16-	S-5	15 - 20		5/4	PID: 1.9 ppmv		15'	S-5A (15 to 19'): Tan & gray, SILT & CLAY, some Gravel, trace Sand. Sub-angular to sub-rounded. Wet.		Thermocouple installed (15')	
_							TILL				
18—						$) \bigcirc 0 ($					
- 20	S-6	20 - 25		5/5	PID: 0.9 ppmv PID: 0.6		19'	S-5B (19 to 19.8'): Soft, severely weathered, gray, aphanitic SHALE with fragments of hard, slightly weathered Shale.		Thermocouple installed	
_		20 - 23		5,5	ppmv PID: 1.3 ppmv			S-5C (19.8 to 20'): Very hard, fresh, gray aphanitic SHALE. S-6 (20 to 25'): Soft, severely weathered, gray, aphanitic SHALE. Becomes hard and slightly		(20')	
22—							SHALE	weathered at 24.0' bgs.			
-											
24—											



Date Finished: 08/07/11

### Log of Temperature Monitoring Point TMP-TC-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

**Drilling Company: Boart Longyear** Foreman: L. Hunsberger

Date Started: 08/07/11

Depth Date Time to Water Ref. Pt.

Groundwater Readings

Depth of Casing

Depth of Hole

Stab. Time

Checked By: EMB/JSP Logged By: AVK Sample Information Stratum Depth Well Spoon Pen/ Field **Geologic Description** Well Description Sample Depth Testing (ft) Blows Rec Log Description Diagram No. (ft) per 6 in (in) Data -----25'-----Boring terminated at 25 feet. No refusal encountered. 26 NOTES: 1. Soil samples were screened for volatile organic Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the 28 typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the 30 presence of VOCs. 2. Groundwater observed at about 5 ft bgs during vacuum-assisted excavation. 32 3. Weathered bedrock encountered at about 19 ft bgs, more competent bedrock encountered at about 24 ft bgs. 34 36 38 40 42 44 46 48



### Log of Temperature Monitoring Point TMP-WC-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

Groundwa	ater Rea	adings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

		Sample	Informa				Stratum			
epth ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
0 —	S-1	0 - 2					0' ASPHALT 0 4'	(0 to 0.4'): Asphalt.		1 ¹ / ₄ " Dia. Sch. 40 CPVC
_					PID: 16 ppmv		0.4	S-1 (0.4 to 2'): Light brown, fine to coarse SAND & GRAVEL, trace Silt, trace Cobbles. Rounded to sub-rounded. Dry. FILL.		Riser (0 to 23') Portland Cement Grout ( to 23')
2	S-2	2 - 4			PID: 14 ppmv			S-2 (2 to 4'): Brown, fine to coarse SAND & GRAVEL, trace Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		
+	S-3	4 - 6			PID: 16 ppmv		FILL	S-3 (4 to 6'): Brown, fine to coarse SAND & GRAVEL, trace Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Thermocouple installed
	S-4	5 - 10								(5')
» — -					PID: 4.5 ppmv			S-4A (6 to 9'): Brown, SILT & CLAY, little fine to coarse Sand, trace Gravel, trace Cobbles. Rounded to sub-rounded. Moist. FILL.		
-										
_					PID: 0.7 ppmv		9'	S-4B (9 to 10'): Gray, CLAY & SILT, trace Gravel, trace Roots. Slight petroleum odor. Moist.		
)—	S-5	10 - 15			PID: 0.7 ppmv			S-5A (10 to 10.9'): Gray, CLAY & SILT. Moist.		Thermocouple installed (10')
2								S-5B (10.9 to 15'): Olive brown - gray, SILT & CLAY, some brown mottling. Moist.		
_					PID: 1.4					
ļ —					ppmv		SILT & CLAY			
_	S-6	15 - 20			PID: 5.3 ppmv			S-6A (15 to 17.4'): Olive brown - gray, SILT & CLAY, some brown mottling; some black staining at 16.5' bgs. Moist.		Thermocouple installed (15')
»										
3—					PID: 4.1 ppmv			S-6B (17.4 to 19.1'): Gray, SILT & CLAY, little Gravel, trace Sand, trace Cobbles. Rounded to sub-rounded. Moist.		
_					PID: 0.5 ppmv		19.1'	S-6C (19.1 to 20'): Gray, SILT and fine to coarse Sand, some Gravel. Rounded to sub-rounded. Wet. STREAM DEPOSITS.		Thormood
)	S-7	20 - 23.7			PID: 0.7 ppmv		SILTY SAND	S-7A (20 to 22'): Brown, fine to medium SAND and Silt, some Gravel. Rounded to sub-angular. Wet. STREAM DEPOSITS.		Thermocouple installed (20')



### Log of Temperature Monitoring Point TMP-WC-04

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Date

Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/16/11

		Sample	e Informa	ation		Stratum			
epth (ft)	Sample No.		Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Description	Geologic Description	Well Diagram	Well Description
22-						22' SHALE	S-7B (22 to 23.5'): Hard, fresh, gray, very fine-grained SHALE.		
24 —	_				PID: 0.3 ppmv	 23.7'	S-7C (23.5 to 23.7'): Soft, very severely weathered, gray, very fine-grained SHALE. Boring terminated at 23.7 feet. No refusal	<u></u>	Benseal Bentonite Plug (23 to 24')
	-						encountered.		
26—	-						NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		
							calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not		
28-	_						detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		
30 —	_						<ol> <li>Competent bedrock observed at 22' bgs.</li> </ol>		
-	-								
32—	-								
-	-								
34 -	_								
36 —	_								
-	-								
38—									
-									
40 —									
42-									
+2									



### Log of Temperature Monitoring Point TMP-WD-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Foreman: L. Hunsberger Date Started: 08/06/11 Dat

Date Finished: 08/06/11 Checked By: EMB/ ISP

Logge	d By: EM	B/AVK		Che	ecked By: EMB	B/JSI	2			
Jointh		Sample	e Informa				Stratum		Wall	
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	N Well Description
0 —	S-1	0 - 5		5/3		P 6 4 4	0' CONCRETE	(0 to 0.6'): Concrete.		1¼" Dia. Sch. 40 CPVC
					PID: 2 ppmv	_q_⊿ 	0.6'	S-1 (0.6 to 5'): Brown, fine to coarse SAND &		Riser (0 to 42.5')
_	]					\/~		GRAVEL, trace Silt. Sub-angular to rounded. Moist. FILL.		Portland Cement Grout ( to 42.5')
2 —										
_						$\langle \cdot \rangle$				
						<u>،</u> / -				
4 —										
_						$\left( \right)$	FILL			Thermocouple installed
	S-2	5 - 10		5/5	PID: NA	<u>،</u> / -		S-2A (5 to 7.1'): Brown, fine to coarse SAND & GRAVEL, trace Silt. Sub-angular to rounded. Moist.		(5')
6 —								FILL.		
_						$\langle \cdot \rangle$				
					PID: 11 ppmv	[,'~		S-2B (7.1 to 8.8'): Brown, Clayey SILT, some Sand, little Gravel. Sub-angular to rounded. Moist. FILL.		
8 —								-		
_					PID: 2.9		8.8'	S-2C (8.8 to 10'): Olive tan, CLAY & SILT, trace		
					ppmv			Cobble with red mottling at 9.4 - 9.7' bgs. Sub-angular. Moist.		
10 —	S-3	10 - 15		5/5	PID: 1.8			S-3A (10 to 14.3'): Olive gray, Silty Clay with red		Thermocouple installed (10')
_					ppmv			mottling. Moist.		
12—										
_										
14 —					PID: 32			S-3B (14.4 to 15'): Olive gray, Clayey SILT. Moist.		
_	S-4	15 - 20		5/5	ppmv PID: 116			S-4A (15 to 17.9'): Olive gray, SILT & CLAY. Moist.		Thermocouple installed
				0.0	ppmv		SILT & CLAY			(15')
16—										
-										
18										
10					PID: 82 ppmv			S-4B (17.9 to 20'): Olive gray, SILT & CLAY, trace Gravel. Sub-angular to angular. Moist.		
-										
20 —										Thermocouple installed
20	S-5	20 - 25		5/4	PID: 1.7 ppmv			S-5A (20 to 22.2'): Gray, SILT & CLAY, trace Gravel. Sub-angular to angular. Wet.		(20')
-										
2—										
					PID: 2.6 ppmv	0 0 0	22.2'	S-5B (22.2 to 25'): Gray, fine to coarse SAND and Silt, little Gravel. Sub-rounded to angular. Wet.		
-					P.P.111	Po				
24 —						οQ	TILL			8
						Po				
-	S-6	25 - 30		5/5	PID: 1.8	<u></u>	25'	S-6 (25 to 30'): Very soft, very severely weathered,		Thermocouple installed (25')
26 —					ppmv		SHALE	gray, aphanitic SHALE. Wet 27.6 - 28.2' bgs. WEATHERED BEDROCK.		
			1						- K/1 K/.	Ŕ



### Log of Temperature Monitoring Point TMP-WD-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/06/11 Logged By: EMB/AVK

#### Date Finished: 08/06/11 Checked Bv: EMB/JSP

Sample information         Stratum         Geologic Description         Multi Degree         Multi Megee           28         30         5.7         30 - 35         5.5         PID 1.2         5.7         5.7         5.6         FPD 1.2         5.7         5.7         5.6         FPD 1.2         5.7         5.7         5.6         FPD 1.2         5.7         5.7         5.6         5.7         7.00 10 357         Very soft	Logge	d By: EM				cked By: EM	B/JS	P	1		1
(h)         Same         Description         Description         Description         Description           28         (h)         set 5 in (n)         Data         Log Description         Set 0 (2)	Donth		Sample			<u> </u>		Stratum		Wall	
30       5.7       30 - 35       5/5       PI(0, 1.2       State 1       St	Jeptn (ft)			Blows	Rec	Testing	Log	Description	Geologic Description		Well Description
S-8       35 - 38       3/3       PID: 14       SHALE       SHALE       S-8 (35 to 38): Soft, severely weathered, gray, aphantic SHALE. Competent fragments from 36.1 - 36.5 and 37.6 - 37.8 bgs.       Thermoccupie installed (35)         38       S-9       38 - 40       2/2       PID: 17       Soft and 37.6 - 37.8 bgs.       Thermoccupie installed (35)         40       S-10       40 - 43       3/3       PID: 15       Soft and 37.6 - 37.8 bgs.       Thermoccupie installed - 38.7 bgs.         42       -       S-10       40 - 43       3/3       PID: 15       Soft and 37.6 - 37.8 bgs.       Thermoccupie installed - 38.7 bgs.         44       -       -       S-10.40 (40 to 41): Soft, severely weathered, gray, aphantic SHALE.       Soft and 41: Soft, severely weathered, gray, aphantic SHALE.       Soft and 41: Soft, severely weathered, gray, aphantic SHALE.       Soft and 41: Soft, severely weathered, gray, aphantic SHALE.       Soft and 43: set.       Soft and 43: set. </td <td>- 30—</td> <td>S-7</td> <td>30 - 35</td> <td></td> <td>5/5</td> <td></td> <td></td> <td></td> <td>gray, aphanitic SHALE. Tan gravelly zone from 33.2</td> <td></td> <td></td>	- 30—	S-7	30 - 35		5/5				gray, aphanitic SHALE. Tan gravelly zone from 33.2		
<ul> <li>S-3 36 - 40</li> <li>S-10 40 - 43</li> <li>3/3 PID: 1.5 ppmv</li> <li>PID: 1.1 ppmv</li> <li>PID: 1.2 ppmv</li> <li>PID: 1.2 ppm</li></ul>	_	S-8	35 - 38		3/3			SHALE	aphanitic SHALE. Competent fragments from 36.1 -		
<ul> <li>3-10</li> <li>40-43</li> <li>42-</li> <li>42-</li> <li>44-</li> <li>44-</li> <li>46-</li> <li>46-</li> <li>50-</li> <li>60-</li> <li>60-</li> <li>60-</li> <li>60-</li> <li>60-</li> <li>70-</li> <li>70-<td>38—</td><td>S-9</td><td>38 - 40</td><td></td><td>2/2</td><td></td><td></td><td></td><td>aphanitic SHALE. Slightly more competent from 38.4</td><td></td><td>-</td></li></ul>	38—	S-9	38 - 40		2/2				aphanitic SHALE. Slightly more competent from 38.4		-
<ul> <li>42-</li> <li>44-</li> <li>44-</li> <li>44-</li> <li>46-</li> <li>48-</li> <li>50-</li> <li>50-</li> <li>60-</li> <li>60-</li> <li>60-</li> <li>70-</li> <li>70-</li></ul>	40—	S-10	40 - 43		3/3			- - - -	S-10A (40 to 41'): Soft, severely weathered, gray, aphanitic SHALE.		
44	42					ppmv PID: 1.8		-	weathered, gray, aphanitic SHALE. S-10C (41.9 to 43'): Hard, slightly weathered, gray,		-
44       NOTES:         46       1. Soil samples were screened for volatile organic compounds (VOCs) using a MinRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected NA indicates not adiable. The PID         48       measures relative levels of VOCS. Although PID measures relative levels of VOCS. Although PID measures relative indicator for the presence of VOCs.         50       2. Groundwater observed at about 10' bgs during drilling.         3. Weathered bedrock encountered at about 25 ft bgs, more competent bedrock encountered at about 41.9 ft bgs.	_					ppmv		43'	Boring terminated at 43 feet. No refusal		
46       1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoinization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.       -         50       2. Groundwater observed at about 10' bgs during drilling.       -         3. Weathered bedrock encountered at about 25 ft bgs, more competent bedrock encountered at about 41.9 ft bgs.       -	44 —										-
48	46								1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		-
drilling. 3. Weathered bedrock encountered at about 25 ft bgs, more competent bedrock encountered at about 41.9 ft bgs.	48								detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the		-
bgs, more competent bedrock encountered at about 41.9 ft bgs.	50 —								2. Groundwater observed at about 10' bgs during drilling.		-
									bgs, more competent bedrock encountered at about		_
	52										



### Log of Temperature Monitoring Point TMP-WD-05

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/18/11

## Date Finished: 08/18/11

		d By: JSF				ecked By: EM					
			Sample	Informa				Stratum		 	
De (	epth ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	/ell gram	Well Description
	0 —	S-1	0 - 5			PID: 0.8 ppmv		0' TOPSOIL	S-1A (0 to 1.5'): Topsoil. Moist. TOPSOIL.		1¼" Dia. Sch. 40 CPVC Riser (0 to 30') Portland Cement Grout (1 -
	2 —					PID: 1 ppmv		1.5' SILT	S-1B (1.5 to 3.5'): Brown, SILT, some fine to coarse Sand, trace Roots, trace Gravel, trace Rope, trace Metal. Dry. FILL.		to 30')
	4 —							3.5'	S-1C (3.5 to 5'): Concrete - Based on drilling action, no recovery. FILL.		_
	6 —	S-2	5 - 10						S-2A (5 to 7'): Concrete - Based on drilling action, no recovery. FILL.		Thermocouple installed - (5')
	- 8 —								S-2B (7 to 12.5'): No recovery.		-
	- 10—	S-3	10 - 15					NO RECOVERY			Thermocouple installed — (10')
									S-3 (12.5 to 15.5'): Concrete - Based on drilling action, no recovery. FILL.		-
1	14 —		45 00								
	16 —	S-4	15 - 20			PID: 59 ppmv		15.5'	S-4 (15.5 to 20'): Gray, SILT & CLAY. Moist.		(15') —
	18 —							SILT & CLAY			-
	20 —	S-5	20 - 25		5/1	PID: 274 ppmv PID: 12 ppmv		21'	S-5A (20 to 21'): Brownish-gray, CLAY & SILT, trace fine to medium Sand, trace Cobbles, trace Gravel. Rounded. Evidence of Clay weathering/brown mottling. Wet. Large Cobble at base of Silt and Clay.		Thermocouple installed
	22 —					- Philip		SILTY SAND	S-5B (21 to 25'): Brownish-gray, fine to coarse SAND, some Silt, some Gravel, trace Cobbles. Rounded to sub-rounded. Wet.		-
	<u>2</u> 4 — 										Sheet: 1 of 2

Sheet: 1 of 2



## Log of Temperature Monitoring Point TMP-WD-05

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/18/11 Logged By: JSP/JWC Date Finished: 08/18/11

#### Checked By: EMB/JSP

Depth	ļ	Sample	Informa		<b>_</b>	_	Stratum		Well	
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Diagram	Well Description
- 26	S-6	25 - 30			PID: 3.3 ppmv		SILTY SAND	S-6A (25 to 27.4'): Dark gray, fine to coarse SAND, some Silt, some Gravel. Sub-rounded to sub-angular. Wet.		Thermocouple installed (25')
28—					PID: 3.5 ppmv		27.4' TILL	S-6B (27.4 to 28.5'): Dark gray, SILT & CLAY, some Gravel, some fine to coarse Sand. Sub-angular. Wet.		
-					PID: 5.1 ppmv PID: 0.5 ppmv	0	29' SHALE	S-6C (28.5 to 29'): Dark gray, SILT & CLAY, some fine to coarse Sand, some Gravel, trace Cobbles (broken Shale). Sub-angular to angular. Wet.		
30 —							30'	S-6D (29 to 30'): Gray, hard, very slightly weathered, gray, very fine-grained SHALE. Dry. Boring terminated at 30 feet. No refusal		
- 32—								encountered.		
JZ								NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		
34 —								calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the		
-	-							typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC		
36—								concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		
38—								<ol> <li>For sample S-4, driller lowered core barrel, raised it, and lowered it again. Evidence of soil from top 10' bgs in recovery (Silty soil with Roots; Concrete in base of recovery.) Indicates fallen material picked up with 2nd lowering of core barrel. Silt &amp; Clay depth is approximate.</li> <li>Competent bedrock observed at 29' bgs.</li> </ol>		
40—	-							3. Competent bedrock observed at 29 bys.		
-	-									
42—	-									
-										
44 —										
46—										
-										
48—										
	1								1	



### Log of Temperature Monitoring Point TMP-WE-06

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 11/10/11

#### Date Finished: 11/10/11 Checked By: EMB/ ISP

Logge	ed By: AV	к		Che	cked By: EM	B/JSF	2			
		Sample	e Informa				Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
2	_									1 ¹ /4" Dia. CPVC Riser (1 - to 30')
	_									-
4 -	S-2	5 - 10		5/4	PID: 4.1 ppmv		FILL	S-2 (5 to 10'): Gray, Clayey SILT, little Gravel, trace Cobbles. Sub-angular. Moist. FILL.		Thermocouple installed - (5')
6	_									
- 8 0/28/12 - 8 0/28/12	_									_
		10 - 15					10'	S-3 (10 to 15'): No recovery.		Thermocouple installed — (10')
- 10 SANG	_									_
. I.Gr	_									_
	S-4	15 - 19			PID: 232 ppmv		15'	S-4 (15 to 19'): Clayey SILT and medium to coarse Sand, and Gravel, trace Cobbles. Sub-angular to angular. Wet. TILL.		Thermocouple installed - (15') Portland Cement Grout (1 to 30.4')
8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	-					0				
VILUGS/2460.	S-5	19 - 20			PID: 13 ppmv			S-5 (19 to 20'): SAND & GRAVEL, little Cobbles, trace Silt. Wet. TILL.		-
20-	S-6	20 - 22.7			PID: 32 ppmv	000000	TILL	S-6 (20 to 22.7'): SAND & GRAVEL, little Cobbles, trace Silt. Moist. TILL.		Thermocouple installed — (20')
22 – 22 –		22.7 - 25			PID: 113 ppmv			S-7 (22.7 to 25'): Clayey SILT, some Gravel. Moist. TILL.		-
24- LOG 2:	_				Р. Р. Г.					_
	S-8	25 - 30			PID: 10 ppmv	V7 V V7 V	25' ROCK	S-8 (25 to 30'): Soft, very severely weathered, aphanatic SHALE. Moist. ROCK.		Thermocouple installed - (25') Sheet: 1 of 2



### Log of Temperature Monitoring Point TMP-WE-06

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 11/10/11 Logged By: AVK

#### Date Finished: 11/10/11 Checked By: EMB/JSP

		Sample	Informa	ation			Stratum			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description
26—			<u>por o m</u>		Butu	~ ~				
							1			
-						71	1			
28—						11	ROCK			
20						71	1			
-						11	1			
30—						1	30'			
00								Boring terminated at 30 feet. No refusal encountered.		
-										
32—								NOTES: 1. Soil samples were screened for volatile organic		
02								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp,		
-								calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response		
34 —								factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not		
54								detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID		
-								screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the		
36—								results can serve as a relative indicator for the presence of VOCs.		
30								2. Severely Weathered bedrock observed at about		
-								25 feet bgs.		
38—										
00										
-										
40—										
10										
-										
42										
-										
44 —										
-										
46—										
-										
48—										
-										
50—										

Sheet: 2 of 2



### Log of Temperature Monitoring Point TMP-WF-02

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 08/09/11 Date Finished: 08/10/11

Groundwa	ter Rea	dings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

	tarted: 08 d By: AVI				e Finished: 08 ecked By: EMB							
Depth			e Informa Spoon		Field		Stratum		,	Well		
(ft)	Sample No.	Depth (ft)	Blows per 6 in	Rec	Testing Data	Log	Description	Geologic Description		agram	Well Description	
0 —	S-1	0 - 2			PID: 0.7 ppmv		0' ASPHALT 0.5'	(0 to 0.5'): Asphalt. S-1 (0.5 to 2'): Brown, fine to coarse SAND & GRAVEL, little Silt, little Cobbles. Sub-rounded.		$\Box$	1¼" Dia. Sch. 40 CPVC Riser (0 to 25')	_
2 —	S-2	2 - 4			PID: 0.8 ppmv			Moist. FILL. S-2 (2 to 4'): Dark brown, fine to coarse SAND & GRAVEL, little Cobbles, trace Clayey Silt. Sub-rounded to sub-angular. Moist. FILL.			Portland Cement Grout (1.5 to 25')	_
4 —	S-3 S-4	4 - 6 5 - 10		 5/4	PID: 0.9 ppmv		FILL	S-3 (4 to 6'): Dark brown, fine to coarse SAND & GRAVEL and Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.			Thermocouple installed (5')	_
6 —					PID: 1 ppmv			S-4A (6 to 6.9'): Dark brown, fine to coarse SAND & GRAVEL and Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL. S-4B (7 to 8.2'): Brown, fine to coarse SAND &			(5)	_
8 —					PID: 0.6 ppmv		8.2'	GRAVEL, little Silt. Sub-rounded. Wet. FILL. S-4C (8.2 to 10'): Dark gray, SILT & CLAY, trace Sand, trace Roots. Sand & Gravel layer 9.0 - 9.2' bgs. Wet.				_
10	S-5	10 - 15		5/5	PID: 0.5 ppmv			S-5 (10 to 15'): Gray to olive gray, Silty CLAY. Wet.			Thermocouple installed (10')	-
12—  14—  16—	S-6	15 - 20		5/5	PID: 0.4 ppmv		SILT & CLAY	S-6A (15 to 18.9'): Olive gray, CLAY & SILT. Wet.			Thermocouple installed (15')	_
- 18— -					PID: 0.3 ppmv		18.9'	S-6B (18.9 to 20'): Tan, Clayey SILT, little Gravel, trace Sand. Sub-rounded to angular. Wet.				-
20	S-7	20 - 25		5/5	PID: 3.4 ppmv		TILL	S-7A (20 to 21.7'): Grayish tan, Clayey SILT, some Gravel, trace Sand. Sub-rounded to angular. Wet.			Thermocouple installed (20')	-
22—					PID: 1.6 ppmv		21.7'	S-7B (21.7 to 25'): Soft, very severely weathered, gray, aphanitic SHALE. Fragments of hard, slightly weathered Shale.				-
24 —							SHALE					-



## Log of Temperature Monitoring Point TMP-WF-02

Ref. Pt.

Depth of Casing

Depth of Hole

Stab.

Time

Ground Elevation: Not Available

Groundwater Readings Depth

Date

Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Post-hole Digger/Boart Minisonic, 6" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 08/09/11

Date Finished: 08/10/11

Depth (ft)	Sample No.	Depth (ft)	e Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data	Stratum Description	Geologic Description	Well Diagram	Well Description
_				<u>, , , , , , , , , , , , , , , , , , , </u>	Data	25'	Boring terminated at 25 feet. No refusal encountered.		
26—							NOTES:		
- 28-							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID		
30							measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.		
32—									
_									
34 —									
-									
36—									
_									
38—									
-									
40—									
-									
42—									
_									
44 —									
_									
46—									
_									
48—									
-									

Sheet: 2 of 2



### Log of Temperature Monitoring Point TMP-WF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/17/11

Groundwa	ater Rea	adings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
				e. easing		

	d By: AV		с		e Finished: 0 cked By: EN						
Logge			e Informa		cheu by. Li	-	Stratum				
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagram	Well Description	
0 —	S-1	0 - 2			PID: 13		0' ASPHALT 0.6'	(0 to 0.6'): Asphalt. S-1 (0.6 to 2'): Brown, fine to coarse SAND &		1¼" Dia. Sch. 40 CPVC Riser (0.5 to 40.5')	
2 —	S-2	2 - 4			ppmv PID: 15			GRAVEL, little Silt, little Cobbles. Rounded to sub-rounded. Moist. FILL. S-2 (2 to 4'): Brown, fine to coarse SAND &		Portland Cement Grout (1 to 40.5')	
-					ppmv			GRAVEL, trace Silt, trace Cobbles. Rounded to sub-rounded. Moist. FILL.			
4 —	S-3	4 - 6			PID: 11 ppmv			S-3 (4 to 6'): Grayish brown, SILT & CLAY and fine to coarse Sand, some Gravel. Sub-rounded to sub-angular. Moist. FILL.		Thermocouple installed (5')	
6 —	S-4	6 - 10			PID: 3.4 ppmv		FILL	S-4A (6 to 8.8'): Brown, SILT & CLAY, little Gravel, little fine to coarse Sand, trace Cobbles. Rounded. Moist. FILL.			
8 —					PID: 9.2 ppmv			S-4B (8.8 to 10'): Olive brown, SILT & CLAY, some fine to coarse Sand, trace Gravel, trace Cobbles,			
10—	S-5	10 - 15			PID: 24 ppmv			trace Roots. Rounded. Wet. FILL. S-5A (10 to 11'): Olive brown, SILT & CLAY, some fine to coarse Sand, trace Gravel, trace Cobbles,		Thermocouple installed (10')	
- 12—					PID: 181 ppmv		11'	trace Roots. Rounded. Slight petroleum odor. Wet. FILL. S-5B (11 to 12.7'): Gray, Clayey SILT, little Roots, trace Sand, trace Gravel, trace gleying. Moist.			
_					PID: 460 ppmv			S-5C (12.7 to 14.4'): Gray, CLAY & SILT. Moist.			
14—	S-6	15 - 20			PID: 609 ppmv PID: 905 ppmv		SILT & CLAY	S-5D (14.4 to 15'): Gray, SILT & CLAY, little brown mottling. Moist (Wet at base). S-6A (15 to 16.7'): Gray, SILT & CLAY, little black		Thermocouple installed (15')	
16					PID: 359 ppmv			staining, little brown mottling. Slight petroleum odor. Moist. S-6B (16.7 to 17.7'): Bluish gray, SILT & CLAY, brown mottling. Moist.			
18—					PID: 312 ppmv		18.7'	S-6C (17.7 to 18.7'): Bluish gray - brown, CLAY & SILT, trace fine to medium Sand, trace Gravel. Rounded to sub-rounded. Moist.			
-	67	20 25			PID: 21 ppmv		10.7	S-6D (18.7 to 20'): Gray, fine to coarse SAND & GRAVEL, some Silt, trace Cobbles. Rounded to sub-angular. Wet.		Thermocouple installed	
-22	S-7	20 - 25			PID: 191 ppmv		SAND & GRAVEL	S-7A (20 to 22.6'): Brown, fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Rounded to sub-angular. Wet.		(20')	
_					PID: 11 ppmv		22.6'	S-7B (22.6 to 25'): Grayish, SILT & CLAY, some fine to coarse Sand, trace Gravel, trace Cobbles (broken Shale). Angular to sub-angular. Moist.			
24—											



### Log of Temperature Monitoring Point TMP-WF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11 

Date Finished: 08/17/11

Ground	water Readings				
Dete	Depth	Ref. Pt.	Depth	Depth of Hole	Stab.
Date	Time to Water	Ref. Pt.	of Casing	or noie	Time

Logge	gged By: AVK/JSP/JWC Checked By: EMB/JSP											
Denth		Sample	Informa				Stratum		M/- II			
Depth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description		
- 26— -	S-8	25 - 30			PID: 2.8 ppmv			S-8 (25 to 30'): Grayish, SILT & CLAY, some fine to coarse Sand, some Gravel, little Cobbles (broken Shale). Angular to sub-angular. Moist.		Thermocouple installed (25')		
28	S-9	30 - 35			PID: 2.1 ppmv PID: 4.8 ppmv			S-9 (30 to 35'): Blue-gray, SILT & CLAY, some fine to coarse Sand, little Gravel, little Cobbles (Extremely Weathered Bedrock). Angular to sub-angular. Moist. (Wet from 33.8 - 34' bgs).		Thermocouple installed (30')		
32— - 34—							TILL					
	S-10	35 - 40			PID: 1.3 ppmv			S-10A (35 to 39.5'): Gray, SILT & CLAY, little fine to coarse Sand, little Gravel, trace Cobbles (broken Shale). Angular to sub-angular. Moist. TILL.		Thermocouple installed (35')		
	S-11	40 - 42			PID: NM PID: 0.3 ppmv PID: 0.2 ppmv		39.5' SHALE 42'	S-10B (39.5 to 40'): Hard, slightly weathered, gray, aphantic SHALE. Dry to Moist. SHALE. S-11A (40 to 40.9'): Dark gray, hard, fresh, dark gray, aphantic SHALE. Dry. SHALE. S-11B (40.9 to 42'): Dark gray, soft, completely weathered, dark gray, aphantic SHALE, gravel-sized fragments of more competent SHALE. Moist. SHALE.		Thermocouple installed (40') Banseal Bentonite Plug (40.5 to 42')		
_								Boring terminated at 42 feet. No refusal encountered.			_	
44 —  46 —  48 —								<ul> <li>NOTES:</li> <li>1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Water table encountered at about 8.8' bgs.</li> </ul>				
_50—										Sheet: 2 of 3		



## Log of Temperature Monitoring Point TMP-WF-04

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/08/11

Date Finished: 08/17/11 Checked By: EMB/JSP

Ground	water Readings				
Date	Depth Time to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
Date	Time to water	Rei. Fl.	or casing	OI HOIE	Time

ogge	d By: AVM	/08/11 (/JSP/JW	с		e Finished: 0 cked By: EN					
	-		Informa	tion		_	Stratum			
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Pen/ Rec (in)	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description
50 —				. ,				3. Competent bedrock observed at 39.5' bgs.		
_										
52—										
_										
4—										
_										
6—										
, 										
3—										
_										
)										
_										
2-										
-										
۰-										
_										
;										
_										
3										
_										
)										
_										
2										
_										
4—										



### Log of Temperature Monitoring Point TMP-WG-03

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/09/11

Date Finished: 08/17/11

Groundwa	ter Rea	dings				
Date		Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
				-		

	α ΒΥ: Ανι	<th>C</th> <th>Che</th> <th>ecked By: EMB</th> <th colspan="7">: 08/17/11 EMB/JSP</th>	C	Che	ecked By: EMB	: 08/17/11 EMB/JSP						
			Informa	mation Stratum								
epth (ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Field Testing Data	Log	Description	Geologic Description	Well Diagram	Well Description		
0 —	S-1	0 - 2				<u>م</u> ا	0' ASPHALT	(0 to 0.4'): Asphalt.				
_					PID: 0.7 ppmv		0.4	S-1 (0.4 to 2'): Dark brown, fine to coarse SAND & GRAVEL, little Silt, little Cobbles. Sub-rounded to sub-angular. Moist. FILL.		1 ¹ / ₄ " Dia. Sch. 40 CPVC Riser (0.5 to 42.7') Portland Cement Grout (1 to 42.7')		
2 —	S-2	2 - 4			PID: 1.3 ppmv			S-2 (2 to 4'): Gray, SILT & CLAY. fine to coarse Sand, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		0 <del>1</del> 2.1 )		
4	S-3 S-4	4 - 6 5 - 10			PID: 1 ppmv		FILL	S-3 (4 to 6'): Gray, SILT & CLAY. fine to coarse Sand, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL.		Thermocouple installed		
6 —	5-4	5 - 10			PID: 4 ppmv		FILL	S-4 (6 to 10'): Dark gray, SILT & CLAY, some medium to coarse Sand, trace Gravel, trace Cobbles. Rounded to sub-angular. Seam of black		(5')		
- 8 — -					PID: 19 ppmv			Cobbles. Rounded to sub-angular. Seam of black soil and Roots (Peat) 9.6 - 9.9' bgs. Moist. FILL.				
0	S-5	10 - 15			PID: 69 ppmv PID: 35 ppmv PID: 40 ppmv		10'	S-5A (10 to 10.9'): Gray, CLAY & SILT, trace Roots. Moist. S-5B (10.9 to 15'): Gray, SILT & CLAY, some brown mottling. Moist.		Thermocouple installed (10')		
2— 4—					ppin		SILT & CLAY					
-	S-6	15 - 20			PID: 34 ppmv			S-6A (15 to 16.3'): Gray, SILT & CLAY, some brown mottling. Moist.		Thermocouple installed (15')		
8					PID: 49 ppmv			S-6B (16.3 to 18.4'): Brownish gray, Clayey SILT, little Gravel, trace fine to coarse Sand, extensive brown mottling. Rounded to sub-rounded. Moist.				
-					PID: 8.1 ppmv		18.4'	S-6C (18.4 to 20'): Gray, fine to coarse SAND, some Gravel, some Silt, trace Cobbles. Rounded to sub-rounded. Wet.				
20	S-7	20 - 25			PID: 1.1 ppmv		SAND & GRAVEL	S-7A (20 to 22.4'): Olive brown to gray, fine to coarse SAND & GRAVEL, little Silt, trace Cobbles. Rounded to sub-rounded. Wet.		Thermocouple installed (20')		
4					PID: 3.9 ppmv		22.4'	S-7B (22.4 to 25'): Gray, SILT & CLAY, some Gravel (broken Shale), some, fine to coarse Sand, trace Cobble (broken Shale). Sub-angular to angular. Moist.				
-	S-8	25 - 30			PID: 2.7 ppmv		TILL	S-8A (25 to 27.5'): Gray, SILT & CLAY, some fine to coarse Sand, some Gravel. Rounded. Moist.		Thermocouple installed (25')		



### Log of Temperature Monitoring Point TMP-WG-03

Ground Elevation: Not Available

Sanborn, Head & Associates, Inc.

Drilling Method: Air Knife/Vacuum Excavation/Boart Minisonic

Sampling Method: Hand Auger/Post-hole Digger (0 - 6')/Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger

Date Started: 08/09/11

Date Finished: 08/17/11 Checked By: EMB/JSP

Depth of Casing	Depth of Hole	Stab. Time
oth	oth Depth	oth Depth Depth

		Sample	Informa	ation			Stratum				
epth (ft)	Sample No.		Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Description	Geologic Description	Well Diagra		Well Description
- 28— -					PID: 3.7 ppmv			S-8B (27.5 to 30'): Gray, SILT & CLAY, some fine to coarse Sand, some Gravel (broken Shale). Angular. Moist.			
30 — 	S-9	30 - 35			PID: 1.3 ppmv			S-9 (30 to 35'): Gray, SILT & CLAY, some fine to coarse Sand, some Gravel (broken Shale). Angular. Wet (30 - 32.8'); Moist (32.8 - 35').			Thermocouple installed (30')
- 34—					PID: 1.7 ppmv	0	TILL				_
- 36	S-10	35 - 40			PID: 0.9 ppmv			S-10 (35 to 40'): Gray, SILT & CLAY, some Gravel (broken Shale), little, fine to coarse Sand. Angular. Moist. Becoming very dense with depth.			Thermocouple installed (35')
38— - 40—		40 40 0									Thermocouple installed
_	S-11	40 - 42.9			PID: 0.4 ppmv	2000	41.5'	S-11A (40 to 41.5'): Gray, SILT & CLAY, some Gravel (broken Shale), little, fine to coarse Sand. Angular. Wet.			(40')
42					PID: NA		41.5 SHALE 42.7'	S-11B (41.5 to 42.7'): Moderately hard, slightly weathered, dark gray, fine-grained SHALE. Dry. SHALE. Boring terminated at 42.7 feet. No refusal		Ĭ	
44								encountered.			
_ 46—								<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response</li> </ol>			
- 48— -								prime is solver the presented in party, the typical detected in the isotropy of 1.0. Results are presented in party, the typical detected in the isotropy of the typical detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.			
50 —											
52 —											
_											



## Log of Temperature Monitoring Point TMP-WW-01

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. **Drilling Method: Boart Minisonic** 

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 11/11/11 Date Finished: 11/11/11 Logged By: AVK

#### Checked By: EMB/JSP

_ogge	d By: AVI				cked By: EM	_				1
Depth			e Informa Spoon		Field		Stratum		Well	
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec	Testing Data	Log	Description	Geologic Description	Diagram	Well Description
_										1¼" Dia. CPVC Riser (1 to 30.5')
2 —										
-										
4 —										
_	S-2	5 - 10		5/5	PID: 5.4 ppmv		FILL	S-2A (5 to 8.3'): Gray, SILT & CLAY and medium to coarse Sand, and Gravel. Sub-angular. Moist. FILL.		Thermocouple installed (5')
6 —										
_										
8 —					PID: 3.6			S-2B (8.3 to 9'): Light brown, fine to coarse SAND,		
-					ppmv PID: NA	$\dot{V}$	9'	trace Silt, some Gravel, trace Cobbles. Sub-rounded to sub-angular. Moist. FILL. S-2C (9 to 10'): Gray, SILT & CLAY. Moist. SILT &		
10—	S-3	10 - 15		5/5	PID: 999 ppmv			CLAY. S-3A (10 to 14.2'): Gray, SILT & CLAY. Moist. SILT		Thermocouple installed (10')
_								& CLAY.		
12—							SILT & CLAY			
_										
14 —					PID: 68 ppmv			S-3B (14.2 to 15'): Gray with orange mottling, SILT & CLAY. Moist. SILT & CLAY.		
-	S-4	15 - 20					15'	S-4 (15 to 20'): No recovery.		Thermocouple installed (15') Portland Cement Grout (1
16—										to 30.6')
40										
18										
20							20'			Thermocouple installed
	S-5	20 - 25		5/3				No recovery.		(20')
22—						00				
-					PID: 4.6	0000	TILL	S-5A (23 to 24.5'): Dark brown, SAND & GRAVEL,		
24					ppmv	2000		S-5A (23 to 24.5 ): Dark brown, SAND & GRAVEL, trace Cobbles. Sub-rounded to sub-angular. Wet. TILL.		
-	S-6	25 - 30.6		5/3	PID: 4.7 ppmv		25'	S-5B (24.5 to 25'): Dark gray, Clayey SILT, fine to coarse Sand, and Gravel, trace Cobbles.		Thermocouple installed
	3-0	25 - 30.0		5/5		11	ROCK	Sub-angular. Wet. TILL.		(25')



## Log of Temperature Monitoring Point TMP-WW-01

Ref. Pt.

Depth

of Hole

Depth

of Casing

Stab.

Time

Ground Elevation: Not Available

Depth

Time to Water

**Groundwater Readings** 

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Date Started: 11/11/11 Date Finished: 11/11/11

#### Checked By: EMB/JSP Logged By: AVK Sample Information Stratum Depth Field Well Spoon Pen/ **Geologic Description** Well Description Sample Depth Testing (ft) Blows Rec Log Description Diagram No. (ft) per 6 in (in) Data 26 7 1 S-6 (27.5 to 30'): Soft, severely weathered, aphanatic SHALE. Wet. ROCK. Ľ PID: 6.1 N¹ 28 ppmv ROCK 7 1 30 Thermocouple installed (30') -30.6' Boring terminated at 30.5 feet. No refusal encountered. 32 NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response 34 factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the 36 results can serve as a relative indicator for the presence of VOCs. 2. Severely Weathered bedrock observed at about 25 feet bgs. 38 40 42 44 46 48 50



## Log of Temperature Monitoring Point TMP-WW-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear

Foreman: L. Hunsberger Date Started: 11/10/11

#### Date Finished: 11/10/11 Checked By: EMB/JSP

	itarted: 1 d By: AV				e Finished: 1 cked By: EN					
Depth (ft)	Sample No.	Sample Depth (ft)	e Informa Spoon Blows per 6 in	Pen/ Rec	Field Testing Data		Stratum Description	Geologic Description	Well Diagram	Well Description
2 — 4 —					PID: 1.2 ppmv		FILL	S-1B (4 to 5'): Dark brown, fine to coarse SAND, some Gravel, little Silt, trace Cobbles. Sub-rounded		1¼" Dia. CPVC Riser (1 to 30.3')
6 —	S-2	5 - 10		5/5	PID: 8.9 ppmv		5'	to sub-angular. Wet. FILL. S-2 (5 to 10'): Gray with little orange mottling, SILT & CLAY. Moist. SILT & CLAY.		Thermocouple installed (5')
8 — - 10 — -	S-3	10 - 14.3	:	5/5	PID: NA		SILT & CLAY	S-3 (10 to 14.3'): Gray with orange mottling, SILT & CLAY, little Gravel, little Cobbles. Moist. SILT & CLAY.		Thermocouple installed (10')
12— - 14— -	S-4 S-5	14.3 - 15 15 - 18.5		 5/5	PID: .8 ppmv PID: 32 ppmv		14.3'	S-4 (14.3 to 15'): Gray, fine to coarse SAND & GRAVEL, little Clayey Silt, trace Cobbles. Sub-rounded to sub-angular. Moist. TILL. S-5 (15 to 18.5'): Gray, fine to coarse SAND & CRAVEL, little Clayers Silt terms Cobbles		Thermocouple installed (15') Portland Cement Grout ()
16 — 18 — 20 —	S-6 S-7	18.5 - 19 19 - 23.7			Pid: Na Pid: Na		TILL	<ul> <li>GRAVEL, little Clayey Silt, trace Cobbles.</li> <li>Sub-rounded to sub-angular. Moist. TILL.</li> <li>S-6 (18.5 to 19'): SAND &amp; GRAVEL, trace Cobbles.</li> <li>Sub-rounded to sub-angular. Moist. TILL.</li> <li>S-7 (19 to 23.7'): Gray, fine to coarse SAND &amp; GRAVEL, little Clayey Silt, trace Cobbles.</li> <li>Sub-rounded to sub-angular. Moist. TILL.</li> </ul>		to 30.4') Thermocouple installed
  24	S-8	23.7 - 30			PID: 40 ppmv	00000000	23.7'	S-8 (23.7 to 30'): Medium hard, severely weathered, aphanatic SHALE. Wet. ROCK.		(20')
-					ΥΥ	1 1 1 1 7 77 7	WEATHERED BEDROCK	aphanalio of met. Wet. NOON.		Thermocouple installed (25')



## Log of Temperature Monitoring Point TMP-WW-02

Ref. Pt.

Depth of Casing

Depth of Hole Stab. Time

Ground Elevation: Not Available

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc. Drilling Method: Boart Minisonic

Sampling Method: Boart Minisonic, 5" dia. Core barrel

Drilling Company: Boart Longyear Foreman: L. Hunsberger

Logged By: AVK

Foreman: L. Hunsberger Date Started: 11/10/11 Date Finished: 11/10/11

### Checked By: EMB/JSP

Depth		Sample			Field		Stratum		Well	
(ft)	Sample No.	Depth (ft)	Spoon Blows per 6 in	Rec		Log	Description	Geologic Description	Diagram	Well Description
26—						17				
-						V1 V				
28—						747	WEATHERED BEDROCK			
-						V1 V				
30—	S-9	30 - 30.4			PID: NA	7 77		S-9 (30 to 30.4'): Medium hard, severely weathered,		Thermocouple installed
_							30.4'	aphanatic SHALE. Wet. ROCK. Boring terminated at 30.4 feet. No refusal		(30')
32—								encountered.		
_								NOTES: 1. Soil samples were screened for volatile organic		
24								compounds (VOCs) using a MiniRae3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume		
34 —								(ppmv) isobutylene-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not		
_								detected. NA indicates not available. The PID measures relative levels of VOCs. Although PID screening cannot be used directly to quantify VOC		
36 —								concentrations or identify individual compounds, the results can serve as a relative indicator for the		
_								presence of VOCs. 2. Severely Weathered bedrock observed at about 23.7 feet bgs.		
38—										
-										
40—										
_										
42										
-										
44										
_										
46 —										
_										
48										
_										
50 —										

# **APPENDIX D**

# ELECTRICAL RESISTANCE HEATING (ERH) TREATMENT PERFORMANCE MONITORING

SANBORN || HEAD

# **APPENDIX D**

# ELECTRICAL RESISTANCE HEATING TREATMENT PERFORMANCE MONITORING OPERABLE UNIT #5/BUILDING 57 AREA, UNION AND ENDICOTT, NY

# **TABLE OF CONTENTS**

D.1	ERH Process Train Monitoring	1
	D.1.1 Vapor-Phase Sampling	
	D.1.2 Condensate Sampling	
	r b	
D.2	ERH Performance Confirmatory Soil Sampling	5
D.2	ERH Performance Confirmatory Soil Sampling D.2.1 Soil Logging and Sampling	

# TABLES

Table D.1 (A) Summary of Analytical Results – Influent Extracted Vapor
Table D.1 (B) Summary of Analytical Results – Header Extracted Vapor
Table D.2 Summary of Analytical Results – Condensate
Table D.3 85% Soil Sampling Details – July 2012
Table D.4 100% Soil Sampling Details – September 2012
Table D.5 Summary of Confirmatory Soil Sampling Validated Data

# FIGURES

Figure D.1 Influent Field Screen vs. Cumulative Mass Removed Figure D.2 Influent VOC Trend – Summa Samples vs. Cumulative Mass Removed Figures D.3 to D.23 Detected VOC Concentrations vs. Depth

# ATTACHMENTS

Attachment D.1	Carbon Management Summary
Attachment D.2	Field Documentation - Summa Sampling (on disc)
Attachment D.3	70% Soil Sampling Logs – June 2012 (on disc)

This appendix summarizes the performance monitoring of Electrical Resistance Heating (ERH) thermal treatment system operation performed by Sanborn Head & Associates, Inc. (Sanborn Head) from February 9, 2012 through September 24, 2012 at Building 57 (Site) located in IBM Operable Unit #5, Union and Endicott, NY. The work described herein was performed in accordance with the agency approved Interim Remedial Measure (IRM) Work Plan¹. This appendix is subject to the limitations provided in Appendix A.

Performance monitoring activities included collection and submittal for laboratory analysis for the presence of volatile organic compounds (VOCs) of the following:

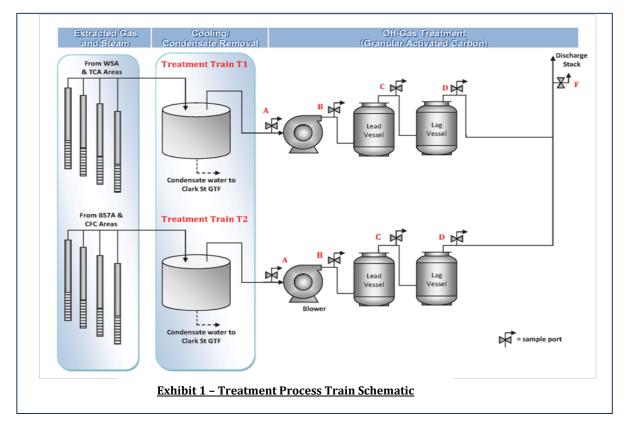
- Vapor phase samples from sample ports of the treatment process trains (refer to the Treatment Train Schematic provided in Exhibit 1 for sample port locations);
- Condensate samples from both treatment trains; and
- Confirmatory soil samples at three stages of remedial progress.

Further detail is provided in the sections below.

# D.1 ERH PROCESS TRAIN MONITORING

# D.1.1 Vapor-Phase Sampling

Sanborn Head along with assistance from O'Brien & Gere (OBG) conducted ERH treatment system monitoring, which included routine collection of screening-level measurements of total VOCs using a photoionization detector (PID), flame ionization detector (FID), and Miran SapphIRe: and collection of Summa[®]-type (Summa) canister vapor samples from three locations within each treatment train (sample ports B, C, and D) and one stack effluent sample (sample port F) as prescribed in the IRM Work Plan. Samples were submitted to Air Toxics




Process Treatment Trains & Discharge Stack

Ltd. (ATL) of Folsom, CA for analysis by US Environmental Protection Agency (USEPA) Method TO-15.

Vapor-phase sample were used for following supporting purposes:

¹ Sanborn, Head Engineering, P.C., June 24, 2011 "In situ Thermal Treatment IRM Work plan – OU #5, Building 57, Former IBM Facility, Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".



- To assess whether the influent (Port B) and effluent (Port F) vapor met the applicable Short-term Guideline Concentrations and Annual Guideline Concentrations as provided in New York State Department of Environmental Conservation (NYSDEC) Policy DAR-1: Guidelines for the Control of Toxic Ambient Air Contaminants;
- To monitor for "breakthrough" of VOC vapors between the lead and lag granular activated carbon (GAC) vessels, and assess the need for carbon change-outs;
- To estimate VOC mass removal from the subsurface through each treatment train; and
- To assess the removal efficiency of the individual GAC units to better predict the carbon use rates during system operation.

For a brief period from May 7, 2012 through June 12, 2012 screening-level vapor samples were collected from various points in both source zone headers in each treatment train, in an effort to qualitatively predict the VOC contributions from each source zone. Samples were collected into Tedlar bags for field screening using a PID and FID. Samples were also collected for laboratory analysis in glass vials between May 11, 2012 and June 4, 2012 and submitted to Microseeps Inc., (Microseeps) of Pittsburgh, Pennsylvania for analysis of VOCs by lab-proprietary method AM 4.02.

Based on the field screen and laboratory analytical data Sanborn Head, estimated the total VOC mass removed² per week from each treatment train for the duration of treatment, provided in Exhibit 2 below. Table D.1 (A) provides a summary of detected concentrations of key VOCs in the influent extracted vapor at treatment ports A/B for both treatment trains & Table D.1 (B) provides summary of detected concentrations of key VOCs in the individual treatment zone headers. Influent field screening data vs. cumulative mass removed and influent Summa concentrations vs. cumulative mass removed for both treatment trains are summarized on Figures D.1 and D.2, respectively.

Week Ending	Treatment Train 1	Treatment Train 1	Treatment Train 2 ³	Treatment Train 2
	Weekly Mass Removed, lbs	Cumulative Weekly Mass Removed, lbs	Weekly Mass Removed, lbs	Cumulative Weekly Mass Removed, lbs
2/17/2012	83	83	481	481
2/24/2012	340	423	1255	1736
3/2/3012	102	525	0	1736
3/9/2012	183	708	0	1736
3/16/2012	50	758	152	1888
3/23/2012	114	872	885	2773
3/30/2012	47	919	392	3165
4/6/2012	63	982	649	3814
4/13/2012	43	1025	428	4242
4/20/2012	54	1079	177	4418
4/27/2012	39	1118	140	4559
5/4/2012	25	1143	191	4789
5/11/2012	16	1160	125	4914
5/18/2012	18	1178	63	4976
5/25/2012	22	1199	73	5049
6/1/2012	26	1226	56	5105
6/8/2012	14	1240	40	5145
6/15/2012	14	1254	53	5198
6/22/2012	9.3	1264	60	5258
6/29/2012	9.3	1273	62	5320
7/6/2012	8.4	1283	49	5369
7/13/2012	8.6	1292	70	5439
7/20/2012	11	1303	46	5486
7/27/2012	7	1310	29	5515
8/3/2012	5.6	1316	19	5534
8/10/2012	6.7	1322	21	5555
8/17/2012	4.6	1327	22	5577
8/24/2012	4.2	1331	17	5594

## Exhibit 2 - Weekly Mass Removal Estimates

² Mass removal estimates were made based on influent concentrations associated with Summa samples. Mass removal estimates for days without laboratory samples were made with a combination of interpolation between data points and the assumption that changes in mass removal were proportional to changes in field screening results.

³ Mass removal estimates after 4-27-12 based on influent concentrations associated with Summa samples (prior mass estimates in Treatment Train 2 were made based on Miran SapphIRe field screening data). Mass removal estimates for days without laboratory samples were made using interpolation based on field screening, as described above.

Week Ending	Treatment Train 1	Treatment Train 1	Treatment Train 2 ⁴	Treatment Train 2
	Weekly Mass Removed, lbs	Cumulative Weekly Mass Removed, lbs	Weekly Mass Removed, lbs	Cumulative Weekly Mass Removed, lbs
8/31/2012	4.0	1335	11	5605
9/7/2012	3.4	1339	8.5	5613
9/14/2012	3.4	1342	6	5619
9/21/2012	2.7*	1345*	3*	5622*
9/24/2012	0.9*	1346*	0.4*	5622*

* Indicates values are extrapolated based on the Summa samples collected on 9-19-2012.

A breakdown of estimated key VOC constituents (trichloroethene [TCE], cis 1,2-dichloroethene [cDCE], vinyl chloride [VC], 1,1,1, trichloroethane [1,1,1 TCA] and CFC-113 ) mass removed from subsurface is provided in Exhibit 3 below.

Key Constituent	Estimated VOC Mass Removed ⁵ (lbs)
TCE	614
cDCE	267
VC	25
1,1,1 TCA6	Not Estimated
CFC1113	4,942
Other VOCs	1,120
Total VOCs Removed	6,968

Exhibit 3 - Key Constituent VOC Mass Removal Estimate

A total of 32,400 lbs of GAC was used for treating vapor through Treatment Train 1 and 44,100 lbs for treating vapor through Treatment Train 2 prior to discharge in ambient air. A summary of carbon management is provided as Attachment D.1. Soil vapor sampling field summary forms are provided as Attachment D.2 (on disc); all analytical laboratory reports collected during vapor sampling are compiled in Appendix H (on disc).

## **D.1.2 Condensate Sampling**

Condensate removed from the extracted soil gas stream of each treatment train was sampled and analyzed for VOCs on a biweekly basis to assess influent water quality for treatment at the Clark Street Groundwater Treatment Facility (GTF). Samples were collected and submitted to Lancaster Laboratories of Lancaster, PA for analysis of VOCs by USEPA Method 8260B. The quantity of condensate generated and transferred to the Clark Street GTF was monitored by TRS. Concentrations of key VOCs detected in condensate samples are provided in Table D.2.

⁴ Mass removal estimates after 4-27-12 based on influent concentrations associated with Summa samples (prior mass estimates in Treatment Train 2 were made based on Miran SapphIRe field screening data). Mass removal estimates for days without laboratory samples were made using interpolation based on field screening, as described above.

⁵ Mass removal rates were calculated using estimated vapor extraction rates and laboratory measured sample concentrations for each constituent. The constituent concentrations between sampling rounds were normalized to the daily field measurements.

⁶ 1,1,1 TCA was not detected in the samples of extracted vapor and is typically degraded through the heating process; therefore, extracted mass could not be estimated. The biodegradation by-products of 1,1,1 TCA are included in the other VOC category along with petroleum-related constituents that were detected in vapor samples.

All analytical laboratory reports are compiled in Appendix H (on disc).

# D.2 ERH PERFORMANCE CONFIRMATORY SOIL SAMPLING

At approximately 70%, 85%, and 100% of the budgeted power use, Sanborn Head completed confirmatory sampling by collecting soil samples from multiple locations within each source zone (refer to IRM Completion Report text for detailed discussion of results and Figure 2 for confirmatory soil sampling locations) using the direct push drilling and sampling technique. Sanborn Head retained the services of Parratt-Wolff, Inc. (PWI) of Syracuse, NY to advance the direct push soil borings.

The scope of work completed by Sanborn Head during confirmatory drilling included:

- Drilling observation and documentation of the thirty-nine (39) soil borings (B57-601 through 639) by direct push drilling technique by PWI using Geoprobe® rig models 7822/6620 DT;
- Characterization and field screening of soil samples;
- Selection, preparation, and submittal of soil samples for laboratory analysis by USEPA Method 8260B;
- Containerization of all drill cuttings, excavated soils and decontamination wash water into drum containers provided by PWI; and
- Re-sampling of soils from locations and depths from which VOCs were detected above NYSDEC Soil Cleanup Objectives for Unrestricted Use, to confirm and demonstrate that Remedial Action Objectives were met.



Direct Push Drilling in the Interior CFC Area

Page 6 2466.02

## D.2.1 Soil Logging and Sampling

Given the elevated soil temperature, five-foot stainless steel (SS) core liners were used in place of conventional acetate liners. The SS liners were transferred from the borehole to an ice bath, in order to come to ambient temperature before sampling. OBG personnel assisted in grinding and opening the SS liners for Sanborn Head to log/classify, screen, and collect soil samples.

Sanborn Head representatives observed and characterized soils according to the modified Burmeister method. Head screening for VOCs space was completed in Ziploc® bags using a MiniRAE 3000 PID with a 10.6 eV lamp and a Photovac MicroFID analyzer. Soil samples were collected from each stratum based upon field observations, including petroleum odors, staining or discoloration of soil or rock, evidence of free product, or elevated PID/FID headspace readings.

Soil samples submitted were to Lancaster Laboratories (Lancaster) of Lancaster, PA for analysis of VOCs by USEPA method 8260B. Duplicate samples, daily field blanks, equipment blanks and laboratory-supplied trip blanks were submitted for quality assurance/quality control analysis as described in the IRM Work Plan. All down-hole drilling equipment and reusable sampling equipment was cleaned prior to initial use and between sampling locations.

Detailed results for each soil sampling event are discussed in the IRM Completion Report text; presented on



*Ice bath cooling for SS Soil Cores* 



Grinding of SS Macro-cores

Figures 3(A) through 3(D); and plots of detected VOC concentrations vs. depth are provided to facilitate assessment of the subsurface distribution of VOCs (provided in Figures D.3 through D.23).

Soil sampling observations made by Sanborn Head personnel during the 70% confirmatory sampling event in June 2012 are presented in form of boring logs provided as Attachment D.3 (on disc); soil sampling observations for 85% and 100% confirmatory sampling events in July and September 2012 are presented in Tables D.3 and D.4 respectively. A summary of

VOC concentrations detected during all confirmatory soil sampling events is provided in Table D.5.

## D.2.2 Investigation Derived Waste and Boring Abandonment

All soil, cuttings, decontamination/wash water, and other investigation-derived waste were contained in labeled, clean, water-tight, new, and unused steel drums provided by PWI, which were transferred to the Clark Street GTF for storage until sampling, evaluation, and ultimate appropriate disposal disposition was established. A total of 6 drums with investigation-derived waste were generated.

All interior borings were backfilled using Type II Portland cement grout from the bottom of the borehole to one foot below the floor surface; exterior borings were backfilled with cement from the bottom of the borehole to the ground surface in order to provide a proper seal and minimize vapor intrusion pathways.

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix D - ERH Performance Data Report\20121130 Appendix D - ERH Performence Monitoring.docx

#### Table D.1 (A) Summary of Analytical Results - Influent Extracted Vapor Operable Unit # 5/Building 57 Area Union and Endicott, NY

			Key V(	OCs in Units	of Parts P	er Million by Vo	lume (ppm	<b>v</b> )		
	Date	TCE	cDCE	Vinyl Chloride	1,1,1- TCA	CFC-113	Benzene	Ethyl Benzene	Toluene	Total Xylenes
	02/09/12	0.43	0.071	< 0.0015	0.04	0.010	< 0.0015	< 0.0015	< 0.0015	0
	02/15/12	20	8.6	1.9	0.40	6.7	< 0.12	< 0.12	0.32	0.12
	02/20/12	50	30	3.3	0.51	8.1	< 0.18	<0.18	0.34	0
	03/05/12	56	30	2.9	0.48	6.5	< 0.34	< 0.35	0.45	0
	03/19/12	30 8.0	18 5.3	2.4	0.12	1.5 0.20	<0.066	< 0.067	0.19	0.078
	03/27/12	8.0 17	5.3	0.63	0.06	0.20	<0.034 <0.085	0.048 <0.085	0.24 0.14	0.037
	04/02/12	15	11	1.5	0.097	0.51	< 0.083	<0.085	0.14	0
	04/09/12	8.7	6.8	1.0	0.044	0.26	< 0.034	< 0.032	0.11	0.035
	04/16/12	5.6	4.3	0.74	< 0.057	18	< 0.056	< 0.058	0.17	0.097
	04/25/12	3.7	2.8	0.32	0.020	0.09	0.04	0.023	0.21	0.039
	04/30/12	4.7	3.5	0.51	0.022	0.13	0.11	0.030	0.20	0.082
Treatment	05/10/12	2.0	1.3	0.22	< 0.011	0.023	0.012	0.015	0.074	0.018
Train 1	05/15/12 05/22/12	3.2	2.1 2.2	0.29	0.012	0.04	0.019	0.020	0.066	0.051 0.069
	05/22/12 05/31/12	3.2	1.4	0.33	0.017	0.09	0.019	0.025	0.160	0.069
	06/04/12	3.2	1.8	0.24	0.015	0.060	0.017	0.028	0.110	0.084
	06/13/12	2.3	1.3	0.22	0.0078	0.064	0.015	0.022	0.061	0.067
	06/27/12	1.8	0.95	0.095	< 0.0092	0.036	0.014	0.026	0.042	0.056
	07/03/12	2.2	0.97	0.21	< 0.0090	0.026	0.022	0.025	0.033	0.080
	07/10/12	1.6	1.0	0.21	< 0.0057	0.024	0.70	0.11	0.72	0.49
	07/18/12 07/29/12	2.2 0.65	1.0 0.36	0.24 0.10	<0.0078	0.024 0.010	0.014 0.010	0.015	0.024 0.010	0.036
	07/29/12 08/13/12	1.0	0.36	0.10	< 0.0025	0.0060	0.0098	0.0089	0.010	0.018
	08/28/12	0.67	0.42	0.099	< 0.0027	0.0049	0.0067	0.0005	0.0011	0.033
	09/09/12	0.80	0.30	0.150	< 0.0028	0.0033	0.0085	0.0053	0.0075	0.021
	09/19/12	0.30	0.14	0.066	< 0.0013	0.0018	0.0044	0.0035	0.0033	0.013
	02/09/12	0.28	0.14	0.25	0.027	0.37	0.0013	0.0015	0.0024	0.012
	02/15/12	0.52	< 0.40	< 0.43	< 0.42	103	< 0.41	<0.41	0.53	0
	02/20/12	<1.8	<1.8	<1.8	<1.8	339	<1.8	<1.8	2.3	0
	03/15/12 03/18/12	0.71	0.54	0.26 <0.51	<0.11 <0.51	24 230	0.23 7.60	<0.12 0.58	0.14	0.14
	03/19/12	1.2	0.80	<0.47	<0.48	350	7.4	0.91	4.5	3.4
	3/27/2012	0.63	0.73	0.31	<0.20	34	0.34	< 0.21	0.23	0.23
		1.5	1.3	<1.2	<1.2	274	<1.2	<1.2	<1.2	0
	04/02/12	1.2	1.2	<0.86	<0.86	290	<0.85	<0.85	<0.85	0
	04/05/12	1.1	0.91	< 0.59	< 0.59	111	5.6	< 0.58	2.2	0.60
	04/09/12	1.2	0.91	< 0.63	< 0.64	157	1.2	<0.64	0.93	0
	04/17/12	0.74	0.66	0.19	<0.088	26	<0.088	<0.088	0.29	0.16
	04/25/12	4.7	0.83	0.18	< 0.11	23	< 0.11	< 0.11	0.15	0.13
Treatment	04/29/12 05/10/12	2.0	0.73	0.18	<0.073 <0.066	39 18	22 0.20	1.8 <0.066	11 0.23	6.4 0.31
Train 2	05/10/12	0.69	0.55	0.22	< 0.066	10	0.20	0.10	0.25	0.31
	05/22/12	0.97	0.55	0.15	<0.043	10	< 0.094	< 0.094	0.45	0.16
	05/31/12	0.56	0.35	0.12	< 0.037	10	0.26	0.046	0.26	0.23
	06/04/12	0.65	0.50	0.17	0.020	5.4	1.0	0.058	0.32	0.37
	06/13/12	0.38	0.44	0.16	< 0.018	11	0.026	< 0.018	0.029	0.17
	06/27/12	0.35	0.31	0.15	< 0.074	14	0.52	< 0.074	0.33	0.33
	07/03/12 07/10/12	0.28	0.22 0.19	0.14 0.078	<0.037 <0.056	8.7 14	<0.037 1.4	<0.037 0.084	0.055	0.072
	07/10/12 07/18/12	0.23	0.19	0.078	<0.056	<u>14</u> 10	1.4 <0.035	<0.035	0.91	0.32
	07/29/12	0.21	0.33	0.072	< 0.009	3.6	< 0.009	<0.009	0.012	0.057
	08/13/12	0.38	0.26	0.11	< 0.0097	3.0	1.9	0.16	0.72	0.51
	08/28/12	0.39	0.36	0.13	0.0064	2.0	0.018	0.0067	0.016	0.043
	09/09/12	0.39	0.22	0.046	0.0055	0.85	0.012	0.0067	0.013	0.045
	09/19/12	0.17	0.21	0.071	0.0033	0.014	0.010	0.0043	0.012	0.034

Notes:

1. Vapor samples were collected in 1-Liter stainless steel Summa canisters by Sanborn Head on dates indicated. 2. Sample analysis (EPA Method TO-15) was performed by Air Toxics Limited, Folsom, California. 3. Analytical laboratory reports are provided in Appendix H (on disc).

