FOCUSED FEASIBILITY STUDY REPORT

VILLAGE OF ENDICOTT / TOWN OF UNION BROOME COUNTY, NEW YORK

Order on Consent Index #A7-0502-0104 Site #704014 Operable Unit #1: Railroad Corridor Source Area Operable Unit #2: North Street Area

Prepared for:

IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, Virginia 20109

December 27, 2018

Prepared by:

Groundwater Sciences, P.C. Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, Pennsylvania 17110 560 Route 52, Suite 202 Beacon, New York 12508

1108 Vestal Parkway East, Suite 2 Vestal, New York 13850

Harrisburg, PA / Beacon, NY / Vestal, NY

Professional Engineer Certification Focused Feasibility Study Report for Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area

Village of Endicott / Town of Union Broome County, New York

Appendix C, Description of Operable Units of Order on Consent Index #A7-0502-0104 Site #704014

December 27, 2018

I certify that I have reviewed the document entitled "Focused Feasibility Study Report for Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area" for the former IBM Endicott Facility in the Village of Endicott / Town of Union, Broome County, New York, prepared pursuant to Appendix C of Order on Consent Index #A7-0502-0104, Site #704014. This report is dated December 27, 2018 and was prepared by Groundwater Sciences Corporation (GSC) and Groundwater Sciences, P.C. (GSPC) for IBM Corporation. I certify that I have reviewed all figures, plates, and appendices relating to the focused feasibility study of Operable Units #1 and #2. To the best of my knowledge, all such engineering-related information contained in this report is complete and accurate.

I certify that all portions of this report relating to the focused feasibility study of Operable Units #1 and #2 have been prepared in accordance with good engineering practices and all such work has been performed under my direct supervision.

No alterations to the engineering-related information contained in this report may be made unless made in accordance with Title 8, Article 145, Section 7209 of New York State Education Law.

Signature:

Tuck Date: Natt 12/27/18

LICENSED

STATE

OF NEW

Name: Matthew T. Luckman

License No: 076619

State: New York

Professional Geologist Certification Focused Feasibility Study Report for Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area

Village of Endicott / Town of Union **Broome County, New York**

Appendix C, Description of Operable Units of Order on Consent Index #A7-0502-0104 Site #704014

December 27, 2018

As the person with primary responsibility for the performance of the geological services and activities associated with the captioned report, I certify that I have reviewed the document entitled "Focused Feasibility Study Report for Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area" for the former IBM Endicott Facility in the Village of Endicott / Town of Union, Broome County, New York, prepared pursuant to Appendix C of Order on Consent Index #A7-0502-0104, Site #704014. This report is dated December 27, 2018 and was prepared by Groundwater Sciences Corporation (GSC) and Groundwater Sciences, P.C. (GSPC) for IBM Corporation.

I certify that the associated geological services and this report have been prepared under my direct supervision. To the best of my knowledge, all such information contained in this report is complete and accurate.

This report bears the seal of a professional geologist. No alterations may be made to the information contained in this report unless made in accordance with Title 8, Article 145, Section 7209 of New York State Education Law.

Signature: Chanles Adame Date: 12/27/2018

Name: Charles A. Rine

License No: 000704

State: New York

GROUNDWATER SCIENCES. P.C. **GROUNDWATER SCIENCES CORPORATION**

Table of Contents

1	INTRODUCTION	. 1
	1.1 Purpose and Objectives	. 2
	1.2 Organization of Report	. 3
2	BACKGROUND	.4
	2.1 Site Setting	.4
	2.2 Historical Ownership and Operations	. 5
	2.3 Previous Investigations and Corrective Actions	. 6
3 FINDINGS OF REMEDIAL INVESTIGATIONS		
	3.1 Site Geology	
	3.1.1 Soil Profile in OUs #1 and #2	
	3.1.2 Surficial Geologic Mapping	10
	3.1.3 Top of Lacustrine Unit	
	3.2 Site Hydrogeology	12
	3.2.1 Upper Aquifer	
	3.2.2 Bedrock Groundwater	
	3.3 Nature and Extent of Contamination	
	3.3.1 Constituents of Potential Concern	
	3.3.2 Fate and Transport Mechanisms	
	3.3.3 Apparent Source Areas	
	3.3.4 Results of VOC Analyses	
	3.3.4.1 Groundwater	
	3.3.4.2 Soil	
	3.3.4.3 Indoor Air	
	3.4 Access Limitations	
4	OVERVIEW OF REMEDIAL PROGRESS AND QHHEA	
	4.1 Remedial Progress	
	4.1.1 Source Reduction	
	4.1.1.1 Mass Removals	
	4.1.1.2 Reductions in Upper Aquifer Groundwater Concentrations	
	4.1.2 Hydraulic Containment and Flux Control	
	4.2 Conceptual Site Model	
	4.3 Qualitative Human Health Exposure Assessment	
5	REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES	
	5.1 Standards, Criteria, and Guidance (SCG) Values	
	5.1.1 Chemical-Specific SCGs	
	5.1.2 Activity-Specific SCGs	35

	5.2	Remedial Action Objectives (RAOs)			
	5.2.1	RAOs for Public Health			
	5.2	2.1.1 Groundwater			
	5.2	2.1.2 Soil			
	5.2	2.1.3 Soil Vapor			
	5.2.2	RAOs for Environmental Protection			
	5.2	2.2.1 Groundwater			
	5.2	2.2.2 Soil			
	5.2	2.2.3 Surface Water			
6	IDEN	NTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES			
	6.1	General Response Actions			
	6.2	Screening of Candidate Remedial Technologies			
	6.3	Retained Candidate Remedial Technologies			
7	DEV	ELOPMENT AND ANALYSIS OF ALTERNATIVES			
7.1 Description of Alternatives					
	7.1.1	Alternative #1: No Further Action with Site Management			
	7.1.2	Alternative #2: Enhanced Groundwater Extraction			
	7.1.3	Alternative #3: Enhanced Biodegradation			
7.2 Detailed Analysis of Alternatives					
7.2.1 Alternative #1: No Further Action with Site Managemen		Alternative #1: No Further Action with Site Management			
	7.2.2	Alternative #2: Enhanced Groundwater Extraction			
	7.2.3	Alternative #3: Enhanced Biodegradation			
	7.3	Comparative Analysis of Alternatives			
8	PROPOSED REMEDY				
9	REFERENCES64				

Tables

Table 6-1	Screening of Remedial Technologies
Table 7-1	Detailed Analysis of Remedial Alternatives

Figures

Figure 2-1	Site Location Map
Figure 2-2	Aerial Site Map
Figure 2-3	Operable Units #1 and #2 Location Map

Figure 2-4 Operable Units #1 and #2 Aerial Site Map

GROUNDWATER SCIENCES CORPORATION

- Figure 2-6 Well Location Map
- Figure 3-1 Site Surficial Geologic Map

Figure 2-5

Figure 3-2 Lacustrine Silt Surface Elevation Contour Map

OUs #1 and #2 Historical Corrective Action

- Figure 3-3 Groundwater Elevation Contour Map, Upper Aquifer Water Table (August 28, 2018)
- Figure 3-4 Groundwater Elevation Contour Map, Bedrock Potentiometric Surface (August 28, 2018)
- Figure 3-5 Overview of Fate and Transport Mechanisms
- Figure 3-6 Apparent Source Areas and Near-Source Groundwater Plume Areas
- Figure 3-7 Comparison of Apparent Source Areas and Near-Source Groundwater Plume Areas with Access Limitations
- Figure 4-1 Elements of Current OU#1/OU#2 Extraction Well Systems (as of December 1, 2018)
- Figure 4-2 VOC Mass Removed by Area, OU#1 and OU#2, 1980-2017
- Figure 4-3 VOC Mass Removed by Constituent, OU#1 and OU#2, 1980-2017
- Figure 4-4 Conceptual Site Model

Plates

- Plate 3-1 Geologic Cross-Section A-A'
- Plate 4-1 OU#1 and OU#2 Temporal Variations in Upper Aquifer Chemistry, 1980 to August 2018

Appendices

- Appendix A Photographs – 1980 Soil Excavation
- Appendix B Groundwater Analytical Chemistry Data (August 2018)
- Soil Analytical Chemistry Data (GSC, August 2009) Appendix C
- Appendix D Indoor Air Analytical Chemistry Data (SHPC, September 2016)
- Appendix E Mass Removal Data (1980 through 2017)
- Appendix F Cost Estimates for Remedial Alternatives

1 INTRODUCTION

This report presents the findings of a Focused Feasibility Study (FFS) for Operable Unit #1: Railroad Corridor Source Area (OU#1), and Operable Unit #2: North Street Area (OU#2), located at the former IBM Endicott Site in the Village of Endicott, Town of Union, Broome County, New York (Site). This FFS report has been prepared by Groundwater Sciences, P.C. (GSPC) and Groundwater Sciences Corporation (GSC) at the request of International Business Machines Corporation (IBM), pursuant to Order on Consent Index #A7-0502-0104 (Order), Site #704014 between the New York State Department of Environmental Conservation (NYSDEC or Department) and IBM, executed on August 4, 2004. This report satisfies requirements for an FFS detailed in the following section of the Order:

Appendix "C," Description of Operable Units, Operable Unit #1: Railroad Corridor Source Area, and Operable Unit #2: North Street Area.

Preliminary screening of candidate remedial technologies for OU#1 and OU#2 was completed in accordance with the Department-approved OU#1 Supplemental Remedial Investigation (SRI)/FFS Work Plan (OU#1 Work Plan), dated March 1, 2005, and the Department-approved OU#2 SRI/FFS Work Plan (OU#2 Work Plan), dated March 10, 2005. Following approval of these two work plans, the SRI and the FFS activities for OU#1 and OU#2 were combined, with NYSDEC approval, after it was determined that historical information, hydrogeologic data, and environmental data in each of these OUs are pertinent to the other OU with regard to understanding the nature and extent of contamination; understanding contaminant fate and transport mechanisms; screening of candidate technologies; and development, screening, and selection of remedial alternatives.

Results of the combined SRI for OU#1 and OU#2 were included in a report prepared by GSC on behalf of IBM and entitled "Supplemental Remedial Investigation Report, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, dated August 28, 2009. This combined SRI report was approved by NYSDEC and the New York State Department of Health (NYSDOH) (hereinafter collectively referred to as "the Agencies") on April 12, 2010. Results of preliminary screening of candidate remedial technologies were summarized in an October 15, 2008 technical memorandum¹, approved by the Agencies on August 18, 2009.

1.1 Purpose and Objectives

This report is intended to present the findings and conclusions of a focused feasibility study for OUs #1 and #2 completed in accordance with 6 NYCRR Part 375 – Inactive Hazardous Waste Disposal Sites and applicable NYSDEC guidance^{2,3}. The overall intent of the FFS is to propose a remedy to address the remaining presence of volatile organic compounds (VOCs) in soil and groundwater in OUs #1 and #2 after nearly four decades of remedial investigations and interim remedial measures. Specific objectives of this report are to:

- Provide an overview summary of Site conditions and remedial progress in OUs #1 and #2;
- Identify the Remedial Action Objectives (RAOs) that apply to OUs #1 and #2 based on promulgated standards and criteria that are directly applicable or that are relevant and appropriate to the Site conditions in OUs #1 and #2.
- Document the findings of the remedy selection process; and
- Provide a description and justification for the proposed remedy.

¹ Groundwater Sciences, P.C. and Groundwater Sciences Corporation, October 15, 2008, *Technical Memorandum to Mitch Meyers of IBM, Subject: Preliminary Screening of Candidate Technologies for Source Remediation and/or Flux Control, OU#1 and OU#2, Former IBM Endicott Site, New York.*

² New York State Department of Environmental Conservation, May 15, 1990, <u>Selection of Remedial Actions At</u> inactive Hazardous Waste Site, Technical and Administrative Guidance Memorandum (TAGM) 4030.

³ New York State Department of Environmental Conservation, May 2010, <u>DER-10</u>, <u>Technical Guidance for Site</u> <u>Investigation and Remediation</u>.

1.2 Organization of Report

The remainder of this report is organized in eight additional sections as follows. Section 2 presents pertinent background information and Section 3 provides a summary of the findings of remedial investigations in OUs #1 and #2. Section 4 provides an overview of remedial progress achieved by interim remedial measures, a conceptual Site model based on the remedial progress, and a qualitative human health exposure assessment based on current Site conditions. Section 5 identifies applicable remedial goals and remedial action objectives. Section 6 presents the results of the screening of various remedial technologies for their apparent effectiveness and implementability. Section 7 summarizes the results of development, screening, and analysis of remedial alternatives. Section 8 provides a description and justification for the remedial alternative selected as the proposed remedy. A list of references is presented in Section 9.

2 BACKGROUND

This section provides a summary of pertinent OU#1 and OU#2 background information, including the physical setting of the Site and OUs #1 and #2; an overview of historical ownership and operations; and a summary listing of previous investigations and corrective actions. Much of this information and data is described in more detail within the combined SRI report for OUs #1 and #2 and in annual groundwater monitoring status reports.

2.1 Site Setting

The former IBM Endicott Site is located principally in the central and eastern portions of the Village of Endicott and in the western portion of the Town of Union, Broome County, New York. **Figure 2-1** shows the approximate location of the former IBM Endicott Site on a portion of the Endicott, NY and Maine, NY 7.5-minute United States Geologic Survey topographic quadrangle maps. The former IBM Endicott Site consists of approximately 135 acres that were conveyed by IBM to Huron Real Estate Associates, LLC (Huron) in November 2002. An aerial photographic base map with yellow shading that depicts the parcels that comprise the 135-acre Site is provided as **Figure 2-2**. As shown on **Figure 2-3**, OUs #1 and #2 are located in the central portion of the Site, with OU#1 comprising about 40 acres and OU#2 comprising about 30 acres.

An aerial photographic base map showing the OU#1 and OU#2 portion of the Site and surrounding region is provided as **Figure 2-4**. As shown on this aerial photographic map, OUs #1 and #2 primarily consist of manufacturing buildings and asphalt-paved parking or roadway areas. Lawn areas are generally limited to the southern portion of OU#2 adjacent to buildings that front on North Street and the northern portion of OU#1 in the area of Watson Boulevard. OU#1 and OU#2 are separated by Norfolk Southern railroad tracks (the "Railroad Corridor") and the central portion of each OU is bisected by McKinley Avenue.

The portion of the former IBM Endicott Site that encompasses OUs #1 and #2 is currently zoned industrial. The Site is owned by Huron, a real estate leasing and property management company. Huron leases manufacturing and office space at the Site to a variety of tenants. The type of manufacturing activities in OUs #1 and #2 is dependent on the tenants and is subject to change over time. Many of the buildings in OUs #1 and #2 are currently occupied. An exception is the large

building complex, currently abandoned, and located east of McKinley Avenue, north of North Street, and South of the railroad tracks. For the purposes of this report, this building complex is referred to as the "Old Group Buildings".

Areas abutting OUs #1 and #2 to the north are zoned residential, to the south are zoned commercial and multifamily, and to the east and west are zoned industrial. As shown on **Figure 2-4**, the OU#1 portion of the Site is surrounded by Watson Boulevard and residential/commercial properties to the North, Oak Hill Avenue and Huron manufacturing and parking lot facilities to the west, Huron parking lot facilities to the east, and the Norfolk Southern railroad tracks to the south. The OU#2 portion of the Site is surrounded by the Norfolk Southern railroad tracks to the north, Oak Hill Avenue and commercial properties to the west, the former Endicott Forging facility to the east, and Huron parking lot facilities, municipal parking lot facilities, and multiuse or commercial properties to the south.

2.2 Historical Ownership and Operations

The OU#1 and OU#2 portion of the Site was first developed by the Erie-Lackawanna Railroad around 1850 with the remaining area apparently consisting of rural farmland. Additional development occurred in the early 1900s by predecessors to the Endicott-Johnson Corporation (EJ), and by the predecessors to the IBM Corporation. A review of chain-of-title information for parcels within OUs #1 and #2 indicates a complex history of acquisition and sales during the roughly 65 years of EJ predecessor/EJ ownership and roughly 100 years of IBM predecessor/IBM ownership. A detailed summary of property ownership history for the primary businesses within OUs #1 and #2 is provided in a report prepared by GSC on behalf of IBM and entitled *Final Pre-Characterization Technical Memorandum, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area*, dated July 14, 2006 (PCTM report).

A brief overview of the types of historical Site operations within OUs #1 and #2 is provided below:

• **Railroads** - Property use on the railroad properties in OUs #1 and #2 over the past century primarily consisted of loading/unloading operations adjacent to EJ and IBM buildings, storage of materials such as coal and lumber, and operation of a railyard with a turntable switching operation. Other possible operations within the railyard could have included refueling and maintenance.

- Endicott-Johnson The Endicott-Johnson Company shoe works in Endicott was a thoroughly vertically-integrated business. Based on a review of publicly available EJ-related documents, hides reportedly arrived by the railcar load, were tanned, fashioned into shoes, orders were taken in the sales building, and finished product was shipped to customers from the facility (in boxes manufactured on-Site by the Endicott Lumber & Box Company). There was even a small foundry that made the iron work tables used in the shoe manufacturing factories, and a chemical plant that manufactured the rubber cement used in shoe manufacturing. Solvents reportedly used by EJ as a part of its operations included carbon tetrachloride, trichloroethene (TCE), tetrachloroethene (PCE), 1,1,1-trichloroethane (TCA), methylene chloride, methyl ethyl ketone, toluene, xylene, and mixtures containing aromatics (gasoline, rubber solvent and mineral spirits). EJ operations were located in the portions of OU#1 and OU#2 that are west of McKinley Avenue.
- **IBM and Predecessors** IBM predecessor and IBM historical operations can be divided into three general periods of manufacturing. The earliest period of operations at the facility consisted of mechanical business machine manufacturing from the 1900s to the 1950's. During World War II, this type of production was apparently shifted temporarily to include military hardware, and the facility received a citation for its contribution to the war effort. From the 1950s to the early 1980s, the facility was engaged primarily in the manufacture of mid-range, mainframe computers. In the early 1980s, operations at the facility primarily shifted to the manufacture of components (circuit cards, circuit panels, and ceramic substrates) in support of other IBM electronics manufacturing activities. The primary solvents used by IBM as part of its mainframe computer and electronic component manufacturing operations include TCE, PCE, TCA, methylene chloride, and Freon 113.
- Other Property Use History On the basis of a review of property ownership records, fire insurance maps, and city directories, other historical operations of interest identified in the areas of OUs#1 and #2 included: vehicle fueling, service, and repair facilities; dry cleaners; paint, photo, and/or print shops; and metal working and manufacturing facilities.

2.3 **Previous Investigations and Corrective Actions**

On December 14, 1979, IBM determined that a release of approximately 4,200 gallons of methyl chloroform (also referred to as MCF, 1,1,1-trichloroethane, or TCA) had occurred below the ground surface as a result of a leak from a corroded buried pipeline located adjacent to Building 94 (former building in the area of Building 264/268 as shown on **Figure 2-5**), near the northeast corner of Building 18. Upon the discovery of the TCA release, IBM notified NYSDEC and took immediate action to recover the released solvent as quickly as possible, including excavation and removal of contaminated soil down to the water table and product (solvent) recovery from within areas of the excavation. The majority of the soil excavation was completed by the end of January 1980. Groundwater extraction and product recovery from the excavation (Sump-2) and one well (EN-4)

7

began in January 1980. Approximate locations of the soil excavation, Sump-2, Building 94, and well EN-4 are shown on Figure 2-5. Photographs taken at the time of the soil excavation are provided in Appendix A.

Between January and April 1980, IBM initiated an "emergency spill phase investigation" to locate the contaminant plume from the TCA spill, estimate the approximate limits of the plume and estimate the direction and rate of plume movement. The work identified additional chemicals in the groundwater besides TCA, including TCE, PCE, methylene chloride, Freon 113, and aromatic hydrocarbons. The work also identified an apparent area of recoverable solvent (also referred to as dense non-aqueous phase liquid or DNAPL) that had accumulated on the surface of a lacustrine silt aquitard within an overlying sand & gravel aquifer. This DNAPL accumulation zone was identified in the area between Buildings 18, 41, 45, and 48 in reports by Dames & Moore, dated June 1980 and December 1980. The inferred extent of former DNAPL presence as depicted on a figure in the December 1980 Dames & Moore report is shown on **Figure 2-5**.

In February 1980, groundwater extraction and DNAPL recovery activities began at well EN-25 located north of the railroad tracks between Building 45 and Building 48. In March and April 1980, groundwater extraction and DNAPL recovery operations began at four additional wells located south of the railroad tracks (EN-7, EN-8, EN-9, and EN-11). The work also included laboratory leaching experiments to assess the feasibility of flushing TCA from soil to enhance product recovery efforts. The investigations and corrective action were performed under the oversight of NYSDEC's Division of Water (DOW). The locations of former extraction wells EN-7, EN-8, EN-9, EN-11, and EN-25 are also shown on **Figure 2-5**.

Since the initial investigation and cleanup activities in 1980, the OU#1 and OU#2 portion of the Site has been the subject of numerous additional investigations and remedial activities focused on source reduction, hydraulic containment, and chemical flux control. The investigation and remedial activities have included numerous soil borings, groundwater monitoring well installations, and groundwater recovery (extraction) well installations. As shown on the well location map provided as **Figure 2-6**, more than 100 monitoring and extraction wells have been installed within the limits of OUs #1 and #2. Some of the investigations and corrective actions or remedial measures have included, but are not limited to:

Focused Feasibility Report for OUs #1 and #2, Endicott, New York GROUNDWATER SCIENCES, P.C. GROUNDWATER SCIENCES CORPORATION December 27, 2018

- Supplemental hydrogeologic investigations to further refine the understanding of apparent VOC source areas and VOC groundwater plume areas proximate to the railroad corridor and areas downgradient within OU#2;
- Assessments of the feasibility of soil vapor extraction and air sparging as remedial alternatives to supplement or replace soil excavation and groundwater extraction as remedial measures in portions of OU#1 and/or OU#2;
- Evaluation of the potential impact that man-made structures in OU#1 and OU#2 could have on vertical and lateral contaminant migration;
- Hydrogeologic investigations of the bedrock groundwater plume beneath portions of OU#1 and OU#2;
- Completion of a supplemental groundwater assessment (SGA) and an evaluation of existing corrective measures systems to identify additional corrective actions that could be taken at the Site to accelerate cleanup;
- Modifications and/or enhancements to groundwater recovery operations in the railroad corridor via the installation of additional extraction wells and replacement extraction wells;
- Enhancement to groundwater source control in the area of the railroad corridor by the implementation of vacuum-assist groundwater extraction;
- Enhancement of groundwater flux control in the area of North Street by improvements in the operation of extraction well EN-276, the addition of groundwater extraction well EN-276R near well EN-276, and the addition of vacuum-assist groundwater extraction well EN-284P in the area south of North Street;
- Evaluation of enhanced flux control in the western portion of OU#2 including an assessment for a potential source or sources of the limited VOC presence in groundwater in the western portion of OU#2;
- Pilot testing of clean water injection to enhance reduction in VOC mass from the saturated zone in the northern portion of OU#2, near Building 18 and near the inferred southern extent of former DNAPL presence;
- Multi-phase sampling and removal of sediment from "deep" storm sewer pipelines and manholes near Buildings 18, 41, 46, and 48; and
- Assessment of the vapor intrusion pathway for certain Site buildings and the installation of sub-slab depressurization systems for buildings where vapor intrusion is a potential concern.

8

3 FINDINGS OF REMEDIAL INVESTIGATIONS

This section provides a summary of the findings of nearly forty years of remedial investigations that are pertinent to the screening of remedial technologies, development and screening of remedial alternatives, and selection of a proposed remedy to address the presence of VOCs in soil and groundwater in OUs #1 and #2.

3.1 Site Geology

The geologic profile in OUs #1 and #2 consists of a vertical-downward sequence of soil fill, lateglacial and post-glacial alluvium, glaciofluvial outwash sand or sand & gravel, glaciolacustrine silt & clay, glacial till; and bedrock. The sequence and contact relationships of the different overburden Site strata reflect a complex history of deposition by ice- and water-dominated processes during glaciation and deglaciation, followed by reworking of glacial deposits by post-glacial streams and erosion.

3.1.1 Soil Profile in OUs #1 and #2

A north-south oriented geologic cross-section that extends through the central portions of OUs #1 and #2 is shown on Plate 3-1. Descriptions of the characteristics and extent of the different soil strata overlying bedrock beneath OUs #1 and #2 are provided below.

- Soil Fill Soil fill is present throughout this area of the Site. In general, the fill appears to consist primarily of reworked sand, sand and gravel or glacial till soils with variable amounts of miscellaneous fill materials such as brick, concrete, wood, coal, cinders, ash, metal, and glass. These miscellaneous materials have been encountered in the fill throughout the Site. The presence of these miscellaneous fill materials is consistent with the complex history of demolition and development by EJ, IBM, and their predecessors. The presence of wood in fill within OU#1 could also be related to former lumber yard activities. The presence of coal is consistent with former coal storage activities in former railyard areas and EJ properties during the 1900s. The presence of cinders and ash is consistent with materials that would typically be used as fill during the earlier stages of Site development. The thickness of soil fill varies from about one foot to nearly twenty feet across the Site. In general, the fill is thicker in areas adjacent to the current manufacturing buildings.
- Late-Glacial and Post-Glacial Alluvium Late-glacial and post-glacial alluvial sediments have been identified beneath soil fill over a large portion of OU#1 and in a few locations adjacent to the railroad corridor in the northern portion of OU#2. These stream and floodplain deposits can generally be subdivided into the following three general soil types:

Focused Feasibility Report for OUs #1 and #2, Endicott, New York

- Stiff to very stiff, silt & clay;
- Medium dense to dense, moderate to well-sorted and stratified, fine sand, silt, and/or clay interbedded with lesser amounts of sand & gravel;
- Medium dense to dense, poorly to well-sorted sand & gravel with little to trace amounts of silt & clay.

The first two soil types have been grouped into a fine-grained facies that also includes a localized presence of organic silt or fine-grained peat (swamp deposits). The third soil type is considered to be a coarse-grained facies. Where present, the thickness of these soils typically varies from a few feet to about 10 feet. In portions of OU#1, some of these sediments appear to have been excavated during construction of large manufacturing buildings.

- Glaciofluvial Outwash Sand & Gravel Outwash sand & gravel is present throughout OU#2 and the southern two-thirds of OU#1. This stratum consists of medium dense to very dense, poorly-sorted to well-sorted and stratified, fine sand, fine to medium sand or fine to coarse sand with lesser amounts of gravel. Silty fine sand or fine sand & silt are also present in some locations. The thickness of this stratum in OUs #1 and #2 is generally about 5 to 20 feet with the thinnest areas corresponding to areas of thick soil fill. Where downwarped or collapsed in ice-block depressions, the thickness of this stratum is typically about 25 to 50 feet thick. To the extent that it is saturated (i.e., below the water table), this outwash unit constitutes the Upper Aquifer, which is an unconfined, water table aquifer.
- **Glaciolacustrine Silt & Clay** This stratum consists of fine-grained glacial lake-bottom deposits, typically varved silt with pink clay seams, but locally grading to silty fine sand. The thickness of this stratum is typically about 30 to 50 feet. This stratum pinches out in the northern portion of OU#1. The top of this unit generally defines the bottom of the Upper Aquifer. Where the lacustrine deposits are absent, the bottom of the Upper Aquifer rests on glacial till. Where the lacustrine deposits are present, they form an effective aquitard between the overlying Upper Aquifer and the underlying glacial till and bedrock.
- **Glacial Till** This stratum consists of a very dense to dense, poorly-sorted heterogeneous mixture of clay, silt, sand, and gravel. The thickness encountered for this stratum generally ranges from a few feet to about 30 feet. Some post-glacial colluvium derived from reworking (erosion) of the glacial till may be present in the northern portion of OU#1 which corresponds to the northern margin of the valley.

3.1.2 Surficial Geologic Mapping

A surficial geologic map depicting the limits of the different soil types underlying soil fill is provided as **Figure 3-1**. The map shows soil strata located beneath soil fill in the area of OU#1 primarily consists of either glacial till (shown in purple), the fine-grained facies of alluvial soils

(shown in light green), the coarse-grained facies of alluvial soils (shown in dark green), or outwash sand & gravel (shown in yellow); whereas in OU#2, the soil strata beneath soil fill primarily consists of outwash sand & gravel. The approximate lateral extent of the alluvial soils is also shown on the geologic cross-section (**Plate 3-1**). The approximate northern limits of the lacustrine silt and the approximate limits of silt in the area of an ice-block depression at well EN-284 are also shown on the map as a dashed orange line.

Overall, the map depicted on **Figure 3-1** indicates fine-grained soils that could have higher moisture content, inhibit storm water infiltration, and inhibit vertical advective and diffusive transport of contaminants are present in broad areas in the southern and central portions of OU#1. However, in areas where buildings are present, some of these fine-grained soils may have been excavated or penetrated by foundation structures such as footings and pilings.

3.1.3 Top of Lacustrine Unit

The top of the lacustrine silt unit defines the bottom of the Upper Aquifer, and the configuration of this surface is important in determining the geometry of the Upper Aquifer. The topographic surface elevation contours and the approximate limits of the lacustrine silt in the area of OUs #1 and #2 are shown on **Figure 3-2**. As depicted on **Figure 3-2**, the surface elevation of the lacustrine silt across much of OU#1 is typically between 815 and 825 feet amsl, while the silt surface elevation across much of OU#2 is typically between 825 and 830 feet amsl. Localized depressions or troughs in the lacustrine silt surface have been identified in both OUs and are inferred to be ice-block depressions or "kettle holes". Areas where these ice-block depressions have been identified include:

- Beneath the northern portion of Building 47 in OU#1, as defined by an 805 feet amsl elevation contour;
- In the area of extraction well EN-219R in OU#1, as defined by an 820 feet amsl elevation contour;
- In the area of extraction well EN-114T in OU#1, as defined by an 815 feet amsl elevation contour;

- In the area of extraction well EN-276 in OU#2, as defined by an 825 feet amsl elevation contour with the deepest portion of this feature (<800 feet amsl) located west of EN-276, beneath Building 14; and
- In the area of extraction well EN-284P south of OU#2, as defined by an 810 feet amsl elevation contour at the approximate limits of the lacustrine silt.

3.2 Site Hydrogeology

This section presents a discussion of Site-specific hydrogeology for the Upper Aquifer and bedrock which are the two principal water-transmitting units within and in the vicinity of OUs #1 and #2.

3.2.1 Upper Aquifer

An Upper Aquifer groundwater elevation contour map based on August 28, 2018 water levels recorded under pumping conditions is provided as **Figure 3-3**. As shown on the figure, groundwater elevations in the area of OUs #1 and #2 generally ranged from about 840 feet amsl in the northeastern portion of OU#1 to about elevation 810 feet amsl in the large ice-block depression south of OU#2. Apparent groundwater flow directions based on contouring the elevation data reveal that groundwater withdrawals have established two general capture zones consisting of: (1) a northern capture zone north and south of the Norfolk Southern railroad tracks that encompasses current extraction wells EN-114T, EN-428, EN-253, and EN-219R (On-Site Capture Zone); and (2) a southern capture zone in the south-central portion of OU#2 and off-Site areas further to the south that encompasses current extraction wells EN-276, EN-276R, and EN-284P. The saturated thickness of the Upper Aquifer over much of OU#1 is on the order of 5 to 10 feet, while saturated thickness over much of OU#2 is less than 5 feet. Areas with the greatest saturated thickness generally correspond to locations of the deepest ice-block depressions in the lacustrine silt surface.

Hydraulic conductivity values calculated for Upper Aquifer sand or sand & gravel soils as part of the SGA ranged from about two feet per day (ft/day) in silty soils to as high as 865 ft/day. The bulk hydraulic conductivity of the Upper Aquifer is estimated to be about 130 ft/day on the basis of SGA pumping tests, pulse tests, and comparisons with previous investigations performed by others. For OU#1, applying a typical range in saturated thickness of 5 to 10 feet with the bulk hydraulic conductivity of 130 ft/day yields transmissivities ranging from about 700 to 1,300 cubic feet per day (ft²/day). A similar comparison for OU#2 yields transmissivities ranging from about 130 to 650

GROUNDWATER SCIENCES CORPORATION

 ft^2/day . Physical laboratory testing of Upper Aquifer materials collected in the area of the off-Site groundwater plume indicate an average porosity of the Upper Aquifer outwash sand & gravel of approximately 0.35. In the southern half of OU#1 and across much of OU#2 lateral hydraulic gradients are generally estimated to be within the range of approximately 0.001 to 0.01 feet per foot.

Assuming a bulk hydraulic conductivity of 130 ft/day, a range in hydraulic gradient of 0.001 to 0.01 ft/ft, and a porosity of 0.35, the horizontal seepage velocity in the Upper Aquifer sand & gravel in the area of OUs #1 and #2 is estimated to be in the range of approximately 0.4 to 3.7 ft/day. Based on this range in seepage velocity, travel times from central portions of OU#1 and OU#2 toward extraction well pumping centers are inferred to range from 2 to 5 months.

3.2.2 Bedrock Groundwater

The understanding of bedrock hydrogeologic conditions in the area of OU#1 and OU#2 is based on a review of historical groundwater remedial action activities performed since the 1980s, including startup of well EN-CAF as a bedrock extraction well, results of additional remedial investigations completed in 2005 to support siting and design of a replacement for the EN-CAF well, and results of installation and testing of the replacement bedrock extraction well (EN-D49) completed as an interim remedial measure in 2006 and 2007. The bedrock groundwater plume is designated in the Order as "OU#6: Plume Control in Bedrock Groundwater." NYSDEC issued a Record of Decision (ROD) for OU#6 on March 26, 2009 and selected "No Further Action" as the remedy, contingent on continued operation and maintenance of bedrock extraction well EN-D49 and continued monitoring of bedrock groundwater quality.

As shown on the bedrock potentiometric surface contour map for August 28, 2018, provided as **Figure 3-4**, the operation of extraction well EN-D49 creates a substantial zone of capture within the bedrock aquifer at the Site. The operation of well EN-D49 controls the plume of VOCs in bedrock groundwater, with no detections of VOCs greater than 1 μ g/L outside the capture zone at bedrock monitoring wells EN-D10, EN-D35, EN-D36, and EN-D48. The highest concentrations of VOCs in the bedrock VOC plume are found at wells EN-D33, EN-D46, and EN-D47, all within the capture zone of extraction well EN-D49.

GROUNDWATER SCIENCES CORPORATION

3.3 Nature and Extent of Contamination

The nature and extent of contamination described in the combined SRI report for OUs#1 and #2 included an identification of Constituents of Potential Concern (COPCs), an overview of fate and transport mechanisms likely to have influenced the distribution of COPCs in OUs#1 and #2, and a review of analytical chemistry data along with historical features of interest identified in a source area evaluation to support identification of apparent source areas. The following subsections provide a summary of the COPCs, fate and transport mechanisms, and apparent source areas described in the SRI report, followed by summaries of VOC analysis results for OU#1 and OU#2 samples of groundwater, soil, and indoor air.

3.3.1 Constituents of Potential Concern

On the basis of nearly forty years of Upper Aquifer groundwater chemistry data associated with monitoring and groundwater extraction and treatment operations, and soil chemistry data associated with numerous remedial Site investigations, the primary VOCs detected in groundwater and soil within OUs #1 and #2 include:

- Chlorinated ethenes: Tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2dichloroethene (cis12DCE), 1,1-dichloroethene (11DCE), and vinyl chloride (VC).
- Chlorinated ethanes: 1,1,1-Trichloroethane (TCA) and its principal transformation products, 1,1-dichloroethane (11DCA), and chloroethane (CEA) (Note: 11DCE is also a transformation product of TCA by the abiotic elimination reaction).
- Methylene chloride (dichloromethane, DCM): This compound is not observed south of North Street as it degrades both aerobically and anaerobically and is rarely transported beyond the immediate vicinity of any particular source zone. Concentrations of DCM declined rapidly during the early 1980s. Since the mid-1980s, DCM has not been detected in most wells located outside of apparent source areas in the vicinity of the railroad corridor.
- Freon 113 and its transformation product Freon 123a: Similar to DCM, these compounds are not significant constituents in groundwater south of North Street.
- Aromatic hydrocarbons: Benzene, toluene, ethylbenzene, and xylenes. These aromatic hydrocarbons are expected to be localized in areas near the railroad corridor. Aromatic hydrocarbons were present in the area of the railroad tracks and the area east of Building 18 in the early 1980s but declined rapidly by the mid-1980s and are now generally not detected in groundwater.

Focused Feasibility Report for OUs #1 and #2, Endicott, New York

Of the compounds identified above, the current principal COPCs in OUs #1 and #2 include the chlorinated ethenes, chlorinated ethanes, and Freon 113 and its transformation product Freon 123a.

3.3.2 Fate and Transport Mechanisms

Figure 3-5 summarizes the geology, hydrogeology and fate and transport mechanisms that are essential to understanding the pattern of occurrence and concentrations of COPCs in the various environmental media that have been impacted by historical releases in certain portions of OUs #1 and #2. A detailed description of the various fate and transport processes believed relevant in OUs #1 and #2 is provided in the SRI report. The relative importance of these various processes has likely changed since the time of the historical releases. The current nature and extent of VOC presence are a result of a complex interaction between:

- Complex heterogeneous soil conditions consisting of soil fill, variable textured alluvium, and outwash sand or sand & gravel with variable physical properties;
- The presence of four general hydrogeologic zones including the vadose zone, a dewatered zone, an Upper Aquifer saturated zone, and a saturated glaciolacustrine silt aquitard. The dewatered and Upper Aquifer saturated zones vary with changes in seasonal recharge and groundwater extraction operations;
- The residual presence of DNAPL in discrete soil pores in areas of former DNAPL accumulation zones, such as finer-textured strata in the vadose zone, on the former water table, on finer-textured strata within the saturated zone, and on the surface of the lacustrine silt. Dissolution of DNAPL over a period of about four decades or greater has likely resulted in less remaining residual DNAPL in the saturated zone and top of the lacustrine silt compared to potential accumulation zones in the vadose zone;
- Light non-aqueous phase liquid (LNAPL) seepage and accumulation on the former water table;
- Aqueous transport processes such as infiltration, unsaturated flow of gravitational water, dissolution from NAPL, draining in the dewatered zone, recharge at the water table, lateral advection within the saturated zone, vertical advection into the lacustrine silt, and aqueous diffusion into finer-textured soils;
- Vapor-phase transport processes such as volatilization from the water table, evaporation of NAPL in the vadose zone, and upward vapor diffusion in the vadose zone; and
- Fate processes such as partitioning from soil vapor to pore water in the vadose zone; sorption onto the organic carbon fraction of formation solids; sorption-retarded

intragranular diffusion; and various types of degradation resulting in transformation of parent compounds to daughter products.

The diffusion, sorption, and partitioning fate and transport processes listed above are all reversible. After nearly four decades of remediation, the rates of these reversible processes are currently believed to have the greatest influence on the rate of mass removal (source strength reduction) and chemical flux control in OUs #1 and #2. Preferential pathways, such as subsurface utilities, are another potentially important transport mechanism to be considered in OUs #1 and #2. As such, additional screening and development of remedial alternatives should focus on technologies that accelerate diffusion, desorption, and the overall rate of partitioning from the solid phase to the aqueous and/or gaseous phases while maintaining source control.

3.3.3 Apparent Source Areas

A source area evaluation (SAE) was completed as part of the OU#1 and OU#2 SRI. The SAE included a review of historical documents, maps, and prints for EJ and IBM in an effort to identify historical features of interest that could serve as potential sources of the VOC presence detected in groundwater in the area of OUs #1 and #2. Historical features of interest identified by the SAE include historical locations where hazardous substances, hazardous wastes, or petroleum substances were known or are suspected to have been handled, stored, used, generated, treated, and/or released or disposed. Results of the SAE were described in detail in the PCTM report and the OU#1 and OU#2 SRI report.

The findings of the SAE indicated that the primary areas where solvents were stored and handled by EJ and IBM or their predecessors consist of railroad sidings, loading dock areas adjacent to rail sidings, and exterior above ground storage tanks or tank farms adjacent to the railroad tracks and the EJ and IBM manufacturing buildings. Additional solvent usage, handling, and storage occurred within certain manufacturing and storage buildings adjacent to the railroad tracks. Based on a comparison of information regarding historical Site operations, together with hydrogeologic and contaminant distribution data compiled and recorded as part of the SRI, these historical solvent storage and handling areas also appear to be the primary locations where solvents were likely to have been released to the environment.

As described in the OU#1 and OU#2 SRI report, apparent source areas were identified based on the following general criteria:

- Dissolved groundwater concentrations for one or more COPCs normalized to the parent compound (PCE, TCE, TCA, and/or Freon 113) have been observed within the past twenty years to exceed 1 percent of the solubility for the particular constituent or constituents. For this analysis, the solubility values used are: PCE = 240 milligrams per liter (mg/L), TCE = 1,400 mg/L, TCA = 1,250 mg/L, and Freon 113 = 170 mg/L.
- The areal extent and pattern of dissolved VOC mass in Upper Aquifer groundwater for nearly four decades suggests a continuing DNAPL and/or high soil concentration presence centered on a particular portion of the Site.
- Results of the SAE identified one or more historical features of interest where virgin or waste solvents could have been stored, handled, and/or used (potential sources), consistent with the particular constituent or constituents meeting the two criteria listed above.

On the basis of the above-mentioned criteria, the primary apparent source areas identified in OUs

#1 and #2 include:

- The area of the former TCA subsurface pipeline break (December 1979 spill) northeast of Building 18 where DNAPL was historically recovered (for the purposes of this report, this apparent source area is located within an area referred to as the "Central Railroad Corridor Source Area");
- The exterior pipeline trestle area northeast of Building 18 and northwest of Building 41 that currently includes Buildings 264 and 268. Historical operations in this area included solvent unloading and handling associated with a former solvent storage building (Building 94). Solvent storage in Building 94 consisted of tanks and drums, including a 10,000-gallon TCE AST (this area is also located within the Central Railroad Corridor Source Area);
- The exterior pipeline trestle area north of Building 41 that was the former location of a rail siding and 15,000-gallon AST used to store TCE. Historical operations in this area are inferred to include filling of the AST from railcars located on the rail siding. Concentrations of TCE in groundwater that are indicative of a nearby DNAPL source have been detected in wells located near this area on the opposite side of the railroad tracks, south and southwest of Building 45 (this area is also located within the Central Railroad Corridor Source Area);
- The current Building 45 loading dock area that formerly consisted of an exterior rail siding loading dock with TCA chemical transfer pumps associated with a TCA still area and four 3,000-gallon used TCA solvent tanks in the southern portion of Building 46 (this area is also located within the Central Railroad Corridor Source Area);

- The truck loading dock turnaround area south of Building 47 and east of Building 45 that was formerly a railyard area that included load/unload operations associated with the former Building 47 tank farm near the southeast corner of Building 47 and solvent storage and still operations in the southern portion of Building 47. The primary solvents of concern stored in the former tank farm and handled in the southern portion of Building 47 were TCA and methylene chloride (for the purposes of this report, this apparent source area is located within an area referred to as the "Eastern Railroad Corridor Source Area"); and
- The location of Building 263 and adjacent railroad corridor, northwest of Building 18. Building 263 formerly included waste solvent storage tanks and a PCE storage tank. The highest historical PCE concentrations detected in groundwater within OU#1 and OU#2 have been in monitoring wells EN-50 and EN-51 and in extraction well EN-107 located north and northwest of this location on the opposite side of the railroad tracks (for the purposes of this report, this apparent source area is located within an area referred to as the "Western Railroad Corridor Source Area").

As referenced above and shown on **Figure 3-6**, these apparent sources can be grouped into three separate areas along the railroad corridor within OUs #1 and #2, including:

- Central Railroad Corridor Source Area Primarily consists of TCA and TCE with lesser Freon 113 believed to be sourced from historical features of interest located south and north of the railroad tracks. This area includes the current overhead trestle areas north and northeast of Building 18 and north of Building 41, the Building 45 loading dock area, the southern portion of Building 46, the area between Building 48 and Building 46, and adjacent sections of the Norfolk Southern railroad property.
- Eastern Railroad Corridor Source Area Primarily consists of TCA with lesser TCE and Freon 113 inferred to be sourced from a former solvent storage tank farm and unloading operations southeast and south of Building 47 and still operations in the southwestern portion of Building 47. Possible releases in this area may have extended under a portion of the Norfolk Southern railroad tracks located south of Building 47.
- Western Railroad Corridor Source Area Primarily consists of PCE with lesser amounts of other solvents believed to be sourced by historical solvent and waste solvent storage operations in the area of Building 263. Possible releases from this area are likely to have extended under a portion of the Norfolk Southern railroad tracks located northwest of Building 18.

The dissolved groundwater plumes that developed due to solvent releases in these apparent source areas would have extended to the south in the historical (non-pumping) direction of groundwater flow. As shown on **Figure 3-6**, the approximate limits of these near-source groundwater plume areas are inferred to extend beneath a large segment of the Norfolk Southern railroad tracks, Huron manufacturing buildings 18 and 41, the western portion of the Old Group Buildings, segments of

McKinley Avenue and North Street, and a small portion of the Huron parking lot areas south of North Street. Although these near-source groundwater plume areas are inferred to be outside the primary locations where solvents were released, the historical presence of high VOC concentration groundwater plumes are likely to have resulted in secondary sourcing of VOC mass in these plume areas due to partitioning of VOCs to soils in the saturated zone, the underlying silt/clay, and the overlying vadose zone.

3.3.4 Results of VOC Analyses

This section provides a brief summary of the VOC concentration data collected in OUs #1 and #2 for samples of groundwater, soil, and indoor air. The groundwater VOC concentration data is for samples of Upper Aquifer groundwater collected during the most recent comprehensive monitoring round in August 2018. The soil VOC concentration data are from sampling of the outwash sand & gravel and lacustrine silt conducted as part of the SRI for OUs #1 and #2. The indoor air VOC concentration data are from sampling conducted in 2016 as part of an indoor air assessment of certain buildings at the Site. Overall, the data suggest that after nearly four decades of interim remedial measures, there have been significant reductions in VOC mass in soil and groundwater in OUs #1 and #2.

3.3.4.1 Groundwater

Results of VOC analyses on the Upper Aquifer groundwater samples collected in August 2018 from 82 wells in OUs #1 and #2 are provided in **Appendix B**. **Table B.1** provides a summary of the VOC detections. The chlorinated ethenes present in the August 2018 groundwater samples include: PCE, TCE, cis12DCE, 11DCE, and VC. The chlorinated ethanes present in the August 2018 groundwater samples include: TCA and 11DCA. CEA is also present in samples collected from a few localized areas in OUs #1 and #2. Other notable compounds present in OU#1 and OU#2 groundwater include: Freon 113 and its transformation product Freon 123a, 1,2-DCA, methylene chloride, and the limited presence of certain aromatics.

As indicated in the table, New York State Part 703 groundwater standards are exceeded for one or more VOCs in 66 of the 82 (80%) wells sampled in August 2018. The groundwater sample locations with VOC concentrations above the Part 703 standards are primarily located within the

limits of the apparent source areas and near-source groundwater plumes depicted on **Figure 3-6**. The VOCs with the highest concentrations in the August 2018 groundwater samples include TCA, DCA, CEA, and cis12DCE. The VOCs with the highest frequency of detection in the August 2018 groundwater samples include TCA, PCE, TCE, and cis12DCE.

3.3.4.2 Soil

The soil sampling and VOC analyses completed as part of the SRI for OUs #1 and #2 was performed to screen for DNAPL presence, assess the lateral extent of VOC presence in Upper Aquifer outwash sand & gravel soils, and assess the vertical extent of VOC presence in lacustrine silt aquitard soils. The tabulated results of the VOC analyses on the soil samples that were originally included in Appendix F of the SRI report are provided in **Appendix C**. The SRI findings are summarized below:

• Lateral Extent of Contamination - Soil sampling and VOC analyses to screen for DNAPL presence and the lateral extent of VOC presence in or near apparent source areas or near-source groundwater plume areas were performed during advancement of soil borings for monitoring well EN-485, proximate to extraction well EN-253, monitoring well EN-508, installed east of Building 18, and monitoring well EN-509, installed northeast of Building 18 in the area of the December 1979 release of TCA. Soil samples for VOC analyses were also collected at soil boring location EN-512 located in the southeastern portion of Building 14. Results of VOC analyses of soil samples for compounds detected in one or more of the samples are provided in Appendix C as Table C.1.1, and the complete analytical results are provided in Appendix C as Table C.1.2.

As shown in **Table C.1.1**, the primary constituents detected in the soil samples include chlorinated ethenes, chlorinated ethanes, Freon 113, and aromatics. None of the soil concentrations detected were indicative of the presence of DNAPL. The TCE, cis12DCE, TCA and 11DCA concentrations detected in soil samples from EN-485 are likely associated with the dissolved-phase presence of these four VOCs in groundwater detected in well EN-485 and nearby extraction well EN-253. Results of soil profile sampling at EN-509 did not identify the presence of a residual source zone. However, the concentration of TCA in the one sand sample collected at the top of the lacustrine silt suggests that some discrete zones of elevated VOCs could be present in soil in the area of the December 1979 release of TCA where initial spill response activities included recovery of DNAPL solvent primarily consisting of TCA.

• Lacustrine Silt Profile Sampling - The collection and analysis of the lacustrine silt sample cores were performed to support an evaluation to determine whether: (1) DNAPL solvent penetrated into the silt unit; and (2) reverse diffusion of VOCs from the silt unit upward into the aquifer is likely to prolong remediation efforts in the Upper Aquifer. Results of the

VOC analyses on the silt samples are provided in Appendix C as Tables C.2.1.1 and C.2.1.2, and the complete analytical results are provided in Appendix C as Table C.2.1.3.

As indicated in the tables in **Appendix C.2.1**, of the 56 silt core samples collected at six locations, the highest concentration was about 140,000 μ g/kg of cis12DCE measured in one sample at location EN-20A. cis12DCE exceeded 50,000 μ g/kg in three samples at location EN-20A and one sample from EN-107A and TCE exceeded 50,000 μ g/kg in three samples at EN-421A. These data do not appear to indicate that DNAPL solvent is present in the silt unit at the locations tested. Likewise, the patterns of VOC concentrations in the silt sample cores do not indicate that DNAPL solvents migrated from the aquifer downward into the silt. The highest concentrations of VOCs in the silt are found in the lower portions of the sample profiles. Had DNAPL penetrated into the silt unit from the aquifer, some residual DNAPL and correspondingly high VOC concentrations would remain in the upper portion of the profiles. The VOCs found in the silt unit have most likely migrated into the silt unit via downward advection and diffusion, retarded by sorption on the silt solids and possibly transformed by biodegradation.

3.3.4.3 Indoor Air

The indoor air assessment included a review of 12 buildings within the area of OUs #1 and #2 (Buildings 14, 18, 19, 32, 33, 40, 41, 42, 45, 46, 47, and 264/268). The scope of the assessment included a review of the building heating, ventilating, and air conditioning (HVAC) systems, initial screening for VOCs in indoor air using a field gas chromatograph/mass spectrometer, and sampling of indoor air for analytical laboratory analysis to confirm indoor air quality. A location map and the tabulated results of the indoor air quality sampling from the indoor air assessment report⁴ are provided in **Appendix D**.

3.4 Access Limitations

The current layout of manmade structures in OUs #1 and #2 includes a complex assemblage of former and existing building foundations, the railroad corridor, and other overhead and subsurface structures. The presence of these manmade structures results in significant access limitations for

⁴ Sanborn, Head Engineering, P.C., September 2016, <u>Indoor Air Assessment Report, Former IBM Endicott Facility</u>, <u>Endicott, New York</u>, prepared for IBM Corporate Environmental Affairs.

certain portions of OUs #1 and #2. Access is further limited by certain land use associated with current Site operations and off-Site property access restrictions.

As required by the Order, the SRI included an evaluation of Site access limitations in portions of OUs #1 and #2 where VOCs have been detected in groundwater. Results of the evaluation are depicted on **Figure 3-7**. The figure includes a high resolution aerial orthophotographic (accurate scale) map with the addition of the approximate limits of apparent source areas and near-source groundwater plume areas, and a corresponding base map at the same scale that has been color-coded based on the apparent degree of access restrictions. For the purposes of the evaluation, access limitations were classified into three categories consisting of severe (orange color code), moderate (yellow color code), and low (green color code), as described below:

- Severe Access Limitations Areas designated as having severe access limitations include portions of OUs #1 and #2 and adjacent areas where access is prohibited or extremely difficult due to existing structures, Site operations, and/or off-Site land use. Although access for short-duration investigation activities may be possible in a few areas, access for longer duration pilot testing or full-scale implementation of a remedial alternative would be prohibited or severely limited. Many of these areas consist of interior portions of the Site with active manufacturing operations and associated vibration-sensitive equipment, limited overhead clearance, limited floor space, and thick foundations. Access in limited further by a high density of sensitive subsurface utilities located near and beneath the manufacturing buildings, within the railroad corridor property, and Village of Endicott high traffic roadway areas.
- Moderate Access Limitations Areas designated as having moderate access limitations include portions of OUs #1 and #2 where access is difficult with possible equipment restrictions due to existing structures and/or Site operations. Limited access for short-duration investigation activities would be possible in some areas. However, access for delineation purposes would be further restricted due to the localized presence of numerous subsurface utilities. Access for longer duration pilot testing or full-scale implementation of a remedial alternative would be severely limited.
- Low Access Limitations Areas designated as having low access limitations include portions of OUs #1 and #2 where access is possible with localized restrictions. Some coordination would be necessary to block off work areas during short-duration investigation activities. Additional coordination and planning would be required for longer duration pilot testing or full-scale implementation of a remedial alternative. However, access for delineation purposes would be further restricted due to the localized presence of numerous subsurface utilities.

As shown on the maps depicted on **Figure 3-7**, access restrictions associated with manmade structures, current Site operations, and off-Site access restrictions are severe within the majority of the apparent source areas and near-source groundwater plume areas due to the presence of Huron manufacturing buildings, Norfolk Southern railroad tracks, and Village of Endicott McKinley Avenue and North Street high-traffic roadways. Given these conditions, screening of remedial technologies and development and analysis of remedial alternatives should rely on technologies that:

- Do not require complete source delineation;
- Can be implemented in areas where access may be severely limited;
- Will not impact the structural integrity of on-Site infrastructure, such as building foundations and subsurface structures/utilities; and
- Will not impact the structural integrity of off-Site infrastructure, such as the Norfolk Southern railroad tracks and railroad bedding/subgrade, the McKinley Avenue viaduct foundation, and the McKinley Avenue and North Street roadways/subgrade/subsurface utilities.

4 OVERVIEW OF REMEDIAL PROGRESS AND QHHEA

This section provides an overview of remedial progress achieved by interim remedial measures, a conceptual Site model based on the remedial progress, and a qualitative human health exposure assessment (QHHEA) based on current Site conditions.

4.1 Remedial Progress

To date, the remedial technologies implemented as part of interim remedial measures in OUs #1 and #2 include:

- Soil excavation in accessible portions of the 1979 TCA release area north of Building 18;
- **DNAPL recovery** in the Central Railroad Corridor Source Area;
- **Groundwater extraction** for source reduction and hydraulic control along the railroad corridor and in the area of North Street;
- Groundwater treatment using aqueous-phase granular activated carbon (GAC);
- Groundwater treatment by air stripping with vapor-phase treatment using GAC;
- Sub-slab depressurization for certain buildings where vapor intrusion is a potential concern;

Other remedial technologies implemented in OUs #1 and #2 as demonstrations or pilot tests that were determined to have feasibility limitations due to Site conditions include: soil vapor extraction; air sparging; *ex situ* chemical oxidation treatment (OZINOX), and clean water injection.

As explained in the SGA Final Report, IBM controlled and removed sources of contamination in portions of OUs #1 and #2 from 1980 to 2003 through the operation of 18 extraction wells in OU#1 and one extraction well in OU#2. Groundwater withdrawals extracted from those wells were conveyed to the B096 Organic Treatment Facility (OTF) located west of OU#1. Beginning in 2004, groundwater extraction operations were enhanced with installation of replacement extraction wells, the installation of new extraction wells and associated conveyance piping, and the addition of vacuum-assist extraction pumping systems. These enhanced extraction activities included:

- The replacement of OU#1 extraction wells EN-25, EN-38, and EN-118 with extraction well EN-428 (A second replacement well EN-428P operated for a short time until well EN-428 was determined to be more successful at source control).
- The replacement of OU#1 extraction well EN-253 with extraction well EN-253R;
- The replacement of OU#1 extraction well EN-219 with vacuum-assist extraction well EN-219R;
- The replacement of OU#1 extraction well EN-107 with extraction well EN-107R, followed by replacement of well EN-107R (which was fouled due to a nearby fuel oil spill) with extraction well EN-114T, where a vacuum-assist extraction pumping system is being considered in 2019;
- The addition of OU#2 extraction well EN-276R to supplement groundwater extraction at extraction well EN-276; and
- The addition of vacuum-assist extraction well EN-284P for control of the groundwater chemical flux that is not captured by operation of the EN-276/276R well pair.

In addition to these enhancements, modifications to the Garfield Avenue Groundwater Treatment Facility (GTF) were constructed to allow for treatment of EN-276/276R and EN-284P groundwater withdrawals, and a new groundwater treatment facility, designated as the Clark Street GTF, was constructed to treat groundwater withdrawals from the OU#1 railroad corridor area. These GTFs have eliminated the need for the Huron B096 OTF to treat groundwater withdrawals from OUs #1 and #2. A map showing locations of the current elements of the extraction well, conveyance piping and treatment systems is provided as **Figure 4-1**.

4.1.1 Source Reduction

Significant reduction of VOC sources has been achieved by a combination of about three years of DNAPL recovery between 1980 and 1982, and thirty-nine years of groundwater extraction. These interim remedial measures have had the overall combined effect of removing significant VOC mass from the three apparent source areas in the railroad corridor, reducing VOC concentrations in the near-source groundwater plumes, and reducing the lateral extent of the near-source groundwater plumes.

4.1.1.1 Mass Removals

VOC mass removed by OU#1 and OU#2 extraction wells operating within the time period of January 1980 through December 2017, along with the VOC mass removed from locations designated "Drums" and "Sump-2" are summarized in **Appendix E**. **Table E.1** provides a breakdown of VOC mass removal by OU#1 and OU#2 areas, **Table E.2** provides a breakdown of VOC mass removal by constituent, determined by analytical laboratory tests, and **Table E.3** provides a breakdown of the groundwater pumping volumes for each of the OU#1 and OU#2 extraction wells. Detailed breakdowns of the VOC mass removals by constituent for the western, central, and eastern railroad corridor source areas and for the North Street area are provided in **Appendix E** as **Tables E.2.1 through E.2.4**.

Overall, the data summarized in **Table E.1** indicate remedial activities over a period of thirty-eight years have been successful in removing about 818,000 pounds or about 74,000 gallons⁵ of solvents from OU#1 and OU#2 as either DNAPL or dissolved mass in groundwater. The majority of DNAPL recovery appears to have occurred in the central railroad corridor source area within the initial three-year recovery period between January 1980 and December 1982. The location designated "Drums" in the first row of **Table E.1** indicates that more than 239,000 pounds of DNAPL solvent were recovered from January 1980 to December 1982 and placed in drums. Additional DNAPL solvent is assumed to have been recovered after December 1982 in one or more wells within the central railroad corridor source area, such as EN-4, EN-9, EN-25, EN-38, EN-39, and EN-118. The balance of OU#1 and OU#2 mass removals in the form of dissolved VOC mass in groundwater are a result of thirty-eight years of groundwater withdrawals estimated to total approximately 529 million gallons.

Figure 4-2 is a histogram graph of annual mass removals in OUs #1 and #2, color-coded by the area of mass removal. As shown on the figure, a significant decline in the annual rate of mass removals

⁵ This number assumes a conversion factor of 11 pounds per gallon of solvent recovered based on analytical data that indicates greater than 88% of the mass recovered is 1,1,1-trichloroethane.

occurred in the late-1980s. The majority of mass removals for the first twenty-five years of remedial measures were obtained from the central railroad corridor source area (depicted in blue). However, mass removals from the central railroad corridor source area have declined significantly while enhanced groundwater withdrawals in the eastern and western railroad corridor source areas (depicted in green) have been a greater source of mass removal since the mid- to late-2000s. Mass removals in OU#2 associated with the control of the mass flux crossing North Street (depicted in purple) are a relatively minor component of the overall mass removed.

Figure 4-3 is a histogram graph of annual mass removals in OUs #1 and #2, color-coded by VOC constituent. As shown on the figure, TCA (depicted in blue) is the primary constituent of the mass removed in OUs #1 and #2, accounting for nearly 90% of the mass recovered over a period of thirty-eight years. Since the late 1980s, the relative percentages of TCA, methylene chloride (depicted in orange) and TCE (depicted in green) have declined relative to the amount of other VOC constituents, such as PCE, TCE degradation products, and TCA degradation products.

4.1.1.2 Reductions in Upper Aquifer Groundwater Concentrations

Plate 4-1 provides a comparison of isoconcentration contour maps for PCE, TCE, and TCA based on groundwater sampling performed in the area of OUs #1 and #2 in September 1980 and August 2018. The highest concentrations of VOCs are indicated by darker shades of the respective colors – blue for PCE, tan for TCE, and green for 111-TCA. A comparison of the two PCE isoconcentration maps indicates that concentrations greater than 5,000 μ g/L in 1980 in the central railroad corridor source area and the western railroad corridor source area have declined by two or more orders of magnitude. Similarly, a comparison of the two TCE isoconcentration maps shows that areas with concentrations greater than 50,000 μ g/L in 1980 have declined by three or more orders of magnitude by 2018. In addition, the lateral extent of the PCE and TCE plumes where concentrations are greater than 5 μ g/L has greatly diminished.

In the case of 111-TCA, where four areas had concentrations greater than 50,000 μ g/L in 1980, significant reductions have occurred. By 2018, the highest 111-TCA concentrations are confined to pumping centers in the central railroad corridor source area and the eastern railroad corridor source area. As with PCE and TCE, the extent of the 111-TCA plume where concentrations are greater

than 5 μ g/L has greatly diminished by 2018. In particular, the wide area south of North Street between Washington and McKinley Avenues where concentrations of 111-TCA were greater than 500 μ g/L in 1980 has been absent since 2006.

As calculated in the combined SRI report for OUs #1 and #2, the temporal changes in Upper Aquifer groundwater chemistry shown on **Plate 4-1** represent a greater than 99% reduction in dissolved mass between 1980 and 2018 for each of the three VOCs – PCE, TCE, and TCA.

