COMBINED GROUNDWATER REPORT FOR 2016

VILLAGE OF ENDICOTT / TOWN OF UNION BROOME COUNTY, NEW YORK

Order on Consent Index #A7-0502-0104 Site #704014

Prepared for:

IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, Virginia 20109

April 13, 2017

Prepared by:

Groundwater Sciences, P.C. Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, Pennsylvania 17110

560 Route 52, Suite 202 Beacon, New York 12508

1108 Vestal Parkway East, Suite 2 Vestal, New York 13850

8976 Wellington Road Manassas, VA 20109

April 13, 2017

Alex Czuhanich
New York State Department of Environmental Conservation
Division of Environmental Remediation
Remedial Bureau E
625 Broadway, 12th Floor
Albany, NY 12233-7017

Re: Transmittal of the Combined Groundwater Report for 2016 Order on Consent Index #A7-0502-0104, Site #704014

Dear Mr. Czuhanich:

The purpose of this letter is to transmit the Combined Groundwater Report for 2016. This report combines the Annual Groundwater Monitoring Status Report (Annual Report) for 2016 and the 13th Update to the Groundwater Remediation Systems Operations, Maintenance and Monitoring Plan (OM&M Plan).

Should you have any questions concerning the contents of this report, please contact Kevin Whalen of my staff at 703-257-2582.

Sincerely,

M. E. Meyers

Mitchell E. Meyers Manager, Environmental Remediation IBM Corporate Environmental Affairs

cc: Jessica LaClair, NYSDEC - Albany
Harry Warner, NYSDEC - Syracuse
Dolores Tuohy, Esq., NYSDEC - Albany (w/o att.)
Bridget Boyd, NYSDOH - Albany
Ron Brink, Broome County Health Dept.
Chris Pelto, Huron LLC
Paul Speranza, i3 Electronics, Inc.

P.E. Certification Combined Groundwater Report for 2016 Village of Endicott / Town of Union Broome County, New York

Section XII and Appendix D, Activity C of Order on Consent Index #A7-0502-0104
Site #704014

April 13, 2017

I certify that I have reviewed the Combined Groundwater Report for 2016, for the former IBM Endicott Facility in the Village of Endicott / Town of Union in Broome County, New York pursuant to Section XII and Appendix D, Activity C of Order on Consent Index #A7-0502-0104, Site #704014. This report is dated April 13, 2017 and was prepared by Groundwater Sciences Corporation and Groundwater Sciences, P.C. for IBM Corporation. I certify that I have reviewed all figures, plates, and appendices related to the operations, maintenance, and monitoring of groundwater remediation systems. To the best of my knowledge, all such engineering-related information contained in this report is complete and accurate.

I certify that all portions of this report relating to the operations, maintenance, and monitoring of groundwater remediation systems have been prepared in accordance with good engineering practices and all work has been performed under my direct supervision.

I further certify that: (1) the groundwater institutional controls and engineering controls put in place as part of the remedies for Operable Unit #3 (OU#3), Operable Unit #4 (OU#4), Operable Unit #5 (OU#5), and Operable Unit #6 (OU#6) are still in place and are either unchanged from the previous certification or are compliant with New York State Department of Environmental Conservation (Department) approved modifications, (2) the Department continues to have access to the Site; and (3) nothing has occurred that will impair the ability of the controls put in place to protect public health or the environment, or constitute a violation or failure to comply with the remedies set forth in the Records of Decision for OU#3, OU#4, OU#5, and OU#6, unless otherwise approved by the Department.

No alterations to the engineering-related information contained in this report may be made unless made in accordance with 145-Subsection 7209 of New York State Education Law.

Signature: Matt Sunda

Name: Matthew T. Luckman

License No: 076619

State: New York

Table of Contents

1	INTRO	ODUCTION	1
	1.1 P	urpose and Scope	1
	1.2 S	ite Location and Description	2
	1.3 2	016 Highlights	3
	1.3.1	Site Characterization	6
	1.3.2	Groundwater Extraction and Treatment Systems	6
	1.3.3	Clean Water Injection	7
	1.3.4	Groundwater Monitoring	7
	1.4 C	rganization of Report	7
2	BACK	GROUND	9
	2.1 S	ite Remediation Objectives	9
	2.2 P	hysical Setting	10
	2.2.1	Upper Aquifer	10
	2.2.2	Lacustrine Silt	10
	2.2.3	Lower Aquifer	11
	2.2.4	Bedrock Aquifer	11
	2.2.5	Other Units	11
	2.3	roundwater Monitoring Plan	12
	2.4 D	Description of Remedial Systems	
	2.4.1	Groundwater Extraction and Injection Wells	
	2.4.	1	
	2.4.	1	
	2.4.	1	
	2.4.	1	
	2.4.	1	
	2.4.		
	2.4.	1	
	2.4.	1	
		Groundwater Treatment Systems	
	2.4.		
	2.4.		
	2.4.		
	2.4.		
3		RIPTION OF WORK PERFORMED IN 2016	
		emediation System Operations	
	3.1.1	Groundwater Extraction and Injection	21

	3.1.2 Influent and Effluent Sampling of Groundwater Treatment Systems	22
	3.1.3 Operational Efficiency	
	3.1.4 Treatment Efficiency	24
	3.1.5 System Maintenance	24
	3.1.5.1 Water Treatment Chemical (WTC) Use and Reporting	24
	3.1.5.2 Carbon Changes	25
	3.1.5.3 Repairs and Maintenance	26
	3.1.6 System Upgrades	28
	3.2 Groundwater Monitoring Program Activities	28
	3.2.1 Groundwater Elevation Measurements	28
	3.2.1.1 Comprehensive Water Level Measurement Events	28
	3.2.1.2 Supplemental Water Level Measurements	29
	3.2.1.3 Continuous Water Level Monitoring	30
	3.2.2 Monitoring Well Inspections	31
	3.2.3 Groundwater Sampling	31
	3.2.3.1 Reporting of Groundwater Chemistry Data	32
	3.2.3.2 Quality Assurance/Quality Control Samples	33
	3.2.3.2.1 Duplicate Samples	33
	3.2.3.2.2 Trip Blanks	34
	3.2.3.2.3 Equipment Rinse Blanks	34
4	HYDROGEOLOGY	35
	4.1 Upper Aquifer	35
	4.1.1 Saturated Thickness	35
	4.1.2 Groundwater Flow and Capture Zones	36
	4.1.2.1 "On-Site" Capture Zone	36
	4.1.2.2 "Off-Site" Capture Zone A	37
	4.1.2.3 "Off-Site" Capture Zone B	39
	4.1.2.4 Southern Area	39
	4.2 Bedrock Aquifer	40
5	HYDROGEOCHEMISTRY	41
	5.1 Chemicals of Concern	41
	5.1.1 Chlorinated Ethenes	41
	5.1.2 Chlorinated Ethanes	42
	5.1.3 Chlorofluorinated Ethanes (Freons)	42
	5.2 Distribution of Chemical Concentrations in the Upper Aquifer	42
	5.2.1 Distribution in the "On-Site" Capture Zones	43
	5.2.2 Distribution in the "Off-Site" Capture Zones	45
	5.3 Reduction of TCE Concentrations in the Upper Aquifer	46

	5.4	Distribution of Chemical Concentrations in the Bedrock Aquifer	47
6	PRC	GRESS OF REMEDIATION	48
	6.1	Source Area Control in Operable Unit No. 1	48
	6.2	Control of Flux Crossing North Street in Operable Unit No. 2	49
	6.2.1		
	6.2.2	2 VOC Mass Removal in OU#2	50
	6.3	Changes Between 1980 and 2016 in Upper Aquifer Chemistry, OU#1 & OU#2	52
	6.4	Plume Reduction South of North Street in "Off-Site" Capture Zones A and B and	in
	Operab	ble Unit No. 3 (Southern Area)	53
	6.4.1	Clean Water Injection	54
	6.4.2	2 Groundwater Extraction	55
	6.4.3	3 VOC Mass Removal	56
	6.4.4	Change in Mass of TCE Dissolved in Groundwater, 2004 vs. 2016	57
	6.	4.4.1 Calculation of Initial TCE Mass in Place, June 2004	58
	6.	4.4.2 Calculation of TCE Mass in Place, August 2016	59
	6.4.5	Continuing Reductions in the Concentration and Mass of TCE in Groundwater (So	uth
	of N	orth Street)	60
	6.5	Plume Reduction in Operable Unit No. 4 (Eastern Part of "Off-Site" Capture Zone B)	61
	6.6	Status of Remediation at Operable Unit No. 5	63
	6.7	Status of Remediation in Operable Unit No. 6 (Bedrock Aquifer)	63
	6.8	Status of Remediation at Operable Unit No. 7	64
	6.9	Summary of VOC Mass Removed by Pumping Site-Wide in 2016	65
7	REF	ERENCES	66

Table of Tables

Table 3-1.	Groundwater Extraction Volumes by Remediation Area				
Table 3-2.	Operational Efficiency of Extraction and Injection Wells in 2016				
Table 3-3.	Water Treatment Chemical Use in 2016				
Table 3-4.	Granular Activated Carbon Changes in 2016	26			
Table 3-5.	Monitoring Wells with Continuous Water Level Recorders during 2016	31			
Table 6-1.	VOC Mass Removed in 2016 in the Railroad Corridor Source Area	48			
Table 6-2.	Extraction Volumes in the North Street Area.	50			
Table 6-3.	VOC Mass Removed in the North Street Area	51			
Table 6-5.	Injection Volumes in Off-Site Capture Zones A and B (west)	55			
Table 6-6.	Extraction Volumes in Off-Site Capture Zones A and B (west)	56			
Table 6-7.	VOC Mass Removed in Off-Site Capture Zones A and B (west)	57			
Table 6-8.	Annual VOC Mass Removed since 2005 from the Bedrock Aquifer	64			
	Table of Figures				
Figure 1-1	Site Location Map				
Figure 1-2	Area Designations Map				
Figure 1-3	Elements of Current Extraction/ Injection Well Systems (as of December 31, 201	6)			
Figure 4-1	Upper Aquifer Saturated Thickness Contour Plan (August 3, 2016)				
Figure 4-2	Groundwater Elevation Contour Map, Bedrock Potentiometric Surface (Augu 2016)	st 3,			
Figure 5-1	Concentration vs. Time Graphs for Monitoring Wells EN-433, EN-434 and EN-4	71			
Figure 6-1	2016 Apportionment of Total VOC Mass Removal in the Upper Aquifer				
Figure 6-2	TCE Isoconcentration Contour Map, Upper Aquifer (with Grid Overlay), Au 2016	ıgust			
Figure 6-3	Upper Aquifer Saturated Thickness Contour Plan (with Grid Overlay), August 20)16			
Figure 6-4	Spreadsheet Grid Map of TCE Concentrations in the Upper Aquifer, August 2010	6			
Figure 6-5	Spreadsheet Grid Map of Upper Aquifer Saturated Thickness, August 2016				
Figure 6-6	Spreadsheet Grid Map of Groundwater Volume in Storage, Upper Aquifer, Au 2016	ıgust			
Figure 6-7	Spreadsheet Grid Map of Dissolved TCE Mass (Calculated) in Groundwater, U Aquifer, August 2016	pper			

Table of Plates

Plate 1-1	Monitoring Well Location Map (as of 12/31/2016)
Plate 2-1	Lacustrine Unit Top of Silt Contours and Lithologic Variation
Plate 4-1	Groundwater Elevation Contour Map, Upper Aquifer Water Table (August 3, 2016)
Plate 4-2	Groundwater Elevation Contour Map, Upper Aquifer Water Table (November 28-29, 2016)
Plate 5-1	PCE Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-2	TCE Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-3	cis-12-DCE Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-4	Vinyl Chloride Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-5	OU#4 Location Map and Time vs. Concentration Graphs (2003 to 2016)
Plate 5-6	111-TCA Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-7	11-DCA Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-8	11-DCE Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-9	Freon 113 Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-10	Freon 123a Isoconcentration Contour Map, Upper Aquifer (November 2016)
Plate 5-11	VOC Isoconcentration Contour Maps, OU#5 Area, Upper Aquifer (August 2016)
Plate 5-12	VOC Isoconcentration Contour Maps, OU#7, Upper Aquifer Area (August 2016)
Plate 5-13	Comparative TCE Isoconcentration Contour Map, Upper Aquifer (First Half 2004 vs. November 2016)
Plate 5-14	VOC Isoconcentration Contour Maps, Bedrock Aquifer (OU#6) (August 2016)
Plate 6-1	OU#1 and OU#2 Temporal Variations in Upper Aquifer Chemistry, 1980 to November 2016

Table of Appendices

Appendix A	Table A-1:	Pumping Volumes for Groundwater Extraction/Injection Wells, 2016
	Table A-2:	Mass Removal Data for Volatile Organic Compounds, 2016
	Table A-3:	Groundwater Extraction Volumes by Remediation Area, 2005-2016
	Table A-4:	VOC Mass Removed in the Railroad Corridor Source Area, 2005-2016
	Table A-5:	Extraction Volumes in the North Street Area, 2003-2016
	Table A-6:	VOC Mass Removed in the North Street Area, 2003-2016
	Table A-7:	Injection Volumes in "Off-Site" Capture Zones A and B, 2009-2016
	Table A-8:	Extraction Volumes in "Off-Site" Capture Zones A & B, 2004-2016
	Table A-9:	VOC Mass Removed in "Off-Site" Capture Zones A & B, 2005-2016
Appendix B	Table B-1:	Physical Well Data and Well Specifications for Monitoring, Extraction, and Injection Wells
	Table B-2:	Specifications for Other Monitoring Wells
	Table B-3:	Annual Well Field Inspection Results
Appendix C	Groundwater	Elevation Data - 2016
Appendix D	Groundwater	Monitoring Plan for 2016
	Table D-1: H	lydraulic Effectiveness Monitoring Wells
	Table D-2: R	emedial Action Effectiveness Wells
Appendix E	E-1: Ground	water Analytical Chemistry Data - 2016
	E-2: Ground	water Treatment Analytical Chemistry Data - 2016
Appendix F	Table F-1: Su	ummary Comparison of 2016 Duplicate Sample Results
	Quality Assur	rance / Quality Control Analytical Chemistry Data - 2016
Appendix G	Summary of S	Significant Remediation Systems Maintenance Activities in 2016
Appendix H		faintenance and Monitoring Manual for Extraction, Collection and stems (on CD)

1 INTRODUCTION

This report has been prepared by Groundwater Sciences Corporation (GSC) and Groundwater Sciences, P.C. (GSPC) for International Business Machines Corporation (IBM). This report is intended to comply with Section XII and Appendix D of Order on Consent Index #A7-0502-0104 (Order) between IBM and the New York State Department of Environmental Conservation (NYSDEC) for the former IBM Endicott facility and associated groundwater plumes (Site #704014, hereinafter referred to as the "Site") located in the Village of Endicott, New York. This report combines the Annual Groundwater Monitoring Status Report (Annual Report) for 2016 and the 13th Update to the Groundwater Remediation Systems Operations, Maintenance and Monitoring Plan (OM&M Plan). As such, this report is referred to as the Combined Groundwater Report for 2016.

1.1 Purpose and Scope

The purpose of the Combined Groundwater Report for 2016 is fivefold:

- 1. To describe the Remedial Action Plan in place at the Site for 2016, including groundwater extraction wells, injection wells, and treatment systems.
- 2. To describe the operation, maintenance, and monitoring of the groundwater extraction wells, injection wells, and treatment systems in 2016. The requirement for a comprehensive operations, maintenance and monitoring plan (COM&M Plan) is described in Appendix D, Activity C of the Order.
- 3. To describe the upgrades, repairs, and replacements of components of the groundwater extraction wells, injection wells, and treatment systems that occurred in 2016.
- 4. To describe the Groundwater Monitoring Program and to present the Groundwater Monitoring Plan (GMP) for 2016. The primary elements of the Groundwater Monitoring Program are the periodic measurement of groundwater elevations in several hundred hydraulic effectiveness (HE) monitoring wells and the sampling of groundwater from a subset of these HE wells, referred to as remedial action effectiveness (RAE) monitoring wells. The lists of HE and RAE monitoring wells in the GMP and the frequency of

monitoring for these wells are updated annually so as to be consistent with the evaluation

described in Item 3 below and with the anticipated monitoring needs for the next 12 months.

5. To evaluate the effectiveness of remedial action and the progress of remediation based on

data collected in 2016, thereby satisfying the annual reporting requirement for the Site. The

contents of the annual evaluation are specified in Section 4.3.2 of the OM&M Plan, Fifth

Update (May 2009) and include a summary of all analytical chemistry results for the

previous year, supporting QA/QC documentation, comprehensive groundwater elevation

data, pumping rates and volumes, contaminant recovery calculations, treatment efficiency

data, isoconcentration contour maps, and other hydrogeological maps as needed.

1.2 **Site Location and Description**

The former IBM Endicott facility is a 135-acre industrial facility situated in the Susquehanna River

valley in the Village of Endicott, Broome County, New York. A Site Location Map showing the

approximate location of the former IBM Endicott facility is provided as Figure 1-1. The Site, as

defined in the Order and referenced in this report, includes the former IBM Endicott facility ("On-

Site") that is currently owned by Huron, LLC and certain "Off-Site" groundwater plume areas. In

accordance with the Order, IBM is performing or has completed Supplemental Remedial

Investigations (SRIs), Interim Remedial Measures (IRMs), and/or Focused Feasibility Studies

(FFSs) in seven separate operable units (OUs), one Miscellaneous Activity (MA) area, and the

"Remainder of Site" consisting of areas of the former IBM Endicott facility that are outside of a

designated OU area. Portions of the Site comprising the former IBM Endicott facility are shaded on

Figure 1-2. The approximate locations of the seven OUs and one MA area are also shown on

Figure 1-2 and are listed below:

OU#1: Railroad Corridor Source Area (RCSA)

OU#2: North Street Area

OU#3: Plume Reduction in the Southern Area

OU#4: Ideal Cleaners Area

OU#5: Building 57 Area

Combined Groundwater Report for 2016, Endicott, New York

April 13, 2017

OU#6: Plume Control in Bedrock Groundwater

OU#7: Assessment of Sewers in Northwestern Area of the Site

MA-A: Plume Reduction in Off-Site Capture Zone A (OSCZ-A)

OU#1 and OU#2 consist of the central portion of the manufacturing area of the Site, separated by Norfolk Southern railroad tracks. OU#3 and MA-A consist of the "Off-Site" groundwater plume areas originating in OUs #1 and #2. OU#4 encompasses a former source area and groundwater plume associated with the former Ideal Cleaners facility south of North Street. The former groundwater plume in OU#4 is located in the eastern portion of an area referred to as "Off-Site" Capture Zone B. OU#5 consists of the eastern portion of the manufacturing area of the Site, and associated discrete groundwater plumes. OU#6 consists of the area of VOC-containing groundwater in bedrock, located primarily beneath portions of OU#2. OU#7 consists of the western portion of the manufacturing area of the Site, and associated discrete groundwater plumes.

The approximate limits of the plume areas associated with "Off-Site" Capture Zone A (MA-A), "Off-Site" Capture Zone B (OU#4), and OU#3 that are shown on Figure 1-2 originally were coincident with various hydraulic capture zones described in the *Supplemental Groundwater Assessment Final Report* (SGA Final Report, December 31, 2003, revised and updated May 17, 2004). As extraction well operations have changed, the boundaries of these capture zones have also changed. However, the terminology for these areas originally established in the SGA Final Report and carried over into the Order has been maintained where practical.

This Combined Groundwater Report presents data generated from January 1, 2016 to December 31, 2016.

1.3 2016 Highlights

The following subsections summarize the remedial activities and results from the operation, maintenance and monitoring of groundwater remediation systems at the Site in 2016. The highlights of operation and monitoring for 2016 are listed below.

• Five extraction wells in the "On-Site" Capture Zone continued to control flux from sources in the Railroad Corridor Source Area (RCSA, Operable Unit #1 (OU#1)) and collectively

Combined Groundwater Report for 2016, Endicott, New York

April 13, 2017

removed about 2,704 pounds of volatile organic compounds (VOCs) from the groundwater in OU#1. This represents 97% of the total VOC mass removed by all extraction wells at the Site in 2016.

- As many as 17 groundwater extraction wells operating at the Site in 2016 removed 2,798 pounds of VOCs, bringing the total mass of VOCs extracted since 1979 to approximately 830,000 pounds.
- Four hundred twenty-six (426) monitoring and extraction wells were used for collecting groundwater samples and/or measuring groundwater elevations in 2016.
- Injection of treated groundwater continued in 2016 at injection wells EN-78T, EN-92P, EN-161T, EN-501T, EN-509T, EN-529T, EN-530T, and EN-532T. The purpose of the clean water injection is to partially re-saturate the Upper Aquifer and enhance flushing of VOC mass remaining in this unit. Clean water injection using treated city water ceased in August 2016 at EN-509T after receiving approval from NYSDEC. The reasons for ending clean water injection at test well EN-509T are discussed in Section 1.3.3.
- The operation of seven extraction wells in Operable Unit #2 (OU#2), "Off-Site" Capture Zone A (OSCZ-A), and the Southern Area (OU#3) during 2016, together with the simultaneous injection of clean water at seven injection wells at a combined average rate of 462 gallons per minute (gpm) continued to generate the following positive results:
 - The chemical flux crossing North Street (OU#2) was intercepted before reaching OSCZ-A.
 - O The dissolved TCE mass totals for the plumes in OSCZ-A and OU#3 calculated for June 2004 and August 2016 indicate a 99% reduction of TCE mass dissolved in groundwater from 89.5 pounds to 1.3 pounds. Furthermore, the average TCE concentration in the plume decreased from 79.5 micrograms per liter (μg/L) in 2004 to 1.4 μg/L in 2016, a reduction of 98%.

- The lateral extent of the plumes in OSCZ-A and OU#3 has also been significantly reduced, as shown on chemical concentration maps for the principal plume constituents. For example, from 2004 to 2016, the area of the plume where TCE concentrations are greater than 5 μg/L has been reduced by more than 88 percent. Other constituents of the plumes, including 1,1,1-trichloroethane (111-TCA), cis-1,2-dichloroethene (c12-DCE), and tetrachloroethene (PCE), have been substantially removed in OSCZ-A and OU#3.
- Monitoring of the OU#4: Ideal Cleaners Area ethene-series (PCE, TCE, c12-DCE, and vinyl chloride) groundwater plume in 2016 continues to indicate a decreasing trend in concentrations of ethene-series constituents since completion of the 2010 source area removal at the former Ideal Cleaners property. The PCE and TCE portions of the groundwater plume have been removed by natural attenuation processes. Monitoring data from November 2016 indicated that one area of vinyl chloride and a smaller area of c12-DCE were the only PCE degradation products remaining at concentrations greater than 6NYCRR Part 703 standards.
- Concentrations of VOCs remaining in groundwater beneath OU#5 are stable or declining since the 2013 implementation of in-situ thermal treatment of apparent VOC source areas. Operation of groundwater extraction well EN-709 continues to maintain control of the remaining dissolved plume of VOCs in the former Huron Lot #26 parking lot, south of Building 57. Annual VOC mass removals by well EN-709 have increased slightly since the start of EN-709 extraction operations in 2013.
- The VOC mass extracted from the bedrock aquifer by extraction well EN-D49 in 2016 was similar to the VOC mass extracted annually from 2007 to 2015. Extraction well EN-D49 is maintaining control of a dissolved plume of VOCs in bedrock groundwater.

1.3.1 Site Characterization

From early 1979 through the end of 2016, 589 wells were installed as part of the corrective action program or ongoing investigations at this Site. The total consists of 264 wells (monitoring, extraction and injection) installed north of North Street on the manufacturing portion of the former IBM facility at the Site, and 325 other wells (monitoring, extraction, and injection) installed south of North Street off the manufacturing portion of the former IBM facility at the Site. Plate 1-1 shows the locations of monitoring, extraction, and injection wells that were in place through the end of 2016. These wells are also coded on this map according to the geologic unit in which they are screened or completed. Water levels and groundwater samples collected from these wells have been used to characterize the directions of groundwater flow and contaminant transport beneath the Site.

1.3.2 Groundwater Extraction and Treatment Systems

As of December 31, 2016, groundwater containment and recovery operations consisted of 15 extraction wells. (Note: Of the 17 extraction wells that operated during 2016, EN-253R was shut down in October, EN-276 was shut down in November, and EN-276R operated from April through December.) The locations of these extraction wells are shown on Figure 1-3. Average well yields in 2016 ranged from less than 1 gpm to 134 gpm. The combined average monthly extraction rate for 2016 was 613 gpm, with a combined average monthly minimum of 512 gpm and a combined average monthly maximum of 658 gpm. Groundwater pumped from all but two of the extraction wells in 2016 was treated at one of four stand-alone groundwater treatment facilities (GTFs) operated by IBM on Jefferson, Garfield, and Adams Avenues, and on Clark Street. Groundwater pumped from extraction well EN-107R in the Railroad Corridor Source Area was treated at the Huron Organic Treatment Facility (Huron OTF). Groundwater pumped from extraction well EN-114T was also treated at the Huron OTF during a March 2016 maintenance review of above-ground conveyance piping (March 1 through 22, 2016), but otherwise was treated at the Clark Street GTF. All five treatment facilities are shown on Figure 1-3. The location of the inactive Robble Avenue GTF that was shut down in February 2014 at the start of the ongoing EN-154R shutdown test in OU#7 is also shown on Figure 1-3.

1.3.3 Clean Water Injection

As of December 31, 2016, clean water injection operations consisted of seven active wells injecting treated groundwater at a combined rate of about 520 gpm based on rates in October and December when all seven wells were injecting clean water concurrently for the entire month. The locations of these injection wells are shown on Figure 1-3. Treated groundwater from the Garfield Avenue GTF (Outfall 001M) was injected at wells EN-92P, EN-501T, EN-529T, and EN-530T; treated groundwater from the Jefferson Avenue GTF (Outfall 002M) was injected at well EN-532T; and treated groundwater from the Adams Avenue GTF (Outfall 003M) was injected at wells EN-78T and EN-161T. All of these injection wells operated throughout 2016. Treated city water was injected at EN-509T until August 10, 2016 when injection ceased following receipt of written approval from NYSDEC. The decision to shut down EN-509T resulted from: 1) concerns over the potential negative effects of raising the water table in areas of OU#1 and OU#2 where utilities are deeply buried; 2) the possibility of increasing the mass removal from the extraction wells in OU#1 and OU#2 without a clean water injection well; 3) operational difficulties under high water table conditions; and 4) excessive fouling of pre-treatment injection system components associated with the use of municipal water.

1.3.4 Groundwater Monitoring

Sampling in 2016 was performed in accordance with a Groundwater Monitoring Plan (GMP) approved by NYSDEC on January 30, 2016. A total of 415 hydraulic effectiveness monitoring wells were included in the groundwater monitoring program for 2016. Groundwater samples for remedial action effectiveness were collected from 340 wells, including active extraction wells. The analytical results for groundwater samples collected during the 2016 calendar year are included in this Combined Groundwater Report for 2016.

1.4 Organization of Report

The remainder of this report is organized as follows. Section 2 presents important background information, including the Site's remediation goals, physical setting and hydrogeology, and descriptions of the remedial systems in place. Section 3 describes the work performed in 2016, including the maintenance and operation of groundwater extraction wells, injection wells, and

treatment systems; maintenance of monitoring wells; measurement of groundwater elevations; and groundwater sampling. The hydrogeological and hydrogeochemical results for 2016 are analyzed in Sections 4 and 5 with emphasis on patterns of groundwater flow and capture, and the distribution of chemicals of concern. Section 6 discusses the progress of remediation at each of the Site's operable units and the VOC mass removed by pumping Site-wide. A list of references is presented in Section 7.

2 BACKGROUND

The corrective action history of the Site began with the discovery of groundwater contamination in 1979. IBM subsequently began a Corrective Measures Program to evaluate groundwater quality and remediate groundwater contamination beneath the manufacturing portion of the Site, north of North Street. In early 1980, IBM began to control and remove sources of contamination beneath the manufacturing portion of the Site by using vertical extraction wells to remove both groundwater and separate-phase VOCs. Since 1980, 37 extraction well points (not including replacement or supplemental wells at the same location) have been used at various places and times for this purpose.

2.1 Site Remediation Objectives

VOCs have been detected in groundwater in two geologic units beneath the Site: the bedrock and the glacial outwash, which contains the Upper Aquifer. The VOC plume in the bedrock is contained by the operation of a single extraction well and the remedial objective is to maintain that containment. The remedial measures program for the Upper Aquifer has two principal objectives. The first objective is to attain groundwater standards to the extent practicable. The second objective is to shrink the groundwater plumes containing VOCs, in particular trichloroethene (TCE), to mitigate potential concentrations of TCE in soil vapor. Simply stated, this second objective is as follows:

Reduce concentrations of VOCs in groundwater south of North Street, and to the extent practicable, to below New York State 6NYCRR Part 703 groundwater standards in order to reduce potential soil vapor impacts. This will be accomplished by the following actions:

- 1. Continue to control the sources of VOCs in groundwater north of North Street, and to enhance this control as appropriate.
- 2. Continue to control and treat the VOC-containing groundwater flux crossing North Street.
- 3. In conjunction with actions 1 and 2, accelerate the rate of reduction of the plume areas south of North Street.

The larger objective of these actions was to reduce the mass of TCE in groundwater within the plumes being remediated by IBM south of North Street by 50% in five years and by 80% in ten years, using the first year of enhanced off-site plume reduction activities (2004) as the base year for comparison. The ten-year TCE mass reduction goal was achieved in 2012 after eight years of enhanced remediation.

2.2 Physical Setting

The Site is underlain by a sequence of unconsolidated glacial and post-glacial sediments overlying a buried bedrock valley. Three of the units in this sequence (Upper Aquifer, Lower Aquifer, and Bedrock Aquifer) are water-bearing and one unit (Lacustrine Silt) is an effective aquitard.

2.2.1 Upper Aquifer

The Upper Aquifer is defined by the vertical difference between two surfaces: (1) the surface defining the top of the lacustrine silt (see below), and (2) the surface defining the top of the saturated zone (i.e., the water table) in an extensive coarse-grained unit consisting of glacial outwash. The outwash consists mostly of sand and gravel with some minor silt layers deposited as interbedded deltaic foreset beds in a former post-glacial meltwater lake and in post-lacustrine braided stream deposits. This outwash unit is typically 25 to 30 feet thick but is thicker where it has filled in several ice block depressions (following melting of the ice), and where the sediment has been downwarped by differential compaction or collapse that occurred as the ice blocks melted after they had been buried under the deposited sediments. The Upper Aquifer is an unconfined, water table aquifer.

2.2.2 Lacustrine Silt

The Lacustrine Silt unit consists of fine-grained lake-bottom deposits, typically varved silt with pink clay seams, but locally grading to silty very fine sand. The top of this unit generally defines the bottom of the Upper Aquifer and is nearly continuous throughout the valley with the exception of discrete areas where the presence of ice blocks prevented its deposition onto ice-contact sand and gravel and/or glacial till deposits. Where the Lacustrine Silt is absent, the bottom of the Upper Aquifer is in contact with glacial till or coarse-textured ice-contact deposits comprising the Lower

Aquifer. Where the Lacustrine Silt is present, as it is over most of the Site, it forms an effective aquitard between the overlying Upper Aquifer and the underlying Lower Aquifer in areas where the Lower Aquifer is present. The current surface elevation contour map for the Lacustrine Silt is shown on Plate 2-1.

2.2.3 Lower Aquifer

The Lower Aquifer consists of stratified drift deposited by sub-glacial meltwater in tunnels and crevasses beneath the glacial ice or by superglacial meltwater at the glacial ice margin. Unlike the glacial outwash of the Upper Aquifer, the ice-contact deposits of the Lower Aquifer are not present as a continuous layer in the areas north of Broad Street in the west and East Main Street in the east. Rather, the Lower Aquifer in the Endicott area is confined to a thick sequence of ice contact deposits situated along the axis of the valley and in isolated areas farther away from the valley axis. It is used for both municipal and industrial water supply.

2.2.4 Bedrock Aquifer

The uppermost several hundred feet of bedrock consists of marine shales and siltstones of the late Devonian West Falls Group. Bedding is near-horizontal and the upper part of the bedrock contains water-bearing fractures yielding sufficient quantities of water such that the shallow bedrock is an effective aquifer.

2.2.5 Other Units

Post-glacial alluvium is present near or within the Site in at least two locations: (1) beneath a low terrace adjacent to the Susquehanna River, and (2) in a shallow late-deglacial channel near the north valley wall generally located between Watson Boulevard and the Norfolk Southern railroad tracks. This unit is not significant with regard to groundwater flow at the Site.

In many areas, the lowermost unconsolidated unit lying directly above the bedrock is till - a dense, poorly sorted mixture of clay, silt, sand and angular rock fragments deposited directly by glacial action. The till is discontinuous beneath the Site and, therefore, is not consistently the lowermost unconsolidated unit in contact with bedrock. Near the axis of the valley, where the till is mostly

absent, ice contact deposits lie directly over the bedrock. The till is not significant with regard to groundwater flow at the Site.

2.3 Groundwater Monitoring Plan

The Site monitoring plan consists of two elements: (1) measurement of water levels and sampling of groundwater monitoring and extraction wells in accordance with a Site-specific Groundwater Monitoring Plan (GMP) and (2) sampling of influent and effluent from the various groundwater extraction and treatment systems to satisfy the treatment requirements of the Order. (Influent and effluent sampling is described in Section 3.1.2 of this report.) The purpose of the GMP is to specify a network of groundwater monitoring and extraction wells to be used for monitoring hydraulic effectiveness and remedial action effectiveness.

Sampling is performed in accordance with the Site's Quality Assurance Project Plan (QAPP). The current QAPP for the Site was submitted to NYSDEC in January 2009 and was prepared in accordance with Paragraphs 2.(i) and 2.(iii) of Appendix F of the Order.

The GMP for 2016 is presented in Appendix D and consists of 415 hydraulic effectiveness (HE) monitoring wells and 346 remedial action effectiveness (RAE) monitoring wells, including active extraction wells. All of these wells are shown on Plate 1-1. The HE wells and RAE wells are listed on Tables D-1 and D-2 of Appendix D. The HE well listing on Table D-1 includes the Site Area designation (OU# or MA-A), the monitoring point elevation, and the planar coordinates for each well. The physical specifications for the HE wells, such as survey coordinates, elevations, depths, and well construction information, are listed in Table B-1 of Appendix B. Synoptic groundwater elevation data in 2016 was recorded semiannually from the 415 HE wells and was used to construct water table elevation and potentiometric elevation contour maps for the semiannual and annual groundwater monitoring reports. The groundwater elevation data for HE wells was supplemented by additional groundwater level measurements from monitoring wells and recovery wells located within the Former Endicott Forging property northwest of the intersection of North Street and Hayes Avenue.

The RAE well listing on Table D-2 includes the Site Area designation, the sampling frequency, a summary of the number of samples per year, and a summary of wells to be sampled using passive

diffusion bags (PDBs) instead of pumps or bailers. Eligibility for sampling using PDBs was determined based on inner well diameters (inner diameter greater than one inch required), anticipated water column thickness in the screened interval of the well (in general, 5 feet or greater is needed for PDB sampling), and position relative to potentially variable extraction and injection operations.

Samples collected from each of the RAE monitoring and extraction wells listed on Table D-2 were analyzed for VOCs by SW-846 Method 8260C using a 25 mL purge, thereby achieving low concentration reporting limits, typically 0.5 µg/L (undiluted). Field screening for specific conductance, pH, temperature, and turbidity was performed at the time of sampling. The VOC concentration data for the 346 RAE wells was used to create chemical concentration contour maps showing the distribution of VOCs in groundwater.

IBM submitted a request to NYSDEC for modifications to the GMP on November 30, 2016. The request was approved on December 7, 2016 and consists of the following modifications:

- 1. A decrease in the number of hydraulic effectiveness wells from 415 to 410;
- 2. A decrease in the number of remedial action effectiveness wells from 346 to 343;
- 3. A net decrease in the number of groundwater monitoring well samples being collected from 787 to 780;

The approved changes to the GMP reflect the modification of groundwater monitoring associated with the planned decommissioning of monitoring wells in OU#2, OU#4, and in MA-A. No changes to the GMP were proposed for wells in OU#1, OU#3, OU#5, OU#6, and OU#7. However, the frequency of monitoring for OU#7 wells associated with the EN-154R shutdown test is anticipated to be reassessed following the third quarterly sampling event in August 2017.

2.4 Description of Remedial Systems

The remedial systems described in this section consist of groundwater extraction wells, clean water injection wells, and groundwater treatment systems. These wells and treatment systems are operated and maintained in accordance with the Site's OM&M Plan.

2.4.1 Groundwater Extraction and Injection Wells

As described in Section 1.3.2, the groundwater collection system in 2016 consisted of 17 active extraction wells operating at various times throughout the year. Except for periods of testing and maintenance, the system has operated continuously since 1980. Prior to 2006, between 110 and 140 million gallons (MG) of groundwater was being extracted and treated annually. With the startup of six new extraction wells (EN-215T, EN-447T, EN-451P, EN-491T, EN-492T, and EN-499T) in 2006, the volume of extracted groundwater initially increased. However, this increase could not be sustained throughout 2007 and 2008 as the Upper Aquifer was significantly dewatered; as a result, the volume of water available for pumping during 2008 decreased to 142 MG. With the startup of clean water injection, first at EN-510T and later at EN-92P and EN-78T, large areas of the Upper Aquifer were re-saturated and the water extracted by pumping in 2009 increased to 162 MG. Thereafter, the annual groundwater extraction volume increased from 240 MG in 2010 to greater than 300 MG annually from 2011 to 2016 as additional injection wells were brought on-line.

Table A-1 in Appendix A summarizes the monthly pumping volumes and average flow rates for each extraction and injection well in 2016. These volumes and flow rates are based on daily records for each well. Also shown at the bottom of Table A-1 is the volume treated at each of the groundwater treatment facilities. Table A-2 shows the mass of VOCs removed by each extraction well in 2016; this VOC mass recovery is discussed further in Section 6.

Figure 1-3 shows the locations of the 26 extraction wells and 10 clean water injection wells that were in place as of December 31, 2016. Of these 36 wells, 35 are constructed in the Upper Aquifer and one well (EN-D49) extracts groundwater from the bedrock aquifer. Fifteen of the 26 extraction wells were operating at the end of 2016. (Extraction wells EN-120, EN-160, and EN-499T in OSCZ-A; EN-154R and EN-218 in OU#7; EN-195, EN-185P, and EN-492T in OU#4; EN-253 and EN-253R in OU#1, and EN-276 in OU#2 were inactive at the end of 2016. Seven of the ten

injection wells were operating at the end of 2016. (EN-509T and EN-510T are inactive and EN-525T has never been placed into service.)

2.4.1.1 Operable Unit #1: Railroad Corridor Source Area

As shown on Figure 1-3, extraction wells EN-428 and EN-253R are located within Operable Unit #1: Railroad Corridor Source Area (OU#1). Groundwater pumped from these two wells is metered at Building 46S (B046S), which contains an equalization tank (EQ Tank) and transfer pumps that transfer groundwater to the Clark Street GTF. Well EN-253R was shut down in October 2016.

Wells EN-107R, EN-114T, and EN-219R are also located in OU#1. Groundwater extracted from EN-107R and EN-114T is metered at the nearby EN-107R Metering Enclosure and is pumped through the conveyance piping either to the Huron OTF in Building 96 or to the Clark Street GTF. Groundwater extracted from well EN-219R is metered at the EN-219R Metering Enclosure where it joins the B046S conveyance line and is pumped to the Clark Street GTF together with groundwater extracted from OU#1 extraction wells EN-428, EN-253R, and EN-114T (except when EN-114T discharge was conveyed to the Huron OTF during a maintenance review of above-ground conveyance piping in March 2016).

Clean water injection operations at EN-509T, located between extraction wells EN-428 in OU#1 and EN-276 in OU#2, ceased in August 2016 when the well was shut down indefinitely for reasons explained in Section 1.3.3.

2.4.1.2 Operable Unit #2: North Street Area

Three Upper Aquifer extraction wells are located in the vicinity of North Street (OU#2): EN-276 and EN-276R, located between Buildings 14 and 18, and EN-284P, located in the parking lot area south of North Street between Grant Avenue and Garfield Avenue (Figure 1-3). Groundwater from all three wells is treated at the Garfield Avenue GTF. After being out of service since May 2013, well EN-276R was reactivated for the last nine months of 2016 to supplement the extraction from nearby well EN-276.

2.4.1.3 Miscellaneous Activity A: Plume Reduction in Off-Site Capture Zone A

Seven extraction wells (EN-133, EN-91T, EN-451P, EN-120, EN-160, EN-194, and EN-284P) are available to remove groundwater from the Upper Aquifer in OSCZ-A, as shown on Figure 1-3. Five of these wells operated through the end of 2016. Groundwater extracted by EN-194 and EN-284P is treated at the Garfield Avenue GTF while groundwater extracted by EN-133, EN-91T, and EN-451P is treated at the Jefferson Avenue GTF. Groundwater extraction wells EN-120 and EN-160 have been inactive since 2006.

Six injection wells are available in OSCZ-A. Injection wells EN-529T, EN-530T, and EN-92P use treated groundwater from the Garfield Avenue GTF while injection well EN-78T uses treated groundwater from the Adams Avenue GTF. Injection wells EN-510T and EN-532T use treated groundwater from the Jefferson Avenue GTF; however, only EN-532T was used in 2016. The wells using treated water from the Garfield Avenue GTF were off from early June through late July during an extensive refurbishment of the treatment system. The combined injection rate of the five wells operating in OSCZ-A during the last four months of 2016 averaged 355 gpm.

2.4.1.4 Operable Unit #3: Plume Reduction in the Southern Area

As shown on Figure 1-3, three extraction wells (EN-499T, EN-215T and EN-447T) are available to remove groundwater from the Upper Aquifer in Operable Unit #3: Southern Area (OU#3). Groundwater extracted by EN-215T and EN-499T is treated at the Garfield Avenue GTF whereas groundwater extracted from EN-447T is treated at the Adams Avenue GTF. Extraction well EN-499T was shut down on November 6, 2014 and groundwater extraction rates at nearby wells EN-194 and EN-215T were optimized.

Two injection wells have operated since 2010 in Operable Unit #3, as shown on Figure 1-3. Well EN-501T uses treated groundwater from the Garfield Avenue GTF and well EN-161T uses treated groundwater from the Adams Avenue GTF. The combined injection rate for both wells averaged 141 gpm during the last four months of 2016, with the majority of the water being injected at the EN-161T location.

2.4.1.5 Operable Unit #4: Ideal Cleaners Area (Eastern Portion of OSCZ-B)

As shown on Figure 1-3, four extraction wells (EN-185P, EN-195, EN-491T, and EN-492T) are available to remove groundwater from the Upper Aquifer in Off-Site Capture Zone B (OSCZ-B) where the extracted groundwater is treated at the Adams Avenue GTF. The plume originating from Operable Unit #4: Ideal Cleaners Area (OU#4) in the eastern portion of OSCZ-B was captured and hydraulically controlled by extraction wells EN-185P and EN-492T until it was determined that maintaining hydraulic capture using these wells was no longer necessary due to the substantial reduction in the concentration and lateral extent of the OU#4 plume following thermal treatment of the source area in 2010. Consequently, EN-492T was shut down in February 2014 and EN-185P was shut down in January 2015. EN-195 in the western portion of OSCZ-B was also shut down in February 2014. Only extraction well EN-491T continues to be used for hydraulic containment in the western portion of OSCZ-B.

2.4.1.6 Operable Unit #5: Building 57 Area

Following the successful completion of source removal activities in the Building 57 Area (OU#5), extraction well EN-709 began operating in June 2013 to provide hydraulic containment of a small area of VOC-containing groundwater identified in the southwestern portion of OU#5, outside of the thermal treatment source removal areas. Groundwater extracted by EN-709 is treated at the Clark Street GTF. In 2016, groundwater withdrawals at well EN-709 maintained an average extraction rate of about 7 to 8 gpm.

2.4.1.7 Operable Unit #6: Plume Control in Bedrock Groundwater

Extraction well EN-D49 is located on McKinley Avenue near the southwestern corner of Building 42 (Figure 1-3) and extracts groundwater from the bedrock unit within Operable Unit #6 (OU#6). The long-term extraction rate was maintained at about 24 gpm through 2016, consistent with the average rate from 2009 to 2015. Groundwater extracted by EN-D49 is treated at the Adams Avenue GTF.

2.4.1.8 Operable Unit #7: Northwestern Area

Two inactive extraction wells, EN-218 and EN-154R, are located in Operable Unit #7: Northwestern Area (OU#7), as shown on Figure 1-3. These two wells were installed to remediate residual contamination from historical Endicott-Johnson and IBM operations.

Extraction well EN-218 was shut down in October 2012 when it was determined that well EN-154R was sufficient for remediation in OU#7. In November 2013, IBM requested approval from NYSDEC to conduct a shutdown test of EN-154R. The purpose of this on-going test is to monitor and quantify downgradient changes in groundwater quality prior to deciding whether to permanently discontinue operation of EN-154R. Extraction well EN-154R was subsequently shut down in February 2014 with NYSDEC approval and the Robble Avenue GTF, which treated groundwater extracted from EN-218 and EN-154R, was also shut down in February 2014.

EN-154R shutdown test activities completed in 2016 consisted of quarterly post-shutdown groundwater monitoring. The planned scope of the shutdown test in 2017 includes additional post-shutdown groundwater monitoring to support a decision regarding the long-term groundwater remedy for OU#7.

2.4.2 Groundwater Treatment Systems

Groundwater withdrawals from each of the 17 extraction wells that were pumped in 2016 were treated at one of four active GTFs operated by IBM or at the Huron OTF. A fifth GTF, the Robble GTF, was inactive in 2016 as explained in Section 2.4.1.8. Treated water discharged from the four active GTFs either was injected via the injection wells or was discharged to the Susquehanna River via the Endicott municipal storm sewer system at one of four separate outfalls. The Huron OTF also discharges to a separate outfall in the municipal storm sewer system.

As shown on Figure 1-3, all four active GTFs operated by IBM treated water from more than one extraction well in 2016. The following sections briefly describe each GTF and explain which extraction and injection wells are connected with each GTF. Detailed descriptions of the four GTFs operated by IBM are included in the OM&M Manual (Appendix H).

2.4.2.1 Garfield Avenue GTF

The Garfield Avenue GTF uses liquid-phase granular activated carbon (GAC) as the primary treatment for extracted groundwater. The two-stage liquid-phase GAC system consists of two adsorption vessels, each with 20,000 pounds of GAC. The Garfield GTF also incorporates a 3,000-gallon equalization tank and influent transfer pump which was installed as part of a GTF upgrade in 2012. An air stripping treatment system with vapor-phase treatment vessels for aerator off-gas treatment was installed in 2013 to address variable mass loading of chlorinated ethanes in the groundwater extracted from wells EN-276 and EN-276R. Modifications to the conveyance piping were also made to segregate groundwater extracted by well EN-284P from groundwater extracted by wells EN-276 and EN-276R.

In 2016, the majority of the groundwater treated via the two-stage liquid-phase GAC system in the Garfield GTF was used to supply clean water for injection wells EN-92P, EN-529T, EN-530T, and EN-501T. Excess treated water not used for injection is discharged to the Susquehanna River via Outfall 001M through the Endicott municipal storm sewer system.

2.4.2.2 Jefferson Avenue GTF

The Jefferson Avenue GTF, like the Garfield Avenue GTF, uses liquid-phase GAC as the primary treatment for extracted groundwater. The two-stage liquid-phase GAC system consists of two adsorption vessels, each with 20,000 pounds of GAC. In 2016, the majority of the groundwater treated via the two-stage liquid-phase GAC system in the Jefferson GTF was used to supply clean water for injection well EN-532T. Excess treated water not used for injection is discharged to the Susquehanna River via Outfall 002M through the Endicott municipal storm sewer system.

2.4.2.3 Adams Avenue GTF

The treatment system at the Adams Avenue GTF uses liquid-phase GAC systems similar to the Garfield Avenue and Jefferson Avenue GTF systems. The arrangement of the treatment systems at the Adams Avenue GTF allows for separate treatment of groundwater from two groups of wells exhibiting distinctive geochemical characteristics and having different pre-treatment requirements. One influent stream, consisting of groundwater extracted from bedrock well EN-D49 (and previously from EN-185P and EN-492T) is designated as the "A1 line" and uses a solids removal

system consisting of an equalization tank, sand filter with automated backwash, settling vessel, and high speed centrifuge to remove suspended solids in a pre-treatment step. This influent stream is then chemically treated to sequester calcium and magnesium carbonate and suppress biofouling in a second pre-treatment step. The final treatment step uses a two-stage liquid-phase GAC system consisting of two adsorption vessels, each with 20,000 pounds of GAC.

The other influent stream, consisting of groundwater extracted from wells EN-447T and EN-491T (and previously from EN-195) is designated as the "A2 line" and does not require pre-treatment. This influent stream is handled with a separate two-stage liquid-phase GAC system consisting of two adsorption vessels, each with 10,000 pounds of GAC. The treated effluent from the A2 line is used to supply clean water for injection at well locations EN-78T and EN-161T. Excess treated water not used for injection, along with treated effluent from the original A1 line, is discharged to the Susquehanna River via Outfall 003M through the Endicott municipal storm sewer system.

2.4.2.4 Clark Street GTF

In 2016, groundwater from four wells in OU#1 (EN-114T, EN-428, EN-253R, and EN-219R) and one well in OU#5 (EN-709) was treated at the Clark Street GTF. The Clark Street GTF is located on the north side of Clark Street near the eastern end of the Huron campus. The Clark Street GTF treatment system consists of a 3,000-gallon equalization tank, a QED EZ-Tray air stripper and three in-series vapor-phase treatment vessels for aerator off-gas treatment. Two of the vapor-phase treatment vessels contain granular activated carbon and a third vapor-phase treatment vessel contains a special zeolite medium for polishing the air stripper effluent stream. The treated effluent is discharged to the Susquehanna River via Outfall 006M through the Endicott municipal storm sewer system.

3 DESCRIPTION OF WORK PERFORMED IN 2016

3.1 Remediation System Operations

This section of the Combined Groundwater Report discusses the groundwater extraction and injection systems and contaminant recovery achieved by extraction wells operating at the Site during 2016 and the efficiency of groundwater treatment to remove these contaminants from the groundwater prior to discharge to surface water via the storm sewer system. A summary description of significant maintenance activities conducted in 2016 for the groundwater extraction and treatment systems is presented in Appendix G.

3.1.1 Groundwater Extraction and Injection

As noted in 2.4.1, groundwater extraction and injection volumes by well and by month in 2016 are shown on Table A-1 of Appendix A. The total volume of groundwater extracted at the Site in 2016 was 323.2 MG. The total volume of clean water injected in 2016 was 245.0 MG, with 70% of that total injected by five wells in OSCZ-A and the rest injected by one well in the "On-Site" Capture Zone (EN-509T) and by two wells (EN-161T and EN-501T) in the Southern Area. A breakdown of the total extraction volumes in MG by remediation area in 2015 and 2016, and the change from 2015 to 2016, is shown below on Table 3-1. A complete record of extraction volumes by remediation area since 2005 is presented in Table A-3 of Appendix A.

Table 3-1: Groundwater Extraction Volumes by Remediation Area (MG, millions of gallons)				
Area	2015	2016	Change from 2015 to 2016	
"On-Site" Capture Zone (OU#1 and OU#7)	24.5	31.0	6.5	
North Street Area / "Off-Site" Capture Zone A (OU#2 and MA-A)	284.0	260.6	-23.4	
"Off-Site" Capture Zone B	14.8	14.4	-0.4	
Building 57/57A (OU#5)	4.6	4.6	0	
Bedrock Groundwater (OU#6)	12.8	12.6	-0.2	
Total	340.8	323.2	-17.6	

In the North Street Area and OSCZ-A, the 2016 extraction volume (260.6 MG) is slightly less than the amount extracted in 2015. However, volumes extracted in 2015 and 2016 are higher than in any previous year except 2014 due to the sustained volumes of clean water being injected at EN-78T, EN-501T, EN-532T, EN-529T/EN-92P, and EN-530T. The relationship between the injection and extraction volumes in OSCZ-A is examined in more detail in Section 6.4.

The annual extraction volume for bedrock groundwater extraction well EN-D49 in 2016 was 12.6 MG. Between 2009 and 2016, the groundwater extracted from EN-D49 has varied by no more than five percent, ranging from 12.2 to 12.8 MG.

3.1.2 Influent and Effluent Sampling of Groundwater Treatment Systems

Influent and effluent samples were collected monthly in 2016 from the Garfield Avenue GTF, Jefferson Avenue GTF, Adams Avenue GTF, and Clark Street GTF. Mid-point samples (from between carbon vessels) were collected at least monthly from the Garfield, Jefferson, and Adams Avenue GTFs. Separate influent and mid-point samples were collected from the A1 and A2 lines of the Adams Avenue GTF. Sampling points at the Clark Street GTF consisted of air stripper influent and a final effluent sampling point prior to discharge to Outfall 006M. All influent, effluent, and mid-point samples were analyzed for VOCs by SW-846 Method 8260C. The pH of the effluent was also recorded in the field. Analytical chemistry data for influent and effluent samples collected in 2016 is presented in Appendix E-2.

3.1.3 Operational Efficiency

The operational efficiency of the extraction wells, injection wells, and treatment systems at the Site in 2016 was analyzed by reviewing the number of days that each well was pumping and comparing this number to the number of possible days of operation. Wells were considered active on days when at least 10 gallons per day was injected or extracted. Table 3-2 summarizes the days of activity for each well and shows the up-time percentage relative to either the number of days in the year (366, a leap year) or the period when the well was available (e.g., partial years for EN-253R, EN-276, EN-276R, and EN-509T).

	Table 3-2: Operational Efficiency of Extraction and Injection Wells in 2016					
Well	Operational Days in 2016	% Time in Operation*	Well	Operational Days in 2016	% Time in Operation*	
	Garfield GTF			Clark GTF		
EN-284P	365	99.7%	EN-219R	365	99.7%	
EN-194	365	99.7%	EN-253R**	296	99.3%	
EN-215T	363	99.2%	EN-428	361	98.6%	
EN-276**	324	99.4%	EN-709	366	100.0%	
EN-276R**	EN-276R** 233 89.3%					
	Jefferson GTF					
EN-91T	365	99.7%				
EN-133	366	100.0%	Injection Wells			
EN-451P	366	100.0%	EN-078T	350	95.6%	
	Adams GTF		EN-501T	219	59.8%	
EN-491T	366	100.0%	EN-161T	342	93.4%	
EN-447T	363	99.2%	EN-529T	292	79.8%	
EN-D49	358	97.8%	EN-530T	289	79.0%	
Huron OTF			EN-532T	366	100.0%	
EN-114T***	362	98.9%	EN-092P	290	79.2%	
EN-107R	366	100.0%	EN-509T**	216	92.7%	

^{*}Percent time in operation is based on full days when at least 10 gallons was pumped.

As shown on Table 3-2, the operational efficiency for 16 of the 17 extraction wells operating in 2016 was greater than 97% based on days of pumping, thirteen wells had greater than 99% operational efficiency in 2016 and five extraction wells operated 100% of the time in 2016. In addition to lower operational efficiencies due to planned shutdown of some wells (EN-276, EN-253R), the operational periods for other wells were reduced due to factors such as off-hour pump failures (EN-215T), major GTF conveyance system repairs (EN-D49 and EN-114T) and multiple well cleanings (EN-428).

The operational efficiency was greater than 90% for four of the eight injection wells in 2016. Compared to 2015, the injection efficiency was lower in 2016 due the shutdown of the Garfield GTF for relining of the treatment vessels in June and July. The injection wells are typically

^{**}The operational periods for these wells were less than 366 days because they were either not active at the beginning of 2016 or were shut down before the end of 2016. Days of possible operation for each well: EN-276 = 326 days; EN-276R = 261 days; EN-253R = 298 days; EN-509T = 233 days.

^{***} Water from this well was also conveyed to the Clark GTF for part of the year.

restarted approximately five days after a change-out of carbon in the associated GTF, and the number of days when the injection wells are off during these carbon changes depends on achieving acceptable levels of total suspended solids in the treated water to be injected.

3.1.4 Treatment Efficiency

Treatment efficiency was calculated for the four GTFs operating in 2016 by comparing VOC concentrations in the influent to VOC concentrations in the effluent from each treatment system. The pH and concentrations of VOCs in the effluent from all four GTFs operated by IBM were within the limits allowed by the former SPDES permit (pH = 6.0 to 9.0 and VOCs less than $10 \mu g/L$ each). Based on the ratio of influent to effluent concentrations, the treatment efficiency for the four active GTFs was greater than 99.9% in 2016.

3.1.5 System Maintenance

3.1.5.1 Water Treatment Chemical (WTC) Use and Reporting

Water treatment chemicals (WTCs) were used in 2016 at the Garfield Avenue GTF (Outfall 001M) Adams Avenue GTF (Outfall 003M), and Clark Street GTF (Outfall 006M) and associated extraction wells. The purpose of the WTCs is to control biofouling and precipitation of iron and calcium in the extraction wells, GAC beds, air strippers, treatment system piping, meters, and pumps. Some of the WTCs are added directly to the treatment system trains whereas others are injected or added at the extraction wells. Two different WTCs were used with NYSDEC approval. Table 3-3 lists these WTCs, their purposes, and the total quantity of each that was used in 2016. A detailed table was submitted to NYSDEC in March 2017 to comply with the annual WTC reporting requirement.

Table 3-3: Water Treatment Chemical Use in 2016						
Water Treatment Chemical	Outfalls Where Used	Quantity Used in 2016 (pounds)	Purpose			
NaOCI (Sodium Hypochlorite)	006M	15,735	Microbiocide			
Redux 300*	001M, 003M, 006M	21,537	Sequestering agent for Fe and Ca deposits			
Total: 37,272 Pounds						
*Contains phosphorus; total phosphorus analysis of effluent required when in use.						

As shown on Table 3-3, IBM used a total of 37,272 pounds (18.6 tons) of water treatment chemicals in 2016 to maintain operational efficiency of the groundwater extraction and treatment systems at the Site.

3.1.5.2 Carbon Changes

Granular activated carbon was used at the four active groundwater treatment facilities in 2016. The Garfield, Jefferson, and Adams GTFs use liquid-phase GAC vessels in the groundwater treatment process. The Garfield and Clark GTFs use vapor-phase GAC vessels for off-gas treatment from air stripping systems. When the GAC reaches its adsorptive capacity for removal of VOCs, the spent carbon is removed from its respective vessel by the vendor and is replaced with virgin or reactivated carbon. Detections of VOCs in the midpoint samples of the liquid-phase GAC vessels are used to determine whether the adsorptive capacity of the GAC has been exhausted. During a carbon change, the spent carbon is removed from the lead vessel and is replaced with fresh carbon. The lead-lag positions of the two in-series vessels are then reversed by adjusting valves and/or hose connections, except when carbon is changed in both the lead and lag vessels.

The carbon change-out process takes several hours and requires shutdown of the treatment system and associated extraction and injection wells. The extraction wells are restarted following the carbon change. The injection wells are not restarted until concentrations of total dissolved solids in the GTF effluent have decreased to levels acceptable for injection of the treated water. Typically, the clean water injection operations resume within about one week after the carbon change. Table 3-4 lists the carbon changes that occurred in 2016 at three of the four GTFs where carbon was used (No carbon changes occurred at the Jefferson Avenue GTF). Eight liquid-phase and 16 vapor-phase

carbon changes occurred in 2016. 230,000 pounds (115 tons) of spent carbon were shipped off-site for regeneration.

Table 3-4: Granular Activated Carbon Changes in 2016				
GTF	Date	Net Weight of Spent Carbon (pounds)		
Garfield	1-26-16 2-2-16 3-10-16 4-29-16 5-24-16 7-11-16 7-20-16 8-11-16 10-11-16 11-8-16 12-14-17	2,000* 20,000 2,000* 20,000 2,000* 20,000 20,000 2,000* 4,000* 20,000 2,000*		
Adams	7-26-16 (A2) 8-1-16 ((A2) 9-12-16 (A1)	10,000 10,000 20,000		
Clark	1-26-16 2-9-16 3-10-16 4-19-16 5-24-16 6-28-16 8-11-16 9-8-16 10-11-16 12-14-16	7,000* 7,000* 7,000* 7,000* 6,000* 7,000* 7,000* 14,000* 7,000* 7,000*		
	Total	230,000		

^{*} Denotes vapor-phase GAC; all other weights are for liquid-phase GAC. Net weight for liquid-phase carbon excludes water weight and precipitated solids.

3.1.5.3 Repairs and Maintenance

Submersible pumps and motors were replaced during 2016 in wells EN-107R (4 times), EN-114T (twice), EN-219R, EN-215T, EN-276 (twice), EN-276R, and EN-447T. Vacuum pumps were replaced or rebuilt in vacuum-assisted extraction wells EN-091T (twice), EN-107R, EN-284P (twice), EN-219R (three times), EN-447T, EN-451P, and EN-491T.

Three extraction wells in OU#1 were rehabilitated by water jetting, surging, air lifting, and physical brushing of the well screens: EN-114T, EN-219R, and EN-428 (six times). Chemicals including acids and biocides were used as needed to break down precipitates and inhibit microbial growth.

The C1 conveyance pipeline system between B046S and the Clark Street GTF was cleaned by flushing with municipal water twelve times in 2016. The C1 line section between B046S and well 107R was flushed once on March 8, 2016. The C2 conveyance line from B046S to the Clark Street GTF was flushed on October 20, November 15, and December 28, 2016. The C6 conveyance line from the EN-709 transfer station to the Clark Street GTF was flushed with municipal water on January 4, January 8, January 12, September 7, and December 28, 2016.

The annual cleaning and calibration of flow meters at the Clark Street GTF and wells EN-107R, EN-114T, EN-253R, EN-428, and EN-709 was performed on February 9, 2016. Annual cleaning and calibration of flow meters at the Jefferson Avenue GTF and wells EN-91T and EN-451P was conducted on May 10, 2016. A second flow meter calibration was completed on the flow meters in the Jefferson GTF on December 19, 2016. Additional flow meter cleanings were completed at wells EN-709 and EN-219R in February 2016 and again at well EN-709 in June 2016.

A significant maintenance event occurred at the Garfield GTF during June and July of 2016. Each carbon tank was cleaned by an approved asbestos contractor following removal of the carbon. In addition, several feet of the lower steel vessel cone was removed from each vessel after corrosion was identified during the cleanings, and the lower cone areas were rebuilt with new steel components followed by relining with an epoxy resin to address future corrosion on the inside of the carbon vessels. The valve tree between the lead and lag carbon vessels was significantly reworked to provide isolation and eliminate the potential for cross-contamination caused by corrosion of the valve assemblies. A new manway ladder and platform were installed on the northern tank to provide improved access and safety during carbon changes, the western wall of the GTF was modified, and a new catwalk was designed and installed on the southern tank to provide easier access to that vessel's manway.

Maintenance work was also completed at the Adams GTF in 2016. Following removal of the carbon, the bottom portion of the southern tank (A2 system) was cleaned by an approved asbestos

contractor, the steel base of the tank was repaired, and the carbon drain nozzle was replaced. The lower dome of the tank was then relined with an epoxy resin to prevent future corrosion. The valve tree on the A2 system tanks was also modified to improve isolation between the two carbon tanks and to prevent cross-contamination caused by corrosion of the components, similar to the modifications made to the Garfield GTF.

3.1.6 System Upgrades

With the exception of the new manway and ladder and platform installation performed at the Garfield GTF as part of the carbon vessel repairs, no major upgrades to groundwater treatment facilities or to extraction and injection systems were performed in 2016.

3.2 Groundwater Monitoring Program Activities

Groundwater monitoring activities performed during 2016 included measurement of groundwater elevations, inspection and maintenance of monitoring wells including repairs to surface seals, and collection of groundwater samples for chemical analysis. Each of these activities is described in one of the following subsections.

3.2.1 Groundwater Elevation Measurements

Groundwater elevations were calculated by subtracting the measured depth to water from the surveyed elevation of the measurement point listed in Appendix C. For most wells, the designated measurement point is the top of the inner well casing (the "TOC Elevation"). This measurement reference point is typically notched into the top of the well casing.

3.2.1.1 Comprehensive Water Level Measurement Events

In 2016, 1,631 water levels were measured manually using portable electronic water level meters during water level measurement events. The principal water level measurement events are listed below.

1. A comprehensive semi-annual water level measurement event on May 24 and 26, 2016 (532 measurements) to satisfy semimanual requirements. This event included monitoring wells

completed in the Bedrock Aquifer as well as those completed in the Upper Aquifer. Following a vapor-phase carbon change at the Clark Street GTF on May 24, 2016 that briefly shut down several extraction wells, including EN-114T and EN-219R, 119 wells in OU#1 and OU#2 were re-measured on May 26 to assess the effect of this shutdown on measurements in monitoring wells near the OU#1 extraction wells.

2. Two other relatively comprehensive water level measurement events occurred on August 3, 2016 and on November 28 and 29, 2016. The August event consisted of 311 measurements associated with extraction and injection activities in MA-A (OSCZ-A), OU#3, OU#4, OU#5, OU#6, and OU#7, but not the "On-Site" Capture Zone (OU#1 and OU#2). The November event consisted of 323 measurements in OU#1, OU#2, MA-A (OSCZ-A), OU#3, OU#4, and OU#7.

3. An additional water level measurement event occurred on February 1, 2016 with 112 measurements.

The groundwater elevation data collected during these events are presented in Appendix C of this report.

3.2.1.2 Supplemental Water Level Measurements

Hundreds of supplemental groundwater elevations were measured in 2016. Groundwater elevations were measured manually using portable electronic water level meters at each active or inactive extraction well and its associated observation well periodically throughout 2016. Water levels were also measured each time a well was sampled.

Three studies were conducted which generated additional water level measurements:

 EN-114T Assessment (OU#1): A total of 99 measurements were collected on September 15, 2016 to evaluate the performance of extraction well EN-114T at increased pumping rates to assess the effectiveness of plume capture in the western part of the Railroad Corridor Source Area.

- 2. EN-154R Shutdown (OU#7): Quarterly measurements were made at 37 wells on February 10, May 24, August 11, and November 17, 2016 to further evaluate ambient water table fluctuations in the Upper Aquifer with extraction well EN-154R shutdown.
- 3. Underground Water Main Leak (OU#1 and OU#2): A total of 45 measurements were collected on September 13, 2016. These measurements were collected from monitoring wells located in the vicinity of a suspected water main leak near Building 18 and the cooling towers.

3.2.1.3 Continuous Water Level Monitoring

At the beginning of 2016, continuous water level recorders were operating in twelve monitoring wells in the Railroad Corridor Source Area (OU#1), in the North Street Area (OU#2), in OSCZ-A (MA-A), and in the Southern Area (OU#3). The number of active deployed recorders was reduced to as few as eight during the year by equipment failure and temporary removal for repair. As of December 31, 2016, continuous water level recorders were operating in six monitoring wells in OU#1 and OU#2, and in three monitoring wells in OSCZ-A and OU#3. The wells in which recorders were deployed in 2016 are listed on Table 3-5. Each water level recorder consists of a pressure transducer and datalogger that electronically records periodic readings from the transducer. Water level data were periodically downloaded from these dataloggers and were converted to groundwater elevations. Manual water level measurements made at the time of downloading were used to calibrate the data collected by the dataloggers.

Table 3-5: Monitoring Wells with Continuous Water Level Recorders during 2016			
OU#	OU#1/OU#2 MA-A/OU#3		
EN-12 EN-34 EN-51 EN-52	EN-114 EN-148 EN-187* EN-533*	EN-29A EN-204* EN-401 EN-450	
* The water level recorder was removed from this well			

^{*} The water level recorder was removed from this well before 12/31/2016.

3.2.2 Monitoring Well Inspections

All wells have been surveyed for planar coordinates (northing and easting on the state coordinate grid), ground surface elevation and measurement point elevation (typically top of casing). The table of Physical Well Data and Well Specifications, Table B-1 of Appendix B, presents this data plus other information, including a location description, installation date, depth, well screen intervals, casing and screen size and materials, and depth to the bottom of the Upper Aquifer (where the lacustrine silt was encountered).

A comprehensive inspection of the well field was performed in 2016, supplemented by additional inspections when each monitoring well was sampled. The following items were covered during the inspections: (1) measurement of the depth to bottom and comparison of this depth to the well's reference depth to determine the need for redevelopment due to buildup of silt; (2) assessment of the legibility of the well tag, visibility of the survey mark, and need for painting or maintenance of the standpipe or manhole; (3) assessment of the condition of the well seal; (4) assessment of the general downhole condition of the well, including the presence of bends or obstructions; and (5) documentation of dedicated equipment. The results of the well field inspection are summarized in Table B-2 of Appendix B.

3.2.3 Groundwater Sampling

Quarterly groundwater sampling events occurred in February, May, August, and November 2016. The semiannual sampling events occurred in May and August 2016 and an additional relatively comprehensive sampling event occurred in November 2016. In previous years, the primary

comprehensive sampling event occurred in August; however due to the shutdown of four injection wells in June and July, the quarterly November sampling event was expanded to include samples from wells affected by clean water injection, after injection had been reestablished for several months. Monthly samples were collected from active extraction wells. The groundwater samples were analyzed by Eurofins Lancaster Laboratories Environmental, LLC of Lancaster, Pennsylvania. The laboratory is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP), Certificate No. 10670.

The remainder of this section presents the analytical results for environmental samples collected during 2016, including blank samples for quality control (QC) and samples from groundwater monitoring wells and extraction wells.

3.2.3.1 Reporting of Groundwater Chemistry Data

Groundwater chemistry data generated in 2016 from groundwater sampling activities is maintained in a geographic information system (GIS) database by GHD of Windsor, Ontario, Canada. The database is updated periodically and the updates are web-accessible. This GIS database contains both groundwater analytical chemistry and associated field QC data for trip blanks and equipment rinse blanks. The analytical laboratory transmits the preliminary data electronically to both GHD and GSC. Full report packages of analytical chemistry data ("data deliverables packages") follow and are transmitted by the analytical laboratory on CD to both GHD and GSC. Information regarding the analytical method, sample results, QC results, chain-of-custody documentation, laboratory correspondence, and raw data are provided with these data deliverables packages.

An independent third-party data validator (GHD) assessed the acceptability and usability of the data according to criteria contained in the EPA Region 2 validation criteria for organic data. Laboratory analytical results were assessed by the data validator for compliance with chain-of-custody procedures, holding times, system monitoring compound (surrogate) recoveries, matrix spikes, blank contamination, GC/MS instrument performance checks, compound quantitation and reported detection limits, instrument calibrations, and internal standards.

Upon completion of validation, a data usability summary report (DUSR) was prepared for each data deliverables package. Limitations on the use of laboratory data were reported by means of

qualification codes as summarized in the DUSR. The most common qualification code is a "J", which indicates that the reported concentration is estimated. The GIS database maintained by GHD reflects the final data qualification codes and corrected concentrations.

A summary printout of the groundwater analytical chemistry data for samples collected in 2016, including duplicate samples, is presented in Appendix E. The data presented in Appendix E-1 are shown in alphanumeric ascending order by sample location (well number) and then chronologically within each sampling location. Groundwater chemistry data for several monitoring wells located on private property were reported to the property owners in advance of this report. As noted in Section 3.1.2, analytical chemistry data for the influent to and effluent from the four groundwater treatment facilities operated by IBM in 2016 is presented in Appendix E-2.

3.2.3.2 Quality Assurance/Quality Control Samples

QA/QC analytical data for 2016 consisting of duplicate samples, equipment rinse blanks, and trip blanks is discussed in the following subsections. Analytical chemistry data for duplicate samples is presented in Appendix E. Analytical chemistry data for blank samples is presented in Appendix F. Methylene chloride, a common laboratory contaminant, was detected in 26 rinse blanks but not in any trip blanks. TCE and c12-DCE were detected in six rinse blanks collected in February 2016 and toluene was detected in nine rinse blanks and in one trip blank. Detections of VOCs in blanks ranged from 0.1 to 0.8 micrograms per liter (μ g/L). The corresponding groundwater analytical data were qualified as necessary in accordance with EPA Region 2 validation criteria.

3.2.3.2.1 Duplicate Samples

Duplicate samples were collected by filling multiple sample containers from the same sampling device during each sampling round at a frequency of at least one duplicate sample per 20 samples collected from groundwater monitoring wells (i.e., a minimum of five percent of the samples). Forty-five (45) duplicate samples were collected in 2016, which is more than five percent of the 838 unique groundwater samples that were collected from monitoring wells. The duplicate samples were analyzed by SW-846 Method 8260C and were used to assess intralaboratory analytical accuracy and repeatability. The duplicate samples were assigned blind field identification numbers by the samplers.

Comparative results for a portion of the data from the duplicate samples collected in 2016 are presented in Table F-1 of Appendix F. The relative percent difference (RPD) between the results for each primary sample and duplicate sample was calculated and is shown on Table F-1 for the two VOCs with the highest detections in each well. Only five of 84 RPD results on Table F-1 exceed 20% and only one exceeds 30%. The highest RPD was 33%, where the primary and duplicate sample results were 150 and 210 µg/L respectively.

Based on criteria including the results of the calculations, the parameters analyzed and reported, the absolute differences given sample dilutions, concentration levels, and professional judgment, the duplicate results for 2016 are generally in good agreement and do not show gross variations that would indicate serious analytical quality control problems.

3.2.3.2.2 Trip Blanks

In addition to duplicate split samples, 70 trip blanks for VOCs were prepared in 2016 using deionized water for each cooler containing VOC samples to be delivered to the laboratory. The purpose of the trip blanks is to detect contamination in sample transportation or storage. A trip blank accompanied the sample containers from the field sampling locations and to the laboratory. Analytical results for these trip blanks are presented in Appendix F. The environmental samples associated with each trip blank can be determined by noting the dates over which the trip blanks are valid (refer to "Sample Description" heading in Appendix F).

3.2.3.2.3 Equipment Rinse Blanks

Equipment rinse blanks were collected to confirm the efficiency of decontamination procedures for each sampling round by rinsing non-dedicated equipment with analyte-free deionized water supplied by the laboratory. Forty-two (42) equipment rinse blanks for VOCs were collected in 2016 from water level indicators (40), from a non-dedicated bailer (1) and from a submersible pump (1). Analytical results for these equipment rinse blanks are presented in Appendix F.

4 HYDROGEOLOGY

This section of the report reviews the geology and hydrogeology of the Site and presents updates regarding geologic and hydrogeologic interpretations, and the hydraulic effectiveness of the groundwater extraction wells.

4.1 Upper Aquifer

4.1.1 Saturated Thickness

The current lacustrine silt surface elevation contour map is shown on Plate 2-1. As explained in Section 2.2.2, the top of the lacustrine silt is in contact with the base of the Upper Aquifer. Plate 4-1 shows the data and elevation contours for the top of the saturated zone in the Upper Aquifer on August 3, 2016.

The saturated thickness of the Upper Aquifer was derived by cross-contouring the top-of-silt contour map (Plate 2-1) with the August 2016 groundwater elevation contour map for the Upper Aquifer (Plate 4-1). The resulting saturated thickness contour map for the Upper Aquifer in August 2016 is shown on Figure 4-1. The areas where the Upper Aquifer is unsaturated or has less than two feet of saturation are shaded on Figure 4-1. These "dry" or nearly dry areas of the Upper Aquifer are also shown on Plate 4-1. An additional more comprehensive water level monitoring round of groundwater elevations in late November 2016 was used to construct a second groundwater elevation contour map for the Upper Aquifer (Plate 4-2). The biggest differences between Plates 4-1 and 4-2 is that: 1) the more comprehensive monitoring round in November 2016 includes elevation data and groundwater elevation contours for the central manufacturing area, north of North Street; and 2) groundwater elevations were slightly higher in November 2016 in the central part of "Off-Site" Capture Zone A in the vicinity of Monroe Street and in the Southern Area following the resumption of clean water injection for several months at EN-92P, EN-501T and EN-529T. Groundwater elevations were lower in "Off-Site" Capture Zone A in August 2016 because the injection wells had been offline for about two months prior to the water level measurements on August 3, 2016. Outside of areas affected by injection, the larger areas of the Upper Aquifer that are dry or nearly dry in August and November 2016 are similar to those delineated during the past seven years.

4.1.2 Groundwater Flow and Capture Zones

This subsection examines groundwater flow within the Upper Aquifer under pumping conditions with the extraction wells operating. As noted above, Plate 4-1 shows the groundwater elevation contours for the Upper Aquifer based on a water level monitoring round of groundwater elevations recorded on August 3, 2016 and Plate 4-2 shows the groundwater elevation contours for the Upper Aquifer based on a more comprehensive water level monitoring round of groundwater elevations recorded on November 28 and 29, 2016. Apparent groundwater flow directions based on contouring the November 2016 groundwater elevation data reveal that groundwater withdrawals have established three general capture zones. These capture zones are:

- 1. The "On-Site" Capture Zone, including the Railroad Corridor Source Area (OU#1) and the former Huron Lot #26 parking area (OU#5);
- 2. "Off-Site" Capture Zone A, including the North Street Area (OU#2); and
- 3. "Off-Site" Capture Zone B, including the Ideal Cleaners Area (OU#4).

A fourth area of interest consists of the Southern Area (OU#3), some of which lies beyond the limits of "Off-Site" Capture Zones A and B, as discussed further in Section 4.1.2.4.

4.1.2.1 "On-Site" Capture Zone

Groundwater flow in the central portion of the "On-Site" Capture Zone in the Railroad Corridor Source Area (OU#1) is controlled by groundwater withdrawals from extraction wells located in three areas along the north side of the Norfolk Southern railroad tracks. From west to east, as shown on Plate 4-2, these are extraction wells EN-107R and EN-114T, extraction wells EN-428 and EN-253R (which was not operating in November 2016), and extraction well EN-219R.

Pumping at extraction well EN-114T significantly impacted the configuration of the "On-Site" Capture Zone in OU#1, as shown on Plate 4-2. Pumping rates at EN-114T tripled from March to November 2016, resulting in expansion of the area of groundwater capture compared to the area observed in August 2015. Expansion of the groundwater capture area was to the west toward Oak Hill Avenue in the vicinity of well EN-72 and to the south where the groundwater flow divide

shifted to the south of Building 87. Groundwater elevations around EN-114T in November 2016 were approximately five feet lower than in 2015. However, the location of the divide between the EN-114T capture area and the larger EN-428/EN-219R capture area, which is coincident with a higher silt surface elevation area near monitoring well EN-51, remained in a similar orientation, suggesting that the silt surface topography influences the location of the groundwater flow divides in that part of OU#1, particularly when extraction rates have increased and the water table has been lowered.

Increased pumping rates at extraction wells EN-276/EN-276R in 2016 also expanded the capture area of those wells slightly to the north, toward the northern edge of Building 18. The eastern flow divide of this capture area shifted slightly eastward toward Building 41 in the vicinity of wells EN-20 and EN-508. The western and southern flow divides remained in similar orientations relative to 2015, possibly due to the lacustrine silt surface topography in those areas.

As shown on Plate 4-1, groundwater flow in the southwestern portion of OU#5 is controlled by groundwater extraction from well EN-709 located in the former Huron Lot #26, now occupied by Gault Toyota. This extraction well was installed to target low concentrations of VOCs in groundwater that were identified in this area during Supplemental Remedial Investigations. Extraction at EN-709 began in June 2013 following completion of source removal thermal treatment activities. As shown on Plate 4-1, the capture zone of EN-709 in August 2016 extended to the south to North Street, to the west near Hayes Avenue, and to the east to Dittrich Street. The apparent groundwater elevations and flow directions on Plate 4-1 indicate shallow groundwater beneath the western part of Building 57 is captured by extraction well EN-709.

4.1.2.2 "Off-Site" Capture Zone A

"Off-Site" Capture Zone A (OSCZ-A) is defined by four general pumping centers in the area between North Street and East Main Street. The apparent limits of capture for each of these four pumping centers are shown on Plates 4-1 and 4-2:

1. EN-133, EN-451P, and EN-91T located east of Jefferson Avenue and west of Washington Avenue capture groundwater in the area of the western portion of the former plume in OSCZ-A.

- 2. EN-276 and EN-276R, located between Building 18 (B018) and Building 14 (B014), control dissolved VOC flux on the northern side of North Street.
- 3. EN-284P, located in a glacial ice-block depression about 200 feet south of North Street, controls dissolved VOC flux crossing North Street and also operates to capture groundwater in the central and eastern portions of OSCZ-A.
- 4. EN-194 and EN-215T, located near the intersection of Grant Avenue and Monroe Street, and EN-447T, located at the northern end of the McKinley Avenue interchange, operate to capture groundwater in the southern portion of OSCZ-A and the northern portion of the OU#3 Southern Area.

Wells EN-215T and EN-447T also enhance groundwater extraction in an elongate depression in the surface of the lacustrine silt located south of Monroe Street between Garfield and Adams Avenues (Plate 2-1) where the saturated thickness of the glacial outwash sand and gravel is greater than 20 feet (Figure 4-1). This feature is referred to as the top-of-silt "trough" or "trough area," and the extraction wells in this feature are referred to as the "trough wells" or "trough extraction wells."

Clean water injection at seven wells constructed specifically for this purpose greatly affects the direction of groundwater flow and associated hydraulic gradients in the areas south of North Street. As shown on Plates 4-1 and 4-2, clean water injected at EN-532T, at an average rate of about 144 gpm, flows to the southeast toward trough extraction wells EN-215T and EN-447T, to the north toward extraction wells EN-133, EN-451P and EN-91T, and to the west toward an area outside the plume boundaries where groundwater ultimately discharges to the Susquehanna River. Plates 4-1 and 4-2 also show that clean water injected at EN-92P and EN-529T, at a combined average rate of about 140 gpm, flows to the northeast toward extraction well EN-284P, to the southeast toward the trough extraction wells, and to the northwest toward extraction wells EN-133, EN-451P and EN-91T.

In the eastern portion of OSCZ-A, clean water injected at EN-78T, at an average rate of 38 gpm, flows to the west toward extraction well EN-284P and to the east and south in the direction of Monroe Street extraction well EN-491T. A small component of water injected at EN-78T flows to the southwest toward trough extraction well EN-447T.

In the southeastern portion of OSCZ-A, clean water injected at EN-161T, at an average rate of 121 gpm, flows north toward extraction well EN-491T on Monroe Street and southwest toward trough extraction well EN-447T. Clean water injected at EN-501T, at an average rate of 44 gpm, flows east and northeast toward trough extraction well EN-447T. Some of the clean water injected at EN-161T and EN-501T is not captured by an extraction well and ultimately discharges to the Susquehanna River.

Clean water injection at EN-530T east of extraction well EN-284P averaged 37 gpm during 2016. Plates 4-1 and 4-2 show a component of flow from EN-530T that is captured by the Jefferson Avenue extraction wells to the west and southwest of injection well EN-530T. A component of flow to the southeast is ultimately captured by extraction well EN-284P, which is separated from EN-530T by a dry area in the Upper Aquifer created by a topographic high in the top of the lacustrine silt unit.

4.1.2.3 "Off-Site" Capture Zone B

"Off-Site" Capture Zone B (OSCZ-B) can be subdivided into a western portion containing a low concentration plume of VOCs that appears to originate in the portion of the Huron, LLC facility east of McKinley Avenue (referred to as the Old Group Buildings) and an eastern portion containing the former Ideal Cleaners Area (OU#4) and its associated groundwater plume, which has nearly disappeared. The water level data indicate that operation of extraction well EN-491T controls groundwater flow in the western portion of OSCZ-B. Other extraction wells near Monroe Street that captured groundwater flow in the eastern portion of OSCZ-B are no longer necessary due to the severe attenuation of the groundwater plume originating in the former Ideal Cleaners Area. The limits of capture shown on Plates 4-1 and 4-2 for extraction well EN-491T in 2016 are similar to those for 2015.

4.1.2.4 Southern Area

The Southern Area (OU#3) is hydraulically separated from "Off-Site" Capture Zones A and B as a result of groundwater extraction at EN-447T and clean water injection at EN-161T and EN-501T. This separation from the areas of active groundwater extraction means that groundwater flow in the Southern Area is derived from: (1) direct recharge to the Upper Aquifer within the limits of the

Southern Area and (2) a portion of the clean water injected at wells EN-161T and EN-501T. As shown on Plates 4-1 and 4-2, the apparent groundwater flow divide separating the Southern Area from OSCZ-A, as inferred for both August and November 2016, extends to East Main Street and includes part of the McKinley Avenue interchange. The location of this divide varies with changes in the extraction rate at trough well EN-447T and with changes in injection rates at wells EN-501T and EN-161T. Both the August and November 2016 monitoring data show that the area southeast of East Main Street was outside the limits of capture by the trough extraction wells in 2016.

Near the eastern boundary of the Southern Area, declines in groundwater elevations have created apparently dry or nearly dry areas in the Upper Aquifer, including an area around well EN-465 on the eastern flow divide near the intersection of Jackson Avenue and Riverview Drive, as shown on Plates 4-1 and 4-2.

4.2 Bedrock Aquifer

As shown on the August 2016 bedrock potentiometric surface contour map provided as Figure 4-2, the operation of extraction well EN-D49 creates a significantly broad zone of capture within the bedrock aquifer at the Site. The capture zone extends from north of Monroe Street and north of bedrock monitoring well EN-D36 to west of Adams Avenue and west of monitoring wells EN-D48, EN-D35, and EN-D10.

5 HYDROGEOCHEMISTRY

This section of the annual report presents an analysis of the chemical concentration data collected in 2016, including an assessment of trends that may be occurring at specific monitoring locations.

5.1 Chemicals of Concern

The chemicals of concern at the Site include chlorinated ethenes, chlorinated ethanes, and chlorofluorinated ethanes (Freons). In accordance with the GMP, isoconcentration contour maps for nine principal VOCs have been constructed annually using data from the comprehensive sampling event, typically in August. In 2016, data from the November sampling event in the "On-Site" Capture Zone, in "Off-Site" Capture Zones A and B, and in the Southern Area were used to construct the isoconcentration contour maps required by the GMP and are shown on Plates 5-1 through 5-4, and on Plates 5-6 through 5-10. However, since monitoring wells in OU#5, OU#6, and OU#7 were not affected by the shutdown of the clean water injection in June and July, data from the August 2016 sampling event was used to construct separate isoconcentration maps for those areas, as shown on Plates 5-11 (OU#5), 5-12 (OU#7), and 5-14 (OU#6).

5.1.1 Chlorinated Ethenes

The principal chlorinated ethenes present in groundwater at the Site are tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (c12-DCE), 1,1-dichloroethene (11-DCE), and vinyl chloride (VC). PCE is a primary solvent typically used in degreasing and dry cleaning operations and does not occur in groundwater as a daughter product of another compound. TCE is also a primary solvent used for various industrial applications, and historically in dry cleaning operations, and can be either a daughter product of PCE by reductive dechlorination or a primary solvent unrelated to PCE use. Dissolved TCE, whether derived from PCE or directly from the solvent TCE, degrades by reductive dechlorination to either c12-DCE (preferentially) or trans-1,2-dichloroethene. These two isomers of dichloroethene then degrade by reductive dechlorination to VC, which ultimately degrades to ethene. As a group, these compounds are referred to as the "ethene series." Isoconcentration contour maps for PCE, TCE, c12-DCE, and VC are presented on Plates 5-1, 5-2, 5-3, and 5-4. For OU#4, where significant reductions in concentrations have occurred since thermal treatment of the source area in 2010 (see Section 6.5), chemical concentrations are presented in a

series of graphs on Plate 5-5. These graphs show concentration trends in key wells located in the former PCE source area and downgradient from the former source area.

11-DCE, an ethene, is a transformation product of 1,1,1-trichloroethane (111-TCA) by an abiotic elimination reaction and also degrades to vinyl chloride and ethene. Because its parent is typically 111-TCA, 11-DCE is grouped with the chlorinated ethanes and is addressed in the following section.

5.1.2 Chlorinated Ethanes

The principal chlorinated ethanes present in groundwater at the Site include 1,1,1-trichloroethane (111-TCA) and 1,1-dichloroethane (11-DCA). 111-TCA is a primary solvent used in many industrial applications and in printing operations. Its principal transformation products are 11-DCA by reductive dechlorination and 11-DCE by an abiotic elimination reaction. As noted in Section 5.1.1, 11-DCE may transform by reductive dechlorination to vinyl chloride and, although it is an ethene compound, 11-DCE is included in the ethane series because its parent compound is typically 111-TCA. 11-DCA may transform to chloroethane by reductive dechlorination. (Chloroethane is detected in only limited areas of the Site and was not contoured for this report.) This group of VOCs is referred to as the "ethane series." Isoconcentration contour maps for 111-TCA, 11-DCA, and 11-DCE are presented on Plates 5-6, 5-7, and 5-8.

5.1.3 Chlorofluorinated Ethanes (Freons)

Other compounds detected in groundwater at the Site include 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113) and 1,2-dichloro-1,2,2-trifluoroethane (Freon 123a), which is a transformation product of Freon 113 by reductive dechlorination. Isoconcentration contour maps for these chlorofluorinated ethanes are shown on Plates 5-9 and 5-10.

5.2 Distribution of Chemical Concentrations in the Upper Aquifer

For each of the nine chemicals of concern, the lowest concentration contour value shown on each isoconcentration contour map is the New York State Groundwater Quality Standard (NYSGQS)

listed in 6NYCRR Part 703. The NYSGQS is 2 μ g/L for vinyl chloride and 5 μ g/L for the other principal VOCs.

5.2.1 Distribution in the "On-Site" Capture Zones

As shown on Plates 5-6, 5-7, and 5-8, the ethane-series VOCs occur in source areas and plumes associated primarily with the Railroad Corridor Source Area (OU#1) and the North Street Area (OU#2). The ethene-series VOCs also occur in source areas and plumes associated with the OU#1 and OU#2 at concentrations greater than the NYSGQS, as shown on Plates 5-1 through 5-4.

The water main leak that occurred in early February 2015 in the vicinity of the cooling towers near Building 39 continued to have a residual effect on the distribution of VOCs in 2016 in OU#2, and to a lesser extent in OU#1. The impact of the water main leak is illustrated using concentration vs. time graphs on Figure 5-1 for monitoring wells EN-433 and EN-434 on the south side of North Street and for monitoring well EN-471 on the east side of McKinley Avenue near Old Group Building 28. The approximate period when the leak was identified and repaired is highlighted on these graphs, which show concentrations in these wells increasing by two to three orders of magnitude in response to shifts in the direction of groundwater flow and contaminant transport resulting from the water main leak located to the northwest and west. These graphs show that while VOC concentrations have declined since the leak was repaired, concentrations in this area have not declined to levels observed prior to the water leak, and remain two to three orders of magnitude above pre-leak concentrations at wells EN-434 and EN-471.

Freon 113 and Freon 123a are not significant constituents in groundwater south of North Street, meaning they were not typically detected at concentrations greater than 5 µg/L in 2016. Plate 5-9 shows that Freon 113 was detected in November 2016 at concentrations greater than 1,000 µg/L in the vicinity of Railroad Corridor Source Area (OU#1) monitoring well EN-58, near extraction well EN-219R. Concentrations of Freon 113 greater than 100 µg/L in the "On-Site" Capture Zone were detected in two areas of OU#1 in November 2016: (1) at monitoring well EN-51 between extraction wells EN-107R and EN-428 and (2) at monitoring well EN-533 between extraction wells EN-114T and EN-107R. The water main leak near the Building 39 cooling towers appears to have flushed Freon 113 from the area east of Building 18 toward Building 41 and McKinley Avenue to

the east. As shown on Figure 5-1 for the ethane-series parameters, the effects of this chemical migration are apparent at monitoring well EN-434 near the intersection of McKinley Avenue and North Street where Freon 113 was not detected in 2014 but was detected at a concentration of 71 μ g/L in 2015 and 15 μ g/L in 2016.

Individual isoconcentration maps for each chemical of concern in the Building 57 Area (OU#5) are presented on Plate 5-11 for August 2016 under pumping conditions at extraction well EN-709 with the apparent limits of hydraulic capture shown by a dashed orange line. Monitoring wells screened in units analogous to the Upper Aquifer are shown in purple; other monitoring wells are shown in gray. The isoconcentration contours shown on Plate 5-11 honor chemistry data posted for the Upper Aquifer wells. Concentration data for other wells reflect groundwater conditions in a complex stratigraphy that includes soil fill, alluvium, glacial till, and bedrock strata in addition to the Upper Aquifer outwash sand and gravel.

Concentrations of 111-TCA, 11-DCE and PCE did not exceed the NYSGQS in 2016 in the Upper Aquifer at OU#5. Concentrations of TCE exceeded the NYSGQS in one area hydraulically captured by extraction well EN-709 and in one area to the east, outside the EN-709 capture zone. c12-DCE and VC were also detected at concentrations greater than the NYSGQS in a specific area along the Norfolk Southern railroad tracks east of the EN-709 capture zone. In general, areas outside the EN-709 capture zone where concentrations of 11-DCA, TCE, c12-DCE, and VC in 2016 were greater than the NYSGQS are similar in extent to those observed in 2015.

Individual isoconcentration maps for each chemical of concern in OU#7 are presented on Plate 5-12 for August 2016 under non-pumping conditions. Concentrations of 111-TCA, 11-DCE, Freon 113 and Freon 123a exceeded the NYSGQS only at well EN-96. Concentrations of 11-DCA, c12-DCE and VC exceeding the NYSGQS were more widespread, with the highest concentrations at well EN-96. Concentrations of TCE exceeded the NYSGQS only at wells EN-70 and EN-177. As indicated by the isoconcentration contours on Plate 5-12, the majority of the ethanes detected in the southern portion of OU#7 are inferred to originate from the former tank area of the former Endicott Johnson Rubber Cement Plant, located northwest of Franklin Street. The 111-TCA plume extends to the south onto the RMJ Realty LLC property. PCE is also present on the RMJ Realty LLC

property between the Norfolk Southern railroad tracks and North Street and is associated with former dry cleaning operations.

5.2.2 Distribution in the "Off-Site" Capture Zones

Except for TCE (Plate 5-2), the maps for constituents present in OSCZ-A and the western portion of OSCZ-B show that the plume in those areas has been nearly eliminated at concentrations greater than the NYSGQS and what remains above the NYSGQS continues to be drawn toward extraction well EN-284P. This plume elimination process has been accelerated by the injection of clean water west of Garfield Avenue at wells EN-529T, EN-92P, and EN-530T, and east of McKinley Avenue at EN-78T. The clean water injection effectively flushes TCE and other constituents of the plume toward EN-284P and the extraction wells in "Off-Site" Capture Zones A and B. Additional injection operations at EN-532T, EN-501T, and EN-161T on the west, south, and east continue to flush clean water from the margins toward the extraction wells in "Off-Site" Capture Zones A and B.

The area of the plume south of North Street where TCE concentrations are greater than the NYSGQS (5 µg/L) has been reduced by more than 88 percent since 2004. Except for a small plume located west of McKinley Avenue in the Southern Area (OU#3) and well EN-91 adjacent to extraction well EN-91T, the plume with TCE concentrations greater than the NYSGQS (Plate 5-2) is being captured by extraction wells EN-284P in OSCZ-A and by EN-491T in OSCZ-B. Elsewhere in OSCZ-A, residual plume concentrations between the laboratory reporting limit (0.5 µg/L) and the NYSGQS are captured by the three Jefferson Avenue extraction wells and by the three trough extraction wells. In the Southern Area outside the influence of the extraction wells, concentrations of TCE do not exceed 2 µg/L anywhere east of McKinley Avenue.

c12-DCE and VC are present at concentrations greater than the NYSGQS in a dissolved-phase plume in the eastern portion of OSCZ-B south of the former Ideal Cleaners property (OU#4) as shown on Plates 5-3 and 5-4. In the plume downgradient from the former source area on the former Ideal Cleaners property, the data show that PCE and TCE have been replaced in the downgradient direction by c12-DCE and VC due to reductive dechlorination under anaerobic reducing conditions and cometabolic degradation under localized aerobic conditions. As shown on Plates 5-3 and 5-4,

the November 2016 isoconcentration contour maps show only a small plume of c12-DCE remaining south of the former source area and a narrow, low-concentration plume of VC extending to the southwest away from the former source area.

These degradation processes in the eastern portion of OSCZ-B are enhanced or caused by the geochemical effects of petroleum products sourced from the former Endicott Forging property located upgradient from and north of the former Ideal Cleaners property. These transformations occur as groundwater flows downgradient toward the intersection of Monroe Street and Adams Avenue, where the plume containing these transformation products was being captured by extraction wells EN-492T and EN-185P. Both of these narrow plumes have remained similar or have continued to decline in magnitude and lateral extent since the shutdown of extraction wells EN-492T and EN-185P.

The ethane-series VOCs occur throughout most of OSCZ-A at concentrations less than the NYSGQS. Except for 111-TCA at monitoring well EN-380 (2 μ g/L) and EN-491A (1.1 μ g/L), concentrations of ethane-series VOCs in OSCZ-B (OU#4) are less than 1 μ g/L in areas south of North Street. 111-TCA is also present throughout the Southern Area at concentrations typically less than 2 μ g/L.

5.3 Reduction of TCE Concentrations in the Upper Aquifer

Plate 5-13 shows two isoconcentration contour maps comparing the distribution of TCE in the Upper Aquifer south of North Street prior to the startup of extraction operations at EN-284TD in June 2004 with the distribution of TCE in November 2016. The purpose of these comparative maps is to show the progress of groundwater remediation during the past 12 years. The area of TCE concentrations greater than 5 μ g/L in the area south of North Street has been reduced by more than 88 percent since 2004.

Continued concentration reductions in the portion of the Upper Aquifer shown on Plate 5-13 are attributable to (1) operation of EN-284P to intercept flux crossing North Street, thereby preventing replenishment of the VOC mass in the plume; (2) operation of the Jefferson Avenue and trough extraction wells together with EN-284P to remove VOC mass that was present in this portion of the plume prior to the startup of EN-284TD; and (3) the concurrent operation of as many as seven

injection wells to accelerate the flushing of TCE and other constituents of concern from the Upper Aquifer.

