This work was conducted prior to flooding caused by Irene, which cause significant damage to the building. As a result the Air Force provided this report, but was not taking comments since the future of the building is unknown.

Prepared for

US Air Force

Assessment of Subsurface Volatile Organic Compounds and Vapor Intrusion Risks

AF Plant 59

Johnson City, New York

engineers | scientists | innovators

130 Research Lane, Suite 2

Guelph, Ontario

Project Number TR0386

September 2, 2011

TABLE OF CONTENTS

1.	INT	RODUCTION	1
2.	BAC	CKGROUND	2
3.	SCC	PE AND RATIONALE	3
4.	ME	ΓHODS	5
	4.1	Resampling of Existing Sub-Slab Probes	5
	4.2	Indoor Air Sampling for VOCs and Radon	6
	4.3	High Purge Volume Sub-Slab Vapor Testing	6
	4.4	Transient Response Testing and Mathematical Analysis	
	4.5	Laboratory Analysis	
	4.6	Recontouring Sub-Slab TCE Concentration Data	
	4.7	Mass Flux Calculations	
5.	RES	ULTS	11
	5.1	Sub-Slab Sampling	11
		5.1.1 Field Screening Results Prior to Summa Canister Sample Collection	11
		5.1.2 Summa Canister and Passive Sub-Slab Sample Analytical Results	
	5.2	Indoor Air VOC and Radon Concentrations	12
	5.3	High Purge Volume Testing Results.	13
		5.3.1 Field Screening Measurements from HPV Test Points and CTP Points	13
		5.3.2 Steady-State Vacuum Response Testing	14
		5.3.3 Transient Vacuum Response Test Analysis	
	<i>-</i> 4	5.3.4 Laboratory Analytical Results of Extracted Sub-slab Vapor	
	5.4	Data Validation	17
6.	LIN	ES OF EVIDENCE	19
	6.1	Comparison of Indoor Air Data to Target Concentrations	
	6.2	Comparison of Sub-Slab Data to Target Concentrations	20
	6.3	Mass Flux Estimates and Dilution in Building Ventilation	22
7.	RIS	K ASSESSMENT AND RISK MANAGEMENT	25
8.	CON	NCLUSIONS AND RECOMMENDATIONS	27
9.	REE	ERENCES	28
<i>-</i> •			

LIST OF TABLES

Table 1: Soil Vapor Purging and Field Screening Data
Table 2: Soil Vapor, HPV, and Indoor Air Analytical Results
Table 3: Field Screening Readings on Samples of Extracted Vapor
Table 4: Vacuum and Field Screening Readings at Communication Test Points
Table 5: Summary of Transient Response Analysis
Table 6: Radon Field Screening and Laboratory Analytical Results
Table 7: February 2010 TCE Concentrations and Statistics

LIST OF FIGURES

Figure 1: Site Layout and Sample Locations Figure 2: Typical Sub-Slab Probe Construction Figure 3: Soil Vapor Purging and Sampling Assembly Figure 4: Passive Sub-Slab Sample Apparatus Figure 5: High Purge Volume Test Assembly VOC Concentrations vs. Volume Purged During HPV Tests Figure 6: Recontoured February 2010 TCE Sub-Slab Soil Vapor Concentrations Figure 7: Figure 8: Indoor Concentrations of TCE

LIST OF APPENDICES

Appendix A: Laboratory Reports of Analysis

Appendix B: High Purge Volume Test Transient Vacuum Data Analysis

LIST OF ABBREVIATIONS

% percent

111-TCA 1,1,1-trichloroethane

AFCEE Air Force Center for Engineering and the Environment

BAE Systems

cDCE cis-1,2-dichloroethene CTPs communication test points

ft feet

ft² square feet ft/day feet per day

ft²/day square feet per day ft³/day cubic feet per day

GC-MS gas chromatography-mass spectrometry

Geosyntec Geosyntec Consultants, Inc.

HPV high purge volume

L liters

LCS laboratory control sample

LCSD laboratory control sample duplicate

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PCE tetrachloroethene
pCi/L picocuries per liter
PID photoionization detector
ppm_v parts per million by volume

PVC polyvinyl chloride

scfm standard cubic feet per minute

scfm/in H₂O standard cubic feet per minute per inch of water vacuum

TCE trichloroethene

tDCE trans-1,2-dichloroethene
TWA time-weighted average
μg/m³ micrograms per cubic meter
VOCs volatile organic compounds

1. INTRODUCTION

Geosyntec Consultants, Inc. (Geosyntec) has prepared this report to document investigations of subsurface vapors performed at the Air Force Plant 59 (Plant 59), in Johnson City, New York (the Site, **Figure 1**). The goals of this work were to complement the assessment of potential risks attributable to subsurface vapor intrusion (VI) conducted by AECOM under contract with the United States Air Force and support decision-making regarding any further actions to assess or manage potential risks associated with the VI pathway.

The specific objectives of the investigation were to:

- 1. Further characterize the distribution of volatile organic compounds (VOCs) below the floor slab (i.e. the sub-slab region) in the vicinity of three previously identified areas of elevated soil vapor concentrations beneath the building (SL118, SL084, and SL022);
- 2. Assess the gas permeability of the sub-slab materials and the leakance of air from inside the building to the subsurface to support calculations of the potential migration of vapors from the subsurface to indoor air;
- 3. Assess the potential for indoor air exposures to chemicals attributable to subsurface vapor intrusion to indoor air;
- 4. Make recommendations for any further actions needed to reduce uncertainties in the long-term estimates of vapor-intrusion-related exposures and, if necessary, to reduce any unacceptable or potentially unacceptable exposures to acceptable levels, and
- 5. Collect comparative data with an emerging sampling technique to assess the potential applicability of the new method in any future monitoring activities.

Funding from this work was provided by the Air Force Center for Engineering and the Environment (AFCEE) in San Antonio through sub-contract number W912BV-10-D2012 with Enviro Compliance Solutions, Inc. who administered this work under a prime contract with the United States Army Corps of Engineers, Tulsa District dated June 25, 2010.

2. BACKGROUND

Volatile organic compounds (VOCs) such as trichloroethene (TCE) 1,1,1-trichloroethane (111-TCA) and tetrachlorethene (PCE) were historically used as solvents at Plant 59 as part of various manufacturing processes. The New York State Department of Environmental Conservation (NYSDEC) requested that the Air Force evaluate the vapor intrusion pathway at Plant 59, as part of a statewide initiative to assess potential vapor intrusion risks. A multi-phase investigation of the vapor intrusion pathway was conducted by the Air Force from 2004 – 2008 (Earth Tech 2007, Earth Tech, 2008), and a follow-up investigation was conducted from 2009-2010 (AECOM, 2010). The key findings from those investigations are summarized in the AECOM Air Force Plant 59 Vapor Intrusion Investigation Report (AECOM, 2010) and are paraphrased below:

- Most of the area beneath the building has very low sub-slab TCE concentrations. The median sub-slab concentration of TCE in the February 2010 data set was 5.9 micrograms per cubic meter (μg/m³) and the geometric mean concentration was 10.13 μg/m³. This is barely above the New York State Department of Health (NYSDOH) guideline value of 5 μg/m³.
- There are a few areas beneath the building (near SL-022, SL-084, and SL-118) where sub-slab vapor concentrations of TCE exceed the upper end of the range of concentrations in "Soil Vapor/Indoor Air Matrix 1" (sub-slab TCE concentration of 250 µg/m³) in the New York State's "Guidance for Evaluating Soil Vapor Intrusion" (October 2006), although they are limited in areal extent;
- The vast majority of indoor air samples collected at Plant 59 had concentrations below the NYSDOH guideline value of 5 µg/m³ for TCE in air. The median concentration of TCE in indoor in the February 2010 data set was 0.54 µg/m³, and;
- The distribution of VOCs below the floor-slab (including fill, soil and groundwater beneath the building) is typically greatest immediately beneath the floor slab and diminishes with depth toward the water table. This distribution suggests that VOCs originated from unknown shallow releases from within the building (e.g., floor drains, utility lines, etc.) rather than sources in the soil or groundwater at deeper levels. The only known source of TCE release below the building was the shallow soil (dirt floor) in the East basement area where 119 cubic yards of soil were excavated and removed in 2005

The Air Force intends to transfer Air Force Plant (AFP) 59 to Broome County Industrial Development Agency (BCIDA) in the near future and would like to make decisions regarding the need for any further actions to address vapor intrusion at Plant 59 to maintain regulatory compliance and manage any potential future liabilities related to vapor intrusion.

3. SCOPE AND RATIONALE

The scope of work for this study included three main components:

- 1. Additional sub-slab and indoor air sampling in the vicinity of SL-022, SL-084, and SL-118; the three areas of the building identified by AECOM as having the most elevated sub-slab TCE soil vapor concentrations (**Figure 1**);
- 2. High Purge Volume (HPV) testing in the vicinity of SL-022, SL-084, and SL-118 to assess the concentrations, persistence and distribution of subsurface vapors as well as the permeability and lateral connectivity of the sub-slab fill materials; and leakance of the floor slab; and
- 3. Data analysis and interpretation, including historic and recent data.

The indoor air VOC samples were collected over a 2-week period using a passive sampler (the "Waterloo Membrane Sampler" or WMSTM, as described by Seethapathy and Gorecki, 2010, 2011), which provides a longer-term time-weighted average concentration compared to the previous indoor air 24 hour grab samples collected with one liter (L) Summa canisters. Radon research has shown that longer-term samples (1 week to 1 month) show less temporal variability and are more likely to be representative of the exposures (25 years or more) considered in a human health risk assessment. Indoor air radon samples were also collected because it may be possible to estimate the relative proportion of subsurface gas entering a building if the indoor air radon concentrations are elevated above typical outdoor air levels and radon concentrations are also measured below the building.

Sub-slab samples were collected by Summa canister (currently the most common method) and 2-week WMSTM samples to assess current conditions in areas of elevated concentrations and compare and contrast the two types of sample collection methods. Both sampling methods were also used during the HPV sampling to assess changes in the VOC concentrations during the conduct of the test and to provide a volume-weighted average concentration, respectively. Two different types of WMSTM samplers (thermal desorption and solvent extraction) were used during the HPV tests to assess the correlation between the two passive sampling and analysis methods. For both the initial sub-slab sample and the HPV tests, the comparison between the Summa canister and passive sampler data was collected to assess the potential application of the passive sampler for sub-slab concentration measurement. The WMS samplers have been shown to provide quantitative VOC concentrations data comparable to Summa canisters and EPA Method TO-15 for indoor air sampling already (Geosyntec, 2010; Seethapathy and Gorecki, 2010, 2011).

High Purge Volume sampling (McAlary et al., 2010) involves removal of tens or hundreds of thousands of liters of sub-slab vapor, which provides insight into the spatial distribution of

VOCs beyond the sampling location that cannot be achieved with a typical one-to-six liter Summa canister sample. In addition, transient vacuum response testing was conducted to provide a basis for conservatively estimating the rate of leakance of vapors through the slab. Combined with the sub-slab concentration data, the leakance data can be used to estimate the upper end of the range of potential mass flux of contaminants into the building. The mass flux calculations provide an additional line of evidence for characterizing potential vapor-intrusion-related exposures and for improving risk management decisions.

The historic indoor air and sub-slab vapor data was also reviewed as part of this work to support the analysis with multiple lines of evidence. Several vapor intrusion guidance documents (e.g., ITRC 2007), discuss the virtues of multiple lines of evidence in vapor intrusion assessments. The main reason for this approach is that each type of evidence has certain strengths and weaknesses; however, they differ from one line of evidence to the next. Therefore, confidence increases with more than one method of assessment.

4. METHODS

The methods used during this investigation are presented in the following subsections.

4.1 Resampling of Existing Sub-Slab Probes

The construction of the existing sub-slab probes SL-022, SL-084, and SL-118 are shown on **Figure 2**, provided by AECOM. **Figure 3** shows the sampling apparatus for the Summa canister samples. The Summa canister was connected to the existing sub-slab probe through new Nylaflow tubing and compression fittings to the female NPT Fitting on the probe. The lung box and Tedlar bag shown in **Figure 3** were used to purge the probe for three or more successive volumes of 0.5 to 1 L for field screening. A shroud filled with helium covered the sampling apparatus during purging to test the integrity of the vapor probe seal and sample train fittings. Each successive Tedlar bag was analyzed in the field for the presence of helium using an MGD 2002 helium meter and for VOC concentrations using a Mini-Rae 2000 photoionization detector (PID). Field screening was performed to confirm stability of VOC concentrations and absence of significant levels of leak-check tracer prior to sampling with the Summa canisters.

After purging was completed, the valve to the lung box was closed and the 1 L Summa canister was filled over an approximately 5 minute interval by opening the flow controller valve. The Summa canisters, which were provided by TestAmerica of Burlington VT, were subsequently shipped to the laboratory for analysis by USEPA Method TO-15.

Three passive sub-slab samples were collected using low-uptake WMSTM samplers at locations within 1.1 feet of each of the three existing sub-slab probes (SL-022, SL-084, and SL-118) for a period of approximately 2 weeks. The WMSTM samplers were deployed inside a 2½-inch diameter hole drilled through the existing wood floor (~ 2 inches thick) using a circular wood hole saw bit and through the concrete slab (5 to 11 inches thick) using a hammer drill and a concrete drill bit. These holes were drilled to accommodate the pipe used for the HPV tests. A void of varying thickness (0 to \sim 1 inches) was present between the wood floor and the concrete Figure 4 shows how the hole was sealed to prevent indoor air exchange with the subsurface and avoid having anchoring cement contact the WMSTM samplers. A 2½-inch diameter plug constructed with a steel washer wrapped with FrostKing "Poly Foam Caulk Saver" (a.k.a., "backer rod") and PFTE tape was used to create a partial seal and the anchor cement was used as a supplemental seal. The WMSTM samplers were hung from a wire and connected to the plug to prevent the membrane of the passive samplers from contacting the bottom of the drilled hole. The WMSTM samplers were retrieved approximately two weeks later by removing (chiseling) the anchoring cement above the plug until the plug and WMSTM samplers could be removed. The WMS samplers were subsequently shipped to Air Toxics Ltd. (Folsom, CA) for analysis by carbon disulfide extraction followed by gas chromatography-mass spectrometry (GC-MS) analysis for the full WMS sampler analyte list (see Appendix A).

4.2 Indoor Air Sampling for VOCs and Radon

Indoor air VOC and radon samples were collected in the vicinity of the three sub-slab sampling locations using passive WMSTM samplers and E-PERM electret samplers, respectively. The WMS passive sampler samplers were deployed to provide two-week-long average indoor air concentrations of VOCs that were previously detected in subslab and indoor air samples (TCE, PCE 1,2-DCE,1,1,1-TCA and carbon teterachloride). The E-PERM samplers are standard samplers used in the radon industry for the collection of medium-term radon samples of indoor air. Because AFP 59 is situated in an area with elevated naturally-ocurring radon concentations. they were deployed to provide an additional line of evidence regarding the susceptibility of Plant 59 to subsurface vapor intrusion. The samplers were suspended on a string with their sampling ports exposed approximately 8 feet above the floor. They were deployed for approximately the same two-week period as the sub-slab samplers (4/14/2011 or 4/15/2011 to 4/28/2011), and then retrieved. The WMSTM samplers were subsequently shipped to Air Toxics Ltd. (Folsom, CA) for analysis by carbon disulfide extraction followed by GC-MS analysis for selected VOCs (111TCA, TCE, PCE, cis-1,2-dichloroethene [cDCE], trans-1,2-dichloroethene [tDCE], vinvl chloride, and carbon tetrachloride). The E-PERM electret samplers were hand delivered to Enviro Testing (Binghamton, NY) for analysis of radon by EPA Protocol #402-R-92-004.

4.3 High Purge Volume Sub-Slab Vapor Testing

HPV testing was conducted at the three locations of elevated sub-slab concentration on April 28 (SL-118) and April 29 (SL-084 and SL-022). Once the passive samplers were removed, the fill material at the bottom of the hole was loosened with a hammer drill to encourage air flow and a suction point was installed by inserting a 1 ½-inch diameter polyvinylchloride (PVC pipe) into the 2 ½-inch diameter hole. A combination of backer rod and a rubber O-ring wrapped in Teflon tape were used to create a gasket in the annular space between the PVC pipe and the hole in the concrete slab, then anchoring cement was poured around the PVC pipe and filled to the surface of the wood floor to create a seal. The seal and the rest of the HPV apparatus was set up as shown in **Figure 5**. Each HPV test consisted of drawing gas from below the floor at the highest rate practicable. The first test was run for 120 minutes to maximize the region of influence, and all three tests showed virtually no change in PID readings during the duration of the tests, so second and third tests were run for 71 and 78 minutes, respectively.

The discharge from the extraction fan (Shop-VacTM) was run into the inlet ductwork of a portable air scrubber equipped with a suction fan and activated carbon filters. The flow rate through the portable air scrubber was greater than the flow rate through the Shop-VacTM ensuring that all of the sub-slab vapor extracted by the HPV apparatus was filtered by the portable air scrubber.

The HPV test was initiated by turning on the portable air scrubber followed by the activation of the Shop-VacTM. During the HPV testing, slip-stream samples of the extracted soil vapor were collected using a vacuum chamber (a.k.a. lungbox) and 1 L TedlarTM bags. The Tedlar bags were screened for total ionizable VOCs using a PhoCheck PID (Ion Science), which was calibrated to 100 ppm isobutylene and carbon filtered indoor air in accordance with the manufacturer's specifications. Additional samples were collected for laboratory analysis using two methods:

- 1) time-weighted-average samples (TWA);
- 2) grab samples.

Time-weighted-average samples were collected using two different types of WMSTM sampler (a thermal desorption and a solvent desorption type). The TWA samplers were deployed inside the HPV vent pipe immediately prior to the start of the test and removed at the end of the test. The passive sampler port on the HPV apparatus was not large enough to accommodate 2 passive samplers; therefore, one passive sampler was hung on a wire and deployed into the sample stream through the air bleed valve (**Figure 5**). The air bleed valve was closed following the deployment of the passive sampler and remained closed for the duration of the HPV test. The grab samples were collected using Summa canisters at intervals of 5 and 20 minutes after the start of each test and at the end of each test using the sample port shown in **Figure 5**.

During the HPV test at SL-118 the Tedlar bag samples were also screened with the radon meter; however, the radon meter readings gradually drifted upwards from about 49 to about 190 pCi/L. To test whether this was indicative of a real increase or just slow instrument response, the meter was allowed to recover by drawing only indoor air for a period of approximately 40 minutes, after which, the radon meter readings returned to low ambient levels. Soil vapor samples were once again screened and the radon readings were similar to the initial readings (~50 pCi/L). Therefore, the gradual increase in the radon readings in successive samples during the HPV test at location HPV-118 was attributable to acclimation (needing to screen a large volume before arriving at the true concentration). The recommended time required to reach a stable reading is about 20 minutes, and the flow rate of the instrument was too high to allow the 1 L Tedlar bag samples to supply sufficient gas for a stable result. The observed concentrations likely represent the minimum concentration of the sub-slab radon concentration in the vicinity of SL-118, and therefore, when compared with the indoor air concentrations are likely to underestimate the amount of radon attenuation provided by the building slab. Because of the large time delay required for the radon meter to return to baseline readings and the large sample volume required by the radon meter (larger than 1 L) to reach a stable reading, Tedlar bag slip-steam samples from the HPV tests at SL-084 and SL-022 were not screened with the radon meter.

4.4 Transient Response Testing and Mathematical Analysis

During the HPV tests, transient response data was collected at communication test points via the cyclic operation of the extraction fan (ShopVacTM) while logging the vacuum (drawdown and recovery) at nearby probes with the Zephyr IITM micromanometer. This generates transient pneumatic response data for each specific location, similar to a groundwater constant-discharge pumping test. After adjusting for the different densities and viscosities of water and air, the data from HPV-022 and HPV-084 were analyzed using semi-confined (leaky) aquifer model developed by Hantush and Jacob (1955) to estimate the gas conductivity of the sub-surface soil and the coefficient of leakage of air from above the floor slab. At location SL-022, tests were performed using data collected at radial distance of 7 and 15 feet, to assess the consistency of the calculated transmissivity (T) and leakance (B) parameters. These parameters were in turn used to calculate the horizontal air flow velocity with distance from the extraction well, the profile of vacuum versus radial distance from the well, and the relative proportion of flow from indoor air and the subsurface (assuming all leakage was from above the slab). A discussion of the transient response testing and analysis is described further in **Appendix B**.

The amount of leakage will be a function of the number of cracks and penetrations in the floor slab. The slab was covered with a wood floor, so visual confirmation of the condition of the concrete slab was not possible. It is also possible that leakage (which is typically from indoor air being drawn down into the subsurface) may for this particular building originate either from the gap between the wood floor and the concrete floor (see **Figure 2**) or some sub-floor ducts described in previous reports (AECOM, 2010). These features appear to have had a significant influence at HPV-118 because the vacuum response was negligible at all monitoring points, including existing sub-slab probe SL-118, which was less than a foot away from the point of extraction. This behavior has never been observed in any previous HPV test of sub-slab gas. Therefore, transient testing and mathematical analysis was not performed for this location.

At each HPV test location, existing sub-slab probes (either SL-022, SL-084, or SL-118) were used as communication test points. Each of the existing sub-slab probes were within approximately 1 foot from their respective well head (HPV-022, HPV-084, HPV-118). Additional communication test points were installed at each HPV test location by coring through the wood floor with a 2 ½-inch hole-saw bit, and drilling through the underlying concrete with a ½-inch drill bit and hammer drill. The hole was vacuumed out with a Shop-VacTM and a ¼-inch diameter Nylaflow tubing was inserted into the ½-inch hole. Modeling putty was placed around the Nylaflow tubing at the surface of the concrete slab to create a pneumatic seal and backer rod was inserted into the void between the wood floor and the concrete slab. Hydraulic cement was poured into the gap between the concrete slab and wood floor to complete the seal. The Zephyr II+ micromanometer was connected to the probe through Nylaflow tubing and a SwagelokTM fitting with a ball valve.

Upon completion of the HPV tests and the transient response tests, the 1 ½-inch PVC pipe was pulled from the hole and the hole was filled with fast-setting anchoring cement to the surface of the wood floor. Dust and debris were vacuumed to return the areas to their original appearance. All communication test point holes were filled with fast-setting anchoring cement and the carpet section covering SL-084S and SL-084D were put back into place. Dust and debris were vacuumed to return the areas to original appearance.

4.5 Laboratory Analysis

Summa canisters used in the sampling program were obtained from the TestAmerica Burlington, VT laboratory (batch certified clean) a few days before each sampling event and returned to the laboratory for analysis by USEPA Method TO-15 one to two days after sample collection.

The WMS samplers were obtained from SiREM Laboratories of Guelph, Ontario a few days prior to sampling, and were shipped to Air Toxics Inc. of Folsom, California for analysis one to two days after sample collection. The indoor air WMS samplers were analyzed for site-specific VOCs: 111TCA, TCE, PCE, cDCE, tDCE, vinyl chloride, and carbon tetrachloride. The subslab and HPV samples were analyzed for a suite of VOCs commonly of interest for VI assessments. All of the samplers had Anasorb 747 as the adsorbent and were analyzed by carbon disulfide extraction and gas chromatography/mass spectrospcopy (GC/MS), except for the duplicate samples in the HPV vent-pipes, which had Carbpack B as the adsorbent and were analyzed by thermal desorption GC/MS for added sensitivity (lower reporting limits).

4.6 Recontouring Sub-Slab TCE Concentration Data

The sub-slab TCE concentration data from February 2010 was re-contoured as described below to provide an additional depiction of the subsurface TCE distribution. The previous contour plot (AECOM, 2010, Figure 5.1-12) depicted the 250 $\mu g/m^3$ contour extending to considerable distances beyond areas of elevated concentrations, and in many cases all the way to locations where the measured concentrations were much lower. For example, location SL-084 had a TCE concentration of 38,675 $\mu g/m^3$ and adjacent locations SL-056 and SL-112 (at distances of about 50 feet each from SL-084) had concentrations of 0.84 and 2.06 $\mu g/m^3$, respectively. The limit of the 250 $\mu g/m^3$ contour should therefore have been about 2/3rds of the distance to the adjacent probes from SL-084; however, the previous contour plot showed the 250 $\mu g/m^3$ contour extend all the way to or beyond these sample locations, which tends to overestimate the subsurface TCE distribution.

The revised contour plot was generated by performing a logarithmic transformation of the data prior to the interpolation. This is a method for handling data sets that are log-normally distributed, which is common for VOC distributions in the subsurface. The log-transformed data had an approximately normal distribution. The semi-variogram model contained 6,780 pairs and a range of approximately 286 with an approximate sill of 0.95. The resulting

interpolated surface had a confidence level of approximately 95% and a standard deviation of approximately 5.

4.7 Mass Flux Calculations

The leakance values calculated from the Hantush Jacob analysis of the transient vacuum response test data were used together with the sub-slab concentration data to calculate an upper estimate of the mass flux of vapors from the sub-surface to indoor air. Estimates of the indoor air concentrations can then be calculated by dividing the mass flux by the building ventilation rate. This was done for both the entire building as well as localized areas around the highest sub-slab concentrations in order to provide an average and upper estimate of indoor air concentrations attributable to vapor intrusion. The equations are provided in Section 6.3.

5. RESULTS

The following sections describe the results of the sub-slab and indoor air sample collection and analysis, HPV tests and transient pneumatic test analysis and mass flux calculations.

5.1 Sub-Slab Sampling

5.1.1 Field Screening Results Prior to Summa Canister Sample Collection

PID readings from the purged volumes collected prior to the Summa canister sub-slab sampling were consistent for each successive Tedlar bag purged at each probe and the PID readings ranged from 1.2 to 41.9 parts per million by volume [ppm_v], depending on the location (**Table 1**). This corresponds to TCE concentrations of about 3,000 to 100,000 μg/m³ for TCE, if TCE is the dominant compound present (the PID response factor for TCE is 0.5). These PID results correspond well to the expected concentrations from previous sampling events (AECOM, 2010).

The maximum observed concentrations of helium in the purged volumes were below 2.3% of the minimum helium concentrations in the shroud, suggesting the samples were not significantly biased by leakage from indoor air drawn through leaky seals or fittings.

Radon concentrations from the purged volumes collected prior to the Summa canister sub-slab the sub-slab probe ranged from 25.6 picocuries per liter (pCi/L) at SL-118 to 241.7 pCi/L at SL-022.

5.1.2 Summa Canister and Passive Sub-Slab Sample Analytical Results

All analytical Summa canister and passive sub-slab sample results are shown in **Table 2** and the laboratory reports of analysis are located in **Appendix A**. There are several trends apparent in the data on **Table 2**:

- TCE has the highest concentration of all VOCs in two of the three locations (roughly 10X higher than 111TCA and Freon TF at location SL-022, and roughly 50X higher than cDCE, and roughly 100X higher than PCE at location SL-084) and similar concentrations to 111-TCA at location SL-118. Freon TF, 111-TCA and cDCE are considerably less toxic than TCE; therefore, TCE is the compound of primary interest;
- TCE was detected above the NYS Matrix 1 "mitigate" criterion of 250 µg/m³ at all three locations. Risk assessment and risk management decisions based on the TCE concentrations in the sub-slab soil vapor and indoor air will be conservative for vapor-intrusion related exposures of the other compounds present in the sub-slab;
- TCE concentrations diminished by a factor of 2 or less during the conduct of the HPV tests, during which time the total volume of gas removed from the subsurface was in the

range of 40,000 to 98,000 L. This indicates that concentrations are fairly consistent in the sub-floor region surrounding the HPV test locations, and a relatively small amount of the total gas extracted was indoor air that entered the subsurface through the floor slab during the tests;

• Concentrations detected in the passive sub-slab samples were generally less than the concentrations detected in the sub-slab Summa canisters samples collected at the start of the program and two weeks later at the beginning of the HPV tests. The negative bias was typically about a factor of five and up to about an order of magnitude and was observed for all three sets of WMS samples (fully passive and both thermal and solvent extraction versions within the HPV apparatus). The Summa canister data are considered representative and sufficient for decision-making purposes.

5.2 Indoor Air VOC and Radon Concentrations

Laboratory analytical results for the indoor air WMSTM samples collected over the two-week period from April 14, 2011 to April 28, 2011 are provided in **Table 2**. There were no detections of any of site-specific VOCs above the laboratory reporting limits in the indoor air samples. The sampling conditions in which the WMS indoor air samples were collected are consistent with the standard practices used in their deployment and with the conditions that were used to establish empirical uptake rates for the samplers (i.e. adequate face velocity past the sampler membrane). Based on those factors, the indoor WMS indoor air results are considered to be representative of the indoor concentrations of VOCs at those locations during the sampling period. That assumption is supported by the similarity between the WMS indoor air results and the median TCE indoor air concentration (0.54 μg/m³) obtained by AECOM in February 2010 and by considerable past experience with the WMS sampler under siliar conditions (Seethapathy and Gorecki, 2010, 2011). It is also consistent with the decreasing concentration trends observed at the three test locations from the August 2009 to the February 2010 sampling events, and with the decreasing concentration observed in outdoor air samples over that same period.

The analytical indoor air radon concentrations ranged from 1.1 to 1.4 pCi/L (see Table 6). These values are slightly above the national average outdoor air concentration of radon of 0.4 pCi/L (http://www.epa.gov/radon/healthrisks.html). The building is in an area of elevated radon levels (http://www.health.state.ny.us/environmental/radiological/radon/livingctymap.htm), so it is not clear whether there is a measurable contribution of radon from subsurface or whether the radon in indoor air is simply attributable to ambient outdoor air radon concentrations.

12

2011.09.02

¹ It should be noted that the reporting limits were slightly elevated compared with the recommended limits in the NYSDOH Guidance. For example the recommended IA reporting limit for TCE is 0.25 $\mu g/m^3$, but the reporting limit for the WMS samples was 0.77 $\mu g/m^3$.

5.3 High Purge Volume Testing Results

The HPV tests ranged in duration between 70 and 120 minutes with total volumes of 40,000 to 98,000 L of gas removed. The vacuum response data at location SL-118 was not typical, but the response at the other two locations was typical, as discussed further below. Time constraints prevented a repeat test at location SL-118.

5.3.1 Field Screening Measurements from HPV Test Points and CTP Points

The cumulative volume of gas removed, wellhead vacuum, extraction flowrate, total VOC and radon concentrations measured in real-time using portable instruments from the extracted vapor at each HPV test point is provided in **Table 3**. The highest PID readings were measured in samples collected from HPV-084 (approximately 40 ppm_v). The maximum readings at HPV-022 and HPV-118 were 1.72 and 1.45 ppm_v, respectively. The PID readings remained relatively steady over the duration the HPV tests at all three locations, which suggests that the sub-slab vapor concentrations are reasonably uniform beneath the slab in the immediate vicinity of each test location and the amount of indoor air entering the subsurface is small relative to the total volume of gas removed.

These PID readings from the HPV tests are in close agreement with the PID readings collected two weeks earlier during purging prior to sampling the sub-slab probes SL-118, SL-022, and SL-084 (see below).

Location	Avg Total VOCs (PID) (4/14/11 – 4/15/11) Sampling Event	
SL-118	1.2 ppm _v	1.40 ppm _v
SL-022	2.5 ppm _v	1.67 ppm _v
SL-084	39.8 ppm _v	36.57 ppm _v

These data support the conclusion that the sub-slab distribution of VOC concentrations in the vicinity of the sample locations was relatively steady over the time period during which the investigation took place (i.e., temporal variability was minimal).

Radon concentrations were monitored during the HPV test at HPV-118 and ranged from 48.6 to 190 pCi/L. As described in Section 3.2 the radon readings are believed to either have drifted upwards or were slow to acclimate during the use of the meter, making it difficult to identify trends in the subsurface radon concentrations as a function of volume purged (if any).

The total VOC concentrations (by PID) and steady-state vacuum measured at select communication test points (CTPs) are provided in Table 4. The PID readings at the CTPs SL-022 and TP-022-7 were similar (within a factor of 2 or so) to the readings observed at the point of extraction (HPV-022) during the HPV test. The total VOC concentrations measured at SL-084D (0.43 and 1.61 ppm_v), the eight-foot deep probe, were significantly lower than the 40 ppm_v measured at the sub-slab point of extraction located just under 4 feet away (in plan view) (HPV-084, see Table 3). These results are consistent with the results obtained by AECOM in February 2010 who measured TCE concentrations of 38,675 µg/m³, 3,545 µg/m³, and 172 ug/m³ in samples from sub-slab, four-foot deep and eight-foot deep probes, respectively. These data, combined with AECOM's February 2010 groundwater sampling results (the TCE groundwater concentration beneath this area of the building was less than 1 µg/L) support the hypothesis that the "source" of contamination in the vicinity of SL084 is immediately beneath the building (e.g., floor drains, utility lines, etc.) rather than in a deeper stratigraphic zone or groundwater. There was no measurable vacuum at the communication test points at SL-118, which was unexpected and inconsistent with the typical HPV test results; therefore, samples for PID screening were not collected at that location.

5.3.2 Steady-State Vacuum Response Testing

The HPV tests showed applied vacuums of 38 to 48 inches of water column (in H_2O) and extraction flow rates between 22 to 31 standard cubic feet per minute (scfm) (**Table 3**). The ratio of the flow rate divided by the applied vacuum is the specific capacity, which is linearly proportional to the permeability of the subsurface materials. The specific capacities ranged from 0.5 to 0.8 standard cubic feet per minute per inch of water column vacuum (scfm/in H_2O), which indicates that the subsurface permeability is generally uniform beneath the slab and the sub-slab material is highly permeable.

Steady (maximum) vacuum measurements recorded at each CTP surrounding the HPV test points are presented in **Table 4**. The vacuum response surrounding HPV-084 indicates a vertical connectivity. This was demonstrated by the vacuum response measurements at SL-084D and SL-084S, which are located in the same distance and direction from the extraction point but are screened at different depths. SL-084D was screened at a depth of 8 feet below the slab and had a measured induced vacuum of -0.013 in H₂O while SL-084S was screened at four feet below the concrete slab and had a measured induced vacuum of -0.036 in H₂O indicating a decreasing vacuum influence with depth. The fact that there was a measureable vacuum response at SL-084D and SL-084S indicates that the vadose zone soils (fill) are permeable enough to allow some vertical flow of soil gas.

At HPV-118, three communication test points at 0.5 feet (SL-118), 7.2 feet (TP-118-7), and 5 feet (TP-118-5) from the wellhead were monitored for vacuum response while a vacuum of 47.6 inches of water column (in-H₂O) was applied to the wellhead (HPV-118). A measurable vacuum was not observed at any of those CTPs; a result which has not been observed by Geosyntec in

any previous sub-slab HPV test. The reason why a vacuum response was absent in the nearby points is not clear. It may be due to the presence of a highly transmissive sub-slab feature beneath the slab that "short circuited" the pressure field such as an historic sub-slab vacuum duct (see AECOM Figure 5.2.2 in the September 2010 Report).

At HPV-022, the steady-state vacuum response was very typical, in fact the vacuum at a radius of 15 was predicted within 10% before the CTP probe was even installed using a semi-logarithmic plot of vacuum vs log distance populated with data from the probes closer to the point of extraction.

5.3.3 Transient Vacuum Response Test Analysis

Transient response tests were conducted and analyzed at locations HPV-022 and HPV-084 to assess the degree of potential leakage across the building slab. Because there wasn't a sufficient vacuum response at monitoring points in the vicinity of HPV-118, transient response tests were not performed there. The results from the transient response testing and analysis are provided in **Appendix B** and summarized in **Table 5**. The Hantush and Jacob (1955) leaky aguifer model was used to analyze the transient vacuum response to the cyclic operation of the vapor extraction fan (ShopVacTM) at each location. A conceptual sketch and description of the model theory and assumptions are shown in **Appendix B**. As illustrated in Figure 3 of Appendix B, the amount of drawdown that is observed in a "leaky" system over time (the blue solid line) is less than what would be expected if no leakage were ocurring (the red dashed line, which represents the Theis confined aguifer model). This is because air that enters the extraction point comes not only from two sources: 1) progressively greater radial distances in the granular sub-slab fill, (which requires continuous propogation of vacuum), and 2) leakage. As soon as the volume of air supplied by leakage matches the volume of air being removed from the subsurface, there is no need for vacuum to propagate any further in space or in time. It should be noted that because the model assumes that all leakage comes through the overlying low-permeability layer (i.e., the floor slab) rather than from deeper stratigraphic horizons or from discontinuities (preferential pathways such as subsurface utilities) between the slab base and the fill below, the analysis may overestimate (but not underestimate) the magnitude of leakage across the floor slab. Thus, this analysis represents a conservative approach to the characterization of the vapor migration potential across the slab.

In Appendix B, there are a series of figures for each HPV test. For each of the three sets of transient vacuum data analyzed:

Figure 1 shows the layout of probe locations.

Figure 2 shows the raw vacuum response data (drawdown and recovery) for at least one cycle of the fan.

Figure 3 shows the fit between the Hantush Jacob model and the transient drawdown and recovery data, as well as the calculated parameters of transmissivity (T) and radius divided by

leakance factor (r/B). Also shown on **Figure 3** is the curve that would have been expected if there was no leakage (the red dashed line represents the Theis curve), to convey the effect that leakage had on the magnitude of the vacuum measurements.

Figure 4 shows the measured profile of vacuum versus radial distance, as well as the profile calculated using the parameters derived from the Hantush Jacob analysis. The fit between the transient vacuum versus time data (**Figure 3** for each test) and the steady-state vacuum versus radial distance (**Figure 4** for each test) can only both be good if the T and r/B values are representative for the subsurface materials in the vicinity of the point of extraction because these are two independent sets of data. This was achieved by an interative process of adjusting the T and r/B values in the matches between the drawdown vs time data in Figure 3 and the drawdown vs distance data in Figure 4 until one set of parameters fit both sets of data.

Figure 5 shows the calculated profile of induced flow velocity versus radial distance for each HPV test, assuming a gas-filled porosity of about 30% and that most of the flow occurs through a granular fill layer below the concrete slab (which may or may not be the actual case) including a line representing the condition of no leakage (Theis model).

Figure 6 shows the calculated profile of the time required for a gas molecule to migrate through the subsurface and arrive at the point of extraction, and also includes a curve for the condition with no leakage for comparison, again assuming flow is predominatly through a granular fill layer below the concrete. The duration of the HPV test is shown, and where that time intersects the dashed line, the corresponding distance represents the radius from which soil gas was extracted during the test, if all gas flow was through a gravel layer below the floor slab.

Figure 7 shows the relative proportions of gas extracted from the porous medium (area integrated below the curve) versus gas attributable to leakage (area integrated above the curve). For all of the data analyzed, the analyses indicate that the majority of flow was attributable to leakage (but not necessarily leakage from indoor air) by the end of each test. This finding is interesting because the PID readings and VOC concentrations measured during the HPV tests (See Section 5.4.4) did not decrease substantially (a factor of two or less) during each test, which indicates that the leakage was predominantly attributable to a sub-surface source and not indoor air leaking across the slab, otherwise, a rapid decrease in concentrations would have occurred. Therefore, it appears that the majority of the leakage originated from a sub-slab feature, such as a utility conduit, the gap between the wood flor and the concrete floor, or possibly the sub-floor ducts described by AECOM (2010).

5.3.4 Laboratory Analytical Results of Extracted Sub-slab Vapor

Laboratory analytical results for the sequential Summa canister slip stream and WMS™ samples collected during each of the HPV tests are provided in **Table 2**. The concentrations of TCE, PCE, cis-12DCE, and 111TCA measured from Summa samples collected two weeks prior to the HPV tests and during the test are plotted against the volume purged during the test in **Figure 6**. The concentrations of the VOCs in the sequential Summa canister samples at SL-022 and SL-

118 remained relatively consistent during the test, indicating that the distribution of VOCs in the sub-slab in the vicinity of the test points is relatively homogeneous and the amount of indoor air drawn into the subsurface during these tests was minimal. The sequential Summa canister samples at SL-118 show a slight decrease in concentrations during the test (about a factor of 2), indicating that the concentrations just outside the vicinity of the HPV extraction point are slightly lower, or there may have been some indoor air entering the subsurface during the test. This is consistent with the stable PID data collected during the test (**Table 3**).

The Hantush Jacob analysis indicates that by the end of each HPV test, the vast majority of the air being extracted was attributable to leakage (about 95% or more) for all the transient vacuum response data analyzed (see the three plots titled Figure 7 in Appendix B). If this leakage was all attributable to indoor air crossing the floor slab (as assumed by the Hantush Jacob model formulation), then the concentrations in the extracted gas would have been expected to drop by a factor of 20 or more. Since the concentrations either did not drop or dropped by a factor of 2 or less, then the Hantush Jacob Model would overestimate the leakage across the floor slab by a factor of 10 or more. This fact is discussed further in the mass flux calculations in Section 6.3.

The two simultaneous time integrated WMSTM samples (one thermal desorption sampler and one solvent desorption sampler) collected during each of the HPV tests provide an estimate of the average concentration over the duration of the HPV test for each analyte. The results of the WMSTM and Summa canister samples are presented in **Table 2**. As in the case of the sub-slab samples, the WMS samples are generally biased low by about a factor of five and up to an order of magnitude with respect to the Summa sample results. The Summa canister data are considered representative and sufficient for decision-making purposes.

5.4 Data Validation

The data set was validated by reviewing analyte lists, sample hold times, method blanks, surrogate recoveries, laboratory duplicate samples, and trip blanks to assure that the sample was analyzed within specified times, the laboratory instrument was operating within specification, and reporting was done according to project requirements.

To evaluate the accuracy of the analytical data, Geosyntec reviewed the percent (%) recovery of surrogates and laboratory control samples (LCSs). The acceptance range for surrogate recovery is 70-130%. The surrogate recoveries met the acceptance criteria. The acceptance range for LCS and laboratory control sample duplicates (LCSD) recovery is also 70-130%. The LCS recoveries met the acceptance criteria, with the exception of chloromethane in the WMSTM laboratory report (Lab ID 1105031A). Chloromethane in both the LCS and LCSD exceeded the acceptance critera; however, there was no impact on the data quality because recoveries were high and chloromethane was not detected in the samples. The recoveries were above the acceptable range for LCS and LCSD in the thermal desorption WMSTM laboratory report (Lab ID 1105031B) for 2-butanone, 4-methyl-2-pentanone, and 1,1,2,2-tetrachloroethane and above

the acceptable range in the LCSD for heptane. 2-Butanone and heptane were detected in all three samples and was J-qualified as estimated. 4-methyl-2-pentanone and 1,1,2,2-tetrachloroethane were not detected in the samples so there was no impact on the data quality.

To evaluate the representativeness of the analytical data, Geosyntec reviewed the results for method blanks and trip blanks and also confirmed that sample hold times were not exceeded. No VOCs were detected in the Summa canister and WMSTM method blanks. Two WMSTM trip blanks were analyzed by the laboratory to assess potential bias that may have occurred during sample shipment, storage, and handling. No VOCs were detected in the trip blanks; therefore, the representativeness of the data is considered acceptable.

6. LINES OF EVIDENCE

This section provides several lines of evidence for assessing potential vapor intrusion risks in the subsections below.

6.1 Comparison of Indoor Air Data to Target Concentrations

The indoor air concentrations of TCE measured with the WMS samplers provide a longer-term time-weighted average concentration (2 weeks instead of 24 hours). TCE concentrations reported by AECOM (2010) showed a diminishing presence of TCE in the indoor air over the course of their investigation. Ninety percent of the 122 indoor air samples collected during the February 2010 sampling event had measured TCE concentrations below 2 $\mu g/m^3$, and only one sample location (SL055) had a TCE concentration greater than 5 $\mu g/m^3$. Although the measured concentrations of TCE in indoor air were higher overall in the 2009 sampling events, especially the August 2009 event, the concentrations of TCE in outdoor air samples were also higher, with concentrations up to 4.57 $\mu g/m^3$, which is unusually high for outdoor air, and may indicate a positive bias in the data (see below).

Sampling	Median TCE	Median TCE Indoor Air	TCE Outdoor Air
Event	Subslab	Concentration (µg/m³)	Concentration Range
	Concentration		$(\mu g/m^3)$
	$(\mu g/m^3)$		
August	12.35	2.66	TCE detected 2 of 3
2009			samples (ND 4.57)
November	22.6	1.07	TCE detected 6 of 6
2009			samples (0.48 - 0.81)
February	5.9	0.54	TCE detected 4 of 6
2010			samples (ND – 0.7)

The apparent decrease in TCE concentrations in the indoor air over the course of the AECOM sampling program seems to mirror the decrease in outdoor concentrations of TCE. These results suggest that a substantial percentage of the observed concentration of TCE in the indoor air is more likely attributable to factors other than vapor intrusion. Thus, the reported indoor concentrations would over-estimate the potential impact of vapor intrusion on indoor air quality.

The New York State DOH guideline value for TCE in air is $5 \mu g/m^3$ and the Oak Ridge National Laboratory (ORNL) Regional Screening Level for a 1×10^{-6} incremental lifetime cancer risk is $6.1 \mu g/m^3$. The acceptable risk range of 1×10^{-6} to 1×10^{-4} corresponds to target concentrations of 6.1 to $610 \mu g/m^3$. Because the indoor air concentrations from the November 2009 and February 2010 sampling events are almost all lower than the state and regional target

levels (3 samples from November 2009 and one sample from February 2010 exceeded 5 $\mu g/m^3$), the available indoor air quality data support the conclusion that overall, there is no unacceptable risk from vapor intrusion.

Although the patterns of elevated indoor air concentrations of TCE from the three sampling events do not clearly align with the patterns of elevated sub-slab concentrations of TCE, there are some locations where the elevated sub-slab and elevated indoor concentrations of TCE overlap (see the AECOM 2010 report). For example, the February 2010 sample location at which the indoor concentration of TCE exceeded 5 $\mu g/m^3$ was SL-055 (53 $\mu g/m^3$). That location is in the general vicinity of SL-084, which has had high sub-slab TCE concentrations and also in the vicinity of a historic subslab air duct system. It is conceivable that vapor migration through the slab or through the duct system may be responsible for the elevated concentration of TCE in the indoor air at that location.

The indoor air concentrations of TCE measured with the WMS samplers are slightly lower than those observed during the February 2010 sampling event. The WMS samplers provide a longer-term time-weighted average concentration (2 weeks instead of 24 hours) than the Summa results, so they are more likely to reflect the long-term average concentration of TCE in the indoor air. It is noteworthy that TCE was not detected at any of these locations during the April 2011 event, despite the fact that these locations are the most likely to show effects of vapor intrusion based on the subslab distribution of TCE. A comparison of the April 2011 WMS and February 2011 SUMMA results is provided below.

Sample Location	TCE Indoor	Air	TCE	Indoor	Air
	Concentration February 2010	$(\mu g/m^3)$	Concent April 20		$(\mu g/m^3)$
	Summa by AECO	OM	WMS b	y Geosynt	ec
SL-022	0.48		ND @ 0	.77	
SL-084	1.56		ND @ 0	.77	
SL-118	0.81		ND @ 0	.76	

6.2 Comparison of Sub-Slab Data to Target Concentrations

The concentrations of VOCs measured in sub-slab and soil vapor samples were compared to the appropriate "Matrix 1 and Matrix 2" decision matrices in the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006). For compounds not specifically listed in Matrix 1 or 2, soil vapor screening levels were calculated the Oak Ridge National Laboratory (ORNL) industrial indoor air risk based screening levels (ORNL, 2010)

corresponding to a 1×10^{-6} incremental lifetime cancer risk and an attenuation factor of 1/100, which is near the conservative end of the spectrum of empirical attenuation factors in the database compiled by the USEPA (USEPA, 2010), and is therefore considered protective for this building. This attenuation factor is also consistent with the attenuation factor estimated from the qualified radon data, described below.

Maximum observed concentrations of TCE exceed the soil vapor screening level of 250 μg/m³ by about 1 order of magnitude (factor of 10) in the areas of SL-118 and SL-022 and about 3 orders of magnitude (factor of 1,000) in the area of SL-084. PCE exceed the adjusted ORNL screening level by 1 order of magnitude in the area of SL-084, which makes TCE and PCE the primary compounds of concern. TCE is considered the primary risk driver at this site because PCE and 111TCA are generally present at much lower concentrations relative to their screening levels in the sub-slab. Risk management decisions that are based on the potential for vapor-intrusion-related exposures to TCE will be conservative for similar exposures to the other VOCs that have been identified in the sub-slab soil vapor.

Sub-slab radon concentrations measured at location SL-118 during the HPV testing ranged from 47 to 190 pCi/L and the indoor air concentration was about 1 pCi/L, although the sub-slab readings may be biased by instrument drift or slow acclimation and the indoor air concentration may not be significantly different than outdoor air concentrations. Nevertheless, a sub-slab to indoor air attenuation factor could be approximated to be in the range of 0.02 to 0.005 (or less if the indoor air radon is attributable mostly to outdoor air, or if the observed subslab concentrations were biased low), which is near the upper end of the range of empirical attenuation factors in the USEPA empirical database (USEPA, 2010). This is generally consistent with the 1/100 attenuation factor used to derive conservative soil vapor screening levels.

The locations chosen for HPV and Transient Response testing were selected specifically because they represent the areas with the highest sub-slab concentrations of TCE. Overall, there are much lower concentrations of TCE elsewhere beneath the building slab than there is in the immediate vicinity of the three locations discussed in this report. **Figure 7** shows the interpolated TCE distribution according to the interpolation algorithm described in Section 4.6. The areas where sub-slab concentrations of TCE exceed the New York State "Soil Vapor/Indoor Air Matrix 1" criteria of $250~\mu\text{g/m}^3$ for which mitigation is recommended based on the potential for vapor-intrusion-related exposures (i.e., regardless of current indoor TCE concentrations) represent a small percentage of the total sub-slab surface area beneath AFP Building 59. Out of the 120 sub-slab samples, nearly half of the samples (54) had TCE concentrations less than 5 $\mu\text{g/m}^3$; only 21 samples had TCE concentrations above $1000~\mu\text{g/m}^3$. Thus, the overall distribution of TCE beneath the slab suggests that the potential for vapor intrusion related exposures is negligible in most areas and only a few very localized areas (i.e. those that were the focus of the current study) may have a potential vapor intrusion risk.

6.3 Mass Flux Estimates and Dilution in Building Ventilation

The potential risk from vapor intrusion can also be calculated from the available data and a few simple equations. The Johnson and Ettinger (1991) model is the most common equation used for this purpose; however, this is a one-dimensional model, which assumes that the concentrations beneath the building are essentially uniform, which is not the case at Plant 59. Therefore, a different mathematical approach is required.

The potential concentration of TCE in indoor air due to vapor intrusion for AFP Plant 59 can be estimated using the leakance values calculated from the Hantush Jacob analysis of the transient vacuum response test data. The Hantush Jacob model assumes that all of the leakage occurs from above, which will tend to overestimate the actual leakage across the slab, which is conservative (protective) for risk assessment purposes. Given that the concentrations measured during the HPV tests did not diminish by much, it is reasonable to assume that the leakage was not primarily attributable to indoor air flowing down across the slab. Therefore, these calculations are likely to overestimate indoor air concentrations by an order of magnitude or more.

The volumetric flow rate of soil gas per unit area across the slab (Q_{soil}) can be estimated by using the following equation:

$$O_{\text{soil}} = K_v i A$$

where:

 Q_{soil} = flow rate of soil gas into the building (cubic feet per day [ft³/day])

 K_v = vertical gas conductivity of floor slab, where K_v = Tb'/B²

T = gas transmissivity of permeable layer below the floor slab (square feet per day[ft²/day])

b' = floor slab thickness (feet [ft])

B = Leakance factor (ft)

i = vertical gas pressure gradient (ft of air head per foot of floor slab thickness)

A = cross sectional area perpendicular to flow (square feet [ft²])

A few pascals of pressure differential can be observed in most buildings simply due to wind gusts buffeting against the side of a building. Therefore, the pressure gradient across the slab would be about 0.9 ft/ft, assuming a pressure differential of 3 pascals (0.7 ft of air head) and a slab thickness of 0.75 ft. At location SL-022, the calculated B values were 2.7 and 2.8 from the transient response test data at radial distances of 7 and 15 ft, respectively, and the calculated transmissivity values (27.5 and 32.3 ft²/day) are also very similar, which shows that the analysis provides comparable results with tests at different radial distances from the point of extraction. The corresponding K_v values would be 2.8 and 3.1 feet per day (ft/day), respectively, which are

also very similar. The Kv value from the transient data collected at SL-084 would be 22.7 ft/day by the same method, which is about an order of magnitude higher. Assuming a unit area (A = 1 ft²), the Q_{soil} value per unit area would be about 3 to 23 ft³/day/ft². As discussed in Section 5.3.4, the leakance probably overestimates flow of indoor air to the subsurface by at least an order of magnitude. Therefore, the unit Q_{soil} values are more likely in the range of 0.3 to 2.3 ft³/day/ft², or less.

Contaminant mass flux of TCE across the slab per day (J_{TCE}) can be estimated by multiplying Q_{soil} by the sub-slab TCE concentration and a unit conversion factor (CF).

$$J_{\text{TCE}} = Q_{\text{soil}} C_{\text{TCE}} CF$$

where:

 $J_{TCE} = TCE Mass Flux (ug/ft^2/day)$

 $C_{TCE} = TCE \text{ Sub-Slab Concentration (ug/m}^3)$

CF = conversion factor = 0.0283 (m³/ft³)

If the concentration was uniform everywhere below the building, then a single concentration value could be used and the Q_{soil} value per unit area could be multiplied by the entire building footprint. For non-uniform concentrations, there are two approaches: 1) use an "average" subslab concentration and the total building area, or 2) subdivide the building into sections with similar sub-slab concentrations, and assess one section at a time. Statistical summaries of the sub-slab concentration data from the February 2010 sampling event are included in Table 7. The geometric mean TCE concentration of the sub-slab samples collected in February 2010 (AECOM, 2010) was 10.13 $\mu g/m^3$ (**Table 7**) and the total building footprint is about 750,000 ft², therefore the overall average TCE flux into the building would be on the order of 0.06 to 0.5 grams per day.

The indoor air concentration due to vapor intrusion (C_{VI}) can be estimated by dividing the TCE mass flux (J_{TCE}) by the air exchange rate in the building.

$$C_{VI} = J_{TCE} / Q_{Building}$$

where:

Q_{Building} = volumetric flow rate of air through the building (ft³/day)

Assuming the building is about 15 feet tall and an air exchange rate of 1 per hour (which is typical for commercial/industrial buildings), the $Q_{building}$ value would be about 270,000,000 ft³/day. For a flux of 0.06 to 0.5 grams of TCE per day, the associated average concentrations in indoor air would be on the order of 0.008 to 0.07 $\mu g/m^3$. This is a factor of 71 to 625 times

lower than the New York State guideline value of 5 μ g/m³ for TCE in air, and would therefore pose no unacceptable risk. If the air above the drop-ceiling also contributes to dilution, then the calcualted indoor air concentrations would be even lower, by about another factor of 2.

If the same calculations were performed on sub-sections of the building, it would be conservative to consider the area of highest sub-slab concentrations as an end-member for the analysis. SL-084 had the highest sub-slab concentrations (up to about $100,000~\mu g/m^3$. The area surrounding SL-084 with interpolated concentrations above the 250 $\mu g/m^3$ level suggested by New York State for pre-emptive mitigation is about 3,000 ft². Within this area a geometric mean sub-slab concentration of TCE might be about 1,000 $\mu g/m^3$. Even if the indoor air circulation within this area does not mix with surrounding areas (a conservative assumption that would tend to overestimate indoor concentrations), then the indoor air concentration in this area would barely reach the New York State guideline value of 5 $\mu g/m^3$ and ORNL commercial/industrial screening level of 6.1 $\mu g/m^3$ corresponding with the most protective end of the acceptable risk range (1E-6 incremental lifetime cancer incidence). Thus, the mass flux analysis indicates that vapor intrusion poses a very low risk, even in the areas with the highest potential for vapor-intrusion-related exposures.

7. RISK ASSESSMENT AND RISK MANAGEMENT

The lines of evidence (sub-slab concentrations, indoor air concentrations and mass flux calculations) collectively indicate there is very low risk from subsurface vapor intrusion. Furthermore, as illustrated in Figure 8 below, the median concentration of TCE in indoor air samples collected in 2009-2010 (AECOM) has decreased substantially over that time period and the maximum value stayed within the lower half of the acceptable risk range (1E-4 to 1E-6 incremental lifetime cancer incidence), based on the screening levels of the US EPA Mid-Atlantic Risk Assessment Regional Screening Tables for industrial settings, which are posted at: (http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm).

TCE Indoor Concentrations AFP 59

Figure 8: Median and maximum indoor air TCE concentrations, showing that the median is below the acceptable risk range and the maximum barely reaches the middle of the acceptable risk range

When considering actions to address potential vapor intrusion related exposures at AFP Building 59, it is important to consider:

- The nature of the contaminant sources;
- The likelihood that the contaminant source concentrations will increase in the future;
- The current uses of the building and the overall building conditions (maintenance, structural integrity, HVAC operation); and,
- Future use of the building and property.

The available data provide good spatial coverage representative of conditions beneath the building and additional targeted assessment has been performed in the areas of elevated concentrations; therefore, it is likely that all areas of significant subslab VOC concentrations

Geosyntec consultants

have been identified. Remedial actions have been implemented to excavate and remove TCE contaminated soil from beneath the building; therefore, the sub-slab vapor concentrations are unlikely to increase in the future, and should diminish over time. If the building use remains commercial/industrial, then the exposure scenario (40 hours per week for 50 weeks per year for 25 years) is unlikely to change. If a change in land use to residential or sensitive receptors was planned, additional assessment would be appropriate.

8. CONCLUSIONS AND RECOMMENDATIONS

From the assessment activities conducted in this study and our review of historic data, Geosyntec concludes:

- TCE is the main compound of interest for vapor intrusion, and all other VOCs are less likely to pose a potential risk;
- The current concentrations of TCE in the sub-slab soil vapor in the vicinity of SL-118, SL-022 and SL-084 are comparable to values previously measured.
- The WMSTM samplers collected for two weeks with low-uptake, solvent extraction samplers, and in the HPV test apparatus with regular uptake rates and both thermal and solvent extraction all compared very well with one another. The passive samplers showed a negative bias compared to the Summa canisters by about a factor of five and up to about one order of magnitude.
- TCE concentrations in the indoor air samples at all three sampling locations were < 0.77µg/m³, which is below the NYSDOH guideline value of 5 µg/m³ by at least a factor of five. There is no reason to suspect that the indoor air WMS samples had a negative bias like the sub-slab and HPV samples, but even if the passive sampler data shows a negative bias by a factor of about five or up to about one order of magnitude, these data still indicate the indoor air concentrations were low relative to target levels (5 µg/m³ for NYSDOH and 6.1 µg/m³ for USEPA).
- Mass flux calculations supported by information about the floor slab gas permeability derived from the HPV tests indicate the average indoor air concentrations for TCE attributable to vapor intrusion would be lower than acceptable levels by a large margin (10 to 500). This is consistent with available indoor air data, which shows that in the most recent comprehensive sampling event (AECOM February 2010), the only location with TCE in indoor air at or above the guideline value is in the vicinity of sub-slab location SL-084, which had the highest TCE sub-slab concentration by at least an order of magnitude.
- The sub-slab data, indoor air data and mass flux calculations all support the conclusion of a very low risk (typically < 10⁻⁶, worst case < 10⁻⁵ excess lifetime cancer risk) due to vapor intrusion when compared against the USEPA Commercial/Industrial Regional Screening Levels.

Furthermore we recommend:

Institutional controls such as deed restrictions and easements that constrain residential
development of the property and changes to the structure below the surface of the current
floor or changes to the ventilation, either of which might increase the potential for vapor
intrusion should be considered.

9. REFERENCES

- AECOM, Air Force Plant 59 Vapor Intrusion Investigation, September 2010.
- Earth Tech, 2007. Final Soil-Gas and Groundwater Monitoring Report.
- Earth Tech. 2008. Vapor Intrusion Investigation Report, Air Force Plant 59.
- Geosyntec, 2010. The Waterloo Membrane SamplerTM. Presented at the 7th Annual Conference on Remediation of Chlorinated Recalcitrant Compounds, Monterey, CA, May 25, 2010.
- Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, Am. Geophys. Union Trans., vol. 36, pp. 95-100.
- Interstate Technology & Regulatory Council, 2007. Vapor Intrusion Pathway: A Practical Guideline (January 2007).
- McAlary, T.M., P.J. Nicholson, L.K. Yik, D. M. Bertrand and G. Thrupp, 2010. High Purge Volume Sampling A New Paradigm for Subslab Soil Gas Sampling, Ground Water Monitoring and Remediation, 30 (2), pp. 73-85.
- New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.
- Oak Ridge National Laboratory (ORNL), Regional Screening Levels for Chemical Contaminants at Superfund Sites, May 2010.
- Seethapathy, S. and T. Gorecki, 2011. Polydimethylsiloxane-based permeation passive air sampler. Part I: Calibration constants and their relation to indices of the analytes, Journal of Chromatography A, 1211, pp. 143-155.
- Seethapathy, S. and T. Gorecki, 2010. Polydimethylsiloxane-based permeation passive air sampler. Part II: Effect of temperature and humidity on the calibration constants, Journal of Chromatography A, 1217, pp. 7907-7913.
- United States Environmental Protection Agency, 2010. U.S. EPA's Vapor Intrusion Database, Preliminary Evaluation of Attenuation Factors For Chlorinated VOCs in Residences, presented at the EPA Update on Vapor Intrusion Workshop, AEHS Foundation 20th Annual International Conference on Soil, Water, Energy and Air, San Diego, Ca, March 2010.

TABLE 1 SOIL VAPOR PURGING AND FIELD SCREENING DATA AF Plant 59, Johnson City, New York

		Elapsed	Sample Flow	Cumulative Volume	Helium Tracer Gas			VOC	Radon
Probe ID	Date	Time (min)	Rate (L/min)*	Purged (L)	Shroud (%)		Sample (%)	(ppm _v)	(pCi/L)
				()	Minimum	Maximum	(70)		ı
		3.0	0.2	0.6	13.2	26.5	0.00	2.8	
SL-022	14-Apr-11	5.0	0.2	1.6	9.0	14.3	0.00	2.4	241.7
		5.0	0.2	2.6	10.1	12.5	0.00	2.4	
		5.0	0.2	1.0	13.0	18.0	0.00	33.6	
SL-084	14-Apr-11	5.0	0.2	2.0	11.1	14.4	0.00	43.8	107.0
		5.0	0.2	3.0	14.0	19.6	0.00	41.9	
		5.0	0.2	1.0	9.8	23.5	0.2	1.2	
SL-118	14-Apr-11	5.0	0.2	2.0	NR	NR	NR	1.2	25.6
		5.0	0.2	3.0	NR	NR	NR	1.2	

Notes:

Radon samples collected in active mode

% - percent

* - flow controller calibrated to 0.2 L/min by lab

L - liters

L/min - liters per minute

min - minutes

NR - not recorded; helium meter malfunctioning

ppm_v - parts per million by volume

VOC - volatile organic compounds

pCi/L - picocuries per liter

TR0386

TABLE 2 SOIL VAPOR, HPV, AND INDOOR AIR ANALYTICAL RESULTS AF Plant 59, Johnson City, New York

Comple Legation				1			02	2							08	24				1
Sample Location Sample Type		Mid-Atlantic	Industrial Standards ¹	WMS Sub-Slab	Summa Sub-Slab		Summa HPV	.2	WMS	S HPV	Indoor Air	WMS Sub-Slab	Summa Sub-Slab		Summa HPV	94	WM	S HPV	Indoor Air	WMS Sub-Slab
Sample I.D.	New York State		Standards Adjusted	PSS-SL022	SL 022	SL-022-5	SL-022-20	SL-022-END	HPV-022-1	HPV-022-2	IA-SL022	PSS-SL084	SL 084	SL-084-5	SL-084-20	SL-084-END	HPV-084-1	HPV-084-2	IA-SL084	PSS-SL118
Laboratory Sample I.D.	DoH Upper End of	Indoor Air	by Attenuation Factor	1105031A-10A	200-4737-2	200-5005-7	200-5005-8	200-5005-9	1105031A-11A	1105031B-12A	1105031A-03A	1105031A-07A	200-4737-3	200-5005-4	200-5005-5	200-5005-6	1105031A-08A	1105031B-09A	1105031A-04A	1105031A-02A
Sample Start Date	Range of Sub-slab Concentrations	Standards	of 100 for Soil Gas	14-Apr-11 22:34	14-Apr-11 21:00	29-Apr-11 15:06	29-Apr-11 15:21	29-Apr-11 16:43	29-Apr-11 14:59	29-Apr-11 14:59	14-Apr-11 21:20	14-Apr-11 23:25	14-Apr-11 22:47	29-Apr-11 11:21	29-Apr-11 11:34	29-Apr-11 12:38	29-Apr-11 11:16	29-Apr-11 11:16	14-Apr-11 22:40	15-Apr-11 9:17
Sample End Date Date Analyzed	(ug/m3) ²	$(\mu g/m^3)$	$(\mu g/m^3)$	28-Apr-11 13:07 19-May-11	DEC 23-Apr-11	29-Apr-11 15:06 6-May-11	29-Apr-11 15:21 6-May-11	29-Apr-11 16:43 6-May-11	29-Apr-11 16:43 19-May-11	29-Apr-11 16:43 31-May-11	28-Apr-11 16:19 19-May-11	29-Apr-11 9:43 19-May-11	14-Apr-11 22:52 23-Apr-11	29-Apr-11 11:21 6-May-11	29-Apr-11 11:34 6-May-11	29-Apr-11 12:38 6-May-11	29-Apr-11 12:39 19-May-11	29-Apr-11 11:48 31-May-11	28-Apr-11 16:25 19-May-11	28-Apr-11 16:12 19-May-11
μg/m ³	(ug/m3)			19-May-11	23-Apt-11	0-May-11	0-May-11	0-May-11	19-Way-11	31-Way-11	19-May-11	19-May-11	23-Api-11	0-May-11	0-May-11	0-May-11	19-May-11	31-Way-11	19-May-11	19-May-11
Volatile Organic Compounds																				
1,1,1-Trichloroethane	1,000	22,000	2,200,000	65	470	240	270	270	380U	20U	2.0U	40	2100U	1,100	740U	440U	470U	66U	2.0U	2,010
1,1,2,2-Tetrachloroethane	-	0.21	21	0.34U	68U	27U	34U	34U	68U	4.6U		0.34U	2700U	930U	930U	550U	85U	15U		0.37U
1,1,2-Trichloroethane	-	0.77	77	0.72U	54U	22U	27U	27U	140U	16U		0.73U	2100U	740U	740U	440U	180U	52U		0.79U
1,1-Dichloroethane 1,1-Dichloroethene	-	7.7 880	770 88,000	2.0U 12U	40U 39U	16U 16U	20U 20U	20U 20U	400U 2300U	16U 23U		39 12U	1600U 1600U	550U 540U	550U 530U	330U 320U	510U 2900U	52U 76U		2.2U 13U
1,2,4-Trichlorobenzene		8.8	880	120	180U	74U	93U	92U	23000	230		120	7300U	2500U	2500U	1500U	29000	700		130
1,2,4-Trimethylbenzene	-	31	3,100	7.6	49U	20U	25U	24U	38U	17		2.6	1900U	670U	660U	400U	48U	48		2.7
1,2-Dibromoethane	-	0.02	2		76U	31U	38U	38U					3000U	1000U	1000U	620U				
1,2-Dichlorobenzene	-	880	88,000	0.16U	60U	24U	30U	30U	33U	5.2U		0.16U	2400U	820U	810U	480U	41U	17U		0.18U
1,2-Dichloroethane	-	0.47	47	0.92U	40U	16U	20U	20U	190U	7.4U		0.93U	1600U	550U	550U	330U	230U	24U		1.0U
1,2-Dichloropropane	-	1.2	120		46U 69U	18U 28U	23U 35U	23U 35U					1800U 2700U	630U 950U	620U 940U	370U 560U				
1,2-Dichlorotetrafluoroethane 1,3,5-Trimethylbenzene		-		4.4	49U	20U	25U	24U	44U	6.5		1.5	1900U	670U	660U	400U	55U	16		1.2
1,3-Butadiene		0.41	41		22U	8.8U	11U	11U					870U	300U	300U	180U				
1,3-Dichlorobenzene	-	-	-	0.19U	60U	24U	30U	30U	38U	4.5U		0.19U	2400U	820U	810U	480U	47U	15U		0.20U
1,4-Dichlorobenzene		1.1	110	0.18U	60U	24U	30U	30U	37U	4.4U		0.18U	2400U	820U	810U	480U	46U	14U		0.20U
1,4-Dioxane	-	1.6	160		900U	360U	450U	450U					35000U	12000U	12000U	7300U				
2,2,4-Trimethylpentane	-	-	-		46U	19U	23U	23U					1800U	630U	630U	380U				
2-Chlorotoluene	-	-	-		51U 78U	21U 31U	26U 39U	26U 39U					2000U 3100U	700U 1100U	700U 1100U	420U				
3-Chloropropene 4-Ethyltoluene		-			78U 49U	20U	25U	24U					1900U	670U	660U	630U 400U				
4-Isopropyltoluene	[-			55U	22U	27U	27U					2200U	740U	740U	440U				
Acetone	-	14,000	1,400,000	14U	590U	240U	300U	300U	2900U	2,600J		14U	23000U	8100U	8000U	4800U	3600U	17,000J		16U
Benzene	-	1.6	160	2.2U	32U	13U	16U	16U	450U	72U		11	1300U	430U	430U	260U	560U	230U		2.4U
Benzyl chloride	-	0.25	25		51U	21U	26U	26U					2000U	700U	700U	420U				
Bromodichloromethane	-	180	18,000		67U	27U	34U	33U					2600U	910U	900U	540U				
Bromoethene(Vinyl Bromide) Bromoform	-	0.38 11	38 1,100		43U 100U	17U 41U	22U 52U	22U 51U					1700U 4100U	590U 1400U	590U 1400U	350U 830U				
Bromomethane		22	2,200		39U	15U	19U	19U					1500U	530U	520U	310U				
Carbon disulfide	-	3,100	310,000		77U	31U	39U	39U					3100U	1100U	1000U	630U				
Carbon tetrachloride	250	2.0	200	1.6U	63U	25U	31U	31U	320U	20U	1.7U	1.6U	2500U	850U	850U	510U	400U	64U	1.7U	13
Chlorobenzene	-	220	22,000	0.45U	46U	18U	23U	23U	90U	4.1U		0.45U	1800U	620U	620U	370U	110U	13U		0.49U
Chloroethane	-	-	-		66U	26U	33U	33U					2600U	890U	890U	530U				
Chloroform	-	0.53	53	5	49U	19U	24U	24U	250U	12U		24	1900U	660U	660U	390U	310U	38U		9.9
Chloromethane cis-1,2-Dichloroethene	-	390	39,000	21U 1.2U	51U 39U	21U 16U	26U 20U	26U 20U	4200U 250U	10U	1.3U	21U 1,152	2000U 4500	700U 3,100	700U 2,800	420U 1,500	5200U 570	400	1.3U	23U 1.4U
cis-1,3-Dichloropropene		3.1	310	1.20	45U	18U	23U	23U	2300		1.50	1,152	1800U	620U	610U	370U	570	400	1.30	1.40
Cumene	_	1,800	180,000		49U	20U	25U	24U					1900U	670U	660U	400U				
Cyclohexane	-	26,000	2,600,000	3.6	34U	14U	17U	17U	230U	38		4.8	1300U	470U	460U	280U	290U	78		20
Dibromochloromethane	-	0.45	45		85U	34U	43U	42U					3300U	1200U	1100U	690U				
Dichlorodifluoromethane	-	440	44,000		120U	49U	62U	62U					4800U	1700U	1700U	1000U				
Ethylbenzene	-	4.9	490	2.7	43U	17U	22U	22U	72U	22		3.2	1700U	590U	590U	350U	91U	51		1.9
Freon 22 Freon TF	-	-	-		88U 270	35U 150	44U 160	44U 130					3500U 3000U	1200U 1000U	1200U 1000U	710U 620U				
Hexachlorobutadiene		56	5,600		110U	42U	53U	53U					4200U	1400U	1400U	860U				
Isopropyl Alcohol		-	5,000		610U	240U	310U	310U					24000U	8300U	8300U	5000U				
m,p-Xylene	-	-	-		110U	43U	54U	54U					4300U	1500U	1500U	870U				
Methyl Butyl Ketone (2-Hexanone)	-	130	13,000		100U	41U	51U	51U					4000U	1400U	1400U	830U				
Methyl Ethyl Ketone	-	22,000	2,200,000	1.9U	73U	29U	37U	37U	380U	620J		31	2900U	1000U	990U	590U	480U	1500J		2.1U
Methyl Isobutyl Ketone	-	13,000	1,300,000	1.5U	100U	41U	51U	51U	310U	62U		1.5U	4000U	1400U	1400U	830U	390U	200U		1.7U
Methyl Methacrylate Methyl tert-Butyl Ether		3,100 47	310,000 4,700	 1.9U	100U 36U	41U 14U	51U 18U	51U 18U	390U	 14U		2.0U	4000U 1400U	1400U 490U	1400U 490U	830U 290U	490U	46U		2.1U
Methylene Chloride	[26	2,600	1.90	86U	35U	43U	43U				2.00	3400U	1200U	1200U	700U	4300			2.10
Naphthalene		-	-,000	0.093U	130U	52U	66U	65U	19U	18C		1.2	5100U	1800U	1800U	1100U	23U	39C		3.1
n-Butane	-	-	-		59U	24U	30U	30U					2300U	810U	800U	480U				
n-Butylbenzene	-	-	-		55U	22U	27U	27U					2200U	740U	740U	440U				
n-Heptane	-	-	-	16	41U	16U	20U	20U	210U	150J		13	1600U	560U	550U	330U	260U	340J		1.1U
n-Hexane	-	3,100	310,000	39	35U	14U	18U	18U	1500U	6,200E		63	1400U	480U	480U	280U	1800U	9,400		8.0U
n-Propylbenzene	-	4,400	440,000	2.6	49U	20U	25U	24U	50U	25U		1.5	1900U	670U	660U	400U	63U	82U		0.27U
sec-Butylbenzene	-	-	-		55U	22U	27U	27U					2200U	740U	740U	440U				
Styrene	-	4,300	430,000	0.33U	42U	17U	21U	21U	67U	32		0.34U	1700U	580U	570U	340U	84U	63		0.36U
tert-Butyl alcohol	-	-	-		750U	300U	380U	380U					30000U	10000U	10000U	6100U				
tert-Butylbenzene	<u> </u>		-	<u>-</u>	55U	22U	27U	27U					2200U	740U	740U	440U				
Tetrachloroethene	1,000	2.1	210	0.44U	67U	27U	34U	34U	90U	12	0.47U	13	2700U	1,200	910U	550U	110U	28	0.47U	12
Tetrahydrofuran	-	-	-		730U	290U	370U	370U					29000U	10000U	9900U	5900U				
Toluene	-	22,000	2,200,000	11	37U	15U	19U	19U	110U	380		18	1500U	510U	510U	300U	140U	1,100		8.8
trans-1,2-Dichloroethene		260	26,000	3.6U	39U	16U	20U	20U	730U	14U	3.8U	575	1600U	1,300	1,000	570	910U	250	3.8U	4.0U
trans-1,3-Dichloropropene	[3.1	310		45U	18U	23U	23U					1800U	620U	610U	370U				
Trichloroethene	250	6.1	610	828	5,000	2,800	3,400	3,700	350	120	0.77U	44,218	130,000	110,000	97,000	53,000	15,000	12,000E	0.77U	1,579
Trichlorofluoromethane	-	3,100	310,000		56U	32	33	28U					2200U	760U	760U	450U				
	-	2.8	280	20U	25U	10U	13U	13U	4000U		21U	20U	1000U	350U	340U	210U	5000U		21U	22U
Vinyl chloride				12				I	77U	39		14					96U	110U		6.2
Xylene, m&p	-	440	44,000				2277	2277						50077		25011				
	-	440 440 880	44,000 44,000 88,000	3.6	43U 39U	17U 16U	22U 20U	22U 20U	68U	30U		4.4	1700U 5,600	590U 4,400	590U 3,900	350U 2,100	85U 	98U		1.8

TABLE 2 SOIL VAPOR, HPV, AND INDOOR AIR ANALYTICAL RESULTS AF Plant 59, Johnson City, New York

Sample ID	Sample Location			11	8			
Laboratory, Sample LD			av 110 s	Summa HPV	W 440 WWW			
Sample Sample 14-April 19-06 25-April 18-90 25-April 19-07 25-Ap								
Sample Date 14-April 119-55 28-April 118-99 28-April 120, 28-Apr								
						28-Apr-11 21:20	28-Apr-11 21:20	28-Apr-11 16:03
		22-Apr-11	5-May-11	5-May-11	6-May-11	19-May-11	31-May-11	19-May-11
13.1-17-16 13.00	· -							
1.1.2.2-Triendebroehme								
1.1.2-Thickhorchame								
1.1.1.Debt/overcheme								
12.4-Trinstophenome								
13.4.1 Timeshylbenzene						900U	9.0U	
13-Discreence								
12-Dichlorocheaume								
13-Delichorostanic contained 17U	-,							
12-Delichorosenthurocordane 25U 35U 35U 25U 1.3-Finnelly because 18U 25U 24U 20U 17U 1.7U								
13.5-Transcholmenzee								
13-Bundenee								
1.4-Decknoremene 22U 30U 30U 24U 14U 1.7U								
1.4-Dozonae 330U 450U 450U 360U								
22.4.Frinchylgename								
2-Chloroshouse								
4-Ethylotilouene	2-Chlorotoluene	19U	26U	26U	21U			
Absprophyllothen 20U 28U 27U 22U								
Acetone 220U 300U 290U 240U 1,400 1,100U								
Bearene						1,400	1,100J	
Bonomethane Denomethane		12U	16U	16U	13U		,	
BomoschencyVinyl Bromode)								
Bromonemane 38U 52U 51U 42U								
Bonomethane								
Carbon terzachloride 23U 32U 31U 25U 120U 7.6U 1.7U		14U		19U	16U			
Chloropenzene								
Chlorochane								
Chloromethane								
cis-12-bichloroethene 14U 20U 20U 16U 96U 3.9U 1.3U cis-13-bichoropropene 17U 23U 22U 18U -<							4.5U	
cis-13-Dichloropropene 17U 23U 22U 18U - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Cumene 18U 25U 24U 20U								
Dibomochloromethane								
Dichlorodifloromethane						90U	9.0	
Ehylbenzene								
Freon 22 Freon 27 Freon 17 Hexachlorobutadiene 39U 54U 53U 43U								
Hexachlorobutadiene 39U								
Sopropyl Alcohol								
mp-Xylene 40U 54U 54U 44U Methyl Bluryl Ketone 37U 31U 51U 41U Methyl Isobutyl Ketone 37U 51U 51U 41U 120U 24U Methyl Hern-Buryl Ether 13U 18U 18U 14U 150U 54U Methyl tern-Buryl Ether 13U 18U 18U 14U 150U 54U Methyl tern-Buryl Ether 13U 18U 18U 14U 150U 54U Methyl tern-Buryl Ether 13U 18U 18U 14U 150U 54U Methyl tern-Buryl Ether 13U 18U 18U 15U 99C 6.SC n-Burylbenzene 20U 28U 27U 22U n-Broylbenzene 18U 25U 24U 20U 19U 9,7U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Methyl Butyl Ketone (2-Hexanone) 37U 51U 31U 30U 150U 170J Methyl Ethyl Ketone 37U 51U 51U 41U 120U 24U Methyl Methacrylate 37U 51U 51U 41U Methyl ter-Butyl Ether 13U 18U 18U 14U 15U 5.4U								
Methyl Isobutyl Ketone 37U 51U 51U 41U 120U 24U Methyl Methacrylate 37U 51U 51U 41U Methyl Herbaryl Ether 13U 18U 18U 18U 15U 5.4U Methylene Chloride 32U 44U 43U 35U Naphthalene 48U 66U 65U 53U 9.9C 6.5C n-Butane 220 30U 29U 24U n-Butylbenzene 20U 28U 27U 22U n-Butylbenzene 15U 21U 20U 16U 81U 62J n-Heytane 15U 21U 20U 14U 740 1,300 n-Heytane 13U 18U 27U 22U n-Heytane 13U 28U<		37U	51U	51U	41U			
Methyl Methacrylate 37U 51U 51U 41U Methyl tert-Buryl Ether 13U 18U 18U 14U 150U 5.4U Methylene Chloride 32U 44U 43U 35U Naphthalene 48U 66U 65U 53U 9.9C 6.5C n-Butalene 220 30U 29U 24U n-Butylbenzene 20U 28U 27U 22U n-Heyrane 15U 21U 20U 16U 81U 62J n-Heyrane 15U 21U 20U 16U 81U 62J n-Heyrane 18U 25U 24U 20U 19U 9.7U sec-Burylbenzene 20U 28U 27U 22U stern-Buyl alcohol 280U 38								
Methyl tert-Butyl Ether 13U 18U 18U 44U 150U 5.4U Methylene Chloride 32U 44U 43U 35U							-	
Methylene Chloride 32U 44U 43U 35U								
n-Butlane 220 30U 29U 24U	Methylene Chloride	32U	44U	43U	35U			
n-Butylbenzene								
n-Heptane 15U 21U 20U 16U 81U 62J n-Hexane 13U 18U 17U 14U 740 1,300 n-Propylbenzene 18U 25U 24U 20U 19U 9,7U sec-Butylbenzene 20U 28U 27U 22U Styrene 16U 21U 21U 17U 26U 9,4 tetr-Butyl alcohol 280U 380U 370U 300U tetr-Butylbenzene 20U 28U 27U 22U tetr-Butylbenzene 20U 28U 27U 22U tetr-Butylbenzene 20U 38U 27U 22U tetr-Butylbenzene 20U 38U 27U 22U tetr-Butylbenzene 25U 34U 34U 27U 34U 7.7 0.47U Tetrahydrofuran 270U 370U 360U 300U Toluene 14U 19U 19U 15U 54 160 trans-1,2-Dichloroethene 14U 20U 20U 16U 280U 5.6U 3.8U trans-1,2-Dichloropropene 17U 23U 22U 18U Trichloroethene 1300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U Trichlorofloromethane 20U 28U 28U 23U Trichlorofloromethane 20U 28U 28U 23U Trichlorofloromethane 20U 28U 13U 150U 150U Trichlorofloromethane 20U 28U 28U 23U								
n-Hexane 13U 18U 17U 14U 740 1,300 n-Propylbenzene 18U 25U 24U 20U 19U 9.7U sec-Butylbenzene 20U 28U 27U 22U set-tr-Butyl alcohol 280U 380U 370U 300U tert-Butyl benzene 20U 28U 27U 22U tert-Butylbenzene 20U 28U 27U 22U tert-Butylbenzene 20U 28U 27U 22U Tetrachloroethene 25U 34U 34U 27U 34U 7.7 0.47U Tetralydrofuran 270U 370U 360U 300U Tetrachloroethene 14U 19U 19U 15U 54 160 Toluene 14U 19U 19U 15U 54 160 Trichloroethene 170U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofluoromethane 20U 28U 28U 28U 23U Trichlorofluoromethane 20U 28U 28U 28U 28U 28U 28U 28U 28U 28U 28								
n-Propylbenzene 18U 25U 24U 20U 19U 9.7U sec-Bulybenzene 20U 28U 27U 22U Styrene 16U 21U 21U 17U 26U 9.4 tert-Bulylachol 280U 380U 370U 300U tert-Bulylbenzene 20U 28U 27U 22U Tetrachloroethene 25U 34U 34U 27U 34U 7.7 0.47U Tetrahydrofuran 270U 370U 360U 300U Toluene 14U 19U 19U 15U 54 160 trans-1,2-Dichloroethene 14U 20U 20U 16U 280U 5.6U 3.8U trans-1,3-Dichloropropene 17U 23U 22U Trichloroethene 14,00 300U 300U Trichloroethene 14,00 20U 20U 16U 280U 5.6U 3.8U trans-1,3-Dichloropropene 17U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U Vinyl chloride 9,3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 21U Xylene, n&p 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U	_							
Styrene 16U 21U 21U 17U 26U 9.4 tert-Butyl alcohol 280U 380U 370U 300U tert-Butylbenzene 20U 28U 27U 22U Tetrachloroethene 25U 34U 34U 27U 34U 7.7 0.47U Tetrahyldroffuran 270U 370U 360U 300U Toluene 14U 19U 19U 15U 54 160 trans-12-Dichloroethene 14U 20U 20U 16U 280U 5.6U 3.8U trans-13-Dichloropropene 17U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U								
tert-Butyl alcohol 280U 380U 370U 300U <th< td=""><td>sec-Butylbenzene</td><td>20U</td><td></td><td>27U</td><td></td><td></td><td></td><td></td></th<>	sec-Butylbenzene	20U		27U				
tert-Buylbenzene 20U 28U 27U 22U Tetrachloroethene 25U 34U 34U 27U 34U 7.7 0.47U Tetrahydrofuran 270U 370U 360U 300U Toluene 14U 19U 19U 15U 54 160 Toluene 14U 20U 20U 16U 280U 5.6U 3.8U trans-1,3-Dichloroethene 17U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofuloromethane 20U 28U 28U 23U Vinyl chloride 9,3U 13U 13U 10U 1500U 21U Xylene, o- 16U 22U 21U 17U 26U 12U	-					26U	9.4	
Tetrachloroethene 25U 34U 34U 27U 34U 7.7 0.47U Tetrahydrofuran 270U 370U 360U 300U <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-							
Tetrahydrofuran 270U 370U 360U 300U								
Toluene 14U 19U 19U 15U 54 160 trans-1,2-Dichloroethene 14U 20U 20U 16U 280U 5.6U 3.8U trans-1,3-Dichloropropene 17U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U Vinyl chloride 9.3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U								0.47U
trans-1,2-Dichloroethene 14U 20U 20U 16U 280U 5.6U 3.8U trans-1,3-Dichloropropene 17U 23U 22U 18U Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofuoromethane 20U 28U 28U 23U Vinyl chloride 9.3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U	-							
trans-1,3-Dichloropropene 17U 23U 22U 18U Trichlorocethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U Vinyl chloride 9,3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U								
Trichloroethene 1,300 3,000 2,900 2,400 610 430 0.76U Trichlorofloromethane 20U 28U 28U 23U 21U Vinje clhoride 9,3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U							5.6U	3.8U
Trichlorofluoromethane 20U 28U 28U 23U Vinyl chloride 9.3U 13U 13U 16UU 1500U 21U Xylene, n&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U							430	0.7611
Vinyl chloride 9.3U 13U 13U 10U 1500U 21U Xylene, m&p 29U 13 Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U								
Xylene, o- 16U 22U 21U 17U 26U 12U 1,2-Dichloroethene, Total 14U 20U 20U 16U								21U
1,2-Dichloroethene, Total 14U 20U 20U 16U								
22) 210 1/0 =	Xylene (total)	14U 16U	20U 22U	20U 21U	17U			

FPA Mid Atlantic Risk Assessment Screening Levels for Industrial Indoor Air developed by Oak Ridge national Laboratory (ORNL)
 FPA ORNL screening level does not exist

- EFA UKNL screening level does not exist

2 New York State Department of Health Center for Environmental Health
Bureau of Environmental Exposure Investigation Guidance for Evaluating Soil
Vapor Intrusion in the State of New York Soil Vapor/Indoor Air Matrix 1&2
-- not analyzed

Bold Agency 1

Bold - detected concentration
Bold - detected concentration above screening level
μg/m³ - micrograms per cubic meter
C - estimated concentration due to calculated sampling rate
E - exceeds instrument calibration range
HPV - high purge volume
U - Analyte not detected; associated value is reporting limit
WMS - Waterloo Membrane Sampler

TABLE 3 FIELD SCREENING READINGS ON SAMPLES OF EXTRACTED VAPOR AP Plant 59, Johnson City, New York

Location	Elapsed Time (min)	Cumulative Volume Removed (L)	VOCs by PID (ppm _v)	Radon (pCi/L)
HPV-118	12.83	9,800	1.45	48.6
Average Extraction Velocity: 1,330 ft/min	20.00	15,300	1.42	-
Average Extraction Vacuum: 47.6 in H2O	28.25	21,600	1.43	47.0
Average Extraction Flow Rate: 27 scfm	36.27	27,800	1.42	67.0
Specific Capacity: 0.6 scfm/in H2O	42.87	32,900	-	82.9
	47.47	36,400	1.39	99.0
	53.22	40,800	-	190.0
	59.00	45,200	1.42	-
	69.50	53,300	1.45	-
	73.00	55,900	1.37	-
	75.65	58,000	1.40	-
	79.45	60,900	1.35	-
	84.48	64,700	1.37	-
	91.18	69,900	1.30	-
	93.80	71,900	-	74.0
	101.52	77,800	1.39	-
	114.77	88,000	1.43	-
	120.00	92,000	-	-
HPV-084	2.00	1,100	31.6	-
Average Extraction Velocity: 950 ft/min	4.92	2,800	39.1	-
Average Extraction Vacuum: 38.4 in H2O	7.70	4,300	20.5	-
Average Extraction Flow Rate: 22 scfm	9.67	5,400	35.5	-
Specific Capacity: 0.5 scfm/in H2O	16.62	9,300	43.0	-
	21.07	11,800	44.0	-
	22.93	12,900	42.5	-
	40.43	22,700	36.1	-
	66.77	37,500	36.8	-
	70.90	39,800	-	-
HPV-022	1.00	900	1.71	-
Average Extraction Velocity: 1,334 ft/min	7.60	6,700	1.70	-
Average Extraction Vacuum: 40.8 in H2O	11.25	9,900	1.63	-
Average Extraction Flow Rate: 31 scfm	13.50	11,900	1.62	-
Specific Capacity: 0.8 scfm/in H2O	15.00	13,200	1.64	-
	18.50	16,300	1.72	-
	77.55	68,300	1.70	-
	78.10	68,800	-	-

Notes:

- measurement not collected

min - minutes

L - liters

pCi/L - picocuries per liter

PID - photoionization detector

ppm_v - parts per million by volume

in H_2O - inches of water

scfm - standard cubic feet per minute

ft/min - feet per minute

VOCs - volatile organic compounds

TR0386 7/15/2011

TABLE 4
VACUUM AND FIELD SCREENING READINGS AT COMMUNICATION TEST POINTS
AP Plant 59, Johnson City, New York

Location	Probe Depth (ft bgs)	Date	Time	Distance from Point of Extraction (ft)	Vacuum (in H ₂ O)	VOCs by PID (ppm _v)
		HPV-022 Av	verage Extraction	on Vacuum: 40.8 in H ₂ O		**
SL-022	0.75	29-Apr-2011	14:24	1.08	-6.846	2.10
		29-Apr-2011	15:37	7.67	-0.200	0.35
TP-022-7	0.75	29-Apr-2011	16:06	7.67	-0.200	4.34
11-022-7	0.75	29-Apr-2011	16:08	7.67	-0.200	3.34
		29-Apr-2011	16:10	7.67	-0.200	3.34
SL-022-15	0.75	29-Apr-2011	16:19	15	-0.008	-
		HPV-084 Av	verage Extraction	on Vacuum: 38.4 in H ₂ O		
SL-084	0.75	29-Apr-2011	13:38	0.83	-1.130	-
SL-084D	8	29-Apr-2011	12:03	3.92	-0.013	1.61
3L-064D	o	29-Apr-2011	12:31	3.92	-0.013	0.43
SL-084S	4	29-Apr-2011	11:12	3.92	-0.036	-
HPV-118 Average Extraction Vacuum: 47.6 in H ₂ O*						
SL-118	0.75	28-Apr-2011	19:56	0.5	0.000	-
TP-118-5	0.75	28-Apr-2011	18:59	5	0.000	-
TP-118-7	0.75	28-Apr-2011	19:56	7.17	0.000	=

Notes:

- measurement not collected
- * the lack of any vacuum response in the probes around SL-118 is unexpected and not consistent with the conceptual model for the Hantush Jacob analysis

ft - feet

ft bgs- feet below ground surface

in H₂O - inches of water

PID - photoionization detector

ppm_v - parts per million by volume

VOCs - volatile organic compounds

TR0386 7/15/2011

TABLE 5 SUMMARY OF TRANSIENT RESPONSE ANALYSIS AF Plant 59, Johnson City, New York

						Radius of				% of Sub-
		Distance				Gas	Theoretical			Slab Soil
		Between	HPV Test		Calculated	Extracted	Test	% of Non-		Vapor
		CTP and	Duration	HPV Flow	Leakance (B)	During Test	Extraction	Leaky	% Leakage	Collected in
Test Location	Monitored CTP	HPV (ft)	(min)	Rate (scfm)	Value (ft)	(ft)	Radius ¹ (ft)	Model	Modeled	the Sample
HPV-022	TP-022-7	7.67	78	31.1	2.7	16	77	20.8	79.2	34
HPV-022	TP-022-15	15	78	31.1	2.8	17.5	85	20.6	79.4	32
HPV-084	SL-084	0.83	71	22.0	1.3	9	65	13.8	86.2	30

Notes:

 1 - Refer to Appendic C for detailed analyses; value obtained from the confined (non-leaky) model

CTP - communication test point

HPV - high purge volume

ft - feet

min - minutes

scfm - standard cubic feet per minute

% - pecent

TR0386 7/14/2011

TABLE 6
RADON FIELD SCREENING AND LABORATORY ANALYTICAL RESULTS
AF Plant 59, Johnson City, New York

Sample Location		022		084		118	
Sample I.D.	EPA Threshold	AFP 59, Ro	oom SL-022	AFP 59, R	oom SL-084	AFP 59, R	oom SL-118
Electret Number Start Date End Date	Concentration for Continuous Residential Radon Exposure	SFR984 14-Apr-11 28-Apr-11	Femto-tech Radon Meter Active Mode Field Reading 14-Apr-11 14-Apr-11	SFS103 14-Apr-11 28-Apr-11	Femto-tech Radon Meter Active Mode Field Reading 14-Apr-11 14-Apr-11	SFS141 14-Apr-11 28-Apr-11	Femto-tech Radon Meter Active Mode Field Reading 14-Apr-11 14-Apr-11
Analyte (pCi/L)							
Radon	4.0	1.1	0.0-0.8	1.2	0.3 - 3.1	1.4	0

Notes:

pCi/L - picocuries per liter

TABLE 7 FEBRUARY 2010 TCE CONCENTRATIONS AND STATISTICS AF Plant 59, Johnson City, New York

	TCE Concentration (µg/m³)				
Subslab		Sub-slab	· \F'O/ ···	Indoor Air	
Location	8/09	11/09	2/10	2/10	
SL001	10.74	0	1.1	0.4	
SL002	1.24	0.81	1.1	0.0	
SL003	220.23	230.98	1.5	0.7	
SL004	177.26	59.09	44.6	0.4	
SL005	42.97	22.56	118.0	1.0	
SL006	107.43	64.46	19.3	1.0	
SL007	2.52		0.5	0.3	
SL008	24.71	48.88	15.0	0.9	
SL009	1334.29	38.14	10.7	2.9	
SL010	322.29	21.49	1.7	1.0	
SL011	150.4	69.83	33.3	1.7	
SL012	2.79	2.42	5.9	0.4	
SL013	59.09	3.12	1.2	0.3	
SL014	10.74	1.88	3.1	0.7	
SL015	19.34		10.2	0.8	
SL016	91.32	10.74	41.4	0.0	
SL017	15.04	10.74	4.6	1.2	
SI018	1.24	20.01	0.3	0.2	
SL019	69.83	29.01 75.2	6.5 214.9	0.4	
SL020	96.69 24.17	75.2 27.93		0.0	
SL021 SL022	9.67	644.58	19.3 1504.0	0.4 0.5	
SL022	177.26	10.21	139.7	0.3	
SL023	46.2	10.21	8.6	0.8	
SL025	15.58	1.5	7.0	0.9	
SL026	24.71	13.97	4.8	1.1	
SL027	80.57	35.45	3.2	0.6	
SL028	6.98	139.66	20.4	0.0	
SL029	91.32	22.56	3.2	0.5	
SL030	161.15		38.7	0.0	
SL031	290.06	198.75	69.8	1.3	
SL032	2.95		1.8	0.5	
SL033	48.34	32.77	8.6	0.4	
SL034	1.77		1.5	0.4	
SL035	193.37	9.67	166.5	1.5	
SL036	21.49		10.2	2.6	
SL037	75.2	30.62	39.8	0.0	
SL038	11.28	1.07	5.9	0.3	
SL039	64.46	26.86	43.0	0.5	
SL040	3.01		1.7	0.6	
SL041	17.19	18.8	6.5	2.9	
SL042	18.26		30.0	3.4	
SL043	171.89	966.87	859.0	0.4	
SL044	338.41	273.95	290.0	0.6	
SL045	107.43		12.9	1.7	
SL046	590.87	214.86	537.0	1.3	
SL047	11.28	1.34	0.6	0.5	
SL048	2.69		5.0	0.6	
SL049	13.97		9.7	0.5	
SL050	1.67	20.44	4.5	0.6	
SL051	49.96	38.14	43.0	0.4	
SL052 SL053	504.92 5.16	359.89	225.6 8.6	0.3 0.0	
SL053 SL054	5.16 45.66	17.19	8.6 11.3	0.0	
SL054 SL055	107.43	17.19	225.6	53.2	
SL055 SL056	1.93	112.0	0.8	0.4	
SL056	25.25		12.4	0.4	
SL057	1.24	2.9	2.7	0.3	
SL059	3.38	2.3	2.7	0.4	
SL060	1.72		0.6	0.5	
J1000	1./2	l	0.0	0.5	

	1		2				
		TCE Concentr	ation (µg/m³)			
Subslab		Sub-slab		Indoor Air			
Location	8/09	11/09	2/10	2/10			
SL061	2.79		2.3	0.4			
SL062	15.58	2.95	3.3	0.0			
SL063	11.28		2.6	0.0			
SL064	1.13	3.22	0.7	0.4			
SL065	1.24		0.9	1.0			
SL066	2.04		4.8	1.9			
SL067	1.72	0.86	0.8	0.0			
SL068	8.59	6.98	4.4	0.8			
SL069	1.56		1.0	0.3			
SL070	1.83	2.95	0.8	1.5			
sl071	0.91		11.8	0.0			
SL072	1.45	1.45	1.6	0.0			
SL073	3.01		0.8	0.3			
SL074	1.56		0.8	3.2			
SL075	3.76		2.3	0.0			
SL076	1880.03	47.81	440.5	0.6			
SL077	41.34		456.6	3.9			
SL078	1.5		1.2	0.8			
SL079	220.23	263.2	91.3	0.9			
SL080	3.55		225.6	0.4			
SL081	3.44	5.16	4.2	0.0			
SL083	0.91		0.8	0.4			
SL084	34.38	13965.95	38675.0	1.6			
SL085	33.3	13.43	17.2	0.5			
SL086	14.5	3.28	15.6	1.4			
SL087	1.88		0.9	2.8			
SL088	11.28	1.5	0.8	0.0			
SL089	1.24		0.9	0.0			
SL090	9.67	5.91	4.1	0.0			
SL091	2.74		0.9	0.4			
SL092	3.65	2.47	1.3	0.0			
SL093	3.06		3.8	1.9			
SL094	3.87		4.3	0.6			
SL095	461.95	316.92	193.4	0.3			
SL096	1.29		0.9	0.6			
SL097	1.18		2.4	0.6			
SL098	128.92	445.84	591.0	0.0			
SL099	537.15	102.06	300.8	0.0			
SL100	75.2	202.41	59.1	2.2			
SL101	134.29	59.09	96.7	0.7			
SL102	4.4		2.0	0.4			
SL103	18.8	3.97	3.1	0.5			
SL104	3.33		2.9	0.0			
SL105	35.99		1.2	1.5			
SL106	23.63		5.9	0.6			
SL107	1.24		0.5	0.5			
SL108	5.91		2.0	2.5			
SL109	30.62	51.03	12.4	1.1			
SL110		22.02	3.8	0.9			
SL111		306.18	591.0	1.7			
SL112		69.83	1128.0	0.7			
SL113		5.26	3.3	0.6			
SL114		4.83	91.3	0.5			
SL115		64.46	2.7	2.6			
SL116		1.72	9.1	4.7			
SL117		37.6	30.1	0.4			
SL118		1450.31	3223.0	0.8			
SL119		220.23	53.7	2.4			
SL120		112.8	53.7	1.0			
25th D	Statistics						
25th Percentile	2.79	4.83	1.75	0.35			
median	14.77	27.93	5.90	0.54			
75th percentile	75.20	102.06	42.20	1.02			

Notes:

TCE - trichloroethene
μg/m³ - micrograms per cubic meter

Source: AECOM Air Force Plant 59 Vapor Intrusion Investigation Report (September 2010)

VOC Concentrations vs. Volume Purged during HPV Tests

AF Plant Building 59

Johnson City, New York

15-Jul-11

Geosyntec consultants

Guelph

Figure

6

Paris agont Appropriate Agont Appropriate Agont Agont

APPENDIX A LABORATORY REPORTS OF ANALYSIS

ANALYTICAL REPORT

Job Number: 200-4737-1

SDG Number: 200-4737

Job Description: AFP59

For:

Geosyntec Consultants, Inc. 130 Research Lane Suite 2

Guelph, Ontario N1G5G3

Attention: Mr. David Bertrand

Approved for release. Steve C Timmons Customer Service Manager 4/26/2011 4:32 PM

Designee for
Don C Dawicki
Project Manager II
don.dawicki@testamericainc.com
04/26/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	7
Method Summary	8
Method / Analyst Summary	9
Sample Datasheets	10
QC Data Summary	22
Data Qualifiers	28
QC Association Summary	29
Lab Chronicle	30
Certification Summary	31
Organic Sample Data	32
Air - GC/MS VOA	32
Method TO15	32
Method TO15 QC Summary	33
Method TO15 Sample Data	40
Standards Data	81
Method TO15 ICAL Data	81
Method TO15 CCAL Data	130
Raw QC Data	144
Method TO15 Tune Data	144
Method TO15 Blank Data	152
Method TO15 LCS/LCSD Data	162
Method TO15 Run Logs	169

Table of Contents

	Method TO15 Prep Data	173
	Air Canister Dilution	174
	Pre-shipment Certification	175
	LCS Data	177
	Blank Data	181
	Tune Data	197
	IS/RT Data	201
	Clean Canister Data	205
	ICAL Data	219
	ICV/CCV Data	239
	Run Logs	251
Sh	ipping and Receiving Documents	260
	Client Chain of Custody	261
	Sample Receipt Checklist	263

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: AFP59

Report Number: 200-4737-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 04/18/2011; the samples arrived in good condition, properly preserved.

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): SL 022, SL 084, SL 118. The container labels list only stop times of collection. The COC lists both start and stop times.

VOLATILE ORGANIC COMPOUNDS

Samples SL 118, SL 022 and SL 084 were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 04/22/2011 and 04/23/2011.

Samples SL 118[18X], SL 022[50X] and SL 084[1960X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the VOC analyses.

All quality control parameters were within the acceptance limits.

AIR - GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Instrument ID: B.i Analysis Batch Number: 16751

Lab Sample ID: IC 200-16751/14 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Vinyl acetate	7.99	Baseline event	pd	04/20/11 09:52
Ethyl acetate	8.93	Baseline event	pd	04/20/11 09:53

AIR - GC/MS VOA MANUAL INTEGRATION SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Instrument ID: B.i Analysis Batch Number: 16914

Lab Sample ID: 200-4737-2 Client Sample ID: SL 022

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Trichlorofluoromethane	4.81	Baseline event	klp	04/24/11 10:45

SAMPLE SUMMARY

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
200-4737-1	SL 118	Air	04/14/2011 1945	04/18/2011 1010
200-4737-2	SL 022	Air	04/14/2011 2105	04/18/2011 1010
200-4737-3	SL 084	Air	04/14/2011 2252	04/18/2011 1010

METHOD SUMMARY

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1 Sdg Number: 200-4737

Description	Lab Location	Method	Preparation Method
Matrix: Air			
Volatile Organic Compounds in Ambient Air	TAL BUR	EPA TO-15	
Collection via Summa Canister	TAL BUR		Summa Canister

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

Method	Analyst	Analyst ID	
EPA TO-15	Daigle, Paul A	PAD	

Job Number: 200-4737-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-4737

Client Sample ID: **SL 118**

Lab Sample ID: 200-4737-1 Date Sampled: 04/14/2011 1945 Client Matrix: Air

Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac013.d Dilution: Initial Weight/Volume: 18.2 11 mL

Analysis Date: 04/22/2011 2341 Final Weight/Volume: 200 mL 04/22/2011 2341 Prep Date: Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	9.1	U	9.1
Freon 22	9.1	U	9.1
1,2-Dichlorotetrafluoroethane	3.6	U	3.6
Chloromethane	9.1	U	9.1
n-Butane	92		9.1
Vinyl chloride	3.6	U	3.6
1,3-Butadiene	3.6	U	3.6
Bromomethane	3.6	U	3.6
Chloroethane	9.1	U	9.1
Bromoethene(Vinyl Bromide)	3.6	U	3.6
Trichlorofluoromethane	3.6	U	3.6
Freon TF	5.0		3.6
1,1-Dichloroethene	3.6	U	3.6
Acetone	91	U	91
Isopropyl alcohol	91	U	91
Carbon disulfide	9.1	U	9.1
3-Chloropropene	9.1	U	9.1
Methylene Chloride	9.1	U	9.1
tert-Butyl alcohol	91	U	91
Methyl tert-butyl ether	3.6	U	3.6
trans-1,2-Dichloroethene	3.6	U	3.6
n-Hexane	3.6	U	3.6
1,1-Dichloroethane	3.6	U	3.6
Methyl Ethyl Ketone	9.1	U	9.1
cis-1,2-Dichloroethene	3.6	U	3.6
1,2-Dichloroethene, Total	3.6	U	3.6
Chloroform	3.6	U	3.6
Tetrahydrofuran	91	U	91
1,1,1-Trichloroethane	300		3.6
Cyclohexane	3.6	U	3.6
Carbon tetrachloride	3.6	U	3.6
2,2,4-Trimethylpentane	3.6	U	3.6
Benzene	3.6	U	3.6
1,2-Dichloroethane	3.6	U	3.6
n-Heptane	3.6	U	3.6
Trichloroethene	250		3.6
Methyl methacrylate	9.1	U	9.1
1,2-Dichloropropane	3.6	U	3.6
1,4-Dioxane	91	U	91
Bromodichloromethane	3.6	U	3.6
cis-1,3-Dichloropropene	3.6	U	3.6
methyl isobutyl ketone	9.1	U	9.1
Toluene	3.6	U	3.6
trans-1,3-Dichloropropene	3.6	Ü	3.6
1,1,2-Trichloroethane	3.6	U	3.6

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 118

Lab Sample ID: 200-4737-1 Date Sampled: 04/14/2011 1945 Client Matrix:

Date Received: 04/18/2011 1010 Air

TO-15 Volatile	Organic Co	i shrunarm	n Δmhient Δir

TO-15 Volatile Organic Compounds in Ambient Air					
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 18.2 04/22/2011 2341 04/22/2011 2341	Analysis Batch: Prep Batch:	200-16914 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkac013.d 11 mL 200 mL 200 mL
Analyte		Result (p	pb v/v) Qu	ualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	9.1	U		9.1
Dibromochlorometh		3.6	U		3.6
1,2-Dibromoethane		3.6	U		3.6
Chlorobenzene		3.6	U		3.6
Ethylbenzene		3.6	U		3.6
m,p-Xylene		9.1	U		9.1
Xylene, o-		3.6	U		3.6
Xylene (total)		3.6	U		3.6
Styrene		3.6	Ū		3.6
Bromoform		3.6	U		3.6
Cumene		3.6	Ū		3.6
1,1,2,2-Tetrachloroe	ethane	3.6	Ü		3.6
n-Propylbenzene		3.6	U		3.6
4-Ethyltoluene		3.6	Ū		3.6
1,3,5-Trimethylbenz	zene	3.6	Ū		3.6
2-Chlorotoluene		3.6	Ū		3.6
tert-Butylbenzene		3.6	Ū		3.6
1,2,4-Trimethylbenz	zene	3.6	Ü		3.6
sec-Butylbenzene	-00	3.6	Ū		3.6
4-Isopropyltoluene		3.6	U		3.6
1,3-Dichlorobenzen	ie.	3.6	U		3.6
1,4-Dichlorobenzen		3.6	U		3.6
Benzyl chloride		3.6	U		3.6
n-Butylbenzene		3.6	U		3.6
1,2-Dichlorobenzen	ıe.	3.6	U		3.6
1,2,4-Trichlorobenz		9.1	U		9.1
Hexachlorobutadier		3.6	Ü		3.6
Naphthalene		9.1	U		9.1
Naphthalene		5.1	J		5.1
Analyte		Result (u	g/m3) Qı	ualifier	RL
Dichlorodifluoromet	hane	45	U		45
Freon 22		32	U		32
1,2-Dichlorotetrafluo	oroethane	25	U		25
Chloromethane		19	U		19
n-Butane		220			22
Vinyl chloride		9.3	U		9.3
1,3-Butadiene		8.1	U		8.1
Bromomethane		14	U		14
Chloroethane		24	U		24
Bromoethene(Vinyl	Bromide)	16	U		16
Trichlorofluorometh	ane	20	U		20
Freon TF		38			28
1,1-Dichloroethene		14	U		14
		220	U		220
Acetone		220	U		220
Acetone Isopropyl alcohol		220	U		220

Job Number: 200-4737-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-4737

Client Sample ID: **SL 118**

Lab Sample ID: 200-4737-1 Date Sampled: 04/14/2011 1945 Client Matrix:

Date Received: 04/18/2011 1010 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac013.d Dilution: Initial Weight/Volume: 18.2 11 mL

04/22/2011 2341 Analysis Date: Final Weight/Volume: 200 mL 04/22/2011 2341 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	28	U	28
Methylene Chloride	32	U	32
tert-Butyl alcohol	280	U	280
Methyl tert-butyl ether	13	U	13
trans-1,2-Dichloroethene	14	U	14
n-Hexane	13	U	13
1,1-Dichloroethane	15	U	15
Methyl Ethyl Ketone	27	U	27
cis-1,2-Dichloroethene	14	U	14
1,2-Dichloroethene, Total	14	U	14
Chloroform	18	U	18
Tetrahydrofuran	270	U	270
1,1,1-Trichloroethane	1700		20
Cyclohexane	13	U	13
Carbon tetrachloride	23	U	23
2,2,4-Trimethylpentane	17	U	17
Benzene	12	U	12
1,2-Dichloroethane	15	U	15
n-Heptane	15	U	15
Trichloroethene	1300	_	20
Methyl methacrylate	37	U	37
1,2-Dichloropropane	17	U	17
1,4-Dioxane	330	Ü	330
Bromodichloromethane	24	U	24
cis-1,3-Dichloropropene	17	Ü	17
methyl isobutyl ketone	37	U	37
Toluene	14	U	14
trans-1,3-Dichloropropene	17	U	17
1,1,2-Trichloroethane	20	U	20
Tetrachloroethene	25	U	25
Methyl Butyl Ketone (2-Hexanone)	37	Ü	37
Dibromochloromethane	31	U	31
1,2-Dibromoethane	28	Ü	28
Chlorobenzene	17	U	17
Ethylbenzene	16	Ü	16
m,p-Xylene	40	U	40
Xylene, o-	16	U	16
Xylene (total)	16	U	16
	16	U	16
Styrene Bromoform			
Cumene	38 18	U U	38
1,1,2,2-Tetrachloroethane	18 25	U	18 25
n-Propylbenzene	18	U	18
4-Ethyltoluene	18	U	18
1,3,5-Trimethylbenzene	18	U	18
2-Chlorotoluene	19	U	19

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 118

Lab Sample ID: 200-4737-1 Date Sampled: 04/14/2011 1945

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac013.d Dilution: Initial Weight/Volume: 18.2 11 mL

Analysis Date: 04/22/2011 2341 Final Weight/Volume: 200 mL
Prep Date: 04/22/2011 2341 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	20	U	20
1,2,4-Trimethylbenzene	18	U	18
sec-Butylbenzene	20	U	20
4-Isopropyltoluene	20	U	20
1,3-Dichlorobenzene	22	U	22
1,4-Dichlorobenzene	22	U	22
Benzyl chloride	19	U	19
n-Butylbenzene	20	U	20
1,2-Dichlorobenzene	22	U	22
1,2,4-Trichlorobenzene	68	U	68
Hexachlorobutadiene	39	U	39
Naphthalene	48	U	48

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 022

Lab Sample ID: 200-4737-2 Date Sampled: 04/14/2011 2105

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac014.d Dilution: Initial Weight/Volume: 49.7 19 mL

 Dilution:
 49.7
 Initial Weight/Volume:
 19 mL

 Analysis Date:
 04/23/2011 0033
 Final Weight/Volume:
 200 mL

 Prep Date:
 04/23/2011 0033
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	25	U	25
Freon 22	25	U	25
1,2-Dichlorotetrafluoroethane	9.9	U	9.9
Chloromethane	25	U	25
n-Butane	25	U	25
Vinyl chloride	9.9	U	9.9
1,3-Butadiene	9.9	U	9.9
Bromomethane	9.9	U	9.9
Chloroethane	25	U	25
Bromoethene(Vinyl Bromide)	9.9	U	9.9
Trichlorofluoromethane	9.9	U	9.9
Freon TF	35		9.9
1,1-Dichloroethene	9.9	U	9.9
Acetone	250	U	250
Isopropyl alcohol	250	U	250
Carbon disulfide	25	U	25
3-Chloropropene	25	U	25
Methylene Chloride	25	U	25
tert-Butyl alcohol	250	U	250
Methyl tert-butyl ether	9.9	U	9.9
trans-1,2-Dichloroethene	9.9	U	9.9
n-Hexane	9.9	U	9.9
1,1-Dichloroethane	9.9	U	9.9
Methyl Ethyl Ketone	25	U	25
cis-1,2-Dichloroethene	9.9	U	9.9
1,2-Dichloroethene, Total	9.9	U	9.9
Chloroform	9.9	U	9.9
Tetrahydrofuran	250	U	250
1,1,1-Trichloroethane	87		9.9
Cyclohexane	9.9	U	9.9
Carbon tetrachloride	9.9	U	9.9
2,2,4-Trimethylpentane	9.9	U	9.9
Benzene	9.9	U	9.9
1,2-Dichloroethane	9.9	U	9.9
n-Heptane	9.9	U	9.9
Trichloroethene	930		9.9
Methyl methacrylate	25	U	25
1,2-Dichloropropane	9.9	U	9.9
1,4-Dioxane	250	U	250
Bromodichloromethane	9.9	U	9.9
cis-1,3-Dichloropropene	9.9	U	9.9
methyl isobutyl ketone	25	U	25
Toluene	9.9	U	9.9
trans-1,3-Dichloropropene	9.9	U	9.9
1,1,2-Trichloroethane	9.9	U	9.9
Tetrachloroethene	9.9	U	9.9

Job Number: 200-4737-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-4737

39

590

610

77

Client Sample ID: SL 022

Lab Sample ID: 200-4737-2 Date Sampled: 04/14/2011 2105

Client Matrix: Date Received: 04/18/2011 1010 Air

TO-15 Volatile Organic	Compounds in	Ambiant Air

		10-15 Volatile Organic	Compounds	ili Allibiei	IL AII		
Analysis Method:	TO-15	Analysis Batch:	200-16914	ļ	Instrument ID:	B.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	bkad	c014.d
Dilution:	49.7				Initial Weight/Volume:	19	mL
Analysis Date:	04/23/2011 0033				Final Weight/Volume:	200	
Prep Date:	04/23/2011 0033				Injection Volume:	200	ml
op Dato.					joodon voidino.		
Analyte		Result (p	pb v/v)	Qualifie	r		RL
Methyl Butyl Ketone	(2-Hexanone)	25	. ,	U			25
Dibromochlorometha		9.9		Ū			9.9
1,2-Dibromoethane		9.9		Ü			9.9
Chlorobenzene		9.9		U			9.9
Ethylbenzene		9.9		Ū			9.9
m,p-Xylene		25		U			25
Xylene, o-		9.9		U			9.9
Xylene (total)		9.9		U			9.9
Styrene		9.9		Ü			9.9
Bromoform		9.9		U			9.9
Cumene		9.9		Ü			9.9
1,1,2,2-Tetrachloroet	thane	9.9		U			9.9
n-Propylbenzene		9.9		U			9.9
4-Ethyltoluene		9.9		Ū			9.9
1,3,5-Trimethylbenze	ene	9.9		U			9.9
2-Chlorotoluene		9.9		Ü			9.9
tert-Butylbenzene		9.9		U			9.9
1,2,4-Trimethylbenze	ene	9.9		Ü			9.9
sec-Butylbenzene		9.9		U			9.9
4-Isopropyltoluene		9.9		U			9.9
1,3-Dichlorobenzene	• •	9.9		U			9.9
1,4-Dichlorobenzene		9.9		Ū			9.9
Benzyl chloride		9.9		U			9.9
n-Butylbenzene		9.9		U			9.9
1,2-Dichlorobenzene	:	9.9		U			9.9
1,2,4-Trichlorobenze		25		U			25
Hexachlorobutadiene		9.9		U			9.9
Naphthalene		25		U			25
•							
Analyte		Result (u	g/m3)	Qualifie	r		RL
Dichlorodifluorometh	ane	120		U			120
Freon 22		88		U			88
1,2-Dichlorotetrafluor	roethane	69		U			69
Chloromethane		51		U			51
n-Butane		59		U			59
Vinyl chloride		25		U			25
1,3-Butadiene		22		U			22
Bromomethane		39		U			39
Chloroethane		66		U			66
Bromoethene(Vinyl E	Bromide)	43		U			43
Trichlorofluorometha	ne	56		U			56
Freon TF		270					76

1,1-Dichloroethene

Isopropyl alcohol

Carbon disulfide

Acetone

39

590

610

77

U

U

U

U

Job Number: 200-4737-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-4737

Client Sample ID: **SL 022**

Lab Sample ID: 200-4737-2 Date Sampled: 04/14/2011 2105

Client Matrix: Date Received: 04/18/2011 1010 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac014.d Dilution: Initial Weight/Volume: 49.7 19 mL

Analysis Date: 04/23/2011 0033 Final Weight/Volume: 200 mL 04/23/2011 0033 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	78	U	78
Methylene Chloride	86	U	86
tert-Butyl alcohol	750	U	750
Methyl tert-butyl ether	36	U	36
trans-1,2-Dichloroethene	39	U	39
n-Hexane	35	U	35
1,1-Dichloroethane	40	U	40
Methyl Ethyl Ketone	73	U	73
cis-1,2-Dichloroethene	39	U	39
1,2-Dichloroethene, Total	39	U	39
Chloroform	49	U	49
Tetrahydrofuran	730	U	730
1,1,1-Trichloroethane	470		54
Cyclohexane	34	U	34
Carbon tetrachloride	63	U	63
2,2,4-Trimethylpentane	46	U	46
Benzene	32	U	32
1,2-Dichloroethane	40	U	40
n-Heptane	41	U	41
Trichloroethene	5000		53
Methyl methacrylate	100	U	100
1,2-Dichloropropane	46	Ü	46
1,4-Dioxane	900	U	900
Bromodichloromethane	67	Ü	67
cis-1,3-Dichloropropene	45	U	45
methyl isobutyl ketone	100	U	100
Toluene	37	Ü	37
trans-1,3-Dichloropropene	45	U	45
1,1,2-Trichloroethane	54	Ü	54
Tetrachloroethene	67	U	67
Methyl Butyl Ketone (2-Hexanone)	100	Ü	100
Dibromochloromethane	85	U	85
1,2-Dibromoethane	76	Ü	76
Chlorobenzene	46	U	46
Ethylbenzene	43	Ü	43
m,p-Xylene	110	Ü	110
Xylene, o-	43	Ü	43
Xylene (total)	43	Ü	43
Styrene	42	Ü	42
Bromoform	100	Ü	100
Cumene	49	U	49
1,1,2,2-Tetrachloroethane	68	Ü	68
n-Propylbenzene	49	U	49
4-Ethyltoluene	49	U	49
1,3,5-Trimethylbenzene	49	U	49
2-Chlorotoluene	51	U	51
2-GIIIOIOIUIUETIE	31	U	3 1

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 022

Lab Sample ID: 200-4737-2 Date Sampled: 04/14/2011 2105

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac014.d Dilution: Initial Weight/Volume: 49.7 19 mL

 Dilution:
 49.7
 Initial Weight/Volume:
 19 mL

 Analysis Date:
 04/23/2011 0033
 Final Weight/Volume:
 200 mL

 Prep Date:
 04/23/2011 0033
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	55	U	55
1,2,4-Trimethylbenzene	49	U	49
sec-Butylbenzene	55	U	55
4-Isopropyltoluene	55	U	55
1,3-Dichlorobenzene	60	U	60
1,4-Dichlorobenzene	60	U	60
Benzyl chloride	51	U	51
n-Butylbenzene	55	U	55
1,2-Dichlorobenzene	60	U	60
1,2,4-Trichlorobenzene	180	U	180
Hexachlorobutadiene	110	U	110
Naphthalene	130	U	130

Job Number: 200-4737-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-4737

Client Sample ID: **SL 084**

Lab Sample ID: 200-4737-3 Date Sampled: 04/14/2011 2252

Client Matrix: Date Received: 04/18/2011 1010 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac015.d Dilution: Initial Weight/Volume: 1960 24 mL

Analysis Date: 04/23/2011 0126 Final Weight/Volume: 200 mL 04/23/2011 0126 Prep Date: Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	980	U	980
Freon 22	980	U	980
1,2-Dichlorotetrafluoroethane	390	U	390
Chloromethane	980	U	980
n-Butane	980	U	980
Vinyl chloride	390	U	390
1,3-Butadiene	390	U	390
Bromomethane	390	U	390
Chloroethane	980	U	980
Bromoethene(Vinyl Bromide)	390	U	390
Trichlorofluoromethane	390	U	390
Freon TF	390	U	390
1,1-Dichloroethene	390	U	390
Acetone	9800	U	9800
Isopropyl alcohol	9800	U	9800
Carbon disulfide	980	U	980
3-Chloropropene	980	U	980
Methylene Chloride	980	U	980
tert-Butyl alcohol	9800	U	9800
Methyl tert-butyl ether	390	Ü	390
trans-1,2-Dichloroethene	390	Ü	390
n-Hexane	390	Ü	390
1,1-Dichloroethane	390	Ü	390
Methyl Ethyl Ketone	980	Ü	980
cis-1,2-Dichloroethene	1100		390
1,2-Dichloroethene, Total	1400		390
Chloroform	390	U	390
Tetrahydrofuran	9800	Ü	9800
1,1,1-Trichloroethane	390	Ü	390
Cyclohexane	390	Ü	390
Carbon tetrachloride	390	Ü	390
2,2,4-Trimethylpentane	390	Ü	390
Benzene	390	Ü	390
1,2-Dichloroethane	390	U	390
n-Heptane	390	Ü	390
Trichloroethene	24000		390
Methyl methacrylate	980	U	980
1,2-Dichloropropane	390	Ü	390
1,4-Dioxane	9800	Ü	9800
Bromodichloromethane	390	U	390
cis-1,3-Dichloropropene	390	U	390
methyl isobutyl ketone	980	U	980
Toluene	390	U	390
trans-1,3-Dichloropropene	390	U	390
1,1,2-Trichloroethane	390	U	390
	390	U	390
Tetrachloroethene	390	U	აყ0

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 084

Lab Sample ID: 200-4737-3 Date Sampled: 04/14/2011 2252

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organia	· Compounde i	n Amhiant Air

Analysis Method:	TO-15	Analysis Batch:	200-16914	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkac015.d
Dilution:	1960			Initial Weight/Volume:	24 mL
Analysis Date:	04/23/2011 0126			Final Weight/Volume:	200 mL
Prep Date:	04/23/2011 0126			Injection Volume:	200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Methyl Butyl Ketone (2-Hexanone)	980	U	980
Dibromochloromethane	390	U	390
1,2-Dibromoethane	390	U	390
Chlorobenzene	390	U	390
Ethylbenzene	390	U	390
m,p-Xylene	980	U	980
Xylene, o-	390	U	390
Xylene (total)	390	U	390
Styrene	390	U	390
Bromoform	390	U	390
Cumene	390	U	390
1,1,2,2-Tetrachloroethane	390	U	390
n-Propylbenzene	390	U	390
4-Ethyltoluene	390	U	390
1,3,5-Trimethylbenzene	390	U	390
2-Chlorotoluene	390	U	390
tert-Butylbenzene	390	U	390
1,2,4-Trimethylbenzene	390	U	390
sec-Butylbenzene	390	U	390
4-Isopropyltoluene	390	U	390
1,3-Dichlorobenzene	390	U	390
1,4-Dichlorobenzene	390	U	390
Benzyl chloride	390	U	390
n-Butylbenzene	390	U	390
1,2-Dichlorobenzene	390	U	390
1,2,4-Trichlorobenzene	980	U	980
Hexachlorobutadiene	390	U	390
Naphthalene	980	U	980

Analyte	Result (ug/m3)	Qualifier	RL
Dichlorodifluoromethane	4800	U	4800
Freon 22	3500	U	3500
1,2-Dichlorotetrafluoroethane	2700	U	2700
Chloromethane	2000	U	2000
n-Butane	2300	U	2300
Vinyl chloride	1000	U	1000
1,3-Butadiene	870	U	870
Bromomethane	1500	U	1500
Chloroethane	2600	U	2600
Bromoethene(Vinyl Bromide)	1700	U	1700
Trichlorofluoromethane	2200	U	2200
Freon TF	3000	U	3000
1,1-Dichloroethene	1600	U	1600
Acetone	23000	U	23000
Isopropyl alcohol	24000	U	24000
Carbon disulfide	3100	U	3100

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: **SL 084**

Lab Sample ID: 200-4737-3 Date Sampled: 04/14/2011 2252

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac015.d Dilution: Initial Weight/Volume: 1960 24 mL

Analysis Date: 04/23/2011 0126 Final Weight/Volume: 200 mL 04/23/2011 0126 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	3100	U	3100
Methylene Chloride	3400	U	3400
tert-Butyl alcohol	30000	U	30000
Methyl tert-butyl ether	1400	U	1400
trans-1,2-Dichloroethene	1600	U	1600
n-Hexane	1400	U	1400
1,1-Dichloroethane	1600	U	1600
Methyl Ethyl Ketone	2900	U	2900
cis-1,2-Dichloroethene	4500		1600
1,2-Dichloroethene, Total	5600		1600
Chloroform	1900	U	1900
Tetrahydrofuran	29000	U	29000
1,1,1-Trichloroethane	2100	U	2100
Cyclohexane	1300	U	1300
Carbon tetrachloride	2500	U	2500
2,2,4-Trimethylpentane	1800	U	1800
Benzene	1300	U	1300
1,2-Dichloroethane	1600	U	1600
n-Heptane	1600	U	1600
Trichloroethene	130000		2100
Methyl methacrylate	4000	U	4000
1,2-Dichloropropane	1800	Ü	1800
1,4-Dioxane	35000	Ü	35000
Bromodichloromethane	2600	Ü	2600
cis-1,3-Dichloropropene	1800	Ü	1800
methyl isobutyl ketone	4000	Ü	4000
Toluene	1500	Ü	1500
trans-1,3-Dichloropropene	1800	Ü	1800
1,1,2-Trichloroethane	2100	Ü	2100
Tetrachloroethene	2700	Ü	2700
Methyl Butyl Ketone (2-Hexanone)	4000	Ü	4000
Dibromochloromethane	3300	Ü	3300
1,2-Dibromoethane	3000	Ü	3000
Chlorobenzene	1800	U	1800
Ethylbenzene	1700	U	1700
m,p-Xylene	4300	U	4300
Xylene, o-	1700	Ü	1700
Xylene (total)	1700	Ü	1700
Styrene	1700	U	1700
Bromoform	4100	U	4100
Cumene	1900	U	1900
1,1,2,2-Tetrachloroethane	2700	U	2700
n-Propylbenzene	1900	U	1900
4-Ethyltoluene	1900	U	1900
1,3,5-Trimethylbenzene	1900	U	1900
2-Chlorotoluene	2000	U	2000
z-Chiorotoldene	2000	U	∠000

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Client Sample ID: SL 084

Lab Sample ID: 200-4737-3 Date Sampled: 04/14/2011 2252

Client Matrix: Air Date Received: 04/18/2011 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-16914 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkac015.d Dilution: Initial Weight/Volume: 1960 24 mL

 Dilution:
 1960
 Initial Weight/Volume:
 24 mL

 Analysis Date:
 04/23/2011 0126
 Final Weight/Volume:
 200 mL

 Prep Date:
 04/23/2011 0126
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	2200	U	2200
1,2,4-Trimethylbenzene	1900	U	1900
sec-Butylbenzene	2200	U	2200
4-Isopropyltoluene	2200	U	2200
1,3-Dichlorobenzene	2400	U	2400
1,4-Dichlorobenzene	2400	U	2400
Benzyl chloride	2000	U	2000
n-Butylbenzene	2200	U	2200
1,2-Dichlorobenzene	2400	U	2400
1,2,4-Trichlorobenzene	7300	U	7300
Hexachlorobutadiene	4200	U	4200
Naphthalene	5100	U	5100

Quality Control Results

RL

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Method Blank - Batch: 200-16914 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-16914/4 Analysis Batch: 200-16914 Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkac004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 04/22/2011 1550 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 04/22/2011 1550 Prep Date: Injection Volume: 200 mL

Result

Qual

Leach Date: N/A

Analyte

Analyte	Result	Quai	KL
Dichlorodifluoromethane	0.50	U	0.50
Freon 22	0.50	U	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20
Chloromethane	0.50	U	0.50
n-Butane	0.50	U	0.50
Vinyl chloride	0.20	U	0.20
1,3-Butadiene	0.20	U	0.20
Bromomethane	0.20	U	0.20
Chloroethane	0.50	U	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20
Trichlorofluoromethane	0.20	U	0.20
Freon TF	0.20	U	0.20
1,1-Dichloroethene	0.20	U	0.20
Acetone	5.0	U	5.0
Isopropyl alcohol	5.0	U	5.0
Carbon disulfide	0.50	U	0.50
3-Chloropropene	0.50	U	0.50
Methylene Chloride	0.50	U	0.50
tert-Butyl alcohol	5.0	U	5.0
Methyl tert-butyl ether	0.20	U	0.20
trans-1,2-Dichloroethene	0.20	U	0.20
n-Hexane	0.20	U	0.20
1,1-Dichloroethane	0.20	U	0.20
Methyl Ethyl Ketone	0.50	U	0.50
cis-1,2-Dichloroethene	0.20	U	0.20
1,2-Dichloroethene, Total	0.20	U	0.20
Chloroform	0.20	U	0.20
Tetrahydrofuran	5.0	U	5.0
1,1,1-Trichloroethane	0.20	U	0.20
Cyclohexane	0.20	U	0.20
Carbon tetrachloride	0.20	U	0.20
2,2,4-Trimethylpentane	0.20	U	0.20
Benzene	0.20	U	0.20
1,2-Dichloroethane	0.20	U	0.20
n-Heptane	0.20	U	0.20
Trichloroethene	0.20	U	0.20
Methyl methacrylate	0.50	U	0.50
1,2-Dichloropropane	0.20	U	0.20
1,4-Dioxane	5.0	U	5.0
Bromodichloromethane	0.20	U	0.20
cis-1,3-Dichloropropene	0.20	U	0.20
methyl isobutyl ketone	0.50	U	0.50
Toluene	0.20	U	0.20
trans-1,3-Dichloropropene	0.20	U	0.20
1,1,2-Trichloroethane	0.20	U	0.20

Quality Control Results

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Method Blank - Batch: 200-16914 Method: TO-15

Preparation: Summa Canister

200-16914 Lab Sample ID: MB 200-16914/4 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkac004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 04/22/2011 1550 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 04/22/2011 1550 Prep Date: Injection Volume: 200 mL

Leach Date: N/A

Analyte	Result	Qual	RL
Tetrachloroethene	0.20	U	0.20
Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50
Dibromochloromethane	0.20	U	0.20
1,2-Dibromoethane	0.20	U	0.20
Chlorobenzene	0.20	U	0.20
Ethylbenzene	0.20	U	0.20
m,p-Xylene	0.50	U	0.50
Xylene, o-	0.20	U	0.20
Xylene (total)	0.20	U	0.20
Styrene	0.20	U	0.20
Bromoform	0.20	U	0.20
Cumene	0.20	U	0.20
1,1,2,2-Tetrachloroethane	0.20	U	0.20
n-Propylbenzene	0.20	U	0.20
4-Ethyltoluene	0.20	U	0.20
1,3,5-Trimethylbenzene	0.20	U	0.20
2-Chlorotoluene	0.20	U	0.20
tert-Butylbenzene	0.20	U	0.20
1,2,4-Trimethylbenzene	0.20	U	0.20
sec-Butylbenzene	0.20	U	0.20
4-Isopropyltoluene	0.20	U	0.20
1,3-Dichlorobenzene	0.20	U	0.20
1,4-Dichlorobenzene	0.20	U	0.20
Benzyl chloride	0.20	U	0.20
n-Butylbenzene	0.20	U	0.20
1,2-Dichlorobenzene	0.20	U	0.20
1,2,4-Trichlorobenzene	0.50	U	0.50
Hexachlorobutadiene	0.20	U	0.20
Naphthalene	0.50	U	0.50

Quality Control Results

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Method Blank - Batch: 200-16914 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-16914/4 Analysis Batch: 200-16914 Instrument ID: B.i bkac004.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 04/22/2011 1550 Units: Final Weight/Volume: Analysis Date: ug/m3 200 mL 04/22/2011 1550 Prep Date: Injection Volume: 200 mL

Leach Date: N/A

Analyte	Result	Qual	RL
Dichlorodifluoromethane	2.5	U	2.5
Freon 22	1.8	U	1.8
1,2-Dichlorotetrafluoroethane	1.4	U	1.4
Chloromethane	1.0	U	1.0
n-Butane	1.2	U	1.2
Vinyl chloride	0.51	U	0.51
1,3-Butadiene	0.44	U	0.44
Bromomethane	0.78	U	0.78
Chloroethane	1.3	U	1.3
Bromoethene(Vinyl Bromide)	0.87	U	0.87
Trichlorofluoromethane	1.1	U	1.1
Freon TF	1.5	U	1.5
1,1-Dichloroethene	0.79	U	0.79
Acetone	12	U	12
Isopropyl alcohol	12	U	12
Carbon disulfide	1.6	U	1.6
3-Chloropropene	1.6	U	1.6
Methylene Chloride	1.7	U	1.7
tert-Butyl alcohol	15	U	15
Methyl tert-butyl ether	0.72	U	0.72
trans-1,2-Dichloroethene	0.79	U	0.79
n-Hexane	0.70	U	0.70
1,1-Dichloroethane	0.81	U	0.81
Methyl Ethyl Ketone	1.5	U	1.5
cis-1,2-Dichloroethene	0.79	U	0.79
1,2-Dichloroethene, Total	0.79	U	0.79
Chloroform	0.98	U	0.98
Tetrahydrofuran	15	U	15
1,1,1-Trichloroethane	1.1	U	1.1
Cyclohexane	0.69	U	0.69
Carbon tetrachloride	1.3	U	1.3
2,2,4-Trimethylpentane	0.93	U	0.93
Benzene	0.64	U	0.64
1,2-Dichloroethane	0.81	U	0.81
n-Heptane	0.82	U	0.82
Trichloroethene	1.1	U	1.1
Methyl methacrylate	2.0	U	2.0
1,2-Dichloropropane	0.92	U	0.92
1,4-Dioxane	18	U	18
Bromodichloromethane	1.3	U	1.3
cis-1,3-Dichloropropene	0.91	U	0.91
methyl isobutyl ketone	2.0	U	2.0
Toluene	0.75	U	0.75
trans-1,3-Dichloropropene	0.91	U	0.91
1,1,2-Trichloroethane	1.1	U	1.1

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1 Sdg Number: 200-4737

Method Blank - Batch: 200-16914 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-16914/4 Client Matrix: Air Dilution: 1.0 04/22/2011 1550 Analysis Date: 04/22/2011 1550 Prep Date:

N/A

Leach Date:

200-16914 Analysis Batch: Prep Batch: N/A Leach Batch: N/A Units: ug/m3

Instrument ID: B.i Lab File ID: bkac004.d Initial Weight/Volume: 200 mL Final Weight/Volume: 200 mL Injection Volume: 200 mL

Analyte	Result	Qual	RL
Tetrachloroethene	1.4	U	1.4
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0
Dibromochloromethane	1.7	U	1.7
1,2-Dibromoethane	1.5	U	1.5
Chlorobenzene	0.92	U	0.92
Ethylbenzene	0.87	U	0.87
m,p-Xylene	2.2	U	2.2
Xylene, o-	0.87	U	0.87
Xylene (total)	0.87	U	0.87
Styrene	0.85	U	0.85
Bromoform	2.1	U	2.1
Cumene	0.98	U	0.98
1,1,2,2-Tetrachloroethane	1.4	U	1.4
n-Propylbenzene	0.98	U	0.98
4-Ethyltoluene	0.98	U	0.98
1,3,5-Trimethylbenzene	0.98	U	0.98
2-Chlorotoluene	1.0	U	1.0
tert-Butylbenzene	1.1	U	1.1
1,2,4-Trimethylbenzene	0.98	U	0.98
sec-Butylbenzene	1.1	U	1.1
4-Isopropyltoluene	1.1	U	1.1
1,3-Dichlorobenzene	1.2	U	1.2
1,4-Dichlorobenzene	1.2	U	1.2
Benzyl chloride	1.0	U	1.0
n-Butylbenzene	1.1	U	1.1
1,2-Dichlorobenzene	1.2	U	1.2
1,2,4-Trichlorobenzene	3.7	U	3.7
Hexachlorobutadiene	2.1	U	2.1
Naphthalene	2.6	U	2.6

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

Sdg Number: 200-4737

Lab Control Sample - Batch: 200-16914

Method: TO-15

Preparation: Summa Canister

Lab Sample ID: LCS 200-16914/3 Analysis Batch: 200-16914 Instrument ID: B.i bkac003.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 04/22/2011 1456 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 04/22/2011 1456 Prep Date: Injection Volume: 200 mL Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dichlorodifluoromethane	10.0	9.54	95	70 - 130	
Freon 22	10.0	8.84	88	70 - 130	
1,2-Dichlorotetrafluoroethane	10.0	9.48	95	70 - 130	
Chloromethane	10.0	8.59	86	70 - 130	
n-Butane	10.0	8.25	83	70 - 130	
Vinyl chloride	10.0	9.04	90	70 - 130	
1,3-Butadiene	10.0	9.13	91	70 - 130	
Bromomethane	10.0	9.25	93	70 - 130	
Chloroethane	10.0	8.91	89	70 - 130	
Bromoethene(Vinyl Bromide)	10.0	10.0	100	70 - 130	
Trichlorofluoromethane	10.0	9.96	100	70 - 130	
Freon TF	10.0	10.7	107	70 - 130	
1,1-Dichloroethene	10.0	10.9	109	70 - 130	
Acetone	10.0	9.17	92	70 - 130	
Isopropyl alcohol	10.0	8.55	85	70 - 130	
Carbon disulfide	10.0	9.87	99	70 - 130	
3-Chloropropene	10.0	8.86	89	70 - 130	
Methylene Chloride	10.0	9.57	96	70 - 130	
tert-Butyl alcohol	10.0	8.99	90	70 - 130	
Methyl tert-butyl ether	10.0	9.76	98	70 - 130	
trans-1,2-Dichloroethene	10.0	9.41	94	70 - 130	
n-Hexane	10.0	9.24	92	70 - 130	
1,1-Dichloroethane	10.0	9.46	95	70 - 130	
Methyl Ethyl Ketone	10.0	9.80	98	70 - 130	
cis-1,2-Dichloroethene	10.0	10.2	102	70 - 130	
Chloroform	10.0	9.75	98	70 - 130	
Tetrahydrofuran	10.0	8.98	90	70 - 130	
1,1,1-Trichloroethane	10.0	10.0	100	70 - 130	
Cyclohexane	10.0	9.82	98	70 - 130	
Carbon tetrachloride	10.0	9.91	99	70 - 130	
2,2,4-Trimethylpentane	10.0	9.44	94	70 - 130	
Benzene	10.0	9.70	97	70 - 130	
1,2-Dichloroethane	10.0	9.43	94	70 - 130	
n-Heptane	10.0	8.83	88	70 - 130	
Trichloroethene	10.0	9.80	98	70 - 130	
Methyl methacrylate	10.0	9.52	95	70 - 130	
1,2-Dichloropropane	10.0	9.30	93	70 - 130	
1,4-Dioxane	10.0	8.97	90	70 - 130	
Bromodichloromethane	10.0	10.1	101	70 - 130	
cis-1,3-Dichloropropene	10.0	9.62	96	70 - 130	
methyl isobutyl ketone	10.0	8.91	89	70 - 130	
Toluene	10.0	9.61	96	70 - 130	
trans-1,3-Dichloropropene	10.0	9.69	97	70 - 130	
1,1,2-Trichloroethane	10.0	9.22	92	70 - 130	
Tetrachloroethene	10.0	9.79	98	70 - 130	
Methyl Butyl Ketone (2-Hexanone)	10.0	8.77	88	70 - 130	

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1 Sdg Number: 200-4737

Lab Control Sample - Batch: 200-16914 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: LCS 200-16914/3 Analysis Batch: 200-16914 Instrument ID: Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 04/22/2011 1456 Units: Final Weight/Volume: Analysis Date: ppb v/v 04/22/2011 1456 Prep Date:

bkac003.d 200 mL 200 mL Injection Volume: 200 mL

B.i

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	10.0	10.5	105	70 - 130	
1,2-Dibromoethane	10.0	9.68	97	70 - 130	
Chlorobenzene	10.0	9.43	94	70 - 130	
Ethylbenzene	10.0	9.65	97	70 - 130	
m,p-Xylene	20.0	19.6	98	70 - 130	
Xylene, o-	10.0	9.61	96	70 - 130	
Styrene	10.0	9.96	100	70 - 130	
Bromoform	10.0	11.0	110	70 - 130	
Cumene	10.0	9.97	100	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	9.34	93	70 - 130	
n-Propylbenzene	10.0	10.1	101	70 - 130	
4-Ethyltoluene	10.0	10.2	102	70 - 130	
1,3,5-Trimethylbenzene	10.0	9.76	98	70 - 130	
2-Chlorotoluene	10.0	10.0	100	70 - 130	
tert-Butylbenzene	10.0	10.1	101	70 - 130	
1,2,4-Trimethylbenzene	10.0	9.63	96	70 - 130	
sec-Butylbenzene	10.0	9.96	100	70 - 130	
4-Isopropyltoluene	10.0	10.3	103	70 - 130	
1,3-Dichlorobenzene	10.0	9.85	99	70 - 130	
1,4-Dichlorobenzene	10.0	9.94	99	70 - 130	
Benzyl chloride	10.0	10.1	101	70 - 130	
n-Butylbenzene	10.0	10.3	103	70 - 130	
1,2-Dichlorobenzene	10.0	9.50	95	70 - 130	
1,2,4-Trichlorobenzene	10.0	9.87	99	70 - 130	
Hexachlorobutadiene	10.0	9.85	98	70 - 130	
Naphthalene	10.0	10.1	101	70 - 130	

Leach Date:

N/A

DATA REPORTING QUALIFIERS

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

Lab Section	Qualifier	Description
Air - GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.

Client: Geosyntec Consultants, Inc. Job Number: 200-4737-1

Sdg Number: 200-4737

QC Association Summary

SL 084

Report Basis Client Sample ID **Client Matrix** Method Lab Sample ID Prep Batch Air - GC/MS VOA Analysis Batch:200-16914 LCS 200-16914/3 TO-15 Lab Control Sample Т Air MB 200-16914/4 Т Method Blank TO-15 Air Т 200-4737-1 SL 118 TO-15 Air Т 200-4737-2 SL 022 Air TO-15

Т

Air

TO-15

Report Basis

200-4737-3

T = Total

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

SDG: 200-4737

Laboratory Chronicle

Lab ID: 200-4737-1 Client ID: SL 118

Sample Date/Time: 04/14/2011 19:45 Received Date/Time: 04/18/2011 10:10

Date Prepared / **Analysis** Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst P:Summa 200-4737-A-1 200-16914 04/22/2011 23:41 18.2 TAL BUR PAD Canister A:TO-15 04/22/2011 23:41 18.2 PAD 200-4737-A-1 200-16914 TAL BUR

Lab ID: 200-4737-2 Client ID: SL 022

Sample Date/Time: 04/14/2011 21:05 Received Date/Time: 04/18/2011 10:10

Date Prepared / **Analysis** Method **Bottle ID** Run Batch Prep Batch Analyzed Dil Analyst Lab 04/23/2011 00:33 P:Summa 200-4737-A-2 200-16914 49.7 TAL BUR PAD Canister A:TO-15 04/23/2011 00:33 200-4737-A-2 200-16914 49.7 TAL BUR PAD

Lab ID: 200-4737-3 Client ID: SL 084

Sample Date/Time: 04/14/2011 22:52 Received Date/Time: 04/18/2011 10:10

Date Prepared / **Analysis** Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 04/23/2011 01:26 P:Summa 200-4737-A-3 PAD 200-16914 1960 TAL BUR Canister A:TO-15 200-4737-A-3 04/23/2011 01:26 1960 PAD 200-16914 TAL BUR

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 04/22/2011 15:50 P:Summa MB 200-16914/4 200-16914 TAL BUR PAD Canister 04/22/2011 15:50 A:TO-15 MB 200-16914/4 200-16914 1 TAL BUR PAD

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

Date Prepared / **Analysis Batch** Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst P:Summa LCS 200-16914/3 200-16914 04/22/2011 14:56 TAL BUR PAD Canister 04/22/2011 14:56 A:TO-15 LCS 200-16914/3 200-16914 1 TAL BUR PAD

Lab References:

TAL BUR = TestAmerica Burlington

Certification Summary

Client: Geosyntec Consultants, Inc.

TestAmerica Job ID: 200-4737-1 Project/Site: AFP59 SDG: 200-4737

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Burlington		USDA		P330-11-00093
TestAmerica Burlington	ACLASS	DoD ELAP	0	ADE-1492
TestAmerica Burlington	Connecticut	State Program	1	PH-0751
TestAmerica Burlington	Delaware	Delaware DNREC	3	NA
TestAmerica Burlington	Maine	State Program	1	VT00008
TestAmerica Burlington	Minnesota	State Program	5	050-999-436
TestAmerica Burlington	New Hampshire	NELAC	1	200610
TestAmerica Burlington	New Jersey	NELAC	2	VT972
TestAmerica Burlington	New York	NELAC	2	10391
TestAmerica Burlington	Pennsylvania	NELAC	3	68-00489
TestAmerica Burlington	Rhode Island	State Program	1	LAO00298
TestAmerica Burlington	Vermont	State Program	1	VT-4000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method T015

Volatile Organic Compounds (GC/MS) by Method TO15

FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Burlington	Job No.:	200-4737-1
----------------------------------	----------	------------

SDG No.: 200-4737

Matrix: Air Level: Low Lab File ID: bkac003.d

Lab ID: LCS 200-16914/3 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Dichlorodifluoromethane	10.0	9.54	95	70-130	
Freon 22	10.0	8.84	88	70-130	
1,2-Dichlorotetrafluoroethane	10.0	9.48	95	70-130	
Chloromethane	10.0	8.59	86	70-130	
n-Butane	10.0	8.25	83	70-130	
Vinyl chloride	10.0	9.04	90	70-130	
1,3-Butadiene	10.0	9.13	91	70-130	
Bromomethane	10.0	9.25	93	70-130	
Chloroethane	10.0	8.91	89	70-130	
Bromoethene(Vinyl Bromide)	10.0	10.0	100	70-130	
Trichlorofluoromethane	10.0	9.96	100	70-130	
Freon TF	10.0	10.7	107	70-130	
1,1-Dichloroethene	10.0	10.9	109	70-130	
Acetone	10.0	9.17	92	70-130	
Isopropyl alcohol	10.0	8.55	85	70-130	
Carbon disulfide	10.0	9.87	99	70-130	
3-Chloropropene	10.0	8.86	89	70-130	
Methylene Chloride	10.0	9.57	96	70-130	
tert-Butyl alcohol	10.0	8.99	90	70-130	
Methyl tert-butyl ether	10.0	9.76	98	70-130	
trans-1,2-Dichloroethene	10.0	9.41	94	70-130	
n-Hexane	10.0	9.24	92	70-130	
1,1-Dichloroethane	10.0	9.46	95	70-130	
Methyl Ethyl Ketone	10.0	9.80	98	70-130	
cis-1,2-Dichloroethene	10.0	10.2	102	70-130	
Chloroform	10.0	9.75	98	70-130	
Tetrahydrofuran	10.0	8.98	90	70-130	
1,1,1-Trichloroethane	10.0	10.0	100	70-130	
Cyclohexane	10.0	9.82	98	70-130	
Carbon tetrachloride	10.0	9.91	99	70-130	
2,2,4-Trimethylpentane	10.0	9.44	94	70-130	
Benzene	10.0	9.70	97	70-130	
1,2-Dichloroethane	10.0	9.43	94	70-130	
n-Heptane	10.0	8.83	88	70-130	
Trichloroethene	10.0	9.80	98		
Methyl methacrylate	10.0	9.52	95		
1,2-Dichloropropane	10.0	9.30	93	70-130	
1,4-Dioxane	10.0	8.97	90	70-130	
Bromodichloromethane	10.0	10.1	101		
cis-1,3-Dichloropropene	10.0	9.62	96		
methyl isobutyl ketone	10.0	8.91	89		
Toluene	10.0	9.61	96		

[#] Column to be used to flag recovery and RPD values

FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Burlington	Job No.:	200-4737-1
----------------------------------	----------	------------

SDG No.: 200-4737

Matrix: Air Level: Low Lab File ID: bkac003.d

Lab ID: LCS 200-16914/3 Client ID:

C2-Hexanone Dibromochloromethane 10.0 10.5 105 70-130 1,2-Dibromochloromethane 10.0 9.68 97 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.65 97 70-130 1,2-Dibromochlane 10.0 9.65 97 70-130 1,2-Dibromochlane 10.0 9.65 97 70-130 1,2-Dibromochlane 10.0 9.61 96 70-130 1,2-Dibromochlane 10.0 9.61 96 70-130 1,2-Dibromochlane 10.0 9.96 100 70-130 1,2-Dibromochlane 10.0 9.97 100 70-130 1,2-Dibromochlane 10.0 9.34 93 70-130 1,2-Dibromochlane 10.0 10.1 101 70-130 1,2-Dibromochlane 10.0		SPIKE	LCS	LCS	QC	
trans-1,3-Dichloropropene 10.0 9.69 97 70-130 1,1,2-Trichloroethane 10.0 9.22 92 70-130 Tetrachloroethene 10.0 9.79 98 70-130 Methyl Butyl Ketone 10.0 8.77 88 70-130 (2-Hexanone) 10.0 10.5 105 70-130 Dibromochloromethane 10.0 9.68 97 70-130 1,2-Dibromoethane 10.0 9.68 97 70-130 Chlorobenzene 10.0 9.68 97 70-130 Ethylbenzene 10.0 9.65 97 70-130 Stylene 20.0 19.6 98 70-130 Styrene 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 1,3,5-Trimethylbenzene 10.0		ADDED	CONCENTRATION	%	LIMITS	#
1,1,2-Trichloroethane 10.0 9.22 92 70-130 Tetrachloroethene 10.0 9.79 98 70-130 Methyl Butyl Ketone 10.0 8.77 88 70-130 (2-Hexanone) 10.0 10.5 105 70-130 Dibromochloromethane 10.0 9.68 97 70-130 1,2-Dibromoethane 10.0 9.68 97 70-130 Chlorobenzene 10.0 9.65 97 70-130 Ethylbenzene 10.0 9.65 97 70-130 m,p-Xylene 20.0 19.6 98 70-130 Xylene, o- 10.0 9.61 96 70-130 Styrene 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 1,2,2-Tetrachloroethane 10.0 10.1 10.1 70-130 4-Ethyltoluene 10.0 10.1	COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Tetrachloroethene 10.0 9.79 98 70-130	trans-1,3-Dichloropropene	10.0	9.69	97	70-130	
Methyl Butyl Ketone (2-Hexanone) 10.0 8.77 88 70-130 Dibromochloromethane 10.0 10.5 105 70-130 1,2-Dibromoethane 10.0 9.68 97 70-130 Chlorobenzene 10.0 9.43 94 70-130 Ethylbenzene 10.0 9.65 97 70-130 Ethylbenzene 20.0 19.6 98 70-130 Xylene, o- 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Bromoform 10.0 9.97 100 70-130 Cumene 10.0 9.97 100 70-130 n-Propylbenzene 10.0 9.97 100 70-130 n-Propylbenzene 10.0 10.1 101 70-130 n-Propylbenzene 10.0 9.94 93 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 1,2,4-Trimethylbenzene 10.0	1,1,2-Trichloroethane	10.0	9.22	92	70-130	
C2-Hexanone Dibromochloromethane 10.0 10.5 105 70-130 1,2-Dibromochloromethane 10.0 9.68 97 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.43 94 70-130 1,2-Dibromochlane 10.0 9.65 97 70-130 1,	Tetrachloroethene	10.0	9.79	98	70-130	
1,2-Dibromoethane	Methyl Butyl Ketone (2-Hexanone)	10.0	8.77	88	70-130	
Chlorobenzene 10.0 9.43 94 70-130 Ethylbenzene 10.0 9.65 97 70-130 m,p-Xylene 20.0 19.6 98 70-130 Xylene, o- 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Bromoform 10.0 11.0 110 70-130 Cumene 10.0 9.34 93 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.2 102 70-130 2-Chlorotoluene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 1,2,4-Trimethylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 9.96	Dibromochloromethane	10.0	10.5	105	70-130	
Ethylbenzene 10.0 9.65 97 70-130 m,p-Xylene 20.0 19.6 98 70-130 Xylene, o- 10.0 9.61 96 70-130 Xylene, o- 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Styrene 10.0 9.96 100 70-130 Styrene 10.0 9.97 100 70-130 Styrene 10.0 9.76 98 70-130 Styrene 10.0 9.63 96 70-130 Styrene 10.0 9.63 96 70-130 Styrene 10.0 9.63 96 70-130 Styrene 10.0 9.96 100 70-130 Styrene 10.0 9.97 99 70-13	1,2-Dibromoethane	10.0	9.68	97	70-130	
m,p-Xylene 20.0 19.6 98 70-130 Xylene, o- 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Bromoform 10.0 11.0 110 70-130 Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.1 101 70-130 tetr-Butylbenzene 10.0 9.63 96 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 4-Isopropyltoluene 10.0 9.96 100 70-130 4,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94	Chlorobenzene	10.0	9.43	94	70-130	
Xylene, o- Styrene 10.0 9.61 96 70-130 Styrene 10.0 9.96 100 70-130 Styrene 10.0 11.0 11.0 110 70-130 Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 1,2,2-Tetrylbenzene 10.0 10.1 10.1 10.1 70-130 4-Ethyltoluene 10.0 10.1 10.2 10.2 10.2 10.2 10.2 10.3 5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Ethylbenzene	10.0	9.65	97	70-130	
Styrene 10.0 9.96 100 70-130 Bromoform 10.0 11.0 110 70-130 Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.2 102 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 10.0 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 ec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 9.96 100 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0	m,p-Xylene	20.0	19.6	98	70-130	
Bromoform 10.0 11.0 11.0 70-130	Xylene, o-	10.0	9.61	96	70-130	
Cumene 10.0 9.97 100 70-130 1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.2 102 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 100 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 10.3 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene </td <td>Styrene</td> <td>10.0</td> <td>9.96</td> <td>100</td> <td>70-130</td> <td></td>	Styrene	10.0	9.96	100	70-130	
1,1,2,2-Tetrachloroethane 10.0 9.34 93 70-130 n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.2 102 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 10.0 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 10.3 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlo	Bromoform	10.0	11.0	110	70-130	
n-Propylbenzene 10.0 10.1 101 70-130 4-Ethyltoluene 10.0 10.2 102 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 100 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 tert-Butylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 n-Butylbenzene 10.0 10.3 10.3 70-130 n-Butylbenzene 10.0 10.3 10.3 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	Cumene	10.0	9.97	100	70-130	
4-Ethyltoluene 10.0 10.2 102 70-130 1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 10.0 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 9.85 99 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	1,1,2,2-Tetrachloroethane	10.0	9.34	93	70-130	
1,3,5-Trimethylbenzene 10.0 9.76 98 70-130 2-Chlorotoluene 10.0 10.0 100 70-130 tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	n-Propylbenzene	10.0	10.1	101	70-130	
2-Chlorotoluene 10.0 10.0 70-130 tert-Butylbenzene 10.0 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 10.3 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 9.94 99 70-130 n-Butylbenzene 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 10.3 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	4-Ethyltoluene	10.0	10.2	102	70-130	
tert-Butylbenzene 10.0 10.1 101 70-130 1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	1,3,5-Trimethylbenzene	10.0	9.76	98	70-130	
1,2,4-Trimethylbenzene 10.0 9.63 96 70-130 sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	2-Chlorotoluene	10.0	10.0	100	70-130	
sec-Butylbenzene 10.0 9.96 100 70-130 4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	tert-Butylbenzene	10.0	10.1	101	70-130	
4-Isopropyltoluene 10.0 10.3 103 70-130 1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	1,2,4-Trimethylbenzene	10.0	9.63	96	70-130	
1,3-Dichlorobenzene 10.0 9.85 99 70-130 1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	sec-Butylbenzene	10.0	9.96	100	70-130	
1,4-Dichlorobenzene 10.0 9.94 99 70-130 Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	4-Isopropyltoluene	10.0	10.3	103	70-130	
Benzyl chloride 10.0 10.1 101 70-130 n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	1,3-Dichlorobenzene	10.0	9.85	99	70-130	
n-Butylbenzene 10.0 10.3 103 70-130 1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	1,4-Dichlorobenzene	10.0	9.94	99	I	
1,2-Dichlorobenzene 10.0 9.50 95 70-130 1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	Benzyl chloride	10.0	10.1	1 1	70-130	
1,2,4-Trichlorobenzene 10.0 9.87 99 70-130 Hexachlorobutadiene 10.0 9.85 98 70-130	n-Butylbenzene	10.0	10.3	103		
Hexachlorobutadiene 10.0 9.85 98 70-130	1,2-Dichlorobenzene	10.0	9.50	95	70-130	
	1,2,4-Trichlorobenzene	10.0	9.87	1 1		
Naphthalene 10.0 10.1 101 70-130	Hexachlorobutadiene	10.0	9.85	98	70-130	
	Naphthalene	10.0	10.1	101	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab File ID: bkac004.d Lab Sample ID: MB 200-16914/4

Matrix: Air Heated Purge: (Y/N) N

Instrument ID: B.i Date Analyzed: 04/22/2011 15:50

GC Column: RTX-624 ID: 0.32 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-16914/3	bkac003.d	04/22/2011 14:56
SL 118	200-4737-1	bkac013.d	04/22/2011 23:41
SL 022	200-4737-2	bkac014.d	04/23/2011 00:33
SL 084	200-4737-3	bkac015.d	04/23/2011 01:26

$\begin{tabular}{lll} FORM & V \\ AIR - GC/MS & VOA & INSTRUMENT & PERFORMANCE & CHECK \\ \end{tabular}$

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab File ID: bka001.d BFB Injection Date: 04/19/2011

Instrument ID: B.i BFB Injection Time: 10:50

Analysis Batch No.: 16751

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	13.0	
75	30.0 - 66.0% of mass 95	41.8	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.9	
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	50.0 - 120.0% of mass 95	95.5	
175	4.0 - 9.0 % of mass 174	6.8	(7.2)1
176	93.0 - 101.0% of mass 174	92.2	(96.6)1
177	5.0 - 9.0% of mass 176	6.1	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-16751/4	bka004.d	04/19/2011	13:57
	IC 200-16751/5	bka005.d	04/19/2011	14:50
	ICIS 200-16751/6	bka006.d	04/19/2011	15:42
	IC 200-16751/7	bka007.d	04/19/2011	16:34
	IC 200-16751/8	bka008.d	04/19/2011	17:27
	IC 200-16751/9	bka009.d	04/19/2011	18:19
	IC 200-16751/14	bka014.d	04/20/2011	08:43
	ICV 200-16751/16	bka016.d	04/20/2011	10:27

$\begin{tabular}{lll} FORM & V \\ AIR - GC/MS & VOA & INSTRUMENT & PERFORMANCE & CHECK \\ \end{tabular}$

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab File ID: bkac001.d BFB Injection Date: 04/22/2011

Instrument ID: B.i BFB Injection Time: 13:11

Analysis Batch No.: 16914

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	11.6	
75	30.0 - 66.0% of mass 95	40.1	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.2	(0.2)1
174	50.0 - 120.0% of mass 95	98.5	
175	4.0 - 9.0 % of mass 174	7.0	(7.1)1
176	93.0 - 101.0% of mass 174	95.4	(96.8)1
177	5.0 - 9.0% of mass 176	6.4	(6.7)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 200-16914/2	bkac002.d	04/22/2011	14:02
	LCS 200-16914/3	bkac003.d	04/22/2011	14:56
	MB 200-16914/4	bkac004.d	04/22/2011	15:50
SL 118	200-4737-1	bkac013.d	04/22/2011	23:41
SL 022	200-4737-2	bkac014.d	04/23/2011	00:33
SL 084	200-4737-3	bkac015.d	04/23/2011	01:26

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Sample No.: ICIS 200-16751/6 Date Analyzed: 04/19/2011 15:42

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm)

Lab File ID (Standard): bka006.d Heated Purge: (Y/N) N

Calibration ID: 6017

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MI	664703	9.20	3233933	10.61	2984175	14.74	
UPPER LIMIT	UPPER LIMIT		9.53	4527506	10.94	4177845	15.07
LOWER LIMIT		398822	8.87	1940360	10.28	1790505	14.41
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-16751/16		778014	9.20	3732948	10.61	3415798	14.74

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII TO-15

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Sample No.: CCVIS 200-16914/2 Date Analyzed: 04/22/2011 14:02

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm)

Lab File ID (Standard): bkac002.d Heated Purge: (Y/N) N

Calibration ID: 6017

				DFB		CBZ	CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #	
12/24 HOUR STD		833406	9.20	4039618	10.61	3757154	14.74	
UPPER LIMIT		1166768	9.53	5655465	10.94	5260016	15.07	
LOWER LIMIT		500044	8.87	2423771	10.28	2254292	14.41	
LAB SAMPLE ID	CLIENT SAMPLE ID							
LCS 200-16914/3		889175	9.20	4282632	10.61	3955202	14.74	
MB 200-16914/4		895659	9.20	4402278	10.61	3938658	14.74	
200-4737-1	SL 118	905356	9.19	4311872	10.61	3793534	14.73	
200-4737-2	SL 022	921797	9.20	4517552	10.61	3985037	14.74	
200-4737-3	SL 084	884911	9.19	4357559	10.61	3856727	14.73	

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII TO-15

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 118 Lab Sample ID: 200-4737-1

Matrix: Air Lab File ID: bkac013.d

Analysis Method: TO-15 Date Collected: 04/14/2011 19:45

Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41

Soil Aliquot Vol: Dilution Factor: 18.2

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	9.1	U	9.1	0.69
75-45-6	Freon 22	86.47	9.1	U	9.1	0.62
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	3.6	U	3.6	0.58
74-87-3	Chloromethane	50.49	9.1	U	9.1	0.24
106-97-8	n-Butane	58.12	92		9.1	0.20
75-01-4	Vinyl chloride	62.50	3.6	U	3.6	0.53
106-99-0	1,3-Butadiene	54.09	3.6	U	3.6	0.18
74-83-9	Bromomethane	94.94	3.6	U	3.6	0.22
75-00-3	Chloroethane	64.52	9.1	U	9.1	0.29
593-60-2	Bromoethene (Vinyl Bromide)	106.96	3.6	U	3.6	0.35
75-69-4	Trichlorofluoromethane	137.37	3.6	U	3.6	0.62
76-13-1	Freon TF	187.38	5.0		3.6	0.18
75-35-4	1,1-Dichloroethene	96.94	3.6	U	3.6	0.55
67-64-1	Acetone	58.08	91	U	91	0.82
67-63-0	Isopropyl alcohol	60.10	91	U	91	0.67
75-15-0	Carbon disulfide	76.14	9.1	U	9.1	1.2
107-05-1	3-Chloropropene	76.53	9.1	U	9.1	0.35
75-09-2	Methylene Chloride	84.93	9.1	U	9.1	0.24
75-65-0	tert-Butyl alcohol	74.12	91	U	91	1.3
1634-04-4	Methyl tert-butyl ether	88.15	3.6	U	3.6	0.29
156-60-5	trans-1,2-Dichloroethene	96.94	3.6	U	3.6	0.58
110-54-3	n-Hexane	86.17	3.6	U	3.6	0.47
75-34-3	1,1-Dichloroethane	98.96	3.6	U	3.6	0.64
78-93-3	Methyl Ethyl Ketone	72.11	9.1	U	9.1	0.31
156-59-2	cis-1,2-Dichloroethene	96.94	3.6	U	3.6	0.25
540-59-0	1,2-Dichloroethene, Total	96.94	3.6	U	3.6	0.25
67-66-3	Chloroform	119.38	3.6	U	3.6	0.56
109-99-9	Tetrahydrofuran	72.11	91	U	91	0.33
71-55-6	1,1,1-Trichloroethane	133.41	300		3.6	0.64
110-82-7	Cyclohexane	84.16	3.6	U	3.6	0.71
56-23-5	Carbon tetrachloride	153.81	3.6	U	3.6	0.60
540-84-1	2,2,4-Trimethylpentane	114.23	3.6	U	3.6	0.66
71-43-2	Benzene	78.11	3.6	U	3.6	0.33
107-06-2	1,2-Dichloroethane	98.96	3.6	U	3.6	0.56
142-82-5	n-Heptane	100.21	3.6	U	3.6	0.18

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 118 Lab Sample ID: 200-4737-1

Matrix: Air Lab File ID: bkac013.d

Analysis Method: TO-15 Date Collected: 04/14/2011 19:45

Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41

Soil Aliquot Vol: Dilution Factor: 18.2

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	250		3.6	0.55
80-62-6	Methyl methacrylate	100.12	9.1	U	9.1	0.24
78-87-5	1,2-Dichloropropane	112.99	3.6	U	3.6	0.25
123-91-1	1,4-Dioxane	88.11	91	U	91	1.6
75-27-4	Bromodichloromethane	163.83	3.6	U	3.6	0.51
10061-01-5	cis-1,3-Dichloropropene	110.97	3.6	U	3.6	0.29
108-10-1	methyl isobutyl ketone	100.16	9.1	U	9.1	0.47
108-88-3	Toluene	92.14	3.6	U	3.6	0.33
10061-02-6	trans-1,3-Dichloropropene	110.97	3.6	U	3.6	0.36
79-00-5	1,1,2-Trichloroethane	133.41	3.6	U	3.6	0.35
127-18-4	Tetrachloroethene	165.83	3.6	U	3.6	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	9.1	U	9.1	0.71
124-48-1	Dibromochloromethane	208.29	3.6	U	3.6	0.38
106-93-4	1,2-Dibromoethane	187.87	3.6	U	3.6	0.33
108-90-7	Chlorobenzene	112.30	3.6	U	3.6	0.36
100-41-4	Ethylbenzene	106.17	3.6	U	3.6	0.40
179601-23-1	m,p-Xylene	106.17	9.1	U	9.1	0.87
95-47-6	Xylene, o-	106.17	3.6	U	3.6	0.40
1330-20-7	Xylene (total)	106.17	3.6	U	3.6	0.40
100-42-5	Styrene	104.15	3.6	U	3.6	0.55
75-25-2	Bromoform	252.75	3.6	U	3.6	0.35
98-82-8	Cumene	120.19	3.6	U	3.6	0.56
79-34-5	1,1,2,2-Tetrachloroethane	167.85	3.6	U	3.6	0.73
103-65-1	n-Propylbenzene	120.19	3.6	U	3.6	0.91
622-96-8	4-Ethyltoluene	120.20	3.6	U	3.6	0.84
108-67-8	1,3,5-Trimethylbenzene	120.20	3.6	U	3.6	0.93
95-49-8	2-Chlorotoluene	126.59	3.6	U	3.6	0.86
98-06-6	tert-Butylbenzene	134.22	3.6	U	3.6	0.86
95-63-6	1,2,4-Trimethylbenzene	120.20	3.6	U	3.6	0.95
135-98-8	sec-Butylbenzene	134.22	3.6	U	3.6	0.86
99-87-6	4-Isopropyltoluene	134.22	3.6	U	3.6	0.87
541-73-1	1,3-Dichlorobenzene	147.00	3.6	U	3.6	0.80
106-46-7	1,4-Dichlorobenzene	147.00	3.6	U	3.6	0.80
100-44-7	Benzyl chloride	126.58	3.6	U	3.6	0.84
104-51-8	n-Butylbenzene	134.22	3.6	U	3.6	1.0

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 118 Lab Sample ID: 200-4737-1 Matrix: Air Lab File ID: bkac013.d Analysis Method: TO-15 Date Collected: 04/14/2011 19:45 Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41 Soil Aliquot Vol: Dilution Factor: 18.2 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16914 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	3.6	U	3.6	0.87
120-82-1	1,2,4-Trichlorobenzene	181.45	9.1	U	9.1	0.91
87-68-3	Hexachlorobutadiene	260.76	3.6	U	3.6	1.2
91-20-3	Naphthalene	128.17	9.1	U	9.1	1.6

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 118 Lab Sample ID: 200-4737-1

Matrix: Air Lab File ID: bkac013.d

Analysis Method: TO-15 Date Collected: 04/14/2011 19:45

Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41

Soil Aliquot Vol: Dilution Factor: 18.2

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	45	U	45	3.4
75-45-6	Freon 22	86.47	32	U	32	2.2
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	25	U	25	4.1
74-87-3	Chloromethane	50.49	19	U	19	0.49
106-97-8	n-Butane	58.12	220		22	0.48
75-01-4	Vinyl chloride	62.50	9.3	U	9.3	1.3
106-99-0	1,3-Butadiene	54.09	8.1	U	8.1	0.40
74-83-9	Bromomethane	94.94	14	U	14	0.85
75-00-3	Chloroethane	64.52	24	U	24	0.77
593-60-2	Bromoethene (Vinyl Bromide)	106.96	16	U	16	1.5
75-69-4	Trichlorofluoromethane	137.37	20	U	20	3.5
76-13-1	Freon TF	187.38	38		28	1.4
75-35-4	1,1-Dichloroethene	96.94	14	U	14	2.2
67-64-1	Acetone	58.08	220	U	220	1.9
67-63-0	Isopropyl alcohol	60.10	220	U	220	1.7
75-15-0	Carbon disulfide	76.14	28	U	28	3.7
107-05-1	3-Chloropropene	76.53	28	U	28	1.1
75-09-2	Methylene Chloride	84.93	32	U	32	0.82
75-65-0	tert-Butyl alcohol	74.12	280	U	280	3.9
1634-04-4	Methyl tert-butyl ether	88.15	13	U	13	1.0
156-60-5	trans-1,2-Dichloroethene	96.94	14	U	14	2.3
110-54-3	n-Hexane	86.17	13	U	13	1.7
75-34-3	1,1-Dichloroethane	98.96	15	U	15	2.6
78-93-3	Methyl Ethyl Ketone	72.11	27	U	27	0.91
156-59-2	cis-1,2-Dichloroethene	96.94	14	U	14	1.0
540-59-0	1,2-Dichloroethene, Total	96.94	14	U	14	1.0
67-66-3	Chloroform	119.38	18	U	18	2.8
109-99-9	Tetrahydrofuran	72.11	270	U	270	0.97
71-55-6	1,1,1-Trichloroethane	133.41	1700		20	3.5
110-82-7	Cyclohexane	84.16	13	U	13	2.4
56-23-5	Carbon tetrachloride	153.81	23	U	23	3.8
540-84-1	2,2,4-Trimethylpentane	114.23	17	U	17	3.1
71-43-2	Benzene	78.11	12	U	12	1.0
107-06-2	1,2-Dichloroethane	98.96	15	U	15	2.3
142-82-5	n-Heptane	100.21	15	U	15	0.75

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 118 Lab Sample ID: 200-4737-1

Matrix: Air Lab File ID: bkac013.d

Analysis Method: TO-15 Date Collected: 04/14/2011 19:45

Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41

Soil Aliquot Vol: Dilution Factor: 18.2

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

	I	1,07,07,17				
CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	1300		20	2.9
80-62-6	Methyl methacrylate	100.12	37	U	37	0.97
78-87-5	1,2-Dichloropropane	112.99	17	U	17	1.2
123-91-1	1,4-Dioxane	88.11	330	U	330	5.8
75-27-4	Bromodichloromethane	163.83	24	U	24	3.4
10061-01-5	cis-1,3-Dichloropropene	110.97	17	U	17	1.3
108-10-1	methyl isobutyl ketone	100.16	37	U	37	1.
108-88-3	Toluene	92.14	14	U	14	1.2
10061-02-6	trans-1,3-Dichloropropene	110.97	17	U	17	1.
79-00-5	1,1,2-Trichloroethane	133.41	20	U	20	1.9
127-18-4	Tetrachloroethene	165.83	25	U	25	1.
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	37	U	37	2.
124-48-1	Dibromochloromethane	208.29	31	U	31	3.
106-93-4	1,2-Dibromoethane	187.87	28	U	28	2.
108-90-7	Chlorobenzene	112.30	17	U	17	1.
100-41-4	Ethylbenzene	106.17	16	U	16	1.
179601-23-1	m,p-Xylene	106.17	40	U	40	3.
95-47-6	Xylene, o-	106.17	16	U	16	1.
1330-20-7	Xylene (total)	106.17	16	U	16	1.
100-42-5	Styrene	104.15	16	U	16	2.
75-25-2	Bromoform	252.75	38	U	38	3.
98-82-8	Cumene	120.19	18	U	18	2.
79-34-5	1,1,2,2-Tetrachloroethane	167.85	25	U	25	5.
103-65-1	n-Propylbenzene	120.19	18	U	18	4.
622-96-8	4-Ethyltoluene	120.20	18	U	18	4.
108-67-8	1,3,5-Trimethylbenzene	120.20	18	U	18	4.
95-49-8	2-Chlorotoluene	126.59	19	U	19	4.
98-06-6	tert-Butylbenzene	134.22	20	U	20	4.
95-63-6	1,2,4-Trimethylbenzene	120.20	18	U	18	4.
135-98-8	sec-Butylbenzene	134.22	20	U	20	4.
99-87-6	4-Isopropyltoluene	134.22	20	U	20	4.
541-73-1	1,3-Dichlorobenzene	147.00	22	U	22	4.
106-46-7	1,4-Dichlorobenzene	147.00	22	U	22	4.
100-44-7	Benzyl chloride	126.58	19	U	19	4.
104-51-8	n-Butylbenzene	134.22	20	U	20	5.