4.1.2 Hydraulic Containment and Flux Control

The apparent limits of the northern and southern Upper Aquifer capture zones highlighted on **Figure 3-3** are also shown on the **Plate 4-1** isoconcentration contour maps for 2018. As shown on the 2018 isoconcentration contour maps, operation of extraction wells EN-114T and EN-219R provides an area of hydraulic capture that extends well beyond the current limits of the remaining VOC presence in railroad corridor groundwater. The operation of these two wells maintains hydraulic containment of groundwater and prevents groundwater chemical flux from leaving apparent source areas north and south of the railroad tracks. Operation of extraction wells EN-276 and EN-276R, adjacent to the southwest corner of Building 18, contributes to the control of the remaining near-source groundwater plumes in OU#2. Operation of extraction well EN-284P has intercepted the remaining groundwater chemical flux crossing North Street originating from the remaining near-source groundwater plumes in OU#2, to the extent they are not controlled by extraction wells EN-276R.

4.2 Conceptual Site Model

The results of the source area evaluation, along with nearly four decades of Site investigations, remedial measures, and groundwater monitoring have been used to develop a Conceptual Site Model (CSM) of DNAPL fate and transport in apparent source areas and near-source groundwater plume areas in OUs #1 and #2. The CSM was developed to provide an interpretation of the apparent distribution of VOC mass in groundwater and soil relevant to the screening of remedial technologies and development and screening of remedial alternatives.

GROUNDWATER SCIENCES CORPORATION

As shown on **Figure 4-4**, the CSM provides an interpretation of three stages of DNAPL fate and transport. A description of each stage is provided below.

- 1) Stage One: Solvent Releases This initial stage corresponds to a broad timeframe of EJ and IBM solvent usage in the 1950s through the 1970s. The TCA pipeline break in 1979 may account for much of the solvent released but incidental spills during historical solvent unloading operations along railroad sidings is also suspected as a possible release mechanism. Stage One on Figure 4-4, depicts solvent releases along rail sidings located on both sides of the main railroad tracks. The DNAPL penetration from these releases extends through the vadose zone and saturated zone and accumulates in a depression in the surface of the underlying silt & clay. DNAPL is also depicted as spreading out at certain horizons such as contacts with fine-grained soil strata and at the water table. During this stage, dissolution of DNAPL would have resulted in development of a near-source groundwater plume in the saturated zone that would extend in the direction of groundwater flow. In the vadose zone, VOC mass would have spread beyond the NAPL release areas due to vaporphase transport processes (such as volatilization from the water table surface, evaporation of NAPL in the vadose, and upward vapor diffusion in the vadose zone), and fate processes (such as partitioning from soil vapor to soil pore water, sorption onto the organic carbon fraction of soil, and sorption-retarded intragranular diffusion). During this timeframe, the overall VOC mass distribution is inferred to be greater in concentration in the saturated zone as compared to the vadose zone.
- 2) Stage Two: Residual DNAPL Source Areas This stage corresponds to the timeframe of initial DNAPL recovery and groundwater extraction in the early 1980s. Stage Two on Figure 4-4, depicts the extent of DNAPL in the vadose zone and saturated zone has diminished somewhat but the lateral extent of VOC mass in the vadose zone has increased due to fate and transport processes. The DNAPL recovery and groundwater extraction operations are depicted as lowering the water table and reversing the direction of groundwater flow beneath the rail siding and building shown on the right-hand side of the figure. VOC mass is also shown as having penetrated into the silt & clay.
- 3) Stage Three: Reduction in Residual DNAPL Source Areas This stage corresponds to the current inferred Site conditions after nearly four decades since the release of solvents and the start of cleanup activities. Stage Three on Figure 4-4, depicts the remaining presence of DNAPL in the vadose zone and saturated zone has diminished greatly. Decades of groundwater extraction, as well as exfiltration from nearby storm and sanitary sewers, is inferred to have resulted in significant dissolution of DNAPL; however, the remaining presence of residual DNAPL in the vadose zone and saturated zone continues to maintain localized near-source groundwater plumes. As depicted, the areas of higher concentration VOC mass are inferred to be more localized to finer-grained soils, especially in the saturated zone.

4.3 Qualitative Human Health Exposure Assessment

A Qualitative Human Health Exposure Assessment (QHHEA) for OUs #1 and #2 was completed based on the findings of the SRI and performance of multiple decades of corrective actions/interim remedial measures. The purpose of the QHHEA was to characterize potential public health and environmental exposures due to the remaining VOC presence in groundwater, soil, and soil vapor in portions of OUs #1 and #2. The assessment was performed in consideration of the available information regarding the chemical character of the groundwater, soil, and soil vapor media and our understanding of human activity within OUs #1 and #2. IBM does not own the property or operate the manufacturing facility located at the Site and therefore does not have control over current and future Site operations and uses. However, based on the current Industrial zoning of the property and IBM's understanding of Site operations, an attempt was made to evaluate possible human activity in OUs #1 and #2.

The QHHEA included a review of the following five elements:

- **Contaminant Source:** The constituents of potential concern consist of chlorinated ethenes, chlorinated ethanes, and Freon 113 and its degradation product Freon 123a. In aggregate, the results of multi-phased Site investigations indicate the mass of these constituents are present in groundwater and soil at depths typically extending 15 to 20 feet below the ground surface.
- **Potential Contaminant Release and Transport Mechanisms:** Potential contaminant release and transport mechanisms include partitioning from soil to groundwater or soil pore water, groundwater plume migration, and volatilization from the water table to the vadose zone.
- **Potential Point of Exposure:** Potential exposure points include: 1) contact with soil, groundwater, and/or VOC vapors associated with construction-related human activities such as groundwater extraction (dewatering) and soil excavation; and 2) contact with VOC vapors in certain routinely occupied buildings due to the potential for vapor intrusion.
- **Potential Route of Exposure:** Potential routes of exposure include ingestion of soil and groundwater, dermal contact with soil and groundwater, and inhalation of vapors volatilized from contaminated soil and groundwater.
- **Potential Receptor Population:** Potential human receptors include on-Site construction workers, and workers within certain buildings in OU#1 and #2.

Overall, the potentially complete exposure pathways identified in OUs #1 and #2 include contact with groundwater and soil by on-Site construction workers, and contact with VOC vapors by on-Site construction workers and workers in certain buildings in OUs #1 and #2. The construction worker exposure pathways should be mitigated by a Site Management Plan that requires work plans for intrusive activities and health and safety plans for Site construction activities. The exposure of workers in certain OU#1 and OU#2 buildings should be mitigated by engineering controls such as HVAC systems and sub-slab depressurization systems that would be monitored/inspected in accordance with a performance monitoring plan.

31

December 27, 2018

5 REMEDIAL GOALS AND REMEDIAL ACTION OBJECTIVES

According to Chapter 4 of NYSDEC DER-10 guidance, remedial goals are "...statutory or regulatory remedial action goals for remedial actions..." undertaken pursuant to applicable NYSDEC regulatory programs. Remedial Action Objectives (RAOs) are contaminant targets specific to each medium for protecting human health and the environment based on applicable Standards, Criteria, and Guidelines (SCGs). RAOs specify the following: 1) regulated substances identified as Constituents of Potential Concern (COPCs); 2) exposure routes and receptors; and 3) acceptable level or range of levels for a regulated substance and associated potential exposure route. An example of an RAO for Site groundwater is to reduce or eliminate COPC concentrations that exceed New York State Part 703 Groundwater Standards by some type of treatment technology or a combination of technologies. In this case, groundwater extraction and treatment with discharge to surface water could constitute a general response action for the groundwater RAO.

Since risk can be associated with current or potential future exposures to each medium containing contaminants, development of RAOs that address contamination sources must consider the following hierarchy as presented in Chapter 4 of NYSDEC DER-10 guidance: source removal or treatment, source containment, elimination of exposure, and treatment of source at point of exposure. Potential actions considered to address contamination at this Site are presented in the technology screening and selection process descriptions contained in Section 6.

Preliminary RAOs presented in the SRI report for OUs #1 and #2 were developed based on the analysis and interpretation of data collected or compiled during the Supplemental Groundwater Assessment (SGA). The SGA Final Report identified two principal objectives of the remedial action program. The first relates to the overall goal of attaining New York State groundwater standards, to the extent practicable. The second is to shrink the plumes of VOCs, in particular TCE, to mitigate concentrations of TCE in soil vapor within the limits of ventilation in areas south of North Street. Simply stated, these objectives are as follows:

1. Reduce, as quickly as practicable, groundwater concentrations of VOCs south of North Street to within New York State 6 NYCRR Part 703 groundwater standards in order to reduce potential soil vapor impacts. This will be accomplished by the following actions:

- a. Continue to control the source(s) of groundwater contamination in OU#1 within the Onsite Capture Zone and enhance this control as appropriate.
- b. Control and/or treat the groundwater flux crossing North Street within OU#2.
- c. In conjunction with 1.a. and 1.b., accelerate the rate of reduction of the plume south of North Street.
- 2. The overall objective of these actions will be to reduce the mass of TCE in groundwater within Off-Site Capture Zone A and the Southern Area by 50% in five years and by 80% in ten years.

The enhanced source control activities performed as an IRM in the OU#1 Railroad Corridor Source Area relate specifically to action 1.a. described above. The enhanced containment of the groundwater chemical flux crossing North Street performed as an IRM in the OU#2 North Street Area relates specifically to action 1.b. The implementation of these IRMs in conjunction with enhanced groundwater extraction and clean water injection south of North Street (action 1.c) resulted in the successful remediation of the off-Site groundwater plume in Off-Site Capture Zone A and the Southern Area. Maintaining actions 1.a and 1.b is necessary to maintain the off-Site groundwater plume cleanup. Therefore, the remedial action objectives enumerated above not only remain valid for OU#1 and OU#2, but also strongly suggests that these objectives are attainable goals based on the progress to date.

5.1 Standards, Criteria, and Guidance (SCG) Values

Remedial actions at New York State Inactive Hazardous Waste Disposal Sites (IHWDSs) are governed by Article 27, Title 13 of the Environmental Conservation Law (ECL), by regulations promulgated thereunder in 6 NYCRR Part 375 - Inactive Hazardous Waste Disposal Sites (January 1998) and related statutes and regulations. In accordance with the provisions of these laws and regulations, actions at IHDWSs must appropriately address SCGs as defined in New York State and federal environmental laws, regulations and guidance. Standards and criteria are requirements that are promulgated under New York State or federal law, while guidelines are non-promulgated criteria or guidance that are not legally binding, but should, as appropriate, be considered in the development of the remedial approach. SCGs are generally divided into three categories: chemicalspecific, location-specific, and action-specific. Chemical-specific SCGs provide guidance on acceptable or permissible contaminant concentrations in soil, air, and water. Location-specific

GROUNDWATER SCIENCES CORPORATION

SCGs govern activities in critical environments such as floodplains, wetlands, endangered species habitats, or historically significant areas. No location-specific SCGs have been determined to be applicable to the implementation of alternatives evaluated in this report. Action-specific SCGs are technology- or activity-based requirements. SCGs in the chemical- and action-specific categories that may apply to the evaluation of remedial alternatives in OUs #1 and #2 have been identified in the two following subsections.

5.1.1 Chemical-Specific SCGs

This subsection lists the chemical-specific SCGs that apply to the evaluation of the alternatives described in this report. On the basis of over thirty-nine years of groundwater chemistry data associated with monitoring and groundwater extraction and treatment operations, the principal COPCs in OUs #1 and #2 include:

- Chlorinated ethenes: Tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2dichloroethene (cis12DCE), 1,1-dichloroethene (11DCE), and vinyl chloride (VC).
- Chlorinated ethanes: 1,1,1-Trichloroethane (TCA) and its principal transformation products, 1,1-dichloroethane (11DCA), and chloroethane (CEA) (Note: 11DCE is also a transformation product of TCA by the abiotic elimination reaction).
- Freon 113 and its transformation product Freon 123a.

The attainment of cleanup goals for soil to protect groundwater will be based on the attainment of groundwater quality standards, which is a more direct determination of the remedial goal that saturated soil has been remediated to levels that are protective of groundwater.

New York State Drinking Water Standards are listed in Title 10 of the New York Codes, Rules and Regulations (NYCRR), Part 5, Subpart 5-1 Tables (Section 5-1.52). The applicable standards for the COPCs in OUs #1 and #2 are 5 μ g/L for TCE, PCE, c12-DCE, 11DCE, TCA, 11DCA, Freon 113, and Freon 123a; the standard for vinyl chloride is 2 μ g/L.

New York State Groundwater Standards are listed in Title 6 of the NYCRR, Part 703.5 and are legally enforceable. The aquifer underlying the site has been designated a Class GA groundwater, which is defined in §701.15 as: *"The best usage of Class GA waters is as a source of potable water"*

supply. Class GA waters are fresh groundwaters." Therefore, the Class GA groundwater standards for the COPCs in OUs #1 and #2 are intended to protect human health through the use of the groundwater as a drinking water supply and are equivalent to the drinking water standards of 5 μ g/L for TCE, PCE, c12-DCE, 11DCE, TCA, 11DCA, Freon 113, and Freon 123a; the standard for vinyl chloride is 2 μ g/L.

New York State Water Guidance Values are provided in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.1, June 1998), which describes ambient groundwater quality standards, guidance values, and groundwater effluent limitations. For the COPCs in OUs #1 and #2, the groundwater standards listed in TOGS 1.1.1 for Class GA waters are identical to those listed in 6 NYCRR Part 703.5.

5.1.2 Activity-Specific SCGs

This subsection provides a list of SCGs that may apply to the evaluation of the remedial alternatives described in this report. To the extent that any of these requirements applies to an action to be taken as part of a particular alternative, an appropriate discussion will be included in the analysis of the alternatives in the event that one or more of these SCGs will not be met.

6 NYCRR Part 257 - Air Quality Standards

Policy DAR-1: Guidelines for the Evaluation and Control of Ambient Air Contaminants under Part 212 (August 2016)

6 NYCRR Part 371 – Identification and Listing of Hazardous Wastes (November 1998)

6 NYCRR Part 372 - Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities (November 1998)

6 NYCRR Part 375 – Environmental Remediation Programs (December 2006)

6 NYCRR Part 376 - Land Disposal Restrictions

6 NYCRR Part 750 through 758 - Implementation of NPDES Program in NYS ("SPDES Regulations")

TAGM 3028 - "Contained-In" Criteria for Environmental Media: Soil Action Levels (August 1997)

TOGS 2.1.2 - Underground Injection/Recirculation (UIR) at Groundwater Remediation Sites

GROUNDWATER SCIENCES CORPORATION

December 27, 2018

CP-43 - Groundwater Monitoring Well Decommissioning Policy (November 2009)

CP-51 – Soil Cleanup Guidance (October 2010)

NYSDEC Sampling Guidelines and Protocols (March 1991)

DER-10 – Technical Guidance for Site Investigation and Remediation (May 2010)

DER-15 – Presumptive/ Proven Remedial Technologies (February 2007)

DER-31 – Green Remediation (January 2011)

DER-33 – Institutional Controls: A Guide to Drafting and Recording Institutional Controls (December 2010)

29 CFR Part 1910.120 - Hazardous Waste Operations and Emergency Response

40 CFR Part 144 - Underground Injection Control Program

OSWER Directive 9200.4-17 – Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (November 1997)

5.2 Remedial Action Objectives (RAOs)

Based on the SCGs listed above and in light of the on-going IRM activities, Site access restrictions, and RAOs previously proposed, RAOs developed for the protection of public health and the environment will apply to the selection and implementation of a remedial action alternative for OUS#1 and #2, as presented below.

5.2.1 RAOs for Public Health

5.2.1.1 Groundwater

The groundwater RAO for Public Health must prevent ingestion and contact by human receptors of groundwater and surface water having concentrations of COPCs exceeding the applicable NYSDOH Drinking Water Standards for TCE, PCE, c12-DCE, 11DCE, vinyl chloride, TCA, 11DCA, Freon 113, and Freon 123a. The applicable standards for the COPCs in OUs #1 and #2 are 5 μ g/L for TCE, PCE, c12-DCE, 11DCE, TCA, 11DCA, Freon 113, and Freon 123a; the standard for vinyl chloride is 2 μ g/L.

5.2.1.2 Soil

Soil RAOs for Public Health consist of concentration targets for COPCs to be protective of groundwater and COPC targets that are protective of direct contact and ingestion of soil, and inhalation of soil vapors. The soil to groundwater pathway RAO for Public Health is to attain cleanup goals for soil to protect groundwater based on a direct determination of the remedial goal, which is the attainment of groundwater quality standards. According to 6 NYCRR Part 375, Table 375-6.8 (b) – Restricted Use Soil Cleanup Objectives, COPC limits in soil that are protective of groundwater are 0.47 parts per million (ppm) for TCE, 1.3 ppm for PCE, 0.25 ppm for c12-DCE, 0.68 ppm for TCA, 0.27 ppm for 11DCA, 0.33 ppm for 11DCE, and 0.02 ppm for vinyl chloride.

An executed Site Management Plan (SMP) would prevent exposure of human receptors to soil beneath existing building slabs, paved areas, and other areas containing utilities, industrial support structures, and man-made features in OUs #1 and #2. If following removal of these capping and structural measures, the SMP would require a recalculation of risk or hazard levels to determine allowable concentrations of COPCs to remain in those soils. In addition, the executed SMP would prevent ingestion, direct contact, and inhalation of soil and soil vapors containing COPCs by on-Site construction workers during excavation activities in certain areas of OUs #1 and #2. According to 6 NYCRR Part 375, Table 375-6.8 (b) – Restricted Use Soil Cleanup Objectives, COPC limits in soil to prevent direct contact and ingestion of soil for an industrial site consist are 400 ppm for TCE, 300 ppm for PCE, 1,000 ppm for c12-DCE, 1,000 ppm for TCA, 480 ppm for 11DCA, 1,000 ppm for 11DCE, and 27 ppm for vinyl chloride.

5.2.1.3 Soil Vapor

The soil vapor RAO for public health is to attain cleanup goals that prevent exposure of human receptors to vapor intrusion into structures based on a number of considerations in addition to health risks as detailed in the NYSDOH "Final Guidance for Evaluating Soil Vapor Intrusion, October 2006" and subsequent "Updates to Soil Vapor / Indoor Air Decision Matrices, May 2017." The 2017 updates are based on reviews of toxicity data, risk assessments, and soil vapor intrusion data collected in New York State over the past decade. Considering these data, NYSDOH has assigned eight volatile chemicals to three newly revised and renamed Soil Vapor / Indoor Air Decision Matrices. Six of the COPCs in soil vapor in OUs#1 and #2 are contained on the list of the eight

Focused Feasibility Report for OUs #1 and #2, Endicott, New York GROUNDWATER SCIENCES, P.C. GROUNDWATER SCIENCES CORPORATION recently-assigned volatile chemicals that require mitigation under the following scenarios (all units are in micrograms per cubic meter – $\mu g/m^3$):

- TCE, *c*12-DCE, and 11DCE sub-slab values of 60 μ g/m³ or greater; sub-slab values of 6 μ g/m³ and less than 60 μ g/m³, and an indoor air value of 1 μ g/m³ or above; or a value less than 6 μ g/m³ but an indoor air value of 1 μ g/m³, or above, where resampling confirms that mitigation is needed.
- PCE and 111-TCA sub-slab values of 1,000 μ g/m³ or greater; sub-slab values of 100 μ g/m³ and less than 1,000 μ g/m³, and an indoor air value of 10 μ g/m³ or above; or a value less than 100 μ g/m³ but an indoor air value of 10 μ g/m³, or above, where resampling confirms that mitigation is needed.
- Vinyl Chloride sub-slab values of 60 μ g/m³ or greater; sub-slab values of 6 μ g/m³ and less than 60 μ g/m³, and an indoor air value of 0.2 μ g/m³, or above; or a value less than 6 μ g/m³ but an indoor air value of 0.2 μ g/m³, or above, where resampling confirms that mitigation is needed.

On-going IRMs for soil vapor consist of operation of Sub-Slab Depressurization (SSD) systems to control vapors from entering Buildings 42 and 46 on the Huron LLC property.

5.2.2 RAOs for Environmental Protection

5.2.2.1 Groundwater

The groundwater RAO for Environmental Protection will restore groundwater in OUs #1 and #2 to applicable New York State Groundwater Standards for COPCs and reduce mass flux of COPCs from apparent source areas and near-source groundwater plumes in OUs#1 and #2 to the extent practicable, considering access constraints.

5.2.2.2 Soil

According to 6 NYCRR Part 375, soil cleanup objectives for protection of ecological resources do not and/or will not apply to the following: (i) sites or portions of sites where the condition of the

land (e.g., paved, covered by impervious surfaces, buildings and other structures) precludes the existence of an ecological resource which constitutes an important component of the environment; (ii) protection of the aquatic environment; or (iii) such non-wild biota as pets or livestock, agricultural or horticultural crops, and landscaping in developed areas. Given the Site conditions and land use, the soil RAO for Environmental Protection is not applicable for OUs #1 and #2.

5.2.2.3 Surface Water

The surface water RAO for Environmental Protection will adhere to SPDES guidelines. Groundwater presently pumped from OUs#1 and #2 is treated to within the limits allowed by the SPDES permit (pH = 6.0 to 9.0 and VOCs less than 10 μ g/L each). According to 6 NYCRR Part 930.4, Table 1: "Classification and Standards of Quality and Purity Which are Assigned to the Waters of the Susquehanna River Bordering or Flowing Through the Counties of Tioga, Broome, Chenago, Delaware and Otsego," the designation for discharge is "Class B."

6 IDENTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES

The purpose of this section is to document the screening of remedial technologies prior to development of remedial alternatives to address RAOs for the various environmental media in OUs #1 and #2. The preliminary screening of candidate remedial technologies was performed following completion of OU#1 and OU#2 SRI field explorations and testing. Results of screening provided a listing of possible remedial technologies to be considered during this FFS. This preliminary screening step was originally included in the two SRI/FFS Work Plans for OU#1 and OU#2, dated March 1, 2005 and March 10, 2005, respectively. Candidate remedial technologies considered for preliminary screening were also listed in the Final Pre-Characterization Technical Memorandum (PCTM) for OU#1 and OU#2, dated July 14, 2006.

The preliminary screening was performed based on:

- A review of the effectiveness of the candidate remedial technologies at other sites;
- Results of previous OU#1 and OU#2 investigations and source remediation via DNAPL recovery and groundwater extraction;
- Results of SRI field explorations and testing in OU#1 and OU#2; and
- Results of ongoing IRM implementation in OU#1 and OU#2 consisting of source remediation and flux control via vacuum-assisted groundwater extraction.

Results of the preliminary screening of candidate remedial technologies were then summarized in an October 15, 2008 technical memorandum, approved by the NYSDEC and the New York State Department of Health (NYSDOH) on August 18, 2009.

6.1 General Response Actions

General Response Actions (GRAs) consist of broad categories of remedial technologies that have been identified to achieve proposed RAOs. Specific GRAs identified for OUs#1 and #2 include the following:

• No Action – No action alternative with respect to remediation.

GROUNDWATER SCIENCES CORPORATION

- Institutional Controls Administrative mechanisms, such as environmental covenants, deed restrictions and use designations, and physical actions, such as posting and fencing to restrict Site access and use.
- Monitoring Sampling and analysis of environmental media to support design of a remedial alternative, assess the effectiveness of a remedial alternative, and/or support risk management decision-making and selection of a remedy.
- Removal Extraction of contaminated groundwater, extraction and/or enhanced dissolution of DNAPL, vapor extraction and excavation of contaminated soil.
- Disposal Disposal of groundwater treatment related solids, recovered DNAPL, and contaminated soil at an off-Site facility.
- Containment Hydraulic control of contaminated groundwater via extraction wells to limit the extent of groundwater plume areas and/or discharge to surface water and capping or chemical fixation to isolate contaminated soil from human and ecological receptors.
- *In situ* Treatment Remedies that involve processes to contain, destroy, or otherwise reduce the bioavailability or toxicity of contaminants in groundwater and soil. This GRA includes physical, chemical, or biological processes that are conducted on-Site, *in situ*.
- *Ex situ* Treatment Remedies that involve processes to contain, destroy, or otherwise reduce the bioavailability or toxicity of contaminants in groundwater and soil. This GRA includes physical, chemical, or biological processes that are conducted at on-Site or off-Site treatment facilities.

6.2 Screening of Candidate Remedial Technologies

Remedial technologies were initially screened for proven overall effectiveness at other sites with similar COPCs and similar hydrogeologic conditions with a proven ability to address the COPC presence in the vadose zone, saturated zone, and underlying silt/clay aquitard. Results of this preliminary screening of remedial technologies and process options are summarized below. The list includes the GRAs, remedial technology types, and process options retained for further evaluation in each environmental medium as follows:

Groundwater

- No Action
- Institutional Controls
 - o Deed Restrictions/Environmental Covenants

- o Site Management Plan
- Annual Inspections –surveys/field inspections
- Vapor barriers for new structures
- Monitoring Options
 - o Source Control Effectiveness Monitoring
 - Monitored Natural Attenuation (MNA)
- Removal Technologies
 - Extraction groundwater extraction with vertical wells or dual-phase extraction equipment
 - Thermally-Enhanced Extraction ISTD with vapor extraction and electrical resistance heating (ERH) with vapor extraction
 - o Enhanced Dissolution flushing with treated groundwater
- Containment Technologies
 - o Hydraulic Control groundwater extraction with vertical wells or cut-off trenches
- In situ Treatment Technologies
 - Biological Treatment enhanced biodegradation and bioaugmentation
 - Chemical Reduction using zero-valent iron for abiotic reductive dechlorination of CVOCs
- *Ex situ* Treatment Technologies
 - Physical Treatment air stripping, aqueous-phase carbon adsorption, and filtration
 - Off-Gas Treatment air quality dispersion monitoring, off-gas influent and effluent monitoring, and vapor-phase carbon adsorption
- Disposal/Discharge Technologies
 - Discharge to Surface Water discharge to storm sewer
 - Discharge to Groundwater injection well

Surface Water

- No Action
- Monitoring Options SPDES discharge of treated groundwater

Soil

- No Action
- Institutional Controls
 - Deed Restrictions
 - Vapor barriers for new structures
- Removal Technologies
 - Extraction soil vapor extraction, dual-phase extraction, and sub-slab depressurization systems
 - Excavation excavation with off-Site disposal

The screening of candidate remedial technologies with potential applicability to Site conditions was conducted in accordance with the technology screening guidance described in the DER-10 (May 2010). As such, the potential remedial technology types and process options identified for each environmental medium at the Site were screened according to Baseline Considerations as described in DER-10, Section 4.1 (d) as follows:

- Protection of Public Health and the Environment
- Hierarchy to address sources of contamination as follows:
 - Removal and/or treatment
 - o Containment

GROUNDWATER SCIENCES CORPORATION

- o Elimination of exposure
- Treatment of source at point of exposure

Table 6-1 presents the results of a detailed evaluation of candidate technologies that contains the following table headings:

- "Implementability" refers to the relative degree of difficulty anticipated in implementing a particular technology for each site hydrogeologic condition.
- "Effectiveness" of the remedial technology types and process options was evaluated based on the ability to protect human health and the environment and to meet RAOs under the conditions and limitations present at the Site. This criterion was used to evaluate the potential effectiveness of technologies with a focus on the following:
 - The ability to handle the estimated areas or volumes of media and to meet remediation goals;
 - The potential impacts to human health and the environment during the construction and implementation phase of the process option; and
 - The experience and reliability of the process option with respect to the conditions at the Site.
- "Cost" is to allow for a rough comparison of relative costs associated with the technology.

Table 6-1 includes the following nine remedial technologies screened for implementability, shortand long-term effectiveness, and potential application to OUs #1 and #2:

Destructive Technologies

- 1. In situ Chemical Oxidation (ISCO)
- 2. Enhanced Biodegradation with or without Bio-augmentation
- 3. *In situ* Chemical Reduction (ICR) using Zero Valent Iron (ZVI) with or without *in situ* liquid-activated carbon adsorption

Separation/Treatment Technologies

- 4. Excavation
- 5. Soil Vapor Extraction (SVE)
- 6. Dual-Phase Extraction (DPE)
- 7. In situ Thermal Treatment

Control and Isolation Technologies

- 8. Groundwater Extraction using Vertical Wells
- 9. Groundwater Extraction using Cut-Off Trenches

As **Table 6-1** shows, seven of the nine technologies were considered not feasible to implement in OUs #1 and #2, as follows:

- 1. *In situ* Chemical Oxidation (ISCO) *In situ* treatment of soil and groundwater containing VOCs by adding chemical oxidants such as permanganate or peroxide into source areas. Treatment by this technology is typically used to destroy/reduce source area mass above and below the water table.
 - The location of VOC source(s) cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the large railroad property corridor.
 - TCA is not easily amenable to ISCO; increasing the temperature and pH that is required for the activation of persulfate to oxidize TCA is not feasible in OUs #1 and #2.
 - Mineral oxidation resulting from ISCO in groundwater could result in precipitation of calcium, iron, and manganese in pipes, pumps, valves, and meters resulting in increased operations and maintenance requirements for the existing pumping system infrastructure.
 - The use of high pressure injection to achieve greater coverage in the subsurface from a few accessible injection locations is not feasible due to presence of deep storm and sanitary sewers, and underground utilities.
 - Severe access limitations exist such that delivery of chemical oxidants to strategic locations where contaminant mass resides in the vadose zone and saturated zone is not feasible. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs.
 - In areas where access can be achieved, the radius of influence of the chemical oxidant material being injected is small.
 - The potential VOC reductions in groundwater are reversible due to back diffusion and desorption of VOC mass in soil after the oxidant has been consumed.
- 2. In situ Chemical Reduction (ICR) using Zero Valent Iron (ZVI) with or without in situ liquid-activated carbon adsorption Treatment using this technology includes *in-situ* injection of Zero Valent Iron (ZVI) in some form to reduce VOC flux via abiotic reductive dechlorination and the potential stimulation of biotic dechlorination. Nano-scale or micro-scale zero-valent iron (ZVI), bimetallic ZVI, sulfidated ZVI, ZVI-impregnated carbon, or liquid-activated carbon can be delivered into the plume as an emulsion injected via wells or through augers. ZVI is not a source area treatment for unsaturated soil and will only treat the target constituents in dissolved-phase groundwater. Theoretically, ZVI particles can be transported short distances downgradient from the point of injection via groundwater flow.

Liquid-activated carbon impregnated with sulfidated iron can be used to slow the mobility and abiotically destroy the target constituents once adsorbed on the surface of the carbon.

- The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the large railroad property corridor.
- Severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in OUs #1 and #2 to attain groundwater RAOs.
- The radius of influence of ZVI material injected into the unsaturated zone, saturated zone, and fine-grained lacustrine silt/clay units is small without using high pressure injection; use of high pressure injection to achieve greater coverage is not feasible in OUs #1 and #2 due to presence of deep storm and sanitary sewers, and underground utilities.
- Passivation or crusting of the ZVI material, uncertain material life expectancy, and need for periodic material replacement provide uncertain performance in OUs #1 and #2.
- ZVI material clogging and chemical changes to the Upper Aquifer from ZVI injection could cause reduced groundwater extraction yields and pipe, pump, meter, and valve fouling of the existing pumping and treatment system infrastructure.
- Activated carbon containing ZVI could act as a VOC contaminant source if not removed once the available adsorption sites on the carbon are occupied and the ZVI is no longer active.
- 3. **Excavation** Physical removal of impacted soil in the vadose zone, saturated zone, and silt/clay layer beneath the Upper Aquifer in source areas potentially to depths of 25 to 30 feet bgs. Use of sheet piling and dewatering of groundwater is necessary to provide stable excavations and to protect utilities and buildings/structures. Off-Site disposal of soil to landfill and off-Site treatment of groundwater is needed.
 - The location of VOC source(s) in OUs#1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property.
 - Sheet piling and other shoring installations close to buildings, structures, utilities, storm sewers, and sanitary sewers could cause damage to subsurface infrastructure.
 - Even relatively small excavation footprints would disrupt Site operations given the density of utilities, buildings, structures, and daily worker activities ongoing in OUs #1 and #2 (See photographs in **Appendix A**).

GROUNDWATER SCIENCES CORPORATION

46

- Potential for worker exposure to VOCs through excavation dewatering, VOC vapor emissions from soil and groundwater, and exposure to noise by workers and third parties.
- Severe access limitations prevent excavation of VOC mass in some vadose zone and saturated zone source areas. Residual VOC mass not accessible by excavation would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.
- Excavation activities would cause increased truck traffic and noise associated with removal of soil, removal of water, and placement of clean fill for some residents of Endicott and Site workers.
- 4. Soil Vapor Extraction (SVE) Extraction and treatment of soil vapor containing VOCs in the vadose zone, alone or in combination with air sparging in the saturated zone.
 - The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the large railroad property corridor.
 - Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. A feasibility study of SVE in 1989/1990 concluded that it was not an appropriate technology for the railroad corridor based on field tests conducted in the central and eastern railroad corridor sources areas (VAPEX, 1990).
 - Removal of VOCs present in finer textured sandy soils and soils rich in organic carbon would be severely limited by the processes of back or reverse diffusion and desorption.
 - The majority of the VOC mass that would be the target of SVE in vadose zone soils in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible.
 - In small areas where access is possible, numerous utilities and sewers (storm and sanitary) restrict proper placement of SVE wells, rendering even limited SVE use in OUs #1 and #2 only partially feasible.
 - The saturated thickness of the Upper Aquifer (saturated zone) is typically five feet or less, providing little opportunity for air sparging and vapor collection via SVE from this zone. The fine-grained silt/clay soils underlying the Upper Aquifer are not amenable to this technology.
 - Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.

GROUNDWATER SCIENCES CORPORATION

- 5. **Dual-Phase Extraction (DPE)** DPE systems depress the water table and remove mass from above and below the pre-pumping water level. As the water table around the well is lowered by pumping, unsaturated soil is exposed and VOC mass in the newly exposed zone can be removed by vapor extraction. Removal of groundwater and soil vapor is typically accomplished by either a high-vacuum system to remove both groundwater and soil vapor, or by a centrifugal pumping system to collect groundwater coupled with a high vacuum system to extract soil vapor.
 - The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the large railroad property corridor.
 - Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2.
 - Removal of VOCs present in finer textured sandy soils and soils rich in organic carbon would be severely limited by the processes of back or reverse diffusion and desorption.
 - The majority of the VOC mass that would be the target of DPE in vadose zone soil is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible.
 - In some small areas where access is possible, numerous utilities and sewers (storm and sanitary) restrict proper placement of DPE wells, rendering even limited DPE use in OUs #1 and #2 only partially feasible.
 - Noise of the blower system may be of potential concern for implementation in the short-term and long-term.
 - Inaccessible residual VOC mass in soil would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.
- 6. *In situ* Thermal Treatment *In situ* treatment via thermal conductive heating above and below the water table with multi-phase extraction of groundwater and soil vapor.
 - Closely-spaced multi-phase extraction wells are required to limit potential shortcircuiting of steam and VOC vapors towards buildings; however, the majority of VOC mass in vadose soil is inaccessible for heater/SVE wells and multi-phase extraction wells.
 - The location of VOC source(s) to be targeted for thermal treatment cannot be determined precisely due to the presence of underground utilities, structures and the lack of accessibility within the large railroad property corridor.
 - Relocation of subsurface utilities damaged during thermal treatment operations would disrupt operations for Site occupants.

- Heat would likely damage utilities adjacent to active remediation areas. Thermal treatment would cause nuisance issues with nearby structures (e.g., heating of basement and water lines).
- Heat would damage the structural integrity of the soil bedding beneath the railroad tracks through soil desiccation and steam generation. Based on discussions with Norfolk Southern during the planning stages for the thermal treatment IRM in OU#5, this technology would not be allowed by Norfolk Southern within or near their railroad property corridor.
- Severe access limitations would prohibit treatment in locations where VOC mass resides in the vadose zone and saturated zone. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs.
- In areas where access can be achieved, the radius of influence of the thermal desorption heater wells or the thermal resistance wells/sheet piles would be limited in lateral extent.
- 7. Groundwater Extraction Using Cut-Off Trenches Installation of trenches or drains with sumps installed at strategic locations to collect VOC-containing groundwater to be pumped to a surface treatment facility.
 - The majority of VOC mass in the saturated zone is inaccessible for excavation using trenches to the required depth to make this technology effective.
 - In some small areas at a few locations where groundwater collection via trenching would be possible to reduce VOC mass flux, numerous utilities and sewers (storm and sanitary) exist such that trenching is not feasible.
 - In order to install deep trenches, sheet piling and other shoring installation is needed close to buildings, structures, utilities, storm sewers, and sanitary sewers and could cause damage to subsurface infrastructure during installation.
 - Inaccessible residual VOC mass will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs.
 - Groundwater extraction using vertical wells has already been successfully demonstrated as a source and flux control technology at the Site for nearly four decades.

6.3 Retained Candidate Remedial Technologies

As shown on **Table 6-1**, the following two candidate remedial technologies were carried forward for development of remedial alternatives.

- 1. Enhanced Biodegradation (with or without Bioaugmentation) is the treatment of soil and groundwater containing VOCs by adding amendments to enhance on-going anaerobic biodegradation by reductive dechlorination. Bioaugmentation consists of adding non-indigenous bacteria (such as KB-1 or dehalococcoides (DHC)) along with amendments to soil and groundwater to increase and enhance existing microbial populations responsible for on-going reductive dechlorination in OUs #1 and #2. Bio-degradation most likely would be used as a flux control/reduction technology and for limited source area treatment in vadose and saturated zones. Selection of this remedial technology for further screening as a remedial alternative is based on the following:
 - Technology has a proven long-term effectiveness at reducing VOC mass in soil and groundwater at numerous solvent release sites.
 - Potentially implementable within OUs #1 and #2.
 - Protective of human health and the environment by potentially meeting RAOs in groundwater within OUs #1 and #2.
 - No apparent adverse short-term impacts to construction workers, Site workers, and the community.
 - Technology can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations.

The following limitations could reduce the effectiveness of enhanced biodegradation in OUs #1 and #2:

- Heterogeneous soil texture conditions could limit uniform delivery of injected amendments to the saturated zone soils.
- Water table fluctuations that expose the upper saturated soil to air and natural recharge of oxygenated precipitation would make maintaining reducing conditions in the unconfined Upper Aquifer difficult.
- Influx of oxygenated water due to uncontrollable exfiltration from deep storm and sanitary sewers in portions of OUs #1 and #2 would make maintaining reducing conditions that are needed for dechlorination difficult.
- Potential for incomplete biodegradation resulting in accumulation of cis12DCE and vinyl chloride that are more difficult to treat with GAC.
- Potential to impact the integrity of the groundwater extraction and treatment systems currently in place to maintain the cleanup of Off-Site Capture Zone A and the OU#3 Southern Area by increasing the degree of biological fouling/plugging in the Upper Aquifer, the extraction well screens, the pumping and conveyance piping systems, and the groundwater treatment systems.

- Focused Feasibility Report for OUs #1 and #2, Endicott, New York

- Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the vadose zone.
- Enhanced Groundwater Extraction using Vertical Wells Installation of vertical wells to extract Upper Aquifer groundwater at accessible locations within apparent source areas or near-source groundwater plume areas. This technology could include vacuum-enhanced groundwater extraction pumping systems in areas with sufficient saturated thickness. Serves as both a source reduction/control technology and a plume reduction/mass flux control technology.
 - Technology has a proven long-term effectiveness at hydraulically containing source areas and reducing VOC mass in soil and groundwater at numerous solvent release sites.
 - Technology has a long history of effectiveness and implementability in the OUs #1 and #2 portions of the Site.
 - Protective of human health and the environment by potentially meeting RAOs in groundwater within OUs #1 and #2.
 - No apparent adverse short-term impacts to construction workers, Site workers, and the community.
 - Technology can be successfully applied over large areas using a limited number of widely-spaced vertical wells in areas of severe access limitations.

The following limitations could reduce the effectiveness of enhanced groundwater extraction using vertical wells in OUs #1 and #2:

- Heterogeneous soil texture conditions could limit the rate of mass transfer from finer-textured soils that are likely to contain a greater percentage of the remaining VOC presence in the saturated zone.
- Influx of oxygenated water due to exfiltration from deep storm and sanitary sewers in portions of OU #1 and #2 would potentially increase the rate of fouling of extraction well screens, pumping systems, conveyance piping, and treatment system components.
- Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the vadose zone.

7 DEVELOPMENT AND ANALYSIS OF ALTERNATIVES

This section presents the development, detailed analysis, and comparative analysis of remedial alternatives that incorporate the technologies retained in Section 6 to address RAOs for the various environmental media in OUs #1 and #2.

7.1 Description of Alternatives

Three possible remedial alternatives for OUs #1 and #2 were developed using the technologies retained for further evaluation:

- Alternative #1: No Further Action with Site Management
- Alternative #2: Enhanced Groundwater Extraction
- Alternative #3: Enhanced Biodegradation

Descriptions of each of these remedial alternatives are described in the following subsections.

7.1.1 Alternative #1: No Further Action with Site Management

The No Further Action with Site Management alternative recognizes that the interim remedial measures implemented over the past thirty-nine years have successfully remediated OUs #1 and #2 such that institutional controls and certain engineering controls are sufficient to protect human health and the environment. The institutional controls include: the Order, an environmental easement, a Site Management Plan, and restrictions to Site access via fencing, roadway gates, and Huron security protocols. The engineering controls consist of HVAC systems and sub-slab depressurization systems for certain buildings in OUs #1 and #2.

Elements of the Site Management Plan would include:

- An Excavation Work Plan and Health and Safety Plan for intrusive activities in certain portions of OUs #1 and #2;
- A Performance Monitoring Plan for monitoring of engineering controls in place to eliminate the potential vapor intrusion pathway for certain occupied buildings in OUs #1 and #2;

- A Site Contingency Plan for emergency response actions in OUs #1 and #2;
- A Site Monitoring Plan to guide sampling of certain media to evaluate the performance and effectiveness of the remedy for OUs #1 and #2; and
- Reporting of periodic inspections/certifications to verify that the elements of the remedy remain in place.

7.1.2 Alternative #2: Enhanced Groundwater Extraction

The Enhanced Groundwater Extraction alternative consists of groundwater extraction, with vacuum-assist pumping systems where appropriate, as an engineering control in OUs #1 and #2 to:

- 1. Continue to control the source(s) of groundwater contamination within the railroad corridor source area (On-Site Capture Zone) and potentially enhance this control, as appropriate.
- 2. Control the groundwater flux crossing North Street within OU#2.

This alternative provides hydraulic control of groundwater chemical flux emanating from apparent sources within the railroad corridor and provides hydraulic capture of groundwater chemical flux crossing North Street that would otherwise result in redevelopment of an off-Site groundwater plume that has been eliminated by enhanced extraction and clean water injection operations in Off-Site Capture Zone A and the OU#3 Southern Area. This alternative also provides a degree of mass removal that is directly proportional to the rate of dissolution of VOCs from the apparent source zones. Enhancement of the groundwater withdrawals in source areas and near-source groundwater plume areas should improve the rate of source reduction while maintaining sufficient capture of groundwater chemical flux. This alternative also includes the institutional and engineering controls specified for Alternative #1.

7.1.3 Alternative #3: Enhanced Biodegradation

The enhanced biodegradation alternative contains the elements of Alternative #2 with the addition of enhanced biodegradation via the injection of amendments and possibly injection of cultures of microorganisms (bioaugmentation) in OUs #1 and #2 to reduce the natural oxidizing conditions of the Upper Aquifer, such that biotic reductive dechlorination can occur. The enhancement activities would include injection of lactate, molasses, vegetable oils, or another organic carbon source for microorganisms that dechlorinate VOCs. Injection would be performed using wells or direct-push

54

borings. A type of applicable bacterial culture could also be added to supplement existing microorganism populations, where needed. This alternative attempts to accelerate the rate of VOC mass removal from soil and groundwater in the saturated zone by changing the natural oxidizing conditions in the Upper Aquifer to reducing conditions. This alternative also includes the institutional and engineering controls specified for Alternative #1 and the enhanced groundwater extraction engineering control specified in Alternative #2.

7.2 Detailed Analysis of Alternatives

Each of the alternatives developed during the screening process was analyzed relative to the first seven of the nine remedy selection evaluation criteria listed below, as set forth in Section 4.2 of NYSDEC DER-10.

- 1. Overall protectiveness of public health and the environment.
- 2. Compliance with standards, criteria, and guidance (SCGs).
- 3. Long-term effectiveness and permanence.
- 4. Reduction of toxicity, mobility, or volume of contamination through treatment.
- 5. Short-term impact and effectiveness.
- 6. Implementability.
- 7. Cost effectiveness.
- 8. Land use.
- 9. Community acceptance.

The first two criteria are referred to as threshold criteria, as they must be satisfied in order for the proposed remedial alternative to be selected. The next six criteria are referred to as balancing criteria as they are evaluated to allow for comparison of the relative positive and negative aspects of the proposed remedial alternatives.

The results of the detailed analysis of the remedial alternatives relative to the remedy selection evaluation criteria are summarized in **Table 7-1**. The table provides a description of each alternative including the technologies to be applied to specific environmental media, the action-

specific SCGs that will apply to its implementation, and an analysis and discussion of the first seven criteria listed above as each applies to that alternative. Criterion eight, Land Use, is not included in **Table 7-1**, as all three alternatives assume the zoning of the OU#1 and OU#2 portions of the Site will remain Industrial. The ninth criterion, Community Acceptance, is evaluated by the NYSDEC after the public review of the proposed remedy.

7.2.1 Alternative #1: No Further Action with Site Management

As presented on **Table 7-1**, Alternative #1: No Further Action with Site Management would meet the overall goal of protection of public health and the environment by mitigating potential exposure pathways via the use of institutional controls, such as deed restrictions in the form of an environmental easement, Site Management Plan procedures/protocols, and engineering controls in the form of HVAC systems and sub-slab depressurization (SSD) systems. However, this alternative has no active remediation components focused on reducing the VOC presence in groundwater, soil, and soil vapor within the apparent source areas and near-source groundwater plume areas in OUs #1 and #2.

This alternative screens relatively low in its ability to meet applicable SCGs for groundwater, soil, and soil vapor as it does not include active Site remediation activities that could reduce VOC mass concentrations in groundwater, soil, and soil vapor. Given the lack of active remediation, this alternative would not meet the RAOs of controlling groundwater in apparent source areas in the railroad corridor and controlling VOC mass flux crossing North Street. Discontinuing groundwater extraction could also result in the need to reassess the potential vapor intrusion pathway in certain buildings in OUs #1 and #2. However, the use of a performance monitoring plan as an institutional control with HVAC and SSD systems as engineering controls could still result in acceptable mitigation of the vapor intrusion pathway and achievement of VOC indoor air quality guidance values. The timeframe for concentrations for COPCs to decline to applicable Part 703 groundwater standards and Part 375 soil cleanup objectives would increase from current projected timeframes due to the shutdown of groundwater extraction operations.

The long-term effectiveness of this alternative is high as it would effectively mitigate potential exposure pathways to VOC presence in soil and groundwater in apparent source areas and near-

source groundwater plume areas. The restrictions would remain on the deed for the property in the case of a change in ownership. This alternative does not reduce the toxicity, mobility, or volume of the COPCs in apparent source areas and near-source groundwater plume areas.

The short-term effectiveness of this alternative is high. Implementation of this proposed remedy would result in no short-term risks to the community, workers, and the environment as there would be no active remediation activities and disruption to Site operations. This proposed remedy would achieve the RAOs for protection of public health upon its implementation by mitigating exposure of human receptors to unacceptable levels of COPCs in soil and groundwater.

This alternative is technically and administratively feasible. Use of deed restrictions is a common and effective institutional control for mitigating potential exposure pathways and unacceptable risk to human health and the environment. A Site Management Plan that is acceptable to NYSDEC, IBM, and the current property owner should be administratively feasible and implementable.

The projected costs for this alternative are \$75,000 for one-time capital expenditures and \$87,500 for annual costs to comply with the requirements of the Site Management Plan and maintain the SSD systems. A present worth analysis of these costs over a period of thirty years yields a total present worth cost estimate of about \$1.8 million.

7.2.2 Alternative #2: Enhanced Groundwater Extraction

As presented on **Table 7-1**, Alternative #2: Enhanced Groundwater Extraction with the institutional and engineering controls specified in Alternative #1, would meet the overall goal of protection of public health and the environment by mitigating potential exposure pathways via the use of institutional controls and engineering controls.

This alternative screens relatively low in its ability to meet applicable SCGs for groundwater and soil due to severe access limitations to effectively remediate VOC mass in vadose zone and saturated zone soils impacted by past industrial activity in the railroad corridor and the historical development of near-source groundwater plumes. The operation of enhanced groundwater extraction systems is unlikely to result in attainment of soil and groundwater clean-up requirements within the next ten years. However, consistent with the significant remedial progress achieved over

the past thirty-nine years, the enhanced groundwater extraction operations in OUs #1 and #2 are anticipated to continue to provide meaningful reductions in VOC concentrations in groundwater, soil, and soil vapor. This alternative would achieve the RAOs of controlling groundwater in apparent source areas in the railroad corridor and controlling VOC mass flux crossing North Street. The use of a performance monitoring plan as an institutional control with HVAC and SSD systems as engineering controls results in acceptable mitigation of the vapor intrusion pathway allowing achievement of VOC indoor air quality guidance values. The timeframe for concentrations for COPCs to decline to applicable Part 703 groundwater standards and Part 375 soil cleanup objectives is expected to be reduced under this remedial alternative due to the enhancement to the groundwater extraction operations.

The long-term effectiveness of this alternative is high as it would effectively mitigate potential exposure pathways to VOC presence in soil and groundwater in apparent source areas and near-source groundwater plume areas. The restrictions to prevent complete exposure pathways would remain on the deed for the property in the case of a change in ownership. This alternative would reduce the mobility and volume of the COPCs in apparent source areas and near-source groundwater plume areas. The mobility and volume would be reduced by groundwater capture, and using air stripping and activated vapor-phase carbon to remove VOCs from the groundwater withdrawals. The toxicity of VOCs would be eliminated via carbon regeneration where the VOCS are destroyed by thermal means.

The short-term effectiveness of this alternative is high. Implementation of this remedial alternative would result in no short-term risks to the community, workers, and the environment. This alternative should not disrupt Site operations as the majority of the active remediation infrastructure and operations are already in place as interim remedial measures. This proposed remedy would achieve the RAOs for protection of public health upon its implementation by mitigating exposure of human receptors to unacceptable levels of COPCs in soil and groundwater.

This alternative is technically and administratively feasible. Use of deed restrictions is a common and effective institutional control for mitigating potential exposure pathways and unacceptable risk to human health and the environment. Enhanced groundwater extraction has a long proven history of implementability within OUs #1 and #2 with operable run times for individual extraction wells

that are typically greater than 98%. A Site Management Plan that is acceptable to NYSDEC, IBM, and the current property owner should be administratively feasible and implementable.

The projected costs for this alternative are about \$545,000 for one-time capital expenditures and \$450,000 for annual costs to comply with the requirements of the Site Management Plan, maintain the groundwater extraction and treatment systems, and maintain the SSD systems. A present worth analysis of these costs over a period of thirty years yields a total present worth cost estimate of about \$9.3 million.

7.2.3 Alternative #3: Enhanced Biodegradation

As presented on **Table 7-1**, Alternative #3: Enhanced Biodegradation with the institutional and engineering controls specified in Alternative #2 would meet the overall goal of protection of public health and the environment by mitigating potential exposure pathways via the use of institutional controls and engineering controls.

This alternative screens relatively low in its ability to meet applicable SCGs for groundwater and soil due to severe access limitations to effectively remediate VOC mass in vadose zone and saturated zone soils impacted by past industrial activity in the railroad corridor and the historical development of near-source groundwater plumes. Enhanced biodegradation is unlikely to result in attainment of soil and groundwater cleanup requirements within the next ten years. The enhanced biodegradation operations in OUs #1 and #2 may provide some limited reductions in VOC concentrations in groundwater, soil, and soil vapor but those reductions would be limited to areas where there is access for injection and where the natural oxidizing conditions can be successfully shifted to reducing conditions.

The enhanced groundwater portion of this alternative would achieve the RAOs of controlling groundwater in apparent source areas in the railroad corridor and controlling VOC mass flux crossing North Street. However, the biodegradation portion of this remedial alternative could adversely impact the extent of the control of the railroad corridor source areas and the VOC mass flux crossing North Street due to fouling of the Upper Aquifer soils and the well screens of the extraction wells. The use of a performance monitoring plan as an institutional control with HVAC and SSD systems as engineering controls results in acceptable mitigation of the vapor intrusion

pathway, allowing achievement of VOC indoor air quality guidance values. The timeframe for concentrations for COPCs to decline to applicable Part 703 groundwater standards and Part 375 soil cleanup objectives is expected to be reduced under this remedial alternative.

The long-term effectiveness of this alternative is low to moderate. The restrictions to prevent complete exposure pathways would remain on the deed for the property in the case of a change in ownership. The groundwater extraction component of this alternative is a proven technology with a long history of effectiveness that would effectively mitigate potential exposure pathways to VOC presence in soil and groundwater in apparent source areas and near-source groundwater plume areas. However, some uncertainty exists in the long-term effectiveness of the biodegradation component of this remedy due to (1) severe access limitations that restrict where injection can be implemented, limiting the locations where the biodegradation portion of this alternative can be applied; (2) potential difficulties in changing the natural redox conditions in the aquifer; (3) potential difficulties in maintaining reducing conditions due to exfiltration of oxygenated water from sewers in the railroad corridor area; (4) the potential for incomplete biodegradation resulting in accumulation of cis12DCE and vinyl chloride; and (4) the potential for significant operational shutdowns of the extraction and treatment systems due to fouling of well screens, pumping systems, conveyance piping, and treatment system components. Clogging of the Upper Aquifer soils could also change the long-term effectiveness of the groundwater extraction portion of this alternative.

This alternative would reduce the mobility and volume of the COPCs in apparent source areas and near-source groundwater plume areas. The mobility and volume would be reduced by groundwater capture, with air stripping and activated vapor-phase carbon to remove VOCs from the groundwater withdrawals. The toxicity of VOCs would be eliminated by a combination of *in situ* destruction of VOCs by the microorganisms and by vapor-phase carbon regeneration where the VOCs sorbed onto vapor-phase carbon during groundwater treatment are destroyed by thermal means. However, the toxicity could be enhanced if incomplete dechlorination results in the accumulation of greater concentrations of degradation products, such as vinyl chloride.

The short-term effectiveness of this alternative is moderate. Implementation of this remedial alternative would result in no short-term risks to the community, workers, and the environment. This alternative could result in some disruption to Site operations during installation of injection

December 27, 2018

points and/or wells, hauling and disposal of drilling wastes, short-term noise events, and work in high-density utility corridors. Periodic injection of amendments and possibly microorganisms could also cause temporary minor disruptions to Site operations. No other disruptions to Site operations should occur as the other components of the active remediation infrastructure and operations are already in place as interim remedial measures. This proposed remedy would achieve the RAOs for protection of public health upon its implementation by mitigating exposure of human receptors to unacceptable levels of COPCs in soil and groundwater.

This alternative is technically and administratively feasible. Use of deed restrictions is a common and effective institutional control for mitigating potential exposure pathways and unacceptable risk to human health and the environment. Enhanced groundwater extraction has a long proven history of implementability within OUs #1 and #2 with operable run times typically greater than 98%. Biodegradation has been proven to be implementable at other sites but its implementability has yet to be tested within OUs #1 and #2. A Site Management Plan that is acceptable to NYSDEC, IBM, and the current property owner should be administratively feasible and implementable.

The projected costs for this alternative are \$1,688,000 for one-time capital expenditures and \$720,750 for annual costs to comply with the requirements of the Site Management Plan, maintain the groundwater extraction and treatment systems, maintain the SSD systems, and implement enhanced biodegradation injection and monitoring. A present worth analysis of these costs over a period of thirty years yields a total present worth cost estimate of about \$15.6 million.

7.3 Comparative Analysis of Alternatives

All three alternatives are able to achieve the overall goal of protection of public health and the environment by eliminating potential exposure pathways. All three alternatives will likely not achieve New York State SCGs for groundwater and soil in the short- and long-term. However, achieving SCGs for groundwater, soil, and soil vapor is currently impractical due to severe access restrictions imposed by Site and off-Site (railroad property) infrastructure, Site and off-Site operations, and the nature and extent of the remaining VOC mass in vadose zone and saturated zone soils after nearly four decades of remedial measures.

GROUNDWATER SCIENCES CORPORATION

The long-term effectiveness of Alternatives #1 and #2 are rated higher than Alternative #3 due to concerns with severe access limitations that limit the areas where the biodegradation component of Alternative #3 can be applied, the oxidizing conditions in the Upper Aquifer groundwater and the potential for the biodegradation component of the alternative to affect the integrity of the groundwater extraction and treatment systems. Alternative #2 is considered to be more favorable than Alternative #1 as it also has a long history of successful operation at reducing VOC mass and controlling VOC mass flux in OUs #1 and #2.

Alternative #1 does not reduce the toxicity, mobility, or volume of the COPCs in apparent source areas and near-source groundwater plume areas, whereas Alternatives #2 and #3 will decrease the toxicity, mobility, and volume of VOCs in the long-term. Alternative #2 is considered to be more favorable for this criterion since generation of more toxic constituents due to incomplete dechlorination is a concern for Alternative #3.

The short-term effectiveness for Alternatives #1 and #2 is high, while the short-term effectiveness for Alternative #3 is moderate. Alternative #3 is rated lower since it includes remedial construction activities and other field activities that could result in limited disruption of Site operations and possible remediation worker exposure to noise and chemicals. Although Alternatives #1 and #2 are rated high, they also have a limited component of field work for maintaining the SSD systems (Alternatives #1 and #2) and the groundwater extraction systems (Alternative #2) that could result in possible remediation worker exposure to noise and chemicals.

The implementability of all three alternatives is expected to be technically and administratively feasible, although groundwater conditions would favor enhanced groundwater extraction without enhanced biodegradation as a potential remedial alternative. The relative costs are highest for Alternative #3 and lowest for Alternative #1.

8 PROPOSED REMEDY

Based on the results of the detailed and comparative analyses presented in Section 7, Alternative #2, Enhanced Groundwater Extraction, is the proposed remedy to address the presence of VOCs in groundwater, soil, and soil vapor in OUs #1 and #2. Elements of the proposed remedy include the following institutional controls, engineering controls, monitoring, *ex situ* treatment technologies, and treated effluent discharge technologies:

• Institutional Controls

- Consent Order between NYSDEC and IBM
- o Environmental Easement/Deed Restriction
- Site Management Plan with Excavation Work Plan and Health & Safety Plan, Performance Monitoring Plan, Contingency Plan, Monitoring Plan, Periodic inspections/certifications, and periodic reporting
- Site Access Restrictions fencing, gated roadways, property owner security protocols
- Engineering Controls
 - HVAC systems and SSD systems for certain occupied buildings
 - Groundwater extraction wells with or without vacuum-assist pumping systems, double-walled conveyance piping systems, and groundwater treatment facilities
- Monitoring
 - Source Containment and Flux Control Effectiveness Monitoring
 - o SPDES discharge of treated groundwater
- Ex situ Treatment Technologies
 - Physical Treatment air stripping, aqueous-phase carbon adsorption, and filtration
 - Off-Gas Treatment air quality dispersion monitoring, off-gas influent and effluent monitoring, and vapor-phase carbon adsorption
- Discharge Technologies
 - Discharge to Surface Water discharge to storm sewer

The justification for the selection of Alternative #2 is as follows:

- 1. It meets the overall goal of protection of public health and the environment by mitigating potential exposure pathways via the use of institutional controls and engineering controls.
- 2. It is the most favorable alternative to meet the RAOs of controlling groundwater in apparent source areas in the railroad corridor and controlling VOC mass flux crossing North Street that are critical to maintaining the Off-Site groundwater plume cleanup achievements.
- 3. It rates higher for long-term and short-term effectiveness when compared to the other active remediation alternative of enhanced biodegradation. It has a long 39-year history of successful operation in OUs #1 and #2 at reducing VOC mass and controlling VOC mass flux without significant disruption of Site operations or exposure of Site workers to noise and chemicals.
- 4. It is the most favorable alternative for reduction in toxicity, mobility, and volume of the COPCs.
- 5. It is a technically and administratively feasible remedial alternative that is proven to be reliable under the severe access limitations within OUs #1 and #2. It can be successfully applied over large areas using a limited number of widely-spaced vertical wells in areas of severe access limitations, whereas the enhanced biodegradation alternative has limitations with regard to where it can be applied.

9 REFERENCES

- Dames & Moore, June 1980, Draft Report, Ground Water Studies, Accidental Spill of Methyl Chloroform on December 14, 1979, IBM Endicott Plant, Endicott, New York, prepared for the IBM Corporation.
- Dames & Moore, December 5, 1980, Report, Groundwater Investigation, IBM Corporation, IBM Endicott Plant, Endicott, New York, prepared for the IBM Corporation.
- Geraghty & Miller, Inc., April 1993, Results of the Air Sparging Demonstration Test, IBM Corporation, Endicott, New York.
- Groundwater Sciences, P.C., April 30, 2004, Evaluation of Existing Corrective Measures Systems, Village of Endicott / Town of Union, Broome County, New York, prepared for IBM Corporation.
- Groundwater Sciences, P.C., May 17, 2004, Supplemental Groundwater Assessment Final Report, Village of Endicott / Town of Union, Broome County, New York, prepared for IBM Corporation.
- Groundwater Sciences Corporation and Groundwater Sciences, P.C., March 1, 2005, Supplemental Remedial Investigation and Focused Feasibility Study Work Plan, Order on Consent Index #A7-0502-0104, Site #704014, Operable Unit #1: Railroad Corridor Source Area, prepared for IBM Corporation.
- Groundwater Sciences Corporation and Groundwater Sciences, P.C., March 10, 2005, Supplemental Remedial Investigation and Focused Feasibility Study Work Plan, Order on Consent Index #A7-0502-0104, Site #704014, Operable Unit #2: North Street Area, prepared for IBM Corporation.
- Groundwater Sciences Corporation, July 14, 2006, Final Pre-Characterization Technical Memorandum, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, Order on Consent Index #A7-0502-0104, Site #704014, prepared for IBM Corporation.