5.4 Distribution of Chemical Concentrations in the Bedrock Aquifer

As shown on Figure 4-2, the operation of extraction well EN-D49 creates a significant area of groundwater capture within the bedrock aquifer at the Site. The effects of this groundwater capture are shown on Plate 5-14 as a series of seven VOC isoconcentration contour maps constructed using August 2016 groundwater chemistry data from bedrock monitoring wells and from extraction well EN-D49. The lowest concentration contour value shown on each map is the NYSGQS for the VOC shown on that map. These VOC maps show that the operation of well EN-D49 controls the plume of VOCs in bedrock groundwater, with no detections of VOCs at bedrock monitoring wells EN-D10, EN-D35, EN-D36, and EN-D48 outside the zone of groundwater capture, and no detections of VOCs at wells EN-D11 and EN-D41 inside the zone of groundwater capture. The highest VOC concentrations in the bedrock VOC plume were detected at wells EN-D33, EN-D44, EN-D46, and EN-D47, where the concentration of c12-DCE was greater than 1,000 μg/L. All four of these wells lie within the capture zone of extraction well EN-D49.

6 PROGRESS OF REMEDIATION

This section of the Combined Groundwater Report discusses the progress in remediating sources and plumes of VOCs at the Site in the context of the data presented in previous sections and the Site remediation goals stated in Section 2.1.

6.1 Source Area Control in Operable Unit No. 1

The concurrent operation of as many as five extraction wells in the Railroad Corridor Source Area within the "On-Site" Capture Zone prevents groundwater chemical flux from leaving the source areas along the railroad corridor in OU#1. This activity is consistent with the first Site remediation objective listed in Section 2.1, namely control of VOC sources in groundwater within the former IBM manufacturing facility portion of the Site. Table 6-1 compares the total VOC mass removed in OU#1 in 2016 with the average removed annually from 2005 to 2015 by the RCSA extraction wells. A complete record of VOC mass removal in the RCSA since 2005 is presented in Table A-4 of Appendix A.

Table 6-1: VOC Mass Removed in 2016 in the Railroad Corridor Source Area

Extraction Well (Former Well)	VOC Mass Removed in 2016 (pounds)	Annual VOC Mass Removed, 11-Year Average, 2005-2015 (pounds)	Departure from 11-Year Average (pounds)	
EN-107R (EN-107)	12	50	-38	
EN-114T*	225	18	+207	
EN-219R (EN-219)	1623	1618	+5	
EN-253R (EN-253)	356	1015	-659	
EN-428 (EN-428P)	488	632	-144	
Total	2704	3333	-629	
*EN-114T began pumping in 2014 and so its 11-year average is skewed.				

As shown above on Table 6-1, the VOC mass removed in 2016 from the RCSA is 19% less than the 11-year average due to decreases in mass removed from several wells in the RCSA, namely EN-107R, EN-253R, and EN-428. The decrease in the mass removed by EN-253R is a function of both decreasing concentrations in extracted groundwater and a decrease in the pumping rate, from about 1.5 gpm in 2015 to 0.7 gpm in 2016. The decrease in mass removed by EN-428 is mostly a

function of decreasing VOC concentrations in extracted groundwater. Mass removal in the RCSA depends heavily on maintaining flows from the extraction wells, especially EN-219R, and requires periodic replacement of well pumps, and cleaning of well screens and conveyance lines, as described in Section 3.1.5.3.

6.2 Control of Flux Crossing North Street in Operable Unit No. 2

Groundwater extraction at wells EN-276 and EN-276R near the southwest corner of Building 18 (B018) continues to control apparent source areas in OU#2 and intercepts groundwater chemical flux from these source areas before it crosses North Street. In addition, EN-284P continues to intercept the groundwater chemical flux crossing North Street between Garfield and McKinley Avenues, as shown by the groundwater elevation contours and associated capture zones on Plates 4-1 and 4-2, and by the chemical isoconcentration contours in the vicinity of North Street on Plates 5-1 through 5-4, and Plates 5-6 through 5-10.

6.2.1 Groundwater Extraction in OU#2

Two well pairs - EN-284P/EN-284TD south of North Street and EN-276/EN-276R north of North Street - have contributed to VOC source and VOC mass flux control in OU#2. Only wells EN-284P, EN-276, and 276R operated in 2016. Table 6-2 shows the extraction volumes for these three wells in 2016 and, for comparison, in 2015. A complete record of extraction volumes for these well pairs from 2003 (when only EN-276 was operating) to 2016 is presented in Table A-5 of Appendix A. Year-over-year discussions of the changes in extraction volumes were presented in previous annual reports.

For the past several years, groundwater extracted by EN-284P south of North Street has two principal sources in addition to natural recharge: (1) groundwater (and associated VOC mass flux) crossing North Street northeast of EN-284P and (2) clean water injection at wells EN-530T to the west, EN-78T to the east, and EN-529T to the south (and associated VOC mass flux from plume areas south and southeast of EN-284P). Before the startup of clean water injection in late 2008, groundwater was also sourced from dewatering of the Upper Aquifer in the vicinity of EN-284P.

Table 6-2: Extraction Volumes (MG) in the North Street Area

Well	2015	2016
EN-276/276R	3.1	1.7
EN-284P	45.7	36.5
Subtotal	48.8	38.2
EN-284P (Estimated Plume Reduction)	-40.0	-29.9
Net Total Flux Control (Estimated)	8.8	8.3
MG = millions of gallons		

Table 6-2 and the associated VOC mass removal table (Table 6-3) show the two principal sources of groundwater extraction and VOC mass removal, namely chemical flux crossing North Street and plume reduction by EN-284P south of North Street in Off-Site Capture Zone A.

The total flow from wells EN-276 and EN-276R in 2016 was lower than in 2015 and this 1.4 MG decrease in extraction volume represents a reduction in source/flux control in OU#2. This decrease in annual withdrawal is partly due to lower groundwater elevations in the former IBM manufacturing facility area and loss of yield due to progressive fouling of the well screens. The decrease in volume extracted by EN-284P, from 45.7 MG in 2015 to 36.5 MG in 2016, is due primarily to the loss of clean water injection during most of June and July from EN-530T and EN-529T during the Garfield GTF maintenance project. Had these two injection wells been operating at a combined rate of 150 gpm during that time, an additional 12 MG would have been injected, and approximately half of that water would have been captured by extraction well EN-284P.

6.2.2 VOC Mass Removal in OU#2

Table 6-3 shows the annual VOC mass removed in 2015 and 2016 for the three extraction wells operating in the vicinity of North Street. A complete record of VOC mass removal in OU#2 since 2003 is presented in Table A-6 of Appendix A.

Table 6-3: VOC Mass Removed (pounds) in the North Street Area

Well	2015	2016
EN-276/276R	4.7	19.5
EN-284P	42.6	29.7
Subtotal	47.3	49.2
EN-284P (Estimated Plume Reduction)	-14.0	-5.2
Estimated Net Total Source/Flux Control	33.3	44.0

As shown on Table 6-3, the VOC mass removed annually by wells EN-276/276R increased significantly from 4.7 pounds in 2015 to 19.5 pounds in 2016, despite the decrease in extraction volume from 3.1 to 1.7 MG, as shown on Table 6-2. The mass being removed by EN-276/276R is still a fraction of the peak of 170.3 pounds removed in 2012 when both EN-276 and EN-276R were pumping and clean water injected at well EN-509T to the northeast mobilized VOCs in apparent OU#2 source areas between extraction wells EN-276/276R and injection well EN-509T. The increase in VOC mass removed from wells EN-276/276R in 2016 compared with 2015 is likely due to: (1) expansion in the lateral extent of EN-276/276R hydraulic capture due to the loss of recharge from the Huron LLC water main leak that was repaired in 2015; and (2) additional pumping from EN-276R to supplement EN-276 in 2016.

Table 6-3 also shows the contribution to VOC mass removal in OU#2 by well EN-284P south of North Street. The VOC mass removed annually by EN-284P decreased from 42.6 pounds in 2015 to 29.7 pounds in 2016, due in part to a 20% decrease in extraction volume from 45.7 to 36.5 MG as shown on Table 6-2 and an increase in mass removal by upgradient on-site extraction wells EN-276/276R. The decrease in 2016 mass removal is also attributed in part to a lower mass flux from the residual OSCZ-A groundwater plume south of EN-284P. The mass removed by EN-284P in 2016 is now about the same as in 2014 and about 43% less than the peak achieved in 2011 (52.0 pounds) when VOCs in apparent OU#2 source areas were mobilized by clean water injection at EN-509T.

To calculate the VOC mass apportioned between flux control and plume reduction, concentrations were examined at monitoring wells EN-477 located south of EN-284P and EN-482 located southeast of EN-284P. Using a procedure applied in previous years, the average total VOC concentration at each of these wells in 2016 was calculated and then volumetrically weighted by taking the total volume injected at wells EN-78T, EN-529T, and EN-530T in 2016 (87.3 MG) and apportioning the volume injected at EN-529T and EN-530T (68.0 MG) to monitoring well EN-477 and the volume injected at EN-78T (19.2 MG) to monitoring well EN-482. The volumetrically weighted average total VOC concentration in these two monitoring wells was then calculated to be 21 μg/L in 2016. When combined with the estimated 29.9 MG of groundwater extraction volume associated with plume reduction (from Table 6-2), this corresponds to a total of 5.2 pounds of VOC mass removed by EN-284P and attributed to plume reduction in 2016. Subtracting this plume reduction mass from the total VOC mass removed by wells EN-276/276R and EN-284P leaves 44.0 pounds as the VOC mass removed to control groundwater chemical flux in the vicinity of North Street (OU#2) in 2016.

Figure 6-1 shows schematically (in red-violet) how the 2016 VOC mass attributed to controlling chemical flux crossing North Street in OU#2 (44.0 lbs.), and shown on Table 6-3, is apportioned between extraction wells EN-276/276R north of North Street (19.5 lbs.) and extraction well EN-284P south of North Street (29.7 - 5.2 = 24.5 lbs.).

6.3 Changes Between 1980 and 2016 in Upper Aquifer Chemistry, OU#1 & OU#2

Changes in concentrations of VOCs over the past 35 years in Upper Aquifer groundwater at OU#1 and OU#2 were assessed by comparing isoconcentration contour maps prepared in 1980 for three key VOCs with similar isoconcentration contour maps prepared for this report using November 2016 data.

Plate 6-1 shows these isoconcentration contour maps for PCE, TCE, and 111-TCA in September 1980 and November 2016 for the Railroad Corridor Source Area (OU#1) and the North Street Area (OU#2). The highest concentrations are indicated by darker shades of the respective colors: blue for PCE, tan for TCE and green for 111-TCA.

A comparison of the two PCE isoconcentration maps shows that concentrations greater than 5,000 μ g/L in 1980 in the two areas along the railroad corridor had declined by two or more orders of magnitude by 2016 and the lateral extent of the PCE plume where concentrations are greater than 5 μ g/L had greatly diminished from 1980 to 2016.

Similarly, a comparison of the two TCE isoconcentration maps shows that by 2016 concentrations greater than 50,000 μ g/L in 1980 in the same two areas declined by three or more orders of magnitude by 2016. In addition, the lateral extent of the TCE plume where concentrations are greater than 5 μ g/L greatly diminished. By 2016, the plume of TCE with concentrations greater than 5,000 μ g/L, which extended far south of North Street in 1980, was no longer present.

In the case of 111-TCA, where four areas in 1980 had concentrations greater than 50,000 μ g/L, only two of these areas remained in 2016 near extraction wells EN-428 and EN-253 in the railroad corridor and around well EN-20 on the eastern side of Building 18. As with PCE and TCE, the extent of the 111-TCA plume where concentrations are greater than 5 μ g/L had greatly diminished by 2016 and the wide area south of North Street between Washington and McKinley Avenues where concentrations of 111-TCA were greater than 500 μ g/L in 1980 was absent in 2016.

6.4 Plume Reduction South of North Street in "Off-Site" Capture Zones A and B and in Operable Unit No. 3 (Southern Area)

Enhanced groundwater extraction, initiated by IBM in 2004, combined with the steady injection of clean water, beginning in late 2008, has resulted in the substantial removal of TCE and other VOCs from Upper Aquifer groundwater in OU#3 (Southern Area). In recognition of these improvements in groundwater quality, NYSDEC issued a Record of Decision (ROD) on March 31, 2015 for this "Off-Site" area. The ROD prescribed "No Further Action" as the remedy for OU#3, contingent on continued operation of enhanced groundwater extraction and clean water injection. IBM will continue to monitor groundwater conditions and maintain enhanced groundwater extraction and clean water injection until NYSDEC determines that those remedial measures are no longer necessary.

With the flux crossing North Street controlled by the operation of extraction wells EN-276/276R and EN-284P, groundwater extraction from the remaining wells in "Off-Site" Capture Zones A and

B has been applied to plume reduction in that area. The following subsections discuss the annual clean water injection and extraction volumes, and VOC mass removal associated with these plume reduction measures.

6.4.1 Clean Water Injection

Table 6-5 shows the clean water injection volumes in 2015 and 2016 for seven injection wells operating to reduce the plume in "Off-Site" Capture Zones A and B. A complete record of injection volumes for these wells and for EN-501T since 2009 is presented in Table A-7 of Appendix A. Water injected at these wells in 2016 contributed significantly to the volume of groundwater captured by extraction wells in "Off-Site" Capture Zones A and B. The clean water sources for these seven wells consisted entirely of treated groundwater.

Based on a qualitative analysis of flow paths in 2016, which are similar to 2015, around 25% of the water injected at EN-78T in 2016 (5 MG) is estimated to have been captured by extraction well EN-491T on Monroe Street in the western portion of OSCZ-B. About 70% of the water injected at EN-78T (13 MG) is estimated to have been captured by extraction well EN-284P in OSCZ-A. (About 5% is estimated to have been captured by trough extraction well EN-447T.)

Similarly, 20% of the water injected at EN-161T in 2016 (12 MG) is estimated to have been captured by extraction well EN-491T located at the southern end of OSCZ-B along Monroe Street. An estimated 50% (30 MG) was captured by the trough extraction well EN-447T in OSCZ-A. The remaining 30% (18 MG) of the injected water is estimated to have flowed into the Southern Area.

Table 6-5: Injection Volumes (MG) in "Off-Site" Capture Zone A and the Western Portion of "Off-Site" Capture Zone B

Plume Area Affected by Injection	Injection Well(s)	2015	2016
Off-Site Capture Zone A	EN-92P	9.2	8.2
(Central Portion)	EN-529T	58.6	52.1
Off-Site Capture Zone A (Western Portion, West of Washington Ave)	EN-532T	78.8	76.0
Off-Site Capture Zone A (Southern Side, Top of Silt Trough)	EN-501T	26.8	12.3
Off-Site Capture Zone A (NE Portion, east of EN-284P) & Off-Site Capture Zone B (Western Portion)	EN-78T	20.1	19.2
Off-Site Capture Zone A (Eastern Side, Top of Silt Trough) & Off-Site Capture Zone B (Southern Portion)	EN-161T	62.2	59.4
Off-Site Capture Zone A (NW Portion, west of EN-284P)	EN-530T	18.1	15.9
Net Tot	273.8	243.3	

In 2016, the combined injection operations at EN-92P, EN-529T, EN-532T, EN-501T, EN-78T, EN-161T, and EN-530T resulted in 243.3 MG of clean water being injected into the Upper Aquifer, about 11% less than the amount injected in 2015 due in part to the shutdown of several injection wells during the Garfield GTF maintenance project in June and July 2016. The effect of this continued injection has been to maintain the volume of water in storage in the aquifer (discussed further below), maintain the combined extraction volume of plume reduction wells, reduce VOC concentrations throughout the plume, and shrink the footprint of the plume.

6.4.2 Groundwater Extraction

Table 6-6 shows the extraction volumes in 2015 and 2016 for seven extraction wells operating to reduce the plume in OSCZ-A, and for two extraction wells operating along Monroe Street at the southern end of OSCZ-B. (Only one extraction well on Monroe Street (EN-491T) was pumping in 2016.) A complete record of extraction volumes for these and other wells operating from 2004 to 2016 is presented in Table A-8 of Appendix A. Year-over-year discussions of the changes in extraction volumes were presented in previous annual reports.

Table 6-6: Extraction Volumes (MG) in "Off-Site" Capture Zone A and the Western Portion of "Off-Site" Capture Zone B

Plume Area	Extraction Well(s)	2015	2016
"Off-Site" Capture Zone A West of Washington Avenue	EN-133, EN-451P, & EN-91T	82.7	78.8
"Off-Site" Capture Zone A South of North Street	EN-284P	45.7	36.5
"Off-Site" Capture Zone A Top of Silt Trough	EN-215T, EN-447T, & EN-194	152.5	143.6
"Off-Site" Capture Zone B	EN-185P* & EN-491T	14.8	14.4
	Subtotal	295.7	273.3
Source/Flux Control Crossing North Street (estimate)**	EN-284P	-5.7	-6.6
Ideal Cleaners Plume Flux Control	EN-185P*	-0.5	0
Estimated Net Annual Extraction Volume			266.7
* Well was not operating in 2016			

^{*} Well was not operating in 2016.

Adjustments for two items are estimated near the bottom of Table 6-6: (1) the portion of extraction volume at EN-284P attributed to flux control in OU#2 (calculated from Table 6-2 entries); and (2) the portion of the volume extracted by the Monroe Street extraction wells attributed to control of the plume that previously emanated from the former Ideal Cleaners property. (In 2015, only EN-185P in the eastern portion of OSCZ-B effectively captured any groundwater originating from the Ideal Cleaners property, and only for January of that year.) After these adjustments, Table 6-6 shows that the annual extraction volume for plume reduction in OSCZ-A and the western portion of OSCZ-B decreased by about eight percent from 2015 to 2016, with groundwater extraction volumes being effectively maintained near the highest levels since extraction began in the 1980s.

6.4.3 VOC Mass Removal

In addition to examining changes in extraction volume from year to year, it is also important to examine the VOC mass removal occurring in "Off-Site" Capture Zones A and B. Table 6-7 shows the VOC mass removed in 2015 and 2016 for extraction wells in three plume areas in OSCZ-A and in one plume area in the western portion of OSCZ-B. A complete record of VOC mass removal from these areas since 2005 is presented in Table A-9 of Appendix A.

^{**} Net from Table 6-2 entries for well EN-284P.

Table 6-7: VOC Mass (pounds) Removed in "Off-Site" Capture Zone A and the Western Portion of "Off-Site" Capture Zone B

Plume Area	Wells	2015	2016
"Off-Site" Capture Zone A West of Washington Avenue	EN-133, EN-451P & EN-91T	1.6	1.4
"Off-Site" Capture Zone A South of North Street	EN-284P*	14.0	5.2
"Off-Site" Capture Zone A Top of Silt Trough	EN-215T, EN-447T, & EN-194	4.6	3.7
"Off-Site" Capture Zone B (western portion)	EN-491T	0.7	0.6
	Total	20.9	10.9
*Estimated portion attributable to plume reduction; see Table 6-3 entries.			

Table 6-7 shows that the annual VOC mass removed decreased by 10 pounds from 2015 to 2016, consistent with the rate of decrease of about 6 to 19 pounds per year from 2010 to 2015, as quantified on Table A-9 of Appendix A.

Figure 6-1 shows schematically (in blue) how the 2016 VOC mass attributable to plume reduction in "Off-Site" Capture Zones A and B (western portion), and shown on Table 6-7, is apportioned between (1) the three extraction wells west of Washington Avenue (1.4 pounds), (2) the area south of North Street captured by EN-284P (5.2 pounds), (3) the three extraction wells pumping from the top of silt trough (3.7 pounds), and (4) extraction well EN-491T on Monroe Street in the western portion of OU#4 (0.6 pounds).

6.4.4 Change in Mass of TCE Dissolved in Groundwater, 2004 vs. 2016

The purpose of calculating the mass of TCE dissolved in groundwater in the Upper Aquifer south of North Street is to provide the Agencies (NYSDEC and NYSDOH) with an indication of IBM's continuing progress after achieving the stated goal of reducing the mass of TCE dissolved in groundwater within OSCZ-A and the Southern Area by 80% within 10 years. As noted in Section 2.1, IBM met this objective in 2012 after only eight years of enhanced corrective action operations. The following subsections compare the dissolved TCE mass in 2004 with the dissolved TCE mass in 2016.

6.4.4.1 Calculation of Initial TCE Mass in Place, June 2004

The method for calculating the mass of dissolved VOCs in groundwater was first described in the *Addendum to the Annual Groundwater Monitoring Status Report for 2007* (2007 Addendum, August 28, 2008). That addendum explains the logic for selecting June 2004 as the initial date for calculating the mass of TCE dissolved in groundwater as well as the procedure for making these initial calculations and calculations for subsequent years. Restating this logic, June 2004 was selected as a starting date for the initial TCE mass calculation for three primary reasons:

- 1. Extraction test well EN-284TD started pumping continuously on July 6, 2004, marking the first significant change in the dynamics of groundwater flow south of North Street since field activities associated with the SGA were completed in 2003. EN-284TD began to intercept the mass flux across North Street that was previously intercepted by the Garfield and Jefferson Avenue extraction wells. Therefore, shortly after July 6, 2004, no appreciable mass flux was being added to the plume south of North Street. Furthermore, the initiation of pumping at this well location was identified in the SGA Report as the first step in attaining the corrective action objectives.
- 2. A comprehensive round of groundwater elevations measured on June 6-8, 2004 provides a snapshot of the groundwater flow system one month prior to startup of groundwater extraction at EN-284TD. This data is the basis for calculating the volume of water in storage within the Upper Aquifer in the area of concern prior to the initiation of flux control pumping at EN-284TD.
- 3. A comprehensive set of chemical concentration data exists for monitoring wells in OSCZ-A and the Southern Area for a short time prior to the startup of groundwater extraction at EN-284TD. This data is the basis for assessing the magnitude and distribution of TCE in groundwater within the area of concern prior to the initiation of flux control pumping at EN-284TD.

The initial mass-in-place calculation for TCE dissolved in groundwater is explained in detail in the 2007 Addendum. The method of calculation divides the plume area into cells measuring 100 feet by 100 feet, calculates the volume of groundwater within each cell (as explained in Section 6.4.4.2) and assigns the concentration of TCE in each cell based on a TCE isoconcentration contour map.

This method yields a calculation of the total volume of groundwater in storage within the footprint of the TCE plume, the total mass of TCE dissolved in that volume of groundwater and the average TCE concentration in the plume. Based on this method, the calculated total volume of water in storage within the plume area in June 2004 was 135 MG and the calculated mass of TCE dissolved in groundwater in June 2004 was 89.5 pounds.

6.4.4.2 Calculation of TCE Mass in Place, August 2016

The dissolved TCE mass calculation for August 2016 was done in the same way as the June 2004 calculation. First, an isoconcentration map of TCE in the Upper Aquifer was constructed by hand-contouring the TCE concentration data from August 2016. This TCE isoconcentration contour map is shown on Plate 5-2. Next, the groundwater elevations measured on August 3, 2016 were contoured to create a groundwater elevation contour map of the Upper Aquifer with a maximum contour interval of one foot. This groundwater elevation contour map is shown on Plate 4-1. Then, using the current top-of-silt contour map (Plate 2-1), a map of the Upper Aquifer saturated thickness was derived by cross-contouring the August 2016 groundwater elevation contour map with the current top-of-silt contour map. This saturated thickness contour map of the Upper Aquifer is shown on Figure 4-1.

An orthogonal grid with cell dimensions of 100 feet by 100 feet aligned with McKinley Avenue was overlain on both the TCE isoconcentration map for August 2016 and the Upper Aquifer saturated thickness map for August 2016, as shown on Figures 6-2 and 6-3. An average saturated thickness was assigned to each cell of the gridded Upper Aquifer saturated thickness map and an average TCE concentration was assigned to each cell of the gridded TCE isoconcentration contour map. The saturated thickness and TCE concentration values for each cell were then transferred to Excel worksheets such that each 100 feet by 100 feet grid cell corresponds to a cell in the worksheet, with TCE concentration on one page of the spreadsheet and saturated thickness on a separate page (Figures 6-4 and 6-5). Using an Upper Aquifer effective porosity of 35 percent, the volume of groundwater in storage within the plume area was calculated on a separate Excel worksheet (Figure 6-6). Based on this worksheet calculation, the estimated volume of groundwater in storage within the plume area of the Upper Aquifer in August 2016 was 116 MG, an increase in

groundwater in storage of about 46 MG since injection began in late 2008, but lower than the volume in storage from 2011 to 2015.

The mass of TCE dissolved in groundwater in each cell was then calculated on a separate Excel worksheet by multiplying the volume of groundwater in storage (in gallons) by the TCE concentration (in micrograms per liter), with a correction factor of 8.35 x 10⁻⁹ to convert the resulting TCE mass units to pounds. Where either the volume of groundwater in storage or TCE concentration of a worksheet cell was zero, the calculated TCE mass for that cell was zero, and the cell was effectively excluded from the mass calculation. The dissolved TCE mass calculated for each cell is shown on Figure 6-7.

The total dissolved TCE mass in groundwater south of North Street in August 2016 was calculated by summing the cells in each north-south column of the TCE mass worksheet such that the total of each column accrued in a single row at the bottom of the worksheet. The columnar totals in this row were then summed to yield the total TCE mass in place south of North Street, excluding the EN-284P capture area, as was done for the initial mass-in-place calculation. The estimated mass of TCE dissolved in groundwater in August 2016 calculated using the aforementioned method is approximately 1.3 pounds, or approximately 28% less than in 2015; however, this mass was dissolved in a smaller volume of groundwater (116 MG in 2016 vs. 149 MG in 2015).

6.4.5 Continuing Reductions in the Concentration and Mass of TCE in Groundwater (South of North Street)

This section of the report assesses IBM's progress after meeting the objectives described in Section 2.1 by comparing the June 2004 mass calculation with the August 2016 mass calculation. It also examines the factors contributing to the reduction in mass.

The TCE mass totals calculated for June 2004 and August 2016 indicate a 99% reduction of TCE mass dissolved in groundwater from 89.5 pounds to 1.3 pounds over a period of 12 years and two months. Linking the groundwater volume in storage in August 2016 with the TCE mass dissolved in groundwater shows that the average concentration of TCE in groundwater within the plume in August 2016 was $1.4 \mu g/L$. Therefore, in addition to a reduction of 99% in the dissolved TCE mass in groundwater since 2004, a reduction of 98% has been achieved for the average TCE

concentration in the plume compared to 2004 (79.5 μ g/L). Furthermore, despite a decrease in clean water injection volume intended to reduce TCE concentrations and thereby accelerate the rates of desorption and reverse diffusion, the average TCE concentration in the plume decreased from 1.5 μ g/L in 2015 to 1.4 μ g/L in 2016.

Further reductions in TCE concentrations due to clean water injection will continue to enhance the partitioning of TCE mass from the solid phase (i.e., mass diffused into and sorbed onto and within aquifer solid particles) to the aqueous phase (i.e., mass dissolved in groundwater) via the mechanisms of desorption and reverse diffusion.

The potential for VOC mass transfer from the saturated zone solids to the aqueous phase (i.e., dissolved in groundwater) is supported by a comparison of the decline in dissolved TCE mass in groundwater (88.2 pounds out of an initial 89.5 pounds in 2004), as described above, with the TCE mass calculated to have been removed from the plume by extraction wells in OSCZ-A and the western portion of OSCZ-B between June 2004 and August 2016 (515 pounds). When compared to the lower calculated reduction in TCE mass dissolved in groundwater (88 pounds, rounded from 88.2 pounds), the higher calculated value of total TCE mass removed from the plume area (515 pounds) likely reflects the predominance of mass removed by desorption and reverse diffusion from saturated zone solids in the area of the plume and recharge of TCE-containing water from the deep vadose zone overlying the area of the plume (515 pounds - 88 pounds = 427 pounds). This comparison suggests that for every pound of dissolved TCE removed from groundwater about five pounds of TCE have been removed via the combination of: 1) desorption and reverse diffusion from saturated zone aquifer solids; and 2) recharge of TCE-containing water to the saturated zone from from the deep vadose zone (i.e., 427 pounds from saturated zone aquifer solids/deep vadose zone recharge vs. 88 pounds dissolved in groundwater, a 5:1 ratio).

6.5 Plume Reduction in Operable Unit No. 4 (Eastern Part of "Off-Site" Capture Zone B)

In 2010, IBM successfully completed remediation of the PCE soil contamination at the former Ideal Cleaners property using *In-Situ* Thermal Desorption (ISTD) treatment. Following thermal treatment of the former PCE source area, the ethene series constituents remaining in OU#4 were limited to a narrow groundwater plume area. As a result, NYSDEC issued a ROD in November

2010 for Operable Unit No. 4. The ROD for OU#4 selected No Further Action as a remedy, contingent on the continued operation of Upper Aquifer groundwater plume remediation systems and vapor intrusion mitigation systems. Since the source removal by ISTD, groundwater monitoring in the Upper Aquifer has shown a rapid decline in the extent and concentration of the narrow ethene-series plume in OU#4 by natural attenuation processes. Results of monitoring in 2016 indicate the nearly complete elimination of PCE (for example, at source area wells EN-527 and EN-528, and at downgradient well EN-387A). Except for slight rebound in concentrations of TCE and c12-DCE at well EN-080 (from less than 1 μg/L to as much as 4 μg/L), concentrations trends for PCE's degradation products TCE, c12-DCE, and vinyl chloride are decreasing or stable (for example, at downgradient wells EN-387A, EN-394, and EN-381). Time versus concentration graphs for ethene-series compounds in key OU#4 monitoring wells with analytical data through November 2016 are shown on Plate 5-5.

As specified in the OU#4 Focused Feasibility Study (FFS) report, monitoring of the remaining groundwater plume would initially be performed semiannually for five years to monitor progress toward achieving the NYSGQS for chemicals of concern. At the five-year milestone, the monitoring data would be reviewed to assess whether the contingent remedy of enhanced biodegradation should be considered. Criteria specified in the FFS report that would trigger consideration of enhanced biodegradation include:

- 1. An increasing trend of one or more PCE-series compounds in groundwater samples collected from one or both monitoring wells EN-527 and EN-528, in the former PCE source area.
- 2. An increasing trend or lack of a declining trend in PCE or its daughter products for downgradient wells EN-387A and EN-394.

Neither of the above criteria was met in 2015 at the five-year milestone of post-source removal groundwater monitoring. The same was true in 2016 and, therefore, the need for the contingent remedy of enhanced biodegradation has not been triggered. Groundwater monitoring in OU#4 will continue in accordance with the current GMP, and changes in sampling locations and monitoring frequencies may be proposed as part of annual GMP modification requests.

Concentration trends in PCE-series constituents for downgradient monitoring wells EN-394, EN-80, and EN-381, as shown on Plate 5-5, indicate attainment of the NYSGQS, which is 5 µg/L for PCE, TCE and c12-DCE, and 2 µg/L for VC. Concentration trends at EN-387A suggest that attainment of the NYSGQS for c12-DCE and VC may extend beyond the proposed ten-year monitoring period at that location.

6.6 Status of Remediation at Operable Unit No. 5

Remedial activities during 2016 within OU#5 consisted of continued groundwater extraction and treatment from well EN-709 together with routine groundwater monitoring. Four years of groundwater monitoring have been performed since the September 2012 completion of an Interim Remedial Measure (IRM) involving in-situ thermal treatment (ISTT). As documented in the Focused Feasibility Study (FFS) report by Sanborn, Head & Associates, Inc. (SHA) dated February 23, 2015, significant reductions in groundwater VOC concentrations have been observed within the ISTT treatment zones and in most areas downgradient from the treatment zones.

The ISTT IRM reduced VOC concentrations in soil and groundwater within the treatment zones by several orders of magnitude. Chlorofluorocarbons (CFCs) remain in bedrock below one of the treatment zones (the CFC Area). However, following a post-IRM assessment of bedrock groundwater in 2013, SHA concluded that CFCs were not migrating as far as North Street, the southern downgradient limit of OU#5. SHA also concluded that CFCs migrating from bedrock in the CFC Area are being captured by extraction well EN-709.

Based on the success of the IRMs completed at OU#5, NYSDEC issued a ROD for OU#5 on March 30, 2016. NYSDEC approved "No Further Action" as the remedy, contingent on continued operation of the interim remedial measures: hydraulic containment by pumping from well EN-709 supported by routine groundwater monitoring, and vapor intrusion mitigation of nearby off-site structures.

6.7 Status of Remediation in Operable Unit No. 6 (Bedrock Aquifer)

NYSDEC issued a ROD for Operable Unit No. 6 on March 26, 2009. The ROD for OU#6 describes the approved remedy for the bedrock groundwater remedial program at the Site and notes

that the bedrock groundwater plume is under control and no longer poses a significant threat to human health or the environment. Therefore, NYSDEC approved "No Further Action" as the remedy, contingent on continued operation and maintenance of bedrock extraction well EN-D49, and on monitoring of groundwater in the bedrock aquifer.

Table 6-8 shows that the annual VOC mass removed since 2005 from the bedrock aquifer. Since the first full year of extraction well EN-D49 operation in 2007, the annual VOC mass removed has remained in the narrow range of about 22 to 26 pounds per year. Since 2008, more than 60% of the total VOC mass removed consists of c12-DCE.

Table 6-8: Annual VOC Mass (pounds) Removed since 2005 from the Bedrock Aquifer

Year	2005	2006*	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
VOC Mass	28.8	20.6	24.8	26.2	23.7	26.3	25.7	26.0	24.1	23.4	24.4	21.9
* Extraction w	ell EN-C	AF ceased	d operation	n in Aug	ust 2006	and EN-	D49 start	ed up in	Septemb	er 2006.		

6.8 Status of Remediation at Operable Unit No. 7

In 2013, IBM submitted a request to perform a shutdown test of Upper Aquifer groundwater extraction well EN-154R in OU#7. The shutdown request was based on a review and analysis of trends in VOC concentrations and mass removals during nearly three decades of groundwater extraction operations at OU#7. Overall, the findings of that review and analysis indicated that the combination of VOC source removals and the first two decades (circa 1984 to 2004) of OU#7 groundwater extraction operations resulted in significant decreases in VOC concentrations in groundwater, with reductions of up to three orders of magnitude. In contrast, the third decade of groundwater extraction operations (2005 to 2014) did not produce further meaningful reductions in VOC concentrations. The EN-154R shutdown request was approved by the Agencies on December 31, 2013. The results of the test will be used to support selection of the final remedy for OU#7.

The second year of the two-year long shutdown test of extraction well EN-154R was completed in 2015, but was extended through 2016 for continued assessment. EN-154R shutdown test activities completed in 2016 consisted of post-shutdown quarterly groundwater monitoring in February, May, August, and November 2016. The planned scope of the shutdown test in 2017 includes additional

post-shutdown groundwater monitoring to support a decision regarding the long-term groundwater remedy for OU#7.

6.9 Summary of VOC Mass Removed by Pumping Site-Wide in 2016

From January 1, 2016 through December 31, 2016, the groundwater extraction wells removed about 2,798 pounds of VOCs from 323.2 MG of pumped groundwater. The monthly flows, together with chemical concentrations for each extraction well were used to calculate the mass of VOCs removed by pumping. The monthly VOC concentrations and calculated mass removed at each extraction well are tabulated in Appendix A.

More than 97 percent of the total VOC mass removed, or 2,704 pounds, was recovered by five Upper Aquifer extraction wells in the Railroad Corridor Source Area (OU#1). Outside of OU#1, the other three percent of the total VOC mass removed in 2016 came from other operable units and from OSCZ-A. About 49 pounds of VOCs were recovered from extraction wells EN-276 and EN-284P in the North Street Area (OU#2), about the same as in 2015 but a significantly less than the mass removed in 2011 and 2012 for reasons explained in Section 6.2.2. About six pounds of VOCs were recovered from seven Upper Aquifer extraction wells in Off-Site Capture Zones A and B, including portions of the Southern Area (OU#3). Bedrock Aquifer extraction well EN-D49 recovered 22 pounds of VOCs in OU#6, similar to the mass it recovered in each of the previous nine years. Approximately 17 pounds were recovered from extraction well EN-709 at the Building 57 Area (OU#5).

With regard to chemical speciation of the principal VOCs, about 78 percent of the total VOC mass removed in 2016 consisted of 111-TCA and its daughter products 11-DCA, 11-DCE and CEA. TCE and its daughter products c12-DCE and vinyl chloride comprised nearly 20 percent of the total VOC mass removed in 2016. PCE was 0.1 percent of the total VOC mass recovered in 2016 and 1.7 percent consisted of Freon 113 and Freon 123a.

7 REFERENCES

- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, *Combined Groundwater Report for 2015*, April 14, 2016.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, *Combined Groundwater Report for 2014*, April 10, 2015.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, *Combined Groundwater Report for 2013*, April 14, 2014.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, *Combined Groundwater Report for 2012*, April 12, 2013.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, *Combined Groundwater Report for 2011*, April 12, 2012.
- Groundwater Sciences Corporation, Supplemental Remedial Investigation Report, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, August 28, 2009.
- Groundwater Sciences Corporation, *Annual Groundwater Monitoring Status Report for 2008*, April 14, 2009.
- Groundwater Sciences Corporation, *Annual Groundwater Monitoring Status Report for 2007*, April 14, 2008; Addendum dated August 19, 2008.
- Groundwater Sciences Corporation, *Annual Groundwater Monitoring Status Report for 2004*, April 15, 2005.
- Groundwater Sciences, P.C., Supplemental Groundwater Assessment Final Report, December 31, 2003, revised and updated May 17, 2004.
- New York State Department of Environmental Conservation, Former IBM Endicott Facility, Operable Unit Number 05: Building 57 Area, State Superfund Project, Endicott, Broome County, Site No. 704014, March 30, 2016.

- New York State Department of Environmental Conservation, Former IBM Endicott Facility, Operable Unit Number 03: Southern Area and Off-Site Capture Zone A, State Superfund Project, Endicott, Broome County, Site No. 704014, March 31, 2015.
- New York State Department of Environmental Conservation, Record of Decision, Former IBM Endicott Site, Operable Unit No. 4 Former Ideal Cleaners, State Superfund Project, Village of Endicott, Broome County, New York, Site Number 704014, November 2, 2010.
- New York State Department of Environmental Conservation, Record of Decision, Former IBM Endicott Site, Operable Unit No. 6 Plume Control in Bedrock Groundwater, Endicott, Broome County, New York, Site Number 704014, March 26, 2009.
- Sanborn Head Engineering, P.C., Focused Feasibility Study, Operable Unit #5/Building 57 Area, Union and Endicott, New York, February 23, 2015.
- Sanborn Head Engineering, P.C., Bedrock Groundwater Assessment Report of Findings, Supplemental Remedial Investigation Addendum, Operable Unit #5/Building 57 Area, Union and Endicott, New York, November 15, 2013.
- Sanborn, Head & Associates, Inc., Expanded Capture Zone Assessment Report of Findings, Supplemental Remedial Investigation Addendum, Operable Unit #5/Building 57 Area, Union and Endicott, New York, January 12, 2015.

Portion of the Endicott, NY and Maine, NY 7.5-minute USGS Quadrangles (2000)

Figure 1-1

Former IBM Endicott Site Site #704014

Site Location Map

111-TCA = 1,1,1-Trichloroethane

11-DCA = 1,1-Dichloroethane

11-DCE = 1,1-Dichloroethene

Figure 5-1

		A Endicott Site 704014
for Moni		vs. Time Graphs -433, EN-434 and EN-471
DRAWN BY: CAR	DATE: 2/14/17	DRAWING NO.
CHECKED AND A	PPROVED BY: CAR	22007-CAR-2
GR GR	OUNDWATER :	SCIENCES CORPORATION

	A B C	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK
1														100	400	400	200	100	60	30	5.5	5.5	5.5	3	0.9	0.9	1	İ							
2												1.5	40	100	500	1000	100	400	45	20	10	8	6	5.5	2	1.5	0.9	į							
3								1.1	0.8	0.7	0.9	1.5	10	50	670	500	40	40	30	10	8	7	6	5.5	3.5	1.5	0.8	į i							
4				0	0	0.8	1.1	1	0.7	0.6	1	0	50	600	500	20	5	4	3	3	4	6	6	5.5	3	1.1	0.7	İ							
5	North Street		0.6	0.6	0.6	0.8	1.1	0.8	0.6	0.6	1	0	4	60	30	3	1.1	0.7	0	0.5	1.5	5.5	5.5	4	3	1	0.6	ĺ							
6		0.6	0.6	0.6	0.7	0.9	1.1	0.7	0.6	0.7	1.1	2	3	4	3	2	0	0.5	0.6	0.8	2	6	5.5	3.5	2	0.9	0.5	Í I							
7		0.8	0.6	0.8	1	1.4	1.2	0.9	0.9	1.1	1.2	1.5	1.5	1.2	1.2	1.5	1.5	0	1.1	1.1	4	6	5	3	1	0.7	0.5	Í l							
8		0.8	0.7	0.7	0.7	1	1.2	1.2	1.2	0.9	0.8	0.9	1.2	1	0.8	0.9	1.1	1.5	1.5	1.3	5	6	4	1.5	0.9	0.6	0.5	0.5	0.5						
9			0.5	0.5	0.6	0.7	0.8	0.9	0.9	0	0	0.8	1.1	0.9	0.8	0.8	0.9	1.1	1.5	2	5.5	5.5	2	0.9	0.7	0.6	0.6	0.6	0.5						
10				0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.5	1	1.7	0.9	0.8	0.8	0.8	0.9	1.1	2	5.5	5.5	1	0.7	0.7	0.6	0.6	0.7	0.5						
11			•		0.5	0.6	0.6	0.6	0.7	0.9	0.7	0.9	2	1.1	0.9	0.8	8.0	0.8	0.9	1.2	6	6	2.5	0.5	0.7	0.7	0.8	0	0.8						
12	Monro	oe Stree	t			0.5	0.6	0.6	0.7	0.7	0.8	1.2	1.1	0.9	0.7	0.7	0.7	0.7	0.6	0.7	0.2	0.8	0.8	0.6	0.8	0.9	1	1.1	1.1						
13								0.7	1.1	1.1	1.1	1.2	1.1	0.9	0.7	0.7	0.7	0.7	0.7	0.7	0.5	0	0.7	0.8	1.1	1.2	2	2	2	1.5					
14							'			1.1	1.2	1.2	1.2	1.1	0.9	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	1.1	2	3	2.5	2.5	2	1.5					
15									'		1	1.1	1.2	1.2	1	0.8	0.7	0.7	8.0	0.8	0.9	0.8	0.9	1.1	2	3	3	2.5	2	1.5					
16 1 1.2 0.9 0.8 0.7 0.7 0.7 0.7 0.8 0.9 1.1 0.8 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.5															2	2.5	3	2.5	2	1.5															
17	17 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.5 2 2.5 2.5 2.5 1.5 1.1 1.8																-																		
18																į																			
19	0.6 0.7 0.7 0.8 0.9 1.1 1.5 2 2 2 2 1.5 0.9 0.7																																		
20	³															<u>.</u>																			
															0.9	0.8	0.7	0.6		_															
22																	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.6	0.6	0.6	<u>i</u>	
23																	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.6	0.6	
24																0	0	0	0	0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.8	0.7	0.6	0.5
25						0.3	0.5	0.5	0.6	0.5	0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.6	0.5									
26					0.3	0.3	0.3	1	0.8	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.6	0.5									
27														0.3	0.3	5	1	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	
28														5	10	2	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6			
29															0.9	0.5	0.3	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	 				
30															 	0.3	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6							
31																				0.5	0.5	0.5	0.5	0.5	0.5	0.5									

	A B C	D	Е	F	G	Н	ı	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	АН	Al	AJ	AK
1	Numbers in red a	re based	on <u>M</u>	ay 201	6 GWI	Етар	& sat ti	hickne	ss con	touring	7			4	1	0.5	1.5	2.5	5	5	3.5	4	5.5	6.5	7	5	3.5								
2												20	5	2.5	1.5	1.5	2	3	4.5	6	4	4	4	4	4	4	4								
3								2	2.5	1.5	1	0.5	0.5	1.5	1.5	2.5	1.5	1.5	3.5	5.5	4.5	4	3.5	3.5	4	4.5	6								
4				0	0	0.5	1.5	3	3	2	1	0	8	2	1.5	1.5	2	2.5	4	5	7	5	2	2.5	3.5	4.5	8								
5	North Street		0.5	0	0.5	1	1.5	2.5	3	2.5	0.5	0	10	5	1.5	3.5	7	9	5	4.5	5.5	0	0	1.5	3	5	5	İ							
6		6.5	5	5	5	3.5	2	1.5	3	5	5	2	6	5	1.5	0	0	0	1	1.5	2.5	1	1.5	2	3	3.5	3.5								
7		9	8	8	8	7.5	5.5	4	4.5	6	7	6	5.5	4	3	1	0	0	0.5	2	3	3	2.5	3	3	3	3.5	 							
8		15	13	12.5	11	10.5	9	8	9	8.5	8.5	8	6	5.5	4	3	2	0	0.5	2	3	3	2.5	1.5	2	3	3	4	6						
9			16	15	13.5	12.5	11.5	11.5	12	12	12	10	7.5	5.5	4	3	2	1	1.5	2.5	3	3.5	4	4.5	4.5	4	3	3	4						
10				17	16	14	13	12	12	12	11.5	9.5	7	5.5	4.5	3	1.5	2	3	3.5	4	4	5.5	8.5	8.5	4.5	2	1.5	2.5						
11					13	13	12	11.5	10.5	9.5	11	9	8	9.5	11	5	3.5	4	5	6.5	6	5.5	7	8	8	5.5	1.5	0	2.5						
12	Monroe Street 9.5 10 9.5 9 9.5 11 10 9.5 12.5 15.5 15.5 15.5 15.5 15.7 7 4 5 6 5 4.5 4 4 3 2.5 3 8 8 9 12 14 15 16 18 18 17 15 12 10 6 4 4 3.5 3.5 3.5 3.5 3.5 3.5 4																																		
13	8 8 9 12 14 15 16 18 18 17 15 12 10 6 4 4 3.5 3.5 3.5 3.5 3.5 3.5 4 9.5 13 18 20.5 20 18 20.5 20 19 17.5 16.5 15 12 9 7 5.5 4 3.5 3.5 3.5 4																																		
14	9.5 13 18 20.5 20 18 20.5 20 19 17.5 16.5 15 12 9 7 5.5 4 3.5 3.5 4 12.5 15.5 20 19.5 17.5 18 17.5 18 20.5 20.5 19.5 17.5 14.5 11 8.5 5.5 4 3.5 3.5 4																																		
15	│																																		
16	13 14 14 13.5 13.5 13.5 15 20 21 20.5 19 15 11.5 8 4.5 4 3.5 4.5																																		
17	7 9.5 11 12 13 14.5 20 21 20.5 17.5 14 10.5 7 4.5 4 4.5 0.5 5 9 11 12.5 14 17 19 18 16 12 8 5.5 4.5 4.5 6 0.5 3 6.5 9 11 13 15 16 16 12.5 9 7 5.5 4.5 6 0.5 1.5 2 4 7 9 11 12.5 13.5 12 9.5 8 7 6 6.5																																		
18																																			
19																																			
20																ı																			
21		0	= Indica	tes dry d	ell												1	1	1.5	1.5	2.5	4.5	6.5	8	10.5	11	9.5	8.5	7.5	6.5	5	4			
22																	1	1	1	1	1	1.5	2	3.5	6	7	7.5	7.5	7	6	4.5	3.5	2.5	,	
23																	0.5	0.5	0.5	0.5	1	1.5	1.5	1.5	3	4	4.5	4.5	5	4.5	4	3	2.5	1.5	
24																0	0	0	0	0	1.5	2.5	3	2.5	3	3.5	3.5	3.5	3.5	3.5	3.5	3	2	1.5	1
25													ļ	50	4	4	5	3.5	0	0	2	3	3.5	3.5	3.5	3	3	2.5	2.5	2.5	2.5	2	1.5	1	0.5
26														50 60	40 60	35 60	40 55	35 50	20 35	10 25	9.5	4.5 7	4.5	3.5	3.5	2.5	2.5	1.5	1.5	1.5	1.5	1.5	1.5 2.5	1.5 2.5	0.5
27														75	60	35	18	10	7.5	7.5	6	4.5	4.5	3.5	3.5	3.5	3	1.5	1	1	1.5	2.5	2.0	2.0	
28													İ		50	10	1.5	1.5	2.5	3.5	4.5	5.5	5.5	5	4.5	4	3	2	1	1	1.0	2.5			
29															L <u></u>	40	25	1.5	8	7.5	7.5	7.5	7.5	7	6	4.5	3.5	2.5		نــــــــــــــــــــــــــــــــــــــ					
30															ĺ	ـــــــــــــــــــــــــــــــــــــ				30	20	15	12	9.5	8	6.5	0.0	ا ــــــــــــــــــــــــــــــــــــ							
31																				L				0.0		0.0									

Paris Pari		A B C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	АН	Al	AJ A	٩K
March Marc	1														1.0E+5	2.6E+4	1.3E+4	3.9E+4	6.5E+4	1.3E+5	1.3E+5	9.2E+4	1.0E+5	1.4E+5	1.7E+5	1.8E+5	1.3E+5	9.2E+4]]							
A	2												5.2E+5	1.3E+5	6.5E+4	3.9E+4	3.9E+4	5.2E+4	7.9E+4	1.2E+5	1.6E+5	1.0E+5	į Į													
No. No.	3								5.2E+4	6.5E+4	3.9E+4	2.6E+4	1.3E+4	1.3E+4	3.9E+4	3.9E+4	6.5E+4	3.9E+4	3.9E+4	9.2E+4	1.4E+5	1.2E+5	1.0E+5	9.2E+4	9.2E+4	1.0E+5	1.2E+5	1.6E+5	 							
Part	4				0.0E+0	0.0E+0	0 1.3E+	4 3.9E+	4 7.9E+4	7.9E+4	5.2E+4	2.6E+4	0.0E+0	2.1E+5	5.2E+4	3.9E+4	3.9E+4	5.2E+4	6.5E+4	1.0E+5	1.3E+5	1.8E+5	1.3E+5	5.2E+4	6.5E+4	9.2E+4	1.2E+5	2.1E+5	İ							
2	5	North Street		1.3E+4	0.0E+0	0 1.3E+4	4 2.6E+	4 3.9E+	4 6.5E+4	7.9E+4	6.5E+4	1.3E+4	0.0E+0	2.6E+5	1.3E+5	3.9E+4	9.2E+4	1.8E+5	2.4E+5	1.3E+5	1.2E+5	1.4E+5	0.0E+0	0.0E+0	3.9E+4	7.9E+4	1.3E+5	1.3E+5] 							
8	6		1.7E+5	1.3E+5	1.3E+5	5 1.3E+5	5 9.2E+	4 5.2E+	4 3.9E+4	7.9E+4	1.3E+5	1.3E+5	5.2E+4	1.6E+5	1.3E+5	3.9E+4	0.0E+0	0.0E+0	0.0E+0	2.6E+4	3.9E+4	6.5E+4	2.6E+4	3.9E+4	5.2E+4	7.9E+4	9.2E+4	9.2E+4] 							
0 1 1 1 1 1 1 1 1 1	7		2.4E+5	2.1E+5	2.1E+5	5 2.1E+5	5 2.0E+	5 1.4E+	5 1.0E+5	1.2E+5	1.6E+5	1.8E+5	1.6E+5	1.4E+5	1.0E+5	7.9E+4	2.6E+4	0.0E+0	0.0E+0	1.3E+4	5.2E+4	7.9E+4	7.9E+4	6.5E+4	7.9E+4	7.9E+4	7.9E+4	9.2E+4	 							
4	8		3.9E+5	3.4E+5	3.3E+5	5 2.9E+5	5 2.7E+	5 2.4E+	5 2.1E+5	2.4E+5	2.2E+5	2.2E+5	2.1E+5	1.6E+5	1.4E+5	1.0E+5	7.9E+4	5.2E+4	0.0E+0	1.3E+4	5.2E+4	7.9E+4	7.9E+4	6.5E+4	3.9E+4	5.2E+4	7.9E+4	7.9E+4	1.0E+5	1.6E+5	 					
1	9			4.2E+5	3.9E+5	5 3.5E+5	5 3.3E+	5 3.0E+	5 3.0E+5	3.1E+5	3.1E+5	3.1E+5	2.6E+5	2.0E+5	1.4E+5	1.0E+5	7.9E+4	5.2E+4	2.6E+4	3.9E+4	6.5E+4	7.9E+4	9.2E+4	1.0E+5	1.2E+5	1.2E+5	1.0E+5	7.9E+4	7.9E+4	1.0E+5	!]					
Morner Steet 25 25 25 25 25 25 25 2	10				4.5E+5	5 4.2E+5	5 3.7E+	5 3.4E+	5 3.1E+5	3.1E+5	3.1E+5	3.0E+5	2.5E+5	1.8E+5	1.4E+5	1.2E+5	7.9E+4	3.9E+4	5.2E+4	7.9E+4	9.2E+4	1.0E+5	1.0E+5	1.4E+5	2.2E+5	2.2E+5	1.2E+5	5.2E+4	3.9E+4	6.5E+4	<u> </u>					
2 11 5	11					3.4E+5	5 3.4E+	5 3.1E+	5 3.0E+5	2.7E+5	2.5E+5	2.9E+5	2.4E+5	2.1E+5	2.5E+5	2.9E+5	1.3E+5	9.2E+4	1.0E+5	1.3E+5	1.7E+5	1.6E+5	1.4E+5	1.8E+5	2.1E+5	2.1E+5	1.4E+5	3.9E+4	0.0E+0	6.5E+4	<u> </u>					
2.56 3.46 4.76 5.46 5.	12	Mor	roe Street				2.5E+	5 2.6E+	2.5E+5	2.4E+5	2.5E+5	2.9E+5	2.6E+5	2.5E+5	3.3E+5	4.1E+5	4.1E+5	3.0E+5	2.0E+5	1.8E+5	1.0E+5	1.3E+5	1.6E+5	1.3E+5	1.2E+5	1.0E+5	1.0E+5	7.9E+4	6.5E+4	7.9E+4						
3 3 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13								2.1E+5	2.1E+5	2.4E+5	3.1E+5	3.7E+5	3.9E+5	4.2E+5	4.7E+5	4.7E+5	4.5E+5	3.9E+5	3.1E+5	2.6E+5	1.6E+5	1.0E+5	1.0E+5	9.2E+4	9.2E+4	9.2E+4	9.2E+4	9.2E+4	9.2E+4	1.0E+5	İ				
1 ALE 1 3 ATE	14	~~~																																		
18-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	15	i−−b−−b−−b−−b−−b−−b−−b−−b−−b−−b−−b−−b−−b															į																			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	<u> </u>																																		
18 18 18 18 18 18 18 18	17	┗═ ╒ ╅┈┼┈ ┆┈┆ ┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈┼┈╄═━╸															_																			
19 19 19 19 19 19 19 19	18																	1.6E+5	İ																	
22 2 2 2 3 3 4 3 5 4 3 5 4 3 5 4 4 3 5	19	1.3E+4 7.9E+4 1.7E+5 2.4E+5 2.9E+5 3.4E+5 3.9E+5 4.2E+5 4.2E+5 3.3E+5 2.4E+5 1.8E+5 1.4E+5 1.2E+5 1.6E+5 1.3E+4 3.9E+4 5.2E+4 1.0E+5 1.8E+5 1.8E+5 1.6E+5 1.7E+5 1.7E+5 1.3E+4 5.2E+4 1.0E+5 1.8E+5 1.8E+5 1.8E+5 1.6E+5 1.7E+5 1.7E+5 1.3E+5 1.8E+5 1.8E+5 1.8E+5 1.8E+5 1.8E+5 1.8E+5 1.7E+5 1.7E+5 1.8E+5 1.															į																			
22 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 2.6E+4 3.9E+4	20																1.6E+5	1.7E+5	<u>i</u> L																	
22 1.354 1	21		<u> </u>															3.9E+4	6.5E+4	1.2E+5	1.7E+5	2.1E+5	2.7E+5	2.9E+5	2.5E+5	2.2E+5	2.0E+5	1.7E+5	1.3E+5	1.0E+5	i					
24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	22																	2.6E+4	2.6E+4	2.6E+4	2.6E+4	2.6E+4	3.9E+4	5.2E+4	9.2E+4	1.6E+5	1.8E+5	2.0E+5	2.0E+5	1.8E+5	1.6E+5	1.2E+5	9.2E+4	6.5E+4		
1.0E+5 1.0E+5 1.0E+5 1.0E+5 1.0E+5 1.0E+6 1.	23																	1.3E+4	1.3E+4	1.3E+4	1.3E+4	2.6E+4	3.9E+4	3.9E+4	3.9E+4	7.9E+4	1.0E+5	1.2E+5	1.2E+5	1.3E+5	1.2E+5	1.0E+5	7.9E+4	6.5E+4	3.9E+4	
26 1.3E+6 1.0E+6 1.6E+6	24																0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	3.9E+4	6.5E+4	7.9E+4	6.5E+4	7.9E+4	9.2E+4	9.2E+4	9.2E+4	9.2E+4	9.2E+4	9.2E+4	7.9E+4	5.2E+4	3.9E+4 2.6	E+4
27 28 29 30 30 4.6E+6 1.6E+6 1.6E+6 1.6E+6 1.6E+6 1.6E+6 1.4E+6 1.3E+6 9.2E+5 6.5E+5 1.8E+6 1.2E+5 1.8E+5 1.2E+5 1.8E+5 1.2E+5 1.8E+5 1.2E+6 9.2E+4 7.9E+4 6.5E+4 9.2E+4 7.9E+4 2.6E+4 2.6E+4 3.9E+4 6.5E+4 6.5E+4 9.2E+4 9	25															1.0E+5	1.0E+5	1.3E+5	9.2E+4	0.0E+0	0.0E+0	5.2E+4	7.9E+4	9.2E+4	9.2E+4	9.2E+4	7.9E+4	7.9E+4	6.5E+4	6.5E+4	6.5E+4	6.5E+4	5.2E+4	3.9E+4	2.6E+4 1.3	E+4
2.0E+6 1.6E+6 9.2E+5 4.7E+5 2.6E+5 2.0E+5 2.0E+5 2.0E+5 1.2	26													ĺ	1.3E+6	1.0E+6	9.2E+5	1.0E+6	9.2E+5	5.2E+5	2.6E+5	1.6E+5	1.2E+5	1.0E+5	9.2E+4	7.9E+4	6.5E+4	5.2E+4	3.9E+4	3.9E+4	3.9E+4	3.9E+4	3.9E+4	3.9E+4	3.9E+4 1.3	iE+4
29 1.3E+6 2.6E+5 3.9E+4 6.5E+4 9.2E+4 1.2E+5 1.4E+5 1.4E+5 1.3E+5 1.2E+5 1.0E+5 7.9E+4 2.6E+4	27													ĺ	1.6E+6	1.6E+6	1.6E+6	1.4E+6	1.3E+6	9.2E+5	6.5E+5	2.5E+5	1.8E+5	1.2E+5	1.0E+5	9.2E+4	7.9E+4	6.5E+4	3.9E+4	2.6E+4	2.6E+4	3.9E+4	5.2E+4	6.5E+4	6.5E+4	
30 1.0E+6 6.5E+5 3.9E+5 2.1E+5 2.0E+5 1.8E+5 2.0E+5 1.8E+5 1.6E+5 1.2E+6 9.2E+4 6.5E+4	28														2.0E+6	1.6E+6	9.2E+5	4.7E+5	2.6E+5	2.0E+5	2.0E+5	1.6E+5	1.2E+5	1.0E+5	9.2E+4	9.2E+4	9.2E+4	7.9E+4	3.9E+4	2.6E+4	2.6E+4	3.9E+4	6.5E+4	· = -		
705.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	29															1.3E+6	2.6E+5	3.9E+4	3.9E+4	6.5E+4	9.2E+4	1.2E+5	1.4E+5	1.4E+5	1.3E+5	1.2E+5	1.0E+5	7.9E+4	5.2E+4	2.6E+4	2.6E+4					
7.9E+5 5.2E+5 3.9E+5 3.1E+5 2.5E+5 1.7E+5	30																1.0E+6	6.5E+5	3.9E+5	2.1E+5	2.0E+5	1.8E+5	2.0E+5	2.0E+5	1.8E+5	1.6E+5	1.2E+5	9.2E+4	6.5E+4							
<u> </u>	31																				7.9E+5	5.2E+5	3.9E+5	3.1E+5	2.5E+5	2.1E+5	1.7E+5									

	A B C	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ	AK
1														0.09	0.09	0.04	0.07	0.05	0.07	0.07	0.02	0.00	0.01	0.00	0.00	0.00	0.00								
2												0.01	0.04	0.05	0.16	0.33	0.04	0.26	0.04	0.03	0.01	0.01	0.01	0.00	0.00	0.00	0.00								
3								0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.22	0.27	0.01	0.01	0.02	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00								
4				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.26	0.16	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00								
5	North Street		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
6		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00								
7		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	! L							
8		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
9			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
10				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
11					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
12	Mon	roe Stree	t			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
13								0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
14										0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																		
16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																		
17	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0																																		
18	i== ┪ ╵ ┩┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼																																		
19	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00																																		
20																																			
21																	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	,		
22																	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	L,	
23															ı		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
24																0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25															0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26														0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
27													ļ	0.00	0.00	0.07	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
28													ļ	0.08	0.13	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
29															0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
30																0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00							
31																				0.00	0.00	0.00	0.00	0.00	0.00	0.00									

PCE Isoconcentration Contour Map (September 1980)

PCE Isoconcentration Contour Map (November 2016)

TCE Isoconcentration Contour Map (September 1980)

TCE Isoconcentration
Contour Map (November 2016)

TCA Isoconcentration Contour Map (September 1980)

TCA Isoconcentration
Contour Map (November 2016)

APPENDIX A

- Table A-1: Pumping Volumes for Groundwater Extraction and Injection Wells, 2016
- Table A-2: Mass Removal Data for Volatile Organic Compounds, 2016
- Table A-3: Groundwater Extraction Volumes by Remediation Area, 2005-2016
- Table A-4: VOC Mass Removed in the Railroad Corridor Source Area, 2005-2016
- Table A-5: Extraction Volumes in the North Street Area, 2003-2016
- Table A-6: VOC Mass Removed in the North Street Area, 2003-2016
- Table A-7: Injection Volumes in "Off-Site" Capture Zones A and B, 2009-2016
- Table A-8: Extraction Volumes in "Off-Site" Capture Zones A and B, 2004-2016
- Table A-9: VOC Mass Removed in "Off-Site" Capture Zones A and B, 2005-2016

Table A-1: Groundwater Pumping and Injection Volumes (gallons) Endicott, New York - Site #704014 January 2016 to December 2016

Period			(OU#1 - RRCSA			OU:	‡2 - North St A	\rea		OU	#3 & Off-Site	Capture Zone	A A	
from	to	EN-107R	EN-114T	EN-219R	EN-253R	EN-428	EN-276R	EN-276	EN-284P	EN-091T	EN-133	EN-194	EN-215T	EN-447T	EN-451P
1-Jan-16	31-Jan-16	58,273	598,498	1,184,224	38,253	94,630	-	127,741	3,834,272	1,107,330	5,397,976	2,316,270	5,002,133	6,007,990	547,457
1-Feb-16	29-Feb-16	56,136	827,672	1,033,835	34,796	85,152	-	119,030	2,906,417	1,037,316	5,030,733	1,904,126	4,161,599	5,665,259	509,007
1-Mar-16	31-Mar-16	71,673	1,044,791	1,132,325	35,231	83,230	-	144,140	3,680,799	1,112,964	5,368,137	2,312,507	5,045,866	6,049,520	542,627
1-Apr-16	30-Apr-16	61,273	1,062,899	1,038,926	24,106	74,397	110,576	100,605	3,318,219	1,063,645	5,131,934	2,116,795	4,615,213	5,767,626	516,979
1-May-16	31-May-16	54,166	1,103,604	979,103	25,658	76,806	166,455	60,551	3,236,876	1,119,951	5,423,904	2,031,801	4,855,657	5,946,611	552,367
1-Jun-16	30-Jun-16	79,524	1,032,734	764,883	26,545	45,818	131,368	39,880	2,251,229	1,037,674	5,221,244	1,467,810	3,674,547	5,806,142	538,325
1-Jul-16	31-Jul-16	63,631	1,004,371	1,091,211	24,976	87,851	141,114	46,605	1,738,127	768,510	5,146,847	615,102	4,119,473	4,845,875	564,001
1-Aug-16	31-Aug-16	75,138	1,132,030	1,039,182	29,167	49,884	119,581	38,011	2,756,057	735,426	4,843,108	1,266,171	4,284,173	5,433,354	559,160
1-Sep-16	30-Sep-16	47,249	2,185,798	727,462	18,933	45,550	91,907	26,944	3,123,985	701,032	4,760,944	1,501,445	4,349,352	5,755,927	541,588
1-Oct-16	31-Oct-16	43,236	2,424,028	479,372	10,852	26,763	53,966	21,669	3,298,866	688,160	4,990,540	1,644,491	4,492,490	6,086,930	536,893
1-Nov-16	30-Nov-16	34,970	2,957,938	834,800	-	42,956	40,676	27,120	2,884,965	671,029	5,023,667	1,618,401	4,313,403	5,788,291	516,774
1-Dec-16	31-Dec-16	21,018	2,822,541	810,518	-	32,036	113,251	-	3,462,807	704,774	5,291,595	1,857,917	4,783,834	6,093,028	468,188
12-Mont	h Volume (gal)	666,287	18,196,904	11,115,841	268,517	745,073	968,894	752,296	36,492,619	10,747,811	61,630,629	20,652,836	53,697,740	69,246,553	6,393,366
*Avera	ige Rate (gpm)	1.3	34.5	21.1	0.7	1.4	2.9	1.7	69.2	20.4	116.9	39.2	101.9	133.5	12.1

Pei	riod	OU#4	OU#5	OU#6
from	to	EN-491T	EN-709	EN-D49
1-Jan-16	31-Jan-16	1,251,245	390,109	1,115,783
1-Feb-16	29-Feb-16	1,161,806	368,941	1,051,908
1-Mar-16	31-Mar-16	1,239,542	395,888	1,100,087
1-Apr-16	30-Apr-16	1,181,137	367,725	1,061,475
1-May-16	31-May-16	1,238,076	378,757	980,217
1-Jun-16	30-Jun-16	1,186,976	377,392	1,080,674
1-Jul-16	31-Jul-16	1,202,853	378,249	1,036,164
1-Aug-16	31-Aug-16	1,175,687	378,263	949,770
1-Sep-16	30-Sep-16	1,163,200	382,221	1,010,667
1-Oct-16	31-Oct-16	1,229,536	388,879	1,029,345
1-Nov-16	30-Nov-16	1,195,578	373,973	1,079,621
1-Dec-16	31-Dec-16	1,222,802	376,529	1,086,888
12-Mont	h Volume (gal)	14,448,438	4,556,926	12,582,599
*Avera	ge Rate (gpm)	27.4	8.6	23.9

Pei	riod				Injectio	n Wells			
from	to	EN-078T	EN-092P	EN-161T	EN-501T	EN-509T	EN-529T	EN-530T	EN-532T
1-Jan-16	31-Jan-16	1,709,671	974,197	5,152,965	2,996,045	310,144	5,722,463	1,837,020	6,737,051
1-Feb-16	29-Feb-16	1,683,753	637,468	4,949,566	1,313,375	245,418	3,865,583	1,175,437	6,300,958
1-Mar-16	31-Mar-16	1,782,626	940,926	5,232,927	2,598,772	245,939	5,743,276	1,732,195	6,690,430
1-Apr-16	30-Apr-16	1,713,564	784,071	5,040,858	2,004,283	223,274	4,858,060	1,482,255	6,350,781
1-May-16	31-May-16	1,596,962	657,375	4,945,478	1,201,061	213,027	4,211,587	1,341,005	6,655,021
1-Jun-16	30-Jun-16	1,675,839	94,939	5,002,376	227,007	201,900	769,328	190,096	6,438,506
1-Jul-16	31-Jul-16	1,225,198	44,140	2,138,170	-	179,185	338,024	80,141	6,348,895
1-Aug-16	31-Aug-16	1,231,574	713,911	4,215,918	12,703	41,664	5,294,827	1,500,949	6,061,816
1-Sep-16	30-Sep-16	1,512,008	891,110	5,321,855	163,654	-	5,616,549	1,762,791	5,923,482
1-Oct-16	31-Oct-16	1,723,175	867,125	5,902,464	785,647	-	5,615,872	1,744,105	6,119,416
1-Nov-16	30-Nov-16	1,588,276	690,066	5,528,826	211,102	-	4,252,909	1,274,782	6,093,083
1-Dec-16	31-Dec-16	1,784,624	944,554	6,020,576	824,259	-	5,812,184	1,820,198	6,299,924
12-Mont	h Volume (gal)	19,227,270	8,239,882	59,451,979	12,337,908	1,660,551	52,100,662	15,940,974	76,019,363
*Avera	ige Rate (gpm)	38.3	19.2	121.3	44.3	5.5	121.0	37.2	144.2

Volume Extracted from January 1, 2016 through December 31, 2016

Clark Street GTF 33,796,554 Upper Aquifer Extraction Wells EN-219R, EN-253R, EN-428, EN-709, EN-114T (late Jan, Feb, late Mar through Dec)

Huron OTF 1,752,994 Upper Aquifer Extraction Well EN-107R, EN-114T (early Jan, early Mar)

Garfield Avenue GTF 112,564,385 Upper Aquifer Extraction Wells EN-194, EN-215T, EN-276, EN-276R, EN-284P

Jefferson Avenue GTF 78,771,806 Upper Aquifer Extraction Wells EN-91T, EN-133, EN-451P

Adams Avenue GTF 83,694,991 Upper Aquifer Extraction Wells EN-447T, EN-491T

Adams Avenue GTF 12,582,599 Bedrock Extraction Well EN-D49

Total 323,163,329 gallons (all wells)

Volume Injected from January 1, 2016 through December 31, 2016

243,318,038 gallons (treated groundwater injected at EN-78T, EN-92P, EN-161T, EN-501T, EN-529T, EN-530T, and EN-532T]

1,660,551 gallons (treated city water injected at EN-509T)

^{*} Average Rate is based on full months of pumping only.

Table A-2: Mass Removal Data for Volatile Organic Compounds Endicott, New York - Site #704014 January 2016 to December 2016

					ecember										.														
			Chemical	l Concent	rations (ug/l)									Pounds of C	nemica	ls Remove	d											
location		Period	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane [Freon 113]	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Volume Pumped (gallons)	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Fotal VOCs Removed (pounds)	Period	Location	Pounds Removed January - December 2016
EN-0	91T	Jan-16	0.4	2.0	0.3	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	1,107,330	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.03	Jan-16	EN-091T	0.2
	-	Feb-16	0.4	1.9	0.3	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1,037,316	0.00	0.02		0.00	0.00	0.00	0.00	0.00			0.00		Feb-16		
	ŀ	Mar-16	0.3	1.7	0.3	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1,112,964	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00		<u> </u>	0.00		Mar-16		
	-										-																		
ij	<u> </u> ⊢	Apr-16	0.3	2.0	0.4	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	1,063,645	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Apr-16	Ľ	
ن	ַ	May-16	0.3	1.5	0.3	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	1,119,951	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		May-16	9	
	Ž L	Jun-16	0.3	1.5	0.3	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	1,037,674	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.02	Jun-16	Š	
2	È	Jul-16	0.3	1.6	0.3	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	768,510	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	Jul-16	چ	
5		Aug-16	0.4	1.6	0.4	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	735,426	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	Aug-16	S	
1	ע	Sep-16	0.3	1.7	0.4	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	701,032	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Sep-16	ffe	
فا	ץ	Oct-16	0.3	1.8	0.4	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	688,160	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Oct-16	Je.	
	-	Nov-16	0.3	1.8	0.4	0.0	0.2	0.3	0.0	0.0	0.0	0.0	0.0	671,029	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Nov-16		
	-	Dec-16	0.3	1.7	0.4	0.0	0.2	0.3	0.0	0.0	0.0	0.0	0.0	704,774	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Dec-16		
	400																											EN 400	1.0
EN-	133	Jan-16	0.9	0.9	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,397,976	0.04	0.04	0.00	0.00	0.01	0.00	0.00	0.00		0.00	0.00		Jan-16	EN-133	1.0
	L	Feb-16	0.7	0.9	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	5,030,733	0.03	0.04		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Feb-16		
		Mar-16	0.8	8.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,368,137	0.04	0.04		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Mar-16		
_ u	_	Apr-16	0.8	0.9	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	5,131,934	0.03	0.04	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.09	Apr-16	ш	
Ţ	5	May-16	0.8	0.8	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,423,904	0.04	0.04	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.08	May-16	GT	
9	ע 🖯	Jun-16	0.8	0.7	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,221,244	0.03	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.07	Jun-16	e <	
	<u> </u>	Jul-16	1.0	0.7	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,146,847	0.04	0.03		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Jul-16	٨	
] 3	<u> </u>	Aug-16	0.9	0.6	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	4,843,108	0.04	0.02	0.00	0.00	0.01	0.00	0.00	0.00		0.00	0.00		Aug-16	SOI	
ۇ	ם	Sep-16	0.9	0.7	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	4,760,944	0.04	0.03		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Sep-16	fer	
1 4	בַּ					0.0					0.0			4,990,540	0.04	0.03	0.00	0.00	0.01	0.00		0.00		0.00	0.00		Oct-16	Jef	
	-	Oct-16	0.9	0.8	0.0		0.2	0.0	0.0	0.0	4	0.0	0.0								0.00								
	-	Nov-16	0.8	0.7	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	5,023,667	0.03	0.03		0.00	0.01	0.00	0.00	0.00			0.00		Nov-16		
		Dec-16	1.0	1.0	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,291,595	0.04	0.04	0.00	0.00	0.02	0.00	0.00	0.00		0.00	0.00		Dec-16		
EN-4	I51P	Jan-16	0.6	1.2	0.2	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	547,457	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Jan-16	EN-451P	0.1
		Feb-16	0.5	1.3	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	509,007	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Feb-16		
		Mar-16	0.5	1.2	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	542,627	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	Mar-16		
	_	Apr-16	0.5	1.2	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	516,979	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	Apr-16	ш.	
Į.	5	May-16	0.6	1.1	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	552,367	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	May-16	GT	
9	ע ל	Jun-16	0.5	1.0	0.2	0.0	3.1	0.2	0.1	0.0	0.2	0.0	0.0	538,325	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.02	Jun-16	e <	
	-	Jul-16	0.6	0.9	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	564,001	0.00	0.00		0.00	0.00	0.00	0.00	0.00			0.00	0.01	Jul-16	Ą	
3	5	Aug-16	0.6	0.9	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	559,160		0.00		0.00	0.00	0.00	0.00	0.00		0.00	0.00		Aug-16	SOF	
lofforco	ם -	Sep-16	0.5	1.0	0.2	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	541,588	0.00	0.00		0.00	0.00	0.00	0.00	0.00			0.00		Sep-16	Jefferso	
4	ַ וּ	Oct-16	0.6	1.2	0.2	0.0	1.5	0.2	0.0	0.0	0.0	0.0	0.0	536,893	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00			0.00		Oct-16	Jef	
	-																												
		Nov-16	0.5	1.3	0.2	0.0	0.3	0.2	0.0	0.0	0.0	0.0	0.0	516,774		0.01	0.00	0.00	0.00	0.00	0.00	0.00			0.00		Nov-16		
		Dec-16	0.5	1.4	0.2	0.0	0.4	0.2	0.0	0.0	0.0	0.0	0.0	468,188	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		Dec-16		
EN-	194	Jan-16	0.5	1.8	0.3	0.0	0.3	0.3	0.0	0.0	0.0	0.0	0.0	2,316,270	0.01	0.03	0.01	0.00	0.01	0.01	0.00	0.00		0.00	0.00		Jan-16	EN-194	0.6
		Feb-16	0.5	1.9	0.3	0.0	0.3	1.0	0.0	0.0	0.0	0.0	0.0	1,904,126	0.01	0.03		0.00	0.00	0.02	0.00	0.00		0.00	0.00		Feb-16		
		Mar-16	0.4	1.7	0.3	0.0	0.3	0.4	0.0	0.0	0.0	0.0	0.0	2,312,507	0.01	0.03	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.06	Mar-16		
		Apr-16	0.4	2.0	0.3	0.0	0.4	0.3	0.0	0.0	0.0	0.0	0.0	2,116,795	0.01	0.04	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.06	Apr-16		
J.	<u> </u>	May-16	0.4	1.7	0.3	0.0	0.3	0.5	0.0	0.0	0.0	0.0	0.0	2,031,801	0.01	0.03	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.05	May-16	GTF	
		Jun-16	0.4	1.7	0.2	0.0	0.3	0.2	0.0	0.0	0.0	0.0	0.0	1,467,810	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00			0.00		Jun-16	e (
9,4	í	Jul-16	0.4	1.8	0.4	0.0	0.4	0.4	0.0	0.0	0.0	0.0	0.0	615,102	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00			0.00		Jul-16	Ą	
Pleip		Aug-16	0.5	2.0	0.8	0.0	0.6	0.6	0.0	0.0	0.0	0.0	0.0	1,266,171	0.01	0.02		0.00	0.01	0.01	0.00	0.00			0.00		Aug-16	eld	
1 4	<u> </u>		0.5	2.2	0.7	0.0	0.6	0.4	0.0	0.0	0.0	0.0	0.0	1,501,445	0.01	0.02		0.00	0.01	0.01	0.00	0.00		0.00	0.00		Sep-16	Ę	
6	Ď -	Sep-16																										g	
	-	Oct-16	0.5	2.2	0.5	0.0	0.5	0.3	0.0	0.0	0.0	0.0	0.0	1,644,491	0.01	0.03		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Oct-16		
	<u> </u>	Nov-16	0.5	1.9	0.3	0.0	0.4	0.3	0.0	0.0	0.0	0.0	0.0	1,618,401	0.01	0.03		0.00	0.01	0.00	0.00	0.00		0.00	0.00		Nov-16		
		Dec-16	0.5	1.8	0.3	0.0	0.5	0.3	0.0	0.0	0.0	0.0	0.0	1,857,917	0.01	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.05	Dec-16		Ì

Table A-2: Mass Removal Data for Volatile Organic Compounds Endicott, New York - Site #704014 January 2016 to December 2016

			2016 to D										_															
		Chemica	I Concent	trations (ug/l)		-		-					Pounds of C	hemical	ls Remove	ed	-			-							
				Je		ethane	ane	ene		1,2,2-	-2,		ped	au.		ethene		ethane	ane	ene		1,2,2-	-5,		oved			wed
Location	Period	achloroethene	roethene	Dichloroethe	Chloride	1-Trichloroe	hloroeth	Dichloroethe	ethane	-Trichloro-1 ioroethane in 113)	thloro-1,2, roethane 123a)	VOCs	Volume Pump (gallons)	chloroethene	roethene	Dichloroe	Chloride	-Trichloroe	-Dichloroethane	-Dichloroethene	ethane	,1,2-Trichloro-1 rifluoroethane Freon 113)	2-Dichloro-1,2, ifluoroethane reon 123a)	VOCs	VOCs Remids)	Period	Location	Pounds Removed anuary - December 2016
		Tetrac	Trichlo	cis-1,2	Vinyl G	1,1,1-T	1,1-Dic	1,1-Dic	Chloro	1,1,2-T Trifluoi (Freon	1,2-Dichloro- Trifluoroetha (Freon 123a)	Other	No.	Tetrac	Trichlo	cis-1,2	Vinyl	1,1,1-T	1,1-Dic	1,1-Dic	Chloro	1,1,2-T Trifluo (Freon	1,2-Dic Trifluo (Freon	Other	Total V (pound			Pou Janu
EN-215T	Jan-16	0.3	1.4	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,002,133	0.01	0.06	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.10	Jan-16	EN-215T	1.0
	Feb-16	0.3	1.6	0.2	0.0	0.6	0.4	0.0	0.0	0.0	0.0	0.0	4,161,599	0.01	0.06	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.11	Feb-16	l	
	Mar-16	0.3	1.3	0.2	0.0	0.4	0.2	0.0	0.0	0.0	0.0	0.0	5,045,866	0.01	0.05	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.10	Mar-16		
	Apr-16	0.3	1.5	0.2	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.0	4,615,213	0.01	0.06	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.10	Apr-16		
GTF	May-16	0.4	1.3	0.2	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	4,855,657	0.02	0.05	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.11	May-16	Ë	
	Jun-16	0.3	0.8	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	3,674,547	0.01	0.02	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00		Jun-16	ē	
Ave	Jul-16	0.4	1.3	0.2	0.0	0.6	0.1	0.0	0.0	0.0	0.0	0.0	4,119,473	0.01	0.04		0.00	0.02	0.00	0.00	0.00		0.00	0.00		Jul-16	₹	
eld	Aug-16	0.3	1.2	0.2	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	4,284,173	0.01	0.04	0.01	0.00	0.02	0.01	0.00	0.00		0.00	0.00		Aug-16	eld	
Garfield	Sep-16	0.2	1.2	0.2	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	4,349,352	0.01	0.04	0.01	0.00	0.01	0.00	0.00	0.00		0.00	0.00		Sep-16	Ę	
Ğ	Oct-16	0.2	1.2	0.2	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	4,492,490	0.01	0.05	0.01	0.00	0.02	0.00	0.00	0.00		0.00	0.00		Oct-16	Ğ	
	Nov-16	0.2	1.3	0.2	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	4,313,403	0.01	0.05		0.00	0.02	0.00	0.00	0.00		0.00	0.00		Nov-16		
	Dec-16	0.2	1.3	0.1	0.0	0.4	0.2	0.0	0.0	0.0	0.0	0.0	4,313,403	0.01	0.05	0.00	0.00	0.01	0.00	0.00	0.00		0.00	0.00		Dec-16		
511 0750		0.2	1.2	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	4,763,634	0.01	0.05	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00				44.0
EN-276R	Jan-16												-													Jan-16	EN-276R	14.2
	Feb-16	a	L										-													Feb-16		
													-													Mar-16		
ட	Apr-16	32.0	200.0	430.0	4.1	1400.0	120.0	120.0	0.0	89.0	2.3	11.0	110,576	0.03	0.18		0.00	1.29	0.11	0.11	0.00		0.00	0.01		Apr-16	<u>ı</u> L	
GTF	May-16		200.0	430.0	4.1	1400.0	120.0	120.0	0.0	89.0	2.3	11.0	166,455	0.04	0.28		0.01	1.95	0.17	0.17	0.00		0.00	0.02		May-16	E	
Ave	Jun-16	39.0	140.0	380.0	2.3	1500.0	110.0	94.0	0.0	31.0	0.0	6.8	131,368	0.04	0.15		0.00	1.65	0.12	0.10	0.00		0.00	0.01		Jun-16	Ve	
	Jul-16	24.0	120.0	320.0	0.0	1300.0	140.0	75.0	0.0	20.0	0.0	6.1	141,114	0.03	0.14		0.00	1.53	0.16	0.09	0.00		0.00	0.01		Jul-16	ρ	
Garfield	Aug-16	20.0	130.0	340.0	0.0	1000.0	180.0	59.0	0.0	20.0	0.0	4.7	119,581	0.02	0.13		0.00	1.00	0.18	0.06	0.00		0.00	0.00		Aug-16	<u>ie</u>	
gar	Sep-16	19.0	140.0	290.0	0.0	840.0	240.0	39.0	0.0	15.0	0.0	5.0	91,907	0.01	0.11	0.22	0.00	0.64	0.18	0.03	0.00		0.00	0.00		Sep-16	jar	
	Oct-16	29.0	110.0	200.0	0.0	340.0	140.0	22.0	0.0	23.0	1.7	3.0	53,966	0.01	0.05	0.09	0.00	0.15	0.06	0.01	0.00		0.00	0.00	0.39	Oct-16		
	Nov-16	18.0	63.0	70.0	0.4	88.0	36.0	8.5	0.0	27.0	1.4	1.5	40,676	0.01	0.02	0.02	0.00	0.03	0.01	0.00	0.00	0.01	0.00	0.00		Nov-16		
	Dec-16	18.0	63.0	70.0	0.4	88.0	36.0	8.5	0.0	27.0	1.4	1.5	113,251	0.02	0.06	0.07	0.00	0.08	0.03	0.01	0.00	0.03	0.00	0.00	0.30	Dec-16		
EN-276	Jan-16	36.0	39.0	41.0	0.6	23.0	30.0	5.2	0.0	13.0	1.2	0.8	127,741	0.04	0.04	0.04	0.00	0.02	0.03	0.01	0.00	0.01	0.00	0.00	0.20	Jan-16	EN-276	5.3
	Feb-16	26.0	34.0	47.0	0.7	19.0	27.0	6.2	0.0	10.0	1.0	0.9	119,030	0.03	0.03	0.05	0.00	0.02	0.03	0.01	0.00	0.01	0.00	0.00	0.17	Feb-16		
	Mar-16	32.0	44.0	70.0	1.5	1200.0	49.0	26.0	0.0	21.0	1.5	16.8	144,140	0.04	0.05	0.08	0.00	1.44	0.06	0.03	0.00	0.03	0.00	0.02	1.76	Mar-16		
l	Apr-16	30.0	46.0	220.0	3.0	2900.0	74.0	81.0	0.0	93.0	0.0	7.9	100,605	0.03	0.04	0.18	0.00	2.44	0.06	0.07	0.00	0.08	0.00	0.01	2.90	Apr-16		
1 15	May-16	38.0	9.0	15.0	0.3	12.0	1.5	1.0	0.0	22.0	0.9	0.1	60,551	0.02	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.05	May-16	ij	
, e	Jun-16	39.0	8.9	20.0	0.3	4.4	1.8	0.7	0.0	19.0	1.0	0.1	39,880	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.03	Jun-16	ě	
₹	Jul-16	45.0	11.0	31.0	0.6	6.4	2.9	1.1	0.0	15.0	1.5	0.2	46,605	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.04	Jul-16	₹	
rfield	Aug-16	54.0	12.0	20.0	0.4	6.2	2.7	1.1	0.0	30.0	1.6	0.2	38,011	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.04	Aug-16	rfield	
Garf	Sep-16	37.0	9.8	15.0	0.3	3.7	2.1	0.5	0.0	7.1	0.8	0.1	26,944	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	Sep-16	arf	
٥	Oct-16		8.9	12.0	0.3	2.4	1.7	0.4	0.0	2.5	0.6	0.1	21,669	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Oct-16	g	
	Nov-16	46.0	15.0	120.0	0.5	83.0	37.0	9.5	0.0	23.0	1.7	1.1	27,120	0.01	0.00	0.03	0.00	0.02	0.01	0.00	0.00	0.01	0.00	0.00	0.08	Nov-16		
	Dec-16	EN-276 wa	s shut dowr	n on 11-21-	2016								-												0.00	Dec-16		
EN-284P	Jan-16	_	29.0	33.0	0.0	21.0	21.0	3.2	0.0	0.5	0.2	0.2	3,834,272	0.07	0.93	1.06	0.00	0.67	0.67	0.10	0.00	0.02	0.01	0.01		Jan-16	EN-284P	29.7
	Feb-16		29.0	33.0	0.0	24.0	23.0	3.7	0.0	0.6	0.2	0.2	2,906,417	0.06	0.70	0.80	0.00	0.58	0.56	0.09	0.00		0.00	0.00		Feb-16		
	Mar-16		24.0	34.0	0.0	18.0	21.0	3.3	0.0	0.4	0.2	0.2	3,680,799	0.06	0.74		0.00	0.55	0.65	0.10	0.00		0.01	0.01		Mar-16		
	Apr-16	1.9	28.0	28.0	0.0	17.0	22.0	3.7	0.0	0.6	0.3	0.2	3,318,219	0.05	0.78		0.00	0.47	0.61	0.10	0.00		0.01	0.01		Apr-16		
GTF	May-16		22.0	29.0	0.0	15.0	20.0	3.1	0.0	0.3	0.0	0.2	3,236,876	0.05	0.59		0.00	0.41	0.54	0.08	0.00		0.00	0.01		May-16	Ë	
	Jun-16	+	25.0	25.0	0.0	13.0	19.0	3.3	0.0	0.5	0.0	0.1	2,251,229	0.04	0.47	0.47	0.00	0.24	0.36	0.06	0.00		0.00	0.00		Jun-16	e G	
Ave	Jul-16	2.3	24.0	25.0	0.0	17.0	22.0	3.9	0.0	0.4	0.0	0.2	1,738,127	0.03	0.35			0.25	0.32	0.06	0.00			0.00		Jul-16	۸	
rfield	Aug-16		25.0	28.0	0.0	16.0	21.0	4.0	0.0	0.4	0.0	0.2	2,756,057	0.05	0.58		0.00	0.23	0.32	0.09	0.00		0.00	0.00		Aug-16	eld	
ij	Sep-16	_	32.0	27.0	0.0	16.0	24.0	3.9	0.0	0.6	0.2	0.2	3,123,985	0.05	0.38			0.42	0.48	0.10	0.00			0.00		Sep-16	arfiel	
Ga	Oct-16		28.0	23.0	0.0	14.0	21.0	3.6	0.0	0.6	0.3	0.3	3,298,866	0.06	0.83	0.70	0.00	0.42	0.63	0.10	0.00		0.01	0.01		Oct-16	Ĝ	
				21.0	0.0			3.0		0.6	0.3		2,884,965	l				0.39	0.38					0.00		Nov-16		
	Nov-16		25.0			11.0	20.0		0.0			0.1		0.05	0.60		0.00			0.07	0.00		0.00					
	Dec-16	1.6	24.0	22.0	0.0	11.0	17.0	2.5	0.0	0.4	0.2	0.1	3,462,807	0.05	0.69	0.64	0.00	0.32	0.49	0.07	0.00	0.01	0.01	0.00	2.28	Dec-16		

Table A-2: Mass Removal Data for Volatile Organic Compounds Endicott, New York - Site #704014 January 2016 to December 2016

	-		l Concent] [Pounds of	Chemical	s Remove	d										
		Cilcillica	- Conceil	υ ατιστί σ (.∽6/ '/								 	Julius UI	Circinical	9 1/5111046	<u> </u>						1				
Location	Period	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethen	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Volume Pumped (gallons)	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethen	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Total VOCs Removed (pounds) Period	Location	Pounds Removed January - December 2016
EN-447T	Jan-16	2.1	1.1	0.1	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	6,007,990	0.11	0.06	0.01	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.20 Jan-16	EN-447T	2.1
	Feb-16	1.8	1.1	0.1	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	5,665,259	0.09	0.05	0.00	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.18 Feb-16		
	Mar-16	2.0	1.0	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	6,049,520	0.10	0.05	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.18 Mar-16		
	Apr-16	1.9	1.2	0.2	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	5,767,626	0.09	0.06	0.01	0.00	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.19 Apr-16		
GTF	May-16	2.0	1.0	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,946,611	0.10	0.05	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.18 May-16	GTF	
e O	Jun-16	2.0	0.9	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,806,142	0.10	0.04	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.17 Jun-16	و و	
A	Jul-16	1.8	0.9	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	4,845,875	0.07	0.04	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.13 Jul-16	¥	
ms	Aug-16	1.9	0.7	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,433,354	0.09	0.03	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.15 Aug-16	ms	
∖dam	Sep-16	1.8	0.9	0.2	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.0	5,755,927	0.09	0.04	0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.17 Sep-16	\da	
1 1	Oct-16	1.7	0.9	0.1	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.0	6,086,930	0.09	0.05	0.01	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.17 Oct-16	1 1	
	Nov-16	1.8	0.9	0.1	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	5,788,291	0.09	0.04	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.16 Nov-16		
	Dec-16	1.8	0.9	0.1	0.0	0.6	0.1	0.0	0.0	0.0	0.0	0.0	6,093,028	0.09	0.05	0.01	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.18 Dec-16	1	
EN-491T	Jan-16	3.6	1.3	0.5	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,251,245	0.04	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.06 Jan-16	EN-491T	0.6
	Feb-16	3.2	1.3	0.6	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,161,806	0.03	0.01	0.01	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.06 Feb-16	1	
	Mar-16	3.2	1.1	0.5	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,239,542	0.03	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.06 Mar-16	1	
	Apr-16	3.1	1.3	0.6	0.0	0.6	0.2	0.0	0.0	0.0	0.0	0.0	1,181,137	0.03	0.01	0.01	0.00	0.01	0.00		0.00	0.00	0.00	0.00	0.06 Apr-16	1	
GTF	May-16	3.4	1.0	0.5	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,238,076	0.04	0.01	0.01	0.00	0.01	0.00		0.00	0.00	0.00	0.00	0.06 May-16	GTF	
9	Jun-16	3.2	1.0	0.5	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,186,976	0.03	0.01	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.05 Jun-16	- U	
Š	Jul-16	3.1	1.0	0.6	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,202,853	0.03	0.01	0.01	0.00	0.01	0.00		0.00	0.00	0.00	0.00	0.05 Jul-16	Ă	
as S	Aug-16	3.1	1.0	0.7	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	1,175,687	0.03	0.01	0.01	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.05 Aug-16	ms	
Adaı	Sep-16	2.6	0.9	0.5	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	1,163,200	0.03	0.01	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.04 Sep-16	√dai	
•	Oct-16	2.7	1.0	0.5	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	1,229,536	0.03	0.01	0.01	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.05 Oct-16	•	
	Nov-16	2.5	0.9	0.5	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	1,195,578	0.02	0.01	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.04 Nov-16		
	Dec-16	2.1	0.8	0.4	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	1,222,802	0.02	0.01	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.04 Dec-16		
EN-D49	Jan-16	0.0	1.2	140.0	45.0	0.7	5.3	2.2	3.1	0.0	0.0	0.3	1,115,783	0.00	0.01	1.30	0.42	0.01	0.05		0.03	0.00	0.00	0.00	1.84 Jan-16	EN-D49	21.9
	Feb-16	0.0	1.4	130.0	45.0	0.8	5.4	2.7	3.4	0.0	0.4	0.2	1,051,908	0.00	0.01	1.14	0.40	0.01	0.05		0.03	0.00	0.00	0.00	1.66 Feb-16	1	
	Mar-16	0.0	1.2	140.0	47.0	0.6	4.9	2.4	2.7	0.0	0.4	0.2	1,100,087	0.00	0.01	1.29	0.43	0.01	0.05		0.02	0.00	0.00	0.00	1.83 Mar-16		
	Apr-16	0.0	1.4	150.0	49.0	1.4	5.7	2.6	2.9	0.0	0.5	0.3	1,061,475	0.00	0.01	1.33	0.43	0.01	0.05		0.03	0.00	0.00	0.00	1.89 Apr-16		
GTF	May-16	0.0	1.3	160.0	64.0	0.8	5.3	2.8	3.2	0.0	0.5	0.4	980,217	0.00	0.01	1.31	0.52	0.01	0.04		0.03	0.00	0.00	0.00	1.95 May-16	GTF	
9	Jun-16	0.0	1.5	150.0	49.0	0.6	5.1	2.4	2.5	0.0	0.0	0.3	1,080,674	0.00	0.01	1.35	0.44	0.01	0.05		0.02	0.00	0.00	0.00	1.91 Jun-16	- U	
Ā	Jul-16	0.0	1.3	140.0	53.0	0.7	5.3	2.8	3.0	0.0	0.4	0.3	1,036,164	0.00	0.01	1.21	0.46	0.01	0.05		0.03	0.00	0.00	0.00	1.79 Jul-16	Ā	
ms E	Aug-16	0.0	1.5	180.0	46.0	0.7	6.1	3.0	2.4	0.5	0.5	0.3	949,770	0.00	0.01	1.43	0.36	0.01	0.05		0.02		0.00	0.00	1.91 Aug-16	æ	
Ada	Sep-16	0.0	1.2	140.0	48.0	0.7	5.3	2.5	2.3	0.0	0.5	0.4	1,010,667	0.00	0.01	1.18	0.41	0.01	0.04	 	0.02		0.00	0.00	1.70 Sep-16	_ ~	
	Oct-16	0.0	1.0	140.0	41.0	0.5	4.9	2.4	2.0	0.0	0.0	0.6	1,029,345	0.00	0.01	1.20	0.35	0.00	0.04	0.02	0.02	0.00	0.00	0.01	1.65 Oct-16		
	Nov-16	0.0	1.0	160.0	42.0	0.5	4.8	2.7	1.8	0.0	0.4	0.3	1,079,621	0.00	0.01	1.44	0.38	0.00	0.04	0.02	0.02	0.00	0.00	0.00	1.92 Nov-16	1	
	Dec-16	0.0	1.1	140.0	51.0	0.7	5.1	2.7	2.3	0.0	0.5	0.5	1,086,888	0.00	0.01	1.27	0.46	0.01	0.05	0.02	0.02	0.00	0.00	0.00	1.85 Dec-16	1	
EN-107R	Jan-16	15.0	29.0	2700.0	210.0	120.0	2.7	11.0	0.0	170.0	0.0	180.0	58,273	0.01	0.01	1.31	0.10	0.06	0.00	0.01	0.00	0.08	0.00	0.09	1.67 Jan-16	EN-107R	12.1
	Feb-16	69.0	42.0	2600.0	210.0	110.0	2.6	11.0	0.0	190.0	0.0	296.4	56,136	0.03	0.02	1.22	0.10	0.05	0.00		0.00	0.09	0.00	0.14	1.66 Feb-16	1	
	Mar-16	62.0	34.0	1900.0	140.0	69.0	0.0	7.4	0.0	120.0	0.0	173.9	71,673	0.04	0.02	1.14	0.08	0.04	0.00	0.00	0.00	0.07	0.00	0.10	1.50 Mar-16	1	
	Apr-16	24.0	26.0	2100.0	140.0	65.0	0.0	7.8	0.0	140.0	0.0	227.4	61,273	0.01	0.01	1.07	0.07	0.03	0.00	 	0.00	0.07	0.00	0.12	1.40 Apr-16	4	
	May-16	16.0	23.0	1600.0	150.0	59.0	0.0	7.8	0.0	110.0	0.0	182.7	54,166	0.01	0.01	0.72	0.07	0.03	0.00		0.00	0.05	0.00	0.08	0.97 May-16	4	
OTF	Jun-16	25.0	22.0	1100.0	62.0	39.0	0.0	5.0	0.0	64.0	0.0	4.2	79,524	0.02	0.01	0.73	0.04	0.03	0.00		0.00	0.04	0.00	0.00	0.88 Jun-16		
_	Jul-16	8.7	69.0	1300.0	89.0	52.0	0.0	6.0	0.0	76.0	0.0	107.0	63,631	0.00	0.04	0.69	0.05	0.03	0.00		0.00	0.04	0.00	0.06	0.91 Jul-16	ت ر	
l o	Aug-16	8.5	78.0	1100.0	81.0	46.0	0.0	4.6	0.0	87.0	0.0	98.4	75,138	0.01	0.05	0.69	0.05	0.03	0.00		0.00	0.05	0.00	0.06	0.94 Aug-16	- ro	
ᆂ	Sep-16	8.5	100.0	1000.0	87.0	46.0	0.0	3.1	0.0	65.0	0.0	91.0	47,249	0.00	0.04	0.39	0.03	0.02	0.00		0.00	0.03	0.00	0.04	0.55 Sep-16	Ť	
	Oct-16	45.0	59.0	1200.0	67.0	62.0	0.0	3.6	0.0	87.0	0.0	55.0	43,236	0.02	0.02	0.43	0.02	0.02	0.00		0.00	0.03	0.00	0.02	0.57 Oct-16	1	
	Nov-16	6.2	40.0	240.0	36.0	14.0	0.6	1.2	0.0	28.0	0.6	76.2	34,970	0.00	0.01	0.07	0.01	0.00	0.00		0.00	0.01	0.00	0.02	0.13 Nov-16	†	
	Dec-16	140.0	37.0	3900.0	190.0	130.0	0.0	9.8	0.0	300.0	0.0	399.6	21,018	0.02	0.01	0.68	0.03	0.02	0.00	 	0.00	0.05	0.00	0.07	0.90 Dec-16	†	
		0.0	57.0	5550.0	250.0	200.0	0.0	5.0	0.0	330.0	5.0	555.0	_1,010	0.02	0.01	0.00	5.55	5.02	5.50	0.00	0.00	5.55	0.00	3.07	5.55 200 10	1	