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 118 Lab Sample ID: 200-4737-1 Matrix: Air Lab File ID: bkac013.d Analysis Method: TO-15 Date Collected: 04/14/2011 19:45 Sample wt/vol: 11(mL) Date Analyzed: 04/22/2011 23:41 Soil Aliquot Vol: Dilution Factor: 18.2 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	22	U	22	5.3
120-82-1	1,2,4-Trichlorobenzene	181.45	68	U	68	6.8
87-68-3	Hexachlorobutadiene	260.76	39	U	39	13
91-20-3	Naphthalene	128.17	48	U	48	8.2

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac013.d Page 1

Report Date: 24-Apr-2011 10:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4737-1 Client Smp ID: SL 118

Inj Date : 22-APR-2011 23:41

Inst ID: B.i

Operator : pad Smp Info : 200-4737-A-1 Misc Info : 11,18.2, all74

Comment

Method : /chem/B.i/Bsvr.p/bkacto15.b/to15v5.m

Meth Date : 24-Apr-2011 10:04 klp Quant Type: ISTD

Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 8

Dil Factor: 18.20000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	18.20000 1.00000 11.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====		======
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	3.248 3.488 (0.353) 237162	5.06548 92
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.799 5.788 (0.631) 47935	0.27224 5.0
19 1,1-Dichloroethene	96	5.853 5.852 (0.637) 7465	0.08825 1.6(aQ)
20 Acetone	43	6.093 6.045 (0.663) 93551	1.04212 19(a)
21 Carbon disulfide	76	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac013.d Report Date: 24-Apr-2011 10:45

Compounds							CONCENTRA	TIONS
22 Insprepancial 45			QUANT SIG				ON-COLUMN	FINAL
22 Isopropanol	Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
23 AlV Chloride	==		====	==	======	======	======	======
25 Methylene chloride		22 Isopropanol	45	6.402	6.322 (0.696)	95262	1.30611	24(a)
26 Tert-butyl alcohol 59 Compound Not Detected. 27 Methyl tert-butyl ether 73 Compound Not Detected. 38 1,2-Dichlorocetheme (trans) 61 Compound Not Detected. 30 n-Hexane 57 Compound Not Detected. 31 1,1-Dichlorocethame 63 Compound Not Detected. 31 1,2-Dichlorocethame 61 Compound Not Detected. 33 1,2-Dichlorocethame (cia) 96 Compound Not Detected. 34 1,2-Dichlorocethame (cia) 96 Compound Not Detected. 36 Methyl Ethyl ketone 72 8.921 8.857 (0.970) 5214 0.1277 2.3(aQ) 37 Bromochloromethame 128 9.193 9.199 (1.000) 905356 10.0000 (Q) 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9.284 9.2884 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichlorocethame 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentame 57 Compound Not Detected. 44 Renzene 78 Compound Not Detected. 45 1,2-Dichlorocethame 62 Compound Not Detected. 46 n-Heptane 78 Compound Not Detected. 47 1,4-Dichlorocethame 63 Compound Not Detected. 48 1,2-Dichlorocethame 63 Compound Not Detected. 50 1,2-Dichlorocethame 65 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Romodichloromethame 88 Compound Not Detected. 55 1,3-Dichloropropene (cia) 75 Compound Not Detected. 56 Methyl laboutyl ketone 43 Compound Not Detected. 57 Toluma 91,3-Dichloropropene (cia) 75 Compound Not Detected. 58 Toluma 92 12.78 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 56 Chiorobensene 143 Compound Not Detected. 57 Compound Not Detected. 58 Toluma 92 Compound Not Detected. 59 Compound Not Detected. 50 1,1-2-Trichlorocethame 190 Compound Not Detected. 50 1,1-2-Trichlorocethame 191 Compound Not Detected. 50 1,1-2-Trichlorocethame 193 Compound Not Detected. 51 Methyl methacrylate 191 Compound Not Detected. 52 Compound Not Detected. 53 Compound Not Detected. 54 Compound Not Detected. 55 Chlorobensene-5 117 (1.733 14.		23 Allyl chloride	41	Comp	oound Not Detected	i.		
27 Methyl tert-butyl ether 73		25 Methylene chloride	49	6.808	6.802 (0.740)	12493	0.17050	3.1(a)
28 1,2-Dichloroetheme (trans) 61 Compound Not Detected. 30 n-Hexane 57 Compound Not Detected. 31 1,1-Lichloroethane 63 Compound Not Detected. 34 1,2-Dichloroetheme (cis) 96 Compound Not Detected. 34 1,2-Dichloroetheme (cis) 96 Compound Not Detected. 34 1,2-Dichloroetheme (cis) 96 Compound Not Detected. 36 Methyl Ethyl Et		26 Tert-butyl alcohol	59	Comp	oound Not Detected	1.		
30 n-Hexane 57 Compound Not Detected. 31 1,1-Dichloroethane 63 Compound Not Detected. 31 1,1-Dichloroethane, Total 61 Compound Not Detected. 34 1,2-Dichloroethane (cis) 96 Compound Not Detected. 34 1,2-Dichloroethane (cis) 96 Compound Not Detected. 38 4 1,2-Dichloroethane 128 8,913 8,87 (0,970) 5214 0,12777 2,3(aQ) 37 Bromochloromethane 128 9,193 9,199 (1,000) 96,336 10,0000 (Q) 37 Breathydrofuran 42 Compound Not Detected. 39 Chloroform 83 9,284 9,284 (1,010) 17315 0,10001 1,8(a) 0,000 0,00		27 Methyl tert-butyl ether	73	Comp	oound Not Detected	1.		
31 1,1-Dichloroethane		28 1,2-Dichloroethene (trans)	61	Comp	ound Not Detected	i.		
M 33 1.2-Dichloroethene,Total 61 Compound Not Detected. 34 1.2-Dichloroethene (cis) 96 Compound Not Detected. 36 Methyl Ethyl Ketches 72 8.921 8.87 (0.970) 5214 0.12777 2.3(aQ) 37 Bromochloromethane 128 9.193 9.199 (1.000) 905356 10.0000 (Q) 38 Tetrahydrofura 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1.1,1-Trichloroethane 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1.2-Dichloroethane 62 Compound Not Detected. 45 1.2-Dichloroethane 62 Compound Not Detected. 46 n.Reptane 43 Compound Not Detected. 49 Trichloroethane 95 10.965 10.971 (1.034) 167932 13.6066 250		30 n-Hexane	57	Comp	ound Not Detected	i.		
34 1,2-Dichloroethene (cis) 96 Compound Not Detected. 30 Methyl Ethyl Ketone 72 8,921 8.857 (0.970) 5214 0.12777 2.3(aQ) 37 Bromochloromethane 128 9,193 9,199 (1.000) 90536 10.0000 (Q) 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9,284 9,284 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1.1.1-Trichloroethane 97 9,519 9,524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 45 1,2-Dichloropenhane 62 Compound Not Detected. 46 n-Heptane 48 Compound Not Detected. 47 1.4-Difluorobenhane 62 Compound Not Detected. 47 1.4-Difluorobenhane 95 10.965 10.971 (1.034) 1679332 13.6066 250 250 1.2-Dichloropropane 63 Compound Not Detected. 51 1.4-Dichloropropane 63 Compound Not Detected. 55 1.3-Dichloropropane 63 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Notinee 58 Compound Not Detected. 58 Notinee 59 1.3-Dichloropropane 64 Compound Not Detected. 62 Compound Not Detected. 63 Compound Not Detected. 64 1.2-Dichloropropane 64 Compound Not Detected. 65 Compound Not Detected. 66 Compound Not Detected. 67 Compound Not Detected. 68 Compound Not Detected. 69 Compound Not Detected. 60		31 1,1-Dichloroethane	63	Comp	ound Not Detected	i.		
36 Nethyl Ethyl Ketone 72 8.91 8.857 (0.970) 5214 0.12777 2.3(aQ) 37 Bromochloromethane 128 9.193 9.199 (1.000) 905356 10.0000 (Q) 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Neptane 43 Compound Not Detected. 46 n-Neptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 Nethyl isobutyl ketone 43 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Nethyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromocthane 129 Compound Not Detected. 65 Chlorobenzene-65 117 14.733 14.738 (1.000) 3793534 10.0000 10.0000 10.0000000000000000000	M	33 1,2-Dichloroethene,Total	61	Comp	ound Not Detected	1.		
* 37 Bromochloromethane 128 9.193 9.199 (1.000) 905356 10.0000 (Q) 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1.1,1-Trichloroethane 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloropethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 55 1,3-Dichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 1,3-Dichloropropene (trans) 75 Compound Not Detected. 58 Toluene 92 12,758 12,748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 1,1-2-Trichloroethane 83 Compound Not Detected. 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromochloromethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14,733 14,738 (1.000) 3793534 10.0000 Compound Not Detected. 66 Chlorobenzene-d5 117 14,733 14,738 (1.000) 3793534 10.0000 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Kylene (m.p) 106 Compound Not Detected. 70 Kylenes, Total 106 Compound Not Detected. 71 Kylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Styrene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected. 76 Styrene 104 Compound Not Detected.		34 1,2-Dichloroethene (cis)	96	Comp	ound Not Detected	1.		
38 Tetrahydrofuram 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.010) 17315 0.10001 1.8(a) 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Beanene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobensene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dickloropropane 88 Compound Not Detected. 54 Bromedichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Note of the state of the st		36 Methyl Ethyl Ketone	72	8.921	8.857 (0.970)	5214	0.12777	2.3(aQ)
39 Chloroform	*	37 Bromochloromethane	128	9.193	9.199 (1.000)	905356	10.0000	(Q)
40 Cyclohexane		38 Tetrahydrofuran	42	Comp	oound Not Detected	i.		
## 1,1,1-Trichloroethane		39 Chloroform	83	9.284	9.284 (1.010)	17315	0.10001	1.8(a)
41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 3052449 16.6846 300 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 55 1,3-Dichloropropene (trans) 75 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethane 166 13.516 (3.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 117 Compound Not Detected. 67 Stylene (m.p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected. 76 Stylenes, Total 106 Compound Not Detected. 77 Isopropylbenzene 107 Compound Not Detected. 78 Bromoform 173 Compound Not Detected. 79 Styrene 104 Compound Not Detected. 70 Stylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 107 Compound Not Detected.		40 Cyclohexane	84	Comp	ound Not Detected	1.		
43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 Compound Not Detected. 66 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene-d5 117 Compound Not Detected. 67 Stylene (m.p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 71 Xylene (0) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected.		41 1,1,1-Trichloroethane	97				16.6846	300
43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 Compound Not Detected. 66 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene-d5 117 Compound Not Detected. 67 Stylene (m.p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 71 Xylene (0) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected.		42 Carbon tetrachloride	117	Comr	oound Not Detected	3.		
44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromochane 129 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 112 Compound Not Detected. 67 Sylene (m,p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene, 70tal 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected. 76 1,1,2,2-Tetrachloroethane 107 Compound Not Detected. 77 Isopropylbenzene 105 Compound Not Detected.		43 2.2.4-Trimethylpentane	57	_				
1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 250 250 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 53 1,4-Dichloropropene (cis) 75 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 2.9 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethane 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 67 Xylene (n.p) 106 Compound Not Detected. 68 Ethylbenzene 107 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 84 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 85 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 85 Compound Not Detected. 75 1,1,2,2-T		* *		_				
# 47 1,4-Difluorobenzene				-				
* 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 4311872 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 112 Compound Not Detected. 67 Schlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.				_				
49 Trichloroethene 95 10.965 10.971 (1.034) 1679332 13.6066 250 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromochlane 107 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 105 Compound Not Detected. 76 1,1,2,2-Tetrachloroethane 107 Compound Not Detected. 77 Lypene 104 Compound Not Detected. 78 Lypene 105 Compound Not Detected. 79 Lypene 106 Compound Not Detected. 70 Compound Not Detected. 71 Lypene 107 Compound Not Detected. 72 Lypene 108 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Lypene 107 Compound Not Detected. 75 Lypene 108 Compound Not Detected. 75 Lypene 109 Compound Not Detected. 76 Lypene 109 Compound Not Detected. 77 Lypene 109 Compound Not Detected. 78 Lypene 109 Compound Not Detected. 79 Lypene 109 Compound Not Detected. 70 Lypene 109 Compound Not Detected. 71 Lypene 109 Compound Not Detected. 72 Lypene 109 Compound Not Detected. 73 Lypene 109 Compound Not Detected. 74 Lypene 109 Compou	*	=		-			10 0000	
50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethane 166 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		·						250
51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.							13.0000	250
53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.				_				
54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected.				_				
55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		·		_				
56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.<				_				
58 Toluene 92 12.758 12.748 (0.866) 23934 0.12030 2.2(a) 59 1,3-Dichloropropene (trans) 75 Compound Not Detected.				_				
59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		-		_			0.10000	0.0(.)
60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.							0.12030	2.2(a)
61 Tetrachloroethene 166 13.516 13.516 (0.917) 19349 0.11009 2.0(a) 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.				_				
62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.				_				
63 Dibromochloromethane 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.							0.11009	2.0(a)
64 1,2-Dibromoethane 107				_				
* 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3793534 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.				-				
66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.								
68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.	*						10.0000	
69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		66 Chlorobenzene	112	Comp	ound Not Detected	1.		
M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		68 Ethylbenzene	91	Comp	ound Not Detected	1.		
71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.			106	Comp	oound Not Detected	i.		
72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.	M	70 Xylenes, Total	106	Comp	oound Not Detected	i.		
73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		71 Xylene (o)	106	Comp	oound Not Detected	1.		
74 Isopropylbenzene 105 Compound Not Detected. 75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		72 Styrene	104	Comp	ound Not Detected	i.		
75 1,1,2,2-Tetrachloroethane 83 Compound Not Detected.		73 Bromoform	173	Comp	oound Not Detected	1.		
		74 Isopropylbenzene	105	Comp	ound Not Detected	i.		
76 n-Propylbenzene 91 Compound Not Detected.		75 1,1,2,2-Tetrachloroethane	83	Comp	ound Not Detected	i.		
		76 n-Propylbenzene	91	Comp	oound Not Detected	1.		

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac013.d Report Date: 24-Apr-2011 10:45 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

Client ID: SL 118 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: 200-4737-A-1 Lab Sample ID: 200-4737-1

Date: 22-APR-2011 23:41

Instrument: B.i Inj Vol: 200.0 Diameter: 0.32

Page 49 of 263

Lab Sample ID: 200-4737-1 Date: 22-APR-2011 23:41

Client ID: SL 118 Instrument: B.i

Sample Info: 200-4737-A-1 Operator: pad

6 Butane

Lab Sample ID: 200-4737-1 Date: 22-APR-2011 23:41

Client ID: SL 118 Instrument: B.i

Sample Info: 200-4737-A-1 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-4737-1 Date: 22-APR-2011 23:41

Client ID: SL 118 Instrument: B.i

Sample Info: 200-4737-A-1 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-4737-1 Date: 22-APR-2011 23:41

Client ID: SL 118 Instrument: B.i

Sample Info: 200-4737-A-1 Operator: pad

49 Trichloroethene

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 022 Lab Sample ID: 200-4737-2

Matrix: Air Lab File ID: bkac014.d

Analysis Method: TO-15 Date Collected: 04/14/2011 21:05

Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33

Soil Aliquot Vol: Dilution Factor: 49.7

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8 Dichlorodifluoromethane		120.91	25	U	25	1.9
75-45-6	75-45-6 Freon 22		25	U	25	1.7
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	9.9	U	9.9	1.6
74-87-3	Chloromethane	50.49	25	U	25	0.65
106-97-8	n-Butane	58.12	25	U	25	0.55
75-01-4	Vinyl chloride	62.50	9.9	U	9.9	1.4
106-99-0	1,3-Butadiene	54.09	9.9	U	9.9	0.50
74-83-9	Bromomethane	94.94	9.9	U	9.9	0.60
75-00-3	Chloroethane	64.52	25	U	25	0.80
593-60-2	Bromoethene (Vinyl Bromide)	106.96	9.9	Ū	9.9	0.94
75-69-4	Trichlorofluoromethane	137.37	9.9	U	9.9	1.7
76-13-1	Freon TF	187.38	35		9.9	0.50
75-35-4	1,1-Dichloroethene	96.94	9.9	U	9.9	1.5
67-64-1	Acetone	58.08	250	U	250	2.2
67-63-0	Isopropyl alcohol	60.10	250	U	250	1.8
75-15-0	Carbon disulfide	76.14	25	U	25	3.3
107-05-1	3-Chloropropene	76.53	25	U	25	0.94
75-09-2	Methylene Chloride	84.93	25	U	25	0.65
75-65-0	tert-Butyl alcohol	74.12	250	U	250	3.5
1634-04-4	Methyl tert-butyl ether	88.15	9.9	U	9.9	0.80
156-60-5	trans-1,2-Dichloroethene	96.94	9.9	U	9.9	1.6
110-54-3	n-Hexane	86.17	9.9	U	9.9	1.3
75-34-3	1,1-Dichloroethane	98.96	9.9	U	9.9	1.7
78-93-3	Methyl Ethyl Ketone	72.11	25	U	25	0.84
156-59-2	cis-1,2-Dichloroethene	96.94	9.9	U	9.9	0.70
540-59-0	1,2-Dichloroethene, Total	96.94	9.9	U	9.9	0.70
67-66-3	Chloroform	119.38	9.9	U	9.9	1.5
109-99-9	Tetrahydrofuran	72.11	250	U	250	0.89
71-55-6	1,1,1-Trichloroethane	133.41	87		9.9	1.7
110-82-7	Cyclohexane	84.16	9.9	U	9.9	1.9
56-23-5	Carbon tetrachloride	153.81	9.9	U	9.9	1.6
540-84-1	2,2,4-Trimethylpentane	114.23	9.9	U	9.9	1.8
71-43-2	Benzene	78.11	9.9	U	9.9	0.89
107-06-2	1,2-Dichloroethane	98.96	9.9	U	9.9	1.5
142-82-5	n-Heptane	100.21	9.9	U	9.9	0.50

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 022 Lab Sample ID: 200-4737-2

Matrix: Air Lab File ID: bkac014.d

Analysis Method: TO-15 Date Collected: 04/14/2011 21:05

Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33

Soil Aliquot Vol: Dilution Factor: 49.7

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6 Trichloroethene		131.39	930		9.9	1.5
80-62-6	Methyl methacrylate	100.12	25	U	25	0.65
78-87-5	1,2-Dichloropropane	112.99	9.9	U	9.9	0.70
123-91-1	1,4-Dioxane	88.11	250	U	250	4.4
75-27-4	Bromodichloromethane	163.83	9.9	U	9.9	1.4
10061-01-5	cis-1,3-Dichloropropene	110.97	9.9	U	9.9	0.80
108-10-1	methyl isobutyl ketone	100.16	25	U	25	1.3
108-88-3	Toluene	92.14	9.9	U	9.9	0.89
10061-02-6	trans-1,3-Dichloropropene	110.97	9.9	U	9.9	0.99
79-00-5	1,1,2-Trichloroethane	133.41	9.9	U	9.9	0.94
127-18-4	Tetrachloroethene	165.83	9.9	U	9.9	0.55
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	25	U	25	1.9
124-48-1	Dibromochloromethane	208.29	9.9	U	9.9	1.0
106-93-4	1,2-Dibromoethane	187.87	9.9	U	9.9	0.89
108-90-7	Chlorobenzene	112.30	9.9	U	9.9	0.99
100-41-4	Ethylbenzene	106.17	9.9	U	9.9	1.1
179601-23-1	m,p-Xylene	106.17	25	U	25	2.4
95-47-6	Xylene, o-	106.17	9.9	U	9.9	1.1
1330-20-7	Xylene (total)	106.17	9.9	U	9.9	1.1
100-42-5	Styrene	104.15	9.9	U	9.9	1.5
75-25-2	Bromoform	252.75	9.9	U	9.9	0.94
98-82-8	Cumene	120.19	9.9	U	9.9	1.5
79-34-5	1,1,2,2-Tetrachloroethane	167.85	9.9	U	9.9	2.0
103-65-1	n-Propylbenzene	120.19	9.9	U	9.9	2.5
622-96-8	4-Ethyltoluene	120.20	9.9	U	9.9	2.3
108-67-8	1,3,5-Trimethylbenzene	120.20	9.9	U	9.9	2.5
95-49-8	2-Chlorotoluene	126.59	9.9	U	9.9	2.3
98-06-6	tert-Butylbenzene	134.22	9.9	U	9.9	2.3
95-63-6	1,2,4-Trimethylbenzene	120.20	9.9	U	9.9	2.6
135-98-8	sec-Butylbenzene	134.22	9.9	U	9.9	2.3
99-87-6	4-Isopropyltoluene	134.22	9.9	U	9.9	2.4
541-73-1	1,3-Dichlorobenzene	147.00	9.9	U	9.9	2.2
106-46-7	1,4-Dichlorobenzene	147.00	9.9	U	9.9	2.2
100-44-7	Benzyl chloride	126.58	9.9	U	9.9	2.3
104-51-8	n-Butylbenzene	134.22	9.9	U	9.9	2.7

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 022 Lab Sample ID: 200-4737-2 Matrix: Air Lab File ID: bkac014.d Analysis Method: TO-15 Date Collected: 04/14/2011 21:05 Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33 Soil Aliquot Vol: Dilution Factor: 49.7 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	9.9	U	9.9	2.4
120-82-1	1,2,4-Trichlorobenzene	181.45	25	U	25	2.5
87-68-3	Hexachlorobutadiene	260.76	9.9	U	9.9	3.2
91-20-3	Naphthalene	128.17	25	U	25	4.3

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 022 Lab Sample ID: 200-4737-2

Matrix: Air Lab File ID: bkac014.d

Analysis Method: TO-15 Date Collected: 04/14/2011 21:05

Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33

Soil Aliquot Vol: Dilution Factor: 49.7

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8 Dichlorodifluoromethane		120.91	120	U	120	9.3
75-45-6	Freon 22	86.47	88	U	88	6.0
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	69	U	69	11
74-87-3	Chloromethane	50.49	51	U	51	1.3
106-97-8	n-Butane	58.12	59	U	59	1.3
75-01-4	Vinyl chloride	62.50	25	U	25	3.7
106-99-0	1,3-Butadiene	54.09	22	U	22	1.1
74-83-9	Bromomethane	94.94	39	U	39	2.3
75-00-3	Chloroethane	64.52	66	U	66	2.1
593-60-2	Bromoethene (Vinyl Bromide)	106.96	43	U	43	4.1
75-69-4	Trichlorofluoromethane	137.37	56	U	56	9.5
76-13-1	Freon TF	187.38	270		76	3.8
75-35-4	1,1-Dichloroethene	96.94	39	U	39	5.9
67-64-1	Acetone	58.08	590	U	590	5.3
67-63-0	Isopropyl alcohol	60.10	610	U	610	4.5
75-15-0	Carbon disulfide	76.14	77	U	77	10
107-05-1	3-Chloropropene	76.53	78	U	78	3.0
75-09-2	Methylene Chloride	84.93	86	U	86	2.2
75-65-0	tert-Butyl alcohol	74.12	750	U	750	11
1634-04-4	Methyl tert-butyl ether	88.15	36	U	36	2.9
156-60-5	trans-1,2-Dichloroethene	96.94	39	U	39	6.3
110-54-3	n-Hexane	86.17	35	U	35	4.6
75-34-3	1,1-Dichloroethane	98.96	40	U	40	7.0
78-93-3	Methyl Ethyl Ketone	72.11	73	U	73	2.5
156-59-2	cis-1,2-Dichloroethene	96.94	39	U	39	2.8
540-59-0	1,2-Dichloroethene, Total	96.94	39	U	39	2.8
67-66-3	Chloroform	119.38	49	U	49	7.5
109-99-9	Tetrahydrofuran	72.11	730	U	730	2.6
71-55-6	1,1,1-Trichloroethane	133.41	470		54	9.5
110-82-7	Cyclohexane	84.16	34	U	34	6.7
56-23-5	Carbon tetrachloride	153.81	63	U	63	10
540-84-1	2,2,4-Trimethylpentane	114.23	46	U	46	8.4
71-43-2	Benzene	78.11	32	U	32	2.9
107-06-2	1,2-Dichloroethane	98.96	40	U	40	6.2
142-82-5	n-Heptane	100.21	41	U	41	2.0

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 022 Lab Sample ID: 200-4737-2

Matrix: Air Lab File ID: bkac014.d

Analysis Method: TO-15 Date Collected: 04/14/2011 21:05

Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33

Soil Aliquot Vol: Dilution Factor: 49.7

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6 Trichloroethene		131.39	5000		53	8.0
80-62-6	Methyl methacrylate	100.12	100	U	100	2.6
78-87-5	1,2-Dichloropropane	112.99	46	U	46	3.2
123-91-1	1,4-Dioxane	88.11	900	U	900	16
75-27-4	Bromodichloromethane	163.83	67	U	67	9.3
10061-01-5	cis-1,3-Dichloropropene	110.97	45	U	45	3.6
108-10-1	methyl isobutyl ketone	100.16	100	U	100	5.3
108-88-3	Toluene	92.14	37	U	37	3.4
10061-02-6	trans-1,3-Dichloropropene	110.97	45	U	45	4.5
79-00-5	1,1,2-Trichloroethane	133.41	54	U	54	5.2
127-18-4	Tetrachloroethene	165.83	67	U	67	3.7
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	100	U	100	7.9
124-48-1	Dibromochloromethane	208.29	85	U	85	8.9
106-93-4	1,2-Dibromoethane	187.87	76	U	76	6.9
108-90-7	Chlorobenzene	112.30	46	U	46	4.6
100-41-4	Ethylbenzene	106.17	43	U	43	4.7
179601-23-1	m,p-Xylene	106.17	110	U	110	10
95-47-6	Xylene, o-	106.17	43	U	43	4.7
1330-20-7	Xylene (total)	106.17	43	U	43	4.7
100-42-5	Styrene	104.15	42	U	42	6.4
75-25-2	Bromoform	252.75	100	U	100	9.8
98-82-8	Cumene	120.19	49	U	49	7.6
79-34-5	1,1,2,2-Tetrachloroethane	167.85	68	U	68	14
103-65-1	n-Propylbenzene	120.19	49	U	49	12
622-96-8	4-Ethyltoluene	120.20	49	U	49	11
108-67-8	1,3,5-Trimethylbenzene	120.20	49	U	49	12
95-49-8	2-Chlorotoluene	126.59	51	U	51	12
98-06-6	tert-Butylbenzene	134.22	55	U	55	13
95-63-6	1,2,4-Trimethylbenzene	120.20	49	U	49	13
135-98-8	sec-Butylbenzene	134.22	55	U	55	13
99-87-6	4-Isopropyltoluene	134.22	55	U	55	13
541-73-1	1,3-Dichlorobenzene	147.00	60	U	60	13
106-46-7	1,4-Dichlorobenzene	147.00	60	U	60	13
100-44-7	Benzyl chloride	126.58	51	U	51	12
104-51-8	n-Butylbenzene	134.22	55	U	55	15

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 022 Lab Sample ID: 200-4737-2 Matrix: Air Lab File ID: bkac014.d Analysis Method: TO-15 Date Collected: 04/14/2011 21:05 Sample wt/vol: 19(mL) Date Analyzed: 04/23/2011 00:33 Soil Aliquot Vol: Dilution Factor: 49.7 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	60	U	60	14
120-82-1	1,2,4-Trichlorobenzene	181.45	180	U	180	18
87-68-3	Hexachlorobutadiene	260.76	110	U	110	34
91-20-3	Naphthalene	128.17	130	U	130	22

Units: ug/m3

Analysis Batch No.: 16914

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac014.d Page 1

Report Date: 24-Apr-2011 10:46

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4737-2

Client Smp ID: SL 022

Inj Date : 23-APR-2011 00:33

Operator : pad Inst ID: B.i

Smp Info : 200-4737-A-2

Misc Info : 19,49.7, all74 cdf4.72

Comment

Method : /chem/B.i/Bsvr.p/bkacto15.b/to15v5.m

Meth Date : 24-Apr-2011 10:04 klp Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 9

Dil Factor: 49.70000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
-	DF Uf Vo Vf	49.70000 1.00000 19.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
2 Dichlorodifluoromethane	85	Compound Not Detected.
3 Chlorodifluoromethane	51	Compound Not Detected.
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.
5 Chloromethane	50	Compound Not Detected.
6 Butane	43	Compound Not Detected.
7 Vinyl chloride	62	Compound Not Detected.
8 1,3-Butadiene	54	Compound Not Detected.
9 Bromomethane	94	Compound Not Detected.
10 Chloroethane	64	Compound Not Detected.
12 Vinyl bromide	106	Compound Not Detected.
13 Trichlorofluoromethane	101	4.806 4.801 (0.522) 37887 0.17124 8.5(aM)
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794 5.788 (0.630) 127324 0.71023 35
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac014.d Page 2 Report Date: 24-Apr-2011 10:46

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
21 Carbon disulfide	76	Com	pound Not Detected	i.		
22 Isopropanol	45	Com	pound Not Detected	i.		
23 Allyl chloride	41	Com	pound Not Detected	1.		
25 Methylene chloride	49	Com	pound Not Detected	i.		
26 Tert-butyl alcohol	59	Com	pound Not Detected	i.		
27 Methyl tert-butyl ether	73	Com	pound Not Detected	i.		
28 1,2-Dichloroethene (trans)	61	Com	- npound Not Detected	i.		
30 n-Hexane	57		- pound Not Detected			
31 1,1-Dichloroethane	63	Com	- npound Not Detected	i.		
M 33 1,2-Dichloroethene,Total	61		r pound Not Detected			
34 1,2-Dichloroethene (cis)	96		r pound Not Detected			
36 Methyl Ethyl Ketone	72		pound Not Detected			
* 37 Bromochloromethane	128	9.199		921797	10.0000	
38 Tetrahydrofuran	42		pound Not Detected			
39 Chloroform	83	9.284	_	19129	0.10852	5.4(a)
40 Cyclohexane	84		pound Not Detected		0.10032	3.1(4)
41 1,1,1-Trichloroethane	97	9.524	_	334451	1.74487	87
42 Carbon tetrachloride	117		pound Not Detected		1.74407	07
43 2,2,4-Trimethylpentane	57		pound Not Detected			
44 Benzene	78		pound Not Detected			
45 1,2-Dichloroethane	62		pound Not Detected			
46 n-Heptane	43		pound Not Detected			
* 47 1,4-Difluorobenzene	114		-		10 0000	
	95		10.608 (1.000)	4517552	10.0000	930
49 Trichloroethene			10.971 (1.034)	2410920	18.6449	930
50 1,2-Dichloropropane	63 69		pound Not Detected			
51 Methyl methacrylate			pound Not Detected			
53 1,4-Dioxane	88		pound Not Detected			
54 Bromodichloromethane	83		pound Not Detected			
55 1,3-Dichloropropene (cis)	75		pound Not Detected			
56 Methyl isobutyl ketone	43		pound Not Detected			
58 Toluene	92		pound Not Detected			
59 1,3-Dichloropropene (trans)	75		pound Not Detected			
60 1,1,2-Trichloroethane	83		pound Not Detected			
61 Tetrachloroethene	166		13.516 (0.917)	8172	0.04426	2.2(a)
62 2-Hexanone	43		pound Not Detected			
63 Dibromochloromethane	129		pound Not Detected			
64 1,2-Dibromoethane	107		pound Not Detected			
* 65 Chlorobenzene-d5	117		14.738 (1.000)	3985037	10.0000	
66 Chlorobenzene	112		pound Not Detected			
68 Ethylbenzene	91		pound Not Detected			
69 Xylene (m,p)	106		pound Not Detected			
M 70 Xylenes, Total	106		pound Not Detected			
71 Xylene (o)	106		pound Not Detected			
72 Styrene	104	Com	pound Not Detected	1.		
73 Bromoform	173		pound Not Detected			
74 Isopropylbenzene	105	Com	pound Not Detected	1.		
75 1,1,2,2-Tetrachloroethane	83	Com	pound Not Detected	1.		

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac014.d Report Date: 24-Apr-2011 10:46 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RE	SPONSE (ppb v/v) (ppb v/v)
	====		====== ======
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- M Compound response manually integrated.

Client ID: SL 022
Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-4737-A-

Sample Info: 200-4737-A-2 Lab Sample ID: 200-4737-2 Date: 23-APR-2011 00:33

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 63 of 263

Lab Sample ID: 200-4737-2 Date: 23-APR-2011 00:33

Client ID: SL 022 Instrument: B.i

Sample Info: 200-4737-A-2 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-4737-2 Date: 23-APR-2011 00:33

Client ID: SL 022 Instrument: B.i

Sample Info: 200-4737-A-2 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-4737-2 Date: 23-APR-2011 00:33

Client ID: SL 022 Instrument: B.i

Sample Info: 200-4737-A-2 Operator: pad

49 Trichloroethene

Manual Integration Report

Data File: bkac014.d Lab Sample ID: 200-4737-2

Inj. Date and Time: 23-APR-2011 00:33

Instrument ID: B.i Client ID: SL 022

Compound: 13 Trichlorofluoromethane

CAS #: 75-69-4

Report Date: 04/25/2011

Processing Integration Results

RT: 4.80

Response: 19619

Amount: 0.088675

Conc: 4.41

Manual Integration Results

RT: 4.81

Response: 37887

Amount: 0.171243

Conc: 8.51

File Uploaded By: klp

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 084 Lab Sample ID: 200-4737-3

Matrix: Air Lab File ID: bkac015.d

Analysis Method: TO-15 Date Collected: 04/14/2011 22:52

Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26

Soil Aliquot Vol: Dilution Factor: 1960

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	980	U	980	74
75-45-6	Freon 22	86.47	980	U	980	67
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	390	U	390	63
74-87-3	Chloromethane	50.49	980	U	980	25
106-97-8	n-Butane	58.12	980	U	980	22
75-01-4	Vinyl chloride	62.50	390	U	390	57
106-99-0	1,3-Butadiene	54.09	390	U	390	20
74-83-9	Bromomethane	94.94	390	U	390	24
75-00-3	Chloroethane	64.52	980	U	980	31
593-60-2	Bromoethene (Vinyl Bromide)	106.96	390	U	390	37
75-69-4	Trichlorofluoromethane	137.37	390	U	390	67
76-13-1	Freon TF	187.38	390	U	390	20
75-35-4	1,1-Dichloroethene	96.94	390	U	390	59
67-64-1	Acetone	58.08	9800	U	9800	88
67-63-0	Isopropyl alcohol	60.10	9800	U	9800	73
75-15-0	Carbon disulfide	76.14	980	U	980	130
107-05-1	3-Chloropropene	76.53	980	U	980	37
75-09-2	Methylene Chloride	84.93	980	U	980	25
75-65-0	tert-Butyl alcohol	74.12	9800	U	9800	140
1634-04-4	Methyl tert-butyl ether	88.15	390	U	390	31
156-60-5	trans-1,2-Dichloroethene	96.94	390	U	390	63
110-54-3	n-Hexane	86.17	390	U	390	51
75-34-3	1,1-Dichloroethane	98.96	390	U	390	69
78-93-3	Methyl Ethyl Ketone	72.11	980	U	980	33
156-59-2	cis-1,2-Dichloroethene	96.94	1100		390	27
540-59-0	1,2-Dichloroethene, Total	96.94	1400		390	27
67-66-3	Chloroform	119.38	390	U	390	61
109-99-9	Tetrahydrofuran	72.11	9800	U	9800	35
71-55-6	1,1,1-Trichloroethane	133.41	390	U	390	69
110-82-7	Cyclohexane	84.16	390	U	390	76
56-23-5	Carbon tetrachloride	153.81	390	U	390	65
540-84-1	2,2,4-Trimethylpentane	114.23	390	U	390	71
71-43-2	Benzene	78.11	390	U	390	35
107-06-2	1,2-Dichloroethane	98.96	390	U	390	61
142-82-5	n-Heptane	100.21	390	U	390	20

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 084 Lab Sample ID: 200-4737-3

Matrix: Air Lab File ID: bkac015.d

Analysis Method: TO-15 Date Collected: 04/14/2011 22:52

Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26

Soil Aliquot Vol: Dilution Factor: 1960

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	24000		390	59
80-62-6	Methyl methacrylate	100.12	980	U	980	25
78-87-5	1,2-Dichloropropane	112.99	390	U	390	27
123-91-1	1,4-Dioxane	88.11	9800	U	9800	170
75-27-4	Bromodichloromethane	163.83	390	U	390	55
10061-01-5	cis-1,3-Dichloropropene	110.97	390	U	390	31
108-10-1	methyl isobutyl ketone	100.16	980	U	980	51
108-88-3	Toluene	92.14	390	U	390	35
10061-02-6	trans-1,3-Dichloropropene	110.97	390	U	390	39
79-00-5	1,1,2-Trichloroethane	133.41	390	U	390	37
127-18-4	Tetrachloroethene	165.83	390	U	390	22
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	980	U	980	76
124-48-1	Dibromochloromethane	208.29	390	U	390	41
106-93-4	1,2-Dibromoethane	187.87	390	U	390	35
108-90-7	Chlorobenzene	112.30	390	U	390	39
100-41-4	Ethylbenzene	106.17	390	U	390	43
179601-23-1	m,p-Xylene	106.17	980	U	980	94
95-47-6	Xylene, o-	106.17	390	U	390	43
1330-20-7	Xylene (total)	106.17	390	U	390	43
100-42-5	Styrene	104.15	390	U	390	59
75-25-2	Bromoform	252.75	390	U	390	37
98-82-8	Cumene	120.19	390	U	390	61
79-34-5	1,1,2,2-Tetrachloroethane	167.85	390	U	390	78
103-65-1	n-Propylbenzene	120.19	390	U	390	98
622-96-8	4-Ethyltoluene	120.20	390	U	390	90
108-67-8	1,3,5-Trimethylbenzene	120.20	390	U	390	100
95-49-8	2-Chlorotoluene	126.59	390	U	390	92
98-06-6	tert-Butylbenzene	134.22	390	U	390	92
95-63-6	1,2,4-Trimethylbenzene	120.20	390	U	390	100
135-98-8	sec-Butylbenzene	134.22	390	U	390	92
99-87-6	4-Isopropyltoluene	134.22	390	U	390	94
541-73-1	1,3-Dichlorobenzene	147.00	390	U	390	86
106-46-7	1,4-Dichlorobenzene	147.00	390	U	390	86
100-44-7	Benzyl chloride	126.58	390	U	390	90
104-51-8	n-Butylbenzene	134.22	390	U	390	110

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 084 Lab Sample ID: 200-4737-3 Matrix: Air Lab File ID: bkac015.d Analysis Method: TO-15 Date Collected: 04/14/2011 22:52 Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26 Soil Aliquot Vol: Dilution Factor: 1960 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16914 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	390	U	390	94
120-82-1	1,2,4-Trichlorobenzene	181.45	980	U	980	98
87-68-3	Hexachlorobutadiene	260.76	390	U	390	130
91-20-3	Naphthalene	128.17	980	U	980	170

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 084 Lab Sample ID: 200-4737-3

Matrix: Air Lab File ID: bkac015.d

Analysis Method: TO-15 Date Collected: 04/14/2011 22:52

Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26

Soil Aliquot Vol: Dilution Factor: 1960

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	4800	U	4800	370
75-45-6	Freon 22	86.47	3500	U	3500	240
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	2700	U	2700	440
74-87-3	Chloromethane	50.49	2000	U	2000	53
106-97-8	n-Butane	58.12	2300	U	2300	51
75-01-4	Vinyl chloride	62.50	1000	U	1000	150
106-99-0	1,3-Butadiene	54.09	870	U	870	43
74-83-9	Bromomethane	94.94	1500	U	1500	91
75-00-3	Chloroethane	64.52	2600	U	2600	83
593-60-2	Bromoethene (Vinyl Bromide)	106.96	1700	U	1700	160
75-69-4	Trichlorofluoromethane	137.37	2200	U	2200	370
76-13-1	Freon TF	187.38	3000	U	3000	150
75-35-4	1,1-Dichloroethene	96.94	1600	U	1600	230
67-64-1	Acetone	58.08	23000	U	23000	210
67-63-0	Isopropyl alcohol	60.10	24000	U	24000	180
75-15-0	Carbon disulfide	76.14	3100	U	3100	400
107-05-1	3-Chloropropene	76.53	3100	U	3100	120
75-09-2	Methylene Chloride	84.93	3400	U	3400	89
75-65-0	tert-Butyl alcohol	74.12	30000	U	30000	420
1634-04-4	Methyl tert-butyl ether	88.15	1400	U	1400	110
156-60-5	trans-1,2-Dichloroethene	96.94	1600	U	1600	250
110-54-3	n-Hexane	86.17	1400	U	1400	180
75-34-3	1,1-Dichloroethane	98.96	1600	U	1600	280
78-93-3	Methyl Ethyl Ketone	72.11	2900	U	2900	98
156-59-2	cis-1,2-Dichloroethene	96.94	4500		1600	110
540-59-0	1,2-Dichloroethene, Total	96.94	5600		1600	110
67-66-3	Chloroform	119.38	1900	U	1900	300
109-99-9	Tetrahydrofuran	72.11	29000	U	29000	100
71-55-6	1,1,1-Trichloroethane	133.41	2100	U	2100	370
110-82-7	Cyclohexane	84.16	1300	U	1300	260
56-23-5	Carbon tetrachloride	153.81	2500	U	2500	410
540-84-1	2,2,4-Trimethylpentane	114.23	1800	U	1800	330
71-43-2	Benzene	78.11	1300	U	1300	110
107-06-2	1,2-Dichloroethane	98.96	1600	U	1600	250
142-82-5	n-Heptane	100.21	1600	U	1600	80

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Client Sample ID: SL 084 Lab Sample ID: 200-4737-3

Matrix: Air Lab File ID: bkac015.d

Analysis Method: TO-15 Date Collected: 04/14/2011 22:52

Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26

Soil Aliquot Vol: Dilution Factor: 1960

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	130000		2100	320
80-62-6	Methyl methacrylate	100.12	4000	U	4000	100
78-87-5	1,2-Dichloropropane	112.99	1800	U	1800	130
123-91-1	1,4-Dioxane	88.11	35000	U	35000	620
75-27-4	Bromodichloromethane	163.83	2600	U	2600	370
10061-01-5	cis-1,3-Dichloropropene	110.97	1800	U	1800	140
108-10-1	methyl isobutyl ketone	100.16	4000	U	4000	210
108-88-3	Toluene	92.14	1500	U	1500	130
10061-02-6	trans-1,3-Dichloropropene	110.97	1800	U	1800	180
79-00-5	1,1,2-Trichloroethane	133.41	2100	U	2100	200
127-18-4	Tetrachloroethene	165.83	2700	U	2700	150
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	4000	Ū	4000	310
124-48-1	Dibromochloromethane	208.29	3300	U	3300	350
106-93-4	1,2-Dibromoethane	187.87	3000	U	3000	270
108-90-7	Chlorobenzene	112.30	1800	U	1800	180
100-41-4	Ethylbenzene	106.17	1700	U	1700	190
179601-23-1	m,p-Xylene	106.17	4300	U	4300	410
95-47-6	Xylene, o-	106.17	1700	U	1700	190
1330-20-7	Xylene (total)	106.17	1700	U	1700	190
100-42-5	Styrene	104.15	1700	U	1700	250
75-25-2	Bromoform	252.75	4100	U	4100	380
98-82-8	Cumene	120.19	1900	U	1900	300
79-34-5	1,1,2,2-Tetrachloroethane	167.85	2700	U	2700	540
103-65-1	n-Propylbenzene	120.19	1900	U	1900	480
622-96-8	4-Ethyltoluene	120.20	1900	U	1900	440
108-67-8	1,3,5-Trimethylbenzene	120.20	1900	U	1900	490
95-49-8	2-Chlorotoluene	126.59	2000	U	2000	480
98-06-6	tert-Butylbenzene	134.22	2200	U	2200	510
95-63-6	1,2,4-Trimethylbenzene	120.20	1900	U	1900	500
135-98-8	sec-Butylbenzene	134.22	2200	U	2200	510
99-87-6	4-Isopropyltoluene	134.22	2200	U	2200	520
541-73-1	1,3-Dichlorobenzene	147.00	2400	U	2400	520
106-46-7	1,4-Dichlorobenzene	147.00	2400	U	2400	520
100-44-7	Benzyl chloride	126.58	2000	U	2000	470
104-51-8	n-Butylbenzene	134.22	2200	U	2200	590

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Client Sample ID: SL 084 Lab Sample ID: 200-4737-3 Matrix: Air Lab File ID: bkac015.d Analysis Method: TO-15 Date Collected: 04/14/2011 22:52 Sample wt/vol: 24(mL) Date Analyzed: 04/23/2011 01:26 Soil Aliquot Vol: Dilution Factor: 1960 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	2400	U	2400	570
120-82-1	1,2,4-Trichlorobenzene	181.45	7300	U	7300	730
87-68-3	Hexachlorobutadiene	260.76	4200	U	4200	1400
91-20-3	Naphthalene	128.17	5100	U	5100	880

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac015.d Page 1

Report Date: 24-Apr-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4737-3 Client Smp ID: SL 084

Inj Date : 23-APR-2011 01:26

Operator : pad Smp Info : 200-4737-A-3 Inst ID: B.i

Misc Info : 24,1960, all74 cdf235.54

Comment

Method : /chem/B.i/Bsvr.p/bkacto15.b/to15v5.m

Meth Date : 24-Apr-2011 10:04 klp Quant Type: ISTD

Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 10

Dil Factor: 1960.00000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1960.00000	Dilution Factor ng unit correction factor
Vo Vf	24.00000 200.00000	Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====		======
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
20 Acetone	43	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac015.d Report Date: 24-Apr-2011 10:47

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Con	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
===	=======	====	==		======	======	======
	21 Carbon disulfide	76	Com	pound Not Detecte	d.		
	22 Isopropanol	45	Com	pound Not Detecte	d.		
	23 Allyl chloride	41	Com	pound Not Detecte	d.		
	25 Methylene chloride	49	Com	pound Not Detecte	d.		
	26 Tert-butyl alcohol	59	Com	pound Not Detecte	d.		
	27 Methyl tert-butyl ether	73	Com	pound Not Detecte	d.		
	28 1,2-Dichloroethene (trans)	61	7.208	7.203 (0.784)	14911	0.13985	270(a)
	30 n-Hexane	57	Com	pound Not Detecte	d.		
	31 1,1-Dichloroethane	63	Com	pound Not Detecte	d.		
M	33 1,2-Dichloroethene,Total	61			68804	0.71628	1400
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	53893	0.57643	1100
	36 Methyl Ethyl Ketone	72	Com	pound Not Detecte	d.		
*	37 Bromochloromethane	128	9.193	9.199 (1.000)	884911	10.0000	
	38 Tetrahydrofuran	42	Com	pound Not Detecte	d.		
	39 Chloroform	83	Com	pound Not Detecte	d.		
	40 Cyclohexane	84	Com	pound Not Detecte	d.		
	41 1,1,1-Trichloroethane	97	Com	pound Not Detecte	d.		
	42 Carbon tetrachloride	117	Com	pound Not Detecte	d.		
	43 2,2,4-Trimethylpentane	57	Com	pound Not Detecte	d.		
	44 Benzene	78	Com	pound Not Detecte	d.		
	45 1,2-Dichloroethane	62	Com	pound Not Detecte	d.		
	46 n-Heptane	43	Com	pound Not Detecte	d.		
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	4357559	10.0000	
	49 Trichloroethene	95	10.965	10.971 (1.034)	1520691	12.1921	24000
	50 1,2-Dichloropropane	63	Com	pound Not Detecte	d.		
	51 Methyl methacrylate	69	Com	pound Not Detecte	d.		
	53 1,4-Dioxane	88	Com	pound Not Detecte	d.		
	54 Bromodichloromethane	83	Com	pound Not Detecte	d.		
	55 1,3-Dichloropropene (cis)	75	Com	pound Not Detecte	d.		
	56 Methyl isobutyl ketone	43	Com	pound Not Detecte	d.		
	58 Toluene	92	Com	pound Not Detecte	d.		
	59 1,3-Dichloropropene (trans)	75	Com	pound Not Detecte	d.		
	60 1,1,2-Trichloroethane	83	Com	pound Not Detecte	d.		
	61 Tetrachloroethene	166	Com	pound Not Detecte	d.		
	62 2-Hexanone	43	Com	pound Not Detecte	d.		
	63 Dibromochloromethane	129	Com	pound Not Detecte	d.		
	64 1,2-Dibromoethane	107	Com	pound Not Detecte	d.		
*	65 Chlorobenzene-d5	117	14.733	14.738 (1.000)	3856727	10.0000	
	66 Chlorobenzene	112	Com	pound Not Detecte	d.		
	68 Ethylbenzene	91	Com	pound Not Detecte	d.		
	69 Xylene (m,p)	106	Com	pound Not Detecte	d.		
M	70 Xylenes, Total	106	Com	pound Not Detecte	d.		
	71 Xylene (o)	106	Com	pound Not Detecte	d.		
	72 Styrene	104	Com	pound Not Detecte	d.		
	73 Bromoform	173		pound Not Detecte			
	74 Isopropylbenzene	105	Com	pound Not Detecte	d.		
	75 1,1,2,2-Tetrachloroethane	83	Com	pound Not Detecte	d.		

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac015.d Report Date: 24-Apr-2011 10:47 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====		======
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

Client ID: SL 084 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: 200-4737-A-3 Lab Sample ID: 200-4737-3

Date: 23-APR-2011 01:26

Instrument: B.i Inj Vol: 200.0 Diameter: 0.32

Page 77 of 263

Lab Sample ID: 200-4737-3 Date: 23-APR-2011 01:26

Client ID: SL 084 Instrument: B.i

Sample Info: 200-4737-A-3 Operator: pad

34 1,2-Dichloroethene (cis)

Lab Sample ID: 200-4737-3 Date: 23-APR-2011 01:26

Client ID: SL 084 Instrument: B.i

Sample Info: 200-4737-A-3 Operator: pad

28 1,2-Dichloroethene (trans)

Lab Sample ID: 200-4737-3 Date: 23-APR-2011 01:26

Client ID: SL 084 Instrument: B.i

Sample Info: 200-4737-A-3 Operator: pad

49 Trichloroethene

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:		LAB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:
Level	1	IC 200-16751/14	ic 132521	bka014.d
Level	2	IC 200-16751/4	ic 132517	bka004.d
Level	3	IC 200-16751/5	ic 132507	bka005.d
Level	4	ICIS 200-16751/6	icis 132424	bka006.d
Level	5	IC 200-16751/7	ic 132422	bka007.d
Level	6	IC 200-16751/8	ic 132406	bka008.d
Level	7	IC 200-16751/9	ic 132405	bka009.d

ANALYTE			RRF			CURVE	(COEFFICIENT	Γ	# MIN RRF	%RSD	#	MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD		OR COD
	LVL 6	LVL 7														
Propylene	++++	0.2937	0.2560	0.2362	0.2182	Ave		0.2331			16.1		30.0			
	0.2028	0.1918														ļ
Dichlorodifluoromethane	+++++	1.7566	1.6286	1.4822	1.3540	Ave		1.4307			16.7		30.0			
	1.2354	1.1271														
Freon 22	++++	0.7215	0.6653	0.6083	0.5640	Ave		0.5941			15.0		30.0			
	0.5179	0.4875														
1,2-Dichlorotetrafluoroethane	1.3844	1.7093	1.6027	1.4333	1.3107	Ave		1.3865			16.0		30.0			ļ
	1.1910	1.0742														
Chloromethane	+++++	0.3709	0.3326	0.2995	0.2763	Ave		0.2978			15.7		30.0			ļ
	0.2593	0.2480														
n-Butane	+++++	0.6516	0.5695	0.5266	0.4911	Ave		0.5171			16.5		30.0			ļ
	0.4446	0.4194														
Vinyl chloride	0.3996	0.4927	0.4578	0.4218	0.3940	Ave		0.4091			13.1		30.0			ļ
	0.3578	0.3402														
1,3-Butadiene	0.3028	0.3441	0.3322	0.3077	0.2872	Ave		0.2973			11.9		30.0			ļ
	0.2597	0.2477														
Bromomethane	0.7399		0.8326	0.7633	0.7094	Ave		0.7386			13.1		30.0			ļ
	0.6403	0.6073														
Chloroethane	+++++	0.4306	0.3975	0.3667	0.3414	Ave		0.3564			14.7		30.0			ļ
	0.3079	0.2941														
Isopentane	0.7890	0.8068	0.7550	0.6903	0.6343	Ave		0.6819			15.9		30.0			ļ
	0.5663	0.5316														
Bromoethene (Vinyl Bromide)	1.0165	1.0923	1.0392	1.0017	0.9560	Ave		0.9762			9.0		30.0			ļ
	0.8827	0.8451														
Trichlorofluoromethane	2.4118		2.6263	2.4579	2.3226	Ave		2.4002			10.6		30.0			ļ
	2.1426	2.0593														
n-Pentane	+++++	1.3399	1.2188	1.1394	1.0527	Ave		1.0948			15.8		30.0			ļ
	0.9396	0.8785														

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

LVL 1 LVL 6 +++++ 0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++ 0.9113	0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	LVL 3 0.2925 0.6579 0.3538 2.0311 0.9592	UVL 4 0.2783 0.6250 0.3356 1.9688 0.9425	LVL 5 0.2684 0.5949 0.3181 1.8927	Ave	B M1 0.2702 0.6026 0.3155	M2		9.0	30. 30.	0		OR COD
LVL 6 +++++ 0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	LVL 7 0.2981 0.2381 0.6631 0.5335 ++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.2925 0.6579 0.3538 2.0311	0.2783 0.6250 0.3356 1.9688	0.2684	Ave	0.2702			8.2	30.)		<u> </u>
0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696	0.2381 0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.6579 0.3538 2.0311	0.6250 0.3356 1.9688	0.5949	Ave	0.6026			8.2	30.)		
0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696	0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.3538	0.3356	0.3181	Ave								
0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.3538	0.3356	0.3181	Ave								
+++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	+++++ 0.2756 2.1477 1.7408 0.9855 0.8568	2.0311	1.9688			0.3155			9.9	30.			
2.0341 1.7984 1.0106 0.8696	2.1477 1.7408 0.9855 0.8568			1.8927									
1.7984 1.0106 0.8696 +++++	1.7408 0.9855 0.8568			1.8927		1 0110							
0.8696	0.8568	0.9592	0 0405		Ave	1.9448			7.4	30.	1		
+++++			0.9425	0.9162	Ave	0.9344			6.1	30.)		-
		1 1016	1 0000	0 000		0.0015			0 0				
		1.1346	1.0387	0.9795	Ave	0.9915			9.9	30.)		
	2.9423	2.8142	2.6831	2.5559	Ave	2.6205			9.1	30.			
		0.8653	0.8298	0.7986	Ave	0.8056			5.4	30.			
		0 9537	0 8797	0.8300	Ave	0.8674			11 0	3.0	1		
		0.3337	0.0737	0.0000	1100	0.0071			11.0	30.			
		0.5866	0.5587	0.5053	Ave	0.5188			10.0	30.)		
		Λ 00Ω1	0 0104	0 7501	7,770	0 0003			16 /	2.0)		
		0.0091	0.0104	0.7591	Ave	0.0093			10.4	30.			
+++++		1.3748	1.3402	1.2932	Ave	1.3083			4.1	30.)		
		2.6981	2.5855	2.4865	Ave	2.5083			7.2	30.)		
		1.3461	1.2514	1.1668	Ave	1.2049			11.4	30.)		
+++++	0.6482	0.6044	0.5926	0.5633	Ave	0.5756			8.6	30.)		
0.5278													
		1.4445	1.3597	1.2725	Ave	1.3226			10.8	30.)		
											_		
		1.6612	1.5757	1.4762	Ave	1.5197			10.3	30.)		
		2.0364	1.9117	1.8004	Ave	1.7861			11.3	30.			
1.6490	1.5329												
1.0802	1.1265	1.1121	1.0891	1.0475	Ave	1.0565			6.2	30.			
		0.4842	0.4611	0.4495	Ave	0.4507			9.8	30.			
	0.9113 +++++ 2.4104 +++++ 0.7517 0.8774 0.7804 ++++ 0.4707 ++++ 1.2320 2.4801 2.3376 1.2053 1.0793 ++++ 0.5278 1.4010 1.1810 1.5163 1.3718 ++++ 1.6490 1.0802 0.9969 ++++	0.9113 0.8936 +++++ 2.9423 2.4104 2.3171 +++++ +++++ 0.7517 0.7826 0.8774 1.0135 0.7804 0.7372 +++++ 1.0244 0.7012 0.6637 +++++ +++++ 1.2320 1.3014 2.4801 2.7316 2.3376 2.2385 1.2053 1.3853 1.0793 1.0002 +++++ 0.6482 0.5278 0.5175 1.4010 1.4954 1.1810 1.1044 1.5163 1.7431 1.3718 1.2938 +++++ +++++ 1.6490 1.5329	0.9113	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.4104 2.3171 0.8653 0.8298 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.7804 0.7372 0.7804 0.5866 0.5587 0.4707 0.4727 0.4727 0.8891 0.8184 0.7012 0.6637 0.8391 0.8184 0.7012 0.6637 0.8797 0.8797 +++++ +++++ 1.3748 1.3402 1.2320 1.3014 2.6981 2.5855 2.3376 2.2385 1.3461 1.2514 1.0793 1.0002 1.4445 1.2514 1.0793 1.0002 1.4445 1.3597 1.4010 1.4954 1.4445 1.3597 1.3718 1.2938 1.4445 1.5757 1.3718 1.2938 1.4445 1.5757 1.0802 1.1265 1.1121 1.0891 0.9969 <td< td=""><td>0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 2.4104 2.3171 0.8653 0.8298 0.7986 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.8300 0.7804 0.7372 0.9537 0.8797 0.8300 0.4707 0.4727 0.4727 0.4727 0.8891 0.8184 0.7591 0.7012 0.6637 0.6637 0.8184 0.7591 0.7991 0.7012 0.6637 0.8304 0.8184 0.7591 1.2320 1.3014 1.3748 1.3402 1.2932 1.2320 1.3014 2.6981 2.5855 2.4865 2.3376 2.2385 1.3461 1.2514 1.1668 1.0793 1.0002 ++++ 0.6482 0.6044 0.5926 0.5633 0.5278 0.5175 1.4010 1.4954 1.4445 1.3597 1.2725 1.3181 1.2938 1.4444 1.5</td><td>0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 Ave 2.4104 2.3171 </td><td>0.9113 0.8936 2.8142 2.6831 2.5559 Ave 2.6205 2.4104 2.3171 0.8653 0.8298 0.7986 Ave 0.8056 0.7517 0.7826 0.9537 0.8797 0.8300 Ave 0.8674 0.8774 1.0135 0.9537 0.8797 0.8300 Ave 0.8674 0.7804 0.7372 0.7372 0.5053 Ave 0.5188 0.4707 0.4727 0.4727 0.4727 0.8300 Ave 0.8093 0.7012 0.6637 0.6637 0.8184 0.7591 Ave 0.8093 0.7012 0.6637 1.3014 1.3402 1.2932 Ave 1.3083 1.2320 1.3014 1.3748 1.3402 1.2932 Ave 1.3083 2.4801 2.7316 2.6981 2.5855 2.4865 Ave 2.5083 2.3376 2.2385 1.3461 1.2514 1.1668 Ave 1.2049 1.0793 1.0002 1.4445 1.3597 1.2725 Ave 1.3226 <</td><td> 0.9113</td><td> 0.9113</td><td> 0.9113 0.8936</td><td> 0.9113</td><td> 0.9113</td><td> 0.9113 0.8936 </td></td<>	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 2.4104 2.3171 0.8653 0.8298 0.7986 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.8300 0.7804 0.7372 0.9537 0.8797 0.8300 0.4707 0.4727 0.4727 0.4727 0.8891 0.8184 0.7591 0.7012 0.6637 0.6637 0.8184 0.7591 0.7991 0.7012 0.6637 0.8304 0.8184 0.7591 1.2320 1.3014 1.3748 1.3402 1.2932 1.2320 1.3014 2.6981 2.5855 2.4865 2.3376 2.2385 1.3461 1.2514 1.1668 1.0793 1.0002 ++++ 0.6482 0.6044 0.5926 0.5633 0.5278 0.5175 1.4010 1.4954 1.4445 1.3597 1.2725 1.3181 1.2938 1.4444 1.5	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 Ave 2.4104 2.3171	0.9113 0.8936 2.8142 2.6831 2.5559 Ave 2.6205 2.4104 2.3171 0.8653 0.8298 0.7986 Ave 0.8056 0.7517 0.7826 0.9537 0.8797 0.8300 Ave 0.8674 0.8774 1.0135 0.9537 0.8797 0.8300 Ave 0.8674 0.7804 0.7372 0.7372 0.5053 Ave 0.5188 0.4707 0.4727 0.4727 0.4727 0.8300 Ave 0.8093 0.7012 0.6637 0.6637 0.8184 0.7591 Ave 0.8093 0.7012 0.6637 1.3014 1.3402 1.2932 Ave 1.3083 1.2320 1.3014 1.3748 1.3402 1.2932 Ave 1.3083 2.4801 2.7316 2.6981 2.5855 2.4865 Ave 2.5083 2.3376 2.2385 1.3461 1.2514 1.1668 Ave 1.2049 1.0793 1.0002 1.4445 1.3597 1.2725 Ave 1.3226 <	0.9113	0.9113	0.9113 0.8936	0.9113	0.9113	0.9113 0.8936

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	COE	EFFICIENT	#	MIN RRF	%RSD		MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				≩RSD	OR COD		OR COD
	LVL 6	LVL 7					_									
Ethyl acetate	++++	+++++	0.0940	0.0938	0.0916	Ave		0.0900			5.1		30.0		П	
	0.0871	0.0833														
Tetrahydrofuran	+++++	+++++	0.1828	0.1701	0.1593	Ave		0.1605			10.3		30.0			
Chloroform	0.1483 1.9073		2.0577	1.9519	1.8639	7		1.9122			0 6		30.0		\vdash	
Chloroform	1.7564		2.05//	1.9519	1.8639	Ave		1.9122			8.6		30.0			
n-Butanol	+++++	+++++	0.0881	0.0907	0.0894	Ave		0.0903			3.8		30.0		\vdash	
	0.0874	0.0959														
1,1,1-Trichloroethane	0.4288	0.4523	0.4446	0.4351	0.4217	Ave		0.4243			5.5		30.0		П	
	0.4000	0.3876														
Cyclohexane	0.3031	0.3156	0.3067	0.3006	0.2895	Ave		0.2915			7.5		30.0			
	0.2717	0.2536														
Carbon tetrachloride	0.4620		0.4796	0.4755	0.4690	Ave		0.4682			2.5		30.0			
	0.4533															
1,4-Dioxane	++++		0.0954	0.0932	0.0936	Ave		0.0934			1.6		30.0			
	0.0911															
2,2,4-Trimethylpentane	0.8171		0.9165	0.8660	0.8114	Ave		0.8271			10.8		30.0			
	0.7517														\sqcup	
Benzene	0.6293		0.6521	0.6236	0.5947	Ave		0.6091			9.0		30.0			
	0.5591														\sqcup	
1,2-Dichloroethane	0.2251		0.2567	0.2428	0.2326	Ave		0.2353			7.8		30.0			
	0.2172		0.3090	0 0001	0.0670	_		0.0700			10 7		20.0		\vdash	
n-Heptane	0.2867 0.2451		0.3090	0.2881	0.2672	Ave		0.2780			12.7		30.0			
Trichloroethene	0.2451		0.2987	0.2944	0.2836	7		0.2862			5.3		30.0		\vdash	
TITCHIOTOECHENE	0.2916		0.2907	0.2944	0.2030	Ave		0.2002			3.3		30.0			
1,2-Dichloropropane	0.1954		0.2191	0.2094	0.2000	Δτιο		0.2015			7.9		30.0		\vdash	
1,2 Bienioropropane	0.1871		0.2131	0.2034	0.2000	AVC		0.2015			,.,		30.0			
Methyl methacrylate	+++++		0.2218	0.2184	0.2134	Ave		0.2099			4.6		30.0		\vdash	
neenyi meenaeiyiace	0.2014		0.2210	0.2101	0.2131	1110		0.2033			1.0		30.0			
Dibromomethane	0.2796		0.2527	0.2653	0.2737	Ave		0.2655			4.5		30.0		\vdash	
	0.2704															
Bromodichloromethane	0.4048		0.4619	0.4505	0.4346	Ave		0.4324		1	6.3		30.0		\Box	
	0.4121															
cis-1,3-Dichloropropene	0.3070		0.3568	0.3538	0.3435	Ave		0.3345			5.6		30.0		П	
	0.3258	0.3174														
methyl isobutyl ketone	++++	0.3621	0.3847	0.3601	0.3421	Ave		0.3442			9.2		30.0		П	
	0.3174															
Toluene	0.5589		0.5558	0.5418	0.5162	Ave		0.5245			10.9		30.0		П	
	0.4845	0.4212				1									1	

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	CC	DEFFICIENT	7 #	MIN RRF	%RSD		IAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			9	RSD	OR COD		OR COD
	LVL 6	LVL 7														
n-Octane	0.3933		0.4312	0.3851	0.3443	Ave		0.3680			19.7		30.0			
	0.3075	0.2523														
trans-1,3-Dichloropropene	0.3114 0.3361		0.3710	0.3633	0.3544	Ave		0.3432			6.1		30.0			
1,1,2-Trichloroethane	0.2380		0.2553	0.2483	0.2392	Ave		0.2404			5.8		30.0		\vdash	
	0.2292	0.2175														
Tetrachloroethene	0.4917	0.4289	0.4418	0.4637	0.4780	Ave		0.4633			4.7		30.0			
	0.4751	0.4640														
Methyl Butyl Ketone (2-Hexanone)	++++		0.3968	0.3792	0.3654	Ave		0.3625			7.0		30.0			
	0.3430															
Dibromochloromethane	0.4952		0.5500	0.5654	0.5670	Ave		0.5400			5.1		30.0			
	0.5538														Ш	
1,2-Dibromoethane	0.4627		0.5036	0.5013	0.4977	Ave		0.4856			3.5		30.0			
	0.4808		0 7000	0 7000	0 5065	_		0.7060			2 2		200		\vdash	
Chlorobenzene	0.8172 0.7612		0.7988	0.7933	0.7865	Ave		0.7869			3.9		30.0			
Ethylbenzene	1.1603		1,2062	1.1658	1.1249	7,770		1.1327			7.1		30.0		\vdash	
Echylbenzene	1.0673		1.2002	1.1000	1.1249	Ave		1.1327			/.1		30.0			
n-Nonane	0.4455		0.4935	0.4534	0.4217	Ave		0.4348			14.0		30.0		\vdash	
	0.3869			0.1001	0.121,	1110		0.1010			11.0					
m,p-Xylene	0.4918	0.5035	0.5129	0.5030	0.4817	Ave		0.4744			9.9		30.0			-
	0.4498															
Xylene, o-	0.4708	0.4876	0.5016	0.4951	0.4853	Ave		0.4741			6.1		30.0			
	0.4617															
Styrene	0.6272		0.7853	0.7786	0.7652	Ave		0.7215			8.5		30.0			
	0.7300															
Bromoform	0.4465		0.5188	0.5465	0.5595	Ave		0.5086			10.0		30.0			
	0.5492														\sqcup	
Cumene	1.3099 1.3049		1.4100	1.3844	1.3603	Ave		1.3322			5.4		30.0			
1,1,2,2-Tetrachloroethane	0.6003		0.6809	0.6466	0.6215	7		0.6205			0.6		30.0		\vdash	
1,1,2,2-Tetrachioroethane	0.5832		0.6809	0.6466	0.6215	Ave		0.6205			9.6		30.0			
n-Propylbenzene	1.4831		1.6477	1.5577	1.4664	Ave		1.4657		+	13.0		30.0		+	
rropingene	1.3562		1.01//	1.00//	1.1004	1100		1.100/			13.0					
1,2,3-Trichloropropane	++++		0.5111	0.4741	0.4408	Ave		0.4484			15.9		30.0			
	0.4053															
n-Decane	++++	0.6626	0.6235	0.5636	0.5179	Ave		0.5373			18.9		30.0			
	0.4702															
4-Ethyltoluene	1.3248		1.4679	1.4299	1.3938	Ave		1.3542			8.5		30.0			
	1.3131	1.1265														

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

FORM VI TO-15

Heated Purge: (Y/N) N Instrument ID: B.i GC Column: RTX-624 ID: 0.32 (mm)

Calibration Start Date: 04/19/2011 13:05 Calibration End Date: 04/20/2011 08:43 Calibration ID: 6017

ANALYTE		RRF			CURVE	C	COEFFICIENT	7 #	MIN RRF	%RSD	I I	XAM	R^2	#	MIN R^2
	LVL 1 LV	/L 2 LVL	B LVL 4	LVL 5	TYPE	В	M1	M2			1 8	RSD	OR COD		OR COD
		/L 7	.			_									
2-Chlorotoluene	1.1932 1	.2954 1.27	21 1.2067	1.1578	Ave		1.1680			9.8		30.0		亓	
	1.0889 0	.9619													
1,3,5-Trimethylbenzene	1.1225 1	.1820 1.21	07 1.1830	1.1500	Ave		1.1349			6.3		30.0		\Box	
-	1.0987 0	.9972													
Alpha Methyl Styrene	0.4579 0.	.5412 0.65	92 0.6613	0.6647	Ave		0.6037			13.0		30.0			
	0.6439 0	.5975													
tert-Butylbenzene	1.1407 1	.1445 1.18	58 1.1666	1.1555	Ave		1.1299			5.2		30.0			
		.0067													
1,2,4-Trimethylbenzene		.1652 1.21	62 1.1813	1.1605	Ave		1.1288			6.5		30.0			
		.0015													
sec-Butylbenzene		.7092 1.76	05 1.7037	1.6592	Ave		1.6332			7.7		30.0			
		.3836													
4-Isopropyltoluene		.4213 1.52	78 1.4974	1.4860	Ave		1.4232			6.6		30.0			
		.2512													
1,3-Dichlorobenzene		.7966 0.84	41 0.8624	0.8766	Ave		0.8316			4.5		30.0			
		.7982													
1,4-Dichlorobenzene		.8138 0.85	18 0.8672	0.8823	Ave		0.8368			4.7		30.0			
		.8029													
Benzyl chloride		.8970 1.04	1.0153	1.0106	Ave		0.9425			11.1		30.0			
		.9283													
n-Undecane		+++++ 0.66	0.5652	0.5070	Ave		0.5067			24.2		30.0			
		.3416													
n-Butylbenzene		.3182 1.32	13 1.2099	1.1278	Ave		1.1244			16.4		30.0			
		.7947													
1,2-Dichlorobenzene		.7673 0.80	25 0.8098	0.8310	Ave		0.7957			3.2		30.0			
		.7734													
n-Dodecane		++++ 0.59	0.4754	0.4900	Ave		0.4886			13.8		30.0			
		.4104													
1,2,4-Trichlorobenzene	-	.4840 0.59	66 0.5779	0.6416	Ave		0.5921			9.9		30.0			
		.6137													
Hexachlorobutadiene		.3729 0.40	11 0.3773	0.3958	Ave		0.3836			5.1		30.0			
		.3463													
Naphthalene		.0453 1.37	01 1.2334	1.4208	Ave		1.3077			11.0		30.0			
		.3936													
1,2,3-Trichlorobenzene			19 0.4744	0.5414	Ave		0.4773			17.8		30.0			
	0.5446 0	.5401													

FORM VI

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:		LAB SAMPLE ID:	LAB FILE ID:
Level	1	IC 200-16751/14	bka014.d
Level	2	IC 200-16751/4	bka004.d
Level	3	IC 200-16751/5	bka005.d
Level	4	ICIS 200-16751/6	bka006.d
Level	5	IC 200-16751/7	bka007.d
Level	6	IC 200-16751/8	bka008.d
Level	7	IC 200-16751/9	bka009.d

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	++++ 300120	8866 599770	78924	157036	231639	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	+++++ 1827829	53031 3524372	502030	985236	1437377	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	++++ 766295	21780 1524484	205100	404323	598766	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	21439 1762200	51603 3358935	494039	952741	1391401	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	+++++ 383654	11197 775518	102530	199065	293350	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	++++ 657804	19672 1311417	175543	350040	521368	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	6189 529337	14875 1063608	141123	280384	418232	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	4689 384173	10388 774512	102416	204529	304903	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	11458 947441	26498 1898835	256646	507343	753036	0.200	0.500 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 455574	13000 919478	122523	243724	362414	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	12218 837817	24355 1662131	232723	458860	673404	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	15742 1306088	32975 2642602	320336	665831	1014869	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	37349 3170080	83947 6439223	809602	1633753	2465621	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Pentane	BCM	Ave	++++ 1390176	40451 2747007	375708	757371	1117488	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Ethanol	BCM	Ave	+++++ 727156	89979 1860972	180325	277452	379947	+++++ 40.0	5.00 100	10.0	15.0	20.0

FORM VI

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Ethyl ether	BCM	Ave	9120 821517	20019 1668086	202790	415462	631491	0.200	0.500 40.0	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 435833	+++++ 861731	109057	223067	337707	+++++ 20.0	+++++	5.00	10.0	15.0
Freon TF	BCM	Ave	31501 2660922	64836 5443061	626099	1308658	2009307	0.200	0.500 40.0	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	15651 1286652	29752 2679149	295670	626482	972662	0.200	0.500	5.00	10.0	15.0
Acetone	BCM	Ave	+++++ 1348308	+++++ 2794058	349748	690460	1039866	+++++	+++++	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	+++++ 3566337	88826 7245165	867508	1783437	2713282	+++++	0.500	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	+++++	+++++ 2446977	266746	551572	847756	+++++	+++++	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	13588 1154713	30597 2304959	293997	584735	881080	0.200	0.500	5.00	10.0	15.0
Acetonitrile	BCM	Ave	+++++ 696363	+++++ 1477909	180830	371388	536407	+++++	+++++	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	+++++ 1037427	30924 2075277	274088	543966	805880	+++++	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 1822781	++++ 4069174	423784	890814	1372891	+++++	+++++	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	38407 3458603	82465 6999335	831713	1718621	2639589	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	18666 1596852	41820 3127358	414936	831789	1238608	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	+++++ 780949	19567 1618249	186303	393900	598039	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	21696 1747428	45144 3453171	445282	903827	1350889	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	23482	52623 4045389	512072	1047397	1567056	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	+++++	+++++ 4793064	627758	1270715	1911252	+++++	+++++	5.00	10.0	15.0
cis-1,2-Dichloroethene	BCM	Ave	16728 1474917	34007 2950200	342810	723958	1112041	0.200	0.500	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	+++++ 615079	15323 1207999	149245	306515	477196	+++++	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 128917	+++++ 260476	28972	62334	97227	+++++	+++++ 40.0	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 1047298	+++++ 2084669	277844	549976	813871	+++++	+++++ 40.0	5.00	10.0	15.0

FORM VI

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Chloroform	BCM	Ave	29536 2598681	65251 5274929	634308	1297438	1978722	0.200	0.500 40.0	5.00	10.0	15.0
n-Butanol	DFB	Ave	+++++ 616899	+++++ 1408829	133880	293274	456578	+++++ 20.0	+++++	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	32159 2824174	67731 5691823	675728	1406951	2154019	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	22729 1918754	47258 3724291	466042	972088	1478653	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	34647 3200971	72192 6692210	728934	1537837	2395919	0.200	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	+++++	++++ 1375223	144977	301353	478246	++++ 20.0	+++++	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	61280 5307613	140690	1392904	2800540	4144876	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	47198 3947918	10092869 102143 7680963	991001	2016732	3037856	0.200	40.0 0.500 40.0	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	16884	38845	390176	785354	1188146	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	1533949 21502	3132783 48804	469663	931596	1364777	0.200	40.0	5.00	10.0	15.0
Trichloroethene	DFB	Ave	1730671 21871	3292791 45357	453917	951917	1448406	0.200	40.0	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	1916872 14653	3833558 33112	332990	677216	1021765	20.0	40.0	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	1320810	2623803 31018	337036	706275	1090133	20.0	40.0 0.500	5.00	10.0	15.0
Dibromomethane	DFB	Ave	1421973 20967	2893198 36909	383976	857899	1398287	0.200	40.0 0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	1909592 30360 2909545	3969697 69409 5862932	701999	1456744	2220179	20.0 0.200 20.0	40.0 0.500 40.0	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	23023	50459	542290	1144207	1754409	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	2300228	4661270 54223	584654	1164686	1747319	+++++	40.0	5.00	10.0	15.0
Toluene	CBZ	Ave	2241078 38095 3127459	4388870 81394	781089	1616891	2427829	20.0	40.0	5.00	10.0	15.0
n-Octane	DFB	Ave	29494	5654440 69209	655365	1245389	1758731	20.0	40.0	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	2171293	3705391 50697	563840	1174900	1810182	0.200	40.0	5.00	10.0	15.0
1,1,2-Trichloroethane	CBZ	Ave	2373295 16226 1479875	4813372 35063 2919548	358827	740832	1124926	20.0 0.200 20.0	40.0 0.500 40.0	5.00	10.0	15.0

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tetrachloroethene	CBZ	Ave	33514 3066934	58874 6228827	620880	1383728	2248125	0.200	0.500 40.0	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 2214121	50122 4371736	557625	1131495	1718705	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	33753 3574952	69997 7237509	772883	1687154	2666927	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	31541 3103635	67025 6238068	707667	1495820	2340956	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	55704 4913972	112419 9833865	1122647	2367246	3699222	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	79091 6889927	166877 13273535	1695154	3478843	5291212	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	30365 2497679	69938 4470311	693477	1352992	1983573	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	67047 5806766	138228 10154496	1441619	3001987	4531499	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	32092 2980773	66933	704868	1477471	2282895	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	42751 4712279	96820 8850176	1103670	2323410	3599092	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	30436 3545428	59289 6819478	729089	1630994	2631689	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	89288 8423912	186832 16038905	1981597	4131269	6398313	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	40919 3764719	94824	956857	1929623	2923189	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	101095 8754898	226073 14790847	2315600	4648395	6897586	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	+++++ 2616172	72057 4487423	718234	1414747	2073399	+++++	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	+++++ 3035655	90964 5182772	876257	1681924	2436164	+++++	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	90304 8477020	195353 15123545	2062836	4267098	6556164	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	81335 7029702	177820 12913657	1787802	3601023	5446135	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	76515 7092974	162251 13388540	1701394	3530271	5409454	0.200	0.500	5.00	10.0	15.0
Alpha Methyl Styrene	CBZ	Ave	31216 4156543	74294 8021611	926397	1973580	3126546	0.200	0.500	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	77758 7161981	157104 13516071	1666522	3481398	5434934	0.200	0.500	5.00	10.0	15.0

FORM VI AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 Analy Batch No.: 16751

SDG No.: 200-4737

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2,4-Trimethylbenzene	CBZ	Ave	73017 7137272	159945 13446021	1709235	3525067	5458639	0.200 20.0	0.500 40.0	5.00	10.0	15.0
sec-Butylbenzene	CBZ	Ave	112414 10115821	234623 18575724	2474045	5084068	7804179	0.200 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	92926 9138941	195107 16797947	2147098	4468517	6989529	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,3-Dichlorobenzene	CBZ	Ave	53498 5539311	109357 10716451	1186297	2573541	4123237	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,4-Dichlorobenzene	CBZ	Ave	52849 5577771	111716 10779777	1197028	2587919	4150197	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Benzyl chloride	CBZ	Ave	50062 6271146	123133 12462482	1462331	3029817	4753657	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Undecane	CBZ	Ave	+++++ 2911051	+++++ 4585532	939939	1686620	2384569	+++++ 20.0	+++++ 40.0	5.00	10.0	15.0
n-Butylbenzene	CBZ	Ave	73222 6615177	180956 10669300	1856882	3610451	5304843	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorobenzene	CBZ	Ave	52468 5266072	105334 10383099	1127843	2416697	3908806	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Dodecane	CBZ	Ave	++++ 3039375	+++++ 5509471	838092	1418552	2304964	+++++ 20.0	+++++ 40.0	5.00	10.0	15.0
1,2,4-Trichlorobenzene	CBZ	Ave	+++++ 4124576	66434 8238766	838392	1724492	3017684	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Hexachlorobutadiene	CBZ	Ave	27243 2531888	51195 4648758	563694	1125968	1861681	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Naphthalene	CBZ	Ave	++++ 8929532	143494 18709280	1925403	3680670	6683018	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2,3-Trichlorobenzene	CBZ	Ave	21804 3515989	56142 7250992	719385	1415603	2546768	0.200 20.0	0.500 40.0	5.00	10.0	15.0

	Legend:

Ave = Average ISTD

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka004.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka004.d

Lab Smp Id: ic 132517 Client Smp ID: ic 132517

Inj Date : 19-APR-2011 13:57

Operator : wrd Inst ID: B.i

Smp Info : ic 132517 Misc Info : 200,1, level2

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 13:57 Cal File: bka004.d

Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	53031	0.50000	0.61
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	21780	0.50000	0.61
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	51603	0.50000	0.62
5 Chloromethane	50	3.339	3.339 (0.363)	11197	0.50000	0.62
6 Butane	43	3.483	3.488 (0.379)	19672	0.50000	0.63
7 Vinyl chloride	62	3.515	3.520 (0.382)	14875	0.50000	0.60
8 1,3-Butadiene	54	3.573	3.574 (0.388)	10388	0.50000	0.58
9 Bromomethane	94	4.128	4.129 (0.449)	26498	0.50000	0.59
10 Chloroethane	64	4.326	4.326 (0.470)	13000	0.50000	0.60
11 2-Methylbutane	43	4.395	4.401 (0.478)	24355	0.50000	0.59
12 Vinyl bromide	106	4.705	4.705 (0.511)	32975	0.50000	0.56
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	83947	0.50000	0.58
14 Pentane	43	4.924	4.924 (0.535)	40451	0.50000	0.61
15 Ethanol	45	5.329	5.308 (0.579)	89979	5.00000	5.5

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka004.d Report Date: 20-Apr-2011 10:07

					AMOUNT	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT ==	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
16 Ethyl ether	==== 59	== 5.452	5.415 (0.593)	20019	0.50000	0.55
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.630)	64836	0.50000	0.55
19 1.1-Dichloroethene	96	5.858	5.852 (0.637)	29752	0.50000	0.53
21 Carbon disulfide	76	6.263	6.269 (0.681)	88826	0.50000	0.56
23 Allyl chloride	41	6.546	6.541 (0.712)	30597	0.50000	0.58
25 Methylene chloride	49	6.797	6.802 (0.739)	30924	0.50000	0.63
27 Methyl tert-butyl ether	73	7.235	7.187 (0.786)	82465	0.50000	0.54
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	41820	0.50000	0.57
29 Acrylonitrile	53	7.203	7.288 (0.794)	19567	0.50000	0.56
30 n-Hexane	57	7.523	7.528 (0.754)	45144	0.50000	0.57
31 1.1-Dichloroethane	63	7.928	7.934 (0.862)	52623	0.50000	0.57
M 33 1,2-Dichloroethene,Total	61	7.920	7.934 (0.002)	75827	1.00000	1.1
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	34007	0.50000	0.53
36 Methyl Ethyl Ketone	96 72	8.889	8.857 (0.966)	15323	0.50000	0.56(0)
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	603778	10.0000	0.56(Q)
39 Chloroform	83	9.199	9.199 (1.000)	65251	0.50000	0.57
** ************************************			, , , , , ,			0.57
40 Cyclohexane	84	9.535	9.535 (0.899)	47258	0.50000	0.54
41 1,1,1-Trichloroethane	97	9.519	9.524 (0.897)	67731	0.50000	
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	72192	0.50000	0.51
43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.944)	140690	0.50000	0.57
44 Benzene	78	10.052	10.053 (0.948)	102143	0.50000	0.56
45 1,2-Dichloroethane	62		10.159 (0.958)	38845	0.50000	0.55
46 n-Heptane	43		10.282 (0.969)	48804	0.50000	0.59
* 47 1,4-Difluorobenzene	114	10.607		2994935	10.0000	0 50
49 Trichloroethene	95	10.970	10.971 (1.034)	45357	0.50000	0.53
50 1,2-Dichloropropane	63		11.333 (1.068)	33112	0.50000	0.55
51 Methyl methacrylate	69		11.408 (1.077)	31018	0.50000	0.49(a)
52 Dibromomethane	174		11.520 (1.086)	36909	0.50000	0.46
54 Bromodichloromethane	83		11.702 (1.103)	69409	0.50000	0.54
55 1,3-Dichloropropene (cis)	75		12.326 (1.163)	50459	0.50000	0.50
56 Methyl isobutyl ketone	43		12.518 (1.185)	54223	0.50000	0.53
57 n-Octane	43		12.758 (1.203)	69209	0.50000	0.63
58 Toluene	92	12.753		81394	0.50000	0.57
59 1,3-Dichloropropene (trans)	75	13.132	13.121 (1.238)	50697	0.50000	0.49
60 1,1,2-Trichloroethane	83		13.388 (0.908)	35063	0.50000	0.53
61 Tetrachloroethene	166	13.516		58874	0.50000	0.46
62 2-Hexanone	43		13.698 (0.933)	50122	0.50000	0.50
63 Dibromochloromethane	129		13.943 (0.946)	69997	0.50000	0.47
64 1,2-Dibromoethane	107		14.146 (0.960)	67025	0.50000	0.50
* 65 Chlorobenzene-d5	117		14.738 (1.000)	2745478	10.0000	
66 Chlorobenzene	112		14.776 (1.003)	112419	0.50000	0.52(M)
67 n-Nonane	57		14.899 (1.011)	69938	0.50000	0.59
68 Ethylbenzene	91		14.856 (1.008)	166877	0.50000	0.54
69 Xylene (m,p)	106	15.010	15.011 (1.018)	138228	1.00000	1.1
M 70 Xylenes, Total	106			205161	0.50000	1.6
71 Xylene (o)	106	15.539	15.539 (1.054)	66933	0.50000	0.51
72 Styrene	104	15.571	15.566 (1.056)	96820	0.50000	0.49

Page 3

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==		======	======	======
73 Bromoform	173	15.859	15.859 (1.076)	59289	0.50000	0.42
74 Isopropylbenzene	105	15.966	15.966 (1.083)	186832	0.50000	0.51
75 1,1,2,2-Tetrachloroethane	83	16.387	16.393 (1.112)	94824	0.50000	0.56
76 n-Propylbenzene	91	16.457	16.457 (1.117)	226073	0.50000	0.56
77 1,2,3-Trichloropropane	75	16.467	16.468 (1.117)	72057	0.50000	0.59
78 n-Decane	57	16.547	16.548 (1.123)	90964	0.50000	0.62
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	195353	0.50000	0.53
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	177820	0.50000	0.55
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	162251	0.50000	0.52
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	74294	0.50000	0.45
83 tert-butylbenzene	119	17.022	17.023 (1.155)	157104	0.50000	0.51
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	159945	0.50000	0.52
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	234623	0.50000	0.52
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	195107	0.50000	0.50
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	109357	0.50000	0.48
88 1,4-Dichlorobenzene	146	17.593	17.594 (1.194)	111716	0.50000	0.49
89 Benzyl chloride	91	17.743	17.738 (1.204)	123133	0.50000	0.48
91 n-Butylbenzene	91	17.903	17.903 (1.215)	180956	0.50000	0.59
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	105334	0.50000	0.48
94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	66434	0.50000	0.41(a)
95 1,3-Hexachlorobutadiene	225	20.385	20.380 (1.383)	51195	0.50000	0.49
96 Naphthalene	128	20.657	20.652 (1.402)	143494	0.50000	0.40(a)

97 1,2,3-Trichlorobenzene 180 21.089 21.084 (1.431) 56142 0.50000 0.43

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Data File: bka004.d Date:

Client ID: ic 132517
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624 Sample Info: ic 132517 Lab Sample ID: ic 132517 Date: 19-APR-2011 13:57

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 94 of 263

Manual Integration Report

Data File: bka004.d Lab Sample ID: ic 132517

Inj. Date and Time: 19-APR-2011 13:57

Instrument ID: B.i Client ID: ic 132517

Compound: 66 Chlorobenzene

CAS #: 108-90-7

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 14.78

Manual Integration Results

RT: 14.78

Response: 112419

Amount: 0.520351

Conc: 0.520351

File Uploaded By: pd

Manual Integration Reason: Baseline event

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka005.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka005.d

Lab Smp Id: ic 132507 Client Smp ID: ic 132507

Inj Date : 19-APR-2011 14:50

Operator : wrd Inst ID: B.i

Smp Info : ic 132507 Misc Info : 200,1, level3

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 14:50 Cal File: bka005.d

Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

N	Name	Value	Description
	DF Uf	1.00000	Dilution Factor ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======	====	==		======	======	======
1 Propene	41	2.986	2.992 (0.325)	78924	5.00000	5.5
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	502030	5.00000	5.7
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	205100	5.00000	5.6
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	494039	5.00000	5.8
5 Chloromethane	50	3.339	3.339 (0.363)	102530	5.00000	5.6
6 Butane	43	3.483	3.488 (0.379)	175543	5.00000	5.5
7 Vinyl chloride	62	3.515	3.520 (0.382)	141123	5.00000	5.6
8 1,3-Butadiene	54	3.568	3.574 (0.388)	102416	5.00000	5.6
9 Bromomethane	94	4.128	4.129 (0.449)	256646	5.00000	5.6
10 Chloroethane	64	4.326	4.326 (0.470)	122523	5.00000	5.6
11 2-Methylbutane	43	4.395	4.401 (0.478)	232723	5.00000	5.5
12 Vinyl bromide	106	4.700	4.705 (0.511)	320336	5.00000	5.3
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	809602	5.00000	5.5
14 Pentane	43	4.924	4.924 (0.535)	375708	5.00000	5.6

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka005.d Report Date: 20-Apr-2011 10:07

						TRUOMA	rs.
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	======	======	======	======
	15 Ethanol	45	5.308	5.308 (0.577)		10.0000	11
	16 Ethyl ether	59	5.420	5.415 (0.589)	202790	5.00000	5.5
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.783	5.788 (0.629)	626099	5.00000	5.2
	18 Acrolein	56	5.762	5.756 (0.626)	109057	5.00000	5.6
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	295670	5.00000	5.1
	20 Acetone	43	6.050	6.045 (0.658)	349748	5.00000	5.7
	21 Carbon disulfide	76	6.263	6.269 (0.681)	867508	5.00000	5.4
	22 Isopropanol	45	6.338	6.322 (0.689)	266746	5.00000	5.4
	23 Allyl chloride	41	6.541	6.541 (0.711)	293997	5.00000	5.5
	24 Acetonitrile	41	6.626	6.626 (0.720)	180830	5.00000	5.7
	25 Methylene chloride	49	6.797	6.802 (0.739)	274088	5.00000	5.5
	26 Tert-butyl alcohol	59	7.048	7.037 (0.766)	423784	5.00000	5.3
	27 Methyl tert-butyl ether	73	7.192	7.187 (0.782)	831713	5.00000	5.4
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	414936	5.00000	5.6
	29 Acrylonitrile	53	7.288	7.288 (0.792)	186303	5.00000	5.2
	30 n-Hexane	57	7.528	7.528 (0.818)	445282	5.00000	5.5
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	512072	5.00000	5.5
	32 Vinyl acetate	43	7.966	7.966 (0.866)	627758	5.00000	5.7
M	33 1,2-Dichloroethene,Total	61			757746	10.0000	11
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	342810	5.00000	5.3
	35 Ethyl acetate	88	8.878	8.878 (0.965)	28972	5.00000	5.2
	36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	149245	5.00000	5.4
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	616523	10.0000	
	38 Tetrahydrofuran	42	9.257	9.252 (0.873)	277844	5.00000	5.7
	39 Chloroform	83	9.279	9.284 (1.009)	634308	5.00000	5.4
	40 Cyclohexane	84	9.529	9.535 (0.898)	466042	5.00000	5.3
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	675728	5.00000	5.2
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	728934	5.00000	5.1
	43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.944)	1392904	5.00000	5.5
	44 Benzene	78	10.052	10.053 (0.948)	991001	5.00000	5.4
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	390176	5.00000	5.5
	46 n-Heptane	43	10.277	10.282 (0.969)	469663	5.00000	5.6
*	47 1,4-Difluorobenzene	114	10.607	10.608 (1.000)	3039539	10.0000	
	48 n-Butanol	56	10.917	10.906 (1.029)	133880	5.00000	4.9(a)
	49 Trichloroethene	95	10.970	10.971 (1.034)	453917	5.00000	5.2
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	332990	5.00000	5.4
	51 Methyl methacrylate	69	11.413	11.408 (1.076)	337036	5.00000	5.3
	52 Dibromomethane	174	11.520	11.520 (1.086)	383976	5.00000	4.8
	53 1,4-Dioxane	88	11.541	11.520 (1.088)	144977	5.00000	5.1
	54 Bromodichloromethane	83	11.696	11.702 (1.103)	701999	5.00000	5.3
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	542290	5.00000	5.3
	56 Methyl isobutyl ketone	43	12.523	12.518 (1.181)	584654	5.00000	5.6
	57 n-Octane	43	12.753	12.758 (1.202)	655365	5.00000	5.9
	58 Toluene	92	12.748	12.748 (0.865)	781089	5.00000	5.3
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	563840	5.00000	5.4
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	358827	5.00000	5.3
	61 Tetrachloroethene	166	13.516	13.516 (0.917)	620880	5.00000	4.8

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka005.d Report Date: 20-Apr-2011 10:07

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=		====	==		======	======	======
	62 2-Hexanone	43	13.703	13.698 (0.930)	557625	5.00000	5.5
	63 Dibromochloromethane	129	13.943	13.943 (0.946)	772883	5.00000	5.1
	64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	707667	5.00000	5.2
*	65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	2810687	10.0000	
	66 Chlorobenzene	112	14.776	14.776 (1.003)	1122647	5.00000	5.1
	67 n-Nonane	57	14.898	14.899 (1.011)	693477	5.00000	5.7
	68 Ethylbenzene	91	14.856	14.856 (1.008)	1695154	5.00000	5.3
	69 Xylene (m,p)	106	15.010	15.011 (1.018)	1441619	10.0000	11
M	70 Xylenes, Total	106			2146487	5.00000	16
	71 Xylene (o)	106	15.539	15.539 (1.054)	704868	5.00000	5.3
	72 Styrene	104	15.565	15.566 (1.056)	1103670	5.00000	5.4
	73 Bromoform	173	15.859	15.859 (1.076)	729089	5.00000	5.1
	74 Isopropylbenzene	105	15.966	15.966 (1.083)	1981597	5.00000	5.3
	75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	956857	5.00000	5.5
	76 n-Propylbenzene	91	16.457	16.457 (1.117)	2315600	5.00000	5.6
	77 1,2,3-Trichloropropane	75	16.467	16.468 (1.117)	718234	5.00000	5.7
	78 n-Decane	57	16.547	16.548 (1.123)	876257	5.00000	5.8
	79 4-Ethyltoluene	105	16.585	16.585 (1.125)	2062836	5.00000	5.4
	80 2-Chlorotoluene	91	16.622	16.622 (1.128)	1787802	5.00000	5.4
	81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	1701394	5.00000	5.3
	82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	926397	5.00000	5.5
	83 tert-butylbenzene	119	17.022	17.023 (1.155)	1666522	5.00000	5.2
	84 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	1709235	5.00000	5.4
	85 sec-Butylbenzene	105	17.273	17.273 (1.172)	2474045	5.00000	5.4
	86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	2147098	5.00000	5.4
	87 1,3-Dichlorobenzene	146	17.481	17.487 (1.186)	1186297	5.00000	5.1
	88 1,4-Dichlorobenzene	146	17.593	17.594 (1.194)	1197028	5.00000	5.1
	89 Benzyl chloride	91	17.738	17.738 (1.204)	1462331	5.00000	5.5
	90 Undecane	57	17.887	17.887 (1.214)	939939	5.00000	6.6
	91 n-Butylbenzene	91	17.903	17.903 (1.215)	1856882	5.00000	5.9
	92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	1127843	5.00000	5.0
	93 Dodecane	57	19.243	19.243 (1.306)	838092	5.00000	6.1
	94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	838392	5.00000	5.0
	95 1,3-Hexachlorobutadiene	225	20.379	20.380 (1.383)	563694	5.00000	5.2
	96 Naphthalene	128	20.652	20.652 (1.401)	1925403	5.00000	5.2
	97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	719385	5.00000	5.4

QC Flag Legend

Data File: bka005.d

Client ID: ic 132507
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624 Sample Info: ic 132507 Lab Sample ID: ic 132507

Date: 19-APR-2011 14:50

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 99 of 263

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka006.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka006.d

Lab Smp Id: icis 132424 Client Smp ID: icis 132424

Inj Date : 19-APR-2011 15:42

Operator : wrd Inst ID: B.i

Smp Info : icis 132424 Misc Info : 200,1, level4

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 15:42 Cal File: bka006.d

Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	157036	10.0000	10
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	985236	10.0000	10
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	404323	10.0000	10
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	952741	10.0000	10
5 Chloromethane	50	3.339	3.339 (0.363)	199065	10.0000	10
6 Butane	43	3.488	3.488 (0.379)	350040	10.0000	10
7 Vinyl chloride	62	3.520	3.520 (0.383)	280384	10.0000	10
8 1,3-Butadiene	54	3.574	3.574 (0.388)	204529	10.0000	10
9 Bromomethane	94	4.129	4.129 (0.449)	507343	10.0000	10
10 Chloroethane	64	4.326	4.326 (0.470)	243724	10.0000	10
11 2-Methylbutane	43	4.401	4.401 (0.478)	458860	10.0000	10
12 Vinyl bromide	106	4.705	4.705 (0.511)	665831	10.0000	10
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	1633753	10.0000	10
14 Pentane	43	4.924	4.924 (0.535)	757371	10.0000	10

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka006.d Report Date: 20-Apr-2011 10:07

vebor c	Date.	Z0-API-Z011	10.07

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
15 Ethanol	45	5.308	5.308 (0.577)	277452	15.0000	15
16 Ethyl ether	59	5.415	5.415 (0.589)	415462	10.0000	10
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	1308658	10.0000	10
18 Acrolein	56	5.756	5.756 (0.626)	223067	10.0000	11
19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	626482	10.0000	10
20 Acetone	43	6.045	6.045 (0.657)	690460	10.0000	10
21 Carbon disulfide	76	6.269	6.269 (0.681)	1783437	10.0000	10
22 Isopropanol	45	6.322	6.322 (0.687)	551572	10.0000	10
23 Allyl chloride	41	6.541	6.541 (0.711)	584735	10.0000	10
24 Acetonitrile	41	6.626	6.626 (0.720)	371388	10.0000	11
25 Methylene chloride	49	6.802	6.802 (0.739)	543966	10.0000	10
26 Tert-butyl alcohol	59	7.037	7.037 (0.765)	890814	10.0000	10
27 Methyl tert-butyl ether	73	7.187	7.187 (0.781)	1718621	10.0000	10
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	831789	10.0000	10
29 Acrylonitrile	53	7.288	7.288 (0.792)	393900	10.0000	10
30 n-Hexane	57	7.528	7.528 (0.818)	903827	10.0000	10
31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1047397	10.0000	10
32 Vinyl acetate	43	7.966	7.966 (0.866)	1270715	10.0000	11
M 33 1,2-Dichloroethene,Total	61			1555747	20.0000	21
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	723958	10.0000	10
35 Ethyl acetate	88	8.878	8.878 (0.965)	62334	10.0000	10
36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	306515	10.0000	10
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	664703	10.0000	
38 Tetrahydrofuran	42	9.252	9.252 (0.872)	549976	10.0000	11
39 Chloroform	83	9.284	9.284 (1.009)	1297438	10.0000	10
40 Cyclohexane	84	9.535	9.535 (0.899)	972088	10.0000	10
41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	1406951	10.0000	10
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	1537837	10.0000	10
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.945)	2800540	10.0000	10
44 Benzene	78	10.053	10.053 (0.948)	2016732	10.0000	10
45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	785354	10.0000	10
46 n-Heptane	43	10.282	10.282 (0.969)	931596	10.0000	10
* 47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	3233933	10.0000	
48 n-Butanol	56	10.906	10.906 (1.028)	293274	10.0000	10
49 Trichloroethene	95	10.971	10.971 (1.034)	951917	10.0000	10
50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	677216	10.0000	10
51 Methyl methacrylate	69	11.408	11.408 (1.075)	706275	10.0000	10
52 Dibromomethane	174	11.520	11.520 (1.086)	857899	10.0000	10
53 1,4-Dioxane	88	11.520	11.520 (1.086)	301353	10.0000	10
54 Bromodichloromethane	83	11.702	11.702 (1.103)	1456744	10.0000	10
55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1144207	10.0000	11
56 Methyl isobutyl ketone	43	12.518	12.518 (1.180)	1164686	10.0000	10
57 n-Octane	43	12.758	12.758 (1.203)	1245389	10.0000	10
58 Toluene	92		12.748 (0.865)	1616891	10.0000	10
59 1,3-Dichloropropene (trans)	75		13.121 (1.237)	1174900	10.0000	11
60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	740832	10.0000	10
61 Tetrachloroethene	166	13.516	13.516 (0.917)	1383728	10.0000	10

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
62 2-Hexanone	43	13.698	13.698 (0.929)	1131495	10.0000	10
63 Dibromochloromethane	129	13.943	13.943 (0.946)	1687154	10.0000	10
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1495820	10.0000	10
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	2984175	10.0000	
66 Chlorobenzene	112	14.776	14.776 (1.003)	2367246	10.0000	10
67 n-Nonane	57	14.899	14.899 (1.011)	1352992	10.0000	10
68 Ethylbenzene	91	14.856	14.856 (1.008)	3478843	10.0000	10
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3001987	20.0000	21
M 70 Xylenes, Total	106			4479458	10.0000	32
71 Xylene (o)	106	15.539	15.539 (1.054)	1477471	10.0000	10
72 Styrene	104	15.566	15.566 (1.056)	2323410	10.0000	11
73 Bromoform	173	15.859	15.859 (1.076)	1630994	10.0000	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	4131269	10.0000	10
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	1929623	10.0000	10
76 n-Propylbenzene	91	16.457	16.457 (1.117)	4648395	10.0000	11
77 1,2,3-Trichloropropane	75	16.468	16.468 (1.117)	1414747	10.0000	11
78 n-Decane	57	16.548	16.548 (1.123)	1681924	10.0000	10
79 4-Ethyltoluene	105	16.585	16.585 (1.125)	4267098	10.0000	11
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	3601023	10.0000	10(M)
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	3530271	10.0000	10
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	1973580	10.0000	11
83 tert-butylbenzene	119	17.023	17.023 (1.155)	3481398	10.0000	10
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	3525067	10.0000	10
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	5084068	10.0000	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	4468517	10.0000	11
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	2573541	10.0000	10
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	2587919	10.0000	10
89 Benzyl chloride	91	17.738	17.738 (1.204)	3029817	10.0000	11
90 Undecane	57	17.887	17.887 (1.214)	1686620	10.0000	11
91 n-Butylbenzene	91	17.903	17.903 (1.215)	3610451	10.0000	11
92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	2416697	10.0000	10
93 Dodecane	57	19.243	19.243 (1.306)	1418552	10.0000	9.7
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	1724492	10.0000	9.8
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1125968	10.0000	9.8
96 Naphthalene	128	20.652	20.652 (1.401)	3680670	10.0000	9.4
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	1415603	10.0000	9.9

QC Flag Legend

M - Compound response manually integrated.

Data File: bka006.d

Client ID: icis 132424
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: icis 132424
Lab Sample ID: icis 132424

Date: 19-APR-2011 15:42

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 103 of 263

Data File: bka006.d

Lab Sample ID: icis 132424

Inj. Date and Time: 19-APR-2011 15:42

Instrument ID: B.i Client ID: icis 132424

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 3601023

Amount: 10.33

Conc: 10.33

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka007.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka007.d

Lab Smp Id: ic 132422 Client Smp ID: ic 132422

Inj Date : 19-APR-2011 16:34

Operator : wrd Inst ID: B.i

Smp Info : ic 132422 Misc Info : 200,1, level5

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 16:34 Cal File: bka007.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
-	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	231639	15.0000	14
2 Dichlorodifluoromethane	85	3.045	3.040 (0.331)	1437377	15.0000	14
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	598766	15.0000	14
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	1391401	15.0000	14
5 Chloromethane	50	3.339	3.339 (0.363)	293350	15.0000	14
6 Butane	43	3.488	3.488 (0.379)	521368	15.0000	14
7 Vinyl chloride	62	3.520	3.520 (0.382)	418232	15.0000	14
8 1,3-Butadiene	54	3.574	3.574 (0.388)	304903	15.0000	14
9 Bromomethane	94	4.129	4.129 (0.449)	753036	15.0000	14
10 Chloroethane	64	4.331	4.326 (0.471)	362414	15.0000	14
11 2-Methylbutane	43	4.406	4.401 (0.479)	673404	15.0000	14
12 Vinyl bromide	106	4.705	4.705 (0.511)	1014869	15.0000	15
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	2465621	15.0000	15
14 Pentane	43	4.929	4.924 (0.536)	1117488	15.0000	14

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka007.d Report Date: 20-Apr-2011 10:08

						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Con	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
===		====	==		======	======	======
	15 Ethanol	45	5.308	5.308 (0.577)	379947	20.0000	20
	16 Ethyl ether	59	5.415	5.415 (0.588)	631491	15.0000	15
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.629)	2009307	15.0000	15
	18 Acrolein	56	5.756	5.756 (0.625)	337707	15.0000	15
	19 1,1-Dichloroethene	96	5.858	5.852 (0.636)	972662	15.0000	15
	20 Acetone	43	6.045	6.045 (0.657)	1039866	15.0000	15
	21 Carbon disulfide	76	6.269	6.269 (0.681)	2713282	15.0000	15
	22 Isopropanol	45	6.317	6.322 (0.686)	847756	15.0000	15
	23 Allyl chloride	41	6.546	6.541 (0.711)	881080	15.0000	14
	24 Acetonitrile	41	6.626	6.626 (0.720)	536407	15.0000	15
	25 Methylene chloride	49	6.802	6.802 (0.739)	805880	15.0000	14
	26 Tert-butyl alcohol	59	7.032	7.037 (0.764)	1372891	15.0000	15
	27 Methyl tert-butyl ether	73	7.181	7.187 (0.780)	2639589	15.0000	15
	28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	1238608	15.0000	15
	29 Acrylonitrile	53	7.288	7.288 (0.792)	598039	15.0000	15
	30 n-Hexane	57	7.534	7.528 (0.818)	1350889	15.0000	14
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1567056	15.0000	15
	32 Vinyl acetate	43	7.966	7.966 (0.865)	1911252	15.0000	15
M	33 1,2-Dichloroethene,Total	61			2350649	30.0000	29
	34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961)	1112041	15.0000	15
	35 Ethyl acetate	88	8.879	8.878 (0.965)	97227	15.0000	15
	36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	477196	15.0000	15(Q)
*	37 Bromochloromethane	128	9.204	9.199 (1.000)	707722	10.0000	
	38 Tetrahydrofuran	42	9.247	9.252 (0.871)	813871	15.0000	15
	39 Chloroform	83	9.284	9.284 (1.009)	1978722	15.0000	15
	40 Cyclohexane	84	9.535	9.535 (0.898)	1478653	15.0000	15
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.897)	2154019	15.0000	15
	42 Carbon tetrachloride	117	9.732	9.727 (0.917)	2395919	15.0000	15
	43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.944)	4144876	15.0000	15
	44 Benzene	78	10.053	10.053 (0.947)	3037856	15.0000	15
	45 1,2-Dichloroethane	62	10.159	10.159 (0.957)	1188146	15.0000	15
	46 n-Heptane	43	10.282	10.282 (0.969)	1364777	15.0000	14
*	47 1,4-Difluorobenzene	114	10.613	10.608 (1.000)	3405381	10.0000	
	48 n-Butanol	56	10.901	10.906 (1.027)	456578	15.0000	15
	49 Trichloroethene	95	10.971	10.971 (1.034)	1448406	15.0000	15
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	1021765	15.0000	15
	51 Methyl methacrylate	69	11.408	11.408 (1.075)	1090133	15.0000	15
	52 Dibromomethane	174	11.520	11.520 (1.085)	1398287	15.0000	15
	53 1,4-Dioxane	88	11.515	11.520 (1.085)	478246	15.0000	15
	54 Bromodichloromethane	83	11.702	11.702 (1.103)	2220179	15.0000	15
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.161)	1754409	15.0000	15
	56 Methyl isobutyl ketone	43	12.513	12.518 (1.179)	1747319	15.0000	15
	57 n-Octane	43	12.758	12.758 (1.202)	1758731	15.0000	14
	58 Toluene	92	12.753	12.748 (0.865)	2427829	15.0000	15
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.236)	1810182	15.0000	15
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	1124926	15.0000	15
	61 Tetrachloroethene	166	13.522	13.516 (0.917)	2248125	15.0000	15

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=	=======================================	====	==	======	======	======	======
	62 2-Hexanone	43	13.692	13.698 (0.929)	1718705	15.0000	15
	63 Dibromochloromethane	129	13.943	13.943 (0.946)	2666927	15.0000	16
	64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2340956	15.0000	15
*	65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3135785	10.0000	
	66 Chlorobenzene	112	14.781	14.776 (1.003)	3699222	15.0000	15
	67 n-Nonane	57	14.904	14.899 (1.011)	1983573	15.0000	15
	68 Ethylbenzene	91	14.856	14.856 (1.008)	5291212	15.0000	15
	69 Xylene (m,p)	106	15.011	15.011 (1.018)	4531499	30.0000	30
М	70 Xylenes, Total	106			6814394	15.0000	46
	71 Xylene (o)	106	15.539	15.539 (1.054)	2282895	15.0000	15
	72 Styrene	104	15.566	15.566 (1.056)	3599092	15.0000	16
	73 Bromoform	173	15.859	15.859 (1.076)	2631689	15.0000	17
	74 Isopropylbenzene	105	15.966	15.966 (1.083)	6398313	15.0000	15
	75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2923189	15.0000	15
	76 n-Propylbenzene	91	16.457	16.457 (1.117)	6897586	15.0000	15
	77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	2073399	15.0000	15
	78 n-Decane	57	16.553	16.548 (1.123)	2436164	15.0000	14
	79 4-Ethyltoluene	105	16.590	16.585 (1.126)	6556164	15.0000	15
	80 2-Chlorotoluene	91	16.622	16.622 (1.128)	5446135	15.0000	15
	81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	5409454	15.0000	15
	82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	3126546	15.0000	17
	83 tert-butylbenzene	119	17.028	17.023 (1.155)	5434934	15.0000	15
	84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	5458639	15.0000	15
	85 sec-Butylbenzene	105	17.273	17.273 (1.172)	7804179	15.0000	15
	86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6989529	15.0000	16
	87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	4123237	15.0000	16
	88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	4150197	15.0000	16
	89 Benzyl chloride	91	17.738	17.738 (1.204)	4753657	15.0000	16
	90 Undecane	57	17.887	17.887 (1.214)	2384569	15.0000	15
	91 n-Butylbenzene	91	17.903	17.903 (1.215)	5304843	15.0000	15
	92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	3908806	15.0000	16
	93 Dodecane	57	19.243	19.243 (1.306)	2304964	15.0000	15
	94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	3017684	15.0000	16
	95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1861681	15.0000	15
	96 Naphthalene	128	20.652	20.652 (1.401)	6683018	15.0000	16
	97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2546768	15.0000	17

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bka007.d

Client ID: ic 132422 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624 Sample Info: ic 132422 Lab Sample ID: ic 132422

Date: 19-APR-2011 16:34

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 108 of 263

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka008.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka008.d

Lab Smp Id: ic 132406 Client Smp ID: ic 132406

Inj Date : 19-APR-2011 17:27

Operator : wrd Inst ID: B.i

Smp Info : ic 132406 Misc Info : 200,1, level6

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 17:27 Cal File: bka008.d

Als bottle: 2 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
1 Propene	41	2.987	2.992 (0.325)	300120	20.0000	17
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1827829	20.0000	17
3 Chlorodifluoromethane	51	3.067	3.072 (0.333)	766295	20.0000	17
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1762200	20.0000	17
5 Chloromethane	50	3.333	3.339 (0.362)	383654	20.0000	17
6 Butane	43	3.483	3.488 (0.379)	657804	20.0000	17
7 Vinyl chloride	62	3.515	3.520 (0.382)	529337	20.0000	17
8 1,3-Butadiene	54	3.568	3.574 (0.388)	384173	20.0000	17
9 Bromomethane	94	4.123	4.129 (0.448)	947441	20.0000	17
10 Chloroethane	64	4.326	4.326 (0.470)	455574	20.0000	17
11 2-Methylbutane	43	4.395	4.401 (0.478)	837817	20.0000	17
12 Vinyl bromide	106	4.700	4.705 (0.511)	1306088	20.0000	18
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	3170080	20.0000	18
14 Pentane	43	4.924	4.924 (0.535)	1390176	20.0000	17

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka008.d Report Date: 20-Apr-2011 10:08

61 Tetrachloroethene

						AMOUNT	S
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==	=====		=======	======	======
15 Ethanol	45	5.297	5.308	(0.576)	727156	40.0000	36
16 Ethyl ether	59	5.404		(0.587)	821517	20.0000	18
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788	(0.630)	2660922	20.0000	18
18 Acrolein	56	5.751		(0.625)	435833	20.0000	19
19 1,1-Dichloroethene	96	5.852		(0.636)	1286652	20.0000	19
20 Acetone	43	6.034		(0.656)	1348308	20.0000	18
21 Carbon disulfide	76	6.263		(0.681)	3566337	20.0000	18
22 Isopropanol	45	6.301		(0.685)	1112244	20.0000	19
23 Allyl chloride	41	6.541		(0.711)	1154713	20.0000	18
24 Acetonitrile	41	6.621		(0.720)	696363	20.0000	18
25 Methylene chloride	49	6.797		(0.739)	1037427	20.0000	17
26 Tert-butyl alcohol	59	7.011		(0.762)	1822781	20.0000	19
27 Methyl tert-butyl ether	73	7.176		(0.780)	3458603	20.0000	19
28 1,2-Dichloroethene (trans)	61	7.203		(0.783)	1596852	20.0000	18
29 Acrylonitrile	53	7.283		(0.792)	780949	20.0000	18
30 n-Hexane	57	7.528		(0.818)	1747428	20.0000	18
31 1,1-Dichloroethane	63	7.934		(0.862)	2029629	20.0000	18
32 Vinyl acetate	43	7.961		(0.865)	2439891	20.0000	18
M 33 1,2-Dichloroethene, Total	61	7.701	,,,,,,	(0.005)	3071769	40.0000	37
34 1,2-Dichloroethene (cis)	96	8.836	8 836	(0.961)	1474917	20.0000	19
35 Ethyl acetate	88	8.873		(0.965)	128917	20.0000	19
36 Methyl Ethyl Ketone	72	8.846		(0.962)	615079	20.0000	18(Q)
* 37 Bromochloromethane	128	9.199		(1.000)	739787	10.0000	10(0)
38 Tetrahydrofuran	42	9.241		(0.871)	1047298	20.0000	18
39 Chloroform	83	9.284		(1.009)	2598681	20.0000	18
40 Cyclohexane	84	9.535		(0.898)	1918754	20.0000	19
41 1,1,1-Trichloroethane	97	9.524		(0.897)	2824174	20.0000	19
42 Carbon tetrachloride	117	9.727		(0.917)	3200971	20.0000	19
43 2,2,4-Trimethylpentane	57	10.021	10.021		5307613	20.0000	18
44 Benzene	78	10.053		(0.947)	3947918	20.0000	18
45 1,2-Dichloroethane	62	10.159		(0.957)	1533949	20.0000	18
46 n-Heptane	43		10.282		1730671	20.0000	18
* 47 1,4-Difluorobenzene	114		10.608		3530481	10.0000	10
48 n-Butanol	56	10.880	10.906		616899	20.0000	19
49 Trichloroethene	95	10.971	10.971		1916872	20.0000	19
50 1,2-Dichloropropane	63		11.333		1320810	20.0000	19
51 Methyl methacrylate	69	11.403		(1.074)	1421973	20.0000	19
52 Dibromomethane	174	11.520		(1.085)	1909592	20.0000	20
53 1,4-Dioxane	88		11.520		643239	20.0000	20
54 Bromodichloromethane	83		11.702		2909545	20.0000	19
55 1,3-Dichloropropene (cis)	75		12.326		2300228	20.0000	19
56 Methyl isobutyl ketone	43		12.518		2241078	20.0000	18
57 n-Octane	43		12.758		2171293	20.0000	17
58 Toluene	92		12.748		3127459	20.0000	18
59 1,3-Dichloropropene (trans)	92 75		13.121		2373295	20.0000	20
					1479875		
60 1,1,2-Trichloroethane	83	13.308	13.388	(0.200)	14/30/3	20.0000	19

166 13.522 13.516 (0.917) 3066934 20.0000 21

				AMOUNT	S
QUANT SIG				CAL-AMT	ON-COL
MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
====	==	======	======	======	======
43	13.687	13.698 (0.929)	2214121	20.0000	19
129	13.943	13.943 (0.946)	3574952	20.0000	21
107	14.146	14.146 (0.960)	3103635	20.0000	20
117	14.738	14.738 (1.000)	3227755	10.0000	
112	14.781	14.776 (1.003)	4913972	20.0000	19
57	14.904	14.899 (1.011)	2497679	20.0000	18
91	14.856	14.856 (1.008)	6889927	20.0000	19
106	15.011	15.011 (1.018)	5806766	40.0000	38
106			8787539	20.0000	57
106	15.539	15.539 (1.054)	2980773	20.0000	19
104	15.566	15.566 (1.056)	4712279	20.0000	20
173	15.859	15.859 (1.076)	3545428	20.0000	22
105	15.966	15.966 (1.083)	8423912	20.0000	20
83	16.393	16.393 (1.112)	3764719	20.0000	19
91	16.457	16.457 (1.117)	8754898	20.0000	19
75	16.473	16.468 (1.118)	2616172	20.0000	18
57	16.553	16.548 (1.123)	3035655	20.0000	18
105	16.590	16.585 (1.126)	8477020	20.0000	19
91	16.622	16.622 (1.128)	7029702	20.0000	19(M)
105	16.660	16.660 (1.130)	7092974	20.0000	19
118	16.932	16.932 (1.149)	4156543	20.0000	21
119	17.028	17.023 (1.155)	7161981	20.0000	20
105	17.097	17.097 (1.160)	7137272	20.0000	20
105	17.273	17.273 (1.172)	10115821	20.0000	19
119	17.423	17.423 (1.182)	9138941	20.0000	20
146	17.487	17.487 (1.186)	5539311	20.0000	21
146	17.594	17.594 (1.194)	5577771	20.0000	21
91	17.738	17.738 (1.204)	6271146	20.0000	21
57	17.887	17.887 (1.214)	2911051	20.0000	18
91	17.903	17.903 (1.215)	6615177	20.0000	18
146	18.047	18.042 (1.224)	5266072	20.0000	21
57	19.243	19.243 (1.306)	3039375	20.0000	19
180	20.225	20.219 (1.372)	4124576	20.0000	22
225	20.380	20.380 (1.383)	2531888	20.0000	20
128	20.652	20.652 (1.401)	8929532	20.0000	21
180	21.084	21.084 (1.431)	3515989	20.0000	23
	MASS ==== 43 129 107 117 112 57 91 106 106 106 104 173 105 83 91 75 57 105 91 105 118 119 105 118 119 105 118 119 105 105 119 146 146 91 57 91 146 57 180 225 128	MASS RT ==== == == == == ==	MASS RT EXP RT REL RT ==== = ============================	MASS RT EXP RT REL RT RESPONSE ==== ====================================	MASS RT EXP RT REL RT RESPONSE (ppb v/v) ====================================

QC Flag Legend

 $^{{\}tt Q}$ - Qualifier signal failed the ratio test. ${\tt M}$ - Compound response manually integrated.

Data File: bka008.d

Client ID: ic 132406 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624 Sample Info: ic 132406 Lab Sample ID: ic 132406 Date: 19-APR-2011 17:27

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 112 of 263

Data File: bka008.d Lab Sample ID: ic 132406

Inj. Date and Time: 19-APR-2011 17:27

Instrument ID: B.i Client ID: ic 132406

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 7029702

Amount: 18.65

Conc: 18.65

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka009.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka009.d

Lab Smp Id: ic 132405 Client Smp ID: ic 132405

Inj Date : 19-APR-2011 18:19

Operator : wrd Inst ID: B.i

Smp Info : ic 132405 Misc Info : 200,1, level7

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 18:19 Cal File: bka009.d

Als bottle: 3 Calibration Sample, Level: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)	
	====	==	======	======	======	======	
1 Propene	41	2.992	2.992 (0.325)	599770	40.0000	33	
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	3524372	40.0000	32	
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	1524484	40.0000	33	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	3358935	40.0000	31	
5 Chloromethane	50	3.339	3.339 (0.363)	775518	40.0000	33	
6 Butane	43	3.483	3.488 (0.378)	1311417	40.0000	32	
7 Vinyl chloride	62	3.515	3.520 (0.382)	1063608	40.0000	33	
8 1,3-Butadiene	54	3.574	3.574 (0.388)	774512	40.0000	33	
9 Bromomethane	94	4.129	4.129 (0.449)	1898835	40.0000	33	
10 Chloroethane	64	4.326	4.326 (0.470)	919478	40.0000	33	
11 2-Methylbutane	43	4.401	4.401 (0.478)	1662131	40.0000	31	
12 Vinyl bromide	106	4.705	4.705 (0.511)	2642602	40.0000	35	
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	6439223	40.0000	34	
14 Pentane	43	4.929	4.924 (0.536)	2747007	40.0000	32	

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka009.d Report Date: 20-Apr-2011 10:08

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
15 Ethanol	45	5.303	5.308 (0.576)	1860972	100.000	88
16 Ethyl ether	59	5.404	5.415 (0.587)	1668086	40.0000	35
17 1,1,2-Trichloro-1,2,2-triflu	o 101	5.794	5.788 (0.629)	5443061	40.0000	36
18 Acrolein	56	5.751	5.756 (0.625)	861731	40.0000	35
19 1,1-Dichloroethene	96	5.858	5.852 (0.636)	2679149	40.0000	37
20 Acetone	43	6.034	6.045 (0.656)	2794058	40.0000	36
21 Carbon disulfide	76	6.269	6.269 (0.681)	7245165	40.0000	35
22 Isopropanol	45	6.306	6.322 (0.685)	2446977	40.0000	39
23 Allyl chloride	41	6.546	6.541 (0.711)	2304959	40.0000	34
24 Acetonitrile	41	6.626	6.626 (0.720)	1477909	40.0000	36
25 Methylene chloride	49	6.802	6.802 (0.739)	2075277	40.0000	33
26 Tert-butyl alcohol	59	7.005	7.037 (0.761)	4069174	40.0000	40
27 Methyl tert-butyl ether	73	7.176	7.187 (0.780)	6999335	40.0000	36
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	3127358	40.0000	33
29 Acrylonitrile	53	7.288	7.288 (0.792)	1618249	40.0000	36
30 n-Hexane	57	7.534	7.528 (0.818)	3453171	40.0000	33
31 1,1-Dichloroethane	63	7.939	7.934 (0.863)	4045389	40.0000	34
32 Vinyl acetate	43	7.966	7.966 (0.865)	4793064	40.0000	34
M 33 1,2-Dichloroethene,Total	61			6077558	80.0000	69
34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961)	2950200	40.0000	36
35 Ethyl acetate	88	8.878	8.878 (0.965)	260476	40.0000	37
36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	1207999	40.0000	34(Q)
* 37 Bromochloromethane	128	9.204	9.199 (1.000)	781712	10.0000	
38 Tetrahydrofuran	42	9.241	9.252 (0.871)	2084669	40.0000	35
39 Chloroform	83	9.284	9.284 (1.009)	5274929	40.0000	35
40 Cyclohexane	84	9.540	9.535 (0.899)	3724291	40.0000	35
41 1,1,1-Trichloroethane	97	9.530	9.524 (0.898)	5691823	40.0000	37
42 Carbon tetrachloride	117	9.732	9.727 (0.917)	6692210	40.0000	39
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.944)	10092869	40.0000	33
44 Benzene	78	10.058	10.053 (0.948)	7680963	40.0000	34
45 1,2-Dichloroethane	62	10.165	10.159 (0.958)	3132783	40.0000	36
46 n-Heptane	43		10.282 (0.969)	3292791	40.0000	32
* 47 1,4-Difluorobenzene	114	10.613	10.608 (1.000)	3671116	10.0000	32
48 n-Butanol	56	10.880	10.906 (1.025)	1408829	40.0000	43(A)
49 Trichloroethene	95	10.970	10.971 (1.034)	3833558	40.0000	36
50 1,2-Dichloropropane	63	11.339	11.333 (1.068)	2623803	40.0000	35
51 Methyl methacrylate	69	11.408	11.408 (1.075)	2893198	40.0000	38
52 Dibromomethane	174	11.526	11.520 (1.086)	3969697	40.0000	41(A)
53 1,4-Dioxane 54 Bromodichloromethane	88 83		11.520 (1.083) 11.702 (1.103)	1375223 5862932	40.0000	40(A) 37
55 1,3-Dichloropropene (cis)	83 75				40.0000	
			12.326 (1.162)	4661270		38
56 Methyl isobutyl ketone	43	12.508		4388870	40.0000	35
57 n-Octane	43		12.758 (1.203)	3705391	40.0000	27
58 Toluene	92		12.748 (0.865)	5654440	40.0000	32
59 1,3-Dichloropropene (trans)	75		13.121 (1.237)	4813372	40.0000	38
60 1,1,2-Trichloroethane	83		13.388 (0.908)	2919548	40.0000	36
61 Tetrachloroethene	166	13.522	13.516 (0.917)	6228827	40.0000	40(A)

CAL - AMT ON-COL COMPOUNDS CAL - AMT ON-COL COMPOUNDS CAL - AMT ON-COL COMPOUNDS CAL - AMT C							AMOUNT	'S
62 2-Hexanone 43 13.687 13.698 (0.928) 4371736 40.0000 36 63 Dibromochloromethane 129 13.948 13.948 (1.946) 7327509 40.0000 40 64 1,2-Dibromochlane 107 14.151 14.146 (0.960) 6238068 40.0000 38 65 Chlorobenzene-d5 117 14.744 14.738 (1.000) 3356371 10.0000 37 65 Chlorobenzene 112 14.741 14.744 (1.986) 6238068 40.0000 37 67 n-Nonane 57 14.904 14.899 (1.011) 4470311 40.0000 31 68 Ethylbenzene 91 14.861 14.856 (1.003) 13273535 40.0000 35 69 Xylene (m,p) 106 15.016 15.011 (1.018) 10154496 80.0000 64 17 00 Xylenes, Total 106 15.016 15.011 (1.018) 10154496 80.0000 99 71 Xylene (0) 106 15.539 15.539 (1.054) 559688 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 36 75 1.1.2,2-Tetrachloroethane 83 16.398 16.393 (1.012) 6981701 40.0000 36 75 1.1.2,2-Tetrachloroethane 83 16.398 16.393 (1.12) 6981701 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.596 16.596 (1.188) 4487423 40.0000 30 77 1,2,3-Trichloropropane 75 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.658 16.652 (1.128) 15123545 40.0000 33 80 2-Chlorotolune 91 16.628 16.622 (1.128) 12913657 40.0000 33 80 2-Chlorotolune 91 16.628 16.622 (1.128) 12913657 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 35 85 8cc-Butylbenzene 105 17.03 17.097 (1.160) 13446021 40.0000 35 85 8cc-Butylbenzene 105 17.03 17.097 (1.160) 13446021 40.0000 35 85 8cc-Butylbenzene 105 17.03 17.097 (1.160) 13446021 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.03 17.097 (1.160) 13446021 40.0000 36 86 4-Taopropyltolune 119 17.428 17.423 (1.182) 16579794 40.0000 35 85 8cc-Butylbenzene 146 17.459 17.459 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.459 17.459 (1.186) 10716451 40.0000 38 89 B			QUANT SIG				CAL-AMT	ON-COL
62 2-Hexanone	Con	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
63 Dibromochloromethane 129 13.948 13.943 10.946 723759 40.000 40 64 1,2-Dibromochane 107 14.151 14.146 (0.960) 6238068 40.0000 38 * 65 Chlorobenzene-d5 117 14.744 14.738 (1.000) 3356371 10.0000 37 67 n-Nonane 57 14.904 14.899 (1.011) 4470311 40.0000 31 68 Ethylbenzene 91 14.861 14.856 (1.008) 13273535 40.0000 35 69 Xylene (m,p) 106 15.016 15.016 15.011 (1.018) 1054496 80.0000 64 M 70 Xylenes, Total 106 15.539 15.539 (1.054) 15751384 40.0000 99 71 Xylene (o) 106 15.539 15.539 (1.054) 15751384 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 36 73 Romoform 173 15.859 15.859 16.076) 6819478 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 30 77 1,2,3-Trichloropropane 91 16.462 16.478 16.468 16.1181 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 16.123) 5182772 40.0000 33 80 2-Chlorotoluene 91 16.628 16.596 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 80 2-Chlorotoluene 91 16.628 16.697 16.593 16.593 17.123 17.91846021 40.0000 35 84 1,2,4-Trimethylbenzene 105 17.103 17.023 17.127 18575724 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.023 17.127 1879777 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 11.194 10.79777 40.0000 38 89 Benzyl chloride 91 17.743 17.748 11.194 10.79777 40.0000 38	===		====	==		======	======	======
* 65 Chlorobenzene-d5		62 2-Hexanone	43	13.687	13.698 (0.928)	4371736	40.0000	36
* 65 Chlorobenzene-d5		63 Dibromochloromethane	129	13.948	13.943 (0.946)	7237509	40.0000	40
66 Chlorobenzene 112 14.781 14.776 (1.003) 9833865 40.0000 37 67 n-Nonane 57 14.904 14.899 (1.011) 4470311 40.0000 31 68 Ethylbenzene 91 14.861 14.866 (1.008) 13273535 40.0000 35 69 Xylene (m,p) 106 15.016 15.016 (1.018) 10154496 80.0000 64 M 70 Xylenes, Total 106 15.539 15.539 (1.054) 5596888 40.0000 35 71 Xylene (o) 106 15.539 15.539 (1.054) 5596888 40.0000 37 73 Bromoform 173 15.859 15.859 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 30 78 n-Decane 57 16.553 16.554 (1.123) 5182772 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 15123545 40.0000 33 81 1,3,5-Trimethylbenzene 105 16.659 16.666 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 36 83 tert-butylbenzene 105 17.03 17.097 (1.160) 13446021 40.0000 35 84 1,2,4-Trimethylbenzene 105 17.279 17.273 (1.172) 1857572 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 1857574 40.0000 35 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.473 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 1077977 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 1077977 40.0000 38		64 1,2-Dibromoethane	107	14.151	14.146 (0.960)	6238068	40.0000	38
67 n-Nonane 57 14.904 14.899 (1.011) 4470311 40.0000 31 68 Ethylbenzene 91 14.861 14.856 (1.008) 13273535 40.0000 35 69 Xylene (m,p) 106 15.016 15.011 (1.018) 10154496 80.0000 64 170 Xylenes, Total 106 15.539 (1.054) 5596888 40.0000 35 71 Xylene (o) 106 15.539 15.539 (1.054) 5596888 40.0000 37 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.398 (1.012) 6981701 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 80 77 1,2,3-Trichloropropane 105 16.553 16.548 (1.123) 5182772 40.0000 32 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 35 80 2-Chlorotoluene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 35 82 Alpha Methyl Styrene 118 16.937 17.033 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.023 (1.155) 13516071 40.0000 35 85 8ce-Butylbenzene 105 17.103 17.023 (1.155) 13516071 40.0000 35 86 4-Tsopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 34 88 1.4-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 1077977 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 1077977 40.0000 38	*	65 Chlorobenzene-d5	117	14.744	14.738 (1.000)	3356371	10.0000	
68 Ethylbenzene 91 14.861 14.856 (1.008) 13273535 40.0000 35 69 Xylene (m,p) 106 15.016 15.011 (1.018) 10154496 80.0000 64 M 70 Xylenes, Total 106 15.539 15.539 (1.054) 5596888 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 30 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 32 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.033 17.023 (1.155) 13516071 40.0000 36 85 sec-Butylbenzene 105 17.299 17.273 (1.172) 1857572 40.0000 36 86 4-Isopropyltoluene 109 17.428 17.423 (1.182) 16797947 40.0000 36 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38		66 Chlorobenzene	112	14.781	14.776 (1.003)	9833865	40.0000	37
69 Xylene (m,p) 106 15.016 15.011 (1.018) 10154496 80.0000 64 M 70 Xylenes, Total 106 15.539 15.539 (1.054) 5596888 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 36 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 105 17.03 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38		67 n-Nonane	57	14.904	14.899 (1.011)	4470311	40.0000	31
M 70 Xylenes, Total 166 15.539 15.51384 40.0000 99 71 Xylene (o) 106 15.539 15.539 (1.054) 5596888 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.		68 Ethylbenzene	91	14.861	14.856 (1.008)	13273535	40.0000	35
71 Xylene (o) 106 15.539 15.539 (1.054) 5596888 40.0000 35 72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.550 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.023 (1.155) 13516071 40.0000 35 85 sec-Butylbenzene 105 17.103 17.027 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 35 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		69 Xylene (m,p)	106	15.016	15.011 (1.018)	10154496	80.0000	64
72 Styrene 104 15.571 15.566 (1.056) 8850176 40.0000 37 73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 80 2-Chlorotoluene 91 16.668 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 105 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 35 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39	M	70 Xylenes, Total	106			15751384	40.0000	99
73 Bromoform 173 15.859 15.859 (1.076) 6819478 40.0000 40 74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 105 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		71 Xylene (o)	106	15.539	15.539 (1.054)	5596888	40.0000	35
74 Isopropylbenzene 105 15.971 15.966 (1.083) 16038905 40.0000 36 75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 (M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.033 17.023 (1.155) 13516071 40.0000 35 85 sec-Butylbenzene 105 17.103 17.077 1.1		72 Styrene	104	15.571	15.566 (1.056)	8850176	40.0000	37
75 1,1,2,2-Tetrachloroethane 83 16.398 16.393 (1.112) 6981701 40.0000 34 76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33(M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 1077977 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		73 Bromoform	173	15.859	15.859 (1.076)	6819478	40.0000	40
76 n-Propylbenzene 91 16.462 16.457 (1.117) 14790847 40.0000 30 77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 (M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 36 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) <td< td=""><td></td><td>74 Isopropylbenzene</td><td>105</td><td>15.971</td><td>15.966 (1.083)</td><td>16038905</td><td>40.0000</td><td>36</td></td<>		74 Isopropylbenzene	105	15.971	15.966 (1.083)	16038905	40.0000	36
77 1,2,3-Trichloropropane 75 16.478 16.468 (1.118) 4487423 40.0000 30 78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 (M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		75 1,1,2,2-Tetrachloroethane	83	16.398	16.393 (1.112)	6981701	40.0000	34
78 n-Decane 57 16.553 16.548 (1.123) 5182772 40.0000 29 79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 (M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		76 n-Propylbenzene	91	16.462	16.457 (1.117)	14790847	40.0000	30
79 4-Ethyltoluene 105 16.596 16.585 (1.126) 15123545 40.0000 33 (M) 80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33 (M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		77 1,2,3-Trichloropropane	75	16.478	16.468 (1.118)	4487423	40.0000	30
80 2-Chlorotoluene 91 16.628 16.622 (1.128) 12913657 40.0000 33(M) 81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		78 n-Decane	57	16.553	16.548 (1.123)	5182772	40.0000	29
81 1,3,5-Trimethylbenzene 105 16.665 16.660 (1.130) 13388540 40.0000 35 82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		79 4-Ethyltoluene	105	16.596	16.585 (1.126)	15123545	40.0000	33
82 Alpha Methyl Styrene 118 16.937 16.932 (1.149) 8021611 40.0000 40 83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		80 2-Chlorotoluene	91	16.628	16.622 (1.128)	12913657	40.0000	33(M)
83 tert-butylbenzene 119 17.033 17.023 (1.155) 13516071 40.0000 36 84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		81 1,3,5-Trimethylbenzene	105	16.665	16.660 (1.130)	13388540	40.0000	35
84 1,2,4-Trimethylbenzene 105 17.103 17.097 (1.160) 13446021 40.0000 35 85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		82 Alpha Methyl Styrene	118	16.937	16.932 (1.149)	8021611	40.0000	40
85 sec-Butylbenzene 105 17.279 17.273 (1.172) 18575724 40.0000 34 86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		83 tert-butylbenzene	119	17.033	17.023 (1.155)	13516071	40.0000	36
86 4-Isopropyltoluene 119 17.428 17.423 (1.182) 16797947 40.0000 35 87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		84 1,2,4-Trimethylbenzene	105	17.103	17.097 (1.160)	13446021	40.0000	35
87 1,3-Dichlorobenzene 146 17.492 17.487 (1.186) 10716451 40.0000 38 88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		85 sec-Butylbenzene	105	17.279	17.273 (1.172)	18575724	40.0000	34
88 1,4-Dichlorobenzene 146 17.599 17.594 (1.194) 10779777 40.0000 38 89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		86 4-Isopropyltoluene	119	17.428	17.423 (1.182)	16797947	40.0000	35
89 Benzyl chloride 91 17.743 17.738 (1.203) 12462482 40.0000 39		87 1,3-Dichlorobenzene	146	17.492	17.487 (1.186)	10716451	40.0000	38
•		88 1,4-Dichlorobenzene	146	17.599	17.594 (1.194)	10779777	40.0000	38
90 Undecane 57 17.887 17.887 (1.213) 4585532 40.0000 27		89 Benzyl chloride	91	17.743	17.738 (1.203)	12462482	40.0000	39
		90 Undecane	57	17.887	17.887 (1.213)	4585532	40.0000	27
91 n-Butylbenzene 91 17.908 17.903 (1.215) 10669300 40.0000 28		91 n-Butylbenzene	91	17.908	17.903 (1.215)	10669300	40.0000	28
92 1,2-Dichlorobenzene 146 18.047 18.042 (1.224) 10383099 40.0000 39		92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	10383099	40.0000	39
93 Dodecane 57 19.248 19.243 (1.306) 5509471 40.0000 34		93 Dodecane	57	19.248	19.243 (1.306)	5509471	40.0000	34
94 1,2,4-Trichlorobenzene 180 20.225 20.219 (1.372) 8238766 40.0000 41(A)		94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	8238766	40.0000	41(A)
95 1,3-Hexachlorobutadiene 225 20.385 20.380 (1.383) 4648758 40.0000 36		95 1,3-Hexachlorobutadiene	225	20.385	20.380 (1.383)	4648758	40.0000	36
96 Naphthalene 128 20.657 20.652 (1.401) 18709280 40.0000 43(A)		96 Naphthalene	128	20.657	20.652 (1.401)	18709280	40.0000	43(A)
97 1,2,3-Trichlorobenzene 180 21.089 21.084 (1.430) 7250992 40.0000 45(A)		97 1,2,3-Trichlorobenzene	180	21.089	21.084 (1.430)	7250992	40.0000	45(A)

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q - Qualifier signal failed the ratio test.

 M - Compound response manually integrated.