- Groundwater Sciences Corporation, August 8, 2006, Revised Petition to Modify the Description of Site Number 704014, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014, prepared for IBM Corporation.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, October 15, 2008, Technical Memorandum to Mitch Meyers of IBM, Subject: Preliminary Screening of Candidate Technologies for Source Remediation and/or Flux Control, OU#1 and OU#2, Former IBM Endicott Site, New York.
- Groundwater Sciences Corporation, August 28, 2009, revised January 29, 2010, Supplemental Remedial Investigation Report, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014, prepared for IBM Corporation.
- Groundwater Sciences, P.C. and Groundwater Sciences Corporation, March 26, 2010. Interim Remedial Measures Work Plan for Groundwater Re-Injection, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014, prepared for IBM Corporation.
- Groundwater Sciences Corporation, September 26, 2012, Storm Sewer Sediment Sampling Analysis, and Removal Report, Operable Unit #1: Railroad Corridor Source Area and Operable Unit #2: North Street Area, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014, prepared for IBM Corporation.
- IBM Corporation, December 20, 2013, Letter from Mitchell E. Meyers of the IBM Corporation to Alex Czuhanich of the New York State Department of Environmental Conservation, Subject: Storm Sewer Manhole Inspection and Sediment Sampling, Operable Unit #1: Railroad Corridor Source Area, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014.
- IBM Corporation, January 12, 2015, Letter from Mitchell E. Meyers of the IBM Corporation to Alex Czuhanich of the New York State Department of Environmental Conservation, Subject:

Storm Sewer Manhole Inspection and Sediment Sampling, Operable Unit #2: North Street Area, Village of Endicott/Town of Union, Broome County, New York, Order on Consent Index #A7-0502-0104, Site #704014.

- New York State Department of Environmental Conservation, May 3, 2010, DER-10 Technical Guidance for Site Investigation and Remediation.
- Sanborn, Head Engineering, P.C., September 2016, Indoor Air Assessment Report, Former IBM Endicott Facility, Endicott, New York, prepared for IBM Corporate Environmental Affairs.
- Vapex Environmental Technologies, Inc., June 1989, Report on the Soil Vapor Extraction Feasibility Assessments at IBM facility; Endicott, NY, Phase I – Soil Gas Survey, prepared for Ground Water Associates and IBM Corporation.
- Vapex Environmental Technologies, Inc., June 1990, Report on the Soil Vapor Extraction Feasibility Assessments at IBM facility; Endicott, NY, Phase III – Field Investigation, prepared for Ground Water Associates and IBM Corporation.

POTENTIALLY	IMPLEMENTABILITY RELA	ATIVE TO SITE HYDROGEOLOGIC C	CONDITIONS	EFFECTIVENESS in Protecting	Human Health and Environment	POTENTIAL APPLICATION TO
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community)	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST
DESTRUCTION TECHNOLOG		L				I
<i>InSitu</i> Chemical Oxidation (ISCO) <i>In-Situ</i> treatment of soil and groundwater containing VOCs by adding chemical oxidants such as permanganate or peroxide into source areas. Treatment by this technology is typically used to destroy/reduce source area mass above and below the water table.	Partially Feasible. Oxidant demand likely to be highly variable; increasing the temperature and pH that is required for the activation of persulfate to oxidize TCA is not feasible at the Site. Severe access limitations exist to properly deliver chemical oxidants uniformly within the target area. The location of VOC source(s) cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property.	Not Feasible. TCA is not easily amenable to ISCO; increasing the temperature and pH that is required for the activation of persulfate to oxidize TCA is not feasible in OUs #1 and #2. Mineral oxidation resulting from ISCO in groundwater could result in precipitation of calcium, iron, and manganese in pipes, pumps, valves, and meters resulting in increased operations and maintenance requirements for the existing groundwater extraction system infrastructure. The use of high pressure injection to achieve greater coverage in the subsurface from a few accessible injection locations is not feasible due to presence of deep storm and sanitary sewers, and underground utilities. Severe access limitations exist making delivery of chemical oxidants to strategic locations in apparent source areas and near-source groundwater plume areas not feasible.	Not Feasible. Potential limitations exist in delivery of oxidants in fine-grained silt/clay soils; the use of high pressure injection to achieve greater coverage in the subsurface from a few accessible injection locations is not feasible due to presence of deep storm and sanitary sewers, and underground utilities.	Low – Proven method for short- term reduction in PCE and TCE concentrations in similar hydrogeologic settings but unproven method for short-term reduction of TCA concentrations in similar hydrogeologic settings. ISCO will not effectively reach existing VOC mass of target constituents diffused within and sorbed on or within fine-grained soils. Potential issues/concerns limited to workers handling chemicals and public perception of chemical injection.	Low – Severe access limitations exist such that delivery of chemical oxidants to strategic locations where contaminant mass resides in the vadose zone and saturated zone is not feasible. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs. Therefore, long-term effectiveness is low. This technology would have unacceptable effect on flux control of TCA. The duration of required oxidant injection is uncertain. Ability to meet groundwater cleanup standards in active and passive remediation area is "low" due severe access limitations; inability to oxidize TCA; and potential rebound effects in vadose and saturated zones due to diffusion from finer textured sandy soils and silt/clay.	Exclude from further consideration as a separate remedial alternative or in combination with other technologies due to concerns with implementability in source zones, near-source groundwater plume areas, and silt/clay soils, and inability to oxidize TCA. The location of VOC source(s) cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Mineral oxidation resulting from ISCO in groundwater could result in precipitation of calcium, iron, and manganese in pipes, pumps, valves, and meters resulting in increased operations and maintenance requirements for the existing groundwater extraction system infrastructure. Therefore, this technology cannot be used as a stand-alone or in combination with other technologies to meet RAOs. Relative Cost: Moderate
Enhanced Biodegradation with or without Bio-augmentation Treatment of soil and groundwater containing VOCs by adding amendments to enhance on-going anaerobic biodegradation by reductive dechlorination. Bioaugmentation consists of adding non-indigenous bacteria (such as KB-1 or dehalococcoides (DHC)) along with amendments to soil and groundwater to increase and enhance existing microbial populations responsible for on- going reductive dechlorination in OUs #1 and #2. Bio-degradation would be most likely used as a flux control/reduction technology and for limited source area treatment in saturated zones.	Not Feasible. Not applicable to this zone because very difficult to create and maintain reducing conditions within the vadose zone. Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the vadose zone.	Partially Feasible. Technology can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations, although the ability to create widespread reducing conditions would be unlikely without greater Site access. Heterogeneous soil texture conditions could limit uniform delivery of injected amendments to the saturated zone soils. Potential for incomplete biodegradation resulting in accumulation of cis12DCE and vinyl chloride that are more difficult to treat with GAC.	Not Feasible. Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the silt/clay layer at the base of the Upper Aquifer.	Moderate –Proven method for reduction of VOC concentrations in hydrogeologic settings similar to the saturated zone (19-24 ft. bgs). Will not meet RAOs in vadose zone source areas. Natural oxidizing conditions and the influx of oxygenated water from the storm and sanitary sewers would make maintaining reducing conditions for optimal dechlorination difficult. No apparent adverse short-term impacts to construction workers, Site workers, and/or the community.	Moderate – Technology has a proven long-term effectiveness at reducing VOC mass in soil and groundwater at numerous solvent release sites. Implementable or potentially implementable within the saturated zone in OUs #1 and #2. Would stimulate reductive dechlorination in certain areas of the Site near the injection points. Protective of human health and the environment by potentially meeting RAOs in groundwater within OUs #1 and #2. Heterogeneous soil texture conditions could limit uniform delivery of injected amendments to the saturated zone soils. Amendment injected into the saturated zone could clog wells.	Retain for further consideration in combination with other technologies for application to the saturated zone to reduce VOC mass flux. Implementable or potentially implementable within OUs #1 and #2. Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing small amount of VOC mass in the vadose zone and silt/clay layer beneath the Upper Aquifer. Technology can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations, although the ability to create widespread reducing conditions would be unlikely without greater Site access. Heterogeneous soil texture conditions could limit uniform delivery of injected amendments to the saturated zone soils. Protective of human health and the environment by potentially meeting

nvironment
eness at
ction

POTENTIALLY	IMPLEMENTABILITY RELA	TIVE TO SITE HYDROGEOLOGIC C	ONDITIONS	EFFECTIVENESS in Protecting	POTENTIAL APPLICATION TO	
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community)	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST
					and portions of the Upper Aquifer causing increased O&M for the on- going groundwater extraction system. Potential for incomplete biodegradation resulting in accumulation of cis12DCE and vinyl chloride that are more difficult to treat with GAC.	RAOs in groundwater within OUs #1 and #2. No apparent adverse short-term impacts to construction workers, Site workers, and/or the community. Influx of oxygenated water due to exfiltration from deep storm and sanitary sewers in portions of OUs #1 and #2 would make maintaining reducing conditions for optimal dechlorination more difficult. Amendment injected into the saturated zone could clog wells and portions of the Upper Aquifer causing increased O&M for the on-going groundwater extraction system. Potential for incomplete biodegradation resulting in accumulation of cis12DCE and vinyl chloride that are more difficult to treat with GAC. Relative Cost: Moderate to High
<i>In-Situ</i> Chemical Reduction (ICR) using Zero Valent Iron (ZVI) with or without <i>in-situ</i> liquid-activated carbon adsorption Treatment using this technology includes <i>In-Situ</i> injection of Zero Valent Iron (ZVI) in some form to reduce VOC flux via abiotic reductive dechlorination and the potential stimulation of biotic dechlorination. Nano-scale or micro-scale zero-valent iron (ZVI), bimetallic ZVI, sulfidated ZVI, ZVI-impregnated carbon, or liquid-activated carbon can be delivered into the plume as an emulsion injected via wells or through augers. ZVI is not a source area treatment for unsaturated soil and will only treat the target constituents in dissolved-phase groundwater. Theoretically, ZVI particles can be transported short distances down-gradient from the point of injection via groundwater flow. Liquid-activated carbon impregnated with sulfidated iron	Not Feasible. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. The radius of influence of ZVI material injected into the unsaturated zone is small without using high pressure injection; use of high pressure injection to achieve greater coverage is not feasible in OUs #1 and #2 due to presence of deep storm and sanitary sewers, and underground utilities. Severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in the vadose zone in OUs #1 and #2.	Partially Feasible. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely. Severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in OUs #1 and #2. The radius of influence of ZVI material injected into the Upper Aquifer at the site requires the use of high pressure injection; use of high pressure injection to achieve greater coverage is not feasible in OUs #1 and #2 due to presence of deep storm and sanitary sewers, and underground utilities.	Not Feasible. The radius of influence of ZVI material injected into the fine- grained lacustrine silt/clay unit is small without using high pressure injection; use of high pressure injection to achieve greater coverage is not feasible in OUs #1 and #2 due to presence of deep storm and sanitary sewers, and underground utilities.	Low – Effective in some hydrogeologic settings to destroy constituents such as PCE, TCE, and TCA using abiotic processes and by stimulating anaerobic microbial dechlorination. ZVI material clogging and chemical changes to the Upper Aquifer from ZVI injection could cause reduced groundwater extraction yields and pipe, pump, meter, and valve fouling of the existing pumping and treatment system infrastructure in short and long terms. Both access and technology limitations prevent full-scale use of ICR in required areas. No significant adverse short-term impacts to site workers or the Community.	Low – The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. The radius of influence of ZVI material injected into the unsaturated zone, saturated zone, and fine-grained lacustrine silt/clay units is small without using high pressure injection; use of high pressure injection to achieve greater coverage is not feasible in OUs #1 and #2 due to presence of deep storm and sanitary sewers, and underground utilities. Severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in OUs #1 and #2 to attain groundwater RAOs. Passivation or crusting of the ZVI material, uncertain material life expectancy, and need for periodic material replacement provide uncertain performance in OUs #1	Exclude from further consideration. Severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in OUs #1 and #2 to attain groundwater RAOs. If access limitations were removed, this technology could be used in combination with other technologies for application to the saturated zone to reduce VOC mass flux. ZVI cannot be a stand-alone technology because severe access limitations will prevent ZVI from being delivered uniformly to necessary source locations in order to provide meaningful reduction in overall VOC mass in OUs #1 and #2 to attain groundwater RAOs. RAOS would not be met in soil or groundwater in OUs #1 and #2 using this technology. Relative Cost: Moderate

GROUNDWATER SCIENCES CORPORATION GROUNDWATER SCIENCES, P.C. 27Dec2018.doc

POTENTIALLY				EFFECTIVENESS in Protecting		POTENTIAL APPLICATION TO
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community)	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST
can be used to slow the mobility and abiotically destroy the target constituents once adsorbed on the surface of the carbon.					and #2 over the long term. Activated carbon containing ZVI could act as a VOC contaminant source if not removed once the available adsorption sites on the carbon are occupied and the ZVI is no longer active. ZVI material clogging and chemical changes to the Upper Aquifer from ZVI	
					injection could cause reduced groundwater extraction yields and pipe, pump, meter, and valve fouling of the existing pumping and treatment system infrastructure.	
SEPARATION/ TREATMENT 1						
Excavation Physical removal of impacted soil in the vadose zone, saturated zone, and silt/clay layer beneath the Upper Aquifer in source areas potentially to depths of 25 to 30 feet bgs. Use of sheet piling and dewatering of groundwater is necessary to provide stable excavations and to protect utilities and buildings/structures. Off-Site disposal of soil to landfill and off- Site treatment of groundwater is needed.	Partially Feasible. The majority of the mass of VOCs is in vadose zone soil in the OUs #1 and #2 railroad corridor. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Severe access limitations prevent excavation of VOC mass in some vadose zone source areas. Residual VOC mass not accessible by excavation would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs. Even relatively small excavation footprints would disrupt Site operations given the density of utilities, buildings, structures, and daily worker activities ongoing in OUs #1 and #2.	Not Feasible. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. This zone would likely be a target for "hot spot" excavation since the majority of the mass of VOCs is in vadose zone soil. Regardless, severe access limitations prevent excavation of VOC mass in many saturated zone source areas. Residual VOC mass not accessible by excavation would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.	Not Feasible. This zone would not be a target for excavation since the majority of the mass of VOCs is in vadose zone and some saturated zone soil.	Low – Proven method for short- term reduction in VOC concentrations in similar hydrogeologic settings. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Sheet piling and other shoring installation in close proximity to buildings, structures, utilities, storm sewers, and sanitary sewers could cause damage to subsurface infrastructure. Even relatively small excavation footprints would disrupt Site operations given the density of utilities, buildings, structures, and daily worker activities ongoing in OUs #1 and #2. Potential for worker exposure to VOCs through excavation dewatering, VOC vapor emissions from soil and groundwater, and exposure to noise by workers and third- parties.	Moderate – Proven method for long-term reduction in VOC concentrations in soil, groundwater and soil vapor after removal of impacted soil in source areas. Severe access limitations prevent excavation of VOC mass in some vadose zone and saturated zone source areas. Residual VOC mass not accessible by excavation would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.	Exclude from further consideration a a separate remedial alternative or in combination with other technologies. The location of VOC source(s) in OUs#1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and th lack of accessibility within the railroad property. Severe access limitations prevent excavation of VOC mass in some vadose zone and saturated zone source areas. Residual VOC mass not accessible by excavation would continu to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs. Sheet piling and other shoring installation in close proximity to buildings, structures, utilities, storm sewers, and sanitary sewers could cause damage to subsurface infrastructure. Even relatively small excavation footprints would disrupt Site operations given the density of utilities, buildings, structuress and daily worker activities ongoing in OUs #1 and #2. Potential for worker exposure to VOCs through excavation dewatering, VOC vapor emissions from soil and groundwater, and exposure to noise by workers and third-parties. Excavation activities would cause increased truck traffic and noise associated with removal of soil, remova

GROUNDWATER SCIENCES CORPORATION GROUNDWATER SCIENCES, P.C. 27Dec2018.doc

POTENTIALLY		ATIVE TO SITE HYDROGEOLOGIC C		EFFECTIVENESS in Protecting		POTENTIAL APPLICATION TO
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community)	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST
				Excavation activities would cause increased truck traffic and noise associated with removal of soil, removal of water, and placement of clean fill for some residents of Endicott and Site workers.		of water, and placement of clean fill for some residents of Endicott and Site workers. Excavation is not feasible and cannot meet RAOs. Relative Cost: High
Soil Vapor Extraction (SVE) Extraction and treatment of soil vapor containing VOCs in the vadose zone, alone or in combination with air sparging in the saturated zone.	Partially Feasible. The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. A feasibility study in 1989/1990 concluded SVE is not an appropriate technology for the railroad corridor based on field tests. Removal of VOCs present in finer textured sandy soils and foc-rich soils would be limited by diffusion and sorption. The majority of the VOC mass that would be the target of SVE in vadose zone soil in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible. In small areas where access is possible, numerous utilities, and sewers (storm and sanitary) restrict proper placement of SVE use in OUs #1 and #2 only partially feasible.	Not Feasible. The saturated thickness of the Upper Aquifer (saturated zone) is typically five feet or less providing little opportunity for air sparging and vapor collection via SVE from this zone. The fine-grained silt/clay soils, underlying the Upper Aquifer is not amenable to this technology. Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs.	Not Feasible. Fine-textured silt and clay soils would inhibit ability for VOC mass removals via air-sparging and SVE.	Low – The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. The majority of the VOC mass that would be the target of SVE in vadose zone soil in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible. In small areas where access is possible, numerous utilities, and sewers (storm and sanitary) restrict proper placement of SVE wells rendering even limited SVE use in OUs #1 and #2 only partially feasible. Significant numbers of utilities exist in many areas of OUs #1 and #2 making installation of SVE infrastructure potentially harmful for construction workers. No significant adverse short-term impacts to Site workers or the community.	Low – The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. The majority of the VOC mass that would be the target of SVE in vadose zone soil in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible. Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs. Potential exists for rebound effect due to back diffusion and desorption from finer textured and foc-rich soils.	Exclude from further consideration a a separate remedial alternative or in combination with other technologies. The majority of the VOC mass that would be the target of SVE in vadose zone soil in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible. Removal of VOCs present in finer textured sandy soils and foc-rich soils would be limited by diffusion and sorption. Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs # and #2. The saturated thickness of the Upper Aquifer (saturated zone) is typically five feet or less providing littl opportunity for air sparging and vapor collection via SVE from this zone. The fine-grained silt/clay soils, underlying the Upper Aquifer is not amenable to this technology. Residual VOC mass in soil that is not accessible would continu to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs. Relative Cost: Moderate

POTENTIALLY	IMPLEMENTABILITY RELA	ATIVE TO SITE HYDROGEOLOGIC C	ONDITIONS	EFFECTIVENESS in Protecting	Human Health and Environment	POTENTIAL APPLICATION TO
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community)	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST
Dual-Phase Extraction (DPE) DPE systems depress the water table and remove mass from above and below the pre-pumping water level. As the water table around the well is lowered by pumping, unsaturated soil is exposed and VOC mass in the newly exposed zone can be removed by vapor extraction. Removal of groundwater and soil vapor is typically accomplished by either a high-vacuum system to remove both groundwater and soil vapor, or by a centrifugal pumping system to collect groundwater coupled with a high vacuum system to extract soil vapor.	Partially Feasible. The location of VOC source(s) in OUs #1 and #2 vadose zone cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Potential for short- circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. The majority of the VOC mass that would be the target of DPE in vadose zone soil is inferred to be residing beneath utilities, structures/buildings, and the railroad property where it is inaccessible. In some small areas where access is possible, numerous utilities, and sewers (storm and sanitary) restrict proper placement of DPE use in OUs #1 and #2 only partially feasible. Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations RAOs.	Partially Feasible. The location of VOC source(s) in OUs #1 and #2 saturated zone cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. The majority of the VOC mass that would be the target of DPE in saturated zone soil is inferred to be residing beneath utilities, structures/buildings, and the railroad property where it is inaccessible. In some small areas where access is possible, numerous utilities, and sewers (storm and sanitary) restrict proper placement of DPE wells rendering even limited DPE use in OUs #1 and #2 saturated zone only partially feasible.	Not Feasible. Fine-textured silt and clay soils would inhibit VOC mass removal via DPE.	Low – The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. The majority of the VOC mass that would be the target of DPE in vadose zone soil is inferred to be residing beneath utilities, structures/buildings, and the railroad property where it is inaccessible. Noise of the blower system may be of potential concern for implementation in the short-term and long-term. No significant adverse short-term impacts to Site workers or the community.	Low – The location of VOC source(s) in OUs #1 and #2 cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Removal of VOCs present in finer textured sandy soils and foc-rich soils would be limited by diffusion and sorption. Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations RAOs. DPE will not achieve RAOs in the vadose, saturated, or silt/clay zones over the long term.	 Exclude from further consideration as a separate remedial alternative or in combination with other technologies. The majority of the VOC mass that would be the target of SVE in vadose zone soil in OUs #1 and #2 is inferred to reside beneath utilities, structures/buildings, and the railroad property where it is inaccessible. Potential for short-circuiting of extracted air flow due to heterogeneous soil texture and density conditions and numerous subsurface utilities in OUs #1 and #2. The fine-grained silt/clay soils, underlying the Upper Aquifer is not amenable to this technology. Residual VOC mass in soil that is not accessible would continue to impact the Upper Aquifer groundwater by maintaining concentrations above RAOs. DPE has severe limitations in the ability to remove sufficient VOC mass in source areas and near-source groundwater plume areas in OUs #1 and #2. Relative Cost: Moderate
<i>In-Situ</i> Thermal Treatment <i>In-Situ</i> treatment via thermal conductive or resistive heating above and below the water table with multi-phase extraction of groundwater and soil vapor.	Not Feasible. The location of VOC source(s) to be targeted for thermal treatment cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Closely- spaced multi-phase extraction wells are required to limit potential short-circuiting of steam and VOC vapors towards buildings; however, the majority of VOC mass in vadose soil is inaccessible for heater/SVE wells and multi- phase extraction wells.	Not Feasible. The same restrictions for vadose zone soils apply to the saturated zone in OUs #1 and #2. Severe access limitations would prohibit treatment in locations where VOC mass resides in the vadose zone and saturated zone. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs.	Not Feasible. The same feasibility issues as apply to the vadose and saturated zones.	Low – The location of VOC source(s) to be targeted for thermal treatment cannot be determined precisely due to the presence of underground utilities, structures, and the lack of accessibility within the railroad property. Heat would likely damage buildings and utilities adjacent to active remediation area(s). Heat would also damage the structural integrity of the soil bedding beneath the railroad tracks. Thermal treatment would cause nuisance issues with nearby structures (heating of basement and water lines).	Low – Technology reportedly has been effective in significantly reducing VOC concentrations in soil and groundwater in similar hydrogeologic settings. However, severe access limitations would prohibit treatment in locations where VOC mass resides in the vadose zone and saturated zone. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs. Will not meet long-term RAOs due to inaccessibility to VOC source areas.	Exclude from further consideration as a separate remedial alternative or in combination with other technologies. The location of VOC source(s) to be targeted for thermal treatment cannot be determined precisely due to the presence of underground utilities, structures and the lack of accessibility within the railroad property. Severe access limitations would prohibit treatment in locations where VOC mass resides in the vadose zone and saturated zone. Heat would damage on-Site and off-Site infrastructure. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs. Closely-

POTENTIALLY		TIVE TO SITE HYDROGEOLOGIC C		EFFECTIVENESS in Protecting Human Health and Environment		POTENTIAL APPLICATION TO	
APPLICABLE TECHNOLOGY	Vadose zone (0 to 19 ft. bgs) containing PCE, TCE, and TCA	Saturated zone (19 to 24 ft. bgs) containing PCE, TCE, and TCA	Silt/Clay (24 to 29 ft. bgs) containing PCE, TCE, and TCA	Short-term (Includes Potential Impacts to Workers and Community) Relocation of subsurface utilities	Long-term (Effectiveness at Meeting Remedial Action Objectives)	OU#1 AND OU#2 AT ENDICOTT SITE AND RELATIVE COST spaced multi-phase extraction wells are	
				damaged during thermal treatment operations would disrupt operations for Site occupants.		required to limit potential short- circuiting of steam and VOC vapors towards buildings; however, the majorit of VOC mass in vadose soil is inaccessible for heater/SVE wells and multi-phase extraction wells. Residual VOC mass not accessible will continue to impact Upper Aquifer groundwater by maintaining concentrations above RAOs.	
						Relative Cost: High	
CONTROL AND ISOLATION T	TECHNOLOGIES						
Groundwater Extraction using Vertical Wells and Enhanced by Vacuum Pumping Installation of vertical wells to extract Upper Aquifer groundwater at accessible locations within apparent source areas or near-source groundwater plume areas. This technology could include vacuum-enhanced groundwater extraction pumping systems in areas with sufficient saturated thickness. Serves as both a source reduction/control technology and a plume reduction/mass flux control technology.	Feasible. Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the vadose zone.	Feasible. Technology has a long history of implementability in the saturated zone of OUs #1 and #2. Technology can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations.	Feasible. Reduction of VOC mass in the saturated zone has a limited indirect effect on reducing VOC mass in the silt/clay zone.	High – Technology has a proven long-term effectiveness at hydraulically containing source areas and reducing VOC mass in soil and groundwater at numerous solvent release sites. Technology has a long history of implementability in OUs #1 and #2. No apparent adverse short- term impacts to construction workers, Site workers, and/or the community.	High – Protective of human health and the environment by potentially meeting RAOs in groundwater within OUs #1 and #2. Technology has a long history of implementability in OUs #1 and #2. Technology can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations. Influx of oxygenated water due to exfiltration from deep storm and sanitary sewers in portions of OUs #1 and #2 would potentially increase the rate of fouling of extraction well screens, pumping systems, conveyance piping, and treatment system components.	Retain for further consideration as a separate remedial alternative or in combination with other technologies. Technology has a long history of implementability in OUs #1 and #2 and can be successfully applied using a limited number of widely-spaced vertical wells in areas of severe access limitations. Heterogeneous soil texture conditions could limit the rate of mass transfer from finer-textured soils that are likely to contain a greater percentage of the remaining VOC presence in the saturated zone. Influx of oxygenated water due to exfiltration from deep storm and sanitary sewers in portions of OUs #1 and #2 would potentially increase the rate of fouling of extraction well screens, pumping systems, conveyance piping, and treatment system components. Protective of huma health and the environment by potentially meeting RAOs in groundwater within OUs #1 and #2. No apparent adverse short-term impacts to construction workers, Site workers, and/or the community. Relative Cost: High	

TABLE 6-1SCREENING OF POTENTIALLY APPLICABLE REMEDIAL TECHNOLOGIES

FFS Report for OUs #1 and #2

Former IBM Endicott Site, Endicott, New York

POTENTIALLY	IMPLEMENTABILITY RELA	TIVE TO SITE HYDROGEOLOGIC C	ONDITIONS	EFFECTIVENESS in Protecting	Human Health and Environment	POTENTIAL APPLICATION TO
APPLICABLE	Vadose zone (0 to 19 ft. bgs)	Saturated zone (19 to 24 ft. bgs)	Silt/Clay (24 to 29 ft. bgs)	Short-term (Includes Potential	Long-term (Effectiveness at	OU#1 AND OU#2 AT ENDICOTT
TECHNOLOGY	containing PCE, TCE, and	containing PCE, TCE, and TCA	containing PCE, TCE, and	Impacts to Workers and	Meeting Remedial Action	SITE AND RELATIVE COST
	ТСА		ТСА	Community)	Objectives)	
Groundwater Extraction using	Not Feasible Not applicable to	Not Feasible The majority of VOC mass	Not Feasible. The majority	Low – The majority of VOC	Low – The majority of VOC mass	Exclude from further consideration as
Cut-Off Trenches	this zone. Excavation is	in the saturated zone is inaccessible for	of VOC mass in the silt/clay	mass in the saturated zone is	in the saturated zone is	a separate remedial alternative or in
Installation of trenches or drains	required through this zone to	excavation using trenches to the required	zone is un-impacted using	inaccessible for excavation using	inaccessible for excavation using	combination with other technologies.
with sumps installed at strategic	install proposed groundwater	depth to make this technology effective.	this technology.	trenches to the required depth to	trenches to the required depth to	The majority of VOC mass in the
locations to collect VOC-	collection trenches. The	In some small areas at a few locations		make this technology effective. In	make this technology effective.	saturated zone is inaccessible for
containing groundwater to be	location of VOC source(s) in	where groundwater collection via		some small areas at a few	Residual VOC mass not accessible	excavation using trenches to the required
pumped to a surface treatment	the saturated zone cannot be	trenching would be possible to reduce		locations where groundwater	will continue to impact Upper	depth to make this technology effective.
facility.	determined precisely due to the	VOC mass flux, numerous utilities and		collection via trenching would be	Aquifer groundwater by	In order to install deep trenches, sheet
	presence of underground	sewers (storm and sanitary) exist such		possible to reduce VOC mass	maintaining concentrations above	piling and other shoring installation is
	utilities, structures, and the lack	that trenching is not feasible. Residual		flux, numerous utilities and	RAOs over the long term.	needed in close proximity to buildings,
	of accessibility within the	VOC mass not accessible will continue		sewers (storm and sanitary) exist		structures, utilities, storm sewers, and
	railroad property.	to impact Upper Aquifer groundwater by		such that trenching is not feasible.		sanitary sewers and could cause damage
		maintaining concentrations above				to subsurface infrastructure during
		RAOs.		In order to install deep trenches,		installation. In some small areas at a
				sheet piling and other shoring		few locations where groundwater
				installation is needed in close		collection via trenching would be
				proximity to buildings, structures,		possible to reduce VOC mass flux,
				utilities, storm sewers, and		numerous utilities and sewers (storm and
				sanitary sewers and could cause		sanitary) exist such that trenching is not
				damage to subsurface		feasible. Residual VOC mass not
				infrastructure during installation.		accessible will continue to impact Upper
				Potential trench side-wall stability		Aquifer groundwater by maintaining
				issues would need to be addressed		concentrations above RAOs.
				to protect foundations of nearby		Groundwater extraction using vertical
				structures. OSHA excavation		wells has already been successfully
				requirements and potential trench		demonstrated as a source and flux
				side-wall stability issues would		control technology at the Site for nearly
				require sheet-piling.		four decades.
				Potential for worker and resident		Relative Cost: Low
				exposure to noise, and vapor/odor		
				emissions.		

NOTE: This table is intended to summarize results of screening of remedial technologies with potential application to OUs #1 and #2. Each technology is screened relative to OUs #1 and #2-specific hydrogeologic conditions and potential short-term and long-term effectiveness. See the report text for additional details.

TABLE 7-1 **DETAILED ANALYSIS OF REMEDIAL ALTERNATIVES** FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

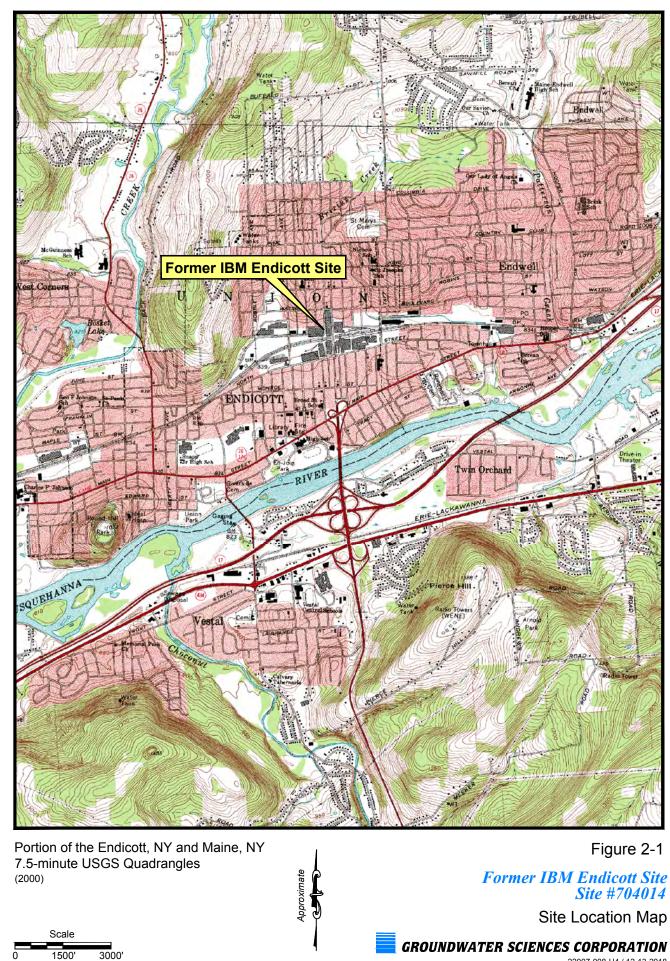
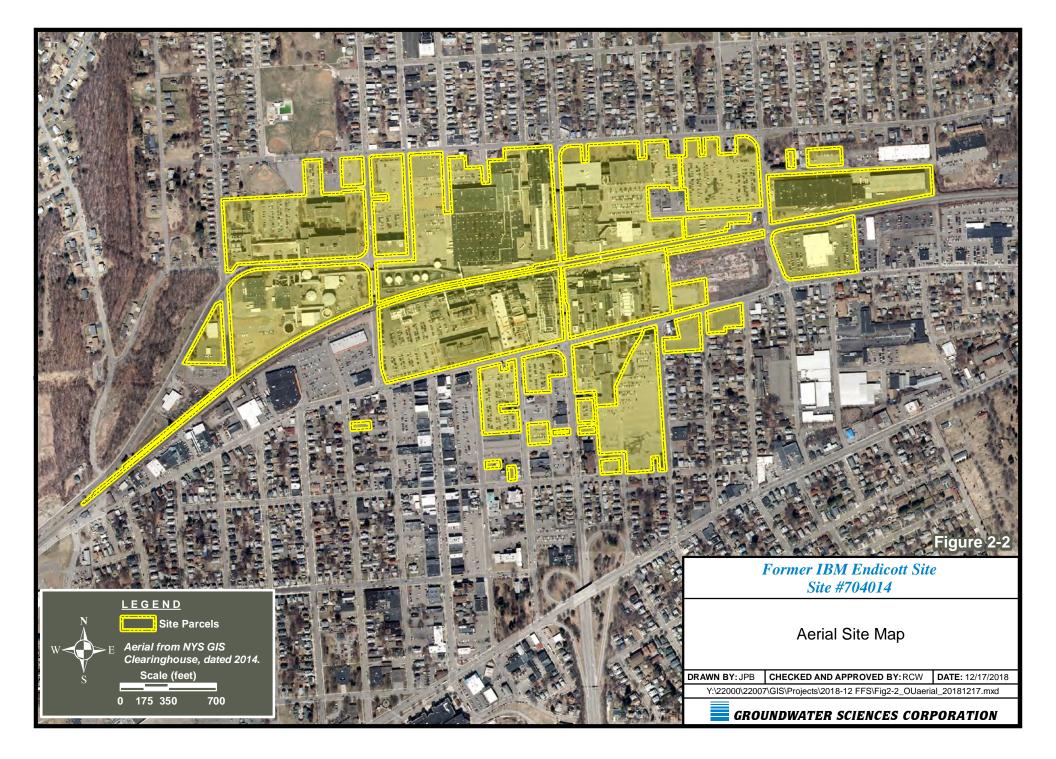
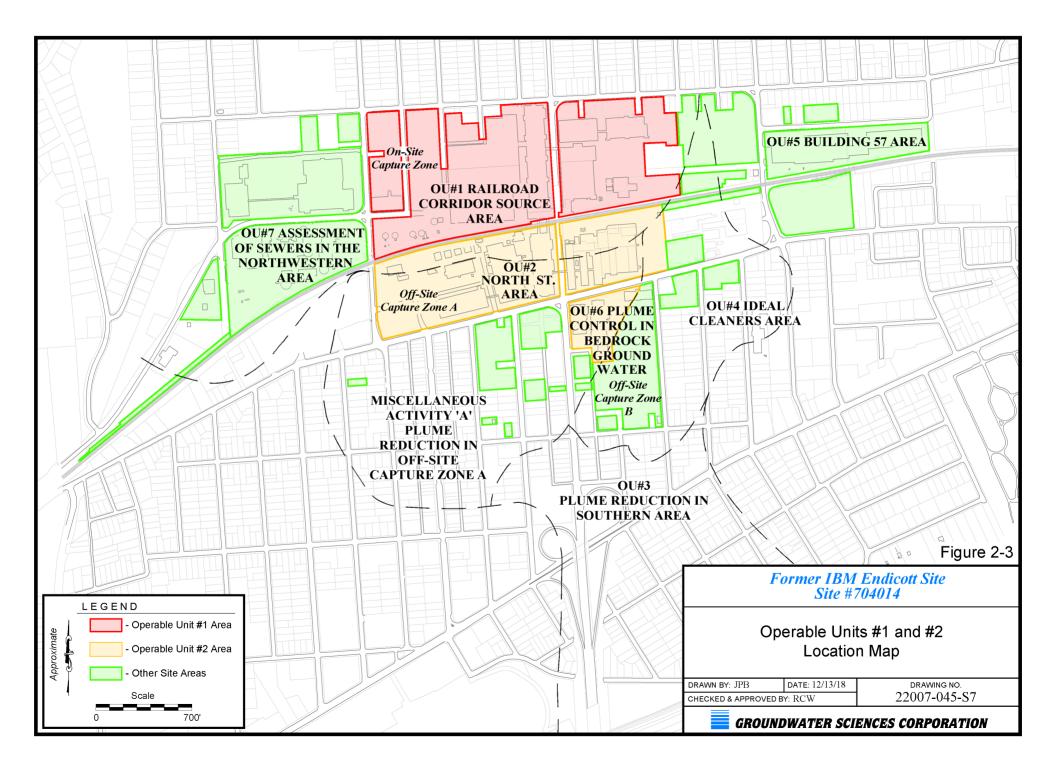
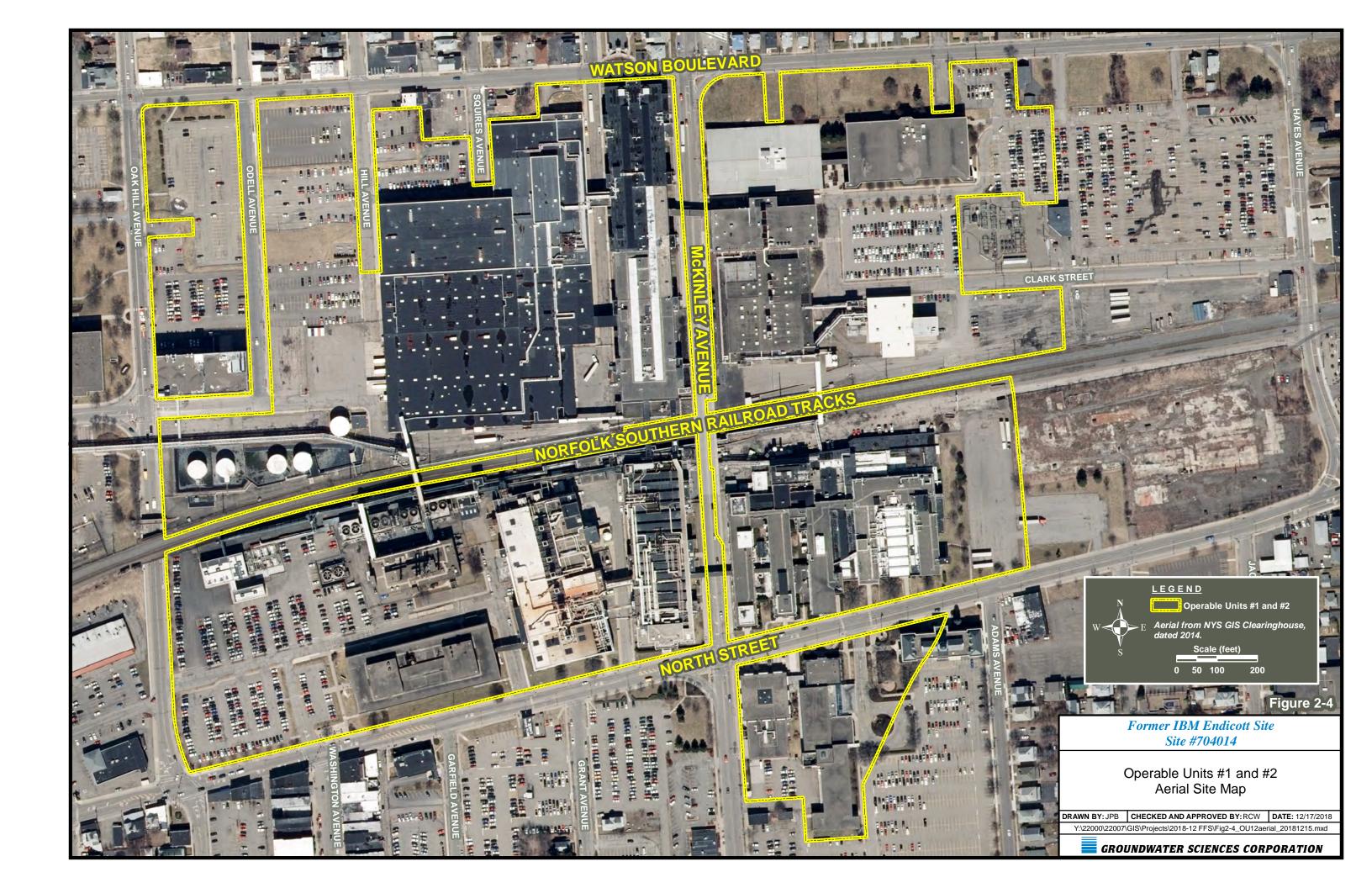

	Overall Protection of Human Health and the Environment	Compliance with New York State SCGs (Attainment of Remedial Action	Long-Term Effectiveness	Reduction in Toxicity, Mobility, and Volume	Short-Term Effectiveness	Implementability	Cost
		Objectives)					
NO FURTHER ACTION with	SITE MANAGEMENT	· · · · · ·					
Alternative #1: No Further Action	Low – Meets the overall goal of	Low – This alternative screens	High – The long-term	Low – This alternative does not	High – Implementation of this	Technically and	Capital Cost:
with Site Management – The No	protection of public health and the	relatively low in its ability to meet	effectiveness of this	reduce the toxicity, mobility, or	proposed remedy would result	administratively feasible.	\$75,000
Further Action with Site Management	environment by mitigating potential	applicable SCGs for groundwater, soil,	alternative is high as it	volume of the VOCs in	in no short-term risks to the	Use of deed restrictions is	Total Cost:
alternative recognizes that the interim	exposure pathways via the use of	and soil vapor as it does not include	would effectively mitigate	apparent source areas and near-	community, workers, and the	a common and effective	\$1,769,268
remedial measures implemented over	institutional controls, such as deed	active Site remediation activities that	potential exposure pathways	source groundwater plume	environment as there would be	institutional control for	
the past thirty-nine years have	restrictions in the form of an	could reduce VOC mass concentrations	to VOC presence in soil and	areas.	no active remediation activities	mitigating potential	
successfully remediated OUs #1 and	environmental easement and Site	in groundwater, soil, and soil vapor in	groundwater in apparent		and disruption to Site	exposure pathways and	
#2 such that institutional controls and	Management Plan procedures, and	apparent source areas and near-source	source areas and near-		operations.	unacceptable risk to human	
certain engineering controls are	engineering controls in the form of	groundwater plume areas. Given the	source groundwater plume			health and the	
sufficient to protect human health and	HVAC systems and sub-slab	lack of active remediation, this	areas. The restrictions			environment. A Site	
the environment. The institutional	depressurization systems.	alternative would not meet the RAOs of	would remain on the deed			Management Plan that is	
controls include: the Order, an		controlling groundwater in apparent	for the property in the case			acceptable to NYSDEC,	
environmental easement, a Site	<i>Soil</i> – Institutional controls will exist	source areas in the railroad corridor and	of a change in property			IBM, and the current	
Management Plan, and restrictions to	to prevent access to impacted soil by	controlling VOC mass flux crossing	ownership.			property owner should be	
Site access via fencing, roadway gates,	site workers and construction	North Street.				administratively feasible	
and Huron security protocols. The	workers that could be exposed to soil					and implementable.	
engineering controls consist of HVAC	containing VOCs through dermal	<i>Soil</i> – Alternative #1 will not achieve					
systems and sub-slab depressurization	contact, ingestion, and inhalation.	SCGs and RAOs in soil in OUs #1 and					
systems for certain buildings in OUs	Infiltration of water through soil	#2 per 6 NYCRR Part 375, Table 375-					
#1 and #2.	containing VOCs will continue to	6.8 (b) – Restricted Use Soil Cleanup					
	impact the Upper Aquifer at rates	Objectives.					
Elements of the Site Management Plan	above RAOs.						
would include the following:	S. H.V.	Soil Vapor –Operation of HVAC					
E E Walter	<i>Soil Vapor</i> – Continued operation of	systems, and where appropriate SSD					
Excavation Work Plan,	HVAC systems, and where	systems, will prevent vapors entering					
Deufournes Monitoring Disp	appropriate sub-slab depressurization (SSD) systems, will prevent vapors	occupied buildings above NYSDOH Guidance Values.					
Performance Monitoring Plan,	from entering occupied buildings at	Guidance values.					
· Site Contingence Dier		<i>Groundwater</i> – The timeframe for					
• Site Contingency Plan,	rates that are not protective of human health and the environments.	concentrations for COPCs to decline to					
• Site Monitoring Dian and	nearth and the environments.	applicable NYS Part 703 groundwater					
• Site Monitoring Plan, and	Crown dwater Discontinuing	standards would increase from current					
• Periodic Inspections/Certifications.	<i>Groundwater</i> – Discontinuing groundwater extraction could result	projected timeframes due to the					
- remotic inspections/Certifications.	in the need to reassess the potential	shutdown of groundwater extraction					
	vapor intrusion pathway in certain	operations.					
	buildings in OUs #1 and #2.	operations.					

TABLE 7-1 **DETAILED ANALYSIS OF REMEDIAL ALTERNATIVES** FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

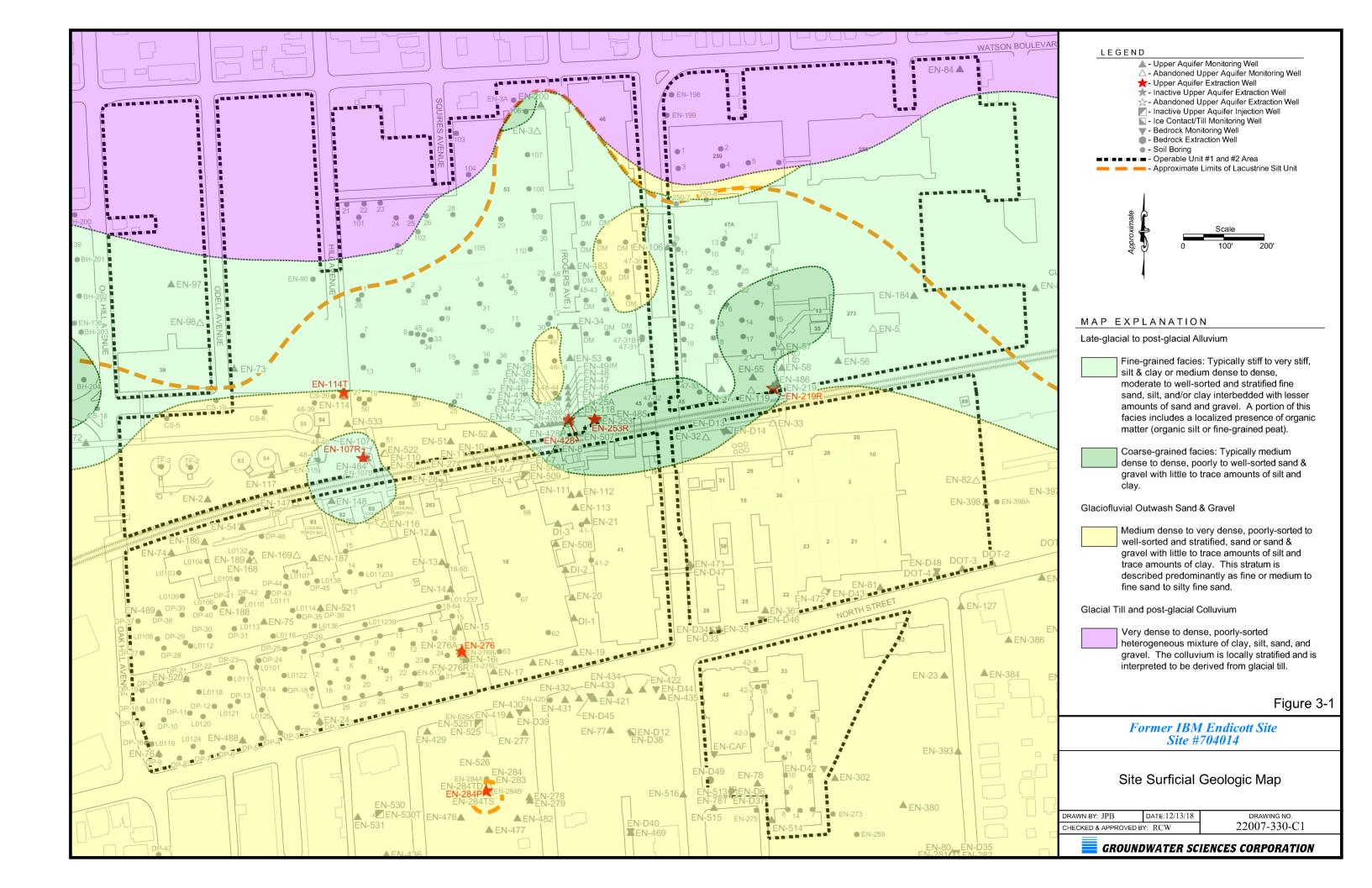

REMEDIAL	Overall Protection of Human	Compliance with New York State SCGs	Long-Term Effectiveness	Reduction in Toxicity,	Short-Term	Implementability	Cost
ALTERNATIVE	Health and the Environment	(Attainment of Remedial Action Objectives)		Mobility, and Volume	Effectiveness		
ENHANCED GROUND	-	The Third Control of the second secon	III Constant and the state of the state	TT: 1. TT: 1. 10 mod 1.			Control Control
Alternative #2: Enhanced Groundwater Extraction-	High – Meets the overall goal of protection of public health and the	Low – This alternative screens relatively low in its ability to meet applicable SCGs for	High – Groundwater extraction would effectively mitigate potential exposure	High – This alternative would reduce the mobility and volume	High – Implementation of this remedial alternative	This alternative is technically and	Capital Cost: \$543,000
The Enhanced Groundwater	environment by mitigating potential	groundwater and soil due to severe access	pathways to VOC presence in soil and	of the COPCs in apparent	would result in no short-	administratively feasible.	\$343,000
Extraction alternative consists	exposure pathways via the use of	limitations to effectively remediate VOC mass	groundwater in apparent source areas and	source areas and near-source	term risks to the	Use of deed restrictions	Total Cost:
of groundwater extraction,	institutional controls and engineering	in vadose zone and saturated zone soils	near-source groundwater plume areas. The	groundwater plume areas. The	community, workers, and	is a common and	\$9,266,058
with vacuum-assist pumping	controls.	impacted by past industrial activity in the	restrictions would remain on the deed for	mobility and volume would be	the environment. This	effective institutional	\$9,200,038
systems, where appropriate, as	controls.	railroad corridor and the historical development	the property in the case of a change in	reduced by groundwater	alternative should not	control for mitigating	
an engineering control in OUs	<i>Soil</i> –Institutional controls will be	of near-source groundwater plumes.	property ownership. The operation of	capture, and using air stripping	disrupt Site operations as	potential exposure	
#1 and #2 to perform the	implemented to prevent exposure to	of hear source groundwater pruntes.	enhanced groundwater extraction systems	and activated vapor-phase	the majority of the active	pathways and	
following:	OUs #1 and #2 soils.	This alternative would achieve the RAOs of	is unlikely to result in attainment of soil	carbon to remove VOCs from	remediation infrastructure	unacceptable risk to	
iono wing.		controlling groundwater in apparent source	and groundwater clean-up requirements	the groundwater withdrawals.	and operations are already	human health and the	
1. Continue to control the	Soil Vapor – Current operation of	areas in the railroad corridor and controlling	within the next ten years. However,	The toxicity of VOCs would be	in place as interim	environment. Enhanced	
source(s) of groundwater	HVAC systems, and where	VOC mass flux crossing North Street. The	consistent with the significant remedial	eliminated via carbon	remedial measures. This	groundwater extraction	
contamination within the	appropriate SSD systems, prevents	timeframe for concentrations for COPCs to	progress achieved over the past thirty-nine	regeneration where the VOCs	proposed remedy would	has a long proven history	
railroad corridor source area	vapors containing VOCs from	decline to applicable NYS Part 703	years, the enhanced groundwater	are destroyed by thermal	achieve the RAOs for	of implementability	
(On-Site Capture Zone).	entering occupied buildings at rates	groundwater standards and Part 375 soil	extraction operations in OUs #1 and #2 are	means.	protection of public health	within OUs #1 and #2	
	that are not protective of human	cleanup objectives is expected to be reduced	anticipated to provide meaningful		upon its implementation	with operable run times	
2. Control the groundwater	health and the environment.	under this remedial alternative.	reductions in VOC concentrations in		by mitigating exposure of	typically greater than	
flux crossing North Street			groundwater, soil, and soil vapor over the		human receptors to	98%. A Site	
within OU#2. This alternative	<i>Groundwater</i> – Institutional controls	<i>Soil</i> – Exposure to impacted soil will be	next ten years.		unacceptable levels of	Management Plan that is	
provides hydraulic control and	will be implemented to prevent	controlled by institutional controls until SCGs			COPCs in soil and	acceptable to NYSDEC,	
a degree of mass removal that	exposure to OUs #1 and #2	are met.			groundwater.	IBM, and the current	
is directly proportional to the	groundwater via dermal contact,					property owner should	
rate of dissolution of VOCs	ingestion, and inhalation by Site	Soil Vapor – Operation of HVAC systems, and				be administratively	
from the apparent source	workers and construction workers.	where appropriate SSD systems, will prevent				feasible and	
zones.	Public Water is supplied by the	vapors entering occupied buildings above				implementable.	
	Village of Endicott.	NYSDOH Guidance Values.					
Enhancement of the							
groundwater withdrawals in		<i>Groundwater</i> – The timeframe for					
source areas and near-source groundwater plume areas		concentrations for COPCs to decline to					
should improve the rate of		applicable NYS Part 703 groundwater					
source reduction while		standards would decrease from Alternative #1.					
maintaining sufficient capture		Conferent Water DAOs					
of groundwater chemical flux.		<i>Surface Water</i> – RAOs are met for					
This alternative also includes		groundwater currently being pumped from OUs #1 and #2 and treated to within the limits					
the institutional and		#1 and #2 and treated to within the limits allowed by the SPDES permit ($pH = 6.0$ to 9.0					
engineering controls specified		and VOCs less than 10 μ g/L, each) for a "Class					
for Alternative #1.		B" receiving stream.					