Table A-2: Mass Removal Data for Volatile Organic Compounds Endicott, New York - Site #704014 January 2016 to December 2016

	-		2016 to D										1 6	Dounds of	Chamical	s Remove	<u>ــــــــــــــــــــــــــــــــــــ</u>										
	'	Cnemica	I Concent	rations ((ug/I)	1				I		I		Pounas of	Cnemical	s kemove	a			1						1	
Location	Period	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethen	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Volume Pumped (gallons)	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethen	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Total VOCs Removed (pounds) Period	Location	Pounds Removed January - December 2016
EN-114T	Jan-16	0.0	2.1	970.0	200.0	110.0	68.0	12.0	0.0	100.0	10.0	3.5	598,498	0.00	0.01	4.85	1.00	0.55	0.34	0.06	0.00	0.50	0.05	0.02	7.37 Jan-16	EN-114T	224.5
	Feb-16	0.0	2.2	790.0	180.0	72.0	55.0	10.0	0.0	82.0	8.6	2.2	827,672	0.00	0.02	5.46	1.24	0.50	0.38		0.00		0.06	0.02	8.31 Feb-16	5	
	Mar-16	0.8	1.1	210.0	52.0	9.8	14.0	2.0	0.0	25.0	4.6	1.6	1,044,791	0.01	0.01	1.83	0.45	0.09	0.12	0.02	0.00	0.22	0.04	0.01	2.80 Mar-1	5	
	Apr-16	1.3	2.0	860.0	140.0	48.0	46.0	8.4	0.0	83.0	8.1	1.2	1,062,899	0.01	0.02	7.63	1.24	0.43	0.41	0.07	0.00	0.74	0.07	0.01	10.63 Apr-16	5	
l	May-16	1.9	3.4	1000.0	170.0	67.0	55.0	11.0	0.0	92.0	8.5	2.8	1,103,604	0.02	0.03	9.22	1.57	0.62	0.51	0.10	0.00	0.85	0.08	0.03	13.01 May-1	5	
OTF	Jun-16	2.8	5.8	1300.0	170.0	97.0	55.0	14.0	0.0	110.0	8.3	2.8	1,032,734	0.02	0.05	11.21	1.47	0.84	0.47	0.12	0.00	0.95	0.07	0.02	15.23 Jun-16	T 6	
ü	Jul-16	3.6	4.6	1500.0	170.0	77.0	36.0	11.0	0.0	100.0	8.1	3.3	1,004,371	0.03	0.04	12.58	1.43	0.65	0.30	0.09	0.00	0.84	0.07	0.03	16.05 Jul-16		
Ţ	Aug-16	2.7	2.4	1300.0	140.0	140.0	54.0	12.0	0.0	120.0	7.8	6.3	1,132,030	0.03	0.02	12.29	1.32	1.32	0.51	0.11	0.00	1.13	0.07	0.06	16.87 Aug-10	5 5	
	Sep-16	1.9	1.6	1300.0	140.0	200.0	69.0	11.0	0.0	79.0	7.5	9.9	2,185,798	0.03	0.03	23.73	2.56	3.65	1.26	0.20	0.00	1.44	0.14	0.18	33.22 Sep-16	<u> </u>	
	Oct-16	1.6	1.5	1000.0	150.0	160.0	49.0	9.3	0.0	110.0	7.3	9.9	2,424,028	0.03	0.03	20.24	3.04	3.24	0.99	0.19	0.00	2.23	0.15	0.20	30.33 Oct-16	5	
	Nov-16	0.0	0.0	670.0	120.0	310.0	55.0	11.0	0.0	61.0	5.9	5.1	2,957,938	0.00	0.00	16.55	2.96	7.66	1.36		0.00		0.15	0.13	30.58 Nov-1 0	5	
	Dec-16	5.7	0.0	530.0	130.0	840.0	110.0	16.0	2.0	59.0	4.9	5.6	2,822,541	0.13	0.00	12.49	3.06	19.80	2.59	0.38	0.05	1.39	0.12	0.13	40.14 Dec-16	i i	
EN-219R	Jan-16	0.0	1100.0	1400.0	25.0	13000.0	480.0	140.0	20.0	160.0	0.0	191.0	1,184,224	0.00	10.88	13.84	0.25	128.55	4.75		0.20	1.58	0.00	1.89	163.31 Jan-1 6		1623.4
	Feb-16	0.0	1100.0	1800.0	200.0	14000.0	530.0	270.0	33.0	140.0	0.0	11.0	1,033,835	0.00	9.50	15.54	1.73	120.86	4.58		0.28		0.00	0.09	156.11 Feb-1 6		
	Mar-16	0.0	1000.0	2100.0	170.0	11000.0	570.0	250.0	42.0	140.0	0.0	0.0	1,132,325	0.00	9.45	19.86	1.61	104.00	5.39		0.40		0.00	0.00	144.40 Mar-1	5	
	Apr-16	0.0	1100.0	2300.0	210.0	13000.0	740.0	300.0	88.0	170.0	22.0	11.0	1,038,926	0.00	9.54	19.95	1.82	112.78	6.42		0.76		0.19	0.10	155.64 Apr-16		
μ.	May-16	0.0	1100.0	2400.0	230.0	13000.0	930.0	350.0	240.0	160.0	20.0	12.0	979,103	0.00	8.99	19.62	1.88	106.28	7.60		1.96		0.16	0.10	150.77 May-1	5 <u>н</u>	
GTF	Jun-16	0.0	1000.0	2300.0	270.0	13000.0	1300.0	400.0	420.0	190.0	23.0	12.0	764,883	0.00	6.39	14.69	1.72	83.03	8.30		2.68		0.15	0.08	120.81 Jun-1 6		
, St	Jul-16	0.0	1200.0	2300.0	320.0	10000.0	1400.0	320.0	590.0	170.0	25.0	12.0	1,091,211	0.00	10.93	20.96	2.92	91.12	12.76		5.38		0.23	0.11	148.86 Jul-16		
Clark	Aug-16	0.0	1000.0	2100.0	280.0	12000.0	1500.0	270.0	520.0	190.0	21.0	10.0	1,039,182	0.00	8.68	18.22	2.43	104.13	13.02		4.51		0.18	0.09	155.24 Aug-10	_	
٥	Sep-16	0.0	980.0	2100.0	280.0	9000.0	1500.0	150.0	600.0	92.0	0.0	13.0	727,462	0.00	5.95	12.76	1.70	54.67	9.11		3.64		0.00	0.08	89.38 Sep-1 6		
	Oct-16	0.0	1300.0	2400.0	390.0	17000.0	1800.0	230.0	780.0	210.0	31.0	13.0	479,372	0.00	5.20	9.61	1.56	68.05	7.20		3.12		0.12	0.05	96.68 Oct-16		
	Nov-16	0.0	1100.0	2100.0	260.0	10000.0	1500.0	200.0	540.0	150.0	27.0	19.4	834,800	0.00	7.67	14.64	1.81	69.71	10.46		3.76		0.19	0.14	110.81 Nov-1		
	Dec-16	0.0	690.0	1900.0	370.0	13000.0	2000.0	190.0	1100.0	170.0	0.0	0.0	810,518	0.00	4.67	12.86	2.50	87.98	13.54		7.44		0.00	0.00	131.43 Dec-16		
EN-253R	Jan-16	0.0	270.0	6100.0	850.0	66000.0	59000.0	1200.0	21000.0	210.0	200.0	1125.0	38,253	0.00	0.09	1.95	0.27	21.08	18.85		6.71		0.06	0.36	49.81 Jan-16		356.3
	Feb-16	0.0	720.0	7000.0	790.0	80000.0	59000.0	1200.0	22000.0	200.0	200.0	1170.0	34,796	0.00	0.21	2.03	0.23	23.24	17.14		6.39		0.06	0.34	50.06 Feb-16		
	Mar-16	0.0	460.0	5000.0	410.0	66000.0	51000.0	840.0	14000.0	110.0	140.0	980.0	35,231	0.00	0.14	1.47	0.12	19.42	15.00		4.12		0.04	0.29	40.87 Mar-1		
	Apr-16	0.0	220.0	4600.0	540.0	72000.0	53000.0	1000.0	14000.0	160.0	190.0	950.0	24,106	0.00	0.04	0.93	0.11	14.49	10.67		2.82		0.04	0.19	29.52 Apr-16		
Ľ	May-16	0.0	310.0	4200.0	550.0	77000.0	54000.0	1300.0	18000.0	200.0	180.0	950.0	25,658	0.00	0.07	0.90	0.12	16.50	11.57	0.28	3.86		0.04	0.20	33.57 May-1		
t GT	Jun-16	0.0	390.0	5700.0	480.0	74000.0	71000.0	1600.0	17000.0	160.0	180.0	1290.0	26,545	0.00	0.09	1.26	0.11	16.40	15.74		3.77		0.04	0.29	38.08 Jun-16		
ķs	Jul-16	0.0	440.0	4100.0	340.0	87000.0	50000.0	1800.0	9800.0	290.0	140.0	1080.0	24,976	0.00	0.09	0.86	0.07	18.14	10.43		2.04		0.03	0.23	32.32 Jul-16	~	
Clar	Aug-16	0.0	210.0	4200.0	280.0	80000.0	62000.0	1100.0	8600.0	180.0	140.0	940.0	29,167	0.00	0.05	1.02	0.07	19.48	15.10		2.09		0.03	0.23	38.39 Aug-10		
	Sep-16	0.0	150.0	5700.0	430.0	67000.0	72000.0	550.0	16000.0	140.0	170.0	1070.0	18,933	0.00	0.02	0.90	0.07	10.59	11.38		2.53		0.03	0.17	25.80 Sep-16		
	Oct-16	0.0	0.0	0.0	0.0	64000.0	100000.0	75.0	32000.0	210.0	330.0	257.0	10,852	0.00	0.00	0.00	0.00	5.80	9.06	0.01	2.90	0.02	0.03	0.02	17.84 Oct-16		
	Nov-16 I Dec-16	EIN-235K W	as shut dow	VII OII 10-24	+-2010	1							-							1					0.00 Nov-1		
EN-428		0.0	0.0	000.0	0.0	82000.0	11000.0	1100.0	940.0	200.0	0.0	170.0	94,630	0.00	0.00	0.70	0.00	64.79	8.69	0.87	0.66	0.16	0.00	0.12			487.8
EN-428	Jan-16 Feb-16	0.0	0.0 110.0	990.0 950.0	0.0 130.0	88000.0	11000.0 9300.0	1100.0 1100.0	840.0 850.0	200.0	0.0	170.0 350.0	85,152	0.00	0.00	0.78 0.68	0.00	62.57	6.61		0.60		0.00	0.13 0.25	76.09 Jan-16 71.81 Feb-1 6	_	487.8
	Mar-16	0.0	0.0	760.0	110.0	70000.0	7200.0	800.0	630.0	0.0	0.0	290.0	83,230	0.00	0.00	0.53	0.03	48.65	5.00		0.00		0.00	0.20	55.45 Mar-1		
				860.0		68000.0	8900.0	860.0	660.0			360.0	74,397	0.00	0.07	0.53		42.24	5.53		0.44		0.00	0.20	49.61 Apr-16		
	Apr-16	0.0	110.0 270.0	1100.0	110.0 130.0	76000.0	10000.0	1300.0	840.0	0.0	0.0	370.0	74,397	0.00	0.07	0.53	0.07	42.24	6.41	.	0.41		0.00	0.22	57.73 May-1		
GTF	May-16 Jun-16	0.0	0.0	540.0	0.0	59000.0	5900.0	1300.0	550.0	0.0	0.0	290.0	45,818	0.00	0.00	0.71	0.00	22.57	2.26		0.34		0.00	0.24	25.85 Jun-16	_ =	
St 6	Jul-16 Jul-16	0.0	0.0	590.0	130.0	39000.0	4400.0	940.0	780.0	0.0	0.0	200.0	87,851	0.00	0.00	0.21	0.10	28.61	3.23		0.21		0.00	0.11	33.77 Jul-16		
Ž	Aug-16	0.0	0.0	690.0	0.0	33000.0	9000.0	580.0	570.0	0.0	0.0	300.0	49,884	0.00	0.00	0.43	0.00	13.75	3.75		0.37		0.00	0.13	18.39 Aug-10	_ ~	
Cla	Sep-16	0.0	0.0	1000.0	110.0	49000.0	16000.0	230.0	830.0	0.0	0.0	280.0	45,550	0.00	0.00	0.29	0.00	18.64	6.09		0.24		0.00	0.12	25.65 Sep-1 6	_ =	
	Oct-16	0.0	0.0	0.0	0.0	54000.0	37000.0	0.0	1500.0	0.0	0.0	0.0	26,763	0.00	0.00	0.00	0.00	12.07	8.27		0.32		0.00	0.00	20.67 Oct-16		
	Nov-16	34.0	45.0	280.0	0.0	41000.0	34000.0	210.0	1900.0	86.0	52.0	85.0	42,956	0.00	0.02	0.10	0.00	14.71	12.20		0.68		0.02	0.03	27.87 Nov-1		
	Dec-16	0.0	66.0	1100.0	0.0	53000.0	35000.0	470.0	3200.0	130.0	0.0	230.0	32,036	0.00	0.02	0.10	0.00	14.18	9.36		0.86		0.00	0.05	24.93 Dec-1 6		
	DCC-10	0.0	00.0	1100.0	0.0	55000.0	33000.0	7,0.0	3200.0	130.0	0.0	230.0	32,030	0.00	0.02	0.23	5.00	17.10	5.50	0.13	0.00	0.03	0.00	0.00	27.33 DEC-10	<u> </u>	

Table A-2: Mass Removal Data for Volatile Organic Compounds Endicott, New York - Site #704014
January 2016 to December 2016

	Ī	Chemica	al Concen	trations	(ug/l)]	Pounds of	f Chemica	ls Remove	d										
Location	Period	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Volume Pumped (gallons)	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	Vinyl Chloride	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	Chloroethane	1,1,2-Trichloro-1,2,2- Trifluoroethane (Freon 113)	1,2-Dichloro-1,2,2- Trifluoroethane (Freon 123a)	Other VOCs	Total VOCs Removed (pounds) Period	Location	Pounds Removed January - December 2016
EN-709	Jan-16	0.0	19.0	7.4	0.3	0.2	2.0	1.5	0.0	380.0	53.0	0.0	390,109	0.00	0.06	0.02	0.00	0.00	0.01	0.00	0.00	1.24	0.17	0.00	1.51 Jan-16	EN-709	16.8
	Feb-16	0.0	20.0	7.4	0.3	0.2	2.0	1.5	0.0	380.0	57.0	0.0	368,941	0.00	0.06	0.02	0.00	0.00	0.01	0.00	0.00	1.17	0.18	0.00	1.44 Feb-16		
	Mar-16	0.0	18.0	7.5	0.3	0.2	2.3	1.5	0.0	410.0	64.0	0.0	395,888	0.00	0.06	0.02	0.00	0.00	0.01	0.00	0.00	1.36	0.21	0.00	1.67 Mar-16		
	Apr-16	0.0	17.0	6.4	0.2	0.0	2.1	1.3	0.0	340.0	52.0	0.0	367,725	0.00	0.05	0.02	0.00	0.00	0.01	0.00	0.00	1.04	0.16	0.00	1.29 Apr-16		
μ	May-16	0.0	18.0	6.7	0.3	0.2	2.3	1.6	0.0	400.0	63.0	0.0	378,757	0.00	0.06	0.02	0.00	0.00	0.01	0.01	0.00	1.27	0.20	0.00	1.56 May-16	<u> </u>	
E1	Jun-16	0.0	17.0	6.3	0.2	0.0	2.1	1.4	0.0	370.0	55.0	0.0	377,392	0.00	0.05	0.02	0.00	0.00	0.01	0.00	0.00	1.17	0.17	0.00	1.42 Jun-16	E 15	
St	Jul-16	0.0	18.0	6.4	0.2	0.0	2.2	1.2	0.0	320.0	47.0	0.0	378,249	0.00	0.06	0.02	0.00	0.00	0.01	0.00	0.00	1.01	0.15	0.00	1.25 Jul-16	c St	
art	Aug-16	0.0	17.0	6.7	0.0	0.0	2.3	1.3	0.0	360.0	49.0	0.0	378,263	0.00	0.05	0.02	0.00	0.00	0.01	0.00	0.00	1.14	0.15	0.00	1.38 Aug-16	ar	
Ū	Sep-16	0.0	16.0	6.1	0.0	0.0	2.0	0.9	0.0	240.0	46.0	0.0	382,221	0.00	0.05	0.02	0.00	0.00	0.01	0.00	0.00	0.77	0.15	0.00	0.99 Sep-16	0	
	Oct-16	0.0	20.0	7.0	0.2	0.2	2.5	1.7	0.0	380.0	57.0	0.0	388,879	0.00	0.06	0.02	0.00	0.00	0.01	0.01	0.00	1.23	0.19	0.00	1.52 Oct-16		
	Nov-16	0.0	19.0	6.7	0.0	0.0	2.4	1.4	0.0	310.0	55.0	0.0	373,973	0.00	0.06	0.02	0.00	0.00	0.01	0.00	0.00	0.97	0.17	0.00	1.23 Nov-16		
	Dec-16	0.0	19.0	5.4	0.0	0.6	2.3	1.6	0.0	420.0	53.0	0.0	376,529	0.00	0.06	0.02	0.00	0.00	0.01	0.01	0.00	1.32	0.17	0.00	1.58 Dec-16		
												Totals	323,163,329	3.7	111.9	383.4	50.7	1745.5	333.2	35.5	77.6	43.0	4.9	8.5	2798		

Acetone and THF were not included in the mass removal calcuations because these compounds are present in the materials used to repair and join pipe. Values in italics are estimated (i.e., a sample was not collected for that month)

		Table A-		ndwater l by Reme			•	ons of ga	llons)			
Area	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
"On-Site" Capture Zone (OU#1 and OU#7)	37.9	40.9	38.0	34.5	35.2	37.3	40.9	43.7	33.5	27.6	24.5	31.0
"Off-Site" Capture Zone A and North Street Area (OU#2 and MA-A)	72.2	104.6	84.7	75.7	101.3	170.1	223.7	239.4	241.7	284.9	284.0	260.6
"Off-Site" Capture Zone B (OU#4)	13.7	17.8	12.6	12.2	11.8	17.9	28.4	32.2	31.4	23.4	14.8	14.4
Building 57/57A (OU#5)	0.3	1.4	2.0	1.5	1.4	2.0	2.0	0.0	2.2	3.8	4.6	4.6
Bedrock Groundwater (OU#6)	10.9	11.3	25.1	18.0	12.6	12.7	12.3	12.6	12.6	12.2	12.8	12.6
Total	135.0	176.0	162.4	141.9	162.3	240.0	307.3	327.9	321.4	351.9	340.7	323.2

Site #704014

Well		Table A-	4: VOC N	lass Rem	oved (po	unds) in	the Railro	ad Corrid	dor Sourc	e Area, 2	005-2016	
	2005	2006	2007	2008	2009	2010	2011	2012*	2013*	2014	2015	2016
EN-107	108	99	52	58	8							
EN-107R					36	32	48	47	34	15	10	12
EN-114T										96	107	225
EN-219	108	53										
EN-219R		1,052	2,053	1,759	2,318	1,850	1,359	1,673	2,244	1,494	1,832	1,623
EN-253	1,516	1,238	1,053	664	1,012	888	745	1,160	776	1,030	644	
EN-253R											438	356
EN-428	235		198	276	276	375	484	1,167	785	879	694	488
EN-428P	470	1,051	63									
Total	2,437	3,493	3,418	2,758	3,649	3,145	2,636	4,047	3,839	3,514	3,726	2,704

^{*} Includes VOC mass removed by the temporary Huron standpipe.

Well		7	able A-5	: Extrac	tion Volu	ımes (mi	llions of	gallons)	in the No	orth Stree	et Area, 2	2003-201	6	
Well	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
EN-276	1.5	3.0	3.8	3.9	1.4	1.9	2.3	2.4	1.3 (6.5 mo.)	0.9 (8 mo.)	1.9	2.7	3.1	0.8 (11 mo.)
EN-276R									1.9 (5.5 mo.)	1.6	0.4 (5 mo.)			1.0 (9 mo.)
EN-284P and EN-284TD		11.4 (6 mo.)	15.3	12.3	7.6	7.6	10.3	19.6	31.0	30.9	32.5	39.9	45.7	36.5
Subtotal	1.5	14.4	19.1	16.2	9.0	9.5	12.6	22.0	34.2	33.4	34.8	42.6	48.8	38.2
EN-284P & EN-284TD (Estimated Plume Reduction)		-7.6	-7.6	-4.2	-1.9	-1.9	-4.6	-13.9	-25.3	-25.2	-26.7	-34.2	-40.0	-29.9
Net Total Flux Control (estimated)	1.5	6.8	11.5	12.0	7.1	7.6	8.0	8.1	8.9	8.2	8.1	8.4	8.8	8.3

	Tab	le A-6:	VOC Ma	ass Ren	noved (oounds	in the l	North S	treet Are	ea, 2003	-2016			
by Remediation Area, 2005-2016	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
EN-276	22.6	65.5	60.4	24.4	7.9	5.1	7.5	6.7	3.7 (6.5 mo.)	36.3 (8 mo.)	12.7	13.3	4.7	5.3
EN-276R									31.1 (5.5 mo.)	134.0	31.0 (5 mo.)			14.2
EN-284P & EN-284TD		79.3 (6 mo.)	110.7	73.8	35.9	25.6	39.6	44.3	52.0	42.6	34.8	26.4	42.6	29.7
Subtotal	22.6	144.8	171.1	98.2	43.8	30.7	47.1	51.0	86.8	212.9	60.0	39.7	47.3	49.2
EN-284P (Estimated Plume Reduction)		-29.3	-10.7	-5.2	-1.1	-1.1	-12.3	-21.0	-23.7	-20.2	-15.8	-13.4	-14.0	-5.2
Estimated Net Total Source/Flux Control	22.6	115.5	160.4	93.0	42.7	29.6	34.8	30.0	63.1	192.7	44.2	26.3	33.3	44.0

Table A	-7: Inject		•	ons of ga	-		' Capture	Zones A	& B	
Plume Area Affected by Injection	Injection Well	2009	2010	2011	2012	2013	2014	2015	2016	Change in Volume Injected from 2015 to 2016
"Off-Site" Capture Zone A (Central Portion)	EN-92P	16.7 (8 mo.)	26.7	0.3 (3 days)		1.9 (4 mo.)	9.9	9.2	8.2	-7.5
	EN-529T	-		55.6	60.4	42.1	63.5	58.6	52.1	
"Off-Site" Capture Zone A (Western Portion,	EN-510T	50.4	56.2	52.8	53.8	39.6 (10 mo.)				-2.8
West of Washington Ave)	EN-532T					8.3 (2 mo.)	71.4	78.8	76	-2.0
"Off-Site" Capture Zone A (Southern Side, Top of Silt Trough)	EN-501T		14.4 (9 mo.)	25.3	40.9	36.4	26.9	26.8	12.3 (11 mo.)	-14.5
"Off-Site" Capture Zone A (NE Portion, east of EN-284P) & "Off-Site" Capture Zone B (Western Portion)	EN-78T	2.3 (2 mo.)	11.3	12.9	12.3	17.7	20.2	20.1	19.2	-0.9
"Off-Site" Capture Zone A (Eastern Side, Top of Silt Trough) & "Off-Site" Capture Zone B (Southern Portion)	EN-161T		7.1 (7 mo.)	14.3	34.6	50.5	62.4	62.2	59.4	-2.8
"Off-Site" Capture Zone A (NW Portion, west of EN-284P)	EN-530T				7.8 (5 mo.)	10.1	16.3	18.1	15.9	-2.2
	Net Total Injection	69.4	115.7	161.2	209.8	206.6	270.6	273.8	243.1	-30.7

	Table A-8: Extracti	on Volu	•	illions o	•	•		Capture	e Zones	A & B					
Plume Area	Extraction Well(s)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
"Off-Site" Capture Zone A West of Washington Avenue	EN-133, EN-451P, & EN-91T	29.4	32.5	30.9	19.4	18.1	37.4	47.7	61.2	66.5	58.9	76.6	82.7	78.8	
"Off-Site" Capture Zone A South of North Street	"Off-Site" Capture Zone A South of North Street "Off-Site" Capture Zone A FN-284P & EN-284TD (6 mo.) 15.3 12.3 7.6 7.6 10.3 19.6 31.0 30.9 32.5 39.9 45.7 36.5 "Off-Site" Capture Zone A FN-215T EN-447T EN-499T														
"Off-Site" Capture Zone A Top of Silt Trough	South of North Street (6 mo.) (6 mo.) "Off-Site" Capture Zone A Top of Silt Trough EN-92P, EN-120, EN-194 16.2 20.7 EN-949. (10 mo.) (10														
"Off-Site" Capture Zone B	EN-185P, EN-195, EN-222 EN-491T & EN-492T	15.0	13.7	17.8	12.6	12.2	11.8	17.9	28.4	32.2	31.4	23.5	14.8	14.4	
	Subtotal	72.0	82.2	118.5	95.8	86.0	110.8	185.6	249.0	269.1	270.8	305.7	295.7	273.3	
Source/Flux Control Crossing North Street (estimate*)	EN-284P	-3.8	-7.6	-8.1	-5.7	-5.7	-5.7	-5.7	-5.7	-5.7	-5.8	-5.7	-5.7	-6.6	
Ideal Cleaners Plume Flux Control* (estimated for 2010-2014)	EN-185P, EN-222 EN-492T	-9.0	-7.1	-8.1	-5.8	-5.8	-4.8	-6.7	-11.6	-11.6	-11.6	-8.6	-0.5	0.0	
Estimated Net Annual	Extraction Volume	59.2	67.5	102.3	84.3	74.5	100.3	173.2	231.7	251.8	253.4	291.4	289.5	266.7	
* Net from Table A-5 entries for well EN-28	4P & EN-284TD.														

	Table A-9: VOC	Mass F	Removed	d (poun	ds) in "(Off-Site'	' Captur	e Zones	s A & B					
		b	y Remed	diation A	Area, 20	05-2016	i							
Plume Area	Wells	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
"Off-Site" Capture Zone A	EN-133,	18.4	8.7	2.2	1.6	4.8	6.1	6.4	6.8	5.0	2.5	1.6	1.4	
Vest of Washington Avenue EN-451P & EN-91T EN-451P & EN-91T EN-451P & EN-91T EN-451P & EN-91T EN-451P & EN-91T														
"Off-Site" Capture Zone A South of North Street EN-284P & EN-284TD* 10.7 5.2 1.1 1.1 12.3 21.0 23.7 20.2 15.8 13.4 14.0 5.2														
South of North Street														
Top of Silt Trough	EN-92P, EN-120, EN-160, EN-194	03.0	104.7	07.4	55.7	40.1	37.3	41.1	32.4	19.9	0.1	4.0	3.7	
"Off-Site" Capture Zone B (western portion)	EN-195 & EN-491T	4.2	5.6	2.6	2.7	3.9	3.5	3.0	2.9	2.4	4.6	0.7	0.6	
	Total	99.1	124.1	93.3	59.1	67.1	88.1	74.2	62.3	43.1	26.6	20.9	10.9	
*Estimated portion attributable to plu	ume reduction; see Table A-6 entries.													

APPENDIX B

- Table B-1: Physical Well Data and Well Specifications for Monitoring, Extraction, and Injection Wells
- **Table B-2: Specifications for Other Monitoring Wells**
- **Table B-3: Annual Well Field Inspection Results**

			G.S.	Current		Surface		Installation	Drilled	Casing	Boring	Depth to	Depth to	Screen	Screen		Screen	Casing	Casing	Depth to		Top of Silt	
Well ID	Northing	Easting	Elevation	M.P. Elevation	Stickup	Completion	Location Description	Date	Depth	Depth	Diameter	Screen Top	Screen Bottom	Length	Diameter	Slot Size	Material	Diameter	Material	Top of Silt	Well ID	Elevation	Unit
	(grid feet)	(grid feet)	(ft amsl)	(ft amsl)	(feet)				(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)		(ft bgs)		(ft amsl)	
		967316.7	846.52		2.62	SP	North St (N side), in front of old Building 5	NA NA	NA	NA	NA NA	NA	NA	NA	3.0	NA	NA	3.0	NA	NE NE	DOT-1	NE NE	Upper Aquifer
DOT-2 DOT-3	767738.5 767724.8	967120.7 967045.4	845.96 846.39	848.57 848.73	2.61	SP SP	North St (N side), in front of old Building 5 North St (N side), in front of old Building 5	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.0	NA NA	NA NA	3.0	NA NA	NE NE	DOT-2 DOT-3	NE NE	Upper Aquifer Upper Aquifer
DOT-4	767712.7	966981.0	845.91	848.61	2.70	SP	North St (N side), in front of old Building 5	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	3.0	NA NA	NA NA	3.0	NA NA	NE	DOT-4	NE NE	Upper Aquifer
EN-002	767896.0	965175.6	839.73	842.54	2.81	SP	Fuel oil tank near RR tracks, E of Oak Hill Ave	23-Aug-79	22.0	14.0	8.0	6.0	14.0	8.0	4.0	0.018	PVC	4.0	PVC	14.0	EN-002	825.7	Upper Aquifer
EN-006	766868.9	966244.7	849.69	852.34	2.65	SP	Credit Union, between McKinley & Grant	29-Aug-79	42.0	33.0	8.0	15.0	33.0	18.0	4.0	0.018	PVC	4.0	PVC	33.0	EN-006	816.7	Upper Aquifer
EN-012	767813.4	965734.6	848.97	851.86	2.89	SP	Between Buildings 18 & 39	22-Jan-80	25.0	24.0	7.0	14.0	24.0	10.0	4.0	0.020	PVC	4.0	PVC	21.5	EN-012	827.5	Upper Aquifer
EN-013 EN-014	767740.6 767673.4	965756.2 965777.3	849.20 849.06	851.93 852.00	2.73	SP SP	Between Buildings 18 & 39 Building 18 (W side)	23-Jan-80 23-Jan-80	22.0	22.0 23.1	7.0 7.0	13.0 13.0	22.0 23.0	9.0	4.0	0.020 0.020	PVC PVC	4.0	PVC PVC	20.5 22.2	EN-013 EN-014	828.7 826.9	Upper Aquifer Upper Aquifer
EN-014	767579.0	965797.0	849.12	851.81	2.69	SP	Between Buildings 18 & 14	25-Jan-80	31.0	30.5	7.0	20.0	30.0	10.0	4.0	0.020	PVC	4.0	PVC	29.0	EN-014	820.1	Upper Aquifer
EN-016	767501.0	965816.7	849.41	852.22	2.81	SP	Between Buildings 18 & 14	25-Jan-80	30.0	30.0	7.0	20.0	30.0	10.0	4.0	0.020	PVC	4.0	PVC	29.5	EN-016	819.9	Upper Aquifer
EN-017	767469.7	965884.6	849.39	852.15	2.76	SP	Building 18 (SW corner)	28-Jan-80	27.0	25.5	7.0	15.5	25.5	10.0	4.0	0.020	PVC	4.0	PVC	23.5	EN-017	825.9	Upper Aquifer
EN-017A	767468.5	965881.1	849.70	849.46	-0.24	MH	Building 18 (SW corner)	21-Jul-05	29.0	23.0	8.0	22.0	23.0	1.0	2.0	0.020	PVC	2.0	PVC	23.0	EN-017A	826.7	Upper Aquifer
EN-018	767492.1	965981.4	848.82 849.66	851.45 852.34	2.63	SP SP	Building 18 (S side)	28-Jan-80	23.0	23.0 24.0	7.0 7.0	13.0 14.0	23.0 24.0	10.0 10.0	4.0	0.020 0.020	PVC PVC	4.0 4.0	PVC PVC	22.0 22.0	EN-018	826.8	Upper Aquifer
EN-019 EN-020	767516.3 767652.7	966085.1 966078.8	848.52	851.30	2.78	SP	Building 18 (SE corner) Building 18 (E side)	29-Jan-80 27-Jan-80	24.0	22.0	7.0	12.0	22.0	10.0	4.0	0.020	PVC	4.0	PVC	20.0	EN-019 EN-020	827.7 828.5	Upper Aquifer Upper Aquifer
EN-020A	767646.5	966080.7	848.50	848.24	-0.26	MH	Alley on E side of Building	21-Jul-05	29.0	19.5	8.0	18.5	19.5	1.0	2.0	0.020	PVC	2.0	PVC	19.5	EN-020A	829.0	Upper Aquifer
EN-021	767842.4	966114.7	845.04	847.84	2.80	SP	Between Buildings 41 & 18	27-Jan-80	21.0	21.0	7.0	11.0	21.0	10.0	4.0	0.020	PVC	4.0	PVC	18.0	EN-021	827.0	Upper Aquifer
EN-022	765902.8	966142.3	841.99	844.48	2.49	SP	Building 699 (SW corner), on Grant St	26-Jan-80	27.0	23.0	7.0	15.0	23.0	8.0	4.0	0.020	PVC	4.0	PVC	21.0	EN-022	821.0	Upper Aquifer
EN-023	767459.8	967000.6	847.76	850.37	2.61	SP	Adams Ave (N), S of Building 32	27-Jan-80	24.0	24.0	7.0	14.0	24.0	10.0	4.0	0.020	PVC	4.0	PVC	22.0	EN-023	825.8	Upper Aquifer
EN-024 EN-025A	767346.3 768098.8	965453.2 966070.7	849.32 838.60	852.01 838.26	2.69 -0.34	SP MH	Building 14 (SW corner) Building 46 (SW corner), ~10 ft N of EN-25	05-Feb-80 05-May-05	27.0 18.0	24.0 13.5	5.0 8.0	14.0 12.5	24.0 13.5	10.0	4.0 2.0	0.020 0.020	PVC PVC	4.0 2.0	PVC PVC	25.0 13.5	EN-024 EN-025A	824.3 825.1	Upper Aquifer Upper Aquifer
EN-026	767734.7	964681.3	838.29	840.96	2.67	SP	Building 252, inside fenced transformers	07-Feb-80	20.0	20.0	7.0	10.0	20.0	10.0	4.0	0.020	PVC	4.0	PVC	17.5	EN-025A	820.8	Upper Aquifer
EN-029A	766861.7	965833.8	850.75	850.38	-0.37	MH	Bank driveup window, between Garfield & Grant	15-Nov-82	37.5	36.5	0.0	21.0	36.0	15.0	4.0	0.010	PVC	4.0	PVC	36.5	EN-029A	814.3	Upper Aquifer
EN-030	768031.9	968437.2	850.35	853.18	2.83	SP	North St between Helena & Hayes, in grass	06-Feb-80	47.0	47.0	7.0	37.0	47.0	10.0	4.0	0.020	PVC	4.0	PVC	24.0	EN-030	826.4	Upper Aquifer
EN-034	768325.1	966085.7	838.76	841.49	2.73	SP SP	Building 46 (W)	14-Mar-80	25.0	21.0	7.0	11.0	21.0 28.0	10.0	4.0	0.020	PVC	4.0	PVC	19.5 27.5	EN-034	819.3	Upper Aquifer
EN-035 EN-036	767575.0 767620.9	966442.4 966557.1	851.47 850.30	854.22 852.97	2.75	SP	Building 28 (SE corner), at North & McKinley Building 25 (SE corner), on North St	15-Mar-80 15-Mar-80	28.0 28.0	28.0 27.5	7.0 7.0	18.0 17.5	28.0	10.0	4.0	0.020 0.020	PVC PVC	4.0	PVC PVC	25.5	EN-035 EN-036	824.0 824.8	Upper Aquifer Upper Aquifer
EN-037	768169.1	966448.9	840.31	839.97	-0.34	MH	Building 47 (S side)	18-Mar-80	28.0	25.0	7.0	15.0	25.0	10.0	4.0	0.020	PVC	4.0	PVC	22.0	EN-037	818.3	Upper Aquifer
EN-038	768087.2	966059.8	838.63	838.40	-0.23	MH	Building 46 (SE corner)	19-Mar-80	16.0	16.0	7.0	6.0	16.0	10.0	4.0	0.025	PVC	4.0	PVC	14.0	EN-038	824.6	Upper Aquifer
EN-039	768085.7	966049.8	838.45	838.26	-0.19	SP	Building 46 (SE corner)	19-Mar-80	16.0	16.0	7.0	6.0	16.0	10.0	4.0	0.025	PVC	4.0	PVC	13.0	EN-039	825.5	Upper Aquifer
EN-040	768084.7	966039.5	838.24	837.81	-0.43	MH	Building 46 (SE corner)	20-Mar-80	17.0	16.0	7.0	6.0	16.0	10.0	4.0	0.025	PVC	4.0	PVC	14.0	EN-040	824.2	Upper Aquifer
EN-041	768083.4	966029.3	837.97	837.58	-0.39	MH	Building 46 (SE corner)	20-Mar-80	15.0	14.0	7.0	4.0	14.0	10.0	4.0	0.020	PVC	4.0	PVC	12.5	EN-041	825.5	Upper Aquifer
EN-042 EN-044	768081.6 768080.5	966019.9 966005.2	837.75 837.58	837.45 837.11	-0.30 -0.47	MH MH	Building 46 (SE corner) Building 46 (SE corner)	22-Mar-80 23-Mar-80	16.0 20.0	16.0 14.0	7.0 7.0	6.0 7.0	14.0 14.0	8.0 7.0	4.0	0.025 0.025	PVC PVC	4.0	PVC PVC	11.5 12.0	EN-042 EN-044	826.3 825.6	Upper Aquifer Upper Aquifer
EN-045	768078.6	965990.3	837.36	836.94	-0.42	MH	Building 46 (SE corner)	23-Mar-80	16.0	14.0	7.0	6.0	14.0	8.0	4.0	0.025	PVC	4.0	PVC	11.5	EN-045	825.9	Upper Aquifer
EN-046	768130.7	966069.2	837.86	837.60	-0.26	MH	Building 46 (SE corner)	24-Mar-80	14.0	14.0	7.0	6.0	14.0	8.0	4.0	0.020	PVC	4.0	PVC	12.0	EN-046	825.9	Upper Aquifer
EN-047	768145.7	966068.7	837.64	837.48	-0.16	MH	Building 46 (SE corner)	24-Mar-80	14.0	13.5	7.0	5.5	13.5	8.0	4.0	0.020	PVC	4.0	PVC	12.0	EN-047	825.6	Upper Aquifer
EN-048	768160.1	966068.1	837.61	837.54	-0.07	MH	Building 46 (SE corner)	26-Mar-80	16.0	16.0	7.0	6.0	16.0	10.0	4.0	0.020	PVC	4.0	PVC	13.5	EN-048	824.1	Upper Aquifer
EN-049 EN-051	768174.8 768039.7	966067.4 965777.3	837.66 836.77	837.42 839.65	-0.24 2.88	MH SP	Building 46 (SE corner) Building 48 (S), N of RR tracks	26-Mar-80 12-Apr-80	19.0 12.0	19.0 11.5	7.0 7.0	9.0 6.5	19.0 11.5	10.0 5.0	4.0	0.020 0.025	PVC PVC	4.0 4.0	PVC PVC	16.0 9.0	EN-049 EN-051	821.7 827.8	Upper Aquifer Upper Aquifer
EN-052	768057.4	965883.3	836.93	839.44	2.51	SP	Building 48 (S), N of RR tracks	13-Apr-80	14.0	12.1	7.0	6.0	12.0	6.0	4.0	0.025	PVC	4.0	PVC	10.0	EN-052	826.9	Upper Aquifer
EN-053	768246.0	966073.2	838.17	837.86	-0.31	MH	Building 46 (SE corner)	16-Apr-80	20.0	20.0	7.0	10.0	20.0	10.0	4.0	0.020	PVC	4.0	PVC	17.5	EN-053	820.7	Upper Aquifer
EN-054	767827.5	965260.7	848.95	851.49	2.54	SP	North of Building 38 tank farm	13-Apr-80	27.0	24.0	7.0	14.0	24.0	10.0	4.0	0.025	PVC	4.0	PVC	19.0	EN-054	830.0	Upper Aquifer
EN-055	768198.4	966526.2	841.96	841.46	-0.50	MH	Building 47 (S side)	22-Apr-80	27.0	27.0	7.0	10.0	27.0	17.0	4.0	0.025	PVC	4.0	PVC	24.5	EN-055	817.5	Upper Aquifer
	768239.5 768221.9				-0.40 2.79	MH SP	Driveway before Building 47 dock gate Building 47 (SE corner)	17-Apr-80 24-Apr-80		24.0 25.0	7.0 7.0	14.0 10.0	24.0 25.0	10.0 15.0	4.0	0.020 0.020	PVC PVC	4.0 4.0	PVC PVC	22.0 21.5	EN-056 EN-058	822.5 821.5	Upper Aquifer Upper Aquifer
EN-060	766403.6	964492.0		842.06		SP	Monroe & Lincoln (NE corner)	17-Jul-80	28.0	27.4	7.0	15.5	27.5	12.0	4.0	0.020	PVC	4.0	PVC	25.0	EN-060	814.4	Upper Aquifer
	766060.1	965231.9		840.96		SP	Madison Ave, Endicott pay parking lot	10-Jul-80		24.1	7.0	13.6	24.1	10.5	4.0	0.020	PVC	4.0	PVC	22.0	EN-062	816.3	Upper Aquifer
EN-064	765919.6	965691.4	839.88	842.53	2.65	SP	Broad St & Garfield Ave (NW corner)	10-Jul-80	22.0	22.0	7.0	15.0	22.0	7.0	4.0	0.020	PVC	4.0	PVC	18.8	EN-064	821.1	Upper Aquifer
	767262.1	967664.4				SP	Jackson Ave across from Building 251 (HBE School)	15-Jul-80	40.0	40.0	7.0	20.0	40.0	20.0	4.0	0.020	PVC	4.0	PVC	37.5	EN-065	814.7	Upper Aquifer
	767313.8 767506.0	963976.9 963916.1	840.07 835.25	839.70 837.85		MH SP	Building 96 former lagoon (SW corner) Building 96 former lagoon (W side)	17-Jul-80 11-Jul-80	40.0 26.0	38.0 26.0	7.0 7.0	12.0 8.0	38.0 26.0	26.0 18.0	4.0	0.020 0.020	PVC PVC	4.0 4.0	PVC PVC	32.0 23.5	EN-066 EN-067	808.1 811.8	Upper Aquifer Upper Aquifer
EN-067 EN-069	767791.7	964213.4	836.41	839.14	2.73	SP	Building 96 (SW corner)	16-Jul-80	22.0	22.0	7.0	9.0	20.0	13.0	2.0	0.020	PVC	2.0	PVC	18.0	EN-067	818.4	Upper Aquiler Upper Aquifer
	767582.2	964403.0		841.66		SP	Building 96 (S) near RR tracks	14-Jul-80	18.0	16.5	7.0	10.0	16.0	6.0	4.0	0.020	PVC	4.0	PVC	14.5	EN-070	824.4	Upper Aquifer
EN-072	768035.7	964873.6	835.67	838.45	2.78	SP	Clark St & Oak Hill Ave (SW corner)	25-Jul-80	27.0	24.0	7.0	6.0	24.0	18.0	2.0	0.020	PVC	2.0	PVC	22.0	EN-072	813.7	Upper Aquifer
	768219.9	965240.8		839.74	2.87	SP	Clark St & Odell Ave (NE corner)	18-Jul-80	16.0	14.0	7.0	6.0	14.0	8.0	2.0	0.020	PVC	2.0	PVC	14.5	EN-073	822.4	Upper Aquifer
	767763.7 767593.3	965085.5	848.84 848.51	851.59 851.20		SP SP	Building 87 (NW corner), near Oak Hill Ave & RR Building 14 (NW corner)	22-Jul-80	28.0 24.0	25.0 22.0	7.0 7.0	15.0 15.0	25.0 22.0	10.0	2.0	0.020 0.020	PVC PVC	2.0	PVC PVC	23.0	EN-074 EN-075	825.8 828.5	Upper Aquifer
	767266.2	965314.9 965054.1	850.26	853.06		SP	North St & Oak Hill Ave (NE corner)	22-Jul-80 22-Jul-80	28.0	27.0	7.0	17.0	27.0	7.0 10.0	4.0	0.020	PVC	4.0	PVC	25.0	EN-075	825.3	Upper Aquifer Upper Aquifer
	767323.7	966172.9		854.25		SP	North St & The Alley	25-Jul-80	28.0	27.0	7.0	20.0	27.0	7.0	4.0	0.020	PVC	4.0	PVC	24.0	EN-077	827.6	Upper Aquifer
EN-078	767192.6	966537.8	849.32	852.16		SP	Building 42 (S side)	24-Jul-80	28.0	26.0	7.0	16.0	26.0	10.0	4.0	0.020	PVC	4.0	PVC	24.5	EN-078	824.8	Upper Aquifer
EN-078T		966477.2	849.90	850.71	0.81	SP	Building 42 (S side), next to EN-D37 and EN-513	13-Jun-07	29.0	29.0	18.0	10.0/21.0	16.0/24.0		10.0	0.050	SS	10.0	SS	24.2	EN-078T	825.7	Upper Aquifer
	766602.6	967052.4	845.46	848.15		SP	Monroe St & Adams Ave (NW corner)	23-Jul-80	36.0	35.0	7.0	18.0	35.0	17.0	2.0	0.020	PVC	2.0	PVC	33.0	EN-079	812.5	Upper Aquifer
	767021.8 767678.2	967019.9 966842.0	848.31 847.27	848.14 850.03	-0.17 2.76	MH SP	Adams Ave (W side) North St (N side), NW of Building 032	23-Jul-80 24-Jul-80	28.0 30.0	26.0 30.0	7.0 7.0	16.0 13.0	26.0 30.0	10.0 17.0	2.0 4.0	0.020 0.020	PVC PVC	2.0 4.0	PVC PVC	24.5 28.0	EN-080 EN-081	823.8 819.3	Upper Aquifer Upper Aquifer
	768419.0	967226.7	843.09	845.78			Parking Lot No. 13 entrance on Clark, third from Hayes	24-Jul-80	12.0	12.0	7.0	10.0	12.0	2.0	2.0	0.020	PVC	2.0	PVC	11.8	EN-083	831.3	Upper Aquiler
EN-084	768961.7	967039.1	849.01	851.75		SP	Cycle parking NE of Building 256 on Watson	18-Jul-80	17.5	16.5	7.0	7.5	15.5	8.0	2.0	0.020	PVC	2.0	PVC	14.0	EN-084	835.0	Upper Aquifer
EN-086	768273.7	967894.7	841.57	844.31	2.74		Hayes Ave, between North & Wayne St	24-Jul-80	16.0	15.0	7.0	7.0	15.0	10.0	2.0	0.020	PVC	2.0	PVC	Absent	EN-086	Absent	Upper Aquifer
EN-087	768057.7	967943.1	843.67	846.42		SP	Hayes & North (NE corner)	23-Jul-80	30.0	28.0	7.0	10.0	28.0	18.0	2.0	0.020	PVC	2.0	PVC	Absent	EN-087	Absent	Upper Aquifer
EN-091 EN-091A	766867.0 766862.4	965197.4 965174.5	848.09 848.30	847.61 848.14	-0.48 -0.16	MH MH	Madison Ave parking lot ~15 ft W of EN-91 in municipal parking lot	25-Aug-80 19-Jul-04	42.0 38.0	41.4 36.0	10.0 8.0	20.9 21.0	41.4 36.0	20.5 15.0	4.0 2.0	0.020 0.010	PVC PVC	4.0 2.0	PVC PVC	39.0 35.8	EN-091 EN-091A	809.1 812.6	Upper Aquifer Upper Aquifer
-11-03 IA	, 00002.4	303174.3	0-0.50	070.14	-0.10	1411.1	10 10 10 10 LIN-01 III mumorpai parking lot	19-Jul-04	50.0	50.0	0.0	21.0	50.0	13.0	2.0	0.010	1 70	2.0	1 40	55.0	-14-03 IA	012.0	opper Aquilet

December 22, 2016 Page 1 of 7

	<i>,</i>				Current					1				Depth to	Depth to		T _								
Well ID	Northin	ng Eas	ting	G.S.	M.P.	Stic	kup	Surface	Location Description	Installation	Drilled	Casing	Boring	Screen	Screen	Screen		Slot Size	Screen	Casing	Casing	Depth to	Well ID	Top of Silt	Unit
				Elevation	Elevation	_		Completion	·	Date	Depth	Depth	Diameter	Тор	Bottom	Length	Diameter		Material	Diameter	Material	Top of Silt		Elevation	
	(grid fee		feet)	(ft amsl)	(ft amsl)						(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)		(ft bgs)		(ft amsl)	
EN-091T EN-092	766861 766864		71.8	848.10 848.31	850.23 850.53				~18 ft W of EN-91 in municipal parking lot Garfield Ave parking lot	14-Sep-04		38.0	12.0 10.0	31.5 22.3	33.0 37.3	1.5	6.0 4.0	0.050 0.020	SS	6.0 4.0	SS/BS PVC	34.8	EN-091T EN-092	813.3 813.3	Upper Aquifer Upper Aquifer
EN-092 EN-092A	766739		38.6	847.60	847.21	-0.3			10 ft N of EN-438 in municipal parking lot	20-Aug-80 15-Jul-04	38.0 36.0	37.3 35.0	8.0	20.0	35.0	15.0 15.0	2.0	0.020	PVC PVC	2.0	PVC	35.0 35.0	EN-092A	812.6	Upper Aquifer
EN-092P	766735		37.3	847.60	846.56				Municipal parking lot on west side of Garfield Ave	02-Dec-05	38.0	38.0	18.0	32.0	33.0	1.0	10.0	0.050	SS	10.0	SS	35.0	EN-092P	812.6	Upper Aquifer
EN-093	766606	.2 9657	63.0	845.81	848.68	2.8	87	SP	Garfield Ave & Monroe St (NE corner)	22-Aug-80	38.0	36.5	10.0	21.1	36.5	15.4	4.0	0.020	PVC	4.0	PVC	35.0	EN-093	810.8	Upper Aquifer
EN-094	766834		75.9	845.94	848.61	2.6			Jefferson Ave (N end)	29-Aug-80		39.0	10.0	20.0	39.0	19.0	4.0	0.020	PVC	4.0	PVC	37.0	EN-094	808.9	Upper Aquifer
EN-095	766654			843.33	846.08	2.7			North St & Harrison Ave (SW corner)	21-Aug-80		54.8	6.0	37.3	54.8	17.5	4.0	0.020	PVC	4.0	PVC	40.5	EN-095	802.8	Upper Aquifer
EN-096 EN-097	767199 768428		85.0	835.93 841.07	838.65 840.59	-0.4			SW of former lagoon, betw/ Franklin St & RR tracks Building 38 (N side)	27-Aug-80 26-Aug-80		39.1 18.5	10.0 10.0	8.2 8.3	39.1 18.5	30.9 10.2	4.0	0.020 0.020	PVC PVC	4.0	PVC PVC	38.3 Absent	EN-096 EN-097	797.7 Absent	Upper Aquifer Upper Aquifer
EN-099	766614		67.5	845.94	845.64	-0.		MH	Garfield Ave & Monroe St (NE corner)	18-Oct-80	36.0	35.2	0.0	30.1	35.1	5.0	2.0	0.020	PVC	2.0	PVC	NE	EN-099	NE	Upper Aquifer
EN-100	766632		72.1	846.06	845.77	-0.2		MH	Garfield Ave & Monroe St (NE corner)	18-Oct-80	32.0	31.2	0.0	26.1	31.1	5.0	2.0	0.000	PVC	2.0	PVC	NE	EN-100	NE	Upper Aquifer
EN-102	766614		33.5	847.33	846.79			MH	Garfield Ave & Monroe St (NE corner)	19-Oct-80	36.0	34.5	0.0	29.5	34.5	5.0	2.0	0.000	PVC	2.0	PVC	34.5	EN-102	812.6	Upper Aquifer
EN-103	766097		24.3	837.26	836.98	-0.2		MH	106 Fillmore Ave	07-Dec-80	36.0	35.5	10.0	15.0	35.5	20.5	4.0	0.020	PVC	4.0	PVC	34.0	EN-103	803.3	Upper Aquifer
EN-104 EN-105	766472 767254		371.6 108.9	837.10 832.21	840.27 834.60	3.1 2.3		SP SP	610 North St, between Fillmore Ave & Parsons Ave Franklin St (N side)	18-Dec-81 12-Dec-80	72.0 14.0	72.0 12.5	10.0 10.0	10.5 2.0	72.0 12.5	61.5 10.5	4.0	0.020 0.020	PVC PVC	4.0	PVC PVC	20.0 NE	EN-104 EN-105	766.4 NE	Upper Aquifer Upper Aquifer
EN-106	768520			851.16	853.89	2.7			Building 47 (NW corner)	22-Dec-80	48.0	48.0	10.0	17.0	48.0	31.0	4.0	0.020	PVC	4.0	PVC	39.0	EN-106	812.2	Upper Aquifer
EN-107	767997		71.7	838.78	840.08	1.3			Building 48 (SW corner)	20-Jan-81	16.0	19.0	16.0	9.0	14.0	5.0	10.0	0.075	SS	10.0	BS	13.5	EN-107	825.3	Upper Aquifer
EN-107A	767996			838.00	837.77	-0.2			Building 48 (SW corner), ~10 ft W of EN-107	04-May-05		14.3	8.0	13.3	14.3	1.0	2.0	0.020	PVC	2.0	PVC	14.0	EN-107A	824.0	Upper Aquifer
EN-107R	767998			837.80	839.32				Approx. 10 feet W of EN-107	04-Nov-08	19.5	19.5	16.0	10.0	14.0	4.0	8.0	0.075	SS	8.0	SS	14.5	EN-107R	823.3	Upper Aquifer
EN-111 EN-112	767907 767909	.0 9660		843.20 843.40	842.95 843.18				Between Buildings 41 & 18 Between Buildings 41 & 18	17-Apr-81 16-Apr-81	23.0 23.0	22.8 23.3	10.0 10.0	7.3 7.8	17.8 18.3	10.5 10.5	4.0	0.025 0.025	SS SS	4.0 4.0	BS? BS?	17.6 16.9	EN-111 EN-112	825.6 826.5	Upper Aquifer
EN-112 EN-113	767909		86.8	843.40	843.77	0.0			In Building 18 driveway to E dock	21-Apr-81	22.0	23.3	10.0	4.9	16.9	12.0	4.0	0.025	SS	4.0	BS?	16.4	EN-112 EN-113	827.3	Upper Aquifer Upper Aquifer
EN-114	768150		14.1	836.76	836.40				S. of Building 48 loading docks, near SW corner	22-Apr-81	26.0	22.8	10.0	7.5	22.8	15.3	4.0	0.020	SS	4.0	BS	22.5	EN-114	814.3	Upper Aquifer
EN-114T	768162		12.6	836.60	838.87	2.2			N. of EN-114, S. of Bldg 48 loading docks	01-Oct-13	27.0	25.0	14.0	16.0	20.0	4.0	8.0	0.050	SS	8.0	SS	20.5	EN-114T	816.1	Upper Aquifer
EN-117	767955		34.0	840.05	842.78			SP	Tank Farm, N of RR tracks	27-Apr-81	20.0	20.1	10.0	4.9	20.1	15.2	4.0	0.020	SS	4.0	BS	15.6	EN-117	824.5	Upper Aquifer
EN-119A	768188 766617	.3 9665 .5 9658	28.2	841.90 847.83	841.39 848.00	-0.: 0.1			~ 10 ft S of EN-55 Garfield Ave pump house (Building 253)	09-May-05	27.0	22.0 43.5	8.0 16.0	21.0 18.5	22.0 38.5	1.0 20.0	2.0 8.0	0.020 0.020	PVC	2.0 8.0	PVC BS	21.8 37.5	EN-119A EN-120	820.2	Upper Aquifer
EN-120 EN-121	768063		325.4	834.36	837.09				Building 96 (N side), on Clark St	29-May-81 17-Mar-82	43.5 22.5	20.0	4.0	5.0	20.0	15.0	2.0	0.020	SS PVC	2.0	PVC	22.0	EN-120 EN-121	810.3 812.4	Upper Aquifer Upper Aquifer
EN-122	768044			833.70	836.39	2.6			Between Building 95 & Clark St, outside fence	16-Mar-82	21.5	20.0	4.0	5.0	20.0	15.0	2.0	0.010	PVC	2.0	PVC	20.5	EN-122	813.2	Upper Aquifer
EN-123	767897		19.8	832.72	835.41	2.6	69		Building 95 Annex, NW corner	17-Mar-82	19.5	20.0	4.0	5.0	20.0	15.0	2.0	0.010	PVC	2.0	PVC	18.0	EN-123	814.7	Upper Aquifer
EN-125	766639		91.8	842.86	845.47	2.6		SP	Jefferson Ave (N end)	14-May-82		42.0	6.0	22.0	42.0	20.0	2.0	0.010	PVC	2.0	PVC	41.7	EN-125	801.2	Upper Aquifer
EN-126	766505		300.4	841.02	843.71	2.6		SP	Jefferson Ave (N end)	15-May-82		36.0	2.0	16.0	36.0	20.0	2.0	0.010	PVC	2.0	PVC	36.0	EN-126	805.0	Upper Aquifer
EN-127 EN-129	767630 767796		34.5	845.19 846.91	844.86 846.48	-0.		MH MH	Adams Ave & North St (SE corner) Jackson Ave & North St (SW corner)	30-Jun-82 02-Jul-82	26.0 28.0	23.5 25.0	6.0 3.3	14.0 11.0	23.5 25.0	9.5 14.0	2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	23.3 25.0	EN-127 EN-129	821.9 821.9	Upper Aquifer Upper Aquifer
EN-130	767449		345.6	850.46	850.12	-0.		MH	10 Arthur Ave, S of North St	30-Jun-82	33.5	32.0	6.0	18.0	32.0	14.0	2.0	0.010	PVC	2.0	PVC	31.8	EN-130	818.7	Upper Aquifer
EN-131	766631	.8 9676		859.52	862.22			SP	Monroe St & Jackson Ave (NW corner)	23-Jun-82	47.0	43.0	3.3	34.0	43.0	9.0	2.0	0.010	PVC	2.0	PVC	43.5	EN-131	816.0	Upper Aquifer
EN-132	766896		371.3	848.84	848.49			MH	Jefferson Ave (N end), outside building	13-Oct-82	41.0	40.0	6.0	25.0	40.0	15.0	2.0	0.010	PVC	2.0	PVC	38.0	EN-132	810.8	Upper Aquifer
EN-133	766913			848.57	846.95	-1.0		MH	Jefferson Ave (N end), outside building	22-Oct-82	41.0	41.0	16.0	27.0	38.0	11.0	10.0	0.030	SS	10.0	BS	38.0	EN-133	810.6	Upper Aquifer
EN-146 EN-148	768041 767892		97.4 82.5	834.61 848.86	837.49 851.61	2.8			W of E truck gate for Building 96 Building 39 (NW corner)	29-Dec-82 30-Dec-82	22.0 26.0	21.0 26.0	8.0 6.0	7.0 11.0	21.0 25.0	14.0 14.0	4.0	0.010 0.010	PVC NA	4.0	PVC NA	20.0 NE	EN-146 EN-148	814.6 NE	Upper Aquifer Upper Aquifer
EN-149	767125			838.28	841.06				SW of former lagoon, N of RR tracks	08-Sep-83	25.5	25.5	6.0	15.5	25.5	10.0	2.0	NA	NA	2.0	NA NA	NE	EN-149	NE	Upper Aquifer
EN-150	767120			838.31	841.04	2.7			SW of former lagoon, N of RR tracks	08-Sep-83	47.0	46.0	6.0	36.0	46.0	10.0	4.0	NA	NA	4.0	NA	46.5	EN-150	791.8	Upper Aquifer
EN-151	767207	.6 9638		836.09	838.74	2.6			SW of former lagoon, N of RR tracks	09-Sep-83	52.0	49.0	6.0	39.0	49.0	10.0	4.0	NA	NA	4.0	NA	49.0	EN-151	787.1	Upper Aquifer
EN-152	767207		304.4	836.07	838.74	2.6			SW of former lagoon, N of RR tracks	09-Sep-83	25.0	24.5	6.0	14.5	24.5	10.0	2.0	NA	NA	2.0	NA	NE 04.0	EN-152	NE 044.5	Upper Aquifer
EN-153 EN-154B	767250		02.8	835.49 836.80	838.21 838.98	2.7		SP SP	SW of former lagoon, N of RR tracks NYSEG property, ~10 ft S of EN-154	07-Sep-83 04-Aug-04		20.0 43.0	6.0 6.0	10.0 41.0	20.0 43.0	10.0 2.0	2.0	NA 0.010	NA PVC	2.0	NA PVC	21.0 NE	EN-153 EN-154B	814.5 NE	Upper Aquifer Upper Aquifer
EN-154B					838.73				NYSEG property, ~10 ft SE of EN-154	27-May-05		29.2	20.0	22.0	24.0	2.0	14.0	0.010	SS	14.0	SS	NE NE	EN-154R	NE	Upper Aquifer
EN-156	767495		68.6	838.20	840.98				Kentucky Ave, NE of HBE School dock	21-Feb-84		36.0	6.0	26.0	36.0	10.0	2.0	0.020	SS	2.0	SS	Absent	EN-156	Absent	Upper Aquifer
EN-157	767051		43.0	838.16	840.89				Kentucky Ave, next to John Deere fence	22-Feb-84	46.5	41.0	6.0	31.0	41.0	10.0	2.0	0.020	SS	2.0	SS	Absent?	EN-157	Absent?	Upper Aquifer
EN-158	767049			852.83	855.67				Jackson Ave, Building 251 (HBE School)	24-Feb-84		31.0	6.0	21.0	31.0	10.0	2.0	0.020	SS	2.0	SS	30.0	EN-158	822.8	Upper Aquifer
EN-160 EN-161	766607 766402			847.17 844.52	848.82 847.17				Garfield Ave & Monroe St (NE corner) Monroe St & Roosevelt Ave (SE corner)	06-Apr-84 21-Aug-84		39.0 30.8	16.0 8.0	28.0 15.4	36.0 30.8	8.0 15.4	10.0 2.0	0.020 0.020	SS SS	10.0 2.0	BS SS	35.5 29.5	EN-160 EN-161	811.7 815.0	Upper Aquifer Upper Aquifer
EN-161T				844.50	843.31	-1.			E side Roosevelt Ave, ~ 5 ft N of EN-161	18-Oct-05		32.0	8.0	22.0	27.0	5.0	8.0	0.020	SS	8.0	SS	27.0	EN-161T	817.5	Upper Aquifer
EN-162	766289	.3 967	37.1	853.80	856.48			SP	11 Adams Ave, front of house	22-Aug-84	41.5	41.0	8.0	26.0	41.0	15.0	2.0	0.020	SS	2.0	SS	39.5	EN-162	814.3	Upper Aquifer
EN-163	766431			857.93	860.31	2.3			104 Arthur Ave, front of house	23-Aug-84		41.0	8.0	26.0	41.0	15.0	2.0	0.020	SS	2.0	SS	41.0	EN-163	816.9	Upper Aquifer
EN-164	767402		07.8	839.55	842.10				Former lagoon, next to RR tracks	20-Feb-85		17.5	9.0	12.5	17.5	5.0	4.0	0.020	PVC	4.0	PVC	16.5	EN-164	823.1	Upper Aquifer
EN-165 EN-166	767347 767694)32.5)19.0	835.86 834.79	838.31 837.32	2.5			Former lagoon (SW corner) Former lagoon (NW corner)	21-Feb-85 21-Feb-85		22.0 18.0	9.0 9.0	12.0 8.0	22.0 18.0	10.0 10.0	4.0	0.020 0.020	PVC PVC	4.0 4.0	PVC PVC	NE NE	EN-165 EN-166	NE NE	Upper Aquifer Upper Aquifer
EN-167	767855		21.8	836.00	835.48				Building 95 (inside)	25-Feb-85		17.0	9.0	7.0	17.0	10.0	4.0	0.020	PVC	4.0	PVC	18.0	EN-167	818.0	Upper Aquifer
EN-170	766581			844.29	847.08				Monroe St & Roosevelt Ave (NE corner)	28-Feb-85		30.5	7.0	20.5	30.5	10.0	2.0	0.020	SS	2.0	SS	29.5	EN-170	814.8	Upper Aquifer
EN-173	766748	.4 9670	39.9	846.52	846.33			MH	Parking lot N of building on Adams Ave	06-Mar-85	37.0	35.5	7.0	25.5	35.5	10.0	2.0	0.020	SS	2.0	SS	34.5	EN-173	812.0	Upper Aquifer
EN-174	766797			853.19	855.83				36 Arthur Ave	07-Mar-85		31.0	7.0	21.0	31.0	10.0	2.0	0.020	SS	2.0	SS	29.5	EN-174	823.7	Upper Aquifer
EN-175	766605 767315			844.92 840.19	844.15 842.88				Adams & Monroe (NW corner), inside manhole Building 96 former lagoon (SW corner)	03-Aug-85 16-Oct-85		33.0 25.0	16.0 9.0	24.0 15.0	30.0 25.0	6.0	10.0	0.045 0.020	SS PVC	10.0 4.0	BS PVC	30.0 NE	EN-175 EN-176	814.9	Upper Aquifer
EN-176 EN-177	767511		79.9	839.20	842.88			SP SP	Building 96 former lagoon (SW corner)	16-Oct-85	25.0 25.0	16.0	7.0	7.0	16.0	10.0 9.0	4.0	0.020	PVC	4.0	PVC	NE 14.0	EN-176 EN-177	NE 825.2	Upper Aquifer Upper Aquifer
EN-178	765414		28.8	851.40	854.18				Riverview Dr, E of well EN-D04, near river	14-Nov-86		38.0	8.0	33.0	38.0	5.0	2.0	0.020	PVC	2.0	PVC	37.5	EN-178	813.9	Upper Aquifer
EN-179	765739			832.05	831.57				Riverview Dr, N of supply wells	14-Nov-86		23.5	8.0	17.5	22.5	5.0	2.0	0.010	PVC	2.0	PVC	21.5	EN-179	810.6	Upper Aquifer
EN-180	765914			831.64	831.21				Riverview Dr, N of supply wells	14-Nov-86		33.7	8.0	23.7	33.7	10.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-180	Absent	Upper Aquifer
EN-182	766588		890.5	844.85	847.90				Monroe St (N side) between Roosevelt & Adams	29-Nov-88		27.0	10.0	22.0	27.0	5.0	2.0	0.010	SS	10.0	SS	30.4	EN-182	814.5	Upper Aquifer
EN-183 EN-184	766591 768400		957.9 925.6	844.61 844.14	846.97 846.44				Monroe St (N side) between Roosevelt & Adams Parking Lot No. 13 entrance, fourth from Hayes Ave	30-Nov-88 13-Dec-89		27.5 14.0	10.0 6.0	22.5 9.0	27.5 14.0	5.0 5.0	2.0	0.010 NA	SS SS	2.0	SS SS	30.2 14.0	EN-183 EN-184	814.4 830.1	Upper Aquifer Upper Aquifer
EN-185	766590		50.7	844.53	846.63				Monroe St (N side) between Roosevelt & Adams	19-Apr-89		33.0	16.0	22.9	29.9	7.0	10.0	0.070	SS	10.0	LCS	30.2	EN-104 EN-185	814.3	Upper Aquifer
	. 30000	- 1000					- 1				, ,,,,	30.0						3.0.0						20	>FF -1 / 1941101

December 22, 2016 Page 2 of 7

	<u>, </u>	1		Current		0		141141		•	Davis s	Depth to	Depth to	0			0	0!	0!	Donath to		T 6 0 114	
Well ID	Northing	Easting	G.S. Elevation	M.P.	Stickup	Surface Completion	Location Description	Installation Date	Drilled Depth	Casing Depth	Boring Diameter	Screen	Screen	Screen Length	Screen Diameter	Slot Size	Screen Material	Casing Diameter	Casing Material	Depth to Top of Silt	Well ID	Top of Silt Elevation	Unit
	(grid feet) (grid feet)	(ft amsl)	(ft amsl)		-			(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)		(ft bgs)		(ft amsl)	+
EN-185P	766597.1	966952.0	844.60	847.58	2.98	SP	Monroe St (N side) between Roosevelt & Adams	03-Feb-11	35.0	35.0	20.0	28.8	30.0	1.3	10.0	0.050	SS	11.0	SS	31.4	EN-185P	814.1	Upper Aquifer
EN-186	767790.5		848.94	851.62	2.68	SP	Building 87 (N side), new tank farm along RR tracks	19-May-89		23.5	6.0	13.5	23.5	10.0	2.0	NA	SS	2.0	SS	20.5	EN-186	828.4	Upper Aquifer
EN-187 EN-188	767750.6 767638.5		848.90 848.33	851.66 848.13	2.76 -0.20	SP MH	W of Building 039 Building 87 (S side), new tank farm along RR tracks	15-Aug-89 16-Aug-89	30.0 30.0	27.5 27.5	8.0 8.0	17.2 17.2	27.5 27.5	10.3 10.3	2.0	0.010 0.010	SS SS	2.0	SS SS	20.0	EN-187 EN-188	828.9 828.3	Upper Aquifer Upper Aquifer
EN-189	767745.6	_	848.30	851.00	2.70	SP	SE corner of Building 87, new tank farm	16-Aug-89	30.0	27.5	8.0	17.2	27.5	10.3	2.0	0.010	SS	2.0	SS	20.0	EN-189	828.3	Upper Aquifer
EN-190	766673.4		849.26	851.76		SP	Grant Ave (W side), Parking Lot No. 40	13-Nov-90	36.0	32.5	8.0	22.5	32.5	10.0	2.0	0.010	SS	2.0	SS	33.0	EN-190	816.3	Upper Aquifer
EN-191A	766528.4	_	848.60	848.52	-0.08	MH	1409 Monroe St, 10 ft W of EN-191	09-Aug-05	40.0	38.0	8.0	23.0	38.0	15.0	2.0	0.020	PVC	2.0	PVC	38.0	EN-191A	810.6	Upper Aquifer
EN-192 EN-193	766545.3 766578.0	_	847.98 845.51	850.71	2.73	SP SP	Parking Lot No. 41, Monroe St W of McKinley Monroe St between McKinley & Roosevelt	16-Nov-90 19-Nov-90	36.0	32.1 32.1	8.0 8.0	22.1 22.1	32.1 32.1	10.0 10.0	2.0	0.010 0.010	SS SS	2.0	SS SS	31.5 33.0	EN-192 EN-193	816.5 812.5	Upper Aquifer
EN-193	766532.8		1	848.28 843.46	-5.12	Vault	Parking Lot No. 10, Monroe St E of Garfield	04-Feb-91	36.0 40.0	40.0	16.0	29.0	37.0	8.0	10.0	0.010	SS	10.0	SS	37.0	EN-193	811.6	Upper Aquifer Upper Aquifer
EN-195	766583.4	_	845.31	838.02	-7.29	Vault	Monroe St between McKinley & Roosevelt	15-Feb-91	38.0	36.0	16.0	26.0	33.0	7.0	10.0	0.030	SS	10.0	S	33.0	EN-195	812.3	Upper Aquifer
EN-200	768873.4		847.97	850.27	2.30	SP	Building 53 (E side), inside?	07-Oct-92	25.0	21.3	12.0	11.3	21.3	10.0	4.0	0.010	SS	4.0	SS	20.8	EN-200	827.2	Upper Aquifer
EN-202 EN-203	766785.8 766231.7		846.07 843.35	848.44 846.10	2.37	SP SP	North St & Clevel& Ave (SW corner) Parking lot next to Ideal Alley W of Garfield Ave	07-Oct-92	48.0 37.0	47.5 35.5	12.0 12.0	27.5 20.5	47.5 35.5	20.0 15.0	4.0 4.0	0.010 0.010	SS SS	4.0	SS SS	44.1 32.8	EN-202 EN-203	802.0 810.6	Upper Aquifer
EN-203	766006.6		854.47	856.44	1.97	SP	Roosevelt Ave & Main St (NE corner)	27-Oct-92 23-Oct-92	59.0	57.4	12.0	32.4	57.4	25.0	4.0	0.010	SS	4.0	SS	56.6	EN-203	797.9	Upper Aquifer Upper Aquifer
EN-206	765630.8		856.84	859.47	2.63	SP	Tracy St & Adams Ave (NW corner)	23-Apr-93	50.0	47.9	12.0	37.5	47.5	10.0	4.0	0.010	SS	4.0	SS	47.5	EN-206	809.3	Upper Aquifer
EN-207	765103.8		852.74	854.92	2.18	SP	Riverview Dr near end of Arthur Ave	19-Oct-92	47.5	45.0	12.0	40.0	45.0	5.0	4.0	0.010	SS	4.0	SS	43.5	EN-207	809.2	Upper Aquifer
EN-208A EN-210	765316.0 764809.6		851.96 847.98	851.64 850.67	-0.32 2.69	MH SP	1605 Tracy St	01-Jul-03 20-Apr-93	40.0 43.5	37.0 42.5	8.0 12.0	30.0 37.1	37.0 42.1	7.0 5.0	2.0 4.0	0.010 0.010	PVC SS	2.0 4.0	PVC SS	37.0 41.3	EN-208A EN-210	815.0 806.7	Upper Aquifer
EN-210	767943.8		835.20	837.73	2.53	SP	Riverview Dr near end of Roosevelt Ave Building 95 (E side)	31-Mar-93	18.5	17.5	12.0	7.1	17.1	10.0	4.0	0.010	SS	4.0	SS	16.0	EN-210	819.2	Upper Aquifer Upper Aquifer
EN-213A	765480.0	_	854.21	853.94	-0.27	MH	Tracy St & Roosevelt Ave (NW corner)	27-Jun-03	40.0	40.0	8.0	32.0	40.0	8.0	2.0	0.010	PVC	2.0	PVC	37.5	EN-213A	816.7	Upper Aquifer
EN-214A	766180.0		846.62	846.40	-0.22	MH	Columbus St between Roosevelt & McKinley Ave	25-Jul-03	38.0	37.0	8.0	22.0	37.0	15.0	2.0	0.010	PVC	2.0	PVC	NE	EN-214A	NE	Upper Aquifer
EN-214B	766180.0		846.43	846.46	0.03	MH	Columbus St between Roosevelt & McKinley Ave	24-Jul-03	52.0	48.0	8.0	43.0	48.0	5.0	2.0	0.010	PVC	2.0	PVC	49.0	EN-214B	797.4	Upper Aquifer
EN-215A EN-215B	766446.3 766448.9		848.00 847.90	847.50 847.47	-0.50 -0.43	MH MH	Grant Ave & Monroe St (SE corner), 5 ft S of EN-215B Grant Ave & Monroe St (SE corner), 10 ft S of EN-215	18-Aug-04 18-Aug-04	34.0 46.0	34.0 44.0	8.0 8.0	19.0 34.0	34.0 44.0	15.0 10.0	2.0	0.010 0.020	PVC PVC	2.0	PVC PVC	NE 44.0	EN-215A EN-215B	NE 803.9	Upper Aquifer Upper Aquifer
EN-215T	766452.0		847.70	847.19	-0.51	Vault	3 ft N of EN-215B, SE corner of Grant Ave & Monroe St	20-Oct-05	50.0	48.5	16.0	36.0/40.5	38.75/43.5	2.75/3.0	8.0	0.035/0.050	SS	8.0	SS	43.5	EN-215T	804.2	Upper Aquifer
EN-215W			847.70	847.36	-0.34	MH	Corner of Grant Ave & Monroe St, 28' S of EN-215	19-May-10	51.0	51.0	8.0	50.0	51.0	1.0	2.0	0.020	PVC	2.0	PVC	44.0	EN-215W	803.7	Upper Aquifer
EN-217A	1	967646.0	857.61	857.13	-0.48	MH	Tracy St & Arthur Ave (NW corner)	26-Jun-03	46.0	42.0	8.0	32.0	42.0	10.0	2.0	0.010	PVC	2.0	PVC	42.5	EN-217A	815.1	Upper Aquifer
EN-218 EN-219	768014.7 768178.2		834.62 842.75	837.32 843.62	2.70 0.87	SP SP	Building 95 (NE corner), on Clark St Building 47 (SE corner)	01-Jun-94 22-Oct-96	22.5 26.5	21.5 26.0	16.0 12.0	12.5 17.0	18.5 23.0	6.0	8.0 6.0	0.030 0.040	SS SS	8.0 6.0	BS LCS	18.5 23.5	EN-218 EN-219	816.1 819.3	Upper Aquifer
EN-219	768178.2	_	842.20	844.34	2.14	SP	Adjacent to EN-219, S of Building 47	27-Apr-06	28.8	28.8	16.0	21.8	23.8	2.0	8.0	0.040	SS	8.0	SS	23.8	EN-219	818.5	Upper Aquifer Upper Aquifer
EN-253	768096.3		840.79	844.41	3.62	SP	S of Building 46, along RR tracks	2000	19.0	19.0	14.0	10.7	15.9	5.2	8.0	0.025	SS	8.0	BS	NE	EN-253	NE	Upper Aquifer
EN-253R	768095.2	_	840.90	843.96	3.06	SP	S of Building 46, along RR tracks, 5 feet W of EN-253	06-Apr-15	24.0	23.8	14.0	10.5	18.0	7.5	8.0	0.025	SS	8.0	SS	18.0	EN-253R	822.9	Upper Aquifer
EN-276	767520.7		849.71	852.29	2.58	SP	Between Buildings 18 & 14	2000	35.4	35.4	20.0	28.0	32.0	4.0	12.0	0.030	SS	12.0	BS	NE 26.0	EN-276	NE 922.7	Upper Aquifer
EN-276A EN-276R	767519.3 767499.1		849.70 849.90	849.39 852.54	-0.31 2.64	MH SP	Approx. 4 ft W of EN-276, E side of Building 14 Approx. 4 ft S of EN-16, E side of Building 15	10-Apr-07 08-Jun-11	27.0 33.0	26.0 33.0	8.0 12.0	16.0 26.0	26.0 28.0	10.0 2.0	2.0 8.0	0.020 0.050	PVC SS	2.0 8.0	PVC SS	26.0 28.3	EN-276A EN-276R	823.7 821.6	Upper Aquifer Upper Aquifer
EN-277	767318.5		849.80	852.36	2.56	SP	Grant Ave & North St (SW corner)	14-May-02	29.0	24.0	8.0	22.0	24.0	2.0	NA	NA	NA	2.0	NA	24.0	EN-277	825.8	Upper Aquifer
EN-278	767158.1		848.15	850.75	2.60	SP	Grant Ave, S of North St	14-May-02	34.0	33.0	8.0	31.0	33.0	2.0	NA	NA	NA	2.0	NA	33.0	EN-278	815.2	Upper Aquifer
EN-279	767150.1		848.02	850.30	2.28	SP SP	Grant Ave, S of North St Parking lot between Grant & Garfield: 15 ft N of EN-283	14-May-02	34.0	26.0	8.0	24.0	26.0	2.0	NA	NA	NA	2.0	NA	33.0	EN-279	815.0	Upper Aquifer
EN-284 EN-284P	767197.2 767175.0		848.39 850.30	850.72 853.26	2.33	SP SP	10 ft SW of EN-284TD, in parking lot, W side of Grant Ave	16-May-02 10-Feb-06	60.0 60.8	57.0 60.8	8.0 18.0	55.0 46.0	57.0 57.8	2.0 11.8	NA 10.0	NA 0.035/0.025	NA SS	2.0 10.0	NA SS	Absent Absent	EN-284 EN-284P	Absent Absent	Upper Aquifer Upper Aquifer
EN-284TE	767181.0		850.41	853.55	3.14	SP	8 ft S of EN-283	03-Oct-03	61.0	58.0	14.0	43.3	57.0	13.8	6.0	0.035	SS	6.0	SS	Absent	EN-284TD	Absent	Upper Aquifer
EN-301	767006.0		848.47	848.16	-0.31	MH	Near 3 Jefferson Ave	17-Sep-03	38.0	34.0	8.0	24.0	34.0	10.0	2.0	0.010	PVC	2.0	PVC	34.0	EN-301	814.5	Upper Aquifer
EN-302	767206.0		843.61	843.02	-0.59	MH MH	Parking lot E of building #40	21-Jul-03	20.0	15.0	8.0	10.0 14.0	15.0	5.0	2.0	0.010	PVC	2.0	PVC	15.0 25.0	EN-302	828.6	Upper Aquifer
EN-304 EN-306A		968309.0 968426.0	849.81 838.48	849.63 838.20	-0.18 -0.28	MH	North of North St across from Delaware Lewis St	14-Jul-03 03-Jul-03	28.0 23.0	24.0	8.0 8.0	8.0	24.0 23.0	10.0 15.0	2.0	0.010 0.010	PVC PVC	2.0	PVC PVC		EN-304 EN-306A	824.8 Absent	Upper Aquifer Upper Aquifer
EN-306B		968439.0		838.24		MH	Lewis St	02-Jul-03	50.0	43.0	8.0	33.0	43.0	10.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-306B	Absent	Upper Aquifer
EN-307		968786.0	844.93	844.59		MH	Maryland Ave & Tracy St, NW corner	17-Jun-03	38.0	25.0	8.0	17.0	25.0	10.0	2.0	0.010	PVC	2.0	PVC	23.7	EN-307	821.2	Upper Aquifer
EN-308		968485.0	838.48	837.95	-0.53		Deleware Ave & Tracy St, NW corner	18-Jun-03	44.0	39.0	8.0	29.0	39.0	10.0	2.0	0.010	PVC	2.0	PVC	39.0	EN-308	799.5	Upper Aquifer
EN-309A EN-309B		968680.0 968711.0		832.28 832.35	-0.27 -0.31	MH MH	2201 Richmond Rd (N side) 2201 Richmond Rd (N side)	19-Jun-03 25-Jun-03	64.0 64.0	38.0 64.0	8.0 8.0	23.0 54.0	38.0 64.0	15.0 10.0	2.0 2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	Absent Absent	EN-309A EN-309B	Absent Absent	Upper Aquifer Upper Aquifer
EN-309C		968669.0		832.10			2109 Richmond Rd (N side)	24-Jun-03	92.0	90.0	8.0	80.0	90.0	10.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-309C	Absent	Upper Aquifer
EN-310	765245.0	966270.0	846.37	846.05	-0.32	MH	309 Grant Ave, S of Main St	08-Jul-03	32.0	28.0	8.0	18.0	28.0	10.0	2.0	0.010	PVC	2.0	PVC	28.0	EN-310	818.4	Upper Aquifer
EN-311		966366.0		849.30			Riverview Dr & Tracy St, W of McKinley Ave	09-Jul-03	52.0	45.0	8.0	35.0	45.0	10.0	2.0	0.010	PVC	2.0	PVC		EN-311	804.7	Upper Aquifer
EN-380 EN-381		966898.8		847.35 846.35		MH MH	Parking lot S of Building 32, W of Adams Ave 29 Adams Ave	13-Jul-05 14-Jul-05	24.0 28.0	22.0 24.5	8.0 8.0	12.0 14.5	22.0 24.5	10.0 10.0	2.0 2.0	0.020 0.020	PVC PVC	2.0	PVC PVC	21.1 24.4	EN-380 EN-381	826.6 822.3	Upper Aquifer Upper Aquifer
EN-382		967368.0		852.26		MH	24 Arthur Ave	12-Jul-05	34.0	30.0	8.0	20.0	30.0	10.0	2.0	0.020	PVC	2.0	PVC	30.0	EN-382	822.6	Upper Aquifer
EN-384	767466.0	967099.9	848.30	847.86	-0.44	MH	Ideal Cleaners lot, near EN-388, N of 7 Adams Ave	13-Jul-05	28.0	24.0	8.0	14.0	24.0	10.0	2.0	0.020	PVC	2.0	PVC	24.0	EN-384	824.3	Upper Aquifer
EN-385		967242.4		846.21	-0.49	MH	Ideal Cleaners lot, near EN-399	12-Jul-05	26.0	22.0	8.0	12.0	22.0	10.0	2.0	0.020	PVC	2.0	PVC	22.0	EN-385	824.7	Upper Aquifer
EN-386 EN-387A		967160.4 967458.8	848.80 851.40	848.49 854.23	-0.31 2.83	MH SP	Parking lot between Adams & Arthur Aves N edge of lot at 9 Arthur Ave	01-Oct-04 04-May-07	26.0 32.0	23.5 31.5	8.0 8.0	13.5 16.5	23.5 31.5	10.0 15.0	2.0 2.0	0.020 1.020	PVC PVC	3.0	PVC PVC	23.5 30.5	EN-386 EN-387A	825.3 820.9	Upper Aquifer Upper Aquifer
EN-392R		967440.0		846.95		MH	North of Ideal Cleaners lot, 100 ft E of Arthur Ave	13-Apr-11	24.0	21.2	8.0	11.2	21.2	10.0	2.0	0.020	CPVC	2.0	CPVC	21.2	EN-392R	827.4	Upper Aquifer
EN-393	767271.7	967034.8	848.50	847.94	-0.56	MH	Across street from 13 Adams Ave	27-Jul-04	26.0	23.0	8.0	13.0	23.0	10.0	2.0	0.010	PVC	2.0	PVC	22.8	EN-393	825.8	Upper Aquifer
EN-394		967358.5	852.10	851.42		MH	In front of 18 Arthur Ave	21-Jul-04	28.0	25.5	8.0	15.5	25.5	10.0	2.0	0.010	PVC	2.0	PVC	25.3	EN-394	826.9	Upper Aquifer
EN-395 EN-396		967649.2		849.91 848.45	-0.29 -0.35	MH MH	In front of 10 Jackson Ave Across street from 3 Arthur Ave	22-Jul-04 21-Jul-04	26.0 26.0	24.0	8.0 8.0	14.0 13.5	24.0 23.5	10.0 10.0	2.0 2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	23.8 23.5	EN-395 EN-396	826.5 825.3	Upper Aquifer Upper Aquifer
EN-396		967296.5		844.83			E end of Huron parking lot, next to Endicott Forging	22-Jul-04	24.0	21.5	8.0	11.5	21.5	10.0	2.0	0.010	PVC	2.0	PVC		EN-397	823.7	Upper Aquifer
EN-398	767888.5	967104.0	845.70	845.22	-0.48	MH	W end of Huron parking lot, next to Endicott Forging	23-Jul-04	22.0	19.5	8.0	8.5	18.5	10.0	2.0	0.010	PVC	2.0	PVC	18.5	EN-398	827.2	Upper Aquifer
EN-399		967537.8		846.23	-0.37		North St (S side) between Arthur & Jackson Ave	05-Aug-03	24.0	19.5	8.0	12.5	19.5	7.0	2.0	0.010	PVC	2.0	PVC	19.8	EN-399	826.9	Upper Aquifer
EN-400A EN-400B		969335.0	855.82 855.88	855.46 855.50			7 ft E of EN-400B, 2507 North St NE intersection of North/Young, 2507 North St	12-Sep-03 05-Sep-03	27.0 52.0	27.0 47.0	8.0 8.0	17.0 37.0	27.0 47.0	10.0 10.0	2.0 2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	NE 47.5	EN-400A EN-400B	NE 808.4	Upper Aquifer Upper Aquifer
EN-400B		967267.0				MH	E side of Roosevelt Ave	20-Aug-03	42.0	39.0	8.0	24.0	39.0	15.0	2.0	0.010	PVC	2.0	PVC	39.0	EN-400B EN-401	813.1	Upper Aquifer Upper Aquifer
	. 55.01.0							9 00		30.0			30.0			2.0.0						2.0.1	