Page 1 of 1

## Table D.1 (B) Summary of Analytical Results - Header Extracted Vapor Operable Unit # 5/Building 57 Area Union and Endicott, NY

			Key	VOCs in unit	s of Parts per	Million by V	olume (ppm	v)			
		Date	TCE	cDCE	Vinyl Chloride	1,1,1-TCA	CFC-113	Benzene	Ethyl Benzene	Toluene	Total Xylenes
		5/11/2012	0.55	0.44	3.2	0.055	0.32	0.089	< 0.10	0.22	< 0.20
	TCA Area	5/21/2012	0.54	0.26	2.1	0.056	0.21	0.035	< 0.10	0.21	< 0.20
		6/4/2012	0.7	0.48	1.7	0.045	0.22	< 0.10	< 0.10	0.12	< 0.20
		5/11/2012	4.5	4.4	3.7	0.0071	0.022	0.11	< 0.10	< 0.10	< 0.20
Treatment	Waste Solvent Area	5/21/2012	4.1	3.1	2.6	0.0081	0.050	0.075	< 0.10	< 0.10	0.12
Train 1		6/4/2012	2.5	2.8	2.4	0.0062	0.029	0.1	0.018	0.02	< 0.20
	Pre-Condenser, Combined	5/11/2012	3.4	3.6	3.8	0.023	0.14	0.12	< 0.10	0.11	< 0.20
	(TCA Area & Waste	5/21/2012	2.5	2.3	1.9	0.025	0.11	0.073	< 0.10	0.10	0.06
	Solvent Area)	6/4/2012	1.8	2	2.8	0.018	0.088	0.077	< 0.10	0.05	0.06
		5/11/2012	0.89	0.31	1.2	0.018	180	0.077	< 0.10	< 0.10	0.032
	CFC Area	5/21/2012	0.28	0.15	1.1	0.014	38	0.032	< 0.10	< 0.10	0.065
		6/4/2012	0.16	0.098	0.59	0.0083	20	0.016	< 0.10	< 0.10	< 0.20
<b>T</b>		5/11/2012	0.58	0.90	2.4	0.057	0.073	0.22	0.14	0.20	0.45
Treatment	Building57A Area	5/21/2012	0.67	1.1	2.4	0.063	0.13	0.094	0.096	0.050	0.23
Train 2	_	6/4/2012	0.36	0.46	<1.0	0.025	0.085	0.67	0.021	0.20	0.10
	Pre-Condenser, Combined	5/11/2012	0.56	0.56	4.4	0.036	66	0.14	0.054	0.10	0.10
	(CFC Area & Building 57A	5/21/2012	0.50	0.50	2.1	0.048	15	0.072	< 0.10	0.034	0.18
	Area)	6/4/2012	0.27	0.27	<1.0	0.018	5.8	0.4	< 0.10	0.13	0.07

Notes: 1. Vapor samples were collected in VOA vials with septum caps on the dates indicated. 2. Sample analysis was performed by Microseeps, Inc, of Pittsburgh, PA, using analytical method AM 4.02 for vapors. 3. Analytical laboratory reports are provided in Appendix H (on disc).

#### Table D.2 Summary of Analytical Results - Condensate Operable Unit # 5/Building 57 Area Union and Endicott, NY

							D	etected VOC	s in Units of	Micrograms	per Liter (u	p/L.)					ſ
									o in cinto or	inter ograms	per inter (µ	,11)					
Sample Port	Date	Tetrachloroethene	Trichloroethene	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	CFC-113 (1,1,2-Trichloro-1,2,2-trifluoroethane)	Chloroform	Benzene	Toluene	Acefone	Bromodichloromethane	2-Butanone (MEK)	Dibromochloromethane	Tetrahydrofuran	Summation of Detected VOCs
	3/5/2012	<0.5	2.1	< 0.5	1.9	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	100	<0.5	13	< 0.5	2.4 J	119
	3/27/2012	0.3 J	10	< 0.5	0.8	< 0.5	< 0.5	2.6	< 0.5	< 0.5	0.4 J	6.7	< 0.5	<5.0	< 0.5	<5.0	21
	4/9/2012	<0.5	0.2 J	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	7.3	< 0.5	<5.0	< 0.5	<5.0	7.5
	4/25/2012	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<5.0	< 0.5	<5.0	< 0.5	<5.0	0
	5/9/2012	<0.5	0.3 J	30.0	< 0.5	< 0.5	< 0.5	< 0.5	0.1 J	< 0.5	< 0.5	<5.0	< 0.5	<5.0	< 0.5	<5.0	0
	5/22/2012	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	4.4 J	<0.5	<5.0	< 0.5	<5.0	4.4
Treatment	6/4/2012 6/27/2012	<0.5 <0.5	0.2 J <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.1 J 0.1 J	<0.5 <0.5	<0.5 <0.5	3.4 J <5.0	<0.5 <0.5	<b>1.2 J</b> <5.0	<0.5 <0.5	<b>22</b> <5.0	27 0.1
Train 1	7/10/2012	<0.5	<0.5 0.2 J		<0.5	<0.5	<0.5	<0.5	0.1 J 0.3 J	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	0.1
	7/26/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	4.7 J	<0.5	<5.0	<0.5	<5.0	4.7
	8/13/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	<0.5	<5.0	0
	8/27/2012	<0.5	0.2 J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	<5.0	<5.0	0.2
	9/11/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	<0.5	<5.0	0
	9/19/2012	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	<0.5	<5.0	0
	3/27/2012	< 0.5	1.1	< 0.5	< 0.5	< 0.5	< 0.5	0.4 J	< 0.5	< 0.5	< 0.5	4.1 J	< 0.5	<5.0	< 0.5	<5.0	5.6
	4/9/2012	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.4 J	<0.5	0.1 J	<0.5	22	<0.5	2.7 J	<0.5	<5.0	26
	4/25/2012	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	33	< 0.5	3.7 J	<0.5	<5.0	37
	5/9/2012	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	10	< 0.5	<5.0	< 0.5	<5.0	10
	05/22/12	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.10 J	< 0.5	< 0.5	5.3	0.10	1.0 J	0.1 J	<5.0	6.6
Treatment	06/04/12	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	74	< 0.5	7.7	< 0.5	<5.0	82
Train 2	06/27/12	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	3.5 J	<0.5	<5.0	< 0.5	<5.0	3.5
1101112	07/10/12	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	8.6	< 0.5	1.1 J	< 0.5	<5.0	9.7
	07/26/12	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	4.1 J	< 0.5	<5.0	< 0.5	<5.0	4.1
	08/13/12	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	21	< 0.5	2.0 J		<5.0	23
	08/27/12	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	0.1 J	<0.5	<0.5	3.3 J	0.2 J	<5.0	0.1 J	<5.0	3.7
	9/11/2012	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<5.0	< 0.5	<5.0	0
	9/19/2012	<0.5	< 0.5	< 0.5	0.1 J	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	88	< 0.5	15	< 0.5	<5.0	103

#### Notes:

1) Condensate samples were collected in VOA vials by Sanborn Head on dates indicated.

2) Sample analysis (EPA Method 8260B) was performed by Lancaster Laboratories, Inc., of Lancaster, Pennsylvania.

3) 'J' qualifier indicates an estimated value.

4) Analytical laboratory reports are provided in Appendix H (on disc).

# Table D.3 85% Soil Sampling Details - July 2012 Operable Unit # 5/Building 57 Area Union and Endicott, NY

Soil Boring	Sample Name	Collection Date	Source Zone	Confirmatory Sampling Target Depth Range	Sample	Depth (ft)	Modified Burmister Description	FID	PID	Target VOC(s) for Analysis Based on 70% Sampling Analytical Results
		= /2= /22 / 2	07.0 4	(ft)	Тор	Bottom				more
B57-606A	B57 - 606A/1A B57-611A/1A	7/25/2012	CFC Area CFC Area	5 - 7 8 - 13	5	7 12	Black, fine to coarse sand, trace silt, trace gravels, moist, FILL Gray, silt and clay with brown mottling, moist, SILT & CLAY	NM 15	NM 13	TCE CFC-113
B57-611A		7/25/2012					Dark gray, clayey silt, some fine to coarse sand, some gravel (fractured rock),			
	B57-611A/2C		CFC Area	13 - 18	17	18	coarse fraction - angular, moist, TILL	5.3	2.3	CFC-113
B57-613A	B57-613A/1	7/25/2012	B57A Area	5 - 10	8	9	Brown - Black, fine to coarse sand, some silt, trace gravels, trace concrete, very few slag particles, very slight petroleum odor, coarse fraction - subrounded, moist, <b>FILL</b>	54	48	cis-1,2 DCE
	B57-613A/2A	.,,		10 - 15	10.5	11	Dark Gray, clay and silt, moist, SILT & CLAY	19	9.2	cis-1,2 DCE
B57-617A	B57 - 617A/1	7/25/2012	B57A Area	10 - 15	10	15	Gray, clay and silt with brown mottling, moist, SILT & CLAY	19	16	cis-1,2 DCE
B57-618A	B57-618A/1	7/25/2012	B57A Area	3 - 8	3	4	Dark Brown, fine to coarse sand, some silt, little gravels, very few slag particles/brick, coarse fraction - angular to subrounded, moist, <b>FILL</b>	11	11	cis-1,2 DCE & TCE
B57-619A	B57-619A/1B	7/25/2012	B57A Area	16 - 21	18	21	Light Gray, clayey silt, some fine to coarse sand, trace gravel (rock fragments), coarse fraction - angular, dry, <b>TILL</b>	11	4.7	cis-1,2 DCE
B57-620A	B57-620A/1A	7/25/2012	B57A Area	3 - 8	3	4	Dark Brown - gray, fine to coarse sand, some silt, trace gravels, slight petroleum odor, coarse fraction - subangular to subrounded, moist, <b>FILL</b>	11	11	cis-1,2 DCE & TCE
B57-626A	B57-626A/1	7/24/2012	TCA Area	21 - 25	20	24	Light Gray, silt and clay, and gravel (fractured rock) , some fine to coarse sand, coarse fraction - angular, dry, WEATHERED BEDROCK	3.4	3.1	Vinyl chloride
B57-628A	B57-628A/1	7/23/2012	WSA	3 - 8	3	5	Brown Gray, clayey silt, little fine to coarse sand, trace gravels, coarse fraction - subangular to subrounded, moist, <b>FILL</b>	18	44	cis-1,2 DCE & TCE
	B57-629A/1			3 - 8	3	5	Brown, clayey silt to silt and clay, little fine to coarse sand, trace gravels, very few slag and brick particles, coarse fraction - subangular to subrounded, moist, <b>FILL</b>	8	17	TCE
B57-629A	B57-629A/3	7/23/2012	WSA	10 - 12.5	10	15	Dark gray to gray with brown mottling, clay and silt grading to silt and clay, trace fine to medium sand, moist, CLAY & SILT TO SILT & CLAY	7	8	cis-1,2 DCE
	B57-629A/4B			18.8 - 20	18.8	20	Grayish brown to gray, clayey and silt, some gravels, little fine to coarse sand (lower 1.2' of recovery), coarse fraction subrounded, moist	7	11	cis-1,2 DCE
B57-630A	B57-630A/1	7/24/2012	WSA	3 - 8	3	5	Brown, clay and silt, little fine to coarse sand, little gravels, coarse fraction - rounded to subangular, moist, <b>FILL</b>	14	15	TCE
B37-030A	B57-630A/2D	772472012	WSA	23 - 28	26.8	28	Clayey silt, some sand, some gravel (fractured rock), coarse fraction - subangular to angular, moist	3.8	2.4	Vinyl chloride
B57-631A	B57-631A/1	7/23/2012	WSA	3 - 5	3	5	Gray-brown, silt and clay, little fine to coarse sand, trace gravels, trace brick, coarse fraction - rounded to subangular, moist, <b>FILL</b>	6	26	TCE
B57-632A	B57-632A/1B	7/24/2012	WSA	8 - 13	11.6	13	Dark gray, clay and silt, little gravels, trace fine to coarse sand, coarse fraction - subrounded to subangular, moist, <b>SILT &amp; CLAY</b>	5	4	cis-1,2 DCE, vinyl chloride & TCE
	B57-634A/1			5 - 10	5	10	Brown, silt and clay, some fine to coarse sand, little gravels, coarse fraction - subrounded, moist, <b>FILL</b>	14	44	cis-1,2 DCE & TCE
B57-634A	B57-634A/2B	7/24/2012	WSA	10 - 15	11	15	Gray, clay and silt, moist, <b>SILT &amp; CLAY</b>	17	34	cis-1,2 DCE, vinyl chloride & TCE
207 00 111	B57-634A/3C	,,=,,=,=		15 - 20	19.5	20	Gray, clay and silt, little gravels, trace sand, coarse fraction - rounded to subrounded, moist, SILT & CLAY	7.1	5.2	cis-1,2 DCE & TCE
	B57-634A/4B			20 - 25	23.5	25	Gray, Silt and clay, and fine to coarse sand, some gravel (fractured shale), coarse fraction - angular, moist, TILL	17	47	cis-1,2 DCE & vinyl chloride
	B57-635A/1			5 - 10	5	10	Gray, silt and clay, little gravels, little sand, trace wood, trace brick, coarse fraction - subrounded, moist, FILL	14	23	cis-1,2 DCE & TCE
B57-635A	B57-635A/2	7/24/2012	WSA	10 - 15	13	14	Gray, silt and clay with brown mottling, trace gravels at top, moist, coarse fraction - angular, SILT & CLAY	12	8.9	cis-1,2 DCE & vinyl chloride
	B57-635A/3B			22 - 27	24	25	Gray, clayey silt, some gravel, trace sand, coarse fraction - angular, moist, TILL	13	24	cis-1,2 DCE & vinyl chloride
B57-636A	B57-636A/1B	7/24/2012	WSA	20 - 24	22.5	23	Brown, silt and clay, some gravel (fractured rock), some fine to coarse sand, coarse fraction - angular, moist, <b>TILL</b>	4.8	4.6	cis-1,2 DCE, vinyl chloride & TCE
557 030A	B57-636A/2B	, 21/2012		24 - 27.5	26.5	27.5	Gray, silt and clay, and fine to coarse sand, some gravel (fractured rock) , coarse fraction - angular, wet, <b>WEATHERED BEDROCK</b>		1.1	Vinyl chloride
	B57-637A/1			3 - 5	3	5	Brown, silt and clay, some fine to coarse sand, some gravels, trace roots, coarse angular fraction - subrounded, petroleum odor noted, moist, <b>FILL</b>		31	cis-1,2 DCE & TCE
	B57-637A/2			5 - 9.6	5	10	Gray-Brown, silt and clay, little gravels, little sand, trace cobbles, trace roots, trace concrete, coarse angular fraction - subrounded to subangular, moist, <b>FILL</b>		20	cis-1,2 DCE & TCE
B57-637A	B57-637A/3	7/24/2012	WSA	10 - 15	10	15	Gray, clay and silt, trace gravels, trace sand at top, moist, <b>SILT &amp; CLAY</b>	15	8.8	cis-1,2 DCE
	B57-637A/5A			25 - 30	25	26	Gray, clayey silt, little gravel (fractured rock), little sand, coarse fraction - angular, moist, <b>TILL</b> Light gray, clayey silt, little gravel (fractured rock), little sand, coarse fraction - angular, moist,	10	6.3	cis-1,2 DCE, vinyl chloride & TCE
	B57-637A/5B			25 - 30	28	29	Light gray, clayey slit, little gravel (fractured rock), little sand, coarse fraction - angular, moist, WEATHERED BEDROCK	18	14	cis-1,2 DCE, vinyl chloride & TCE

 Notes:

 1) Samples were collected by Sanborn Head on the dates indicated.

 2) Samples were analyzed by Lancaster laboratories of Lancaster, Pennsylvania for analysis of volatile organic compounds (VOCs) by U.S Environmental Protection Agency (USEPA) method 8260B.

 3) All interior and exterior borings were backfilled using Portland cement grout to ground surface.

 4) NM indicates the field screen was not measured for that sample range.

# Table D.4 100% Soil Sampling Details - September 2012 Operable Unit # 5/Building 57 Area Union and Endicott, NY

Soil Boring	Sample Name	Collection Date	Source Zone	Confirmatory Sample Target Depth Range (ft)	Sample I	Depth (ft)	Modified Burmister Description	FID	PID	Target VOC(s) for Analysis Based on 85% Sampling Analytical Results
				Deptil Kange (it)	Тор	Bottom				
B57-618B	B57 - 618B/1A	9/18/2012	B57A Area	3 - 5	3	5	Dark Brown, fine to coarse sand, some gravels, some silt, coarse fraction - subrounded to angular, moist, <b>FILL</b>	1.1	0.8	cis-1,2 DCE & TCE
B57-620B	B57-620B/1A	9/18/2012	B57A Area	3 - 5	3	5	Dark Brown, fine to coarse sand, some clayey silt, some gravels, trace organic peat, coarse fraction - subrounded to angular, moist, <b>FILL</b>	6.3	5.9	cis-1,2 DCE & TCE
B57-628B	B57-628B/1	9/17/2012	WSA	3 - 5	3	5	Dark Brown, clayey silt, little fine to coarse sand, trace gravels, coarse fraction - subrounded to subangular, moist, <b>FILL</b>	5.5	1.8	cis-1,2 DCE & TCE
B57-629B	B57-629B/1	9/17/2012	WSA	3 - 5	3	5	Light Gray, silt and clay, some fine to coarse sand, trace gravels, trace brick, coarse fraction - rounded to angular, dry, FILL	1.1	0.1	TCE
B57-630B	B57-630B/2D	9/17/2012	WSA	20 - 23	21	23	Dark Brown, fine to coarse sand, some silt, some gravels, coarse fraction - subangular to angular, wet, GRAVELLY SAND	2.0	0.1	Vinyl chloride
B57-631B	B57-631B/1	9/17/2012	WSA	3 - 5	3	5	Gray with slight orange mottling, silt and clay, little coarse sand, trace gravels, trace concrete, coarse fraction - subrounded to angular, moist, FILL	2.5	0.5	TCE
B57-632B	B57-632B/1B	9/17/2012	WSA	11.5 - 13	11.5	13	Dark Gray, clay and silt, trace fine to coarse sand at bottom, moist, CLAY & SILT	9.6	2.3	cis-1,2 DCE & TCE
	B57-634B/1			5 - 10	5	10	Gray, fine to coarse sand and gravels, some clayey silt, coarse fraction - rounded to subangular, dry, FILL	2.4	1.5	cis-1,2 DCE & TCE
B57-634B	B57-634B/2B	9/17/2012	WSA	11 - 15	11	15	Dark Gray with slight orange mottling, clay and silt, trace slag particles, moist, CLAY & SILT	4.0	1.4	cis-1,2 DCE, vinyl chloride & TCE
	B57-634B/4B			22 - 24	22	24	Gray, Silt and clay, and fine to coarse sand, some fractured shale, coarse fraction - angular, moist, <b>TILL</b>	3.0	2.0	cis-1,2 DCE & vinyl chloride
B57-635B	B57-635B/3B	9/17/2012	WSA	22 - 24	23	24	Clayey silt, some gravelly weathered shale, coarse fraction - angular, moist, SILT & GRAVEL & TILL	1.9	0.4	cis-1,2 DCE
B57-636B	B57-636B/2B	9/17/2012	WSA	25 - 28	26.5	27.5	Light Gray, silt, some fine to coarse sand, some weathered shale, coarse fraction - subangular to angular, dry, <b>WEATHERED BEDROCK</b>	1.8	0.1	Vinyl chloride
	B57-637B/1			3 - 5	3	5	Brown-Gray, fine to coarse sand, some gravels, some silt and clay, trace bricks at top, coarse angular fraction - subrounded to angular, dry, <b>FILL</b>	0.8	0.8	cis-1,2 DCE & TCE
B57-637B	B57-637B/3	9/18/2012	WSA	10 - 15	10	15	Gray with orange mottling, silt and clay, moist, SILT & CLAY	1.3	0.5	cis-1,2 DCE
	B57-637B/5A			25 - 26	25	26	Gray, silt and clay, little weathered bedrock, coarse fraction - subangular to angular, moist to wet, WEATHERED BEDROCK	1.1	0.2	cis-1,2 DCE & TCE

#### Notes:

Samples were collected by Sanborn Head on the dates indicated.
 Samples were analyzed by Lancaster laboratories of Lancaster, Pennsylvania for analysis of volatile organic compounds (VOCs) by U.S Environmental Protection Agency (USEPA) method 8260B.
 All interior and exterior borings were backfilled using Portland cement grout to ground surface.
 NM indicates the field screen was not measured for that sample range.

				B5'	7-601			B57	-602			B57	-603			B57-604	
	NYSDEC	NYSDEC	DF7 (01/1D	DF7 (01/2	DE7 (01/24	DF7 (01/2D	DE7 (02/1A	B57-602/1B	DE7 (02/2D	B57-602/4B	DE7 (02/1A	B57-603/1B	B57-603/3	B57-603/4B	B57-604/1C	B57-604/2A	B57-604/2B
Analyte	Unrestricted	Commercial	B57-601/1B	B57-601/2	B57-601/3A	B57-601/3B	B57-602/1A	B57-602/1B	B57-602/2B	, i	B57-603/1A	B57-603/1B	B57-603/3	B57-603/4B	B57-604/1C	B57-604/2A	B57-604/2B
	Use SCOs	Use SCOs	0.4 10	10 125	155 104	10.4.20	5 ( )	(2.10)	14.2 15	CFC Area	E C	( 10	15 20	21 22	05 10	10 120	120.15
	(µg/kg)	(µg/kg)	8.4 - 10	10 - 12.5	15.5 - 19.4	19.4 - 20	5 - 6.2	6.2 - 10	14.3 - 15	22.1 - 23	5-6	6 - 10	15 - 20	21 - 23	9.5 - 10	10 - 13.9	13.9 - 15
			06/19/12	06/19/12	06/19/12	06/19/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12
VOCs																	
AVOCs				1		1				1		-	1	1			1
Benzene	60	44,000	<9	<5	1 J	<6	0.6 J	<6	<6	<4	190 J	<4	<5	<4	<5	<4	<4
Dichlorobenzene (1,2-)	1,100	500,000	<9 UJ	<5	<6 UJ	<6 UJ	<5	<6 UJ	<6	<4 UJ	<7 UJ	<4	<5	<4	<5	<4	<4
Dichlorobenzene (1,3-)	2,400	280,000	<9 UJ	<5	<6 UJ	<6 UJ	<5	<6 UJ	<6	<4 UJ	<7 UJ	<4	<5	<4	<5	<4	<4
Dichlorobenzene (1,4-)	1,800	130,000	<9 UJ	<5	<6 UJ	<6 UJ	<5	<6 UJ	<6	<4 UJ	<7 UJ	<4	<5	<4	<5	<4	<4
Ethylbenzene	1,000	390,000	<9	<5	<6	<6	<5	<6	<6	<4	120 J	<4	<5	<4	<5	<4	<4
Styrene	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Toluene	700	500,000	<9	<5	<6	<6	<5	<6	<6	<4	780	<4	<5	<4	<5	<4	<4
Xylene (m,p-)	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	730	<4	<5	<4	<5	<4	<4
Xylene (o-)	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	400	<4	<5	<4	<5	<4	<4
CVOCs					-	-			-	-			-	-	ļ,		
Carbon tetrachloride	760	22,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Chloroethane	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Chloroform (Trichloromethane)	370	350,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Chloromethane	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloroethane (1,1-)	270	240,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloroethane (1,2-)	20	30,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloroethene (1,1-)	330	500,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloroethene (cis-1,2-)	250	500,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloroethene (trans-1,2-)	190	500,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloropropane (1,2-)	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloropropene (cis-1,3-)	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Dichloropropene (trans-1,3-)	NE 50	NE 500.000	<9	<5 <5	<6	<6	<5 <5	<6 <6	<6	<4	<7 UJ <7 UI	<4	<5 <5	<4	<5 <5	<4	<4
Methylene Chloride (Dichloromethane)		,	6 J	-	<6	<6	-		<6	<4	- ,	<4	-	<4	_	<4	<4
Tetrachloroethane (1,1,1,2-) Tetrachloroethane (1,1,2,2-)	NE NE	NE NE	<9 <9 UI	<5 <5	<6 <6 UI	<6 <6 UI	<5 <5	<6 <6 UJ	<6 <6	<4 <4 UI	<7 UJ <7 UJ	<4 <4	<5 <5	<4	<5 <5	<4 <4	<4
Tetrachloroethene (PCE)	1,300	150,000	<90j	<5	<0 UJ <6	<0 UJ <6	<5	<6 UJ <6	<6	- 1	<7 UJ <7 UJ	<4	<5	<4 <4	<5	<4	<4 <4
Trichloroethane (1,1,1-)	680	500,000	<9 <9 <9	<5	<6	<0	<5	<0 <6	<6	<4 <4	<7 UJ <7 UJ	<4	<5	<4	<5	<4	<4 <4
Trichloroethane (1,1,1-)	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UI	<4	<5	<4	<5	<4	<4
Trichloroethene (TCE)	470	200.000	61	<5 UJ	<0 <6 UJ	<6 UJ	<5 UJ	<6 UJ	<6 UI	<4 UI	<7 UJ	<4 UJ	<5 UJ	<4 UI	3	<4 UI	<4 UI
Vinyl chloride	20	13.000	<9	<5 05	<6	<6	<5	<6	<0 0j <6	<4 05	<7 UJ	<4 0)	<5 05	<4 05	<5	<4 0j	<4 05
Other VOCs	20	13,000	<9	<5	<0	<0	<5	<0	<0	<4	<7 UJ	<4	<5	<4	<5	<4	<4
	50	500,000	991	200 J	46 J	100 J	24 [	2,000	150 J	18 J	1,400 J	760 J	191	23 ]	490 J	01	92 J
Acetone Bromodichloromethane	NE	,	<b>99</b> ] <9	,		,	,	,	,				,			91	-
Bromodicniorometnane Bromoform	NE	NE NE	<9 <9 <9	<5 <5	<6 <6	<6 <6	<5 <5	<6 <6	<6 <6	<4 <4	<7 UJ <7 UJ	<4 <4	<5 <5	<4 <4	<5 <5	<4 <4	<4 <4
Bromonorm Bromomethane	NE	NE	<9 <9	<5	<6	<6	<5	<0 <6	<6	<4	<7 UJ <7 UJ	<4	<5	<4 <4	<5 <5	<4 <4	
Bromometnane Butanone (2-) (MEK)	120	NE 500,000	<17	32	<0	<6 7 J	<10	< ₀ 410	<b 9 J</b 	<9	<7 Uj 91 J	<4 70	<5	<8	<5 36	<pre>&lt;4 19</pre>	<4 8 J
Carbon disulfide	NE	500,000 NE	2 J	<5 <5	<11 <6	<6	<10	410 <6	<b>9</b> ] <6	<9	6]	<4	<5	<0	<b>30</b> <5	19	<b>o</b> J <4
Dibromochloromethane	NE	NE	<9	<5	<6	<0	<5	<0 <6	<6	<4	<b>0</b> ] <7 U]	<4	<5	<4	<5	- 1 J <4	<4
Dichlorodifluoromethane (CFC12)	NE	NE	<9	<5	<0	<6	<5	<6	<0	<4	5 J	<4	<5	<4	<5	<4	<4
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	41	<10	<11	<13	<10	<12	<12	<9	2,000	61	<9	<8	<9	<9	<9
Ethane, 1,2-dichloro-1,2,2-trifluoro- (CFC123a)	NE	NE	<9	<5	<6	<6	<5	<12 <6	<6	<4	2,000 27 J	<4	<5	<0	<5	<4	<4
Hexanone (2-)	NE	NE	<17	<10	<11	<13	<10	<12	<12	<9	<15 UJ	<8	<9	<8	<9	<9	<9
Isopropyl Alcohol (Isopropanol)	NE	NE	<170	<100	<110	<130	<100	<120	<120	<88	<150 UJ	<81	<92	<81	<95	<89	<87
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<17	<100	<11	<130	<100	<120	<12	<9	<150 0J	<8	<9	<8	<9	<9	<9
Methyl-tert Butyl Ether (MTBE)	930	500,000	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Tetrahydrofuran	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Trichlorofluoromethane	NE	NE	<9	<5	<6	<6	<5	<6	<6	<4	<7 UJ	<4	<5	<4	<5	<4	<4
Other Parameters					-0			-0								• •	· •
Moisture	1		17	14.1	7.1	3.1	7.8	20.5	13.7	5.9	11.6	10.5	8.9	9.7	9.6	21.7	11.5
Field Parameters			1/	11.1	/.1	J.1	7.0	20.0	13./		11.0	10.3	0.7		7.0	<i>L</i> 1./	11.5
FID			0	0	0	0	3	5	2	0	4	5	1	2	0	0	0
PID			3	3	3	2	1	3	3	1	т 1	6	2	1	1	1	0
110			J 3	ر _ا	3	4	1	5	3		1		L		1	Ŧ	1

			B57-604		B57-605				B57-606				B57	7-607		B57	-608
	NYSDEC	NYSDEC	B57-604/4B	B57-605/14	B57-605/1C	B57-605/2B	B57-606/1A	B57606A/1A	B57-606/1B	B57-606/2C	B57-606/3	B57-607/1A	B57-607/24	B57-607/2B	B57-607/3B	B57-608/1	B57-608/2
Analyte	Unrestricted Use SCOs	Commercial	B37-004/4B	B37-003/1R	B37-003/1C	B37-003/2B	D37-000/1A	B37000A/1A	B37-000/1B	<i>CFC Area</i>	B37-000/3	B37-007/1A	B37-007/2A	D37-007/2D	B37-00773B	D37-000/1	B37-000/2
	use scos (μg/kg)	Use SCOs (µg/kg)	22.2 - 23	5 - 5.5	9 - 10	10.4 - 12	5 - 5.8	5 - 7	9 - 9.5	14.5 - 15	15 - 17	5 - 8	10 - 12	13.5 - 14	14 - 14.5	6-7	9 - 9.5
	(µg/ Kg)	(µg/ĸg)	06/18/12	06/18/12	06/18/12	06/18/12	06/18/12	07/25/12	06/18/12	06/18/12	06/18/12	06/18/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12
VOCs			00/10/12	00/10/12	00/10/12	00/10/12	00/10/12	07/20/12	00/10/12	00/10/12	00/10/12	00/10/12	00/17/12	00/17/12	00/17/12	00/17/12	00/15/12
AVOCs																<b> </b>	
Benzene	60	44,000	21	<6	<5	- 4	0.7 [		<5	<4	- 4	0.91	<5	<5	0.5 J	<5	-6
Dichlorobenzene (1,2-)	1,100	500,000	2 J <5 UJ	<6 UI	<5	<4 <4	<7 UI	-	<5	<4	<4 <4 UI	<6	<5	<5	<pre></pre>	<5	<6 <6
Dichlorobenzene (1,2-)	2,400	280,000	<5 UJ	<6 UJ	<5	<4	<7 UJ		<5	<4	<4 UJ	<6	<5	<5	<4	<5	<6
Dichlorobenzene (1,3-)	1,800	130,000	<5 UJ	<6 UJ	<5	<4	<7 UJ		<5	<4	<4 UJ	<0	<5	<5	<4	<5	<6
Ethylbenzene	1,000	390,000	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Styrene	NE	NE	<5 UJ	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
Toluene	700	500,000	11	<6	<5	<4	<7		<5	<4	<4	31	<5	<5	<4	<5	<6
Xylene (m,p-)	NE	NE	<5 UI	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Xylene (o-)	NE	NE	<5 UJ	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
CVOCs	III.	112	10 0)	10	10	-1			10	-1			-0	15	-1		10
Carbon tetrachloride	760	22.000	<5	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Chloroethane	NE	NE	<5	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<0
Chloroform (Trichloromethane)	370	350,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Chloromethane	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichloroethane (1,1-)	270	240.000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	31
Dichloroethane (1,2-)	20	30,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichloroethene (1,1-)	330	500,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	2 ]
Dichloroethene (cis-1,2-)	250	500,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	2 ]
Dichloroethene (trans-1,2-)	190	500,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichloropropane (1,2-)	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichloropropene (cis-1,3-)	NE	NE	<5	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichloropropene (trans-1,3-)	NE	NE	<5 UJ	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
Methylene Chloride (Dichloromethane)	50	500,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Tetrachloroethane (1,1,1,2-)	NE	NE	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Tetrachloroethane (1,1,2,2-)	NE	NE	<5 UJ	<6 UJ	<5	<4	<7 UJ	-	<5	<4	<4 UJ	<6	<5	<5	<4	<5	<6
Tetrachloroethene (PCE)	1,300	150,000	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	1,000	110 J
Trichloroethane (1,1,1-)	680	500,000	<5	<6	<5	<4	<7		<5	<4	<4	<6	<5	<5	<4	<5	<6
Trichloroethane (1,1,2-)	NE	NE	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Trichloroethene (TCE)	470	200,000	<5 UJ	110 J	<5 UJ	<4 UJ	480 J	<6 UJ	<5 UJ	<4 UJ	<4 UJ	<6 UJ	<5 UJ	<5 UJ	<4 UJ	<5 UJ	1 J
Vinyl chloride	20	13,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Other VOCs																	
Acetone	50	500,000	14 J	790 J	280 J	22	3,700	-	280	190	38	4,000	540 J	110 J	26 J	1,300 J	640 J
Bromodichloromethane	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Bromoform	NE	NE	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Bromomethane	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Butanone (2-) (MEK)	120	500,000	<10	140	26	<9	3,800	-	31	13	<8	490	34	7 J	<9	92	41
Carbon disulfide	NE	NE	1 J	3 J	<5	<4	3 J	-	1 J	<4	<4	3 J	1 J	<5	<4	1 J	<6
Dibromochloromethane	NE	NE	<5 UJ	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Dichlorodifluoromethane (CFC12)	NE	NE	3 J	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	6	<5	3 J
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	3]	18	<10	<9	3,400	-	58	2 J	25 J	3 J	5 J	<9	4 J	100	830
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	2 J	4 J	<5	<4	27	-	<5	<4	4 J	13	<5	<5	6	8	22
Hexanone (2-)	NE	NE	<10 UJ	<12	<10	<9	<14	-	<10	<8	<8	<12	<10	<9	<9	<11	<11
Isopropyl Alcohol (Isopropanol)	NE	NE	<100	<120	<97	<88	150	-	<100	<78	<81	520	100 J	<93	<90	370	72 J
Methyl-2-pentanone (4-) (MIBK)	NE	NE FOO OOO	<10	<12	<10	<9	<14	-	<10	<8	<8	<12	<10	<9	<9	<11	<11
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Tetrahydrofuran	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Trichlorofluoromethane	NE	NE	<5	<6	<5	<4	<7	-	<5	<4	<4	<6	<5	<5	<4	<5	<6
Other Parameters			4.5	10.0	150	7.4	10.4	14.0	10.0		10 5	20.0	15	0.5	05	20.0	
Moisture	1		4.5	18.2	17.3	7.1	19.6	14.2	19.2	9.4	12.5	29.0	17	9.5	8.5	20.9	7.9
Field Parameters	Į				2	2	ļ		2		2					<u> </u>	~ ~
FID			0	0.7	0	0	0	11	0	0	0	0	0.3	0	1.1	0	3.2
PID			1	5.8	4.4	2.6	1	3.9	2.6	3.9	2.4	10	0.6	0.6	2.9	8	4

	NYSDEC	NYSDEC	B57-608		B57	-609			B5	7-610				B57	-611		
	Unrestricted	Commercial	B57-608/3	B57-609/1B	B57-609/2B	B57-609/3A	B57-609/3B	B57-610/1	B57-610/2B	B57-610/2C	B57-610/3B	B57-611/1A	B57-611/1B	B57611A/1A	B57-611/2B	B57-611/3	B57611A/2C
Analyte	Use SCOs	Use SCOs		,						CFC Area			, ,	· ·			
	(µg/kg)	(µg/kg)	16 - 17	9 - 9.5	13 - 14	15 - 18.5	18.5 - 20	9.5 - 10	12.5 - 13	13 - 15	19 - 20	5.5 - 6	9.3 - 9.6	8 - 10	12.5 - 13.5	15 - 17	17 - 18
			06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	07/25/12	06/19/12	06/19/12	07/25/12
VOCs																	
AVOCs																	
Benzene	60	44,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	0.9 J	0.6 J	-	<4	0.5 J	-
Dichlorobenzene (1,2-)	1,100	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichlorobenzene (1,3-)	2,400	280,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichlorobenzene (1,4-)	1,800	130,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Ethylbenzene	1,000	390,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Styrene	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Toluene	700	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	5 J	<5	-	<4	<4	-
Xylene (m,p-)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Xylene (o-)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
CVOCs							-						,				
Carbon tetrachloride	760	22,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Chloroethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Chloroform (Trichloromethane)	370	350,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Chloromethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichloroethane (1,1-)	270	240,000	210	<5	<4	<4	<5 UJ	<5	<5	<4	<5	51	<5	-	<4	1J	-
Dichloroethane (1,2-)	20	30,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichloroethene (1,1-)	330	500,000	1J	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichloroethene (cis-1,2-)	250	500,000	<4	<5	4 J	3 J	<5 UJ	<5	<5	<4	<5	7	<5	-	<4	<4	-
Dichloroethene (trans-1,2-)	190	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichloropropane (1,2-) Dichloropropene (cis-1,3-)	NE NE	NE NE	<4 <4	<5 <5	<4 <4	<4 <4	<5 UJ <5 UJ	<5 <5	<5 <5	<4 <4	<5 <5	<7 <7	<5 <5	-	<4 <4	<4 <4	-
Dichloropropene (trans-1,3-)	NE	NE	<4 <4	<5	<4	<4	<5 UJ <5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	
Methylene Chloride (Dichloromethane)	50	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5		<4	<4	-
Tetrachloroethane (1,1,1,2-)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Tetrachloroethane (1,1,2,2-)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Tetrachloroethene (PCE)	1,300	150,000	701	<5	<4	<4	<5 UJ	<5	<5	<4	<5	1,200	1,000	-	330	1901	-
Trichloroethane (1,1,1-)	680	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Trichloroethane (1,1,2-)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Trichloroethene (TCE)	470	200,000	<4 UJ	<5 UJ	2 [	21	<5 UJ	<5 UJ	<5 UJ	<4 UJ	<5 UJ	21	<5 UJ	-	<4 UJ	<4 UI	-
Vinyl chloride	20	13,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Other VOCs		· · · · ·	l I			•	,			•	•		•	•	•	•	
Acetone	50	500,000	71	2,100 J	290	36	23 J	2,700	920 J	190 J	18 J	740 J	680 J	-	430 J	210 J	-
Bromodichloromethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Bromoform	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Bromomethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Butanone (2-) (MEK)	120	500,000	3 J	130	23	<8	5 J	130	52	20	33 J	69	48	-	21	24	-
Carbon disulfide	NE	NE	<4	1 J	<4	<4	<5 UJ	1 J	<5	<4	1 J	15	9	-	<4	3 J	-
Dibromochloromethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Dichlorodifluoromethane (CFC12)	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	26	120	13	-	53	740	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	2,200	11	15	3 J	41 J	6 J	56	18	150	4,600	770	58	1,000	17,000	73
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	1,100	<5	6	<4	50 J	<5	<5	2 J	16	3,400	100	-	170	5,500	-
Hexanone (2-)	NE	NE	<7	<10	<9	<8	<11 UJ	<9	<10	<9	<10	<14	<10	-	<7	<9	-
Isopropyl Alcohol (Isopropanol)	NE	NE	46 J	88 J	65 J	<83	<110	120	<97	<88	<100	1,500	240	-	<72	<88	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<7	<10	<9	<8	<11 UJ	<9	<10	<9	<10	<14	<10	-	<7	<9	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Tetrahydrofuran	NE	NE	<4	<5	<4	<4	<5	<5 <5	<5	<4	<5	<7	<5	-	<4	<4	-
Trichlorofluoromethane	NE	NE	<4	<5	<4	<4	<5 UJ	<5	<5	<4	<5	<7	<5	-	<4	<4	-
Other Parameters			0.7	10.1	10.3	۲ ۸	7.6	150	13.0	7.2	F 7	22.2	167	1( )	10.4	47	0.0
Moisture	<u> </u>		9.7	18.1	10.2	5.4	7.6	15.3	13.9	7.3	5.7	32.3	16.7	16.2	10.4	4.7	9.9
Field Parameters			0.0	1.0	0	0	0.2	17	0	0	0	0.7	27	147	10.6	0F 4	F O
FID			0.8	1.2	0	0	0.2	1.7	0	0	0	8.6	3.7	14.7	13.6	35.1	5.3
PID			2.7	6.7	6.3	5.3	5.1	6.5	6.9	5.7	2	5.4	6.3	12.5	1.8	3.2	2.3

	<u> </u>	1	1			1					1			<u> </u>			<u> </u>
	NYSDEC	NYSDEC		B57-612				B57-613				B57-614			B57-615		B57-616
Analata	Unrestricted	Commercial	B57-612/1	B57-612/3A	B57-612/3B	B57-613/2	B57613A/1	B57-613/3B	B57613A/2A	B57-613/3C	B57-614/2	B57-614/3A	B57-614/3B	B57-615/1	B57-615/3	B57-615/4B	B57-616/2
Analyte	Use SCOs	Use SCOs								B57A Area					•	•	-
	(µg/kg)	(µg/kg)	3 - 5	10 - 13.6	13.6 - 15	5 - 10	8 - 9	10.2 - 14.5	10.5 - 11	14.5 - 15	5 - 10	10 - 12.5	14.2 - 15	3 - 5	10 - 12.5	15.6 - 17	5 - 10
			06/19/12	06/19/12	06/19/12	06/19/12	07/25/12	06/19/12	07/25/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12	06/19/12
VOCs																	
AVOCs																	
Benzene	60	44,000	<5	16	<5	39 J	-	53 J	-	2 J	<5	6	1 J	<5	9	0.7 J	<270
Dichlorobenzene (1,2-)	1,100	500,000	<5	<6 UJ	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	270 J
Dichlorobenzene (1,3-)	2,400	280,000	<5	<6 UJ	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Dichlorobenzene (1,4-)	1,800	130,000	<5	<6 UJ	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Ethylbenzene	1,000	390,000	<5	2 J	<5	3,500	-	2,500	-	1 J	<5	<6	<4	<5	<6	<4	280
Styrene	NE	NE	<5	4 J	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Toluene	700	500,000	<5	11	1J	1,700	-	630	-	3 J	<5	9	<4	<5	21	<4	73 J
Xylene (m,p-)	NE	NE	<5	16 J	<5	30,000	-	79,000	-	45	<5	8	<4	<5	2 J	<4	2,000
Xylene (o-)	NE	NE	<5	5 J	<5	7,700	-	20,000	-	14	<5	2 J	<4	<5	<6	<4	1,000
CVOCs										1			1				
Carbon tetrachloride	760	22,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Chloroethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Chloroform (Trichloromethane)	370	350,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Chloromethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5 .5	<6	<4	<5	<6	<4	<270
Dichloroethane (1,1-)	270	240,000	1J	<6	<5	<280	-	<350	-	<7	<5	<6	<4	5	4 J	2 J	<270
Dichloroethane (1,2-)	20	30,000	<5 	<6	<5	<280	-	<350	-	<7	<5 	<6	<4	<5	<6	<4	<270
Dichloroethene (1,1-)	330	500,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	2 J 9	<6	3 J	<270
Dichloroethene (cis-1,2-)	250	500,000	4J	25	<5	400	6 J	250 J	13	12	8 1	3 J	<4	-	13	2 J	71 J
Dichloroethene (trans-1,2-) Dichloropropane (1,2-)	190 NE	500,000	<5 <5	2 J <6	<5 <5	<280 <280	-	<350 <350	-	<7 <7	<5 <5	<6 <6	<4 <4	<5 <5	<6 <6	<4 <4	<270 <270
Dichloropropane (1,2-) Dichloropropene (cis-1,3-)	NE	NE NE	<5	<0	<5	<280	-	<350	-	<7	<5	<0	<4	<5	<6	<4	<270
Dichloropropene (trans-1,3-)	NE	NE	<5	<0	<5	<280		<350		<7	<5	<6	<4	<5	<6	<4	<270
Methylene Chloride (Dichloromethane)	50	500,000	<5	<6	<5	<280	-	<350		<7	<5	<6	<4	4I	<0	<4	<270
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Tetrachloroethane (1,1,2,2-)	NE	NE	<5	<6 UI	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Tetrachloroethene (PCE)	1,300	150,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Trichloroethane (1,1,1-)	680	500,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Trichloroethane (1,1,2-)	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Trichloroethene (TCE)	470	200,000	21	111	11	180 J	-	170	-	2 ]	41	<6 UJ	<4 UJ	95 J	61	31	210 ]
Vinyl chloride	20	13,000	21	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Other VOCs																-	
Acetone	50	500,000	<22	3,200	450 J	1,500 J	-	4,200 J	-	590 J	440	5,200 J	18	2,000 J	6,300 J	27	850 J
Bromodichloromethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Bromoform	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Bromomethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Butanone (2-) (MEK)	120	500,000	<11	650 J	18	<560	-	940 J	-	56	69	830	<8	180	1,200	<8	<540
Carbon disulfide	NE	NE	<5	2 J	<5	<280	-	<350	-	<7	<5	1 J	<4	1 J	<6	<4	120 J
Dibromochloromethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Dichlorodifluoromethane (CFC12)	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<11	<12	<10	<560	-	<700	-	<13	<10	<11	<8	<9	<12	<8	<540
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Hexanone (2-)	NE	NE	<11	20	<10	<560	-	<700	-	<13	<10	12	<8	<9	11 J	<8	<540
Isopropyl Alcohol (Isopropanol)	NE	NE	<110	<120 UJ	<100	<5,600	-	<7,000	-	<130	<96	<110	<84	230	<120	<83	<5,400
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<11	15	<10	<560	-	<700	-	<13	<10	10 J	<8	<9	10 J	<8	<540
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Tetrahydrofuran	NE	NE	<5	<6 UJ	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Trichlorofluoromethane	NE	NE	<5	<6	<5	<280	-	<350	-	<7	<5	<6	<4	<5	<6	<4	<270
Other Parameters	ļ						-				ļ,			ļ			
Moisture			10.6	26.8	7.3	14.4	20	23.5	21.6	10.2	16.4	23.3	6.2	12	26.9	6.2	12.4
																	1
Field Parameters										1			1		1		
Field Parameters FID PID			0	2 28	0 4	130 705	54 48	83 266	19 9.2	0 12	1 8	1 10	0 6	0 13	0 10	03	73 190

			B57	7-616		B5	7-617				B57-618				B5'	7-619	
	NYSDEC	NYSDEC	B57-616/3	B57-616/4B	B57-617/1	B57-617/3	B576174/1	R57-617/4R	B57-618/1	B576184/14	B57618B/1A	B57-618/3	B57-618/4B	B57-619/2	B57-619/3B	857-619/4R	B57619A/1B
Analyte	Unrestricted Use SCOs	Commercial Use SCOs	010/5	B37-010/4B	D37-017/1	0175	b5/01/A/1	D37-017/4D	B37-010/1	B57A Are		57-010/5	B37-010/4B	B37-017/2	D37-017/3D	D37-017/4D	D57017A/1D
	(μg/kg)	(μg/kg)	12.5 - 15	16.1 - 17.7	3 - 5	10 - 15	10 - 15	16.1 - 18.4	3 - 5	3 - 4	3 - 5	10 - 12.5	17.5 - 18.5	5 - 10	10 - 12.5	18.3 - 20	18 - 21
	(µ6/ №6)	(µ6/ №5)	06/19/12	06/19/12	06/20/12	06/20/12	07/25/12	06/20/12	06/20/12	07/25/12	09/18/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	07/25/12
VOCs							- / -/										- / -/
AVOCs																	
Benzene	60	44,000	11	0.7 J	2 J	21	-	2 ]	11	-	-	<360	<5	<5	0.6 J	21	-
Dichlorobenzene (1,2-)	1,100	500,000	<5	<5	<5 UJ	<4 UI	-	<4	<5 UJ	-	-	220 J	<5	<5	<6	<6	-
Dichlorobenzene (1,3-)	2,400	280,000	<5	<5	<5 UJ	<4 UJ	-	<4	<5 UJ	-	-	<360	<5	<5	<6	<6	-
Dichlorobenzene (1,4-)	1,800	130,000	<5	<5	<5 UJ	<4 UJ	-	<4	<5 UJ	-	-	<360	<5	<5	<6	<6	-
Ethylbenzene	1,000	390,000	3 J	<5	<5	<4	-	<4	<5	-	-	740	<5	<5	<6	<6	-
Styrene	NE	NE	<5	<5	<5	<4	-	<4	<5	-		<360	<5	<5	<6	<6	-
Toluene	700	500,000	1 J	1 J	5	<4	-	1 J	2 J	-	-	<360	1 J	<5	<6	9	-
Xylene (m,p-)	NE	NE	32	2 J	<5	<4	-	<4	2 J	-	-	5,900	<5	<5	<6	4 J	-
Xylene (o-)	NE	NE	14	1 J	<5	<4	-	<4	1 J	-	-	920	<5	<5	<6	4 J	-
CVOCs																	
Carbon tetrachloride	760	22,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<5	<5	<5	<4	-	<4	2 J	-	-	<360	<5	<5	<6	<6	-
Chloroethane	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Chloroform (Trichloromethane)	370	350,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Chloromethane	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Dichloroethane (1,1-)	270	240,000	<5	<5	260 J	<4	-	1J	150 J	-	-	<360	<5	1J	<6	<6	-
Dichloroethane (1,2-)	20	30,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Dichloroethene (1,1-)	330 250	500,000	<5	<5 27	17 480	<4	-	3 J	2 J	-	-	<360	<5 35	<5 91	<6 3	1 J 250	-
Dichloroethene (cis-1,2-) Dichloroethene (trans-1,2-)	190	500,000 500,000	31 <5	2/ 1]	480 <5	<b>4 J</b> <4	3 J	<b>3 J</b> <4	300 2 [	260 J	<8	<360 <360	35 <5	9j 11	3 J <6	250	1,700
Dichloropropane (1,2-)	190 NE	500,000 NE	<5	<5	<5	<4	-	<4 <4	<b>2</b> ] <5	-	-	<360	<5	<5	<6	<6	-
Dichloropropene (cis-1,3-)	NE	NE	<5	<5	<5	<4	-	<4	<5			<360	<5	<5	<6	<6	-
Dichloropropene (trans-1,3-)	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Methylene Chloride (Dichloromethane)	50	500,000	<5	<5	43	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Tetrachloroethane (1,1,2,2-)	NE	NE	<5	<5	<5 UJ	<4 UJ	-	<4	<5 UJ	-	-	<360	<5	<5	<6	<6	-
Tetrachloroethene (PCE)	1,300	150,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Trichloroethane (1,1,1-)	680	500,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Trichloroethane (1,1,2-)	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Trichloroethene (TCE)	470	200,000	6 J	21 J	300 J	6 J	-	29 J	2,800 J	3,300 J	3 J	84 J	6 J	4 J	<6 UJ	97 J	-
Vinyl chloride	20	13,000	8	1 J	<5	<4	-	<4	<5	-	-	<360	10	<5	<6	8	-
Other VOCs											1						1
Acetone	50	500,000	1,200 J	140	5,000 J	960 J	-	60 J	120	-	-	5,500 J	42	110 J	430 J	250 J	-
Bromodichloromethane	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Bromoform	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Bromomethane Butanone (2-) (MEK)	NE 120	NE 500,000	<5 290	<5 12	<5 840 J	<4 100	-	<4 <9	<5 14	-	-	<360 1,100	<5 <11	<5 13	<6 110 J	<6 24 J	-
Carbon disulfide	NE	NE	<5	<5	<5	2 J		2 J	2 J		-	<360	<5	6J	<6	<b>24 j</b> <6	-
Dibromochloromethane	NE	NE	<5	<5	<5	<4	-	<4	<5	-		<360	<5	<5	<6	<6	-
Dichlorodifluoromethane (CFC12)	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<11	<9	<9	<9	-	<9	<10	-	-	<710	<11	<11	<11	<11	-
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	<5	<5	<5	<4	-	<4	3]	-	-	<360	<5	<5	<6	<6	-
Hexanone (2-)	NE	NE	<11	<9	<9	<9	-	<9	<10	-	-	<710	<11	<11	<11 UJ	<11 UJ	-
Isopropyl Alcohol (Isopropanol)	NE	NE	<110	<92	<90 UJ	280	-	<89	100 J	-	-	<7,100	<110	<110	<110	<110	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<11	<9	<9	<9	-	<9	<10	-	-	<710	<11	<11	<11 UJ	<11 UJ	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Tetrahydrofuran	NE	NE	<5	<5	<5 UJ	5	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Trichlorofluoromethane	NE	NE	<5	<5	<5	<4	-	<4	<5	-	-	<360	<5	<5	<6	<6	-
Other Parameters				1			· · · · ·								[]		1
Moisture			15.6	6.3	10.4	18	22.8	11.1	10.5	7.5	8.1	22.6	8	11.6	15.9	9.2	7.1
Field Parameters	<b> </b>			-		-						'					
FID			14	0	48	2	19.1		12	11	1.1	27	2	56	2	2	10.5
PID	1		84	6	101	4	15.8		38	10.6	0.8	55	3	107	6	10	4.7

			1		B57-620			B57	7-621		B57	-622			B57-623		B57-624
	NYSDEC	NYSDEC	B57-620/1	B57620A/1A	B57620B/1A	B57-620/3B	B57-620/4B	DE7 621/2	DE7 621/2	B57-622/2	B57-622/3A	B57-622/4B	B57-622/5	B57-623/2B	B57-623/3A	B57-623/4B	B57-624/2B
Analyte	Unrestricted	Commercial	B57-020/1	D5/020A/1A	D57620D/1A	<b>B57A Area</b>	D57-020/4D	D37-021/2	B57-021/3	D37-022/2	D57-022/3A	D57-022/4D	<i>TCA Area</i>	D37-023/2D	D57-023/3A	D57-025/4D	D37-024/2D
	Use SCOs	Use SCOs	3 - 5	3 - 4	3 - 5	10 - 12.5	17 - 18.5	5 - 10	10 - 12.5	5 - 10	10 - 13	15.8 - 19	20 - 25	8.5 - 9.2	10 - 11.5	16 - 18.5	7.5 - 9
	(µg/kg)	(µg/kg)	06/20/12	07/25/12	09/18/12	06/20/12	06/20/12	06/20/12		06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/19/12
			06/20/12	07/25/12	09/10/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/20/12	06/19/12
VOCs			l														
AVOCs			<u> </u>		1		-								_		
Benzene	60	44,000	<5	-	-	4 J	<5	<290	2 J	<6	2 J	<5	<4	<8	<5	<6	1J
Dichlorobenzene (1,2-)	1,100	500,000	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4 UJ	<8	<5	<6	<6 UJ
Dichlorobenzene (1,3-)	2,400	280,000	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4 UJ	<8	<5	<6	<6 UJ
Dichlorobenzene (1,4-)	1,800	130,000	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4 UJ	<8	<5	<6	<6 UJ
Ethylbenzene	1,000	390,000	<5 	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Styrene	NE	NE	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Toluene	700	500,000	<5	-	-	2 J	<5	<290	1J	1J	<5	<5	<4	<8	<5	<6	4 J
Xylene (m,p-)	NE	NE	<5 	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Xylene (o-)	NE	NE	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
CVOCs	7/0	22.000	l				-	.000			-	-				-	
Carbon tetrachloride	760	22,000	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Chlorobenzene (Monochlorobenzene)	1,100	500,000	100 J	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Chloroethane	NE	NE	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Chloroform (Trichloromethane)	370	350,000	1J	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Chloromethane	NE	NE	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloroethane (1,1-)	270	240,000	1J	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloroethane (1,2-)	20	30,000	<5	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloroethene (1,1-)	330	500,000	2 J	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloroethene (cis-1,2-)	250	500,000	310	740	20	18	5	180 J	2 J	<6	<5	1J	<4	<8	<5	2 J	<6
Dichloroethene (trans-1,2-)	190	500,000	4J	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloropropane (1,2-)	NE	NE	<5 	-	-	<6	<5	<290	<6	<6	<5	<5	<4	<8	<5	<6	<6
Dichloropropene (cis-1,3-)	NE	NE	<5	-	-	<6	<5	<290 <290	<6	<6	<5	<5	<4	<8	<5 <5	<6	<6
Dichloropropene (trans-1,3-)	NE 50	NE 500,000	<5 <5	-	-	<6 <6	<5 <5	<290	<6	<6 <6	<5 <5	<5 4 J	<4	<8 <8	<5	<6 <6	<6 23
Methylene Chloride (Dichloromethane)	NE	,	<5	-	-	<6	<5	<290	<0		<5	<b>4</b> J <5	<4 <4	<8	<5		
Tetrachloroethane (1,1,1,2-) Tetrachloroethane (1,1,2,2-)	NE	NE NE	<5 <5	-	-	<6	<5	<290	<6	<6	<5	<5	<4 <4 UI	<8 <8	<5	<6 <6	<6 <6 UJ
Tetrachloroethene (PCE)	1,300	150.000	1		-	<6	<5	<290	<0	<6 <6	<5	<5	<4 0j <4	<0 <8	<5	<6	<6 UJ <6
Trichloroethane (1,1,1-)	680	500,000	<5			<6	<5	<290	<6	<0	<5	<5	<4	<8	<5	<6	<0
Trichloroethane (1,1,1-)	NE	NE	<5			<6	<5	<290	<6	<0	<5	<5	<4	<8	<5	<0	<0
Trichloroethene (TCE)	470	200,000	8,800 J	- 6,100 J	87 [	4 J	1	370 J	<6 UJ	<6 UJ	<5 UJ	<5 UJ	<4 <4 UI	<8 UI	<5 UI	<0 <6 UI	<6 UJ
Vinyl chloride	20	13.000	<5	-	07 J	<b>4</b> J <6	1]	<290	<6	<6	<5	<5 05	1I	<8 05	<5	<0 UJ <6	<6
Other VOCs	20	13,000	< 3	-	-	<0	1)	<290	<0	<0	<3	<3	1)	<u>&lt;</u> 0	<5	<0	<0
	٢٥	F00.000	141			F 200	02	-1 200	4 000	400	4 200 1	260	22	70 1	1 700 I	27	1 500 1
Acetone Bromodichloromethane	50 NE	500,000 NE	14 J <5	-	-	<b>5,200</b>	<b>83</b> <5	<1,200 <290	<b>4,900</b>		<b>4,200 J</b> <5	<b>260</b> <5	33	<b>70 J</b> <8	<b>1,700 J</b> <5	37 <6	<b>1,500 J</b> <6
Bromodichioromethane Bromoform	NE	NE	<5 <5	-	-	<6 <6	<5 <5	<290	<6	<6 <6	<5	<5	<4	<8 <8	<5	<6 <6	<6 <6
			-	-	-		-	<290	-	-	_	-	1	<8 <8	_	<6 <6	-
Bromomethane Butanone (2-) (MEK)	NE 120	NE 500,000	<5 <9	•		<6 1,200	<5 10	<580	<6 1,100	<6 54	<5 1,200	<5 41	<4 <9	<8 15 J	<5 200	<12	<6 <b>360</b>
Carbon disulfide	NE	500,000 NE	<9 <5	-	-	1,200 <6	<5	<580	<b>1,100</b>	<b>54</b> <6	<5	<b>41</b> <5	<9	15 J	<b>200</b> <5	<12 2 J	360 3 J
Dibromochloromethane	NE	NE	<5 <5	-	-	< <u>6</u>	<5	<290	<6	<6 <6	<5	<5	<4	18 <8	<5 <5	<b>2 J</b> <6	3 J <6
Dichlorodifluoromethane (CFC12)	NE	NE	<5	-		<6	<5	<290	<0	<0 <6	<5	<5	<4	<8	<5	<6	<6
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<5 <9	-		<12	<10	<580	<12	<12	<11	<10	<9	<16	<9	<12	<13
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113) Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	6,000 NE	NE	<9 <5	-		<12 <6	<10	<290	<12	<12 <6	<11 <5	<10	<9	<16	<9 <5	<12 <6	<13 <6
Hexanone (2-)	NE	NE	<5 <9	-	-	< ₆ 4 J	<10	<290	<12	<0	<5	<10	<4 <9	<8 <16 UJ	<5 <9	<12	<0
Isopropyl Alcohol (Isopropanol)	NE	NE	<92	-		4 J <120	<98	<5,800	<12	<12	300	<10	<86	<16.0	69 J	<12	<130
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<92	-		<120 6 J	<98	<5,800	4 J	<120	5 J	<100	<00	<160 <16 UJ	<9	<120	<130
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5			<6	<5	<290	<b>4</b> J <6	<12 <6	<5	<10	<4	<10 0)	<5	<12 <6	<6
Tetrahydrofuran	NE	500,000 NE	<5			<6	<5	<290	<0	<6	<5	<5	<4	<8	<5	<6	<6
Trichlorofluoromethane	NE	NE	<5	-		<6	<5	<290	<0	<6	<5	<5	<4	<0 <8	<5	<6	<0 <6
Other Parameters	INE	INE	~>	-	-	<b>N</b>	<2	×290	<0	<0	1 < 5	<2	×4	<0	<>	<b>N</b> 0	<0
	╉────┥		11.5	0.0	0.2	25.8	14 1	11 =	27.4	8.3	24.3	10.1	0	22.9	18.6	2.8	23.4
Moisture	<u> </u>		11.5	8.8	9.2	25.ð	14.5	11.5	27.4	0.3	24.3	10.1	8	22.9	10.0	2.δ	23.4
Field Parameters	┥───┤		10	14	( )	I _ I	~				10.1		6.7		( )	2.2	<u> </u>
FID			13	11	6.3	5	0	2	9	2.1	18.1	4.8	0.7	2.5	6.2	3.3	0
PID			53	11.3	5.9	12	4	4	14	5.2	33.1	7	4.9	14.3	11.5	17.4	0.2