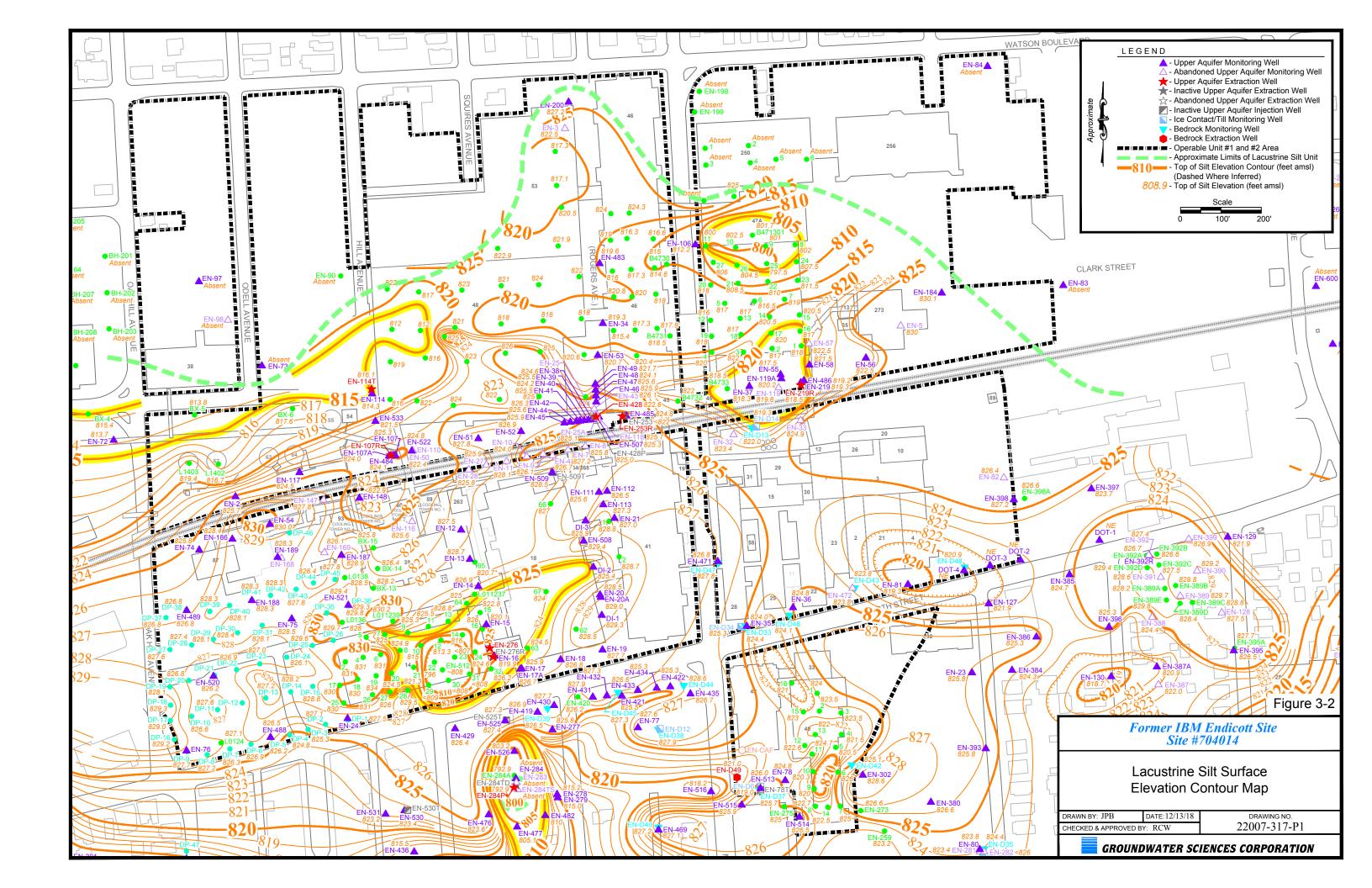

TABLE 7-1 **DETAILED ANALYSIS OF REMEDIAL ALTERNATIVES** FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

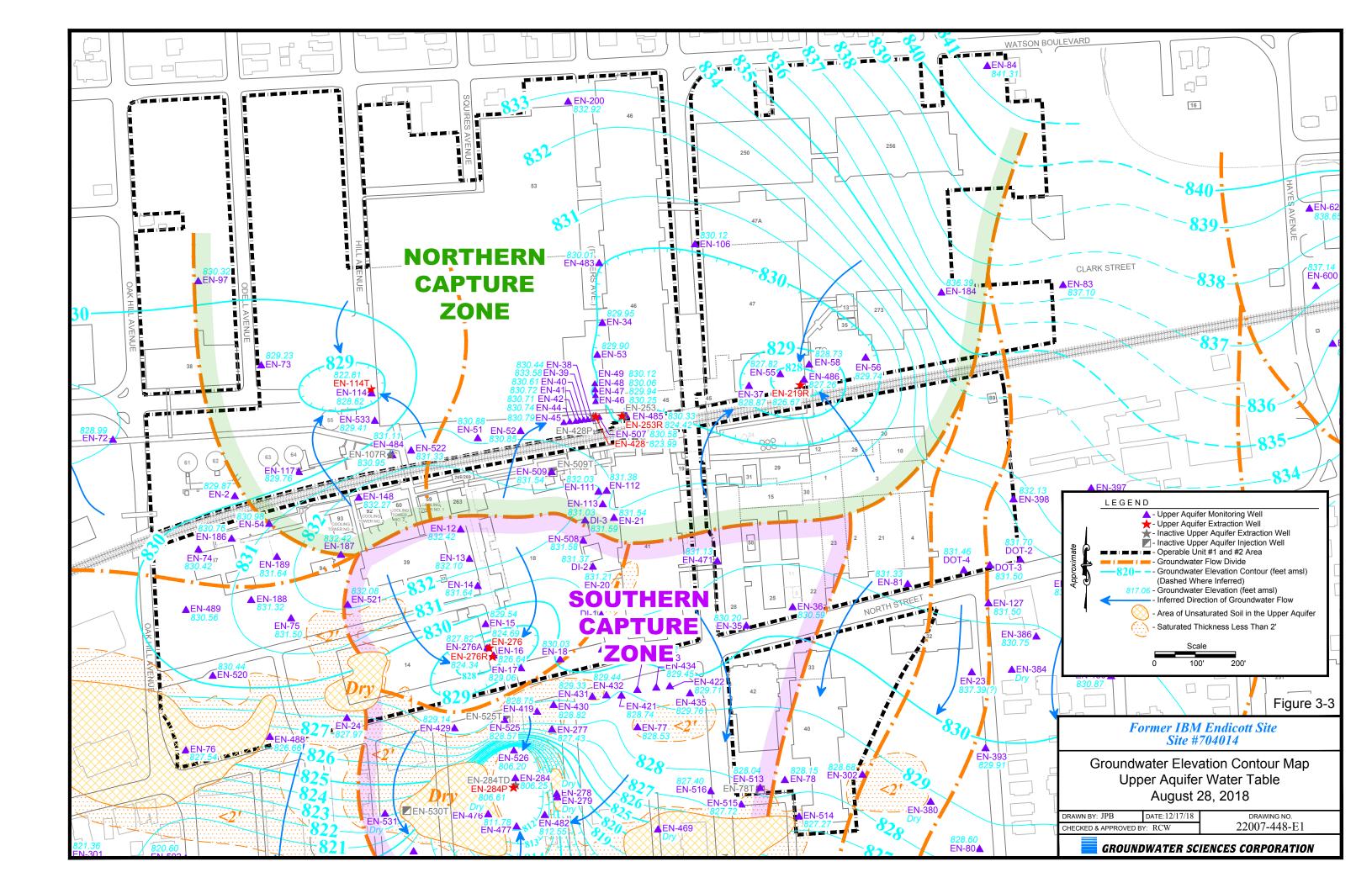

REMEDIAL ALTERNATIVE	Overall Protection of Human	Compliance with New York State SCGs	Long-Term Effectiveness	Reduction in Toxicity,	Short-Term Effectiveness	Implementability	Cost
	•	(Attainment of Remedial Action Objectives)		Iviobility, and Volume			
ENHANCED BIODEGRADA Alternative #3: Enhanced Biodegradation – Enhanced biodegradation contains the elements of Alternative #2 with the addition of enhanced biodegradation via the injection of amendments and possibly injection of cultures of microorganisms (bioaugmentation) in OUs #1 and #2 to reduce the natural oxidizing conditions of the Upper Aquifer, such that biotic reductive dechlorination can occur. The enhancement activities would include injection of lactate, molasses, vegetable oils, or another organic carbon source for microorganisms that dechlorinate VOCs. Injection would be performed using wells or direct- push borings. A type of applicable bacterial culture could also be added to supplement existing microorganism populations, where needed. This alternative attempts to accelerate the rate of VOC mass removal from soil and groundwater in the saturated zone by changing the natural oxidizing conditions in the Upper Aquifer to reducing conditions. This alternative also includes the institutional and engineering controls specified for Alternative #1 and the enhanced groundwater extraction engineering control specified in Alternative #2.	Health and the EnvironmentATIONHigh – Enhanced Biodegradation with the institutional and engineering controls specified in Alternative #2, would meet the	(Attainment of Remedial Action Objectives) Low – This alternative screens relatively low in its ability to meet applicable SCGs for groundwater and soil due to severe access limitations to effectively remediate VOC mass in vadose zone and saturated zone soils impacted by past industrial activity in the railroad corridor and the historical development of near-source groundwater plumes. Enhanced biodegradation is unlikely to result in attainment of soil and groundwater clean-up requirements within the next ten years. However, the timeframe for concentrations for COPCs to decline to applicable NYS Part 703 groundwater standards and Part 375 soil cleanup objectives is expected to be reduced under this remedial alternative. Soil – Enhanced biodegradation is unlikely to result in attainment of soil and groundwater clean-up requirements within the next ten years. Soil – Enhanced biodegradation is unlikely to result in attainment of soil and groundwater clean-up requirements within the next ten years. Soil Vapor – Operation of HVAC systems, and where appropriate SSD systems, will prevent vapors entering occupied buildings above NYSDOH Guidance Values. Groundwater – Enhanced biodegradation is unlikely to result in attainment of groundwater clean-up requirements within the next ten years. The enhanced groundwater extraction portion of this alternative would achieve the RAOs of controlling groundwater in apparent source areas in the railroad corridor and controlling VOC mass flux crossing North Street. However, the biodegradation portion of this remedial alternative could adversely impact the extent of the control of the railroad corridor source areas and the VOC mass flux crossing North Street due to fouling of the Upper Aquifer soils and the well screens of the extraction wells.	Low/Moderate – The restrictions would remain on the deed for the property in the case of a change in property ownership. The groundwater extraction component of this alternative is a proven technology with a long history of effectiveness that would effectively mitigate potential exposure pathways to VOC presence in soil and groundwater in apparent source areas and near-source groundwater plume areas. This alternative has low to moderate long- term effectiveness due to the potential difficulties in changing the natural oxidizing conditions in the Upper Aquifer to be reducing conditions over a long period of time.	Mobility, and Volume Moderate – This alternative would reduce the mobility and volume of the COPCs in apparent source areas and near-source groundwater plume areas. The mobility and volume would be reduced by groundwater capture, and using air stripping and activated vapor- phase carbon to remove VOCs from the groundwater withdrawals. The toxicity of VOCs would be eliminated by a combination of in-situ destruction of VOCs by the microorganisms and via vapor phase carbon regeneration where the VOCs sorbed onto vapor phase carbon during groundwater treatment are destroyed by thermal means. This alternative screens lower than Alternative #2 due to the potential for incomplete biodegradation resulting in accumulation of daughter products that are more difficult to treat and, in the case of vinyl chloride, more toxic.	 Moderate – Implementation of this remedial alternative would result in no short-term risks to the community, workers, and the environment. This alternative could result in some disruption to Site operations during installation of injection points and/or wells, hauling and disposal of drilling wastes, short-term noise events, and work in high-density utility corridors. Periodic injection of amendments and possibly microorganisms could also cause temporary minor disruptions to Site operations should occur as the other components of the active remediation infrastructure and operations are already in place as interim remedial measures. This proposed remedy would achieve the RAOs for protection of public health upon its implementation by mitigating exposure of human receptors to unacceptable levels of COPCs in soil and groundwater. 	 This alternative is technically and administratively feasible. Use of deed restrictions is a common and effective institutional control for mitigating potential exposure pathways and unacceptable risk to human health and the environment. Enhanced groundwater extraction has a long proven history of implementability within OUs #1 and #2 with operable run times typically greater than 98%. Biodegradation has been proven to be implementable at other sites but its implementability has yet to be tested within OUs #1 and #2. A Site Management Plan that is acceptable to NYSDEC, IBM, and the current property owner should be administratively feasible and implementable. 	Capital Cost: \$1,688,000 Total Cost: \$15,643,925

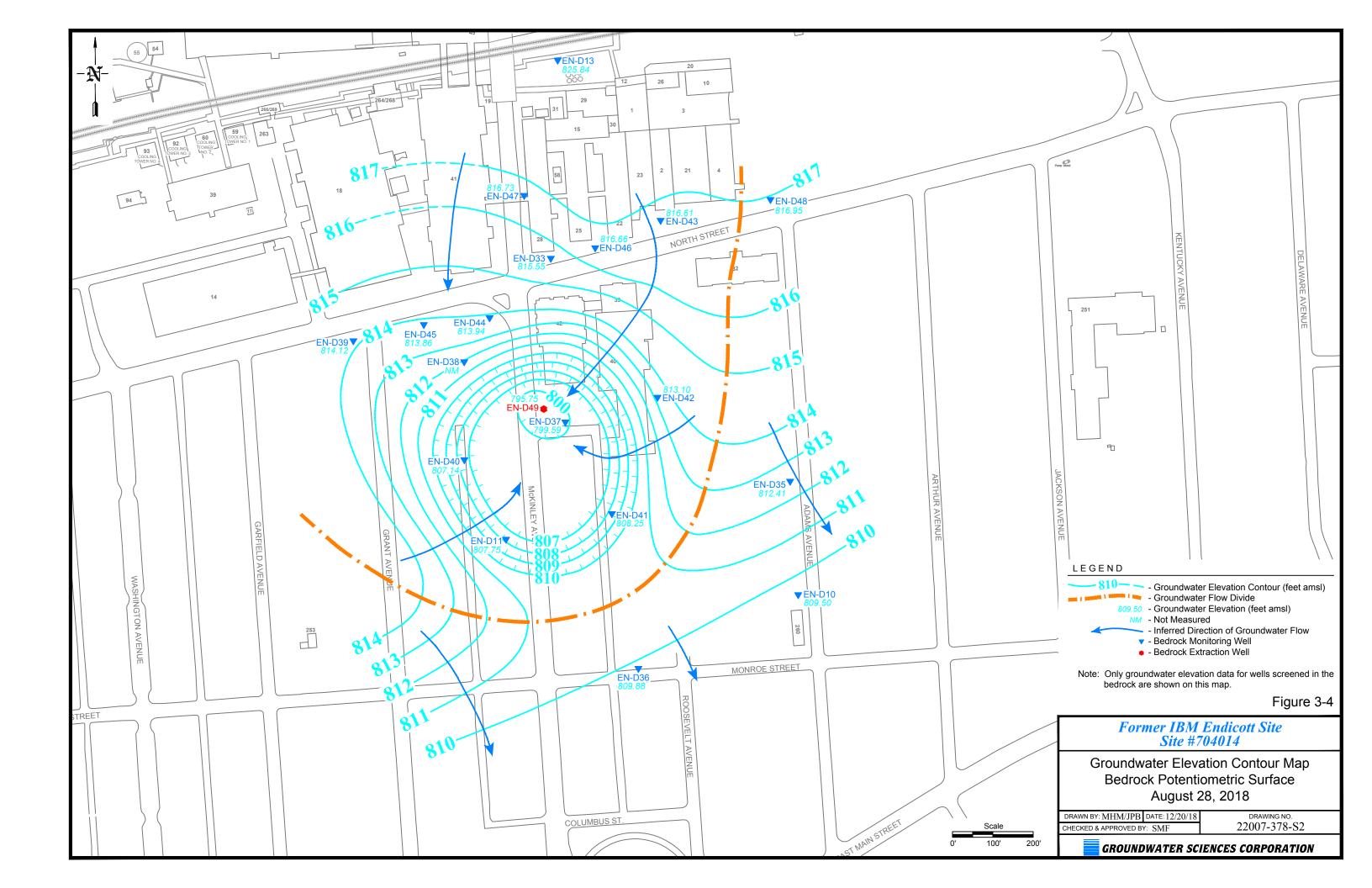


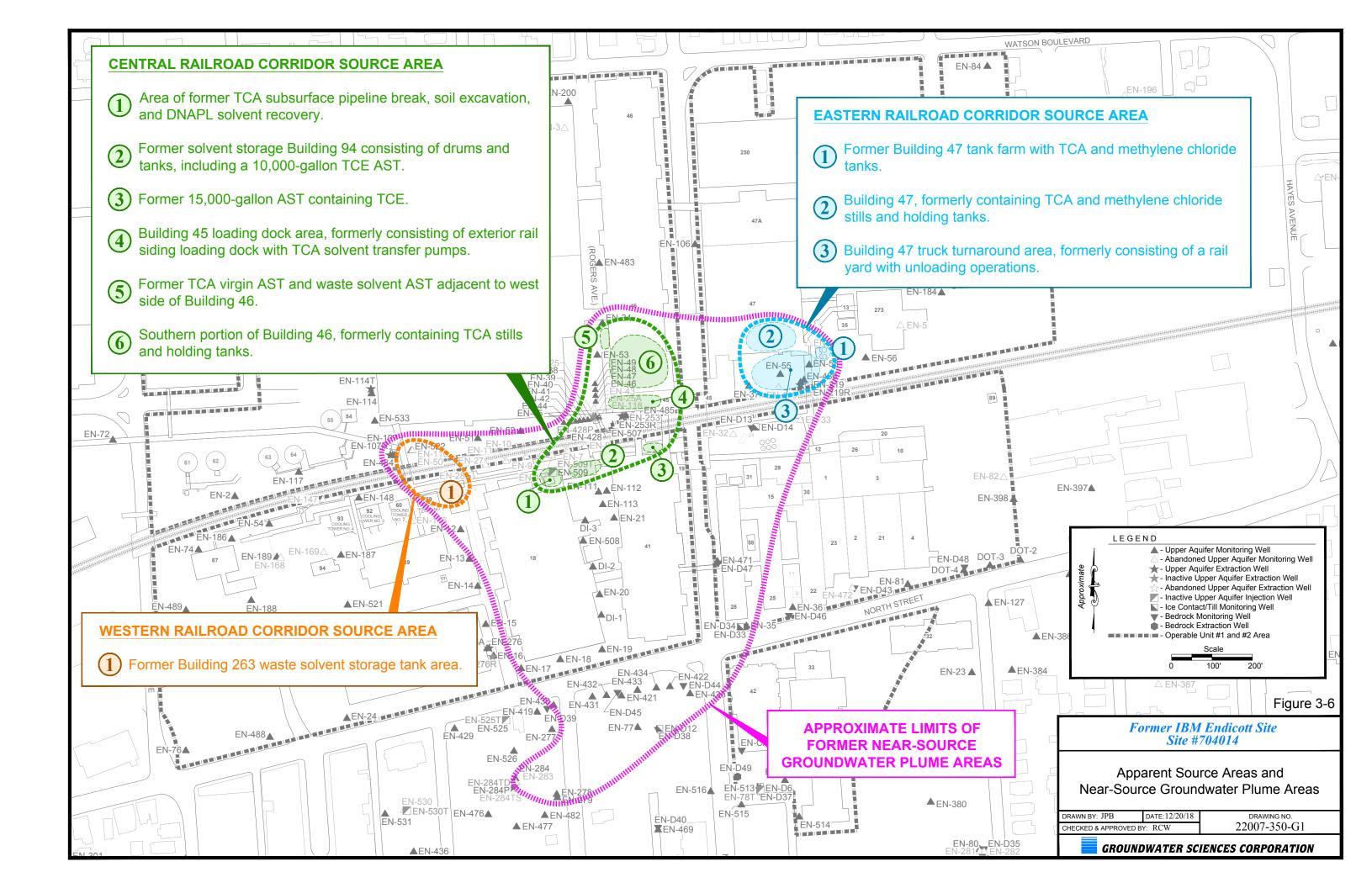

22007-008-H4 / 12-13-2018

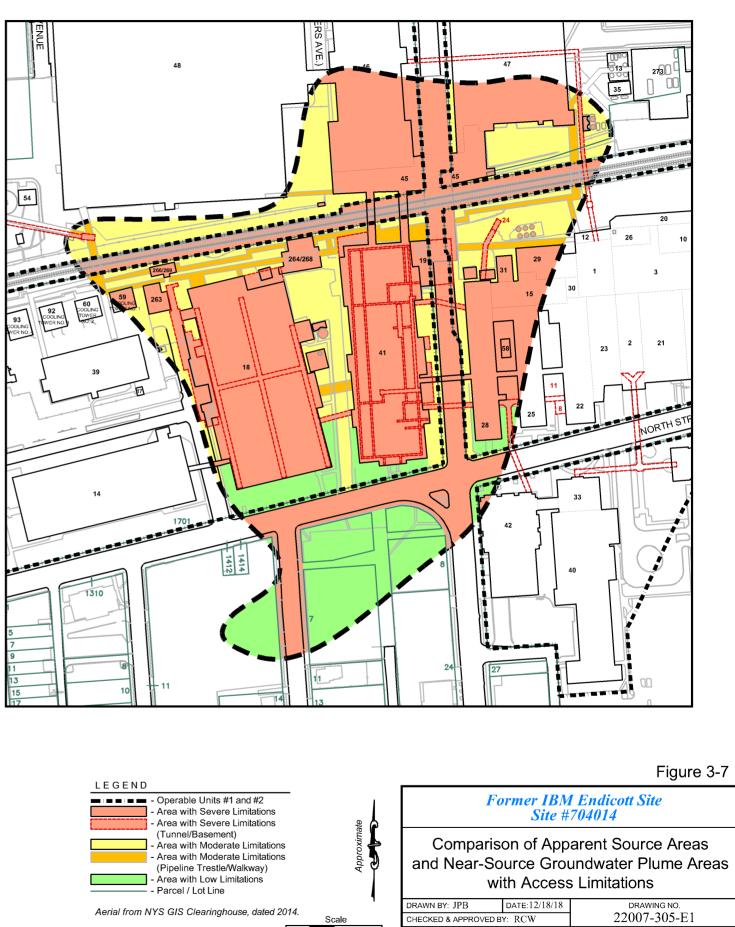




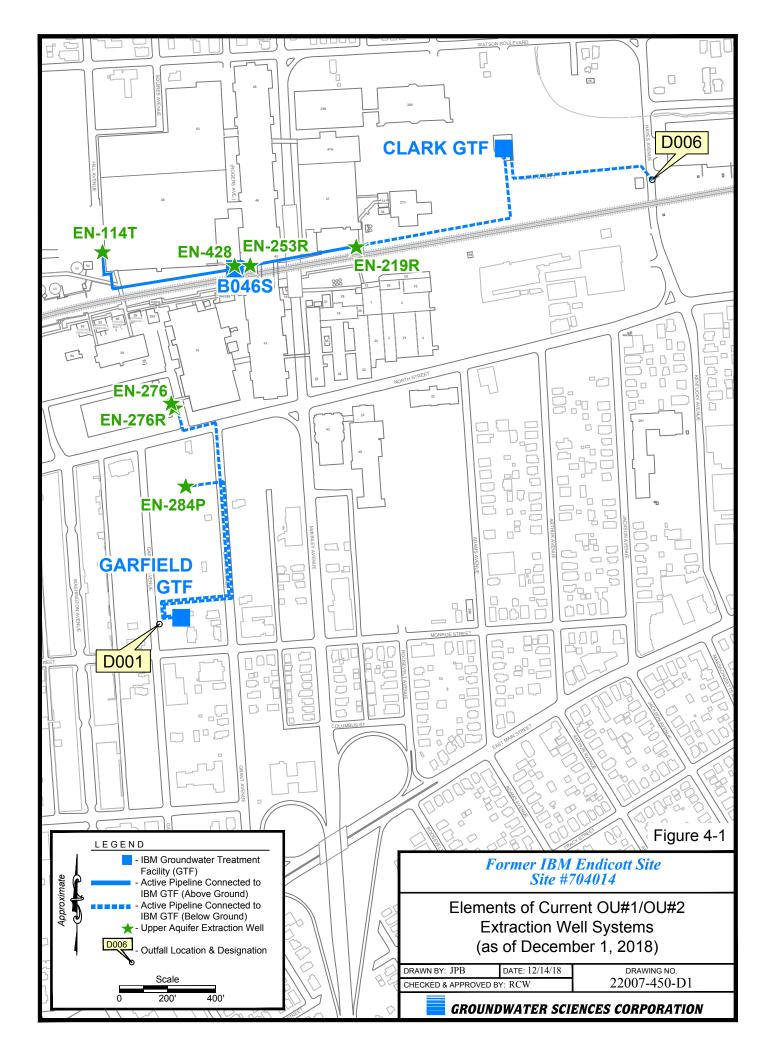


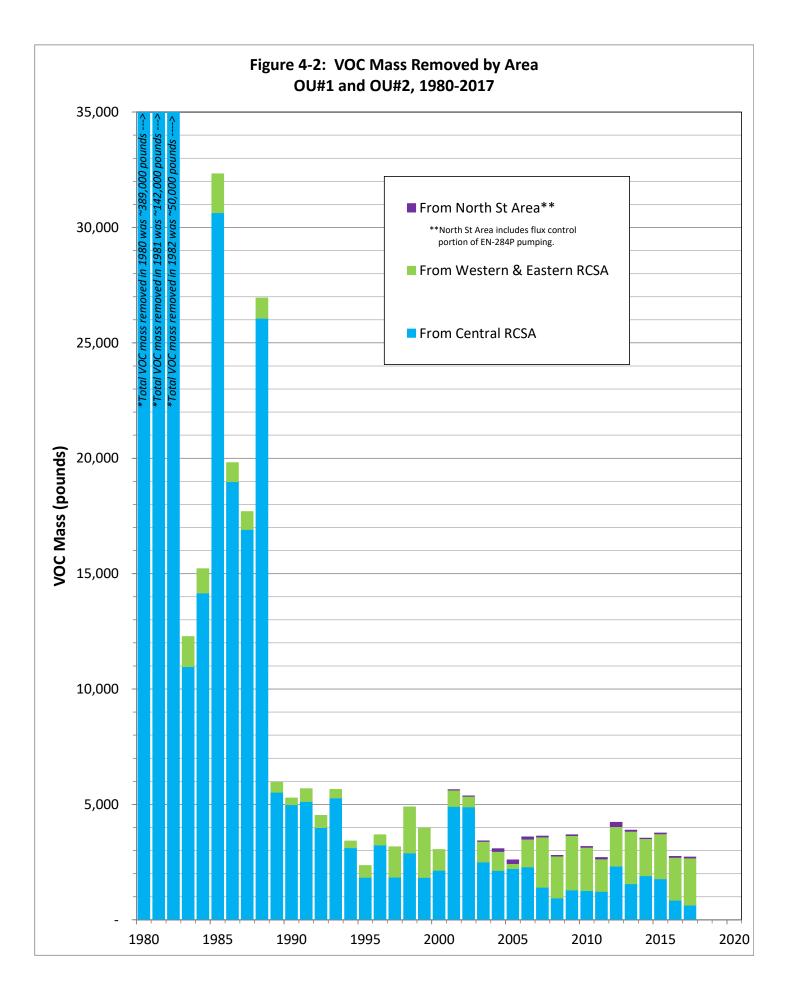


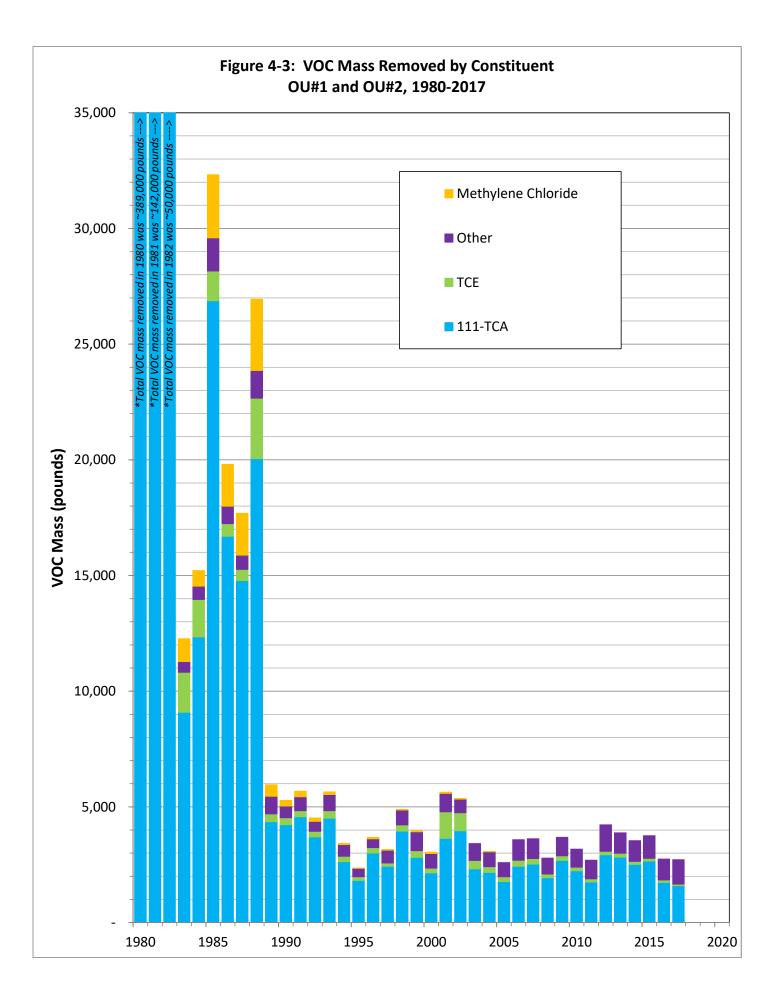


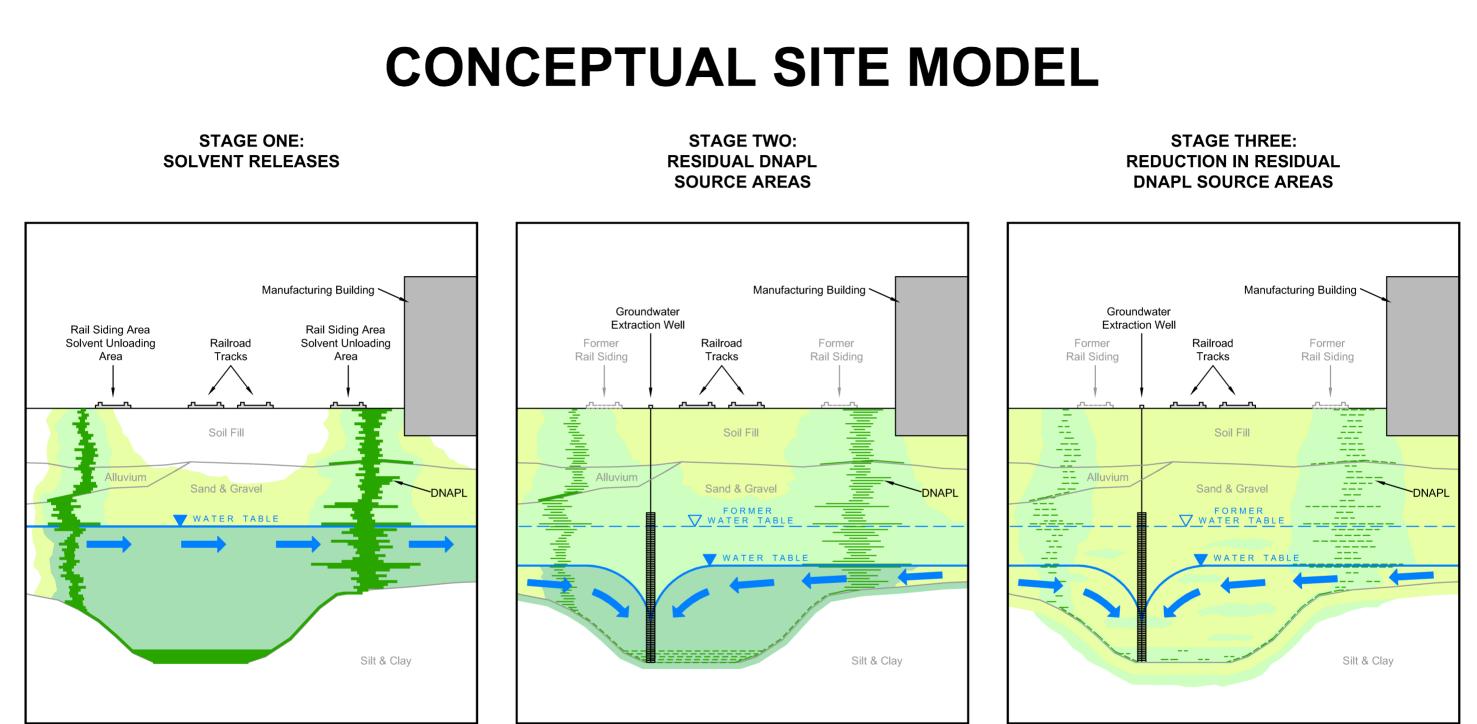


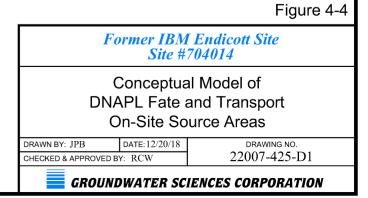
Fi	gure 3-5 - Ov	verview of Fat	e and Transpo	ort Mechanisn	าร
1. GEOLOGY	2. HYDROGEOLOGIC ZONES	3. NAPL TRANSPORT PROCESSES	4. AQUEOUS TRANSPORT PROCESSES	5. VAPOR TRANSPORT PROCESSES	6. FATE PROCESSES
FINER-GRAINED LAYERS	VADOSE ZONE	DNAPL / LNAPL SEEPAGE DNAPL / LNAPL ACCUMULATION AND LATERAL SPREAD AT FORMER WATER TABLE	INFILTRATION	DIFFUSIVE LOSS OF VAPOR TO ATMOSPHERIC AIR VAPOR DIFFUSION	AEROBIC DEGRADATION ———— PARTITIONING FROM SOIL VAPOR TO PORE WATER (REVERSIBLE) ————— SORPTION ONTO ORGANIC CARBON FRACTION OF FORMATION SOLIDS (REVERSIBLE)
	DEWATERED ZONE	DNAPL SEEPAGE	DRAINING RECHARGE AT WATER TABLE	VOLATILIZATION FROM THE WATER TABLE	SORPTION-RETARDED INTRAGRANULAR AQUEOUS DIFFUSION (REVERSIBLE)
SAND AND GRAVEL	UPPER AQUIFER SATURATED ZONE	DNAPL SEEPAGE DNAPL ACCUMULATION AND LATERAL SPREAD ON FINER-GRAINED LAYERS AND SILT & CLAY	LATERAL ADVECTION (FLOW)		SORPTION ONTO ORGANIC CARBON FRACTION OF FORMATION SOLIDS (REVERSIBLE) TRANSFORMATION OF PARENT COMPOUNDS
SILT AND CLAY	AQUITARD	DNAPL SEEPAGE	VERTICAL ADVECTION AQUEOUS DIFFUSION (REVERSIBLE)		TO DAUGHTER PRODUCTS SORPTION-RETARDED INTRAGRANULAR AQUEOUS DIFFUSION (REVERSIBLE) 22007-265-G1 / 12-14-18

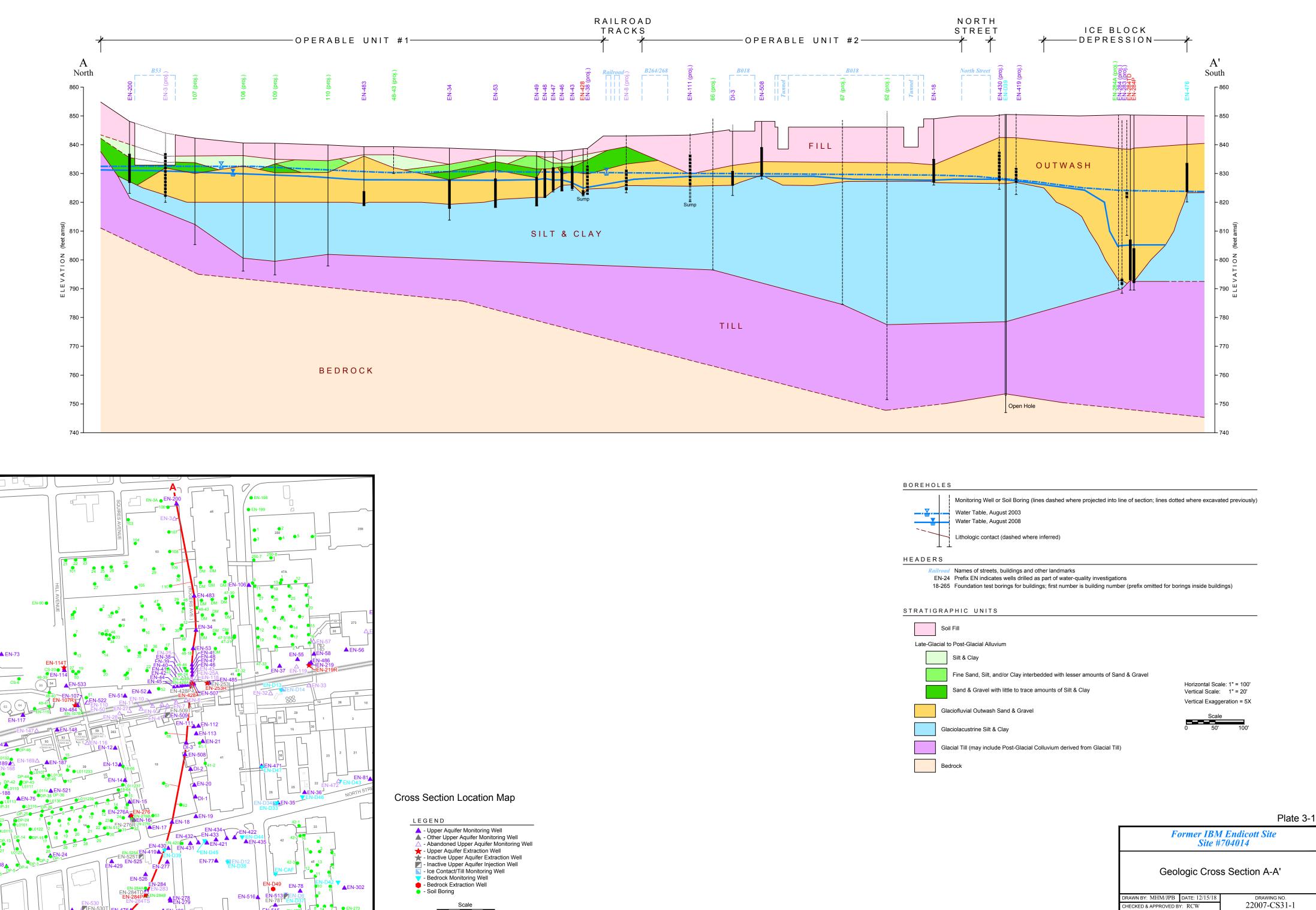


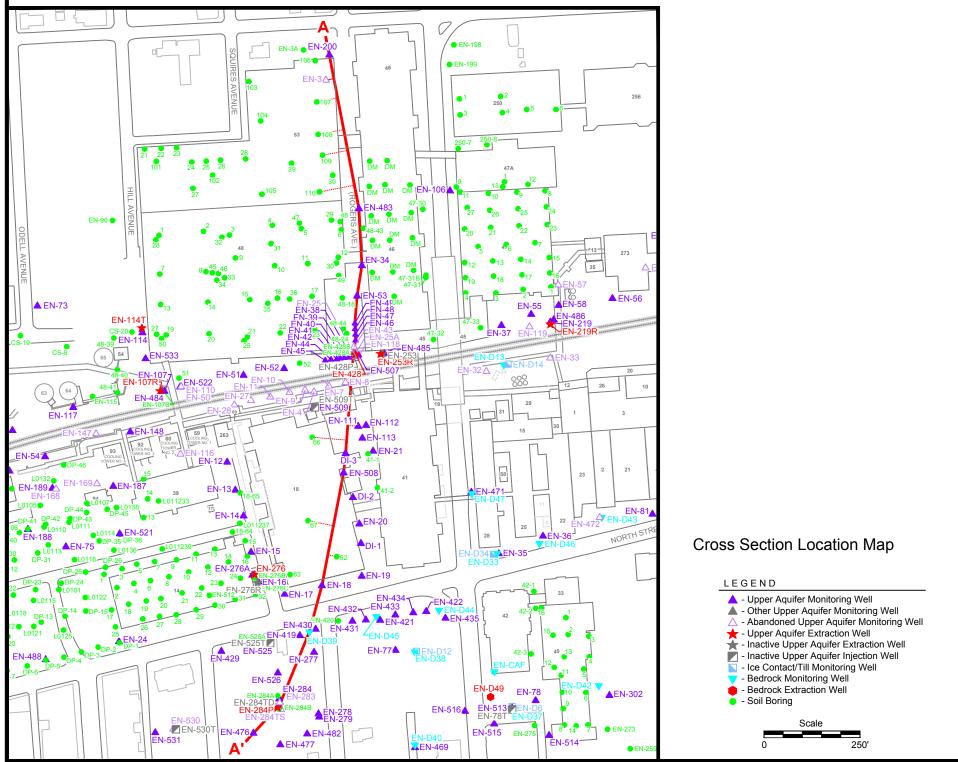


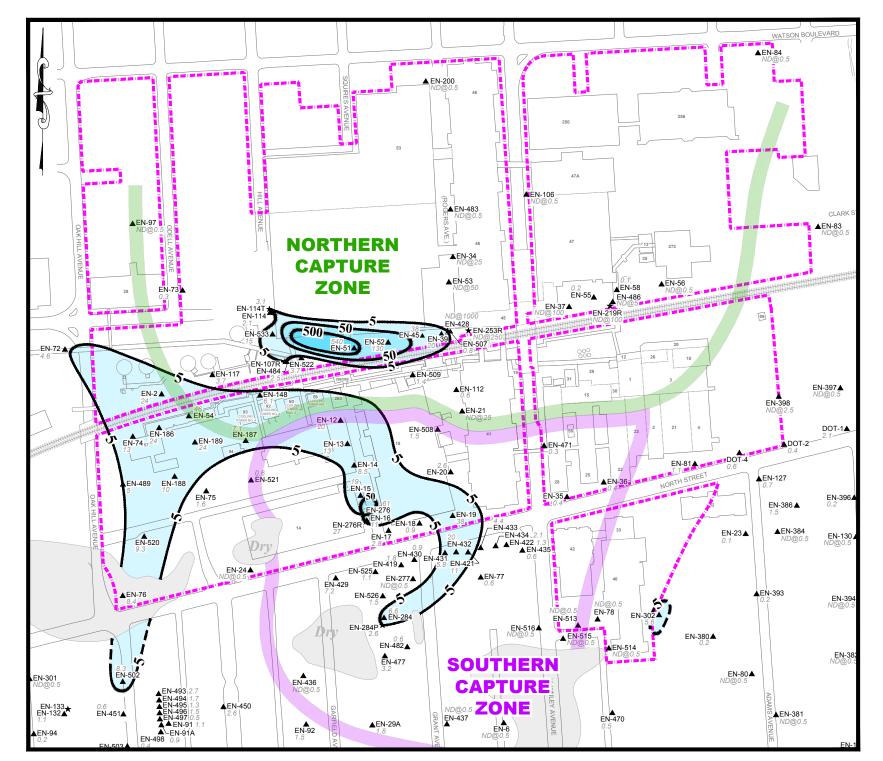

LEGEND
- Operable Units #1 and #2
- Area with Severe Limitations
- Area with Severe Limitations
(Tunnel/Basement)
 Area with Moderate Limitations
- Area with Moderate Limitations
(Pipeline Trestle/Walkway)
- Area with Low Limitations
- Parcel / Lot Line


Aerial from NYS GIS Clearinghouse, dated 2014.

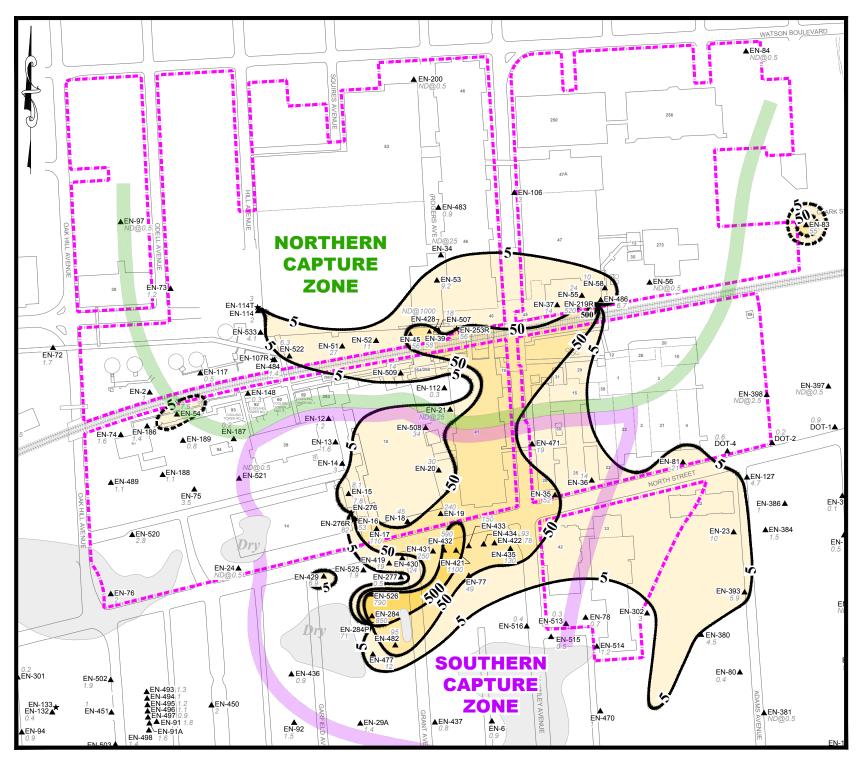

100' 200 GROUNDWATER SCIENCES CORPORATION



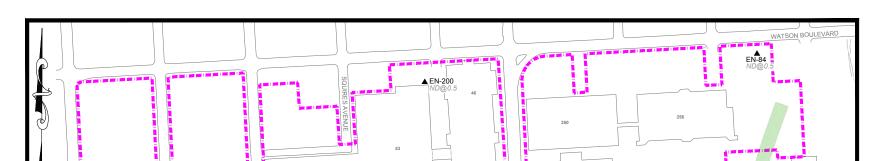




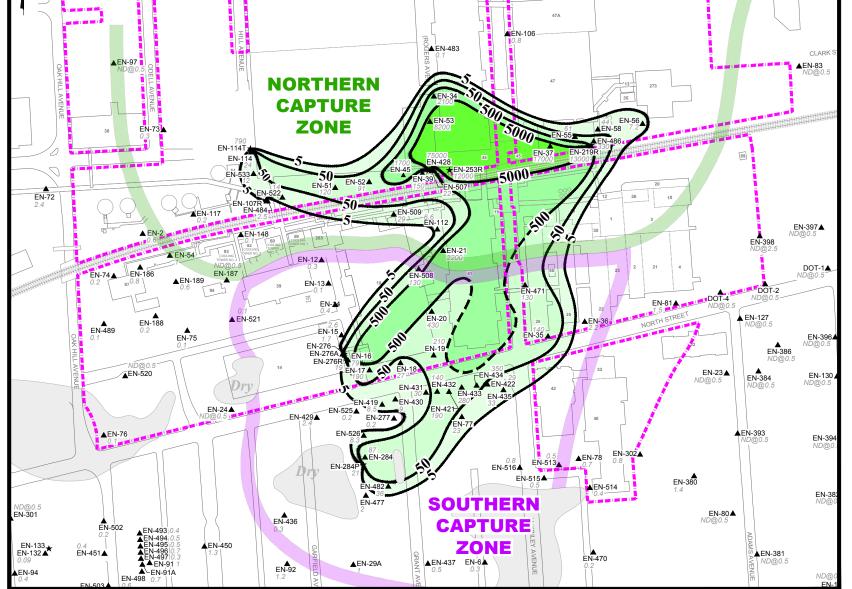
GROUNDWATER SCIENCES CORPORATIO


PCE Isoconcentration Contour Map (September 1980)

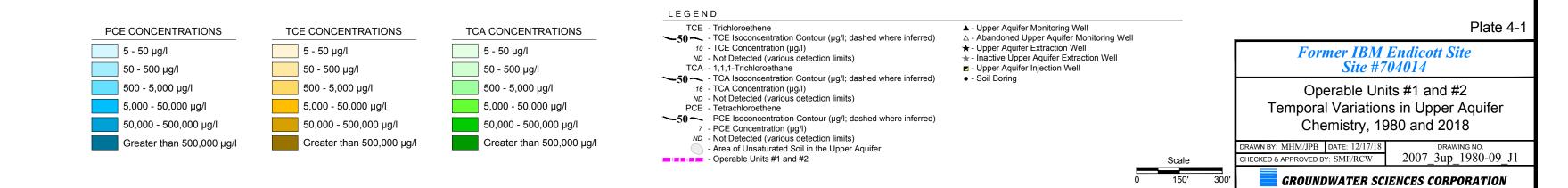
PCE Isoconcentration Contour Map (August 2018)



TCE Isoconcentration Contour Map (September 1980)



TCE Isoconcentration Contour Map (August 2018)



TCA Isoconcentration Contour Map (September 1980)

TCA Isoconcentration Contour Map (August 2018)

APPENDIX A

Photographs - 1980 Soil Excavation

Photo 01 Photograph of 1980 excavation

Photo 02 Photograph of 1980 excavation

Photo 03 Photograph of 1980 excavation

Photo 04 Photograph of 1980 excavation

2

Photo 05 Photograph of 1980 excavation

Photo 06 Photograph of 1980 excavation

Photo 07 Photograph of 1980 excavation

Photo 08 Photograph of 1980 excavation

Photo 09 Photograph of 1980 excavation

Photo 10 Photograph of 1980 excavation

5

APPENDIX B

Groundwater Analytical Chemistry Data (August 2018)

Summary of VOC Detections in Groundwater (August 2018)

OU#1 and OU#2 FFS Report

Area	WELL	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123A	12-DCA	BZ	EBZ	DCM	TOL	T12DCE	XYL	DATE
		Part 703 (Froundwat	er Quality	y Stand	ards ((ug/L)												
		5	5	5	5	5	5	5	2	5	5	0.6	1	5	5	5	5	5	
OU1	EN-002	0.6				24	1	0.3		4.2									08/02/18
OU1	EN-034	2100	120	12	11			170	62	7		3.8			5.9				08/16/18
OU1	EN-037	17000	3600	1200	1300		14	15000	1100	17		18			19	78	44		08/16/18
OU1	EN-039	150	8.8	3.1		20	58	64				0.9					1.1		08/09/18
OU1	EN-045	1700	6.5	18		38	56	190		13		4.1							08/09/18
OU1	EN-051	120		9		540	27	4200	33	190							18	14	08/09/18
OU1	EN-052	91	4.3	2.7		130	11	1000		73	1.4						21		08/09/18
OU1	EN-053	8200	290	39	37		9.2	430	210	21		12			12				08/16/18
OU1	EN-055	61	8.3	4.4	0.08	0.2	24	11	0.1	3.5	0.2	0.3					1.4		08/16/18
OU1	EN-056	7.2	1.1							0.9	1.9								08/02/18
OU1	EN-058	44	2.8	1.5		0.1	10	1.2		0.9	0.06	0.1					0.2		08/16/18
OU1	EN-073	0.3	2.5	0.2		0.3	1.2	4.6	0.1		0.3								08/02/18
OU1	EN-083		0.9	2.3			55	210	2.9	1.3	2.3		0.1				8.3		08/02/18
OU1	EN-084																		08/02/18
OU1	EN-097																		08/02/18
OU1	EN-106	0.8	1.6	0.3			3	13			0.7						0.3		08/02/18
OU1	EN-114	24	7	2.5		2.1	2	650	110	63	7.4						5.6		08/16/18
OU1	EN-114T	790	210	15	3.3	3.1	3	780	210	49	6.4	1.5		2.2			3.6		08/01/18
OU1	EN-117	0.2	0.1			3.7	0.5	3.1	0.2	0.5	0.6								08/02/18
OU1	EN-200																		08/02/18
OU1	EN-219R	13000	630	120	340		520	2100	190	77									08/01/18
OU1	EN-253R	12000	27000	150	29000		56	3300	520		280				480	810			08/01/18
OU1	EN-428	75000	25000	810	5100			2200	200						2200	580			08/01/18
OU1	EN-483	0.1	0.9	0.2			0.9	24	0.2	1	4.5						2.3		08/02/18
OU1	EN-484	2.5	0.2			2.5	1.4	1.5		0.1									08/08/18
OU1	EN-486	330	43	14			6.7	4.7		150	12	0.5					0.6		08/09/18
OU1	EN-507	22	22	0.4	2.6	0.8	18	6.8	0.1	0.1		0.08			0.8	0.2			08/09/18
OU1	EN-522	14	0.7			3.7	6.3	7.5	0.2	0.4	0.2	0.06							08/09/18
OU1	EN-533	12	2.8	0.7		15	4.1	280	4.8	25	3			0.3			0.5	0.1	08/08/18
OU2	DOT-1					2.1	0.9	0.2											08/06/18
OU2	DOT-2					0.4	0.2												08/06/18
OU2	DOT-4		0.4			0.6	0.6	1.1	1.2									0.1	08/06/18
OU2	EN-012	0.3				20	1.2	1.4	0.2	0.07	0.1								08/16/18
OU2	EN-013	0.1				13	1.6	0.5		0.1									08/09/18

Summary of VOC Detections in Groundwater (August 2018)

OU#1 and OU#2 FFS Report

Area	WELL	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123A	12-DCA	BZ	EBZ	DCM	TOL	T12DCF	XYL	DATE
		Part 703 (Froundwat	er Quality	v Stand	ards ((ug/L)												
		5	5	5	5	5	5	5	2	5	5	0.6	1	5	5	5	5	5	
OU2	EN-014	0.4				8.5	3	0.2											08/09/18
OU2	EN-015	2.6	1	0.2		19	8.1	3.3		1.5	0.3								08/16/18
OU2	EN-016	79	68	13		11	53	87		1.7	0.6	2.6					0.6		08/16/18
OU2	EN-017	190	210	18		2.8	110	140		1	0.5	7					2.8		08/10/18
OU2	EN-018	27	21	1		0.9	45	14				0.3					0.2		08/10/18
OU2	EN-019	210	370	37		38	240	310		2.5	0.9	1.9					2.3		08/10/18
OU2	EN-020	430	780	74		2.6	30	860	110	12	3	4.9				3.1	10	2.1	08/09/18
OU2	EN-021	2200	2400	87	290			140	73	14	10	6.9				5.9			08/09/18
OU2	EN-024							1.4	0.3										08/09/18
OU2	EN-035	140	61	24		0.4	52	35		0.6	0.1	0.4					0.1		08/16/18
OU2	EN-036	2.2	0.4	0.4		0.4	14	0.5											08/16/18
OU2	EN-054	1				46	7.5	2.7		0.8							0.2		08/06/18
OU2	EN-074	0.2				13	1.6	0.2		0.6	0.2								08/06/18
OU2	EN-075	0.1				1.6	3.5	2.1											08/07/18
OU2	EN-076	0.1				8.4	2	0.2											08/07/18
OU2	EN-077	23	25	6.5		0.6	49	14		0.1	0.1	0.1					0.1		08/20/18
OU2	EN-081	1.5	1.4	0.8		1.1	21	13	1				0.2				0.3		08/16/18
OU2	EN-112	6.6	57	0.6	45	0.6	0.3	0.5	2.6	0.8	3.7	0.09			0.2	0.2	0.09		08/09/18
OU2	EN-148	0.1				6.1	0.3	0.1											08/06/18
OU2	EN-186	0.8				24	1.4	1.1		6.6	0.3							Τ	08/06/18
OU2	EN-187					7.1	0.2	0.2											08/06/18
OU2	EN-188	0.2				10	1.1	0.2		0.2									08/06/18
OU2	EN-189	0.6				24	0.8	0.2		0.7								Τ	08/06/18
OU2	EN-276	1.7	1.1	0.6		61	7.8	5.1	0.3	80	0.7								08/01/18
OU2	EN-276R	19	31	4.4		27	82	37		36	0.7	0.6					0.3		08/01/18
OU2	EN-277	0.2					0.5	0.1											08/09/18
OU2	EN-284	87	190	33		6.6	850	380		· · · · · ·		2.6					7.6		08/08/18
OU2	EN-284P	21	48	7.5		2.6	71	83		0.6	0.6	0.5					0.5		08/01/18
OU2	EN-397							0.2											08/06/18
OU2	EN-398																	Τ	08/06/18
OU2	EN-419	8.5	7	0.9		1.8	19	7.3		0.6	0.1	0.1						Τ	08/21/18
OU2	EN-421	190	210	23		11	1100	500		0.8		2			1.2		3.4	Τ	08/21/18
OU2	EN-422	29	88	12	0.1	1.3	78	120	17	0.6	0.3	0.6					1.1		08/21/18
OU2	EN-429	2.4	0.4	0.09		7.2	6.9	0.5		0.2								Τ	08/21/18

Summary of VOC Detections in Groundwater (August 2018)

OU#1 and OU#2 FFS Report

Former IBM Endicott Site, Endicott, NY

Area	WELL	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123A	12-DCA	BZ	EBZ	DCM	TOL	T12DCE	XYL	DATE
		Part 703 (Groundwat	er Quality	y Stand	lards	(ug/L)												
		5	5	5	5	5	5	5	2	5	5	0.6	1	5	5	5	5	5	
OU2	EN-430	9	7.5	0.4		0.9	24	8.1				0.2							08/21/18
OU2	EN-431	30	56	2.3		5.8	250	89				0.9			0.3		0.7		08/21/18
OU2	EN-432	140	320	13		20	590	370			0.6	2.5			0.8		7.7		08/21/18
OU2	EN-433	280	620	78		4.4	150	890	6.7	2.5	1.6	4.9			1.4		5.4		08/21/18
OU2	EN-434	350	2000	150	0.7	2.1	93	610	67	8	6.2	6.9					2.9		08/21/18
OU2	EN-435	33	46	10		0.6	130	29	0.7	0.1		0.5			0.2		0.4		08/21/18
OU2	EN-471	130	340	33		0.3	19	52	0.1	3	1.1	1.7					0.3		08/09/18
OU2	EN-489	0.1				5	1.1	0.1		0.2									08/07/18
OU2	EN-508	130	18	4.8		1.5	34	6		0.8									08/09/18
OU2	EN-509	29	0.1	0.3		1.4	14	0.7		0.2									08/09/18
OU2	EN-520					9.3	2.8	0.6											08/07/18
OU2	EN-521	0.1				0.6													08/07/18
OU2	EN-525	0.2				1.1	1.9												08/09/18
OU2	EN-526	8.3	160	91		1.5	790	380	1.9	34	16	3.4					5		08/09/18

	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123A	12-DCA	BZ	EBZ	DCM	TOL	T12DCE	XYL
MAX CONC.	75000	27000	1200	29000	540	1100	15000	1100	190	280	18	0.2	2.2	2200	810	44	14
# OF DETECTS	70	55	51	13	63	71	74	31	52	37	34	2	2	12	7	35	4

Total # of samples = 82 in OU#1 and OU#2

All units are in ug/L.

Concentrations exceeding the Part 703 Groundwater Quality Standard are in BOLD typeface.

Key:

111-TCA = 1,1,1-TRICHLOROETHANE 11-DCA = 1,1-DICHLOROETHANE 11-DCE = 1,1-DICHLOROETHENE CEA = CHLOROETHANE PCE = TETRACHLOROETHENE TCE = TRICHLOROETHENE C12DCE = CIS-1,2-DICHLOROETHENE VC = VINYL CHLORIDE

- FR113 = 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE FR123A = 1,2-DICHLORO-1,2,2-TRIFLUOROETHANE 12-DCA = 1,2-DICHLOROETHANE (EDC) BZ = BENZENEEBZ = ETHYLBENZENE DCM = METHYLENE CHLORIDE (DICHLOROMETHANE) TOL = TOLUENET12DCE = TRANS-1,2-DICHLOROETHENE
 - XYL = TOTAL XYLENES

OU#1 and OU#2 FFS Report

Sample Location		DOT	Γ-1	DO	DT-2	D	OT-4	DO	DT-4	EN	-002	EN	-012
Operable Unit No.		0	U2		OU2		OU2		OU2		OU1	(OU2
Sample Description		GW MON WE	LL	GW MON W	ELL	GW MON W	ELL	REPLIC	ATE	GW MON W	ELL	GW MON W	ELL
Sample Date		08/06/20)18	08/06/2	2018	08/06/2	2018	08/06/2	2018	08/02/2	2018	08/16/2	2018
Laboratory Sample I.D.		97460	90	974	5091	974	6092	974	6093	973	8699	9761	1157
Parameter	Units												
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		0.6		0.3	J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		4.2		0.07	J
1,1-DICHLOROETHANE	ug/L	ND@0.5		ND@0.5		0.4	J	0.3	J	ND@0.5		ND@0.5	
1,1-DICHLOROETHENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		0.1	J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
BENZENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
CHLOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
CIS-1,2-DICHLOROETHENE	ug/L	0.2 J		ND@0.5		1.1		1.1		0.3	J	1.4	
ETHYLBENZENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
METHYLENE CHLORIDE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TETRACHLOROETHENE	ug/L	2.1		0.4	J	0.3	J	0.8		24		20	
TOLUENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TRICHLOROETHENE	ug/L	0.9		0.2	J	0.5	J	0.7		1		1.2	
VINYL CHLORIDE	ug/L	ND@0.5		ND@0.5		1.1		1.2		ND@0.5		0.2	J
XYLENES, TOTAL	ug/L	ND@0.5		ND@0.5		0.1	J	0.1	J	ND@0.5		ND@0.5	

OU#1 and OU#2 FFS Report

Sample Location		EN-013	EN-013	EN	-014	EN	-015	EN-	016	EN-017
Operable Unit No.		OU2	OU2		OU2		OU2	C	DU2	OU2
Sample Description		GW MON WELL	REPLICATE	GW MON W	'ELL	GW MON W	ELL	GW MON WE	ELL	GW MON WELL
Sample Date		08/09/2018	08/09/2018	08/09/	2018	08/16/2	2018	08/16/2	018	08/10/2018
Laboratory Sample I.D.		9749967	9749968	974	9970	976	1158	9761	159	9749972
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	0.1 J	0.08 J	0.4	J	2.6		79		190
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.1 J	0.1 J	ND@0.5		1.5		1.7		1 J
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5		1		68		210
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5		0.2	J	13		18
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.08 J	ND@0.5		0.3	J	0.6		0.5 J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		2.6		7
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
CIS-1,2-DICHLOROETHENE	ug/L	0.4 J	0.5	0.2	J	3.3		87		140
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
METHYLENE CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
TETRACHLOROETHENE	ug/L	13	12	8.5		19		11		2.8
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		0.6		2.8
TRICHLOROETHENE	ug/L	1.7	1.5	3		8.1		53		110
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@0.5		ND@2.5

OU#1 and OU#2 FFS Report

, , , , , , , , , , , , , , , , , , ,	1					[
Sample Location		EN-018	EN-019		-020		-021	EN-		EN-034
Operable Unit No.		OU2	OU2		OU2		OU2		DU2	OU1
Sample Description		GW MON WELL	GW MON WELL	GW MON W	ELL	GW MON W	ELL	GW MON WE	ELL	GW MON WELL
Sample Date		08/10/2018	08/10/2018	08/09/2	2018	08/09/2	2018	08/09/2	018	08/16/2018
Laboratory Sample I.D.		9749973	9749974	9749	9962	974	9963	9749	961	9761165
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	27	210	430		2200		ND@0.5		2100
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@1	2.5 J	12		14	J	ND@0.5		7 J
1,1-DICHLOROETHANE	ug/L	21	370	780		2400		ND@0.5		120
1,1-DICHLOROETHENE	ug/L	1 J	37	74		87		ND@0.5		12 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@1	0.9 J	3	J	10	J	ND@0.5		ND@25
1,2-DICHLOROETHANE (EDC)	ug/L	0.3 J	1.9 J	4.9	J	6.9	J	ND@0.5		3.8 J
BENZENE	ug/L	ND@1	ND@2.5	ND@10		ND@25		ND@0.5		ND@25
CHLOROETHANE	ug/L	ND@1	ND@2.5	ND@10		290		ND@0.5		11 J
CIS-1,2-DICHLOROETHENE	ug/L	14	310	860		140		1.4		170
ETHYLBENZENE	ug/L	ND@1	ND@2.5	ND@10		ND@25		ND@0.5		ND@25
METHYLENE CHLORIDE	ug/L	ND@1	ND@2.5	ND@10		ND@25		ND@0.5		5.9 J
TETRACHLOROETHENE	ug/L	0.9 J	38	2.6	J	ND@25		ND@0.5		ND@25
TOLUENE	ug/L	ND@1	ND@2.5	3.1	J	5.9	J	ND@0.5		ND@25
TRANS-1,2-DICHLOROETHENE	ug/L	0.2 J	2.3 J	10		ND@25		ND@0.5		ND@25
TRICHLOROETHENE	ug/L	45	240	30		ND@25		ND@0.5		ND@25
VINYL CHLORIDE	ug/L	ND@1	ND@2.5	110		73		0.3 J	ſ	62
XYLENES, TOTAL	ug/L	ND@1	ND@2.5	2.1	J	ND@25		ND@0.5		ND@25

OU#1 and OU#2 FFS Report

Sample Location		EN-0	035	EN	-036	EN-0	37	EN-039	EN	-039	EN-045
Operable Unit No.		0	U2		OU2	OU	J1	OU1		OU1	OU1
Sample Description		GW MON WE	ELL	GW MON W	ELL	GW MON WEI	L GW MON	WELL	REPLIC	ATE	GW MON WELL
Sample Date		08/16/20	018	08/16/2	2018	08/16/20	18 08/0	9/2018	08/09/	2018	08/09/2018
Laboratory Sample I.D.		9761	174	976	1173	97611	56 9	749957	974	9958	9749956
Parameter	Units										
1,1,1-TRICHLOROETHANE	ug/L	140		2.2		17000		50	150		1700
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.6		ND@0.5		17 J	ND@2	.5	ND@2.5		13 J
1,1-DICHLOROETHANE	ug/L	61		0.4	J	3600	8	.8	8.8		6.5 J
1,1-DICHLOROETHENE	ug/L	24		0.4	J	1200	3	.1	3		18 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.1 J		ND@0.5		ND@100	ND@2	.5	ND@2.5		ND@25
1,2-DICHLOROETHANE (EDC)	ug/L	0.4 J		ND@0.5		18 J	(.9 J	0.8	J	4.1 J
BENZENE	ug/L	ND@0.5		ND@0.5		ND@100	ND@2	.5	ND@2.5		ND@25
CHLOROETHANE	ug/L	ND@0.5		ND@0.5		1300	ND@2	.5	ND@2.5		ND@25
CIS-1,2-DICHLOROETHENE	ug/L	35		0.5		15000		54	64		190
ETHYLBENZENE	ug/L	ND@0.5		ND@0.5		ND@100	ND@2	.5	ND@2.5		ND@25
METHYLENE CHLORIDE	ug/L	ND@0.5		ND@0.5		19 J	ND@2	.5	ND@2.5		ND@25
TETRACHLOROETHENE	ug/L	0.4 J		0.4	J	ND@100		20	19		38
TOLUENE	ug/L	ND@0.5		ND@0.5		78 J	ND@2	.5	ND@2.5		ND@25
TRANS-1,2-DICHLOROETHENE	ug/L	0.1 J		ND@0.5		44 J	1	.1 J	1.1	J	ND@25
TRICHLOROETHENE	ug/L	52		14		14 J		58	57		56
VINYL CHLORIDE	ug/L	ND@0.5		ND@0.5		1100	ND@2	.5	ND@2.5		ND@25
XYLENES, TOTAL	ug/L	ND@0.5		ND@0.5		ND@100	ND@2	.5	ND@2.5		ND@25

OU#1 and OU#2 FFS Report

Sample Location		EN-0	51	EN-	-052	EN-05	3 EN	1-054	EN	-054	EN-055
Operable Unit No.		10	U1	(DU1	OU	1	OU2		OU2	OU1
Sample Description		GW MON WEI	LL	GW MON W	ELL	GW MON WELL	L GW MON W	'ELL	REPLIC	ATE	GW MON WELL
Sample Date		08/09/20	18	08/09/2	2018	08/16/201	8 08/06/	2018	08/06/2	2018	08/16/2018
Laboratory Sample I.D.		97499	54	9749	955	976116	4 974	6096	9746	5097	9761167
Parameter	Units										
1,1,1-TRICHLOROETHANE	ug/L	120		91		8200	1		1		61
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	190		73		21 J	0.8		0.8		3.5
1,1-DICHLOROETHANE	ug/L	ND@50		4.3	J	290	ND@0.5		ND@0.5		8.3
1,1-DICHLOROETHENE	ug/L	9 J		2.7	J	39 J	ND@0.5		ND@0.5		4.4
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@50		1.4	J	ND@50	ND@0.5		ND@0.5		0.2 J
1,2-DICHLOROETHANE (EDC)	ug/L	ND@50		ND@10		12 J	ND@0.5		ND@0.5		0.3 J
BENZENE	ug/L	ND@50		ND@10		ND@50	ND@0.5		ND@0.5		ND@0.5
CHLOROETHANE	ug/L	ND@50		ND@10		37 J	ND@0.5		ND@0.5		0.08 J
CIS-1,2-DICHLOROETHENE	ug/L	4200		1000		430	2.7		2.6		11
ETHYLBENZENE	ug/L	ND@50		ND@10		ND@50	ND@0.5		ND@0.5		ND@0.5
METHYLENE CHLORIDE	ug/L	ND@50		ND@10		12 J	ND@0.5		ND@0.5		ND@0.5
TETRACHLOROETHENE	ug/L	540		130		ND@50	47		45		0.2 J
TOLUENE	ug/L	ND@50		ND@10		ND@50	ND@0.5		ND@0.5		ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	18 J		21		ND@50	0.2	J	0.2	J	1.4
TRICHLOROETHENE	ug/L	27 J		11		9.2 J	7.4		7.5		24
VINYL CHLORIDE	ug/L	33 J		ND@10		210	ND@0.5		ND@0.5		0.1 J
XYLENES, TOTAL	ug/L	14 J		ND@10		ND@50	ND@0.5		ND@0.5		ND@0.5