December 22, 2016 Page 3 of 7

March State Process						Current						l	J		Depth to	Depth to										
Part	Well ID	No	rthing	Easting	G.S.	MP		un	Surface	Location Description	Installation	Drilled	Casing	Boring			Screen		Slot Size	Screen	Casing	Casing	Depth to	Well ID	Top of Silt	Unit
March Marc						Elevatio			ompletion		Date		-							Material		wateriai				
March Property 1977 1978 19	EN 404144			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						E : 1 (D 11 A	04.14 40						-			D) (O		D) (0		EN 404144		11 0 15
Control						_	_	_																		
Section Sect										,																
March Marc									MH	NW intersection of Massachusetts Ave & Tracy St																Upper Aquifer
										,																Upper Aquifer
Head 1977 1988 1989																										Upper Aquifer
The control Control						_																				
March Process Proces																										
March 1975 1985																										Upper Aquifer
Part Part																										Upper Aquifer
Fig. 14 Process Section Process Sect																										Upper Aquifer
Fig. 14 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 1 Fig. 2																					_					
Fig. 12 Fig. 2										·																
RAMERING 1977-20 1809-200 1977-20 1809-200 1977-20 1										· · · · · · · · · · · · · · · · · · ·																Upper Aquifer
EMAPLY 787500 895100 81155 81121 6757 MIL Called Chemomy Res. 27 Aug 55 620		767								Ü																Upper Aquifer
Section Sect										ŭ																Upper Aquifer
Fig. 12 Part																										
EMAIN Mills Mill						_																				Upper Aquiler Upper Aquiler
PATRIC 1975																										Upper Aquifer
Fig. 42 Fig. 52 Fig.		767	7362.0				_	_			30-Sep-03	28.0					5.0			PVC						Upper Aquifer
PA-426 PROFESS SECTION SECTI										1 9																Upper Aquifer
Fig. 25, 1955, 1										1 0																
Fig. 12 Fig. 1998 1997										· · · · · · · · · · · · · · · · · · ·																
EM-429 790006 590007 5900 5910 5010 5																										Upper Aquifer
Section Sect																										Upper Aquifer
Fig. 14 Fig. 15 Fig. 25 Fig. 25 Fig. 25 Fig. 26 Fig. 26 Fig. 25 Fig. 26 Fig. 25 Fig. 26 Fig. 25 Fig. 25 Fig. 26 Fig. 25 Fig. 26 Fig. 25 Fig. 26 Fig. 25 Fig. 26 Fig. 25 Fig. 26 Fig.										,																Upper Aquifer
EN-432 787905 9800505 980050 98100																										
EM-323 7874028 9600058 88130 88170 42.02 MH 37 ft W of EM-42 on North St 20-Agr-04 20.0 24.0 10.0 14.0 0.010 PVC 4.0 PVC 24.0 EM-328 282.73 Upper Aquite EM-328 787477 7802023 58150																										
EN-436 7674217 982592 58150 861 57 2.25 MH 35 EW of EN-422 on North ST 21-Apr-018 300 32.5 10.0 16.5 26.5 10.0 4.0 0.000 PVC 4.0 PVC 25.5 EN-436 52.5 10.0 4.0 10.0 1																										Upper Aquifer
EN-436 76707.5 9869229 8 1970 6 1942 0.28 MH 45 RE of EN-422, on North ST 22-Apr-06 28.0 25.0 15.0 15.0 25.0 15.0 2.0 0.010 PVC 2.0 PVC 2.5 EN-459 615.0 20.0 20.0 EN-459 615.0 20.0 20.0 20.0 20.0 PVC 2.0 PVC 3.5 EN-459 615.0 20.0 20.0 20.0 PVC 3.0 EN-459 615.0 20.0 20.0 20.0 PVC 3.0 EN-459 615.0 20.0 20.0 20.0 PVC 3.0 EN-459 615.0 EN-459 615.0 EN										,																Upper Aquifer
EN-489 767015 8 1965016 4 649.30 489.04 - 0.26 MH N of EN-V2 in municipal parking lot 27-5/pr-04 880 340 150 20 50 50 50 50 20 70 PVC 33 8 EN-483 8155 Upper Aquific EN-483 769725 1 10005413 87.70 20 900 MH S of EN-482 in municipal parking lot 27-5/pr-04 880 350 80 10 10 340 150 20 0010 PVC 20 PVC 34 0 EN-483 8155 Upper Aquific EN-483 769725 1 10005413 87.70 20 900 MH S of EN-483 87.70 20 900										,																Upper Aquifer
EN-459 769685 3 96907 0 5000 0 47.71 2.29 MH E side of Grant Aver Entwern North St & Morror North North St & Morror North North St & Morror North																					_					
EN-438 766729 5 985641 3 947.20 8 847.00 8 MPT S of EN-32 in municipal parking lot		_																			_					
EN-1998 (7664).7 (1967).2 (1974). (197																										Upper Aquifer
EN-4489 F66443.5 965721.5 844 60. 844 34 9. 26 MH 1 SW corner of Morrore St & Garfield Ave 28-Apr-04 40.0 37.5 8.0 27.5 15.0 2.0 0.010 PVC 2.0 PVC 37.5 EN-449 8117. Upper Aquife EN-4441 766471.2 965946.5 847.59 847.19 4.031 MH 2 Side of Morrore St, EV of Grant Ave 28-Apr-04 40.0 37.5 8.0 22.5 37.5 15.0 2.0 0.010 PVC 2.0 PVC 37.5 EN-441 810.0 Upper Aquife EN-4422 Post-04 84.0 40.0 10.0 10.0 10.0 10.0 10.0 10.0 1	EN-438W	766	6689.0	965644.9	847.20	846.87	-0.3	3	MH	M&T Parking Lot, 40 ft S of EN-438	18-May-10	44.0	44.0				1.0	2.0	0.020		2.0		34.0	EN-438W	813.2	Upper Aquifer
EN-440 766494.1 0 968393.7 845.70 845.53 - 0.17 MH Saided Microre SIL of Garlied Ave 22-Apr.C4 83.0 34.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-440 811.7 Upper Aguife EN-4442 76652.2 9 66165.0 849.0 847.50 847.9 0.31 MH Saided Microre SIL of Grant Ave 17-Apr.C4 31.0 31.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-4428 807.2 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0																										Upper Aquifer
EN-4441 7664712 965948.5 847.59 437.19 -0.31 MH Side of Morroes EL GO Grant Ave 27-Apr.04 31.0 31.0 6.0 21.0 31.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-442A NE Upper Aguife EN-442B 766522.3 966162.6 848.20 847.79 40.8 MH N side of Morroes EL GO Grant Ave 12-Apr.04 31.0 51.0 6.0 31.0 10.0 2.0 0.010 PVC 2.0 PVC ME EN-442A NE Upper Aguife EN-443B 76655.5 966167.5 847.10 846.75 -0.35 MH N side of Morroes EL GO Grant Ave 12-Apr.04 36.0 31.0 41.0 10.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-442B 807.2 Upper Aguife EN-444A 76655.5 966167.5 847.10 846.55 846.5																										
EN-442A 766522 3 966180 8 849.0 847.92 0-48 MH N side of Monroe St. E of Grant Ave 13-Apr-04 10 310 6.0 21.0 10.0 2.0 0.010 PVC 2.0 PVC 41.0 EN-442A NE Upper Aguife EN-4438 766545 9 960479.5 847.10 846.75 0-35 MH N side of Monroe St. E of McKinley Ave 19-Apr-04 36.0 33.5 6.0 18.5 33.5 15.0 2.0 0.010 PVC 2.0 PVC 33.5 EN-443 813.6 Upper Aguife EN-444B 766531.7 960600 9 846.00 846.54 0-32 MH W side of Grant Ave, Sof Monroe St. E 8-Apr-04 48.0 48.5 8.0 32.0 0.010 PVC 2.0 PVC 33.5 EN-443 813.6 Upper Aguife EN-444B 766531.7 960600 9 846.00 846.54 0-30 MH W side of Grant Ave, Sof Monroe St. E 8-Apr-04 48.0 48.5 6.0 3.0 0.010 PVC 2.0 PVC 35.0 EN-444B 801.4 Upper Aguife EN-444B 766531.7 960600 9 846.00 846.54 0-30 MH W side of Grant Ave, Sof Monroe St. E8-Apr-04 48.0 48.5 6.0 30.5 45.5 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-444B 801.4 Upper Aguife EN-444B 76628.0 960609 1 845.00 846.0 846.54 0-30 MH W side of Grant Ave, Sof Monroe St. E8-Apr-04 48.0 48.0 48.5 10.0 0.010 PVC 2.0 PVC 35.0 EN-444B 801.4 Upper Aguife EN-444B 76628.0 960609 1 845.0 846										, -																
EN-4428 766522 3 966162 6 847.0 46.0 5 847.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46										,																Upper Aquifer
EN-444A 76355.1 966049.9 846.90 846.54 -0.32 MH W side of Grant Ave. S of Morrore St 28-Apr-04 48.0 45.5 6.0 30.5 45.5 15.0 2.0 0.010 PVC 2.0 PVC 45.5 EN-444A NE Upper Aquife EN-4445 76615.8 965741.2 841.10 840.88 -0.22 MH W side of Grant Ave. S of Morrore St 28-Apr-04 48.0 45.5 6.0 30.5 45.5 15.0 2.0 0.010 PVC 2.0 PVC 45.5 EN-444B 80.1 Upper Aquife EN-445.7 76615.8 965741.2 841.10 840.88 -0.22 MH W side of Grant Ave. S of Morrore St 29-Apr-04 48.0 45.0 15.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-446B 80.1 Upper Aquife EN-446B 766226.9 966058.9 845.0 845.0 1 0.0 845.02 -0.0 845.0 1 0.0 10.0 PVC 2.0 PVC NE EN-446B 80.1 Upper Aquife EN-446B 766226.9 966058.9 845.0 845.0 1 0.0 845.75 -0.0 5 MH W side of Grant Ave. S of Morrore St 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-446B 80.1 Upper Aquife EN-447B 766163.9 966550.0 846.10 845.75 -0.0 5 MH W side of Grant Ave. S of Morror St 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-447B 707.6 Upper Aquife EN-447B 766163.9 966550.0 846.10 845.75 -0.0 5 MH W side of Grant Ave. S of Morror St 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-447B 707.6 Upper Aquife EN-447B 766163.9 966550.0 846.10 845.73 -0.0 5 MH W side of Grant Ave. S of Morror St 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-447B 707.6 Upper Aquife EN-447B 766163.9 966550.0 846.0 845.73 -0.0 37 MH SW corner of McKinley Ave & Columbus St 20-Apr-04 48.0 45.0 6.0 30.1 16.5 31.5 16.0 2.0 0.010 PVC 2.0 PVC NE EN-447B 707.6 Upper Aquife EN-447B 766163.9 966542.1 846.0 846.2 30.2 30.0 SP S S 46.5 EN-447B 707.6 Upper Aquife EN-447B 766163.9 966542.1 846.0 846.2 30.0 SP S 46.5 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0	EN-442B	766	5522.3	966162.6	848.20	847.94				•	12-Apr-04	44.0							0.010		2.0			EN-442B	807.2	Upper Aquifer
EN-444B 766351.7 966050.9 846.54 0.36 MH Wide of Grant Ave, S of Monroe St 29-Apr-04 48.0 45.5 6.0 30.5 45.5 15.0 2.0 0.010 PVC 2.0 PVC 45.5 EN-444B 801.4 Upper Aquiff EN-446A 766224.0 966059.1 845.40 845.80 2.0 38.0 MH Wide of Grant Ave, S of Monroe St 29-Apr-04 28.0 28.0 6.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-446A NE Upper Aquiff EN-446B 860.4 845.11 2.0 2.0 MH Wide of Grant Ave, S of Monroe St 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-446B 800.4 NE Upper Aquiff EN-447A 766164.1 966508.6 846.10 845.75 0.35 MH SW comer of McKinley Ave & Columbus St 21-Apr-04 31.5 31.5 6.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC NE EN-447A NE Upper Aquiff EN-447T 766164.3 966512.4 846.00 845.30 2.30 SP SE comer of McKinley Ave & Columbus St 20-Apr-04 52.0 48.5 6.0 35.5 48.5 16.0 2.0 0.010 PVC 2.0 PVC NE EN-447A 797.5 Upper Aquiff EN-448 76608.0 846.20 0.41 MH Sw comer of McKinley Ave & Columbus St 20-Apr-04 52.0 48.5 6.0 36.5 48.5 6.0 36.5 48.5 6.0 36.5 48.5 6.0 48.5																		_								Upper Aquifer
EN-445 766115.8 965741.2 B41.10 840.88 -0.22 MH W side of Garfield Ave, S of Monroe St 15-Apr-04 28.0 33.0 6.0 18.0 33.0 15.0 2.0 0.010 PVC 2.0 PVC 33.0 EN-4458 808.1 Upper Aquife EN-446B 766228.0 966058.9 845.0 845.01 -0.29 EN-4458 NE VIDEO AND AND AND AND AND AND AND AND AND AND										,																
EN-446A 766228.0 966059.1 845.40 845.02 0.38 MH W side of Grant Ave. S of Monroe St 29-Apr-04 28.0 28.0 6.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-446A REVAILED AND ADDRESS 29-Apr-04 28.0 28.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC 45.0 EN-446A 88.00 44.77																										Upper Aquifer
EN-446B 768224 0 966058.9 845.40 845.11 -0.29 MH Wide of Grant Ave, S of Monroe S1 29-Apr-04 48.0 45.0 6.0 30.0 45.0 15.0 2.0 0.010 PVC 2.0 PVC 45.0 EN-446R 80.4 Upper Aquife EN-447B 766163.8 96650.8 346.10 845.73 -0.35 MH SW corner of McKinley Ave & Columbus S1 21-Apr-04 31.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 48.5 EN-447B 77.6 EN-447B 766163.8 96650.8 346.10 845.73 -0.37 MH SW corner of McKinley Ave & Columbus S1 20-Apr-04 52.0 48.5 6.0 33.5 48.5 15.0 2.0 0.010 PVC 2.0 PVC 48.5 EN-447B 77.6 Upper Aquife EN-447T 766163.8 966512.4 846.00 843.30 2.30 SP SE corner of McKinley Ave & Columbus S1 22-Apr-04 52.0 48.5 6.0 33.5 48.5 15.0 2.0 0.010 PVC 2.0 PVC 48.5 EN-447B 77.6 Upper Aquife EN-449 766894.9 968445.5 848.70 -0.41 MH parking I on E side of McKinley Ave & Columbus S1 22-Apr-04 28.0 26.0 6.0 16.0 2.0 0.010 PVC 2.0 PVC 48.5 EN-447B 77.5 Upper Aquife EN-449 765808.4 966781.8 857.30 857.00 -0.30 MH SW corner of McKinley Ave & Columbus S1 22-Apr-04 28.0 26.0 6.0 16.0 26.0 10.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-449 PVC 2.0 PVC 49.0 EN-449 765808.4 966781.8 857.30 857.00 -0.30 MH Wide of Washington Ave 22-Apr-04 28.0 26.0 6.0 34.0 49.0 15.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-449 PVC 2.0 PVC 49.0 EN-449 765808.1 966598.7 9468.0 846.26 -0.24 MH Wide of Madison Ave, Nof Monroe 125-Apr-04 34.0 30.0 6.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 30.0 EN-459 8168.3 Upper Aquife EN-451 766896.3 96505.0 846.6 86.5 80 -0.64 Sulf Installed inside of 1 Automore 130-Apr-04 38.0 35.0 6.0 20.0 35.0 15.0 2.0 0.010 PVC 2.0 PVC 33.0 EN-451 811.5 Upper Aquife EN-451 766896.3 96536.8 841.70 841.42 -0.28 MH Side of Monroe SI, W of Washington Ave 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 33.0 EN-451 811.5 Upper Aquife EN-452 766854.2 965368.8 841.70 841.42 -0.28 MH Side of Monroe SI, W of Monroe SI 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 33.0 EN-455 810.7 Upper Aquife EN-455 766537.8 965754.9 8452.0 96538.8 847.0 842.2 -0.28 MH Side of Monroe SI, W of Monroe SI 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC					845.40					- ,								_								Upper Aquifer
EN-447B 766163.8 966505.0 846.10 845.73 -0.37 MH SW corner of McKinley Ave & Columbus St 20-Apr-04 52.0 48.5 6.0 33.5 48.5 15.0 2.0 0.010 PVC 2.0 PVC 48.5 EN-447B 797.6 Upper Aquife EN-4497 766164.3 966512.4 846.00 848.29 -0.41 MH parting tot no side of McKinley Ave & Columbus St 26-Jul-06 54.0 52.5 16.0 40.045.0 43.047.5 3.02.5 NA 0.0350.070 SS 8.0 PVC 25.8 EN-448 82.0 44.1 MH parting tot no side of McKinley Ave, N of Monroe 22-Apr-04 28.0 26.0 6.0 16.0 26.0 10.0 2.0 0.010 PVC 2.0 PVC 25.8 EN-448 82.2 Upper Aquife EN-449 765808.4 966781.8 857.30 857.00 -0.30 MH SW corner of Main St & Rosewert Ave 22-Apr-04 52.0 49.0 6.0 34.0 49.0 15.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-449 808.3 Upper Aquife EN-450 7669818.7 965986.7 846.80 846.27 -0.53 MH W side of Madison Ave, N of Monroe 25-Apr-04 30.0 6.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-450 816.8 Upper Aquife EN-451 766898.3 965056.1 846.50 846.26 -0.24 MH W side of Madison Ave, N of Monroe 30-Apr-04 30.0 35.0 6.0 20.0 35.0 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-451 816.8 Upper Aquife EN-451 766898.0 965055.0 846.8 6.0 845.9 -0.64 Vault Installed inside of Linc hasing of EN-451 TO 11-Mar-07 42.0 41.0 NA 34.5 36.0 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-451 811.5 Upper Aquife EN-453 7666426.3 965378.3 841.70 841.42 -0.28 MH Side of Monroe St. W of Washington Ave 23-Aug-04 36.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-456 766574.8 965578.3 844.70 843.22 -0.18 MH Side of Monroe St. W of Washington Ave 23-Aug-04 38.0 34.0 8.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-457 7666574.6 965578.3 845.70 845.20 48.4 42.2 -0.28 MH E side of Ideal Alley, N of Monroe St. 25-Aug-04 38.0 34.0 8.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-456 810.7 Upper Aquife EN-4576 766578.8 94578.9 845.20 845.00 -0.20 MH E side of Garnet Ave, N of Monroe St. 25-Aug-04 38.0 34.0 8.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-4578 813.7 Upper Aquife EN-4578 7660550.9 966071.8 843.00 966731.8 847.60 840.20 966731.8 847.60 840.20 966731										•																Upper Aquifer
EN-4477 7661643 966512.4 848.00 848.30 2.30 SP SE corner of McKinley Ave & Columbus S1 26-Jul-05 54.0 52.5 16.0 40.0/45.0 43.0/47.5 3.0/2.5 NA 0.0350.070 SS 8.0 SS 48.5 EN-447T 797.5 Upper Aquife EN-448 765808.4 966761.8 857.30 857.00 -0.30 MH parkinley Ave, N of Monroe 22-Apr-04 52.0 49.0 6.0 16.0 26.0 10.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-448 802.3 Upper Aquife EN-450 766918.7 965308.7 848.20 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0																		_								Upper Aquifer
EN-448 768589.4 966781.8 87.30 848.29 -0.41 MH parking lot on E side of McKinley Ave, N of Monroe 22-Apr-04 28.0 26.0 6.0 16.0 26.0 10.0 2.0 0.010 PVC 2.0 PVC 25.8 EN-448 822.9 Upper Aquife EN-449 768580.4 966781.8 87.30 87.00 -0.30 MH Wisde of Washington Ave, N of Monroe 22-Apr-04 28.0 26.0 6.0 34.0 49.0 15.0 2.0 0.010 PVC 2.0 PVC 49.0 EN-450 816.8 Upper Aquife EN-451 768580.3 965056.1 846.50 846.26 -0.24 MH Wisde of Madison Ave, N of Monroe 30-Apr-04 34.0 30.0 6.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-451 811.5 Upper Aquife EN-451 768580.3 965055.0 846.60 845.96 -0.64 Vault Installed inside of 12 inch assing of EN-451 0.0 Apr-04 34.0 34																										
EN-450 766896.3 766896.3 846.80 846.27 -0.53 MH W side of Washington Ave, N of Monroe 25-Apr-04 34.0 30.0 6.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 30.0 EN-450 816.8 Upper Aquife EN-451 766896.3 965056.1 846.50 845.26 -0.24 MH W side of Mashington Ave N of Monroe 30-Apr-04 38.0 35.0 6.0 20.0 35.0 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-451 811.5 Upper Aquife EN-453 766425.3 96536.8 841.70 841.42 -0.28 MH Side of Monroe St, W of Washington Ave 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-454 766574.6 965578.3 844.70 844.42 -0.28 MH Side of Monroe St, W of Washington Ave 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-454 810.2 Upper Aquife EN-455 766442.5 965587.8 843.40 843.22 -0.18 MH Side of Garfield Ave, N of Monroe St 25-Aug-04 32.0 30.0 8.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-454 810.7 Upper Aquife EN-456 766537.8 965754.9 845.20																										Upper Aquifer
EN-451 766896.3 965056.1 846.50 846.26 -0.24 MH W side of Madison Ave, N of Monroe 30-Apr-04 38.0 35.0 6.0 20.0 35.0 15.0 2.0 0.010 PVC 2.0 PVC 35.0 EN-451 811.5 Upper Aquife EN-451P 766898.0 965055.0 846.60 845.96 -0.64 Vault Installed inside of 12 inch casing of EN-451T 01-Mar-07 42.0 41.0 NA 34.5 36.0 1.5 6.0 0.070 SS 6.0 SS 36.0 EN-451P 810.6 Upper Aquife EN-453 766425.3 965336.8 841.70 844.42 -0.28 MH S side of Monroe St 25-Aug-04 34.0 84.5 36.0 1.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-455 766444.2 96588.2 843.40 843.22 -0.18 MH S side of Monroe St 25-Aug-04 32.0 30.0 8.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 29.8 EN-455 813.7 Upper Aquife EN-456 766537.8 965754.9 845.20 845.00 -0.20 MH E side of Garrield Ave, N of Monroe St 20-Aug-04 38.0 34.5 8.0 19.5 34.5 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-456 810.7 Upper Aquife EN-457B 766055.0 966073.8 843.20 843.20 843.30 843																										Upper Aquifer
EN-451P 766896.0 965055.0 846.60 845.96 -0.64 Vault Installed inside of 12 inch casing of EN-451T 01-Mar-07 42.0 41.0 NA 34.5 36.0 1.5 6.0 0.070 SS 6.0 SS 36.0 EN-451P 810.6 Upper Aquife EN-453 766425.3 965336.8 841.70 841.42 -0.28 MH Side of Monroe St. W of Washington Ave 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-455 766444.2 965588.2 843.40 843.22 -0.18 MH Side of Monroe St. 25-Aug-04 32.0 30.0 8.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 29.8 EN-455 813.7 Upper Aquife EN-456 766537.8 965754.9 845.20 845.00 -0.20 MH E side of Garfield Ave, N of Monroe St. 20-Aug-04 38.0 34.5 8.0 19.5 34.5 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-456 810.7 Upper Aquife EN-457B 766055.0 966073.8 843.20 842.82 -0.38 MH W side of Grant Ave, 5 ft N of EN-457B 19-Aug-04 28.0 28.0 8.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457A NE EN-457B 766505.0 966071.7 843.30 843.03 -0.27 MH W side of Grant Ave, N of Broad St. 19-Aug-04 40.0 38.0 8.0 14.0 24.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 821.3 Upper Aquife EN-458 765775.6 966319.7 844.30 843.83 -0.47 MH McKinley Interchange, NW loop 09-Feb-05 26.0 24.0 8.0 14.0 24.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 821.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St 17-Aug-04 56.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-459B 724.6 Upper Aquife EN-459B 7648604 765058.8 96422.1 848.10 847.75 -0.35 MH Side of Riverview Dr at Tracy St, E of Grant Ave No De-Aug-04 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50																										Upper Aquifer
EN-453 766425.3 965336.8 841.70 841.42 -0.28 MH S side of Monroe St, W of Washington Ave 23-Aug-04 34.0 31.5 8.0 16.5 31.5 15.0 2.0 0.010 PVC 2.0 PVC 31.5 EN-453 810.2 Upper Aquife EN-454 766574.6 965578.3 844.70 844.42 -0.28 MH E side of Ideal Alley, N of Monroe St 25-Aug-04 36.0 34.0 8.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-454 810.7 Upper Aquife EN-455 766444.2 965588.2 843.40 843.22 -0.18 MH S side of Monroe St 24-Aug-04 32.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 29.8 EN-455 813.7 Upper Aquife EN-457A 766055.0 966073.8 843.20 842.82 -0.38 MH W side of Garnit Ave, N of Monroe St 20-Aug-04 38.0 34.5 8.0 19.5 34.5 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-456 810.7 Upper Aquife EN-457B 766056.0 966071.7 843.30 843.03 -0.27 MH W side of Garnit Ave, N of Broad St 19-Aug-04 40.0 38.0 8.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457A NE Upper Aquife EN-457B 766056.0 966319.7 844.30 843.83 -0.47 MH W side of Garnit Ave, N of Broad St 19-Aug-04 40.0 38.0 8.0 12.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 805.3 Upper Aquife EN-459B 766480.9 966138.8 847.60 847.27 -0.33 MH W corner of Riverview Dr & Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 122.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-459B 724.6 Upper Aquife EN-459B 766480.4 966120.2 846.60 846.25 -0.35 MH End of Tracy St, E of Grant Ave										,																
EN-454 766574.6 965578.3 844.70 844.42 -0.28 MH E side of Ideal Alley, N of Monroe St 25-Aug-04 36.0 34.0 8.0 19.0 34.0 15.0 2.0 0.010 PVC 2.0 PVC 34.0 EN-454 810.7 Upper Aquife EN-455 766444.2 965588.2 843.40 843.22 -0.18 MH S side of Monroe St at SE corner of Ideal Alley 24-Aug-04 32.0 30.0 8.0 15.0 30.0 15.0 2.0 0.010 PVC 2.0 PVC 29.8 EN-455 813.7 Upper Aquife EN-456 766537.8 965754.9 845.20 845.00 -0.20 MH E side of Garfield Ave, N of Monroe St 20-Aug-04 38.0 34.5 8.0 19.5 34.5 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-456 810.7 Upper Aquife EN-457A 766055.0 966073.8 843.20 842.82 -0.38 MH W side of Grant Ave, 5 ft N of EN-457B 19-Aug-04 28.0 28.0 8.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-457A NE Upper Aquife EN-457B 766056.0 966071.7 843.30 843.03 -0.27 MH W Side of Grant Ave, N of Broad St 19-Aug-04 40.0 38.0 8.0 28.0 38.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 805.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 122.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-459B 724.6 Upper Aquife EN-450B 766056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-450B NE Upper Aquife EN-460A NE Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 50.0 50.0 50.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-450B NE Upper Aquife EN-460A NE Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50																										
EN-455 766444.2 965588.2 843.40 843.22 -0.18 MH S side of Monroe St at SE corner of Ideal Alley 24-Aug-04 32.0 30.0 8.0 15.0 2.0 0.010 PVC 2.0 PVC 29.8 EN-455 813.7 Upper Aquife EN-456 766537.8 965754.9 845.20 845.00 -0.20 MH E side of Garfield Ave, N of Monroe St 20-Aug-04 38.0 34.5 8.0 19.5 34.5 15.0 2.0 0.010 PVC 2.0 PVC 34.5 EN-456 810.7 Upper Aquife EN-457A 766055.0 966073.8 843.20 842.82 -0.38 MH W side of Grant Ave, S ft N of EN-457B 19-Aug-04 28.0 28.0 8.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457A NE Upper Aquife EN-457B 766056.0 966071.7 843.30 843.03 -0.27 MH W side of Grant Ave, N of Broad St 19-Aug-04 40.0 38.0 80.0 28.0 38.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 805.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 122.0 10.0/6.0 112.0 122.0 0.010 PVC 2.0 PVC NE EN-450A NE Upper Aquife EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave																										Upper Aquifer
EN-457A 766055.0 966073.8 843.20 842.82 -0.38 MH W side of Grant Ave, 5 ft N of EN-457B 19-Aug-04 28.0 28.0 8.0 13.0 28.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-457A NE Upper Aquife EN-457B 766056.0 966071.7 843.30 843.03 -0.27 MH W side of Grant Ave, N of Broad St 19-Aug-04 40.0 38.0 8.0 28.0 38.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 805.3 Upper Aquife EN-458 765775.6 966319.7 844.30 843.83 -0.47 MH McKinley Interchange, NW loop 09-Feb-05 26.0 24.0 8.0 14.0 24.0 10.0 2.0 0.020 PVC 2.0 PVC 23.0 EN-458 821.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St 17-Aug-04 56.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-459A NE Upper Aquife EN-459B 764860.4 966120.2 846.60 846.25 -0.35 MH S side of Riverview Dr at Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 120.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave O9-Aug-04 50.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-460A NE Upper Aquife	EN-455	766	6444.2	965588.2	843.40	843.22	-0.1	8	MH	S side of Monroe St at SE corner of Ideal Alley	24-Aug-04	32.0	30.0	8.0	15.0	30.0	15.0	2.0	0.010	PVC	2.0	PVC	29.8	EN-455	813.7	Upper Aquifer
EN-457B 766056.0 966071.7 843.30 843.03 -0.27 MH W side of Grant Ave, N of Broad St 19-Aug-04 40.0 38.0 8.0 28.0 38.0 10.0 2.0 0.010 PVC 2.0 PVC 38.0 EN-457B 805.3 Upper Aquife EN-458 765775.6 966319.7 844.30 843.83 -0.47 MH McKinley Interchange, NW loop 09-Feb-05 26.0 24.0 8.0 14.0 24.0 10.0 2.0 0.020 PVC 2.0 PVC 23.0 EN-458 821.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 120.0 10.0 2.0 0.010 PVC 2.0 PVC 120 PVC NE EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave																										Upper Aquifer
EN-458 765775.6 96319.7 844.30 843.83 -0.47 MH McKinley Interchange, NW loop 09-Feb-05 26.0 24.0 8.0 14.0 24.0 10.0 2.0 0.020 PVC 2.0 PVC 23.0 EN-458 821.3 Upper Aquife EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St 17-Aug-04 56.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-459A NE Upper Aquife EN-459B 764860.4 966120.2 846.60 846.25 -0.35 MH Side of Riverview Dr at Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 120.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-460A NE Upper Aquife										•																Upper Aquifer
EN-459A 764890.9 966138.8 847.60 847.27 -0.33 MH NW corner of Riverview Dr & Tracy St 17-Aug-04 56.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-459A NE Upper Aquife EN-459B 764860.4 966120.2 846.60 846.25 -0.35 MH Side of Riverview Dr at Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 12.0 10.0 2.0 0.010 PVC 2.0 PVC 122.0 EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-460A NE Upper Aquife																										
EN-459B 764860.4 966120.2 846.60 846.25 -0.35 MH S side of Riverview Dr at Tracy St intersection 03-Sep-04 126.0 122.0 10.0/6.0 112.0 12.0 10.0 2.0 0.010 PVC 2.0 PVC 122.0 EN-459B 724.6 Upper Aquife EN-460A 765056.8 966422.1 848.10 847.75 -0.35 MH End of Tracy St, E of Grant Ave 09-Aug-04 50.0 50.0 8.0 35.0 50.0 15.0 2.0 0.010 PVC 2.0 PVC NE EN-460A NE Upper Aquife																										Upper Aquifer
																										Upper Aquifer
[EN-460B 765054.9 966419.0 847.90 846.89 -1.01 MH End of Tracy St, E of Grant Ave 06-Aug-04 88.0 84.0 8.0 74.0 84.0 10.0 2.0 0.010 PVC 2.0 PVC NE EN-460B NE Upper Aquife																										Upper Aquifer
	EN-460B	765	0054.9	966419.0	847.90	846.89	-1.0	11	МН	End of Tracy St, E of Grant Ave	06-Aug-04	88.0	84.0	8.0	74.0	84.0	10.0	2.0	U.010	PVC	2.0	PVC	NE	EN-460B	NE	Upper Aquifer

December 22, 2016 Page 4 of 7

		1	1	Current	· Opoo	1		1			1	Donth to	Donth to		T				ı	I	1		
Well ID	Northin	g Easting	G.S.	Current M.P.		Surface	Location Description	Installation	Drilled	Casing	Boring	Depth to Screen	Depth to	Screen	Screen	Slot Size	Screen	Casing	Casing	Depth to	Well ID	Top of Silt	Unit
Well ID	Northin	g Easilig	Elevatio	n Elevation	Stickup	Completion	1 Location Description	Date	Depth	Depth	Diameter	Top	Screen Bottom	Length	Diameter	SIOL SIZE	Material	Diameter	Material	Top of Silt	Well ID	Elevation	Oilit
	(grid fee	t) (grid feet)	(ft amsl)	(ft amsl)	_				(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)		(ft bgs)		(ft amsl)	
EN-460C						MH	End of Tracy St. E of Grant Ave	18-Aug-04		95.3	8.0/4.0	85.3	95.3	10.0	2.0	0.010	PVC	2.0	PVC	95.3	EN-460C	752.6	Upper Aquifer
EN-461	765204.		850.90	850.60		MH	End of Tracy St, W of McKinley, E of Rt 26	11-Aug-04	38.0	34.3	8.0	24.3	34.3	10.0	2.0	0.010	PVC	2.0	PVC	34.3	EN-461	816.7	Upper Aquifer
EN-462	764733.		851.80	851.38		MH	End of Riverview Dr, E of Rt 26	03-Aug-04	48.0	44.0	8.0	34.0	44.0	10.0	2.0	0.010	PVC	2.0	PVC	44.0	EN-462	807.8	Upper Aquifer
EN-463	764773.	1 967045.2	851.60	851.28	-0.32	MH	NE corner of Riverview Dr & McKinley Ave	12-Aug-04	46.0	44.0	8.0	34.0	44.0	10.0	2.0	0.010	PVC	2.0	PVC	44.0	EN-463	807.6	Upper Aquifer
EN-464	765569.	3 968214.9	853.30	852.98	-0.32	MH	Front of 420 Jackson Ave, N of Riverview Dr.	19-Nov-04	40.0	37.5	8.0	27.5	37.5	10.0	2.0	0.020	PVC	2.0	PVC	37.0	EN-464	816.3	Upper Aquifer
EN-465	765342.	8 968312.1	851.60	851.15	-0.45	MH	S of Riverview Dr, W of EN-D04, near river	17-Nov-04	38.0	35.0	8.0	25.0	35.0	10.0	2.0	0.020	PVC	2.0	PVC	35.0	EN-465	816.6	Upper Aquifer
EN-466	765502.	_		846.99		MH	S of Riverview Dr, E of EN-178, near river	17-Nov-04	34.0	32.5	8.0	22.5	32.5	10.0	2.0	0.020	PVC	2.0	PVC	32.5	EN-466	815.0	Upper Aquifer
EN-467	765889.		857.40	857.12		MH	Front of 319 Tracy St., between Arthur & Jackson Ave	18-Nov-04	46.0	45.5	8.0	30.5	45.5	15.0	2.0	0.020	PVC	2.0	PVC	45.5	EN-467	811.9	Upper Aquifer
EN-468	765349.		852.60	852.36		MH	Front of 423 Arthur Ave, N of Riverview Dr	13-Oct-04	42.0	38.5	8.0	28.5	38.5	10.0	2.0	0.020	PVC	2.0	PVC	38.5	EN-468	814.1	Upper Aquifer
EN-469	767070.		850.10	849.75		MH	In alley W of Credit Union, between Grant & McKinley Ave	15-Oct-04	26.0	23.5	8.0	13.5	23.5	10.0	2.0	0.020	PVC	2.0	PVC	23.0	EN-469	827.1	Upper Aquifer
EN-470	766942.		847.10	846.85		MH	In parking lot S of Building 40, betw/ McKinley & Roosevell	01-Nov-04	26.0	24.0	8.0	14.0	24.0	10.0	2.0	0.020	PVC	2.0	PVC	24.0 26.8	EN-470	823.1	Upper Aquifer
EN-471 EN-472	767735. 767669.		853.60 849.80	853.30		MH MH	W side of Building 28, immediately N of Skybridge	10-Nov-04 11-Nov-04	28.0 28.0	27.0 26.0	8.0	17.0 16.0	27.0 26.0	10.0	2.0	0.020	PVC PVC	2.0	PVC PVC	26.0	EN-471 EN-472	826.8	Upper Aquifer
EN-472 EN-473A	767669.		843.30	849.43 843.06		MH	Front of Building 26, E of Building 22 Front of 307 Garfield Ave S of Main St	30-Nov-04	52.0	45.0	8.0 8.0	30.0	45.0	15.0	2.0	0.020 0.020	PVC	2.0	PVC	26.0 NE	EN-472 EN-473A	823.8 NE	Upper Aquifer Upper Aquifer
EN-473A	765096.		843.30	843.14	_	MH	Front of 307 Garfield Ave., S of Main St. 5 ft S of EN-473A	03-Dec-04	82.0	78.0	6.0	68.0	78.0	10.0	2.0	0.020	PVC	2.0	PVC	78.0	EN-473A	765.3	Upper Aquifer
EN-474	765478.		836.60	836.33		MH	McKinley Interchange, SW ramp	09-Feb-05	20.0	18.0	8.0	8.0	18.0	10.0	2.0	0.020	PVC	2.0	PVC	18.0	EN-474	818.6	Upper Aquifer
EN-475	765656.		851.00	850.49		MH	McKinley Interchange, SE ramp	10-Feb-05	34.0	32.3	8.0	22.3	32.3	10.0	2.0	0.020	PVC	2.0	PVC	32.3	EN-475	818.8	Upper Aquifer
EN-476	767107.		850.10	849.81		MH	~100 ft SW of EN-284TD	29-Jun-05	30.0	26.5	8.0	16.5	26.5	10.0	2.0	0.020	PVC	2.0	PVC	26.5	EN-476	823.6	Upper Aquifer
EN-477	767077.		848.90	848.33		MH	~100 ft S of EN-284TD	01-Jul-05	46.0	44.0	8.0	29.0	44.0	15.0	2.0	0.020	PVC	2.0	PVC	43.8	EN-477	805.1	Upper Aquifer
EN-478A	766347.		844.50	844.08		MH	E side of Verizon Building, 5 ft S of EN-478B	08-Mar-05	29.0	29.0	8.0	19.0	29.0	10.0	2.0	0.020	PVC	2.0	PVC	NE	EN-478A	NE	Upper Aquifer
EN-478B	766351.	8 965874.6	844.50	844.14	-0.36	MH	E side of Verizon Building, S of EN-440	07-Mar-05	42.0	39.0	8.0	29.0	39.0	10.0	2.0	0.020	PVC	2.0	PVC	39.0	EN-478B	805.5	Upper Aquifer
EN-479A	766287.	6 965969.6	845.80	845.41	-0.39	MH	E parking lot on Verizon property, 5 ft E of EN-479B	15-Mar-05	29.0	29.0	8.0	19.0	29.0	10.0	2.0	0.020	PVC	2.0	PVC	NE	EN-479A	NE	Upper Aquifer
EN-479B	766287.	3 965965.1	845.70	845.20	-0.50	MH	E parking lot on Verizon property	09-Mar-05	48.0	45.0	8.0	30.0	45.0	15.0	2.0	0.020	PVC	2.0	PVC	45.0	EN-479B	800.7	Upper Aquifer
EN-480A	766209.	4 965856.7	843.30	843.02		MH	E parking lot on Verizon property, 5 ft N of EN-480B	14-Mar-05	33.0	33.0	8.0	18.0	33.0	15.0	2.0	0.020	PVC	2.0	PVC	NE	EN-480A	NE	Upper Aquifer
EN-480B	766208.		843.20	842.85		MH	Center of S parking lot on Verizon property	16-Mar-05	46.0	44.5	8.0	34.5	44.5	10.0	2.0	0.020	PVC	2.0	PVC	44.5	EN-480B	798.7	Upper Aquifer
EN-481A	766179.		843.80	843.35		MH	E parking lot on Verizon property, 5 ft S of EN-481B	14-Mar-05	30.0	30.0	8.0	15.0	30.0	15.0	2.0	0.020	PVC	2.0	PVC	NE	EN-481A	NE	Upper Aquifer
EN-481B	766178.		843.80	842.99		MH	SE corner of S parking lot on Verizon property	11-Mar-05	49.0	47.0	8.0	32.0	47.0	15.0	2.0	0.020	PVC	2.0	PVC	47.0	EN-481B	796.8	Upper Aquifer
EN-482	767106.		848.00	847.44		MH	~100 ft SE of EN-284TD	05-Jul-05	40.0	38.0	8.0	23.0	38.0	15.0	2.0	0.020	PVC	2.0	PVC	38.0	EN-482	810.0	Upper Aquifer
EN-483	768473.		839.30	839.08	_	MH	E side of Rogers Ave, N of EN-34	05-May-05	20.5	20.5	8.0	15.5	20.5	5.0	2.0	0.020	PVC	2.0	PVC	19.8	EN-483	819.6	Upper Aquifer
EN-484	767997.		838.60	838.21		MH	N side of RR tracks, 5 ft W EN-107A	09-Aug-05	16.0	14.5	8.0	7.5	14.5	7.0	2.0	0.020	PVC	2.0	PVC	14.5	EN-484	824.1	Upper Aquifer
EN-485	768096.		841.80	840.48		MH	S of Building 46, 3 feet E of extraction well EN-253	19-Jan-07	18.0	17.0	8.0	7.0	17.0	10.0	2.0	0.020	PVC	2.0	PVC	17.0	EN-485	824.8	Upper Aquifer
EN-486	768184.	_	842.90	842.63		MH	Building 47 (SE corner), 5 ft N of extraction well EN-219	10-Aug-05	24.0	24.0	8.0	9.0	24.0	15.0	2.0	0.020	PVC	2.0	PVC	23.8	EN-486	819.2	Upper Aquifer
EN-487	768009.		834.50	834.18 850.87		MH MH	S side of Clark St, 5 ft S of extracton well EN-218	11-Aug-05	18.0	15.0 25.0	8.0	5.0 15.0	15.0 25.0	10.0	2.0	0.020 0.020	PVC PVC	2.0	PVC PVC	15.0 24.8	EN-487 EN-488	819.5 826.5	Upper Aquifer
EN-488 EN-489	767299. 767613.		851.30 847.80	847.45		MH	N side of North St between Washington & Madison Oak Hill Ave, SE of Building 87 in parking lot	30-Jun-05 29-Jun-05	28.0 24.0	21.0	8.0 8.0	11.0	25.0	10.0	2.0	0.020	PVC	2.0	PVC	24.8	EN-488	826.8	Upper Aquifer
EN-499	766474.		845.50	845.02		MH	W side of alley, S of Monroe St, E of McKinley Ave	12-Dec-06	30.0	28.3	8.0	18.3	28.3	10.0	2.0	0.020	PVC	3.0	PVC	28.3	EN-499	817.2	Upper Aquifer Upper Aquifer
EN-491	766586.		845.30	845.03		MH	N side of Monroe St, next to EN-491T	29-Nov-05	36.0	34.0	8.0	19.0	34.0	15.0	2.0	0.020	PVC	2.0	PVC	33.8	EN-491	811.5	Upper Aquifer
EN-491A	766590.		844.30	844.31		MH	NW corner of Monroe & Roosevelt, edge of parking lot	27-Jul-05	30.0	29.0	8.0	14.0	29.0	15.0	2.0	0.020	PVC	2.0	PVC	29.0	EN-491A	815.3	Upper Aquifer
EN-491T	766586.		845.70	847.63		SP	N side of Monroe St. ~ 40 ft W of EN-195	07-Dec-05	38.8	38.8	16.0	32.3	33.8	1.5	8.0	0.035	SS	8.0	SS	33.8	EN-491T	812.0	Upper Aquifer
EN-492	766581.	9 966850.3	844.70	844.42		MH	5 ft S of EN-492T. NE of Monroe St & Roosevelt Ave	07-Jun-06	33.0	32.5	8.0	17.5	32.5	15.0	2.0	0.020	PVC	2.0	PVC	32.5	EN-492	812.2	Upper Aquifer
EN-492A	766587.	8 966847.7	844.80	845.40		MH	NW corner of Monroe & Roosevelt, edge of parking lot	26-Jul-05	34.0	32.0	8.0	17.0	32.0	15.0	2.0	0.020	PVC	2.0	PVC	32.0	EN-492A	812.8	Upper Aquifer
EN-492T	766588.		844.70	846.82		SP	N. side of Monroe St, E. of Roosevelt, next to EN-492A	23-Aug-05	38.0	37.0	20.0	29.8	31.8	2.0	8.0	0.035	SS	8.0	SS	32.0	EN-492T	812.7	Upper Aquifer
EN-493	766959.	9 965166.2	848.80	848.33	-0.47	MH	Madison Ave parking lot, ~100 ft N of EN-091T	15-Aug-05	38.0	35.3	8.0	20.3	35.3	15.0	2.0	0.020	PVC	2.0	PVC	35.3	EN-493	813.5	Upper Aquifer
EN-494	766939.	8 965167.7	848.90	848.48	-0.42	MH	Madison Ave parking lot, ~80 ft N of EN-091T	16-Aug-05	38.0	35.5	8.0	20.5	35.5	15.0	2.0	0.020	PVC	2.0	PVC	35.5	EN-494	813.4	Upper Aquifer
EN-495	766919.		848.70	848.13		MH	Madison Ave parking lot, ~60 ft N of EN-091T	17-Aug-05	36.0	34.3	8.0	19.3	34.3	15.0	2.0	0.020	PVC	2.0	PVC	34.3	EN-495	814.4	Upper Aquifer
EN-496		6 965169.2				MH	Madison Ave parking lot, ~40 ft N of EN-091T	18-Aug-05		34.5	8.0	19.5	34.5	15.0	2.0	0.020	PVC	2.0	PVC		EN-496	814.3	Upper Aquifer
EN-497		5 965170.3				MH	Madison Ave parking lot, ~20 ft N of EN-091T	30-Aug-05		35.3	8.0	20.3	35.3	15.0	2.0	0.020	PVC	2.0	PVC	35.3	EN-497	813.3	Upper Aquifer
EN-498		0 965173.3				MH	Madison Ave parking lot, ~20 ft S of EN-091T	18-Aug-05	38.0	36.5	8.0	21.5	36.5	15.0	2.0	0.020	PVC	2.0	PVC	36.5	EN-498	811.0	Upper Aquifer
EN-499A		8 966093.9		846.40		MH	E side of Grant Ave, S of Monroe St, ~5 ft N of EN-499B	23-Aug-05	32.0	32.0	8.0	17.0	32.0	15.0	2.0	0.020	PVC	2.0	PVC	NE 10.5	EN-499A	NE .	Upper Aquifer
EN-499B		4 966094.0				MH	E side of Grant Ave, S of Monroe St	23-Aug-05	46.0	43.5	8.0	33.5	43.5	10.0	2.0	0.020	PVC	2.0	PVC	43.5	EN-499B	803.1	Upper Aquifer
EN-499T		0 966093.1 1 966103.4	846.30 844.70	846.06 844.47		Vault	In front of 103 Grant Ave	27-Oct-05	50.0	48.5	16.0	41.5	43.5	2.0	8.0	0.050	SS PVC	8.0	SS PVC	43.5	EN-499T	802.8	Upper Aquifer
EN-500A EN-500B		2 966106.2				MH MH	E side of Grant Ave, S of Monroe St, ~3 ft NW of EN-500B E side of Grant Ave, S of Monroe St, E of EN-446A/B	26-Aug-05 24-Aug-05	31.0 44.0	31.0 43.0	8.0 8.0	16.0 33.0	31.0 43.0	15.0 10.0	2.0 2.0	0.020 0.020	PVC	2.0	PVC	NE 43.0	EN-500A EN-500B	NE 801.9	Upper Aquifer Upper Aquifer
EN-500B		4 966117.3				MH	E side of Grant Ave, S of Monroe St, E of EN-440A/B	25-Aug-05	36.0	35.0	8.0	20.0	35.0	15.0	2.0	0.020	PVC	2.0	PVC	35.0	EN-500B	807.9	Upper Aquifer
EN-501T		8 966117.5				Vault		06-Dec-05	40.0	40.0	16.0			6.0/7.0	8.0	0.075/0.035	SS	8.0	SS	36.0	EN-501T	806.8	Upper Aquifer
EN-502		8 965054.0		847.14		MH	W side of Madison Ave, ~ 100 ft N of EN-451T	26-Jan-06	36.0	34.0	8.0	19.0	34.0	15.0	2.0	0.020	PVC	2.0	PVC	33.8	EN-502	814.0	Upper Aquifer
EN-503		0 965068.6				MH	W side of Madison Ave, ~ 100 ft S of EN-451T	25-Jan-06	36.0	35.5	8.0	20.5	35.5	15.0	2.0	0.020	PVC	2.0	PVC	35.3	EN-503	810.1	Upper Aquifer
EN-504		2 965097.9		845.97		MH	E side of Madison Ave, ~ 50 ft E of EN-451T	24-Jan-06	38.0	36.0	8.0	21.0	36.0	15.0	2.0	0.020	PVC	2.0	PVC	35.8	EN-504	810.7	Upper Aquifer
EN-505		2 966852.2		843.84		MH	S of EN-491T, front of 1700 Monroe St	30-Jan-06	30.0	29.0	8.0	14.0	29.0	15.0	2.0	0.020	PVC	2.0	PVC	29.0	EN-505	815.2	Upper Aquifer
EN-506	766525.	5 966701.3	844.60	844.21	-0.39	MH	S of EN-491T, front of 1610 Monroe St	27-Jan-06	32.0	30.0	8.0	20.0	30.0	10.0	2.0	0.020	PVC	2.0	PVC	29.8	EN-506	814.8	Upper Aquifer
EN-507		0 966077.9		840.75	1.75	SP	Approx. 10 ft E of EN-428	09-Jun-06	15.0	14.0	8.0	7.0	14.0	7.0	2.0	0.020	PVC	2.0	PVC	13.8	EN-507	825.3	Upper Aquifer
EN-508		6 966038.2		847.68		MH	east side of Building 18, SW of EN-21	25-Jan-07	20.0	19.0	8.0	9.0	19.0	10.0	2.0	0.020	PVC	2.0	PVC	18.8	EN-508	829.4	Upper Aquifer
EN-509		8 965960.2		845.70		MH	NE side of Building 18, W of Building 264/268, S of RR	25-Jan-07	18.0	17.5	8.0	7.5	17.5	10.0	2.0	0.020	PVC	2.0	PVC	17.5	EN-509	828.5	Upper Aquifer
EN-509T	767956.		846.00	848.49		SP	NE side of Bldg 18, W of Bldg 264/268, 5 ft E of EN-509	15-Dec-10	22.5	22.5	16.0	12.0	17.5	5.5	8.0	0.050	SS	8.0	SS	17.5	EN-509T	828.5	Upper Aquifer
EN-510		8 964969.1	840.10	839.83		MH	Front of parking lot at 1105 Monroe St	20-Apr-07	30.0	27.0	8.0	12.0	27.0	15.0	2.0	0.020	PVC	2.0	PVC	27.0	EN-510	813.1	Upper Aquifer
		2 964971.9		841.54		MH	Front of parking lot at 1105 Monroe St	14-May-07	32.0	32.0	18.0	12.0/22.0	16.0/27.0	4.0/5.0	10.0	0.050/0.050	SS	10.0	SS	27.0	EN-510T	813.0	Upper Aquifer
EN-511		2 965084.2		839.89		MH	NW corner of Madison Ave & Monroe St, 1109 Monroe St	19-Apr-07	30.0	29.0	8.0	14.0	29.0	15.0	2.0	0.020	PVC	2.0	PVC	29.0	EN-511	811.2	Upper Aquifer
EN-513		1 966476.6		849.57		MH	S of Bldg 42, approx 4 feet NE of EN-D37	17-May-07	26.0	24.0	8.0	19.0	24.0	5.0	2.0	0.020	PVC	2.0	PVC	24.0	EN-513	826.0	Upper Aquifer
EN-514		0 966573.0		847.43		MH	near SW corner of Bldg 40, east of alley in lawn	11-Sep-07	24.0	21.5	8.0	11.5	21.5	10.0	2.0	0.020	PVC	2.0	PVC	21.5	EN-514	826.5	Upper Aquifer
EN-515		0 966430.0				MH	S edge of alley, S of Bldg 42 near McKinley Ave	11-Sep-07	26.0	24.5	8.0	9.5	24.5	15.0	2.0	0.020	PVC	2.0	PVC	24.0	EN-515	825.9	Upper Aquifer
EN-516 EN-517		0 966354.0 0 964904.0	850.00 840.10	849.70 839.87		MH MH	W side of McKinley Ave, W of EN-D49 Along Monroe St., W of EN-510T	12-Sep-07 13-Sep-07	34.0 32.0	32.0 30.0	8.0 8.0	17.0 15.0	32.0 30.0	15.0 15.0	2.0 2.0	0.020 0.020	PVC PVC	2.0	PVC PVC	31.8 30.0	EN-516 EN-517	818.2 810.1	Upper Aquifer Upper Aquifer
LI4-91/	100432.	0 304304.0	040.10	038.07	-0.23	I IVID	Inional Montos of A A Of Fix-0101	13-3ep-07	JZ.U	50.0	0.0	13.0	50.0	13.0	۷.0	0.020	FVU	۷.0	FVC	30.0	LIN-31/	010.1	Opper Admirer

December 22, 2016 Page 5 of 7

Well ID	Northing	Easting	G.S. Elevation	Current M.P.	Stickup	Surface Completion	Location Description	Installation Date	Drilled Depth	Casing Depth	Boring Diameter	Depth to Screen	Depth to Screen	Screen Length	Screen Diameter	Slot Size	Screen Material	Casing Diameter	Casing Material	Depth to	Well ID	Top of Silt Elevation	Unit
	(arid feet)	(arid feet)	(ft amsl)	(ft amsl)	(feet)			Duto	(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)	Matorial	(ft bgs)		(ft amsl)	
EN-518	766441.0	965026.0	840.50	840.24	-0.26		Along Monroe St., E of EN-510T and W of EN-511	13-Sep-07	28.0	26.0	8.0	11.0	26.0	15.0	2.0	0.020	PVC	2.0	PVC	26.0	EN-518	(It arrisi) 814.5	Upper Aquifer
EN-519	766538.0	965086.0	841.70	841.19	-0.51	MH	Front of 26 Madison Avenue, W. side of Madison Ave	15-Oct-07	38.0	35.5	8.0	20.5	35.5	15.0	2.0	0.020	PVC	2.0	PVC	36.0	EN-519	805.7	Upper Aquifer
EN-520	767451.0	965121.0	850.20	849.58	-0.62	MH	W. of Building 14, E. of Oak Hill Ave, edge of parking lot	17-Dec-07	30.0	24.0	8.0	14.0	24.0	10.0	2.0	0.020	PVC	2.0	PVC	24.0	EN-520	826.2	Upper Aquifer
EN-521	767627.0	965455.0	848.40	848.14	-0.26	MH	Bldg 14 parking lot, S of B94 cooling towers	08-Jan-08	26.0	19.5	8.0	14.5	19.5	5.0	2.0	0.020	PVC	3.0	PVC	19.5	EN-521	828.9	Upper Aquifer
EN-522 EN-523	768009.1 765849.9	965612.2 965895.9	837.80 838.80	837.45 838.39	-0.35 -0.41	MH MH	E. of EN-107 on E side of old transfer station bldg N side of Broad St., west of Grant Ave.	06-May-08 23-Feb-10	16.0 16.0	13.0 15.0	8.0 8.0	6.0 5.0	13.0 15.0	7.0 10.0	2.0	0.020 0.020	PVC PVC	2.0 2.0	PVC PVC	13.0 15.0	EN-522 EN-523	824.8 823.8	Upper Aquifer Upper Aquifer
EN-524	765857.0	965997.8	840.20	839.87	-0.41	MH	N side of Broad St., west of Garfield Ave.	24-Feb-10	21.0	19.0	8.0	9.0	19.0	10.0	2.0	0.020	PVC	2.0	PVC	19.0	EN-524	821.2	Upper Aquifer
EN-525	767340.6	965843.7	850.60	850.06	-0.54	MH	Adjacent to EN-525T, approx 4 feet SW	16-Sep-10	24.0	23.2	8.0	8.2	23.2	15.0	2.0	0.020	PVC	2.0	PVC	23.2	EN-525	827.4	Upper Aquifer
EN-525T	767342.5	965846.9	850.50	849.70	-0.80	MH	S. side of North St., betw/ Garfield & Grant Aves	21-Jul-10	28.0	28.0	14.0	10/21	18/23	8/2	8.0	0.050/0.050	SS	8.0	SS	23.2	EN-525T	827.3	Upper Aquifer
EN-526	767265.0 767693.0	965866.7	851.00 849.10	850.57	-0.43	MH	In parking lot, S of EN-525T, N of EN-284P	16-Sep-10	50.0	47.8	8.0	37.8	47.8 21.2	10.0	2.0	0.020	PVC	2.0	PVC CPVC	47.8 21.2	EN-526	803.2	Upper Aquifer
EN-527 EN-528	767613.3	967505.0 967457.1	849.30	848.76 848.95	-0.34 -0.35	MH MH	Center of Ideal Cleaners parking lot South of Ideal Cleaners parking lot, 5 ft W of SVI	13-Apr-11 12-Apr-11	24.0 26.0	21.2 22.0	8.0 8.0	11.2 12.0	22.0	10.0	2.0	0.020 0.020	CPVC CPVC	2.0	CPVC	22.0	EN-527 EN-528	827.9 827.3	Upper Aquifer Upper Aquifer
EN-529	766712.7	965688.2	847.10	846.72	-0.38	MH	W side of Garfield Ave, approx 5 feet S of EN-529T	14-Sep-10	36.0	35.4	8.0	20.4	35.4	15.0	2.0	0.020	PVC	2.0	PVC	35.4	EN-529	811.7	Upper Aquifer
EN-529T	766717.7	965687.5	847.30	849.97	2.67	SP	W side of Garfield Ave, N of Monroe St in parking lot	08-Nov-10	40.5	40.5	10.0	24.5/32.4	31/35.4	6.5/3	10.0	0.035	SS	10.0	SS	35.4	EN-529T	811.9	Upper Aquifer
EN-530T	767118.1	965601.4	850.60	853.40	2.80	SP	N end of Village parking lot, W side of Garfield Ave	16-Nov-11	33.0	31.8	18.0	10/24.75	15.5/26.75		10.0	0.060/0.060	SS	10.0	SS	27.3	EN-530T	823.4	Upper Aquifer
EN-531 EN-532	767109.3 766595.7	965547.6 965194.1	849.70 845.30	849.22 844.84	-0.48 -0.46	MH MH	NW corner of Village parking lot, W side of Garfield Ave Village parking lot, E of Madison Ave., S. of EN-532T	21-Sep-11 18-Jul-13	28.0 40.0	26.5 39.5	10.0 8.0	11.5 24.5	26.5 39.5	15.0 15.0	4.0 2.0	0.020 0.020	PVC PVC	4.0 2.0	PVC PVC	26.5 37.1	EN-531 EN-532	823.2 808.2	Upper Aquifer Upper Aquifer
EN-532T	766662.8	965186.5	845.20	847.59	2.39	SP	Village parking lot, E of Madison Ave., S. of cinema	28-Aug-13	43.0	43.0	18.0	23/35	27/38	4.0/3.0	10.0	0.075/0.035	SS	10.0	SS	38.4	EN-532T	806.8	Upper Aquifer
EN-533	768082.8	965522.2	836.50	836.11	-0.39	MH	W. side of Bldg 48, near SW corner of building	25-Jul-13	16.0	15.0	8.0	5.0	15.00	10.0	2.0	0.020	PVC	2.0	PVC	15.0	EN-533	821.5	Upper Aquifer
EN-534	766731.6	965438.1	845.00	844.63	-0.37	MH	E. side of Washington Ave in sidewalk, front of M&T Bank	26-Oct-13	37.0	36.0	8.0	21.0	36.00	15.0	2.0	0.020	PVC	3.0	PVC	36.0	EN-534	809.0	Upper Aquifer
EN-600 EN-601	768416.7 768417.1	967852.9 967860.0	843.70 843.70	843.47 843.32	-0.23 -0.38	MH MH	Building 57 Building 57	29-Jul-05 01-Aug-05	18.0 8.0	16.8 4.7	6.0/4.0 6.0	11.8 2.0	16.8 4.5	5.0 2.5	1.5 1.5	0.010 0.010	PVC PVC	1.5 1.5	PVC PVC	Absent NE	EN-600 EN-601	NA NA	Lower
EN-604	768517.5	967660.0	842.10	841.75	-0.35	MH	Building 57	2005	14.7	14.0	6.0/4.0	9.0	14.0	5.0	1.5	0.010	PVC	1.5	PVC	Absent	EN-601	NA NA	Upper Lower
EN-605	768516.9	968414.4	842.10	841.75	-0.35	MH	Building 57	2005	5.5	3.5	6.0	2.0	3.5	1.5	1.5	0.010	PVC	1.5	PVC	NE	EN-605	NA	Upper
EN-606	768560.2	968647.0	842.30	842.02	-0.28	MH	Building 57	2005	20.4	20.2	6.0/4.0	14.1	20.1	6.0	1.5	0.010	PVC	1.5	PVC	Absent	EN-606	NA	Lower
EN-608	768617.7	968744.0	843.40	843.11	-0.29	MH	Building 57	2005	22.2	20.5	6.0/4.0	16.5	20.5	4.0	1.5	0.010	PVC	1.5	PVC	Absent	EN-608	NA	Lower
EN-616 EN-617	768748.7 768743.3	968985.2 968985.9	844.30 844.40	843.98 844.09	-0.32 -0.31	MH MH	Building 57 Building 57	2005 2005	29.0 9.0	25.5 7.0	6.0/4.0 6.0	18.5 2.0	25.5 7.0	7.0 5.0	1.5 1.5	0.010 0.010	PVC PVC	1.5 1.5	PVC PVC	Absent NE	EN-616 EN-617	NA NA	Lower Upper
EN-618	768680.3	968559.9	843.00	842.72	-0.28	MH	Building 57	2005	25.4	14.5	6.0/4.0	9.5	14.5	5.0	1.5	0.010	PVC	1.5	PVC	Absent	EN-618	NA NA	Lower
EN-623	768595.7	968860.3	845.50	847.97	2.47	SP	Building 57	2005	24.5	24.1	12.0	17.1	21.1	4.0	6.0	0.010	SS	6.0	SS	Absent	EN-623	NA	Lower
EN-624	768621.6	969002.7	846.30	849.01	2.71	SP	Building 57	2005	26.0	25.9	12.0	17.9	22.9	5.0	6.0	0.010	SS	6.0	SS	Absent	EN-624	NA	Lower
EN-626	768608.5	967837.2	843.30	842.76	-0.54	MH	Building 57	2006	24.2	24.2	10.0	10.5	17.5	7.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-626	NA	Lower
EN-632 EN-638	768575.1 768803.4	968726.2 968984.0	843.10 841.90	842.67 841.56	-0.43 -0.34	MH MH	Building 57 Building 57	2005 2005	20.0 18.2	20.0 17.7	6.0/4.0 8.0	15.0 13.5	20.0 17.7	5.0 4.2	2.0	0.010 0.010	PVC PVC	2.0 2.0	PVC PVC	Absent Absent	EN-632 EN-638	NA NA	Lower Lower
EN-640	768797.7	968865.3	842.90	842.48	-0.42		Building 57	2005	14.0	14.0	8.0	4.0	14.0	10.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-640	NA	Upper & Lower
EN-641	768605.1	969036.5	838.50	840.68	2.18	SP	Building 57	2009	-			2.0	4.0	2.0	2.0			2.0		NE	EN-641	NA	Upper
EN-642	768788.3	968680.4	844.50	844.00	-0.50	MH	Building 57	2006	16.8	14.0	8.0	4.0	14.0	10.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-642	NA	Upper & Lower
EN-644 EN-648	768771.9 768761.9	968398.0 968218.7	846.70 846.40	846.19 845.89	-0.51 -0.51	MH MH	Building 57 Building 57	2006 2006	13.4 13.5	13.0 13.2	8.0 8.0	4.0	13.0 13.2	9.0 9.0	2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	Absent Absent	EN-644 EN-648	NA NA	Upper & Lower Upper & Lower
EN-650	768750.9	968022.5	845.60	845.21	-0.39	MH	Building 57	2006	18.0	17.0	6.0/4.0	10.0	17.0	7.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-650	NA NA	Upper & Lower
EN-651	768518.9	969146.7	843.40	845.27	1.87	SP	Building 57-Gault Chevrolet property	2007	26.0	26.0	8.0	18.0	26.0	8.0	2.0	0.010	PVC	2.0	PVC	25.7	EN-651	817.7	Lower
EN-652	768342.1	968959.2	844.00	843.62	-0.38	MH	Building 57	2007	46.0	45.0	8.0	40.0	45.0	5.0	2.0	0.010	PVC	2.0	PVC	14.2	EN-652	829.8	Deep
EN-653	768534.2	969249.9	842.90	844.54	1.64	SP	Building 57-Gault Chevrolet property	2007	23.0	23.0 42.9	8.0 8.0	18.0 37.9	23.0 42.9	5.0	2.0	0.010	PVC	2.0	PVC	22.7	EN-653 EN-654	820.2	Lower
EN-654 EN-655	768434.1 768430.3	969060.2 969059.6	839.60 839.60	839.25 839.28	-0.35 -0.32	MH MH	Building 57 Building 57	2007 2007	42.9 15.0	13.9	8.0	8.7	13.7	5.0 5.0	2.0	0.010 0.010	PVC PVC	2.0	PVC PVC	12.9 13.7	EN-655	826.7 825.9	Deep Upper & Lower
EN-656	768516.4	969137.4	843.40	844.90	1.50	SP	Building 57-Gault Chevrolet property	2007	38.5	38.5	8.0	33.5	38.5	5.0	2.0	0.010	PVC	2.0	PVC	25.7	EN-656	817.7	Deep
EN-657	768518.0	969142.5	843.30	845.10	1.80	SP	Building 57-Gault Chevrolet property	2007	17.0	17.0	8.0	7.0	17.0	10.0	2.0	0.010	PVC	2.0	PVC	NE	EN-657	NA	Upper
EN-658	768533.2	969244.4	842.80	844.64	1.84	SP	Building 57-Gault Chevrolet property	2007	46.0	44.0	8.0	39.0	44.0	5.0	2.0	0.010	PVC	2.0	PVC	22.7	EN-658	820.1	Deep
EN-659 EN-679	768535.2 768042.5	969254.8 968435.8	842.60 849.60	844.57 851.71	1.97 2.11	SP SP	Building 57-Gault Chevrolet property Building 57-Gault Chevrolet property	2007 09-Apr-08	18.0 27.0	18.0 25.0	8.0/2.0	8.0 10.0	18.0 25.0	10.0 15.0	2.0	0.010 0.010	PVC PVC	2.0 2.0	PVC PVC	NE NE	EN-659 EN-679	NA NA	Upper Upper & Lower
EN-684A	768024.4	968317.0	849.60	849.45	-0.15		Building 57-Gault Chevrolet property	2009		25.0	0.0/2.0	41.0	46.0	5.0	2.0			2.0		Absent	EN-684A	NA NA	Upper & Lower
EN-687	767999.4	968073.2	848.10	847.83	-0.27	MH	Building 57-Gault Chevrolet property	2008	30.0	30.0	8.0	25.0	30.0	5.0	2.0	0.010	PVC	2.0	PVC	NE	EN-687	NA	Upper & Lower
EN-692	768571.1	968591.8	842.20	841.76	-0.44		Building 57	2009	15.0	13.0	10.0/4.0	10.0	13.0	3.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-692	NA	Lower
EN-694	768489.5	969057.4	838.50	838.17	-0.33		Building 57	2009	24.0	20.5	8.0	15.5	20.5	5.0	2.0	0.010	PVC	2.0	PVC	20.5	EN-694	818.0	Lower
EN-695 EN-696	768484.7 768480.7	969057.6 968903.3	838.60 843.20	838.14 845.50	-0.46 2.30	MH SP	Building 57 Building 57-Gault Chevrolet property	2009 2009	12.0 30.0	12.0 25.8	8.0 8.0	4.0 20.8	12.0 25.8	8.0 5.0	2.0	0.010 0.010	PVC PVC	2.0 2.0	PVC PVC	NE Absent	EN-695 EN-696	NA NA	Upper Upper & Lower
EN-697	768479.2	968898.3	843.50	845.63	2.13	SP	Building 57-Gault Chevrolet property	2009	14.5	14.5	8.0	4.6	14.6	10.0	2.0	0.010	PVC	2.0	PVC	NE	EN-697	NA NA	Upper & Lower
EN-698	768456.2	968752.4	847.00	849.01	2.01		Building 57-Gault Chevrolet property	2009	32.0	29.5	8.0	24.5	29.5	5.0	2.0	0.010	PVC	2.0	PVC		EN-698	NA	Upper & Lower
EN-699	768455.5	968756.9	847.30	849.05	1.75	SP	Building 57-Gault Chevrolet property	2009	20.0	19.6	8.0	9.6	19.6	10.0	2.0	0.010	PVC	2.0	PVC	NE	EN-699	NA	Upper & Lower
EN-700	768442.6	968652.6	845.20	846.95	1.75		Building 57-Gault Chevrolet property Building 57-Gault Chevrolet property	2009	34.0	33.5	8.0	28.5	33.5	5.0	2.0	0.010	PVC	2.0	PVC		EN-700	NA NA	Lower
EN-701 EN-702	768437.8 768419.9	968654.0 968502.6	845.70 839.40	847.23 841.14	1.53 1.74		Building 57-Gault Chevrolet property Building 57-Gault Chevrolet property	2009 2009	22.0 26.0	21.9 24.3	8.0 8.0	16.9 19.3	21.9 24.3	5.0 5.0	2.0	0.010 0.010	PVC PVC	2.0 2.0	PVC PVC	NE Absent	EN-701 EN-702	NA NA	Lower Lower
EN-702	768420.6	968507.1	839.40	841.21	1.81	SP	Building 57-Gault Chevrolet property	2009	17.4	17.4	8.0	12.3	17.3	5.0	2.0	0.010	PVC	2.0	PVC	NE	EN-702	NA NA	Lower
EN-704	768277.4	968610.1	840.90	840.54	-0.36	MH	Building 57	2009	26.0	22.2	8.0	17.2	22.2	5.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-704	NA	Upper & Lower
EN-705	768272.9	968611.4	841.00	840.57	-0.43		Building 57	2009	17.0	16.9	8.0	6.9	16.9	10.0	2.0	0.010	PVC	2.0	PVC	NE	EN-705	NA	Upper & Lower
EN-708	768437.8	968654.0	845.70	847.25	1.55	SP	Building 57-Gault Chevrolet property	2009	11.0	11.0	8.0	6.0	11.0	5.0	2.0	0.010	PVC	2.0	PVC	NE Absort	EN-708	NA NA	Upper
EN-709 EN-710	768240.8 768559.1	968313.9 968492.5	847.40 842.60	848.86 845.06	1.46 2.46	SP SP	Building 57-Gault Chevrolet property Building 57	09-Apr-10 09-Apr-10	25.0 21.0	25.0 21.0	12.0 12.0	15.0 13.0	20.0 16.0	5.0 3.0	6.0	0.030 0.020	SS SS	6.0 6.0	SS SS	Absent Absent	EN-709 EN-710	NA NA	Upper & Lower Lower
EN-711	768698.2	969321.0	841.30	843.13	1.83	SP	Building 57-Endicott Research Group property	22-Jul-10	18.0	17.0	10.0	12.0	17.0	5.0	2.0	0.020	PVC	2.0	PVC	NE	EN-711	NA	Lower
EN-712	768698.2	969321.0	841.30	843.17	1.87	SP	Building 57-Endicott Research Group property	22-Jul-10	34.5	30.0	10.0	25.0	30.0	5.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-712	NA	Lower
EN-713	768698.8	969318.2	841.20	843.21	2.01		Building 57-Endicott Research Group property	22-Jul-10	6.0	6.0	8.0	3.0	6.0	3.0	2.0	0.010	PVC	2.0	PVC	NE	EN-713	NA	Upper
EN-714	768202.2	968034.5	847.00	846.64	-0.36	MH	Building 57-Gault Chevrolet property, replaces EN-109	20-Jul-12	24.3	24.3	8.0	13.8	24.3	10.5	2.0	0.010	PVC	2.0	PVC	Absent	EN-714	NA	Upper & Lower

December 22, 2016 Page 6 of 7

B-1: Physical Well Data and Well Specifications

Endicott, New York

Well ID	Northing	Easting	G.S. Elevation	Current M.P.	Stickup	Surface Completion	Location Description	Installation Date	Drilled Depth	Casing Depth	Boring Diameter	Depth to Screen	Depth to Screen	Screen Length	Screen Diameter	Slot Size	Screen Material	Casing Diameter	Casing Material	Depth to Top of Silt	Well ID	Top of Silt Elevation	Unit
	(amid for at)	(arid feet)		Elevation	(fo. 54)	Completion		Date				Top	Bottom	•	(in)	(in)	Material	(in)	Wateriai				
EN 745	()	13 /		(ft amsl)	(feet)	NAL I	Duilding F7 Coult Charmelet managers and con FN 602	20 1 42	(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)		. ,	DV/C		D)/C	(ft bgs)	EN 745	(ft amsl)	Lawar
EN-715 EN-716	768293.7	968285.0	847.60	847.20	-0.40	MH	Building 57-Gault Chevrolet property, replaces EN-683	20-Jul-12	25.4	25.4	8.0 8.0	19.4	25.4	6.0	2.0	0.010	PVC PVC	2.0	PVC	Absent	EN-715	NA NA	Lower
EN-716 EN-717	768317.6	968385.3	844.10	843.72	-0.38	MH MH	Building 57-Gault Chevrolet property, replaces EN-681	19-Jul-12	23.1	23.1	8.0	18.1	23.1 25.8	5.0 10.0	2.0	0.010		2.0	PVC	Absent	EN-716	NA NA	Lower
	768155.2 768209.1	968280.3	847.80	847.36 843.28	-0.44 -0.32		Building 57-Gault Chevrolet property, replaces EN-678	19-Jul-12	25.8	25.8 26.1	8.0	15.8 13.1	25.8	13.0	2.0	0.010	PVC	2.0	PVC	Absent Absent	EN-717 EN-718		Upper & Lower
EN-718		968415.3	843.60	844.65		MH MH	Building 57-Gault Chevrolet property, replaces EN-108	19-Jul-12	26.1		8.0	11.1		7.7	2.0	0.010	PVC	2.0	PVC	Absent		NA NA	Upper & Lower
EN-719 EN-720	768130.7 768117.0	968409.8 968410.6	845.10 845.40	845.05	-0.45 -0.35	MH	Building 57-Gault Chevrolet property, replaces EN-303A Building 57-Gault Chevrolet property	19-Jul-12 19-Jul-12	18.8 35.0	18.8 35.0	8.0	25.0	18.8 35.0	10.0	2.0	0.010	PVC PVC	2.0	PVC PVC	Absent	EN-719 EN-720	NA NA	Upper & Lower Upper & Lower
EN-720 EN-721	768687.8	968995.4	845.40	844.93	-0.35	MH	Building 57, replaces EN-615	19-Jul-12 14-May-13		9.5	8.0	4.5	9.5	5.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-720	NA NA	
EN-721 EN-722	768687.3	968993.4	845.40	844.86	-0.47	MH	Building 57, replaces EN-615	14-May-13		27.9	8.0	18.0	28.0	10.0	2.0	0.010	SS	2.0	SS	Absent	EN-721	NA NA	Upper
EN-722 EN-723	768627.9		845.40	844.70	-0.34	MH	Building 57, replaces EN-636 Building 57, replaces EN-674	14-May-13		20.0	8.0	15.0	20.0	5.0	2.0	0.010	PVC	2.0	PVC	Absent	EN-722	NA NA	Lower Lower
EN-723 EN-724	768537.0	968516.6	842.10	841.79	-0.30	MH	Building 57, replaces EN-674			16.4	8.0	13.5	16.5	3.0	2.0	0.010	PVC	2.0	PVC		EN-723	NA NA	
EN-724 EN-725						MH	3 - 7 1	16-May-13	19.0	32.0										Absent Absent			Lower
	768535.8	968508.5	842.10	841.73	-0.37		Building 57	15-May-13	32.0		8.0	27.0	32.0	5.0 4.9	2.0 2.0	0.010	PVC	2.0	PVC		EN-725	NA	Bedrock
EN-726	768049.7 768063.8	968550.8	850.90	850.34 853.26	-0.56 -0.44	MH	Building 57-Gault Chevrolet property	25-Jul-13	65.0 81.0	65.0 81.0	8.0 8.0	60.0 75.6	64.9 80.6		2.0	0.010 0.010	PVC PVC	2.0	PVC	Absent	EN-726 EN-727	NA 822.0	Bedrock
EN-727 EN-CAF		968786.8	853.70			MH SP	Building 57-Gault Chevrolet property	24-Jul-13 1963			8.0	75.6 NA		5.0		0.010 NA		8.0	PVC	31.7 NA	EN-727	822.0 NA	Bedrock
EN-CAF EN-D01	767267.7 765385.1	966430.9 964797.4	842.31 838.80	843.88 841.58	1.57 2.78	SP SP	Building 42 (SW corner), in basement		250.0 165.0	106.0 152.0	8.0 12.0	NA NA	NA NA	NA NA	NA NA	NA NA	OH OH	4.0	BS BS	NA 24.0	EN-CAF	NA 814.8	Bedrock
						SP	Jefferson Ave, between Broad & Park	20-Sep-80			-						SS			-			Bedrock
EN-D02			842.06	844.84	2.78	SP	Building 699 (SW corner), on Grant St	03-Sep-80		123.0	6.0 6.0	119.0	123.0	4.0	6.0 6.0	0.020	SS	6.0	BS	21.0	EN-D02	821.1	Lower Aquifer
EN-D03 EN-D04	764640.5	964647.9	840.55	843.26		SP SP	Main & Lincoln, NE corner	06-Oct-80		160.0		116.3	160.0	10.0				6.0	BS GS	45.0 39.0	EN-D03 EN-D04	795.6	Lower Aquifer
			852.16	854.87	2.71		Riverview Dr & Jackson Ave, near river	12-May-87		177.0	8.0	167.0	177.0		4.0	0.020	SS	4.0	_			813.2	Lower Aquifer
EN-D04S	765372.0	968361.1	852.16	854.60	2.44	SP	Riverview Dr & Jackson Ave, near river	12-May-87		110.0	8.0	100.0	110.0	10.0	2.0	0.020	SS	2.0	GS	39.0	EN-D04S	813.2	Lower Aquifer
EN-D05		969457.0	831.70	834.51	2.81	SP	Riverview Dr & Jackson Ave, near river	22-Apr-87		150.0	8.0	140.0	150.0	10.0	4.0	0.020	SS	4.0	GS	36.0	EN-D05	795.7	Lower Aquifer
EN-D05S	765917.6	969457.0	831.70	834.30	2.60	SP	Riverview Dr & Jackson Ave, near river	22-Apr-87	155.0	83.0	8.0	73.0	83.0	10.0	2.0	0.020	SS	2.0	GS	36.0	EN-D05S	795.7	Lower Aquifer
EN-D06	767177.6	966476.6	850.01	852.94	2.93	SP	Cafeteria parking lot on McKinley Ave	11-Jan-91	151.6	107.0	10.0	90.0	107.0	17.0	4.0	0.020	SS	4.0	SS	31.0	EN-D06	819.0	Ice Contact/Till
EN-D07	766581.2	966653.9	845.48	848.03	2.55	SP	Parking Lot No. 10, Monroe St E of McKinley Ave	04-Jan-91	105.0	105.0	6.0	85.0	105.0	20.0	2.0	0.010	SS	2.0	SS	33.0	EN-D07	812.5	Ice Contact/Till
EN-D08	767078.2	967776.7	851.31	853.87	2.56	SP	Jackson Ave, Building 251 (HBE School)	30-Mar-92		41.0	16.0/12.0	70.5	75.5	5.0	4.0	0.010	SS	4.0	SS	28.0	EN-D08	823.3	Ice Contact/Till
EN-D09	767057.6	967776.2	851.51	854.64	3.13	SP	Jackson Ave, Building 251 (HBE School)	30-Mar-92		121.5	24/16/12/8/5.5	122.0	152.0	30.0	4.0	0.010	SS	4.0	SS	33.0	EN-D09	818.5	Bedrock
EN-D10	766742.3	967050.9	846.35	849.53	3.18	SP	Parking Lot No. 22, along Adams Ave	30-Mar-92		132.8	24/16/12/8/6	102.8	132.8	30.0	4.0	0.010	SS	4.0	SS	35.0	EN-D10	811.4	Bedrock
EN-D11	766879.9	966327.3	850.50	850.24	-0.26	MH	Parking Lot No. 20, S of Credit Union	30-Jun-92		128.3	24/16/12/8/5.5	149.0	179.0	30.0	4.0	0.010	SS	4.0	SS	28.5	EN-D11	822.0	Bedrock
EN-D12	767321.1	966227.4	851.74	854.05	2.31	SP	Parking Lot No. 25, NW of Credit Union	30-Jun-92		36.0	24.0/16.0	71.5	76.5	5.0	4.0	0.010	SS	4.0	SS	30.0	EN-D12	821.7	Ice Contact/Till
EN-D13	768066.6	966455.0	843.04	845.31	2.27	SP	Building 47 on S side of RR tracks	08-Feb-94		128.0	6.0	98.0	128.0	30.0	4.0	0.010	SS	4.0	SS	21.0	EN-D13	822.0	Bedrock
EN-D14	768068.7	966466.2	843.33	846.22	2.89	SP	Building 47 on S side of RR tracks	08-Feb-94		63.0	8.0	53.0	63.0	10.0	4.0	0.010	SS	4.0	SS	24.0	EN-D14	819.3	Ice Contact/Till
EN-D30		967027.0	848.29	848.01	-0.28	MH	W side of Adams Ave, 7 ft SE of EN-281	08-Sep-03		103.0	6.0	88.0	103.0	15.0	2.0	0.010	PVC	2.0	PVC	22.5	EN-D30	825.8	Ice Contact/Till
EN-D31	766178.0	966710.0	846.45	846.15	-0.30	MH	S side of Columbus St, 10 ft W of EN-214A	15-Aug-03	118.0	118.0	4.0	103.0	118.0	15.0	2.0	0.010	PVC	2.0	PVC	50.0	EN-D31	796.5	Ice Contact/Till
EN-D32	766340.0	968491.0	838.34	837.82	-0.52	MH	NW of intersection Delaware Ave & Tracy St	03-Oct-03		120.0	12.0	105.0	120.0	15.0	2.0	0.010	PVC	2.0	PVC	43.0	EN-D32	795.3	Lower Aquifer
EN-D33	767575.7	966438.1	851.40	851.06	-0.34	MH	4 ft W of EN-35, S end of Building 28	06-Apr-04		117.0	12.0/6.0/4.0	107.0	117.0	10.0	2.0	0.010	PVC	2.0	PVC	27.0	EN-D33	824.4	Bedrock
EN-D34	767573.7	966428.0	851.30	850.81	-0.49	MH	10 ft W of EN-35, S end of Building 28	09-Apr-04	81.0	81.0	12.0/6.0	76.0	81.0	5.0	2.0	0.010	PVC	2.0	PVC	26.0	EN-D34	825.3	Ice Contact/Till
EN-D35	767023.4	967031.2	848.40	848.23	-0.17	MH	~5 ft N of EN-281, W side of Adams Ave	17-Jun-04	119.0	117.5	12.0/6.0/4.0	107.5	117.5	10.0	2.0	0.010	PVC	2.0	PVC	24.0	EN-D35	824.4	Bedrock
EN-D36	766559.7	966655.1	846.00	845.50	-0.50	MH	~15 ft S of EN-D07, N side of Monroe St	07-Jun-04	129.5	129.5	12.0/6.0/4.0	119.5	129.5	10.0	2.0	0.010	PVC	2.0	PVC	34.0	EN-D36	812.0	Bedrock
EN-D37	767170.2	966474.1	849.90	849.67	-0.23	MH	4 ft S of EN-D06, E side of McKinley Ave	27-May-04		121.0	12.0/6.0/4.0	111.0	121.0	10.0	2.0	0.010	PVC	2.0	PVC	24.3	EN-D37	825.7	Bedrock
EN-D38	767319.5	966223.5	851.90	851.62	-0.28	MH	~5 ft W of EN-D12, W of McKinley Ave	21-May-04		111.0	12.0/6.0/4.0	101.0	111.0	10.0	2.0	0.010	PVC	2.0	PVC	24.0	EN-D38	827.9	Bedrock
EN-D39	767371.4	965948.8	850.50	850.25	-0.25	MH	~10 ft W of EN-430, corner of Grant Ave & North St	12-Nov-04		97.5	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	24.0	EN-D39	826.5	Bedrock
EN-D40	767076.8	966223.8	850.20	849.83	-0.37	MH	Alley W of Credit Union, between Grant & McKinley Ave	14-Dec-04		107.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	23.0	EN-D40	827.2	Bedrock
EN-D41		966589.5	846.80	846.50	-0.30	MH	In parking lot S of Building 40, betw/ McKinley & Roosevell	01-Dec-04		102.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	24.0	EN-D41	822.8	Bedrock
EN-D42	767231.3	966702.5	844.10	843.81	-0.29	MH	N end of Roosevelt Ave, E side of Building 40	16-Nov-04		104.5	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	19.0	EN-D42	825.1	Bedrock
EN-D43	767669.7	966710.2	849.80	849.70	-0.10	MH	N side of North St, ~5 ft E of EN-472, in grassy area	02-Feb-05	112.0	92.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	26.0	EN-D43	823.8	Bedrock
EN-D44	767428.2	966286.4	852.60	852.77	0.17	MH	SW corner of North St & McKinley Ave	07-Feb-05	107.0	100.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	24.0	EN-D44	828.6	Bedrock
EN-D45	767411.2	966123.3	851.30	850.75	-0.55	MH	S side of North St, between Grant & McKinley	04-Jan-05		100.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	24.0	EN-D45	827.3	Bedrock
EN-D46	767601.8	966548.0	850.10	850.08	-0.02	MH	N side of North St, in front of Building 25	04-Feb-05	103.0	100.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	26.0	EN-D46	824.1	Bedrock
EN-D47	767731.4	966372.2	853.80	853.42	-0.38	MH	E side of McKinley, in sidewalk just N of Skybridge	12-Jan-05		94.0	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	26.0	EN-D47	827.8	Bedrock
EN-D48	767721.4	966982.3	845.90	845.75	-0.15	MH	N side of North St near DOT-4	15-Jul-05	109.5	89.5	16.0/10.0/6.0	OH	OH	OH	OH	OH	OH	6.0	BS	25.0	EN-D48	820.9	Bedrock
EN-D49	767202.2	966420.7	850.60	852.73	2.13	SP	SW of Building 42, E side of McKinley Ave	16-Jun-06	181.0	103.5	18.0/12.0/8.0	ОН	OH	OH	OH	OH	OH	8.0	BS	30.0	EN-D49	820.6	Bedrock

Planar coordinates, measuring point elevations and ground surface elevations are based on the May 2003 comprehensive well field survey with subsequent followup surveys through December 2013 Coordinate base is New York State Central, NAD1983.

The coordinates and elevations for borings and wells that were abandoned before 2003 are estimated, where possible. These borings and wells are shaded gray on the table

Key:M.P./TOC = measuring point / top of casing (groundwater elevation reference point)

G.S. = ground surface ft bgs = feet below ground surface

ft amsl = feet above mean sea level

SP = Standpipe surface completion

MH = Flush-mount manhole surface completion

PVC = Polyvinyl Chloride

LCS = Low carbon steel

SS = Stainless steel BS = Bare steel

GS = Galvanized steel

OH = Open hole completion (no casing in bedrock)

NA = Data not available or not applicable

NE = Silt layer not encountered (silt may be present at greater depth)

Absent = Silt layer not present

December 22, 2016 Page 7 of 7

Site #704014

B-2: Physical Well Data and Specifications: Other Wells

End	icott,	NY
-----	--------	----

Site #704014

Well ID	Northing	Easting	Current M.P. Elevation	G.S. Elevation	Stickup	Surface Completion	Location Description	Installation Date			Boring Diameter	Depth to Screen Top	Depth to Screen Bottom	Screen Length	Screen Diameter	Slot Size	Screen Material	Casing Diameter	Casing Material	Depth to Top of Silt	Top of Silt Elevation	Unit
	(grid feet)	(grid feet)	(ft amsl)	(ft amsl)	(feet)				(ft bgs)	(ft bgs)	(in)	(ft bgs)	(ft bgs)	(ft)	(in)	(in)		(in)		(ft bgs)	(ft amsl)	
Dye Injection	n Wells																					
DI-1	767601.9	966083.1	849.06	849.3	-0.24	MH	E. side of Bldg 18, N. of North St.	17-Jan-07	22.0	20.0	8.0	15.0	20.0	5.0	2.0	0.020	PVC	2.0	PVC	20.0	829.3	Upper Aquifer
DI-2	767721.3	966062.2	848.32	848.6	-0.28	MH	E. side of Bldg 18, N. of North St.	18-Jan-07	24.0	23.2	8.0	18.2	23.2	5.0	2.0	0.020	PVC	2.0	PVC	23.2	825.4	Upper Aquifer
DI-3	767835.9	966043.0	846.48	846.9	-0.42	MH	Inside Bldg 18, in loading ramp E. of Elevator #24	22-Feb-07	24.0	21.0	2.5	16.0	21.0	5.0	1.0	0.020	PVC	1.0	PVC	21.0	825.9	Upper Aquifer
Schapiro Site	e Wells																					
RMJ-MW-1	766896.3	963748.0	843.41	844.1	-0.69		Northeast side of Shapiro building, 709 North St.	08-Nov-04	34.0	34.0	8.0	19.0	34.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer
RMJ-MW-2	766899.5	963620.3	841.23	841.5	-0.27		North side of Shapiro building, 709 North St.	09-Nov-04	32.0	31.0	8.0	16.0	31.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer
RMJ-MW-3	766731.4	963593.6	840.97	841.4	-0.43		Southwest side of Shapiro building, 709 North St.	10-Nov-04	31.0	31.0	8.0	16.0	31.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer
RMJ-MW-4	766709.9	963713.3	843.32	843.6	-0.28	MH	Front (south side) of Shapiro building, 709 North St.	15-Feb-06	34.0	34.0	8.0	19.0	34.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer
RMJ-MW-5	766814.1	963516.2	838.79	839.2	-0.41		West of Shapiro bldg, north of former Keytronics bldg	16-Feb-06	32.0	32.0	8.0	17.0	32.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer
RMJ-MW-6	766589.0	963443.7	839.69	840.0	-0.31	MH	Front (south side) of former Keytronics bldg	17-Feb-06	44.0	30.0	8.0	15.0	30.0	15.0	2.0	0.020	PVC	2.0	PVC	NA	NA	Upper Aquifer

Key:
M.P./TOC = measuring point / top of casing (groundwater elevation reference point)
G.S. = ground surface
It bgs = feet below ground surface
It amsl = feet above mean sea level
SP = Standple surface completion
MH = Flush-mount manhole surface completion
PVC = Polyvinyl Chloride
LCS = Low carbon steel
SS = Stainless steel
SS = Bare steel
GS = Galvanized steel
GS = Galvanized steel
H = Open hole completion (no casing in bedrock)

GS = Galvanuzed steer
OH = Open hole completion (no casing in bedrock)
NA = Data not available or not applicable
NE = Silt layer not encountered (silt may be present at greater depth)
Absent = Silt layer not present

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface	2016-DTB	Diameter		Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Problems
Well ID	Completion	2010-016	(in)	Visible?	Readable?	Color/Condition	Size	Condition	Type	Well Floblettis
EN-002	Standpipe	17.22	2.0	Yes	No	Yellow	10 3/4"	Good	3' Bailer	
EN-006	Standpipe	35.84	4.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-012	Standpipe	27.46	4.0	Yes	No	Yellow	10 3/4"	Good	2" SP	
EN-013	Standpipe	24.15	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-014	Standpipe	26.01	4.0	Yes	Yes	Yellow	10 3/4"	Good	4' Bailer	
EN-015	Standpipe	32.75	4.0	Yes	Yes	Yellow	10 3/4"	Good	2" SP	
EN-016	Standpipe	31.59	4.0	Yes	Yes	Brown	10 3/4"	Good	2" SP	
EN-017	Standpipe	27.93	4.0	Yes	Yes	Brown	10 3/4"	Good	3' Bailer	
EN-017A	Manhole	22.80	2.0	Yes	Yes			Good		
EN-018	Standpipe	25.58	4.0	Yes	Yes	Brown	10 3/4"	Good	3' Bailer	
EN-019	Standpipe	25.86	4.0	Yes	Yes	Brown	10 3/4"	Good		
EN-020	Standpipe	24.65	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-020A	Manhole	19.12	2.0	Yes	Yes			Good		
EN-021	Standpipe	23.08	4.0	Yes	No	Yellow	10 3/4"	Good	4' Bailer	
EN-022	Standpipe	23.77	2.0	Yes	Yes	Green	10 3/4"	Good		
EN-023	Standpipe	26.82	4.0	Yes	Yes	Yellow	10 3/4"	Good	2" SP	
EN-024	Standpipe	25.91	4.0	Yes	Yes	Brown	10 3/4"	Good	PP	
EN-025A	Manhole	13.05	2.0	Yes	Yes			Good		
EN-026	Standpipe	22.36	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-029A	Manhole	35.92	4.0	Yes	Yes			Good	4' Bailer	
EN-030	Manhole	45.48	4.0	Yes	Yes			Good	PDB	
EN-034	Standpipe	23.94	4.0	Yes	Yes	Yellow	10 3/4"	Good	2" SP	
EN-035	Standpipe	31.22	4.0	Yes	Yes	Brown	10 3/4"	Good	2" SP	
EN-036	Standpipe	30.71	4.0	Yes	No	Brown	10 3/4"	Good	2" SP	
EN-037	Manhole	24.74	4.0	Yes	Yes			Good	2" SP	
EN-038	Manhole	14.93	4.0	Yes	Yes			Good		
EN-039	Manhole	15.64	4.0	Yes	Yes			Good	4' Bailer	
EN-040	Manhole	15.61	4.0	Yes	Yes			Good		
EN-041	Manhole	13.48	4.0	Yes	Yes			Good		
EN-042	Manhole	13.52	4.0	Yes	Yes			Good		Replace MH Lid/Spindle
EN-044	Manhole	13.12	4.0	Yes	Yes			Good		· · · · · · · · · · · · · · · · · · ·
EN-045	Manhole	13.34	4.0	Yes	Yes			Good	4' Bailer	
EN-046	Manhole	13.62	4.0	Yes	Yes			Replace		Reset Manhole, Needs lock
EN-047	Manhole	12.86	4.0	Yes	No			Replace		Reset Manhole, Replace Plug, Needs lock
EN-048	Manhole	13.79	4.0	Yes	No			Replace		Reset Manhole, Replace Plug, Needs lock
EN-049	Manhole	18.83	4.0	Yes	Yes			Good		
EN-051	Standpipe	14.03	4.0	Yes	No	Yellow	10 3/4"	Good	3' Bailer	
EN-052	Standpipe	14.42	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-053	Manhole	19.94	4.0	Yes	Yes			Good	2" SP	
EN-054	Standpipe	27.01	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-055	Manhole	26.82	4.0	Yes	Yes			Good	2" SP	
EN-056	Manhole	22.22	4.0	Yes	Yes			Good	PDB	
EN-058	Standpipe	27.03	4.0	Yes	No	Yellow	10 3/4"	Good	2" SP	

Table B-3: 2016 Well Field Inspection Results

W. II IB	Surface	0040 DTD	Diameter	Ref. Pt.	Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	W. II D M
Well ID	Completion	2016-DTB	(in)	Visible?		Color/Condition	Size	Condition	Туре	Well Problems
EN-060	Standpipe	27.69	2.0	Yes	No	Brown	10 3/4"	Good		
EN-062	Standpipe	27.03	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-064	Standpipe	24.41	4.0	Yes	No	Yellow	10 3/4"	Good		
EN-065	Standpipe	40.55	2.0	Yes	No	Brown	10 3/4"	Good	4' Bailer	
EN-066	Manhole	38.37	4.0	Yes	Yes			Good	PDB	Weedwack Area
EN-067	Standpipe	28.25	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-069	Standpipe	23.92	2.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-070	Standpipe	18.86	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-072	Standpipe	24.10	2.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-073	Standpipe	17.15	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-074	Standpipe	28.00	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-075	Standpipe	27.02	4.0	Yes	No	Yellow	10 3/4"	Good	3' Bailer	
EN-076	Standpipe	30.01	4.0	Yes	No	Yellow	10 3/4"	Good	3' Bailer	
EN-077	Standpipe	30.03	4.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	
EN-078	Standpipe	29.48	4.0	Yes	Yes	Yellow	10 3/4"	Good	4' Bailer	
EN-079	Standpipe	34.69	2.0	Yes	No	Brown	10 3/4"	Good		
EN-080	Manhole	25.56	2.0	Yes	Yes			Replace	3' Bailer	
EN-081	Standpipe	32.50	4.0	Yes	No	Brown	10 3/4"	Good	2" SP	
EN-083	Standpipe	15.29	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-084	Standpipe	16.51	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-086	Manhole	15.86	2.0	Yes	Yes			Good		
EN-087	Manhole	28.27	2.0	Yes	No			Good	4' Bailer	
EN-091	Manhole	39.33	4.0	Yes	No			Good	2" SP	
EN-091A	Manhole	35.58	2.0	Yes	Yes			Good		
EN-092	Standpipe	38.88	4.0	Yes	Yes	Yellow	10 3/4"	Good	2" SP	
EN-092A	Manhole	34.55	2.0	Yes	Yes			Good		
EN-093	Standpipe	37.10	4.0	Yes	Yes	Yellow	10 3/4"	Good	4' Bailer	
EN-094	Standpipe	39.96	4.0	Yes	No	Brown	10 3/4"	Good	2" SP	
EN-095	Standpipe	55.46	4.0	Yes	Yes	Brown	10 3/4"	Good		
EN-096	Standpipe	42.14	2.0	Yes	No	Brown	10 3/4"	Good	5" Bailer	Weedwack Area
EN-097	Manhole	15.65	2.0	Yes	Yes			Good	PDB	
EN-099	Manhole	31.92	2.0	Yes	Yes			Good		
EN-100	Manhole	30.02	2.0	Yes	Yes			Good		
EN-102	Manhole	31.91	2.0	Yes	Yes			Good		Needs Lock, Stamp Manhole
EN-103	Manhole	33.08	2.0	Yes	Yes			Good		
EN-104	Standpipe	72.87	4.0	Yes	No	Brown	10 3/4"	Good		Needs Lock
EN-105	Standpipe	15.65	4.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-106	Standpipe	41.56	4.0	Yes	No	Brown	10 3/4"	Good	PDB	
EN-107A	Manhole	13.85	2.0	Yes	Yes			Good		
EN-111	Manhole	22.45	4.0	Yes	Yes			Good		
EN-112	Manhole	21.80	4.0	Yes	Yes			Good	3' Bailer	
EN-113	Manhole	20.89	4.0	Yes	Yes			Good		
EN-114	Manhole	20.36	4.0	Yes	Yes			Good	2" SP	

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface Completion	2016-DTB	Diameter (in)	Ref. Pt. Visible?	Well Tag Readable?	Well Paint Color/Condition	Royer Cap Size	Sanitary Seal Condition	Ded. Equip. Type	Well Problems
EN-117	Standpipe	21.77	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-119A	Manhole	21.64	2.0	Yes	Yes			Good		Replace Manhole Lid/Spindle
EN-121	Standpipe	19.67	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-122	Standpipe	14.77	2.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-123	Standpipe	22.01	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-125	Standpipe	41.61	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-126	Standpipe	37.35	2.0	Yes	No	Brown	10 3/4"	Good	3' Bailer	
EN-127	Manhole	22.82	2.0	Yes	Yes			Good	4' Bailer	
EN-129	Manhole	24.05	2.0	Yes	Yes			Good	3' Bailer	
EN-130	Manhole	31.27	2.0	Yes	Yes			Good	4' Bailer	
EN-131	Standpipe	45.80	2.0	Yes	No	Brown	10 3/4"	Good		
EN-132	Manhole	39.32	2.0	Yes	Yes			Good		
EN-146	Standpipe	22.82	8.0	Yes	No	Brown	10 3/4"	Good		
EN-148	Standpipe	26.94	4.0	Yes	No	Yellow	10 3/4"	Good	PDB	
EN-149	Standpipe	27.18	4.0	Yes	Yes	Brown	10 3/4"	Good		Weedwack Area
EN-150	Standpipe	47.18	2.0	Yes	Yes	Brown	10 3/4"	Good	5' Bailer	Weedwack Area
EN-151	Standpipe	48.32	2.0	Yes	Yes	Brown	10 3/4"	Good		Weedwack Area
EN-152	Standpipe	24.16	4.0	Yes	Yes	Brown	10 3/4"	Good	2" SP	Weedwack Area
EN-153	Standpipe	23.98	4.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-154B	Standpipe	46.37	2.0	Yes	Yes	Brown	6 5/8"	Good		Weedwack Area
EN-156	Standpipe	38.05	2.0	Yes	No	Yellow	10 3/4"	Good		
EN-157	Standpipe	44.13	2.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-158	Standpipe	33.34	2.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-161	Standpipe	32.46	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-162	Standpipe	42.72	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-163	Standpipe	43.37	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-164	Standpipe	20.92	4.0	Yes	Yes	Yellow	10 3/4"	Good		Weedwack Area
EN-165	Standpipe	24.67	4.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-166	Standpipe	21.90	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-167	Manhole	15.57	2.0	Yes	Yes			Good		
EN-170	Standpipe	33.42	2.0	Yes	Yes	Brown	10 3/4"	Good	3' Bailer	
EN-173	Manhole	29.84	2.0	Yes	Yes			Good	3' Bailer	
EN-174	Standpipe	33.40	2.0	Yes	No	Brown	10 3/4"	Good	3' Bailer	
EN-175	Manhole	NA	NA	Yes	Yes			NA		
EN-176	Standpipe	27.93	4.0	Yes	Yes	Yellow	10 3/4"	Good	4' Bailer	Weedwack Area
EN-177	Standpipe	18.68	4.0	Yes	Yes	Yellow	10 3/4"	Good	4' Bailer	
EN-178	Standpipe	40.90	2.0	Yes	Yes	Brown	10 3/4"	Good		Weedwack Area
EN-179	Manhole	22.12	2.0	Yes	Yes			Good		
EN-180	Manhole	33.06	2.0	Yes	Yes			Good		
EN-182	Standpipe	30.17	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-183	Standpipe	30.27	2.0	Yes	No	Brown	10 3/4"	Good		
EN-184	Standpipe	16.62	2.0	Yes	Yes	Yellow	6 5/8"	Good		
EN-186	Standpipe	26.40	2.0	Yes	Yes	Yellow	10 3/4"	Good	3' Bailer	

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface	2016-DTB	Diameter		Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Problems
Well ID	Completion	2010-016	(in)	Visible?	Readable?	Color/Condition	Size	Condition	Type	Well Floblenis
EN-187	Standpipe	30.83	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-188	Manhole	25.37	2.0	Yes	Yes			Replace	PDB	Reset Manhole
EN-189	Standpipe	26.68	2.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-190	Standpipe	35.28	2.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-191A	Manhole	37.70	2.0	Yes	Yes			Good		
EN-192	Standpipe	35.01	2.0	Yes	No	Brown	10 3/4"	Good		
EN-193	Standpipe	34.74	2.0	Yes	Yes	Brown	10 3/4"	Good		
EN-200	Standpipe	22.36	4.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-202	Standpipe	49.14	4.0	Yes	Yes	Brown	10 3/4"	Good		
EN-203	Standpipe	37.44	4.0	Yes	Yes	Yellow	10 3/4"	Good	2" SP	
EN-204	Standpipe	58.74	4.0	Yes	No	Brown	10 3/4"	Good	2" SP	
EN-206	Standpipe	50.12	4.0	Yes	No	Brown	10 3/4"	Good	2" SP	
EN-207	Standpipe	47.61	4.0	Yes	Yes	Brown	10 3/4"	Good	3' Bailer	
EN-208A	Manhole	36.70	2.0	Yes	Yes			Good		
EN-210	Standpipe	45.03	4.0	Yes	No	Brown	10 3/4"	Good	4' Bailer	
EN-211	Standpipe	19.88	4.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-213A	Manhole	39.92	2.0	Yes	Yes			Good		
EN-214A	Manhole	37.01	2.0	Yes	Yes			Good		
EN-214B	Manhole	49.08	2.0	Yes	Yes			Good		
EN-215A	Manhole	33.21	2.0	Yes	Yes			Good		
EN-215B	Manhole	41.35	2.0	Yes	Yes			Good		
EN-215W	Manhole	50.63	2.0	Yes	Yes			Good		
EN-217A	Manhole	41.88	2.0	Yes	Yes			Good		
EN-276A	Manhole	26.47	2.0	Yes	Yes			Good		
EN-277	Standpipe	20.14	2.0	Yes	No	Yellow	8 3/4"	Good		
EN-278	Standpipe	35.35	2.0	Yes	Yes	Yellow	8 3/4"	Good		
EN-279	Standpipe	28.66	2.0	Yes	Yes	Yellow	8 3/4"	Good		
EN-284	Standpipe	59.52	2.0	Yes	Yes	Yellow	8 3/4"	Good		
EN-301	Manhole	34.08	2.0	Yes	Yes			Good		
EN-302	Manhole	15.45	2.0	Yes	Yes			Good	PP	
EN-304	Manhole	22.94	2.0	Yes	Yes			Good	3' Bailer	
EN-306A	Manhole	22.14	2.0	Yes	Yes			Replace		
EN-306B	Manhole	42.40	2.0	Yes	Yes			Good		
EN-307	Manhole	24.41	2.0	Yes	Yes			Good		
EN-308	Manhole	38.22	2.0	Yes	Yes			Good		
EN-309A	Manhole	35.50	2.0	Yes	Yes			Good		
EN-309B	Manhole	62.90	2.0	Yes	Yes			Good		
EN-309C	Manhole	89.80	2.0	Yes	Yes			Good		
EN-310	Manhole	28.14	2.0	Yes	Yes			Good		
EN-311	Manhole	45.00	2.0	Yes	Yes			Good		
EN-380	Manhole	22.22	2.0	Yes	Yes			Good	PP	
EN-381	Manhole	24.17	2.0	Yes	Yes			Good		
EN-382	Manhole	29.44	2.0	Yes	Yes			Good	PP	