				B57-624			B57	7-625				B57-626				B57-627	
	NYSDEC	NYSDEC	B57-624/3A	B57-624/4A	DE7 624 /4D	DE7 62E/2	B57-625/3A	B57-625/4B	DE7 62E/ED	DE7 626/1	B57-626/3B	B57-626/4B	DE7 626/E	B57626A/1	DE7 627/1	B57-627/3A	B57-627/5
Analyte	Unrestricted	Commercial	D57-024/3A	D57-024/4A	D37-024/4D	D57-025/2	D57-025/3A	D57-025/4D			D57-020/3D	D57-020/4D	D57-020/5	D5/020A/1	D57-027/1	D57-027/3A	B57-027/5
	Use SCOs	Use SCOs	10 125	15 165	1(5.20	F 10	10 125	175 20		TCA Area	120.15	10.2 20	21.25	21 22	2 5	10 120	20.25
	(µg/kg)	(µg/kg)	10 - 12.5 06/19/12	15 - 16.5 06/19/12	16.5 - 20 06/19/12	5 - 10 06/20/12	10 - 12.5 06/20/12	17.5 - 20 06/20/12	22 - 25 06/20/12	3 - 5 06/20/12	13.8 - 15 06/20/12	19.2 - 20 06/20/12	21 - 25 06/20/12	21 - 22 07/24/12	3 - 5 06/20/12	10 - 12.8 06/20/12	20 - 25 06/20/12
VOCs			00/19/12	00/19/12	00/19/12	00/20/12	00/20/12	00/20/12	00/20/12	00/20/12	00/20/12	00/20/12	00/20/12	07/24/12	00/20/12	00/20/12	00/20/12
AVOCs	(0	44.000		.r	0.61		.5					.(		1	0.01	4 1	
Benzene	60	44,000	<5	<5 <5	0.6 J	<6	<5	<5	<5	<5	<5	<6	<5 <5 UJ	-	0.8 J	1 J <5 UJ	<4
Dichlorobenzene (1,2-)	1,100	500,000	<5	<5 <5	<5	<6	<5	<5	<5	<5	<5	<6	,	-	<5	,	<4
Dichlorobenzene (1,3-)	2,400	280,000	<5	-	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5 UJ	<4
Dichlorobenzene (1,4-)	1,800	130,000	<5 <5	<5 <5	<5 <5	<6	<5	<5 <5	<5 <5	<5 <5	<5	<6	<5 UJ	-	<5 <5	<5 UJ	<4
Ethylbenzene	1,000 NE	390,000 NE	<5	<5	<5	<6 <6	<5 <5	<5	<5	<5	<5 <5	<6 <6	<5 UJ <5 UJ	•	<5	<5 <5	<4 <4
Styrene Toluene	700	500,000	<5	<5	<5	<0 <6	<5	<5	<5	25	<5	< <u>0</u> 8	<5 UJ <5 UJ		<5 7	<5	×4 7
Xylene (m,p-)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ		<5	<5	<4
Xylene (n,p-)	NE	NE	<5	<5	<5	<0	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5	<4
CVOCs	INE	NE	<5	<3	<5	<0	<2	<5	<5	< 5	<5	<0	<3 UJ	-	<5	<5	<b>\4</b>
Carbon tetrachloride	760	22.000		~ ~	~ ~	46	~~	~ ~	-r	~~	<5	16	~ ~	1	~~	~	- 4
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<5 <5	<5 <5	<5 <5	<6 <6	<5 <5	<5 <5	<5 <5	<5 <5	<5	<6 <6	<5 <5 UJ	-	<5 <5	<5 <5	<4 <4
Chlorobenzene (Monochlorobenzene)	1,100 NE	500,000 NE	<5 <5	<5 <5	<5	<6 <6	<5 <5	<5	<5	<5 <5	<5	<6 <6	<5 UJ <5	•	<5 <5	<5 <5	<4
Chloroform (Trichloromethane)	370	350,000	<5	<5	<5	<6 <6	<5 <5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Chloromethane	NE 370	350,000 NE	<5	<5 <5	<5	<6 <6	<5 <5	<5	<5	<5	<5	<6 <6	<5	-	<5	<5	<4
Dichloroethane (1,1-)	270	240,000	<5	<5	<5	<6 <6	<5	<5	<5	<5 4 I	<5	<6	<5	-	<5 12	<5	<4
Dichloroethane (1,1-)	270	30,000	<5	<5	<5	<0	<5	<5	<5	-4 J <5	<5	<6	<5	-	<5	<5	<4
Dichloroethene (1,1-)	330	500,000	<5	<5	<5	<0	<5	<5	<5	13	<5	<6	<5		31	<5	<4
Dichloroethene (cis-1,2-)	250	500,000	<5	<5	<5	<0	<5	<5	<5	21	<5	<6	12	-	6	<5	<4
Dichloroethene (trans-1,2-)	190	500,000	<5	<5	<5	<0	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Dichloropropane (1,2-)	NE	NE	<5	<5	<5	<0	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Dichloropropene (cis-1,3-)	NE	NE	<5	<5	<5	<0	<5	<5	<5	<5	<5	<6	<5		<5	<5	<4
Dichloropropene (trans-1,3-)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5	<4
Methylene Chloride (Dichloromethane)	50	500,000	<5	<5	<5	<6	<5	<5	<5	29	<5	<6	<5	-	130	2 J	<4
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5	<4
Tetrachloroethane (1,1,2,2)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ		<5	<5 UI	<4
Tetrachloroethene (PCE)	1,300	150,000	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	1]	<5	<4
Trichloroethane (1,1,1-)	680	500,000	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Trichloroethane (1,1,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5	<4
Trichloroethene (TCE)	470	200,000	<5 UJ	<5 UJ	<5 UI	<6 UJ	<5 UI	<5 UJ	<5 UJ	11	<5 UJ	<6 UI	<5 UJ	-	47 I	<5 UI	<4 UI
Vinvl chloride	20	13.000	<5	<5	<5	<6	<5	<5	<5	<5	<5	31	43	<6	<5	<5	<4
Other VOCs						, , , , , , , , , , , , , , , , , , ,						,		· · ·			<u> </u>
Acetone	50	500,000	330	100	19	49 I	360 J	33	101	1,700	86	200	28	-	6,900 I	430	39
Bromodichloromethane	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Bromoform	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UI	-	<5	<5	<4
Bromomethane	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Butanone (2-) (MEK)	120	500,000	47	8 J	<10	19 J	84 J	<11	<9	150	14	30	<10	-	590 J	120	5 J
Carbon disulfide	NE	NE	<5	<5	<5	1J	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Dibromochloromethane	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5 UJ	-	<5	<5	<4
Dichlorodifluoromethane (CFC12)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<10	<9	<10	<11	<10	<11	<9	<10	<9	<11	<10	-	<10	<11	<9
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Hexanone (2-)	NE	NE	<10	<9	<10	<11 UJ	<10 UJ	<11	<9	<10	<9	<11	<10 UJ	-	<10	<11	<9
Isopropyl Alcohol (Isopropanol)	NE	NE	<97	<92	<96	<110	<99	<110	<92	73 J	<92	<110	<100	-	1,000	<110	<85
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<10	<9	<10	<11 UJ	<10 UJ	<11	<9	<10	<9	<11	<10	-	<10	<11	<9
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Tetrahydrofuran	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Trichlorofluoromethane	NE	NE	<5	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	-	<5	<5	<4
Other Parameters																	
Moisture			17.6	14.2	8.1	10	19.2	2.6	6.9	12	15.3	22	9.4	10.2	12.4	25.1	5.6
Field Parameters			l														
FID			0	0	0	2.8	1.1	1.1	1.1	5	0	0	0.8	3.4	17.1	1.9	0
PID			6.7	1	1.5	17.2	11.2	12.2	15.4	18.4	8	6.9	2.5	3.1	45.1	8.5	6.3
			ш эл						1 - 2011		ı ő		1 2.0			2.0	

	NYSDEC	NUCDEC			B57	-628						B57-62	9			B57	7-630
	Unrestricted	NYSDEC Commercial	B57-628/1	B57-628A/1	B57628B/1	B57-628/3	B57-628/4B	B57-628/5B	B57-629/1	B57-629A/1	B57629B/1	B57-629/3	B57-629A/2	B57-629/4B	B57-629A/4A	B57-630/1	B57630A/1
Analyte	Use SCOs	Use SCOs								WSA							
	(μg/kg)	(μg/kg)	3 - 5	3 - 5	3 - 5	10 - 15	18.6 - 20	24.1 - 25	3 - 5	3 - 5	3 - 5	10 - 12.5	10 - 12.5	18.8 - 20	17 - 20	3 - 5	3 - 5
	(1-8/8)	(1-8/8)	06/21/12	07/23/12	09/17/12	06/21/12	06/21/12	06/21/12	06/21/12	07/23/12	09/17/12	06/21/12	07/23/12	06/21/12	07/23/12	06/21/12	07/24/12
VOCs					•		•			•	•	•	•	-	•		· · ·
AVOCs																	
Benzene	60	44,000	4 I	-	-	0.9 [	<4	<5	0.6 J	-	-	51	-	31	-	<5	-
Dichlorobenzene (1,2-)	1,100	500,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Dichlorobenzene (1,3-)	2,400	280,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Dichlorobenzene (1,4-)	1,800	130,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Ethylbenzene	1,000	390,000	2 J	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Styrene	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Toluene	700	500,000	4 J	-	-	<6	<4	<5	<5	-	-	2 J	-	2 J	-	1 J	-
Xylene (m,p-)	NE	NE	4 J	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Xylene (o-)	NE	NE	2 J	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
CVOCs																	
Carbon tetrachloride	760	22,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	11	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Chloroethane	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Chloroform (Trichloromethane)	370	350,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	1 J	-
Chloromethane	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Dichloroethane (1,1-)	270	240,000	37	-	-	<6	<4	<5	<5	-	-	<6	-	3]	-	<5	-
Dichloroethane (1,2-)	20	30,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Dichloroethene (1,1-)	330	500,000	16	-	-	<6	<4	<5	<5	-	-	<6	-	0.9 J	-	4 J	-
Dichloroethene (cis-1,2-)	250	500,000	490	590	54	<6	<4	<5	120 J	-	-	640	27	770	<5	9	-
Dichloroethene (trans-1,2-)	190	500,000	15	-	-	<6	<4	<5	2 J	-	-	6J	-	3 J	-	3 J	-
Dichloropropane (1,2-)	NE	NE	<6	-	-	<6	<4	<5 <5	<5	-	-	<6	-	<4	-	<5	-
Dichloropropene (cis-1,3-) Dichloropropene (trans-1,3-)	NE NE	NE NE	<6 <6	-	-	<6 <6	<4 <4	<5	<5 <5	-	-	<6 <6	-	<4 <4	-	<5 <5	-
Methylene Chloride (Dichloromethane)	50	500,000	51	-	-	<6	<4	<5	41	-	-	<0	-	<4		<5	-
Tetrachloroethane (1,1,1,2-)	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Tetrachloroethane (1,1,2,2-)	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Tetrachloroethene (PCE)	1,300	150,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Trichloroethane (1,1,1-)	680	500,000	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Trichloroethane (1,1,2-)	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Trichloroethene (TCE)	470	200,000	10,000 J	15,000 J	390 J	<6 UJ	1J	<5 UJ	3,900 J	4,000 J	1 J	230 J	-	210 J	-	7,100 J	41 J
Vinyl chloride	20	13,000	3 J	-	-	<6	<4	<5	<5	-	-	1J	-	17	-	<5	-
Other VOCs							· · · · · ·			- -		<u> </u>		÷			
Acetone	50	500,000	350 J	-	-	3,700 J	70 J	48 J	1,000 J	-	-	6,600 J	-	1,300 J	-	45 J	-
Bromodichloromethane	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Bromoform	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Bromomethane	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Butanone (2-) (MEK)	120	500,000	52 J	-	-	380	16 J	<10	120 J	-	-	1,600	-	320	-	<10	-
Carbon disulfide	NE	NE	1 J	-	-	<6	<4	<5	<5	-	-	<6	-	2 J	-	<5	-
Dibromochloromethane	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Dichlorodifluoromethane (CFC12)	NE	NE	<6	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	11 J	-	-	<12	<8	<10	<9	-	-	<13	-	<9	-	17	-
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	10	-	-	<6	<4	<5	<5	-	-	<6	-	<4	-	<5	-
Hexanone (2-) Isopropyl Alcohol (Isopropanol)	NE	NE	<11	-	-	<12	<8	<10 <98	<9	-	•	13 J	-	3 J	-	<10 <99	-
Methyl-2-pentanone (4-) (MIBK)	NE NE	NE NE	<110 7 J	-	-	<120 <12	<83 <8	<98 <10	<91 <9	-	-	<130 19 J	-	<90. <9	-	<99 <10	-
Methyl-2-pentanone (4-) (MIBK) Methyl-tert Butyl Ether (MTBE)	930	500,000	<6		-	<12 <6	<0	<10	<9 <5	-		<6		<9		<10	-
Tetrahydrofuran	930 NE	NE	<0 <6	-	-	<0 <6	<4 <4	<5	<5	-		<0		5		<5	-
Trichlorofluoromethane	NE	NE	<0	-	-	<6	<4	<5	<5	-		<0	-	<4		<5	
Other Parameters	INE	1412	~0		-	<b>NU</b>	T	~5	<u></u>		-	~0	-	T	-	~5	
Moisture			12.3	11.9	11.4	24.4	12.1	11.5	13.3	13.8	5.1	25.7	16.5	13.1	13.2	14.3	12.6
Field Parameters			14.3	11.7	11.7	27.7	16.1	11.J	10.0	1 13.0	3.1	23.7	10.3	1 13.1	13.4	14.5	12.0
FID			21	18	5.5	12	4	1	8	2.3	1.1	7	0	7	0	0	14.4
PID			76	43.8	1.8	12	6	2	0 17	2.5	0.1	8	5.8	11	7.6	5	14.4
			1,0	т <b>Ј</b> .0	1.0	10	0	4	1/	20.4	0.1		5.0	1 11	7.0	5	14.0

					B57-630	)				BS	57-631				В	57-632	
	NYSDEC	NYSDEC	B57-630/3	B57-630/4B	B57-620/6	B57630A/2D	R57620R/2D	R57-621/1	B57621A/1	R57621R/1	B57-631/3B	R57_621/4R	B57-621/6	B57-622/1	R57 622/2	B57632A/1B	B57632B/1B
Analyte	Unrestricted Use SCOs	Commercial	B37-03073	D37-030/4D	D37-030/0	D37030A/2D	D37030D/2D	D37-031/1	D37031A/1	WSA	D37-031/3D	D37-031/4D	157-031/0	D37-032/1	B37-032/3	D37032A/1D	D37032D/1D
	use scos (μg/kg)	Use SCOs (µg/kg)	10 - 12.5	19.1 - 20	25 - 26	26.8 - 28	21 - 23	3 - 5	3 - 5	3 - 5	10 - 12.5	18.8 - 20	25 - 26	3 - 5	10 - 12.5	11.5 - 13	11.5 - 13
	(µg/Kg)	(µg/ĸg)	06/21/12	06/21/12	06/21/12	07/24/12	09/17/12	06/21/12			06/21/12	06/21/12	06/21/12	06/21/12	06/21/12	07/24/12	09/17/12
VOCs			00/21/12	00/21/12	00/21/12	07/21/12	07/17/12	00/21/12	07/20/12	0)/1//12	00/21/12	00/21/12	00/21/12	00/21/12	00/21/12	0,721,12	0)/1//12
AVOCs																	
Benzene	60	44,000	8	<4	<4		-	0.8 J	-	-	31	<6	<320	<5	5 I	-	-
Dichlorobenzene (1,2-)	1,100	500,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichlorobenzene (1,2-)	2,400	280,000	<6	<4	<4		-	<5			<6	<6	<320	<5	<5		-
Dichlorobenzene (1,4-)	1,800	130,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Ethylbenzene	1,000	390,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Styrene	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Toluene	700	500,000	31	11	2]	-	-	<5	-		31	<6	<320	<5	11	-	-
Xylene (m,p-)	NE	NE	21	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	2 ]	-	-
Xylene (o-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
CVOCs			· · ·		•					•	•	•	•		•	•	•
Carbon tetrachloride	760	22,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<6	<4	<4	-	-	<5		-	<6	<6	<320	<5	<5	-	-
Chloroethane	NE	NE	<6	<4	<4	-	-	<5		-	<6	<6	<320	<5	<5	-	-
Chloroform (Trichloromethane)	370	350,000	<6	<4	<4	-	-	<5	•	-	<6	<6	<320	<5	<5	-	-
Chloromethane	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichloroethane (1,1-)	270	240,000	<6	<4	190	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichloroethane (1,2-)	20	30,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichloroethene (1,1-)	330	500,000	<6	<4	18	-	-	1 J	-	-	<6	<6	<320	<5	2 J	-	-
Dichloroethene (cis-1,2-)	250	500,000	11	150	88	-	-	110	-	-	230	6	170 J	<5	25,000	4,500	6 J
Dichloroethene (trans-1,2-)	190	500,000	<6	1 J	7	-	-	3 J	-	-	5 J	<6	<320	<5	540	-	-
Dichloropropane (1,2-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichloropropene (cis-1,3-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Dichloropropene (trans-1,3-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Methylene Chloride (Dichloromethane)	50	500,000	<6	<4	<4	-	-	3 J	-	-	<6	<6	<320	<5	<5	-	-
Tetrachloroethane (1,1,1,2-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Tetrachloroethane (1,1,2,2-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Tetrachloroethene (PCE)	1,300	150,000	<6	<4	<4	-	-	2 J	-	-	<6	<6	<320	<5	2 J	-	-
Trichloroethane (1,1,1-)	680	500,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Trichloroethane (1,1,2-)	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Trichloroethene (TCE)	470	200,000	2 J	<u>9j</u>	2 J	-	-	1,700 J	4,500 J	13 J	93 J	1J	70 J	5 J	3,800 J	520 J	<5 UJ
Vinyl chloride	20	13,000	<6	3 J	63	54	<5	<5	-	-	9	<6	<320	<5	28	5	-
Other VOCs		<b>F</b> 00.000	( <b>-</b> 0.0 1	0407				<i></i>		1			1.000	10.1	< 100 X		1
Acetone	50	500,000	6,700 J	310 J	60 J	-	-	6,100 J	-	-	5,700 J	73 J	<1,300	12 J	6,400 J	-	-
Bromodichloromethane	NE NE	NE	<6	<4	<4	-	-	<5	-	-	<6 <6	<6 <6	<320 <320	<5 <5	<5 <5	-	-
Bromoform Bromomethane		NE NE	<6		<4	-	•	<5	•	-	-	_	<320		-	-	-
Bromometnane Butanone (2-) (MEK)	NE 120	NE 500,000	<6 1,700	<4 65	<4 7 J	-	-	<5 410	-	-	<6 1,200	<6 12	<320	<5 <10	<5 1,800	-	-
Carbon disulfide	NE	500,000 NE	<b>1,700</b> <6	<4	0.9 J	-		<b>410</b> <5	-		<6	<6	<640	<10	<5	-	-
Dibromochloromethane	NE	NE	<0 <6	<4	<pre>0.9 J &lt;4</pre>	-		<5			<6	<6	<320	<5	<5	-	-
Dichlorodifluoromethane (CFC12)	NE	NE	<0	<4	<4	-	-	<5			<6	<6	<320	<5	<5	-	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<12	<9	<8	-	-	<10	-	-	<12	<11	<640	<10	<11	-	-
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	<6	<4	4J	-	-	<5		-	<6	<6	<320	<5	<5	-	-
Hexanone (2-)	NE	NE	13	<9	<8	-	-	<10		-	<12	<11	<640	<10	11 J	-	-
Isopropyl Alcohol (Isopropanol)	NE	NE	<120	<89	<78	-	-	420		-	<120	<110	<6,400	<100	<110	-	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	27	<9	<8	-	-	<10	-	-	15	<11	<640	<10	26 J	-	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5	-	-
Tetrahydrofuran	NE	NE	<6	<4	<4	-	-	<5		-	<6	<6	<320	<5	<5	-	-
Trichlorofluoromethane	NE	NE	<6	<4	<4	-	-	<5	-	-	<6	<6	<320	<5	<5		-
Other Parameters	İ				•	·I			•	•			•			·	•
Moisture	1		26.6	13.6	9.7	9.3	12.9	15	15.3	13.9	26.1	14.7	15.5	3.2	22.7	14.9	16.1
Field Parameters	İ	i										•		<u> </u>	•	·	·
FID	1	1	19	5	8	3.8	2	8	6	2.5	10	0	2	6	30	5	9.6
PID			28	9	11	2.4	0.1	17	25.8	0.5	8	1	7	9	22	4	2.3
	1		0	,	1 **		~.1			1 3.5	I V	1 ¹	I '		1 10	· ·	1 2.5

			B57-632		B57-633							B57-634					
	NYSDEC	NYSDEC															
Analyte	Unrestricted	Commercial	B57-632/4B	B57-633/2	B57-633/3B	B57-633/5	B57-634/2	B57634A/1	B57634B/1	B57-634/3		B57634B/2B	B57-634/4B	B57634A/3C	B57-634/5	B57634A/4B	B57634B/4B
	Use SCOs	Use SCOs	10.20	<b>5</b> 10	10.2 15	20.25	5 10	5 10	5 10	WS/		11.15	10.20	105 20	20.25	225.25	22.24
	(µg/kg)	(µg/kg)	19 - 20	5 - 10	10.3 - 15	20 - 25	5 - 10	5 - 10	5 - 10	10 - 15	11 - 15	11 - 15	19 - 20	19.5 - 20	20 - 25	23.5 - 25	22 - 24
Noc.			06/21/12	06/20/12	06/20/12	06/20/12	06/21/12	07/24/12	09/17/12	06/21/12	07/24/12	09/17/12	06/21/12	07/24/12	06/21/12	07/24/12	09/17/12
VOCs																	
AVOCs	<i>(</i> 0				0		0.40						050			1	
Benzene	60	44,000	<5	<5	8	0.8 J	<260	-	-	8	-	-	<350	-	<4	-	-
Dichlorobenzene (1,2-)	1,100	500,000	<5	<5	<6	<5 UJ	<260	-	-	<6	-	-	<350	-	<4	-	-
Dichlorobenzene (1,3-)	2,400	280,000	<5	<5	<6	<5 UJ	<260	-	-	<6	-	-	<350	-	<4	-	-
Dichlorobenzene (1,4-)	1,800	130,000	<5	<5	<6	<5 UJ	<260	-	-	<6	-	-	<350	-	<4	-	-
Ethylbenzene	1,000	390,000	<5	<5	<6	<5	<260 <260	-	-	<6	-	-	<350 <350	-	<4	-	-
Styrene	NE 700	NE	<5 1 J	<5	1 J 7	<5	<260	-	-	<6 17	-	-	<350	-	<4 <4	-	-
Toluene Velena (m. n. )	700 NE	500,000	,	<5 <5	-	<5 <5	<260	-	-	<6	-	-		-	<4	-	-
Xylene (m,p-)		NE	<5	-	2 J		<260	-	-		-	-	<b>75 J</b> <350	-		-	-
Xylene (o-)	NE	NE	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
CVOCs	7.0	00.000			ć	-	0.40		1				050				
Carbon tetrachloride	760	22,000	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	<5	<5	<6	<5	64 J	-	-	<6	-	-	<350	-	<4	-	-
Chloroethane	NE	NE	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
Chloroform (Trichloromethane)	370	350,000	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
Chloromethane	NE 270	NE	<5	<5	<6	<5	<260	-	-	<6 7	-	-	<350	-	<4	-	-
Dichloroethane (1,1-)		240,000	5 J	<5	<6	5 J	<260	-	-	-	-	-	<350	-	3 J	-	-
Dichloroethane (1,2-)	20	30,000	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
Dichloroethene (1,1-)	330	500,000	<5	<5	<6	<5	<260	-	-	5 J	-	-	<350	-	<4	-	-
Dichloroethene (cis-1,2-)	250	500,000	99	<5	8	100	3,300	3,300	2 J	11,000	8,700	23	2,200	30	140	8,300	130
Dichloroethene (trans-1,2-)	190	500,000	<5	<5	<6	2 J	<260	-	-	510	-	-	<350	-	1J	-	-
Dichloropropane (1,2-)	NE	NE	<5	<5	<6	<5	<260	-	-	<6	-	-	<350	-	<4	-	-
Dichloropropene (cis-1,3-)	NE NE	NE NE	<5 <5	<5	<6	<5	<260 <260	-	-	<6	-	-	<350 <350	-	<4	-	-
Dichloropropene (trans-1,3-) Methylene Chloride (Dichloromethane)	NE 50	500,000	<5	<5 <5	<6 <6	<5 <5	<260	-	-	<6 3 J	-	-	<350	-	<4 <4	-	-
Tetrachloroethane (1,1,1,2-)	NE	500,000 NE	<5	<5	<0 <6	<5	<260			<b>3</b> ] <6		-	<350		-		-
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	<5	<6	<5 <5 UI	<260	-	-	<0 <6	-	-	<350	-	<4 <4	-	-
Tetrachloroethene (PCE)	1,300	150,000	<5	<5	<6	<5	<260	-		<0	-		780	-	<4	-	-
Trichloroethane (1,1,1-)	680	500,000	<5	<5	<6	<5	<260	-		<0		-	<350		<4	-	-
Trichloroethane (1,1,2-)	NE	NE	<5	<5	<6	<5	<260	-	-	<0			<350		<4	-	-
Trichloroethene (TCE)	470	200,000	71	<5 UJ	<6 UI	3]	29,000 J	- 16,000 J	41	1,900 J	2,000 J	71	27,000 J	- 17 J	25 J	-	
Vinyl chloride	20	13,000	18	<5 UJ <5	<6 UJ <6	9	29,000 J <260	10,000 J	4 J -	1,900 J 1.200 I	520	21	<350	- 17 j	23 J 94	68 [	8
Other VOCs	20	13,000	10	<0	<0	9	<200	-	-	1,200 j	520	2]	<330	-	94	00 J	0
	50	500,000	721	35	2 500	55	<1.000		1	2,300 J		1	-1 400		121	1	1
Acetone		,	73 J		3,500		<1,000	-	-	. ,	-	-	<1,400 <350	-	13 J	-	-
Bromodichloromethane	NE	NE	<5	<5	<6	<5	<260	-	-	<6	-	-		-	<4	-	-
Bromoform	NE	NE	<5	<5	<6	<5	<260	-	•	<6	-	-	<350	-	<4	-	-
Bromomethane	NE 120	NE 500,000	<5 14	<5 <9	<6 710 J	<5	<260 <510	-	•	<6	-	-	<350 <700	-	<4 <8	-	-
Butanone (2-) (MEK) Carbon disulfide	120 NE	,	14 <5	<9 <5	<b>710 J</b> <6	<11 <5	<510	-	•	410 J	-	-	<700	-	<8	-	-
Dibromochloromethane	NE	NE NE	<5	<5 <5	<6 <6	<5	<260	-	-	<b>2 J</b> <6	-	-	<350	-	<4 <4	-	-
Dibromocnioromethane Dichlorodifluoromethane (CFC12)	NE	NE	<5	<5 <5	<6	<5	<260		-	<6 <6		-	<350		<4	-	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC12)	6,000	NE	<10	<5 <9	<0	<11	<510			<12			<350		<4 <8		
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113) Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	6,000 NE	NE	<10 <5	<9 <5	<11 <6	<11 <5	<510	-	•	<12 5 J	-	-	<700	-	<8 <4	-	-
Hexanone (2-)	NE	NE	<10	<5 <9	<0 10 J	<11	<510	-	-	<12 UJ	-	-	<350	-	<4	-	-
Isopropyl Alcohol (Isopropanol)	NE	NE	<10	<9 <9	<110	<11	<510		-	<12 UJ <120		-	<7,000		<8	-	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<10	<91 <9	<110 9]	<110	<5,100	-	-	<12 UJ		-	<7,000		9</td <td>-</td> <td>-</td>	-	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<5	<b>9</b> ] <6	<5	<260			<12 0)	-	-	<350		<0	-	-
Tetrahydrofuran	NE	500,000 NE	<5	<5	<0 <6	<5	<260	-		<0 <6		-	<350	-	<4	-	-
Trichlorofluoromethane	NE	NE	<5	<5	<0 <6	<5	<260	-		<0	-	-	<350		<4	-	-
Other Parameters	INE	INE	<u></u>	<b>N</b> 0	<b>\</b> U	<u> </u>	×200	-	-	<u>\</u>	-	-	<220	-	N4	-	-
Moisture			13.1	8.2	24	6.9	13.9	13.9	5.7	25.1	26.8	22.3	11.6	13.9	10.1	6.5	8.4
			13.1	ö.2	24	0.9	13.9	13.9	5./	25.1	20.8	22.3	11.6	13.9	10.1	6.5	ŏ.4
Field Parameters					4	4	10.1	144	2.4	140	450	4		<b>F</b> 4	2.4	160	2
FID			6	2	4	1	19.1	14.4	2.4	14.8	17.3	4	4.1	7.1	2.6	16.8	3
PID			10	6	14	3	53.5	43.8	1.5	44.8	34	1.4	345.7	5.2	8.6	46.6	2

	NYCDEC	NUCDEC				В	57-635							B57-636			P
	NYSDEC	NYSDEC	B57-635/2	B576354/1	B57-635/3A	B57635A/2	B57-635/4B	B57-635/5B	B57635A/3B	B57635B/3B	B57-636/1	B57-636/3B	B57-636/4B	B57-636/5A	B57636A/1B	B57-636/6	B57636A/2B
Analyte	Unrestricted Use SCOs	Commercial	D37-03372	D37033A/1	D37-03373A	D37033A/2	D37-033/4D	D37-033/3D	D37033A/3D	<i>WSA</i>	D37-030/1	D37-030/3D	B37-030/4B	D37-030/3A	D37030A/1D	B37-030/0	D37030A/2D
		Use SCOs (µg/kg)	5 - 10	5 - 10	10 - 13.8	13 - 14	18.7 - 20	24 - 25	24 - 25	23 - 24	3 - 5	12 - 15	19 - 20	20 - 23	22.5 - 23	25 - 29	26.5 - 27.5
	(µg/kg)	(µg/ĸg)	06/21/12	07/24/12	06/21/12	07/24/12	06/21/12	06/21/12	07/24/12	09/17/12	06/21/12	06/21/12	06/21/12	06/21/12	07/24/12	06/21/12	07/24/12
VOCs			00/21/12	07/21/12	00/21/12	07/21/12	00/21/12	00/21/12	07/21/12	07/17/12	00/21/12	00/21/12	00/21/12	00/21/12	07/21/12	00/21/12	07/21/12
AVOCs																	
Benzene	60	44,000	2 J	-	7	-	<5	<4	-	-	0.4	<5	<5	<5	1	<4	-
Dichlorobenzene (1,2-)	1,100	500,000	<5	-	<6		<5	<4	-		0.4 J <4	<5	<5	<5	-	<4 UI	-
Dichlorobenzene (1,2-)	2,400	280,000	<5		<0		<5	<4	-		<4	<5	<5	<5	-	<4 UJ	-
Dichlorobenzene (1,3-)	1,800	130,000	<5		<6		<5	<4	-	-	<4	<5	<5	<5	-	<4 UJ	
Ethylbenzene	1,000	390,000	<5	-	<6		<5	<4	-	-	<4	<5	<5	<5	-	<4 0j	-
Styrene	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Toluene	700	500,000	3]	-	12	-	<5	<4	-		1	<5	2 ]	510	-	<4	
Xylene (m,p-)	NE	NE	2]	-	21	-	<5	<4	-		<4	<5	<5	<5	-	<4	-
Xylene (o-)	NE	NE	1I		<6		<5	<4	-	-	<4	<5	<5	<5	-	<4	-
CVOCs	NL	NL		_	<b>N</b>	_	5	×1	_	_	~1	<b>&lt;</b> 5	<b>N</b>	5	-	~1	
Carbon tetrachloride	760	22,000	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Carbon tetrachioride Chlorobenzene (Monochlorobenzene)	1,100	500,000	4J		11		<5	<4 <4	-		<4	<5	<5	<5	-	<4	
Chloroethane	1,100 NE	NE	<b>4</b> J <5		<6		<5	<4	-		<4 <4	<5	<5	<5	-	<4 <4	
Chloroform (Trichloromethane)	370	350,000	<5	-	<6		<5	<4	-		<4	<5	<5	<5	-	<4	-
Chloromethane	NE	NE	<5	-	<6		<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Dichloroethane (1,1-)	270	240,000	1	-	21	-	<5	<4	-	-	11	<5	5	270	-	8	-
Dichloroethane (1,2-)	20	30,000	<5		<6		<5	<4	-		<4	<5	<5	<5	-	<4	-
Dichloroethene (1,1-)	330	500,000	2 J	-	2 ]		<5	<4	-		<4	<5	31	180	-	<4	-
Dichloroethene (cis-1,2-)	250	500,000	2,000	230	17.000	31	40	6,600	2,800	160	18	31	55	4,800	9	14 [	-
Dichloroethene (trans-1,2-)	190	500,000	14	-	370 [	-	<5	1	-		<4	<5	<5	44 [	-	<4	-
Dichloropropane (1,2-)	NE	NE	<5	-	<6		<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Dichloropropene (cis-1,3-)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Dichloropropene (trans-1,3-)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Methylene Chloride (Dichloromethane)	50	500,000	26	-	<6	-	<5	<4	-	-	21	<5	31	6	-	<4	-
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Tetrachloroethane (1,1,2,2-)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4 UI	-
Tetrachloroethene (PCE)	1,300	150,000	12	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Trichloroethane (1,1,1-)	680	500,000	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Trichloroethane (1,1,2-)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Trichloroethene (TCE)	470	200,000	3,400 J	40 I	220 J	-	14 J	180 J	-	-	310 J	<5 UJ	91	8,800 J	5 J	<4 UJ	-
Vinyl chloride	20	13.000	7	-	480	<5	12	95 [	14	-	<4	<5	7	61	<5	8701	21
Other VOCs										1		-		-			
Acetone	50	500,000	7,400 J	-	4,500 I	-	180 J	13 J	-	-	2,600 J	300 J	170 J	120 J	-	12 J	-
Bromodichloromethane	NE	NE	<5	-	<6	· ·	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Bromoform	NE	NE	<5		<6	-	<5	<4	-		<4	<5	<5	<5	-	<4	
Bromomethane	NE	NE	<5		<6		<5	<4	-		<4	<5	<5	<5	-	<4	
Butanone (2-) (MEK)	120	500,000	990	-	800 J	-	16 J	<9 UJ	-	-	240	32 J	21 J	10 J	-	<9	-
Carbon disulfide	NE	NE	2 J	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Dibromochloromethane	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Dichlorodifluoromethane (CFC12)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	<9	-	<12	-	<11	<9	-	-	<9	<10	<10	<9	-	<9	-
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Hexanone (2-)	NE	NE	<9 UJ	-	<12	-	<11 UJ	<9 UJ	-	-	<9	<10	<10	<9	-	<9	-
Isopropyl Alcohol (Isopropanol)	NE	NE	1,100	-	<120	-	<110	<87	-	-	150	<100	<100	<91	-	<86	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	5 J	-	7 J	-	<11 UJ	<9 UJ	-	-	<9	<10	<10	<9	-	<9	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Tetrahydrofuran	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Trichlorofluoromethane	NE	NE	<5	-	<6	-	<5	<4	-	-	<4	<5	<5	<5	-	<4	-
Other Parameters																	
Moisture			16.7	16	28.8	17.4	11.9	10.7	8.4	6.9	13.4	15.6	15.6	10.4	6.1	9.3	8.4
Field Parameters																•	
FID			21.5	14	15.6	12	2	4.1	12.8	1.9	8.3	2.5	3.9	14.4	4.8	22.5	1.4
PID			32.2	23.4	32.3	8.9	8.3	10	24	0.4	12.9	4.6	8.2	47.2	4.6	6.8	1.1
u	8	1				1			1	1		-					

		1	B57-636	B57-637													
	NYSDEC	NYSDEC			-			-							1		
Analista	Unrestricted	Commercial	B57636B/2B	B57-637/1	B57637A/1	B57637B/1	B57-637/2A	B57637A/2	B57-637/3	,	B57637B/3	B57-637/4B	B57-637/5B	B57637A/5A	B57637B/5A	B57-637/6	B57637A/5B
Analyte	Use SCOs	Use SCOs								WSA					•		
	(µg/kg)	(µg/kg)	26.5 - 27.5	3 - 5	3 - 5	3 - 5	5 - 9.6	5 - 10	12 - 13.5	10 - 15	10 - 15	18.8 - 20	24 - 25	25 - 26	25 - 26	25 - 29	28 - 29
			09/17/12	06/21/12	07/24/12	09/18/12	06/21/12	07/24/12	06/21/12	07/24/12	09/18/12	06/21/12	06/21/12	07/24/12	09/18/12	06/21/12	07/24/12
VOCs																	
AVOCs																	
Benzene	60	44,000	-	<290	-	-	<290	-	3 ]	-	-	<4	<5	-	-	<4	-
Dichlorobenzene (1,2-)	1,100	500,000	-	<290	-	-	<290	-	<7	-	-	<4	<5 UJ	-	-	<4 UJ	-
Dichlorobenzene (1,3-)	2,400	280,000	-	<290	-	-	<290	-	<7	-	-	<4	<5 UJ	-	-	<4 UJ	-
Dichlorobenzene (1,4-)	1,800	130,000	-	<290	-	-	<290	-	<7	-	-	<4	<5 UJ	-	-	<4 UI	-
Ethylbenzene	1,000	390,000	-	590	-	-	800	-	390	-	-	<4	170 J	-	-	<4	-
Styrene	NE	NE	-	<290	-	-	<290	-	<7			<4	<5	-	-	<4	-
Toluene	700	500,000	-	<290	-	-	<290	-	20	-	-	<4	140 J	-	-	140 J	-
Xylene (m,p-)	NE	NE	-	2,300	-	-	2,900	-	900	-	-	<4	240 J	-	-	<4	-
Xylene (o-)	NE	NE	-	760	-	-	850	-	400	-	-	<4	991	-	-	<4	-
CVOCs	112						000		100			•	,				
Carbon tetrachloride	760	22,000	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Chlorobenzene (Monochlorobenzene)	1,100	500,000	-	2,800 J	-	-	2,300	-	730	-	-	<4	460	-	-	851	-
Chloroethane	1,100 NE	NE	-	<290		-	<290	-	<7	-		<4	<5	-	-	<pre></pre>	
Chloroform (Trichloromethane)	370	350,000	-	<290	-	-	<290	-	<7	-		<4	<5	-	-	<4	
Chloromethane	NE	NE	-	<290		-	<290	-	<7	-		<4	<5		-	<4	
Dichloroethane (1,1-)	270	240,000	-	<290		-	<290	-	<br 9	-		<4 <4	<5 2		-	<4 150 J	-
Dichloroethane (1,2-)	270	30,000		<290			<290		<7			<4	<5			<4	
Dichloroethene (1,1-)	330	500,000		<290		-	<290		2 ]				<5 74 J				
	250		-		-	-		-	,	-	-	<4 32	/4 J 4.200	-	-	66 J	-
Dichloroethene (cis-1,2-)		500,000	-	1,500 J	2,600	<5	1,200	<250	740 J	540	4 J		,	4,600	12	5,200	14,000
Dichloroethene (trans-1,2-)	190	500,000	-	<290	-	-	<290	-	15	-	-	<4	11	-	-	98 J	-
Dichloropropane (1,2-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Dichloropropene (cis-1,3-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Dichloropropene (trans-1,3-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Methylene Chloride (Dichloromethane)	50	500,000	-	<290	-	-	<290	-	6 J	-	-	<4	<5	-	-	<4	-
Tetrachloroethane (1,1,1,2-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Tetrachloroethane (1,1,2,2-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5 UJ	-	-	<4 UJ	-
Tetrachloroethene (PCE)	1,300	150,000	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Trichloroethane (1,1,1-)	680	500,000	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Trichloroethane (1,1,2-)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Trichloroethene (TCE)	470	200,000	-	2,400 J	32,000 J	2 J	810 J	120 J	74 J	-	-	6 J	7,200 J	5,900 J	2 J	10,000 J	8,100 J
Vinyl chloride	20	13,000	<5	<290	-	-	<290	-	13	-	-	9	71 J	<280	-	120 J	240 J
Other VOCs																	
Acetone	50	500,000	-	1,600 J	-	-	2,200 J	-	6,000 J	-	-	69 J	30 J	-	-	21 J	-
Bromodichloromethane	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Bromoform	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Bromomethane	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Butanone (2-) (MEK)	120	500,000	-	440 J	-	-	700	-	1,400	-	-	10	<9	-	-	<8	-
Carbon disulfide	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Dibromochloromethane	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Dichlorodifluoromethane (CFC12)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	6,000	NE	-	<590	-	-	<580	-	<14	-	-	<8	<9	-	-	<8	-
Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Hexanone (2-)	NE	NE	-	<590	-	-	<580	-	<14	-	-	<8	<9	-	-	<8	-
Isopropyl Alcohol (Isopropanol)	NE	NE	-	<5,900	-	-	<5,800	-	570	-	-	<80	<91	-	-	<79	-
Methyl-2-pentanone (4-) (MIBK)	NE	NE	-	<590	-	-	<580	-	59	-	-	<8	<9	-	-	<8	-
Methyl-tert Butyl Ether (MTBE)	930	500,000	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Tetrahydrofuran	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Trichlorofluoromethane	NE	NE	-	<290	-	-	<290	-	<7	-	-	<4	<5	-	-	<4	-
Other Parameters				1													
Moisture		1	0.59	15.2	10.3	9.3	16.2	13.9	26.2	16.9	16.8	11.4	9.9	7.3	8.4	9.4	7.9
Field Parameters	İ	1									_ 200						
FID		1	1.8	11.5	31	0.8	81	14	15	15	1.3	2.1	3	10	1.1	4.1	14
PID	1		0.1	22.5	112.9	0.8	155	19.8	45	8.8	0.5	8.1	12.5	6.3	0.2	8.3	14
1 10	1	1	U.1	44.0	112.7	0.0	133	17.0	L L	0.0	0.5	0.1	14.J	0.5	0.2	0.0	10

	NYSDEC	NYSDEC		B57	-638	B57-639			
	Unrestricted	Commercial	B57-638/1A	B57-638/2	B57-638/3B	B57-638/4	B57-639/1A	B57-639/2A	B57-639/4B
Analyte	Use SCOs	Use SCOs	,	, ,	,	WSA	· · ·	,	, <i>,</i>
	(µg/kg)	(µg/kg)	5 - 8.5	10 - 15	18.6 - 20	20 - 25	5 - 9	10 - 13	24 - 25
			07/23/12	07/23/12	07/23/12	07/23/12	07/23/12	07/23/12	07/23/12
VOCs									
AVOCs									
Benzene	60	44,000	<5	<5	0.8 J	<6	<5	<5	<4
Dichlorobenzene (1,2-)	1,100	500,000	<5	<5	<5	<6	<5	<5	<4 UJ
Dichlorobenzene (1,3-)	2,400	280,000	<5	<5	<5	<6	<5	<5	<4 UJ
Dichlorobenzene (1,4-)	1,800	130,000	<5	<5	<5	<6	<5	<5	<4 UJ
Ethylbenzene	1,000	390,000	<5	<5	<5	<6	<5	<5	<4
Styrene	NE	NE	<5	<5	<5	<6	<5	<5	<4
Toluene	700	500,000	<5	<5	1J	<6	<5	<5	<4
Xylene (m,p-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Xylene (o-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
CVOCs	7(0	22.000			.5			.5	
Carbon tetrachloride	760	22,000	<5	<5 1	<5	<6	<5	<5	<4
Chlorobenzene (Monochlorobenzene) Chloroethane	1,100	500,000	<5	<5	<5	<6	<5	<5 <5	<4
Chloroform (Trichloromethane)	NE 370	NE 350,000	<5 <5	<5 <5	<5 <5	<6 <6	<5 <5	<5	<4 <4
Chloromethane	NE S70	NE	<5	<5		<0	<5	<5	<4
Dichloroethane (1,1-)	270	240,000	<5	<5	<5 <5	<6	<5	<5	<4
Dichloroethane (1,1-)	270	30,000	<5	<5	<5	2 J	<5	<5	<4
Dichloroethene (1,1-)	330	500,000	<5	<5	<5	<6	<5	<5	<4
Dichloroethene (cis-1,2-)	250	500,000	<5	<5	<5	1J	<5	21	21
Dichloroethene (trans-1,2-)	190	500,000	<5	<5	<5	<6	<5	<5	<4
Dichloropropane (1,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Dichloropropene (cis-1,3-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Dichloropropene (trans-1,3-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Methylene Chloride (Dichloromethane)	50	500,000	<5	<5	<5	<6	<5	<5	<4
Tetrachloroethane (1,1,1,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Tetrachloroethane (1,1,2,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<4 UJ
Tetrachloroethene (PCE)	1,300	150,000	<5	<5	<5	<6	<5	<5	<4
Trichloroethane (1,1,1-)	680	500,000	<5	<5	<5	<6	<5	<5	<4
Trichloroethane (1,1,2-)	NE	NE	<5	<5	<5	<6	<5	<5	<4
Trichloroethene (TCE)	470	200,000	<5	<5	<5	<6	2 J	<5	30
Vinyl chloride	20	13,000	<5	<5	<5	<6	<5	<5	<4
Other VOCs									
Acetone	50	500,000	35	150 J	33	20 J	34	340 J	16 J
Bromodichloromethane	NE	NE	<5	<5	<5	<6	<5	<5	<4
Bromoform	NE	NE	<5	<5	<5	<6	<5	<5	<4
Bromomethane	NE	NE	<5	<5	<5	<6	<5	<5	<4
Butanone (2-) (MEK)	120	500,000	8J	39 J	7 J	<11	7	100 J	<9
Carbon disulfide	NE	NE	<5	<5	1J	<6	<5	<5	<4
Dibromochloromethane	NE	NE	<5	<5	<5	<6	<5	<5	<4
Dichlorodifluoromethane (CFC12) Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113)	NE	NE	<5 <9	<5	<5	<6	<5	<5	<4 <9
Ethane, 1,1,2-trichloro-1,2,2-trifluoro- (CFC113) Ethane, 1,2-dichloro-1,1,2-trifluoro- (CFC123a)	6,000 NE	NE NE	<9 <5	<11 <5	<10 <5	<11 <6	<10 <5	<10 <5	<9 <4
Hexanone (2-)	NE	NE	<9	<5	<10	<0	<10	<5 <10 UJ	<4 <9
Isopropyl Alcohol (Isopropanol)	NE	NE	<93	<110	<10	<110	<10	<10 UJ	<90
Methyl-2-pentanone (4-) (MIBK)	NE	NE	<93	<110	<100	<11	<10	<100 UJ	<90
Methyl-tert Butyl Ether (MTBE)	930	500,000	<5	<5	<5	<6	<5	<5	<4
Tetrahydrofuran	NE	NE	<5	<5	<5	<6	<5	<5 UJ	<4
Trichlorofluoromethane	NE	NE	<5	<5	<5	<6	<5	<5	<4
Other Parameters				.5	.0	.0	.0		1 1
Moisture	1	1	8.9	6.5	11.7	5.2	14.1	11.8	6.7
Field Parameters			0.15	0.0		0.0		11.0	
FID			2.3	1.6	1.8	1.8	0.7	0.5	1
110			2.3	2.3	3.1	5.6	2.7	8.1	1.9

Indicates value exceeds NYSDEC Unrestricted Use Soil Cleanup Objectives

Refer to Notes for details

## Notes:

1. This table is subject to Limitations as provided in Appendix A.

2. Samples were collected at confirmatory sampling locations indicated on Figure 4 by Sanborn Head during the course of three confirmatory soil events completed in June, July and September, 2012. Samples were analyzed by Lancaster Laboratories, Inc., of Lancaster, Pennsylvania for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260B. Refer to the report text and Appendix D for additional details. Analytical laboratory reports are provided in Appendix H (on disc).

3. Sample Naming Scheme for Borings retested for confirming the Remedial Action Objectives (RAOs) is as below:

June 2012 Confirmatory Sampling Event - B57618 July 2012 Confirmatory Sampling Event - B57618A September 2012 Confirmatory Sampling Event - B57618B

4. As reported in the IRM Work Plan, RAOs were established for key site-specific VOCs targeted for electrical resistive heating (ERH): Trichloroethene (TCE), cis-1,2 dichloroethene (cDCE), 1,1,1-trichloroethane (111 TCA), vinyl chloride (VC) and CFC-113. Confirmatory soil samples collected during 70% sampling were analyzed for the full site-specific list of VOCs established in the IRM Work Plan. Follow-up confirmatory samples (85% and 100%) were analyzed only for those key VOCs that had been detected above RAOs in earlier sampling.

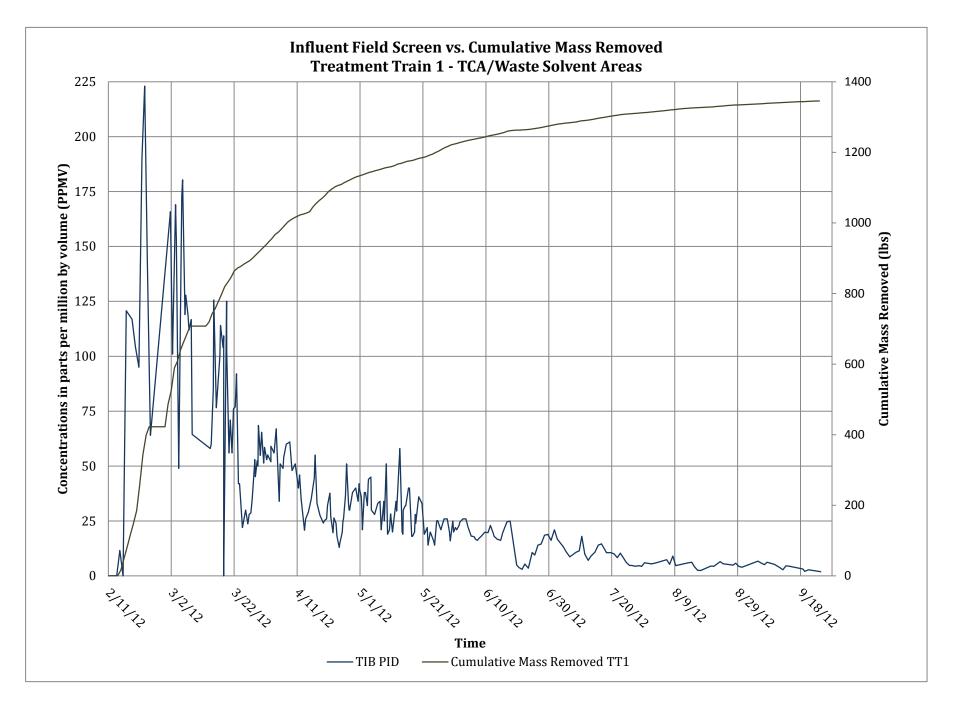
5. Data validation was completed by New Environmental Horizons, Inc. (NEH) of Arlington, MA. Data validation reports are provided in Appendix H.

6. The data are presented in units of micrograms per kilogram ( $\mu$ g/kg) equivalent to units of parts per billion (ppb).

7. Bold values indicate the presence of the analyte at concentrations greater than or equal to the method detection limit.

8. Soil Cleanup Objectives (SCOs) established by the New York State Department of Environmental Conservation (NYSDEC) are presented in *6 NYCRR Table 375-6.8(a)*. SCOs for CFC-113 were taken from supplemental SCO (SSCO) provided in the CP-51-Soil Cleanup Guidance was used as a cleanup objective.

9. "-" indicates the sample was not analyzed for the particular analyte.


"<" indicates the result is less that the method detection limit.

"J" qualifier indicates that the result is less than the method quantification limit but greater than or equal to the sample detection limit and the concentration is an approximate value.

"UJ" qualifier indicates the non-detect result is an estimated value.

"NE" indicates the SCO has not been established for this analyte.

Figure D.1 (A)



Figure	D.1	<b>(B)</b>
--------	-----	------------

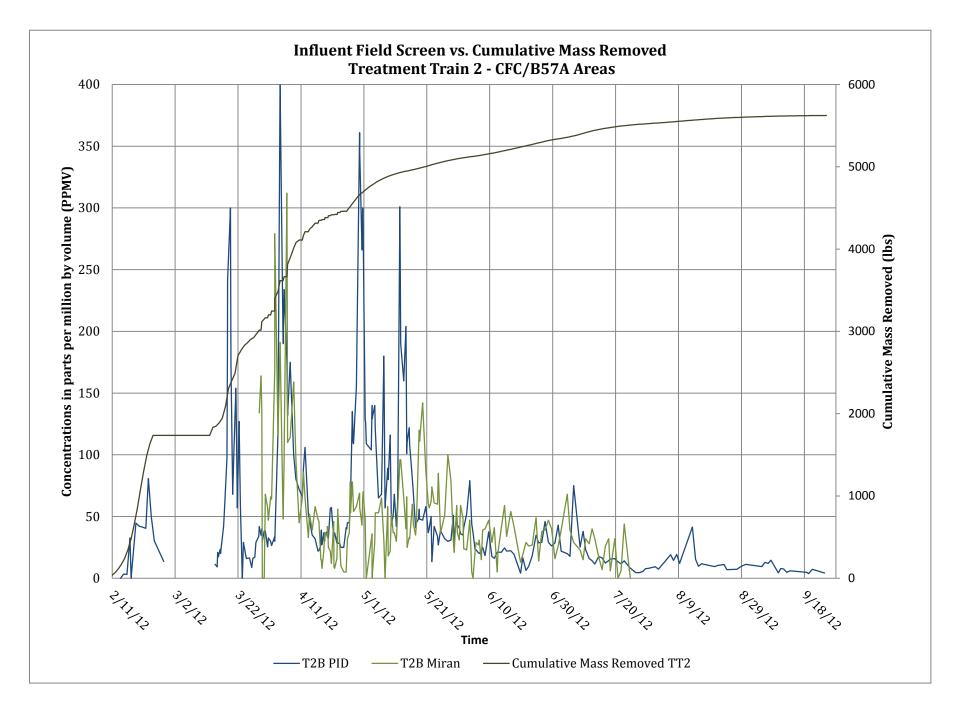



Figure D.2 (A)

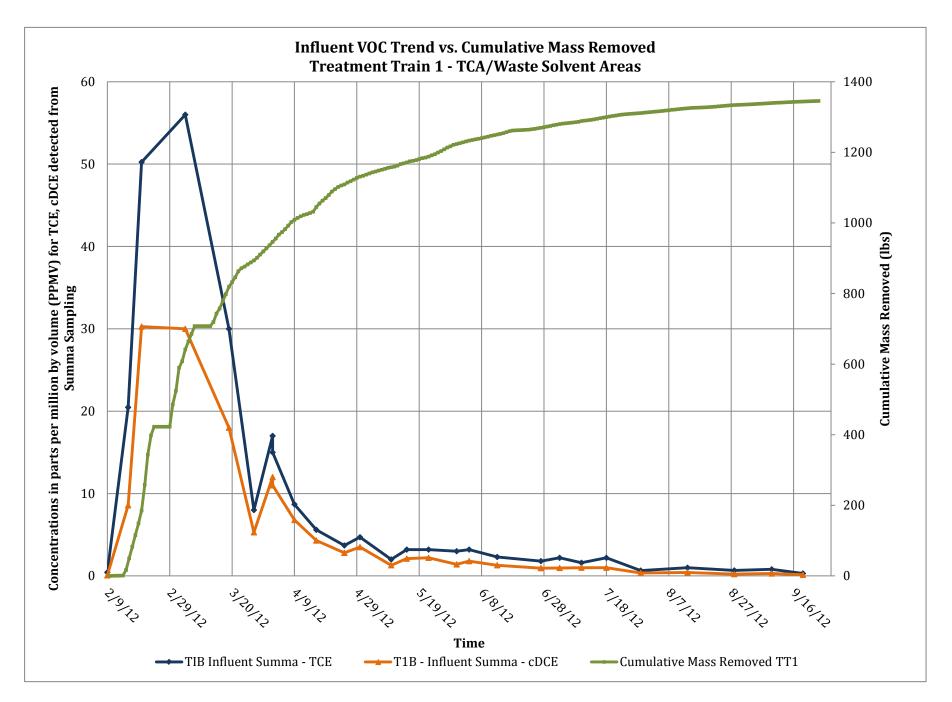



Figure D.2 (B)

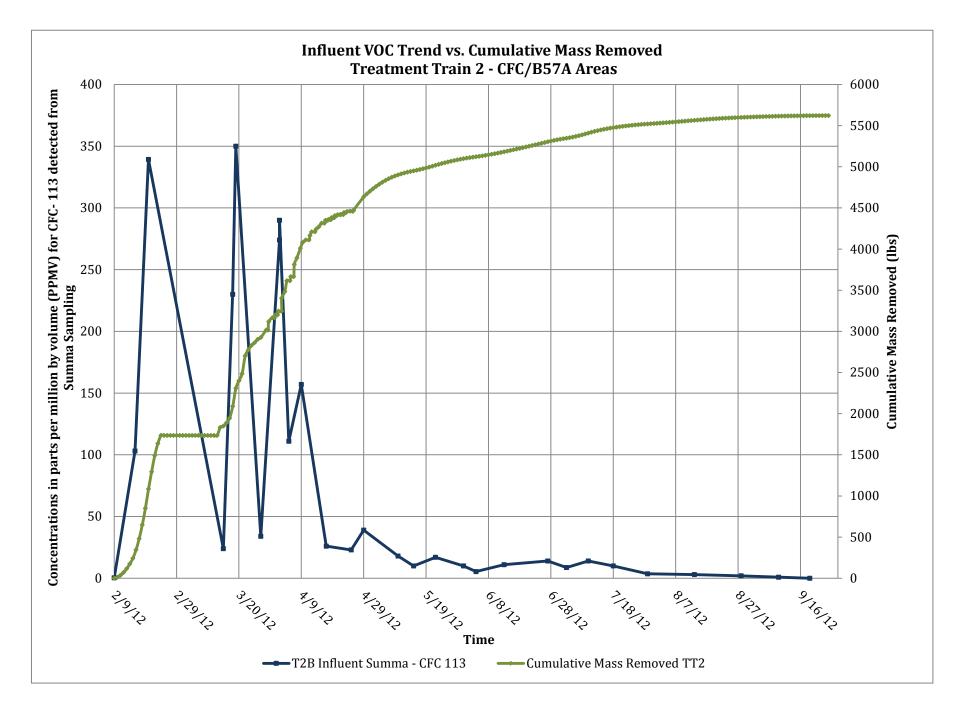
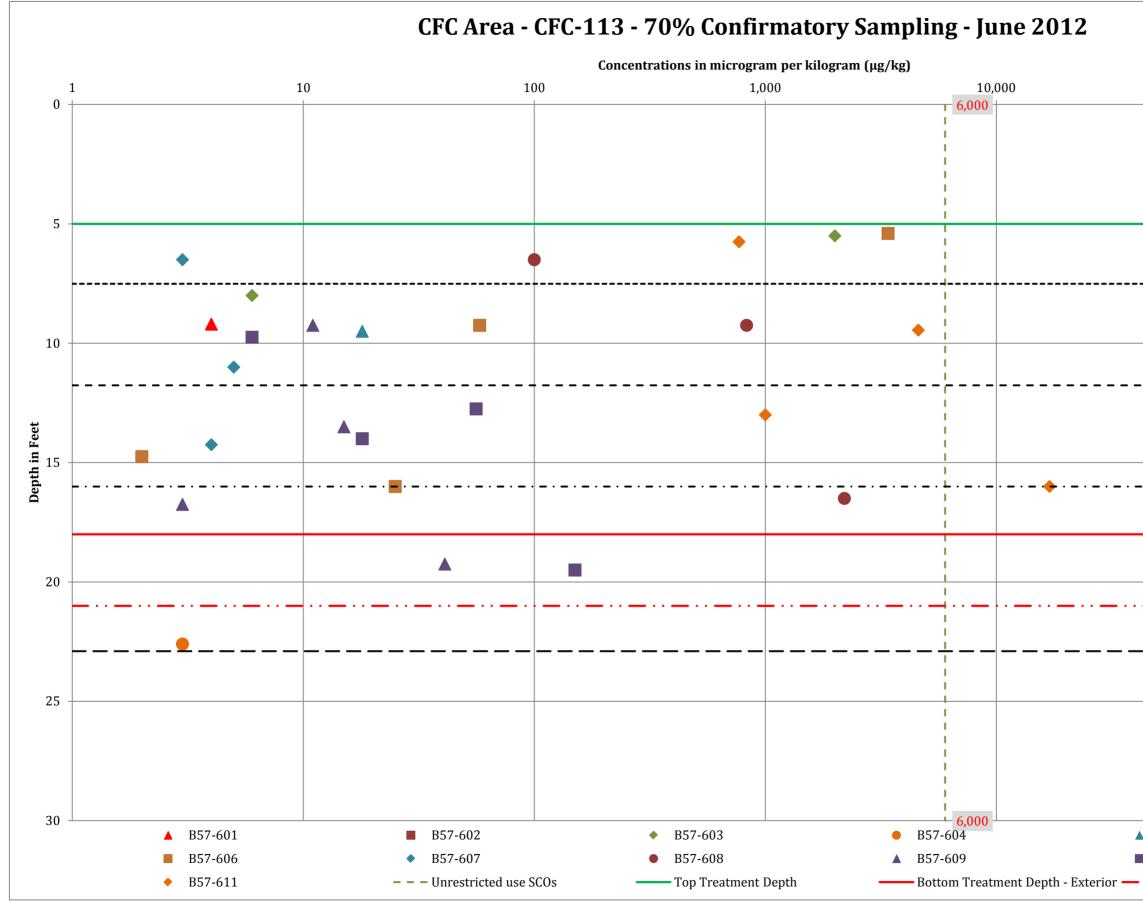
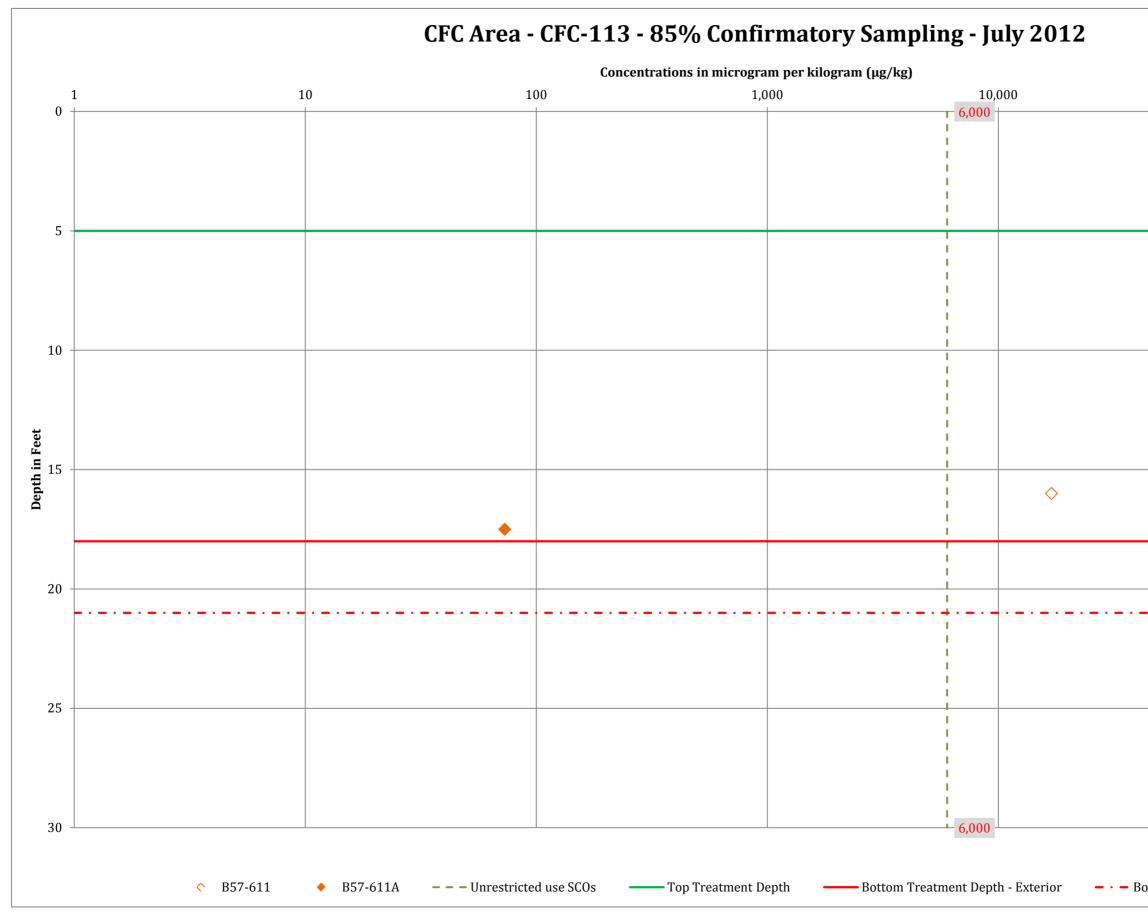





Figure D. 3



100	,000 1,00	00,000
	Fill	
	Silt & Clay	
	Sand & Gravel with Silt & Clay Inclusion	
	· <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · <b>-</b> · · · · · · · · · · · · · · · · · · ·	-
	Till mixed with Bedrock	_
		-
	Competent Bedrock	
B57-605 B57-610	·	_
Bottom Trea	atment Depth - Interior	