OU#1 and OU#2 FFS Report

Sample Location		EN-0	56	EN-	058	EN-07	3 EN	-074	EN	-075	EN-07	76
Operable Unit No.		OU	U1	(DU1	OU	1	OU2		OU2	OU	J2
Sample Description		GW MON WEI	LL	GW MON WI	ELL	GW MON WEL	L GW MON W	'ELL	GW MON W	ELL	GW MON WEL	LL
Sample Date		08/02/20	18	08/16/2	018	08/02/201	8 08/06/	2018	08/07/	2018	08/07/202	18
Laboratory Sample I.D.		97387	39	9761	168	973869	8 974	6099	974	5924	974592	26
Parameter	Units											
1,1,1-TRICHLOROETHANE	ug/L	7.2		44		0.3 J	0.2	J	0.1	J	0.1 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.9		0.9		ND@0.5	0.6		ND@0.5		ND@0.5	
1,1-DICHLOROETHANE	ug/L	1.1		2.8		2.5	ND@0.5		ND@0.5		ND@0.5	
1,1-DICHLOROETHENE	ug/L	ND@0.5		1.5		0.2 J	ND@0.5		ND@0.5		ND@0.5	
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	1.9		0.06	I	0.3 J	0.2	J	ND@0.5		ND@0.5	
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5		0.1	ſ	ND@0.5	ND@0.5		ND@0.5		ND@0.5	
BENZENE	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	
CHLOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	
CIS-1,2-DICHLOROETHENE	ug/L	ND@0.5		1.2		4.6	0.2	J	2.1		0.2 J	
ETHYLBENZENE	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	
METHYLENE CHLORIDE	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	
TETRACHLOROETHENE	ug/L	ND@0.5		0.1	1	0.3 J	13		1.6		8.4	
TOLUENE	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5		0.2	ſ	ND@0.5	ND@0.5		ND@0.5		ND@0.5	
TRICHLOROETHENE	ug/L	ND@0.5		10		1.2	1.6		3.5		2	
VINYL CHLORIDE	ug/L	ND@0.5		ND@0.5		0.1 J	ND@0.5		ND@0.5		ND@0.5	
XYLENES, TOTAL	ug/L	ND@0.5		ND@0.5		ND@0.5	ND@0.5		ND@0.5		ND@0.5	

OU#1 and OU#2 FFS Report

Sample Location		EN	-077	EN	-081	EN-0)83	EN-0	84	EN-097	EN-106
Operable Unit No.		(DU2		OU2	0	U1	JO	J1	OU1	OU1
Sample Description		GW MON W	ELL	GW MON W	ELL	GW MON WE	LL	GW MON WEI	LL GW MON	WELL	GW MON WELL
Sample Date		08/20/2	2018	08/16/2	2018	08/02/20)18	08/02/20	18 08/	02/2018	08/02/2018
Laboratory Sample I.D.		9766	5914	976	1172	97387	704	97387	03 9	738697	9738702
Parameter	Units										
1,1,1-TRICHLOROETHANE	ug/L	23		1.5		ND@0.5		ND@0.5	ND@).5	0.8
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.1	J	ND@0.5		1.3		ND@0.5	ND@).5	ND@0.5
1,1-DICHLOROETHANE	ug/L	25		1.4		0.9		ND@0.5	ND@).5	1.6
1,1-DICHLOROETHENE	ug/L	6.5		0.8		2.3		ND@0.5	ND@).5	0.3 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.1	J	ND@0.5		2.3		ND@0.5	ND@).5	0.7
1,2-DICHLOROETHANE (EDC)	ug/L	0.1	J	ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5
BENZENE	ug/L	ND@0.5		0.2	J	0.1 J		ND@0.5	ND@).5	ND@0.5
CHLOROETHANE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	14		13		210		ND@0.5	ND@).5	13
ETHYLBENZENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5
METHYLENE CHLORIDE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5
TETRACHLOROETHENE	ug/L	0.6		1.1		ND@0.5		ND@0.5	ND@).5	ND@0.5
TOLUENE	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.1	J	0.3	J	8.3		ND@0.5	ND@).5	0.3 J
TRICHLOROETHENE	ug/L	49		21		55		ND@0.5	ND@).5	3
VINYL CHLORIDE	ug/L	ND@0.5		1		2.9		ND@0.5	ND@).5	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5		ND@0.5		ND@0.5		ND@0.5	ND@).5	ND@0.5

OU#1 and OU#2 FFS Report

Sample Location		EN-112	EN-1	14 EN-	114T	EN	-117	EN	-148	EN-18
Operable Unit No.		OU2	OU	J1	OU1	(OU1		OU2	OU
Sample Description		GW MON WELL	GW MON WEI	LL GW EXTR W	/ELL	GW MON W	ELL	GW MON W	ELL	GW MON WEL
Sample Date		08/09/2018	08/16/20	18 08/01	2018	08/02/2	2018	08/06/2	2018	08/06/201
Laboratory Sample I.D.		9749965	97611	63 973	4807	9738	3700	974	6094	974609
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	6.6	24	790		0.2	J	0.1	J	0.8
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.8	63	49		0.5	J	ND@0.5		6.6
1,1-DICHLOROETHANE	ug/L	57	7 J	210		0.1	J	ND@0.5		ND@0.5
1,1-DICHLOROETHENE	ug/L	0.6	2.5 J	15		ND@0.5		ND@0.5		ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	3.7	7.4 J	6.4		0.6		ND@0.5		0.3 J
1,2-DICHLOROETHANE (EDC)	ug/L	0.09 J	ND@10	1.5	J	ND@0.5		ND@0.5		ND@0.5
BENZENE	ug/L	ND@0.5	ND@10	ND@5		ND@0.5		ND@0.5		ND@0.5
CHLOROETHANE	ug/L	45	ND@10	3.3	J	ND@0.5		ND@0.5		ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	0.5 J	650	780		3.1		0.1	J	1.1
ETHYLBENZENE	ug/L	ND@0.5	ND@10	2.2	J	ND@0.5		ND@0.5		ND@0.5
METHYLENE CHLORIDE	ug/L	0.2 J	ND@10	ND@5		ND@0.5		ND@0.5		ND@0.5
TETRACHLOROETHENE	ug/L	0.6	2.1 J	3.1	J	3.7		6.1		24
TOLUENE	ug/L	0.2 J	ND@10	ND@5		ND@0.5		ND@0.5		ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	0.09 J	5.6 J	3.6	J	ND@0.5		ND@0.5		ND@0.5
TRICHLOROETHENE	ug/L	0.3 J	2 J	3	J	0.5		0.3	J	1.4
VINYL CHLORIDE	ug/L	2.6	110	210		0.2	J	ND@0.5		ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@10	ND@5		ND@0.5		ND@0.5		ND@0.5

OU#1 and OU#2 FFS Report

Sample Location		EN-187	' EN-188	EN	-189	EN-	-200	EN-2	19R	EN-253R
Operable Unit No.		OU2	OU2		OU2	(DU1	(DU1	OU1
Sample Description		GW MON WELL	GW MON WELL	GW MON W	'ELL	GW MON WI	ELL	GW EXTR WI	ELL	GW EXTR WELL
Sample Date		08/06/2018	08/06/2018	08/06/	2018	08/02/2	2018	08/01/2	2018	08/01/2018
Laboratory Sample I.D.		9746101	9746102	974	6100	9738	3701	9734	803	9734804
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	ND@0.5	0.2 J	0.6		ND@0.5		13000		12000
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	0.2 J	0.7		ND@0.5		77.	J	ND@250
1,1-DICHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		630		27000
1,1-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		120		150 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		280
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		ND@250
BENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		ND@250
CHLOROETHANE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		340		29000
CIS-1,2-DICHLOROETHENE	ug/L	0.2 J	0.2 J	0.2	J	ND@0.5		2100		3300
ETHYLBENZENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		ND@250
METHYLENE CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		480
TETRACHLOROETHENE	ug/L	7.1	10	24		ND@0.5		ND@100		ND@250
TOLUENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		810
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		ND@250
TRICHLOROETHENE	ug/L	0.2 J	1.1	0.8		ND@0.5		520		56 J
VINYL CHLORIDE	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		190		520
XYLENES, TOTAL	ug/L	ND@0.5	ND@0.5	ND@0.5		ND@0.5		ND@100		ND@250

OU#1 and OU#2 FFS Report

Sample Location		EN-276	EN-276R	EN	-277	EN	-284	EN-284	P EN-397
Operable Unit No.		OU2	OU2		OU2		OU2	OU	2 OU2
Sample Description		GW EXTR WELL	GW EXTR WELL	GW MON W	ELL	GW MON W	ELL	GW EXTR WEL	L GW MON WELL
Sample Date		08/01/2018	08/01/2018	08/09/	2018	08/08/2	2018	08/01/201	8 08/06/2018
Laboratory Sample I.D.		9734800	9734801	974	9897	9749	9850	973480	2 9746088
Parameter	Units								
1,1,1-TRICHLOROETHANE	ug/L	1.7	19	0.2	J	87		21	ND@0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	80 E	36	ND@0.5		ND@10		0.6 J	ND@0.5
1,1-DICHLOROETHANE	ug/L	1.1	31	ND@0.5		190		48	ND@0.5
1,1-DICHLOROETHENE	ug/L	0.6	4.4	ND@0.5		33		7.5	ND@0.5
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.7	0.7 J	ND@0.5		ND@10		0.6 J	ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@0.5	0.6 J	ND@0.5		2.6	J	0.5 J	ND@0.5
BENZENE	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	5.1	37	0.1	J	380		83	0.2 J
ETHYLBENZENE	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
METHYLENE CHLORIDE	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
TETRACHLOROETHENE	ug/L	61 E	27	ND@0.5		6.6	J	2.6	ND@0.5
TOLUENE	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5	0.3 J	ND@0.5		7.6	J	0.5 J	ND@0.5
TRICHLOROETHENE	ug/L	7.8	82	0.5	J	850		71	ND@0.5
VINYL CHLORIDE	ug/L	0.3 J	ND@1	ND@0.5		ND@10		ND@1	ND@0.5
XYLENES, TOTAL	ug/L	ND@0.5	ND@1	ND@0.5		ND@10		ND@1	ND@0.5

OU#1 and OU#2 FFS Report

, , ,									
		EN 200	EN 410		401			100	
Sample Location		EN-398	EN-419		-421	EN-4			EN-429
Operable Unit No.		OU2	OU2		DU2	JO		DU1	OU2
Sample Description		GW MON WELL	GW MON WELL	GW MON WI					GW MON WELL
Sample Date		08/06/2018	08/21/2018	08/21/2			18 08/01/2	018	08/21/2018
Laboratory Sample I.D.		9746089	9766893	9766	5889	97668	91 9734	805	9766895
Parameter	Units								
1,1,1-TRICHLOROETHANE	ug/L	ND@2.5	8.5	190		29	75000		2.4
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@2.5	0.6	0.8	J	0.6	ND@1000		0.2 J
1,1-DICHLOROETHANE	ug/L	ND@2.5	7	210		88	25000		0.4 J
1,1-DICHLOROETHENE	ug/L	ND@2.5	0.9	23		12	810 J	[0.09 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@2.5	0.1 J	ND@5		0.3 J	ND@1000		ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	ND@2.5	0.1 J	2.	J	0.6	ND@1000		ND@0.5
BENZENE	ug/L	ND@2.5	ND@0.5	ND@5		ND@0.5	ND@1000		ND@0.5
CHLOROETHANE	ug/L	ND@2.5	ND@0.5	ND@5		0.1 J	5100		ND@0.5
CIS-1,2-DICHLOROETHENE	ug/L	ND@2.5	7.3	500		120	2200		0.5
ETHYLBENZENE	ug/L	ND@2.5	ND@0.5	ND@5		ND@0.5	ND@1000		ND@0.5
METHYLENE CHLORIDE	ug/L	ND@2.5	ND@0.5	1.2	J	ND@0.5	2200		ND@0.5
TETRACHLOROETHENE	ug/L	ND@2.5	1.8	11		1.3	ND@1000		7.2
TOLUENE	ug/L	ND@2.5	ND@0.5	ND@5		ND@0.5	580 J	[ND@0.5
TRANS-1,2-DICHLOROETHENE	ug/L	ND@2.5	ND@0.5	3.4	J	1.1	ND@1000		ND@0.5
TRICHLOROETHENE	ug/L	ND@2.5	19	1100		78	ND@1000		6.9
VINYL CHLORIDE	ug/L	ND@2.5	ND@0.5	ND@5		17	200 J	[ND@0.5
XYLENES, TOTAL	ug/L	ND@2.5	ND@0.5	ND@5		ND@0.5	ND@1000		ND@0.5

OU#1 and OU#2 FFS Report

Sample Location		EN	-430	EN	-431	EN	-432	EN	-433	EN-	434	EN-435
Operable Unit No.		(OU2		OU2		OU2		OU2	C	OU2	OU2
Sample Description		GW MON W	ELL	GW MON WE	ELL	GW MON WELL						
Sample Date		08/21/2	2018	08/21/2	2018	08/21/2	2018	08/21/	2018	08/21/2	018	08/21/2018
Laboratory Sample I.D.		9766	5894	976	5887	976	6888	976	6890	9766	917	9766892
Parameter	Units											
1,1,1-TRICHLOROETHANE	ug/L	9		30		140		280		350		33
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5		ND@1		ND@2.5		2.5	J	8		0.1 J
1,1-DICHLOROETHANE	ug/L	7.5		56		320		620		2000		46
1,1-DICHLOROETHENE	ug/L	0.4	J	2.3		13		78		150		10
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@0.5		ND@1		0.6	J	1.6	J	6.2		ND@1
1,2-DICHLOROETHANE (EDC)	ug/L	0.2	J	0.9	J	2.5		4.9	J	6.9		0.5 J
BENZENE	ug/L	ND@0.5		ND@1		ND@2.5		ND@5		ND@5		ND@1
CHLOROETHANE	ug/L	ND@0.5		ND@1		ND@2.5		ND@5		0.7 J	ſ	ND@1
CIS-1,2-DICHLOROETHENE	ug/L	8.1		89		370		890		610		29
ETHYLBENZENE	ug/L	ND@0.5		ND@1		ND@2.5		ND@5		ND@5		ND@1
METHYLENE CHLORIDE	ug/L	ND@0.5		0.3	J	0.8	J	1.4	J	ND@5		0.2 J
TETRACHLOROETHENE	ug/L	0.9		5.8		20		4.4	J	2.1 J	ſ	0.6 J
TOLUENE	ug/L	ND@0.5		ND@1		ND@2.5		ND@5		ND@5		ND@1
TRANS-1,2-DICHLOROETHENE	ug/L	ND@0.5		0.7	J	7.7		5.4		2.9 J	ſ	0.4 J
TRICHLOROETHENE	ug/L	24		250		590		150		93		130
VINYL CHLORIDE	ug/L	ND@0.5		ND@1		ND@2.5		6.7		67		0.7 J
XYLENES, TOTAL	ug/L	ND@0.5		ND@1		ND@2.5		ND@5		ND@5		ND@1

OU#1 and OU#2 FFS Report

Sample Location		EN-47	71	EN-483	B EN	-484	EN-	486 EN	J-489	EN-507
Operable Unit No.		OL	J2	OU	l	OU1	C	DU1	OU2	OU1
Sample Description		GW MON WEL	L GW MOI	N WELI	GW MON W	ELL	GW MON WE	ELL GW MON W	/ELL	GW MON WELL
Sample Date		08/09/201	18 08	/02/2018	3 08/08/	2018	08/09/2	018 08/07	/2018	08/09/2018
Laboratory Sample I.D.		974989	98	973874(974	9892	9749	960 974	5925	9749959
Parameter	Units									
1,1,1-TRICHLOROETHANE	ug/L	130		0.1 J	2.5		330	0.1	J	22
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	3		1	0.1	J	150	0.2	J	0.1 J
1,1-DICHLOROETHANE	ug/L	340		0.9	0.2	J	43	ND@0.5		22
1,1-DICHLOROETHENE	ug/L	33		0.2 J	ND@0.5		14	ND@0.5		0.4 J
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	1.1		4.5	ND@0.5		12	ND@0.5		ND@0.5
1,2-DICHLOROETHANE (EDC)	ug/L	1.7	ND@	0.5	ND@0.5		0.5 J	ND@0.5		0.08 J
BENZENE	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		ND@0.5
CHLOROETHANE	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		2.6
CIS-1,2-DICHLOROETHENE	ug/L	52		24	1.5		4.7 J	0.1	J	6.8
ETHYLBENZENE	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		ND@0.5
METHYLENE CHLORIDE	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		0.8
TETRACHLOROETHENE	ug/L	0.3 J	ND@	0.5	2.5		ND@5	5		0.8
TOLUENE	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		0.2 J
TRANS-1,2-DICHLOROETHENE	ug/L	0.3 J		2.3	ND@0.5		0.6 J	ND@0.5		ND@0.5
TRICHLOROETHENE	ug/L	19		0.9	1.4		6.7	1.1		18
VINYL CHLORIDE	ug/L	0.1 J		0.2 J	ND@0.5		ND@5	ND@0.5		0.1 J
XYLENES, TOTAL	ug/L	ND@0.5	ND@	0.5	ND@0.5		ND@5	ND@0.5		ND@0.5

OU#1 and OU#2 FFS Report

Sample Location		EN-50	18 El	N-509	EN	-520	EN	-521	EN	-522	EN-5	25
Operable Unit No.		OU	2	OU2		OU2		OU2	(OU1	0	U2
Sample Description		GW MON WEL	L GW MON W	VELL	GW MON W	'ELL	GW MON W	ELL	GW MON W	ELL	GW MON WE	LL
Sample Date		08/09/201	8 08/09	/2018	08/07/	2018	08/07/2	2018	08/09/2	2018	08/09/20	18
Laboratory Sample I.D.		974996	64 974	19966	974	5927	974	5923	9749	9953	97498	94
Parameter	Units											
1,1,1-TRICHLOROETHANE	ug/L	130	29)	ND@0.5		0.1	J	14		0.2 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	0.8 J	0.2	2 J	ND@0.5		ND@0.5		0.4	J	ND@0.5	
1,1-DICHLOROETHANE	ug/L	18	0.1	J	ND@0.5		ND@0.5		0.7		ND@0.5	
1,1-DICHLOROETHENE	ug/L	4.8	0.3	3 J	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	ND@2.5	ND@0.5	i	ND@0.5		ND@0.5		0.2	J	ND@0.5	
1,2-DICHLOROETHANE (EDC)	ug/L	ND@2.5	ND@0.5	j –	ND@0.5		ND@0.5		0.06	J	ND@0.5	
BENZENE	ug/L	ND@2.5	ND@0.5	j –	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
CHLOROETHANE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
CIS-1,2-DICHLOROETHENE	ug/L	6	0.7	1	0.6		ND@0.5		7.5		ND@0.5	
ETHYLBENZENE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
METHYLENE CHLORIDE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TETRACHLOROETHENE	ug/L	1.5 J	1.4	Ļ	9.3		0.6		3.7		1.1	
TOLUENE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TRANS-1,2-DICHLOROETHENE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	
TRICHLOROETHENE	ug/L	34	14		2.8		ND@0.5		6.3		1.9	
VINYL CHLORIDE	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		0.2	J	ND@0.5	
XYLENES, TOTAL	ug/L	ND@2.5	ND@0.5	5	ND@0.5		ND@0.5		ND@0.5		ND@0.5	

Groundwater Analytical Chemistry Data (August 2018)

OU#1 and OU#2 FFS Report

Sample Location		EN	-526	EN	-533
Operable Unit No.			OU2		OU1
Sample Description		GW MON W	ELL	GW MON W	'ELL
Sample Date		08/09/	2018	08/08/	2018
Laboratory Sample I.D.		974	9895	974	9893
Parameter	Units				
1,1,1-TRICHLOROETHANE	ug/L	8.3		12	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	34		25	
1,1-DICHLOROETHANE	ug/L	160		2.8	
1,1-DICHLOROETHENE	ug/L	91		0.7	
1,2-DICHLORO-1,2,2-TRIFLUOROETHANE	ug/L	16		3	
1,2-DICHLOROETHANE (EDC)	ug/L	3.4	J	ND@0.5	
BENZENE	ug/L	ND@5		ND@0.5	
CHLOROETHANE	ug/L	ND@5		ND@0.5	
CIS-1,2-DICHLOROETHENE	ug/L	380		280	
ETHYLBENZENE	ug/L	ND@5		0.3	J
METHYLENE CHLORIDE	ug/L	ND@5		ND@0.5	
TETRACHLOROETHENE	ug/L	1.5	J	15	
TOLUENE	ug/L	ND@5		ND@0.5	
TRANS-1,2-DICHLOROETHENE	ug/L	5		0.5	
TRICHLOROETHENE	ug/L	790		4.1	
VINYL CHLORIDE	ug/L	1.9	J	4.8	
XYLENES, TOTAL	ug/L	ND@5		0.1	J

TABLE B.2Groundwater Analytical Chemistry Data (August 2018)OU#1 and OU#2 FFS ReportFormer IBM Endicott Site, Endicott, NY

Reporting Conventions

NA	Not Analyzed
ND@X	Not Detected at Detection Limit X

Code Explanation

J Estimated value: the result is >= the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

APPENDIX C

Soil Analytical Chemistry Data (GSC, August 2009)

TABLE C.1.1VOCs DetectedSoil Sampling to Screen for Lateral Extent of ContaminationOU#1 / OU#2 FFS ReportFormer IBM Endicott Site, Endicott, NY

SAMPLE LOCATION			EN	-485		EN-	-508			EN	-509					EN	-512			
SAMPLE DEPTH (ft. bgs)			15	17	13	15	17	19	11	13	15	17	6-7.5	10-10.5	15-17	19-21	23-25	27-29	33-35	35-37
SAMPLE DATE			1/18/2007	1/18/2007	1/22/2007	1/22/2007	1/22/2007	1/22/2007	1/22/2007	1/22/2007	1/22/2007	1/22/2007	4/21/2007	4/21/2007	4/21/2007	4/22/2007	4/22/2007	4/22/2007	4/22/2007	4/22/2007
PARAMETER	TAGM #4046 (See Note #3)	Part 375-6 (See Note #3)	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
CHLORINATED ETHENES																				
Tetrachloroethene	1.4	1.3	< 0.63	<1.6	0.0039 J	0.0099 J	0.0077 J	0.0047 J	0.0087 J	0.02 J	0.013 J	<380	< 0.0037	< 0.0044	0.013	0.022 J	0.035	0.026	0.0016 J	0.016
Trichloroethene	0.7	0.47	0.12 J	14	0.072 J	0.14 J	0.15 J	0.0057 J	0.023 J	0.053 J	0.035 J	<380	0.0036 J	0.0066	0.053	0.015 J	0.011	0.0093	0.0088	0.066
1,1-Dichloroethene	0.4	0.33	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0018 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	<0.0043 J	< 0.0042	< 0.0041	< 0.0053	< 0.0049
cis-1,2-Dichloroethene	-	0.25	0.45 J	5				0.0018 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	0.00092 J	0.0027 J	0.0014 J	0.0019 J	0.0023 J	0.0016 J	0.0032 J
CHLORINATED ETHANES																				
1,1,1-Trichloroethane	0.8	0.68	1.5	48	<0.006 J	<0.01 J	<0.011 J	<0.029 J	<0.013 J	<0.025 J	0.035 J	11000	< 0.0037	< 0.0044	0.00084 J	0.0012 J	0.001 J	< 0.0041	< 0.0053	< 0.0049
1,1-Dichloroethane	0.2	0.27	0.2 J	<1.6	< 0.0041	< 0.006	< 0.0061	0.023 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	0.0025 J	< 0.0042	<0.0043 J	< 0.0042	< 0.0041	< 0.0053	< 0.0049
1,2-Dichloroethane	0.1	0.02	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0035 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	<0.0043 J	< 0.0042	< 0.0041	< 0.0053	< 0.0049
Chloroethane	1.9	-	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.15 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	<0.0043 J	< 0.0042	< 0.0041	< 0.0053	< 0.0049
AROMATICS								0120 0												
Benzene	0.06	0.06	< 0.63	<1.6	< 0.0041	0.0011 J	< 0.0061	0.00094 J	< 0.0049	0.0016 J	0.00089 J	<380	< 0.0037	< 0.0044	0.00087 J	0.00079 J	< 0.0042	0.00089 J	< 0.0053	< 0.0049
Ethylbenzene	5.5	1.0	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0017 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
Toluene	1.5	0.7	< 0.63	<1.6	0.0011 J	0.0013 J	0.0011 J	0.001 J	0.0011 J	0.0018 J	0.0016 J	180 J	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	0.00083 J	< 0.0053	< 0.0049
Total Xylenes	1.2	1.6	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0044 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
ALKYLBENZENE ISOMERS		110	(0102		(010011	(01000	(010001	0.00110	(01001)	(0100000	(010017		(010007)		(010012	1010012		.010011	(0100000	(01001)
n-Butylbenzene	_	-	< 0.63	0.87 J	< 0.0041	< 0.006	< 0.0061	0.0023 J	< 0.0049	<0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
sec-Butylbenzene	_	11	< 0.63	0.42 J	< 0.0041	< 0.006	< 0.0061	0.0019 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
Isopropylbenzene	_	-	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0012 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
n-Propylbenzene	_	3.9	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	0.0037 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	<0.0041	< 0.0053	< 0.0049
1,2,4-Trimethylbenzene	_	3.6	< 0.63	0.66 J	< 0.0041	< 0.006	< 0.0061	0.048 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
1,3,5-Trimethylbenzene	_	8.4	< 0.63	0.00 J 0.29 J	< 0.0041	< 0.006	< 0.0061	0.0069 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
OTHERS		0.4	<0.05	0.270	<0.00+1	<0.000	<0.0001	0.0007 0	(0.004)	<0.0050	<0.0047	<500	<0.0057	10.0011	10.0042	10.0045	<0.0042	<0.0041	<0.0055	<0.00+J
Acetone	0.2	0.05	<2.8 J	<2.8 J	<0.032 J	<0.013 J	<0.013 J	<0.023 J	<0.014 J	<0.011 J	<0.018 J	R	0.014 J	<0.022 J	<0.015 J	0.015 J	<0.013 J	<0.024 J	0.0063 J	0.0064 J
Acrolein	-	-	NA	NA	0.0062 J	R	R	<0.020 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methyl Ethyl Ketone (MEK, 2-Butanone)	0.3	0.12	NA	NA	0.000 2 9 R	R	R	0.012 J	0.0031 J	R	0.0033 J	R	0.0021 J	0.0028 J	0.0019 J	0.002 J	0.002 J	0.0027 J	R	R
Carbon Disulfide	2.7	0.12	<0.63	<1.6	< 0.0041	<0.006	< 0.0061	0.012 J 0.0026 J	0.0031 J 0.0037 J	<0.0056 J	0.0035 J 0.0015 J	<380	0.0021 J 0.00076 J	0.0028 J 0.0016 J	0.0019 J 0.0019 J	0.002 J	0.002 J 0.0014 J	0.0027 J 0.0028 J	< 0.0053	<0.0049
Chlorobenzene	1.7	1.1	< 0.63	<1.6	< 0.0041	< 0.006	< 0.0061	< 0.0020 3	0.0037 J 0.0017 J	0.0031 J	0.0013 J 0.0034 J	<380	< 0.0037	< 0.0010 3	< 0.0017 3	< 0.0022 3	< 0.0014 3	<0.00203	< 0.0053	< 0.0049
1.2-Dichlorobenzene	7.9	1.1	< 0.63	<1.6	< 0.0041	<0.006	< 0.0061	0.0043 J	< 0.0017 3	< 0.0051 5	<0.0034 J	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
Isopropyltoluene	-	-	< 0.63	0.73 J	< 0.0041	< 0.006	< 0.0061	0.0045 J 0.0036 J	< 0.0049	< 0.0056	< 0.0047	<380	< 0.0037	< 0.0044	< 0.0042	< 0.0043	< 0.0042	< 0.0041	< 0.0053	< 0.0049
Methylene Chloride	0.1	0.05	< 0.63	<1.6	0.0051 J	0.0014 J	< 0.0061	0.0030 J 0.012 J	0.0018 J	0.0011 J	0.0012 J	<380	< 0.0037	< 0.0044	< 0.0042	<0.0043 J	<0.0042	0.0014 J	0.0012 J	< 0.0049
MIBK (4-Methyl-2-pentanone)	0.1 1.0	0.05	< 0.63	<1.6	<0.0051 J <0.0041	<0.0014 J <0.006	< 0.0061	<0.012 J <0.0048	<0.0018 J	<0.0011 J	0.0012 J 0.0011 J	<380	< 0.0037	< 0.0044	< 0.0042	<0.0043 J	< 0.0042	<0.0014 J <0.0041	<0.0012 J	< 0.0049
1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.0 6.0	-	< 0.63	<1.6 <1.6 J	< 0.0041	< 0.006	< 0.0061	< 0.0048	<0.0049 0.0023 J	<0.0038 0.0028 J	0.0011 J 0.0027 J	<380 74 J	< 0.0037	< 0.0044	< 0.0042	<0.0043	<0.0042 0.001 J	<0.0041 0.00085 J	< 0.0053	< 0.0049
NOTES:	0.0	-	<0.03	<1.0 J	<0.0041	<0.000	<0.0001	<0.0048	0.0023 J	0.0028 J	0.0027 J	/4 J	<0.0037	<0.0044	<0.0042	0.00092 J	0.001 J	0.00092 J	<0.0033	<0.0049

NOTES:

1. The test borings and soil sampling were performed between January 18 and April 22, 2007 by Parratt Wolff, Inc. of East Syracuse, New York. The test borings and soil sampling were observed and logged by Groundwater Sciences Corporation personnel. Sample intervals consisting of sand or sand & gravel are highlighted in yellow and sample intervals consisting of silt are highlighted in blue. The soil samples were submitted to Severn Trent Laboratories, Inc. of Colchester, Vermont and analyzed for volatile organic compounds via EPA Method 5035/8260B.

2. The soil quality results are presented in units of milligrams per kilogram (mg/kg). Values greater than laboratory reporting limits are **emboldened**. "<" denotes that the compound was not detected. The sample and compound-specific laboratory reporting limit is posted for comparison.

3. The data qualifiers have been added as a result of third-party data validation performed by Trillium, Inc. of Downingtown, Pennsylvania. Values flagged with a "J" reflect an estimated value. "R" reflects the result for the specific compound was rejected due to analytical and quality control deficiencies - the presence or absence of the particular compound cannot be verified.

4. Column 2 lists recommended soil cleanup objectives as listed in Appendix A of New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum #4046. The values are provided solely for comparison with generic soil cleanup standards. As indicated in TAGM #4046, actual soil cleanup standards should be developed based on site-specific conditions such as depth to groundwater, organic carbon content of soil, and other factors. Column 3 lists Restricted Use Soil Cleanup Objectives for the Protection of Groundwater as per 6 NYCRR Subpart 375-6, Table 375-6.8(b). Concentrations greater than the generic soil cleanup standards listed in TAGM #4046 and/or the Part-375-6 Restricted Use Soil Cleanup Objectives for the Protection of Groundwater are highlighted in red.

Sample Location		E	N-485	E	N-48
Sample Depth (ft bgs)			15.0'		17.
Sample Date		01/18	/2007	01/18	3/200
Laboratory Sample I.D.		6	98183	6	9818
Parameter	Units				
,1,1,2-TETRACHLOROETHANE	ug/kg	ND@630		ND@1600	
,1,1-TRICHLOROETHANE	ug/kg	1500		48000	
,1,2,2-TETRACHLOROETHANE	ug/kg	ND@630		ND@1600	
,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@630	J	ND@1600	
,1,2-TRICHLOROETHANE	ug/kg	ND@630		ND@1600	
,1-DICHLOROETHANE	ug/kg	200	J	ND@1600	
,1-DICHLOROETHENE	ug/kg	ND@630		ND@1600	
,1-DICHLOROPROPENE ,2,3-TRICHLOROBENZENE	ug/kg ug/kg	ND@630 ND@630		ND@1600 ND@1600	
,2,3-TRICHLOROPROPANE	ug/kg	ND@630		ND@1600	
,2,4-TRICHLOROBENZENE	ug/kg	ND@630		ND@1600	
,2,4-TRIMETHYLBENZENE	ug/kg	ND@630		660	J
,2-DIBROMO-3-CHLOROPROPANE	ug/kg	ND@630		ND@1600	
,2-DIBROMOETHANE	ug/kg	ND@630		ND@1600	
,2-DICHLOROBENZENE	ug/kg	ND@630		ND@1600	
,2-DICHLOROETHANE	ug/kg	ND@630		ND@1600	
,2-DICHLOROETHENE, TOTAL ,2-DICHLOROPROPANE	ug/kg	460 ND@630	1	5000 ND@1600	
,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@630 ND@630	<u>├</u>	290	
.3-DICHLOROBENZENE	ug/kg ug/kg	ND@630		ND@1600	
,3-DICHLOROPROPANE	ug/kg	ND@630		ND@1600	
,4-DICHLOROBENZENE	ug/kg	ND@630		ND@1600	
,4-DIOXANE	ug/kg	NA	R	NA	
2,2-DICHLOROPROPANE	ug/kg	ND@630		ND@1600	
-CHLOROETHYLVINYL ETHER	ug/kg	ND@630		ND@1600	
-CHLOROTOLUENE -CHLOROPROPENE	ug/kg	ND@630 ND@630		ND@1600	
I-CHLOROPROPENE	ug/kg ug/kg	ND@630		ND@1600 ND@1600	
ACETONE	ug/kg ug/kg	ND@2800	I	ND@1000	
ACROLEIN	ug/kg	NA		NA	
ACRYLONITRILE	ug/kg	ND@630		ND@1600	
BENZENE	ug/kg	ND@630		ND@1600	
BROMOBENZENE	ug/kg	ND@630		ND@1600	
BROMOCHLOROMETHANE	ug/kg	ND@630		ND@1600	
BROMODICHLOROMETHANE	ug/kg	ND@630		ND@1600	
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@630		ND@1600	
BROMOMETHANE CARBON DISULFIDE	ug/kg ug/kg	ND@630 ND@630		ND@1600 ND@1600	
CARBON TETRACHLORIDE	ug/kg ug/kg	ND@630		ND@1600	
CHLOROBENZENE	ug/kg	ND@630		ND@1600	
CHLORODIBROMOMETHANE	ug/kg	ND@630		ND@1600	
CHLOROETHANE	ug/kg	ND@630		ND@1600	
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@630		ND@1600	
CHLOROMETHANE	ug/kg	ND@630		ND@1600	
CHLOROPRENE	ug/kg	ND@630		ND@1600	
CIS-1,2-DICHLOROETHENE	ug/kg	450	J	5000	
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@630		ND@1600 ND@1600	
DIBROMOMETHANE DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg ug/kg	ND@630 ND@630		ND@1600 ND@1600	
ETHYL METHACRYLATE	ug/kg ug/kg	ND@630		ND@1600	
ETHYLBENZENE	ug/kg	ND@630		ND@1600	
IEXACHLOROBUTADIENE	ug/kg	ND@630		ND@1600	
ODOMETHANE	ug/kg	ND@630		ND@1600	
SOBUTYL ALCOHOL	ug/kg	NA	R	NA	
SOPROPYLBENZENE	ug/kg	ND@630		ND@1600	
SOPROPYLTOLUENE	ug/kg	ND@630		730	-
A,P-XYLENE METHACRYLONITRILE	ug/kg	ND@630 ND@630		ND@1600	
METHACRYLONTIRILE METHYL BUTYL KETONE (2-HEXANONE)	ug/kg ug/kg	ND@630 ND@630	<u>├</u>	ND@1600 ND@1600	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg ug/kg	ND@650 NA	R	ND@1600 NA	
METHYL METHACRYLATE	ug/kg	ND@630		ND@1600	1
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@630		ND@1600	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@630		ND@1600	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@630		ND@1600	
N-BUTYLBENZENE	ug/kg	ND@630		870	
V-PROPYLBENZENE	ug/kg	ND@630		ND@1600	
D-XYLENE ROPIONITRILE	ug/kg ug/kg	ND@630 NA	R	ND@1600 NA	
EC-BUTYLBENZENE	ug/kg ug/kg	ND@630		420	
TYRENE	ug/kg ug/kg	ND@630		420 ND@1600	
ERT-BUTYLBENZENE	ug/kg	ND@630		ND@1600	
ETRACHLOROETHENE	ug/kg	ND@630		ND@1600	
ETRAHYDROFURAN	ug/kg	ND@6300		ND@16000	
OLUENE	ug/kg	ND@630		ND@1600	
RANS-1,2-DICHLOROETHENE	ug/kg	ND@630		ND@1600	
RANS-1,3-DICHLOROPROPENE	ug/kg	ND@630		ND@1600	
RANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@630		ND@1600	
RICHLOROETHENE	ug/kg	120	1	14000	
RICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@630		ND@1600	
/INYL ACETATE	ug/kg	ND@630		ND@1600	
/INYL CHLORIDE XYLENES, TOTAL	ug/kg ug/kg	ND@630 ND@630	\vdash	ND@1600 ND@1600	

TABLE C.1.2 Soil Analytical Chemistry Data Soil Sampling to Screen for Lateral Extent of Contamination OU#1 / OU#2 FFS Report Former IBM Endicott Site, Endicott, NY

Sample Location		Е	N-508	Е	N-508	E	N-508	EN-5
Sample Depth (ft bgs)			13.0'		15.0'		17.0'	19
Sample Date		01/22	2/2007	01/22	2/2007	01/22	2/2007	01/22/20
Laboratory Sample I.D.			98597		98598		98599	6986
r r r r r r r r r r r r r r r r r r r								
Parameter	Units							
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
1,1,1-TRICHLOROETHANE	ug/kg	ND@6.0	J	ND@10	J	ND@11	J	ND@29 J
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 ND@4.8
1,1,2-TRICHLOROETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
1,1-DICHLOROETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		23 J
1,1-DICHLOROETHENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		1.8 J
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 ND@4.8
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0		ND@6.1 ND@6.1		ND@4.8
1,2,4-TRICHLOROBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
1,2,4-TRIMETHYLBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		48 J
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	ND@4.1	J	ND@6.0	J	ND@6.1	J	ND@4.8 J
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 4.3 J
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	ug/kg	ND@4.1 ND@4.1		ND@0.0 ND@6.0		ND@6.1 ND@6.1		4.3 J 3.5 J
1,2-DICHLOROETHENE, TOTAL	ug/kg	ND@4.1		ND@6.0		ND@6.1		1.8 J
1,2-DICHLOROPROPANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE	ug/kg	ND@4.1 ND@4.1		ND@6.0		ND@6.1 ND@6.1		6.9 J
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	ug/kg ug/kg	ND@4.1 ND@4.1	├	ND@6.0 ND@6.0	+	ND@6.1 ND@6.1	\vdash	ND@4.8 ND@4.8
1,4-DICHLOROBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
1,4-DIOXANE	ug/kg	NA	R	NA	R	NA	R	NA R
2,2-DICHLOROPROPANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
2-CHLOROETHYLVINYL ETHER 2-CHLOROTOLUENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
3-CHLOROPROPENE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 ND@4.8
4-CHLOROTOLUENE	ug/kg	ND@4.1		ND@0.0		ND@6.1		ND@4.8
ACETONE	ug/kg	ND@32	J	ND@13	J	ND@13	J	ND@23 J
ACROLEIN	ug/kg	6.2	J	NA	R	NA	R	NA R
ACRYLONITRILE BENZENE	ug/kg	ND@4.1		ND@6.0	x	ND@6.1		ND@4.8
BROMOBENZENE	ug/kg ug/kg	ND@4.1 ND@4.1		1.1 ND@6.0	J	ND@6.1 ND@6.1		0.94 J ND@4.8
BROMOCHLOROMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
BROMODICHLOROMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
BROMOMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		2.6 J ND@4.8
CHLOROBENZENE	ug/kg	ND@4.1 ND@4.1		ND@0.0		ND@6.1		ND@4.8
CHLORODIBROMOMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
CHLOROETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		150 J
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
CHLOROMETHANE CHLOROPRENE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 ND@4.8
CIS-1,2-DICHLOROETHENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		1.8 J
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
DIBROMOMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
DICHLORODIFLUOROMETHANE (FREON 12) ETHYL METHACRYLATE	ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		ND@4.8 ND@4.8
ETHYLBENZENE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0		ND@6.1 ND@6.1		ND@4.8
HEXACHLOROBUTADIENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
IODOMETHANE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
ISOBUTYL ALCOHOL	ug/kg	NA	R	NA	R	NA	R	NA R
ISOPROPYLBENZENE ISOPROPYLTOLUENE	ug/kg	ND@4.1	┝──┝	ND@6.0 ND@6.0		ND@6.1 ND@6.1	$\left \right $	1.2 J
M,P-XYLENE	ug/kg ug/kg	ND@4.1 ND@4.1		ND@6.0 ND@6.0		ND@6.1 ND@6.1		3.6 J 2.7 J
METHACRYLONITRILE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL METHACRYLATE	ug/kg	NA ND@4.1	R	NA ND@6.0		NA ND@6.1		12 J ND@4.8
METHYL METHACRYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@4.1 ND@4.1	<u>├</u> ──	ND@6.0 ND@6.0	\vdash	ND@6.1 ND@6.1	\vdash	ND@4.8 ND@4.8
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	5.1	1	1.4	J	ND@6.1 ND@6.1		12 J
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
N-BUTYLBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		2.3 J
N-PROPYLBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		3.7 J
O-XYLENE PROPIONITRILE	ug/kg ug/kg	ND@4.1 NA	R	ND@6.0 NA		ND@6.1 NA	R	1.5 J NA R
SEC-BUTYLBENZENE	ug/kg	ND@4.1	-* -	ND@6.0		ND@6.1		1.9 J
STYRENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
TERT-BUTYLBENZENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
TETRACHLOROETHENE TETRAHYDROFURAN	ug/kg	3.9 ND@41	J	9.9 ND@60		7.7 ND@61	J	4.7 J ND@48
TETRAHYDROFURAN TOLUENE	ug/kg ug/kg	ND@41 1.1	I -	ND@60 1.3		ND@61 1.1	I	ND@48 10 J
TRANS-1,2-DICHLOROETHENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
TRANS-1,3-DICHLOROPROPENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
TRICHLOROETHENE	ug/kg	72	1	140	J	150 ND@61	J	5.7 J
TRICHLOROFLUOROMETHANE (FREON 11) VINYL ACETATE	ug/kg ug/kg	ND@4.1 ND@4.1	<u>├</u> ──	ND@6.0 ND@6.0	\vdash	ND@6.1 ND@6.1	+	ND@4.8 ND@4.8
VINTE ACETATE VINYL CHLORIDE	ug/kg	ND@4.1		ND@6.0		ND@6.1		ND@4.8
XYLENES, TOTAL	ug/kg	ND@4.1		ND@6.0		ND@6.1		4.4 J

Sample Location	+ +	E	N-509	F	N-509	E	N-509	F	N-5(
•		E		L	-	Б		E	
Sample Depth (ft bgs)			11.0'		13.0'		15.0'		17.
Sample Date		01/22	/2007	01/22	2/2007	01/22	2/2007	01/22	2/200
Laboratory Sample I.D.		698	8601A	698	8602A	698	3603A	698	3604
Parameter	Units								
,1,1,2-TETRACHLOROETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7	-	ND@380000	
,1,1-TRICHLOROETHANE	ug/kg	ND@13 ND@4.9	J	ND@25		35	J	11000000	
,1,2,2-TETRACHLOROETHANE ,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@4.9 2.3	т	ND@5.6 2.8		ND@4.7 2.7	T	ND@380000 74000	т
,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	2.3 ND@4.9	J	2.8 ND@5.6		2.7 ND@4.7	,	ND@380000	J
,1-DICHLOROETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
.1-DICHLOROETHENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
.1-DICHLOROPROPENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2,3-TRICHLOROBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2,3-TRICHLOROPROPANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2,4-TRICHLOROBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2,4-TRIMETHYLBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2-DIBROMO-3-CHLOROPROPANE	ug/kg	ND@4.9	J	ND@5.6		ND@4.7	J	ND@380000	
,2-DIBROMOETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2-DICHLOROBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2-DICHLOROETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2-DICHLOROETHENE, TOTAL	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,2-DICHLOROPROPANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,3,5-TRIMETHYLBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
,3-DICHLOROBENZENE .3-DICHLOROPROPANE	ug/kg	ND@4.9 ND@4.9		ND@5.6 ND@5.6		ND@4.7 ND@4.7	-	ND@380000 ND@380000	-
,3-DICHLOROPROPANE ,4-DICHLOROBENZENE	ug/kg	ND@4.9 ND@4.9	<u> </u>	ND@5.6 ND@5.6		ND@4.7 ND@4.7	┝──┝	ND@380000 ND@380000	-
,4-DICHLOROBENZENE ,4-DIOXANE	ug/kg ug/kg	ND@4.9 NA	R	ND@5.6 NA		ND@4.7 NA	R	ND@380000 NA	R
,2-DICHLOROPROPANE	ug/kg ug/kg	ND@4.9	15	ND@5.6		ND@4.7		ND@380000	IX.
-CHLOROETHYLVINYL ETHER	ug/kg	ND@4.9 ND@4.9		ND@5.6		ND@4.7 ND@4.7		ND@380000	
-CHLOROTOLUENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
-CHLOROPROPENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
-CHLOROTOLUENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
CETONE	ug/kg	ND@14	J	ND@11		ND@18	J	NA	R
CROLEIN	ug/kg	NA	R	NA	R	NA	R	NA	R
CRYLONITRILE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ENZENE	ug/kg	ND@4.9		1.6	J	0.89	J	ND@380000	
ROMOBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ROMOCHLOROMETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ROMODICHLOROMETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ROMOMETHANE CARBON DISULFIDE	ug/kg	ND@4.9 3.7	т	ND@5.6 ND@5.6		ND@4.7 1.5	T	ND@380000 ND@380000	
CARBON DISULFIDE	ug/kg ug/kg	3.7 ND@4.9	J	ND@5.6		1.5 ND@4.7	J	ND@380000	
HLOROBENZENE	ug/kg	1.7	I	3.1		3.4	I	ND@380000	
THLORODIBROMOMETHANE	ug/kg	ND@4.9	-	ND@5.6		ND@4.7	-	ND@380000	
CHLOROETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
THLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
CHLOROMETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
CHLOROPRENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
IS-1,2-DICHLOROETHENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
IS-1,3-DICHLOROPROPENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
DIBROMOMETHANE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
THYL METHACRYLATE	ug/kg	ND@4.9		ND@5.6		ND@4.7	⊢ – -	ND@380000	┣
TTHYLBENZENE IEXACHLOROBUTADIENE	ug/kg	ND@4.9 ND@4.9		ND@5.6 ND@5.6		ND@4.7 ND@4.7		ND@380000 ND@380000	-
DOMETHANE	ug/kg	ND@4.9 ND@4.9	<u> </u>	ND@5.6 ND@5.6		ND@4.7 ND@4.7	┝──┝	ND@380000 ND@380000	-
SOBUTYL ALCOHOL	ug/kg ug/kg	ND@4.9 NA	R	ND@5.6 NA		ND@4.7 NA	R	ND@380000 NA	R
SOPROPYLBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	I.
SOPROPYLTOLUENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
4,P-XYLENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
METHACRYLONITRILE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
IETHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
1ETHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	3.1	J	NA		3.3	1	NA	R
METHYL METHACRYLATE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	-
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@4.9	.	ND@5.6		ND@4.7		ND@380000	
IETHYLENE CHLORIDE (DICHLOROMETHANE) IIBK (4-METHYL-2-PENTANONE)	ug/kg	1.8	1	1.1 ND@56		1.2	J	ND@380000	-
IBK (4-METHYL-2-PENTANONE)	ug/kg	ND@4.9 ND@4.9		ND@5.6 ND@5.6		1.1 ND@4.7	J	ND@380000 ND@380000	
I-BUTYLBENZENE	ug/kg ug/kg	ND@4.9 ND@4.9		ND@5.6 ND@5.6		ND@4.7 ND@4.7	├ ── ├	ND@380000 ND@380000	-
	ug/kg ug/kg	ND@4.9 ND@4.9		ND@5.6		ND@4.7 ND@4.7	\vdash	ND@380000	-
ROPIONITRILE	ug/kg	NA	R	NA		NA	R	NA	R
EC-BUTYLBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
TYRENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ERT-BUTYLBENZENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
ETRACHLOROETHENE	ug/kg	8.7	J	20		13	J	ND@380000	
ETRAHYDROFURAN	ug/kg	ND@49		ND@56		ND@47		ND@3800000	
OLUENE	ug/kg	1.1	J	1.8		1.6	1	180000	J
RANS-1,2-DICHLOROETHENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
RANS-1,3-DICHLOROPROPENE	ug/kg	ND@4.9		ND@5.6		ND@4.7		ND@380000	
RANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@4.9	.	ND@5.6		ND@4.7		ND@380000	
RICHLOROETHENE	ug/kg	23	J	53		35	J	ND@380000	
RICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@4.9		ND@5.6		ND@4.7	┝──┝	ND@380000	-
INYL ACETATE	ug/kg	ND@4.9		ND@5.6		ND@4.7	├ ── ├	ND@380000	-
INYL CHLORIDE	ug/kg	ND@4.9	1 1	ND@5.6 ND@5.6		ND@4.7 ND@4.7	1	ND@380000 ND@380000	

Sample Location		EN-512	EN.	-512 EN	V-512 EN-5
Sample Depth (ft bgs)		6.0'-7.5			
Sample Date		04/21/2007			
Laboratory Sample I.D.		707997	7 707	7998 70	7999 7080
D	¥1				
Parameter	Units				
,1,1,2-TETRACHLOROETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,1,1-TRICHLOROETHANE ,1,2,2-TETRACHLOROETHANE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	0.84 J ND@4.2	J 1.2 J ND@4.3
,1,2,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	0.92 J
,1,2-TRICHEORO-1,2,2-TRIFECOROETHIARE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,1-DICHLOROETHANE	ug/kg	ND@3.7	2.5 J	ND@4.2	ND@4.3 J
,1-DICHLOROETHENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
,1-DICHLOROPROPENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
,2,3-TRICHLOROBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,2,3-TRICHLOROPROPANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,2,4-TRICHLOROBENZENE ,2,4-TRIMETHYLBENZENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3
,2-DIBROMO-3-CHLOROPROPANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,2-DIBROMOETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,2-DICHLOROBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
,2-DICHLOROETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
,2-DICHLOROETHENE, TOTAL	ug/kg	ND@3.7	0.94 J	2.8 J	J 1.4 J
,2-DICHLOROPROPANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
3,5-TRIMETHYLBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2 ND@4.2	ND@4.3
,3-DICHLOROBENZENE .3-DICHLOROPROPANE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3
,3-DICHLOROPROPANE ,4-DICHLOROBENZENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2	ND@4.3
,4-DIOXANE	ug/kg ug/kg	ND@3.7 NA R	ND@4.4	ND@4.2 NA F	
2-DICHLOROPROPANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
-CHLOROETHYLVINYL ETHER	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
-CHLOROTOLUENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
-CHLOROPROPENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
-CHLOROTOLUENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
CETONE	ug/kg	14 J NA R	ND@22 J NA R	ND@15 J NA F	J 15 J R NA R
CRYLONITRILE	ug/kg ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
ENZENE	ug/kg	ND@3.7	ND@4.4	0.87 J	J 0.79 J
ROMOBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
ROMOCHLOROMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
ROMODICHLOROMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
ROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
ROMOMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg	0.76 J ND@3.7	1.6 J ND@4.4	1.9 J ND@4.2	J 2.2 J ND@4.3 J
THLOROBENZENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2	ND@4.3
CHLORODIBROMOMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
CHLOROETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
CHLOROMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
THLOROPRENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
TIS-1,2-DICHLOROETHENE	ug/kg	ND@3.7	0.92 J	2.7 J ND@4.2	J 1.4 J
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3 J
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
THYL METHACRYLATE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
THYLBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
EXACHLOROBUTADIENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
DDOMETHANE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
SOBUTYL ALCOHOL	ug/kg	NA R	NA R	R NA F	
SOPROPYLBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
SOPROPYLTOLUENE 1.P-XYLENE	ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3
1,P-XYLENE IETHACRYLONITRILE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3 J
IETHACKYLONITRILE IETHYL BUTYL KETONE (2-HEXANONE)	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2	ND@4.3
12THYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	2.1 J	2.8 J	1.9 J	J 2 J
IETHYL METHACRYLATE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
IETHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
IETHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
IIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
-BUTYLBENZENE -PROPYLBENZENE	ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3
-PROPYLBENZENE -XYLENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3
ROPIONITRILE	ug/kg	NA R	NA R		
EC-BUTYLBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
TYRENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
ERT-BUTYLBENZENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
ETRACHLOROETHENE	ug/kg	ND@3.7	ND@4.4	13	22 J
ETRAHYDROFURAN OLUENE	ug/kg	ND@37	ND@44 ND@4.4	ND@42	ND@43 J
OLUENE RANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2 ND@4.2	ND@4.3 ND@4.3 J
RANS-1,2-DICHLOROPTHENE RANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@3.7 ND@3.7	ND@4.4 ND@4.4	ND@4.2	ND@4.3
RANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3
RICHLOROETHENE	ug/kg	3.6 J	6.6	53	15 J
RICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
/INYL ACETATE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J
'INYL CHLORIDE	ug/kg	ND@3.7	ND@4.4	ND@4.2	ND@4.3 J

Sample Location		EI	N-512	Е	N-512	El	N-512	Е	N-51
Sample Depth (ft bgs)			-25.0')-29.0'		-35.0'	35.0	
Sample Date		04/22			2/2007	04/22		04/22	
Laboratory Sample I.D.			08002		08003		08004		080
· ·									
Parameter	Units								
,1,1,2-TETRACHLOROETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
1,1,1-TRICHLOROETHANE	ug/kg	1	J	ND@4.1		ND@5.3		ND@4.9	
,1,2,2-TETRACHLOROETHANE ,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@4.2	T	ND@4.1 0.85	T	ND@5.3 ND@5.3		ND@4.9 ND@4.9	
1,1,2-TRICHLOROETHANE	ug/kg	ND@4.2	5	ND@4.1	,	ND@5.3		ND@4.9	
,1-DICHLOROETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,1-DICHLOROETHENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,1-DICHLOROPROPENE ,2,3-TRICHLOROBENZENE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
,2,3-TRICHLOROBENZENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3		ND@4.9 ND@4.9	
,2,4-TRICHLOROBENZENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,2,4-TRIMETHYLBENZENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,2-DIBROMO-3-CHLOROPROPANE ,2-DIBROMOETHANE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
,2-DICHLOROBENZENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
,2-DICHLOROETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,2-DICHLOROETHENE, TOTAL	ug/kg	2	J	2.4	l	1.6	J	3.3	J
2.5 TRIMETHYLDENZENE	ug/kg	ND@4.2 ND@4.2		ND@4.1	-	ND@5.3		ND@4.9	
,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	-	ND@5.3 ND@5.3	<u>├</u>	ND@4.9 ND@4.9	
1,3-DICHLOROPROPANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
,4-DICHLOROBENZENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
1,4-DIOXANE	ug/kg	141	R	NA	R	NA ND @5.2	R	NA	R
2,2-DICHLOROPROPANE 2-CHLOROETHYLVINYL ETHER	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	-	ND@5.3 ND@5.3	└── 	ND@4.9 ND@4.9	
2-CHLOROTOLUENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
3-CHLOROPROPENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
I-CHLOROTOLUENE	ug/kg	ND@4.2	-	ND@4.1	-	ND@5.3	_	ND@4.9	
ACETONEACROLEIN	ug/kg ug/kg	ND@13 NA	J	ND@24 NA		6.3 NA	J	6.4 NA	J
ACRYLONITRILE	ug/kg	ND@4.2	ĸ	ND@4.1	ĸ	ND@5.3	ĸ	ND@4.9	ĸ
BENZENE	ug/kg	ND@4.2		0.89	J	ND@5.3		ND@4.9	
BROMOBENZENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
BROMOMETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
CARBON DISULFIDE	ug/kg	1.4	J	2.8	J	ND@5.3		ND@4.9	
CARBON TETRACHLORIDE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9 ND@4.9	
CHLOROBENZENE CHLORODIBROMOMETHANE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
CHLOROETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
CHLOROMETHANE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
CHLOROPRENE CIS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@4.2 1.9	I	ND@4.1 2.3	I	ND@5.3 1.6	I	ND@4.9 3.2	T
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@4.2	5	ND@4.1	-	ND@5.3		ND@4.9	5
DIBROMOMETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
DICHLORODIFLUOROMETHANE (FREON 12) ETHYL METHACRYLATE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
ETHYL METHACKYLATE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
IEXACHLOROBUTADIENE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3		ND@4.9 ND@4.9	
ODOMETHANE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
SOBUTYL ALCOHOL	ug/kg	NA	R	NA	R	NA	R	NA	R
ISOPROPYLBENZENE ISOPROPYLTOLUENE	ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	\vdash	ND@5.3 ND@5.3		ND@4.9 ND@4.9	
M,P-XYLENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	-	ND@5.3 ND@5.3		ND@4.9 ND@4.9	-
METHACRYLONITRILE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@4.2		ND@4.1		ND@5.3	_	ND@4.9	
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL METHACRYLATE	ug/kg ug/kg	2 ND@4.2	J	2.7 ND@4.1		NA ND@5.3	к	NA ND@4.9	к
METHYL METHACKYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@4.2		1.4	J	1.2	J	ND@4.9	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
N-BUTYLBENZENE	ug/kg ug/kg	ND@4.2 ND@4.2	<u>├</u>	ND@4.1 ND@4.1		ND@5.3 ND@5.3	<u>├ </u>	ND@4.9 ND@4.9	-
-PROPTLBENZENE D-XYLENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	-
PROPIONITRILE	ug/kg	NA	R	NA		NA	R	NA	R
EC-BUTYLBENZENE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
TYRENE ERT-BUTYLBENZENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	\vdash	ND@5.3 ND@5.3		ND@4.9 ND@4.9	
TETRACHLOROETHENE	ug/kg ug/kg	ND@4.2 35		ND@4.1 26		ND@5.3 1.6	J	ND@4.9 16	-
TETRAHYDROFURAN	ug/kg	ND@42		ND@41		ND@53		ND@49	
TOLUENE	ug/kg	ND@4.2		0.83	J	ND@5.3		ND@4.9	
TRANS-1,2-DICHLOROETHENE	ug/kg	ND@4.2		ND@4.1	\vdash	ND@5.3		ND@4.9	
TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1	$\left - \right $	ND@5.3 ND@5.3		ND@4.9 ND@4.9	
TRICHLOROETHENE	ug/kg ug/kg	ND@4.2 11		ND@4.1 9.3		ND@5.3 8.8	<u> </u>	ND@4.9 66	
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
VINYL ACETATE	ug/kg	ND@4.2		ND@4.1		ND@5.3		ND@4.9	
/INYL CHLORIDE XYLENES, TOTAL	ug/kg ug/kg	ND@4.2 ND@4.2		ND@4.1 ND@4.1		ND@5.3 ND@5.3		ND@4.9 ND@4.9	

TABLE C.1.2 Soil Analytical Chemistry Data Soil Sampling to Screen for Lateral Extent of Contamination OU#1 / OU#2 FFS Report Former IBM Endicott Site, Endicott, NY

Explana	tion of Reportin	ig Conventi	ons and Key	to Commen	t Codes			
Reporting	g Conventions							
NA	Not Analyzed							
ND@X	Not Detected at	Detection Limi	t X					
Code	Explanation							
J	Estimated value	- compound m	eets identificatio	on criteria, but re	sult is less than	the reporting lin	nit.	
R	Result rejected of	due to analytica	l and quality cor	ntrol deficiencies	. The presence	or absence of th	e analyte cannot	be verified.