Table B-3: 2016 Well Field Inspection Results

W-II ID	Surface	004C DTD	Diameter	Ref. Pt.	Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Bushlesse
Well ID	Completion	2016-DTB	(in)	Visible?		Color/Condition	Size	Condition	Туре	Well Problems
EN-384	Manhole	23.93	2.0	Yes	Yes			Good		
EN-385	Manhole	21.14	2.0	Yes	Yes			Good		
EN-386	Manhole	23.00	2.0	Yes	Yes			Good	PP	
EN-387A	Standpipe	34.44	2.0	Yes	Yes	Brown	4 1/2"	Good	3' Bailer	
EN-392R	Manhole	20.85	2.0	Yes	No			Good	PP	
EN-393	Manhole	22.55	2.0	Yes	Yes			Good	3' Bailer	
EN-394	Manhole	26.05	2.0	Yes	Yes			Good	3' Bailer	Replace MH Lid/Spindle
EN-395	Manhole	23.66	2.0	Yes	Yes			Good	3' Bailer	·
EN-396	Manhole	24.05	2.0	Yes	Yes			Good	3' Bailer	
EN-397	Manhole	19.90	2.0	Yes	Yes			Good	PDB	
EN-398	Manhole	18.24	2.0	Yes	Yes			Good	PP	
EN-399	Manhole	18.81	2.0	Yes	Yes			Good	PP	
EN-400A	Manhole	26.71	2.0	Yes	Yes			Good		
EN-400B	Manhole	46.93	2.0	Yes	Yes			Good		
EN-401	Manhole	39.20	2.0	Yes	Yes			Good		
EN-401W	Manhole	45.46	2.0	Yes	Yes			Good		
EN-402	Manhole	39.28	2.0	Yes	Yes			Good		
EN-403	Manhole	40.78	2.0	Yes	Yes			Good		
EN-404	Manhole	33.34	2.0	Yes	Yes			Good		
EN-405	Manhole	35.69	2.0	Yes	Yes			Good		
EN-406	Manhole	36.98	2.0	Yes	Yes			Good		
EN-407A	Manhole	23.72	2.0	Yes	Yes			Good		
EN-407B	Manhole	43.80	2.0	Yes	Yes			Good		
EN-408	Manhole	27.55	2.0	Yes	Yes			Good		
EN-409	Manhole	13.66	2.0	Yes	Yes			Good	PDB	
EN-411	Manhole	9.58	2.0	Yes	Yes			Good		
EN-412A	Manhole	39.65	2.0	Yes	Yes			Good		
EN-412B	Manhole	58.26	2.0	Yes	Yes			Good		
EN-413	Manhole	52.16	2.0	Yes	Yes			Good		
EN-414	Manhole	44.44	2.0	Yes	Yes			Good		
EN-415	Manhole	40.77	2.0	Yes	Yes			Good		
EN-416A	Manhole	20.01	2.0	Yes	Yes			Good		
EN-416B	Manhole	39.40	2.0	Yes	Yes			Good		
EN-417A	Manhole	22.76	2.0	Yes	Yes			Good		Replace Manhole Lid/Spindle
EN-417B	Manhole	45.74	2.0	Yes	Yes			Good		
EN-417C	Manhole	65.42	2.0	Yes	Yes			Good		Replace Manhole Lid/Spindle
EN-418	Manhole	23.78	2.0	Yes	Yes			Good		
EN-419	Manhole	23.85	4.0	Yes	Yes			Good	PP	Reset Manhole
EN-421	Manhole	24.97	4.0	Yes	Yes			Good	PP	
EN-421A	Manhole	24.66	2.0	Yes	Yes			Good		
EN-422	Manhole	27.14	4.0	Yes	Yes			Good	PP	
EN-426	Manhole	40.09	2.0	Yes	Yes			Good		
EN-427	Manhole	44.88	2.0	Yes	Yes			Good		

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface Completion	2016-DTB	Diameter (in)		Well Tag Readable?	Well Paint Color/Condition	Royer Cap Size	Sanitary Seal Condition	Туре	Well Problems
EN-429	Manhole	23.93	4.0	Yes	Yes			Good	PP	
EN-430	Manhole	23.34	4.0	Yes	Yes			Good	PP	
EN-431	Manhole	23.35	4.0	Yes	Yes			Good	PP	
EN-432	Manhole	24.10	4.0	Yes	Yes			Good	PP	
EN-433	Manhole	24.42	4.0	Yes	Yes			Good	PP	
EN-434	Manhole	26.27	4.0	Yes	Yes			Good	4' Bailer	
EN-435	Manhole	24.57	4.0	Yes	Yes			Good	PP	
EN-436	Manhole	33.54	2.0	Yes	Yes			Good		
EN-437	Manhole	34.91	2.0	Yes	Yes			Good		
EN-438	Manhole	33.43	2.0	Yes	Yes			Replace		Reset Manhole
EN-438W	Manhole	44.12	2.0	Yes	Yes			Good		Replace Manhole Lid/Spindle
EN-439A	Manhole	26.77	2.0	Yes	Yes			Good		
EN-439B	Manhole	37.23	2.0	Yes	Yes			Good		
EN-440	Manhole	34.23	2.0	Yes	Yes			Good		
EN-441	Manhole	38.06	2.0	Yes	Yes			Good		
EN-442A	Manhole	30.58	2.0	Yes	Yes			Good		
EN-442B	Manhole	40.42	2.0	Yes	Yes			Good		
EN-443	Manhole	33.29	2.0	Yes	Yes			Good		
EN-444A	Manhole	28.43	2.0	Yes	Yes			Good		
EN-444B	Manhole	44.12	2.0	Yes	Yes			Good		
EN-445	Manhole	33.08	2.0	Yes	Yes			Good		
EN-446A	Manhole	28.10	2.0	Yes	Yes			Good		
EN-446B	Manhole	42.92	2.0	Yes	Yes			Good		
EN-447A	Manhole	31.17	2.0	Yes	Yes			Good		
EN-447B	Manhole	47.42	2.0	Yes	Yes			Good		
EN-448	Manhole	25.77	2.0	Yes	Yes			Good		
EN-449	Manhole	48.10	2.0	Yes	Yes			Good		
EN-450	Manhole	29.66	2.0	Yes	Yes			Good		
EN-451	Manhole	35.00	2.0	Yes	Yes			Good		Replace Plug
EN-453	Manhole	31.22	2.0	Yes	Yes			Good		
EN-454	Manhole	33.61	2.0	Yes	Yes			Good		
EN-455	Manhole	29.78	2.0	Yes	Yes			Good		
EN-456	Manhole	33.69	2.0	Yes	Yes			Good		
EN-457A	Manhole	27.34	2.0	Yes	Yes			Good		
EN-457B	Manhole	27.47	2.0	Yes	Yes			Good		
EN-458	Manhole	23.68	2.0	Yes	Yes			Good		
EN-459A	Manhole	49.42	2.0	Yes	Yes			Good	5' Bailer	
EN-459B	Manhole	122.06	2.0	Yes	Yes			Good	2" SP	
EN-460A	Manhole	49.68	2.0	Yes	Yes			Good		
EN-460B	Manhole	84.44	2.0	Yes	Yes			Good	2" SP	
EN-460C	Manhole	95.60	2.0	Yes	Yes			Good	2" SP	
EN-461	Manhole	33.81	2.0	Yes	Yes			Good		
EN-462	Manhole	43.90	2.0	Yes	Yes			Good	2' Bailer	

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface	0046 DTD	Diameter	Ref. Pt.	Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Broklesse
Well ID	Completion	2016-DTB	(in)	Visible?	Readable?	Color/Condition	Size	Condition	Type	Well Problems
EN-463	Manhole	44.02	2.0	Yes	Yes			Good	3' Bailer	
EN-464	Manhole	38.48	2.0	Yes	Yes			Good		
EN-465	Manhole	35.10	2.0	Yes	Yes			Good		
EN-466	Manhole	38.81	2.0	Yes	Yes			Good		
EN-467	Manhole	43.87	2.0	Yes	Yes			Good		
EN-468	Manhole	39.17	2.0	Yes	Yes			Good		
EN-469	Manhole	22.70	2.0	Yes	Yes			Replace		Reset Manhole
EN-470	Manhole	24.04	2.0	Yes	Yes			Good		
EN-471	Manhole	27.02	2.0	Yes	Yes			Good	2' Bailer	
EN-472	Manhole	25.33	2.0	Yes	Yes			Good	3' Bailer	
EN-473A	Manhole	44.06	2.0	Yes	Yes			Good	4' Bailer	
EN-473B	Manhole	77.99	2.0	Yes	Yes			Good	5' Bailer	
EN-474	Manhole	18.00	2.0	Yes	Yes			Good		
EN-475	Manhole	32.07	2.0	Yes	Yes			Good		
EN-476	Manhole	26.09	2.0	Yes	Yes			Good		
EN-477	Manhole	42.78	2.0	Yes	Yes			Good		
EN-478A	Manhole	28.53	2.0	Yes	Yes			Good		
EN-478B	Manhole	37.75	2.0	Yes	Yes			Good		
EN-479A	Manhole	28.47	2.0	Yes	Yes			Good		
EN-479B	Manhole	41.43	2.0	Yes	Yes			Good		
EN-480A	Manhole	32.11	2.0	Yes	Yes			Good		
EN-480B	Manhole	41.76	2.0	Yes	Yes			Good		
EN-481A	Manhole	29.68	2.0	Yes	Yes			Good		
EN-481B	Manhole	44.11	2.0	Yes	Yes			Good		
EN-482	Manhole	37.57	2.0	Yes	Yes			Good		
EN-483	Manhole	19.78	2.0	Yes	Yes			Good	PDB	
EN-484	Manhole	14.21	2.0	Yes	Yes			Good		Replace plug
EN-485	Manhole	16.80	2.0	Yes	Yes			Good		
EN-486	Manhole	23.72	2.0	Yes	Yes			Good		
EN-487	Manhole	14.90	2.0	Yes	Yes			Good	PDB	
EN-488	Manhole	24.39	2.0	Yes	Yes			Good		
EN-489	Manhole	20.93	2.0	Yes	Yes			Good		
EN-490	Manhole	28.15	2.0	Yes	Yes			Good		Replace Plug
EN-491	Manhole	33.02	2.0	Yes	Yes			Good		
EN-491A	Manhole	28.70	2.0	Yes	Yes			Good		
EN-492	Manhole	29.24	2.0	Yes	Yes			Good	3' Bailer	
EN-492A	Manhole	32.99	2.0	Yes	Yes			Good	PP	
EN-493	Manhole	35.14	2.0	Yes	Yes			Good	3' Bailer	
EN-494	Manhole	35.03	2.0	Yes	Yes			Good		
EN-495	Manhole	33.93	2.0	Yes	Yes			Good		
EN-496	Manhole	33.95	2.0	Yes	Yes			Good	3' Bailer	
EN-497	Manhole	34.50	2.0	Yes	Yes			Good		
EN-498	Manhole	35.82	2.0	Yes	Yes			Replace	3' Bailer	Reset MH

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface	2016-DTB	Diameter		Well Tag	Well Paint		Sanitary Seal		Well Problems
	Completion		(in)			Color/Condition	Size	Condition	Type	
EN-499A	Manhole	31.50	2.0	Yes	Yes			Good		
EN-499B	Manhole	41.78	2.0	Yes	Yes			Good		
EN-500A	Manhole	30.10	2.0	Yes	Yes			Good		
EN-500B	Manhole	42.28	2.0	Yes	Yes			Good		
EN-501	Manhole	34.50	2.0	Yes	Yes			Good		
EN-502	Manhole	33.48	2.0	Yes	Yes			Good		
EN-503	Manhole	32.20	2.0	Yes	Yes			Good		
EN-504	Manhole	33.87	2.0	Yes	Yes			Good		
EN-505	Manhole	28.70	2.0	Yes	Yes			Good		
EN-506	Manhole	29.31	2.0	Yes	Yes			Good		
EN-507	Standpipe	16.58	2.0	Yes	Yes	Brown	4 1/2"	Good		
EN-508	Manhole	18.20	2.0	Yes	Yes			Good	PP	
EN-509	Manhole	16.88	2.0	Yes	Yes			Good	PP	
EN-510	Manhole	25.53	2.0	Yes	Yes			Good		
EN-511	Manhole	26.78	2.0	Yes	Yes			Good		
EN-513	Manhole	23.18	2.0	Yes	Yes			Good		
EN-514	Manhole	21.42	2.0	Yes	Yes			Good	PP	
EN-515	Manhole	24.60	2.0	Yes	Yes			Good		
EN-516	Manhole	29.10	2.0	Yes	Yes			Good		
EN-517	Manhole	28.00	2.0	Yes	Yes			Good		
EN-518	Manhole	25.24	2.0	Yes	Yes			Good		Replace Manhole Lid/Spindle
EN-519	Manhole	27.02	2.0	Yes	Yes			Good		
EN-520	Manhole	23.56	2.0	Yes	Yes			Good		
EN-521	Manhole	19.72	2.0	Yes	Yes			Good		Replace MH Lid/Spindle
EN-522	Manhole	12.59	2.0	Yes	Yes			Good	3' Bailer	
EN-523	Manhole	14.82	2.0	Yes	Yes			Good		
EN-524	Manhole	19.75	2.0	Yes	Yes			Good		
EN-525	Manhole	23.05	2.0	Yes	Yes			Good		
EN-526	Manhole	47.88	2.0	Yes	No			Good		
EN-527	Manhole	20.87	2.0	Yes	No			Good		
EN-528	Manhole	21.48	2.0	Yes	No			Good		
EN-529	Manhole	34.49	2.0	Yes	Yes			Good		
EN-531	Manhole	25.74	4.0	Yes	Yes			Good		
EN-532	Manhole	39.43	2.0	Yes	No			Good		
EN-533	Manhole	14.69	2.0	Yes	No			Good		
EN-534	Manhole	34.25	2.0	Yes	No			Good		Replace Manhole Lid/Spindle
EN-600	Manhole	16.30	1.5	Yes	Yes			Good		
EN-601	Manhole	4.15	1.5	Yes	Yes			Good		
EN-602	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-603	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-604	Manhole	13.52	1.5	Yes	Yes			Good		
EN-605	Manhole	3.11	1.5	Yes	Yes			Good		
EN-606	Manhole	19.15	1.5	Yes	Yes			Good		

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface Completion	2016-DTB	Diameter (in)	Ref. Pt. Visible?	Well Tag Readable?	Well Paint Color/Condition	Royer Cap Size	Sanitary Seal Condition	Ded. Equip. Type	Well Problems
EN-608	Manhole	20.21	1.5	Yes	Yes			Good		
EN-609	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-614	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-616	Manhole	24.88	1.5	Yes	Yes			Good	PP	
EN-617	Manhole	6.79	1.5	Yes	Yes			Good	PP	
EN-618	Manhole	14.51	1.5	Yes	Yes			Good		
EN-619	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-620	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-621	Manhole	NA	1.5	NA	NA			Good		Decommissioned
EN-623	Manhole	23.48	6.0	Yes	Yes			Good		Replace Manhole Lid-14"
EN-624	Manhole	25.25	6.0	Yes	Yes			Good	PDB	
EN-626	Manhole	17.15	2.0	Yes	Yes			Good		
EN-628	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-629	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-630	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-631	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-632	Manhole	19.70	2.0	Yes	Yes			Good	PDB	Replace Manhole Lid/Spindle
EN-638	Manhole	17.65	2.0	Yes	Yes			Good	PDB	
EN-640	Manhole	13.35	2.0	Yes	Yes			Good		
EN-641	Standpipe	8.48	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-642	Manhole	13.47	2.0	Yes	Yes			Good	PDB	
EN-644	Manhole	12.68	2.0	Yes	Yes			Good		
EN-646	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-648	Manhole	5.72	2.0	Yes	Yes			Good		
EN-650	Manhole	16.36	2.0	Yes	Yes			Good		
EN-651	Standpipe	27.61	2.0	Yes	Yes	Brown	4 1/2"	Good	PDB	Weedwack Area
EN-652	Manhole	44.07	2.0	Yes	Yes			Good	PDB	
EN-653	Standpipe	25.20	2.0	Yes	Yes	Brown	4 1/2"	Good	PDB	Weedwack Area
EN-654	Manhole	41.01	2.0	Yes	Yes			Good		
EN-655	Manhole	13.48	2.0	Yes	Yes			Good	PDB	
EN-656	Standpipe	40.23	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-657	Standpipe	19.12	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-658	Standpipe	46.05	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-659	Standpipe	20.23	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-660	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-661	Manhole	NA	2.0	NA	NA			Good	PP	Decommissioned
EN-662	*Manhole*	NA	1.0	NA	NA			Good		Decommissioned
EN-663	*Manhole*	NA	1.0	NA	NA			Good		Decommissioned
EN-664	*Manhole*	NA	1.0	NA	NA			Good		Decommissioned
EN-665	*Manhole*	NA	1.0	NA	NA			Good		Decommissioned
EN-669	Manhole	NA	2.0	NA	NA			Good	PP	Decommissioned
EN-672	Manhole	NA	2.0	NA	NA			Good		Decommissioned
EN-677	Manhole	NA	2.0	NA	NA			Good		Decommissioned

Table B-3: 2016 Well Field Inspection Results

Well ID	Surface	2016-DTB	Diameter		Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Problems
Well ID	Completion	2010-010	(in)	Visible?	Readable?	Color/Condition	Size	Condition	Type	Well I Toblellis
EN-679	Manhole	23.95	2.0	Yes	No			Good	PDB	
EN-684A	Manhole	42.72	2.0	Yes	Yes			Good	PDB	
EN-687	Manhole	29.20	2.0	Yes	No			Good	PDB	Replace Manhole Lid/Spindle
EN-692	Manhole	12.75	2.0	Yes	Yes			Good	PDB	· · · · · · · · · · · · · · · · · · ·
EN-694	Manhole	20.44	2.0	Yes	Yes			Good	PDB	
EN-695	Manhole	11.42	2.0	Yes	Yes			Good		
EN-696	Standpipe	27.88	2.0	Yes	Yes	Brown	4 1/2"	Good	PDB	
EN-697	Standpipe	16.66	2.0	Yes	Yes	Brown	4 1/2"	Good	PP	
EN-698	Standpipe	31.40	2.0	Yes	Yes	Brown	4 1/2"	Good	PDB	
EN-699	Standpipe	21.81	2.0	Yes	Yes	Brown	4 1/2"	Good		
EN-700	Standpipe	35.00	2.0	Yes	Yes	Brown	4 1/2"	Good	PDB	
EN-701	Standpipe	23.36	2.0	Yes	Yes	Brown	6 5/8"	Good	PDB	
EN-702	Manhole	24.30	2.0	Yes	Yes			Good	PDB	Needs new plug
EN-703	Manhole	17.36	2.0	Yes	No			Good	PDB	Needs new plug
EN-704	Manhole	21.80	2.0	Yes	Yes			Good	PDB	Needs new plug
EN-705	Manhole	14.84	2.0	Yes	Yes			Good	PDB	
EN-708	Standpipe	12.78	2.0	Yes	Yes	Brown	6 5/8"	Good		
EN-710	Standpipe	20.46	6.0	Yes	Yes			Good	PDB	
EN-711	Standpipe	19.25	2.0	Yes	Yes	Brown	6 5/8"	Good		Weedwack Area
EN-712	Standpipe	32.30	2.0	Yes	Yes	Brown	6 5/8"	Good		Weedwack Area
EN-713	Standpipe	8.11	2.0	Yes	Yes	Brown	4 1/2"	Good		Weedwack Area
EN-714	Manhole	24.13	2.0	Yes	Yes			Good	PDB	
EN-715	Manhole	24.12	2.0	Yes	Yes			Good	PDB	
EN-716	Manhole	22.75	2.0	Yes	Yes			Good	PDB	
EN-717	Manhole	25.50	2.0	Yes	Yes			Good	PDB	
EN-718	Manhole	24.59	2.0	Yes	Yes			Good	PDB	Clean out MH; Replace MH Lid/Spindle
EN-719	Manhole	18.68	2.0	Yes	Yes			Good	PDB	Clean out MH
EN-720	Manhole	34.20	2.0	Yes	Yes			Good	PDB	
EN-721	Manhole	9.28	2.0	Yes	No			Good		
EN-722	Manhole	27.90	2.0	Yes	No			Good	PDB	
EN-723	Manhole	19.82	2.0	Yes	No			Good	PDB	
EN-724	Manhole	16.14	2.0	Yes	No			Good	PDB	
EN-725	Manhole	31.50	2.0	Yes	No			Good	PDB	
EN-726	Manhole	64.81	2.0	Yes	No			Good	PDB	
EN-727	Manhole	80.22	2.0	Yes	No			Good	PDB	
EN-D1	Standpipe	157.98	4.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-D2	Standpipe	123.06	6.0	Yes	Yes	Green	10 3/4"	Good	PDB	Replace Royer, Completed 3/31/15
EN-D3	Standpipe	112.98	6.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
EN-D4	Standpipe	112.93	4.0	Yes	No	Brown	12 3/4"	Good	PDB	
EN-D4S	Standpipe	179.50	2.0	Yes	No	Brown	12 3/4"	Good	PDB	
EN-D5	Standpipe	152.58	4.0	Yes	Yes	Brown	12 3/4"	Good		
EN-D5S	Standpipe	86.95	2.0	Yes	Yes	Brown	12 3/4"	Good		
EN-D6	Standpipe	84.40	4.0	Yes	Yes	Yellow	10 3/4"	Good		

Table B-3: 2016 Well Field Inspection Results

W-II ID	Surface	0046 DTD	Diameter	Ref. Pt.	Well Tag	Well Paint	Royer Cap	Sanitary Seal	Ded. Equip.	Well Broklesse
Well ID	Completion	2016-DTB	(in)	Visible?	Readable?	Color/Condition	Size	Condition	Туре	Well Problems
EN-D7	Standpipe	47.68	2.0	Yes	No	Brown	10 3/4"	Good		
EN-D8	Standpipe	76.55	4.0	Yes	Yes	Yellow	10 3/4"	Good		
EN-D9	Standpipe	155.52	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-D10	Standpipe	135.32	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-D11	Manhole	179.27	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-D12	Manhole	76.60	4.0	Yes	Yes			Replace		Reset Manhole
EN-D13	Standpipe	128.26	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-D14	Standpipe	64.88	4.0	Yes	Yes	Yellow	10 3/4"	Good	PDB	
EN-D30	Manhole	103.27	2.0	Yes	Yes			Good		
EN-D31	Manhole	117.88	2.0	Yes	Yes			Good		
EN-D32	Manhole	119.56	2.0	Yes	Yes			Good		
EN-D33	Manhole	115.85	2.0	Yes	Yes			Good	PDB	
EN-D34	Manhole	79.62	2.0	Yes	Yes			Good	PDB	
EN-D35	Manhole	117.35	2.0	Yes	Yes			Good	PDB	
EN-D36	Manhole	129.28	2.0	Yes	Yes			Good	PDB	
EN-D37	Manhole	120.22	2.0	Yes	Yes			Good	PDB	
EN-D38	Manhole	110.04	2.0	Yes	Yes			Replace	PDB	Reset Manhole
EN-D39	Manhole	102.80	6.0	Yes	Yes			Good	PDB	
EN-D40	Manhole	107.71	6.0	Yes	Yes			Good	PDB	
EN-D41	Manhole	117.80	6.0	Yes	Yes			Replace	PDB	Reset Manhole
EN-D42	Manhole	124.03	6.0	Yes	Yes			Good	PDB	
EN-D43	Manhole	105.85	6.0	Yes	Yes			Good	PDB	
EN-D44	Manhole	104.57	6.0	Yes	Yes			Good	PDB	
EN-D45	Manhole	101.28	6.0	Yes	Yes			Good	PDB	
EN-D46	Manhole	105.00	6.0	Yes	Yes			Good	PDB	
EN-D47	Manhole	111.61	6.0	Yes	Yes			Good	PDB	
EN-D48	Manhole	108.64	6.0	Yes	Yes	_		Good	PDB	
DI-1	Manhole	19.35	2.0	Yes	No			Replace		Needs Tags/Lock
DI-2	Manhole	22.81	2.0	Yes	No			Good		Needs Tags/Lock
DI-3	Manhole	20.22	1.0	Yes	No			Good		Needs Tags/Lock
DOT-1	Standpipe	22.40	2.0	Yes	No	Brown	10 3/4"	Good	PDB	
DOT-2	Standpipe	21.33	2.0	Yes	No	Brown	10 3/4"	Good	3' Bailer	
DOT-3	Standpipe	27.15	2.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
DOT-4	Standpipe	23.98	2.0	Yes	Yes	Brown	10 3/4"	Good	PDB	
MW-34D	Standpipe	26.08	2.0	Yes	No	Yellow			PDB	

APPENDIX C

Groundwater Elevation Data, 2016

Endicott, New York

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Note: "-1.00" means the Upper Aquifer is dry or unsaturated.

Well	Date of	M.P. Elev.	Depth to	Groundwater	
WEII	Measurement	(ft amsl)	Water (ft)	Elevation	
pper Aquifer	Wells				
DI-1	2/1/2016	849.06	Dry	-1.00	
DI-1	5/24/2016	849.06	Dry	-1.00	
DI-1	5/26/2016	849.06	Dry	-1.00	
DI-1	9/15/2016	849.06	Dry	-1.00	
DI-1	11/28/2016	849.06	19.40	829.66	
DI-2	2/1/2016	848.32	18.60	829.72	
DI-2	5/24/2016	848.32	18.60	829.72	
DI-2	5/26/2016	848.32	18.62	829.70	
DI-2	9/15/2016	848.32	19.02	829.30	
DI-2	11/28/2016	848.32	19.02	829.30	
DI-3	2/1/2016	846.48	16.47	830.01	
DI-3	5/24/2016	846.48	16.51	829.97	
DI-3	5/26/2016	846.48	16.58	829.90	
DI-3	9/15/2016	846.48	17.14	829.34	
DI-3	11/28/2016	846.48	17.18	829.30	
DOT-1	5/24/2016	849.14	19.94	829.20	
DOT-1	5/26/2016	849.14	19.89	829.25	
DOT-1	9/15/2016	849.14	20.48	828.66	
DOT-1	11/28/2016	849.14	20.45	828.69	
DOT-2	2/1/2016	848.57	20.69	827.88	
DOT-2	5/24/2016	848.57	Dry	-1.00	
DOT-2	5/26/2016	848.57	19.83	828.74	
DOT-2	9/15/2016	848.57	21.10 21.15	827.47	
DOT-2 DOT-3	11/28/2016 2/1/2016	848.57 848.73	20.53	827.42 828.20	
DOT-3	5/24/2016	848.73	19.86	828.87	
DOT-3	5/26/2016	848.73	19.86	828.76	
DOT-3	9/15/2016	848.73	20.92	827.81	
DOT-3	11/28/2016	848.73	20.40	828.33	
DOT-4	2/1/2016	848.61	19.89	828.72	
DOT-4	5/24/2016	848.61	19.68	828.93	
DOT-4	5/26/2016	848.61	19.68	828.93	
DOT-4	9/15/2016	848.61	20.01	828.60	
DOT-4	11/28/2016	848.61	20.10	828.51	
EN-002	2/1/2016	842.54	14.20	828.34	
EN-002	5/24/2016	842.54	14.47	828.07	
EN-002	5/26/2016	842.54	14.47	828.07	
EN-002	9/13/2016	842.54	15.46	827.08	
EN-002	9/15/2016	842.54	15.59	826.95	
EN-002	11/28/2016	842.54	15.84	826.70	
EN-006	5/24/2016	852.34	30.46	821.88	
EN-006	8/3/2016	852.34	31.75	820.59	
EN-006	11/28/2016	852.34	31.05	821.29	
EN-012	2/1/2016	851.86	21.63	830.23	
EN-012	2/8/2016	851.86	21.64	830.22	
EN-012	4/25/2016	851.86	21.46	830.40	
EN-012	5/24/2016	851.86	21.62	830.24	
EN-012	5/26/2016	851.86	21.71	830.15	
EN-012	9/13/2016	851.86	21.48	830.38	
EN-012	9/15/2016	851.86	21.39	830.47	
EN-012	9/27/2016	851.86	21.93	829.93	
EN-012	10/7/2016	851.86	22.11	829.75	

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-012	10/24/2016	851.86	21.89	829.97
EN-012	11/3/2016	851.86	21.03	830.83
EN-012	11/10/2016	851.86	21.58	830.28
EN-012	11/22/2016	851.86	21.68	830.18
EN-012	11/28/2016	851.86	21.93	829.93
EN-012	12/19/2016	851.86	21.87	829.99
EN-013	2/1/2016	851.93	21.80	830.13
EN-013	5/24/2016	851.93	22.87	829.06
EN-013	5/26/2016	851.93	21.90	830.03
EN-013	9/13/2016	851.93	22.20	829.73
EN-013	9/15/2016	851.93	21.93	830.00
EN-013	11/28/2016	851.93	22.15	829.78
EN-014	2/1/2016	852.00	22.01	829.99
EN-014	5/24/2016	852.00	22.10	829.90
EN-014	5/26/2016	852.00	22.09	829.91
EN-014	9/13/2016	852.00	22.41	829.59
EN-014	9/15/2016	852.00	22.27	829.73
EN-014	11/28/2016	852.00	22.32	829.68
EN-015	2/1/2016	851.81	24.61	827.20
EN-015	5/24/2016	851.81	25.68	826.13
EN-015	5/26/2016	851.81	25.77	826.04
EN-015	9/13/2016	851.81	26.31	825.50
EN-015	9/15/2016	851.81	26.38	825.43
EN-015	11/28/2016	851.81	25.71	826.10
EN-016	2/1/2016	852.22	25.40	826.82
EN-016	5/24/2016	852.22	27.83	824.39
EN-016	5/26/2016	852.22	27.93	824.29
EN-016	9/13/2016	852.22	28.13	824.09
EN-016	9/15/2016	852.22	28.17	824.05
EN-016	11/28/2016	852.22	27.81	824.41
EN-017	2/1/2016	852.15	24.76	827.39
EN-017	5/24/2016	852.15	24.92	827.23
EN-017	5/26/2016	852.15	24.94	827.21
EN-017	9/13/2016	852.15	25.01	827.14
EN-017	9/15/2016	852.15	25.03	827.12
EN-017	11/28/2016	852.15	25.63	826.52
EN-018	2/1/2016	851.45	22.97	828.48
EN-018	5/24/2016	851.45	22.84	828.61
EN-018	5/26/2016	851.45	22.83	828.62
EN-018	9/13/2016	851.45	23.06	828.39
EN-018	9/15/2016	851.45	23.09	828.36
EN-018	11/28/2016	851.45	23.41	828.04
EN-019	2/1/2016	852.34	23.50	828.84
EN-019	5/24/2016	852.34	23.33	829.01
EN-019	5/26/2016	852.34	23.32	829.02
EN-019	9/13/2016	852.34	23.55	828.79
EN-019	9/15/2016	852.34	23.53	828.81
EN-019	11/28/2016	852.34	23.69	828.65
EN-020	2/1/2016	851.30	21.74	829.56
EN-020	5/24/2016	851.30	21.72	829.58
EN-020	5/26/2016	851.30	21.73	829.57
EN-020	9/13/2016	851.30	22.08	829.22
EN-020	9/15/2016	851.30	22.10	829.20
EN-020	11/28/2016	851.30	22.05	829.25
EN-021	2/1/2016	847.84	18.20	829.64

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

	Date of	M.P. Elev.	Depth to	Groundwater
Well	Measurement	(ft amsl)	Water (ft)	Elevation
EN-021	5/24/2016	847.84	18.10	829.74
EN-021	5/26/2016	847.84	18.20	829.64
EN-021	9/13/2016	847.84	18.63	829.21
EN-021	9/15/2016	847.84	18.67	829.17
EN-021	11/28/2016	847.84	18.65	829.19
EN-022	5/24/2016	844.48	22.93	821.55
EN-022	8/3/2016	844.48	Dry	-1.00
EN-022	11/28/2016	844.48	23.77	820.71
EN-023	2/1/2016	850.37	21.94	828.43
EN-023	5/24/2016	850.37	21.78	828.59
EN-023	8/3/2016	850.37	21.90	828.47
EN-023	11/28/2016	850.37	22.08	828.29
EN-024	2/1/2016	852.01	25.40	826.61
EN-024	5/24/2016	852.01	24.73	827.28
EN-024	5/26/2016	852.01	24.75	827.26
EN-024	9/13/2016	852.01	25.35	826.66
EN-024	9/15/2016	852.01	25.28	826.73
EN-024	11/28/2016	852.01	24.80	827.21
EN-026	2/10/2016	840.96	13.20	827.76
EN-026	5/24/2016	840.96	12.90	828.06
EN-026	8/3/2016	840.96	12.97	827.99
EN-026	8/11/2016	840.96	13.11	829.43
EN-026	9/15/2016	840.96	13.52	827.44
EN-026	11/17/2016	840.96	13.67	837.20
EN-026	11/28/2016	840.96	13.72	827.24
EN-029A	2/8/2016	850.38	28.54	821.84
EN-029A	4/25/2016	850.38	27.72	822.66
EN-029A	5/24/2016	850.38	27.85	822.53
EN-029A	8/3/2016	850.38	29.46	820.92
EN-029A	8/23/2016	850.38	28.7	821.68
EN-029A	11/22/2016	850.38	28.47	821.91
EN-029A	11/28/2016	850.38	28.40	821.98
EN-030	5/24/2016	853.18	20.47	832.71
EN-030	8/3/2016	853.18	21.04	832.14
EN-034	2/1/2016	841.49	13.82	827.67
EN-034	2/8/2016	841.49	13.93	827.56
EN-034	4/25/2016	841.49	13.81	827.68
EN-034	5/24/2016	841.49	13.90	827.59
EN-034	5/26/2016	841.49	13.90	827.59
EN-034	7/5/2016	841.49	13.44	828.05
EN-034	8/23/2016	841.49	13.97	827.52
EN-034	9/15/2016	841.49	14.53	826.96
EN-034	9/27/2016	841.49	14.81	826.68
EN-034	10/7/2016	841.49	14.73	826.76
EN-034	10/14/2016	841.49	14.63	826.86
EN-034	10/24/2016	841.49	14.50	826.99
EN-034	11/3/2016	841.49	14.47	827.02
EN-034	11/10/2016	841.49	14.68	826.81
EN-034	11/22/2016	841.49	14.88	826.61
EN-034	11/28/2016	841.49	15.02	826.47
EN-034	12/19/2016	841.49	15.08	826.41
EN-035	2/1/2016	854.22	25.40	828.82
EN-035	5/24/2016	854.22	25.31	828.91
EN-035	9/15/2016	854.22	25.40	828.82
EN-035	11/28/2016	854.22	25.39	828.83

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-036	2/1/2016	852.97	24.23	828.74
EN-036	5/24/2016	852.97	24.05	828.92
EN-036	5/26/2016	852.97	24.05	828.92
EN-036	9/15/2016	852.97	24.23	828.74
EN-036	11/28/2016	852.97	24.25	828.72
EN-037	2/1/2016	839.97	13.20	826.77
EN-037	5/24/2016	839.97	13.12	826.85
EN-037	5/26/2016	839.97	13.17	826.80
EN-037	9/15/2016	839.97	13.59	826.38
EN-037	11/28/2016	839.97	13.93	826.04
EN-038	2/1/2016	838.40	10.52	827.88
EN-038	5/24/2016	838.40	10.55	827.85
EN-038	5/26/2016	838.40	10.57	827.83
EN-038	9/15/2016	838.40	11.28	827.12
EN-038	11/28/2016	838.40	11.21	827.19
EN-039	2/1/2016	841.21	10.03	831.18
EN-039	5/24/2016	841.21	10.17	831.04
EN-039	5/26/2016	841.21	10.20	831.01
EN-039	9/15/2016	841.21	10.97	830.24
EN-039	11/28/2016	841.21	10.90	830.31
EN-040	2/1/2016	837.81	9.48	828.33
EN-040	5/24/2016	837.81	9.56	828.25
EN-040	5/26/2016	837.81	9.59	828.22
EN-040	9/15/2016	837.81	10.42	827.39
EN-040	11/28/2016	837.81	10.40	827.41
EN-041	2/1/2016	837.58	9.12	828.46
EN-041	5/24/2016	837.58	9.22	828.36
EN-041	5/26/2016	837.58	9.25	828.33
EN-041	9/15/2016	837.58	10.13	827.45
EN-041	11/28/2016	837.58	10.14	827.44
EN-042	2/1/2016	837.45	8.82	828.63
EN-042	5/24/2016	837.45	8.97	828.48
EN-042	5/26/2016	837.45	8.99	828.46
EN-042	9/15/2016	837.45	9.94	827.51
EN-042	11/28/2016	837.45	9.90	827.55
EN-044	2/1/2016	837.11	8.31	828.80
EN-044	5/24/2016	837.11	8.47	828.64
EN-044	5/26/2016	837.11	8.50	828.61
EN-044	9/15/2016	837.11	9.48	827.63
EN-044	11/28/2016	837.11	9.48	827.63
EN-045	2/1/2016	836.94	8.02	828.92
EN-045	5/24/2016	836.94	8.20	828.74
EN-045	5/26/2016	836.94	8.24	828.70
EN-045	9/13/2016	836.94	9.21	827.73
EN-045	9/15/2016	836.94	9.23	827.71
EN-045	11/28/2016	836.94	9.25	827.69
EN-046	2/1/2016	837.60	9.58	828.02
EN-046	5/24/2016	837.60	9.73	827.87
EN-046	5/26/2016	837.60	9.75	827.85
EN-046	9/15/2016	837.60	10.41	827.19
EN-046	11/28/2016	837.60	10.48	827.12
EN-047	2/1/2016	837.48	9.66	827.82
EN-047	5/24/2016	837.48	9.83	827.65
EN-047	5/26/2016	837.48	9.87	827.61
EN-047	9/15/2016	837.48	10.51	826.97

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-047	11/28/2016	837.48	10.76	826.72
EN-048	2/1/2016	837.54	9.57	827.97
EN-048	5/24/2016	837.54	9.75	827.79
EN-048	5/26/2016	837.54	9.76	827.78
EN-048	9/15/2016	837.54	10.43	827.11
EN-048	11/28/2016	837.54	10.70	826.84
EN-049	2/1/2016	837.49	9.50	827.99
EN-049	5/24/2016	837.49	9.66	827.83
EN-049	5/26/2016	837.49	9.67	827.82
EN-049	9/15/2016	837.49	10.33	827.16
EN-049	11/28/2016	837.49	10.68	826.81
EN-051	2/1/2016	839.65	10.64	829.01
EN-051	2/8/2016	839.65	10.71	828.94
EN-051	4/25/2016	839.65	10.54	829.11
EN-051	5/24/2016	839.65	10.63	829.02
EN-051	5/26/2016	839.65	10.50	829.15
EN-051	7/5/2016	839.65	9.64	830.01
EN-051	8/23/2016	839.65	11.04	828.61
EN-051	9/13/2016	839.65	11.41	828.24
EN-051	9/15/2016	839.65	11.35	828.30
EN-051	9/27/2016	839.65	11.59	828.06
EN-051	10/7/2016	839.65	11.73	827.92
EN-051	10/14/2016	839.65	11.59	828.06
EN-051	10/24/2016	839.65	11.02	828.63
EN-051	11/3/2016	839.65	8.97	830.68
EN-051	11/10/2016	839.65	11.13	828.52
EN-051	11/22/2016	839.65	11.11	828.54
EN-051	11/28/2016	839.65	11.58	828.07
EN-051	12/19/2016	839.65	11.58	828.07
EN-052	2/1/2016	839.44	10.38	829.06
EN-052	2/8/2016	839.44	10.48	828.96
EN-052	4/25/2016	839.44	10.51	828.93
EN-052	5/24/2016	839.44	10.57	828.87
EN-052	5/26/2016	839.44	10.56	828.88
EN-052	7/5/2016	839.44	10.1	829.34
EN-052	8/23/2016	839.44	11.02	828.42
EN-052	9/13/2016	839.44	11.54	827.90
EN-052	9/15/2016	839.44	11.53	827.91
EN-052	9/27/2016	839.44	11.68	827.76
EN-052	10/7/2016	839.44	11.87	827.57
EN-052	10/14/2016	839.44	11.87	827.57
EN-052	10/24/2016	839.44	11.35	828.09
EN-052	11/3/2016	839.44	10.54	828.90
EN-052	11/10/2016	839.44	11.28	828.16
EN-052	11/22/2016	839.44	11.52	827.92
EN-052	11/28/2016	839.44	11.70	827.74
EN-052	12/19/2016	839.44	11.74	827.70
EN-053	2/1/2016	837.86	10.16	827.70
EN-053	5/24/2016	837.86	10.27	827.59
EN-053	5/26/2016	837.86	10.30	827.56
EN-053	9/15/2016	837.86	10.95	826.91
EN-053	11/28/2016	837.86	11.40	826.46
EN-054	2/1/2016	851.49	22.18	829.31
EN-054	5/24/2016	851.49	22.50	828.99
EN-054	5/26/2016	851.49	22.57	828.92

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
well	Measurement	(ft amsl)	Water (ft)	Elevation
EN-054	9/13/2016	851.49	23.29	828.20
EN-054	9/15/2016	851.49	23.32	828.17
EN-054	11/28/2016	851.49	23.16	828.33
EN-055	2/1/2016	841.46	15.45	826.01
EN-055	5/24/2016	841.46	15.23	826.23
EN-055	5/26/2016	841.46	15.46	826.00
EN-055	9/15/2016	841.46	15.81	825.65
EN-055	11/28/2016	841.46	16.14	825.32
EN-056	2/1/2016	844.07	17.10	826.97
EN-056	5/24/2016	844.07	16.73	827.34
EN-056	5/26/2016	844.07	16.88	827.19
EN-056	9/15/2016	844.07	17.47	826.60
EN-056	11/28/2016	844.07	16.05	828.02
EN-058	2/1/2016	845.75	19.20	826.55
EN-058	5/24/2016	845.75	19.07	826.68
EN-058	5/26/2016	845.75	19.15	826.60
EN-058	9/15/2016	845.75	19.53	826.22
EN-058	11/28/2016	845.75	19.74	826.01
EN-060	5/24/2016	842.06	21.07	820.99
EN-060	8/3/2016	842.06	21.87	820.19
EN-060	11/28/2016	842.06	22.00	820.06
EN-062	5/24/2016	840.96	18.83	822.13
EN-062	8/3/2016	840.96	20.27	820.69
EN-062	11/28/2016	840.96	19.74	821.22
EN-064	5/24/2016	842.53	19.48	823.05
EN-064	8/3/2016	842.53	19.65	822.88
EN-064	11/28/2016	842.53	19.58	822.95
EN-065	5/24/2016	854.92	26.04	828.88
EN-065	8/3/2016	854.92	26.43	828.49
EN-065	11/28/2016	854.92	26.52	828.40
EN-066	2/10/2016	839.70	17.76	821.94
EN-066	5/24/2016	839.70	17.57	822.13
EN-066	8/3/2016	839.70	17.97	821.73
EN-066	8/11/2016	839.70	18.01	833.85
EN-066	11/17/2016	839.70	18.40	829.05
EN-066	11/28/2016	839.70	18.45	821.25
EN-067	2/10/2016	837.85	14.87	822.98
EN-067	5/24/2016	837.85	14.66	823.19
EN-067	8/3/2016	837.85	14.92	822.93
EN-067	8/11/2016	837.85	15.09	836.84
EN-067	11/17/2016	837.85	15.50	832.18
EN-067	11/28/2016	837.85	15.48	822.37
EN-069	2/10/2016	839.14	12.36	826.78
EN-069	5/24/2016	839.14	12.30	826.84
EN-069	8/3/2016	839.14	12.18	826.96
EN-069	8/11/2016	839.14	12.46	839.54
EN-069	11/17/2016	839.14	13.52	832.18
EN-069	11/28/2016	839.14	13.42	825.72
EN-070	2/10/2016	841.66	14.83	826.83
EN-070	5/24/2016	841.66	14.40	827.26
EN-070	8/3/2016	841.66	14.28	827.38
EN-070	8/11/2016	841.66	14.50	837.31
EN-070	11/17/2016	841.66	14.76	834.82
EN-070	11/28/2016	841.66	14.80	826.86

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-072	2/10/2016	838.45	10.55	827.90
EN-072	5/24/2016	838.45	10.65	827.80
EN-072	8/3/2016	838.45	10.47	827.98
EN-072	8/11/2016	838.45	10.71	841.51
EN-072	9/13/2016	838.45	11.64	826.81
EN-072	9/15/2016	838.45	11.73	826.72
EN-072	11/17/2016	838.45	12.36	835.78
EN-072	11/28/2016	838.45	12.48	825.97
EN-073	2/1/2016	839.74	11.86	827.88
EN-073	5/24/2016	839.74	12.08	827.66
EN-073	5/26/2016	839.74	12.10	827.64
EN-073	9/13/2016	839.74	13.32	826.42
EN-073	9/15/2016	839.74	13.46	826.28
EN-073	11/28/2016	839.74	14.81	824.93
EN-074	2/1/2016	851.59	22.90	828.69
EN-074	5/24/2016	851.59	22.90	828.69
EN-074	5/26/2016	851.59	22.94	828.65
EN-074	9/13/2016	851.59	23.72	827.87
EN-074	9/15/2016	851.59	23.78	827.81
EN-074	11/28/2016	851.59	24.29	827.30
EN-075	2/1/2016	851.20	21.36	829.84
EN-075	5/24/2016	851.20	21.32	829.88
EN-075	5/26/2016	851.20	21.32	829.88
EN-075	9/13/2016	851.20	21.83	829.37
EN-075	9/15/2016	851.20	21.93	829.27
EN-075	11/28/2016	851.20	21.68	829.52
EN-076	2/1/2016	853.06	26.42	826.64
EN-076	5/24/2016	853.06	26.16	826.90
EN-076	5/26/2016	853.06	26.14	826.92
EN-076	9/15/2016	853.06	26.54	826.52
EN-076	11/28/2016	853.06	26.77	826.29
EN-077	2/1/2016	854.25	26.72	827.53
EN-077	5/24/2016	854.25	26.59	827.66
EN-077	5/26/2016	854.25	26.53	827.72
EN-077	11/28/2016	854.25	26.71	827.54
EN-077	2/1/2016	852.16	22.15	830.01
EN-078	5/24/2016	852.16	22.13	829.84
EN-078	8/3/2016		24.18	827.98
EN-078	11/28/2016	852.16 852.16	21.85	830.31
EN-079	5/24/2016	848.15	25.40	822.75
EN-079	8/3/2016	848.15	26.53	821.62
	11/28/2016		25.83	822.32
EN-079		848.15		
EN-080	5/24/2016	848.14	20.82	827.32
EN-080	8/3/2016	848.14	21.02	827.12
EN-080	11/28/2016	848.14	21.10	827.04
EN-081	2/1/2016	850.03	21.39	828.64
EN-081	5/24/2016	850.03	21.09	828.94
EN-081	5/26/2016	850.03	21.13	828.90
EN-081	9/15/2016	850.03	21.45	828.58
EN-081	11/28/2016	850.03	21.51	828.52
EN-083	5/24/2016	845.78	9.60	836.18
EN-083	5/26/2016	845.78	9.64	836.14
EN-083	9/15/2016	845.78	9.95	835.83
EN-083	11/28/2016	845.78	9.30	836.48
EN-084	2/1/2016	851.75	10.76	840.99

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

,,,,	Date of	M.P. Elev.	Depth to	Groundwater
Well	Measurement	(ft amsl)	Water (ft)	Elevation
EN-084	5/24/2016	851.75	10.61	841.14
EN-084	9/15/2016	851.75	10.86	840.89
EN-084	11/28/2016	851.75	10.26	841.49
EN-086	5/26/2016	844.31	8.99	835.32
EN-086	8/3/2016	844.31	9.05	835.26
EN-087	5/24/2016	846.42	16.23	830.19
EN-087	5/26/2016	846.42	16.29	830.13
EN-087	8/3/2016	846.42	16.81	829.61
EN-091	5/24/2016	847.61	25.66	821.95
EN-091	8/3/2016	847.61	26.90	820.71
EN-091	11/28/2016	847.61	26.14	821.47
EN-091A	5/24/2016	848.14	26.99	821.15
EN-091A	8/3/2016	848.14	28.14	820.00
EN-091A	11/28/2016	848.14	27.18	820.96
EN-091T	5/24/2016	850.08	5.21	844.87
EN-091T	8/3/2016	850.08	32.83	817.25
EN-091T	11/28/2016	850.08	4.80	845.28
EN-092	5/24/2016	850.53	27.59	822.94
EN-092	8/3/2016	850.53	29.27	821.26
EN-092	11/28/2016	850.53	28.07	822.46
EN-092A	5/24/2016	847.21	22.49	824.72
EN-092A	8/3/2016	847.21	23.77	823.44
EN-092A	11/28/2016	847.21	22.68	824.53
EN-093	5/24/2016	848.68	26.53	822.15
EN-093	8/3/2016	848.68	27.63	821.05
EN-093	11/28/2016	848.68	27.03	821.65
EN-094	5/24/2016	848.61	28.82	819.79
EN-094	8/3/2016	848.61	29.73	818.88
EN-094	11/28/2016	848.61	29.71	818.90
EN-095	2/10/2016	846.08	25.95	820.13
EN-095	5/24/2016	846.08	25.87	820.21
EN-095	8/3/2016	846.08	26.37	819.71
EN-095	8/11/2016	846.08	26.47	825.68
EN-095	11/17/2016	846.08	26.78	810.67
EN-095 EN-096	11/28/2016	846.08 838.65	26.86	819.22
	2/10/2016		17.53	821.12
EN-096	5/24/2016	838.65	17.38	821.27
EN-096 EN-096	8/3/2016 8/11/2016	838.65	17.71	820.94
EN-096	11/17/2016	838.65 838.65	17.94 18.28	833.51 817.83
EN-096	11/28/2016	838.65	18.30	820.35
EN-090	2/1/2016	840.59	11.84	828.75
EN-097	5/24/2016	840.59	11.55	829.04
EN-097	5/26/2016	840.59	11.65	828.94
EN-097	9/13/2016	840.59	12.73	827.86
EN-097	9/15/2016	840.59	12.85	827.74
EN-097	11/28/2016	840.59	12.78	827.81
EN-099	5/24/2016	845.64	23.48	822.16
EN-099	8/3/2016	845.64	26.43	819.21
EN-099	11/28/2016	845.64	24.03	821.61
EN-100	5/24/2016	845.77	23.42	822.35
EN-100	8/3/2016	845.77	24.72	821.05
EN-100	11/28/2016	845.77	24.11	821.66
	,			
EN-102	5/24/2016	849.88	25.00	824.88

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-102	11/28/2016	846.79	25.60	821.19
EN-103	5/24/2016	836.98	17.33	819.65
EN-103	8/3/2016	836.98	17.83	819.15
EN-103	11/28/2016	836.98	18.43	818.55
EN-104	2/10/2016	840.27	20.82	819.45
EN-104	5/24/2016	840.27	20.63	819.64
EN-104	8/3/2016	840.27	21.11	819.16
EN-104	8/11/2016	840.27	21.24	831.10
EN-104	11/17/2016	840.27	21.64	827.50
EN-104	11/28/2016	840.27	21.71	818.56
EN-105	2/10/2016	834.60	8.07	826.53
EN-105	5/24/2016	834.60	7.80	826.80
EN-105	8/3/2016	834.60	8.67	825.93
EN-105	8/11/2016	834.60	8.26	843.04
EN-105	11/17/2016	834.60	7.84	840.73
EN-105	11/28/2016	834.60	7.60	827.00
EN-106	2/1/2016	853.89	26.14	827.75
EN-106	5/24/2016	853.89	26.14	827.75
EN-106	5/26/2016	853.89	26.20	827.69
EN-106	9/15/2016	853.89	26.74	827.15
EN-106	11/28/2016	853.89	27.29	826.60
EN-107	9/15/2016	840.08	12.51	827.57
EN-107R	5/24/2016	839.23	16.20	823.03
EN-107R	5/26/2016	839.23	15.52	823.71
EN-107R	9/15/2016	839.23	16.89	822.34
EN-107R	11/28/2016	839.23	12.38	826.85
EN-111	2/1/2016	842.95	11.06	831.89
EN-111	5/24/2016	842.95	6.75	836.20
EN-111	5/26/2016	842.95	12.09	830.86
EN-111	9/15/2016	842.95	12.18	830.77
EN-111	11/28/2016	842.95	11.62	831.33
EN-112	2/1/2016	843.18	13.55	829.63
EN-112	5/24/2016	843.18	13.70	829.48
EN-112	5/26/2016	843.18	13.69	829.49
EN-112	9/13/2016	843.18	14.50	828.68
EN-112	9/15/2016	843.18	14.35	828.83
			14.35	
EN-112	11/28/2016	843.18		828.80
EN-113	2/1/2016	843.44	14.34	829.10
EN-113	5/24/2016	843.44	12.04	831.40
EN-113	5/26/2016	843.44	12.86	830.58
EN-113	9/13/2016	843.44	13.80	829.64
EN-113	9/15/2016	843.44	14.17	829.27
EN-113	11/28/2016	843.44	13.10	830.34
EN-114	2/8/2016	836.40	8.53	827.87
EN-114	4/25/2016	836.40	9.08	827.32
EN-114	5/24/2016	836.40	9.20	827.20
EN-114	5/26/2016	836.40	9.17	827.23
EN-114	7/5/2016	836.40	8.40	828.00
EN-114	8/23/2016	836.40	9.23	827.17
EN-114	9/13/2016	836.40	10.82	825.58
EN-114	9/15/2016	836.40	10.88	825.52
EN-114	9/27/2016	836.40	11.50	824.90
EN-114	10/7/2016	836.40	11.80	824.60
EN-114	10/14/2016	836.40	11.91	824.49
EN-114	10/24/2016	836.40	11.03	825.37

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-114	11/3/2016	836.40	11.47	824.93
EN-114	11/10/2016	836.40	12.07	824.33
EN-114	11/22/2016	836.40	12.81	823.59
EN-114	11/28/2016	836.40	13.02	823.38
EN-114	12/19/2016	836.40	12.90	823.50
EN-114T	5/24/2016	838.87	11.97	826.90
EN-114T	5/26/2016	838.87	12.09	826.78
EN-114T	9/15/2016	838.87	14.08	824.79
EN-114T	11/28/2016	838.87	17.35	821.52
EN-117	2/1/2016	842.78	14.46	828.32
EN-117	5/24/2016	842.78	14.80	827.98
EN-117	5/26/2016	842.78	14.78	828.00
EN-117	9/13/2016	842.78	15.90	826.88
EN-117	9/15/2016	842.78	15.98	826.80
EN-117	11/28/2016	842.78	16.99	825.79
EN-121	2/10/2016	837.09	9.82	827.27
EN-121	5/24/2016	837.09	9.78	827.31
EN-121	8/3/2016	837.09	9.75	827.34
EN-121	8/11/2016	837.09	9.78	838.06
EN-121	11/17/2016	837.09	11.05	837.68
EN-121	11/28/2016	837.09	10.99	826.10
EN-122	2/10/2016	836.39	9.36	827.03
EN-122	5/24/2016	836.39	9.38	827.01
EN-122	8/3/2016	836.39	9.21	827.18
EN-122	8/11/2016	836.39	9.44	842.57
EN-122	11/17/2016	836.39	10.44	838.17
EN-122	11/28/2016	836.39	10.34	826.05
EN-123	2/10/2016	835.41	10.59	824.82
EN-123	5/24/2016	835.41	10.39	825.02
EN-123	8/3/2016	835.41	10.68	824.73
EN-123	8/11/2016	835.41	10.81	826.13
EN-123	11/17/2016	835.41	11.35	837.71
EN-123	11/28/2016	835.41	10.96	824.45
EN-125	5/24/2016	845.47	24.45	821.02
EN-125	8/3/2016	845.47	25.43	820.04
EN-125	11/28/2016	845.47	25.27	820.20
EN-125	5/24/2016	843.71	22.40	821.31
EN-126	8/3/2016		23.43	820.28
		843.71		
EN-126 EN-127	11/28/2016 2/1/2016	843.71 844.86	23.24 16.12	820.47 828.74
EN-127	5/24/2016	844.86	15.83	
EN-127				829.03
	8/3/2016 11/28/2016	844.86	16.03	828.83
EN-127		844.86	16.23	828.63
EN-129	5/24/2016	846.48	17.20	829.28
EN-129	8/3/2016	846.48	17.92	828.56
EN-129	11/28/2016	846.48	17.98	828.50
EN-130	5/24/2016	850.12	21.28	828.84
EN-130	8/3/2016	850.12	21.60	828.52
EN-130	11/28/2016	850.12	21.88	828.24
EN-131	5/24/2016	862.22	41.14	821.08
EN-131	8/3/2016	862.22	41.25	820.97
EN-131	11/28/2016	862.22	41.34	820.88
EN-132	5/24/2016	848.49	29.58	818.91
EN-132	8/3/2016	848.49	30.61	817.88
EN-132	11/28/2016	848.49	30.53	817.96

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-133	5/24/2016	846.95	30.57	816.38
EN-133	8/3/2016	846.95	32.74	814.21
EN-133	11/28/2016	846.95	33.02	813.93
EN-146	2/10/2016	837.49	10.08	827.41
EN-146	5/24/2016	837.49	10.08	827.41
EN-146	8/3/2016	837.49	10.05	827.44
EN-146	8/11/2016	837.49	10.16	829.49
EN-146	9/13/2016	837.49	10.81	826.68
EN-146	9/15/2016	837.49	10.92	826.57
EN-146	11/17/2016	837.49	11.42	836.90
EN-146	11/28/2016	837.49	11.36	826.13
EN-148	2/1/2016	851.61	21.30	830.31
EN-148	2/8/2016	851.61	21.03	830.58
EN-148	4/25/2016	851.61	21.20	830.41
EN-148	5/24/2016	851.61	21.32	830.29
EN-148	5/26/2016	851.61	21.60	830.01
EN-148	9/13/2016	851.61	22.24	829.37
EN-148	9/15/2016	851.61	22.19	829.42
EN-148	9/27/2016	851.61	22.15	829.46
EN-148	10/7/2016	851.61	22.35	829.26
EN-148	10/14/2016	851.61	22.32	829.29
EN-148	10/24/2016	851.61	21.83	829.78
EN-148	11/3/2016	851.61	20.31	831.30
EN-148	11/10/2016	851.61	21.63	829.98
EN-148	11/22/2016	851.61	21.76	829.85
EN-148	11/28/2016	851.61	21.62	829.99
EN-148	12/19/2016	851.61	21.25	830.36
EN-149	2/10/2016	841.06	20.22	820.84
EN-149	5/24/2016	841.06	20.09	820.97
EN-149	8/3/2016	841.06	20.47	820.59
EN-149	8/11/2016	841.06	20.64	818.80
EN-149	11/17/2016	841.06	20.93	825.55
EN-149	11/28/2016	841.06	21.01	820.05
EN-150	2/10/2016	841.04	20.20	820.84
EN-150	5/24/2016	841.04	20.08	820.96
EN-150	8/3/2016	841.04	20.47	820.57
EN-150	8/11/2016	841.04	20.62	830.87
EN-150	11/17/2016	841.04	20.93	821.61
EN-150	11/28/2016	841.04	21.66	819.38
EN-151	2/10/2016	838.74	17.42	821.32
EN-151	5/24/2016	838.74	17.28	821.46
EN-151	8/3/2016	838.74	17.69	821.05
EN-151	8/11/2016	838.74	17.89	820.56
EN-151	11/17/2016	838.74	18.74	833.12
EN-151	11/28/2016	838.74	18.18	820.56
EN-152	2/10/2016	838.74	17.42	821.32
EN-152	5/24/2016	838.74	17.30	821.44
EN-152	8/3/2016	838.74	17.68	821.06
EN-152	8/11/2016	838.74	17.81	821.93
EN-152	11/17/2016	838.74	18.12	833.81
EN-152	11/28/2016	838.74	18.18	820.56
EN-153	2/10/2016	838.21	17.00	821.21
EN-153	5/24/2016	838.21	16.63	821.58
EN-153	8/3/2016	838.21	16.93	821.28
EN-153	8/11/2016	838.21	17.12	834.47

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-153	11/17/2016	838.21	17.48	834.52
EN-153	11/28/2016	838.21	17.45	820.76
EN-154B	2/10/2016	838.98	17.83	821.15
EN-154B	8/11/2016	838.98	18.25	832.95
EN-154B	11/17/2016	838.98	18.55	833.26
EN-154R	2/10/2016	838.31	17.20	821.11
EN-154R	5/24/2016	838.31	17.05	821.26
EN-154R	8/3/2016	838.31	17.45	820.86
EN-154R	8/11/2016	838.31	17.60	822.99
EN-154R	11/17/2016	838.31	17.92	834.30
EN-154R	11/28/2016	838.31	17.98	820.33
EN-161	5/24/2016	847.17	23.97	823.20
EN-161	8/3/2016	847.17	26.72	820.45
EN-161	11/28/2016	847.17	23.30	823.87
EN-162	5/24/2016	856.48	35.13	821.35
EN-162	8/3/2016	856.48	35.96	820.52
EN-162	11/28/2016	856.48	35.49	820.99
EN-163	5/24/2016	860.31	38.82	821.49
EN-163	8/3/2016	860.31	39.10	821.21
EN-163	11/28/2016	860.31	39.04	821.27
EN-164	2/10/2016	842.10	19.62	822.48
EN-164	5/24/2016	842.10	19.40	822.70
EN-164	8/3/2016	842.10	19.77	822.33
EN-164	8/11/2016	842.10	19.80	823.38
EN-164	11/17/2016	842.10	20.11	832.04
EN-164	11/28/2016	842.10	20.26	821.84
EN-165	2/10/2016	838.31	16.21	822.10
EN-165	5/24/2016	838.31	16.00	822.31
EN-165	8/3/2016	838.31	16.35	821.96
EN-165	8/11/2016	838.31	16.49	826.95
EN-165	11/17/2016	838.31	16.82	834.63
EN-165	11/28/2016	838.31	16.87	821.44
		837.32		
EN-166 EN-166	2/10/2016		13.20	824.12
EN-166	5/24/2016	837.32	13.00	824.32
	8/3/2016	837.32	13.12	824.20
EN-166	8/11/2016	837.32	13.35	823.05
EN-166	11/17/2016	837.32	13.96	838.38
EN-166	11/28/2016	837.32	13.85	823.47
EN-167	2/10/2016	835.48	9.60	825.88
EN-167	5/24/2016	835.48	9.48	826.00
EN-167	8/3/2016	835.48	9.60	825.88
EN-167	8/11/2016	835.48	9.72	833.06
EN-167	11/17/2016	835.48	10.57	840.73
EN-167	11/28/2016	835.48	10.47	825.01
EN-170	5/24/2016	847.08	24.40	822.68
EN-170	8/3/2016	847.08	26.20	820.88
EN-170	11/28/2016	847.08	24.73	822.35
EN-173	5/24/2016	846.33	22.90	823.43
EN-173	8/3/2016	846.33	23.65	822.68
EN-173	11/28/2016	846.33	23.22	823.11
EN-174	5/24/2016	855.83	29.41	826.42
EN-174	8/3/2016	855.83	29.48	826.35
EN-174	11/28/2016	855.83	29.56	826.27
EN-175	5/24/2016	839.38	22.10	817.28

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-175	8/3/2016	844.15	23.25	820.90
EN-175	11/28/2016	844.15	23.52	820.63
EN-176	2/10/2016	842.88	20.93	821.95
EN-176	5/24/2016	842.88	20.73	822.15
EN-176	8/3/2016	842.88	21.15	821.73
EN-176	8/11/2016	842.88	21.23	816.26
EN-176	11/17/2016	842.88	21.56	826.28
EN-176	11/28/2016	842.88	21.61	821.27
EN-177	2/10/2016	841.88	16.50	825.38
EN-177	5/24/2016	841.88	16.12	825.76
EN-177	8/3/2016	841.88	16.50	825.38
EN-177	8/11/2016	841.88	16.51	835.10
EN-177	11/17/2016	841.88	16.35	835.66
EN-177	11/28/2016	841.88	16.47	825.41
EN-178	5/24/2016	854.18	38.61	815.57
EN-178	8/3/2016	854.18	38.96	815.22
EN-178	11/28/2016	854.18	38.90	815.28
EN-182	5/24/2016	847.90	25.11	822.79
EN-182	8/3/2016	847.90	26.60	821.30
EN-182	11/28/2016	847.90	25.38	822.52
EN-183	5/24/2016	846.97	24.20	822.77
EN-183	8/3/2016	846.97	25.36	821.61
EN-183	11/28/2016	846.97	24.45	822.52
EN-184	2/1/2016	846.44	11.92	834.52
EN-184	5/24/2016	846.44	10.65	835.79
EN-184	5/26/2016	846.44	10.85	835.59
EN-184	9/15/2016	846.44	11.88	834.56
EN-184	11/28/2016	846.44	11.13	835.31
EN-186	2/1/2016	851.62	22.64	828.98
EN-186	5/24/2016	851.62	22.83	828.79
EN-186	5/26/2016	851.62	22.84	828.78
EN-186	9/13/2016	851.62	24.04	827.58
EN-186	9/15/2016	851.62	24.04	827.58
EN-186	11/28/2016	851.62	24.23	827.39
EN-187	2/1/2016	851.66	20.94	830.72
EN-187	2/8/2016	851.66	20.47	831.19
EN-187	4/25/2016	851.66	20.97	830.69
EN-187	5/24/2016	851.66	21.73	829.93
EN-187	5/26/2016	851.66	21.85	829.81
EN-187	9/13/2016	851.66	22.63	829.03
EN-187	9/15/2016	851.66	22.12	829.54
EN-187	11/28/2016	851.66	21.49	830.17
EN-188	2/1/2016	848.13	18.46	829.67
EN-188	5/24/2016	848.13	18.41	829.72
EN-188	5/26/2016	848.13	18.40	829.73
EN-188	9/13/2016	848.13	18.93	829.20
EN-188	9/15/2016	848.13	18.99	829.14
EN-188	11/28/2016	848.13	18.98	829.15
EN-189	2/1/2016	851.00	21.06	829.94
EN-189	5/24/2016	851.00	21.40	829.60
EN-189	5/26/2016	851.00	21.48	829.52
EN-189	9/13/2016	851.00	22.14	828.86
EN-189	9/15/2016	851.00	22.15	828.85

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-189	11/28/2016	851.00	21.85	829.15
EN-190	5/24/2016	851.76	30.25	821.51
EN-190	8/3/2016	851.76	31.65	820.11
EN-190	11/28/2016	851.76	30.90	820.86
EN-191A	5/24/2016	848.52	27.67	820.85
EN-191A	8/3/2016	848.52	29.57	818.95
EN-191A	11/28/2016	848.52	29.07	819.45
EN-192	5/24/2016	850.71	29.33	821.38
EN-192	8/3/2016	850.71	30.51	820.20
EN-192	11/28/2016	850.71	30.00	820.71
EN-193	5/24/2016	848.28	26.52	821.76
EN-193	8/3/2016	848.28	28.05	820.23
EN-193	11/28/2016	848.28	26.97	821.31
EN-194	5/24/2016	843.46	33.10	810.36
EN-194	8/3/2016	843.46	29.48	813.98
EN-194	11/28/2016	843.46	33.15	810.31
EN-195	5/24/2016	838.02	16.30	821.72
EN-195	8/3/2016	838.02	17.79	820.23
EN-195	11/28/2016	838.02	16.75	821.27
EN-200	2/1/2016	850.27	19.32	830.95
EN-200	5/24/2016	850.27	19.13	831.14
EN-200	9/15/2016	850.27	19.50	830.77
EN-200	11/28/2016	850.27	19.03	831.24
EN-202	2/10/2016	848.44	28.00	820.44
EN-202	5/24/2016	848.44	28.05	820.39
EN-202	8/3/2016	848.44	28.63	819.81
EN-202	8/11/2016	848.44	28.76	822.86
EN-202	11/17/2016	848.44	28.13	812.83
EN-202	11/28/2016	848.44	29.02	819.42
EN-203	5/24/2016	846.10	24.21	821.89
EN-203	8/3/2016	846.10	25.92	820.18
EN-203	11/28/2016	846.10	25.22	820.88
EN-204	2/8/2016	856.44	35.12	821.32
EN-204	4/25/2016	856.44	35.15	821.29
EN-204	5/24/2016	856.44	35.48	820.96
EN-204	8/3/2016	856.44	36.71	819.73
EN-204	8/23/2016	856.44	36.69	819.75
EN-204	11/22/2016	856.44	36.17	820.27
EN-204	11/28/2016	856.44	36.04	820.40
EN-206	5/24/2016	859.47	39.61	819.86
EN-206	8/3/2016	859.47	40.28	819.19
EN-206 EN-207	11/28/2016	859.47	40.21	819.26
EN-207 EN-207	5/24/2016	854.92	42.06	812.86
EN-207 EN-207	8/3/2016 11/28/2016	854.92 854.92	43.57 43.56	811.35 811.36
EN-207	5/24/2016	851.64	34.08	817.56
EN-208A	8/3/2016	851.64	34.56	817.08
EN-208A	11/28/2016	851.64	34.96	816.68
EN-200A EN-210	5/24/2016	850.67	40.74	809.93
EN-210	8/3/2016	850.67	41.05	809.62
EN-210	11/28/2016	850.67	41.40	809.27
EN-210	2/10/2016	837.73	10.88	826.85
EN-211	5/24/2016	837.73	10.84	826.89

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwater
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-211	8/3/2016	837.73	10.67	827.06
EN-211	8/11/2016	837.73	10.95	840.71
EN-211	11/17/2016	837.73	12.00	829.49
EN-211	11/28/2016	837.73	11.93	825.80
EN-213A	5/24/2016	853.94	34.51	819.43
EN-213A	8/3/2016	853.94	35.12	818.82
EN-213A	11/28/2016	853.94	35.09	818.85
EN-214A	5/24/2016	846.40	25.15	821.25
EN-214A	8/3/2016	846.40	26.79	819.61
EN-214A	11/28/2016	846.40	25.75	820.65
EN-214B	5/24/2016	846.46	25.23	821.23
EN-214B	8/3/2016	846.46	26.82	819.64
EN-214B	11/28/2016	846.46	25.89	820.57
EN-215A	5/24/2016	847.50	26.04	821.46
EN-215A	8/3/2016	847.50	27.74	819.76
EN-215A	11/28/2016	847.50	26.95	820.55
EN-215B	5/24/2016	847.47	27.92	819.55
EN-215B	8/3/2016	847.47	29.41	818.06
EN-215B	11/28/2016	847.47	28.74	818.73
EN-215T	5/24/2016	847.00	36.23	810.77
EN-215T	8/3/2016	847.00	36.08	810.92
EN-215T	11/28/2016	847.00	41.27	805.73
EN-217A	5/24/2016	857.13	36.60	820.53
EN-217A	8/3/2016	857.13	37.41	819.72
EN-217A	11/28/2016	857.13	37.30	819.83
EN-218	2/10/2016	837.32	10.21	827.11
EN-218	8/11/2016	837.32	10.25	837.88
EN-218	11/17/2016	837.32	11.32	842.90
EN-219	9/15/2016	843.62	18.25	825.37
EN-219R	5/24/2016	843.95	21.36	822.59
EN-219R	5/26/2016	843.95	21.48	822.47
EN-219R	9/15/2016	843.95	21.41	822.54
EN-219R	11/28/2016	843.95	21.60	822.35
EN-253	9/15/2016	844.32	16.17	828.15
EN-253R	5/24/2016	843.96	19.96	824.00
EN-253R	5/26/2016	843.96	20.71	823.25
EN-253R	9/15/2016	843.96	18.57	825.39
EN-253R	11/28/2016	843.96	16.65	827.31
EN-276	5/24/2016	852.29	32.56	819.73
EN-276	5/26/2016	852.29	32.15	820.14
EN-276	9/15/2016	852.29	32.75	819.54
EN-276	11/28/2016	852.29	26.65	825.64
EN-276A	2/1/2016	849.39	22.85	826.54
EN-276A	5/24/2016	849.39	24.04	825.35
EN-276A	5/26/2016	849.39	24.14	825.25
EN-276A	9/15/2016	849.39	24.63	824.76
EN-276A	11/28/2016	849.39	23.72	825.67
EN-276R	5/24/2016	852.54	29.10	823.44
EN-276R	5/26/2016	852.54	28.88	823.66
EN-276R	9/15/2016	852.54	29.02	823.52
EN-276R	11/28/2016	852.54	29.04	823.50
EN-277	2/1/2016	852.36	25.93	826.43
EN-277	5/24/2016	852.36	25.85	826.51

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

	neans the Upper A Date of	M.P. Elev.	Depth to	Groundwater
Well	Measurement	(ft amsl)	Water (ft)	Elevation
EN-277	5/26/2016	852.36	25.86	826.50
EN-277	11/28/2016	852.36	25.90	826.46
EN-277	2/1/2016	850.75	34.23	816.52
EN-278	5/24/2016	850.75	34.41	816.34
EN-278	8/3/2016	850.75	34.41	815.79
EN-278	11/28/2016	850.75	34.56	816.19
EN-279	2/1/2016	850.30	28.57	821.73
EN-279	5/24/2016	850.30	28.25	822.05
EN-279	8/3/2016	850.30	28.18	822.12
EN-279	11/28/2016	850.30	28.37	821.93
EN-284	2/1/2016	850.72	41.30	809.42
EN-284	5/24/2016	850.72	41.35	809.37
EN-284			37.38	813.34
EN-284	5/26/2016 11/28/2016	850.72 850.72	41.18	809.54
EN-284P	5/24/2016	852.86	23.73	829.13
EN-284P	5/26/2016		23.66	829.20
EN-284P	11/28/2016	852.86 852.86	23.15	829.71
EN-301	5/24/2016	848.16	28.34	819.82
EN-301	8/3/2016	848.16	29.15	819.01
EN-301	11/28/2016	848.16	29.13	818.96
EN-302	2/1/2016	843.02	15.14	827.88
EN-302	5/24/2016	843.02	15.05	827.97
EN-302	8/3/2016	843.02	15.20	827.82
EN-302	11/28/2016	843.02	15.14	827.88
EN-304	5/24/2016	849.63	18.82	830.81
EN-304	5/26/2016	849.63	18.93	830.70
EN-304	8/3/2016	849.63	19.36	830.27
EN-310	5/24/2016	846.05	Dry	-1.00
EN-310	8/3/2016	846.05	Dry	-1.00
EN-310	11/28/2016	846.05	Dry	-1.00
EN-311	5/24/2016	849.30	42.96	806.34
EN-311	8/3/2016	849.30	44.23	805.07
EN-311	11/28/2016	849.30	Dry	-1.00
EN-380	2/1/2016	847.35	20.07	827.28
EN-380	5/24/2016	847.35	20.00	827.35
EN-380	8/3/2016	847.35	20.21	827.14
EN-380	11/28/2016	847.35	20.27	827.08
EN-381	5/24/2016	846.35	21.57	824.78
EN-381	8/3/2016	846.35	22.02	824.33
EN-381	11/28/2016	846.35	22.02	824.33
EN-382	5/24/2016	852.26	24.68	827.58
EN-382	8/3/2016	852.26	24.89	827.37
EN-382	11/28/2016	852.26	25.05	827.21
EN-384	2/1/2016	847.86	19.35	828.51
EN-384	5/24/2016	847.86	19.17	828.69
EN-384	8/3/2016	847.86	19.40	828.46
EN-384	11/28/2016	847.86	19.52	828.34
EN-385	5/24/2016	846.21	17.60	828.61
EN-385	8/3/2016	846.21	18.61	827.60
EN-385	11/28/2016	846.21	18.65	827.56
EN-386	2/1/2016	848.49	19.88	828.61
EN-386	5/24/2016	848.49	19.53	828.96
EN-386	8/3/2016	848.49	19.77	828.72

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwate Elevation
EN-386	11/28/2016	848.49	19.95	828.54
EN-387A	5/24/2016	854.23	25.50	828.73
EN-387A	8/3/2016	854.23	25.66	828.57
EN-387A	11/28/2016	854.23	25.80	828.43
EN-392R	5/24/2016	846.95	19.18	827.77
EN-392R	8/3/2016	846.95	20.42	826.53
EN-392R	11/28/2016	846.95	20.28	826.67
EN-393	2/1/2016	847.94	19.54	828.40
EN-393	5/24/2016	847.94	19.18	828.76
EN-393	8/3/2016	847.94	19.52	828.42
EN-393	11/28/2016	847.94	19.67	828.27
EN-394	5/24/2016	851.42	24.57	826.85
EN-394	8/3/2016	851.42	23.60	827.82
EN-394	11/28/2016	851.42	23.75	827.67
EN-395	5/24/2016	849.91	20.82	829.09
EN-395	8/3/2016	849.91	21.29	828.62
EN-395	11/28/2016	849.91	21.43	828.48
EN-396	5/24/2016	848.45	19.76	828.69
EN-396	8/3/2016	848.45	20.28	828.17
EN-396	11/28/2016	848.45	20.92	827.53
EN-397	5/24/2016	844.83	16.59	828.24
EN-397	5/26/2016	844.83	16.68	828.15
EN-397	9/15/2016	844.83	17.93	826.90
EN-397	11/28/2016	844.83	17.37	827.46
EN-398	2/1/2016	845.22	17.64	827.58
EN-398	5/24/2016	845.22	16.88	828.34
EN-398	5/26/2016	845.22	16.85	828.37
EN-398	9/15/2016	845.22	18.15	827.07
EN-398	11/28/2016	845.22	17.64	827.58
EN-399	5/24/2016	846.23	17.17	829.06
EN-399	8/3/2016	846.23	17.90	828.33
EN-399	11/28/2016	846.23	16.81	829.42
EN-401	2/8/2016	851.79	35.85	815.94
EN-401	4/25/2016	851.79	35.87	815.92
EN-401	5/24/2016	851.79	35.95	815.84
EN-401	8/3/2016	851.79	36.51	815.28
EN-401	8/23/2016	851.79	36.70	815.09
EN-401	11/22/2016	851.79	36.75	815.04
EN-401	11/28/2016	851.79	36.84	814.95
EN-402	5/24/2016	851.41	37.93	813.48
EN-402	8/3/2016	851.41	38.52	812.89
EN-402	11/28/2016	851.41	38.60	812.81
EN-403	5/24/2016	854.97	37.40	817.57
EN-403	8/3/2016	854.97	37.91	817.06
EN-403	11/28/2016	854.97	38.04	816.93
EN-404	5/24/2016	848.43	31.10	817.33
EN-404	8/3/2016	848.43	31.46	816.97
EN-404	11/28/2016	848.43	31.48	816.95
EN-409	5/24/2016	843.62	8.62	835.00
EN-409	5/26/2016	843.62	10.36	833.26
EN-409	8/3/2016	843.62	9.56	834.06
EN-411	5/24/2016	843.41	5.17	838.24
EN-411	8/3/2016	843.41	5.35	838.06

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-414	5/24/2016	859.73	38.95	820.78
EN-414	8/3/2016	859.73	39.20	820.53
EN-414	11/28/2016	859.73	39.31	820.42
EN-415	5/24/2016	858.92	37.75	821.17
EN-415	8/3/2016	858.92	38.37	820.55
EN-415	11/28/2016	858.92	38.29	820.63
EN-419	2/1/2016	850.27	22.40	827.87
EN-419	5/24/2016	850.27	22.89	827.38
EN-419	5/26/2016	850.27	22.86	827.41
EN-419	9/13/2016	850.27	23.09	827.18
EN-419	11/28/2016	850.27	22.87	827.40
EN-421	2/1/2016	850.76	23.13	827.63
EN-421	5/24/2016	850.76	22.98	827.78
EN-421	5/26/2016	850.76	22.96	827.80
EN-421	11/28/2016	850.76	23.15	827.61
EN-422	2/1/2016	851.86	23.38	828.48
EN-422	5/24/2016	851.86	23.18	828.68
EN-422	5/26/2016	851.86	23.19	828.67
EN-422	11/28/2016	851.86	23.34	828.52
EN-426	5/24/2016	854.29	35.66	818.63
EN-426	8/3/2016	854.29	36.28	818.01
EN-426	11/28/2016	854.29	36.32	817.97
EN-427	5/24/2016	857.00	37.34	819.66
EN-427	8/3/2016	857.00	38.02	818.98
EN-427	11/28/2016	857.00	38.12	818.88
EN-428	5/24/2016	840.82	16.23	824.59
EN-428	5/26/2016	840.82	16.93	823.89
EN-428	9/15/2016	840.82	16.55	824.27
EN-428	11/28/2016	840.82	16.33	824.49
EN-428P	9/15/2016	841.20	14.33	826.87
EN-429	2/1/2016	849.45	22.33	827.12
EN-429	5/24/2016	849.45	Dry	-1.00
EN-429	5/26/2016	849.45	Dry	-1.00
EN-429	9/13/2016	849.45	Dry	-1.00
EN-429	11/28/2016	849.45	Dry	-1.00
EN-430	2/1/2016	850.10	21.41	828.69
EN-430	5/24/2016	850.10	22.02	828.08
EN-430	5/26/2016	850.10	22.04	828.06
EN-430	11/28/2016	850.10	22.84	827.26
EN-431	2/1/2016	850.66	22.34	828.32
EN-431	5/24/2016	850.66	22.08	828.58
EN-431	5/26/2016	850.66	22.15	828.51
EN-431	9/13/2016	850.66	22.40	828.26
EN-431	11/28/2016	850.66	22.43	828.23
EN-432	2/1/2016	851.01	22.72	828.29
EN-432	5/24/2016	851.01	22.39	828.62
EN-432	5/26/2016	851.01	22.45	828.56
EN-432	11/28/2016	851.01	22.86	828.15
EN-432	2/1/2016	851.24	23.12	828.12
EN-433	5/24/2016	851.24	22.97	828.27
EN-433			22.97	828.29
	5/26/2016	851.24 851.24		_
EN-433 EN-434	11/28/2016 2/1/2016	851.24 851.57	23.12 23.18	828.12 828.39

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-434	5/24/2016	851.57	23.04	828.53
EN-434	9/13/2016	851.57	23.14	828.43
EN-434	11/28/2016	851.57	23.23	828.34
EN-435	2/1/2016	851.42	22.77	828.65
EN-435	5/24/2016	851.42	22.58	828.84
EN-435	5/26/2016	851.42	22.63	828.79
EN-435	11/28/2016	851.42	22.77	828.65
EN-436	2/1/2016	849.04	25.66	823.38
EN-436	5/24/2016	849.04	25.73	823.31
EN-436	8/3/2016	849.04	27.83	821.21
EN-436	11/28/2016	849.04	26.30	822.74
EN-437	5/24/2016	847.71	26.67	821.04
EN-437	8/3/2016	847.71	28.10	819.61
EN-437	11/28/2016	847.71	27.13	820.58
EN-438	5/24/2016	847.10	22.37	824.73
EN-438	8/3/2016	847.10	23.55	823.55
EN-438	11/28/2016	847.10	22.56	824.54
EN-439A	+		22.22	-
	5/24/2016	844.18		821.96
EN-439A EN-439A	8/3/2016	844.18	23.83	820.35
	11/28/2016	844.18	23.05	821.13
EN-439B	5/24/2016	844.34	22.30	822.04
EN-439B	8/3/2016	844.34	23.93	820.41
EN-439B	11/28/2016	844.34	23.17	821.17
EN-440	5/24/2016	845.53	24.02	821.51
EN-440	8/3/2016	845.53	25.77	819.76
EN-440	11/28/2016	845.53	24.96	820.57
EN-441	5/24/2016	847.19	25.82	821.37
EN-441	8/3/2016	847.19	27.59	819.60
EN-441	11/28/2016	847.19	26.75	820.44
EN-442A	5/24/2016	847.92	26.62	821.30
EN-442A	8/3/2016	847.92	28.09	819.83
EN-442A	11/28/2016	847.92	27.33	820.59
EN-442B	5/24/2016	847.94	26.59	821.35
EN-442B	8/3/2016	847.94	28.12	819.82
EN-442B	11/28/2016	847.94	27.37	820.57
EN-443	5/24/2016	846.75	26.11	820.64
EN-443	8/3/2016	846.75	26.66	820.09
EN-443	11/28/2016	846.75	25.89	820.86
EN-444A	5/24/2016	846.58	25.03	821.55
EN-444A	8/3/2016	846.58	26.77	819.81
EN-444A	11/28/2016	846.58	26.00	820.58
EN-444B	5/24/2016	846.54	24.99	821.55
EN-444B	8/3/2016	846.54	26.74	819.80
EN-444B	11/28/2016	846.54	25.98	820.56
EN-445	5/24/2016	840.88	19.03	821.85
EN-445	8/3/2016	840.88	20.75	820.13
EN-445	11/28/2016	840.88	20.06	820.82
EN-446A	5/24/2016	845.02	23.18	821.84
EN-446A	8/3/2016	845.02	24.85	820.17
EN-446A	11/28/2016	845.02	24.20	820.82
EN-446B	5/24/2016	845.11	23.23	821.88
EN-446B	8/3/2016	845.11	24.90	820.21
EN-446B	11/28/2016	845.11	24.25	820.86

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
	Measurement	(ft amsl)	Water (ft)	Elevation
EN-447A	5/24/2016	845.75	26.23	819.52
EN-447A	8/3/2016	845.75	27.82	817.93
EN-447A	11/28/2016	845.75	27.11	818.64
EN-447B	5/24/2016	845.73	27.09	818.64
EN-447B	8/3/2016	845.73	28.65	817.08
EN-447B	11/28/2016	845.73	27.91	817.82
EN-447T	5/24/2016	848.02	20.51	827.51
EN-447T	8/3/2016	848.02	18.04	829.98
EN-447T	11/28/2016	848.02	23.00	825.02
EN-448	5/24/2016	848.29	24.92	823.37
EN-448	8/3/2016	848.29	25.70	822.59
EN-448	11/28/2016	848.29	25.08	823.21
EN-449	5/24/2016	857.00	35.99	821.01
EN-449	8/3/2016	857.00	37.16	819.84
EN-449	11/28/2016	857.00	36.80	820.20
EN-450	2/8/2016	846.27	24.01	822.26
EN-450	4/25/2016	846.27	23.72	822.55
EN-450	5/24/2016	846.27	23.85	822.42
EN-450	8/3/2016	846.27	25.35	820.92
EN-450	8/23/2016	846.27	24.69	821.58
EN-450	11/22/2016	846.27	24.49	821.78
EN-450	11/28/2016	846.27	24.39	821.88
EN-451	5/24/2016	846.26	25.87	820.39
EN-451	8/3/2016	846.26	27.23	819.03
EN-451	11/28/2016	846.26	26.58	819.68
EN-451P	5/24/2016	845.63	16.52	829.11
EN-451P	8/3/2016	845.63	17.27	828.36
EN-451P	11/28/2016	845.63	28.69	816.94
EN-453	5/24/2016	841.42	19.23	822.19
EN-453	8/3/2016	841.42	20.63	820.79
EN-453	11/28/2016	841.42	20.06	821.36
EN-454	5/24/2016	844.42	21.74	822.68
EN-454	8/3/2016	844.42	23.41	821.01
EN-454	11/28/2016	844.42	22.52	821.90
EN-455	5/24/2016	843.22	21.23	821.99
EN-455	8/3/2016	843.22	22.93	820.29
EN-455	11/28/2016	843.22	22.20	821.02
EN-456	5/24/2016	845.00	22.93	822.07
EN-456	8/3/2016	845.00	24.41	820.59
EN-456	11/28/2016	845.00	23.68	821.32
EN-457A	5/24/2016	842.82	20.63	822.19
EN-457A	8/3/2016	842.82	22.65	820.17
EN-457A	11/28/2016		22.00	
EN-457A EN-457B	5/24/2016	842.82 843.03	21.12	820.82 821.91
EN-457B	8/3/2016	843.03	22.87	820.16
EN-457B	11/28/2016	843.03	22.20	820.83
EN-4576	5/24/2016			
		843.83	23.08	820.75
EN-458	8/3/2016	843.83	23.23	820.60
EN-458	11/28/2016	843.83	23.10	820.73
EN-459A	5/24/2016	847.27	40.95	806.32
EN-459A	8/3/2016	847.27	44.14	803.13
EN-459A	11/28/2016	847.27	43.06	804.21

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwate Elevation
EN-459B	8/3/2016	846.25	43.12	803.13
EN-459B	11/28/2016	846.25	41.99	804.26
EN-460A	5/24/2016	847.75	40.87	806.88
EN-460A	8/3/2016	847.75	44.39	803.36
EN-460A	11/28/2016	847.75	43.52	804.23
EN-460B	5/24/2016	846.89	40.77	806.12
EN-460B	8/3/2016	846.89	44.28	802.61
EN-460B	11/28/2016	846.89	43.40	803.49
EN-460C	5/24/2016	847.45	40.68	806.77
EN-460C	8/3/2016	847.45	44.20	803.25
EN-460C	11/28/2016	847.45	43.30	804.15
EN-461	5/24/2016	850.60	Dry	-1.00
EN-461	8/3/2016	850.60	Dry	-1.00
EN-461	11/28/2016	850.60	Dry	-1.00
EN-462	5/24/2016	851.38	40.52	810.86
EN-462	8/3/2016	851.38	40.61	810.77
EN-462	11/28/2016	851.38	40.76	810.62
EN-463	5/24/2016	851.28	37.82	813.46
EN-463	8/3/2016	851.28	38.15	813.13
EN-463	11/28/2016	851.28	38.54	812.74
EN-464	5/24/2016	852.98	35.12	817.86
EN-464	8/3/2016	852.98	36.39	816.59
EN-464	11/28/2016	852.98	36.34	816.64
EN-465	5/24/2016	851.15	Dry	-1.00
EN-465	8/3/2016	851.15	Dry	-1.00
EN-465	11/28/2016	851.15	Dry	-1.00
EN-466	5/24/2016	846.99	32.13	814.86
EN-466	8/3/2016	846.99	32.52	814.47
EN-466	11/28/2016	846.99	32.40	814.59
EN-467	5/24/2016	857.12	36.73	820.39
EN-467	8/3/2016	857.12	37.51	819.61
EN-467	11/28/2016	857.12	37.50	819.62
EN-468	5/24/2016	852.36	36.13	816.23
EN-468	8/3/2016	852.36	36.58	815.78
EN-468	11/28/2016	852.36	36.57	815.79
EN-469	2/1/2016	849.75	Dry	-1.00
EN-469	5/24/2016	849.75	Dry	-1.00
EN-469	8/3/2016	849.75	Dry	-1.00
EN-469	11/28/2016	849.75	Dry	-1.00
EN-470	5/24/2016	846.85	20.95	825.90
EN-470	8/3/2016	846.85	21.43	825.42
EN-470	11/28/2016	846.85	20.66	826.19
EN-471	2/1/2016	853.30	24.25	829.05
EN-471	5/24/2016	853.30	21.99	831.31
EN-471	5/26/2016	853.30	24.14	829.16
EN-471	9/15/2016	853.30	24.28	829.02
EN-471	11/28/2016	853.30	24.27	829.03
EN-472	2/1/2016	849.43	20.68	828.75
EN-472	5/24/2016	849.43	20.37	829.06
EN-472	5/26/2016	849.43	20.49	828.94
EN-472	9/15/2016	849.43	20.61	828.82
EN-472	11/28/2016	849.43	20.82	828.61
EN-473A	5/24/2016	843.06	36.31	806.75

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of	M.P. Elev.	Depth to	Groundwate
-	Measurement	(ft amsl)	Water (ft)	Elevation
EN-473A	8/3/2016	843.06	39.80	803.26
EN-473A	11/28/2016	843.06	38.84	804.22
EN-473B	5/24/2016	843.14	36.37	806.77
EN-473B	8/3/2016	843.14	39.55	803.59
EN-473B	11/28/2016	843.14	38.97	804.17
EN-474	5/24/2016	836.33	15.85	820.48
EN-474	8/3/2016	836.33	16.21	820.12
EN-474	11/28/2016	836.33	16.40	819.93
EN-475	5/24/2016	850.49	29.54	820.95
EN-475	8/3/2016	850.49	30.23	820.26
EN-475	11/28/2016	850.49	30.23	820.26
EN-476	2/1/2016	849.81	Dry	-1.00
EN-476	5/24/2016	849.81	Dry	-1.00
EN-476	8/3/2016	849.81	Dry	-1.00
EN-476	11/28/2016	849.81	Dry	-1.00
EN-477	2/1/2016	848.33	32.85	815.48
EN-477	5/24/2016	848.33	33.07	815.26
EN-477	8/3/2016	848.33	34.10	814.23
EN-477	11/28/2016	848.33	33.37	814.96
EN-478A	5/24/2016	844.08	22.24	821.84
EN-478A	8/3/2016	844.08	23.92	820.16
EN-478A	11/28/2016	844.08	23.25	820.83
EN-478B	5/24/2016	844.14	22.18	821.96
EN-478B	8/3/2016	844.14	23.80	820.34
EN-478B	11/28/2016	844.14	23.07	821.07
EN-479A	5/24/2016	845.41	23.41	822.00
EN-479A	8/3/2016	845.41	25.11	820.30
EN-479A	11/28/2016	845.41	24.43	820.98
EN-479B	5/24/2016	845.20	23.39	821.81
EN-479B	8/3/2016	845.20	25.10	820.10
EN-479B	11/28/2016	845.20	24.40	820.80
EN-480A	5/24/2016	843.02	21.13	821.89
EN-480A	8/3/2016	843.02	22.80	820.22
EN-480A	11/28/2016	843.02	22.15	820.87
EN-480B	5/24/2016	842.85	21.00	821.85
EN-480B	8/3/2016	842.85	22.68	820.17
EN-480B	11/28/2016	842.85	22.03	820.82
EN-481A	5/24/2016	843.35	21.51	821.84
EN-481A	8/3/2016	843.35	23.19	820.16
EN-481A	11/28/2016	843.35	22.50	820.85
EN-481B	5/24/2016	842.99	21.53	821.46
EN-481B	8/3/2016	842.99	23.20	819.79
EN-481B	11/28/2016	842.99	22.50	820.49
EN-482	2/1/2016	847.44	30.99	816.45
EN-482	5/24/2016	847.44	31.28	816.16
EN-482	8/3/2016	847.44	32.28	815.16
EN-482	11/28/2016	847.44	31.52	815.92
EN-483	2/1/2016	839.08	11.24	827.84
EN-483	5/24/2016	839.08	11.34	827.74
EN-483	5/26/2016	839.08	11.39	827.69
EN-483	9/15/2016	839.08	12.00	827.08
EN-483	11/28/2016	839.08	12.55	826.53
EN-484	2/1/2016	838.21	9.95	828.26

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev.	Depth to Water (ft)	Groundwate Elevation
=11.12.1		(ft amsl)		
EN-484	5/24/2016	838.21	9.91	828.30
EN-484	5/26/2016	838.21	10.02	828.19
EN-484	9/13/2016	838.21	10.81	827.40
EN-484	9/15/2016	838.21	10.76	827.45
EN-484	11/28/2016	838.21	11.16	827.05
EN-485	2/1/2016	840.48	12.58	827.90
EN-485	5/24/2016	840.48	12.72	827.76
EN-485	5/26/2016	840.48	12.80	827.68
EN-485	9/13/2016	840.48	13.27	827.21
EN-485	9/15/2016	840.48	13.28	827.20
EN-485	11/28/2016	840.48	13.20	827.28
EN-486	2/1/2016	842.63	17.17	825.46
EN-486	5/24/2016	842.63	17.07	825.56
EN-486	5/26/2016	842.63	17.09	825.54
EN-486	9/15/2016	842.63	17.35	825.28
EN-486	11/28/2016	842.63	17.66	824.97
EN-487	2/10/2016	834.18	7.45	826.73
EN-487	5/24/2016	834.18	7.43	826.75
EN-487	8/3/2016	834.18	7.27	826.91
EN-487	8/11/2016	834.18	7.57	843.43
EN-487	11/17/2016	834.18	8.68	844.29
EN-487	11/28/2016	834.18	8.55	825.63
EN-488	2/1/2016	850.87	24.17	826.70
EN-488	5/24/2016	850.87	24.15	826.72
EN-488	5/26/2016	850.87	24.16	826.71
EN-488	9/13/2016	850.87	24.17	826.70
EN-488	9/15/2016	850.87	24.23	826.64
EN-488	11/28/2016	850.87	24.22	826.65
EN-489	2/1/2016	847.45	18.43	829.02
EN-489	5/24/2016	847.45	18.25	829.20
EN-489	5/26/2016	847.45	18.27	829.18
EN-489	9/13/2016	847.45	18.73	828.72
EN-489	9/15/2016	847.45	18.80	828.65
EN-489	11/28/2016	847.45	18.96	828.49
EN-490	5/24/2016	845.02	23.23	821.79
EN-490	8/3/2016	845.02	25.02	820.00
EN-490	11/28/2016	845.02	23.82	821.20
EN-491	5/24/2016	845.03	25.17	819.86
EN-491	8/3/2016	845.03	26.11	818.92
EN-491	11/28/2016	845.03	24.80	820.23
EN-491A	5/24/2016	844.31	21.97	822.34
EN-491A	8/3/2016	844.31	23.24	821.07
EN-491A	11/28/2016	844.31	22.46	821.85
EN-491T	5/24/2016	847.45	29.71	817.74
EN-491T	8/3/2016	847.45	31.60	815.85
EN-491T	11/28/2016	847.45	32.60	814.85
EN-492	5/24/2016	844.42	21.69	822.73
EN-492	8/3/2016	844.42	23.34	821.08
EN-492	11/28/2016	844.42	22.00	822.42
EN-492T	5/24/2016	846.64	23.65	822.99
EN-492T	8/3/2016	846.64	25.52	821.12
EN-492T	11/28/2016	846.64	24.18	822.46
EN-4921	5/24/2016	848.33	26.77	821.56

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

\A_{'	Date of	M.P. Elev.	Depth to	Groundwater
Well	Measurement	(ft amsl)	Water (ft)	Elevation
EN-493	8/3/2016	848.33	28.03	820.30
EN-493	11/28/2016	848.33	27.28	821.05
EN-494	5/24/2016	848.48	26.88	821.60
EN-494	8/3/2016	848.48	28.16	820.32
EN-494	11/28/2016	848.48	27.41	821.07
EN-495	5/24/2016	848.13	26.42	821.71
EN-495	8/3/2016	848.13	27.69	820.44
EN-495	11/28/2016	848.13	26.92	821.21
EN-496	5/24/2016	848.29	26.64	821.65
EN-496	8/3/2016	848.29	27.90	820.39
EN-496	11/28/2016	848.29	27.13	821.16
EN-497	5/24/2016	848.28	26.76	821.52
EN-497	8/3/2016	848.28	27.93	820.35
EN-497	11/28/2016	848.28	27.15	821.13
EN-498	5/24/2016	846.73	24.88	821.85
EN-498	8/3/2016	846.73	26.13	820.60
EN-498	11/28/2016	846.73	25.40	821.33
EN-499A	5/24/2016	846.40	24.97	821.43
EN-499A	8/3/2016	846.40	26.50	819.90
EN-499A	11/28/2016	846.40	25.75	820.65
EN-499B	5/24/2016	846.28	24.88	821.40
EN-499B	8/3/2016	846.28	26.52	819.76
EN-499B	11/28/2016	846.28	25.76	820.52
EN-500A	5/24/2016	844.47	22.79	821.68
EN-500A	8/3/2016	844.47	24.25	820.22
EN-500A	11/28/2016	844.47	23.56	820.91
EN-500B	5/24/2016	844.55	22.84	821.71
EN-500B	8/3/2016	844.55	24.43	820.12
EN-500B	11/28/2016	844.55	23.80	820.75
EN-501	5/24/2016	842.49	20.63	821.86
EN-501	8/3/2016	842.49	22.36	820.13
EN-501	11/28/2016	842.49	21.70	820.79
EN-502	5/24/2016	847.14	26.16	820.98
EN-502	8/3/2016	847.14	27.32	819.82
EN-502	11/28/2016	847.14	26.73	820.41
EN-503	5/24/2016	844.94	22.91	822.03
EN-503	8/3/2016	844.94	24.14	820.80
EN-503	11/28/2016	844.94	23.56	821.38
EN-504	5/24/2016	845.97	24.63	821.34
EN-504	8/3/2016	845.97	25.90	820.07
EN-504	11/28/2016	845.97	25.26	820.71
EN-505	5/24/2016	843.84	21.99	821.85
EN-505	8/3/2016	843.84	22.86	820.98
EN-505	11/28/2016	843.84	21.33	822.51
EN-506	5/24/2016	844.21	22.87	821.34
EN-506	8/3/2016	844.21	23.96	820.25
EN-506	11/28/2016	844.21	22.49	821.72
EN-507	2/1/2016	840.75	12.90	827.85
EN-507	5/24/2016	840.75	13.06	827.69
EN-507	5/26/2016	840.75	13.12	827.63
EN-507	9/15/2016	840.75	13.68	827.07
EN-507	11/28/2016	840.75	13.55	827.20
EN-508	2/1/2016	847.68	17.71	829.97