Data File: bka009.d

Client ID: ic 132405 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624 Sample Info: ic 132405 Lab Sample ID: ic 132405 Date: 19-APR-2011 18:19

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 117 of 263

Data File: bka009.d Lab Sample ID: ic 132405

Inj. Date and Time: 19-APR-2011 18:19

Instrument ID: B.i Client ID: ic 132405

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.63

Response: 12913657

Amount: 32.94

Conc: 32.94

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka014.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka014.d

Lab Smp Id: ic 132521 Client Smp ID: ic 132521

Inj Date : 20-APR-2011 08:43

Operator : wrd Inst ID: B.i

Smp Info : ic 132521 Misc Info : 200,1, level1

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 20-Apr-2011 08:43 Cal File: bka014.d

Als bottle: 1 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	IQ.
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	22007	0.20000	0.20(a)
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	10328	0.20000	0.22(a)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	21439	0.20000	0.20
5 Chloromethane	50	3.339	3.339 (0.363)	5128	0.20000	0.22(a)
6 Butane	43	3.483	3.488 (0.379)	9933	0.20000	0.25(aQ)
7 Vinyl chloride	62	3.515	3.520 (0.382)	6189	0.20000	0.20
8 1,3-Butadiene	54	3.573	3.574 (0.388)	4689	0.20000	0.20
9 Bromomethane	94	4.129	4.129 (0.449)	11458	0.20000	0.20
10 Chloroethane	64	4.331	4.326 (0.471)	5473	0.20000	0.20(a)
11 2-Methylbutane	43	4.390	4.401 (0.477)	12218	0.20000	0.23
12 Vinyl bromide	106	4.705	4.705 (0.511)	15742	0.20000	0.21
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	37349	0.20000	0.20
14 Pentane	43	4.924	4.924 (0.535)	18515	0.20000	0.22(a)
16 Ethyl ether	59	5.468	5.415 (0.594)	9120	0.20000	0.20

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka014.d Report Date: 20-Apr-2011 10:08

					TRUOMA	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
17 1,1,2-Trichloro-1,2,2-triflu	101	5.794	5.788 (0.630	31501	0.20000	0.21
19 1,1-Dichloroethene	96	5.852	5.852 (0.636) 15651	0.20000	0.22(M)
21 Carbon disulfide	76	6.258	6.269 (0.680) 42175	0.20000	0.21(a)
23 Allyl chloride	41	6.551	6.541 (0.712) 13588	0.20000	0.20
25 Methylene chloride	49	6.808	6.802 (0.740	14320	0.20000	0.23(a)
27 Methyl tert-butyl ether	73	7.267	7.187 (0.790	38407	0.20000	0.20
28 1,2-Dichloroethene (trans)	61	7.208	7.203 (0.784	18666	0.20000	0.20
29 Acrylonitrile	53	7.315	7.288 (0.795	7966	0.20000	0.18(a)
30 n-Hexane	57	7.533	7.528 (0.819	21696	0.20000	0.21
31 1,1-Dichloroethane	63	7.928	7.934 (0.862	23482	0.20000	0.20
M 33 1,2-Dichloroethene,Total	61			35394	0.40000	0.40
34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961) 16728	0.20000	0.20
36 Methyl Ethyl Ketone	72	8.910	8.857 (0.969) 7877	0.20000	0.23(aQ)
* 37 Bromochloromethane	128	9.199	9.199 (1.000	774307	10.0000	
39 Chloroform	83	9.279	9.284 (1.009	29536	0.20000	0.20
40 Cyclohexane	84	9.529	9.535 (0.898) 22729	0.20000	0.21
41 1,1,1-Trichloroethane	97	9.519	9.524 (0.897	32159	0.20000	0.20
42 Carbon tetrachloride	117	9.722	9.727 (0.916	34647	0.20000	0.20
43 2,2,4-Trimethylpentane	57	10.020	10.021 (0.945	61280	0.20000	0.20(M)
44 Benzene	78	10.058	10.053 (0.948	47198	0.20000	0.21
45 1,2-Dichloroethane	62	10.165	10.159 (0.958) 16884	0.20000	0.19(a)
46 n-Heptane	43	10.277	10.282 (0.969) 21502	0.20000	0.21
* 47 1,4-Difluorobenzene	114	10.608	10.608 (1.000	3749851	10.0000	
48 n-Butanol	56	Comp	ound Not Detect	ted.		
49 Trichloroethene	95	10.970	10.971 (1.034) 21871	0.20000	0.20
50 1,2-Dichloropropane	63	11.339	11.333 (1.069) 14653	0.20000	0.19(a)
51 Methyl methacrylate	69	11.435	11.408 (1.078) 12941	0.20000	0.16(a)
52 Dibromomethane	174	11.525	11.520 (1.087	20967	0.20000	0.21
53 1,4-Dioxane	88	Comp	oound Not Detect	ted.		
54 Bromodichloromethane	83	11.702	11.702 (1.103	30360	0.20000	0.19(a)
55 1,3-Dichloropropene (cis)	75	12.331	12.326 (1.163) 23023	0.20000	0.18(a)
56 Methyl isobutyl ketone	43	12.588	12.518 (1.187) 20503	0.20000	0.16(a)
57 n-Octane	43	12.753	12.758 (1.202) 29494	0.20000	0.21(a)
58 Toluene	92	12.758	12.748 (0.866) 38095	0.20000	0.21
59 1,3-Dichloropropene (trans)	75	13.137	13.121 (1.238) 23351	0.20000	0.18(a)
60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908) 16226	0.20000	0.20
61 Tetrachloroethene	166		13.516 (0.917		0.20000	0.21
62 2-Hexanone	43	13.762	13.698 (0.934) 17520	0.20000	0.14(aM)
63 Dibromochloromethane	129	13.948	13.943 (0.946		0.20000	0.18(a)
64 1,2-Dibromoethane	107		14.146 (0.960		0.20000	0.19(a)
* 65 Chlorobenzene-d5	117		14.738 (1.000		10.0000	
66 Chlorobenzene	112		14.776 (1.003		0.20000	0.21
67 n-Nonane	57		14.899 (1.011		0.20000	0.20
68 Ethylbenzene	91		14.856 (1.008		0.20000	0.20
69 Xylene (m,p)	106		15.011 (1.019		0.40000	0.41(a)
M 70 Xylenes, Total	106		, , , , , , , , , , , , , , , , , , , ,	99139	0.20000	0.61
71 Xylene (o)	106	15.544	15.539 (1.055		0.20000	0.20
(+ /	_00		(1.000	, 52072		

Report Date: 20-Apr-2011 10:08

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
72 Styrene	104	15.571	15.566 (1.056)	42751	0.20000	0.17(a)
73 Bromoform	173	15.859	15.859 (1.076)	30436	0.20000	0.18(a)
74 Isopropylbenzene	105	15.966	15.966 (1.083)	89288	0.20000	0.20
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	40919	0.20000	0.19(a)
76 n-Propylbenzene	91	16.457	16.457 (1.117)	101095	0.20000	0.20
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	31796	0.20000	0.21(a)
78 n-Decane	57	16.553	16.548 (1.123)	37227	0.20000	0.20(a)
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	90304	0.20000	0.20
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	81335	0.20000	0.20(M)
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	76515	0.20000	0.20
82 Alpha Methyl Styrene	118	16.937	16.932 (1.149)	31216	0.20000	0.15(a)
83 tert-butylbenzene	119	17.022	17.023 (1.155)	77758	0.20000	0.20
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	73017	0.20000	0.19(a)
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	112414	0.20000	0.20
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	92926	0.20000	0.19(a)
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	53498	0.20000	0.19(a)
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	52849	0.20000	0.19(a)
89 Benzyl chloride	91	17.743	17.738 (1.204)	50062	0.20000	0.16(a)
91 n-Butylbenzene	91	17.903	17.903 (1.215)	73222	0.20000	0.19(a)
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	52468	0.20000	0.19(a)
94 1,2,4-Trichlorobenzene	180	20.230	20.219 (1.373)	24157	0.20000	0.12(a)
95 1,3-Hexachlorobutadiene	225	20.379	20.380 (1.383)	27243	0.20000	0.21
96 Naphthalene	128	20.668	20.652 (1.402)	45960	0.20000	0.10(a)
97 1,2,3-Trichlorobenzene	180	21.089	21.084 (1.431)	21804	0.20000	0.13(aM)

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Data File: bka014.d Dat

Client ID: ic 132521
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624 Sample Info: ic 132521 Lab Sample ID: ic 132521 Date: 20-APR-2011 08:43

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 122 of 263

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 35 Ethyl acetate

CAS #: 141-78-6

Report Date: 04/20/2011

Processing Integration Results

RT: 8.92

Response: 817

Amount: 0.117294

Conc: 0.117294

Manual Integration Results

RT: 8.93

Response: 1136

Amount: 0.163092

Conc: 0.163092

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 81335

Amount: 0.204313

Conc: 0.204313

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 43 2,2,4-Trimethylpentane

CAS #: 540-84-1

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 10.02

Manual Integration Results

RT: 10.02

Response: 61280

Amount: 0.197586

Conc: 0.197586

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 19 1,1-Dichloroethene

CAS #: 75-35-4

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 5.85

Manual Integration Results

RT: 5.85

Response: 15651

Amount: 0.216330

Conc: 0.216330

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521 Compound: 62 2-Hexanone

CAS #: 591-78-6

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 13.70

Manual Integration Results

RT: 13.76

Response: 17520

Amount: 0.141800

Conc: 0.141800

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 32 Vinyl acetate

CAS #: 108-05-4

Report Date: 04/20/2011

Processing Integration Results

RT: 7.99

Response: 20190

Amount: 0.145989

Conc: 0.145989

Manual Integration Results

RT: 7.99

Response: 24878

Amount: 0.179887

Conc: 0.179887

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 97 1,2,3-Trichlorobenzene

CAS #: 87-61-6

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 21.08

Manual Integration Results

RT: 21.09

Response: 21804

Amount: 0.134025

Conc: 0.134025

File Uploaded By: pd

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2331	0.1973		8.46	10.0	-15.4	30.0
Dichlorodifluoromethane	Ave	1.431	1.322		9.24	10.0	-7.6	30.0
Freon 22	Ave	0.5941	0.5298		8.92	10.0	-10.8	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.387	1.283		9.25	10.0	-7.5	30.0
Chloromethane	Ave	0.2978	0.2639		8.86	10.0	-11.4	30.0
n-Butane	Ave	0.5171	0.4435		8.57	10.0	-14.2	30.0
Vinyl chloride	Ave	0.4091	0.3702		9.05	10.0	-9.5	30.0
1,3-Butadiene	Ave	0.2973	0.2734		9.19	10.0	-8.1	30.0
Bromomethane	Ave	0.7386	0.6607		8.94	10.0	-10.5	30.0
Chloroethane	Ave	0.3564	0.3213		9.01	10.0	-9.8	30.0
Isopentane	Ave	0.6819	0.5785		8.48	10.0	-15.2	30.0
Bromoethene (Vinyl Bromide)	Ave	0.9762	0.9487		9.72	10.0	-2.8	30.0
Trichlorofluoromethane	Ave	2.400	2.300		9.58	10.0	-4.2	30.0
n-Pentane	Ave	1.095	0.9464		8.64	10.0	-13.6	30.0
Ethanol	Ave	0.2702	0.2447		13.6	15.0	-9.4	30.0
Ethyl ether	Ave	0.6026	0.5531		9.18	10.0	-8.2	30.0
Acrolein	Ave	0.3155	0.2628		8.33	10.0	-16.7	30.0
Freon TF	Ave	1.945	2.074		10.7	10.0	6.6	30.0
1,1-Dichloroethene	Ave	0.9344	1.009		10.8	10.0	8.0	30.0
Acetone	Ave	0.9915	0.9478		9.56	10.0	-4.4	30.0
Carbon disulfide	Ave	2.620	2.594		9.90	10.0	-1.0	30.0
Isopropyl alcohol	Ave	0.8056	0.7123		8.84	10.0	-11.6	30.0
3-Chloropropene	Ave	0.8674	0.7902		9.11	10.0	-8.9	30.0
Acetonitrile	Ave	0.5188	0.4963		9.57	10.0	-4.3	30.0
Methylene Chloride	Ave	0.8093	0.7949		9.82	10.0	-1.8	30.0
tert-Butyl alcohol	Ave	1.308	1.172		8.96	10.0	-10.4	30.0
Methyl tert-butyl ether	Ave	2.508	2.457		9.79	10.0	-2.1	30.0
trans-1,2-Dichloroethene	Ave	1.205	1.151		9.55	10.0	-4.5	30.0
Acrylonitrile	Ave	0.5756	0.5492		9.54	10.0	-4.6	30.0
n-Hexane	Ave	1.323	1.240		9.38	10.0	-6.2	30.0
1,1-Dichloroethane	Ave	1.520	1.460		9.60	10.0	-4.0	30.0
Vinyl acetate	Ave	1.786	1.668		9.33	10.0	-6.6	30.0
cis-1,2-Dichloroethene	Ave	1.057	1.082		10.2	10.0	2.4	30.0
Methyl Ethyl Ketone	Ave	0.4507	0.4467		9.91	10.0	-0.9	30.0
Ethyl acetate	Ave	0.0900	0.0903		10.0	10.0	0.4	30.0
Tetrahydrofuran	Ave	0.1605	0.1528		9.52	10.0	-4.8	30.0
Chloroform	Ave	1.912	1.861		9.73	10.0	-2.7	30.0
1,1,1-Trichloroethane	Ave	0.4243	0.4184		9.86	10.0	-1.4	30.0
Cyclohexane	Ave	0.2915	0.2905		9.96	10.0	-0.3	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4682	0.4614		9.85	10.0	-1.5	30.0
2,2,4-Trimethylpentane	Ave	0.8271	0.8032		9.71	10.0	-2.9	30.0
Benzene	Ave	0.6091	0.5994		9.84	10.0	-1.6	30.0
1,2-Dichloroethane	Ave	0.2353	0.2273		9.66	10.0	-3.4	30.0
n-Heptane	Ave	0.2780	0.2573		9.25	10.0	-7.5	30.0
n-Butanol	Ave	0.0903	0.0754		8.35	10.0	-16.5	30.0
Trichloroethene	Ave	0.2862	0.2828		9.88	10.0	-1.2	30.0
1,2-Dichloropropane	Ave	0.2015	0.1915		9.50	10.0	-5.0	30.0
Methyl methacrylate	Ave	0.2099	0.2067		9.85	10.0	-1.5	30.0
1,4-Dioxane	Ave	0.0934	0.0832		8.91	10.0	-10.9	30.0
Dibromomethane	Ave	0.2655	0.2760		10.4	10.0	4.0	30.0
Bromodichloromethane	Ave	0.4324	0.4387		10.1	10.0	1.5	30.0
cis-1,3-Dichloropropene	Ave	0.3345	0.3263		9.75	10.0	-2.5	30.0
methyl isobutyl ketone	Ave	0.3442	0.3231		9.38	10.0	-6.1	30.0
Toluene	Ave	0.5245	0.5113		9.75	10.0	-2.5	30.0
n-Octane	Ave	0.3680	0.3365		9.14	10.0	-8.6	30.0
trans-1,3-Dichloropropene	Ave	0.3432	0.3349		9.75	10.0	-2.4	30.0
1,1,2-Trichloroethane	Ave	0.2404	0.2269		9.44	10.0	-5.6	30.0
Tetrachloroethene	Ave	0.4633	0.4648		10.0	10.0	0.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.3625	0.3381		9.32	10.0	-6.7	30.0
Dibromochloromethane	Ave	0.5400	0.5711		10.6	10.0	5.8	30.0
1,2-Dibromoethane	Ave	0.4856	0.4772		9.83	10.0	-1.7	30.0
Chlorobenzene	Ave	0.7869	0.7575		9.62	10.0	-3.7	30.0
Ethylbenzene	Ave	1.133	1.112		9.82	10.0	-1.8	30.0
n-Nonane	Ave	0.4348	0.4169		9.59	10.0	-4.1	30.0
m,p-Xylene	Ave	0.4744	0.4755		20.0	20.0	0.2	30.0
Xylene, o-	Ave	0.4741	0.4655		9.81	10.0	-1.8	30.0
Styrene	Ave	0.7215	0.7387		10.2	10.0	2.4	30.0
Bromoform	Ave	0.5086	0.5702		11.2	10.0	12.1	30.0
Cumene	Ave	1.332	1.355		10.2	10.0	1.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6205	0.5901		9.51	10.0	-4.9	30.0
n-Propylbenzene	Ave	1.466	1.502		10.2	10.0	2.5	30.0
1,2,3-Trichloropropane	Ave	0.4484	0.4416		9.85	10.0	-1.5	30.0
n-Decane	Ave	0.5373	0.5200		9.68	10.0	-3.2	30.0
4-Ethyltoluene	Ave	1.354	1.398		10.3	10.0	3.2	30.0
2-Chlorotoluene	Ave	1.168	1.173		10.0	10.0	0.5	30.0
1,3,5-Trimethylbenzene	Ave	1.135	1.134		9.99	10.0	-0.0	30.0
Alpha Methyl Styrene	Ave	0.6037	0.6484		10.7	10.0	7.4	30.0
tert-Butylbenzene	Ave	1.130	1.159		10.3	10.0	2.6	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	1.129	1.112		9.85	10.0	-1.5	30.0
sec-Butylbenzene	Ave	1.633	1.663		10.2	10.0	1.8	30.0
4-Isopropyltoluene	Ave	1.423	1.480		10.4	10.0	4.0	30.0
1,3-Dichlorobenzene	Ave	0.8316	0.8396		10.1	10.0	1.0	30.0
1,4-Dichlorobenzene	Ave	0.8368	0.8530		10.2	10.0	1.9	30.0
Benzyl chloride	Ave	0.9425	0.9602		10.2	10.0	1.9	30.0
n-Undecane	Ave	0.5067	0.5302		10.5	10.0	4.6	30.0
n-Butylbenzene	Ave	1.124	1.170		10.4	10.0	4.1	30.0
1,2-Dichlorobenzene	Ave	0.7957	0.7704		9.68	10.0	-3.2	30.0
n-Dodecane	Ave	0.4886	0.4604		9.42	10.0	-5.8	30.0
1,2,4-Trichlorobenzene	Ave	0.5921	0.5935		10.0	10.0	0.2	30.0
Hexachlorobutadiene	Ave	0.3836	0.3837		10.0	10.0	0.0	30.0
Naphthalene	Ave	1.308	1.351		10.3	10.0	3.3	30.0
1,2,3-Trichlorobenzene	Ave	0.4773	0.5300		11.1	10.0	11.0	30.0

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Page 1

Report Date: 20-Apr-2011 10:54

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka016.d

Lab Smp Id: icv 133740 Client Smp ID: icv 133740

Inj Date : 20-APR-2011 10:27

Operator : wrd Inst ID: B.i

Smp Info : icv 133740 Misc Info : 200,1, icv

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date: 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date: 20-Apr-2011 08:43 Cal File: bka014.d QC Sample: METHSPIKE

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

 Name	Value	Description
 DF Uf	1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)
VÍ	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.987	2.992 (0.325)	153498	8.46262	8.5
2 Dichlorodifluoromethane	85	3.035	3.040 (0.330)	1028670	9.24172	9.2
3 Chlorodifluoromethane	51	3.067	3.072 (0.333)	412128	8.91638	8.9
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.221	3.232 (0.350)	998052	9.25207	9.3
5 Chloromethane	50	3.333	3.339 (0.362)	205246	8.85936	8.9
6 Butane	43	3.478	3.488 (0.378)	345001	8.57487	8.6
7 Vinyl chloride	62	3.510	3.520 (0.382)	287997	9.04780	9.0
8 1,3-Butadiene	54	3.563	3.574 (0.387)	212629	9.19137	9.2
9 Bromomethane	94	4.118	4.129 (0.448)	513956	8.94357	8.9
10 Chloroethane	64	4.321	4.326 (0.470)	249895	9.01345	9.0
11 2-Methylbutane	43	4.395	4.401 (0.478)	449989	8.48217	8.5
12 Vinyl bromide	106	4.700	4.705 (0.511)	737930	9.71582	9.7
13 Trichlorofluoromethane	101	4.790	4.801 (0.521)	1788860	9.57959	9.6
14 Pentane	43	4.918	4.924 (0.535)	736149	8.64245	8.6

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Report Date: 20-Apr-2011 10:54

						CONCENTRA	
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL R		(ppb v/v)	(ppb v/v)
==	=======================================	====	==	======	= ======	======	======
	15 Ethanol	45	5.292	5.308 (0.57	5) 286295	13.6202	14
	16 Ethyl ether	59	5.404	5.415 (0.58	7) 430246	9.17636	9.2
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.783	5.788 (0.62	9) 1613058	10.6607	11
	18 Acrolein	56	5.746	5.756 (0.62	5) 204390	8.32594	8.3
	19 1,1-Dichloroethene	96	5.847	5.852 (0.63	6) 784741	10.7951	11
	20 Acetone	43	6.034	6.045 (0.65	6) 737258	9.55696	9.6
	21 Carbon disulfide	76	6.258	6.269 (0.68	0) 2018109	9.89862	9.9
	22 Isopropanol	45	6.306	6.322 (0.68	6) 554096	8.84051	8.8
	23 Allyl chloride	41	6.536	6.541 (0.71	0) 614689	9.10835	9.1
	24 Acetonitrile	41	6.621	6.626 (0.72	386079	9.56533	9.6
	25 Methylene chloride	49	6.797	6.802 (0.73	9) 618355	9.82058	9.8
	26 Tert-butyl alcohol	59	7.011	7.037 (0.76	2) 911755	8.95743	9.0
	27 Methyl tert-butyl ether	73	7.176	7.187 (0.78	0) 1911033	9.79282	9.8
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.78	2) 894930	9.54673	9.5
	29 Acrylonitrile	53	7.283	7.288 (0.79	2) 427174	9.53827	9.5
	30 n-Hexane	57	7.528	7.528 (0.81	8) 964918	9.37689	9.4
	31 1,1-Dichloroethane	63	7.934	7.934 (0.86	2) 1135358	9.60246	9.6
	32 Vinyl acetate	43	7.961	7.966 (0.86	5) 1297166	9.33479	9.3
M	33 1,2-Dichloroethene,Total	61			1736306	19.7824	20
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.96	1) 841376	10.2357	10
	35 Ethyl acetate	88	8.878	8.878 (0.96	5) 70234	10.0352	10
	36 Methyl Ethyl Ketone	72	8.846	8.857 (0.96	2) 347436	9.90754	9.9(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.00	0) 778014	10.0000	
	38 Tetrahydrofuran	42	9.241	9.252 (0.87	1) 570162	9.51636	9.5
	39 Chloroform	83	9.279	9.284 (1.00	9) 1447429	9.72907	9.7
	40 Cyclohexane	84	9.535	9.535 (0.89	9) 1084319	9.96363	10
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.89	8) 1561721	9.86017	9.9
	42 Carbon tetrachloride	117	9.727	9.727 (0.91	7) 1721845	9.85183	9.9
	43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.94	4) 2997762	9.70951	9.7
	44 Benzene	78	10.053	10.053 (0.94	8) 2237210	9.83859	9.8
	45 1,2-Dichloroethane	62	10.159	10.159 (0.95	8) 848358	9.65723	9.7
	46 n-Heptane	43	10.282	10.282 (0.96	9) 960255	9.25201	9.3
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.00	0) 3732948	10.0000	
	48 n-Butanol	56	10.885	10.906 (1.02	6) 281413	8.34898	8.3
	49 Trichloroethene	95	10.971	10.971 (1.03	4) 1055626	9.87957	9.9
	50 1,2-Dichloropropane	63	11.333	11.333 (1.06	8) 714662	9.49919	9.5
	51 Methyl methacrylate	69	11.408	11.408 (1.07	5) 771597	9.84967	9.8
	52 Dibromomethane	174	11.520	11.520 (1.08	6) 1030258	10.3951	10
	53 1,4-Dioxane	88	11.515	11.520 (1.08	6) 310531	8.90736	8.9
	54 Bromodichloromethane	83	11.702	11.702 (1.10	3) 1637464	10.1451	10
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.16	2) 1217637	9.75255	9.8
	56 Methyl isobutyl ketone	43	12.508	12.518 (1.17	9) 1205677	9.38320	9.4
	57 n-Octane	43	12.758	12.758 (1.20		9.14223	9.1
	58 Toluene	92	12.748	12.748 (0.86	5) 1746217	9.74755	9.7
	59 1,3-Dichloropropene (trans)	75	13.121			9.75448	9.8
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.90		9.43591	9.4
	61 Tetrachloroethene	166		13.516 (0.91		10.0297	10

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Report Date: 20-Apr-2011 10:54

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==			======	======
62 2-Hexanone	43	13.692	13.698 (0.929)	1154595	9.32422	9.3
63 Dibromochloromethane	129	13.943	13.943 (0.946)	1950373	10.5731	11
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1629836	9.82684	9.8
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3415798	10.0000	
66 Chlorobenzene	112	14.781	14.776 (1.003)	2587069	9.62477	9.6
67 n-Nonane	57	14.904	14.899 (1.011)	1423694	9.58667	9.6
68 Ethylbenzene	91	14.856	14.856 (1.008)	3797686	9.81561	9.8
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3247755	20.0423	20
M 70 Xylenes, Total	106			4837357	29.8572	30
71 Xylene (o)	106	15.539	15.539 (1.054)	1589602	9.81487	9.8
72 Styrene	104	15.566	15.566 (1.056)	2522667	10.2356	10
73 Bromoform	173	15.859	15.859 (1.076)	1947193	11.2077	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	4627810	10.1701	10
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2015193	9.50846	9.5
76 n-Propylbenzene	91	16.457	16.457 (1.117)	5129287	10.2454	10
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	1508184	9.84689	9.8
78 n-Decane	57	16.548	16.548 (1.123)	1776011	9.67634	9.7
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	4774750	10.3226	10
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	4007428	10.0444	10
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	3872400	9.98939	10
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	2214239	10.7380	11
83 tert-butylbenzene	119	17.028	17.023 (1.155)	3958617	10.2568	10
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	3796721	9.84707	9.8
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	5680497	10.1827	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	5054356	10.3968	10
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	2867191	10.0942	10
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	2913081	10.1919	10
89 Benzyl chloride	91	17.738	17.738 (1.204)	3279113	10.1854	10
90 Undecane	57	17.887	17.887 (1.214)	1810527	10.4608	10
91 n-Butylbenzene	91	17.903	17.903 (1.215)	3995995	10.4043	10
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	2631034	9.68079	9.7
93 Dodecane	57	19.243	19.243 (1.306)	1572194	9.42041	9.4
94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	2026924	10.0220	10
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1310503	10.0012	10
96 Naphthalene	128	20.652	20.652 (1.401)	4612778	10.3265	10
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	1809912	11.1007	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bka016.d

Client ID: icv 133740 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: icv 133740 Lab Sample ID: icv 133740

20-APR-2011 10:27 Date:

Instrument: B.i Inj Vol: 200.0 Diameter: 0.32

Page 136 of 263

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: CCVIS 200-16914/2 Calibration Date: 04/22/2011 14:02

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkac002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132424

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2331	0.2157		9.25	10.0	-7.5	30.0
Dichlorodifluoromethane	Ave	1.431	1.561		10.9	10.0	9.1	30.0
Freon 22	Ave	0.5941	0.5859		9.86	10.0	-1.4	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.387	1.489		10.7	10.0	7.4	30.0
Chloromethane	Ave	0.2978	0.2869		9.63	10.0	-3.6	30.0
n-Butane	Ave	0.5171	0.4869		9.41	10.0	-5.9	30.0
Vinyl chloride	Ave	0.4091	0.4200		10.3	10.0	2.6	30.0
1,3-Butadiene	Ave	0.2973	0.2980		10.0	10.0	0.2	30.0
Bromomethane	Ave	0.7386	0.8028		10.9	10.0	8.7	30.0
Chloroethane	Ave	0.3564	0.3786		10.6	10.0	6.2	30.0
Isopentane	Ave	0.6819	0.6563		9.62	10.0	-3.8	30.0
Bromoethene(Vinyl Bromide)	Ave	0.9762	1.034		10.6	10.0	5.9	30.0
Trichlorofluoromethane	Ave	2.400	2.623		10.9	10.0	9.3	30.0
n-Pentane	Ave	1.095	1.085		9.91	10.0	-0.9	30.0
Ethanol	Ave	0.2702	0.2658		14.8	15.0	-1.6	30.0
Ethyl ether	Ave	0.6026	0.6206		10.3	10.0	3.0	30.0
Acrolein	Ave	0.3155	0.3227		10.2	10.0	2.3	30.0
Freon TF	Ave	1.945	2.018		10.4	10.0	3.8	30.0
1,1-Dichloroethene	Ave	0.9344	0.9617		10.3	10.0	2.9	30.0
Acetone	Ave	0.9915	0.997		10.0	10.0	0.5	30.0
Carbon disulfide	Ave	2.620	2.727		10.4	10.0	4.1	30.0
Isopropyl alcohol	Ave	0.8056	0.7535		9.35	10.0	-6.5	30.0
3-Chloropropene	Ave	0.8674	0.8428		9.71	10.0	-2.8	30.0
Acetonitrile	Ave	0.5188	0.5108		9.84	10.0	-1.5	30.0
Methylene Chloride	Ave	0.8093	0.7933		9.80	10.0	-2.0	30.0
tert-Butyl alcohol	Ave	1.308	1.263		9.65	10.0	-3.4	30.0
Methyl tert-butyl ether	Ave	2.508	2.582		10.3	10.0	2.9	30.0
trans-1,2-Dichloroethene	Ave	1.205	1.246		10.3	10.0	3.4	30.0
Acrylonitrile	Ave	0.5756	0.5693		9.89	10.0	-1.1	30.0
n-Hexane	Ave	1.323	1.325		10.0	10.0	0.2	30.0
1,1-Dichloroethane	Ave	1.520	1.559		10.3	10.0	2.6	30.0
Vinyl acetate	Ave	1.786	1.779		9.96	10.0	-0.4	30.0
cis-1,2-Dichloroethene	Ave	1.057	1.098		10.4	10.0	3.9	30.0
Methyl Ethyl Ketone	Ave	0.4507	0.4657		10.3	10.0	3.3	30.0
Ethyl acetate	Ave	0.0900	0.0944		10.5	10.0	5.0	30.0
Tetrahydrofuran	Ave	0.1605	0.1587		9.89	10.0	-1.1	30.0
Chloroform	Ave	1.912	1.999		10.5	10.0	4.5	30.0
1,1,1-Trichloroethane	Ave	0.4243	0.4472		10.5	10.0	5.4	30.0
Cyclohexane	Ave	0.2915	0.2991		10.3	10.0	2.6	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: CCVIS 200-16914/2 Calibration Date: 04/22/2011 14:02

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkac002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132424

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4682	0.4878		10.4	10.0	4.2	30.0
2,2,4-Trimethylpentane	Ave	0.8271	0.8435		10.2	10.0	2.0	30.0
Benzene	Ave	0.6091	0.6298		10.3	10.0	3.4	30.0
1,2-Dichloroethane	Ave	0.2353	0.2384		10.1	10.0	1.3	30.0
n-Heptane	Ave	0.2780	0.2708		9.74	10.0	-2.6	30.0
n-Butanol	Ave	0.0903	0.0796		8.81	10.0	-11.9	30.0
Trichloroethene	Ave	0.2862	0.2984		10.4	10.0	4.3	30.0
1,2-Dichloropropane	Ave	0.2015	0.2064		10.2	10.0	2.4	30.0
Methyl methacrylate	Ave	0.2099	0.2151		10.2	10.0	2.5	30.0
1,4-Dioxane	Ave	0.0934	0.0922		9.87	10.0	-1.3	30.0
Dibromomethane	Ave	0.2655	0.2757		10.4	10.0	3.8	30.0
Bromodichloromethane	Ave	0.4324	0.4565		10.6	10.0	5.6	30.0
cis-1,3-Dichloropropene	Ave	0.3345	0.3485		10.4	10.0	4.2	30.0
methyl isobutyl ketone	Ave	0.3442	0.3322		9.65	10.0	-3.5	30.0
Toluene	Ave	0.5245	0.5412		10.3	10.0	3.2	30.0
n-Octane	Ave	0.3680	0.3595		9.77	10.0	-2.3	30.0
trans-1,3-Dichloropropene	Ave	0.3432	0.3636		10.6	10.0	5.9	30.0
1,1,2-Trichloroethane	Ave	0.2404	0.2497		10.4	10.0	3.8	30.0
Tetrachloroethene	Ave	0.4633	0.4757		10.3	10.0	2.7	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.3625	0.3467		9.56	10.0	-4.4	30.0
Dibromochloromethane	Ave	0.5400	0.5728		10.6	10.0	6.1	30.0
1,2-Dibromoethane	Ave	0.4856	0.5060		10.4	10.0	4.2	30.0
Chlorobenzene	Ave	0.7869	0.7973		10.1	10.0	1.3	30.0
Ethylbenzene	Ave	1.133	1.175		10.4	10.0	3.7	30.0
n-Nonane	Ave	0.4348	0.4379		10.1	10.0	0.7	30.0
m,p-Xylene	Ave	0.4744	0.5042		21.3	20.0	6.3	30.0
Xylene, o-	Ave	0.4741	0.4971		10.5	10.0	4.8	30.0
Styrene	Ave	0.7215	0.7729		10.7	10.0	7.1	30.0
Bromoform	Ave	0.5086	0.5756		11.3	10.0	13.2	30.0
Cumene	Ave	1.332	1.403		10.5	10.0	5.3	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6205	0.6486		10.5	10.0	4.5	30.0
n-Propylbenzene	Ave	1.466	1.585		10.8	10.0	8.1	30.0
1,2,3-Trichloropropane	Ave	0.4484	0.4745		10.6	10.0	5.8	30.0
n-Decane	Ave	0.5373	0.5426		10.1	10.0	1.0	30.0
4-Ethyltoluene	Ave	1.354	1.455		10.7	10.0	7.5	30.0
2-Chlorotoluene	Ave	1.168	1.234		10.6	10.0	5.7	30.0
1,3,5-Trimethylbenzene	Ave	1.135	1.199		10.6	10.0	5.6	30.0
Alpha Methyl Styrene	Ave	0.6037	0.6602		10.9	10.0	9.4	30.0
tert-Butylbenzene	Ave	1.130	1.193		10.6	10.0	5.5	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Lab Sample ID: CCVIS 200-16914/2 Calibration Date: 04/22/2011 14:02

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkac002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132424

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
1,2,4-Trimethylbenzene	Ave	1.129	1.196		10.6	10.0	5.9	30.0
sec-Butylbenzene	Ave	1.633	1.723		10.5	10.0	5.5	30.0
4-Isopropyltoluene	Ave	1.423	1.539		10.8	10.0	8.1	30.0
1,3-Dichlorobenzene	Ave	0.8316	0.8969		10.8	10.0	7.9	30.0
1,4-Dichlorobenzene	Ave	0.8368	0.9032		10.8	10.0	7.9	30.0
Benzyl chloride	Ave	0.9425	1.047		11.1	10.0	11.1	30.0
n-Undecane	Ave	0.5067	0.5361		10.6	10.0	5.8	30.0
n-Butylbenzene	Ave	1.124	1.230		10.9	10.0	9.4	30.0
1,2-Dichlorobenzene	Ave	0.7957	0.8465		10.6	10.0	6.4	30.0
n-Dodecane	Ave	0.4886	0.3661		7.49	10.0	-25.1	30.0
1,2,4-Trichlorobenzene	Ave	0.5921	0.6093		10.3	10.0	2.9	30.0
Hexachlorobutadiene	Ave	0.3836	0.4025		10.5	10.0	4.9	30.0
Naphthalene	Ave	1.308	1.260		9.63	10.0	-3.6	30.0
1,2,3-Trichlorobenzene	Ave	0.4773	0.4903		10.3	10.0	2.7	30.0

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac002.d Page 1

Report Date: 24-Apr-2011 10:04

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkacto15.b/bkac002.d

Lab Smp Id: ccvis 132424 Client Smp ID: ccvis 132424

Inj Date : 22-APR-2011 14:02

Operator : pad Inst ID: B.i

Smp Info : ccvis 132424 Misc Info : 200,1, ccvis

Comment :

Method : /chem/B.i/Bsvr.p/bkacto15.b/to15v5.m

Meth Date : 24-Apr-2011 10:04 klp Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
DF Uf	1.00000 1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.987	2.992 (0.325)	179745	10.0000	9.3
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1300775	10.0000	11
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	488194	10.0000	9.9
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1240901	10.0000	11
5 Chloromethane	50	3.339	3.339 (0.363)	239064	10.0000	9.6
6 Butane	43	3.483	3.488 (0.379)	405676	10.0000	9.4
7 Vinyl chloride	62	3.515	3.520 (0.382)	349923	10.0000	10
8 1,3-Butadiene	54	3.574	3.574 (0.388)	248298	10.0000	10
9 Bromomethane	94	4.129	4.129 (0.449)	668962	10.0000	11
10 Chloroethane	64	4.326	4.326 (0.470)	315467	10.0000	11
11 2-Methylbutane	43	4.401	4.401 (0.478)	546833	10.0000	9.6
12 Vinyl bromide	106	4.705	4.705 (0.511)	861500	10.0000	11
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	2185593	10.0000	11
14 Pentane	43	4.924	4.924 (0.535)	903761	10.0000	9.9

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac002.d Report Date: 24-Apr-2011 10:04

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
15 Ethanol	45	5.303	5.308 (0.576)	332398	15.0000	15
16 Ethyl ether	59	5.415	5.415 (0.589)	517102	10.0000	10
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	1681309	10.0000	10
18 Acrolein	56	5.756	5.756 (0.626)	268879	10.0000	10
19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	801286	10.0000	10
20 Acetone	43	6.045	6.045 (0.657)	830344	10.0000	10
21 Carbon disulfide	76	6.263	6.269 (0.681)	2272174	10.0000	10
22 Isopropanol	45	6.322	6.322 (0.687)	627887	10.0000	9.4
23 Allyl chloride	41	6.541	6.541 (0.711)	702252	10.0000	9.7
24 Acetonitrile	41	6.621	6.626 (0.720)	425610	10.0000	9.8
25 Methylene chloride	49	6.802	6.802 (0.739)	660989	10.0000	9.8
26 Tert-butyl alcohol	59	7.032	7.037 (0.764)	1052586	10.0000	9.7
27 Methyl tert-butyl ether	73	7.187	7.187 (0.781)	2151044	10.0000	10
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	1038544	10.0000	10
29 Acrylonitrile	53	7.288	7.288 (0.792)	474387	10.0000	9.9
30 n-Hexane	57	7.528	7.528 (0.818)	1103854	10.0000	10
31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1299050	10.0000	10
32 Vinyl acetate	43	7.966	7.966 (0.866)	1482112	10.0000	10
M 33 1,2-Dichloroethene,Total	61			1953223	20.0000	21
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	914679	10.0000	10
35 Ethyl acetate	88	8.873	8.878 (0.965)	78674	10.0000	10
36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	388059	10.0000	10(Q)
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	833406	10.0000	
38 Tetrahydrofuran	42	9.247	9.252 (0.871)	640962	10.0000	9.9
39 Chloroform	83	9.284	9.284 (1.009)	1665671	10.0000	10
40 Cyclohexane	84	9.535	9.535 (0.898)	1207820	10.0000	10
41 1,1,1-Trichloroethane	97	9.524	9.524 (0.897)	1806160	10.0000	11
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	1970164	10.0000	10
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.944)	3406552	10.0000	10
44 Benzene	78	10.053	10.053 (0.947)	2543585	10.0000	10
45 1,2-Dichloroethane	62		10.159 (0.957)	962717	10.0000	10
46 n-Heptane	43		10.282 (0.969)	1093771	10.0000	9.7
* 47 1,4-Difluorobenzene	114	10.613	10.608 (1.000)	4039618	10.0000	2.7
48 n-Butanol	56	10.907	10.906 (1.028)	321324	10.0000	8.8
49 Trichloroethene	95		10.971 (1.034)	1205240	10.0000	10
50 1,2-Dichloropropane	63	11.334	11.333 (1.068)	833768	10.0000	10
51 Methyl methacrylate	69	11.408	11.408 (1.075)	868814	10.0000	10
52 Dibromomethane	174	11.520	11.520 (1.085)	1113397	10.0000	10
53 1,4-Dioxane	88		11.520 (1.085)	372261	10.0000	9.9
54 Bromodichloromethane	83		11.702 (1.103)	1843725	10.0000	11
55 1,3-Dichloropropene (cis)	75		12.326 (1.161)	1407419	10.0000	10
	43	12.326			10.0000	9.6
56 Methyl isobutyl ketone 57 n-Octane			12.518 (1.180)	1341797		
	43			1452076 2032845	10.0000	9.8
58 Toluene	92 75		12.748 (0.865)			10
59 1,3-Dichloropropene (trans)	75 83		13.121 (1.236)	1468431	10.0000	11
60 1,1,2-Trichloroethane	83		13.388 (0.908)	937779	10.0000	10
61 Tetrachloroethene	166	13.516	13.516 (0.917)	1787030	10.0000	10

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
62 2-Hexanone	43	13.698	13.698 (0.929)	1302197	10.0000	9.6
63 Dibromochloromethane	129	13.943	13.943 (0.946)	2151608	10.0000	11
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1900618	10.0000	10
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3757154	10.0000	
66 Chlorobenzene	112	14.781	14.776 (1.003)	2994816	10.0000	10
67 n-Nonane	57	14.899	14.899 (1.011)	1645044	10.0000	10
68 Ethylbenzene	91	14.856	14.856 (1.008)	4413136	10.0000	10
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3788150	20.0000	21
M 70 Xylenes, Total	106			5655364	10.0000	32
71 Xylene (o)	106	15.539	15.539 (1.054)	1867214	10.0000	10
72 Styrene	104	15.566	15.566 (1.056)	2903159	10.0000	11
73 Bromoform	173	15.859	15.859 (1.076)	2162124	10.0000	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	5268427	10.0000	11
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2436253	10.0000	10
76 n-Propylbenzene	91	16.457	16.457 (1.117)	5954079	10.0000	11
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	1782282	10.0000	11
78 n-Decane	57	16.548	16.548 (1.123)	2038128	10.0000	10
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	5467298	10.0000	11
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	4636356	10.0000	11
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	4502932	10.0000	11
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	2480046	10.0000	11
83 tert-butylbenzene	119	17.023	17.023 (1.155)	4479873	10.0000	11
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	4491743	10.0000	11
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	6471371	10.0000	11
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	5781443	10.0000	11
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	3369145	10.0000	11
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	3392899	10.0000	11
89 Benzyl chloride	91	17.738	17.738 (1.204)	3932691	10.0000	11
90 Undecane	57	17.887	17.887 (1.214)	2013639	10.0000	11
91 n-Butylbenzene	91	17.903	17.903 (1.215)	4622098	10.0000	11
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	3179735	10.0000	11
93 Dodecane	57	19.243	19.243 (1.306)	1375184	10.0000	7.5
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2288844	10.0000	10
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1511910	10.0000	10
96 Naphthalene	128	20.652	20.652 (1.401)	4733519	10.0000	9.6
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	1841586	10.0000	10

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkac002.d

Client ID: ccvis 132424 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: ccvis 132424
Lab Sample ID: ccvis 132424

Date: 22-APR-2011 14:02

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 143 of 263

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka001.d Page 1

Report Date: 19-Apr-2011 11:04

TestAmerica Burlington

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka001.d

Lab Smp Id: BFB Client Smp ID: BFB

Inj Date : 19-APR-2011 10:50

Operator : wrd Inst ID: B.i

Smp Info : VBFB

Misc Info : Comment

Method : /chem/B.i/Bsvr.p/bkato15.b/bfbto15.m

Meth Date : 24-Nov-2009 10:29 njr Quant Type: ESTD

Cal Date : 23-JUL-2003 17:23 Cal File: ai0005i Cal File: ai0005i4.d

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf * Vf * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vf	1.00000	Volumetric correction factor

Cpnd Variable Local Compound Variable

					CONCENTR	LATIONS		
					ON-COL	FINAL		
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
==	=====		====			======	========	=====
\$ 1 b	fb					CAS #:	460-00-4	
5.362	5.670	-0.308	95	850114			100.00- 100.00	100.00
5.362	5.670	-0.308	50	110752			8.00- 40.00	13.03
5.362	5.670	-0.308	75	354986			30.00- 66.00	41.76
5.362	5.670	-0.308	96	58493			5.00- 9.00	6.88
5.362	5.670	-0.308	173	0			0.00- 2.00	0.00
5.362	5.670	-0.308	174	811584			50.00- 120.00	95.47
5.362	5.670	-0.308	175	58032			4.00- 9.00	7.15
5.362	5.670	-0.308	176	783594			93.00- 101.00	96.55
5.362	5.670	-0.308	177	51789			5.00- 9.00	6.61

Page 144 of 263

Data File: bka001.d Date: 19-APR-2011 10:50

Client ID: BFB Instrument: B.i

Operator: wrd Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

1 bfb

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
95 50 75 96 173 174 175 176	Base Peak, 100% relative abundance 8.00 - 40.00% of mass 95 30.00 - 66.00% of mass 95 5.00 - 9.00% of mass 95 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 4.00 - 9.00% of mass 174 93.00 - 101.00% of mass 174 5.00 - 9.00% of mass 176	100.00 13.03 41.76 6.88 0.00 (0.00) 95.47 6.83 (7.15) 92.18 (96.55) 6.09 (6.61)

Date: 19-APR-2011 10:50

Instrument: B.i

Data File: bka001.d Client ID: BFB Operator: wrd Column Type:

Stationary Phase: RTX-624 Sample Info: VBFB Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka001.d

Spectrum: Avg. Scans 258-260 (5.36), Background Scan 246 Location of Maximum: 95.00

Number of points: 117

m/z	Y	m/z	Y	m/z	Y	m/z	Υ
36.00	3572	71.00	182	112.00	291	144.00	393
37.00	21336	72.00	2933	113.00	437	145.00	579
38.00	19464	73.00	27152	115.00	647	146.00	1094
39.00	7785	74.00	112488	116.00	2306	147.00	526
41.00	49	75.00	354944	117.00	3931	148.00	2023
43.00	156	76.00	30408	118.00	2412	149.00	551
44.00	2381	77.00	3719	119.00	3487	150.00	731
45.00	4556	78.00	2465	120.00	163	151.00	46
46.00	347	79.00	13786	122.00	215	152.00	345
47.00	6172	80.00	4756	123.00	236	153.00	703
48.00	2787	81.00	14165	124.00	532	154.00	459
49.00	21360	82.00	3276	125.00	218	155.00	2141
50.00	110752	83.00	358	126.00	281	156.00	389
51.00	33368	86.00	649	127.00	246	157.00	1491
52.00	1444	87.00	30280	128.00	2729	158.00	203
53.00	37	88.00	29192	129.00	1442	159.00	813
55.00	1272	91.00	2097	130.00	2880	160.00	43
56.00	7639	92.00	20224	131.00	1212	161.00	833
57.00	15884	93.00	32472	132.00	167	172.00	264
58.00	578	94.00	90768	133.00	70	174.00	811584
60.00	4521	95.00	850112	134.00	187	175.00	58032
61.00	26080	96.00	58488	135.00	1288	176.00	783552
62.00	26760	97.00	1676	136.00	237	177.00	51784
63.00	21232	103.00	311	137.00	1258	178.00	1598
64.00	1926	104.00	2468	138.00	36	207.00	124
65.00 67.00 68.00 69.00 70.00	227 1664 67848 68248 5313	105.00 106.00 107.00 110.00	982 2718 751 316 457	139.00 140.00 141.00 142.00 143.00	231 444 6240 869 6631	208.00 253.00	136

Data File: bka001.d Date: 19-APR-2011 10:50

Instrument: B.i

Client ID: BFB

Operator: wrd Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac001.d Page 1

Report Date: 22-Apr-2011 13:25

TestAmerica Burlington

Data file : /chem/B.i/Bsvr.p/bkacto15.b/bkac001.d

Lab Smp Id: BFB Client Smp ID: BFB

Inj Date : 22-APR-2011 13:11

Inst ID: B.i

Operator : pad Smp Info : VBFB

Misc Info : Comment

Method : /chem/B.i/Bsvr.p/bkacto15.b/bfbto15.m

Meth Date : 24-Nov-2009 10:29 njr Quant Type: ESTD

Cal Date : 23-JUL-2003 17:23 Cal File: ai0005i Cal File: ai0005i4.d

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf * Vf * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vf	1.00000	Volumetric correction factor

Cpnd Variable Local Compound Variable

					CONCENTR	ATIONS		
					ON-COL	FINAL		
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
==	=====		====			======	=========	=====
\$ 1 b	fb					CAS #:	460-00-4	
5.362	5.670	-0.308	95	1292288			100.00- 100.00	100.00
5.362	5.670	-0.308	50	150084			8.00- 40.00	11.61
5.362	5.670	-0.308	75	517888			30.00- 66.00	40.08
5.362	5.670	-0.308	96	88354			5.00- 9.00	6.84
5.362	5.670	-0.308	173	2235			0.00- 2.00	0.18
5.362	5.670	-0.308	174	1273173			50.00- 120.00	98.52
5.362	5.670	-0.308	175	89920			4.00- 9.00	7.06
5.362	5.670	-0.308	176	1232384			93.00- 101.00	96.80
5.362	5.670	-0.308	177	82117			5.00- 9.00	6.66

Page 148 of 263

Data File: bkac001.d Date: 22-APR-2011 13:11

Client ID: BFB Instrument: B.i

Operator: pad Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

1 bfb

95 Base Peak, 100% relative abundance 50 8.00 - 40.00% of mass 95 75 30.00 - 66.00% of mass 95 96 5.00 - 9.00% of mass 95 173 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 174 50.00 - 9.00% of mass 95 175 4.00 - 9.00% of mass 174 176 93.00 - 101.00% of mass 174 177 5.00 - 9.00% of mass 176 180 100.00 11.61 40.08 6.84 0.17 (0.18) 98.52 6.96 (7.06) 98.52 6.96 (7.06) 93.00 - 101.00% of mass 174 95.36 (96.80) 6.35 (6.66)		m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
	-	50 75 96 173 174 175	8.00 - 40.00% of mass 95 30.00 - 66.00% of mass 95 5.00 - 9.00% of mass 95 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 4.00 - 9.00% of mass 174 93.00 - 101.00% of mass 174	100.00 11.61 40.08 6.84 0.17 (0.18) 98.52 6.96 (7.06) 95.36 (96.80)

Date: 22-APR-2011 13:11

Data File: bkac001.d Client ID: BFB Instrument: B.i

Operator: pad Column Type:

Stationary Phase: RTX-624 Sample Info: VBFB Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac001.d

Spectrum: Avg. Scans 258-260 (5.36), Background Scan 246 Location of Maximum: 95.00

Number of points: 125

m/z	Y	m/z	Y	m/z	Y	m/z	Y	
36.00	4560	71.00	218	112.00	410	146.00	1756	_
37.00	26592	72.00	4482	113.00	574	147.00	926	
38.00	24520	73.00	39536	115.00	1043	148.00	2857	
39.00	9962	74.00	161344	116.00	3589	149.00	1077	
41.00	107	75.00	517888	117.00	6399	150.00	1128	
43.00	157	76.00	44840	118.00	3282	151.00	79	-
44.00	3206	77.00	5658	119.00	5152	152.00	675	
45.00	5748	78.00	3675	120.00	231	153.00	1132	
46.00	396	79.00	18752	121.00	43	154.00	756	
47.00	8011	80.00	6842	122.00	369	155.00	3487	
48.00	3589	81.00	19432	123.00	293	156.00	882	
49.00	27888	82.00	5368	124.00	709	157.00	2459	
50.00	150080	83.00	526	125.00	314	158.00	686	
51.00	46616	84.00	37	126.00	442	159.00	1365	
52.00	1893	86.00	889	127.00	278	160.00	135	
53.00	93	87.00	42968	128.00	4231	161.00	1176	_
55.00	1598	88.00	43464	129.00	2072	171.00	97	
56.00	10412	91.00	2932	130.00	4441	172.00	530	
57.00	20888	92.00	29312	131.00	1752	173.00	2235	
58.00	936	93.00	46904	132.00	183	174.00	1272832	
59.00	36	94.00	134400	134.00	320	175.00	89920	-
60.00	6559	95.00	1292288	135.00	1916	176.00	1232384	
61.00	35432	96.00	88352	136.00	385	177.00	82112	
62.00	36712	97.00	2617	137.00	1787	178.00	2266	
63.00	29592	103.00	375	138.00	39	179.00	37	
64.00 65.00 66.00 67.00 68.00	2466 293 91 1880 96672	104.00 105.00 106.00 107.00 109.00	3555 1363 3988 1167 38	139.00 140.00 141.00 142.00 143.00	344 649 9257 1087 9624	190.00 193.00 207.00 208.00	45 68 123 204	-
69.00 70.00	96368 7167	110.00 111.00	500 584	144.00 145.00	611 781			_

Data File: bkac001.d 22-APR-2011 13:11

Client ID: BFB

Instrument: B.i Inj Vol: 0.0 (ul)Operator: pad $0.32 \, (mm)$ Column Type: Diameter:

Stationary Phase: RTX-624 Sample Info: **VBFB** Lab Sample ID: BFB

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1				
SDG No.: 200-4737					
Client Sample ID:	Lab Sample ID: MB 200-16914/4				
Matrix: Air	Lab File ID: bkac004.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/2011 15:50				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 16914	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	0.50	U	0.50	0.038
75-45-6	Freon 22	86.47	0.50	U	0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	0.20	U	0.20	0.032
74-87-3	Chloromethane	50.49	0.50	U	0.50	0.013
106-97-8	n-Butane	58.12	0.50	U	0.50	0.011
75-01-4	Vinyl chloride	62.50	0.20	U	0.20	0.029
106-99-0	1,3-Butadiene	54.09	0.20	U	0.20	0.010
74-83-9	Bromomethane	94.94	0.20	U	0.20	0.012
75-00-3	Chloroethane	64.52	0.50	U	0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.20	U	0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	0.20	U	0.20	0.034
76-13-1	Freon TF	187.38	0.20	U	0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	0.20	U	0.20	0.030
67-64-1	Acetone	58.08	5.0	U	5.0	0.045
67-63-0	Isopropyl alcohol	60.10	5.0	U	5.0	0.037
75-15-0	Carbon disulfide	76.14	0.50	U	0.50	0.066
107-05-1	3-Chloropropene	76.53	0.50	U	0.50	0.019
75-09-2	Methylene Chloride	84.93	0.50	U	0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	5.0	U	5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	0.20	U	0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	0.20	U	0.20	0.032
110-54-3	n-Hexane	86.17	0.20	U	0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	0.20	U	0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	0.50	U	0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	0.20	U	0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	0.20	U	0.20	0.014
67-66-3	Chloroform	119.38	0.20	U	0.20	0.031
109-99-9	Tetrahydrofuran	72.11	5.0	U	5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	0.20	U	0.20	0.035
110-82-7	Cyclohexane	84.16	0.20	U	0.20	0.039
56-23-5	Carbon tetrachloride	153.81	0.20	U	0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	0.20	U	0.20	0.036
71-43-2	Benzene	78.11	0.20	U	0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	0.20	U	0.20	0.031
142-82-5	n-Heptane	100.21	0.20	U	0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1				
SDG No.: 200-4737					
Client Sample ID:	Lab Sample ID: MB 200-16914/4				
Matrix: Air	Lab File ID: bkac004.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/2011 15:50				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 16914	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	0.20	U	0.20	0.030
80-62-6	Methyl methacrylate	100.12	0.50	U	0.50	0.013
78-87-5	1,2-Dichloropropane	112.99	0.20	U	0.20	0.014
123-91-1	1,4-Dioxane	88.11	5.0	U	5.0	0.088
75-27-4	Bromodichloromethane	163.83	0.20	U	0.20	0.028
10061-01-5	cis-1,3-Dichloropropene	110.97	0.20	U	0.20	0.016
108-10-1	methyl isobutyl ketone	100.16	0.50	U	0.50	0.026
108-88-3	Toluene	92.14	0.20	U	0.20	0.018
10061-02-6	trans-1,3-Dichloropropene	110.97	0.20	U	0.20	0.020
79-00-5	1,1,2-Trichloroethane	133.41	0.20	U	0.20	0.019
127-18-4	Tetrachloroethene	165.83	0.20	U	0.20	0.011
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	0.50	U	0.50	0.039
124-48-1	Dibromochloromethane	208.29	0.20	U	0.20	0.021
106-93-4	1,2-Dibromoethane	187.87	0.20	U	0.20	0.018
108-90-7	Chlorobenzene	112.30	0.20	U	0.20	0.020
100-41-4	Ethylbenzene	106.17	0.20	U	0.20	0.022
179601-23-1	m,p-Xylene	106.17	0.50	U	0.50	0.048
95-47-6	Xylene, o-	106.17	0.20	U	0.20	0.022
1330-20-7	Xylene (total)	106.17	0.20	U	0.20	0.022
100-42-5	Styrene	104.15	0.20	U	0.20	0.030
75-25-2	Bromoform	252.75	0.20	U	0.20	0.019
98-82-8	Cumene	120.19	0.20	U	0.20	0.031
79-34-5	1,1,2,2-Tetrachloroethane	167.85	0.20	U	0.20	0.040
103-65-1	n-Propylbenzene	120.19	0.20	U	0.20	0.050
622-96-8	4-Ethyltoluene	120.20	0.20	U	0.20	0.046
108-67-8	1,3,5-Trimethylbenzene	120.20	0.20	U	0.20	0.051
95-49-8	2-Chlorotoluene	126.59	0.20	U	0.20	0.047
98-06-6	tert-Butylbenzene	134.22	0.20	U	0.20	0.047
95-63-6	1,2,4-Trimethylbenzene	120.20	0.20	U	0.20	0.052
135-98-8	sec-Butylbenzene	134.22	0.20	U	0.20	0.047
99-87-6	4-Isopropyltoluene	134.22	0.20	U	0.20	0.048
541-73-1	1,3-Dichlorobenzene	147.00	0.20	U	0.20	0.044
106-46-7	1,4-Dichlorobenzene	147.00	0.20	U	0.20	0.044
100-44-7	Benzyl chloride	126.58	0.20	U	0.20	0.046
104-51-8	n-Butylbenzene	134.22	0.20	U	0.20	0.055

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1				
SDG No.: 200-4737					
Client Sample ID:	Lab Sample ID: MB 200-16914/4				
Matrix: Air	Lab File ID: bkac004.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/2011 15:50				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 16914	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	0.20	U	0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	0.50	U	0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	0.20	U	0.20	0.065
91-20-3	Naphthalene	128.17	0.50	U	0.50	0.086

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1
SDG No.: 200-4737	
Client Sample ID:	Lab Sample ID: MB 200-16914/4
Matrix: Air	Lab File ID: bkac004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/2011 15:50
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 16914	IInits: 110/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	2.5	U	2.5	0.19
75-45-6	Freon 22	86.47	1.8	U	1.8	0.12
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	1.4	U	1.4	0.22
74-87-3	Chloromethane	50.49	1.0	U	1.0	0.027
106-97-8	n-Butane	58.12	1.2	U	1.2	0.026
75-01-4	Vinyl chloride	62.50	0.51	U	0.51	0.074
106-99-0	1,3-Butadiene	54.09	0.44	U	0.44	0.022
74-83-9	Bromomethane	94.94	0.78	U	0.78	0.047
75-00-3	Chloroethane	64.52	1.3	U	1.3	0.042
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.87	U	0.87	0.083
75-69-4	Trichlorofluoromethane	137.37	1.1	U	1.1	0.19
76-13-1	Freon TF	187.38	1.5	U	1.5	0.077
75-35-4	1,1-Dichloroethene	96.94	0.79	U	0.79	0.12
67-64-1	Acetone	58.08	12	U	12	0.11
67-63-0	Isopropyl alcohol	60.10	12	U	12	0.091
75-15-0	Carbon disulfide	76.14	1.6	U	1.6	0.21
107-05-1	3-Chloropropene	76.53	1.6	U	1.6	0.059
75-09-2	Methylene Chloride	84.93	1.7	U	1.7	0.045
75-65-0	tert-Butyl alcohol	74.12	15	U	15	0.22
1634-04-4	Methyl tert-butyl ether	88.15	0.72	U	0.72	0.058
156-60-5	trans-1,2-Dichloroethene	96.94	0.79	U	0.79	0.13
110-54-3	n-Hexane	86.17	0.70	U	0.70	0.092
75-34-3	1,1-Dichloroethane	98.96	0.81	U	0.81	0.14
78-93-3	Methyl Ethyl Ketone	72.11	1.5	U	1.5	0.050
156-59-2	cis-1,2-Dichloroethene	96.94	0.79	U	0.79	0.056
540-59-0	1,2-Dichloroethene, Total	96.94	0.79	U	0.79	0.056
67-66-3	Chloroform	119.38	0.98	U	0.98	0.15
109-99-9	Tetrahydrofuran	72.11	15	U	15	0.053
71-55-6	1,1,1-Trichloroethane	133.41	1.1	U	1.1	0.19
110-82-7	Cyclohexane	84.16	0.69	U	0.69	0.13
56-23-5	Carbon tetrachloride	153.81	1.3	U	1.3	0.21
540-84-1	2,2,4-Trimethylpentane	114.23	0.93	U	0.93	0.17
71-43-2	Benzene	78.11	0.64	U	0.64	0.058
107-06-2	1,2-Dichloroethane	98.96	0.81	U	0.81	0.13
142-82-5	n-Heptane	100.21	0.82	U	0.82	0.041

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1	
SDG No.: 200-4737		
Client Sample ID:	Lab Sample ID: MB 200-16	5914/4
Matrix: Air	Lab File ID: bkac004.d	
Analysis Method: TO-15	Date Collected:	
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/201	15:50
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: RTX-624	ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low	
Analysis Ratch No · 1601/	IInite ua/m3	

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	1.1	U	1.1	0.16
80-62-6	Methyl methacrylate	100.12	2.0	U	2.0	0.053
78-87-5	1,2-Dichloropropane	112.99	0.92	U	0.92	0.065
123-91-1	1,4-Dioxane	88.11	18	U	18	0.32
75-27-4	Bromodichloromethane	163.83	1.3	U	1.3	0.19
10061-01-5	cis-1,3-Dichloropropene	110.97	0.91	U	0.91	0.073
108-10-1	methyl isobutyl ketone	100.16	2.0	U	2.0	0.13
108-88-3	Toluene	92.14	0.75	U	0.75	0.06
10061-02-6	trans-1,3-Dichloropropene	110.97	0.91	U	0.91	0.09
79-00-5	1,1,2-Trichloroethane	133.41	1.1	U	1.1	0.1
127-18-4	Tetrachloroethene	165.83	1.4	U	1.4	0.07
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	2.0	U	2.0	0.1
124-48-1	Dibromochloromethane	208.29	1.7	U	1.7	0.1
106-93-4	1,2-Dibromoethane	187.87	1.5	U	1.5	0.1
108-90-7	Chlorobenzene	112.30	0.92	U	0.92	0.09
100-41-4	Ethylbenzene	106.17	0.87	U	0.87	0.09
179601-23-1	m,p-Xylene	106.17	2.2	U	2.2	0.2
95-47-6	Xylene, o-	106.17	0.87	U	0.87	0.09
1330-20-7	Xylene (total)	106.17	0.87	U	0.87	0.09
100-42-5	Styrene	104.15	0.85	U	0.85	0.1
75-25-2	Bromoform	252.75	2.1	U	2.1	0.2
98-82-8	Cumene	120.19	0.98	U	0.98	0.1
79-34-5	1,1,2,2-Tetrachloroethane	167.85	1.4	U	1.4	0.2
103-65-1	n-Propylbenzene	120.19	0.98	U	0.98	0.2
622-96-8	4-Ethyltoluene	120.20	0.98	U	0.98	0.2
108-67-8	1,3,5-Trimethylbenzene	120.20	0.98	U	0.98	0.2
95-49-8	2-Chlorotoluene	126.59	1.0	U	1.0	0.2
98-06-6	tert-Butylbenzene	134.22	1.1	U	1.1	0.2
95-63-6	1,2,4-Trimethylbenzene	120.20	0.98	U	0.98	0.2
135-98-8	sec-Butylbenzene	134.22	1.1	U	1.1	0.2
99-87-6	4-Isopropyltoluene	134.22	1.1	U	1.1	0.2
541-73-1	1,3-Dichlorobenzene	147.00	1.2	U	1.2	0.2
106-46-7	1,4-Dichlorobenzene	147.00	1.2	U	1.2	0.2
100-44-7	Benzyl chloride	126.58	1.0	U	1.0	0.2
104-51-8	n-Butylbenzene	134.22	1.1	U	1.1	0.3

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Lab Sample ID: MB 200-16914/4 Client Sample ID: Matrix: Air Lab File ID: bkac004.d Analysis Method: TO-15 Date Collected: Date Analyzed: 04/22/2011 15:50 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 16914 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	1.2	U	1.2	0.29
120-82-1	1,2,4-Trichlorobenzene	181.45	3.7	U	3.7	0.37
87-68-3	Hexachlorobutadiene	260.76	2.1	U	2.1	0.69
91-20-3	Naphthalene	128.17	2.6	U	2.6	0.45

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac004.d Page 1

Report Date: 24-Apr-2011 10:19

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkacto15.b/bkac004.d

Lab Smp Id: mb

Inj Date : 22-APR-2011 15:50

Operator : pad Inst ID: B.i

Smp Info : mb

Misc Info : 200,1, mb

Comment :

Method : /chem/B.i/Bsvr.p/bkactol5.b/tol5v5.m

Meth Date: 24-Apr-2011 10:04 klp Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG	C	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
=======================================	====	== ====== ======	=======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac004.d Report Date: 24-Apr-2011 10:19

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
15 Ethanol	45	Compound Not Detected.
16 Ethyl ether	59	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.
18 Acrolein	56	Compound Not Detected.
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.
21 Carbon disulfide	76	Compound Not Detected.
22 Isopropanol	45	Compound Not Detected.
23 Allyl chloride	41	Compound Not Detected.
24 Acetonitrile	41	Compound Not Detected.
25 Methylene chloride	49	Compound Not Detected.
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
29 Acrylonitrile	53	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
32 Vinyl acetate	43	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
35 Ethyl acetate	88	Compound Not Detected.
36 Methyl Ethyl Ketone	72	Compound Not Detected.
* 37 Bromochloromethane	128	9.199 9.199 (1.000) 895659 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.608 10.608 (1.000) 4402278 10.0000
48 n-Butanol	56	Compound Not Detected.
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane		Compound Not Detected.
51 Methyl methacrylate	63 69	Compound Not Detected.
52 Dibromomethane	174	Compound Not Detected.
53 1,4-Dioxane		Compound Not Detected.
54 Bromodichloromethane	88 83	Compound Not Detected.
55 1,3-Dichloropropene (cis)		Compound Not Detected.
	75 43	-
56 Methyl isobutyl ketone	43	Compound Not Detected.
57 n-Octane	43	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac004.d Report Date: 24-Apr-2011 10:19

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	== ====== ====== ======================
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	14.738 14.738 (1.000) 3938658 10.0000
66 Chlorobenzene	112	Compound Not Detected.
67 n-Nonane	57	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.
72 Styrene	104	Compound Not Detected.
73 Bromoform	173	Compound Not Detected.
74 Isopropylbenzene	105	Compound Not Detected.
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
76 n-Propylbenzene	91	Compound Not Detected.
77 1,2,3-Trichloropropane	75	Compound Not Detected.
78 n-Decane	57	Compound Not Detected.
79 4-Ethyltoluene	105	Compound Not Detected.
80 2-Chlorotoluene	91	Compound Not Detected.
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.
82 Alpha Methyl Styrene	118	Compound Not Detected.
83 tert-butylbenzene	119	Compound Not Detected.
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.
85 sec-Butylbenzene	105	Compound Not Detected.
86 4-Isopropyltoluene	119	Compound Not Detected.
87 1,3-Dichlorobenzene	146	Compound Not Detected.
88 1,4-Dichlorobenzene	146	Compound Not Detected.
89 Benzyl chloride	91	Compound Not Detected.
90 Undecane	57	Compound Not Detected.
91 n-Butylbenzene	91	Compound Not Detected.
92 1,2-Dichlorobenzene	146	Compound Not Detected.
93 Dodecane	57	Compound Not Detected.
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.
96 Naphthalene	128	Compound Not Detected.
97 1,2,3-Trichlorobenzene	180	Compound Not Detected.

Data File: Date: 22-APR-2011 15:50

Client ID: Instrument: B.i
Operator: pad Inj Vol: 200.0

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Diameter:

0.32

Page 161 of 263

Job No.: 200-4737-1
Lab Sample ID: LCS 200-16914/3
Lab File ID: bkac003.d
Date Collected:
Date Analyzed: 04/22/2011 14:56
Dilution Factor: 1
GC Column: RTX-624 ID: 0.32(mm)
Level: (low/med) Low
Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	9.54		0.50	0.038
75-45-6	Freon 22	86.47	8.84		0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet	170.92	9.48		0.20	0.032
74-87-3	Chloromethane	50.49	8.59		0.50	0.013
106-97-8	n-Butane	58.12	8.25		0.50	0.011
75-01-4	Vinyl chloride	62.50	9.04		0.20	0.029
106-99-0	1,3-Butadiene	54.09	9.13		0.20	0.010
74-83-9	Bromomethane	94.94	9.25		0.20	0.012
75-00-3	Chloroethane	64.52	8.91		0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	10.0		0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	9.96		0.20	0.034
76-13-1	Freon TF	187.38	10.7		0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	10.9		0.20	0.030
67-64-1	Acetone	58.08	9.17		5.0	0.045
67-63-0	Isopropyl alcohol	60.10	8.55		5.0	0.037
75-15-0	Carbon disulfide	76.14	9.87		0.50	0.066
107-05-1	3-Chloropropene	76.53	8.86		0.50	0.019
75-09-2	Methylene Chloride	84.93	9.57		0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	8.99		5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	9.76		0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	9.41		0.20	0.032
110-54-3	n-Hexane	86.17	9.24		0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	9.46		0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	9.80		0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	10.2		0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	19.6		0.20	0.014
67-66-3	Chloroform	119.38	9.75		0.20	0.031
109-99-9	Tetrahydrofuran	72.11	8.98		5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	10.0		0.20	0.035
110-82-7	Cyclohexane	84.16	9.82		0.20	0.039
56-23-5	Carbon tetrachloride	153.81	9.91		0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	9.44		0.20	0.036
71-43-2	Benzene	78.11	9.70		0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	9.43		0.20	0.031
142-82-5	n-Heptane	100.21	8.83		0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: 200-4737-1
SDG No.: 200-4737	
Client Sample ID:	Lab Sample ID: LCS 200-16914/3
Matrix: Air	Lab File ID: bkac003.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 04/22/2011 14:56
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16914	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	9.80		0.20	0.030
80-62-6	Methyl methacrylate	100.12	9.52		0.50	0.013
78-87-5	1,2-Dichloropropane	112.99	9.30		0.20	0.014
123-91-1	1,4-Dioxane	88.11	8.97		5.0	0.088
75-27-4	Bromodichloromethane	163.83	10.1		0.20	0.028
10061-01-5	cis-1,3-Dichloropropene	110.97	9.62		0.20	0.016
108-10-1	methyl isobutyl ketone	100.16	8.91		0.50	0.026
108-88-3	Toluene	92.14	9.61		0.20	0.018
10061-02-6	trans-1,3-Dichloropropene	110.97	9.69		0.20	0.020
79-00-5	1,1,2-Trichloroethane	133.41	9.22		0.20	0.019
127-18-4	Tetrachloroethene	165.83	9.79		0.20	0.011
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	8.77		0.50	0.039
124-48-1	Dibromochloromethane	208.29	10.5		0.20	0.021
106-93-4	1,2-Dibromoethane	187.87	9.68		0.20	0.018
108-90-7	Chlorobenzene	112.30	9.43		0.20	0.020
100-41-4	Ethylbenzene	106.17	9.65		0.20	0.022
179601-23-1	m,p-Xylene	106.17	19.6		0.50	0.048
95-47-6	Xylene, o-	106.17	9.61		0.20	0.022
1330-20-7	Xylene (total)	106.17	29.2		0.20	0.022
100-42-5	Styrene	104.15	9.96		0.20	0.030
75-25-2	Bromoform	252.75	11.0		0.20	0.019
98-82-8	Cumene	120.19	9.97		0.20	0.031
79-34-5	1,1,2,2-Tetrachloroethane	167.85	9.34		0.20	0.040
103-65-1	n-Propylbenzene	120.19	10.1		0.20	0.050
622-96-8	4-Ethyltoluene	120.20	10.2		0.20	0.046
108-67-8	1,3,5-Trimethylbenzene	120.20	9.76		0.20	0.051
95-49-8	2-Chlorotoluene	126.59	10.0		0.20	0.047
98-06-6	tert-Butylbenzene	134.22	10.1		0.20	0.047
95-63-6	1,2,4-Trimethylbenzene	120.20	9.63		0.20	0.052
135-98-8	sec-Butylbenzene	134.22	9.96		0.20	0.047
99-87-6	4-Isopropyltoluene	134.22	10.3		0.20	0.048
541-73-1	1,3-Dichlorobenzene	147.00	9.85		0.20	0.044
106-46-7	1,4-Dichlorobenzene	147.00	9.94		0.20	0.044
100-44-7	Benzyl chloride	126.58	10.1		0.20	0.046
104-51-8	n-Butylbenzene	134.22	10.3		0.20	0.055

Lab Name: TestAmerica Burlington Job No.: 200-4737-1 SDG No.: 200-4737 Lab Sample ID: LCS 200-16914/3 Client Sample ID: Matrix: Air Lab File ID: bkac003.d Analysis Method: TO-15 Date Collected: Date Analyzed: 04/22/2011 14:56 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 16914 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	9.50		0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	9.87		0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	9.85		0.20	0.065
91-20-3	Naphthalene	128.17	10.1		0.50	0.086

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac003.d Page 1

Report Date: 24-Apr-2011 10:04

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkacto15.b/bkac003.d

Lab Smp Id: lcs 133740 Client Smp ID: lcs 133740

Inj Date : 22-APR-2011 14:56

Operator : pad Inst ID: B.i

Smp Info : lcs 133740 Misc Info : 200,1, lcs

Comment :

Method : /chem/B.i/Bsvr.p/bkacto15.b/to15v5.m

Meth Date: 24-Apr-2011 10:04 klp Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.987	2.992 (0.325)	166270	8.02077	8.0
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1213189	9.53686	9.5
3 Chlorodifluoromethane	51	3.067	3.072 (0.333)	467156	8.84339	8.8
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1169368	9.48499	9.5
5 Chloromethane	50	3.333	3.339 (0.362)	227416	8.58912	8.6
6 Butane	43	3.483	3.488 (0.379)	379460	8.25227	8.3
7 Vinyl chloride	62	3.515	3.520 (0.382)	328738	9.03660	9.0
8 1,3-Butadiene	54	3.568	3.574 (0.388)	241461	9.13282	9.1
9 Bromomethane	94	4.123	4.129 (0.448)	607678	9.25249	9.3
10 Chloroethane	64	4.326	4.326 (0.470)	282223	8.90689	8.9
11 2-Methylbutane	43	4.396	4.401 (0.478)	495409	8.17088	8.2
12 Vinyl bromide	106	4.700	4.705 (0.511)	868454	10.0049	10
13 Trichlorofluoromethane	101	4.790	4.801 (0.521)	2125970	9.96157	10
14 Pentane	43	4.924	4.924 (0.535)	818631	8.40929	8.4

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac003.d Report Date: 24-Apr-2011 10:04

					CONCENTRA'	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==		=======	======	======
15 Ethanol	45	5.303	5.308 (0.576)	316283	13.1658	13
16 Ethyl ether	59	5.410	5.415 (0.588)	482715	9.00833	9.0
17 1,1,2-Trichloro-1,2,2-triflu	.0 101	5.783	5.788 (0.629)	1843274	10.6593	11
18 Acrolein	56	5.756	5.756 (0.626)	230873	8.22900	8.2
19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	901752	10.8539	11
20 Acetone	43	6.039	6.045 (0.657)	808351	9.16854	9.2
21 Carbon disulfide	76	6.263	6.269 (0.681)	2299571	9.86909	9.9
22 Isopropanol	45	6.317	6.322 (0.687)	612244	8.54707	8.5
23 Allyl chloride	41	6.541	6.541 (0.711)	682984	8.85513	8.9
24 Acetonitrile	41	6.621	6.626 (0.720)	407324	8.83007	8.8
25 Methylene chloride	49	6.797	6.802 (0.739)	688678	9.57008	9.6
26 Tert-butyl alcohol	59	7.027	7.037 (0.764)	1045808	8.98995	9.0
27 Methyl tert-butyl ether	73	7.181	7.187 (0.781)	2175732	9.75540	9.8
28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	1008495	9.41325	9.4
29 Acrylonitrile	53	7.283	7.288 (0.792)	475383	9.28771	9.3
30 n-Hexane	57	7.528	7.528 (0.818)	1086851	9.24141	9.2
31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1278906	9.46430	9.5
32 Vinyl acetate	43	7.961	7.966 (0.865)	1427040	8.98557	9.0
M 33 1,2-Dichloroethene,Total	61			1967035	19.6165	20
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	958540	10.2032	10
35 Ethyl acetate	88	8.873	8.878 (0.965)	79084	9.88708	9.9
36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	392913	9.80365	9.8(Q)
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	889175	10.0000	
38 Tetrahydrofuran	42	9.247	9.252 (0.872)	617395	8.98208	9.0
39 Chloroform	83	9.284	9.284 (1.009)	1658006	9.75125	9.8
40 Cyclohexane	84	9.530	9.535 (0.898)	1226066	9.82009	9.8
41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	1816680	9.99771	10
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	1986703	9.90826	9.9
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.945)	3344616	9.44251	9.4
44 Benzene	78	10.053	10.053 (0.948)	2530819	9.70126	9.7
45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	949878	9.42502	9.4
46 n-Heptane	43	10.282	10.282 (0.969)	1051587	8.83153	8.8
* 47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	4282632	10.0000	
48 n-Butanol	56	10.901	10.906 (1.028)	309710	8.00913	8.0
49 Trichloroethene	95	10.971	10.971 (1.034)	1200975	9.79722	9.8
50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	803064	9.30416	9.3
51 Methyl methacrylate	69	11.408	11.408 (1.075)	855465	9.51864	9.5
52 Dibromomethane	174	11.520	11.520 (1.086)	1165382	10.2493	10
53 1,4-Dioxane	88	11.520	11.520 (1.086)	358744	8.96954	9.0
54 Bromodichloromethane	83	11.702	11.702 (1.103)	1867520	10.0853	10
55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1377743	9.61856	9.6
56 Methyl isobutyl ketone	43	12.513	12.518 (1.180)	1313977	8.91352	8.9
57 n-Octane	43	12.758	12.758 (1.203)	1380340	8.75874	8.8
58 Toluene	92	12.753	12.748 (0.865)	1994432	9.61479	9.6
59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	1423945	9.68763	9.7
60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	877145	9.22443	9.2
61 Tetrachloroethene	166	13.522	13.516 (0.917)	1794776	9.79468	9.8

Data File: /chem/B.i/Bsvr.p/bkacto15.b/bkac003.d Report Date: 24-Apr-2011 10:04

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
62 2-Hexanone	43	13.692	13.698 (0.929)	1257948	8.77342	8.8
63 Dibromochloromethane	129	13.943	13.943 (0.946)	2238325	10.4793	10
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1858770	9.67875	9.7
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3955202	10.0000	
66 Chlorobenzene	112	14.781	14.776 (1.003)	2934488	9.42841	9.4
67 n-Nonane	57	14.899	14.899 (1.011)	1588075	9.23518	9.2
68 Ethylbenzene	91	14.856	14.856 (1.008)	4322884	9.64929	9.6
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3673921	19.5802	20
M 70 Xylenes, Total	106			5475644	29.1877	29
71 Xylene (o)	106	15.539	15.539 (1.054)	1801723	9.60744	9.6
72 Styrene	104	15.566	15.566 (1.056)	2842245	9.95950	10
73 Bromoform	173	15.859	15.859 (1.076)	2207672	10.9740	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	5254230	9.97197	10
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2293003	9.34376	9.3
76 n-Propylbenzene	91	16.457	16.457 (1.117)	5879643	10.1425	10
77 1,2,3-Trichloropropane	75	16.468	16.468 (1.117)	1732073	9.76640	9.8
78 n-Decane	57	16.548	16.548 (1.123)	1993038	9.37788	9.4
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	5474432	10.2212	10
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	4622460	10.0059	10
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	4379382	9.75652	9.8
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	2463133	10.3160	10
83 tert-butylbenzene	119	17.023	17.023 (1.155)	4493430	10.0547	10
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	4300411	9.63234	9.6
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	6432891	9.95876	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	5782779	10.2729	10
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	3240234	9.85183	9.9
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	3290486	9.94224	9.9
89 Benzyl chloride	91	17.738	17.738 (1.204)	3767531	10.1065	10
90 Undecane	57	17.887	17.887 (1.214)	2031040	10.1345	10
91 n-Butylbenzene	91	17.903	17.903 (1.215)	4596689	10.3361	10
92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	2988115	9.49522	9.5
93 Dodecane	57	19.243	19.243 (1.306)	1785615	9.24007	9.2
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2310748	9.86721	9.9
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1493895	9.84599	9.8
96 Naphthalene	128	20.652	20.652 (1.401)	5227549	10.1067	10
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2055932	10.8899	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkac003.d

Client ID: lcs 133740 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: lcs 133740
Lab Sample ID: lcs 133740

Date: 22-APR-2011 14:56

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 168 of 263

GC/MS INSTRUMENT RUN LOG

					: -)			
Sednence					Standar	Standard Traceability	<u>.</u>				Instrument Information
Batch ID: B	おべね	Start Date: 4	\sim	Time: 1050		# 84580	0.8				Instrument ID: B
Test Method:	7015	End Date: 4	120/11	Time: 1050	CAL STD Lot #	- 1	see oo	somments			Instrument: 5973
ICAL Date:	11/61/h		A PARTY CONTRACTOR CON	BROOM C. I. Office and Disconding Company of Control of	ICV/LC	ICV/LCS Lot # S.C.C.	, or 26	14 man 15	~	N. W. and Pt. St. Aug. is \$80,000 to \$70.00	Column Type: RTX-624
	Manager		Analyst		Analyst			Analyst			
Name/Initial			J Lynn	ا المراد							
Signature	Signature	AN OLDER DE L'ANGERE MAINTE MANAGEMENT DE L'ANGERE DE L'ANGERE DE L'ANGERE DE L'ANGERE DE L'ANGERE DE L'ANGERE	() d. ()	OAD			N. P. S. C.			ACT CANADA	
		Sequen	Sequence Information	A				Individu	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
1050	BKA 001	<i>A/\</i>	BFB	1 A/V			PATO	4/V	7	PAD	
1213	1 002	7632	VIBLK		2	202	_	1	7	1	
1305	003		44/0		3			N/K	+		132519 R
1357	1-20	436 4E	S Level 2		4				Ž		132517
1450	200	3482	Level 3		S				7		132507
B 1542	900	1252	Level 4		e				7		132424
9/	200	3/55	Level S		7				7		132422
L71/16	800	2575	Level 6		<i>%</i>				7		904581
6/8/9	600	1967	Level 7		6				7		1324075
//6/f	0/0		Y VIBLK		2			7	7		K480412111
J 20226	110	1	The		2			7	7		-
2056	012	2874	N/A		10			-	ļ		129435 R
2173	0/3		S VIBLK		7			7	7		
0843	614	3308	Level	1 1	2			N/A	7		/32521
6934	0/5	1632	VIBLK		/		•	7	7		
10.77	016	5014	TCV		//			7	7		133740 AF
1116	10 10	4632	VIBLK		`	1		7	7	7	
				-	7		41.00	The same as the same of the same as the same of the sa	and the same of th		
				5	= Q						
			7		_						
		\	4								
	A CANADA										
A CELLERY	The state of the s									-	
						- (],	-	

Legend: C=Complete • R=Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

Page 17 of 100

BR-FAI002:06.07.10:7 TestAmerica GC/MS INSTRUMENT RUN LOG

1,1,1- Hidliocethame 1 16Dappy 19 C15-1,2- DCE A 18Uppby - 06 notwork KIP 041241 Standard Traceability Instrument Information Comments / Column Type: RTX-624 235,54 Instrument: 5973 Instrument ID: B Morehran onth cdf 4,72 Analyst Primary HOUTH ABUTEIN KIN Anal. CAP. Individual Sample Review Result Conc. 4 > Internal NA Std. Analyst 33740 132424 PAT Operator 200 Standard Traceability ISTD Lot #: 84 580 Volume 200 2cro 200 200 00/ 201 200 20/ 202 200 202 20 200 (mL) 20 0 CAL STD Lot # ICV / LCS Lot # 9 74 6 ISTD Lot #: Analyst Inlet # 0 11 W 2 ુ|છ \mathcal{I} S 000 131 Dilution 18,2 096 Factor Time: 13/ N/A 49.7 80 Q 20 Ó is N Time: 1/11/11 10-1184 -05 -23 -03 -03 -03 -03 40--22 -24 -02 17--05 10-3923-01 4833-0 10-918h 4737-0 10-h1Lh BFB Sequence Information ETR CCV240 13/11 7724 Analyst 1 77/h 7 4260 3599 Summa Can ID 3465 Start Date: 908 H 6105 50 46 5050 End Date: 4632 A/14 257 Bag 5084 39 700 File Name 5 500 006 200 210 TALS ID / C 30 0/0 7/0 11/61/6 1015 Manager BKA **た**ズA Test Method: Name/Initial ICAL Date: 1334 Seguence 140 Z Injection Batch ID: 1550 11042 60.73 1990 Ductle 0120 17,00 Signature Time 27.48 0739 0872 19119 2104 13/ .2011

Legend: C=Complete • R=Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

BR-FAI002:06.07.10:7 TestAmerica

Page 20 of 100

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Instrument ID: B.i Start Date: 04/19/2011 10:50

Analysis Batch Number: 16751 End Date: 04/20/2011 11:18

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-16751/1		04/19/2011 10:50	1	bka001.d	RTX-624 0.32 (mm)
VIBLK 200-16751/2		04/19/2011 12:13	1		RTX-624 0.32 (mm)
IC 200-16751/3		04/19/2011 13:05	1		RTX-624 0.32 (mm)
IC 200-16751/4		04/19/2011 13:57	1	bka004.d	RTX-624 0.32 (mm)
IC 200-16751/5		04/19/2011 14:50	1	bka005.d	RTX-624 0.32 (mm)
ICIS 200-16751/6		04/19/2011 15:42	1	bka006.d	RTX-624 0.32 (mm)
IC 200-16751/7		04/19/2011 16:34	1	bka007.d	RTX-624 0.32 (mm)
IC 200-16751/8		04/19/2011 17:27	1	bka008.d	RTX-624 0.32 (mm)
IC 200-16751/9		04/19/2011 18:19	1	bka009.d	RTX-624 0.32 (mm)
VIBLK 200-16751/10		04/19/2011 19:11	1		RTX-624 0.32 (mm)
VIBLK 200-16751/11		04/19/2011 20:04	1		RTX-624 0.32 (mm)
ICV 200-16751/12		04/19/2011 20:56	1		RTX-624 0.32 (mm)
VIBLK 200-16751/13		04/19/2011 21:49	1		RTX-624 0.32 (mm)
IC 200-16751/14		04/20/2011 08:43	1	bka014.d	RTX-624 0.32 (mm)
VIBLK 200-16751/15		04/20/2011 09:34	1		RTX-624 0.32 (mm)
ICV 200-16751/16		04/20/2011 10:27	1	bka016.d	RTX-624 0.32 (mm)
VIBLK 200-16751/17		04/20/2011 11:18	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington Job No.: 200-4737-1

SDG No.: 200-4737

Instrument ID: B.i Start Date: 04/22/2011 13:11

Analysis Batch Number: 16914 End Date: 04/23/2011 09:24

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-16914/1		04/22/2011 13:11	1	bkac001.d	RTX-624 0.32 (mm)
CCVIS 200-16914/2		04/22/2011 14:02	1	bkac002.d	RTX-624 0.32 (mm)
LCS 200-16914/3		04/22/2011 14:56	1	bkac003.d	RTX-624 0.32 (mm)
MB 200-16914/4		04/22/2011 15:50	1	bkac004.d	RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 16:42	20		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 17:34	20		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 18:27	1		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 19:19	1		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 20:11	2		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 21:04	2		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 21:56	1		RTX-624 0.32 (mm)
ZZZZZ		04/22/2011 22:48	2		RTX-624 0.32 (mm)
200-4737-1	SL 118	04/22/2011 23:41	18.2	bkac013.d	RTX-624 0.32 (mm)
200-4737-2	SL 022	04/23/2011 00:33	49.7	bkac014.d	RTX-624 0.32 (mm)
200-4737-3	SL 084	04/23/2011 01:26	1960	bkac015.d	RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 02:19	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 03:12	10		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 04:05	10		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 04:59	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 05:52	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 06:46	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 07:39	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 08:32	1		RTX-624 0.32 (mm)
ZZZZZ		04/23/2011 09:24	1		RTX-624 0.32 (mm)

Post-Sampling Air Canister Pressure Check Record

, cot camping , camet							
Client ID	Job	Date	Time (Military)	Lab BP ("Hg)	Lab Temp (°C)	Pressure Gague ID	Analyst
GEOSYNTEG Z	+737	4/18/11	1350	29.4	77	61	VP
Sampling Information and Retu	rn Equipment Chec	ж ¹			Yes No	C	omments
(1) Is a Field Test Data Sheet (FT	DS) or similar samp	ling documer	ntation present	?	X		
(2) Is the flow controller ID used for	or each canister reco	orded?			X		
(3) Is visible sign of damage to ca	nister and/or flow co	ontroller (FC)	present?		\sim		
If damage observed, list equipme	nt IDs and describe	condition:					

Post-Sampling Return	n Pressure Chec	k ,					
Lab ID	Canister ID	Pressure ¹ ("Hg)	Anomaly ² (Y/N)	FC ID⁵	FC Return (Y/N)	Can Cert Batch ID	Comments ,
. 1	3599	0.0	N	4977	Y	4666CJRG	Zoohlinh
2	4642	-3,9	Í	4705	1	<u> </u>	1
3	4642	-4.2	<u> </u>	4705		5688 CJQA	
	'						
					,		
	,						
					N. Marketon		
						1.	
					•	41181	
					. \.	M > (1, 1,	
		v					
~#: 	/ · · · · ·	1.					
	as the BANK Meyel are a New Agendari Tray and electrical transferrit in the Assessment	- Marriaboy W. Morris and C. 1918-1919					

¹ Criteria: Return Pressure should be between -1 and -10 ("Hg)

Internal Use Only: Flow Controller Date and Page #

² If return pressure is not within criteria, initiate anomaly report.

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

Summa Canister Dilution Worksheet

Client: Geosyntec Consultants, Inc.

TestAmerica Job ID: 200-4737-1

Client: 200-4737

	Canister Volume	Preadjusted Pressure	Preadjusted Pressure	Preadjusted Volume	Adjusted Pressure	Adjusted Pressure	Adjusted Volume	Dilution	Final Dilution		
Lab Sample ID	(L)	("Hg)	(atm)	(L)	(psig)	(atm)	(L)	Factor	Factor	Date	Analyst
200-4737-2	1	-6.5	0.78	0.78	39.6	3.69	3.69	4.72	4.72	04/22/11 14:40	Daigle, Paul A
200-4737-3	1	-6.3	0.79	0.79	40.3	3.74	3.74	4.74	4.74	04/20/11 8:21	Desjardins, William R
200-4737-3	1	0	1.00	1.00	40.1	3.73	3.73	3.73	17.68	04/20/11 8:24	Desjardins, William R
200-4737-3	1	0	1.00	1.00	38.6	3.63	3.63	3.63	64.18	04/22/11 14:41	Daigle, Paul A
200-4737-3	1	0	1.00	1.00	39.2	3.67	3.67	3.67	235.54	04/22/11 14:44	Daigle, Paul A

Formulae:

Preadjusted Volume (L) = (Preadjusted Pressure ("Hg) + 29.92 "Hg * Vol L) / 29.92 "Hg

Adjusted Volume (L) = (Adjusted Pressure (psig) + 14.7 psig * Vol L) / 14.7 psig

Dilution Factor = Adjusted Volume (L) / Preadjusted Volume (L)

Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

Vol = Volume of SUMMA canister at atmospheric pressure

Pre-Shipment Clean Canister Certification Report

Cen	itication 13	/pe:	N Datcii	□ inuividuai										
	-			Canister Cle	eaning &					st				
	Sys	tem ID		# Cycles			Cleani	ng/Da	te		Technici		Canister Size	
	0016	EV 1		15			<u> </u>	-/11			W		<u> 1L </u>	3L
							/ Leal	Test						
		Initial ¹	Final	Adjusted Initial ²				lni	itial Re	ading	<u> </u>	Fi	nal Reading	
Port	Can ID	("Hg)	("Hg)	("Hg)	Differen	ice³	Gauge	ID:	6-1			Gauge ID:	GI	
1	4838	-29.7	-29.5	-29.5	00		Date:		3/14	11		Date:	3/21/11	
2	2980	1	1,	ì			Time:		170	Ø		Time:	1145	
. 3	3686						Tech:		5	-		Tech:	5	
4	4849						BP:		29	9	("Hg)	BP:	29.7	("Hg)
5	4260						Temp		7	Ź	(°C)	Temp:	22	(°C)
6	4841						3Acce	ptance	Criter	ia:				
7	4670						(1) Th	e diffe	rence	must b	e less tha	n or equal to	+ 0.5	
8	3589					,	(2) Pro	essure	readir	ıgs mı	ıst be at le	ast 24 hours	apart.	
9							1 ` `			-			e shipment of ca	anister
10						_	PM A						·	
11							1							
12							Signa	ture					Date	
	h Certification	· The readi	ing is taken o	on the "batch" caniste	er and this	valu			the init	ial pre	ssure for a	all canisters in		
			_	tract Final BP from t										
				sted Initial Pressure									g	
	alouidto Dillor			nister Certification								rtv		
Tool	Mathadi MT	Ode Davis		LL NJDEP-LL TO		4 ^			entory				ondary Review	
rest	Can ID				_	<u></u>	1	2	3	4	Limited	Review Da		
31	88	Dat	ie ,	Sequence	Analy		- ' -		1	-	Limited	03/10/11	RU	
70	0.0	2//7/1	/ 	CIQA	WIL			_	-			Dollalit	154	
-							_						- 	
									_				- 	
<u> </u>			_											
\vdash														
<u> </u>									-					
														
										<u>.</u> .				
<u> </u>														_
					ļ									
<u> </u>					ļ									
Inven	tory Level 1: I	ndividual C	anister Certi	fication Only. Certifi	ed clean t	o RL	s listed	l in lab	orator	SOP	for LLTO1	5.		
Inven	tory Level 2: I	ndividual o	r Batch Certi	fication. Certified cle	an to 0.04	ppb	V.							
Inven	tory Level 3: I	ndividual o	r Batch Certi	fication. Certified cle	an to 0.20	ppb	V.							
Inven	tory Level 4: 1	ndividual o	r Batch Certi	fication. Certified cle	an followir	ng pi	rocedu	es and	d RLs i	isted i	n laborato	y SOP NJDE	P-LLTO15.	
Inven	tory Level Lim	ited Use: 0	Canisters ma	y only be used for ce	ertain proje	ects.								
_														
Comi	ments:													
											_			-
-													Loc: 200	
- 20	0-4233-A-3			-									4233	
- 368 Loca	8 ation: Air-Storage							_					— #3	
	tie: Summa Canister npled: 3/14/2011 12:		121863										200-4233-A-3	

Lesenticites

Pre-Shipment Clean Canister Certification Report

			/ '	Canister Cle	eaning & Pre-	Shipme	ent Le	ak Tes	st					
	Sy	stem ID		# Cycles		Cleani	ng Dat	te		Technici	an	Ci	anister Siz	:e
	Ove			15		3/3	1/11		5	SML 3		6L	(1L')Y	3L
	V					Leak	Test				_			
		Initial ¹	Final	Adjusted Initial ²		Γ		tial Re	ading			Final F	Reading	
Port	Can ID	("Hg)	("Hg)_	("Hg)	Difference ³	Gauge		G			Gauge I		.	
1	4642	-29.3	-286	-28.6	0.0	Date:		<u> 3</u> 3	- ′ - · · · · · · · · · · · · · · · · · 		Date:	4/2	-7:1	
2	4653	1	1/. 6	20.0	,	Time:		17a			Time:	166	3/2	_
3	4666	1-1-1		1	 	Tech:		SwL			Tech:	110		
4	3577	 			1.	BP:		29.5		("Hg)		70		("Hg
5	3599				l f	Temp	7	.2			Temp:	22	<i></i>	(°C
$\overline{}$	4651					3Accer			——— ia:	(0)	romp.			
\rightarrow	4860	1 1		- -	 	1 .				e less tha	n or eaus	al to + 0.5		
8	4389					1`′				st be at le				
9	1001	-		<u> </u>		1 ' '			-				ipment of a	raniste
10				 -		PM Au			or met	, (110 1 141	uət aut		יאיייביינ טו (Jamote
11						"" \\	11101120	20011.						
12						Signat	ure						ate	
	n Certification	The readin	a is taken o	the "batch" caniste	r and this val			the ini	tial pro	ecure for	all caniet			
Test N	 Method: ☑1	O15 Routine		nister Certification		uthoriz			ease t			Seconda	ry Review	
	Can ID	/Date		Sequence	Analyst	1	2	3	4	Limited		w Date	Revie	
4	666	24/22/	111 0	JRG	84			1						
		7												
				,										
				,										
				,										
				,										
				,										
Invent	ory Level 1:	Individual Ca	anister Certif	ication Only. Certific	ed clean to RI	_s listed	l in lab	porator	y SOP	for LLTO	15.			
				ication Only. Certification. Certified cle			l in lab	porator	y SOP	for LLTO	15.			
Invent	ory Level 2:	Individual or	Batch Certif	-	an to 0.04 ppl	ov.	l in lab	porator	y SOP	for LLTO	15.			
Invent	ory Level 2: ory Level 3:	Individual or Individual or	Batch Certif Batch Certif	ication. Certified cle	an to 0.04 ppl an to 0.20 ppl	ov.						NJDEP-LI	_TO15.	
Inventa Inventa Inventa	ory Level 2: ory Level 3: ory Level 4:	Individual or Individual or Individual or	Batch Certif Batch Certif Batch Certif	ication. Certified cle	an to 0.04 ppl an to 0.20 ppl an following p	ov. ov. rocedur						NJDEP-LI	_TO15.	
Invento Invento Invento Invento	ory Level 2: ory Level 3: ory Level 4: ory Level Lim	Individual or Individual or Individual or	Batch Certif Batch Certif Batch Certif	ication. Certified cle ication. Certified cle ication. Certified cle	an to 0.04 ppl an to 0.20 ppl an following p	ov. ov. rocedur						NJDEP-LI	_TO15.	
Invent Invent Invent	ory Level 2: ory Level 3: ory Level 4: ory Level Lim	Individual or Individual or Individual or	Batch Certif Batch Certif Batch Certif	ication. Certified cle ication. Certified cle ication. Certified cle	an to 0.04 ppl an to 0.20 ppl an following p	ov. ov. rocedur						NJDEP-LI	_TO15.	
Inventa Inventa Inventa Inventa	ory Level 2: ory Level 3: ory Level 4: ory Level Lim	Individual or Individual or Individual or	Batch Certif Batch Certif Batch Certif	ication. Certified cle ication. Certified cle ication. Certified cle	an to 0.04 ppl an to 0.20 ppl an following p	ov. ov. rocedur						NJDEP-LI	_TO15.	

Loc: 200

4478

BR-FAI023:10.19.09:7 200-4478-A-3 TestAmerica

Lab Name	e: TestAmerica Burl	Lington	Job No.: 200-4233-1	
SDG No.:	:			
Matrix:	Air	Level: Low	Lab File ID: cjqa003.d	
Lab ID:	LCS 200-15121/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Propylene	10.0	9.78	98	70-130	
Dichlorodifluoromethane	10.0	10.2	102	70-130	
Freon 22	10.0	9.81	98	70-130	
1,2-Dichlorotetrafluoroethane	10.0	10.3	103	70-130	
Chloromethane	10.0	9.82	98	70-130	
n-Butane	10.0	9.79	98	70-130	
Vinyl chloride	10.0	10.2	102	70-130	
1,3-Butadiene	10.0	10.5	105	70-130	
Bromomethane	10.0	9.64	96	70-130	
Chloroethane	10.0	9.87	99	70-130	
Bromoethene (Vinyl Bromide)	10.0	10.3	103	70-130	
Trichlorofluoromethane	10.0	10.0	100	70-130	
Ethanol	15.0	13.9	92	70-130	
Freon TF	10.0	11.0	110	70-130	
1,1-Dichloroethene	10.0	11.2	112	70-130	
Acetone	10.0	10.2	102	70-130	
Isopropyl alcohol	10.0	9.38	94	70-130	
Carbon disulfide	10.0	9.38	94	70-130	
3-Chloropropene	10.0	9.87	99	70-130	
Methylene Chloride	10.0	10.2	102	70-130	
tert-Butyl alcohol	10.0	9.34	93	70-130	
Methyl tert-butyl ether	10.0	10.3	103	70-130	
trans-1,2-Dichloroethene	10.0	9.90	99	70-130	
n-Hexane	10.0	10.3	103	70-130	
1,1-Dichloroethane	10.0	9.88	99	70-130	
Vinyl acetate	10.0	10.2	102	70-130	
Ethyl acetate	10.0	10.4	104	70-130	
Methyl Ethyl Ketone	10.0	10.2	102	70-130	
cis-1,2-Dichloroethene	10.0	10.3	103	70-130	
Chloroform	10.0	9.86	99	70-130	
Tetrahydrofuran	10.0	10.0	100	70-130	
1,1,1-Trichloroethane	10.0	9.84	98	70-130	
Cyclohexane	10.0	10.1	101	70-130	
Carbon tetrachloride	10.0	9.87	99		
2,2,4-Trimethylpentane	10.0	9.85	99		
	10.0	9.83	99	70-130	
Benzene	10.0		96	70-130	
1,2-Dichloroethane		9.55			
n-Heptane	10.0	9.56	96	70-130	
Trichloroethene	10.0	9.70	97	70-130	
Methyl methacrylate	10.0	10.2	102	70-130	
1,2-Dichloropropane	10.0	9.50	95	70-130	
1,4-Dioxane	10.0	8.51	85	70-130	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Buri	lington	Job No.: 200-4233-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: cjqa003.d	
Lab ID:	LCS 200-15121/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Bromodichloromethane	10.0	10.3	103	70-130	
cis-1,3-Dichloropropene	10.0	9.63	96	70-130	
methyl isobutyl ketone	10.0	9.93	99		
Toluene	10.0	9.42	94	70-130	
trans-1,3-Dichloropropene	10.0	9.61	96	70-130	
1,1,2-Trichloroethane	10.0	9.11	91	70-130	
Tetrachloroethene	10.0	9.60	96	70-130	
Methyl Butyl Ketone (2-Hexanone)	10.0	9.14	91	70-130	
Dibromochloromethane	10.0	10.4	104		
1,2-Dibromoethane	10.0	9.48	95	70-130	
Chlorobenzene	10.0	9.40	94		
Ethylbenzene	10.0	9.99	100		
m,p-Xylene	20.0	20.2	101	70-130	
Xylene, o-	10.0	9.87	99	70-130	
Styrene	10.0	10.1	101	70-130	
Bromoform	10.0	10.7	107	70-130	
Cumene	10.0	10.4	104		
1,1,2,2-Tetrachloroethane	10.0	9.71	97	70-130	
n-Propylbenzene	10.0	10.7	107	70-130	
4-Ethyltoluene	10.0	11.0	110		
1,3,5-Trimethylbenzene	10.0	10.8	108		
2-Chlorotoluene	10.0	10.3	103		
tert-Butylbenzene	10.0	10.8	108		
1,2,4-Trimethylbenzene	10.0	10.6	106	70-130	
sec-Butylbenzene	10.0	11.2	112	70-130	
4-Isopropyltoluene	10.0	11.3	113	70-130	
1,3-Dichlorobenzene	10.0	9.67	97	70-130	
1,4-Dichlorobenzene	10.0	9.69	97	70-130	
Benzyl chloride	10.0	8.65	86		
n-Butylbenzene	10.0	10.9	109		
1,2-Dichlorobenzene	10.0	9.55	95		
1,2,4-Trichlorobenzene	10.0	7.20	72	70-130	
Hexachlorobutadiene	10.0	9.85	99		
Naphthalene	10.0	7.54	75	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

Lab Name	e: TestAmerica Buri	lington	Job No.: 200-4478-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: cjrg003.d	
Lab ID:	LCS 200-15924/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	% LLC2	LIMITS	#
COMPOIND			REC	REC	#
COMPOUND	(ppb v/v)	(ppb v/v) 11.7	117		
Propylene Dichlorodifluoromethane		11.7			
Freon 22	10.0		115		
1,2-Dichlorotetrafluoroethane	10.0	11.7	117 109		
Chloromethane	10.0	10.9	114	70-130	
	10.0	11.4	127	70-130	
n-Butane	10.0	12.7	112	70-130	
Vinyl chloride	10.0	11.2	120		
1,3-Butadiene	10.0	12.0	1 1	70-130	
Bromomethane	10.0	9.51	95	I	
Chloroethane	10.0	10.1	101	70-130	
Bromoethene (Vinyl Bromide)	10.0	9.99	100	I	
Trichlorofluoromethane	10.0	11.6	116 103		
Ethanol	15.0	15.5	1 1	70-130	
Freon TF	10.0	11.2	112		
1,1-Dichloroethene	10.0	10.9	110	I	
Acetone	10.0	12.5	125	70-130	
Isopropyl alcohol	10.0	11.2	112	70-130	
Carbon disulfide	10.0	10.2	102	70-130 70-130	
3-Chloropropene	10.0	12.3	123		
Methylene Chloride	10.0	12.0	120	I	
tert-Butyl alcohol	10.0	10.9	109	I	
Methyl tert-butyl ether	10.0	10.6	106	I	
trans-1,2-Dichloroethene	10.0	11.2	112	70-130	
n-Hexane	10.0	11.0	110	70-130	
1,1-Dichloroethane	10.0	11.2	112	70-130	
Vinyl acetate	10.0	12.6	126	70-130	
Ethyl acetate	10.0	9.68	97	70-130	
Methyl Ethyl Ketone	10.0	9.79	98	70-130	
cis-1,2-Dichloroethene	10.0	10.3	103	70-130	
Chloroform	10.0	11.2	112	70-130	
Tetrahydrofuran	10.0	12.0	120	I	
1,1,1-Trichloroethane	10.0	11.8	118		
Cyclohexane	10.0	10.3	103		
Carbon tetrachloride	10.0	11.9	119		
2,2,4-Trimethylpentane	10.0	11.2	112		
Benzene	10.0	10.1	101	70-130	
1,2-Dichloroethane	10.0	12.9	129	I	
n-Heptane	10.0	12.5	125	70-130	
Trichloroethene	10.0	10.4	104	I	
Methyl methacrylate	10.0	10.5	105	I	
1,2-Dichloropropane	10.0	10.7	107	70-130	
1,4-Dioxane	10.0	8.35	84	70-130	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Buri	lington	Job No.: 200-4478-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: cjrg003.d	
Lab ID:	LCS 200-15924/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	્ર	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Bromodichloromethane	10.0	12.3	123		
cis-1,3-Dichloropropene	10.0	11.0	110		
methyl isobutyl ketone	10.0	13.1	131	70-130	*
Toluene	10.0	9.63	96		
trans-1,3-Dichloropropene	10.0	11.7	117	70-130	
1,1,2-Trichloroethane	10.0	9.51	95	70-130	
Tetrachloroethene	10.0	9.63	96	70-130	
Methyl Butyl Ketone (2-Hexanone)	10.0	12.7	127	70-130	
Dibromochloromethane	10.0	11.6	116		
1,2-Dibromoethane	10.0	10.1	101	70-130	
Chlorobenzene	10.0	9.76	98	70-130	
Ethylbenzene	10.0	10.7	107	70-130	
m,p-Xylene	20.0	20.3	102	70-130	
Xylene, o-	10.0	9.85	99	70-130	
Styrene	10.0	10.9	109		
Bromoform	10.0	11.7	117	70-130	
Cumene	10.0	10.9	109		
1,1,2,2-Tetrachloroethane	10.0	10.1	101	70-130	
n-Propylbenzene	10.0	11.5	115		
4-Ethyltoluene	10.0	11.6	116		
1,3,5-Trimethylbenzene	10.0	11.3	113	70-130	
2-Chlorotoluene	10.0	11.6	116		
tert-Butylbenzene	10.0	11.0	110	70-130	
1,2,4-Trimethylbenzene	10.0	11.3	113	70-130	
sec-Butylbenzene	10.0	11.6	116		
4-Isopropyltoluene	10.0	11.8	118		
1,3-Dichlorobenzene	10.0	10.2	102	70-130	
1,4-Dichlorobenzene	10.0	10.1	101	70-130	
Benzyl chloride	10.0	9.96	100		
n-Butylbenzene	10.0	12.0	120		
1,2-Dichlorobenzene	10.0	10.1	101	70-130	
1,2,4-Trichlorobenzene	10.0	9.76	98		
Hexachlorobutadiene	10.0	11.2	112	70-130	
Naphthalene	10.0	9.88	99	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1
SDG No.:	
Lab File ID: cjqa004.d	Lab Sample ID: MB 200-15121/4
Matrix: Air	Heated Purge: (Y/N) N
Instrument ID: C.i	Date Analyzed: 03/14/2011 20:28
GC Column: RTX-624 ID: 0.32(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-15121/3	cjqa003.d	03/14/2011 19:40
3688	200-4233-3	cjqa009.d	03/15/2011 02:38

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-15121/4			
Matrix: Air	Lab File ID: cjqa004.d			
Analysis Method: TO-15	Date Collected:			
Sample wt/vol: 200(mL)	Date Analyzed: 03/14/2011 20:28			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15121	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	U	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-15121/4
Matrix: Air	Lab File ID: cjqa004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 03/14/2011 20:28
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 15121	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-15121/4			
Matrix: Air	Lab File ID: cjqa004.d			
Analysis Method: TO-15	Date Collected:			
Sample wt/vol: 200(mL)	Date Analyzed: 03/14/2011 20:28			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15121	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa004.d Page 1

Report Date: 15-Mar-2011 22:22

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/C.i/Csvr.p/cjqato15.b/cjqa004.d

Lab Smp Id: mb Client Smp ID: mb

Inj Date : 14-MAR-2011 20:28

Operator : sv Inst ID: C.i

Smp Info : mb

Misc Info: 200,1, mb

Comment :

Method : /chem/C.i/Csvr.p/cjqato15.b/to15v5.m

Meth Date: 15-Mar-2011 22:22 sv Quant Type: ISTD Cal Date: 12-MAR-2011 18:03 Cal File: cjq009.d Als bottle: 3 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa004.d Report Date: 15-Mar-2011 22:22

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT F	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======	====	==	=======================================	=====	======	======	======
15 Ethanol	45	Com	pound Not	Detected.	•		
16 Ethyl ether	59	Com	pound Not	Detected.	•		
17 1,1,2-Trichloro-1,2,2-trifluo	101	Com	pound Not	Detected.	•		
18 Acrolein	56	Com	pound Not	Detected.	•		
19 1,1-Dichloroethene	96	Comp	pound Not	Detected.			
20 Acetone	43	Com	pound Not	Detected.	•		
21 Carbon disulfide	76	Com	pound Not	Detected.	•		
22 Isopropanol	45	Comp	pound Not	Detected.			
23 Allyl chloride	41	Comp	pound Not	Detected.			
24 Acetonitrile	41	Comp	pound Not	Detected.			
25 Methylene chloride	49	Com	pound Not	Detected.	•		
26 Tert-butyl alcohol	59	Com	pound Not	Detected.	•		
27 Methyl tert-butyl ether	73	Com	pound Not	Detected.	•		
28 1,2-Dichloroethene (trans)	61	Comp	pound Not	Detected.			
29 Acrylonitrile	53	Comp	pound Not	Detected.			
30 n-Hexane	57	Comp	pound Not	Detected.			
31 1,1-Dichloroethane	63	Com	pound Not	Detected.	•		
32 Vinyl acetate	43	Comp	pound Not	Detected.			
M 33 1,2-Dichloroethene,Total	61	Com	pound Not	Detected.			
34 1,2-Dichloroethene (cis)	96	Com	pound Not	Detected.			
35 Ethyl acetate	88	Com	pound Not	Detected.			
36 Methyl Ethyl Ketone	72	Com	pound Not	Detected.			
* 37 Bromochloromethane	128	10.159	10.165 (1.000)	807610	10.0000	
38 Tetrahydrofuran	42	Com	pound Not	Detected.			
39 Chloroform	83	Com	pound Not	Detected.			
40 Cyclohexane	84	Com	pound Not	Detected.	•		
41 1,1,1-Trichloroethane	97	Com	pound Not	Detected.	•		
42 Carbon tetrachloride	117	Com	pound Not	Detected.	•		
43 2,2,4-Trimethylpentane	57	Com	pound Not	Detected.	•		
44 Benzene	78	Com	pound Not	Detected.	•		
45 1,2-Dichloroethane	62	Com	pound Not	Detected.	•		
46 n-Heptane	43	Com	pound Not	Detected.			
* 47 1,4-Difluorobenzene	114	11.483	11.488 (1.000)	5023931	10.0000	
48 n-Butanol	56	Com	pound Not	Detected.			
49 Trichloroethene	95	Com	pound Not	Detected.			
50 1,2-Dichloropropane	63	Com	pound Not	Detected.			
51 Methyl methacrylate	69	Com	pound Not	Detected.			
52 Dibromomethane	174	Com	pound Not	Detected.	•		
53 1,4-Dioxane	88	Com	pound Not	Detected.	•		
54 Bromodichloromethane	83	Com	pound Not	Detected.	•		
55 1,3-Dichloropropene (cis)	75	Com	pound Not	Detected.	•		
56 Methyl isobutyl ketone	43	Com	pound Not	Detected.	•		
57 n-Octane	43	Com	pound Not	Detected.	•		
58 Toluene	92	Com	pound Not	Detected.	•		
59 1,3-Dichloropropene (trans)	75	Com	pound Not	Detected.			
60 1,1,2-Trichloroethane	83	Com	pound Not	Detected.	•		
61 Tetrachloroethene	166	Com	pound Not	Detected.			

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa004.d Report Date: 15-Mar-2011 22:22 Page 3

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	======	======	======	======
	62 2-Hexanone	43	Com	npound Not Detected	l.		
	63 Dibromochloromethane	129	Com	npound Not Detected	l.		
	64 1,2-Dibromoethane	107	Com	npound Not Detected	l.		
*	65 Chlorobenzene-d5	117	15.485	15.486 (1.000)	4060635	10.0000	
	66 Chlorobenzene	112	Com	npound Not Detected	l.		
	67 n-Nonane	57	Com	npound Not Detected	l.		
	68 Ethylbenzene	91	Com	npound Not Detected	l.		
	69 Xylene (m,p)	106	Com	npound Not Detected	l.		
M	70 Xylenes, Total	106	Com	mpound Not Detected	l.		
	71 Xylene (o)	106	Com	npound Not Detected	l.		
	72 Styrene	104	Com	npound Not Detected	l.		
	73 Bromoform	173	Com	npound Not Detected	l.		
	74 Isopropylbenzene	105	Com	npound Not Detected	l.		
	75 1,1,2,2-Tetrachloroethane	83	Com	npound Not Detected	l.		
	76 n-Propylbenzene	91	Com	npound Not Detected	l.		
	77 1,2,3-Trichloropropane	75	Com	pound Not Detected	l.		
	78 n-Decane	57	Com	npound Not Detected	l.		
	79 4-Ethyltoluene	105	Com	npound Not Detected	l.		
	80 2-Chlorotoluene	91	Com	npound Not Detected	l.		
	81 1,3,5-Trimethylbenzene	105	Com	pound Not Detected	l.		
	82 Alpha Methyl Styrene	118	Com	pound Not Detected	l.		
	83 tert-butylbenzene	119	Com	pound Not Detected	l.		
	84 1,2,4-Trimethylbenzene	105	Com	pound Not Detected	l.		
	85 sec-Butylbenzene	105	Com	pound Not Detected	l.		
	86 4-Isopropyltoluene	119	Com	pound Not Detected	l.		
	87 1,3-Dichlorobenzene	146	Com	pound Not Detected	l.		
	88 1,4-Dichlorobenzene	146	Com	pound Not Detected	l.		
	89 Benzyl chloride	91	Com	pound Not Detected	l.		
	90 Undecane	57	Com	npound Not Detected	l.		
	91 n-Butylbenzene	91	Com	pound Not Detected	l.		
	92 1,2-Dichlorobenzene	146	Com	npound Not Detected	l.		
	93 Dodecane	57	Com	npound Not Detected	l.		
	94 1,2,4-Trichlorobenzene	180	Com	npound Not Detected	l.		
	95 1,3-Hexachlorobutadiene	225	Com	npound Not Detected	l.		
	96 Naphthalene	128	Com	npound Not Detected	l.		
	97 1,2,3-Trichlorobenzene	180	22.279	22.285 (1.439)	5332	0.04689	0.047(a)

QC Flag Legend

Data File: cjqa004.d

Client ID: mb
Operator: sv

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Date: 14-MAR-2011 20:28

Instrument: C.i
Inj Vol: 200.0
Diameter: 0.32

Page 188 of 263

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1
SDG No.:	
Lab File ID: cjrg004.d	Lab Sample ID: MB 200-15924/4
Matrix: Air	Heated Purge: (Y/N) N
Instrument ID: C.i	Date Analyzed: 03/31/2011 17:57
GC Column: RTX-624 ID: 0.32(mm)	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-15924/3	cjrg003.d	03/31/2011 17:09
4666	200-4478-3	cjrg017.d	04/01/2011 04:22

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-15924/4
Matrix: Air	Lab File ID: cjrg004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 03/31/2011 17:57
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 15924	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	U	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-15924/4
Matrix: Air	Lab File ID: cjrg004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 03/31/2011 17:57
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 15924	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-15924/4
Matrix: Air	Lab File ID: cjrg004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 03/31/2011 17:57
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 15924	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg004.d Page 1

Report Date: 03-Apr-2011 18:18

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/C.i/Csvr.p/cjrgto15.b/cjrg004.d

Lab Smp Id: mb

Inj Date : 31-MAR-2011 17:57

Operator : pad Inst ID: C.i

Smp Info : mb

Misc Info : 200,1, mb

Comment :

Method : /chem/C.i/Csvr.p/cjrgto15.b/to15v5.m

Meth Date: 03-Apr-2011 18:18 sv Quant Type: ISTD Cal Date: 22-MAR-2011 22:39 Cal File: cjr009.d Als bottle: 3 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg004.d Report Date: 03-Apr-2011 18:18

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
15 Ethanol	45	Compound Not Detected.
16 Ethyl ether	59	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.
18 Acrolein	56	Compound Not Detected.
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.
21 Carbon disulfide	76	Compound Not Detected.
22 Isopropanol	45	Compound Not Detected.
23 Allyl chloride	41	Compound Not Detected.
24 Acetonitrile	41	Compound Not Detected.
25 Methylene chloride	49	Compound Not Detected.
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
29 Acrylonitrile	53	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
32 Vinyl acetate	43	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
35 Ethyl acetate	88	Compound Not Detected.
36 Methyl Ethyl Ketone	72	Compound Not Detected.
* 37 Bromochloromethane	128	10.143 10.154 (1.000) 430112 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	11.467 11.478 (1.000) 2735521 10.0000
48 n-Butanol	56	Compound Not Detected.
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
52 Dibromomethane	174	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
57 n-Octane	43	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.

CONCENTRATIONS

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg004.d Report Date: 03-Apr-2011 18:18

	OHANIE GTG				ON COLUMN	
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==			======	======
62 2-Hexanone	43		pound Not Detected			
63 Dibromochloromethane	129		pound Not Detected			
64 1,2-Dibromoethane	107		pound Not Detected			
* 65 Chlorobenzene-d5	117		15.480 (1.000)	2192270	10.0000	
66 Chlorobenzene	112		pound Not Detected			
67 n-Nonane	57		pound Not Detected			
68 Ethylbenzene	91		pound Not Detected			
69 Xylene (m,p)	106		pound Not Detected			
M 70 Xylenes, Total	106		pound Not Detected			
71 Xylene (o)	106	Com	pound Not Detected	d.		
72 Styrene	104	Com	pound Not Detected	d.		
73 Bromoform	173	Com	pound Not Detected	d.		
74 Isopropylbenzene	105	Com	pound Not Detected	d.		
75 1,1,2,2-Tetrachloroethane	83	Com	pound Not Detected	d.		
76 n-Propylbenzene	91	Com	pound Not Detected	d.		
77 1,2,3-Trichloropropane	75	Com	pound Not Detected	d.		
78 n-Decane	57	Com	pound Not Detected	d.		
79 4-Ethyltoluene	105	Com	pound Not Detected	d.		
80 2-Chlorotoluene	91	Com	pound Not Detected	d.		
81 1,3,5-Trimethylbenzene	105	Com	pound Not Detected	d.		
82 Alpha Methyl Styrene	118	Com	pound Not Detected	d.		
83 tert-butylbenzene	119	Com	pound Not Detected	d.		
84 1,2,4-Trimethylbenzene	105	Com	pound Not Detected	d.		
85 sec-Butylbenzene	105	Com	pound Not Detected	d.		
86 4-Isopropyltoluene	119	Com	pound Not Detected	d.		
87 1,3-Dichlorobenzene	146	Com	pound Not Detected	d.		
88 1,4-Dichlorobenzene	146	Com	pound Not Detected	d.		
89 Benzyl chloride	91	Com	pound Not Detected	d.		
90 Undecane	57	Com	pound Not Detected	d.		
91 n-Butylbenzene	91	Com	pound Not Detected	d.		
92 1,2-Dichlorobenzene	146	Com	pound Not Detected	d.		
93 Dodecane	57	Com	pound Not Detected	d.		
94 1,2,4-Trichlorobenzene	180	Com	pound Not Detected	d.		
95 1,3-Hexachlorobutadiene	225	Com	pound Not Detected	d.		
96 Naphthalene	128	Com	pound Not Detected	d.		
97 1,2,3-Trichlorobenzene	180		pound Not Detected			

Data File: cjrg004.d

Date: 31-MAR-2011 17:57

0.32

Client ID: Operator:

pad

Instrument: C.i
Inj Vol: 200.0

Diameter:

Column Type:

Capillary

Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Page 196 of 263

$\mbox{FORM V} \\ \mbox{AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab File ID: cjq001.d BFB Injection Date: 03/12/2011

Instrument ID: C.i BFB Injection Time: 11:35

Analysis Batch No.: 15119

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	16.4	
75	30.0 - 66.0% of mass 95	48.1	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.1	
173	Less than 2.0% of mass 174	0.3	(0.5)1
174	50.0 - 120.0% of mass 95	70.1	
175	4.0 - 9.0 % of mass 174	5.0	(7.1)1
176	93.0 - 101.0% of mass 174	66.9	(95.4)1
177	5.0 - 9.0% of mass 176	4.6	(6.9)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-15119/3	cjq003.d	03/12/2011	13:14
	IC 200-15119/4	cjq004.d	03/12/2011	14:02
	IC 200-15119/5	cjq005.d	03/12/2011	14:51
	ICIS 200-15119/6	cjq006.d	03/12/2011	15:39
	IC 200-15119/7	cjq007.d	03/12/2011	16:27
	IC 200-15119/8	cjq008.d	03/12/2011	17:15
	IC 200-15119/9	cjq009.d	03/12/2011	18:03
	ICV 200-15119/11	cjq011.d	03/12/2011	19:39

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab File ID: cjqa001.d BFB Injection Date: 03/14/2011

Instrument ID: C.i BFB Injection Time: 17:51

Analysis Batch No.: 15121

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	18.0	
75	30.0 - 66.0% of mass 95	50.4	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.9	
173	Less than 2.0% of mass 174	0.3	(0.5)1
174	50.0 - 120.0% of mass 95	62.1	
175	4.0 - 9.0 % of mass 174	4.3	(6.9)1
176	93.0 - 101.0% of mass 174	58.9	(94.9)1
177	5.0 - 9.0% of mass 176	3.8	(6.4)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 200-15121/2	cjqa002.d	03/14/2011	18:37
	LCS 200-15121/3	cjqa003.d	03/14/2011	19:40
	MB 200-15121/4	cjqa004.d	03/14/2011	20:28
3688	200-4233-3	cjqa009.d	03/15/2011	02:38

$\label{eq:form_v} \mbox{FORM V} \\ \mbox{AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab File ID: cjr001.d BFB Injection Date: 03/22/2011

Instrument ID: C.i BFB Injection Time: 16:18

Analysis Batch No.: 15668

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	17.1	
75	30.0 - 66.0% of mass 95	48.6	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.5	
173	Less than 2.0% of mass 174	0.4	(0.6)1
174	50.0 - 120.0% of mass 95	64.4	
175	4.0 - 9.0 % of mass 174	4.7	(7.3)1
176	93.0 - 101.0% of mass 174	61.9	(96.2)1
177	5.0 - 9.0% of mass 176	4.1	(6.7)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-15668/3	cjr003.d	03/22/2011	17:52
	IC 200-15668/4	cjr004.d	03/22/2011	18:40
	IC 200-15668/5	cjr005.d	03/22/2011	19:27
	ICIS 200-15668/6	cjr006.d	03/22/2011	20:15
	IC 200-15668/7	cjr007.d	03/22/2011	21:03
	IC 200-15668/8	cjr008.d	03/22/2011	21:51
	IC 200-15668/9	cjr009.d	03/22/2011	22:39
	ICV 200-15668/12	cjr012.d	03/23/2011	01:03

$\mbox{FORM V} \\ \mbox{AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab File ID: cjrg001.d BFB Injection Date: 03/31/2011

Instrument ID: C.i BFB Injection Time: 15:33

Analysis Batch No.: 15924

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	17.5	
75	30.0 - 66.0% of mass 95	48.3	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.5	
173	Less than 2.0% of mass 174	0.3	(0.5)1
174	50.0 - 120.0% of mass 95	68.4	
175	4.0 - 9.0 % of mass 174	4.8	(7.1)1
176	93.0 - 101.0% of mass 174	65.6	(96.0)1
177	5.0 - 9.0% of mass 176	4.3	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 200-15924/2	cjrg002.d	03/31/2011	16:21
	LCS 200-15924/3	cjrg003.d	03/31/2011	17:09
	MB 200-15924/4	cjrg004.d	03/31/2011	17:57
4666	200-4478-3	cjrg017.d	04/01/2011	04:22

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington		Job No.: 200-4233-1						
SDG No.:								
Sample No.	: ICIS 200-15119/6	Date Analyzed: 03/12/2011 15:39						
Instrument	: ID: C.i	GC Column: RTX-624 ID: 0.32 (mm)						
Lab File I	ID (Standard): cjq006.d	Heated Purge: (Y/N) N						
Calibratio	on ID: 5326							

	BCM	BCM		DFB		CBZ	
	AREA #	RT #	AREA #	RT #	AREA #	RT #	
INITIAL CALIBRATION MID-POINT	843485	10.16	4539946	11.49	3878976	15.49	
UPPER LIMIT	1180879	10.49	6355924	11.82	5430566	15.82	
LOWER LIMIT	506091	9.83	2723968	11.16	2327386	15.16	
LAB SAMPLE ID CLIENT SAMPLE ID							
ICV 200-15119/11	949939	10.18	5140897	11.50	4530134	15.49	

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-4233-1

 SDG No.:
 Sample No.:
 CCVIS 200-15121/2
 Date Analyzed:
 03/14/2011
 18:37

 Instrument ID:
 C.i
 GC Column:
 RTX-624
 ID:
 0.32 (mm)

 Lab File ID (Standard):
 cjqa002.d
 Heated Purge:
 (Y/N)
 N

Calibration ID: 5326

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		980234	10.16	5350733	11.49	4781476	15.49
UPPER LIMIT		1372328	10.49	7491026	11.82	6694066	15.82
LOWER LIMIT		588140	9.83	3210440	11.16	2868886	15.16
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 200-15121/3		1044108	10.16	5657998	11.49	5080991	15.49
MB 200-15121/4		807610	10.16	5023931	11.48	4060635	15.49
200-4233-3	3688	853485	10.16	5441524	11.49	4538520	15.49

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TestAmerica Burlington	Job No.: 200-4478-1	
SDG No.:			
Sample No.	: ICIS 200-15668/6	Date Analyzed: 03/22/2011 20:15	
Instrument	: ID: C.i	GC Column: RTX-624 ID: 0.32(m	m)
Lab File I	ID (Standard): cjr006.d	Heated Purge: (Y/N) N	
Calibratio	on ID: 5511		

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		993261	10.15	5529549	11.48	4549383	15.48
UPPER LIMIT		1390565	10.48	7741369	11.81	6369136	15.81
LOWER LIMIT		595957	9.82	3317729	11.15	2729630	15.15
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-15668/12		994275	10.15	5545563	11.48	4918879	15.48

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington

SDG No.:

Sample No.: CCVIS 200-15924/2

Instrument ID: C.i

GC Column: RTX-624

ID: 0.32 (mm)

Lab File ID (Standard): cjrg002.d

Calibration ID: 5511

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		564581	10.14	3113935	11.47	2910706	15.46
UPPER LIMIT		790413	10.47	4359509	11.80	4074988	15.79
LOWER LIMIT		338749	9.81	1868361	11.14	1746424	15.13
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 200-15924/3		560452	10.12	3114343	11.45	2837921	15.46
MB 200-15924/4		430112	10.14	2735521	11.47	2192270	15.46
200-4478-3	4666	435000	10.14	2675592	11.46	2185889	15.46

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1			
SDG No.:				
Client Sample ID: 3688	Lab Sample ID: 200-4233-3			
Matrix: Air Lab File ID: cjqa009.d				
Analysis Method: TO-15	Date Collected: 03/14/2011 00:00			
Sample wt/vol: 200(mL)	Date Analyzed: 03/15/2011 02:38			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15121	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	Ŭ	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	Ŭ	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1			
SDG No.:				
Client Sample ID: 3688	Lab Sample ID: 200-4233-3			
Matrix: Air	Lab File ID: cjqa009.d			
Analysis Method: TO-15	Date Collected: 03/14/2011 00:00			
Sample wt/vol: 200(mL)	Date Analyzed: 03/15/2011 02:38			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15121	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 SDG No.: Client Sample ID: 3688 Lab Sample ID: 200-4233-3 Matrix: Air Lab File ID: cjqa009.d Analysis Method: TO-15 Date Collected: 03/14/2011 00:00 Sample wt/vol: 200(mL) Date Analyzed: 03/15/2011 02:38 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 15121 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa009.d Page 1

Report Date: 15-Mar-2011 22:22

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4233-3

Client Smp ID: 3688

Inj Date : 15-MAR-2011 02:38

Operator : sv Inst ID: C.i

Smp Info : 200-4233-A-3
Misc Info : 200,1, all74+mn

Comment :

Method : /chem/C.i/Csvr.p/cjqato15.b/to15v5.m

Meth Date: 15-Mar-2011 22:22 sv Quant Type: ISTD Cal Date: 12-MAR-2011 18:03 Cal File: cjq009.d

Als bottle: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all74+MN.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppb v/v) (ppb v/v)
	====		======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
15 Ethanol	45	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa009.d Report Date: 15-Mar-2011 22:22

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==		=======	======	======
19 1,1-Dichloroethene	96	Com	npound Not Detected			
20 Acetone	43	Com	npound Not Detected			
21 Carbon disulfide	76	Com	npound Not Detected			
22 Isopropanol	45	Com	pound Not Detected			
23 Allyl chloride	41	Com	npound Not Detected			
25 Methylene chloride	49	Com	npound Not Detected			
26 Tert-butyl alcohol	59	Com	npound Not Detected			
27 Methyl tert-butyl ether	73	Com	npound Not Detected			
28 1,2-Dichloroethene (trans)	61	Com	npound Not Detected			
30 n-Hexane	57	Com	npound Not Detected			
31 1,1-Dichloroethane	63	Com	npound Not Detected			
32 Vinyl acetate	43	Com	npound Not Detected			
M 33 1,2-Dichloroethene,Total	61	Com	pound Not Detected			
34 1,2-Dichloroethene (cis)	96	Com	pound Not Detected			
35 Ethyl acetate	88	Com	pound Not Detected			
36 Methyl Ethyl Ketone	72	Com	pound Not Detected			
* 37 Bromochloromethane	128	10.165	10.165 (1.000)	853485	10.0000	
38 Tetrahydrofuran	42		pound Not Detected			
39 Chloroform	83	Com	- npound Not Detected			
40 Cyclohexane	84		- npound Not Detected			
41 1,1,1-Trichloroethane	97		- npound Not Detected			
42 Carbon tetrachloride	117		r pound Not Detected			
43 2,2,4-Trimethylpentane	57		r pound Not Detected			
44 Benzene	78		pound Not Detected			
45 1,2-Dichloroethane	62		pound Not Detected			
46 n-Heptane	43		pound Not Detected			
* 47 1,4-Difluorobenzene	114		3 11.488 (1.000)	5441524	10.0000	
49 Trichloroethene	95		pound Not Detected			
50 1,2-Dichloropropane	63		pound Not Detected			
51 Methyl methacrylate	69		pound Not Detected			
53 1,4-Dioxane	88		pound Not Detected			
54 Bromodichloromethane	83		pound Not Detected			
55 1,3-Dichloropropene (cis)	75		pound Not Detected			
56 Methyl isobutyl ketone	43		pound Not Detected			
58 Toluene	92		pound Not Detected			
59 1,3-Dichloropropene (trans)	75		pound Not Detected			
60 1,1,2-Trichloroethane	83		pound Not Detected			
61 Tetrachloroethene	166		pound Not Detected			
62 2-Hexanone	43		pound Not Detected			
63 Dibromochloromethane	129		spound Not Detected			
64 1,2-Dibromoethane	107		spound Not Detected			
* 65 Chlorobenzene-d5	117		5 15.486 (1.000)	4538520	10.0000	
66 Chlorobenzene	112		pound Not Detected		10.0000	
68 Ethylbenzene	91		apound Not Detected			
69 Xylene (m,p)	106		apound Not Detected			
M 70 Xylenes, Total	106		apound Not Detected			
71 Xylene (o)	106	Con	npound Not Detected			

Data File: /chem/C.i/Csvr.p/cjqato15.b/cjqa009.d Report Date: 15-Mar-2011 22:22 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPON	SE $(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ===== =====	== ======
72 Styrene	104	Compound Not Detected.	
73 Bromoform	173	Compound Not Detected.	
74 Isopropylbenzene	105	Compound Not Detected.	
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

Data File: cjqa009.d

Client ID: 3688
Operator: sv

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-4233-A-3
Lab Sample ID: 200-4233-3

Date: 15-MAR-2011 02:38

Instrument: C.i
Inj Vol: 200.0
Diameter: 0.32

Page 211 of 263

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1			
SDG No.:				
Client Sample ID: 4666	Lab Sample ID: 200-4478-3			
Matrix: Air	Lab File ID: cjrg017.d			
Analysis Method: TO-15	Date Collected: 03/31/2011 00:00			
Sample wt/vol: 200(mL)	Date Analyzed: 04/01/2011 04:22			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15924	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	Ŭ	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	Ŭ	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4478-1			
SDG No.:				
Client Sample ID: 4666	Lab Sample ID: 200-4478-3			
Matrix: Air	Lab File ID: cjrg017.d			
Analysis Method: TO-15	Date Collected: 03/31/2011 00:00			
Sample wt/vol: 200(mL)	Date Analyzed: 04/01/2011 04:22			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 15924	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U *	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington Job No.: 200-4478-1 SDG No.: Client Sample ID: 4666 Lab Sample ID: 200-4478-3 Matrix: Air Lab File ID: cjrg017.d Analysis Method: TO-15 Date Collected: 03/31/2011 00:00 Sample wt/vol: 200(mL) Date Analyzed: 04/01/2011 04:22 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 15924 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg017.d Page 1

Report Date: 03-Apr-2011 18:19

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4478-3

Client Smp ID: 4666

Inj Date : 01-APR-2011 04:22

Inst ID: C.i

Operator : pad Smp Info : 200-4478-A-3 Misc Info : 200,1, all74+mn

Comment

Method : /chem/C.i/Csvr.p/cjrgto15.b/to15v5.m

Meth Date: 03-Apr-2011 18:18 sv Quant Type: ISTD Cal Date : 22-MAR-2011 22:39 Cal File: cjr009.d

Als bottle: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all74+MN.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====		======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
15 Ethanol	45	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg017.d Report Date: 03-Apr-2011 18:19

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RI	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	=====			======	======
19 1,1-Dichloroethene	96	Com	pound No	t Detected			
20 Acetone	43	Com	pound No	t Detected			
21 Carbon disulfide	76	Com	pound No	t Detected			
22 Isopropanol	45	Com	pound No	t Detected			
23 Allyl chloride	41	Com	pound No	t Detected			
25 Methylene chloride	49	Com	pound No	t Detected			
26 Tert-butyl alcohol	59	Com	pound No	t Detected			
27 Methyl tert-butyl ether	73	Com	pound No	t Detected			
28 1,2-Dichloroethene (trans)	61	Com	pound No	t Detected			
30 n-Hexane	57	Com	pound No	t Detected			
31 1,1-Dichloroethane	63	Com	pound No	t Detected			
32 Vinyl acetate	43	Com	pound No	t Detected			
M 33 1,2-Dichloroethene,Total	61	Com	pound No	t Detected			
34 1,2-Dichloroethene (cis)	96	Com	pound No	t Detected			
35 Ethyl acetate	88	Com	pound No	t Detected			
36 Methyl Ethyl Ketone	72	Com	pound No	t Detected			
* 37 Bromochloromethane	128	10.138	10.154	(1.000)	435000	10.0000	(Q)
38 Tetrahydrofuran	42	Com	pound No	t Detected			
39 Chloroform	83	Com	pound No	t Detected			
40 Cyclohexane	84	Com	pound No	t Detected			
41 1,1,1-Trichloroethane	97	Com	pound No	t Detected			
42 Carbon tetrachloride	117	Com	pound No	t Detected			
43 2,2,4-Trimethylpentane	57	Com	pound No	t Detected			
44 Benzene	78	Com	pound No	t Detected			
45 1,2-Dichloroethane	62	Com	pound No	t Detected			
46 n-Heptane	43	Com	pound No	t Detected			
* 47 1,4-Difluorobenzene	114	11.461	11.478	3 (1.000)	2675592	10.0000	
49 Trichloroethene	95	Com	pound No	t Detected			
50 1,2-Dichloropropane	63	Com	pound No	t Detected			
51 Methyl methacrylate	69	Com	pound No	t Detected			
53 1,4-Dioxane	88	Com	pound No	t Detected			
54 Bromodichloromethane	83	Com	pound No	t Detected			
55 1,3-Dichloropropene (cis)	75			t Detected			
56 Methyl isobutyl ketone	43	Com	pound No	t Detected			
58 Toluene	92			t Detected			
59 1,3-Dichloropropene (trans)	75	Com	- pound No	t Detected			
60 1,1,2-Trichloroethane	83	Com	- pound No	t Detected			
61 Tetrachloroethene	166	Com	- npound No	t Detected			
62 2-Hexanone	43		=	t Detected			
63 Dibromochloromethane	129		-	t Detected			
64 1,2-Dibromoethane	107		-	t Detected			
* 65 Chlorobenzene-d5	117		-	(1.000)	2185889	10.0000	
66 Chlorobenzene	112			t Detected			
68 Ethylbenzene	91		=	t Detected			
69 Xylene (m,p)	106		-	t Detected			
M 70 Xylenes, Total	106			t Detected			
71 Xylene (o)	106		-	t Detected			
/i Xylene (o)	106	Com	pound No	ot Detected			

Data File: /chem/C.i/Csvr.p/cjrgto15.b/cjrg017.d Report Date: 03-Apr-2011 18:19 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
72 Styrene	104	Compound Not Detected.	
73 Bromoform	173	Compound Not Detected.	
74 Isopropylbenzene	105	Compound Not Detected.	
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: cjrg017.d

Client ID: 4666
Operator: pad
Column Type: Capillary

Stationary Phase: RTX-624
Sample Info: 200-4478-A-3
Lab Sample ID: 200-4478-3

Date: 01-APR-2011 04:22

Instrument: C.i
Inj Vol: 200.0
Diameter: 0.32

Page 218 of 263

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 Analy Batch No.: 15119

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LA	AB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:
Level 1	L IC	200-15119/3	ic 109460	cjq003.d
Level 2	2 IC	200-15119/4	ic 109451	cjq004.d
Level 3	3 10	200-15119/5	ic 109449	cjq005.d
Level 4	1 IC	CIS 200-15119/6	icis 119928	cjq006.d
Level 5	5 IC	200-15119/7	ic 109427	cjq007.d
Level 6	5 IC	200-15119/8	ic 109425	cjq008.d
Level 7	7 IC	200-15119/9	ic 109424	cjq009.d

ANALYTE			RRF			CURVE	1	COEFFICIEN	Г	# MIN RRF	%RSD		R^2	# MIN R^
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COI
Propylene	+++++ 0.4062	0.4398 0.3710	0.4515	0.4209	0.4167	Ave		0.4177			6.7	30.0		
Dichlorodifluoromethane	+++++ 2.3456	2.4955 2.0933	2.5514	2.4345	2.4304	Ave		2.3918			6.8	30.0		
Freon 22	+++++ 1.0068	1.1383 0.9329	1.0885	1.0634	1.0416	Ave		1.0452			6.8	30.0		
1,2-Dichlorotetrafluoroethane	2.4498 2.6007	2.7844 2.2841	2.8330	2.7204	2.6924	Ave		2.6235			7.5	30.0		
Chloromethane	+++++ 0.5854	0.6720 0.5457	0.6335	0.6006	0.6047	Ave		0.6070			7.1	30.0		
n-Butane	+++++ 0.8720	0.8800 0.7857	0.9594	0.9083	0.9068	Ave		0.8853			6.5	30.0		
Vinyl chloride	0.7413 0.8180	0.8179 0.7477	0.8557	0.8275	0.8414	Ave		0.8071			5.6	30.0		
1,3-Butadiene	0.5526 0.5513	0.5495 0.4991	0.5768	0.5537	0.5672	Ave		0.5500			4.5	30.0		
Isopropyl alcohol	+++++ 0.6389	+++++ 0.5437	0.6814	0.6958	0.5709	Ave		0.6261			10.7	30.0		
Bromomethane	1.0950 0.9741	1.0476	1.0048	0.9729	0.9830	Ave		1.0010			5.5	30.0		
Chloroethane	+++++ 0.4765	0.5102 0.4507	0.5051	0.4842	0.4871	Ave		0.4856			4.4	30.0		
Isopentane	0.7737 0.6987	0.7675 0.6350	0.7606	0.7216	0.7194	Ave		0.7252			6.7	30.0		
Acrolein	+++++ 0.2748	+++++ 0.2332	0.2975	0.2480	0.2871	Ave		0.2681			10.0	30.0		
Bromoethene(Vinyl Bromide)	1.0604 1.0589	1.0294	1.0536	1.0354	1.0598	Ave		1.0436			1.9	30.0		

Lab Name:	TestAmerica Burlington	Job No.: 200-4233-1	Analy Batch No.: 15119
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIENT	#	MIN RRF	%RSD			R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	D	OR COD		OR COD
	LVL 6	LVL 7														
Trichlorofluoromethane	2.3325	2.4245	2.4714	2.3866	2.4284	Ave		2.3785			3.6	30	.0			
	2.3927	2.2131												l		
n-Pentane	++++	1.0154	1.1280	1.0882	1.0864	Ave		1.0566			5.7	30	.0			
	1.0612	0.9604														
Ethanol	++++	0.2742	0.2190	0.2274	0.2306	Ave		0.2381			9.4	30	.0			
	0.2569	0.2207														
Ethyl ether	0.6170	0.6136	0.6094	0.5852	0.5905	Ave		0.5897			4.9	30	.0			
	0.5791	0.5328														
Freon TF	1.8902	1.9208	1.9669	1.9420	1.9645	Ave		1.9173			3.5	30	.0			
	1.9596	1.7771														
1,1-Dichloroethene	0.8881	0.9784	0.9888	0.9636	0.9836	Ave		0.9627			3.8	30	.0			
	0.9923	0.9442														
Acetone	++++	+++++	0.9573	0.8443	0.7643	Ave		0.8092			12.3	30	.0			
	0.7903	0.6898														
Carbon disulfide	++++	2.8408	4.3482	2.7672	2.7961	Ave		3.0084			22.1	30	.0			
	2.7725	2.5258														
3-Chloropropene	0.6771	0.7017	0.6990	0.6716	0.6971	Ave		0.6793			3.8	30	.0			
	0.6808	0.6281														
Acetonitrile	++++	+++++	0.4576	0.4484	0.4242	Ave		0.4261			6.9	30	.0			
	0.4180	0.3824														
Methylene Chloride	++++	0.8779	0.7498	0.7108	0.7044	Ave		0.7257			11.6	30	.0			
	0.6826	0.6290														
tert-Butyl alcohol	++++	+++++	1.1888	1.2422	1.0455	Ave		1.1174			10.1	30	.0			
	1.1473	0.9631														
Methyl tert-butyl ether	2.6110	2.5298	2.4992	2.4505	2.4628	Ave		2.4615			4.7	30	.0			
	2.4442	2.2329														
trans-1,2-Dichloroethene	1.2335	1.2018	1.2142	1.1514	1.1554	Ave		1.1570			6.4	30	.0			
	1.1287	1.0140														
Acrylonitrile	++++	0.5178	0.5402	0.5277	0.5358	Ave		0.5256			2.8	30	.0			
	0.5316	0.5005														
n-Hexane	1.1488	1.2208	1.3137	1.2800	1.2634	Ave		1.2241			5.9	30	.0			
	1.2336	1.1086														
Vinyl acetate	++++	+++++	1.3676	1.2706	1.3393	Ave		1.2774			7.6	30	.0			
	1.2919	1.1175														
1,1-Dichloroethane	1.6493	1.6371	1.6045	1.5155	1.5026	Ave		1.5206			8.4	30	.0			
	1.4518	1.2832														
cis-1,2-Dichloroethene	1.1989	1.2621	1.1828	1.1386	1.1409	Ave		1.1473			7.3	30	.0			
	1.1164	0.9917														
Ethyl acetate	++++	++++	0.0895	0.0901	0.0913	Ave		0.0886			4.9	30	.0			
	0.0912	0.0811														

Lab Name: TestAmeric	a Burlington	Job No.: 2	200-4233-1	Analy	Batch No.:	15119
----------------------	--------------	------------	------------	-------	------------	-------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIEN	T	#	MIN RRF	%RSD	# MAX	R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	М2				%RSD	OR COD	OR COD
Methyl Ethyl Ketone	+++++ 0.4265	0.4662 0.3636	0.4521	0.4342	0.4279	Ave		0.4284				8.2	30.	0	
Tetrahydrofuran	+++++ 0.1041	+++++ 0.0946	0.1120	0.1080	0.1064	Ave		0.1050				6.2	30.	0	
Chloroform	2.1001 1.9641	2.1500 1.7906	2.0757	1.9917	1.9926	Ave		2.0093				5.9	30.	0	
1,1,1-Trichloroethane	0.4203 0.3869	0.4172 0.3529	0.4056	0.3966	0.3945	Ave		0.3963				5.7	30.	0	
Cyclohexane	0.2907 0.2728	0.2870 0.2412	0.2873	0.2823	0.2783	Ave		0.2771				6.1	30.	0	
Carbon tetrachloride	0.4048 0.4130	0.4019 0.3901	0.4175	0.4127	0.4158	Ave		0.4080				2.4	30.	0	
2,2,4-Trimethylpentane	0.8143 0.7007	0.8027 0.6099	0.7808	0.7476	0.7290	Ave		0.7407				9.5	30.	0	
Benzene	0.6804 0.5700	0.6546 0.5178	0.6226	0.5940	0.5852	Ave		0.6035				9.0	30.	0	
1,2-Dichloroethane	0.2150 0.1901	0.2123 0.1785	0.2023	0.1933	0.1937	Ave		0.1979				6.5	30.	0	
n-Heptane	0.2330 0.1883	0.2298 0.1625	0.2136	0.2028	0.1960	Ave		0.2037				12.1	30.	0	
n-Butanol	+++++ 0.0604	+++++ 0.0513	0.0587	0.0582	0.0549	Ave		0.0567				6.4	30.	0	
Trichloroethene	0.2964 0.2732	0.2905 0.2512	0.2866	0.2784	0.2779	Ave		0.2792				5.3	30.	0	
1,2-Dichloropropane	0.2088 0.1745	0.2024 0.1530	0.1933	0.1841	0.1814	Ave		0.1853				10.1	30.	0	
Methyl methacrylate	+++++ 0.1688	0.1486 0.1512	0.1651	0.1660	0.1691	Ave		0.1615				5.7	30.	0	
1,4-Dioxane	+++++ 0.0791	+++++	0.0818	0.0857	0.0691	Ave		0.0771				9.5	30.	0	
Dibromomethane	0.2605 0.2605	0.2517 0.2473	0.2554	0.2554	0.2618	Ave		0.2561				2.1	30.	0	
Bromodichloromethane	0.3912 0.3955	0.3970 0.3621	0.4122	0.4018	0.4035	Ave		0.3947				4.0	30.	0	
cis-1,3-Dichloropropene	0.2996 0.3024	0.3194	0.3122	0.3001	0.3090	Ave		0.3037				3.8	30.	0	
methyl isobutyl ketone	+++++ 0.2074	0.2107	0.2168	0.2131	0.2091	Ave		0.2070				5.5	30.	0	
n-Octane	0.3123 0.2395	0.3065 0.1976	0.2873	0.2641	0.2547	Ave		0.2660				15.2	30.	0	

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIENT	#	MIN RRF	%RSD		AX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			ზ.	RSD	OR COD		OR COD
	LVL 6	LVL 7														
Toluene	0.5811		0.5333	0.5147	0.4898	Ave		0.5190			9.2		30.0			
	0.4878	0.4509														
trans-1,3-Dichloropropene	0.2634		0.2860	0.2788	0.2877	Ave		0.2789			3.4		30.0			
	0.2868	0.2694														
1,1,2-Trichloroethane	0.2469		0.2393	0.2354	0.2235	Ave		0.2327			6.4		30.0			
	0.2254															
Tetrachloroethene	0.4780		0.4725	0.4823	0.4610	Ave		0.4654			4.5		30.0			
	0.4674															
Methyl Butyl Ketone (2-Hexanone)	+++++		0.2228	0.2302	0.2104	Ave		0.2132			5.9		30.0			
	0.2165															
Dibromochloromethane	0.4420		0.5031	0.5133	0.5005	Ave		0.4843			6.0		30.0			
	0.5087															
1,2-Dibromoethane	0.4565		0.4657	0.4624	0.4447	Ave		0.4506			4.2		30.0			
	0.4502															
Chlorobenzene	0.7386		0.7070	0.7028	0.6730	Ave		0.6918			6.5		30.0			
	0.6787															
n-Nonane	0.3080		0.3354	0.3313	0.2992	Ave		0.2964			14.6		30.0			
	0.2850															
Ethylbenzene	1.0079		0.9983	0.9871	0.9085	Ave		0.9248			12.7		30.0			
	0.8842															
m,p-Xylene	0.4026		0.4275	0.4321	0.4018	Ave		0.3996			9.2		30.0			
	0.3987															
Xylene, o-	0.4238		0.4380	0.4437	0.4214	Ave		0.4213			5.4		30.0			
	0.4250															
Styrene	0.5191		0.6071	0.6360	0.5980	Ave		0.5763			8.2		30.0			
	0.6093															
Bromoform	0.3651		0.4550	0.4729	0.4629	Ave		0.4309			11.2		30.0			
	0.4794															
Cumene	1.0957		1.1745	1.2021	1.1346	Ave		1.1043			8.7		30.0			
	1.1271															
1,1,2,2-Tetrachloroethane	0.5576		0.5813	0.5829	0.5444	Ave		0.5479			7.5		30.0			
	0.5503															
n-Propylbenzene	1.0459		1.2994	1.3236	1.2189	Ave		1.1616			12.7		30.0			
	1.1985															
1,2,3-Trichloropropane	+++++		0.4070	0.4006	0.3634	Ave		0.3698			13.3		30.0			
	0.3600															
n-Decane	++++		0.3876	0.3971	0.3783	Ave		0.3485			15.5		30.0			
	0.3684															
4-Ethyltoluene	0.8726		1.1560	1.1890	1.1047	Ave		1.0404			12.5		30.0			
	1.1029	0.8767														

Lab Name: TestAmerica Burlington	Job No.: 200-4233-1	Analy Batch No.: 15119
----------------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIEN	ΙΤ	#	MIN RRF	%RSD		R^2	# MIN R^
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COI
	LVL 6	LVL 7													
2-Chlorotoluene	0.8544	0.9022	0.9465	0.9373	0.8718	Ave		0.8651				10.2	30.0		
	0.8599	0.6834													
1,3,5-Trimethylbenzene	0.7154	0.7769	0.9575	0.9785	0.9119	Ave		0.8508				13.5	30.0		
	0.9069	0.7082													
Alpha Methyl Styrene	0.3119	0.3636	0.4633	0.5351	0.5202	Ave		0.4583				19.0	30.0		
	0.5240	0.4903													
tert-Butylbenzene	0.8233	0.8225	0.9672	0.9930	0.9382	Ave		0.8961				9.4	30.0		
	0.9458	0.7830													
1,2,4-Trimethylbenzene	0.6034	0.7666	0.9419	0.9633	0.9101	Ave		0.8367				15.8	30.0		
	0.9163	0.7552													
sec-Butylbenzene	0.9724	1.1252	1.3835	1.4138	1.3143	Ave		1.2180				14.7	30.0		
	1.3001	1.0170													
4-Isopropyltoluene	0.7141	0.9097	1.1523	1.1856	1.1303	Ave		1.0187				17.5	30.0		
	1.1372	0.9014													
1,3-Dichlorobenzene	0.5722	0.6252	0.6680	0.6977	0.6739	Ave		0.6494				7.6	30.0		
	0.7034	0.6055													
1,4-Dichlorobenzene	0.5191	0.6069	0.6493	0.6847	0.6654	Ave		0.6335				9.8	30.0		
	0.7024	0.6067													
Benzyl chloride	0.4607	0.5912	0.6759	0.6302	0.7288	Ave		0.6499				15.8	30.0		
	0.7738	0.6886													
n-Undecane	++++	+++++	0.3557	0.3506	0.2994	Ave		0.3251				8.9	30.0		
	0.3279	0.2919													
n-Butylbenzene	0.5844	0.7176	0.8766	0.9114	0.8846	Ave		0.8011				15.6	30.0		
	0.9021	0.7312													
1,2-Dichlorobenzene	0.5285	0.5895	0.6468	0.6754	0.6565	Ave		0.6276				9.0	30.0		
	0.6905	0.6059													
n-Dodecane	++++	+++++	0.2378	0.2725	0.2280	Ave		0.2208				28.7	30.0		
	0.2542	0.1116													
1,2,4-Trichlorobenzene	++++	0.2789	0.3401	0.3643	0.3166	Ave		0.3300				11.8	30.0		
	0.3807	0.2993													
Hexachlorobutadiene	0.2703	0.2962	0.3346	0.3409	0.3400	Ave		0.3094				14.7	30.0		
	0.3534	0.2303													
Naphthalene	++++	0.6035	0.7739	0.8182	0.7138	Ave		0.7324				12.5	30.0		
	0.8315	0.6532													
1,2,3-Trichlorobenzene	0.2575	0.2671	0.3038	0.3259	0.2757	Ave		0.2800				16.1	30.0		
	0.3300	0.2001													

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 Analy Batch No.: 15119

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-15119/3	cjq003.d
Level 2	IC 200-15119/4	cjq004.d
Level 3	IC 200-15119/5	cjq005.d
Level 4	ICIS 200-15119/6	cjq006.d
Level 5	IC 200-15119/7	cjq007.d
Level 6	IC 200-15119/8	cjq008.d
Level 7	IC 200-15119/9	cjq009.d

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (PPE	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	+++++ 739095	17287 1439107	181712	355049	548896	+++++ 20.0	0.500	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	+++++ 4267394	98084 8119912	1026939	2053479	3201536	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	+++++ 1831800	44738 3618747	438103	896933	1372072	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	38681 4731620	109436 8859885	1140267	2294654	3546670	0.200	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	+++++ 1065001	26414 2116911	254997	506619	796580	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	+++++ 1586409	34587 3047574	386148	766115	1194510	+++++	0.500	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	11705 1488206	32146 2900433	344428	697966	1108337	0.200	0.500	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	8726 1002988	21597 1935898	232149	467027	747173	0.200	0.500 40.0	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	+++++ 1162343	+++++ 2108807	274253	586891	752061	+++++ 20.0	+++++ 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	17290 1772258	41174 3606452	404414	820599	1294858	0.200	0.500 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 866926	20051 1748219	203316	408437	641716	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	12216 1271259	30166 2463005	306140	608647	947681	0.200	0.500 40.0	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 500002	++++ 904598	119758	209154	378197	+++++ 20.0	+++++ 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	16743 1926450	40461 3908183	424057	873309	1396054	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	36830 4353088	95294 8584533	994726	2013086	3198915	0.200	0.500 40.0	5.00	10.0	15.0

Lab Name:	TestAmerica Burlington	Job No.: 200-4233-1	Analy Batch No.: 15119
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
n-Pentane	BCM	Ave	++++ 1930679	39911 3725216	454021	917871	1431046	+++++ 20.0	0.500	5.00	10.0	15.0
Ethanol	BCM	Ave	+++++ 934609	107754 2140214	176309	287673	404950	+++++	5.00	10.0	15.0	20.0
Ethyl ether	BCM	Ave	9743 1053560	24115	245272	493634	777919	0.200	0.500	5.00	10.0	15.0
Freon TF	BCM	Ave	29845 3565259	75493 6893329	791690	1638077	2587876	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	14023 1805272	38454 3662641	397989	812791	1295665	0.200	0.500	5.00	10.0	15.0
Acetone	BCM	Ave	+++++ 1437752	+++++ 2675707	385312	712177	1006854	+++++	+++++	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	++++ 5044078	111656 9797572	1750141	2334060	3683236	+++++	0.500	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	10691 1238596	27581 2436358	281335	566469	918285	0.200	0.500	5.00	10.0	15.0
Acetonitrile	BCM	Ave	++++ 760499	++++ 1483201	184199	378214	558832	+++++	+++++	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	+++++ 1241798	34506 2439688	301790	599537	927947	+++++	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 2087274	++++ 3735751	478504	1047767	1377171	+++++	+++++	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	41227 4446818	99431 8661420	1005926	2066975	3244195	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	19477 2053492	47235 3933429	488708	971172	1521943	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	++++ 967159	20353 1941561	217431	445131	705760	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	18140 2244257	47982 4300072	528759	1079653	1664319	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	++++ 2350362	+++++ 4334557	550454	1071735	1764189	+++++	+++++	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	26042 2641397	64345 4977628	645796	1278323	1979344	0.200	0.500	5.00	10.0	15.0
cis-1,2-Dichloroethene	BCM	Ave	18931 2031105	49604 3846670	476067	960422	1502938	0.200	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 165989	++++ 314402	36031	75964	120279	++++ 20.0	+++++	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	++++ 776033	18325 1410269	181988	366242	563654	++++ 20.0	0.500	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 1030046	++++ 1963928	244623	490392	761285	++++ 20.0	+++++	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 Analy Batch No.: 15119

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Chloroform	BCM	Ave	33160 3573335	84504 6945617	835488	1680008	2624865	0.200	0.500	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	35832 3826940	88394 7323964	886262	1800674	2821866	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	24782 2698719	60820 5005108	627824	1281849	1990884	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	34513 4085463	85151 8095585	912130	1873764	2973639	0.200	0.500	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	69420 6931467	170087 12657088	1705988	3394248	5214029	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	58005 5638737	138691 10745396	1360307	2696634	4185326	0.200	0.500	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	18325 1880262	44974 3703924	442050	877640	1385236	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	19865 1863049	48682 3371673	466594	920572	1402150	0.200	0.500	5.00	10.0	15.0
n-Butanol	DFB	Ave	++++ 597602	++++ 1064327	128238	264431	392632	++++	+++++	5.00	10.0	15.0
Trichloroethene	DFB	Ave	25272 2702890	61562 5212594	626122	1263699	1987932	0.200	0.500	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	17802 1726021	42880 3174303	422408	835664	1297462	0.200	0.500	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	++++ 1670068	3174303 31488 3137540	360667	753697	1209160	++++	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	++++ 782394	+++++ 1452762	178655	388989	494309	++++	+++++	5.00	10.0	15.0
Dibromomethane	DFB	Ave	22204 2576584	53332 5131778	558035	1159465	1872388	0.200	0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	33351 3911981	84110 7514578	900656	1824035	2885701	0.200	0.500	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	25541 2991244	67684 5870821	682158	1362329	2210076	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	++++ 2051804	44654 3830650	473698	967641	1495656	++++ 20.0	0.500	5.00	10.0	15.0
n-Octane	DFB	Ave	26621 2368816	64949 4099910	627704	1199217	1821859	0.200	0.500	5.00	10.0	15.0
Toluene	CBZ	Ave	43599 4290066	106735 8277674	1021622	1996378	3193445	0.200	0.500	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	22452 2837285	59399 5590742	624899	1265720	2058008	0.200	0.500	5.00	10.0	15.0
1,1,2-Trichloroethane	CBZ	Ave	18521 1982339	46451 3819204	458419	913236	1457259	0.200	0.500 40.0	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 Analy Batch No.: 15119

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tetrachloroethene	CBZ	Ave	35863 4110760	88356 7717704	905293	1870787	3005565	0.200	0.500	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 1904284	37760 3593342	426857	892800	1372129	+++++	0.500	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	33157 4474100	84285 8592534	963820	1991073	3263296	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	34248 3959081	85944 7555283	892181	1793622	2899725	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	55413 5969178	136510 11140816	1354424	2725981	4388151	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	23109 2506475	57380 3796974	642546	1285114	1950977	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	75613 7776844	186403 12530605	1912532	3828771	5923273	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	60411 7012687	152952 11820519	1637925	3352428	5239253	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	31795 3737906	78485 6863338	839042	1721207	2747441	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	38944 5358290	98959 9746099	1163075	2467169	3898889	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	27391 4216100	69047 7511311	871729	1834282	3018013	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	82199 9912526	201901	2250068	4662915	7397414	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	41836 4839938	103446 8456668	1113683	2261243	3549715	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	78467 10540357	211953 16566976	2489478	5134052	7947327	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	++++ 3165933	75740 5132548	779819	1554091	2369172	++++ 20.0	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	++++ 3239693	52940 5037186	742646	1540357	2466820	++++ 20.0	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	65462 9699893	181903 16094096	2214719	4612131	7202779	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	64096 7562802	167357 12546205	1813354	3635599	5684412	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	53669 7976224	144122 13001682	1834350	3795422	5945674	0.200	0.500	5.00	10.0	15.0
Alpha Methyl Styrene	CBZ	Ave	23399 4608385	67444	887611	2075483	3391634	0.200	0.500	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	61763 8318542	152581 14373569	1852999	3851772	6117341	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1 Analy Batch No.: 15119

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2,4-Trimethylbenzene	CBZ	Ave	45267	142199	1804462	3736783	5933744	0.200	0.500	5.00	10.0	15.0
		-	8058423	13863204	0.550404	5 40 44 50	05.00.00	20.0	40.0	5 00	10.0	15.0
sec-Butylbenzene	CBZ	Ave	72952 11434503	208726 18670704	2650484	5484152	8569262	0.200 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	53576	168748	2207581	4598765	7369722	0.200	0.500	5.00	10.0	15.0
1,3-Dichlorobenzene	CBZ	Ave	10001733 42926	16548527 115975	1279748	2706468	4394032	20.0 0.200	40.0 0.500	5.00	10.0	15.0
			6186262	11115647				20.0	40.0			
1,4-Dichlorobenzene	CBZ	Ave	38944	112580	1243892	2656088	4338199	0.200	0.500	5.00	10.0	15.0
			6177405	11138225				20.0	40.0			
Benzyl chloride	CBZ	Ave	34560	109669	1294805	2444525	4751835	0.200	0.500	5.00	10.0	15.0
			6805258	12641136				20.0	40.0			
n-Undecane	CBZ	Ave	++++	++++	681361	1359862	1952161	+++++	+++++	5.00	10.0	15.0
			2884110	5358384				20.0	40.0			
n-Butylbenzene	CBZ	Ave	43840	133114	1679433	3535263	5767571	0.200	0.500	5.00	10.0	15.0
			7933759	13424155				20.0	40.0			
1,2-Dichlorobenzene	CBZ	Ave	39651	109348	1239196	2619978	4280377	0.200	0.500	5.00	10.0	15.0
			6073056	11122217				20.0	40.0			
n-Dodecane	CBZ	Ave	+++++	++++	455514	1056889	1486473	+++++	+++++	5.00	10.0	15.0
			2235460	2048194				20.0	40.0			
1,2,4-Trichlorobenzene	CBZ	Ave	+++++	51730	651532	1412940	2064444	+++++	0.500	5.00	10.0	15.0
			3348262	5494753				20.0	40.0			
Hexachlorobutadiene	CBZ	Ave	20276	54946	641006	1322285	2216974	0.200	0.500	5.00	10.0	15.0
			3108081	4226982				20.0	40.0			
Naphthalene	CBZ	Ave	+++++	111949	1482691	3173958	4654117	+++++	0.500	5.00	10.0	15.0
			7312962	11990489				20.0	40.0			
1,2,3-Trichlorobenzene	CBZ	Ave	19317	49549	582063	1264238	1797701	0.200	0.500	5.00	10.0	15.0
			2902356	3673090				20.0	40.0			

	Legend:

Ave = Average ISTD

Lab Name: TestAmerica Burlington Job No.: 200-4478-1 Analy Batch No.: 15668

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:
Level 1	IC 200-15668/3	ic 109459	cjr003.d
Level 2	IC 200-15668/4	ic 109450	cjr004.d
Level 3	IC 200-15668/5	ic 109440	cjr005.d
Level 4	ICIS 200-15668/6	icis 119922	cjr006.d
Level 5	IC 200-15668/7	ic 109427	cjr007.d
Level 6	IC 200-15668/8	ic 109425	cjr008.d
Level 7	IC 200-15668/9	ic 109424	cjr009.d

ANALYTE			RRF			CURVE		COEFFICIEN	Г	# MIN RRF	%RSD		R^2	# MIN R^
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5		В	M1	M2			%RSD	OR COD	OR COI
Propylene	+++++ 0.4958	0.5302 0.4812	0.5329	0.5173	0.5126	Ave		0.5117			3.9	30.0		
Dichlorodifluoromethane	+++++ 2.6113	2.8826 2.3650	2.8402	2.7831	2.6839	Ave		2.6944			7.0	30.0		
Freon 22	++++ 1.2553	1.3593 1.1695	1.3246	1.2920	1.2720	Ave		1.2788			5.1	30.0		
1,2-Dichlorotetrafluoroethane	2.8184 2.7820	2.9827 2.4813	2.9861	2.9387	2.8675	Ave		2.8367			6.2	30.0		
Chloromethane	+++++ 0.6769	0.8107 0.6934	0.7097	0.7053	0.6753	Ave		0.7119			7.1	30.0		
n-Butane	++++ 1.0299	1.0131	1.0803	1.0639	1.0377	Ave		1.0318			3.9	30.0		
Vinyl chloride	0.9504 0.8829	0.8702 0.8417	0.9023	0.8896	0.8843	Ave		0.8888			3.7	30.0		
1,3-Butadiene	0.6112 0.6045	0.5769 0.5758	0.5851	0.6271	0.6097	Ave		0.5986			3.3	30.0		
Bromomethane	1.0343 0.9771	1.0764	1.0288	1.0305	1.0072	Ave		1.0143			4.2	30.0		
Chloroethane	++++ 0.5210	0.5666 0.5007	0.5701	0.5489	0.5393	Ave		0.5411			5.0	30.0		
Isopentane	0.8599 0.8508	0.9343	0.9787	0.9451	0.9102	Ave		0.8962			7.1	30.0		
Bromoethene(Vinyl Bromide)	1.0827 1.0721	1.0261 1.0458	1.1251	1.0973	1.0946	Ave		1.0777			3.1	30.0		
Trichlorofluoromethane	2.7061 2.6482	2.7632 2.4806	2.7781	2.7406	2.6939	Ave		2.6873			3.8	30.0		
n-Pentane	+++++ 1.4069	1.2239	1.5365	1.5097	1.4667	Ave		1.4051			8.9	30.0		

	TestAmerica Burlington	Job No.: 200-4478-1	Analy Batch No.: 15668
--	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIENT	#	MIN RRF	%RSD				MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RS	OR CC	D	OR COD
	LVL 6	LVL 7													
Ethanol	++++	0.3102	0.2735	0.2888	0.2996	Ave		0.2920			4.2	30	0		
	0.2905	0.2896													
Ethyl ether	0.7539	0.7146	0.7507	0.7005	0.6903	Ave		0.7021			6.0	30	0		
	0.6683	0.6365													
Acrolein	++++	++++	0.3644	0.2984	0.3383	Ave		0.3241			9.0	30	0		
	0.3261	0.2936													
Freon TF	2.0631	2.1111	2.1495	2.1283	2.0915	Ave		2.0779			3.5	30	0		
	2.0728	1.9289													
1,1-Dichloroethene	0.8463	1.0569	1.0603	1.0627	1.0486	Ave		1.0200			7.6	30	0		
	1.0445	1.0209													
Acetone	++++	++++	1.2575	1.1881	1.0430	Ave		1.1156			9.6	30	0		
	1.0946	0.9947													
Isopropyl alcohol	+++++	+++++	0.8940	0.9304	0.7753	Ave		0.8121			11.6	30	0		
	0.7315	0.7292													
Carbon disulfide	+++++	3.1448	3.2819	3.2446	3.1686	Ave		3.1390			4.5	30	0		
	3.1176	2.8767													
3-Chloropropene	0.9296	0.9056	0.9965	0.9907	0.9661	Ave		0.9521			4.0	30	0		
	0.9688	0.9072													
Acetonitrile	++++	+++++	0.6565	0.6259	0.5878	Ave		0.6012			6.6	30	0		
	0.5774	0.5586													
Methylene Chloride	+++++	1.1021	0.9961	0.9701	0.9258	Ave		0.9582			9.1	30	0		
	0.9050	0.8498													
tert-Butyl alcohol	++++	+++++	1.4040	1.5794	1.3282	Ave		1.3358			12.4	30	0		
	1.1730	1.1946											_	_	
Methyl tert-butyl ether	2.8715	3.0968	3.0743	2.8308	2.8127	Ave		2.8804			5.2	30	0		
1.0.71.17	2.7860	2.6907	1 1000	1 1605	1 1015	_		1 10.00					_	_	
trans-1,2-Dichloroethene	1.4251	1.5160	1.4937	1.4627	1.4215	Ave		1.4269			5.5	30	0		
7 1 17	1.3885	1.2806	0.6989	0 6700	0 6701	-		0.6754			0 0	2.0	0		
Acrylonitrile	+++++ 0.6617	0.6875 0.6582	0.6989	0.6729	0.6731	Ave		0.6754			2.3	30	0		
n-Hexane	1.4860	1.5340	1.6204	1.6214	1.5715	7		1.5335			F 4	30	0		
п-нехапе	1.4860	1.3868	1.6204	1.6214	1.5/15	Ave		1.5335			5.4	30	0		
1,1-Dichloroethane	1.5141	1.9622	1.9707	1.9115	1.8167	7		1.8473			7 2	30	0		
I, I-DICHIOIOECHANE	1.7688	1.5943	1.9/0/	1.9112	1.010/	ave		1.04/3			7.2	30	0		
Vinyl acetate	1.7688	+++++	1.9924	1.7410	1.7825	7,770		1.7627			8.6	30	0		
vinyi acetate	1.7255	1.5720	1.3324	1./410	1.7023	AVE		1./02/			0.0	30			
cis-1,2-Dichloroethene	1.7253	1.2687	1.2824	1.2408	1.2179	7,770		1.2239			5.1	30	0	_	
CTS 1,2 DICHIOTOECHENE	1.1912	1.1009	1.2024	1.2400	1.41/9	AVE		1.2233] ,,,	30			
Ethyl acetate	1.1912	+++++	0.1037	0.0951	0.0969	7,770		0.0968			4.3	30	0	_	
nenyi acetate	0.0956	0.0927	0.103/	0.0931	0.0909	₩.c		0.0900			4.3		<u> </u>		

Lab Name: TestAmerica Burlington Job No.: 200-4478-1	Analy Batch No.: 15668
--	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF	<u>, </u>		CURVE TYPE	(COEFFICIEN	NT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	1111	В	M1	M2				-01030	OK COD	OK COD
	LVL 6	LVL 7													
Methyl Ethyl Ketone	+++++	0.5747	0.5350	0.4898	0.4768	Ave		0.4978				9.8	30.0)	
	0.4700	0.4403													
Tetrahydrofuran	++++	+++++	0.1593	0.1446	0.1422	Ave		0.1437				6.7	30.0)	
	0.1391	0.1335													
Chloroform	2.3023	2.4635	2.4124	2.3588	2.2982	Ave		2.3121				5.2	30.0)	
	2.2560	2.0934													
1,1,1-Trichloroethane	0.4330	0.4496	0.4438	0.4477	0.4328	Ave		0.4335				4.0	30.0)	
	0.4296	0.3980													
Cyclohexane	0.2847	0.3120	0.3094	0.3109	0.3005	Ave		0.2968				5.5	30.0)	
	0.2926	0.2675	0 1106	0. 454.4	0 1155	_		2 4227				0 5	20.4		
Carbon tetrachloride	0.4080	0.4252	0.4406	0.4514	0.4455	Ave		0.4337				3.5	30.0)	
2 2 4 Marianathanianathan	0.4421	0.4232	0.9334	0 0212	0 0000	7		0.8805				6.0	30.0		
2,2,4-Trimethylpentane	0.8773 0.8582	0.9150 0.7580	0.9334	0.9313	0.8906	Ave		0.8805				6.9	30.0)	
Benzene	0.8382	0.7580	0.6795	0.6698	0.6490	7		0.6630				6.8	30.0	,	
belizelle	0.6342	0.5868	0.6793	0.0098	0.0490	Ave		0.0030				0.0	30.0	'	
1,2-Dichloroethane	0.0342	0.2470	0.2484	0.2457	0.2382	7.770		0.2412				3.8	30.0)	
1,2 Dieniolocchane	0.2348	0.2248	0.2404	0.2437	0.2302	Avc		0.2412				3.0	30.0	´	
n-Heptane	0.2842	0.2803	0.2876	0.2855	0.2700	Ave		0.2707				7.9	30.0)	
n neptane	0.2588	0.2281	0.2070	0.2000	0.2700	1100		0.2707				,	30.0		
n-Butanol	+++++	+++++	0.0664	0.0743	0.0697	Ave		0.0652				11.5	30.0)	
	0.0554	0.0603													
Trichloroethene	0.2867	0.3046	0.2982	0.3042	0.2936	Ave		0.2930				3.8	30.0)	
	0.2905	0.2732													
1,2-Dichloropropane	0.2203	0.2233	0.2268	0.2228	0.2154	Ave		0.2150				6.2	30.0)	
	0.2088	0.1877													
Methyl methacrylate	++++	0.1508	0.1898	0.1853	0.1871	Ave		0.1811				8.2	30.0)	
	0.1874	0.1860													
1,4-Dioxane	++++	+++++	0.0840	0.0872	0.0737	Ave		0.0792				7.8	30.0)	
	0.0740	0.0769													
Dibromomethane	0.2172	0.2160	0.2313	0.2344	0.2344	Ave		0.2280				3.6	30.0)	
	0.2350	0.2275													
Bromodichloromethane	0.3792	0.4065	0.4566	0.4647	0.4538	Ave		0.4323				7.4	30.0)	
	0.4485	0.4168													
cis-1,3-Dichloropropene	0.3424	0.3392	0.3506	0.3498	0.3461	Ave		0.3433				2.1	30.0)	
	0.3455	0.3293	0.0053	0 000:	0 0000	_		0.0555		_	1		0.0		
methyl isobutyl ketone	+++++	0.2392	0.2811	0.2824	0.2716	Ave		0.2676				5.9	30.0)	
	0.2659	0.2654	0 2022	0.0650	0 0451	_		0.0505				11 ^	20.		
n-Octane	0.3831	0.3842	0.3830	0.3658	0.3454	Ave		0.3525				11.2	30.0	'	
	0.3291	0.2771								- [

lab Name:	Testamerica Burlington	JON NO.:	200-44/8-1	Analy	Batch No.:	13000

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF	,		CURVE TYPE	(COEFFICIEN	JT	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	1111	В	M1	M2				-01/20	OK COD	OK COD
	LVL 6	LVL 7													
Toluene	0.6152	0.6071	0.5555	0.5676	0.5340	Ave		0.5526				8.9	30.0		
	0.5086	0.4805													
trans-1,3-Dichloropropene	0.3108	0.3157	0.3292	0.3241	0.3258	Ave		0.3214				2.1	30.0		
	0.3268	0.3174													
1,1,2-Trichloroethane	0.2645	0.2730	0.2592	0.2718	0.2520	Ave		0.2552				6.8	30.0		
	0.2404	0.2257													
Tetrachloroethene	0.4313	0.4548	0.4385	0.4649	0.4356	Ave		0.4325				6.0	30.0		
	0.4172	0.3849													
Methyl Butyl Ketone (2-Hexanone)	++++	0.2263	0.2889	0.3265	0.2930	Ave		0.2803				11.7	30.0		
	0.2743	0.2727													
Dibromochloromethane	0.4076	0.4344	0.5060	0.5492	0.5215	Ave		0.4846				10.3	30.0		
1.0.71	0.5013	0.4723	0.4813	0.5101	0 4554	_		0.4650							
1,2-Dibromoethane	0.4443	0.4658	0.4813	0.5101	0.4751	Ave		0.4650				6.0	30.0		
Chlorobenzene	0.4551 0.7397	0.4234	0.7197	0.7459	0.7006	7		0.7079				7.3	30.0		
Chioropenzene	0.7397	0.7633	0.7197	0.7439	0.7006	Ave		0.7079				7.3	30.0		
n-Nonane	0.8730	0.8130	0.4050	0.4131	0.3777	7.770		0.3642				14.0	30.0		
ii Nollalic	0.3427	0.2613	0.4030	0.4131	0.3777	Avc		0.3042				14.0	30.0		
Ethylbenzene	1.0243	1.0755	1.0829	1.1044	1.0156	Ave		0.9989				12.2	30.0		
2011/1201120110	0.9350	0.7546	1.0023	1.1011	1.0100	1100		0.3303				12.2			
m,p-Xylene	0.3927	0.4254	0.4401	0.4528	0.4290	Ave		0.4132				8.6	30.0		
, 1	0.4053	0.3472													
Xylene, o-	0.4070	0.4411	0.4444	0.4518	0.4320	Ave		0.4272				4.8	30.0		
	0.4173	0.3970													
Styrene	0.4347	0.5161	0.6239	0.6478	0.6203	Ave		0.5726				13.0	30.0		
	0.5989	0.5668													
Bromoform	0.3270	0.3554	0.4404	0.4685	0.4573	Ave		0.4120				13.0	30.0		
	0.4367	0.3990													
Cumene	1.0279	1.1345	1.2298	1.2514	1.1971	Ave		1.1252				10.6	30.0		
	1.1199	0.9156													
1,1,2,2-Tetrachloroethane	0.5619	0.6121	0.6205	0.6340	0.5987	Ave		0.5856				7.6	30.0		
2 11	0.5682	0.5036	1 0000	4 4050	4 0455			1 0165					000		
n-Propylbenzene	1.0878	1.1974	1.3923	1.4073	1.3173	Ave		1.2189				14.5	30.0		
1 0 0 mui-hi	1.2167	0.9135	0 4540	0.4583	0 4075	7		0.4000				11 ^	30.0		
1,2,3-Trichloropropane	0.4009	0.46/4	0.4549	0.4583	0.4275	ave		0.4238				11.9	30.0		
n-Decane	0.4009	0.3340	0.4596	0.4578	0.4633	7		0.4079				18.4	30.0		
II-Decane	0.4340	0.2818	0.4096	0.45/8	0.4033	Ave		0.40/9				10.4	30.0		
4-Ethyltoluene	0.4340	1.0021	1.2035	1.2326	1.1522	Δτιο		1.0593		+		14.1	30.0		
1 DOUATCOTAGUE	1.0815	0.8867	1.2033	1.2520	1.1922	₩.c		1.0093				14.1	50.0		

Lab Name:	TestAmerica Burlington	Job No.:	200-4478-1	Analy Batch No.:	15668
CDC No .					