TABLE C.2.1.1 Profile Data - Lacustrine Silt Sampling in OU#1 OU#1 / OU#2 FFS Report Former IBM Endicott Facility, Endicott, NY

Collect Date	Client ID	Boring/ Well ID	Sample Type	Depth into Silt Dilution	Units	Acetone	Carbon Disulfide	Chlorobenzene	Chloroform	1,2-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Ethyl Benzene	Freon 113 (Freon TF)	Freon 123a	Methylene Chloride	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl Chloride	o-Xylene	m,p-Xylene
05/12/2005	EN025A050512 I	EN-25A	Aqueous	NA 5	ug/L	<50	<5	<5	10	<5	<5	<5	690	28	340	J 2400	9	<5	99	21	8	11	2 J	13000	4	78	190	<5	<10
05/26/2005	EN025A050526 I	EN-25A	Aqueous	NA 5	ug/L	<50	<5	<5	9	<5	<5	<5	590	26	350	J 2400	18	<5	81	17	8	9	<5	13000	5	86	140	<5	<10
06/09/2005	EN025A050609 I	EN-25A	Aqueous	NA 5	ug/L	<50	<5	<5	11	<5	<5	<5	620	33	170	2600	25	<5	110	20	4	J 8	<5	14000	5	65	230	J <5	<10
			•		-																								
05/04/2005	E025A0650504	EN-25A	Soil	6" 1	ug/kg	<610	<610	<610	<610	<610	<610	<610 J	760	<610	400	J 3600	<610	<610	<610	NA	<610	<610	260 J	4400	<610	<610	210	J <610	<610
05/04/2005	E025A1250504	EN-25A	Soil		ug/kg	<600	<600	<600	<600	<600	<600	<600 J	1800	<600	1100	9200	<600	<600	150	J NA	<600	<600	460 J	3500	<600	150	J 200	J <600	<600
05/04/2005	E025A1850504	EN-25A	Soil		ug/kg	<690	<690	<690	<690	<690	<690	<690 J	2300	<690	1200	11000	<690	<690	130	J NA	<690	<690	410 J	J 3200	<690	180	J 130	J <690	<690
		EN-25A	Soil		ug/kg	<680	<680	<680	<680	<680	<680	<680 J	2500	<680	1200	12000	<680	<680	130	J NA	<680	<680	350 J	2500	<680	260	J <680	<680	<680
		EN-25A	Soil		ug/kg	<590	<590	<590	<590	<590	<590	<590 J	1400	<590	540	J 5100	<590	<590	<590	NA	<590	<590	110 J	1200	<590	<590	<590	<590	<590
		EN-25A	Soil		ug/kg	<670	<670	<670	<670	<670	<670	<670 J		<670	1300	19000	<670	<670	<670	NA	<670	<670	240 J	1100	<670	130	J <670	<670	<670
		EN-25A	Soil		ug/kg	<770	<770	<770	<770	<770	<770	<770 J		<770	1300	24000	<770	<770	<770	NA	<770	<770	180 J	700	J <770	<770	<770	<770	<770
		EN-25A	Soil	48" 1	ug/kg	<750	<750	<750	<750	<750	<750	<750 J		<750	1500	31000	<750	<750	<750	NA	<750	<750	190 J	480	J <750	210	J <750	<750	<750
		EN-107A				<50	<5	1 J	<5	1400	14	<5	6	<5	30	17000	14	980	330	J 22	<5	130	7	20	<5	15	J 580	590	1100
			Aqueous	NA 5	0	<50	<5	0.8 J	<5	1000	11	<5	4	J <5	16	8500	36	710	180	J 9	<5	5	, 4 1	1 7	<5	1	J 390	J 390	J 650 J
	EN107A050526 E		*		0	<50	<5 <5	1 J		1600	15	<5 <5	2	J <5	10	9400		830	340	J 5	<5	2	J 3 J	, , I <5	<5 <5	<5	640 ·	360	J 740 J
00/07/2003	LINI0/A050520 L	10/A	Aqueous		ug/L	<50	\sim	IJ	\sim	1000	15	\sim	4	3 <3	D	7400	10	0.50	340	5 5	\sim	2	5 5 5		$\langle \rangle$		040	500	3 740 3
05/04/2005	E107A0650504 E	N-107A	Soil	6" 1.5	ug/kg	<1400	<1400	<1400	<1400	3900	<1400	<1400 J	<1400	<1400	<1400	42000	<1400	1700	<1400	NA	<1400	<1400	<1400	<1400	<1400	<1400	360	J 1500	3000
		EN-107A	Soil		ug/kg	<1000	<1000	<1000	<1000	4000	<1000	<1000 J	<1000	<1000	<1000	17000	<1000	1200	260	J NA	<1000	<1000	<1000	<1000	<1000	<1000	<1000	930	J 1800
		EN-107A	Soil		ug/kg	<990	<990	<990	<990	6200	<990	520 J		<990	<990	33000	<990	4000	<990	NA	<990	<990	<990	<990	<990	<990	<990	2000	6400
		EN-107A	Soil		ug/kg	<640	<640	<640	<640	950	<640	<640 J		<590 <640	<640	23000	<640	1900	<590 <640	NA	<640	<590 <640	<590 <640	<640	<640	<640	<640	2000 650	1400
		EN-107A	Soil		ug/kg	<690	<690	<690	<690	<690	<690	240 J	<690	<690	<690	23000	<690	1900	<040 J <690	NA	<690	650	<040 J <690	<690	<690	540	<040 J <690	260	J <690
		EN-107A	Soil		00	<660	<660	<660	<660	<660	<660	<660 J	<660	<660	<660	18000	<660	<660	J <090 <660	NA	<660	<660	<660	<660	<660	720	<660	<660	J <090 <660
					ug/kg		<1200	<1200	<1200	<1200	<1200	<1200 J		<1200	<1200		<1200	<1200	<1200	NA	<1200	<1200	<1200	<1200	<1200	<1200	<000 500	<000 J <1200	<1200
		EN-107A EN-107A	Soil		ug/kg	<1200			<1200 <1900					<1200		42000			<1200			<1200	<1200	<1200 <1900		<1200 <1900	600 .		<1200 <1900
			Soil	48" 3	00	<1900	<1900	<1900		<1900	<1900	<1900 J	<1900		<1900	52000	<1900	<1900		NA	<1900				<1900			J <1900	
	EN119A050512 E EN119A050526 E	EN-119A		NA 10 NA 10		<100 <100	<10 <10	<10 <10	15 14	<10 <10	<10 <10	<10 <10	550 690	J 25 J 27	510 . 630 .	J 940 J 1100	J 5 5	J <10 J <10	390 540	17 J 21	<10 <10	<10 <10	2 J 2 J	19000 22000	8	120 120	15 17	<10 <10	<20 <20
	EN119A050609 E						<10		29	<10	<10	<10	890	J 53		J 1100	19	J <10 J <10	700 ·	J 21	<10	<10	2 J 3 J	46000	11	99	30	<10	<20 <20
00/09/2005	ENTIPA050009 E	an-119A	Aqueous	INA 10	ug/L	<100	<10	<10	47	<10	<10	<10	070	J 33	620	1100	1 7	J <10	/00	J <u>44</u>	<10	<10	3 J	40000	11	77	30	<10	<20
05/09/2005	E119A0650509 E	N-1194	Soil	6" 1	ug/kg	<660 F	R <660	<660	<660	<660	<660	<660	4800	<660	1200	640	J <660	<660	<660	NA	<660	<660	<660	4800	<660	<660	<660	<660	<660
		EN-119A	Soil		ug/kg	<750 F		<750	<000 <750	<000 <750	<000 <750	<000 <750	3600	<750	1200 190 J	J <750	<750	<000 <750	<000 <750	NA	<000 <750	<750	<750	160	<000 J <750	<000 <750	<000 <750	<000 <750	<750
	E119A1250509 E		Soil		ug/kg	<660 F	< <660	<660	<660	<660	<660	<660	3700	<660	<660	<660	<660	<660	<660	NA	<660	<660	<660	<660	s <750 <660	<660	<660	<660	<660
05/09/2005	E119A1850509 E		Soil		ug/kg ug/kg	11 J	C <000 J <6.8	<6.8	<6.8	<6.8	<000 J <6.8	<000 J <6.8	1.8	<000 J <6.8	<6.8	<6.8	<6.8	<6.8	<6.8	NA	<6.8	<000 <6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8	<6.8
	E119A2450509 E		Soil			11 J	J <0.8 J <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	J <0.8 . J <5.9 .	J <0.8 J <5.9	<5.9	J <0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	NA	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9	<0.8 <5.9
05/09/2005		EN-119A		36" 1	ug/kg	11 J	I <3.9 I <7.3		<3.9 <7.3	<3.9 <7.3	J <3.9 . J <7.3 .	J <3.9 J <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	NA	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3	<3.9 <7.3
			Soil		00			<7.3																<7.5 74					
		EN-119A	Soil	42" 1	00	12 J	J <8.2	<8.2	<8.2	<8.2	J <8.2 .	J <8.2	<8.2	<8.2	<8.2	<8.2	<8.2	<8.2	<8.2	NA	<8.2	<8.2	<8.2		<8.2	<8.2	<8.2	<8.2	<8.2
05/09/2005		EN-119A	Soil	48 1	ug/kg	<670 F	R <670	<670	<670	<670	<670	<670	5800	<670	150	J <670	<670	<670	<670	NA	<670	<670	<670	3200	<670	<670	<670	<670	<670
05/11/2005		EN-483	Aqueous	NA I	ug/L	<10	0.5	<1	<1	<1	<1	<1	2	<1	0.9	J 96	5	<1	9	7	<1	<1	<1	0.5	J <1	2	0.8	J <1	<2
05/26/2005		EN-483	Aqueous	NA I	ug/L	<10	0.6	<1	<1	<1	<1	<1 <1	2	<1 <1	0.9 . 0.8 .	J 90 J 70	5	<1 <1	9	7	<1 <1	<1 <1	<1 <1	0.6 0.7	J <1 J <1	2 2	0.9 0.8	J <1 J <1	<2 <2
06/09/2005	EN483050609	EN-483	Aqueous	INAL L	ug/L	<10	<1	<1	<1	<1	<1	~ 1																	<1

NOTES:

1. This table summarizes results of groundwater and soil sampling adjacent to former or existing wells EN-107, EN-25, and EN-119 and results of groundwater sampling in a newly installed Upper Aquifer monitoring well (EN-483) located between Buildings 46 and 47, north of well EN-34. The soil borings were advanced to within 2 feet of the Lacustrine Si using 6 1/4-inch hollow-stem auger drilling techniques. The soil borings were advanced beyond the augers and into the Lacustrine Silt using 4-inch cased mud-rotary drilling techniques. Soil samples were collected ahead of the 4-inch casing using 3-inch diamter split-spoon samplers. Upon completion of each soil boring a temporary monitoring well was installed in the borehole. The temporary wells were constructed with one-foot long screens set above the apparent interface between the Upper Aquifer monitoring well EN-483 was installed using 4 1/4-inch hollow-stem auger drilling techniques with continous split-spoon sampling. The soil borings, temporary monitoring well installations, and permanent monitoring well installation were performed between May 4 and 9, 2005 by Parratt-Wolff, Inc. of East Syracuse, New York and were observed and logged by Groundwater Sciences Corporation personnel.

2. The groundwater samples were submitted to the Hudson Valley Environmental Laboratory (HVEL) of Hopewell Junction, New York and analyzed for volatile organic compounds (VOCs) by SW-846 Method 8260B. The groundwater results are presented in units of micrograms per liter (ug/L).

3. The soil quality samples were submitted to Severn Trent Laboratories, Inc. of Colchester, Vermont and anlyzed for VOCs using SW-846 Method 5035/8260B. The soil quality results are presented in units of micrograms per kilogram (ug/kg).

4. The analytical data was validated by Trillium, Inc. of Downingtown, Pennsylvania. The "J" qualifier indicates that the result is less than the reporting limit and, therefore, is estimated. The "R" qualifier indicates that the result was rejected due to analytical and quality control deficiencies and, therefore, the presence or absence of the analyte cannot be verified.

TABLE C.2.1.2Profile Data - Lacustrine Silt Sampling in OU#2OU#1 / OU#2 FFS Report

Former IBM Endicott Facility, Endicott, NY

Collect Date	Client ID	Boring/ Well ID	Sample Type	Depth into Silt	Dilution	Units	Acetone	2-Butanone (MEK)	Carbon Disulfide	Chlorobenzene	Chloroethane	Chloroform	1,2-Dichlorobenzene	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Freon 113 (Freon TF)	Freon 123a	Methylene Chloride	Tetrachloroethene	Toluene	1,1,1-Trichloroethane	Trichloroethene	Vinyl Chloride	m,p-Xylene
07/28/2005 08/11/2005	EN017A050728 EN017A050811	EN-17A EN-17A	Aqueous Aqueous	NA NA	10 & 1000 10 & 1000	ug/L ug/L	9600 J 350	39100 2600	<10 <10	<10 <10	14 19	<10 <10	<10 <10	520 J 790 J	5 J 6 J	6 J 11	18 . 35	J <10 <10	<10 <10	<10 5 J	<10 <10	4 J 8 J		59 J 110	24 J 18	<10 <10	<20 <20
08/25/2005	EN017A050825	EN-17A	Aqueous	NA	1 & 20	ug/L	52	100	<1	<1	12	<1	<1	540	6	11	200	0.7 J	1	5	0.6 J	9	<1	160	19	2	<2
08/25/2005	ENMWXX050825	EN-17A	Aqueous	NA	1 & 20	ug/L	NA	NA	NA	<1	14	<1	<1	600	5.5	16	240	0.83 J	1.5	5.8	1.2	10	<1	170	20	200	<1
07/21/2005	E017A0650721	EN-17A	Soil	6"	1	ug/kg	7.7	R	<6.5	<6.5	6.7	<6.5	<6.5	170	2.1 J	6.8	8.4	<6.5	<6.5	NA	<6.5	<6.5	<6.5	8.4	1.3 J	3.0 J	<6.5
07/21/2005	E017A1250721	EN-17A	Soil	12"	1	ug/kg	7.3	R	<6.3	<6.3	4.6	J <6.3	<6.3	500 J	3.6 J	12	14	<6.3	1.2 J	NA	<6.3	6.0 J	<6.3	71 54	7.1	3.4 J	<6.3
07/21/2005 07/21/2005	E017A1850721 E017A2450721	EN-17A EN-17A	Soil Soil	18" 24"	1	ug/kg	4.5 J 16 J	R 5.4 J	<6.8 1.9	<6.8 J <6.1	4.0 3.0	J <6.8 J <6.1	<6.8 <6.1	390 J 280 J	3.1 J 4.7 J	15 41	20 42	<6.8 <6.1	1.5 J 4.6 J	NA NA	<6.8 1.9 J	9.2 43	<6.8 <6.1	54 95	12 30	<6.8 <6.1	<6.8 <6.1
07/21/2005	E017A2450721 E017A3050721	EN-17A EN-17A	Soil	24 30"	1	ug/kg ug/kg	10 J	5.4 J R	<670	<670	<670 .	J <670	<670	280 J 3600	4.7 J 140 J	1500	42 2100	<670	4.0 J 370 J	NA	<670	43 <670	<670	4000	380 J	<670	<0.1 <670
07/21/2005	E017A3650721	EN-17A EN-17A	Soil	36"	1	ug/kg	1200 J	R	<630	<630	<630	J <630	<630	2300	<630	500 J	1500	<630	220 J	NA	<630	<630	<630	2500	210 J	<630	<630
07/21/2005	E017A4250721	EN-17A	Soil	42"	1	ug/kg	1200 J	R	<700	<700	<700	J <700	<700	1400	<700	560 J	860	<700	200 J	NA	<700	<700	<700	2000	3300	<700	<700
07/21/2005	E017A4850721	EN-17A	Soil	48"	1	ug/kg	1100 J	R	<630	<630	<630 .	J <630	<630	620 J	<630	260 J	590	J <630	140 J	NA	<630	<630	<630	720	3500	<630	<630
07/28/2005	EN020A050728	EN-20A	Aqueous	NA	2	ug/L	<20	<4	<2	<2	<2	<2	<2	8	<2	2	120 J	<2	<2	<2	<2	<2	<2	<2	19	2	<4
08/11/2005	EN020A050811	EN-20A	Aqueous	NA	2 & 5	ug/L	<20	<4	<2	<2	<2	<2	<2	13	<2	3	79	<2	<2	<2	<2	<2	<2	3	9	3	<4
08/25/2005	EN020A050825	EN-20A	Aqueous	NA	1 & 5	ug/L	<10	R	<1	<1	0.8 J	<1	<1	15	0.5 J	3	89	0.6 J	<1	<1	0.4 J	0.6 J	<1	4	10	7	<2
08/25/2005	ENMWX1050825	EN-20A	Aqueous	NA	1	ug/L	NA	NA	NA	<1	0.65 J	<1	<1	15	<1	1.7	81	<1	<1	<1	1	0.84 J	<1	6.7	14	3.4	<1
07/22/2005	E020A0650722	EN-20A	Soil	6"	1	ug/kg	1300 J	R	<750	<750	<750	J <750	<750	670 J	<750	<750	3700	<750	<750	NA	<750	<750	<750	<750	380 J	310 J	<750
07/22/2005	E020A1250722	EN-20A	Soil	12"	1	ug/kg	1000 J	R	<610	<610	<610	J <610	<610	2100	<610	720	11000	<610	<610	NA	<610	170 J	350 J	<610	530 J	900	150 J
07/22/2005	E020A1850722	EN-20A	Soil	19"	1	ug/kg	1200 J	R	<700	<700	<700	J <700	<700	3100	<700	970	14000	<700	<700	NA	<700	<700	500 J	<700	<700	1500	<700
07/22/2005	E020A2450722	EN-20A	Soil	24"	1	ug/kg	1100 J	R	<750	<750	<750 .	J <750	<750	3000	<750	840	20000	<750	<750	NA	<750	<750	<750	<750	<750	1500	<750
07/22/2005	E020A3050722	EN-20A	Soil	30"	1.8	ug/kg	1400 J	R	<1200	<1200	<1200 .		<1200	3900	<1200	1400	35000	<1200	<1200	NA	<1200	<1200	<1200	<1200	<1200	2000	<1200
07/22/2005	E020A3650722	EN-20A	Soil	36"	1.4	ug/kg	950 J	R	<910	<910	<910 .		<910	2800	<910	770 J	22000	<910	<910	NA	<910	<910	<910	<910	<910	1400	<910
07/22/2005	E020A4250722	EN-20A	Soil	42"	1.8	ug/kg	1200 J	R	<1300	<1300	<1300 .		<1300	4400	<1300	1400	38000	<1300	<1300	NA	<1300	<1300	<1300	<1300	<1300	1800	<1300
07/22/2005 07/22/2005	E020A4850722 E020A5450722	EN-20A EN-20A	Soil	48" 54"	2.3	ug/kg	1200 J 1300 J	R	<790 <1600	<790 <1600	<790 .		<790 <1600	4300 5800	<790 <1600	930 1500 J	31000 44000	<790 <1600	<790 <1600	NA NA	<790 <1600	<790 <1600	<790 <1600	<790 <1600	<790 <1600	1000 1200 J	<790 <1600
07/22/2005	E020A3430722 E020A6050722	EN-20A EN-20A	Soil Soil	54 60"	2.5	ug/kg ug/kg	1300 J 1200 J	R	<1600	<1600		J <1600 J <1600	<1600	5400	<1600	1300 J	44000	<1600	<1600	NA	<1600	<1600	<1600	<1600	<1600	1200 J	<1600
07/22/2005	E020A6650722	EN-20A EN-20A	Soil	66"	3	ug/kg ug/kg	1200 J	R	<21000	<21000		J <2100	<2100	5100	<2100	1300 J	62000	<2100	<2100	NA	<21000	<2100	<21000	<21000	<21000	1200 J	<21000
07/22/2005	E020A7250722	EN-20A	Soil	72"	5	ug/kg	3900 J	R	<3400	<3400		J <3400	<3400	9000	<3400	2300 J	140000	<3400	<3400	NA	<3400	<3400	<3400	<3400	<3400	2000 J	<3400
07/22/2005	E020A7850722	EN-20A	Soil	78"	4.9	ug/kg	1200 J	R	<3100	<3100		J <3100	<3100	3900	<3100	1200 J	70000	<3100	<3100	NA	<3100	<3100	<3100	<3100	<3100	880 J	<3100
07/22/2005	E020A8450722	EN-20A	Soil	84"	4.9	ug/kg	1300 J	R	<3000	<3000	<3000	J <3000	<3000	3100	<3000	900 J	71000	<3000	<3000	NA	<3000	<3000	<3000	<3000	<3000	770 J	<3000
07/22/2005	E020A9050722	EN-20A	Soil	90"	1	ug/kg	980 J	R	<600	<600	<600	J <600	<600	1700	<600	480 J	13000	<600	<600	NA	<600	<600	<600	<600	<600	170 J	<600
07/22/2005	E020A9650722	EN-20A	Soil	96"	1	ug/kg	1000 J	R	<640	<640	<640 .	J <640	<640	270 J	<640	<640	1900	<640	<640	NA	<640	<640	<640	<640	<640	<640	<640
07/28/2005	EN421A050728	EN-421A	Aqueous	NA	1 & 200	ug/L	<10	2	<1	0.4 J	18	5	0.3 J	180 J	3	44 J	1700	1	5	6	4	17	0.3 J	120 J	6000	95 J	<2
08/11/2005	EN421A050811	EN-421A	Aqueous	NA	5 & 500	ug/L	<50	<10	<5	<5	19	8	3 J	260 J	4 J	53	2100	2 J	6	7	4 J	16	<5	190	9600	110	<10
08/25/2005	EN421A050825	EN-421A	Aqueous	NA	5 & 500	ug/L	<50	<10	<5	<5	13	7	<5	230 J	4 J	41 50	1900	2 J	7	6	4 J	17	<5	210 J	7800	82 140 I	<10
08/25/2005	ENMWX2050825	EN-421A	Aqueous	NA	1 & 250	ug/L	NA	NA	NA	<1	17	7.9	<1	310	3.9	59	2700	1.8	9.6	8.1	4.9	19	<1	290	9300	140 J	<1
07/20/2005	E421A0650720	EN-421A	Soil	6"	1	ug/kg	R	R	<1400	J <1400	J <1400	J <1400 .	<1400 J	<1200	$<\!\!1400 J$		600 .	J <1400 J	<1400 J	NA	<1200	<1400 J	<1400 J	<1200		<1400 J	
07/20/2005	E421A1250720	EN-421A	Soil	12"	1	ug/kg	R	R					<1400 J		<1400 J				<1400 J		<1200		<1400 J			<1400 J	
07/20/2005	E421A1850720	EN-421A	Soil	18"	1	ug/kg	R	R					<1400 J		<1400 J				<1400 J		<1200		<1400 J		14000 J		
07/20/2005	E421A2450720	EN-421A	Soil	24"	1	ug/kg	R	R					<1400 J		<1400 J				<1400 J		<1200				20000 J		
07/20/2005	E421A3050720	EN-421A EN 421A	Soil	30" 36"	1	ug/kg	R	R					<1300 J		<1300 J	300 J 480 J			<1300 J <2300 J				<1300 J		45000 J 70000 J		
07/20/2005 07/20/2005	E421A3650720 E421A4250720	EN-421A EN-421A	Soil Soil	30 42"	1.7 2.3	ug/kg	R R	R					I <2300 J I <3100 J		<2300 J <3100 J	480 J 630 J			<2300 J <3100 J		<2000		<2300 J <3100 J		97000 J		
07/20/2005	E421A4250720 E421A4850720	EN-421A EN-421A	Soil	42 48"	2.3	ug/kg ug/kg	R	R					<3100 J <3300 J		<3100 J				<3100 J <3300 J				<3100 J <3300 J		97000 J		
01120/2000		<u></u>	2011	.0	2.0		11	ĸ						100 1		,	. 200			.,11				500 J	200000 0		

NOTES:

1. This table summarizes results of groundwater and soil sampling adjacent to existing wells EN-17, EN-20, and EN-421. The soil borings were advanced to within 2 feet of the Lacustrine Silt using 6 1/4-inch hollow-stem auger drilling techniques. The soil borings were advanced beyond the augers and into the Lacustrine Silt using 4-inch cased mud-rotary drilling techniques. Soil samples were collected ahead of the 4-inch casing using 3-inch split-spoons. Upon completion of each soil boring a temporary monitoring well was installed in the borehole. The temporary wells were constructed with one-foot long screens set above the apparent interface between the Upper Aquifer sand and gravel stratum and the underlying Lacustrine Silt. The soil borings and temporary monitoring well installations were performed between July 20 and 22, 2005 by Parratt-Wolff, Inc. of East Syracuse, New York and were observed and logged by Groundwater Sciences Corporation personnel. 2. The groundwater samples were submitted to the Hudson Valley Environmental Laboratory (HVEL) of Hopewell Junction, New York and were analyzed for volatile organic compounds (VOCs) by SW-846 Method 8260B. Duplicate groundwater samples were collected on 8/25/2005 and were sent to the secondary laboratory, STL Newburgh of Newburgh, New York and were analyzed for VOCs by SW-846 Method 8260B. The groundwater results are presented in units of micrograms per liter (ug/L).

3. The soil quality samples were submitted to Severn Trent Laboratories, Inc. of Colchester, Vermont and were analyzed for VOCs using SW-846 Method 5035/8260B. The soil quality results are presented in units of micrograms per kilogram (ug/kg).

4. The analytical data was validated by Trillium, Inc. of Downingtown, Pennsylvania. The "J" qualifier indicates that the compound meets the identification criteria, but the result is less than the reporting limit and, therefore, is estimated. The "R" qualifier indicates that the compound meets the identification criteria, but the result is less than the reporting limit and, therefore, is estimated. The "R" qualifier indicates that the result was rejected due to analytical and quality control deficiencies and, therefore, the presence or absence of the analyte cannot be verified.

Sample Location		FN.	-017A	FN	-017A	FN	-017A	FN-	-017A
Sample Docation Sample Depth (feet bgs)		EIN	23.5'	EIN	24.0'	EN	24.5'	En	25.0'
Sample Depth (leet bgs)		07/21		07/21	/2005	07/2	1/2005	07/21	
Laboratory Sample I.D.			29757		29758		29759		29760
		6		0.	27.00	0	27.07	01	27700
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
1,1,1-TRICHLOROETHANE	ug/kg	8.4		71		54		95 ND@(1	
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 1.2	J	ND@6.8 1.5	J	ND@6.1 4.6	J
1,1,2-TRICHLOROETHANE	ug/kg	ND@6.5		ND@6.3		ND@6.8	-	ND@6.1	-
1,1-DICHLOROETHANE	ug/kg	170		500	J	390	J	280	J
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	ug/kg ug/kg	6.8 NA		12 NA		15 NA		41 NA	
1,2,3-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	ug/kg ug/kg	NA		NA		NA		NA NA	
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMOETHANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	ug/kg ug/kg	ND@6.5 2.1	I	ND@6.3 3.6	I	ND@6.8 3.1	T	ND@6.1 4.7	I
1,2-DICHLOROETHENE, TOTAL	ug/kg	8.7	,	15	5	20	, ,	45	5
1,2-DICHLOROPROPANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	-
1,3,5-TRIMETHYLBENZENE 1,3-DICHLOROBENZENE	ug/kg ug/kg	NA ND@6.5		NA ND@6.3		NA ND@6.8		NA ND@6.1	
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	ug/kg ug/kg	ND@0.5 NA		ND@6.5 NA		ND@0.8		ND@6.1 NA	
1,4-DICHLOROBENZENE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
1,4-DIOXANE 2,2-DICHLOROPROPANE	ug/kg ug/kg	NA NA	R	NA	R	NA	R	NA NA	R
2-CHLOROETHYLVINYL ETHER	ug/kg ug/kg	ND@6.5	J	ND@6.3	J	NA ND@6.8	J	NA ND@6.1	
2-CHLOROTOLUENE	ug/kg	NA	_	NA		NA	-	NA	
3-CHLOROPROPENE	ug/kg	ND@6.5	J	ND@6.3	J	ND@6.8	J	ND@6.1	
4-CHLOROTOLUENE ACETONE	ug/kg ug/kg	NA 7.7		NA 7.3		NA 4.5	T	NA 16	T
ACROLEIN	ug/kg	NA	R	NA	R	NA	R	NA	R
ACRYLONITRILE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
BENZENE BROMOBENZENE	ug/kg ug/kg	ND@6.5 NA		ND@6.3 NA		ND@6.8 NA		ND@6.1 NA	
BROMOCHLOROMETHANE	ug/kg ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
BROMODICHLOROMETHANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
BROMOFORM (TRIBROMOMETHANE) BROMOMETHANE	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 ND@6.3		ND@6.8 ND@6.8		ND@6.1 ND@6.1	
CARBON DISULFIDE	ug/kg ug/kg	ND@0.5		ND@0.3 ND@6.3		ND@6.8		1.9	J
CARBON TETRACHLORIDE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
CHLOROBENZENE	ug/kg	ND@6.5		ND@6.3	т	ND@6.8		ND@6.1	
CHLORODIBROMOMETHANE CHLOROETHANE	ug/kg ug/kg	ND@6.5 6.7		ND@6.3 4.6	J	ND@6.8 4	J	ND@6.1 ND@6.1	
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@6.5		ND@6.3		ND@6.8	-	ND@6.1	
CHLOROMETHANE	ug/kg	ND@6.5	T	ND@6.3	T	ND@6.8	T	ND@6.1	
CHLOROPRENE CIS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@6.5 8.4	J	ND@6.3 14	J	ND@6.8 20	J	ND@6.1 42	
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
DIBROMOMETHANE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
DICHLORODIFLUOROMETHANE (FREON 12) ETHYL METHACRYLATE	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 ND@6.3		ND@6.8 ND@6.8		ND@6.1 ND@6.1	
ETHYLBENZENE	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
HEXACHLOROBUTADIENE	ug/kg	NA		NA		NA		NA	
IODOMETHANE ISOBUTYL ALCOHOL	ug/kg ug/kg	ND@6.5 NA	D	ND@6.3 NA	D	ND@6.8 NA	D	ND@6.1 NA	D
ISOPROPYLBENZENE	ug/kg ug/kg	ND@6.5	~	ND@6.3	^	ND@6.8	~	ND@6.1	~
ISOPROPYLTOLUENE	ug/kg	NA		NA		NA		NA	
M,P-XYLENE METHACRYLONITRILE	ug/kg ug/kg	ND@6.5 ND@6.5	I	ND@6.3 ND@6.3	I	ND@6.8 ND@6.8		ND@6.1 ND@6.1	
METHACKYLONITRILE METHYL BUTYL KETONE (2-HEXANONE)	ug/kg ug/kg	ND@6.5	J	ND@6.3	l	ND@6.8		ND@6.1 ND@6.1	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	NA	R	NA	R	NA	R	5.4	J
METHYL METHACRYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 ND@6.3		ND@6.8 ND@6.8	$\left - \right $	ND@6.1 ND@6.1	
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 ND@6.3		ND@6.8 ND@6.8		ND@6.1 1.9	J
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@6.5		ND@6.3		ND@6.8		ND@6.1	
N-BUTYLBENZENE N-PROPYLBENZENE	ug/kg	NA		NA		NA	\mid	NA	
N-PROPYLBENZENE O-XYLENE	ug/kg ug/kg	NA ND@6.5		NA ND@6.3		NA ND@6.8		NA ND@6.1	
PROPIONITRILE	ug/kg	NA	R	NA	R	NA	R	NA	R
SEC-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
STYRENE TERT-BUTYLBENZENE	ug/kg ug/kg	ND@6.5 NA		ND@6.3 NA		ND@6.8 NA		ND@6.1 NA	
TETRACHLOROETHENE	ug/kg	ND@6.5		6		9.2		43	
TETRAHYDROFURAN	ug/kg	ND@65	J	ND@63	J	ND@68		ND@61	
TOLUENE TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@6.5 ND@6.5		ND@6.3 ND@6.3		ND@6.8 ND@6.8		ND@6.1 ND@6.1	
TRANS-1,2-DICHLOROPTHENE TRANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@0.5		ND@6.3		ND@6.8		ND@6.1	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@6.5	_	ND@6.3		ND@6.8		ND@6.1	
TRICHLOROETHENE TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	1.3 ND@6.5	J	7.1 ND@6.3		12 ND@6.8		30 ND@6.1	
VINYL ACETATE	ug/kg ug/kg	ND@6.5 ND@6.5	J	ND@6.3 ND@6.3	J	ND@6.8 ND@6.8		ND@6.1 ND@6.1	
VINYL CHLORIDE	ug/kg	3		3.4		ND@6.8		ND@6.1	
XYLENES, TOTAL	ug/kg	ND@6.5		ND@6.3	1	ND@6.8		ND@6.1	

Sample Location		EN	-017A	EN	-017A	EN	-017A	EN	-017A
Sample Depth (feet bgs)			25.5'		26.0'		26.5'		27.0
Sample Date		07/21	1/2005	07/21	/2005	07/21	/2005	07/21	
Laboratory Sample I.D.			29761		29762		29763		29764
Parameter	Units								
r ar ameter	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	ug/kg	4000 ND@670		2500 ND@630		2000 ND@700		720 ND@630	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	370		220	J	200	I	140	I
1,1,2-TRICHLOROETHANE	ug/kg	ND@670		ND@630		ND@700	5	ND@630	5
1,1-DICHLOROETHANE	ug/kg	3600		2300		1400		620	J
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	ug/kg	1500		500	J	560	J	260	J
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	ug/kg ug/kg	NA NA		NA NA		NA NA		NA NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	ug/kg	NA ND@670		NA ND@630		NA ND@700		NA ND@630	
1,2-DICHLOROBENZENE	ug/kg ug/kg	ND@670		ND@630		ND@700		ND@630	
1,2-DICHLOROETHANE	ug/kg	140		ND@630		ND@700		ND@630	
1,2-DICHLOROETHENE, TOTAL	ug/kg	2200		1600		910		620	J
1,2-DICHLOROPROPANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
1,3,5-TRIMETHYLBENZENE	ug/kg	NA ND@670		NA		NA		NA ND@(20	
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	ug/kg ug/kg	ND@670 NA	+ +	ND@630 NA	$\left \right $	ND@700 NA	$\left \right $	ND@630 NA	
1,4-DICHLOROBENZENE	ug/kg	ND@670		ND@630		ND@700		ND@630	
1,4-DIOXANE	ug/kg	NA	R	NA	R	NA	R	NA	R
2,2-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
2-CHLOROETHYLVINYL ETHER 2-CHLOROTOLUENE	ug/kg	ND@670		ND@630		ND@700		ND@630	
3-CHLOROPROPENE	ug/kg ug/kg	NA ND@670		NA ND@630	I	NA ND@700	I	NA ND@630	T
4-CHLOROTOLUENE	ug/kg	NA		NA	5	NA NA	5	NA	3
ACETONE	ug/kg	1200		1000	J	1200	J	1100	J
ACROLEIN	ug/kg	NA		NA		NA	R	NA	R
ACRYLONITRILE	ug/kg	NA		NA	R	NA	R	NA	R
BENZENE BROMOBENZENE	ug/kg ug/kg	ND@670 NA		ND@630 NA		ND@700 NA		ND@630 NA	
BROMOCHLOROMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
BROMODICHLOROMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@670		ND@630		ND@700		ND@630	
BROMOMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@670 ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
CHLOROBENZENE	ug/kg	ND@670		ND@630		ND@700		ND@630	
CHLORODIBROMOMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
CHLOROETHANE	ug/kg	ND@670		ND@630	J	ND@700	J	ND@630	J
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@670		ND@630		ND@700		ND@630	
CHLOROMETHANE CHLOROPRENE	ug/kg ug/kg	ND@670 ND@670		ND@630 ND@630	т	ND@700 ND@700	т	ND@630 ND@630	т
CIS-1,2-DICHLOROETHENE	ug/kg	2100		1500	5	860	J	590	J
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@670		ND@630		ND@700		ND@630	-
DIBROMOMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@670		ND@630		ND@700		ND@630 ND@630	
ETHYL METHACRYLATE ETHYLBENZENE	ug/kg ug/kg	ND@670 ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
HEXACHLOROBUTADIENE	ug/kg	NA		NA		NA NA		NA	
IODOMETHANE	ug/kg	ND@670		ND@630		ND@700		ND@630	
ISOBUTYL ALCOHOL	ug/kg	NA		NA	R	NA	R	NA	R
ISOPROPYLBENZENE	ug/kg	ND@670		ND@630		ND@700		ND@630	
ISOPROPYLTOLUENE M.P-XYLENE	ug/kg ug/kg	NA ND@670		NA ND@630		NA ND@700		NA ND@630	
METHACRYLONITRILE	ug/kg	ND@670		ND@630		ND@700		ND@630	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@670	1	ND@630		ND@700		ND@630	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	NA		NA	R	NA	R	NA	R
METHYL METHACRYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@670 ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg ug/kg	ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@670		ND@630		ND@700		ND@630	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
N-PROPYLBENZENE	ug/kg	NA		NA		NA		NA	
O-XYLENE	ug/kg	ND@670		ND@630	D	ND@700	D	ND@630	D
PROPIONITRILE SEC-BUTYLBENZENE	ug/kg ug/kg	NA NA		NA NA	к	NA NA	к	NA	к
STYRENE	ug/kg ug/kg	ND@670		ND@630		ND@700		ND@630	
TERT-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
TETRACHLOROETHENE	ug/kg	ND@670	1	ND@630		ND@700		ND@630	
TETRAHYDROFURAN	ug/kg	ND@6700		ND@6300		ND@7000		ND@6300	
TOLUENE TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@670 ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@670		ND@630		ND@700 ND@700		ND@630 ND@630	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@670		ND@630		ND@700		ND@630	
TRICHLOROETHENE	ug/kg	380	J	210	J	3300		3500	
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@670		ND@630		ND@700		ND@630	
VINYL ACETATE	ug/kg	NA		NA	R	NA ND@700	R	NA ND@C20	Ŕ
VINYL CHLORIDE XYLENES, TOTAL	ug/kg	ND@670 ND@670		ND@630 ND@630		ND@700 ND@700		ND@630 ND@630	
ATLENES, IUTAL	ug/kg	ND@0/0	1	ทมพืชชีวิบ	1	ND@/00	1	ND@030	

Sample Location		EN	-020A	EN	-020A	EN	-020A	EN	-020A
Sample Depth (feet bgs)			20.0'		20.5'		21.0'		21.5
Sample Date		07/22	/2005	07/22	/2005	07/22	2/2005	07/22	2/2005
Laboratory Sample I.D.		6	29960	6	29961	6	29962	6	29963
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
1,1,2,2-TETRACHLOROETHANE	ug/kg ug/kg	ND@750		ND@610		ND@700		ND@750	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
1,1,2-TRICHLOROETHANE	ug/kg	ND@750	т	ND@610		ND@700 3100		ND@750	
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	ug/kg ug/kg	670 ND@750	J	2100 720		3100		3000 840	
1,1-DICHLOROPROPENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROBENZENE	ug/kg	NA ND@750		NA		NA		NA ND@750	
1,2,3-TRICHLOROPROPANE 1,2,4-TRICHLOROBENZENE	ug/kg ug/kg	ND@750 NA		ND@610 NA		ND@700 NA		ND@750 NA	
1,2,4-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
1,2-DICHLOROETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
1,2-DICHLOROETHENE, TOTAL	ug/kg	3900		12000		15000		21000	
1,2-DICHLOROPROPANE 1,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@750 NA		ND@610 NA		ND@700 NA		ND@750 NA	-
1,3-DICHLOROBENZENE	ug/kg ug/kg	ND@750		ND@610		ND@700		ND@750	
1,3-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,4-DICHLOROBENZENE 1,4-DIOXANE	ug/kg ug/kg	ND@750 NA	D	ND@610 NA	D	ND@700 NA	D	ND@750 NA	R
2,2-DICHLOROPROPANE	ug/kg ug/kg	NA	~	NA	~	NA	^	NA	~
2-CHLOROETHYLVINYL ETHER	ug/kg	ND@750		ND@610		ND@700		ND@750	
2-CHLOROTOLUENE 3-CHLOROPROPENE	ug/kg	NA ND@750	I	NA ND@610	T	NA ND@700	I	NA ND@750	IJ
4-CHLOROTOLUENE	ug/kg ug/kg	ND@750	J	NA	J	ND@700 NA	J	ND@730 NA	0
ACETONE	ug/kg	1300	J	1000	J	1200	J	1100	J
ACROLEIN ACRYLONITRILE	ug/kg	NA	R	NA	R	NA	R	NA	R
BENZENE	ug/kg ug/kg	NA ND@750	к	NA ND@610	к	NA ND@700	R	NA ND@750	R
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
BROMOMETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
CARBON DISULFIDE	ug/kg	ND@750		ND@610		ND@700		ND@750	
CARBON TETRACHLORIDE CHLOROBENZENE	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
CHLORODIBROMOMETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
CHLOROETHANE	ug/kg	ND@750	J	ND@610	J	ND@700	J	ND@750	
CHLOROFORM (TRICHLOROMETHANE) CHLOROMETHANE	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
CHLOROPRENE	ug/kg	ND@750	J	ND@610	J	ND@700	J	ND@750	J
CIS-1,2-DICHLOROETHENE	ug/kg	3700 ND@750		11000 ND@610		14000 ND@700		20000 ND@750	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg ug/kg	ND@750		ND@610		ND@700		ND@750	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@750		ND@610		ND@700		ND@750	
ETHYL METHACRYLATE	ug/kg	ND@750		ND@610		ND@700		ND@750	
ETHYLBENZENE HEXACHLOROBUTADIENE	ug/kg ug/kg	ND@750 NA		ND@610 NA		ND@700 NA		ND@750 NA	
IODOMETHANE	ug/kg	ND@750		ND@610		ND@700		ND@750	
ISOBUTYL ALCOHOL	ug/kg	NA ND@750	R	NA ND@610	R	NA	R	NA ND@750	R
ISOPROPYLBENZENE ISOPROPYLTOLUENE	ug/kg ug/kg	ND@750 NA		ND@610 NA		ND@700 NA		ND@750 NA	-
M,P-XYLENE	ug/kg	ND@750		150	J	ND@700		ND@750	
METHACRYLONITRILE	ug/kg	ND@750		ND@610		ND@700		ND@750	
METHYL BUTYL KETONE (2-HEXANONE) METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg ug/kg	ND@750 NA	R	ND@610 NA	R	ND@700 NA	R	ND@750 NA	
METHYL METHACRYLATE	ug/kg	ND@750		ND@610		ND@700		ND@750	
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@750		ND@610		ND@700		ND@750	
METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE)	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
N-PROPYLBENZENE	ug/kg	NA		NA		NA		NA	
O-XYLENE PROPIONITRILE	ug/kg ug/kg	ND@750 NA	R	ND@610 NA	R	ND@700 NA		ND@750 NA	
SEC-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
STYRENE	ug/kg	ND@750		ND@610		ND@700		ND@750	
TERT-BUTYLBENZENE TETRACHLOROETHENE	ug/kg ug/kg	NA ND@750		NA 170	I	NA ND@700		NA ND@750	
TETRACHLOROETHENE	ug/kg ug/kg	ND@7500		ND@6100	, 	ND@7000		ND@7500	
TOLUENE	ug/kg	ND@750		350	J	500		ND@750	
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@750 ND@750		ND@610 ND@610		ND@700 ND@700		ND@750 ND@750	
TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	ug/kg ug/kg	ND@750		ND@610		ND@700		ND@750	
TRICHLOROETHENE	ug/kg	380	J	530	J	ND@700		ND@750	
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@750	D	ND@610	D	ND@700		ND@750	
VINYL ACETATE VINYL CHLORIDE	ug/kg ug/kg	NA 310	J	NA 900	A	NA 1500	ĸ	NA 1500	
XYLENES, TOTAL	ug/kg	ND@750		160	J	ND@700		ND@750	

Sample Location		EN	-020A	EN	-020A	EN	-020A	EN	-020A
Sample Depth (feet bgs)			22.0'		22.5'		23.0'		23.5
Sample Date		07/22	2/2005	07/22	/2005	07/22	2/2005	07/22	/2005
Laboratory Sample I.D.		6	29964	6	29965	6	29966	62	29967
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
1,1,2,2-TETRACHLOROETHANE	ug/kg ug/kg	ND@1200		ND@910		ND@1300		ND@790	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
1,1,2-TRICHLOROETHANE 1.1-DICHLOROETHANE	ug/kg ug/kg	ND@1200 3900		ND@910 2800		ND@1300 4400		ND@790 4300	
1,1-DICHLOROETHANE	ug/kg ug/kg	1400		770	J	1400		930	
1,1-DICHLOROPROPENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	ug/kg ug/kg	NA ND@1200		NA ND@910		NA ND@1300		NA ND@790	
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	ug/kg ug/kg	NA ND@1200		NA ND@910		NA ND@1300		NA ND@790	
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	ug/kg ug/kg	ND@1200		ND@910		ND@1300		ND@790	
1,2-DICHLOROETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
1,2-DICHLOROETHENE, TOTAL 1.2-DICHLOROPROPANE	ug/kg	37000 ND@1200		24000		41000 ND@1200	<u> </u>	33000 ND@700	
1,2-DICHLOROPROPANE 1,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@1200 NA		ND@910 NA		ND@1300 NA		ND@790 NA	
1,3-DICHLOROBENZENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
1,3-DICHLOROPROPANE	ug/kg	NA ND@1200		NA ND@910		NA ND@1300	<u> </u>	NA ND@790	
1,4-DICHLOROBENZENE 1.4-DIOXANE	ug/kg ug/kg	ND@1200 NA	R	ND@910 NA	R	ND@1300 NA	R	ND@790 NA	R
2,2-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
2-CHLOROETHYLVINYL ETHER	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
2-CHLOROTOLUENE 3-CHLOROPROPENE	ug/kg ug/kg	NA ND@1200		NA ND@910		NA ND@1300		NA ND@790	I
4-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	5
ACETONE	ug/kg	1400	J	950	J	1200		1200	J
ACROLEIN ACRYLONITRILE	ug/kg ug/kg	NA ND@1200	R	NA ND@910	R	NA ND@1300	R	NA	R
BENZENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	IX.
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
BROMOMETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
CHLOROBENZENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
CHLORODIBROMOMETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
CHLOROETHANE CHLOROFORM (TRICHLOROMETHANE)	ug/kg ug/kg	ND@1200 ND@1200	J	ND@910 ND@910	J	ND@1300 ND@1300	J	ND@790 ND@790	J
CHLOROMETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
CHLOROPRENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	J
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	ug/kg ug/kg	35000 ND@1200		22000 ND@910		38000 ND@1300		31000 ND@790	
DIBROMOMETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
ETHYL METHACRYLATE ETHYLBENZENE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
HEXACHLOROBUTADIENE	ug/kg	NA		NA		NA		NA	
IODOMETHANE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	_
ISOBUTYL ALCOHOL ISOPROPYLBENZENE	ug/kg ug/kg	NA ND@1200	К	NA ND@910	к	NA ND@1300	к	NA ND@790	к
ISOPROPYLTOLUENE	ug/kg ug/kg	NA		NA		NA	L	NA	
M,P-XYLENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
METHACRYLONITRILE METHYL BUTYL KETONE (2-HEXANONE)	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg ug/kg	NA	R	NA	R	NA		NA	R
METHYL METHACRYLATE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300	-	ND@790 ND@790	
MIBK (4-METHYL-2-PENTANONE)	ug/kg ug/kg	ND@1200		ND@910		ND@1300		ND@790	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
N-PROPYLBENZENE O-XYLENE	ug/kg ug/kg	NA ND@1200		NA ND@910		NA ND@1300		NA ND@790	
PROPIONITRILE	ug/kg ug/kg	ND@1200 NA	R	ND@910	R	NA	R	ND@790	R
SEC-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
STYRENE TERT-BUTYLBENZENE	ug/kg ug/kg	ND@1200 NA		ND@910 NA		ND@1300 NA	-	ND@790 NA	
TETRACHLOROETHENE	ug/kg ug/kg	ND@1200		ND@910		ND@1300		ND@790	
TETRAHYDROFURAN	ug/kg	ND@12000		ND@9100		ND@13000		ND@7900	
TOLUENE TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
TRANS-1,2-DICHLOROPTHENE TRANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300		ND@790	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@1200		ND@910		ND@1300		ND@790	
TRICHLOROETHENE TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@1200 ND@1200		ND@910 ND@910		ND@1300 ND@1300		ND@790 ND@790	
VINYL ACETATE	ug/kg ug/kg	ND@1200 NA	R	ND@910 NA	R	ND@1300 NA		ND@790 NA	R
VINYL CHLORIDE	ug/kg	2000		1400		1800		1000	
XYLENES, TOTAL	ug/kg	ND@1200		ND@910		ND@1300	1	ND@790	

	1								
Sample Location		EN-0	020A	EN	-020A	EN	-020A	EN	-020A
Sample Depth (feet bgs)			24.0'		24.5		25.0		25.5
Sample Date		07/22/2		07/22	/2005	07/22	/2005	07/22	2/2005
Laboratory Sample I.D.			9968		29969		29970		29971
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0				0	
Parameter	Units								
	Cinto								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,1,1-TRICHLOROETHANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@1600		ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
1,1-DICHLOROETHANE	ug/kg	5800		5400		5100		9000	
1,1-DICHLOROETHENE	ug/kg	1500 J	ſ	1300	J	1400	J	2300	J
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	ug/kg ug/kg	NA NA		NA NA		NA		NA NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA NA		NA NA		NA		NA	
1,2-DIBROMO-5-CHEOROFROFARE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,2-DICHLOROBENZENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,2-DICHLOROETHANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
1,2-DICHLOROETHENE, TOTAL 1,2-DICHLOROPROPANE	ug/kg ug/kg	47000 ND@1600		50000 ND@1600		66000 ND@2100		140000 ND@3400	
1,3,5-TRIMETHYLBENZENE	ug/kg	NA		NA		ND@2100		NA	
1,3-DICHLOROBENZENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	-
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	ug/kg ug/kg	NA ND@1600		NA ND@1600		NA ND@2100		NA ND@3400	-
1,4-DICHLOROBENZENE 1,4-DIOXANE	ug/kg ug/kg	ND@1600 NA F	R	ND@1600 NA	R	ND@2100 NA	R	ND@3400 NA	R
2,2-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
2-CHLOROETHYLVINYL ETHER 2-CHLOROTOLUENE	ug/kg	ND@1600 NA		ND@1600 NA		ND@2100 NA		ND@3400 NA	
3-CHLOROPROPENE	ug/kg ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
4-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
ACETONE	ug/kg	1300 J	1	1200	J	1300	J	3900	J
ACROLEIN ACRYLONITRILE	ug/kg ug/kg	NA F ND@1600	ĸ	NA ND@1600	К	NA ND@2100	ĸ	NA ND@3400	R
BENZENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	ug/kg ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
BROMOMETHANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
CARBON DISULFIDE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
CARBON TETRACHLORIDE CHLOROBENZENE	ug/kg ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
CHLORODIBROMOMETHANE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
CHLOROETHANE	ug/kg	ND@1600 J	I I	ND@1600	J	ND@2100	J	ND@3400	J
CHLOROFORM (TRICHLOROMETHANE) CHLOROMETHANE	ug/kg ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
CHLOROPRENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
CIS-1,2-DICHLOROETHENE	ug/kg	44000		47000		62000		140000	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg ug/kg	ND@1600		ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
ETHYL METHACRYLATE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
ETHYLBENZENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
HEXACHLOROBUTADIENE IODOMETHANE	ug/kg ug/kg	NA ND@1600		NA ND@1600		NA ND@2100		NA ND@3400	
ISOBUTYL ALCOHOL	ug/kg	NA F	R	NA	R	NA	R	NA	R
ISOPROPYLBENZENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
ISOPROPYLTOLUENE M.P-XYLENE	ug/kg	NA ND@1600		NA ND@1600		NA ND@2100		NA ND@3400	
METHACRYLONITRILE	ug/kg ug/kg	ND@1600		ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL METHACRYLATE	ug/kg ug/kg	NA F ND@1600	к	NA ND@1600	R	NA ND@2100	R	NA ND@3400	R
METHYL METHACKYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@1600		ND@1600		ND@2100	T	ND@3400	
N-BUTYLBENZENE N-PROPYLBENZENE	ug/kg ug/kg	NA NA		NA NA		NA		NA	
O-XYLENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
PROPIONITRILE	ug/kg	NA F	R	NA	R	NA	R	NA	R
SEC-BUTYLBENZENE STYRENE	ug/kg	NA ND@1600		NA ND@1600		NA ND@2100		NA ND@3400	
TERT-BUTYLBENZENE	ug/kg ug/kg	ND@1600 NA		ND@1600 NA		ND@2100 NA		ND@3400 NA	
TETRACHLOROETHENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
TETRAHYDROFURAN	ug/kg	ND@16000		ND@16000		ND@21000	T	ND@34000	
TOLUENE TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
TRANS-1,2-DICHLOROPROPENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	
TRICHLOROETHENE TRICHLOROETHONETHANE (EREON 11)	ug/kg	ND@1600 ND@1600		ND@1600 ND@1600		ND@2100 ND@2100		ND@3400 ND@3400	
TRICHLOROFLUOROMETHANE (FREON 11) VINYL ACETATE	ug/kg ug/kg	ND@1600 NA F	R	ND@1600 NA	R	ND@2100 NA	R	ND@3400 NA	
VINYL CHLORIDE	ug/kg	1200 J	I	1200	J	1100		2000	J
XYLENES, TOTAL	ug/kg	ND@1600		ND@1600		ND@2100		ND@3400	1

Sample Location		EN	-020A	EN	-020A	EN	-020A	EN	-020A
Sample Depth (feet bgs)			26		26.5'		27.0'		27.5
Sample Date		07/22	2/2005	07/22	2/2005	07/22	2/2005	07/22	2/2005
Laboratory Sample I.D.		6	29972	6	29973	6	29974	6	29975
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	ug/kg ug/kg	ND@3100 ND@3100		ND@3000 ND@3000		ND@600 ND@600		ND@640 ND@640	
1,1,2,2-TETRACHLOROETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,1,2-TRICHLOROETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	-
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	ug/kg	3900	т	3100 ND@3000		1700 480	T	270 ND@640	J
1,1-DICHLOROPROPENE	ug/kg ug/kg	1200 NA	J	ND@3000 NA		480 NA	J	ND@040 NA	
1,2,3-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	ug/kg	NA NA		NA NA		NA NA		NA NA	
1,2,4-1 RIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA		NA		NA		NA	
1,2-DIBROMOETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,2-DICHLOROBENZENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,2-DICHLOROETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,2-DICHLOROETHENE, TOTAL 1.2-DICHLOROPROPANE	ug/kg	74000 ND@3100		75000 ND@3000		14000 ND@600		2000 ND@640	
1,2-DICHLOROPROPANE 1,3.5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@3100 NA	+	ND@3000 NA		ND@600 NA		ND@640 NA	<u> </u>
1,3-DICHLOROBENZENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	t
1,3-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,4-DICHLOROBENZENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
1,4-DIOXANE 2,2-DICHLOROPROPANE	ug/kg	NA NA	R	NA	R	NA NA	R	NA	R
2,2-DICHLOROPROPANE 2-CHLOROETHYLVINYL ETHER	ug/kg ug/kg	ND@3100		ND@3000		ND@600		ND@640	
2-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
3-CHLOROPROPENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
4-CHLOROTOLUENE	ug/kg	NA		NA		NA	*	NA	T
ACETONE ACROLEIN	ug/kg ug/kg	1200 NA	J	1300 NA	J	980 NA	J	1000 NA	
ACRYLONITRILE	ug/kg	ND@3100	ĸ	ND@3000	ĸ	ND@600	ĸ	ND@640	ĸ
BENZENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@3100 ND@3100		ND@3000 ND@3000		ND@600 ND@600		ND@640 ND@640	
BROMOMETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
CARBON DISULFIDE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
CARBON TETRACHLORIDE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
CHLOROBENZENE CHLORODIBROMOMETHANE	ug/kg ug/kg	ND@3100 ND@3100		ND@3000 ND@3000		ND@600 ND@600		ND@640 ND@640	
CHLOROETHANE	ug/kg	ND@3100	J	ND@3000	J	ND@600	J	ND@640	J
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
CHLOROMETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
CHLOROPRENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640 1900	
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	ug/kg ug/kg	70000 ND@3100		71000 ND@3000		13000 ND@600		ND@640	
DIBROMOMETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
ETHYL METHACRYLATE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
ETHYLBENZENE HEXACHLOROBUTADIENE	ug/kg ug/kg	ND@3100 NA		ND@3000 NA		ND@600 NA		ND@640 NA	
IODOMETHANE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
ISOBUTYL ALCOHOL	ug/kg	NA	R	NA	R	NA	R	NA	R
ISOPROPYLBENZENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
ISOPROPYLTOLUENE M.D. XVI ENE	ug/kg	NA ND@3100	-	NA ND@2000		NA ND@600	<u> </u>	NA ND@640	
M,P-XYLENE METHACRYLONITRILE	ug/kg ug/kg	ND@3100 ND@3100	+	ND@3000 ND@3000		ND@600 ND@600		ND@640 ND@640	<u> </u>
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	NA	R	NA	R	NA	R	NA	R
METHYL METHACRYLATE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@3100 ND@3100		ND@3000 ND@3000		ND@600 ND@600		ND@640 ND@640	
MIBK (4-METHYL-2-PENTANONE)	ug/kg ug/kg	ND@3100		ND@3000		ND@600		ND@640 ND@640	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	L
N-PROPYLBENZENE	ug/kg	NA		NA		NA		NA	
O-XYLENE PROPIONITRILE	ug/kg	ND@3100	D	ND@3000	D	ND@600	D	ND@640	D
SEC-BUTYLBENZENE	ug/kg ug/kg	NA NA	N.	NA	A	NA NA	A	NA	r.
STYRENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
TERT-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
TETRACHLOROETHENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
TETRAHYDROFURAN TOLUENE	ug/kg ug/kg	ND@31000 ND@3100		ND@30000 ND@3000		ND@6000 ND@600		ND@6400 ND@640	
TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@3100		ND@3000		ND@600		ND@640 ND@640	
TRANS-1,3-DICHLOROPROPENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	
TRICHLOROETHENE	ug/kg	ND@3100		ND@3000		ND@600		ND@640	<u> </u>
TRICHLOROFLUOROMETHANE (FREON 11) VINYL ACETATE	ug/kg ug/kg	ND@3100 NA	R	ND@3000 NA	R	ND@600 NA	R	ND@640 NA	
VINYL ACEIATE VINYL CHLORIDE	ug/kg ug/kg	880		770	J	170		ND@640	K
XYLENES, TOTAL	ug/kg	ND@3100		ND@3000	ľ –	ND@600	<u> </u>	ND@640	1

Sample Location		EN-0	0254	FN	-025A	EN	-025A	EN	-025A
Sample Depth (feet bgs)		1714-0	14.5'	EIN	-025A 15.0'	EIN	-023A	EIN	-025A
Sample Depth (rect bgs)		05/04/		05/04	/2005	05/0/	1/2005	05/04	1/2005
Laboratory Sample I.D.			2003 9017		19018		19019		19020
Laboratory bampe 1.D.		01	7017	0	17010	0	1)01)	0	1 7020
Parameter	Units								
	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
1,1,1-TRICHLOROETHANE	ug/kg	4400		3500		3200		2500	
1,1,2,2-TETRACHLOROETHANE	ug/kg	ND@610		ND@600	_	ND@690		ND@680	_
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1,2-TRICHLOROETHANE	ug/kg ug/kg	ND@610 ND@610		150 ND@600	J	130 ND@690	J	130 ND@680	J
1,1-DICHLOROETHANE	ug/kg	760		1800		2300		2500	
1,1-DICHLOROETHENE	ug/kg	400 J	J	1100		1200		1200	
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	ug/kg ug/kg	NA NA		NA NA		NA NA		NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA NA		NA NA		NA NA		NA	
1,2-DIBROMO-5-CHLOROFROFANE	ug/kg ug/kg	ND@610		ND@600		ND@690		ND@680	
1,2-DICHLOROBENZENE	ug/kg	ND@610		ND@600		ND@690		ND@680	
1,2-DICHLOROETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
1,2-DICHLOROETHENE, TOTAL 1.2-DICHLOROPROPANE	ug/kg ug/kg	3600 ND@610		9400 ND@600		11000 ND@690		12000 ND@680	
1,3,5-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,3-DICHLOROBENZENE	ug/kg	ND@610		ND@600		ND@690		ND@680	
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	ug/kg ug/kg	NA ND@610		NA ND@600		NA ND@690		NA ND@680	
1,4-DICHLOROBENZENE 1,4-DIOXANE	ug/kg ug/kg	ND@610 NA I	R	ND@600 NA	R	ND@690 NA	R	ND@680 NA	R
2,2-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
2-CHLOROETHYLVINYL ETHER	ug/kg	ND@610		ND@600		ND@690		ND@680	
2-CHLOROTOLUENE 3-CHLOROPROPENE	ug/kg ug/kg	NA ND@610		NA ND@600		NA ND@690		NA ND@680	
4-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
ACETONE	ug/kg	ND@610		ND@600		ND@690		ND@680	
ACROLEIN ACRYLONITRILE	ug/kg ug/kg	NA 1 ND@610	R	NA ND@600	R	NA ND@690	R	NA ND@680	R
BENZENE	ug/kg ug/kg	ND@610		ND@600		ND@690		ND@680	
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
BROMOMETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
CARBON DISULFIDE	ug/kg	ND@610		ND@600		ND@690		ND@680	
CARBON TETRACHLORIDE CHLOROBENZENE	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
CHLORODIBROMOMETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
CHLOROETHANE	ug/kg	ND@610		ND@600		ND@690		ND@680	
CHLOROFORM (TRICHLOROMETHANE) CHLOROMETHANE	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
CHLOROPRENE	ug/kg ug/kg	ND@610		ND@600		ND@690		ND@680	
CIS-1,2-DICHLOROETHENE	ug/kg	3600		9200		11000		12000	
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
DIBROMOMETHANE DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg ug/kg	ND@610 J	I	ND@600 ND@600		ND@690 ND@690	J	ND@680 ND@680	J
ETHYL METHACRYLATE	ug/kg	ND@610		ND@600		ND@690	-	ND@680	-
ETHYLBENZENE	ug/kg	ND@610		ND@600		ND@690		ND@680	
HEXACHLOROBUTADIENE IODOMETHANE	ug/kg ug/kg	NA ND@610		NA ND@600		NA ND@690		NA ND@680	
ISOBUTYL ALCOHOL	ug/kg ug/kg	NA	R	NA	R	NA	R	NA	R
ISOPROPYLBENZENE	ug/kg	ND@610		ND@600		ND@690		ND@680	
ISOPROPYLTOLUENE	ug/kg	NA ND@610	[NA ND@600]	NA ND@600		NA	
M,P-XYLENE METHACRYLONITRILE	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@610		ND@600		ND@690		ND@680	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	NA	R	NA	R	NA	R	NA	R
METHYL METHACRYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg ug/kg	ND@610		ND@600		ND@690		ND@680	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@610		ND@600		ND@690		ND@680	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
N-PROPYLBENZENE O-XYLENE	ug/kg ug/kg	NA ND@610		NA ND@600		NA ND@690		NA ND@680	
PROPIONITRILE	ug/kg	NA	R	NA	R	NA	R	NA	R
SEC-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
STYRENE TERT-BUTYLBENZENE	ug/kg ug/kg	ND@610 NA		ND@600 NA		ND@690 NA		ND@680 NA	
TETRACHLOROETHENE	ug/kg ug/kg	ND@610		ND@600		ND@690		ND@680	
TETRAHYDROFURAN	ug/kg	ND@6100		ND@6000		ND@6900		ND@6800	
TOLUENE	ug/kg	260 J	J	460	J	410		350	
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
TRANS-1,3-DICHLORO-2-BUTENE	ug/kg	ND@610		ND@600		ND@690		ND@680	
TRICHLOROETHENE	ug/kg	ND@610		150	J	180		260	
TRICHLOROFLUOROMETHANE (FREON 11) VINYL ACETATE	ug/kg ug/kg	ND@610 ND@610		ND@600 ND@600		ND@690 ND@690		ND@680 ND@680	
VINYL ACEIATE VINYL CHLORIDE	ug/kg ug/kg	210 J	I	200	I	130		ND@680	
VINTECHLORIDE									