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-508	5/24/2016	847.68	17.81	829.87
EN-508	5/26/2016	847.68	17.81	829.87
EN-508	9/13/2016	847.68	Dry	-1.00
EN-508	9/15/2016	847.68	Dry	-1.00
EN-508	11/28/2016	847.68	18.12	829.56
EN-509	2/1/2016	845.70	12.06	833.64
EN-509	5/24/2016	845.70	13.74	831.96
EN-509	5/26/2016	845.70	13.90	831.80
EN-509	9/13/2016	845.70	16.37	829.33
EN-509	9/15/2016	845.70	16.38	829.32
EN-509	11/28/2016	845.70	16.75	828.95
EN-510	5/24/2016	839.83	17.88	821.95
EN-510	8/3/2016	839.83	19.05	820.78
EN-510	11/28/2016	839.83	18.75	821.08
EN-511	5/24/2016	839.89	17.52	822.37
EN-511	8/3/2016	839.89	18.89	821.00
EN-511	11/28/2016	839.89	18.43	821.46
EN-513	2/1/2016	849.57	17.77	831.80
EN-513	5/24/2016	849.57	17.94	831.63
EN-513	8/3/2016	849.57	21.69	827.88
EN-513	11/28/2016	849.57	17.56	832.01
EN-514	2/1/2016	847.43	19.18	828.25
EN-514	5/24/2016	847.43	19.40	828.03
EN-514	8/3/2016	847.43	20.30	827.13
EN-514	11/28/2016	847.43	19.01	828.42
EN-515	2/1/2016	849.48	20.04	829.44
EN-515	5/24/2016	849.48	20.12	829.36
EN-515	8/3/2016	849.48	21.81	827.67
EN-515	11/28/2016	849.48	19.90	829.58
EN-516	2/1/2016	849.70	21.17	828.53
EN-516	5/24/2016	849.70	21.14	828.56
EN-516	8/3/2016	849.70	22.28	827.42
EN-516	11/28/2016	849.70	21.02	828.68
EN-517	5/24/2016	839.87	17.95	821.92
EN-517	8/3/2016	839.87	19.09	820.78
EN-517	11/28/2016	839.87	18.83	821.04
EN-518	5/24/2016	840.24	18.13	822.11
EN-518	8/3/2016	840.24	19.35	820.89
EN-518	11/28/2016	840.24	18.94	821.30
EN-519	5/24/2016	841.70	18.73	822.97
EN-519	8/3/2016	841.70	19.90	821.80
EN-519	11/28/2016	841.70	19.47	822.23
EN-520	2/1/2016	849.58	20.45	829.13
EN-520	5/24/2016	849.58	20.21	829.37
EN-520	5/26/2016	849.58	20.22	829.36
EN-520	9/13/2016	849.58	20.64	828.94
EN-520	9/15/2016	849.58	20.68	828.90
EN-520	11/28/2016	849.58	20.70	828.88
EN-521	2/1/2016	848.14	17.88	830.26
EN-521	5/24/2016	848.14	17.99	830.15
EN-521	5/26/2016	848.14	18.16	829.98
EN-521	9/13/2016	848.14	18.52	829.62
EN-521	9/15/2016	848.14	18.55	829.59

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-521		848.14	18.13	
	11/28/2016 2/1/2016		8.64	830.01
EN-522		837.45		828.81
EN-522	5/24/2016	837.45	8.60	828.85
EN-522	5/26/2016	837.45	8.72	828.73
EN-522	9/13/2016	837.45	9.37	828.08
EN-522	9/15/2016	837.45	9.27	828.18
EN-522	11/28/2016	837.45	9.48	827.97
EN-523	5/24/2016	838.39	14.31	824.08
EN-523	8/3/2016	838.39	14.32	824.07
EN-523	11/28/2016	838.39	14.36	824.03
EN-524	5/24/2016	839.87	17.46	822.41
EN-524	8/3/2016	839.87	18.00	821.87
EN-524	11/28/2016	839.87	18.03	821.84
EN-525	2/1/2016	850.06	Dry	-1.00
EN-525	5/24/2016	850.06	Dry	-1.00
EN-525	5/26/2016	850.06	Dry	-1.00
EN-525	11/28/2016	850.06	Dry	-1.00
EN-526	2/1/2016	850.57	40.87	809.70
EN-526	5/24/2016	850.57	40.94	809.63
EN-526	5/26/2016	850.57	40.95	809.62
EN-526	11/28/2016	850.57	40.85	809.72
EN-527	5/24/2016	848.76	19.84	828.92
EN-527	8/3/2016	848.76	20.60	828.16
EN-527	11/28/2016	848.76	Dry	-1.00
EN-528	5/24/2016	848.95	19.89	829.06
EN-528	8/3/2016	848.95	20.25	828.70
EN-528	11/28/2016	848.95	20.39	828.56
EN-529	5/24/2016	847.10	19.38	827.72
EN-529	8/3/2016	846.72	20.22	826.50
EN-529	11/28/2016	846.72	19.88	826.84
EN-531	2/1/2016	849.22	23.78	825.44
EN-531	5/24/2016	849.22	23.27	825.95
EN-531	8/3/2016	849.22	23.97	825.25
EN-531	11/28/2016	849.22	23.40	825.82
EN-532	5/24/2016	844.84	21.56	823.28
EN-532	8/3/2016	844.84	22.84	822.00
EN-532	11/28/2016	844.84	22.31	822.53
EN-533	2/1/2016	836.11	8.29	827.82
EN-533	2/8/2016	836.11	8.27	827.84
EN-533	4/25/2016	836.11	8.52	827.59
EN-533	5/24/2016	836.11	8.65	827.46
EN-533	5/26/2016	836.11	8.65	827.46
EN-533	7/5/2016	836.11	7.79	828.32
EN-533	8/23/2016	836.11	8.64	827.47
EN-533	9/13/2016	836.11	10.06	826.05
EN-533	9/15/2016	836.11	10.20	825.91
EN-533	9/27/2016	836.11	10.68	825.43
EN-533	10/7/2016	836.11	10.97	825.14
EN-533	10/14/2016	836.11	11.03	825.08
EN-533	10/24/2016	836.11	10.26	825.85
EN-533 EN-533	11/3/2016 11/10/2016	836.11	10.3	825.81
	11/10/2016	836.11	11.07	825.04

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwate Elevation
EN-533	11/28/2016	836.11	11.91	824.20
EN-533	12/19/2016	836.11	11.09	825.02
EN-534	5/24/2016	844.63	21.81	822.82
EN-534	8/3/2016	844.63	23.29	821.34
EN-534	11/28/2016	844.63	22.41	822.22
EN-600	5/24/2016	843.47	6.90	836.57
EN-600	5/26/2016	843.47	7.00	836.47
EN-600	8/3/2016	843.47	6.92	836.55
EN-604	5/24/2016	841.75	5.72	836.03
EN-604	5/26/2016	841.75	6.28	835.47
EN-604	8/3/2016	841.75	5.71	836.04
EN-606	5/24/2016	842.02	7.56	834.46
EN-606	5/26/2016	842.02	7.93	834.09
EN-606	8/3/2016	842.02	7.93	834.75
EN-608	5/24/2016	843.11	9.17	833.94
EN-608	8/3/2016	843.11	8.69	834.42
EN-616	5/24/2016	843.98	10.55	833.43
EN-616	8/3/2016	843.98	10.33	833.70
EN-617	5/24/2016	844.09	6.31	837.78
EN-617	8/3/2016	844.09	6.36	837.73
EN-618	5/24/2016	842.72	6.31	836.41
EN-618	8/3/2016	842.72	6.26	836.46
EN-623	5/24/2016	847.97	11.67	836.30
EN-623	5/26/2016	847.97	11.90	836.07
EN-623	8/3/2016	847.97	11.29	836.68
EN-624	5/24/2016	849.01	12.36	836.65
EN-624	5/26/2016	849.01	12.58	836.43
EN-624	8/3/2016	849.01	12.02	836.99
EN-626	5/24/2016	842.76	4.61	838.15
EN-626	8/3/2016	842.76	4.77	837.99
EN-632	5/24/2016	842.67	9.00	833.67
EN-632	5/26/2016	842.67	9.32	833.35
EN-632	8/3/2016	842.67	12.73	829.94
EN-638	5/24/2016	841.56	6.65	834.91
EN-638	8/3/2016	841.56	8.01	833.55
EN-640	5/24/2016		6.88	
EN-640	8/3/2016	842.48 842.48	5.05	835.60 837.43
EN-641	5/24/2016		5.55	835.13
EN-641	8/3/2016	840.68 840.68	6.03	834.65
EN-642	5/24/2016	844.00	6.17	837.83
EN-642	8/3/2016	844.00	5.73	838.27
EN-644	5/24/2016		7.04	
EN-644	+	846.19	7.88	839.15 838.31
EN-648	8/3/2016 5/24/2016	846.19 845.89		
EN-648	_	845.89	5.22 5.74	840.67
EN-650	8/3/2016 5/24/2016		2.38	840.15
EN-650	8/3/2016	845.21 845.21	3.10	842.83 842.11
EN-650	5/24/2016	845.27	12.01	833.26
	+			
EN-651	8/3/2016	845.27	11.23	834.04
EN-652	5/24/2016	843.62	10.57	833.05
EN-652 EN-653	8/3/2016 5/24/2016	843.62 844.54	10.30 11.33	833.32 833.21

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-655	5/24/2016	839.28	5.82	833.46
EN-655	5/26/2016	839.28	5.83	833.45
EN-655	8/3/2016	839.28	4.98	834.30
EN-679	5/24/2016	851.71	19.34	832.37
EN-679	5/26/2016	851.71	19.42	832.29
EN-679	8/3/2016	851.71	19.90	831.81
EN-684A	5/24/2016	849.45	18.74	830.71
EN-684A	8/3/2016	849.45	19.33	830.12
EN-687	5/24/2016	847.83	18.20	829.63
EN-687	5/26/2016	847.83	18.23	829.60
EN-687	8/3/2016	847.83	18.72	829.11
EN-692	5/24/2016	841.76	8.10	833.66
EN-692	8/3/2016	841.76	6.88	834.88
EN-694	5/24/2016	838.17	4.93	833.24
EN-694	8/3/2016	838.17	4.10	834.07
EN-696	5/24/2016	845.50	12.25	833.25
EN-696	8/3/2016	845.50	11.77	833.73
EN-698	5/24/2016	849.01	15.82	833.19
EN-698	8/3/2016	849.01	15.48	833.53
EN-700	5/24/2016	846.95	13.90	833.05
EN-700	8/3/2016	846.95	13.54	833.41
EN-701	5/24/2016	847.23	14.08	833.15
EN-701	8/3/2016	847.23	13.68	833.55
EN-702	5/24/2016	841.14	7.28	833.86
EN-702	8/3/2016	841.14	7.40	833.74
EN-704	5/24/2016	840.54	8.75	831.79
EN-704	8/3/2016	840.54	8.60	831.94
EN-705	5/24/2016	840.57	7.48	833.09
EN-705	8/3/2016	840.57	7.90	832.67
EN-709	5/24/2016	841.56	19.07	822.49
EN-709	5/26/2016	841.56	22.68	818.88
EN-709	8/3/2016	841.56	6.37	835.19
EN-710	5/24/2016	845.06	7.76	837.30
EN-710	8/3/2016	845.06	6.37	838.69
EN-711	5/24/2016	843.13	9.90	833.23
EN-711	8/3/2016	843.13	9.53	833.60
EN-712	5/24/2016	843.17	9.96	833.21
EN-712	8/3/2016	843.17	9.60	833.57
EN-713	5/24/2016	843.21	6.80	836.41
EN-713	8/3/2016	843.21	Dry	-1.00
EN-714	5/24/2016	846.64	17.18	829.46
EN-714	5/26/2016	846.64	17.37	829.27
EN-714	8/3/2016	846.64	17.80	828.84
EN-715	5/24/2016	847.20	17.38	829.82
EN-715	5/26/2016	847.20	19.01	828.19
EN-715	8/3/2016	847.20	19.17	828.03
EN-716	5/24/2016	843.72	12.96	830.76
EN-716	5/26/2016	843.72	13.89	829.83
EN-716	8/3/2016	843.72	14.00	829.72
EN-717	5/24/2016	847.36	17.98	829.38
EN-717	5/26/2016	847.36	18.55	828.81
EN-717	8/3/2016	847.36	18.88	828.48
EN-718	5/24/2016	843.28	11.95	831.33

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-718	5/26/2016	843.28	12.65	830.63
EN-718	8/3/2016	843.28	12.64	830.64
EN-719	5/24/2016	844.65	14.85	829.80
EN-719	5/26/2016	844.65	14.97	829.68
EN-719	8/3/2016	844.65	15.53	829.12
EN-720	5/24/2016	845.05	15.60	829.45
EN-720	8/3/2016	845.05	16.15	828.90
EN-721	5/24/2016	844.93	8.40	836.53
EN-721	8/3/2016	844.93	8.29	836.64
EN-722	5/24/2016	844.86	11.53	833.33
EN-722	8/3/2016	844.86	11.26	833.60
EN-723	5/24/2016	844.70	10.94	833.76
EN-723	8/3/2016	844.70	10.58	834.12
EN-724	5/24/2016	841.79	7.09	834.70
EN-724	8/3/2016	841.79	6.59	835.20
EN-725	5/24/2016	841.73	7.60	834.13
EN-725	8/3/2016	841.73	6.41	835.32
EN-726	5/24/2016	850.34	20.67	829.67
EN-726	8/3/2016	850.34	21.32	829.02
EN-727	5/24/2016	853.26	23.14	830.12
EN-727	8/3/2016	853.26	23.33	829.93
DEC-MW-34D	5/24/2016	843.49	10.32	833.17
DEC-MW-34D	8/3/2016	843.49	9.96	833.53
RMJ-MW-1	2/10/2016	843.41	23.10	820.31
RMJ-MW-1	5/24/2016	843.41	22.95	820.46
RMJ-MW-1	8/3/2016	843.41	23.35	820.06
RMJ-MW-1	8/11/2016	843.41	23.52	825.93
RMJ-MW-1	11/17/2016	843.41	23.86	814.54
RMJ-MW-1	11/28/2016	843.41	23.91	819.50
RMJ-MW-2	2/10/2016	841.23	21.08	820.15
RMJ-MW-2	5/24/2016	841.23	20.98	820.25
RMJ-MW-2	8/3/2016	841.23	21.39	819.84
RMJ-MW-2	8/11/2016	841.23	21.51	829.15
RMJ-MW-2	11/17/2016	841.23	21.88	819.33
RMJ-MW-2	11/28/2016	841.23	21.95	819.28
RMJ-MW-3	2/10/2016	840.97	21.14	819.83
RMJ-MW-3	5/24/2016	840.97	20.99	819.98
RMJ-MW-3	8/3/2016	840.97	21.47	819.50
RMJ-MW-3	8/11/2016	840.97	21.57	830.00
RMJ-MW-3	11/17/2016	840.97	21.00	816.81
RMJ-MW-3	11/28/2016	840.97	22.00	818.97
RMJ-MW-4	2/10/2016	843.32	23.32	820.00
RMJ-MW-4	5/24/2016	843.32	23.17	820.15
RMJ-MW-4	8/3/2016	843.32	23.66	819.66
RMJ-MW-4	8/11/2016	843.32	23.77	814.44
RMJ-MW-4	11/17/2016	843.32	24.10	813.48
RMJ-MW-4	11/28/2016	843.32	24.10	819.13
RMJ-MW-5	2/10/2016	838.79		
RMJ-MW-5	5/24/2016		18.95	819.84 819.99
RMJ-MW-5	8/3/2016	838.79 838.79	18.80 19.23	819.56
RMJ-MW-5	8/11/2016	838.79	19.35	821.13
RMJ-MW-5	11/17/2016	838.79	19.74	817.71

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

2/10/2016 5/24/2016 8/3/2016 8/11/2016 11/17/2016 11/28/2016 11/28/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016 8/3/2016	841.58 841.58 844.84 844.84	20.20 20.01 20.48 20.61 21.95 21.00 33.18 34.71 37.97	819.49 819.68 819.21 830.26 815.16 818.69 808.40 806.87
5/24/2016 8/3/2016 8/11/2016 11/17/2016 11/28/2016 Ind Bedrock We 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	839.69 839.69 839.69 839.69 839.69 IIs 841.58 841.58 844.84	20.01 20.48 20.61 21.95 21.00 33.18 34.71	819.68 819.21 830.26 815.16 818.69
8/3/2016 8/11/2016 11/17/2016 11/28/2016 Ind Bedrock We 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	839.69 839.69 839.69 839.69 Ils 841.58 841.58 844.84 844.84	20.48 20.61 21.95 21.00 33.18 34.71	819.21 830.26 815.16 818.69
8/11/2016 11/17/2016 11/28/2016 Ind Bedrock We 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	839.69 839.69 839.69 Ils 841.58 844.84 844.84	20.61 21.95 21.00 33.18 34.71	830.26 815.16 818.69
11/17/2016 11/28/2016 Ind Bedrock We 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	839.69 839.69 IIs 841.58 844.84 844.84	21.95 21.00 33.18 34.71	815.16 818.69 808.40
11/28/2016 Ind Bedrock We 5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	839.69 IIs 841.58 841.58 844.84 844.84	21.00 33.18 34.71	818.69 808.40
5/24/2016 8/3/2016 5/24/2016 5/24/2016 8/3/2016 5/24/2016	841.58 841.58 844.84 844.84	33.18 34.71	808.40
5/24/2016 8/3/2016 5/24/2016 8/3/2016 5/24/2016	841.58 841.58 844.84 844.84	34.71	
8/3/2016 5/24/2016 8/3/2016 5/24/2016	841.58 844.84 844.84	34.71	
5/24/2016 8/3/2016 5/24/2016	844.84 844.84		806.87
8/3/2016 5/24/2016	844.84	37 97	
5/24/2016			806.87
		38.61	806.23
8/3/2016	843.26	36.84	806.42
0/0/2010	843.26	37.94	805.32
5/24/2016	854.87	49.38	805.49
8/3/2016	854.87	42.29	812.58
5/24/2016	854.60	49.02	805.58
8/3/2016	854.60	49.35	805.25
5/24/2016	852.94	51.20	801.74
8/3/2016	852.94	50.32	802.62
5/24/2016	848.03	39.87	808.16
8/3/2016	848.03	40.32	807.71
5/24/2016	849.53	40.15	809.38
8/3/2016	849.53	42.26	807.27
			810.10
			807.82
			809.47
			808.82
			823.91
			823.65
			823.85
			823.59
			811.41
			810.24
			808.40
			807.23
			813.84
			813.44
			812.50
			812.08
			811.60
			810.56
			809.78
			808.48
			799.11
			798.68
			811.43
			810.74
			812.53
			812.00
			806.09
			805.54
			807.54 806.65
	8/3/2016 5/24/2016 8/3/2016 5/24/2016 8/3/2016	5/24/2016 854.60 8/3/2016 854.60 5/24/2016 852.94 8/3/2016 848.03 8/3/2016 848.03 8/3/2016 849.53 8/3/2016 849.53 8/3/2016 850.24 8/3/2016 850.24 8/3/2016 854.05 8/3/2016 845.31 8/3/2016 845.31 8/3/2016 845.31 5/24/2016 846.22 8/3/2016 846.22 8/3/2016 848.01 5/24/2016 846.15 8/3/2016 846.15 8/3/2016 846.15 8/3/2016 846.15 8/3/2016 851.06 8/3/2016 848.23 8/3/2016 848.23 8/3/2016 848.23 8/3/2016 845.50 8/3/2016 845.50 8/3/2016 845.50 8/3/2016 849.67 5/24/2016 850.25 8/3/2016	5/24/2016 854.60 49.02 8/3/2016 854.60 49.35 5/24/2016 852.94 51.20 8/3/2016 852.94 50.32 5/24/2016 848.03 39.87 8/3/2016 848.03 40.32 5/24/2016 849.53 40.15 8/3/2016 850.24 40.14 8/3/2016 850.24 42.42 5/24/2016 854.05 44.58 8/3/2016 854.05 45.23 5/24/2016 845.31 21.40 8/3/2016 845.31 21.40 8/3/2016 845.31 21.66 5/24/2016 846.22 22.37 8/3/2016 846.22 22.63 5/24/2016 846.22 22.63 5/24/2016 846.15 37.75 8/3/2016 846.15 37.75 8/3/2016 846.15 37.22 8/3/2016 851.06 37.62 5/24/2016 850.81 38.31

Groundwater Elevation Data - 1/1/2016 to 12/31/2016

Note: "-1.00" means the Upper Aquifer is dry or unsaturated.

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Water (ft)	Groundwater Elevation
EN-D42	5/24/2016	843.81	32.03	811.78
EN-D42	8/3/2016	843.81	32.62	811.19
EN-D43	5/24/2016	849.70	34.90	814.80
EN-D43	8/3/2016	849.70	35.27	814.43
EN-D44	5/24/2016	852.77	40.58	812.19
EN-D44	8/3/2016	852.77	41.01	811.76
EN-D45	5/24/2016	850.75	38.63	812.12
EN-D45	8/3/2016	850.75	39.04	811.71
EN-D46	5/24/2016	850.08	35.18	814.90
EN-D46	8/3/2016	850.08	35.53	814.55
EN-D47	5/24/2016	853.42	38.07	815.35
EN-D47	8/3/2016	853.42	38.83	814.59
EN-D48	5/24/2016	845.75	30.68	815.07
EN-D48	8/3/2016	845.75	30.99	814.76
EN-D49	5/24/2016	852.73	57.25	795.48
EN-D49	8/3/2016	852.73	57.36	795.37

Well	Date of Measurement	M.P. Elev. (ft amsl)	Depth to Oil (ft)	Depth to Water (ft)	Oil Thickness (ft)	Groundwater Elevation (ft amsl)	
Endicott Forgir	Endicott Forging Wells						
MW-5	09/15/16	845.16	13.60	Dry	1.1	-1.00	
MW-6	09/15/16	844.29	14.98	15.31	0.33	829.24	
MW-7	09/15/16	846.90	None	Dry	NA	-1.00	
MW-8	09/15/16	849.03	None	14.68	NA	834.35	
MW-12	09/15/16	844.77	14.30	14.41	0.11	830.45	

Key:

M.P. Elev. = Measuring Point Elevation ft amsl = feet above mean sea level

APPENDIX D

Groundwater Monitoring Plan for 2016

Table D-1: Hydraulic Effectiveness Monitoring Wells

Table D-2: Remedial Action Effectiveness Wells

			Planar Co	ordinates
Well	Site Area	M.P. Elev.	Northing	Easting
weii	Site Area	(ft amsl)	(grid feet)	(grid feet)
DOT-1	OU2	849.14	767787.6	967316.7
DOT-2	OU2	848.57	767738.5	967120.7
DOT-3	OU2	848.73	767724.8	967045.4
DOT-4	OU2	848.61	767712.7	966981.0
DI-1	OU2	849.06	767601.9	966083.1
DI-2	OU2	848.32	767721.3	966062.2
DI-3	OU2	846.48	767835.9	966043.0
EN-002	OU1	842.54	767896.0	965175.6
EN-006	MAA	852.34	766868.9	966244.7
EN-012	OU2	851.86	767813.4	965734.6
EN-013	OU2	851.93	767740.6	965756.2
EN-014	OU2	852.00	767673.4	965777.3
EN-015	OU2	851.81	767579.0	965797.0
EN-016	OU2	852.22	767501.0	965816.7
EN-017	OU2	852.15	767469.7	965884.6
EN-018	OU2	851.45	767492.1	965981.4
EN-019	OU2	852.34	767516.3	966085.1
EN-020	OU2	851.30	767652.7	966078.8
EN-021	OU2	847.84	767842.4	966114.7
EN-022	MAA	844.48	765902.8	966142.3
EN-023	OU4	850.37	767459.8	967000.6
EN-024	OU2	852.01	767346.3	965453.2
EN-026	OU7	840.96	767734.7	964681.3
EN-029A	MAA	850.38	766861.7	965833.8
EN-030	OU5	853.18	768031.9	968437.2
EN-034	OU1	841.49	768325.1	966085.7
EN-035	OU2	854.22	767575.0	966442.4
EN-036	OU2	852.97	767620.9	966557.1
EN-037	OU1	839.97	768169.1	966448.9
EN-038	OU1	838.40	768087.2	966059.8
EN-039	OU1	841.21	768085.7	966049.8
EN-040	OU1	837.81	768084.7	966039.5
EN-041	OU1	837.58	768083.4	966029.3
EN-042	OU1	837.45	768081.6	966019.9
EN-044	OU1	837.11	768080.5	966005.2
EN-045	OU1	836.94	768078.6	965990.3
EN-046	OU1	837.60	768130.7	966069.2
EN-047	OU1	837.48	768145.7	966068.7
EN-047	OU1	837.54	768160.1	966068.1
EN-049	OU1	837.49	768174.8	966067.4
EN-051	OU1	839.65	768039.7	965777.3
EN-052	OU1	839.44	768057.4	965883.3
EN-053	OU1	837.86	768246.0	966073.2
EN-054	OU2	851.49	767827.5	965260.7
EN-055	OU1	841.46	768198.4	966526.2
EN-056	OU1	844.07	768239.5	966737.8
EN-058	OU1	845.75	768221.9	966598.0
EN-060	MAA	842.06	766403.6	964492.0
□N-000	IVIAA	042.00	700403.0	30443Z.U

			Planar Coord			
Well	Site Area	M.P. Elev. (ft amsl)	Northing (grid feet)	Easting (grid feet)		
EN-062	MAA	840.96	766060.1	965231.9		
EN-064	MAA	842.53	765919.6	965691.4		
EN-065	OU4	854.92	767262.1	967664.4		
EN-066	OU7	839.70	767313.8	963976.9		
EN-067	OU7	837.85	767506.0	963916.1		
EN-069	OU7	839.14	767791.7	964213.4		
EN-070	OU7	841.66	767582.2	964403.0		
EN-072	OU7	838.45	768035.7	964873.6		
EN-073	OU1	839.74	768219.9	965240.8		
EN-074	OU2	851.59	767763.7	965085.5		
EN-075	OU2	851.20	767593.3	965314.9		
EN-076	OU2	853.06	767266.2	965054.1		
EN-077	OU2	854.25	767323.7	966172.9		
EN-078	MAA	852.16	767192.6	966537.8		
EN-079	OU4	848.15	766602.6	967052.4		
EN-080	OU4	848.14	767021.8	967019.9		
EN-081	OU2	850.03	767678.2	966842.0		
EN-083	OU1	845.78	768419.0	967226.7		
EN-083	OU1	851.75	768961.7	967039.1		
EN-084	OU5	844.31	768273.7	967894.7		
EN-087	OU5	846.42	768057.7	967943.1		
EN-091	MAA	847.61	766867.0	965197.4		
EN-091A	MAA	848.14	766862.4	965174.5		
EN-091A	MAA	850.08	766861.1	965174.3		
EN-0911	MAA	850.53	766864.2	965627.2		
EN-092A	MAA	847.21	766739.1	965638.6		
EN-092A EN-093	MAA	848.68	766606.2	965763.0		
EN-093	MAA	848.61	766834.3	964775.9		
EN-095	OU7	846.08	766654.7	963794.2		
EN-095	OU7	838.65	767199.1	963686.1		
EN-096 EN-097	OU1	840.59	768428.5	965085.0		
EN-097	MAA	845.64	766614.6	965767.5		
EN-100	MAA	845.77	766632.6	965772.1		
EN-102	MAA	849.88	766614.0	965833.5		
EN-102	OU7	836.98	766097.3	963524.3		
	OU7					
EN-104 EN-105	OU7	840.27	766472.9 767254.2	963371.6		
EN-105 EN-106	OU1	834.60 853.89		963408.9		
EN-106 EN-107R	OU1		768520.0	966315.1		
	OU2	839.23	767998.6	965560.5		
EN-111 EN-112	OU2 OU2	842.95 843.18	767907.0	966076.1		
	OU2 OU2		767909.3	966096.5		
EN-113	OU2 OU1	843.44	767875.9 768150.5	966086.8		
EN-114 EN-114T	OU1	836.40	768150.5	965514.1		
	OU1	838.87	768162.6	965512.6		
EN-117	OU7	842.78	767955.8	965334.0		
EN-121		837.09	768063.0	964325.4		
EN-122	OU7	836.39	768044.4	964079.1		
EN-123	OU7	835.41	767897.3	963919.8		

			Planar Co	ordinates
Well	Site Area	M.P. Elev.	Northing	Easting
EN 405		(ft amsl)	(grid feet)	(grid feet)
EN-125	MAA	845.47	766639.4	964791.8
EN-126	MAA	843.71	766505.6	964800.4
EN-127	OU4	844.86	767630.8	967042.1
EN-129	OU4	846.48	767796.0	967634.5
EN-130	OU4	850.12	767449.9	967345.6
EN-131	MAA	862.22	766631.8	967686.1
EN-132	MAA	848.49	766896.6	964871.3
EN-133	MAA	846.95	766913.0	964882.7
EN-146	OU7	837.49	768041.2	964497.4
EN-148	OU2	851.61	767892.2	965482.5
EN-149	OU7	841.06	767125.6	963726.5
EN-150	OU7	841.04	767120.4	963722.2
EN-151	OU7	838.74	767207.6	963800.4
EN-152	OU7	838.74	767207.3	963804.4
EN-153	OU7	838.21	767250.1	963602.8
EN-154R	OU7	838.31	767174.9	963749.6
EN-161	MAA	847.17	766402.3	966798.6
EN-162	MAA	856.48	766289.3	967137.1
EN-163	MAA	860.31	766431.6	967402.0
EN-164	OU7	842.10	767402.0	964107.8
EN-165	OU7	838.31	767347.6	963932.5
EN-166	OU7	837.32	767694.7	963919.0
EN-167	OU7	835.48	767855.0	964021.8
EN-170	MAA	847.08	766581.9	966800.3
EN-173	OU4	846.33	766748.4	967039.9
EN-174	MAA	855.83	766797.2	967382.4
EN-175	OU4	839.38	766605.6	967059.2
EN-176	OU7	842.88	767315.2	963979.9
EN-177	OU7	841.88	767511.4	964278.0
EN-178	OU3	854.18	765414.3	968428.8
EN-182	OU4	847.90	766588.1	966890.5
EN-183	OU4	846.97	766591.4	966957.9
EN-184	OU1	846.44	768400.4	966925.6
EN-186	OU2	851.62	767790.5	965167.7
EN-187	OU2	851.66	767750.6	965438.4
EN-188	OU2	848.13	767638.5	965216.2
EN-189	OU2	851.00	767745.6	965279.8
EN-190	MAA	851.76	766673.4	965993.1
EN-191A	MAA	848.52	766528.4	965959.3
EN-192	MAA	850.71	766545.3	966307.2
EN-193	MAA	848.28	766578.0	966617.7
EN-194	MAA	843.46	766532.8	965964.2
EN-195	MAA	838.02	766583.4	966626.3
EN-200	OU1	850.27	768873.4	966000.9
EN-202	OU7	848.44	766785.8	964096.1
EN-203	MAA	846.10	766231.7	965611.8
EN-204	MAA	856.44	766006.6	966857.7
EN-204	OU3	859.47	765630.8	967350.4

			Planar Co	oordinates
Well	Site Area	M.P. Elev.	Northing	Easting
Well	Sile Alea	(ft amsl)	(grid feet)	(grid feet)
EN-207	OU3	854.92	765103.8	967941.8
EN-208A	OU3	851.64	765316.0	966842.0
EN-210	OU3	850.67	764809.6	967490.8
EN-211	OU7	837.73	767943.8	964162.3
EN-213A	OU3	853.94	765480.0	967101.0
EN-214A	MAA	846.40	766180.0	966720.0
EN-214B	MAA	846.46	766180.0	966729.0
EN-215A	MAA	847.50	766446.3	966088.2
EN-215B	MAA	847.47	766448.9	966087.9
EN-215T	MAA	847.00	766452.0	966086.8
EN-217A	OU3	857.13	765842.0	967646.0
EN-219R	OU1	843.95	768172.3	966576.4
EN-253R	OU1	843.96	768095.2	966134.3
EN-276	OU2	852.29	767520.7	965805.6
EN-276R	OU2	852.54	767499.1	965813.8
EN-276A	OU2	849.39	767519.3	965800.2
EN-277	OU2	852.36	767318.5	965961.0
EN-278	MAA	850.75	767158.1	965972.7
EN-279	MAA	850.30	767150.1	965974.4
EN-284	OU2	850.72	767197.2	965870.3
EN-284P	OU2	852.86	767175.0	965865.7
EN-301	MAA	848.16	767006.0	964763.0
EN-302	MAA	843.02	767206.0	966730.0
EN-304	OU5	849.63	768017.0	968309.0
EN-310	OU3	846.05	765245.0	966270.0
EN-311	OU3	849.30	764773.0	966366.0
EN-380	OU4	847.35	767138.9	966898.8
EN-381	OU4	846.35	766894.0	967095.5
EN-382	OU4	852.26	767081.3	967368.0
EN-384	OU4	847.86	767466.0	967099.9
EN-385	OU4	846.21	767702.4	967242.4
EN-386	OU4	848.49	767548.3	967160.4
EN-387A	OU4	854.23	767474.2	967458.8
EN-392R	OU4	846.95	767749.9	967440.0
EN-393	OU4	847.94	767271.7	967034.8
EN-394	OU4	851.42	767254.7	967358.5
EN-395	OU4	849.91	767514.5	967649.2
EN-396	OU4	848.45	767572.4	967340.0
EN-397	OU2	844.83	767915.2	967296.5
EN-398	OU2	845.22	767888.5	967104.0
EN-399	OU4	846.23	767790.6	967537.8
EN-401	OU3	851.79	765154.0	967267.0
EN-402	OU3	851.41	765171.0	967694.0
EN-403	OU3	854.97	765778.0	968122.0
EN-404	OU3	848.43	766165.0	968190.0
EN-409	OU5	843.62	768343.0	968957.0
EN-411	OU5	843.41	768797.0	968777.0
EN-414	OU3	859.73	766386.0	967751.0

			Planar Co	ordinates
Well	Site Area	M.P. Elev. (ft amsl)	Northing (grid feet)	Easting (grid feet)
EN-415	OU3	858.92	766202.0	967421.0
EN-419	OU2	850.27	767362.0	965924.0
EN-421	OU2	850.76	767402.0	966133.0
EN-422	OU2	851.86	767425.0	966253.0
EN-426	OU3	854.29	765506.0	967852.0
EN-427	OU3	857.00	765958.0	967877.0
EN-428	OU1	840.82	768094.2	966069.2
EN-429	OU2	849.45	767321.0	965719.7
EN-430	OU2	850.10	767378.6	965965.2
EN-431	OU2	850.66	767379.5	966061.0
EN-432	OU2	851.01	767402.8	966095.8
EN-433	OU2	851.24	767415.8	966172.6
EN-434	OU2	851.57	767421.7	966219.3
EN-435	OU2	851.42	767407.5	966302.9
EN-436	MAA	849.04	767015.8	965618.4
EN-437	MAA	847.71	766865.3	966067.0
EN-438	MAA	847.10	766729.5	965641.3
EN-439A	MAA	844.18	766437.4	965722.2
EN-439B	MAA	844.34	766443.5	965721.5
EN-439B EN-440	MAA	845.53	766464.1	965839.7
EN-441	MAA	847.19	766471.2	965948.5
EN-442A	MAA	847.92	766522.2	966158.0
EN-442A EN-442B	MAA			966162.6
EN-4426 EN-443	MAA	847.94 846.75	766522.3	
EN-444A	MAA	846.58	766545.9 766355.1	966479.5
	MAA			966049.9
EN-444B	MAA	846.54	766351.7	966050.9
EN-445	MAA	840.88	766115.8	965741.2
EN-446A		845.02	766228.0	966059.1
EN-446B	MAA	845.11	766224.0	966058.9
EN-447A	MAA MAA	845.75	766164.1	966508.6
EN-447B	MAA	845.73	766163.8	966505.0
EN-447T		848.02	766164.3	966512.4
EN-448	MAA	848.29	766859.4	966445.5
EN-449	OU3	857.00	765808.4	966781.8
EN-450	MAA	846.27	766918.7	965368.7
EN-451	MAA	846.26	766896.3	965056.1
EN-451P	MAA	845.63	766896.0	965055.0
EN-453	MAA	841.42	766425.3	965336.8
EN-454	MAA	844.42	766574.6	965578.3
EN-455	MAA	843.22	766444.2	965588.2
EN-456	MAA	845.00	766537.8	965754.9
EN-457A	MAA	842.82	766055.0	966073.8
EN-457B	MAA	843.03	766056.0	966071.7
EN-458	MAA	843.83	765775.6	966319.7
EN-459A	OU3	847.27	764890.9	966138.8
EN-459B	OU3	846.25	764860.4	966120.2
EN-460A	OU3	847.75	765056.8	966422.1
EN-460B	OU3	846.89	765054.9	966419.0

			Planar Co	ordinates
Well	Site Area	M.P. Elev. (ft amsl)	Northing (grid feet)	Easting (grid feet)
EN-460C	OU3	847.45	765050.7	966410.8
EN-461	OU3	850.60	765204.4	966657.4
EN-462	OU3	851.38	764733.5	966660.5
EN-463	OU3	851.28	764773.1	967045.2
EN-464	OU3	852.98	765569.3	968214.9
EN-465	OU3	851.15	765342.8	968312.1
EN-466	OU3	846.99	765502.6	968517.5
EN-467	OU3	857.12	765889.2	967767.4
EN-468	OU3	852.36	765349.3	967992.5
EN-469	MAA	849.75	767070.2	966223.8
EN-470	MAA	846.85	766942.6	966583.8
EN-471	OU2	853.30	767735.2	966370.6
EN-472	OU2	849.43	767669.3	966704.6
EN-473A	OU3	843.06	765100.2	965931.6
EN-473B	OU3	843.14	765096.2	965933.0
EN-474	OU3	836.33	765478.7	966413.3
EN-475	OU3	850.49	765656.2	966608.8
EN-476	MAA	849.81	767107.8	965803.1
EN-476	MAA	848.33	767107.8	965873.2
EN-477	MAA	844.08	766347.0	965875.3
EN-478B	MAA	844.14	766351.8	965874.6
EN-479A	MAA	845.41	766287.6	
EN-479B	MAA			965969.6
EN-480A	MAA	845.20 843.02	766287.3	965965.1
EN-480B	MAA	842.85	766209.4 766208.6	965856.7
	MAA			965851.5
EN-481A EN-481B	MAA	843.35	766179.2	965903.4
		842.99	766178.9	965907.3
EN-482	MAA	847.44	767106.0	965943.1
EN-483	OU1	839.08	768473.3	966077.9
EN-484	OU1	838.21	767997.5	965565.8
EN-485	OU1 OU1	840.48	768096.1 768184.4	966144.1
EN-486		842.63		966585.1
EN-487	OU7	834.18	768009.9	964196.6
EN-488	OU2	850.87	767299.6	965262.3
EN-489	OU2	847.45	767613.9	965054.6
EN-490	MAA	845.02	766474.3	966587.6
EN-491	MAA	845.03	766586.9	966692.4
EN-491A	MAA	844.31	766590.5	966726.7
EN-491T	MAA	847.45	766586.1	966689.8
EN-492	OU4	844.42	766581.9	966850.3
EN-492T	OU4	846.64	766588.2	966851.7
EN-493	MAA	848.33	766959.9	965166.2
EN-494	MAA	848.48	766939.8	965167.7
EN-495	MAA	848.13	766919.1	965168.7
EN-496	MAA	848.29	766899.6	965169.2
EN-497	MAA	848.28	766880.5	965170.3
EN-498	MAA	846.73	766840.0	965173.3
EN-499A	MAA	846.40	766358.8	966093.9

			Planar Co	ordinates
Well	Site Area	M.P. Elev.	Northing	Easting
EN 400D	B 4 A A	(ft amsl)	(grid feet)	(grid feet)
EN-499B	MAA	846.28	766361.4	966094.0
EN-500A	MAA	844.47	766218.1	966103.4
EN-500B	MAA	844.55	766216.2	966106.2
EN-501	MAA	842.49	766037.4	966117.3
EN-502	MAA	847.14	766997.8	965054.0
EN-503	MAA	844.94	766796.0	965068.6
EN-504	MAA	845.97	766883.2	965097.9
EN-505	MAA	843.84	766536.2	966852.2
EN-506	MAA	844.21	766525.5	966701.3
EN-507	OU1	840.75	768092.0	966077.9
EN-508	OU2	847.68	767785.6	966038.2
EN-509	OU2	845.70	767955.8	965960.2
EN-510	MAA	839.83	766436.8	964969.1
EN-511	MAA	839.89	766445.2	965084.2
EN-513	MAA	849.57	767173.1	966476.6
EN-514	MAA	847.43	767102.0	966573.0
EN-515	MAA	849.48	767132.0	966430.0
EN-516	MAA	849.70	767165.0	966354.0
EN-517	MAA	839.87	766432.0	964904.0
EN-518	MAA	840.24	766441.0	965026.0
EN-519	MAA	841.70	766538.0	965086.0
EN-520	OU2	849.58	767451.0	965121.0
EN-521	OU2	848.14	767627.0	965455.0
EN-522	OU1	837.45	768009.1	965612.2
EN-523	MAA	838.39	765849.9	965895.9
EN-524	MAA	839.87	765857.0	965997.8
EN-525	OU2	850.06	767340.6	965843.7
EN-526	OU2	850.57	767265.0	965866.7
EN-527	OU4	848.76	767693.0	967505.0
EN-528	OU4	848.95	767613.3	967457.1
EN-529	MAA	847.10	766712.7	965688.2
EN-531	MAA	849.22	767109.3	965547.6
EN-532	MAA	844.84	766595.7	965194.1
EN-533	OU1	836.11	768082.8	965522.2
EN-534	MAA	844.63	766731.6	965438.1
EN-600	OU5			
	OU5	843.47	768416.7	967852.9
EN-604 EN-606	OU5	841.75	768517.5	968419.5
		842.02	768560.2	968647.0
EN-608	OU5	843.11	768617.7	968744.0
EN-616	OU5	843.98	768748.7	968985.2
EN-617	OU5	844.09	768743.3	968985.9
EN-618	OU5	842.72	768680.3	968559.9
EN-623	OU5	847.97	768595.7	968860.3
EN-624	OU5	849.01	768621.6	969002.7
EN-626	OU5	842.76	768608.5	967837.2
EN-632	OU5	842.67	768575.1	968726.2
EN-638	OU5	841.56	768803.4	968984.0
EN-640	OU5	842.48	768797.7	968865.3

			Planar Co	ordinates
Well	Site Area	M.P. Elev.	Northing	Easting
AAGII	Sile Alea	(ft amsl)	(grid feet)	(grid feet)
EN-641	OU5	840.68	768605.1	969036.5
EN-642	OU5	844.00	768788.3	968680.4
EN-644	OU5	846.19	768771.9	968398.0
EN-648	OU5	845.89	768761.9	968218.7
EN-650	OU5	845.21	768750.9	968022.5
EN-651	OU5	845.27	768518.9	969146.7
EN-652	OU5	843.62	768342.1	968959.2
EN-653	OU5	844.54	768534.2	969249.9
EN-655	OU5	839.28	768430.3	969059.6
EN-679	OU5	851.71	768042.5	968435.8
EN-684A	OU5	849.45	768024.4	968317.0
EN-687	OU5	847.83	767999.4	968073.2
EN-692	OU5	841.76	768571.1	968591.8
EN-694	OU5	838.17	768489.5	969057.4
EN-696	OU5	845.50	768480.7	968903.3
EN-698	OU5	849.01	768456.2	968752.4
EN-700	OU5	846.95	768442.6	968652.6
EN-701	OU5	847.23	768437.8	968654.0
EN-702	OU5	841.14	768419.9	968502.6
EN-704	OU5	840.54	768277.4	968610.1
EN-705	OU5	840.57	768272.9	968611.4
EN-709	OU5	841.56	768240.8	968313.9
EN-710	OU5	845.06	768559.1	968492.5
EN-711	OU5	843.13	768698.2	969321.0
EN-712	OU5	843.17	768698.2	969321.0
EN-713	OU5	843.21	768698.8	969318.2
EN-714	OU5	846.64	768202.2	968034.5
EN-715	OU5	847.20	768293.7	968285.0
EN-716	OU5	843.72	768317.6	968385.3
EN-717	OU5	847.36	768155.2	968280.3
EN-718	OU5	843.28	768209.1	968415.3
EN-719	OU5	844.65	768130.7	968409.8
EN-720	OU5	845.05	768117.0	968410.6
EN-721	OU5	844.93	768687.8	968995.4
EN-722	OU5	844.86	768687.3	968992.5
EN-723	OU5	844.70	768627.9	968828.1
EN-724	OU5	841.79	768537.0	968516.6
EN-725	OU5	841.73	768535.8	968508.5
EN-726	OU5	850.34	768049.7	968550.8
EN-727	OU5	853.26	768063.8	968786.8
RMJ-MW-1	OU7	843.41	766896.3	963748.0
RMJ-MW-2	OU7	841.23	766899.5	963620.3
RMJ-MW-3	OU7	840.97	766731.4	963593.6
RMJ-MW-4	OU7	843.32	766709.9	963713.3
RMJ-MW-5	OU7	838.79	766814.1	963516.2
RMJ-MW-6	OU7	839.69	766589.0	963443.7
DEC-MW-34D	OU5	843.49	768675.7	969100.4
EN-D01	OU6	841.58	765385.1	964797.4

(effective January 1, 2016)

			Planar Co	ordinates
Well.	Cita Area	M.P. Elev.	Northing	Easting
Well	Site Area	(ft amsl)	(grid feet)	(grid feet)
EN-D02	OU6	844.84	765910.5	966134.0
EN-D03	OU6	843.26	764640.5	964647.9
EN-D04	OU6	854.87	765372.0	968361.1
EN-D04S	OU6	854.60	765372.0	968361.1
EN-D06	OU6	852.94	767177.6	966476.6
EN-D07	OU6	848.03	766581.2	966653.9
EN-D10	OU6	849.53	766742.3	967050.9
EN-D11	OU6	850.24	766879.9	966327.3
EN-D12	OU6	854.05	767321.1	966227.4
EN-D13	OU6	845.31	768066.6	966455.0
EN-D14	OU6	846.22	768068.7	966466.2
EN-D30	OU6	848.01	767015.0	967027.0
EN-D31	OU6	846.15	766178.0	966710.0
EN-D33	OU6	851.06	767575.7	966438.1
EN-D34	OU6	850.81	767573.7	966428.0
EN-D35	OU6	848.23	767023.4	967031.2
EN-D36	OU6	845.50	766559.7	966655.1
EN-D37	OU6	849.67	767170.2	966474.1
EN-D38	OU6	851.62	767319.5	966223.5
EN-D39	OU6	850.25	767371.4	965948.8
EN-D40	OU6	849.83	767076.8	966223.8
EN-D41	OU6	846.50	766943.0	966589.5
EN-D42	OU6	843.81	767231.3	966702.5
EN-D43	OU6	849.70	767669.7	966710.2
EN-D44	OU6	852.77	767428.2	966286.4
EN-D45	OU6	850.75	767411.2	966123.3
EN-D46	OU6	850.08	767601.8	966548.0
EN-D47	OU6	853.42	767731.4	966372.2
EN-D48	OU6	845.75	767721.4	966982.3
EN-D49	OU6	852.73	767202.2	966420.7

Total Number of HE Wells = 415

Key:

M.P. Elev. = Measuring Point Elevation

BOLD = Denotes active extraction wells. Water levels in these wells will not be measured if the wells are under vacuum or are not pumping.

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling	Sampling	Sample	Sample	Sample
DOT 4	0110	Frequency	Frequency	Count	Count	Count
DOT-1	OU2	A	A	1		1
DOT-2	OU2	A	A	1		1
DOT-4	OU2	A	A	1		1
EN-002	OU1	A	A	1		
EN-006	MAA	Q	Q	4		
EN-012	OU2	Q	Q	4		
EN-013	OU2	S	S	2		
EN-014	OU2	Q	Q	4		
EN-015	OU2	S	S	2		
EN-016	OU2	Q	Q	4		
EN-017	OU2	Q	Q	4		
EN-018	OU2	S	S	2		
EN-019	OU2	Q	Q	4		
EN-020	OU2	Q	Q	4		
EN-021	OU2	S	S	2		
EN-022	MAA	S	S	2		
EN-023	OU4	S	S	2		
EN-024	OU2	А	Α	1		
EN-026	OU7	Α	А	1		1
EN-029A	MAA	Q	Q	4		
EN-030	OU5	S	S	2		2
EN-034	OU1	S	S	2		
EN-035	OU2	S	S	2		
EN-036	OU2	S	S	2		
EN-037	OU1	Q	Q	4		
EN-039	OU1	Q	Q	4		
EN-045	OU1	Q	Q	4		
EN-051	OU1	Q	Q	4		
EN-052	OU1	Q	Q	4		
EN-053	OU1	Q	Q	4		
EN-054	OU2	А	А	1		
EN-055	OU1	S	S	2		
EN-056	OU1	Α	Α	1		1
EN-058	OU1	S	S	2		
EN-062	MAA	Α	Α	1		
EN-064	MAA	А	А	1		
EN-065	OU4	S	S	2		
EN-067	OU7	А	А	1		1
EN-069	OU7	А	А	1		1
EN-070	OU7	А	А	1		1
EN-072	OU7	А	А	1		1
EN-073	OU1	А	А	1		1
EN-074	OU2	А	А	1		1
EN-075	OU2	А	А	1		
EN-076	OU2	Α	Α	1		
EN-077	OU2	Q	Q	4		
EN-078	MAA	S	S	2		
EN-079	OU4	S	S	2		

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling Frequency	Sampling Frequency	Sample Count	Sample Count	Sample Count
EN-080*	OU4	S	S	2		
EN-081	OU2	S	S	2		
EN-083	OU1	Α	Α	1		1
EN-084	OU1	A	A	1		1
EN-091	MAA	Q	Q	4		
EN-091A	MAA	Q	Q	4		
EN-091T	MAA	M	M		12	
EN-092	MAA	Q	Q	4		
EN-092A	MAA	S	S	2		
EN-093	MAA	Q	Q	4		
EN-094	MAA	A	A	1		
EN-095**	OU7	Q	Q	4		
EN-096**	OU7	Q	Q	4		
EN-097	OU1	A	A	1		1
EN-100	MAA	Q	Q	4		
EN-102	MAA	Q	Q	4		
EN-104**	OU7	Q	Q	4		
EN-105	OU7	Α	А	1		1
EN-106	OU1	Α	Α	1		1
EN-107R	OU1	М	М		12	
EN-112	OU2	Q	Q	4		
EN-114	OU1	Q	Q	4		
EN-114T	OU1	M	M		12	
EN-117	OU1	Α	А	1		1
EN-122	OU7	Α	А	1		1
EN-125	MAA	Α	А	1		
EN-126	MAA	Α	Α	1		
EN-127	OU4	S	S	2		
EN-129	OU4	Α	Α	1		
EN-130*	OU4	S	S	2		
EN-132	MAA	S	S	2		
EN-133	MAA	М	М		12	
EN-148	OU2	А	Α	1		1
EN-150**	OU7	Q	Q	4		
EN-152**	OU7	Q	Q	4		
EN-154R**	OU7	Q	Q	4		
EN-161	MAA	S	S	2		
EN-162	MAA	S	S	2		
EN-163	MAA	Α	А	1		
EN-166	OU7	А	А	1		1
EN-170	MAA	Q	Q	4		
EN-173*	OU4	S	S	2		
EN-174	OU4	S	S	2		
EN-175	OU4	Α	А	1		
EN-176	OU7	А	А	1		
EN-177	OU7	А	А	1		
EN-182	OU4	Q	Q	4		
EN-183	OU4	Q	Q	4		

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling Frequency	Sampling Frequency	Sample Count	Sample Count	Sample Count
EN-185P	OU4	M		0		
EN-186	OU2	А	Α	1		
EN-187	OU2	А	А	1		1
EN-188	OU2	А	Α	1		1
EN-189	OU2	Α	Α	1		1
EN-190	MAA	Q	Q	4		
EN-191A	MAA	Q	Q	4		
EN-192	MAA	Q	Q	4		
EN-193	MAA	Q	Q	4		
EN-194	MAA	М	М		12	
EN-200	OU1	А	Α	1		1
EN-203	MAA	S	S	2		
EN-204	MAA	S	S	2		
EN-206	OU3	S	S	2		
EN-207	OU3	S	S	2		
EN-208A	OU3	S	S	2		
EN-210	OU3	S	S	2		
EN-211	OU7	А	А	1		1
EN-213A	OU3	S	S	2		
EN-214A	MAA	Q	Q	4		
EN-214B	MAA	Q	Q	4		
EN-215A	MAA	Q	Q	4		
EN-215B	MAA	Q	Q	4		
EN-215T	MAA	M	M		12	
EN-217A	OU3	S	S	2		
EN-219R	OU1	M	M		12	
EN-253	OU1	М		0		
EN-253R	OU1		М		12	
EN-276	OU2	M	М		12	
EN-276R	OU2	М	М		12	
EN-277	OU2	S	S	2		
EN-278	MAA	Q	Q	4		
EN-284	OU2	Q	Q	4		
EN-284P	OU2	M	M		12	
EN-301	MAA	А	Α	1		
EN-302	MAA	Q	Q	4		
EN-304	OU5	A	A	1		
EN-311	OU3	S	S	2		
EN-380	OU4	S	S	2		
EN-381*	OU4	S	S	2		
EN-382*	OU4	S	S	2		
EN-384	OU4	S	S	2		
EN-386	OU4	Α	Α	1		
EN-387A*	OU4	Q	Q	4		
EN-392R*	OU4	S	S	2		
EN-393*	OU4	S	S	2		
EN-394*	OU4	S	S	2		
EN-395*	OU4	S	S	2		

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling Frequency	Sampling Frequency	Sample Count	Sample Count	Sample Count
EN-396*	OU4	S	S	2	- Count	- Godin
EN-397	OU2	A	A	1		1
EN-398	OU2	A	A	1		· ·
EN-399*	OU4	S	S	2		
EN-401	OU3	Q	Q	4		
EN-402	OU3	S	S	2		
EN-409	OU5	A	A	1		1
EN-415	OU3	A	A	1		'
EN-419	OU2	Q	Q	4		
EN-421	OU2	Q	Q	4		
EN-422	OU2	S	S	2		
EN-426	OU3	S	S	2		
EN-428	OU1	M	M		12	
EN-429	OU2	S	S	2	12	
EN-430	OU2	S	S	2		
EN-431	OU2	Q	Q	4		
EN-432	OU2	S	S	2		
EN-433	OU2	S	S	2		
EN-434	OU2	Q	Q	4		
EN-435	OU2	Q	Q	4		
EN-436	MAA	Q	Q	4		
EN-437	MAA	Q	Q	4		
EN-438	MAA	S	S	2		
EN-439A	MAA	Q	Q	4		
EN-439A EN-439B	MAA	Q	Q	4		
EN-440	MAA	Q	Q	4		
EN-441	MAA	Q	Q	4		
EN-442A	MAA	Q	Q	4		
EN-442A EN-442B	MAA	Q	Q	4		
EN-442B EN-443	MAA	Q	Q	4		
EN-444A	MAA	Q	Q	4		
EN-444A EN-444B	MAA	Q	Q	4		
EN-445 EN-446A	MAA MAA	S S	S S	2		
		S	S	2		
EN-446B EN-447A	MAA MAA	Q	Q	4		
EN-447A EN-447B	MAA	Q	Q	4		
EN-447B	MAA	M	M M	4	12	
EN-4471 EN-448	MAA	Q		4	12	
EN-448 EN-449	OU3	S	Q S	2		
EN-449 EN-450	MAA	Q	Q	4		
EN-451	MAA	Q	Q	4		
EN-451P	MAA	M	M	4	12	
EN-451P EN-453	MAA	S	S	2	14	
EN-454	MAA	Q	Q	4		
EN-455	MAA	Q	Q			
EN-456	MAA	Q	Q	4		
EN-457A	MAA	S	S	2		

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling	Sampling	Sample	Sample	Sample
		Frequency	Frequency	Count	Count	Count
EN-457B	MAA	S	S	2		
EN-458	MAA	S	S	2		
EN-459A	OU3	Q	Q	4		
EN-459B	OU3	Q	Q	4		
EN-460A	OU3	Q	Q	4		
EN-460B	OU3	Q	Q	4		
EN-460C	OU3	Q	Q	4		
EN-462	OU3	S	S	2		
EN-463	OU3	S	S	2		
EN-464	OU3	Α	Α	1		
EN-465	OU3	S	S	2		
EN-467	OU3	А	А	1		
EN-468	OU3	S	S	2		
EN-469	MAA	Q	Q	4		
EN-470	MAA	Q	Q	4		
EN-471	OU2	S	S	2		
EN-472	OU2	А	Α	1		
EN-473A	OU3	Α	Α	1		
EN-473B	OU3	Α	Α	1		
EN-474	OU3	Q	S	2		
EN-475	OU3	Q	S	2		
EN-477	MAA	Q	Q	4		
EN-478A	MAA	Q	Q	4		
EN-478B	MAA	Q	Q	4		
EN-479A	MAA	S	S	2		
EN-479B	MAA	S	S	2		
EN-480A	MAA	S	S	2		
EN-480B	MAA	S	S	2		
EN-481A	MAA	S	S	2		
EN-481B	MAA	S	S	2		
EN-482	MAA	Q	Q	4		
EN-483	OU1	A	A	1		1
EN-484	OU1	Q	Q	4		
EN-486	OU1	S	S	2		
EN-487	OU7	A	A	1		1
EN-488	OU2	A	A	1		
EN-489	OU2	A	A	1		
EN-490	MAA	Q	Q	4		
EN-491A	MAA	Q	Q	4		
EN-491T	MAA	M	M	, , , , , , , , , , , , , , , , , , ,	12	
EN-492	OU4	Q	Q	4	12	
EN-493	MAA	Q	Q	4		
EN-494	MAA	S	S	2		
EN-495	MAA	S	S	2		
EN-496	MAA	Q	Q	4		
EN-497	MAA	S	S	2		
EN-497 EN-498	MAA	Q	Q	4		
EN-499A	MAA	Q		4		
EN-499A	IVIAA	Ų	Q	4		

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling Frequency	Sampling Frequency	Sample Count	Sample Count	Sample Count
EN-499B	MAA	Q	Q	4	000	000
EN-499T	MAA	M	~	0		
EN-500A	MAA	S	S	2		
EN-500B	MAA	S	S	2		
EN-501	MAA	S	S	2		
EN-502	MAA	S	S	2		
EN-503	MAA	Q	Q	4		
EN-504	MAA	Q	Q	4		
EN-505	MAA	Q	Q	4		
EN-506	MAA	Q	Q	4		
EN-507	OU1	S	S	2		
EN-508	OU2	Q	Q	4		
EN-509	OU2	Q	Q	4		
EN-511	MAA	A	A	1		
EN-513	MAA	S	S	2		
EN-514	MAA	S	S	2		
EN-515	MAA	S	S	2		
EN-516	MAA	S	S	2		
EN-519	MAA	S	S	2		
EN-520	OU2	A	A	1		
EN-521	OU2	A	A	1		
EN-522	OU1	Q	Q	4		
EN-524	MAA	Ā	Ā	1		
EN-525	OU2	Q	Q	4		
EN-526	OU2	Q	Q	4		
EN-527*	OU4	S	S	2		
EN-528*	OU4	S	S	2		
EN-529	MAA	S	S	2		
EN-531	MAA	Q	Q	4		
EN-532	MAA	Q	S	2		
EN-533	OU1	Q	Q	4		
EN-534	MAA	Q	Q	4		
EN-606	OU5	A	Ā	1		1
EN-616	OU5	A	A	1		1
EN-617	OU5	A	A	1		
EN-623	OU5	S	S	2		
EN-624	OU5	S	S	2		2
EN-632	OU5	A	A	1		1
EN-638	OU5	A	A	1		1
EN-641	OU5	A	A	1		
EN-642	OU5	A	A	1		1
EN-651	OU5	S	S	2		2
EN-652	OU5	A	A	1		1
EN-653	OU5	S	S	2		2
EN-655	OU5	A	A	1		1
EN-679	OU5	S	S	2		2
EN-684A	OU5	S	S	2		2
EN-687	OU5	S	S	2		2

		2015	2016	Mon. Well	Extr. Well	PDB
Well	Site Area	Sampling Frequency	Sampling Frequency	Sample Count	Sample Count	Sample Count
EN-692	OU5	A	A	1		1
EN-694	OU5	A	A	1		1
EN-696	OU5	A	A	1		1
EN-698	OU5	A	A	1		1
EN-700	OU5	Q	Q	4		4
EN-701	OU5	Q	Q	4		4
EN-702	OU5	A	A	1		1
EN-704	OU5	Q	Q	4		4
EN-705	OU5	Q	Q	4		4
EN-709	OU5	M	M	7	12	
EN-710	OU5	S	S	2	12	2
EN-711	OU5	A	A	1		
EN-712	OU5	S	S	2		
EN-713	OU5	A	A	1		
EN-714	OU5	A	A	1		1
EN-715	OU5	A	A	1		1
EN-716	OU5	A	A	1		1
EN-717	OU5	A	A	1		1
EN-718	OU5	A	A	1		1
EN-719	OU5	A	A	1		1
EN-720	OU5	A	A	1		1
EN-721	OU5	S	S	2		ı
EN-721	OU5	S	S	2		2
EN-723	OU5	S	S	2		2
EN-724	OU5	S	S	2		2
EN-725	OU5	S	S	2		2
EN-726	OU5	A	A	1		1
EN-727	OU5	A	A	1		1
RMJ-MW-1**	OU7	Q	Q	4		ı ı
RMJ-MW-2**	OU7	Q	Q	4		
RMJ-MW-3**	OU7	Q	Q	4		
RMJ-MW-4**		Q	Q	4		
RMJ-MW-5**	OU7 OU7			4		
RMJ-MW-6**	OU7	Q Q	Q Q	4		
DEC-MW-34D				2		
EN-D01	OU5 OU6	S A	S A	1		2 1
EN-D01 EN-D02	OU6			1		
EN-D02 EN-D03	OU6	A	A	1		1
		A	A	1		1
EN-D04D	OU6	A	A	1		1
EN-D04S	OU6	A S	A S	2		1 2
EN-D10	OU6	S	S			
EN-D11	OU6			2		2
EN-D13	OU6	S	S			2
EN-D14	OU6	A	A	1		1
EN-D33	OU6	S	S	2		2
EN-D34	OU6	A	A	1		1
EN-D35	OU6	S	S	2		2
EN-D36	OU6	S	S	2		2

(effective January 1, 2016)

Well	Site Area	2015 Sampling Frequency	2016 Sampling Frequency	Mon. Well Sample Count	Extr. Well Sample Count	PDB Sample Count
EN-D37	OU6	S	S	2		2
EN-D38	OU6	S	S	2		2
EN-D39	OU6	S	S	2		2
EN-D40	OU6	S	S	2		2
EN-D41	OU6	S	S	2		2
EN-D42	OU6	S	S	2		2
EN-D43	OU6	S	S	2		2
EN-D44	OU6	S	S	2		2
EN-D45	OU6	S	S	2		2
EN-D46	OU6	S	S	2		2
EN-D47	OU6	S	S	2		2
EN-D48	OU6	S	S	2		2
EN-D49	OU6	М	М		12	
Total Number of Total Number of		348	346	787	204	135
Minimum Numb	Minimum Number of Duplicate Samples (5% of total):					

Key:

Indicates a change from 2015 to 2016.

BOLD = Active extraction well in 2016.

OU1 = Operable Unit #1: Railroad Corridor Source Area

OU2 = Operable Unit #2: North Street Area

MAA = Misc. Activity A: Plume Reduction in Off-Site Capture Zone A

OU3 = Operable Unit #3: Plume Reduction in Southern Area

OU4 = Operable Unit #4: Ideal Cleaners Area

OU5 = Operable Unit #5: Building 57 Area

OU6 = Operable Unit #6: Plume Control in Bedrock Groundwater

OU7 = Operable Unit #7: Assessment of Sewers in Northwestern Area of the Site

M = Monthly

Q = Quarterly

S = Semiannually

A = Annually

* = Denotes OU#4 sampling location for dissolved gases.

** = Denotes OU#7 sampling location for EN-154R shutdown test.

Notes:

- 1) Eligibility for sampling using PDBs was determined based on inner well diameters (greater than 1-inch ID required), anticipated water column thickness in the screened interval of the well (in general, 5 feet or greater is needed for PDB sampling), and position relative to potentially variable extraction and injection
- 2) Specific conductance, pH, temperature, and turbidity to be measured in the field.
- 3) All samples to be analyzed by SW-846 Method 8260C.
- 4) Extraction wells will not be sampled unless they are pumping.

APPENDIX E

Groundwater Analytical Chemistry Data, 2016

Groundwater Treatment Analytical Chemistry Data, 2016

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		DEC-MW-34D GW MON WELL 05/11/2016 8382683	DEC-MW-34D GW MON WELL 08/04/2016 8512549	DOT-1 GW MON WELL 11/02/2016 8681630	DOT-2 GW MON WELL 11/02/2016 8681631	DOT-4 GW MON WELL 11/02/2016 8681632	EN-002 GW MON WELL 11/08/2016 8687290
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CS-1,2-DICHLOROETHENE ETHYLEBNZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VILYNES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 0.2 J 5.7 0.2 J 4.3 ND@0.5 ND@0.5 1 J 30 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J 0.5 0.2 J 45 ND@0.5	ND@0.5 ND@0.5 6.6 0.2 J 3.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.5 J ND@0.5 O.2 J ND@0.5 O.2 J ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 O.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 O.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J O.3 J ND@0.5 O.5 J O.4 J	1.4 22 0.1 J 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 1 of 173

Sample Location Sample Description Sample Date		EN-006 GW MON WELL 02/12/2016	EN-006 GW MON WELL 05/17/2016	EN-006 GW MON WELL 07/20/2016	EN-006 GW MON WELL 08/29/2016	EN-006 GW MON WELL 11/07/2016	EN-012 GW MON WELL 02/11/2016
Laboratory Sample I.D.		8242890	8390060	8488619	8562726	8687319	8242870
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.6	0.2 J	0.2 J	0.2 J	0.2 J	ND@25
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	11 J
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25 J
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	2300
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	330
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25
TRICHLOROETHENE	ug/L	1.6	1.1	1.2	1	1	27
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	11 J
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@25

Endicott, New York

endicat, new fork										
		Januar	y 1, 2016 - Decemb	er 31, 2016						
Sample Location		EN-012	EN-012	EN-012	EN-013	EN-013	EN-013			
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL			
Sample Date		05/10/2016	08/10/2016	11/07/2016	02/15/2016	02/15/2016	05/10/2016			
Laboratory Sample I.D.		8377737	8524443	8687267	8244637	8244638	8377801			
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	ND@5.0	ND@10	ND@10	0.5 J	0.3 J	0.2 J			
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@5.0	ND@10	7.6 J	2.6	3.1	0.6			
1,1-DICHLOROETHANE	ug/L	ND@5.0	ND@10	ND@10	0.5 J	0.3 J	0.2 J			
1,1-DICHLOROETHENE	ug/L	1.4 J	ND@10	4.3 J	ND@1.0	ND@1.0	ND@0.5			
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	3.1 J	ND@10	ND@10	0.5 J	0.6 J	0.6			
1,2-DICHLOROETHANE (EDC)	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			
BENZENE	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			
CHLOROETHANE	ug/L	1.1 J	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5 J			
CIS-1,2-DICHLOROETHENE	ug/L	700	510	2600	65	74	11			
ETHYLBENZENE	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			
TETRACHLOROETHENE	ug/L	100	240	310	160	190	22			
TOLUENE	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			
TRANS-1,2-DICHLOROETHENE	ug/L	1.1 J	ND@10	3.5 J	0.7 J	2.1 J	0.2 J			
TRICHLOROETHENE	ug/L	7.8	13	23	21	24	3.4			
VINYL CHLORIDE	ug/L	16	ND@10	29	1.4	1.5	7.6			
XYLENES, TOTAL	ug/L	ND@5.0	ND@10	ND@10	ND@1.0	ND@1.0	ND@0.5			

April 13, 2017 Site #704014 3 of 173

Sample Location Sample Description		EN-013 GW MON WELL	EN-014 GW MON WELL	EN-014 GW MON WELL	EN-014 GW MON WELL	EN-014 GW MON WELL	EN-015 GW MON WELL
Sample Date		11/15/2016	02/15/2016	05/10/2016	08/01/2016	11/15/2016	02/11/2016
Laboratory Sample I.D.		8702123	8244639	8377800	8508556	8702124	8242871
Laboratory Sample 1.D.		8/02123	8244039	8377800	8508550	8/02124	8242871
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@10	0.9	0.2 J	1.2	0.5 J	27
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	16	15	0.6	0.4 J	0.4 J	300 J
1,1-DICHLOROETHANE	ug/L	ND@10	0.4 J	0.2 J	ND@0.5	0.2 J	6.1
1,1-DICHLOROETHENE	ug/L	3.1 J	0.3 J	ND@0.5	ND@0.5	ND@0.5	2.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	6.3 J	2.8	0.7	ND@0.5	0.4 J	6.1
1,2-DICHLOROETHANE (EDC)	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J
CIS-1,2-DICHLOROETHENE	ug/L	1500	100	10	2.3	26	23
ETHYLBENZENE	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	25	21	14	13	16	190
TOLUENE	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	3.5 J	0.6	0.2 J	ND@0.5	0.2 J	0.3 J
TRICHLOROETHENE	ug/L	8.6 J	5.3	4.1	4.4	4.2	30
VINYL CHLORIDE	ug/L	57	0.3 J	6.1	ND@0.5	7	ND@0.5
XYLENES, TOTAL	ug/L	ND@10	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-015 GW MON WELL 05/10/2016 8377738	EN-015 GW MON WELL 11/07/2016 8687268	EN-016 GW MON WELL 02/11/2016 8242872	EN-016 GW MON WELL 05/10/2016 8377739	EN-016 GW MON WELL 08/10/2016 8525994	EN-016 GW MON WELL 11/07/2016 8687269
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8.8 38 7.9 2.6 3.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 130 ND@0.5 0.3 J 18 0.3 J ND@0.5	25 15 19 6.5 2.9 0.2 J ND@0.5 ND@0.5 32 ND@0.5 ND@0.5 180 ND@0.5 0.3 J 27 0.2 J	10 2 0.7 0.4 J 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	19000 330 670 1000 ND@100 68 J ND@100 ND@100 2900 ND@100 ND@100 75 J ND@100 ND@100 100 37 J ND@100	5400 ND@100 860 280 ND@100 35 J ND@100 ND@100 950 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	31 3.5 14 3.8 0.6 0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 12 ND@0.5 0.5 J 140 0.2 J ND@0.5

Site #704014 April 13, 2017 5 of 173

Sample Location		EN-017	EN-017	EN-017	EN-017	EN-017	EN-018
Sample Description		GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		02/15/2016	05/10/2016	05/10/2016	08/01/2016	11/16/2016	02/15/2016
Laboratory Sample I.D.		8244640	8377802	8377803	8508557	8702136	8244641
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLURNE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	240 ND@5.0 390 20 ND@5.0 7.7 ND@5.0 1.1 J 83 ND@5.0 ND@5.0	2400 2.1 J 320 74 ND@5.0 8.9 ND@5.0 1.4 J 130 ND@5.0 ND@5.0 ND@5.0	1800 ND@25 300 78 ND@25 9.8 J ND@25 ND@25 140 ND@25 ND@25 OB J	14000 20 2000 650 3.2 J 35 ND@5 ND@5 960 ND@5 ND@5 17 ND@5	1500 ND@25 800 81 ND@25 15 J ND@25 ND@25 220 ND@25 ND@25 5.8 J ND@25	230 ND@50 310 44 J ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50
TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	ND@5.0	1.1 J	ND@25	2.5 J	ND@25	ND@50
	ug/L	59	57	58	100	100	7300
	ug/L	ND@5.0	ND@5.0	ND@25	ND@5	ND@25	ND@50
	ug/L	ND@5.0	ND@5.0	ND@25	ND@5	ND@25	ND@50

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-018 GW MON WELL 05/10/2016 8377804	EN-018 GW MON WELL 11/16/2016 8702135	EN-019 GW MON WELL 02/15/2016 8244642	EN-019 GW MON WELL 05/11/2016 8377806	EN-019 GW MON WELL 08/02/2016 8508558	EN-019 GW MON WELL 11/16/2016 8702132
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CHLOROETHANE CHLOROETHANE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	46 ND@2.5 110 4.5 ND@2.5 1 J ND@2.5 ND@2.5 420 ND@2.5 ND@2.5 ND@2.5 2.2 J ND@2.5 8.2 370 ND@2.5 ND@2.5 ND@2.5	150 ND@1 110 11 ND@1 0.5 J ND@1 ND@1 84 ND@1 ND@1 0.2.2 ND@1 0.4 J 100 ND@1 ND@1	270 ND@10 270 42 ND@10 2.9 J ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 35 ND@10 3.7 J 1800 ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 ND@10	320 ND@10 470 54 ND@10 3.6 J ND@10	10000 11 4800 560 4.2 J 43 ND@10 ND@10 ND@10 ND@10 53 ND@10 12 550 2.3 J ND@10	7500 ND@100 4300 470 ND@100 42 J ND@100

Site #704014 7 of 173 April 13, 2017

Sample Location		EN-020	EN-020	EN-020	EN-020	EN-020	EN-021
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL
Sample Date		02/08/2016	05/11/2016	08/02/2016	08/02/2016	11/15/2016	02/08/2016
Laboratory Sample I.D.		8239331	8377807	8508559	8508560	8702128	8239330
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	42000 160 J 17000 2500 ND@250 130 J ND@250 ND@250 J 8400 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250	160000 270 18000 7800 ND@250 660 ND@250 80 J 5600 ND@250 27000 150 J 840 ND@250	130000 ND@2500 48000 7200 ND@2500 ND@2500 ND@2500 ND@2500 66600 ND@2500 4400 ND@2500 810 J	170000 630 55000 9000 ND@250 460 ND@250 ND@250 8500 68 J 5800 67 J 990 ND@250	110000 ND@1000 36000 5100 ND@1000 240 J ND@1000 ND@1000 ND@1000 ND@1000 ND@1000 ND@1000 ND@1000 ND@1000	19000 ND@50 5300 720 ND@50 21 J ND@50 110 570 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50
TRICHLOROETHENE	ug/L	1100	99 J	ND@2500	ND@250	ND@1000	ND@50
VINYL CHLORIDE	ug/L	500	350	ND@2500	490	440 J	160
XYLENES, TOTAL	ug/L	ND@250	130 J	ND@2500	200 J	ND@1000	ND@50

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-021 GW MON WELL 05/11/2016 8377808	EN-021 GW MON WELL 11/15/2016 8702126	EN-021 REPLICATE 11/15/2016 8702127	EN-022 GW MON WELL 05/11/2016 8377809	EN-023 GW MON WELL 05/09/2016 8377857	EN-023 GW MON WELL 11/07/2016 8687302
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	29000 ND@50 5200 1400 ND@50 16 J ND@50 86 260 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50	36000 ND@500 2500 450 J ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500	33000 ND@500 2500 440 J ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 9 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-024 GW MON WELL 11/15/2016 8702129	EN-026 GW MON WELL 08/01/2016 8508579	EN-029A GW MON WELL 02/08/2016 8239308	EN-029A REPLICATE 02/08/2016 8239309	EN-029A GW MON WELL 05/16/2016 8390057	EN-029A GW MON WELL 07/21/2016 8488634
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (ES-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 ND@0.5 ND@0.5	0.8 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-029A GW MON WELL 08/29/2016 8562727	EN-029A GW MON WELL 11/01/2016 8681699	EN-030 GW MON WELL 05/11/2016 8382674	EN-030 GW MON WELL 08/02/2016 8508532	EN-034 GW MON WELL 05/10/2016 8377742	EN-034 GW MON WELL 11/07/2016 8687272
Parameter	Units						
1,1,1-trichloroethane 1,1,2-trichloroethane 1,1-dichloroethane 1,1-dichloroethane 1,2-dichloroethene 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,2-dichloroethane 1,3-dichloroethane 1,4-dichloroethane 1,5-dichloroethane 1,5-dichloroethane 1,5-dichloroethane 1,5-dichloroethane 1,5-dichloroethane	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.7 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 15 ND@0.5 ND@0.5 7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 15 ND@0.5 ND@0.5 6.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	11 0.6 9.8 0.5 0.3 J ND@0.5 ND@0.5 0.3 J 82 ND@0.5 ND@0.5 ND@0.5	1500 18 390 36 1.7 3.9 ND@0.5 0.3 J 130 ND@0.5 ND@0.5 ND@0.5
TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 0.2 J 2.8	1.1 0.9
VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L	1.2 ND@0.5 ND@0.5	1.2 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5	2.8 0.4 J ND@0.5	1.9 100 0.4 J

April 13, 2017 Site #704014 11 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-035 GW MON WELL 02/11/2016 8242874	EN-035 GW MON WELL 05/10/2016 8377753	EN-035 REPLICATE 05/10/2016 8377754	EN-035 GW MON WELL 11/08/2016 8687281	EN-036 GW MON WELL 02/11/2016 8242873	EN-036 GW MON WELL 05/10/2016 8377752
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLEBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	97 0.4 J 31 9.6 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 0.2 J 55 ND@0.5	150 ND@2.5 64 11 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5	210 0.9 67 15 0.5 0.2 J ND@0.5 0.1 J 41 ND@0.5 ND@0.5 ND@0.5 0.5 ND@0.5	2000 3.6 J 690 90 ND@5 3.1 J ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5	14 ND@0.5 0.3 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	4.4 ND@0.5 0.9 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-036 GW MON WELL 11/08/2016 8687282	EN-037 GW MON WELL 02/11/2016 8242869	EN-037 GW MON WELL 05/10/2016 8377744	EN-037 GW MON WELL 08/10/2016 8524442	EN-037 GW MON WELL 11/07/2016 8687273	EN-037 REPLICATE 11/07/2016 8687274
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	6.7 ND@0.5 4.4 4.3 ND@0.5 0.2 J ND@0.5 ND@0.5 4.8 ND@0.5 ND@0.5 0.4 J ND@0.5 0.1 J 19 ND@0.5 ND@0.5	9200 91 J 2200 260 ND@100 ND@100 ND@100 110 J 1600 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	6500 62 2400 300 ND@50 13 J ND@50 380 2100 ND@50 ND@50 ND@50 ND@50 ND@50 11 J 1000 ND@50	6000 77 J 4400 290 ND@100 ND@100 ND@100 1200 2300 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	13000 43 J 21000 860 100 39 J ND@100 16000 6600 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	12000 44 J 20000 790 93 J 34 J ND@100 15000 6100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100

April 13, 2017 Site #704014 13 of 173

				•			
Sample Location		EN-039	EN-039	EN-039	EN-039	EN-039	EN-045
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL
Sample Date		02/09/2016	05/17/2016	08/01/2016	08/01/2016	11/09/2016	02/09/2016
Laboratory Sample I.D.		8239200	8389926	8508587	8508588	8690554	8239199
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	34000	22000	17000	18000	23000	7000
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	41
1,1-DICHLOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@100	2800	79
1,1-DICHLOROETHENE	ug/L	480	420	290	320	430	160
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25
1,2-DICHLOROETHANE (EDC)	ug/L	ND@100	ND@100	ND@100	ND@100	20 J	12 J
BENZENE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25
CHLOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@100	74 J	ND@25 J
CIS-1,2-DICHLOROETHENE	ug/L	49 J	33 J	39 J	40 J	420	410
ETHYLBENZENE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@100	ND@100	ND@100	ND@100	180	110
TETRACHLOROETHENE	ug/L	60 J	40 J	67 J	46 J	200	200
TOLUENE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25
TRANS-1,2-DICHLOROETHENE	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25
TRICHLOROETHENE	ug/L	76 J	67 J	81 J	82 J	57 J	20 J
VINYL CHLORIDE	ug/L	ND@100	ND@100	ND@100	ND@100	88 J	ND@25
XYLENES, TOTAL	ug/L	ND@100	ND@100	ND@100	ND@100	ND@100	ND@25

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-045 GW MON WELL 05/17/2016 8389925	EN-045 GW MON WELL 08/01/2016 8508586	EN-045 GW MON WELL 11/09/2016 8690553	EN-051 GW MON WELL 02/09/2016 8239326	EN-051 GW MON WELL 05/17/2016 8389924	EN-051 GW MON WELL 08/01/2016 8508584
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	9600 35 J 59 350 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 140 ND@50 ND@50 16 J ND@50 ND@50 ND@50	7700 29 73 180 ND@25 18 J ND@25 ND@25 300 ND@25 34 200 ND@25 ND@25 51 ND@25 ND@25 ND@25 ND@25	96000 190 190 1200 ND@25 190 ND@25 ND@25 1400 25 J 7400 790 120 11 J 140 12 J 97	790 2200 ND@250 80 J ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 8300 ND@250 ND@250 ND@250 J200 J 110 J	26000 1300 270 880 ND@250 ND@250 ND@250 ND@250 15000 71 J 110 J 2100 ND@250 ND@250 ND@250 ND@250 ND@350 ND@350 ND@350 ND@350 ND@350 ND@350	1700 420 38 68 14 J ND@25 ND@25 ND@25 3500 ND@25 1100 ND@25 6.1 J 33 35 75

Site #704014 April 13, 2017 15 of 173

Sample Location		EN-051	EN-051	EN-052	EN-052	EN-052	EN-052
Sample Description		GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		11/09/2016	11/09/2016	02/09/2016	05/16/2016	08/01/2016	11/09/2016
Laboratory Sample I.D.		8690550	8690551	8239198	8389915	8508585	8690552
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLEROZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	180 430 5.5 J 14 J ND@25 ND@25 ND@25 ND@25 3500 ND@25 ND@25	180 320 5.2 J 13 J ND@25 ND@25 ND@25 ND@25 ND@25 ND@25 ND@25	88000 730 50 J 1800 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	45000 210 J ND@250 890 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250	12000 210 J ND@250 290 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250	1300 100 26 42 ND@10 ND@10 ND@10 ND@10 740 ND@10 ND@10
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	470	460	1100	380	190 J	44
	ug/L	ND@25	ND@25	ND@100	ND@250	ND@250	ND@10
	ug/L	11 J	14 J	ND@100	ND@250	ND@250	ND@10
	ug/L	24 J	23 J	63 J	ND@250	ND@250	9.4 J
	ug/L	11 J	9.5 J	ND@100	ND@250	ND@250	ND@10
	ug/L	ND@25	ND@25	26 J	ND@250	ND@250	ND@10

Endicott, New York
January 1, 2016 - December 31, 2016

			, ,	/			
Sample Location		EN-053	EN-053	EN-053	EN-053	EN-054	EN-055
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		02/11/2016	05/10/2016	08/10/2016	11/07/2016	11/08/2016	05/10/2016
Laboratory Sample I.D.		8242868	8377741	8524441	8687271	8687292	8377745
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	110000	56000	9200	4900	1.2	110
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	190	70	74 J	ND@50	1.7	30
1,1-DICHLOROETHANE	ug/L	2600	840	740	320	0.4 J	61
1,1-DICHLOROETHENE	ug/L	1900	1100	180	97	ND@0.5	12
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@100	ND@50	ND@100	ND@50	1.2	6.9
1,2-DICHLOROETHANE (EDC)	ug/L	250	83	ND@100	20 J	ND@0.5	ND@5.0
BENZENE	ug/L	ND@100	ND@50	ND@100	ND@50	ND@0.5	ND@5.0
CHLOROETHANE	ug/L	ND@100 J	ND@50	ND@100	ND@50	ND@0.5	ND@5.0
CIS-1,2-DICHLOROETHENE	ug/L	7800	3400	520	570	3.7	940
ETHYLBENZENE	ug/L	ND@100	ND@50	ND@100	ND@50	ND@0.5	ND@5.0
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	130	71	ND@100	ND@50	ND@0.5	ND@5.0
TETRACHLOROETHENE	ug/L	ND@100	ND@50	ND@100	ND@50	67	ND@5.0
TOLUENE	ug/L	50 J	24 J	ND@100	ND@50	ND@0.5	ND@5.0
TRANS-1,2-DICHLOROETHENE	ug/L	23 J	ND@50	ND@100	ND@50	0.1 J	6.2
TRICHLOROETHENE	ug/L	150	550	ND@100	ND@50	6.8	44
VINYL CHLORIDE	ug/L	1200	560	320	490	ND@0.5	67
XYLENES, TOTAL	ug/L	ND@100	ND@50	ND@100	ND@50	ND@0.5	ND@5.0

April 13, 2017 Site #704014 17 of 173

Groundwater Analytical Chemistry Data Endicott. New York

January 1, 2016 - December 31, 2016

EN-056 EN-058 Sample Location EN-055 EN-058 EN-062 EN-064 Sample Description GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL Sample Date 11/07/2016 11/07/2016 05/10/2016 11/07/2016 11/09/2016 11/09/2016 Laboratory Sample I.D. 8687275 8687277 8377746 8687276 8690556 8693716 Units **Parameter** 1,1,1-TRICHLOROETHANE ug/L 2200 4900 0.2 J ND@0.5 92 9.6 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 31 1500 1100 ND@0.5 0.2 J ug/L 2.6 1,1-DICHLOROETHANE ug/L ND@0.5 ND@0.5 1,1-DICHLOROETHENE ug/L 13 0.4 J 340 240 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L 14 0.9 120 87 ND@0.5 ND@0.5 ND@0.5 ND@100 ND@25 1,2-DICHLOROETHANE (EDC) ug/L ND@5 ND@0.5 ND@0.5 BENZENE ND@5 ND@5 ND@0.5 ND@100 ND@0.5 ND@0.5 ug/L ND@25 CHLOROETHANE ND@100 ND@0.5 ND@0.5 ND@0.5 ND@25 ug/L CIS-1,2-DICHLOROETHENE 4200 1600 220 ND@0.5 ND@0.5 ug/L 0.1 J ND@5 ND@0.5 ND@100 ND@25 ND@0.5 ND@0.5 ETHYLBENZENE ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@5 ND@0.5 ND@100 ND@25 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L ND@5 ND@0.5 ND@100 ND@25 ND@0.5 ND@0.5 TOLUENE ug/L ND@5 ND@0.5 ND@100 ND@25 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE ug/L ND@0.5 ND@100 ND@25 ND@0.5 ND@0.5 TRICHLOROETHENE 62 59 ND@0.5 ND@0.5 ug/L 0.1 J 17000 940 ND@0.5 VINYL CHLORIDE ND@0.5 ug/L 24 J 12 J ND@0.5 XYLENES, TOTAL ND@0.5 ND@100 ug/L ND@5 ND@25 ND@0.5 ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-065 GW MON WELL 05/09/2016 8377855	EN-065 GW MON WELL 11/07/2016 8687295	EN-065 REPLICATE 11/07/2016 8687296	EN-067 GW MON WELL 08/01/2016 8508574	EN-069 GW MON WELL 08/01/2016 8508572	EN-070 GW MON WELL 08/01/2016 8508570
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CS-1,2-DICHLOROETHENE ETHYLEBNZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VILYNES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 O.6 O.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.6 0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.6 0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.9 14 0.2 J 4.5 ND@0.5 ND@0.5 ND@0.5 3.3 ND@0.5 0.5 ND@0.5 0.5 ND@0.5 0.4 J 1.6 ND@0.5	ND@0.5 0.6 3.1 0.1 J 1.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J 0.2 J 0.2 J 0.2 J 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 L3 ND@0.5 ND ND@0.5 ND ND ND ND ND ND ND

April 13, 2017 Site #704014 19 of 173

Sample Location		EN-072	EN-073	EN-074	EN-075	EN-076	EN-077
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		08/01/2016	11/02/2016	11/03/2016	11/14/2016	11/14/2016	02/09/2016
Laboratory Sample I.D.		8508580	8681628	8681640	8702121	8702119	8239334
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.9	0.6	0.3 J	ND@0.5	ND@0.5	17
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	11	0.2 J	0.9	ND@0.5	0.3 J	ND@0.5
1,1-DICHLOROETHANE	ug/L	5.9	3.6	ND@0.5	0.1 J	ND@0.5	6.2
1,1-DICHLOROETHENE	ug/L	0.6	0.4 J	ND@0.5	ND@0.5	ND@0.5	2.3
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	4.5	0.3 J	0.3 J	0.3 J	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	28	9.1	0.7	5.4	0.3 J	32
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	5.9	0.3 J	14	0.9	5.9	0.4 J
TOLUENE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.6	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.3 J
TRICHLOROETHENE	ug/L	1.8	0.9	1.7	4.4	0.7	27
VINYL CHLORIDE	ug/L	0.7	0.4 J	ND@0.5	0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-077 GW MON WELL 05/16/2016 8389916	EN-077 GW MON WELL 08/08/2016 8518993	EN-077 GW MON WELL 11/10/2016 8693728	EN-078 GW MON WELL 05/18/2016 8390087	EN-078 GW MON WELL 11/07/2016 8687324	EN-079 GW MON WELL 05/12/2016 8382754
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	19 ND@0.5 7.4 3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 28 ND@0.5 ND@0.5 0.5 J ND@0.5 0.2 J 24 ND@0.5 ND@0.5	20 ND@0.5 9.8 3.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 0.1 J 22 ND@0.5 ND@0.5	40 0.3 J 24 9.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.6 ND@0.5 0.1 J 39 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 21 of 173

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

EN-079 EN-080 EN-080 EN-081 Sample Location EN-080 EN-081 Sample Description GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL Sample Date 11/15/2016 05/09/2016 08/09/2016 11/02/2016 05/10/2016 11/07/2016 Laboratory Sample I.D. 8702130 8377726 8518990 8681593 8377751 8687279 Units **Parameter** 1,1,1-TRICHLOROETHANE ug/L ND@0.5 ND@0.5 0.1 J 0.3 J 2.7 1.3 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 1,1-DICHLOROETHANE ug/L ND@0.5 0.2 J 0.7 1.5 1.2 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 0.1 J 0.8 0.6 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ND@0.5 ug/L 0.1 J 0.1 J 0.1 J CHLOROETHANE ND@0.5 ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 CIS-1,2-DICHLOROETHENE ND@0.5 1.9 10 ug/L 1.6 ETHYLBENZENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 0.1 J 0.9 0.6 TOLUENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE ug/L ND@0.5 ND@0.5 0.1 J 0.1 J 0.2 J 0.2 J TRICHLOROETHENE ug/L ND@0.5 0.9 1.9 4.1 18 11 VINYL CHLORIDE ND@0.5 ug/L 0.8 1.1 0.4 J 1 0.8 XYLENES, TOTAL ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-081 REPLICATE 11/07/2016 8687280	EN-083 GW MON WELL 11/03/2016 8681638	EN-084 GW MON WELL 11/03/2016 8681636	EN-091 GW MON WELL 02/11/2016 8242888	EN-091 GW MON WELL 05/10/2016 8377747	EN-091 GW MON WELL 07/21/2016 8490465
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.3 ND@0.5 1.1 0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 9.8 ND@0.5 ND@0.5 0.5 ND@0.5 0.5 ND@0.5 0.0 0.9 ND@0.5	ND@1.3 2.4 0.7 J 1.7 2.1 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3 ND@1.3	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 ND@0.5 2.6 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 7.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 0.2 J 3.7 1.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 11 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 2 0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 6.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 23 of 173

Sample Location		EN-091	EN-091	EN-091A	EN-091A	EN-091A	EN-091A
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL
Sample Date		08/30/2016	11/07/2016	02/09/2016	05/11/2016	05/11/2016	08/09/2016
Laboratory Sample I.D.		8562750	8687266	8239316	8377810	8377811	8524419
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5	0.4 J	0.4 J	0.4 J	0.4 J	0.3 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	4.5	1.8	0.3 J	0.4 J	0.4 J	0.2 J
1,1-DICHLOROETHENE	ug/L	1.3	0.7	0.1 J	0.2 J	0.2 J	0.1 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	13	5.3	0.9	1.4	1.5	0.8
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.9	0.9	0.8	0.7	0.7	0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	12	7.4	3.3	4.3	4.4	2.9
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-091A REPLICATE 08/09/2016 8524420	EN-091A GW MON WELL 11/08/2016 8687329	EN-091T GW EXTR WELL 01/05/2016 8196350	EN-091T GW EXTR WELL 02/04/2016 8232824	EN-091T GW EXTR WELL 03/01/2016 8266717	EN-091T GW EXTR WELL 04/05/2016 8319622
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 0.3 J 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.4 J 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 25 of 173

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

EN-091T EN-091T EN-091T EN-091T EN-091T Sample Location EN-091T Sample Description GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL Sample Date 05/03/2016 06/07/2016 07/06/2016 08/02/2016 09/07/2016 10/04/2016 Laboratory Sample I.D. 8363284 8414483 8463636 8508267 8575341 8629400 Units **Parameter** 1,1,1-TRICHLOROETHANE ug/L 0.2 J 0.2 J 0.1 J 0.2 J 0.2 J 0.2 J 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 1,1-DICHLOROETHANE ug/L 0.1 J 0.1 J 0.2 J 0.2 J 0.2 J 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L CHLOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 CIS-1,2-DICHLOROETHENE 0.3 J 0.3 J 0.3 J 0.4 J 0.4 J 0.4 J ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ETHYLBENZENE ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L 0.3 J 0.3 J 0.3 J 0.4 J 0.3 J 0.3 J TOLUENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRICHLOROETHENE ug/L 1.5 1.5 1.6 1.6 1.7 1.8 VINYL CHLORIDE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L XYLENES, TOTAL ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ug/L

ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-091T GW EXTR WELL 11/02/2016 8680585	EN-091T GW EXTR WELL 12/06/2016 8732115	EN-092 GW MON WELL 02/11/2016 8242887	EN-092 GW MON WELL 05/17/2016 8389921	EN-092 GW MON WELL 07/21/2016 8490466	EN-092 GW MON WELL 08/29/2016 8562736
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.4 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.4 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 27 of 173 April 13, 2017

Sample Location		EN-092	EN-092A	EN-092A	EN-093	EN-093	EN-093
Sample Description		GW MON WELL	GW MON WELL 05/17/2016	GW MON WELL 11/02/2016	GW MON WELL 02/09/2016	GW MON WELL 05/16/2016	GW MON WELL 07/21/2016
Sample Date Laboratory Sample I.D.		11/02/2016 8681577	8390065	8681700	8239338	8390054	8488642
Euboratory Sample IID.		0001377	0330003	0001700	0233330	0330034	0400042
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5 J	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.3 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	ND@0.5	0.5 J	1.3	0.7	0.4 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.6	ND@0.5	ND@0.5	ND@0.5	1.3	0.4 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	1.1	ND@0.5	ND@0.5	ND@0.5	0.3 J	0.4 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.3	ND@0.5	ND@0.5	ND@0.5	1.5	1.2
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-093 GW MON WELL 08/29/2016 8562729	EN-093 GW MON WELL 11/02/2016 8681702	EN-094 GW MON WELL 08/10/2016 8524422	EN-094 GW MON WELL 11/07/2016 8687265	EN-097 GW MON WELL 11/02/2016 8681629	EN-100 GW MON WELL 02/08/2016 8239312
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 1.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TRIKACHLORGETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 0.5 J ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	2.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 1 ND@0.5 ND@0.5

April 13, 2017 Site #704014 29 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-100 GW MON WELL 05/16/2016 8390055	EN-100 GW MON WELL 07/21/2016 8490461	EN-100 GW MON WELL 08/29/2016 8562730	EN-100 GW MON WELL 11/02/2016 8681703	EN-102 GW MON WELL 02/09/2016 8239318	EN-102 GW MON WELL 05/16/2016 8390056
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.9 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-102 GW MON WELL 07/21/2016 8490462	EN-102 GW MON WELL 08/29/2016 8562731	EN-102 GW MON WELL 11/03/2016 8681710	EN-105 GW MON WELL 08/01/2016 8508576	EN-106 GW MON WELL 11/03/2016 8681637	EN-107R GW EXTR WELL 01/05/2016 8196353
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE YNIYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 ND@0.5 2.8 ND@0.5 ND@0.5 1.7 ND@0.5 ND@0.5	0.6 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 2.3 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	120 170 2.7 J 11 J ND@13 ND@13 ND@13 ND@13 2700 55 ND@13 15 ND@13 5 J 29 210 120