100	000	1,000,000

Figure D. 5

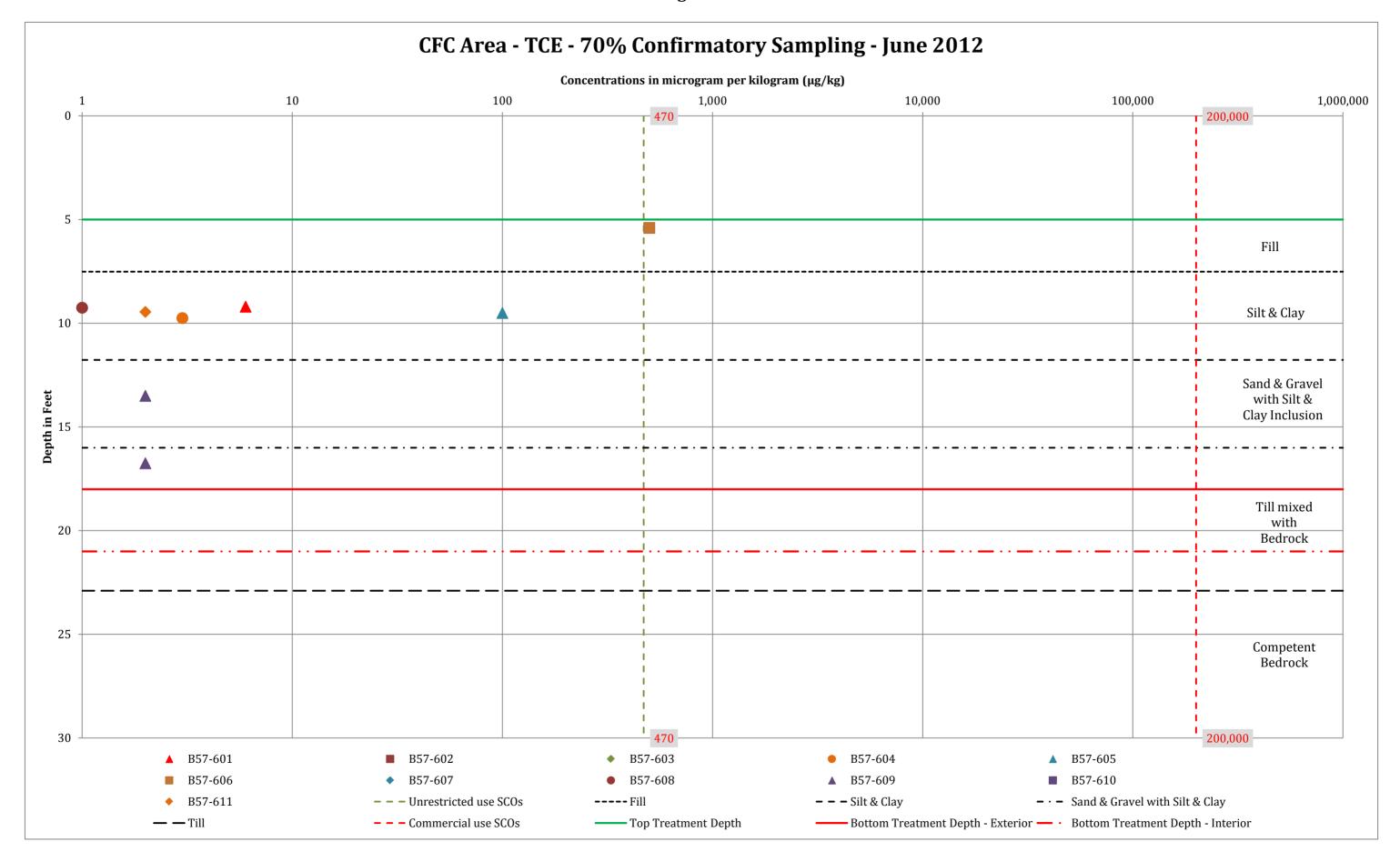





Figure D. 6

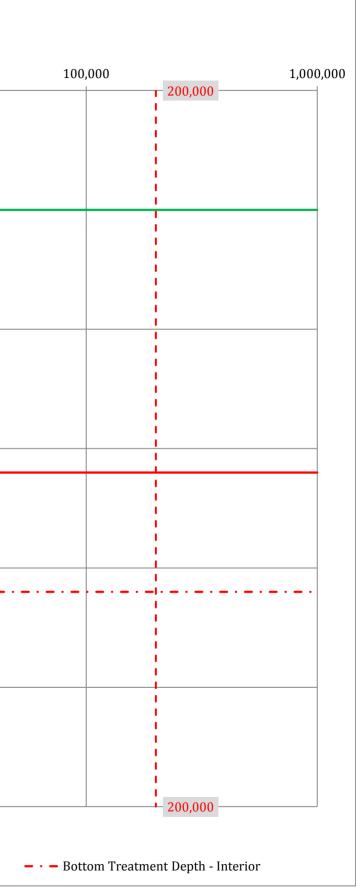
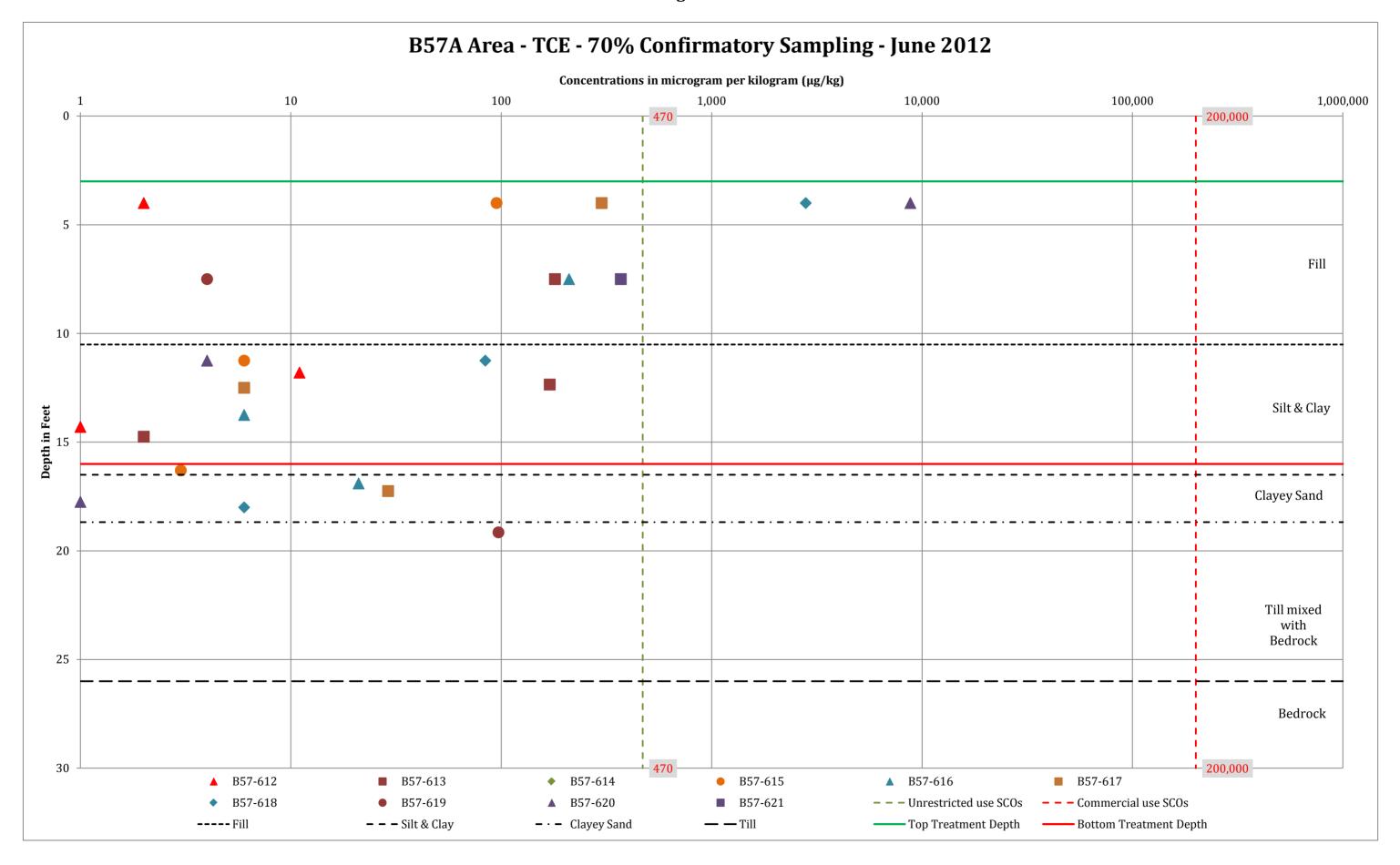
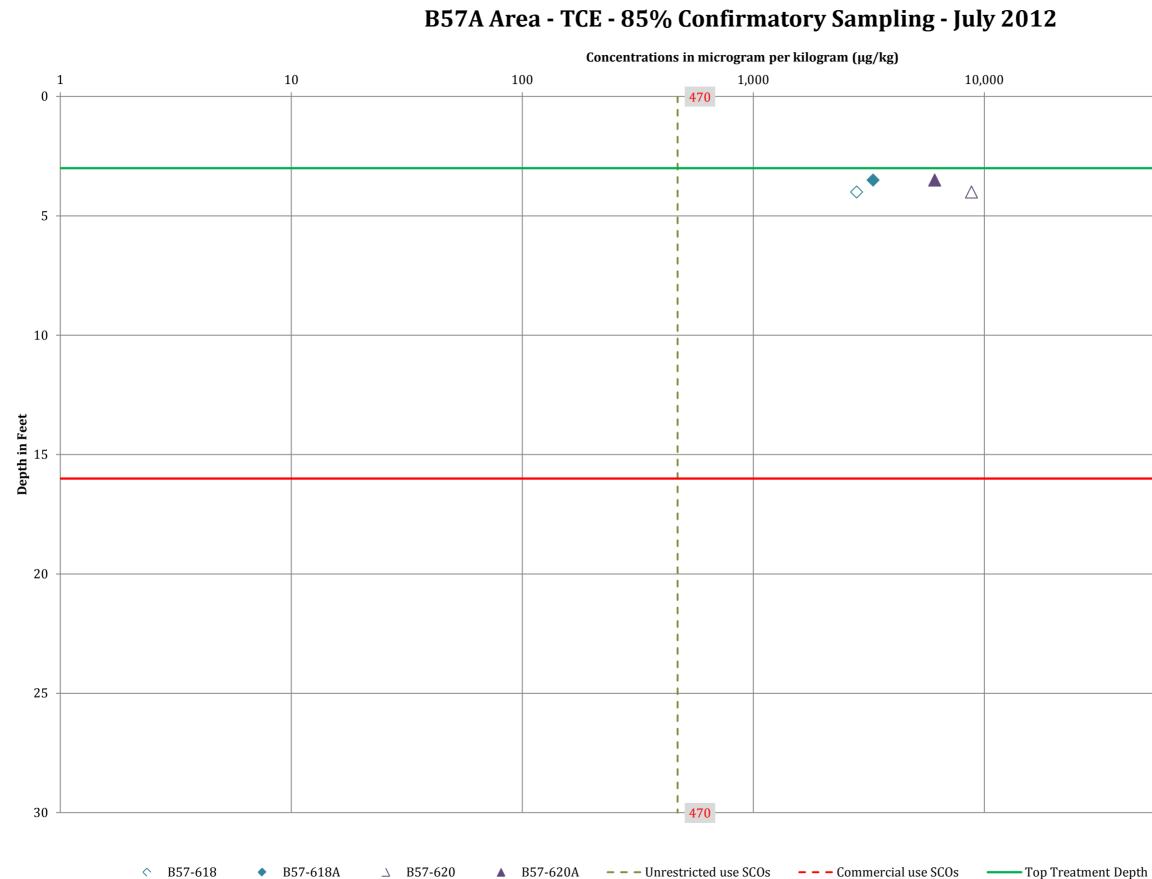
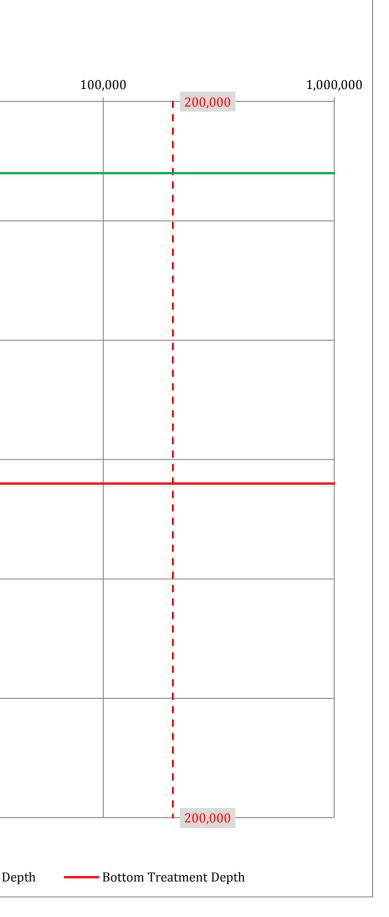
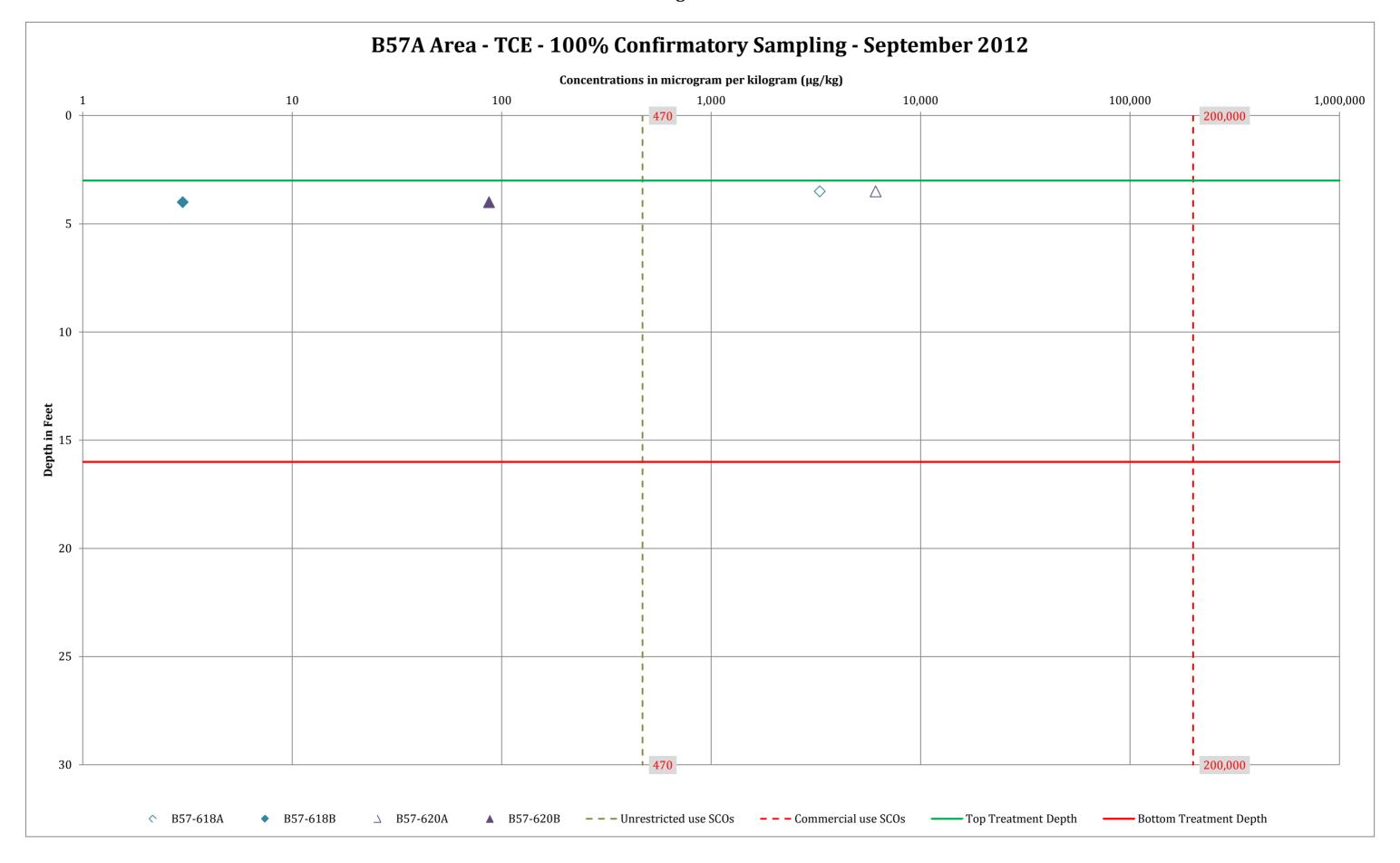
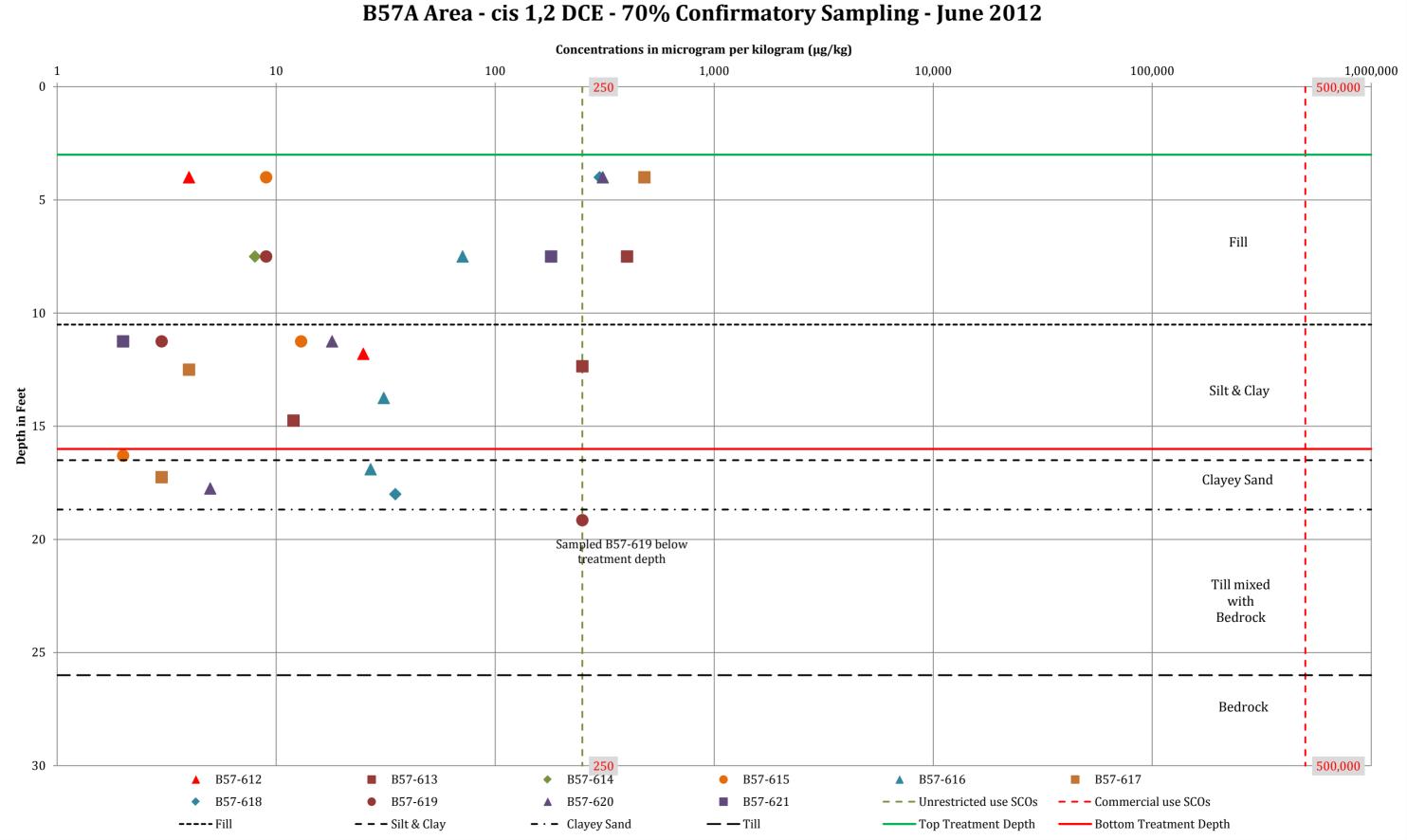







Figure D. 7













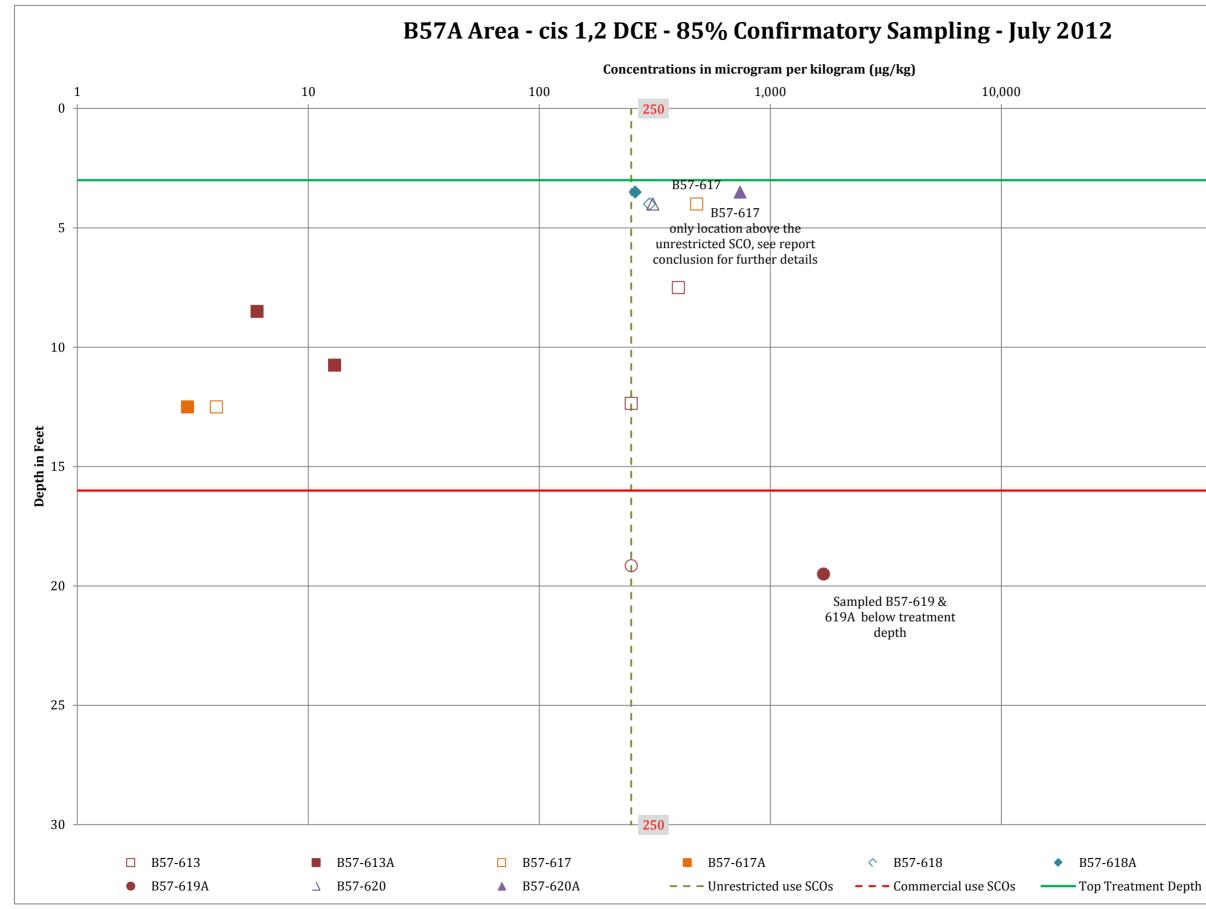
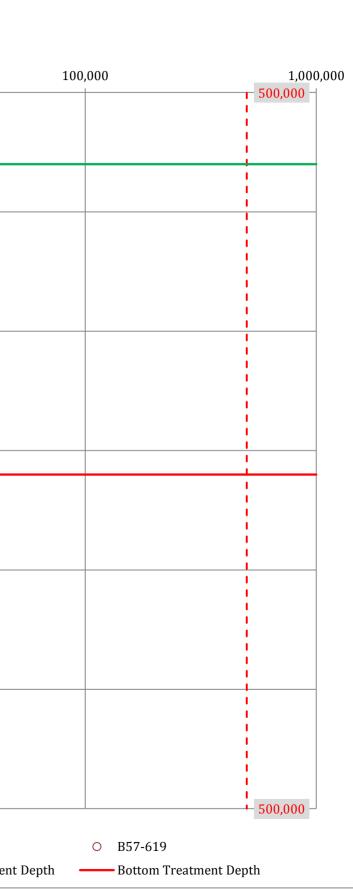
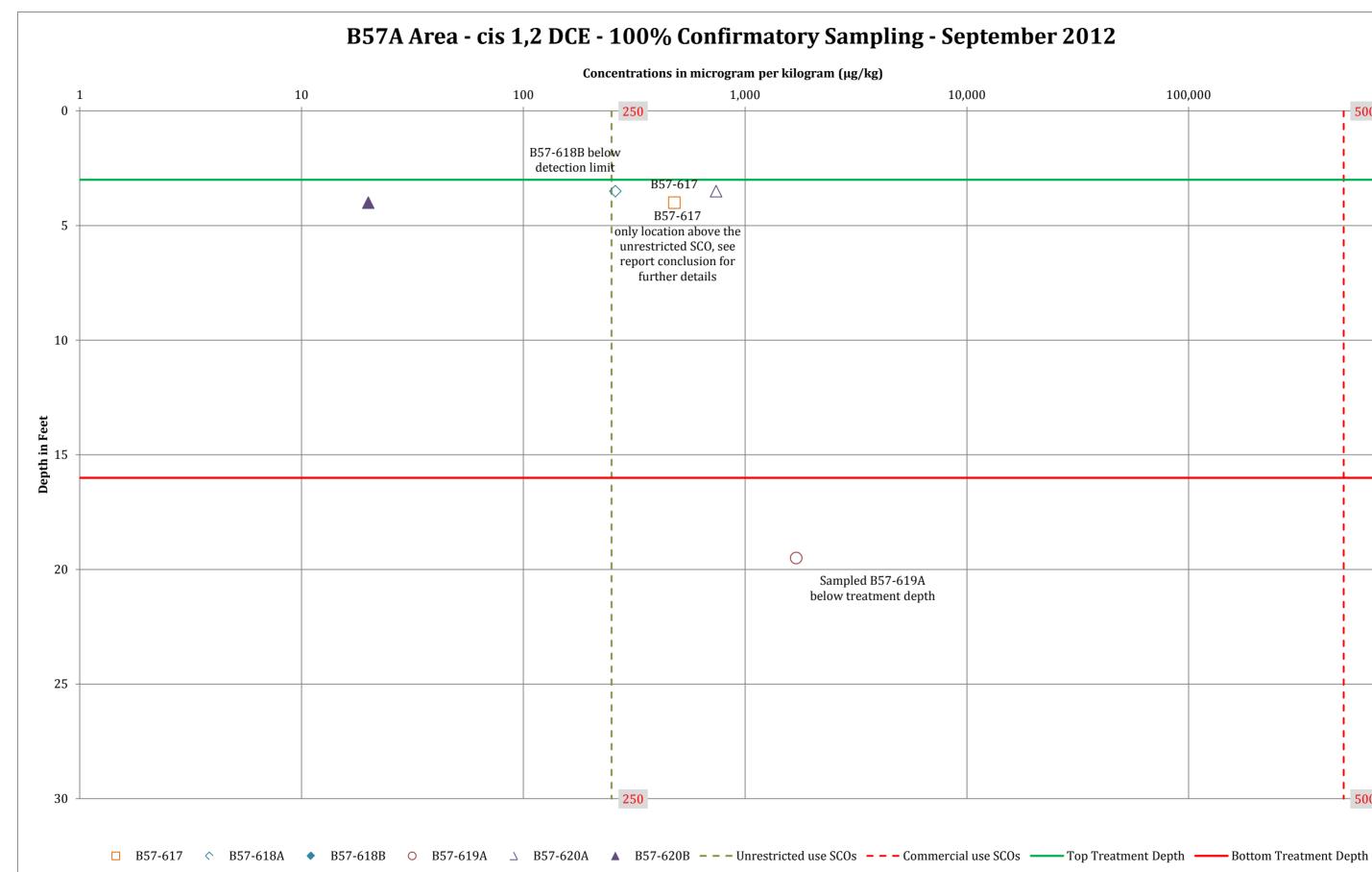
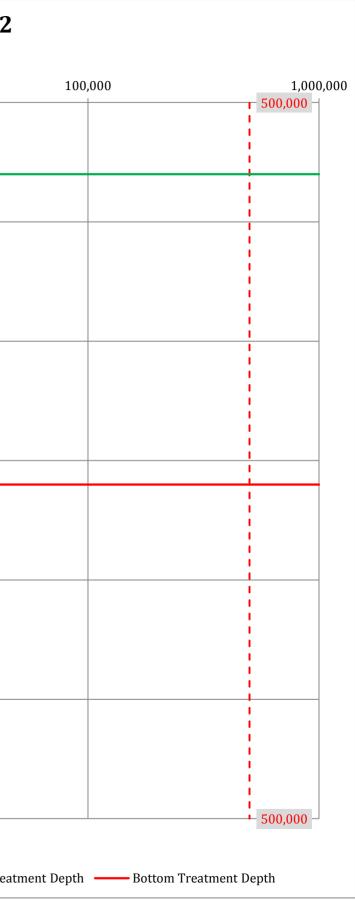







Figure D. 11







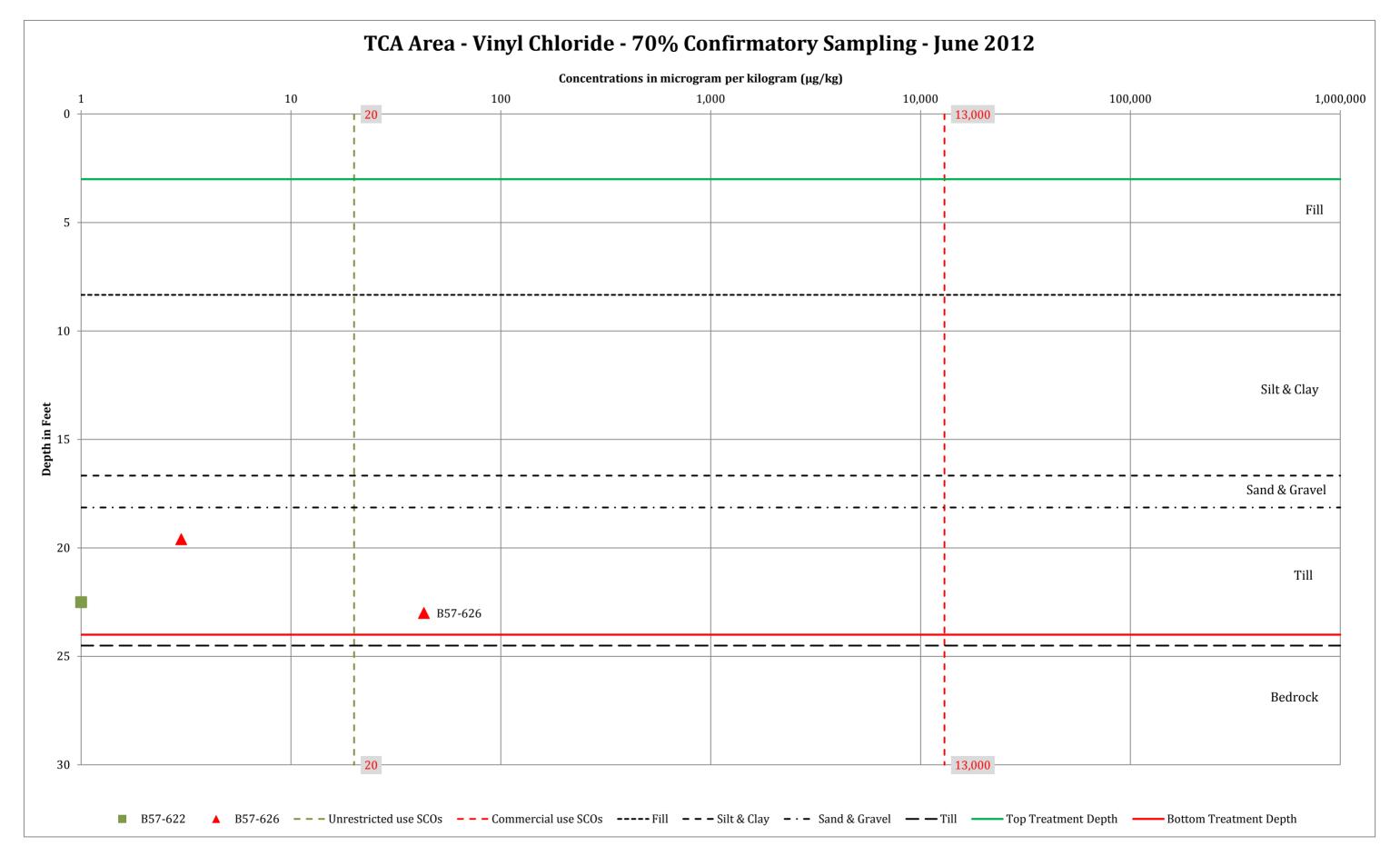



Figure D. 13

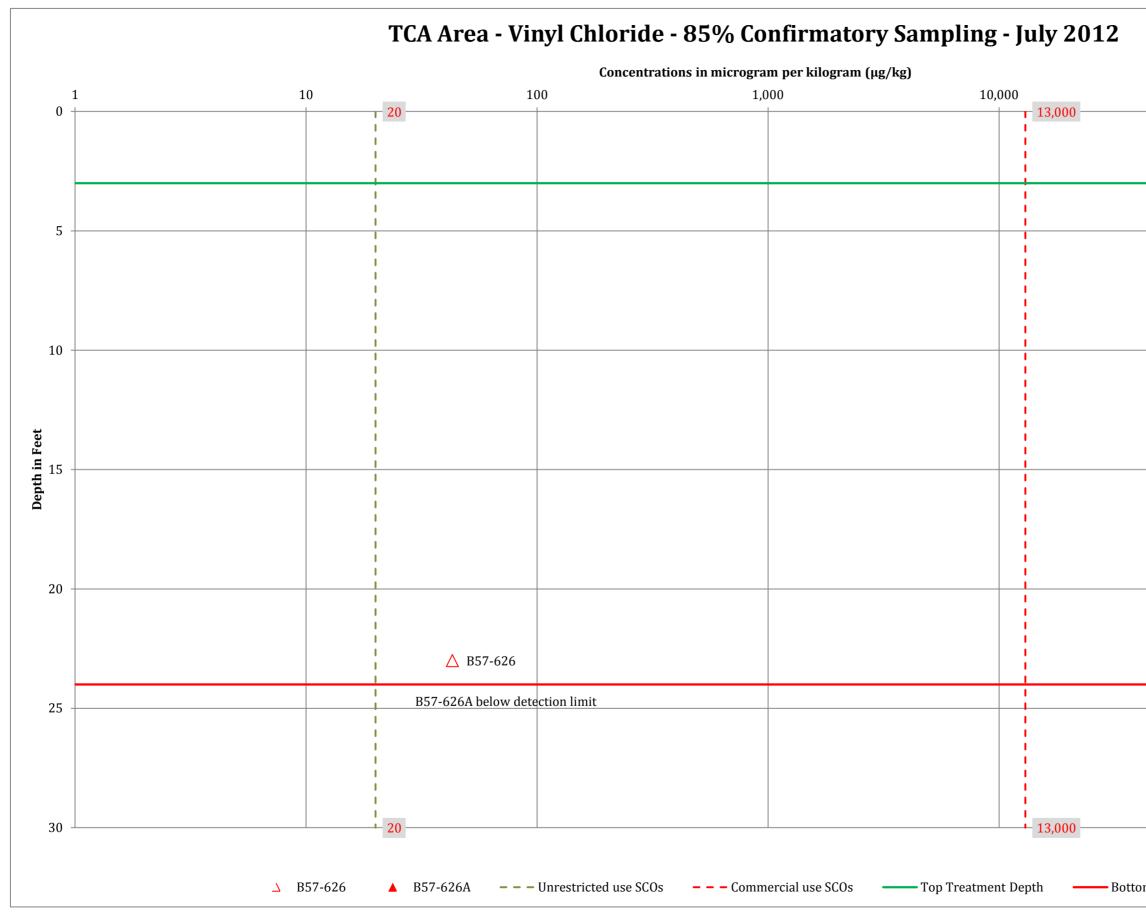



Figure D. 14

100	100,000		,000
m Treatment D	epth		

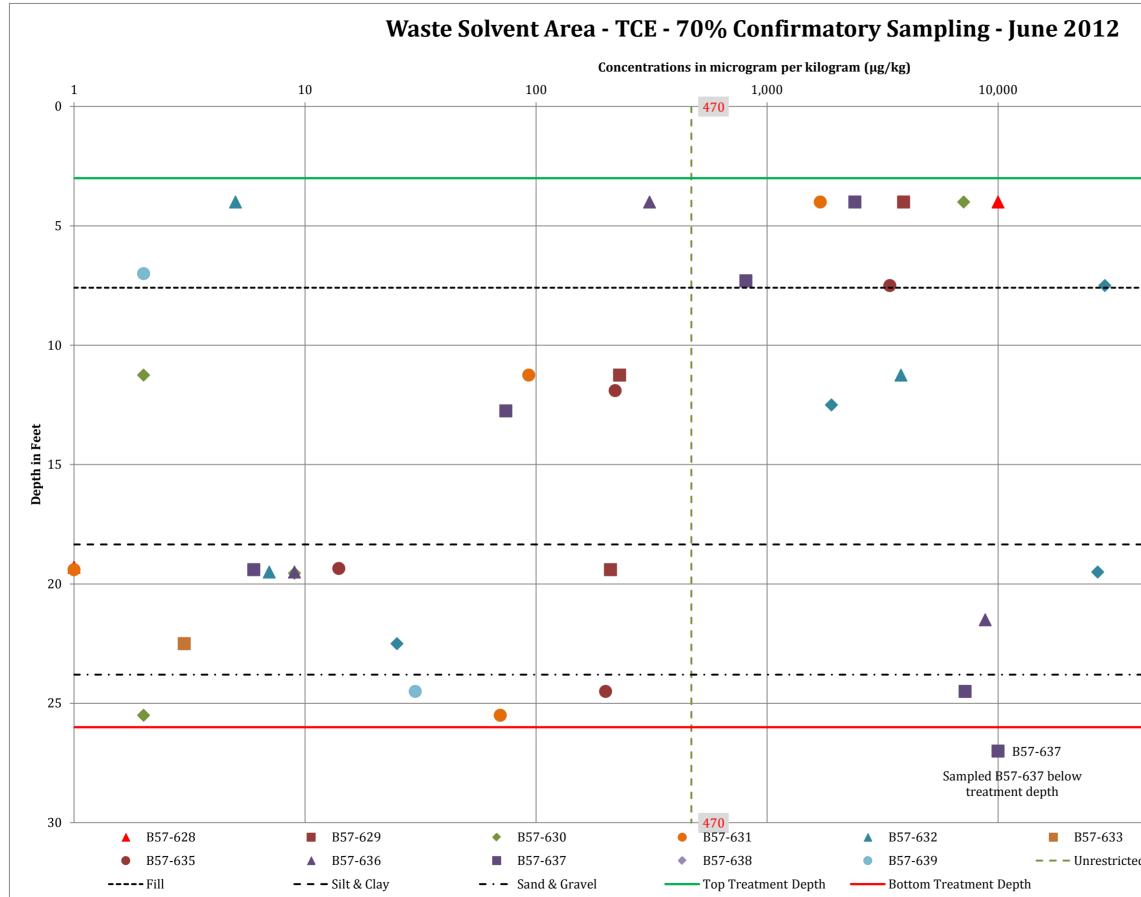
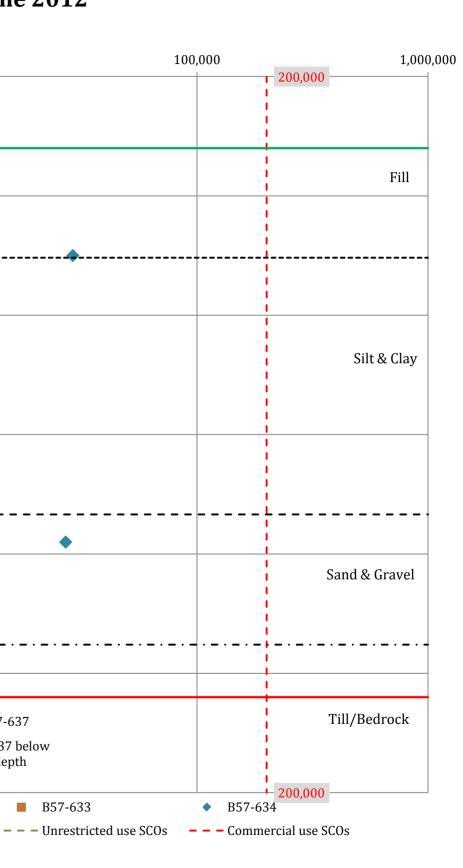
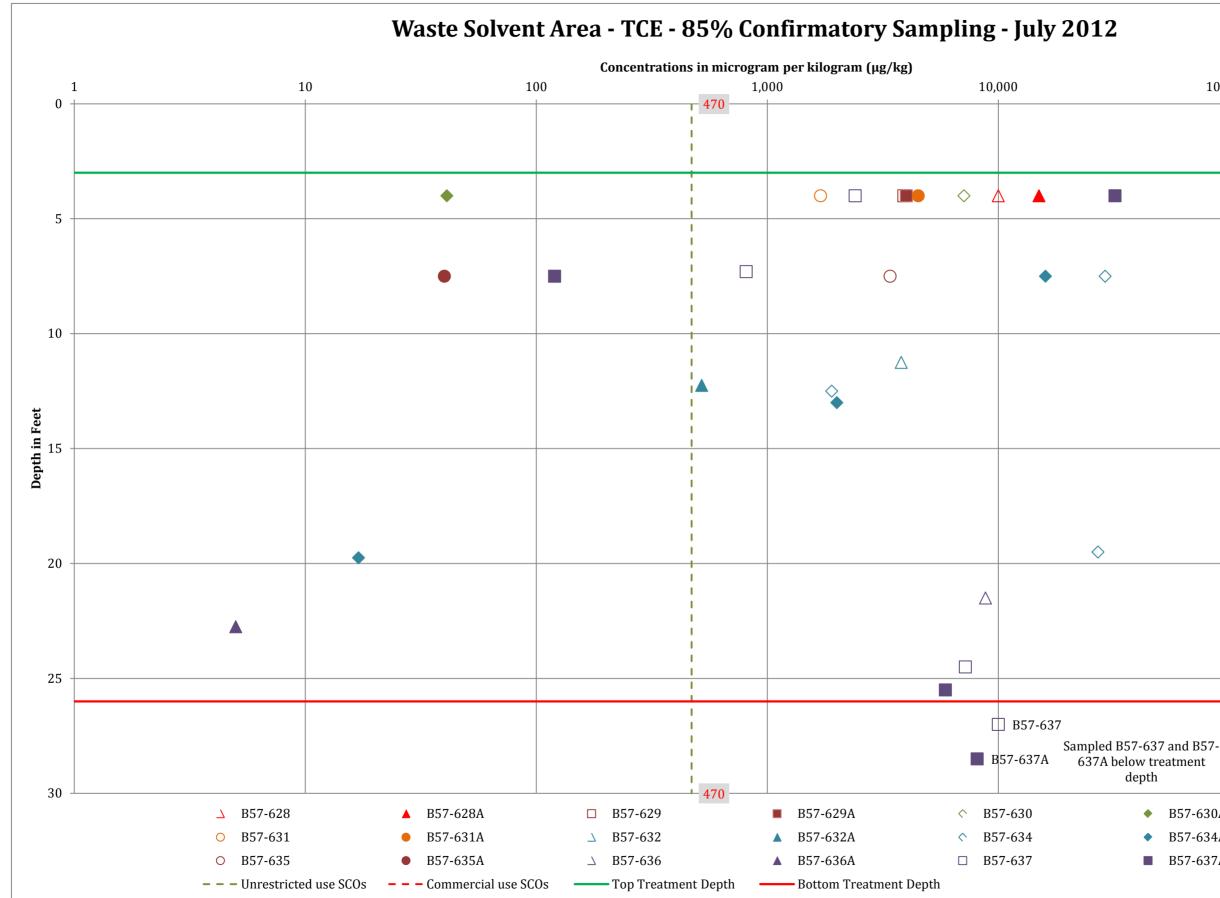
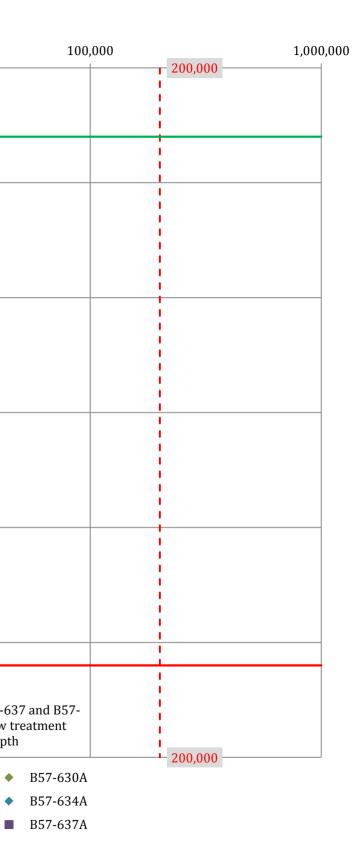
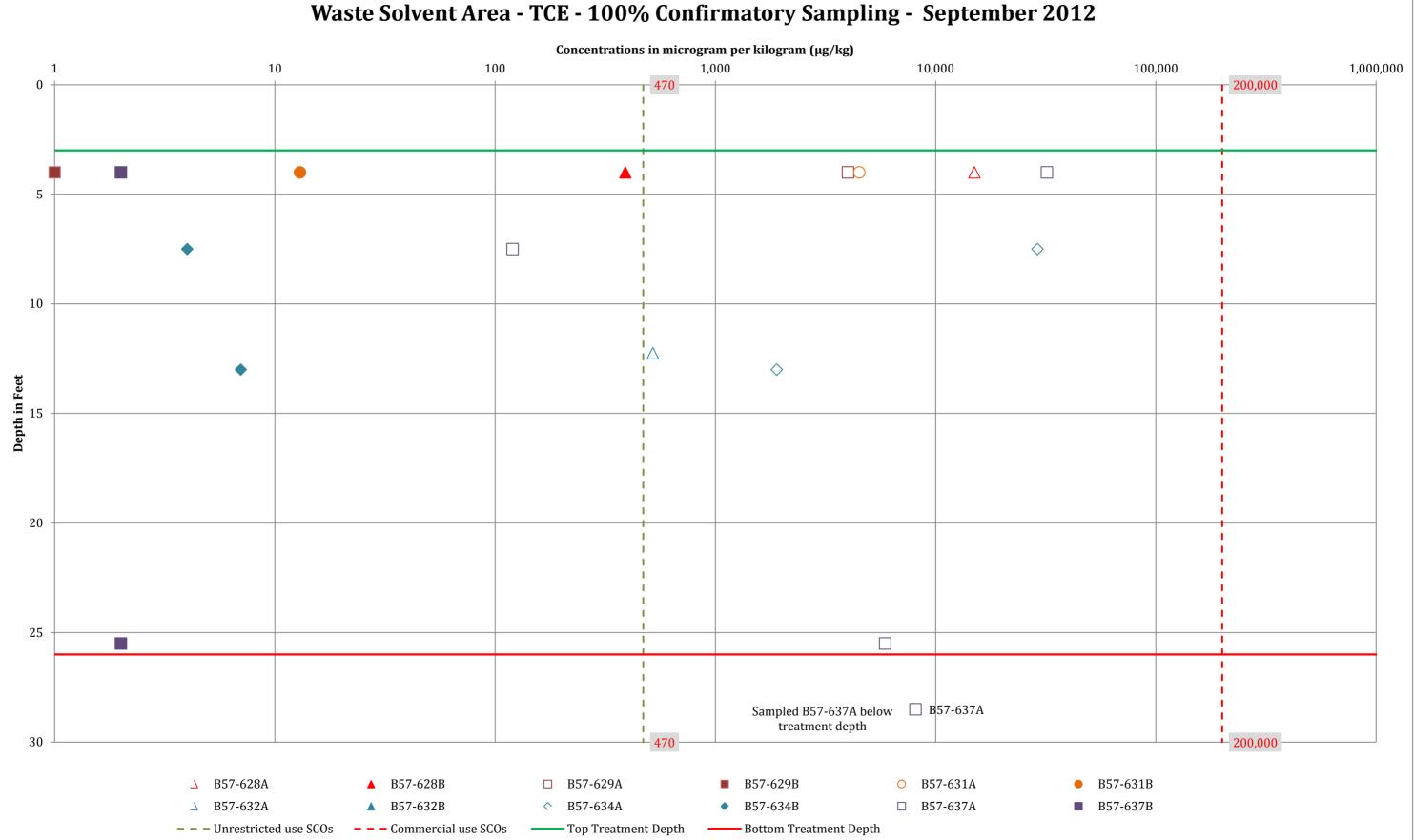
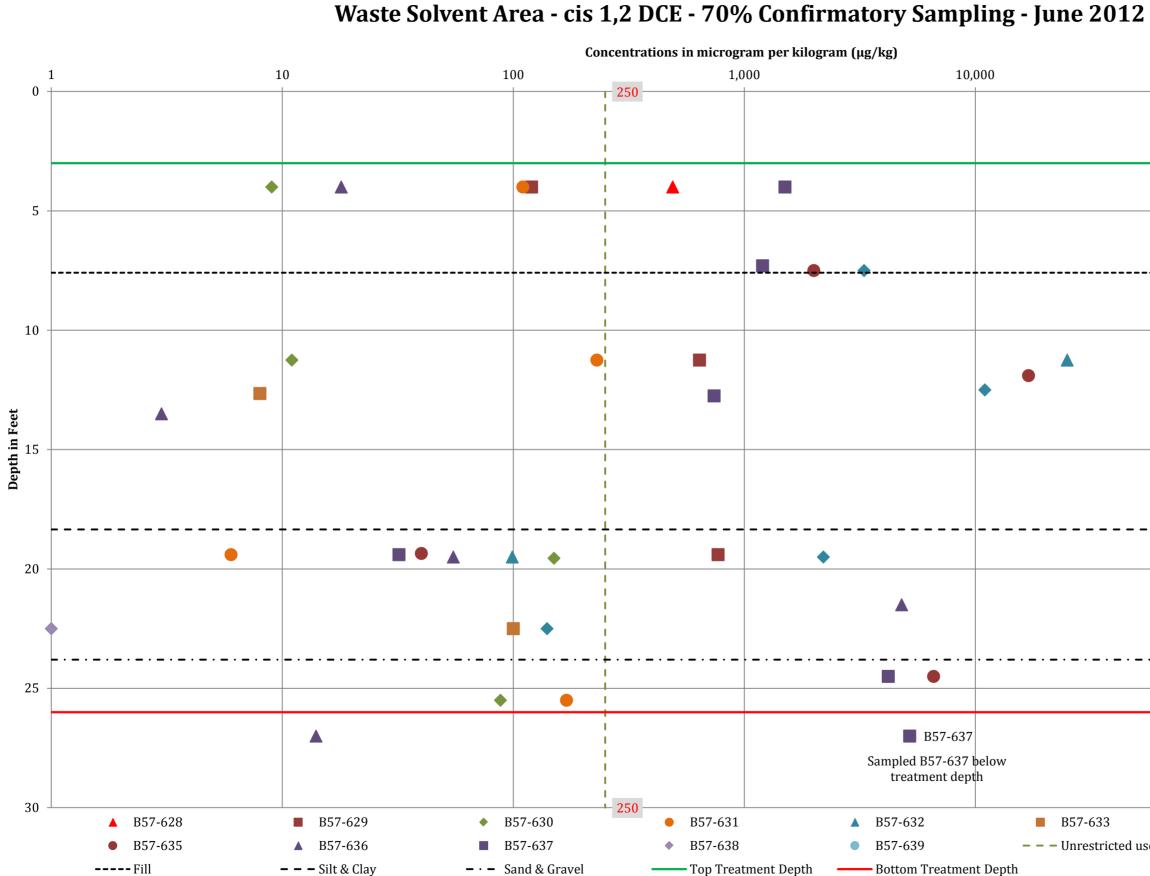
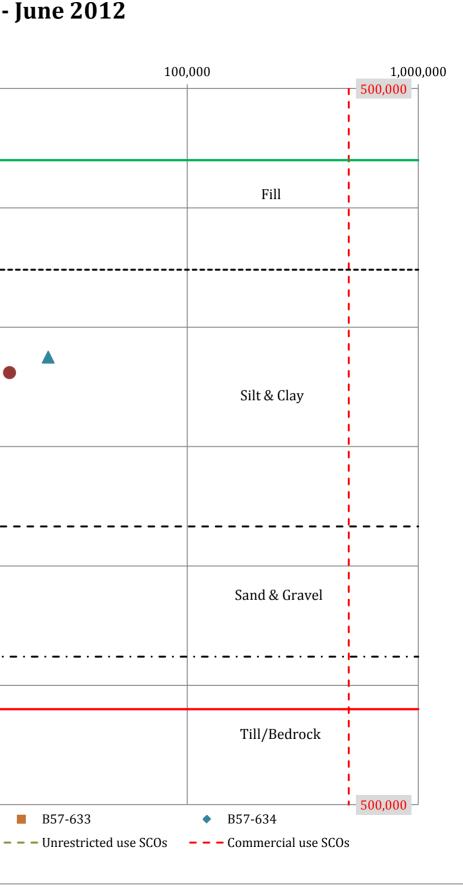
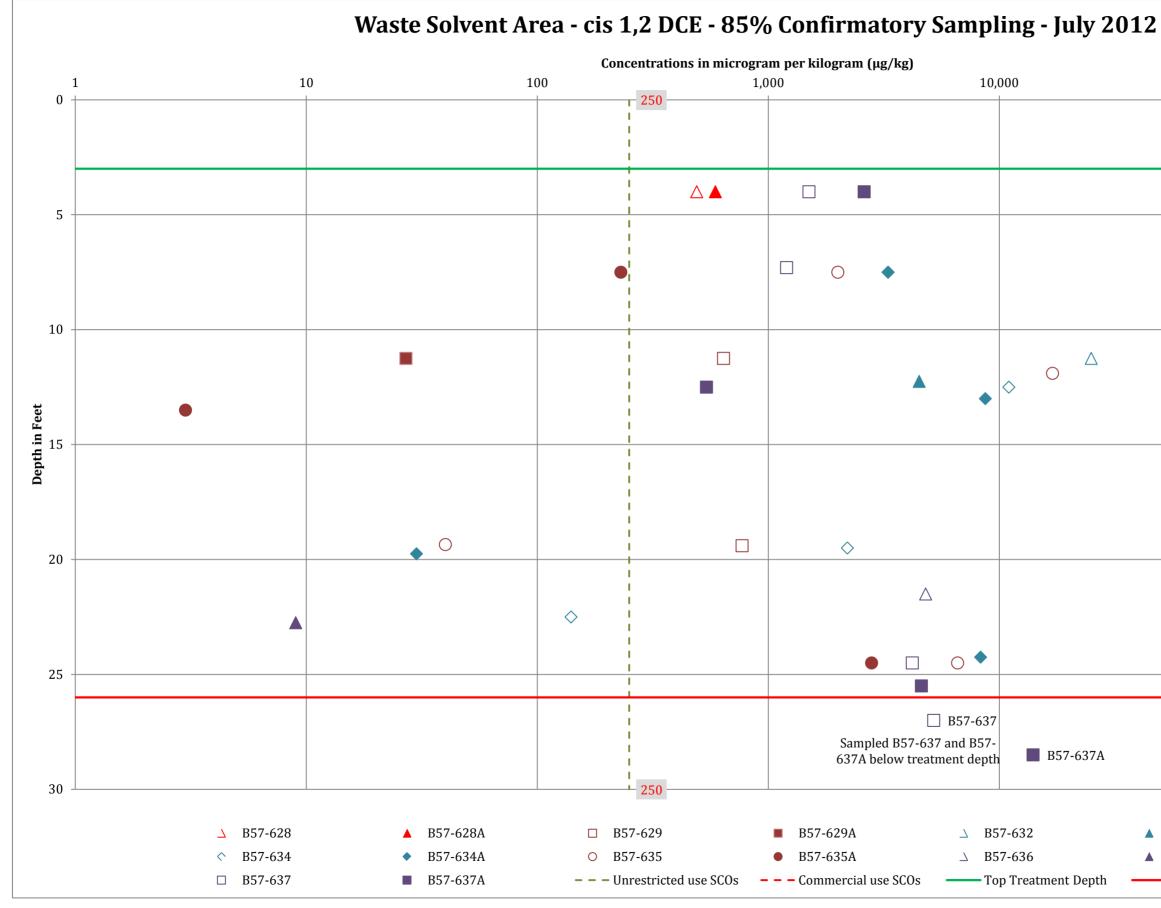







Figure D. 15














### \\CONSERV1\datashare\DATA\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix D - ERH Performance Data Report\Figures\20121115 Detected VOCs vs. Depth Plots.xlsx

100,000 1,000,000 500,000 500,000 ▲ B57-632A

- ▲ B57-636A
- Bottom Treatment Depth

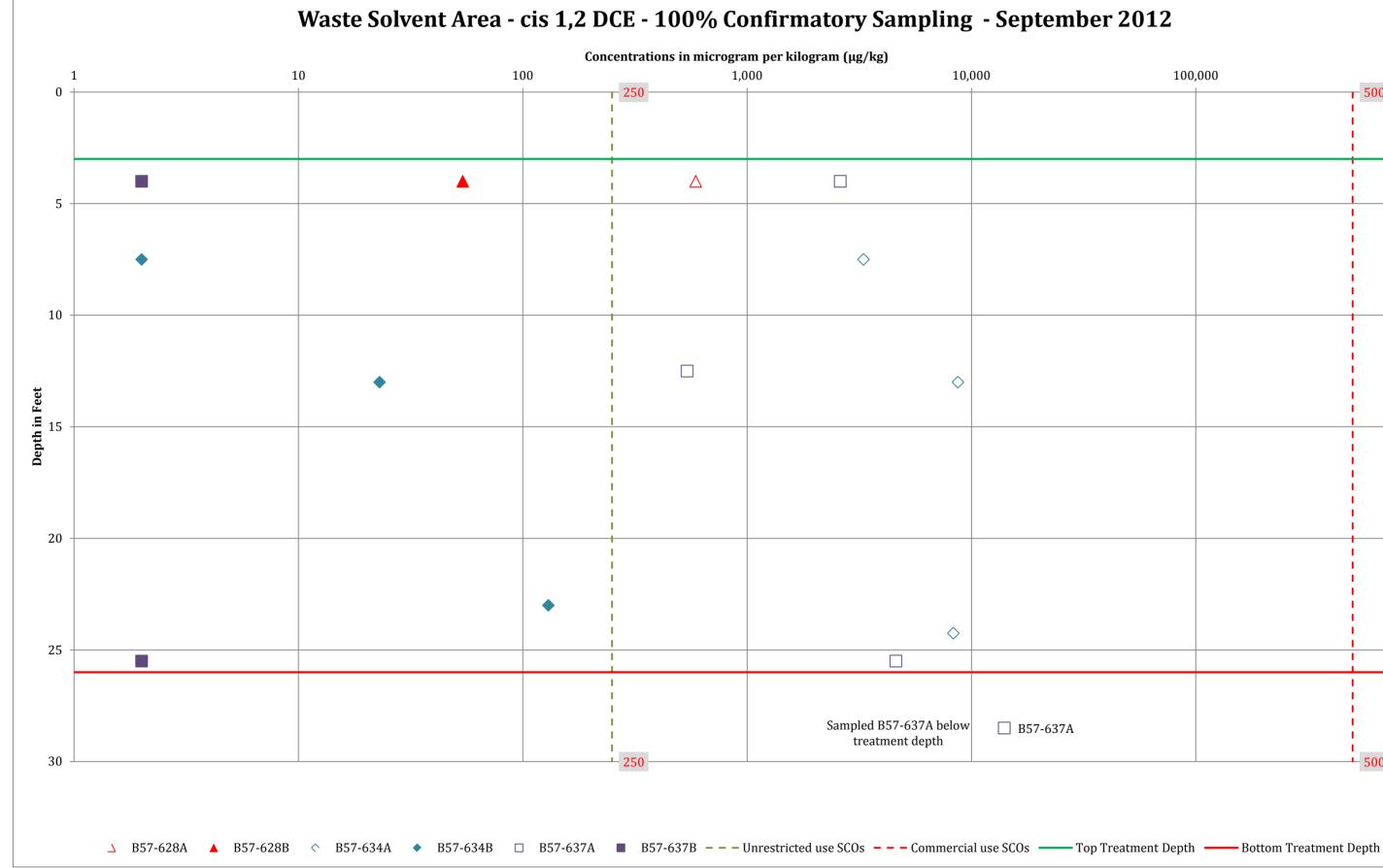
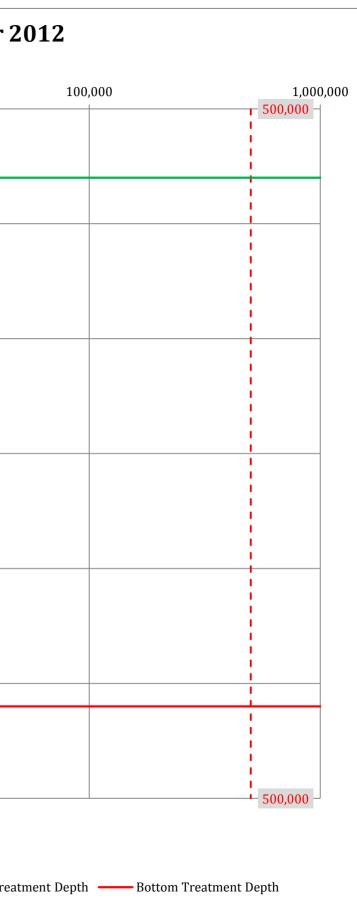
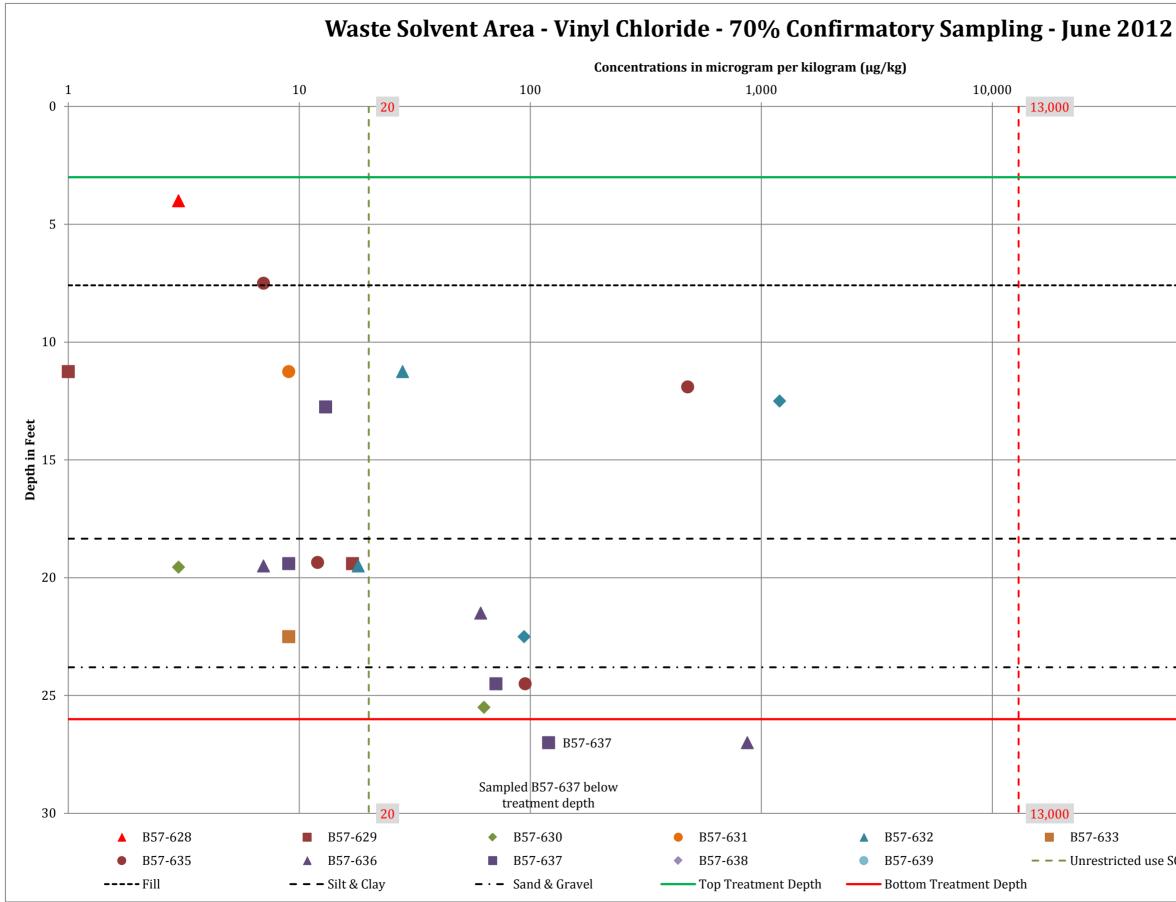





Figure D. 20





100	,000	1,000	),00
		Fill	
		Silt & Clay	
		Sand & Gravel	
		Till/Bedrock	
	<ul> <li>B57-634</li> <li>– – Commercial</li> </ul>		

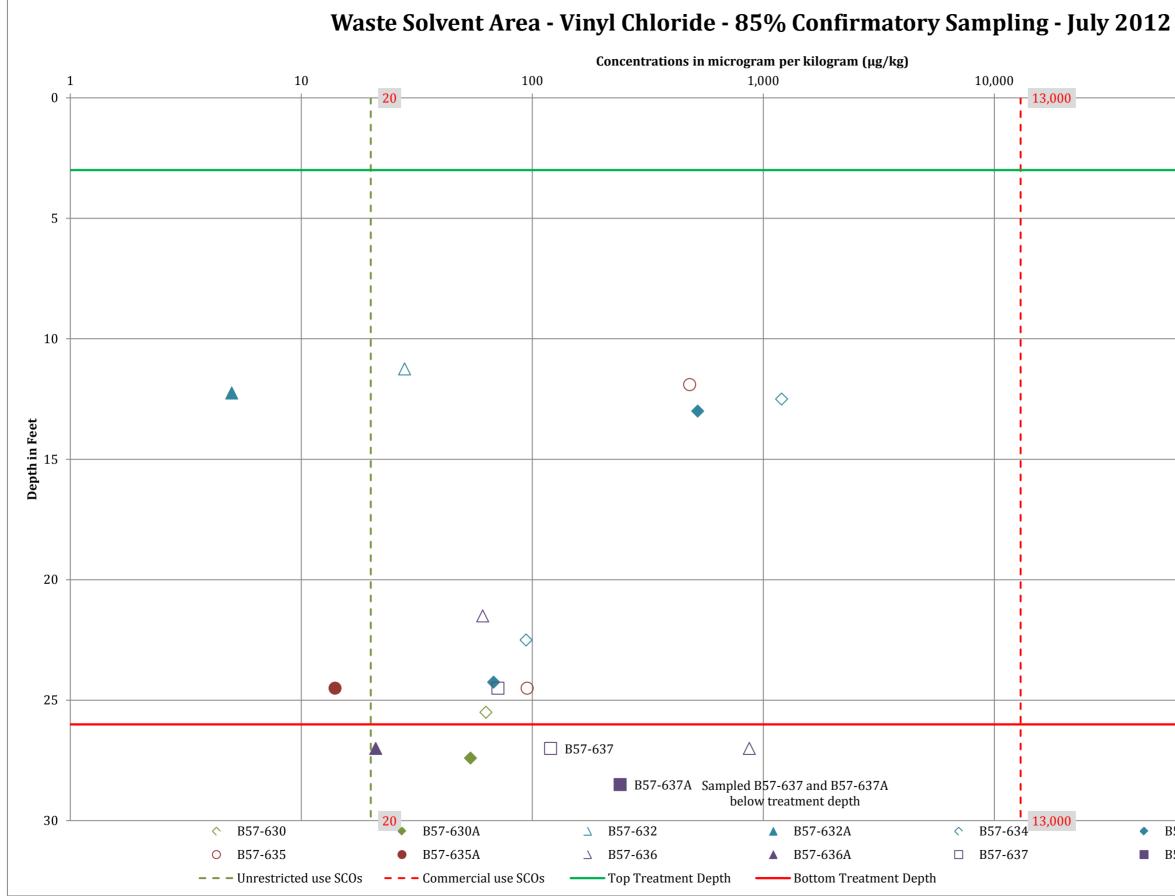



Figure D. 22

100,0	00	1,000,00
B57-634A		
B57-637A		

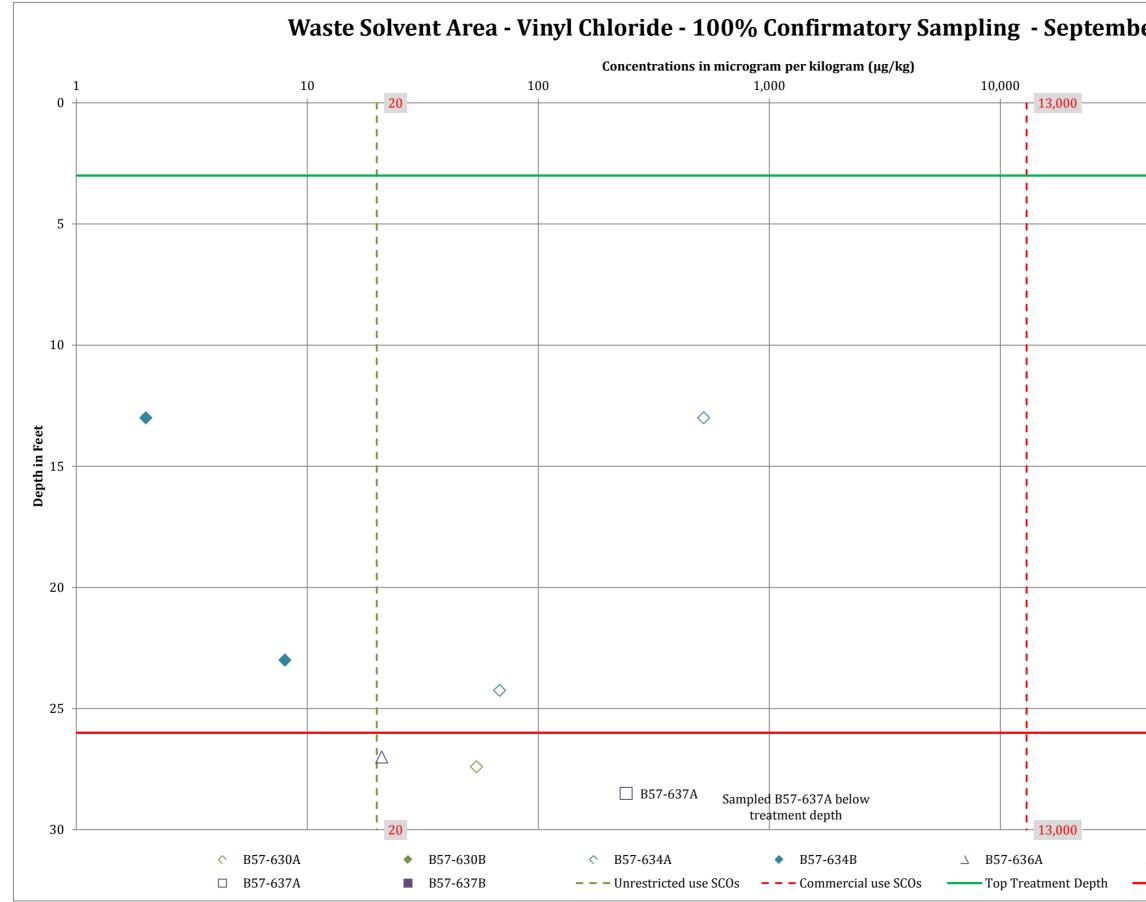



Figure D. 23

er 2012	
100,000	1,000,00
B57-636B	
Bottom Treatment Depth	

## Notes:

1) The concentration profiles presented in Figures D.3 through D.23 summarize soil concentrations versus depth in the 39 direct push boring confirmatory sampling locations, B57-601 through B57-639.