Sample Location		FN	-025A	FN	-025A	EN	-025A	FN	-025A
Sample Depth (feet bgs)		EIN-	16.5'	EN	17.0'	EIN	-023A	EIN	-025A
Sample Depth (teet bgs)		05/04		05/0/	/2005	05/0/	17.5	05/04	/2005
Laboratory Sample I.D.			19021		19022		19023		19024
Laboratory bampic 1.D.		0	17021	0	17022	0	17025	0	17024
Parameter	Units								
	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
1,1,1-TRICHLOROETHANE	ug/kg	1200		1100		ND@770		480	J
1,1,2,2-TETRACHLOROETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE 1,1,2-TRICHLOROETHANE	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
1,1-DICHLOROETHANE	ug/kg	1400		3100		3500		4200	
1,1-DICHLOROETHENE	ug/kg	ND@590		1300		1300		1500	
1,1-DICHLOROPROPENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	ug/kg ug/kg	ND@590		ND@670		ND@770		ND@750	
1,2-DICHLOROETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
1,2-DICHLOROETHENE, TOTAL	ug/kg	5200		20000		24000		31000	
1,2-DICHLOROPROPANE 1,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@590		ND@670 NA		ND@770 NA		ND@750 NA	
1,3,3-1RIMETHYLBENZENE 1,3-DICHLOROBENZENE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
1,3-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,4-DICHLOROBENZENE	ug/kg	ND@590	_	ND@670	_	ND@770	_	ND@750	_
1,4-DIOXANE 2,2-DICHLOROPROPANE	ug/kg ug/kg	NA	к	NA	к	NA NA	К	NA NA	к
2-CHLOROETHYLVINYL ETHER	ug/kg ug/kg	ND@590		ND@670		ND@770		ND@750	
2-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
3-CHLOROPROPENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
4-CHLOROTOLUENE ACETONE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
ACROLEIN	ug/kg ug/kg	ND@590		NA	R	NA	R	ND@750	R
ACRYLONITRILE	ug/kg	ND@590		ND@670		ND@770		ND@750	
BENZENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
BROMOBENZENE BROMOCHLOROMETHANE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
BROMODICHLOROMETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@590		ND@670		ND@770		ND@750	
BROMOMETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
CHLOROBENZENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
CHLORODIBROMOMETHANE	ug/kg	ND@590		ND@670		ND@770		ND@750	
CHLOROETHANE	ug/kg	NA	R	ND@670		ND@770		ND@750	
CHLOROFORM (TRICHLOROMETHANE) CHLOROMETHANE	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
CHLOROPRENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
CIS-1,2-DICHLOROETHENE	ug/kg	5100		19000		24000		31000	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg ug/kg	ND@590	J	ND@670	J	ND@770	J	ND@750	J
ETHYL METHACRYLATE	ug/kg	ND@590		ND@670		ND@770		ND@750	
ETHYLBENZENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
HEXACHLOROBUTADIENE IODOMETHANE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
ISOBUTYL ALCOHOL	ug/kg ug/kg	ND@390 NA	R	ND@070	R	ND@770	R	ND@750 NA	R
ISOPROPYLBENZENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
ISOPROPYLTOLUENE	ug/kg	NA	1	NA ND @ (70		NA		NA	
M,P-XYLENE METHACRYLONITRILE	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@590		ND@070		ND@770		ND@750	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg		R	NA	R	NA	R	NA	R
METHYL METHACRYLATE METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
METHYL TERT-BUTYL ETHER (MTBE) METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770		ND@750 ND@750	
MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@590		ND@670		ND@770		ND@750	
N-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
N-PROPYLBENZENE O-XYLENE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
PROPIONITRILE	ug/kg ug/kg	ND@390 NA	R	ND@070	R	ND@770			R
SEC-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	L
STYRENE	ug/kg	ND@590		ND@670		ND@770		ND@750	
TERT-BUTYLBENZENE TETRACHLOROETHENE	ug/kg ug/kg	NA ND@590		NA ND@670		NA ND@770		NA ND@750	
TETRACHLOROETHENE	ug/kg ug/kg	ND@5900		ND@6700		ND@7700		ND@7500	
TOLUENE	ug/kg	110	J	240	J	180		190	J
TRANS-1,2-DICHLOROETHENE	ug/kg	ND@590]	ND@670		ND@770		ND@750	
TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
TRICHLOROETHENE	ug/kg ug/kg	ND@590		130	J	ND@770		210	J
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@590		ND@670		ND@770		ND@750	
VINYL ACETATE	ug/kg	ND@590		ND@670		ND@770		ND@750	
VINYL CHLORIDE XYLENES, TOTAL	ug/kg ug/kg	ND@590 ND@590		ND@670 ND@670		ND@770 ND@770		ND@750 ND@750	
ATELALO, IOTAL	ug/kg	MD@390	L	MD@0/0	l	ND@//0	I	ND@/30	I

Sample Location		FN	-107A	FN	-107A	EN	-107A	EN	-107A
Sample Depth (feet bgs)		EIN	14.5'	EIN	15.0'	EIN	15.5'	EN	16.0'
Sample Depth (leet bgs)		05/04		05/04		05/0/	/2005	05/0/	/2005
Laboratory Sample I.D.			18705		18706		18707		18708
Eaboratory Sample 1.D.		0	10705	0	10700	0	10/0/	0	10700
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,1,1-TRICHLOROETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 260	I	ND@990 ND@990		ND@640 ND@640	
1,1,2-TRICHLOROETHANE	ug/kg	ND@1400		ND@1000	5	ND@990		ND@640	
1,1-DICHLOROETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	ug/kg ug/kg	ND@1400 NA		ND@1000 NA		ND@990 NA		ND@640 NA	
1,2,3-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	ug/kg ug/kg	NA NA		NA		NA		NA NA	
1,2,4-TRIMETHTEBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA		NA		NA		NA	
1,2-DIBROMOETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,2-DICHLOROBENZENE	ug/kg	3900		4000		6200		950	
1,2-DICHLOROETHANE 1,2-DICHLOROETHENE, TOTAL	ug/kg ug/kg	ND@1400 43000		ND@1000 17000		ND@990 33000		ND@640 24000	
1,2-DICHLOROPROPANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,3,5-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	ug/kg ug/kg	ND@1400 NA		ND@1000 NA		ND@990 NA		ND@640 NA	
1.4-DICHLOROBENZENE	ug/kg ug/kg	ND@1400		ND@1000		ND@990		ND@640	
1,4-DIOXANE	ug/kg	NA	R	NA	R	NA	R	NA	R
2,2-DICHLOROPROPANE 2-CHLOROETHYLVINYL ETHER	ug/kg	NA ND @ 1400		NA ND@1000		NA ND@990		NA	
2-CHLOROTOLUENE	ug/kg ug/kg	ND@1400 NA		ND@1000 NA		ND@990 NA		ND@640 NA	
3-CHLOROPROPENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
4-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
ACETONE ACROLEIN	ug/kg ug/kg	ND@1400 NA	D	ND@1000 NA	D	ND@990 NA	D	ND@640 NA	R
ACRYLONITRILE	ug/kg ug/kg	ND@1400	ĸ	ND@1000	ĸ	ND@990	ĸ	ND@640	ĸ
BENZENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640 ND@640	
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
BROMOMETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640 ND@640	
CHLOROBENZENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
CHLORODIBROMOMETHANE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
CHLOROETHANE CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640	
CHLOROFORM (IRICHLOROMETHANE) CHLOROMETHANE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000		ND@990		ND@640 ND@640	
CHLOROPRENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
CIS-1,2-DICHLOROETHENE	ug/kg	42000		17000		33000 ND@990		23000 ND@640	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640 ND@640	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@1400	J	ND@1000	J	520	J	ND@640	J
ETHYL METHACRYLATE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
ETHYLBENZENE HEXACHLOROBUTADIENE	ug/kg	1700 NA		1200 NA		4000 NA		1900 NA	
IODOMETHANE	ug/kg ug/kg	ND@1400		ND@1000		ND@990		ND@640	
ISOBUTYL ALCOHOL	ug/kg	NA	R	NA	R	NA	R	NA	R
ISOPROPYLBENZENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
ISOPROPYLTOLUENE M,P-XYLENE	ug/kg ug/kg	NA 3000		NA 1800		NA 6400		NA 1400	
METHACRYLONITRILE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@1400	D	ND@1000	D	ND@990	D	ND@640	D
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL METHACRYLATE	ug/kg ug/kg	NA ND@1400	к	NA ND@1000	к	NA ND@990	к	NA ND@640	к
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg ug/kg	ND@1400		ND@1000		ND@990		ND@640	
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
MIBK (4-METHYL-2-PENTANONE) N-BUTYLBENZENE	ug/kg	ND@1400 NA		ND@1000 NA		ND@990 NA		ND@640 NA	
N-BUTYLBENZENE N-PROPYLBENZENE	ug/kg ug/kg	NA NA		NA		NA		NA	
O-XYLENE	ug/kg	1500		930	J	2000		650	
PROPIONITRILE	ug/kg	NA	R	NA	R	NA	R	NA	R
SEC-BUTYLBENZENE STYRENE	ug/kg ug/kg	NA ND@1400		NA ND@1000		NA ND@990		NA ND@640	
TERT-BUTYLBENZENE	ug/kg ug/kg	ND@1400 NA		ND@1000 NA		ND@990 NA		ND@640 NA	
TETRACHLOROETHENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
TETRAHYDROFURAN TOLUENE	ug/kg	ND@14000		ND@10000		ND@9900		ND@6400	
TOLUENE TRANS-1.2-DICHLOROETHENE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640 ND@640	
TRANS-1,3-DICHLOROPROPENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@1400		ND@1000		ND@990		ND@640	
TRICHLOROETHENE TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg ug/kg	ND@1400 ND@1400		ND@1000 ND@1000		ND@990 ND@990		ND@640 ND@640	
VINYL ACETATE	ug/kg ug/kg	ND@1400 ND@1400		ND@1000		ND@990		ND@640 ND@640	
VINYL CHLORIDE	ug/kg	360	J	ND@1000		ND@990		ND@640	
XYLENES, TOTAL	ug/kg	4700		2900		8800		2100	

Sample Location EN-107A EN-107A EN-107A EN-107A EN-107A Sample Depth (feet bgs) 16.5° 17.0° 17.5° Sample Date 05/04/2005 05/04/2005 05/04/2005 05/04/2005 Laboratory Sample LD. 618709 618710 618711 Parameter Units 1 1 1,1.12-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1,1.2-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1,1.2-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1,1.2-TRIFLUOROETHANE ug/kg ND@660 ND@1200 1 1,2-TRIFLUOROETHANE ug/kg ND@660 ND@1200 1 1,2-TRIFLUOROETHANE ug/kg ND@660 ND@1200 1 1,2-TRIFLUOROETHANE ug/kg ND@660 ND@1200 1 1,2-TRIFLORORETHANE ug/kg ND@660 ND@1200 1 1,2-TRIFLORORETHANE ug/kg ND@660 ND@1200 1 <th>EN-10⁷ 18 05/04/20 6187</th>	EN-10 ⁷ 18 05/04/20 6187
Sample Date 05/04/2005 05/04/2005 05/04/2005 Laboratory Sample LD. 618709 618710 618711 Parameter Units 618709 618710 618711 1.1.1.2-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1.1.2-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1.1.2-TETRACHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1.1.2-TERCHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1.1.2-TRICHLOROETHANE ug/kg ND@660 ND@660 ND@1200 1.1.2-TRICHLOROETHANE ug/kg ND@660 ND@1200 I.1.2-TRICHLOROETHANE ug/kg ND@660 ND@1200 1.1.2-TRICHLOROETHANE ug/kg NA NA <td< th=""><th>05/04/20</th></td<>	05/04/20
Laboratory Sample I.D. 618709 618710 618711 Parameter Units 618709 618710 618711 I.J., 12-TETRACHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I.J., 12-TETRACHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I.J., 22-TETRACHOROETHANE ug/kg ND@690 ND@660 ND@1200 I.J.2-TERCH.OLOROETHANE ug/kg ND@690 ND@660 ND@1200 I.J.2-TERCH.OROETHANE ug/kg ND@690 ND@660 ND@1200 I.J.2-TERCH.OROETHANE ug/kg ND@690 ND@660 ND@1200 I.J.2-TERCH.OROETHANE ug/kg NA NA NA I.J.DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I.J.2-TERLOROPETANE ug/kg NA NA NA I.J.2-TERLOROPERANE ug/kg NA NA NA I.J.2-TERLENDOROPROPANE ug/kg NA NA NA I.J.2-TERLENDOROPROPANE ug/kg NA NA	
Parameter Units Image: Constraint of the second se	
1,1,2-TETRACHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1,1-TRICHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1,2-TETRACHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1-DICHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1-DICHLOROETHANE ug/kg ND@600 ND@600 ND@1200 1,1-DICHLOROETHANE ug/kg NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA 1,3-TRICHLOROBRZENE ug/kg NA NA NA 1,2,4-TRICHLOROPROPANE ug/kg NA NA NA 1,2,4-TRICHLOROPROPANE ug/kg NA NA NA 1,2,4-TRICHLOROPROPANE ug/kg NA NA NA 1,2,4-TRIMETHYLBENZENE ug/kg ND@600 ND@600	
1,1,1-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1,2,2-TRTRACHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHENE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHENE ug/kg NA NA NA 1,2-TRICHLOROBENZENE ug/kg NA NA NA	
I,I,TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,I,2,TERTACHLOROETHANE ug/kg ND@690 NN@660 ND@1200 I,1,2,TRICHLOROETHANE ug/kg ND@690 NN@660 ND@1200 I,1,2TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1,2TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1-DICHLOROETHENE ug/kg NA NA NA I,1-DICHLOROBENZENE ug/kg NA NA NA I,2,4-TRIKTHUROROBENZENE ug/kg NA NA NA I,2,4-TRIKTHVIENEZENE ug/kg NA NA NA I,2-DICHLOROBENZENE ug/kg NA NA NA I,2-DICHLOROBENZENE ug/kg ND@660 ND@660 ND@1200 I,2-ATRIKTHVIENZENE ug/kg ND@660 ND@660 ND@1200 I,2-DICHLOROBENZENE ug/kg ND@660 ND@660	
1,1,2,2-TETRACHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1,2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHANE ug/kg NA NA NA 1,1-DICHLOROFROPENE ug/kg NA NA NA 1,2,4-TRICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2,4-TRICHLOROBENZENE ug/kg NA NA NA 1,2,4-TRICHLOROBENZENE ug/kg NA NA NA 1,2-DIBROMO-3-CHLOROPROPANE ug/kg NA NA NA 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@66	ND@1900
I,1.2-TRICHLORO-1,2.2-TRIFLUOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1.2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1.DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1.DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 I,1.DICHLOROETHANE ug/kg NA NA NA I,1.DICHLOROETHANE ug/kg NA NA NA I,2.3-TRICHLOROBENZENE ug/kg NA NA NA I,2.4-TRIMETHYLBOROBENZENE ug/kg NA NA NA I,2.4-TRICHLOROBENZENE ug/kg NA NA NA I,2.4-TRIMETHYLBOROBENZENE ug/kg NA NA NA I,2-DIGROMO-3-CHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLOROBENZENE ug/kg ND@690 <	ND@1900 ND@1900
1,1.2-TRICHLOROETHANE ug/kg ND@690 ND@660 ND@61200 1,1-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,1-DICHLOROETHENE ug/kg ND ND ND ND 1,1-DICHLOROFTHENE ug/kg NA NA NA NA 1,2.3-TRICHLOROPENE ug/kg ND MA NA NA 1,2.3-TRICHLOROPROPANE ug/kg ND MA NA NA 1,2.4-TRICHLOROPROPANE ug/kg NA NA NA NA 1,2.4-TRIMETHYLBENZENE ug/kg NA NA NA NA 1,2-DIBROMOETHANE ug/kg ND@690 ND@660 ND@1200 1 1,2-DIROMOETHANE ug/kg ND@690 ND@660 ND@1200 1 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1 1,2-DICHLOROETHANE ug/kg ND@690	ND@1900 ND@1900
IDICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 IDICHLOROETHENE ug/kg NA NA NA NA IDICHLOROPROPENE ug/kg NA NA NA NA I.2.3-TRICHLOROBENZENE ug/kg NA NA NA NA I.2.3-TRICHLOROBENZENE ug/kg NA NA NA NA I.2.3-TRICHLOROBENZENE ug/kg NA NA NA NA I.2.4-TRICHLOROBENZENE ug/kg NA NA NA NA I.2.4-TRICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 12.2016ROMOETHANE ug/kg NA NA NA NA 12.2016ROMOETHANE ug/kg ND@690 ND@660 ND@1200 12.2016HLOROETHANE ug/kg ND@690 ND@660 ND@1200 12.2016HLOROETHANE ug/kg ND 12.2016HLOROETHANE ug/kg ND 12.2016HLOROETHENE, TOTAL ug/kg ND 12.2016HLOROETHENE, TOTAL ug/kg ND 12.2016HLOROETHENE, TOTAL	ND@1900
I,1-DICHLOROETHENE ug/kg ND@600 ND@600 ND@1200 I,1-DICHLOROPENE ug/kg NA NA NA I,2-STRICHLOROBENZENE ug/kg NA NA NA I,2-TRICHLOROBENZENE ug/kg ND@600 ND@600 ND@1200 I,2,4-TRICHLOROBENZENE ug/kg NA NA NA I,2,4-TRICHLOROBENZENE ug/kg NA NA NA I,2-DICHLOROBENZENE ug/kg NA NA NA I,2-DIBROMO-3-CHLOROPROPANE ug/kg ND@600 ND@600 ND@1200 I,2-DIBROMOETHANE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLOROEENZENE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLORORENAE ug/kg ND@690 ND@660 ND@1200 I,2-DICHLORORENAE ug/kg NA NA NA I,3-DICHLORORENZENE ug/kg ND NA NA I,3-DICHLORORENZENE ug/kg NA NA NA	ND@1900
11-DICHLOROPROPENE ug/kg NA NA NA NA 1.2.3-TRICHLOROBENZENE ug/kg NA NA NA NA NA NA 1.2.3-TRICHLOROBENZENE ug/kg ND ND MA NA	ND@1900
1,2,3-TRICHLOROPROPANE ug/kg ND@600 ND@600 ND@1200 1,2,4-TRICHLOROBENZENE ug/kg NA NA NA 1,2,4-TRICHTYLBENZENE ug/kg NA NA NA 1,2-DIBROMO-3-CHLOROPROPANE ug/kg NA NA NA 1,2-DIBROMOETHANE ug/kg ND@600 ND@600 ND@600 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROPROPANE ug/kg NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA 1,3-DICHLOROBENZENE ug/kg NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA 1,4-DICHLOROPROPANE ug/kg NA NA NA	NA
1,2,4-TRICHLOROBENZENE ug/kg NA NA NA 1,2,4-TRIMETHYLBENZENE ug/kg NA NA NA NA 1,2,4-TRIMETHYLBENZENE ug/kg NA NA NA NA 1,2-DIBROMOETHANE ug/kg ND@690 ND@660 ND@1200 1 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1 1,3-DICHLOROPANE ug/kg NA NA NA NA 1,3-DICHLOROBENZENE ug/kg ND@690 ND@6600 ND@1200 1,4-DICHCAROBENZENE ug/kg NA NA NA 1,4-DICHLOROBENZENE ug/kg NA NA	NA
1,2.4-TRIMETHYLBENZENE ug/kg NA NA NA 1,2.4-TRIMETHYLBENZENE ug/kg NA NA NA NA 1,2-DIBROMO-3-CHLOROPROPANE ug/kg ND@6500 ND@6600 ND@1200 1,2-DIBROMO-3-CHLOROPROPANE ug/kg ND@690 ND@6600 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@6600 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@6600 ND@1200 1,2-DICHLOROETHENE, TOTAL ug/kg NA NA NA 1,2-DICHLOROFTHENE, TOTAL ug/kg ND@690 ND@6600 ND@1200 1,2-DICHLOROPROPANE ug/kg NA NA NA 1,3-DICHLOROPROPANE ug/kg ND NA NA 1,3-DICHLOROPROPANE ug/kg ND NA NA 1,4-DICHLOROBENZENE ug/kg NA NA NA 1,4-DICHOROBENZENE ug/kg NA NA NA 2,2-DICHLOROPROPANE ug/kg NA NA	ND@1900
L2-DIBROMO-3-CHLOROPROPANE ug/kg NA NA NA L2-DIBROMCETHANE ug/kg ND@660 ND@660 ND@1200	NA
1,2-DIBROMOETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROPANE ug/kg ND NA NA 1,3-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,3-DICHLOROBENZENE ug/kg ND NA NA 1,4-DICHLOROBENZENE ug/kg ND NA NA 2,2-DICHLOROPROPANE ug/kg ND NA NA	NA
1,2-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHENE, TOTAL ug/kg ND@690 ND@660 ND@61200 1,2-DICHLOROETHENE, TOTAL ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHENE, TOTAL ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 1,3-5-TRIMETHYLBENZENE ug/kg ND NA NA 1,3-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,3-DICHLOROBENZENE ug/kg ND NA NA 1,4-DICHLOROBENZENE ug/kg ND NA NA 1,4-DICHLOROBENZENE ug/kg NA NA NA 2,2-DICHLOROPROPANE ug/kg NA NA NA 2,2-DICHLOROPROPANE ug/kg ND NA NA 2,2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 2,CHLOROTHYLVINYL ETHER ug/kg ND NA <td< td=""><td>ND@1900</td></td<>	ND@1900
1,2-DICHLOROETHANE ug/kg ND@690 ND@660 ND@1200 1,2-DICHLOROETHENE, TOTAL ug/kg 2000 18000 43000 12.0 1,2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 13.0 1,3-DICHLOROPROPANE ug/kg NA NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA NA 1,4-DICHLOROPROPANE ug/kg NA NA NA NA 1,4-DICAROPROPANE ug/kg NA NA NA NA 2.2-DICHLOROPROPANE ug/kg NA NA NA NA 2.2-DICHOROPROPANE ug/kg NA NA NA NA 2.2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 2-CHLOROFCURE ug/kg NA NA NA NA 2-CHLOROFROPANE ug/kg ND@690 ND@660 <td>ND@1900</td>	ND@1900
1,2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 1,3,5-TRIMETHYLBENZENE ug/kg NA NA NA 1,3-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,3-DICHLOROBENZENE ug/kg NA NA NA 1,3-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 1,3-DICHLOROPROPANE ug/kg NA NA NA 1,4-DICHLOROBENZENE ug/kg NA NA NA 2,4-DICXANE ug/kg NA NA NA 2,2-DICHLOROPROPANE ug/kg ND NA NA 2,2-DICHLOROPROPANE ug/kg ND NA NA 2,2-DICHLOROPROPANE ug/kg ND@690 ND@660 ND@1200 2-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 2-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg ND@690 ND@6600 ND@1200 AC	ND@1900
1,3.5-TRIMETHYLBENZENE ug/kg NA NA NA 1,3.5-TRIMETHYLBENZENE ug/kg NA NA NA NA 1,3.5-DICHLOROBENZENE ug/kg NA NA NA NA NA 1,3-DICHLOROPROPANE ug/kg NA NA NA NA NA 1,4-DICHLOROBENZENE ug/kg NA NA NA NA NA 2,-DICHLOROPROPANE ug/kg NA NA NA NA NA 2,-DICHLOROPROPANE ug/kg NA NA NA NA NA 2,-DICHLOROPROPANE ug/kg ND@660 ND@660 ND@1200 2,-CHLOROFOLUENE ug/kg ND@690 ND@660 ND@1200 3,-CHLOROPROPENE ug/kg NA NA NA NA 4,-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 4,-CHLOROTOLUENE ug/kg NA NA NA NA	53000
I.3-DICHLOROBENZENE ug/kg ND@690 ND@660 ND@1200 I.3-DICHLOROPROPANE ug/kg NA NA NA I.4-DICHLOROBENZENE ug/kg ND@690 ND@6600 ND@1200 I.4-DICKLOROBENZENE ug/kg NA NA NA I.4-DICKLOROBENZENE ug/kg NA NA NA 2.2-DICHLOROPROPANE ug/kg NA NA NA 2.2-DICHLOROPROPANE ug/kg ND@690 ND@6600 ND@1200 2-CHLOROTOLUENE ug/kg NA NA NA 2-CHLOROTOLUENE ug/kg NA NA NA 3-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg NA NA NA ACCTIONE ug/kg NA NA NA ACCTIONE ug/kg NA NA NA ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690	ND@1900
1,3-DICHLOROPROPANE ug/kg NA NA NA 1,4-DICHLOROBENZENE ug/kg NA R ND@660 ND@660 ND@1200 1,4-DICANAE ug/kg NA R NA R NA R NA R 2,2-DICHLOROPROPANE ug/kg NA R NA R NA NA 2,2-DICHLOROPROPANE ug/kg NA NA NA NA 2,2-DICHLOROPROPANE ug/kg ND ND@660 ND@600 DD@600 2,CHLOROFTHYLVINYL ETHER ug/kg NA NA NA NA 2,CHLOROFOLUENE ug/kg NA NA NA NA 3,CHLOROPROPENE ug/kg NA NA NA NA 4,CETONE ug/kg NA NA NA NA ACETONE ug/kg NA R NA NA A ACROLEIN ug/kg NA R NA R NA R A ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BROMOSEN	NA
1,4-DICHLOROBENZENE ug/kg ND@660 ND@660 ND@1200 1,4-DICMANE ug/kg NA NA NA NA R 2,2-DICHLOROPROPANE ug/kg NA NA NA NA NA 2-CHLOROPROPANE ug/kg ND@660 ND@660 ND@1200 2-CHLOROPTHYLVINYL ETHER ug/kg ND@690 ND@660 ND@1200 2-CHLOROPOPENE ug/kg ND NA NA NA 3-CHLOROPROPENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg ND NA NA NA 4-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 4-CROLEIN ug/kg NA NA NA ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@200 <	ND@1900
1.4-DIOXANE ug/kg NA R NA R NA R 2.2-DICHLOROPROPANE ug/kg NA NA NA NA 2.2-DICHLOROPROPANE ug/kg ND@690 ND@6600 ND@1200 2-CHLOROTOLUENE ug/kg NA NA NA NA 3-CHLOROPROPANE ug/kg NA NA NA NA 2-CHLOROTOLUENE ug/kg NA NA NA NA 3-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg NA NA NA NA ACCTIONE ug/kg ND@690 ND@660 ND@1200 ACROLEIN ug/kg NA R NA R NA R ACR ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOCHLOROMETHANE ug/kg ND NA NA NA <td>NA ND@1000</td>	NA ND@1000
2,2-DICHLOROPROPANE ug/kg NA NA NA 2-CHLOROETHYLVINYL ETHER ug/kg ND@690 ND@600 ND@1200 2-CHLOROTOLUENE ug/kg NA NA NA NA 3-CHLOROPROPENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg NA NA NA NA A-CHLOROPROPENE ug/kg NA NA NA NA A-CHLOROTOLUENE ug/kg NA NA NA NA ACCETONE ug/kg NA NA NA NA ACROLEIN ug/kg NA R NA R NA R AR ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE Ug/kg NA NA NA BROMOBENZENE ug/kg NA NA NA NA NA NA NA NA NA D0 BOMOBENZENE Ug/kg ND@690 ND@6600 ND@1200 D0 <td>ND@1900 NA R</td>	ND@1900 NA R
2-CHLOROETHYLVINYL ETHER ug/kg ND@690 ND@660 ND@1200 2-CHLOROTOLUENE ug/kg NA NA NA 2-CHLOROTOLUENE ug/kg ND@690 ND@660 ND@1200 3-CHLOROPROPENE ug/kg ND@690 ND@660 ND@1200 4-CHLOROTOLUENE ug/kg NA NA NA ACCTONE ug/kg ND@690 ND@660 ND@1200 ACCROLEIN ug/kg NA R NA R NA ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	NAK
2-CHLOROTOLUENE ug/kg NA NA NA 3-CHLOROTOLUENE ug/kg ND@600 ND@600 ND@1200 4-CHLOROTOLUENE ug/kg NA NA NA ACETONE ug/kg ND@600 ND@660 ND@1200 ACEONE ug/kg ND@690 ND@660 ND@1200 ACROLEIN ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900
4-CHLOROTOLUENE ug/kg NA NA NA ACETONE ug/kg ND@660 ND@660 ND@1200 ACROLEIN ug/kg NA NA NA R ACRVLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOBENZENE ug/kg NA NA NA BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	NA
ACETONE ug/kg ND@690 ND@660 ND@1200 ACROLEIN ug/kg NA NA NA R ACRVLORTRILE ug/kg ND@690 ND@6600 ND@1200 BENZENE ug/kg ND@690 ND@6600 ND@1200 BENZENE ug/kg ND@690 ND@6600 ND@1200 BROMOBENZENE ug/kg NA NA NA NA BROMOCHLOROMETHANE Ug/kg ND@690 ND@6600 ND@1200 BROMOCHLOROMETHANE ND@1200 BROMOCHLOROMETHANE ND@1200 BROMOCHLOROMETHANE ND@1200 BROMOCHLOROMETHANE ND@690 ND@660 ND@1200 BROMOCHLOROMETHANE ND@1200 BROMOCHLOROMET	ND@1900
ACROLEIN ug/kg NA NA R NA R NA R NA R NA R ACR ACR YLONITRILE ug/kg ND@660 ND@660 ND@1200 BENZENE ug/kg ND@660 ND@1200 BROMOBENZENE ug/kg NA NA NA NA State State <ths< td=""><td>NA</td></ths<>	NA
ACRYLONITRILE ug/kg ND@690 ND@660 ND@1200 BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOBENZENE ug/kg NA NA NA BROMOBENZENE ug/kg ND@690 ND@660 ND@1200	ND@1900
BENZENE ug/kg ND@690 ND@660 ND@1200 BROMOBENZENE ug/kg NA NA NA BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	NA R
BROMOBENZENE ug/kg NA NA NA BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900
BROMOCHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900 NA
	ND@1900
BROMODICHLOROMETHANE ug/kg ND@660 ND@660 ND@1200	ND@1900
BROMOFORM (TRIBROMOMETHANE) ug/kg ND@690 ND@660 ND@1200	ND@1900
BROMOMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900
CARBON DISULFIDE ug/kg ND@690 ND@660 ND@1200	ND@1900
CARBON TETRACHLORIDE ug/kg ND@690 ND@660 ND@1200	ND@1900
CHLOROBENZENE ug/kg ND@690 ND@660 ND@1200	ND@1900
CHLORODIBROMOMETHANE ug/kg ND@6500 ND@6500 ND@1200 QHLORODIBROMOMETHANE 1 ND@6500 ND@6500 ND@1200	ND@1900
CHLOROETHANE ug/kg ND@690 ND@660 ND@1200 CHLOROFORM (TRICHLOROMETHANE) ug/kg ND@690 ND@660 ND@1200	ND@1900 ND@1900
CHLOROFORM (TRICHLOROMETHANE) ug/kg ND@690 ND@660 ND@1200 CHLOROMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900
CHLOROPRENE ug/kg ND@600 ND@600 ND@1200	ND@1900
US-12-DICHLOROETHENE ug/kg 21000 18000 42000	52000
CIS-1,3-DICHLOROPROPENE ug/kg ND@690 ND@660 ND@1200	ND@1900
DIBROMOMETHANE ug/kg ND@690 ND@660 ND@1200	ND@1900
DICHLORODIFLUOROMETHANE (FREON 12) ug/kg 240 J ND@660 J ND@1200 J	ND@1900 J
ETHYL METHACRYLATE ug/kg ND@690 ND@660 ND@1200	ND@1900
ETHYLBENZENE ug/kg 180 J ND@660 ND@1200 HEXACHLOROBUTADIENE ug/kg NA NA NA	ND@1900
	NA ND@1900
IODOMETHANE ug/kg ND@690 ND@660 ND@1200 ISOBUTYL ALCOHOL ug/kg NA R NA R NA R	ND@1900 NA R
ISOBOTI LALCOOL 02/K2 NAK NAK NAK NAK SOBOTI LALCOOL 02/K2 ND@690 ND@600 ND@1200	ND@1900
SOROPYLTOLUENE ug/kg NA NA NA NA	NA
M.P-XYLENE ug/kg ND@690 ND@660 ND@1200	ND@1900
METHACRYLONITRILE ug/kg ND@690 ND@660 ND@1200	ND@1900
METHYL BUTYL KETONE (2-HEXANONE) ug/kg ND@690 ND@660 ND@1200	ND@1900
METHYL ETHYL KETONE (MEK, 2-BUTANONE) ug/kg NAR NAR NAR NAR	NA R
METHYL METHACRYLATE ug/kg ND@690 ND@660 ND@1200 METHYL TERT-BUTYL ETHER (MTBE) ug/kg ND@690 ND@660 ND@1200	ND@1900 ND@1900
METHYL TERT-BUTYL ETHER (MTBE) ug/kg ND@690 ND@660 ND@1200 METHYLENE CHLORIDE (DICHLOROMETHANE) ug/kg ND@690 ND@660 ND@1200	ND@1900
MBK (4-METHYL-2-PENTANONE) ug/kg ND@690 ND@6660 ND@1200	ND@1900
NBUTYLBENZENE Ug/kg NA NA NA NA	NA
N-PROPYLBENZENE ug/kg NA NA NA	NA
D-XYLENE ug/kg 260 J ND@660 ND@1200	ND@1900
PROPIONITRILE ug/kg NA R NA R NA R	NA R
SEC-BUTYLBENZENE ug/kg NA NA NA	NA
styleENE ug/kg ND@660 ND@1200	ND@1900
Image: reference of the second seco	NA ND@1000
Image: retrachLoroethene ug/kg 650 J ND@660 ND@1200 retrachtOROethene ug/kg ND@6900 ND@6600 ND@12000	ND@1900 ND@19000
LE LRAH Y DKOFUKAN ug/kg ND@6900 ND@6600 ND@12000 FOLUENE ug/kg ND@690 ND@660 ND@1200	ND@19000 ND@1900
OLOLAL ug/kg AD0050 AD00500 ND01200 RANS-1,2-DICHLOROETHENE ug/kg ND00500 ND00560 ND01200	ND@1900
RANS-12-DEFINITION ug/kg ND@000 ND@100 RANS-13-DICHLOROPROPENE ug/kg ND@000 ND@660 ND@1200	ND@1900
IRANS-1,4-DICHLORO-2-BUTENE ug/kg ND@690 ND@660 ND@1200	ND@1900
TRICHLOROETHENE ug/kg 540 J 720 ND@1200	
TRICHLOROFLUOROMETHANE (FREON 11) ug/kg ND@690 ND@660 ND@1200	ND@1900
VINYL ACETATE ug/kg ND@690 ND@660 ND@1200	ND@1900 ND@1900
VINYL CHLORIDE ug/kg ND@690 ND@660 500 J	ND@1900 ND@1900 ND@1900
xylenes, total ug/kg 260 J ND@660 ND@1200	ND@1900 ND@1900

Sample Location		EN	-119A	EN	-119A	EN	-119A	EN	-119A
Sample Depth (feet bgs)			22.5'		23.0'		23.5'		24.0
Sample Date		05/09	9/2005	05/09	9/2005	05/09	0/2005	05/09	9/2005
Laboratory Sample I.D.		6	19697	6	19698	6	19699	6	19700
Parameter	Units								
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
1,1,1-TRICHLOROETHANE	ug/kg	4800		160	J	ND@660		ND@6.8	
1,1,2,2-TETRACHLOROETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
1,1,2-TRICHLOROETHANE 1.1-DICHLOROETHANE	ug/kg	ND@660 4800		ND@750 3600		ND@660 3700		ND@6.8 1.8	T
1,1-DICHLOROETHANE	ug/kg ug/kg	1200		190	I	ND@660		1.8 ND@6.8	J
1.1-DICHLOROPROPENE	ug/kg	NA		NA	,	NA		NA	
1,2,3-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,3-TRICHLOROPROPANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	J
1,2,4-TRICHLOROBENZENE	ug/kg	NA		NA		NA		NA	
1,2,4-TRIMETHYLBENZENE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMO-3-CHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,2-DIBROMOETHANE	ug/kg	ND@660 ND@660		ND@750 ND@750		ND@660 ND@660		ND@6.8 ND@6.8	т
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	ug/kg	ND@660 ND@660		ND@750 ND@750		ND@660 ND@660		ND@6.8 ND@6.8	J
1,2-DICHLOROETHANE 1,2-DICHLOROETHENE, TOTAL	ug/kg ug/kg	ND@660		ND@750		ND@660		ND@6.8 ND@6.8	
1,2-DICHLOROPROPANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	<u> </u>
1,3,5-TRIMETHYLBENZENE	ug/kg	NA	1	NA		NA		NA	
1,3-DICHLOROBENZENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	J
1,3-DICHLOROPROPANE	ug/kg	NA		NA		NA		NA	
1,4-DICHLOROBENZENE	ug/kg	ND@660	1	ND@750		ND@660		ND@6.8	
1,4-DIOXANE	ug/kg	NA	R	NA	R	NA	R	NA	R
2,2-DICHLOROPROPANE 2-CHLOROETHYLVINYL ETHER	ug/kg	NA ND@660		NA ND@750		NA ND@660		NA ND@6.8	
2-CHLOROETHYLVINYLETHER 2-CHLOROTOLUENE	ug/kg ug/kg	ND@660 NA		ND@/50 NA		ND@660 NA		ND@6.8 NA	
3-CHLOROPROPENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
4-CHLOROTOLUENE	ug/kg	NA		NA		NA		NA	
ACETONE	ug/kg	NA	R	NA	R	NA	R	11	J
ACROLEIN	ug/kg	NA	R	NA	R	NA	R	NA	J
ACRYLONITRILE	ug/kg	ND@660	1	ND@750		ND@660		ND@6.8	
BENZENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
BROMOBENZENE	ug/kg	NA		NA		NA		NA	
BROMOCHLOROMETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
BROMODICHLOROMETHANE BROMOFORM (TRIBROMOMETHANE)	ug/kg ug/kg	ND@660 ND@660		ND@750 ND@750		ND@660 ND@660		ND@6.8 ND@6.8	
BROMOFORM (TRIBROMOMETHANE) BROMOMETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	I
CARBON DISULFIDE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	-
CARBON TETRACHLORIDE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
CHLOROBENZENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
CHLORODIBROMOMETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
CHLOROETHANE	ug/kg	ND@660	1	ND@750		ND@660		ND@6.8	
CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@660	1	ND@750		ND@660		ND@68	
CHLOROMETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8 ND@6.8	
CHLOROPRENE CIS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@660 640		ND@750 ND@750		ND@660 ND@660		ND@6.8 ND@6.8	
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
DIBROMOMETHANE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
ETHYL METHACRYLATE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
ETHYLBENZENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
HEXACHLOROBUTADIENE	ug/kg	NA		NA		NA		NA	
IODOMETHANE	ug/kg	ND@660		ND@750		ND@660	n	ND@6.8	-
ISOBUTYL ALCOHOL ISOPROPYLBENZENE	ug/kg	NA ND@660		NA ND@750		NA ND@660	к	NA ND@6.8	
ISOPROPYLBENZENE	ug/kg ug/kg	ND@660 NA		ND@/50 NA		ND@660 NA		ND@6.8 NA	
M,P-XYLENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	<u> </u>
METHACRYLONITRILE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	NA	R	NA		NA	R	NA	R
METHYL METHACRYLATE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
MIBK (4-METHYL-2-PENTANONE) N-BUTYLBENZENE	ug/kg	ND@660 NA		ND@750 NA		ND@660 NA		ND@6.8 NA	
N-BOTTEBENZENE N-PROPYLBENZENE	ug/kg ug/kg	NA		NA		NA		NA	
O-XYLENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	<u> </u>
PROPIONITRILE	ug/kg	NA		NA		NA	R	NA	R
SEC-BUTYLBENZENE	ug/kg	NA	1	NA		NA		NA	
STYRENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
TERT-BUTYLBENZENE	ug/kg	NA		NA		NA		NA	
TETRACHLOROETHENE	ug/kg	ND@660		ND@750		ND@660	μT	ND@6.8	<u> </u>
TETRAHYDROFURAN	ug/kg	ND@6600		ND@7500		ND@6600		ND@6.8	
TOLUENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
TRANS-1,2-DICHLOROETHENE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
TRANS-1,3-DICHLOROPROPENE TRANS-1,4-DICHLORO-2-BUTENE	ug/kg ug/kg	ND@660 ND@660		ND@750 ND@750		ND@660 ND@660	\vdash	ND@6.8 ND@6.8	
TRICHLOROETHENE	ug/kg ug/kg	ND@660 ND@660		ND@750 ND@750		ND@660 ND@660		ND@6.8 ND@6.8	J
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg	ND@660		ND@750		ND@660		ND@6.8	<u> </u>
VINYL ACETATE	ug/kg	ND@660	1 1	ND@750		ND@660		ND@6.8	-
VINYL CHLORIDE	ug/kg	ND@660		ND@750		ND@660		ND@6.8	
XYLENES, TOTAL	ug/kg	ND@660		ND@750		ND@660		ND@6.8	

Sample Location		EN-119A	EN-119A	EN-119A	EN-119A
Sample Depth (feet bgs)		24.5'	25.0'	25.5'	26.0
Sample Date		05/09/2005	05/09/2005	05/09/2005	05/09/2005
Laboratory Sample I.D.		619701	619702	619703	619704
· · ·					
Parameter	Units				
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	ug/kg	ND@5.9 1.3 J	ND@7.3 ND@7.3	ND@8.2 74	ND@670 3200
1,1,2,2-TETRACHLOROETHANE	ug/kg ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	5200 ND@670
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
1,1,2-TRICHLOROETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
1,1-DICHLOROETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	5800
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	ug/kg ug/kg	ND@5.9 NA	ND@7.3 NA	ND@8.2 NA	150 J NA
1,2,3-TRICHLOROBENZENE	ug/kg	NA	NA	NA	NA
1,2,3-TRICHLOROPROPANE	ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	ND@670
1,2,4-TRICHLOROBENZENE	ug/kg	NA	NA	NA	NA
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA NA	NA	NA	NA
1,2-DIBROMO-J-CHEOROFROFANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
1,2-DICHLOROBENZENE	ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	ND@670
1,2-DICHLOROETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
1,2-DICHLOROETHENE, TOTAL 1,2-DICHLOROPROPANE	ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
1,3,5-TRIMETHYLBENZENE	ug/kg ug/kg	ND@5.9 NA	ND@7.3 NA	ND@8.2 NA	ND@6/0 NA
1,3-DICHLOROBENZENE	ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	ND@670
1,3-DICHLOROPROPANE	ug/kg	NA	NA	NA	NA
1,4-DICHLOROBENZENE 1.4-DIOXANE	ug/kg ug/kg	ND@5.9 J NA R	ND@7.3 J NA R	ND@8.2 J NA R	ND@670 NA R
2,2-DICHLOROPROPANE	ug/kg	NAK	NAK	NAK	NAK
2-CHLOROETHYLVINYL ETHER	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
2-CHLOROTOLUENE	ug/kg	NA	NA	NA	NA
3-CHLOROPROPENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
4-CHLOROTOLUENE ACETONE	ug/kg ug/kg	NA 11 J	NA 11 J	NA 12 J	NA NA R
ACROLEIN	ug/kg	NA R	NA R	NA R	NAR
ACRYLONITRILE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
BENZENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
BROMOBENZENE BROMOCHLOROMETHANE	ug/kg	NA ND@5.9	NA ND@7.3	NA ND@8.2	NA ND@670
BROMOCHLOROMETHANE	ug/kg ug/kg	ND@5.9	ND@7.3	ND@8.2 ND@8.2	ND@670
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
BROMOMETHANE	ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	ND@670
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
CHLOROBENZENE	ug/kg ug/kg	ND@5.9	ND@7.3	ND@8.2 ND@8.2	ND@670
CHLORODIBROMOMETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
CHLOROETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
CHLOROFORM (TRICHLOROMETHANE) CHLOROMETHANE	ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
CHLOROPRENE	ug/kg ug/kg	ND@5.9	ND@7.3	ND@8.2 ND@8.2	ND@670
CIS-1,2-DICHLOROETHENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
CIS-1,3-DICHLOROPROPENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
DIBROMOMETHANE DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
ETHYL METHACRYLATE	ug/kg ug/kg	ND@5.9	ND@7.3	ND@8.2 ND@8.2	ND@670
ETHYLBENZENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
HEXACHLOROBUTADIENE	ug/kg	NA	NA	NA	NA
IODOMETHANE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
ISOBUTYL ALCOHOL ISOPROPYLBENZENE	ug/kg ug/kg	NA R ND@5.9 J	NA R ND@7.3 J	NA R ND@8.2 J	NA R ND@670
ISOPROPYLTOLUENE	ug/kg	NA	NA	NA	NA
M,P-XYLENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
METHACRYLONITRILE METHYL BUTYL KETONE (2-HEXANONE)	ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
METHYL BUTYL KETONE (2-HEXANONE) METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg ug/kg	ND@5.9 NA R	ND@7.3 NA R	ND@8.2 NA R	ND@670 NA R
METHYL METHACRYLATE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
METHYLENE CHLORIDE (DICHLOROMETHANE) MIBK (4-METHYL-2-PENTANONE)	ug/kg	ND@5.9	ND@7.3 ND@7.3	ND@8.2	ND@670 ND@670
MIBK (4-METHYL-2-PENTANONE) N-BUTYLBENZENE	ug/kg ug/kg	ND@5.9 NA	ND@7.3 NA	ND@8.2 NA	ND@670 NA
N-PROPYLBENZENE	ug/kg	NA	NA	NA	NA
O-XYLENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
PROPIONITRILE	ug/kg	NA R	NA R	NA R	NA R
SEC-BUTYLBENZENE STYRENE	ug/kg ug/kg	NA ND@5.9	NA ND@7.3	NA ND@8.2	NA ND@670
TERT-BUTYLBENZENE	ug/kg	ND@5.9 NA	NA	NA	NA
TETRACHLOROETHENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
TETRAHYDROFURAN TOLUENE	ug/kg	ND@59	ND@73	ND@82	ND@6700
TRANS-1,2-DICHLOROETHENE	ug/kg ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
TRANS-1,2-DICHLOROPTHENE TRANS-1,3-DICHLOROPROPENE	ug/kg	ND@5.9	ND@7.3	ND@8.2 ND@8.2	ND@670
TRANS-1,4-DICHLORO-2-BUTENE	ug/kg	ND@5.9 J	ND@7.3 J	ND@8.2 J	ND@670
TRICHLOROETHENE	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670
TRICHLOROFLUOROMETHANE (FREON 11) VINYL ACETATE	ug/kg ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670 ND@670
VINYL ACEIAIE VINYL CHLORIDE	ug/kg ug/kg	ND@5.9 ND@5.9	ND@7.3 ND@7.3	ND@8.2 ND@8.2	ND@670
XYLENES, TOTAL	ug/kg	ND@5.9	ND@7.3	ND@8.2	ND@670

Sample Date						
Sample Date 207 20.5 21.07 21.7	Sample Location		EN-421A	EN-421/	A EN-421A	EN-421A
Sample Due 07/20/206 <	-					21.5
Laboratory Sample LD. 02994 02995<						07/20/2005
Parameter Unit Parameter Unit Parameter Parameter 1.1.2.TEREACH GROPTHANE u.k.g ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 1.1.2.TEREACH GROPTHANE u.k.g ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 1.2.TEREACH GROPTHANE u.k.g NDM1400.0 ND#1400.0 ND#1400.0 ND#1400.0 1.2.TEREACH GROPTHANE u.k.g NDM1400.0 ND#1400.0 ND#1400.0 ND#1400.0 2.2.TEREACH GROPTHANE u.k.g NDM1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1400.0 ND#1	-					629597
I.J. STREAL GOOD FLANS UPL NDP 4 400 J	r r r r r r r r r r r r r r r r r r r					
11.1.TBC/TROM 9252 ND0-1460 J ND0-1460 J ND0-1400 J ND0-1600 J	Parameter	Units				
11.1.TBC/TROM 9252 ND0-1460 J ND0-1460 J ND0-1400 J ND0-1600 J						
11.23 TERCHE GORGETTANE [mb/m] NDE 1400 J NDE 1400 J <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
11.3.TBCHCRONTANE [9/5g] NDF-400 [J NDF-						
ILL TRELCORDERIANE gp.g. NDP LADD NDP						
1.Def(ILGROPPINE sp2g NDP14001 NDP14001 NDP14001 NDP14001 NDP14001 NDP14001 1.2.PREILGROPPINE sp2g NA NA NA NA NA 1.2.PREILGROPPINE sp2g NA NDP1401 NA NDP1401 1.2.PREILGROPPINE sp2g NA NDP1401 NDP1401 1.2.PREILGROPPINE sp2g NA NDP1401 NDP1401 1.2.PREILGROPPINE sp2g NA NDP1401 NDP1401 NDP1401 1.2.PREILGROPPINE sp2g NA NDP1401 NDP1401 NDP1401 NDP1401 NDP1401 1.2.PREILGROPPINE sp2g NDP1401 NDP1401 </td <td>1,1,2-TRICHLOROETHANE</td> <td>ug/kg</td> <td></td> <td></td> <td></td> <td></td>	1,1,2-TRICHLOROETHANE	ug/kg				
LIDEREDORPORYNE Imsg. NA NA NA NA NA L3-JRECHLOROPROFYNE Bylg. NA ND#1400 J ND#1400 J <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.3.TRCHCIGROBENZENE gFg NA NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
13.4 TRECHORORENZENE w/g NA NA NA NA 12.5 DIRGOMO-SCILLOGOMONAC u/g NA NA NA NA 12.5 DIRGOMO-SCILLOGOMONAC u/g NA NA NA NA 12.5 DIRGOMON-SCILLOGOMONAC u/g ND			NA	NA		NA
13_HTRUMENTYLEBENZINE upsg NA NA NA NA 13_DIRROM-CIELADORDROPANE upsg NDP1400 J						
3-DBBRMON-SCHLOGOPPONE up kg NA						
12-DECLAGORENZENE upske NDE-1400 J NDE-1						
12-DECLAGORTHANE up by type ND0=1400 J N						
12.DECLAGORTHUNE, TOTAL up kg 66:00 J 06:00 J ND0:100 J ND0:100 J 12.STRIGKORPANE up kg NA NA NA NA NA 12.STRIGKORPANE up kg ND0:100 J ND0:100 J <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
I_JOLECLADORFROMME upkg NAI NA NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.3-DECLIGORDEZZENE ug/g ND =1400 J ND =1400 J ND =1400 J 1.3-DECLIGORDEVAE ug/g NA NA NA NA 1.4-DECLIGORDEVAE ug/g NA NA NA NA NA 1.4-DECLIGORDEVAE ug/g NA NA NA NA NA 2.4-DECLIGORDEVAE ug/g ND =1400 J ND =1400 J ND =1400 J 2.CHILGORDEVAE ug/g NA NA NA NA 2.CHILGORDEVAE ug/g ND =1400 J ND =1400 J ND =1400 J </td <td></td> <td>ug/kg</td> <td>ND@1400 J</td> <td></td> <td>ND@1400 J</td> <td></td>		ug/kg	ND@1400 J		ND@1400 J	
I_ADECLAGORPOPANE usks NA NA NA NA NA I_ADENCANE usks NA R NA NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
i_d-DICLINGORESZIZINE ug/kg NAR						
22-DICLROOPROPANE webs NA NA NA NA NA 22-DICLROOPTIVENTE THER webs NA ND=1400 J	1,4-DICHLOROBENZENE	ug/kg	ND@1400 J	ND@1400 J	ND@1400 J	ND@1400 J
2CHLOROTTIVI, VINUL ETTRE uskg NDE H400 J NDE H400 J <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2CHLOROTOLUNE uskg NA NA NA NA NA 3CHLOROPORDEN ugkg NA NA NA NA NA NA NA ACHLOROPORDEN ugkg NA NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4-CHLOROTOLURNE Ug/kg NA NA NA NA NA NA ACETONE Ug/kg NA R NA R NA R NA R NA R NA R ACROLENN Ug/kg NA R						
ACETONE up kg NA R						
ACROLENN ug/kg NA R						
ACRYLONTTRILE up/kg NA R						
BROMDENCESE ug/kg NA NA NA NA BROMCHLOROMETHANE ug/kg ND@ 1400 J	ACRYLONITRILE		NA R	NA R	NA R	NA R
BROMODICLIOROMETHANE ug/sg NDP e1400 J						
BROMODICHLOROMETHANE ug/kg NDP (1400 J						
BROMOMETHANE ugkg ND@1400 J				ND@1400 J		ND@1400 J
$ \begin{array}{c} CARBON DISULFIDE $$ ugkg NDe1400 J $$						
CARBON TETRACHLORIDE ug/kg ND@ 1400 J ND						
CHLORDIBROMOMETHANE ug/kg ND@ 1400 J ND@						
$ \begin{array}{c} \mbox{CHLOROPTHANE} & \mbox{w} k_{g} & \mbox{NDe} [1400] J & \mbox{NDe} [1400] J$		ug/kg				
CHLOROFORM (TRICHLOROMETHANE) ug/kg ND@ 1400 J						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CHLOROMETHANE	ug/kg				
CIS-1.2-DICHLOROPROPENE ug/kg ND@ 1400 J ND@ 1400 J <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
DIBROMOMETHANE ug/kg ND@ 1400 J ND@ 1400						
ETHYL METHACRYLATE ug/kg ND@1400 I ND@1400 I </td <td></td> <td></td> <td>ND@1400 J</td> <td>ND@1400 J</td> <td>ND@1400 J</td> <td></td>			ND@1400 J	ND@1400 J	ND@1400 J	
ETHYLEENZENE ug kg ND@1400 J						
HEXACHLOROBUTADIENE ug/kg NA NA NA NA NA NA NA NA NA IODOMETHANE ug/kg ND@1400 J ND@1400 J </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
ISOBUTYL ALCOHOL ug/kg NA R NA RA NA RA NA						
ISOPROPYLBENZENE ug/kg ND@1400 J						
ISOPROPYLTOLUENE ug/kg NA NA NA NA NA NA M.P.XYLENE ug/kg ND@1400 J						
M.PYYLENE ug/kg ND@1400 J	ACODE OFFICE MOLIVER		37.1	27.1	27.1	
METHYL BUTYL KETONE (2-HEXANONE) ug/kg ND@1400 J ND	M,P-XYLENE	ug/kg	ND@1400 J			ND@1400 J
METHYL ETHYL KETONE (MEK, 2-BUTANONE) ug/kg NA R NA NA NA ND(#1400] J ND(#1400]						
METHYL METHACRYLATE ug/kg ND@ 1400 J ND@						
METHYLENE CHLORIDE (DICHLOROMETHANE: ug/kg ND@1400 J ND@1400 <td>METHYL METHACRYLATE</td> <td>ug/kg</td> <td>ND@1400 J</td> <td></td> <td>ND@1400 J</td> <td>ND@1400 J</td>	METHYL METHACRYLATE	ug/kg	ND@1400 J		ND@1400 J	ND@1400 J
MIBK (4-METHYL-2-PENTANONE) ug/kg ND@1400 J ND@1400						
N-BUTYLBENZENE ug/kg NA NA NA NA NA N-PROPYLBENZENE ug/kg NA NA NA NA NA NA NA N-PROPYLBENZENE ug/kg ND@1400 J ND@1400 J ND@1400 J ND@1400 J ND@1400 J PROPIONTRILE ug/kg NA NA NA NA NA NA R RA RA RA RA RA RA RA RA NA RA RA NA RA						
N-PROPYLBENZENE ug/kg NA NA NA NA NA 0-XYLENE ug/kg ND@1400 J	N-BUTYLBENZENE	ug/kg	NA	NA	NA	NA
PROPIONITRILE ug/kg NA R NA NA NA NA State NA <		ug/kg				
SEC-BUTYLBENZENE ug/kg NA NA NA NA STYRENE ug/kg ND@1400 J 20000 J TR(CHLOROFTH						
STYRENE ug/kg ND@1400 J						
TETRACHLOROETHENE ug/kg ND@ 1400 J ND@ 1	STYRENE	ug/kg	ND@1400 J	ND@1400 J	ND@1400 J	
TETRAHYDROFURAN ug/kg ND@1400 J						
TOLUENE ug/kg ND@1400 J						
TRANS-1,3-DICHLOROPROPENE ug/kg ND@1400 J DD@1400	TOLUENE	ug/kg	ND@1400 J	ND@1400 J	ND@1400 J	ND@1400 J
TRANS-1,4-DICHLORO-2-BUTENE ug/kg ND@1400 J ND@1400						
TRICHLOROETHENE ug/kg 1700 J 1900 J 14000 J 20000 J TRICHLOROFLUOROMETHANE (FREON 11) ug/kg ND@1400 J						
VINYL ACETATE ug/kg NA R NA <th< td=""><td>TRICHLOROETHENE</td><td></td><td>1700 J</td><td>1900 J</td><td>14000 J</td><td>20000 J</td></th<>	TRICHLOROETHENE		1700 J	1900 J	14000 J	20000 J
VINYL CHLORIDE ug/kg ND@1400 J ND@1400 J ND@1400 J ND@1400 J						
XYLENES, TOTAL ug/kg ND@1400 J ND@1400 J ND@1400 J ND@1400 J					ND@1400 J ND@1400 J	ND@1400 J ND@1400 J

Sample Location		EN-421A	EN-42	1A EN-4	21A EN-421A
Sample Depth (feet bgs)		22.0'			23.0' 23.5'
Sample Date		07/20/2005	07/20/20		
Laboratory Sample I.D.		629598	6295		9600 629601
		02,0,0	0275		0000
Parameter	Units				
	cints				
1,1,1,2-TETRACHLOROETHANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,1,1-TRICHLOROETHANE	ug/kg	2000 J	1900 J	1200 J	860 J
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	ug/kg ug/kg	ND@1300 J ND@1300 J	ND@2300 J ND@2300 J	ND@3100 J ND@3100 J	ND@3300 J ND@3300 J
1,1,2-TRICHLOROETHANE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,1-DICHLOROETHANE	ug/kg	650 J	1000 J	1300 J	1200 J
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	ug/kg	300 J NA	480 J	630 J NA	ND@3300 J
1,2,3-TRICHLOROBENZENE	ug/kg ug/kg	NA	NA NA	NA	NA
1,2,3-TRICHLOROPROPANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,2,4-TRICHLOROBENZENE	ug/kg	NA	NA	NA	NA
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	ug/kg ug/kg	NA NA	NA NA	NA	NA
1,2-DIBROMOETHANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,2-DICHLOROBENZENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,2-DICHLOROETHANE 1,2-DICHLOROETHENE, TOTAL	ug/kg	ND@1300 J 12000 J	ND@2300 J 6800 J	ND@3100 J 7300 J	ND@3300 J 7600 J
1,2-DICHLOROPTHENE, TOTAL 1,2-DICHLOROPROPANE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
1,3,5-TRIMETHYLBENZENE	ug/kg	NA	NA	NA	NA
1,3-DICHLOROBENZENE	ug/kg	ND@1300 J NA	ND@2300 J	ND@3100 J NA	ND@3300 J NA
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	ug/kg ug/kg	NA ND@1300 J	NA ND@2300 J	NA ND@3100 J	NA ND@3300 J
1,4-DIOXANE	ug/kg	NA R	NA R	NA F	R NA R
2,2-DICHLOROPROPANE	ug/kg	NA	NA	NA	NA
2-CHLOROETHYLVINYL ETHER 2-CHLOROTOLUENE	ug/kg ug/kg	ND@1300 J NA	ND@2300 J NA	ND@3100 J NA	ND@3300 J NA
3-CHLOROPROPENE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
4-CHLOROTOLUENE	ug/kg	NA	NA	NA	NA
ACETONE	ug/kg	NA R	NA R	NA F	R NA R
ACROLEIN ACRYLONITRILE	ug/kg ug/kg	NA R NA R	NA R NA R	NA F	R NA R R NA R
BENZENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
BROMOBENZENE	ug/kg	NA	NA	NA	NA
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	ug/kg ug/kg	ND@1300 J ND@1300 J	ND@2300 J ND@2300 J	ND@3100 J ND@3100 J	ND@3300 J ND@3300 J
BROMOFORM (TRIBROMOMETHANE)	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
BROMOMETHANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
CARBON DISULFIDE CARBON TETRACHLORIDE	ug/kg ug/kg	ND@1300 J ND@1300 J	ND@2300 J ND@2300 J	ND@3100 J ND@3100 J	ND@3300 J ND@3300 J
CHLOROBENZENE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
CHLORODIBROMOMETHANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
CHLOROETHANE CHLOROFORM (TRICHLOROMETHANE)	ug/kg	ND@1300 J ND@1300 J	ND@2300 J ND@2300 J	ND@3100 J ND@3100 J	ND@3300 J ND@3300 J
CHLOROMETHANE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
CHLOROPRENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
CIS-1,2-DICHLOROETHENE	ug/kg	12000 J	6400 J	6900 J	7200 J
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	ug/kg ug/kg	ND@1300 J ND@1300 J	ND@2300 J ND@2300 J	ND@3100 J ND@3100 J	ND@3300 J ND@3300 J
DICHLORODIFLUOROMETHANE (FREON 12)	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
ETHYL METHACRYLATE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
ETHYLBENZENE HEXACHLOROBUTADIENE	ug/kg ug/kg	ND@1300 J NA	ND@2300 J NA	ND@3100 J NA	ND@3300 J NA
IODOMETHANE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
ISOBUTYL ALCOHOL	ug/kg	NA R	NA R	NA F	R NA R
ISOPROPYLBENZENE ISOPROPYLTOLUENE	ug/kg	ND@1300 J NA	ND@2300 J NA	ND@3100 J NA	ND@3300 J NA
M,P-XYLENE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
METHACRYLONITRILE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
METHYL BUTYL KETONE (2-HEXANONE) METHYL ETHYL KETONE (MEK, 2-BUTANONE)	ug/kg	ND@1300 J NA R	ND@2300 J NA R	ND@3100 J NA F	ND@3300 J R NA R
METHYL ETHYL KETONE (MEK, 2-BUTANONE) METHYL METHACRYLATE	ug/kg ug/kg	NA K ND@1300 J	NA R ND@2300 J	NA B ND@3100 J	ND@3300 J
METHYL TERT-BUTYL ETHER (MTBE)	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
METHYLENE CHLORIDE (DICHLOROMETHANE)	ug/kg	300 J	ND@2300 J	820 J	880 J
MIBK (4-METHYL-2-PENTANONE) N-BUTYLBENZENE	ug/kg ug/kg	ND@1300 J NA	ND@2300 J NA	ND@3100 J NA	ND@3300 J NA
N-PROPYLBENZENE	ug/kg ug/kg	NA	NA	NA	NA
O-XYLENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
PROPIONITRILE SEC-BUTYLBENZENE	ug/kg ug/kg	NA R NA	NA R NA	NA F	R NA R NA
STYRENE	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
TERT-BUTYLBENZENE	ug/kg	NA	NA	NA	NA
TETRACHLOROETHENE TETRALIVDROEURAN	ug/kg	ND@1300 J	ND@2300 J ND@23000 J	ND@3100 J ND@31000 J	ND@3300 J ND@33000 J
TETRAHYDROFURAN TOLUENE	ug/kg ug/kg	ND@13000 J ND@1300 J	ND@23000 J ND@2300 J	ND@31000 J ND@3100 J	ND@33000 J ND@3300 J
TRANS-1,2-DICHLOROETHENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
TRANS-1,3-DICHLOROPROPENE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
TRANS-1,4-DICHLORO-2-BUTENE TRICHLOROETHENE	ug/kg ug/kg	ND@1300 J 45000 J	ND@2300 J 70000 J	ND@3100 J 97000 J	ND@3300 J 100000 J
TRICHLOROFLUOROMETHANE (FREON 11)	ug/kg ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
VINYL ACETATE	ug/kg	NA R	NA J	NA F	
VINYL CHLORIDE	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J
XYLENES, TOTAL	ug/kg	ND@1300 J	ND@2300 J	ND@3100 J	ND@3300 J

 TABLE C.2.1.3

 Soil Analytical Chemistry Data

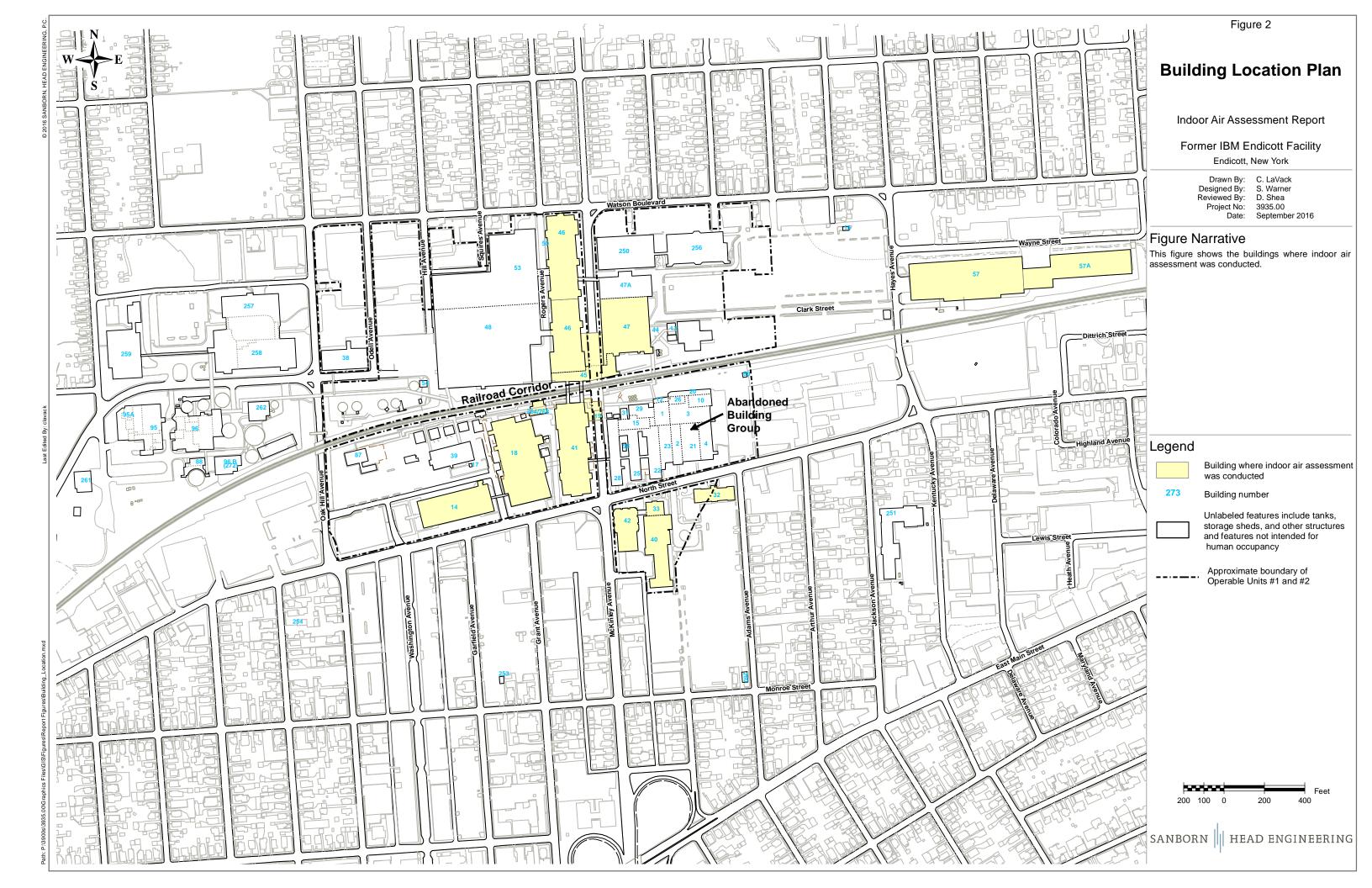
 Lacustrine Silt Profiles

 OU#1 / OU#2 FFS Report

 Former IBM Endicott Facility, Endicott, NY

Explanation of Reporting Conventions and Key to Comment Codes

Sample Depth (feet bgs)


NA	Not Analyzed
ND@X	Not Detected at Detection Limit X

Code Explanation

- J Estimated value compound meets identification criteria, but result is less than the reporting limit.
- R Result rejected due to analytical and quality control deficiencies. The presence or absence of the analyte cannot be verified.