April 13, 2017 Site #704014 31 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-107R GW EXTR WELL 02/04/2016 8232827	EN-107R GW EXTR WELL 03/01/2016 8266720	EN-107R GW EXTR WELL 04/05/2016 8319625	EN-107R GW EXTR WELL 05/03/2016 8363287	EN-107R GW EXTR WELL 06/07/2016 8414486	EN-107R GW EXTR WELL 07/06/2016 8463639
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	110	69	65	59	39	52
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	190	120	140	110	64	76
1,1-DICHLOROETHANE	ug/L	2.6 J	ND@13	ND@10	ND@10	ND@10	ND@10
1,1-DICHLOROETHENE	ug/L	11 J	7.4 J	7.8 J	7.8 J	5 J	6 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@13	ND@13	ND@10	ND@10	ND@10	ND@10
1,2-DICHLOROETHANE (EDC)	ug/L	ND@13	ND@13	ND@10	ND@10	ND@10	ND@10
BENZENE	ug/L	ND@13	ND@13	ND@10	ND@10	ND@10	ND@10
CHLOROETHANE	ug/L	ND@13	ND@13	ND@10	ND@10	ND@10	ND@10
CIS-1,2-DICHLOROETHENE	ug/L	2600	1900	2100	1600	1100	1300
ETHYLBENZENE	ug/L	110	69	91	77	42	38
METHYLENE CHLORIDE (DICHLOROMETHANI) ug/L	ND@13	ND@13	ND@10	ND@10	ND@10	ND@10
TETRACHLOROETHENE	ug/L	69	62	24	16	25	8.7 J
TOLUENE	ug/L	3.4 J	ND@13	2.5 J	2 J	ND@10	ND@10
TRANS-1,2-DICHLOROETHENE	ug/L	13	4.9 J	3.9 J	3.7 J	4.2 J	2 J
TRICHLOROETHENE	ug/L	42	34	26	23	22	69
VINYL CHLORIDE	ug/L	210	140	140	150	62	89
XYLENES, TOTAL	ug/L	170	100	130	100	77	67

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

		Januari	, 1, 2010 Decemb	51, 2510			
Sample Location Sample Description		EN-107R GW EXTR WELL	EN-107R GW EXTR WELL	EN-107R GW EXTR WELL	EN-107R GW EXTR WELL	EN-107R GW EXTR WELL	EN-112 GW MON WELL
Sample Date		08/02/2016	09/07/2016	10/04/2016	11/02/2016	12/06/2016	02/08/2016
Laboratory Sample I.D.		8508270	8575344	8629403	8680588	8732118	8239327
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	46	46	62	14	130	0.5 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	87	65	87	28	300	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@10	ND@10	ND@10	0.6 J	ND@10	6.2
1,1-DICHLOROETHENE	ug/L	4.6 J	3.1 J	3.6 J	1.2	9.8 J	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@10	ND@10	ND@10	0.6 J	ND@10	1.6
1,2-DICHLOROETHANE (EDC)	ug/L	ND@10	ND@10	ND@10	ND@1	ND@10	ND@0.5
BENZENE	ug/L	ND@10	ND@10	ND@10	ND@1	ND@10	ND@0.5
CHLOROETHANE	ug/L	ND@10	ND@10	ND@10	ND@1	ND@10	5.4 J
CIS-1,2-DICHLOROETHENE	ug/L	1100	1000	1200	240	3900	ND@0.5
ETHYLBENZENE	ug/L	42	38	23	32	100	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@10	ND@10	ND@10	ND@1	ND@10	ND@0.5
TETRACHLOROETHENE	ug/L	8.5 J	8.5 J	45	6.2	140	ND@0.5
TOLUENE	ug/L	ND@10	3 J	ND@10	0.6 J	3.6 J	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	2.4 J	15	14	0.6 J	76	ND@0.5
TRICHLOROETHENE	ug/L	78	100	59	40	37	ND@0.5
VINYL CHLORIDE	ug/L	81	87	67	36	190	0.1 J
XYLENES, TOTAL	ug/L	54	35	18	43	220	ND@0.5

April 13, 2017 Site #704014 33 of 173

Sample Location		EN-112	EN-112	EN-112	EN-112	EN-114	EN-114
Sample Description		GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		05/12/2016	05/12/2016	08/02/2016	11/15/2016	02/11/2016	05/10/2016
Laboratory Sample I.D.		8382749	8382750	8508564	8702125	8242867	8377740
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	9.5 ND@0.5 9.4 0.3 J 1.3 ND@0.5 ND@0.5 5.2 ND@0.5 ND@0.5	9.7 ND@0.5 9.5 0.3 J 1.3 ND@0.5 ND@0.5 5.4 ND@0.5 ND@0.5	2.6 ND@0.5 7.9 ND@0.5 3.1 ND@0.5 ND@0.5 4.4 0.1 J ND@0.5	7.7 ND@0.5 60 0.6 3 0.5 J ND@0.5 80 0.3 J 0.1 J	5.8 19 5.1 0.4 J 5 ND@0.5 ND@0.5 ND@0.5	4.4 21 5.2 0.3 J 4.2 ND@0.5 ND@0.5 ND@0.5 23 8.1
METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	1.1	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	2.1	ND@0.5	2.2	1.9
	ug/L	ND@0.5	ND@0.5	ND@0.5	0.3 J	ND@0.5	0.1 J
	ug/L	ND@0.5	ND@0.5	0.1 J	0.2 J	0.5 J	0.5 J
	ug/L	ND@0.5	ND@0.5	0.3 J	ND@0.5	1.7	0.7
	ug/L	0.5	0.6	0.5 J	3.5	16	13
	ug/L	ND@0.5	ND@0.5	ND@0.5	0.4 J	0.1 J	0.4 J

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-114 GW MON WELL 08/10/2016 8524440	EN-114 GW MON WELL 11/07/2016 8687270	EN-114T GW EXTR WELL 01/05/2016 8196358	EN-114T GW EXTR WELL 02/04/2016 8232832	EN-114T GW EXTR WELL 03/01/2016 8266725	EN-114T GW EXTR WELL 04/05/2016 8319630
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8.9 32 3.8 1.2 7.1 ND@0.5 ND@0.5 ND@0.5 120 ND@0.5 ND@0.5 ND@0.5	31 54 13 3.3 8.9 ND@0.5 ND@0.5 0.7 740 ND@0.5 ND@0.5	110 100 68 12 10 ND@10 ND@10 ND@10 970 ND@10 ND@10	72 82 55 10 8.6 J ND@10 ND@10 790 ND@10 ND@10	9.8 25 14 2 4.6 0.1 J ND@0.5 ND@0.5 210 0.5 J ND@0.5 0.8	48 83 46 8.4 8.1 ND@5.0 ND@5.0 ND@5.0 860 ND@5.0 ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5	ND@5.0
TRANS-1,2-DICHLOROETHENE	ug/L	0.6	1.5	3.5 J	2.2 J	0.8	1.2 J
TRICHLOROETHENE	ug/L	4	1.1	2.1 J	2.2 J	1.1	2 J
VINYL CHLORIDE	ug/L	20	240	200	180	52	140
XYLENES, TOTAL	ug/L	ND@0.5	0.7	ND@10	ND@10	0.2 J	ND@5.0

April 13, 2017 Site #704014 35 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-114T GW EXTR WELL 05/03/2016 8363292	EN-114T GW EXTR WELL 06/07/2016 8414491	EN-114T GW EXTR WELL 07/06/2016 8463644	EN-114T GW EXTR WELL 08/02/2016 8508275	EN-114T GW EXTR WELL 09/07/2016 8575349	EN-114T GW EXTR WELL 10/04/2016 8629408
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	67	97	77	140	200	160
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	92	110	100	120	79	110
1,1-DICHLOROETHANE	ug/L	55	55	36	54	69	49
1,1-DICHLOROETHENE	ug/L	11	14	11	12	11	9.3
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	8.5	8.3	8.1	7.8	7.5	7.3
1,2-DICHLOROETHANE (EDC)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
BENZENE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
CHLOROETHANE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
CIS-1,2-DICHLOROETHENE	ug/L	1000	1300	1500	1300	1300	1000
ETHYLBENZENE	ug/L	ND@5.0	1 J	1.3 J	2.2 J	3.7 J	3.1 J
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
TETRACHLOROETHENE	ug/L	1.9 J	2.8 J	3.6 J	2.7 J	1.9 J	1.6 J
TOLUENE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
TRANS-1,2-DICHLOROETHENE	ug/L	2.8 J	1.8 J	2 J	2.4 J	1.3 J	2.9 J
TRICHLOROETHENE	ug/L	3.4 J	5.8	4.6 J	2.4 J	1.6 J	1.5 J
VINYL CHLORIDE	ug/L	170	170	170	140	140	150
XYLENES, TOTAL	ug/L	ND@5.0	ND@5.0	ND@5.0	1.7 J	4.9 J	3.9 J

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location EN-114T EN-114T EN-122 EN-125 EN-126 EN-117 Sample Description GW EXTR WELL GW EXTR WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL Sample Date 11/02/2016 12/06/2016 11/03/2016 08/01/2016 11/04/2016 11/02/2016 Laboratory Sample I.D. 8680592 8732122 8681633 8508577 8682406 8681576 Parameter Units 1,1,1-TRICHLOROETHANE ND@0.5 ug/L 310 840 0.2 J 0.2 1 0.1 J 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 59 0.3 J ND@0.5 61 0.6 ug/L 1,1-DICHLOROETHANE ug/L 55 110 0.2 J 5.4 ND@0.5 ND@0.5 1,1-DICHLOROETHENE ug/L 11 16 ND@0.5 0.4 J ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L 5.9 J 4.9 J 1.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@10 ND@10 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ug/L ND@10 ND@10 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 CHLOROETHANE ug/L ND@10 2 1 ND@0.5 ND@0.5 ND@0.5 CIS-1,2-DICHLOROETHENE 530 ND@0.5 ug/L 670 3.9 33 ETHYLBENZENE 2.7 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 2.4 J METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@10 ND@10 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ND@10 ND@0.5 ND@0.5 ND@0.5 ug/L 5.7 J 3.8 TOLUENE ug/L ND@10 ND@10 ND@0.5 ND@0.5 ND@0.5 ND@0.5

ND@10

ND@10

130

2.9 J

ND@0.5

ND@0.5

0.8

1.4

0.5

1.7

5.7

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ug/L

ug/L

ug/L

ug/L

ND@10

ND@10

120

2.7 J

TRANS-1,2-DICHLOROETHENE

TRICHLOROETHENE

VINYL CHLORIDE XYLENES, TOTAL

April 13, 2017 Site #704014 37 of 173

Groundwater Analytical Chemistry Data Endicott. New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-127 GW MON WELL 05/12/2016 8382753	EN-127 GW MON WELL 11/07/2016 8687300	EN-129 GW MON WELL 11/16/2016 8702133	EN-129 REPLICATE 11/16/2016 8702134	EN-130 GW MON WELL 05/09/2016 8374657	EN-130 GW MON WELL 11/02/2016 8681597
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.5 ND@0.5 0.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 3.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 2.6 ND@0.5 ND@0.5 ND@0.5 O.1 J O.1 J O.5 O.3 J

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-132 GW MON WELL 05/11/2016 8377910	EN-132 GW MON WELL 11/03/2016 8681693	EN-133 GW EXTR WELL 01/05/2016 8196351	EN-133 GW EXTR WELL 02/04/2016 8232825	EN-133 GW EXTR WELL 03/01/2016 8266718	EN-133 GW EXTR WELL 04/05/2016 8319623
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 J ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 39 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-133 GW EXTR WELL 05/03/2016 8363285	EN-133 GW EXTR WELL 06/07/2016 8414484	EN-133 GW EXTR WELL 07/06/2016 8463637	EN-133 GW EXTR WELL 08/02/2016 8508268	EN-133 GW EXTR WELL 09/07/2016 8575342	EN-133 GW EXTR WELL 10/04/2016 8629401
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.2 J	0.2 J	0.2 J	0.2 J	0.2 J	0.2 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.8	0.8	1	0.9	0.9	0.9
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.8	0.7	0.7	0.6	0.7	0.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-133 GW EXTR WELL 11/02/2016 8680586	EN-133 GW EXTR WELL 12/06/2016 8732116	EN-148 GW MON WELL 11/03/2016 8681641	EN-161 GW MON WELL 05/11/2016 8377909	EN-161 GW MON WELL 11/08/2016 8687315	EN-162 GW MON WELL 05/09/2016 8377858
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	24 0.4 J 1.9 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 41 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-162 GW MON WELL 08/08/2016 8518987	EN-162 GW MON WELL 11/07/2016 8687301	EN-163 GW MON WELL 11/07/2016 8687297	EN-166 GW MON WELL 08/01/2016 8508573	EN-170 GW MON WELL 02/15/2016 8244666	EN-170 GW MON WELL 05/05/2016 8368798
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.4 1.6 7.8 0.3 J 3.6 ND@0.5 ND@0.5	0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 J ND@0.5 ND@0.5	0.3 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 6.3 ND@0.5 ND@0.5 1.2 ND@0.5 0.1 J 1.2 0.2 J	ND@0.5 2.6 ND@0.5 ND@0.5 0.5 J ND@0.5 ND@0.5 3.4 0.1 J	ND@0.5 3.6 ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5 5.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-170 GW MON WELL 08/09/2016 8524435	EN-170 GW MON WELL 11/07/2016 8687303	EN-173 GW MON WELL 05/09/2016 8377725	EN-173 GW MON WELL 11/02/2016 8681592	EN-174 GW MON WELL 05/09/2016 8377856	EN-174 GW MON WELL 08/08/2016 8518989
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 3.8 ND@0.5 0.4 J ND@0.5 0.1 J 5.8 0.4 J ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 O.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 43 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-174 GW MON WELL 11/07/2016 8687298	EN-175 GW MON WELL 11/08/2016 8687340	EN-176 GW MON WELL 08/01/2016 8508575	EN-177 GW MON WELL 08/01/2016 8508567	EN-177 REPLICATE 08/01/2016 8508568	EN-182 GW MON WELL 02/15/2016 8244692
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5	0.7 ND@0.5 ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 1 ND@0.5 ND@0.5 0.5 0.7	ND@0.5 0.4 J ND@0.5 ND@0.5 1 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.4 J ND@0.5 ND@0.5 1 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-182 GW MON WELL 05/05/2016 8368796	EN-182 GW MON WELL 08/09/2016 8524437	EN-182 GW MON WELL 11/07/2016 8687304	EN-183 GW MON WELL 02/15/2016 8244691	EN-183 GW MON WELL 05/12/2016 8382755	EN-183 GW MON WELL 08/09/2016 8524438
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 O.2 J	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.3 J

April 13, 2017 Site #704014 45 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-183 GW MON WELL 11/07/2016 8687305	EN-186 GW MON WELL 11/08/2016 8687291	EN-187 GW MON WELL 11/03/2016 8681642	EN-188 GW MON WELL 11/03/2016 8681686	EN-189 GW MON WELL 11/03/2016 8681685	EN-190 GW MON WELL 02/15/2016 8244665
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	0.7	0.2 J	0.2 J	0.7	1.7
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	4.2	ND@0.5	0.3 J	1	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	1
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	1	2.1	ND@0.5	0.5	0.5 J	1.1
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.1 J	31	8.1	13	36	0.4 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.2	1.9	0.4 J	1.3	1.8	1
VINYL CHLORIDE	ug/L	0.6	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-190 GW MON WELL 05/17/2016 8390059	EN-190 GW MON WELL 07/20/2016 8488621	EN-190 GW MON WELL 08/29/2016 8562739	EN-190 GW MON WELL 11/02/2016 8681701	EN-191A GW MON WELL 02/03/2016 8231023	EN-191A GW MON WELL 05/16/2016 8390052
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.2 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.6 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.6 ND@0.5 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.4 ND@0.5 0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 47 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-191A GW MON WELL 08/09/2016 8524421	EN-191A GW MON WELL 11/02/2016 8681705	EN-192 GW MON WELL 02/15/2016 8244661	EN-192 GW MON WELL 05/16/2016 8390049	EN-192 GW MON WELL 07/20/2016 8488618	EN-192 GW MON WELL 08/29/2016 8562738
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5	0.2 J	0.5 J	0.5	0.5	0.4 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE	ug/L ug/L	ND@0.5 0.7	ND@0.5 0.2 J	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	ug/L ug/L	0.7 ND@0.5	0.2 J ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5 ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1.2-DICHLOROETHENE	ug/L	1	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.4 J	0.3 J	0.3 J	0.4 J	0.4 J	0.3 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.4	1.1	1.1	1.2	1	0.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-192 GW MON WELL 11/04/2016 8682415	EN-193 GW MON WELL 02/15/2016 8244662	EN-193 REPLICATE 02/15/2016 8244663	EN-193 GW MON WELL 05/09/2016 8377860	EN-193 GW MON WELL 08/09/2016 8524426	EN-193 GW MON WELL 11/08/2016 8687308
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 S.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 49 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-194 GW EXTR WELL 01/05/2016 8196346	EN-194 GW EXTR WELL 02/04/2016 8232820	EN-194 GW EXTR WELL 03/01/2016 8266713	EN-194 GW EXTR WELL 04/05/2016 8319618	EN-194 GW EXTR WELL 05/03/2016 8363279	EN-194 GW EXTR WELL 06/07/2016 8414479
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	0.3 J	0.4 J	0.3 J	0.3 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	1	0.4 J	0.3 J	0.5 J	0.2 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.3 J	ND@0.5	0.3 J	0.3 J	0.3 J	0.2 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.5	0.5 J	0.4 J	0.4 J	0.4 J	0.4 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.8	1.9	1.7	2	1.7	1.7
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-194 GW EXTR WELL 07/06/2016 8463631	EN-194 GW EXTR WELL 08/02/2016 8508262	EN-194 GW EXTR WELL 09/07/2016 8575336	EN-194 GW EXTR WELL 10/04/2016 8629395	EN-194 GW EXTR WELL 11/02/2016 8680581	EN-194 GW EXTR WELL 12/06/2016 8732111
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CHLOROETHANE (CS-1,2-DICHLOROETHENE ETHYLEBRIZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.4 J ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 51 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-200 GW MON WELL 11/03/2016 8681635	EN-203 GW MON WELL 05/10/2016 8377750	EN-203 GW MON WELL 08/10/2016 8525988	EN-203 GW MON WELL 11/01/2016 8681554	EN-204 GW MON WELL 05/10/2016 8377749	EN-204 GW MON WELL 11/08/2016 8687284
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.1 J	0.3 J	0.5 J	0.2 J	0.7	1.1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.3 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	1.4	1.1	1.2	0.6	0.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-206 GW MON WELL 05/10/2016 8377748	EN-206 GW MON WELL 08/10/2016 8525996	EN-206 GW MON WELL 11/08/2016 8687283	EN-207 GW MON WELL 05/19/2016 8393138	EN-207 GW MON WELL 08/08/2016 8518971	EN-207 GW MON WELL 11/10/2016 8693755
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 53 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-208A GW MON WELL 05/12/2016 8382726	EN-208A GW MON WELL 11/10/2016 8693748	EN-210 GW MON WELL 05/23/2016 8395250	EN-210 GW MON WELL 11/10/2016 8693752	EN-211 GW MON WELL 08/01/2016 8508571	EN-213A GW MON WELL 05/12/2016 8382727
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	0.2 J	0.2 J	0.9	0.7
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	4	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	12	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.7	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	3.8	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	17	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5
TRICHLOROETHENE	ug/L	0.7	0.6	1.1	0.9	2.5	0.7
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.2	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-213A GW MON WELL 11/10/2016 8693747	EN-214A GW MON WELL 02/04/2016 8234164	EN-214A GW MON WELL 05/10/2016 8377863	EN-214A GW MON WELL 08/08/2016 8518982	EN-214A REPLICATE 08/08/2016 8518983	EN-214A GW MON WELL 11/08/2016 8687311
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 55 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-214B GW MON WELL 02/04/2016 8234165	EN-214B GW MON WELL 05/10/2016 8377864	EN-214B GW MON WELL 08/08/2016 8518984	EN-214B GW MON WELL 11/08/2016 8687312	EN-215A GW MON WELL 02/02/2016 8231012	EN-215A GW MON WELL 05/18/2016 8390088
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 J	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 J	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5
METHYLERNZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 4.7 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.9 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.9 ND@0.5 ND@0.5
ATLEINES, TOTAL	45/L	140 @ 0.5	14060.5	14060.5	11060.5	14060.5	14060.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-215A REPLICATE 05/18/2016 8390089	EN-215A GW MON WELL 08/12/2016 8525990	EN-215A GW MON WELL 11/09/2016 8693719	EN-215B GW MON WELL 02/02/2016 8231013	EN-215B GW MON WELL 05/18/2016 8390090	EN-215B GW MON WELL 08/12/2016 8525991
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 57 of 173

Sample Location Sample Description Sample Date Laboratory Sample			EN-215B GW MON WELL 11/09/2016 8693720	EN-215T GW EXTR WELL 01/05/2016 8196349	EN-215T GW EXTR WELL 02/04/2016 8232823	EN-215T GW EXTR WELL 03/01/2016 8266716	EN-215T GW EXTR WELL 04/05/2016 8319621	EN-215T GW EXTR WELL 05/03/2016 8363283
Parameter		Units						
1,1,1-TRICHLOROET	HANE ,2,2-TRIFLUOROETHANE	ug/L ug/L	0.3 J ND@0.5	0.4 J ND@0.5	0.6 ND@0.5	0.4 J ND@0.5	0.5 ND@0.5	0.5 ND@0.5
1,1-DICHLOROETHA	•	ug/L	0.3 J	0.1 J	0.4 J	0.2 J	0.1 J	0.2 J
1,1-DICHLOROETHE	NE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2	2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHA	NE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROE	THENE	ug/L	ND@0.5	0.1 J	ND@0.5	0.2 J	0.2 J	0.2 J
ETHYLBENZENE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLOR	IDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHE	NE	ug/L	0.1 J	0.3 J	0.3 J	0.3 J	0.3 J	0.4 J
TOLUENE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOF	ROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE		ug/L	0.8	1.4	1.6	1.3	1.5	1.3
VINYL CHLORIDE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-215T GW EXTR WELL 06/07/2016 8414493	EN-215T GW EXTR WELL 07/06/2016 8463635	EN-215T GW EXTR WELL 08/02/2016 8508266	EN-215T GW EXTR WELL 09/07/2016 8575340	EN-215T GW EXTR WELL 10/04/2016 8629399	EN-215T GW EXTR WELL 11/02/2016 8680584
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 59 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-215T GW EXTR WELL 12/06/2016 8732114	EN-217A GW MON WELL 05/12/2016 8382728	EN-217A GW MON WELL 08/08/2016 8518976	EN-217A GW MON WELL 11/10/2016 8693746	EN-219R GW EXTR WELL 01/05/2016 8196354	EN-219R GW EXTR WELL 02/04/2016 8232828
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.4 J	0.1 J	0.2 J	0.1 J	13000	14000
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	160	140
1,1-DICHLOROETHANE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	480	530
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	140	270
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	11 J	11 J
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	20 J	33 J
CIS-1,2-DICHLOROETHENE	ug/L	0.1 J	0.2 J	0.1 J	0.1 J	1400	1800
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50
TETRACHLOROETHENE	ug/L	0.2 J	0.8	0.7	0.7	ND@50	ND@50
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	180	ND@50
TRICHLOROETHENE	ug/L	1.2	0.9	0.8	0.9	1100	1100
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	25 J	200
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@50	ND@50

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location EN-219R EN-219R EN-219R EN-219R EN-219R EN-219R Sample Description GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL Sample Date 03/01/2016 04/05/2016 05/03/2016 06/07/2016 07/06/2016 08/02/2016 Laboratory Sample I.D. 8266721 8319626 8363288 8414487 8463640 8508271 Parameter Units 1,1,1-TRICHLOROETHANE 13000 10000 12000 ug/L 11000 13000 13000 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 140 170 190 170 190 ug/L 160 1,1-DICHLOROETHANE ug/L 570 740 930 1300 1400 1500 1,1-DICHLOROETHENE ug/L 250 300 350 400 320 270 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@50 22 J 20 J 23 J 25 J 21 J 1,2-DICHLOROETHANE (EDC) ug/L ND@50 11 J 12 J 12 J 12 J 10 J BENZENE ug/L ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 CHLOROETHANE CIS-1,2-DICHLOROETHENE ug/L 42 J 2100 88 240 2400 420 590 520 2300 2300 2300 2100 ug/L ETHYLBENZENE ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 TETRACHLOROETHENE ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ug/L TOLUENE ug/L ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 TRANS-1,2-DICHLOROETHENE ug/L ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 TRICHLOROETHENE ug/L 1000 1100 1100 1000 1200 1000 VINYL CHLORIDE XYLENES, TOTAL ug/L 170 210 230 270 320 280 ND@50 ND@50 ND@50 ND@50 ND@50 ND@50 ug/L

April 13, 2017 Site #704014 61 of 173

Groundwater Analytical Chemistry Data Endicott. New York

January 1, 2016 - December 31, 2016

Sample Location		EN-219R	EN-219R	EN-219R	EN-219R	EN-253R	EN-253R
Sample Description		GW EXTR WELL	GW EXTR WELL	GW EXTR WELL	GW EXTR WELL	GW EXTR WELL	GW EXTR WELL
Sample Date		09/07/2016	10/04/2016	11/02/2016	12/06/2016	01/05/2016	02/04/2016
Laboratory Sample I.D.		8575345	8629404	8680589	8732119	8196355	8232829
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	9000 92 1500 150 ND@50 13 J ND@50 600 2100 ND@50 ND@50	17000 210 1800 230 31 J 13 J ND@50 780 2400 ND@50 ND@50	10000 1500 200 27 12 J ND@25 540 2100 ND@25 ND@25 ND@25	13000 170 J 2000 190 J ND@250 ND@250 ND@250 1100 1900 ND@250 ND@250 ND@250	66000 210 J 59000 1200 200 J 55 J ND@250 21000 6100 ND@250 290	80000 200 J 59000 1200 200 J ND@250 ND@250 22000 7000 ND@250 230 J
TOLLENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L	ND@50	ND@50	ND@25	ND@250	ND@250	ND@250
	ug/L	ND@50	ND@50	ND@25	ND@250	780	940
	ug/L	ND@50	ND@50	7.4 J	ND@250	ND@250	ND@250
	ug/L	980	1300	1100	690	270	720
	ug/L	280	390	260	370	850	790
	ug/L	ND@50	ND@50	ND@25	ND@250	ND@250	ND@250

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-253R GW EXTR WELL 03/01/2016 8266722	EN-253R GW EXTR WELL 04/05/2016 8319627	EN-253R GW EXTR WELL 05/03/2016 8363289	EN-253R GW EXTR WELL 06/07/2016 8414488	EN-253R GW EXTR WELL 07/06/2016 8463641	EN-253R GW EXTR WELL 08/02/2016 8508272
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	66000 110 J 51000 840 140 J ND@250 ND@250 14000 5000 ND@250 190 J ND@250 790	72000 160 J 53000 1000 190 J ND@250 ND@250 14000 4600 ND@250 170 J ND@250 780	77000 200 J 54000 1300 180 J ND@250 ND@250 18000 4200 ND@250 160 J ND@250 790	74000 160 J 71000 1600 180 J ND@250 ND@250 17000 5700 ND@250 190 J ND@250 1100	87000 290 50000 1800 140 J ND@250 ND@250 9800 4100 ND@250 140 J ND@250	80000 180 J 62000 1100 140 J ND@250 ND@250 8600 4200 ND@250 150 J ND@250 790
TRANS-1,2-DICHLOROETHENE	ug/L	ND@250	ND@250	ND@250	ND@250	ND@250	ND@250
TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L	460 410 ND@250	220 J 540 ND@250	310 550 ND@250	390 480 ND@250	440 340 ND@250	210 J 280 ND@250

April 13, 2017 Site #704014 63 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-253R GW EXTR WELL 09/07/2016 8575346	EN-253R GW EXTR WELL 10/04/2016 8629405	EN-276 GW EXTR WELL 01/05/2016 8196347	EN-276 GW EXTR WELL 02/04/2016 8232821	EN-276 GW EXTR WELL 03/01/2016 8266714	EN-276 GW EXTR WELL 04/05/2016 8319619
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	67000	64000	23	19	1200	2900
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	140 J	210 J	13	10	21	93
1,1-DICHLOROETHANE	ug/L	72000	100000	30	27	49	74
1,1-DICHLOROETHENE	ug/L	550	75 J	5.2	6.2	26	81
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	170 J	330	1.2	1	1.5	ND@10
1,2-DICHLOROETHANE (EDC)	ug/L	ND@250	87 J	0.6	0.6	1.5	7.9 J
BENZENE	ug/L	ND@250	ND@250	ND@0.5	ND@0.5	ND@0.5	ND@10
CHLOROETHANE	ug/L	16000	32000	ND@0.5	ND@0.5	ND@0.5	ND@10
CIS-1,2-DICHLOROETHENE	ug/L	5700	ND@250	41	47	70	220
ETHYLBENZENE	ug/L	ND@250	ND@250	ND@0.5	ND@0.5	ND@0.5	ND@10
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	180 J	170 J	ND@0.5	ND@0.5	15	ND@10
TETRACHLOROETHENE	ug/L	ND@250	ND@250	36	26	32	30
TOLUENE	ug/L	890	ND@250	ND@0.5	ND@0.5	ND@0.5	ND@10
TRANS-1,2-DICHLOROETHENE	ug/L	ND@250	ND@250	0.2 J	0.3 J	0.3 J	ND@10
TRICHLOROETHENE	ug/L	150 J	ND@250	39	34	44	46
VINYL CHLORIDE	ug/L	430	ND@250	0.6	0.7	1.5	3 J
XYLENES, TOTAL	ug/L	ND@250	ND@250	ND@0.5	ND@0.5	ND@0.5	ND@10

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-276 GW EXTR WELL 05/03/2016 8363280	EN-276 GW EXTR WELL 06/07/2016 8414480	EN-276 GW EXTR WELL 07/06/2016 8463632	EN-276 GW EXTR WELL 08/02/2016 8508263	EN-276 GW EXTR WELL 09/07/2016 8575337	EN-276 GW EXTR WELL 10/04/2016 8629396
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	12 22 1.5 1 0.9 ND@0.5 ND@0.5 ND@0.5 15 ND@0.5 ND@0.5 0.1 J 9 0.3 J	4.4 19 1.8 0.7 1 ND@0.5 ND@0.5 ND@0.5 20 ND@0.5 ND@0.5 ND@0.5 0.1 J 8.9 0.3 J ND@0.5	6.4 15 2.9 1.1 1.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 45 ND@0.5 0.2 J 11 0.6 ND@0.5	6.2 30 2.7 1.1 1.6 ND@0.5 ND@0.5 ND@0.5 20 ND@0.5 ND@0.5 54 ND@0.5 0.2 J 12 0.4 J ND@0.5	3.7 7.1 2.1 0.5 0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J 9.8 0.3 J ND@0.5	2.4 2.5 1.7 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 24 ND@0.5 0.1 J 8.9 0.3 J ND@0.5

April 13, 2017 Site #704014 65 of 173

				•			
Sample Location Sample Description Sample Date		EN-276 GW EXTR WELL 11/02/2016	EN-276R GW EXTR WELL 05/03/2016	EN-276R GW EXTR WELL 06/07/2016	EN-276R GW EXTR WELL 07/06/2016	EN-276R GW EXTR WELL 08/02/2016	EN-276R GW EXTR WELL 09/07/2016
Laboratory Sample I.D.		8680582	8363281	8414481	8463633	8508264	8575338
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	83	1400	1500	1300	1000	840
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	23	89	31	20	20	15
1,1-DICHLOROETHANE	ug/L	37	120	110	140	180	240
1,1-DICHLOROETHENE	ug/L	9.5	120	94	75	59	39
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	1.7	2.3	ND@10	ND@10	ND@10	ND@5
1,2-DICHLOROETHANE (EDC)	ug/L	0.7	10	6.8 J	6.1 J	4.7 J	5 J
BENZENE	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5
CHLOROETHANE	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5
CIS-1,2-DICHLOROETHENE	ug/L	120	430	380	320	340	290
ETHYLBENZENE	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5
TETRACHLOROETHENE	ug/L	46	32	39	24	20	19
TOLUENE	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5
TRANS-1,2-DICHLOROETHENE	ug/L	0.4 J	1 J	ND@10	ND@10	ND@10	ND@5
TRICHLOROETHENE	ug/L	15	200	140	120	130	140
VINYL CHLORIDE	ug/L	0.5	4.1	2.3 J	ND@10	ND@10	ND@5
XYLENES, TOTAL	ug/L	ND@0.5	ND@1.0	ND@10	ND@10	ND@10	ND@5

Endicott, New York
January 1, 2016 - December 31, 2016

			•	•			
Sample Location		EN-276R	EN-276R	EN-278	EN-278	EN-278	EN-284
Sample Description		GW EXTR WELL	GW EXTR WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		10/04/2016	12/06/2016	02/12/2016	08/08/2016	11/02/2016	02/04/2016
Laboratory Sample I.D.		8629397	8732112	8242889	8518995	8681707	8234155
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	340	88	190	250	210	180
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	23	27	0.8 J	ND@1.0	1 J	3.9 J
1,1-DICHLOROETHANE	ug/L	140	36	210	580	410	180
1,1-DICHLOROETHENE	ug/L	22	8.5	17	23	26	47
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	1.7 J	1.4	0.6 J	ND@1.0	ND@2.5	ND@5.0
1,2-DICHLOROETHANE (EDC)	ug/L	2.4 J	1.2	0.8 J	3.2	2.2 J	2.4 J
BENZENE	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0
CHLOROETHANE	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0
CIS-1,2-DICHLOROETHENE	ug/L	200	70	97	130	110	480
ETHYLBENZENE	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0
TETRACHLOROETHENE	ug/L	29	18	0.9 J	1.4	1.2 J	8.9
TOLUENE	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0
TRANS-1,2-DICHLOROETHENE	ug/L	0.6 J	0.3 J	1.3	ND@1.0	0.9 J	3.4 J
TRICHLOROETHENE	ug/L	110	63	95	93	95	1300
VINYL CHLORIDE	ug/L	ND@2.5	0.4 J	ND@1.0	ND@1.0	ND@2.5	1.1 J
XYLENES, TOTAL	ug/L	ND@2.5	ND@0.5	ND@1.0	ND@1.0	ND@2.5	ND@5.0

April 13, 2017 Site #704014 67 of 173

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

EN-284 EN-284 EN-284P EN-284P EN-284P Sample Location EN-284 Sample Description GW MON WELL GW MON WELL GW MON WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL Sample Date 05/17/2016 08/08/2016 11/02/2016 01/05/2016 02/04/2016 03/01/2016 Laboratory Sample I.D. 8390076 8518996 8681708 8196348 8232822 8266715 Parameter Units 1,1,1-TRICHLOROETHANE 120 120 86 21 18 ug/L 24 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 2.2 J 2.7 J 4.2 J 0.4 J ug/L 0.5 0.6 1,1-DICHLOROETHANE ug/L 200 190 140 21 23 21 1,1-DICHLOROETHENE ug/L 25 37 22 3.2 3.7 3.3 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@5.0 ND@5.0 ND@5 0.2 J 0.2 J 0.2 J 1,2-DICHLOROETHANE (EDC) ug/L 1.5 J 1.7 J 1.3 J 0.2 J 0.2 J 0.2 J ND@5.0 ND@5 ND@0.5 ND@5.0 ND@0.5 BENZENE ND@0.5 ug/L CHLOROETHANE ND@5.0 ug/L ND@5.0 ND@5 ND@0.5 ND@0.5 ND@0.5 CIS-1,2-DICHLOROETHENE 270 350 360 34 ug/L 33 33 ETHYLBENZENE ND@5.0 ND@5.0 ND@5 ND@0.5 ND@0.5 ND@0.5 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@5.0 ND@5.0 ND@5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L 4.9 J 2.1 2.3 TOLUENE ug/L ND@5.0 ND@5.0 ND@5 ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE ug/L 1 J 4.2 J 1.8 J ND@0.5 ND@0.5 ND@0.5 ug/L 420 960 410 29 29 24 VINYL CHLORIDE ND@5 ND@0.5 ND@0.5 ND@0.5 ND@5.0 ug/L ND@5.0 XYLENES, TOTAL ND@5.0 ND@0.5 ug/L ND@5.0 ND@5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-284P GW EXTR WELL 04/05/2016 8319620	EN-284P GW EXTR WELL 05/03/2016 8363282	EN-284P GW EXTR WELL 06/07/2016 8414482	EN-284P GW EXTR WELL 07/06/2016 8463634	EN-284P GW EXTR WELL 08/02/2016 8508265	EN-284P GW EXTR WELL 09/07/2016 8575339
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLEREZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	17 0.6 22 3.7 0.3 J 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.9 ND@0.5 ND@0.5 ND@0.5	15 0.3 J 20 3.1 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.8 ND@0.5 ND@0.5 ND@0.5	13 0.5 19 3.3 ND@0.5 0.1 J ND@0.5 ND@0.5 25 ND@0.5 ND@0.5 ND@0.5 ND@0.5 2.2 ND@0.5 ND@0.5 ND@0.5	17 0.4 J 22 3.9 ND@0.5 0.2 J ND@0.5 ND@0.5 S ND@0.5 ND@0.5 ND@0.5 ND@0.5 2.3 ND@0.5 ND@0.5 ND@0.5	16 0.5 21 4 0.2 J 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 22 ND@0.5 ND@0.5 ND@0.5	16 0.6 24 3.9 0.3 J 0.2 J ND@0.5 ND@0.5 ND@0.5 27 ND@0.5 ND@0.5 ND@0.5 2.2 ND@0.5 0.1 J 32 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 69 of 173

Sample Location Sample Description Sample Date		EN-284P GW EXTR WELL 10/04/2016	EN-284P GW EXTR WELL 11/02/2016	EN-284P GW EXTR WELL 12/06/2016	EN-301 GW MON WELL 11/03/2016	EN-301 REPLICATE 11/03/2016	EN-302 GW MON WELL 02/09/2016
Laboratory Sample I.D.		8629398	8680583	8732113	8681691	8681692	8239315
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	14	11	11	ND@0.5	ND@0.5	0.8
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.6	0.5 J	0.4 J	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	21	20	17	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	3.6	3	2.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.3 J	0.2 J	0.2 J	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	0.1 J	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J
CIS-1,2-DICHLOROETHENE	ug/L	23	21	22	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	2.2	1.9	1.6	0.2 J	0.2 J	4.4
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	28	25	24	0.2 J	0.2 J	2.4
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location		EN-302	EN-302	EN-304	EN-304	EN-311	EN-311
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		05/12/2016	08/09/2016	08/02/2016	11/08/2016	05/19/2016	08/08/2016
Laboratory Sample I.D.		8382752	8518991	8508542	8687339	8393135	8518978
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.8 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.3 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 2.7 ND@0.5 ND@0.5 1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J 4.3 ND@0.5 ND@0.5 1.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	3.8	5.7	3.6	4.2	0.6	0.3 J
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 71 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-311 GW MON WELL 11/08/2016 8687293	EN-380 GW MON WELL 05/05/2016 8368803	EN-380 GW MON WELL 11/09/2016 8693712	EN-381 GW MON WELL 05/09/2016 8374658	EN-381 GW MON WELL 11/02/2016 8681601	EN-382 GW MON WELL 05/09/2016 8374660
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.8 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.6 ND@0.5 O.5 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 0.3 J ND@0.5 0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5	ND@0.5 ND@0.5 8.1 ND@0.5 ND@0.5	ND@0.5 ND@0.5 7.2 ND@0.5 ND@0.5	ND@0.5 0.2 J ND@0.5 2.6 0.1 J	ND@0.5 0.1 J ND@0.5 1.5 ND@0.5	ND@0.5 ND@0.5 0.2 J 3.2 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-382 GW MON WELL 11/02/2016 8681595	EN-384 GW MON WELL 05/12/2016 8382756	EN-384 GW MON WELL 11/07/2016 8687299	EN-386 GW MON WELL 11/09/2016 8693711	EN-387A GW MON WELL 02/04/2016 8234159	EN-387A GW MON WELL 05/09/2016 8374655
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.8 ND@0.5 ND@0.5 ND@0.5 2.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 UD@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.8 ND@0.5 17 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 43 ND@0.5 ND@0.5 0.6 ND@0.5 2.5 2.6 22

April 13, 2017 Site #704014 73 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-387A REPLICATE 05/09/2016 8374656	EN-387A GW MON WELL 08/09/2016 8524423	EN-387A REPLICATE 08/09/2016 8524424	EN-387A GW MON WELL 11/02/2016 8681599	EN-387A REPLICATE 11/02/2016 8681600	EN-392R GW MON WELL 05/09/2016 8374661
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENZENE METHYLENZ CHLORIDE (DICHLOROMETHANE)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.2 J 0.1 J ND@0.5 ND@0.5 48 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 26 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 25 ND@0.5 ND@0.5	ND @0.5 ND @0.5 0.2 J 0.1 J ND @0.5 ND @0.5 1.2 ND @0.5 46 ND @0.5	ND@0.5 ND@0.5 0.2 J 0.1 J ND@0.5 ND@0.5 1.1 0.1 J 46 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J O.4 J ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRINS-1,4-DICHLOROETHENE /L ug/L ug/L ug/L ug/L ug/L	0.7 ND@0.5 2.7 2.8 29	ND@0.5 ND@0.5 0.3 J 3.2 0.3 J 20	ND@0.5 ND@0.5 0.3 J 3.2 0.3 J 20	0.2 J 0.2 J 2.6 0.6 22	0.2 J 0.2 J 2.6 0.6 22	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5	
XYLENES, TOTAL	ug/L ug/L	0.4 J	0.4 J	0.4 J	0.3 J	0.3 J	0.3 J

Endicott, New York January 1, 2016 - December 31, 2016

 EN-392R
 EN-393
 EN-393
 EN-393
 EN-394
 EN-394

 GW MON WELL
 GW MON WELL
 GW MON WELL
 GW MON WELL
 GW MON WELL
 GW MON WELL
 Sample Location Sample Description
Sample Date 11/02/2016 05/09/2016 08/09/2016 11/02/2016 05/09/2016 08/09/2016

Laboratory Sample I.D.		8681602	8377724	8524428	8681594	8374664	852442
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@50000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@25000	0.1 J	0.1 J	0.2 J	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@25000	0.5 J	0.4 J	0.4 J	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5
CHLOROETHANE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@25000	2.3	1.5	2.5	0.2 J	0.1 J
ETHYLBENZENE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.2 J
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@25000	0.2 J	0.1 J	0.2 J	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	0.6	0.8
TRANS-1,2-DICHLOROETHENE	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@25000	4.2	3.3	5.1	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@25000	0.5 J	0.3 J	0.4 J	0.5	0.2 J
XYLENES, TOTAL	ug/L	ND@25000	ND@0.5	ND@0.5	ND@0.5	2	2.4

April 13, 2017 Site #704014 75 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-394 GW MON WELL 11/02/2016 8681596	EN-395 GW MON WELL 05/09/2016 8374666	EN-395 GW MON WELL 08/09/2016 8524430	EN-395 GW MON WELL 11/02/2016 8681623	EN-396 GW MON WELL 05/09/2016 8374665	EN-396 GW MON WELL 11/02/2016 8681598
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J 0.2 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.9 ND@0.5 0.1 J 0.2 J ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1
TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L	ND@0.5 0.5 J	ND@0.5 ND@0.5	0.1 J ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@1 ND@1
XYLENES, TOTAL	ug/L	1.5	0.5	1.2	0.4 J	0.3 J	ND@1

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-397 GW MON WELL 11/02/2016 8681627	EN-398 GW MON WELL 11/10/2016 8693731	EN-399 GW MON WELL 05/09/2016 8374667	EN-399 GW MON WELL 11/02/2016 8681624	EN-401 GW MON WELL 02/04/2016 8234156	EN-401 GW MON WELL 05/16/2016 8389918
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5	ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 O.9 J O.6 J ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5	ND@1 ND@1 ND@1 ND@1 ND@1 1.1 0.4 J ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1	1.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 77 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-401 GW MON WELL 08/08/2016 8518975	EN-401 GW MON WELL 11/10/2016 8693749	EN-402 GW MON WELL 05/12/2016 8382730	EN-402 GW MON WELL 11/10/2016 8693753	EN-409 GW MON WELL 08/02/2016 8508553	EN-415 GW MON WELL 11/10/2016 8693744
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.7	1.3	0.3 J	0.3 J	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.2 J	0.1 J	0.1 J	ND@0.5	ND@0.5	0.2 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.6	0.5	0.6	0.5	ND@0.5	2
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-417A GW MON WELL 08/03/2016 8512534	EN-419 GW MON WELL 02/03/2016 8231028	EN-419 GW MON WELL 05/16/2016 8389920	EN-419 GW MON WELL 08/14/2016 8532362	EN-421 GW MON WELL 02/03/2016 8234147	EN-421 GW MON WELL 05/18/2016 8390081
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 13 0.4 J ND@0.5	23 2.8 2.5 10 0.4 J 1.1 ND@0.5 ND@0.5 S ND@0.5 ND@0.5 5.2 ND@0.5 0.3 J 120 0.8 ND@0.5	11 1.1 15 4.5 0.3 J 0.4 J ND@0.5 ND@0.5 18 ND@0.5 ND@0.5 2.4 ND@0.5 0.2 J 50 0.4 J ND@0.5	0.4 J ND@0.5 10 2 0.4 J 0.2 J ND@0.5 0.1 J 14 ND@0.5 ND@0.5 1.3 ND@0.5 0.1 J 26 1.8 ND@0.5	260 ND@25 240 39 ND@25 ND@25 ND@25 ND@25 ND@25 1500 ND@25 ND@25 ND@25 2200 ND@25 ND@25 ND@25 ND@25	110 ND@25 140 21 J ND@25 ND@25 ND@25 ND@25 1000 ND@25 ND@25 7.1 J ND@25 ND@25 1300 ND@25 ND@25 1300 ND@25 ND@25

April 13, 2017 Site #704014 79 of 173

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016 EN-421

EN-422

ND@25

ND@25

220

200

EN-421

ND@25

ND@25

ND@25

1600

EN-422

ND@25

ND@25

240

140

EN-422

ND@50

ND@50

110

45 J

EN-421

ug/L

ug/L

ug/L

ug/L

ND@10

ND@10

ND@10

1400

Sample Location

TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE

VINYL CHLORIDE

XYLENES, TOTAL

Sample Description REPLICATE GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL Sample Date 05/18/2016 08/14/2016 11/10/2016 02/03/2016 05/18/2016 11/10/2016 Laboratory Sample I.D. 8390082 8532364 8693726 8234149 8390084 8693730 Units **Parameter** 1,1,1-TRICHLOROETHANE ug/L 110 180 410 2600 4100 3000 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@10 ND@25 ND@25 ND@50 ug/L 12 J 17 J 1,1-DICHLOROETHANE ug/L 310 4900 7600 5900 1,1-DICHLOROETHENE ug/L 19 30 27 340 810 750 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@10 ND@25 ND@25 ND@25 11 J ND@50 16 J ND@25 1,2-DICHLOROETHANE (EDC) ug/L ND@10 ND@25 ND@25 26 38 J ND@50 BENZENE ND@10 ND@25 ND@25 ND@25 ug/L CHLOROETHANE ND@10 ND@25 ND@50 ND@25 ug/L 6.5 J 6.1 J CIS-1,2-DICHLOROETHENE 1000 1600 1300 810 770 530 ug/L ETHYLBENZENE ND@10 ND@25 ND@25 ND@25 ND@25 ND@50 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@10 ND@25 ND@25 ND@25 ND@25 ND@50 TETRACHLOROETHENE ug/L 8.1 J 11 J ND@25 ND@25 ND@50 TOLUENE ug/L ND@10 ND@25 ND@25 ND@25 ND@25 ND@50

ND@25

ND@25

ND@25

2100

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-426 GW MON WELL 05/23/2016 8395252	EN-426 GW MON WELL 08/08/2016 8518973	EN-426 GW MON WELL 11/10/2016 8693754	EN-428 GW EXTR WELL 01/05/2016 8196356	EN-428 GW EXTR WELL 02/04/2016 8232830	EN-428 GW EXTR WELL 03/01/2016 8266723
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5	82000 200 J 11000 11000 11000 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500	88000 200 J 9300 1100 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 110 J 130 J ND@500	70000 ND@500 7200 800 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500

April 13, 2017 Site #704014 81 of 173

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

EN-428 EN-428 EN-428 EN-428 Sample Location EN-428 EN-428 Sample Description GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL GW EXTR WELL Sample Date 04/05/2016 05/03/2016 06/07/2016 07/06/2016 08/02/2016 09/07/2016 Laboratory Sample I.D. 8319628 8363290 8414489 8463642 8508273 8575347 Units **Parameter** 1,1,1-TRICHLOROETHANE ug/L 68000 76000 59000 39000 33000 49000 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ug/L 1,1-DICHLOROETHANE ug/L 10000 5900 4400 9000 16000 1,1-DICHLOROETHENE ug/L 860 1300 1300 940 580 230 J 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 1,2-DICHLOROETHANE (EDC) ug/L ND@500 ND@500 ND@500 ND@500 ND@500 BENZENE ND@500 ug/L CHLOROETHANE ug/L 660 840 550 780 570 830 CIS-1,2-DICHLOROETHENE 1100 690 1000 860 540 590 ug/L ND@500 ND@500 ND@500 ND@500 ETHYLBENZENE ug/L ND@500 ND@500 METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 TETRACHLOROETHENE ug/L ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 TOLUENE ug/L 360 J 370 J 290 J 200 J 300 J 280 J ND@500 ND@500 ND@500 TRANS-1,2-DICHLOROETHENE ND@500 ND@500 ND@500 ug/L ND@500 TRICHLOROETHENE ND@500 ND@500 ug/L 110 J 270 J ND@500 VINYL CHLORIDE ND@500 ug/L 110 J 130 J 130 J ND@500 110 J XYLENES, TOTAL ND@500 ND@500 ug/L ND@500 ND@500 ND@500 ND@500

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-428 GW EXTR WELL 10/04/2016 8629406	EN-428 GW EXTR WELL 11/01/2016 8680590	EN-428 GW EXTR WELL 12/06/2016 8732120	EN-429 GW MON WELL 02/03/2016 8231027	EN-430 GW MON WELL 02/03/2016 8234144	EN-430 GW MON WELL 05/23/2016 8395254
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	54000 ND@500 37000 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500 ND@500	41000 86 J 34000 210 52 J ND@100 ND@100 1900 280 ND@100 85 J 34 J ND@100 ND@100 ND@100 ND@100 ND@100 ND@100	53000 130 J 35000 470 ND@250 ND@250 ND@250 3200 1100 ND@250 ND@250 ND@250 ND@250 ND@250 MD@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250 ND@250	2.3 0.8 0.4 J 0.2 J 0.6 ND@0.5 ND@0.5 ND@0.5 2.6 ND@0.5 ND@0.5 ND@0.5 16 ND@0.5 ND@0.5 ND@0.5	2.2 ND@0.5 1 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	4 ND@0.5 3 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 83 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-430 GW MON WELL 11/10/2016 8693733	EN-431 GW MON WELL 02/03/2016 8234145	EN-431 GW MON WELL 05/18/2016 8390079	EN-431 GW MON WELL 08/14/2016 8532363	EN-431 GW MON WELL 11/10/2016 8693723	EN-432 GW MON WELL 02/03/2016 8234146
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	8.7	27	20	30	14	50
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
1,1-DICHLOROETHANE	ug/L	6.6	63	53	66	38	98
1,1-DICHLOROETHENE	ug/L	0.5 J	2.3 J	3.3	4.4	1.2 J	8.1 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
1,2-DICHLOROETHANE (EDC)	ug/L	ND@1	1.5 J	1.4 J	1.3 J	0.8 J	ND@10
BENZENE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
CHLOROETHANE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
CIS-1,2-DICHLOROETHENE	ug/L	12	130	150	180	76	290
ETHYLBENZENE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
TETRACHLOROETHENE	ug/L	1	7.2	6.6	9.6	4.4	9.8 J
TOLUENE	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10
TRANS-1,2-DICHLOROETHENE	ug/L	ND@1	ND@2.5	0.7 J	ND@2.5	ND@2.5	ND@10
TRICHLOROETHENE	ug/L	53	360	520	670	220	930
VINYL CHLORIDE	ug/L	ND@1	2.5	7.6	6.7	ND@2.5	ND@10
XYLENES, TOTAL	ug/L	ND@1	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@10

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-432 GW MON WELL 05/18/2016 8390080	EN-432 GW MON WELL 11/10/2016 8693724	EN-433 GW MON WELL 02/03/2016 8234148	EN-433 GW MON WELL 05/18/2016 8390083	EN-433 GW MON WELL 11/10/2016 8693729	EN-434 GW MON WELL 02/04/2016 8234151
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	38 ND@10 87 7.3 J ND@10 ND@10 ND@10 ND@10 ND@10 ND@10 8.8 J ND@10 ND@10 940 ND@10 ND@10 ND@10	39 ND@10 78 3.8 J ND@10 2.1 J ND@10 ND@10 250 ND@10 ND@10 9.4 J ND@10 640 ND@10 ND@10 ND@10	41 1 J 36 8 ND@1.0 0.3 J ND@1.0 ND@1.0 ND@1.0 6.7 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	31 0.5 J 24 8.1 ND@1.0 ND@1.0 ND@1.0 ND@1.0 54 ND@1.0 ND@1.0 93 ND@1.0 ND@1.0	69 ND@2.5 47 11 ND@2.5 ND@2.5 ND@2.5 ND@2.5 110 ND@2.5 ND@2.5 ND@2.5 4.3 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5	7100 56 J 5200 1100 ND@100 39 J ND@100 2500 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100 ND@100

Site #704014 April 13, 2017 85 of 173

	Januar	, 1, 2010 Decemb	c. 51, 2010			
	EN-434	EN-434 GW MON WELL	EN-434 GW MON WELL	EN-434 GW MON WELL	EN-435 GW MON WELL	EN-435 GW MON WELL
						05/18/2016
						8390086
	8234132	8330083	8332307	8093722	8234130	8330080
Units						
ug/L	6500	2000	970	770	11	5.4
ug/L	53	38	30	15	ND@1.0	ND@1.0
ug/L	4800	1800	1100	1100	3.7	1.5
ug/L	1100	640	370	170	3.3	1
ug/L	ND@50	7.8 J	6.2 J	4.1 J	ND@1.0	ND@1.0
ug/L	37 J	13	6.2 J	5.6 J	ND@1.0	ND@1.0
ug/L	ND@50	ND@10	ND@10	ND@10	ND@1.0	ND@1.0
ug/L	ND@50	ND@10	ND@10	ND@10	ND@1.0	ND@1.0
ug/L	2300	1100	770	450	110	54
ug/L	ND@50	ND@10	ND@10	ND@10	ND@1.0	ND@1.0
ug/L	ND@50	ND@10	ND@10	ND@10	ND@1.0	ND@1.0
ug/L	ND@50	ND@10	ND@10	ND@10	0.4 J	0.2 J
ug/L	ND@50	2.8 J	ND@10	ND@10	ND@1.0	ND@1.0
ug/L	ND@50	3 J	2.2 J	ND@10	0.4 J	ND@1.0
ug/L	320	40	68	45	150	57
ug/L	13 J	140	9.7 J	40	0.5 J	ND@1.0
ug/L	ND@50	ND@10	ND@10	ND@10	ND@1.0	ND@1.0
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EN-434 REPLICATE 02/04/2016 8234152 Units ug/L 6500 ug/L 53 ug/L 4800 ug/L 1100 ug/L 1100 ug/L ND@50 ug/L 320 ug/L 330	EN-434 REPLICATE 02/04/2016 02/04/2016 8234152 Units Ug/L 4500 2000 Ug/L 53 38 Ug/L 4800 1800 Ug/L 1100 640 Ug/L ND@50 ND@10 Ug/L ND@50 A3 J Ug/L Ug/L 320 40 Ug/L Ug/L 13 J	REPLICATE GW MON WELL 08/14/2016 08/14/2016 08/14/2016 08/14/2016 8234152 8390085 8532367	EN-434	EN-434

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-435 GW MON WELL 08/14/2016 8532366	EN-435 GW MON WELL 11/10/2016 8693732	EN-436 GW MON WELL 02/09/2016 8239319	EN-436 GW MON WELL 05/17/2016 8390062	EN-436 GW MON WELL 07/21/2016 8488637	EN-436 GW MON WELL 08/29/2016 8562732
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8.8 ND@1 4.3 6.6 ND@1 ND@1 ND@1 ND@1 240 ND@1 ND@1 0.9 J ND@1 1 520 0.9 J ND@1	6.6 ND@5 4.4 J 5 J ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5	0.1 J ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 87 of 173

Sample Location		EN-436	EN-437	EN-437	EN-437	EN-437	EN-437
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		11/01/2016	02/08/2016	05/16/2016	07/20/2016	08/29/2016	11/04/2016
Laboratory Sample I.D.		8681695	8239310	8389917	8488620	8562740	8682419
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.2 J	0.6	1.3	0.5	0.6	0.6
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.7	1.4	1.1	0.8	0.8	0.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-438 GW MON WELL 05/17/2016 8390064	EN-438 GW MON WELL 07/21/2016 8488641	EN-438 GW MON WELL 08/29/2016 8562734	EN-438 GW MON WELL 11/01/2016 8681697	EN-439A GW MON WELL 02/02/2016 8230999	EN-439A GW MON WELL 05/19/2016 8393128
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 O.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 89 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-439A GW MON WELL 07/21/2016 8490454	EN-439A GW MON WELL 08/30/2016 8562745	EN-439A GW MON WELL 11/01/2016 8681556	EN-439A REPLICATE 11/01/2016 8681557	EN-439B GW MON WELL 02/02/2016 8231000	EN-439B GW MON WELL 05/19/2016 8393129
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5 J	0.8	0.5	0.5	0.7	0.6
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.1 J	0.4 J	0.2 J	0.2 J	0.5	0.4 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	0.3 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.6	0.7
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.6	0.6	0.7	0.7	1.1	0.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-439B GW MON WELL 07/21/2016 8490455	EN-439B GW MON WELL 08/30/2016 8562746	EN-439B REPLICATE 08/30/2016 8562747	EN-439B GW MON WELL 11/01/2016 8681558	EN-440 GW MON WELL 02/02/2016 8231009	EN-440 GW MON WELL 05/19/2016 8393131
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.9 ND@0.5 0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.3 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.2 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 91 of 173

Sample Location		EN-440	EN-440	EN-440	EN-441	EN-441	EN-441
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		07/21/2016	08/30/2016	11/01/2016	02/02/2016	05/19/2016	07/21/2016
Laboratory Sample I.D.		8490460	8562754	8681574	8231008	8393132	8490459
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.3	1.4	1.4	0.6	0.5	1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	0.4 J	0.5 J	0.7	0.2 J	0.2 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.4 J	0.5 J	0.5 J	ND@0.5	0.2 J	0.3 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.6	1.4	1.9	1	0.9	1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-441 GW MON WELL 08/30/2016 8562753	EN-441 GW MON WELL 11/01/2016 8681573	EN-442A GW MON WELL 02/02/2016 8231006	EN-442A GW MON WELL 05/16/2016 8390050	EN-442A GW MON WELL 07/20/2016 8488623	EN-442A GW MON WELL 08/29/2016 8562743
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.9 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 93 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-442A GW MON WELL 11/04/2016 8682416	EN-442B GW MON WELL 02/02/2016 8231007	EN-442B GW MON WELL 05/16/2016 8390051	EN-442B GW MON WELL 07/20/2016 8488624	EN-442B GW MON WELL 08/29/2016 8562744	EN-442B GW MON WELL 11/04/2016 8682417
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE WILLIAM TO THE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.8 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-443 GW MON WELL 02/02/2016 8231005	EN-443 GW MON WELL 05/10/2016 8377869	EN-443 GW MON WELL 08/09/2016 8524425	EN-443 GW MON WELL 11/08/2016 8687310	EN-444A GW MON WELL 02/02/2016 8231016	EN-444A GW MON WELL 05/04/2016 8368787
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CHLOROETHANE CHLOROETHANE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 95 of 173

Sample Location		EN-444A	EN-444A	EN-444B	EN-444B	EN-444B	EN-444B
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		08/12/2016	11/01/2016	02/02/2016	05/04/2016	08/12/2016	11/01/2016
Laboratory Sample I.D.		8526000	8681571	8231017	8368788	8526001	8681572
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.4 J	0.3 J	0.4 J	0.4 J	0.5	0.5 J
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC) BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	0.1 J	ND@0.5	ND@0.5	0.1 J	0.1 J	ND@0.5
ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5	0.1 J
TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	0.5	0.6	1.1	0.8	0.9	1.1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-445 GW MON WELL 05/04/2016 8368794	EN-445 GW MON WELL 11/01/2016 8681553	EN-446A GW MON WELL 05/04/2016 8368789	EN-446A GW MON WELL 11/01/2016 8681569	EN-446B GW MON WELL 05/04/2016 8368790	EN-446B GW MON WELL 11/01/2016 8681570
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 97 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-447A GW MON WELL 02/04/2016 8234166	EN-447A GW MON WELL 05/10/2016 8377865	EN-447A REPLICATE 05/10/2016 8377866	EN-447A GW MON WELL 08/08/2016 8518985	EN-447A GW MON WELL 11/08/2016 8687313	EN-447B GW MON WELL 02/04/2016 8234167
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.9 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.9 ND@0.5 ND@0.5
ATLEINES, TOTAL	ug/L	เทษเข.5	เงษเยบ.5	เงษเยบ.5	เพษเข.5	เพษเข.5	เงษเยบ.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-447B GW MON WELL 05/10/2016 8377867	EN-447B GW MON WELL 08/08/2016 8518986	EN-447B GW MON WELL 11/08/2016 8687314	EN-447T GW EXTR WELL 01/05/2016 8196345	EN-447T GW EXTR WELL 02/04/2016 8232819	EN-447T GW EXTR WELL 03/01/2016 8266712
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 April 13, 2017 99 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-447T GW EXTR WELL 04/05/2016 8319617	EN-447T GW EXTR WELL 05/03/2016 8363278	EN-447T GW EXTR WELL 06/07/2016 8414478	EN-447T GW EXTR WELL 07/06/2016 8463630	EN-447T GW EXTR WELL 08/02/2016 8508261	EN-447T GW EXTR WELL 09/07/2016 8575335
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC)	ug/L ug/L ug/L ug/L ug/L ug/L	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5
BENZENE CHLOROETHANE CIS-1.2-DICHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 0.2 J	ND@0.5 ND@0.5 0.1 J	ND@0.5 ND@0.5 0.1 J	ND@0.5 ND@0.5 0.1 J	ND@0.5 ND@0.5 0.1 J	ND@0.5 ND@0.5 0.2 J
ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 1.9	ND@0.5 ND@0.5 2	ND@0.5 ND@0.5 2	ND@0.5 ND@0.5 1.8	ND@0.5 ND@0.5 1.9	ND@0.5 ND@0.5 1.8
TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 1.2	ND@0.5 ND@0.5 1	ND@0.5 ND@0.5 0.9	ND@0.5 ND@0.5 0.9	ND@0.5 ND@0.5 0.7	ND@0.5 ND@0.5 0.9
VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-447T GW EXTR WELL 10/04/2016 8629394	EN-447T GW EXTR WELL 11/02/2016 8680580	EN-447T GW EXTR WELL 12/06/2016 8732110	EN-448 GW MON WELL 02/04/2016 8234168	EN-448 GW MON WELL 05/10/2016 8377870	EN-448 GW MON WELL 11/07/2016 8687321
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J ND@0.5 J	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 101 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-449 GW MON WELL 05/12/2016 8382729	EN-449 GW MON WELL 08/08/2016 8518977	EN-449 GW MON WELL 11/09/2016 8693743	EN-450 GW MON WELL 02/08/2016 8239313	EN-450 GW MON WELL 05/19/2016 8393126	EN-450 GW MON WELL 07/21/2016 8488635
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.4	1.8	1.4	1	0.9	1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.4 J	0.4 J	0.3 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.3 J	0.3 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	1.2	1.7	1.6
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.6	0.8	0.6	0.9	1	1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-450 GW MON WELL 08/30/2016 8562748	EN-450 GW MON WELL 11/14/2016 8702117	EN-451 GW MON WELL 02/09/2016 8239317	EN-451 GW MON WELL 05/11/2016 8377905	EN-451 GW MON WELL 08/09/2016 8524415	EN-451 GW MON WELL 11/09/2016 8693736
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.9 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 103 of 173 April 13, 2017

Sample Lo Sample De Sample Da Laboratory	escription		EN-451P GW EXTR WELL 01/05/2016 8196352	EN-451P GW EXTR WELL 02/04/2016 8232826	EN-451P GW EXTR WELL 03/01/2016 8266719	EN-451P GW EXTR WELL 04/05/2016 8319624	EN-451P GW EXTR WELL 05/03/2016 8363286	EN-451P GW EXTR WELL 06/07/2016 8414485
Parameter	r	Units						
1,1,1-TRIC	CHLOROETHANE	ug/L	0.8	0.3 J	0.2 J	0.2 J	0.3 J	3.1
1,1,2-TRIC	HLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J
1,1-DICHLO	OROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J
1,1-DICHLO	OROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
1,2-DICHLO	ORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLO	OROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROET	THANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DIC	CHLOROETHENE	ug/L	0.2 J	ND@0.5	0.2 J	0.2 J	0.2 J	0.2 J
ETHYLBEN:	ZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLEN	NE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHL	OROETHENE	ug/L	0.6	0.5	0.5	0.5 J	0.6	0.5
TOLUENE		ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2	2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOR	OETHENE	ug/L	1.2	1.3	1.2	1.2	1.1	1
VINYL CHL	.ORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, T	TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-451P GW EXTR WELL 07/06/2016 8463638	EN-451P GW EXTR WELL 08/02/2016 8508269	EN-451P GW EXTR WELL 09/07/2016 8575343	EN-451P GW EXTR WELL 10/04/2016 8629402	EN-451P GW EXTR WELL 11/02/2016 8680587	EN-451P GW EXTR WELL 12/06/2016 8732117
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 105 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-453 GW MON WELL 05/19/2016 8393133	EN-453 GW MON WELL 08/09/2016 8518997	EN-453 GW MON WELL 11/14/2016 8702118	EN-454 GW MON WELL 02/09/2016 8239314	EN-454 GW MON WELL 05/17/2016 8390066	EN-454 GW MON WELL 07/21/2016 8490458
Parameter	Units	0555155	0310337	0.02110	0203311	0330000	0.50.50
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.2 J	0.2 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	0.2 J	0.6	0.3 J	0.2 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.2 J	0.3 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.7	0.6	0.9	1	0.8	1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-454 GW MON WELL 08/30/2016 8562751	EN-454 GW MON WELL 11/01/2016 8681698	EN-455 GW MON WELL 02/02/2016 8231001	EN-455 GW MON WELL 05/19/2016 8393134	EN-455 GW MON WELL 07/21/2016 8488636	EN-455 GW MON WELL 08/30/2016 8562752
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CHLOROETHANE CHLOROETHANE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 107 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-455 GW MON WELL 11/01/2016 8681559	EN-456 GW MON WELL 02/05/2016 8234171	EN-456 GW MON WELL 05/16/2016 8390053	EN-456 GW MON WELL 07/21/2016 8490452	EN-456 REPLICATE 07/21/2016 8490453	EN-456 GW MON WELL 08/29/2016 8562737
Parameter	Units	0001333	02341/1	8330033	8490432	8430433	6302737
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENEZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5	0.2 J ND@0.5 0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5	0.3 J ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.6 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 1 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 1.1 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-456 GW MON WELL 11/02/2016 8681704	EN-457A GW MON WELL 05/04/2016 8368791	EN-457A GW MON WELL 08/08/2016 8518988	EN-457A GW MON WELL 11/09/2016 8693717	EN-457B GW MON WELL 05/04/2016 8368792	EN-457B GW MON WELL 11/09/2016 8693718
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5

Site #704014 April 13, 2017 109 of 173

Sample Location		EN-458	EN-458	EN-459A	EN-459A	EN-459A	EN-459A
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE
Sample Date		05/23/2016	11/08/2016	02/08/2016	05/19/2016	08/08/2016	08/08/2016
Laboratory Sample I.D.		8395245	8687341	8239335	8393136	8518979	8518980
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE	ug/L	ND@0.5	0.5	0.2 J	0.2 J	0.2 J	0.2 J
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	0.6	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLEREZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.5 J	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	0.9	0.8	ND@0.5	0.3 J	0.3 J	0.3 J
	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-459A GW MON WELL 11/08/2016 8687336	EN-459A REPLICATE 11/08/2016 8687337	EN-459B GW MON WELL 02/11/2016 8242876	EN-459B GW MON WELL 05/11/2016 8377755	EN-459B GW MON WELL 08/10/2016 8525997	EN-459B GW EXTR WELL 08/30/2016 8562768
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.7 ND@0.5 0.2 J 0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.9 ND@0.5 0.3 J 0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	240 2.5 100 17 0.8 1.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.5 ND@0.5 0.2 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 111 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-459B GW MON WELL 11/08/2016 8687285	EN-460A GW MON WELL 02/08/2016 8239336	EN-460A GW MON WELL 05/19/2016 8393137	EN-460A GW MON WELL 08/08/2016 8518981	EN-460A GW MON WELL 11/08/2016 8687338	EN-460B GW MON WELL 02/11/2016 8242877
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	ug/L ug/L ug/L ug/L	2.5 ND@0.5 0.2 J 0.4 J	0.6 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5	2.3 ND@0.5 ND@0.5 ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE	ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 J	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5
CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L ug/L ug/L	1.2 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 12	ND@0.5 ND@0.5 ND@0.5 1	ND@0.5 ND@0.5 ND@0.5 1.1	ND@0.5 ND@0.5 ND@0.5 0.8	ND@0.5 ND@0.5 ND@0.5 0.5	ND@0.5 ND@0.5 ND@0.5 13
VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-460B REPLICATE 02/11/2016 8242878	EN-460B GW MON WELL 05/11/2016 8377756	EN-460B GW MON WELL 08/10/2016 8525998	EN-460B GW MON WELL 11/08/2016 8687288	EN-460C GW MON WELL 02/11/2016 8242879	EN-460C GW MON WELL 05/11/2016 8377757
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.2 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 113 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-460C GW MON WELL 08/10/2016 8525999	EN-460C GW MON WELL 11/08/2016 8687289	EN-462 GW MON WELL 05/12/2016 8382731	EN-462 GW MON WELL 11/10/2016 8693751	EN-463 GW MON WELL 05/23/2016 8395251	EN-463 GW MON WELL 11/10/2016 8693750
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	2.2	1.9	0.4 J	0.4 J	0.3 J	0.4 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	16	9.5	0.8	0.6	1.1	1.1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-464 GW MON WELL 11/11/2016 8693757	EN-467 GW MON WELL 11/10/2016 8693745	EN-468 GW MON WELL 05/23/2016 8395253	EN-468 GW MON WELL 08/08/2016 8518972	EN-468 GW MON WELL 11/11/2016 8693758	EN-470 GW MON WELL 02/09/2016 8239321
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 115 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-470 GW MON WELL 05/05/2016 8368802	EN-470 GW MON WELL 08/10/2016 8524439	EN-470 GW MON WELL 11/07/2016 8687326	EN-471 GW MON WELL 02/09/2016 8239333	EN-471 GW MON WELL 05/23/2016 8395248	EN-471 GW MON WELL 11/10/2016 8693734
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	0.4 J	4000	3900	3000
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	58	55	40 J
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	3100	2100	5600
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	820	550	520
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	11 J	ND@50
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	34	16 J	20 J
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25 J	ND@25	ND@50
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	540	360	280
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50
TETRACHLOROETHENE	ug/L	0.5	0.6	0.6	ND@25	ND@25	ND@50
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50
TRICHLOROETHENE	ug/L	1.3	1.3	1.6	73	50	70
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	230	55	22 J
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@25	ND@25	ND@50

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-472 GW MON WELL 11/16/2016 8702131	EN-473A GW MON WELL 11/09/2016 8693741	EN-473B GW MON WELL 11/09/2016 8693742	EN-474 GW MON WELL 02/04/2016 8234157	EN-474 GW MON WELL 05/23/2016 8395246	EN-474 GW MON WELL 11/09/2016 8690545
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 ND@0.5 0.3 J 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 117 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-475 GW MON WELL 02/04/2016 8234158	EN-475 GW MON WELL 05/16/2016 8389919	EN-475 GW MON WELL 11/09/2016 8690546	EN-477 GW MON WELL 02/02/2016 8231018	EN-477 GW MON WELL 05/19/2016 8393125	EN-477 GW MON WELL 07/21/2016 8490464
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.9	1	1.2	2.5	1.5	1.7
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	3.7	2.2	1.6
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	1	0.5	0.2 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	17	10	5.4
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	3.1	3	2.9
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.9	0.9	0.7	13	9.6	7.1
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-477 GW MON WELL 08/30/2016 8562756	EN-477 GW MON WELL 11/02/2016 8681578	EN-478A GW MON WELL 02/02/2016 8231010	EN-478A GW MON WELL 05/11/2016 8377911	EN-478A GW MON WELL 07/20/2016 8488630	EN-478A GW MON WELL 08/29/2016 8562741
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.7 ND@0.5 2.1 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 S.9 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.3 ND@0.5 2.1 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 8.8 ND@0.5 ND@0.5 ND@0.5 0.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 119 of 173

Groundwater Analytical Chemistry Data Endicott. New York

January 1, 2016 - December 31, 2016

EN-478A EN-478B EN-478B EN-478B EN-478B Sample Location Sample Description GW MON WELL GW MON WELL GW MON WELL REPLICATE GW MON WELL GW MON WELL Sample Date 11/01/2016 02/02/2016 05/11/2016 05/11/2016 07/20/2016 08/29/2016 Laboratory Sample I.D. 8681566 8231011 8377912 8377913 8488631 8562742 Units **Parameter** 1,1,1-TRICHLOROETHANE 0.6 0.6 0.4 J ug/L 0.5 0.7 0.5 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 1,1-DICHLOROETHANE ug/L 0.3 J 0.2 J 0.2 J 0.2 J 0.1 J 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L CHLOROETHANE ND@0.5 ND@0.5 J ND@0.5 J ND@0.5 ug/L ND@0.5 ND@0.5 J CIS-1,2-DICHLOROETHENE ND@0.5 0.2 J 0.1 J 0.2 J 0.1 J 0.1 J ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ETHYLBENZENE ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TOLUENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 1.7 1.4 1.3 1.1 1.1 VINYL CHLORIDE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L XYLENES, TOTAL ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-478B GW MON WELL 11/01/2016 8681567	EN-478B REPLICATE 11/01/2016 8681568	EN-479A GW MON WELL 05/11/2016 8377914	EN-479A GW MON WELL 07/20/2016 8488632	EN-479A GW MON WELL 08/29/2016 8562758	EN-479A GW MON WELL 11/01/2016 8681564
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 121 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-479B GW MON WELL 05/11/2016 8377915	EN-479B GW MON WELL 07/20/2016 8488633	EN-479B GW MON WELL 08/29/2016 8562759	EN-479B REPLICATE 08/29/2016 8562760	EN-479B GW MON WELL 11/01/2016 8681565	EN-480A GW MON WELL 05/12/2016 8382720
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L ug/L	0.4 J ND@0.5	0.3 J ND@0.5	0.5 ND@0.5	0.5 ND@0.5	0.3 J ND@0.5	0.2 J ND@0.5
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5
1,2-DICHLOROETHANE (EDC) BENZENE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE	ug/L ug/L	ND@0.5 J ND@0.5	ND@0.5 ND@0.5	ND@0.5 0.1 J	ND@0.5 0.1 J	ND@0.5 ND@0.5	ND@0.5 ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1.2-DICHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.2 J ND@0.5	ND@0.5 ND@0.5 ND@0.5
TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L	0.9 ND@0.5	1 ND@0.5	1.1 ND@0.5	1.1 ND@0.5	0.8 ND@0.5	1 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-480A GW MON WELL 11/01/2016 8681562	EN-480B GW MON WELL 05/12/2016 8382721	EN-480B GW MON WELL 11/01/2016 8681563	EN-481A GW MON WELL 05/12/2016 8382716	EN-481A GW MON WELL 11/01/2016 8681560	EN-481B GW MON WELL 05/12/2016 8382719
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 123 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-481B GW MON WELL 11/01/2016 8681561	EN-482 GW MON WELL 02/05/2016 8234169	EN-482 GW MON WELL 05/17/2016 8390067	EN-482 GW MON WELL 07/21/2016 8490463	EN-482 GW MON WELL 08/30/2016 8562755	EN-482 GW MON WELL 11/02/2016 8681709
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5 J	0.7	0.7	1.6	1.5	1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 0.1 J	ND@0.5 0.2 J	ND@0.5 0.5	ND@0.5 0.5	ND@0.5 0.3 J
1,1-DICHLOROETHENE	ug/L ug/L	ND@0.5	0.1 J	0.1 J	0.2 J	0.2 J	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.6	0.9	1.5	2.2	1.3
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHAN	IE) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	0.1 J				
TOLUENE	ug/L	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.9	3.8	3.4	4.2	4.2	3.9
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-483 GW MON WELL 11/03/2016 8681634	EN-484 GW MON WELL 02/09/2016 8239324	EN-484 GW MON WELL 05/17/2016 8389928	EN-484 GW MON WELL 08/01/2016 8508583	EN-484 GW MON WELL 11/04/2016 8682410	EN-486 GW MON WELL 05/23/2016 8395247
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J 0.8 1.1 0.2 J 6.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	16 1.5 0.6 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 7.8 ND@0.5 0.1 J 6.4 ND@0.5 ND@0.5	15 0.9 0.7 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J 6.6 ND@0.5 ND@0.5	17 0.6 0.3 J 0.3 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2.1 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	2200 1200 280 160 66 ND@13 ND@13 S50 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13 ND@13

April 13, 2017 Site #704014 125 of 173

Sample Location		EN-486	EN-487	EN-489	EN-490	EN-490	EN-490
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	REPLICATE
Sample Date		11/04/2016	08/01/2016	11/04/2016	02/05/2016	05/05/2016	05/05/2016
Laboratory Sample I.D.		8682412	8508578	8682411	8234170	8368800	8368801
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	500	0.2 J	0.2 J	0.2 J	0.3 J	0.3 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	190	0.3 J	0.3 J	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	ug/L	94	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	58	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	16	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	0.9 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE	ug/L	0.7 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	9.3	ND@0.5	ND@0.5	ND@0.5	0.1 J	0.1 J
ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@2.5	0.1 J	5.7	1	0.9	0.9
TOLUENE	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	1.7 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	32	ND@0.5	1.4	ND@0.8	0.6	0.6
VINYL CHLORIDE	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-490 GW MON WELL 08/09/2016 8524427	EN-490 GW MON WELL 11/04/2016 8682414	EN-491A GW MON WELL 02/03/2016 8231022	EN-491A GW MON WELL 05/05/2016 8368799	EN-491A GW MON WELL 08/09/2016 8524434	EN-491A GW MON WELL 11/04/2016 8682413
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 127 of 173 April 13, 2017

Sa Sa	mple Location mple Description mple Date boratory Sample I.D.		EN-491T GW EXTR WELL 01/05/2016 8196344	EN-491T GW EXTR WELL 02/04/2016 8232818	EN-491T GW EXTR WELL 03/01/2016 8266711	EN-491T GW EXTR WELL 04/05/2016 8319616	EN-491T GW EXTR WELL 05/03/2016 8363277	EN-491T GW EXTR WELL 06/07/2016 8414477
Pa	rameter	Units						
1,: 1,: 1,: 1,: 1,: BE CH	1,1-TRICHLOROETHANE 1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1-DICHLOROETHANE 1-DICHLOROETHENE 2-DICHLORO-1,2,2-TRIFLUOROETHANE 2-DICHLOROETHANE (EDC) NIZENE ILOROETHANE 8-1,2-DICHLOROETHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.6 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
M TE TC TR TR	HYLBENZENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TRACHLOROETHENE DLUENE LANS-1,2-DICHLOROETHENE HICHLOROETHENE NYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 3.6 ND@0.5 ND@0.5 1.3 ND@0.5	ND@0.5 ND@0.5 3.2 ND@0.5 ND@0.5 1.3 ND@0.5	ND@0.5 ND@0.5 3.2 ND@0.5 ND@0.5 1.1 ND@0.5	ND@0.5 ND@0.5 3.1 ND@0.5 ND@0.5 1.3 ND@0.5	ND@0.5 ND@0.5 3.4 ND@0.5 ND@0.5	ND@0.5 ND@0.5 3.2 ND@0.5 ND@0.5 1 ND@0.5
XY	LENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-491T GW EXTR WELL 07/06/2016 8463629	EN-491T GW EXTR WELL 08/02/2016 8508260	EN-491T GW EXTR WELL 09/07/2016 8575334	EN-491T GW EXTR WELL 10/04/2016 8629393	EN-491T GW EXTR WELL 11/02/2016 8680579	EN-491T GW EXTR WELL 12/06/2016 8732109
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 129 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-492 GW MON WELL 02/05/2016 8234163	EN-492 GW MON WELL 05/05/2016 8368797	EN-492 GW MON WELL 08/09/2016 8524436	EN-492 GW MON WELL 11/08/2016 8687306	EN-493 GW MON WELL 02/03/2016 8231019	EN-493 GW MON WELL 05/11/2016 8377901
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.5 0.2 J 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.5 0.3 J 0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Groundwater Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

			, ,	,			
Sample Location		EN-493 GW MON WELL	EN-493 GW MON WELL	EN-494 GW MON WELL	EN-494 GW MON WELL	EN-495 GW MON WELL	EN-495 GW MON WELL
Sample Description							
Sample Date		08/09/2016	11/08/2016	05/10/2016	11/08/2016	05/10/2016	11/08/2016
Laboratory Sample I.D.		8524416	8687334	8377900	8687333	8377899	8687332
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.2	1.5	1.3	1.4	0.9	1.1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.2 J	0.2 J	0.3 J	0.3 J	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.4 J	0.4 J	0.4 J	0.3 J	0.2 J	0.3 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5 J	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.4 J	0.4 J	0.6	0.7	0.4 J	0.5 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	2.7	2.6	2.8	3	1.9	2
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1	1	1.5	1.5	1.2	1.8
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 131 of 173

		•						
Sample Location		EN-496	EN-496	EN-496	EN-496	EN-497	EN-497	
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	
Sample Date		02/03/2016	05/10/2016	08/09/2016	11/08/2016	05/10/2016	11/08/2016	
Laboratory Sample I.D.		8231020	8377898	8524417	8687331	8377897	8687330	
Parameter	Units							
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	0.5 J	0.4 J	0.2 J	0.5	
1,1,2-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.5 ND@0.5	
	_	_	_	0.2 J	0.2 J	_	0.4 J	
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5			ND@0.5		
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
CHLOROETHANE	ug/L	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.1 J	0.6	0.2 J	0.1 J	0.6	
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
TETRACHLOROETHENE	ug/L	0.7	0.8	1.9	0.9	0.7	1.3	
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
TRICHLOROETHENE	ug/L	ND@0.7	0.6	1.4	1.4	0.7	4.5	
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	
•	٥.	=						

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-498 GW MON WELL 02/03/2016 8231021	EN-498 GW MON WELL 05/10/2016 8377873	EN-498 GW MON WELL 08/09/2016 8524418	EN-498 GW MON WELL 11/08/2016 8687328	EN-499A GW MON WELL 02/02/2016 8231014	EN-499A GW MON WELL 05/12/2016 8382724
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5	0.3 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 133 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-499A GW MON WELL 07/20/2016 8488625	EN-499A GW MON WELL 08/30/2016 8562762	EN-499A GW MON WELL 11/09/2016 8693713	EN-499B GW MON WELL 02/02/2016 8231015	EN-499B GW MON WELL 05/12/2016 8382725	EN-499B GW MON WELL 07/20/2016 8488626
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.6 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.6 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5
ATLEINES, TOTAL	46/L	140 60.5	14060.5	14060.5	110 @ 0.5	14060.5	14060.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location		EN-499B	EN-499B	EN-500A	EN-500A	EN-500A	EN-500A
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		08/30/2016	11/09/2016	05/12/2016	07/20/2016	08/30/2016	11/08/2016
Laboratory Sample I.D.		8562763	8693714	8382722	8488627	8562764	8687317
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TOLUENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	0.6	0.7	1.3	1	1.1	1.3
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 135 of 173

Sample Location Sample Description Sample Date		EN-500B GW MON WELL 05/12/2016	EN-500B GW MON WELL 07/20/2016	EN-500B GW MON WELL 08/30/2016	EN-500B GW MON WELL 11/08/2016	EN-501 GW MON WELL 05/04/2016	EN-501 GW MON WELL 07/20/2016
Laboratory Sample I.D.		8382723	8488628	8562765	8687318	8368793	8488629
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.4 J	0.3 J	0.3 J	0.4 J	ND@0.5	0.2 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.5 J	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.6	0.6	0.6	0.6	0.1 J	0.6
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-501 GW MON WELL 08/30/2016 8562766	EN-501 GW MON WELL 11/08/2016 8687316	EN-502 GW MON WELL 05/11/2016 8377906	EN-502 REPLICATE 05/11/2016 8377907	EN-502 GW MON WELL 11/09/2016 8693737	EN-503 GW MON WELL 02/03/2016 8231024
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.1 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.9 ND@0.5 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.1 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 137 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-503 GW MON WELL 05/11/2016 8377908	EN-503 GW MON WELL 08/09/2016 8518998	EN-503 GW MON WELL 11/09/2016 8693738	EN-504 GW MON WELL 02/03/2016 8231025	EN-504 GW MON WELL 05/11/2016 8377902	EN-504 GW MON WELL 08/09/2016 8518999
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (ES-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-504 GW MON WELL 11/09/2016 8693739	EN-505 GW MON WELL 02/05/2016 8234161	EN-505 GW MON WELL 05/09/2016 8377859	EN-505 GW MON WELL 08/09/2016 8524433	EN-505 GW MON WELL 11/08/2016 8687307	EN-506 GW MON WELL 02/05/2016 8234162
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CHLOROETHANE CHLOROETHANE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.1 J ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.4 J ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 139 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-506 GW MON WELL 05/10/2016 8377868	EN-506 GW MON WELL 08/09/2016 8524431	EN-506 REPLICATE 08/09/2016 8524432	EN-506 GW MON WELL 11/08/2016 8687309	EN-507 GW MON WELL 05/17/2016 8389927	EN-507 GW MON WELL 11/09/2016 8690555
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	0.3 J	ND@0.5	300	20000
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	330	53000
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	7.2	390
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
CHLOROETHANE	ug/L	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5	30	2000
CIS-1,2-DICHLOROETHENE	ug/L	0.1 J	0.2 J	0.2 J	ND@0.5	25	1400
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.8 J	ND@250
TETRACHLOROETHENE	ug/L	0.3 J	0.3 J	0.3 J	0.3 J	1.5 J	ND@250
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.7 J	190 J
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250
TRICHLOROETHENE	ug/L	0.2 J	0.2 J	0.2 J	0.2 J	16	ND@250
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	68 J
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@2.5	ND@250

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-508 GW MON WELL 02/08/2016 8239328	EN-508 GW MON WELL 05/12/2016 8382748	EN-508 GW MON WELL 08/02/2016 8508561	EN-509 GW MON WELL 02/08/2016 8239329	EN-509 GW MON WELL 05/12/2016 8382751	EN-509 GW MON WELL 08/02/2016 8508562
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VILYLENE, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4300 23 J 520 130 ND@25 6.6 J ND@25 ND@25 110 ND@25 ND@25 8.1 J ND@25 ND@25 8.9 J ND@25	5600 18 990 200 ND@10 7.2 J ND@10 ND@10 100 ND@10 12 11 2.6 J ND@10 67 3.9 J ND@10	11000 49 1700 260 ND@25 13 J ND@25 ND@25 230 ND@25 39 33 5.1 J 9.9 J 99 6.1 J ND@25	0.3 J ND@0.5 J	0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	1.9 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 141 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-511 GW MON WELL 11/09/2016 8693740	EN-513 GW MON WELL 05/10/2016 8377872	EN-513 GW MON WELL 11/07/2016 8687322	EN-514 GW MON WELL 05/09/2016 8377861	EN-514 GW MON WELL 11/07/2016 8687325	EN-515 GW MON WELL 05/10/2016 8377871
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	0.4 J	ND@0.5	0.3 J	0.2 J	0.4 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE CIS-1,2-DICHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5	ND@0.5 J ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 J ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 J ND@0.5
ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1	ND@0.5	ND@0.5	0.7	1	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-515 GW MON WELL 11/07/2016 8687323	EN-516 GW MON WELL 05/17/2016 8390061	EN-516 GW MON WELL 11/07/2016 8687320	EN-519 GW MON WELL 05/11/2016 8377904	EN-519 GW MON WELL 11/04/2016 8682407	EN-519 REPLICATE 11/04/2016 8682408
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 143 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-520 GW MON WELL 11/14/2016 8702120	EN-521 GW MON WELL 11/15/2016 8702122	EN-522 GW MON WELL 02/09/2016 8239325	EN-522 GW MON WELL 05/17/2016 8389923	EN-522 GW MON WELL 08/01/2016 8508582	EN-522 GW MON WELL 11/09/2016 8690549
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.3 J	52	46	33	51
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	68	88	44	63
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	3.6 J	6.3 J	5.2 J	4.2 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	5.5 J	6.7 J	3 J	4.4 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	5 J	16	11	5.3 J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10
BENZENE	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@10 J	ND@10	ND@10	ND@10
CIS-1,2-DICHLOROETHENE	ug/L	0.6	0.3 J	1800	2300	1100	1500
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10
TETRACHLOROETHENE	ug/L	14	5.4	79	940	140	68
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	2.2 J	3.6 J	2 J	ND@10
TRICHLOROETHENE	ug/L	4	0.5	20	74	37	20
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	18	25	22	41
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@10	ND@10	ND@10	ND@10

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-524 GW MON WELL 11/09/2016 8693715	EN-526 GW MON WELL 02/08/2016 8239332	EN-526 GW MON WELL 05/17/2016 8390077	EN-526 GW MON WELL 08/08/2016 8518994	EN-526 GW MON WELL 11/09/2016 8693721	EN-527 GW MON WELL 05/09/2016 8374662
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	3.2 2.9 2.7 0.6 ND@0.5 ND@0.5 ND@0.5 4.3 ND@0.5 MD@0.5 VD@0.5 ND@0.5 ND@0.5 ND@0.5	2.1 7.9 9.2 4.7 1.9 0.1 J ND@0.5 ND@0.5 19 ND@0.5 ND@0.5 6 ND@0.5 0.3 J 33 0.4 J ND@0.5	6.4 28 61 30 12 1 ND@0.5 ND@0.5 89 ND@0.5 ND@0.5 11 ND@0.5 1.2 88 3.4 ND@0.5	1.8 5 4 2.9 0.9 J ND@1 ND@1 ND@1 13 ND@1 15 ND@1 ND@1 5.2 ND@1 ND@1 51 ND@1	ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 1.3 J ND@5.0 4.8 J ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0

April 13, 2017 Site #704014 145 of 173

Sample Location		EN-528	EN-528	EN-529	EN-529	EN-529	EN-529
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		05/09/2016	11/02/2016	05/23/2016	07/21/2016	08/29/2016	11/01/2016
Laboratory Sample I.D.		8374663	8681626	8395249	8488640	8562735	8681696
Parameter	Units						
- drameter	0						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	0.5 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@2.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-531 GW MON WELL 05/17/2016 8390063	EN-531 GW MON WELL 07/21/2016 8488638	EN-531 GW MON WELL 08/29/2016 8562733	EN-531 GW MON WELL 11/02/2016 8681706	EN-532 GW MON WELL 02/08/2016 8239311	EN-532 GW MON WELL 05/11/2016 8377903
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 147 of 173 April 13, 2017

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-532 GW MON WELL 11/08/2016 8687327	EN-533 GW MON WELL 02/09/2016 8239323	EN-533 GW MON WELL 05/17/2016 8389922	EN-533 GW MON WELL 08/01/2016 8508581	EN-533 GW MON WELL 11/09/2016 8690548	EN-534 GW MON WELL 02/02/2016 8231002
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	9.8	2.5 J	17	160	1.1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	18	5.5	31	170	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	2.4 J	0.7 J	2.5 J	11	0.5 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	1.1 J	0.6 J	1.7 J	9.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	3.7	ND@2.5	2.9	7.6	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	0.7 J	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	350	200	420	2600	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@2.5	ND@2.5	0.8 J	28	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	ND@2.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	53	23	24	93	1.8
TOLUENE	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	2.6	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	1.9 J	ND@2.5	0.6 J	1.4 J	ND@0.5
TRICHLOROETHENE	ug/L	0.3 J	4	1.6 J	3.9	27	1
VINYL CHLORIDE	ug/L	ND@0.5	38	9	35	200	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@2.5	ND@2.5	ND@2.5	70	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

			, ,				
Sample Location		EN-534	EN-534	EN-534	EN-534	EN-534	EN-534
Sample Description		REPLICATE	GW MON WELL	GW MON WELL	REPLICATE	GW MON WELL	GW MON WELL
Sample Date		02/02/2016	05/19/2016	07/21/2016	07/21/2016	08/30/2016	11/01/2016
Laboratory Sample I.D.		8231003	8393127	8490456	8490457	8562749	8681579
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.1	1.2	1.9	1.9	1.5	1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	0.2 J	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.5 J	0.4 J	0.4 J	0.3 J	0.5 J	0.3 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.5 J	0.5	0.6	0.6	0.4 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	1.9	1.9	2	2	1.7	1.8
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1	1	1.1	1.2	1	1.2
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Site #704014 April 13, 2017 149 of 173

Sample Location		EN-606	EN-616	EN-623	EN-623	EN-624	EN-624
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		08/03/2016	08/03/2016	05/11/2016	08/03/2016	05/11/2016	08/03/2016
Laboratory Sample I.D.		8512540	8512546	8377758	8508555	8382686	8512542
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	13	6.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	1.6	0.1 J	1.2	6.1	1.1	1.8
	ug/L	0.2 J	ND@0.5	ND@0.5	0.4 J	ND@0.5	0.1 J
	ug/L	10	11	2	3.7	4.5	8.3
1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	0.2 J	0.2 J	0.1 J	0.1 J
	ug/L	ND@0.5	ND@0.5	0.8	1.4	1.6	1.2
CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L	3.9	0.4 J	0.4 J	1	1.1	7.3
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L	ND@0.5 0.2 J 1.5 0.3 J	ND@0.5 ND@0.5 2.4 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.2 J ND@0.5 0.8	0.1 J 0.6 0.1 J 2.5	0.1 J 1.2 0.3 J 10
XYLENES, TOTAL	ug/L ug/L	0.5 J ND@0.5	ND@0.5 ND@0.5	0.3 J ND@0.5	0.8 ND@0.5	2.5 ND@0.5	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-632 GW MON WELL 08/03/2016 8512541	EN-638 GW MON WELL 08/04/2016 8512550	EN-641 GW MON WELL 08/02/2016 8508544	EN-642 GW MON WELL 08/04/2016 8512551	EN-651 GW MON WELL 05/11/2016 8382680	EN-651 GW MON WELL 08/02/2016 8508547
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 11 1.1 ND@0.5 6.7 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.8 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.3 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.1 J ND@0.5 0.3 J 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.2 J 0.3 J 0.2 J 0.9 ND@0.5 ND@0.5 ND@0.5 J 6.1 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 0.2 J 0.1 J 0.2 J 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 151 of 173

Groundwater Analytical Chemistry Data Endicott. New York

January 1, 2016 - December 31, 2016

EN-653 Sample Location EN-652 EN-653 EN-655 EN-679 EN-679 Sample Description GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL GW MON WELL Sample Date 08/02/2016 05/11/2016 08/02/2016 08/02/2016 05/11/2016 08/02/2016 Laboratory Sample I.D. 8508554 8382681 8508548 8508546 8382675 8508539 Units **Parameter** 1,1,1-TRICHLOROETHANE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ND@0.5 ug/L 0.7 0.3 J 0.2 J 1,1-DICHLOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 0.3 J ND@0.5 ND@0.5 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L 2.8 ND@0.5 ND@0.5 0.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 CHLOROETHANE ND@0.5 J ND@0.5 J ND@0.5 ND@0.5 ug/L 0.2 J CIS-1,2-DICHLOROETHENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ETHYLBENZENE ug/L ND@0.5 METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TETRACHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TOLUENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 0.4 J 0.5 J 1.5 0.6 0.6 VINYL CHLORIDE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 0.1 J XYLENES, TOTAL ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-684A GW MON WELL 05/11/2016 8382673	EN-684A GW MON WELL 08/02/2016 8508541	EN-687 GW MON WELL 05/11/2016 8377760	EN-687 GW MON WELL 08/02/2016 8508540	EN-692 GW MON WELL 08/03/2016 8512539	EN-694 GW MON WELL 08/02/2016 8508545
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 5.1 ND@0.5 0.2 J 2.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 5.6 ND@0.5 0.2 J 2.2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.3 J 0.3 J 0.5 J 0.2 J 0.2 J 0.2 S 0.2 S 0.3 S 0.5 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J 0.4 J 0.7 0.2 J 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 3.4 0.2 J 8.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 1.1 1.4 0.2 J 1.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L	0.3 J ND@0.5	0.0 0.1 J ND@0.5	0.2 J ND@0.5	0.1 J ND@0.5	0.1 J ND@0.5	ND@0.5 ND@0.5

April 13, 2017 Site #704014 153 of 173

Sample Location Sample Description Sample Date		EN-696 GW MON WELL 08/04/2016	EN-698 GW MON WELL 08/04/2016	EN-700 GW MON WELL 02/12/2016	EN-700 GW MON WELL 05/11/2016	EN-700 GW MON WELL 08/02/2016	EN-700 GW MON WELL 11/03/2016
Laboratory Sample I.D.		8512552	8512553	8242881	8382678	8508551	8681687
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	1	ND@25	ND@25	ND@25	ND@5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	30	270	6400	9500	8000	7400
1,1-DICHLOROETHANE	ug/L	23	5.9	ND@25	ND@25	ND@25	ND@5
1,1-DICHLOROETHENE	ug/L	1.8	2	ND@25	27	ND@25	20
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	11	38	980	1600	1100	1600
1,2-DICHLOROETHANE (EDC)	ug/L	0.2 J	ND@0.5	ND@25	ND@25	ND@25	ND@5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
CHLOROETHANE	ug/L	0.3 J	ND@0.5	ND@25	ND@25 J	ND@25	ND@5
CIS-1,2-DICHLOROETHENE	ug/L	1.1	6.6	ND@25	ND@25	ND@25	1.1 J
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5
TRICHLOROETHENE	ug/L	ND@0.5	22	ND@25	ND@25	ND@25	1.5 J
VINYL CHLORIDE	ug/L	0.1 J	ND@0.5	ND@25	ND@25	ND@25	ND@5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@25	ND@25	ND@25	ND@5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-701 GW MON WELL 02/12/2016 8242882	EN-701 GW MON WELL 05/11/2016 8382679	EN-701 GW MON WELL 08/02/2016 8508552	EN-701 GW MON WELL 11/03/2016 8681688	EN-702 GW MON WELL 08/02/2016 8508530	EN-704 GW MON WELL 02/12/2016 8242883
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VILLENE, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 250 ND@0.5 0.7 8.4 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 155 of 173