2) Soil samples were analyzed for volatile organic compounds (VOCs) by Lancaster Laboratories of Lancaster, PA. Analytical laboratory reports are included in Appendix H (on disc).

3) Concentrations are presented in units of micrograms per kilogram ( $\mu$ g/kg), which is equivalent to parts per billion (ppb).

4) Sample names for the 70% - June 2012 confirmatory sampling are indicated as B57-601, B57-602 and so forth, sample names for 85% - July 2012 confirmatory sampling are indicated as B57-601A, B57-602A and so forth, and sample names for 100% - September 2012 confirmatory sampling are presented as B57-601B, B57-602B and so forth. Initial sampling at B57-638 and B57-639 locations in the Waste Solvent Area was completed during 85% confirmatory sampling instead of 70% due to access constraints. These data are included in the 70% plots to indicate they are initial sampling data.

5) In treatment zones where follow-up confirmatory sampling was conducted, preceding sample results are shown on the concentration profiles for comparison, represented with hollow symbols (e.g., 70% - June 2012 results are shown by hollow symbols on 85% - July 2012 concentration profiles).

6) Non-detect values are not presented on the logarithmic scale.

7) Stratigraphy provided in these figures represents the generalized average stratigraphy observed for each treatment zone; variations may exist at actual locations. Refer to the IRM report text and appendices for additional details.

8) The treatment depth indicated for each source zone is a generalized average representing a depth 2' above the bottom of bored and sheet pile electrodes.

9) Refer to Appendix D and IRM Completion Report text for further discussion.

#### Attachment D.1 (A) Carbon Management Summary Treatment Train # 1 Building 57, Operable Unit # 5 Union Endicott, NY

Date for Carbon	Lead	Lag	Polish (HS-600)	Notes		Cumulative carbon handling and procurement costs (both trains)			Disposition																							
Change	Carbon Use (lbs)	Carbon Use (lbs)	Carbon Use (lbs)		i	Effective date	Effective date Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Amount (\$)		Required Disposal Date	Disposal Date
2/10/2012	-	-	-	System Start		-			-	-																						
2/23/2012	1,800	-	-	Lag to Lead		2/15/2012	\$	28,102	5/23/2012	4/19/2012																						
2/29/2012	1,800	1,800	3,000	Lead-Lag-Polish Change		2/29/2012	\$	38,258	5/29/2012	4/18/12 vessels,4/19/12-Car 5/1/12 for HS-600																						
3/12/2012	1,800	1,800	-	Lead-Lag Change		3/7/2012	\$	42,410	6/10/2012	4/19/2012																						
3/16/2012	-	-	3,000	Polish Change		3/14/2012	\$	43,434	Not Available	5/1/2012																						
3/21/2012	1,800	-	-	Lag to Lead		3/21/2012	\$	76,095	6/19/2012	4/19/2012																						
4/2/2012	1,800	-	-	Lag to Lead		3/28/2012	\$	76,095	7/1/2012	4/19/2012																						
4/4/2012	1,800	1,800	-	Lead-Lag Change		4/4/2012	\$	89,477	7/3/2012	4/19/2012																						
4/5/2012	-	-	3,000	Polish Removed		4/11/2012	\$	91,043	Not Available	5/1/2012																						
4/17/2012	1,800	-	-	Lag to Lead		4/18/2012	\$	92,303	7/16/2012	6/25/2012																						
-	-	-	-	-		4/25/2012	\$	96,214	-	-																						
5/4/2012	1,800	-	-	Lag to Lead		5/4/2012	\$	187,500	8/2/2012	6/25/2012																						
-	-	-	-	-		5/11/2012	\$	187,850	-	-																						
-	-	-	-	-		5/21/2012	\$	188,415	-	-																						
-	-	-	-	-		5/30/2012	\$	193,240	-	-																						
-	-	-	-	-		6/5/2012	\$	193,367	-	-																						
-	-	-	-	-	l	6/13/2012	\$	212,652	-	-																						
-	-	-	-	-		6/19/2012	\$	212,652	-	-																						
6/21/2012	1,800	1,800	-	Lead-Lag Change	l	6/27/2012	\$	226,965	9/19/2012	6/25/2012																						
-	-	-	-	-	l	7/10/2012	\$	268,362	-	-																						
-	-	-	-	-	l	7/17- 8/3/2012, no change in \$	\$	272,909	-	-																						

 TT1 Carbon Use (lbs)
 32,400

 TT2 Carbon Use (lbs)
 44,100

⁰⁰ Note:

 TT2 Carbon Use (lbs)
 44,100

 Total Carbon Use (lbs)
 **76,500**

Based on carbon samples collected, Treatment Train 1 was considered as a Hazardous waste train and had a 90 day disposal duration requirement from the removal date of the vessel/carbon from Treatment Train.

#### Attachment D.1 (B) Carbon Management Summary Treatment Train # 2 Building 57, Operable Unit # 5 icott. NV

		1		Union I
Date for Carbon Change	Lead	Lag	Polish (HS-600)	Notes
Date for Carbon Change	Carbon Use (lbs)	Carbon Use (lbs)	Carbon Use (lbs)	Notes
2/10/2012	-	-	-	System Start
2/23/2012	1,800	-	-	Lag to Lead
2/28/2012	-	-	-	Removed Polish
3/14/2012	1,800	-	-	Lead-Lag Change
3/18/2012	2,250	-	-	Lag to Lead
3/21/2012	2,250	-	-	Lead-Lag Change (lag reused)
3/30/2012	2,250	-	-	Lag to Lead
4/2/2012	2,250	-	-	Lag to Lead
4/4/2012	2,250	2,250	-	Lead-Lag Change (lead not fresh)
4/5/2012	2,250	2,250	-	Lead-Lag Change
4/7/2012	2,250	-	-	Lag to Lead
4/9/2012	2,250	2,250	-	Lead-Lag Change
4/12/2012	2,250	2,250	-	Lead-Lag Change
4/16/2012	2,250	-	-	Lag to Lead
4/20/2012	2,250	-	-	Lag to Lead
4/29/2012	2,250	2,250	-	Lead-Lag Change
-	-	-	-	-
5/17/2012	2,250	-	-	Lag to Lead
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-
_	-	-	-	-

tt, NV Cumulative carb procurement co	on handling and sts (both trains)	Disposition	
Effective date	Amount (\$)	Required Disposal Date	Disposal Date
-	-	-	-
2/15/2012	\$ 28,102	Not Available	4/18/2012
2/29/2012	\$ 38,258	-	-
3/7/2012	\$ 42,410	Not Available	4/18/2012
3/14/2012	\$ 43,434	Not Available	4/16/2012
3/21/2012	\$ 76,095	Not Available	4/16/2012
3/28/2012	\$ 76,095	Not Available	4/16/2012
4/4/2012	\$ 85,253	Not Available	4/16/2012
4/4/2012	\$ 89,477	Not Available	4/16/2012
-	-	Not Available	4/16/2012
-	-	Not Available	4/16/2012
-	-	Not Available	4/23/2012
4/11/2012	\$ 91,043	Not Available	4/23/2012
4/18/2012	\$ 92,303	Not Available	4/23/2012
4/25/2012	\$ 96,214	Not Available	4/23/2012
5/4/2012	\$ 187,500	Not Available	5/7/2012
5/11/2012	\$ 187,850	-	-
-	-	Not Available	7/23/2012
5/21/2012	\$ 188,415	-	-
5/30/2012	\$ 193,240	-	-
6/5/2012	\$ 193,367	-	-
6/13/2012	\$ 212,652	-	-
6/19/2012	\$ 212,652	-	-
6/27/2012	\$ 226,965	-	-
7/10/2012	\$ 268,362	-	-
7/17-8/3/2012, no change in \$	\$ 272,909	-	-

#### Note: 44,100

TT2 Carbon Use (lbs) Based on carbon samples collected, Treatment Train 2 was a non-hazardous waste train and didn't require a 90-day disposal duration

TT1 Carbon Use (lbs) 32,400 requirement from the removal date of the vessel/carbon from Treatment Train.

Total Carbon Use (lbs) 76,500

	Project No.: 2	466.02		Date:	February 9, 20	)12		
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	ediation				
.1	Location: End	licott, New Yor	k (OU #5)					
O ₂ / CH ₄ / CO ₂ Meter Used: N/	'A		Project Mana	ger: L. Jacob				
PID Meter Used: N/A			Collector(s):	A. Khandekar,	R. Welch			
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer			
SOIL VAPOR SAMPLE RECORD								
Location No.	T2E	TIE	TID	TIC	TIA	T2A		
Sample ID	T2E	TIE	TID	TIC	TIA	T2A		
Sample Date	02/09/12	02/09/12	02/09/12	02/09/12	02/09/12	02/09/12		
Canister Serial No.	35651	33409	36517	36386	3320	34652		
Start Time	0853	0914	0937	1030	1050	1445		
Start Pressure (inches Hg)	-26.0	-27.0	-25.0	-26.0	-27.0	-27.0		
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab		
Stop Pressure (inches Hg)	-5.0	-6.0	-5.0	-4.5	-6.0	-6.5		
Ambient Air Temp (°F)	22°F	30°F	35°F	35°F	35°F	45°F		
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny		
PID reading (ppmv)	-	-	-	-	-	-		
FID reading (ppmv)	-	1.6	1.3	2	1.2	-		
Comment No.	1	-	-	2	-	3		
		COMMI	ENTS					

1. TRS experiencing blower issues; had to turn off blower, No FID reading.

2. First sample canister used (Can #37359) without any vacuum.

3. First sample canister used (Can #9321) without any vacuum.

4. Very low vacuum in canister; sampling time  $\sim$ <3 seconds.

5. Very low vacuum in canister; sampling time  $\sim$  <3 seconds

	Project No.: 2	Project No.: 2466.02			February 9, 20	)12		
SANBORN    HEAD	Project Name	: Building 57 T	Thermal Remediation					
I	Location: End	dicott, New Yor	k (OU #5)					
O ₂ / CH ₄ / CO ₂ Meter Used: N/	'A		Project Mana	ger: L. Jacob				
PID Meter Used: N/A			Collector(s):	A. Khandekar,	R. Welch			
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer			
	SO	IL VAPOR SAN	<b>APLE RECORD</b>					
Location No.	T2D	T2C	Sample	-	-	-		
Sample ID	T2D	T2C	Port F	-	-	-		
Sample Date	02/09/12	02/09/12	02/09/12	-	-	-		
Canister Serial No.	1366	36388	1600	-	-	-		
Start Time	1520	1540	1600	-	-	-		
Start Pressure (inches Hg)	-20.0	-25.0	-20.0	-	-	-		
Stop Time	Grab	Grab	Grab	-	-	-		
Stop Pressure (inches Hg)	-4.0	-6.0	-5.0	-	-	-		
Ambient Air Temp (°F)	45°F	45°F	45°F	-	-	-		
Weather Conditions	Sunny	Sunny	Sunny	-	-	-		
PID reading (ppmv)	-	-	-	-	-	-		
FID reading (ppmv)	-	-	-	-	-	-		
Comment No.	4	-	5	-	-	-		
	COMMENTS							

1. TRS experiencing blower issues; had to turn off blower, No FID reading.

2. First sample canister used (Can #37359) without any vacuum.

3. First sample canister used (Can #9321) without any vacuum.

4. Very low vacuum in canister; sampling time  $\sim$ <3 seconds.

5. Very low vacuum in canister; sampling time  $\sim$  <3 seconds

	Project No.: 2	Project No.: 2466.02         Date:         February 15, 2012							
SANBORN 📗 HEAD	Project Name	Project Name: Building 57 Thermal Remediation							
. [.	Location: Endicott, New York (OU #5)								
$O_2$ / CH ₄ / CO ₂ Meter Used: N/	/A		Project Mana	ger: L. Jacob					
PID Meter Used: N/A			Collector(s):	A. Khandekar					
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer				
	SO	IL VAPOR SAM	<b>IPLE RECORD</b>						
Location No.	T1A	T1C	TID	TIE	Sample	TIB			
Sample ID	T1A	T1C	TID	TIE	Port F	-			
Sample Date	02/15/12	02/15/12	02/15/12	02/15/12	02/15/12	02/15/12			
Canister Serial No.	34129	34116	3043	31755	2640	-			
Start Time	1608	1605	1645	1350	1650	-			
Start Pressure (inches Hg)	-30.0	-29.0	-28.0	-29.0	-29.5	-			
Stop Time	Grab	Grab	Grab	Grab	Grab	-			
Stop Pressure (inches Hg)	-6.0	-7.0	-6.0	-7.0	-6.5	-			
Ambient Air Temp (°F)	45°F	45°F	45°F	40°F	45°F	-			
Weather Conditions	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy	-			
O ₂ Reading (%)	-	21.6	21.8	21.5	21.5	21.6			
CH ₄ Reading (%)	-	0.00	0.00	0.00	0.00	0.00			
CO ₂ Reading (%)	-	0.10	0.10	0.10	0.10	0.10			
PID reading (ppmv)	-	0.68	0.71	0.80	0.76	-			
FID reading (ppmv)	-	39	34	36	37	82			
Comment No.	-	2	2,3	1,2	2	-			
		COMMI	ENTS						

1. Sampling time for canister ~<4 seconds.

2. PID readings measured with an EVM-7 monitor.

3. Canister 34660 used first; had initial vacuum pressure of -15 inches Hg. Resampled using canister 3043 at 1645.

1	Project No.: 2	2466.02	Date:	February 15, 2012						
SANBORN 📗 HEAD	Project Name	Project Name: Building 57 Thermal Remediation								
.1	Location: En	Location: Endicott, New York (OU #5)								
$O_2$ / $CH_4$ / $CO_2$ Meter Used: N	Project Mana	ger: L. Jacob								
PID Meter Used: N/A	Collector(s):	A. Khandekar								
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer					
	SO	IL VAPOR SAM	<b>IPLE RECORD</b>							
Location No.	T2A	T2C	T2D	T2E	T2B	-				
Sample ID	T2A	T2C	T2D	T2E	-	-				
Sample Date	02/15/12	02/15/12	02/15/12	02/15/12	02/15/12	-				
Canister Serial No.	33729	1044	8035	14515	-	-				
Start Time	1610	1345	1333	1339	-	-				
Start Pressure (inches Hg)	-29.0	-27.5	-28.5	-28.5	-	-				
Stop Time	Grab	Grab	Grab	Grab	-	-				
Stop Pressure (inches Hg)	-6.0	-7.0	-6.5	-6.5	-	-				
Ambient Air Temp (°F)	45°F	40°F	40°F	40°F	-	-				
Weather Conditions	Cloudy	Cloudy	Cloudy	Cloudy	-	-				
O ₂ Reading (%)	-	21.5	21.2	21.4	21.6	-				
CH ₄ Reading (%)	-	0.00	0.00	0.00	0.00	-				
CO ₂ Reading (%)	-	0.30	0.30	0.30	0.20	-				
PID reading (ppmv)	-	1.1	1.0	0.7	3.1	-				
FID reading (ppmv)	-	40	43	40	136	-				
Comment No.	-	2	2	-	-	-				
		COMMI	ENTS							

1. Sampling time for canister ~<4 seconds.

2. PID readings measured with an EVM-7 monitor.

3. Canister 34660 used first; had initial vacuum pressure of -15 inches Hg. Resampled using canister 3043 at 1645.

		Project No.: 2466.02			February 20, 2	2012		
SANBORN 📗 HEAD	Project Name	roject Name: Building 57 Thermal Remediation						
I	Location: End	ocation: Endicott, New York (OU #5)						
02 / CH4 / CO2 Meter Used:	N/A		Project Mana	ger: L. Jacob				
PID Meter Used: MiniRAE 30	00		Collector(s):	A. Khandekar				
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer			
SOIL VAPOR SAMPLE RECORD								
Location No.	T2A	T2B	T2C	T2D	T2E	Sample		
Sample ID	T2A	-	T2C	T2D	T2E	Port F		
Sample Date	02/20/12	-	02/20/12	02/20/12	02/20/12	02/20/12		
Canister Serial No.	3361	-	12365	3456	30811	2184		
Start Time	1640	-	1505	1500	1455	1625		
Start Pressure (inches Hg)	-28.0	-	-29.0	-29.5	-29.5	-29.0		
Stop Time	Grab	-	Grab	Grab	Grab	Grab		
Stop Pressure (inches Hg)	-9.0	-	-7.0	-7.0	-7.0	-7.5		
Ambient Air Temp (°F)	45	-	45	45	45	45		
Weather Conditions	Sunny	-	Sunny	Sunny	Sunny	Sunny		
PID reading (ppmv)	11	41	2.8	2.0	1.2	1.6		
FID reading (ppmv)	337	412	350	419	397	97		
Comment No.	2	-	-		-	-		
COMMENTS								

1. Canister #2210 used first didn't have sufficient vacuum (-10 in. Hg). replaced canister #2210 and used Canister #2133 for sampling.

2. Initial vacuum appeared to be -28.0; opening canister vacuum dropped abruptly to -25.0.

3. Initial vacuum appeared to be -29.5; opening canister vacuum dropped abruptly to -25.0.

	Project No.: 2	Project No.: 2466.02			February 20, 2	2012				
SANBORN 📗 HEAD	Project Name	Project Name: Building 57 Thermal Remediation								
	Location: End	Location: Endicott, New York (OU #5)								
02 / CH4 / CO2 Meter Used:	Project Mana	ger: L. Jacob								
PID Meter Used: MiniRAE 30	00		Collector(s):	A. Khandekar						
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer					
SOIL VAPOR SAMPLE RECORD										
Location No.	T1A	T1B	T1C	T1D	T1E	TIC				
Sample ID	T1A	-	T1C	T1D	T1E	DUP1				
Sample Date	02/20/12	-	02/20/12	02/20/12	02/20/12	02/20/12				
Canister Serial No.	2191	-	3303	2133	3374	9448				
Start Time	1645	-	1525	1630	1515	1525				
Start Pressure (inches Hg)	-29.5	-	-28.0	-29.5	-29.5	-14.0				
Stop Time	Grab	-	Grab	Grab	Grab	Grab				
Stop Pressure (inches Hg)	-8.0	-	-7.0	-9.0	-8.0	-7.0				
Ambient Air Temp (°F)	45	-	45	45	45	45				
Weather Conditions	Sunny	-	Sunny	Sunny	Sunny	Sunny				
PID reading (ppmv)	75	95	23	3.2	6.1	-				
FID reading (ppmv)	162	80	47	39	69	-				
Comment No.	-	-	-	1	-	-				
		COMMI	ENTS							

1. Canister #2210 used first didn't have sufficient vacuum (-10 in. Hg). replaced canister #2210 and used Canister #2133 for sampling.

2. Initial vacuum appeared to be -28.0; opening canister vacuum dropped abruptly to -25.0.

3. Initial vacuum appeared to be -29.5; opening canister vacuum dropped abruptly to -25.0.

	Project No.: 2	Project No.: 2466.02         Date:         March 5, 2012							
SANBORN    HEAD	Project Name: Building 57 Thermal Remediation								
.1.	Location: Endicott, New York (OU #5)								
02 / CH4 / CO2 Meter Used: N	I/A		Project Mana	ger: L. Jacob					
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar					
Other: N/A			FID Meter Us	ed: TVA-1000	B Analyzer				
SOIL VAPOR SAMPLE RECORD									
Location No.	T1A	T1B	T1C	T1D	T1E	Sample			
Sample ID	T1A	-	T1C	T1D	-	Port F			
Sample Date	03/05/12	03/05/12	03/05/12	03/05/12	03/05/12	03/05/12			
Canister Serial No.	3048	-	3301	8003	-	3359			
Start Time	1215	-	1255	1217	-	1545			
Start Pressure (inches Hg)	-29.0	-	-28.5	-29.0	-	-27.0			
Stop Time	Grab	-	Grab	Grab	-	Grab			
Stop Pressure (inches Hg)	-6.0	-	-8.0	-7.0	-	-6.0			
Ambient Air Temp (°F)	30	30	30	30	30	30			
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny			
Velocity, Fpm	4450	6990	4330	5350	5160	1700			
Pressure, in H ₂ O	42	71	48	18	1	0			
PID reading (ppmv)	175	180	29	2.7	0.7	0.7			
FID reading (ppmv)	112	105	45	39	38	366			
Temperature (°F)	64	125	108	95	88	86			
Comment No.	-	-	-	-	-	1			
		COMMI	ENTS						

1. First sample collected (canister #8010) had water from sample port entering canister due to high vacuum exerted by canister. Sample port removed and dried prior to taking next sample.

	Project No.: 2466.02			Date:	Date: March 15, 2012			
SANBORN    HEAD	Project Name	Project Name: Building 57 Thermal Remediation						
.1	Location: End	ion: Endicott, New York (OU #5)						
02 / CH4 / CO2 Meter Used: N	N/A		Project Man	ager: L. Jacob				
PID Meter Used: N/A	PID Meter Used: N/A							
Other: MiniRAE 3000	FID Meter U	sed: TVA 1000	B Analyzer					
Location No.	T2A	T2C	T2B	T2D	-	-		
Sample ID	T2A	T2C	-	-	-	-		
Sample Date	03/15/12	03/15/12	-	-	-	-		
Canister Serial No.	2510	12030	-	-	-	-		
Start Time	1605	1600	-	-	-	-		
Start Pressure (inches Hg)	-29.0	-29.5	-	-	-	-		
Stop Time	Grab	Grab	-	-	-	-		
Stop Pressure (inches Hg)	-6.0	-7.0	-	-	-	-		
Ambient Air Temp (°F)	55	55	-	-	-	-		
Weather Conditions	Sunny	Sunny	-	-	-	-		
PID reading (ppmv)	5.7	1.6	17	8.3	-	-		
FID reading (ppmv)	91	75	117	70	-	-		
Comment No.	-	-	-	-	-	-		
	-	COMM	ENTS					

1	Project No.: 2466.02			Date: March 18, 2012					
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remed	iation					
.1	Location: Endicott, New York (OU #5)								
02 / CH4 / CO2 Meter Used: N	I/A		Project Mana	ger: L. Jacob					
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar					
Other:			FID Meter Us	ed: TVA-1000	B Analyzer				
	SC	DIL VAPOR SA	MPLE RECORI	)					
Location No.	T2A	T2C	T2D	Sample	-	-			
Sample ID	T2A	T2C	T2D	Port F	-	-			
Sample Date	03/18/12	03/18/12	03/18/12	03/18/12	-	-			
Canister Serial No.	12807	33735	34085	35595	-	-			
Start Time	1625	1630	1634	1635	-	-			
Start Pressure (inches Hg)	-29.0	-29.5	-26.0	-28.5	-	-			
Stop Time	Grab	Grab	Grab	Grab	-	-			
Stop Pressure (inches Hg)	-7.0	-7.0	-5.0	-7.0	-	-			
Ambient Air Temp (°F)	65	65	65	65	-	-			
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-			
PID reading (ppmv)	241	35	15	4.1	-	-			
FID reading (ppmv)	1091	430	485	127	-	-			
Comment No.	-	-	-	-	-	-			
		СОММ	ENTS						

	Project No.: 2466.02			Date:	March 19, 2012					
SANBORN    HEAD	Project Name	Project Name: Building 57 Thermal Remediation								
. 1.	Location: Endicott, New York (OU #5)									
02 / CH4 / CO2 Meter Used: N	Project Mana	ger: L. Jacob								
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar						
Other:			FID Meter Us	ed: TVA-1000	B Analyzer					
SOIL VAPOR SAMPLE RECORD										
Location No.	T1A	T1C	T1D	T1E	Sample Port F	T1A				
Sample ID	T1A	T1C	T1D	T1E	Sample Fort F	Dup 2				
Sample Date	03/19/12	03/19/12	03/19/12	03/19/12	03/19/12	03/19/12				
Canister Serial No.	3331	35607	3328	3825	3352	3022				
Start Time	1637	1640	1644	1645	1648	1635				
Start Pressure (inches Hg)	-29.0	-29.0	-29.5	-29.0	-31.0	-27.0				
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab				
Stop Pressure (inches Hg)	-8.0	-6.5	-7.0	-7.5	-7.0	-7.0				
Ambient Air Temp (°F)	65	65	65	65	65	65				
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny				
PID reading (ppmv)	102	45	6.0	1.9	12	-				
FID reading (ppmv)	67	46	39	36	105	-				
Comment No.	-	-	-	1	-	2				
		СОММ	ENTS							

Canister went down very slowly; approximately >1 minute to sample.
 Dup 2 was collected at T1A.

1	Project No.: 2466.02			Date: March 27, 2012				
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	liation				
.1	Location: Endicott, New York (OU #5)							
02 / CH4 / CO2 Meter Used: N	I/A		Project Mana	ger: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar				
Other:			FID Meter Us	ed: TVA-1000	3 Analyzer			
	SO	IL VAPOR SAM	<b>APLE RECORD</b>					
Location No.	T1B	T1C	T1D	T1E	Sample	-		
Sample ID	T1B	T1C	T1D	T1E	Port F	-		
Sample Date	03/27/12	03/27/12	03/27/12	03/27/12	03/27/12	-		
Canister Serial No.	2044	8024	3302	21028	3336	-		
Start Time	1619	1623	1625	1627	1629	-		
Start Pressure (inches Hg)	-31.0	-28.5	-27.5	-28.5	-28.5	-		
Stop Time	Grab	Grab	Grab	Grab	Grab	-		
Stop Pressure (inches Hg)	-8.0	-7.0	-5.5	-6.0	-7.0	-		
Ambient Air Temp (°F)	65	65	65	65	65	-		
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	-		
PID reading (ppmv)	35	18	1.5	1.2	2.2	-		
FID reading (ppmv)	28	26	17	15	43	-		
Comment No.	-	-	-	-	-	-		
		COMMI	ENTS					

	Project No.: 2466.02			Date:	March 27, 201	2
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	liation		
. 1	Location: End	licott, New Yor	k (OU #5)			
02 / CH4 / CO2 Meter Used: N	Project Mana	ager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar		
Other:			FID Meter Us	sed: TVA-1000	B Analyzer	
SOIL VAPOR SAMPLE RECORD						
Location No.	T2B	T2C	T2D	-	-	-
Sample ID	T2B	T2C	T2D	-	-	-
Sample Date	03/27/12	03/27/12	03/27/12	-	-	-
Canister Serial No.	12033	37307	3371	-	-	-
Start Time	1650	1640	1633	-	-	-
Start Pressure (inches Hg)	-29.5	-29.0	-27.5	-	-	-
Stop Time	Grab	Grab	Grab	-	-	-
Stop Pressure (inches Hg)	-6.5	-6.5	-7.0	-	-	-
Ambient Air Temp (°F)	65	65	65	-	-	-
Weather Conditions	Sunny	Sunny	Sunny	-	-	-
PID reading (ppmv)	29	3.8	2.0	-	-	-
FID reading (ppmv)	83	135	136	-	-	-
Comment No.	1	-	-	-	-	-
		COMMI	ENTS			

1. Canister #3300 used had a very low vacuum. Canister #12033 used to recollect sample.

	ocation: End				April 5, 2012		
D2 / CH4 / CO2 Meter Used: N/A PID Meter Used: MiniRAE 3000		Building 57 I	hermal Reme	diation			
PID Meter Used: MiniRAE 3000		licott, New Yor	·k (OU #5)				
			Project Manager: L. Jacob				
Other: Miran Sannhire			Collector(s): A. Khandekar				
otherr minul suppline			FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAN	<b>MPLE RECORI</b>	)			
Location No.	T2B	T2C	-	-	-	-	
Sample ID	T2B	T2C	-	-	-	-	
Sample Date (	04/05/12	04/05/12	-	-	-	-	
Canister Serial No.	37312	37322	-	-	-	-	
Start Time	1710	1712	-	-	-	-	
Start Pressure (inches Hg)	-28.0	-25.5	-	-	-	-	
Stop Time	Grab	Grab	-	-	-	-	
Stop Pressure (inches Hg)	-6.0	-7.0	-	-	-	-	
Ambient Air Temp (°F)	65	65	-	-	-	-	
Weather Conditions	Sunny	Sunny	-	-	-	-	
PID reading (ppmv)	185	27	-	-	-	-	
FID reading (ppmv)	513	482	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS	•			

SANBORN HADProject Name: Building 57 Thermal RemediationLocation: Endicott, New York (OU #5)O2 / CH4 / CO2 Meter Used: N/AProject Manager: L. JacobProject Manager: L. JacobPID Meter Used: MiniRAE 3000Collector(s): A. KhandekarOther: Miran Sapphire (TCE Specific)FID Meter Used: TVA-1000B AnalyzerSOIL VAPOR SAMPLE RECORDLocation No.T1BT1CT1DSOIL VAPOR SAMPLE RECORDLocation No.T1BDUP3T1CT1DSoil VAPOR SAMPLE RECORDLocation No.T1BDUP3T1CT1DSoil VAPOR SAMPLE RECORDLocation No.T1BDUP3T1CT1DSoil VAPOR SAMPLE RECORDLocation No.T1BDUP3T1CT1DSample Date04/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/120 <th co<="" th=""><th> </th><th>Project No.: 2</th><th>466.03</th><th></th><th>Date:</th><th>April 9, 2012</th><th></th></th>	<th> </th> <th>Project No.: 2</th> <th>466.03</th> <th></th> <th>Date:</th> <th>April 9, 2012</th> <th></th>		Project No.: 2	466.03		Date:	April 9, 2012		
O2 / CH4 / CO2 Meter Used: N/AProject Manager: L. JacobPID Meter Used: MiniRAE 3000Collector(s): A. KhandekarOther: Miran Sapphire (TCE Specific)FID Meter Used: TVA-1000B AnalyzerSOIL VAPOR SAMPLE RECORDLocation No.T1BT1CT1DSoil VAPOR SAMPLE RECORDLocation No.T1BDUP3T1CT1D-Sample IDT1BDUP3T1CT1D-Sample Date04/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/09/1204/0604/0604/06 <th col<="" td=""><td>SANBORN 📗 HEAD</td><td>Project Name</td><td>: Building 57 T</td><td>'hermal Remed</td><td>liation</td><td></td><td></td></th>	<td>SANBORN 📗 HEAD</td> <td>Project Name</td> <td>: Building 57 T</td> <td>'hermal Remed</td> <td>liation</td> <td></td> <td></td>	SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	liation			
PID Meter Used: MiniRAE 3000Collector(s): A. KhandekarOther: Miran Sapphire (TCE Specific)FID Meter Used: TVA-1000B AnalyzerSOIL VAPOR SAMPLE RECORDLocation No.T1BT1BT1CT1D-Sample IDT1BDUP3T1CT1DSample Date04/09/1204/09/1204/09/1204/09/12Canister Serial No.3461733722383031789Start Time1400140814121414Start Pressure (inches Hg)-28.5-29.0-28.5-28.0Stop TimeGrabGrabGrabGrabStop Pressure (inches Hg)-6.0-5.5-6.0-6.0Ambient Air Temp (°F)70707070PID reading (ppmv)58-2.21.9FID reading (ppmv)46-2622	.1	Location: End	licott, New Yor	k (OU #5)					
Other: Miran Sapphire (TCE Specific)         FID Meter Used: TVA-1000B Analyzer           SOIL VAPOR SAMPLE RECORD           Location No.         T1B         T1B         T1C         T1D         -         -           Sample ID         T1B         DUP3         T1C         T1D         -         -         -           Sample Date         04/09/12         04/09/12         04/09/12         04/09/12         -         -         -           Canister Serial No.         34617         33722         3830         31789         -         -         -           Start Time         1400         1408         1412         1414         -         -         -           Start Pressure (inches Hg)         -28.5         -29.0         -28.5         -28.0         -         -         -           Stop Time         Grab         Grab         Grab         Grab         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <	02 / CH4 / CO2 Meter Used: N/A			Project Manager: L. Jacob					
SOIL VAPOR SAMPLE RECORD           Location No.         T1B         T1B         T1C         T1D         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	PID Meter Used: MiniRAE 3000			Collector(s): A. Khandekar					
Location No.         T1B         T1B         T1C         T1D         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Other: Miran Sapphire (TCE Speci	fic)		FID Meter Used: TVA-1000B Analyzer					
Sample ID       T1B       DUP3       T1C       T1D       -       -         Sample Date       04/09/12       04/09/12       04/09/12       04/09/12       04/09/12       -       -       -         Canister Serial No.       34617       33722       3830       31789       -       -       -         Start Time       1400       1408       1412       1414       -       -       -         Start Pressure (inches Hg)       -28.5       -29.0       -28.5       -28.0       -       -       -         Stop Time       Grab       Grab       Grab       Grab       -       -       -         Stop Pressure (inches Hg)       -6.0       -5.5       -6.0       -6.0       -       -       -         Mbient Air Temp (°F)       70       70       70       70       -       -       -         PID reading (ppmv)       58       -       2.2       1.9       -       -       -         FID reading (ppmv)       46       -       26       22       -       -       -		SOII	L VAPOR SAMI	PLE RECORD					
Sample Date       04/09/12       04/09/12       04/09/12       04/09/12       04/09/12       -       -       -         Canister Serial No.       34617       33722       3830       31789       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <	Location No.	T1B	T1B	T1C	T1D	-	-		
Canister Serial No.       34617       33722       3830       31789       -       -       -         Start Time       1400       1408       1412       1414       -       -       -         Start Time       1400       1408       1412       1414       -       -       -         Start Pressure (inches Hg)       -28.5       -29.0       -28.5       -28.0       -       -         Stop Time       Grab       Grab       Grab       Grab       -       -       -         Stop Pressure (inches Hg)       -6.0       -5.5       -6.0       -6.0       -       -         Ambient Air Temp (°F)       70       70       70       70       -       -         Weather Conditions       Sunny       Sunny       Sunny       Sunny       -       -         FID reading (ppmv)       58       -       2.2       1.9       -       -         FID reading (ppmv)       46       -       26       22       -       -	Sample ID	T1B	DUP3	T1C	T1D	-	-		
Start Time       1400       1408       1412       1414       -       -         Start Pressure (inches Hg)       -28.5       -29.0       -28.5       -28.0       -       -         Stop Time       Grab       Grab       Grab       Grab       Grab       -       -         Stop Pressure (inches Hg)       -6.0       -5.5       -6.0       -6.0       -       -         Ambient Air Temp (°F)       70       70       70       70       -       -         Weather Conditions       Sunny       Sunny       Sunny       Sunny       Sunny       -       -         FID reading (ppmv)       58       -       26       22       -       -	Sample Date	04/09/12	04/09/12	04/09/12	04/09/12	-	-		
Start Pressure (inches Hg)       -28.5       -29.0       -28.5       -28.0       -         Stop Time       Grab       Grab       Grab       Grab       Grab       -       -         Stop Pressure (inches Hg)       -6.0       -5.5       -6.0       -6.0       -       -         Ambient Air Temp (°F)       70       70       70       70       -       -         Weather Conditions       Sunny       Sunny       Sunny       Sunny       -       -         FID reading (ppmv)       46       -       26       22       -       -	Canister Serial No.	34617	33722	3830	31789	-	-		
Stop TimeGrabGrabGrabGrabGrab-Stop Pressure (inches Hg)-6.0-5.5-6.0-6.0-Ambient Air Temp (°F)70707070-Weather ConditionsSunnySunnySunnySunny-PID reading (ppmv)58-2.21.9-FID reading (ppmv)46-2622-	Start Time	1400	1408	1412	1414	-	-		
Stop Pressure (inches Hg)         -6.0         -5.5         -6.0         -6.0         -         -           Ambient Air Temp (°F)         70         70         70         70         -         -           Weather Conditions         Sunny         Sunny         Sunny         Sunny         Sunny         -         -           PID reading (ppmv)         58         -         2.2         1.9         -         -           FID reading (ppmv)         46         -         26         22         -         -	Start Pressure (inches Hg)	-28.5	-29.0	-28.5	-28.0	-	-		
Ambient Air Temp (°F)70707070-Weather ConditionsSunnySunnySunnySunnyPID reading (ppmv)58-2.21.9FID reading (ppmv)46-2622	Stop Time	Grab	Grab	Grab	Grab	-	-		
Weather ConditionsSunnySunnySunnySunnyPID reading (ppmv)58-2.21.9FID reading (ppmv)46-2622	Stop Pressure (inches Hg)	-6.0	-5.5	-6.0	-6.0	-	-		
PID reading (ppmv)         58         -         2.2         1.9         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Ambient Air Temp (°F)	70	70	70	70	-	-		
FID reading (ppmv)         46         -         26         22         -         -	Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-		
	PID reading (ppmv)	58	-	2.2	1.9	-	-		
Miran Sannhire - TCF (nnmy) $14$ - $60$ A	FID reading (ppmv)	46	-	26	22	-	-		
	Miran Sapphire - TCE (ppmv)	14	-	6.0	4	-	-		
Comment No 1	Comment No.	-	1	-	-	-			
COMMENTS			COMMEN	ITS					

	Project No.: 2	2466.03		Date:	April 9, 2012		
NBORN 📗 HEAD	Project Name	: Building 57 1	'hermal Remed	iation			
.1	Location: End	dicott, New Yor	k (OU #5)				
CH4 / CO2 Meter Used: N/A	ł		Project Manager: L. Jacob				
Meter Used: MiniRAE 3000			Collector(s): A. Khandakar				
r: Miran Sapphire (Freon 12	13 Specific)		FID Meter Us	ed: TVA-1000	B Analyzer		
	SOII	L VAPOR SAM	PLE RECORD				
tion No.	T2B	T2C	T2D	Sample	-	-	
le ID	T2B	T2C	T2D	Port F	-	-	
le Date	04/09/12	04/09/12	04/09/12	04/09/12	-	-	
ter Serial No.	35620	37435	2140	34658	-	-	
Time	0855	0900	0856	0858	-	-	
Pressure (inches Hg)	-31.0	-27.0	-29.5	-28.5	-	-	
Time	Grab	Grab	Grab	Grab	-	-	
Pressure (inches Hg)	-6.0	-6.0	-6.0	-6.0	-	-	
ent Air Temp (°F)	70	70	70	70	-	-	
ner Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
eading (ppmv)	80	7.7	9.5	3.7	-	-	
eading (ppmv)	319	299	144	55	-	-	
Sapphire - Freon 113 (ppm	v 96	117	64	11	-	-	
nent No.	-	-	-	-	-	-	
		COMMEN	ITS				
Sapphire - Freon 113 (ppm	v 96	117	64 -	11	+ +		

Image: Construction of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the		rk (OU #5) Project Mana Collector(s): FID Meter Us	ger: L. Jacob A. Khandekar ed: TVA-1000E T2B T2B	3 Analyzer <b>T2C</b> T2C	<b>T2D</b> T2D
O2 / CH4 / CO2 Meter Used: N/APID Meter Used: MiniRae 3000BOther: Miran SapphireLocation No.T1BSample IDSample DateO4/16//Canister Serial No.Start Time1039	SOIL VAPOR SAM T1C T1C 12 04/16/12	Project Mana Collector(s): FID Meter Us PLE RECORD T1D T1D	A. Khandekar ed: TVA-1000F T2B T2B	T2C	
PID Meter Used: MiniRae 3000BOther: Miran SapphireLocation No.T1BSample IDT1BSample Date04/16/Canister Serial No.3831Start Time1039	T1C           T1C           12           04/16/12	Collector(s): FID Meter Us PLE RECORD T1D T1D	A. Khandekar ed: TVA-1000F T2B T2B	T2C	
Other: Miran SapphireLocation No.T1BSample IDT1BSample Date04/16/Canister Serial No.3831Start Time1039	T1C           T1C           12           04/16/12	FID Meter Us PLE RECORD T1D T1D	ed: TVA-1000F <b>T2B</b> T2B	T2C	
Location No.T1BSample IDT1BSample Date04/16/Canister Serial No.3831Start Time1039	T1C           T1C           12           04/16/12	T1D	<b>T2B</b> T2B	T2C	
Location No.T1BSample IDT1BSample Date04/16/Canister Serial No.3831Start Time1039	T1C           T1C           12           04/16/12	<b>T1D</b> T1D	T2B		
Sample IDT1BSample Date04/16/Canister Serial No.3831Start Time1039	T1C 12 04/16/12	T1D	T2B		
Sample Date04/16/Canister Serial No.3831Start Time1039	12 04/16/12			T2C	т2р
Canister Serial No.3831Start Time1039		04/16/12	04/17/12		120
Start Time 1039	35678		04/17/12	04/17/12	04/17/12
		34189	36489	35608	8012
Start Pressure (inches Hg) -29.0	1040	1041	1600	1604	1602
	-29.0	-31.0	-29.5	-31.0	-27.5
Stop Time Grab	Grab	Grab	Grab	Grab	Grab
Stop Pressure (inches Hg) -6.0	-6.0	-6.0	-6.0	-6.5	-6.0
Ambient Air Temp (°F)70	70	70	70	70	70
Weather Conditions Sunny	y Sunny	Sunny	Sunny	Sunny	Sunny
PID reading (ppmv) 45	32	1.6	27	2.8	1.9
FID reading (ppmv) 39	38	23	71	18	17
Miran Sapphire - Freon 113 (ppmv) 0	0	0	8	0	0
Comment No	-	-	-	-	-
	COMME	NTS			

	Project No.: 2	466.02		Date:	April 25, 2012		
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remed	liation			
.1	Location: End	licott, New Yor	k (OU #5)				
02 / CH4 / CO2 Meter Used: 1	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 30	00		Collector(s): A. Khandekar				
Other: Miran Sapphire			FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAM	<b>APLE RECORD</b>				
Location No.	T1B	T1B	T1C	T1D	T1B	-	
Sample ID	T1B	DUP4	T1C	T1D	T1B	-	
Sample Date	04/25/12	04/25/12	04/25/12	04/25/12	04/25/12	-	
Canister Serial No.	3348	3370	33716	3362	-	-	
Start Time	1616	1616	1316	1317	1310	-	
Start Pressure (inches Hg)	-30.0	-28.5	-22.0	-27.5	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-5.0	-5.0	-7.0	-6.0	-	-	
Ambient Air Temp (°F)	65	65	65	65	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
PID reading (ppmv)	25	-	2.7	0.9	25	-	
FID reading (ppmv)	20	-	14.5	14	24	-	
Miran Sapphire (ppmv)	0	-	0	0	0	-	
Comment No.	2	1, 2	-	-	-	-	
		COMMI	ENTS				

1. DUP4 was collected at T1B location.

2. Canister #37673 & Canister #33747 perviously used to collect samples at T1B location; issue noted with dial gauge on Canister #37673, which during sampling was observed to have zero vacuum. New samples collected at 1616 using canister #'s 3348 & 3370.

SANBORN 📗 HEAD	Project No.: 2	466.02		Date:	April 25, 2012		
	Project Name	: Building 57 1	`hermal Remed	iation			
	Location: End	licott, New Yor	·k (OU #5)				
02 / CH4 / CO2 Meter Used: N/	'A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 3000			Collector(s): A. Khandekar				
Other: Miran Sapphire			FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAN	<b>APLE RECORD</b>				
Location No.	T2B	T2C	T2D	Sample	-	-	
Sample ID	T2B	T2C	T2D	Port F	-	-	
Sample Date	04/25/12	04/25/12	04/25/12	04/25/12	-	-	
Canister Serial No.	3351	21018	33399	37359	-	-	
Start Time	1320	1330	1321	1323	-	-	
Start Pressure (inches Hg)	-28.0	-28.0	-28.0	-20.5	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.0	-6.0	-7.0	-7.0	-	-	
Ambient Air Temp (°F)	65	65	65	65	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
PID reading (ppmv)	40	4.3	2.4	1.3	-	-	
FID reading (ppmv)	65	131	19	15	-	-	
Miran Sapphire - Freon 113 (pp	19	95	5.0	0	-	-	
Comment No.	-	-	-	-	-	-	
		COMM	ENTS				

	Project No.: 2	466.02		Date:	April 25, 2012		
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remed	liation			
.1	Location: End	licott, New Yor	k (OU #5)				
02 / CH4 / CO2 Meter Used: 1	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 30	00		Collector(s): A. Khandekar				
Other: Miran Sapphire			FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAM	<b>APLE RECORD</b>				
Location No.	T1B	T1B	T1C	T1D	T1B	-	
Sample ID	T1B	DUP4	T1C	T1D	T1B	-	
Sample Date	04/25/12	04/25/12	04/25/12	04/25/12	04/25/12	-	
Canister Serial No.	3348	3370	33716	3362	-	-	
Start Time	1616	1616	1316	1317	1310	-	
Start Pressure (inches Hg)	-30.0	-28.5	-22.0	-27.5	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-5.0	-5.0	-7.0	-6.0	-	-	
Ambient Air Temp (°F)	65	65	65	65	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
PID reading (ppmv)	25	-	2.7	0.9	25	-	
FID reading (ppmv)	20	-	14.5	14	24	-	
Miran Sapphire (ppmv)	0	-	0	0	0	-	
Comment No.	2	1, 2	-	-	-	-	
		COMMI	ENTS				

1. DUP4 was collected at T1B location.

2. Canister #37673 & Canister #33747 perviously used to collect samples at T1B location; issue noted with dial gauge on Canister #37673, which during sampling was observed to have zero vacuum. New samples collected at 1616 using canister #'s 3348 & 3370.

SANBORN 📗 HEAD	Project No.: 2	466.02		Date:	April 25, 2012		
	Project Name	: Building 57 1	`hermal Remed	iation			
	Location: End	licott, New Yor	·k (OU #5)				
02 / CH4 / CO2 Meter Used: N/	'A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 3000			Collector(s): A. Khandekar				
Other: Miran Sapphire			FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAN	<b>APLE RECORD</b>				
Location No.	T2B	T2C	T2D	Sample	-	-	
Sample ID	T2B	T2C	T2D	Port F	-	-	
Sample Date	04/25/12	04/25/12	04/25/12	04/25/12	-	-	
Canister Serial No.	3351	21018	33399	37359	-	-	
Start Time	1320	1330	1321	1323	-	-	
Start Pressure (inches Hg)	-28.0	-28.0	-28.0	-20.5	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.0	-6.0	-7.0	-7.0	-	-	
Ambient Air Temp (°F)	65	65	65	65	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
PID reading (ppmv)	40	4.3	2.4	1.3	-	-	
FID reading (ppmv)	65	131	19	15	-	-	
Miran Sapphire - Freon 113 (pp	19	95	5.0	0	-	-	
Comment No.	-	-	-	-	-	-	
		COMM	ENTS				

I	Project No.: 2466.02			Date:	4/29-4/30/20	)12	
SANBORN 📗 HEAD	Project Name	: Building 57 1	hermal Remed	liation			
.1	Location: End	dicott, New Yor	·k (OU #5)				
02 / CH4 / CO2 Meter Used: N	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s): A. Khandekar				
Other: Miran Sapphire (Freon-	-113 Specific)		FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAM	<b>MPLE RECORD</b>				
Location No.	T1B	T1C	T1D	T2B	T2C	T2D	
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D	
Sample Date	04/30/12	04/30/12	04/30/12	04/29/12	04/29/12	04/29/12	
Canister Serial No.	3339	3327	3322	8025	3341	3302	
Start Time	1624	1625	1626	1619	1620	1621	
Start Pressure (inches Hg)	-29.0	-28.0	-28.5	-30.0	-28.5	-30.0	
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab	
Stop Pressure (inches Hg)	-7.0	-7.0	-7.0	-7.0	-7.0	-7.0	
Ambient Air Temp (°F)	65	65	65	65	65	65	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	
Pressure, in H ₂ O	52.0	30.0	4.0	-	-	-	
PID reading (ppmv)	42	29	4.2	345	104	73	
FID reading (ppmv)	49	46	36	1100	880	833	
Miran Sapphire (ppmv)	0	0	0	57	77	77	
Comment No.	-	-	-	-	-	-	
		COMM	ENTS	-		-	

		Building 57 T licott, New Yor		liation					
02 / CH4 / CO2 Meter Used: N/A PID Meter Used: MiniRAE 3000	cation: End	licott, New Yor	rk (OU #5)	Project Name: Building 57 Thermal Remediation					
PID Meter Used: MiniRAE 3000			. ,						
					Project Manager: L. Jacob				
Other: Miran Sapphire (Freon-11)			Collector(s): A. Khandekar						
	3 specific)		FID Meter Used: TVA-1000B Analyzer						
	<b>SO</b>	IL VAPOR SAM	<b>IPLE RECORD</b>						
Location No.	T2B	T2C	T2D	Sample	-	-			
Sample ID	T2B	T2C	T2D	Port F	-	-			
Sample Date 0	5/10/12	05/10/12	05/10/12	05/10/12	-	-			
Canister Serial No.	3321	3457	3299	3337	-	-			
Start Time	1540	1541	1542	1543	-	-			
Start Pressure (inches Hg)	-27.0	-30.0	-27.0	-28.0	-	-			
Stop Time	Grab	Grab	Grab	Grab	-	-			
Stop Pressure (inches Hg)	-7.0	-7.0	-6.0	-7.0	-	-			
Ambient Air Temp (°F)	60	60	60	60	-	-			
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-			
Pressure, in H ₂ 0	24	20	5.0	5.0	-	-			
PID reading (ppmv)	68	23	12	4.3	-	-			
FID reading (ppmv)	72	58	73	31	-	-			
Miran Sapphire (ppmv)	37	22	29	12	-	-			
Comment No.	-	-	-	-	-	-			
		COMMI	ENTS						

1	Project No.: 2	2466.02		Date:	May 10, 2012		
SANBORN 📗 HEAD	Project Name	: Building 57 1	Thermal Reme	liation			
.1	Location: End	dicott, New Yor	rk (OU #5)				
02 / CH4 / CO2 Meter Used: N	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	00		Collector(s): A. Khandekar				
Other: Miran Sapphire (Tuneo	d to CFC-113)		FID Meter Used: TVA-1000B Analyzer				
	SO	IL VAPOR SAM	<b>IPLE RECORD</b>				
Location No.	T1B	T1C	T1D	T1B	-	-	
Sample ID	T1B	T1C	T1D	DUP 5	-	-	
Sample Date	05/10/12	05/10/12	05/10/12	05/10/12	-	-	
Canister Serial No.	3371	3331	3456	3297	-	-	
Start Time	1020	1026	1028	1024	-	-	
Start Pressure (inches Hg)	-29.0	-30.0	-29.0	-29.0	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.0	-6.0	-7.0	-6.0	-	-	
Ambient Air Temp (°F)	60	60	60	60	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
Pressure, in H ₂ O	28	8.0	5.0	-	-	-	
PID reading (ppmv)	21	10	1.3	-	-	-	
FID reading (ppmv)	21	15	15	-	-	-	
Miran Sapphire (ppmv)	0	0	0	-	-	-	
Comment No.	2	3	-	1	-	-	
		COMMI	ENTS				

1. DUP 5 was collected at T1B.

Canister #3368 used initially was low on vacuum (~-15).
 Canister #3343 used at T1C had broken threads which caused can to sample ambient air instead of vapor.

	Project No.: 2	2466.02		Date:	May 11, 2012		
SANBORN 📗 HEAD	Project Name	: Building 57 1	Thermal Reme	ediation			
.1	Location: End	dicott, New Yoı	⁻ k (OU #5)				
02 / CH4 / CO2 Meter Used: N	/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s): A. Khandekar				
Other: N/A			FID Meter Used: TVA-1000B Analyzer				
PO	ST-CONDENSC	OR HEADER SC	DIL VAPOR SA	MPLE RECOR	RD	-	
Location No.	T1A	T2A	-	-	-	-	
Sample ID	T1A	T2A	-	-	-	-	
Sample Date	05/11/12	05/11/12	-	-	-	-	
Start Time	1025	1040	-	-	-	-	
Stop Time	Grab	Grab	-	-	-	-	
Ambient Air Temp (°F)	65	65	-	-	-	-	
Weather Conditions	Sunny	Sunny	-	-	-	-	
Pressure, in $H_2O$ at Location	-63	-54	-	-	-	-	
Temperature (°F) at Location	76	96	-	-	-	-	
Flow in FPM at Location	6000	5900	-	-	-	-	
Time of Reading at Port B	1025	1040	-	-	-	-	
PID reading at Port B (ppmv)	21	60	-	-	-	-	
FID reading at Port B (ppmv)	24	100	-	-	-	-	
PID reading at Location (ppmv	11	20	-	-	-	-	
FID reading at Location (ppmv	22	80	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				
-						_	

	Project No.: 2	466.02		Date:	May 11, 2012	
SANBORN HEAD	-		Thermal Reme		- 5 , -	
	-					
		dicott, New Yoı				
O2 / CH4 / CO2 Meter Used: N	I/A		Project Mana	iger: L. Jacob		
PID Meter Used: MiniRAE 300	Collector(s):	A. Khandekar				
Other: N/A	FID Meter Us	ed: TVA-1000	3 Analyzer			
PE	ER-CONDENSO	R HEADER SO	IL VAPOR SAM	<b>IPLE RECORD</b>		
Location No.	T1TCA	T1WSA	T1	T2CFC	T2B57A	T2
Sample ID	T1TCA	T1WSA	TCA/WSA	T2CFC	T2B57A	CFC/B57A
Sample Date	05/11/12	05/11/12	05/11/12	05/11/12	05/11/12	05/11/12
Start Time	1519	1530	1500	1435	1420	1400
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab
Ambient Air Temp (°F)	65	65	65	65	65	65
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny
Pressure, in H ₂ O	-26.0	-26.0	-30.8	-35.8	-35.0	-40.0
Temperature (°F) at Location	138	152	138	138	135	149
Flow in FPM at Location	275	2700	900-1300	400	900	12000-15000
Time of Reading at Port B	920	945	1000	900	1105	1015
PID reading at Port B (ppmv)	20	20	20	60	61	60
FID reading at Port B (ppmv)	25	23	23	89	104	101
PID reading at Location (ppmv	3.5	6.7	11	10	23	17
FID reading at Location (ppmv	22	18	22	58	55	66
Comment No.	1	1	1	1	1	1
		COMMI	ENTS			

1. Samples collected using Septa-Syringe into vials and analyzed by Microseeps, Inc. of Pittsburgh, PA by method AM4:02.

SANBORN HEAD	Project No.: 2	2466.02		Date:	May 15, 2012		
	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	dicott, New Yoı	rk (OU #5)				
02 / CH4 / CO2 Meter Used: M	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	00		Collector(s):	A. Khandekar			
Other: Miran Sapphire			FID Meter Us	ed: TVA-1000	3 Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T1B	T1C	T1D	T2B	T2C	T2D	
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D	
Sample Date	05/15/12	05/15/12	05/15/12	05/15/12	05/15/12	05/15/12	
Canister Serial No.	2117	3459	1742	34137	14526	3366	
Start Time	1320	1321	1322	1310	1312	1314	
Start Pressure (inches Hg)	-29.0	-28.5	-28.0	-30.5	-28.5	-28.0	
Stop Time	-6.5	-6.5	-6.0	-6.5	-6.5	-6.0	
Stop Pressure (inches Hg)	Grab	Grab	Grab	Grab	Grab	Grab	
Ambient Air Temp (°F)	65	65	65	65	65	65	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	
Pressure, in H ₂ O	30.0	8.0	5.0	24.0	20.0	5.0	
PID reading (ppmv)	32.0	20.5	5.1	108.0	74.0	28.0	
FID reading (ppmv)	20.5	20.8	16.5	74	101	128	
Miran Sapphire (ppmv)	50	52	46	32	69	77	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

	Project No.: 2	466.02		Date:	May 21, 2012	
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	iation		
· [.	Location: End	licott, New Yor	·k (OU #5)			
02 / CH4 / CO2 Meter Used: M	I/A		Project Mana	ger: L. Jacob		
PID Meter Used: MiniRAE 300		Collector(s):	A. Khandekar			
Other:	FID Meter Used: TVA-1000B Analyzer					
Р	RE-CONDENSO	R HEADER SO	IL VAPOR SAM	IPLE RECORD		
Location No.	T1TCA	T1WSA	T1TCA/WSA	T2CFC	T2B57A	T2CFC/B57A
Sample ID	T1TCA	T1WSA	T1TCA/WSA	T2CFC	T2B57A	T2CFC/B57A
Sample Date	05/21/12	05/21/12	05/21/12	05/21/12	05/21/12	05/21/12
Start Time	1620	1605	1630	1530	1540	1550
Ambient Air Temp (°F)	65	65	65	65	65	65
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny
Pressure, in H ₂ O	-23.0	-23.0	-27.4	-37.0	-37.8	-41.7
Temp (°F)	155	140	151	137	138	117
Velocity (FPM)	1,500	1,000	7,000	400	3,000	550
PID reading (ppmv) @1300	14	22	18	5.2	18	9.0
FID reading (ppmv) @1300	32	27	31	48	25	36
Comment No.	1	1	1	1	1	1
		COMM	ENTS			

1. Samples collected using Septa-Syringe into vials and analyzed by Microseeps, Inc. of Pittsburgh, PA by method AM4:02.

I	Project No.: 2	466.02		Date:	May 22, 2012	
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	liation		
.1	Location: End	licott, New Yor	k (OU #5)			
02 / CH4 / CO2 Meter Used: N	I/A		Project Mana	ger: L. Jacob		
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar		
Other: Miran Sapphire	FID Meter Us	ed: TVA-1000	B Analyzer			
	SO	IL VAPOR SAM	<b>APLE RECORD</b>			
Location No.	T1B	T1C	T1D	T1B	-	-
Sample ID	T1B	T1C	T1D	DUP 6	-	-
Sample Date	05/22/12	05/22/12	05/22/12	05/22/12	-	-
Canister Serial No.	2199	3323	37720	35610	-	-
Start Time	1400	1402	1404	1406	-	-
Start Pressure (inches Hg)	-27.5	-30.0	-28.5	-27.5	-	-
Stop Time	Grab	Grab	Grab	Grab	-	-
Stop Pressure (inches Hg)	-6.5	-6.5	-6.0	-6.0	-	-
Ambient Air Temp (°F)	70	70	70	70	-	-
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-
Pressure, in H ₂ O	40	>30	5.0	-	-	-
PID reading (ppmv)	14	10	7.5	-	-	-
FID reading (ppmv)	32	27	27	-	-	-
Miran Sapphire (ppmv)	54	41	53	-	-	-
Comment No.	-	1	-	2	-	-
		COMMI	ENTS			

1. Backpressure issue with the lead vessel effluent, pressure readings >30 (inches  $H_2O$ ). 2. DUP 6 was collected at location T1B.

	Project No.: 2	466.02		Date:	May 22, 2012	
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	iation		
. I.	Location: End	licott, New Yor	·k (OU #5)			
02 / CH4 / CO2 Meter Used: N	/A		Project Mana	ger: L. Jacob		
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandakar		
Other: Miran Sapphire (Freon	FID Meter Us	ed: TVA-1000	B Analyzer			
	SO	IL VAPOR SAN	MPLE RECORD			
Location No.	T2B	T2C	T2D	Sample	-	-
Sample ID	T2B	T2C	T2D	Port F	-	-
Sample Date	05/22/12	05/22/12	05/22/12	05/22/12	-	-
Canister Serial No.	2180	1367	34606	35617	-	-
Start Time	1352	1354	1356	1419	-	-
Start Pressure (inches Hg)	-27.0	-29.0	-27.0	-27.0	-	-
Stop Time	Grab	Grab	Grab	Grab	-	-
Stop Pressure (inches Hg)	-6.0	-6.5	-6.0	-6.5	-	-
Ambient Air Temp (°F)	70	70	70	70	-	-
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-
Pressure, in H ₂ 0	30	20	5.0	1.8	-	-
PID reading (ppmv)	14	4.0	3.2	7.5	-	-
FID reading (ppmv)	87	81	54	33	-	-
Miran Sapphire (ppmv)	74	94	69	64	-	-
Comment No.	-	-	-	-	-	-
		COMM	ENTS			

1. Backpressure issue with the lead vessel effluent, pressure readings >30 (inches H₂O). 2. DUP 6 was collected at locatio T1B.