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	(COEFFICIEN	Т	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				*RSD	OR COD	OR COD
	LVL 6	LVL 7													
2-Chlorotoluene	0.9005	0.9707	1.0131	1.0099	0.9414	Ave		0.9265				9.9	30.0		
	0.9030	0.7470													
1,3,5-Trimethylbenzene	0.7176	0.8152	1.0115	1.0191	0.9707	Ave		0.8863				14.1	30.0		
	0.9193	0.7509													
Alpha Methyl Styrene	0.2668	0.3166	0.4945	0.5261	0.5213	Ave		0.4435				23.9	30.0		
	0.4747	0.5047													
tert-Butylbenzene	0.7959	0.8607	0.9921	1.0067	0.9605	Ave		0.9047				9.6	30.0		
	0.9145	0.8023													
1,2,4-Trimethylbenzene	0.6486	0.7460	0.9842	1.0088	0.9523	Ave		0.8608				15.8	30.0		
	0.8992	0.7865													
sec-Butylbenzene	1.0044	1.1416	1.4280	1.4598	1.3568	Ave		1.2395				15.2	30.0		
	1.2668	1.0190													
4-Isopropyltoluene	0.7498	0.8123	1.1733	1.1992	1.1468	Ave		1.0106				18.2	30.0		
	1.0807	0.9122													
1,3-Dichlorobenzene	0.5903	0.5909	0.6418	0.6810	0.6572	Ave		0.6273				5.7	30.0		
	0.6354	0.5947													
1,4-Dichlorobenzene	0.5771	0.5602	0.6299	0.6676	0.6518	Ave		0.6157				6.5	30.0		
	0.6310	0.5922													
Benzyl chloride	0.4930	0.5784	0.7513	0.6807	0.8002	Ave		0.6861				16.2	30.0		
	0.7617	0.7371													
n-Undecane	+++++	+++++	0.3490	0.4276	0.3541	Ave		0.3661				9.5	30.0		
	0.3425	0.3573													
n-Butylbenzene	0.6260	0.6515	0.9134	0.9583	0.9347	Ave		0.8231				16.7	30.0		
	0.8927	0.7849													
1,2-Dichlorobenzene	0.5023	0.5385	0.6236	0.6580	0.6378	Ave		0.5954				9.4	30.0		
	0.6161	0.5914													
n-Dodecane	+++++	+++++	0.2243	0.3304	0.2757	Ave		0.2333				37.1	* 30.0		
	0.2395	0.0968													
1,2,4-Trichlorobenzene	+++++	0.3026	0.2643	0.3480	0.3199	Ave		0.2916				14.7	30.0		
	0.2883	0.2263													
Hexachlorobutadiene	0.2558	0.2619	0.2888	0.3018	0.2998	Ave		0.2682				17.0	30.0		
	0.2959	0.1735													
Naphthalene	+++++	0.7389	0.6087	0.8233	0.7853	Ave		0.6921				15.9	30.0		
	0.6596	0.5367													
1,2,3-Trichlorobenzene	0.2825	0.3025	0.2330	0.3156	0.2870	Ave		0.2579				23.3	30.0		
	0.2456	0.1390													

Lab Name: TestAmerica Burlington Job No.: 200-4478-1 Analy Batch No.: 15668

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 200-15668/3	cjr003.d	
Level 2	IC 200-15668/4	cjr004.d	
Level 3	IC 200-15668/5	cjr005.d	
Level 4	ICIS 200-15668/6	cjr006.d	
Level 5	IC 200-15668/7	cjr007.d	
Level 6	IC 200-15668/8	cjr008.d	
Level 7	IC 200-15668/9	cjr009.d	

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	++++ 1029613	25596 2047190	262690	513803	785537	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	++++ 5423090	139169 10061763	1400078	2764384	4112937	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	++++ 2607012	65623 4975739	652967	1283283	1949197	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	52086 5777603	143998 10556693	1472019	2918851	4394340	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	++++ 1405728	39139 2949862	349831	700582	1034799	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	++++ 2138903	48912 4109370	532555	1056708	1590195	+++++	0.500 40.0	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	17565 1833656	42012 3580988	444809	883560	1355196	0.200	0.500 40.0	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	11295 1255517	27850 2449745	288435	622839	934381	0.200	0.500 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	19115 2029189	51965 4024999	507165	1023522	1543509	0.200	0.500 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 1082040	27354 2130083	281017	545197	826470	+++++	0.500 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	15892 1766906	45108 3380584	482439	938731	1394863	0.200	0.500 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	20009 2226483	49537 4449178	554604	1089934	1677426	0.200	0.500 40.0	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	50012 5499866	133405 10553717	1369467	2722089	4128282	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Pentane	BCM	Ave	++++ 2921876	59089 5475583	757410	1499548	2247571	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Ethanol	BCM	Ave	++++ 1206559	149747 3080424	269637	430350	612195	+++++ 40.0	5.00 100	10.0	15.0	20.0

Lab Name:	TestAmerica Burlington	Job No.: 200-4478-1	Analy Batch No.: 15668
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE			CONCENT	RATION (PP	B V/V)		
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Ethyl ether	BCM	Ave	13932 1387866	34501 2708091	370083	695796	1057914	0.200	0.500	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 677245	+++++ 1248906	179609	296387	518484	+++++	+++++	5.00	10.0	15.0
Freon TF	BCM	Ave	38128 4304749	101920 8206361	1059590	2113914	3205161	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	15641 2169212	51025 4343316	522674	1055508	1606891	0.200	0.500	5.00	10.0	15.0
Acetone	BCM	Ave	+++++	+++++ 4231931	619867	1180076	1598316	+++++	+++++	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	++++ 1519099	+++++ 3102387	440700	924100	1188083	+++++	+++++	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	++++ 6474626	151826 12238589	1617834	3222703	4855662	+++++	0.500	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	17179 2012094	43720 3859649	491247	983987	1480425	0.200	0.500	5.00	10.0	15.0
Acetonitrile	BCM	Ave	++++ 1199199	+++++ 2376476	323601	621717	900774	+++++	+++++	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	++++ 1879552	53209 3615559	491024	963550	1418687	+++++	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 2436155	+++++ 5082513	692089	1568745	2035360	+++++	+++++	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	53069 5786012	149509 11447374	1515507	2811709	4310329	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	26337 2883548	73191 5448197	736342	1452818	2178345	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	+++++ 1374214	33189 2800139	344536	668378	1031427	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	27462 3144567	74059 5899820	798797	1610511	2408267	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	35235 3673423	94731 6783028	971441	1898624	2784061	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	+++++ 3583572	++++ 6687768	982163	1729274	2731590	+++++	+++++	5.00	10.0	15.0
cis-1,2-Dichloroethene	BCM	Ave	23380 2473854	61250 4683587	632144	1232485	1866440	0.200	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 198483	+++++ 394560	51104	94504	148505	+++++	+++++	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	++++ 976162	27745 1873098	263707	486497	730712	+++++	0.500	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 1610163	+++++ 3135148	443562	799737	1215905	++++	+++++	5.00	10.0	15.0

Lab Name:	TestAmerica Burlington	Job No.: 200-4478-1	Analy Batch No.: 15668
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PPI	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Chloroform	BCM	Ave	42548 4685261	118933 8906177	1189216	2342914	3521925	0.200	0.500	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	46007 4970580	120910 9348072	1235912	2475543	3701301	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	30249 3385986	83901 6283709	861588	1719253	2570296	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	43346 5115963	114349 9940180	1227065	2495820	3809893	0.200	0.500	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	93218 9930279	246049 17803004	2599341	5149777	7616564	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	77265 7338199	186785 13782252	1892272	3703810	5550261	0.200	0.500	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	26520 2716958	66430 5279917	691784	1358379	2037524	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	30197 2994450	75385 5357176	800947	1578791	2309337	0.200	0.500	5.00	10.0	15.0
n-Butanol	DFB	Ave	+++++ 641322	+++++ 1415287	184868	410807	596474	+++++	+++++	5.00	10.0	15.0
Trichloroethene	DFB	Ave	30457 3361208	81925 6417221	830523	1682300	2511132	0.200	0.500	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	23405 2416466	60039 4409313	631493	1232154	1842321	0.200	0.500	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	+++++ 2168352	40565 4368023	528477	1024396	1599884	+++++	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	++++ 856095	+++++ 1806843	234017	482404	629950	+++++	+++++	5.00	10.0	15.0
Dibromomethane	DFB	Ave	23080 2719214	58084 5342493	644079	1296368	2004412	0.200	0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	40292 5190338	109322 9790019	1271717	2569459	3881382	0.200	0.500	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	36377 3997887	91218 7733179	976266	1934465	2959710	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	+++++ 3076377	64329 6232538	782939	1561603	2322790	+++++	0.500	5.00	10.0	15.0
n-Octane	DFB	Ave	40702 3808153	103321 6507867	1066618	2022629	2954043	0.200	0.500	5.00	10.0	15.0
Toluene	CBZ	Ave	56828 5341594	138814 10310725	1352754	2582031	3980781	0.200	0.500	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	33023 3781276	84901 7454789	916691	1792185	2786005	0.200	0.500	5.00	10.0	15.0
1,1,2-Trichloroethane	CBZ	Ave	24432 2524499	62419 4843450	631071	1236354	1878523	0.200	0.500	5.00	10.0	15.0

Lab Name:	TestAmerica Burlington	Job No.: 200-4478-1	Analy Batch No.: 15668
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: C.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Start Date: 03/22/2011 17:52 Calibration End Date: 03/22/2011 22:39 Calibration ID: 5511

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tetrachloroethene	CBZ	Ave	39844 4381005	103990 8259349	1067672	2114968	3247194	0.200	0.500	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 2880807	51750 5850694	703392	1485324	2184337	+++++	0.500	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	37651 5264458	99328 10134866	1232002	2498649	3887584	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	41040 4779617	106503 9085505	1172041	2320644	3541726	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	68334 7067373	174542 13153784	1752423	3393463	5222795	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	34910 3598619	84948 5606623	986225	1879505	2815869	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	94622 9819366	245913 16191420	2636795	5024393	7570541	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	72549 8512560	194534 14897636	2143048	4120041	6395318	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	37594 4382516	100851 8517794	1082113	2055570	3220535	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	40154 6289628	118012 12161476	1519227	2947142	4623730	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	30212 4586660	81256 8560752	1072389	2131443	3408689	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	94960 11761269	259409 19646381	2994457	5693162	8923683	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	51912 5967436	139966 10805177	1510967	2884168	4463019	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	100488 12777423	273796 19600580	3390329	6402558	9819667	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	++++ 4210526	106873 7165543	1107781	2084922	3187047	++++	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	++++ 4557996	64440 7523071	1119012	2082884	3453318	++++	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	79132 11357993	229131 19026187	2930498	5607622	8588663	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	83190 9482751	221952 16027221	2466908	4594230	7017206	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	66296 9654841	186395 16110821	2462992	4636107	7235976	0.200	0.500	5.00	10.0	15.0
Alpha Methyl Styrene	CBZ	Ave	24643 4985131	72399 10828668	1204038	2393547	3886077	0.200	0.500	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	73529 9604140	196804 17213740	2415756	4579879	7159897	0.200	0.500	5.00	10.0	15.0

lab Name:	TestAmerica Burlington	:.on dot	200-44/8-1		Analy Batch No.:	15668
EDG No.:						
nstrument	ID: C.i	GC Column	: RTX-624	ID: 0.32(mm)	Heated Purge: (Y/N	1) N

ANALYTE	IS	CURVE								TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2,4-Trimethylbenzene	CBZ	Ave	59916	170566	2396519	4589229	7099093	0.200	0.500	5.00	10.0	15.0
7	0.7.5	7	9443625	16875360	2477126	6641000	10114077	20.0	40.0	5 00	10.0	15.0
sec-Butylbenzene	CBZ	Ave	92785 13303529	261035 21863948	3477136	6641083	10114277	0.200 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	69267	185736	2857072	5455573	8548952	0.200	0.500	5.00	10.0	15.0
1,3-Dichlorobenzene	CBZ	Ave	11349803 54535	19572387 135117	1562783	3097982	4899009	20.0	40.0 0.500	5.00	10.0	15.0
,			6672955	12759755				20.0	40.0			
1,4-Dichlorobenzene	CBZ	Ave	53312	128093	1533829	3037181	4858730	0.200	0.500	5.00	10.0	15.0
			6626413	12707678				20.0	40.0			
Benzyl chloride	CBZ	Ave	45546 7999574	132265 15816643	1829333	3096980	5964686	0.200	0.500 40.0	5.00	10.0	15.0
n-Undecane	CBZ	Ave	+++++	+++++	849843	1945400	2639631	+++++	+++++	5.00	10.0	15.0
in ondedane	CDE	1100	3596839	7667177	013013	1313100	2033031	20.0	40.0	3.00	10.0	10.0
n-Butylbenzene	CBZ	Ave	57828 9375366	148976 16841103	2224149	4359452	6967501	0.200	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorobenzene	CBZ	Ave	46401 6470431	123126 12689509	1518567	2993545	4754638	0.200	0.500	5.00	10.0	15.0
n-Dodecane	CBZ	Ave	+++++ 2514888	+++++	546272	1503084	2054834	+++++	+++++	5.00	10.0	15.0
1,2,4-Trichlorobenzene	CBZ	Ave	+++++ 3027845	69192 4855629	643590	1583357	2384865	++++ 20.0	0.500	5.00	10.0	15.0
Hexachlorobutadiene	CBZ	Ave	23627	59896	703276	1373019	2234951	0.200	0.500	5.00	10.0	15.0
Naphthalene	CBZ	Ave	3107827	3722679 168958	1482150	3745495	5854147	20.0	40.0 0.500	5.00	10.0	15.0
1,2,3-Trichlorobenzene	CBZ	Ave	6927142 26099 2578778	11516494 69158 2982018	567328	1435848	2139746	20.0 0.200 20.0	40.0 0.500 40.0	5.00	10.0	15.0

Curve Type Legend:	
Ave = Average ISTD	

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: ICV 200-15119/11 Calibration Date: 03/12/2011 19:39

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjq011.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 120368

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.4177	0.3779		9.05	10.0	-9.5	30.0
Dichlorodifluoromethane	Ave	2.392	2.393		10.0	10.0	0.0	30.0
Freon 22	Ave	1.045	0.997		9.54	10.0	-4.6	30.0
1,2-Dichlorotetrafluoroethan	Ave	2.624	2.662		10.1	10.0	1.5	30.0
Chloromethane	Ave	0.6070	0.5788		9.53	10.0	-4.6	30.0
n-Butane	Ave	0.8853	0.8487		9.58	10.0	-4.1	30.0
Vinyl chloride	Ave	0.8071	0.7924		9.82	10.0	-1.8	30.0
1,3-Butadiene	Ave	0.5500	0.5562		10.1	10.0	1.1	30.0
Bromomethane	Ave	1.001	0.9680		9.67	10.0	-3.3	30.0
Chloroethane	Ave	0.4856	0.4696		9.67	10.0	-3.3	30.0
Isopentane	Ave	0.7252	0.6946		9.58	10.0	-4.2	30.0
Bromoethene(Vinyl Bromide)	Ave	1.044	1.069		10.2	10.0	2.4	30.0
Trichlorofluoromethane	Ave	2.378	2.397		10.1	10.0	0.8	30.0
n-Pentane	Ave	1.057	1.026		9.71	10.0	-2.9	30.0
Ethanol	Ave	0.2381	0.2117		13.4	15.0	-11.1	30.0
Ethyl ether	Ave	0.5897	0.5551		9.41	10.0	-5.9	30.0
Acrolein	Ave	0.2681	0.2215		8.26	10.0	-17.4	30.0
Freon TF	Ave	1.917	2.148		11.2	10.0	12.0	30.0
1,1-Dichloroethene	Ave	0.9627	1.088		11.3	10.0	13.0	30.0
Acetone	Ave	0.8092	0.8007		9.89	10.0	-1.0	30.0
Isopropyl alcohol	Ave	0.6261	0.5867		9.37	10.0	-6.3	30.0
Carbon disulfide	Ave	3.008	2.796		9.29	10.0	-7.1	30.0
3-Chloropropene	Ave	0.6793	0.6529		9.61	10.0	-3.9	30.0
Acetonitrile	Ave	0.4261	0.4165		9.77	10.0	-2.3	30.0
Methylene Chloride	Ave	0.7257	0.7231		9.96	10.0	-0.4	30.0
tert-Butyl alcohol	Ave	1.117	1.109		9.93	10.0	-0.7	30.0
Methyl tert-butyl ether	Ave	2.461	2.507		10.2	10.0	1.8	30.0
trans-1,2-Dichloroethene	Ave	1.157	1.131		9.77	10.0	-2.3	30.0
Acrylonitrile	Ave	0.4505	0.5262		10.0	10.0	16.8	30.0
n-Hexane	Ave	1.224	1.256		10.3	10.0	2.6	30.0
1,1-Dichloroethane	Ave	1.521	1.496		9.84	10.0	-1.6	30.0
Vinyl acetate	Ave	1.277	1.289		10.1	10.0	0.9	30.0
cis-1,2-Dichloroethene	Ave	1.147	1.170		10.2	10.0	2.0	30.0
Ethyl acetate	Ave	0.0886	0.0939		10.6	10.0	6.0	30.0
Methyl Ethyl Ketone	Ave	0.4284	0.4382		10.2	10.0	2.3	30.0
Tetrahydrofuran	Ave	0.1050	0.1039		9.89	10.0	-1.1	30.0
Chloroform	Ave	2.009	1.988		9.89	10.0	-1.1	30.0
1,1,1-Trichloroethane	Ave	0.3963	0.3911		9.87	10.0	-1.3	30.0
Cyclohexane	Ave	0.2771	0.2834		10.2	10.0	2.3	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: ICV 200-15119/11 Calibration Date: 03/12/2011 19:39

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjq011.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 120368

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4080	0.4082		10.0	10.0	0.0	30.0
2,2,4-Trimethylpentane	Ave	0.7407	0.7305		9.86	10.0	-1.4	30.0
Benzene	Ave	0.6035	0.5912		9.79	10.0	-2.0	30.0
1,2-Dichloroethane	Ave	0.1979	0.1889		9.54	10.0	-4.5	30.0
n-Heptane	Ave	0.2037	0.1961		9.62	10.0	-3.8	30.0
n-Butanol	Ave	0.0567	0.0471		8.30	10.0	-17.0	30.0
Trichloroethene	Ave	0.2792	0.2734		9.79	10.0	-2.1	30.0
1,2-Dichloropropane	Ave	0.1853	0.1756		9.47	10.0	-5.3	30.0
Methyl methacrylate	Ave	0.1615	0.1655		10.2	10.0	2.5	30.0
1,4-Dioxane	Ave	0.0771	0.0665		8.63	10.0	-13.7	30.0
Dibromomethane	Ave	0.2561	0.2562		10.0	10.0	0.0	30.0
Bromodichloromethane	Ave	0.3947	0.4034		10.2	10.0	2.2	30.0
cis-1,3-Dichloropropene	Ave	0.3037	0.2900		9.55	10.0	-4.5	30.0
methyl isobutyl ketone	Ave	0.2070	0.2091		10.1	10.0	1.0	30.0
n-Octane	Ave	0.2660	0.2543		9.56	10.0	-4.4	30.0
Toluene	Ave	0.5190	0.4960		9.55	10.0	-4.4	30.0
trans-1,3-Dichloropropene	Ave	0.2789	0.2704		9.69	10.0	-3.0	30.0
1,1,2-Trichloroethane	Ave	0.2327	0.2167		9.31	10.0	-6.9	30.0
Tetrachloroethene	Ave	0.4654	0.4596		9.87	10.0	-1.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.2132	0.2128		9.98	10.0	-0.2	30.0
Dibromochloromethane	Ave	0.4843	0.5124		10.6	10.0	5.8	30.0
1,2-Dibromoethane	Ave	0.4506	0.4362		9.68	10.0	-3.2	30.0
Chlorobenzene	Ave	0.6918	0.6708		9.69	10.0	-3.0	30.0
n-Nonane	Ave	0.2964	0.3129		10.6	10.0	5.6	30.0
Ethylbenzene	Ave	0.9248	0.9472		10.2	10.0	2.4	30.0
m,p-Xylene	Ave	0.3996	0.4121		20.6	20.0	3.1	30.0
Xylene, o-	Ave	0.4213	0.4215		10.0	10.0	0.0	30.0
Styrene	Ave	0.5763	0.6064		10.5	10.0	5.2	30.0
Bromoform	Ave	0.4309	0.4775		11.1	10.0	10.8	30.0
Cumene	Ave	1.104	1.172		10.6	10.0	6.1	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5479	0.5456		9.96	10.0	-0.4	30.0
n-Propylbenzene	Ave	1.162	1.278		11.0	10.0	10.0	30.0
1,2,3-Trichloropropane	Ave	0.3698	0.3830		10.4	10.0	3.6	30.0
n-Decane	Ave	0.3485	0.3815		10.9	10.0	9.5	30.0
4-Ethyltoluene	Ave	1.040	1.172		11.3	10.0	12.6	30.0
2-Chlorotoluene	Ave	0.8651	0.9188		10.6	10.0	6.2	30.0
1,3,5-Trimethylbenzene	Ave	0.8508	0.9365		11.0	10.0	10.1	30.0
Alpha Methyl Styrene	Ave	0.4583	0.5219		11.4	10.0	13.9	30.0
tert-Butylbenzene	Ave	0.8961	0.9746		10.9	10.0	8.8	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: ICV 200-15119/11 Calibration Date: 03/12/2011 19:39

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjq011.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	0.8367	0.9039		10.8	10.0	8.0	30.0
sec-Butylbenzene	Ave	1.218	1.368		11.2	10.0	12.4	30.0
4-Isopropyltoluene	Ave	1.019	1.166		11.4	10.0	14.4	30.0
1,3-Dichlorobenzene	Ave	0.6494	0.6607		10.2	10.0	1.7	30.0
1,4-Dichlorobenzene	Ave	0.6335	0.6498		10.3	10.0	2.6	30.0
Benzyl chloride	Ave	0.6499	0.6064		9.33	10.0	-6.7	30.0
n-Undecane	Ave	0.3251	0.3290		10.1	10.0	1.2	30.0
n-Butylbenzene	Ave	0.8011	0.8897		11.1	10.0	11.1	30.0
1,2-Dichlorobenzene	Ave	0.6276	0.6298		10.0	10.0	0.4	30.0
n-Dodecane	Ave	0.2208	0.2442		11.1	10.0	10.6	30.0
1,2,4-Trichlorobenzene	Ave	0.3300	0.3372		10.2	10.0	2.2	30.0
Hexachlorobutadiene	Ave	0.3094	0.3208		10.4	10.0	3.7	30.0
Naphthalene	Ave	0.7324	0.8068		11.0	10.0	10.2	30.0
1,2,3-Trichlorobenzene	Ave	0.2800	0.3133		11.2	10.0	11.9	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: CCVIS 200-15121/2 Calibration Date: 03/14/2011 18:37

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjqa002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.4177	0.4522		10.8	10.0	8.3	30.0
Dichlorodifluoromethane	Ave	2.392	2.512		10.5	10.0	5.0	30.0
Freon 22	Ave	1.045	1.111		10.6	10.0	6.3	30.0
1,2-Dichlorotetrafluoroethan	Ave	2.624	2.812		10.7	10.0	7.2	30.0
Chloromethane	Ave	0.6070	0.6405		10.5	10.0	5.5	30.0
n-Butane	Ave	0.8853	0.9831		11.1	10.0	11.0	30.0
Vinyl chloride	Ave	0.8071	0.8860		11.0	10.0	9.8	30.0
1,3-Butadiene	Ave	0.5500	0.6028		11.0	10.0	9.6	30.0
Bromomethane	Ave	1.001	0.995		9.94	10.0	-0.6	30.0
Chloroethane	Ave	0.4856	0.5027		10.3	10.0	3.5	30.0
Isopentane	Ave	0.7252	0.7683		10.6	10.0	5.9	30.0
Bromoethene (Vinyl Bromide)	Ave	1.044	1.047		10.0	10.0	0.3	30.0
Trichlorofluoromethane	Ave	2.378	2.417		10.2	10.0	1.6	30.0
n-Pentane	Ave	1.057	1.146		10.8	10.0	8.4	30.0
Ethanol	Ave	0.2381	0.2340		14.7	15.0	-1.7	30.0
Ethyl ether	Ave	0.5897	0.6339		10.7	10.0	7.5	30.0
Acrolein	Ave	0.2681	0.2610		9.73	10.0	-2.7	30.0
Freon TF	Ave	1.917	1.957		10.2	10.0	2.0	30.0
1,1-Dichloroethene	Ave	0.9627	0.9814		10.2	10.0	1.9	30.0
Acetone	Ave	0.8092	0.9252		11.4	10.0	14.3	30.0
Isopropyl alcohol	Ave	0.6261	0.7144		11.4	10.0	14.1	30.0
Carbon disulfide	Ave	3.008	2.848		9.47	10.0	-5.3	30.0
3-Chloropropene	Ave	0.6793	0.7106		10.5	10.0	4.6	30.0
Acetonitrile	Ave	0.4261	0.4775		11.2	10.0	12.0	30.0
Methylene Chloride	Ave	0.7257	0.7274		10.0	10.0	0.2	30.0
tert-Butyl alcohol	Ave	1.117	1.235		11.1	10.0	10.6	30.0
Methyl tert-butyl ether	Ave	2.461	2.635		10.7	10.0	7.0	30.0
trans-1,2-Dichloroethene	Ave	1.157	1.201		10.4	10.0	3.8	30.0
Acrylonitrile	Ave	0.4505	0.5599		10.6	10.0	24.3	30.0
n-Hexane	Ave	1.224	1.306		10.7	10.0	6.7	30.0
Vinyl acetate	Ave	1.277	1.365		10.7	10.0	6.9	30.0
1,1-Dichloroethane	Ave	1.521	1.549		10.2	10.0	1.8	30.0
Ethyl acetate	Ave	0.0886	0.0968		10.9	10.0	9.2	30.0
cis-1,2-Dichloroethene	Ave	1.147	1.145		9.98	10.0	-0.2	30.0
Methyl Ethyl Ketone	Ave	0.4284	0.4612		10.8	10.0	7.7	30.0
Tetrahydrofuran	Ave	0.1050	0.1138		10.8	10.0	8.3	30.0
Chloroform	Ave	2.009	2.021		10.1	10.0	0.6	30.0
1,1,1-Trichloroethane	Ave	0.3963	0.3932		9.92	10.0	-0.8	30.0
Cyclohexane	Ave	0.2771	0.2825		10.2	10.0	1.9	30.0
Carbon tetrachloride	Ave	0.4080	0.4097		10.0	10.0	0.4	30.0
					1			

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: CCVIS 200-15121/2 Calibration Date: 03/14/2011 18:37

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjqa002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,2,4-Trimethylpentane	Ave	0.7407	0.7501		10.1	10.0	1.3	30.0
Benzene	Ave	0.6035	0.5950		9.86	10.0	-1.4	30.0
1,2-Dichloroethane	Ave	0.1979	0.1948		9.84	10.0	-1.6	30.0
n-Heptane	Ave	0.2037	0.2041		10.0	10.0	0.2	30.0
n-Butanol	Ave	0.0567	0.0543		9.58	10.0	-4.2	30.0
Trichloroethene	Ave	0.2792	0.2782		9.96	10.0	-0.3	30.0
1,2-Dichloropropane	Ave	0.1853	0.1853		9.99	10.0	-0.0	30.0
Methyl methacrylate	Ave	0.1615	0.1733		10.7	10.0	7.3	30.0
1,4-Dioxane	Ave	0.0771	0.0831		10.8	10.0	7.8	30.0
Dibromomethane	Ave	0.2561	0.2505		9.78	10.0	-2.2	30.0
Bromodichloromethane	Ave	0.3947	0.4043		10.2	10.0	2.4	30.0
cis-1,3-Dichloropropene	Ave	0.3037	0.3046		10.0	10.0	0.3	30.0
methyl isobutyl ketone	Ave	0.2070	0.2195		10.6	10.0	6.1	30.0
n-Octane	Ave	0.2660	0.2687		10.1	10.0	1.0	30.0
Toluene	Ave	0.5190	0.5064		9.76	10.0	-2.4	30.0
trans-1,3-Dichloropropene	Ave	0.2789	0.2846		10.2	10.0	2.0	30.0
1,1,2-Trichloroethane	Ave	0.2327	0.2295		9.86	10.0	-1.4	30.0
Tetrachloroethene	Ave	0.4654	0.4588		9.86	10.0	-1.4	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.2132	0.2189		10.3	10.0	2.7	30.0
Dibromochloromethane	Ave	0.4843	0.4974		10.3	10.0	2.7	30.0
1,2-Dibromoethane	Ave	0.4506	0.4518		10.0	10.0	0.2	30.0
Chlorobenzene	Ave	0.6918	0.6849		9.90	10.0	-1.0	30.0
n-Nonane	Ave	0.2964	0.3279		11.1	10.0	10.6	30.0
Ethylbenzene	Ave	0.9248	0.9720		10.5	10.0	5.1	30.0
m,p-Xylene	Ave	0.3996	0.4273		21.4	20.0	7.0	30.0
Xylene, o-	Ave	0.4213	0.4437		10.5	10.0	5.3	30.0
Styrene	Ave	0.5763	0.6193		10.7	10.0	7.5	30.0
Bromoform	Ave	0.4309	0.4575		10.6	10.0	6.2	30.0
Cumene	Ave	1.104	1.193		10.8	10.0	8.1	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5479	0.5782		10.6	10.0	5.5	30.0
n-Propylbenzene	Ave	1.162	1.306		11.2	10.0	12.5	30.0
1,2,3-Trichloropropane	Ave	0.3698	0.3917		10.6	10.0	5.9	30.0
n-Decane	Ave	0.3485	0.4078		11.7	10.0	17.0	30.0
4-Ethyltoluene	Ave	1.040	1.173		11.3	10.0	12.8	30.0
2-Chlorotoluene	Ave	0.8651	0.9218		10.7	10.0	6.6	30.0
1,3,5-Trimethylbenzene	Ave	0.8508	0.9756		11.5	10.0	14.7	30.0
Alpha Methyl Styrene	Ave	0.4583	0.5276		11.5	10.0	15.1	30.0
tert-Butylbenzene	Ave	0.8961	0.996		11.1	10.0	11.2	30.0
1,2,4-Trimethylbenzene	Ave	0.8367	0.9617		11.5	10.0	14.9	30.0
sec-Butylbenzene	Ave	1.218	1.411		11.6	10.0	15.8	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4233-1

SDG No.:

Lab Sample ID: <u>CCVIS 200-15121/2</u> Calibration Date: 03/14/2011 18:37

Instrument ID: C.i Calib Start Date: 03/12/2011 13:14

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/12/2011 18:03

Lab File ID: cjqa002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
4-Isopropyltoluene	Ave	1.019	1.195		11.7	10.0	17.3	30.0
1,3-Dichlorobenzene	Ave	0.6494	0.6817		10.5	10.0	5.0	30.0
1,4-Dichlorobenzene	Ave	0.6335	0.6703		10.6	10.0	5.8	30.0
Benzyl chloride	Ave	0.6499	0.6178		9.50	10.0	-4.9	30.0
n-Undecane	Ave	0.3251	0.3139		9.65	10.0	-3.4	30.0
n-Butylbenzene	Ave	0.8011	0.9180		11.5	10.0	14.6	30.0
1,2-Dichlorobenzene	Ave	0.6276	0.6677		10.6	10.0	6.4	30.0
n-Dodecane	Ave	0.2208	0.2250		10.2	10.0	1.9	30.0
1,2,4-Trichlorobenzene	Ave	0.3300	0.3072		9.31	10.0	-6.9	30.0
Hexachlorobutadiene	Ave	0.3094	0.3342		10.8	10.0	8.0	30.0
Naphthalene	Ave	0.7324	0.6938		9.47	10.0	-5.3	30.0
1,2,3-Trichlorobenzene	Ave	0.2800	0.2780		9.93	10.0	-0.7	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: ICV 200-15668/12 Calibration Date: 03/23/2011 01:03

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjr012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.5117	0.4996		9.76	10.0	-2.3	30.0
Dichlorodifluoromethane	Ave	2.694	2.717		10.1	10.0	0.8	30.0
Freon 22	Ave	1.279	1.287		10.1	10.0	0.7	30.0
1,2-Dichlorotetrafluoroethan	Ave	2.837	2.925		10.3	10.0	3.1	30.0
Chloromethane	Ave	0.7119	0.6782		9.52	10.0	-4.7	30.0
n-Butane	Ave	1.032	1.013		9.81	10.0	-1.8	30.0
Vinyl chloride	Ave	0.8888	0.8606		9.68	10.0	-3.2	30.0
1,3-Butadiene	Ave	0.5986	0.6122		10.2	10.0	2.3	30.0
Bromomethane	Ave	1.014	0.9544		9.41	10.0	-5.9	30.0
Chloroethane	Ave	0.5411	0.5130		9.48	10.0	-5.2	30.0
Isopentane	Ave	0.8962	0.8508		9.49	10.0	-5.1	30.0
Bromoethene (Vinyl Bromide)	Ave	1.078	1.067		9.90	10.0	-1.0	30.0
Trichlorofluoromethane	Ave	2.687	2.625		9.77	10.0	-2.3	30.0
n-Pentane	Ave	1.405	1.287		9.16	10.0	-8.4	30.0
Ethanol	Ave	0.2920	0.2477		12.8	15.0	-15.2	30.0
Ethyl ether	Ave	0.7021	0.6168		8.78	10.0	-12.2	30.0
Acrolein	Ave	0.3241	0.2532		7.81	10.0	-21.9	30.0
Freon TF	Ave	2.078	2.217		10.7	10.0	6.7	30.0
1,1-Dichloroethene	Ave	1.020	1.113		10.9	10.0	9.2	30.0
Acetone	Ave	1.116	1.059		9.49	10.0	-5.1	30.0
Isopropyl alcohol	Ave	0.8121	0.7088		8.73	10.0	-12.7	30.0
Carbon disulfide	Ave	3.139	3.095		9.86	10.0	-1.4	30.0
3-Chloropropene	Ave	0.9521	0.9026		9.48	10.0	-5.2	30.0
Acetonitrile	Ave	0.6012	0.5689		9.46	10.0	-5.4	30.0
Methylene Chloride	Ave	0.9582	0.9564		9.98	10.0	-0.2	30.0
tert-Butyl alcohol	Ave	1.336	1.229		9.20	10.0	-8.0	30.0
Methyl tert-butyl ether	Ave	2.880	2.725		9.46	10.0	-5.4	30.0
trans-1,2-Dichloroethene	Ave	1.427	1.386		9.71	10.0	-2.9	30.0
Acrylonitrile	Ave	0.5789	0.6459		9.56	10.0	11.6	30.0
n-Hexane	Ave	1.533	1.516		9.88	10.0	-1.2	30.0
1,1-Dichloroethane	Ave	1.847	1.803		9.76	10.0	-2.4	30.0
Vinyl acetate	Ave	1.763	1.746		9.90	10.0	-1.0	30.0
Ethyl acetate	Ave	0.0968	0.0941		9.72	10.0	-2.8	30.0
cis-1,2-Dichloroethene	Ave	1.224	1.240		10.1	10.0	1.3	30.0
Methyl Ethyl Ketone	Ave	0.4978	0.4791		9.62	10.0	-3.7	30.0
Tetrahydrofuran	Ave	0.1437	0.1393		9.69	10.0	-3.1	30.0
Chloroform	Ave	2.312	2.299		9.94	10.0	-0.6	30.0
1,1,1-Trichloroethane	Ave	0.4335	0.4350		10.0	10.0	0.3	30.0
Cyclohexane	Ave	0.2968	0.3041		10.2	10.0	2.4	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: ICV 200-15668/12 Calibration Date: 03/23/2011 01:03

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjr012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4337	0.4358		10.0	10.0	0.5	30.0
2,2,4-Trimethylpentane	Ave	0.8805	0.8928		10.1	10.0	1.4	30.0
Benzene	Ave	0.6630	0.6431		9.70	10.0	-3.0	30.0
1,2-Dichloroethane	Ave	0.2412	0.2350		9.74	10.0	-2.6	30.0
n-Heptane	Ave	0.2707	0.2702		9.98	10.0	-0.2	30.0
n-Butanol	Ave	0.0652	0.0501		7.67	10.0	-23.3	30.0
Trichloroethene	Ave	0.2930	0.2905		9.91	10.0	-0.9	30.0
1,2-Dichloropropane	Ave	0.2150	0.2120		9.86	10.0	-1.4	30.0
Methyl methacrylate	Ave	0.1811	0.1779		9.83	10.0	-1.7	30.0
1,4-Dioxane	Ave	0.0792	0.0663		8.37	10.0	-16.3	30.0
Dibromomethane	Ave	0.2280	0.2297		10.1	10.0	0.7	30.0
Bromodichloromethane	Ave	0.4323	0.4611		10.7	10.0	6.6	30.0
cis-1,3-Dichloropropene	Ave	0.3433	0.3360		9.79	10.0	-2.1	30.0
methyl isobutyl ketone	Ave	0.2676	0.2655		9.92	10.0	-0.8	30.0
n-Octane	Ave	0.3525	0.3529		10.0	10.0	0.0	30.0
Toluene	Ave	0.5526	0.5212		9.43	10.0	-5.7	30.0
trans-1,3-Dichloropropene	Ave	0.3214	0.3165		9.84	10.0	-1.5	30.0
1,1,2-Trichloroethane	Ave	0.2552	0.2394		9.38	10.0	-6.2	30.0
Tetrachloroethene	Ave	0.4325	0.4163		9.62	10.0	-3.7	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.2803	0.2733		9.75	10.0	-2.5	30.0
Dibromochloromethane	Ave	0.4846	0.5288		10.9	10.0	9.1	30.0
1,2-Dibromoethane	Ave	0.4650	0.4614		9.92	10.0	-0.8	30.0
Chlorobenzene	Ave	0.7079	0.6791		9.59	10.0	-4.1	30.0
Ethylbenzene	Ave	0.999	1.011		10.1	10.0	1.2	30.0
n-Nonane	Ave	0.3642	0.3774		10.4	10.0	3.6	30.0
m,p-Xylene	Ave	0.4132	0.4094		19.8	20.0	-0.9	30.0
Xylene, o-	Ave	0.4272	0.4101		9.60	10.0	-4.0	30.0
Styrene	Ave	0.5726	0.5973		10.4	10.0	4.3	30.0
Bromoform	Ave	0.4120	0.4514		11.0	10.0	9.5	30.0
Cumene	Ave	1.125	1.154		10.3	10.0	2.6	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5856	0.5506		9.40	10.0	-6.0	30.0
n-Propylbenzene	Ave	1.219	1.288		10.6	10.0	5.7	30.0
1,2,3-Trichloropropane	Ave	0.4238	0.4118		9.71	10.0	-2.9	30.0
n-Decane	Ave	0.4079	0.4266		10.5	10.0	4.6	30.0
4-Ethyltoluene	Ave	1.059	1.143		10.8	10.0	7.9	30.0
2-Chlorotoluene	Ave	0.9265	0.9587		10.3	10.0	3.5	30.0
1,3,5-Trimethylbenzene	Ave	0.8863	0.9159		10.3	10.0	3.3	30.0
Alpha Methyl Styrene	Ave	0.4435	0.4834		10.9	10.0	9.0	30.0
tert-Butylbenzene	Ave	0.9047	0.9281		10.3	10.0	2.6	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: ICV 200-15668/12 Calibration Date: 03/23/2011 01:03

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjr012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
1,2,4-Trimethylbenzene	Ave	0.8608	0.8873		10.3	10.0	3.1	30.0
sec-Butylbenzene	Ave	1.239	1.319		10.6	10.0	6.4	30.0
4-Isopropyltoluene	Ave	1.011	1.102		10.9	10.0	9.0	30.0
1,3-Dichlorobenzene	Ave	0.6273	0.6121		9.76	10.0	-2.4	30.0
1,4-Dichlorobenzene	Ave	0.6157	0.5995		9.74	10.0	-2.6	30.0
Benzyl chloride	Ave	0.6861	0.6146		8.96	10.0	-10.4	30.0
n-Undecane	Ave	0.3661	0.3558		9.72	10.0	-2.8	30.0
n-Butylbenzene	Ave	0.8231	0.8925		10.8	10.0	8.4	30.0
1,2-Dichlorobenzene	Ave	0.5954	0.5765		9.68	10.0	-3.2	30.0
n-Dodecane	Ave	0.2333	0.2565		11.0	10.0	9.9	30.0
1,2,4-Trichlorobenzene	Ave	0.2916	0.2821		9.67	10.0	-3.3	30.0
Hexachlorobutadiene	Ave	0.2682	0.2683		10.0	10.0	0.0	30.0
Naphthalene	Ave	0.6921	0.7070		10.2	10.0	2.1	30.0
1,2,3-Trichlorobenzene	Ave	0.2579	0.2636		10.2	10.0	2.2	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: CCVIS 200-15924/2 Calibration Date: 03/31/2011 16:21

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjrg002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.5117	0.6217		12.1	10.0	21.5	30.0
Dichlorodifluoromethane	Ave	2.694	3.111		11.5	10.0	15.4	30.0
Freon 22	Ave	1.279	1.451		11.3	10.0	13.5	30.0
1,2-Dichlorotetrafluoroethan	Ave	2.837	3.114		11.0	10.0	9.8	30.0
Chloromethane	Ave	0.7119	0.8124		11.4	10.0	14.1	30.0
n-Butane	Ave	1.032	1.300		12.6	10.0	26.0	30.0
Vinyl chloride	Ave	0.8888	0.9857		11.1	10.0	10.9	30.0
1,3-Butadiene	Ave	0.5986	0.6887		11.5	10.0	15.1	30.0
Bromomethane	Ave	1.014	0.997		9.83	10.0	-1.7	30.0
Chloroethane	Ave	0.5411	0.5567		10.3	10.0	2.9	30.0
Isopentane	Ave	0.8962	1.073		12.0	10.0	19.7	30.0
Bromoethene (Vinyl Bromide)	Ave	1.078	1.071		9.94	10.0	-0.6	30.0
Trichlorofluoromethane	Ave	2.687	3.125		11.6	10.0	16.3	30.0
n-Pentane	Ave	1.405	1.659		11.8	10.0	18.0	30.0
Ethanol	Ave	0.2920	0.3157		16.2	15.0	8.1	30.0
Ethyl ether	Ave	0.7021	0.7574		10.8	10.0	7.9	30.0
Acrolein	Ave	0.3241	0.3155		9.73	10.0	-2.7	30.0
Freon TF	Ave	2.078	2.141		10.3	10.0	3.0	30.0
1,1-Dichloroethene	Ave	1.020	1.015		9.95	10.0	-0.5	30.0
Acetone	Ave	1.116	1.675		15.0	10.0	50.1*	30.0
Isopropyl alcohol	Ave	0.8121	1.090		13.4	10.0	34.3*	30.0
Carbon disulfide	Ave	3.139	3.166		10.1	10.0	0.9	30.0
3-Chloropropene	Ave	0.9521	1.148		12.1	10.0	20.6	30.0
Acetonitrile	Ave	0.6012	0.7698		12.8	10.0	28.0	30.0
Methylene Chloride	Ave	0.9582	1.076		11.2	10.0	12.3	30.0
tert-Butyl alcohol	Ave	1.336	1.856		13.9	10.0	39.0*	30.0
Methyl tert-butyl ether	Ave	2.880	3.307		11.5	10.0	14.8	30.0
trans-1,2-Dichloroethene	Ave	1.427	1.610		11.3	10.0	12.8	30.0
Acrylonitrile	Ave	0.5789	0.7384		10.9	10.0	27.5	30.0
n-Hexane	Ave	1.533	1.686		11.0	10.0	9.9	30.0
1,1-Dichloroethane	Ave	1.847	2.061		11.2	10.0	11.6	30.0
Vinyl acetate	Ave	1.763	2.274		12.9	10.0	29.0	30.0
cis-1,2-Dichloroethene	Ave	1.224	1.227		10.0	10.0	0.3	30.0
Ethyl acetate	Ave	0.0968	0.1049		10.8	10.0	8.4	30.0
Methyl Ethyl Ketone	Ave	0.4978	0.5444		10.9	10.0	9.4	30.0
Tetrahydrofuran	Ave	0.1437	0.1891		13.2	10.0	31.6*	30.0
Chloroform	Ave	2.312	2.584		11.2	10.0	11.8	30.0
1,1,1-Trichloroethane	Ave	0.4335	0.5195		12.0	10.0	19.8	30.0
Cyclohexane	Ave	0.2968	0.3070		10.3	10.0	3.4	30.0
Carbon tetrachloride	Ave	0.4337	0.5269		12.1	10.0	21.5	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: CCVIS 200-15924/2 Calibration Date: 03/31/2011 16:21

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjrg002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
2,2,4-Trimethylpentane	Ave	0.8805	0.9917		11.3	10.0	12.6	30.0
Benzene	Ave	0.6630	0.6745		10.2	10.0	1.7	30.0
1,2-Dichloroethane	Ave	0.2412	0.3136		13.0	10.0	30.0	30.0
n-Heptane	Ave	0.2707	0.3415		12.6	10.0	26.2	30.0
n-Butanol	Ave	0.0652	0.0736		11.3	10.0	12.9	30.0
Trichloroethene	Ave	0.2930	0.3142		10.7	10.0	7.2	30.0
1,2-Dichloropropane	Ave	0.2150	0.2373		11.0	10.0	10.4	30.0
Methyl methacrylate	Ave	0.1811	0.2135		11.8	10.0	17.9	30.0
1,4-Dioxane	Ave	0.0792	0.0884		11.2	10.0	11.6	30.0
Dibromomethane	Ave	0.2280	0.2445		10.7	10.0	7.2	30.0
Bromodichloromethane	Ave	0.4323	0.5266		12.2	10.0	21.8	30.0
cis-1,3-Dichloropropene	Ave	0.3433	0.3883		11.3	10.0	13.1	30.0
methyl isobutyl ketone	Ave	0.2676	0.3947		14.7	10.0	47.5*	30.0
n-Octane	Ave	0.3525	0.4702		13.3	10.0	33.4*	30.0
Toluene	Ave	0.5526	0.5434		9.83	10.0	-1.7	30.0
trans-1,3-Dichloropropene	Ave	0.3214	0.3958		12.3	10.0	23.1	30.0
1,1,2-Trichloroethane	Ave	0.2552	0.2567		10.1	10.0	0.6	30.0
Tetrachloroethene	Ave	0.4325	0.4313		9.97	10.0	-0.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.2803	0.3867		13.8	10.0	38.0*	30.0
Dibromochloromethane	Ave	0.4846	0.5500		11.3	10.0	13.5	30.0
1,2-Dibromoethane	Ave	0.4650	0.4867		10.5	10.0	4.7	30.0
Chlorobenzene	Ave	0.7079	0.7154		10.1	10.0	1.1	30.0
Ethylbenzene	Ave	0.999	1.131		11.3	10.0	13.2	30.0
n-Nonane	Ave	0.3642	0.4561		12.5	10.0	25.2	30.0
m,p-Xylene	Ave	0.4132	0.4536		22.0	20.0	9.8	30.0
Xylene, o-	Ave	0.4272	0.4593		10.7	10.0	7.5	30.0
Styrene	Ave	0.5726	0.6720		11.7	10.0	17.4	30.0
Bromoform	Ave	0.4120	0.4820		11.7	10.0	17.0	30.0
Cumene	Ave	1.125	1.313		11.7	10.0	16.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5856	0.6463		11.0	10.0	10.4	30.0
n-Propylbenzene	Ave	1.219	1.508		12.4	10.0	23.7	30.0
1,2,3-Trichloropropane	Ave	0.4238	0.5099		12.0	10.0	20.3	30.0
n-Decane	Ave	0.4079	0.5687		13.9	10.0	39.4*	30.0
4-Ethyltoluene	Ave	1.059	1.307		12.3	10.0	23.4	30.0
2-Chlorotoluene	Ave	0.9265	1.098		11.9	10.0	18.5	30.0
1,3,5-Trimethylbenzene	Ave	0.8863	1.107		12.5	10.0	24.9	30.0
Alpha Methyl Styrene	Ave	0.4435	0.5471		12.3	10.0	23.4	30.0
tert-Butylbenzene	Ave	0.9047	1.075		11.9	10.0	18.9	30.0
1,2,4-Trimethylbenzene	Ave	0.8608	1.099		12.8	10.0	27.7	30.0
sec-Butylbenzene	Ave	1.239	1.550		12.5	10.0	25.1	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4478-1

SDG No.:

Lab Sample ID: CCVIS 200-15924/2 Calibration Date: 03/31/2011 16:21

Instrument ID: C.i Calib Start Date: 03/22/2011 17:52

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 03/22/2011 22:39

Lab File ID: cjrg002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
4-Isopropyltoluene	Ave	1.011	1.317		13.0	10.0	30.3*	30.0
1,3-Dichlorobenzene	Ave	0.6273	0.7050		11.2	10.0	12.4	30.0
1,4-Dichlorobenzene	Ave	0.6157	0.6923		11.2	10.0	12.4	30.0
Benzyl chloride	Ave	0.6861	0.6844		9.97	10.0	-0.2	30.0
n-Undecane	Ave	0.3661	0.4685		12.8	10.0	28.0	30.0
n-Butylbenzene	Ave	0.8231	1.103		13.4	10.0	34.0*	30.0
1,2-Dichlorobenzene	Ave	0.5954	0.6805		11.4	10.0	14.3	30.0
n-Dodecane	Ave	0.2333	0.3352		14.4	10.0	43.7*	30.0
1,2,4-Trichlorobenzene	Ave	0.2916	0.3162		10.8	10.0	8.4	30.0
Hexachlorobutadiene	Ave	0.2682	0.3522		13.1	10.0	31.3*	30.0
Naphthalene	Ave	0.6921	0.6873		9.93	10.0	-0.7	30.0
1,2,3-Trichlorobenzene	Ave	0.2579	0.2756		10.7	10.0	6.9	30.0

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Bu	rlington	Job No.: 200-4233-1
SDG No.:		
Instrument ID: C.i		Start Date: 03/12/2011 11:35
Analysis Batch Number:	15119	End Date: 03/12/2011 20:27

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
			FACTOR		
BFB 200-15119/1		03/12/2011 11:35	1	cjq001.d	RTX-624 0.32 (mm)
VIBLK 200-15119/2		03/12/2011 12:26	1		RTX-624 0.32 (mm)
IC 200-15119/3		03/12/2011 13:14	1	cjq003.d	RTX-624 0.32 (mm)
IC 200-15119/4		03/12/2011 14:02	1	cjq004.d	RTX-624 0.32 (mm)
IC 200-15119/5		03/12/2011 14:51	1	cjq005.d	RTX-624 0.32 (mm)
ICIS 200-15119/6		03/12/2011 15:39	1	cjq006.d	RTX-624 0.32 (mm)
IC 200-15119/7		03/12/2011 16:27	1	cjq007.d	RTX-624 0.32 (mm)
IC 200-15119/8		03/12/2011 17:15	1	cjq008.d	RTX-624 0.32 (mm)
IC 200-15119/9		03/12/2011 18:03	1	cjq009.d	RTX-624 0.32 (mm)
VIBLK 200-15119/10		03/12/2011 18:51	1		RTX-624 0.32 (mm)
ICV 200-15119/11		03/12/2011 19:39	1	cjq011.d	RTX-624 0.32 (mm)
VIBLK 200-15119/12		03/12/2011 20:27	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name:	TestAmerica Burlington	Job No.: 200-4233-1	
SDG No.:			
Instrument	ID: C.i	Start Date: 03/14/2011 17:51	
Analysis B	Satch Number: 15121	End Date: 03/15/2011 17:23	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-15121/1		03/14/2011 17:51	1	cjqa001.d	RTX-624 0.32 (mm)
CCVIS 200-15121/2		03/14/2011 18:37	1	cjqa002.d	RTX-624 0.32 (mm)
LCS 200-15121/3		03/14/2011 19:40	1	cjqa003.d	RTX-624 0.32 (mm)
MB 200-15121/4		03/14/2011 20:28	1	cjqa004.d	RTX-624 0.32 (mm)
ZZZZZ		03/14/2011 23:18	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 00:10	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 01:02	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 01:50	1		RTX-624 0.32 (mm)
200-4233-3	3688	03/15/2011 02:38	1	cjqa009.d	RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 03:29	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 04:21	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 05:13	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 06:04	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 06:57	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 07:45	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 08:32	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 09:20	2.5		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 10:08	3.03		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 10:56	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 11:45	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 12:32	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 13:20	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 14:08	1		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 15:00	0.2		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 15:48	10		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 16:36	10		RTX-624 0.32 (mm)
ZZZZZ		03/15/2011 17:23	10		RTX-624 0.32 (mm)

í	,	٦
(=)
	_	ĺ
1	2	
Ċ	7	2
ŀ	_	-
í	2	_
8 8	5	
Ē	ľ	_
į	,	
2	2	
ζ	,)
(= = /		
		Ì
ì	3)

								3			
Sequence			•		Standard	Standard Traceability	λ				Instrument Information
Batch ID:	(देउक्	Start Date: 3	113/11	Time: 1857	ISTD Lot #:	#:	8457	J.			Instrument ID: C
Test Method:	TOS / TO15 254	End Date: 3	111/01	Time: $//3$	CAL STD Lot #		, 200 con	communito			Instrument; 5973
ICAL Date:	1/m//C	A to the contract of the state	**************************************		ICV / LCS Lot #		30° Cen	Communica	A Should off to the state of th	Control of the Contro	Column Type: RTX-624
	Manager MTP		Analyst WW	-	Analyst 🛶	3	3	Analyst			Analyst
Name/Initial	Mark Ph	20111	William J	Jas Tarbins	Sometilin	5	(culte				
Signature	U	Mis	100 001		770×	7					
		Sequen	Sequence Information					Individu	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Сопс.	Anal.	Standard Traceability
1/35	Ca 00/		BFB	\$	<i>\$</i>	M	(A)(n)	<i>√</i> 4		OM	
226	7.30	4632	VIBUR			760	_	-		-	T.
h/E/	Cc.3	3958	Byol!		7						709 460
1407	GCY	3482	leneli		}				7		109 45-1
1577 19	()as/	4114	Grals		-3	-			7		109 449
65 234	909	3643	- Granly		٦				7		119928
1627	<i>と</i> 50	1898	Levels-		9			•			109,427
27/05	SOS	4319	Greati		7				7		109425
J843	ωζ	4943	Level?		حر		_		7		165424
1.52%	010	4632	V IBUK								
1339	GII	2760	101		σ			1	7		120368
6707	Sin	4632	MR			—-j	-]	7	7	}	
										\ 	
						1					
						Ì					
					_	\					
					\						
			\								:
					, 623						
				Cann							
						(1	•		

Legend: C=Complete • R=Reahalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

GC/MS INSTRUMENT RUN LOG

							CHILD INCHINCING		3			
Sequence				2		Standarc	Standard Traceability	y				Instrument Information
Batch ID:	C 7 04		Start.Date: 🚓	3/14/2011 Time:		ISTD Lot #:	30	45.2%				Instrument ID: C
Test Method:	Tols,		End Date: 5	3/15/2011 Tim	.e.:	CAL STD Lot #		992				Instrument: 5973
ICAL Date:	03/12/2	2011				ICV / LCS Lot #	3 Lot # (2	203605	<i>∞</i>	COMMAND OF STREET OF STREET		Column Type: RTX-624
	Мападег			Analyst 8V		Analyst			Analyst			Analyst
Name/Initial				Soreives	ent							
Signature				Sey)							
and the second second			Sequence	Sequence Information					Individu	Individual Sample Review	3eview	
Injection	TALS ID /	97	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	ne	Can ID		Factor	*	(mL)		Std.	Conç.	Anak.	Standard Traceability
15()	CJ 8400			1000	NR	-	(ج/	į	/	5	
1831	90 1	7,00	3643	(ed		-	ي معاد		1	>		AG
1940	0.00	cΛ	2960	1,12		7			>	\		A 61
2028	90	n oa	4633	N N	1	n	7)	7	7	
8)82	0.00	٠	2672	7-2814	7		Soo!		7	A26	CF4)	
0100	780	3	4330	5-4665	-	1.1	-JE		7	+		<i>LS</i> ,
5 0 7	, o 0	1.	3537	1	-	М	- (°		7	7		
\$150	00	Do 00	17584	8- 4524	0120	כ.	a soci		7	7		
85.7 8	Ġ	200	36.88	5 -527	0.14.0	لم	in Course		7	7		
P3.29	G	010	4568	4203-8		ی	Ocal		1)		
17)2	9	011	N380	t1202-5	7 0	١	Caol		1)		
6)50	0	210	2724	4211-9	7.0	8	0000		7	7		
hola.	67	212	hzen	4227-111	0.2	(a)	5001		7	7		
12500	0	pld	2312	4228-2	٥. ٢	(5)	000	7	7	(Lybure
52/0		510	1275	1-617	0,1	11	200	Z	7)		
28.85	5	010	8 ros	7 - 1	4	1.1	200		7	7		
0450	S.	710	5137	-3	2.5	13	80		7	7	-	
8001		810	2565	7.1	3,03	2	ورم		\	>	Z	
056		610	412	7 15	0.7	\ <u>`</u>	200	7)		È	
१५८	0	0,0	204	12551-1	0.	٩	20:0	ړ(\	,	Ž,	(IS MOX
1232		074	2953	1- よれった	_	ત્ર	700	5 2 2	>)	_	
1320)	77.5	7115	4163-1	~	જ	76C	25.	>	1		
140%	5	S S	5700	٠٠٠		z	-		}	7		
1500	7	CH	707	7- C8 1H	C,		0.00/	4		>	1	
1548		ئ غ	1956	54294-3	2	(₁)	3	LAN	١	7	3	
1636	5	05%	3546	<u>۱</u>	_	9	*-		\	\		
1723	1	020	3543	7	-\	2		ښـ)		7	
1						Le	Legend: C=C	omplete •	C=Complete ■ R=Reanalyze ■ ↑		= High • ↓= Low •	ow - /=Reviewed and Acceptable

Page 69 of 100

BR-FA1020:06.07.10:5 TestAmerica

GC/MS INSTRUMENT RUN LOG

Sequence				- [Standa	race	- <u>(</u>				Instrument Information
Batch ID:	ハンド	Start Date: 03	132/11	Time: /6/8	ISTD Lot #:	1#: 845.5	7.8				Instrument ID: C
Test Method:	Told,	End Date: -> 3	123/11	Time: 1618	CAL STD Lot #	Ç/S	er Com	Collegentes			Instrument: 5973
ICAL Date:	00/20/11		AND AND A SECTION AND A SECTION AND ADDRESS AND ADDRES		ICV / LCS Lot #		was con	Comments:			Column Type: RTX-624
	Manager MTTP		Analyst		Analyst			Analyst // W	5		Analyst
Name/Initial	Mark P	hillips	Parli	Saight	Some	Sonelvangeone)	William	Mes Jana Las	/ In	
Signature	Mark 6-1	ndin	Parch	>> 1	S. Cold	104 H		R. C.	1000	22	
8		Sequence	Sequence Information					Indivip	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mľ.)		Std.	Conc.	Anal.	Standard Traceability
818	CDROOL	1	35.03	N.A	_	1	CHAC		7	PAN	
1,06	700	4432	VISLK		-	20.0		/	>	S.	
152	5003	5067	16-1		7				7		654601
0/81	hao	2703	10-51		7))		107450
1927	000	3640	16-3		17			7	7		041601
) (P	900	1967	1615-4		10			ر ا)		726611
50 03	رده	3631	16-5		v)	7	}	109427
1502	8.00	4319	10-6		٢			7	7	Ş	109425
20-39	600	4464	14-7	"/ 	≫			7	7	+	424601
1282	010	4635	71217	9	1 16			7	7	C#S	
5180	011	4632	VIBLK	2.	15			7	7	-	
ر در معرد	710	Soit	101		X			7	7		120404 AG
2151	ر اه	4632	MAIN	1	Z	4	100	7	7		
3540	hio	4432	MB	NR	-	200	کئ	7	7		
0328	510	€00€	5717.0		7		\Z	7	7		109457 AG
0716	510	2702	0.5769		n			7	7		1450 AG
7050	710	3640	5.926.5	-1	:2-	1		1	1		1440 AG1
0559	×10	רראף	4330-5	0.4	0	500		7	7		Kafail - mothed Mary
062	210	Sal	4291-1	0	=	معر		7	>	Za	2
9729	رائ ا	oloh	7		67			7	>		
08(7	100	3397	-3		5			7	«		Ace 100 R 1:36
0905	55	2394	1	4	7	4		>	>		
0953	Sur.	\$ 8° \$	1300-01	۲.٥	15	رهى		>		1	
1042	W20	1808	70- 7	0	ا	20	4	7	7	WAS	
//30	025	4783	4342-0	0.4		500	PAD	7	7		
(S) (S)	0.26	3397	4291-03	3.57	3	56		7	7		
1306	027	4824	4300-0.	3	7	200		7	1	-)	
					-	ordinal O-Complete	'amandada	D-Doopoles	4	Link . Jul	oldedanood A ban boursing Tay

Legend: C=Complete • R=Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

BR-FAI020:06.07.10:5 TestAmerica

Page 80 of 100

GC/MS INSTRUMENT RUN LOG

Part of the

								1			
Sequence					Standard	Standard Traceability	X			,	Instrument Information
Batch ID: ($C \supset R G$	Start Date; 🜣	03/31/4 T	Time: (533	ISTD Lot #:	*	1578				Instrument ID: C
Test Method:	1 / SIG)	End Date: っり)1 / 1c/	Time: (533	CAL STD Lot #	126# 126	3840				Instrument: 5973
ICAL Date:	11/22/86		7		ICV / LCS Lot #	S Lot # 120	368				Column Type: RTX-624
	Manager		Analyst 8		Analyst			Analyst			Analyst
Name/Initial			Sance 160	W. B. Pr							
Signature			SCW.	1							
		Sequence	Sequence Information					Individe	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can 1D		Factor	#	(mL)		Std.	Conc.	Anal	Standard Traceability
1533	(386,00)		673	MA	{	(24	(15	
1421	7,00	4296	cer		N	20-02		-			SHOOT UST
1709	€60	2760	115		3				>		34
1757	Awa	4633	MB	4	7			\	>	4	
_	ان ت کر	2585	7-81hh	0-1	9)	\	25	
C6 1 3	000)	5107	71		و			\ **	>		4 NT RT DUT.
1200	100	4328) - (b		7			\	\		
0] 7	800	5515	8-		8			>	1		
2158	200	4153	01-		2			\	\		
7 2246	00	3249	ST 7	4	0	4	4)	<	7	Cas 1 PA 1:10
2534	110	5134	MANNEOI	132	=	वर्	ス	3	7	7.4	CDF 13.21C
7200	210	8618	70-1	0.1	7	280	7	7	//		
0110	616	SAD	1 - Falh	2.5	1/3	50	\s\				
8510	Oi4,		7-	50	W.	01		1	-	1	
0746	SIO	4	5- 7	6.1	51	GOZ		7	Ż	\sigma_s	
033U	م ال	3730	6-12-12	0.1	16	50	-	7)	,-	
20,0	716	4666	5 - 8Lhh	0 -	_	+	4	7)	1	
0511	018	5714	TEST 5/24	0-1	7	cores	>,	7	1	2	
0559	019	4111	11115		,	-		7			
Chalo	07.0	3666	3666		.5-			7	1	,	
2610	170	4101	I dlo!	-	ر^	7	+	7	75	7	
6780	220	3540	4418-12	10	(0	S	\ \)	/ *	کې	Recland Simpsty
0011	c23	3586	4429-09	_		200	PAD	7	⟨		Recien,
.D) 00/	624	1671	01 -	-	2	-	_	>)	-	
hsol	\$20	333	11-		3		_	>	>	1	
25	0.26	7961		7	÷.	7		Ž	>	محر	
1234	027	1824	10-184	0.7	S	1000	_	>	>	7	
					ĵ e]	gend: C=C	omplete •	R=Reanaly	H = ↓ ■ 9Z	igh • ↓= [Legend: C=Complete • R=Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

(_)
()
-	-	
2	2	_
		2
	1	_
121	-	•
2	2	
Ļ		4
Ē	2	
		2
Ļ	1	_
ŗ	,	`
:	;	;
(/)
	2	
ì		5
	,	j

				}							
Sednence			i			Standard Traceability	ty				Instrument Information
Batch ID:	C J RGJ	Start Date: 0.3	131/11	Time: (533	STD Lot #:	1#: 8V	12				Instrument ID: C
Test Method:	10101	End Date: 5 4	· \	Time: 7533		##		G			Instrument: 5973
ICAL Date:	03 (22-111					SS Lot#	120368	So			Column Type: RTX-624
	Manager		Analyst S	>				Analyst			Analyst
Name/Initial			3	Mohreme	Ì						
Signature			Ã	4							
		Sequence	Sequence Information					Individ	Individual Sample Review	Review	ew
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	*	(mr)		Std.	Conc.	Anal.	Standard Traceability
1476	CJRG 028	3351	0-9864	9 0.2	0	1000	640	\	/	25	
Pa					-						
ge											
25				-		\					
57					-						
φi					+						
E 2					7 4						
26				1	7						
3				000	-د-						
		\		, L							
			D	,							
									/		o
0	היסר דס ססיסכסוגיז מם				Ļ	Legend: C=Complete • R=Reanalyze • \uparrow	Complete •	R=Reanaly	H = ↓ ■ 82	ligh * ↓= L	= High * V= Low * <=Reviewed and Acceptable
アートアロ	UZU:U5.U7.1U:5										

Page 91 of 100

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name:	TestAmerica Burlington	Job No.: 200-44/8-1	
SDG No.:			
Instrument	ID: C.i	Start Date: 03/22/2011 16:18	
Analysis B	atch Number: 15668	End Date: 03/23/2011 15:30	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
3FB 200-15668/1		03/22/2011 16:18	1	cjr001.d	RTX-624 0.32 (mm)
VIBLK 200-15668/2		03/22/2011 17:04	1		RTX-624 0.32 (mm)
IC 200-15668/3		03/22/2011 17:52	1	cjr003.d	RTX-624 0.32 (mm)
CC 200-15668/4		03/22/2011 18:40	1	cjr004.d	RTX-624 0.32 (mm)
C 200-15668/5		03/22/2011 19:27	1	cjr005.d	RTX-624 0.32 (mm)
CIS 200-15668/6		03/22/2011 20:15	1	cjr006.d	RTX-624 0.32 (mm)
C 200-15668/7		03/22/2011 21:03	1	cjr007.d	RTX-624 0.32 (mm)
C 200-15668/8		03/22/2011 21:51	1	cjr008.d	RTX-624 0.32 (mm)
IC 200-15668/9		03/22/2011 22:39	1	cjr009.d	RTX-624 0.32 (mm)
/IBLK 200-15668/10		03/22/2011 23:27	1		RTX-624 0.32 (mm)
/IBLK 200-15668/11		03/23/2011 00:15	1		RTX-624 0.32 (mm)
CV 200-15668/12		03/23/2011 01:03	1	cjr012.d	RTX-624 0.32 (mm)
/IBLK 200-15668/13		03/23/2011 01:52	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 02:40	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 03:28	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 04:16	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 05:04	1		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 05:53	0.4		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 06:41	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 07:29	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 08:17	1		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 09:05	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 09:53	1		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 10:42	10		RTX-624 0.32 (mm)
ZZZZZ		03/23/2011 11:30	0.4		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 12:18	3.57		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 13:06	1		RTX-624 0.32 (mm)
ZZZZ		03/23/2011 13:55	10		RTX-624 0.32 (mm)
CCVC 200-15668/29		03/23/2011 14:42	1		RTX-624 0.32 (mm)
CCVC 200-15668/30		03/23/2011 15:30	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name:	TestAmerica Burlington	Job No.: 200-4478-1	
SDG No.:			
Instrument	ID: C.i	Start Date: 03/31/2011 15:33	
Analysis B	Satch Number: 15924	End Date: 04/01/2011 13:26	

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
BFB 200-15924/1		03/31/2011 15:33	1	cjrg001.d	RTX-624 0.32 (mm)
CCVIS 200-15924/2		03/31/2011 16:21	1	cjrg002.d	RTX-624 0.32 (mm)
LCS 200-15924/3		03/31/2011 17:09	1	cjrg003.d	RTX-624 0.32 (mm)
MB 200-15924/4		03/31/2011 17:57	1	cjrg004.d	RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 18:45	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 19:33	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 20:21	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 21:10	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 21:58	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 22:46	1		RTX-624 0.32 (mm)
ZZZZZ		03/31/2011 23:34	132		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 00:22	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 01:10	2		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 01:58	20		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 02:46	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 03:34	1		RTX-624 0.32 (mm)
200-4478-3	4666	04/01/2011 04:22	1	cjrg017.d	RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 05:11	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 05:59	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 06:47	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 07:35	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 08:23	10		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 09:17	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 10:06	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 10:54	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 11:42	1		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 12:34	0.2		RTX-624 0.32 (mm)
ZZZZZ		04/01/2011 13:26	0.2		RTX-624 0.32 (mm)

Shipping and Receiving Documents

FedEx 2Day
Second busness afternoon *Tnursday shipmer
will be delivered on Monday unless SAUMDAY
Delivery is selected. NEW FedEx 2D ay A.M. Second business morning.
Saturday Defivery NOT available. FedEx Express Saver Third business day.* Saturday Delivery NOT avaitable. 6 Special Handling and Delivery Signature Options Direct Signature
Someone at recipient's address
may sign for delivery. Fre applies. Does this shipment contain dangerous goods? FedEx Pak* NOTE: Service order has changed. Please Express Package Service FedEx Priority Overnight
Next business morning. Friday shipments
delivered on Monday unless SATURDAY D
is selected. FedEx Standard Overnight Next business afternoon.* Saturday Delivery NOT available. SATURDAY Defivery NOT available for FedEx Standard Ov FedEx First Overnight

Earliest next business morning deliver
iocations, Friday shipments wail be do
Monday unless SATURDAY Defivery is No Signature Required Package may be left without obtaining a signature for delivery. FedEx Envelope* 5 Packaging HOLD Weekday FedEr locaton address REQUIRED. NOT available for FedEx First Overnight. 0044 2651

8757

NEW Fackage (S.A.II.DIII

1 From

Page

563 ... x3beqe0.008.1 moo.x**abə**l 261 of

Recipient's Name

2 Your Internal Billing Reference

Ç.

ZIP

fedex.com 1.800.GoFedEx 1.800.463.3339

Cargo Aircraft Only

Enter FedEx Acct. No. or Credit Card No. below.

Recipient

Total Weight

fotal Packages

Our liability is amned to \$10

Rev. Date 11/

Dry Ice Dry Ice, 9, UN 1845

Yes Shipper's Declaration not required.

Yes As per attached Shipper's Declaration.

HOLD Saturday
FedEx location address
FEGURIED Available ONLY for
FedEx Provity Overnight and
FedEx ZDay to select locations

Address Use this line for the HOLD location address or for continuation of your shipping addres:

Address We cannot deliver to P.O. boxes or P.O. ZIP

Dangerous goods (including dry ice) carnot be shipped in FedEx packaging or placed in a FedEx Express Drop Box.

7 Payment Bill to:

ZIP

Other

8757 2651 4400

TestAmerica Burlington

30 Community Drive

Suite 11

South Burlington, VT 05403

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Canister Samples Chain of Custody Record

phone 802-660-1990 fax 802-660-1919

Client Contact Information	אסאטלעלאס O Sektutudo Arbiect Manager (אין	98 0 34	O Beetnawo			Samples Collected By:	ected Bv:					of	cocs	_s			
	Phone:					W. W. ER+2		Si wa how	3								ĺ
2739 DOSLUER CIRCLE		BX+333 3	See See	GESTANTECOC	6.1			-	-						-	-	
12033								_				(uo	ell This oper			(00	/110
- 1	Site Contact:	اند										ecti	48/FF65		5	itaes	
	I A Contact:											s sə	V 61.4		10	. 50	
CINGINE: AFP59		Analysis	Analysis Turnaround Time	d Time			-					lou	Post Control		75		
Site: TR 0386 physe 2.3	3	Standard (Specify)	ecify)									ni yì	BC 18:		\$ &	ui vi	(
PO#	<u>.</u>	Rush (Specify)	(A)									1 8 1	D-1000		<u>ع</u>	inans	nade
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum In Field, 'Hg (Stop)	Flow Controller ID	Canister ID	61-01	TO-14A DE A93	EPA 25C	9461-Q MTSA	Other (Please s Sample Type	lndoor Air	napient Air	Soil Gas	Landfill Gas	Other (Please
81175	ニノナニナ	0461	5445	-27.5	3.9.*	719W	3589	7			4-	10000	1129/1200			₩	1
SC022	ت)٢(٦	2100	2105	1.82-	73.4	4705	4642	7	-			37.2			7		_
16075	司和丁	722	222	-28.9	-3.9		1260	7	-						7		
262													Service Service				Ī
of								_	_								
263									_				100000				_
				Temperature	Temperature (Fahrenheit)			l									
		Interior		Ambient													_
	Start																
	Stop																
				Pressure (inches of Hg)	ches of Hg)												
		Interior		Ambient													
	Start																
	Stop																
Special Instructions/QC Requirements & Comments: ** ** ** ** ** ** ** ** ** ** ** ** **	tοα) (assemy vaco	14 (wan)	0350	A 20.6 0	94C98 to	CoroFiem		V16 0010	310							
Auble Einst																	
41300 3 W 117	Date/Time:	.o.(0)	S Ar		Samples R	ples Received by:	2	8]
	Date/Time:				Received by:												
Relinquished by:	Date/Time:				Received by:	by:											
Lab Use Only Shipper Name: アピル ピオ	A			Opened b		Opened by: Condition:			1 2				J.				

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 200-4737-1

SDG Number: 200-4737

Login Number: 4737 List Source: TestAmerica Burlington

List Number: 2 Creator: Matot, Wade M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	144549
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	Ambient
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	See NCM
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

ANALYTICAL REPORT

Job Number: 200-5005-1 SDG Number: 200-5005

Job Description: AF59

For:

Geosyntec Consultants, Inc. 130 Research Lane Suite 2 Guelph, Ontario N1G5G3

Attention: Mr. David Bertrand

Approved for release Don C Dawicki Project Manager II 5/11/2011 3:44 PM

Don C Dawicki
Project Manager II
don.dawicki@testamericainc.com
05/11/2011

The test results in this report relate only to sample(s) as received by the laboratory. These test results were derived under a quality system that adheres to the requirements of NELAC. Pursuant to NELAC, this report may not be produced in full without written approval from the laboratory

Table of Contents

Cover Title Page	1
Data Summaries	4
Report Narrative	4
Manual Integration Summary	5
Sample Summary	9
Executive Summary	10
Method Summary	13
Method / Analyst Summary	14
Sample Datasheets	15
QC Data Summary	51
Data Qualifiers	63
QC Association Summary	64
Lab Chronicle	65
Certification Summary	68
Organic Sample Data	69
Air - GC/MS VOA	69
Method TO15	69
Method TO15 QC Summary	70
Method TO15 Sample Data	82
Standards Data	213
Method TO15 ICAL Data	213
Method TO15 CCAL Data	262
Raw QC Data	283
Method TO15 Tune Data	283
Method TO15 Blank Data	295
Method TO15 LCS/LCSD Data	316

Table of Contents

Method TO15 Run Logs	 330
Method TO15 Prep Data	 337
Air Canister Dilution	 338
Pre-shipment Certification	 339
LCS Data	 341
Blank Data	 345
Tune Data	 361
IS/RT Data	 365
Clean Canister Data	 369
ICAL Data	 383
ICV/CCV Data	 403
Run Logs	 415
Shipping and Receiving Documents	 425
Client Chain of Custody	 426
Sample Receipt Checklist	 429

CASE NARRATIVE

Client: Geosyntec Consultants, Inc.

Project: AF59

Report Number: 200-5005-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 05/03/2011; the samples arrived in good condition.

VOLATILE ORGANIC COMPOUNDS

Samples SL-118-5, SL-118-20, SL-118-END, SL-084-5, SL-084-20, SL-084-END, SL-022-5, SL-022-20 and SL-022-END were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 05/05/2011 and 05/06/2011.

Samples SL-118-5[25X], SL-118-20[25X], SL-118-END[20X], SL-084-5[678X], SL-084-20[674X], SL-084-END[403X], SL-022-5[20X], SL-022-20[25X] and SL-022-END[25X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the VOC analyses.

All quality control parameters were within the acceptance limits.

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Analysis Batch Number: 16751

Lab Sample ID: IC 200-16751/14 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Vinyl acetate	7.99	Baseline event	pd	04/20/11 09:52
Ethyl acetate	8.93	Baseline event	pd	04/20/11 09:53

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Analysis Batch Number: 17603

Lab Sample ID: MB 200-17603/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Methylene Chloride	6.80	Baseline event	pd	05/05/11 13:43

Lab Sample ID: 200-5005-1 Client Sample ID: SL-118-5

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Freon 22	3.07	Peak not found by the data system	pd	05/06/11 10:15
Acetone	6.12	Baseline event	pd	05/06/11 10:17
Methyl Ethyl Ketone	8.94	Baseline event	pd	05/06/11 10:17

Lab Sample ID: 200-5005-2 Client Sample ID: SL-118-20

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Methyl Ethyl Ketone	8.93	Baseline event	pd	05/06/11 10:20
Carbon tetrachloride	9.73	Analyte misidentified by the	pd	05/06/11 10:21
		data system		

Lab Sample ID: 200-5005-3 Client Sample ID: SL-118-END

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Freon 22	3.07	Peak not found by the data	pd	05/06/11 10:23
Carbon tetrachloride	9.73	system Analyte misidentified by the	pd	05/06/11 10:24
ourson cocraonioriae	J. 73	data system	Pa	00,00,11 10.21

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Analysis Batch Number: 17603

Lab Sample ID: 200-5005-7 Client Sample ID: SL-022-5

COMPOUND NAME RETENTION MANUAL INTEGRATION
TIME REASON ANALYST DATE

Methyl Ethyl Ketone 8.92 Baseline event pd 05/06/11 10:29

Lab Sample ID: 200-5005-4 Client Sample ID: SL-084-5

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Freon TF	5.79	Baseline event	pd	05/06/11 10:43

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Analysis Batch Number: 17703

Lab Sample ID: 200-5005-5 Client Sample ID: SL-084-20

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
Methylene Chloride	6.80	Baseline event	pd	05/09/11 11:01

SAMPLE SUMMARY

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

		Date/Time	Date/Time
Client Sample ID	Client Matrix	Sampled	Received
SL-118-5	Air	04/28/2011 1859	05/03/2011 1020
SL-118-20	Air	04/28/2011 1913	05/03/2011 1020
SL-118-END	Air	04/28/2011 2050	05/03/2011 1020
SL-084-5	Air	04/29/2011 1121	05/03/2011 1020
SL-084-20	Air	04/29/2011 1134	05/03/2011 1020
SL-084-END	Air	04/29/2011 1238	05/03/2011 1020
SL-022-5	Air	04/29/2011 1506	05/03/2011 1020
SL-022-20	Air	04/29/2011 1521	05/03/2011 1020
SL-022-END	Air	04/29/2011 1643	05/03/2011 1020
	SL-118-5 SL-118-20 SL-118-END SL-084-5 SL-084-20 SL-084-END SL-022-5 SL-022-20	SL-118-5 Air SL-118-20 Air SL-118-END Air SL-084-5 Air SL-084-20 Air SL-084-END Air SL-022-5 Air SL-022-20 Air	Client Sample ID Client Matrix Sampled SL-118-5 Air 04/28/2011 1859 SL-118-20 Air 04/28/2011 1913 SL-118-END Air 04/28/2011 2050 SL-084-5 Air 04/29/2011 1121 SL-084-20 Air 04/29/2011 1134 SL-084-END Air 04/29/2011 1238 SL-022-5 Air 04/29/2011 1506 SL-022-20 Air 04/29/2011 1521

EXECUTIVE SUMMARY - Detections

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1 Sdg Number: 200-5005

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
200-5005-1	SL-118-5				
Freon TF		11	5.0	ppb v/v	TO-15
Freon TF		81	38	ug/m3	TO-15
1,1,1-Trichloroethar	ne	610	5.0	ppb v/v	TO-15
1,1,1-Trichloroethar		3300	27	ug/m3	TO-15
Trichloroethene		570	5.0	ppb v/v	TO-15
Trichloroethene		3000	27	ug/m3	TO-15
200-5005-2	SL-118-20				
Freon TF		9.1	4.9	ppb v/v	TO-15
Freon TF		70	38	ug/m3	TO-15
1,1,1-Trichloroethar	ne	550	4.9	ppb v/v	TO-15
1,1,1-Trichloroethar		3000	27	ug/m3	TO-15
Trichloroethene		540	4.9	ppb v/v	TO-15
Trichloroethene		2900	27	ug/m3	TO-15
200-5005-3	SL-118-END				
Freon TF		6.6	4.0	ppb v/v	TO-15
Freon TF		51	31	ug/m3	TO-15
1,1,1-Trichloroethar	ne	400	4.0	ppb v/v	TO-15
1,1,1-Trichloroethar	ne	2200	22	ug/m3	TO-15
Trichloroethene		440	4.0	ppb v/v	TO-15
Trichloroethene		2400	22	ug/m3	TO-15
200-5005-4	SL-084-5				
trans-1,2-Dichloroet	thene	330	140	ppb v/v	TO-15
trans-1,2-Dichloroet	thene	1300	540	ug/m3	TO-15
cis-1,2-Dichloroethe		780	140	ppb v/v	TO-15
cis-1,2-Dichloroethe	ene	3100	540	ug/m3	TO-15
1,2-Dichloroethene,	Total	1100	140	ppb v/v	TO-15
1,2-Dichloroethene,		4400	540	ug/m3	TO-15
1,1,1-Trichloroethar	ne	200	140	ppb v/v	TO-15
1,1,1-Trichloroethar	ne	1100	740	ug/m3	TO-15
Trichloroethene		21000	140	ppb v/v	TO-15
Trichloroethene		110000	730	ug/m3	TO-15
Tetrachloroethene		180	140	ppb v/v	TO-15
Tetrachloroethene		1200	920	ug/m3	TO-15

EXECUTIVE SUMMARY - Detections

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1 Sdg Number: 200-5005

Lab Sample ID Clie Analyte	nt Sample ID	Result / Qualifier	Reporting Limit	Units	Method
200-5005-5	SL-084-20				
trans-1,2-Dichloroethene		260	130	ppb v/v	TO-15
trans-1,2-Dichloroethene		1000	530	ug/m3	TO-15
cis-1,2-Dichloroethene		720	130	ppb v/v	TO-15
cis-1,2-Dichloroethene		2800	530	ug/m3	TO-15
1,2-Dichloroethene, Total		980	130	ppb v/v	TO-15
1,2-Dichloroethene, Total		3900	530	ug/m3	TO-15
Trichloroethene		18000	130	ppb v/v	TO-15
Trichloroethene		97000	720	ug/m3	TO-15
200-5005-6	SL-084-END				
trans-1,2-Dichloroethene		140	81	ppb v/v	TO-15
trans-1,2-Dichloroethene		570	320	ug/m3	TO-15
cis-1,2-Dichloroethene		380	81	ppb v/v	TO-15
cis-1,2-Dichloroethene		1500	320	ug/m3	TO-15
1,2-Dichloroethene, Total		520	81	ppb v/v	TO-15
1,2-Dichloroethene, Total		2100	320	ug/m3	TO-15
Trichloroethene		9900	81	ppb v/v	TO-15
Trichloroethene		53000	430	ug/m3	TO-15
200-5005-7	SL-022-5				
Trichlorofluoromethane		5.8	4.0	ppb v/v	TO-15
Trichlorofluoromethane		32	22	ug/m3	TO-15
Freon TF		19	4.0	ppb v/v	TO-15
Freon TF		150	31	ug/m3	TO-15
1,1,1-Trichloroethane		45	4.0	ppb v/v	TO-15
1,1,1-Trichloroethane		240	22	ug/m3	TO-15
Trichloroethene		530	4.0	ppb v/v	TO-15
Trichloroethene		2800	21	ug/m3	TO-15
200-5005-8	SL-022-20				
Trichlorofluoromethane		6.0	5.0	ppb v/v	TO-15
Trichlorofluoromethane		33	28	ug/m3	TO-15
Freon TF		21	5.0	ppb v/v	TO-15
Freon TF		160	38	ug/m3	TO-15
1,1,1-Trichloroethane		50	5.0	ppb v/v	TO-15
1,1,1-Trichloroethane		270	27	ug/m3	TO-15
Trichloroethene		620	5.0	ppb v/v	TO-15
Trichloroethene		3400			
monoemene		3400	27	ug/m3	TO-15

EXECUTIVE SUMMARY - Detections

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Sample ID Client Sample ID	ample ID Client Sample ID Reporting				
Analyte	Result / Qualifier	Limit	Units	Method	
200-5005-9 SL-022-END					
Freon TF	17	5.0	ppb v/v	TO-15	
Freon TF	130	38	ug/m3	TO-15	
1,1,1-Trichloroethane	50	5.0	ppb v/v	TO-15	
1,1,1-Trichloroethane	270	27	ug/m3	TO-15	
Trichloroethene	680	5.0	ppb v/v	TO-15	
Trichloroethene	3700	27	ug/m3	TO-15	

METHOD SUMMARY

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1 Sdg Number: 200-5005

Description	Lab Location	Method	Preparation Method
Matrix: Air			
Volatile Organic Compounds in Ambient Air	TAL BUR	EPA TO-15	
Collection via Summa Canister	TAL BUR		Summa Canister

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

EPA = US Environmental Protection Agency

METHOD / ANALYST SUMMARY

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1

Sdg Number: 200-5005

Method	Analyst	Analyst ID
EPA TO-15	Daigle, Paul A	PAD

200 mL

5.0

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-5

05/05/2011 2224

Prep Date:

Lab Sample ID: 200-5005-1 Date Sampled: 04/28/2011 1859

Client Matrix: Air Date Received: 05/03/2011 1020

Injection Volume:

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-17603	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkaj015.d
Dilution:	25.1			Initial Weight/Volume:	38 mL
Analysis Date:	05/05/2011 2224			Final Weight/Volume:	200 mL

Analyte Result (ppb v/v) Qualifier RL U 13 Dichlorodifluoromethane 13 U 13 Freon 22 13 U 1,2-Dichlorotetrafluoroethane 5.0 5.0 Chloromethane 13 U 13 n-Butane 13 U 13 U Vinyl chloride 5.0 5.0 U 1,3-Butadiene 5.0 5.0 Bromomethane 5.0 U 5.0 Chloroethane 13 U 13 Bromoethene(Vinyl Bromide) 5.0 U 5.0 Trichlorofluoromethane U 5.0 5.0 Freon TF 5.0 11 U 1,1-Dichloroethene 5.0 5.0 Acetone 130 U 130 Isopropyl alcohol 130 U 130 Carbon disulfide 13 U 13 3-Chloropropene 13 U 13 Methylene Chloride 13 U 13 tert-Butyl alcohol 130 U 130 5.0 U 5.0 Methyl tert-butyl ether trans-1,2-Dichloroethene 5.0 U 5.0 U 5.0 n-Hexane 5.0 1,1-Dichloroethane 5.0 U 5.0 Methyl Ethyl Ketone 13 U 13 cis-1,2-Dichloroethene 5.0 U 5.0 U 1,2-Dichloroethene, Total 5.0 5.0 Chloroform 5.0 U 5.0 U Tetrahydrofuran 130 130 1,1,1-Trichloroethane 610 5.0 U Cyclohexane 5.0 5.0 Carbon tetrachloride U 5.0 5.0 2,2,4-Trimethylpentane 5.0 U 5.0 Benzene 5.0 U 5.0 1,2-Dichloroethane 5.0 U 5.0 n-Heptane 5.0 U 5.0 Trichloroethene 570 5.0 U Methyl methacrylate 13 13 1,2-Dichloropropane 5.0 U 5.0 130 U 130 1,4-Dioxane Bromodichloromethane 5.0 U 5.0 cis-1,3-Dichloropropene 5.0 U 5.0 methyl isobutyl ketone 13 U 13 Toluene 5.0 U 5.0 5.0 trans-1,3-Dichloropropene 5.0 U 5.0 U 5.0 1,1,2-Trichloroethane

U

5.0

Tetrachloroethene

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1 Sdg Number: 200-5005

Client Sample ID: SL-118-5

Lab Sample ID: 200-5005-1 Date Sampled: 04/28/2011 1859

Client Matrix: Date Received: 05/03/2011 1020 Air

TO-15 Volatile	Organic (ebuiroumos	in A	mhiant Air

		TO-15 Volatile Organic	Compounds in	Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 25.1 05/05/2011 2224 05/05/2011 2224	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkaj015.d 38 mL 200 mL 200 mL
Analyte		Result (p	pb v/v)	Qualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	13		U	13
Dibromochlorometh		5.0		U	5.0
1,2-Dibromoethane		5.0		U	5.0
Chlorobenzene		5.0		U	5.0
Ethylbenzene		5.0		U	5.0
n,p-Xylene		13		U	13
Kylene, o-		5.0		U	5.0
Kylene (total)		5.0		U	5.0
Styrene		5.0		U	5.0
Bromoform		5.0		U	5.0
Cumene		5.0		U	5.0
1,1,2,2-Tetrachloroe	ethane	5.0		U	5.0
n-Propylbenzene		5.0		U	5.0
4-Ethyltoluene		5.0		U	5.0
1,3,5-Trimethylbenz	zene	5.0		U	5.0
2-Chlorotoluene		5.0		U	5.0
ert-Butylbenzene		5.0		U	5.0
1,2,4-Trimethylbenz	zene	5.0		U	5.0
sec-Butylbenzene		5.0		U	5.0
1-Isopropyltoluene		5.0		U	5.0
1,3-Dichlorobenzen		5.0		U	5.0
1,4-Dichlorobenzen	е	5.0		U	5.0
Benzyl chloride		5.0		U	5.0
n-Butylbenzene		5.0		U	5.0
1,2-Dichlorobenzen		5.0		U	5.0
1,2,4-Trichlorobenz		13		U	13
Hexachlorobutadier	ne	5.0		U	5.0
Naphthalene		13		U	13
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluoromet	hane	62		U	62
reon 22		44		U	44
1,2-Dichlorotetraflu	oroethane	35		U	35
Chloromethane		26		U	26
n-Butane		30		U 	30
/inyl chloride		13		U	13
1,3-Butadiene		11		U	11
Bromomethane		19		U	19
Chloroethane	Drawida)	33		U	33
Bromoethene(Vinyl		22		U	22
Triablarafi	20E	28		U	28 38
	anc	0.4			4×
reon TF	and	81		ш	
Freon TF I,1-Dichloroethene	anc	20		U	20
Frichlorofluorometh Freon TF 1,1-Dichloroethene Acetone sopropyl alcohol	unc			U U U	

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-5

Lab Sample ID: 200-5005-1 Date Sampled: 04/28/2011 1859

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj015.d Dilution: 25.1 Initial Weight/Volume: 38 mL

 Dilution:
 25.1
 Initial Weight/Volume:
 38 mL

 Analysis Date:
 05/05/2011
 2224
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/05/2011
 2224
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	39	U	39
Methylene Chloride	44	U	44
tert-Butyl alcohol	380	U	380
Methyl tert-butyl ether	18	U	18
trans-1,2-Dichloroethene	20	U	20
n-Hexane	18	U	18
1,1-Dichloroethane	20	U	20
Methyl Ethyl Ketone	37	U	37
cis-1,2-Dichloroethene	20	U	20
1,2-Dichloroethene, Total	20	U	20
Chloroform	25	U	25
Tetrahydrofuran	370	U	370
1,1,1-Trichloroethane	3300		27
Cyclohexane	17	U	17
Carbon tetrachloride	32	U	32
2,2,4-Trimethylpentane	23	U	23
Benzene	16	U	16
1,2-Dichloroethane	20	U	20
n-Heptane	21	U	21
Trichloroethene	3000		27
Methyl methacrylate	51	U	51
1,2-Dichloropropane	23	Ü	23
1,4-Dioxane	450	Ü	450
Bromodichloromethane	34	Ü	34
cis-1,3-Dichloropropene	23	Ü	23
methyl isobutyl ketone	51	Ü	51
Toluene	19	Ü	19
trans-1,3-Dichloropropene	23	Ü	23
1,1,2-Trichloroethane	27	Ü	27
Tetrachloroethene	34	U	34
Methyl Butyl Ketone (2-Hexanone)	51	Ü	51
Dibromochloromethane	43	U	43
1,2-Dibromoethane	39	U	39
Chlorobenzene	23	U	23
Ethylbenzene	22	Ü	22
m,p-Xylene	54	U	54
Xylene, o-	22	Ü	22
Xylene (total)	22	U	22
Styrene	21	U	21
Bromoform	52	U	52
Cumene	52 25	U	25
1,1,2,2-Tetrachloroethane	25 34	U	34
n-Propylbenzene	25	U	
• •			25 35
4-Ethyltoluene	25	U	25
1,3,5-Trimethylbenzene	25	U	25
2-Chlorotoluene	26	U	26

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-5

Lab Sample ID: 200-5005-1 Date Sampled: 04/28/2011 1859

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj015.d Dilution: Initial Weight/Volume: 25.1 38 mL

 Analysis Date:
 05/05/2011
 2224
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/05/2011
 2224
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	28	U	28
1,2,4-Trimethylbenzene	25	U	25
sec-Butylbenzene	28	U	28
4-Isopropyltoluene	28	U	28
1,3-Dichlorobenzene	30	U	30
1,4-Dichlorobenzene	30	U	30
Benzyl chloride	26	U	26
n-Butylbenzene	28	U	28
1,2-Dichlorobenzene	30	U	30
1,2,4-Trichlorobenzene	93	U	93
Hexachlorobutadiene	54	U	54
Naphthalene	66	U	66

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-20

Lab Sample ID: 200-5005-2 Date Sampled: 04/28/2011 1913

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj016.d Dilution: Initial Weight/Volume: 24.7 38 mL

 Dilution:
 24.7
 Initial Weight/Volume:
 38 mL

 Analysis Date:
 05/05/2011 2316
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/05/2011 2316
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	12	U	12
Freon 22	12	U	12
1,2-Dichlorotetrafluoroethane	4.9	U	4.9
Chloromethane	12	U	12
n-Butane	12	U	12
Vinyl chloride	4.9	U	4.9
1,3-Butadiene	4.9	U	4.9
Bromomethane	4.9	U	4.9
Chloroethane	12	U	12
Bromoethene(Vinyl Bromide)	4.9	U	4.9
Trichlorofluoromethane	4.9	U	4.9
Freon TF	9.1		4.9
1,1-Dichloroethene	4.9	U	4.9
Acetone	120	U	120
Isopropyl alcohol	120	U	120
Carbon disulfide	12	U	12
3-Chloropropene	12	U	12
Methylene Chloride	12	U	12
tert-Butyl alcohol	120	U	120
Methyl tert-butyl ether	4.9	U	4.9
trans-1,2-Dichloroethene	4.9	U	4.9
n-Hexane	4.9	U	4.9
1,1-Dichloroethane	4.9	U	4.9
Methyl Ethyl Ketone	12	U	12
cis-1,2-Dichloroethene	4.9	U	4.9
1,2-Dichloroethene, Total	4.9	U	4.9
Chloroform	4.9	U	4.9
Tetrahydrofuran	120	U	120
1,1,1-Trichloroethane	550		4.9
Cyclohexane	4.9	U	4.9
Carbon tetrachloride	4.9	U	4.9
2,2,4-Trimethylpentane	4.9	U	4.9
Benzene	4.9	U	4.9
1,2-Dichloroethane	4.9	U	4.9
n-Heptane	4.9	U	4.9
Trichloroethene	540		4.9
Methyl methacrylate	12	U	12
1,2-Dichloropropane	4.9	U	4.9
1,4-Dioxane	120	U	120
Bromodichloromethane	4.9	U	4.9
cis-1,3-Dichloropropene	4.9	U	4.9
methyl isobutyl ketone	12	U	12
Toluene	4.9	U	4.9
trans-1,3-Dichloropropene	4.9	U	4.9
1,1,2-Trichloroethane	4.9	U	4.9
Tetrachloroethene	4.9	U	4.9

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-20

Lab Sample ID: 200-5005-2 Date Sampled: 04/28/2011 1913

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile	Organic (omnounde.	in	Ambient Air	•

		TO-15 Volatile Organic	Compounds i	n Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 24.7 05/05/2011 2316 05/05/2011 2316	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkaj016.d 38 mL 200 mL 200 mL
Analyte		Result (p	pb v/v)	Qualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	12	,	U	12
Dibromochlorometh		4.9		U	4.9
1,2-Dibromoethane		4.9		U	4.9
Chlorobenzene		4.9		U	4.9
Ethylbenzene		4.9		U	4.9
m,p-Xylene		12		U	12
Xylene, o-		4.9		U	4.9
Xylene (total)		4.9		U	4.9
Styrene		4.9		U	4.9
Bromoform		4.9		U	4.9
Cumene		4.9		U	4.9
1,1,2,2-Tetrachloro	ethane	4.9		U	4.9
n-Propylbenzene		4.9		U	4.9
4-Ethyltoluene		4.9		U	4.9
1,3,5-Trimethylben	zene	4.9		U	4.9
2-Chlorotoluene		4.9		U	4.9
tert-Butylbenzene		4.9		U	4.9
1,2,4-Trimethylben	zene	4.9		U	4.9
sec-Butylbenzene		4.9		U	4.9
4-Isopropyltoluene		4.9		U	4.9
1,3-Dichlorobenzen		4.9		U	4.9
1,4-Dichlorobenzen	ie	4.9		U	4.9
Benzyl chloride		4.9		U	4.9
n-Butylbenzene	••	4.9 4.9		U	4.9 4.9
1,2-Dichlorobenzen 1,2,4-Trichlorobenz		4.9 12		U U	4.9 12
Hexachlorobutadie		4.9		U	4.9
Naphthalene		12		U	12
Тарпшаютс		12		O .	12
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluoromet	thane	61		U	61
Freon 22		44		U	44
1,2-Dichlorotetraflu	oroethane	35		U	35
Chloromethane		26		U	26
n-Butane		29		U	29
Vinyl chloride		13		U	13
1,3-Butadiene		11		U	11
Bromomethane		19		U	19
Chloroethane	Dromido)	33		U	33
Bromoethene(Vinyl		22		U	22
Trichlorofluorometh Freon TF	iaiie	28		U	28
		70 20		П	38 20
1,1-Dichloroethene Acetone		20 290		U U	20 290
Isopropyl alcohol		300		U	300
Carbon disulfide		38		U	38
Jai boli distillide		30		<u> </u>	55

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-20

Lab Sample ID: 200-5005-2 Date Sampled: 04/28/2011 1913

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj016.d Dilution: Initial Weight/Volume: 38 mL 24.7

Analysis Date: 05/05/2011 2316 Final Weight/Volume: 200 mL
Prep Date: 05/05/2011 2316 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	39	U	39
Methylene Chloride	43	U	43
tert-Butyl alcohol	370	U	370
Methyl tert-butyl ether	18	U	18
trans-1,2-Dichloroethene	20	U	20
n-Hexane	17	U	17
1,1-Dichloroethane	20	U	20
Methyl Ethyl Ketone	36	U	36
cis-1,2-Dichloroethene	20	U	20
1,2-Dichloroethene, Total	20	U	20
Chloroform	24	U	24
Tetrahydrofuran	360	U	360
1,1,1-Trichloroethane	3000		27
Cyclohexane	17	U	17
Carbon tetrachloride	31	U	31
2,2,4-Trimethylpentane	23	U	23
Benzene	16	U	16
1,2-Dichloroethane	20	U	20
n-Heptane	20	U	20
Trichloroethene	2900		27
Methyl methacrylate	51	U	51
1,2-Dichloropropane	23	U	23
1,4-Dioxane	450	U	450
Bromodichloromethane	33	U	33
cis-1,3-Dichloropropene	22	U	22
methyl isobutyl ketone	51	U	51
Toluene	19	U	19
trans-1,3-Dichloropropene	22	U	22
1,1,2-Trichloroethane	27	U	27
Tetrachloroethene	34	U	34
Methyl Butyl Ketone (2-Hexanone)	51	U	51
Dibromochloromethane	42	U	42
1,2-Dibromoethane	38	U	38
Chlorobenzene	23	U	23
Ethylbenzene	21	U	21
m,p-Xylene	54	U	54
Xylene, o-	21	U	21
Xylene (total)	21	U	21
Styrene	21	U	21
Bromoform	51	U	51
Cumene	24	Ü	24
1,1,2,2-Tetrachloroethane	34	Ü	34
n-Propylbenzene	24	Ü	24
4-Ethyltoluene	24	Ü	24
1,3,5-Trimethylbenzene	24	Ü	24
2-Chlorotoluene	26	Ü	26
		_	

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-20

Lab Sample ID: 200-5005-2 Date Sampled: 04/28/2011 1913

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj016.d Dilution: Initial Weight/Volume: 38 mL 24.7

Analysis Date: 05/05/2011 2316 Final Weight/Volume: 200 mL
Prep Date: 05/05/2011 2316 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	27	U	27
1,2,4-Trimethylbenzene	24	U	24
sec-Butylbenzene	27	U	27
4-Isopropyltoluene	27	U	27
1,3-Dichlorobenzene	30	U	30
1,4-Dichlorobenzene	30	U	30
Benzyl chloride	26	U	26
n-Butylbenzene	27	U	27
1,2-Dichlorobenzene	30	U	30
1,2,4-Trichlorobenzene	92	U	92
Hexachlorobutadiene	53	U	53
Naphthalene	65	U	65

200 mL

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-END

05/06/2011 0009

Prep Date:

Lab Sample ID: 200-5005-3 Date Sampled: 04/28/2011 2050

Client Matrix: Air Date Received: 05/03/2011 1020

Injection Volume:

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-17603	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkaj017.d
Dilution:	20.1			Initial Weight/Volume:	45 mL
Analysis Date:	05/06/2011 0009			Final Weight/Volume:	200 mL

Analyte Result (ppb v/v) Qualifier RL U 10 Dichlorodifluoromethane 10 U Freon 22 10 10 1,2-Dichlorotetrafluoroethane 4.0 U 4.0 Chloromethane 10 U 10 n-Butane 10 U 10 U 4.0 Vinyl chloride 4.0 1,3-Butadiene U 4.0 4.0 Bromomethane 4.0 U 4.0 Chloroethane 10 U 10 Bromoethene(Vinyl Bromide) 4.0 U 4.0 Trichlorofluoromethane U 4.0 4.0 Freon TF 6.6 4.0 U 1,1-Dichloroethene 4.0 4.0 Acetone 100 U 100 Isopropyl alcohol 100 U 100 Carbon disulfide 10 U 10 3-Chloropropene 10 U 10 Methylene Chloride 10 U 10 tert-Butyl alcohol 100 U 100 4.0 U 4.0 Methyl tert-butyl ether trans-1,2-Dichloroethene 4.0 U 4.0 4.0 U 4.0 n-Hexane 1,1-Dichloroethane 4.0 U 4.0 Methyl Ethyl Ketone 10 U 10 cis-1,2-Dichloroethene 4.0 U 4.0 U 1,2-Dichloroethene, Total 4.0 4.0 Chloroform 4.0 U 4.0 U Tetrahydrofuran 100 100 1,1,1-Trichloroethane 400 4.0 Cyclohexane 4.0 U 4.0 U Carbon tetrachloride 4.0 4.0 2,2,4-Trimethylpentane 4.0 U 4.0 Benzene 4.0 U 4.0 1,2-Dichloroethane 4.0 U 4.0 n-Heptane 4.0 U 4.0 Trichloroethene 440 4.0 U Methyl methacrylate 10 10 1,2-Dichloropropane 4.0 U 4.0 100 U 100 1,4-Dioxane Bromodichloromethane 4.0 U 4.0 cis-1,3-Dichloropropene 4.0 U 4.0 methyl isobutyl ketone 10 U 10 Toluene 4.0 U 4.0 4.0 U 4.0 trans-1,3-Dichloropropene U 1,1,2-Trichloroethane 4.0 4.0 Tetrachloroethene 4.0 U 4.0

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-END

Lab Sample ID: 200-5005-3 Date Sampled: 04/28/2011 2050

Client Matrix: Air Date Received: 05/03/2011 1020

Analysis Method:	TO-15 Summa Canister	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID:	B.i bkaj017.d
Prep Method: Dilution:	20.1	РГЕР Баксп.	IN/A		-
				Initial Weight/Volume:	45 mL
Analysis Date:	05/06/2011 0009			Final Weight/Volume:	200 mL
Prep Date:	05/06/2011 0009			Injection Volume:	200 mL
Analyte		Result (p	pb v/v) Q	ualifier	RL
Methyl Butyl Keton	e (2-Hexanone)	10	U		10
Dibromochlorometh	nane	4.0	U	1	4.0
1,2-Dibromoethane		4.0	U		4.0
Chlorobenzene		4.0	U		4.0
Ethylbenzene		4.0	U		4.0
m,p-Xylene		10	U		10
Xylene, o-		4.0	U		4.0
Xylene (total)		4.0	U	1	4.0
Styrene		4.0	U	l	4.0
Bromoform		4.0	U	l	4.0
Cumene		4.0	U	l	4.0
1,1,2,2-Tetrachloro	ethane	4.0	U	l	4.0
n-Propylbenzene		4.0	U		4.0
4-Ethyltoluene		4.0	U		4.0
1,3,5-Trimethylben:	zene	4.0	U		4.0
2-Chlorotoluene		4.0	U		4.0
tert-Butylbenzene		4.0	U		4.0
1,2,4-Trimethylben:	zene	4.0	U		4.0
sec-Butylbenzene		4.0	U	1	4.0
4-Isopropyltoluene		4.0	U	ı	4.0
1,3-Dichlorobenzer	ne	4.0	U		4.0
1,4-Dichlorobenzer		4.0	Ū		4.0
Benzyl chloride		4.0	U		4.0
n-Butylbenzene		4.0	Ü		4.0
1,2-Dichlorobenzer	ne	4.0	U		4.0
1,2,4-Trichlorobenz		10	U		10
Hexachlorobutadie		4.0	U		4.0
Naphthalene		10	Ü		10
Analyte		Result (u	g/m3) Q	ualifier	RL
Dichlorodifluorome	thane	50	U		50
Freon 22		36	U		36
1,2-Dichlorotetraflu	oroethane	28	Ü		28
Chloromethane		21	U		21
n-Butane		24	U		24
Vinyl chloride		10	U		10
1,3-Butadiene		8.9	U		8.9
Bromomethane		16	U		16
Chloroethane		27	U		27
D		40			

U

U

U

U

U

U

18

23

31

16

240

250

31

18

23

51

16

240

250

31

Bromoethene(Vinyl Bromide)

Trichlorofluoromethane

1,1-Dichloroethene

Isopropyl alcohol Carbon disulfide

Freon TF

Acetone

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-118-END

Lab Sample ID: 200-5005-3 Date Sampled: 04/28/2011 2050

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj017.d Dilution: Initial Weight/Volume: 45 mL 20.1

 Dilution:
 20.1
 Initial Weight/Volume:
 45 mL

 Analysis Date:
 05/06/2011 0009
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/06/2011 0009
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	31	U	31
Methylene Chloride	35	U	35
tert-Butyl alcohol	300	U	300
Methyl tert-butyl ether	14	U	14
trans-1,2-Dichloroethene	16	U	16
n-Hexane	14	U	14
1,1-Dichloroethane	16	U	16
Methyl Ethyl Ketone	30	U	30
cis-1,2-Dichloroethene	16	U	16
1,2-Dichloroethene, Total	16	U	16
Chloroform	20	U	20
Tetrahydrofuran	300	U	300
1,1,1-Trichloroethane	2200		22
Cyclohexane	14	U	14
Carbon tetrachloride	25	U	25
2,2,4-Trimethylpentane	19	U	19
Benzene	13	U	13
1,2-Dichloroethane	16	U	16
n-Heptane	16	U	16
Trichloroethene	2400		22
Methyl methacrylate	41	U	41
1,2-Dichloropropane	19	U	19
1,4-Dioxane	360	U	360
Bromodichloromethane	27	U	27
cis-1,3-Dichloropropene	18	U	18
methyl isobutyl ketone	41	U	41
Toluene	15	U	15
trans-1,3-Dichloropropene	18	U	18
1,1,2-Trichloroethane	22	U	22
Tetrachloroethene	27	U	27
Methyl Butyl Ketone (2-Hexanone)	41	U	41
Dibromochloromethane	34	U	34
1,2-Dibromoethane	31	U	31
Chlorobenzene	18	U	18
Ethylbenzene	17	U	17
m,p-Xylene	44	U	44
Xylene, o-	17	U	17
Xylene (total)	17	U	17
Styrene	17	U	17
Bromoform	42	U	42
Cumene	20	U	20
1,1,2,2-Tetrachloroethane	28	U	28
n-Propylbenzene	20	U	20
4-Ethyltoluene	20	Ü	20
1,3,5-Trimethylbenzene	20	Ü	20
2-Chlorotoluene	21	Ü	21
		· ·	4 1

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-5005

Client Sample ID: **SL-118-END**

Lab Sample ID: 200-5005-3 Date Sampled: 04/28/2011 2050

Client Matrix: Date Received: 05/03/2011 1020 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj017.d Dilution: Initial Weight/Volume: 45 mL 20.1

05/06/2011 0009 Analysis Date: Final Weight/Volume: 200 mL 05/06/2011 0009 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	22	U	22
1,2,4-Trimethylbenzene	20	U	20
sec-Butylbenzene	22	U	22
4-Isopropyltoluene	22	U	22
1,3-Dichlorobenzene	24	U	24
1,4-Dichlorobenzene	24	U	24
Benzyl chloride	21	U	21
n-Butylbenzene	22	U	22
1,2-Dichlorobenzene	24	U	24
1,2,4-Trichlorobenzene	75	U	75
Hexachlorobutadiene	43	U	43
Naphthalene	53	U	53

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-5

Lab Sample ID: 200-5005-4 Date Sampled: 04/29/2011 1121

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj024.d Dilution: Initial Weight/Volume: 678 58 mL

 Analysis Date:
 05/06/2011 0923
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/06/2011 0923
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	340	U	340
Freon 22	340	U	340
1,2-Dichlorotetrafluoroethane	140	U	140
Chloromethane	340	U	340
n-Butane	340	U	340
Vinyl chloride	140	U	140
1,3-Butadiene	140	U	140
Bromomethane	140	U	140
Chloroethane	340	U	340
Bromoethene(Vinyl Bromide)	140	U	140
Trichlorofluoromethane	140	U	140
Freon TF	140	U	140
1,1-Dichloroethene	140	U	140
Acetone	3400	U	3400
Isopropyl alcohol	3400	U	3400
Carbon disulfide	340	U	340
3-Chloropropene	340	U	340
Methylene Chloride	340	U	340
tert-Butyl alcohol	3400	U	3400
Methyl tert-butyl ether	140	U	140
trans-1,2-Dichloroethene	330		140
n-Hexane	140	U	140
1,1-Dichloroethane	140	U	140
Methyl Ethyl Ketone	340	U	340
cis-1,2-Dichloroethene	780		140
1,2-Dichloroethene, Total	1100		140
Chloroform	140	U	140
Tetrahydrofuran	3400	U	3400
1,1,1-Trichloroethane	200		140
Cyclohexane	140	U	140
Carbon tetrachloride	140	U	140
2,2,4-Trimethylpentane	140	U	140
Benzene	140	U	140
1,2-Dichloroethane	140	U	140
n-Heptane	140	U	140
Trichloroethene	21000		140
Methyl methacrylate	340	U	340
1,2-Dichloropropane	140	Ü	140
1,4-Dioxane	3400	Ü	3400
Bromodichloromethane	140	U	140
cis-1,3-Dichloropropene	140	Ü	140
methyl isobutyl ketone	340	Ü	340
Toluene	140	U	140
trans-1,3-Dichloropropene	140	Ü	140
1,1,2-Trichloroethane	140	Ü	140

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc. Sdg Number: 200-5005

Client Sample ID: SL-084-5

Lab Sample ID: 200-5005-4 Date Sampled: 04/29/2011 1121

Client Matrix: Date Received: 05/03/2011 1020 Air

TO-15 Volatile	Organic (ebuiroumos	in A	mhiant Air

TO-15 Volatile Organic Compounds in Ambient Air					
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 678 05/06/2011 0923 05/06/2011 0923	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	B.i bkaj024.d 58 mL 200 mL 200 mL
Analyte		Result (p	nh v/v)	Qualifier	RL
Methyl Butyl Keton	e (2-Hexanone)	340	PD 111)	U	340
Dibromochlorometh	,	140		U	140
1,2-Dibromoethane		140		U	140
Chlorobenzene	,	140		U	140
Ethylbenzene		140		U	140
m,p-Xylene		340		U	340
Xylene, o-		140		U	140
Xylene (total)		140		U	140
Styrene		140		U	140
Bromoform		140		U	140
Cumene		140		U	140
1,1,2,2-Tetrachloro	ethane	140		U	140
n-Propylbenzene		140		U	140
4-Ethyltoluene		140		U	140
1,3,5-Trimethylben	zene	140		U	140
2-Chlorotoluene		140		U	140
tert-Butylbenzene		140		U	140
1,2,4-Trimethylben	zene	140		U	140
sec-Butylbenzene		140		U	140
4-Isopropyltoluene		140		U	140
1,3-Dichlorobenzer	ne	140		U	140
1,4-Dichlorobenzer		140		U	140
Benzyl chloride		140		U	140
n-Butylbenzene		140		U	140
1,2-Dichlorobenzer	ne	140		U	140
1,2,4-Trichlorobenz	zene	340		U	340
Hexachlorobutadie	ne	140		U	140
Naphthalene		340		U	340
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluorome	thane	1700		U	1700
Freon 22		1200		U	1200
1,2-Dichlorotetraflu	oroethane	950		U	950
Chloromethane		700		U	700
n-Butane		810		U	810
Vinyl chloride		350		U	350
1,3-Butadiene		300		U	300
Bromomethane		530		U	530
Chloroethane		890		U	890
Bromoethene(Vinyl	,	590		U	590
Trichlorofluorometh	nane	760		U	760
Freon TF		1000		U	1000
1,1-Dichloroethene	!	540		U	540
Acetone		8100		U	8100
Isopropyl alcohol		8300		U	8300
Carbon disulfide		1100		U	1100

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-5

Lab Sample ID: 200-5005-4 Date Sampled: 04/29/2011 1121

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj024.d Dilution: Initial Weight/Volume: 678 58 mL

Analysis Date: 05/06/2011 0923 Final Weight/Volume: 200 mL
Prep Date: 05/06/2011 0923 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	1100	U	1100
Methylene Chloride	1200	U	1200
tert-Butyl alcohol	10000	U	10000
Methyl tert-butyl ether	490	U	490
trans-1,2-Dichloroethene	1300		540
n-Hexane	480	U	480
1,1-Dichloroethane	550	U	550
Methyl Ethyl Ketone	1000	U	1000
cis-1,2-Dichloroethene	3100		540
1,2-Dichloroethene, Total	4400		540
Chloroform	660	U	660
Tetrahydrofuran	10000	U	10000
1,1,1-Trichloroethane	1100		740
Cyclohexane	470	U	470
Carbon tetrachloride	850	U	850
2,2,4-Trimethylpentane	630	U	630
Benzene	430	U	430
1,2-Dichloroethane	550	U	550
n-Heptane	560	U	560
Trichloroethene	110000		730
Methyl methacrylate	1400	U	1400
1,2-Dichloropropane	630	U	630
1,4-Dioxane	12000	U	12000
Bromodichloromethane	910	U	910
cis-1,3-Dichloropropene	620	U	620
methyl isobutyl ketone	1400	U	1400
Toluene	510	U	510
trans-1,3-Dichloropropene	620	U	620
1,1,2-Trichloroethane	740	U	740
Tetrachloroethene	1200		920
Methyl Butyl Ketone (2-Hexanone)	1400	U	1400
Dibromochloromethane	1200	U	1200
1,2-Dibromoethane	1000	U	1000
Chlorobenzene	620	U	620
Ethylbenzene	590	U	590
m,p-Xylene	1500	U	1500
Xylene, o-	590	U	590
Xylene (total)	590	U	590
Styrene	580	U	580
Bromoform	1400	U	1400
Cumene	670	U	670
1,1,2,2-Tetrachloroethane	930	U	930
n-Propylbenzene	670	U	670
4-Ethyltoluene	670	U	670
1,3,5-Trimethylbenzene	670	U	670
2-Chlorotoluene	700	U	700

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-5

Lab Sample ID: 200-5005-4 Date Sampled: 04/29/2011 1121

Client Matrix: Air Date Received: 05/03/2011 1020

Analysis Method: TO-15 Analysis Batch: 200-17603 B.i Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj024.d Dilution: 678 Initial Weight/Volume: 58 mL

Analysis Date: 05/06/2011 0923 Final Weight/Volume: 200 mL
Prep Date: 05/06/2011 0923 Injection Volume: 200 mL

Result (ug/m3) Qualifier RL Analyte tert-Butylbenzene 740 U 740 U 1,2,4-Trimethylbenzene 670 670 U sec-Butylbenzene 740 740 4-Isopropyltoluene 740 U 740 1,3-Dichlorobenzene 820 U 820 1,4-Dichlorobenzene 820 U 820 U Benzyl chloride 700 700 n-Butylbenzene U 740 740 1,2-Dichlorobenzene 820 U 820 1,2,4-Trichlorobenzene 2500 U 2500 Hexachlorobutadiene 1400 U 1400 U Naphthalene 1800 1800

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-20

Lab Sample ID: 200-5005-5 Date Sampled: 04/29/2011 1134

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17703 Instrument ID: B.i

Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkak0

Dilution: 674

Analysis Date: 05/06/2011 1702 Prep Date: 05/06/2011 1702 Prep Batch: N/A Lab File ID: bkak008.d Initial Weight/Volume: 46 mL Final Weight/Volume: 200 mL Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	340	U	340
Freon 22	340	U	340
1,2-Dichlorotetrafluoroethane	130	U	130
Chloromethane	340	U	340
n-Butane	340	U	340
Vinyl chloride	130	U	130
1,3-Butadiene	130	U	130
Bromomethane	130	U	130
Chloroethane	340	U	340
Bromoethene(Vinyl Bromide)	130	U	130
Trichlorofluoromethane	130	U	130
Freon TF	130	U	130
1,1-Dichloroethene	130	U	130
Acetone	3400	U	3400
Isopropyl alcohol	3400	U	3400
Carbon disulfide	340	U	340
3-Chloropropene	340	U	340
Methylene Chloride	340	U	340
tert-Butyl alcohol	3400	U	3400
Methyl tert-butyl ether	130	U	130
trans-1,2-Dichloroethene	260		130
n-Hexane	130	U	130
1,1-Dichloroethane	130	U	130
Methyl Ethyl Ketone	340	U	340
cis-1,2-Dichloroethene	720		130
1,2-Dichloroethene, Total	980		130
Chloroform	130	U	130
Tetrahydrofuran	3400	U	3400
1,1,1-Trichloroethane	130	U	130
Cyclohexane	130	U	130
Carbon tetrachloride	130	U	130
2,2,4-Trimethylpentane	130	U	130
Benzene	130	U	130
1,2-Dichloroethane	130	U	130
n-Heptane	130	U	130
Trichloroethene	18000		130
Methyl methacrylate	340	U	340
1,2-Dichloropropane	130	U	130
1,4-Dioxane	3400	U	3400
Bromodichloromethane	130	U	130
cis-1,3-Dichloropropene	130	U	130
methyl isobutyl ketone	340	U	340
Toluene	130	U	130
trans-1,3-Dichloropropene	130	U	130
1,1,2-Trichloroethane	130	U	130
Tetrachloroethene	130	U	130

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-20

Lab Sample ID: 200-5005-5 Date Sampled: 04/29/2011 1134

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile	Organic Compo	unde in An	nhiant Air

		TO-15 Volatile Organic	Compounds in	n Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 674 05/06/2011 1702 05/06/2011 1702	Analysis Batch: Prep Batch:	200-17703 N/A	Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun Injection Volume:	
Analyte		Result (p	ob v/v)	Qualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	340	,	U	340
Dibromochlorometh		130		U	130
1,2-Dibromoethane		130		U	130
Chlorobenzene		130		U	130
Ethylbenzene		130		U	130
m,p-Xylene		340		U	340
Xylene, o-		130		U	130
Xylene (total)		130		U	130
Styrene		130		U	130
Bromoform		130		U	130
Cumene		130		U	130
1,1,2,2-Tetrachloro	ethane	130		U	130
n-Propylbenzene		130		U	130
4-Ethyltoluene		130		U	130
1,3,5-Trimethylben	zene	130		U	130
2-Chlorotoluene		130		U	130
tert-Butylbenzene		130		U	130
1,2,4-Trimethylben	zene	130		U	130
sec-Butylbenzene		130	130		130
4-Isopropyltoluene		130		U	130
1,3-Dichlorobenzen	ne	130		U	130
1,4-Dichlorobenzen	ne	130		U	130
Benzyl chloride		130		U	130
n-Butylbenzene		130		U	130
1,2-Dichlorobenzen	ne	130		U	130
1,2,4-Trichlorobenz	ene	340		U	340
Hexachlorobutadie	ne	130		U	130
Naphthalene		340		U	340
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluoromet	thane	1700		U	1700
Freon 22		1200		U	1200
1,2-Dichlorotetraflu	oroethane	940		U	940
Chloromethane		700		U	700
n-Butane		800		U	800
Vinyl chloride		340		U	340
1,3-Butadiene		300		U	300
Bromomethane		520		U	520
Chloroethane		890		U	890
Bromoethene(Vinyl	Bromide)	590		U	590
Trichlorofluorometh	•	760		U	760
Freon TF		1000		U	1000
1,1-Dichloroethene		530		U	530
Acetone		8000		U	8000
		2000			

Isopropyl alcohol

Carbon disulfide

U

U

8300

1000

8300

1000

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1 Sdg Number: 200-5005

Client Sample ID: SL-084-20

Lab Sample ID: 200-5005-5 Date Sampled: 04/29/2011 1134

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17703 Instrument ID: B.i bkak008.d

Prep Method: Summa Canister Prep Batch: N/A Lab File ID: Dilution: 674

Initial Weight/Volume: 46 mL Analysis Date: 05/06/2011 1702 Final Weight/Volume: 200 mL

05/06/2011 1702 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	1100	U	1100
Methylene Chloride	1200	U	1200
tert-Butyl alcohol	10000	U	10000
Methyl tert-butyl ether	490	U	490
trans-1,2-Dichloroethene	1000		530
n-Hexane	480	U	480
1,1-Dichloroethane	550	U	550
Methyl Ethyl Ketone	990	U	990
cis-1,2-Dichloroethene	2800		530
1,2-Dichloroethene, Total	3900		530
Chloroform	660	U	660
Tetrahydrofuran	9900	U	9900
1,1,1-Trichloroethane	740	U	740
Cyclohexane	460	U	460
Carbon tetrachloride	850	U	850
2,2,4-Trimethylpentane	630	U	630
Benzene	430	U	430
1,2-Dichloroethane	550	U	550
n-Heptane	550	U	550
Trichloroethene	97000		720
Methyl methacrylate	1400	U	1400
1,2-Dichloropropane	620	U	620
1,4-Dioxane	12000	U	12000
Bromodichloromethane	900	U	900
cis-1,3-Dichloropropene	610	U	610
methyl isobutyl ketone	1400	U	1400
Toluene	510	U	510
trans-1,3-Dichloropropene	610	U	610
1,1,2-Trichloroethane	740	U	740
Tetrachloroethene	910	U	910
Methyl Butyl Ketone (2-Hexanone)	1400	U	1400
Dibromochloromethane	1100	U	1100
1,2-Dibromoethane	1000	U	1000
Chlorobenzene	620	U	620
Ethylbenzene	590	U	590
m,p-Xylene	1500	U	1500
Xylene, o-	590	U	590
Xylene (total)	590	U	590
Styrene	570	U	570
Bromoform	1400	U	1400
Cumene	660	U	660
1,1,2,2-Tetrachloroethane	930	U	930
n-Propylbenzene	660	U	660
4-Ethyltoluene	660	U	660
1,3,5-Trimethylbenzene	660	U	660
2-Chlorotoluene	700	U	700

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-20

Lab Sample ID: 200-5005-5 Date Sampled: 04/29/2011 1134 Client Matrix: Air

Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17703 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkak008.d Dilution: Initial Weight/Volume: 674 46 mL

Analysis Date: 05/06/2011 1702 Final Weight/Volume: 200 mL 05/06/2011 1702 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	740	U	740
1,2,4-Trimethylbenzene	660	U	660
sec-Butylbenzene	740	U	740
4-Isopropyltoluene	740	U	740
1,3-Dichlorobenzene	810	U	810
1,4-Dichlorobenzene	810	U	810
Benzyl chloride	700	U	700
n-Butylbenzene	740	U	740
1,2-Dichlorobenzene	810	U	810
1,2,4-Trichlorobenzene	2500	U	2500
Hexachlorobutadiene	1400	U	1400
Naphthalene	1800	U	1800

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc. Sdg Number: 200-5005

Client Sample ID: SL-084-END

Lab Sample ID: 200-5005-6 Date Sampled: 04/29/2011 1238

Client Matrix: Date Received: 05/03/2011 1020 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17703 Instrument ID: B.i

Prep Method: Summa Canister Dilution:

403

05/06/2011 1755 Analysis Date: 05/06/2011 1755 Prep Date:

Prep Batch: N/A Lab File ID: bkak009.d Initial Weight/Volume: 37 mL Final Weight/Volume: 200 mL Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	200	U	200
Freon 22	200	U	200
1,2-Dichlorotetrafluoroethane	81	U	81
Chloromethane	200	U	200
n-Butane	200	U	200
Vinyl chloride	81	U	81
1,3-Butadiene	81	U	81
Bromomethane	81	U	81
Chloroethane	200	U	200
Bromoethene(Vinyl Bromide)	81	U	81
Trichlorofluoromethane	81	U	81
Freon TF	81	U	81
1,1-Dichloroethene	81	U	81
Acetone	2000	U	2000
Isopropyl alcohol	2000	U	2000
Carbon disulfide	200	U	200
3-Chloropropene	200	U	200
Methylene Chloride	200	U	200
tert-Butyl alcohol	2000	U	2000
Methyl tert-butyl ether	81	U	81
trans-1,2-Dichloroethene	140		81
n-Hexane	81	U	81
1,1-Dichloroethane	81	U	81
Methyl Ethyl Ketone	200	Ü	200
cis-1,2-Dichloroethene	380		81
1,2-Dichloroethene, Total	520		81
Chloroform	81	U	81
Tetrahydrofuran	2000	U	2000
1,1,1-Trichloroethane	81	Ü	81
Cyclohexane	81	U	81
Carbon tetrachloride	81	Ü	81
2,2,4-Trimethylpentane	81	Ü	81
Benzene	81	Ü	81
1,2-Dichloroethane	81	Ü	81
n-Heptane	81	Ü	81
Trichloroethene	9900		81
Methyl methacrylate	200	U	200
1,2-Dichloropropane	81	Ü	81
1,4-Dioxane	2000	Ü	2000
Bromodichloromethane	81	U	81
cis-1,3-Dichloropropene	81	Ü	81
methyl isobutyl ketone	200	Ü	200
Toluene	81	U	81
trans-1,3-Dichloropropene	81	U	81
1,1,2-Trichloroethane	81	U	81
Tetrachloroethene	81	U	81
i eu acinordeu lene	01	U	01

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-5005

Client Sample ID: SL-084-END

Lab Sample ID: 200-5005-6 Date Sampled: 04/29/2011 1238 Client Matrix: Air

Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-17703	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkak009.d
Dilution:	403			Initial Weight/Volume:	37 mL
Analysis Date:	05/06/2011 1755			Final Weight/Volume:	200 mL
Prep Date:	05/06/2011 1755			Injection Volume:	200 mL
Analyte		Result (p	pb v/v)	Qualifier	RL

200	U	200
81	U	81
200	U	200
81	U	81
200	U	200
81	U	81
200	U	200
	81 81 81 200 81 81 81 81 81 81 81 81 81 81 81 81 81	81 U 81 <td< td=""></td<>

Analyte	Result (ug/m3)	Qualifier	RL
Dichlorodifluoromethane	1000	U	1000
Freon 22	710	U	710
1,2-Dichlorotetrafluoroethane	560	U	560
Chloromethane	420	U	420
n-Butane	480	U	480
Vinyl chloride	210	U	210
1,3-Butadiene	180	U	180
Bromomethane	310	U	310
Chloroethane	530	U	530
Bromoethene(Vinyl Bromide)	350	U	350
Trichlorofluoromethane	450	U	450
Freon TF	620	U	620
1,1-Dichloroethene	320	U	320
Acetone	4800	U	4800
Isopropyl alcohol	5000	U	5000
Carbon disulfide	630	U	630

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-END

Lab Sample ID: 200-5005-6 Date Sampled: 04/29/2011 1238

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17703 Instrument ID: B.i

Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkak009.d Dilution: 403 Initial Weight/Volume: 37 mL

Analysis Date: 05/06/2011 1755 Final Weight/Volume: 200 mL
Prep Date: 05/06/2011 1755 Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	630	U	630
Methylene Chloride	700	U	700
tert-Butyl alcohol	6100	U	6100
Methyl tert-butyl ether	290	U	290
trans-1,2-Dichloroethene	570		320
n-Hexane	280	U	280
1,1-Dichloroethane	330	U	330
Methyl Ethyl Ketone	590	U	590
cis-1,2-Dichloroethene	1500		320
1,2-Dichloroethene, Total	2100		320
Chloroform	390	U	390
Tetrahydrofuran	5900	U	5900
1,1,1-Trichloroethane	440	U	440
Cyclohexane	280	U	280
Carbon tetrachloride	510	U	510
2,2,4-Trimethylpentane	380	U	380
Benzene	260	U	260
1,2-Dichloroethane	330	U	330
n-Heptane	330	U	330
Trichloroethene	53000		430
Methyl methacrylate	830	U	830
1,2-Dichloropropane	370	Ü	370
1,4-Dioxane	7300	Ü	7300
Bromodichloromethane	540	Ü	540
cis-1,3-Dichloropropene	370	Ü	370
methyl isobutyl ketone	830	Ü	830
Toluene	300	Ü	300
trans-1,3-Dichloropropene	370	Ü	370
1,1,2-Trichloroethane	440	Ü	440
Tetrachloroethene	550	U	550
Methyl Butyl Ketone (2-Hexanone)	830	Ü	830
Dibromochloromethane	690	U	690
1,2-Dibromoethane	620	Ü	620
Chlorobenzene	370	Ü	370
Ethylbenzene	350	Ü	350
m,p-Xylene	870	Ü	870
Xylene, o-	350	Ü	350
Xylene (total)	350	Ü	350
Styrene	340	U	340
Bromoform	830	Ü	830
Cumene	400	Ü	400
1,1,2,2-Tetrachloroethane	550	Ü	550
n-Propylbenzene	400	Ü	400
4-Ethyltoluene	400	Ü	400
1,3,5-Trimethylbenzene	400	Ü	400
2-Chlorotoluene	420	Ü	420
2-011101010101010	420	U	420

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-084-END

Lab Sample ID: 200-5005-6 Date Sampled: 04/29/2011 1238 Client Matrix: Air

Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

TO-15 200-17703 B.i Analysis Method: Analysis Batch: Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkak009.d Dilution: 403 Initial Weight/Volume: 37 mL

Analysis Date: 05/06/2011 1755 Final Weight/Volume: 200 mL Prep Date: 05/06/2011 1755 Injection Volume: 200 mL

Result (ug/m3) Qualifier RL Analyte tert-Butylbenzene 440 U 440 U 1,2,4-Trimethylbenzene 400 400 U sec-Butylbenzene 440 440 4-Isopropyltoluene 440 U 440 1,3-Dichlorobenzene 480 U 480 1,4-Dichlorobenzene 480 U 480 U Benzyl chloride 420 420 U n-Butylbenzene 440 440 1,2-Dichlorobenzene 480 U 480 1,2,4-Trichlorobenzene 1500 U 1500 Hexachlorobutadiene 860 U 860 Naphthalene 1100 U 1100

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-5

Lab Sample ID: 200-5005-7 Date Sampled: 04/29/2011 1506

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj021.d Dilution: Initial Weight/Volume: 49 mL 19.9

Analysis Date: 05/06/2011 0338 Final Weight/Volume: 49 mL
Prep Date: 05/06/2011 0338 Injection Volume: 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	10	U	10
Freon 22	10	U	10
1,2-Dichlorotetrafluoroethane	4.0	U	4.0
Chloromethane	10	U	10
n-Butane	10	U	10
Vinyl chloride	4.0	U	4.0
1,3-Butadiene	4.0	Ü	4.0
Bromomethane	4.0	U	4.0
Chloroethane	10	Ü	10
Bromoethene(Vinyl Bromide)	4.0	U	4.0
Trichlorofluoromethane	5.8	9	4.0
Freon TF	19		4.0
1,1-Dichloroethene	4.0	U	4.0
Acetone	100	U	100
	100	U	100
Isopropyl alcohol	100		100
Carbon disulfide		U	
3-Chloropropene	10	U	10
Methylene Chloride	10	U	10
tert-Butyl alcohol	100	U	100
Methyl tert-butyl ether	4.0	U	4.0
trans-1,2-Dichloroethene	4.0	U	4.0
n-Hexane	4.0	U	4.0
1,1-Dichloroethane	4.0	U	4.0
Methyl Ethyl Ketone	10	U	10
cis-1,2-Dichloroethene	4.0	U	4.0
1,2-Dichloroethene, Total	4.0	U	4.0
Chloroform	4.0	U	4.0
Tetrahydrofuran	100	U	100
1,1,1-Trichloroethane	45		4.0
Cyclohexane	4.0	U	4.0
Carbon tetrachloride	4.0	U	4.0
2,2,4-Trimethylpentane	4.0	U	4.0
Benzene	4.0	U	4.0
1,2-Dichloroethane	4.0	U	4.0
n-Heptane	4.0	U	4.0
Trichloroethene	530		4.0
Methyl methacrylate	10	U	10
1,2-Dichloropropane	4.0	U	4.0
1,4-Dioxane	100	U	100
Bromodichloromethane	4.0	U	4.0
cis-1,3-Dichloropropene	4.0	U	4.0
methyl isobutyl ketone	10	U	10
Toluene	4.0	U	4.0
trans-1,3-Dichloropropene		U	4.0
• •	4.0		
1,1,2-Trichloroethane	4.0	U	4.0
Tetrachloroethene	4.0	U	4.0

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-5

Lab Sample ID: 200-5005-7 Date Sampled: 04/29/2011 1506

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile	Organic (omnounde.	in	Ambient Air	•

		TO-15 Volatile Organic	Compounds i	n Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 19.9 05/06/2011 0338 05/06/2011 0338	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte		Result (p	pb v/v)	Qualifier	RL
Methyl Butyl Ketone	e (2-Hexanone)	10	,	U	10
Dibromochlorometh		4.0		U	4.0
1,2-Dibromoethane		4.0		U	4.0
Chlorobenzene		4.0		U	4.0
Ethylbenzene		4.0		U	4.0
m,p-Xylene		10		U	10
Xylene, o-		4.0		U	4.0
Xylene (total)		4.0		U	4.0
Styrene		4.0		U	4.0
Bromoform		4.0		U	4.0
Cumene		4.0		U	4.0
1,1,2,2-Tetrachloro	ethane	4.0		U	4.0
n-Propylbenzene		4.0		U	4.0
4-Ethyltoluene		4.0		U	4.0
1,3,5-Trimethylben	zene	4.0		U	4.0
2-Chlorotoluene		4.0		U	4.0
tert-Butylbenzene		4.0		U	4.0
1,2,4-Trimethylben	zene	4.0		U	4.0
sec-Butylbenzene		4.0		U	4.0
4-Isopropyltoluene		4.0		U	4.0
1,3-Dichlorobenzen		4.0		U	4.0
1,4-Dichlorobenzen	ie	4.0 4.0		U	4.0 4.0
Benzyl chloride n-Butylbenzene		4.0		U	4.0
1,2-Dichlorobenzen	10	4.0		U	4.0
1,2,4-Trichlorobenz		10		U	10
Hexachlorobutadie		4.0		U	4.0
Naphthalene		10		U	10
· tapitalaiono					.•
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluoromet	thane	49		U	49
Freon 22		35		U	35
1,2-Dichlorotetraflu	oroethane	28		U	28
Chloromethane		21		U	21
n-Butane		24		U	24
Vinyl chloride		10		U	10
1,3-Butadiene		8.8		U	8.8
Bromomethane		15		U	15
Chloroethane	Duamaida)	26		U	26
Bromoethene(Vinyl		17		U	17
Trichlorofluorometh Freon TF	iaiie	32			22
		150 16		11	31 16
1,1-Dichloroethene Acetone		16 240		U U	240
Isopropyl alcohol		240		U	240
Carbon disulfide		31		U	31
Jai bori distillide		JI		•	O I

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-5

Lab Sample ID: 200-5005-7 Date Sampled: 04/29/2011 1506

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj021.d Dilution: Initial Weight/Volume: 49 mL 19.9

 Dilution:
 19.9
 Initial Weight/Volume:
 49 mL

 Analysis Date:
 05/06/2011 0338
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/06/2011 0338
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	31	U	31
Methylene Chloride	35	U	35
tert-Butyl alcohol	300	U	300
Methyl tert-butyl ether	14	U	14
trans-1,2-Dichloroethene	16	U	16
n-Hexane	14	U	14
1,1-Dichloroethane	16	U	16
Methyl Ethyl Ketone	29	U	29
cis-1,2-Dichloroethene	16	U	16
1,2-Dichloroethene, Total	16	U	16
Chloroform	19	U	19
Tetrahydrofuran	290	U	290
1,1,1-Trichloroethane	240		22
Cyclohexane	14	U	14
Carbon tetrachloride	25	U	25
2,2,4-Trimethylpentane	19	U	19
Benzene	13	U	13
1,2-Dichloroethane	16	U	16
n-Heptane	16	U	16
Trichloroethene	2800		21
Methyl methacrylate	41	U	41
1,2-Dichloropropane	18	U	18
1,4-Dioxane	360	U	360
Bromodichloromethane	27	U	27
cis-1,3-Dichloropropene	18	U	18
methyl isobutyl ketone	41	U	41
Toluene	15	U	15
trans-1,3-Dichloropropene	18	U	18
1,1,2-Trichloroethane	22	U	22
Tetrachloroethene	27	U	27
Methyl Butyl Ketone (2-Hexanone)	41	U	41
Dibromochloromethane	34	U	34
1,2-Dibromoethane	31	U	31
Chlorobenzene	18	U	18
Ethylbenzene	17	U	17
m,p-Xylene	43	U	43
Xylene, o-	17	U	17
Xylene (total)	17	U	17
Styrene	17	U	17
Bromoform	41	U	41
Cumene	20	U	20
1,1,2,2-Tetrachloroethane	27	U	27
n-Propylbenzene	20	U	20
4-Ethyltoluene	20	U	20
1,3,5-Trimethylbenzene	20	U	20
2-Chlorotoluene	21	U	21

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-5005

Client Sample ID: SL-022-5

Lab Sample ID: 200-5005-7 Date Sampled: 04/29/2011 1506 Client Matrix:

Date Received: 05/03/2011 1020 Air

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj021.d Dilution: Initial Weight/Volume: 49 mL 19.9

05/06/2011 0338 Analysis Date: Final Weight/Volume: 200 mL 05/06/2011 0338 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	22	U	22
1,2,4-Trimethylbenzene	20	U	20
sec-Butylbenzene	22	U	22
4-Isopropyltoluene	22	U	22
1,3-Dichlorobenzene	24	U	24
1,4-Dichlorobenzene	24	U	24
Benzyl chloride	21	U	21
n-Butylbenzene	22	U	22
1,2-Dichlorobenzene	24	U	24
1,2,4-Trichlorobenzene	74	U	74
Hexachlorobutadiene	42	U	42
Naphthalene	52	U	52

200 mL

5.0

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-20

05/06/2011 0431

Prep Date:

Lab Sample ID: 200-5005-8 Date Sampled: 04/29/2011 1521

Client Matrix: Air Date Received: 05/03/2011 1020

Injection Volume:

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-17603	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkaj022.d
Dilution:	25			Initial Weight/Volume:	37 mL
Analysis Date:	05/06/2011 0431			Final Weight/Volume:	200 mL

Analyte Result (ppb v/v) Qualifier RL U 12 Dichlorodifluoromethane 12 U 12 Freon 22 12 1,2-Dichlorotetrafluoroethane 5.0 U 5.0 Chloromethane 12 U 12 n-Butane 12 U 12 U Vinyl chloride 5.0 5.0 U 1,3-Butadiene 5.0 5.0 Bromomethane 5.0 U 5.0 Chloroethane 12 U 12 Bromoethene(Vinyl Bromide) 5.0 U 5.0 Trichlorofluoromethane 5.0 6.0 Freon TF 21 5.0 U 1,1-Dichloroethene 5.0 5.0 Acetone 120 U 120 Isopropyl alcohol 120 U 120 Carbon disulfide 12 U 12 3-Chloropropene 12 U 12 Methylene Chloride 12 U 12 tert-Butyl alcohol 120 U 120 5.0 U 5.0 Methyl tert-butyl ether trans-1,2-Dichloroethene 5.0 U 5.0 U 5.0 5.0 n-Hexane 1,1-Dichloroethane 5.0 U 5.0 Methyl Ethyl Ketone 12 U 12 cis-1,2-Dichloroethene 5.0 U 5.0 U 1,2-Dichloroethene, Total 5.0 5.0 Chloroform 5.0 U 5.0 U Tetrahydrofuran 120 120 1,1,1-Trichloroethane 50 5.0 U Cyclohexane 5.0 5.0 U Carbon tetrachloride 5.0 5.0 2,2,4-Trimethylpentane 5.0 U 5.0 Benzene 5.0 U 5.0 1,2-Dichloroethane 5.0 U 5.0 n-Heptane 5.0 U 5.0 Trichloroethene 620 5.0 U Methyl methacrylate 12 12 1,2-Dichloropropane 5.0 U 5.0 120 U 120 1,4-Dioxane Bromodichloromethane 5.0 U 5.0 cis-1,3-Dichloropropene 5.0 U 5.0 methyl isobutyl ketone 12 U 12 Toluene 5.0 U 5.0 trans-1,3-Dichloropropene 5.0 U 5.0 5.0 U 5.0 1,1,2-Trichloroethane

U

5.0

Tetrachloroethene

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-20

Lab Sample ID: 200-5005-8 Date Sampled: 04/29/2011 1521

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile	Organic	Compounds	in	Δmhient Δir
10-13 Volatile	Organic	Compounds		AIIIDIGIIL AII

		TO-15 Volatile Organic	Compounds	in Ambient Air	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	TO-15 Summa Canister 25 05/06/2011 0431 05/06/2011 0431	Analysis Batch: Prep Batch:	200-17603 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume Injection Volume:	
Analyte		Result (p	nh v/v)	Qualifier	RL
Methyl Butyl Ketor	no (2 Hovanono)	12	pb v/v)	U	12
Dibromochloromet		5.0		U	5.0
1.2-Dibromoethan		5.0		U	5.0
Chlorobenzene	C	5.0		U	5.0
Ethylbenzene		5.0		U	5.0
m,p-Xylene		12		U	12
Xylene, o-		5.0		U	5.0
Xylene (total)		5.0		U	5.0
Styrene		5.0		U	5.0
Bromoform		5.0		U	5.0
Cumene		5.0		U	5.0
1,1,2,2-Tetrachlor	nethane	5.0		U	5.0
n-Propylbenzene	Detriane	5.0		U	5.0
4-Ethyltoluene		5.0		U	5.0
1,3,5-Trimethylber	170n0	5.0		U	5.0
2-Chlorotoluene	126116	5.0		U	5.0
tert-Butylbenzene		5.0		U	5.0
1,2,4-Trimethylber	72000	5.0		U	5.0
sec-Butylbenzene		5.0		U	5.0
4-Isopropyltoluene		5.0		U	5.0
1,3-Dichlorobenze		5.0		U	5.0
1,4-Dichlorobenze		5.0		U	5.0
Benzyl chloride	il C	5.0		U	5.0
n-Butylbenzene		5.0		U	5.0
1,2-Dichlorobenze	ne.	5.0		U	5.0
1,2,4-Trichloroben		12		U	12
Hexachlorobutadie		5.0		U	5.0
Naphthalene	5110	12		U	12
Naphthalone		12		S	12
Analyte		Result (u	g/m3)	Qualifier	RL
Dichlorodifluorome	ethane	62		U	62
Freon 22		44		U	44
1,2-Dichlorotetraflu	uoroethane	35		U	35
Chloromethane		26		U	26
n-Butane		30		U	30
Vinyl chloride		13		U	13
1,3-Butadiene		11		U	11
Bromomethane		19		U	19
Chloroethane		33		U	33
Bromoethene(Viny		22		U	22
Trichlorofluoromet	hane	33			28
Freon TF		160			38
1,1-Dichloroethene	е	20		U	20
A 4		200		11	000

Acetone

Isopropyl alcohol

Carbon disulfide

300

310

39

U

U

U

300

310

39

370

27

17

31

23

16

20

27

34

51

43

38

23

22

54

22

22

21

52

25

34

25

25

25

26

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-20

Lab Sample ID: 200-5005-8 Date Sampled: 04/29/2011 1521

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

TO-15 Analysis Method: Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj022.d Dilution: 25 Initial Weight/Volume: 37 mL

05/06/2011 0431 Analysis Date: Final Weight/Volume: 200 mL Prep Date: 05/06/2011 0431 Injection Volume: 200 mL Analyte Result (ug/m3) Qualifier RL U 39 3-Chloropropene 39 43 U 43 Methylene Chloride U tert-Butyl alcohol 380 380 18 U 18 Methyl tert-butyl ether trans-1,2-Dichloroethene 20 U 20 U 18 18 n-Hexane U 1,1-Dichloroethane 20 20 Methyl Ethyl Ketone 37 U 37 20 U 20 20 U 20 24

cis-1,2-Dichloroethene 1,2-Dichloroethene, Total 24 U Chloroform Tetrahydrofuran 370 U 1,1,1-Trichloroethane 270 Cyclohexane 17 U Carbon tetrachloride 31 U 2,2,4-Trimethylpentane 23 U Benzene 16 U 1,2-Dichloroethane 20 U n-Heptane 20 U

20 3400 27 Trichloroethene Methyl methacrylate 51 U 51 U 23 1,2-Dichloropropane 23 1,4-Dioxane 450 U 450 Bromodichloromethane 34 U 34 23 U 23 cis-1,3-Dichloropropene U methyl isobutyl ketone 51 51 19 U 19 Toluene 23 U 23 trans-1,3-Dichloropropene

1,1,2-Trichloroethane 27 U Tetrachloroethene 34 U 51 U Methyl Butyl Ketone (2-Hexanone) Dibromochloromethane 43 U 1,2-Dibromoethane 38 U Chlorobenzene 23 U

 Ethylbenzene
 22
 U

 m,p-Xylene
 54
 U

 Xylene, o 22
 U

 Xylene (total)
 22
 U

 Styrene
 21
 U

26

Bromoform 52 U Cumene 25 U 1,1,2,2-Tetrachloroethane 34 U n-Propylbenzene 25 U 25 U 4-Ethyltoluene 25 U 1,3,5-Trimethylbenzene

Page 45 of 429

U

2-Chlorotoluene

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-5005

Client Sample ID: SL-022-20

Analysis Date:

Prep Date:

05/06/2011 0431

05/06/2011 0431

Lab Sample ID: 200-5005-8 Date Sampled: 04/29/2011 1521 Client Matrix: Air

Date Received: 05/03/2011 1020

TO-15 Analysis Method: Analysis Batch: 200-17603 Instrument ID: Prep Method: Summa Canister Prep Batch: N/A Lab File ID: Dilution:

bkaj022.d Initial Weight/Volume: 37 mL Final Weight/Volume: 200 mL Injection Volume: 200 mL

B.i

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	27	U	27
1,2,4-Trimethylbenzene	25	U	25
sec-Butylbenzene	27	U	27
4-Isopropyltoluene	27	U	27
1,3-Dichlorobenzene	30	U	30
1,4-Dichlorobenzene	30	U	30
Benzyl chloride	26	U	26
n-Butylbenzene	27	U	27
1,2-Dichlorobenzene	30	U	30
1,2,4-Trichlorobenzene	93	U	93
Hexachlorobutadiene	53	U	53
Naphthalene	66	U	66

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-END

Lab Sample ID: 200-5005-9 Date Sampled: 04/29/2011 1643

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	200-17603	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkaj023.d
Dilution:	24.9			Initial Weight/Volume:	36 mL
Analysis Date:	05/06/2011 0523			Final Weight/Volume:	200 mL

 Analysis Date:
 05/06/2011 0523
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/06/2011 0523
 Injection Volume:
 200 mL

Analyte	Result (ppb v/v)	Qualifier	RL
Dichlorodifluoromethane	12	U	12
Freon 22	12	U	12
1,2-Dichlorotetrafluoroethane	5.0	U	5.0
Chloromethane	12	U	12
n-Butane	12	U	12
Vinyl chloride	5.0	U	5.0
1,3-Butadiene	5.0	U	5.0
Bromomethane	5.0	U	5.0
Chloroethane	12	U	12
Bromoethene(Vinyl Bromide)	5.0	U	5.0
Trichlorofluoromethane	5.0	U	5.0
Freon TF	17		5.0
1,1-Dichloroethene	5.0	U	5.0
Acetone	120	Ü	120
Isopropyl alcohol	120	U	120
Carbon disulfide	12	U	12
3-Chloropropene	12	U	12
Methylene Chloride	12	U	12
tert-Butyl alcohol	120	U	120
Methyl tert-butyl ether	5.0	Ü	5.0
trans-1,2-Dichloroethene	5.0	U	5.0
n-Hexane	5.0	U	5.0
1,1-Dichloroethane	5.0	U	5.0
Methyl Ethyl Ketone	12	U	12
cis-1,2-Dichloroethene	5.0	U	5.0
1,2-Dichloroethene, Total	5.0	U	5.0
Chloroform	5.0	U	5.0
Tetrahydrofuran	120	U	120
1,1,1-Trichloroethane	50	U	5.0
	5.0	U	5.0
Cyclohexane Carbon tetrachloride	5.0	U	5.0
	5.0	U	5.0
2,2,4-Trimethylpentane Benzene	5.0	U	5.0
	5.0		5.0
1,2-Dichloroethane	5.0	U U	5.0
n-Heptane		U	
Trichloroethene	680		5.0
Methyl methacrylate	12	U	12
1,2-Dichloropropane	5.0	U	5.0
1,4-Dioxane	120	U	120
Bromodichloromethane	5.0	U	5.0
cis-1,3-Dichloropropene	5.0	U	5.0
methyl isobutyl ketone	12	U	12
Toluene	5.0	U	5.0
trans-1,3-Dichloropropene	5.0	U	5.0
1,1,2-Trichloroethane	5.0	U	5.0
Tetrachloroethene	5.0	U	5.0

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-END

Lab Sample ID: 200-5005-9 Date Sampled: 04/29/2011 1643

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile	Organic	Compounds	in	Amhient Air

Analysis Method:	TO-15	Analysis Batch:	200-17603	Instrument ID:	B.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab File ID:	bkaj023.d
Dilution:	24.9			Initial Weight/Volume:	36 mL
Analysis Date:	05/06/2011 0523			Final Weight/Volume:	200 mL
Prep Date:	05/06/2011 0523			Injection Volume:	200 mL
		5 " /		ue.	51
Analyte		Result (p	. ,	ualifier	RL
Methyl Butyl Keton		12	U		12
Dibromochlorometl		5.0	U		5.0
1,2-Dibromoethane	9	5.0	U		5.0
Chlorobenzene		5.0	U		5.0
Ethylbenzene		5.0	U		5.0
m,p-Xylene		12	U		12
Xylene, o-		5.0	U		5.0
Xylene (total)		5.0	U		5.0
Styrene		5.0	U		5.0
Bromoform		5.0	U		5.0
Cumene		5.0	U		5.0
1,1,2,2-Tetrachloro	pethane	5.0	U		5.0
n-Propylbenzene		5.0	U		5.0
4-Ethyltoluene		5.0	U		5.0
1,3,5-Trimethylben	zene	5.0	U		5.0
2-Chlorotoluene		5.0	U		5.0
tert-Butylbenzene		5.0	U		5.0
1,2,4-Trimethylben	zene	5.0	U		5.0
sec-Butylbenzene		5.0	U		5.0
4-Isopropyltoluene		5.0	U		5.0
1,3-Dichlorobenzer	ne	5.0	U		5.0
1,4-Dichlorobenzer	ne	5.0	U		5.0
Benzyl chloride		5.0	U		5.0
n-Butylbenzene		5.0	U		5.0
1,2-Dichlorobenzer	ne	5.0	U		5.0
1,2,4-Trichlorobenz	zene	12	U		12
Hexachlorobutadie	ne	5.0	U		5.0
Naphthalene		12	U		12
Analyte		Result (u	g/m3) Qu	ualifier	RL
Dichlorodifluorome	thane	62	U		62
Freon 22		44	U		44
1,2-Dichlorotetraflu	ioroethane	35	Ü		35
Chloromethane		26	U		26
n-Butane		30	Ü		30
Vinyl chloride		13	Ü		13
1,3-Butadiene		11	Ū		11
Bromomethane		19	Ū		19
Chloroethane		33	Ü		33
Decree at the second firm	1.5	00			00

22

28

130

20

300

310

39

U

U

U

U

U

U

22

28

38

20

300

310

39

Bromoethene(Vinyl Bromide)

Trichlorofluoromethane

1,1-Dichloroethene

Isopropyl alcohol

Carbon disulfide

Freon TF

Acetone

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Client Sample ID: SL-022-END

Lab Sample ID: 200-5005-9 Date Sampled: 04/29/2011 1643

Client Matrix: Air Date Received: 05/03/2011 1020

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj023.d Dilution: Initial Weight/Volume: 36 mL 24.9

 Dilution:
 24.9
 Initial Weight/Volume:
 36 mL

 Analysis Date:
 05/06/2011 0523
 Final Weight/Volume:
 200 mL

 Prep Date:
 05/06/2011 0523
 Injection Volume:
 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
3-Chloropropene	39	U	39
Methylene Chloride	43	U	43
tert-Butyl alcohol	380	U	380
Methyl tert-butyl ether	18	U	18
trans-1,2-Dichloroethene	20	U	20
n-Hexane	18	U	18
1,1-Dichloroethane	20	U	20
Methyl Ethyl Ketone	37	U	37
cis-1,2-Dichloroethene	20	U	20
1,2-Dichloroethene, Total	20	U	20
Chloroform	24	U	24
Tetrahydrofuran	370	U	370
1,1,1-Trichloroethane	270		27
Cyclohexane	17	U	17
Carbon tetrachloride	31	U	31
2,2,4-Trimethylpentane	23	U	23
Benzene	16	U	16
1,2-Dichloroethane	20	U	20
n-Heptane	20	U	20
Trichloroethene	3700		27
Methyl methacrylate	51	U	51
1,2-Dichloropropane	23	U	23
1,4-Dioxane	450	U	450
Bromodichloromethane	33	U	33
cis-1,3-Dichloropropene	23	U	23
methyl isobutyl ketone	51	U	51
Toluene	19	U	19
trans-1,3-Dichloropropene	23	U	23
1,1,2-Trichloroethane	27	U	27
Tetrachloroethene	34	U	34
Methyl Butyl Ketone (2-Hexanone)	51	U	51
Dibromochloromethane	42	U	42
1,2-Dibromoethane	38	U	38
Chlorobenzene	23	U	23
Ethylbenzene	22	U	22
m,p-Xylene	54	U	54
Xylene, o-	22	U	22
Xylene (total)	22	U	22
Styrene	21	U	21
Bromoform	51	U	51
Cumene	24	U	24
1,1,2,2-Tetrachloroethane	34	U	34
n-Propylbenzene	24	U	24
4-Ethyltoluene	24	U	24
1,3,5-Trimethylbenzene	24	U	24
2-Chlorotoluene	26	U	26

Analytical Data

Job Number: 200-5005-1 Client: Geosyntec Consultants, Inc.