Sample Location Sample Description Sample Date Laboratory Sample 1.D.		EN-704 GW MON WELL 05/11/2016 8382676	EN-704 GW MON WELL 08/02/2016 8508549	EN-704 GW MON WELL 11/03/2016 8681689	EN-705 GW MON WELL 02/12/2016 8242884	EN-705 GW MON WELL 05/11/2016 8382677	EN-705 GW MON WELL 08/02/2016 8508550
Parameter	Units	0302070	03003.13	0001003	02.2001	0302077	0300330
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	0.2 J	0.2 J	0.2 J	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	1.1	1.1	1.4	0.6	0.3 J	4.6
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	3.5	3.4	4	0.3 J	0.1 J	0.7
VINYL CHLORIDE	ug/L	0.2 J	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-705 GW MON WELL 11/03/2016 8681690	EN-709 GW EXTR WELL 01/05/2016 8196357	EN-709 GW EXTR WELL 02/04/2016 8232831	EN-709 GW EXTR WELL 03/01/2016 8266724	EN-709 GW EXTR WELL 04/05/2016 8319629	EN-709 GW EXTR WELL 05/03/2016 8363291
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.2 J 380 2 1.5 53 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.2 J 380 2 1.5 57 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.2 J 410 2.3 1.5 64 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	ND@1.0 340 2.1 1.3 52 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.2 J 400 2.3 1.6 63 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0

April 13, 2017 Site #704014 157 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-709 GW EXTR WELL 06/07/2016 8414490	EN-709 GW EXTR WELL 07/06/2016 8463643	EN-709 GW EXTR WELL 08/02/2016 8508274	EN-709 GW EXTR WELL 09/07/2016 8575348	EN-709 GW EXTR WELL 10/04/2016 8629407	EN-709 GW EXTR WELL 11/02/2016 8680591
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	0.2 J	ND@2.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	370	320	360	240	380	310
1,1-DICHLOROETHANE	ug/L	2.1	2.2	2.3	2	2.5	2.4 J
1,1-DICHLOROETHENE	ug/L	1.4	1.2	1.3	0.9 J	1.7	1.4 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	55	47	49	46	57	55
1,2-DICHLOROETHANE (EDC)	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
BENZENE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
CHLOROETHANE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
CIS-1,2-DICHLOROETHENE	ug/L	6.3	6.4	6.7	6.1	7	6.7
ETHYLBENZENE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
TETRACHLOROETHENE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
TOLUENE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5
TRICHLOROETHENE	ug/L	17	18	17	16	20	19
VINYL CHLORIDE	ug/L	0.2 J	0.2 J	ND@1	ND@1	0.2 J	ND@2.5
XYLENES, TOTAL	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@2.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-709 GW EXTR WELL 12/06/2016 8732121	EN-710 GW MON WELL 05/11/2016 8382690	EN-710 GW MON WELL 08/03/2016 8512535	EN-711 GW MON WELL 08/04/2016 8512547	EN-712 GW MON WELL 05/11/2016 8382682	EN-712 GW MON WELL 08/04/2016 8512548
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.6 J 420 2.3 J 1.6 J 53 ND@2.5 ND@2.5 ND@2.5 S.4 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5	ND@0.5 ND@0.5 0.4 J ND@0.5 8.2 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.3 J ND@0.5 9.3 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.3 ND@0.5 1.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 1.6 0.1 J 1.6 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 159 of 173

Sample Location Sample Description Sample Date		EN-714 GW MON WELL 08/02/2016	EN-715 GW MON WELL 08/02/2016	EN-716 GW MON WELL 08/02/2016	EN-717 GW MON WELL 08/02/2016	EN-718 GW MON WELL 08/02/2016	EN-719 GW MON WELL 08/02/2016
Laboratory Sample I.D.		8508533	8508534	8508529	8508535	8508536	8508537
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	55	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.5 J	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	4.4	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.3 J	1.6	6	0.1 J	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.1 J	0.3 J	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	7.5	4.7	53	1.2	1.4
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.3 J	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-720 GW MON WELL 08/02/2016 8508538	EN-721 GW MON WELL 05/11/2016 8382684	EN-721 GW MON WELL 08/03/2016 8512544	EN-722 GW MON WELL 05/11/2016 8382685	EN-722 GW MON WELL 08/03/2016 8512545	EN-723 GW MON WELL 05/11/2016 8382687
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@2.5 110 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5 ND@2.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 J 2.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 O.3 J ND@0.5 A.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.3 J ND@0.5 0.4 J ND@0.5 0.4 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J 0.3 J 0.2 J	ND@0.5 ND@0.5 0.5 J ND@0.5 1.2 ND@0.5 0.3 J 0.4 J ND@0.5 ND@0.5 ND@0.5 0.1 J 0.2 J 0.4 J ND@0.5	ND@0.5 ND@0.5 3.9 1.1 9.1 ND@0.5 0.3 J 20 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

Site #704014 April 13, 2017 161 of 173

Sample Location Sample Description Sample Date Laboratory Sample 1.D.		EN-723 GW MON WELL 08/03/2016 8512543	EN-724 GW MON WELL 05/11/2016 8382688	EN-724 GW MON WELL 08/03/2016 8512536	EN-725 GW MON WELL 05/11/2016 8382689	EN-725 GW MON WELL 08/03/2016 8512537	EN-726 GW MON WELL 08/02/2016 8508531
Parameter	Units	03123.13	0302000	0312300	0302003	0312307	0300331
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	4000	4200	ND@0.5
1,1-DICHLOROETHANE	ug/L	4.9	0.6	1.4	ND@10	ND@10	ND@0.5
1,1-DICHLOROETHENE	ug/L	1.2	ND@0.5	ND@0.5	ND@10	11	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	8.8	6	11	180	200	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
BENZENE	ug/L	0.4 J	0.1 J	0.2 J	ND@10	ND@10	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	22	0.4 J	0.7	ND@10	4.2 J	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	1.3	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
TRICHLOROETHENE	ug/L	6.1	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5
VINYL CHLORIDE	ug/L	15	0.1 J	0.1 J	ND@10	ND@10	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@10	ND@10	ND@0.5

Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-727 GW MON WELL 08/02/2016 8508543	EN-D01 GW MON WELL 08/04/2016 8512503	EN-D02 GW MON WELL 08/04/2016 8512531	EN-D03 GW MON WELL 08/04/2016 8512504	EN-D04 GW MON WELL 08/04/2016 8512516	EN-D04S GW MON WELL 08/04/2016 8512517
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.5 ND@0.5 0.2 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 163 of 173

Sample Location Sample Description		EN-D10 GW MON WELL 05/11/2016	EN-D10 GW MON WELL 08/05/2016	EN-D11 GW MON WELL 05/12/2016	EN-D11 GW MON WELL 08/04/2016	EN-D13 GW MON WELL 05/11/2016	EN-D13 GW MON WELL 08/04/2016
Sample Date Laboratory Sample I.D.		8382692	8512521	8382703	8512526	8382691	8512509
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	5.3	4.8
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	3.3	4
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	5.8	6.6
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	14	4.9
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.9	1.7
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	6.4	1.8
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D14 GW MON WELL 08/04/2016 8512510	EN-D33 GW MON WELL 05/12/2016 8382694	EN-D33 GW MON WELL 08/04/2016 8512514	EN-D34 GW MON WELL 08/04/2016 8512515	EN-D35 GW MON WELL 05/12/2016 8382695	EN-D35 GW MON WELL 08/04/2016 8512518
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENECHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 14 6.1 0.8 6.3 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	16 ND@5.0 46 31 ND@5.0 1.7 J ND@5.0 12 1300 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0	22 ND@5 62 43 ND@5 2.1 J ND@5 14 1600 ND@5 ND@5 ND@5 ND@5 ND@5 2.1 J 86 62 ND@5	ND@0.5 ND@0.5 0.5 J 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 165 of 173

	EN-D36 GW MON WELL 05/12/2016 8382696	EN-D36 GW MON WELL 08/05/2016 8512520	EN-D37 GW MON WELL 05/12/2016 8382697	EN-D37 GW MON WELL 08/04/2016 8512507	EN-D38 GW MON WELL 05/12/2016 8382704	EN-D38 GW MON WELL 08/05/2016 8512524
Units						
ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.3 J ND@0.5 ND@0.5 ND@0.5	1.1 3.6 11 3.4 7.8 0.2 J ND@0.5 ND@0.5 110 ND@0.5	1.1 4.3 14 4.6 9.5 0.2 J 0.1 J ND@0.5 150 ND@0.5	5.2 ND@2.5 22 2.4 J ND@2.5 ND@2.5 ND@2.5 6.4 270 ND@2.5	7.7 ND@2.5 33 3 ND@2.5 ND@2.5 ND@2.5 ND@2.5
ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 0.5 J 4.1 8.5	ND@0.5 ND@0.5 0.5 J 4.4 8.1	ND@2.5 ND@2.5 ND@2.5 3.3 63	ND@2.5 ND@2.5 ND@2.5 0.6 J 7 54 ND@2.5
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	GW MON WELL 05/12/2016 8382696 Units ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5 ug/L ND@0.5	GW MON WELL 08/05/2016 8382696 8512520	GW MON WELL OS/12/2016 OS	GW MON WELL 05/12/2016 8382696 GW MON WELL 08/05/2016 8512520 GW MON WELL 05/12/2016 8382697 GW MON WELL 08/04/2016 8382697 GW MON WELL 08/04/2016 8382697 GW MON WELL 08/04/2016 8382697 GW MON WELL 08/04/2016 8382697 GW MON WELL 08/04/2016 OW MON WELL 08/04/2016 GW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 GW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON WELL 08/04/2016 OW MON MON MON MON MON MON MON MON MON MON	GW MON WELL GW MON WELL OS/12/2016 OS/12/2016 OS/12/2016 OS/12/2016 OS/05/12/2016 ### Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D39 GW MON WELL 05/12/2016 8382705	EN-D39 GW MON WELL 08/04/2016 8512505	EN-D40 GW MON WELL 05/12/2016 8382706	EN-D40 GW MON WELL 08/04/2016 8512530	EN-D41 GW MON WELL 05/12/2016 8382698	EN-D41 GW MON WELL 08/04/2016 8512506
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.4 J ND@0.5 7.6 1.5 ND@0.5 ND@0.5 ND@0.5 160 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.7 ND@0.5 9.6 1.5 ND@0.5 ND@0.5 ND@0.5 0.1 J 160 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 2.7 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 3 0.3 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Site #704014 April 13, 2017 167 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D42 GW MON WELL 05/12/2016 8382699	EN-D42 GW MON WELL 08/05/2016 8512522	EN-D43 GW MON WELL 05/12/2016 8382700	EN-D43 GW MON WELL 08/04/2016 8512512	EN-D44 GW MON WELL 05/12/2016 8382707	EN-D44 GW MON WELL 08/04/2016 8512528
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	33	36
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.4 J	0.4 J	ND@0.5	ND@0.5	ND@5.0	ND@5
1,1-DICHLOROETHANE	ug/L	5.9	7	ND@0.5	ND@0.5	97	120
1,1-DICHLOROETHENE	ug/L	1	1.1	ND@0.5	ND@0.5	18	22
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	3.1	3.3	ND@0.5	ND@0.5	ND@5.0	ND@5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.7 J	2 J
BENZENE	ug/L	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@5.0	ND@5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	33	32
CIS-1,2-DICHLOROETHENE	ug/L	31	35	0.6	0.9	990	1200
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@5.0	ND@5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@5.0	ND@5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@5.0	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@5.0	ND@5
TRANS-1,2-DICHLOROETHENE	ug/L	0.2 J	0.2 J	ND@0.5	ND@0.5	1.2 J	1.9 J
TRICHLOROETHENE	ug/L	3.5	3.5	ND@0.5	0.1 J	150	160
VINYL CHLORIDE	ug/L	18	16	ND@0.5	ND@0.5	92	94
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@5.0	ND@5

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D45 GW MON WELL 05/12/2016 8382747	EN-D45 GW MON WELL 08/04/2016 8512529	EN-D46 GW MON WELL 05/12/2016 8382701	EN-D46 GW MON WELL 08/04/2016 8512513	EN-D47 GW MON WELL 05/12/2016 8382702	EN-D47 GW MON WELL 08/04/2016 8512508
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CS-1,2-DICHLOROETHENE ETHYLEBNZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VINYL CHLORIDE VILYNES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.2 ND@0.5 12 0.6 ND@0.5 0.1 J 0.3 J 3 61 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	7 ND@0.5 35 2.7 ND@0.5 0.2 J 0.1 J 8.9 290 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	100 ND@5.0 90 63 ND@5.0 2.3 J ND@5.0 8.1 2000 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0	120 ND@5 120 76 ND@5 2.9 J ND@5 7.6 2300 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 ND@65 140 91 ND@5	77 3.3 J 89 54 ND@5.0 3.1 J ND@5.0 15 1700 ND@5.0 ND@5.0 ND@5.0 ND@5.0 ND@5.0 440 41 ND@5.0	86 12 100 64 4.9 J 3.6 J ND@5 13 2100 ND@5 ND@5 ND@5 ND@5 ND@5 ND@5 380 38

April 13, 2017 Site #704014 169 of 173

Sample Location		EN-D48	EN-D48	EN-D49	EN-D49	EN-D49	EN-D49
Sample Description		GW MON WELL	GW MON WELL	GW EXTR WELL	GW EXTR WELL	GW EXTR WELL	GW EXTR WELL
Sample Date		05/11/2016	08/04/2016	01/05/2016	02/04/2016	03/01/2016	04/05/2016
Laboratory Sample I.D.		8382693	8512511	8196343	8232817	8266710	8319615
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	0.7 J	0.8 J	0.6 J	1.4
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	5.3	5.4	4.9	5.7
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	2.2	2.7	2.4	2.6
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@1.0	0.4 J	0.4 J	0.5 J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	3.1	3.4	2.7	2.9
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	140	130	140	150
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.3 J	0.2 J	0.2 J	0.3 J
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	1.2	1.4	1.2	1.4
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	45	45	47	49
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@1.0	ND@1.0	ND@1.0	ND@1.0

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D49 GW EXTR WELL 05/03/2016 8363276	EN-D49 GW EXTR WELL 06/07/2016 8414476	EN-D49 GW EXTR WELL 07/06/2016 8463628	EN-D49 GW EXTR WELL 08/02/2016 8508259	EN-D49 GW EXTR WELL 09/07/2016 8575333	EN-D49 GW EXTR WELL 10/04/2016 8629392
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.8 J ND@1.0 5.3 2.8 0.5 J ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.6 J ND@1.0 5.1 2.4 ND@1.0 ND@1.0 ND@1.0 ND@1.0 0.5 150 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.7 J ND@1.0 5.3 2.8 0.4 J ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0	0.7 J 0.5 J 6.1 3 0.5 J ND@1 ND@1 2.4 180 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 0.3 J 1.5 46 ND@1	0.7 J ND@1 5.3 2.5 0.5 J ND@1 ND@1 2.3 140 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 48 ND@1	0.5 J ND@1.0 4.9 2.4 ND@1.0 0.2 J ND@1.0 2 140 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0 ND@1.0

April 13, 2017 Site #704014 171 of 173

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-D49 GW EXTR WELL 11/02/2016 8680578	EN-D49 GW EXTR WELL 12/06/2016 8732108
Parameter	Units		
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 J ND@1 4.8 2.7 0.4 J ND@1 ND@1 1.8 160 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1	0.7 J ND@1 5.1 2.7 0.5 J 0.3 J ND@1 2.3 140 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 ND@1 1.1 ST ND@1 ND@1 ND@1 ND@1

Groundwater Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

Reporting Conventions

Not Analyzed Not Detected at Detection Limit X ND@X

Code Explanation

Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

April 13, 2017 Site #704014 173 of 173

			•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-095 GW MON WELL 02/10/2016 8238946	EN-095 GW MON WELL 05/25/2016 8400000	EN-095 GW MON WELL 08/11/2016 8525976	EN-095 GW MON WELL 11/17/2016 8707425	EN-096 GW MON WELL 02/10/2016 8238948	EN-096 GW MON WELL 05/25/2016 8400002
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.4 J	0.5 J	0.5	0.5	34	49
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	21	27
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	94	72
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	7.5	10
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	9.4	10
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J	0.1 J
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1	1.1
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	0.6	0.6	0.7	0.8	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.3 J	0.5	0.5 J	0.8	0.2 J	0.2 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	34	39
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.9	0.9
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 1 of 19

Sample Location		EN-095	EN-095	EN-095	EN-095	EN-096	EN-096
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		02/10/2016	05/25/2016	08/11/2016	11/17/2016	02/10/2016	05/25/2016
Laboratory Sample I.D.		8238946	8400000	8525976	8707425	8238948	8400002
Parameter	Units						
ETHYLBENZENE ISOPROPYLBENZENE M,P-XYLENE METHYL ACETATE METHYL BUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@1.0 J	ND@1.0	ND@1	ND@1	ND@1.0 J	ND@1.0
	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE TETRAHYDROFURAN TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFUNDROMETHANE (FREON 11)	ug/L	2.2	2.5	2.6	2.8	0.4 J	0.3 J
	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0	ND@5.0
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.3 J
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	3.2	3.4	3.7	4.6	3.5	3.3
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	23	22
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data: EN-154R Shutdown Test

Endicott, New York January 1, 2016 - December 31, 2016

		• • • • • • • • • • • • • • • • • • • •	, -,	,			
Sample Location		EN-096	EN-096	EN-104	EN-104	EN-104	EN-104
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		08/11/2016	11/17/2016	02/10/2016	05/25/2016	08/11/2016	11/17/2016
Laboratory Sample I.D.		8525978	8707427	8238945	8399999	8525975	8707424
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	39	42	1.8	1.9	2.7	2.1
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	19	27	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	73	85	0.9	1.1	1.5	1.3
1,1-DICHLOROETHENE	ug/L	8.3	11	0.2 J	0.3 J	0.3 J	0.2 J
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	10	11	0.2 J	0.3 J	0.4 J	0.3 J
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5	ND@5	ND@5.0	ND@5.0	ND@5	ND@5
BENZENE	ug/L	1.1	1.4	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1	ND@1	ND@1.0	ND@1.0	ND@1	ND@1
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.1 J	0.1 J	0.1 J	0.1 J	0.2 J	0.1 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	35	46	0.5	0.5	0.7	0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	1	1.3	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 3 of 19

			, ,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-096 GW MON WELL 08/11/2016 8525978	EN-096 GW MON WELL 11/17/2016 8707427	EN-104 GW MON WELL 02/10/2016 8238945	EN-104 GW MON WELL 05/25/2016 8399999	EN-104 GW MON WELL 08/11/2016 8525975	EN-104 GW MON WELL 11/17/2016 8707424
Parameter	Units						
ETHYLBENZENE ISOPROPYLBENZENE M,P.XYLENE METHYL ACETATE METHYL ACETATE METHYL EUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL TEHYL KETONE (MEK, 2-BUTANONE) METHYLTENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE TETRACHLOROETHENE TETRACHLOROETHENE TETRACHLOROFURAN TOLUENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 J ND@5.0 J ND@5.0 J 1.1 ND@0.5 ND@5.0 J ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@5.0 1.5 ND@0.5 ND@5.0 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@5 2 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@5 1.7 ND@0.5 ND@5 ND@0.5 ND@0.5 ND@0.5
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUOROMETHANE (FREON 11) VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L	0.2 J ND@0.5 2.5 ND@0.5 18 ND@0.5	0.2 J ND@0.5 2.6 ND@0.5 24 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5

			•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-150 GW MON WELL 02/10/2016 8238950	EN-150 GW MON WELL 05/25/2016 8400003	EN-150 GW MON WELL 08/11/2016 8525979	EN-150 GW MON WELL 11/17/2016 8707428	EN-152 GW MON WELL 02/10/2016 8238949	EN-152 GW MON WELL 05/25/2016 8400004
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	2.8	2.3	2.4	2.3	0.9	0.8
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	4.3	3.3	3.2	2.6	0.6	0.6
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	15	20	27	30	5.5	5.4
1,1-DICHLOROETHENE	ug/L	1.7	2.1	2.1	3.9	0.2 J	0.2 J
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	2.5	2.8	2.9	3.7	3.1	3.2
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	0.1 J	ND@0.5	0.1 J	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	15	17	15	20	4	3.7
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 5 of 19

Sample Location		EN-150	EN-150	EN-150	EN-150	EN-152	EN-152
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		02/10/2016	05/25/2016	08/11/2016	11/17/2016	02/10/2016	05/25/2016
Laboratory Sample I.D.		8238950	8400003	8525979	8707428	8238949	8400004
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE METHYL BUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE	ug/L	ND@1.0 J	ND@1.0	ND@1	ND@1	ND@1.0 J	ND@1.0
	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
	ug/L	0.1 J	ND@0.5	0.1 J	0.2 J	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J	ND@5.0
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	3.4	2.9
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	2.4	2.9	2	2.5	1.3	1.2
TRICHLOROFLUOROMETHANE (FREON 11) VINYL CHLORIDE XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	0.8	0.6	0.9	1.3	0.2 J	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

		Juliuui	y 1, 2010 Decemb	ci 31, 2010			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-152 GW MON WELL 08/11/2016 8525980	EN-152 GW MON WELL 11/17/2016 8707429	EN-154R GW MON WELL 02/10/2016 8238947	EN-154R GW MON WELL 05/25/2016 8400001	EN-154R GW MON WELL 08/11/2016 8525977	EN-154R GW MON WELL 11/17/2016 8707426
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.8	0.8	0.8	2	2.3	1.9
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.5	0.7	0.5	1.5	1.5	1.1
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	5.7	5.2	2.8	8.9	11	10
1,1-DICHLOROETHENE	ug/L	0.2 J	0.3 J	0.2 J	0.4 J	0.4 J	0.4 J
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	2.9	2.7	1.2	4.2	4.6	3.9
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5	ND@5	ND@5.0	ND@5.0	ND@5	ND@5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1	ND@1	ND@1.0	ND@1.0	ND@1	ND@1
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.1 J	ND@0.5	ND@0.5	0.2 J	0.1 J	0.1 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	4	6.5	2.8	7.2	7.4	7.8
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	6/ -	2 0.5	2 0.5	2 0.0	2 0.5	2 0.0	2 0.0

April 13, 2017 Site #704014 7 of 19

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EN-152 GW MON WELL 08/11/2016 8525980	EN-152 GW MON WELL 11/17/2016 8707429	EN-154R GW MON WELL 02/10/2016 8238947	EN-154R GW MON WELL 05/25/2016 8400001	EN-154R GW MON WELL 08/11/2016 8525977	EN-154R GW MON WELL 11/17/2016 8707426
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1	ND@1	ND@1.0 J	ND@1.0	ND@1	ND@1
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	2.6	3.6	1.6	4.3	4.2	4.9
TETRAHYDROFURAN	ug/L	ND@5	ND@5	ND@5.0	ND@5.0	ND@5	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.1 J	ND@0.5	0.1 J	0.2 J	0.1 J
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.1	1.6	1	2.4	2.5	2.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	0.1 J	0.4 J	0.4 J	0.4 J
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data: EN-154R Shutdown Test

Endicott, New York January 1, 2016 - December 31, 2016

		Juliuui	y 1, 2010 Decemb	Ci 31, 2010			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		RMJ-MW-1 GW MON WELL 02/10/2016 8239027	RMJ-MW-1 GW MON WELL 05/25/2016 8400005	RMJ-MW-1 GW MON WELL 08/11/2016 8525981	RMJ-MW-1 GW MON WELL 11/17/2016 8707430	RMJ-MW-2 GW MON WELL 02/10/2016 8239028	RMJ-MW-2 GW MON WELL 05/25/2016 8400006
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	1.5	1.1	1.2	1.2	6.1	5.7
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.4	1.6
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	0.3 J	0.3 J	0.6	0.4 J	0.3 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.4 J	0.6
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.2 J	0.2 J	0.4 J	0.2 J	0.2 J
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	0.1 J	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.8	1
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.8	0.8
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 9 of 19

Sample Location Sample Description Sample Date Laboratory Sample I.D.		RMJ-MW-1 GW MON WELL 02/10/2016 8239027	RMJ-MW-1 GW MON WELL 05/25/2016 8400005	RMJ-MW-1 GW MON WELL 08/11/2016 8525981	RMJ-MW-1 GW MON WELL 11/17/2016 8707430	RMJ-MW-2 GW MON WELL 02/10/2016 8239028	RMJ-MW-2 GW MON WELL 05/25/2016 8400006
Parameter	Units						
ETHYLBENZENE ISOPROPYLBENZENE M,P-XYLENE METHYL ACETATE METHYL BUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@1.0 J ND@5.0 J ND@5.0 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1 ND@5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 J ND@1.0 J ND@5.0 J ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TETRACHLOROETHENE TETRAHYDROFURAN TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFUOROMETHANE (FREON 11) VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 0.2 J ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.2 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.4 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.1 J ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@5.0 ND@0.5 ND@0.5 ND@0.5 0.1 J ND@0.5 ND@0.5 ND@0.5

			•	•			
Sample Location Sample Description Sample Date		RMJ-MW-2 GW MON WELL 08/11/2016	RMJ-MW-2 GW MON WELL 11/17/2016	RMJ-MW-3 GW MON WELL 02/10/2016	RMJ-MW-3 REPLICATE 02/10/2016	RMJ-MW-3 GW MON WELL 05/25/2016	RMJ-MW-3 GW MON WELL 08/11/2016
Laboratory Sample I.D.		8525982	8707431	8239032	8239033	8400011	8525987
zasoratory sumple no		0323302	0,0,151	0233002	0233033	0.00011	0323307
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	4.1	7	0.6	0.6	0.7	0.7
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	1.1	2.2	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	0.8	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	0.2 J	0.4 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.4 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5	ND@5	ND@5.0	ND@5.0	ND@5.0	ND@5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1	ND@1	ND@1.0	ND@1.0	ND@1.0	ND@1
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.7	1.3	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.6	1.2	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 11 of 19

Sample Location Sample Description Sample Date		RMJ-MW-2 GW MON WELL 08/11/2016	RMJ-MW-2 GW MON WELL 11/17/2016	RMJ-MW-3 GW MON WELL 02/10/2016	RMJ-MW-3 REPLICATE 02/10/2016	RMJ-MW-3 GW MON WELL 05/25/2016	RMJ-MW-3 GW MON WELL 08/11/2016
Laboratory Sample I.D.		8525982	8707431	8239032	8239033	8400011	8525987
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1	ND@1	ND@1.0 J	ND@1.0 J	ND@1.0	ND@1
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0 J	ND@5.0	ND@5
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0 J	ND@5.0	ND@5
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5	ND@5	ND@5.0 J	ND@5.0 J	ND@5.0	ND@5
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.3 J	0.8	24	24	21	24
TETRAHYDROFURAN	ug/L	ND@5	ND@5	ND@5.0	ND@5.0	ND@5.0	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.1 J	0.2 J	0.3 J	0.3 J	0.3 J	0.2 J
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Sample Location Sample Description Sample Date Laboratory Sample I.D.	RMJ-MW-3 GW MON WELL 11/17/2016 8707432	RMJ-MW-4 GW MON WELL 02/10/2016 8239029	RMJ-MW-4 GW MON WELL 05/25/2016 8400007	RMJ-MW-4 GW MON WELL 08/11/2016 8525983	RMJ-MW-4 GW MON WELL 11/17/2016 8707433	RMJ-MW-5 GW MON WELL 02/10/2016 8239031
Parameter Units						
1,1,1-TRICHLOROETHANE ug/L	0.7	0.3 J	0.2 J	0.2 J	0.2 J	9
1,1,2,2-TETRACHLOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	2.1
1,1,2-TRICHLOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.7
1,1-DICHLOROETHENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.2 J
1,2,4-TRICHLOROBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.4 J
1,2-DICHLOROBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE ug/L	ND@5	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
BENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE ug/L	ND@1	ND@1.0	ND@1.0	ND@1	ND@1	ND@1.0
CARBON TETRACHLORIDE ug/L	ND@0.5	0.3 J	0.3 J	0.3 J	0.3 J	ND@0.5
CHLOROBENZENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.3 J
CHLOROMETHANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.5 J
CIS-1,3-DICHLOROPROPENE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 13 of 19

Sample Location Sample Description Sample Date Laboratory Sample I.D.		RMJ-MW-3 GW MON WELL 11/17/2016 8707432	RMJ-MW-4 GW MON WELL 02/10/2016 8239029	RMJ-MW-4 GW MON WELL 05/25/2016 8400007	RMJ-MW-4 GW MON WELL 08/11/2016 8525983	RMJ-MW-4 GW MON WELL 11/17/2016 8707433	RMJ-MW-5 GW MON WELL 02/10/2016 8239031
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1	ND@1.0 J	ND@1.0	ND@1	ND@1	ND@1.0 J
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5	ND@5.0 J	ND@5.0	ND@5	ND@5	ND@5.0 J
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	21	35	27	27	32	5.2
TETRAHYDROFURAN	ug/L	ND@5	ND@5.0	ND@5.0	ND@5	ND@5	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.2 J	1.1	0.9	0.7	0.9	2.3
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

		January	1, 2010 Decemb	c. 51, 2010			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		RMJ-MW-5 GW MON WELL 05/25/2016 8400009	RMJ-MW-5 REPLICATE 05/25/2016 8400010	RMJ-MW-5 GW MON WELL 08/11/2016 8525985	RMJ-MW-5 REPLICATE 08/11/2016 8525986	RMJ-MW-5 GW MON WELL 11/17/2016 8707434	RMJ-MW-5 REPLICATE 11/17/2016 8707435
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	10	10	9.6	9.6	11	11
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	2.7	2.9	2.5	2.5	3.5	3.2
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	2.2	2.2	2.4	2.4	3.2	3.1
1,1-DICHLOROETHENE	ug/L	0.6	0.6	0.3 J	0.3 J	0.4 J	0.3 J
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.6	0.6	0.6	0.6	0.8	0.8
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5	ND@5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1	ND@1
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.4 J	0.4 J	0.4 J	0.4 J	0.5 J	0.4 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.8	0.8	0.8	0.8	1.3	1.2
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 15 of 19

Sample Location Sample Description Sample Date Laboratory Sample I.D.		RMJ-MW-5 GW MON WELL 05/25/2016 8400009	RMJ-MW-5 REPLICATE 05/25/2016 8400010	RMJ-MW-5 GW MON WELL 08/11/2016 8525985	RMJ-MW-5 REPLICATE 08/11/2016 8525986	RMJ-MW-5 GW MON WELL 11/17/2016 8707434	RMJ-MW-5 REPLICATE 11/17/2016 8707435
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1	ND@1	ND@1
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5	ND@5
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5	ND@5
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5	ND@5
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	4.4	4.6	3.6	3.7	4.7	4
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5	ND@5	ND@5	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	2.2	2.1	1.8	1.8	2.9	2.8
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data: EN-154R Shutdown Test

Endicott, New York

Laboratory Sample I.D.		8239030	8400008	8525984	8707436
Parameter	Units				
1,1,1-TRICHLOROETHANE	ug/L	4.2	4.8	5.7	9.9
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUO	ROETHANE ug/L	1.1	1.2	1.4	2.7
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.5 J	0.6	0.9	1.7
1,1-DICHLOROETHENE	ug/L	0.2 J	0.4 J	0.2 J	0.4 J
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPAI	NE ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUORO	ETHANE ug/L	0.2 J	0.3 J	0.3 J	0.6
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5	ND@5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETH		ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1	ND@1
CARBON TETRACHLORIDE	ug/L	0.1 J	0.1 J	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETI		0.1 J	0.2 J	0.2 J	0.5 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.3 J	0.4 J	0.6	0.9
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12) ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 17 of 19

Groundwater Analytical Chemistry Data: EN-154R Shutdown Test Endicott, New York

Sample Location		RMJ-MW-6	RMJ-MW-6	RMJ-MW-6	RMJ-MW-6
Sample Description		GW MON WELL	GW MON WELL	GW MON WELL	GW MON WELL
Sample Date		02/10/2016	05/25/2016	08/11/2016	11/17/2016
Laboratory Sample I.D.		8239030	8400008	8525984	8707436
Parameter	Units				
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0 J	ND@1.0	ND@1	ND@1
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0 J	ND@5.0	ND@5	ND@5
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	19	18	14	22
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5	ND@5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.7	1.6	1.5	2.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Groundwater Analytical Chemistry Data: EN-154R Shutdown Test **Endicott, New York**

January 1, 2016 - December 31, 2016

Reporting Conventions

Not Analyzed Not Detected at Detection Limit X ND@X

Code Explanation

Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

April 13, 2017 Site #704014 19 of 19

Groundwater Analytical Chemistry Data: OU#4 Dissolved Gases Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location	1	EN	-080	EN	-080	EN	-130	EN	-130	EN	-173	EN	I-173
<u> </u>											_		
Sample Description		GW MON V	VELL	GW MON V	VELL	GW MON V	WELL	GW MON V	GW MON WELL		VELL	GW MON \	WELL
Sample Date		05/09/2	2016	11/02/2016		05/09/	2016	11/02/	2016	05/09/2016		11/02/	2016
Laboratory Sample I.D.		837	7726	8681593		8374657		8681597		8377725		868	1592
Parameter	Units												
ETHANE	ug/L	ND@5.0		ND@5		ND@5.0		ND@5		ND@5.0		1	J
ETHENE	ug/L	ND@5.0		ND@5		ND@5.0		ND@5		ND@5.0		ND@5	
FREE CARBON DIOXIDE	ug/L	65000		67000		130000		150000		57000		96000	
METHANE	ug/L	71		ND@5		1400		1500		190		320	

Sample Location		EN	-381	EN	-381	EN	-382	EN	-382	EN-3	387A	EN-3	387A
Sample Description		GW MON V	WELL	GW MON V	VELL	GW MON V	VELL	GW MON \	WELL	GW MON V	VELL	REPLIC	CATE
Sample Date		05/09/	2016	11/02/2	2016	05/09/	2016	11/02/	2016	05/09/	2016	05/09/	2016
Laboratory Sample I.D.		837	4658	8683	1601	837	4660	868	1595	837	4655	837	4656
Parameter	Units												
ETHANE	ug/L	2.3	J	ND@5		1.2	J	ND@5		2	J	2	J
ETHENE	ug/L	1.4	J	ND@5		ND@5.0		ND@5		1.6	J	1.7	J
FREE CARBON DIOXIDE	ug/L	81000		120000		30000		75000		93000		92000	
METHANE	ug/L	460		81		60		66		670		730	

Sample Location		EN-3	387A	EN-3	387A	EN-	392R	EN-	392R	EN	-393	3 EN-3	
Sample Description		GW MON V	WELL	REPLIC	CATE	GW MON V	NELL	GW MON \	NELL	GW MON \	NELL	GW MON V	WELL
Sample Date		11/02/	2016			05/09/	2016	11/02/	2016	05/09/	2016	11/02/2	2016
Laboratory Sample I.D.		868	1599			837	8374661		8681602		7724	8683	1594
Parameter	Units												
ETHANE	ug/L	2.3	J	2.4	J	ND@5.0		ND@500		ND@5.0		ND@5	
ETHENE	ug/L	1.8	J	1.9	J	ND@5.0		ND@500		ND@5.0		ND@5	
FREE CARBON DIOXIDE	ug/L	110000		100000		130000		ND@600000		47000		61000	
METHANE	ug/L	980		930		46		2800		87		130	

Sample Location		EN	-394	EN	-394	EN	-395	EN	-395	EN	N-396 E		I-396
Sample Description		GW MON V	VELL	GW MON V	VELL	GW MON V	WELL	GW MON \	WELL	GW MON \	NELL	GW MON V	NELL
Sample Date		05/09/2	2016	11/02/2	11/02/2016		2016	11/02/	2016	05/09/	2016	11/02/2	2016
Laboratory Sample I.D.		8374	4664	8681596		8374666		8681623		8374665		868:	1598
Parameter	Units												
ETHANE	ug/L	ND@5.0		ND@5		ND@5.0		ND@5		ND@5.0		ND@5	
ETHENE	ug/L	ND@5.0		ND@5		ND@5.0		ND@5		ND@5.0		ND@5	
FREE CARBON DIOXIDE	ug/L	65000		59000		240000		230000		220000		200000	
METHANE	ug/L	810		410		410		78		540		660	

Sample Location		EN	-399	EN	-399	EN	-527	EN	-528	EN	I-528
Sample Description		GW MON \	WELL	GW MON \	NELL	GW MON \	NELL	GW MON \	NELL	GW MON \	WELL
Sample Date		05/09/2016		11/02/	2016	05/09/	2016	05/09/	05/09/2016		2016
Laboratory Sample I.D.		837	4667	868	1624	837	4662	837	4663	868	1626
Parameter	Units										
ETHANE	ug/L	1.8	J	ND@5		ND@5.0		ND@5.0		ND@5	
ETHENE	ug/L	ND@5.0		ND@5		ND@5.0		ND@5.0		ND@5	
FREE CARBON DIOXIDE	ug/L	140000		NA		79000		93000		130000	
METHANE	ug/L	550		350		250		5	J	20	

Reporting Conventions: NA = Not Analyzed

ND@X = Not Detected at Detection Limit X

J = Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

			•				
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 01/05/2016 8196325	1M EFFLUENT GARFIELD GTF 02/04/2016 8232755	1M EFFLUENT GARFIELD GTF 03/01/2016 8266693	1M EFFLUENT GARFIELD GTF 04/05/2016 8319598	1M EFFLUENT GARFIELD GTF 05/03/2016 8363231	1M EFFLUENT GARFIELD GTF 06/07/2016 8414635
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	0.3 J	NA
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,1-DICHLOROETHANE	ug/L	0.2 J	ND@0.5	ND@0.5	ND@0.5	0.4 J	NA
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	NA
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	NA
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA

April 13, 2017 Site #704014 1 of 41

		•	•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 01/05/2016 8196325	1M EFFLUENT GARFIELD GTF 02/04/2016 8232755	1M EFFLUENT GARFIELD GTF 03/01/2016 8266693	1M EFFLUENT GARFIELD GTF 04/05/2016 8319598	1M EFFLUENT GARFIELD GTF 05/03/2016 8363231	1M EFFLUENT GARFIELD GTF 06/07/2016 8414635
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
ISOPROPYLBENZENE M.P-XYLENE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	NA NA
METHYL ACETATE	ug/L ug/L	ND@0.3 ND@1.0	ND@0.3 ND@1.0	ND@0.3 ND@1.0	ND@0.3	ND@0.3 ND@1.0	NA NA
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	NA.
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	NA
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	NA
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	NA
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	NA
PHOSPHORUS, TOTAL	mg/L	ND@0.10	ND@0.10	0.43	0.79	0.34	1

			•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 06/13/2016 8424363	1M EFFLUENT GARFIELD GTF 06/21/2016 8437991	1M EFFLUENT GARFIELD GTF 06/28/2016 8450959	1M EFFLUENT GARFIELD GTF 07/13/2016 8474352	1M EFFLUENT GARFIELD GTF 07/21/2016 8487315	1M EFFLUENT GARFIELD GTF 08/02/2016 8508242
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	0.4 J	0.2 J	0.1 J	0.3 J
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	0.1 J	2.6	ND@0.5	ND@0.5	0.1 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.5 J	0.1 J	ND@0.5	0.3 J
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 3 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 06/13/2016 8424363	1M EFFLUENT GARFIELD GTF 06/21/2016 8437991	1M EFFLUENT GARFIELD GTF 06/28/2016 8450959	1M EFFLUENT GARFIELD GTF 07/13/2016 8474352	1M EFFLUENT GARFIELD GTF 07/21/2016 8487315	1M EFFLUENT GARFIELD GTF 08/02/2016 8508242
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	0.05 J	NA	ND@0.10

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 09/07/2016 8575325	1M EFFLUENT GARFIELD GTF 10/04/2016 8629357	1M EFFLUENT GARFIELD GTF 11/02/2016 8680561	1M EFFLUENT GARFIELD GTF 12/06/2016 8732091	1M INFLUENT GARFIELD GTF 01/05/2016 8196323	1M INFLUENT GARFIELD GTF 02/04/2016 8232753
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	7.1	8
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.1 J	ND@0.5	0.3 J	ND@0.5	7.4	8.4
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	1.1	1.2
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L ug/L	ND@0.5	ND@0.5 ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE		ND@0.5	_	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	_	_	_	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	12	13
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 5 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M EFFLUENT GARFIELD GTF 09/07/2016 8575325	1M EFFLUENT GARFIELD GTF 10/04/2016 8629357	1M EFFLUENT GARFIELD GTF 11/02/2016 8680561	1M EFFLUENT GARFIELD GTF 12/06/2016 8732091	1M INFLUENT GARFIELD GTF 01/05/2016 8196323	1M INFLUENT GARFIELD GTF 02/04/2016 8232753
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.9	0.8
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	12	12
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	0.16	0.1	0.19	0.09 J	NA	NA

		,	_,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M INFLUENT GARFIELD GTF 03/01/2016 8266691	1M INFLUENT GARFIELD GTF 04/05/2016 8319596	1M INFLUENT GARFIELD GTF 05/03/2016 8363229	1M INFLUENT GARFIELD GTF 06/13/2016 8424362	1M INFLUENT GARFIELD GTF 06/21/2016 8437990	1M INFLUENT GARFIELD GTF 06/28/2016 8450958
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	6.4	4.2	5.3	4	3.6	3.9
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	7.6	5.6	7.1	6.3	5.5	6
1,1-DICHLOROETHENE	ug/L	1	0.7	0.9	0.9	0.8	0.7
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	12	8.7	9.2	6.9	5.9	6.2
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 7 of 41

		•	•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M INFLUENT GARFIELD GTF 03/01/2016 8266691	1M INFLUENT GARFIELD GTF 04/05/2016 8319596	1M INFLUENT GARFIELD GTF 05/03/2016 8363229	1M INFLUENT GARFIELD GTF 06/13/2016 8424362	1M INFLUENT GARFIELD GTF 06/21/2016 8437990	1M INFLUENT GARFIELD GTF 06/28/2016 8450958
Parameter	Units						
ETHYLBENZENE ISOPROPYLBENZENE M,P-XYLENE METHYL ACETATE METHYL ACETATE METHYL GYCLOHEXANE METHYL CYCLOHEXANE METHYL CYCLOHEXANE METHYL CHAVE METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE TETRACHLOROETHENE TETRACHLOROETHENE TETRAHYDROFURAN TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	0.4 J ND@0.5 2.3 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 O.7 ND@0.5 0.7 ND@0.5 0.7 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11) VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 3	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

		Juliadiy	1, 2010 Decembe	1 31, 2010			
Sample Location Sample Description Sample Date		1M INFLUENT GARFIELD GTF 07/13/2016	1M INFLUENT GARFIELD GTF 07/21/2016	1M INFLUENT GARFIELD GTF 08/02/2016	1M INFLUENT GARFIELD GTF 09/07/2016	1M INFLUENT GARFIELD GTF 10/04/2016	1M INFLUENT GARFIELD GTF 11/02/2016
Laboratory Sample I.D.		8474351	8487313	8508240	8575323	8629355	8680559
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	3.9	3.9	5.1	4.3	3.8	2.9
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	6.4	5.4	8.4	7.2	6.2	5.2
1,1-DICHLOROETHENE	ug/L	0.7	0.8	1	0.7	0.6	0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	7.2	7.2	11	9.1	8.3	6.8
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 9 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M INFLUENT GARFIELD GTF 07/13/2016 8474351	1M INFLUENT GARFIELD GTF 07/21/2016 8487313	1M INFLUENT GARFIELD GTF 08/02/2016 8508240	1M INFLUENT GARFIELD GTF 09/07/2016 8575323	1M INFLUENT GARFIELD GTF 10/04/2016 8629355	1M INFLUENT GARFIELD GTF 11/02/2016 8680559
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.6	0.7	0.8	0.7	0.8	0.6
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	0.1 J	0.2 J	0.2 J	0.1 J
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	6.8	7.4	10	12	11	8.1
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		1M INFLUENT GARFIELD GTF 12/06/2016 8732089	2M EFFLUENT JEFF GTF 01/05/2016 8196331	2M EFFLUENT JEFF GTF 02/04/2016 8232761	2M EFFLUENT JEFF GTF 03/01/2016 8266699	2M EFFLUENT JEFF GTF 04/05/2016 8319605	2M EFFLUENT JEFF GTF 05/03/2016 8363237
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	2.9	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	4.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	0.5 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	5.8	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 11 of 41

Sample Location Sample Description Sample Date		1M INFLUENT GARFIELD GTF 12/06/2016	2M EFFLUENT JEFF GTF 01/05/2016	2M EFFLUENT JEFF GTF 02/04/2016	2M EFFLUENT JEFF GTF 03/01/2016	2M EFFLUENT JEFF GTF 04/05/2016	2M EFFLUENT JEFF GTF 05/03/2016
Laboratory Sample I.D.		8732089	8196331	8232761	8266699	8319605	8363237
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	6.8	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

			•	•			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M EFFLUENT JEFF GTF 06/07/2016 8414624	2M EFFLUENT JEFF GTF 07/06/2016 8463615	2M EFFLUENT JEFF GTF 08/02/2016 8508248	2M EFFLUENT JEFF GTF 09/07/2016 8575331	2M EFFLUENT JEFF GTF 10/04/2016 8629363	2M EFFLUENT JEFF GTF 11/02/2016 8680567
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	0.1 J	0.2 J	0.3 J	0.3 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	0.1 J	0.2 J	0.2 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Site #704014 April 13, 2017 13 of 41

Parameter Units	Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M EFFLUENT JEFF GTF 06/07/2016 8414624	2M EFFLUENT JEFF GTF 07/06/2016 8463615	2M EFFLUENT JEFF GTF 08/02/2016 8508248	2M EFFLUENT JEFF GTF 09/07/2016 8575331	2M EFFLUENT JEFF GTF 10/04/2016 8629363	2M EFFLUENT JEFF GTF 11/02/2016 8680567
ISOPROPYLBENZENE	Parameter	Units						
	ISOPROPYLBENZENE M,P-XYLENE METHYL ACETATE METHYL BUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYLTERT-BUTYL ETHER (MTBE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE TETRACHLOROETHENE TETRACHLOROETHENE TETRAHYDROFURAN TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
	XYLENES, TOTAL PHOSPHORUS. TOTAL	ug/L mg/L	ND@0.5 NA	ND@0.5	ND@0.5 NA	ND@0.5	ND@0.5 NA	ND@0.5 NA

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M EFFLUENT JEFF GTF 12/06/2016 8732098	2M INFLUENT JEFF GTF 01/05/2016 8196329	2M INFLUENT JEFF GTF 02/04/2016 8232759	2M INFLUENT JEFF GTF 03/01/2016 8266697	2M INFLUENT JEFF GTF 04/05/2016 8319603	2M INFLUENT JEFF GTF 05/03/2016 8363235
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.1 J	0.3 J	0.3 J	0.3 J	0.3 J	0.3 J
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.2 J				
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 15 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M EFFLUENT JEFF GTF 12/06/2016 8732098	2M INFLUENT JEFF GTF 01/05/2016 8196329	2M INFLUENT JEFF GTF 02/04/2016 8232759	2M INFLUENT JEFF GTF 03/01/2016 8266697	2M INFLUENT JEFF GTF 04/05/2016 8319603	2M INFLUENT JEFF GTF 05/03/2016 8363235
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	0.9	0.8	0.9	0.8	0.9
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	1.3	1.2	1.1	1.2	1.1
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M INFLUENT JEFF GTF 06/07/2016 8414622	2M INFLUENT JEFF GTF 07/06/2016 8463613	2M INFLUENT JEFF GTF 08/02/2016 8508246	2M INFLUENT JEFF GTF 09/07/2016 8575329	2M INFLUENT JEFF GTF 10/04/2016 8629361	2M INFLUENT JEFF GTF 11/02/2016 8680565
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.2 J	0.2 J	0.3 J	0.3 J	0.3 J	0.2 J
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J	0.1 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.1 J	0.1 J	0.1 J	0.2 J	0.2 J	0.1 J
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 17 of 41

Sample Location Sample Description		2M INFLUENT JEFF GTF	2M INFLUENT JEFF GTF	2M INFLUENT JEFF GTF	2M INFLUENT JEFF GTF	2M INFLUENT JEFF GTF	2M INFLUENT JEFF GTF
Sample Date		06/07/2016	07/06/2016	08/02/2016	09/07/2016	10/04/2016	11/02/2016
Laboratory Sample I.D.		8414622	8463613	8508246	8575329	8629361	8680565
Laboratory Sample 1.D.		8414022	6403013	6306240	6373329	8029301	8080303
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.8	1	1.1	0.9	1	0.9
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.9	0.9	1	0.9	1	1
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M INFLUENT JEFF GTF 12/06/2016 8732096	3M EFFLUENT ADAMS GTF 01/05/2016 8196337	3M EFFLUENT ADAMS GTF 02/04/2016 8232766	3M EFFLUENT ADAMS GTF 03/01/2016 8266704	3M EFFLUENT ADAMS GTF 04/05/2016 8319610	3M EFFLUENT ADAMS GTF 05/03/2016 8363243
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.3 J	0.1 J	0.2 J	0.2 J	0.3 J	0.3 J
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 19 of 41

			•				
Sample Location Sample Description Sample Date Laboratory Sample I.D.		2M INFLUENT JEFF GTF 12/06/2016 8732096	3M EFFLUENT ADAMS GTF 01/05/2016 8196337	3M EFFLUENT ADAMS GTF 02/04/2016 8232766	3M EFFLUENT ADAMS GTF 03/01/2016 8266704	3M EFFLUENT ADAMS GTF 04/05/2016 8319610	3M EFFLUENT ADAMS GTF 05/03/2016 8363243
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	0.9	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.1	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	0.36	1.5	0.3	0.23	0.22

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M EFFLUENT ADAMS GTF 06/07/2016 8414629	3M EFFLUENT ADAMS GTF 07/06/2016 8463620	3M EFFLUENT ADAMS GTF 08/02/2016 8508253	3M EFFLUENT ADAMS GTF 09/07/2016 8575318	3M EFFLUENT ADAMS GTF 10/04/2016 8629368	3M EFFLUENT ADAMS GTF 11/02/2016 8680572
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L ug/L	0.3 J ND@0.5	0.3 J ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	0.	ND@0.5 ND@0.5	_	ND@0.5 ND@0.5	ND@0.5	_	_
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	_	_	_	_	_	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	_	_	_	_	-	-
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L ug/L	ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	٠.	ND@0.5	_	_	_	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 21 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M EFFLUENT ADAMS GTF 06/07/2016 8414629	3M EFFLUENT ADAMS GTF 07/06/2016 8463620	3M EFFLUENT ADAMS GTF 08/02/2016 8508253	3M EFFLUENT ADAMS GTF 09/07/2016 8575318	3M EFFLUENT ADAMS GTF 10/04/2016 8629368	3M EFFLUENT ADAMS GTF 11/02/2016 8680572
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	0.29	0.31	0.86	0.35	0.23	0.3

		•	•				
Sample Location		3M EFFLUENT	3M INFL A1	3M INFL A1	3M INFL A1	3M INFL A1	3M INFL A1
Sample Description		ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF
Sample Date		12/06/2016	01/05/2016	02/04/2016	03/01/2016	04/05/2016	05/03/2016
Laboratory Sample I.D.		8732103	8196333	8232762	8266700	8319606	8363239
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	0.6	0.7	0.5	0.8	0.7
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.2 J	0.2 J	ND@0.5	0.3 J	0.2 J
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	5	5.4	4.7	6.5	5.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	1.7	2	1.5	2.6	2
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.3 J	0.4 J	0.3 J	0.5 J	0.4 J
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	0.1 J	0.2 J	0.2 J	0.2 J	0.2 J
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	2.4	3	2.2	2.7	2.8
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	110	130	110	160	130
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 23 of 41

		,	_,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M EFFLUENT ADAMS GTF 12/06/2016 8732103	3M INFL A1 ADAMS GTF 01/05/2016 8196333	3M INFL A1 ADAMS GTF 02/04/2016 8232762	3M INFL A1 ADAMS GTF 03/01/2016 8266700	3M INFL A1 ADAMS GTF 04/05/2016 8319606	3M INFL A1 ADAMS GTF 05/03/2016 8363239
Parameter	Units						
ETHYLBENZENE ISOPROPYLBENZENE M,P-XYLENE METHYL ACETATE METHYL BUTYL KETONE (2-HEXANONE) METHYL CYCLOHEXANE METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE) O-XYLENE STYRENE TETRACHLOROETHENE TETRAHYDROFURAN TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFULOROMETHANE (FREON 11)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@1.0 ND@5.0 ND@5.0 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L	ND@0.5 ND@0.5	14 ND@0.5	17 ND@0.5	12 ND@0.5	13 ND@0.5	9.1 ND@0.5
PHOSPHORUS, TOTAL	mg/L	0.33	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

		,	_,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A1 ADAMS GTF 06/07/2016 8414625	3M INFL A1 ADAMS GTF 07/06/2016 8463616	3M INFL A1 ADAMS GTF 08/02/2016 8508249	3M INFL A1 ADAMS GTF 09/07/2016 8575314	3M INFL A1 ADAMS GTF 10/04/2016 8629364	3M INFL A1 ADAMS GTF 11/02/2016 8680568
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.6	0.7	0.7	0.6	0.6	0.5
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.2 J	0.2 J	0.3 J	0.2 J	0.2 J	0.2 J
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	5.3	5.5	6.3	5.4	5.3	5.3
1,1-DICHLOROETHENE	ug/L	2.1	2.1	2.4	2	2.1	2.3
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.4 J	0.4 J	0.4 J	0.4 J	0.4 J	0.4 J
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	0.2 J	0.2 J	0.2 J	0.2 J	0.2 J	0.2 J
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	2.3	2.4	2.2	2	2	1.8
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	120	120	140	120	130	130
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Site #704014 April 13, 2017 25 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A1 ADAMS GTF 06/07/2016 8414625	3M INFL A1 ADAMS GTF 07/06/2016 8463616	3M INFL A1 ADAMS GTF 08/02/2016 8508249	3M INFL A1 ADAMS GTF 09/07/2016 8575314	3M INFL A1 ADAMS GTF 10/04/2016 8629364	3M INFL A1 ADAMS GTF 11/02/2016 8680568
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.4 J	0.7	0.4 J	0.4 J	0.4 J	0.4 J
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1.4	1.1	1.4	1.1	1	1.1
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	16	10	18	3.3	6.9	9.2
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A1 ADAMS GTF 12/06/2016 8732099	3M INFL A2 ADAMS GTF 01/05/2016 8196334	3M INFL A2 ADAMS GTF 02/04/2016 8232763	3M INFL A2 ADAMS GTF 03/01/2016 8266701	3M INFL A2 ADAMS GTF 04/05/2016 8319607	3M INFL A2 ADAMS GTF 05/03/2016 8363240
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.7	0.5 J	0.5	0.4 J	0.6	0.5
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	5.6	0.2 J				
1,1-DICHLOROETHENE	ug/L	2.1	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.4 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	2.2	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	130	0.2 J				
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 27 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A1 ADAMS GTF 12/06/2016 8732099	3M INFL A2 ADAMS GTF 01/05/2016 8196334	3M INFL A2 ADAMS GTF 02/04/2016 8232763	3M INFL A2 ADAMS GTF 03/01/2016 8266701	3M INFL A2 ADAMS GTF 04/05/2016 8319607	3M INFL A2 ADAMS GTF 05/03/2016 8363240
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	2.4	2.1	2	2.1	2.3
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.3 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1	1.1	1.1	1	1.2	1
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	12	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

			*	•			
Sample Location		3M INFL A2	3M INFL A2	3M INFL A2	3M INFL A2	3M INFL A2	3M INFL A2
Sample Description		ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF	ADAMS GTF
Sample Date		06/07/2016	07/06/2016	08/02/2016	09/07/2016	10/04/2016	11/02/2016
Laboratory Sample I.D.		8414626	8463617	8508250	8575315	8629365	8680569
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.4 J	0.4 J	0.5	0.5 J	0.5 J	0.4 J
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.1 J	0.1 J	0.2 J	0.1 J	0.1 J	0.1 J
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.2 J	0.2 J	0.3 J	0.2 J	0.2 J	0.2 J
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 29 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A2 ADAMS GTF 06/07/2016 8414626	3M INFL A2 ADAMS GTF 07/06/2016 8463617	3M INFL A2 ADAMS GTF 08/02/2016 8508250	3M INFL A2 ADAMS GTF 09/07/2016 8575315	3M INFL A2 ADAMS GTF 10/04/2016 8629365	3M INFL A2 ADAMS GTF 11/02/2016 8680569
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	2.2	2.2	2.1	1.9	1.9	1.9
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	1	1	0.9	0.9	0.9	0.9
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

			•				
Sample Location Sample Description Sample Date Laboratory Sample I.D.		3M INFL A2 ADAMS GTF 12/06/2016 8732100	6M EFFLUENT CLARK GTF 01/05/2016 8196340	6M EFFLUENT CLARK GTF 02/04/2016 8232769	6M EFFLUENT CLARK GTF 03/01/2016 8266707	6M EFFLUENT CLARK GTF 04/05/2016 8319613	6M EFFLUENT CLARK GTF 05/03/2016 8363246
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	5.5	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	1.1	ND@0.5	0.1 J	ND@0.5	1.1
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	0.2 J
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	0.5	ND@0.5	ND@0.5	ND@0.5	0.6
CHLOROETHANE	ug/L	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	1.6	0.2 J	ND@0.5	ND@0.5	0.8
CHLOROMETHANE	ug/L	ND@0.5	0.6	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 31 of 41

Sample Location Sample Description		3M INFL A2 ADAMS GTF	6M EFFLUENT CLARK GTF	6M EFFLUENT CLARK GTF	6M EFFLUENT CLARK GTF	6M EFFLUENT CLARK GTF	6M EFFLUENT CLARK GTF
Sample Date		12/06/2016	01/05/2016	02/04/2016	03/01/2016	04/05/2016	05/03/2016
Laboratory Sample I.D.		8732100	8196340	8232769	8266707	8319613	8363246
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	ND@1.0	0.5 J	0.6 J	ND@1.0	0.6 J	0.5 J
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	13	10	9.3	5.7	6.1
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	1.9	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	0.9	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	NA	1.5	1.9	1.7	0.82	2

		,	-,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		6M EFFLUENT CLARK GTF 06/07/2016 8414633	6M EFFLUENT CLARK GTF 07/06/2016 8463623	6M EFFLUENT CLARK GTF 08/02/2016 8508256	6M EFFLUENT CLARK GTF 09/07/2016 8575321	6M EFFLUENT CLARK GTF 10/04/2016 8629372	6M EFFLUENT CLARK GTF 11/02/2016 8680575
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	ug/L ug/L	0.1 J ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ACETONE	ug/L	ND@5.0	5.1	ND@5.0	ND@5.0	ND@5.0	ND@5.0
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMODICHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	0.1 J
BROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CARBON DISULFIDE	ug/L	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0	ND@1.0
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLORODIBROMOMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	0.2 J	0.1 J	ND@0.5	ND@0.5
CHLOROMETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 33 of 41

Sample Location Sample Description Sample Date Laboratory Sample I.D.		6M EFFLUENT CLARK GTF 06/07/2016 8414633	6M EFFLUENT CLARK GTF 07/06/2016 8463623	6M EFFLUENT CLARK GTF 08/02/2016 8508256	6M EFFLUENT CLARK GTF 09/07/2016 8575321	6M EFFLUENT CLARK GTF 10/04/2016 8629372	6M EFFLUENT CLARK GTF 11/02/2016 8680575
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
M,P-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ACETATE	ug/L	0.7 J	0.4 J	0.6 J	ND@1.0	0.3 J	ND@1.0
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	7	7.9	9.4	7.2	3.2 J	ND@5.0
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
O-XYLENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
STYRENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRAHYDROFURAN	ug/L	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0	ND@5.0
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
PHOSPHORUS, TOTAL	mg/L	1.1	0.82	0.43	0.81	1.2	0.87

Groundwater Treatment Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

			, _,	,			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		6M EFFLUENT CLARK GTF 12/06/2016 8732106	6M INFLUENT CLARK GTF 01/05/2016 8196339	6M INFLUENT CLARK GTF 02/04/2016 8232768	6M INFLUENT CLARK GTF 03/01/2016 8266706	6M INFLUENT CLARK GTF 04/05/2016 8319612	6M INFLUENT CLARK GTF 05/03/2016 8363245
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	3.3	15000	10000	13000	9900	11000
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	230	150	220	160	180
1,1,2-TRICHLOROETHANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,1-DICHLOROETHANE	ug/L	3.3	2600	1500	2200	1500	1700
1,1-DICHLOROETHENE	ug/L	ND@0.5	86 J	180	270	190	290
1,2,4-TRICHLOROBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,2,4-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DIBROMOETHANE (EDB)	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DICHLOROBENZENE	ug/L	0.2 J	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DICHLOROETHANE (EDC)	ug/L	0.1 J	ND@100	ND@100	ND@100	ND@100	ND@100
1,2-DICHLOROPROPANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,3,5-TRIMETHYLBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,3-DICHLOROBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
1,4-DICHLOROBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
ACETONE	ug/L	ND@5.0	ND@1000	ND@1000	ND@1,000	ND@1000	ND@1000
BENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
BROMODICHLOROMETHANE	ug/L	0.7	ND@100	ND@100	ND@100	ND@100	ND@100
BROMOFORM (TRIBROMOMETHANE)	ug/L	0.1 J	ND@100	ND@100	ND@100	ND@100	ND@100
BROMOMETHANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
CARBON DISULFIDE	ug/L	ND@1.0	ND@200	ND@200	ND@200	ND@200	ND@200
CARBON TETRACHLORIDE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
CHLOROBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
CHLORODIBROMOMETHANE	ug/L	0.4 J	ND@100	ND@100	ND@100	ND@100	ND@100
CHLOROETHANE	ug/L	0.4 J	630	360	450	280	420
CHLOROFORM (TRICHLOROMETHANE)	ug/L	1.1	ND@100	ND@100	ND@100	ND@100	ND@100
CHLOROMETHANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
CIS-1,2-DICHLOROETHENE	ug/L	3.2	1100	1200	1600	1600	1500
CIS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
CYCLOHEXANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100

April 13, 2017 Site #704014 35 of 41

Sample Location		6M EFFLUENT	6M INFLUENT				
Sample Description		CLARK GTF	CLARK GTF	CLARK GTF	CLARK GTF	CLARK GTF	CLARK GTF
Sample Date		12/06/2016	01/05/2016	02/04/2016	03/01/2016	04/05/2016	05/03/2016
Laboratory Sample I.D.		8732106	8196339	8232768	8266706	8319612	8363245
Parameter	Units						
ETHYLBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
ISOPROPYLBENZENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
M,P-XYLENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
METHYL ACETATE	ug/L	ND@1.0	ND@200	ND@200	ND@200	ND@200	ND@200
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@5.0	ND@1000	ND@1000	ND@1,000	ND@1000	ND@1000
METHYL CYCLOHEXANE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@5.0	ND@1000	ND@1000	ND@1,000	ND@1000	ND@1000
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@5.0	ND@1000	ND@1000	ND@1,000	ND@1000	ND@1000
O-XYLENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
STYRENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
TETRACHLOROETHENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
TETRAHYDROFURAN	ug/L	ND@5.0	ND@1000	ND@1000	ND@1,000	ND@1000	ND@1000
TOLUENE	ug/L	ND@0.5	ND@100	26 J	37 J	ND@100	21 J
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	52 J	ND@100	ND@100	ND@100	ND@100
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
TRICHLOROETHENE	ug/L	0.2 J	760	490	720	480	440
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
VINYL CHLORIDE	ug/L	ND@0.5	ND@100	160	160	160	200
XYLENES, TOTAL	ug/L	ND@0.5	ND@100	ND@100	ND@100	ND@100	ND@100
PHOSPHORUS, TOTAL	mg/L	1.4	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

Sample Location Sample Description		6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF
Sample Date		06/07/2016	07/06/2016	08/02/2016	09/07/2016	10/04/2016	11/02/2016
Laboratory Sample I.D.		8414632	8463622	8508255	8575320	8629371	8680574
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	7600	7400	8600	4900	3500	2600
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	180	170	210	170	120	100
1,1,2-TRICHLOROETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,1-DICHLOROETHANE	ug/L	1600	1500	2400	1000	1300	420
1,1-DICHLOROETHENE	ug/L	290	270	220	72	44	57
1,2,4-TRICHLOROBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,2,4-TRIMETHYLBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,2-DIBROMOETHANE (EDB)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@100	ND@100	ND@100	21 J	19 J	15 J
1,2-DICHLOROBENZENE	ug/L	ND@100	ND@100	ND@100	14 J	16 J	16 J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,2-DICHLOROPROPANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,3,5-TRIMETHYLBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,3-DICHLOROBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
1,4-DICHLOROBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
ACETONE	ug/L	ND@1000	ND@1000	ND@1000	ND@250	ND@250	ND@250
BENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
BROMODICHLOROMETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
BROMOMETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CARBON DISULFIDE	ug/L	ND@200	ND@200	ND@200	ND@50	ND@50	ND@50
CARBON TETRACHLORIDE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CHLOROBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CHLORODIBROMOMETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CHLOROETHANE	ug/L	380	390	470	280	320	130
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@100	ND@100	ND@100	ND@25	9.8 J	ND@25
CHLOROMETHANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CIS-1,2-DICHLOROETHENE	ug/L	1600	1600	1600	1400	1100	960
CIS-1,3-DICHLOROPROPENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
CYCLOHEXANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25

April 13, 2017 Site #704014 37 of 41

Sample Location Sample Description		6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF	6M INFLUENT CLARK GTF
·		06/07/2016	07/06/2016	08/02/2016	09/07/2016	10/04/2016	11/02/2016
Sample Date							
Laboratory Sample I.D.		8414632	8463622	8508255	8575320	8629371	8680574
Parameter	Units						
ETHYLBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
ISOPROPYLBENZENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
M,P-XYLENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
METHYL ACETATE	ug/L	ND@200	ND@200	ND@200	ND@50	ND@50	ND@50
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@1000	ND@1000	ND@1000	ND@250	ND@250	ND@250
METHYL CYCLOHEXANE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@1000	ND@1000	ND@1000	ND@250	ND@250	ND@250
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@1000	ND@1000	ND@1000	ND@250	ND@250	ND@250
O-XYLENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
STYRENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
TETRACHLOROETHENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
TETRAHYDROFURAN	ug/L	ND@1000	ND@1000	ND@1000	ND@250	ND@250	ND@250
TOLUENE	ug/L	ND@100	ND@100	31 J	7.4 J	9.2 J	ND@25
TRANS-1,2-DICHLOROETHENE	ug/L	ND@100	ND@100	ND@100	ND@25	34	13 J
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
TRICHLOROETHENE	ug/L	210	240	460	310	180	230
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
VINYL CHLORIDE	ug/L	250	310	220	220	170	150
XYLENES, TOTAL	ug/L	ND@100	ND@100	ND@100	ND@25	ND@25	ND@25
PHOSPHORUS, TOTAL	mg/L	NA	NA	NA	NA	NA	NA

Groundwater Treatment Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

6M INFLUENT CLARK GTF 12/06/2016 Sample Location Sample Description
Sample Date Laboratory Sample I.D. 8732105

Parameter	Units	
1,1,1-TRICHLOROETHANE	ug/L	4,200
1,1,2,2-TETRACHLOROETHANE	ug/L	ND@25
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	110
1,1,2-TRICHLOROETHANE	ug/L	ND@25
1,1-DICHLOROETHANE	ug/L	1,400
1,1-DICHLOROETHENE	ug/L	54
1,2,4-TRICHLOROBENZENE	ug/L	ND@25
1,2,4-TRIMETHYLBENZENE	ug/L	ND@25
1,2-DIBROMO-3-CHLOROPROPANE	ug/L	ND@25
1,2-DIBROMOETHANE (EDB)	ug/L	ND@25
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	17 J
1,2-DICHLOROBENZENE	ug/L	16 J
1,2-DICHLOROETHANE (EDC)	ug/L	5.4 J
1,2-DICHLOROPROPANE	ug/L	ND@25
1,3,5-TRIMETHYLBENZENE	ug/L	ND@25
1,3-DICHLOROBENZENE	ug/L	ND@25
1,4-DICHLOROBENZENE	ug/L	ND@25
ACETONE	ug/L	ND@250
BENZENE	ug/L	ND@25
BROMODICHLOROMETHANE	ug/L	ND@25
BROMOFORM (TRIBROMOMETHANE)	ug/L	ND@25
BROMOMETHANE	ug/L	ND@25
CARBON DISULFIDE	ug/L	ND@50
CARBON TETRACHLORIDE	ug/L	ND@25
CHLOROBENZENE	ug/L	ND@25
CHLORODIBROMOMETHANE	ug/L	ND@25
CHLOROETHANE	ug/L	270
CHLOROFORM (TRICHLOROMETHANE)	ug/L	ND@25
CHLOROMETHANE	ug/L	ND@25
CIS-1,2-DICHLOROETHENE	ug/L	760
CIS-1,3-DICHLOROPROPENE	ug/L	ND@25
CYCLOHEXANE	ug/L	ND@25
DICHLORODIFLUOROMETHANE (FREON 12)	ug/L	ND@25

April 13, 2017 Site #704014 39 of 41

Groundwater Treatment Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

6M INFLUENT CLARK GTF 12/06/2016 Sample Location Sample Description Sample Date Laboratory Sample I.D. 8732105

Parameter	Units	
ETHYLBENZENE	ug/L	ND@25
ISOPROPYLBENZENE	ug/L	ND@25
M,P-XYLENE	ug/L	ND@25
METHYL ACETATE	ug/L	ND@50
METHYL BUTYL KETONE (2-HEXANONE)	ug/L	ND@250
METHYL CYCLOHEXANE	ug/L	ND@25
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/L	ND@250
METHYL TERT-BUTYL ETHER (MTBE)	ug/L	ND@25
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@25
MIBK (4-METHYL-2-PENTANONE)	ug/L	ND@250
O-XYLENE	ug/L	ND@25
STYRENE	ug/L	ND@25
TETRACHLOROETHENE	ug/L	5.1 J
TETRAHYDROFURAN	ug/L	ND@250
TOLUENE	ug/L	10 J
TRANS-1,2-DICHLOROETHENE	ug/L	9.8 J
TRANS-1,3-DICHLOROPROPENE	ug/L	ND@25
TRICHLOROETHENE	ug/L	120
TRICHLOROFLUOROMETHANE (FREON 11)	ug/L	ND@25
VINYL CHLORIDE	ug/L	170
XYLENES, TOTAL	ug/L	ND@25
PHOSPHORUS, TOTAL	mg/L	NA

Groundwater Treatment Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

Explanation of Reporting Conventions and Key to Comment Codes

Reporting Conventions

NA Not Analyzed
ND@X Not Detected at Detection Limit X

Code Explanation

J Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

April 13, 2017 Site #704014 41 of 41

APPENDIX F

Table F-1: Summary Comparison of 2016 Duplicate Sample Results

Quality Assurance / Quality Control Analytical Chemistry Data, 2016

Table F-1: Summary Comparison of Intralaboratory
Duplicate Sample Results for 2016
(two highest detections per well)
Endicott, New York

Well	Date	Parameter	Sample Result, S (ug/l)	Duplicate Result, D (ug/l)	Absolute Difference (ug/l)	Relative Percent Difference
EN-534	02/02/16	PCE	1.8	1.9	0.1	5%
		111-TCA	1.1	1.1	0	0%
EN-434	02/04/16	111-TCA	7100	6500	600	9%
		11-DCA	5200	4800	400	8%
EN-029A	02/08/16	PCE	1.2	1.2	0	0%
		TCE	1.0	1.0	0	0%
EN-460B	02/11/16	TCE	13	11	2	
EN 040	00/45/40	111-TCA	2.3	2.3	0	
EN-013	02/15/16	PCE	160	190	30	17%
EN-193	02/15/16	cis12-DCE PCE	74 4.4	65 5.0	9 0.6	13% 13%
EN-193	02/15/16	TCE	4.4 1.7	2.0	0.8	16%
EN-490	05/05/16	PCE	0.9	2.0	0.3	0%
LIN-490	03/03/10	TCE	0.9	0.6	0	0%
EN-387A	05/09/16	cis12-DCE	43	48	5	
LIV-00774	00/03/10	Vinyl Chloride	22	29	7	27%
EN-017	05/10/16	111-TCA	2400	1800	600	29%
	00/10/10	11-DCA	320	300	20	6%
EN-035	05/10/16	111-TCA	150	210	60	33%
		11-DCA	64	67	3	5%
EN-447A	05/10/16	TCE	0.8	0.7	0.1	13%
		111-TCA	0.3	0.3	0	0%
EN-091A	05/11/16	TCE	4.3	4.4	0.1	2%
		cis12-DCE	1.4	1.5	0.1	7%
EN-478B	05/11/16	TCE	1.4	1.3	0.1	7%
		111-TCA	0.7	0.6	0.1	15%
EN-502	05/11/16	PCE	3.2	3.3	0.1	3%
= 11.440	0.5/4.0/4.0	111-TCA	1.1	1.1	0	0%
EN-112	05/12/16	111-TCA	9.5	9.7	0.2	2%
EN O45A	05/40/40	11-DCA	9.4	9.5	0.1	1%
EN-215A	05/18/16	TCE	0.9	0.9	0	0%
EN-421	05/18/16	111-TCA TCE	0.5 1300	0.5 1400.0	<u>0</u> 100	0% 7%
LIN-42 I	03/16/10	cis12-DCE	1000	1000	0	0%
EN-456	07/21/16	TCE	1.0	1.1	0.1	10%
211 100	01721710	111-TCA	0.3	0.3	0	
EN-534	07/21/16	PCE	2.0	2.0	0	00/
		111-TCA	1.9	1.9	0	
EN-039	08/01/16	111-TCA	17000	18000.0	1000	6%
		11-DCE	290	320	30	10%
EN-177	08/01/16	TCE	5.7	5.6	0.1	2%
		PCE	1.0	1.0	0	0%
EN-020	08/02/16	111-TCA	130000	170000	40000	
		11-DCA	48000	55000	7000	
EN-214A	08/08/16	PCE	1.7	1.6	0.1	6%
	00/05:::5	TCE	0.7	0.7	0	0%
EN-459A	08/08/16	TCE	0.3	0.3	0	
EN COAA	00/00/40	111-TCA	0.2	0.2	0	
EN-091A	08/09/16	TCE	2.9	3	0.1	
		cis12-DCE	0.8	0.8	0	0%

Site #704014 3/22/2017

Table F-1: Summary Comparison of Intralaboratory Duplicate Sample Results for 2016 (two highest detections per well) Endicott, New York

Well	Date	Parameter	Sample Result, S (ug/l)	Duplicate Result, D (ug/l)	Absolute Difference (ug/l)	Relative Percent Difference
EN-387A	08/09/16	cis12-DCE	26	25	1	4%
		Vinyl Chloride	20	20	0	0%
EN-506	08/09/16	PCE	0.3	0.3	0	0%
		111-TCA	0.3	0.3	0	0%
EN-479B	08/29/16	TCE	1.1	1.1	0	0%
		111-TCA	0.5	0.5	0	0%
EN-439B	08/30/16	TCE	0.8	0.8	0	0%
		111-TCA	0.6	0.7	0.1	15%
EN-439A	11/01/16	TCE	0.7	0.7	0	0%
		111-TCA	0.5	0.5	0	0%
EN-478B	11/01/16	TCE	1.5	1.6	0.1	6%
		11-DCA	0.6	0.6	0	0%
EN-387A	11/02/16	cis12-DCE	46	46	0	0%
		Vinyl Chloride	22	22	0	0%
EN-301	11/03/16	PCE	0.2	0.2	0	0%
		TCE	0.2	0.2	0	0%
EN-519	11/04/16	TCE	1.2	1.2	0	0%
EN 007	4.4.10.7.14.0	11-DCA	0.2	0.2	0	0%
EN-037	11/07/16	11-DCA	21000	20000	1000	5%
EN 005	4.4.10.7.14.0	CEA	16000	15000	1000	6%
EN-065	11/07/16	TCE	8.2	7.6	0.6	8%
EN 004	44/07/40	cis12-DCE	2.2	2.0	0.2	10%
EN-081	11/07/16	TCE	11	10	1	10%
EN 450A	44/00/40	cis12-DCE	10	9.8	0.2	2%
EN-459A	11/08/16	TCE 111-TCA	0.2 0.2	0.2	0	0% 0%
EN 054	11/00/16			0.2	100	
EN-051	11/09/16	cis12-DCE	3500	3600		3%
EN 004	44/45/46	PCE 111-TCA	470	460	10	2% 9%
EN-021	11/15/16	111-TCA 11-DCA	36000 250	33000 250	3000 0	9% 0%
EN-129	11/16/16	Benzene	0.4	0.5	0.1	22%
EIN-129	1 1/ 10/ 10	cis12-DCE	0.4	0.5	0.1	22% 0%
RMJ-MW-5	11/17/16	111-TCA	11	0.3 11	0	0%
Absolute Differen		PCE	4.7	4	0.7	16%

Absolute Difference = |S - D|

Relative Percent Difference = (|S - D| / (S + D)/2) x 100

Sample result, S, was reported by Eurofins Lancaster Laboratories Environmental, Lancaster, PA.

Duplicate result, D, was reported by Eurofins Lancaster Laboratories Environmental, Lancaster, PA.

Site #704014 3/22/2017

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

	January	1, 2010 Decembe	. 51, 2010			
	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND 02/09/2016
	8231004	8234143	8234153	8234160	8239337	8239320
Units						
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	0.1 J	0.1 J	0.1 J	0.1 J	0.1 J	0.1 J
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	0.6	0.6	0.5	0.5	0.4 J	0.4 J
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Ug/L ND@0.5 ug/L ND@0.5	EQ RINSE BLK WTR LVL IND 02/02/2016 8234104 8234143	WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND O2/03/2016 02/04/2016 02/04/2016 02/04/2016 02/04/2016 02/04/2016 02/04/2016 8234153 Units Ug/L ND@0.5 ND@0.5	EQ RINSE BLK EQ RINSE BLK WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND O2/02/2016 02/03/2016 02/04/2016 02/05/2016 82341004 8234143 8234153 8234160	EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK WTR LVL IND

Site #704014 April 13, 2017 1 of 20

Sample Location Sample Description Sample Date Laboratory Sample I.D.		EQ RINSE BLK WTR LVL IND 02/11/2016 8242880	EQ RINSE BLK WTR LVL IND 02/12/2016 8242885	EQ RINSE BLK WTR LVL IND 02/15/2016 8244664	EQ RINSE BLK BAILER 05/04/2016 8368786	EQ RINSE BLK WTR LVL IND 05/05/2016 8368795	EQ RINSE BLK WTR LVL IND 05/09/2016 8374659
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	0.1 J	ND@0.5	0.1 J	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

		January	1, 2010 Decembe	. 51, 2010			
Sample Location Sample Description Sample Date Laboratory Sample I.D.		EQ RINSE BLK WTR LVL IND 05/10/2016 8377862	EQ RINSE BLK SUBM PUMP 05/11/2016 8377759	EQ RINSE BLK WTR LVL IND 05/12/2016 8382717	EQ RINSE BLK WTR LVL IND 05/16/2016 8389914	EQ RINSE BLK WTR LVL IND 05/17/2016 8390058	EQ RINSE BLK WTR LVL IND 05/18/2016 8390078
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	0.4 J	0.2 J	0.4 J	0.4 J
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	0.2 J	ND@0.5	0.1 J	0.1 J
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 3 of 20

Sample Location		EQ RINSE BLK	EQ RINSE BLK	EQ RINSE BLK	EQ RINSE BLK	EQ RINSE BLK	EQ RINSE BLK
Sample Description		WTR LVL IND	WTR LVL IND	WTR LVL IND	WTR LVL IND	WTR LVL IND	WTR LVL IND
Sample Date		05/19/2016	05/23/2016	07/20/2016	07/21/2016	08/01/2016	08/02/2016
Laboratory Sample I.D.		8393124	8395244	8488622	8488639	8508569	8508565
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	0.3 J	0.3 J	ND@0.5	ND@0.5	0.8	0.8
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data January 1, 2016 - December 31, 2016

Endicott, New York

Sample Location EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK Sample Description WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND Sample Date 08/03/2016 08/04/2016 08/05/2016 08/08/2016 08/09/2016 08/10/2016 Laboratory Sample I.D. 8512538 8512554 8512523 8518974 8518992 8525989 Parameter Units 1,1,1-TRICHLOROETHANE ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L 1,1-DICHLOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 BENZENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 CHLOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 CIS-1,2-DICHLOROETHENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L ETHYLBENZENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) 0.7 0.8 0.8 0.7 ug/L 0.8 0.8 TETRACHLOROETHENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L TOLUENE ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ug/L TRANS-1,2-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 TRICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 VINYL CHLORIDE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ND@0.5

ug/L

XYLENES, TOTAL

April 13, 2017 Site #704014 5 of 20

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott. New York

Sample Location Sample Description		EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND	EQ RINSE BLK WTR LVL IND
Sample Date Laboratory Sample I.D.		08/12/2016 8525992	08/14/2016 8532365	08/29/2016 8562728	08/30/2016 8562767	11/01/2016 8681555	11/02/2016 8681575
zazorator, cumple no		0323332	0332303	0302720	0302707	0001333	0001373
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	0.6	0.6	0.3 J	0.4 J	0.3 J	0.4 J
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	0.1 J	0.1 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott, New York

January 1, 2016 - December 31, 2016 Sample Location EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK EQ RINSE BLK Sample Description WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND WTR LVL IND Sample Date 11/03/2016 11/04/2016 11/07/2016 11/08/2016 11/09/2016 11/10/2016 Laboratory Sample I.D. 8681639 8682409 8687278 8687287 8690547 8693725 Parameter Units ug/L ug/L ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 1,1,1-TRICHLOROETHANE ND@0.5 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE
1,1-DICHLOROETHANE ND@0.5

ND@0.5

1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	0.4 J	0.4 J	0.3 J	0.3 J	0.2 J	0.7
METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE	ug/L ug/L	0.4 J ND@0.5	0.4 J ND@0.5	0.3 J ND@0.5	0.3 J ND@0.5	0.2 J ND@0.5	0.7 ND@0.5
•							
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE TOLUENE	ug/L ug/L	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5	ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE	ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE	ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5

ND@0.5

April 13, 2017 Site #704014 7 of 20

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott, New York

Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		1/5-1/6	2/2-2/4	2/3-2/6	2/4-2/5	2/9-2/11	2/9-2/11
Sample Date		01/05/2016	02/02/2016	02/03/2016	02/04/2016	02/08/2016	02/09/2016
Laboratory Sample I.D.		8196359	8230998	8234142	8232833	8239307	8239322
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott, New York
January 1, 2016 - December 31, 2016

		January	1, 2016 - Decembe	r 31, 2016			
Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		2/10-2/11	2/11-2/13	2/12-2/13	2/15-2/16	3/1-3/2	4/5-4/6
Sample Date		02/10/2016	02/11/2016	02/12/2016	02/15/2016	03/01/2016	04/05/2016
Laboratory Sample I.D.		8238944	8242875	8242886	8244636	8266726	8319631
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	0.2 J	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

ND@0.5

ND@0.5 ND@0.5 ND@0.5

ND@0.5

ND@0.5 ND@0.5 ND@0.5

ug/L

ug/L

ug/L ug/L ND@0.5

ND@0.5

ND@0.5 ND@0.5

TRANS-1,2-DICHLOROETHENE
TRICHLOROETHENE
VINYL CHLORIDE
XYLENES, TOTAL

ND@0.5

ND@0.5

ND@0.5 ND@0.5

ND@0.5

ND@0.5 ND@0.5 ND@0.5

ND@0.5

ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 9 of 20

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York

Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		5/3-5/4	5/4-5/6	5/9-5/11	5/9-5/12	5/10-5/12	5/10-5/14
Sample Date		05/03/2016	05/04/2016	05/09/2016	05/09/2016	05/10/2016	05/10/2016
Laboratory Sample I.D.		8363293	8368785	8374653	8377854	8377805	8382715
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLEBUZENE METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES. TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	0.2 J	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York January 1, 2016 - December 31, 2016

		sanaa, j	1, 2010 Decembe	. 51, 2010			
Sample Location Sample Description		TRIP BLANK 5/10-512	TRIP BLANK 5/11-5/14	TRIP BLANK 5/12-5/14	TRIP BLANK 5/12-5/14	TRIP BLANK 5/16-5/19	TRIP BLANK 5/16-5/19
Sample Date		05/10/2016	05/11/2016	05/12/2016	05/12/2016	05/16/2016	05/16/2016
Laboratory Sample I.D.		8377743	8382672	8382718	8382746	8389913	8390048
Education y Sample 1.5.		0377743	0302072	0302710	0302740	0303313	0330040
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Site #704014 April 13, 2017 11 of 20

Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		5/17-5/21	5/19-5/21	5/23-5/24	5/25-5/26	6/7-6/8	7/6-7/7
Sample Date		05/17/2016	05/19/2016	05/23/2016	05/25/2016	06/07/2016	07/06/2016
Laboratory Sample I.D.		8393123	8393130	8395243	8399998	8414492	8463645
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

			,	. ,			
Sample Location		TRIP BLANK	TRIP BLANK 7/21-7/23	TRIP BLANK 8/1-8/4	TRIP BLANK 8/1-8/4	TRIP BLANK 8/2-8/3	TRIP BLANK 8/2-8/6
Sample Description		7/20-7/22					
Sample Date		07/20/2016	07/21/2016	08/01/2016	08/01/2016	08/02/2016	08/02/2016
Laboratory Sample I.D.		8488617	8490451	8508563	8508566	8508276	8512532
Parameter	Units						
- drameter	•						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	•						

April 13, 2017 Site #704014 13 of 20

Sample Location		TRIP BLANK					
Sample Description		8/3-8/6	8/4-8/6	8/4-8/6	8/8-8/10	8/8-8/11	8/9-8/13
Sample Date		08/03/2016	08/04/2016	08/04/2016	08/08/2016	08/08/2016	08/09/2016
Laboratory Sample I.D.		8512525	8512519	8512527	8518970	8524414	8525993
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE CIS-1,2-DICHLOROETHENE ETHYLBENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5
TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

Sample Location Sample Description Sample Date Laboratory Sample I.D.		TRIP BLANK 8/10-8/13 08/10/2016 8525995	TRIP BLANK 8/11-8/13 08/11/2016 8525974	TRIP BLANK 8/14-8/17 08/14/2016 8532361	TRIP BLANK 8/29-9/1 08/29/2016 8562725	TRIP BLANK 8/29-9/1 08/29/2016 8562761	TRIP BLANK 8/30-9/1 08/30/2016 8562757
Parameter	Units						
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE (EDC) BENZENE CHLOROETHANE (CIS-1,2-DICHLOROETHENE ETHYLENZENE METHYLENE CHLORIDE (DICHLOROMETHANE) TETRACHLOROETHENE TOLUENE TRANS-1,2-DICHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE XYLENES, TOTAL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5	ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5

April 13, 2017 Site #704014 15 of 20

			-,	,			
Sample Location Sample Description Sample Date		TRIP BLANK 9/7-9/8 09/07/2016	TRIP BLANK GW EXTR WELL 10/04/2016	TRIP BLANK 11/1-11/4 11/01/2016	TRIP BLANK 11/1-11/4 11/01/2016	TRIP BLANK 11/1-11/4 11/01/2016	TRIP BLANK 11/2-11/3 11/02/2016
Laboratory Sample I.D.		8575350	8629409	8681552	8681591	8681694	8680593

Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	0.4 J	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

		January	1, 2016 - Decembe	1 31, 2016			
Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		11/2-11/4	11/4-11/5	11/4-11/5	11/7-11/9	11/7-11/9	11/7-11/9
Sample Date		11/02/2016	11/04/2016	11/04/2016	11/07/2016	11/07/2016	11/07/2016
Laboratory Sample I.D.		8681625	8682405	8682418	8687264	8687294	8687335
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

April 13, 2017 Site #704014 17 of 20

		,	_,	,			
Sample Location		TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK	TRIP BLANK
Sample Description		11/8-11/9	11/9-11/12	11/9-11/10	11/9-11/12	11/10-11/12	11/11-11/12
Sample Date		11/08/2016	11/08/2016	11/09/2016	11/09/2016	11/10/2016	11/11/2016
Laboratory Sample I.D.		8687286	8693710	8690544	8693735	8693727	8693756
Parameter	Units						
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/L	ND@0.5	0.2 J	0.4 J	0.3 J	0.3 J	0.3 J
TETRACHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
TRICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5	ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data

Endicott, New York January 1, 2016 - December 31, 2016

TRIP BLANK Sample Location TRIP BLANK TRIP BLANK Sample Description 11/14-11/17 11/17-11/21 12/6-12/7 Sample Date 11/14/2016 11/17/2016 12/06/2016 Laboratory Sample I.D. 8702116 8707423 8732123 Parameter Units 1,1,1-TRICHLOROETHANE ND@0.5 ND@0.5 ND@0.5 ug/L ND@0.5 ND@0.5 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE ND@0.5 ND@0.5 ug/L 1,1-DICHLOROETHANE ug/L ND@0.5 ND@0.5 1,1-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE ug/L ND@0.5 ND@0.5 ND@0.5 1,2-DICHLOROETHANE (EDC) ug/L ND@0.5 ND@0.5 ND@0.5 BENZENE ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 ND@0.5 CHLOROETHANE ug/L ND@0.5 CIS-1,2-DICHLOROETHENE ND@0.5 ug/L ETHYLBENZENE ND@0.5 ND@0.5 ug/L METHYLENE CHLORIDE (DICHLOROMETHANE) ug/L 0.3 J 0.3 J ND@0.5 TETRACHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 TOLUENE ug/L ND@0.5 ND@0.5 ND@0.5 TRANS-1,2-DICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 TRICHLOROETHENE ug/L ND@0.5 ND@0.5 ND@0.5 VINYL CHLORIDE XYLENES, TOTAL ug/L ND@0.5 ND@0.5 ND@0.5 ND@0.5

ug/L

ND@0.5

April 13, 2017 Site #704014 19 of 20

ND@0.5

Quality Assurance / Quality Control Analytical Chemistry Data Endicott, New York

January 1, 2016 - December 31, 2016

Reporting Conventions

Not Analyzed

ND@X Not Detected at Detection Limit X

Explanation Code

Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

A DDENIDIV C

APPENDIX G
Summary of Significant Remediation Systems Maintenance Activities in 2016

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
GROUNDWATER TRE	ATMEN	T FAC	CILIT	IES								
Jefferson Avenue Groundwater Treatment Facility												
Liquid-phase GAC exchange												
Flushing of Conveyance Piping (EN-91T to Jefferson GTF)												
Effluent Flow Meter Inspection and Barrel Testing					1							1
Garfield Avenue Groundwater Treatment Facility												
1-A Carbon Vessel Liquid-phase GAC exchange		1				1	1				1	
1-B Carbon Vessel Liquid-phase GAC exchange				1			1					
Vapor Phase GAC exchange	1		1		1			1		1		1
Air Stripper Cleaning	1						1					
Carbon Vessel Repairs (Plug Replacement and Interior Recoating)						1						
Valve Replacement on Carbon Tanks	2											
Flushing of Conveyance Piping (EN-276/276R to Garfield GTF)												
Effluent Flow Meter Inspection, Calibration and Barrel Testing												
Adams Avenue Groundwater Treatment Facility			•		-	_						
A1 System 1-A Carbon Vessel Liquid-phase GAC exchange									1			
A1 System 1-B Carbon Vessel Liquid-phase GAC exchange												
A2 System PV-202 Carbon Vessel Liquid-phase GAC exchange							1					
A2 System PV-201 Carbon Vessel Liquid-phase GAC exchange							1	1				
Ran A1 system centrifuge	5	6	5	6	5	5	6	6	4	6	7	8
A1 Carbon system backwash												
Flushing of Conveyance Piping (EN-D49 to Adams GTF)												
Flushing of Conveyance Piping (EN-447T to Adams GTF)												
Flow Meter Inspection and Cleaning												
Effluent Flow Meter Inspection, Calibration and Barrel Testing												
Robble Avenue Groundwater Treatment Facility (Offline)	•	•					•					
Air Stripper Cleaning												
Vapor Phase GAC exchange												
Flow Meter Inspection, Calibration and Barrel Testing												
Clark Street Groundwater Treatment Facility												
Air Stripper Cleaning	1						1					1
Vapor Phase GAC exchange	1	1	1	1	1	1		1	1	1	2	1
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing	1	1										

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
OPERABLE UNIT #1: RAILROA	D COR	RIDO	R SOU	JRCE	AREA	1						
Transfer Station Building 46S												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Flushing of C1/C2 Conveyance Piping (B046S to Clark St GTF)	2	1	1	1		3	1	1		1	2	2
Extraction Well EN-107R												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing		1										
Well Rehabilitation												
Flushing of C1 Conveyance Piping (EN-107R to B046S)			1									
Pumping System Maintenance or Replacement Activity	1	1		1			2				1	
Extraction Well EN-114T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing		1										
Well Rehabilitation								1				
Flushing of Conveyance Piping (EN-114T to B046S)												1
Pumping System Maintenance or Replacement Activity								1		1	1	
Extraction Well EN-219R												
Flow Meter Inspection and Cleaning		1										
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation					1							
Line Flushing (EN-219R to Clark GTF)					1							1
Pumping System Maintenance or Replacement Activity		2			1							1
Extraction Well EN-253R												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing		1										
Well Rehabilitation												
Line Flushing (EN-253R to Clark GTF)	1					1						
Pumping System Maintenance or Replacement Activity												
Extraction Well EN-428												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing		1										
Well Rehabilitation	1		1	1		1		1			1	
Line Flushing (EN-428 to Clark GTF)						2	1	1				
Pumping System Maintenance or Replacement Activity												

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Injection Well EN-509T (Offline after 8/10/2016)									l			
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
OPERABLE UNIT #2: NO	ORTH S	STRE	ET AR	EA								
Extraction Well EN-276 (Offline after 11/21/2016)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity			1	1								
Extraction Well EN-276R (Offline 1/1/16 to 4/14/16, and 10/25/16 to 11/21/16)			•								
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity				1								
MISC. ACTIVITY A: OFF-SITE CAPTURE ZONE A	AND (OPER	ABLE	UNIT	T#3: S	SOUTI	HERN	ARE	4			
Extraction Well EN-091T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing					1							
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity		1					1					1
Extraction Well EN-120 (Offline)												
Flow Meter Inspection and Cleaning							-		-			
Flow Meter Inspection, Calibration and Barrel Testing		-					-					
Well Rehabilitation		1										
Pumping System Maintenance or Replacement Activity		-		-								
Extraction Well EN-133												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												

												$\overline{}$
2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Extraction Well EN-160 (Offline)												
Flow Meter Inspection and Cleaning		-		-						-	-	
Flow Meter Inspection and Barrel Testing		-		-						-	-	
Well Rehabilitation		-		-						-	-	
Pumping System Maintenance or Replacement Activity												
Extraction Well EN-194												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												
Extraction Well EN-215T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity						1						
Extraction Well EN-284P												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity				1	1							
Extraction Well EN-447T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pitless Adapter Repair									1			
Pumping System Maintenance or Replacement Activity					1		1					
Extraction Well EN-451P												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing					1							
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity									1			
Extraction Well EN-499T (Offline)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Injection Well EN-92P (Offline 6/5/16 to 7/28/16)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Injection Well EN-501T (Offline 6/5/16 to 8/14/16, 8/19/16 to 9/18/16, and after	11/8/1	.6)	1	I	I							
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Injection Well EN-510T (Offline)				•								
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing											-	
Well Rehabilitation												
Injection Well EN-529T (Offline 6/7/16 to 7/28/16)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Injection Well EN-530T (Offline 6/5/16 to 7/28/16)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Injection Well EN-532T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
OPERABLE UNIT #4: IDEAL CLEANERS	AREA	(OFF	-SITE	CAP	ΓURE	ZONE	E B)					
Extraction Well EN-185R/185P (Offline)												
Flow Meter Inspection and Cleaning		1					-		-		1	
Flow Meter Inspection, Calibration and Barrel Testing		1					-		-		1	
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												
Extraction Well EN-195 (Offline)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Extraction Well EN-491T												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity						1						
Extraction Well EN-492T (Offline)												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												
Injection Well EN-78T												
Flow Meter Inspection and Cleaning (in well meter)												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Injection Well EN-161T												
Flow Meter Inspection and Cleaning (in well meter)												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
OPERABLE UNIT #	5: BUILDI	NG 5'	7 ARE	A								
Extraction Well EN-709												
Flow Meter Inspection and Cleaning		1				1						
Flow Meter Inspection, Calibration and Barrel Testing		1										
C6 Line Flushing (EN-709 Transfer Bldg to Clark GTF)	3								1			1
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												
OPERABLE UNIT #6: PLUME CON	TROL IN I	BEDR	OCK (GROU	J NDW	ATER	1					
Extraction Well EN-D49												
Flow Meter Inspection and Cleaning												
Flow Meter Inspection, Calibration and Barrel Testing												
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												

2016 MAINTENANCE ACTIVITY	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
OPERABLE UNIT #7: NORTHWESTERN AREA												
Extraction Well EN-154R (Offline)												
Flow Meter Inspection and Cleaning		-					1			-		
Flow Meter Inspection, Calibration and Barrel Testing		-					1			-		
Well Rehabilitation		1		-			1		-	1		
Pumping System Maintenance or Replacement Activity		-					-		-	-		
Extraction Well EN-218 (Offline)												
Flow Meter Inspection and Cleaning		-					-		-	-		-
Well Rehabilitation												
Pumping System Maintenance or Replacement Activity												

APPENDIX H

Operation, Maintenance, and Monitoring Manual for Extraction, Collection and Treatment Systems (on CD)