.	Project No.: 2	466.02		Date:	Date: May 31, 2012			
SANBORN 📗 HEAD	Project Name	: Building 57 1	Thermal Remed	liation				
1	Location: End	licott, New Yor	·k (OU #5)					
02 / CH4 / CO2 Meter Used: N	I/A		Project Manager: L. Jacob					
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandakar				
Other: Miran Sapphire (CFC-1	13 Specific)		FID Meter Us	ed: MicroFID A	nalyzer			
	SO	IL VAPOR SAN	<b>IPLE RECORD</b>					
Location No.	T1B	T1C	T1D	T2B	T2C	T2D		
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D		
Sample Date	05/31/12	05/31/12	05/31/12	05/31/12	05/31/12	05/31/12		
Canister Serial No.	1448	11427	14578	21029	23830	3300		
Start Time	0828	0829	0830	0820	0822	824		
Start Pressure (inches Hg)	-28.0	-28.0	-27.0	-25.5	-28.5	-28.0		
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab		
Stop Pressure (inches Hg)	-6.0	-7.0	-6.0	-6.0	-6.0	-7.0		
Ambient Air Temp (°F)	65	65	65	65	65	65		
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny		
Pressure, in H ₂ O	35	>60	5.0	30	20	5.0		
PID reading (ppmv)	22	5.6	4.1	41	14	7.3		
FID reading (ppmv)	20	18	16	34	29	31		
Miran Sapphire (ppmv)	25	25	18	31	31	25		
Comment No.	-	-	-	-	-	-		
		COMMI	ENTS					

	12	June 4, 2012	Date:	1	466.02	Project No.: 2	ıl.
			on	hermal Remediati	Building 57 T	Project Name	SANBORN 📗 HEAD
				k (OU #5)	licott, New Yor	Location: End	I
			: L. Jacob	Project Manager		/A	02 / CH4 / CO2 Meter Used: N
			Khandekar	Collector(s): A. H		0	PID Meter Used: MiniRAE 300
		alyzer	MicroFID Ana	FID Meter Used:		13 Specific)	Other: Miran Sapphire (CFC-1)
				SAMPLE RECORD	SOIL VAPOR S		
-		-	-	T1D	T1C	T1B	Location No.
-		-	-	T1D	T1C	T1B	Sample ID
-		-	-	06/04/12	06/04/12	06/04/12	Sample Date
-		-	-	3363	3339	3354	Canister Serial No.
-		-	-	0840	0838	0835	Start Time
-		-	-	-30.0	-28.0	-28.5	Start Pressure (inches Hg)
-		-	-	Grab	Grab	Grab	Stop Time
-		-	-	-6.0	-6.5	-6.0	Stop Pressure (inches Hg)
-		-	-	50	50	50	Ambient Air Temp (°F)
-		-	-	Rain	Rain	Rain	Weather Conditions
-		-	-	45	>60	40	Pressure, in H ₂ O
-		-	-	5.2	7.5	22.5	PID reading (ppmv)
-		-	-	22.1	24.7	24.1	FID reading (ppmv)
-		-	-	0	0	0	Miran Sapphire (ppmv)
-		-	-	-	-	-	Comment No.
				IMENTS	СОМ		
-		-		-	-		Miran Sapphire (ppmv)

) –	cation: End	icott, New Yor	hermal Remedia k (OU #5) Project Manag Collector(s): A FID Meter Used	er: L. Jacob Khandekar						
O2 / CH4 / CO2 Meter Used: N/A PID Meter Used: MiniRAE 3000 Other: Miran Sapphire (CFC-113 S	Specific)		Project Manage Collector(s): A	. Khandekar						
PID Meter Used: MiniRAE 3000 Other: Miran Sapphire (CFC-113 S			Collector(s): A	. Khandekar						
Other: Miran Sapphire (CFC-113 S										
			FID Meter Use							
Location No.				a: MICROFID Ana	lyzer					
Location No.	SOIL VAPOR SAMPLE RECORD									
	T2B T2C T2D			Sample	-	-				
Sample ID	T2B	T2C	T2D	Port F	-	-				
Sample Date 0	6/04/12	06/04/12	06/04/12	06/04/12	-	-				
Canister Serial No.	3362	3360	3374	9353	-	-				
Start Time	0822	0824	0826	0843	-	-				
Start Pressure (inches Hg)	-28	-25	-28	-22	-	-				
Stop Time	Grab	Grab	Grab	Grab	-	-				
Stop Pressure (inches Hg)	-6.5	-6.5	-6.5	-7.0	-	-				
Ambient Air Temp (°F)	50	50	50	50	-	-				
Weather Conditions	Rain	Rain	Rain	Rain	-	-				
Pressure, in H ₂ O	10	19	4.5	1.8	-	-				
PID reading (ppmv)	44	9.9	8.9	5.8	-	-				
FID reading (ppmv)	45.4	42.1	43.1	28	-	-				
Miran Sapphire (ppmv)	5	3	3	0	-	-				
Comment No.	-	-	-	-	-	-				
		СОМ	IMENTS							

	Project No.: 2	466.02		Date:	June 4, 2012	
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remedia	ation		
1	Location: End	licott, New Yor	k (OU #5)			
02 / CH4 / CO2 Meter Used: N	/A		Project Manag	er: L. Jacob		
PID Meter Used: MiniRAE 300	0		Collector(s): A	. Khandekar		
Other: Miran Sapphire (CFC-1	13 Specific)		FID Meter Use	d: MicroFID Anal	yzer	
	PRE-CONDEN	ISOR HEADER	SOIL VAPOR SA	MPLE RECORD		
Location No.	T1WSA	T1TCA	T2CFC	T2B57A	T1WSA/TCA	T2CFC/B57A
Sample Date	06/04/12	06/04/12	06/04/12	06/04/12	06/04/12	06/04/12
Collection Time	1110	1055	1015	1000	1120	1030
Sample port Air Temp (°F)	138.3	155.4	119	129.8	158.1	140.2
Velocity in Feet Per Minute (FPM)	430	1350	300	600-2400	10000->15000	6000 - >15000
Ambient Air Temp (°F)	50	50	50	50	50	50
Weather Conditions	Rain	Rain	Rain	Rain	Rain	Rain
Pressure, in H ₂ O	-26.6	-26.4	-36.0	-35.8	-32.0	-43.2
PID reading (ppmv)	15	8.0	4.0	20	12	23
FID reading (ppmv)	26	36	20	54	25	44
Comment No.	-	-	-	-	-	-
		COM	IMENTS			

1. Samples collected using Septa-Syringe into vials and analyzed by Microseeps, Inc. of Pittsburgh, PA by method AM4:02 .

ıİ.	Project No.: 2	466.02		Date:	June 4, 2012			
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remedia	ation				
I	Location: End	licott, New Yor	k (OU #5)					
02 / CH4 / CO2 Meter Used: N	/A		Project Manager: L. Jacob					
PID Meter Used: MiniRAE 300	0		Collector(s): A	. Khandekar				
Other: Miran Sapphire (CFC-113 Specific)			FID Meter Use	d: MicroFID Ana	lyzer			
	)							
Location No.	T1A	T2A	T1B	T2B	-	-		
	Pre-Blower	Pre-Blower	Post-Blower	Post-Blower	-	-		
Sample Date	06/04/12	06/04/12	06/04/12	06/04/12	-	-		
Collection Time	-	-	-	-	-	-		
Sample port Air Temp (°F)	77.6	90.6	-	-	-	-		
Velocity in Feet Per Minute (FPM)	3100	5000	-	-	-	-		
Ambient Air Temp (°F)	50	50	-	-	-	-		
Weather Conditions	Rain	Rain	-	-	-	-		
Pressure, in H ₂ 0	-53.4	-66.3	-	-	-	-		
PID reading (ppmv)	14	30	23	44	-	-		
FID reading (ppmv)	12	41	24	45	-	-		
Comment No.	-	-	-	-	-	-		
		COM	IMENTS					
COMMENTS								

	Project No.: 2	466.03		Date:	June 13, 2012	
SANBORN 📗 HEAD	Project Name	: Building 57 T	hermal Remed	liation		
	Location: End	licott, New Yor	k (OU #5)			
02 / CH4 / CO2 Meter Used: N	/A		Project Mana	ger: L. Jacob		
PID Meter Used: MiniRAE 300	Collector(s):	A. Khandekar				
Other: Miran Sapphire (CFC-113 Specific)			FID Meter Us	ed: TVA-1000	B Analyzer	
	SO	IL VAPOR SAM	IPLE RECORD			
Location No.	T1B	T1C	T1D	T1B	-	-
Sample ID	T1B	T1C	T1D	DUP7	-	-
Sample Date	06/13/12	06/13/12	06/13/12	06/13/12	-	-
Canister Serial No.	3334	3321	3326	3357	-	-
Start Time	1610	1612	1614	1617	-	-
Start Pressure (inches Hg)	-27.5	-29.5	-29.5	-29.0	-	-
Stop Time	Grab	Grab	Grab	Grab	-	-
Stop Pressure (inches Hg)	-7.0	-6.5	-7.0	-5.0	-	-
Ambient Air Temp (°F)	85°F	85°F	85°F	85°F	-	-
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-
PID reading (ppmv)	16.7	16.0	6.8	-	-	-
FID reading (ppmv)	25	24.5	20	-	-	-
Miran Sapphire (ppmv)	28	24	32	-	-	-
Comment No.	-	-	-	1	-	-
		COMMI	ENTS			

1. DUP 7 was collected at T1B.

	Project No.: 2	466.02		Date:	June 13, 2012		
SANBORN 📗 HEAD	Project Name	: Building 57 T	'hermal Remed	liation			
	Location: End	licott, New Yor	k (OU #5)				
02 / CH4 / CO2 Meter Used: N	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other: Miran Sapphire (CFC-1	13 Specific)		FID Meter Us	ed: TVA-1000	B Analyzer		
		IL VAPOR SAN			I	1	
Location No.	T2B	T2C	T2D	-	-	-	
Sample ID	T2B	T2C	T2D	-	-	-	
Sample Date	06/13/12	06/13/12	06/13/12	-	-	-	
Canister Serial No.	3350	21022	34111	-	-	-	
Start Time	1600	1602	1604	-	-	-	
Start Pressure (inches Hg)	-29.5	-28.0	-28.0	-	-	-	
Stop Time	Grab	Grab	Grab	-	-	-	
Stop Pressure (inches Hg)	-8.0	-7.0	-6.5	-	-	-	
Ambient Air Temp (°F)	85°F	85°F	85°F	-	-	-	
Weather Conditions	Sunny	Sunny	Sunny	-	-	-	
PID reading (ppmv)	21	15	7.3	-	-	-	
FID reading (ppmv)	38	40	37	-	-	-	
Miran Sapphire (ppmv)	40	36	39	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

SANBORN HEAD	Project No.: 2	466.02		Date:	June 27, 2012		
SANDORN III HEAD	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	licott, New Yor	rk (OU #5)				
02 / CH4 / CO2 Meter Used: N	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other: Miran Sapphire			FID Meter Us	ed: TVA-1000	B Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T1B	T1C	T1D	T2B	T2C	-	
Sample ID	T1B	T1C	T1D	T2B	T2C	-	
Sample Date	06/27/12	06/27/12	06/27/12	06/27/12	06/27/12	-	
Canister Serial No.	3457	3330	3365	3459	3456	-	
Start Time	1500	1504	1510	1451	1453	-	
Start Pressure (inches Hg)	-30.0	-29.0	-27.5	-28.5	-28.0	-	
Stop Time	Grab	Grab	Grab	Grab	Grab	-	
Stop Pressure (inches Hg)	-7.0	-6.5	-7.0	-6.5	-7.0	-	
Ambient Air Temp (°F)	90	90	90	90	90	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	-	
Pressure, in H ₂ O	55	31	4.5	32	18	-	
PID reading (ppmv)	15	0.5	1.6	46	20	-	
FID reading (ppmv)	23	17	18	84	89	-	
Miran Sapphire (ppmv)	-	-	-	39	51	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

SANBORN    HEAD	Project No.: 2	466.02		Date:	July 3, 2012		
	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	licott, New Yor	rk (OU #5)				
02 / CH4 / CO2 Meter Used: N	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	00		Collector(s):	A. Khandekar			
Other: Miran Sapphire			FID Meter Us	ed: TVA-1000I	3 Analyzer		
	SO		APLE RECORD		1	1	
Location No.	T1B	T1C	T1D	T2B	T2C	T2D	
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D	
Sample Date	07/03/12	07/03/12	07/03/12	07/03/12	07/03/12	07/03/12	
Canister Serial No.	37674	3296	3451	3347	3320	3452	
Start Time	1345	1347	1350	1333	1337	1339	
Start Pressure (inches Hg)	-29.5	-28.0	-31.0	-30.0	-28.0	-27.5	
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab	
Stop Pressure (inches Hg)	-6.5	-8.0	-8.0	-7.0	-7.0	-5.5	
Ambient Air Temp (°F)	85	85	85	85	85	85	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	
Pressure, in H ₂ O	55	30	4.5	33	20	4.5	
PID reading (ppmv)	-	-	-	-	-	-	
FID reading (ppmv)	-	-	-	-	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

	ocation: End	Building 57 T licott, New Yor	hermal Remed	iation			
O2 / CH4 / CO2 Meter Used: N/A PID Meter Used: MiniRAE 3000		licott, New Yor		lation			
PID Meter Used: MiniRAE 3000	L		k (OU #5)				
			Project Manager: L. Jacob				
Other: Miran Sapphire				A. Khandekar			
			FID Meter Us	ed: TVA-1000E	8 Analyzer		
Location No. T1B T1C T1D T2B T2C T2D							
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D	
Sample Date	07/10/12	07/10/12	07/10/12	07/10/12	07/10/12	07/10/12	
Canister Serial No.	3343	3363	3331	8026	3349	3339	
Start Time	1004	1005	1006	1016	1018	1019	
Start Pressure (inches Hg)	-31.0	-28.5	-16.0	-28.5	-29.0	-30.0	
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab	
Stop Pressure (inches Hg)	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0	
Ambient Air Temp (°F)	90	90	90	90	90	90	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	
Pressure, in H ₂ O	55	30	4.5	33	20	4.5	
PID reading (ppmv)	26	17	24	27	24	26	
FID reading (ppmv)	18	4.2	2.1	23	16	9.7	
Miran Sapphire (ppmv)	-	-	-	32	19	20	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

SANBORN HEAD	Project No.: 2	466.02		Date:	July 10, 2012		
	Project Name	: Building 57 1	'hermal Remed	liation			
	Location: End	licott, New Yor	·k (OU #5)				
02 / CH4 / CO2 Meter Used: N	I/A		Project Mana	ager: L. Jacob			
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other: Miran Sapphire			FID Meter Us	sed: TVA-1000	B Analyzer		
	SO	IL VAPOR SA	MPLE RECORD				
Location No.	T1B	Sample	-	-	-	-	
Sample ID	DUP8	Port F	-	-	-	-	
Sample Date	07/10/12	07/10/12	-	-	-	-	
Canister Serial No.	3341	3360	-	-	-	-	
Start Time	1009	1021	-	-	-	-	
Start Pressure (inches Hg)	-30.0	-28.0	-	-	-	-	
Stop Time	Grab	Grab	-	-	-	-	
Stop Pressure (inches Hg)	-6.0	-6.0	-	-	-	-	
Ambient Air Temp (°F)	90	90	-	-	-	-	
Weather Conditions	Sunny	Sunny	-	-	-	-	
Pressure, in H ₂ O	-	-	-	-	-	-	
PID reading (ppmv)	-	26	-	-	-	-	
FID reading (ppmv)	-	4.6	-	-	-	-	
Miran Sapphire (ppmv)	-	63	-	-	-	-	
Comment No.	1	-	-	-	-	-	
		COMM	ENTS				
1. DUP8 was collected at T1B.						_	

SANBORN    HEAD	Project No.: 2	466.02		Date:	July 18, 2012		
	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	licott, New Yor	·k (OU #5)				
02 / CH4 / CO2 Meter Used: N	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other: Miran Sapphire			FID Meter Us	ed: TVA-1000I	3 Analyzer		
	SO	IL VAPOR SAM	<b>IPLE RECORD</b>				
Location No.	T1B	T1C	T1D	T2B	T2C	T2D	
Sample ID	T1B	T1C	T1D	T2B	T2C	T2D	
Sample Date	07/18/12	07/18/12	07/18/12	07/18/12	07/18/12	07/18/12	
Canister Serial No.	1108	3458	3359	3302	3299	3366	
Start Time	0804	0805	0806	0747	0749	0751	
Start Pressure (inches Hg)	-28.5	-30.0	-29.0	-29.0	-27.5	-27.5	
Stop Time	Grab	Grab	Grab	Grab	Grab	Grab	
Stop Pressure (inches Hg)	-8.0	-7.0	-7.0	-6.5	-6.5	-6.5	
Ambient Air Temp (°F)	90	90	90	90	90	90	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	Sunny	
Pressure, in H ₂ O	55	30	4.5	33	20	4.5	
PID reading (ppmv)	11	3.8	1.8	16	7.4	5.8	
FID reading (ppmv)	23	20	18	39	33	30	
Miran Sapphire (ppmv)	-	-	-	6	0	0	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

SANBORN HEAD	Project No.: 2	2466.02		Date:	August 13, 20	12	
	Project Name	: Building 57 1	Thermal Reme	diation			
	Location: En	dicott, New Yoı	rk (OU #5)				
O2 / CH4 / CO2 Meter Used: N	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	)0		Collector(s):	A. Khandekar			
Other:			FID Meter Us	ed: TVA-1000	B Analyzer		
	SO	IL VAPOR SAM	<b>MPLE RECORD</b>				
Location No.	T1B	T1C	T1D	T1B	-	-	
Sample ID	T1B	T1C	T1D	DUP9	-	-	
Sample Date	08/13/12	08/13/12	08/13/12	08/13/12	-	-	
Canister Serial No.	15758	35691	6165	3341	-	-	
Start Time	1201	1203	1204	1206	-	-	
Start Pressure (inches Hg)	-28	-28	-26.5	-29	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.5	-7.5	-6	-7	-	-	
Ambient Air Temp (°F)	75°F	75°F	75°F	75°F	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
Pressure, in H ₂ O	55	30	4.5	2	-	-	
PID reading (ppmv)	6	2.1	1.7	-	-	-	
FID reading (ppmv)	47	49	50	-	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	1	-	-	
		COMMI	ENTS	-	·	-	
1. DUP9 was collected at T1B.							

SANBORN 📗 HEAD	Project No.: 2466.03			Date:	August 13, 201	2	
	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	dicott, New Yoı	rk (OU #5)				
02 / CH4 / CO2 Meter Used: M	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRae 300	0		Collector(s):	A Khandakar			
Other:			FID Meter Us	ed: TVA-1000	B Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T2B	T2C	T2D	Sample	-	-	
Sample ID	T2B	T2C	T2D	Port F	-	-	
Sample Date	08/13/12	08/13/12	08/13/12	08/13/12	-	-	
Canister Serial No.	3329	3337	3325	3360	-	-	
Start Time	1150	1152	1154	1238	-	-	
Start Pressure (inches Hg)	-30	-28.5	-28.5	-27	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.5	-7	-7	-6	-	-	
Ambient Air Temp (°F)	75°F	75°F	75°F	75°F	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
Pressure, in H ₂ O	-	-	-	-	-	-	
PID reading (ppmv)	41.5	34.0	16.0	4.8	-	-	
FID reading (ppmv)	125	128	117	62	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
	-	COMMI	ENTS				

SANBORN 📗 HEAD	Project No.: 2	466.02		Date:	August 28, 202	12	
ili	Project Name	: Building 57 1	Thermal Reme	liation			
	Location: End	licott, New Yor	rk (OU #5)				
02 / CH4 / CO2 Meter Used: M	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other:			FID Meter Us	ed: TVA-1000E	3 Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T1B	T1C	T1D	Sample	-	-	
Sample ID	T1B	T1C	T1D	Port F	-	-	
Sample Date	08/28/12	08/28/12	08/28/12	08/28/12	-	-	
Canister Serial No.	9461	34161	34125	23838	-	-	
Start Time	0904	0905	0907	0855	-	-	
Start Pressure (inches Hg)	-28.0	-28.0	-27.5	-30.0	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-6.5	-6.5	-6.5	-6.0	-	-	
Ambient Air Temp (°F)	85	85	85	85	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
Pressure, in H ₂ O	55	30	4.5	-	-	-	
PID reading (ppmv)	5.8	5.4	2.2	3.4	-	-	
FID reading (ppmv)	36	40	40	36	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

SANBORN 📗 HEAD	Project No.: 2466.02			Date:	August 28, 20	12	
	Project Name	: Building 57 1	Thermal Reme	diation			
	Location: End	dicott, New Yoı	·k (OU #5)				
02 / CH4 / CO2 Meter Used: M	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other:			FID Meter Us	ed: TVA-1000B	Analyzer		
	SO	IL VAPOR SAM	APLE RECORD	)			
Location No.	T2B	T2C	T2D	-	-	-	
Sample ID	Т2-В	Т2-С	T2-D	-	-	-	
Sample Date	08/28/12	08/28/12	08/28/12	-	-	-	
Canister Serial No.	34549	35598	31763	-	-	-	
Start Time	0850	0851	0852	-	-	-	
Start Pressure (inches Hg)	-28	-26	-29.0	-	-	-	
Stop Time	Grab	Grab	Grab	-	-	-	
Stop Pressure (inches Hg)	-6.5	-7	-6	-	-	-	
Ambient Air Temp (°F)	85°F	85°F	85°F	-	-	-	
Weather Conditions	Sunny	Sunny	Sunny	-	-	-	
Pressure, in H ₂ 0	33	20	4.5	-	-	-	
PID reading (ppmv)	8.8	12	7	-	-	-	
FID reading (ppmv)	36	45	40	-	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS			-	

SANBORN 📗 HEAD	Project No.: 2	2466.02		Date:	September 9, 2	012	
••••••••••••••••••••••••••••••••••••••	Project Name	: Building 57 1	Thermal Reme	liation			
	Location: End	dicott, New Yor	rk (OU #5)				
O2 / CH4 / CO2 Meter Used: M	I/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	0		Collector(s):	A. Khandekar			
Other:			FID Meter Us	ed: TVA-1000	B Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T1B	T1C	T1D	Sample	-	-	
Sample ID	T1B	T1C	T1D	Port F	-	-	
Sample Date	09/09/12	09/09/12	09/09/12	09/09/12	-	-	
Canister Serial No.	3349	3020	3060	3458	-	-	
Start Time	1713	1714	1715	1716	-	-	
Start Pressure (inches Hg)	-28.5	-26.0	-30.0	-29.5	-	-	
Stop Time	Grab	Grab	Grab	Grab	-	-	
Stop Pressure (inches Hg)	-7.0	-7.0	-7.0	-6.0	-	-	
Ambient Air Temp (°F)	75 - 85	75 - 85	75 - 85	75 - 85	-	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	-	-	
Pressure, in H ₂ O	-	-	-	-	-	-	
PID reading (ppmv)	5.3	3.9	1.7	1.8	-	-	
FID reading (ppmv)	63	57	58	53	-	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS		•		

SANBORN 📗 HEAD	Project No.: 2466.02			Date:	September 9, 2	Date: September 9, 2012		
ili	Project Name	: Building 57 1	Thermal Reme	diation				
	Location: End	licott, New Yoı	rk (OU #5)					
02 / CH4 / CO2 Meter Used: N	N/A		Project Manager: L. Jacob					
PID Meter Used: MiniRAE 300	)0		Collector(s):	A. Khandekar				
Other:			FID Meter Us	ed: TVA-1000B	Analyzer			
	SO	IL VAPOR SAN	APLE RECORD	)				
Location No.	T2B	T2C	T2D	-	-	-		
Sample ID	T2B	T2C	T2D	-	-	-		
Sample Date	09/09/12	09/09/12	09/09/12	-	-	-		
Canister Serial No.	7997	3344	3339	-	-	-		
Start Time	1656	1658	1701	-	-	-		
Start Pressure (inches Hg)	-28.5	-28	-29	-	-	-		
Stop Time	Grab	Grab	Grab	-	-	-		
Stop Pressure (inches Hg)	-6.5	-7.0	-7.0	-	-	-		
Ambient Air Temp (°F)	75 - 85	75 - 85	75 - 85	-	-	-		
Weather Conditions	Sunny	Sunny	Sunny	-	-	-		
Pressure, in H ₂ O	-	-	-	-	-	-		
PID reading (ppmv)	4.4	9.8	3.9	-	-	-		
FID reading (ppmv)	48	46	47	-	-	-		
Miran Sapphire (ppmv)	-	-	-	-	-	-		
Comment No.	-	-	-	-	-	-		
		COMMI	ENTS					

SANBORN 📗 HEAD	Project No.: 2	466.02		Date: September 19, 2012			
·····	Project Name	: Building 57 1	Thermal Remed	liation			
	Location: End	licott, New Yoı	rk (OU #5)				
02 / CH4 / CO2 Meter Used: M	N/A		Project Manager: L. Jacob				
PID Meter Used: MiniRAE 300	)0		Collector(s):	A. Khandekar			
Other:			FID Meter Us	ed: TVA-1000I	3 Analyzer		
	SO	IL VAPOR SAM	APLE RECORD				
Location No.	T1B	T1C	T1D	T1B	Sample	-	
Sample ID	T1B	T1C	T1D	DUP10	Port F	-	
Sample Date	09/19/12	09/19/12	09/19/12	09/19/12	09/19/12	-	
Canister Serial No.	3361	3352	3321	3348	3338	-	
Start Time	0741	0744	0745	0742	0735	-	
Start Pressure (inches Hg)	-28.0	-29.5	-29.5	-28.5	-26.5	-	
Stop Time	Grab	Grab	Grab	Grab	Grab	-	
Stop Pressure (inches Hg)	-6.5	-7.0	-6.5	-6.0	-6.0	-	
Ambient Air Temp (°F)	75	75	75	75	75	-	
Weather Conditions	Sunny	Sunny	Sunny	Sunny	Sunny	-	
Pressure, in H ₂ O	-	-	-	-	-	-	
PID reading (ppmv)	2.1	1.3	0.6	-	0.8	-	
FID reading (ppmv)	21	22	23	-	22	-	
Miran Sapphire (ppmv)	-	-	-	-	-	-	
Comment No.	-	-	-	-	-	-	
		COMMI	ENTS				

#### Soil Vapor Field Sampling Summary

SANBORN     HEAD	Project No.: 2	466.02		Date:	September 19	, 2012			
	Project Name	: Building 57 1	Thermal Reme	diation					
	Location: End	ocation: Endicott, New York (OU #5)							
02 / CH4 / CO2 Meter Used: M	N/A		Project Mana	ager: L. Jacob					
PID Meter Used: MiniRAE 300	00		Collector(s):	A. Khandekar					
Other:			FID Meter Us	sed: TVA-1000H	3 Analyzer				
	SO		<b>IPLE RECORD</b>	)					
Location No.	T2B	T2C	T2D	-	-	-			
Sample ID	T2B	T2C	T2D	-	-	-			
Sample Date	09/19/12	09/19/12	09/19/12	-	-	-			
Canister Serial No.	8002	3328	3375	-	-	-			
Start Time	0729	0731	0734	-	-	-			
Start Pressure (inches Hg)	-29.0	-29.0	-29.0	-	-	-			
Stop Time	Grab	Grab	Grab	-	-	-			
Stop Pressure (inches Hg)	-6.5	-6.5	-6.0	-	-	-			
Ambient Air Temp (°F)	75	75	75	-	-	-			
Weather Conditions	Sunny	Sunny	Sunny	-	-	-			
Pressure, in H ₂ O	-	-	-	-	-	-			
PID reading (ppmv)	3.7	4.1	2.3	-	-	-			
FID reading (ppmv)	22	18	20	-	-	-			
Miran Sapphire (ppmv)	-	-	-	-	-	-			
Comment No.	-	-	-	-	-	-			
		COMMI	ENTS						



### Log of Boring B57-601

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time

to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date Started: 06/19/12 Date Finished: 06/19/12 Logged

By: M. Stein	Checked By: AVK/LJJ

	Sa	Sample Informa				Stratum		
epth (ft)	Sample Donth Pen/ Field				Description	Geologic Description Remark		
7	No.	(ft)	(ft)	Data	Log	Description		
0					$\vdash$	0'	(0 - 8'): Concrete.	
_							No sampling 0.8 - 5' (closed piston to 5').	
2 —								
_								
4 —								
						5'		
6 —	S-1	5 - 10	5.0/ 3.1	PID: 2 ppmv FID: ND		Ũ	S-1A (5 to 8.4'): Brown, fine to coarse SAND, some Silt, trace Gravel. Coarse fraction subrounded. Dry. FILL.	
,					ľ, i			
					,	FILL		
8				PID: 3 ppmv	$\left[ \right]$		S-1B (8.4 to 10'): Very dark brown to black, fine, SAND to	
-				FID: ND	$\left[ 1 \right]$		gravel-sized Slag debris. Lower 1.6' of recovery. Coarse	
0-	S-2	10 - 15		PID: 3 ppmv	77	10'	fraction angular. Moist. FILL. S-2 (10 to 15'): Dark gray grading to gray with orange	
-			4.8	FID: ND			mottling, CLAY & SILT. Moist.	
2—								
_				PID: 2 ppmv FID: ND		CLAY & SILT		
4—								
_		45 00	-					
6—	S-3	15 - 20	5.0/ 3.5	PID: 2 ppmv FID: ND	H	15.5'	S-3A (15 to 15.5'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	
1				PID: 3 ppmv FID: ND			S-3B (15.5 to 19.4'): Dark tan, SILT & CLAY, some Sand to	
្តា						SILT & CLAY	gravel-sized Sediment Rock. Coarse fraction angular. Moist. TILL.	
8—								
-				PID: 2 ppmv	K	19.4'	S-3C (19.4 to 20'): Gray, fractured to pulverized Sediment	
20	S-4	20 - 23	3.0/	FID: ND	11		Rock. Coarse fraction angular. Dry.	
-			3.0	PID: 1 ppmv FID: ND	11	BEDROCK	S-4 (20 to 23'): Gray, fractured to pulverized Sediment Rock. Coarse fraction angular. Dry.	
2					14			
_					V.L	23'	Boring terminated at 23 feet.	
4								
_							NOTES:	
.6—							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization</li> </ol>	
-							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	
28							per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
0							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
							standard using a response factor of 1.0. Results are presented in ppmy; the typical detection limit is 1 ppmy. ND	
0							indicates not detected. NA indicates not available. The PID	
-							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
2—							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
-							2. Soil samples collected were submitted to Lancaster	
4—							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
_							3. Boring was backfilled using Cement grout.	
6							· · · · · ·	
_								
38—								
~ ]								
-			1		1			



# Log of Boring B57-602

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard . . . . . . . . . . .

		tarted: 0 d By: M.					d: 06/18/12 : AVK/LJJ		
ŀ		S	ample Info	ormati	on		Stratum		
	Depth (ft)	Sample No.		Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
Γ	0 —						0'		_
	-						, i i i i i i i i i i i i i i i i i i i	(0 to 0.7'): Concrete. No soils collected 0.7 - 5' (closed piston to 5' bg).	-
	2 —								_
	2								
	4 —								
	4						51		_
	~	S-1	5 - 10	5.0/ 2.2	PID: 1 ppmv FID: 3 ppmv		5' FILL	S-1A (5 to 6.2'): Brown, fine to coarse SAND, some Silt, trace Gravel, Upper 1.2' recovered. Coarse fraction	-
	6 —				PID: 3 ppmv	$\overline{}$	6.2'	subrounded. Moist. FILL.	
	-				FID: 5 ppmv			S-1B (6.2 to 10'): Dark gray, CLAY & SILT, Lower 1' recovered. Moist.	-
	8 —								-
	-								-
	10—	S-2	10 - 15	5.0/	PID: 2 ppmv		CLAY & SILT	S-2A (10 to 14.3'): Dark gray with orange mottling, CLAY &	—
11/30/12	-			3.4	FID: 4 ppmv			SILT. Moist.	-
	12—								-
5	-								-
5	14					44	14.3'	C 2D (14.2 to 15!); Dark tan CII T & CI AV, some Cond to	-
HE	-	S-3	15 - 20	5.0/	PID: 3 ppmv FID: 2 ppmv			S-2B (14.3 to 15'): Dark tan, SILT & CLAY, some Sand to gravel-sized Sediment Rock. Coarse fraction angular. Moist.	-
NNO NNO	16—			4.4	PID: 2 ppmv FID: ND			TILL. S-3 (15 to 20'): Dark tan, SILT & CLAY, some Sand to	_
SANB	-							gravel-sized Sediment Rock. Fractured Gravel bottom 0.3'	-
2010 SANBORN HEAD V1.GDT	18—						SILT & CLAY	of recovery. Coarse fraction angular. Moist. TILL.	-
LB 2	-								-
GS.GPJ 2010 SANBORN HEAD V1.GLB	20—	S-4	20 - 23	3.0/	PID: 1 ppmv			S-4A (20 to 22.1'): Dark tan, SILT & CLAY, some Sand to	_
A	_			3.0	FID: ND			gravel-sized Sediment Rock. Coarse fraction angular. Moist. TILL.	-
Z Z	22—						22.1' BEDROCK		_
BOF	_				PID: 1 ppmv FID: ND	7,	BEDROCK 23'	S-4B (22.1 to 23'): Dark gray, fractured Sediment Rock, some Silt & Clay. Coarse fraction angular. Dry.	-
SAN	24							Boring terminated at 23 feet.	-
2010	_							NOTEO	-
GP	26—							NOTES: 1. Soil samples were screened for volatile organic	_
OGS.	_							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
2	28—							per million by volume (ppmv) isobutylene-in-air standard	_
466.0								using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization	-
OP/2	30							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	_
SKT	00							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
Ĩ	22							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
ABAC	32—							concentrations or identify individual compounds, the results	
C:\USERS\AREICHENBACH\DESKTOP\2466.01_LO	24							can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	-
AREI	34 —							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
ERS/	-							3. Boring was backfilled using Cement grout.	-
SUSE	36—								_
	-								-
NG LOG	38—								
Z	_		1	1	1	1	1		-



# Log of Boring B57-603

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard Date Started: 06/18/12 Date Finis

arted: 06/18/12 Date Finished: 06/18/12

	Started: 0 d By: M.					ed: 06/18/12 : AVK/LJJ		
-	Sa	ample Info	ormati			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)		Log	Description	Geologic Description	Remarks
0	-	0.6 - 5	4.4/			0'	(O - 0.6'): Concrete. No soils collected 0.6 - 5' (closed piston to 5' bg).	-
4 — 6 —	S-1	5 - 10	5.0/ 1.7	PID: 1 ppmv FID: 4 ppmv PID: 6 ppmv FID: 5 ppmv		5'	S-1A (5 to 6'): Brown to dark brown, fine SAND, to gravel-sized Slag FILL, trace, fine to coarse Sand. Upper 1.0' of recovery. Coarse fraction angular. Moist. FILL. S-1B (6 to 10'): Gray, SILT & CLAY, trace Gravel, Lower 0.3'	-  
8 — 10— 12—	S-2	10 - 15	5.0/ 5.0	PID: 14 ppmv FID: 11 ppmv PID: 4 ppmv FID: 4 ppmv		10'	CLAY & SILT. Lower 1.7' of recovery. Moist. S-2 (10 to 15'): Gray with orange mottling, CLAY & SILT. Moist.	- - - -
	S-3	15 - 20	5.0/ 3.1	PID: 2 ppmv FID: 1 ppmv		15.5'	S-3 (15 to 20'): Dark tan, SILT & CLAY, littleSand to gravel-sized Sediment Rock. Coarse fraction angular. Moist. TILL.	   
20-	S-4	20 - 23	3.0/ 3.0	PID: 1 ppmv FID: 3 ppmv PID: 1 ppmv FID: 2 ppmv	57 57	SILT & CLAY	S-4A (20 to 21'): Dark gray, SILT & CLAY, littleSand to gravel-sized Sediment Rock. Coarse fraction angular. Moist. TILL. S-4B (21 to 23'): Dark gray, fractured Sediment Rock, some Silt & Clay. Coarse fraction angular. Moist. BR.	-  
24					7	23'	<ul> <li>Sint &amp; Clay. Coarse naction angular. Molst. BK.</li> <li>Boring terminated at 23 feet.</li> <li>NOTES: <ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> <li>Boring was backfilled using Cement grout.</li> </ol></li></ul>	- - - - - - - - - - - - - - - - - - -
-	-							-



# Log of Boring B57-604

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Started: 0	6/18/12	viison,	Date Fi	nishe			
h 🕂 👘		Pen/	Field			Geologic Description	Remarks
No.	(ft)	(ft)	Data		0'	(O - 0.7'): Concrete. No soils collected 0.7 - 5' (closed piston to 5' bg).	
- - - - -	5 - 10	5.0/ 2.5			5' FILL	S-1A (5 to 6.8'): Light gray, Concrete debris - upper 1.8'. Coarse fraction angular. Moist. FILL. S-1B (6.8 to 9.5'): Black, fine to coarse, sand-sized Slag FILL. Coarse fraction angular. Moist. FILL.	-
- S-2	10 - 15	5.0/ 3.5	PID: 1 ppmv FID: ND PID: 1 ppmv FID: ND		10'	S-1C (9.5 to 10'): Brown, fine to coarse SAND, some Silt, trace , Slag, Glass - lower 0.5'. Coarse fraction angular. Moist. FILL. S-2A (10 to 13.9'): Dark gray, CLAY & SILT. Moist.	-
- - - - -	15 - 20	5.0/ 3.6	PID: 1 ppmv FID: ND PID: 1 ppmv FID: ND		CLAY & SILT	S-2B (13.9 to 15'): Grayish tan, CLAY & SILT, some Sand to Gravel Rock fragments. Lower 1.1' of recovery. Coarse fraction angular to subrounded. Moist. TILL. S-3 (15 to 20'): Dark tan, CLAY & SILT, some Sand to Gravel Rock fragments. Fractured Gravel layer at 18.3 - 18.9'. Coarse fraction angular. Moist. TILL.	
- S-4	20 - 23	3.0/ 3.0	PID: 1 ppmv FID: ND			S-4A (20 to 22.2'): Dark tan, CLAY & SILT, some Sand to Gravel Rock fragments.	
-			PID: 1 ppmv FID: ND	N I	22.2' BEDROCK 23'	S-4B (22.2 to 23'): Gray, fractured to pulervised Sediment Rock. Coarse fraction angular. Moist to Dry.	
						<ul> <li>NOTES:</li> <li>1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppm methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> <li>3. Boring was backfilled using Cement grout.</li> </ul>	-
	Started: 0 yet By: M. h Sample S-1 - - - - - - - - - - - - -	Started: 06/18/12 Jet By: M. Stein Sample Info Sample Info Sample Info (ft) Sample Info (ft) (ft) Sample Info (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	Started: 06/18/12 yed By: M. Stein Sample Information Sample Depth Pen/ Rec (ft) S-1 5-10 5.0/ 2.5 S-2 10-15 5.0/ 3.5 S-3 15-20 5.0/ 3.6 S-4 20-23 3.0/ 3.0 	Started:         06/18/12 Checked Sample         Date Fi Checked           Sample         Depth (ft)         Pen/ Rec (ft)         Field Testing Data           Sample         Depth (ft)         Pen/ Rec (ft)         Field Testing Data           Sample         Depth (ft)         Pen/ Rec (ft)         Field Testing Data           Sample         Sample         Sample         Sample           Sample         Sample         Sample         Sample           Sample         Sample         Sample         Sample           Sample         Sample         Sample         Sample           Sample         Sample         Sample         Plot 1 ppmv FID: ND           Sample         Sample         Sample         Plot 1 ppmv FID: ND           Sample         Sample         Plot 1 ppmv FID: ND         Plot 1 ppmv FID: ND           Sample         Sample         Plot 1 ppmv FID: ND         Plot 1 ppmv FID: ND           Sample         Sample         Sample         Plot 1 ppmv FID: ND           Sample         Sample         Sample         Plot 1 ppmv FID: ND           Sample         Sample         Sample         Sample           Sample         Sample         Sample         Sample           Sample	red By: M. Stein Checked By: h Sample Depth Per/ No. 0(ft) Depth Rec Testing Log (ft) Data Log S-1 5-10 5.0/ S-2 10-15 5.0/ S-2 10-15 5.0/ S-3 15-20 5.0/ S-4 20-23 3.0/ S-4 20-23 3.0/ PID: 1 ppmv FID: ND PID: 1 ppmv FID: ND	Started: 06/18/12 pd By: M. Stein         Date Finished: 06/18/12 Checked By: AVK/LJJ           Sample Information         Stratum           Sample No.         Depth (ft)         Perc/Perc/Perc/Perc/Perc/Perc/Perc/Perc/	Stande: 06/16/12         Date Finisher: 06/16/12         Sample Information          Sample Information



# Log of Boring B57-605

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time

to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT 2.125" OD x 1.5" ID

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

	nan: M. Ev Started: 06		/ilson,	E. Perigard		d: 06/18/12		
	ed By: J. P					: AVK/LJJ		
	-	mple Info	rmatio		-	Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0	-					0'	Asphalt. Not described. FILL.	
-	-						Asphan. Not described. Titel.	-
2 —								-
-	-							-
4								_
6 —	S-1	5 - 10	5.0/ 4.0	PID: 5.8 ppmv		5' Ell 5.5'	S-1A (5 to 5.5'): Black, fine to coarse SAND, some Silt, little Gravel. Coarse fraction angular to subangular Wet. FILL.	
-				FID: 0.7 ppmv			S-1B (5.5 to 9'): Gray, SILT & CLAY. Wet 5.5 - 6.0; Moist.	
8				PID: 2.8 ppmv				_
-				FÌD: ND		SILT & CLAY		_
10-		10 15	5.01	PID: 4.4 ppmv			S-1C (9 to 10'): Gray, SILT & CLAY, trace , Gravel (fractured Rock). Brown mottling. Moist.	_
-	S-2	10 - 15	5.0/ 5.0	FID: ND PID: 3.4			S-2A (10 to 10.4'): Dark gray, SILT & CLAY, trace Gravel. Brown mottling. Moist.	_
12-				ppmv FID: ND PID: 2.6	Ķ	12'	S-2B (10.4 to 12'): Olive brown, SILT & CLAY, some fine to	
-				ppmv FID: ND	77	ROCK 13'	coarse Sand, little Gravel (fractured Shale). Coarse fraction angular. Dry. TILL.	
14				PID: NM FID: NM			S-2C (12 to 12.4'): White, pulverized Rocks. Coarse fraction angular. Dry.	_
-	S-3	15 - 20	5.0/	PID: 2.5 ppmv		SILT & CLAY	S-2D (12.4 to 15'): Olive brown, pulverized Rocks. Coarse	-
16—	-			FID: ND PID: 3.5			fraction angular. Dry. TILL. S-3A (15 to 17.5'): Gray, SILT & CLAY, little Gravel. Coarse	-
-				ppmv FID: ND		17.5'	fraction angular. Moist. TILL. Parratt Wolff forgot a steel liner; hense they pounded the core barrel out in a line onto	-
18—				PID: 2.5 ppmv			plastic sheeting. Difficult to tell recovery (Augered 15 - 15.5 through Cobble).	_
-				FID: ND		CLAYEY SILT	S-3B (17.5 to 20'): Gray, Clayey SILT, some Gravel, trace	-
20-						20'	fine to coarse Sand. Coarse fraction angular. Dry. TILL. Boring terminated at 20 feet.	-
-							Bonng terminateu al 20 leet.	-
22-							NOTES:	
-							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
24							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
26-							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization	
20-							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
28-							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
30-							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
-							<ol><li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li></ol>	-
32-							VOCs by USEPA 8260B.	_
-	-						3. Boring was backfilled using Cement grout.	_
34	$\left  \right $							
-								4
36—								_
-								-
38-								-
-								-

40



#### Log of Boring B57-606

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time

to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Foreman: D. Richmond

	ian: D. Ri			<b>D -</b>		d. 00/40/40		
	started: 0					ed: 06/18/12		
Logge	d By: J. F				эа ву	: AVK/LJJ		
Depth (ft)		Depth (ft)	Pen/ Rec	Field Testing	Log	Stratum Description	Geologic Description	Remarks
	140.	(19	(ft)	Data				
0 —	1					0'	Asphalt. No description. FILL.	
-	-						-F	-
2 —								_
-								
-	1							-
4	-							_
-	S-1	5 - 10	5.0/	PID: 1 ppmv		5'	S-1A (5 to 5.8'): Black, fine to coarse SAND, trace Silt, trace	
6 —			4.5	FID: ND	77	5' FILL 5.8'	Gravel. Coarse fraction subrounded. Wet. FILL.	
_				PID: 2.6 ppmv			S-1B (5.8 to 10'): Gray, SILT & CLAY. Brown mottling. Moist.	
				FÌD: ND				
8	1							_
-	-					SILT & CLAY		-
10-	S-2	10 - 15	5.0/	PID: 3.5	$\mathbb{V}$		S-2A (10 to 13'): Gray - olive brown, SILT & CLAY, little	_
_	3-2	10-15	4.8	ppmv			Gravel. Brown mottling. Moist.	_
10				FID: ND				
12—	1							_
-				PID: NA	VT	13' ROCK 13.5'	S-2B (13 to 13.5'): White, pulverized Rock (Possible	-
14-	-			FID: NM PID: 3.9		SAND and SILT	Siltstone). Dry.	
-		45 47	2.04	ppmv	Η	15'	S-2C (13.5 to 15'): Dark brown, fine SAND and Silt, some Gravel, trace medium Sand. Coarse fraction rounded. Moist. /	
16—	S-3	15 - 17	2.0/	FID: ND PID: 2.4		SILT & CLAY		_
				ppmv FID: ND	$\mathbb{V}$	1	S-3 (15 to 17'): Gray, SILT & CLAY, some Gravel (fractured Shale/Siltstone). Wet. TILL.	
-	S-4	17 - 20	3.0/			17'	S-4 (17 to 20'): Gray, GRAVEL (Slop). No real recovery.	-
18—	-		0.5			GRAVEL	Wet.	-
-	1					GIVAVEL		-
20-	-					20'		
							Boring terminated at 20 feet.	
-							NOTES:	-
22-	1						1. Soil samples were screened for volatile organic	_
-	-						compounds (VOCs) using a MiniRAE 3000 Photoionization	-
24	-						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
-							using a response factor of 1.0. They were also screened for	_
00							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
26-	]						standard using a response factor of 1.0. Results are	_
-							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	-
28—							and FID measure relative levels of VOCs. Although PID and	-
-	-						FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
30	1						can serve as a relative indicator for the presence of VOCs.	_
							<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li> </ol>	
-	1						VOCs by USEPA 8260B.	
32-	1						3. Boring was backfilled using Cement grout.	-
-	-							-
34-	4							
_								
36	1							
-	1							-
38-	-							
-								
	1		1	1	1			



#### Log of Boring B57-607

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Fore

Date S	han: D. Rid Started: 06 ed By: J. P	6/18/12				ed: 06/19/12 : AVK/LJJ		
	Sa	mple Info	ormatic	n		Stratum		
Depth (ft)	Sample No.		Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No description. FILL.	
2 —								-
-	-							
4 —	1							_
- 6 —	S-1	5 - 10	5.0/ 3.5	PID: 10 ppmv FID: ND		5'	S-1A (5 to 8'): Gray, CLAY & SILT. Moist.	-
-				רוט. אט		CLAY & SILT		
8	-			PID: 6.5 ppmv FID: ND		8' SILT & CLAY	S-1B (8 to 10'): Gray, SILT & CLAY. Brown mottling. Moist.	
10— -	S-2	10 - 12	5.0/ 4.5	PID: 0.6 ppmv FID: 0.3		10' CLAY & SILT	S-2A (10 to 12'): Gray-brown, CLAY & SILT. Brown mottling. Moist.	
12— -	-			PID: 0.0 PID: 0.6 ppmv FID: ND		12'	S-2B (12 to 15'): Gray-brown, SILT & CLAY, some Gravel (fractured Shale), little fine to coarse Sand. Brown mottling. Coarse fraction angular. Moist. TILL. (Wet at 14.5').	
14						SILT & CLAY		-
16—	S-3	15 - 17	2.0/ 2.0	PID: 3.1 ppmv FID: 0.8	V7	15.5' WEATHERED BEDROCK	S-3A (15 to 15.5'): Gray-brown, SILT & CLAY, little Gravel, trace Sand. Coarse fraction angular. Moist. TILL.	-
- 18—				ppmv PID: 2.9 ppmv	VL	17'	S-3B (15.5 to 17'): Light gray, SILT, some Gravel (fractured Shale), trace Sand. Coarse fraction angular. Moist.	-
-	-			FID: 1.1 ppmv			NOTES:	
20—							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	-
22—	-						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	-
- 24	-						VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	_
- 26—	-						indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
- 28—	-						concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	-
-							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
30							3. Boring was backfilled using Cement grout.	-
32—								-
- 34—								_
-								
36								-
38—								-
-	-							



# Log of Boring B57-608

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Foreman: D. Richmond

Date Started: 06/19/12

	Date Finished: 06/19/12
z	Checked By: AVK/LJJ

Ground	water Readings		D	D	01-1
Date	Depth Time to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
Date	Time to water	Rei. Fl.	or casing	OI HOIE	rime

t) Sample Depth (ft) Rec Testing Log Description (ft) Data Log Description (ft) Data		tarted: 06 I By: J. P				d: 06/19/12 : AVK/LJJ		
2-                                                                                                                                   <	epth (ft)	Sample	Depth	Pen/ Rec	Field Testing		Geologic Description	Remarks
	0	NO.	(1)	(ft)	Data		Asphalt. No description. FILL.	
<ul> <li>S-2</li> <li>10 - 15</li> <li>S-2</li> <li>10 - 15</li> <li>S-0</li> <li>PID: 8 prov PID: 4 prov prov</li> <li>SLT &amp; CLAY</li> <li>SLT &amp; CLAY, with Gravel inclusions. Brown motting. Coarse fraction rounded. Moist.</li> <li>S-3 (15 - 20)</li> <li>S-4</li> <li>S-3</li> <li>15 - 20</li> <li>S-0</li> <li>PID: 2.7 prov PID: 5.8 prov</li> <li>PID: ></ul>	- 4 -	S-1	5 - 10		ppmv	5'	S-1 (5 to 10'): Gray, SILT & CLAY. Brown mottling. Moist.	
3-3       15 - 20       5.0 3.4       PD: 2.7 ports ports PD: 5.3 ports PD: 5.3 ports PD: 5.4 ports PD: 5.4       S-3 (15 to 20'): Gray, SLT & CLAY and Gravel (fractured Shale), little fine to coarse Sand. Brown mottling. Coarse fraction angular. Molet. TLL.         3-4       PD: 5.3 ports PD: 5.4 ports       PD: 5.4 ports       PD: 5.3 ports       Boring terminated at 20 feet. No refusal encountered.         3-4       PD: 5.4 ports       PD: 5.3 ports       PD: 5.3 ports       Ison samples were screened for volatile organic compounds (VCCs) using a miRAE 3000 Photoionization Defector (PD) with a 10.6 eV lamp, calibrated to a 100 parts per million by olume (pm) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a response factor of 1.0. Results are presented in pmv, the typical detecton limit is 1 pure. ND indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 82608.         3. Boring was backfilled using Cement grout.	- (	S-2	10 - 15	5.0/ 3.4	PID: 8 ppmv FID: ND PID: 4 ppmv FID: 3.2	SILT & CLAY	S-2 (10 to 15'): Gray brown, SILT & CLAY, with Gravel inclusions. Brown mottling. Coarse fraction rounded. Moist.	
Description       Portvy FID: 4:3      20'       Boring terminated at 20 feet. No refusal encountered.         Person       NOTES:       1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmy) isobutylene-in-air standard using a response factor of 10. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppm methane-in-air standard using a response factor of 10. Results are presented in ppmy; the typical detectoin limit is 1 ppm. ND indicates not detected. NA indicates not available. The PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.         2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.         3. Boring was backfilled using Cement grout.	- 3 -	S-3	15 - 20		ppmv FID: 0.8		Shale), little fine to coarse Sand. Brown mottling. Coarse	
1. Soil samples were screened for volatile organic         compounds (VOCs) using a MinIRAE 3000 Photoionization         Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts         per million by volume (ppmv) isobutylene-in-air standard         using a microFID hand-held Flame lonization         Detector (FID) calibrated to a 100 ppmv methane-in-air         standard using a response factor of 1.0. Results are         presented in ppmv; the typical detection limit is 1 ppmv. ND         indicates not detected. NA indicates not available. The PID         and FID measure relative levels of VOCs. Although PID and         FID screening cannot be used directly to quantify VOC         concentrations or identify individual compounds, the results         can serve as a relative indicator for the presence of VOCs.         2. Soil samples collected were submitted to Lancaster         Laboratories of Lancaster, Pennsylvania for analysis of         VOCs & USEPA 8260B.         3. Boring was backfilled using Cement grout.	- (				ppmv FID: 4.8	20'		
<ul> <li>and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> <li>3. Boring was backfilled using Cement grout.</li> </ul>	- 4 -						1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
3. Boring was backfilled using Cement grout.	_						indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	
	_						-	
	_							



#### Log of Boring B57-609

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time

to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Foreman: D. Richmond

Date Started: 06/19/12

	started: 06 d By: J. F					d: 06/19/12 : AVK/LJJ		
	Sa	ample Info	rmatic			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0				Dutu		0'	Asphalt. No description. FILL.	
2 —								_
4								_
6	S-1	5 - 10	5.0/ 4.0	PID: 3.4 ppmv FID: 1.2		5' CLAY & SILT	S-1A (5 to 7'): Dark gray, CLAY & SILT. Moist.	-
- 8 -	-			ppmv PID: 6.7 ppmv FID: 1.2 ppmv		7'	S-1B (7 to 10'): Gray, SILT & CLAY. Brown mottling. Moist.	-
10	S-2	10 - 15	5.0/ 4.0	PID: 9.3 ppmv FID: ND		SILT & CLAY	S-2A (10 to 13'): Gray brown, SILT & CLAY, trace fine Sand. Moist.	-
12— - 14—				PID: 6.3 ppmv		13' SILT 14'	S-2B (13 to 14'): Olive brown, SILT, some Gravel, some fine to coarse Sand. Coarse fraction rounded. Wet.	
-	S-3	15 - 20	5.0/ 3.5	FID: ND PID: 7.2 ppmv FID: ND			S-2C (14 to 15'): Gray, Clayey SILT, some Gravel (fractured Rock), trace Sand. Coarse fraction angular. Moist. TILL.	-
16			0.0	PID: 5.3 ppmv FID: ND		CLAYEY SILT	S-3A (15 to 18.5'): Olive brown - gray, Clayey SILT, some Gravel, some fine to coarse Sand. Coarse fraction angular. Moist. TILL.	-
18				PID: 5.1 ppmv	1 V	18.5' WEATHERED BEDROCK	S-3B (18.5 to 20'): Light gray, Clayey SILT and Gravel, some Sand. Coarse fraction angular. Dry to Moist.	-
20	-			FID: 0.2 ppmv	VT	20'	Boring terminated at 20 feet. No refusal encountered.	-
22	-						NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	-
24	-						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
26							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	_
28—	-						indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
30							can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	_
32	-						VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	-
- 34—	-							-
- 36—								-
- 38								-
-								-



Date Finished: 06/19/12

#### Log of Boring B57-610

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/19/12

Groundwater Readings												
		Depth		Depth	Depth	Stab.						
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time						

	started: 06 d By: J. P					d: 06/19/12 : AVK/LJJ		
- 55 -	-	ample Info	ormatio			Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)	Field Testing Data		Description	Geologic Description	Remarks
0 —	-					0'	Asphalt. No description. FILL.	
2 —								_
4								-
- 6 —	S-1	5 - 10	5.0/ 3.5	PID: 8.9 ppmv FID: 8 ppmv		5'	S-1 (5 to 10'): Gray, SILT & CLAY, trace Peat at top. Trace fine Sand at bottom. Brown mottling. Moist.	-
- 8 —	-							-
- 10—		40.45	5.0/	PID: 6.5		SILT & CLAY		-
- 12—	S-2	10 - 15	5.0/ 3.8	ppmv FID: 1.7 ppmv PID: 5.7			S-2A (10 to 12.5'): Gray, SILT & CLAY, trace fine Sand. Brown mottling. Moist.	
- 14				ppmv FID: 1.6 ppmv PID: 6.9		13'	S-2B (12.5 to 13'): Gray brown, SILT & CLAY, some Gravel, little fine to coarse Sand. Brown mottling. Coarse fraction rounded. Moist.	
- 16	S-3	15 - 20		ppmv FID: ND PID: 5.7 ppmv		CLAYEY SILT	S-2C (13 to 15'): Olive brown - gray, Clayey SILT, some Gravel (fractured Rock), little fine to coarse Sand. Coarse fraction angular. Moist. Wet from 13 - 13.5'.	-
- 18				FID: ND PID: 2.7 ppmv FID: ND		OLATET SILT	S-3A (15 to 19'): Gray, Clayey SILT, some Gravel, little Sand (fractured Rock). Brown mottling. Coarse fraction angular. Moist to Dry. TILL.	-
-				PID: 2 ppmv FID: ND		WEATHERED BEDROCK	S-3B (19 to 20'): Light gray, Clayey SILT, and Gravel (fractured Rock), some fine to coarse Sand. Coarse fraction	
20—	-			TID. ND		20	angular. Dry.         Boring terminated at 20 feet. No refusal encountered.	
22							NOTES:	
24							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard</li> </ol>	
26—							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	-
28—							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	-
- 30—							FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	_
- 32—	-						<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	-
- 34 —							3. Boring was backfilled using Cement grout.	-
- 36—								-
- 38—								
-								-
40	4				1			Sheet: 1 of 1



### Log of Boring B57-611

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Foreman: D. Richmond

Date Started: 06/19/12

Date Finished: 06/19/12 Checked By: AVK/LL

Groundwater Readings												
Date	Depth Time to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time							

	- -	mple Info	rmeti-	מר	Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Description	Geologic Description	Remarks
0 —	-				 0'	Asphalt. No description. FILL.	
2 —							
4 —	-						
- 6 —	S-1	5 - 10	5.0/ 4.4	PID: 5.4 ppmv FID: 8.6	5' CLAY & SILT	S-1A (5 to 7'): Dark gray, CLAY & SILT. Black staining. Moist.	
- 8	-			PID: 6.3 ppmv FID: 3.7	7'	S-1B (7 to 10'): Gray, SILT & CLAY. Brown mottling. Moist.	
- 10—		40 45	5.0/	ppmv	SILT & CLAY		
- 12—	S-2	10 - 15	5.0/ 2.8	PID: 2.8 ppmv FID: 7.4 ppmv		S-2A (10 to 12.5'): Gray - brown, SILT & CLAY, trace Gravel. Brown mottling. Moist.	
_				PID: 1.8 ppmv FID: 14 ppmv	12.5' CLAYEY SILT 13.5'	S-2B (12.5 to 13.5'): Dark gray - brown, Clayey SILT, some fine Sand, little Gravel. Coarse fraction rounded. Moist.	
14	S-3	15 - 17		PID: 1.8 ppmv FID: 14 ppmv	SILT and GRAVEL 15'	S-2C (13.5 to 15'): Gray, SILT and Gravel (fractured Shale), some fine to coarse Sand. Coarse fraction angular. Wet. TILL.	
16— -	-		2.0	PID: 3.2 ppmv FID: 35 ppmv	CLAYEY SILT	S-3 (15 to 17'): Gray, Clayey SILT, some fine to coarse Sand, some Gravel (fractured Shale). Coarse fraction angular. Moist. TILL.	
18—	-					Boring terminated at 18 feet. Roller Bit refusal 17 - 18 and stopped.	
20—						NOTES: 1. Soil samples were screened for volatile organic	
22—	-					compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
- 24—	-					using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
- 26—	-					presented in ppmv, the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	
- 28—	-					FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
- 30-						<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	
_	-					3. Boring was backfilled using Cement grout.	
32—							
34 — -							
36— -							
38—							
- 40	1						



# Log of Boring B57-612

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date Started: 06/19/12 Date Finished: 06/19/12

Groundwater Readings												
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole							

Stab. Time

	d By: M. S					AVK/LJJ		
	Sa	mple Info	rmatio	on		Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)			Description	Geologic Description	Remarks
0 —				Duiu		0'		
_						-	(0 - 0.6'): Concrete. No sampling 0.8 - 3' (closed piston to 3').	_
2							No sampling 0.0 - 5 (closed piston to 5).	
-						3'		
	S-1	3 - 5	2.0/ 1.7	PID: 5 ppmv FID: ND			S-1 (3 to 5'): Dark gray to brown, fine to coarse SAND, some Silt, Slag particles and fragments common. Coarse fraction	
4					ľ,		subrounded to angular. Moist. FILL.	
	S-2	5 - 10	5.0/ 2.1	PID: 6 ppmv FID: ND	ļ./-		S-2 (5 to 10'): Dark brown, fine to coarse SAND, some Silt, few Slag particles and fragments. Coarse fraction	_
6				1.5.115	$\left[ \right]$	FILL	subrounded to angular. Moist. FILL.	
-					\'`			-
8 —								
-					ľ.			-
10—	S-3	10 - 15	5.0/	PID: 28	77	10'	S-3A (10 to 13.6'): Dark gray grading to gray with orange	_
-			4.0	ppmv FID: 2 ppmv			mottling, CLAY & SILT. Moist.	-
12—						CLAY & SILT		
-						10.01		-
14 —				PID: 4 ppmv FID: ND		13.6' CLAYEY SILT	S-3B (13.6 to 15'): Dark tan to brown, Clayey SILT, and Sand to Gravel Sediment Rock fragments. Lower 1.4'.	_
-	S-4	15 - 17.6	2.6/	PID: 1 ppmv	₩¥	15'	Coarse fraction angular. Moist. TILL.	-
16—				FID: ND	V/.	SILT & CLAY	S-4 (15 to 17.6'): Dark tan, SILT & CLAY, some Sand to Gravel Sediment Rock fragments. Coarse fraction	
-							subangular to subrounded. Moist. TILL.	-
18—					۲ <u>/</u>	17.6'	Boring terminated at 17.6 feet.	
_							NOTEO	-
20—							NOTES: 1. Soil samples were screened for volatile organic	_
_							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
22					1		per million by volume (ppmv) isobutylene-in-air standard	
_					1		using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization	_
24							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
<u>-</u>							presented in ppmy; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
26—							and FID measure relative levels of VOCs. Although PID and	
20					1		FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	_
-					1		<ul><li>can serve as a relative indicator for the presence of VOCs.</li><li>2. Soil samples collected were submitted to Lancaster</li></ul>	-
28—							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
-							<ol> <li>Boring was backfilled using Cement grout.</li> </ol>	-
30 —							<u> </u>	
-					1			-
32—								
-								-
34 —								
-								-
36 —					1			
-								-
38—								
								-
40								Sheet: 1 of 1



### Log of Boring B57-613

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc

	tarted: 06 d By: M. S	Stein		Checke	d By:	d: 06/19/12 AVK/LJJ		
Depth (ft)	Sa Sample No.	mple Info Depth (ft)	rmatic Pen/ Rec (ft)	on Field Testing Data	Log	Stratum Description	Geologic Description	Remarks
0 —				Duiu		0'	(0 - 0.7'): Concrete.	
_							No sampling 0.7 - 3' (closed piston to 3').	
2 —							······································	
-	<b>C</b> 1	3 - 5	2.0/	PID: 17		3'	S 1 (2 to 5 ¹ ): Drown to yony dark brown find to coorde	
4 —	S-1	3-5	3.0/ 1.7	ppmv FID: ND			S-1 (3 to 5'): Brown to very dark brown, fine to coarse SAND, some Silt, few particles and fragments Slag. Wood in tip. Coarse fraction angular to subangular. Moist. FILL.	
6 —		5 - 10	5.0/ 2.1	PID: 705 ppmv FID: 130 ppmv		FILL	S-2 (5 to 10'): Dark brown grading to dark gray, fine to coarse SAND, some Silt, few particles and fragments Slag grading to a Silty artifical Fill material (possible Slag). Coarse fraction angular to subangular. Moist. FILL. Strong	
8							petroleum/solvent odor in upper 0.2'.	
10—	S-2	10 - 15	5.0/	PID: 24 ppmv FID: 8 ppmv		10.2'	S-3A (10 to 10.2'): Dark brown, fine SAND and Silt, artificial Fill material. Moist. FILL.	
12— -				PID: 8 ppmv PID: 270 ppmv FID: 83 ppmv		CLAY & SILT	S-3B (10.2 to 14.5'): Dark gray, CLAY & SILT. Moist.	
14 —								
- 16—	S-3	15 - 17.6	2.6/ 2.6	PID: 12 ppmv FID: ND PID: 2 ppmv		SILT & SLAY	S-3C (14.5 to 15'): Brown with orange mottling, SILT & CLAY, little fine to coarse Sand to Gravel Rock fragments. Moist.	
- 18—				FID: ND		17.6'	S-4 (15 to 17.6'): Dark tan to brown, Clayey SILT, and Sand to Gravel Rock fragments. Coarse fraction angular. Moist. TILL.	
-							Boring terminated at 17.6 feet.	
20—							NOTES:	
_							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
22							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
24 —							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
-							presented in ppmy; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
26							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
28—							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	
- 30—							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
-							<ol><li>Boring was backfilled using Cement grout.</li></ol>	
32—								
-								
34—								
-								
36 —								
_								

38

<u>4</u>(



# Log of Boring B57-614

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

BORING LOG C: USERSIAREICHENBACH/DESKTOP/2466.01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12

Foreman: M. Evans, M. Wilson, E. Perigard

Date S	han: M. Ev Started: 06 ed By: M. 3	5/19/12	/ilson,		nishe	ed: 06/19/12 : AVK/LJJ		
	-	mple Info	rmatic			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data		Description	Geologic Description	Remarks
0	-					0'	(0 to 0 0!); Concrete	
_							(0 to 0.8'): Concrete. No sampling 0.8 - 3' (closed piston to 3').	_
2								
_						3'		
4 —	S-1	3 - 5	2.0/ 1.5	PID: 10 ppmv FID: ND			S-1 (3 to 5'): Dark brown, fine to coarse SAND and Silt, little Gravel, very few Brick and Slag particles. Coarse fraction subangular to subrounded. Moist. FILL.	_
	S-2	5 - 10		PID: 8 ppmv			S-2 (5 to 10'): Brown, fine to medium SAND, some Silt,	-
6	-		2.0	FID: 1 ppmv	ľ.	FILL	trace Gravel. Coarse fraction subrounded. Moist. FILL.	
-	-				1/-			-
8	-				$\left[ \right]$			
-					[\			_
10-						10'		
-	S-3	10 - 15		PID: 10 ppmv			S-3A (10 to 14.2'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	_
12				FID: 1 ppmv		CLAY & SILT		
						CLATASILT		
								_
14-				PID: 6 ppmv	$\forall f$	14.2'	S-3B (14.2 to 15'): Grayish brown, SILT & CLAY, little Sand	
-	S-4	15 - 17	2.0/	FID: ND PID: 3 ppmv		SILT & CLAY	to Gravel. Coarse fraction rounded. Moist. TILL.	-
16—	-		1.4	FID: ND			S-4 (15 to 17'): Dark tan, SILT & CLAY, and Sand to Gravel fractured Rock. Coarse fraction angular. Moist.	_
-	-				Υ	17'	Boring terminated at 17 feet.	-
18—	-							
-	-						NOTES:	-
20-							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization</li> </ol>	_
-	_						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	_
22-							using a response factor of 1.0. They were also screened for	
							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
24	1						indicates not detected. NA indicates not available. The PID	
-							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	-
26-	1						concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
-	-						<ol> <li>Soil samples collected were submitted to Lancaster</li> </ol>	-
28—	-						Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	_
-	-						3. Boring was backfilled using Cement grout.	_
30-	-							
-	_							_
32-								_
34—	1							
-	1							-
36—	1							_
il -								-
38—								_



# Log of Boring B57-615

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date S	an: M. Ev Started: 00 d By: M. 3	6/19/12	Vilson,			d: 06/19/12 : AVK/LJJ		
		ample Info	ormatio	on		Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0	-					0'	(0 1. 0 7)) 0	
_							(0 to 0.7'): Concrete. No sampling 0.7 - 3' (closed piston to 3').	_
2							No sampling 0.7 - 3 (closed piston to 3).	_
2						21		
4	S-1	3 - 5	2.0/ 1.2	PID: 13 ppmv FID: ND		3'	S-1 (3 to 5'): Dark brown to brown, Clayey SILT, some fine to coarse Sand, little Gravel. Coarse fraction angular to subrounded. Moist. FILL.	-
-	S-2	5 - 10	5.0/	PID: 2 ppmv			S-2 (5 to 10'): Dark brown to brown, Clayey SILT, some fine	-
6	1		1.8	FID: ND	Ϋ́,	FILL	to coarse Sand, little Gravel. Coarse fraction angular to subrounded. Moist. FILL.	-
-	1				./~			-
8	-				$\left[ \right]$			
-	-				[\			-
10-		10 15	= 0/			10'	Gray, Bottom 0.3' is intermixed.	
_	S-3	10 - 15	5.0/ 4.7	PID: 10 ppmv			S-3 (10 to 15'): Dark gray interlayered with gray with orange	_
10				FID: ND			mottling, CLAY & SILT. Moist.	
12	1							_
-	1					CLAY & SILT		-
14	1							_
- 16	S-4	15 - 17	2.0/	PID: 3 ppmv FID: ND PID: 3 ppmv			S-4A (15 to 15.6'): Brown to gray with orange mottling, CLAY & SILT. Moist.	-
_	1			FID: ND		17'	S-4B (15.6 to 17'): Dark tan to brown, Clayey SILT, some Sand to Gravel Rock fragments. Moist. TILL.	
18							Boring terminated at 17 feet.	_
20							NOTES:	
20-	1						1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
-	1						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
22-	1						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	-
-	-						VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	-
24-	{						standard using a response factor of 1.0. Results are	_
-	-						presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	-
26-	-						and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	_
_	-						concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
28-							<ol> <li>Soil samples collected were submitted to Lancaster</li> </ol>	_
							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
20							3. Boring was backfilled using Cement grout.	
30-	1							
-	1							-
32-	1							-
	-							-
34—	-							
-	-							-
36—								_
_								_
20								
38-	1							-



# Log of Boring B57-616

Ref. Pt.