APPENDIX D

Indoor Air Analytical Chemistry Data (SHPC, September 2016)

Table 3A Building 14 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sampla	Field	Collection														Concer	ntratio	ons in µį	g/m ³													
Sample Location	Sample	Date		TCE			PCE		1,1	L, 1-TC A			CEA		1,	1-DCA		1,	,2-DCA	1	1,	1-DCE		c-1	L,2-DC	E	t-1	,2-DCE			VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA14-001	AA14-001	03/15/16	0.11	U		0.14	J	Н	0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA14-001	IA14-001	03/15/16	0.11	U		0.31	J	Н	0.14			0.053	U		0.081	U		0.085			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-002	IA14-002	03/15/16	0.13			0.24	J	Н	0.15			0.053	U		0.081	U		0.11			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-004	IA14-004	03/15/16	0.11	U		0.33	J	Н	0.14			0.053	U		0.081	U		0.089			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-005	IA14-005	03/15/16	0.11			0.36	J	Н	0.13			0.053	U		0.081	U		0.097			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-006	IA14-006	03/15/16	0.11			0.36	J	Н	0.15			0.053	U		0.081	U		0.097			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-007	IA14-007	03/15/16	0.12			0.44	J	Н	0.12			0.053	U		0.081	U		0.093			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-008	IA14-008	03/15/16	0.11			0.46	J	Н	0.11	U		0.079			0.081	U		0.13			0.079	U		0.079	U		0.079	U		0.051	U	
IA14-008*	DUP-2	03/15/16	0.11	U		0.40	J	Н	0.11	U		0.053	U		0.081	U		0.089			0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethene; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. * indicates sample is a field duplicate.

3. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

4. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

5. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3B Building 18 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sample	Field	Collection														Concer	itratio	ons in µg	g/m ³													\square
Location	Sample	Date		TCE			PCE		1,1	l,1-TCA			CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	1,2-DCI	E	t-1	,2-DCE	2		VC	
LOCATION	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA18-001	AA18-001	03/24/16	0.11	UJ	Ι	0.14	UJ	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA18-001	IA18-001	03/24/16	0.26			0.16	EB	Н	0.28			0.055			0.081	U		0.081	U		0.079	U		0.079	U		0.13			0.051	U	
IA18-002	IA18-002	03/24/16	0.11	U		0.16	EB	Н	0.30			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.095			0.051	U	
IA18-003	IA18-003	03/24/16	0.11	U		0.16	EB	Н	0.30			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.095			0.051	U	
IA18-004	IA18-004	03/24/16	0.11	U		0.20	EB	Н	0.31			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.10			0.051	U	
IA18-005	IA18-005	03/24/16	0.11	U		0.14	EB	Н	0.26			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.18			0.051	U	
IA18-010	IA18-010	03/24/16	0.11	U		0.23	EB	Н	0.16			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA18-012	IA18-012	03/24/16	0.11	U		0.21	EB	Н	0.14			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA18-016	IA18-016	03/24/16	0.13			0.18	EB	Н	0.33			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethene; "1,2-DCA" is 1,2-dichloroethene; "1,2-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3C Building 19 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sampla	Field	Collection														Concer	ntratio	ons in µg	g/m ³													
Sample	Sample	Collection		TCE			PCE		1,1	l, 1-TC A			CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	,2-DC	E	t-1	,2-DCE	Ξ		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA19-001	AA19-001	03/10/16	0.23			0.14	EB	Н	0.45			0.053	U		0.12			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
AA19-001	AA19-001	05/25/16	0.11	U		0.14	U		0.15			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.10			0.051	U	
IA19-001	IA19-001	03/10/16	3.9			1.3	EB	Н	1.1			0.087			0.21			0.085			0.079	U		0.12			10			0.051	U	
IA19-001	IA19-001	05/25/16	0.11	UJ	Ι	0.14	UĮ	Ι	0.14	J	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	1.6	I	Ι	0.051	UJ	Ι

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is 1,1-dichloroethene; "t-1,2-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Samples collected on May 25, 2016 were under different HVAC operating conditions than March 10. 2016. Refer to the text.

3. Results are presented in micrograms per cubic meter (μ g/m³).

4. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

5. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3D **Building 32 - Indoor Air Sample Data** Indoor Air Assessment Report Former IBM Endicott Facility **Endicott**, New York

Sampla	Field	Collection														Conce	ntrati	ons in µĮ	g/m ³													
Sample Location	Sample	Date		ТСЕ			PCE		1,1	,1-TCA			CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	,2-DCI	Ε	t-1	,2-DCE	Ξ		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA32-001	AA32-001	03/08/16	0.14			0.14	U		0.079	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA32-001	IA32-001	03/08/16	0.92	J	Ι	0.52	JEB	Ι	0.16	J	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.089	J	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA32-002	IA32-002	03/08/16	0.72			0.39	EB	Н	0.15			0.053	U		0.081	U		0.12			0.079	U		0.079	U		0.079	U		0.051	U	
IA32-003	IA32-003	03/08/16	0.76			0.44	EB	Н	0.15			0.053	U		0.081	U		0.093			0.079	U		0.079	U		0.079	U		0.051	U	
IA32-004	IA32-004	03/08/16	0.89			0.47	EB	Н	0.16			0.053	U		0.081	U		0.089			0.079	U		0.079	U		0.079	U		0.051	U	
IA32-007	IA32-007	03/08/16	1.2			0.42	EB	Н	0.15			0.053	U		0.081	U		0.089			0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-DCA" dichloroethane; "1,1-DCE" is 1,1-dichloroethene; "c-1,2-DCE" is cis-1,2-dichloroethene; "t-1,2-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3EBuilding 33 & 40 - Indoor Air Sample Data

Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sampla	Field	Collection														Concer	ntrati	ons in µg	g/m ³													\neg
Sample Location	Sample	Date		TCE			PCE		1,1	1.1-TC	ł		CEA		1	,1-DCA		1,	2-DCA		1,	1-DCE		c- 1	1,2-DCI	Ε	t-1	,2-DCI	E		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA33-001	AA33-001	03/09/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA33-002	IA33-002	03/09/16	0.61			0.60	EB	Н	0.13			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA33-003	IA33-003	03/09/16	0.24			0.26	EB	Н	0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
AA40-001	AA40-001	03/09/16	0.11	UJ	Ι	0.16	JEB	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA40-001	IA40-001	03/09/16	0.45			0.77	EB	Н	0.14			0.053	U		0.081	U		0.11			0.079	U		0.079	U		0.079	U		0.051	U	
IA40-001*	DUP-1	03/09/16	0.54			0.70	EB	Н	0.14			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA40-002	IA40-002	03/09/16	0.47			0.69	EB	Н	0.15			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA40-003	IA40-003	03/09/16	0.47			0.80	EB	Н	0.14			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA40-004	IA40-004	03/09/16	0.55	J	Ι	1.5	JEB	Ι	0.12	J	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.12	J	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA40-005	IA40-005	03/09/16	0.53			0.75	EB	Н	0.15			0.071			0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA40-006	IA40-006	03/09/16	0.57			1.2	EB	Н	0.13			0.053	U		0.081	U		0.12			0.079	U		0.079	U		0.079	U		0.051	U	
IA40-007	IA40-007	03/09/16	0.36			1.3	EB	Н	0.11	U		0.053	U		0.081	U		0.15			0.079	U		0.079	U		0.079	U		0.051	U	
IA40-008	IA40-008	03/09/16	0.36			0.81	EB	Н	0.11	U		0.053	U		0.081	U		0.13			0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is 1,1-dichloroethene; "t-1,2-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. * indicates sample is a field duplicate.

3. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

4. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

5. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3FBuilding 41 - Indoor Air Sample Data

Indoor Air Assessment Report

Former IBM Endicott Facility Endicott, New York

Comple	Field	Collection														Concer	trati	ons in µg	g/m ³													
Sample Location	Sample	Collection Date		TCE			PCE		1,1	, 1-TC A	1		CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	1,2-DCI	3	t-1	,2-DCI	3		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA41-001	AA41-001	03/10/16	0.11	U		0.14	U		0.65			0.053	U		0.12			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA41-020	IA41-020	03/10/16	0.94			3.0	EB	Н	27			0.20			2.2			0.081	U		0.68			0.49			0.69			0.051	U	
IA41-020	IA41-020	05/25/16	0.53			1.7			19			0.18			3.4			0.081	U		0.55			0.27			0.12			0.051	U	
IA41-021	IA41-021	03/10/16	1.3	J	Ι	1.6	JEB	Ι	30	J	Ι	0.22	J	Ι	2.7	J	Ι	0.081	UJ	Ι	0.83	J	Ι	0.70	J	Ι	0.54	J	Ι	0.051	UJ	Ι
IA41-021	IA41-021	05/25/16	0.68			0.56			20			0.17			2.6	J	Ι	0.081	U		0.68			0.34			0.85			0.051	U	
IA41-021*	FD41-021	05/25/16	0.68			0.56			20			0.18			4.0	J	Ι	0.081	U		0.69			0.37			0.85			0.051	U	
IA41-022	IA41-022	03/10/16	1.0			2.0	EB	Н	28			0.23			2.4			0.081	U		0.71			0.52			0.52			0.051	U	
IA41-022	IA41-022	05/25/16	0.53			0.88			18			0.19			3.1			0.081	U		0.55			0.27			0.17			0.051	U	
IA41-023	IA41-023	03/10/16	0.46			1.7	EB	H	1.4			0.19			0.28			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA41-023	IA41-023	05/25/16	0.12			0.14	U		0.73			0.16			0.11			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA41-024	IA41-024	03/10/16	0.45	J	Ι	0.18	JEB	Ι	1.6	J	Ι	0.19	J	Ι	0.27	J	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA41-025	IA41-025	03/10/16	0.51	J	Ι	0.14	JEB	Ι	1.5	J	Ι	0.18	J	Ι	0.28	J	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA41-025	IA41-025	05/25/16	0.11			0.18			0.68			0.17			0.16			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA41-029	IA41-029	05/25/16	0.15			0.18			1.1			0.17			0.23			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is 1,1-dichloroethene; "c-1,2-DCE" is cis-1,2-dichloroethene; and "VC" is vinyl chloride.

2. * indicates sample is a field duplicate.

3. Samples collected on May 25, 2016 were under different HVAC operating conditions than March 10, 2016. Refer to the text.

4. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

5. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

6. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3G Building 42 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sample	Field	Collection														Conce	ntratio	ons in µ	g/m ³													
Location	Sample	Date	T	CE]	PCE		1,1	l, 1-TC A	1		CEA		1	1-DCA		1	,2-DCA	L	1	1-DCE		c-1	L,2-DCI	E	t-1	L,2-DCE	Ε		VC	
Location	Name	Date	Result Q	ual. H	Bias R	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA42-001	AA42-001	04/05/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA42-002	IA42-002	04/05/16	1.4			0.14	U		0.15			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA42-005	IA42-005	04/05/16	3.1			0.14	U		0.40			0.053	U		0.081	U		0.081	U		0.079	U		0.079			0.079	U		0.051	U	
IA42-008	IA42-008	04/05/16	0.73			0.14	U		0.13			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA42-010	IA42-010	04/05/16	0.65			0.14	U		0.13			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is 1,1-dichloroethene; "c-1,2-DCE" is cis-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3HBuilding 45 & 46 - Indoor Air Sample Data

Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Comple	Field	Collection														Concer	ntrati	ons in µĮ	g/m ³													
Sample Location	Sample	Collection Date		TCE			PCE		1,1	1,1-TC/	ł		CEA		1	1-DCA		1,	2-DCA		1	,1-DCE		c-1	l,2-DCI	2	t-1	,2-DCI	Ξ		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
IA45-001	IA45-001	04/01/16	1.7			0.14	U		3.2			0.071			1.1			0.081	U		0.15			0.27			0.079	U		0.051	U	
AA46-001	AA46-001	04/01/16	0.11	UJ	Ι	0.14	UJ	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA46-001	IA46-001	04/01/16	0.30	J	Ι	0.18	J	Ι	0.46	J	Ι	0.053	UJ	Ι	0.24	J	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	UJ	Ι
IA46-002	IA46-002	04/01/16	0.48			0.14	U		0.75			0.071			0.41			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	1
IA46-003	IA46-003	04/01/16	0.32			0.14	U		0.48			0.053	U		0.24			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA46-004	IA46-004	04/01/16	0.68			0.14	U		1.2			0.053	U		0.74			0.081	U		0.079	U		0.11			0.079	U		0.051	U	
IA46-005	IA46-005	04/01/16	0.99			0.14	U		1.8			0.16			1.2			0.081	U		0.10			0.18			0.079	U		0.051	U	1
IA46-006	IA46-006	04/01/16	2.0			0.14	U		4.2			0.055			2.6			0.081	U		0.24			0.45			0.079	U		0.051	U	
IA46-006*	DUP-4	04/01/16	1.9			0.14	U		4.2			0.058			2.6			0.081	U		0.23			0.41			0.079	U		0.051	U	
IA46-007	IA46-007	04/01/16	2.1			0.14	U		5.2			0.055			2.7			0.081	U		0.29			0.56			0.079	U		0.051	U	1
IA46-008	IA46-008	04/01/16	1.4			0.14	U		3.8			0.082			1.4			0.081	U		0.23			0.36			0.079	U		0.051	U	
IA46-009	IA46-009	04/01/16	2.0			0.45			3.6			0.061			1.6			0.081	U		0.24			0.45			0.079	U		0.051	U	
IA46-010	IA46-010	04/01/16	2.1			0.23			4.0			0.11			2.2			0.081	U		0.22			0.36			0.079	U		0.051	U	
IA46-011	IA46-011	04/01/16	1.6			0.14	U		3.1			0.077			1.3			0.081	U		0.25			0.26			0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. * indicates sample is a field duplicate.

3. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

4. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

5. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3I Building 47 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sample	Field	Collection														Concei	ntrati	ons in µį	g/m ³													
Location	Sample	Date		ТСЕ			PCE		1,1	,1-TCA			CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	,2-DCI	Ε	t-1	,2-DCE	Ξ		VC	
LOCATION	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA47-001	AA47-001	03/11/16	0.11	UJ	Ι	0.14	UJ	Ι	0.35	J	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	U	Ι
IA47-001	IA47-001	03/11/16	0.31			0.14	U		0.80			0.053	U		0.10			0.081	U		0.14			0.10			0.079	U		0.051	U	
IA47-002	IA47-002	03/11/16	0.17			0.14	U		0.48			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA47-003	IA47-003	03/11/16	0.48			0.14	U		0.96			0.053	U		0.10			0.081	U		0.079	U		0.17			0.079	U		0.051	U	
IA47-005	IA47-005	03/11/16	0.11	UJ	Ι	0.14	UJ	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	0.051	U	Ι
IA47-009	IA47-009	03/11/16	0.11	U		0.14	U		0.15			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA47-010	IA47-010	03/11/16	0.11			0.14	U		0.11			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; "1,1-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

- "J" indicates the result is an estimated value.
- "UJ" indicates the non-detect is estimated at the indicated PQL.
- "EB" indicates analyte was also present in the associated field blank.
- "H" indicates a high bias.
- "I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3J Building 57 - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility Endicott, New York

Sample	Field	Collection														Concer	ntratio	ons in µg	/m ³													7
Location	Sample	Date		TCE			PCE		1,1	1,1-TC	ł		CEA		1,	1-DCA		1,	2-DCA		1,	1-DCE		c-1	1,2-DC	E	t-1	L,2-DCE	3		VC	
LOCATION	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA57-001	AA57-001	03/16/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA57-001	IA57-001	03/16/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		1.1			0.051	U	
IA57-002	IA57-002	03/16/16	0.13	J	Ι	0.22	J	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	1.2	J	Ι	0.051	UJ	Ι
IA57-003	IA57-003	03/16/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		1.0			0.051	U	
IA57-004	IA57-004	03/16/16	0.11	UJ	Ι	0.33	J	Ι	0.11	UJ	Ι	0.053	UJ	Ι	0.081	UJ	Ι	0.081	UJ	Ι	0.079	UJ	Ι	0.079	UJ	Ι	1.2	J	Ι	0.051	UJ	Ι
IA57-005	IA57-005	03/16/16	0.11	U		0.23			0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.90			0.051	U	
IA57-006	IA57-006	03/16/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		4.5			0.051	U	
IA57-007	IA57-007	03/16/16	0.11	U		0.16	J	H	0.11	U		0.084			0.081	U		0.081	U		0.079	U		0.079	U		0.25			0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "PCE" is tetrachloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethene; "CEA" is chloroethene; "1,1,2-DCA" is 1,2-dichloroethene; "1,2-DCA" is 1,2-dichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethene; "CEA" is chloroethene; "c-1,2-DCE" is cis-1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3K Building 57A - Indoor Air Sample Data Indoor Air Assessment Report Former IBM Endicott Facility

Endicott, New York

Cample	Field	Collection														Concen	tratio	ons in µg	/m ³													
Sample Location	Sample	Date		TCE			PCE		1,1	l,1-TCA			CEA		1,	1-DCA		1,2	2-DCA		1,	1-DCE		c- 1	l,2-DCI	E	t-1	,2-DC	Ξ		VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias
AA57A-001	AA57A-001	06/01/16	0.11	U		0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA57A-001	IA57A-001	03/16/16	2.0			0.22			0.28			0.053	U		0.13			0.15			0.079	U		0.095			0.35			0.051	U	
IA57A-001*	DUP-3	03/16/16	2.0	J	Ι	0.24	J	Ι	0.29	J	Ι	0.082	J	Ι	0.14	J	Ι	0.16	J	Ι	0.079	UJ	Ι	0.083	J	Ι	0.38	J	Ι	0.051	UJ	Ι
IA57A-001	IA57A-001	06/01/16	1.3			0.23	EB	Н	0.11	U		0.053	U		0.081	U		0.11			0.079	U		0.079	U		1.2			0.051	U	
IA57A-001*	FD57A-001	06/01/16	1.3			0.22	EB	Н	0.11	U		0.053	U		0.081	U		0.11			0.079	U		0.079	U		1.2			0.051	U	
IA57A-001	IA57A-001	06/02/16	0.66			0.16	EB	Н	0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.25			0.051	U	
IA57A-002	IA57A-002	03/16/16	2.6			0.25			0.48			0.053	U		0.23			0.16			0.079	U		0.14			0.37			0.051	U	
IA57A-002	IA57A-002	06/01/16	1.0			0.22	EB	Н	0.11	U		0.053	U		0.081	U		0.085			0.079	U		0.079	U		1.3			0.051	U	
IA57A-002	IA57A-002	06/02/16	0.60			0.14	EB	Н	0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.26			0.051	U	
IA57A-003	IA57A-003	03/16/16	0.26			0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA57A-003	IA57A-003	06/01/16	0.31			0.95	EB	Н	0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.17			0.051	U	
IA57A-003	IA57A-003	06/02/16	0.26			0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.12			0.051	U	
IA57A-004	IA57A-004	03/16/16	0.13			0.14	U		0.11	U		0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		1.1			0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "PCE" is tetrachloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethene; "CEA" is chloroethene; "1,1,2-DCA" is 1,2-dichloroethene; "1,2-DCA" is 1,2-dichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethene; "CEA" is chloroethene; "1,2-DCE" is trans-1,2-dichloroethene; and "VC" is vinyl chloride.

2. * indicates sample is a field duplicate.

3. Samples collected on June 01, 2016 and June 02, 2016 were under different HVAC operating conditions than March 16, 2016. Refer to the text.

4. Results are presented in micrograms per cubic meter ($\mu g/m^3$).

5. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

6. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

Table 3L Building 264 - Indoor Air Sample Data Indoor Air Assessment Report

Former IBM Endicott Facility

Endicott, New York

Sample	Field	Collection													(Concer	ntratio	ons in μg	/m ³													
Location	Sample	Date		TCE			PCE		1,1	,1-TCA			CEA		1,	1-DCA		1,2	2-DCA		1,1	1-DCE		c-1	,2-DCE	Ξ	t-1	,2-DCE			VC	
Location	Name	Date	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual.	Bias	Result	Qual. I	3ias
AA264-001	AA264-001	03/16/16	0.11	U		0.14	U		0.37			0.053	U		0.081	U		0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	
IA264-001	IA264-001	03/16/16	0.33			0.36			2.3			0.053	U		0.18			0.081	U		0.079	U		0.079	U		0.079	U		0.051	U	

Notes:

1. Samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated over an 8-hour sampling interval. The samples were analyzed by Alpha Analytical of Westborough, Massachusetts for the project-specific list of volatile organic compounds (VOCs) by United States Protection Agency (USEPA) Method TO-15 in selective ion monitoring (SIM) mode. "TCE" is trichloroethene; "1,1,1-TCA" is 1,1,1-Trichloroethane; "CEA" is chloroethane; "1,1-DCA" is 1,1-dichloroethane; "1,2-DCA" is 1,2-dichloroethene; and "VC" is vinyl chloride.

2. Results are presented in micrograms per cubic meter (μ g/m³).

3. An in-depth data usability review (DUR) was performed on the data by New Environmental Horizons, Inc. (NEH) of Arlington, Massachusetts. All results were considered acceptable, with the understanding of the potential uncertainty (bias) in the qualified results. In some cases, NEH assigned the following qualifiers and biases to the data. Refer to the DUR report for further details.

"U" indicates the analyte is non-detect at or above the indicated sample specific practical quantification limit (PQL).

"J" indicates the result is an estimated value.

"UJ" indicates the non-detect is estimated at the indicated PQL.

"EB" indicates analyte was also present in the associated field blank.

"H" indicates a high bias.

"I" indicates an indeterminate bias.

4. The "AA" designation indicates that the sample consists of ambient air collected from outside the building.

APPENDIX E

Mass Removal Data (1980 through 2017)

TABLE E.1

VOC Mass Removed by Area (1980 through 2017)

OU#1 and OU#2 FFS Report

Former IBM Endicott Site, Endicott, NY

	From	From	From	From	
Year	Western	Central	Eastern	North St	Total (lbs)
	RCSA	RCSA	RCSA	Area**	
1980	119	388,574			388,693
1981	2,666	139,756			142,421
1982	1,241	47,461	1,636		50,338
1983	126	10,967	1,178		12,270
1984	293	14,160	760		15,214
1985	688	30,642	992		32,323
1986	241	18,985	582		19,807
1987	133	16,915	639		17,687
1988	222	26,062	661		26,945
1989	178	5,530	247		5,954
1990	199	4,989	86		5,274
1991	376	5,122	178		5,676
1992	216	3,992	317		4,525
1993	132	5,275	247		5,654
1994	158	3,119	138		3,415
1995	236	1,838	280		2,354
1996	145	3,241	297		3,683
1997	129	1,845	1,186		3,161
1998	139	2,890	1,858		4,887
1999	73	1,832	2,068		3,973
2000	131	2,143	768		3,041
2001	113	4,908	605	9	5,636
2002	143	4,887	321	13	5,365
2003	152	2,502	744	23	3,420
2004	186	2,139	636	116	3,076
2005	108	2,221	108	160	2,597
2006	99	2,288	1,105	93	3,586
2007	55	1,410	2,117	43	3,625
2008	58	941	1,759	30	2,787
2009	44	1,288	2,318	35	3,684
2010	32	1,263	1,850	30	3,175
2011	48	1,228	1,359	63	2,698
2012	34	2,327	1,673	193	4,226
2013	33	1,561	2,244	44	3,882
2014	111	1,909	1,494	26	3,540
2015	117	1,776	1,832	33	3,759
2016	237	844	1,623	44	2,748
2017	454	634	1,589	43	2,720
	To	tal VOC Ma	ss Removed	(pounds)	817,818

**North St Area includes flux control portion of EN-284P pumping.

TABLE E.2 VOC Mass Removed by Constituent (1980 through 2017) OU#1 and OU#2 FFS Report Former IBM Endicott Site, Endicott, NY

			111-TCA					TCE				(Other VOCs	5		Methylene
Area:	West	Central*	East	North St	T-4-1	West	Central	East	North St	T-4-1	West	Central	East	North St	T-4-1	Chloride
Year					Total					Total					Total	Central
1980	14.6	385,943.4			385,958.0	3.3	1,809.5			1,812.8	101.3	48.4			149.7	772.3
1981	1,301.2	112,631.8			113,933.0	128.4	3,282.4			3,410.8	1,236.0	180.9			1,416.9	23,660.6
1982	523.1	40,665.1	1,546.8		42,735.0	25.0	1,951.9	20.3		1,997.3	692.6	580.6	68.9		1,342.1	4,263.8
1983	3.0	8,018.5	1,066.8		9,088.3	3.7	1,705.2	16.8		1,725.6	119.1	252.7	94.1		465.9	990.0
1984	75.4	11,562.9	709.7		12,348.0	9.6	1,593.7	9.6		1,612.9	208.5	327.8	41.1		577.4	675.5
1985	97.6	25,806.4	971.5		26,875.5	12.1	1,259.6	13.5		1,285.3	578.4	848.3	7.3		1,434.0	2,728.2
1986	26.3	16,092.0	574.6		16,692.9	5.5	540.1	4.2		549.8	208.8	538.7	2.7		750.2	1,813.9
1987	18.9	14,131.0	630.5		14,780.5	4.5	476.1	2.2		482.7	109.9	497.3	6.4		613.6	1,810.1
1988	25.7	19,373.4	649.7		20,048.8	36.9	2,574.3	1.5		2,612.8	159.0	1,028.4	10.1		1,197.5	3,085.8
1989	28.3	4,117.0	215.0		4,360.3	21.7	302.6	14.0		338.3	127.8	613.9	17.7		759.4	496.0
1990	57.0	4,094.0	78.0		4,229.0	4.0	294.0	0.0		298.0	138.0	361.0	8.0		507.0	240.0
1991	87.5	4,312.9	173.5		4,573.9	12.4	249.3	0.4		262.1	276.1	320.5	3.8		600.4	239.6
1992	106.0	3,289.0	309.0		3,704.0	8.0	231.0	0.0		239.0	102.0	319.0	8.0		429.0	153.0
1993	11.0	4,252.0	247.0		4,510.0	3.0	319.0	0.0		322.0	118.0	583.0	0.0		701.0	121.0
1994	13.0	2,484.0	133.0		2,630.0	4.0	229.0	0.0		233.0	141.0	359.0	5.0		505.0	47.0
1995	71.0	1,478.0	271.0		1,820.0	11.0	145.0	0.0		156.0	154.0	206.0	9.0		369.0	9.0
1996	11.7	2,693.0	297.0		3,001.7	3.2	234.0	0.0		237.2	130.4	249.0	0.0		379.4	65.0
1997	7.7	1,533.2	890.0		2,430.9	5.0	88.3	48.5		141.8	116.7	192.3	247.8		556.8	31.3
1998	10.0	2,482.0	1,455.0		3,947.0	3.0	156.0	111.0		270.0	126.0	225.0	292.0		643.0	27.0
1999	5.0	1,407.0	1,406.0		2,818.0	2.0	99.0	184.0		285.0	66.0	272.0	478.0		816.0	54.0
2000	7.9	1,606.9	527.4		2,142.2	2.2	138.9	65.9		207.0	121.0	335.6	174.4		631.0	61.2
2001	7.3	3,392.7	235.5	2.9	3,638.4	1.8	1,045.4	102.2	0.3	1,149.7	104.0	419.7	267.7	5.4	796.8	50.6
2002	13.0	3,793.5	150.3	7.4	3,964.3	2.6	734.5	38.8	1.8	777.7	127.1	326.9	132.4	4.0	590.4	32.3
2003	17.5	2,040.5	241.2	15.5	2,314.7	0.0	146.1	225.5	0.9	372.4	134.3	315.0	277.0	6.3	732.7	
2004	8.7	1,649.9	457.7	46.5	2,162.8	1.5	146.0	78.2	25.5	251.2	175.5	323.1	99.8	43.5	641.9	20.2
2005	5.2	1,648.8	78.6	39.7	1,772.2	1.8	155.5	5.5	45.8	208.5	101.0	416.8	24.0	74.5	616.3	
2006	4.1	1,595.7	817.3	10.3	2,427.4	1.3	132.8	89.8	39.4	263.4	94.0	559.8	198.0	43.3	895.1	
2007	2.8	893.5	1,628.3	3.3	2,527.9	0.9	54.8	163.7	21.1	240.5	51.7	461.5	324.9	18.4	856.6	
2008	3.2	571.4	1,362.8	1.2	1,938.7	0.8	26.3	115.8	15.4	158.2	54.1	342.9	280.2	13.2	690.4	
2009	2.2	836.1	1,845.3	1.2	2,684.8	0.4	23.8	156.8	16.9	198.0	41.2	427.8	315.4	16.7	801.1	
2010	1.4	775.8	1,457.9	1.0	2,236.2	0.4	16.9	121.2	16.9	155.3	29.9	470.6	270.8	12.3	783.6	
2011	2.1	685.0	1,063.6	1.8	1,752.5	0.6	24.8	88.2	19.7	133.3	45.7	518.3	206.8	41.4	812.3	
2012	1.5	1,603.2	1,321.5	2.1	2,928.3	0.4	24.5	106.2	17.9	149.0	32.2	699.0	244.9	172.7	1,148.9	
2013	1.3	1,029.3	1,793.1	1.7	2,825.5	0.4	13.3 15.3	140.0	14.9	168.6	31.2 105.8	518.2	311.0	27.8	888.2	
2014	4.8	1,330.0	1,175.1	2.0	2,511.9	0.6		102.3	9.1	127.3		563.5	216.1	15.1	900.5	
2015	9.6	1,183.5	1,454.6	5.5	2,653.2	0.5	11.4	100.5	9.2	121.6	107.2	581.2	277.3	18.5	984.1	
2016	39.7 204.2	556.7	1,131.1	4.5	1,732.0	0.5	1.1	97.9	7.8	107.3	196.4	286.3 291.9	394.4 490.3	31.6	908.7	
2017	204.2	341.5	1,035.3	1.7	1,588.8	0.4	0.7	63.1	10.4	74.7	249.4	291.9	490.3	24.6	1,056.2	
	Total Mag	s of 111-TC	A 1980-2017	(nounde):	724,286.5	Tatal	Mass of TC	F 1980_201	7 (pounds):	23,136.1	Total Ma	ss of Other VO	DCs 1980-20	17 (nounds):	28,948.2	41,447.6
	1 Utar Mas	5 01 111-I C.	a, 1900-201	(pounds):	124,200.3	TUTAL	171435 UI I UI	1700-201	(pounds):	25,150.1	I Utal Ma	ss of Other W	503, 1700-20	r (pounds).	20,740.2	41,447.0

All units are in pounds.

* Includes 240,030 pounds attributable to "Drums" from 1980 to 1982.

Total Mass of VOCs Removed, 1980-2017 (pounds): 817,818.4

TABLE E.2.1VOC Mass Removed by Constituent in the Western RCSA (1980 through 2017)OU#1 and OU#2 FFS ReportFormer IBM Endicott Site, Endicott, NY

Year	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123a	Other
1980	14.6				43.7	3.3					57.6
1981	1301.2				1063.2	128.4					172.8
1982	523.1				585.2	25.0	46.5				60.9
1983	3.0				94.0	3.7	18.2				7.0
1984	75.4				152.2	9.6	41.3				14.9
1985	97.6				528.8	12.1	33.2				16.5
1986	26.3				113.2	5.5	35.8				59.8
1987	18.9				63.9	4.5	32.1				13.9
1988	25.7				116.5	36.9	34.9				7.6
1989	28.3				67.2	21.7	44.8	3.3			12.5
1990	57.0	7.0			54.0	4.0	58.0		10.0		9.0
1991	87.5	6.0			171.6	12.4	76.6		9.0		12.9
1992	106.0	4.0			28.0	8.0	56.0		5.0		9.0
1993	11.0				29.0	3.0	72.0		3.0		14.0
1994	13.0				37.0	4.0	83.0		4.0		17.0
1995	71.0	13.0			26.0	11.0	101.0		3.0		11.0
1996	11.7				47.0	3.2	60.0		3.6		19.8
1997	7.7				44.0	5.0	52.0		3.9		16.8
1998	10.0				29.0	3.0	82.0		5.0		10.0
1999	5.0				10.0	2.0	46.0	2.0	4.0		4.0
2000	7.9				26.6	2.2	74.1	1.7	4.8		13.8
2001	7.3				18.1	1.8	72.7	1.7	4.9		6.6
2002	13.0				33.0	2.6	68.2	2.4	5.4		18.2
2003	17.5				44.9		80.8		1.2		7.4
2004	8.7	0.2	0.2	0.01	48.6	1.5	103.4	1.4	6.8		14.9
2005	5.2	0.3	0.3	0.03	20.8	1.8	62.0	1.2	5.0	0.2	11.1
2006	4.1	0.2	0.2	0.02	19.4	1.3	56.9	1.0	3.7	0.2	12.5
2007	2.8	0.1	0.1	0.02	6.6	0.9	34.6	0.8	2.2	0.1	7.1
2008	3.2	0.1	0.1	0.01	5.1	0.8	37.9	0.9	2.5	0.1	7.5
2009	2.2	0.1	0.1		1.4	0.4	32.1	0.8	2.0	0.1	4.6
2010	1.4		0.1		0.9	0.4	24.0	0.5	1.3	0.01	3.1
2011	2.1	0.1	0.1		1.2	0.6	37.2	1.0	2.0	0.02	4.2
2012	1.5	0.02	0.1		0.7	0.4	26.3	0.8	1.6	0.03	2.6
2013	1.3	0.003	0.1		0.9	0.4	24.3	1.3	1.4	0.003	3.3
2014	4.8	6.4	0.5	0.01	0.3	0.6	70.7	18.9	6.3	1.0	1.8
2015	9.6	4.8	0.7	0.0002	0.3	0.5	77.8	13.9	8.2	0.7	0.7
2016	39.7	9.2	1.7	0.05	0.5	0.5	147.2	22.0	13.0	1.1	1.6
2017	204.2	47.0	4.5	0.9	0.5	0.4	139.0	40.5	13.3	1.3	2.4

All units are in pounds.

Indicates that VOC mass was not calculated because the VOC was not detected.

The Western Railroad Corridor Source Area comprises historical extraction wells EN-50, EN-107 and EN-107R plus current extraction well EN-114T.

TABLE E.2.2VOC Mass Removed by Constituent in the Central RCSA (1980 through 2017)OU#1 and OU#2 FFS ReportFormer IBM Endicott Site, Endicott, NY

Year	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123a	Other	MeCl
1980	223771.8				48.4	1809.5						772.3
1981	51789.2				180.9	3282.4						23660.6
1982	23649.4				140.9	1951.9	439.7					4263.8
1983	8018.5				26.5	1705.2	226.2					990.0
1984	11562.9				34.1	1593.7	293.7					675.5
1985	25806.4				168.6	1259.6	679.7					2728.2
1986	16092.0				228.2	540.1	310.5					1813.9
1987	14131.0				200.0	476.1	297.3					1810.1
1988	19373.4				440.6	2574.3	587.8					3085.8
1989	4117.0				131.0	302.6	482.9					496.0
1990	4094.0	99.0			7.0	294.0	255.0					240.0
1991	4312.9	46.0	14.0		27.6	249.3	232.9					239.6
1992	3289.0	94.0			9.0	231.0	200.0				16.0	153.0
1993	4252.0	108.0			9.0	319.0	379.0				87.0	121.0
1994	2484.0	82.0			13.0	229.0	249.0				15.0	47.0
1995	1478.0	34.0				145.0	145.0				27.0	9.0
1996	2693.0	32.0				234.0	217.0					65.0
1997	1533.2	84.5				88.3	77.0				30.8	31.3
1998	2482.0	40.0				156.0	185.0					27.0
1999	1407.0	87.0	9.0	6.0	10.0	99.0	152.0	1.0	5.0		2.0	54.0
2000	1606.9	121.4	7.0		7.7	138.9	178.3	7.0			14.2	61.2
2001	3392.7	108.1			4.5	1045.4	280.7	2.7			23.7	50.6
2002	3793.5	149.2			2.4	734.5	158.8				16.5	32.3
2003	2040.5	42.2				146.1	264.7				8.2	
2004	1649.9	63.0	25.2	8.0	2.6	146.0	206.6	5.2	6.6		5.8	20.2
2005	1648.8	108.9	19.3	19.1	1.2	155.5	217.7	11.4	1.9	2.3	35.0	
2006	1595.7	138.2	26.8	28.0	8.3	132.8	258.5	15.9	23.7	4.8	55.6	
2007	893.5	189.9	13.3	33.5	0.6	54.8	180.9	7.3	5.4	2.0	28.6	
2008	571.4	156.1	10.0	33.1	0.2	26.3	108.3	5.9	3.3	1.8	24.2	
2009	836.1	204.7	17.9	49.0	0.2	23.8	104.2	7.2	0.8	1.7	42.1	
2010	775.8	225.0	15.0	57.5	0.1	16.9	125.2	8.1	0.6	1.3	37.8	
2011	685.0	250.6	14.4	70.5		24.8	150.7	6.9	0.2	0.9	24.1	
2012	1603.2	337.2	21.5	124.0		24.5	168.0	10.1	0.8	2.7	34.8	
2013	1029.3	289.9	15.2	60.1	0.1	13.3	123.1	5.8	2.0	0.2	21.9	
2014	1330.0	285.1	24.8	75.4	0.7	15.3	138.6	5.0	3.3	1.2	29.4	
2015	1183.5	375.9	11.6	91.8	1.2	11.4	81.4	5.0	2.2	1.0	11.1	
2016	556.7	212.3	7.8	43.1	0.01	1.1	16.2	1.6	0.8	0.4	3.9	
2017	341.5	189.5	3.3	73.3	0.2	0.7	15.3	1.9	0.9	0.6	7.0	

All units are in pounds.

Indicates that VOC mass was not calculated because the VOC was not detected.

The Central Railroad Corridor Source Area comprises historical extraction wells EN-4, EN-7, EN-8, EN-9, EN-11, EN-25, EN-38, EN-39, EN-42, EN-43, EN-46, EN-47, EN-118, SUMP-2, EN-253, EN-428P and current extraction wells EN-253R and EN-428. Data from 1980 to 1982 includes 240,030 pounds of 111-TCA attributable to "Drums".

TABLE E.2.3

VOC Mass Removed by Constituent in the Eastern RCSA (1982 through 2017)

OU#1 and OU#2 FFS Report

Former IBM Endicott Site, Endicott, NY

Year	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123a	Other
1982	1546.8				5.8	20.3	54.9				8.2
1983	1066.8					16.8	86.6				7.5
1984	709.7					9.6	41.1				
1985	971.5					13.5	7.3				
1986	574.6					4.2	2.7				
1987	630.5					2.2	6.4				
1988	649.7					1.5	9.2				0.9
1989	215.0				17.7	14.0					
1990	78.0	1.0							7.0		
1991	173.5				3.8	0.4					
1992	309.0	4.0									4.0
1993	247.0										
1994	133.0	2.0									3.0
1995	271.0	4.0					4.0				1.0
1996	297.0										
1997	890.0	42.5				48.5	153.0		41.3		11.0
1998	1455.0					111.0	259.0		33.0		
1999	1406.0	65.0				184.0	331.0		82.0		
2000	527.4	25.2				65.9	114.9		34.3		
2001	235.5	35.9				102.2	165.3		49.6		16.9
2002	150.3	22.0	1.9			38.8	73.1		26.3		9.1
2003	241.2	40.1	2.9			225.5	230.3		3.7		
2004	457.7	23.0	3.9	0.1	0.1	78.2	62.1	0.1	9.8		0.6
2005	78.6	4.2	2.3	0.03	0.1	5.5	8.8	0.2	7.3	0.4	0.7
2006	817.3	25.9	9.6	0.1	0.3	89.8	123.0	2.7	25.8	3.2	7.5
2007	1628.3	27.6	12.9	0.2	0.5	163.7	221.2	10.8	38.8	4.4	8.6
2008	1362.8	30.0	19.3	1.7	0.3	115.8	173.6	12.2	35.5	1.7	6.0
2009	1845.3	31.6	27.7		0.1	156.8	199.3	15.7	39.3	0.7	1.0
2010	1457.9	25.5	18.8			121.2	182.2	12.1	27.6	2.4	2.2
2011	1063.6	19.4	14.9			88.2	140.1	7.9	21.2	1.8	1.5
2012	1321.5	21.0	12.1	0.3		106.2	174.3	12.4	22.0	1.8	1.0
2013	1793.1	39.7	18.7	0.9		140.0	204.9	14.4	25.8	3.1	3.5
2014	1175.1	22.1	18.6			102.3	141.8	8.4	20.7	2.7	1.6
2015	1454.6	41.1	14.7	3.8		100.5	182.1	11.6	20.2	2.6	1.2
2016	1131.1	103.1	23.9	34.2		97.9	192.5	21.9	14.9	1.2	2.7
2017	1035.3	132.6	15.8	97.1		63.1	197.9	31.7	13.1	1.2	0.9

All units are in pounds.

Indicates that VOC mass was not calculated because the VOC was not detected.

The Eastern Railroad Corridor Source Area comprises historical extraction wells EN-119 and EN-219 plus current extraction well EN-219R.

TABLE E.2.4VOC Mass Removed by Constituent in the North St. Area (2001 through 2017)OU#1 and OU#2 FFS ReportFormer IBM Endicott Site, Endicott, NY

Year	111-TCA	11-DCA	11-DCE	CEA	PCE	TCE	C12-DCE	VC	FR113	FR123a	Other	MeCl
2001	2.9	0.1			1.0	0.3	0.4		3.8		0.1	
2002	7.4	0.3	0.1		1.3	1.8	0.2		2.0		0.1	0.1
2003	15.5	0.5	0.5		1.3	0.9	1.3		2.6		0.0	
2004	46.5	5.3	3.7	0.01	3.9	25.5	22.3	0.5	3.0		0.5	4.2
2005	39.7	6.7	4.2	0.03	4.5	45.8	42.0	0.4	4.1	0.2	12.3	
2006	10.3	6.9	1.9		2.8	39.4	28.1	0.1	2.5	0.2	0.8	
2007	3.3	2.6	0.8		1.4	21.1	12.5	0.1	0.6	0.1	0.3	
2008	1.2	1.5	0.5	0.0005	1.8	15.4	7.9	0.01	1.3	0.1	0.2	
2009	1.2	1.8	0.7		2.4	16.9	8.4	0.01	3.2	0.1	0.1	
2010	1.0	1.5	0.5		1.9	16.9	5.9	0.01	2.1	0.1	0.2	
2011	1.8	6.2	2.3	0.01	24.2	19.7	6.6	0.0002	1.5	0.1	0.5	
2012	2.1	6.7	21.1	0.1	133.1	17.9	8.5		1.8	0.1	1.3	
2013	1.7	3.9	4.3	0.02	13.3	14.9	4.3		1.4	0.1	0.6	
2014	2.0	2.3	2.1	0.02	4.4	9.1	3.9		2.2	0.1	0.2	
2015	5.5	5.1	1.3	0.01	1.0	9.2	9.0		1.9	0.1	0.1	
2016	4.5	6.5	3.8	0.02	12.8	7.8	7.6		0.6	0.1	0.1	
2017	7.7	9.3	1.3		2.1	10.4	9.3	0.009	2.3	0.1	0.1	

All units are in pounds.

Indicates that VOC mass was not calculated because the VOC was not detected.

The North St. Area comprises historical extraction well EN-284TD

plus current extraction wells EN-276, EN-276R, and EN-284P.

VOC mass removed by EN-284P and EN-284TD includes only the estimated portion attributable to flux crossing North St. and not the portion attributable to plume reduction south of North St.

TABLE E.3 Groundwater Pumping Volumes (1980 through 2017)

OU#1 and OU#2 FFS Report

Former IBM Endicott Site, Endicott, NY

		Operable Unit #1												
	Area:	West	West	West	Central	Central	Central	Central	Central	Central	East	East	East	
Year	No. of Months	EN-107	EN-107R	EN-114T	EN-025	EN-038	EN-118	EN-253	EN-253R	EN-428/ EN-428P	EN-119	EN-219	EN-219R	OU#1 Volume Pumped
1980	12				824,040	89,880								913,920
1981	12	1,284,510			2,063,630	1,553,957								4,902,097
1982	13	1,011,580			1,813,360	1,348,520								4,173,460
1983	10	267,000			795,000	754,000								1,816,000
1984	11	483,840			1,451,520	1,451,520								3,386,880
1985	13	568,800			1,706,400	1,706,400								3,981,600
1986	13	570,240			1,710,720	1,710,720								3,991,680
1987	12	525,600			1,576,800	1,576,800								3,679,200
1988	12	527,040			1,581,120	1,581,120								3,689,280
1989	12	791,000			1,157,000	664,000	326,000							2,938,000
1990	11	1,014,000			804,000	1,093,000	334,000				581,000			3,826,000
1991	12	1,087,000			236,000	1,495,000	419,000				500,000			3,737,000
1992	12	689,000			450,000	1,300,000	453,000				1,139,000			4,031,000
1993	12	798,000			1,118,000	1,382,000	396,000				1,042,000			4,736,000
1994	12	1,296,000			1,150,000	570,000	503,000				583,000			4,102,000
1995	12	1,321,000			981,000	152,000	69,000				987,000			3,510,000
1996	12	601,000			680,000	1,276,000	704,000				2,062,000			5,323,000
1997	12	889,000			105,000	749,000	369,000				511,000	5,572,000		8,195,000
1998	12	1,573,000			287,000	569,000	461,000					7,951,000		10,841,000
1999	12	916,000			175,000	351,000	942,000					9,313,000		11,697,000
2000	12	1,701,000			203,000	365,000	1,292,000	33,000				9,575,000		13,169,000
2001	12	1,504,000			61,000	250,000	994,000	1,646,000				7,789,000		12,244,000
2002	12	2,910,000			245,000	293,000	1,034,000	1,660,000				3,762,000		9,904,000
2003	12	2,795,230			338,917	297,723	1,802,580	1,464,802				8,020,514		14,719,766
2004	12	2,665,884			127,204	117,093	932,812	2,433,050		779,231		6,291,096		13,346,370
2005	12	1,957,783						2,249,243		1,131,145		2,321,421		7,659,591
2006	12	1,849,628						2,151,852		1,590,867		906,018	7,139,557	13,637,923
2007	12	1,061,004						1,195,696		626,057			12,202,032	15,084,789
2008	12	1,134,669						814,555		224,965			10,907,509	13,081,698
2009	12	205,735	795,925					943,127		243,284			12,524,382	14,712,452
2010	12		760,808					993,390		407,802			10,927,327	13,089,327
2011	12		1,276,897					1,222,092		651,444			10,147,763	13,298,196
2012	12		1,062,330					1,195,803		1,001,412			11,405,386	14,664,931
2013	12		864,674					1,077,231		844,875			13,800,836	16,587,616
2014	12		806,056	10,854,990				1,155,605		795,674			11,733,441	25,345,766
2015	12		890,136	9,582,049				429,676	453,835	866,722			12,297,736	24,520,154
2016	12		666,287	18,196,904					268,517	745,073			11,115,841	30,992,622
2017	12		586,529	28,782,797					110,633	459,836			12,401,976	42,341,771
											Total V	Volume from	OU#1 (gallons):	401,870,000

Op	erable Unit	#2		EN-284TE)/EN-284P Fl	ux Control Ca	alculati
North St	North St	North St		(Apporti	onment from A	Annual Report	Tables
EN-276	EN-276R	EN-284P (flux	OU#2 Volume	EN-284TD (total flow)	EN-284P (total flow)	Estimated Plume	% to] Redu
		control)	Pumped			Reduction	
			0				
			0				
			0				
			0				
			0				
			0				
			0	-			
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
			0				
1,014,000			1,014,000				
2,475,000			2,475,000				
1,464,771			1,464,771				
3,012,125		3,798,062	6,810,187	11,398,062		-7,600,000	
3,844,355		7,675,569	11,519,924	15,275,569		-7,600,000	
3,871,470		8,094,308	11,965,779	12,294,308		-4,200,000	
1,420,753		5,673,583	7,094,335		7,573,583	-1,900,000	
1,884,866		5,733,590			7,633,590	-1,900,000	İ
2,285,992		5,694,594			10,294,594	-4,600,000	
2,351,748		5,658,995	8,010,743		19,558,995		
1,301,002	1,870,659	5,708,514	8,880,175		31,008,514		
886,291	1,605,308	5,711,170	8,202,769		30,911,170		
1,863,160	452,885	5,796,130	8,112,175		32,496,130	-26,700,000	
2,696,373		5,679,910	8,376,283		39,879,910	-34,200,000	
3,055,090		5,744,750	8,799,840		45,744,750		
752,296	968,894	6,592,619	8,313,809		36,492,619	-40,000,000	
2,096,867	2,347,915	6,030,542	10,475,324		44,830,542	-29,900,000	
2,090,80/	2,347,913	0,030,342	10,4/3,324		++,030,342	-30,000,000	

All units are in gallons.

Flows in italics are estimated.

Total Volume Pumped from OU#1 and OU#2 (gallons): 528,984,000

Indicates that flow was not measured because the extraction well was inactive.

FN_284TD/FN_284P Flu - -LC-L

APPENDIX F

Cost Estimates for Remedial Alternatives

Table F.1 - Cost Estimate for Alternative #1: No Further Action with Site Management FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

Item Description	Quantity	Unit Cost	Unit	Extension
CAPITAL COSTS				
Site Management Plan	1	\$75,000	LS	\$75,000
Total Capital Costs				\$75,000
O&M COSTS				
SSD Systems Operations and Maintenance	1	\$30,000	LS	\$30,000
Total O&M Costs				\$30,000
ANNUAL MONITORING COSTS				
Groundwater Sampling	1	\$50,000	annual	\$50,000
Subtotal Monitoring Costs				\$50,000
Contingency (15% monitoring)				\$7,500
Total Monitoring Costs				\$57,500
PRESENT WORTH OF COSTS				
Total Capital Costs				\$75,000
Annual O&M Costs (30 year duration)				\$580,892
Annual Monitoring Costs (30 year duration)				\$1,113,376
TOTAL PRESENT WORTH				\$1,769,268

Table F.2 - Cost Estimate for Alternative #2: Enhanced Groundwater Extraction

FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

Item Description	Quantity	Unit Cost	Unit	Extension
CAPITAL COSTS				
Site Management Plan	1	\$75,000	LS	\$75,000
Additional Sub-Slab Vapor System	1	\$100,000	LS	\$100,000
Replacement Conveyance Piping	1	\$200,000	LS	\$200,000
Replacement Wells	3	\$50,000	LS	\$150,000
Controls Upgrades	1	\$18,000	LS	\$18,000
Total Capital Costs				\$543,000
O&M COSTS				
Operations Management	1	\$50,000	LS	\$50,000
Utilities	1	\$3,000	LS	\$3,000
GTF SPDES Sampling & Support	1	\$15,000	LS	\$15,000
Treatment Chemical Procurement	1	\$50,000	LS	\$50,000
Chemical Handling	1	\$10,000	LS	\$10,000
Waste Handling	1	\$5,000	LS	\$5,000
Equipment Replacement/Inventory	1	\$1,000	LS	\$1,000
Building and Grounds Maintenance	1	\$5,000	LS	\$5,000
O&M Documentation Maintenance	1	\$1,000	LS	\$1,000
Control & Monitoring System Support	1	\$5,000	LS	5,000
Compliance Consulting	1	\$25,000	LS	\$25,000
Dig-Safe Interaction w/ Utilities and Village of Endicott	1	\$1,000	LS	\$1,000
Systems Inspections/Monitoring	1	\$15,000	LS	\$15,000
Instrument Maint/Cal	1	\$5,000	LS	\$5,000
Carbon Changeout Labor	1	\$10,000	LS	\$10,000
Carbon Change-out	1	\$20,000	LS	\$20,000
Bldg Repairs	1	\$10,000	LS	\$10,000
GTF Systems Operations	1	\$30,000	LS	\$30,000
Off-Hour Emergency Response	1	\$2,000	LS	\$2,000
Chemical Feed Systems	1	\$5,000	LS	\$5,000
Extraction Well Maint	1	\$75,000	LS	\$5,000
B046S Transfer Station Operations		\$5,000	LS	
	1			\$5,000
Clark Solids Handling	1	\$15,000	LS	\$15,000
SSD Systems Operations and Maintenance Total O&M Costs	1	\$30,000	LS	\$30,000
ANNUAL MONITORING COSTS		I		\$393,000
Groundwater Sampling	1	\$50,000	0000101	\$50,000
Subtotal Monitoring Costs	1	\$30,000	annual	\$50,000
Contingency (15% monitoring)				
Total Monitoring Costs				\$7,500 \$57,500
PRESENT WORTH OF COSTS				\$57,500
Total Capital Costs				\$543,000
Annual O&M Costs (30 year duration)				
Annual Octor Costs (30 year duration) Annual Monitoring Costs (30 year duration)				\$7,609,682
				\$1,113,376
TOTAL PRESENT WORTH				\$9,266,058

Table F.3 - Cost Estimate for Alternative #3: Enhanced Biodegradation

FFS Report for OUs #1 and #2 Former IBM Endicott Site, Endicott, New York

	Item Description	Quantity	Unit Cost	Unit	Extension
CAPITAL					
	Enhanced Groundwater Extraction				
	Site Management Plan	1	\$75,000	LS	\$75,000
	Additional Sub-Slab Vapor System	1	\$100,000	LS	\$100,000
	Replacement Conveyance Piping	1	\$200,000	LS	\$200,000
	Replacement Wells	3	\$50,000	LS	\$150,000
<u> </u>	Controls Upgrades	1	\$18,000	LS	\$18,000
<u> </u>	Subtotal Capital Costs				\$543,000
	Biodegradation				
	Design, Work Plan, Performance Reports	1	\$85,000	LS	\$85,000
	Management	1	\$60,000	LS	\$60,000
	Mix Pad ands Injection Equipment Fabrication	. 1	\$70,000	LS	\$70,000
	Well Location Characterization (DPT)	1	\$25,000	LS	\$25,000
	Injection and Monitoring Point Well Installation	1	\$30,000	LS	\$30,000
	Amendment and Culture Injection	1	\$235,000	LS	\$235,000
	Performance Monitoring and Reporting (year 1)	1	\$25,000	LS	\$25,000
	Project Labor/travel/per diem/expenses	1	\$250,000	LS	\$250,000
	Rental Equipment/Ancillary Materials/Consumables	1	\$40,000	LS	\$40,000
	Bio-culture/potable water/Vegetable Oil	1	\$50,000	LS	\$50,000
	Drilling/Surveying	1	\$250,000	LS	\$250,000
	Analytical	1	\$25,000	LS	\$25,000
	Subtotal Capital Costs				\$1,145,000
	Total Capital Costs				\$1,688,000
O&M Cos					
	Operations Management	1	\$50,000	LS	\$50,000
	Utilities	1	\$3,000	LS	\$3,000
	GTF SPDES Sampling & Support	1	\$15,000	LS	\$15,000
	Treatment Chemical Procurement	1	\$50,000	LS	\$50,000
	Chemical Handling	1	\$10,000	LS	\$10,000
	Waste Handling	1	\$5,000	LS	\$5,000
	Increase chem costs due to bio fouling	1	\$20,000	LS	\$20,000
<u> </u>	Increase O&M due to fouling	1	\$150,000	LS	\$150,000
	Increase Solids Handling and Disposal Bio Fouling	1	\$20,000	LS	\$20,000
	Equipment Replacement/Inventory	1	\$1,000	LS	\$1,000
	Building and Grounds Maintenance	1	\$5,000	LS	\$5,000
	O&M Documentation Maintenance	1	\$1,000	LS	\$1,000
	Control & Monitoring System Support	1	\$5,000	LS	5,000
	Compliance Consulting	1	\$25,000	LS	\$25,000
	Dig-Safe Interaction w/ Utilities and Village of Endicott	1	\$1,000	LS	\$1,000
	Systems Inspections/Monitoring	1	\$15,000	LS	\$15,000
	Instrument Maint/Cal	1	\$5,000	LS	\$5,000
	Carbon Change-out Labor	1	\$10,000	LS	\$10,000
<u> </u>	Carbon Change-out	1	\$20,000	LS	\$20,000
	Bldg Repairs	1	\$10,000	LS	\$10,000
	GTF Systems Operations	1	\$30,000	LS	\$30,000
	Off-Hour Emergency Response	1	\$2,000	LS	\$2,000
	Chemical Feed Systems	1	\$5,000	LS	\$5,000
<u> </u>	Extraction Well Maint.	1	\$75,000	LS	\$75,000

Table F.3 - Cost Estimate for Alternative #3: Enhanced Biodegradation

FFS Report for OUs #1 and #2

Former IBM Endicott Site, Endicott, New York

Item Description	Quantity	Unit Cost	Unit	Extension
O&M Costs (Continued)				
Clark Solids Handling	1	\$15,000	LS	\$15,000
SSD Systems Operations and Maintenance	1	\$30,000	LS	\$30,000
Injection of Amendments for Enhanced Bio	1	\$25,000	LS	\$25,000
Repairs/Maint./Replacement of Injection Points	1	\$38,000	LS	\$38,000
Total O&M Costs				\$646,000
ANNUAL MONITORING COSTS				
Groundwater Sampling	1	\$50,000	annual	\$50,000
biodegradation monitoring	1	\$15,000	annual	\$15,000
Subtotal Monitoring Costs				\$65,000
Contingency (15% monitoring)				\$9,750
Total Monitoring Costs				\$74,750
PRESENT WORTH OF COSTS				
Total Capital Costs				\$1,688,000
Annual O&M Costs (30 year duration)				\$12,508,536
Annual Monitoring Costs (30 year duration)				\$1,447,389
TOTAL PRESENT WORTH				\$15,643,925