Sdg Number: 200-5005

Client Sample ID: SL-022-END

Lab Sample ID: 200-5005-9 Date Sampled: 04/29/2011 1643

Client Matrix: Date Received: 05/03/2011 1020 Air

Analysis Method: TO-15 Analysis Batch: 200-17603 Instrument ID: B.i Prep Method: Summa Canister Prep Batch: N/A Lab File ID: bkaj023.d Dilution: Initial Weight/Volume: 24.9 36 mL 05/06/2011 0523 Analysis Date: 200 mL

Final Weight/Volume: 05/06/2011 0523 Prep Date: Injection Volume: 200 mL

Analyte	Result (ug/m3)	Qualifier	RL
tert-Butylbenzene	27	U	27
1,2,4-Trimethylbenzene	24	U	24
sec-Butylbenzene	27	U	27
4-Isopropyltoluene	27	U	27
1,3-Dichlorobenzene	30	U	30
1,4-Dichlorobenzene	30	U	30
Benzyl chloride	26	U	26
n-Butylbenzene	27	U	27
1,2-Dichlorobenzene	30	U	30
1,2,4-Trichlorobenzene	92	U	92
Hexachlorobutadiene	53	U	53
Naphthalene	65	U	65

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17603 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-17603/4 Analysis Batch: 200-17603 Instrument ID: B.i bkaj004.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/05/2011 1227 Units: ppb v/v Final Weight/Volume: Analysis Date: 200 mL 05/05/2011 1227 Prep Date: Injection Volume: 200 mL

Dichrodifluoromethane 0.50 U 0.50 Fren 22 0.50 U 0.50 1,2-Dichrodetafluoroethane 0.50 U 0.50 Chloromethane 0.50 U 0.50 Ninyl chloride 0.50 U 0.50 Vinyl chloride 0.20 U 0.20 1,3-Butadiene 0.20 U 0.20 Bromomethane 0.20 U 0.20 Chloroethane 0.50 U 0.20 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Trichloroethane 0.20 U 0.20 Trichloropropane </th <th>Analyte</th> <th>Result</th> <th>Qual</th> <th>RL</th>	Analyte	Result	Qual	RL
1.2-Dichlorotetrafluoroethane 0.20 U 0.20 Chloromethane 0.50 U 0.50 Inyl chloride 0.20 U 0.20 Vinyl chloride 0.20 U 0.20 1.3-Butadiene 0.20 U 0.20 Bromoemethane 0.50 U 0.20 Chloroethane 0.50 U 0.20 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Freon TF 0.20 U 0.20 Freon TF 0.20 U 0.20 1,-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 0.20 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chioropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 tert-Butyl alcohol 5.0 U 0.20 Hethyl tert-butyl ether 0.20 U 0.20	Dichlorodifluoromethane	0.50	U	0.50
Chloromethane 0.50 U 0.50 n-Butane 0.50 U 0.50 Vinyl chloride 0.20 U 0.20 1,3-Butadiene 0.20 U 0.20 Bromomethane 0.20 U 0.20 Chloroethane 0.50 U 0.50 Bromothene(Vinyl Bromide) 0.20 U 0.20 Trichlorofthoromethane 0.20 U 0.20 Trichlorofthoromethane 0.20 U 0.20 Trichlorofthoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 Acetone 0.20 U 0.20 Acetone 5.0 U 0.20 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 S-Olloropropene 0.50 U 0.50 Methyl alcohol 5.0 U 0.50 Heth-Butyl alcohol 5.0 U 0.2	Freon 22	0.50	U	0.50
n-Butane 0.50 U 0.50 Vinyl chloride 0.20 U 0.20 1.3-Butadiene 0.20 U 0.20 Bromomethane 0.50 U 0.50 Chloroethane 0.50 U 0.50 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 0.20 Isopropyl alcohol 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chioropropene 0.50 U 0.50 Methyl tert-butyl ether 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.20 tert-Butyl alcohol 5.0 U 0.20 Hethyl tert-butyl ether 0.20 U<	1,2-Dichlorotetrafluoroethane	0.20	U	0.20
Vinyl chloride 0.20 U 0.20 1,3-Butadiene 0.20 U 0.20 Bromomethane 0.50 U 0.50 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Schloropropene 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 Herbandene 0.50 U 0.50 Methylene Chloride teter 0.20 U 0.20 In-Butyl alcohol 5.0 U 0.20 In-Butyl Ethyl Ketone 0.50	Chloromethane	0.50	U	0.50
1,3-Butadiene 0.20 U 0.20 Bromomethane 0.50 U 0.50 Chloroethane 0.50 U 0.50 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 0.20 Isopropyl alcohol 5.0 U 5.0 Carbon disulfide 0.50 U 0.50 3-Chioropropene 0.50 U 0.50 Methylere Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 tert-Butyl alcohol 5.0 U 0.50 tert-Butyl alcohol 5.0 U 0.20 Methyl tert-butyl ether 0.20 U 0.20 retars-12-pichloroethene 0.20 U 0.20 n-Hexane 0.20	n-Butane	0.50	U	0.50
Bromomethane 0.20 U 0.20 Chloroethane 0.50 U 0.50 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 5.0 U 5.0 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 5.0 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 Methyl alcohol 5.0 U 0.50 Methyl tethyl ether 0.20 U 0.20 Methyl tethyl ether 0.20 U 0.20 r1,1-Dichloroethene 0.20 U 0.20 r1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.20 cis-1,2-Dichloroethane, Total 0.2	Vinyl chloride	0.20	U	0.20
Chloroethane 0.50 U 0.50 Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofucornethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 5.0 U 5.0 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 tert-Butyl alcohol 5.0 U 0.20 tert-Butyl alcohol 5.0 U 0.20 tert-Butyl alcohol 0.20 U 0.20 tert-Butyl alcohol 0.20	1,3-Butadiene	0.20	U	0.20
Bromoethene(Vinyl Bromide) 0.20 U 0.20 Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 Hethyl tert-butyl ether 0.20 U 0.20 Hethyl tert-butyl ether 0.20 U 0.20 Irans-1,2-Dichloroethene 0.20 U 0.20 Irans-1,2-Dichloroethene 0.20 U 0.20 Irans-1,2-Dichloroethene 0.20 U 0.20 Irans-1,2-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.20 Is-2-Dichloroethene, Total 0.20 U 0.20	Bromomethane	0.20	U	0.20
Trichlorofluoromethane 0.20 U 0.20 Freon TF 0.20 U 0.20 1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 Methyl tert-butyl ether 0.20 U 0.20 tert-Butyl alcohol 5.0 U 0.20 Methyl tert-butyl ether 0.20 U 0.20 Hethyl tert-butyl ether 0.20 U 0.20 Hexane 0.20 U 0.20 Hethyl Etholoroethene 0.20 U 0.20 Hethyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene, Total 0.20 U 0.20 Clerohoroethene, Total <td>Chloroethane</td> <td>0.50</td> <td>U</td> <td>0.50</td>	Chloroethane	0.50	U	0.50
Freon TF 0.20 U 0.20 1,1-Dichloredhene 0.20 U 0.20 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 5.0 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Petrahydrofuran 5.0 U 0.20 1,1-Trichloroethane 0.20	Bromoethene(Vinyl Bromide)	0.20	U	0.20
1,1-Dichloroethene 0.20 U 0.20 Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 0.50 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 dis-1,2-Dichloroethene 0.20 U 0.20 dis-1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 Tetrahydrofuran 5.0 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U	Trichlorofluoromethane	0.20	U	0.20
Acetone 5.0 U 5.0 Isopropyl alcohol 5.0 U 5.0 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene, Total 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2-4-Trimethylpentane <td>Freon TF</td> <td>0.20</td> <td>U</td> <td>0.20</td>	Freon TF	0.20	U	0.20
Isopropyl alcohol 5.0 U 5.0 Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 0.50 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.20 cis-1,2-Dichloroethene 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.20 cis-1,2-Dichloroethene 0.20 U 0.20 Cis-1,2-Dichloroethene 0.20 U 0.20 Chloroform 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 Carbon tetrachloride	1,1-Dichloroethene	0.20	U	0.20
Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 5.0 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Cyclohioroethane 0.20 U 0.20 Cyclohioroethane 0.	Acetone	5.0	U	5.0
Carbon disulfide 0.50 U 0.50 3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 5.0 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Eenzene 0.20	Isopropyl alcohol	5.0	U	5.0
3-Chloropropene 0.50 U 0.50 Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 5.0 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2-A-Trimethylpentane 0.20 U 0.20 1		0.50	U	0.50
Methylene Chloride 0.50 U 0.50 tert-Butyl alcohol 5.0 U 5.0 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 Trichloroethane		0.50	U	0.50
tert-Butyl alcohol 5.0 U 5.0 Methyl tert-butyl ether 0.20 U 0.20 trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 Nethyl methacrylate 0.20 U 0.20 Methyl methacrylate		0.50	U	0.50
trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Chloroform 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,4-Dioxane 5.0 U	The state of the s	5.0	U	5.0
trans-1,2-Dichloroethene 0.20 U 0.20 n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0	Methyl tert-butyl ether	0.20	U	0.20
n-Hexane 0.20 U 0.20 1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 0.20 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.50 1,4-Dioxane 5.0 U 5.0		0.20	U	0.20
1,1-Dichloroethane 0.20 U 0.20 Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.50 1,4-Dioxane 5.0 U 5.0		0.20	U	0.20
Methyl Ethyl Ketone 0.50 U 0.50 cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 0.20	1,1-Dichloroethane			
cis-1,2-Dichloroethene 0.20 U 0.20 1,2-Dichloroethene, Total 0.20 U 0.20 Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	Methyl Ethyl Ketone	0.50	U	
Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		0.20	U	
Chloroform 0.20 U 0.20 Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	1,2-Dichloroethene, Total	0.20	U	0.20
Tetrahydrofuran 5.0 U 5.0 1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		0.20	U	0.20
1,1,1-Trichloroethane 0.20 U 0.20 Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		5.0	U	
Cyclohexane 0.20 U 0.20 Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	-	0.20	U	0.20
Carbon tetrachloride 0.20 U 0.20 2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		0.20	U	0.20
2,2,4-Trimethylpentane 0.20 U 0.20 Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	•	0.20	U	
Benzene 0.20 U 0.20 1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		0.20	U	0.20
1,2-Dichloroethane 0.20 U 0.20 n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	- · · · · · · · · · · · · · · · · · · ·	0.20	U	0.20
n-Heptane 0.20 U 0.20 Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	1,2-Dichloroethane	0.20	U	
Trichloroethene 0.20 U 0.20 Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	n-Heptane	0.20		0.20
Methyl methacrylate 0.50 U 0.50 1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0		0.20		
1,2-Dichloropropane 0.20 U 0.20 1,4-Dioxane 5.0 U 5.0	Methyl methacrylate	0.50	U	
1,4-Dioxane 5.0 U 5.0		0.20		0.20
			U	
	Bromodichloromethane	0.20	Ü	0.20
cis-1,3-Dichloropropene 0.20 U 0.20				
methyl isobutyl ketone 0.50 U 0.50				
Toluene 0.20 U 0.20				
trans-1,3-Dichloropropene 0.20 U 0.20				
1,1,2-Trichloroethane 0.20 U 0.20				

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17603 Method: TO-15

Preparation: Summa Canister

200-17603 Lab Sample ID: MB 200-17603/4 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkaj004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/05/2011 1227 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 05/05/2011 1227 Prep Date: Injection Volume: 200 mL

Analyte	Result	Qual	RL
Tetrachloroethene	0.20	U	0.20
Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50
Dibromochloromethane	0.20	U	0.20
1,2-Dibromoethane	0.20	U	0.20
Chlorobenzene	0.20	U	0.20
Ethylbenzene	0.20	U	0.20
m,p-Xylene	0.50	U	0.50
Xylene, o-	0.20	U	0.20
Xylene (total)	0.20	U	0.20
Styrene	0.20	U	0.20
Bromoform	0.20	U	0.20
Cumene	0.20	U	0.20
1,1,2,2-Tetrachloroethane	0.20	U	0.20
n-Propylbenzene	0.20	U	0.20
4-Ethyltoluene	0.20	U	0.20
1,3,5-Trimethylbenzene	0.20	U	0.20
2-Chlorotoluene	0.20	U	0.20
tert-Butylbenzene	0.20	U	0.20
1,2,4-Trimethylbenzene	0.20	U	0.20
sec-Butylbenzene	0.20	U	0.20
4-Isopropyltoluene	0.20	U	0.20
1,3-Dichlorobenzene	0.20	U	0.20
1,4-Dichlorobenzene	0.20	U	0.20
Benzyl chloride	0.20	U	0.20
n-Butylbenzene	0.20	U	0.20
1,2-Dichlorobenzene	0.20	U	0.20
1,2,4-Trichlorobenzene	0.50	U	0.50
Hexachlorobutadiene	0.20	U	0.20
Naphthalene	0.50	U	0.50

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17603 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-17603/4 Analysis Batch: 200-17603 Instrument ID: B.i bkaj004.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/05/2011 1227 Units: Final Weight/Volume: Analysis Date: ug/m3 200 mL 05/05/2011 1227 Prep Date: Injection Volume: 200 mL

Analyte	Result	Qual	RL
Dichlorodifluoromethane	2.5	U	2.5
Freon 22	1.8	U	1.8
1,2-Dichlorotetrafluoroethane	1.4	U	1.4
Chloromethane	1.0	U	1.0
n-Butane	1.2	U	1.2
Vinyl chloride	0.51	U	0.51
1,3-Butadiene	0.44	U	0.44
Bromomethane	0.78	U	0.78
Chloroethane	1.3	U	1.3
Bromoethene(Vinyl Bromide)	0.87	U	0.87
Trichlorofluoromethane	1.1	U	1.1
Freon TF	1.5	U	1.5
1,1-Dichloroethene	0.79	U	0.79
Acetone	12	U	12
Isopropyl alcohol	12	U	12
Carbon disulfide	1.6	U	1.6
3-Chloropropene	1.6	U	1.6
Methylene Chloride	1.7	U	1.7
tert-Butyl alcohol	15	U	15
Methyl tert-butyl ether	0.72	U	0.72
trans-1,2-Dichloroethene	0.79	U	0.79
n-Hexane	0.70	U	0.70
1,1-Dichloroethane	0.81	U	0.81
Methyl Ethyl Ketone	1.5	U	1.5
cis-1,2-Dichloroethene	0.79	U	0.79
1,2-Dichloroethene, Total	0.79	U	0.79
Chloroform	0.98	U	0.98
Tetrahydrofuran	15	U	15
1,1,1-Trichloroethane	1.1	U	1.1
Cyclohexane	0.69	U	0.69
Carbon tetrachloride	1.3	U	1.3
2,2,4-Trimethylpentane	0.93	U	0.93
Benzene	0.64	U	0.64
1,2-Dichloroethane	0.81	U	0.81
n-Heptane	0.82	U	0.82
Trichloroethene	1.1	U	1.1
Methyl methacrylate	2.0	U	2.0
1,2-Dichloropropane	0.92	U	0.92
1,4-Dioxane	18	U	18
Bromodichloromethane	1.3	U	1.3
cis-1,3-Dichloropropene	0.91	U	0.91
methyl isobutyl ketone	2.0	U	2.0
Toluene	0.75	U	0.75
trans-1,3-Dichloropropene	0.91	U	0.91
1,1,2-Trichloroethane	1.1	U	1.1

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17603 Method: TO-15

Preparation: Summa Canister

200-17603 Lab Sample ID: MB 200-17603/4 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkaj004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/05/2011 1227 Units: Final Weight/Volume: Analysis Date: ug/m3 200 mL 05/05/2011 1227 Prep Date: Injection Volume: 200 mL

Analyte	Result	Qual	RL
Tetrachloroethene	1.4	U	1.4
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0
Dibromochloromethane	1.7	U	1.7
1,2-Dibromoethane	1.5	U	1.5
Chlorobenzene	0.92	U	0.92
Ethylbenzene	0.87	U	0.87
m,p-Xylene	2.2	U	2.2
Xylene, o-	0.87	U	0.87
Xylene (total)	0.87	U	0.87
Styrene	0.85	U	0.85
Bromoform	2.1	U	2.1
Cumene	0.98	U	0.98
1,1,2,2-Tetrachloroethane	1.4	U	1.4
n-Propylbenzene	0.98	U	0.98
4-Ethyltoluene	0.98	U	0.98
1,3,5-Trimethylbenzene	0.98	U	0.98
2-Chlorotoluene	1.0	U	1.0
tert-Butylbenzene	1.1	U	1.1
1,2,4-Trimethylbenzene	0.98	U	0.98
sec-Butylbenzene	1.1	U	1.1
4-Isopropyltoluene	1.1	U	1.1
1,3-Dichlorobenzene	1.2	U	1.2
1,4-Dichlorobenzene	1.2	U	1.2
Benzyl chloride	1.0	U	1.0
n-Butylbenzene	1.1	U	1.1
1,2-Dichlorobenzene	1.2	U	1.2
1,2,4-Trichlorobenzene	3.7	U	3.7
Hexachlorobutadiene	2.1	U	2.1
Naphthalene	2.6	U	2.6

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Control Sample - Batch: 200-17603

Method: TO-15

Preparation: Summa Canister

LCS 200-17603/3 200-17603 Lab Sample ID: Analysis Batch: Instrument ID: Client Matrix: Prep Batch: N/A Air Leach Batch: N/A Dilution: 1.0 Analysis Date: 05/05/2011 1137 Units: ppb v/v 05/05/2011 1137 Prep Date: Leach Date: N/A

Lab File ID: bkaj003.d Initial Weight/Volume: 200 mL Final Weight/Volume: 200 mL Injection Volume: 200 mL

B.i

Analyte Spike Amount Result % Rec. Limit Qual Dichlorodifluoromethane 10.0 101 70 - 130 10.1 70 - 130 Freon 22 10.0 8.89 89 1,2-Dichlorotetrafluoroethane 100 70 - 130 10.0 9.99 Chloromethane 10.0 8.51 85 70 - 130 n-Butane 10.0 7.97 80 70 - 130 10.0 92 70 - 130 Vinyl chloride 9.23 92 1,3-Butadiene 10.0 9.16 70 - 130 Bromomethane 10.0 9.43 94 70 - 130 Chloroethane 10.0 8.95 90 70 - 130 Bromoethene(Vinyl Bromide) 10.0 10.2 102 70 - 130 Trichlorofluoromethane 10.0 10.4 104 70 - 130 Freon TF 10.0 70 - 130 11.0 110 1,1-Dichloroethene 10.0 11.0 110 70 - 130 Acetone 10.0 9.61 96 70 - 130 Isopropyl alcohol 86 70 - 130 10.0 8 59 Carbon disulfide 10.0 10.1 101 70 - 130 3-Chloropropene 10.0 8.57 86 70 - 130 Methylene Chloride 10.0 9.37 94 70 - 130 tert-Butyl alcohol 10.0 9.29 93 70 - 130 Methyl tert-butyl ether 10.0 9.91 99 70 - 130 trans-1,2-Dichloroethene 10.0 9.40 94 70 - 130 n-Hexane 10.0 9.04 90 70 - 130 9.50 95 70 - 130 1,1-Dichloroethane 10.0 70 - 130 Methyl Ethyl Ketone 10.0 10.0 100 cis-1,2-Dichloroethene 10.0 10.5 105 70 - 130 10.0 101 70 - 130 Chloroform 10.1 Tetrahydrofuran 10.0 8.84 88 70 - 130 10.4 1,1,1-Trichloroethane 10.0 104 70 - 130 70 - 130 Cyclohexane 10.0 9.75 98 Carbon tetrachloride 10.0 10.2 102 70 - 130 2,2,4-Trimethylpentane 10.0 9.28 93 70 - 130 Benzene 10.0 9.88 99 70 - 130 1,2-Dichloroethane 10.0 9.39 94 70 - 130 85 n-Heptane 10.0 8.54 70 - 130 Trichloroethene 10.0 10.1 101 70 - 130 Methyl methacrylate 10.0 9.61 96 70 - 130 1,2-Dichloropropane 10.0 9.20 92 70 - 130 1.4-Dioxane 10.0 9.02 90 70 - 130 Bromodichloromethane 10.0 10.5 105 70 - 130 cis-1,3-Dichloropropene 10.0 9.55 95 70 - 130 methyl isobutyl ketone 10.0 8.83 88 70 - 130 98 70 - 130 Toluene 10.0 9.79 trans-1,3-Dichloropropene 10.0 9.64 96 70 - 130 70 - 130 1,1,2-Trichloroethane 10.0 9.33 93 70 - 130 Tetrachloroethene 10.0 10.2 102

8.64

86

70 - 130

10.0

Methyl Butyl Ketone (2-Hexanone)

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Control Sample - Batch: 200-17603 Method: TO-15

Preparation: Summa Canister

200-17603 Lab Sample ID: LCS 200-17603/3 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkaj003.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/05/2011 1137 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 05/05/2011 1137 Prep Date: Injection Volume: 200 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	10.0	10.7	107	70 - 130	
1,2-Dibromoethane	10.0	9.90	99	70 - 130	
Chlorobenzene	10.0	9.44	94	70 - 130	
Ethylbenzene	10.0	9.86	99	70 - 130	
m,p-Xylene	20.0	19.8	99	70 - 130	
Xylene, o-	10.0	9.66	97	70 - 130	
Styrene	10.0	10.1	101	70 - 130	
Bromoform	10.0	11.4	114	70 - 130	
Cumene	10.0	10.2	102	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	9.50	95	70 - 130	
n-Propylbenzene	10.0	10.4	104	70 - 130	
4-Ethyltoluene	10.0	10.5	105	70 - 130	
1,3,5-Trimethylbenzene	10.0	9.93	99	70 - 130	
2-Chlorotoluene	10.0	10.2	102	70 - 130	
tert-Butylbenzene	10.0	10.0	100	70 - 130	
1,2,4-Trimethylbenzene	10.0	9.84	98	70 - 130	
sec-Butylbenzene	10.0	10.2	102	70 - 130	
4-Isopropyltoluene	10.0	10.3	103	70 - 130	
1,3-Dichlorobenzene	10.0	10.2	102	70 - 130	
1,4-Dichlorobenzene	10.0	10.1	101	70 - 130	
Benzyl chloride	10.0	9.42	94	70 - 130	
n-Butylbenzene	10.0	10.6	106	70 - 130	
1,2-Dichlorobenzene	10.0	9.79	98	70 - 130	
1,2,4-Trichlorobenzene	10.0	10.3	103	70 - 130	
Hexachlorobutadiene	10.0	10.7	107	70 - 130	
Naphthalene	10.0	10.5	105	70 - 130	

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17703 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: MB 200-17703/5 Analysis Batch: 200-17703 Instrument ID: B.i bkak005.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/06/2011 1425 Units: ppb v/v Final Weight/Volume: Analysis Date: 200 mL 05/06/2011 1425 Prep Date: Injection Volume: 200 mL

Analyte	Result	Qual	RL
Dichlorodifluoromethane	0.50	U	0.50
Freon 22	0.50	U	0.50
1,2-Dichlorotetrafluoroethane	0.20	U	0.20
Chloromethane	0.50	U	0.50
n-Butane	0.50	U	0.50
Vinyl chloride	0.20	U	0.20
1,3-Butadiene	0.20	U	0.20
Bromomethane	0.20	U	0.20
Chloroethane	0.50	U	0.50
Bromoethene(Vinyl Bromide)	0.20	U	0.20
Trichlorofluoromethane	0.20	U	0.20
Freon TF	0.20	U	0.20
1,1-Dichloroethene	0.20	U	0.20
Acetone	5.0	U	5.0
Isopropyl alcohol	5.0	U	5.0
Carbon disulfide	0.50	U	0.50
3-Chloropropene	0.50	U	0.50
Methylene Chloride	0.50	U	0.50
tert-Butyl alcohol	5.0	U	5.0
Methyl tert-butyl ether	0.20	U	0.20
trans-1,2-Dichloroethene	0.20	U	0.20
n-Hexane	0.20	U	0.20
1,1-Dichloroethane	0.20	U	0.20
Methyl Ethyl Ketone	0.50	U	0.50
cis-1,2-Dichloroethene	0.20	U	0.20
1,2-Dichloroethene, Total	0.20	U	0.20
Chloroform	0.20	U	0.20
Tetrahydrofuran	5.0	U	5.0
1,1,1-Trichloroethane	0.20	U	0.20
Cyclohexane	0.20	U	0.20
Carbon tetrachloride	0.20	U	0.20
2,2,4-Trimethylpentane	0.20	U	0.20
Benzene	0.20	U	0.20
1,2-Dichloroethane	0.20	U	0.20
n-Heptane	0.20	U	0.20
Trichloroethene	0.20	U	0.20
Methyl methacrylate	0.50	U	0.50
1,2-Dichloropropane	0.20	U	0.20
1,4-Dioxane	5.0	U	5.0
Bromodichloromethane	0.20	U	0.20
cis-1,3-Dichloropropene	0.20	U	0.20
methyl isobutyl ketone	0.50	U	0.50
Toluene	0.20	U	0.20
trans-1,3-Dichloropropene	0.20	U	0.20
1,1,2-Trichloroethane	0.20	U	0.20

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17703 Method: TO-15

Preparation: Summa Canister

200-17703 Lab Sample ID: MB 200-17703/5 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkak005.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/06/2011 1425 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 05/06/2011 1425 200 mL Prep Date: Injection Volume:

Analyte	Result	Qual	RL
Tetrachloroethene	0.20	U	0.20
Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50
Dibromochloromethane	0.20	U	0.20
1,2-Dibromoethane	0.20	U	0.20
Chlorobenzene	0.20	U	0.20
Ethylbenzene	0.20	U	0.20
m,p-Xylene	0.50	U	0.50
Xylene, o-	0.20	U	0.20
Xylene (total)	0.20	U	0.20
Styrene	0.20	U	0.20
Bromoform	0.20	U	0.20
Cumene	0.20	U	0.20
1,1,2,2-Tetrachloroethane	0.20	U	0.20
n-Propylbenzene	0.20	U	0.20
4-Ethyltoluene	0.20	U	0.20
1,3,5-Trimethylbenzene	0.20	U	0.20
2-Chlorotoluene	0.20	U	0.20
tert-Butylbenzene	0.20	U	0.20
1,2,4-Trimethylbenzene	0.20	U	0.20
sec-Butylbenzene	0.20	U	0.20
4-Isopropyltoluene	0.20	U	0.20
1,3-Dichlorobenzene	0.20	U	0.20
1,4-Dichlorobenzene	0.20	U	0.20
Benzyl chloride	0.20	U	0.20
n-Butylbenzene	0.20	U	0.20
1,2-Dichlorobenzene	0.20	U	0.20
1,2,4-Trichlorobenzene	0.50	U	0.50
Hexachlorobutadiene	0.20	U	0.20
Naphthalene	0.50	U	0.50

RL

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Method Blank - Batch: 200-17703 Method: TO-15

Preparation: Summa Canister

200-17703 Lab Sample ID: MB 200-17703/5 Analysis Batch: Instrument ID: B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkak005.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/06/2011 1425 Units: Final Weight/Volume: Analysis Date: ug/m3 200 mL 05/06/2011 1425 Prep Date: Injection Volume: 200 mL

Result

Qual

Leach Date: N/A

Analyte

Analyte	Result	Quai	RL
Dichlorodifluoromethane	2.5	U	2.5
Freon 22	1.8	U	1.8
1,2-Dichlorotetrafluoroethane	1.4	U	1.4
Chloromethane	1.0	U	1.0
n-Butane	1.2	U	1.2
Vinyl chloride	0.51	U	0.51
1,3-Butadiene	0.44	U	0.44
Bromomethane	0.78	U	0.78
Chloroethane	1.3	U	1.3
Bromoethene(Vinyl Bromide)	0.87	U	0.87
Trichlorofluoromethane	1.1	U	1.1
Freon TF	1.5	U	1.5
1,1-Dichloroethene	0.79	U	0.79
Acetone	12	U	12
Isopropyl alcohol	12	U	12
Carbon disulfide	1.6	U	1.6
3-Chloropropene	1.6	U	1.6
Methylene Chloride	1.7	U	1.7
tert-Butyl alcohol	15	Ü	15
Methyl tert-butyl ether	0.72	Ü	0.72
trans-1,2-Dichloroethene	0.79	Ü	0.79
n-Hexane	0.70	Ü	0.70
1,1-Dichloroethane	0.81	Ü	0.81
Methyl Ethyl Ketone	1.5	Ü	1.5
cis-1,2-Dichloroethene	0.79	Ü	0.79
1,2-Dichloroethene, Total	0.79	Ü	0.79
Chloroform	0.98	U	0.98
Tetrahydrofuran	15	U	15
1,1,1-Trichloroethane	1.1	U	1.1
Cyclohexane	0.69	U	0.69
Carbon tetrachloride	1.3	U	1.3
2,2,4-Trimethylpentane	0.93	U	0.93
Benzene	0.64	U	0.64
1,2-Dichloroethane	0.81	Ü	0.81
n-Heptane	0.82	U	0.82
Trichloroethene	1.1	Ü	1.1
Methyl methacrylate	2.0	U	2.0
1,2-Dichloropropane	0.92	Ü	0.92
1,4-Dioxane	18	U	18
Bromodichloromethane	1.3	Ü	1.3
cis-1,3-Dichloropropene	0.91	Ü	0.91
methyl isobutyl ketone	2.0	Ü	2.0
Toluene	0.75	Ü	0.75
trans-1,3-Dichloropropene	0.91	Ü	0.91
1,1,2-Trichloroethane	1.1	Ü	1.1
, ,	***	=	***

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1 Sdg Number: 200-5005

Method Blank - Batch: 200-17703 Method: TO-15

Preparation: Summa Canister

Instrument ID:

200-17703 Lab Sample ID: MB 200-17703/5 Analysis Batch: Client Matrix: Air Prep Batch: N/A Dilution: 1.0 Leach Batch: N/A 05/06/2011 1425 Units: Analysis Date: ug/m3 05/06/2011 1425 Prep Date:

Lab File ID:bkak005.dInitial Weight/Volume:200 mLFinal Weight/Volume:200 mLInjection Volume:200 mL

B.i

Analyte	Result	Qual	RL
Tetrachloroethene	1.4	U	1.4
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0
Dibromochloromethane	1.7	U	1.7
1,2-Dibromoethane	1.5	U	1.5
Chlorobenzene	0.92	U	0.92
Ethylbenzene	0.87	U	0.87
m,p-Xylene	2.2	U	2.2
Xylene, o-	0.87	U	0.87
Xylene (total)	0.87	U	0.87
Styrene	0.85	U	0.85
Bromoform	2.1	U	2.1
Cumene	0.98	U	0.98
1,1,2,2-Tetrachloroethane	1.4	U	1.4
n-Propylbenzene	0.98	U	0.98
4-Ethyltoluene	0.98	U	0.98
1,3,5-Trimethylbenzene	0.98	U	0.98
2-Chlorotoluene	1.0	U	1.0
tert-Butylbenzene	1.1	U	1.1
1,2,4-Trimethylbenzene	0.98	U	0.98
sec-Butylbenzene	1.1	U	1.1
4-Isopropyltoluene	1.1	U	1.1
1,3-Dichlorobenzene	1.2	U	1.2
1,4-Dichlorobenzene	1.2	U	1.2
Benzyl chloride	1.0	U	1.0
n-Butylbenzene	1.1	U	1.1
1,2-Dichlorobenzene	1.2	U	1.2
1,2,4-Trichlorobenzene	3.7	U	3.7
Hexachlorobutadiene	2.1	U	2.1
Naphthalene	2.6	U	2.6

Leach Date:

N/A

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Control Sample - Batch: 200-17703 Method: TO-15

Preparation: Summa Canister

Lab Sample ID: LCS 200-17703/4 Analysis Batch: 200-17703 Instrument ID: B.i bkak004.d Client Matrix: Air Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/06/2011 1334 Units: Final Weight/Volume: Analysis Date: ppb v/v 200 mL 05/06/2011 1334 Prep Date: Injection Volume: 200 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dichlorodifluoromethane	10.0	11.0	110	70 - 130	
Freon 22	10.0	9.54	95	70 - 130	
1,2-Dichlorotetrafluoroethane	10.0	10.8	108	70 - 130	
Chloromethane	10.0	9.16	92	70 - 130	
n-Butane	10.0	8.60	86	70 - 130	
Vinyl chloride	10.0	10.1	101	70 - 130	
1,3-Butadiene	10.0	9.78	98	70 - 130	
Bromomethane	10.0	10.2	102	70 - 130	
Chloroethane	10.0	9.69	97	70 - 130	
Bromoethene(Vinyl Bromide)	10.0	10.8	108	70 - 130	
Trichlorofluoromethane	10.0	11.1	111	70 - 130	
Freon TF	10.0	11.3	113	70 - 130	
1,1-Dichloroethene	10.0	11.4	114	70 - 130	
Acetone	10.0	10.4	104	70 - 130	
Isopropyl alcohol	10.0	9.12	91	70 - 130	
Carbon disulfide	10.0	10.5	105	70 - 130	
3-Chloropropene	10.0	9.20	92	70 - 130	
Methylene Chloride	10.0	10.0	100	70 - 130	
tert-Butyl alcohol	10.0	9.67	97	70 - 130	
Methyl tert-butyl ether	10.0	10.4	104	70 - 130	
trans-1,2-Dichloroethene	10.0	9.89	99	70 - 130	
n-Hexane	10.0	9.59	96	70 - 130	
1,1-Dichloroethane	10.0	9.93	99	70 - 130	
Methyl Ethyl Ketone	10.0	10.4	104	70 - 130	
cis-1,2-Dichloroethene	10.0	10.8	108	70 - 130	
Chloroform	10.0	10.5	105	70 - 130	
Tetrahydrofuran	10.0	9.34	93	70 - 130	
1,1,1-Trichloroethane	10.0	10.8	108	70 - 130	
Cyclohexane	10.0	10.1	101	70 - 130	
Carbon tetrachloride	10.0	10.5	105	70 - 130	
2,2,4-Trimethylpentane	10.0	9.77	98	70 - 130	
Benzene	10.0	10.2	102	70 - 130	
1,2-Dichloroethane	10.0	9.96	100	70 - 130	
n-Heptane	10.0	9.05	90	70 - 130	
Trichloroethene	10.0	10.4	104	70 - 130	
Methyl methacrylate	10.0	10.0	100	70 - 130	
1,2-Dichloropropane	10.0	9.61	96	70 - 130 70 - 130	
1,4-Dioxane	10.0	9.22	92	70 - 130 70 - 130	
Bromodichloromethane	10.0	10.8	108	70 - 130 70 - 130	
cis-1,3-Dichloropropene	10.0	9.82	98	70 - 130 70 - 130	
methyl isobutyl ketone	10.0	9.38	94	70 - 130 70 - 130	
Toluene	10.0	9.36 10.1	101	70 - 130 70 - 130	
	10.0	10.1	100	70 - 130 70 - 130	
trans-1,3-Dichloropropene					
1,1,2-Trichloroethane	10.0	9.69	97	70 - 130	
Tetrachloroethene	10.0	10.2	102	70 - 130	
Methyl Butyl Ketone (2-Hexanone)	10.0	9.29	93	70 - 130	

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Control Sample - Batch: 200-17703 Method: TO-15

10.0

Preparation: Summa Canister

Instrument ID: Lab Sample ID: LCS 200-17703/4 Analysis Batch: 200-17703 B.i Client Matrix: Air Prep Batch: N/A Lab File ID: bkak004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 200 mL 05/06/2011 1334 Final Weight/Volume: Analysis Date: Units: ppb v/v 200 mL 05/06/2011 1334 200 mL Prep Date: Injection Volume: Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	10.0	10.9	109	70 - 130	
1,2-Dibromoethane	10.0	10.3	103	70 - 130	
Chlorobenzene	10.0	9.66	97	70 - 130	
Ethylbenzene	10.0	10.2	102	70 - 130	
m,p-Xylene	20.0	20.5	103	70 - 130	
Xylene, o-	10.0	9.98	100	70 - 130	
Styrene	10.0	10.5	105	70 - 130	
Bromoform	10.0	11.6	116	70 - 130	
Cumene	10.0	10.5	105	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	9.91	99	70 - 130	
n-Propylbenzene	10.0	10.9	109	70 - 130	
4-Ethyltoluene	10.0	10.9	109	70 - 130	
1,3,5-Trimethylbenzene	10.0	10.3	103	70 - 130	
2-Chlorotoluene	10.0	10.7	107	70 - 130	
tert-Butylbenzene	10.0	10.4	104	70 - 130	
1,2,4-Trimethylbenzene	10.0	10.2	102	70 - 130	
sec-Butylbenzene	10.0	10.5	105	70 - 130	
4-Isopropyltoluene	10.0	10.6	106	70 - 130	
1,3-Dichlorobenzene	10.0	10.3	103	70 - 130	
1,4-Dichlorobenzene	10.0	10.3	103	70 - 130	
Benzyl chloride	10.0	9.79	98	70 - 130	
n-Butylbenzene	10.0	11.2	112	70 - 130	
1,2-Dichlorobenzene	10.0	9.88	99	70 - 130	
1,2,4-Trichlorobenzene	10.0	10.2	102	70 - 130	
Hexachlorobutadiene	10.0	10.7	107	70 - 130	

10.5

105

70 - 130

Naphthalene

DATA REPORTING QUALIFIERS

Client: Geosyntec Consultants, Inc. Job Number: 200-5005-1

Sdg Number: 200-5005

Lab Section	Qualifier	Description
Air - GC/MS VOA		
	U	Indicates the analyte was analyzed for but not detected.
	U	indicates the analyte was analyzed for but not detected.

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

Sdg Number: 200-5005

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Air - GC/MS VOA					
Analysis Batch:200-176	603				
LCS 200-17603/3	Lab Control Sample	Т	Air	TO-15	
MB 200-17603/4	Method Blank	Т	Air	TO-15	
200-5005-1	SL-118-5	T	Air	TO-15	
200-5005-2	SL-118-20	Т	Air	TO-15	
200-5005-3	SL-118-END	Т	Air	TO-15	
200-5005-4	SL-084-5	Т	Air	TO-15	
200-5005-7	SL-022-5	Т	Air	TO-15	
200-5005-8	SL-022-20	Т	Air	TO-15	
200-5005-9	SL-022-END	Т	Air	TO-15	
Analysis Batch:200-177	03				
LCS 200-17703/4	Lab Control Sample	T	Air	TO-15	
MB 200-17703/5	Method Blank	T	Air	TO-15	
200-5005-5	SL-084-20	Т	Air	TO-15	
200-5005-6	SL-084-END	Т	Air	TO-15	

Report Basis

T = Total

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

SDG: 200-5005

Laboratory Chronicle

Lab ID: 200-5005-1 Client ID: SL-118-5

Sample Date/Time: 04/28/2011 18:59 Received Date/Time: 05/03/2011 10:20

Date Prepared / **Analysis** Batch Analyzed Method **Bottle ID** Prep Batch Run Dil Lab Analyst P:Summa 200-5005-A-1 200-17603 05/05/2011 22:24 25.1 TAL BUR PAD Canister 05/05/2011 22:24 A:TO-15 200-5005-A-1 25.1 PAD 200-17603 TAL BUR

Lab ID: 200-5005-2 Client ID: SL-118-20

Sample Date/Time: 04/28/2011 19:13 Received Date/Time: 05/03/2011 10:20

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 05/05/2011 23:16 P:Summa 200-5005-A-2 200-17603 24.7 TAL BUR PAD Canister A:TO-15 05/05/2011 23:16 200-5005-A-2 200-17603 24.7 TAL BUR PAD

Lab ID: 200-5005-3 Client ID: SL-118-END

Sample Date/Time: 04/28/2011 20:50 Received Date/Time: 05/03/2011 10:20

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 05/06/2011 00:09 P:Summa 200-5005-A-3 PAD 200-17603 20.1 TAL BUR Canister A:TO-15 200-5005-A-3 200-17603 05/06/2011 00:09 20.1 PAD TAL BUR

Lab ID: 200-5005-4 Client ID: SL-084-5

Sample Date/Time: 04/29/2011 11:21 Received Date/Time: 05/03/2011 10:20

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 05/06/2011 09:23 P:Summa 200-5005-A-4 200-17603 678 TAL BUR PAD Canister 05/06/2011 09:23 A:TO-15 200-5005-A-4 200-17603 678 **TAL BUR** PAD

Lab ID: 200-5005-5 Client ID: SL-084-20

Sample Date/Time: 04/29/2011 11:34 Received Date/Time: 05/03/2011 10:20

Date Prepared / **Analysis** Batch Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst P:Summa 200-5005-A-5 200-17703 05/06/2011 17:02 674 TAL BUR PAD Canister 05/06/2011 17:02 A:TO-15 200-5005-A-5 200-17703 674 TAL BUR PAD

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

SDG: 200-5005

Laboratory Chronicle

Lab ID: 200-5005-6 Client ID: SL-084-END

Sample Date/Time: 04/29/2011 12:38 Received Date/Time: 05/03/2011 10:20

Date Prepared / **Analysis Batch** Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst P:Summa 200-5005-A-6 200-17703 05/06/2011 17:55 403 TAL BUR PAD Canister 05/06/2011 17:55 A:TO-15 200-5005-A-6 403 200-17703 TAL BUR PAD

Lab ID: 200-5005-7 Client ID: SL-022-5

Sample Date/Time: 04/29/2011 15:06 Received Date/Time: 05/03/2011 10:20

Analysis Date Prepared / Method **Bottle ID** Run Batch Prep Batch Analyzed Dil Analyst Lab 05/06/2011 03:38 P:Summa 200-5005-A-7 200-17603 19.9 TAL BUR PAD Canister A:TO-15 05/06/2011 03:38 200-5005-A-7 200-17603 19.9 TAL BUR PAD

Lab ID: 200-5005-8 Client ID: SL-022-20

Sample Date/Time: 04/29/2011 15:21 Received Date/Time: 05/03/2011 10:20

Date Prepared / **Analysis** Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst P:Summa 05/06/2011 04:31 PAD 200-5005-A-8 200-17603 25 TAL BUR Canister A:TO-15 200-5005-A-8 05/06/2011 04:31 25 PAD 200-17603 TAL BUR

Lab ID: 200-5005-9 Client ID: SL-022-END

Sample Date/Time: 04/29/2011 16:43 Received Date/Time: 05/03/2011 10:20

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 05/06/2011 05:23 P:Summa 200-5005-A-9 200-17603 24.9 TAL BUR PAD Canister 05/06/2011 05:23 A:TO-15 200-5005-A-9 200-17603 24.9 **TAL BUR** PAD

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

Date Prepared / **Analysis** Batch Analyzed Method Bottle ID Run **Prep Batch** Dil Lab Analyst P:Summa MB 200-17603/4 200-17603 05/05/2011 12:27 TAL BUR PAD Canister 05/05/2011 12:27 MB 200-17603/4 200-17603 TAL BUR PAD A:TO-15 1 05/06/2011 14:25 P:Summa MB 200-17703/5 200-17703 1 TAL BUR PAD Canister A:TO-15 MB 200-17703/5 200-17703 05/06/2011 14:25 **TAL BUR** PAD

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

SDG: 200-5005

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:Summa Canister	LCS 200-17603/3		200-17603		05/05/2011 11:37	1	TAL BUR	PAD
A:TO-15	LCS 200-17603/3		200-17603		05/05/2011 11:37	1	TAL BUR	PAD
P:Summa Canister	LCS 200-17703/4		200-17703		05/06/2011 13:34	1	TAL BUR	PAD
A:TO-15	LCS 200-17703/4		200-17703		05/06/2011 13:34	1	TAL BUR	PAD

Lab References:

TAL BUR = TestAmerica Burlington

TestAmerica Burlington A = Analytical Method P = Prep Method

Certification Summary

Client: Geosyntec Consultants, Inc.

TestAmerica Job ID: 200-5005-1 Project/Site: AF59 SDG: 200-5005

aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Burlington		USDA		P330-11-00093
estAmerica Burlington	ACLASS	DoD ELAP	0	ADE-1492
estAmerica Burlington	Connecticut	State Program	1	PH-0751
estAmerica Burlington	Delaware	Delaware DNREC	3	NA
estAmerica Burlington	Maine	State Program	1	VT00008
estAmerica Burlington	Minnesota	State Program	5	050-999-436
estAmerica Burlington	New Hampshire	NELAC	1	200610
estAmerica Burlington	New Jersey	NELAC	2	VT972
estAmerica Burlington	New York	NELAC	2	10391
estAmerica Burlington	Pennsylvania	NELAC	3	68-00489
estAmerica Burlington	Rhode Island	State Program	1	LAO00298
estAmerica Burlington	Vermont	State Program	1	VT-4000

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method T015

Volatile Organic Compounds (GC/MS) by Method TO15

Lab Name: TestAmerica Burlington	Job No.:	200-5005-1
----------------------------------	----------	------------

SDG No.: 200-5005

Matrix: Air Level: Low Lab File ID: bkaj003.d

Lab ID: LCS 200-17603/3 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Dichlorodifluoromethane	10.0	10.1	101	70-130	
Freon 22	10.0	8.89	89	70-130	
1,2-Dichlorotetrafluoroethane	10.0	9.99	100	70-130	
Chloromethane	10.0	8.51	85	70-130	
n-Butane	10.0	7.97	80	70-130	
Vinyl chloride	10.0	9.23	92	70-130	
1,3-Butadiene	10.0	9.16	92	70-130	
Bromomethane	10.0	9.43	94	70-130	
Chloroethane	10.0	8.95	90	70-130	
Bromoethene(Vinyl Bromide)	10.0	10.2	102	70-130	
Trichlorofluoromethane	10.0	10.4	104	70-130	
Freon TF	10.0	11.0	110	70-130	
1,1-Dichloroethene	10.0	11.0	110	70-130	
Acetone	10.0	9.61	96	70-130	
Isopropyl alcohol	10.0	8.59	86	70-130	
Carbon disulfide	10.0	10.1	101	70-130	
3-Chloropropene	10.0	8.57	86	70-130	
Methylene Chloride	10.0	9.37	94	70-130	
tert-Butyl alcohol	10.0	9.29	93	70-130	
Methyl tert-butyl ether	10.0	9.91	99	70-130	
trans-1,2-Dichloroethene	10.0	9.40	94	70-130	
n-Hexane	10.0	9.04	90	70-130	
1,1-Dichloroethane	10.0	9.50	95	70-130	
Methyl Ethyl Ketone	10.0	10.0	100	70-130	
cis-1,2-Dichloroethene	10.0	10.5	105	70-130	
Chloroform	10.0	10.1	101	70-130	
Tetrahydrofuran	10.0	8.84	88	70-130	
1,1,1-Trichloroethane	10.0	10.4	104	70-130	
Cyclohexane	10.0	9.75	98	70-130	
Carbon tetrachloride	10.0	10.2	102	70-130	
2,2,4-Trimethylpentane	10.0	9.28	93	70-130	
Benzene	10.0	9.88	99	70-130	
1,2-Dichloroethane	10.0	9.39	94	70-130	
n-Heptane	10.0	8.54	85	70-130	
Trichloroethene	10.0	10.1	101		
Methyl methacrylate	10.0	9.61	96	70-130	
1,2-Dichloropropane	10.0	9.20	92	70-130	
1,4-Dioxane	10.0	9.02	90	70-130	
Bromodichloromethane	10.0	10.5	105	70-130	
cis-1,3-Dichloropropene	10.0	9.55	95	70-130	
methyl isobutyl ketone	10.0	8.83	88	70-130	
Toluene	10.0	9.79	98		

[#] Column to be used to flag recovery and RPD values

Lab Name: TestAmerica Burlington	Job No.:	200-5005-1
----------------------------------	----------	------------

SDG No.: 200-5005

Matrix: Air Level: Low Lab File ID: bkaj003.d

Lab ID: LCS 200-17603/3 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
trans-1,3-Dichloropropene	10.0	9.64	96	70-130	
1,1,2-Trichloroethane	10.0	9.33	93	70-130	
Tetrachloroethene	10.0	10.2	102	70-130	
Methyl Butyl Ketone (2-Hexanone)	10.0	8.64	86	70-130	
Dibromochloromethane	10.0	10.7	107	70-130	
1,2-Dibromoethane	10.0	9.90	99		
Chlorobenzene	10.0	9.44	94	70-130	
Ethylbenzene	10.0	9.86	99	70-130	
m,p-Xylene	20.0	19.8	99	70-130	
Xylene, o-	10.0	9.66	97	70-130	
Styrene	10.0	10.1	101	70-130	
Bromoform	10.0	11.4	114	70-130	
Cumene	10.0	10.2	102	70-130	
1,1,2,2-Tetrachloroethane	10.0	9.50	95	70-130	
	10.0	10.4	104	70-130	
n-Propylbenzene 4-Ethyltoluene	10.0	10.4	104	70-130	
1,3,5-Trimethylbenzene	10.0	9.93	99		
2-Chlorotoluene			102		
	10.0	10.2	-		
tert-Butylbenzene	10.0	10.0	100	I	
1,2,4-Trimethylbenzene	10.0	9.84	98	I	
sec-Butylbenzene	10.0	10.2	102	70-130	
4-Isopropyltoluene	10.0	10.3	103	70-130	
1,3-Dichlorobenzene	10.0	10.2	102	70-130	
1,4-Dichlorobenzene	10.0	10.1	101	70-130	
Benzyl chloride	10.0	9.42	94	70-130	
n-Butylbenzene	10.0	10.6	106		
1,2-Dichlorobenzene	10.0	9.79	98	I	
1,2,4-Trichlorobenzene	10.0	10.3	103	70-130	
Hexachlorobutadiene	10.0	10.7	107	70-130	
Naphthalene	10.0	10.5	105	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

Lab Name: TestAmerica Burlington	Job No.:	200-5005-1
----------------------------------	----------	------------

SDG No.: 200-5005

Matrix: Air Level: Low Lab File ID: bkak004.d

Lab ID: LCS 200-17703/4 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	8	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	П
Dichlorodifluoromethane	10.0	11.0	110		
Freon 22	10.0	9.54	95	70-130	
1,2-Dichlorotetrafluoroethane	10.0	10.8	108		
Chloromethane	10.0	9.16	92	70-130	
n-Butane	10.0	8.60	86	70-130	
Vinyl chloride	10.0	10.1	101	70-130	
1,3-Butadiene	10.0	9.78	98	70-130	
Bromomethane	10.0	10.2	102	70-130	
Chloroethane	10.0	9.69	97	70-130	
Bromoethene (Vinyl Bromide)	10.0	10.8	108		
Trichlorofluoromethane	10.0	11.1	111	70-130	
Freon TF	10.0	11.3	113	70-130	
1,1-Dichloroethene	10.0	11.4	114	70-130	
Acetone	10.0	10.4	104	70-130	
Isopropyl alcohol	10.0	9.12	91	70-130	
Carbon disulfide	10.0	10.5	105	70-130	
3-Chloropropene	10.0	9.20	92	70-130	
Methylene Chloride	10.0	10.0	100		
tert-Butyl alcohol	10.0	9.67	97	70-130	
Methyl tert-butyl ether	10.0	10.4	104	70-130	
trans-1,2-Dichloroethene	10.0	9.89	99	70-130	
n-Hexane	10.0	9.59	96	70-130	
1,1-Dichloroethane	10.0	9.93	99		
Methyl Ethyl Ketone	10.0	10.4	104	70-130	
cis-1,2-Dichloroethene	10.0	10.4	108		
Chloroform	10.0	10.5	105	70-130	
Tetrahydrofuran	10.0	9.34	93	70-130	
1,1,1-Trichloroethane	10.0	10.8	108		
Cyclohexane	10.0	10.1	101	70-130	
Carbon tetrachloride	10.0	10.5	105	70-130	
2,2,4-Trimethylpentane	10.0	9.77	98		
Benzene	10.0	10.2	102		
1,2-Dichloroethane	10.0	9.96	100		
n-Heptane	10.0	9.05	90		
Trichloroethene	10.0	10.4	104		
Methyl methacrylate	10.0	10.4	104		
1,2-Dichloropropane	10.0	9.61	96		
1,4-Dioxane	10.0	9.22	92	70-130	
Bromodichloromethane	10.0	10.8	108	70-130	
cis-1,3-Dichloropropene	10.0	9.82	98	70-130	
methyl isobutyl ketone	10.0	9.38	94	70-130	
Toluene	10.0	10.1	101	70-130	
TOTUELLE	10.0	10.1	TOT	/0-130	

[#] Column to be used to flag recovery and RPD values

Lab Name: TestAmerica Burlington	Job No.:	200-5005-1
----------------------------------	----------	------------

SDG No.: 200-5005

Matrix: Air Level: Low Lab File ID: bkak004.d

Lab ID: LCS 200-17703/4 Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	િક	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
trans-1,3-Dichloropropene	10.0	10.0	100	70-130	
1,1,2-Trichloroethane	10.0	9.69	97	70-130	
Tetrachloroethene	10.0	10.2	102	70-130	
Methyl Butyl Ketone (2-Hexanone)	10.0	9.29	93	70-130	
Dibromochloromethane	10.0	10.9	109	70-130	
1,2-Dibromoethane	10.0	10.3	103	70-130	
Chlorobenzene	10.0	9.66	97	70-130	
Ethylbenzene	10.0	10.2	102	70-130	
m,p-Xylene	20.0	20.5	103	70-130	
Xylene, o-	10.0	9.98	100	70-130	
Styrene	10.0	10.5	105	70-130	
Bromoform	10.0	11.6	116	70-130	
Cumene	10.0	10.5	105	70-130	
1,1,2,2-Tetrachloroethane	10.0	9.91	99	70-130	
n-Propylbenzene	10.0	10.9	109	70-130	
4-Ethyltoluene	10.0	10.9	109	70-130	
1,3,5-Trimethylbenzene	10.0	10.3	103	70-130	
2-Chlorotoluene	10.0	10.7	107		
tert-Butylbenzene	10.0	10.4	104	70-130	
1,2,4-Trimethylbenzene	10.0	10.2	102		
sec-Butylbenzene	10.0	10.5	105		
4-Isopropyltoluene	10.0	10.6	106	70-130	
1,3-Dichlorobenzene	10.0	10.3	103	70-130	
1,4-Dichlorobenzene	10.0	10.3	103	70-130	
Benzyl chloride	10.0	9.79	98	70-130	
n-Butylbenzene	10.0	11.2	112	70-130	
1,2-Dichlorobenzene	10.0	9.88	99		
1,2,4-Trichlorobenzene	10.0	10.2	102	70-130	
Hexachlorobutadiene	10.0	10.7	107	70-130	
Naphthalene	10.0	10.5	105	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab File ID: bkaj004.d Lab Sample ID: MB 200-17603/4

Matrix: Air Heated Purge: (Y/N) N

Instrument ID: B.i Date Analyzed: 05/05/2011 12:27

GC Column: RTX-624 ID: 0.32 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-17603/3	bkaj003.d	05/05/2011 11:37
SL-118-5	200-5005-1	bkaj015.d	05/05/2011 22:24
SL-118-20	200-5005-2	bkaj016.d	05/05/2011 23:16
SL-118-END	200-5005-3	bkaj017.d	05/06/2011 00:09
SL-022-5	200-5005-7	bkaj021.d	05/06/2011 03:38
SL-022-20	200-5005-8	bkaj022.d	05/06/2011 04:31
SL-022-END	200-5005-9	bkaj023.d	05/06/2011 05:23
SL-084-5	200-5005-4	bkaj024.d	05/06/2011 09:23

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab File ID: bkak005.d Lab Sample ID: MB 200-17703/5

Matrix: Air Heated Purge: (Y/N) N

Instrument ID: B.i Date Analyzed: 05/06/2011 14:25

GC Column: RTX-624 ID: 0.32 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-17703/4	bkak004.d	05/06/2011 13:34
SL-084-20	200-5005-5	bkak008.d	05/06/2011 17:02
SL-084-END	200-5005-6	bkak009.d	05/06/2011 17:55

FORM V AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab File ID: bka001.d BFB Injection Date: 04/19/2011

Instrument ID: B.i BFB Injection Time: 10:50

Analysis Batch No.: 16751

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	13.0	
75	30.0 - 66.0% of mass 95	41.8	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.9	
173	Less than 2.0% of mass 174	0.0	(0.0)1
174	50.0 - 120.0% of mass 95	95.5	
175	4.0 - 9.0 % of mass 174	6.8	(7.2)1
176	93.0 - 101.0% of mass 174	92.2	(96.6)1
177	5.0 - 9.0% of mass 176	6.1	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	IC 200-16751/4		04/19/2011	13:57
	IC 200-16751/5	bka005.d	04/19/2011	14:50
	ICIS 200-16751/6		04/19/2011	15:42
	IC 200-16751/7	bka007.d	04/19/2011	16:34
	IC 200-16751/8	bka008.d	04/19/2011	17:27
	IC 200-16751/9	bka009.d	04/19/2011	18:19
	IC 200-16751/14	bka014.d	04/20/2011	08:43
	ICV 200-16751/16	bka016.d	04/20/2011	10:27

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab File ID: bkaj001.d BFB Injection Date: 05/05/2011

Instrument ID: B.i BFB Injection Time: 09:56

Analysis Batch No.: 17603

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	11.2	
75	30.0 - 66.0% of mass 95	40.4	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.9	
173	Less than 2.0% of mass 174	0.3	(0.3)1
174	50.0 - 120.0% of mass 95	103.7	
175	4.0 - 9.0 % of mass 174	7.3	(7.0)1
176	93.0 - 101.0% of mass 174	99.3	(95.7)1
177	5.0 - 9.0% of mass 176	6.6	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 200-17603/2		05/05/2011	10:47
	LCS 200-17603/3	bkaj003.d	05/05/2011	11:37
	MB 200-17603/4	bkaj004.d	05/05/2011	12:27
SL-118-5	200-5005-1	bkaj015.d	05/05/2011	22:24
SL-118-20	200-5005-2	bkaj016.d	05/05/2011	23:16
SL-118-END	200-5005-3	bkaj017.d	05/06/2011	00:09
SL-022-5	200-5005-7	bkaj021.d	05/06/2011	03:38
SL-022-20	200-5005-8	bkaj022.d	05/06/2011	04:31
SL-022-END	200-5005-9	bkaj023.d	05/06/2011	05:23
SL-084-5 200-5005-4		bkaj024.d	05/06/2011	09:23

$\begin{tabular}{lll} FORM & V \\ AIR - GC/MS & VOA & INSTRUMENT & PERFORMANCE & CHECK \\ \end{tabular}$

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab File ID: bkak001.d BFB Injection Date: 05/06/2011

Instrument ID: B.i BFB Injection Time: 11:00

Analysis Batch No.: 17703

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	12.1	
75	30.0 - 66.0% of mass 95	41.2	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.5	(0.5)1
174	50.0 - 120.0% of mass 95	93.6	
175	4.0 - 9.0 % of mass 174	6.6	(7.1)1
176	93.0 - 101.0% of mass 174	90.3	(96.4)1
177	5.0 - 9.0% of mass 176	5.9	(6.6)2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
	CCVIS 200-17703/3	bkak003.d	05/06/2011	12:42	
	LCS 200-17703/4	bkak004.d	05/06/2011	13:34	
	MB 200-17703/5	bkak005.d	05/06/2011	14:25	
SL-084-20	200-5005-5	bkak008.d	05/06/2011	17:02	
SL-084-END	200-5005-6	bkak009.d	05/06/2011	17:55	

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Sample No.: ICIS 200-16751/6 Date Analyzed: 04/19/2011 15:42

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm)

Lab File ID (Standard): bka006.d Heated Purge: (Y/N) N

Calibration ID: 6017

		BCM	BCM		DFB		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		664703	9.20	3233933	10.61	2984175	14.74
UPPER LIMIT		930584	9.53	4527506	10.94	4177845	15.07
LOWER LIMIT		398822	8.87	1940360	10.28	1790505	14.41
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-16751/16		778014	9.20	3732948	10.61	3415798	14.74

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII TO-15

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Sample No.: CCVIS 200-17603/2 Date Analyzed: 05/05/2011 10:47

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm)

Lab File ID (Standard): bkaj002.d Heated Purge: (Y/N) N

Calibration ID: 6017

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		991953	9.20	4775528	10.61	4522495	14.74
UPPER LIMIT		1388734	9.53	6685739	10.94	6331493	15.07
LOWER LIMIT		595172	8.87	2865317	10.28	2713497	14.41
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 200-17603/3		1024161	9.20	4940011	10.61	4607867	14.74
MB 200-17603/4		1017186	9.19	4978081	10.61	4473767	14.73
200-5005-1	SL-118-5	957765	9.20	4671414	10.61	4217277	14.73
200-5005-2	SL-118-20	902360	9.20	4404631	10.61	3935099	14.73
200-5005-3	SL-118-END	865128	9.20	4249837	10.61	3802954	14.73
200-5005-7	SL-022-5	767823	9.20	3799112	10.61	3454061	14.73
200-5005-8	SL-022-20	753563	9.20	3752390	10.61	3351548	14.73
200-5005-9	SL-022-END	731660	9.20	3657500	10.61	3277405	14.73
200-5005-4	SL-084-5	692972	9.19	3433917	10.60	3076835	14.73

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

FORM VIII

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Sample No.: CCVIS 200-17703/3 Date Analyzed: 05/06/2011 12:42

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm)

Lab File ID (Standard): bkak003.d Heated Purge: (Y/N) N

Calibration ID: 6017

		BCM	BCM		DFB		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		916977	9.20	4456313	10.61	4181093	14.74
UPPER LIMIT		1283768	9.53	6238838	10.94	5853530	15.07
LOWER LIMIT		550186	8.87	2673788	10.28	2508656	14.41
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 200-17703/4		963996	9.20	4668563	10.61	4315826	14.74
MB 200-17703/5		972960	9.20	4773586	10.61	4301952	14.73
200-5005-5	SL-084-20	881969	9.19	4358295	10.60	3843891	14.73
200-5005-6	SL-084-END	824395	9.19	4123882	10.60	3644437	14.73

 ${\tt BCM} = {\tt Bromochloromethane}$

DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1

Matrix: Air Lab File ID: bkaj015.d

Analysis Method: TO-15 Date Collected: 04/28/2011 18:59

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24

Soil Aliquot Vol: Dilution Factor: 25.1

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	13	U	13	0.95
75-45-6	Freon 22	86.47	13	U	13	0.85
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	5.0	Ū	5.0	0.80
74-87-3	Chloromethane	50.49	13	U	13	0.33
106-97-8	n-Butane	58.12	13	U	13	0.28
75-01-4	Vinyl chloride	62.50	5.0	U	5.0	0.73
106-99-0	1,3-Butadiene	54.09	5.0	U	5.0	0.25
74-83-9	Bromomethane	94.94	5.0	U	5.0	0.30
75-00-3	Chloroethane	64.52	13	U	13	0.40
593-60-2	Bromoethene (Vinyl Bromide)	106.96	5.0	U	5.0	0.48
75-69-4	Trichlorofluoromethane	137.37	5.0	U	5.0	0.85
76-13-1	Freon TF	187.38	11		5.0	0.25
75-35-4	1,1-Dichloroethene	96.94	5.0	U	5.0	0.75
67-64-1	Acetone	58.08	130	U	130	1.1
67-63-0	Isopropyl alcohol	60.10	130	U	130	0.93
75-15-0	Carbon disulfide	76.14	13	U	13	1.7
107-05-1	3-Chloropropene	76.53	13	U	13	0.48
75-09-2	Methylene Chloride	84.93	13	U	13	0.33
75-65-0	tert-Butyl alcohol	74.12	130	U	130	1.8
1634-04-4	Methyl tert-butyl ether	88.15	5.0	U	5.0	0.40
156-60-5	trans-1,2-Dichloroethene	96.94	5.0	U	5.0	0.80
110-54-3	n-Hexane	86.17	5.0	U	5.0	0.65
75-34-3	1,1-Dichloroethane	98.96	5.0	U	5.0	0.88
78-93-3	Methyl Ethyl Ketone	72.11	13	U	13	0.43
156-59-2	cis-1,2-Dichloroethene	96.94	5.0	U	5.0	0.35
540-59-0	1,2-Dichloroethene, Total	96.94	5.0	U	5.0	0.35
67-66-3	Chloroform	119.38	5.0	U	5.0	0.78
109-99-9	Tetrahydrofuran	72.11	130	U	130	0.45
71-55-6	1,1,1-Trichloroethane	133.41	610		5.0	0.88
110-82-7	Cyclohexane	84.16	5.0	U	5.0	0.98
56-23-5	Carbon tetrachloride	153.81	5.0	U	5.0	0.83
540-84-1	2,2,4-Trimethylpentane	114.23	5.0	U	5.0	0.90
71-43-2	Benzene	78.11	5.0	U	5.0	0.45
107-06-2	1,2-Dichloroethane	98.96	5.0	U	5.0	0.78
142-82-5	n-Heptane	100.21	5.0	U	5.0	0.25

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1

Matrix: Air Lab File ID: bkaj015.d

Analysis Method: TO-15 Date Collected: 04/28/2011 18:59

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24

Soil Aliquot Vol: Dilution Factor: 25.1

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	570		5.0	0.75
80-62-6	Methyl methacrylate	100.12	13	U	13	0.33
78-87-5	1,2-Dichloropropane	112.99	5.0	U	5.0	0.35
123-91-1	1,4-Dioxane	88.11	130	U	130	2.2
75-27-4	Bromodichloromethane	163.83	5.0	U	5.0	0.70
10061-01-5	cis-1,3-Dichloropropene	110.97	5.0	U	5.0	0.40
108-10-1	methyl isobutyl ketone	100.16	13	U	13	0.65
108-88-3	Toluene	92.14	5.0	U	5.0	0.45
10061-02-6	trans-1,3-Dichloropropene	110.97	5.0	U	5.0	0.50
79-00-5	1,1,2-Trichloroethane	133.41	5.0	U	5.0	0.48
127-18-4	Tetrachloroethene	165.83	5.0	U	5.0	0.28
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	13	U	13	0.98
124-48-1	Dibromochloromethane	208.29	5.0	U	5.0	0.53
106-93-4	1,2-Dibromoethane	187.87	5.0	U	5.0	0.45
108-90-7	Chlorobenzene	112.30	5.0	U	5.0	0.50
100-41-4	Ethylbenzene	106.17	5.0	U	5.0	0.55
179601-23-1	m,p-Xylene	106.17	13	U	13	1.2
95-47-6	Xylene, o-	106.17	5.0	U	5.0	0.55
1330-20-7	Xylene (total)	106.17	5.0	U	5.0	0.55
100-42-5	Styrene	104.15	5.0	U	5.0	0.75
75-25-2	Bromoform	252.75	5.0	U	5.0	0.48
98-82-8	Cumene	120.19	5.0	U	5.0	0.78
79-34-5	1,1,2,2-Tetrachloroethane	167.85	5.0	U	5.0	1.0
103-65-1	n-Propylbenzene	120.19	5.0	U	5.0	1.3
622-96-8	4-Ethyltoluene	120.20	5.0	U	5.0	1.2
108-67-8	1,3,5-Trimethylbenzene	120.20	5.0	U	5.0	1.3
95-49-8	2-Chlorotoluene	126.59	5.0	U	5.0	1.2
98-06-6	tert-Butylbenzene	134.22	5.0	U	5.0	1.2
95-63-6	1,2,4-Trimethylbenzene	120.20	5.0	U	5.0	1.3
135-98-8	sec-Butylbenzene	134.22	5.0	U	5.0	1.2
99-87-6	4-Isopropyltoluene	134.22	5.0	U	5.0	1.2
541-73-1	1,3-Dichlorobenzene	147.00	5.0	U	5.0	1.1
106-46-7	1,4-Dichlorobenzene	147.00	5.0	U	5.0	1.1
100-44-7	Benzyl chloride	126.58	5.0	U	5.0	1.2
104-51-8	n-Butylbenzene	134.22	5.0	U	5.0	1.4

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1 Matrix: Air Lab File ID: bkaj015.d Analysis Method: TO-15 Date Collected: 04/28/2011 18:59 Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24 Soil Aliquot Vol: Dilution Factor: 25.1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	5.0	U	5.0	1.2
120-82-1	1,2,4-Trichlorobenzene	181.45	13	U	13	1.3
87-68-3	Hexachlorobutadiene	260.76	5.0	U	5.0	1.6
91-20-3	Naphthalene	128.17	13	U	13	2.2

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1

Matrix: Air Lab File ID: bkaj015.d

Analysis Method: TO-15 Date Collected: 04/28/2011 18:59

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24

Soil Aliquot Vol: Dilution Factor: 25.1

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	62	U	62	4.7
75-45-6	Freon 22	86.47	44	U	44	3.0
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	35	U	35	5.6
74-87-3	Chloromethane	50.49	26	U	26	0.67
106-97-8	n-Butane	58.12	30	U	30	0.66
75-01-4	Vinyl chloride	62.50	13	U	13	1.9
106-99-0	1,3-Butadiene	54.09	11	U	11	0.56
74-83-9	Bromomethane	94.94	19	U	19	1.2
75-00-3	Chloroethane	64.52	33	U	33	1.1
593-60-2	Bromoethene (Vinyl Bromide)	106.96	22	U	22	2.1
75-69-4	Trichlorofluoromethane	137.37	28	U	28	4.8
76-13-1	Freon TF	187.38	81		38	1.9
75-35-4	1,1-Dichloroethene	96.94	20	U	20	3.0
67-64-1	Acetone	58.08	300	U	300	2.7
67-63-0	Isopropyl alcohol	60.10	310	U	310	2.3
75-15-0	Carbon disulfide	76.14	39	U	39	5.2
107-05-1	3-Chloropropene	76.53	39	U	39	1.5
75-09-2	Methylene Chloride	84.93	44	U	44	1.1
75-65-0	tert-Butyl alcohol	74.12	380	U	380	5.4
1634-04-4	Methyl tert-butyl ether	88.15	18	U	18	1.4
156-60-5	trans-1,2-Dichloroethene	96.94	20	U	20	3.2
110-54-3	n-Hexane	86.17	18	U	18	2.3
75-34-3	1,1-Dichloroethane	98.96	20	U	20	3.6
78-93-3	Methyl Ethyl Ketone	72.11	37	U	37	1.3
156-59-2	cis-1,2-Dichloroethene	96.94	20	U	20	1.4
540-59-0	1,2-Dichloroethene, Total	96.94	20	U	20	1.4
67-66-3	Chloroform	119.38	25	U	25	3.8
109-99-9	Tetrahydrofuran	72.11	370	U	370	1.3
71-55-6	1,1,1-Trichloroethane	133.41	3300		27	4.8
110-82-7	Cyclohexane	84.16	17	U	17	3.4
56-23-5	Carbon tetrachloride	153.81	32	U	32	5.2
540-84-1	2,2,4-Trimethylpentane	114.23	23	U	23	4.2
71-43-2	Benzene	78.11	16	U	16	1.4
107-06-2	1,2-Dichloroethane	98.96	20	U	20	3.1
142-82-5	n-Heptane	100.21	21	U	21	1.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1

Matrix: Air Lab File ID: bkaj015.d

Analysis Method: TO-15 Date Collected: 04/28/2011 18:59

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24

Soil Aliquot Vol: Dilution Factor: 25.1

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	3000		27	4.0
80-62-6	Methyl methacrylate	100.12	51	U	51	1.3
78-87-5	1,2-Dichloropropane	112.99	23	U	23	1.6
123-91-1	1,4-Dioxane	88.11	450	U	450	8.0
75-27-4	Bromodichloromethane	163.83	34	U	34	4.7
10061-01-5	cis-1,3-Dichloropropene	110.97	23	U	23	1.8
108-10-1	methyl isobutyl ketone	100.16	51	U	51	2.7
108-88-3	Toluene	92.14	19	U	19	1.7
10061-02-6	trans-1,3-Dichloropropene	110.97	23	U	23	2.3
79-00-5	1,1,2-Trichloroethane	133.41	27	U	27	2.6
127-18-4	Tetrachloroethene	165.83	34	U	34	1.9
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	51	U	51	4.0
124-48-1	Dibromochloromethane	208.29	43	U	43	4.5
106-93-4	1,2-Dibromoethane	187.87	39	U	39	3.5
108-90-7	Chlorobenzene	112.30	23	U	23	2.3
100-41-4	Ethylbenzene	106.17	22	U	22	2.4
179601-23-1	m,p-Xylene	106.17	54	U	54	5.2
95-47-6	Xylene, o-	106.17	22	U	22	2.4
1330-20-7	Xylene (total)	106.17	22	U	22	2.4
100-42-5	Styrene	104.15	21	U	21	3.2
75-25-2	Bromoform	252.75	52	U	52	4.9
98-82-8	Cumene	120.19	25	U	25	3.8
79-34-5	1,1,2,2-Tetrachloroethane	167.85	34	U	34	6.9
103-65-1	n-Propylbenzene	120.19	25	U	25	6.2
622-96-8	4-Ethyltoluene	120.20	25	U	25	5.7
108-67-8	1,3,5-Trimethylbenzene	120.20	25	U	25	6.3
95-49-8	2-Chlorotoluene	126.59	26	U	26	6.1
98-06-6	tert-Butylbenzene	134.22	28	U	28	6.5
95-63-6	1,2,4-Trimethylbenzene	120.20	25	U	25	6.4
135-98-8	sec-Butylbenzene	134.22	28	U	28	6.5
99-87-6	4-Isopropyltoluene	134.22	28	U	28	6.6
541-73-1	1,3-Dichlorobenzene	147.00	30	U	30	6.6
106-46-7	1,4-Dichlorobenzene	147.00	30	U	30	6.6
100-44-7	Benzyl chloride	126.58	26	U	26	6.0
104-51-8	n-Butylbenzene	134.22	28	U	28	7.6

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-5 Lab Sample ID: 200-5005-1 Matrix: Air Lab File ID: bkaj015.d Analysis Method: TO-15 Date Collected: 04/28/2011 18:59 Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 22:24 Dilution Factor: 25.1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	30	U	30	7.2
120-82-1	1,2,4-Trichlorobenzene	181.45	93	U	93	9.3
87-68-3	Hexachlorobutadiene	260.76	54	U	54	17
91-20-3	Naphthalene	128.17	66	U	66	11

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj015.d Page 1

Report Date: 06-May-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-1 Client Smp ID: SL-118-5

Inj Date : 05-MAY-2011 22:24

Operator : pad Smp Info : 200-5005-A-1 Inst ID: B.i

Misc Info : 38,25.1, all74 cdf4.77

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d Cal Date : 20-APR-2011 08:43

Als bottle: 1

Dil Factor: 25.10000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	25.10000 1.00000 38.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	== ====== ====== ======================
2 Dichlorodifluoromethane	85	Compound Not Detected.
3 Chlorodifluoromethane	51	3.072 3.072 (0.334) 20778 0.36516 9.2(aM)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.
5 Chloromethane	50	Compound Not Detected.
6 Butane	43	Compound Not Detected.
7 Vinyl chloride	62	Compound Not Detected.
8 1,3-Butadiene	54	Compound Not Detected.
9 Bromomethane	94	Compound Not Detected.
10 Chloroethane	64	Compound Not Detected.
12 Vinyl bromide	106	Compound Not Detected.
13 Trichlorofluoromethane	101	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794 5.788 (0.630) 78153 0.41958 11
19 1,1-Dichloroethene	96	5.852 5.852 (0.636) 9264 0.10352 2.6(a)
20 Acetone	43	6.124 6.045 (0.666) 32361 0.34076 8.6(aM)
21 Carbon disulfide	76	Compound Not Detected.

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj015.d Report Date: 06-May-2011 10:47

						CONCENTRA	
_		QUANT SIG				ON-COLUMN	FINAL
	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	=======================================	=======	======	======
	22 Isopropanol	45	6.429	6.322 (0.699)	72128	0.93481	23(a)
	23 Allyl chloride	41	-	oound Not Detected		0.05054	1.0(.0)
	25 Methylene chloride	49	6.808	6.802 (0.740)	5623	0.07254	1.8(aQ)
	26 Tert-butyl alcohol	59	_	oound Not Detected			
	27 Methyl tert-butyl ether	73		oound Not Detected			
	28 1,2-Dichloroethene (trans)	61	_	oound Not Detected			
	30 n-Hexane	57	_	oound Not Detected		0.04004	
	31 1,1-Dichloroethane	63	7.934		7255	0.04984	1.3(a)
M	33 1,2-Dichloroethene,Total	61	_	oound Not Detected			
	34 1,2-Dichloroethene (cis)	96	_	oound Not Detected		0.04000	1 0/ 0-1
	36 Methyl Ethyl Ketone	72	8.937	8.857 (0.972)	1765	0.04089	1.0(aQM)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	957765	10.0000	
	38 Tetrahydrofuran	42		oound Not Detected		0.10000	2.5/.)
	39 Chloroform	83	9.279	9.284 (1.009)	25619	0.13988	3.5(a)
	40 Cyclohexane	84	_	ound Not Detected		04 0000	610
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	4801091	24.2228	610
	42 Carbon tetrachloride	117	_	ound Not Detected			
	43 2,2,4-Trimethylpentane	57	_	ound Not Detected			
	44 Benzene	78	_	ound Not Detected			
	45 1,2-Dichloroethane	62	_	ound Not Detected			
	46 n-Heptane	43	_	ound Not Detected			
*	47 1,4-Difluorobenzene	114		10.608 (1.000)	4671414	10.0000	
	49 Trichloroethene	95		10.971 (1.034)	3016736	22.5615	570
	50 1,2-Dichloropropane	63	_	ound Not Detected			
	51 Methyl methacrylate	69	_	ound Not Detected			
	53 1,4-Dioxane	88		ound Not Detected			
	54 Bromodichloromethane	83		ound Not Detected			
	55 1,3-Dichloropropene (cis)	75	_	ound Not Detected			
	56 Methyl isobutyl ketone	43	_	ound Not Detected			
	58 Toluene	92		12.748 (0.866)	27597	0.12477	3.1(a)
	59 1,3-Dichloropropene (trans)	75	_	ound Not Detected			
	60 1,1,2-Trichloroethane	83	_	ound Not Detected			
	61 Tetrachloroethene	166		13.516 (0.918)	33975	0.17389	4.4(a)
	62 2-Hexanone	43		ound Not Detected			
	63 Dibromochloromethane	129		ound Not Detected			
	64 1,2-Dibromoethane	107	_	ound Not Detected			
*	65 Chlorobenzene-d5	117		14.738 (1.000)	4217277	10.0000	
	66 Chlorobenzene	112	_	ound Not Detected			
	68 Ethylbenzene	91	Comp	ound Not Detected	l.		
	69 Xylene (m,p)	106	Comp	ound Not Detected	i.		
M	70 Xylenes, Total	106	_	ound Not Detected			
	71 Xylene (o)	106	_	ound Not Detected			
	72 Styrene	104	Comp	ound Not Detected	i.		
	73 Bromoform	173		ound Not Detected			
	74 Isopropylbenzene	105	_	ound Not Detected			
	75 1,1,2,2-Tetrachloroethane	83	Comp	ound Not Detected	1.		
	76 n-Propylbenzene	91	Comp	ound Not Detected	1.		

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj015.d Report Date: 06-May-2011 10:47 Page 3

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
79 4-Ethyltoluene	105	Comp	pound Not Detected	d.		
80 2-Chlorotoluene	91	Comp	pound Not Detected	d.		
81 1,3,5-Trimethylbenzene	105	Comp	pound Not Detected	d.		
83 tert-butylbenzene	119	Comp	pound Not Detected	d.		
84 1,2,4-Trimethylbenzene	105	Comp	ound Not Detected	d.		
85 sec-Butylbenzene	105	Comp	pound Not Detected	d.		
86 4-Isopropyltoluene	119	Comp	ound Not Detected	d.		
87 1,3-Dichlorobenzene	146	Comp	ound Not Detected	d.		
88 1,4-Dichlorobenzene	146	Comp	ound Not Detected	d.		
89 Benzyl chloride	91	Comp	ound Not Detected	d.		
91 n-Butylbenzene	91	Comp	ound Not Detected	d.		
92 1,2-Dichlorobenzene	146	Comp	ound Not Detected	d.		
94 1,2,4-Trichlorobenzene	180	Comp	ound Not Detected	d.		
95 1,3-Hexachlorobutadiene	225	Comp	pound Not Detected	d.		
96 Naphthalene	128	Comp	pound Not Detected	i.		

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Client ID: SL-118-5 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-1
Lab Sample ID: 200-5005-1

Date: 05-MAY-2011 22:24

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 91 of 429

Lab Sample ID: 200-5005-1 Date: 05-MAY-2011 22:24

Client ID: SL-118-5 Instrument: B.i

Sample Info: 200-5005-A-1 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-1 Date: 05-MAY-2011 22:24

Client ID: SL-118-5 Instrument: B.i

Sample Info: 200-5005-A-1 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-1 Date: 05-MAY-2011 22:24

Client ID: SL-118-5 Instrument: B.i

Sample Info: 200-5005-A-1 Operator: pad

49 Trichloroethene

Data File: bkaj015.d Lab Sample ID: 200-5005-1

Inj. Date and Time: 05-MAY-2011 22:24

Instrument ID: B.i
Client ID: SL-118-5

Compound: 3 Chlorodifluoromethane

CAS #: 75-45-6

Report Date: 05/06/2011

Processing Integration Results

RT: 3.07

Response: 20720

Amount: 0.364162

Conc: 9.14

Manual Integration Results

RT: 3.07

Response: 20778

Amount: 0.365165

Conc: 9.17

File Uploaded By: pd

Manual Integration Reason: Peak not found by the data system

Data File: bkaj015.d Lab Sample ID: 200-5005-1

Inj. Date and Time: 05-MAY-2011 22:24

Instrument ID: B.i
Client ID: SL-118-5
Compound: 20 Acetone

CAS #: 67-64-1

Report Date: 05/06/2011

Processing Integration Results

RT: 6.10

Response: 12299

Amount: 0.129509

Conc: 3.25

Manual Integration Results

RT: 6.12

Response: 32361

Amount: 0.340761

Conc: 8.55

File Uploaded By: pd

Manual Integration Reason: Baseline event

Data File: bkaj015.d Lab Sample ID: 200-5005-1

Inj. Date and Time: 05-MAY-2011 22:24

Instrument ID: B.i
Client ID: SL-118-5

Compound: 36 Methyl Ethyl Ketone

CAS #: 78-93-3

Report Date: 05/06/2011

Processing Integration Results

RT: 8.94

Response: 1223

Amount: 0.028330

Conc: 0.711082

Manual Integration Results

RT: 8.94

Response: 1765

Amount: 0.040885

Conc: 1.03

File Uploaded By: pd

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2

Matrix: Air Lab File ID: bkaj016.d

Analysis Method: TO-15 Date Collected: 04/28/2011 19:13

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16

Soil Aliquot Vol: Dilution Factor: 24.7

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	12	U	12	0.94
75-45-6	Freon 22	86.47	12	U	12	0.84
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	4.9	U	4.9	0.79
74-87-3	Chloromethane	50.49	12	U	12	0.32
106-97-8	n-Butane	58.12	12	U	12	0.27
75-01-4	Vinyl chloride	62.50	4.9	U	4.9	0.72
106-99-0	1,3-Butadiene	54.09	4.9	U	4.9	0.25
74-83-9	Bromomethane	94.94	4.9	U	4.9	0.30
75-00-3	Chloroethane	64.52	12	U	12	0.40
593-60-2	Bromoethene (Vinyl Bromide)	106.96	4.9	U	4.9	0.47
75-69-4	Trichlorofluoromethane	137.37	4.9	U	4.9	0.84
76-13-1	Freon TF	187.38	9.1		4.9	0.25
75-35-4	1,1-Dichloroethene	96.94	4.9	U	4.9	0.74
67-64-1	Acetone	58.08	120	U	120	1.1
67-63-0	Isopropyl alcohol	60.10	120	U	120	0.91
75-15-0	Carbon disulfide	76.14	12	U	12	1.6
107-05-1	3-Chloropropene	76.53	12	U	12	0.47
75-09-2	Methylene Chloride	84.93	12	U	12	0.32
75-65-0	tert-Butyl alcohol	74.12	120	U	120	1.8
1634-04-4	Methyl tert-butyl ether	88.15	4.9	U	4.9	0.40
156-60-5	trans-1,2-Dichloroethene	96.94	4.9	U	4.9	0.79
110-54-3	n-Hexane	86.17	4.9	U	4.9	0.64
75-34-3	1,1-Dichloroethane	98.96	4.9	U	4.9	0.86
78-93-3	Methyl Ethyl Ketone	72.11	12	U	12	0.42
156-59-2	cis-1,2-Dichloroethene	96.94	4.9	U	4.9	0.35
540-59-0	1,2-Dichloroethene, Total	96.94	4.9	U	4.9	0.35
67-66-3	Chloroform	119.38	4.9	U	4.9	0.77
109-99-9	Tetrahydrofuran	72.11	120	U	120	0.44
71-55-6	1,1,1-Trichloroethane	133.41	550		4.9	0.86
110-82-7	Cyclohexane	84.16	4.9	U	4.9	0.96
56-23-5	Carbon tetrachloride	153.81	4.9	U	4.9	0.82
540-84-1	2,2,4-Trimethylpentane	114.23	4.9	U	4.9	0.89
71-43-2	Benzene	78.11	4.9	U	4.9	0.44
107-06-2	1,2-Dichloroethane	98.96	4.9	U	4.9	0.77
142-82-5	n-Heptane	100.21	4.9	U	4.9	0.25

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2

Matrix: Air Lab File ID: bkaj016.d

Analysis Method: TO-15 Date Collected: 04/28/2011 19:13

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16

Soil Aliquot Vol: Dilution Factor: 24.7

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	540		4.9	0.74
80-62-6	Methyl methacrylate	100.12	12	U	12	0.32
78-87-5	1,2-Dichloropropane	112.99	4.9	U	4.9	0.35
123-91-1	1,4-Dioxane	88.11	120	U	120	2.2
75-27-4	Bromodichloromethane	163.83	4.9	U	4.9	0.69
10061-01-5	cis-1,3-Dichloropropene	110.97	4.9	U	4.9	0.40
108-10-1	methyl isobutyl ketone	100.16	12	U	12	0.64
108-88-3	Toluene	92.14	4.9	U	4.9	0.44
10061-02-6	trans-1,3-Dichloropropene	110.97	4.9	U	4.9	0.49
79-00-5	1,1,2-Trichloroethane	133.41	4.9	U	4.9	0.47
127-18-4	Tetrachloroethene	165.83	4.9	U	4.9	0.27
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	12	U	12	0.96
124-48-1	Dibromochloromethane	208.29	4.9	U	4.9	0.52
106-93-4	1,2-Dibromoethane	187.87	4.9	U	4.9	0.44
108-90-7	Chlorobenzene	112.30	4.9	U	4.9	0.49
100-41-4	Ethylbenzene	106.17	4.9	U	4.9	0.54
179601-23-1	m,p-Xylene	106.17	12	U	12	1.2
95-47-6	Xylene, o-	106.17	4.9	U	4.9	0.54
1330-20-7	Xylene (total)	106.17	4.9	U	4.9	0.54
100-42-5	Styrene	104.15	4.9	U	4.9	0.74
75-25-2	Bromoform	252.75	4.9	U	4.9	0.47
98-82-8	Cumene	120.19	4.9	U	4.9	0.77
79-34-5	1,1,2,2-Tetrachloroethane	167.85	4.9	U	4.9	0.99
103-65-1	n-Propylbenzene	120.19	4.9	U	4.9	1.2
622-96-8	4-Ethyltoluene	120.20	4.9	U	4.9	1.1
108-67-8	1,3,5-Trimethylbenzene	120.20	4.9	U	4.9	1.3
95-49-8	2-Chlorotoluene	126.59	4.9	U	4.9	1.2
98-06-6	tert-Butylbenzene	134.22	4.9	U	4.9	1.2
95-63-6	1,2,4-Trimethylbenzene	120.20	4.9	U	4.9	1.3
135-98-8	sec-Butylbenzene	134.22	4.9	U	4.9	1.2
99-87-6	4-Isopropyltoluene	134.22	4.9	U	4.9	1.2
541-73-1	1,3-Dichlorobenzene	147.00	4.9	U	4.9	1.1
106-46-7	1,4-Dichlorobenzene	147.00	4.9	U	4.9	1.1
100-44-7	Benzyl chloride	126.58	4.9	U	4.9	1.1
104-51-8	n-Butylbenzene	134.22	4.9	U	4.9	1.4

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2 Matrix: Air Lab File ID: bkaj016.d Analysis Method: TO-15 Date Collected: 04/28/2011 19:13 Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16 Soil Aliquot Vol: Dilution Factor: 24.7 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	4.9	U	4.9	1.2
120-82-1	1,2,4-Trichlorobenzene	181.45	12	U	12	1.2
87-68-3	Hexachlorobutadiene	260.76	4.9	U	4.9	1.6
91-20-3	Naphthalene	128.17	12	U	12	2.1

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2

Matrix: Air Lab File ID: bkaj016.d

Analysis Method: TO-15 Date Collected: 04/28/2011 19:13

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16

Soil Aliquot Vol: Dilution Factor: 24.7

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	61	U	61	4.6
75-45-6	Freon 22	86.47	44	U	44	3.0
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	35	Ū	35	5.5
74-87-3	Chloromethane	50.49	26	U	26	0.66
106-97-8	n-Butane	58.12	29	U	29	0.65
75-01-4	Vinyl chloride	62.50	13	U	13	1.8
106-99-0	1,3-Butadiene	54.09	11	U	11	0.55
74-83-9	Bromomethane	94.94	19	U	19	1.2
75-00-3	Chloroethane	64.52	33	U	33	1.0
593-60-2	Bromoethene (Vinyl Bromide)	106.96	22	Ū	22	2.1
75-69-4	Trichlorofluoromethane	137.37	28	U	28	4.7
76-13-1	Freon TF	187.38	70		38	1.9
75-35-4	1,1-Dichloroethene	96.94	20	U	20	2.9
67-64-1	Acetone	58.08	290	U	290	2.6
67-63-0	Isopropyl alcohol	60.10	300	U	300	2.2
75-15-0	Carbon disulfide	76.14	38	U	38	5.1
107-05-1	3-Chloropropene	76.53	39	U	39	1.5
75-09-2	Methylene Chloride	84.93	43	U	43	1.1
75-65-0	tert-Butyl alcohol	74.12	370	U	370	5.3
1634-04-4	Methyl tert-butyl ether	88.15	18	U	18	1.4
156-60-5	trans-1,2-Dichloroethene	96.94	20	U	20	3.1
110-54-3	n-Hexane	86.17	17	U	17	2.3
75-34-3	1,1-Dichloroethane	98.96	20	U	20	3.5
78-93-3	Methyl Ethyl Ketone	72.11	36	U	36	1.2
156-59-2	cis-1,2-Dichloroethene	96.94	20	U	20	1.4
540-59-0	1,2-Dichloroethene, Total	96.94	20	U	20	1.4
67-66-3	Chloroform	119.38	24	U	24	3.7
109-99-9	Tetrahydrofuran	72.11	360	U	360	1.3
71-55-6	1,1,1-Trichloroethane	133.41	3000		27	4.7
110-82-7	Cyclohexane	84.16	17	U	17	3.3
56-23-5	Carbon tetrachloride	153.81	31	U	31	5.1
540-84-1	2,2,4-Trimethylpentane	114.23	23	U	23	4.2
71-43-2	Benzene	78.11	16	U	16	1.4
107-06-2	1,2-Dichloroethane	98.96	20	U	20	3.1
142-82-5	n-Heptane	100.21	20	U	20	1.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2

Matrix: Air Lab File ID: bkaj016.d

Analysis Method: TO-15 Date Collected: 04/28/2011 19:13

Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16

Soil Aliquot Vol: Dilution Factor: 24.7

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	2900		27	4.0
80-62-6	Methyl methacrylate	100.12	51	U	51	1.3
78-87-5	1,2-Dichloropropane	112.99	23	U	23	1.6
123-91-1	1,4-Dioxane	88.11	450	U	450	7.8
75-27-4	Bromodichloromethane	163.83	33	U	33	4.6
10061-01-5	cis-1,3-Dichloropropene	110.97	22	U	22	1.8
108-10-1	methyl isobutyl ketone	100.16	51	U	51	2.6
108-88-3	Toluene	92.14	19	U	19	1.7
10061-02-6	trans-1,3-Dichloropropene	110.97	22	U	22	2.2
79-00-5	1,1,2-Trichloroethane	133.41	27	U	27	2.6
127-18-4	Tetrachloroethene	165.83	34	U	34	1.8
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	51	U	51	3.9
124-48-1	Dibromochloromethane	208.29	42	U	42	4.4
106-93-4	1,2-Dibromoethane	187.87	38	U	38	3.4
108-90-7	Chlorobenzene	112.30	23	U	23	2.3
100-41-4	Ethylbenzene	106.17	21	U	21	2.4
179601-23-1	m,p-Xylene	106.17	54	U	54	5.1
95-47-6	Xylene, o-	106.17	21	U	21	2.4
1330-20-7	Xylene (total)	106.17	21	U	21	2.4
100-42-5	Styrene	104.15	21	U	21	3.2
75-25-2	Bromoform	252.75	51	U	51	4.9
98-82-8	Cumene	120.19	24	U	24	3.8
79-34-5	1,1,2,2-Tetrachloroethane	167.85	34	U	34	6.8
103-65-1	n-Propylbenzene	120.19	24	U	24	6.1
622-96-8	4-Ethyltoluene	120.20	24	U	24	5.6
108-67-8	1,3,5-Trimethylbenzene	120.20	24	U	24	6.2
95-49-8	2-Chlorotoluene	126.59	26	U	26	6.0
98-06-6	tert-Butylbenzene	134.22	27	U	27	6.4
95-63-6	1,2,4-Trimethylbenzene	120.20	24	U	24	6.3
135-98-8	sec-Butylbenzene	134.22	27	U	27	6.4
99-87-6	4-Isopropyltoluene	134.22	27	U	27	6.5
541-73-1	1,3-Dichlorobenzene	147.00	30	U	30	6.5
106-46-7	1,4-Dichlorobenzene	147.00	30	U	30	6.5
100-44-7	Benzyl chloride	126.58	26	U	26	5.9
104-51-8	n-Butylbenzene	134.22	27	U	27	7.5

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-20 Lab Sample ID: 200-5005-2 Matrix: Air Lab File ID: bkaj016.d Analysis Method: TO-15 Date Collected: 04/28/2011 19:13 Sample wt/vol: 38(mL) Date Analyzed: 05/05/2011 23:16 Soil Aliquot Vol: Dilution Factor: 24.7 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	30	U	30	7.1
120-82-1	1,2,4-Trichlorobenzene	181.45	92	U	92	9.2
87-68-3	Hexachlorobutadiene	260.76	53	U	53	17
91-20-3	Naphthalene	128.17	65	U	65	11

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj016.d Page 1

Report Date: 06-May-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-2 Client Smp ID: SL-118-20

Inj Date : 05-MAY-2011 23:16

Operator : pad Smp Info : 200-5005-A-2 Inst ID: B.i

Misc Info : 38,24.7, all74 cdf4.69

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date: 06-May-2011 10:45 pd Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014 Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 2

Dil Factor: 24.70000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf Vo Vf	24.70000 1.00000 38.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)
		- ,

Cpnd Variable Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
2 Dichlorodifluoromethane	85	Compound Not Detected.
3 Chlorodifluoromethane	51	Compound Not Detected.
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.
5 Chloromethane	50	3.344 3.339 (0.364) 802 0.02985 0.74(a)
6 Butane	43	Compound Not Detected.
7 Vinyl chloride	62	Compound Not Detected.
8 1,3-Butadiene	54	Compound Not Detected.
9 Bromomethane	94	Compound Not Detected.
10 Chloroethane	64	Compound Not Detected.
12 Vinyl bromide	106	Compound Not Detected.
13 Trichlorofluoromethane	101	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788 5.788 (0.629) 65004 0.37041 9.1
19 1,1-Dichloroethene	96	5.858 5.852 (0.637) 8729 0.10353 2.6(a)
20 Acetone	43	6.108 6.045 (0.664) 39708 0.44380 11(aQ)
21 Carbon disulfide	76	Compound Not Detected.

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj016.d Report Date: 06-May-2011 10:47

	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======================================	====	== ====== ====== ======================
22 Isopropanol	45	6.418 6.322 (0.698) 104069 1.43160 35(a)
23 Allyl chloride	41	Compound Not Detected.
25 Methylene chloride	49	6.808 6.802 (0.740) 5662 0.07753 1.9(a)
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	7.939 7.934 (0.863) 6945 0.05064 1.3(a)
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
36 Methyl Ethyl Ketone	72	8.932 8.857 (0.971) 1868 0.04593 1.1(aQM)
* 37 Bromochloromethane	128	9.199 9.199 (1.000) 902360 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	9.279 9.284 (1.009) 24599 0.14256 3.5(a)
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	9.519 9.524 (0.897) 4175089 22.3403 550
42 Carbon tetrachloride	117	9.727 9.727 (0.917) 17877 0.08669 2.1(aM)
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.607 10.608 (1.000) 4404631 10.0000
49 Trichloroethene	95	10.965 10.971 (1.034) 2758029 21.8761 540
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
58 Toluene	92	12.758 12.748 (0.866) 13704 0.06640 1.6(a)
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	13.511 13.516 (0.917) 29613 0.16243 4.0(a)
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	14.733 14.738 (1.000) 3935099 10.0000
66 Chlorobenzene	112	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.
72 Styrene	104	Compound Not Detected.
73 Bromoform	173	Compound Not Detected.
74 Isopropylbenzene	105	Compound Not Detected.
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
76 n-Propylbenzene	91	Compound Not Detected.

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj016.d Report Date: 06-May-2011 10:47 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Client ID: SL-118-20 Operator: pad

Stationary Phase: RTX-624 Sample Info: 200-5005-A-2 Lab Sample ID: 200-5005-2

Column Type: Capillary Date: 05-MAY-2011 23:16

Instrument: B.i Inj Vol: 200.0 Diameter: 0.32

Page 107 of 429

Lab Sample ID: 200-5005-2 Date: 05-MAY-2011 23:16

Client ID: SL-118-20 Instrument: B.i

Sample Info: 200-5005-A-2 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-2 Date: 05-MAY-2011 23:16

Client ID: SL-118-20 Instrument: B.i

Sample Info: 200-5005-A-2 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-2 Date: 05-MAY-2011 23:16

Client ID: SL-118-20 Instrument: B.i

Sample Info: 200-5005-A-2 Operator: pad

49 Trichloroethene

Data File: bkaj016.d Lab Sample ID: 200-5005-2

Inj. Date and Time: 05-MAY-2011 23:16

Instrument ID: B.i Client ID: SL-118-20

Compound: 36 Methyl Ethyl Ketone

CAS #: 78-93-3

Report Date: 05/06/2011

Processing Integration Results

RT: 8.93

Response: 1242

Amount: 0.030537

Conc: 0.754254

Manual Integration Results

RT: 8.93

Response: 1868

Amount: 0.045928

Conc: 1.13

File Uploaded By: pd

Manual Integration Reason: Baseline event

Data File: bkaj016.d Lab Sample ID: 200-5005-2

Inj. Date and Time: 05-MAY-2011 23:16

Instrument ID: B.i
Client ID: SL-118-20

Compound: 42 Carbon tetrachloride

CAS #: 56-23-5

Report Date: 05/06/2011

Processing Integration Results

RT: 9.52

Response: 570638

Amount: 2.77

Conc: 68.35

Manual Integration Results

RT: 9.73

Response: 17877

Amount: 0.086688

Conc: 2.14

File Uploaded By: pd

Manual Integration Reason: Analyte misidentified by the data system

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-5005-1

 SDG No.:
 200-5005

 Client Sample ID:
 SL-118-END
 Lab Sample ID:
 200-5005-3

 Matrix:
 Air
 Lab File ID:
 bkaj017.d

 Analysis Method:
 TO-15
 Date Collected:
 04/28/2011
 20:50

 Sample wt/vol:
 45 (mL)
 Date Analyzed:
 05/06/2011
 00:09

 Soil Aliquot Vol:
 Dilution Factor:
 20.1

 Soil Extract Vol.:
 GC Column:
 RTX-624
 ID:
 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	10	U	10	0.76
75-45-6	Freon 22	86.47	10	U	10	0.68
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	4.0	U	4.0	0.64
74-87-3	Chloromethane	50.49	10	U	10	0.26
106-97-8	n-Butane	58.12	10	U	10	0.22
75-01-4	Vinyl chloride	62.50	4.0	U	4.0	0.58
106-99-0	1,3-Butadiene	54.09	4.0	U	4.0	0.20
74-83-9	Bromomethane	94.94	4.0	U	4.0	0.24
75-00-3	Chloroethane	64.52	10	U	10	0.32
593-60-2	Bromoethene (Vinyl Bromide)	106.96	4.0	U	4.0	0.38
75-69-4	Trichlorofluoromethane	137.37	4.0	U	4.0	0.68
76-13-1	Freon TF	187.38	6.6		4.0	0.20
75-35-4	1,1-Dichloroethene	96.94	4.0	U	4.0	0.60
67-64-1	Acetone	58.08	100	U	100	0.90
67-63-0	Isopropyl alcohol	60.10	100	U	100	0.74
75-15-0	Carbon disulfide	76.14	10	U	10	1.3
107-05-1	3-Chloropropene	76.53	10	U	10	0.38
75-09-2	Methylene Chloride	84.93	10	U	10	0.26
75-65-0	tert-Butyl alcohol	74.12	100	U	100	1.4
1634-04-4	Methyl tert-butyl ether	88.15	4.0	U	4.0	0.32
156-60-5	trans-1,2-Dichloroethene	96.94	4.0	U	4.0	0.64
110-54-3	n-Hexane	86.17	4.0	U	4.0	0.52
75-34-3	1,1-Dichloroethane	98.96	4.0	U	4.0	0.70
78-93-3	Methyl Ethyl Ketone	72.11	10	U	10	0.34
156-59-2	cis-1,2-Dichloroethene	96.94	4.0	U	4.0	0.28
540-59-0	1,2-Dichloroethene, Total	96.94	4.0	U	4.0	0.28
67-66-3	Chloroform	119.38	4.0	U	4.0	0.62
109-99-9	Tetrahydrofuran	72.11	100	U	100	0.36
71-55-6	1,1,1-Trichloroethane	133.41	400		4.0	0.70
110-82-7	Cyclohexane	84.16	4.0	U	4.0	0.78
56-23-5	Carbon tetrachloride	153.81	4.0	U	4.0	0.66
540-84-1	2,2,4-Trimethylpentane	114.23	4.0	U	4.0	0.72
71-43-2	Benzene	78.11	4.0	U	4.0	0.36
107-06-2	1,2-Dichloroethane	98.96	4.0	U	4.0	0.62
142-82-5	n-Heptane	100.21	4.0	U	4.0	0.20

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-5005-1

 SDG No.:
 200-5005

 Client Sample ID:
 SL-118-END
 Lab Sample ID:
 200-5005-3

 Matrix:
 Air
 Lab File ID:
 bkaj017.d

 Analysis Method:
 TO-15
 Date Collected:
 04/28/2011
 20:50

 Sample wt/vol:
 45 (mL)
 Date Analyzed:
 05/06/2011
 00:09

 Soil Aliquot Vol:
 Dilution Factor:
 20.1

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	440		4.0	0.60
80-62-6	Methyl methacrylate	100.12	10	U	10	0.26
78-87-5	1,2-Dichloropropane	112.99	4.0	U	4.0	0.28
123-91-1	1,4-Dioxane	88.11	100	U	100	1.8
75-27-4	Bromodichloromethane	163.83	4.0	U	4.0	0.56
10061-01-5	cis-1,3-Dichloropropene	110.97	4.0	U	4.0	0.32
108-10-1	methyl isobutyl ketone	100.16	10	U	10	0.52
108-88-3	Toluene	92.14	4.0	U	4.0	0.36
10061-02-6	trans-1,3-Dichloropropene	110.97	4.0	U	4.0	0.40
79-00-5	1,1,2-Trichloroethane	133.41	4.0	U	4.0	0.38
127-18-4	Tetrachloroethene	165.83	4.0	U	4.0	0.22
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	10	U	10	0.78
124-48-1	Dibromochloromethane	208.29	4.0	U	4.0	0.42
106-93-4	1,2-Dibromoethane	187.87	4.0	U	4.0	0.36
108-90-7	Chlorobenzene	112.30	4.0	U	4.0	0.40
100-41-4	Ethylbenzene	106.17	4.0	U	4.0	0.44
179601-23-1	m,p-Xylene	106.17	10	U	10	0.96
95-47-6	Xylene, o-	106.17	4.0	U	4.0	0.44
1330-20-7	Xylene (total)	106.17	4.0	U	4.0	0.44
100-42-5	Styrene	104.15	4.0	U	4.0	0.60
75-25-2	Bromoform	252.75	4.0	U	4.0	0.38
98-82-8	Cumene	120.19	4.0	U	4.0	0.62
79-34-5	1,1,2,2-Tetrachloroethane	167.85	4.0	U	4.0	0.80
103-65-1	n-Propylbenzene	120.19	4.0	U	4.0	1.0
622-96-8	4-Ethyltoluene	120.20	4.0	U	4.0	0.92
108-67-8	1,3,5-Trimethylbenzene	120.20	4.0	U	4.0	1.0
95-49-8	2-Chlorotoluene	126.59	4.0	U	4.0	0.94
98-06-6	tert-Butylbenzene	134.22	4.0	U	4.0	0.94
95-63-6	1,2,4-Trimethylbenzene	120.20	4.0	U	4.0	1.0
135-98-8	sec-Butylbenzene	134.22	4.0	U	4.0	0.94
99-87-6	4-Isopropyltoluene	134.22	4.0	U	4.0	0.96
541-73-1	1,3-Dichlorobenzene	147.00	4.0	U	4.0	0.88
106-46-7	1,4-Dichlorobenzene	147.00	4.0	U	4.0	0.88
100-44-7	Benzyl chloride	126.58	4.0	U	4.0	0.92
104-51-8	n-Butylbenzene	134.22	4.0	U	4.0	1.1

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-END Lab Sample ID: 200-5005-3 Matrix: Air Lab File ID: bkaj017.d Analysis Method: TO-15 Date Collected: 04/28/2011 20:50 Sample wt/vol: 45(mL) Date Analyzed: 05/06/2011 00:09 Soil Aliquot Vol: Dilution Factor: 20.1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	4.0	U	4.0	0.96
120-82-1	1,2,4-Trichlorobenzene	181.45	10	U	10	1.0
87-68-3	Hexachlorobutadiene	260.76	4.0	U	4.0	1.3
91-20-3	Naphthalene	128.17	10	U	10	1.7

 Lab Name: TestAmerica Burlington
 Job No.: 200-5005-1

 SDG No.: 200-5005
 Lab Sample ID: 200-5005-3

 Client Sample ID: SL-118-END
 Lab File ID: bkaj017.d

 Matrix: Air
 Lab File ID: bkaj017.d

 Analysis Method: TO-15
 Date Collected: 04/28/2011 20:50

 Sample wt/vol: 45(mL)
 Date Analyzed: 05/06/2011 00:09

Soil Aliquot Vol: Dilution Factor: 20.1

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	50	U	50	3.8
75-45-6	Freon 22	86.47	36	U	36	2.4
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	28	U	28	4.5
74-87-3	Chloromethane	50.49	21	U	21	0.54
106-97-8	n-Butane	58.12	24	U	24	0.53
75-01-4	Vinyl chloride	62.50	10	U	10	1.5
106-99-0	1,3-Butadiene	54.09	8.9	U	8.9	0.44
74-83-9	Bromomethane	94.94	16	U	16	0.94
75-00-3	Chloroethane	64.52	27	U	27	0.85
593-60-2	Bromoethene (Vinyl Bromide)	106.96	18	U	18	1.7
75-69-4	Trichlorofluoromethane	137.37	23	U	23	3.8
76-13-1	Freon TF	187.38	51		31	1.5
75-35-4	1,1-Dichloroethene	96.94	16	U	16	2.4
67-64-1	Acetone	58.08	240	U	240	2.1
67-63-0	Isopropyl alcohol	60.10	250	U	250	1.8
75-15-0	Carbon disulfide	76.14	31	U	31	4.1
107-05-1	3-Chloropropene	76.53	31	U	31	1.2
75-09-2	Methylene Chloride	84.93	35	U	35	0.91
75-65-0	tert-Butyl alcohol	74.12	300	U	300	4.3
1634-04-4	Methyl tert-butyl ether	88.15	14	U	14	1.2
156-60-5	trans-1,2-Dichloroethene	96.94	16	U	16	2.6
110-54-3	n-Hexane	86.17	14	U	14	1.8
75-34-3	1,1-Dichloroethane	98.96	16	U	16	2.8
78-93-3	Methyl Ethyl Ketone	72.11	30	U	30	1.0
156-59-2	cis-1,2-Dichloroethene	96.94	16	U	16	1.1
540-59-0	1,2-Dichloroethene, Total	96.94	16	U	16	1.1
67-66-3	Chloroform	119.38	20	U	20	3.0
109-99-9	Tetrahydrofuran	72.11	300	U	300	1.1
71-55-6	1,1,1-Trichloroethane	133.41	2200		22	3.8
110-82-7	Cyclohexane	84.16	14	U	14	2.7
56-23-5	Carbon tetrachloride	153.81	25	U	25	4.2
540-84-1	2,2,4-Trimethylpentane	114.23	19	U	19	3.4
71-43-2	Benzene	78.11	13	U	13	1.2
107-06-2	1,2-Dichloroethane	98.96	16	U	16	2.5
142-82-5	n-Heptane	100.21	16	U	16	0.82

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-118-END Lab Sample ID: 200-5005-3

Matrix: Air Lab File ID: bkaj017.d

Analysis Method: TO-15 Date Collected: 04/28/2011 20:50

Sample wt/vol: 45(mL) Date Analyzed: 05/06/2011 00:09

Soil Aliquot Vol: Dilution Factor: 20.1

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	2400		22	3.2
80-62-6	Methyl methacrylate	100.12	41	U	41	1.1
78-87-5	1,2-Dichloropropane	112.99	19	U	19	1.3
123-91-1	1,4-Dioxane	88.11	360	U	360	6.4
75-27-4	Bromodichloromethane	163.83	27	U	27	3.8
10061-01-5	cis-1,3-Dichloropropene	110.97	18	U	18	1.5
108-10-1	methyl isobutyl ketone	100.16	41	U	41	2.1
108-88-3	Toluene	92.14	15	U	15	1.4
10061-02-6	trans-1,3-Dichloropropene	110.97	18	U	18	1.8
79-00-5	1,1,2-Trichloroethane	133.41	22	U	22	2.1
127-18-4	Tetrachloroethene	165.83	27	U	27	1.5
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	41	U	41	3.2
124-48-1	Dibromochloromethane	208.29	34	U	34	3.6
106-93-4	1,2-Dibromoethane	187.87	31	U	31	2.8
108-90-7	Chlorobenzene	112.30	18	U	18	1.8
100-41-4	Ethylbenzene	106.17	17	U	17	1.9
179601-23-1	m,p-Xylene	106.17	44	U	44	4.2
95-47-6	Xylene, o-	106.17	17	U	17	1.9
1330-20-7	Xylene (total)	106.17	17	U	17	1.9
100-42-5	Styrene	104.15	17	U	17	2.6
75-25-2	Bromoform	252.75	42	U	42	3.9
98-82-8	Cumene	120.19	20	U	20	3.1
79-34-5	1,1,2,2-Tetrachloroethane	167.85	28	U	28	5.5
103-65-1	n-Propylbenzene	120.19	20	U	20	4.9
622-96-8	4-Ethyltoluene	120.20	20	U	20	4.5
108-67-8	1,3,5-Trimethylbenzene	120.20	20	U	20	5.0
95-49-8	2-Chlorotoluene	126.59	21	U	21	4.9
98-06-6	tert-Butylbenzene	134.22	22	U	22	5.2
95-63-6	1,2,4-Trimethylbenzene	120.20	20	U	20	5.1
135-98-8	sec-Butylbenzene	134.22	22	U	22	5.2
99-87-6	4-Isopropyltoluene	134.22	22	U	22	5.3
541-73-1	1,3-Dichlorobenzene	147.00	24	U	24	5.3
106-46-7	1,4-Dichlorobenzene	147.00	24	U	24	5.3
100-44-7	Benzyl chloride	126.58	21	U	21	4.8
104-51-8	n-Butylbenzene	134.22	22	U	22	6.1

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-118-END Lab Sample ID: 200-5005-3 Matrix: Air Lab File ID: bkaj017.d Analysis Method: TO-15 Date Collected: 04/28/2011 20:50 Sample wt/vol: 45(mL) Date Analyzed: 05/06/2011 00:09 Soil Aliquot Vol: Dilution Factor: 20.1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	24	U	24	5.8
120-82-1	1,2,4-Trichlorobenzene	181.45	75	U	75	7.5
87-68-3	Hexachlorobutadiene	260.76	43	U	43	14
91-20-3	Naphthalene	128.17	53	U	53	9.1

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj017.d Page 1

Report Date: 06-May-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-3 Client Smp ID: SL-118-END Inj Date : 06-MAY-2011 00:09

Operator : pad Smp Info : 200-5005-A-3 Inst ID: B.i

Misc Info : 45,20.1, all74 cdf4.53

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 3

Dil Factor: 20.10000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
DF Uf Vo Vf	20.10000 1.00000 45.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
2 Dichlorodifluoromethane	85	3.040 3.040 (0.330) 4918 0.03973 0.80(a)
3 Chlorodifluoromethane	51	3.072 3.072 (0.334) 24948 0.48540 9.8(aM)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.
5 Chloromethane	50	3.344 3.339 (0.364) 831 0.03226 0.65(a)
6 Butane	43	Compound Not Detected.
7 Vinyl chloride	62	Compound Not Detected.
8 1,3-Butadiene	54	Compound Not Detected.
9 Bromomethane	94	Compound Not Detected.
10 Chloroethane	64	Compound Not Detected.
12 Vinyl bromide	106	Compound Not Detected.
13 Trichlorofluoromethane	101	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794 5.788 (0.630) 55611 0.33053 6.6
19 1,1-Dichloroethene	96	5.863 5.852 (0.637) 7618 0.09424 1.9(a)
20 Acetone	43	6.103 6.045 (0.663) 82059 0.95661 19(a)
21 Carbon disulfide	76	Compound Not Detected.

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj017.d Report Date: 06-May-2011 10:47

	QUANT SIG			ON-COLUMN	FINAL
Compounds	MASS	RT EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====			======	======
22 Isopropanol	45	6.418 6.322 (0.698)	169251	2.42846	49(a)
23 Allyl chloride	41	Compound Not Detected.			
25 Methylene chloride	49	6.813 6.802 (0.741)	6382	0.09115	1.8(a)
26 Tert-butyl alcohol	59	Compound Not Detected.			
27 Methyl tert-butyl ether	73	Compound Not Detected.			
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.			
30 n-Hexane	57	Compound Not Detected.			
31 1,1-Dichloroethane	63	7.929 7.934 (0.862)	8087	0.06151	1.2(a)
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.			
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.			
36 Methyl Ethyl Ketone	72	8.932 8.857 (0.971)	3941	0.10107	2.0(aQ)
* 37 Bromochloromethane	128	9.199 9.199 (1.000)	865128	10.0000	
38 Tetrahydrofuran	42	Compound Not Detected.			
39 Chloroform	83	9.284 9.284 (1.009)	24311	0.14695	3.0(a)
40 Cyclohexane	84	Compound Not Detected.			
41 1,1,1-Trichloroethane	97	9.519 9.524 (0.897)	3622241	20.0881	400
42 Carbon tetrachloride	117	9.727 9.727 (0.917)	17186	0.08637	1.7(aM)
43 2,2,4-Trimethylpentane	57	Compound Not Detected.			
44 Benzene	78	10.058 10.053 (0.948)	5522	0.02133	0.43(a)
45 1,2-Dichloroethane	62	Compound Not Detected.			
46 n-Heptane	43	Compound Not Detected.			
* 47 1,4-Difluorobenzene	114	10.608 10.608 (1.000)	4249837	10.0000	
49 Trichloroethene	95	10.965 10.971 (1.034)	2692278	22.1323	440
50 1,2-Dichloropropane	63	Compound Not Detected.			
51 Methyl methacrylate	69	Compound Not Detected.			
53 1,4-Dioxane	88	Compound Not Detected.			
54 Bromodichloromethane	83	Compound Not Detected.			
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.			
56 Methyl isobutyl ketone	43	Compound Not Detected.			
58 Toluene	92	12.758 12.748 (0.866)	23604	0.11835	2.4(a)
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.			
60 1,1,2-Trichloroethane	83	Compound Not Detected.			
61 Tetrachloroethene	166	13.522 13.516 (0.918)	30598	0.17367	3.5(a)
62 2-Hexanone	43	Compound Not Detected.			
63 Dibromochloromethane	129	Compound Not Detected.			
64 1,2-Dibromoethane	107	Compound Not Detected.			
* 65 Chlorobenzene-d5	117	14.733 14.738 (1.000)	3802954	10.0000	
66 Chlorobenzene	112	Compound Not Detected.			
68 Ethylbenzene	91	Compound Not Detected.			
69 Xylene (m,p)	106	Compound Not Detected.			
M 70 Xylenes, Total	106	Compound Not Detected.			
71 Xylene (o)	106	Compound Not Detected.			
72 Styrene	104	Compound Not Detected.			
73 Bromoform	173	Compound Not Detected.			
74 Isopropylbenzene	105	Compound Not Detected.			
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.			
76 n-Propylbenzene	91	Compound Not Detected.			

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj017.d Report Date: 06-May-2011 10:47 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONS	E (ppb v/v) (ppb v/v)
	====	== ====== ======	= ======
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Client ID: SL-118-END
Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-3
Lab Sample ID: 200-5005-3

Date: 06-MAY-2011 00:09

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 122 of 429

Lab Sample ID: 200-5005-3 Date: 06-MAY-2011 00:09

Client ID: SL-118-END Instrument: B.i

Sample Info: 200-5005-A-3 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-3 Date: 06-MAY-2011 00:09

Client ID: SL-118-END Instrument: B.i

Sample Info: 200-5005-A-3 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-3 Date: 06-MAY-2011 00:09

Client ID: SL-118-END Instrument: B.i

Sample Info: 200-5005-A-3 Operator: pad

49 Trichloroethene

Manual Integration Report

Data File: bkaj017.d Lab Sample ID: 200-5005-3

Inj. Date and Time: 06-MAY-2011 00:09

Instrument ID: B.i Client ID: SL-118-END

3 Chlorodifluoromethane Compound:

CAS #: 75-45-6

Report Date: 05/06/2011

Processing Integration Results

Not Detected

Expected RT: 3.07

Manual Integration Results

3.07 RT:

Response: 24948

Amount: 0.485399

Conc: 9.76

File Uploaded By: pd

Manual Integration Reason: Peak not found by the data system

Manual Integration Report

Data File: bkaj017.d Lab Sample ID: 200-5005-3

Inj. Date and Time: 06-MAY-2011 00:09

Instrument ID: B.i Client ID: SL-118-END

Compound: 42 Carbon tetrachloride

CAS #: 56-23-5

Report Date: 05/06/2011

Processing Integration Results

RT: 9.52

Response: 488997

Amount: 2.46

Conc: 49.40

Manual Integration Results

RT: 9.73

Response: 17186

Amount: 0.086373

Conc: 1.74

File Uploaded By: pd

Manual Integration Reason: Analyte misidentified by the data system

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-5 Lab Sample ID: 200-5005-4

Matrix: Air Lab File ID: bkaj024.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:21

Sample wt/vol: 58(mL) Date Analyzed: 05/06/2011 09:23

Soil Aliquot Vol: Dilution Factor: 678

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	340	U	340	26
75-45-6	Freon 22	86.47	340	U	340	23
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	140	Ū	140	22
74-87-3	Chloromethane	50.49	340	U	340	8.8
106-97-8	n-Butane	58.12	340	U	340	7.5
75-01-4	Vinyl chloride	62.50	140	U	140	20
106-99-0	1,3-Butadiene	54.09	140	U	140	6.8
74-83-9	Bromomethane	94.94	140	U	140	8.1
75-00-3	Chloroethane	64.52	340	U	340	11
593-60-2	Bromoethene (Vinyl Bromide)	106.96	140	U	140	13
75-69-4	Trichlorofluoromethane	137.37	140	U	140	23
76-13-1	Freon TF	187.38	140	U	140	6.8
75-35-4	1,1-Dichloroethene	96.94	140	U	140	20
67-64-1	Acetone	58.08	3400	U	3400	31
67-63-0	Isopropyl alcohol	60.10	3400	U	3400	25
75-15-0	Carbon disulfide	76.14	340	U	340	45
107-05-1	3-Chloropropene	76.53	340	U	340	13
75-09-2	Methylene Chloride	84.93	340	U	340	8.8
75-65-0	tert-Butyl alcohol	74.12	3400	U	3400	48
1634-04-4	Methyl tert-butyl ether	88.15	140	U	140	11
156-60-5	trans-1,2-Dichloroethene	96.94	330		140	22
110-54-3	n-Hexane	86.17	140	U	140	18
75-34-3	1,1-Dichloroethane	98.96	140	U	140	2.4
78-93-3	Methyl Ethyl Ketone	72.11	340	U	340	12
156-59-2	cis-1,2-Dichloroethene	96.94	780		140	9.5
540-59-0	1,2-Dichloroethene, Total	96.94	1100		140	9.5
67-66-3	Chloroform	119.38	140	U	140	21
109-99-9	Tetrahydrofuran	72.11	3400	U	3400	12
71-55-6	1,1,1-Trichloroethane	133.41	200		140	24
110-82-7	Cyclohexane	84.16	140	U	140	26
56-23-5	Carbon tetrachloride	153.81	140	U	140	22
540-84-1	2,2,4-Trimethylpentane	114.23	140	U	140	24
71-43-2	Benzene	78.11	140	U	140	12
107-06-2	1,2-Dichloroethane	98.96	140	U	140	21
142-82-5	n-Heptane	100.21	140	U	140	6.8

 Lab Name: TestAmerica Burlington
 Job No.: 200-5005-1

 SDG No.: 200-5005
 Lab Sample ID: 200-5005-4

 Client Sample ID: SL-084-5
 Lab File ID: bkaj024.d

 Matrix: Air
 Lab File ID: bkaj024.d

 Analysis Method: TO-15
 Date Collected: 04/29/2011 11:21

 Sample wt/vol: 58 (mL)
 Date Analyzed: 05/06/2011 09:23

 Soil Aliquot Vol:
 Dilution Factor: 678

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	21000		140	20
80-62-6	Methyl methacrylate	100.12	340	U	340	8.8
78-87-5	1,2-Dichloropropane	112.99	140	U	140	9.5
123-91-1	1,4-Dioxane	88.11	3400	U	3400	60
75-27-4	Bromodichloromethane	163.83	140	U	140	19
10061-01-5	cis-1,3-Dichloropropene	110.97	140	U	140	11
108-10-1	methyl isobutyl ketone	100.16	340	U	340	18
108-88-3	Toluene	92.14	140	U	140	12
10061-02-6	trans-1,3-Dichloropropene	110.97	140	U	140	14
79-00-5	1,1,2-Trichloroethane	133.41	140	U	140	13
127-18-4	Tetrachloroethene	165.83	180		140	7.5
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	340	U	340	26
124-48-1	Dibromochloromethane	208.29	140	U	140	14
106-93-4	1,2-Dibromoethane	187.87	140	U	140	12
108-90-7	Chlorobenzene	112.30	140	U	140	14
100-41-4	Ethylbenzene	106.17	140	U	140	15
179601-23-1	m,p-Xylene	106.17	340	U	340	33
95-47-6	Xylene, o-	106.17	140	U	140	15
1330-20-7	Xylene (total)	106.17	140	U	140	15
100-42-5	Styrene	104.15	140	U	140	20
75-25-2	Bromoform	252.75	140	U	140	13
98-82-8	Cumene	120.19	140	U	140	21
79-34-5	1,1,2,2-Tetrachloroethane	167.85	140	U	140	27
103-65-1	n-Propylbenzene	120.19	140	U	140	34
622-96-8	4-Ethyltoluene	120.20	140	U	140	31
108-67-8	1,3,5-Trimethylbenzene	120.20	140	U	140	35
95-49-8	2-Chlorotoluene	126.59	140	U	140	32
98-06-6	tert-Butylbenzene	134.22	140	U	140	32
95-63-6	1,2,4-Trimethylbenzene	120.20	140	U	140	35
135-98-8	sec-Butylbenzene	134.22	140	U	140	32
99-87-6	4-Isopropyltoluene	134.22	140	U	140	33
541-73-1	1,3-Dichlorobenzene	147.00	140	U	140	30
106-46-7	1,4-Dichlorobenzene	147.00	140	U	140	30
100-44-7	Benzyl chloride	126.58	140	U	140	31
104-51-8	n-Butylbenzene	134.22	140	U	140	37

% Moisture:

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-5 Lab Sample ID: 200-5005-4 Matrix: Air Lab File ID: bkaj024.d Analysis Method: TO-15 Date Collected: 04/29/2011 11:21 Sample wt/vol: 58(mL) Date Analyzed: 05/06/2011 09:23 Soil Aliquot Vol: Dilution Factor: 678 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	140	U	140	33
120-82-1	1,2,4-Trichlorobenzene	181.45	340	U	340	34
87-68-3	Hexachlorobutadiene	260.76	140	U	140	44
91-20-3	Naphthalene	128.17	340	U	340	58

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-5 Lab Sample ID: 200-5005-4

Matrix: Air Lab File ID: bkaj024.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:21

Sample wt/vol: 58(mL) Date Analyzed: 05/06/2011 09:23

Soil Aliquot Vol: Dilution Factor: 678

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	1700	U	1700	130
75-45-6	Freon 22	86.47	1200	U	1200	82
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	950	U	950	150
74-87-3	Chloromethane	50.49	700	U	700	18
106-97-8	n-Butane	58.12	810	U	810	18
75-01-4	Vinyl chloride	62.50	350	U	350	50
106-99-0	1,3-Butadiene	54.09	300	U	300	15
74-83-9	Bromomethane	94.94	530	U	530	32
75-00-3	Chloroethane	64.52	890	U	890	29
593-60-2	Bromoethene (Vinyl Bromide)	106.96	590	Ū	590	56
75-69-4	Trichlorofluoromethane	137.37	760	U	760	130
76-13-1	Freon TF	187.38	1000	U	1000	52
75-35-4	1,1-Dichloroethene	96.94	540	U	540	81
67-64-1	Acetone	58.08	8100	U	8100	72
67-63-0	Isopropyl alcohol	60.10	8300	U	8300	62
75-15-0	Carbon disulfide	76.14	1100	U	1100	140
107-05-1	3-Chloropropene	76.53	1100	U	1100	40
75-09-2	Methylene Chloride	84.93	1200	U	1200	31
75-65-0	tert-Butyl alcohol	74.12	10000	U	10000	150
1634-04-4	Methyl tert-butyl ether	88.15	490	U	490	39
156-60-5	trans-1,2-Dichloroethene	96.94	1300		540	86
110-54-3	n-Hexane	86.17	480	U	480	62
75-34-3	1,1-Dichloroethane	98.96	550	U	550	96
78-93-3	Methyl Ethyl Ketone	72.11	1000	U	1000	34
156-59-2	cis-1,2-Dichloroethene	96.94	3100		540	38
540-59-0	1,2-Dichloroethene, Total	96.94	4400		540	38
67-66-3	Chloroform	119.38	660	U	660	100
109-99-9	Tetrahydrofuran	72.11	10000	U	10000	36
71-55-6	1,1,1-Trichloroethane	133.41	1100		740	130
110-82-7	Cyclohexane	84.16	470	U	470	91
56-23-5	Carbon tetrachloride	153.81	850	U	850	140
540-84-1	2,2,4-Trimethylpentane	114.23	630	U	630	110
71-43-2	Benzene	78.11	430	U	430	39
107-06-2	1,2-Dichloroethane	98.96	550	U	550	85
142-82-5	n-Heptane	100.21	560	U	560	28

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-5 Lab Sample ID: 200-5005-4

Matrix: Air Lab File ID: bkaj024.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:21

Sample wt/vol: 58(mL) Date Analyzed: 05/06/2011 09:23

Soil Aliquot Vol: Dilution Factor: 678

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	110000		730	110
80-62-6	Methyl methacrylate	100.12	1400	U	1400	36
78-87-5	1,2-Dichloropropane	112.99	630	U	630	44
123-91-1	1,4-Dioxane	88.11	12000	U	12000	220
75-27-4	Bromodichloromethane	163.83	910	U	910	130
10061-01-5	cis-1,3-Dichloropropene	110.97	620	U	620	49
108-10-1	methyl isobutyl ketone	100.16	1400	U	1400	72
108-88-3	Toluene	92.14	510	U	510	46
10061-02-6	trans-1,3-Dichloropropene	110.97	620	U	620	62
79-00-5	1,1,2-Trichloroethane	133.41	740	U	740	70
127-18-4	Tetrachloroethene	165.83	1200		920	51
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	1400	U	1400	110
124-48-1	Dibromochloromethane	208.29	1200	U	1200	120
106-93-4	1,2-Dibromoethane	187.87	1000	U	1000	94
108-90-7	Chlorobenzene	112.30	620	U	620	62
100-41-4	Ethylbenzene	106.17	590	U	590	65
179601-23-1	m,p-Xylene	106.17	1500	U	1500	140
95-47-6	Xylene, o-	106.17	590	U	590	65
1330-20-7	Xylene (total)	106.17	590	U	590	65
100-42-5	Styrene	104.15	580	U	580	87
75-25-2	Bromoform	252.75	1400	U	1400	130
98-82-8	Cumene	120.19	670	U	670	100
79-34-5	1,1,2,2-Tetrachloroethane	167.85	930	U	930	190
103-65-1	n-Propylbenzene	120.19	670	U	670	170
622-96-8	4-Ethyltoluene	120.20	670	U	670	150
108-67-8	1,3,5-Trimethylbenzene	120.20	670	U	670	170
95-49-8	2-Chlorotoluene	126.59	700	U	700	160
98-06-6	tert-Butylbenzene	134.22	740	U	740	170
95-63-6	1,2,4-Trimethylbenzene	120.20	670	U	670	170
135-98-8	sec-Butylbenzene	134.22	740	U	740	170
99-87-6	4-Isopropyltoluene	134.22	740	U	740	180
541-73-1	1,3-Dichlorobenzene	147.00	820	U	820	180
106-46-7	1,4-Dichlorobenzene	147.00	820	U	820	180
100-44-7	Benzyl chloride	126.58	700	U	700	160
104-51-8	n-Butylbenzene	134.22	740	U	740	200

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-5 Lab Sample ID: 200-5005-4 Matrix: Air Lab File ID: bkaj024.d Analysis Method: TO-15 Date Collected: 04/29/2011 11:21 Sample wt/vol: 58(mL) Date Analyzed: 05/06/2011 09:23 Soil Aliquot Vol: Dilution Factor: 678 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	820	U	820	200
120-82-1	1,2,4-Trichlorobenzene	181.45	2500	U	2500	250
87-68-3	Hexachlorobutadiene	260.76	1400	U	1400	470
91-20-3	Naphthalene	128.17	1800	U	1800	310

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj024.d Page 1

Report Date: 09-May-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-4 Client Smp ID: SL-084-5

Inj Date : 06-MAY-2011 09:23

Operator : pad Inst ID: B.i

Smp Info : 200-5005-A-4

Misc Info : 58,678, all74 cdf196.48

Comment :

Method : /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 4

Dil Factor: 678.00000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	678.00000 1.00000 58.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======	====	== ====== ====== ======================
2 Dichlorodifluoromethane	85	Compound Not Detected.
3 Chlorodifluoromethane	51	Compound Not Detected.
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.
5 Chloromethane	50	Compound Not Detected.
6 Butane	43	Compound Not Detected.
7 Vinyl chloride	62	Compound Not Detected.
8 1,3-Butadiene	54	Compound Not Detected.
9 Bromomethane	94	Compound Not Detected.
10 Chloroethane	64	Compound Not Detected.
12 Vinyl bromide	106	Compound Not Detected.
13 Trichlorofluoromethane	101	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794 5.788 (0.630) 1791 0.01329 9.0(aQM)
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	6.114 6.045 (0.665) 8075 0.11752 80(a)
21 Carbon disulfide	76	Compound Not Detected.

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj024.d Report Date: 09-May-2011 10:07

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	=====	=====		======	======
22 Isopropanol	45	Com	pound No	t Detected	•		
23 Allyl chloride	41	Com	pound No	t Detected	•		
25 Methylene chloride	49	6.797	6.802	(0.739)	3835	0.06838	46(aQ)
26 Tert-butyl alcohol	59	Com	pound No	t Detected			
27 Methyl tert-butyl ether	73	Com	pound No	t Detected			
28 1,2-Dichloroethene (trans)	61	7.197	7.203	(0.783)	40170	0.48110	330
30 n-Hexane	57	Com	pound No	t Detected	•		
31 1,1-Dichloroethane	63	Com	pound No	t Detected	•		
M 33 1,2-Dichloroethene,Total	61				124082	1.62720	1100
34 1,2-Dichloroethene (cis)	96	8.830	8.836	(0.961)	83912	1.14610	780
36 Methyl Ethyl Ketone	72	Com	pound No	t Detected			
* 37 Bromochloromethane	128	9.193	9.199	(1.000)	692972	10.0000	
38 Tetrahydrofuran	42	Com	pound No	t Detected			
39 Chloroform	83	Com	pound No	t Detected			
40 Cyclohexane	84	Com	pound No	t Detected	. •		
41 1,1,1-Trichloroethane	97	9.514	9.524	(0.897)	43719	0.30006	200
42 Carbon tetrachloride	117	Com	pound No	t Detected			
43 2,2,4-Trimethylpentane	57	Com	pound No	t Detected			
44 Benzene	78	Com	pound No	t Detected			
45 1,2-Dichloroethane	62	Com	pound No	t Detected			
46 n-Heptane	43	Com	pound No	t Detected	. •		
* 47 1,4-Difluorobenzene	114	10.602	10.608	(1.000)	3433917	10.0000	
49 Trichloroethene	95	10.960	10.971	(1.034)	3015805	30.6827	21000
50 1,2-Dichloropropane	63	Com	pound No	t Detected			
51 Methyl methacrylate	69			t Detected			
53 1,4-Dioxane	88	Com	pound No	t Detected	. •		
54 Bromodichloromethane	83			t Detected			
55 1,3-Dichloropropene (cis)	75			t Detected			
56 Methyl isobutyl ketone	43			t Detected			
58 Toluene	92			t Detected			
59 1,3-Dichloropropene (trans)) 75			t Detected			
60 1,1,2-Trichloroethane	83		=	t Detected			
61 Tetrachloroethene	166		13.516		37327	0.26186	180
62 2-Hexanone	43			t Detected			
63 Dibromochloromethane	129			t Detected			
64 1,2-Dibromoethane	107		-	t Detected			
* 65 Chlorobenzene-d5	117		14.738		3076835	10.0000	
66 Chlorobenzene	112			t Detected		10.0000	
68 Ethylbenzene	91		-	t Detected			
69 Xylene (m,p)	106		_	t Detected			
M 70 Xylenes, Total	106			t Detected			
71 Xylene (o)	106		_	t Detected			
72 Styrene	104		_	t Detected			
73 Bromoform	173		-	t Detected t Detected			
74 Isopropylbenzene	105		_	t Detected t Detected			
75 1,1,2,2-Tetrachloroethane	83		_	t Detected t Detected			
76 n-Propylbenzene	91		-	t Detected t Detected			
'o n-stobythenzene	31	COIII	Ponin NO.	. Detected	•		

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj024.d Report Date: 09-May-2011 10:07 Page 3

		CONCENTRATIONS
QUANT SIG		ON-COLUMN FINAL
MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
====	== ====== ======	======
105	Compound Not Detected.	
91	Compound Not Detected.	
105	Compound Not Detected.	
119	Compound Not Detected.	
105	Compound Not Detected.	
105	Compound Not Detected.	
119	Compound Not Detected.	
146	Compound Not Detected.	
146	Compound Not Detected.	
91	Compound Not Detected.	
91	Compound Not Detected.	
146	Compound Not Detected.	
180	Compound Not Detected.	
225	Compound Not Detected.	
128	Compound Not Detected.	
	MASS ==== 105 91 105 119 105 105 119 146 146 146 91 91 146 180	MASS RT EXP RT REL RT RESPONSE ==== ===============================

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Client ID: SL-084-5 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-

Sample Info: 200-5005-A-4
Lab Sample ID: 200-5005-4

Date: 06-MAY-2011 09:23

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 137 of 429

Lab Sample ID: 200-5005-4 Date: 06-MAY-2011 09:23

Client ID: SL-084-5 Instrument: B.i

Sample Info: 200-5005-A-4 Operator: pad

28 1,2-Dichloroethene (trans)

Lab Sample ID: 200-5005-4 Date: 06-MAY-2011 09:23

Client ID: SL-084-5 Instrument: B.i

Sample Info: 200-5005-A-4 Operator: pad

34 1,2-Dichloroethene (cis)

Lab Sample ID: 200-5005-4 Date: 06-MAY-2011 09:23

Client ID: SL-084-5 Instrument: B.i

Sample Info: 200-5005-A-4 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-4 Date: 06-MAY-2011 09:23

Client ID: SL-084-5 Instrument: B.i

Sample Info: 200-5005-A-4 Operator: pad

49 Trichloroethene

Lab Sample ID: 200-5005-4 Date: 06-MAY-2011 09:23

Client ID: SL-084-5 Instrument: B.i

Sample Info: 200-5005-A-4 Operator: pad

61 Tetrachloroethene

Manual Integration Report

Data File: bkaj024.d Lab Sample ID: 200-5005-4

Inj. Date and Time: 06-MAY-2011 09:23

Instrument ID: B.i
Client ID: SL-084-5

Compound: 17 1,1,2-Trichloro-1,2,2-trifluo

CAS #: 76-13-1

Report Date: 05/09/2011

Processing Integration Results

RT: 5.79

Response: 1363

Amount: 0.010114

Conc: 6.86

Manual Integration Results

RT: 5.79

Response: 1791

Amount: 0.013289

Conc: 9.01

File Uploaded By: cmp

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5

Matrix: Air Lab File ID: bkak008.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:34

Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02

Soil Aliquot Vol: Dilution Factor: 674

Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	340	U	340	26
75-45-6	Freon 22	86.47	340	U	340	23
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	130	U	130	22
74-87-3	Chloromethane	50.49	340	U	340	8.8
106-97-8	n-Butane	58.12	340	U	340	7.4
75-01-4	Vinyl chloride	62.50	130	U	130	20
106-99-0	1,3-Butadiene	54.09	130	U	130	6.7
74-83-9	Bromomethane	94.94	130	U	130	8.1
75-00-3	Chloroethane	64.52	340	U	340	11
593-60-2	Bromoethene (Vinyl Bromide)	106.96	130	U	130	13
75-69-4	Trichlorofluoromethane	137.37	130	U	130	23
76-13-1	Freon TF	187.38	130	U	130	6.7
75-35-4	1,1-Dichloroethene	96.94	130	U	130	20
67-64-1	Acetone	58.08	3400	U	3400	30
67-63-0	Isopropyl alcohol	60.10	3400	U	3400	25
75-15-0	Carbon disulfide	76.14	340	U	340	44
107-05-1	3-Chloropropene	76.53	340	U	340	13
75-09-2	Methylene Chloride	84.93	340	U	340	8.8
75-65-0	tert-Butyl alcohol	74.12	3400	U	3400	48
1634-04-4	Methyl tert-butyl ether	88.15	130	U	130	11
156-60-5	trans-1,2-Dichloroethene	96.94	260		130	22
110-54-3	n-Hexane	86.17	130	U	130	18
75-34-3	1,1-Dichloroethane	98.96	130	U	130	24
78-93-3	Methyl Ethyl Ketone	72.11	340	U	340	11
156-59-2	cis-1,2-Dichloroethene	96.94	720		130	9.4
540-59-0	1,2-Dichloroethene, Total	96.94	980		130	9.4
67-66-3	Chloroform	119.38	130	U	130	21
109-99-9	Tetrahydrofuran	72.11	3400	U	3400	12
71-55-6	1,1,1-Trichloroethane	133.41	130	U	130	24
110-82-7	Cyclohexane	84.16	130	U	130	26
56-23-5	Carbon tetrachloride	153.81	130	U	130	22
540-84-1	2,2,4-Trimethylpentane	114.23	130	U	130	24
71-43-2	Benzene	78.11	130	U	130	12
107-06-2	1,2-Dichloroethane	98.96	130	U	130	21
142-82-5	n-Heptane	100.21	130	U	130	6.7

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5

Matrix: Air Lab File ID: bkak008.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:34

Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02

Soil Aliquot Vol: Dilution Factor: 674

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	18000		130	20
80-62-6	Methyl methacrylate	100.12	340	U	340	8.8
78-87-5	1,2-Dichloropropane	112.99	130	U	130	9.4
123-91-1	1,4-Dioxane	88.11	3400	U	3400	5.9
75-27-4	Bromodichloromethane	163.83	130	U	130	19
10061-01-5	cis-1,3-Dichloropropene	110.97	130	U	130	11
108-10-1	methyl isobutyl ketone	100.16	340	U	340	18
108-88-3	Toluene	92.14	130	U	130	12
10061-02-6	trans-1,3-Dichloropropene	110.97	130	U	130	13
79-00-5	1,1,2-Trichloroethane	133.41	130	U	130	13
127-18-4	Tetrachloroethene	165.83	130	U	130	7.4
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	340	U	340	20
124-48-1	Dibromochloromethane	208.29	130	U	130	1
106-93-4	1,2-Dibromoethane	187.87	130	U	130	1:
108-90-7	Chlorobenzene	112.30	130	U	130	1:
100-41-4	Ethylbenzene	106.17	130	U	130	1
179601-23-1	m,p-Xylene	106.17	340	U	340	32
95-47-6	Xylene, o-	106.17	130	U	130	1.
1330-20-7	Xylene (total)	106.17	130	U	130	1.
100-42-5	Styrene	104.15	130	U	130	2
75-25-2	Bromoform	252.75	130	U	130	1
98-82-8	Cumene	120.19	130	U	130	21
79-34-5	1,1,2,2-Tetrachloroethane	167.85	130	U	130	2
103-65-1	n-Propylbenzene	120.19	130	U	130	34
622-96-8	4-Ethyltoluene	120.20	130	U	130	3:
108-67-8	1,3,5-Trimethylbenzene	120.20	130	U	130	3,
95-49-8	2-Chlorotoluene	126.59	130	U	130	3.
98-06-6	tert-Butylbenzene	134.22	130	U	130	3:
95-63-6	1,2,4-Trimethylbenzene	120.20	130	U	130	3
135-98-8	sec-Butylbenzene	134.22	130	U	130	3.
99-87-6	4-Isopropyltoluene	134.22	130	U	130	3.
541-73-1	1,3-Dichlorobenzene	147.00	130	U	130	3
106-46-7	1,4-Dichlorobenzene	147.00	130	U	130	3
100-44-7	Benzyl chloride	126.58	130	U	130	3
104-51-8	n-Butylbenzene	134.22	130	U	130	3

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5 Matrix: Air Lab File ID: bkak008.d Analysis Method: TO-15 Date Collected: 04/29/2011 11:34 Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02 Soil Aliquot Vol: Dilution Factor: 674 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	130	U	130	32
120-82-1	1,2,4-Trichlorobenzene	181.45	340	U	340	34
87-68-3	Hexachlorobutadiene	260.76	130	U	130	44
91-20-3	Naphthalene	128.17	340	U	340	58

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5

Matrix: Air Lab File ID: bkak008.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:34

Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02

Soil Aliquot Vol: Dilution Factor: 674

Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	1700	U	1700	130
75-45-6	Freon 22	86.47	1200	U	1200	81
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	940	U	940	150
74-87-3	Chloromethane	50.49	700	U	700	18
106-97-8	n-Butane	58.12	800	U	800	18
75-01-4	Vinyl chloride	62.50	340	U	340	50
106-99-0	1,3-Butadiene	54.09	300	U	300	15
74-83-9	Bromomethane	94.94	520	U	520	31
75-00-3	Chloroethane	64.52	890	U	890	28
593-60-2	Bromoethene (Vinyl Bromide)	106.96	590	U	590	56
75-69-4	Trichlorofluoromethane	137.37	760	U	760	130
76-13-1	Freon TF	187.38	1000	U	1000	52
75-35-4	1,1-Dichloroethene	96.94	530	U	530	80
67-64-1	Acetone	58.08	8000	U	8000	72
67-63-0	Isopropyl alcohol	60.10	8300	U	8300	61
75-15-0	Carbon disulfide	76.14	1000	U	1000	140
107-05-1	3-Chloropropene	76.53	1100	U	1100	40
75-09-2	Methylene Chloride	84.93	1200	U	1200	30
75-65-0	tert-Butyl alcohol	74.12	10000	U	10000	150
1634-04-4	Methyl tert-butyl ether	88.15	490	U	490	39
156-60-5	trans-1,2-Dichloroethene	96.94	1000		530	86
110-54-3	n-Hexane	86.17	480	U	480	62
75-34-3	1,1-Dichloroethane	98.96	550	U	550	95
78-93-3	Methyl Ethyl Ketone	72.11	990	U	990	34
156-59-2	cis-1,2-Dichloroethene	96.94	2800		530	37
540-59-0	1,2-Dichloroethene, Total	96.94	3900		530	37
67-66-3	Chloroform	119.38	660	U	660	100
109-99-9	Tetrahydrofuran	72.11	9900	U	9900	36
71-55-6	1,1,1-Trichloroethane	133.41	740	U	740	130
110-82-7	Cyclohexane	84.16	460	U	460	90
56-23-5	Carbon tetrachloride	153.81	850	U	850	140
540-84-1	2,2,4-Trimethylpentane	114.23	630	U	630	110
71-43-2	Benzene	78.11	430	U	430	39
107-06-2	1,2-Dichloroethane	98.96	550	U	550	85
142-82-5	n-Heptane	100.21	550	U	550	28

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5

Matrix: Air Lab File ID: bkak008.d

Analysis Method: TO-15 Date Collected: 04/29/2011 11:34

Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02

Soil Aliquot Vol: Dilution Factor: 674

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	97000		720	110
80-62-6	Methyl methacrylate	100.12	1400	U	1400	36
78-87-5	1,2-Dichloropropane	112.99	620	U	620	44
123-91-1	1,4-Dioxane	88.11	12000	U	12000	210
75-27-4	Bromodichloromethane	163.83	900	U	900	130
10061-01-5	cis-1,3-Dichloropropene	110.97	610	U	610	49
108-10-1	methyl isobutyl ketone	100.16	1400	U	1400	72
108-88-3	Toluene	92.14	510	U	510	46
10061-02-6	trans-1,3-Dichloropropene	110.97	610	U	610	61
79-00-5	1,1,2-Trichloroethane	133.41	740	U	740	70
127-18-4	Tetrachloroethene	165.83	910	U	910	50
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	1400	U	1400	110
124-48-1	Dibromochloromethane	208.29	1100	U	1100	120
106-93-4	1,2-Dibromoethane	187.87	1000	U	1000	93
108-90-7	Chlorobenzene	112.30	620	U	620	62
100-41-4	Ethylbenzene	106.17	590	U	590	64
179601-23-1	m,p-Xylene	106.17	1500	U	1500	140
95-47-6	Xylene, o-	106.17	590	U	590	64
1330-20-7	Xylene (total)	106.17	590	U	590	64
100-42-5	Styrene	104.15	570	U	570	86
75-25-2	Bromoform	252.75	1400	U	1400	130
98-82-8	Cumene	120.19	660	U	660	100
79-34-5	1,1,2,2-Tetrachloroethane	167.85	930	U	930	190
103-65-1	n-Propylbenzene	120.19	660	U	660	170
622-96-8	4-Ethyltoluene	120.20	660	U	660	150
108-67-8	1,3,5-Trimethylbenzene	120.20	660	U	660	170
95-49-8	2-Chlorotoluene	126.59	700	U	700	160
98-06-6	tert-Butylbenzene	134.22	740	U	740	170
95-63-6	1,2,4-Trimethylbenzene	120.20	660	U	660	170
135-98-8	sec-Butylbenzene	134.22	740	U	740	170
99-87-6	4-Isopropyltoluene	134.22	740	U	740	180
541-73-1	1,3-Dichlorobenzene	147.00	810	U	810	180
106-46-7	1,4-Dichlorobenzene	147.00	810	U	810	180
100-44-7	Benzyl chloride	126.58	700	U	700	160
104-51-8	n-Butylbenzene	134.22	740	U	740	200

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-20 Lab Sample ID: 200-5005-5 Matrix: Air Lab File ID: bkak008.d Analysis Method: TO-15 Date Collected: 04/29/2011 11:34 Sample wt/vol: 46(mL) Date Analyzed: 05/06/2011 17:02 Soil Aliquot Vol: Dilution Factor: 674 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	810	U	810	190
120-82-1	1,2,4-Trichlorobenzene	181.45	2500	U	2500	250
87-68-3	Hexachlorobutadiene	260.76	1400	U	1400	470
91-20-3	Naphthalene	128.17	1800	U	1800	300

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak008.d Page 1

Report Date: 09-May-2011 13:36

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-5 Client Smp ID: SL-084-20 Inj Date : 06-MAY-2011 17:02

Operator : pad Inst ID: B.i

Operator : pad Smp Info : 200-5005-A-5

Misc Info : 46,674, all74 cdf154.95

Comment :

Method : /chem/B.i/Bsvr.p/bkakto15.b/to15v5.m

Meth Date : 09-May-2011 13:35 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 1

Dil Factor: 674.00000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
DF Uf Vo Vf	674.00000 1.00000 46.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)
		` ,

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
========	====	== ====== ======	======
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
20 Acetone	43	6.109 6.045 (0.664) 16457	0.18818 130(a)
21 Carbon disulfide	76	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak008.d Page 2 Report Date: 09-May-2011 13:36

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
22 Isopropanol	45	Com	pound Not Detected	d.		
23 Allyl chloride	41	Com	pound Not Detected	d.		
25 Methylene chloride	49	6.802	6.802 (0.740)	3712	0.05200	35(aM)
26 Tert-butyl alcohol	59	Com	pound Not Detected	d.		
27 Methyl tert-butyl ether	73	Com	pound Not Detected	d.		
28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.783)	40904	0.38492	260
30 n-Hexane	57	Com	pound Not Detected	d.		
31 1,1-Dichloroethane	63	Com	pound Not Detected	d.		
M 33 1,2-Dichloroethene,Total	61			139835	1.44660	980
34 1,2-Dichloroethene (cis)	96	8.830	8.836 (0.961)	98931	1.06168	720
36 Methyl Ethyl Ketone	72	Com	pound Not Detected	d.		
* 37 Bromochloromethane	128	9.193	9.199 (1.000)	881969	10.0000	
38 Tetrahydrofuran	42	Com	pound Not Detected	d.		
39 Chloroform	83	Com	pound Not Detected	d.		
40 Cyclohexane	84	Com	pound Not Detected	d.		
41 1,1,1-Trichloroethane	97	Com	pound Not Detected	d.		
42 Carbon tetrachloride	117	Com	pound Not Detected	d.		
43 2,2,4-Trimethylpentane	57	Com	pound Not Detected	d.		
44 Benzene	78	Com	pound Not Detected	d.		
45 1,2-Dichloroethane	62	Com	pound Not Detected	d.		
46 n-Heptane	43	Com	pound Not Detected	d.		
* 47 1,4-Difluorobenzene	114	10.602	10.608 (1.000)	4358295	10.0000	
49 Trichloroethene	95	10.965	10.971 (1.034)	3327186	26.6711	18000
50 1,2-Dichloropropane	63	Com	pound Not Detected	d.		
51 Methyl methacrylate	69		- pound Not Detected			
53 1,4-Dioxane	88		- pound Not Detected			
54 Bromodichloromethane	83	Com	pound Not Detected	d.		
55 1,3-Dichloropropene (cis)	75	Com	pound Not Detected	d.		
56 Methyl isobutyl ketone	43		- pound Not Detected			
58 Toluene	92		- pound Not Detected			
59 1,3-Dichloropropene (trans)	75		- pound Not Detected			
60 1,1,2-Trichloroethane	83	Com	- pound Not Detected	d.		
61 Tetrachloroethene	166	Com	- pound Not Detected	d.		
62 2-Hexanone	43		- pound Not Detected			
63 Dibromochloromethane	129		- pound Not Detected			
64 1,2-Dibromoethane	107	Com	- pound Not Detected	d.		
* 65 Chlorobenzene-d5	117	14.733	14.738 (1.000)	3843891	10.0000	
66 Chlorobenzene	112		pound Not Detected	d.		
68 Ethylbenzene	91	-	pound Not Detected			
69 Xylene (m,p)	106	-	pound Not Detected			
M 70 Xylenes, Total	106	-	pound Not Detected			
71 Xylene (o)	106	-	pound Not Detected			
72 Styrene	104		pound Not Detected			
73 Bromoform	173		pound Not Detected			
74 Isopropylbenzene	105	•	pound Not Detected			
75 1,1,2,2-Tetrachloroethane	83		pound Not Detected			
76 n-Propylbenzene	91	-	pound Not Detected			
-11		- 2,				

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak008.d Report Date: 09-May-2011 13:36 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

Data File: bkak008.d

Client ID: SL-084-20 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: 200-5005-A-5 Lab Sample ID: 200-5005-5

Date: 06-MAY-2011 17:02

Instrument: B.i Inj Vol: 200.0 Diameter: 0.32

Page 153 of 429

Data File: bkak008.d

Lab Sample ID: 200-5005-5 Date: 06-MAY-2011 17:02

Client ID: SL-084-20 Instrument: B.i

Sample Info: 200-5005-A-5 Operator: pad

28 1,2-Dichloroethene (trans)

Data File: bkak008.d

Lab Sample ID: 200-5005-5 Date: 06-MAY-2011 17:02

Client ID: SL-084-20 Instrument: B.i

Sample Info: 200-5005-A-5 Operator: pad

34 1,2-Dichloroethene (cis)

Data File: bkak008.d

Lab Sample ID: 200-5005-5 Date: 06-MAY-2011 17:02

Client ID: SL-084-20 Instrument: B.i

Sample Info: 200-5005-A-5 Operator: pad

49 Trichloroethene

Manual Integration Report

Data File: bkak008.d Lab Sample ID: 200-5005-5

Inj. Date and Time: 06-MAY-2011 17:02

Instrument ID: B.i
Client ID: SL-084-20

Compound: 25 Methylene chloride

CAS #: 75-09-2

Report Date: 05/09/2011

Processing Integration Results

RT: 6.80

Response: 2599

Amount: 0.036412

Conc: 24.54

Manual Integration Results

RT: 6.80

Response: 3712

Amount: 0.052005

Conc: 35.05

File Uploaded By: pd

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6

Matrix: Air Lab File ID: bkak009.d

Analysis Method: TO-15 Date Collected: 04/29/2011 12:38

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55

Soil Aliquot Vol: Dilution Factor: 403

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	200	U	200	15
75-45-6	Freon 22	86.47	200	U	200	14
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	81	U	81	13
74-87-3	Chloromethane	50.49	200	U	200	5.2
106-97-8	n-Butane	58.12	200	U	200	4.4
75-01-4	Vinyl chloride	62.50	81	U	81	12
106-99-0	1,3-Butadiene	54.09	81	U	81	4.0
74-83-9	Bromomethane	94.94	81	U	81	4.8
75-00-3	Chloroethane	64.52	200	U	200	6.4
593-60-2	Bromoethene (Vinyl Bromide)	106.96	81	U	81	7.7
75-69-4	Trichlorofluoromethane	137.37	81	U	81	14
76-13-1	Freon TF	187.38	81	U	81	4.0
75-35-4	1,1-Dichloroethene	96.94	81	U	81	12
67-64-1	Acetone	58.08	2000	U	2000	18
67-63-0	Isopropyl alcohol	60.10	2000	U	2000	15
75-15-0	Carbon disulfide	76.14	200	U	200	27
107-05-1	3-Chloropropene	76.53	200	U	200	7.7
75-09-2	Methylene Chloride	84.93	200	U	200	5.2
75-65-0	tert-Butyl alcohol	74.12	2000	U	2000	29
1634-04-4	Methyl tert-butyl ether	88.15	81	U	81	6.4
156-60-5	trans-1,2-Dichloroethene	96.94	140		81	13
110-54-3	n-Hexane	86.17	81	U	81	10
75-34-3	1,1-Dichloroethane	98.96	81	U	81	14
78-93-3	Methyl Ethyl Ketone	72.11	200	U	200	6.9
156-59-2	cis-1,2-Dichloroethene	96.94	380		81	5.6
540-59-0	1,2-Dichloroethene, Total	96.94	520		81	5.6
67-66-3	Chloroform	119.38	81	U	81	12
109-99-9	Tetrahydrofuran	72.11	2000	U	2000	7.3
71-55-6	1,1,1-Trichloroethane	133.41	81	U	81	14
110-82-7	Cyclohexane	84.16	81	U	81	16
56-23-5	Carbon tetrachloride	153.81	81	U	81	13
540-84-1	2,2,4-Trimethylpentane	114.23	81	U	81	15
71-43-2	Benzene	78.11	81	U	81	7.3
107-06-2	1,2-Dichloroethane	98.96	81	U	81	12
142-82-5	n-Heptane	100.21	81	U	81	4.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6

Matrix: Air Lab File ID: bkak009.d

Analysis Method: TO-15 Date Collected: 04/29/2011 12:38

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55

Soil Aliquot Vol: Dilution Factor: 403

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	9900		81	12
80-62-6	Methyl methacrylate	100.12	200	U	200	5.2
78-87-5	1,2-Dichloropropane	112.99	81	U	81	5.6
123-91-1	1,4-Dioxane	88.11	2000	U	2000	35
75-27-4	Bromodichloromethane	163.83	81	U	81	11
10061-01-5	cis-1,3-Dichloropropene	110.97	81	U	81	6.4
108-10-1	methyl isobutyl ketone	100.16	200	U	200	10
108-88-3	Toluene	92.14	81	U	81	7.3
10061-02-6	trans-1,3-Dichloropropene	110.97	81	U	81	8.1
79-00-5	1,1,2-Trichloroethane	133.41	81	U	81	7.7
127-18-4	Tetrachloroethene	165.83	81	U	81	4.4
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	200	U	200	16
124-48-1	Dibromochloromethane	208.29	81	U	81	8.5
106-93-4	1,2-Dibromoethane	187.87	81	U	81	7.3
108-90-7	Chlorobenzene	112.30	81	U	81	8.1
100-41-4	Ethylbenzene	106.17	81	U	81	8.9
179601-23-1	m,p-Xylene	106.17	200	U	200	19
95-47-6	Xylene, o-	106.17	81	U	81	8.9
1330-20-7	Xylene (total)	106.17	81	U	81	8.9
100-42-5	Styrene	104.15	81	U	81	12
75-25-2	Bromoform	252.75	81	U	81	7.7
98-82-8	Cumene	120.19	81	U	81	12
79-34-5	1,1,2,2-Tetrachloroethane	167.85	81	U	81	16
103-65-1	n-Propylbenzene	120.19	81	U	81	20
622-96-8	4-Ethyltoluene	120.20	81	U	81	19
108-67-8	1,3,5-Trimethylbenzene	120.20	81	U	81	21
95-49-8	2-Chlorotoluene	126.59	81	U	81	19
98-06-6	tert-Butylbenzene	134.22	81	U	81	19
95-63-6	1,2,4-Trimethylbenzene	120.20	81	U	81	21
135-98-8	sec-Butylbenzene	134.22	81	U	81	19
99-87-6	4-Isopropyltoluene	134.22	81	U	81	19
541-73-1	1,3-Dichlorobenzene	147.00	81	U	81	18
106-46-7	1,4-Dichlorobenzene	147.00	81	U	81	18
100-44-7	Benzyl chloride	126.58	81	U	81	19
104-51-8	n-Butylbenzene	134.22	81	U	81	22

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6 Matrix: Air Lab File ID: bkak009.d Analysis Method: TO-15 Date Collected: 04/29/2011 12:38 Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55 Soil Aliquot Vol: Dilution Factor: 403 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	81	U	81	19
120-82-1	1,2,4-Trichlorobenzene	181.45	200	U	200	20
87-68-3	Hexachlorobutadiene	260.76	81	U	81	26
91-20-3	Naphthalene	128.17	200	U	200	35

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6

Matrix: Air Lab File ID: bkak009.d

Analysis Method: TO-15 Date Collected: 04/29/2011 12:38

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55

Soil Aliquot Vol: Dilution Factor: 403

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	1000	U	1000	76
75-45-6	Freon 22	86.47	710	U	710	48
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	560	Ū	560	90
74-87-3	Chloromethane	50.49	420	U	420	11
106-97-8	n-Butane	58.12	480	U	480	11
75-01-4	Vinyl chloride	62.50	210	U	210	30
106-99-0	1,3-Butadiene	54.09	180	U	180	8.9
74-83-9	Bromomethane	94.94	310	U	310	19
75-00-3	Chloroethane	64.52	530	U	530	17
593-60-2	Bromoethene (Vinyl Bromide)	106.96	350	U	350	33
75-69-4	Trichlorofluoromethane	137.37	450	U	450	77
76-13-1	Freon TF	187.38	620	U	620	31
75-35-4	1,1-Dichloroethene	96.94	320	U	320	48
67-64-1	Acetone	58.08	4800	U	4800	43
67-63-0	Isopropyl alcohol	60.10	5000	U	5000	37
75-15-0	Carbon disulfide	76.14	630	U	630	83
107-05-1	3-Chloropropene	76.53	630	U	630	24
75-09-2	Methylene Chloride	84.93	700	U	700	18
75-65-0	tert-Butyl alcohol	74.12	6100	U	6100	87
1634-04-4	Methyl tert-butyl ether	88.15	290	U	290	23
156-60-5	trans-1,2-Dichloroethene	96.94	570		320	51
110-54-3	n-Hexane	86.17	280	U	280	37
75-34-3	1,1-Dichloroethane	98.96	330	U	330	57
78-93-3	Methyl Ethyl Ketone	72.11	590	U	590	20
156-59-2	cis-1,2-Dichloroethene	96.94	1500		320	22
540-59-0	1,2-Dichloroethene, Total	96.94	2100		320	22
67-66-3	Chloroform	119.38	390	U	390	61
109-99-9	Tetrahydrofuran	72.11	5900	U	5900	21
71-55-6	1,1,1-Trichloroethane	133.41	440	U	440	77
110-82-7	Cyclohexane	84.16	280	U	280	54
56-23-5	Carbon tetrachloride	153.81	510	U	510	84
540-84-1	2,2,4-Trimethylpentane	114.23	380	U	380	68
71-43-2	Benzene	78.11	260	U	260	23
107-06-2	1,2-Dichloroethane	98.96	330	U	330	51
142-82-5	n-Heptane	100.21	330	U	330	17

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6

Matrix: Air Lab File ID: bkak009.d

Analysis Method: TO-15 Date Collected: 04/29/2011 12:38

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55

Soil Aliquot Vol: Dilution Factor: 403

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	53000		430	65
80-62-6	Methyl methacrylate	100.12	830	U	830	21
78-87-5	1,2-Dichloropropane	112.99	370	U	370	26
123-91-1	1,4-Dioxane	88.11	7300	U	7300	130
75-27-4	Bromodichloromethane	163.83	540	U	540	76
10061-01-5	cis-1,3-Dichloropropene	110.97	370	U	370	29
108-10-1	methyl isobutyl ketone	100.16	830	U	830	43
108-88-3	Toluene	92.14	300	U	300	27
10061-02-6	trans-1,3-Dichloropropene	110.97	370	U	370	37
79-00-5	1,1,2-Trichloroethane	133.41	440	U	440	42
127-18-4	Tetrachloroethene	165.83	550	U	550	30
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	830	U	830	64
124-48-1	Dibromochloromethane	208.29	690	U	690	72
106-93-4	1,2-Dibromoethane	187.87	620	U	620	56
108-90-7	Chlorobenzene	112.30	370	U	370	37
100-41-4	Ethylbenzene	106.17	350	U	350	38
179601-23-1	m,p-Xylene	106.17	870	U	870	84
95-47-6	Xylene, o-	106.17	350	U	350	38
1330-20-7	Xylene (total)	106.17	350	U	350	38
100-42-5	Styrene	104.15	340	U	340	51
75-25-2	Bromoform	252.75	830	U	830	79
98-82-8	Cumene	120.19	400	U	400	61
79-34-5	1,1,2,2-Tetrachloroethane	167.85	550	U	550	110
103-65-1	n-Propylbenzene	120.19	400	U	400	99
622-96-8	4-Ethyltoluene	120.20	400	U	400	91
108-67-8	1,3,5-Trimethylbenzene	120.20	400	U	400	100
95-49-8	2-Chlorotoluene	126.59	420	U	420	98
98-06-6	tert-Butylbenzene	134.22	440	U	440	100
95-63-6	1,2,4-Trimethylbenzene	120.20	400	U	400	100
135-98-8	sec-Butylbenzene	134.22	440	U	440	100
99-87-6	4-Isopropyltoluene	134.22	440	U	440	110
541-73-1	1,3-Dichlorobenzene	147.00	480	U	480	110
106-46-7	1,4-Dichlorobenzene	147.00	480	U	480	110
100-44-7	Benzyl chloride	126.58	420	U	420	96
104-51-8	n-Butylbenzene	134.22	440	U	440	120

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-084-END Lab Sample ID: 200-5005-6 Matrix: Air Lab File ID: bkak009.d Analysis Method: TO-15 Date Collected: 04/29/2011 12:38 Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 17:55 Soil Aliquot Vol: Dilution Factor: 403 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	480	U	480	120
120-82-1	1,2,4-Trichlorobenzene	181.45	1500	U	1500	150
87-68-3	Hexachlorobutadiene	260.76	860	U	860	280
91-20-3	Naphthalene	128.17	1100	U	1100	180

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak009.d Page 1

Report Date: 09-May-2011 13:36

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-6 Client Smp ID: SL-084-END Inj Date : 06-MAY-2011 17:55

Operator : pad Inst ID: B.i

Smp Info : 200-5005-A-6

Misc Info : 37,403, all74 cdf74.61

Comment :

Method : /chem/B.i/Bsvr.p/bkakto15.b/to15v5.m

Meth Date : 09-May-2011 13:35 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 1

Dil Factor: 403.00000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	403.00000 1.00000 37.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
========	====	== ====== ======	======
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
20 Acetone	43	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak009.d Report Date: 09-May-2011 13:36

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======	====	==		======	======	======
21 Carbon disulfide	76	Com	pound Not Detected	d.		
22 Isopropanol	45	Com	pound Not Detected	d.		
23 Allyl chloride	41	Com	pound Not Detected	d.		
25 Methylene chloride	49	6.797	6.802 (0.739)	3827	0.05736	23(a)
26 Tert-butyl alcohol	59	Com	pound Not Detected	d.		
27 Methyl tert-butyl ether	73	Com	pound Not Detected	d.		
28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.783)	35193	0.35430	140
30 n-Hexane	57	Com	pound Not Detected	d.		
31 1,1-Dichloroethane	63	Com	pound Not Detected	d.		
M 33 1,2-Dichloroethene,Total	61			117770	1.30237	520
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	82577	0.94806	380
36 Methyl Ethyl Ketone	72	Com	pound Not Detected	d.		
* 37 Bromochloromethane	128	9.193	9.199 (1.000)	824395	10.0000	
38 Tetrahydrofuran	42	Com	pound Not Detected	d.		
39 Chloroform	83	Com	pound Not Detected	d.		
40 Cyclohexane	84	Com	pound Not Detected	d.		
41 1,1,1-Trichloroethane	97	Com	pound Not Detected	d.		
42 Carbon tetrachloride	117	Com	pound Not Detected	d.		
43 2,2,4-Trimethylpentane	57	Com	pound Not Detected	d.		
44 Benzene	78	Com	pound Not Detected	d.		
45 1,2-Dichloroethane	62	Com	pound Not Detected	d.		
46 n-Heptane	43	Com	pound Not Detected	d.		
* 47 1,4-Difluorobenzene	114	10.602	10.608 (1.000)	4123882	10.0000	
49 Trichloroethene	95	10.960	10.971 (1.034)	2888454	24.4703	9900
50 1,2-Dichloropropane	63	Com	pound Not Detected	d.		
51 Methyl methacrylate	69	Com	pound Not Detected	d.		
53 1,4-Dioxane	88	Com	pound Not Detected	d.		
54 Bromodichloromethane	83	Com	pound Not Detected	d.		
55 1,3-Dichloropropene (cis)	75	Com	pound Not Detected	d.		
56 Methyl isobutyl ketone	43	Com	pound Not Detected	d.		
58 Toluene	92	Com	pound Not Detected	d.		
59 1,3-Dichloropropene (trans)	75	Com	pound Not Detected	d.		
60 1,1,2-Trichloroethane	83	Com	pound Not Detected	d.		
61 Tetrachloroethene	166	13.522	13.516 (0.918)	1980	0.01173	4.7(aQ)
62 2-Hexanone	43	Com	pound Not Detected	d.		
63 Dibromochloromethane	129	Com	pound Not Detected	d.		
64 1,2-Dibromoethane	107	Com	pound Not Detected	d.		
* 65 Chlorobenzene-d5	117	14.733	14.738 (1.000)	3644437	10.0000	
66 Chlorobenzene	112	Com	pound Not Detected	d.		
68 Ethylbenzene	91	Com	pound Not Detected	d.		
69 Xylene (m,p)	106	Com	pound Not Detected	d.		
M 70 Xylenes, Total	106	Com	pound Not Detected	d.		
71 Xylene (o)	106	Com	pound Not Detected	d.		
72 Styrene	104	Com	pound Not Detected	d.		
73 Bromoform	173	Com	pound Not Detected	d.		
74 Isopropylbenzene	105	Com	pound Not Detected	d.		
75 1,1,2,2-Tetrachloroethane	83	Com	pound Not Detected	d.		