Depth of Casing Depth of Hole Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth Date Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

	tarted: 06 d By: M. S					d: 06/19/12 : AVK/LJJ		
- 55		ample Info	rmatic		-	Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —			,			0'	(0 - 0.8'): Concrete.	
_							No sampling 0.8 - 3' (closed piston to 3').	
2 —							···· · · · · · · · · · · · · · ·	
_						3'		
4 —	S-1	3 - 5	3.0/ 1.4	PID: 96 ppmv FID: 8 ppmv			S-1 (3 to 5'): Brown to dark brown, fine to coarse SAND, some Gravel, little Silt, few particles Slag and artifical Fill material. Coarse fraction subangular to subrounded. Moist. FILL.	
-	S-2	5 - 10	5.0/ 2.1	PID: 190 ppmv	ļ./-		S-2 (5 to 10'): Brown to dark brown, fine to coarse SAND,	
6 —			2.1	FID: 73 ppmv		FILL	some Silt, little Gravel, few Slag particles to fragments. Petro/solvent odor noted. Coarse fraction subangular to subrounded. Moist. FILL.	
8								
10—					\ 	10'		
-	S-3	10 - 15	5.0/	PID: 24 ppmv FID: 3 ppmv			S-3A (10 to 12.5'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	
12—				PID: 84		CLAY & SILT	S-3B (12.5 to 15'): Dark gray grading to gray with orange	
- 14 —				FID: 14 ppmv			mottling, CLAY & SILT. Moist.	
-	S-4	15 - 17.7		PID: 47	H	15'	S-4A (15 to 16.1'): Dark tan, Clayey SILT, and sand to	
16—				ppmv FID: 3 ppmv PID: 6 ppmv		CLAYEY SILT 16.1' CLAY & SILT	gravel-sized Rock fragments. Coarse fraction angular. Moist. TILL.	
- 18				FID: ND		17.7'	S-4B (16.1 to 17.4'): Dark tan, CLAY & SILT, and sand to gravel-sized Rock fragments. Coarse fraction angular. Moist. TILL.	
- 20							Boring terminated at 17.7 feet.	
20							NOTES:	
- 22							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
-							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
24—							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
- 26-							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
_	-						and FID measure relative levels of VOCs. Although PID and	
28—							FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
- 30—							2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	
							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	
32—								
- 34								
34 —								
36—								
-								
38—								



# Log of Boring B57-617

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date Started: 06/20/12 Date Finished: 06/20/12

Groundwater Readings											
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time					

	ed By: M.					a: 06/20/12 : AVK/LJJ		
33-	-	ample Info	rmatio		-	Stratum		
Depth (ft)	Sample No.	· · · · · · · · · · · · · · · · · · ·	Pen/ Rec (ft)	Field Testing Data	Log		Geologic Description	Remarks
0	-					0'	(0 - 0.7') Concrete. No sampling 0.7 - 3' (closed piston to 3').	-
2	S-1	3 - 5	2.0/ 1.5	PID: 101 ppmv FID: 48 ppmv		3'	S-1 (3 to 5'): Brown to black, fine to coarse SAND, some Silt, trace Gravel, few particles and fragments Slag/Brick/Glass. Coarse fraction angular to subrounded.	-
6	S-2	5 - 10	5.0/ 1.4	PID: 6 ppmv FID: 4 ppmv		FILL	Moist. FILL. S-2 (5 to 9.8'): Dark brown to dark gray, fine to coarse SAND, some Silt, trace Gravel, very few particles and fragments Slag. At 9.8' intermixed with Clay & Silt. Coarse	
8	-					101	fraction angular to subrounded. Moist. FILL.	-
10— 	S-3	10 - 15	5.0/ 1.7	PID: 4 ppmv FID: 2 ppmv		10'	S-3 (10 to 15'): Gray with orange mottling, CLAY & SILT. Moist.	
- 14		45 40 4				CLAY & SILT		-
14— 14— 16— 18—	S-4	15 - 18.4	3.4/ 3.0	PID: 2 ppmv FID: ND			S-4A (15 to 18.1'): Gray with orange mottling, CLAY & SILT. Moist.	-
18— 	-					сіа¥84'sііт 18.4'	S-4B (18.1 to 18.4'): Dark tan, Clayey SILT, little fine sand to gravel Rock fragments. Coarse fraction angular. Moist. TILL. Boring terminated at 18.4 feet.	-
22-	-						NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
	-						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	-
26-	-						presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
30-	-						<ul> <li>concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.</li> <li>2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ul>	-
32-	-						3. Boring was backfilled using Cement grout.	-
28— 30— 32— 34— 34—	-							
38-	-							-
- 40								



#### Log of Boring B57-618

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time

to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date Started: 06/20/12 Date Finished: 06/20/12

ed By: M. Stein	Checked By: AVK/LJJ

	Started: 06					ed: 06/20/12 : AVK/LJJ		
Logge	ed By: M. S		PID2 04		· · ·		1	
Depth (ft)		ample Info Depth (ft)	rmatic Pen/ Rec (ft)	on Field Testing Data		Stratum Description	Geologic Description	Remarks
0	-			Data		0'	(0 - 0.7'): Concrete. No samples collected 0.7 - 3' (closed piston to 3').	
- 4	S-1	3 - 5	2.0/ 1.7	PID: 38 ppmv FID: 12 ppmv		3'	S-1 (3 to 5'): Dark brown, fine to coarse SAND, some Silt, little Gravel, very few slag particles. Coarse fraction angular to subrounded. Moist. FILL.	
6	S-2	5 - 10	5.0/ 2.7	PID: 17 ppmv FID: 12 ppmv		FILL	S-2 (5 to 10'): Black to gray to brown, fine to coarse SAND, some Silt, little Gravel, slag particles common. Bottom 0.5' brown Clayey Silt, some fine to coarse Sand. Coarse fraction angular to subrounded. Moist. FILL.	
8 —	-							
10— - 12—	S-3	10 - 15	5.0/ 3.7	PID: 55 ppmv FID: 27 ppmv		10'	S-3A (10 to 12.5'): Dark gray, CLAY & SILT. Moist.	
- 14 —	-			PID: 12 ppmv FID: 12 ppmv		CLAY & SILT	S-3B (12.5 to 15'): Dark gray, CLAY & SILT. Moist.	
16— -	S-4	15 - 18.5	3.5/ 3.5	PID: 15 ppmv FID: 6 ppmv		17.5'	S-4A (15 to 17.5'): Dark gray, CLAY & SILT. Moist.	
18—				PID: 3 ppmv FID: 2 ppmv		CLAYEY SILT	S-4B (17.5 to 18.5'): Dark tan, Clayey SILT, little fine to coarse Sand. Moist. TILL.	
20—	-						Boring terminated at 18.5 feet.	
- - 22 -	-						1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
24	-						using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
26— - 28—	-						indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
- 30—	-						<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	
- 32—	-						<ol> <li>Boring was backfilled using Cement grout.</li> </ol>	
34— - 36—	-							
36— - 38—	-							
-								

40



#### Log of Boring B57-619

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth Date Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Fore

eman: M.	Evans,	М.	Wilson,	Е.	Perigard	
----------	--------	----	---------	----	----------	--

	Started: 00					ed: 06/20/12		
Logge	d By: M. S	mple Info	rmoti			: AVK/LJJ Stratum		
Depth (ft)	Sample No.	•	Pen/ Rec (ft)	Field		Description	Geologic Description	Remarks
0			,			0'		
_							(0 - 0.7'): Concrete. No sampling 0.7 - 3' (closed piston to 3').	_
2								
<u> </u>						3'		
4 —	S-1	3 - 5	2.0/ 1.8	PID: 5 ppmv FID: 8 ppmv			S-1 (3 to 5'): Brown to dark brown, fine to coarse SAND, some Silt, little Gravel, few particles Slag. Coarse fraction subrounded. Moist. FILL.	
6	S-2	5 - 10	5.0/ 1.0	PID: 107 ppmv FID: 56 ppmv		FILL	S-2 (5 to 10'): Brown, fine SAND and GRAVEL, little Silt, very few particles Slag. Coarse fraction subangular to subrounded. Moist. FILL.	-
8	-							
10-	S-3	10 - 15	5.0/ 3.4	PID: 5 ppmv FID: 1 ppmv PID: 6 ppmv		10.2'	S-3A (10 to 10.2'): Brown, fine SAND and GRAVEL, little Silt, very few particles Slag. Coarse fraction subangular to subrounded. Moist. FILL.	
12-	-			FID: 3 ppmv			S-3B (10.2 to 12.5'): Dark gray, CLAY & SILT. Moist.	
-				PID: 6 ppmv FID: 2 ppmv			S-3C (12.5 to 15'): Dark gray, CLAY & SILT. Moist.	-
14-	-					CLAY & SILT		
- 16—	S-4	15 - 20	5.0/ 3.8	PID: 11 ppmv FID: 6 ppmv			S-4A (15 to 18.3'): Gray with orange mottling, CLAY & SILT. Moist.	-
- 18-	-					18.3'		
20-	-			PID: 10 ppmv FID: 2 ppmv		CLAYEY SILT	S-4B (18.3 to 20'): Dark tan to brown, Clayey SILT, some fine to coarse Sand, Rock fragments. (Lower 17' of recovery). Coarse fraction angular. Moist. TILL.	-
_							Boring terminated at 20 feet.	_
22-							NOTES:	
							1. Soil samples were screened for volatile organic	
24—	-						compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	_
26-	-						using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
28-	-						presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	-
- 30-	-						FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
-	-						<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li> </ol>	_
32-					1		VOCs by USEPA 8260B.	_
							3. Boring was backfilled using Cement grout.	_
34					1			
54-								
36-	1							
-	1							_
38-								



# Log of Boring B57-620

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth Date Time to Water

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drillir . . Þ att Wolff I Fo

	• •	ny: Parrati vans. M. W		, Inc. E. Perigard				
Date S	Started: 06	5/20/12		Date Fi	nishe	d: 06/20/12 : AVK/LJJ		
	Sa	mple Info	rmatic			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0	-					0'	(0 - 0.7'): Concrete.	
2							No sampling 0.7 - 3' (closed piston to 3').	-
<u>-</u>						3'		
4	S-1	3 - 5	2.0/ 1.4	PID: 53 ppmv FID: 13 ppmv			S-1 (3 to 5'): Brown to dark brown, fine to coarse SAND, some Silt, trace Gravel, few Slag particles to fragment Concrete debris at 4.7 - 4.9. Coarse fraction subangular to subrounded. Moist. FILL.	
6	S-2	5 - 10	5.0/ 2.9	PID: 3 ppmv FID: 1 ppmv		FILL	S-2 (5 to 10'): Brown to dark brown, fine to coarse SAND, some Silt, trace Gravel, Brown, fine to coarse . trace Silt at 8.8 - 9'. Few Slag/Brick particles. Coarse fraction subangular to subrounded. Moist. FILL.	
8	-							
	S-3	10 - 15	5.0/ 3.9	PID: 2 ppmv FID: 2 ppmv PID: 12 ppmv		10.3'	S-3A (10 to 10.3'): Brown to dark brown, fine to coarse SAND, some Silt, trace Gravel. Coarse fraction subangular to subrounded. Moist. FILL.	
- 12 -  -	-			FID: 5 ppmv			S-3B (10.3 to 15'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	-
14-						CLAY & SILT		_
16-	S-4	15 - 18.5		PID: 7 ppmv FID: 3 ppmv			S-4A (15 to 17'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	_
18-	-			PID: 4 ppmv FID: ND		18.5'	S-4B (17 to 18.5'): Gravish brown to brown, CLAY & SILT, some Sand to Gravel Rock fragments. Coarse fraction angular to subrounded. Moist. TILL.	-
-  6							Boring terminated at 18.5 feet.	-
20-							NOTES:	
22-	-						<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts</li> </ol>	-
24-	-						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization	-
26-	-						Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	-
2 -	-						and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
							can serve as a relative indicator for the presence of VOCs.	_
30-	-						<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	_
32-							<ol><li>Boring was backfilled using Cement grout.</li></ol>	-
34-								-
-								_
36-								_

38-

40



# Log of Boring B57-621

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard

Date Started: 06/20/12 Date Finished: 06/20/12

Groundwater Readings										
		Depth		Depth	Depth	Stab.				
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time				

	d By: M. S				1	<b>.</b>		
Depth		mple Info	ormatio	on Field		Stratum	De de de Desertation	Denveda
(ft)	Sample No.	Depth (ft)	Rec (ft)	Testing Data	Log	Description	Geologic Description	Remarks
0						0'	(0 to 0 71), Opposite	
_							(0 to 0.7'): Concrete. No sampling 0.7 - 3' (closed piston to 3').	
2 —								
						3'		
4 —	S-1	3 - 5	2.0/	PID: 4 ppmv FID: 2 ppmv		Ŭ	S-1 (3 to 5'): Brown to dark brown, fine to coarse SAND, some Silt, little Gravel, Clayey Silt 0.1' seam at 4.7', very few	
-					$(\cdot)$		Slag particles. Coarse fraction angular. Moist. FILL.	
6	S-2	5 - 10	5.0/ 2.0	PID: 4 ppmv FID: 2 ppmv	./-		S-2 (5 to 10'): Dark brown, fine to coarse SAND, some Silt, little Gravel, Woody fragment bottom 0.4' of recovery.	
6 —			-		$\left[ \right]$	FILL	Coarse fraction angular. Moist. FILL.	
_					\`			
8					$\cdot$			
_					$\left[ \cdot \right]$			
10—	S-3	10 - 15	5.0/ 4.0	PID: 20		10'	S-3A (10 to 12.5'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	
-			4.0	ppmv FID: 9 ppmv				
12—								
-				PID: 14 ppmv			S-3B (12.5 to 15'): Dark gray grading to gray with orange mottling, CLAY & SILT. Moist.	
14 —				FID: 9 ppmv		CLAY & SILT		
-	S-4	15 - 18.5	3.5/	PID: 7 ppmv			S-4 (15 to 18.5'): Gray with orange mottling, CLAY & SILT,	
16—	-			FID: 2 ppmv			grading to Silt & Clay, trace fine Sand. Moist.	
_	-							
18—	-					18.5'		
-	-					10.5	Boring terminated at 18.5 feet.	
20—	-						NOTES:	
_	-						1. Soil samples were screened for volatile organic	
22—	-						compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	
_	-						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
24	-						VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
_	-						standard using a response factor of 1.0. Results are presented in ppmy; the typical detection limit is 1 ppmv. ND	
26—	-						indicates not detected. NA indicates not available. The PID	
_							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
28—							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
_							2. Soil samples collected were submitted to Lancaster	
30—							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	
_							3. Boring was backfilled using Cement grout.	
32—								
34 —								
J <del>4</del>								
36								
36—								
38—								
-	1							



Date Finished: 06/20/12

#### Log of Boring B57-622

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/20/12

Groundwa	ater Rea	adings Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time

Depth		mple Info	Pen/	Field	1	Stratum		_ ·
(ft)	Sample No.	Depth (ft)	Rec (ft)		Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No description. FILL.	
2 —								
4 —	S-1	3 - 5	2.0/ 0.8	PID: 4.7 ppmv FID: 0.7		3'	S-1 (3 to 5'): Brown, Clayey SILT. fine to coarse Sand, little Gravel. Coarse fraction rounded. Moist. FILL.	
- 6	S-2	5 - 10	5.0/ 2.0	ppmv PID: 5.2 ppmv FID: 2.1			S-2 (5 to 10'): Dark brown, fine to coarse SAND, some Silt, some Gravel. Coarse fraction rounded. Moist. FILL.	
- 8				ppmv		FILL		
_						401		
10—	S-3	10 - 15	5.0/ 4.6	PID: 33 ppmv FID: 18 ppmv		SILTY CLAY	S-3A (10 to 13'): Gray, Silty CLAY, trace Roots. Moist.	
12—				PID: 22		13'	S-3B (13 to 15'): Gray, SILT & CLAY, brown mottling, trace	
14 <del></del> -	S-4	15 - 20	5.0/	ppmv FID: 9.7 ppmv PID: 6.1			staining. Moist. S-4A (15 to 15.8'): Gray, SILT & CLAY, brown mottling,	
16—		10 20	4.5	ppmv FID: 2.7 ppmv		SILT & CLAY	trace staining. Moist. S-4B (15.8 to 19'): Dark gray, SILT & CLAY, some Gravel, some fine to coarse Sand. Coarse fraction rounded. Wet.	
18—	-			PID: 7 ppmv FID: 4.8 ppmv		10	some me to coarse band. Coarse maction rounded. Wet.	
20—	S-5	20 - 25	5.0/	PID: 6.1 ppmv FID: 0.1		19' CLAYEY SILT 20'	S-4C (19 to 20'): Olive brown, Clayey SILT, little Gravel, little Sand. Coarse fraction angular. Dry. TILL. S-5 (20 to 25'): Gray, SILT & CLAY, some fine Sand, some	
- 22—			3.0	ppmv PID: 4.9 ppmv FID: 0.7		SILT & CLAY	Gravel (fractured Shale). Coarse fraction angular. Moist to wet. TILL.	
- 24—				ppmv				
- 26—						25'	Boring terminated at 25 feet. No refusal encountered.	
- 28—							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniDAE 2000 Distaination	
_							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
30—							VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
32— - 34—							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	
- 36—							<ul> <li>can serve as a relative indicator for the presence of VOCs.</li> <li>2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li> </ul>	
_							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	
38—								



Date Finished: 06/20/12

#### Log of Boring B57-623

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/20/12

Groundwater Readings										
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole					

Stab. Time

	Started: 06 ed By: J. P					d: 06/20/12 AVK/LJJ		
	Sa	mple Info	rmatio			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 -						0'	Asphalt. No description. FILL.	
2 -	-							_
4	S-1	3 - 5	2.0/ 1.0	PID: 5 ppmv FID: 1.8 ppmv		3'	S-1 (3 to 5'): Dark brown, Clayey SILT, some fine to coarse Sand, trace Gravel. Coarse fraction rounded to subangular. Moist. FILL.	-
6	S-2	5 - 10	5.0/ 2.0	PID: 10 ppmv FID: 3.5 ppmv		FILL	S-2A (5 to 8.5'): Dark brown, fine to coarse SAND, some Silt, little Gravel. Coarse fraction rounded to subangular. Moist. FILL.	-
8	-			PID: 14 ppmv		9.2'	S-2B (8.5 to 9.2'): Black, fine to coarse SAND, little Silt, Slight odor. Wet. FILL.	
10-	S-3	10 - 15	5.0/ 4.5	FID: 2.5 ppmv PID: 28 ppmv		CLAY & SILT	S-2C (9.2 to 10'): Dark gray, CLAY & SILT. Moist. S-3A (10 to 11.5'): Dark gray, CLAY & SILT. Moist.	-
12-	-			FID: 5.2 ppmv PID: 12 ppmv		11.5' SILT & CLAY	S-3B (11.5 to 14.6'): Gray, SILT & CLAY, brown mottling. Moist.	-
	S-4	15 - 20	5.0/	FID: 6.2 ppmv PID: 10 ppmv		15' CLAY & SILT	S-3C (14.6 to 15'): Gray, SILT & CLAY, trace Gravel (fractured Shale), brown mottling. Moist. TILL.	
16-	-		3.5	FID: 5.2 ppmv PID: 18 ppmv		16' CLAYEY SILT	S-4A (15 to 16'): Gray, CLAY & SILT, trace Gravel, trace Sand. Coarse fraction rounded. TILL.	-
18-	_			FID: 9.8 ppmv PID: 16 ppmv		18.5'	S-4B (16 to 18.5'): Olive brown - gray, Clayey SILT, little Gravel (fractured Shale), trace Sand. Coarse fraction angular. Dry. TILL.	
20-	S-5	20 - 25	5.0/ 5.0	FID: 4.3 ppmv PID: 17 ppmv		20'	S-4C (18.5 to 20'): No recovery. S-5 (20 to 25'): Light gray, SILT, little Gravel, little Sand. Coarse fraction angular to subrounded. Dry to Moist.	
22-	-			FID: 3.3 ppmv PID: 12 ppmv		SILT	TILL/possible Weathered BEDROCK.	-
24-	-			FID: 2.9 ppmv		25'		_
26-	-					20	Boring terminated at 25 feet. No refusal encountered.	-
1	-						NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
28- 30- 32- 34- 34- 36-	_						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	_
32-	_						standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	-
34-							FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
36-							<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	-
38-							3. Boring was backfilled using Cement grout.	-
40-								



#### Log of Boring B57-624

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"  $\,$ 

36

38

orem ate S	tarted: 06 d By: J. P	ans, M. W /19/12 rellwitz	/ilson,	E. Perigard Date Fi Checke	d By:	d: 06/19/12 AVK/LJJ	Date Time to Water Ref. Pt.	of Casing of Hole Time
epth ft)	Sa Sample No.	mple Info Depth (ft)	rmatic Pen/ Rec (ft)	n Field Testing Data		Stratum Description	Geologic Description	Remarks
0						0'	Asphalt. No description. FILL.	-
2 —								
_ 4 —	S-1	3 - 5	2.0/	PID: 5.2 ppmv FID: ND		3'	S-1 (3 to 5'): Brown, fine to coarse SAND, some Silt, trace Gravel. Coarse fraction subangular to subrounded. Dry. FILL.	
6 —	S-2	5 - 10	5.0/ 2.5	PID: 5.3 ppmv FID: ND		FILL	S-2A (5 to 7.5'): Dark brown, fine to coarse SAND, some Gravel, little Silt. Moist. FILL.	
	S-3	10 - 15	5.0/ 5.0	PID: 0.2 ppmv FID: ND PID: ND FID: ND PID: 6.7 ppmv FID: ND		7.5' CLAY 9' SILT & CLAY 10' CLAY & SILT	S-2B (7.5 to 9'): Black, CLAY, trace fine to medium Sand, trace , Roots/Organics. Slight odor. Moist. PEAT. S-2C (9 to 10'): Gray, SILT & CLAY, Brown mottling. Moist. S-3A (10 to 12.5'): Gray, CLAY & SILT. Moist.	
2— 4—				PID: 7.7 ppmv FID: ND		12.5' SILT & CLAY	S-3B (12.5 to 14.5'): Gray, SILT & CLAY, trace fine Sand, Brown mottling. Moist.	_
- 6	S-4	15 - 20	5.0/ 5.0	PID: 5 ppmv FID: ND PID: 1 ppmv FID: ND PID: 1.5 ppmv		ידי 15' SAND & GRAVEL 16.5'	S-3C (14.5 to 15'): Gray, SILT & CLAY, little Gravel, trace Sand. Coarse fraction rounded. Moist. S-4A (15 to 16.5'): Dark brown, fine to coarse SAND & GRAVEL, some Silt. Coarse fraction rounded. Wet.	ſ
3				FİD: ND		CLAYEY SILT	S-4B (16.5 to 20'): Gray-tan, Clayey SILT and Gravel (fractured Shale), some fine to coarse Sand. Coarse fraction angular. Moist. TILL.	
0— - 2—	S-5	20 - 23	3.0/ 2.0	PID: 0.8 ppmv FID: ND		20' SAND & SILT	S-5 (20 to 23'): Gray, fine to coarse SAND and Silt, some Gravel, trace Cobbles (fractured). Coarse fraction angular. Moist. TILL.	
_ 4	S-6	23 - 25	2.0/ 3.0	PID: 6 ppmv FID: ND		23' SILT & CLAY & GRAVEL	S-6 (23 to 25'): Gray, SILT & CLAY & GRAVEL (fractured Shale), some Sand. Coarse fraction angular. Moist. TILL.	-
- 3						25'	Boring terminated at 25 feet.	1
- 3							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
) 							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv, the typical detection limit is 1 ppmv. ND	
2— - 4—							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	

2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.

3. Boring was backfilled using Cement grout.

BORING LOG C: USERSIAREICHENBACH/DESKTOP/246:01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12



Date Finished: 06/20/12

#### Log of Boring B57-625

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/20/12

BORING LOG C: USERSIAREICHENBACH/DESKTOP/2466.01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12

Groundw	ater Rea	adings				
		Depth		Depth	Depth	Stab.
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time

ogge	d By: J. P	rellwitz		Checke	d By:	AVK/LJJ		
	Sa	mple Info	ormatic			Stratum		
epth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No description. FILL.	
-								
2						3'		
1	S-1	3 - 5	2.0/ 0.5	PID: 16 ppmv FID: 5 ppmv			S-1 (3 to 5'): Dark brown, SILT & CLAY, some Sand, trace Gravel. Coarse fraction rounded. Moist. FILL.	
_	S-2	5 - 10	5.0/ 1.5	PID: 17 ppmv			S-2 (5 to 10'): Dark brown to black, fine to medium SAND, some Silt, trace Gravel, trace coarse Sand. Coarse fraction	
_				FID: 2.8 ppmv		FILL	rounded. Moist. FILL.	
_								
) (	S-3	10 - 15	5.0/ 5.0	PID: 11 ppmv		10'	S-3A (10 to 11.5'): Dark gray, CLAY & SILT. Moist.	
				FID: 1.1 ppmv		CLAY & SILT		
-				PID: 6.6 ppmv		12.5'	S-3B (12.5 to 15'): Gray, SILT & CLAY, brown mottling. Moist.	
_				FID: 0.4 ppmv		SILT & CLAY		
	S-4	15 - 20	5.0/ 5.0	PID: 8.2 ppmv FID: 0.6		SILT & CLAT	S-4A (15 to 17.5'): Dark gray, SILT & CLAY, some Gravel, little fine to medium Sand. Coarse fraction rounded. Wet.	
_				ppmv		17.5'		
				PID: 12 ppmv FID: 1.1		SILT	S-4B (17.5 to 20'): Light gray to brown, SILT and fine to medium Sand, little , Gravel (fractured Rock). Coarse fraction angular. Dry. TILL.	
	S-5	20 - 25	5.0/	ppmv PID: 8.2		20'	S-5A (20 to 22'): Light gray, SILT, little Gravel, little Sand.	
_	3-5	20 - 25	3.4	ppmv FID: 0.1		SILT & CLAY	Coarse fraction angular to subrounded. Dry to Moist. TILL/Weathered BEDROCK.	
2				ppmv PID: 15 ppmv	N/	22'	S-5B (22 to 25'): Light gray, Clayey SILT, some , Gravel (fractured Rock), some Sand. Coarse fraction angular. Dry.	
				FID: 1.1 ppmv	V1 1	WEATHERED BEDROCK		
_					77	25'	Boring terminated at 25 feet. No refusal encountered.	
							NOTES:	
							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization</li> </ol>	
_							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	
_							standard using a response factor of 1.0. Results are presented in ppmv, the typical detection limit is 1 ppmv. ND	
_							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
_							<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li> </ol>	
_							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	
;								
-								



#### Log of Boring B57-626

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/20/12

Groundwa	ater Rea			Donth	Donth	Stab
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

Logge	ed By: J. F	Prellwitz		Checke	d By:	AVK/LJJ		
Depth		ample Info				Stratum		
(ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —	-					0'	Asphalt. No description. FILL.	
-	-							
2 —						3'		
4 —	S-1	3 - 5	2.0/ 1.5	PID: 18 ppmv FID: 5 ppmv	- , , , -	3	S-1 (3 to 5'): Olive brown, SILT & CLAY, trace Sand, trace Gravel. Moist. FILL.	
6 —	S-2	5 - 10	5.0/ 1.0	PID: 5.1 ppmv FID: ND		FILL	S-2 (5 to 10'): Dark brown, fine to coarse SAND, some Silt, little Gravel. Coarse fraction rounded. Moist. FILL.	
- 8 —	-				- , / ~ ( _			
-	-				[,/- (_			
10—	S-3	10 - 15	5.0/ 4.4	PID: 5.4 ppmv		10'	S-3A (10 to 13.8'): Dark gray, CLAY & SILT. Moist.	
- 12—	-			FID: 3.2 ppmv		CLAY & SILT		
-	-					13.8'		
14				PID: 8 ppmv FID: ND		13.0	S-3B (13.8 to 15'): Gray, SILT & CLAY, brown mottling. Moist.	
16—	S-4	15 - 20	5.0/ 1.6	PID: 11 ppmv FID: 2.4		SILT & CLAY	S-4A (15 to 19.2'): Gray, SILT & CLAY, trace Gravel. Coarse fraction rounded. Moist.	
- 18—				ppmv				
-10						19 2'		
20—	-			PID: 6.9 ppmv FID: ND	<u></u>	19.2' SAND 20'	S-4B (19.2 to 20'): Gray to brown, fine to medium SAND, trace Gravel, trace Silt. Moist. SAND.	
-	S-5	21 - 25	4.0/	PID: 2.5 ppmv	11	21'	Roller bit, no recovery. S-5 (21 to 25'): Light gray, SILT & CLAY and , Gravel	
22	-		2.0	FID: 0.8 ppmv	717	WEATHERED BEDROCK	(fractured Rock), some fine to coarse Sand. Coarse fraction angular. Moist.	
24	-				1 21	05		
- 26						25'	Boring terminated at 25 feet. No refusal encountered.	
-	-						NOTES: 1. Soil samples were screened for volatile organic	
28—	-						compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
30 —	-						using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization	
- 32—	1						Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
- 34-	-						indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	
- 36—	-						<ul> <li>can serve as a relative indicator for the presence of VOCs.</li> <li>2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of</li> </ul>	
-	-						VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	
38—	-							
-	1							



#### Log of Boring B57-627

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Groundwater Readings Depth

Time to Water

Date

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Date S Logge	d By: J. P		ormativ			AVK/LJJ Stratum		
epth (ft)		•	Pen/ Rec	Field Testing		Description	Geologic Description	Remarks
0 —			(ft)	Data		0'		
0							Asphalt. No description. FILL.	
-	1							
2 —								
-	S-1	3 - 5	2.0/	PID: 45	\ \	3'	S-1 (3 to 5'): Brown, SILT & CLAY, some Sand, little Gravel.	
4 —			1.0	ppmv FID: 17 ppmv	[,'~		Coarse fraction rounded. Moist. FILL.	
-	S-2	5 - 10	5.0/	PID: 20			S-2A (5 to 6'): SILT & CLAY, trace Gravel, Coarse fraction	
6 —			2.0	ppmv FID: 4.8	ľ, i	FILL	rounded. Brown mottling. Moist. FILL (Rounded Native Soil).	
-	-			ppmv PID: 5.9	, / -		S-2B (6 to 10'): Dark brown, fine to coarse SAND and SILT,	
8 —				ppmv FID: 1.3	$[ \cdot ]$		some Gravel, trace Ash, trace Glass. Coarse fraction rounded. Moist. FILL.	
-				ppmv	$\left[ \right] $			
10-	S-3	10 - 15	E 0/	PID: 8.5		10'	S-3A (10 to 12.8'): Gray, CLAY & SILT. Moist.	
-	5-3	10 - 15	5.0/ 3.6	ppmv			S-3A (10 to 12.6). Gray, CLAT & SILT. MOISL	
2—				FID: 1.9 ppmv		CLAY & SILT		
				PID: 4.8	4	12.8'	S-3B (12.8 to 15'): Gray, SILT & CLAY, brown mottling.	
14				ppmv			Moist.	
14-				FID: 0.7 ppmv				
-	S-4	15 - 20	5.0/ 3.0	PID: 6.5 ppmv			S-4A (15 to 18'): Gray, SILT & CLAY, little Gravel, (becoming Wet and more Gravelly with depth). Coarse	
16—	1		0.0	FID: 0.8 ppmv			fraction rounded. Moist to wet.	
-				ppmv				
18—				PID: 6 ppmv			S-4B (18 to 20'): Dark gray, SILT & CLAY, some Gravel	
-				FID: ND		SILT & CLAY	(fractured Shale), trace Sand. Coarse fraction angular. Wet. TILL.	
20—	S-5	20 - 25	5.0/	PID: 6.3			S-5 (20 to 25'): Gray, SILT & CLAY and Gravel (fractured	
-	-		2.5	ppmv FID: ND			Shale), some Sand. Coarse fraction angular. Moist. TILL to Weathered BEDROCK.	
22—	-							
-	-							
24	-							
_	-				$\square$	25'	Dering termineted at 25 feet	
26—							Boring terminated at 25 feet.	
_							NOTES:	
28—							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	
30							per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	
30—	]						VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
-	1						standard using a response factor of 1.0. Results are	
32—							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	
-							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
34 —							concentrations or identify individual compounds, the results	

concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.

3. Boring was backfilled using Cement grout.

36-

38

40



#### Log of Boring B57-628

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, E. Perigard Date Started: 06/21/12 Date Finished: 06/21/12 Groundwater Readings Depth Time to Water Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

	ed By: M.					d: 06/21/12 : AVK/LJJ		
		mple Info	rmatio	on		Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No sampling 0 - 3'. Closed piston to 3' bg.	
2 —	-							-
4 —	S-1	3 - 5	2.0/ 1.3	PID: 76 ppmv FID: 21 ppmv		3'	S-1 (3 to 5'): Brown, Clayey SILT, little fine to coarse Sand, trace Gravel. Coarse fraction subangular to subrounded. Moist. FILL.	-
6 —	S-2	5 - 10	5.0/ 3.4	PID: 17 ppmv FID: 17 ppmv		FILL	S-2 (5 to 10'): Brown, Clayey SILT, little fine to coarse Sand, trace Gravel, dark gray sheen at 9.5 - 9.7' of CLAY & SILT (PID/FID 12/11). Coarse fraction subangular to subrounded.	-
8 —	-						Moist. FILL.	_
- 10—	S-3	10 - 15	5.0/	PID: 10		10'	S-3 (10 to 15'): Dark gray with brown mottling, CLAY & SILT.	-
- 12—	-		3.0	ppmv FID: 12 ppmv			Moist.	_
- 14 —						CLAY & SILT		-
- 16—	S-4	15 - 20		PID: 17 ppmv FID: 11 ppmv			S-4A (15 to 18.6'): Dark gray with brown mottling grading to gray, CLAY & SILT. Moist.	
18—	-			PID: 6 ppmv		18.6'	S-4B (18.6 to 20'): Brown, fine to coarse SAND & GRAVEL,	
20—	S-5	20 - 25	5.0/ 2.2	FID: 4 ppmv PID: 2 ppmv FID: 1 ppmv		SAND &	some Clay & Silt. Coarse fraction subrounded. Moist. S-5A (20 to 24.1'): Brown, fine to coarse SAND & GRAVEL, little Silt. Coarse fraction angular. Wet.	-
22—	-					GRAVEL		-
24—	S-6	25 - 26	1.0/	PID: 2 ppmv FID: 1 ppmv		24.1' CLAYEY SILT 25'	S-5B (24.1 to 25'): Gravish tan, Clayey SILT, some sand to gravel Rock fragments (lower 0.9' of recovery). Coarse	
26—						26'	fraction angular. Moist. TILL. S-6 (25 to 26'): No recovery.	-
28—							Boring terminated at 26 feet.	-
30-							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	-
32—	-						Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization	-
34—							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	-
36—							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
38— -	-						concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	-
40-							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B. 3. Boring backfilled with bentonite chips to ~1.5 bg.	-
42							Cement to grade.	-
44-								-
								Sheet: 1 of 1

Date



#### Log of Boring B57-629

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, E. Perigard Date Started: 06/21/12 Date

ted: 06/21/12 Date Finished: 06/21/12 by: M. Stein Checked By: AVK/LJJ

Ground	water Rea	adings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
				v		

						d: 06/21/12 : AVK/LJJ		
		mple Info	rmatio			Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0	-					0'	Asphalt. No sampling 0 - 3' (closed piston to 3').	-
2 —	-					01		_
4 -	S-1	3 - 5	2.0/ 1.8	PID: 17 ppmv FID: 8 ppmv		3'	S-1 (3 to 5'): Brown, Clayey SILT to SILT & CLAY, little fine to coarse Sand, trace Gravel, very few Slag & Brick particles. Coarse fraction subangular to subrounded. Moist. FILL.	-
6	S-2	5 - 10	5.0/ 2.1	PID: 4.0 ppmv FID: 3 ppmv		FILL	S-2 (5 to 10'): Brown to grayish brown, SILT & CLAY, little fine to coarse Sand, few Slag & Brick fragments, pulverized Concrete from 8.8 to 9.3'. Coarse fraction subangular to subrounded. Moist. FILL.	
8	-							-
10- - - 12-	S-3	10 - 15	5.0/ 3.8	PID: 8 ppmv FID: 7 ppmv		10'	S-3 (10 to 15'): Dark gray to gray with brown mottling, CLAY & SILT grading to SILT & CLAY, trace, fine to medium Sand. Moist. CLAY & SILT to SILT & CLAY.	-
14-	-					CLAY & SILT		-
14— 16— 18—	S-4	15 - 20	5.0/	PID: 12 ppmv FID: 7 ppmv		CLAY & SILT	S-4A (15 to 18.8'): Grayish brown to gray, CLAY & SILT. Moist.	
20-	S-5	20 - 25	5.0/	PID: 11 ppmv FID: 7 ppmv		20'	S-4B (18.8 to 20'): Grayish brown to gray, CLAY & SILT, some Gravel, little fine to coarse Sand, (lower 1.2' of recovery). Coarse fraction subrounded. Moist.	
22-	-		0.3			GRAVEL	S-5 (20 to 25'): Dark brown, GRAVEL, some fine to coarse Sand, little Silt. Coarse fraction subrounded. Wet.	-
24-	-					25'		
26-	S-6	25 - 26	1.0/ 0.5	PID: 6 ppmv FID: 8 ppmv		SAND 26'	Dark brown, fine to coarse SAND and GRAVEL, little Silt. Coarse fraction subrounded. Wet. Boring terminated at 26 feet.	_
ʻil							NOTES:	_
30-	-						<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MinIRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for</li> </ol>	-
32-	_						VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
28— 30— 32— 34— 34—							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
							can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	-
38	-						<ol> <li>Boring was backfilled using Cement grout.</li> </ol>	
40	-							Sheet: 1 of 1



#### Log of Boring B57-630

Ref. Pt.

Depth of Casing

Depth of Hole

Stab. Time

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

40

Foreman: M. Evans, E. Perigard -----Date Starte

----

Date

Groundwater Readings Depth

Time to Water

	Started: 00 d By: M.		•		d: 06/21/12 AVK/LJJ		
33-		mple Info	rmatio		 Stratum		
Depth (ft)	Sample No.	•	Pen/ Rec (ft)	Field Testing Data	Description	Geologic Description	Remarks
0	-				 0'	Asphalt. No sampling 0 - 3' (closed piston to 3').	
2	-						
4	S-1	3 - 5	2.0/ 1.3	PID: 5 ppmv FID: ND	3'	S-1 (3 to 5'): Brown to dark brown, Clayey SILT to CLAY & SILT, little fine to coarse Sand, trace Gravel. Coarse fraction subrounded. Moist. FILL.	-
6	S-2	5 - 10	5.0/ 2.2	PID: 5 ppmv FID: 3 ppmv	FILL	S-2 (5 to 10'): Brown to dark brown, Clayey SILT to CLAY & SILT, little, fine to coarse Sand, trace Gravel, very few Brick particles to fragments. Coarse fraction subangular to subrounded. Moist. FILL.	-
8	-				10'		-
10— - 12—	S-3	10 - 15	5.0/ 4.2	PID: 28 ppmv FID: 19 ppmv	10'	S-3A (10 to 12.5'): Dark gray to gray with brown mottling., CLAY & SILT. Moist.	-
14-	-			PID: 21 ppmv FID: 8 ppmv		S-3B (12.5 to 15'): Dark gray to gray with brown mottling., CLAY & SILT. Moist.	-
- 16—	S-4	15 - 20	5.0/ 4.0	PID: 19 ppmv FID: 10 ppmv	CLAY & SILT	S-4A (15 to 19.1'): Gray to brown, CLAY & SILT. Moist.	-
18-	-			PID: 9 ppmv		S-4B (19.1 to 20'): Dark gray, CLAY & SILT, some Gravel,	-
20-	S-5	20 - 25	5.0/ 0.5	FID: 5 ppmv PID: 12 ppmv FID: 4 ppmv	20'	little fine to coarse Sand. Coarse fraction subrounded to subangular. Moist to wet. S-5 (20 to 25'): Dark brown, fine to coarse SAND, some	-
22	-				SAND	Gravel, little Silt. Coarse fraction subrounded. Wet.	-
- 26—	S-6	25 - 26	1.0/ 0.3	PID: 11 ppmv FID: 8 ppmv	25' CLAYEY SILT 26'	S-6 (25 to 26'): Gray, Clayey SILT, some sand to gravel sediment Rock fragments. Coarse fraction angular. Moist.	-
28-						Boring terminated at 26 feet.	
30-						1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	
32-	-					per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	
34-	-					presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	-
36-	-					concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	-
38	-					Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	

BORING LOG C:USERSIAREICHENBACH/DESKTOP/2466.01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12



# Log of Boring B57-631

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, E. Perigard Date Started: 06/21/12 Da

d: 06/21/12 Date Finished: 06/21/12 M. Stein Checked Bv: AVK/LJJ

Ground	water Rea	dings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
				-		

Logge	d By: M. S	Stein		Checke	d By:	AVK/LJJ		
	Sa	ample Info	ormatio	on		Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)	Field Testing Data		Description	Geologic Description	Remarks
0 —				Dutu		0'	Asphalt. No sampling 0 - 3' (closed piston to 3').	-
-								
2 —	-							-
-	S-1	3 - 5	2.0/ 1.6	PID: 17 ppmv		3'	S-1 (3 to 5'): Brown, SILT & CLAY, little fine to coarse Sand, trace Gravel. Coarse fraction subrounded. Moist. FILL.	
4			1.0	FID: 8 ppmv				-
6 —	S-2	5 - 10	5.0/ 1.5	PID: 4 ppmv FID: 2 ppmv	,/- /		S-2 (5 to 10'): Brown, SILT & CLAY, little fine to coarse Sand, trace Gravel, Sand & Gravel seam at 9.5 - 9.7'.	_
-	-					FILL	Coarse fraction subrounded. Moist. FILL.	
8 —	-							-
-								
10—	S-3	10 - 15	5.0/ 4.0	PID: 8 ppmv	17	10.1'	S-3A (10 to 10.1'): Brown, SILT & CLAY, little fine to coarse Sand, trace Gravel. Coarse fraction subrounded. Moist.	_
- 12—			4.0	FID: 10 ppmv			FILL.	
12				PID: 2 ppmv			S-3B (10.1 to 12.5'): Dark gray to gray with brown mottling, CLAY & SILT, trace fine to medium Sand. Moist.	
14—				FID: 2 ppmv			S-3C (12.5 to 15'): Dark gray to gray with brown mottling, CLAY & SILT, trace, fine to medium Sand towards the	_
-	S-4	15 - 20	5.0/	PID: 3 ppmv		CLAY & SILT	bottom of recovery. Moist. S-4A (15 to 18.8'): Gravish brown, fine to coarse SAND and	
16—			4.8	FID: 1 ppmv			GRAVEL, little Clay & Silt. Coarse fraction subrounded. Moist.	-
-								
18—						18.8'		_
20—				PID: 1 ppmv FID: ND			S-4B (18.8 to 20'): Grayish brown, fine to coarse SAND and GRAVEL, little Clay & Silt. Coarse fraction subrounded. Moist.	_
-	S-5	20 - 25	5.0/ 0.2	PID: 1 ppmv FID: 1 ppmv			S-5 (20 to 25'): Brown, fine to coarse SAND and GRAVEL,	
22—						SAND	little Silt. Coarse fraction subrounded to subangular. Wet.	-
-						0,		
24—								-
- 26—	S-6	25 - 26	1.0/ 1.0	PID: 7 ppmv FID: 2 ppmv		26'	S-6 (25 to 26'): Dark brown, fine to medium SAND, little Silt. Moist. TILL unit not encountered.	
20						20	Boring terminated at 26 feet.	
28—							NOTES:	_
-							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization</li> </ol>	
30—							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	-
-							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization	
32—							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	_
- 34—							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and	_
-	-						and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds the results	
36—							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	_
-							2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	
38—							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	_
-								
_40	-		1	I	1	I		Sheet: 1 of 1



#### Log of Boring B57-632

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc. Foreman: M. Evans, E. Perigard

Groundwater Readings Depth Depth of Casing Depth of Hole Time to Water Ref. Pt.

Stab. Time

Logged By: M. Stein Checked By: AVK/LJJ							· · · ·	
Depth	Sample Information					Stratum		
(ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No sampling 0 - 3' (closed piston to 3').	
_								
2						3'		
4 —	S-1	3 - 5	2.0/ 1.4	PID: 9 ppmv FID: 6 ppmv	- ` ` ` -	3	S-1 (3 to 5'): Brown, fine to coarse SAND, some Silt, little Gravel. Coarse fraction subrounded to subangular. Dry. FILL.	
6 —	S-2	5 - 10	5.0/ 2.2	PID: 5 ppmv FID: 6 ppmv		FILL	S-2 (5 to 10'): Grayish brown, SILT & CLAY, little fine to coarse Sand, trace Gravel, very few Brick & Slag fragments. Coarse fraction subangular. Moist. FILL.	
- 8								
-					,/~ / _			
10-	S-3	10 - 15	5.0/ 3.9	PID: 22 ppmv		10'	S-3A (10 to 12.5'): Dark gray, CLAY & SILT. Moist.	
- 12—			0.0	FID: 30 ppmv				
-				PID: 14 ppmv			S-3B (12.5 to 15'): Dark gray, CLAY & SILT. Moist.	
14—				FID: 16 ppmv				
- 16—	S-4	15 - 20	5.0/ 4.0	PID: 4 ppmv FID: 5 ppmv		CLAY & SILT	S-4A (15 to 19'): Dark gray to dark brown to gray with orange mottling, CLAY & SILT. Moist.	
-								
18—								
- 20				PID: 10 ppmv		20'	S-4B (19 to 20'): Dark gray, CLAY & SILT and Gravel, little fine to coarse Sand. Coarse fraction subrounded. Moist.	
	S-5	20 - 24.9	4.9/ 0.3	FID: 6 ppmv PID: 7 ppmv			S-5 (20 to 24.9'): Brown, fine to coarse SAND & GRAVEL, little Silt. Coarse fraction subrounded to subangular. Wet.	
22—						SAND & GRAVEL		
24								
						24.9'	Boring terminated at 24.9 feet due to MacroCore refusal.	
26—							NOTES:	
- 28-							1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization	
-							Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
30—							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
32—							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
-							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	
34—							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	
- 36—							2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	
-							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	
38—								
-					1			

Date



# Log of Boring B57-633

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 7822 DT Track-Mounted, Direct Push, 1 3/4 x 1 5/8"

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans, M. Wilson, E. Perigard Date Started: 06/20/12 Date Finish

Started: 06/20/12 Date Finished: 06/20/12

Groundwater Readings										
	Depth		Depth	Depth	Stab.					
Date	Time to Water	Ref. Pt.	of Casing	of Hole	Time					

	d By: M. S				-	AVK/LJJ Stratum				
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	on Field Testing Data		Stratum Description	Geologic Description	Remarks		
0 —				Duiu		0'				
· _							(0 - 0.8'): Concrete.			
0							No sampling 0.8 - 4' (closed piston to 4').			
2 —										
_										
4 —	S-1	4 - 5	1.0/	PID: 1 ppmv		4'	S-1 (4 to 5'): Brown, fine to coarse SAND and GRAVEL,			
-	S-2	5 - 10	0.2	FID: ND PID: 6 ppmv			little Silt. Coarse fraction subangular to subrounded. Moist. FILL.			
6 —	-		3.5	FID: 2 ppmv			S-2 (5 to 10'): Brown, fine to coarse SAND, some Gravel,			
_	-				\``	FILL	fractured Concrete debris towards bottom at 9.2 - 9.9'. Coarse fraction subangular to subrounded. Moist. FILL.			
8 —					$\sum_{i=1}^{n}$					
_					Ϋ́, Ι					
10					./-					
10—	S-3	10 - 15	5.0/ 3.0	PID: 11 ppmv		10.3'	S-3A (10 to 10.3'): Brown, fine to coarse SAND, upper 0.3' of recovery. Coarse fraction subangular to subrounded.			
-	1		0.0	FID: 3 ppmv			Moist. FILL.			
12—				PID: 14 ppmv			S-3B (10.3 to 15'): Dark gray with brown mottling towards			
-	-			FID: 4 ppmv			bottom of recovery, CLAY & SILT. Moist.			
14 —	-									
-	S-4	15 - 20	5.0/	PID: 4 ppmv		CLAY & SILT	S-4A (15 to 19.8'): Gray with brown mottling grading to gray			
16—	3-4	15 - 20	3.1	FID: 1 ppmv			with orange mottling, CLAY & SILT. Moist.			
_										
10										
18—										
-										
20—	S-5	20 - 25	5.0/	PID: 4 ppmv FID: ND	$\forall f$	20'	S-4B (19.8 to 20'): Dark gray, fine to coarse SAND and			
_	-		1.5	PID: 3 ppmv			Gravel, some Clay & Silt. Coarse fraction subrounded. Moist. TILL.			
22—	-			FID: 1 ppmv			S-5 (20 to 25'): Gray to dark tan, SILT & CLAY and fine to			
_	-					SILT & CLAY	coarse , sand & gravel sediment Rock. Coarse fraction angular. Moist. TILL.			
24										
						25'				
00						20	Boring terminated at 25 feet.			
26—							NOTES:			
-	1						1. Soil samples were screened for volatile organic			
28—							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts			
-							per million by volume (ppmv) isobutylene-in-air standard			
30 —							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization			
-							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are			
32—							presented in ppmv; the typical detection limit is 1 ppmv. ND			
_							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and			
34 —							FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results			
0-1							can serve as a relative indicator for the presence of VOCs.			
-	1						2. Soil samples collected were submitted to Lancaster			
36 —							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.			
-							3. Boring backfilled with Portland Cement Grout.			
38—										
_										
40										



#### Log of Boring B57-634

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/21/12

Groundwater Readings									
		Depth		Depth	Depth	Stab.			
Date	Time	to Water	Ref. Pt.	of Casing	of Hole	Time			

Foreman: D. Richmond Date Started: 06/21/12 Logged By: J. Prellwitz				Checke	d By:	d: 06/21/12 AVK/LJJ		Ι
Depth (ft)	Sample Info Sample Depth No. (ft)		Pen/ Rec (ft)	n Field Testing Data	Stratum Log Description		Geologic Description	Remarks
0 —						0'	(0 - 0.8'): Asphalt.	-
2 —							No sampling 0.8 - 3' (closed piston to 3').	-
4	S-1 S-2	3 - 5 5 - 10	2.0/ 5.0/ 4.0	PID: 5.8 ppmv FID: 5.2 ppmv PID: 54 ppmv FID: 19 ppmv		3'	S-1 (3 to 5'): Brown to dark brown, fine to coarse SAND, some Gravel, little Silt, few particles Slag and xxx Fill material. Coarse fraction subangular to subrounded Moist. FILL. S-2 (5 to 10'): Brown, SILT & CLAY, some fine to coarse Sand, little Gravel, trace Bricks. Transitioning to gray, SILT & CLAY at base. Coarse fraction rounded. Moist. FILL.	-
8 — - 10—	S-3	10 - 15	5.0/ 4.0	PID: 45 ppmv		10'	S-3A (10 to 12.5'): Gray, CLAY & SILT, trace , Gravel (at top). Moist.	-
				FID: 15 ppmv PID: 35 ppmv FID: 5.8 ppmv		CLAY & SILT	S-3B (12.5 to 15'): Gray, CLAY & SILT, brown mottling (at bottom). Moist.	-
 16  18	S-4	15 - 20	5.0/ 3.5	PID: 70 ppmv FID: 16 ppmv		15'	S-4A (15 to 19'): Gray, SILT & CLAY, little Gravel, trace Sand, brown mottling. Moist.	
_ 20— _ 22—	S-5	20 - 25	5.0/ 1.5	PID: 350 ppmv FID: 41 ppmv PID: 8.6 ppmv FID: 2.6 ppmv		SILT & CLAY	S-4B (19 to 20'): Gray, SILT & CLAY and Gravel, some fine to coarse Sand. Coarse fraction rounded. Wet. S-5 (20 to 25'): Gray, SILT & CLAY, some , Gravel (fractured Rock), little, fine to coarse Sand. Coarse fraction angular. Moist. TILL.	
24 — _ 26 —	S-6	25 - 26	1.0/ 1.3	PID: 11 ppmv FID: ND		25' CLAY & SILT 26'	S-6 (25 to 26'): Brown, CLAY & SILT, some fine to coarse Sand, some Gravel. Coarse fraction subrounded to angular Wet.	
28—							Boring terminated at 26 feet.	
- 30—							NOTES: 1. Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard	
32—							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	
34 — - 36 —							standard using a response factor of 1.0. Results are presented in ppmv, the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	
- 38—							<ul> <li>can serve as a relative indicator for the presence of VOCs.</li> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> <li>Boring was backfilled using Cement grout.</li> </ul>	
40								Sheet: 1 of 1



Date Finished: 06/21/12

#### Log of Boring B57-635

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/21/12

Groundwater Readings Depth Depth of Casing Depth of Hole Time to Water Ref. Pt.

Stab. Time

	Started: 06 d By: J. P					d: 06/21/12 : AVK/LJJ		
	Sample Information Stratum					Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No description. FILL.	_
2 -								_
4	S-1	3 - 5	2.0/ 1.0	PID: 5 ppmv FID: 3 ppmv		3'	S-1 (3 to 5'): Brown, Clayey SILT, little fine to coarse Sand, little Gravel. Coarse fraction subrounded. Moist. FILL.	-
- 6 — -	S-2	5 - 10	5.0/ 2.5	PID: 32 ppmv FID: 22 ppmv		FILL	S-2 (5 to 10'): Dark brown, SILT & CLAY, little Gravel, little Sand, trace Organics (Wood), trace Brick. Coarse fraction subrounded. Moist. FILL.	- 
8	-							-
10	S-3	10 - 15	5.0/ 4.5	PID: 32 ppmv FID: 16 ppmv		10' CLAY & SILT	S-3A (10 to 13.8'): Gray, CLAY & SILT, trace Roots. Moist.	-
- 14—	-			PID: 11 ppmv		13.8'	S-3B (13.8 to 15'): Gray, SILT & CLAY, brown mottling. Moist.	
- 16— -	S-4	15 - 20	5.0/ 4.0	FID: 5.4 ppmv PID: 8.8 ppmv		SILT & CLAY	S-4A (15 to 18.7'): Gray, SILT & CLAY, trace Gravel, brown mottling. Coarse fraction rounded. Moist.	-
18-	-			FID: 4.2 ppmv PID: 8.3 ppmv		18.7'	S-4B (18.7 to 20'): Olive brown, SILT & CLAY and Gravel, little fine to coarse Sand, brown mottling. Coarse fraction	-
20	S-5	20 - 25	5.0/ 2.5	FID: 2 ppmv PID: 9.3 ppmv FID: 7 ppmv		SAND & GRAVEL	rounded. Wet. S-5A (20 to 24'): Brown, GRAVEL, some Silt, little fine to coarse Sand. Coarse fraction angular. Wet.	-
- 24—	-			PID: 10		24' CLAYEY SILT	S-5B (24 to 25'): Gray, Clayey SILT - SILT & CLAY, some	-
- 26—	S-6	25 - 26	1.0/ 1.5	ppmv FID: 4.1 ppmv		CLAYEY SILT 25' CLAY & SILT 26'	Gravel (fractured Shale), trace Sand. Coarse fraction angular. Moist. TILL. 6 (25 to 26'): Gray, CLAY & SILT, some Gravel (fractured	· · ·
- 28	-			PID: 3.4 ppmv FID: 1.7 ppmv			Shale), little Sand. Coarse fraction angular. Wet. TILL. Boring terminated at 26 feet.	-
30-							NOTES: 1. Soil samples were screened for volatile organic	-
32—							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	_
34 <i>—</i>							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	-
36—	-						presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	-
38-	-						concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs. 2. Soil samples collected were submitted to Lancaster	-
40	-						Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	-
42	-							-
44-								-
								Sheet: 1 of 1

Date



Date Finished: 06/21/12

## Log of Boring B57-636

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/21/12

Groundwa	Groundwater Readings												
		Depth		Depth	Depth								
Date	Time	to Water	Ref. Pt.	of Casing	of Hole								

Stab. Time

	started: 06 d By: J. P					d: 06/21/12 : AVK/LJJ		
	· ·	mple Info	rmatio	n		Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —						0'	Asphalt. No description. FILL.	-
2 —								_
- 4 —	S-1	3 - 5	2.0/ 1.0	PID: 13 ppmv FID: 8.3		3'	S-1 (3 to 5'): Dark brown, SILT & CLAY, little fine to coarse Sand, trace Gravel. Coarse fraction rounded. Moist. FILL.	-
- 6 8	S-2	5 - 10	5.0/ 3.0	ppmv PID: 5.9 ppmv FID: 6.2 ppmv		SILT & CLAY	S-2A (5 to 9.6'): Dark brown, SILT & CLAY, little fine to coarse Sand, trace Gravel. Coarse fraction rounded. Moist. FILL.	
- 10	S-3	10 - 15	5.0/ 4.5	PID: 3.4 ppmv FID: 1.7		10' CLAY & SILT	S-2B (9.6 to 10'): Gray, SILT & CLAY, brown mottling. Moist.	-
12—				ppmv PID: 4.6 ppmv FID: 1.7		12'	Gravel (at top). Coarse fraction rounded. Moist. S-3B (12 to 15'): Gray, SILT & CLAY, brown mottling. Moist.	
14— - 16— - 18—	S-4	15 - 20	5.0/ 3.0	ppmv PID: 4.6 ppmv FID: 2.5 ppmv PID: 9.6 ppmv FID: 2.5		SILT & CLAY	S-4A (15 to 19'): Gray, SILT & CLAY, brown mottling. Moist.	
- 20	S-5	20 - 25	5.0/	ppmv PID: 8.2 ppmv FID: 3.9		19' SAND and SILT 20'	S-4B (19 to 20'): Dark gray, fine to coarse SAND and SILT, some Gravel. Coarse fraction rounded. Wet.	· _
- 22—			3.0	ppmv PID: 47 ppmv		SILT & CLAY	S-5A (20 to 23'): Brown to gray, SILT & CLAY and fine Sand, some Gravel (fractured Shale). Coarse fraction angular. Wet. TILL.	-
- 24 —				FID: 14 ppmv PID: 18 ppmv FID: 6.3		23' CLAY & SILT	S-5B (23 to 25'): Gray, CLAY & SILT, some Gravel (fractured Shale), little fine to coarse Sand. Coarse fraction angular. Moist. TILL.	-
- 26 -	S-6	25 - 29	4.0/ 5.0	ppmv PID: 6.8 ppmv FID: 23 ppmv	27 27 2	25' WEATHERED BEDROCK	S-6 (25 to 29'): Light gray, Clayey SILT, and gravelly fractured Rock, some fine to coarse Sand. Coarse fraction angular. Moist.	-
28— - 30—					71	29'	Boring terminated at 29 feet.	
-							NOTES:	-
32							<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts per million by volume (ppmv) isobutylene-in-air standard</li> </ol>	-
34 <i></i> -							using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization Detector (FID) calibrated to a 100 ppmv methane-in-air	-
36							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID and FID managementation and structure to PCCs. Atthematic PID and	
38—							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
40							<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	-
42							3. Boring was backfilled using Cement grout.	-
44								_
								Sheet: 1 of 1

BORING LOG C.USERSIAREICHENBACHIDESKTOP/2466.01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12



## Log of Boring B57-637

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, Direct Push, 2.125" OD x 1.5" ID; Hollow Stem Auger 4 1/4" ID; 0 - 5 Solid Stem Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: D. Richmond Date Started: 06/21/12

Groundwa	iter Rea					<b>.</b>
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

	an: D. Rio tarted: 06			Date Fir	nishe	d: 06/21/12		
Logge	d By: J. P	rellwitz		Checke	d By:	AVK/LJJ		
Depth (ft)	Sample	mple Info Depth	rmatio Pen/ Rec		Log	Stratum Description	Geologic Description	Remarks
	No.	(ft)	(ft)	Data				
0 —						0'	Asphalt. No description. FILL.	-
-								-
2 —						3'		_
4 —	S-1	3 - 5	2.0/ 1.5	PID: 23 ppmv		0	S-1 (3 to 5'): Brown, CLAY & SILT, some Sand, trace Gravel, trace Brick. Coarse fraction subrounded. Moist.	_
_	S-2	5 - 10	5.0/	FID: 12 ppmv PID: 155	$\langle \cdot \rangle$		FILL. S-2A (5 to 9.6'): Olive brown - gray, SILT & CLAY, trace	-
6 —	0-2	5-10	4.0	FID: 81 ppmv	$\sqrt{-}$	FILL	Gravel, trace Sand, trace Brick, trace Organics. Coarse	-
-							fraction subrounded. Moist. FILL.	-
8 —					( )			-
40				PID: 39	·/-	9.6'	S-2B (9.6 to 10'): Black - gray, CLAY & SILT, little Organics,	-
10	S-3	10 - 15	5.0/	FID: 39 ppmv FID: 16 ppmv			slight odor, black staining. Moist.	
12—				PID: 45 ppmv		CLAY & SILT	S-3A (10 to 13.5'): Gray, CLAY & SILT, trace Sand, trace Gravel (top only). Brown mottling. Moist.	_
_				FID: 15 ppmv		CLAY & SILT		-
14 —				PID: 8.2 ppmv			S-3B (13.5 to 15'): Gray, CLAY & SILT, Brown mottling. Moist.	_
_	S-4	15 - 20	5.0/	FID: 1.5 ppmv	$\forall f$	15'	S-4A (15 to 18.8'): Gray, SILT & CLAY, brown mottling.	-
16—			4.5	PID: 2.3 ppmv			Moist.	-
- 18				FID: 1.9 ppmv		SILT & CLAY		-
10 -				PID: 8.1		18.8'	S-4B (18.8 to 20'): Dark gray, Clayey SILT, some fine to	
20—	S-5	20 - 25	5.0/	ppmv FID: 2.1		CLAYEY SILT 20'	coarse Sand, little Gravel. Coarse fraction rounded to	
_	5-5	20 - 25	3.0/	ppmv PID: 12			S-5A (20 to 25'): Dark brown, fine to coarse SAND &	-
22—				ppmv FID: 6.1		SAND & GRAVEL	GRAVEL, some Silt. Coarse fraction rounded to subrounded Wet.	_
-				ppmv				-
24 —				PID: 13 ppmv		CLAYEY SILT	S-5B (24 to 25'): Gray, Clayey SILT, little Gravel (fractured Rock), little Sand. Coarse fraction angular. Moist. TILL.	
26-	S-6	25 - 29	4.0/ 3.0	FID: 3 ppmv PID: 8.3	1	25'	S-6 (25 to 29'): Light gray, Clayey SILT, and Gravel	_
				ppmv FID: 4.1	77	WEATHERED BEDROCK	(fractured Rock), little, fine to coarse Sand. Coarse fraction angular. Moist.	-
28—				ppmv	17	BEDROCK		_
_					VΓ	29'	Boring terminated at 29 feet.	-
30—							-	-
2							NOTES: 1. Soil samples were screened for volatile organic	-
32-							compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	-
34 —							per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	_
-							VOCs using a MicroFID hand-held Flame Ionization	-
36 —							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are	-
-							presented in ppmv; the typical detection limit is 1 ppmv. ND indicates not detected. NA indicates not available. The PID	-
38—							and FID measure relative levels of VOCs. Although PID and FID screening cannot be used directly to quantify VOC	-
- 40							concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
40							2. Soil samples collected were submitted to Lancaster	
42							Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.	-
-							3. Boring was backfilled using Cement grout.	-
44 —								-
_								Sheet: 1 of 1

BORING LOG C:USERSIAREICHENBACH/DESKTOP/2466.01_LOGS.GPJ 2010 SANBORN HEAD V1.GLB 2010 SANBORN HEAD V1.GDT 11/30/12



## Log of Boring B57-638

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, 2.125" OD x 1.5" ID

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans Date Started: 07/23/12

12 Date Finished: 07/23/12

Groundwa	ater Rea	adings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time

Logge	d By: J. F	Prellwitz		Checke	d By:	AVK/LJJ		
	Sa	ample Info	ormatio	on		Stratum		
Depth (ft)		Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0				2444		0'	Asphalt. No sampling. Closed piston 0-5' bgs.	-
2								-
-								
4	-							_
6	S-1	5 - 10	5.0/ 3.5	PID: 2.7 ppmv FID: 2.3	· · ·	5'	S-1A (5 to 8.5'): Gray-brown, SILT & CLAY, trace Gravel, trace Sand, trace Roots. Coarse fraction rounded. Moist. FILL.	_
-	-			ppmv		FILL	1 ILL.	-
8	-			PID: 5 ppmv FID: 3.1		8.5' CLAYEY SILT	S-1B (8.5 to 10'): Gray, Clayey SILT. Moist.	-
10-	S-2	10 - 15	5.0/ 4.0	PID: 6.2 ppmv		10'	S-2 (10 to 15'): Gray, SILT & CLAY, brown mottling. Dry. Moist at bottom 4".	-
 12	-		4.0	FID: 2.4 ppmv				-
	_							
14	S-3	15 - 20	5.0/	PID: 2.3		SILT & CLAY	S 2A (15 to 19 5'), Dark grov, SILT & CLAV, little Crowd	-
16—	3-3	15 - 20	2.5	ppmv FID: 1.6 ppmv			S-3A (15 to 18.6'): Dark gray, SILT & CLAY, little Gravel, trace Sand, brown mottling. Coarse fraction rounded. Moist.	-
- 18—	-			PID: 1.8 ppmv FID: 1.7				-
-	-			ppmv PID: 3.1 ppmv		18.6' CLAYEY SILT	S-3B (18.6 to 20'): Dark gray, Clayey SILT and fine to coarse Sand, some Gravel. Coarse fraction rounded. Wet.	
20	S-4	20 - 25	5.0/ 2.5	FID: 1.8 ppmv PID: 5.6	<u>л</u> д,	20'	S-4 (20 to 25'): Gray-brown, fine to coarse (mostly fine) SAND & GRAVEL, some Silt. Coarse fraction rounded to	-
22—	_			ppmv FID: 1.8 ppmv		SAND & GRAVEL	subrounded Moist.	-
- 24						GIVINEL		_
-	-					25'	Boring terminated at 25 feet.	
26							NOTES:	-
28—	-						<ol> <li>Soil samples were screened for volatile organic compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts</li> </ol>	_
- 30—	-						per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for VOCs using a MicroFID hand-held Flame Ionization	
-							Detector (FID) calibrated to a 100 ppmv methane-in-air standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	
32							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	-
34—	-						FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results can serve as a relative indicator for the presence of VOCs.	-
36-							<ol> <li>Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of VOCs by USEPA 8260B.</li> </ol>	_
-							3. Boring was backfilled using Cement grout.	
38								-
40	-							Sheet: 1 of 1



## Log of Boring B57-639

Ground Elevation: Not Surveyed

Sanborn, Head & Associates, Inc.