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak009.d Report Date: 09-May-2011 13:36 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

Client ID: SL-084-END Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-6
Lab Sample ID: 200-5005-6

Date: 06-MAY-2011 17:55

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 167 of 429

Lab Sample ID: 200-5005-6 Date: 06-MAY-2011 17:55

Client ID: SL-084-END Instrument: B.i

Sample Info: 200-5005-A-6 Operator: pad

28 1,2-Dichloroethene (trans)

Lab Sample ID: 200-5005-6 Date: 06-MAY-2011 17:55

Client ID: SL-084-END Instrument: B.i

Sample Info: 200-5005-A-6 Operator: pad

34 1,2-Dichloroethene (cis)

Lab Sample ID: 200-5005-6 Date: 06-MAY-2011 17:55

Client ID: SL-084-END Instrument: B.i

Sample Info: 200-5005-A-6 Operator: pad

49 Trichloroethene

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-5 Lab Sample ID: 200-5005-7

Matrix: Air Lab File ID: bkaj021.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:06

Sample wt/vol: 49(mL) Date Analyzed: 05/06/2011 03:38

Soil Aliquot Vol: Dilution Factor: 19.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	10	U	10	0.76
75-45-6	Freon 22	86.47	10	U	10	0.68
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	4.0	Ū	4.0	0.64
74-87-3	Chloromethane	50.49	10	U	10	0.26
106-97-8	n-Butane	58.12	10	U	10	0.22
75-01-4	Vinyl chloride	62.50	4.0	U	4.0	0.58
106-99-0	1,3-Butadiene	54.09	4.0	U	4.0	0.20
74-83-9	Bromomethane	94.94	4.0	U	4.0	0.24
75-00-3	Chloroethane	64.52	10	U	10	0.32
593-60-2	Bromoethene (Vinyl Bromide)	106.96	4.0	U	4.0	0.38
75-69-4	Trichlorofluoromethane	137.37	5.8		4.0	0.68
76-13-1	Freon TF	187.38	19		4.0	0.20
75-35-4	1,1-Dichloroethene	96.94	4.0	U	4.0	0.60
67-64-1	Acetone	58.08	100	U	100	0.90
67-63-0	Isopropyl alcohol	60.10	100	U	100	0.74
75-15-0	Carbon disulfide	76.14	10	U	10	1.3
107-05-1	3-Chloropropene	76.53	10	U	10	0.38
75-09-2	Methylene Chloride	84.93	10	U	10	0.26
75-65-0	tert-Butyl alcohol	74.12	100	U	100	1.4
1634-04-4	Methyl tert-butyl ether	88.15	4.0	U	4.0	0.32
156-60-5	trans-1,2-Dichloroethene	96.94	4.0	U	4.0	0.64
110-54-3	n-Hexane	86.17	4.0	U	4.0	0.52
75-34-3	1,1-Dichloroethane	98.96	4.0	U	4.0	0.70
78-93-3	Methyl Ethyl Ketone	72.11	10	U	10	0.34
156-59-2	cis-1,2-Dichloroethene	96.94	4.0	U	4.0	0.28
540-59-0	1,2-Dichloroethene, Total	96.94	4.0	U	4.0	0.28
67-66-3	Chloroform	119.38	4.0	U	4.0	0.62
109-99-9	Tetrahydrofuran	72.11	100	U	100	0.36
71-55-6	1,1,1-Trichloroethane	133.41	45		4.0	0.70
110-82-7	Cyclohexane	84.16	4.0	U	4.0	0.78
56-23-5	Carbon tetrachloride	153.81	4.0	U	4.0	0.66
540-84-1	2,2,4-Trimethylpentane	114.23	4.0	U	4.0	0.72
71-43-2	Benzene	78.11	4.0	U	4.0	0.36
107-06-2	1,2-Dichloroethane	98.96	4.0	U	4.0	0.62
142-82-5	n-Heptane	100.21	4.0	U	4.0	0.20

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-5005-1

 SDG No.:
 200-5005

 Client Sample ID:
 SL-022-5
 Lab Sample ID:
 200-5005-7

 Matrix:
 Air
 Lab File ID:
 bkaj021.d

 Analysis Method:
 TO-15
 Date Collected:
 04/29/2011
 15:06

Date Analyzed: 05/06/2011 03:38

Soil Aliquot Vol: Dilution Factor: 19.9

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

Sample wt/vol: 49(mL)

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	530		4.0	0.60
80-62-6	Methyl methacrylate	100.12	10	U	10	0.26
78-87-5	1,2-Dichloropropane	112.99	4.0	U	4.0	0.28
123-91-1	1,4-Dioxane	88.11	100	U	100	1.8
75-27-4	Bromodichloromethane	163.83	4.0	U	4.0	0.56
10061-01-5	cis-1,3-Dichloropropene	110.97	4.0	U	4.0	0.32
108-10-1	methyl isobutyl ketone	100.16	10	U	10	0.52
108-88-3	Toluene	92.14	4.0	U	4.0	0.36
10061-02-6	trans-1,3-Dichloropropene	110.97	4.0	U	4.0	0.40
79-00-5	1,1,2-Trichloroethane	133.41	4.0	U	4.0	0.38
127-18-4	Tetrachloroethene	165.83	4.0	U	4.0	0.22
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	10	U	10	0.78
124-48-1	Dibromochloromethane	208.29	4.0	U	4.0	0.42
106-93-4	1,2-Dibromoethane	187.87	4.0	U	4.0	0.36
108-90-7	Chlorobenzene	112.30	4.0	U	4.0	0.40
100-41-4	Ethylbenzene	106.17	4.0	U	4.0	0.44
179601-23-1	m,p-Xylene	106.17	10	U	10	0.96
95-47-6	Xylene, o-	106.17	4.0	U	4.0	0.44
1330-20-7	Xylene (total)	106.17	4.0	U	4.0	0.44
100-42-5	Styrene	104.15	4.0	U	4.0	0.60
75-25-2	Bromoform	252.75	4.0	U	4.0	0.38
98-82-8	Cumene	120.19	4.0	U	4.0	0.62
79-34-5	1,1,2,2-Tetrachloroethane	167.85	4.0	U	4.0	0.80
103-65-1	n-Propylbenzene	120.19	4.0	U	4.0	1.0
622-96-8	4-Ethyltoluene	120.20	4.0	U	4.0	0.92
108-67-8	1,3,5-Trimethylbenzene	120.20	4.0	U	4.0	1.0
95-49-8	2-Chlorotoluene	126.59	4.0	U	4.0	0.94
98-06-6	tert-Butylbenzene	134.22	4.0	U	4.0	0.94
95-63-6	1,2,4-Trimethylbenzene	120.20	4.0	U	4.0	1.0
135-98-8	sec-Butylbenzene	134.22	4.0	U	4.0	0.94
99-87-6	4-Isopropyltoluene	134.22	4.0	U	4.0	0.96
541-73-1	1,3-Dichlorobenzene	147.00	4.0	U	4.0	0.88
106-46-7	1,4-Dichlorobenzene	147.00	4.0	U	4.0	0.88
100-44-7	Benzyl chloride	126.58	4.0	U	4.0	0.92
104-51-8	n-Butylbenzene	134.22	4.0	U	4.0	1.1

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-5 Lab Sample ID: 200-5005-7 Matrix: Air Lab File ID: bkaj021.d Analysis Method: TO-15 Date Collected: 04/29/2011 15:06 Sample wt/vol: 49(mL) Date Analyzed: 05/06/2011 03:38 Soil Aliquot Vol: Dilution Factor: 19.9 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	4.0	U	4.0	0.96
120-82-1	1,2,4-Trichlorobenzene	181.45	10	U	10	1.0
87-68-3	Hexachlorobutadiene	260.76	4.0	U	4.0	1.3
91-20-3	Naphthalene	128.17	10	U	10	1.7

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-5 Lab Sample ID: 200-5005-7

Matrix: Air Lab File ID: bkaj021.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:06

Sample wt/vol: 49(mL) Date Analyzed: 05/06/2011 03:38

Soil Aliquot Vol: Dilution Factor: 19.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	49	U	49	3.7
75-45-6	Freon 22	86.47	35	U	35	2.4
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	28	U	28	4.5
74-87-3	Chloromethane	50.49	21	U	21	0.53
106-97-8	n-Butane	58.12	24	U	24	0.52
75-01-4	Vinyl chloride	62.50	10	U	10	1.5
106-99-0	1,3-Butadiene	54.09	8.8	U	8.8	0.44
74-83-9	Bromomethane	94.94	15	U	15	0.93
75-00-3	Chloroethane	64.52	26	U	26	0.84
593-60-2	Bromoethene (Vinyl Bromide)	106.96	17	U	17	1.7
75-69-4	Trichlorofluoromethane	137.37	32		22	3.8
76-13-1	Freon TF	187.38	150		31	1.5
75-35-4	1,1-Dichloroethene	96.94	16	U	16	2.4
67-64-1	Acetone	58.08	240	U	240	2.1
67-63-0	Isopropyl alcohol	60.10	240	U	240	1.8
75-15-0	Carbon disulfide	76.14	31	U	31	4.1
107-05-1	3-Chloropropene	76.53	31	U	31	1.2
75-09-2	Methylene Chloride	84.93	35	U	35	0.90
75-65-0	tert-Butyl alcohol	74.12	300	U	300	4.3
1634-04-4	Methyl tert-butyl ether	88.15	14	U	14	1.1
156-60-5	trans-1,2-Dichloroethene	96.94	16	U	16	2.5
110-54-3	n-Hexane	86.17	14	U	14	1.8
75-34-3	1,1-Dichloroethane	98.96	16	U	16	2.8
78-93-3	Methyl Ethyl Ketone	72.11	29	U	29	1.0
156-59-2	cis-1,2-Dichloroethene	96.94	16	U	16	1.1
540-59-0	1,2-Dichloroethene, Total	96.94	16	U	16	1.1
67-66-3	Chloroform	119.38	19	U	19	3.0
109-99-9	Tetrahydrofuran	72.11	290	U	290	1.1
71-55-6	1,1,1-Trichloroethane	133.41	240		22	3.8
110-82-7	Cyclohexane	84.16	14	U	14	2.7
56-23-5	Carbon tetrachloride	153.81	25	U	25	4.1
540-84-1	2,2,4-Trimethylpentane	114.23	19	U	19	3.3
71-43-2	Benzene	78.11	13	U	13	1.1
107-06-2	1,2-Dichloroethane	98.96	16	U	16	2.5
142-82-5	n-Heptane	100.21	16	U	16	0.82

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-5 Lab Sample ID: 200-5005-7

Matrix: Air Lab File ID: bkaj021.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:06

Sample wt/vol: 49(mL) Date Analyzed: 05/06/2011 03:38

Soil Aliquot Vol: Dilution Factor: 19.9

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	2800		21	3.2
80-62-6	Methyl methacrylate	100.12	41	U	41	1.1
78-87-5	1,2-Dichloropropane	112.99	18	U	18	1.3
123-91-1	1,4-Dioxane	88.11	360	U	360	6.3
75-27-4	Bromodichloromethane	163.83	27	U	27	3.7
10061-01-5	cis-1,3-Dichloropropene	110.97	18	U	18	1.4
108-10-1	methyl isobutyl ketone	100.16	41	U	41	2.1
108-88-3	Toluene	92.14	15	U	15	1.3
10061-02-6	trans-1,3-Dichloropropene	110.97	18	U	18	1.8
79-00-5	1,1,2-Trichloroethane	133.41	22	U	22	2.1
127-18-4	Tetrachloroethene	165.83	27	U	27	1.5
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	41	U	41	3.2
124-48-1	Dibromochloromethane	208.29	34	U	34	3.6
106-93-4	1,2-Dibromoethane	187.87	31	U	31	2.8
108-90-7	Chlorobenzene	112.30	18	U	18	1.8
100-41-4	Ethylbenzene	106.17	17	U	17	1.9
179601-23-1	m,p-Xylene	106.17	43	U	43	4.1
95-47-6	Xylene, o-	106.17	17	U	17	1.9
1330-20-7	Xylene (total)	106.17	17	U	17	1.9
100-42-5	Styrene	104.15	17	U	17	2.5
75-25-2	Bromoform	252.75	41	U	41	3.9
98-82-8	Cumene	120.19	20	U	20	3.0
79-34-5	1,1,2,2-Tetrachloroethane	167.85	27	U	27	5.5
103-65-1	n-Propylbenzene	120.19	20	U	20	4.9
622-96-8	4-Ethyltoluene	120.20	20	U	20	4.5
108-67-8	1,3,5-Trimethylbenzene	120.20	20	U	20	5.0
95-49-8	2-Chlorotoluene	126.59	21	U	21	4.8
98-06-6	tert-Butylbenzene	134.22	22	U	22	5.1
95-63-6	1,2,4-Trimethylbenzene	120.20	20	U	20	5.1
135-98-8	sec-Butylbenzene	134.22	22	U	22	5.1
99-87-6	4-Isopropyltoluene	134.22	22	U	22	5.2
541-73-1	1,3-Dichlorobenzene	147.00	24	U	24	5.3
106-46-7	1,4-Dichlorobenzene	147.00	24	U	24	5.3
100-44-7	Benzyl chloride	126.58	21	U	21	4.7
104-51-8	n-Butylbenzene	134.22	22	U	22	6.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-5 Lab Sample ID: 200-5005-7 Matrix: Air Lab File ID: bkaj021.d Analysis Method: TO-15 Date Collected: 04/29/2011 15:06 Sample wt/vol: 49(mL) Date Analyzed: 05/06/2011 03:38 Soil Aliquot Vol: Dilution Factor: 19.9 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	24	U	24	5.7
120-82-1	1,2,4-Trichlorobenzene	181.45	74	U	74	7.4
87-68-3	Hexachlorobutadiene	260.76	42	U	42	14
91-20-3	Naphthalene	128.17	52	U	52	9.0

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj021.d Page 1

Report Date: 09-May-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-7 Client Smp ID: SL-022-5

Inj Date : 06-MAY-2011 03:38

Operator : pad Smp Info : 200-5005-A-7 Inst ID: B.i

Misc Info : 49,19.9, all74 cdf4.88

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 7

Dil Factor: 19.90000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	19.90000 1.00000 49.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==			======	======
2 Dichlorodifluoromethane	85	3.034	3.040 (0.330)	4874	0.04437	0.88(a)
3 Chlorodifluoromethane	51	3.066	3.072 (0.333)	4821	0.10569	2.1(aQ)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Comp	ound Not Detected	1.		
5 Chloromethane	50	Comp	ound Not Detected	l.		
6 Butane	43	3.477	3.488 (0.378)	3303	0.08318	1.7(aQ)
7 Vinyl chloride	62	Comp	ound Not Detected	1.		
8 1,3-Butadiene	54	Comp	ound Not Detected	1.		
9 Bromomethane	94	Comp	ound Not Detected	1.		
10 Chloroethane	64	Comp	ound Not Detected	1.		
12 Vinyl bromide	106	Comp	ound Not Detected	l.		
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	53268	0.28904	5.8
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	144615	0.96845	19
19 1,1-Dichloroethene	96	Comp	ound Not Detected	l.		
20 Acetone	43	6.092	6.045 (0.662)	87277	1.14637	23(a)
21 Carbon disulfide	76	Comp	ound Not Detected	1.		

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj021.d Report Date: 09-May-2011 10:07

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
	====	
22 Isopropanol	45	6.407 6.322 (0.697) 121251 1.96022 39(a)
23 Allyl chloride	41	Compound Not Detected.
25 Methylene chloride	49	6.802 6.802 (0.739) 3746 0.06028 1.2(a)
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	8.852 8.836 (0.962) 2283 0.02814 0.56(a)
36 Methyl Ethyl Ketone	72	8.921 8.857 (0.970) 4636 0.13396 2.7(aQM)
* 37 Bromochloromethane	128	9.199 9.199 (1.000) 767823 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	9.284 9.284 (1.009) 22391 0.15250 3.0(a)
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	9.524 9.524 (0.898) 360802 2.23831 45
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.607 10.608 (1.000) 3799112 10.0000
49 Trichloroethene	95	10.965 10.971 (1.034) 2870367 26.3958 530
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
58 Toluene	92	12.753 12.748 (0.866) 11427 0.06308 1.3(a)
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	13.521 13.516 (0.918) 3201 0.02000 0.40(aQ)
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	14.733 14.738 (1.000) 3454061 10.0000
66 Chlorobenzene	112	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.
72 Styrene	104	Compound Not Detected.
73 Bromoform	173	Compound Not Detected.
74 Isopropylbenzene	105	Compound Not Detected.
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
76 n-Propylbenzene	91	Compound Not Detected.

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj021.d Report Date: 09-May-2011 10:07 Page 3

		CONCENTRATIONS
QUANT SIG		ON-COLUMN FINAL
MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
====	== ====== ======	======
105	Compound Not Detected.	
91	Compound Not Detected.	
105	Compound Not Detected.	
119	Compound Not Detected.	
105	Compound Not Detected.	
105	Compound Not Detected.	
119	Compound Not Detected.	
146	Compound Not Detected.	
146	Compound Not Detected.	
91	Compound Not Detected.	
91	Compound Not Detected.	
146	Compound Not Detected.	
180	Compound Not Detected.	
225	Compound Not Detected.	
128	Compound Not Detected.	
	MASS ==== 105 91 105 119 105 119 146 146 91 91 146 180 225	MASS RT EXP RT REL RT RESPONSE === = ==============================

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Client ID: SL-022-5
Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-7
Lab Sample ID: 200-5005-7

Date: 06-MAY-2011 03:38

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 180 of 429

Lab Sample ID: 200-5005-7 Date: 06-MAY-2011 03:38

Client ID: SL-022-5 Instrument: B.i

Sample Info: 200-5005-A-7 Operator: pad

13 Trichlorofluoromethane

Lab Sample ID: 200-5005-7 Date: 06-MAY-2011 03:38

Client ID: SL-022-5 Instrument: B.i

Sample Info: 200-5005-A-7 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-7 Date: 06-MAY-2011 03:38

Client ID: SL-022-5 Instrument: B.i

Sample Info: 200-5005-A-7 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-7 Date: 06-MAY-2011 03:38

Client ID: SL-022-5 Instrument: B.i

Sample Info: 200-5005-A-7 Operator: pad

49 Trichloroethene

Manual Integration Report

Data File: bkaj021.d Lab Sample ID: 200-5005-7

Inj. Date and Time: 06-MAY-2011 03:38

Instrument ID: B.i Client ID: SL-022-5

Compound: 36 Methyl Ethyl Ketone

CAS #: 78-93-3

Report Date: 05/09/2011

Processing Integration Results

RT: 8.92

Response: 3377

Amount: 0.097600

Conc: 1.94

Manual Integration Results

RT: 8.92

Response: 4636

Amount: 0.133956

Conc: 2.67

File Uploaded By: cmp

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8

Matrix: Air Lab File ID: bkaj022.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:21

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31

Soil Aliquot Vol: Dilution Factor: 25

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	12	U	12	0.95
75-45-6	Freon 22	86.47	12	U	12	0.85
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	5.0	U	5.0	0.80
74-87-3	Chloromethane	50.49	12	U	12	0.32
106-97-8	n-Butane	58.12	12	U	12	0.28
75-01-4	Vinyl chloride	62.50	5.0	U	5.0	0.72
106-99-0	1,3-Butadiene	54.09	5.0	U	5.0	0.25
74-83-9	Bromomethane	94.94	5.0	U	5.0	0.30
75-00-3	Chloroethane	64.52	12	U	12	0.40
593-60-2	Bromoethene (Vinyl Bromide)	106.96	5.0	U	5.0	0.48
75-69-4	Trichlorofluoromethane	137.37	6.0		5.0	0.85
76-13-1	Freon TF	187.38	21		5.0	0.25
75-35-4	1,1-Dichloroethene	96.94	5.0	U	5.0	0.75
67-64-1	Acetone	58.08	120	U	120	1.1
67-63-0	Isopropyl alcohol	60.10	120	U	120	0.92
75-15-0	Carbon disulfide	76.14	12	U	12	1.6
107-05-1	3-Chloropropene	76.53	12	U	12	0.48
75-09-2	Methylene Chloride	84.93	12	U	12	0.32
75-65-0	tert-Butyl alcohol	74.12	120	U	120	1.8
1634-04-4	Methyl tert-butyl ether	88.15	5.0	U	5.0	0.40
156-60-5	trans-1,2-Dichloroethene	96.94	5.0	U	5.0	0.80
110-54-3	n-Hexane	86.17	5.0	U	5.0	0.65
75-34-3	1,1-Dichloroethane	98.96	5.0	U	5.0	0.88
78-93-3	Methyl Ethyl Ketone	72.11	12	U	12	0.42
156-59-2	cis-1,2-Dichloroethene	96.94	5.0	U	5.0	0.35
540-59-0	1,2-Dichloroethene, Total	96.94	5.0	U	5.0	0.35
67-66-3	Chloroform	119.38	5.0	U	5.0	0.78
109-99-9	Tetrahydrofuran	72.11	120	U	120	0.45
71-55-6	1,1,1-Trichloroethane	133.41	50		5.0	0.88
110-82-7	Cyclohexane	84.16	5.0	U	5.0	0.98
56-23-5	Carbon tetrachloride	153.81	5.0	U	5.0	0.82
540-84-1	2,2,4-Trimethylpentane	114.23	5.0	U	5.0	0.90
71-43-2	Benzene	78.11	5.0	U	5.0	0.45
107-06-2	1,2-Dichloroethane	98.96	5.0	U	5.0	0.78
142-82-5	n-Heptane	100.21	5.0	U	5.0	0.25

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8

Matrix: Air Lab File ID: bkaj022.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:21

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31

Soil Aliquot Vol: Dilution Factor: 25

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: _____ Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	620		5.0	0.75
80-62-6	Methyl methacrylate	100.12	12	U	12	0.32
78-87-5	1,2-Dichloropropane	112.99	5.0	U	5.0	0.35
123-91-1	1,4-Dioxane	88.11	120	U	120	2.2
75-27-4	Bromodichloromethane	163.83	5.0	U	5.0	0.70
10061-01-5	cis-1,3-Dichloropropene	110.97	5.0	U	5.0	0.40
108-10-1	methyl isobutyl ketone	100.16	12	U	12	0.65
108-88-3	Toluene	92.14	5.0	U	5.0	0.45
10061-02-6	trans-1,3-Dichloropropene	110.97	5.0	U	5.0	0.50
79-00-5	1,1,2-Trichloroethane	133.41	5.0	U	5.0	0.48
127-18-4	Tetrachloroethene	165.83	5.0	U	5.0	0.28
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	12	U	12	0.98
124-48-1	Dibromochloromethane	208.29	5.0	U	5.0	0.52
106-93-4	1,2-Dibromoethane	187.87	5.0	U	5.0	0.45
108-90-7	Chlorobenzene	112.30	5.0	U	5.0	0.50
100-41-4	Ethylbenzene	106.17	5.0	U	5.0	0.55
179601-23-1	m,p-Xylene	106.17	12	U	12	1.2
95-47-6	Xylene, o-	106.17	5.0	U	5.0	0.55
1330-20-7	Xylene (total)	106.17	5.0	U	5.0	0.55
100-42-5	Styrene	104.15	5.0	U	5.0	0.75
75-25-2	Bromoform	252.75	5.0	U	5.0	0.48
98-82-8	Cumene	120.19	5.0	U	5.0	0.78
79-34-5	1,1,2,2-Tetrachloroethane	167.85	5.0	U	5.0	1.0
103-65-1	n-Propylbenzene	120.19	5.0	U	5.0	1.2
622-96-8	4-Ethyltoluene	120.20	5.0	U	5.0	1.2
108-67-8	1,3,5-Trimethylbenzene	120.20	5.0	U	5.0	1.3
95-49-8	2-Chlorotoluene	126.59	5.0	U	5.0	1.2
98-06-6	tert-Butylbenzene	134.22	5.0	U	5.0	1.2
95-63-6	1,2,4-Trimethylbenzene	120.20	5.0	U	5.0	1.3
135-98-8	sec-Butylbenzene	134.22	5.0	U	5.0	1.2
99-87-6	4-Isopropyltoluene	134.22	5.0	U	5.0	1.2
541-73-1	1,3-Dichlorobenzene	147.00	5.0	U	5.0	1.1
106-46-7	1,4-Dichlorobenzene	147.00	5.0	U	5.0	1.1
100-44-7	Benzyl chloride	126.58	5.0	U	5.0	1.2
104-51-8	n-Butylbenzene	134.22	5.0	U	5.0	1.4

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8 Matrix: Air Lab File ID: bkaj022.d Analysis Method: TO-15 Date Collected: 04/29/2011 15:21 Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31 Soil Aliquot Vol: Dilution Factor: 25 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	5.0	U	5.0	1.2
120-82-1	1,2,4-Trichlorobenzene	181.45	12	U	12	1.2
87-68-3	Hexachlorobutadiene	260.76	5.0	U	5.0	1.6
91-20-3	Naphthalene	128.17	12	U	12	2.2

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8

Matrix: Air Lab File ID: bkaj022.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:21

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31

Soil Aliquot Vol: Dilution Factor: 25

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	62	U	62	4.7
75-45-6	Freon 22	86.47	44	U	44	3.0
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	35	U	35	5.6
74-87-3	Chloromethane	50.49	26	U	26	0.67
106-97-8	n-Butane	58.12	30	U	30	0.65
75-01-4	Vinyl chloride	62.50	13	U	13	1.9
106-99-0	1,3-Butadiene	54.09	11	U	11	0.55
74-83-9	Bromomethane	94.94	19	U	19	1.2
75-00-3	Chloroethane	64.52	33	U	33	1.1
593-60-2	Bromoethene (Vinyl Bromide)	106.96	22	U	22	2.1
75-69-4	Trichlorofluoromethane	137.37	33		28	4.8
76-13-1	Freon TF	187.38	160		38	1.9
75-35-4	1,1-Dichloroethene	96.94	20	U	20	3.0
67-64-1	Acetone	58.08	300	U	300	2.7
67-63-0	Isopropyl alcohol	60.10	310	U	310	2.3
75-15-0	Carbon disulfide	76.14	39	U	39	5.1
107-05-1	3-Chloropropene	76.53	39	U	39	1.5
75-09-2	Methylene Chloride	84.93	43	U	43	1.1
75-65-0	tert-Butyl alcohol	74.12	380	U	380	5.4
1634-04-4	Methyl tert-butyl ether	88.15	18	U	18	1.4
156-60-5	trans-1,2-Dichloroethene	96.94	20	U	20	3.2
110-54-3	n-Hexane	86.17	18	U	18	2.3
75-34-3	1,1-Dichloroethane	98.96	20	U	20	3.5
78-93-3	Methyl Ethyl Ketone	72.11	37	U	37	1.3
156-59-2	cis-1,2-Dichloroethene	96.94	20	U	20	1.4
540-59-0	1,2-Dichloroethene, Total	96.94	20	U	20	1.4
67-66-3	Chloroform	119.38	24	U	24	3.8
109-99-9	Tetrahydrofuran	72.11	370	U	370	1.3
71-55-6	1,1,1-Trichloroethane	133.41	270		27	4.8
110-82-7	Cyclohexane	84.16	17	U	17	3.4
56-23-5	Carbon tetrachloride	153.81	31	U	31	5.2
540-84-1	2,2,4-Trimethylpentane	114.23	23	U	23	4.2
71-43-2	Benzene	78.11	16	U	16	1.4
107-06-2	1,2-Dichloroethane	98.96	20	U	20	3.1
142-82-5	n-Heptane	100.21	20	U	20	1.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8

Matrix: Air Lab File ID: bkaj022.d

Analysis Method: TO-15 Date Collected: 04/29/2011 15:21

Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31

Soil Aliquot Vol: Dilution Factor: 25

 Soil Extract Vol.:
 GC Column: RTX-624
 ID: 0.32 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	3400		27	4.0
80-62-6	Methyl methacrylate	100.12	51	U	51	1.3
78-87-5	1,2-Dichloropropane	112.99	23	U	23	1.6
123-91-1	1,4-Dioxane	88.11	450	U	450	7.9
75-27-4	Bromodichloromethane	163.83	34	U	34	4.7
10061-01-5	cis-1,3-Dichloropropene	110.97	23	U	23	1.8
108-10-1	methyl isobutyl ketone	100.16	51	U	51	2.7
108-88-3	Toluene	92.14	19	U	19	1.7
10061-02-6	trans-1,3-Dichloropropene	110.97	23	U	23	2.3
79-00-5	1,1,2-Trichloroethane	133.41	27	U	27	2.6
127-18-4	Tetrachloroethene	165.83	34	U	34	1.9
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	51	U	51	4.0
124-48-1	Dibromochloromethane	208.29	43	U	43	4.5
106-93-4	1,2-Dibromoethane	187.87	38	U	38	3.5
108-90-7	Chlorobenzene	112.30	23	U	23	2.3
100-41-4	Ethylbenzene	106.17	22	U	22	2.4
179601-23-1	m,p-Xylene	106.17	54	U	54	5.2
95-47-6	Xylene, o-	106.17	22	U	22	2.4
1330-20-7	Xylene (total)	106.17	22	U	22	2.4
100-42-5	Styrene	104.15	21	U	21	3.2
75-25-2	Bromoform	252.75	52	U	52	4.9
98-82-8	Cumene	120.19	25	U	25	3.8
79-34-5	1,1,2,2-Tetrachloroethane	167.85	34	U	34	6.9
103-65-1	n-Propylbenzene	120.19	25	U	25	6.1
622-96-8	4-Ethyltoluene	120.20	25	U	25	5.7
108-67-8	1,3,5-Trimethylbenzene	120.20	25	U	25	6.3
95-49-8	2-Chlorotoluene	126.59	26	U	26	6.1
98-06-6	tert-Butylbenzene	134.22	27	U	27	6.5
95-63-6	1,2,4-Trimethylbenzene	120.20	25	U	25	6.4
135-98-8	sec-Butylbenzene	134.22	27	U	27	6.5
99-87-6	4-Isopropyltoluene	134.22	27	U	27	6.6
541-73-1	1,3-Dichlorobenzene	147.00	30	U	30	6.6
106-46-7	1,4-Dichlorobenzene	147.00	30	U	30	6.6
100-44-7	Benzyl chloride	126.58	26	U	26	6.0
104-51-8	n-Butylbenzene	134.22	27	U	27	7.5

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-20 Lab Sample ID: 200-5005-8 Matrix: Air Lab File ID: bkaj022.d Analysis Method: TO-15 Date Collected: 04/29/2011 15:21 Sample wt/vol: 37(mL) Date Analyzed: 05/06/2011 04:31 Soil Aliquot Vol: Dilution Factor: 25 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	-50-1 1,2-Dichlorobenzene		30	U	30	7.2
120-82-1	1,2,4-Trichlorobenzene		93	U	93	9.3
87-68-3	Hexachlorobutadiene	260.76	53	U	53	17
91-20-3	Naphthalene	128.17	66	U	66	11

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj022.d Page 1

Report Date: 06-May-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-8 Client Smp ID: SL-022-20

Inj Date : 06-MAY-2011 04:31

Operator : pad Smp Info : 200-5005-A-8 Inst ID: B.i

Misc Info: 37,25, all74 cdf4.63

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 8

Dil Factor: 25.00000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	25.00000 1.00000 37.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

		CONCENTRATIONS					
	QUANT SIG	ON-COLUMN FINAL					
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/					
=======================================	====						
2 Dichlorodifluoromethane	85	Compound Not Detected.					
3 Chlorodifluoromethane	51	3.067 3.072 (0.333) 3849 0.08598 2.1(a					
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.					
5 Chloromethane	50	Compound Not Detected.					
6 Butane	43	3.483 3.488 (0.379) 1829 0.04693 1.2(a					
7 Vinyl chloride	62	Compound Not Detected.					
8 1,3-Butadiene	54	Compound Not Detected.					
9 Bromomethane	94	Compound Not Detected.					
10 Chloroethane	64	Compound Not Detected.					
12 Vinyl bromide	106	Compound Not Detected.					
13 Trichlorofluoromethane	101	4.796 4.801 (0.521) 43065 0.23810 6.0					
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788 5.788 (0.629) 121336 0.82793 21					
19 1,1-Dichloroethene	96	Compound Not Detected.					
20 Acetone	43	6.109 6.045 (0.664) 46437 0.62149 16(a					
21 Carbon disulfide	76	Compound Not Detected.					

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj022.d Report Date: 06-May-2011 10:47

Compounds							CONCENTRATIONS	
22 Inographical 45		QUANT SIG					ON-COLUMN	FINAL
22 Isogropanol	Compounds			EXP RT REL RT		RESPONSE	(ppb v/v)	(ppb v/v)
23 Allyl chloride				=====	=====		======	======
25 Methylene chloride 49 6.803 6.802 (0.739) 3619 0.05934 1. 26 Tert-butyl alcohol 59 Compound Not Detected. 27 Methyl tert-butyl ether 73 Compound Not Detected. 28 1,2-Dichloroethene (trans) 61 Compound Not Detected. 30 n-Hexane 57 Compound Not Detected. 31 1,1-Dichloroethane 63 Compound Not Detected. 31 1,2-Dichloroethane 63 Compound Not Detected. 33 1,2-Dichloroethene,7otal 61 Compound Not Detected. 34 1,2-Dichloroethene (cis) 96 Compound Not Detected. 34 1,2-Dichloroethene 72 8.943 8.857 (0.972) 1610 0.04740 1. 37 Bromachloromethane 128 9.199 9.199 (1.000) 753563 10.0000 2. 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.009) 19331 0.13415 3. 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9,519 9.519 9.524 (0.897) 319488 2.00669 5. 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 46 n-Heptane 78 Compound Not Detected. 46 n-Heptane 78 Compound Not Detected. 47 1,4-Dichloroethane 62 Compound Not Detected. 48 Rensene 78 Compound Not Detected. 49 Trichloroethane 63 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloroethane 83 Compound Not Detected. 56 Nethyl isobutyl ketone 83 Compound Not Detected. 57 1,3-Dichloropopene (trans) 75 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 0.9 0.6 0.1,1,2-Trichloroethane 83 Compound Not Detected. 60 1,1,2-Trichloroethane 129 Compound Not Detected. 61 Tetrachloroethane 129 Compound Not Detected. 62 2-Hexanone 120 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromochlane 129 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 112 Compound Not Detected. 67 Xylene (n.p) 106 Compound Not Detected. 68 Ethylenezene 91 Compound Not Detected. 69 Xylene (n.p) 106 Compound Not Detected. 7	22 Isopropanol	45	6.440	6.322	(0.700)	71495	1.17770	29(a)
26 Tert-butyl alcohol 59 Compound Not Detected. 27 Methyl tert-butyl ether 73 Compound Not Detected. 28 1,2-Dichloroethene (trans) 61 Compound Not Detected. 30 n-Hexane 57 Compound Not Detected. 31 1,1-Dichloroethane 63 Compound Not Detected. 31 1,2-Dichloroethane (cis) 96 Compound Not Detected. 32 1,2-Dichloroethane (cis) 96 Compound Not Detected. 33 1,2-Dichloroethane (cis) 96 Compound Not Detected. 36 Methyl Ethyl Ketone 72 8.943 8.857 (0.972) 1610 0.04740 1. 37 Bromochloromethane 128 9.199 9.199 (1.000) 753563 10.0000 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9.284 9.284 (1.009) 19331 0.13415 3. 40 Cyclobexane 44 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 319488 2.00669 5 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heytane 68 Compound Not Detected. 47 1,4-Difluorobennene 114 10.608 10.608 (1.000) 375290 10.0000 49 Trichloroethane 80 Compound Not Detected. 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Nethyl methacrylate 69 Compound Not Detected. 53 1,4-Dicxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropane (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Methyl methacrylate 89 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Methyl methacrylate 166 13.527 13.516 (0.918) 3710 0.02389 0.6 60 2:-Hexanone 43 Compound Not Detected. 61 Tetrachloroethane 106 Compound Not Detected. 62 Echylensene 91 Compound Not Detected. 63 Dibromochlane 119 Compound Not Detected. 64 1,2-Dibromochhane 119 Compound Not Detected. 65 Echylensene 91 Compound Not Detected. 66 Echylensene 91 Compound Not Detected. 67 Explanation (m.p.) 106 Compound Not Detected. 68 Ethylensene 91 Compound Not Detected. 69 Ethylense	23 Allyl chloride	41	Comp	ound Not	Detected			
27 Methyl tert-butyl ether	25 Methylene chloride	49	6.803	6.802	(0.739)	3619	0.05934	1.5(aQ)
28 1,2-Dichloroethene (trans) 61 Compound Not Detected.	26 Tert-butyl alcohol	59	Comp	ound Not	Detected			
30 n-Hexane 57 Compound Not Detected.	27 Methyl tert-butyl ether	73	Comp	ound Not	Detected			
31 1,1-Dichloroethane	28 1,2-Dichloroethene (trans)	61	Comp	ound Not	Detected			
M 33 1,2-Dichloroethene, Total 61 Compound Not Detected. 34 1,2-Dichloroethene (cis) 96 Compound Not Detected. 36 Methyl Ethyl Ketone 72 8,943 8,857 (0.972) 1610 0.04740 1. 37 Bromochloromethane 128 9,199 9,199 (1.000) 753563 10.0000 38 Tetrahydrofuran 42 Compound Not Detected. 39 Chloroform 83 9,284 9,284 (1.009) 19331 0.13415 3. 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9,519 9,524 (0.897) 319488 2.00669 5 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n.Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethane 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 52 1,4-Dickloroethane 83 Compound Not Detected. 53 1,4-Dickloroethane 83 Compound Not Detected. 54 Bromodithloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Bexanone 43 Compound Not Detected. 62 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 L2-Dibromochloromethane 129 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 112 Compound Not Detected. 67 Styrene 104 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 70 Xylene (n.p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Styrene 104 Compound Not Detected. 74 Septiment 105 Compound Not Detected. 75 Styren	30 n-Hexane	57	Comp	ound Not	Detected			
34 1,2-Dichloroethene (cis) 96 Compound Not Detected. 36 Methyl Ethyl Ketone 72 8.943 8.857 (0.972) 1610 0.04740 1.	31 1,1-Dichloroethane	63	Comp	ound Not	Detected			
36 Methyl Ethyl Ketone	M 33 1,2-Dichloroethene,Total	61	Comp	ound Not	Detected			
* 37 Bromochloromethane	34 1,2-Dichloroethene (cis)	96	Comp	ound Not	Detected	•		
38 Tetrahydrofuram	36 Methyl Ethyl Ketone	72	8.943	8.857	(0.972)	1610	0.04740	1.2(aQ)
39 Chloroform 83 9.284 9.284 (1.009) 19331 0.13415 3. 40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 319488 2.00669 5 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. * 47 1,4-Diffluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 (0.1,1,2-Trichloroethane 83 Compound Not Detected. 56 Not Detected. 57 Compound Not Detected. 58 Toluene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 (0.1,1,2-Trichloroethane 166 13.527 13.516 (0.918) 3710 0.02389 0.6 (1.1,2-Trichloroethane 166 13.527 13.516 (0.918) 3710 0.02389 0.6 (1.1,2-Trichloroethane 129 Compound Not Detected. 58 Chlorobenzene 43 Compound Not Detected. 59 Compound Not Detected. 50 Compound Not Detected. 50 Compound Not Detected. 51 Compound Not Detected. 52 Compound Not Detected. 53 Compound Not Detected. 54 1,2-Dibromochloromethane 107 Compound Not Detected. 55 Chlorobenzene 112 Compound Not Detected. 56 Chlorobenzene 112 Compound Not Detected. 57 Styrene 104 Compound Not Detected. 58 Styrene 104 Compound Not Detected. 59 Styrene 104 Compound Not Detected. 50 Compound Not Detected. 51 Styrene 104 Compound Not Detected. 52 Styrene 104 Compound Not Detected.	* 37 Bromochloromethane	128	9.199	9.199	(1.000)	753563	10.0000	
40 Cyclohexane 84 Compound Not Detected. 41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 319488 2.00669 5 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropane (cis) 75 Compound Not Detected. 55 1,3-Dichloropropene (trans) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected.	38 Tetrahydrofuran	42	Comp	ound Not	Detected	•		
41 1,1,1-Trichloroethane 97 9.519 9.524 (0.897) 319488 2.00669 5 42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropane (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 67 Sylene (m,p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	39 Chloroform	83	9.284	9.284	(1.009)	19331	0.13415	3.4(a)
42 Carbon tetrachloride 117 Compound Not Detected. 43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. * 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 57 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 67 Xylenes (n,p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	40 Cyclohexane	84	Comp	ound Not	Detected	•		
43 2,2,4-Trimethylpentane 57 Compound Not Detected. 44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. * 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 112 Compound Not Detected. 67 Sthylenes, Total 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected.	41 1,1,1-Trichloroethane	97	9.519	9.524	(0.897)	319488	2.00669	50
44 Benzene 78 Compound Not Detected. 45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 179 Trichloroethane 95 10.965 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62 10.971 (1.034) 2679767 24.9499 62	42 Carbon tetrachloride	117	Comp	pound Not	Detected			
45 1,2-Dichloroethane 62 Compound Not Detected. 46 n-Heptane 43 Compound Not Detected. * 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 129 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p.) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	43 2,2,4-Trimethylpentane	57	Comp	pound Not	Detected			
* 46 n-Heptane	44 Benzene	78	Comp	pound Not	Detected			
* 47 1,4-Difluorobenzene 114 10.608 10.608 (1.000) 3752390 10.0000 49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene 112 Compound Not Detected. 66 Chlorobenzene 91 Compound Not Detected. 67 Sylene (m.p) 106 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m.p) 106 Compound Not Detected. 71 Xylenes, Total 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	45 1,2-Dichloroethane	62	Comp	pound Not	Detected			
49 Trichloroethene 95 10.965 10.971 (1.034) 2679767 24.9499 62 50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	46 n-Heptane	43	Comp	pound Not	Detected			
50 1,2-Dichloropropane 63 Compound Not Detected. 51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	* 47 1,4-Difluorobenzene	114					10.0000	
51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	49 Trichloroethene	95	10.965	10.971	(1.034)	2679767	24.9499	620
51 Methyl methacrylate 69 Compound Not Detected. 53 1,4-Dioxane 88 Compound Not Detected. 54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 91 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	50 1,2-Dichloropropane	63	Comp	oound Not	. Detected			
54 Bromodichloromethane 83 Compound Not Detected. 55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	51 Methyl methacrylate	69	Comp	pound Not	Detected			
55 1,3-Dichloropropene (cis) 75 Compound Not Detected. 56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	53 1,4-Dioxane	88	Comp	pound Not	Detected			
56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	54 Bromodichloromethane	83	Comp	pound Not	Detected			
56 Methyl isobutyl ketone 43 Compound Not Detected. 58 Toluene 92 12.764 12.748 (0.866) 6358 0.03617 0.9 59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	55 1,3-Dichloropropene (cis)	75	Comp	oound Not	Detected			
59 1,3-Dichloropropene (trans) 75 Compound Not Detected. 60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Kylene (m,p) 106 Compound Not Detected. 70 Kylenes, Total 106 Compound Not Detected. 71 Kylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	56 Methyl isobutyl ketone	43	Comp	pound Not	Detected			
60 1,1,2-Trichloroethane 83 Compound Not Detected. 61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	58 Toluene	92	12.764	12.748	(0.866)	6358	0.03617	0.90(aQ)
61 Tetrachloroethene 166 13.527 13.516 (0.918) 3710 0.02389 0.6 62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	59 1,3-Dichloropropene (trans)	75	Comp	pound Not	Detected			
62 2-Hexanone 43 Compound Not Detected. 63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	60 1,1,2-Trichloroethane	83	Comp	pound Not	Detected			
63 Dibromochloromethane 129 Compound Not Detected. 64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	61 Tetrachloroethene	166	13.527	13.516	(0.918)	3710	0.02389	0.60(a)
64 1,2-Dibromoethane 107 Compound Not Detected. * 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	62 2-Hexanone	43	Comp	pound Not	Detected			
* 65 Chlorobenzene-d5 117 14.733 14.738 (1.000) 3351548 10.0000 66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	63 Dibromochloromethane	129	Comp	pound Not	Detected			
66 Chlorobenzene 112 Compound Not Detected. 68 Ethylbenzene 91 Compound Not Detected. 69 Kylene (m,p) 106 Compound Not Detected. M 70 Kylenes, Total 106 Compound Not Detected. 71 Kylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	64 1,2-Dibromoethane	107	Comp	pound Not	Detected			
68 Ethylbenzene 91 Compound Not Detected. 69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	* 65 Chlorobenzene-d5	117	14.733	14.738	(1.000)	3351548	10.0000	
69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	66 Chlorobenzene	112	Comp	oound Not	. Detected			
69 Xylene (m,p) 106 Compound Not Detected. M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	68 Ethylbenzene	91	Com	oound Not	Detected			
M 70 Xylenes, Total 106 Compound Not Detected. 71 Xylene (o) 106 Compound Not Detected. 72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	69 Xylene (m,p)	106	Comp	oound Not	. Detected			
72 Styrene 104 Compound Not Detected. 73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.		106						
73 Bromoform 173 Compound Not Detected. 74 Isopropylbenzene 105 Compound Not Detected.	71 Xylene (o)	106	Comp	oound Not	. Detected			
74 Isopropylbenzene 105 Compound Not Detected.	72 Styrene	104	Comp	oound Not	. Detected			
74 Isopropylbenzene 105 Compound Not Detected.			_	-				
			_	=				
-								
76 n-Propylbenzene 91 Compound Not Detected.			_	-				

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj022.d Report Date: 06-May-2011 10:47 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

Client ID: SL-022-20 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-8
Lab Sample ID: 200-5005-8

Date: 06-MAY-2011 04:31

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 195 of 429

Lab Sample ID: 200-5005-8 Date: 06-MAY-2011 04:31

Client ID: SL-022-20 Instrument: B.i

Sample Info: 200-5005-A-8 Operator: pad

13 Trichlorofluoromethane

Lab Sample ID: 200-5005-8 Date: 06-MAY-2011 04:31

Client ID: SL-022-20 Instrument: B.i

Sample Info: 200-5005-A-8 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-8 Date: 06-MAY-2011 04:31

Client ID: SL-022-20 Instrument: B.i

Sample Info: 200-5005-A-8 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-8 Date: 06-MAY-2011 04:31

Client ID: SL-022-20 Instrument: B.i

Sample Info: 200-5005-A-8 Operator: pad

49 Trichloroethene

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9

Matrix: Air Lab File ID: bkaj023.d

Analysis Method: TO-15 Date Collected: 04/29/2011 16:43

Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23

Soil Aliquot Vol: Dilution Factor: 24.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	12	U	12	0.95
75-45-6	Freon 22	86.47	12	U	12	0.85
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	5.0	Ū	5.0	0.80
74-87-3	Chloromethane	50.49	12	U	12	0.32
106-97-8	n-Butane	58.12	12	U	12	0.27
75-01-4	Vinyl chloride	62.50	5.0	U	5.0	0.72
106-99-0	1,3-Butadiene	54.09	5.0	U	5.0	0.25
74-83-9	Bromomethane	94.94	5.0	U	5.0	0.30
75-00-3	Chloroethane	64.52	12	U	12	0.40
593-60-2	Bromoethene (Vinyl Bromide)	106.96	5.0	U	5.0	0.47
75-69-4	Trichlorofluoromethane	137.37	5.0	U	5.0	0.85
76-13-1	Freon TF	187.38	17		5.0	0.25
75-35-4	1,1-Dichloroethene	96.94	5.0	U	5.0	0.75
67-64-1	Acetone	58.08	120	U	120	1.1
67-63-0	Isopropyl alcohol	60.10	120	U	120	0.92
75-15-0	Carbon disulfide	76.14	12	U	12	1.6
107-05-1	3-Chloropropene	76.53	12	U	12	0.47
75-09-2	Methylene Chloride	84.93	12	U	12	0.32
75-65-0	tert-Butyl alcohol	74.12	120	U	120	1.8
1634-04-4	Methyl tert-butyl ether	88.15	5.0	U	5.0	0.40
156-60-5	trans-1,2-Dichloroethene	96.94	5.0	U	5.0	0.80
110-54-3	n-Hexane	86.17	5.0	U	5.0	0.65
75-34-3	1,1-Dichloroethane	98.96	5.0	U	5.0	0.87
78-93-3	Methyl Ethyl Ketone	72.11	12	U	12	0.42
156-59-2	cis-1,2-Dichloroethene	96.94	5.0	U	5.0	0.35
540-59-0	1,2-Dichloroethene, Total	96.94	5.0	U	5.0	0.35
67-66-3	Chloroform	119.38	5.0	U	5.0	0.77
109-99-9	Tetrahydrofuran	72.11	120	U	120	0.45
71-55-6	1,1,1-Trichloroethane	133.41	50		5.0	0.87
110-82-7	Cyclohexane	84.16	5.0	U	5.0	0.97
56-23-5	Carbon tetrachloride	153.81	5.0	U	5.0	0.82
540-84-1	2,2,4-Trimethylpentane	114.23	5.0	U	5.0	0.90
71-43-2	Benzene	78.11	5.0	U	5.0	0.45
107-06-2	1,2-Dichloroethane	98.96	5.0	U	5.0	0.77
142-82-5	n-Heptane	100.21	5.0	U	5.0	0.25

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9

Matrix: Air Lab File ID: bkaj023.d

Analysis Method: TO-15 Date Collected: 04/29/2011 16:43

Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23

Soil Aliquot Vol: Dilution Factor: 24.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	680		5.0	0.75
80-62-6	Methyl methacrylate	100.12	12	U	12	0.32
78-87-5	1,2-Dichloropropane	112.99	5.0	U	5.0	0.35
123-91-1	1,4-Dioxane	88.11	120	U	120	2.2
75-27-4	Bromodichloromethane	163.83	5.0	U	5.0	0.70
10061-01-5	cis-1,3-Dichloropropene	110.97	5.0	U	5.0	0.40
108-10-1	methyl isobutyl ketone	100.16	12	U	12	0.65
108-88-3	Toluene	92.14	5.0	U	5.0	0.45
10061-02-6	trans-1,3-Dichloropropene	110.97	5.0	U	5.0	0.50
79-00-5	1,1,2-Trichloroethane	133.41	5.0	U	5.0	0.47
127-18-4	Tetrachloroethene	165.83	5.0	U	5.0	0.27
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	12	U	12	0.97
124-48-1	Dibromochloromethane	208.29	5.0	U	5.0	0.52
106-93-4	1,2-Dibromoethane	187.87	5.0	U	5.0	0.45
108-90-7	Chlorobenzene	112.30	5.0	U	5.0	0.50
100-41-4	Ethylbenzene	106.17	5.0	U	5.0	0.55
179601-23-1	m,p-Xylene	106.17	12	U	12	1.2
95-47-6	Xylene, o-	106.17	5.0	U	5.0	0.55
1330-20-7	Xylene (total)	106.17	5.0	U	5.0	0.55
100-42-5	Styrene	104.15	5.0	U	5.0	0.75
75-25-2	Bromoform	252.75	5.0	U	5.0	0.47
98-82-8	Cumene	120.19	5.0	U	5.0	0.77
79-34-5	1,1,2,2-Tetrachloroethane	167.85	5.0	U	5.0	1.0
103-65-1	n-Propylbenzene	120.19	5.0	U	5.0	1.2
622-96-8	4-Ethyltoluene	120.20	5.0	U	5.0	1.1
108-67-8	1,3,5-Trimethylbenzene	120.20	5.0	U	5.0	1.3
95-49-8	2-Chlorotoluene	126.59	5.0	U	5.0	1.2
98-06-6	tert-Butylbenzene	134.22	5.0	U	5.0	1.2
95-63-6	1,2,4-Trimethylbenzene	120.20	5.0	U	5.0	1.3
135-98-8	sec-Butylbenzene	134.22	5.0	U	5.0	1.2
99-87-6	4-Isopropyltoluene	134.22	5.0	U	5.0	1.2
541-73-1	1,3-Dichlorobenzene	147.00	5.0	U	5.0	1.1
106-46-7	1,4-Dichlorobenzene	147.00	5.0	U	5.0	1.1
100-44-7	Benzyl chloride	126.58	5.0	U	5.0	1.1
104-51-8	n-Butylbenzene	134.22	5.0	U	5.0	1.4

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9 Matrix: Air Lab File ID: bkaj023.d Analysis Method: TO-15 Date Collected: 04/29/2011 16:43 Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23 Soil Aliquot Vol: Dilution Factor: 24.9 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	5.0	U	5.0	1.2
120-82-1	1,2,4-Trichlorobenzene	181.45	12	U	12	1.2
87-68-3	Hexachlorobutadiene	260.76	5.0	U	5.0	1.6
91-20-3	Naphthalene	128.17	12	U	12	2.1

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9

Matrix: Air Lab File ID: bkaj023.d

Analysis Method: TO-15 Date Collected: 04/29/2011 16:43

Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23

Soil Aliquot Vol: Dilution Factor: 24.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	62	U	62	4.7
75-45-6	Freon 22	86.47	44	U	44	3.0
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	35	U	35	5.6
74-87-3	Chloromethane	50.49	26	U	26	0.67
106-97-8	n-Butane	58.12	30	U	30	0.65
75-01-4	Vinyl chloride	62.50	13	U	13	1.8
106-99-0	1,3-Butadiene	54.09	11	U	11	0.55
74-83-9	Bromomethane	94.94	19	U	19	1.2
75-00-3	Chloroethane	64.52	33	U	33	1.1
593-60-2	Bromoethene (Vinyl Bromide)	106.96	22	U	22	2.1
75-69-4	Trichlorofluoromethane	137.37	28	U	28	4.8
76-13-1	Freon TF	187.38	130		38	1.9
75-35-4	1,1-Dichloroethene	96.94	20	U	20	3.0
67-64-1	Acetone	58.08	300	U	300	2.7
67-63-0	Isopropyl alcohol	60.10	310	U	310	2.3
75-15-0	Carbon disulfide	76.14	39	U	39	5.1
107-05-1	3-Chloropropene	76.53	39	U	39	1.5
75-09-2	Methylene Chloride	84.93	43	U	43	1.1
75-65-0	tert-Butyl alcohol	74.12	380	U	380	5.4
1634-04-4	Methyl tert-butyl ether	88.15	18	U	18	1.4
156-60-5	trans-1,2-Dichloroethene	96.94	20	U	20	3.2
110-54-3	n-Hexane	86.17	18	U	18	2.3
75-34-3	1,1-Dichloroethane	98.96	20	U	20	3.5
78-93-3	Methyl Ethyl Ketone	72.11	37	U	37	1.2
156-59-2	cis-1,2-Dichloroethene	96.94	20	U	20	1.4
540-59-0	1,2-Dichloroethene, Total	96.94	20	U	20	1.4
67-66-3	Chloroform	119.38	24	U	24	3.8
109-99-9	Tetrahydrofuran	72.11	370	U	370	1.3
71-55-6	1,1,1-Trichloroethane	133.41	270		27	4.8
110-82-7	Cyclohexane	84.16	17	U	17	3.3
56-23-5	Carbon tetrachloride	153.81	31	U	31	5.2
540-84-1	2,2,4-Trimethylpentane	114.23	23	U	23	4.2
71-43-2	Benzene	78.11	16	U	16	1.4
107-06-2	1,2-Dichloroethane	98.96	20	U	20	3.1
142-82-5	n-Heptane	100.21	20	U	20	1.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9

Matrix: Air Lab File ID: bkaj023.d

Analysis Method: TO-15 Date Collected: 04/29/2011 16:43

Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23

Soil Aliquot Vol: Dilution Factor: 24.9

Soil Extract Vol.: _____ GC Column: RTX-624 ID: 0.32(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 17603 Units: ug/m3

CAC NO	COMPOUND NAME	MOLECULAR	DD0III m		DI	MDT
CAS NO.	COMPOUND NAME	WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	3700		27	4.0
80-62-6	Methyl methacrylate	100.12	51	U	51	1.3
78-87-5	1,2-Dichloropropane	112.99	23	U	23	1.6
123-91-1	1,4-Dioxane	88.11	450	U	450	7.9
75-27-4	Bromodichloromethane	163.83	33	U	33	4.7
10061-01-5	cis-1,3-Dichloropropene	110.97	23	U	23	1.8
108-10-1	methyl isobutyl ketone	100.16	51	U	51	2.7
108-88-3	Toluene	92.14	19	U	19	1.7
10061-02-6	trans-1,3-Dichloropropene	110.97	23	U	23	2.3
79-00-5	1,1,2-Trichloroethane	133.41	27	U	27	2.6
127-18-4	Tetrachloroethene	165.83	34	U	34	1.9
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	51	Ū	51	4.0
124-48-1	Dibromochloromethane	208.29	42	U	42	4.5
106-93-4	1,2-Dibromoethane	187.87	38	U	38	3.4
108-90-7	Chlorobenzene	112.30	23	U	23	2.3
100-41-4	Ethylbenzene	106.17	22	U	22	2.4
179601-23-1	m,p-Xylene	106.17	54	U	54	5.2
95-47-6	Xylene, o-	106.17	22	U	22	2.4
1330-20-7	Xylene (total)	106.17	22	U	22	2.4
100-42-5	Styrene	104.15	21	U	21	3.2
75-25-2	Bromoform	252.75	51	U	51	4.9
98-82-8	Cumene	120.19	24	U	24	3.8
79-34-5	1,1,2,2-Tetrachloroethane	167.85	34	U	34	6.8
103-65-1	n-Propylbenzene	120.19	24	U	24	6.1
622-96-8	4-Ethyltoluene	120.20	24	U	24	5.6
108-67-8	1,3,5-Trimethylbenzene	120.20	24	U	24	6.2
95-49-8	2-Chlorotoluene	126.59	26	U	26	6.1
98-06-6	tert-Butylbenzene	134.22	27	U	27	6.4
95-63-6	1,2,4-Trimethylbenzene	120.20	24	U	24	6.4
135-98-8	sec-Butylbenzene	134.22	27	U	27	6.4
99-87-6	4-Isopropyltoluene	134.22	27	U	27	6.6
541-73-1	1,3-Dichlorobenzene	147.00	30	U	30	6.6
106-46-7	1,4-Dichlorobenzene	147.00	30	U	30	6.6
100-44-7	Benzyl chloride	126.58	26	U	26	5.9
104-51-8	n-Butylbenzene	134.22	27	U	27	7.5

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Client Sample ID: SL-022-END Lab Sample ID: 200-5005-9 Matrix: Air Lab File ID: bkaj023.d Analysis Method: TO-15 Date Collected: 04/29/2011 16:43 Sample wt/vol: 36(mL) Date Analyzed: 05/06/2011 05:23 Dilution Factor: 24.9 Soil Aliquot Vol: Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	30	U	30	7.2
120-82-1	1,2,4-Trichlorobenzene	181.45	92	U	92	9.2
87-68-3	Hexachlorobutadiene	260.76	53	U	53	17
91-20-3	Naphthalene	128.17	65	U	65	11

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj023.d Page 1

Report Date: 06-May-2011 10:47

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-5005-9 Client Smp ID: SL-022-END Inj Date : 06-MAY-2011 05:23

Operator : pad Smp Info : 200-5005-A-9 Inst ID: B.i

Misc Info : 36,24.9, all74 cdf4.49

Comment

: /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m Method

Meth Date: 06-May-2011 10:45 pd Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014 Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 9

Dil Factor: 24.90000

Integrator: HP RTE Compound Sublist: all74.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	24.90000 1.00000 36.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)
			` ,

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==			======	======
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	4162	0.03976	0.99(a)
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	4231	0.09734	2.4(aQ)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Comp	ound Not Detected	d.		
5 Chloromethane	50	Comp	ound Not Detected	d.		
6 Butane	43	3.483	3.488 (0.379)	3143	0.08307	2.1(aQ)
7 Vinyl chloride	62	Comp	ound Not Detected	d.		
8 1,3-Butadiene	54	Comp	ound Not Detected	d.		
9 Bromomethane	94	Comp	ound Not Detected	d.		
10 Chloroethane	64	Comp	ound Not Detected	d.		
12 Vinyl bromide	106	Comp	ound Not Detected	d.		
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	33439	0.19042	4.7(a)
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.630)	96325	0.67695	17
19 1,1-Dichloroethene	96	Comp	ound Not Detected	d.		
20 Acetone	43	6.125	6.045 (0.666)	25524	0.35183	8.8(a)
21 Carbon disulfide	76	Comp	ound Not Detected	d.		

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj023.d Report Date: 06-May-2011 10:47

						CONCENTRA	ATIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT I	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==	====== :	=====	======	======	======
22 Isopropanol	45	6.445	6.322	(0.701)	40140	0.68100	17(a)
23 Allyl chloride	41	Comp	pound Not	Detected	•		
25 Methylene chloride	49	6.808	6.802	(0.740)	3613	0.06102	1.5(aQ)
26 Tert-butyl alcohol	59	Comp	ound Not	Detected			
27 Methyl tert-butyl ether	73	Comp	ound Not	Detected			
28 1,2-Dichloroethene (trans)	61	Comp	ound Not	Detected	•		
30 n-Hexane	57	Comp	ound Not	Detected	•		
31 1,1-Dichloroethane	63	Comp	ound Not	Detected	•		
M 33 1,2-Dichloroethene,Total	61	Comp	ound Not	Detected			
34 1,2-Dichloroethene (cis)	96	Comp	ound Not	Detected			
36 Methyl Ethyl Ketone	72	8.959	8.857	(0.974)	621	0.01883	0.47(aQ)
* 37 Bromochloromethane	128	9.199	9.199	(1.000)	731660	10.0000	
38 Tetrahydrofuran	42	Comp	ound Not	Detected	•		
39 Chloroform	83	9.279	9.284	(1.009)	18461	0.13195	3.3(a)
40 Cyclohexane	84	Comp	oound Not	Detected			
41 1,1,1-Trichloroethane	97	9.524	9.524	(0.898)	311779	2.00907	50
42 Carbon tetrachloride	117	Comp	oound Not	Detected			
43 2,2,4-Trimethylpentane	57	-		Detected			
44 Benzene	78	_		Detected			
45 1,2-Dichloroethane	62			Detected			
46 n-Heptane	43			Detected			
* 47 1,4-Difluorobenzene	114		10.608		3657500	10.0000	
49 Trichloroethene	95		10.971		2879503	27.5051	680
50 1,2-Dichloropropane	63			Detected			
51 Methyl methacrylate	69			Detected			
53 1,4-Dioxane	88			Detected			
54 Bromodichloromethane	83			Detected			
55 1,3-Dichloropropene (cis)	75			Detected			
56 Methyl isobutyl ketone	43			Detected			
58 Toluene	92		12.748		5027	0.02925	0.73(a)
59 1,3-Dichloropropene (trans)	75			Detected		0.02525	0.75(a)
60 1,1,2-Trichloroethane	83			Detected			
61 Tetrachloroethene	166	_	13.516		16351	0.10769	2.7(aQ)
62 2-Hexanone	43			Detected		0.10703	2.7(00)
63 Dibromochloromethane	129	_		Detected			
64 1,2-Dibromoethane	107	-		Detected			
* 65 Chlorobenzene-d5	117	-	14.738		3277405	10.0000	
66 Chlorobenzene	112			Detected		10.0000	
68 Ethylbenzene	91	-	•	Detected			
69 Xylene (m,p)	106	_		Detected			
M 70 Xylenes, Total	106			Detected			
71 Xylene (o)	106	-	•	Detected			
72 Styrene	104	-	•	Detected			
73 Bromoform		-		Detected			
	173	_					
74 Isopropylbenzene	105			Detected			
75 1,1,2,2-Tetrachloroethane	83	_		Detected			
76 n-Propylbenzene	91	Comp	ouna Not	Detected	•		

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj023.d Report Date: 06-May-2011 10:47 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).Q Qualifier signal failed the ratio test.

Client ID: SL-022-END Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: 200-5005-A-9
Lab Sample ID: 200-5005-9

Date: 06-MAY-2011 05:23

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 209 of 429

Lab Sample ID: 200-5005-9 Date: 06-MAY-2011 05:23

Client ID: SL-022-END Instrument: B.i

Sample Info: 200-5005-A-9 Operator: pad

17 1,1,2-Trichloro-1,2,2-trifluo

Lab Sample ID: 200-5005-9 Date: 06-MAY-2011 05:23

Client ID: SL-022-END Instrument: B.i

Sample Info: 200-5005-A-9 Operator: pad

41 1,1,1-Trichloroethane

Lab Sample ID: 200-5005-9 Date: 06-MAY-2011 05:23

Client ID: SL-022-END Instrument: B.i

Sample Info: 200-5005-A-9 Operator: pad

49 Trichloroethene

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:	
Level 1	IC 200-16751/14	ic 132521	bka014.d	
Level 2	IC 200-16751/4	ic 132517	bka004.d	
Level 3	IC 200-16751/5	ic 132507	bka005.d	
Level 4	ICIS 200-16751/6	icis 132424	bka006.d	
Level 5	IC 200-16751/7	ic 132422	bka007.d	
Level 6	IC 200-16751/8	ic 132406	bka008.d	
Level 7	IC 200-16751/9	ic 132405	bka009.d	

ANALYTE			RRF			CURVE	(COEFFICIEN	Г	# MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COD
Propylene	+++++ 0.2028	0.2937 0.1918	0.2560	0.2362	0.2182	Ave		0.2331			16.1	30.0		
Dichlorodifluoromethane	+++++ 1.2354	1.7566 1.1271	1.6286	1.4822	1.3540	Ave		1.4307			16.7	30.0		
Freon 22	+++++ 0.5179	0.7215 0.4875	0.6653	0.6083	0.5640	Ave		0.5941			15.0	30.0		
1,2-Dichlorotetrafluoroethane	1.3844 1.1910	1.7093 1.0742	1.6027	1.4333	1.3107	Ave		1.3865			16.0	30.0		
Chloromethane	+++++ 0.2593	0.3709 0.2480	0.3326	0.2995	0.2763	Ave		0.2978			15.7	30.0		
n-Butane	+++++ 0.4446	0.6516 0.4194	0.5695	0.5266	0.4911	Ave		0.5171			16.5	30.0		
Vinyl chloride	0.3996 0.3578	0.4927 0.3402	0.4578	0.4218	0.3940	Ave		0.4091			13.1	30.0		
1,3-Butadiene	0.3028 0.2597	0.3441	0.3322	0.3077	0.2872	Ave		0.2973			11.9	30.0		
Bromomethane	0.7399 0.6403	0.8777 0.6073	0.8326	0.7633	0.7094	Ave		0.7386			13.1	30.0		
Chloroethane	+++++ 0.3079	0.4306 0.2941	0.3975	0.3667	0.3414	Ave		0.3564			14.7	30.0		
Isopentane	0.7890 0.5663	0.8068 0.5316	0.7550	0.6903	0.6343	Ave		0.6819			15.9	30.0		
Bromoethene(Vinyl Bromide)	1.0165 0.8827	1.0923 0.8451	1.0392	1.0017	0.9560	Ave		0.9762			9.0	30.0		
Trichlorofluoromethane	2.4118 2.1426	2.7807 2.0593	2.6263	2.4579	2.3226	Ave		2.4002			10.6	30.0		
n-Pentane	++++ 0.9396	1.3399	1.2188	1.1394	1.0527	Ave		1.0948			15.8	30.0		

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

LVL 1 LVL 6 +++++ 0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++ 0.9113	0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	LVL 3 0.2925 0.6579 0.3538 2.0311 0.9592	UVL 4 0.2783 0.6250 0.3356 1.9688 0.9425	LVL 5 0.2684 0.5949 0.3181 1.8927	Ave	B M1 0.2702 0.6026 0.3155	M2		9.0	30. 30.	0		OR COD
LVL 6 +++++ 0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	LVL 7 0.2981 0.2381 0.6631 0.5335 ++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.2925 0.6579 0.3538 2.0311	0.2783 0.6250 0.3356 1.9688	0.2684	Ave	0.2702			8.2	30.)		<u> </u>
0.2457 0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696	0.2381 0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.6579 0.3538 2.0311	0.6250 0.3356 1.9688	0.5949	Ave	0.6026			8.2	30.)		
0.5889 0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696	0.6631 0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.3538	0.3356	0.3181	Ave								
0.5552 +++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	0.5335 +++++ 0.2756 2.1477 1.7408 0.9855 0.8568	0.3538	0.3356	0.3181	Ave								
+++++ 0.2946 2.0341 1.7984 1.0106 0.8696 +++++	+++++ 0.2756 2.1477 1.7408 0.9855 0.8568	2.0311	1.9688			0.3155			9.9	30.			
2.0341 1.7984 1.0106 0.8696	2.1477 1.7408 0.9855 0.8568			1.8927									
1.7984 1.0106 0.8696 +++++	1.7408 0.9855 0.8568			1.8927		1 0110							
0.8696	0.8568	0.9592	0 0405		Ave	1.9448			7.4	30.	1		
+++++			0.9425	0.9162	Ave	0.9344			6.1	30.)		-
		1 1016	1 0000	0 0000		0.0015			0 0				
		1.1346	1.0387	0.9795	Ave	0.9915			9.9	30.)		
	2.9423	2.8142	2.6831	2.5559	Ave	2.6205			9.1	30.			
		0.8653	0.8298	0.7986	Ave	0.8056			5.4	30.			
		0 9537	0 8797	0.8300	Ave	0.8674			11 0	3.0	1		
		0.3337	0.0737	0.0000	1100	0.0071			11.0	30.			
		0.5866	0.5587	0.5053	Ave	0.5188			10.0	30.)		
		Λ 00Ω1	0 0104	0 7501	7,770	0 0003			16 /	2.0)		
		0.0091	0.0104	0.7591	Ave	0.0093			10.4	30.			
+++++		1.3748	1.3402	1.2932	Ave	1.3083			4.1	30.)		
		2.6981	2.5855	2.4865	Ave	2.5083			7.2	30.)		
		1.3461	1.2514	1.1668	Ave	1.2049			11.4	30.)		
+++++	0.6482	0.6044	0.5926	0.5633	Ave	0.5756			8.6	30.)		
0.5278													
		1.4445	1.3597	1.2725	Ave	1.3226			10.8	30.)		
											_		
		1.6612	1.5757	1.4762	Ave	1.5197			10.3	30.)		
		2.0364	1.9117	1.8004	Ave	1.7861			11.3	30.			
1.6490	1.5329												
1.0802	1.1265	1.1121	1.0891	1.0475	Ave	1.0565			6.2	30.			
		0.4842	0.4611	0.4495	Ave	0.4507			9.8	30.			
	0.9113 +++++ 2.4104 +++++ 0.7517 0.8774 0.7804 ++++ 0.4707 ++++ 1.2320 2.4801 2.3376 1.2053 1.0793 ++++ 0.5278 1.4010 1.1810 1.5163 1.3718 ++++ 1.6490 1.0802 0.9969 ++++	0.9113 0.8936 +++++ 2.9423 2.4104 2.3171 +++++ +++++ 0.7517 0.7826 0.8774 1.0135 0.7804 0.7372 +++++ 1.0244 0.7012 0.6637 +++++ +++++ 1.2320 1.3014 2.4801 2.7316 2.3376 2.2385 1.2053 1.3853 1.0793 1.0002 +++++ 0.6482 0.5278 0.5175 1.4010 1.4954 1.1810 1.1044 1.5163 1.7431 1.3718 1.2938 +++++ +++++ 1.6490 1.5329	0.9113	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.4104 2.3171 0.8653 0.8298 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.7804 0.7372 0.7804 0.5866 0.5587 0.4707 0.4727 0.4727 0.8891 0.8184 0.7012 0.6637 0.8391 0.8184 0.7012 0.6637 0.8797 0.8797 +++++ +++++ 1.3748 1.3402 1.2320 1.3014 2.6981 2.5855 2.3376 2.2385 1.3461 1.2514 1.0793 1.0002 1.4445 1.2514 1.0793 1.0002 1.4445 1.3597 1.4010 1.4954 1.4445 1.3597 1.3718 1.2938 1.4445 1.5757 1.3718 1.2938 1.4445 1.5757 1.6490 1.5329 1.0802 1.1265 1.1121 1.0891 </td <td>0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 2.4104 2.3171 0.8653 0.8298 0.7986 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.8300 0.7804 0.7372 0.9537 0.8797 0.8300 0.4707 0.4727 0.4727 0.4727 0.8891 0.8184 0.7591 0.7012 0.6637 0.6637 0.8184 0.7591 0.7991 0.7012 0.6637 0.8304 0.8184 0.7591 1.2320 1.3014 1.3748 1.3402 1.2932 1.2320 1.3014 2.6981 2.5855 2.4865 2.3376 2.2385 1.3461 1.2514 1.1668 1.0793 1.0002 ++++ 0.6482 0.6044 0.5926 0.5633 0.5278 0.5175 1.4010 1.4954 1.4445 1.3597 1.2725 1.3181 1.2938 1.4444 1.5</td> <td>0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 Ave 2.4104 2.3171 </td> <td>0.9113 0.8936 2.8142 2.6831 2.5559 Ave 2.6205 2.4104 2.3171 0.8653 0.8298 0.7986 Ave 0.8056 0.7517 0.7826 0.9537 0.8797 0.8300 Ave 0.8674 0.8774 1.0135 0.9537 0.8797 0.8300 Ave 0.8674 0.7804 0.7372 0.7372 0.5053 Ave 0.5188 0.4707 0.4727 0.4727 0.4727 0.8300 Ave 0.8093 0.7012 0.6637 0.6637 0.8184 0.7591 Ave 0.8093 0.7012 0.6637 1.3014 1.3402 1.2932 Ave 1.3083 1.2320 1.3014 1.3748 1.3402 1.2932 Ave 1.3083 2.4801 2.7316 2.6981 2.5855 2.4865 Ave 2.5083 2.3376 2.2385 1.3461 1.2514 1.1668 Ave 1.2049 1.0793 1.0002 1.4445 1.3597 1.2725 Ave 1.3226 <</td> <td> 0.9113</td> <td> 0.9113</td> <td> 0.9113 0.8936</td> <td> 0.9113</td> <td> 0.9113</td> <td> 0.9113 0.8936 </td>	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 2.4104 2.3171 0.8653 0.8298 0.7986 0.7517 0.7826 0.8774 1.0135 0.9537 0.8797 0.8300 0.7804 0.7372 0.9537 0.8797 0.8300 0.4707 0.4727 0.4727 0.4727 0.8891 0.8184 0.7591 0.7012 0.6637 0.6637 0.8184 0.7591 0.7991 0.7012 0.6637 0.8304 0.8184 0.7591 1.2320 1.3014 1.3748 1.3402 1.2932 1.2320 1.3014 2.6981 2.5855 2.4865 2.3376 2.2385 1.3461 1.2514 1.1668 1.0793 1.0002 ++++ 0.6482 0.6044 0.5926 0.5633 0.5278 0.5175 1.4010 1.4954 1.4445 1.3597 1.2725 1.3181 1.2938 1.4444 1.5	0.9113 0.8936 +++++ 2.9423 2.8142 2.6831 2.5559 Ave 2.4104 2.3171	0.9113 0.8936 2.8142 2.6831 2.5559 Ave 2.6205 2.4104 2.3171 0.8653 0.8298 0.7986 Ave 0.8056 0.7517 0.7826 0.9537 0.8797 0.8300 Ave 0.8674 0.8774 1.0135 0.9537 0.8797 0.8300 Ave 0.8674 0.7804 0.7372 0.7372 0.5053 Ave 0.5188 0.4707 0.4727 0.4727 0.4727 0.8300 Ave 0.8093 0.7012 0.6637 0.6637 0.8184 0.7591 Ave 0.8093 0.7012 0.6637 1.3014 1.3402 1.2932 Ave 1.3083 1.2320 1.3014 1.3748 1.3402 1.2932 Ave 1.3083 2.4801 2.7316 2.6981 2.5855 2.4865 Ave 2.5083 2.3376 2.2385 1.3461 1.2514 1.1668 Ave 1.2049 1.0793 1.0002 1.4445 1.3597 1.2725 Ave 1.3226 <	0.9113	0.9113	0.9113 0.8936	0.9113	0.9113	0.9113 0.8936

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	COE	EFFICIENT	#	MIN RRF	%RSD		MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				≩RSD	OR COD		OR COD
	LVL 6	LVL 7					_									
Ethyl acetate	++++	+++++	0.0940	0.0938	0.0916	Ave		0.0900			5.1		30.0		П	
	0.0871	0.0833														
Tetrahydrofuran	+++++	+++++	0.1828	0.1701	0.1593	Ave		0.1605			10.3		30.0			
Chloroform	0.1483 1.9073		2.0577	1.9519	1.8639	7		1.9122			0 6		30.0		\vdash	
Chloroform	1.7564		2.05//	1.9519	1.8639	Ave		1.9122			8.6		30.0			
n-Butanol	+++++	+++++	0.0881	0.0907	0.0894	Ave		0.0903			3.8		30.0		\vdash	
	0.0874	0.0959														
1,1,1-Trichloroethane	0.4288	0.4523	0.4446	0.4351	0.4217	Ave		0.4243			5.5		30.0		П	
	0.4000	0.3876														
Cyclohexane	0.3031	0.3156	0.3067	0.3006	0.2895	Ave		0.2915			7.5		30.0			
	0.2717	0.2536														
Carbon tetrachloride	0.4620		0.4796	0.4755	0.4690	Ave		0.4682			2.5		30.0			
	0.4533															
1,4-Dioxane	++++		0.0954	0.0932	0.0936	Ave		0.0934			1.6		30.0			
	0.0911															
2,2,4-Trimethylpentane	0.8171		0.9165	0.8660	0.8114	Ave		0.8271			10.8		30.0			
	0.7517														\sqcup	
Benzene	0.6293		0.6521	0.6236	0.5947	Ave		0.6091			9.0		30.0			
	0.5591														\sqcup	
1,2-Dichloroethane	0.2251		0.2567	0.2428	0.2326	Ave		0.2353			7.8		30.0			
	0.2172		0.3090	0 0001	0.0670	_		0.0700			10 7		20.0		\vdash	
n-Heptane	0.2867 0.2451		0.3090	0.2881	0.2672	Ave		0.2780			12.7		30.0			
Trichloroethene	0.2451		0.2987	0.2944	0.2836	7		0.2862			5.3		30.0		\vdash	
TITCHIOTOECHENE	0.2916		0.2907	0.2944	0.2030	Ave		0.2002			3.3		30.0			
1,2-Dichloropropane	0.1954		0.2191	0.2094	0.2000	Δτιο		0.2015			7.9		30.0		\vdash	
1,2 Bienioropropane	0.1871		0.2131	0.2034	0.2000	AVC		0.2015			,.,		30.0			
Methyl methacrylate	+++++		0.2218	0.2184	0.2134	Ave		0.2099			4.6		30.0		\vdash	
neenyi meenaeiyiace	0.2014		0.2210	0.2101	0.2131	1110		0.2033			1.0		30.0			
Dibromomethane	0.2796		0.2527	0.2653	0.2737	Ave		0.2655			4.5		30.0		\vdash	
	0.2704															
Bromodichloromethane	0.4048		0.4619	0.4505	0.4346	Ave		0.4324		1	6.3		30.0		\Box	
	0.4121															
cis-1,3-Dichloropropene	0.3070		0.3568	0.3538	0.3435	Ave		0.3345			5.6		30.0		П	
	0.3258	0.3174														
methyl isobutyl ketone	++++	0.3621	0.3847	0.3601	0.3421	Ave		0.3442			9.2		30.0		П	
	0.3174															
Toluene	0.5589		0.5558	0.5418	0.5162	Ave		0.5245			10.9		30.0		П	
	0.4845	0.4212				1									1	

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	CC	DEFFICIENT	7 #	MIN RRF	%RSD		IAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			9	RSD	OR COD		OR COD
	LVL 6	LVL 7														
n-Octane	0.3933		0.4312	0.3851	0.3443	Ave		0.3680			19.7		30.0			
	0.3075	0.2523														
trans-1,3-Dichloropropene	0.3114 0.3361		0.3710	0.3633	0.3544	Ave		0.3432			6.1		30.0			
1,1,2-Trichloroethane	0.2380		0.2553	0.2483	0.2392	Ave		0.2404			5.8		30.0		\vdash	
	0.2292	0.2175														
Tetrachloroethene	0.4917	0.4289	0.4418	0.4637	0.4780	Ave		0.4633			4.7		30.0			
	0.4751	0.4640														
Methyl Butyl Ketone (2-Hexanone)	++++		0.3968	0.3792	0.3654	Ave		0.3625			7.0		30.0			
	0.3430															
Dibromochloromethane	0.4952		0.5500	0.5654	0.5670	Ave		0.5400			5.1		30.0			
	0.5538														Ш	
1,2-Dibromoethane	0.4627		0.5036	0.5013	0.4977	Ave		0.4856			3.5		30.0			
	0.4808		0 7000	0 7000	0 5065	_		0.7060			2 2		200		\vdash	
Chlorobenzene	0.8172 0.7612		0.7988	0.7933	0.7865	Ave		0.7869			3.9		30.0			
Ethylbenzene	1.1603		1,2062	1.1658	1.1249	7,770		1.1327			7.1		30.0		\vdash	
Echylbenzene	1.0673		1.2002	1.1000	1.1249	Ave		1.1327			/.1		30.0			
n-Nonane	0.4455		0.4935	0.4534	0.4217	Ave		0.4348			14.0		30.0		H	
	0.3869			0.1001	0.121,	1110		0.1010			11.0					
m,p-Xylene	0.4918	0.5035	0.5129	0.5030	0.4817	Ave		0.4744			9.9		30.0			-
	0.4498															
Xylene, o-	0.4708	0.4876	0.5016	0.4951	0.4853	Ave		0.4741			6.1		30.0			
	0.4617															
Styrene	0.6272		0.7853	0.7786	0.7652	Ave		0.7215			8.5		30.0			
	0.7300															
Bromoform	0.4465		0.5188	0.5465	0.5595	Ave		0.5086			10.0		30.0			
	0.5492														\sqcup	
Cumene	1.3099 1.3049		1.4100	1.3844	1.3603	Ave		1.3322			5.4		30.0			
1,1,2,2-Tetrachloroethane	0.6003		0.6809	0.6466	0.6215	7		0.6205			0.6		30.0		\vdash	
1,1,2,2-Tetrachioroethane	0.5832		0.6809	0.6466	0.6215	Ave		0.6205			9.6		30.0			
n-Propylbenzene	1.4831		1.6477	1.5577	1.4664	Ave		1.4657		+	13.0		30.0		+	
rropingene	1.3562		1.01//	1.00//	1.1004	1100		1.100/			13.0					
1,2,3-Trichloropropane	++++		0.5111	0.4741	0.4408	Ave		0.4484			15.9		30.0			
	0.4053															
n-Decane	++++	0.6626	0.6235	0.5636	0.5179	Ave		0.5373			18.9		30.0			
	0.4702															
4-Ethyltoluene	1.3248		1.4679	1.4299	1.3938	Ave		1.3542			8.5		30.0			
	1.3131	1.1265														

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	(COEFFICIENT	г #	MIN RRF	%RSD	 MAX	R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	м1	M2			%RSD	OR COD		OR COD
	LVL 6	LVL 7	2.2 0	2,7	2,7		_	111	112						
2-Chlorotoluene	1.1932	1.2954	1.2721	1.2067	1.1578	Ave		1.1680			9.8	30.0		П	
	1.0889	0.9619													
1,3,5-Trimethylbenzene	1.1225	1.1820	1.2107	1.1830	1.1500	Ave		1.1349			6.3	30.0			
	1.0987														
Alpha Methyl Styrene	0.4579		0.6592	0.6613	0.6647	Ave		0.6037			13.0	30.0			
	0.6439														
tert-Butylbenzene	1.1407		1.1858	1.1666	1.1555	Ave		1.1299			5.2	30.0			
	1.1094														
1,2,4-Trimethylbenzene	1.0712		1.2162	1.1813	1.1605	Ave		1.1288			6.5	30.0			
	1.1056	1.0015													
sec-Butylbenzene	1.6491	1.7092	1.7605	1.7037	1.6592	Ave		1.6332			7.7	30.0			
	1.5670														
4-Isopropyltoluene	1.3632	1.4213	1.5278	1.4974	1.4860	Ave		1.4232			6.6	30.0			
	1.4157	1.2512													
1,3-Dichlorobenzene	0.7848	0.7966	0.8441	0.8624	0.8766	Ave		0.8316			4.5	30.0			
	0.8581	0.7982													
1,4-Dichlorobenzene	0.7753	0.8138	0.8518	0.8672	0.8823	Ave		0.8368			4.7	30.0		\Box	
	0.8640	0.8029													
Benzyl chloride	0.7344	0.8970	1.0406	1.0153	1.0106	Ave		0.9425			11.1	30.0			
	0.9714	0.9283													
n-Undecane	++++	+++++	0.6688	0.5652	0.5070	Ave		0.5067			24.2	30.0			
	0.4509	0.3416													
n-Butylbenzene	1.0742	1.3182	1.3213	1.2099	1.1278	Ave		1.1244			16.4	30.0		\Box	
	1.0247	0.7947													
1,2-Dichlorobenzene	0.7697	0.7673	0.8025	0.8098	0.8310	Ave		0.7957			3.2	30.0		\Box	
	0.8157	0.7734													
n-Dodecane	++++	+++++	0.5964	0.4754	0.4900	Ave		0.4886			13.8	30.0			
	0.4708	0.4104													
1,2,4-Trichlorobenzene	++++	0.4840	0.5966	0.5779	0.6416	Ave		0.5921			9.9	30.0		\Box	
	0.6389	0.6137													
Hexachlorobutadiene	0.3997	0.3729	0.4011	0.3773	0.3958	Ave		0.3836			5.1	30.0		\Box	
	0.3922	0.3463													
Naphthalene	++++	1.0453	1.3701	1.2334	1.4208	Ave		1.3077			11.0	30.0		\Box	
-	1.3832														
1,2,3-Trichlorobenzene	0.3199		0.5119	0.4744	0.5414	Ave		0.4773			17.8	30.0		\vdash	
• •	0.5446	0.5401													

FORM VI

AIR - GC/MS VOA INITIAL CALIBRATION DATA INTERNAL STANDARD RESPONSE AND CONCENTRATION

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-16751/14	bka014.d
Level 2	IC 200-16751/4	bka004.d
Level 3	IC 200-16751/5	bka005.d
Level 4	ICIS 200-16751/6	bka006.d
Level 5	IC 200-16751/7	bka007.d
Level 6	IC 200-16751/8	bka008.d
Level 7	IC 200-16751/9	bka009.d

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	+++++ 300120	8866 599770	78924	157036	231639	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	+++++ 1827829	53031 3524372	502030	985236	1437377	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	+++++ 766295	21780 1524484	205100	404323	598766	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	21439 1762200	51603 3358935	494039	952741	1391401	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	+++++ 383654	11197 775518	102530	199065	293350	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	++++ 657804	19672 1311417	175543	350040	521368	+++++	0.500 40.0	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	6189 529337	14875 1063608	141123	280384	418232	0.200	0.500 40.0	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	4689 384173	10388 774512	102416	204529	304903	0.200	0.500 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	11458 947441	26498 1898835	256646	507343	753036	0.200	0.500 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 455574	13000 919478	122523	243724	362414	+++++	0.500 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	12218 837817	24355 1662131	232723	458860	673404	0.200	0.500 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	15742 1306088	32975 2642602	320336	665831	1014869	0.200	0.500 40.0	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	37349 3170080	83947 6439223	809602	1633753	2465621	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Pentane	BCM	Ave	+++++ 1390176	40451 2747007	375708	757371	1117488	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Ethanol	BCM	Ave	+++++ 727156	89979 1860972	180325	277452	379947	+++++ 40.0	5.00 100	10.0	15.0	20.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Ethyl ether	BCM	Ave	9120 821517	20019 1668086	202790	415462	631491	0.200	0.500 40.0	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 435833	+++++ 861731	109057	223067	337707	+++++ 20.0	+++++	5.00	10.0	15.0
Freon TF	BCM	Ave	31501 2660922	64836 5443061	626099	1308658	2009307	0.200	0.500 40.0	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	15651 1286652	29752 2679149	295670	626482	972662	0.200	0.500	5.00	10.0	15.0
Acetone	BCM	Ave	+++++ 1348308	+++++ 2794058	349748	690460	1039866	+++++	+++++	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	+++++ 3566337	88826 7245165	867508	1783437	2713282	+++++	0.500	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	+++++	+++++ 2446977	266746	551572	847756	+++++	+++++	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	13588 1154713	30597 2304959	293997	584735	881080	0.200	0.500	5.00	10.0	15.0
Acetonitrile	BCM	Ave	+++++ 696363	+++++ 1477909	180830	371388	536407	+++++	+++++	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	+++++ 1037427	30924 2075277	274088	543966	805880	+++++	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 1822781	++++ 4069174	423784	890814	1372891	+++++	+++++	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	38407 3458603	82465 6999335	831713	1718621	2639589	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	18666 1596852	41820 3127358	414936	831789	1238608	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	+++++ 780949	19567 1618249	186303	393900	598039	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	21696 1747428	45144 3453171	445282	903827	1350889	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	23482	52623 4045389	512072	1047397	1567056	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	+++++	+++++ 4793064	627758	1270715	1911252	+++++	+++++	5.00	10.0	15.0
cis-1,2-Dichloroethene	BCM	Ave	16728 1474917	34007 2950200	342810	723958	1112041	0.200	0.500	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	+++++ 615079	15323 1207999	149245	306515	477196	+++++	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 128917	+++++ 260476	28972	62334	97227	+++++	+++++ 40.0	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 1047298	+++++ 2084669	277844	549976	813871	+++++	+++++ 40.0	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PPI	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Chloroform	BCM	Ave	29536 2598681	65251 5274929	634308	1297438	1978722	0.200	0.500	5.00	10.0	15.0
n-Butanol	DFB	Ave	+++++ 616899	+++++ 1408829	133880	293274	456578	+++++ 20.0	+++++	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	32159 2824174	67731 5691823	675728	1406951	2154019	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	22729 1918754	47258 3724291	466042	972088	1478653	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	34647 3200971	72192 6692210	728934	1537837	2395919	0.200	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	++++ 643239	++++ 1375223	144977	301353	478246	++++	+++++	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	61280 5307613	140690 10092869	1392904	2800540	4144876	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	47198 3947918	102143 7680963	991001	2016732	3037856	0.200	0.500	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	16884 1533949	38845 3132783	390176	785354	1188146	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	21502 1730671	48804 3292791	469663	931596	1364777	0.200	0.500	5.00	10.0	15.0
Trichloroethene	DFB	Ave	21871 1916872	45357 3833558	453917	951917	1448406	0.200	0.500	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	14653 1320810	33112 2623803	332990	677216	1021765	0.200	0.500	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	+++++ 1421973	31018 2893198	337036	706275	1090133	+++++	0.500	5.00	10.0	15.0
Dibromomethane	DFB	Ave	20967 1909592	36909 3969697	383976	857899	1398287	0.200	0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	30360 2909545	69409 5862932	701999	1456744	2220179	0.200	0.500	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	23023	50459 4661270	542290	1144207	1754409	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	++++ 2241078	54223 4388870	584654	1164686	1747319	+++++	0.500	5.00	10.0	15.0
Toluene	CBZ	Ave	38095 3127459	81394 5654440	781089	1616891	2427829	0.200	0.500	5.00	10.0	15.0
n-Octane	DFB	Ave	29494 2171293	69209 3705391	655365	1245389	1758731	0.200	0.500	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	23351 2373295	50697	563840	1174900	1810182	0.200	0.500	5.00	10.0	15.0
1,1,2-Trichloroethane	CBZ	Ave	16226 1479875	4813372 35063 2919548	358827	740832	1124926	20.0 0.200 20.0	40.0 0.500 40.0	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Tetrachloroethene	CBZ	Ave	33514 3066934	58874 6228827	620880	1383728	2248125	0.200	0.500 40.0	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 2214121	50122 4371736	557625	1131495	1718705	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	33753 3574952	69997 7237509	772883	1687154	2666927	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	31541 3103635	67025 6238068	707667	1495820	2340956	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	55704 4913972	112419 9833865	1122647	2367246	3699222	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	79091 6889927	166877 13273535	1695154	3478843	5291212	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	30365 2497679	69938 4470311	693477	1352992	1983573	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	67047 5806766	138228 10154496	1441619	3001987	4531499	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	32092 2980773	66933	704868	1477471	2282895	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	42751 4712279	96820 8850176	1103670	2323410	3599092	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	30436 3545428	59289 6819478	729089	1630994	2631689	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	89288 8423912	186832 16038905	1981597	4131269	6398313	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	40919 3764719	94824	956857	1929623	2923189	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	101095 8754898	226073 14790847	2315600	4648395	6897586	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	+++++ 2616172	72057 4487423	718234	1414747	2073399	+++++	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	+++++ 3035655	90964 5182772	876257	1681924	2436164	+++++	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	90304 8477020	195353 15123545	2062836	4267098	6556164	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	81335 7029702	177820 12913657	1787802	3601023	5446135	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	76515 7092974	162251 13388540	1701394	3530271	5409454	0.200	0.500	5.00	10.0	15.0
Alpha Methyl Styrene	CBZ	Ave	31216 4156543	74294 8021611	926397	1973580	3126546	0.200	0.500	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	77758 7161981	157104 13516071	1666522	3481398	5434934	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 Analy Batch No.: 16751

SDG No.: 200-5005

Instrument ID: B.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,2,4-Trimethylbenzene	CBZ	Ave	73017	159945	1709235	3525067	5458639	0.200	0.500	5.00	10.0	15.0
			7137272	13446021				20.0	40.0			
sec-Butylbenzene	CBZ	Ave	112414 10115821	234623 18575724	2474045	5084068	7804179	0.200 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	92926	195107	2147098	4468517	6989529	0.200	0.500	5.00	10.0	15.0
			9138941	16797947				20.0	40.0			
1,3-Dichlorobenzene	CBZ	Ave	53498	109357	1186297	2573541	4123237	0.200	0.500	5.00	10.0	15.0
			5539311	10716451				20.0	40.0			
1,4-Dichlorobenzene	CBZ	Ave	52849	111716	1197028	2587919	4150197	0.200	0.500	5.00	10.0	15.0
			5577771	10779777				20.0	40.0			
Benzyl chloride	CBZ	Ave	50062	123133	1462331	3029817	4753657	0.200	0.500	5.00	10.0	15.0
			6271146	12462482				20.0	40.0			
n-Undecane	CBZ	Ave	++++	++++	939939	1686620	2384569	+++++	++++	5.00	10.0	15.0
			2911051	4585532				20.0	40.0			
n-Butylbenzene	CBZ	Ave	73222	180956	1856882	3610451	5304843	0.200	0.500	5.00	10.0	15.0
			6615177	10669300				20.0	40.0			
1,2-Dichlorobenzene	CBZ	Ave	52468	105334	1127843	2416697	3908806	0.200	0.500	5.00	10.0	15.0
			5266072	10383099				20.0	40.0			
n-Dodecane	CBZ	Ave	+++++	+++++	838092	1418552	2304964	+++++	++++	5.00	10.0	15.0
			3039375	5509471				20.0	40.0			
1,2,4-Trichlorobenzene	CBZ	Ave	++++	66434	838392	1724492	3017684	+++++	0.500	5.00	10.0	15.0
			4124576	8238766				20.0	40.0			
Hexachlorobutadiene	CBZ	Ave	27243	51195	563694	1125968	1861681	0.200	0.500	5.00	10.0	15.0
			2531888	4648758				20.0	40.0			
Naphthalene	CBZ	Ave	+++++	143494	1925403	3680670	6683018	+++++	0.500	5.00	10.0	15.0
			8929532	18709280				20.0	40.0			
1,2,3-Trichlorobenzene	CBZ	Ave	21804	56142	719385	1415603	2546768	0.200	0.500	5.00	10.0	15.0
			3515989	7250992				20.0	40.0			

Curve Type Legend:

Ave = Average ISTD

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka004.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka004.d

Lab Smp Id: ic 132517 Client Smp ID: ic 132517

Inj Date : 19-APR-2011 13:57

Operator : wrd Inst ID: B.i

Smp Info : ic 132517 Misc Info : 200,1, level2

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 13:57 Cal File: bka004.d

Als bottle: 1 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNTS	
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	53031	0.50000	0.61
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	21780	0.50000	0.61
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	51603	0.50000	0.62
5 Chloromethane	50	3.339	3.339 (0.363)	11197	0.50000	0.62
6 Butane	43	3.483	3.488 (0.379)	19672	0.50000	0.63
7 Vinyl chloride	62	3.515	3.520 (0.382)	14875	0.50000	0.60
8 1,3-Butadiene	54	3.573	3.574 (0.388)	10388	0.50000	0.58
9 Bromomethane	94	4.128	4.129 (0.449)	26498	0.50000	0.59
10 Chloroethane	64	4.326	4.326 (0.470)	13000	0.50000	0.60
11 2-Methylbutane	43	4.395	4.401 (0.478)	24355	0.50000	0.59
12 Vinyl bromide	106	4.705	4.705 (0.511)	32975	0.50000	0.56
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	83947	0.50000	0.58
14 Pentane	43	4.924	4.924 (0.535)	40451	0.50000	0.61
15 Ethanol	45	5.329	5.308 (0.579)	89979	5.00000	5.5

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka004.d Report Date: 20-Apr-2011 10:07

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS ====	RT ==	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
16 Ethyl ether	59	5.452	5.415 (0.593)	20019	0.50000	0.55
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.630)	64836	0.50000	0.55
19 1,1-Dichloroethene	96	5.858	5.852 (0.637)	29752	0.50000	0.53
21 Carbon disulfide	76	6.263	6.269 (0.681)	88826	0.50000	0.56
23 Allyl chloride	41	6.546	6.541 (0.712)	30597	0.50000	0.58
25 Methylene chloride	49	6.797	6.802 (0.739)	30924	0.50000	0.63
27 Methyl tert-butyl ether	73	7.235	7.187 (0.786)	82465	0.50000	0.54
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	41820	0.50000	0.57
29 Acrylonitrile	53	7.304	7.288 (0.794)	19567	0.50000	0.56
30 n-Hexane	57	7.523	7.528 (0.818)	45144	0.50000	0.57
31 1,1-Dichloroethane	63	7.928	7.934 (0.862)	52623	0.50000	0.57
M 33 1,2-Dichloroethene, Total	61	7.520	7.551 (0.002)	75827	1.00000	1.1
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	34007	0.50000	0.53
36 Methyl Ethyl Ketone	72	8.889	8.857 (0.966)	15323	0.50000	0.56(0)
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	603778	10.0000	0.50(2)
39 Chloroform	83	9.279	9.284 (1.009)	65251	0.50000	0.57
40 Cyclohexane	84	9.535	9.535 (0.899)	47258	0.50000	0.54
41 1,1,1-Trichloroethane	97	9.519	9.524 (0.897)	67731	0.50000	0.53
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	72192	0.50000	0.53
43 2,2,4-Trimethylpentane	57		10.021 (0.944)	140690	0.50000	0.51
44 Benzene	78	10.015	10.021 (0.944)	102143	0.50000	0.56
45 1,2-Dichloroethane	78 62			38845	0.50000	0.56
	43		10.159 (0.958)		0.50000	
46 n-Heptane			10.282 (0.969)	48804		0.59
* 47 1,4-Difluorobenzene	114		10.608 (1.000)	2994935	10.0000	0 53
49 Trichloroethene	95	10.970	10.971 (1.034)	45357	0.50000	0.53
50 1,2-Dichloropropane	63		11.333 (1.068)	33112	0.50000	0.55
51 Methyl methacrylate	69		11.408 (1.077)	31018	0.50000	0.49(a)
52 Dibromomethane	174		11.520 (1.086)	36909	0.50000	0.46
54 Bromodichloromethane	83		11.702 (1.103)	69409	0.50000	0.54
55 1,3-Dichloropropene (cis)	75		12.326 (1.163)	50459	0.50000	0.50
56 Methyl isobutyl ketone	43		12.518 (1.185)	54223	0.50000	0.53
57 n-Octane	43		12.758 (1.203)	69209	0.50000	0.63
58 Toluene	92		12.748 (0.865)	81394	0.50000	0.57
59 1,3-Dichloropropene (trans)	75	13.132	13.121 (1.238)	50697	0.50000	0.49
60 1,1,2-Trichloroethane	83		13.388 (0.908)	35063	0.50000	0.53
61 Tetrachloroethene	166	13.516	13.516 (0.917)	58874	0.50000	0.46
62 2-Hexanone	43	13.746	13.698 (0.933)	50122	0.50000	0.50
63 Dibromochloromethane	129	13.948		69997	0.50000	0.47
64 1,2-Dibromoethane	107		14.146 (0.960)	67025	0.50000	0.50
* 65 Chlorobenzene-d5	117		14.738 (1.000)	2745478	10.0000	
66 Chlorobenzene	112		14.776 (1.003)	112419	0.50000	0.52(M)
67 n-Nonane	57	14.898		69938	0.50000	0.59
68 Ethylbenzene	91	14.856	14.856 (1.008)	166877	0.50000	0.54
69 Xylene (m,p)	106	15.010	15.011 (1.018)	138228	1.00000	1.1
M 70 Xylenes, Total	106			205161	0.50000	1.6
71 Xylene (o)	106	15.539	15.539 (1.054)	66933	0.50000	0.51
72 Styrene	104	15.571	15.566 (1.056)	96820	0.50000	0.49

				AMOUNT	'S
QUANT SIG				CAL-AMT	ON-COL
MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
====	==	======	======	======	======
173	15.859	15.859 (1.076)	59289	0.50000	0.42
105	15.966	15.966 (1.083)	186832	0.50000	0.51
83	16.387	16.393 (1.112)	94824	0.50000	0.56
91	16.457	16.457 (1.117)	226073	0.50000	0.56
75	16.467	16.468 (1.117)	72057	0.50000	0.59
57	16.547	16.548 (1.123)	90964	0.50000	0.62
105	16.590	16.585 (1.126)	195353	0.50000	0.53
91	16.622	16.622 (1.128)	177820	0.50000	0.55
105	16.660	16.660 (1.130)	162251	0.50000	0.52
118	16.932	16.932 (1.149)	74294	0.50000	0.45
119	17.022	17.023 (1.155)	157104	0.50000	0.51
105	17.097	17.097 (1.160)	159945	0.50000	0.52
105	17.273	17.273 (1.172)	234623	0.50000	0.52
119	17.423	17.423 (1.182)	195107	0.50000	0.50
146	17.487	17.487 (1.186)	109357	0.50000	0.48
146	17.593	17.594 (1.194)	111716	0.50000	0.49
91	17.743	17.738 (1.204)	123133	0.50000	0.48
91	17.903	17.903 (1.215)	180956	0.50000	0.59
146	18.047	18.042 (1.224)	105334	0.50000	0.48
180	20.225	20.219 (1.372)	66434	0.50000	0.41(a)
225	20.385	20.380 (1.383)	51195	0.50000	0.49
128	20.657	20.652 (1.402)	143494	0.50000	0.40(a)
180	21.089	21.084 (1.431)	56142	0.50000	0.43
	MASS ==== 173 105 83 91 75 57 105 91 105 118 119 105 119 146 146 91 91 146 180 225 128	MASS RT ==== == == 173 15.859 105 15.966 83 16.387 91 16.457 75 16.467 57 16.547 105 16.590 91 16.622 105 16.660 118 16.932 119 17.022 105 17.097 105 17.273 119 17.423 146 17.487 146 17.593 91 17.743 91 17.903 146 18.047 180 20.225 225 20.385 128 20.657	MASS RT EXP RT REL RT === = =============================	MASS RT EXP RT REL RT RESPONSE ==== ====================================	QUANT SIG MASS RT EXP RT REL RT RESPONSE (ppb v/v) ==== 173 15.859 15.859 15.859 (1.076) 59289 0.50000 105 15.966 15.966 15.966 (1.083) 186832 0.50000 83 16.387 16.393 (1.112) 94824 0.50000 91 16.457 16.457 16.457 (1.117) 226073 0.50000 75 16.547 16.548 (1.123) 90964 0.50000 105 16.590 16.585 (1.126) 195353 0.50000 105 16.660 16.660 16.660 11.130) 162251 0.50000 118 16.932 16.932 (1.149) 74294 0.50000 105 17.097 17.097 (1.160) 159945 0.50000 105 17.273 17.273 (1.172) 234623 0.50000 146 17.423 17.423 (1.182) 195107 0.50000 146 17.487 17.487 11.186) 109357 0.50000 146 17.593 17.594 (1.194) 11716 0.50000 146 17.903 17.903 17.903 11.215) 180956 0.50000 146 18.047 18.042 (1.224) 105334 0.50000 180 20.225 20.385 20.380 (1.383) 51195 0.50000 128 20.657 20.652 (1.402) 143494 0.50000

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Data File: bka004.d

Client ID: ic 132517
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: ic 132517
Lab Sample ID: ic 132517

Date: 19-APR-2011 13:57

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 226 of 429

Manual Integration Report

Data File: bka004.d Lab Sample ID: ic 132517

Inj. Date and Time: 19-APR-2011 13:57

Instrument ID: B.i Client ID: ic 132517

Compound: 66 Chlorobenzene

CAS #: 108-90-7

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 14.78

Manual Integration Results

RT: 14.78

Response: 112419

Amount: 0.520351

Conc: 0.520351

File Uploaded By: pd

Manual Integration Reason: Baseline event

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka005.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka005.d

Lab Smp Id: ic 132507 Client Smp ID: ic 132507

Inj Date : 19-APR-2011 14:50

Operator : wrd Inst ID: B.i

Smp Info : ic 132507 Misc Info : 200,1, level3

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 14:50 Cal File: bka005.d

Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======	====	==		======	======	======
1 Propene	41	2.986	2.992 (0.325)	78924	5.00000	5.5
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	502030	5.00000	5.7
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	205100	5.00000	5.6
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	494039	5.00000	5.8
5 Chloromethane	50	3.339	3.339 (0.363)	102530	5.00000	5.6
6 Butane	43	3.483	3.488 (0.379)	175543	5.00000	5.5
7 Vinyl chloride	62	3.515	3.520 (0.382)	141123	5.00000	5.6
8 1,3-Butadiene	54	3.568	3.574 (0.388)	102416	5.00000	5.6
9 Bromomethane	94	4.128	4.129 (0.449)	256646	5.00000	5.6
10 Chloroethane	64	4.326	4.326 (0.470)	122523	5.00000	5.6
11 2-Methylbutane	43	4.395	4.401 (0.478)	232723	5.00000	5.5
12 Vinyl bromide	106	4.700	4.705 (0.511)	320336	5.00000	5.3
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	809602	5.00000	5.5
14 Pentane	43	4.924	4.924 (0.535)	375708	5.00000	5.6

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka005.d Report Date: 20-Apr-2011 10:07

						AMOUNT	rs
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==	=======================================	====	==	======	======	======	======
	15 Ethanol	45	5.308	5.308 (0.577)	180325	10.0000	11
	16 Ethyl ether	59	5.420	5.415 (0.589)	202790	5.00000	5.5
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.783	5.788 (0.629)	626099	5.00000	5.2
	18 Acrolein	56	5.762	5.756 (0.626)	109057	5.00000	5.6
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	295670	5.00000	5.1
	20 Acetone	43	6.050	6.045 (0.658)	349748	5.00000	5.7
	21 Carbon disulfide	76	6.263	6.269 (0.681)	867508	5.00000	5.4
	22 Isopropanol	45	6.338	6.322 (0.689)	266746	5.00000	5.4
	23 Allyl chloride	41	6.541	6.541 (0.711)	293997	5.00000	5.5
	24 Acetonitrile	41	6.626	6.626 (0.720)	180830	5.00000	5.7
	25 Methylene chloride	49	6.797	6.802 (0.739)	274088	5.00000	5.5
	26 Tert-butyl alcohol	59	7.048	7.037 (0.766)	423784	5.00000	5.3
	27 Methyl tert-butyl ether	73	7.192	7.187 (0.782)	831713	5.00000	5.4
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	414936	5.00000	5.6
	29 Acrylonitrile	53	7.288	7.288 (0.792)	186303	5.00000	5.2
	30 n-Hexane	57	7.528	7.528 (0.818)	445282	5.00000	5.5
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	512072	5.00000	5.5
	32 Vinyl acetate	43	7.966	7.966 (0.866)	627758	5.00000	5.7
M	33 1,2-Dichloroethene,Total	61			757746	10.0000	11
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	342810	5.00000	5.3
	35 Ethyl acetate	88	8.878	8.878 (0.965)	28972	5.00000	5.2
	36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	149245	5.00000	5.4
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	616523	10.0000	
	38 Tetrahydrofuran	42	9.257	9.252 (0.873)	277844	5.00000	5.7
	39 Chloroform	83	9.279	9.284 (1.009)	634308	5.00000	5.4
	40 Cyclohexane	84	9.529	9.535 (0.898)	466042	5.00000	5.3
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	675728	5.00000	5.2
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	728934	5.00000	5.1
	43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.944)	1392904	5.00000	5.5
	44 Benzene	78	10.052	10.053 (0.948)	991001	5.00000	5.4
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	390176	5.00000	5.5
	46 n-Heptane	43	10.277	10.282 (0.969)	469663	5.00000	5.6
*	47 1,4-Difluorobenzene	114	10.607	10.608 (1.000)	3039539	10.0000	
	48 n-Butanol	56	10.917	10.906 (1.029)	133880	5.00000	4.9(a)
	49 Trichloroethene	95	10.970	10.971 (1.034)	453917	5.00000	5.2
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	332990	5.00000	5.4
	51 Methyl methacrylate	69	11.413	11.408 (1.076)	337036	5.00000	5.3
	52 Dibromomethane	174	11.520	11.520 (1.086)	383976	5.00000	4.8
	53 1,4-Dioxane	88	11.541	11.520 (1.088)	144977	5.00000	5.1
	54 Bromodichloromethane	83	11.696	11.702 (1.103)	701999	5.00000	5.3
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	542290	5.00000	5.3
	56 Methyl isobutyl ketone	43	12.523	12.518 (1.181)	584654	5.00000	5.6
	57 n-Octane	43	12.753	12.758 (1.202)	655365	5.00000	5.9
	58 Toluene	92	12.748	12.748 (0.865)	781089	5.00000	5.3
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	563840	5.00000	5.4
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	358827	5.00000	5.3
	61 Tetrachloroethene	166	13.516	13.516 (0.917)	620880	5.00000	4.8

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==		======	======	======
62 2-Hexanone	43	13.703	13.698 (0.930)	557625	5.00000	5.5
63 Dibromochloromethane	129	13.943	13.943 (0.946)	772883	5.00000	5.1
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	707667	5.00000	5.2
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	2810687	10.0000	
66 Chlorobenzene	112	14.776	14.776 (1.003)	1122647	5.00000	5.1
67 n-Nonane	57	14.898	14.899 (1.011)	693477	5.00000	5.7
68 Ethylbenzene	91	14.856	14.856 (1.008)	1695154	5.00000	5.3
69 Xylene (m,p)	106	15.010	15.011 (1.018)	1441619	10.0000	11
M 70 Xylenes, Total	106			2146487	5.00000	16
71 Xylene (o)	106	15.539	15.539 (1.054)	704868	5.00000	5.3
72 Styrene	104	15.565	15.566 (1.056)	1103670	5.00000	5.4
73 Bromoform	173	15.859	15.859 (1.076)	729089	5.00000	5.1
74 Isopropylbenzene	105	15.966	15.966 (1.083)	1981597	5.00000	5.3
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	956857	5.00000	5.5
76 n-Propylbenzene	91	16.457	16.457 (1.117)	2315600	5.00000	5.6
77 1,2,3-Trichloropropane	75	16.467	16.468 (1.117)	718234	5.00000	5.7
78 n-Decane	57	16.547	16.548 (1.123)	876257	5.00000	5.8
79 4-Ethyltoluene	105	16.585	16.585 (1.125)	2062836	5.00000	5.4
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	1787802	5.00000	5.4
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	1701394	5.00000	5.3
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	926397	5.00000	5.5
83 tert-butylbenzene	119	17.022	17.023 (1.155)	1666522	5.00000	5.2
84 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	1709235	5.00000	5.4
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	2474045	5.00000	5.4
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	2147098	5.00000	5.4
87 1,3-Dichlorobenzene	146	17.481	17.487 (1.186)	1186297	5.00000	5.1
88 1,4-Dichlorobenzene	146	17.593	17.594 (1.194)	1197028	5.00000	5.1
89 Benzyl chloride	91	17.738	17.738 (1.204)	1462331	5.00000	5.5
90 Undecane	57	17.887	17.887 (1.214)	939939	5.00000	6.6
91 n-Butylbenzene	91	17.903	17.903 (1.215)	1856882	5.00000	5.9
92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	1127843	5.00000	5.0
93 Dodecane	57	19.243	19.243 (1.306)	838092	5.00000	6.1
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	838392	5.00000	5.0
95 1,3-Hexachlorobutadiene	225	20.379	20.380 (1.383)	563694	5.00000	5.2
96 Naphthalene	128	20.652	20.652 (1.401)	1925403	5.00000	5.2
97 1,2,3-Trichlorobenzene	180	21.084		719385	5.00000	5.4
, ,	===		(=====/			-

QC Flag Legend

Data File: bka005.d

Client ID: ic 132507 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: ic 132507
Lab Sample ID: ic 132507

Date: 19-APR-2011 14:50

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 231 of 429

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka006.d Page 1

Report Date: 20-Apr-2011 10:07

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka006.d

Lab Smp Id: icis 132424 Client Smp ID: icis 132424

Inj Date : 19-APR-2011 15:42

Operator : wrd Inst ID: B.i

Smp Info : icis 132424 Misc Info : 200,1, level4

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:07 pd Quant Type: ISTD Cal Date : 19-APR-2011 15:42 Cal File: bka006.d

Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	157036	10.0000	10
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	985236	10.0000	10
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	404323	10.0000	10
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	952741	10.0000	10
5 Chloromethane	50	3.339	3.339 (0.363)	199065	10.0000	10
6 Butane	43	3.488	3.488 (0.379)	350040	10.0000	10
7 Vinyl chloride	62	3.520	3.520 (0.383)	280384	10.0000	10
8 1,3-Butadiene	54	3.574	3.574 (0.388)	204529	10.0000	10
9 Bromomethane	94	4.129	4.129 (0.449)	507343	10.0000	10
10 Chloroethane	64	4.326	4.326 (0.470)	243724	10.0000	10
11 2-Methylbutane	43	4.401	4.401 (0.478)	458860	10.0000	10
12 Vinyl bromide	106	4.705	4.705 (0.511)	665831	10.0000	10
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	1633753	10.0000	10
14 Pentane	43	4.924	4.924 (0.535)	757371	10.0000	10

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka006.d Report Date: 20-Apr-2011 10:07

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==	======	======	======	======
15 Ethanol	45	5.308	5.308 (0.577)	277452	15.0000	15
16 Ethyl ether	59	5.415	5.415 (0.589)	415462	10.0000	10
17 1,1,2-Trichloro-1,2,2-triflu	101	5.788	5.788 (0.629)	1308658	10.0000	10
18 Acrolein	56	5.756	5.756 (0.626)	223067	10.0000	11
19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	626482	10.0000	10
20 Acetone	43	6.045	6.045 (0.657)	690460	10.0000	10
21 Carbon disulfide	76	6.269	6.269 (0.681)	1783437	10.0000	10
22 Isopropanol	45	6.322	6.322 (0.687)	551572	10.0000	10
23 Allyl chloride	41	6.541	6.541 (0.711)	584735	10.0000	10
24 Acetonitrile	41	6.626	6.626 (0.720)	371388	10.0000	11
25 Methylene chloride	49	6.802	6.802 (0.739)	543966	10.0000	10
26 Tert-butyl alcohol	59	7.037	7.037 (0.765)	890814	10.0000	10
27 Methyl tert-butyl ether	73	7.187	7.187 (0.781)	1718621	10.0000	10
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	831789	10.0000	10
29 Acrylonitrile	53	7.288	7.288 (0.792)	393900	10.0000	10
30 n-Hexane	57	7.528	7.528 (0.818)	903827	10.0000	10
31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1047397	10.0000	10
32 Vinyl acetate	43	7.966	7.966 (0.866)	1270715	10.0000	11
M 33 1,2-Dichloroethene,Total	61			1555747	20.0000	21
34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	723958	10.0000	10
35 Ethyl acetate	88	8.878	8.878 (0.965)	62334	10.0000	10
36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	306515	10.0000	10
* 37 Bromochloromethane	128	9.199	9.199 (1.000)	664703	10.0000	
38 Tetrahydrofuran	42	9.252	9.252 (0.872)	549976	10.0000	11
39 Chloroform	83	9.284	9.284 (1.009)	1297438	10.0000	10
40 Cyclohexane	84	9.535	9.535 (0.899)	972088	10.0000	10
41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	1406951	10.0000	10
42 Carbon tetrachloride	117	9.727	9.727 (0.917)	1537837	10.0000	10
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.945)	2800540	10.0000	10
44 Benzene	78	10.053	10.053 (0.948)	2016732	10.0000	10
45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	785354	10.0000	10
46 n-Heptane	43	10.282	10.282 (0.969)	931596	10.0000	10
* 47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	3233933	10.0000	
48 n-Butanol	56	10.906	10.906 (1.028)	293274	10.0000	10
49 Trichloroethene	95	10.971	10.971 (1.034)	951917	10.0000	10
50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	677216	10.0000	10
51 Methyl methacrylate	69	11.408	11.408 (1.075)	706275	10.0000	10
52 Dibromomethane	174	11.520	11.520 (1.086)	857899	10.0000	10
53 1,4-Dioxane	88	11.520	11.520 (1.086)	301353	10.0000	10
54 Bromodichloromethane	83	11.702	11.702 (1.103)	1456744	10.0000	10
55 1,3-Dichloropropene (cis)	75		12.326 (1.162)	1144207	10.0000	11
56 Methyl isobutyl ketone	43		12.518 (1.180)	1164686	10.0000	10
57 n-Octane	43		12.758 (1.203)	1245389	10.0000	10
58 Toluene	92		12.748 (0.865)	1616891	10.0000	10
59 1,3-Dichloropropene (trans)	75		13.121 (1.237)	1174900	10.0000	11
60 1,1,2-Trichloroethane	83		13.388 (0.908)	740832	10.0000	10
61 Tetrachloroethene	166		13.516 (0.917)	1383728	10.0000	10

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
62 2-Hexanone	43	13.698	13.698 (0.929)	1131495	10.0000	10
63 Dibromochloromethane	129	13.943	13.943 (0.946)	1687154	10.0000	10
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1495820	10.0000	10
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	2984175	10.0000	
66 Chlorobenzene	112	14.776	14.776 (1.003)	2367246	10.0000	10
67 n-Nonane	57	14.899	14.899 (1.011)	1352992	10.0000	10
68 Ethylbenzene	91	14.856	14.856 (1.008)	3478843	10.0000	10
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3001987	20.0000	21
M 70 Xylenes, Total	106			4479458	10.0000	32
71 Xylene (o)	106	15.539	15.539 (1.054)	1477471	10.0000	10
72 Styrene	104	15.566	15.566 (1.056)	2323410	10.0000	11
73 Bromoform	173	15.859	15.859 (1.076)	1630994	10.0000	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	4131269	10.0000	10
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	1929623	10.0000	10
76 n-Propylbenzene	91	16.457	16.457 (1.117)	4648395	10.0000	11
77 1,2,3-Trichloropropane	75	16.468	16.468 (1.117)	1414747	10.0000	11
78 n-Decane	57	16.548	16.548 (1.123)	1681924	10.0000	10
79 4-Ethyltoluene	105	16.585	16.585 (1.125)	4267098	10.0000	11
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	3601023	10.0000	10(M)
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	3530271	10.0000	10
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	1973580	10.0000	11
83 tert-butylbenzene	119	17.023	17.023 (1.155)	3481398	10.0000	10
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	3525067	10.0000	10
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	5084068	10.0000	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	4468517	10.0000	11
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	2573541	10.0000	10
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	2587919	10.0000	10
89 Benzyl chloride	91	17.738	17.738 (1.204)	3029817	10.0000	11
90 Undecane	57	17.887	17.887 (1.214)	1686620	10.0000	11
91 n-Butylbenzene	91	17.903	17.903 (1.215)	3610451	10.0000	11
92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	2416697	10.0000	10
93 Dodecane	57	19.243	19.243 (1.306)	1418552	10.0000	9.7
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	1724492	10.0000	9.8
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1125968	10.0000	9.8
96 Naphthalene	128	20.652	20.652 (1.401)	3680670	10.0000	9.4
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	1415603	10.0000	9.9

QC Flag Legend

M - Compound response manually integrated.

Data File: bka006.d

Client ID: icis 132424
Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: icis 132424
Lab Sample ID: icis 132424

Date: 19-APR-2011 15:42

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 235 of 429

Data File: bka006.d

Lab Sample ID: icis 132424

Inj. Date and Time: 19-APR-2011 15:42

Instrument ID: B.i Client ID: icis 132424

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 3601023

Amount: 10.33

Conc: 10.33

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka007.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka007.d

Lab Smp Id: ic 132422 Client Smp ID: ic 132422

Inj Date : 19-APR-2011 16:34

Operator : wrd Inst ID: B.i

Smp Info : ic 132422 Misc Info : 200,1, level5

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 16:34 Cal File: bka007.d

Als bottle: 1 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	231639	15.0000	14
2 Dichlorodifluoromethane	85	3.045	3.040 (0.331)	1437377	15.0000	14
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	598766	15.0000	14
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	1391401	15.0000	14
5 Chloromethane	50	3.339	3.339 (0.363)	293350	15.0000	14
6 Butane	43	3.488	3.488 (0.379)	521368	15.0000	14
7 Vinyl chloride	62	3.520	3.520 (0.382)	418232	15.0000	14
8 1,3-Butadiene	54	3.574	3.574 (0.388)	304903	15.0000	14
9 Bromomethane	94	4.129	4.129 (0.449)	753036	15.0000	14
10 Chloroethane	64	4.331	4.326 (0.471)	362414	15.0000	14
11 2-Methylbutane	43	4.406	4.401 (0.479)	673404	15.0000	14
12 Vinyl bromide	106	4.705	4.705 (0.511)	1014869	15.0000	15
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	2465621	15.0000	15
14 Pentane	43	4.929	4.924 (0.536)	1117488	15.0000	14

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka007.d Report Date: 20-Apr-2011 10:08

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	======	======	======	======
	15 Ethanol	45	5.308	5.308 (0.577)	379947	20.0000	20
	16 Ethyl ether	59	5.415	5.415 (0.588)	631491	15.0000	15
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.629)	2009307	15.0000	15
	18 Acrolein	56	5.756	5.756 (0.625)	337707	15.0000	15
	19 1,1-Dichloroethene	96	5.858	5.852 (0.636)	972662	15.0000	15
	20 Acetone	43	6.045	6.045 (0.657)	1039866	15.0000	15
	21 Carbon disulfide	76	6.269	6.269 (0.681)	2713282	15.0000	15
	22 Isopropanol	45	6.317	6.322 (0.686)	847756	15.0000	15
	23 Allyl chloride	41	6.546	6.541 (0.711)	881080	15.0000	14
	24 Acetonitrile	41	6.626	6.626 (0.720)	536407	15.0000	15
	25 Methylene chloride	49	6.802	6.802 (0.739)	805880	15.0000	14
	26 Tert-butyl alcohol	59	7.032	7.037 (0.764)	1372891	15.0000	15
	27 Methyl tert-butyl ether	73	7.181	7.187 (0.780)	2639589	15.0000	15
	28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	1238608	15.0000	15
	29 Acrylonitrile	53	7.288	7.288 (0.792)	598039	15.0000	15
	30 n-Hexane	57	7.534	7.528 (0.818)	1350889	15.0000	14
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1567056	15.0000	15
	32 Vinyl acetate	43	7.966	7.966 (0.865)	1911252	15.0000	15
M	33 1,2-Dichloroethene,Total	61			2350649	30.0000	29
	34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961)	1112041	15.0000	15
	35 Ethyl acetate	88	8.879	8.878 (0.965)	97227	15.0000	15
	36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	477196	15.0000	15(Q)
*	37 Bromochloromethane	128	9.204	9.199 (1.000)	707722	10.0000	
	38 Tetrahydrofuran	42	9.247	9.252 (0.871)	813871	15.0000	15
	39 Chloroform	83	9.284	9.284 (1.009)	1978722	15.0000	15
	40 Cyclohexane	84	9.535	9.535 (0.898)	1478653	15.0000	15
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.897)	2154019	15.0000	15
	42 Carbon tetrachloride	117	9.732	9.727 (0.917)	2395919	15.0000	15
	43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.944)	4144876	15.0000	15
	44 Benzene	78	10.053	10.053 (0.947)	3037856	15.0000	15
	45 1,2-Dichloroethane	62	10.159	10.159 (0.957)	1188146	15.0000	15
	46 n-Heptane	43	10.282	10.282 (0.969)	1364777	15.0000	14
*	47 1,4-Difluorobenzene	114	10.613	10.608 (1.000)	3405381	10.0000	
	48 n-Butanol	56	10.901	10.906 (1.027)	456578	15.0000	15
	49 Trichloroethene	95	10.971	10.971 (1.034)	1448406	15.0000	15
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	1021765	15.0000	15
	51 Methyl methacrylate	69	11.408	11.408 (1.075)	1090133	15.0000	15
	52 Dibromomethane	174	11.520	11.520 (1.085)	1398287	15.0000	15
	53 1,4-Dioxane	88	11.515	11.520 (1.085)	478246	15.0000	15
	54 Bromodichloromethane	83	11.702	11.702 (1.103)	2220179	15.0000	15
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.161)	1754409	15.0000	15
	56 Methyl isobutyl ketone	43	12.513	12.518 (1.179)	1747319	15.0000	15
	57 n-Octane	43	12.758	12.758 (1.202)	1758731	15.0000	14
	58 Toluene	92	12.753	12.748 (0.865)	2427829	15.0000	15
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.236)	1810182	15.0000	15
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	1124926	15.0000	15
	61 Tetrachloroethene	166	13.522	13.516 (0.917)	2248125	15.0000	15

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=	=======================================	====	==	======	======	======	======
	62 2-Hexanone	43	13.692	13.698 (0.929)	1718705	15.0000	15
	63 Dibromochloromethane	129	13.943	13.943 (0.946)	2666927	15.0000	16
	64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2340956	15.0000	15
*	65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3135785	10.0000	
	66 Chlorobenzene	112	14.781	14.776 (1.003)	3699222	15.0000	15
	67 n-Nonane	57	14.904	14.899 (1.011)	1983573	15.0000	15
	68 Ethylbenzene	91	14.856	14.856 (1.008)	5291212	15.0000	15
	69 Xylene (m,p)	106	15.011	15.011 (1.018)	4531499	30.0000	30
М	70 Xylenes, Total	106			6814394	15.0000	46
	71 Xylene (o)	106	15.539	15.539 (1.054)	2282895	15.0000	15
	72 Styrene	104	15.566	15.566 (1.056)	3599092	15.0000	16
	73 Bromoform	173	15.859	15.859 (1.076)	2631689	15.0000	17
	74 Isopropylbenzene	105	15.966	15.966 (1.083)	6398313	15.0000	15
	75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2923189	15.0000	15
	76 n-Propylbenzene	91	16.457	16.457 (1.117)	6897586	15.0000	15
	77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	2073399	15.0000	15
	78 n-Decane	57	16.553	16.548 (1.123)	2436164	15.0000	14
	79 4-Ethyltoluene	105	16.590	16.585 (1.126)	6556164	15.0000	15
	80 2-Chlorotoluene	91	16.622	16.622 (1.128)	5446135	15.0000	15
	81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	5409454	15.0000	15
	82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	3126546	15.0000	17
	83 tert-butylbenzene	119	17.028	17.023 (1.155)	5434934	15.0000	15
	84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	5458639	15.0000	15
	85 sec-Butylbenzene	105	17.273	17.273 (1.172)	7804179	15.0000	15
	86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6989529	15.0000	16
	87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	4123237	15.0000	16
	88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	4150197	15.0000	16
	89 Benzyl chloride	91	17.738	17.738 (1.204)	4753657	15.0000	16
	90 Undecane	57	17.887	17.887 (1.214)	2384569	15.0000	15
	91 n-Butylbenzene	91	17.903	17.903 (1.215)	5304843	15.0000	15
	92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	3908806	15.0000	16
	93 Dodecane	57	19.243	19.243 (1.306)	2304964	15.0000	15
	94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	3017684	15.0000	16
	95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1861681	15.0000	15
	96 Naphthalene	128	20.652	20.652 (1.401)	6683018	15.0000	16
	97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2546768	15.0000	17

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bka007.d

Client ID: ic 132422 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: ic 132422
Lab Sample ID: ic 132422

Date: 19-APR-2011 16:34

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 240 of 429

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka008.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka008.d

Lab Smp Id: ic 132406 Client Smp ID: ic 132406

Inj Date : 19-APR-2011 17:27

Operator : wrd Inst ID: B.i

Smp Info : ic 132406 Misc Info : 200,1, level6

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 17:27 Cal File: bka008.d

Als bottle: 2 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
1 Propene	41	2.987	2.992 (0.325)	300120	20.0000	17
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1827829	20.0000	17
3 Chlorodifluoromethane	51	3.067	3.072 (0.333)	766295	20.0000	17
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1762200	20.0000	17
5 Chloromethane	50	3.333	3.339 (0.362)	383654	20.0000	17
6 Butane	43	3.483	3.488 (0.379)	657804	20.0000	17
7 Vinyl chloride	62	3.515	3.520 (0.382)	529337	20.0000	17
8 1,3-Butadiene	54	3.568	3.574 (0.388)	384173	20.0000	17
9 Bromomethane	94	4.123	4.129 (0.448)	947441	20.0000	17
10 Chloroethane	64	4.326	4.326 (0.470)	455574	20.0000	17
11 2-Methylbutane	43	4.395	4.401 (0.478)	837817	20.0000	17
12 Vinyl bromide	106	4.700	4.705 (0.511)	1306088	20.0000	18
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	3170080	20.0000	18
14 Pentane	43	4.924	4.924 (0.535)	1390176	20.0000	17

AMOUNTS

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka008.d Report Date: 20-Apr-2011 10:08

							AMOUNT	
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==	=======================================	====	==	=====	=====	======	======	======
	15 Ethanol	45	5.297	5.308	(0.576)	727156	40.0000	36
	16 Ethyl ether	59	5.404	5.415	(0.587)	821517	20.0000	18
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788	(0.630)	2660922	20.0000	18
	18 Acrolein	56	5.751	5.756	(0.625)	435833	20.0000	19
	19 1,1-Dichloroethene	96	5.852	5.852	(0.636)	1286652	20.0000	19
	20 Acetone	43	6.034	6.045	(0.656)	1348308	20.0000	18
	21 Carbon disulfide	76	6.263	6.269	(0.681)	3566337	20.0000	18
	22 Isopropanol	45	6.301	6.322	(0.685)	1112244	20.0000	19
	23 Allyl chloride	41	6.541	6.541	(0.711)	1154713	20.0000	18
	24 Acetonitrile	41	6.621	6.626	(0.720)	696363	20.0000	18
	25 Methylene chloride	49	6.797	6.802	(0.739)	1037427	20.0000	17
	26 Tert-butyl alcohol	59	7.011	7.037	(0.762)	1822781	20.0000	19
	27 Methyl tert-butyl ether	73	7.176	7.187	(0.780)	3458603	20.0000	19
	28 1,2-Dichloroethene (trans)	61	7.203	7.203	(0.783)	1596852	20.0000	18
	29 Acrylonitrile	53	7.283	7.288	(0.792)	780949	20.0000	18
	30 n-Hexane	57	7.528	7.528	(0.818)	1747428	20.0000	18
	31 1,1-Dichloroethane	63	7.934	7.934	(0.862)	2029629	20.0000	18
	32 Vinyl acetate	43	7.961	7.966	(0.865)	2439891	20.0000	18
M	33 1,2-Dichloroethene,Total	61				3071769	40.0000	37
	34 1,2-Dichloroethene (cis)	96	8.836	8.836	(0.961)	1474917	20.0000	19
	35 Ethyl acetate	88	8.873	8.878	(0.965)	128917	20.0000	19
	36 Methyl Ethyl Ketone	72	8.846	8.857	(0.962)	615079	20.0000	18(Q)
*	37 Bromochloromethane	128	9.199	9.199	(1.000)	739787	10.0000	
	38 Tetrahydrofuran	42	9.241	9.252	(0.871)	1047298	20.0000	18
	39 Chloroform	83	9.284	9.284	(1.009)	2598681	20.0000	18
	40 Cyclohexane	84	9.535	9.535	(0.898)	1918754	20.0000	19
	41 1,1,1-Trichloroethane	97	9.524	9.524	(0.897)	2824174	20.0000	19
	42 Carbon tetrachloride	117	9.727	9.727	(0.917)	3200971	20.0000	19
	43 2,2,4-Trimethylpentane	57	10.021	10.021	(0.944)	5307613	20.0000	18
	44 Benzene	78	10.053	10.053	(0.947)	3947918	20.0000	18
	45 1,2-Dichloroethane	62	10.159	10.159	(0.957)	1533949	20.0000	18
	46 n-Heptane	43	10.282	10.282	(0.969)	1730671	20.0000	18
*	47 1,4-Difluorobenzene	114	10.613	10.608	(1.000)	3530481	10.0000	
	48 n-Butanol	56	10.880	10.906	(1.025)	616899	20.0000	19
	49 Trichloroethene	95	10.971	10.971	(1.034)	1916872	20.0000	19
	50 1,2-Dichloropropane	63	11.333	11.333	(1.068)	1320810	20.0000	19
	51 Methyl methacrylate	69	11.403	11.408	(1.074)	1421973	20.0000	19
	52 Dibromomethane	174	11.520		(1.085)	1909592	20.0000	20
	53 1,4-Dioxane	88	11.504		(1.084)	643239	20.0000	20
	54 Bromodichloromethane	83			(1.103)	2909545	20.0000	19
	55 1,3-Dichloropropene (cis)	75	12.326		(1.161)	2300228	20.0000	19
	56 Methyl isobutyl ketone	43	12.508		(1.179)	2241078	20.0000	18
	57 n-Octane	43	12.758		(1.202)	2171293	20.0000	17
	58 Toluene	92	12.748		(0.865)	3127459	20.0000	18
	59 1,3-Dichloropropene (trans)	75	13.121		(1.236)	2373295	20.0000	20
	60 1,1,2-Trichloroethane	83	13.388		(0.908)	1479875	20.0000	19
	61 Tetrachloroethene	166			(0.917)	3066934	20.0000	21
					/			

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
62 2-Hexanone 63 Dibromochloromethane 64 1,2-Dibromoethane 65 Chlorobenzene-d5 66 Chlorobenzene 67 n-Nonane 68 Ethylbenzene 69 Xylene (m,p) 170 Xylenes, Total 71 Xylene (o) 72 Styrene 73 Bromoform 74 Isopropylbenzene 75 1,1,2,2-Tetrachloroethane 76 n-Propylbenzene 77 1,2,3-Trichloropropane 78 n-Decane 79 4-Ethyltoluene 80 2-Chlorotoluene 81 1,3,5-Trimethylbenzene 82 Alpha Methyl Styrene 83 tert-butylbenzene 84 1,2,4-Trimethylbenzene 85 sec-Butylbenzene 86 4-Isopropyltoluene 87 1,3-Dichlorobenzene 88 1,4-Dichlorobenzene 89 Benzyl chloride 90 Undecane 91 n-Butylbenzene 91 1,2-Dichlorobenzene 93 Dodecane 94 1,2,4-Trichlorobenzene	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
62 2-Hexanone	43	13.687	13.698 (0.929)	2214121	20.0000	19
63 Dibromochloromethane	129	13.943	13.943 (0.946)	3574952	20.0000	21
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	3103635	20.0000	20
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3227755	10.0000	
66 Chlorobenzene	112	14.781	14.776 (1.003)	4913972	20.0000	19
67 n-Nonane	57	14.904	14.899 (1.011)	2497679	20.0000	18
68 Ethylbenzene	91	14.856	14.856 (1.008)	6889927	20.0000	19
69 Xylene (m,p)	106	15.011	15.011 (1.018)	5806766	40.0000	38
M 70 Xylenes, Total	106			8787539	20.0000	57
71 Xylene (o)	106	15.539	15.539 (1.054)	2980773	20.0000	19
72 Styrene	104	15.566	15.566 (1.056)	4712279	20.0000	20
73 Bromoform	173	15.859	15.859 (1.076)	3545428	20.0000	22
74 Isopropylbenzene	105	15.966	15.966 (1.083)	8423912	20.0000	20
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	3764719	20.0000	19
76 n-Propylbenzene	91	16.457	16.457 (1.117)	8754898	20.0000	19
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	2616172	20.0000	18
78 n-Decane	57	16.553	16.548 (1.123)	3035655	20.0000	18
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	8477020	20.0000	19
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	7029702	20.0000	19(M)
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	7092974	20.0000	19
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	4156543	20.0000	21
83 tert-butylbenzene	119	17.028	17.023 (1.155)	7161981	20.0000	20
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	7137272	20.0000	20
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	10115821	20.0000	19
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	9138941	20.0000	20
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	5539311	20.0000	21
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	5577771	20.0000	21
89 Benzyl chloride	91	17.738	17.738 (1.204)	6271146	20.0000	21
90 Undecane	57	17.887	17.887 (1.214)	2911051	20.0000	18
91 n-Butylbenzene	91	17.903	17.903 (1.215)	6615177	20.0000	18
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	5266072	20.0000	21
93 Dodecane	57	19.243	19.243 (1.306)	3039375	20.0000	19
94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	4124576	20.0000	22
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	2531888	20.0000	20
96 Naphthalene	128	20.652	20.652 (1.401)	8929532	20.0000	21
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	3515989	20.0000	23

QC Flag Legend

 $^{{\}tt Q}$ - Qualifier signal failed the ratio test. ${\tt M}$ - Compound response manually integrated.

Data File: bka008.d

Client ID: ic 132406 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624 Sample Info: ic 132406 Lab Sample ID: ic 132406

Date: 19-APR-2011 17:27

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 244 of 429

Data File: bka008.d Lab Sample ID: ic 132406

Inj. Date and Time: 19-APR-2011 17:27

Instrument ID: B.i Client ID: ic 132406

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 7029702

Amount: 18.65

Conc: 18.65

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka009.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka009.d

Lab Smp Id: ic 132405 Client Smp ID: ic 132405

Inj Date : 19-APR-2011 18:19

Operator : wrd Inst ID: B.i

Smp Info : ic 132405 Misc Info : 200,1, level7

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 19-APR-2011 18:19 Cal File: bka009.d

Als bottle: 3 Calibration Sample, Level: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	599770	40.0000	33
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	3524372	40.0000	32
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	1524484	40.0000	33
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	3358935	40.0000	31
5 Chloromethane	50	3.339	3.339 (0.363)	775518	40.0000	33
6 Butane	43	3.483	3.488 (0.378)	1311417	40.0000	32
7 Vinyl chloride	62	3.515	3.520 (0.382)	1063608	40.0000	33
8 1,3-Butadiene	54	3.574	3.574 (0.388)	774512	40.0000	33
9 Bromomethane	94	4.129	4.129 (0.449)	1898835	40.0000	33
10 Chloroethane	64	4.326	4.326 (0.470)	919478	40.0000	33
11 2-Methylbutane	43	4.401	4.401 (0.478)	1662131	40.0000	31
12 Vinyl bromide	106	4.705	4.705 (0.511)	2642602	40.0000	35
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	6439223	40.0000	34
14 Pentane	43	4.929	4.924 (0.536)	2747007	40.0000	32

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka009.d Report Date: 20-Apr-2011 10:08

					AMOUNT	S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==		======	======	======
15 Ethanol	45	5.303	5.308 (0.576)	1860972	100.000	88
16 Ethyl ether	59	5.404	5.415 (0.587)	1668086	40.0000	35
17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.629)	5443061	40.0000	36
18 Acrolein	56	5.751	5.756 (0.625)	861731	40.0000	35
19 1,1-Dichloroethene	96	5.858	5.852 (0.636)	2679149	40.0000	37
20 Acetone	43	6.034	6.045 (0.656)	2794058	40.0000	36
21 Carbon disulfide	76	6.269	6.269 (0.681)	7245165	40.0000	35
22 Isopropanol	45	6.306	6.322 (0.685)	2446977	40.0000	39
23 Allyl chloride	41	6.546	6.541 (0.711)	2304959	40.0000	34
24 Acetonitrile	41	6.626	6.626 (0.720)	1477909	40.0000	36
25 Methylene chloride	49	6.802	6.802 (0.739)	2075277	40.0000	33
26 Tert-butyl alcohol	59	7.005	7.037 (0.761)	4069174	40.0000	40
27 Methyl tert-butyl ether	73	7.176	7.187 (0.780)	6999335	40.0000	36
28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	3127358	40.0000	33
29 Acrylonitrile	53	7.288	7.288 (0.792)	1618249	40.0000	36
30 n-Hexane	57	7.534	7.528 (0.818)	3453171	40.0000	33
31 1,1-Dichloroethane	63	7.939	7.934 (0.863)	4045389	40.0000	34
32 Vinyl acetate	43	7.966	7.966 (0.865)	4793064	40.0000	34
M 33 1,2-Dichloroethene,Total	61			6077558	80.0000	69
34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961)	2950200	40.0000	36
35 Ethyl acetate	88	8.878	8.878 (0.965)	260476	40.0000	37
36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	1207999	40.0000	34(Q)
* 37 Bromochloromethane	128	9.204	9.199 (1.000)	781712	10.0000	
38 Tetrahydrofuran	42	9.241	9.252 (0.871)	2084669	40.0000	35
39 Chloroform	83	9.284	9.284 (1.009)	5274929	40.0000	35
40 Cyclohexane	84	9.540	9.535 (0.899)	3724291	40.0000	35
41 1,1,1-Trichloroethane	97	9.530	9.524 (0.898)	5691823	40.0000	37
42 Carbon tetrachloride	117	9.732	9.727 (0.917)	6692210	40.0000	39
43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.944)	10092869	40.0000	33
44 Benzene	78	10.058	10.053 (0.948)	7680963	40.0000	34
45 1,2-Dichloroethane	62	10.165	10.159 (0.958)	3132783	40.0000	36
46 n-Heptane	43	10.282	10.282 (0.969)	3292791	40.0000	32
* 47 1,4-Difluorobenzene	114	10.613	10.608 (1.000)	3671116	10.0000	
48 n-Butanol	56	10.880	10.906 (1.025)	1408829	40.0000	43(A)
49 Trichloroethene	95	10.970	10.971 (1.034)	3833558	40.0000	36
50 1,2-Dichloropropane	63	11.339	11.333 (1.068)	2623803	40.0000	35
51 Methyl methacrylate	69	11.408	11.408 (1.075)	2893198	40.0000	38
52 Dibromomethane	174	11.526	11.520 (1.086)	3969697	40.0000	41(A)
53 1,4-Dioxane	88	11.499	11.520 (1.083)	1375223	40.0000	40(A)
54 Bromodichloromethane	83	11.702	11.702 (1.103)	5862932	40.0000	37
55 1,3-Dichloropropene (cis)	75	12.331	12.326 (1.162)	4661270	40.0000	38
56 Methyl isobutyl ketone	43	12.508	12.518 (1.179)	4388870	40.0000	35
57 n-Octane	43	12.764	12.758 (1.203)	3705391	40.0000	27
58 Toluene	92		12.748 (0.865)	5654440	40.0000	32
59 1,3-Dichloropropene (trans)	75	13.127		4813372	40.0000	38
60 1,1,2-Trichloroethane	83	13.393	13.388 (0.908)	2919548	40.0000	36
61 Tetrachloroethene	166	13.522	13.516 (0.917)	6228827	40.0000	40(A)
			•			

Report Date: 20-Apr-2011 10:08

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=		====	==	======	======	======	======
	62 2-Hexanone	43	13.687	13.698 (0.928)	4371736	40.0000	36
	63 Dibromochloromethane	129	13.948	13.943 (0.946)	7237509	40.0000	40
	64 1,2-Dibromoethane	107	14.151	14.146 (0.960)	6238068	40.0000	38
*	65 Chlorobenzene-d5	117	14.744	14.738 (1.000)	3356371	10.0000	
	66 Chlorobenzene	112	14.781	14.776 (1.003)	9833865	40.0000	37
	67 n-Nonane	57	14.904	14.899 (1.011)	4470311	40.0000	31
	68 Ethylbenzene	91	14.861	14.856 (1.008)	13273535	40.0000	35
	69 Xylene (m,p)	106	15.016	15.011 (1.018)	10154496	80.0000	64
M	70 Xylenes, Total	106			15751384	40.0000	99
	71 Xylene (o)	106	15.539	15.539 (1.054)	5596888	40.0000	35
	72 Styrene	104	15.571	15.566 (1.056)	8850176	40.0000	37
	73 Bromoform	173	15.859	15.859 (1.076)	6819478	40.0000	40
	74 Isopropylbenzene	105	15.971	15.966 (1.083)	16038905	40.0000	36
	75 1,1,2,2-Tetrachloroethane	83	16.398	16.393 (1.112)	6981701	40.0000	34
	76 n-Propylbenzene	91	16.462	16.457 (1.117)	14790847	40.0000	30
	77 1,2,3-Trichloropropane	75	16.478	16.468 (1.118)	4487423	40.0000	30
	78 n-Decane	57	16.553	16.548 (1.123)	5182772	40.0000	29
	79 4-Ethyltoluene	105	16.596	16.585 (1.126)	15123545	40.0000	33
	80 2-Chlorotoluene	91	16.628	16.622 (1.128)	12913657	40.0000	33(M)
	81 1,3,5-Trimethylbenzene	105	16.665	16.660 (1.130)	13388540	40.0000	35
	82 Alpha Methyl Styrene	118	16.937	16.932 (1.149)	8021611	40.0000	40
	83 tert-butylbenzene	119	17.033	17.023 (1.155)	13516071	40.0000	36
	84 1,2,4-Trimethylbenzene	105	17.103	17.097 (1.160)	13446021	40.0000	35
	85 sec-Butylbenzene	105	17.279	17.273 (1.172)	18575724	40.0000	34
	86 4-Isopropyltoluene	119	17.428	17.423 (1.182)	16797947	40.0000	35
	87 1,3-Dichlorobenzene	146	17.492	17.487 (1.186)	10716451	40.0000	38
	88 1,4-Dichlorobenzene	146	17.599	17.594 (1.194)	10779777	40.0000	38
	89 Benzyl chloride	91	17.743	17.738 (1.203)	12462482	40.0000	39
	90 Undecane	57	17.887	17.887 (1.213)	4585532	40.0000	27
	91 n-Butylbenzene	91	17.908	17.903 (1.215)	10669300	40.0000	28
	92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	10383099	40.0000	39
	93 Dodecane	57	19.248	19.243 (1.306)	5509471	40.0000	34
	94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	8238766	40.0000	41(A)
	95 1,3-Hexachlorobutadiene	225	20.385	20.380 (1.383)	4648758	40.0000	36
	96 Naphthalene	128	20.657	20.652 (1.401)	18709280	40.0000	43(A)
	97 1,2,3-Trichlorobenzene	180	21.089	21.084 (1.430)	7250992	40.0000	45(A)

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.

 Q - Qualifier signal failed the ratio test.

 M - Compound response manually integrated.

Data File: bka009.d

Client ID: ic 132405 Operator: wrd

Column Type: Capillary Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: ic 132405
Lab Sample ID: ic 132405

Date: 19-APR-2011 18:19

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 249 of 429

Data File: bka009.d Lab Sample ID: ic 132405

Inj. Date and Time: 19-APR-2011 18:19

Instrument ID: B.i Client ID: ic 132405

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.63

Response: 12913657

Amount: 32.94

Conc: 32.94

File Uploaded By: pd

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka014.d Page 1

Report Date: 20-Apr-2011 10:08

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka014.d

Lab Smp Id: ic 132521 Client Smp ID: ic 132521

Inj Date : 20-APR-2011 08:43

Operator : wrd Inst ID: B.i

Smp Info : ic 132521 Misc Info : 200,1, level1

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date : 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date : 20-Apr-2011 08:43 Cal File: bka014.d

Als bottle: 1 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

						S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==		======	======	======
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	22007	0.20000	0.20(a)
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	10328	0.20000	0.22(a)
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	21439	0.20000	0.20
5 Chloromethane	50	3.339	3.339 (0.363)	5128	0.20000	0.22(a)
6 Butane	43	3.483	3.488 (0.379)	9933	0.20000	0.25(aQ)
7 Vinyl chloride	62	3.515	3.520 (0.382)	6189	0.20000	0.20
8 1,3-Butadiene	54	3.573	3.574 (0.388)	4689	0.20000	0.20
9 Bromomethane	94	4.129	4.129 (0.449)	11458	0.20000	0.20
10 Chloroethane	64	4.331	4.326 (0.471)	5473	0.20000	0.20(a)
11 2-Methylbutane	43	4.390	4.401 (0.477)	12218	0.20000	0.23
12 Vinyl bromide	106	4.705	4.705 (0.511)	15742	0.20000	0.21
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	37349	0.20000	0.20
14 Pentane	43	4.924	4.924 (0.535)	18515	0.20000	0.22(a)
16 Ethyl ether	59	5.468	5.415 (0.594)	9120	0.20000	0.20

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka014.d Report Date: 20-Apr-2011 10:08

						TUOMA	rs.
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==	=======================================	====	==	======	======	======	======
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.794	5.788 (0.630)	31501	0.20000	0.21
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	15651	0.20000	0.22(M)
	21 Carbon disulfide	76	6.258	6.269 (0.680)	42175	0.20000	0.21(a)
	23 Allyl chloride	41	6.551	6.541 (0.712)	13588	0.20000	0.20
	25 Methylene chloride	49	6.808	6.802 (0.740)	14320	0.20000	0.23(a)
	27 Methyl tert-butyl ether	73	7.267	7.187 (0.790)	38407	0.20000	0.20
	28 1,2-Dichloroethene (trans)	61	7.208	7.203 (0.784)	18666	0.20000	0.20
	29 Acrylonitrile	53	7.315	7.288 (0.795)	7966	0.20000	0.18(a)
	30 n-Hexane	57	7.533	7.528 (0.819)	21696	0.20000	0.21
	31 1,1-Dichloroethane	63	7.928	7.934 (0.862)	23482	0.20000	0.20
M	33 1,2-Dichloroethene,Total	61			35394	0.40000	0.40
	34 1,2-Dichloroethene (cis)	96	8.841	8.836 (0.961)	16728	0.20000	0.20
	36 Methyl Ethyl Ketone	72	8.910	8.857 (0.969)	7877	0.20000	0.23(aQ)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	774307	10.0000	
	39 Chloroform	83	9.279	9.284 (1.009)	29536	0.20000	0.20
	40 Cyclohexane	84	9.529	9.535 (0.898)	22729	0.20000	0.21
	41 1,1,1-Trichloroethane	97	9.519	9.524 (0.897)	32159	0.20000	0.20
	42 Carbon tetrachloride	117	9.722	9.727 (0.916)	34647	0.20000	0.20
	43 2,2,4-Trimethylpentane	57	10.020	10.021 (0.945)	61280	0.20000	0.20(M)
	44 Benzene	78	10.058	10.053 (0.948)	47198	0.20000	0.21
	45 1,2-Dichloroethane	62	10.165	10.159 (0.958)	16884	0.20000	0.19(a)
	46 n-Heptane	43	10.277	10.282 (0.969)	21502	0.20000	0.21
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	3749851	10.0000	
	48 n-Butanol	56	Comp	ound Not Detected	d.		
	49 Trichloroethene	95	10.970	10.971 (1.034)	21871	0.20000	0.20
	50 1,2-Dichloropropane	63	11.339	11.333 (1.069)	14653	0.20000	0.19(a)
	51 Methyl methacrylate	69	11.435	11.408 (1.078)	12941	0.20000	0.16(a)
	52 Dibromomethane	174	11.525	11.520 (1.087)	20967	0.20000	0.21
	53 1,4-Dioxane	88		ound Not Detected			
	54 Bromodichloromethane	83	_	11.702 (1.103)	30360	0.20000	0.19(a)
	55 1,3-Dichloropropene (cis)	75		12.326 (1.163)	23023	0.20000	0.18(a)
	56 Methyl isobutyl ketone	43		12.518 (1.187)	20503	0.20000	0.16(a)
	57 n-Octane	43	12.753		29494	0.20000	0.21(a)
	58 Toluene	92	12.758	12.748 (0.866)	38095	0.20000	0.21
	59 1,3-Dichloropropene (trans)	75		13.121 (1.238)	23351	0.20000	0.18(a)
	60 1,1,2-Trichloroethane	83		13.388 (0.908)	16226	0.20000	0.20
	61 Tetrachloroethene	166		13.516 (0.917)	33514	0.20000	0.21
	62 2-Hexanone	43		13.698 (0.934)	17520	0.20000	0.14(aM)
	63 Dibromochloromethane	129		13.943 (0.946)		0.20000	0.14(aM)
					33753		
*	64 1,2-Dibromoethane 65 Chlorobenzene-d5	107		14.146 (0.960) 14.738 (1.000)	31541	0.20000	0.19(a)
•		117			3408265	10.0000	0 21
	66 Chlorobenzene	112		14.776 (1.003)	55704	0.20000	0.21
	67 n-Nonane	57		14.899 (1.011)	30365	0.20000	0.20
	68 Ethylbenzene	91		14.856 (1.008)	79091	0.20000	0.20
	69 Xylene (m,p)	106	15.016	15.011 (1.019)	67047	0.40000	0.41(a)
M	70 Xylenes, Total	106	15 54:	15 520 / 2 055	99139	0.20000	0.61
	71 Xylene (o)	106	15.544	15.539 (1.055)	32092	0.20000	0.20

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==			======	======
72 Styrene	104	15.571	15.566 (1.056)	42751	0.20000	0.17(a)
73 Bromoform	173	15.859	15.859 (1.076)	30436	0.20000	0.18(a)
74 Isopropylbenzene	105	15.966	15.966 (1.083)	89288	0.20000	0.20
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	40919	0.20000	0.19(a)
76 n-Propylbenzene	91	16.457	16.457 (1.117)	101095	0.20000	0.20
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	31796	0.20000	0.21(a)
78 n-Decane	57	16.553	16.548 (1.123)	37227	0.20000	0.20(a)
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	90304	0.20000	0.20
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	81335	0.20000	0.20(M)
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	76515	0.20000	0.20
82 Alpha Methyl Styrene	118	16.937	16.932 (1.149)	31216	0.20000	0.15(a)
83 tert-butylbenzene	119	17.022	17.023 (1.155)	77758	0.20000	0.20
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	73017	0.20000	0.19(a)
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	112414	0.20000	0.20
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	92926	0.20000	0.19(a)
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	53498	0.20000	0.19(a)
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	52849	0.20000	0.19(a)
89 Benzyl chloride	91	17.743	17.738 (1.204)	50062	0.20000	0.16(a)
91 n-Butylbenzene	91	17.903	17.903 (1.215)	73222	0.20000	0.19(a)
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	52468	0.20000	0.19(a)
94 1,2,4-Trichlorobenzene	180	20.230	20.219 (1.373)	24157	0.20000	0.12(a)
95 1,3-Hexachlorobutadiene	225	20.379	20.380 (1.383)	27243	0.20000	0.21
96 Naphthalene	128	20.668	20.652 (1.402)	45960	0.20000	0.10(a)
97 1,2,3-Trichlorobenzene	180	21.089	21.084 (1.431)	21804	0.20000	0.13(aM)

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.