Drilling Method: Geoprobe® 6620DT Track-Mounted, 2.125" OD x 1.5" ID

Sampling Method: 5' long Stainless Steel MacroCore® Sampler

Drilling Company: Parratt Wolff, Inc.

Foreman: M. Evans Date Started: 07/23/12

Date Finished: 07/23/12

Groundwa	ter Rea	dings				
Date	Time	Depth to Water	Ref. Pt.	Depth of Casing	Depth of Hole	Stab. Time
2410				o. o		

	ed By: J. F					a: 07/23/12 : AVK/LJJ		
	Sa	ample Info	ormatio	on		Stratum		
Depth (ft)	Sample No.	Depth (ft)	Pen/ Rec (ft)	Field Testing Data	Log	Description	Geologic Description	Remarks
0 —	_					0'	Asphalt. No sampling. Closed piston 0-5' bgs.	-
2 —								-
4								_
6	S-1	5 - 10	5.0/ 3.0	PID: 2.7 ppmv FID: 0.7 ppmv		5' FILL	S-1A (5 to 8.8'): Gray-brown, SILT & CLAY, some fine to coarse Sand, some Gravel, trace Roots, trace Concrete. Coarse fraction rounded to subrounded Moist. FILL.	
8				PID: 2.4		9'	S-1B (9 to 10'): Gray, CLAY & SILT. Moist.	-
10-	S-2	10 - 15	5.0/	ppmv FID: 1.1	4	CLAY & SILT 10'	S-2A (10 to 13'): Gray, SILT & CLAY, brown mottling. Moist.	-
12-	5-2	10 - 15	5.0/ 5.0	ppmv PID: 8.1 ppmv		SILT & CLAY	S-2A (10 to 13 ). Gray, SILT & CLAT, brown motuling. Moist.	
				FID: 0.5 ppmv		13'		
14						CLAY & SILT		
				PID: 3.5 ppmv		15'	S-2C (14 to 15'): Gray, CLAY & SILT, little Gravel, trace Sand. Coarse fraction rounded. Moist.	_
14— 14— 16— 18—	S-3	15 - 20	5.0/ 3.0	FID: ND PID: 2.8 ppmv FID: 0.2		10	S-3 (15 to 20'): Gray, GRAVEL, some fine to coarse Sand, little Silt. Coarse fraction rounded. Wet.	-
18-	-			ppmv				-
20-	S-4	20 - 25	5.0/ 3.5			GRAVEL	S-4A (20 to 24'): Gray, GRAVEL. Coarse fraction rounded. Wet. All water and Gravel. Unable to collect enough soil to sample.	-
22-	-							-
24	-			PID: 1.9			S-4B (24 to 25'): Gray-brown, fine to coarse SAND & GRAVEL, little Silt. Coarse fraction rounded to subrounded	-
	-			ppmv FID: 1 ppmv	<u> </u>	GRAVEL	GRAVEL, little Silt. Coarse fraction rounded to subrounded Moist.	
26-	-						Boring terminated at 25 feet.	-
- I	-						NOTES:	
28-							1. Soil samples were screened for volatile organic	-
	-						compounds (VOCs) using a MiniRAE 3000 Photoionization Detector (PID) with a 10.6 eV lamp, calibrated to a 100 parts	
30-							per million by volume (ppmv) isobutylene-in-air standard using a response factor of 1.0. They were also screened for	-
							VOCs using a MicroFID hand-held Flame lonization Detector (FID) calibrated to a 100 ppmv methane-in-air	
32-							standard using a response factor of 1.0. Results are presented in ppmv; the typical detection limit is 1 ppmv. ND	-
							indicates not detected. NA indicates not available. The PID and FID measure relative levels of VOCs. Although PID and	
34-							FID screening cannot be used directly to quantify VOC concentrations or identify individual compounds, the results	-
36-							can serve as a relative indicator for the presence of VOCs.	_
28 — 30 — 5 32 — 5 32 — 5 32 — 5 34 — 5 36 — 5 36 —							2. Soil samples collected were submitted to Lancaster Laboratories of Lancaster, Pennsylvania for analysis of	-
							VOCs by USEPA 8260B. 3. Boring was backfilled using Cement grout.	_
38-							or coming the business using contain group.	
40								
								Sheet: 1 of 1

# **APPENDIX E**

# **COMMUNITY AIR MONITORING PROGRAM**



# **APPENDIX E**

## COMMUNITY AIR MONITORING PROGRAM OPERABLE UNIT #5/BUILDING 57 AREA, UNION AND ENDICOTT, NY

This appendix summarizes the Community Air Monitoring Program (CAMP) performed by Sanborn Head & Associates, Inc. (Sanborn Head) at Building 57 (Site) located in IBM Operable Unit # 5, Union and Endicott, NY as a part of Electrical Resistance Heating (ERH) thermal treatment system installation and operation at Building 57 (Site) located in IBM Operable Unit # 5, Union and Endicott, NY. The work described herein was performed in accordance with the Agency-approved Interim Remedial Measure (IRM) Work Plan¹ and February 2, 2012 CAMP Addendum². This appendix is subject to limitations as described in Appendix A.

Instrumentation, monitoring parameters, and action limits for potential air emissions are summarized in Exhibit 1 below.

Exhibit 1: CAMP Details												
Instrument	Parameter	Action Limi	ts	Monitoring Mode								
		Interior	Exterior									
RAEguard Photoionization detector (PID)	Volatile Organic Compounds (VOCs)	3.8 ppmv (Intermediate Response Level); 100 ppmv (Shutdown Action Level)	3.8 ppmv (Shutdown Action Level for downwind)	Continuous during ERH operation								
Haloguard-I Monitor	CFC-113	50 ppmv (Intermediate Response Level); 500 ppmv (Shutdown Action Level)	NM	Continuous during ERH operation in interior CFC Area								
Dustrack DRX Monitors	Particulate Matter	suppressior	100 μg/m³ above background (employ dust suppression) 150 μg/m³ above background (suspend work									
MiniRAE 3000 PID	VOCs	3.8 ppmv for interior and 148 locations	Continuous during excavation activities									
Miran SapphIRe	CFC-113	800 ppmv for interio	r locations	Continuous during excavation activities								

### E.1 CAMP-Excavation Activities

Sanborn Head conducted air monitoring for the presence of VOCs (using a ppb RAE 3000 meter), particulates (using Dusttrak Aerosol Monitor 8520 and Dusttrak II Desktop Monitor 8530), and CFC-113 (using a Miran SapphIRe) at downwind locations in accordance with the Agency-approved CAMP during excavation work. Only PID and particulate monitoring was conducted during exterior excavation activities. The meters were calibrated daily and calibration checks were performed at the end of each day.

¹ Sanborn, Head Engineering, P.C., June 24, 2011, "In Situ Thermal Treatment IRM Work Plan, Operable Unit #5/ Building 57, Former IBM Facility, Union and Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".

² Sanborn, Head & Associates, Inc., February 2, 2012, "Appendix E – Revised Community Air Monitoring Plan, Operable Unit #5/Building 57, Former IBM Facility, Union and Endicott, New York".

During excavation activities, PID readings remained consistently below the action levels of 3.8 parts per million and 148 ppmv (ppmv) above background for exterior and interior locations respectively. **CFC-113** readings remained consistently below the action level of 800ppm during interior excavation activities.

The action level for particulates in air was 100 micrograms per cubic meter  $(\mu g/m^3)$  above the established background concentration. Although very little visible dust was generated during excavations, there were episodes of action level exceedance



CAMP inside Building 57A during Sheet Pile Installation

noted for particulate concentrations above the action levels. These episodes were mainly associated with concrete floor saw cut dust and backfill pea gravel dust, lifted by movement of equipment traffic inside the building. Project team members conducted periodic cleaning of interior locations to mitigate these exceedances.

CAMP data recorded during installation of the ERH system are retained and available upon request.

### E.2 CAMP-ISTT ERH Operation

Community air monitoring data for the duration ERH treatment of are summarized on Figures E.1 through E.3. These figures present the monitoring data for the interior loading dock treatment area between Buildings 57 and 57A (Figures E.1 and E.2) and the downwind exterior monitoring location (Figure E.3). During ERH treatment, CAMP data were reported weekly to the Agencies and bi-weekly to the Site owner for communication with building tenants.



VOC and CFC-113 concentrations

Interior CFC Area CAMP during ISTT-ERH Operation

became elevated above the Response Levels within the loading dock area between 1:00 AM and 7:30 AM on March 19, 2012. Within this time period, CFC-113 concentrations rose in the loading dock area above the Shutdown Action Level and for a short duration exceeded the Permissible Exposure Limit (PEL) established by the Occupational Safety and Health Administration (OSHA). This condition was caused by the failure of the Treatment Train 2

SANBORN 📗 HEAD

blower drive belt, which interrupted vapor extraction from the CFC and B57A Areas and cause the failure of the auto-dialer system to notify project team personnel. Once the situation was identified, communication and notification, checks of the monitoring equipment, and venting of the interior treatment area were performed according to the CAMP, and Agency personnel were notified. Several key modifications and safety interlocks were introduced in response to this episode, as described in the ERH System Components section of IRM Completion Report.

There were instances where CFC-113 measurements in the interior loading dock area intermittently exceeded the response level threshold. These exceedances were mainly due to the sensitivity of the instrument to changes in temperature and humidity in ambient air, and reaction to VOCs from painting activities within the loading dock area by the building tenant. The auto dialer system provided notification to project team personnel who responded to check on-site conditions and did not find indications that response was due to indoor air quality conditions.

Exterior downwind VOC meter experienced intermittent loss of connectivity with the data logger during severe weather events. Intermittent data continued to be recorded by the data logger during these events. The auto dialer system provided notification of interruption to project team personnel who responded to check on-site conditions and the instrumentation. If site conditions indicated that the response was due to severe weather and not due to indoor air quality conditions, the instrument was allowed to by-pass the Shutdown Action Level for uninterrupted operations of System.

The Shutdown Action Level was exceeded in the exterior downwind monitoring location at times during ERH treatment, as shown on Figure E.3. No more than five consecutive readings were recorded above the action level at any time during ERH operation. Other exceedances included three of four consecutive readings, and three single readings above the action level between April and September. In each case, project personnel responded to check the monitoring instrument and site conditions, and detected concentrations returned quickly to below the action level. These instances were reported to the Agencies in weekly CAMP submittals.

CAMP data recorded during operation of the ERH system are retained and available upon further request.

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix E - Community Air Monitoring Program\20121130 Appendix E - Community Air Monitoring Program.docx

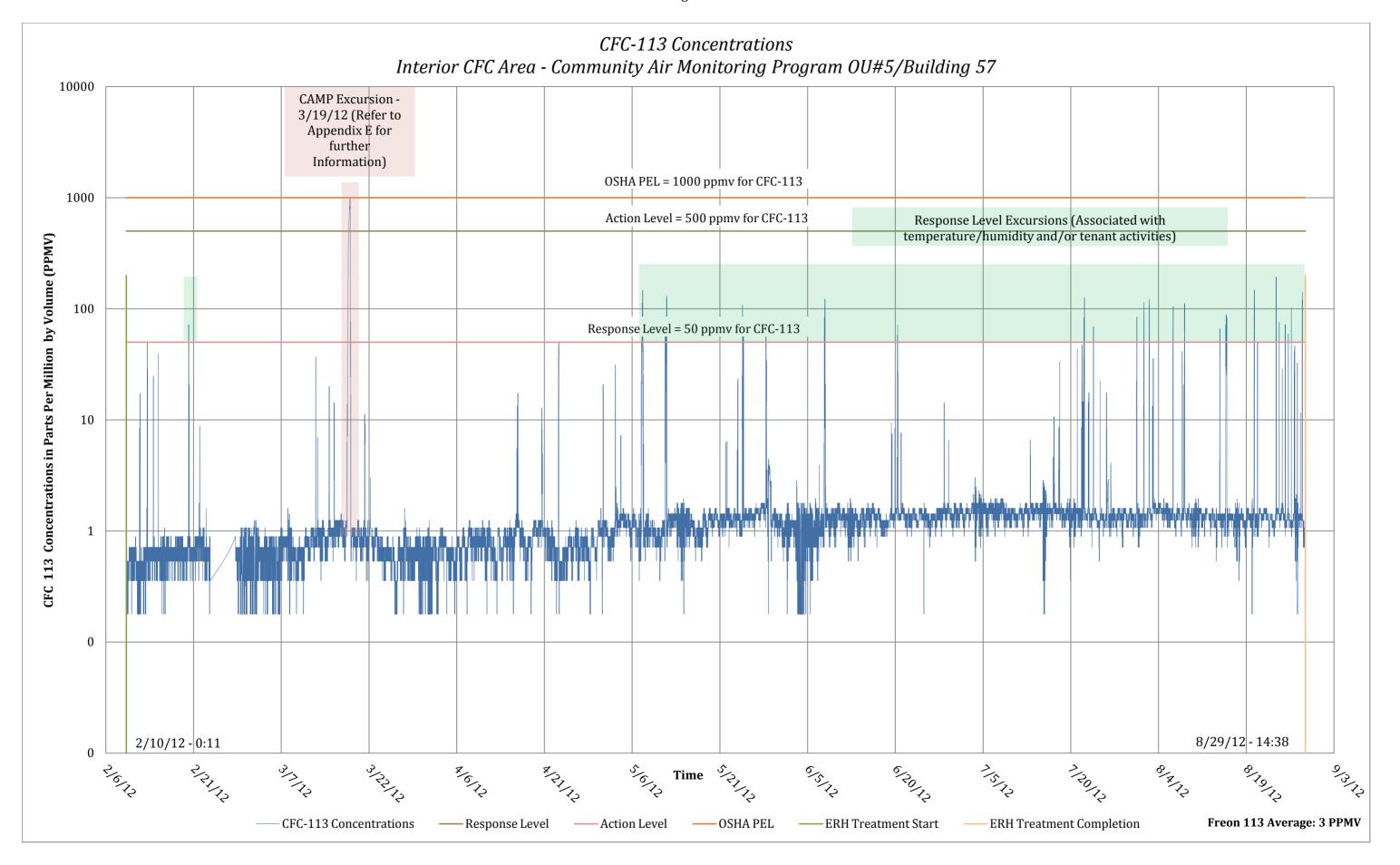
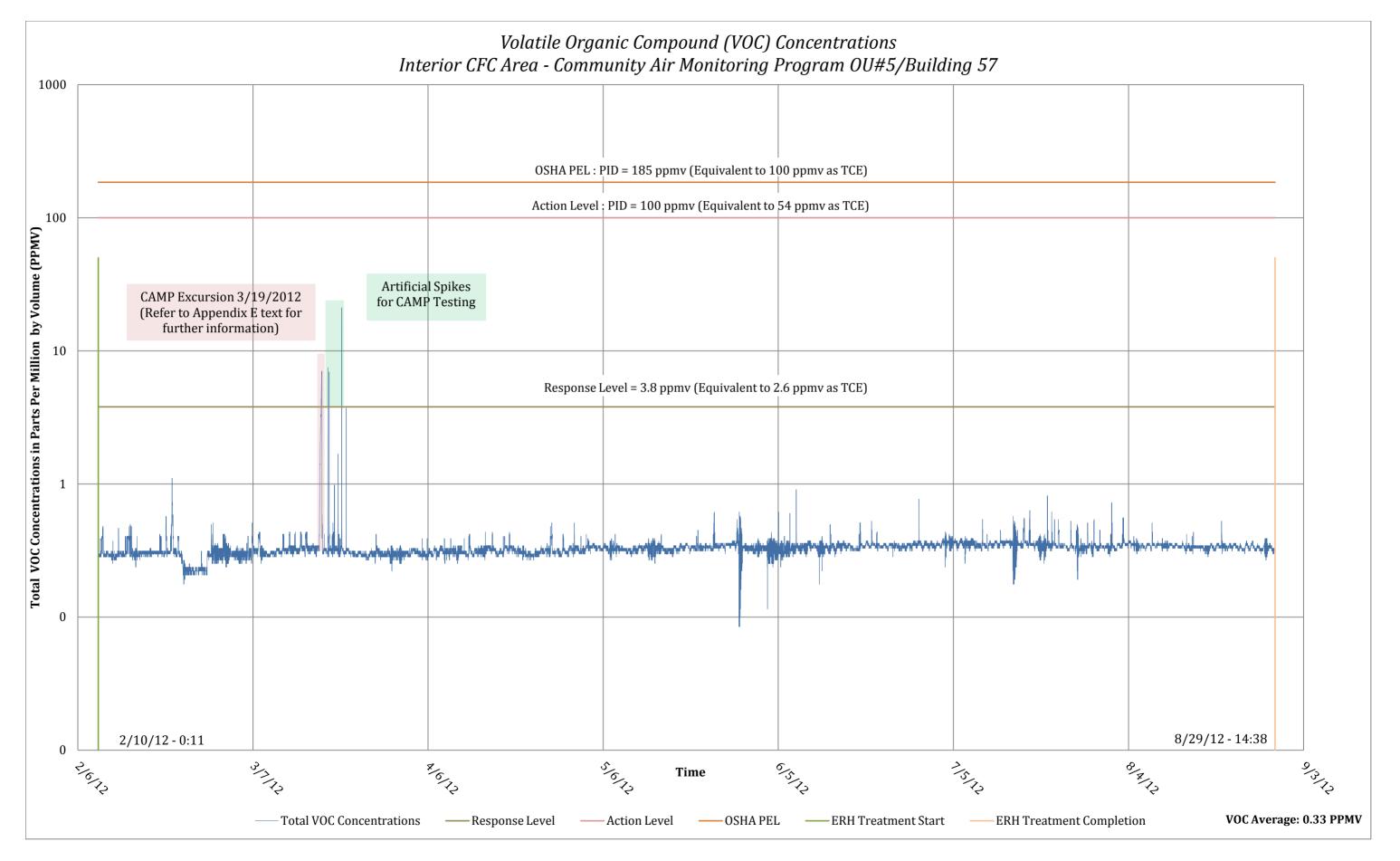
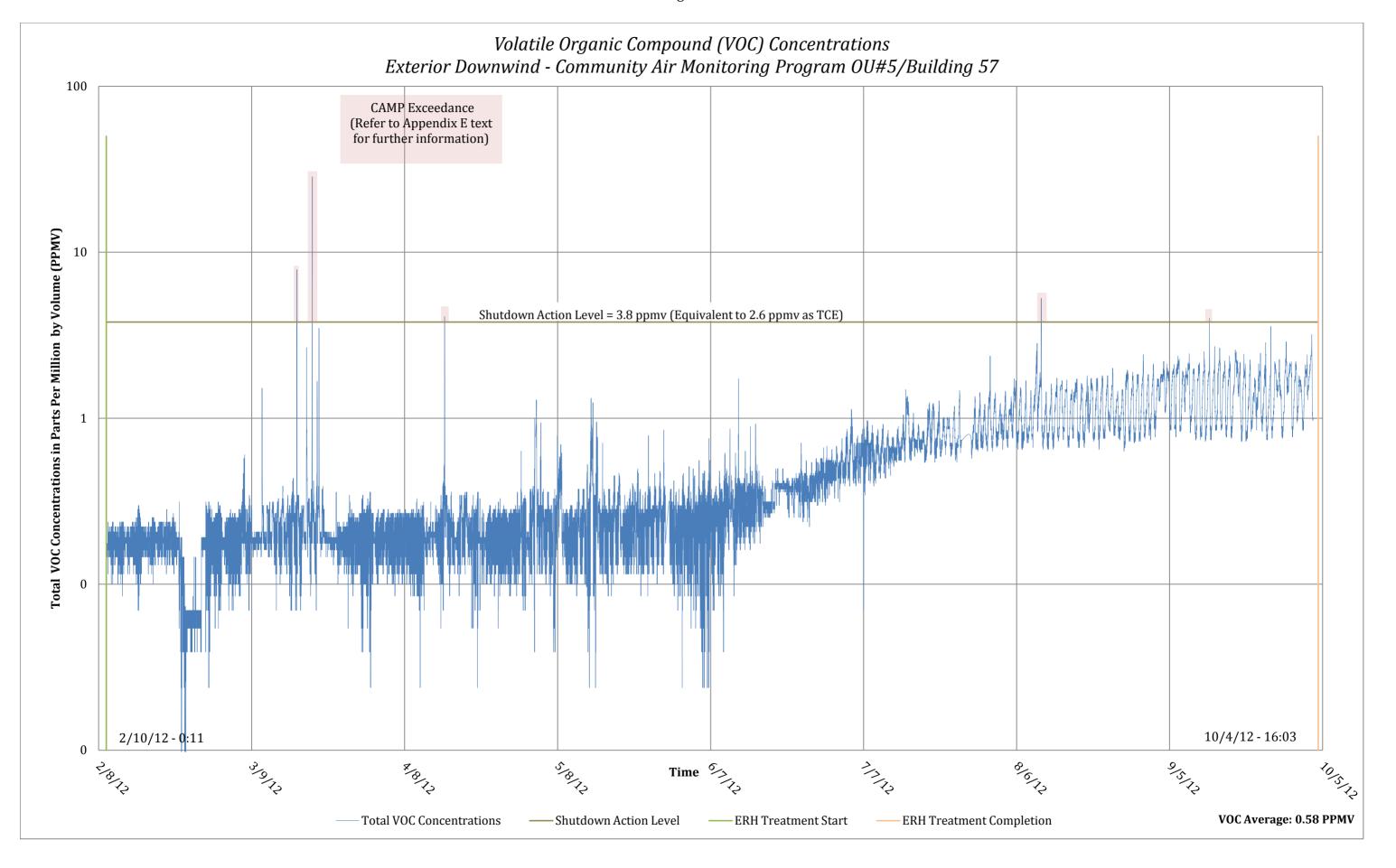





Figure E.1

Figure E.2





# **APPENDIX F**

# **TRACER MONITORING**

SANBORN 📙 HEAD

# **APPENDIX F**

### **TRACER MONITORING OPERABLE UNIT #5/BUILDING 57 AREA, UNION AND ENDICOTT, NY**

This appendix summarizes the tracer monitoring performed by Sanborn Head & Associates, Inc. (Sanborn Head) from October 10, 2011 through September 19, 2012 at Building 57 (Site) located in IBM Operable Unit # 5, Union and Endicott, NY. The work described herein was performed in accordance with the agency approved Interim Remedial Measure (IRM) Work Plan¹ and Proposed Sodium Bromide Tracer Test Letter². The report and this appendix are subject to limitations as described in Appendix A.

The objective of tracer monitoring was to help refine the site conceptual model for groundwater transport and groundwater flux at the Site, and to support the observations of hydraulic confinement upon the implementation of in-situ thermal treatment with Electrical Resistive Heating (ERH) thermal treatment system.

Bromide (Br⁻) concentrations, temperature and specific conductance were monitored on a regular basis with a field probe prior to and following injection at "sentinel" monitoring wells located down gradient of the Site. Exhibit 1 below indicates the tracer injection wells and sentinel monitoring wells for tracer monitoring during ERH implementation. Well locations are shown on Figure 2.

Exhibit 1: Injection and S	entinel Monitoring Wells
Tracer Injection / Monitoring Wells	Sentinel Monitoring Wells
EN-623	EN-651
EN-624	EN-694
EN-710	EN-696
	EN-698
	EN-700
	EN-702
	DEC-MW-034D

# Exhibit 1. Injection and Continal Monitoring Wall

#### **F.1 SCOPE OF WORK**

The scope of work completed by Sanborn Head from October 10, 2011 through September 19, 2012 included:

 Collection of background readings from injection and sentinel monitoring wells, including samples collected for laboratory analysis of Br, completed on October 10, 2011;

¹ Sanborn, Head Engineering, P.C., June 24, 2011 "In Situ Thermal Treatment IRM Work Plan - Operable Unit #5, Building 57, Former IBM Facility, Union and Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".

² Sanborn, Head & Associates, Inc., October 14, 2011 "Proposed Sodium Bromide Tracer Test - OU #5, Building 57, Order on Consent Index No. A7-0502-0104, Union and Endicott, New York".

- Obtaining an injection permit for sodium bromide (NaBr) from New York State Department of Environmental Conservation (NYSDEC), completed on October 24, 2011;
- Shutdown of the groundwater extraction wells EN-623, EN-624, and EN-710, completed on October 14, 2011;
- NaBr tracer injection completed on November 1, 2011 and collection of confirmatory samples for laboratory analysis of Br⁻;
- Subsequent monitoring of injection monitoring wells (prior to implementation of ERH) and sentinel monitoring wells (prior to and throughout ERH implementation) using a Br⁻ ion specific Oaklon electrode probe and a YSI 556 MPS multi-meter for temperature and specific conductance monitoring; and
- Collection of confirmatory laboratory samples for Br⁻ from sentinel monitoring wells on a roughly bi-monthly basis during ERH operation.

Samples were collected using dedicated bailers. Approximately one well volume of water was purged prior to sample collection. Confirmatory groundwater samples were submitted for analysis of Br⁻ to Microseeps, Inc., of Pittsburgh, Pennsylvania using method SW-846-9056.

A summary of our observations based on the review of tracer monitoring data is presented in the IRM Completion Report text. Tracer monitoring data are summarized in Table F.1, All analytical data reports are provided in Appendix H (on disc).

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix F - Tracer Monitoring\20121130 Appendix F - Tracer Monitoring.docx

#### Table F.1 Tracer Monitoring Data OU#5/Building 57 Area Union and Endicott, NY

Monite	oring Locations	Monitoring Parameters	10/10/2011	11/1/2011	11/2/2011	11/11 & 11/12/2011	12/8/2011	1/10/2012	2/9/2012	2/10/2012	2/17/2012	3/8/2012	3/13/2012	3/23/2012	3/29/2012	4/1/2012
		Temperature (°C)	17.75	16.43	18.16	13.41	13.72	11.48	14.21	-	-	-	-	-	-	-
ERH		Specific Conductance (µs/cm)	1210	3144	1575	917	835	805	718	-	-	-	-	-	-	-
E	EN-623	Bromide Field (ppmv)	5.5	71	260	29	12	-	5.3	-	-	-	-	-	-	-
hin as)		Bromide Laboratory (ppmv)	<1.0	160	-	-	1.1	0.68	-	-	-	-	-	-	-	-
vitl		Temperature (°C)	16.19	15.83	16.01	14.03	11.35	9.49	12.72	-	-	-	-	-	-	-
s (v it a		Specific Conductance (µs/cm)	441	3145	3177	1067	925	702	719	-	-	-	-	-	-	-
ells ien	EN-624	Bromide Field (ppmv)	4.7	75	270	86	8.3	-	11	-	-	-	-	-	-	-
tt N		Bromide Laboratory (ppmv)	-	54	-	76	1.8	4	-	-	-	-	-	-	-	-
Injection Wells (within treatment areas)		Temperature (°C)	15.66	16.20	17.65	15.39	13.74	10.97	12.68	-	-	-	-	-	-	-
t		Specific Conductance (µs/cm)	1106	3301	763	624	628	595	699	-	-	-	-	-	-	-
nje	EN-710	Bromide Field (ppmv)	4.2	210	15	9.2	9.40	-	3.1	-	-	-	-	-	-	-
I		Bromide Laboratory (ppmv)	-	440	-	2.4	21	0.31 J	-	-	-	-	-	-	-	-
		Temperature (°C)	13.33	13.52	13.78	11.81	10.62	9.37	-	8.58	10.06	10.76	12.05	12.55	9.42	9.54
		Specific Conductance (µs/cm)	889	911	871	869	1002	901	-	970	1008	1162	1212	1143	1136	956
	DEC-MW-034D	Bromide Field (ppmv)	4.8	10	3.1	10	12	-	-	3.3	15	16	16	9.1	13	13
		Bromide Laboratory (ppmv)	-	-	-	-	<1.0	0.21 J	-	-	-	-	-	-	-	-
		Temperature (°C)	16.72	15.32	15.49	14.31	11.58	10.37	-	9.23	9.01	9.97	11.65	11.26	9.04	-
	EN-651	Specific Conductance (µs/cm)	460	473	466	646	603	545	-	551	544	649	660	626	589	-
		Bromide Field (ppmv)	3.9	3.8	1.6	19	7	-	-	1.7	7.9	16	11	6.5	17	-
		Bromide Laboratory (ppmv)	<1.0	-	-	-	<1.0	0.097 J	-	-	-	-	-	-	-	-
		Temperature (°C)	16.95	14.83	14.3	14.93	9.89	10	-	9.84	9.41	-	12.28	10.7	9.26	9.34
s		Specific Conductance (µs/cm)	344	76	79	304	333	382	-	769	547	-	1334	717	727	760
/ells	EN-694	Bromide Field (ppmv)	3.8	1.8	1.5	13	7.1	-	-	2.7	7.2	-	14	8.2	15	15
Ň		Bromide Laboratory (ppmv)	<1.0	-	-	-	<1.0	0.099 I	-	-	-	-	-	-	-	-
ini		Temperature (°C)	17.64	15.49	14.66	14.68	11.81	9.49	-	10.12	9.98	10.37	12.5	11.6	9.46	9.08
tor		Specific Conductance (µs/cm)	499	492	495	573	532	477	-	468	476	606	635	604	536	524
oni	EN-696	Bromide Field (ppmv)	3.8	3.5	1.4	12	6.5	-	-	1.3	8.2	14	8.8	9.1	11	11
Σ.		Bromide Laboratory (ppmv)	-	-	-	-	<1.0	0.15 J	-	-	-	-	-	-	-	-
Sentinel Monitoring		Temperature (°C)	16.46	15.14	15.11	14.6	12.39	10.07	-	10.7	10.61	11.55	13.89	12.66	9.95	9.65
nti		Specific Conductance (µs/cm)	821	818	797	813	779	581	-	580	547	738	746	727	673	623
Sei	EN-698	Bromide Field (ppmv)	4.6	3.8	3.3	12	6.7	-	-	1.9	10	11	11	3.8	17	17
		Bromide Laboratory (ppmv)	-	-	-	-	<1.0	0.13 J	-	-	-	-	-	-	-	-
		Temperature (°C)	15.14	14.51	13.36	13.91	11.12	10.59	-	9.87	11.35	11.62	12.99	13.21	10.2	10.41
		Specific Conductance ( $\mu$ s/cm)	606	593	605	600	621	500	-	535	541	688	720	707	650	639
	EN-700	Bromide Field (ppmv)	3.2	2.3	2.3	8.1	7.6	-	-	1.7	9.9	10	11	4.1	14	14
		Bromide Laboratory (ppmv)	-	-	-	-	<1.0	0.61 J	-	-	-	-	-	-	-	-
		Temperature (°C)	16.58	13.87	13.2	12.96	9.96	10.29	-	8.9	10.89	9.88	11.77	11.05	9.45	9.73
		Specific Conductance (µs/cm)	511	520	531	1130	731	707	-	634	617	786	773	739	714	661
	EN-702	Bromide Field (ppmv)	3.2	3.8	2.7	60	7.9	-	-	1.3	13	15	9.1	6.7	15	15
		Bromide Laboratory (ppmy)	-	-	-	-	<1.0	0.084 J	-	-	-	_	-	-	-	-

#### Indicates Background Data

#### Notes:

Bromide, temperature, and specific conductance monitoring was performed by Sanborn Head on the dates indicated using YSI 556 MPS and Oaklon Bromide field meters.
 Sodium Bromide tracer injection was completed on November 1, 2011; the duration of Electrical Resistive Heating (ERH) Treatment was from February 10, 2012 to September 24, 2012.
 Laboratory samples were analyzed for bromide by Microseeps, Inc. of Pittsburgh, PA by method SW-846-9056; Analytical laboratory reports are provided in Appendix H (on disc).
 Bold value for laboratory measurement indicates the presence of the bromide at concentrations greater than or equal to the method detection limit.

5) "-" indicates the sample was not collected at the sample location.

6) "<" indicates a non-detect value.

7) "J" flag indicates an estimated value.

#### Table F.1 **Tracer Monitoring Data** OU#5/Building 57 Area Union and Endicott, NY

Monito	oring Locations	Monitoring Parameters	4/6/2012	4/13/2012	4/20/2012	4/27/2012	5/2/2012	5/18/2012	5/25/2012	5/31/2012	6/15/2012	6/29/2012	7/26/2012	8/17/2012	8/28/2012	9/19/2012
н		Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ERH	EN (22	Specific Conductance (µs/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I El	EN-623	Bromide Field (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
hin as)		Bromide Laboratory (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
vit		Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
s (v it a	EN 694	Specific Conductance (µs/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
elle	EN-624	Bromide Field (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
atn		Bromide Laboratory (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Injection Wells (within treatment areas)		Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
t	EN 540	Specific Conductance (µs/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
[nj	EN-710	Bromide Field (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		Bromide Laboratory (ppmv)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		Temperature (°C)	10.51	11.95	13.63	8.64	12.24	11.12	11.37	11.78	12.08	12.24	15.03	13.72	15.78	13.7
	DEC MW 024D	Specific Conductance (µs/cm)	954	895	1133	1040	1035	1031	1088	1041	998	962	839	1053	1061	920
	DEC-MW-034D	Bromide Field (ppmv)	17	17	79	5.2	3.5	-	-	-	-	-	11.9	-	2.6	-
		Bromide Laboratory (ppmv)	-	-	-	-	0.18 J	-	-	-	-	-	0.2 J	-	0.17 J	0.19 J
		Temperature (°C)	10.51	12.14	14.57	8.58	13.05	10.79	11.8	14.49	13.49	-	16.19	16.34	18.12	16.02
	EN-651	Specific Conductance (µs/cm)	517	641	618	588	538	475	525	483	438	-	397	424	420	372
		Bromide Field (ppmv)	16	13	40	4.3	2.4	-	-	-	-	-	6.5	-	2.3	-
		Bromide Laboratory (ppmv)	-	-	-	-	0.088 J	-	-	-	-	-	0.065 J	-	0.07 J	<1.0
		Temperature (°C)	-	-	15.66	10.31	12.73	12.63	-	13.7	14.24	17.2	-	18.18	19.93	16.72
ls	EN-694	Specific Conductance (µs/cm)	-	-	365	156	179	190	-	236	242	118	-	145	81	188
Vel	EN-094	Bromide Field (ppmv)	-	-	41	5.4	3.4	-	-	-	-	-	-	-	1.8	-
y g		Bromide Laboratory (ppmv)	-	-	-	-	<1.0	-	-	-	-	-	-	-	<1.0	<1.0
Lin		Temperature (°C)	10.79	11.56	14.89	9.51	11.56	12.01	12.88	12.57	13.13	13.31	16.84	16.74	19.21	16.41
ito	EN COC	Specific Conductance (µs/cm)	461	406	530	435	485	489	544	534	500	468	420	406	474	410
on	EN-696	Bromide Field (ppmv)	16	16	35	2.4	2.6	-	-	-	-	-	4.8	-	1.6	-
Sentinel Monitoring Wells		Bromide Laboratory (ppmv)	-	-	-	-	0.11 J	-	-	-	-	-	0.087 J	-	0.063 J	<1.0
ne		Temperature (°C)	11.16	12.3	15.21	9.74	12.15	12.06	12.49	12.24	12.64	12.55	16.4	15.06	16.93	15.75
nti	EN-698	Specific Conductance (µs/cm)	569	516	700	574	661	649	746	732	718	689	585	625	725	632
Se	EN-098	Bromide Field (ppmv)	11	10	39	4.7	2.4	-	-	-	-	-	10.4	-	1.9	-
		Bromide Laboratory (ppmv)	-	-	-	-	0.088 J	-	-	-	-	-	0.13 J	-	0.21 J	<1.0
		Temperature (°C)	11.52	13.06	14.53	9.79	12.66	12.39	12.15	12.46	12.58	12.54	15.7	14.72	16.5	15.02
	EN 700	Specific Conductance (µs/cm)	597	548	748	721	688	657	735	729	695	633	553	544	658	591
	EN-700	Bromide Field (ppmv)	12	15	39	5.8	3.4	-	-	-	-	-	9.8	-	1.6	-
		Bromide Laboratory (ppmv)	-	-	-	-	0.11 J	-	-	-	-	-	0.07 J	-	0.078 J	<1.0
		Temperature (°C)	10.29	12.12	13.64	9.12	12.09	12.58	12.13	12.2	13.46	14.39	18.26	-	19.71	17.49
	EN 700	Specific Conductance (µs/cm)	598	561	766	767	712	700	800	727	607	567	545	-	28	410
	EN-702	Bromide Field (ppmv)	12	12	41	4.9	3.4	-	-	-	-	-	7.2	-	1.4	-
		Bromide Laboratory (ppmv)	-	-	-	-	0.2 J	-	-	-	-	-	0.32 J	-	<1.0	0.19 J

#### Notes:

Bromide, temperature, and specific conductance monitoring was performed by Sanborn Head on the dates indicated using YSI 556 MPS and Oaklon Bromide field meters.
 Sodium Bromide tracer injection was completed on November 1, 2011; the duration of Electrical Resistive Heating (ERH) Treatment was from February 10, 2012 to September 24, 2012.
 Laboratory samples were analyzed for bromide by Microseeps, Inc. of Pittsburgh, PA by method SW-846-9056; Analytical laboratory reports are provided in Appendix H (on disc).

4) Bold value for laboratory measurement indicates the presence of the bromide at concentrations greater than or equal to the method detection limit.

5) "-" indicates the sample was not collected at the sample location.

6) "<" indicates a non-detect value.

7) "J" flag indicates an estimated value.

# **APPENDIX G**

# QUALITY ASSURANCE/QUALITY CONTROL DATA REVIEW

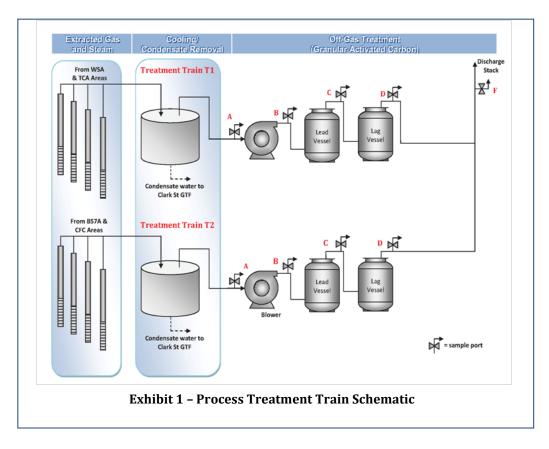
SANBORN || HEAD

# **APPENDIX G**

## QUALITY ASSURANCE/QUALITY CONTROL DATA REVIEW OPERABLE UNIT #5/BUILDING 57 AREA, UNION AND ENDICOTT, NY

This appendix summarizes analysis of project-specific data quality objectives (DQOs) for data collected by Sanborn Head & Associates, Inc. (Sanborn Head) as part of the performance monitoring of Electrical Resistance Heating (ERH) thermal treatment system operation at Building 57 (Site) located in IBM Operable Unit # 5, Union and Endicott, NY.

DQOs were developed by Sanborn Head as outlined in the Quality Assurance Project Plan (QAPP) described in the Agency-approved Interim Remedial Measure (IRM) Work Plan¹. Sanborn Head reviewed the results of quality assurance/quality control (QA/QC) sampling in comparison with DQOs for vapor and condensate performance monitoring. DQOs for soil confirmatory sampling were reviewed by a third party consultant to Sanborn Head, as outlined in sections below. This appendix is subject to limitations as described in Appendix A.


### G.1 QA/QC REVIEW OF EXTRACTED VAPOR

Sanborn Head completed a review of analytical data reports for Summa® samples (Summa) collected from treatment process trains 1 and 2 (refer to Exhibit 1 below for treatment train sampling locations), as prescribed in the IRM Work Plan. A total of 206 Summa samples were collected by Sanborn Head and were analyzed by Air Toxics Ltd. (ATL) of Folsom, California for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15 (modified) using the gas chromatograph/mass spectrometer in the full scan mode. 10 duplicate samples were collected in accordance with the QA/QC criteria prescribed in the QAPP.

Sanborn Head completed a relative percent difference (RPD) analysis of detected concentrations of key VOCs (Trichloroethene [TCE], cis-1,2 dichloroethene [cDCE], 1,1,1 Trichloroethane [1,1,1 TCA], vinyl chloride [VC] and CFC-113) in field and duplicate sample pairs which are presented in Table G.1. The acceptance criteria of  $\leq$  30% was met for all air field/duplicate sample pairs with the exception of samples collected on February 20, 2012 from port C of Treatment Train 1. Larger percent differences were observed for cDCE and VC (38 and 50%, respectively) in this sample, with relatively low absolute VOC concentrations.

RPDs of key VOCs in field and Laboratory Duplicate (LD; i.e., aliquot of field sample analyzed with original sample) sample pairs are presented in Table G.2. All RPDs were within the acceptable range  $\mathfrak{sf}$  25 % as prescribed in the QAPP, except for CFC-113 concentrations from samples collected at port B of Treatment Train 1 on September 9, 2012, for which a low absolute concentration resulted in a higher RPD.

¹ Sanborn, Head Engineering, P.C., June 24, 2011 "In situ Thermal Treatment IRM Work plan – OU #5, Building 57, Former IBM Facility, Endicott, New York, AOC Index No. A7-0502-0104, NYSDEC Site No. 7-04-014".



Additional QC performed by the laboratory included calculation of percent recoveries on Laboratory Control Samples (LCS) and Surrogates. Refer to analytical laboratory reports provided in Appendix H (on disc) for additional details regarding these analyses.

## G.2 QA/QC REVIEW FOR CONDENSATE SAMPLE DATA

Sanborn Head collected 28 condensate samples from treatment process trains 1 & 2 in accordance with the IRM Work Plan. The samples were analyzed by Lancaster Laboratories (Lancaster) of Lancaster, Pennsylvania for VOCs by USEPA method 8260B. One duplicate Summa sample was collected as per the QA/QC criteria prescribed in the IRM Work Plan. Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples were not collected, since these samples were used primarily for screening and readiness for treatment, rather than project and/or risk management decisions.

RPD analysis for key VOCs for the single field/duplicate sample pair collected on August 13, 2012 is shown in Table G.3. All key VOCs were non-detect at laboratory reporting limits in both the field and duplicate sample; therefore, RPD for this sample pair is considered within the acceptable range of  $\leq$  30%.

Analysis of laboratory trip blank results indicated that common lab contaminant methylene chloride ( $CH_2Cl_2$ ) was detected in laboratory trip blank samples submitted with treatment process train samples between March 3 and April 22, 2012, at concentrations varying from 2.4 to 3.1 micrograms per liter (ug/L), as shown in Table G.4; however,  $CH_2Cl_2$  was not detected in any treatment process train samples above laboratory reporting limits. A

review conducted by Lancaster confirmed that the distilled water lots used to create the trip blanks did not contain measurable concentrations of  $CH_2Cl_2$ . Based on the information provided by Lancaster,  $CH_2Cl_2$  is commonly used outside the laboratory setting in paint strippers, degreasers, and aerosol spray propellants. As there is no indication of the presence of similar sources within the treatment zones or storage areas for sampling containers, the source of MeCL₂ in laboratory trip blanks is unknown.

Additional QC was performed by the laboratory, and included calculation of percent recoveries on Laboratory Control Samples (LCS), LCS Duplicate (LCSD) and Surrogates. Refer to analytical laboratory reports provided in Appendix H (on disc) for additional details regarding these analyses.

### G.3 CONFIRMATORY SOIL DATA VALIDATION AND USABILITY ASSESSMENT

Confirmatory soil sampling data reported by Lancaster for the project specific list of VOCs was validated by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts in order to confirm usability for decision-making in support of IRM evaluation.

The data validation and usability assessment was performed according to procedures and protocols outlined in the QAPP. All data validation reports are provided in Appendix H (on disc).

Validation actions were taken based on instrument calibration and other quality control factors (accuracy, precision, sensitivity and reporting limits), and professional judgment was used to select between/among valid results in certain cases where more than one trial was reported for a given sample. All results were deemed valid and usable for project decisions. Refer to individual validation reports for additional information.

S:\CONDATA\2400s\2466.02\Source Files\2012 IRM Completion Report\Appendix G - Quality Assurance Project Plan\20121130 Appendix G Quality Assurance-Quality Control Data Review.docx

Sample	Collection	TCE	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113
Location	Date		Concentra	tion in units	of parts per mil	llion
				by volume	(ppmv)	
T1C		< 0.053	12	< 0.053	2.6	< 0.053
DUP1	2/20/2012	< 0.017	5.4	< 0.017	0.86	< 0.017
RPD		-	38	-	50	-
T1A		30	18	0.12	2.4	1.5
DUP2	3/19/2012	34	20	0.15	2.8	1.1
RPD		6.3	5.3	11.1	7.7	15.4
T1B		8.7	6.8	0.044	0.98	0.26
DUP3	4/9/2012	11	8.3	0.052	1.2	0.32
RPD		11.7	9.9	8.3	10.1	10.3
T1B		3.7	2.8	0.021	0.32	0.093
DUP4	4/25/2012	3.6	2.7	0.021	0.3	0.12
RPD		1.4	1.8	0.0	3.2	12.7
T1B		2.1	1.2	< 0.011	0.21	0.024
DUP5	5/10/2012	2.6	1.6	0.011	0.25	0.036
RPD		10.6	14.3	-	8.7	20.0
T1B		3.2	2.2	0.017	0.33	0.085
DUP6	5/22/2012	3.6	2.1	0.018	0.32	0.073
RPD		5.9	2.3	2.9	1.5	7.6
T1B		2.3	1.3	0.0078	0.22	0.064
DUP7	6/13/2012	2.3	1.4	0.007	0.21	0.051
RPD		0.0	3.7	5.4	2.3	11.3
T1B		1.6	1	<0.057	0.21	0.024
DUP8	7/10/2012	1.5	0.98	< 0.043	0.2	0.024
RPD		3.2	1.0	-	2.4	0.0
T1B		1	0.42	< 0.027	0.14	0.006
DUP9	8/13/2012	1.1	0.4	<0.058	0.15	0.0087
RPD		4.8	2.4	-	3.4	18.4
T1B		0.3	0.14	< 0.0013	0.066	0.0018
DUP10	9/19/2012	0.3	0.13	<0.0013	0.069	0.0019
RPD		0.0	3.7	-	2.2	2.7

Shading indicates RPD greater than 30%.

#### Notes:

1. % RPD is the relative percent difference, calculated by the formula:

| Result1 - Result2 | / ((Result1 + Result2) / 2) * 100

2. "-" indicates the RPD can not be calculated because one or both of the results are non-detect.

3. Refer to Appendix F of the ISTT IRM Work Plan for Site-Specific Quality Assurance Project Plan for further details on data quality and data usability.

Sample	Collection	ТСЕ	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113	
Location	Date	Conce	ntration in	units of par (ppm	rts per million by volume ıv)		
T2C		< 0.00084	< 0.00084	< 0.00084	0.14	< 0.00084	
T2C Lab Dup	2/9/2012	< 0.0011	< 0.0011	< 0.0011	0.14	< 0.0011	
RPD		-	-	-	0	-	
T2A		0.52	< 0.42	< 0.42	< 0.42	100	
T2A Lab Dup	2/15/2012	1.1	<0.83	<0.83	<0.83	100	
RPD		35.8	-	-	-	0	
T2C		< 0.15	< 0.15	< 0.15	< 0.15	230	
T2C Lab Dup	2/20/2012	< 0.15	< 0.15	< 0.15	< 0.15	250	
RPD		-	-	-	-	4.2	
T1A		50	30	0.51	3.3	8.1	
T1A Lab Dup	2/20/2012	50	30	0.48	3.5	8.1	
RPD		0	0	3.0	2.9	0	
Sample Port F		< 0.0052	< 0.0052	< 0.0052	1.5	< 0.0052	
Sample Port F DUP	3/5/2012	< 0.0052	< 0.0052	< 0.0052	1.5	0.0072	
RPD		-	-	-	0	-	
T2A		0.71	0.54	< 0.11	0.26	24	
T2A Lab Dup	3/15/2012	0.66	0.53	< 0.11	0.23	24	
RPD	, ,	3.6	0.9	-	6.1	0	
T2A		1.2	0.8	< 0.49	< 0.49	350	
T2A Lab Dup	3/19/2012	0.95	0.7	< 0.49	<0.49	310	
RPD		11.6	6.7	-	-	6.1	
T2D		0.59	0.14	0.0042	0.37	0.036	
T2D Lab Dup	3/18/2012	0.58	0.14	0.0037	0.34	0.035	
RPD		0.9	0.0	6.3	4.2	1.4	
DUP2		34	20	0.15	2.8	1.1	
DUP2 Lab Dup	3/19/2012	33	19	0.14	2.7	1.1	
RPD	1 .	1.5	2.6	3.4	1.8	0	
T2C	1	< 0.52	< 0.52	< 0.52	<0.52	83	
T2C Lab Dup	3/27/2012	< 0.42	< 0.42	< 0.42	<0.42	85	
RPD	1 .	-	-	-	-	1.2	
T1C	1	5.1	12	0.077	1.5	0.60	
T1C Lab Dup	4/2/2012	4.9	12	0.084	1.4	0.59	
RPD	1 ''	2.0	0.0	4.3	3.4	0.8	
T2B		1.1	0.9	< 0.58	< 0.58	110	
T2B Lab Dup	4/5/2012	1.4	0.89	< 0.80	<0.80	120	
RPD	1 , , , , ,	12.0	0.56	-	-	4.3	
T1C	1	< 0.0058	0.4	< 0.0058	1.7	< 0.0058	
T1C Lab Dup	4/9/2012	< 0.0035	0.41	< 0.0035	1.7 E	0.0041	
RPD	-, <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i> , <i>-</i>	-	1.2	-	0	-	

Sample	Collection	ТСЕ	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113	
Location	Date	Conce	Concentration in units of parts per million by vol (ppmv)				
T2D		0.062	0.024	< 0.00092	< 0.00092	0.0098	
T2D Lab Dup	4/17/2012	0.061	0.023	< 0.0012	0.28	0.0098	
RPD		0.8	2.1	-	-	0.0	
T1D		< 0.0035	< 0.0035	< 0.0035	0.85	< 0.0035	
T1D Lab Dup	4/25/2012	0.0028	< 0.0018	< 0.0018	0.85 E	< 0.0018	
RPD		-	-	-	0	-	
Sample Port F		< 0.0021	< 0.0021	< 0.0021	0.49	0.46	
Sample Port F Lab Dup	4/25/2012	< 0.0021	< 0.0021	< 0.0021	0.47	0.44	
RPD		-	-	-	2.1	2.2	
T1D		0.028	0.010	< 0.0062	1.1	< 0.0062	
T1D Lab Dup	4/29/2012	0.024	0.0083	< 0.0021	0.99 E	< 0.0021	
RPD		7.7	9.3	-	5.3	-	
T2B		2.1	0.73	< 0.073	0.18	39	
T2B Lab Dup	4/29/2012	2.2	0.72	< 0.073	0.18	39	
RPD		2.3	0.7	-	0	0	
T1B		2.1	1.2	< 0.011	0.21	0.024	
T1B Lab Dup	5/10/2012	2.1	1.3	< 0.011	0.21	0.026	
RPD		0	4.0	-	0	4.0	
T2D		< 0.23	1.1	< 0.23	< 0.23	53	
T2D Lab Dup	5/15/2012	< 0.23	1.1	< 0.23	< 0.23	53	
RPD	, ,	-	0	-	-	0	
T1D		< 0.018	5.6	< 0.018	0.32	< 0.018	
T1D Lab Dup	5/22/2012	< 0.018	5.7	<0.018	0.33	< 0.018	
RPD		-	0.9	-	1.5	-	
Sample Port F		< 0.012	4.3	< 0.012	0.30	2.9	
Sample Port F Lab Dup	5/22/2012	< 0.012	4.3	< 0.012	0.31	2.9	
RPD		-	0	-	1.6	0	
T1C		< 0.006	1.5	< 0.006	0.24	0.48	
T1C Lab Dup	5/31/2012	< 0.0036	1.6 E	< 0.0036	0.25	0.51	
RPD	. ,	-	3.2	-	2.0	3.0	
T1B		3.2	1.8	0.015	0.24	0.06	
T1B Lab Dup	6/4/2012	3.2	1.8	0.014	0.25	0.06	
RPD		0	0	3.4	2.0	0	
T2B		0.65	0.51	0.02	0.17	5.4	
T2B Lab Dup	6/4/2012	0.62	0.49	0.02	0.16	5.2	
RPD	0, 1,2012	2.4	2.0	0	3.0	2	
T1D		< 0.0084	2.2	< 0.0084	0.22	< 0.0084	
T1D Lab Dup	6/4/2012	< 0.0084	2.2	< 0.0084	0.22	< 0.0084	
RPD	0, 1, 2012	-	2.2	-	4.3	-	

Sample	Collection	TCE	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113
Location	Date	Concer	n by volume			
T2D		0.11	0.55	0.038	0.20	17
T2D Lab Dup	6/13/2012	0.11	0.58	0.038	0.23	18
RPD		0	3	0	7.0	2.9
T1B		1.8	0.95	< 0.0092	0.095 J	0.036
T1B Lab Dup	6/27/2012	1.8	0.93	< 0.0092	0.099 J	0.032
RPD		0	1.1	-	2.1	5.9
T2D		1.6	0.23	< 0.054	0.17	15
T2D Lab Dup	7/3/2012	1.6	0.25	< 0.054	0.16	15
RPD		0	4.2	-	3.0	0
T2C		0.38	0.31	< 0.045	0.086	10
T2C Lab Dup	7/10/2012	0.40	0.29	< 0.045	0.092	11
RPD		2.6	3.3	-	3.4	4.8
T1B		2.2	1.0	< 0.0078	0.24	0.024
T1B Lab Dup	7/18/2012	2.1	1.0	< 0.0078	0.24	0.022
RPD		2.3	0.0	-	0.0	4.3
T1C		< 0.0051	1.5	< 0.0051	0.24	0.055
T1C Lab Dup	7/18/2012	< 0.0051	1.4	< 0.0051	0.23	0.054
RPD		-	3.4	-	2.1	0.92
T2C		0.34	0.22	< 0.018	0.075	5.4
T2C Lab Dup	7/29/2012	0.36	0.21	< 0.018	0.074	5.3
RPD		2.9	2.3	-	0.7	0.9
T2B		0.21	0.17	< 0.009	0.072	3.6
T2B Lab Dup	7/29/2012	0.20	0.16	< 0.012	0.069	3.7
RPD		2.4	3.0	-	2.1	1.4
T2B		0.38	0.26	< 0.0097	0.11	3.0
T2B Lab Dup	8/13/2012	0.36	0.25	< 0.0097	0.099	2.9
RPD		2.70	2.0	-	5.3	1.7
T1C		0.01	0.57	< 0.0023	0.17	0.21
T1C Lab Dup	8/13/2012	0.011	0.58	< 0.0023	0.17	0.20
RPD		8.3	0.9	-	0.0	2.4
T1D	1	0.0023	0.67	< 0.0018	0.12	< 0.0018
T1D Lab Dup	8/28/2012	0.0020	0.63	< 0.0018	0.11	< 0.0018
RPD	1 .	7.0	3.1	-	4.3	-
T1B	1	0.67	0.22	< 0.0027	0.099	0.0049
T1B Lab Dup	8/28/2012	0.68	0.21	< 0.0027	0.086	0.0033
RPD	1 .	0.74	2.3	-	7.0	19.5
T1B		0.8	0.3	< 0.0028	0.15	0.0033
T1B Lab Dup	9/9/2012	0.83	0.33	< 0.0028	0.16	0.0058
RPD	1 .	1.8	4.8	-	3.2	27.5

Sample	Collection	TCE	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113	
Location	Date	Conce	ntration in	rts per million v)	s per million by volume		
T2D		0.3	0.23	0.0046	0.053	0.93	
T2D Lab Dup	9/9/2012	0.3	0.25	0.0044	0.053	0.92 E	
RPD		0	4.2	2.2	0	0.5	
T2B		0.17	0.21	0.0033	0.071	0.014	
T2B Lab Dup	9/19/2012	0.16	0.2	0.0029	0.066	0.013	
RPD		3.0	2.4	-	3.6	3.7	
T2D	9/19/2012	0.18	0.14	0.0022	0.070	0.26	
T2D Lab Dup		0.19	0.14	0.0024	0.067	0.26	
RPD		3	0	4	2	0	

Shading indicates RPD greater than 25%.

#### Notes:

1. % RPD is the relative percent difference, calculated by the formula:

| Result1 - Result2 | / ((Result1 + Result2) / 2) * 100

2. "-" indicates the RPD can not be calculated because one or both of the results are non-detect.

3. Refer to Appendix F of the ISTT IRM Work Plan for Site-Specific Quality Assurance Project Plan for further details on data quality and data usability.

#### Table G.3 RPD - Condensate Field/Duplicate Samples Operable Unit # 5/Building 57 Area Union and Endicott, NY

Sample Location	Collection Date	TCE	cis 1,2 DCE	1,1,1 TCA	Vinyl Chloride	Freon 113
Location	Date	Concentration in units of micrograms per liter ( $\mu$ g/				er (µg/L)
T1/Cond		<0.5	<0.5	<0.5	<0.5	<0.5
DUP1	8/13/2012	<0.5	<0.5	<0.5	<0.5	<0.5
RPD		-	-	-	-	-

#### Notes:

1. % RPD is the relative percent difference, calculated by the formula:

| Result1 - Result2 | / ((Result1 + Result2) / 2) * 100

2. "-" indicates the RPD can not be calculated because one or both of the results are non-detect.

3. Refer to Appendix F of the ISTT IRM Work Plan for Site-Specific Quality Assurance Project Plan for further details on data quality and data usability.

#### Table G.4 Detected Concentrations of Methylene Chloride in Trip Blanks - Condensate Samples Operable Unit # 5/Building 57 Area Union and Endicott, NY

Compound	Crown Number	<b>Collection Date</b>	T1/COND	T2/COND	Trip Blank
Compound	Group Number	conection Date	Concentratio	on in units of mic	rograms per liter (µg/L)
	1293156	3/5/2012	<0.5	NS	3.0
	1298243	3/27/2012	Concentration in units of mic.           2         <0.5	NS	
	1301107	4/9/2012	<0.5	<0.5	3.0
	1304871	4/25/2012	<0.5	<0.5	2.5
	1308059	5/9/2012	<0.5	<0.5	2.4
	1311002	5/22/2012	<0.5	<0.5	3.1
Methylene Chloride	1313463	6/4/2012	<0.5	<0.5	<0.5
$(CH_2Cl_2)$	1318958	6/27/2012	<0.5	<0.5	<0.5
	1321276	7/10/2012	<0.5	< 0.5	<0.5
	1324908	7/26/2012	<0.5	<0.5	<0.5
	1324908	8/13/2012	<0.5	<0.5	<0.5
	1331603	8/27/2012	< 0.5	< 0.5	<0.5
	1335989	9/11/2012	< 0.5	< 0.5	
	1336981	9/19/2012	<0.5	<0.5	0.3 J

Trip Blank was not analyzed by laboratory due to instrumentation issue

"J" indicates an estimated value

NS: Indicates Not Submitted for Analysis

# **APPENDIX H**

# ANALYTICAL LABORATORY REPORTS (PROVIDED ON DISC)