Data File: bka014.d

Client ID: DRAU14.d

Operator: wrd
Column Type: Capillary
Stationary Phase: RTX-624

Stationary Phase: RTX-624
Sample Info: ic 132521
Lab Sample ID: ic 132521

Date: 20-APR-2011 08:43

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 254 of 429

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 35 Ethyl acetate

CAS #: 141-78-6

Report Date: 04/20/2011

Processing Integration Results

RT: 8.92

Response: 817

Amount: 0.117294

Conc: 0.117294

Manual Integration Results

RT: 8.93

Response: 1136

Amount: 0.163092

Conc: 0.163092

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 80 2-Chlorotoluene

CAS #: 95-49-8

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 16.62

Manual Integration Results

RT: 16.62

Response: 81335

Amount: 0.204313

Conc: 0.204313

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 43 2,2,4-Trimethylpentane

CAS #: 540-84-1

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 10.02

Manual Integration Results

RT: 10.02

Response: 61280

Amount: 0.197586

Conc: 0.197586

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 19 1,1-Dichloroethene

CAS #: 75-35-4

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 5.85

Manual Integration Results

RT: 5.85

Response: 15651

Amount: 0.216330

Conc: 0.216330

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521 Compound: 62 2-Hexanone

CAS #: 591-78-6

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 13.70

Manual Integration Results

RT: 13.76

Response: 17520

Amount: 0.141800

Conc: 0.141800

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 32 Vinyl acetate

CAS #: 108-05-4

Report Date: 04/20/2011

Processing Integration Results

RT: 7.99

Response: 20190

Amount: 0.145989

Conc: 0.145989

Manual Integration Results

RT: 7.99

Response: 24878

Amount: 0.179887

Conc: 0.179887

File Uploaded By: pd

Data File: bka014.d Lab Sample ID: ic 132521

Inj. Date and Time: 20-APR-2011 08:43

Instrument ID: B.i Client ID: ic 132521

Compound: 97 1,2,3-Trichlorobenzene

CAS #: 87-61-6

Report Date: 04/20/2011

Processing Integration Results

Not Detected

Expected RT: 21.08

Manual Integration Results

RT: 21.09

Response: 21804

Amount: 0.134025

Conc: 0.134025

File Uploaded By: pd

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2331	0.1973		8.46	10.0	-15.4	30.0
Dichlorodifluoromethane	Ave	1.431	1.322		9.24	10.0	-7.6	30.0
Freon 22	Ave	0.5941	0.5298		8.92	10.0	-10.8	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.387	1.283		9.25	10.0	-7.5	30.0
Chloromethane	Ave	0.2978	0.2639		8.86	10.0	-11.4	30.0
n-Butane	Ave	0.5171	0.4435		8.57	10.0	-14.2	30.0
Vinyl chloride	Ave	0.4091	0.3702		9.05	10.0	-9.5	30.0
1,3-Butadiene	Ave	0.2973	0.2734		9.19	10.0	-8.1	30.0
Bromomethane	Ave	0.7386	0.6607		8.94	10.0	-10.5	30.0
Chloroethane	Ave	0.3564	0.3213		9.01	10.0	-9.8	30.0
Isopentane	Ave	0.6819	0.5785		8.48	10.0	-15.2	30.0
Bromoethene(Vinyl Bromide)	Ave	0.9762	0.9487		9.72	10.0	-2.8	30.0
Trichlorofluoromethane	Ave	2.400	2.300		9.58	10.0	-4.2	30.0
n-Pentane	Ave	1.095	0.9464		8.64	10.0	-13.6	30.0
Ethanol	Ave	0.2702	0.2447		13.6	15.0	-9.4	30.0
Ethyl ether	Ave	0.6026	0.5531		9.18	10.0	-8.2	30.0
Acrolein	Ave	0.3155	0.2628		8.33	10.0	-16.7	30.0
Freon TF	Ave	1.945	2.074		10.7	10.0	6.6	30.0
1,1-Dichloroethene	Ave	0.9344	1.009		10.8	10.0	8.0	30.0
Acetone	Ave	0.9915	0.9478		9.56	10.0	-4.4	30.0
Carbon disulfide	Ave	2.620	2.594		9.90	10.0	-1.0	30.0
Isopropyl alcohol	Ave	0.8056	0.7123		8.84	10.0	-11.6	30.0
3-Chloropropene	Ave	0.8674	0.7902		9.11	10.0	-8.9	30.0
Acetonitrile	Ave	0.5188	0.4963		9.57	10.0	-4.3	30.0
Methylene Chloride	Ave	0.8093	0.7949		9.82	10.0	-1.8	30.0
tert-Butyl alcohol	Ave	1.308	1.172		8.96	10.0	-10.4	30.0
Methyl tert-butyl ether	Ave	2.508	2.457		9.79	10.0	-2.1	30.0
trans-1,2-Dichloroethene	Ave	1.205	1.151		9.55	10.0	-4.5	30.0
Acrylonitrile	Ave	0.5756	0.5492		9.54	10.0	-4.6	30.0
n-Hexane	Ave	1.323	1.240		9.38	10.0	-6.2	30.0
1,1-Dichloroethane	Ave	1.520	1.460		9.60	10.0	-4.0	30.0
Vinyl acetate	Ave	1.786	1.668		9.33	10.0	-6.6	30.0
cis-1,2-Dichloroethene	Ave	1.057	1.082		10.2	10.0	2.4	30.0
Methyl Ethyl Ketone	Ave	0.4507	0.4467		9.91	10.0	-0.9	30.0
Ethyl acetate	Ave	0.0900	0.0903		10.0	10.0	0.4	30.0
Tetrahydrofuran	Ave	0.1605	0.1528		9.52	10.0	-4.8	30.0
Chloroform	Ave	1.912	1.861		9.73	10.0	-2.7	30.0
1,1,1-Trichloroethane	Ave	0.4243	0.4184		9.86	10.0	-1.4	30.0
Cyclohexane	Ave	0.2915	0.2905		9.96	10.0	-0.3	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4682	0.4614		9.85	10.0	-1.5	30.0
2,2,4-Trimethylpentane	Ave	0.8271	0.8032		9.71	10.0	-2.9	30.0
Benzene	Ave	0.6091	0.5994		9.84	10.0	-1.6	30.0
1,2-Dichloroethane	Ave	0.2353	0.2273		9.66	10.0	-3.4	30.0
n-Heptane	Ave	0.2780	0.2573		9.25	10.0	-7.5	30.0
n-Butanol	Ave	0.0903	0.0754		8.35	10.0	-16.5	30.0
Trichloroethene	Ave	0.2862	0.2828		9.88	10.0	-1.2	30.0
1,2-Dichloropropane	Ave	0.2015	0.1915		9.50	10.0	-5.0	30.0
Methyl methacrylate	Ave	0.2099	0.2067		9.85	10.0	-1.5	30.0
1,4-Dioxane	Ave	0.0934	0.0832		8.91	10.0	-10.9	30.0
Dibromomethane	Ave	0.2655	0.2760		10.4	10.0	4.0	30.0
Bromodichloromethane	Ave	0.4324	0.4387		10.1	10.0	1.5	30.0
cis-1,3-Dichloropropene	Ave	0.3345	0.3263		9.75	10.0	-2.5	30.0
methyl isobutyl ketone	Ave	0.3442	0.3231		9.38	10.0	-6.1	30.0
Toluene	Ave	0.5245	0.5113		9.75	10.0	-2.5	30.0
n-Octane	Ave	0.3680	0.3365		9.14	10.0	-8.6	30.0
trans-1,3-Dichloropropene	Ave	0.3432	0.3349		9.75	10.0	-2.4	30.0
1,1,2-Trichloroethane	Ave	0.2404	0.2269		9.44	10.0	-5.6	30.0
Tetrachloroethene	Ave	0.4633	0.4648		10.0	10.0	0.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.3625	0.3381		9.32	10.0	-6.7	30.0
Dibromochloromethane	Ave	0.5400	0.5711		10.6	10.0	5.8	30.0
1,2-Dibromoethane	Ave	0.4856	0.4772		9.83	10.0	-1.7	30.0
Chlorobenzene	Ave	0.7869	0.7575		9.62	10.0	-3.7	30.0
Ethylbenzene	Ave	1.133	1.112		9.82	10.0	-1.8	30.0
n-Nonane	Ave	0.4348	0.4169		9.59	10.0	-4.1	30.0
m,p-Xylene	Ave	0.4744	0.4755		20.0	20.0	0.2	30.0
Xylene, o-	Ave	0.4741	0.4655		9.81	10.0	-1.8	30.0
Styrene	Ave	0.7215	0.7387		10.2	10.0	2.4	30.0
Bromoform	Ave	0.5086	0.5702		11.2	10.0	12.1	30.0
Cumene	Ave	1.332	1.355		10.2	10.0	1.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6205	0.5901		9.51	10.0	-4.9	30.0
n-Propylbenzene	Ave	1.466	1.502		10.2	10.0	2.5	30.0
1,2,3-Trichloropropane	Ave	0.4484	0.4416		9.85	10.0	-1.5	30.0
n-Decane	Ave	0.5373	0.5200		9.68	10.0	-3.2	30.0
4-Ethyltoluene	Ave	1.354	1.398		10.3	10.0	3.2	30.0
2-Chlorotoluene	Ave	1.168	1.173		10.0	10.0	0.5	30.0
1,3,5-Trimethylbenzene	Ave	1.135	1.134		9.99	10.0	-0.0	30.0
Alpha Methyl Styrene	Ave	0.6037	0.6484		10.7	10.0	7.4	30.0
tert-Butylbenzene	Ave	1.130	1.159		10.3	10.0	2.6	30.0

FORM VII AIR - GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: ICV 200-16751/16 Calibration Date: 04/20/2011 10:27

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bka016.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	1.129	1.112		9.85	10.0	-1.5	30.0
sec-Butylbenzene	Ave	1.633	1.663		10.2	10.0	1.8	30.0
4-Isopropyltoluene	Ave	1.423	1.480		10.4	10.0	4.0	30.0
1,3-Dichlorobenzene	Ave	0.8316	0.8396		10.1	10.0	1.0	30.0
1,4-Dichlorobenzene	Ave	0.8368	0.8530		10.2	10.0	1.9	30.0
Benzyl chloride	Ave	0.9425	0.9602		10.2	10.0	1.9	30.0
n-Undecane	Ave	0.5067	0.5302		10.5	10.0	4.6	30.0
n-Butylbenzene	Ave	1.124	1.170		10.4	10.0	4.1	30.0
1,2-Dichlorobenzene	Ave	0.7957	0.7704		9.68	10.0	-3.2	30.0
n-Dodecane	Ave	0.4886	0.4604		9.42	10.0	-5.8	30.0
1,2,4-Trichlorobenzene	Ave	0.5921	0.5935		10.0	10.0	0.2	30.0
Hexachlorobutadiene	Ave	0.3836	0.3837		10.0	10.0	0.0	30.0
Naphthalene	Ave	1.308	1.351		10.3	10.0	3.3	30.0
1,2,3-Trichlorobenzene	Ave	0.4773	0.5300		11.1	10.0	11.0	30.0

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Page 1

Report Date: 20-Apr-2011 10:54

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka016.d

Lab Smp Id: icv 133740 Client Smp ID: icv 133740

Inj Date : 20-APR-2011 10:27

Operator : wrd Inst ID: B.i

Smp Info : icv 133740 Misc Info : 200,1, icv

Comment :

Method : /chem/B.i/Bsvr.p/bkato15.b/to15v5.m

Meth Date: 20-Apr-2011 10:08 pd Quant Type: ISTD Cal Date: 20-Apr-2011 08:43 Cal File: bka014.d QC Sample: METHSPIKE

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description			
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)			

Cpnd Variable Local Compound Variable

					CONCENTRATIONS	
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.987	2.992 (0.325)	153498	8.46262	8.5
2 Dichlorodifluoromethane	85	3.035	3.040 (0.330)	1028670	9.24172	9.2
3 Chlorodifluoromethane	51	3.067	3.072 (0.333)	412128	8.91638	8.9
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.221	3.232 (0.350)	998052	9.25207	9.3
5 Chloromethane	50	3.333	3.339 (0.362)	205246	8.85936	8.9
6 Butane	43	3.478	3.488 (0.378)	345001	8.57487	8.6
7 Vinyl chloride	62	3.510	3.520 (0.382)	287997	9.04780	9.0
8 1,3-Butadiene	54	3.563	3.574 (0.387)	212629	9.19137	9.2
9 Bromomethane	94	4.118	4.129 (0.448)	513956	8.94357	8.9
10 Chloroethane	64	4.321	4.326 (0.470)	249895	9.01345	9.0
11 2-Methylbutane	43	4.395	4.401 (0.478)	449989	8.48217	8.5
12 Vinyl bromide	106	4.700	4.705 (0.511)	737930	9.71582	9.7
13 Trichlorofluoromethane	101	4.790	4.801 (0.521)	1788860	9.57959	9.6
14 Pentane	43	4.918	4.924 (0.535)	736149	8.64245	8.6

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Report Date: 20-Apr-2011 10:54

						CONCENTRA	
		QUANT SIG				ON-COLUMN	FINAL
	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==	=======================================	====	==	======	======	======	======
	15 Ethanol	45	5.292	5.308 (0.575)	286295	13.6202	14
	16 Ethyl ether	59	5.404	5.415 (0.587)	430246	9.17636	9.2
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.783	5.788 (0.629)	1613058	10.6607	11
	18 Acrolein	56	5.746	5.756 (0.625)	204390	8.32594	8.3
	19 1,1-Dichloroethene	96	5.847	5.852 (0.636)	784741	10.7951	11
	20 Acetone	43	6.034	6.045 (0.656)	737258	9.55696	9.6
	21 Carbon disulfide	76	6.258	6.269 (0.680)	2018109	9.89862	9.9
	22 Isopropanol	45	6.306	6.322 (0.686)	554096	8.84051	8.8
	23 Allyl chloride	41	6.536	6.541 (0.710)	614689	9.10835	9.1
	24 Acetonitrile	41	6.621	6.626 (0.720)	386079	9.56533	9.6
	25 Methylene chloride	49	6.797	6.802 (0.739)	618355	9.82058	9.8
	26 Tert-butyl alcohol	59	7.011	7.037 (0.762)	911755	8.95743	9.0
	27 Methyl tert-butyl ether	73	7.176	7.187 (0.780)	1911033	9.79282	9.8
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	894930	9.54673	9.5
	29 Acrylonitrile	53	7.283	7.288 (0.792)	427174	9.53827	9.5
	30 n-Hexane	57	7.528	7.528 (0.818)	964918	9.37689	9.4
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1135358	9.60246	9.6
	32 Vinyl acetate	43	7.961	7.966 (0.865)	1297166	9.33479	9.3
M	33 1,2-Dichloroethene,Total	61			1736306	19.7824	20
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	841376	10.2357	10
	35 Ethyl acetate	88	8.878	8.878 (0.965)	70234	10.0352	10
	36 Methyl Ethyl Ketone	72	8.846	8.857 (0.962)	347436	9.90754	9.9(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	778014	10.0000	
	38 Tetrahydrofuran	42	9.241	9.252 (0.871)	570162	9.51636	9.5
	39 Chloroform	83	9.279	9.284 (1.009)	1447429	9.72907	9.7
	40 Cyclohexane	84	9.535	9.535 (0.899)	1084319	9.96363	10
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	1561721	9.86017	9.9
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	1721845	9.85183	9.9
	43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.944)	2997762	9.70951	9.7
	44 Benzene	78	10.053	10.053 (0.948)	2237210	9.83859	9.8
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	848358	9.65723	9.7
	46 n-Heptane	43	10.282	10.282 (0.969)	960255	9.25201	9.3
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	3732948	10.0000	
	48 n-Butanol	56	10.885	10.906 (1.026)	281413	8.34898	8.3
	49 Trichloroethene	95	10.971	10.971 (1.034)	1055626	9.87957	9.9
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	714662	9.49919	9.5
	51 Methyl methacrylate	69	11.408	11.408 (1.075)	771597	9.84967	9.8
	52 Dibromomethane	174	11.520	11.520 (1.086)	1030258	10.3951	10
	53 1,4-Dioxane	88	11.515	11.520 (1.086)	310531	8.90736	8.9
	54 Bromodichloromethane	83	11.702	11.702 (1.103)	1637464	10.1451	10
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1217637	9.75255	9.8
	56 Methyl isobutyl ketone	43	12.508	12.518 (1.179)	1205677	9.38320	9.4
	57 n-Octane	43	12.758	12.758 (1.203)	1255849	9.14223	9.1
	58 Toluene	92	12.748	12.748 (0.865)	1746217	9.74755	9.7
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	1249743	9.75448	9.8
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	774888	9.43591	9.4
	61 Tetrachloroethene	166	13.522	13.516 (0.917)	1587205	10.0297	10

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka016.d Report Date: 20-Apr-2011 10:54

-

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
62 2-Hexanone	43	13.692	13.698 (0.929)	1154595	9.32422	9.3
63 Dibromochloromethane	129	13.943	13.943 (0.946)	1950373	10.5731	11
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	1629836	9.82684	9.8
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	3415798	10.0000	
66 Chlorobenzene	112	14.781	14.776 (1.003)	2587069	9.62477	9.6
67 n-Nonane	57	14.904	14.899 (1.011)	1423694	9.58667	9.6
68 Ethylbenzene	91	14.856	14.856 (1.008)	3797686	9.81561	9.8
69 Xylene (m,p)	106	15.011	15.011 (1.018)	3247755	20.0423	20
M 70 Xylenes, Total	106			4837357	29.8572	30
71 Xylene (o)	106	15.539	15.539 (1.054)	1589602	9.81487	9.8
72 Styrene	104	15.566	15.566 (1.056)	2522667	10.2356	10
73 Bromoform	173	15.859	15.859 (1.076)	1947193	11.2077	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	4627810	10.1701	10
75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2015193	9.50846	9.5
76 n-Propylbenzene	91	16.457	16.457 (1.117)	5129287	10.2454	10
77 1,2,3-Trichloropropane	75	16.473	16.468 (1.118)	1508184	9.84689	9.8
78 n-Decane	57	16.548	16.548 (1.123)	1776011	9.67634	9.7
79 4-Ethyltoluene	105	16.590	16.585 (1.126)	4774750	10.3226	10
80 2-Chlorotoluene	91	16.622	16.622 (1.128)	4007428	10.0444	10
81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	3872400	9.98939	10
82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	2214239	10.7380	11
83 tert-butylbenzene	119	17.028	17.023 (1.155)	3958617	10.2568	10
84 1,2,4-Trimethylbenzene	105	17.097	17.097 (1.160)	3796721	9.84707	9.8
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	5680497	10.1827	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	5054356	10.3968	10
87 1,3-Dichlorobenzene	146	17.487	17.487 (1.186)	2867191	10.0942	10
88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	2913081	10.1919	10
89 Benzyl chloride	91	17.738	17.738 (1.204)	3279113	10.1854	10
90 Undecane	57	17.887	17.887 (1.214)	1810527	10.4608	10
91 n-Butylbenzene	91	17.903	17.903 (1.215)	3995995	10.4043	10
92 1,2-Dichlorobenzene	146	18.047	18.042 (1.224)	2631034	9.68079	9.7
93 Dodecane	57	19.243	19.243 (1.306)	1572194	9.42041	9.4
94 1,2,4-Trichlorobenzene	180	20.225	20.219 (1.372)	2026924	10.0220	10
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1310503	10.0012	10
96 Naphthalene	128	20.652	20.652 (1.401)	4612778	10.3265	10
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	1809912	11.1007	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bka016.d

Client ID: icv 133740 Operator: wrd

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: icv 133740
Lab Sample ID: icv 133740

Date: 20-APR-2011 10:27

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 268 of 429

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17603/2 Calibration Date: 05/05/2011 10:47

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkaj002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2331	0.1892		8.11	10.0	-18.8	30.0
Dichlorodifluoromethane	Ave	1.431	1.480		10.3	10.0	3.5	30.0
Freon 22	Ave	0.5941	0.5335		8.98	10.0	-10.2	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.387	1.402		10.1	10.0	1.1	30.0
Chloromethane	Ave	0.2978	0.2561		8.60	10.0	-14.0	30.0
n-Butane	Ave	0.5171	0.4333		8.38	10.0	-16.2	30.0
Vinyl chloride	Ave	0.4091	0.3802		9.29	10.0	-7.1	30.0
1,3-Butadiene	Ave	0.2973	0.2616		8.80	10.0	-12.0	30.0
Bromomethane	Ave	0.7386	0.7146		9.67	10.0	-3.2	30.0
Chloroethane	Ave	0.3564	0.3170		8.89	10.0	-11.0	30.0
Isopentane	Ave	0.6819	0.5449		7.99	10.0	-20.1	30.0
Bromoethene (Vinyl Bromide)	Ave	0.9762	0.9772		10.0	10.0	0.1	30.0
Trichlorofluoromethane	Ave	2.400	2.505		10.4	10.0	4.4	30.0
n-Pentane	Ave	1.095	0.9202		8.40	10.0	-16.0	30.0
Ethanol	Ave	0.2702	0.2519		14.0	15.0	-6.8	30.0
Ethyl ether	Ave	0.6026	0.5822		9.66	10.0	-3.4	30.0
Acrolein	Ave	0.3155	0.2964		9.39	10.0	-6.0	30.0
Freon TF	Ave	1.945	1.969		10.1	10.0	1.3	30.0
1,1-Dichloroethene	Ave	0.9344	0.9271		9.92	10.0	-0.8	30.0
Acetone	Ave	0.9915	0.9084		9.16	10.0	-8.4	30.0
Carbon disulfide	Ave	2.620	2.620		9.99	10.0	-0.0	30.0
Isopropyl alcohol	Ave	0.8056	0.7048		8.75	10.0	-12.5	30.0
3-Chloropropene	Ave	0.8674	0.7441		8.58	10.0	-14.2	30.0
Acetonitrile	Ave	0.5188	0.4755		9.16	10.0	-8.3	30.0
Methylene Chloride	Ave	0.8093	0.7161		8.85	10.0	-11.5	30.0
tert-Butyl alcohol	Ave	1.308	1.218		9.31	10.0	-6.9	30.0
Methyl tert-butyl ether	Ave	2.508	2.469		9.84	10.0	-1.6	30.0
trans-1,2-Dichloroethene	Ave	1.205	1.143		9.48	10.0	-5.2	30.0
Acrylonitrile	Ave	0.5756	0.5309		9.22	10.0	-7.8	30.0
n-Hexane	Ave	1.323	1.220		9.22	10.0	-7.8	30.0
1,1-Dichloroethane	Ave	1.520	1.447		9.52	10.0	-4.8	30.0
Vinyl acetate	Ave	1.786	1.616		9.05	10.0	-9.5	30.0
cis-1,2-Dichloroethene	Ave	1.057	1.068		10.1	10.0	1.1	30.0
Methyl Ethyl Ketone	Ave	0.4507	0.4402		9.76	10.0	-2.3	30.0
Ethyl acetate	Ave	0.0900	0.0898		9.98	10.0	-0.2	30.0
Tetrahydrofuran	Ave	0.1605	0.1459		9.09	10.0	-9.1	30.0
Chloroform	Ave	1.912	1.932		10.1	10.0	1.0	30.0
1,1,1-Trichloroethane	Ave	0.4243	0.4455		10.5	10.0	5.0	30.0
Cyclohexane	Ave	0.2915	0.2818		9.66	10.0	-3.4	30.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17603/2 Calibration Date: 05/05/2011 10:47

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkaj002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4682	0.4816		10.3	10.0	2.9	30.0
2,2,4-Trimethylpentane	Ave	0.8271	0.7762		9.38	10.0	-6.2	30.0
Benzene	Ave	0.6091	0.6045		9.92	10.0	-0.8	30.0
1,2-Dichloroethane	Ave	0.2353	0.2261		9.60	10.0	-3.9	30.0
n-Heptane	Ave	0.2780	0.2432		8.75	10.0	-12.5	30.0
n-Butanol	Ave	0.0903	0.0792		8.77	10.0	-12.3	30.0
Trichloroethene	Ave	0.2862	0.2911		10.2	10.0	1.7	30.0
1,2-Dichloropropane	Ave	0.2015	0.1927		9.56	10.0	-4.4	30.0
Methyl methacrylate	Ave	0.2099	0.2049		9.76	10.0	-2.4	30.0
1,4-Dioxane	Ave	0.0934	0.0905		9.69	10.0	-3.1	30.0
Dibromomethane	Ave	0.2655	0.2840		10.7	10.0	7.0	30.0
Bromodichloromethane	Ave	0.4324	0.4467		10.3	10.0	3.3	30.0
cis-1,3-Dichloropropene	Ave	0.3345	0.3313		9.90	10.0	-1.0	30.0
methyl isobutyl ketone	Ave	0.3442	0.3049		8.86	10.0	-11.4	30.0
Toluene	Ave	0.5245	0.5183		9.88	10.0	-1.2	30.0
n-Octane	Ave	0.3680	0.3260		8.86	10.0	-11.4	30.0
trans-1,3-Dichloropropene	Ave	0.3432	0.3455		10.1	10.0	0.7	30.0
1,1,2-Trichloroethane	Ave	0.2404	0.2368		9.85	10.0	-1.5	30.0
Tetrachloroethene	Ave	0.4633	0.4762		10.3	10.0	2.8	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.3625	0.3117		8.60	10.0	-14.0	30.0
Dibromochloromethane	Ave	0.5400	0.5535		10.2	10.0	2.5	30.0
1,2-Dibromoethane	Ave	0.4856	0.4919		10.1	10.0	1.3	30.0
Chlorobenzene	Ave	0.7869	0.7565		9.61	10.0	-3.9	30.0
Ethylbenzene	Ave	1.133	1.122		9.91	10.0	-0.9	30.0
n-Nonane	Ave	0.4348	0.3985		9.16	10.0	-8.3	30.0
m,p-Xylene	Ave	0.4744	0.4800		20.2	20.0	1.2	30.0
Xylene, o-	Ave	0.4741	0.4705		9.92	10.0	-0.8	30.0
Styrene	Ave	0.7215	0.7438		10.3	10.0	3.1	30.0
Bromoform	Ave	0.5086	0.5630		11.1	10.0	10.7	30.0
Cumene	Ave	1.332	1.341		10.1	10.0	0.7	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6205	0.6163		9.93	10.0	-0.7	30.0
n-Propylbenzene	Ave	1.466	1.520		10.4	10.0	3.7	30.0
1,2,3-Trichloropropane	Ave	0.4484	0.4450		9.92	10.0	-0.8	30.0
n-Decane	Ave	0.5373	0.4966		9.24	10.0	-7.6	30.0
4-Ethyltoluene	Ave	1.354	1.394		10.3	10.0	2.9	30.0
2-Chlorotoluene	Ave	1.168	1.177		10.1	10.0	0.8	30.0
1,3,5-Trimethylbenzene	Ave	1.135	1.147		10.1	10.0	1.1	30.0
Alpha Methyl Styrene	Ave	0.6037	0.6265		10.4	10.0	3.8	30.0
tert-Butylbenzene	Ave	1.130	1.122		9.93	10.0	-0.7	30.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17603/2 Calibration Date: 05/05/2011 10:47

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkaj002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
1,2,4-Trimethylbenzene	Ave	1.129	1.144		10.1	10.0	1.3	30.0
sec-Butylbenzene	Ave	1.633	1.646		10.1	10.0	0.8	30.0
4-Isopropyltoluene	Ave	1.423	1.438		10.1	10.0	1.1	30.0
1,3-Dichlorobenzene	Ave	0.8316	0.8675		10.4	10.0	4.3	30.0
1,4-Dichlorobenzene	Ave	0.8368	0.8660		10.3	10.0	3.5	30.0
Benzyl chloride	Ave	0.9425	0.9921		10.5	10.0	5.3	30.0
n-Undecane	Ave	0.5067	0.5006		9.88	10.0	-1.2	30.0
n-Butylbenzene	Ave	1.124	1.183		10.5	10.0	5.2	30.0
1,2-Dichlorobenzene	Ave	0.7957	0.8150		10.2	10.0	2.4	30.0
n-Dodecane	Ave	0.4886	0.4425		9.05	10.0	-9.4	30.0
1,2,4-Trichlorobenzene	Ave	0.5921	0.5946		10.0	10.0	0.4	30.0
Hexachlorobutadiene	Ave	0.3836	0.4148		10.8	10.0	8.1	30.0
Naphthalene	Ave	1.308	1.226		9.37	10.0	-6.3	30.0
1,2,3-Trichlorobenzene	Ave	0.4773	0.4961		10.4	10.0	3.9	30.0

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj002.d

Report Date: 06-May-2011 10:45

TestAmerica Burlington

Page 1

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkajto15.b/bkaj002.d

Lab Smp Id: ccvis 132424 Client Smp ID: ccvis 132424

Inj Date : 05-MAY-2011 10:47

Operator : pad Inst ID: B.i

Smp Info : ccvis 132424 Misc Info : 200,1, ccvis

Comment :

Method : /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m

Meth Date : 06-May-2011 10:45 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNTS		
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(v/v dqq)	
-	====	==		=======	======	======	
1 Propene	41	2.986	2.992 (0.325)	187666	10.0000	8.1	
2 Dichlorodifluoromethane	85	3.034	3.040 (0.330)	1468164	10.0000	10	
3 Chlorodifluoromethane	51	3.066	3.072 (0.333)	529115	10.0000	9.0	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1389977	10.0000	10	
5 Chloromethane	50	3.333	3.339 (0.362)	253965	10.0000	8.6	
6 Butane	43	3.477	3.488 (0.378)	429713	10.0000	8.4	
7 Vinyl chloride	62	3.509	3.520 (0.382)	377043	10.0000	9.3	
8 1,3-Butadiene	54	3.568	3.574 (0.388)	259485	10.0000	8.8	
9 Bromomethane	94	4.123	4.129 (0.448)	708749	10.0000	9.7	
10 Chloroethane	64	4.321	4.326 (0.470)	314399	10.0000	8.9	
11 2-Methylbutane	43	4.395	4.401 (0.478)	540418	10.0000	8.0	
12 Vinyl bromide	106	4.694	4.705 (0.510)	969182	10.0000	10	
13 Trichlorofluoromethane	101	4.790	4.801 (0.521)	2484064	10.0000	10	
14 Pentane	43	4.918	4.924 (0.535)	912582	10.0000	8.4	

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj002.d Report Date: 06-May-2011 10:45

						AMOUNT	'S
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==	=======================================	====	==	======	======	======	======
	15 Ethanol	45	5.292	5.308 (0.575)	374828	15.0000	14
	16 Ethyl ether	59	5.404	5.415 (0.587)	577382	10.0000	9.7
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.783	5.788 (0.629)	1953078	10.0000	10
	18 Acrolein	56	5.751	5.756 (0.625)	293997	10.0000	9.4
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	919410	10.0000	9.9
	20 Acetone	43	6.034	6.045 (0.656)	900954	10.0000	9.2
	21 Carbon disulfide	76	6.258	6.269 (0.680)	2597940	10.0000	10
	22 Isopropanol	45	6.306	6.322 (0.686)	698979	10.0000	8.7
	23 Allyl chloride	41	6.535	6.541 (0.710)	737959	10.0000	8.6
	24 Acetonitrile	41	6.615	6.626 (0.719)	471586	10.0000	9.2
	25 Methylene chloride	49	6.797	6.802 (0.739)	710205	10.0000	8.8
	26 Tert-butyl alcohol	59	7.016	7.037 (0.763)	1207711	10.0000	9.3
	27 Methyl tert-butyl ether	73	7.176	7.187 (0.780)	2448343	10.0000	9.8
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	1133193	10.0000	9.5
	29 Acrylonitrile	53	7.283	7.288 (0.792)	526552	10.0000	9.2
	30 n-Hexane	57	7.523	7.528 (0.818)	1209854	10.0000	9.2
	31 1,1-Dichloroethane	63	7.928	7.934 (0.862)	1434588	10.0000	9.5
	32 Vinyl acetate	43	7.960	7.966 (0.865)	1603123	10.0000	9.0
M	33 1,2-Dichloroethene,Total	61			2192754	20.0000	20
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	1059561	10.0000	10
	35 Ethyl acetate	88	8.873	8.878 (0.965)	89062	10.0000	10
	36 Methyl Ethyl Ketone	72	8.846	8.857 (0.962)	436551	10.0000	9.8(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	991953	10.0000	
	38 Tetrahydrofuran	42	9.241	9.252 (0.871)	696779	10.0000	9.1
	39 Chloroform	83	9.279	9.284 (1.009)	1915601	10.0000	10
	40 Cyclohexane	84	9.529	9.535 (0.898)	1345279	10.0000	9.7
	41 1,1,1-Trichloroethane	97	9.519	9.524 (0.897)	2127182	10.0000	10
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	2299218	10.0000	10
	43 2,2,4-Trimethylpentane	57	10.015	10.021 (0.944)	3705947	10.0000	9.4
	44 Benzene	78	10.047	10.053 (0.947)	2886353	10.0000	9.9
	45 1,2-Dichloroethane	62	10.154	10.159 (0.957)	1079280	10.0000	9.6
	46 n-Heptane	43	10.277	10.282 (0.969)	1161314	10.0000	8.7
*	47 1,4-Difluorobenzene	114	10.607	10.608 (1.000)	4775528	10.0000	
	48 n-Butanol	56	10.885	10.906 (1.026)	378206	10.0000	8.8
	49 Trichloroethene	95	10.965	10.971 (1.034)	1389813	10.0000	10
	50 1,2-Dichloropropane	63	11.328	11.333 (1.068)	919844	10.0000	9.6
	51 Methyl methacrylate	69	11.403	11.408 (1.075)	978335	10.0000	9.8
	52 Dibromomethane	174	11.520	11.520 (1.086)	1355913	10.0000	11
	53 1,4-Dioxane	88	11.515	11.520 (1.086)	432002	10.0000	9.7
	54 Bromodichloromethane	83	11.696	11.702 (1.103)	2132896	10.0000	10
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1581577	10.0000	9.9
	56 Methyl isobutyl ketone	43	12.507	12.518 (1.179)	1455747	10.0000	8.9
	57 n-Octane	43		12.758 (1.202)	1556473	10.0000	8.9
	58 Toluene	92		12.748 (0.865)	2343515	10.0000	9.9
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	1649788	10.0000	10
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	1070639	10.0000	9.8
	61 Tetrachloroethene	166		13.516 (0.917)	2153026	10.0000	10

						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
====	=======================================	====	==	======	=======	======	======
62	2 2-Hexanone	43	13.687	13.698 (0.929)	1409578	10.0000	8.6
63	3 Dibromochloromethane	129	13.943	13.943 (0.946)	2502592	10.0000	10
64	4 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2224068	10.0000	10
* 65	5 Chlorobenzene-d5	117	14.738	14.738 (1.000)	4522495	10.0000	
66	6 Chlorobenzene	112	14.776	14.776 (1.003)	3420576	10.0000	9.6
61	7 n-Nonane	57	14.898	14.899 (1.011)	1802024	10.0000	9.2
68	8 Ethylbenzene	91	14.856	14.856 (1.008)	5074432	10.0000	9.9
69	9 Xylene (m,p)	106	15.010	15.011 (1.018)	4340905	20.0000	20
M 70	0 Xylenes, Total	106			6468433	10.0000	30
7	1 Xylene (o)	106	15.539	15.539 (1.054)	2127528	10.0000	9.9
72	2 Styrene	104	15.565	15.566 (1.056)	3363347	10.0000	10
73	3 Bromoform	173	15.854	15.859 (1.076)	2545754	10.0000	11
74	4 Isopropylbenzene	105	15.966	15.966 (1.083)	6063632	10.0000	10
75	5 1,1,2,2-Tetrachloroethane	83	16.387	16.393 (1.112)	2786532	10.0000	9.9
76	6 n-Propylbenzene	91	16.457	16.457 (1.117)	6870788	10.0000	10
71	7 1,2,3-Trichloropropane	75	16.467	16.468 (1.117)	2012063	10.0000	9.9
78	8 n-Decane	57	16.547	16.548 (1.123)	2245266	10.0000	9.2
79	9 4-Ethyltoluene	105	16.585	16.585 (1.125)	6300882	10.0000	10
80	0 2-Chlorotoluene	91	16.617	16.622 (1.127)	5322028	10.0000	10
82	1 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	5186620	10.0000	10
82	2 Alpha Methyl Styrene	118	16.926	16.932 (1.148)	2832986	10.0000	10
83	3 tert-butylbenzene	119	17.022	17.023 (1.155)	5075397	10.0000	9.9
84	4 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	5172399	10.0000	10
8 5	5 sec-Butylbenzene	105	17.273	17.273 (1.172)	7441751	10.0000	10
86	6 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6503204	10.0000	10
8	7 1,3-Dichlorobenzene	146	17.481	17.487 (1.186)	3922571	10.0000	10
88	8 1,4-Dichlorobenzene	146	17.588	17.594 (1.193)	3915798	10.0000	10
89	9 Benzyl chloride	91	17.732	17.738 (1.203)	4485991	10.0000	11
90	0 Undecane	57	17.887	17.887 (1.214)	2263588	10.0000	9.9
93	1 n-Butylbenzene	91	17.898	17.903 (1.214)	5349898	10.0000	11
92	2 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	3685257	10.0000	10
93	3 Dodecane	57	19.243	19.243 (1.306)	2000595	10.0000	9.1
94	4 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2688489	10.0000	10
9 9	5 1,3-Hexachlorobutadiene	225	20.374	20.380 (1.382)	1875759	10.0000	11
96	6 Naphthalene	128	20.652	20.652 (1.401)	5542757	10.0000	9.4
9	7 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2243059	10.0000	10

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkaj002.d

Client ID: ccvis 132424 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: ccvis 132424
Lab Sample ID: ccvis 132424

Date: 05-MAY-2011 10:47

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 275 of 429

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17703/3 Calibration Date: 05/06/2011 12:42

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkak003.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2331	0.2002		8.58	10.0	-14.1	30.0
Dichlorodifluoromethane	Ave	1.431	1.597		11.2	10.0	11.7	30.0
Freon 22	Ave	0.5941	0.5759		9.69	10.0	-3.1	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.387	1.510		10.9	10.0	8.9	30.0
Chloromethane	Ave	0.2978	0.2717		9.12	10.0	-8.8	30.0
n-Butane	Ave	0.5171	0.4685		9.06	10.0	-9.4	30.0
Vinyl chloride	Ave	0.4091	0.4157		10.2	10.0	1.6	30.0
1,3-Butadiene	Ave	0.2973	0.2851		9.59	10.0	-4.1	30.0
Bromomethane	Ave	0.7386	0.7968		10.8	10.0	7.9	30.0
Chloroethane	Ave	0.3564	0.3634		10.2	10.0	2.0	30.0
Isopentane	Ave	0.6819	0.6366		9.33	10.0	-6.6	30.0
Bromoethene(Vinyl Bromide)	Ave	0.9762	1.035		10.6	10.0	6.0	30.0
Trichlorofluoromethane	Ave	2.400	2.670		11.1	10.0	11.2	30.0
n-Pentane	Ave	1.095	1.068		9.76	10.0	-2.4	30.0
Ethanol	Ave	0.2702	0.2590		14.4	15.0	-4.1	30.0
Ethyl ether	Ave	0.6026	0.6040		10.0	10.0	0.2	30.0
Acrolein	Ave	0.3155	0.3054		9.68	10.0	-3.2	30.0
Freon TF	Ave	1.945	1.980		10.2	10.0	1.8	30.0
1,1-Dichloroethene	Ave	0.9344	0.9410		10.1	10.0	0.7	30.0
Acetone	Ave	0.9915	0.9814		9.90	10.0	-1.0	30.0
Carbon disulfide	Ave	2.620	2.674		10.2	10.0	2.0	30.0
Isopropyl alcohol	Ave	0.8056	0.7407		9.19	10.0	-8.1	30.0
3-Chloropropene	Ave	0.8674	0.8002		9.22	10.0	-7.7	30.0
Acetonitrile	Ave	0.5188	0.4918		9.48	10.0	-5.2	30.0
Methylene Chloride	Ave	0.8093	0.7623		9.42	10.0	-5.8	30.0
tert-Butyl alcohol	Ave	1.308	1.241		9.48	10.0	-5.2	30.0
Methyl tert-butyl ether	Ave	2.508	2.559		10.2	10.0	2.0	30.0
trans-1,2-Dichloroethene	Ave	1.205	1.197		9.93	10.0	-0.6	30.0
Acrylonitrile	Ave	0.5756	0.5428		9.43	10.0	-5.7	30.0
n-Hexane	Ave	1.323	1.276		9.65	10.0	-3.5	30.0
1,1-Dichloroethane	Ave	1.520	1.505		9.90	10.0	-1.0	30.0
Vinyl acetate	Ave	1.786	1.717		9.61	10.0	-3.9	30.0
cis-1,2-Dichloroethene	Ave	1.057	1.071		10.1	10.0	1.4	30.0
Methyl Ethyl Ketone	Ave	0.4507	0.4502		9.99	10.0	-0.1	30.0
Ethyl acetate	Ave	0.0900	0.0903		10.0	10.0	0.4	30.0
Tetrahydrofuran	Ave	0.1605	0.1527		9.51	10.0	-4.9	30.0
Chloroform	Ave	1.912	1.993		10.4	10.0	4.2	30.0
1,1,1-Trichloroethane	Ave	0.4243	0.4530		10.7	10.0	6.8	30.0
Cyclohexane	Ave	0.2915	0.2834		9.72	10.0	-2.8	30.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17703/3 Calibration Date: 05/06/2011 12:42

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32 (mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkak003.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.4682	0.4856		10.4	10.0	3.7	30.0
2,2,4-Trimethylpentane	Ave	0.8271	0.8020		9.70	10.0	-3.0	30.0
Benzene	Ave	0.6091	0.6127		10.1	10.0	0.6	30.0
1,2-Dichloroethane	Ave	0.2353	0.2351		9.99	10.0	-0.1	30.0
n-Heptane	Ave	0.2780	0.2556		9.19	10.0	-8.1	30.0
n-Butanol	Ave	0.0903	0.0780		8.64	10.0	-13.6	30.0
Trichloroethene	Ave	0.2862	0.2925		10.2	10.0	2.2	30.0
1,2-Dichloropropane	Ave	0.2015	0.1983		9.84	10.0	-1.6	30.0
Methyl methacrylate	Ave	0.2099	0.2085		9.93	10.0	-0.7	30.0
Dibromomethane	Ave	0.2655	0.2715		10.2	10.0	2.3	30.0
1,4-Dioxane	Ave	0.0934	0.0897		9.60	10.0	-4.0	30.0
Bromodichloromethane	Ave	0.4324	0.4551		10.5	10.0	5.3	30.0
cis-1,3-Dichloropropene	Ave	0.3345	0.3374		10.1	10.0	0.9	30.0
methyl isobutyl ketone	Ave	0.3442	0.3227		9.37	10.0	-6.2	30.0
Toluene	Ave	0.5245	0.5274		10.1	10.0	0.6	30.0
n-Octane	Ave	0.3680	0.3424		9.30	10.0	-7.0	30.0
trans-1,3-Dichloropropene	Ave	0.3432	0.3543		10.3	10.0	3.2	30.0
1,1,2-Trichloroethane	Ave	0.2404	0.2414		10.0	10.0	0.4	30.0
Tetrachloroethene	Ave	0.4633	0.4632		10.0	10.0	-0.0	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.3625	0.3304		9.11	10.0	-8.9	30.0
Dibromochloromethane	Ave	0.5400	0.5560		10.3	10.0	3.0	30.0
1,2-Dibromoethane	Ave	0.4856	0.4936		10.2	10.0	1.7	30.0
Chlorobenzene	Ave	0.7869	0.7553		9.60	10.0	-4.0	30.0
Ethylbenzene	Ave	1.133	1.147		10.1	10.0	1.2	30.0
n-Nonane	Ave	0.4348	0.4177		9.60	10.0	-3.9	30.0
m,p-Xylene	Ave	0.4744	0.4883		20.6	20.0	2.9	30.0
Xylene, o-	Ave	0.4741	0.4735		9.98	10.0	-0.1	30.0
Styrene	Ave	0.7215	0.7491		10.4	10.0	3.8	30.0
Bromoform	Ave	0.5086	0.5597		11.0	10.0	10.0	30.0
Cumene	Ave	1.332	1.361		10.2	10.0	2.2	30.0
1,1,2,2-Tetrachloroethane	Ave	0.6205	0.6346		10.2	10.0	2.3	30.0
n-Propylbenzene	Ave	1.466	1.567		10.7	10.0	6.9	30.0
1,2,3-Trichloropropane	Ave	0.4484	0.4640		10.3	10.0	3.5	30.0
n-Decane	Ave	0.5373	0.5207		9.69	10.0	-3.1	30.0
4-Ethyltoluene	Ave	1.354	1.416		10.5	10.0	4.5	30.0
2-Chlorotoluene	Ave	1.168	1.203		10.3	10.0	3.0	30.0
1,3,5-Trimethylbenzene	Ave	1.135	1.160		10.2	10.0	2.2	30.0
Alpha Methyl Styrene	Ave	0.6037	0.6281		10.4	10.0	4.1	30.0
tert-Butylbenzene	Ave	1.130	1.128		9.98	10.0	-0.2	30.0

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Lab Sample ID: CCVIS 200-17703/3 Calibration Date: 05/06/2011 12:42

Instrument ID: B.i Calib Start Date: 04/19/2011 13:05

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/20/2011 08:43

Lab File ID: bkak003.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	1.129	1.161		10.3	10.0	2.9	30.0
sec-Butylbenzene	Ave	1.633	1.675		10.3	10.0	2.6	30.0
4-Isopropyltoluene	Ave	1.423	1.452		10.2	10.0	2.0	30.0
1,3-Dichlorobenzene	Ave	0.8316	0.8582		10.3	10.0	3.2	30.0
1,4-Dichlorobenzene	Ave	0.8368	0.8628		10.3	10.0	3.1	30.0
Benzyl chloride	Ave	0.9425	1.012		10.7	10.0	7.4	30.0
n-Undecane	Ave	0.5067	0.5257		10.4	10.0	3.7	30.0
n-Butylbenzene	Ave	1.124	1.235		11.0	10.0	9.9	30.0
1,2-Dichlorobenzene	Ave	0.7957	0.8130		10.2	10.0	2.2	30.0
n-Dodecane	Ave	0.4886	0.4438		9.08	10.0	-9.2	30.0
1,2,4-Trichlorobenzene	Ave	0.5921	0.5798		9.79	10.0	-2.1	30.0
Hexachlorobutadiene	Ave	0.3836	0.3974		10.4	10.0	3.6	30.0
Naphthalene	Ave	1.308	1.220		9.33	10.0	-6.7	30.0
1,2,3-Trichlorobenzene	Ave	0.4773	0.4816		10.1	10.0	0.9	30.0

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak003.d

Report Date: 09-May-2011 13:35

TestAmerica Burlington

Page 1

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkakto15.b/bkak003.d

Lab Smp Id: ccvis 132424 Client Smp ID: ccvis 132424

Inj Date : 06-MAY-2011 12:42

Operator : pad Inst ID: B.i

Smp Info : ccvis 132424 Misc Info : 200,1, ccvis

Comment :

Method : /chem/B.i/Bsvr.p/bkakto15.b/to15v5.m

Meth Date : 09-May-2011 13:35 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Uf	1.00000	ng unit correction factor
	Vo	200.00000	Sample Volume purged (mL)
	Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					AMOUNT	'S
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==			======	======
1 Propene	41	2.992	2.992 (0.325)	183506	10.0000	8.6
2 Dichlorodifluoromethane	85	3.045	3.040 (0.331)	1464509	10.0000	11
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	528011	10.0000	9.7
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	1384073	10.0000	11
5 Chloromethane	50	3.339	3.339 (0.363)	249047	10.0000	9.1
6 Butane	43	3.488	3.488 (0.379)	429532	10.0000	9.1
7 Vinyl chloride	62	3.520	3.520 (0.383)	381089	10.0000	10
8 1,3-Butadiene	54	3.574	3.574 (0.388)	261355	10.0000	9.6
9 Bromomethane	94	4.129	4.129 (0.449)	730544	10.0000	11
10 Chloroethane	64	4.331	4.326 (0.471)	333190	10.0000	10
11 2-Methylbutane	43	4.406	4.401 (0.479)	583653	10.0000	9.3
12 Vinyl bromide	106	4.705	4.705 (0.511)	948782	10.0000	11
13 Trichlorofluoromethane	101	4.801	4.801 (0.522)	2447973	10.0000	11
14 Pentane	43	4.929	4.924 (0.536)	979360	10.0000	9.8

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak003.d Report Date: 09-May-2011 13:35

						TUOMA	'S
		QUANT SIG				CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==		======	======	======
	15 Ethanol	45	5.313	5.308 (0.578)	356329	15.0000	14
	16 Ethyl ether	59	5.420	5.415 (0.589)	553741	10.0000	10
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	1815636	10.0000	10
	18 Acrolein	56	5.762	5.756 (0.626)	279946	10.0000	9.7
	19 1,1-Dichloroethene	96	5.858	5.852 (0.637)	862694	10.0000	10
	20 Acetone	43	6.050	6.045 (0.658)	899735	10.0000	9.9
	21 Carbon disulfide	76	6.269	6.269 (0.681)	2451644	10.0000	10
	22 Isopropanol	45	6.333	6.322 (0.688)	679050	10.0000	9.2
	23 Allyl chloride	41	6.546	6.541 (0.712)	733631	10.0000	9.2
	24 Acetonitrile	41	6.626	6.626 (0.720)	450857	10.0000	9.5
	25 Methylene chloride	49	6.802	6.802 (0.739)	698851	10.0000	9.4
	26 Tert-butyl alcohol	59	7.048	7.037 (0.766)	1137530	10.0000	9.5
	27 Methyl tert-butyl ether	73	7.192	7.187 (0.782)	2346262	10.0000	10
	28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	1097477	10.0000	9.9
	29 Acrylonitrile	53	7.288	7.288 (0.792)	497653	10.0000	9.4
	30 n-Hexane	57	7.528	7.528 (0.818)	1170071	10.0000	9.6
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1379426	10.0000	9.9
	32 Vinyl acetate	43	7.966	7.966 (0.866)	1573769	10.0000	9.6
M	33 1,2-Dichloroethene,Total	61			2079519	20.0000	20
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	982042	10.0000	10
	35 Ethyl acetate	88	8.878	8.878 (0.965)	82770	10.0000	10
	36 Methyl Ethyl Ketone	72	8.857	8.857 (0.963)	412702	10.0000	10(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	916977	10.0000	
	38 Tetrahydrofuran	42	9.252	9.252 (0.872)	680409	10.0000	9.5
	39 Chloroform	83	9.279	9.284 (1.009)	1827248	10.0000	10
	40 Cyclohexane	84	9.535	9.535 (0.899)	1262823	10.0000	9.7
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	2018150	10.0000	11
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	2163633	10.0000	10
	43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.945)	3573388	10.0000	9.7
	44 Benzene	78	10.053	10.053 (0.948)	2729614	10.0000	10
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	1047309	10.0000	10
	46 n-Heptane	43	10.277	10.282 (0.969)	1138915	10.0000	9.2
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	4456313	10.0000	0.5
	48 n-Butanol	56	10.917	10.906 (1.029)	347628	10.0000	8.6
	49 Trichloroethene	95	10.965	10.971 (1.034)	1303323	10.0000	10
	50 1,2-Dichloropropane	63	11.328	11.333 (1.068)	883543	10.0000	9.8
	51 Methyl methacrylate	69	11.408	11.408 (1.075)	928866	10.0000	9.9
	52 Dibromomethane	174	11.520	11.520 (1.086)	1209722	10.0000	10
	53 1,4-Dioxane	88	11.526		399561	10.0000	9.6
	54 Bromodichloromethane	83	11.696		2027863	10.0000	11
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1503380	10.0000	10
	56 Methyl isobutyl ketone	43	12.518		1437822	10.0000	9.4
	57 n-Octane	43	12.753		1525444	10.0000	9.3
	58 Toluene	92	12.748		2204675	10.0000	10
	59 1,3-Dichloropropene (trans)	75	13.121		1578656	10.0000	10
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	1009257	10.0000	10
	61 Tetrachloroethene	166	13.516	13.516 (0.917)	1936426	10.0000	10

						AMOUNT	S
		QUANT SIG				CAL-AMT	ON-COL
С	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=		====	==	======	======	======	======
	62 2-Hexanone	43	13.698	13.698 (0.929)	1381093	10.0000	9.1
	63 Dibromochloromethane	129	13.938	13.943 (0.946)	2324102	10.0000	10
	64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2063489	10.0000	10
*	65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	4181093	10.0000	
	66 Chlorobenzene	112	14.776	14.776 (1.003)	3157211	10.0000	9.6
	67 n-Nonane	57	14.898	14.899 (1.011)	1745994	10.0000	9.6
	68 Ethylbenzene	91	14.850	14.856 (1.008)	4793631	10.0000	10
	69 Xylene (m,p)	106	15.011	15.011 (1.018)	4082502	20.0000	21
М	70 Xylenes, Total	106			6061858	10.0000	31
	71 Xylene (o)	106	15.539	15.539 (1.054)	1979356	10.0000	10
	72 Styrene	104	15.566	15.566 (1.056)	3131483	10.0000	10
	73 Bromoform	173	15.854	15.859 (1.076)	2339651	10.0000	11
	74 Isopropylbenzene	105	15.966	15.966 (1.083)	5688789	10.0000	10
	75 1,1,2,2-Tetrachloroethane	83	16.387	16.393 (1.112)	2652792	10.0000	10
	76 n-Propylbenzene	91	16.457	16.457 (1.117)	6550490	10.0000	11
	77 1,2,3-Trichloropropane	75	16.468	16.468 (1.117)	1939769	10.0000	10
	78 n-Decane	57	16.548	16.548 (1.123)	2176711	10.0000	9.7
	79 4-Ethyltoluene	105	16.585	16.585 (1.125)	5917306	10.0000	10
	80 2-Chlorotoluene	91	16.617	16.622 (1.127)	5029103	10.0000	10
	81 1,3,5-Trimethylbenzene	105	16.654	16.660 (1.130)	4849995	10.0000	10
	82 Alpha Methyl Styrene	118	16.926	16.932 (1.148)	2625812	10.0000	10
	83 tert-butylbenzene	119	17.023	17.023 (1.155)	4714119	10.0000	10
	84 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	4854295	10.0000	10
	85 sec-Butylbenzene	105	17.268	17.273 (1.172)	7002917	10.0000	10
	86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6070073	10.0000	10
	87 1,3-Dichlorobenzene	146	17.482	17.487 (1.186)	3587464	10.0000	10
	88 1,4-Dichlorobenzene	146	17.588	17.594 (1.193)	3606665	10.0000	10
	89 Benzyl chloride	91	17.732	17.738 (1.203)	4231147	10.0000	11
	90 Undecane	57	17.887	17.887 (1.214)	2197426	10.0000	10
	91 n-Butylbenzene	91	17.898	17.903 (1.214)	5163676	10.0000	11
	92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	3398746	10.0000	10
	93 Dodecane	57	19.243	19.243 (1.306)	1855279	10.0000	9.1
	94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2423882	10.0000	9.8
	95 1,3-Hexachlorobutadiene	225	20.374	20.380 (1.382)	1661024	10.0000	10
	96 Naphthalene	128	20.646	20.652 (1.401)	5100458	10.0000	9.3
	97 1,2,3-Trichlorobenzene	180	21.079	21.084 (1.430)	2013317	10.0000	10

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkak003.d

Client ID: ccvis 132424 Operator: pad

Column Type: Capillary Stationary Phase: RTX-624

Sample Info: ccvis 132424
Lab Sample ID: ccvis 132424

Date: 06-MAY-2011 12:42

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 282 of 429

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka001.d Page 1

Report Date: 19-Apr-2011 11:04

TestAmerica Burlington

Data file : /chem/B.i/Bsvr.p/bkato15.b/bka001.d

Lab Smp Id: BFB Client Smp ID: BFB

Inj Date : 19-APR-2011 10:50

Operator : wrd Inst ID: B.i

Smp Info : VBFB

Misc Info : Comment

Method : /chem/B.i/Bsvr.p/bkato15.b/bfbto15.m

Meth Date : 24-Nov-2009 10:29 njr Quant Type: ESTD

Cal Date : 23-JUL-2003 17:23 Cal File: ai0005i Cal File: ai0005i4.d

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf * Vf * CpndVariable

Name	Value	Description
DF Uf	1.00000	Dilution Factor ng unit correction factor
Vf	1.00000	Volumetric correction factor

Cpnd Variable Local Compound Variable

					CONCENTR	LATIONS		
					ON-COL	FINAL		
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
==	=====		====			======	========	=====
\$ 1 b	fb					CAS #:	460-00-4	
5.362	5.670	-0.308	95	850114			100.00- 100.00	100.00
5.362	5.670	-0.308	50	110752			8.00- 40.00	13.03
5.362	5.670	-0.308	75	354986			30.00- 66.00	41.76
5.362	5.670	-0.308	96	58493			5.00- 9.00	6.88
5.362	5.670	-0.308	173	0			0.00- 2.00	0.00
5.362	5.670	-0.308	174	811584			50.00- 120.00	95.47
5.362	5.670	-0.308	175	58032			4.00- 9.00	7.15
5.362	5.670	-0.308	176	783594			93.00- 101.00	96.55
5.362	5.670	-0.308	177	51789			5.00- 9.00	6.61

Page 283 of 429

Data File: bka001.d Date: 19-APR-2011 10:50

Client ID: BFB Instrument: B.i

Operator: wrd Inj Vol: 0.0 (ul) Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

1 bfb

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
95 50 75 96 173 174 175 176	Base Peak, 100% relative abundance 8.00 - 40.00% of mass 95 30.00 - 66.00% of mass 95 5.00 - 9.00% of mass 95 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 4.00 - 9.00% of mass 174 93.00 - 101.00% of mass 174 5.00 - 9.00% of mass 176	100.00 13.03 41.76 6.88 0.00 (0.00) 95.47 6.83 (7.15) 92.18 (96.55) 6.09 (6.61)

Data File: bka001.d
Client ID: BFB Date: 19-APR-2011 10:50

Instrument: B.i

Operator: wrd Column Type:

Stationary Phase: RTX-624 Sample Info: VBFB Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkato15.b/bka001.d

Spectrum: Avg. Scans 258-260 (5.36), Background Scan 246 Location of Maximum: 95.00

Number of points: 117

m/z	Y	m/z	Y	m/z	Y	m/z	Y
36.00	3572	71.00	182	112.00	291	144.00	393
37.00	21336	72.00	2933	113.00	437	145.00	579
38.00	19464	73.00	27152	115.00	647	146.00	1094
39.00	7785	74.00	112488	116.00	2306	147.00	526
41.00	49	75.00	354944	117.00	3931	148.00	2023
43.00	156	76.00	30408	118.00	2412	149.00	551
44.00	2381	77.00	3719	119.00	3487	150.00	731
45.00	4556	78.00	2465	120.00	163	151.00	46
46.00	347	79.00	13786	122.00	215	152.00	345
47.00	6172	80.00	4756	123.00	236	153.00	703
48.00	2787	81.00	14165	124.00	532	154.00	459
49.00	21360	82.00	3276	125.00	218	155.00	2141
50.00	110752	83.00	358	126.00	281	156.00	389
51.00	33368	86.00	649	127.00	246	157.00	1491
52.00	1444	87.00	30280	128.00	2729	158.00	203
53.00	37	88.00	29192	129.00	1442	159.00	813
55.00	1272	91.00	2097	130.00	2880	160.00	43
56.00	7639	92.00	20224	131.00	1212	161.00	833
57.00	15884	93.00	32472	132.00	167	172.00	264
58.00	578	94.00	90768	133.00	70	174.00	811584
60.00	4521	95.00	850112	134.00	187	175.00	58032
61.00	26080	96.00	58488	135.00	1288	176.00	783552
62.00	26760	97.00	1676	136.00	237	177.00	51784
63.00	21232	103.00	311	137.00	1258	178.00	1598
64.00	1926	104.00	2468	138.00	36	207.00	124
65.00 67.00 68.00 69.00 70.00	227 1664 67848 68248 5313	105.00 106.00 107.00 110.00	982 2718 751 316 457	139.00 140.00 141.00 142.00 143.00	231 444 6240 869 6631	208.00 253.00	136 34

Data File: bka001.d Date: 19-APR-2011 10:50

Instrument: B.i

Client ID: BFB

Operator: wrd Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj001.d Page 1

Report Date: 05-May-2011 10:09

TestAmerica Burlington

Data file : /chem/B.i/Bsvr.p/bkajto15.b/bkaj001.d

Lab Smp Id: BFB Client Smp ID: BFB

Inj Date : 05-MAY-2011 09:56

Inst ID: B.i

Operator : pad Smp Info : VBFB

Misc Info : Comment

Method : /chem/B.i/Bsvr.p/bkajto15.b/bfbto15.m

Meth Date : 24-Nov-2009 10:29 njr Quant Type: ESTD

Cal Date : 23-JUL-2003 17:23 Cal File: ai0005i Cal File: ai0005i4.d

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf * Vf * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vf	1.00000	Volumetric correction factor

Cpnd Variable Local Compound Variable

					CONCENTR	LATIONS		
					ON-COL	FINAL		
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET RANGE	RATIO
==			====			======	========	=====
\$ 1 b	fb					CAS #:	460-00-4	
5.357	5.670	-0.313	95	1511594			100.00- 100.00	96.43
5.357	5.670	-0.313	50	169493			8.00- 40.00	11.21
5.357	5.670	-0.313	75	610325			30.00- 66.00	40.38
5.357	5.670	-0.313	96	104504			5.00- 9.00	6.91
5.357	5.670	-0.313	173	4876			0.00- 2.00	0.31
5.357	5.670	-0.313	174	1567573			50.00- 120.00	103.70
5.357	5.670	-0.313	175	110368			4.00- 9.00	7.04
5.357	5.670	-0.313	176	1500842			93.00- 101.00	95.74
5.357	5.670	-0.313	177	99010			5.00- 9.00	6.60

Data File: Date: 05-MAY-2011 09:56

Client ID: BFB Instrument: B.i

Operator: pad Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

1 bfb

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
95 50 75 96 173 174 175 176	Base Peak, 100% relative abundance 8.00 - 40.00% of mass 95 30.00 - 66.00% of mass 95 5.00 - 9.00% of mass 95 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 4.00 - 9.00% of mass 174 93.00 - 101.00% of mass 174 5.00 - 9.00% of mass 176	100.00 11.21 40.38 6.91 0.32 (0.31) 103.70 7.30 (7.04) 99.29 (95.74) 6.55 (6.60)

Data File: bkaj001.d Date: 05-MAY-2011 09:56

Client ID: BFB Instrument: B.i

Operator: pad Column Type:

Stationary Phase: RTX-624 Sample Info: VBFB Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj001.d

Spectrum: Avg. Scans 257-259 (5.36), Background Scan 246
Location of Maximum: 174.00
Number of points: 128

m/z	Y	m/z	Y	m/z	Y	m/z	Y
35.00	37	72.00	4854	116.00	3756	150.00	1447
36.00	5251	73.00	45512	117.00	7223	151.00	211
37.00	29512	74.00	188736	118.00	4213	152.00	913
38.00	27848	75.00	610304	119.00	6217	153.00	1207
39.00	11240	76.00	53664	120.00	319	154.00	1009
42.00	89	77.00	6023	122.00	277	155.00	4158
43.00	273	78.00	4105	123.00	448	156.00	745
44.00	3593	79.00	22600	124.00	703	157.00	2831
45.00	6568	80.00	8484	125.00	445	158.00	571
46.00	466	81.00	23472	126.00	484	159.00	1554
47.00	8047	82.00	6407	127.00	398	160.00	89
48.00	3983	83.00	531	128.00	5008	161.00	1439
49.00	32192	86.00	1047	129.00	2593	162.00	86
50.00	169472	87.00	49048	130.00	4940	170.00	146
51.00	53088	88.00	48888	131.00	2003	171.00	48
52.00	2374	91.00	3415	132.00	368	172.00	1109
53.00	163	92.00	34936	133.00	135	173.00	4876
55.00	2044	93.00	56600	134.00	302	174.00	1567232
56.00	11799	94.00	157120	135.00	2186	175.00	110368
57.00	23752	95.00	1511424	136.00	313	176.00	1500672
58.00 60.00 61.00 62.00 63.00	1094 7408 41464 42552 35120	96.00 97.00 98.00 103.00 104.00	104504 2987 80 434 4371	137.00 138.00 139.00 140.00 141.00	1928 86 380 828 10733	177.00 178.00 179.00 190.00	99008 2832 37 111 111
64.00 65.00 66.00 67.00 68.00	3269 577 52 2333 111544	105.00 106.00 107.00 110.00	1604 4590 1215 676 636	142.00 143.00 144.00 145.00 146.00	1213 11178 657 1050 2126	207.00 208.00 209.00 232.00	302 34 33 35
69.00 70.00 71.00	114896 8045 279	112.00 113.00 115.00	487 644 1239	147.00 148.00 149.00	1121 3703 1127		

Data File: Date: 05-MAY-2011 09:56

Instrument: B.i

Client ID: BFB

Operator: pad Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak001.d Page 1

Report Date: 06-May-2011 11:08

TestAmerica Burlington

Data file : /chem/B.i/Bsvr.p/bkakto15.b/bkak001.d

Lab Smp Id: BFB Client Smp ID: BFB

Inj Date : 06-MAY-2011 11:00

Inst ID: B.i

Operator : pad Smp Info : VBFB

Misc Info : Comment

Method : /chem/B.i/Bsvr.p/bkakto15.b/bfbto15.m

Meth Date : 24-Nov-2009 10:29 njr Quant Type: ESTD

Cal Date : 23-JUL-2003 17:23 Cal File: ai0005i Cal File: ai0005i4.d

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: AIR

Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf * Vf * CpndVariable

Na	ame	Value	Descript	tion
-		1.00000 1.00000	Dilution F	Factor rrection factor
7	/f 1	1.00000	Volumetric	correction factor

Cpnd Variable Local Compound Variable

					CONCENTR	RATIONS			
					ON-COL	FINAL			
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	RANGE	RATIO
==			====			======	=====		=====
\$ 1 bf	b					CAS #:	460-00-	-4	
5.362	5.670	-0.308	95	1481045			100.00-	100.00	100.00
5.362	5.670	-0.308	50	179735			8.00-	40.00	12.14
5.362	5.670	-0.308	75	610816			30.00-	66.00	41.24
5.362	5.670	-0.308	96	101205			5.00-	9.00	6.83
5.362	5.670	-0.308	173	6986			0.00-	2.00	0.50
5.362	5.670	-0.308	174	1386325			50.00-	120.00	93.60
5.362	5.670	-0.308	175	98213			4.00-	9.00	7.08
5.362	5.670	-0.308	176	1336661			93.00-	101.00	96.42
5.362	5.670	-0.308	177	87934			5.00-	9.00	6.58

Data File: Date: 06-MAY-2011 11:00

Client ID: BFB Instrument: B.i

Operator: pad Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

1 bfb

95 Base Peak, 100% relative abundance 50 8.00 - 40.00% of mass 95 75 30.00 - 66.00% of mass 95 96 5.00 - 9.00% of mass 95 173 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 175 4.00 - 9.00% of mass 174 176 93.00 - 101.00% of mass 174 177 5.00 - 9.00% of mass 176 180 100.00 190 12.14 190		m/e	ION ABUNDANCE CRITERIA	* RELATIVE ABUNDANCE
	-	50 75 96 173 174 175 176	8.00 - 40.00% of mass 95 30.00 - 66.00% of mass 95 5.00 - 9.00% of mass 95 Less than 2.00% of mass 174 50.00 - 120.00% of mass 95 4.00 - 9.00% of mass 174 93.00 - 101.00% of mass 174	100.00 12.14 41.24 6.83 0.47 (0.50) 93.60 6.63 (7.08) 90.25 (96.42)

Date: 06-MAY-2011 11:00 Data File: bkak001.d

Instrument: B.i

Client ID: BFB

Inj Vol: 0.0 (ul)
Diameter: 0.32 (mm) Operator: pad Column Type:

Stationary Phase: RTX-624 Sample Info: VBFB Lab Sample ID: BFB

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak001.d

Spectrum: Avg. Scans 258-260 (5.36), Background Scan 246 Location of Maximum: 95.00

Number of points: 129

m/z	Y	m/z	Y	m/z	Y	m/z	Y
36.00 37.00 38.00 39.00 40.00	5314 31304 30160 12485 44	71.00 72.00 73.00 74.00 75.00	334 5109 46272 191744 610816	112.00 113.00 114.00 115.00 116.00	433 639 34 1228 4174	146.00 147.00 148.00 149.00 150.00	1972 895 3407 848 1376
43.00 44.00 45.00 46.00 47.00	311 3392 6713 306 9379	76.00 77.00 78.00 79.00 80.00	53608 6924 4520 23288 9318	117.00 118.00 119.00 120.00 121.00	7191 4131 5752 247 36	151.00 152.00 153.00 154.00 155.00	100 734 1194 919 3739
48.00 49.00 50.00 51.00 52.00	4423 33872 179712 55296 2311	81.00 82.00 83.00 85.00 86.00	24320 6653 619 88 1266	122.00 123.00 124.00 125.00 126.00	366 358 793 457 502	156.00 157.00 158.00 159.00 160.00	1094 2861 894 1527 184
53.00 54.00 55.00 56.00 57.00	196 89 2101 13051 24888	87.00 88.00 91.00 92.00 93.00	49536 50080 3310 35160 54984	127.00 128.00 129.00 130.00 131.00	455 4900 2427 4993 2084	161.00 162.00 164.00 170.00	1430 115 40 101 1134
58.00 59.00 60.00 61.00 62.00	1026 73 7855 42552 44968	94.00 95.00 96.00 97.00 98.00	155520 1480704 101200 2926 34	132.00 133.00 134.00 135.00 136.00	209 39 272 2004 414	173.00 174.00 175.00 176.00	6986 1385984 98208 1336320 87928
63.00 64.00 65.00 66.00 67.00	36232 3258 630 241 2490	103.00 104.00 105.00 106.00	492 4541 1722 4473 1235	137.00 139.00 140.00 141.00 142.00	2063 293 660 11128 1363	178.00 190.00 207.00 209.00 260.00	2206 85 337 212 35
68.00 69.00 70.00	114616 115104 8712	109.00 110.00 111.00	34 519 709	143.00 144.00 145.00	11295 805 1043		

Data File: Date: 06-MAY-2011 11:00

Instrument: B.i

Client ID: BFB

Operator: pad Inj Vol: 0.0 (ul)
Column Type: Diameter: 0.32 (mm)

Stationary Phase: RTX-624
Sample Info: VBFB
Lab Sample ID: BFB

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: MB 200-17603/4
Matrix: Air	Lab File ID: bkaj004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/2011 12:27
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 17603	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	0.50	U	0.50	0.038
75-45-6	Freon 22	86.47	0.50	U	0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	0.20	U	0.20	0.032
74-87-3	Chloromethane	50.49	0.50	U	0.50	0.013
106-97-8	n-Butane	58.12	0.50	U	0.50	0.011
75-01-4	Vinyl chloride	62.50	0.20	U	0.20	0.029
106-99-0	1,3-Butadiene	54.09	0.20	U	0.20	0.010
74-83-9	Bromomethane	94.94	0.20	U	0.20	0.012
75-00-3	Chloroethane	64.52	0.50	U	0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.20	U	0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	0.20	U	0.20	0.034
76-13-1	Freon TF	187.38	0.20	U	0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	0.20	U	0.20	0.030
67-64-1	Acetone	58.08	5.0	U	5.0	0.045
67-63-0	Isopropyl alcohol	60.10	5.0	U	5.0	0.037
75-15-0	Carbon disulfide	76.14	0.50	U	0.50	0.066
107-05-1	3-Chloropropene	76.53	0.50	U	0.50	0.019
75-09-2	Methylene Chloride	84.93	0.50	U	0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	5.0	U	5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	0.20	U	0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	0.20	U	0.20	0.032
110-54-3	n-Hexane	86.17	0.20	U	0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	0.20	U	0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	0.50	U	0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	0.20	U	0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	0.20	U	0.20	0.014
67-66-3	Chloroform	119.38	0.20	U	0.20	0.031
109-99-9	Tetrahydrofuran	72.11	5.0	U	5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	0.20	U	0.20	0.035
110-82-7	Cyclohexane	84.16	0.20	U	0.20	0.039
56-23-5	Carbon tetrachloride	153.81	0.20	U	0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	0.20	U	0.20	0.036
71-43-2	Benzene	78.11	0.20	U	0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	0.20	U	0.20	0.031
142-82-5	n-Heptane	100.21	0.20	U	0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1				
SDG No.: 200-5005					
Client Sample ID:	Lab Sample ID: MB 200-17603/4				
Matrix: Air	Lab File ID: bkaj004.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/2011 12:27				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 17603 Units: ppb v/v					

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	0.20	U	0.20	0.030
80-62-6	Methyl methacrylate	100.12	0.50	U	0.50	0.013
78-87-5	1,2-Dichloropropane	112.99	0.20	U	0.20	0.014
123-91-1	1,4-Dioxane	88.11	5.0	U	5.0	0.088
75-27-4	Bromodichloromethane	163.83	0.20	U	0.20	0.028
10061-01-5	cis-1,3-Dichloropropene	110.97	0.20	U	0.20	0.016
108-10-1	methyl isobutyl ketone	100.16	0.50	U	0.50	0.026
108-88-3	Toluene	92.14	0.20	U	0.20	0.018
10061-02-6	trans-1,3-Dichloropropene	110.97	0.20	U	0.20	0.020
79-00-5	1,1,2-Trichloroethane	133.41	0.20	U	0.20	0.019
127-18-4	Tetrachloroethene	165.83	0.20	U	0.20	0.011
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	0.50	Ŭ	0.50	0.039
124-48-1	Dibromochloromethane	208.29	0.20	U	0.20	0.021
106-93-4	1,2-Dibromoethane	187.87	0.20	U	0.20	0.018
108-90-7	Chlorobenzene	112.30	0.20	U	0.20	0.020
100-41-4	Ethylbenzene	106.17	0.20	U	0.20	0.022
179601-23-1	m,p-Xylene	106.17	0.50	U	0.50	0.048
95-47-6	Xylene, o-	106.17	0.20	U	0.20	0.022
1330-20-7	Xylene (total)	106.17	0.20	U	0.20	0.022
100-42-5	Styrene	104.15	0.20	U	0.20	0.030
75-25-2	Bromoform	252.75	0.20	U	0.20	0.019
98-82-8	Cumene	120.19	0.20	U	0.20	0.031
79-34-5	1,1,2,2-Tetrachloroethane	167.85	0.20	U	0.20	0.040
103-65-1	n-Propylbenzene	120.19	0.20	U	0.20	0.050
622-96-8	4-Ethyltoluene	120.20	0.20	U	0.20	0.046
108-67-8	1,3,5-Trimethylbenzene	120.20	0.20	U	0.20	0.051
95-49-8	2-Chlorotoluene	126.59	0.20	U	0.20	0.047
98-06-6	tert-Butylbenzene	134.22	0.20	U	0.20	0.047
95-63-6	1,2,4-Trimethylbenzene	120.20	0.20	U	0.20	0.052
135-98-8	sec-Butylbenzene	134.22	0.20	U	0.20	0.047
99-87-6	4-Isopropyltoluene	134.22	0.20	U	0.20	0.048
541-73-1	1,3-Dichlorobenzene	147.00	0.20	U	0.20	0.044
106-46-7	1,4-Dichlorobenzene	147.00	0.20	U	0.20	0.044
100-44-7	Benzyl chloride	126.58	0.20	U	0.20	0.046
104-51-8	n-Butylbenzene	134.22	0.20	U	0.20	0.055

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Lab Sample ID: MB 200-17603/4 Client Sample ID: Matrix: Air Lab File ID: bkaj004.d Analysis Method: TO-15 Date Collected: Date Analyzed: 05/05/2011 12:27 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	0.20	U	0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	0.50	U	0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	0.20	U	0.20	0.065
91-20-3	Naphthalene	128.17	0.50	U	0.50	0.086

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1				
SDG No.: 200-5005					
Client Sample ID:	Lab Sample ID: MB 200-17603/4				
Matrix: Air	Lab File ID: bkaj004.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/2011 12:27				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 17603	Units: ug/m3				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	2.5	U	2.5	0.19
75-45-6	Freon 22	86.47	1.8	U	1.8	0.12
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	1.4	U	1.4	0.22
74-87-3	Chloromethane	50.49	1.0	U	1.0	0.027
106-97-8	n-Butane	58.12	1.2	U	1.2	0.026
75-01-4	Vinyl chloride	62.50	0.51	U	0.51	0.074
106-99-0	1,3-Butadiene	54.09	0.44	U	0.44	0.022
74-83-9	Bromomethane	94.94	0.78	U	0.78	0.047
75-00-3	Chloroethane	64.52	1.3	U	1.3	0.042
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.87	U	0.87	0.083
75-69-4	Trichlorofluoromethane	137.37	1.1	U	1.1	0.19
76-13-1	Freon TF	187.38	1.5	U	1.5	0.077
75-35-4	1,1-Dichloroethene	96.94	0.79	U	0.79	0.12
67-64-1	Acetone	58.08	12	U	12	0.11
67-63-0	Isopropyl alcohol	60.10	12	U	12	0.091
75-15-0	Carbon disulfide	76.14	1.6	U	1.6	0.21
107-05-1	3-Chloropropene	76.53	1.6	U	1.6	0.059
75-09-2	Methylene Chloride	84.93	1.7	U	1.7	0.045
75-65-0	tert-Butyl alcohol	74.12	15	U	15	0.22
1634-04-4	Methyl tert-butyl ether	88.15	0.72	U	0.72	0.058
156-60-5	trans-1,2-Dichloroethene	96.94	0.79	U	0.79	0.13
110-54-3	n-Hexane	86.17	0.70	U	0.70	0.092
75-34-3	1,1-Dichloroethane	98.96	0.81	U	0.81	0.14
78-93-3	Methyl Ethyl Ketone	72.11	1.5	U	1.5	0.050
156-59-2	cis-1,2-Dichloroethene	96.94	0.79	U	0.79	0.056
540-59-0	1,2-Dichloroethene, Total	96.94	0.79	U	0.79	0.056
67-66-3	Chloroform	119.38	0.98	U	0.98	0.15
109-99-9	Tetrahydrofuran	72.11	15	U	15	0.053
71-55-6	1,1,1-Trichloroethane	133.41	1.1	U	1.1	0.19
110-82-7	Cyclohexane	84.16	0.69	U	0.69	0.13
56-23-5	Carbon tetrachloride	153.81	1.3	U	1.3	0.21
540-84-1	2,2,4-Trimethylpentane	114.23	0.93	U	0.93	0.17
71-43-2	Benzene	78.11	0.64	U	0.64	0.058
107-06-2	1,2-Dichloroethane	98.96	0.81	U	0.81	0.13
142-82-5	n-Heptane	100.21	0.82	U	0.82	0.041

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1	Job No.: 200-5005-1				
SDG No.: 200-5005						
Client Sample ID:	Lab Sample ID: MB 200-17	603/4				
Matrix: Air	Lab File ID: bkaj004.d	Lab File ID: bkaj004.d				
Analysis Method: TO-15	Date Collected:	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/201	Date Analyzed: 05/05/2011 12:27				
Soil Aliquot Vol:	Dilution Factor: 1	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624	ID: <u>0.32(mm)</u>				
% Moisture:	Level: (low/med) Low					
Analysis Batch No · 17603	IInite · ua/m3					

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	1.1	Ū	1.1	0.16
80-62-6	Methyl methacrylate	100.12	2.0	U	2.0	0.053
78-87-5	1,2-Dichloropropane	112.99	0.92	U	0.92	0.065
123-91-1	1,4-Dioxane	88.11	18	U	18	0.32
75-27-4	Bromodichloromethane	163.83	1.3	U	1.3	0.19
10061-01-5	cis-1,3-Dichloropropene	110.97	0.91	U	0.91	0.073
108-10-1	methyl isobutyl ketone	100.16	2.0	U	2.0	0.11
108-88-3	Toluene	92.14	0.75	U	0.75	0.068
10061-02-6	trans-1,3-Dichloropropene	110.97	0.91	U	0.91	0.091
79-00-5	1,1,2-Trichloroethane	133.41	1.1	U	1.1	0.10
127-18-4	Tetrachloroethene	165.83	1.4	U	1.4	0.075
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	2.0	U	2.0	0.16
124-48-1	Dibromochloromethane	208.29	1.7	U	1.7	0.18
106-93-4	1,2-Dibromoethane	187.87	1.5	U	1.5	0.14
108-90-7	Chlorobenzene	112.30	0.92	U	0.92	0.092
100-41-4	Ethylbenzene	106.17	0.87	U	0.87	0.096
179601-23-1	m,p-Xylene	106.17	2.2	U	2.2	0.21
95-47-6	Xylene, o-	106.17	0.87	U	0.87	0.096
1330-20-7	Xylene (total)	106.17	0.87	U	0.87	0.096
100-42-5	Styrene	104.15	0.85	U	0.85	0.13
75-25-2	Bromoform	252.75	2.1	U	2.1	0.20
98-82-8	Cumene	120.19	0.98	U	0.98	0.15
79-34-5	1,1,2,2-Tetrachloroethane	167.85	1.4	U	1.4	0.27
103-65-1	n-Propylbenzene	120.19	0.98	U	0.98	0.25
622-96-8	4-Ethyltoluene	120.20	0.98	U	0.98	0.23
108-67-8	1,3,5-Trimethylbenzene	120.20	0.98	U	0.98	0.25
95-49-8	2-Chlorotoluene	126.59	1.0	U	1.0	0.24
98-06-6	tert-Butylbenzene	134.22	1.1	U	1.1	0.26
95-63-6	1,2,4-Trimethylbenzene	120.20	0.98	U	0.98	0.26
135-98-8	sec-Butylbenzene	134.22	1.1	U	1.1	0.26
99-87-6	4-Isopropyltoluene	134.22	1.1	U	1.1	0.26
541-73-1	1,3-Dichlorobenzene	147.00	1.2	U	1.2	0.26
106-46-7	1,4-Dichlorobenzene	147.00	1.2	U	1.2	0.26
100-44-7	Benzyl chloride	126.58	1.0	U	1.0	0.24
104-51-8	n-Butylbenzene	134.22	1.1	U	1.1	0.30

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Lab Sample ID: MB 200-17603/4 Client Sample ID: Matrix: Air Lab File ID: bkaj004.d Analysis Method: TO-15 Date Collected: Date Analyzed: 05/05/2011 12:27 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 17603 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	1.2	U	1.2	0.29
120-82-1	1,2,4-Trichlorobenzene	181.45	3.7	U	3.7	0.37
87-68-3	Hexachlorobutadiene	260.76	2.1	U	2.1	0.69
91-20-3	Naphthalene	128.17	2.6	U	2.6	0.45

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj004.d Page 1

Report Date: 06-May-2011 10:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkajto15.b/bkaj004.d

Lab Smp Id: mb Client Smp ID: mb

Inj Date : 05-MAY-2011 12:27

Operator : pad Inst ID: B.i

Smp Info : mb

Misc Info : 200,1, mb

Comment :

Method : /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m

Meth Date: 06-May-2011 10:45 pd Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj004.d Report Date: 06-May-2011 10:45

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======	====	== ===== ===== ====== ======
15 Ethanol	45	Compound Not Detected.
16 Ethyl ether	59	Compound Not Detected.
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.
18 Acrolein	56	Compound Not Detected.
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.
21 Carbon disulfide	76	Compound Not Detected.
22 Isopropanol	45	Compound Not Detected.
23 Allyl chloride	41	Compound Not Detected.
24 Acetonitrile	41	Compound Not Detected.
25 Methylene chloride	49	6.802 6.802 (0.740) 3346 0.04065 0.041(aQM)
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
29 Acrylonitrile	53	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
32 Vinyl acetate	43	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
35 Ethyl acetate	88	Compound Not Detected.
36 Methyl Ethyl Ketone	72	Compound Not Detected.
* 37 Bromochloromethane	128	9.193 9.199 (1.000) 1017186 10.0000 (Q)
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.608 10.608 (1.000) 4978081 10.0000
48 n-Butanol	56	Compound Not Detected.
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
52 Dibromomethane	174	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
57 n-Octane	43	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.
1_ 111111101000110110		

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT RE	L RT	RESPONSE	(ppb v/v)	(ppb v/v)
=:		====	==	==========	====	======	======	======
	62 2-Hexanone	43	Com	pound Not De	etected.			
	63 Dibromochloromethane	129	Com	pound Not De	etected.			
	64 1,2-Dibromoethane	107	Com	pound Not De	etected.			
*	65 Chlorobenzene-d5	117	14.733	14.738 (1	.000)	4473767	10.0000	
	66 Chlorobenzene	112	Com	pound Not De	etected.			
	67 n-Nonane	57	Com	pound Not De	etected.			
	68 Ethylbenzene	91	Com	pound Not De	etected.			
	69 Xylene (m,p)	106	Com	pound Not De	etected.			
M	70 Xylenes, Total	106	Com	pound Not De	etected.			
	71 Xylene (o)	106	Com	pound Not De	etected.			
	72 Styrene	104	Com	pound Not De	etected.			
	73 Bromoform	173	Com	pound Not De	etected.			
	74 Isopropylbenzene	105	Com	pound Not De	etected.			
	75 1,1,2,2-Tetrachloroethane	83	Com	pound Not De	etected.			
	76 n-Propylbenzene	91	Com	pound Not De	etected.			
	77 1,2,3-Trichloropropane	75	Com	pound Not De	etected.			
	78 n-Decane	57	Com	pound Not De	etected.			
	79 4-Ethyltoluene	105	Com	pound Not De	etected.			
	80 2-Chlorotoluene	91	Com	pound Not De	etected.			
	81 1,3,5-Trimethylbenzene	105	Com	pound Not De	etected.			
	82 Alpha Methyl Styrene	118	Com	pound Not De	etected.			
	83 tert-butylbenzene	119	Com	pound Not De	etected.			
	84 1,2,4-Trimethylbenzene	105	Com	pound Not De	etected.			
	85 sec-Butylbenzene	105	Com	pound Not De	etected.			
	86 4-Isopropyltoluene	119	Com	pound Not De	etected.			
	87 1,3-Dichlorobenzene	146	Com	pound Not De	etected.			
	88 1,4-Dichlorobenzene	146	Com	pound Not De	etected.			
	89 Benzyl chloride	91	Com	pound Not De	etected.			
	90 Undecane	57	Com	pound Not De	etected.			
	91 n-Butylbenzene	91	Com	pound Not De	etected.			
	92 1,2-Dichlorobenzene	146	Com	pound Not De	etected.			
	93 Dodecane	57	Com	pound Not De	etected.			
	94 1,2,4-Trichlorobenzene	180	Com	pound Not De	etected.			
	95 1,3-Hexachlorobutadiene	225	Com	pound Not De	etected.			
	96 Naphthalene	128	Com	pound Not De	etected.			
	97 1,2,3-Trichlorobenzene	180	Com	pound Not De	etected.			

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Ouantitation(BLOO). Below Limit Of Quantitation(BLOQ).

 Q - Qualifier signal failed the ratio test.

 M - Compound response manually integrated.

Data File: bkaj004.d

Client ID: mb
Operator: pad

Column Type: Capillary

Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Date: 05-MAY-2011 12:27

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 304 of 429

Manual Integration Report

Data File: bkaj004.d Lab Sample ID: mb

Inj. Date and Time: 05-MAY-2011 12:27

Instrument ID: B.i

Client ID: mb

Compound: 25 Methylene chloride

CAS #: 75-09-2

Report Date: 05/06/2011

Processing Integration Results

RT: 6.80

Response: 2702

Amount: 0.032822

Conc: 0.032822

Manual Integration Results

RT: 6.80

Response: 3346

Amount: 0.040645

Conc: 0.040645

File Uploaded By: pd

Manual Integration Reason: Baseline event

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1				
SDG No.: 200-5005					
Client Sample ID:	Lab Sample ID: MB 200-17703/5				
Matrix: Air	Lab File ID: bkak005.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 14:25				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 17703	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	0.50	U	0.50	0.038
75-45-6	Freon 22	86.47	0.50	U	0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet	170.92	0.20	Ū	0.20	0.032
74-87-3	Chloromethane	50.49	0.50	U	0.50	0.013
106-97-8	n-Butane	58.12	0.50	U	0.50	0.011
75-01-4	Vinyl chloride	62.50	0.20	U	0.20	0.029
106-99-0	1,3-Butadiene	54.09	0.20	U	0.20	0.010
74-83-9	Bromomethane	94.94	0.20	U	0.20	0.012
75-00-3	Chloroethane	64.52	0.50	U	0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.20	Ū	0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	0.20	U	0.20	0.034
76-13-1	Freon TF	187.38	0.20	U	0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	0.20	U	0.20	0.030
67-64-1	Acetone	58.08	5.0	U	5.0	0.045
67-63-0	Isopropyl alcohol	60.10	5.0	U	5.0	0.037
75-15-0	Carbon disulfide	76.14	0.50	U	0.50	0.066
107-05-1	3-Chloropropene	76.53	0.50	U	0.50	0.019
75-09-2	Methylene Chloride	84.93	0.50	U	0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	5.0	U	5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	0.20	U	0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	0.20	U	0.20	0.032
110-54-3	n-Hexane	86.17	0.20	U	0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	0.20	U	0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	0.50	U	0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	0.20	U	0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	0.20	U	0.20	0.014
67-66-3	Chloroform	119.38	0.20	U	0.20	0.031
109-99-9	Tetrahydrofuran	72.11	5.0	U	5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	0.20	U	0.20	0.035
110-82-7	Cyclohexane	84.16	0.20	U	0.20	0.039
56-23-5	Carbon tetrachloride	153.81	0.20	U	0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	0.20	U	0.20	0.036
71-43-2	Benzene	78.11	0.20	U	0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	0.20	U	0.20	0.031
142-82-5	n-Heptane	100.21	0.20	U	0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: MB 200-17703/5
Matrix: Air	Lab File ID: bkak005.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 14:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 17703	Units: nnh v/v

		MOTERITAR				
CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	0.20	U	0.20	0.030
80-62-6	Methyl methacrylate	100.12	0.50	U	0.50	0.013
78-87-5	1,2-Dichloropropane	112.99	0.20	U	0.20	0.01
123-91-1	1,4-Dioxane	88.11	5.0	U	5.0	0.08
75-27-4	Bromodichloromethane	163.83	0.20	U	0.20	0.02
10061-01-5	cis-1,3-Dichloropropene	110.97	0.20	U	0.20	0.01
108-10-1	methyl isobutyl ketone	100.16	0.50	U	0.50	0.02
108-88-3	Toluene	92.14	0.20	U	0.20	0.01
10061-02-6	trans-1,3-Dichloropropene	110.97	0.20	U	0.20	0.02
79-00-5	1,1,2-Trichloroethane	133.41	0.20	U	0.20	0.01
127-18-4	Tetrachloroethene	165.83	0.20	U	0.20	0.01
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	0.50	U	0.50	0.03
124-48-1	Dibromochloromethane	208.29	0.20	U	0.20	0.02
106-93-4	1,2-Dibromoethane	187.87	0.20	U	0.20	0.01
108-90-7	Chlorobenzene	112.30	0.20	U	0.20	0.02
100-41-4	Ethylbenzene	106.17	0.20	U	0.20	0.02
179601-23-1	m,p-Xylene	106.17	0.50	U	0.50	0.04
95-47-6	Xylene, o-	106.17	0.20	U	0.20	0.02
1330-20-7	Xylene (total)	106.17	0.20	U	0.20	0.02
100-42-5	Styrene	104.15	0.20	U	0.20	0.03
75-25-2	Bromoform	252.75	0.20	U	0.20	0.01
98-82-8	Cumene	120.19	0.20	U	0.20	0.03
79-34-5	1,1,2,2-Tetrachloroethane	167.85	0.20	U	0.20	0.04
103-65-1	n-Propylbenzene	120.19	0.20	U	0.20	0.05
622-96-8	4-Ethyltoluene	120.20	0.20	U	0.20	0.04
108-67-8	1,3,5-Trimethylbenzene	120.20	0.20	U	0.20	0.05
95-49-8	2-Chlorotoluene	126.59	0.20	U	0.20	0.04
98-06-6	tert-Butylbenzene	134.22	0.20	U	0.20	0.04
95-63-6	1,2,4-Trimethylbenzene	120.20	0.20	U	0.20	0.05
135-98-8	sec-Butylbenzene	134.22	0.20	U	0.20	0.04
99-87-6	4-Isopropyltoluene	134.22	0.20	U	0.20	0.04
541-73-1	1,3-Dichlorobenzene	147.00	0.20	U	0.20	0.04
106-46-7	1,4-Dichlorobenzene	147.00	0.20	U	0.20	0.04
100-44-7	Benzyl chloride	126.58	0.20	U	0.20	0.04
104-51-8	n-Butylbenzene	134.22	0.20	U	0.20	0.05

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Lab Sample ID: MB 200-17703/5 Client Sample ID: Matrix: Air Lab File ID: bkak005.d Analysis Method: TO-15 Date Collected: Date Analyzed: 05/06/2011 14:25 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 17703 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	0.20	U	0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	0.50	U	0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	0.20	U	0.20	0.065
91-20-3	Naphthalene	128.17	0.50	U	0.50	0.086

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1					
SDG No.: 200-5005						
Client Sample ID:	Lab Sample ID: MB 200-17703/5					
Matrix: Air	Lab File ID: bkak005.d					
Analysis Method: TO-15	Date Collected:					
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 14:25					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 17703	Units: ug/m3					

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	2.5	U	2.5	0.19
75-45-6	Freon 22	86.47	1.8	U	1.8	0.12
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	1.4	U	1.4	0.22
74-87-3	Chloromethane	50.49	1.0	U	1.0	0.027
106-97-8	n-Butane	58.12	1.2	U	1.2	0.026
75-01-4	Vinyl chloride	62.50	0.51	U	0.51	0.074
106-99-0	1,3-Butadiene	54.09	0.44	U	0.44	0.022
74-83-9	Bromomethane	94.94	0.78	U	0.78	0.047
75-00-3	Chloroethane	64.52	1.3	U	1.3	0.042
593-60-2	Bromoethene (Vinyl Bromide)	106.96	0.87	U	0.87	0.083
75-69-4	Trichlorofluoromethane	137.37	1.1	U	1.1	0.19
76-13-1	Freon TF	187.38	1.5	U	1.5	0.077
75-35-4	1,1-Dichloroethene	96.94	0.79	U	0.79	0.12
67-64-1	Acetone	58.08	12	U	12	0.11
67-63-0	Isopropyl alcohol	60.10	12	U	12	0.091
75-15-0	Carbon disulfide	76.14	1.6	U	1.6	0.21
107-05-1	3-Chloropropene	76.53	1.6	U	1.6	0.059
75-09-2	Methylene Chloride	84.93	1.7	U	1.7	0.045
75-65-0	tert-Butyl alcohol	74.12	15	U	15	0.22
1634-04-4	Methyl tert-butyl ether	88.15	0.72	U	0.72	0.058
156-60-5	trans-1,2-Dichloroethene	96.94	0.79	U	0.79	0.13
110-54-3	n-Hexane	86.17	0.70	U	0.70	0.092
75-34-3	1,1-Dichloroethane	98.96	0.81	U	0.81	0.14
78-93-3	Methyl Ethyl Ketone	72.11	1.5	U	1.5	0.050
156-59-2	cis-1,2-Dichloroethene	96.94	0.79	U	0.79	0.056
540-59-0	1,2-Dichloroethene, Total	96.94	0.79	U	0.79	0.056
67-66-3	Chloroform	119.38	0.98	U	0.98	0.15
109-99-9	Tetrahydrofuran	72.11	15	U	15	0.053
71-55-6	1,1,1-Trichloroethane	133.41	1.1	U	1.1	0.19
110-82-7	Cyclohexane	84.16	0.69	U	0.69	0.13
56-23-5	Carbon tetrachloride	153.81	1.3	U	1.3	0.21
540-84-1	2,2,4-Trimethylpentane	114.23	0.93	U	0.93	0.17
71-43-2	Benzene	78.11	0.64	U	0.64	0.058
107-06-2	1,2-Dichloroethane	98.96	0.81	U	0.81	0.13
142-82-5	n-Heptane	100.21	0.82	U	0.82	0.041

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: MB 200-17703/5
Matrix: Air	Lab File ID: bkak005.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 14:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 17703	IInits: wa/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	1.1	U	1.1	0.16
80-62-6	Methyl methacrylate	100.12	2.0	U	2.0	0.053
78-87-5	1,2-Dichloropropane	112.99	0.92	U	0.92	0.065
123-91-1	1,4-Dioxane	88.11	18	U	18	0.32
75-27-4	Bromodichloromethane	163.83	1.3	U	1.3	0.19
10061-01-5	cis-1,3-Dichloropropene	110.97	0.91	U	0.91	0.073
108-10-1	methyl isobutyl ketone	100.16	2.0	U	2.0	0.11
108-88-3	Toluene	92.14	0.75	U	0.75	0.068
10061-02-6	trans-1,3-Dichloropropene	110.97	0.91	U	0.91	0.091
79-00-5	1,1,2-Trichloroethane	133.41	1.1	U	1.1	0.10
127-18-4	Tetrachloroethene	165.83	1.4	U	1.4	0.075
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	2.0	U	2.0	0.16
124-48-1	Dibromochloromethane	208.29	1.7	U	1.7	0.18
106-93-4	1,2-Dibromoethane	187.87	1.5	U	1.5	0.14
108-90-7	Chlorobenzene	112.30	0.92	U	0.92	0.092
100-41-4	Ethylbenzene	106.17	0.87	U	0.87	0.096
179601-23-1	m,p-Xylene	106.17	2.2	U	2.2	0.21
95-47-6	Xylene, o-	106.17	0.87	U	0.87	0.096
1330-20-7	Xylene (total)	106.17	0.87	U	0.87	0.096
100-42-5	Styrene	104.15	0.85	U	0.85	0.13
75-25-2	Bromoform	252.75	2.1	U	2.1	0.20
98-82-8	Cumene	120.19	0.98	U	0.98	0.15
79-34-5	1,1,2,2-Tetrachloroethane	167.85	1.4	U	1.4	0.27
103-65-1	n-Propylbenzene	120.19	0.98	U	0.98	0.25
622-96-8	4-Ethyltoluene	120.20	0.98	U	0.98	0.23
108-67-8	1,3,5-Trimethylbenzene	120.20	0.98	U	0.98	0.25
95-49-8	2-Chlorotoluene	126.59	1.0	U	1.0	0.24
98-06-6	tert-Butylbenzene	134.22	1.1	U	1.1	0.26
95-63-6	1,2,4-Trimethylbenzene	120.20	0.98	U	0.98	0.26
135-98-8	sec-Butylbenzene	134.22	1.1	U	1.1	0.26
99-87-6	4-Isopropyltoluene	134.22	1.1	U	1.1	0.26
541-73-1	1,3-Dichlorobenzene	147.00	1.2	U	1.2	0.26
106-46-7	1,4-Dichlorobenzene	147.00	1.2	U	1.2	0.26
100-44-7	Benzyl chloride	126.58	1.0	U	1.0	0.24
104-51-8	n-Butylbenzene	134.22	1.1	U	1.1	0.30

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Lab Sample ID: MB 200-17703/5 Client Sample ID: Matrix: Air Lab File ID: bkak005.d Analysis Method: TO-15 Date Collected: Date Analyzed: 05/06/2011 14:25 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 17703 Units: ug/m3

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	1.2	U	1.2	0.29
120-82-1	1,2,4-Trichlorobenzene	181.45	3.7	U	3.7	0.37
87-68-3	Hexachlorobutadiene	260.76	2.1	U	2.1	0.69
91-20-3	Naphthalene	128.17	2.6	U	2.6	0.45

Page 1 Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak005.d

Report Date: 09-May-2011 13:35

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkakto15.b/bkak005.d

Lab Smp Id: mb Client Smp ID: mb

Inj Date : 06-MAY-2011 14:25

Operator : pad Smp Info : mb Inst ID: B.i

Misc Info : 200,1, mb

Comment

Method : /chem/B.i/Bsvr.p/bkakto15.b/to15v5.m

Meth Date: 09-May-2011 13:35 pd Quant Type: ISTD Cal Date : 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name Value Descri	ption
9	correction factor plume purged (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak005.d Report Date: 09-May-2011 13:35

		CONCENT	RATIONS
	QUANT SIG	ON-COLUMN	FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v)	(ppb v/v)
	====		======
15 Ethanol	45	Compound Not Detected.	
16 Ethyl ether	59	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	
18 Acrolein	56	Compound Not Detected.	
19 1,1-Dichloroethene	96	Compound Not Detected.	
20 Acetone	43	Compound Not Detected.	
21 Carbon disulfide	76	Compound Not Detected.	
22 Isopropanol	45	Compound Not Detected.	
23 Allyl chloride	41	Compound Not Detected.	
24 Acetonitrile	41	Compound Not Detected.	
25 Methylene chloride	49	6.802 6.802 (0.739) 3410 0.04331	0.043(a)
26 Tert-butyl alcohol	59	Compound Not Detected.	
27 Methyl tert-butyl ether	73	Compound Not Detected.	
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.	
29 Acrylonitrile	53	Compound Not Detected.	
30 n-Hexane	57	Compound Not Detected.	
31 1,1-Dichloroethane	63	Compound Not Detected.	
32 Vinyl acetate	43	Compound Not Detected.	
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.	
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.	
35 Ethyl acetate	88	Compound Not Detected.	
36 Methyl Ethyl Ketone	72	Compound Not Detected.	
* 37 Bromochloromethane	128	9.199 9.199 (1.000) 972960 10.0000	
38 Tetrahydrofuran	42	Compound Not Detected.	
39 Chloroform	83	Compound Not Detected.	
40 Cyclohexane	84	Compound Not Detected.	
41 1,1,1-Trichloroethane	97	Compound Not Detected.	
42 Carbon tetrachloride	117	Compound Not Detected.	
43 2,2,4-Trimethylpentane	57	Compound Not Detected.	
44 Benzene	78	Compound Not Detected.	
45 1,2-Dichloroethane	62	Compound Not Detected.	
46 n-Heptane	43	Compound Not Detected.	
* 47 1,4-Difluorobenzene	114	10.607 10.608 (1.000) 4773586 10.0000	
48 n-Butanol	56	Compound Not Detected.	
49 Trichloroethene	95	Compound Not Detected.	
50 1,2-Dichloropropane	63	Compound Not Detected.	
51 Methyl methacrylate	69	Compound Not Detected.	
52 Dibromomethane	174	Compound Not Detected.	
53 1,4-Dioxane	88	Compound Not Detected.	
54 Bromodichloromethane	83	Compound Not Detected.	
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.	
56 Methyl isobutyl ketone	43	Compound Not Detected.	
57 n-Octane	43	Compound Not Detected.	
58 Toluene	92	Compound Not Detected.	
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.	
60 1,1,2-Trichloroethane	83	Compound Not Detected.	
61 Tetrachloroethene	166	Compound Not Detected.	
or recracimordechiene	100	compound not betetted.	

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak005.d Report Date: 09-May-2011 13:35 Page 3

						CONCENTRA	TIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=:		====	==	======	======	======	======
	62 2-Hexanone	43	Com	pound Not Detected	l.		
	63 Dibromochloromethane	129	Com	pound Not Detected	l.		
	64 1,2-Dibromoethane	107	Com	pound Not Detected	l.		
*	65 Chlorobenzene-d5	117	14.733	14.738 (1.000)	4301952	10.0000	
	66 Chlorobenzene	112	Com	pound Not Detected	l.		
	67 n-Nonane	57	Com	pound Not Detected	l.		
	68 Ethylbenzene	91	Com	pound Not Detected	l.		
	69 Xylene (m,p)	106	Com	pound Not Detected	l.		
M	70 Xylenes, Total	106	Com	pound Not Detected	l.		
	71 Xylene (o)	106	Com	pound Not Detected	l.		
	72 Styrene	104	Com	pound Not Detected	l.		
	73 Bromoform	173	Com	pound Not Detected	l.		
	74 Isopropylbenzene	105	Com	pound Not Detected	l.		
	75 1,1,2,2-Tetrachloroethane	83	Com	pound Not Detected	l.		
	76 n-Propylbenzene	91	Com	pound Not Detected	l.		
	77 1,2,3-Trichloropropane	75	Com	pound Not Detected	l.		
	78 n-Decane	57	Com	pound Not Detected	l.		
	79 4-Ethyltoluene	105	Com	pound Not Detected	l.		
	80 2-Chlorotoluene	91	Com	pound Not Detected	l.		
	81 1,3,5-Trimethylbenzene	105	Com	pound Not Detected	l.		
	82 Alpha Methyl Styrene	118	Com	pound Not Detected	l.		
	83 tert-butylbenzene	119	Com	pound Not Detected	l.		
	84 1,2,4-Trimethylbenzene	105	Com	pound Not Detected	l.		
	85 sec-Butylbenzene	105	Com	pound Not Detected	l.		
	86 4-Isopropyltoluene	119	Com	pound Not Detected	l.		
	87 1,3-Dichlorobenzene	146	Com	pound Not Detected	l.		
	88 1,4-Dichlorobenzene	146	Com	pound Not Detected	l.		
	89 Benzyl chloride	91	Com	pound Not Detected	l.		
	90 Undecane	57	Com	pound Not Detected	l.		
	91 n-Butylbenzene	91	Com	pound Not Detected	l.		
	92 1,2-Dichlorobenzene	146	Com	pound Not Detected	l.		
	93 Dodecane	57	Com	pound Not Detected	l.		
	94 1,2,4-Trichlorobenzene	180	Com	pound Not Detected	l.		
	95 1,3-Hexachlorobutadiene	225	Com	pound Not Detected	l.		
	96 Naphthalene	128	Com	pound Not Detected	l.		
	97 1,2,3-Trichlorobenzene	180	Com	pound Not Detected	l.		

QC Flag Legend

Data File: bkak005.d

Client ID: mb
Operator: pad

Column Type: Capillary

Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Date: 06-MAY-2011 14:25

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 315 of 429

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1		
SDG No.: 200-5005			
Client Sample ID:	Lab Sample ID: LCS 200-17603/3		
Matrix: Air	Lab File ID: bkaj003.d		
Analysis Method: TO-15	Date Collected:		
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/2011 11:37		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No · 17603	Units: nnh v/v		

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	10.1		0.50	0.038
75-45-6	Freon 22	86.47	8.89		0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet	170.92	9.99		0.20	0.032
74-87-3	Chloromethane	50.49	8.51		0.50	0.013
106-97-8	n-Butane	58.12	7.97		0.50	0.011
75-01-4	Vinyl chloride	62.50	9.23		0.20	0.029
106-99-0	1,3-Butadiene	54.09	9.16		0.20	0.010
74-83-9	Bromomethane	94.94	9.43		0.20	0.012
75-00-3	Chloroethane	64.52	8.95		0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	10.2		0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	10.4		0.20	0.034
76-13-1	Freon TF	187.38	11.0		0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	11.0		0.20	0.030
67-64-1	Acetone	58.08	9.61		5.0	0.045
67-63-0	Isopropyl alcohol	60.10	8.59		5.0	0.037
75-15-0	Carbon disulfide	76.14	10.1		0.50	0.066
107-05-1	3-Chloropropene	76.53	8.57		0.50	0.019
75-09-2	Methylene Chloride	84.93	9.37		0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	9.29		5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	9.91		0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	9.40		0.20	0.032
110-54-3	n-Hexane	86.17	9.04		0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	9.50		0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	10.0		0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	10.5		0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	19.9		0.20	0.014
67-66-3	Chloroform	119.38	10.1		0.20	0.031
109-99-9	Tetrahydrofuran	72.11	8.84		5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	10.4		0.20	0.035
110-82-7	Cyclohexane	84.16	9.75		0.20	0.039
56-23-5	Carbon tetrachloride	153.81	10.2		0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	9.28		0.20	0.036
71-43-2	Benzene	78.11	9.88		0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	9.39		0.20	0.031
142-82-5	n-Heptane	100.21	8.54		0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: <u>200-5005-1</u>				
SDG No.: 200-5005					
Client Sample ID:	Lab Sample ID: LCS 200-17603/3				
Matrix: Air	Lab File ID: bkaj003.d				
Analysis Method: TO-15	Date Collected:				
Sample wt/vol: 200(mL)	Date Analyzed: 05/05/2011 11:37				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 17603	Units: ppb v/v				

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	10.1		0.20	0.030
80-62-6	Methyl methacrylate	100.12	9.61		0.50	0.013
78-87-5	1,2-Dichloropropane	112.99	9.20		0.20	0.014
123-91-1	1,4-Dioxane	88.11	9.02		5.0	0.088
75-27-4	Bromodichloromethane	163.83	10.5		0.20	0.028
10061-01-5	cis-1,3-Dichloropropene	110.97	9.55		0.20	0.016
108-10-1	methyl isobutyl ketone	100.16	8.83		0.50	0.026
108-88-3	Toluene	92.14	9.79		0.20	0.018
10061-02-6	trans-1,3-Dichloropropene	110.97	9.64		0.20	0.020
79-00-5	1,1,2-Trichloroethane	133.41	9.33		0.20	0.019
127-18-4	Tetrachloroethene	165.83	10.2		0.20	0.011
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	8.64		0.50	0.039
124-48-1	Dibromochloromethane	208.29	10.7		0.20	0.021
106-93-4	1,2-Dibromoethane	187.87	9.90		0.20	0.018
108-90-7	Chlorobenzene	112.30	9.44		0.20	0.020
100-41-4	Ethylbenzene	106.17	9.86		0.20	0.022
179601-23-1	m,p-Xylene	106.17	19.8		0.50	0.048
95-47-6	Xylene, o-	106.17	9.66		0.20	0.022
1330-20-7	Xylene (total)	106.17	29.5		0.20	0.022
100-42-5	Styrene	104.15	10.1		0.20	0.030
75-25-2	Bromoform	252.75	11.4		0.20	0.019
98-82-8	Cumene	120.19	10.2		0.20	0.031
79-34-5	1,1,2,2-Tetrachloroethane	167.85	9.50		0.20	0.040
103-65-1	n-Propylbenzene	120.19	10.4		0.20	0.050
622-96-8	4-Ethyltoluene	120.20	10.5		0.20	0.046
108-67-8	1,3,5-Trimethylbenzene	120.20	9.93		0.20	0.051
95-49-8	2-Chlorotoluene	126.59	10.2		0.20	0.047
98-06-6	tert-Butylbenzene	134.22	10.0		0.20	0.047
95-63-6	1,2,4-Trimethylbenzene	120.20	9.84		0.20	0.052
135-98-8	sec-Butylbenzene	134.22	10.2		0.20	0.047
99-87-6	4-Isopropyltoluene	134.22	10.3		0.20	0.048
541-73-1	1,3-Dichlorobenzene	147.00	10.2		0.20	0.044
106-46-7	1,4-Dichlorobenzene	147.00	10.1		0.20	0.044
100-44-7	Benzyl chloride	126.58	9.42		0.20	0.046
104-51-8	n-Butylbenzene	134.22	10.6		0.20	0.055

Lab Name: TestAmerica Burlington Job No.: 200-5005-1 SDG No.: 200-5005 Lab Sample ID: LCS 200-17603/3 Client Sample ID: Matrix: Air Lab File ID: bkaj003.d Analysis Method: TO-15 Date Collected: Date Analyzed: 05/05/2011 11:37 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 17603 Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	9.79		0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	10.3		0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	10.7		0.20	0.065
91-20-3	Naphthalene	128.17	10.5		0.50	0.086

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj003.d Page 1

Report Date: 06-May-2011 10:45

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkajto15.b/bkaj003.d

Lab Smp Id: lcs 139387 Client Smp ID: lcs 139387

Inj Date : 05-MAY-2011 11:37

Operator : pad Inst ID: B.i

Smp Info : lcs 139387 Misc Info : 200,1, lcs

Comment :

Method : /chem/B.i/Bsvr.p/bkajto15.b/to15v5.m

Meth Date: 06-May-2011 10:45 pd Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.987	2.992 (0.325)	184193	7.71426	7.7
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1479355	10.0964	10
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	540765	8.88760	8.9
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.227	3.232 (0.351)	1419029	9.99300	10
5 Chloromethane	50	3.339	3.339 (0.363)	259383	8.50527	8.5
6 Butane	43	3.483	3.488 (0.379)	422215	7.97186	8.0
7 Vinyl chloride	62	3.515	3.520 (0.382)	386765	9.23041	9.2
8 1,3-Butadiene	54	3.568	3.574 (0.388)	278865	9.15737	9.2
9 Bromomethane	94	4.129	4.129 (0.449)	713523	9.43218	9.4
10 Chloroethane	64	4.326	4.326 (0.470)	326622	8.94949	8.9
11 2-Methylbutane	43	4.401	4.401 (0.478)	560545	8.02666	8.0
12 Vinyl bromide	106	4.700	4.705 (0.511)	1015435	10.1563	10
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	2553053	10.3860	10
14 Pentane	43	4.924	4.924 (0.535)	913841	8.15006	8.2

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkajto15.b/bkaj003.d Report Date: 06-May-2011 10:45

		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	=======================================	====	==	=======================================	=======	======	======
	15 Ethanol	45	5.303	5.308 (0.576)	366511	13.2458	13
	16 Ethyl ether	59	5.410	5.415 (0.588)	558489	9.04872	9.0
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	2186570	10.9779	11
	18 Acrolein	56	5.756	5.756 (0.626)	249813	7.73051	7.7
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	1053494	11.0091	11
	20 Acetone	43	6.039	6.045 (0.657)	975947	9.61049	9.6
	21 Carbon disulfide	76	6.263	6.269 (0.681)	2705598	10.0812	10
	22 Isopropanol	45	6.317	6.322 (0.687)	708786	8.59067	8.6
	23 Allyl chloride	41	6.541	6.541 (0.711)	761470	8.57149	8.6
	24 Acetonitrile	41	6.621	6.626 (0.720)	464692	8.74598	8.7
	25 Methylene chloride	49	6.797	6.802 (0.739)	776698	9.37067	9.4
	26 Tert-butyl alcohol	59	7.027	7.037 (0.764)	1245021	9.29182	9.3
	27 Methyl tert-butyl ether	73	7.187	7.187 (0.781)	2546441	9.91271	9.9
	28 1,2-Dichloroethene (trans)	61	7.197	7.203 (0.782)	1160085	9.40102	9.4
	29 Acrylonitrile	53	7.283	7.288 (0.792)	544850	9.24189	9.2
	30 n-Hexane	57	7.528	7.528 (0.818)	1223985	9.03573	9.0
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1478203	9.49736	9.5
	32 Vinyl acetate	43	7.961	7.966 (0.865)	1605406	8.77633	8.8
M	33 1,2-Dichloroethene,Total	61			2295030	19.8897	20
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	1134945	10.4887	10
	35 Ethyl acetate	88	8.873	8.878 (0.965)	94346	10.2405	10
	36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	463573	10.0422	10(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	1024161	10.0000	
	38 Tetrahydrofuran	42	9.247	9.252 (0.872)	701279	8.84479	8.8
	39 Chloroform	83	9.279	9.284 (1.009)	1977521	10.0975	10
	40 Cyclohexane	84	9.530	9.535 (0.898)	1404437	9.75184	9.8
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	2179157	10.3967	10
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	2368074	10.2386	10
	43 2,2,4-Trimethylpentane	57	10.021	10.021 (0.945)	3789666	9.27524	9.3
	44 Benzene	78	10.053	10.053 (0.948)	2973734	9.88217	9.9
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	1092140	9.39454	9.4
	46 n-Heptane	43	10.277	10.282 (0.969)	1173433	8.54342	8.5
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	4940011	10.0000	
	48 n-Butanol	56	10.901	10.906 (1.028)	350554	7.85901	7.9
	49 Trichloroethene	95	10.971	10.971 (1.034)	1429054	10.1065	10
	50 1,2-Dichloropropane	63		11.333 (1.068)	916202	9.20240	9.2
	51 Methyl methacrylate	69	11.403	11.408 (1.075)	996241	9.60992	9.6
	52 Dibromomethane	174	11.520	11.520 (1.086)	1415722	10.7941	11
	53 1,4-Dioxane	88		11.520 (1.086)	416180	9.02089	9.0
	54 Bromodichloromethane	83	11.696		2237531	10.4755	10
	55 1,3-Dichloropropene (cis)	75		12.326 (1.162)	1577106	9.54521	9.5
	56 Methyl isobutyl ketone	43		12.518 (1.180)	1500853	8.82637	8.8
	57 n-Octane	43		12.758 (1.202)	1537604	8.45830	8.5
	58 Toluene	92		12.748 (0.865)	2364859	9.78576	9.8
	59 1,3-Dichloropropene (trans)	75		13.121 (1.237)	1633895	9.63677	9.6
	60 1,1,2-Trichloroethane	83		13.388 (0.908)	1033852	9.33244	9.3
	61 Tetrachloroethene	166	13.516	13.516 (0.917)	2166988	10.1509	10

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==			======	======
62 2-Hexanone	43	13.692	13.698 (0.929)	1443013	8.63864	8.6
63 Dibromochloromethane	129	13.943	13.943 (0.946)	2651210	10.6542	11
64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2215816	9.90367	9.9
* 65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	4607867	10.0000	
66 Chlorobenzene	112	14.776	14.776 (1.003)	3423737	9.44224	9.4
67 n-Nonane	57	14.899	14.899 (1.011)	1810410	9.03691	9.0
68 Ethylbenzene	91	14.851	14.856 (1.008)	5147845	9.86316	9.9
69 Xylene (m,p)	106	15.011	15.011 (1.018)	4337207	19.8411	20
M 70 Xylenes, Total	106			6448785	29.5060	30
71 Xylene (o)	106	15.539	15.539 (1.054)	2111578	9.66486	9.7
72 Styrene	104	15.566	15.566 (1.056)	3357865	10.0997	10
73 Bromoform	173	15.854	15.859 (1.076)	2667358	11.3810	11
74 Isopropylbenzene	105	15.966	15.966 (1.083)	6245915	10.1751	10
75 1,1,2,2-Tetrachloroethane	83	16.388	16.393 (1.112)	2715860	9.49933	9.5
76 n-Propylbenzene	91	16.457	16.457 (1.117)	6993804	10.3557	10
77 1,2,3-Trichloropropane	75	16.468	16.468 (1.117)	2021394	9.78336	9.8
78 n-Decane	57	16.548	16.548 (1.123)	2279370	9.20604	9.2
79 4-Ethyltoluene	105	16.585	16.585 (1.125)	6565059	10.5213	11
80 2-Chlorotoluene	91	16.617	16.622 (1.127)	5509428	10.2367	10
81 1,3,5-Trimethylbenzene	105	16.654	16.660 (1.130)	5194860	9.93402	9.9
82 Alpha Methyl Styrene	118	16.927	16.932 (1.148)	2887131	10.3791	10
83 tert-butylbenzene	119	17.023	17.023 (1.155)	5230244	10.0457	10
84 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	5116325	9.83668	9.8
85 sec-Butylbenzene	105	17.273	17.273 (1.172)	7644904	10.1587	10
86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6733325	10.2673	10
87 1,3-Dichlorobenzene	146	17.482	17.487 (1.186)	3890038	10.1523	10
88 1,4-Dichlorobenzene	146	17.588	17.594 (1.193)	3899522	10.1136	10
89 Benzyl chloride	91	17.732	17.738 (1.203)	4092503	9.42327	9.4
90 Undecane	57	17.887	17.887 (1.214)	2353471	10.0800	10
91 n-Butylbenzene	91	17.903	17.903 (1.215)	5485059	10.5867	11
92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	3590175	9.79247	9.8
93 Dodecane	57	19.243	19.243 (1.306)	2305263	10.2394	10
94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2801320	10.2677	10
95 1,3-Hexachlorobutadiene	225	20.380	20.380 (1.383)	1899269	10.7447	11
96 Naphthalene	128	20.652	20.652 (1.401)	6342879	10.5261	11
97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2574322	11.7043	12

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkaj003.d

Client ID: lcs 139387 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: lcs 139387
Lab Sample ID: lcs 139387

Date: 05-MAY-2011 11:37

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 322 of 429

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: LCS 200-17703/4
Matrix: Air	Lab File ID: bkak004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 13:34
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 17703	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
75-71-8	Dichlorodifluoromethane	120.91	11.0		0.50	0.038
75-45-6	Freon 22	86.47	9.54		0.50	0.034
76-14-2	1,2-Dichlorotetrafluoroet hane	170.92	10.8		0.20	0.032
74-87-3	Chloromethane	50.49	9.16		0.50	0.013
106-97-8	n-Butane	58.12	8.60		0.50	0.011
75-01-4	Vinyl chloride	62.50	10.1		0.20	0.029
106-99-0	1,3-Butadiene	54.09	9.78		0.20	0.010
74-83-9	Bromomethane	94.94	10.2		0.20	0.012
75-00-3	Chloroethane	64.52	9.69		0.50	0.016
593-60-2	Bromoethene (Vinyl Bromide)	106.96	10.8		0.20	0.019
75-69-4	Trichlorofluoromethane	137.37	11.1		0.20	0.034
76-13-1	Freon TF	187.38	11.3		0.20	0.010
75-35-4	1,1-Dichloroethene	96.94	11.4		0.20	0.030
67-64-1	Acetone	58.08	10.4		5.0	0.045
67-63-0	Isopropyl alcohol	60.10	9.12		5.0	0.037
75-15-0	Carbon disulfide	76.14	10.5		0.50	0.066
107-05-1	3-Chloropropene	76.53	9.20		0.50	0.019
75-09-2	Methylene Chloride	84.93	10.0		0.50	0.013
75-65-0	tert-Butyl alcohol	74.12	9.67		5.0	0.071
1634-04-4	Methyl tert-butyl ether	88.15	10.4		0.20	0.016
156-60-5	trans-1,2-Dichloroethene	96.94	9.89		0.20	0.032
110-54-3	n-Hexane	86.17	9.59		0.20	0.026
75-34-3	1,1-Dichloroethane	98.96	9.93		0.20	0.035
78-93-3	Methyl Ethyl Ketone	72.11	10.4		0.50	0.017
156-59-2	cis-1,2-Dichloroethene	96.94	10.8		0.20	0.014
540-59-0	1,2-Dichloroethene, Total	96.94	20.6		0.20	0.014
67-66-3	Chloroform	119.38	10.5		0.20	0.031
109-99-9	Tetrahydrofuran	72.11	9.34		5.0	0.018
71-55-6	1,1,1-Trichloroethane	133.41	10.8		0.20	0.035
110-82-7	Cyclohexane	84.16	10.1		0.20	0.039
56-23-5	Carbon tetrachloride	153.81	10.5		0.20	0.033
540-84-1	2,2,4-Trimethylpentane	114.23	9.77		0.20	0.036
71-43-2	Benzene	78.11	10.2		0.20	0.018
107-06-2	1,2-Dichloroethane	98.96	9.96		0.20	0.031
142-82-5	n-Heptane	100.21	9.05		0.20	0.010

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: LCS 200-17703/4
Matrix: Air	Lab File ID: bkak004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 13:34
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 17703	Units: nnh v/v

		MOLECULAR				
CAS NO.	COMPOUND NAME	WEIGHT	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	131.39	10.4		0.20	0.030
80-62-6	Methyl methacrylate	100.12	10.0		0.50	0.01
78-87-5	1,2-Dichloropropane	112.99	9.61		0.20	0.01
123-91-1	1,4-Dioxane	88.11	9.22		5.0	0.08
75-27-4	Bromodichloromethane	163.83	10.8		0.20	0.02
10061-01-5	cis-1,3-Dichloropropene	110.97	9.82		0.20	0.01
108-10-1	methyl isobutyl ketone	100.16	9.38		0.50	0.02
108-88-3	Toluene	92.14	10.1		0.20	0.01
10061-02-6	trans-1,3-Dichloropropene	110.97	10.0		0.20	0.02
79-00-5	1,1,2-Trichloroethane	133.41	9.69		0.20	0.01
127-18-4	Tetrachloroethene	165.83	10.2		0.20	0.01
591-78-6	Methyl Butyl Ketone (2-Hexanone)	100.20	9.29		0.50	0.03
124-48-1	Dibromochloromethane	208.29	10.9		0.20	0.02
106-93-4	1,2-Dibromoethane	187.87	10.3		0.20	0.01
108-90-7	Chlorobenzene	112.30	9.66		0.20	0.02
100-41-4	Ethylbenzene	106.17	10.2		0.20	0.02
179601-23-1	m,p-Xylene	106.17	20.5		0.50	0.04
95-47-6	Xylene, o-	106.17	9.98		0.20	0.02
1330-20-7	Xylene (total)	106.17	30.5		0.20	0.02
100-42-5	Styrene	104.15	10.5		0.20	0.03
75-25-2	Bromoform	252.75	11.6		0.20	0.01
98-82-8	Cumene	120.19	10.5		0.20	0.03
79-34-5	1,1,2,2-Tetrachloroethane	167.85	9.91		0.20	0.04
103-65-1	n-Propylbenzene	120.19	10.9		0.20	0.05
622-96-8	4-Ethyltoluene	120.20	10.9		0.20	0.04
108-67-8	1,3,5-Trimethylbenzene	120.20	10.3		0.20	0.05
95-49-8	2-Chlorotoluene	126.59	10.7		0.20	0.04
98-06-6	tert-Butylbenzene	134.22	10.4		0.20	0.04
95-63-6	1,2,4-Trimethylbenzene	120.20	10.2		0.20	0.05
135-98-8	sec-Butylbenzene	134.22	10.5		0.20	0.04
99-87-6	4-Isopropyltoluene	134.22	10.6		0.20	0.04
541-73-1	1,3-Dichlorobenzene	147.00	10.3		0.20	0.04
106-46-7	1,4-Dichlorobenzene	147.00	10.3		0.20	0.04
100-44-7	Benzyl chloride	126.58	9.79		0.20	0.04
104-51-8	n-Butylbenzene	134.22	11.2		0.20	0.05

Lab Name: TestAmerica Burlington	Job No.: 200-5005-1
SDG No.: 200-5005	
Client Sample ID:	Lab Sample ID: LCS 200-17703/4
Matrix: Air	Lab File ID: bkak004.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 05/06/2011 13:34
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 17703	Units: ppb v/v

CAS NO.	COMPOUND NAME	MOLECULAR WEIGHT	RESULT	Q	RL	MDL
95-50-1	1,2-Dichlorobenzene	147.00	9.88		0.20	0.048
120-82-1	1,2,4-Trichlorobenzene	181.45	10.2		0.50	0.050
87-68-3	Hexachlorobutadiene	260.76	10.7		0.20	0.065
91-20-3	Naphthalene	128.17	10.5		0.50	0.086

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak004.d Page 1

Report Date: 09-May-2011 13:35

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/B.i/Bsvr.p/bkakto15.b/bkak004.d

Lab Smp Id: lcs 139387 Client Smp ID: lcs 139387

Inj Date : 06-MAY-2011 13:34

Operator : pad Inst ID: B.i

Smp Info : lcs 139387 Misc Info : 200,1, lcs

Comment :

Method : /chem/B.i/Bsvr.p/bkakto15.b/to15v5.m

Meth Date: 09-May-2011 13:35 pd Quant Type: ISTD Cal Date: 20-APR-2011 08:43 Cal File: bka014.d Als bottle: 1 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
 DF Uf	1.00000	Dilution Factor
Vo	1.00000 200.00000	ng unit correction factor Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	TIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
	====	==	======	======	======	======
1 Propene	41	2.992	2.992 (0.325)	186308	8.28983	8.3
2 Dichlorodifluoromethane	85	3.040	3.040 (0.330)	1517578	11.0037	11
3 Chlorodifluoromethane	51	3.072	3.072 (0.334)	546164	9.53656	9.5
4 1,2-Dichloro-1,1,2,2-tetraflu	85	3.232	3.232 (0.351)	1440347	10.7762	11
5 Chloromethane	50	3.339	3.339 (0.363)	262942	9.16009	9.2
6 Butane	43	3.483	3.488 (0.379)	428764	8.60077	8.6
7 Vinyl chloride	62	3.515	3.520 (0.382)	396586	10.0555	10
8 1,3-Butadiene	54	3.574	3.574 (0.388)	280363	9.78116	9.8
9 Bromomethane	94	4.129	4.129 (0.449)	728519	10.2315	10
10 Chloroethane	64	4.326	4.326 (0.470)	332846	9.68923	9.7
11 2-Methylbutane	43	4.401	4.401 (0.478)	576544	8.77101	8.8
12 Vinyl bromide	106	4.705	4.705 (0.511)	1015641	10.7924	11
13 Trichlorofluoromethane	101	4.796	4.801 (0.521)	2559604	11.0626	11
14 Pentane	43	4.929	4.924 (0.536)	950117	9.00244	9.0

CONCENTRATIONS

Data File: /chem/B.i/Bsvr.p/bkakto15.b/bkak004.d Report Date: 09-May-2011 13:35

						CONCENTRA	
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	======	======	======	======
	15 Ethanol	45	5.308	5.308 (0.577)	368592	14.1524	14
	16 Ethyl ether	59	5.415	5.415 (0.589)	559287	9.62721	9.6
	17 1,1,2-Trichloro-1,2,2-trifluo	101	5.788	5.788 (0.629)	2121103	11.3139	11
	18 Acrolein	56	5.756	5.756 (0.626)	252035	8.28603	8.3
	19 1,1-Dichloroethene	96	5.852	5.852 (0.636)	1025694	11.3875	11
	20 Acetone	43	6.044	6.045 (0.657)	993249	10.3913	10
	21 Carbon disulfide	76	6.263	6.269 (0.681)	2662690	10.5405	11
	22 Isopropanol	45	6.322	6.322 (0.687)	708548	9.12376	9.1
	23 Allyl chloride	41	6.541	6.541 (0.711)	768963	9.19606	9.2
	24 Acetonitrile	41	6.621	6.626 (0.720)	477071	9.53936	9.5
	25 Methylene chloride	49	6.797	6.802 (0.739)	781266	10.0141	10
	26 Tert-butyl alcohol	59	7.032	7.037 (0.764)	1220025	9.67355	9.7
	27 Methyl tert-butyl ether	73	7.187	7.187 (0.781)	2514370	10.3987	10
	28 1,2-Dichloroethene (trans)	61	7.203	7.203 (0.783)	1149136	9.89349	9.9
	29 Acrylonitrile	53	7.288	7.288 (0.792)	544507	9.81252	9.8
	30 n-Hexane	57	7.528	7.528 (0.818)	1222471	9.58780	9.6
	31 1,1-Dichloroethane	63	7.934	7.934 (0.862)	1455322	9.93393	9.9
	32 Vinyl acetate	43	7.966	7.966 (0.866)	1623565	9.42955	9.4
M	33 1,2-Dichloroethene,Total	61			2244577	20.6489	21
	34 1,2-Dichloroethene (cis)	96	8.836	8.836 (0.961)	1095441	10.7554	11
	35 Ethyl acetate	88	8.878	8.878 (0.965)	90212	10.4029	10
	36 Methyl Ethyl Ketone	72	8.852	8.857 (0.962)	453356	10.4338	10(Q)
*	37 Bromochloromethane	128	9.199	9.199 (1.000)	963996	10.0000	
	38 Tetrahydrofuran	42	9.247	9.252 (0.872)	699921	9.34093	9.3
	39 Chloroform	83	9.284	9.284 (1.009)	1934207	10.4927	10
	40 Cyclohexane	84	9.535	9.535 (0.899)	1369415	10.0615	10
	41 1,1,1-Trichloroethane	97	9.524	9.524 (0.898)	2139891	10.8029	11
	42 Carbon tetrachloride	117	9.727	9.727 (0.917)	2293022	10.4906	10
	43 2,2,4-Trimethylpentane	57	10.020	10.021 (0.945)	3771986	9.76875	9.8
	44 Benzene	78	10.053	10.053 (0.948)	2900964	10.2009	10
	45 1,2-Dichloroethane	62	10.159	10.159 (0.958)	1094050	9.95816	10
	46 n-Heptane	43	10.282	10.282 (0.969)	1174445	9.04797	9.0
*	47 1,4-Difluorobenzene	114	10.608	10.608 (1.000)	4668563	10.0000	
	48 n-Butanol	56	10.906	10.906 (1.028)	336477	7.98203	8.0
	49 Trichloroethene	95	10.970	10.971 (1.034)	1387082	10.3800	10
	50 1,2-Dichloropropane	63	11.333	11.333 (1.068)	904047	9.60828	9.6
	51 Methyl methacrylate	69	11.408	11.408 (1.075)	980988	10.0130	10
	52 Dibromomethane	174	11.520	11.520 (1.086)	1324624	10.6867	11
	53 1,4-Dioxane	88	11.525	11.520 (1.087)	402178	9.22425	9.2
	54 Bromodichloromethane	83	11.696	11.702 (1.103)	2183724	10.8181	11
	55 1,3-Dichloropropene (cis)	75	12.326	12.326 (1.162)	1533775	9.82270	9.8
	56 Methyl isobutyl ketone	43	12.518	12.518 (1.180)	1506587	9.37525	9.4
	57 n-Octane	43	12.753	12.758 (1.202)	1561017	9.08638	9.1
	58 Toluene	92	12.748	12.748 (0.865)	2295311	10.1407	10
	59 1,3-Dichloropropene (trans)	75	13.121	13.121 (1.237)	1605954	10.0227	10
	60 1,1,2-Trichloroethane	83	13.388	13.388 (0.908)	1005440	9.69012	9.7
	61 Tetrachloroethene	166	13.516	13.516 (0.917)	2042274	10.2141	10

						CONCENTRA	
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
==		====	==	======	======	======	======
	62 2-Hexanone	43	13.698	13.698 (0.929)	1452824	9.28590	9.3
	63 Dibromochloromethane	129	13.943	13.943 (0.946)	2539487	10.8958	11
	64 1,2-Dibromoethane	107	14.146	14.146 (0.960)	2148976	10.2549	10
*	65 Chlorobenzene-d5	117	14.738	14.738 (1.000)	4315826	10.0000	
	66 Chlorobenzene	112	14.776	14.776 (1.003)	3281925	9.66361	9.7
	67 n-Nonane	57	14.898	14.899 (1.011)	1801293	9.59983	9.6
	68 Ethylbenzene	91	14.856	14.856 (1.008)	5003457	10.2352	10
	69 Xylene (m,p)	106	15.011	15.011 (1.018)	4201734	20.5221	21
M	70 Xylenes, Total	106			6243293	30.4987	30
	71 Xylene (o)	106	15.539	15.539 (1.054)	2041559	9.97669	10
	72 Styrene	104	15.566	15.566 (1.056)	3258321	10.4634	10
	73 Bromoform	173	15.859	15.859 (1.076)	2542501	11.5823	12
	74 Isopropylbenzene	105	15.966	15.966 (1.083)	6047108	10.5178	11
	75 1,1,2,2-Tetrachloroethane	83	16.393	16.393 (1.112)	2654017	9.91118	9.9
	76 n-Propylbenzene	91	16.457	16.457 (1.117)	6873600	10.8664	11
	77 1,2,3-Trichloropropane	75	16.467	16.468 (1.117)	2003536	10.3531	10
	78 n-Decane	57	16.548	16.548 (1.123)	2259735	9.74432	9.7
	79 4-Ethyltoluene	105	16.590	16.585 (1.126)	6365570	10.8919	11
	80 2-Chlorotoluene	91	16.622	16.622 (1.128)	5378232	10.6691	11
	81 1,3,5-Trimethylbenzene	105	16.660	16.660 (1.130)	5062632	10.3363	10
	82 Alpha Methyl Styrene	118	16.932	16.932 (1.149)	2778835	10.6657	11
	83 tert-butylbenzene	119	17.023	17.023 (1.155)	5055050	10.3662	10
	84 1,2,4-Trimethylbenzene	105	17.092	17.097 (1.160)	4966416	10.1946	10
	85 sec-Butylbenzene	105	17.273	17.273 (1.172)	7420080	10.5272	11
	86 4-Isopropyltoluene	119	17.423	17.423 (1.182)	6492997	10.5708	11
	87 1,3-Dichlorobenzene	146	17.481	17.487 (1.186)	3704128	10.3212	10
	88 1,4-Dichlorobenzene	146	17.594	17.594 (1.194)	3731243	10.3320	10
	89 Benzyl chloride	91	17.738	17.738 (1.204)	3982915	9.79151	9.8
	90 Undecane	57	17.887	17.887 (1.214)	2349432	10.7437	11
	91 n-Butylbenzene	91	17.903	17.903 (1.215)	5421290	11.1717	11
	92 1,2-Dichlorobenzene	146	18.042	18.042 (1.224)	3392280	9.87880	9.9
	93 Dodecane	57	19.243	19.243 (1.306)	1748647	8.29267	8.3
	94 1,2,4-Trichlorobenzene	180	20.219	20.219 (1.372)	2616189	10.2380	10
	95 1,3-Hexachlorobutadiene	225	20.379	20.380 (1.383)	1770292	10.6927	11
	96 Naphthalene	128	20.652	20.652 (1.401)	5933122	10.5124	11
	97 1,2,3-Trichlorobenzene	180	21.084	21.084 (1.431)	2338423	11.3512	11

QC Flag Legend

Q - Qualifier signal failed the ratio test.

Data File: bkak004.d

Client ID: lcs 139387 Operator: pad

Column Type: Capillary
Stationary Phase: RTX-624
Sample Info: lcs 139387
Lab Sample ID: lcs 139387

Date: 06-MAY-2011 13:34

Instrument: B.i
Inj Vol: 200.0
Diameter: 0.32

Page 329 of 429

GC/MS INSTRUMENT RUN LOG

i

Start Date 4 74 11 Time 6.50 Start Date 4 75 Start Date 7)			:)			
Start Date: 4 19 1 Time: AGGO CALSTDIAN SQC CO. Art. Act 115	Sequence			-		Standard	Traceabilit	y.				Instrument Information
Table Date 1/2 1 Time 1/2 T		BKA	- 1	///	1	ISTD Lot	8	0.8				Instrument ID: B
Manager Mana	Test Metho	101	End Date: 4	/11		CAL STD		200	nments			Instrument: 5973
Nametholia Nameder Analyst Nametholia Nametholia	ICAL Date:	~_		-		ICV / LCS		00 00	n ment	~		Column Type: RTX-624
Signature Continue		Manager				Analyst			Analyst			Analyst
Supplementary Supplementar	Name/Initia			Pari Da	ا ما							
Pactor TALS ID Sequence Information Injection TALS ID Summa ETR Dilution Inject Notice Result Notice No	Signature			1000	7							
Injection TALS ID / Summa ETR Dilution Injection TALS ID / Summa ETR Dilution Injection Inject			Sequenc	se Information					Individ	ual Sample	Review	
Time File Name Cap ID 8 F.8 \(\lambda \rangle \) Factor \(\text{#} \) (m1) PAD \(\lambda \rangle \) PAD \(\lambda \rangle \rangle \rangle \rangle \) PAD \(\lambda \rangle	Injection	TALS ID /	Summa	ETR	Difution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
1213	Time		Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
1213	1050	BKA 001		BFB	- U/N		***	PAD	1/V	7	PAD	
1365 005 \$ \$5292 W/A 1357 005 \$ \$343 Level 2 4 1450 005 \$ \$3492 Level 3 1542 005 \$ \$355 Level 5 1727 005 \$ \$2575 Level 5 1727 005 \$ \$2575 Level 5 1727 005 \$ \$2575 Level 5 1727 007 \$ \$4632 VIBEL 2004 001 \$ \$4632 VIBEL 2007 \$ \$4632 VI	1213	002		VIBLK	,	2	200	_	/	7		
1357	1305	620		4/24		3			NIM	+		
1450 005 3482 Level 3 5 6 1 1542 006 2571 Level 4 6 6 6 1 1543 007 2575 Level 5 7 7 9 1 1543 007 2575 Level 6 8 7 9 1 1543 0010 4/32 3484 001	1357	1.00				H			,	7		132517
1542 006 2571 Level 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			_		ک				7		/32507
1634	1		1252			9				7		132424
1727	7		3/22			1 2				7		132422
1819 CDS 2961 Level 7 9 1 1 1 1 1 1 1 1 1	17	800	2575			`≫				7		132406
2054 010 4632 VIBLK 2 2056 012 2874 NA 10 2149 013 4632 VIBLK 2 0843 014 3308 LEV 11 1027 016 5014 ICV 11 114 C 017 4632 VIBLK 1	7	600	2961	Level 7		6				7		1324075
2004 011		0/0				2			7	7		44042111
20.56 012 2874 349 10 10 2149 013 4632 8 VIBUL 2 2 149 019 3308 444 Evel 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	0/1		١, ١	4494T-94	2			7	77		-
3 013 4632 8 VIBUL 2 3 014 3308 JA LEVELL 2 015 H632 VIBUR 1 016 5014 ICV 11 11 L L 11 L L 12 L L 13 VIBUR 1 14 32 VIBUR 1 14 32 VIBUR 1 14 32 VIBUR 1 16 32 VIBUR 1 17 L L 18 L 18 L L 18 L 18 L L 18 L L 18 L 18 L L 18 L 18 L 18 L 18 L 18 L 18 L 18 L 1						10			ļ	ı		15
3 014 3308 44 Level 1 2 NIA L 015 H632 VIBLK 1 1 NI NI NIA LL NI NIA LL NI NIA LL NI	2149					7			7	7		
015 4632 VIBLK // // // // // // // // // // // // //	0843		3308	level	1 1	2			N/A	\		/32521
016 5014 ICV // L L L L L L L L L L L L L L L L L L	6934		4632	VIBLK		_			7	7		K
OPP UNDIT	10.77	016	5014	πc√		<i>[]</i>			7	7		H
	114		4632	ど 子 & こ 尺	7	\	7	7	7	7	7	
THOTH AND												
						-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	man the second case of the case of the second case of the case of			
					7 h	= Q	-					
	,			7.7	J	۵						
				4								
											·	
	8	سترميث تسليده والمستحدة وا										

Legend: C=Complete • R=Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

GC/MS INSTRUMENT RUN LOG

			-			1				-			
.					Standar	ā					Instrument Information	tion	
Batch ID:	タ	Start Date:	5/05/11	Time: 0956	ISTD Lot #:	1# 84580	の 外				Instrument ID: B		
Test Method:	701.5	End Date:	5/06/11	Time: 0956	CAL STD Lot #	`	32424				Instrument: 5973		
ICAL Date:	11/61/1		Manage of the second of the se	531460000 Aug 1 607 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ICV / LCS Lot #	S Lot # / 3	1386	The second secon	300	The state of the s	Column Type: RTX-624	524	
	Manager		Analyst		Analyst			Analyst			Analyst	300	
Name/Initial													
Signature		An are the second secon				and the second second second second	26 B						
		Seque	Sequence Information	Section of the second section is a second section of the second section sectio			# PATE NO. 100	Individ	Individual Sample Réview	Zéview	19 m o 17 m o		
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /	ints /	
Time	File Name	Can ID		Factor	#	(mL)		.Std.	Conc.	. Anal.	Standard Traceability	aceability	
09.56	BKAJ OD!	4/4	BFB	- AIN			PAD	N/A	7	444			
1047	200	2571	CCV	-	`\	2co		7	7	_	AG		
11.37	5003	2887			7	22		7	1		AG		
1227	600	1632	MB	1	7	202		7	7				
7326 H	500	4684	5021-12	2 0.2	h	1000		1	7				
_	900	5036	5026-04	_ ! _ <u>}</u>	S			1	1				
1524	200	3042	50-87-05	16	9	-		1	<		Reclean	Reject	
2/9/31	800	2892	Sec. 7 - 61	1 1:	7	202		7	\		Trippedy R	116 Reja	1 1
60710	6,00	3464		7.	∞	202	,	7	+		IFA 43 R	1:1.5	
780 T	0/0	5695		7.56	5	12		1	7	1	64.7 7b3	<u></u>	j
h58/2	119	2779		/	10	2002		7	7			6	
19.46	012	5/61		/	11	2cD		7	7	-		C	
2039	610	4542	90- 7	9.66 3	71	20		1	" James of		247 Jp2	C.	
2131	614	3257	3008	8 2.99	13	1.9		7	1			Ç.	
2224	510	7996	Sec.5-0	/	14	38		/	1		cdf 4.771	C_{c}	
2316	910	1481	1 -02		15	38		7	1		1.69-	<u></u>	
900 C	110	4928		` '	2	7		7	7		4.531	6	
010	810	3816		_	_	20		7	>	,	84.361	, TCE 9.8	·. ·Z
6154	619	4950	//		2	20		7	>		154.95	5 TCE 12 R.1	089
920	070	3808	9 2)	.	3	3		7	>		74.617	TCE15 R 140	0
0338	021	U957	<u></u>		7	<u>.:</u>		7			7.88 V	C)	
0431	027	4655	C		, چرن	37		7	7		4.63	<u>ر</u>	
0.523	023	3616	PO09		e.	36		7	7		16h.H	Ú	
09 23.	-20	3816	50015-04	54 678	_	28		1	7		Cdf 196.48	Ú	
	A STATE OF THE PARTY OF THE PAR	CLEASURE PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AD		100	~~	•]					
				MA		N V		/		:			
				-111		70/2	110		7)	Control of the last of the las	
1			¥		Le	gend: C=Cα	əmplete •	R≃Reanaly	/ze • ↑ = H	igh • √= Lc	Legend: C=Complete • R=Reanalyze • \uparrow = High • \downarrow = Low • \checkmark =Reviewed and Acceptable	and Acceptable	

Page 28 of 100

BR-FAI002:06.07.10:7 TestAmerica

GC/MS INSTRUMENT RUN LOG

Manager Start Date: S/s s / 11 Time / L/CD Call STD Lots # . 284 S/s S/ 2 / 11 Time / L/CD Call STD Lots # . 284 S/s S/ 2 / 11 Time / L/CD Call STD Lots # . 284 S/s S/ 2 / 11 Time / L/CD Call STD Lots # . 284 S/s S/ 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	Company					0,000	11:40000T		Other Part Transfer			
Manager	i de di di	21 8	-		- 1	Stalluar	מכפמו	(1)				mstrument mormanion
Manager Analyst Analyst Analyst Manager Analyst Manage	Batch ID: 15K	<i>J</i>		106/11	``\	ISTD Lot	T X					Instrument ID: B
Manager	Test Method: ~	7015		107/11	~~	CAL STD	-\	242				Instrument: 5973
Manager Analyst Anal	1	(1 C) (11				ICV/LCS	^	93				Column Type: RTX-624
TALS ID Sequence Information TALS ID	M	anager	A STATE OF THE PARTY OF THE PAR	Analyst		Analyst		A CONTRACTOR OF THE PARTY OF TH	Analyst	de istados becados sesas sessos de la como d	A die in de mais de la company	Analyst
Fig. 10 Sequence Information Index Volume Operator Individual Sample Review	Name/Initial											
TALS ID Summa ETR Dilution Intel Volume Operator Internal Sample Review	Signature	200 P P P P P 200 A A A A A A A A A A A A A A A A A A	3 7 A. A. 17 A. 18		The second of th		67 - 172 E 37 - 175 F			The state of the s		
TALS ID Summa ETR Dilution Intel Volume Operator Internal Result Primary		A Company of the Comp	Sequenc	e Information					Individ	ual Sample F	Review	
File Name Can ID F.F.	Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
BKAKCE I MA BFB MA I 260 AA 2 I PAP AA 3 I AA 3 AA 3 I AA 3	Time	File Name	Can ID		Factor	#	(mL)		Std.	į	. Anal.	Standard Traceability
CCV		SKAKOO1	F76	BFB	N/W	And in contrast of the second	A Marin Mari	PAP	3/A/3/	1	£€	
Cros CCV CCV	1/50	7.20	1257	M/W		_	200	_		YA V		46-14
cvb4 2887 LCS 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1	1242	6.20	C. Janear	100		7			7	7		サ
cvs 46.32 Mns A- 3	1334	620	2887	CCS		7			/	7		46
cre7 5x672	#42S	500	46.32	MB		3			,	-		
Cors	7/5	900	2692	S007-01	1.6.	7	125		· · · · · ·	7		2
000 3808 4956 674 646 46 7	0/97	020 7	3464	-62		10	133		1	1		0
See	70232	820	4750	50-5205		9	76		7	7		Cdfysysyor
OIO 3394 Seconds 6	6755	620	3858	32- FD		7	37		1	7		CA 74,611 C
013 4557 4-05 36 8 32 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1847	0/0	3394	50-0925		Ċν	/ec			4		Calf 4.80 PCE 52/30
012 4923 5cc-12 49.9 9 18	0,46.25	0//		- CS		}⁄o	32		7	\		PCE 52 P
013 4557 - 26 8 6 10 108	20.33	012	4923	5000-12	49.9	Ç	18		in	1 1	-	Cdf. 4,49 DCDFN 270 R
015 5552 5038-61 1 1 200 016 42-7 -01 4 11 50 017 42-8 -01 1 12 200 018 4- 12 200 018 2569 -02 1 12 67 1 1 1 200 020 24 -03 1 13 200 021 3281 -04 1 13 50 022 2- 03 1 14 200 022 2- 04 259 1 15 200 023 5075 -05 1 15 200 024 2-04 259 1 16 200	2125	013	4557	-26		0/	108		7	1		Cdf 4,32 726170 R
015	2217	614		J - 26	39.3	/0/	22		1	<		TCE62 R185
017 4278 -02 1/ 1/ 50	2310	0/5	5052	5038-01	,	11	20c		7	\ \ '		C-
017 4278 -62 1 12 200 1 1 1 200 1 1 1 1 200 1 1 1 1	7000	016	-	10-	عد	1,1	50		7	1		Ċ
018	0055	017	4278	70-		7 /	20-C		7	\\ \	-	0
019 2569 -03 / /3 200	0147	8/0	1	707	55.2	12	67		7	7	,	5
020 -4 - 63 4 , 13 50	0470	6/0	2569	-63	. ,	/3	200		7	< .	1. 3	<i>\</i>
022 3281 -04 1 14 200 023 5075 -05 1 15 200 024 -105 1 15 200 025 5011 -06 1 16 200 026 -20 16 100	0332	020		63	, T	13	SC		1	1		Ú
022	0425	021	3281	10 m	į	14	20C			/		
023 50.75 -0.5 15 200 1	7150	022		10-04	2.99	۲۰ ز ت	67		, some	1		Ú
024 - 15 - 05 5 , 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0610	023	5075	-6.5		~ \2	20C		(marray	/		J
025 5091 -06 7 16	2010	024		20-		5/	40		1	1		J
1 2 -00 - 10 - 16	0755	0.25	5091	90-		16	200		7	/		
107 107	0847	92.0		90-		į	001		1	7		
			2849	TO07		_	200		7	/	7	

Legend: C=Complete • R≂Reanalyze • ↑ = High • ↓= Low • ✓=Reviewed and Acceptable

GC/MS INSTRUMENT RUN LOG

Start Date Society Time 1/CD Start Date Society	1							!						
	Sky	o l				- 1	Т	tandard	raceabilit	_				Instrument Information
Manager	Manager	٦	$\overset{\vee}{\sim}$	Start Date:	100/	1		TD Lot #:						Instrument ID: B
Manager Analyst Analyst Analyst Analyst Analyst	Manager Manager Manager Manager Manager Manager Sequence Information TALS ID / Sequence Information Manager Manage	Test Method:	1	End Date:	~. I	\		AL STD L	ot #					Instrument: 5973
Manager	Manager Analyst Analyst Analyst	ICAL Date:	11/61/h		- 100 CO		01	:V/LCSL	.ot #					Column Type: RTX-624
TALS D	TALS ID Summa ETR		Manager	and Contract the second second	Analyst	Action in the literature of the least of the	A	nalyst			Analyst	A CONTRACTOR CONTRACTO	eli one mana Rochi di di Militario de partiri de la como de la com	Analyst
TALS DV Sugarone information Tals DN Sugarone information	TALS ID Summa ETR Dilution Inle File Name Can ID Sequence Information TALS ID Summa ETR Dilution Inle Factor #	Name/Initial												
Sequence information Sequence information Intel Volume Operator Internal Sample Review Sequence information Intel Volume Operator Internal Sample Review Sequence Internal Sample Review Sequence Internal Sample Review Sequence Internal Sample Review Sequence Internal Sample Review Inte	Sequence Information	Signature	2		2 C C C C C C C C C C C C C C C C C C C	The state of the s				10 mm				
TAS 10 / Summa ETR Dilution Inter Volume Operator Interest Primary Comments Interest Int	TALS ID		And the second of the second o	Seque	ence Informatio	n				Section of the sectio	Individ	ual Sample	Review	
File Name Can ID Factor # (mt) Sold Sol	File Name Can ID Factor ## 5.32	Injection	TALS ID /	Summa		Dille			/olume	Operator	Internal	Result	Primary	Comments /
232 6KAK 028 2839 027 2597 1 67 PAB 12 CPA 027 04 04 04 04 04 04 04 04 04 04 04 04 04	252 8KAK 028 2849 5638-67 2-99 / 2 217 030 240 -68 2 / 2 217 030 24 2-08 2 / 2 217 030 24 2-08 2 / 2 217 030 24 2-08 2 / 2 217 030 24 2-08 2 / 2 218 040 24 2 /	Time	File Name	Can ID		Fac	ctor	#	(mL)		Std	Conc.		Standard Traceability
125 529 3642 -68 2 2 20 4 4 4 4 4 4 4 4 4	27	1032	BKAK 028	2849	5038	2			29	£.4€	7	7	CA-C	
2. 2 /00 d	27 1 030 2 2 2 2	1125	620	2643			, ,		200		1	***************************************		of window
		1217	030	7	1		1		20/	1	7	į	- American	M. marking
							1							1957 TI ACITY AND ROOM (MINISTER BROKE) AND
		P												
		ag												
		е :												
		333												
		3 c								,				
		£									\		,	
		42												
		9											•	
							3	-	1					
 	Parison Carlotte Carl						-						i.	
 	Property of the Property of th				•									
	Property of the Property of th					7						Ţ		
	Proposition of the proposition o												,	
	Property of the first of the fi												3 8	. •
	Proposition of the continued of the cont				\									
	Proposition of the contract of						`	*						
	Proposition of the continue of													
	Proposition of the continue of			-		. ;								-
	Parabone 1-1 and 1-1 a													
	I paged: C-Complete a C-Dampleto a C-Dampleto a C-Dampleto and C-D													The state of the s
	paper C_Complete = O_Department = 1-1 and = 1-1 and = 1-1 and = 1-1													

Page 30 of 100

BR-FAI002:06.07.10:7 TestAmerica

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Start Date: 04/19/2011 10:50

Analysis Batch Number: 16751 End Date: 04/20/2011 11:18

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-16751/1		04/19/2011 10:50	1	bka001.d	RTX-624 0.32 (mm)
VIBLK 200-16751/2		04/19/2011 12:13	1		RTX-624 0.32 (mm)
IC 200-16751/3		04/19/2011 13:05	1		RTX-624 0.32 (mm)
IC 200-16751/4		04/19/2011 13:57	1	bka004.d	RTX-624 0.32 (mm)
IC 200-16751/5		04/19/2011 14:50	1	bka005.d	RTX-624 0.32 (mm)
ICIS 200-16751/6		04/19/2011 15:42	1	bka006.d	RTX-624 0.32 (mm)
IC 200-16751/7		04/19/2011 16:34	1	bka007.d	RTX-624 0.32 (mm)
IC 200-16751/8		04/19/2011 17:27	1	bka008.d	RTX-624 0.32 (mm)
IC 200-16751/9		04/19/2011 18:19	1	bka009.d	RTX-624 0.32 (mm)
VIBLK 200-16751/10		04/19/2011 19:11	1		RTX-624 0.32 (mm)
VIBLK 200-16751/11		04/19/2011 20:04	1		RTX-624 0.32 (mm)
ICV 200-16751/12		04/19/2011 20:56	1		RTX-624 0.32 (mm)
VIBLK 200-16751/13		04/19/2011 21:49	1		RTX-624 0.32 (mm)
IC 200-16751/14		04/20/2011 08:43	1	bka014.d	RTX-624 0.32 (mm)
VIBLK 200-16751/15		04/20/2011 09:34	1		RTX-624 0.32 (mm)
ICV 200-16751/16		04/20/2011 10:27	1	bka016.d	RTX-624 0.32 (mm)
VIBLK 200-16751/17		04/20/2011 11:18	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i _____ Start Date: 05/05/2011 09:56

Analysis Batch Number: 17603 End Date: 05/06/2011 09:23

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-17603/1		05/05/2011 09:56	1	bkaj001.d	RTX-624 0.32 (mm)
CCVIS 200-17603/2		05/05/2011 10:47	1	bkaj002.d	RTX-624 0.32 (mm)
LCS 200-17603/3		05/05/2011 11:37	1	bkaj003.d	RTX-624 0.32 (mm)
MB 200-17603/4		05/05/2011 12:27	1	bkaj004.d	RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 13:26	0.2		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 14:25	0.2		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 15:24	0.2		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 16:17	1		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 17:09	1		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 18:02	74.2		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 18:54	1		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 19:46	1		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 20:39	79.6		RTX-624 0.32 (mm)
ZZZZZ		05/05/2011 21:31	2.99		RTX-624 0.32 (mm)
200-5005-1	SL-118-5	05/05/2011 22:24	25.1	bkaj015.d	RTX-624 0.32 (mm)
200-5005-2	SL-118-20	05/05/2011 23:16	24.7	bkaj016.d	RTX-624 0.32 (mm)
200-5005-3	SL-118-END	05/06/2011 00:09	20.1	bkaj017.d	RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 01:01	1960		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 01:54	1550		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 02:46	746		RTX-624 0.32 (mm)
200-5005-7	SL-022-5	05/06/2011 03:38	19.9	bkaj021.d	RTX-624 0.32 (mm)
200-5005-8	SL-022-20	05/06/2011 04:31	25	bkaj022.d	RTX-624 0.32 (mm)
200-5005-9	SL-022-END	05/06/2011 05:23	24.9	bkaj023.d	RTX-624 0.32 (mm)
200-5005-4	SL-084-5	05/06/2011 09:23	678	bkaj024.d	RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington Job No.: 200-5005-1

SDG No.: 200-5005

Instrument ID: B.i Start Date: 05/06/2011 11:00

Analysis Batch Number: 17703 End Date: 05/07/2011 12:17

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID
BFB 200-17703/1		05/06/2011 11:00	1	bkak001.d	RTX-624 0.32 (mm)
CCVIS 200-17703/2		05/06/2011 11:50	1		RTX-624 0.32 (mm)
CCVIS 200-17703/3		05/06/2011 12:42	1	bkak003.d	RTX-624 0.32 (mm)
LCS 200-17703/4		05/06/2011 13:34	1	bkak004.d	RTX-624 0.32 (mm)
MB 200-17703/5		05/06/2011 14:25	1	bkak005.d	RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 15:17	1.6		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 16:10	1.5		RTX-624 0.32 (mm)
200-5005-5	SL-084-20	05/06/2011 17:02	674	bkak008.d	RTX-624 0.32 (mm)
200-5005-6	SL-084-END	05/06/2011 17:55	403	bkak009.d	RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 18:47	6		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 19:40	30		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 20:33	49.9		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 21:25	8		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 22:17	39.3		RTX-624 0.32 (mm)
ZZZZZ		05/06/2011 23:10	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 00:02	4		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 00:55	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 01:47	2.99		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 02:40	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 03:32	4		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 04:25	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 05:17	2.99		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 06:10	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 07:02	5		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 07:55	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 08:47	2		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 09:40	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 10:32	2.99		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 11:25	1		RTX-624 0.32 (mm)
ZZZZZ		05/07/2011 12:17	2		RTX-624 0.32 (mm)

Post-Sampling Air Canister Pressure Check Record Lab BP Lab Temp Analyst Time Pressure Date Client ID Job (Military) ("Hg) (°C) Gague ID 9.5 650 22 5005 1htle Sampling Information and Return Equipment Check Yes No Comments (1) Is a Field Test Data Sheet (FTDS) or similar sampling documentation present? (2) Is the flow controller ID used for each canister recorded? (3) Is visible sign of damage to canister and/or flow controller (FC) present? If damage observed, list equipment IDs and describe condition: Post-Sampling Return Pressure Check FC FC Return Can Cert Anomaly² Pressure¹ Lab ID Canister ID Comments (Y/N) ID⁵ (Y/N) Batch ID ("Hg) NIA 4658 6-FIB a ¹ Criteria: Return Pressure should be between -1 and -10 ("Hg) ² If return pressure is not within criteria, initiate anomaly report.

Internal Use Only: Flow Controller Date and Page #	NA
--	----

³ Record the ID of the FC used for sampling if information is provided, otherwise leave blank.

Summa Canister Dilution Worksheet

Client: Geosyntec Consultants, Inc.

TestAmerica Job ID: 200-5005-1

Client: 200-5005

	Canister Volume	Preadjusted Pressure	Preadjusted Pressure	Preadjusted Volume	Adjusted Pressure	Adjusted Pressure	Adjusted Volume	Dilution	Final Dilution		
Lab Sample ID	(L)	("Hg)	(atm)	(L)	(psig)	(atm)	(L)	Factor	Factor	Date	Analyst
200-5005-1	1	-6.6	0.78	0.78	39.9	3.71	3.71	4.77	4.77	05/05/11 11:57	Desjardins, William R
200-5005-2	1	-7.5	0.75	0.75	37	3.52	3.52	4.69	4.69	05/05/11 12:00	Desjardins, William R
200-5005-3	1	-5.4	0.82	0.82	39.9	3.71	3.71	4.53	4.53	05/05/11 12:02	Desjardins, William R
200-5005-4	1	-6.9	0.77	0.77	42.3	3.88	3.88	5.04	5.04	05/05/11 12:29	Desjardins, William R
200-5005-4	1	0.0	1.00	1.00	39.9	3.71	3.71	3.71	18.70	05/05/11 12:31	Desjardins, William R
200-5005-4	1	0.0	1.00	1.00	39.7	3.70	3.70	3.70	69.18	05/05/11 12:34	Desjardins, William R
200-5005-4	1	0.0	1.00	1.00	27.1	2.84	2.84	2.84	196.48	05/05/11 12:36	Desjardins, William R
200-5005-5	1	-7.0	0.77	0.77	38.6	3.63	3.63	4.73	4.73	05/05/11 12:20	Desjardins, William R
200-5005-5	1	0	1.00	1.00	39.7	3.70	3.70	3.70	17.50	05/05/11 12:22	Desjardins, William R
200-5005-5	1	0	1.00	1.00	41.1	3.80	3.80	3.80	66.50	05/05/11 12:23	Desjardins, William R
200-5005-5	1	0	1.00	1.00	19.5	2.33	2.33	2.33	154.95	05/05/11 12:25	Desjardins, William R
200-5005-6	1	-6.9	0.77	0.77	41.9	3.85	3.85	5.00	5.00	05/05/11 12:11	Desjardins, William R
200-5005-6	1	0	1.00	1.00	43.9	3.99	3.99	3.99	19.95	05/05/11 12:12	Desjardins, William R
200-5005-6	1	0	1.00	1.00	40.3	3.74	3.74	3.74	74.61	05/05/11 12:16	Desjardins, William R
200-5005-7	1	-6.4	0.79	0.79	41.7	3.84	3.84	4.88	4.88	05/05/11 12:04	Desjardins, William R
200-5005-8	1	-7.1	0.76	0.76	37.2	3.53	3.53	4.63	4.63	05/05/11 12:06	Desjardins, William R
200-5005-9	1	-6.7	0.78	0.78	36.5	3.48	3.48	4.49	4.49	05/05/11 12:08	Desjardins, William R

Formulae:

Preadjusted Volume (L) = (Preadjusted Pressure ("Hg) + 29.92 "Hg * Vol L) / 29.92 "Hg Adjusted Volume (L) = (Adjusted Pressure (psig) + 14.7 psig * Vol L) / 14.7 psig = Adjusted Volume (L) / Preadjusted Volume (L)

Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

Vol = Volume of SUMMA canister at atmospheric pressure

Pre-Shipment Clean Canister Certification Report

				Canister Cle	eaning & Pre-	Shipment Le	ak rest				
		stem ID		# Cycles		Cleaning Da	te	Technic		Canister Siz	e
	<u> </u>	ENI		15	i	1/18/11		5 M	∠ 6Ĺ	(1L)	3L
				1	r	Leak Test					
		Initial ¹	Final	Adjusted Initial ²	١.		tial Rea	ding		Reading	
Port	Can ID	("Hg)	("Hg)	("Hg)	Difference ³	Gauge ID:	ر ـــ ا	 	Gauge ID:	(-) (I	
1_	3616	-29,2	-29.4	-29.4	0-0	Date:	4/18	<u>/1)</u>	Date: 4	7511	
	4950	-		 		Time:	<u> 153</u>	3	Time: C	76	
3	4958	 	 	 	 	Tech: BP:	70	- ,	Tech: V	9.6	/"LI
5	3576		 	 	 	Temp	7	<u> </u>	Temp: $\sqrt{2}$	1	("H
6	4662	 	 	· /		³ Acceptance	Criteria		Temp.	<u> </u>	
7	3811		 		-	1			n or equal to + 0	.5	
8	3816	4_	 			1 ' '			east 24 hours ap		
9			-		~	1			must authorize s		anist
10						PM Authoriza	ation:				
11											
12						Signature				Date	
100	alculate Differe	ence, subtr	act the Adju	sted Initial Pressure	from the Final	Pressure (Se	e Accep	tance Criteria)			
	Method: □T0	O15 Routir	Clean Ca	sted Initial Pressure anister Certification LL DNJDEP-LLTC	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	ory Second	lary Review	
est	Method: □T0		Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se	of Rele	tance Criteria)	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL DNJDEP-LLTC	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	ory Second	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
est	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
rest	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
rest	Method: □T0	O15 Routir	Clean Cane TO15	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence	Analysis & A	Pressure (Se authorization Inv	of Rele	tance Criteria) ase to Invente	Second Review Date	lary Review	wer
3	Method: □TO	Data Data	act the Adju Clean Ca te □ TO15 te ℓ / /	sted Initial Pressure anister Certification LL DIDEP-LL TO Sequence GPIB	Analysis & A O15 Analyst WW	Pressure (Se suthorization inv	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited	Second Review Date	lary Review	wer
3	Method: □TO Can ID 576 tory Level 1: I	Datin	Clean Cate D TO15	sted Initial Pressure anister Certification LL DIDEP-LL TO Sequence G-F1B	Analysis & A Analysis & A Analyst WW ed clean to Ri	Pressure (Se suthorization inv 1 2 state in late	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited	Second Review Date	lary Review	wer
3 nven	Method: □TO Can ID 576 tory Level 1: It	Data Data Data Data Data Data Data Data	Clean Cate TO15 To T	sted Initial Pressure : anister Certification LL DIJDEP-LL TO Sequence G-FIB ification Only. Certified cle	Analysis &	Pressure (Se uthorization Inv 1 2 s listed in late	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited	Second Review Date	lary Review	wer
3 nven	Method: □TO Can ID 576 tory Level 1: Itory Level 2: Itory Level 3: Itory Level 3	Dating Da	Clean Cate TO15 To T	sted Initial Pressure anister Certification LL DIJDEP-LL TO Sequence G-PIB ification Only. Certification. Certified cle	Analysis & Analyst Analyst Analyst WWW ed clean to Rian to 0.04 ppl an to 0.20 ppl	Pressure (Secution Invariant Invaria	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited SOP for LLTO	Second Review Date	Review Review	wer
nven	Method: □TO Can ID 576 tory Level 1: Itory Level 2: Itory Level 3: Itory Level 4: I	Datin	Clean Cate TO15 To T	sted Initial Pressure : anister Certification LL DIJDEP-LL TO Sequence G-FIB ification Only. Certified cle	Analysis & A Analysis & A Analyst An	Pressure (Security of Security	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited SOP for LLTO	Second Review Date	Review Review	wer
nven nven nven nven nven	Method: □TO Can ID 576 tory Level 1: Itory Level 2: Itory Level 3: Itory Level 4: Itory Level 4	Datin	Clean Cate TO15 To T	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence C-113 ification Only. Certification. Certified cle ification. Certified cle ification. Certified cle ification. Certified cle	Analysis & A Analysis & A Analyst An	Pressure (Security of Security	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited SOP for LLTO	Second Review Date	Review Review	wer
nven nven nven nven nven	Method: □TO Can ID 576 tory Level 1: Itory Level 2: Itory Level 3: Itory Level 4: I	Datin	Clean Cate TO15 To T	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence C-113 ification Only. Certification. Certified cle ification. Certified cle ification. Certified cle ification. Certified cle	Analysis & A Analysis & A Analyst An	Pressure (Security of Security	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited SOP for LLTO	Second Review Date	Review Review	wer
nven nven nven nven nven	Method: □TO Can ID 576 tory Level 1: Itory Level 2: Itory Level 3: Itory Level 4: Itory Level 4	Datin	Clean Cate TO15 To T	sted Initial Pressure anister Certification LL NJDEP-LL TO Sequence C-113 ification Only. Certification. Certified cle ification. Certified cle ification. Certified cle ification. Certified cle	Analysis & A Analysis & A Analyst An	Pressure (Security of Security	e Accep of Rele entory I 3	tance Criteria) ase to Invento Level 4 Limited SOP for LLTO	Second Review Date	Review Review	wer

200-4733-A-5 3576 Enertamerica Souther Summa Canister 1L Sampled: 4/18/2011 12:00 AM 200-134663

Loc: 200 4733 #5

200-4733-A-5

Pre-Shipment Clean Canister Certification Report

				Canister Cle	eaning & Pre	-Shipment Le	ak Tes	t					
	Sys	stem ID		# Cycles		Cleaning Dat	te		Techņicia	an	С	anister	Size
	0	UFNI	2	15		H18/11			(1)		6L	/1L	3L
						Leak Test							<i>,</i>
		Initial ¹	Final	Adjusted Initial ²		Ini	tial Re	ading			Final	Reading	
Port	Can ID	("Hg)	("Hg)	("Hg)	Difference	Gauge ID:	\mathcal{C}	Π,		Gauge	ID: <i>(</i>	-1,	
1	4641	-29.2	-29.4	-29.4	0.0	Date:	47	8/11	•	Date:	4/2	5/11	
2	4661	1	<u> </u>	1	,	Time:	15	35		Time:	141	<u></u>	
3	3572					Tech:	5			Tech:	UP		
4	3812					BP:	29	. <i>4</i> /	("Hg)	BP:	79.	6	("H
5	4658					Temp	Z	2	(°C)	Temp:	22		(°(
6	4957					³ Acceptance	Criteri	a:					
7	3808					(1) The differ	rence n	nust be	e less tha	n or equ	al to + 0.	5	
8	4655	<u></u>			<u> </u>	(2) Pressure	readin	gs mus	st be at le	ast 24 h	ours apa	rt.	
9						If time frame	was n	ot met,	the PM	must au	thorize sl	nipment	of canist
10						PM Authoriza	ation:						
11						·							
12				_		Signature				_		ate	
Test	Method:	O15 Routin		LL ANDEP-LL TO		Authorization Inv	of Rel			ry	Seconda	ary Revi	ew
Test	Method: □To	O15 Routin	e 🗆 TO15							Revie	w Date	T	ew viewer
Test			e 🗆 TO15	LL I NJDEP-LL TO)15	Inv	entory	Level			w Date	T	
Test			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
Test			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
Test 46			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
Test 46			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
Test			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
Test			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
<u>4</u> 6			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
<u>4</u> 6			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
146			e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
<u>4</u> (e 🗆 TO15	LL I NJDEP-LL TO	Analyst	Inv	entory	Level		Revie	w Date	T	
46	Can ID	Dat Y[IS]	e TO15	Sequence GFDB	Analyst W/L/	1 2	entory 3	Level	Limited	Reyid OH	w Date	T	
446	Can ID	Dat Y/L S/	e ITO15	LL I NJDEP-LL TO	Analyst W/L/) ied clean to I	1 2	entory 3	Level	Limited	Reyid OH	w Date	T	
446	Can ID	Dat Y/l S/	e TO15	Sequence G-F-DB ification Only. Certification	Analyst W/2/) ied clean to I can to 0.04 p	1 2 2 RLs listed in lateby.	entory 3	Level	Limited	Reyid OH	w Date	T	
Inver	can ID S story Level 1: atory Level 2: atory Level 3:	Dat Y S Individual C Individual o Individual o	e TO15	Sequence G-F-DB ification Only. Certification. Certified clean	Analyst W/R/ ied clean to I ean to 0.04 p	1 2 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A	sentory 3	y Level	Limited for LLTO	Reylin OH	ew Pate	Re K\	viewer
Inver	tory Level 1: tory Level 3: tory Level 4:	Individual o	e TO15 e	Sequence G-F-F-B ification Only. Certification. Certified cleaning control of the control of t	Analyst W/2/ ied clean to I ean to 0.20 pean following	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sentory 3	y Level	Limited for LLTO	Reylin OH	ew Pate	Re K\	viewer
Inversi	tory Level 1: tory Level 3: tory Level 4:	Individual o	e TO15 e	Sequence G-F-DB ification Only. Certification. Certified cleaning control of the control of th	Analyst W/2/ ied clean to I ean to 0.20 pean following	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sentory 3	y Level	Limited for LLTO	Reylin OH	ew Pate	Re K\	viewer
Inversion	tory Level 1: tory Level 2: tory Level 3: tory Level 4: tory Level Lim	Individual o	e TO15 e	Sequence G-F-DB ification Only. Certification. Certified cleaning control of the control of th	Analyst W/2/ ied clean to I ean to 0.20 pean following	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sentory 3	y Level	Limited for LLTO	Reylin OH	ew Pate	Re K\	viewer

BR-FAI023:10.19.0 200-4735-A-5

TestAmerica 200-4735-A-5

Location: Air-Storage
Bottle: Summa Canister 1L
Sampled: 4/18/2011 12:00 AM 200-134671

Page 340 of 429

Loc: 200

4735

#5

200-4735-A-5

Lab Name	TestAmerica Burlington		Job No.: 200-4733-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: gfib003.d	
Lab ID:	LCS 200-16738/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	% ПСЭ	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	π
Propylene	10.0	8.95	90		
Dichlorodifluoromethane	10.0	9.45	95	70-130	
Freon 22	10.0	9.56	96		
1,2-Dichlorotetrafluoroethane	10.0	9.70	97	70-130	
Chloromethane	10.0	9.56	96	70-130	
n-Butane	10.0	9.59	96	70-130	
Vinyl chloride	10.0	9.86	99		
1,3-Butadiene	10.0	10.1	101	70-130	
Bromomethane	10.0	9.44	94	70-130	
Chloroethane	10.0	9.82	98	70-130	
Bromoethene (Vinyl Bromide)	10.0	10.4	104	70-130	
Trichlorofluoromethane	10.0	9.72	97	70-130	
Ethanol	15.0	15.4	102	70-130	
Freon TF	10.0	10.7	107		
1,1-Dichloroethene	10.0	11.0	110		
Acetone	10.0	10.8	108		
Isopropyl alcohol	10.0	9.68	97	70-130	
Carbon disulfide	10.0	10.1	101	70-130	
3-Chloropropene	10.0	10.2	102	70-130	
Methylene Chloride	10.0	10.5	102	70-130	
tert-Butyl alcohol	10.0	9.17	92	70-130	
Methyl tert-butyl ether	10.0	10.6	106		
trans-1,2-Dichloroethene	10.0	9.95	100		
n-Hexane	10.0	10.0	100		
1,1-Dichloroethane	10.0	10.1	100	70-130	
Vinyl acetate	10.0	10.6	101		
Ethyl acetate	10.0	10.6	106		
Methyl Ethyl Ketone	10.0	10.6	106		
cis-1,2-Dichloroethene	10.0	10.3	103		
Chloroform	10.0	9.98	100		
Tetrahydrofuran	10.0	10.0	100		
1,1,1-Trichloroethane	10.0	9.44	94	70-130	
Cyclohexane	10.0	9.41	94		
Carbon tetrachloride	10.0	9.34	93		
2,2,4-Trimethylpentane	10.0	9.68	97		
Benzene	10.0	9.52	95	70-130	
1,2-Dichloroethane	10.0	9.48	95	70-130	
n-Heptane	10.0	9.50	95	70-130	
Trichloroethene	10.0	9.32	93	70-130	
Methyl methacrylate	10.0	10.2	102	70-130	
1,2-Dichloropropane	10.0	9.45	94	70-130	
1,4-Dioxane	10.0				
I,4-DIOXalle	10.0	8.44	84	/0-130	

 $[\]ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Buri	Lington	Job No.: 200-4733-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: gfib003.d	
Lab ID:	LCS 200-16738/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	ુ	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Bromodichloromethane	10.0	9.95	100		
cis-1,3-Dichloropropene	10.0	9.51	95		
methyl isobutyl ketone	10.0	9.49	95	70-130	
Toluene	10.0	9.53	95	70-130	
trans-1,3-Dichloropropene	10.0	9.59	96	70-130	
1,1,2-Trichloroethane	10.0	9.19	92	70-130	
Tetrachloroethene	10.0	9.47	95	70-130	
Methyl Butyl Ketone (2-Hexanone)	10.0	9.50	95	70-130	
Dibromochloromethane	10.0	10.5	105	70-130	
1,2-Dibromoethane	10.0	9.72	97	70-130	
Chlorobenzene	10.0	9.48	95	70-130	
Ethylbenzene	10.0	9.85	99	70-130	
m,p-Xylene	20.0	19.6	98	70-130	
Xylene, o-	10.0	9.69	97	70-130	
Styrene	10.0	10.3	103	70-130	
Bromoform	10.0	10.8	108	70-130	
Cumene	10.0	10.0	100	70-130	
1,1,2,2-Tetrachloroethane	10.0	9.58	96	70-130	
n-Propylbenzene	10.0	10.3	103	70-130	
4-Ethyltoluene	10.0	10.5	105	70-130	
1,3,5-Trimethylbenzene	10.0	10.0	100	70-130	
2-Chlorotoluene	10.0	10.0	100		
tert-Butylbenzene	10.0	10.2	102	70-130	
1,2,4-Trimethylbenzene	10.0	9.98	100	70-130	
sec-Butylbenzene	10.0	10.3	103	70-130	
4-Isopropyltoluene	10.0	10.9	109	70-130	
1,3-Dichlorobenzene	10.0	10.2	102	70-130	
1,4-Dichlorobenzene	10.0	10.3	103	70-130	
Benzyl chloride	10.0	11.0	110	70-130	
n-Butylbenzene	10.0	11.5	115	70-130	
1,2-Dichlorobenzene	10.0	9.82	98	70-130	
1,2,4-Trichlorobenzene	10.0	8.97	90	70-130	
Hexachlorobutadiene	10.0	10.4	104	70-130	
Naphthalene	10.0	8.95	89	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

Lab Name	e: TestAmerica Buri	lington	Job No.: 200-4735-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: gfib003.d	
Lab ID:	LCS 200-16738/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	%	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Propylene	10.0	8.95	90	70-130	
Dichlorodifluoromethane	10.0	9.45	95	70-130	
Freon 22	10.0	9.56	96		
1,2-Dichlorotetrafluoroethane	10.0	9.70	97	70-130	
Chloromethane	10.0	9.56	96		
n-Butane	10.0	9.59	96	70-130	
Vinyl chloride	10.0	9.86	99	70-130	
1,3-Butadiene	10.0	10.1	101	70-130	
Bromomethane	10.0	9.44	94	70-130	
Chloroethane	10.0	9.82	98	70-130	
Bromoethene (Vinyl Bromide)	10.0	10.4	104	70-130	
Trichlorofluoromethane	10.0	9.72	97	70-130	
Ethanol	15.0	15.4	102	70-130	
Freon TF	10.0	10.7	107	70-130	
1,1-Dichloroethene	10.0	11.0	110		
Acetone	10.0	10.8	108	70-130	
Isopropyl alcohol	10.0	9.68	97	70-130	
Carbon disulfide	10.0	10.1	101	70-130	
3-Chloropropene	10.0	10.2	102	70-130	
Methylene Chloride	10.0	10.5	105	70-130	
tert-Butyl alcohol	10.0	9.17	92	70-130	
Methyl tert-butyl ether	10.0	10.6	106	70-130	
trans-1,2-Dichloroethene	10.0	9.95	100	70-130	
n-Hexane	10.0	10.0	100		
1,1-Dichloroethane	10.0	10.1	101	70-130	
Vinyl acetate	10.0	10.6	106		
Ethyl acetate	10.0	10.6	106		
Methyl Ethyl Ketone	10.0	10.6	106		
cis-1,2-Dichloroethene	10.0	10.3	103		
Chloroform	10.0	9.98	100		
Tetrahydrofuran	10.0	10.0	100		
1,1,1-Trichloroethane	10.0	9.44	94	70-130	
Cyclohexane	10.0	9.41	94	70-130	
Carbon tetrachloride	10.0	9.34	93		
2,2,4-Trimethylpentane	10.0	9.68	97	70-130	
Benzene	10.0	9.52	95		
1,2-Dichloroethane	10.0	9.48	95	70-130	
n-Heptane	10.0	9.50	95	70-130	
Trichloroethene	10.0	9.32	93		
Methyl methacrylate	10.0	10.2	102	70-130	
1,2-Dichloropropane	10.0	9.45	94		
1,4-Dioxane	10.0	8.44	84		
1, 1 21024110	1	0.44	1 04	, 0 100	

[#] Column to be used to flag recovery and RPD values

Lab Name	e: TestAmerica Buri	lington	Job No.: 200-4735-1	
SDG No.:				
Matrix:	Air	Level: Low	Lab File ID: gfib003.d	
Lab ID:	LCS 200-16738/3		Client ID:	

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	્ર	LIMITS	#
COMPOUND	(ppb v/v)	(ppb v/v)	REC	REC	
Bromodichloromethane	10.0	9.95	100		
cis-1,3-Dichloropropene	10.0	9.51	95	70-130	
methyl isobutyl ketone	10.0	9.49	95		
Toluene	10.0	9.53	95	70-130	
trans-1,3-Dichloropropene	10.0	9.59	96	70-130	
1,1,2-Trichloroethane	10.0	9.19	92	70-130	
Tetrachloroethene	10.0	9.47	95	70-130	
Methyl Butyl Ketone	10.0	9.50	95	70-130	
(2-Hexanone)					
Dibromochloromethane	10.0	10.5	105		
1,2-Dibromoethane	10.0	9.72	97		
Chlorobenzene	10.0	9.48	95		
Ethylbenzene	10.0	9.85	99		
m,p-Xylene	20.0	19.6	98		
Xylene, o-	10.0	9.69	97		
Styrene	10.0	10.3	103		
Bromoform	10.0	10.8	108		
Cumene	10.0	10.0	100		
1,1,2,2-Tetrachloroethane	10.0	9.58	96		
n-Propylbenzene	10.0	10.3	103		
4-Ethyltoluene	10.0	10.5	105		
1,3,5-Trimethylbenzene	10.0	10.0	100		
2-Chlorotoluene	10.0	10.0	100		
tert-Butylbenzene	10.0	10.2	102		
1,2,4-Trimethylbenzene	10.0	9.98	100		
sec-Butylbenzene	10.0	10.3	103	70-130	
4-Isopropyltoluene	10.0	10.9	109	70-130	
1,3-Dichlorobenzene	10.0	10.2	102	70-130	
1,4-Dichlorobenzene	10.0	10.3	103	70-130	
Benzyl chloride	10.0	11.0	110	70-130	
n-Butylbenzene	10.0	11.5	115	70-130	
1,2-Dichlorobenzene	10.0	9.82	98	70-130	
1,2,4-Trichlorobenzene	10.0	8.97	90	70-130	
Hexachlorobutadiene	10.0	10.4	104	70-130	
Naphthalene	10.0	8.95	89	70-130	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III TO-15

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1			
SDG No.:				
Lab File ID: gfib005.d	Lab Sample ID: MB 200-16738/5			
Matrix: Air	Heated Purge: (Y/N) N			
Instrument ID: G.i	Date Analyzed: 04/19/2011 12:25			
GC Column: RTX-624 ID: 0.32(mm)				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-16738/3	gfib003.d	04/19/2011 10:28
3576	200-4733-5	gfib026.d	04/20/2011 06:25

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-16738/5			
Matrix: Air	Lab File ID: gfib005.d			
Analysis Method: TO-15	Date Collected:			
Sample wt/vol: 200(mL)	Date Analyzed: 04/19/2011 12:25			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 16738	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	Ŭ	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	Ŭ	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-16738/5			
Matrix: Air	Lab File ID: gfib005.d			
Analysis Method: TO-15	Date Collected:			
Sample wt/vol: 200(mL)	Date Analyzed: 04/19/2011 12:25			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 16738	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1			
SDG No.:				
Client Sample ID:	Lab Sample ID: MB 200-16738/5			
Matrix: Air	Lab File ID: gfib005.d			
Analysis Method: TO-15	Date Collected:			
Sample wt/vol: 200(mL)	Date Analyzed: 04/19/2011 12:25			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 16738	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Page 1

Report Date: 20-Apr-2011 09:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d

Lab Smp Id: mb Client Smp ID: mb

Inj Date : 19-APR-2011 12:25

Operator : wrd Inst ID: G.i

Smp Info : mb

Misc Info: 200,1,mb

Comment :

Method : /chem/G.i/Gsvr.p/gfibto15.b/to15v5.m

Meth Date: 20-Apr-2011 09:40 wrd Quant Type: ISTD Cal Date: 15-APR-2011 16:40 Cal File: gfi010.d Als bottle: 4 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

Name	Value	Description
DF Uf	1.00000 1.00000	Dilution Factor ng unit correction factor
Vo	200.00000	Sample Volume purged (mL)
Vf	200.00000	Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Report Date: 20-Apr-2011 09:40

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
=======================================	====	==	=====	=====	======	======	======
15 Ethanol	45	Com	pound No	t Detected	•		
16 Ethyl ether	59	Com	pound No	t Detected			
17 1,1,2-Trichloro-1,2,2-trifluo	101	Com	pound No	t Detected			
18 Acrolein	56	Com	pound No	t Detected			
19 1,1-Dichloroethene	96	Com	pound No	t Detected			
20 Acetone	43	Com	pound No	t Detected	•		
21 Carbon disulfide	76	Com	pound No	t Detected	•		
22 Isopropanol	45	Com	pound No	t Detected			
23 Allyl chloride	41	Com	pound No	t Detected	•		
24 Acetonitrile	41	Com	pound No	t Detected			
25 Methylene chloride	49	Com	pound No	t Detected			
26 Tert-butyl alcohol	59	Com	pound No	t Detected			
27 Methyl tert-butyl ether	73	Com	pound No	t Detected			
28 1,2-Dichloroethene (trans)	61	Com	pound No	t Detected			
29 Acrylonitrile	53	Com	pound No	t Detected			
30 n-Hexane	57	Com	pound No	t Detected			
31 1,1-Dichloroethane	63	Com	pound No	t Detected			
32 Vinyl acetate	43	Com	pound No	t Detected			
M 33 1,2-Dichloroethene,Total	61	Com	pound No	t Detected			
34 1,2-Dichloroethene (cis)	96	Comp	pound No	t Detected			
35 Ethyl acetate	88	Com	pound No	t Detected			
36 Methyl Ethyl Ketone	72	Com	pound No	t Detected			
* 37 Bromochloromethane	128	9.499	9.504	(1.000)	485974	10.0000	
38 Tetrahydrofuran	42	Com	pound No	t Detected	•		
39 Chloroform	83	Com	pound No	t Detected	•		
40 Cyclohexane	84	Com	pound No	t Detected	•		
41 1,1,1-Trichloroethane	97	Com	pound No	t Detected			
42 Carbon tetrachloride	117	Com	pound No	t Detected	•		
43 2,2,4-Trimethylpentane	57	Com	pound No	t Detected	•		
44 Benzene	78	Com	pound No	t Detected			
45 1,2-Dichloroethane	62	Com	pound No	t Detected	•		
46 n-Heptane	43	Com	pound No	t Detected			
* 47 1,4-Difluorobenzene	114	10.906	10.911	(1.000)	2279145	10.0000	
48 n-Butanol	56	Com	pound No	t Detected			
49 Trichloroethene	95	Com	pound No	t Detected			
50 1,2-Dichloropropane	63	Com	pound No	t Detected			
51 Methyl methacrylate	69	Com	pound No	t Detected			
52 Dibromomethane	174	Com	pound No	t Detected	•		
53 1,4-Dioxane	88	Com	pound No	t Detected			
54 Bromodichloromethane	83	Com	pound No	t Detected			
55 1,3-Dichloropropene (cis)	75		_	t Detected			
56 Methyl isobutyl ketone	43	•	-	t Detected			
57 n-Octane	43	-	_	t Detected			
58 Toluene	92			t Detected			
59 1,3-Dichloropropene (trans)	75			t Detected			
60 1,1,2-Trichloroethane	83	-	_	t Detected			
61 Tetrachloroethene	166	Com	pound No	t Detected			

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Report Date: 20-Apr-2011 09:40

		QUANT SIG	CONCENTRATIONS ON-COLUMN FINAL
Co	ompounds	MASS	${\tt RT} \qquad {\tt EXP} \ {\tt RT} \ {\tt REL} \ {\tt RT} \qquad {\tt RESPONSE} \qquad ({\tt ppb} \ {\tt v/v}) \qquad ({\tt ppb} \ {\tt v/v})$
==		====	
	62 2-Hexanone	43	Compound Not Detected.
	63 Dibromochloromethane	129	Compound Not Detected.
	64 1,2-Dibromoethane	107	Compound Not Detected.
*	65 Chlorobenzene-d5	117	15.025 15.031 (1.000) 1912412 10.0000
	66 Chlorobenzene	112	Compound Not Detected.
	67 n-Nonane	57	Compound Not Detected.
	68 Ethylbenzene	91	Compound Not Detected.
	69 Xylene (m,p)	106	Compound Not Detected.
M	70 Xylenes, Total	106	Compound Not Detected.
	71 Xylene (o)	106	Compound Not Detected.
	72 Styrene	104	Compound Not Detected.
	73 Bromoform	173	Compound Not Detected.
	74 Isopropylbenzene	105	Compound Not Detected.
	75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
	76 n-Propylbenzene	91	Compound Not Detected.
	77 1,2,3-Trichloropropane	75	Compound Not Detected.
	78 n-Decane	57	Compound Not Detected.
	79 4-Ethyltoluene	105	Compound Not Detected.
	80 2-Chlorotoluene	91	Compound Not Detected.
	81 1,3,5-Trimethylbenzene	105	Compound Not Detected.
	82 Alpha Methyl Styrene	118	Compound Not Detected.
	83 tert-butylbenzene	119	Compound Not Detected.
	84 1,2,4-Trimethylbenzene	105	Compound Not Detected.
	85 sec-Butylbenzene	105	Compound Not Detected.
	86 4-Isopropyltoluene	119	Compound Not Detected.
	87 1,3-Dichlorobenzene	146	Compound Not Detected.
	88 1,4-Dichlorobenzene	146	Compound Not Detected.
	89 Benzyl chloride	91	Compound Not Detected.
	90 Undecane	57	Compound Not Detected.
	91 n-Butylbenzene	91	Compound Not Detected.
	92 1,2-Dichlorobenzene	146	Compound Not Detected.
	93 Dodecane	57	Compound Not Detected.
	94 1,2,4-Trichlorobenzene	180	Compound Not Detected.
	95 1,3-Hexachlorobutadiene	225	Compound Not Detected.
	96 Naphthalene	128	Compound Not Detected.
	97 1,2,3-Trichlorobenzene	180	Compound Not Detected.

Data File: gfib005.d

Client ID: mb
Operator: wrd

Column Type: Capillary

Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Date: 19-APR-2011 12:25

Instrument: G.i
Inj Vol: 200.0
Diameter: 0.32

Page 352 of 429

FORM IV AIR - GC/MS VOA METHOD BLANK SUMMARY

Lab Name: TestAmerica Burlington		Job No.: 200-4735-1		
SDG No.:				
Lab File ID:	gfib005.d		Lab Sample ID:	MB 200-16738/5
Matrix: Air			Heated Purge: (Y	/N) N
Instrument II): <u>G.</u> i		Date Analyzed:	04/19/2011 12:25
GC Column: R	TX-624	ID: <u>0.32 (mm)</u>		

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 200-16738/3	gfib003.d	04/19/2011 10:28
4658	200-4735-5	gfib027.d	04/20/2011 07:16

Job No.: 200-4735-1
Lab Sample ID: MB 200-16738/5
Lab File ID: gfib005.d
Date Collected:
Date Analyzed: 04/19/2011 12:25
Dilution Factor: 1
GC Column: RTX-624 ID: 0.32 (mm)
Level: (low/med) Low
Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	U	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4735-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-16738/5
Matrix: Air	Lab File ID: gfib005.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 04/19/2011 12:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16738	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4735-1
SDG No.:	
Client Sample ID:	Lab Sample ID: MB 200-16738/5
Matrix: Air	Lab File ID: gfib005.d
Analysis Method: TO-15	Date Collected:
Sample wt/vol: 200(mL)	Date Analyzed: 04/19/2011 12:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16738	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Page 1

Report Date: 20-Apr-2011 09:40

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Data file : /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d

Lab Smp Id: mb Client Smp ID: mb

Inj Date : 19-APR-2011 12:25

Operator : wrd Inst ID: G.i

Smp Info : mb

Misc Info : 200,1,mb

Comment :

Method : /chem/G.i/Gsvr.p/gfibto15.b/to15v5.m

Meth Date: 20-Apr-2011 09:40 wrd Quant Type: ISTD Cal Date: 15-APR-2011 16:40 Cal File: gfi010.d Als bottle: 4 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====	== ====== ======	======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
11 2-Methylbutane	43	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
14 Pentane	43	Compound Not Detected.	

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Report Date: 20-Apr-2011 09:40

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ppb v/v)	(ppb v/v)
		====	==	=====	=====		======	======
15 Etha	anol	45	Con	npound No	t Detected	١.		
16 Eth	yl ether	59	Con	npound No	t Detected	١.		
17 1,1,	,2-Trichloro-1,2,2-trifluo	101	Con	npound No	t Detected	١.		
18 Acro	olein	56	Con	npound No	t Detected	١.		
19 1,1-	-Dichloroethene	96	Con	npound No	t Detected	١.		
20 Acet	cone	43	Con	npound No	t Detected	١.		
21 Cark	oon disulfide	76	Con	npound No	t Detected	١.		
22 Isop	propanol	45	Con	npound No	t Detected	١.		
23 Ally	vl chloride	41	Con	npound No	t Detected	١.		
24 Acet	conitrile	41	Con	npound No	t Detected	١.		
25 Meth	nylene chloride	49	Con	npound No	t Detected	١.		
26 Tert	-butyl alcohol	59	Con	npound No	t Detected	١.		
27 Meth	nyl tert-butyl ether	73	Con	npound No	t Detected	١.		
28 1,2-	-Dichloroethene (trans)	61	Con	npound No	t Detected	١.		
29 Acry	ylonitrile	53	Con	npound No	t Detected	١.		
30 n-H€	exane	57	Con	npound No	t Detected	١.		
31 1,1-	-Dichloroethane	63	Con	npound No	t Detected	١.		
32 Viny	yl acetate	43	Con	npound No	t Detected	١.		
M 33 1,2-	-Dichloroethene,Total	61	Con	npound No	t Detected	١.		
34 1,2-	-Dichloroethene (cis)	96	Con	npound No	t Detected	١.		
35 Ethy	yl acetate	88	Con	npound No	t Detected	l.		
36 Meth	nyl Ethyl Ketone	72	Con	npound No	t Detected	l.		
* 37 Bron	nochloromethane	128	9.499	9.504	(1.000)	485974	10.0000	
38 Tetr	rahydrofuran	42	Con	npound No	t Detected	l.		
39 Chlo	proform	83	Con	npound No	t Detected	l.		
40 Cycl	lohexane	84	Con	npound No	t Detected	١.		
41 1,1,	,1-Trichloroethane	97	Con	npound No	t Detected	١.		
42 Cark	oon tetrachloride	117	Con	npound No	t Detected	١.		
43 2,2,	,4-Trimethylpentane	57	Con	npound No	t Detected	l.		
44 Benz	zene	78	Con	npound No	t Detected	١.		
45 1,2-	-Dichloroethane	62	Con	npound No	t Detected	١.		
46 n-He	eptane	43	Con	npound No	t Detected	l.		
* 47 1,4-	-Difluorobenzene	114	10.906	5 10.911	(1.000)	2279145	10.0000	
48 n-Bu	ıtanol	56	Con	npound No	t Detected	l.		
49 Tric	chloroethene	95	Con	npound No	t Detected	l.		
50 1,2-	-Dichloropropane	63	Con	npound No	t Detected	١.		
51 Meth	nyl methacrylate	69	Con	npound No	t Detected	١.		
52 Dibr	romomethane	174	Con	npound No	t Detected	١.		
53 1,4-	-Dioxane	88	Con	npound No	t Detected	١.		
54 Brom	nodichloromethane	83	Con	npound No	t Detected	١.		
55 1,3-	-Dichloropropene (cis)	75	Con	npound No	t Detected	١.		
56 Meth	nyl isobutyl ketone	43	Con	npound No	t Detected	١.		
57 n-0d	ctane	43	Con	npound No	t Detected	١.		
58 Tolu	iene	92	Con	npound No	t Detected	١.		
59 1,3-	-Dichloropropene (trans)	75	Con	npound No	t Detected	l.		
60 1,1,	,2-Trichloroethane	83	Con	npound No	t Detected	l.		
61 Tetr	rachloroethene	166	Con	npound No	t Detected	l.		

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib005.d Report Date: 20-Apr-2011 09:40

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======================================	====	
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	15.025 15.031 (1.000) 1912412 10.0000
66 Chlorobenzene	112	Compound Not Detected.
67 n-Nonane	57	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.
72 Styrene	104	Compound Not Detected.
73 Bromoform	173	Compound Not Detected.
74 Isopropylbenzene	105	Compound Not Detected.
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.
76 n-Propylbenzene	91	Compound Not Detected.
77 1,2,3-Trichloropropane	75	Compound Not Detected.
78 n-Decane	57	Compound Not Detected.
79 4-Ethyltoluene	105	Compound Not Detected.
80 2-Chlorotoluene	91	Compound Not Detected.
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.
82 Alpha Methyl Styrene	118	Compound Not Detected.
83 tert-butylbenzene	119	Compound Not Detected.
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.
85 sec-Butylbenzene	105	Compound Not Detected.
86 4-Isopropyltoluene	119	Compound Not Detected.
87 1,3-Dichlorobenzene	146	Compound Not Detected.
88 1,4-Dichlorobenzene	146	Compound Not Detected.
89 Benzyl chloride	91	Compound Not Detected.
90 Undecane	57	Compound Not Detected.
91 n-Butylbenzene	91	Compound Not Detected.
92 1,2-Dichlorobenzene	146	Compound Not Detected.
93 Dodecane	57	Compound Not Detected.
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.
96 Naphthalene	128	Compound Not Detected.
97 1,2,3-Trichlorobenzene	180	Compound Not Detected.

Data File: gfib005.d

Client ID: mb
Operator: wrd

Column Type: Capillary

Stationary Phase: RTX-624

Sample Info: mb
Lab Sample ID: mb

Date: 19-APR-2011 12:25

Instrument: G.i
Inj Vol: 200.0
Diameter: 0.32

Page 360 of 429

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab File ID: gfi001.d BFB Injection Date: 04/15/2011

Instrument ID: G.i BFB Injection Time: 08:57

Analysis Batch No.: 16675

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	14.1	
75	30.0 - 66.0% of mass 95	45.3	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.4	(0.5)1
174	50.0 - 120.0% of mass 95	89.9	
175	4.0 - 9.0 % of mass 174	6.2	(6.9)1
176	93.0 - 101.0% of mass 174	87.0	(96.8)1
177	5.0 - 9.0% of mass 176	5.6	(6.4)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
	IC 200-16675/3	gfi003.d	04/15/2011	10:42	
	IC 200-16675/4	gfi004.d	04/15/2011	11:33	
	IC 200-16675/5	gfi005.d	04/15/2011	12:24	
	ICIS 200-16675/7	gfi007.d	04/15/2011	14:07	
	IC 200-16675/8	gfi008.d	04/15/2011	14:58	
	IC 200-16675/9	gfi009.d	04/15/2011	15:49	
	IC 200-16675/10	gfi010.d	04/15/2011	16:40	
	ICV 200-16675/12	gfi012.d	04/15/2011	18:23	

$\mbox{FORM V} \\ \mbox{AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab File ID: gfib001.d BFB Injection Date: 04/19/2011

Instrument ID: G.i BFB Injection Time: 08:44

Analysis Batch No.: 16738

M/E	ION ABUNDANCE CRITERIA	% REL ABUND	
50	8.0 - 40.0% of mass 95	13.5	
75	30.0 - 66.0% of mass 95	44.7	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.2	
173	Less than 2.0% of mass 174	0.5	(0.5)1
174	50.0 - 120.0% of mass 95	92.8	
175	4.0 - 9.0 % of mass 174	6.5	(7.0)1
176	93.0 - 101.0% of mass 174	91.5	(98.6)1
177	5.0 - 9.0% of mass 176	5.8	(6.3)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
	CCVIS 200-16738/2	gfib002.d	04/19/2011	09:36	
	LCS 200-16738/3	gfib003.d	04/19/2011	10:28	
	MB 200-16738/5	gfib005.d	04/19/2011	12:25	
3576	200-4733-5	gfib026.d	04/20/2011	06:25	

$\label{eq:form v} \mbox{ AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab File ID: gfi001.d BFB Injection Date: 04/15/2011

Instrument ID: G.i BFB Injection Time: 08:57

Analysis Batch No.: 16675

M/E	ION ABUNDANCE CRITERIA	% RELi ABUND	
50	8.0 - 40.0% of mass 95	14.1	
75	30.0 - 66.0% of mass 95	45.3	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.4	(0.5)1
174	50.0 - 120.0% of mass 95	89.9	
175	4.0 - 9.0 % of mass 174	6.2	(6.9)1
176	93.0 - 101.0% of mass 174	87.0	(96.8)1
177	5.0 - 9.0% of mass 176	5.6	(6.4)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
	IC 200-16675/3	gfi003.d	04/15/2011	10:42	
	IC 200-16675/4	gfi004.d	04/15/2011	11:33	
	IC 200-16675/5	gfi005.d	04/15/2011	12:24	
	ICIS 200-16675/7	gfi007.d	04/15/2011	14:07	
	IC 200-16675/8	gfi008.d	04/15/2011	14:58	
	IC 200-16675/9	gfi009.d	04/15/2011	15:49	
	IC 200-16675/10	gfi010.d	04/15/2011	16:40	
	ICV 200-16675/12	gfi012.d	04/15/2011	18:23	

$\label{eq:form_v} \mbox{FORM V} \\ \mbox{AIR - GC/MS VOA INSTRUMENT PERFORMANCE CHECK}$

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab File ID: gfib001.d BFB Injection Date: 04/19/2011

Instrument ID: G.i BFB Injection Time: 08:44

Analysis Batch No.: 16738

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	8.0 - 40.0% of mass 95	13.5	
75	30.0 - 66.0% of mass 95	44.7	
95	Base peak, 100% relative abundance	100.0	
96	5.0 - 9.0% of mass 95	7.2	
173	Less than 2.0% of mass 174	0.5	(0.5)1
174	50.0 - 120.0% of mass 95	92.8	
175	4.0 - 9.0 % of mass 174	6.5	(7.0)1
176	93.0 - 101.0% of mass 174	91.5	(98.6)1
177	5.0 - 9.0% of mass 176	5.8	(6.3)2

1-Value is % mass 174

2-Value is % mass 176

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED	
	CCVIS 200-16738/2	gfib002.d	04/19/2011	09:36	
	LCS 200-16738/3	gfib003.d	04/19/2011	10:28	
	MB 200-16738/5	gfib005.d	04/19/2011	12:25	
4658	200-4735-5	gfib027.d	04/20/2011	07:16	

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-4733-1

 SDG No.:
 Sample No.:
 ICIS 200-16675/7
 Date Analyzed:
 04/15/2011
 14:07

 Instrument ID:
 G.i
 GC Column:
 RTX-624
 ID:
 0.32 (mm)

 Lab File ID (Standard):
 gfi007.d
 Heated Purge:
 (Y/N)
 N

Calibration ID: 5980

		BCM	BCM		DFB		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		473588	9.50	1945769	10.91	1860739	15.03
UPPER LIMIT		663023	9.83	2724077	11.24	2605035	15.36
LOWER LIMIT		284153	9.17	1167461	10.58	1116443	14.70
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-16675/12		497130	9.50	2070213	10.91	1979961	15.03

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

 Lab Name:
 TestAmerica Burlington
 Job No.:
 200-4733-1

 SDG No.:
 Sample No.:
 CCVIS 200-16738/2
 Date Analyzed:
 04/19/2011
 09:36

 Instrument ID:
 G.i
 GC Column:
 RTX-624
 ID: 0.32 (mm)

 Lab File ID (Standard):
 gfib002.d
 Heated Purge:
 (Y/N)
 N

Calibration ID: 5980

		BCM		DFB		CBZ	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
12/24 HOUR STD		484447	9.50	1813716	10.91	1813676	15.03
UPPER LIMIT		678226	9.83	2539202	11.24	2539146	15.36
LOWER LIMIT		290668	9.17	1088230	10.58	1088206	14.70
LAB SAMPLE ID	CLIENT SAMPLE ID						
LCS 200-16738/3		508089	9.50	2256040	10.91	2119902	15.03
MB 200-16738/5		485974	9.50	2279145	10.91	1912412	15.03
200-4733-5	3576	481884	9.50	2217473	10.91	1900490	15.03

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

FORM VIII TO-15

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

Lab Name:	TestAmerica Burlington	Job No.: 200-4735-1		
SDG No.:				
Sample No.: ICIS 200-16675/7		Date Analyzed: 04/15/2011 14:07	7	
Instrument ID: G.i		GC Column: RTX-624 ID: 0.32 (mm)		
Lab File I	ID (Standard): gfi007.d	Heated Purge: (Y/N) N		
Calibratio	on ID: 5980			

		BCM	BCM		DFB		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION MID-POINT		473588	9.50	1945769	10.91	1860739	15.03
UPPER LIMIT		663023	9.83	2724077	11.24	2605035	15.36
LOWER LIMIT		284153	9.17	1167461	10.58	1116443	14.70
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICV 200-16675/12		497130	9.50	2070213	10.91	1979961	15.03

BCM = Bromochloromethane
DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII TO-15

AIR - GC/MS VOA INTERNAL STANDARD AREA AND RETENTION TIME SUMMARY

 Lab Name: TestAmerica Burlington
 Job No.: 200-4735-1

 SDG No.:
 Date Analyzed: 04/19/2011 09:36

 Instrument ID: G.i
 GC Column: RTX-624
 ID: 0.32 (mm)

 Lab File ID (Standard): gfib002.d
 Heated Purge: (Y/N) N

 Calibration ID: 5980

BCM DFB CBZ AREA # RT # AREA # RT # AREA # RT # 15.03 12/24 HOUR STD 484447 9.50 1813716 10.91 1813676 UPPER LIMIT 11.24 15.36 678226 9.83 2539202 2539146 LOWER LIMIT 9.17 1088230 1088206 14.70 290668 10.58 LAB SAMPLE ID CLIENT SAMPLE ID LCS 200-16738/3 508089 9.50 2256040 10.91 2119902 15.03 MB 200-16738/5 485974 9.50 2279145 10.91 1912412 15.03

475595

9.49

2249754

10.90

1911219

15.02

BCM = Bromochloromethane DFB = 1,4-Difluorobenzene

CBZ = Chlorobenzene-d5

Area Limit = 60%-140% of internal standard area RT Limit = \pm 0.33 minutes of internal standard RT

Column used to flag values outside QC limits

4658

FORM VIII TO-15

200-4735-5

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1
SDG No.:	
Client Sample ID: 3576	Lab Sample ID: 200-4733-5
Matrix: Air	Lab File ID: gfib026.d
Analysis Method: TO-15	Date Collected: 04/18/2011 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/20/2011 06:25
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16738	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8 Dichlorodifluoromethane		0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	U	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	U	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1 2,2,4-Trimethylpentane		0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1		
SDG No.:			
Client Sample ID: 3576	Lab Sample ID: 200-4733-5		
Matrix: Air	Lab File ID: gfib026.d		
Analysis Method: TO-15	Date Collected: 04/18/2011 00:00		
Sample wt/vol: 200(mL)	Date Analyzed: 04/20/2011 06:25		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 16738	Units: ppb v/v		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2 1,2-Dichloroethane		0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene		U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene		U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7 1,4-Dichlorobenzene		0.20	U	0.20	0.20

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 SDG No.: Client Sample ID: 3576 Lab Sample ID: 200-4733-5 Matrix: Air Lab File ID: gfib026.d Analysis Method: TO-15 Date Collected: 04/18/2011 00:00 Date Analyzed: 04/20/2011 06:25 Sample wt/vol: 200(mL) Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16738 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib026.d Page 1

Report Date: 20-Apr-2011 09:43

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4733-5

Client Smp ID: 3576

Inj Date : 20-APR-2011 06:25

Operator : wrd Inst ID: G.i

Smp Info : 200-4733-A-5 Misc Info : 200,1,all74+mn

Comment

Method : /chem/G.i/Gsvr.p/gfibto15.b/to15v5.m

Meth Date : 20-Apr-2011 09:40 wrd Quant Type: ISTD Cal Date : 15-APR-2011 16:40 Cal File: gfi010.d

Als bottle: 8

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all74+MN.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	$(ppb \ v/v)$ $(ppb \ v/v)$
	====		======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
15 Ethanol	45	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib026.d Report Date: 20-Apr-2011 09:43

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======================================	====	== ====== ====== ======================
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.
21 Carbon disulfide	76	Compound Not Detected.
22 Isopropanol	45	Compound Not Detected.
23 Allyl chloride	41	Compound Not Detected.
25 Methylene chloride	49	Compound Not Detected.
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
32 Vinyl acetate	43	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
35 Ethyl acetate	88	Compound Not Detected.
36 Methyl Ethyl Ketone	72	Compound Not Detected.
* 37 Bromochloromethane	128	9.505 9.504 (1.000) 481884 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.906 10.911 (1.000) 2217473 10.0000
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 1,3-Dichloropropene (trans	3) 75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	15.026 15.031 (1.000) 1900490 10.0000
66 Chlorobenzene	112	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib026.d Report Date: 20-Apr-2011 09:43 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	E (ppb v/v) (ppb v/v)
	====		
72 Styrene	104	Compound Not Detected.	
73 Bromoform	173	Compound Not Detected.	
74 Isopropylbenzene	105	Compound Not Detected.	
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

Data File: gfib026.d

Client ID: 3576
Operator: wrd
Column Type: Capillary

Stationary Phase: RTX-624
Sample Info: 200-4733-A-5
Lab Sample ID: 200-4733-5

Date: 20-APR-2011 06:25

Instrument: G.i
Inj Vol: 200.0
Diameter: 0.32

Page 375 of 429

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-4735-1
SDG No.:	
Client Sample ID: 4658	Lab Sample ID: 200-4735-5
Matrix: Air	Lab File ID: gfib027.d
Analysis Method: TO-15	Date Collected: 04/18/2011 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/20/2011 07:16
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16738	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	5.0	U	5.0	5.0
75-71-8	Dichlorodifluoromethane	0.50	U	0.50	0.50
75-45-6	Freon 22	0.50	U	0.50	0.50
76-14-2	1,2-Dichlorotetrafluoroethane	0.20	U	0.20	0.20
74-87-3	Chloromethane	0.50	U	0.50	0.50
106-97-8	n-Butane	0.50	U	0.50	0.50
75-01-4	Vinyl chloride	0.20	U	0.20	0.20
106-99-0	1,3-Butadiene	0.20	U	0.20	0.20
74-83-9	Bromomethane	0.20	U	0.20	0.20
75-00-3	Chloroethane	0.50	U	0.50	0.50
593-60-2	Bromoethene (Vinyl Bromide)	0.20	U	0.20	0.20
75-69-4	Trichlorofluoromethane	0.20	U	0.20	0.20
64-17-5	Ethanol	5.0	U	5.0	5.0
76-13-1	Freon TF	0.20	U	0.20	0.20
75-35-4	1,1-Dichloroethene	0.20	U	0.20	0.20
67-64-1	Acetone	5.0	U	5.0	5.0
67-63-0	Isopropyl alcohol	5.0	U	5.0	5.0
75-15-0	Carbon disulfide	0.50	U	0.50	0.50
107-05-1	3-Chloropropene	0.50	U	0.50	0.50
75-09-2	Methylene Chloride	0.50	U	0.50	0.50
75-65-0	tert-Butyl alcohol	5.0	U	5.0	5.0
1634-04-4	Methyl tert-butyl ether	0.20	U	0.20	0.20
156-60-5	trans-1,2-Dichloroethene	0.20	U	0.20	0.20
110-54-3	n-Hexane	0.20	U	0.20	0.20
75-34-3	1,1-Dichloroethane	0.20	U	0.20	0.20
108-05-4	Vinyl acetate	5.0	U	5.0	5.0
141-78-6	Ethyl acetate	5.0	U	5.0	5.0
78-93-3	Methyl Ethyl Ketone	0.50	U	0.50	0.50
156-59-2	cis-1,2-Dichloroethene	0.20	Ŭ	0.20	0.20
540-59-0	1,2-Dichloroethene, Total	0.20	Ŭ	0.20	0.20
67-66-3	Chloroform	0.20	U	0.20	0.20
109-99-9	Tetrahydrofuran	5.0	U	5.0	5.0
71-55-6	1,1,1-Trichloroethane	0.20	U	0.20	0.20
110-82-7	Cyclohexane	0.20	U	0.20	0.20
56-23-5	Carbon tetrachloride	0.20	U	0.20	0.20
540-84-1	2,2,4-Trimethylpentane	0.20	U	0.20	0.20

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-4735-1
SDG No.:	
Client Sample ID: 4658	Lab Sample ID: 200-4735-5
Matrix: Air	Lab File ID: gfib027.d
Analysis Method: TO-15	Date Collected: 04/18/2011 00:00
Sample wt/vol: 200(mL)	Date Analyzed: 04/20/2011 07:16
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 16738	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.20	U	0.20	0.20
107-06-2	1,2-Dichloroethane	0.20	U	0.20	0.20
142-82-5	n-Heptane	0.20	U	0.20	0.20
79-01-6	Trichloroethene	0.20	U	0.20	0.20
80-62-6	Methyl methacrylate	0.50	U	0.50	0.50
78-87-5	1,2-Dichloropropane	0.20	U	0.20	0.20
123-91-1	1,4-Dioxane	5.0	U	5.0	5.0
75-27-4	Bromodichloromethane	0.20	U	0.20	0.20
10061-01-5	cis-1,3-Dichloropropene	0.20	U	0.20	0.20
108-10-1	methyl isobutyl ketone	0.50	U	0.50	0.50
108-88-3	Toluene	0.20	U	0.20	0.20
10061-02-6	trans-1,3-Dichloropropene	0.20	U	0.20	0.20
79-00-5	1,1,2-Trichloroethane	0.20	U	0.20	0.20
127-18-4	Tetrachloroethene	0.20	U	0.20	0.20
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.50	U	0.50	0.50
124-48-1	Dibromochloromethane	0.20	U	0.20	0.20
106-93-4	1,2-Dibromoethane	0.20	U	0.20	0.20
108-90-7	Chlorobenzene	0.20	U	0.20	0.20
100-41-4	Ethylbenzene	0.20	U	0.20	0.20
179601-23-1	m,p-Xylene	0.50	U	0.50	0.50
95-47-6	Xylene, o-	0.20	U	0.20	0.20
1330-20-7	Xylene (total)	0.20	U	0.20	0.20
100-42-5	Styrene	0.20	U	0.20	0.20
75-25-2	Bromoform	0.20	U	0.20	0.20
98-82-8	Cumene	0.20	U	0.20	0.20
79-34-5	1,1,2,2-Tetrachloroethane	0.20	U	0.20	0.20
103-65-1	n-Propylbenzene	0.20	U	0.20	0.20
622-96-8	4-Ethyltoluene	0.20	U	0.20	0.20
108-67-8	1,3,5-Trimethylbenzene	0.20	U	0.20	0.20
95-49-8	2-Chlorotoluene	0.20	U	0.20	0.20
98-06-6	tert-Butylbenzene	0.20	U	0.20	0.20
95-63-6	1,2,4-Trimethylbenzene	0.20	U	0.20	0.20
135-98-8	sec-Butylbenzene	0.20	U	0.20	0.20
99-87-6	4-Isopropyltoluene	0.20	U	0.20	0.20
541-73-1	1,3-Dichlorobenzene	0.20	U	0.20	0.20
106-46-7	1,4-Dichlorobenzene	0.20	U	0.20	0.20

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 SDG No.: Client Sample ID: 4658 Lab Sample ID: 200-4735-5 Matrix: Air Lab File ID: gfib027.d Analysis Method: TO-15 Date Collected: 04/18/2011 00:00 Sample wt/vol: 200(mL) Date Analyzed: 04/20/2011 07:16 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 16738 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.20	U	0.20	0.20
104-51-8	n-Butylbenzene	0.20	U	0.20	0.20
95-50-1	1,2-Dichlorobenzene	0.20	U	0.20	0.20
120-82-1	1,2,4-Trichlorobenzene	0.50	U	0.50	0.50
87-68-3	Hexachlorobutadiene	0.20	U	0.20	0.20
91-20-3	Naphthalene	0.50	U	0.50	0.50

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib027.d Page 1

Report Date: 20-Apr-2011 09:43

TestAmerica Burlington

AIR TOXICS QUANTITATION REPORT

Lab Sample Id: 200-4735-5

Client Smp ID: 4658

Inj Date : 20-APR-2011 07:16

Operator : wrd Inst ID: G.i

Smp Info : 200-4735-A-5 Misc Info : 200,1,all74+mn

Comment :

Method : /chem/G.i/Gsvr.p/gfibto15.b/to15v5.m

Meth Date : 20-Apr-2011 09:40 wrd Quant Type: ISTD Cal Date : 15-APR-2011 16:40 Cal File: gfi010.d

Als bottle: 9

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all74+MN.sub

Target Version: 3.50
Processing Host: chemsvr6

Concentration Formula: Amt * DF * Uf*(Vo/Vo)*(Vf/Vf) * CpndVariable

	Name	Value	Description
_	DF Uf Vo Vf	1.00000 1.00000 200.00000 200.00000	Dilution Factor ng unit correction factor Sample Volume purged (mL) Final Volume (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppb v/v) $(ppb v/v)$
	====		======
1 Propene	41	Compound Not Detected.	
2 Dichlorodifluoromethane	85	Compound Not Detected.	
3 Chlorodifluoromethane	51	Compound Not Detected.	
4 1,2-Dichloro-1,1,2,2-tetraflu	85	Compound Not Detected.	
5 Chloromethane	50	Compound Not Detected.	
6 Butane	43	Compound Not Detected.	
7 Vinyl chloride	62	Compound Not Detected.	
8 1,3-Butadiene	54	Compound Not Detected.	
9 Bromomethane	94	Compound Not Detected.	
10 Chloroethane	64	Compound Not Detected.	
12 Vinyl bromide	106	Compound Not Detected.	
13 Trichlorofluoromethane	101	Compound Not Detected.	
15 Ethanol	45	Compound Not Detected.	
17 1,1,2-Trichloro-1,2,2-trifluo	101	Compound Not Detected.	

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib027.d Report Date: 20-Apr-2011 09:43

		CONCENTRATIONS
	QUANT SIG	ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE (ppb v/v) (ppb v/v)
=======================================	====	== ===== ===== ====== ======
19 1,1-Dichloroethene	96	Compound Not Detected.
20 Acetone	43	Compound Not Detected.
21 Carbon disulfide	76	Compound Not Detected.
22 Isopropanol	45	Compound Not Detected.
23 Allyl chloride	41	Compound Not Detected.
25 Methylene chloride	49	Compound Not Detected.
26 Tert-butyl alcohol	59	Compound Not Detected.
27 Methyl tert-butyl ether	73	Compound Not Detected.
28 1,2-Dichloroethene (trans)	61	Compound Not Detected.
30 n-Hexane	57	Compound Not Detected.
31 1,1-Dichloroethane	63	Compound Not Detected.
32 Vinyl acetate	43	Compound Not Detected.
M 33 1,2-Dichloroethene,Total	61	Compound Not Detected.
34 1,2-Dichloroethene (cis)	96	Compound Not Detected.
35 Ethyl acetate	88	Compound Not Detected.
36 Methyl Ethyl Ketone	72	Compound Not Detected.
* 37 Bromochloromethane	128	9.494 9.504 (1.000) 475595 10.0000
38 Tetrahydrofuran	42	Compound Not Detected.
39 Chloroform	83	Compound Not Detected.
40 Cyclohexane	84	Compound Not Detected.
41 1,1,1-Trichloroethane	97	Compound Not Detected.
42 Carbon tetrachloride	117	Compound Not Detected.
43 2,2,4-Trimethylpentane	57	Compound Not Detected.
44 Benzene	78	Compound Not Detected.
45 1,2-Dichloroethane	62	Compound Not Detected.
46 n-Heptane	43	Compound Not Detected.
* 47 1,4-Difluorobenzene	114	10.901 10.911 (1.000) 2249754 10.0000
49 Trichloroethene	95	Compound Not Detected.
50 1,2-Dichloropropane	63	Compound Not Detected.
51 Methyl methacrylate	69	Compound Not Detected.
53 1,4-Dioxane	88	Compound Not Detected.
54 Bromodichloromethane	83	Compound Not Detected.
55 1,3-Dichloropropene (cis)	75	Compound Not Detected.
56 Methyl isobutyl ketone	43	Compound Not Detected.
58 Toluene	92	Compound Not Detected.
59 1,3-Dichloropropene (trans)	75	Compound Not Detected.
60 1,1,2-Trichloroethane	83	Compound Not Detected.
61 Tetrachloroethene	166	Compound Not Detected.
62 2-Hexanone	43	Compound Not Detected.
63 Dibromochloromethane	129	Compound Not Detected.
64 1,2-Dibromoethane	107	Compound Not Detected.
* 65 Chlorobenzene-d5	117	15.020 15.031 (1.000) 1911219 10.0000
66 Chlorobenzene	112	Compound Not Detected.
68 Ethylbenzene	91	Compound Not Detected.
69 Xylene (m,p)	106	Compound Not Detected.
M 70 Xylenes, Total	106	Compound Not Detected.
71 Xylene (o)	106	Compound Not Detected.

Data File: /chem/G.i/Gsvr.p/gfibto15.b/gfib027.d Report Date: 20-Apr-2011 09:43 Page 3

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ppb v/v) (ppb v/v)
=======	====	== ====== ======	======
72 Styrene	104	Compound Not Detected.	
73 Bromoform	173	Compound Not Detected.	
74 Isopropylbenzene	105	Compound Not Detected.	
75 1,1,2,2-Tetrachloroethane	83	Compound Not Detected.	
76 n-Propylbenzene	91	Compound Not Detected.	
79 4-Ethyltoluene	105	Compound Not Detected.	
80 2-Chlorotoluene	91	Compound Not Detected.	
81 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
83 tert-butylbenzene	119	Compound Not Detected.	
84 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
85 sec-Butylbenzene	105	Compound Not Detected.	
86 4-Isopropyltoluene	119	Compound Not Detected.	
87 1,3-Dichlorobenzene	146	Compound Not Detected.	
88 1,4-Dichlorobenzene	146	Compound Not Detected.	
89 Benzyl chloride	91	Compound Not Detected.	
91 n-Butylbenzene	91	Compound Not Detected.	
92 1,2-Dichlorobenzene	146	Compound Not Detected.	
94 1,2,4-Trichlorobenzene	180	Compound Not Detected.	
95 1,3-Hexachlorobutadiene	225	Compound Not Detected.	
96 Naphthalene	128	Compound Not Detected.	

Data File: gfib027.d

Client ID: 4658
Operator: wrd
Column Type: Capillary
Stationary Phase: RTX-624

Stationary Phase: RTX-624 Sample Info: 200-4735-A-5 Lab Sample ID: 200-4735-5 Date: 20-APR-2011 07:16

Instrument: G.i
Inj Vol: 200.0
Diameter: 0.32

Page 382 of 429

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/15/2011 10:42 Calibration End Date: 04/15/2011 16:40 Calibration ID: 5980

Calibration Files:

LEVEL:		LAB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:	
Level	1	IC 200-16675/3	IC 132519	gfi003.d	
Level	2	IC 200-16675/4	ic 132517	gfi004.d	
Level	3	IC 200-16675/5	ic 132507	gfi005.d	
Level	4	ICIS 200-16675/7	icis 132429	gfi007.d	
Level	5	IC 200-16675/8	ic 132422	gfi008.d	
Level	6	IC 200-16675/9	ic 132406	gfi009.d	
Level	7	IC 200-16675/10	ic 132405	afi010.d	

ANALYTE			CURVE				MIN RRF	%RSD		IAX	R^2	#	MIN R^2			
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			*	RSD	OR COD		OR COD
Propylene	+++++	0.2902 0.2371	0.2420	0.2487	0.2492	Ave		0.2552			7.6		30.0			
Dichlorodifluoromethane	+++++ 2.0005	1.9867 1.7585	1.9760	1.9356	1.9580	Ave		1.9359			4.6		30.0			
Freon 22	+++++ 0.7767	0.7675 0.6961	0.7519	0.7203	0.7552	Ave		0.7446			4.1		30.0			
1,2-Dichlorotetrafluoroethane	1.5200 1.6250		1.6111	1.5747	1.5984	Ave		1.5699			4.3		30.0			
Chloromethane	+++++ 0.3039	0.3130 0.2799	0.2921	0.2837	0.2990	Ave		0.2953			4.2		30.0			
n-Butane	+++++ 0.4611	0.4274 0.4214	0.4357	0.4214	0.4407	Ave		0.4346			3.5		30.0			
Vinyl chloride	0.3905 0.4277	0.4179 0.3906	0.4125	0.4058	0.4199	Ave		0.4093			3.5		30.0			
1,3-Butadiene	0.2321 0.2736	0.2631 0.2512	0.2579	0.2567	0.2696			0.2577			5.3		30.0			
Acrolein	+++++ 0.1628	+++++ 0.1655	0.1555	0.1428	0.1662	Ave		0.1586			6.2		30.0			
Bromomethane	0.8707 0.7477		0.7852	0.7693	0.7923	Ave		0.7881			6.1		30.0			
Acetone	+++++ 0.6023	+++++ 0.6341	0.5755	0.5353	0.6089	Ave		0.5912			6.4		30.0			
Chloroethane	+++++ 0.2406	0.2463 0.2395	0.2599	0.2497	0.2588	Ave		0.2491			3.5		30.0			
Isopropyl alcohol	+++++ 0.4642	+++++ 0.4591	0.4106	0.4168	0.4583	Ave		0.4418			5.9		30.0			
Isopentane	0.4991 0.4119	0.4455 0.3978	0.4167	0.4063	0.4251	Ave		0.4289			8.0		30.0			

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 160	Lab Name:	me: TestAmerica Burlington	Job No.: 200-4733-1	Analy Batch No.: 1	6675
---	-----------	----------------------------	---------------------	--------------------	------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIEN	ΙΤ	#	MIN RRF	%RSD	# MAX %RSD	R^2 OR COD	# MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	M1	M2				5K2D	OR COD	OR COD
	LVL 6	LVL 7													
Ethanol	++++	0.1373	0.1381	0.1309	0.1465	Ave		0.1391				4.4	30.0		
	0.1460	0.1357													
Acetonitrile	++++	+++++	0.2166	0.2099	0.2345	Ave		0.2264				5.7	30.0		
	0.2292	0.2416													
Bromoethene (Vinyl Bromide)		0.9132	0.8893	0.9143	0.9420	Ave		0.8939				3.5	30.0		
	0.8527	0.8722													
Trichlorofluoromethane	2.9766	3.0700	3.0232	2.9530	3.0136	Ave		2.9722				3.4	30.0		
	3.0113	2.7579	0 0110	0 0451	0 0001	_		0.0661				1 (20.0		
tert-Butyl alcohol	++++ 0.9047	+++++ 0.8663	0.8113	0.8451	0.9031	Ave		0.8661				4.6	30.0		
n-Pentane	0.9047	0.8663	0.6920	0.6851	0.7003	7		0.6933				2.8	30.0		
n-rentane	0.7116	0.6604	0.0920	0.0051	0.7003	Ave		0.0933				2.0	30.0		
Ethyl ether	0.7110	0.3359	0.3110	0.2932	0.3282	Δτιο		0.3219				4.6	30.0		
Benyi Cener	0.3232	0.3323	0.0110	0.2332	0.0202	1100		0.3213				1.0	30.0		
Vinyl acetate	+++++	+++++	0.9022	0.8849	0.9881	Ave		0.9492				5.5	30.0		
1	0.9726	0.9979													
Freon TF		1.9104	1.9277	1.8900	1.8966	Ave		1.8730				3.9	30.0		
	1.9135	1.7159													
1,1-Dichloroethene		0.7926	0.7872	0.7710	0.8112	Ave		0.7827				3.3	30.0		
	0.8110	0.7411													
Ethyl acetate	++++	+++++	0.0426	0.0394	0.0448	Ave		0.0436				6.5	30.0		
	0.0445	0.0470													
Carbon disulfide		2.2022	2.1223	2.0826	2.1522	Ave		2.1188				3.8	30.0		
		1.9795													
Tetrahydrofuran	++++	+++++	0.0787	0.0772	0.0842	Ave		0.0849				9.9	30.0		
2 Chl	0.0984	0.0859	0.4862	0.4853	0.4950	7		0.4900				0 7	30.0		
3-Chloropropene	0.4726 0.5158	0.4880	0.4862	0.4833	0.4950	ave		0.4900				2.7	30.0		
Methylene Chloride	+++++	0.4870	0.5922	0.5939	0.5921	Ave		0.6040				6.7	30.0		
rectificate childride		0.5599	0.0022	0.0909	0.0021	400		0.0040				0.7	30.0		
Methyl tert-butyl ether		1.8406	1.6192	1.5481	1.7833	Ave		1.7489				6.9	30.0		
1 1 11 11 11 11 11 11 11 11 11 11 11 11		1.8075	,										00.0		
trans-1,2-Dichloroethene		0.9869	0.9985	0.9802	0.9812	Ave		0.9708				3.2	30.0		
•	0.9948	0.9159													
Acrylonitrile	++++	0.2975	0.2748	0.2629	0.2942	Ave		0.2872				5.3	30.0		
	0.2915	0.3023													
n-Hexane	0.8009	0.7820	0.7940	0.7787	0.7858	Ave		0.7820				2.9	30.0		
	0.7980	0.7344													
n-Butanol	+++++	+++++	0.0446	0.0490	0.0508	Ave		0.0509				12.5	30.0		
	0.0614	0.0485													

Lab Name:	TestAmerica Burlington	Job No.: 200-4733-1	Analy Batch No.: 16675
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIENT	#	MIN RRF	%RSD			R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%R	SD	OR COD		OR COD
	LVL 6	LVL 7													Ш	
1,1-Dichloroethane	1.2785	1.2107	1.1938	1.1558	1.1793	Ave		1.1917			4.3	3	0.0			
	1.2115	1.1121														
1,4-Dioxane	++++	+++++	0.0641	0.0675	0.0681	Ave		0.0695			8.6	3	0.0			
	0.0798	0.0678														
cis-1,2-Dichloroethene	0.9285	0.9415	0.8968	0.8709	0.8817	Ave		0.8888			5.0	3	0.0			
	0.8959	0.8061														
Methyl Ethyl Ketone	++++	0.2723	0.2243	0.2154	0.2413	Ave		0.2390			8.1	3	0.0			
	0.2409	0.2398														
Chloroform	2.0114	2.0799	1.9652	1.8839	1.9292	Ave		1.9547			4.3	3	0.0			
	1.9854	1.8283														
1,1,1-Trichloroethane	0.5354	0.5484	0.5690	0.5631	0.5309	Ave		0.5514			8.4	3	0.0			
	0.6329	0.4804														
Cyclohexane	0.2371	0.2278	0.2398	0.2410	0.2252	Ave		0.2324			8.8	3	0.0			
	0.2617	0.1943														
Carbon tetrachloride	0.6194	0.6210	0.6840	0.6860	0.6550	Ave		0.6646			9.1	3	0.0			
	0.7813	0.6055														
2,2,4-Trimethylpentane	0.5748	0.5713	0.5972	0.5799	0.5626	Ave		0.5800			8.0	3	0.0			
	0.6645	0.5096														
Benzene	0.5290	0.5131	0.4977	0.4710	0.4701	Ave		0.4955			8.3	3	0.0			
	0.5545	0.4330														
1,2-Dichloroethane	0.2587	0.2784	0.2736	0.2637	0.2647	Ave		0.2730			7.7	3	0.0			
	0.3169	0.2549														
n-Heptane	0.1743	0.1726	0.1752	0.1712	0.1670	Ave		0.1732			7.1	3	0.0			
	0.1965	0.1553														
Trichloroethene	0.3053	0.3040	0.3080	0.2995	0.2908	Ave		0.3020			8.2	3	0.0			
	0.3449	0.2612														
1,2-Dichloropropane	0.1603	0.1644	0.1476	0.1457	0.1470	Ave		0.1534			7.7	3	0.0			
	0.1707	0.1382														
Methyl methacrylate	++++	0.1169	0.1116	0.1139	0.1264	Ave	·	0.1247			11.1	3	0.0			
	0.1484	0.1308														
Dibromomethane	0.2949	0.2856	0.2980	0.2906	0.2868	Ave		0.2948			8.2	3	0.0			
	0.3436	0.2640														
Bromodichloromethane	0.4582	0.4737	0.4943	0.4840	0.4875	Ave	·	0.4887			7.7	3	0.0			
	0.5677	0.4556														
cis-1,3-Dichloropropene	0.2594	0.2884	0.2899	0.2862	0.2953	Ave	·	0.2919			8.7	3	0.0			
	0.3431	0.2807				<u> </u>										
methyl isobutyl ketone	++++	0.1622	0.1741	0.1816	0.1860	Ave	·	0.1821			9.1	3	0.0			
	0.2117	0.1771														
n-Undecane	++++	+++++	0.2377	0.2550	0.2521	Ave	·	0.2625			9.4	3	0.0			
	0.2651	0.3029								1						

Lab Name:	TestAmerica Burlington	Job No.: 200-4733-1	Analy Batch No.: 16675
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	С	OEFFICIENT	#	MIN RRF	%RSD			R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			*K	SD	OR COD		OR COD
	LVL 6	LVL 7														
n-Octane	0.2283	0.2397	0.2333	0.2260	0.2200	Ave		0.2282			6.9	3	0.0			
	0.2500	0.1999														
Toluene	0.4398	0.4630	0.4089	0.3780	0.3834	Ave		0.4024			10.4	3	0.0			
	0.4074	0.3363														
trans-1,3-Dichloropropene	0.2877	0.2958	0.3085	0.3070	0.3187	Ave		0.3142			8.6	3	0.0			
	0.3711	0.3107														
1,1,2-Trichloroethane	0.2274	0.2252	0.2135	0.2062	0.2085	Ave		0.2138			6.0	3	0.0			
	0.2239	0.1917														
Tetrachloroethene	0.4823	0.4687	0.4610	0.4445	0.4397	Ave		0.4525			6.6	3	0.0			
	0.4766	0.3942														
Methyl Butyl Ketone (2-Hexanone)	+++++	0.1485	0.1761	0.1907	0.1931	Ave		0.1829			11.0	3	0.0			
	0.2079	0.1810														
n-Dodecane	++++	+++++	0.1655	0.1901	0.1948	Ave		0.1825			16.9	3	0.0			
	0.2218	0.1404														
Dibromochloromethane	0.5050	0.5495	0.6123	0.6123	0.6276	Ave		0.5953			9.5	3	0.0			
	0.6792	0.5810														
1,2-Dibromoethane	0.4425	0.4631	0.4715	0.4613	0.4730	Ave		0.4656			5.1	3	0.0			
	0.5098	0.4379														
Chlorobenzene	0.6644	0.6808	0.6487	0.6236	0.6399	Ave		0.6473			5.0	3	0.0			
	0.6821	0.5914														
Ethylbenzene	0.9229	0.9773	0.8870	0.8483	0.8796	Ave		0.8918			6.3	3	0.0			
	0.9233	0.8043														
n-Nonane	0.2778	0.3002	0.2780	0.2661	0.2672	Ave		0.2723			6.9	3	0.0			
	0.2784	0.2380														
m,p-Xylene	0.3791	0.3962	0.3654	0.3449	0.3531	Ave		0.3607			7.2	3	0.0			
	0.3704	0.3157														
Xylene, o-	0.4089	0.4082	0.3715	0.3540	0.3647	Ave		0.3746			7.5	3	0.0			
	0.3833	0.3315														
Styrene	0.4659	0.4685	0.5214	0.5160	0.5473	Ave		0.5164			7.9	3	0.0			
	0.5814	0.5143														
Bromoform	0.4465	0.4872	0.5914	0.5942	0.6078	Ave		0.5582			12.8	3	0.0			
	0.6455	0.5346														
Cumene	1.1137	1.1776	1.0822	1.0317	1.0714	Ave		1.0846			5.6	3	0.0			
	1.1217	0.9941														
1,1,2,2-Tetrachloroethane	0.5490	0.5734	0.5288	0.5082	0.5196	Ave		0.5265			6.5	3	0.0			
	0.5417	0.4649														
n-Propylbenzene	1.1210	1.2639	1.1681	1.1157	1.1411	Ave		1.1405			7.3	3	0.0			
	1.1824	0.9912														
1,2,3-Trichloropropane	++++	0.4374	0.3739	0.3539	0.3598	Ave		0.3679			11.2	3	0.0			
	0.3716	0.3105														

Lab Name:	TestAmerica Burlington	Job No.: 200-4733-1	Analy Batch No.: 16675
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIEN	T	#	MIN RRF	%RSD		R^2		R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR	COD
	LVL 6	LVL 7					_									
n-Decane	++++	0.2924	0.3172	0.3072	0.3299	Ave		0.3140				6.0	30.)		
n became	0.3409	0.2966	0.01/2	0.3072	0.0233	1100		0.3110				0.0	50.			
4-Ethyltoluene	0.9513	1.0907	1.0580	1.0153	1.0679	Ave		1.0405				5.8	30.)		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1194	0.9809														
2-Chlorotoluene	1.0183	1.0682	0.9966	0.9507	0.9721	Ave		0.9862				6.2	30.			
	1.0201	0.8773														
1,3,5-Trimethylbenzene	0.8907	0.9752	0.9000	0.8640	0.9124	Ave		0.9059				5.1	30.			
	0.9544	0.8442														
Alpha Methyl Styrene	0.3118	0.3622	0.4478	0.4555	0.4874	Ave		0.4362				16.8	30.)		
	0.5192	0.4696														
tert-Butylbenzene	0.9365	1.0174	0.9055	0.8547	0.8989	Ave		0.9134				6.6	30.)		
	0.9434	0.8376														
1,2,4-Trimethylbenzene	0.8232	0.9428	0.9045	0.8705	0.9218	Ave		0.8987				5.6	30.)		
	0.9667	0.8616														
sec-Butylbenzene	1.2456	1.3917	1.2850	1.2280	1.2896	Ave		1.2831				5.6	30.)		
	1.3543	1.1876														
1,2,4-Trichlorobenzene	++++	0.1267	0.2324	0.2872	0.3600	Ave		0.3063				37.2	* 30.)		
	0.4139	0.4178														
4-Isopropyltoluene	0.8920	1.1329	1.0868	1.0394	1.1178	Ave		1.0741				8.8	30.)		
	1.1915	1.0579														
1,3-Dichlorobenzene	0.5296	0.5912	0.6380	0.6404	0.6812	Ave		0.6387				10.1	30.)		
	0.7306	0.6597														
1,4-Dichlorobenzene	0.4824	0.5081	0.6006	0.6139	0.6625	Ave		0.6053				13.9	30.)		
	0.7166	0.6533														
Benzyl chloride	0.3761	0.4443	0.6149	0.6552	0.7411	Ave		0.6274				25.9	30.	0		
	0.8006	0.7597														
n-Butylbenzene	0.5243	0.6796	0.8402	0.8100	0.8776	Ave		0.7808				17.6	30.	9		
	0.9315	0.8024														
1,2-Dichlorobenzene	0.5595	0.5995	0.6466	0.6329	0.6695	Ave		0.6372				7.7	30.)		
	0.7123	0.6401														
Hexachlorobutadiene	0.2853	0.3307	0.4088	0.3900	0.4035	Ave		0.3660				14.7	30.)		
	0.4249	0.3189														
Naphthalene	+++++	0.2918	0.5021	0.6144	0.7385	Ave		0.6412				34.1	* 30.	ا ر		
	0.8332	0.8675						1								
1,2,3-Trichlorobenzene	0.1451	0.1426	0.2303	0.2712	0.3168	Ave		0.2581				34.6	* 30.	ا ر		
	0.3611	0.3397														

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

- 1				
	LEVEL:		LAB SAMPLE ID:	LAB FILE ID:
	Level	1	IC 200-16675/3	gfi003.d
	Level	2	IC 200-16675/4	gfi004.d
	Level	3	IC 200-16675/5	gfi005.d
	Level	4	ICIS 200-16675/7	gfi007.d
	Level	5	IC 200-16675/8	gfi008.d
	Level	6	IC 200-16675/9	gfi009.d
	Level	7	IC 200-16675/10	gfi010.d

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	+++++ 253642	6967 467032	56736	117769	179029	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	+++++ 1920619	47693 3464058	463221	916672	1406494	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	+++++ 745683	18425 1371289	176264	341117	542508	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	14791 1560043	38905 2835980	377683	745761	1148131	0.200	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	+++++ 291731	7515 551329	68473	134353	214779	+++++	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	+++++ 442708	10260 830157	102141	199561	316561	+++++	0.500 40.0	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	3800 410605	10032 769395	96706	192172	301643	0.200	0.500 40.0	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	2259 262684	6315 494847	60464	121579	193643	0.200	0.500 40.0	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 156270	+++++ 326045	36463	67631	119359	+++++	+++++ 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	8473 717818	19804 1430567	184083	364327	569157	0.200	0.500 40.0	5.00	10.0	15.0
Acetone	BCM	Ave	+++++ 578263	+++++ 1249088	134908	253533	437348	+++++	+++++ 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 230990	5912 471840	60931	118276	185881	+++++	0.500 40.0	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	+++++ 445694	+++++ 904371	96262	197378	329240	+++++	+++++ 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	4857 395484	10694 783590	97679	192405	305364	0.200	0.500 40.0	5.00	10.0	15.0
Ethanol	BCM	Ave	+++++ 280311	32950 668395	64759	93010	140267	+++++	5.00	10.0	15.0	20.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PPI	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Acetonitrile	BCM	Ave	+++++ 220072	++++ 476014	50779	99399	168430	+++++ 20.0	++++ 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	8500 818671	21923 1718100	208473	433008	676654	0.200	0.500	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	28965 2890959	73701 5432840	708712	1398489	2164698	0.200	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 868514	+++++ 1706637	190199	400206	648714	+++++	+++++ 40.0	5.00	10.0	15.0
n-Pentane	BCM	Ave	+++++ 683186	17053 17053 1300991	162222	324456	503021	+++++	0.500	5.00	10.0	15.0
Ethyl ether	BCM	Ave	3206 310335	8064 654679	72917	138867	235751	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	+++++ 933749	+++++ 1965861	211501	419100	709786	+++++	+++++ 40.0	5.00	10.0	15.0
Freon TF	BCM	Ave	18069 1837018	45862 3380131	451918	895092	1362387	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	7442 778592	19027 1459915	184534	365155	582693	0.200	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 42712	+++++ 92525	9984	18658	32177	+++++	+++++ 40.0	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	+++++ 2087358	52868 3899423	497533	986318	1545959	+++++ 20.0	0.500	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 352968	+++++ 753083	77429	150298	263514	+++++	+++++ 40.0	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	4599 495199	11714 959427	113974	229826	355552	0.200	0.500	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	+++++ 580531	16353 1103022	138833	281275	425315	+++++	0.500	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	18289 1693955	44187 3560738	379587	733142	1280972	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	9130 955024	23693 1804287	234075	464220	704822	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	+++++ 279886	7143 595486	64426	124484	211294	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	7794 766103	18774 1446638	186145	368797	564470	0.200	0.500	5.00	10.0	15.0
n-Butanol	DFB	Ave	+++++ 220334	+++++ 424693	43868	95370	158812	+++++	+++++ 40.0	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	12441 1163134	29064 2190836	279855	547351	847135	0.200	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	+++++ 286212	+++++ 594031	63101	131428	213071	+++++	+++++	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
cis-1,2-Dichloroethene	BCM	Ave	9035 860104	22601 1588055	210243	412425	633310	0.200	0.500	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	+++++ 231242	6536 472317	52573	102009	173301	+++++	0.500	5.00	10.0	15.0
Chloroform	BCM	Ave	19573 1906070	49931 3601643	460701	892170	1385757	0.200	0.500	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	22950 2269710	57775 4209378	559837	1095707	1661022	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	10161 938634	24000 1702689	235915	469004	704636	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	26552 2802212	65423 5305525	673050	1334843	2049334	0.200	0.500	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	24639 2383058	60188 4464940	587625	1128296	1760166	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	22674 1988670	54057 3794364	489737	916506	1470917	0.200	0.500	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	11088 1136558	29324 2233575	269228	513083	828299	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	7470 704614	18180 1360956	172398	333080	522624	0.200	0.500	5.00	10.0	15.0
Trichloroethene	DFB	Ave	13086 1237043	32025 2288749	303046	582838	909930	0.200	0.500	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	6869 612378	17318 1210744	145246	283531	460030	0.200	0.500	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	++++ 532176	12318 1145936	109791	221578	395442	++++	0.500	5.00	10.0	15.0
Dibromomethane	DFB	Ave	12639 1232248	30083 2312971	293219	565473	897270	0.200	0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	19640 2036185	49900 3992317	486365	941671	1525239	0.200	0.500	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	11118 1230563	30380 2459304	285293	556813	923923	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	++++ 759418	17086 1551800	171295	353330	581871	++++	0.500	5.00	10.0	15.0
n-Undecane	CBZ	Ave	++++ 966878	+++++ 2549605	221176	474420	750774	+++++	+++++	5.00	10.0	15.0
n-Octane	DFB	Ave	9785 896568	25251 1751285	229599	439780	688415	0.200	0.500	5.00	10.0	15.0
Toluene	CBZ	Ave	17472 1485943	45269 2830347	380585	703396	1141982	0.200	0.500	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	12334 1330971	31164 2722660	303562	597398	997108	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington	Job No.: 200-4733-1	Analy Batch No.: 16675
----------------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1,2-Trichloroethane	CBZ	Ave	9033 816594	22017 1613795	198734	383687	621086	0.200	0.500	5.00	10.0	15.0
Tetrachloroethene	CBZ	Ave	19161 1738521	45830 3317923	429080	827116	1309767	0.200	0.500	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 758289	14521 1523186	163847	354774	575299	+++++	0.500	5.00	10.0	15.0
n-Dodecane	CBZ	Ave	+++++ 808916	+++++ 1181898	153993	353750	580151	+++++	+++++	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	20066 2477286	53728 4890456	569806	1139278	1869465	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	17581 1859430	45274 3685621	438840	858284	1408968	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	26396 2487868	66562 4977445	603757	1160401	1905857	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	36668 3367618	95552 6769437	825535	1578380	2619891	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	11038 1015579	29352 2003252	258710	495205	796020	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	30128 2702303	77483 5313744	680042	1283571	2103504	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	16248 1397865	39914 2790063	345736	658638	1086140	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	18510 2120632	45806 4328721	485257	960186	1630235	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	17741 2354565	47638 4499190	550407	1105636	1810271	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	44250 4091248	115140 8366865	1007130	1919651	3191387	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	21811 1975731	56061 3913231	492121	945608	1547790	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	44537 4312803	123574 8342823	1087146	2076083	3398775	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	+++++ 1355390	42769 2613507	348018	658485	1071645	+++++	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	++++ 1243383	28586 2496157	295162	571538	982606	+++++	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	37796 4082862	106636 8256249	984599	1889197	3180858	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	40457 3720642	104439 7384079	927491	1768964	2895510	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	35387 3481237	95343 7105689	837582	1607756	2717769	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Alpha Methyl Styrene	CBZ	Ave	12390 1893893	35412 3952199	416755	847537	1451740	0.200	0.500 40.0	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	37208 3440778	99470 7050028	842678	1590306	2677521	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2,4-Trimethylbenzene	CBZ	Ave	32706 3525989	92179 7251669	841743	1619808	2745678	0.200 20.0	0.500 40.0	5.00	10.0	15.0
sec-Butylbenzene	CBZ	Ave	49491 4939486	136064 9995415	1195860	2285023	3841118	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2,4-Trichlorobenzene	CBZ	Ave	++++ 1509669	12384 3516902	216244	534402	1072406	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	35441 4345992	110768 8903909	1011451	1934140	3329572	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,3-Dichlorobenzene	CBZ	Ave	21041 2664836	57806 5552232	593763	1191536	2028955	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,4-Dichlorobenzene	CBZ	Ave	19166 2613725	49680 5498964	558962	1142230	1973301	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Benzyl chloride	CBZ	Ave	14941 2919941	43442 6393919	572230	1219182	2207324	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Butylbenzene	CBZ	Ave	20833 3397609	66447 6753960	781950	1507108	2613871	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorobenzene	CBZ	Ave	22229 2598015	58615 5387776	601744	1177607	1994285	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Hexachlorobutadiene	CBZ	Ave	11334 1549696	32330 2684394	380444	725651	1201776	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Naphthalene	CBZ	Ave	++++ 3039107	28526 7301393	467325	1143183	2199599	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2,3-Trichlorobenzene	CBZ	Ave	5765 1317078	13942 2859296	214346	504706	943575	0.200 20.0	0.500 40.0	5.00	10.0	15.0

	Legend:

Ave = Average ISTD

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Start Date: 04/15/2011 10:42 Calibration End Date: 04/15/2011 16:40 Calibration ID: 5980

Calibration Files:

LEVEL:		LAB SAMPLE ID:	EPA SAMPLE NO:	LAB FILE ID:	
Level	1	IC 200-16675/3	IC 132519	gfi003.d	
Level	2	IC 200-16675/4	ic 132517	gfi004.d	
Level	3	IC 200-16675/5	ic 132507	gfi005.d	
Level	4	ICIS 200-16675/7	icis 132429	gfi007.d	
Level	5	IC 200-16675/8	ic 132422	gfi008.d	
Level	6	IC 200-16675/9	ic 132406	gfi009.d	
Level	7	IC 200-16675/10	ic 132405	afi010.d	

ANALYTE			RRF			CURVE	(COEFFICIEN	?	# MIN RRF	%RSD		R^2	# MIN R^
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	OR COI
Propylene	+++++ 0.2642	0.2902 0.2371	0.2420	0.2487	0.2492	Ave		0.2552			7.6	30.0		
Dichlorodifluoromethane	+++++ 2.0005	1.9867 1.7585	1.9760	1.9356	1.9580	Ave		1.9359			4.6	30.0		
Freon 22	++++ 0.7767	0.7675 0.6961	0.7519	0.7203	0.7552	Ave		0.7446			4.1	30.0		
1,2-Dichlorotetrafluoroethane	1.5200 1.6250	1.6206 1.4396	1.6111	1.5747	1.5984	Ave		1.5699			4.3	30.0		
Chloromethane	+++++ 0.3039	0.3130 0.2799	0.2921	0.2837	0.2990	Ave		0.2953			4.2	30.0		
n-Butane	++++ 0.4611	0.4274 0.4214	0.4357	0.4214	0.4407	Ave		0.4346			3.5	30.0		
Vinyl chloride	0.3905 0.4277	0.4179 0.3906	0.4125	0.4058	0.4199	Ave		0.4093			3.5	30.0		
1,3-Butadiene	0.2321 0.2736	0.2631 0.2512	0.2579	0.2567	0.2696	Ave		0.2577			5.3	30.0		
Acrolein	+++++ 0.1628	+++++ 0.1655	0.1555	0.1428	0.1662	Ave		0.1586			6.2	30.0		
Bromomethane	0.8707 0.7477	0.8249 0.7262	0.7852	0.7693	0.7923	Ave		0.7881			6.1	30.0		
Acetone	+++++ 0.6023	+++++ 0.6341	0.5755	0.5353	0.6089	Ave		0.5912			6.4	30.0		
Chloroethane	+++++ 0.2406	0.2463 0.2395	0.2599	0.2497	0.2588	Ave		0.2491			3.5	30.0		
Isopropyl alcohol	+++++	+++++ 0.4591	0.4106	0.4168	0.4583	Ave		0.4418			5.9	30.0		
Isopentane	0.4991 0.4119	0.4455	0.4167	0.4063	0.4251	Ave		0.4289			8.0	30.0		

Lab Name: T	estAmerica Burlington	Job No.: 200-4735-1	Analy Batch No.: 16675
-------------	-----------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE TYPE	(COEFFICIEN'	Г	MIN RRF	%RSD	# MAX	R^2 OR COD	#	MIN R^2 OR COD
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TIPE	В	M1	M2			5K51	OR COD		OR COD
	LVL 6	LVL 7													
Ethanol	++++	0.1373	0.1381	0.1309	0.1465	Ave		0.1391			4.4	30.	0		
	0.1460	0.1357													
Acetonitrile	++++	+++++	0.2166	0.2099	0.2345	Ave		0.2264			5.7	30.	0		
	0.2292	0.2416													
Bromoethene (Vinyl Bromide)	0.8735	0.9132	0.8893	0.9143	0.9420	Ave		0.8939			3.5	30.	0		
	0.8527	0.8722													
Trichlorofluoromethane	2.9766	3.0700	3.0232	2.9530	3.0136	Ave		2.9722			3.4	30.	0		
	3.0113	2.7579	0.0110	0.0454	0 0001	_		0.0661							
tert-Butyl alcohol	++++	+++++	0.8113	0.8451	0.9031	Ave		0.8661			4.6	30.	0		
n-Pentane	0.9047	0.8663	0.6920	0.6851	0.7003	7		0.6933			2.8	30.	0		
n-rentane	0.7116	0.7103	0.6920	0.0031	0.7003	Ave		0.6933			2.0	30.	0		
Ethyl ether	0.7110	0.3359	0.3110	0.2932	0.3282	۸۰۰۰		0.3219			4.6	30.	0		
Ethyl ethel	0.3233	0.3323	0.5110	0.2932	0.3202	Ave		0.3219			4.0	30.			
Vinyl acetate	++++	+++++	0.9022	0.8849	0.9881	Ave		0.9492			5.5	30.	0		
111/1 4000400	0.9726	0.9979	0.3022	0.0013	0.3001	1110		0.3132			0.0		<u> </u>		
Freon TF	1.8568	1.9104	1.9277	1.8900	1.8966	Ave		1.8730			3.9	30.	0		
	1.9135	1.7159													
1,1-Dichloroethene	0.7648	0.7926	0.7872	0.7710	0.8112	Ave		0.7827			3.3	30.	0		
	0.8110	0.7411													
Ethyl acetate	+++++	+++++	0.0426	0.0394	0.0448	Ave		0.0436			6.5	30.	0		
	0.0445	0.0470													
Carbon disulfide	++++	2.2022	2.1223	2.0826	2.1522	Ave		2.1188			3.8	30.	0		
	2.1742	1.9795													
Tetrahydrofuran	++++	++++	0.0787	0.0772	0.0842	Ave		0.0849			9.9	30.	0		
	0.0984	0.0859													
3-Chloropropene	0.4726	0.4880	0.4862	0.4853	0.4950	Ave		0.4900			2.7	30.	0		
V -1 1 011 11	0.5158	0.4870	0.5922	0.5939	0 5001	_		0.6040			6 7	2.0	0		
Methylene Chloride	0.6047	0.6812	0.5922	0.5939	0.5921	Ave		0.6040			6.7	30.	0		
Methyl tert-butyl ether	1.8795	0.5599 1.8406	1.6192	1.5481	1.7833	7		1.7489			6.0	30.	0	_	
mernar retr-parat ermer	1.7644	1.8406	1.0192	1.0461	1./033	Ave		1./409			6.9	30.	١		
trans-1,2-Dichloroethene	0.9382	0.9869	0.9985	0.9802	0.9812	Ave		0.9708			3.2	30.	0	+	
crano 1,2 Dichitorocchiche	0.9948	0.9159	0.5505	0.7002	0.7012	1100		0.5700			3.2] 30.	Ŭ		
Acrylonitrile	+++++	0.2975	0.2748	0.2629	0.2942	Ave		0.2872			5.3	30.	0	+	
- 1	0.2915	0.3023													
n-Hexane	0.8009	0.7820	0.7940	0.7787	0.7858	Ave		0.7820			2.9	30.	0		
	0.7980	0.7344													
n-Butanol	++++	++++	0.0446	0.0490	0.0508	Ave		0.0509			12.5	30.	0		
	0.0614	0.0485												1	

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIENT	#	MIN RRF	%RSD			R^2	#	MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%R	SD	OR COD		OR COD
	LVL 6	LVL 7													Ш	
1,1-Dichloroethane	1.2785	1.2107	1.1938	1.1558	1.1793	Ave		1.1917			4.3	3	0.0			
	1.2115	1.1121														
1,4-Dioxane	++++	+++++	0.0641	0.0675	0.0681	Ave		0.0695			8.6	3	0.0			
	0.0798	0.0678														
cis-1,2-Dichloroethene	0.9285	0.9415	0.8968	0.8709	0.8817	Ave		0.8888			5.0	3	0.0			
	0.8959	0.8061														
Methyl Ethyl Ketone	++++	0.2723	0.2243	0.2154	0.2413	Ave		0.2390			8.1	3	0.0			
	0.2409	0.2398														
Chloroform	2.0114	2.0799	1.9652	1.8839	1.9292	Ave		1.9547			4.3	3	0.0			
	1.9854	1.8283														
1,1,1-Trichloroethane	0.5354	0.5484	0.5690	0.5631	0.5309	Ave		0.5514			8.4	3	0.0			
	0.6329	0.4804														
Cyclohexane	0.2371	0.2278	0.2398	0.2410	0.2252	Ave		0.2324			8.8	3	0.0			
	0.2617	0.1943														
Carbon tetrachloride	0.6194	0.6210	0.6840	0.6860	0.6550	Ave		0.6646			9.1	3	0.0			
	0.7813	0.6055														
2,2,4-Trimethylpentane	0.5748	0.5713	0.5972	0.5799	0.5626	Ave		0.5800			8.0	3	0.0			
	0.6645	0.5096														
Benzene	0.5290	0.5131	0.4977	0.4710	0.4701	Ave		0.4955			8.3	3	0.0			
	0.5545	0.4330														
1,2-Dichloroethane	0.2587	0.2784	0.2736	0.2637	0.2647	Ave		0.2730			7.7	3	0.0			
	0.3169	0.2549														
n-Heptane	0.1743	0.1726	0.1752	0.1712	0.1670	Ave		0.1732			7.1	3	0.0			
	0.1965	0.1553														
Trichloroethene	0.3053	0.3040	0.3080	0.2995	0.2908	Ave		0.3020			8.2	3	0.0			
	0.3449	0.2612														
1,2-Dichloropropane	0.1603	0.1644	0.1476	0.1457	0.1470	Ave		0.1534			7.7	3	0.0			
	0.1707	0.1382														
Methyl methacrylate	++++	0.1169	0.1116	0.1139	0.1264	Ave	·	0.1247			11.1	3	0.0			
	0.1484	0.1308														
Dibromomethane	0.2949	0.2856	0.2980	0.2906	0.2868	Ave		0.2948			8.2	3	0.0			
	0.3436	0.2640														
Bromodichloromethane	0.4582	0.4737	0.4943	0.4840	0.4875	Ave	·	0.4887			7.7	3	0.0			
	0.5677	0.4556														
cis-1,3-Dichloropropene	0.2594	0.2884	0.2899	0.2862	0.2953	Ave	·	0.2919			8.7	3	0.0			
	0.3431	0.2807				<u> </u>										
methyl isobutyl ketone	++++	0.1622	0.1741	0.1816	0.1860	Ave	·	0.1821			9.1	3	0.0			
	0.2117	0.1771														
n-Undecane	++++	+++++	0.2377	0.2550	0.2521	Ave	·	0.2625			9.4	3	0.0			
	0.2651	0.3029								1						

Lab Name:	TestAmerica Burlington	Job No.: 200-4735-1	Analy Batch No.: 16675
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	C	COEFFICIEN	T	#	MIN RRF	%RSD	# MAX	R^2 OR COD	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
n-Octane	0.2283 0.2500	0.2397 0.1999	0.2333	0.2260	0.2200	Ave		0.2282				6.9	30.0		
Toluene	0.4398 0.4074	0.4630 0.3363	0.4089	0.3780	0.3834	Ave		0.4024				10.4	30.0)	
trans-1,3-Dichloropropene	0.2877 0.3711	0.2958 0.3107	0.3085	0.3070	0.3187	Ave		0.3142				8.6	30.0)	
1,1,2-Trichloroethane	0.2274 0.2239	0.2252 0.1917	0.2135	0.2062	0.2085	Ave		0.2138				6.0	30.0)	
Tetrachloroethene	0.4823 0.4766	0.4687 0.3942	0.4610	0.4445	0.4397	Ave		0.4525				6.6	30.0)	
Methyl Butyl Ketone (2-Hexanone)	+++++ 0.2079	0.1485 0.1810	0.1761	0.1907	0.1931			0.1829				11.0	30.0)	
n-Dodecane	+++++ 0.2218	+++++	0.1655	0.1901	0.1948	Ave		0.1825				16.9	30.0)	
Dibromochloromethane	0.5050 0.6792	0.5495 0.5810	0.6123	0.6123	0.6276	Ave		0.5953				9.5	30.0)	
1,2-Dibromoethane	0.4425 0.5098	0.4631 0.4379	0.4715	0.4613	0.4730	Ave		0.4656				5.1	30.0)	
Chlorobenzene	0.6644 0.6821	0.6808 0.5914	0.6487	0.6236	0.6399	Ave		0.6473				5.0	30.0)	
Ethylbenzene	0.9229	0.9773 0.8043	0.8870	0.8483	0.8796	Ave		0.8918				6.3	30.0)	
n-Nonane	0.2778 0.2784	0.3002	0.2780	0.2661	0.2672	Ave		0.2723				6.9	30.0)	
m,p-Xylene	0.3791 0.3704	0.3962 0.3157	0.3654	0.3449	0.3531	Ave		0.3607				7.2	30.0)	
Xylene, o-	0.4089	0.4082 0.3315	0.3715	0.3540	0.3647	Ave		0.3746				7.5	30.0)	
Styrene	0.4659 0.5814	0.4685 0.5143	0.5214	0.5160	0.5473	Ave		0.5164				7.9	30.0)	
Bromoform	0.4465 0.6455	0.4872	0.5914	0.5942	0.6078	Ave		0.5582				12.8	30.0)	
Cumene	1.1137	1.1776	1.0822	1.0317	1.0714	Ave		1.0846				5.6	30.0)	
1,1,2,2-Tetrachloroethane	0.5490 0.5417	0.5734	0.5288	0.5082	0.5196	Ave		0.5265				6.5	30.0)	
n-Propylbenzene	1.1210 1.1824	1.2639	1.1681	1.1157	1.1411	Ave		1.1405				7.3	30.0)	
1,2,3-Trichloropropane	+++++ 0.3716	0.4374	0.3739	0.3539	0.3598	Ave		0.3679				11.2	30.0)	

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 1667	Lab Name:
--	-----------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE	(COEFFICIEN	Т	#	MIN RRF	%RSD	# MAX	R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6	LVL 7													
n-Decane	++++	0.2924	0.3172	0.3072	0.3299	Ave		0.3140				6.0	30.	0	
	0.3409	0.2966													
4-Ethyltoluene	0.9513	1.0907	1.0580	1.0153	1.0679	Ave		1.0405				5.8	30.	0	
	1.1194	0.9809													
2-Chlorotoluene	1.0183	1.0682	0.9966	0.9507	0.9721	Ave		0.9862				6.2	30.	0	
	1.0201	0.8773													
1,3,5-Trimethylbenzene	0.8907	0.9752	0.9000	0.8640	0.9124	Ave		0.9059				5.1	30.	0	
	0.9544	0.8442													
Alpha Methyl Styrene	0.3118	0.3622	0.4478	0.4555	0.4874	Ave		0.4362				16.8	30.	0	
	0.5192	0.4696													
tert-Butylbenzene	0.9365	1.0174	0.9055	0.8547	0.8989	Ave		0.9134				6.6	30.	0	
	0.9434	0.8376													
1,2,4-Trimethylbenzene	0.8232	0.9428	0.9045	0.8705	0.9218	Ave		0.8987				5.6	30.	0	
•	0.9667	0.8616													
sec-Butylbenzene	1.2456	1.3917	1.2850	1.2280	1.2896	Ave		1.2831				5.6	30.	0	
-	1.3543	1.1876													
1,2,4-Trichlorobenzene	++++	0.1267	0.2324	0.2872	0.3600	Ave		0.3063				37.2	* 30.	0	
	0.4139	0.4178													
4-Isopropyltoluene	0.8920	1.1329	1.0868	1.0394	1.1178	Ave		1.0741				8.8	30.	0	
	1.1915	1.0579													
1,3-Dichlorobenzene	0.5296	0.5912	0.6380	0.6404	0.6812	Ave		0.6387				10.1	30.	0	
	0.7306	0.6597													
1,4-Dichlorobenzene	0.4824	0.5081	0.6006	0.6139	0.6625	Ave		0.6053				13.9	30.	0	
	0.7166	0.6533													
Benzyl chloride	0.3761	0.4443	0.6149	0.6552	0.7411	Ave		0.6274				25.9	30.	0	
-	0.8006	0.7597													
n-Butylbenzene	0.5243	0.6796	0.8402	0.8100	0.8776	Ave		0.7808				17.6	30.	0	
1	0.9315	0.8024													
1,2-Dichlorobenzene	0.5595	0.5995	0.6466	0.6329	0.6695	Ave		0.6372				7.7	30.	0	
	0.7123	0.6401													
Hexachlorobutadiene	0.2853	0.3307	0.4088	0.3900	0.4035	Ave		0.3660				14.7	30.	0	
	0.4249	0.3189													
Naphthalene	++++	0.2918	0.5021	0.6144	0.7385	Ave		0.6412				34.1	* 30.	0	
-	0.8332	0.8675													
1,2,3-Trichlorobenzene	0.1451	0.1426	0.2303	0.2712	0.3168	Ave		0.2581				34.6	* 30.	0	
	0.3611	0.3397													

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

Calibration Files:

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 200-16675/3	gfi003.d
Level 2	IC 200-16675/4	gfi004.d
Level 3	IC 200-16675/5	gfi005.d
Level 4	ICIS 200-16675/7	gfi007.d
Level 5	IC 200-16675/8	gfi008.d
Level 6	IC 200-16675/9	gfi009.d
Level 7	IC 200-16675/10	gfi010.d

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Propylene	BCM	Ave	+++++ 253642	6967 467032	56736	117769	179029	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Dichlorodifluoromethane	BCM	Ave	+++++ 1920619	47693 3464058	463221	916672	1406494	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
Freon 22	BCM	Ave	+++++ 745683	18425 1371289	176264	341117	542508	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorotetrafluoroethane	BCM	Ave	14791 1560043	38905 2835980	377683	745761	1148131	0.200	0.500 40.0	5.00	10.0	15.0
Chloromethane	BCM	Ave	+++++ 291731	7515 551329	68473	134353	214779	+++++	0.500 40.0	5.00	10.0	15.0
n-Butane	BCM	Ave	+++++ 442708	10260 830157	102141	199561	316561	+++++	0.500 40.0	5.00	10.0	15.0
Vinyl chloride	BCM	Ave	3800 410605	10032 769395	96706	192172	301643	0.200	0.500 40.0	5.00	10.0	15.0
1,3-Butadiene	BCM	Ave	2259 262684	6315 494847	60464	121579	193643	0.200	0.500 40.0	5.00	10.0	15.0
Acrolein	BCM	Ave	+++++ 156270	+++++ 326045	36463	67631	119359	+++++	+++++ 40.0	5.00	10.0	15.0
Bromomethane	BCM	Ave	8473 717818	19804 1430567	184083	364327	569157	0.200	0.500 40.0	5.00	10.0	15.0
Acetone	BCM	Ave	+++++ 578263	+++++ 1249088	134908	253533	437348	+++++	+++++ 40.0	5.00	10.0	15.0
Chloroethane	BCM	Ave	+++++ 230990	5912 471840	60931	118276	185881	+++++	0.500 40.0	5.00	10.0	15.0
Isopropyl alcohol	BCM	Ave	+++++ 445694	+++++ 904371	96262	197378	329240	+++++	+++++ 40.0	5.00	10.0	15.0
Isopentane	BCM	Ave	4857 395484	10694 783590	97679	192405	305364	0.200	0.500 40.0	5.00	10.0	15.0
Ethanol	BCM	Ave	+++++ 280311	32950 668395	64759	93010	140267	+++++	5.00	10.0	15.0	20.0

Lab Name: TestAmerica	Burlington	Job No.:	200-4735-1	Analy	y Batch No.:	16675
-----------------------	------------	----------	------------	-------	--------------	-------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PPI	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Acetonitrile	BCM	Ave	+++++ 220072	++++ 476014	50779	99399	168430	+++++ 20.0	++++ 40.0	5.00	10.0	15.0
Bromoethene (Vinyl Bromide)	BCM	Ave	8500 818671	21923 1718100	208473	433008	676654	0.200	0.500	5.00	10.0	15.0
Trichlorofluoromethane	BCM	Ave	28965 2890959	73701 5432840	708712	1398489	2164698	0.200	0.500	5.00	10.0	15.0
tert-Butyl alcohol	BCM	Ave	+++++ 868514	+++++ 1706637	190199	400206	648714	+++++	+++++ 40.0	5.00	10.0	15.0
n-Pentane	BCM	Ave	+++++ 683186	17053 17053 1300991	162222	324456	503021	+++++	0.500	5.00	10.0	15.0
Ethyl ether	BCM	Ave	3206 310335	8064 654679	72917	138867	235751	0.200	0.500	5.00	10.0	15.0
Vinyl acetate	BCM	Ave	+++++ 933749	+++++ 1965861	211501	419100	709786	+++++	+++++ 40.0	5.00	10.0	15.0
Freon TF	BCM	Ave	18069 1837018	45862 3380131	451918	895092	1362387	0.200	0.500	5.00	10.0	15.0
1,1-Dichloroethene	BCM	Ave	7442 778592	19027 1459915	184534	365155	582693	0.200	0.500	5.00	10.0	15.0
Ethyl acetate	BCM	Ave	++++ 42712	+++++ 92525	9984	18658	32177	+++++	+++++ 40.0	5.00	10.0	15.0
Carbon disulfide	BCM	Ave	+++++ 2087358	52868 3899423	497533	986318	1545959	+++++ 20.0	0.500	5.00	10.0	15.0
Tetrahydrofuran	DFB	Ave	++++ 352968	+++++ 753083	77429	150298	263514	+++++	+++++ 40.0	5.00	10.0	15.0
3-Chloropropene	BCM	Ave	4599 495199	11714 959427	113974	229826	355552	0.200	0.500	5.00	10.0	15.0
Methylene Chloride	BCM	Ave	+++++ 580531	16353 1103022	138833	281275	425315	+++++	0.500	5.00	10.0	15.0
Methyl tert-butyl ether	BCM	Ave	18289 1693955	44187 3560738	379587	733142	1280972	0.200	0.500	5.00	10.0	15.0
trans-1,2-Dichloroethene	BCM	Ave	9130 955024	23693 1804287	234075	464220	704822	0.200	0.500	5.00	10.0	15.0
Acrylonitrile	BCM	Ave	+++++ 279886	7143 595486	64426	124484	211294	+++++	0.500	5.00	10.0	15.0
n-Hexane	BCM	Ave	7794 766103	18774 1446638	186145	368797	564470	0.200	0.500	5.00	10.0	15.0
n-Butanol	DFB	Ave	+++++ 220334	+++++ 424693	43868	95370	158812	+++++	+++++ 40.0	5.00	10.0	15.0
1,1-Dichloroethane	BCM	Ave	12441 1163134	29064 2190836	279855	547351	847135	0.200	0.500	5.00	10.0	15.0
1,4-Dioxane	DFB	Ave	++++ 286212	+++++ 594031	63101	131428	213071	+++++	+++++	5.00	10.0	15.0

Lab Name:	TestAmerica Burlington	Job No.: 200-4735-1	Analy Batch No.: 16675
-----------	------------------------	---------------------	------------------------

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PPI	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
cis-1,2-Dichloroethene	BCM	Ave	9035 860104	22601 1588055	210243	412425	633310	0.200	0.500	5.00	10.0	15.0
Methyl Ethyl Ketone	BCM	Ave	+++++ 231242	6536 472317	52573	102009	173301	+++++	0.500	5.00	10.0	15.0
Chloroform	BCM	Ave	19573 1906070	49931 3601643	460701	892170	1385757	0.200	0.500	5.00	10.0	15.0
1,1,1-Trichloroethane	DFB	Ave	22950 2269710	57775 4209378	559837	1095707	1661022	0.200	0.500	5.00	10.0	15.0
Cyclohexane	DFB	Ave	10161 938634	24000 1702689	235915	469004	704636	0.200	0.500	5.00	10.0	15.0
Carbon tetrachloride	DFB	Ave	26552 2802212	65423 5305525	673050	1334843	2049334	0.200	0.500	5.00	10.0	15.0
2,2,4-Trimethylpentane	DFB	Ave	24639 2383058	60188 4464940	587625	1128296	1760166	0.200	0.500	5.00	10.0	15.0
Benzene	DFB	Ave	22674 1988670	54057 3794364	489737	916506	1470917	0.200	0.500	5.00	10.0	15.0
1,2-Dichloroethane	DFB	Ave	11088 1136558	29324 2233575	269228	513083	828299	0.200	0.500	5.00	10.0	15.0
n-Heptane	DFB	Ave	7470 704614	18180 1360956	172398	333080	522624	0.200	0.500	5.00	10.0	15.0
Trichloroethene	DFB	Ave	13086 1237043	32025 2288749	303046	582838	909930	0.200	0.500	5.00	10.0	15.0
1,2-Dichloropropane	DFB	Ave	6869 612378	17318 1210744	145246	283531	460030	0.200	0.500	5.00	10.0	15.0
Methyl methacrylate	DFB	Ave	++++ 532176	12318 1145936	109791	221578	395442	+++++	0.500	5.00	10.0	15.0
Dibromomethane	DFB	Ave	12639 1232248	30083 2312971	293219	565473	897270	0.200	0.500	5.00	10.0	15.0
Bromodichloromethane	DFB	Ave	19640 2036185	49900 3992317	486365	941671	1525239	0.200	0.500	5.00	10.0	15.0
cis-1,3-Dichloropropene	DFB	Ave	11118 1230563	30380 2459304	285293	556813	923923	0.200	0.500	5.00	10.0	15.0
methyl isobutyl ketone	DFB	Ave	+++++ 759418	17086 1551800	171295	353330	581871	+++++	0.500	5.00	10.0	15.0
n-Undecane	CBZ	Ave	+++++ 966878	+++++ 2549605	221176	474420	750774	+++++	+++++	5.00	10.0	15.0
n-Octane	DFB	Ave	9785 896568	25251 1751285	229599	439780	688415	0.200	0.500	5.00	10.0	15.0
Toluene	CBZ	Ave	17472 1485943	45269 2830347	380585	703396	1141982	0.200	0.500	5.00	10.0	15.0
trans-1,3-Dichloropropene	DFB	Ave	12334 1330971	31164 2722660	303562	597398	997108	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	RATION (PP	3 V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
1,1,2-Trichloroethane	CBZ	Ave	9033 816594	22017 1613795	198734	383687	621086	0.200	0.500	5.00	10.0	15.0
Tetrachloroethene	CBZ	Ave	19161 1738521	45830 3317923	429080	827116	1309767	0.200	0.500	5.00	10.0	15.0
Methyl Butyl Ketone (2-Hexanone)	CBZ	Ave	+++++ 758289	14521 1523186	163847	354774	575299	+++++	0.500	5.00	10.0	15.0
n-Dodecane	CBZ	Ave	+++++ 808916	+++++ 1181898	153993	353750	580151	+++++	+++++	5.00	10.0	15.0
Dibromochloromethane	CBZ	Ave	20066 2477286	53728 4890456	569806	1139278	1869465	0.200	0.500	5.00	10.0	15.0
1,2-Dibromoethane	CBZ	Ave	17581 1859430	45274 3685621	438840	858284	1408968	0.200	0.500	5.00	10.0	15.0
Chlorobenzene	CBZ	Ave	26396 2487868	66562 4977445	603757	1160401	1905857	0.200	0.500	5.00	10.0	15.0
Ethylbenzene	CBZ	Ave	36668 3367618	95552 6769437	825535	1578380	2619891	0.200	0.500	5.00	10.0	15.0
n-Nonane	CBZ	Ave	11038 1015579	29352 2003252	258710	495205	796020	0.200	0.500	5.00	10.0	15.0
m,p-Xylene	CBZ	Ave	30128 2702303	77483 5313744	680042	1283571	2103504	0.400	1.00	10.0	20.0	30.0
Xylene, o-	CBZ	Ave	16248 1397865	39914 2790063	345736	658638	1086140	0.200	0.500	5.00	10.0	15.0
Styrene	CBZ	Ave	18510 2120632	45806 4328721	485257	960186	1630235	0.200	0.500	5.00	10.0	15.0
Bromoform	CBZ	Ave	17741 2354565	47638 4499190	550407	1105636	1810271	0.200	0.500	5.00	10.0	15.0
Cumene	CBZ	Ave	44250 4091248	115140 8366865	1007130	1919651	3191387	0.200	0.500	5.00	10.0	15.0
1,1,2,2-Tetrachloroethane	CBZ	Ave	21811 1975731	56061 3913231	492121	945608	1547790	0.200	0.500	5.00	10.0	15.0
n-Propylbenzene	CBZ	Ave	44537 4312803	123574 8342823	1087146	2076083	3398775	0.200	0.500	5.00	10.0	15.0
1,2,3-Trichloropropane	CBZ	Ave	+++++ 1355390	42769 2613507	348018	658485	1071645	+++++	0.500	5.00	10.0	15.0
n-Decane	CBZ	Ave	+++++ 1243383	28586 2496157	295162	571538	982606	+++++	0.500	5.00	10.0	15.0
4-Ethyltoluene	CBZ	Ave	37796 4082862	106636 8256249	984599	1889197	3180858	0.200	0.500	5.00	10.0	15.0
2-Chlorotoluene	CBZ	Ave	40457 3720642	104439 7384079	927491	1768964	2895510	0.200	0.500	5.00	10.0	15.0
1,3,5-Trimethylbenzene	CBZ	Ave	35387 3481237	95343 7105689	837582	1607756	2717769	0.200	0.500	5.00	10.0	15.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1 Analy Batch No.: 16675

SDG No.:

Instrument ID: G.i GC Column: RTX-624 ID: 0.32(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCENT	TRATION (PP	B V/V)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Alpha Methyl Styrene	CBZ	Ave	12390 1893893	35412 3952199	416755	847537	1451740	0.200	0.500 40.0	5.00	10.0	15.0
tert-Butylbenzene	CBZ	Ave	37208 3440778	99470 7050028	842678	1590306	2677521	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2,4-Trimethylbenzene	CBZ	Ave	32706 3525989	92179 7251669	841743	1619808	2745678	0.200 20.0	0.500 40.0	5.00	10.0	15.0
sec-Butylbenzene	CBZ	Ave	49491 4939486	136064 9995415	1195860	2285023	3841118	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2,4-Trichlorobenzene	CBZ	Ave	+++++ 1509669	12384 3516902	216244	534402	1072406	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
4-Isopropyltoluene	CBZ	Ave	35441 4345992	110768 8903909	1011451	1934140	3329572	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,3-Dichlorobenzene	CBZ	Ave	21041 2664836	57806 5552232	593763	1191536	2028955	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,4-Dichlorobenzene	CBZ	Ave	19166 2613725	49680 5498964	558962	1142230	1973301	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Benzyl chloride	CBZ	Ave	14941 2919941	43442 6393919	572230	1219182	2207324	0.200 20.0	0.500 40.0	5.00	10.0	15.0
n-Butylbenzene	CBZ	Ave	20833 3397609	66447 6753960	781950	1507108	2613871	0.200 20.0	0.500 40.0	5.00	10.0	15.0
1,2-Dichlorobenzene	CBZ	Ave	22229 2598015	58615 5387776	601744	1177607	1994285	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Hexachlorobutadiene	CBZ	Ave	11334 1549696	32330 2684394	380444	725651	1201776	0.200 20.0	0.500 40.0	5.00	10.0	15.0
Naphthalene	CBZ	Ave	++++ 3039107	28526 7301393	467325	1143183	2199599	+++++ 20.0	0.500 40.0	5.00	10.0	15.0
1,2,3-Trichlorobenzene	CBZ	Ave	5765 1317078	13942 2859296	214346	504706	943575	0.200 20.0	0.500 40.0	5.00	10.0	15.0

	Legend:

Ave = Average ISTD

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2552	0.2463		9.65	10.0	-3.5	30.0
Dichlorodifluoromethane	Ave	1.936	1.912		9.88	10.0	-1.2	30.0
Freon 22	Ave	0.7446	0.7472		10.0	10.0	0.3	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.570	1.596		10.2	10.0	1.7	30.0
Chloromethane	Ave	0.2953	0.2978		10.1	10.0	0.9	30.0
n-Butane	Ave	0.4346	0.4393		10.1	10.0	1.1	30.0
Vinyl chloride	Ave	0.4093	0.4141		10.1	10.0	1.2	30.0
1,3-Butadiene	Ave	0.2577	0.2748		10.7	10.0	6.6	30.0
Bromomethane	Ave	0.7881	0.7030		8.92	10.0	-10.8	30.0
Chloroethane	Ave	0.2491	0.2411		9.67	10.0	-3.2	30.0
Isopentane	Ave	0.4289	0.4148		9.67	10.0	-3.3	30.0
Bromoethene(Vinyl Bromide)	Ave	0.8939	0.9359		10.5	10.0	4.7	30.0
Trichlorofluoromethane	Ave	2.972	2.952		9.93	10.0	-0.7	30.0
n-Pentane	Ave	0.6933	0.6865		9.90	10.0	-1.0	30.0
Ethanol	Ave	0.1391	0.1358		14.7	15.0	-2.4	30.0
Ethyl ether	Ave	0.3219	0.2981		9.26	10.0	-7.4	30.0
Acrolein	Ave	0.1586	0.1352		8.52	10.0	-14.7	30.0
Freon TF	Ave	1.873	2.022		10.8	10.0	7.9	30.0
1,1-Dichloroethene	Ave	0.7827	0.8700		11.1	10.0	11.1	30.0
Acetone	Ave	0.5912	0.5703		9.64	10.0	-3.5	30.0
Isopropyl alcohol	Ave	0.4418	0.4215		9.54	10.0	-4.6	30.0
Carbon disulfide	Ave	2.119	2.139		10.1	10.0	1.0	30.0
3-Chloropropene	Ave	0.4900	0.4999		10.2	10.0	2.0	30.0
Acetonitrile	Ave	0.2264	0.2266		10.0	10.0	0.1	30.0
Methylene Chloride	Ave	0.6040	0.6399		10.6	10.0	5.9	30.0
tert-Butyl alcohol	Ave	0.8661	0.8159		9.42	10.0	-5.8	30.0
Methyl tert-butyl ether	Ave	1.749	1.635		9.35	10.0	-6.5	30.0
trans-1,2-Dichloroethene	Ave	0.9708	0.9861		10.2	10.0	1.6	30.0
Acrylonitrile	Ave	0.2872	0.2795		9.73	10.0	-2.7	30.0
n-Hexane	Ave	0.7820	0.7942		10.2	10.0	1.6	30.0
1,1-Dichloroethane	Ave	1.192	1.180		9.90	10.0	-1.0	30.0
Vinyl acetate	Ave	0.9492	0.9200		9.69	10.0	-3.1	30.0
cis-1,2-Dichloroethene	Ave	0.8888	0.9027		10.2	10.0	1.6	30.0
Methyl Ethyl Ketone	Ave	0.2390	0.2265		9.48	10.0	-5.2	30.0
Ethyl acetate	Ave	0.0436	0.0432		9.89	10.0	-1.0	30.0
Tetrahydrofuran	Ave	0.0849	0.0811		9.55	10.0	-4.5	30.0
Chloroform	Ave	1.955	1.893		9.68	10.0	-3.2	30.0
1,1,1-Trichloroethane	Ave	0.5514	0.5490		9.95	10.0	-0.5	30.0
Cyclohexane	Ave	0.2324	0.2364		10.2	10.0	1.7	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.6646	0.6587		9.91	10.0	-0.9	30.0
2,2,4-Trimethylpentane	Ave	0.5800	0.5906		10.2	10.0	1.8	30.0
Benzene	Ave	0.4955	0.4833		9.75	10.0	-2.5	30.0
1,2-Dichloroethane	Ave	0.2730	0.2654		9.72	10.0	-2.8	30.0
n-Heptane	Ave	0.1732	0.1746		10.1	10.0	0.8	30.0
n-Butanol	Ave	0.0509	0.0461		9.06	10.0	-9.4	30.0
Trichloroethene	Ave	0.3020	0.2932		9.71	10.0	-2.9	30.0
1,2-Dichloropropane	Ave	0.1534	0.1440		9.39	10.0	-6.1	30.0
Methyl methacrylate	Ave	0.1247	0.1167		9.36	10.0	-6.4	30.0
1,4-Dioxane	Ave	0.0695	0.0603		8.68	10.0	-13.2	30.0
Dibromomethane	Ave	0.2948	0.2914		9.88	10.0	-1.1	30.0
Bromodichloromethane	Ave	0.4887	0.4945		10.1	10.0	1.2	30.0
cis-1,3-Dichloropropene	Ave	0.2919	0.2820		9.66	10.0	-3.4	30.0
methyl isobutyl ketone	Ave	0.1821	0.1788		9.82	10.0	-1.8	30.0
n-Octane	Ave	0.2282	0.2244		9.83	10.0	-1.7	30.0
Toluene	Ave	0.4024	0.3749		9.32	10.0	-6.8	30.0
trans-1,3-Dichloropropene	Ave	0.3142	0.2991		9.52	10.0	-4.8	30.0
1,1,2-Trichloroethane	Ave	0.2138	0.1942		9.08	10.0	-9.2	30.0
Tetrachloroethene	Ave	0.4525	0.4347		9.61	10.0	-3.9	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.1829	0.1822		9.96	10.0	-0.4	30.0
Dibromochloromethane	Ave	0.5953	0.6175		10.4	10.0	3.7	30.0
1,2-Dibromoethane	Ave	0.4656	0.4431		9.52	10.0	-4.8	30.0
Chlorobenzene	Ave	0.6473	0.6037		9.33	10.0	-6.7	30.0
Ethylbenzene	Ave	0.8918	0.8364		9.38	10.0	-6.2	30.0
n-Nonane	Ave	0.2723	0.2614		9.60	10.0	-4.0	30.0
m,p-Xylene	Ave	0.3607	0.3360		18.6	20.0	-6.8	30.0
Xylene, o-	Ave	0.3746	0.3423		9.14	10.0	-8.6	30.0
Styrene	Ave	0.5164	0.5037		9.75	10.0	-2.5	30.0
Bromoform	Ave	0.5582	0.5841		10.5	10.0	4.6	30.0
Cumene	Ave	1.085	1.020		9.40	10.0	-6.0	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5265	0.4777		9.07	10.0	-9.3	30.0
n-Propylbenzene	Ave	1.140	1.103		9.67	10.0	-3.3	30.0
1,2,3-Trichloropropane	Ave	0.3679	0.3436		9.34	10.0	-6.6	30.0
n-Decane	Ave	0.3140	0.3142		10.0	10.0	0.0	30.0
4-Ethyltoluene	Ave	1.040	1.023		9.83	10.0	-1.7	30.0
2-Chlorotoluene	Ave	0.9862	0.9360		9.49	10.0	-5.1	30.0
1,3,5-Trimethylbenzene	Ave	0.9059	0.8376		9.24	10.0	-7.5	30.0
Alpha Methyl Styrene	Ave	0.4362	0.4432		10.2	10.0	1.6	30.0
tert-Butylbenzene	Ave	0.9134	0.8597		9.41	10.0	-5.9	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
1,2,4-Trimethylbenzene	Ave	0.8987	0.8290		9.22	10.0	-7.8	30.0
sec-Butylbenzene	Ave	1.283	1.219		9.50	10.0	-5.0	30.0
4-Isopropyltoluene	Ave	1.074	1.049		9.76	10.0	-2.3	30.0
1,3-Dichlorobenzene	Ave	0.6387	0.6146		9.62	10.0	-3.8	30.0
1,4-Dichlorobenzene	Ave	0.6053	0.5910		9.76	10.0	-2.4	30.0
Benzyl chloride	Ave	0.6274	0.6254		9.97	10.0	-0.3	30.0
n-Undecane	Ave	0.2625	0.2295		8.74	10.0	-12.6	30.0
n-Butylbenzene	Ave	0.7808	0.8099		10.4	10.0	3.7	30.0
1,2-Dichlorobenzene	Ave	0.6372	0.5903		9.26	10.0	-7.4	30.0
n-Dodecane	Ave	0.1825	0.1671		9.15	10.0	-8.5	30.0
1,2,4-Trichlorobenzene	Ave	0.3063	0.2514		8.21	10.0	-17.9	30.0
Hexachlorobutadiene	Ave	0.3660	0.3573		9.76	10.0	-2.4	30.0
Naphthalene	Ave	0.6412	0.5576		8.69	10.0	-13.0	30.0
1,2,3-Trichlorobenzene	Ave	0.2581	0.2428		9.41	10.0	-5.9	30.0
L.								

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2552	0.2559		10.0	10.0	0.3	30.0
Dichlorodifluoromethane	Ave	1.936	1.983		10.2	10.0	2.4	30.0
Freon 22	Ave	0.7446	0.7573		10.2	10.0	1.7	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.570	1.622		10.3	10.0	3.3	30.0
Chloromethane	Ave	0.2953	0.3012		10.2	10.0	2.0	30.0
n-Butane	Ave	0.4346	0.4475		10.3	10.0	3.0	30.0
Vinyl chloride	Ave	0.4093	0.4261		10.4	10.0	4.1	30.0
1,3-Butadiene	Ave	0.2577	0.2655		10.3	10.0	3.0	30.0
Bromomethane	Ave	0.7881	0.8032		10.2	10.0	1.9	30.0
Chloroethane	Ave	0.2491	0.2595		10.4	10.0	4.1	30.0
Isopentane	Ave	0.4289	0.4271		9.96	10.0	-0.4	30.0
Bromoethene(Vinyl Bromide)	Ave	0.8939	0.9639		10.8	10.0	7.8	30.0
Trichlorofluoromethane	Ave	2.972	3.044		10.2	10.0	2.4	30.0
n-Pentane	Ave	0.6933	0.7108		10.3	10.0	2.5	30.0
Ethanol	Ave	0.1391	0.1352		14.6	15.0	-2.8	30.0
Ethyl ether	Ave	0.3219	0.2922		9.08	10.0	-9.2	30.0
Acrolein	Ave	0.1586	0.1496		9.44	10.0	-5.6	30.0
Freon TF	Ave	1.873	1.944		10.4	10.0	3.8	30.0
1,1-Dichloroethene	Ave	0.7827	0.8169		10.4	10.0	4.4	30.0
Acetone	Ave	0.5912	0.5379		9.10	10.0	-9.0	30.0
Isopropyl alcohol	Ave	0.4418	0.4179		9.46	10.0	-5.4	30.0
Carbon disulfide	Ave	2.119	2.219		10.5	10.0	4.7	30.0
3-Chloropropene	Ave	0.4900	0.5038		10.3	10.0	2.8	30.0
Acetonitrile	Ave	0.2264	0.2065		9.12	10.0	-8.8	30.0
Methylene Chloride	Ave	0.6040	0.6046		10.0	10.0	0.1	30.0
tert-Butyl alcohol	Ave	0.8661	0.8423		9.72	10.0	-2.7	30.0
Methyl tert-butyl ether	Ave	1.749	1.542		8.82	10.0	-11.8	30.0
trans-1,2-Dichloroethene	Ave	0.9708	1.018		10.5	10.0	4.9	30.0
Acrylonitrile	Ave	0.2872	0.2621		9.12	10.0	-8.8	30.0
n-Hexane	Ave	0.7820	0.8106		10.4	10.0	3.7	30.0
1,1-Dichloroethane	Ave	1.192	1.213		10.2	10.0	1.8	30.0
Vinyl acetate	Ave	0.9492	0.8708		9.17	10.0	-8.3	30.0
cis-1,2-Dichloroethene	Ave	0.8888	0.9236		10.4	10.0	3.9	30.0
Methyl Ethyl Ketone	Ave	0.2390	0.2137		8.94	10.0	-10.6	30.0
Ethyl acetate	Ave	0.0436	0.0398		9.11	10.0	-8.9	30.0
Tetrahydrofuran	Ave	0.0849	0.0840		9.90	10.0	-1.0	30.0
Chloroform	Ave	1.955	1.957		10.0	10.0	0.1	30.0
1,1,1-Trichloroethane	Ave	0.5514	0.6349		11.5	10.0	15.1	30.0
Cyclohexane	Ave	0.2324	0.2705		11.6	10.0	16.4	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.6646	0.7720		11.6	10.0	16.1	30.0
2,2,4-Trimethylpentane	Ave	0.5800	0.6645		11.5	10.0	14.6	30.0
Benzene	Ave	0.4955	0.5398		10.9	10.0	8.9	30.0
1,2-Dichloroethane	Ave	0.2730	0.2949		10.8	10.0	8.0	30.0
n-Heptane	Ave	0.1732	0.1943		11.2	10.0	12.2	30.0
n-Butanol	Ave	0.0509	0.0554		10.9	10.0	8.9	30.0
Trichloroethene	Ave	0.3020	0.3431		11.4	10.0	13.6	30.0
1,2-Dichloropropane	Ave	0.1534	0.1630		10.6	10.0	6.2	30.0
Methyl methacrylate	Ave	0.1247	0.1232		9.88	10.0	-1.1	30.0
1,4-Dioxane	Ave	0.0695	0.0750		10.8	10.0	7.9	30.0
Dibromomethane	Ave	0.2948	0.3380		11.5	10.0	14.7	30.0
Bromodichloromethane	Ave	0.4887	0.5414		11.1	10.0	10.8	30.0
cis-1,3-Dichloropropene	Ave	0.2919	0.3200		11.0	10.0	9.6	30.0
methyl isobutyl ketone	Ave	0.1821	0.2009		11.0	10.0	10.3	30.0
n-Octane	Ave	0.2282	0.2478		10.9	10.0	8.6	30.0
Toluene	Ave	0.4024	0.4085		10.1	10.0	1.5	30.0
trans-1,3-Dichloropropene	Ave	0.3142	0.3389		10.8	10.0	7.8	30.0
1,1,2-Trichloroethane	Ave	0.2138	0.2188		10.2	10.0	2.3	30.0
Tetrachloroethene	Ave	0.4525	0.4808		10.6	10.0	6.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.1829	0.2004		11.0	10.0	9.6	30.0
Dibromochloromethane	Ave	0.5953	0.6466		10.9	10.0	8.6	30.0
1,2-Dibromoethane	Ave	0.4656	0.4896		10.5	10.0	5.2	30.0
Chlorobenzene	Ave	0.6473	0.6675		10.3	10.0	3.1	30.0
Ethylbenzene	Ave	0.8918	0.8845		9.92	10.0	-0.8	30.0
n-Nonane	Ave	0.2723	0.2762		10.1	10.0	1.5	30.0
m,p-Xylene	Ave	0.3607	0.3610		20.0	20.0	0.0	30.0
Xylene, o-	Ave	0.3746	0.3727		9.95	10.0	-0.5	30.0
Styrene	Ave	0.5164	0.5423		10.5	10.0	5.0	30.0
Bromoform	Ave	0.5582	0.6256		11.2	10.0	12.1	30.0
Cumene	Ave	1.085	1.063		9.80	10.0	-2.0	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5265	0.5246		9.96	10.0	-0.4	30.0
n-Propylbenzene	Ave	1.140	1.143		10.0	10.0	0.2	30.0
1,2,3-Trichloropropane	Ave	0.3679	0.3629		9.86	10.0	-1.4	30.0
n-Decane	Ave	0.3140	0.3098		9.86	10.0	-1.3	30.0
4-Ethyltoluene	Ave	1.040	1.046		10.1	10.0	0.6	30.0
2-Chlorotoluene	Ave	0.9862	0.9861		10.0	10.0	-0.0	30.0
1,3,5-Trimethylbenzene	Ave	0.9059	0.8910		9.83	10.0	-1.6	30.0
Alpha Methyl Styrene	Ave	0.4362	0.4683		10.7	10.0	7.4	30.0
tert-Butylbenzene	Ave	0.9134	0.8859		9.70	10.0	-3.0	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4733-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	0.8987	0.8951		9.96	10.0	-0.4	30.0
sec-Butylbenzene	Ave	1.283	1.266		9.86	10.0	-1.4	30.0
4-Isopropyltoluene	Ave	1.074	1.078		10.0	10.0	0.4	30.0
1,3-Dichlorobenzene	Ave	0.6387	0.6826		10.7	10.0	6.9	30.0
1,4-Dichlorobenzene	Ave	0.6053	0.6507		10.7	10.0	7.5	30.0
Benzyl chloride	Ave	0.6274	0.6823		10.9	10.0	8.8	30.0
n-Undecane	Ave	0.2625	0.2579		9.82	10.0	-1.8	30.0
n-Butylbenzene	Ave	0.7808	0.8331		10.7	10.0	6.7	30.0
1,2-Dichlorobenzene	Ave	0.6372	0.6678		10.5	10.0	4.8	30.0
n-Dodecane	Ave	0.1825	0.1943		10.6	10.0	6.5	30.0
1,2,4-Trichlorobenzene	Ave	0.3063	0.2953		9.64	10.0	-3.6	30.0
Hexachlorobutadiene	Ave	0.3660	0.3966		10.8	10.0	8.4	30.0
Naphthalene	Ave	0.6412	0.6431		10.0	10.0	0.3	30.0
1,2,3-Trichlorobenzene	Ave	0.2581	0.2822		10.9	10.0	9.3	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2552	0.2463		9.65	10.0	-3.5	30.0
Dichlorodifluoromethane	Ave	1.936	1.912		9.88	10.0	-1.2	30.0
Freon 22	Ave	0.7446	0.7472		10.0	10.0	0.3	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.570	1.596		10.2	10.0	1.7	30.0
Chloromethane	Ave	0.2953	0.2978		10.1	10.0	0.9	30.0
n-Butane	Ave	0.4346	0.4393		10.1	10.0	1.1	30.0
Vinyl chloride	Ave	0.4093	0.4141		10.1	10.0	1.2	30.0
1,3-Butadiene	Ave	0.2577	0.2748		10.7	10.0	6.6	30.0
Bromomethane	Ave	0.7881	0.7030		8.92	10.0	-10.8	30.0
Chloroethane	Ave	0.2491	0.2411		9.67	10.0	-3.2	30.0
Isopentane	Ave	0.4289	0.4148		9.67	10.0	-3.3	30.0
Bromoethene(Vinyl Bromide)	Ave	0.8939	0.9359		10.5	10.0	4.7	30.0
Trichlorofluoromethane	Ave	2.972	2.952		9.93	10.0	-0.7	30.0
n-Pentane	Ave	0.6933	0.6865		9.90	10.0	-1.0	30.0
Ethanol	Ave	0.1391	0.1358		14.7	15.0	-2.4	30.0
Ethyl ether	Ave	0.3219	0.2981		9.26	10.0	-7.4	30.0
Acrolein	Ave	0.1586	0.1352		8.52	10.0	-14.7	30.0
Freon TF	Ave	1.873	2.022		10.8	10.0	7.9	30.0
1,1-Dichloroethene	Ave	0.7827	0.8700		11.1	10.0	11.1	30.0
Acetone	Ave	0.5912	0.5703		9.64	10.0	-3.5	30.0
Isopropyl alcohol	Ave	0.4418	0.4215		9.54	10.0	-4.6	30.0
Carbon disulfide	Ave	2.119	2.139		10.1	10.0	1.0	30.0
3-Chloropropene	Ave	0.4900	0.4999		10.2	10.0	2.0	30.0
Acetonitrile	Ave	0.2264	0.2266		10.0	10.0	0.1	30.0
Methylene Chloride	Ave	0.6040	0.6399		10.6	10.0	5.9	30.0
tert-Butyl alcohol	Ave	0.8661	0.8159		9.42	10.0	-5.8	30.0
Methyl tert-butyl ether	Ave	1.749	1.635		9.35	10.0	-6.5	30.0
trans-1,2-Dichloroethene	Ave	0.9708	0.9861		10.2	10.0	1.6	30.0
Acrylonitrile	Ave	0.2872	0.2795		9.73	10.0	-2.7	30.0
n-Hexane	Ave	0.7820	0.7942		10.2	10.0	1.6	30.0
1,1-Dichloroethane	Ave	1.192	1.180		9.90	10.0	-1.0	30.0
Vinyl acetate	Ave	0.9492	0.9200		9.69	10.0	-3.1	30.0
cis-1,2-Dichloroethene	Ave	0.8888	0.9027		10.2	10.0	1.6	30.0
Methyl Ethyl Ketone	Ave	0.2390	0.2265		9.48	10.0	-5.2	30.0
Ethyl acetate	Ave	0.0436	0.0432		9.89	10.0	-1.0	30.0
Tetrahydrofuran	Ave	0.0849	0.0811		9.55	10.0	-4.5	30.0
Chloroform	Ave	1.955	1.893		9.68	10.0	-3.2	30.0
1,1,1-Trichloroethane	Ave	0.5514	0.5490		9.95	10.0	-0.5	30.0
Cyclohexane	Ave	0.2324	0.2364		10.2	10.0	1.7	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.6646	0.6587		9.91	10.0	-0.9	30.0
2,2,4-Trimethylpentane	Ave	0.5800	0.5906		10.2	10.0	1.8	30.0
Benzene	Ave	0.4955	0.4833		9.75	10.0	-2.5	30.0
1,2-Dichloroethane	Ave	0.2730	0.2654		9.72	10.0	-2.8	30.0
n-Heptane	Ave	0.1732	0.1746		10.1	10.0	0.8	30.0
n-Butanol	Ave	0.0509	0.0461		9.06	10.0	-9.4	30.0
Trichloroethene	Ave	0.3020	0.2932		9.71	10.0	-2.9	30.0
1,2-Dichloropropane	Ave	0.1534	0.1440		9.39	10.0	-6.1	30.0
Methyl methacrylate	Ave	0.1247	0.1167		9.36	10.0	-6.4	30.0
1,4-Dioxane	Ave	0.0695	0.0603		8.68	10.0	-13.2	30.0
Dibromomethane	Ave	0.2948	0.2914		9.88	10.0	-1.1	30.0
Bromodichloromethane	Ave	0.4887	0.4945		10.1	10.0	1.2	30.0
cis-1,3-Dichloropropene	Ave	0.2919	0.2820		9.66	10.0	-3.4	30.0
methyl isobutyl ketone	Ave	0.1821	0.1788		9.82	10.0	-1.8	30.0
n-Octane	Ave	0.2282	0.2244		9.83	10.0	-1.7	30.0
Toluene	Ave	0.4024	0.3749		9.32	10.0	-6.8	30.0
trans-1,3-Dichloropropene	Ave	0.3142	0.2991		9.52	10.0	-4.8	30.0
1,1,2-Trichloroethane	Ave	0.2138	0.1942		9.08	10.0	-9.2	30.0
Tetrachloroethene	Ave	0.4525	0.4347		9.61	10.0	-3.9	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.1829	0.1822		9.96	10.0	-0.4	30.0
Dibromochloromethane	Ave	0.5953	0.6175		10.4	10.0	3.7	30.0
1,2-Dibromoethane	Ave	0.4656	0.4431		9.52	10.0	-4.8	30.0
Chlorobenzene	Ave	0.6473	0.6037		9.33	10.0	-6.7	30.0
Ethylbenzene	Ave	0.8918	0.8364		9.38	10.0	-6.2	30.0
n-Nonane	Ave	0.2723	0.2614		9.60	10.0	-4.0	30.0
m,p-Xylene	Ave	0.3607	0.3360		18.6	20.0	-6.8	30.0
Xylene, o-	Ave	0.3746	0.3423		9.14	10.0	-8.6	30.0
Styrene	Ave	0.5164	0.5037		9.75	10.0	-2.5	30.0
Bromoform	Ave	0.5582	0.5841		10.5	10.0	4.6	30.0
Cumene	Ave	1.085	1.020		9.40	10.0	-6.0	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5265	0.4777		9.07	10.0	-9.3	30.0
n-Propylbenzene	Ave	1.140	1.103		9.67	10.0	-3.3	30.0
1,2,3-Trichloropropane	Ave	0.3679	0.3436		9.34	10.0	-6.6	30.0
n-Decane	Ave	0.3140	0.3142		10.0	10.0	0.0	30.0
4-Ethyltoluene	Ave	1.040	1.023		9.83	10.0	-1.7	30.0
2-Chlorotoluene	Ave	0.9862	0.9360		9.49	10.0	-5.1	30.0
1,3,5-Trimethylbenzene	Ave	0.9059	0.8376		9.24	10.0	-7.5	30.0
Alpha Methyl Styrene	Ave	0.4362	0.4432		10.2	10.0	1.6	30.0
tert-Butylbenzene	Ave	0.9134	0.8597		9.41	10.0	-5.9	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: ICV 200-16675/12 Calibration Date: 04/15/2011 18:23

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfi012.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: icv 133740

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	0.8987	0.8290		9.22	10.0	-7.8	30.0
sec-Butylbenzene	Ave	1.283	1.219		9.50	10.0	-5.0	30.0
4-Isopropyltoluene	Ave	1.074	1.049		9.76	10.0	-2.3	30.0
1,3-Dichlorobenzene	Ave	0.6387	0.6146		9.62	10.0	-3.8	30.0
1,4-Dichlorobenzene	Ave	0.6053	0.5910		9.76	10.0	-2.4	30.0
Benzyl chloride	Ave	0.6274	0.6254		9.97	10.0	-0.3	30.0
n-Undecane	Ave	0.2625	0.2295		8.74	10.0	-12.6	30.0
n-Butylbenzene	Ave	0.7808	0.8099		10.4	10.0	3.7	30.0
1,2-Dichlorobenzene	Ave	0.6372	0.5903		9.26	10.0	-7.4	30.0
n-Dodecane	Ave	0.1825	0.1671		9.15	10.0	-8.5	30.0
1,2,4-Trichlorobenzene	Ave	0.3063	0.2514		8.21	10.0	-17.9	30.0
Hexachlorobutadiene	Ave	0.3660	0.3573		9.76	10.0	-2.4	30.0
Naphthalene	Ave	0.6412	0.5576		8.69	10.0	-13.0	30.0
1,2,3-Trichlorobenzene	Ave	0.2581	0.2428		9.41	10.0	-5.9	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Propylene	Ave	0.2552	0.2559		10.0	10.0	0.3	30.0
Dichlorodifluoromethane	Ave	1.936	1.983		10.2	10.0	2.4	30.0
Freon 22	Ave	0.7446	0.7573		10.2	10.0	1.7	30.0
1,2-Dichlorotetrafluoroethan	Ave	1.570	1.622		10.3	10.0	3.3	30.0
Chloromethane	Ave	0.2953	0.3012		10.2	10.0	2.0	30.0
n-Butane	Ave	0.4346	0.4475		10.3	10.0	3.0	30.0
Vinyl chloride	Ave	0.4093	0.4261		10.4	10.0	4.1	30.0
1,3-Butadiene	Ave	0.2577	0.2655		10.3	10.0	3.0	30.0
Bromomethane	Ave	0.7881	0.8032		10.2	10.0	1.9	30.0
Chloroethane	Ave	0.2491	0.2595		10.4	10.0	4.1	30.0
Isopentane	Ave	0.4289	0.4271		9.96	10.0	-0.4	30.0
Bromoethene (Vinyl Bromide)	Ave	0.8939	0.9639		10.8	10.0	7.8	30.0
Trichlorofluoromethane	Ave	2.972	3.044		10.2	10.0	2.4	30.0
n-Pentane	Ave	0.6933	0.7108		10.3	10.0	2.5	30.0
Ethanol	Ave	0.1391	0.1352		14.6	15.0	-2.8	30.0
Ethyl ether	Ave	0.3219	0.2922		9.08	10.0	-9.2	30.0
Acrolein	Ave	0.1586	0.1496		9.44	10.0	-5.6	30.0
Freon TF	Ave	1.873	1.944		10.4	10.0	3.8	30.0
1,1-Dichloroethene	Ave	0.7827	0.8169		10.4	10.0	4.4	30.0
Acetone	Ave	0.5912	0.5379		9.10	10.0	-9.0	30.0
Isopropyl alcohol	Ave	0.4418	0.4179		9.46	10.0	-5.4	30.0
Carbon disulfide	Ave	2.119	2.219		10.5	10.0	4.7	30.0
3-Chloropropene	Ave	0.4900	0.5038		10.3	10.0	2.8	30.0
Acetonitrile	Ave	0.2264	0.2065		9.12	10.0	-8.8	30.0
Methylene Chloride	Ave	0.6040	0.6046		10.0	10.0	0.1	30.0
tert-Butyl alcohol	Ave	0.8661	0.8423		9.72	10.0	-2.7	30.0
Methyl tert-butyl ether	Ave	1.749	1.542		8.82	10.0	-11.8	30.0
trans-1,2-Dichloroethene	Ave	0.9708	1.018		10.5	10.0	4.9	30.0
Acrylonitrile	Ave	0.2872	0.2621		9.12	10.0	-8.8	30.0
n-Hexane	Ave	0.7820	0.8106		10.4	10.0	3.7	30.0
1,1-Dichloroethane	Ave	1.192	1.213		10.2	10.0	1.8	30.0
Vinyl acetate	Ave	0.9492	0.8708		9.17	10.0	-8.3	30.0
cis-1,2-Dichloroethene	Ave	0.8888	0.9236		10.4	10.0	3.9	30.0
Methyl Ethyl Ketone	Ave	0.2390	0.2137		8.94	10.0	-10.6	30.0
Ethyl acetate	Ave	0.0436	0.0398		9.11	10.0	-8.9	30.0
Tetrahydrofuran	Ave	0.0849	0.0840		9.90	10.0	-1.0	30.0
Chloroform	Ave	1.955	1.957		10.0	10.0	0.1	30.0
1,1,1-Trichloroethane	Ave	0.5514	0.6349		11.5	10.0	15.1	30.0
Cyclohexane	Ave	0.2324	0.2705		11.6	10.0	16.4	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Carbon tetrachloride	Ave	0.6646	0.7720		11.6	10.0	16.1	30.0
2,2,4-Trimethylpentane	Ave	0.5800	0.6645		11.5	10.0	14.6	30.0
Benzene	Ave	0.4955	0.5398		10.9	10.0	8.9	30.0
1,2-Dichloroethane	Ave	0.2730	0.2949		10.8	10.0	8.0	30.0
n-Heptane	Ave	0.1732	0.1943		11.2	10.0	12.2	30.0
n-Butanol	Ave	0.0509	0.0554		10.9	10.0	8.9	30.0
Trichloroethene	Ave	0.3020	0.3431		11.4	10.0	13.6	30.0
1,2-Dichloropropane	Ave	0.1534	0.1630		10.6	10.0	6.2	30.0
Methyl methacrylate	Ave	0.1247	0.1232		9.88	10.0	-1.1	30.0
1,4-Dioxane	Ave	0.0695	0.0750		10.8	10.0	7.9	30.0
Dibromomethane	Ave	0.2948	0.3380		11.5	10.0	14.7	30.0
Bromodichloromethane	Ave	0.4887	0.5414		11.1	10.0	10.8	30.0
cis-1,3-Dichloropropene	Ave	0.2919	0.3200		11.0	10.0	9.6	30.0
methyl isobutyl ketone	Ave	0.1821	0.2009		11.0	10.0	10.3	30.0
n-Octane	Ave	0.2282	0.2478		10.9	10.0	8.6	30.0
Toluene	Ave	0.4024	0.4085		10.1	10.0	1.5	30.0
trans-1,3-Dichloropropene	Ave	0.3142	0.3389		10.8	10.0	7.8	30.0
1,1,2-Trichloroethane	Ave	0.2138	0.2188		10.2	10.0	2.3	30.0
Tetrachloroethene	Ave	0.4525	0.4808		10.6	10.0	6.3	30.0
Methyl Butyl Ketone (2-Hexanone)	Ave	0.1829	0.2004		11.0	10.0	9.6	30.0
Dibromochloromethane	Ave	0.5953	0.6466		10.9	10.0	8.6	30.0
1,2-Dibromoethane	Ave	0.4656	0.4896		10.5	10.0	5.2	30.0
Chlorobenzene	Ave	0.6473	0.6675		10.3	10.0	3.1	30.0
Ethylbenzene	Ave	0.8918	0.8845		9.92	10.0	-0.8	30.0
n-Nonane	Ave	0.2723	0.2762		10.1	10.0	1.5	30.0
m,p-Xylene	Ave	0.3607	0.3610		20.0	20.0	0.0	30.0
Xylene, o-	Ave	0.3746	0.3727		9.95	10.0	-0.5	30.0
Styrene	Ave	0.5164	0.5423		10.5	10.0	5.0	30.0
Bromoform	Ave	0.5582	0.6256		11.2	10.0	12.1	30.0
Cumene	Ave	1.085	1.063		9.80	10.0	-2.0	30.0
1,1,2,2-Tetrachloroethane	Ave	0.5265	0.5246		9.96	10.0	-0.4	30.0
n-Propylbenzene	Ave	1.140	1.143		10.0	10.0	0.2	30.0
1,2,3-Trichloropropane	Ave	0.3679	0.3629		9.86	10.0	-1.4	30.0
n-Decane	Ave	0.3140	0.3098		9.86	10.0	-1.3	30.0
4-Ethyltoluene	Ave	1.040	1.046		10.1	10.0	0.6	30.0
2-Chlorotoluene	Ave	0.9862	0.9861		10.0	10.0	-0.0	30.0
1,3,5-Trimethylbenzene	Ave	0.9059	0.8910		9.83	10.0	-1.6	30.0
Alpha Methyl Styrene	Ave	0.4362	0.4683		10.7	10.0	7.4	30.0
tert-Butylbenzene	Ave	0.9134	0.8859		9.70	10.0	-3.0	30.0

Lab Name: TestAmerica Burlington Job No.: 200-4735-1

SDG No.:

Lab Sample ID: CCVIS 200-16738/2 Calibration Date: 04/19/2011 09:36

Instrument ID: G.i Calib Start Date: 04/15/2011 10:42

GC Column: RTX-624 ID: 0.32(mm) Calib End Date: 04/15/2011 16:40

Lab File ID: gfib002.d Conc. Units: ppb v/v Heated Purge: (Y/N) N

EPA Sample No.: ccvis 132429

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
1,2,4-Trimethylbenzene	Ave	0.8987	0.8951		9.96	10.0	-0.4	30.0
sec-Butylbenzene	Ave	1.283	1.266		9.86	10.0	-1.4	30.0
4-Isopropyltoluene	Ave	1.074	1.078		10.0	10.0	0.4	30.0
1,3-Dichlorobenzene	Ave	0.6387	0.6826		10.7	10.0	6.9	30.0
1,4-Dichlorobenzene	Ave	0.6053	0.6507		10.7	10.0	7.5	30.0
Benzyl chloride	Ave	0.6274	0.6823		10.9	10.0	8.8	30.0
n-Undecane	Ave	0.2625	0.2579		9.82	10.0	-1.8	30.0
n-Butylbenzene	Ave	0.7808	0.8331		10.7	10.0	6.7	30.0
1,2-Dichlorobenzene	Ave	0.6372	0.6678		10.5	10.0	4.8	30.0
n-Dodecane	Ave	0.1825	0.1943		10.6	10.0	6.5	30.0
1,2,4-Trichlorobenzene	Ave	0.3063	0.2953		9.64	10.0	-3.6	30.0
Hexachlorobutadiene	Ave	0.3660	0.3966		10.8	10.0	8.4	30.0
Naphthalene	Ave	0.6412	0.6431		10.0	10.0	0.3	30.0
1,2,3-Trichlorobenzene	Ave	0.2581	0.2822		10.9	10.0	9.3	30.0

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Bu	urlington	Job No.: 200-4733-1
SDG No.:		
Instrument ID: G.i		Start Date: 04/15/2011 08:57
Analysis Batch Number:	16675	End Date: 04/15/2011 19:14

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-16675/1		04/15/2011 08:57	1	gfi001.d	RTX-624 0.32 (mm)
VIBLK 200-16675/2		04/15/2011 09:49	1		RTX-624 0.32 (mm)
IC 200-16675/3		04/15/2011 10:42	1	gfi003.d	RTX-624 0.32 (mm)
IC 200-16675/4		04/15/2011 11:33	1	gfi004.d	RTX-624 0.32 (mm)
IC 200-16675/5		04/15/2011 12:24	1	gfi005.d	RTX-624 0.32 (mm)
ZZZZZ		04/15/2011 13:16	1		RTX-624 0.32 (mm)
ICIS 200-16675/7		04/15/2011 14:07	1	gfi007.d	RTX-624 0.32 (mm)
IC 200-16675/8		04/15/2011 14:58	1	gfi008.d	RTX-624 0.32 (mm)
IC 200-16675/9		04/15/2011 15:49	1	gfi009.d	RTX-624 0.32 (mm)
IC 200-16675/10		04/15/2011 16:40	1	gfi010.d	RTX-624 0.32 (mm)
VIBLK 200-16675/11		04/15/2011 17:32	1		RTX-624 0.32 (mm)
ICV 200-16675/12		04/15/2011 18:23	1	gfi012.d	RTX-624 0.32 (mm)
ZZZZZ		04/15/2011 19:14	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica l	Burlington	Job No.: 200-4733-1
SDG No.:		
Instrument ID: G.i		Start Date: 04/19/2011 08:44
Analysis Batch Number:	16738	End Date: 04/20/2011 08:09

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
FB 200-16738/1		04/19/2011 08:44	1	gfib001.d	RTX-624 0.32 (mm)
CCVIS 200-16738/2		04/19/2011 09:36	1	gfib002.d	RTX-624 0.32 (mm)
CS 200-16738/3		04/19/2011 10:28	1	gfib003.d	RTX-624 0.32 (mm)
TIBLK 200-16738/4		04/19/2011 11:19	1		RTX-624 0.32 (mm)
IB 200-16738/5		04/19/2011 12:25	1	gfib005.d	RTX-624 0.32 (mm)
ZZZZ		04/19/2011 13:17	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 14:09	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 15:01	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 15:52	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 16:44	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 17:35	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 18:27	152		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 19:18	29.2		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 20:10	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 21:01	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 21:52	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 22:43	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 23:35	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 00:26	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 01:17	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 02:08	10		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 02:59	10		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 03:51	1980		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 04:42	185		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 05:34	1990		RTX-624 0.32 (mm)
00-4733-5	3576	04/20/2011 06:25	1	gfib026.d	RTX-624 0.32 (mm)
ZZZZ		04/20/2011 07:16	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 08:09	0.2		RTX-624 0.32 (mm)

	,				· -						
Sequence					Standard	Standard Traceability	ły				Instrument Information
Batch ID:	7.15)	Start Date: 4	1/5-1/1/	Time: OSS 7	ISTD Lot #:		80047				Instrument ID: G
Test Method:	4	End Date: 4	1/9//	Time: CX37	CAL STD Lot #		1000 Em	Summes			Instrument: 5973
ICAL Date: 4	4/15/11				ICV / LCS Lot #		88 69	4			Column Type: RTX-624
	Manager		Analyst		Analyst	Š					Analyst
Name/Initial											
Signature		**************************************									Signature
		Sequenc	Sequence Information					Individ	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
0857	G-FI dol		BFB	Ž	14	M	DYM)	14	M	CMM	
0949	200	4633	VIBA	-		200		_			
1001	ዕርያ	5292	Leyal 1		7	_			7		132579
1/33	GCY	3643	Levels		3				1		132517
4224	GOLT	3482	Lovel3		4				/		132507
<u>5</u> /8/6	300		Lab an		ئی						Trum not attacked
7407	200	35-44	Seul4		رح)		132 429
255	Ann	3,50	Shrels		9				7		132 422
4549	@O3	2375	Level 6		^)		132406
04 9/	910	1950	Love 19		80				/		132405
737 N	011	4633	VIRK		1			(
1823	210	30/4	ICV		5			7	/		133740
1904	છે છે	4633	SW.		1		— j))	_	
-											
								The second section of			
									, management		
								,			
	,				Ì	_					
				America de mante estados en mario							
			٠								
			ž.								
	Work as a	ma & married 2000									
	- s de la manage - Son		141			,					
					17	170/	1.				
	-		AAA								
L (•		je 	egelnd: C=C	dmplete .	C≓Complete * R≃Reanalyze * ↑		ligh • √ = [= High ■ ↓= Low ■ ✓=Reviewed and Acceptable
AT-XI	031:06:07:10:3				_		1				

Page 20 of 100

BR-FAI031:06.07.10:3 TestAmerica

				GC/M	SINS	GC/MS INSTRUMENT RUN LOG	T RUN L	90			17 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -
	i	-1		4	Standar	Standard Traceability					Instrument Information
Batch ID:	GFIB	Start Date: 4	1/1/5/	Time: ○ なが	ISTD Lot #;	t #;	S	66005			Instrument ID: G
Test Method:	70/5	End Date: 4	1/07/	Time: 0844	CAL STD Lot #) Lot #	/3.	2429			Instrument: 5973
ICAL Date:	4/12/11			-	ICV / LCS Lot #	S Lot #	/33	shc.			Column Type: RTX-624
	Manager		Analyst		Analyst			Analyst			Analyst
Name/Initial											
Signature	1 18								1 18		
			Sequence Information	18.8				Individual Sa	88 -	nple Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
8%	GFIBOOI		8FB	77	M	14	WW	TA.	14	ayin	
0736	1 0/02	3544	201/		1	200	,	M	7	G .	76-
1028	cu3	5014	153		7			7	1		Alon
5111	Ca4	5014	いられ		32	T		አ	Χ		More port
122T	day	4634	DW	M	3	200		7	/		0 '
212/ ag	900	5090	1-1464	>	· h	γ_{COU}		7	1		
50H/e	000	7974	7- 1	_	h	-		7	1		J
105/ #	200	3662	7		૭			7	/		2
£552	600	3285	٢-		7			/	7		
#1644	0/0	3274	5		ک			1	1		
1737	011	4872	ر ال		٦	-)		7	7		
CE81 0	710	2513	4527-2	132	10	24		1	7	70	COF 1829 C
\$151	013	(1g)	7 -3	292	//	30		7	7	α	1 L 4,38 C
1010	014	4,828	4226-1	1	77	200)	7		
701	Ols	2664	1 2	-	/.3			7	7		
27.52	٦١٥	443	-3		//			7)		
22.43	617	4115	2,		13			7	7		
2335	\$1D	342)	ار در	[/6			7	/		
0026	615	4369	4739-1	~	,	3		7	1		
0117	049	4947	7		<✓			7	7		
8060	07.1	0284	6-124	0)	ω	70		7)		0
0255	770	435h	01- 7		2			7	7		
6351	62.3	1867	4755-1	1580	ŀη	% ⊗		7	->		COF 277.62 Dec 8.8 PM
2440	0.24	3583	7-	1851	9	20		7	2		150 15cm
0534	025	4656	٠.	1990	۲.	5		7			COB 249.34 oce 23
0625	770	3576	4/33-5		∞	J07		7	7		
07/6	(42)	4658	4735-5	1	0	200	-1	7	1	-}	
	÷			į	Le	gend: C=C	omplete •	Legend: C=Complete ■ R=Reanalyze ■ ↑	Ze • ↑ = H	iah ■ ↓= L	= High ■ ↓= Low ■ ✓=Reviewed and Acceptable

Legend: C=Complete ■ R=Reanalyze ■ ↑ = High ■ ↓= Low ■ ✓=Reviewed and Acceptable

								3			
Sequence	:				Standarc	Standard Traceability	Ιλ				Instrument Information
Batch ID:		Start Date:	: <u>=</u>	Time:	ISTD Lot #:	#					Instrument ID: G
Test Method:		End Date:	Tir	Time:	CAL STD Lot #	Lot #					Instrument: 5973
ICAL Date:	1 1				ICV / LCS Lot #	S Lot#		0.00			Column Type: RTX-624
	Manager		Analyst		Analyst			Analyst			Analyst
Name/Initial											
Signature	Signature										
		Sequenc	% —					Individ	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
9080	GFIR OFF	2859	4747-9	0,2	۵	/OCK)	WILL	7	+	UND	
\		.									
										\	
P a									\		
19											
							\setminus				
of											
42					_	\					
			\							i	
				7 '							
				11/1/1/1/	7	7					
					7	17071					
						, ,					
					Γe	gend: C=C	omplete •	R=Reanal)	1 = \(\frac{1}{2} \)	ligh ■ ↓= L(Legend: C=Complete ■ R=Reanalyze ■ ♠ = High ■ ♦= Low ■ ✓=Reviewed and Acceptable
ב כר	11.12 11.1 21.1.3										

Page 23 of 100

BR-FAI031:06.07.10:3 TestAmerica

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica Burlington	Job No.: 200-4735-1
SDG No.:	
Instrument ID: G.i	Start Date: 04/15/2011 08:57
Analysis Batch Number: 16675	End Date: 04/15/2011 19:14

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
BFB 200-16675/1		04/15/2011 08:57	1	gfi001.d	RTX-624 0.32 (mm)
VIBLK 200-16675/2		04/15/2011 09:49	1		RTX-624 0.32 (mm)
IC 200-16675/3		04/15/2011 10:42	1	gfi003.d	RTX-624 0.32 (mm)
IC 200-16675/4		04/15/2011 11:33	1	gfi004.d	RTX-624 0.32 (mm)
IC 200-16675/5		04/15/2011 12:24	1	gfi005.d	RTX-624 0.32 (mm)
ZZZZZ		04/15/2011 13:16	1		RTX-624 0.32 (mm)
ICIS 200-16675/7		04/15/2011 14:07	1	gfi007.d	RTX-624 0.32 (mm)
IC 200-16675/8		04/15/2011 14:58	1	gfi008.d	RTX-624 0.32 (mm)
IC 200-16675/9		04/15/2011 15:49	1	gfi009.d	RTX-624 0.32 (mm)
IC 200-16675/10		04/15/2011 16:40	1	gfi010.d	RTX-624 0.32 (mm)
VIBLK 200-16675/11		04/15/2011 17:32	1		RTX-624 0.32 (mm)
ICV 200-16675/12		04/15/2011 18:23	1	gfi012.d	RTX-624 0.32 (mm)
ZZZZZ		04/15/2011 19:14	1		RTX-624 0.32 (mm)

AIR - GC/MS VOA ANALYSIS RUN LOG

Lab Name: TestAmerica E	Burlington	JOD NO.: 200-4/35-1
SDG No.:		
Instrument ID: G.i		Start Date: 04/19/2011 08:44
Analysis Batch Number:	16738	End Date: 04/20/2011 08:09

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
FB 200-16738/1		04/19/2011 08:44	1	gfib001.d	RTX-624 0.32 (mm)
CVIS 200-16738/2		04/19/2011 09:36	1	gfib002.d	RTX-624 0.32 (mm)
CS 200-16738/3		04/19/2011 10:28	1	gfib003.d	RTX-624 0.32 (mm)
TIBLK 200-16738/4		04/19/2011 11:19	1		RTX-624 0.32 (mm)
IB 200-16738/5		04/19/2011 12:25	1	gfib005.d	RTX-624 0.32 (mm)
ZZZZ		04/19/2011 13:17	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 14:09	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 15:01	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 15:52	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 16:44	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 17:35	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 18:27	152		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 19:18	29.2		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 20:10	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 21:01	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 21:52	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 22:43	1		RTX-624 0.32 (mm)
ZZZZ		04/19/2011 23:35	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 00:26	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 01:17	1		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 02:08	10		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 02:59	10		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 03:51	1980		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 04:42	185		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 05:34	1990		RTX-624 0.32 (mm)
ZZZZ		04/20/2011 06:25	1		RTX-624 0.32 (mm)
00-4735-5	4658	04/20/2011 07:16	1	gfib027.d	RTX-624 0.32 (mm)
ZZZZ		04/20/2011 08:09	0.2		RTX-624 0.32 (mm)

)	1	1	Standard Targettille.)			100000000000000000000000000000000000000
anianhac			7		Startual	acean	1ty				instrument into manon
Batch ID:	715	Start Date: 4/	15-111	Time: 0827	ISTD Lot #:		80047				Instrument ID: G
Test Method:	7015	End Date: ゲ/	11/9/11	Time: OFT	CAL STD Lot #		see comme	mund			Instrument: 5973
ICAL Date: 4/13	//		1 2	Expended all professional and another consequences and the consequences are consequences are consequences and the consequences are consequences		SLot# 6	12e 6	mount			ICV/LCS Lot # のRe Commercial
								Analyst			Analyst
Name/Initial											
Signature	Signature	280			a de tras antica e constante e	The state of the s					
		<u></u>	Sequence Information					Individ	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
085	G.FI day		BFB	N.	14	14	OUM!	111	11	(TAM)	
0949	COUL	4633	VIBA	-	-	200		~			
1001	500	5292	Level 1		7				7		132579
1/33	GUY	3643	Levels		3				1		132572
122.24	COUT	3482	Lovel3		1,				7		132507
9/8	700		Las Bir		رح						Town not attacked
1402	200	35-44	Level4		الم				7		7
P 5/22	700	 .	Store Con		v				7		132 422
6549	(AOS		Justi		^				7		132406
76 40	010		Love 19		80				1		132405
78733	110		VIRK		_			(
1823	てつ	50/4	ICV		8			1	/		133740
406/	છે.હ	4633	OW	!	_))	1)	
										^	

	,				(a #						
				- American am	-						
			The second secon								
		1 1 1 2 2									
	**										
	- e Co Brown and Art		11	7		,					
				1	/ / /	100	1.1				
			1997	1	7	//X/					
				7	le l'es	o=q -puabe	omplete.	.=Complete • R=Reanalyze • ↑		ligh • ↓= L	= High * V= Low * V=Reviewed and Acceptable
AB EA	DD EA1034-06 07 40-2				_	_				,	

Page 20 of 100

BR-FAI031:06.07.10:3 TestAmerica

	:						NO INC	1001				
۵			+			Standar	Standard Traceability					Instrument Information
Batch ID:	GFIB	Start Date: (4/19		Time: 084%	ISTD Lot #:	#:	(C)	64008			Instrument ID: G
Test Method:	1012	End Date:	4/2	7./\OZ/	Time: ○844	CAL STD Lot #) Lot #	13.	2429			Instrument: 5973
ICAL Date:	4/15/11		-			ICV / LCS Lot #	S Lot #	/33	3740			Column Type: RTX-624
	Manager		An	Analyst		Analyst			Analyst			Analyst
Name/Initial												
Signature												
		Sequen	ice In	Sequence Information					Individu	Individual Sample Review	Review	
Injection	TALS ID /	Summa	_	ETR	Difution	Inlet	Volume	Operator	Internal	Result	Primary	Comments /
Time	File Name	Can ID			Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
CB44	GFIBOOI		8FB	Sh	17	14	14	CMM	4v	14	arn	
0336	1 002	35-44	Ŋ	201		/	300	,	M-	7		76
1028	Ca3	5014	,7	153		7			7	/		46
5///	CG4	5014	7	アジス		22	7		X	Χ		My port
422T	dur	4634	1	\mathcal{G}_{1}	m	3	200		1	1		, 0
C/8/3	900	2090	t	1-1201	~	4	200		7	/		<u> </u>
140g	000	7974		1 -2	_	h	1		7	1		
N/50/	200	3662		7		9			7	/		
175	60%	3285		٨_		2			/	7		
4644	0/0	3274	7	5		ىك			7	7		·)
132	011	4825		و آ	•	ې	-)		7	7		
6/877	700	2513	7	4522-2	133 133	0/	46		7	7	70	COF 18.29 C
8151	CI3	Cliph		2	292	//	30		7	7	σ	1 4.38 C
20/07	0/10	4828	422	226-1		۲,	200		7	7		
701	Olo	7664	1	-7		/3	_		7	7		2)
27.52	910	4143		2		<i>ኢ</i> /			7	7		
2243	617	4115	\exists	4.		5			7	7		j
2335	\$1D	345		٢٠	_	16	-1		7	7		
0026	615	4367	1	4139-1			3		7	1		
C110	0 % 9	4927	-	7		~	-		2	7		
030s	02/	0h8h	7	₽-1 2	<u></u>	$\tilde{\omega}$	೧ೣ		7	7		O
0255	77.0	438h	1	01-		e	_		7	7		3
6.351	623	1866	3	4755-1	1580	Ŋ	38		7	->		COF 27.62 Dee 8.8 PM
0445	0.24	3583	-	77	185	Q	20		7	2		0
0534	025	465%	-	~~	1990	ξ. \	5		7			COB 249.34 OCC 213
0635	770	3576	7	73-5		∞ ,)))		7	7		
07/6	(42)	4658	2,	135-5		<u></u>	200	_	7	1	4	
						-	pagard. C-Complet	a applama	Paragonaly	70 - A - Hi	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A = Bewiewed and Acceptable

Legend: C=Complete • R=Reanalyze • \uparrow = High • \downarrow = Low • \checkmark =Reviewed and Acceptable

Sections	:				Standard	Standard Traceability	>				Instrument Information
Batch ID:		Start Date:	Tin	Time:	ISTD Lot #:						Instrument ID: G
Test Method:		End Date:	Tin	Time:	CAL STD Lot #	Lot #					Instrument: 5973
ICAL Date:					ICV / LCS Lot #	Lot #					Column Type: RTX-624
	Manager		Analyst		Analyst			Analyst			Analyst
Name/Initial											
Signature	Signature										3 9 3
		Sequence	Sequence Information					Individ	Individual Sample Review	Review	
Injection	TALS ID /	Summa	ETR	Dilution	Inlet	Volume	Operator	Internal	Resuft	Primary	Comments /
Time	File Name	Can ID		Factor	#	(mL)		Std.	Conc.	Anal.	Standard Traceability
5080	GFIR OFF	2859	P-5474	0,2	a	/QCC	MM	7	*	and	
>											
1										\	
Pag											
ge_											
42											
24											
0:							\setminus				
f											
42					1	\					
9					/						
,											
	\checkmark										
				,							
				11/1/1/	7						
					#	707					
1					reg	end: C=C	omplete •	R≂Reanaly	H = ₹	igh • ↓= Lo	Legend: C=Complete • R=Reanalyze ← ♠ = High • ♦= Low • ✓=Reviewed and Acceptable

007

BR-FA1031:06.07.10:3 TestAmerica

Page 23 of 100

Shipping and Receiving Documents

FedEx Retrieval Copy Packages up to 150 lbs. Packages over 150 lbs. ** Othor FadEx Pironty Overnight 65X FadEx Standard Overnight 66 in the fadEx First Overnight form the many report from the fade of the Cargo Aircraft Only MA[] FedEx Tubn 83 | FedEx 3Day Freight aration (16 | Dry Ice 3 (B) | FedEx Box. 6 Special Handling and Delivery Signature Options 20 | RedEx Express Saver | Durthusnessday. [音音] Direct Signature Semeone at recinents ad rocysquiter delivers. Per-Does this shipment contain dangerous goods? FordEx Plak Incheses Frage Small Pas and Index Large Pas 03 SATURDAY DELIVERY 4a Express Package Service 4b Express Freight Service Dangerous goods (uicluding dry ice) cars of or placed in a FedEx Express Drup Box No Signature Required Package may be left without obtaining a signature for definery. Yes No **04** Shipper avached Shippers December Payment Bill to: FedEx 1Day Freight FedEx 2Day Freight 5 Packaging FedEx 2Day FedEx 01 <u>1</u>90 70 3 28 0654 31 Freder Priority Overnight and Freder Priority Overnight and Freder Priority Overnight and Freder 20my to select locations HOLD Weekday Fedck location artificias REQUIREO. NOT evailable HOLD Saturday 6418 34 ZIP 8739 Sender's FedEx Account Number 巨汉。US Airbill Your Internal Billing Reference Zurdnacz Address We conside

Page

426 of 429

fedex.com 1.800.GoFedEx 1.800.463.3339

606

8739 6418 0654

1800.GoFedEx 1.800.463.3339

TestAmerica Burlington

30 Community Drive

Suite 11

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples. phone 802-660-1990 fax 802-660-1919 South Burlington, VT 05403

					I			l	l	l	ŀ			l	l	l	١
Client Contact Information	Project Manager:	1	10 m	Bertran	7	Samples Collected Bv:	ected Bv:				_	5	0	COCS			
	Phone:	519 - 823	9.923	\ \ \	777	D. 10 (10)	SC 12	ડ	10/2								-
132 Kesserth Lews Suite?	Email: ch	dbe-trande goosynte	305 30c	34.40	Com												
20 t NG 593	Site Contact:	10000	5 6	100								tion)					(noi)
514-822-3151	TA Contact:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							oəs s					oəs s
Project Name: AFS4		Analysis Turna	Turnarou	round Time								otes				_	ootes
Site:	Ś	Standard (Specify)	ecify)	/ در	×							ı ui y	•				ni y
PO# 780386	7	Rush (Specify)	fy)									pecif					pecif
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	21-OT	Apr-OT	Eb∀ 320 	8461-Q MTSA	Other (Please s	eqyT əlqms2	ndoor Air Ambient Air	Soil Gas	Landfill Gas	Other (Please s
NO MATERIAL PROPERTY AND	4/28/2011	1859	(8.59	F 28,00	3.42	AND THE PROPERTY AND TH	4662	λ			-			72000	X		
5 - 1.8 - 20 Dag	1/28/2011		20.3	\$8.37	4.12	t	1844	X							×		
SC-118-END	11/28/2011		2050	28,35	3,49	-	4958	λ							X		
SL - 664 -	4/29/2011	1121	1211	¥8.27	<u> </u>	4.65	71.88	¥				\$4.7%×.3¢			×		
A 5L - 084 - 20	4/29/2011	1134	1134	34.45	3,53	J	4950	λ							7		
56 - 084 - END	4/20/2011 1238	1238	8521	27.84	3.64	-	3808	λ							4	_	
				Temperatur	Temperature (Fahrenheit)			L									Γ
		Interior		Amblent													
	Start						•										
	Stop							,									
				Pressure (Inches of Hg)	ches of Hg)												
		Interior		Amblent													
	Start																
	Stop																
Special Instructions/QC Requirements & Comments:																	_
	i				+						-						
	Date/Time: 5(2/k	1	\$ 300 Am	J	Samples	Received by:	13/11)	020								
Samples Relinquished by:	Date/Time:				Redeived fly:	φ. \											
Relinquished by:	Date/Time:				Received by:	by:											
Láb Use Only				Opened b	y.	Opened by: Condition:											

TestAmerica Burlington

30 Community Drive

Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Manager:	ager:		(Samples Collected By:	ected By:				7	of 2		cocs			
	Phone:		\			Č	Maine	3	15/	Ser.							
11	Email:	A.	アルケー					_	┞	L		351-20			_	_	
ate/Zip		16						_				(uoi		_			(noi
	TA Contact:								_			sect					s sec
Project Name:			Analysis Turnaround Time	nd Tipae				_				uoțea					ooles
Site:	S	Standard (Specify)	ecify)	X	<u>ئ</u> ر ا						_	ni yì					ni yì
#ОН		Rush (Specify)	ify)		,				_			pecif	. 6				peci
Sample Identification	Sample Date(s)	Time Start	Time Start Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	či-OT	TO-14A —————— DE A92	EPA 25C	9461-G MT2A	Other (Please s	Sample Type	Indoor Air ——————Ambient Air	Soil Gas	Landfill Gas	Other (Please
	4/29/21	_81	302	78.61	2.97	THE REAL PROPERTY OF THE PROPE	4364	X							X	.	
9	1,242/2	1521	1521	20.57	3.76	ļ	38,4655	X		_					ス		
SL-022-FND	"at/201/17		i643	28.66	3.42	J	3616	×							7	1	
of												. ***					
42:																	
				Temperatur	Temperature (Fahrenhelt)	f											
		Interior		Amblent													
	Start																
	Stop																
				Pressure (It	Pressure (Inches of Hg)												
		Interior		Ambient													
	Start																
	Stop																
Special Instructions/QC Requirements & Comments:	::				-												
											-					1	
بر	Date/Time:		10:01	#	Samples	Received by:	3/11/1	1020									
Samples Relinquished by:	Date/Time:				Received	- (S)	,										
Relinquished by:	Date/Time:				Received by:	l by:											
Lab Use Only Shipper Name:				Opened		Opened by: - Condition:	5.0										

Login Sample Receipt Checklist

Client: Geosyntec Consultants, Inc.

Job Number: 200-5005-1

SDG Number: 200-5005

Login Number: 5005 List Source: TestAmerica Burlington

List Number: 2 Creator: Keeton, Jamie

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	144964
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	Ambient
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

AN ENVIRONMENTAL ANALYTICAL LABORATORY

COMPREHENSIVE VALIDATION PACKAGE

Passive S.E. WMS INVENTORY SHEET

Work Order #: 1105031A

	Page	Nos.
	From	То
. Work Order Cover Page & Laboratory Narrative	1	4
a. <u>Lumen Validation Report</u>		
. Sample Results and Raw Data (Organized by Sample)	5	154
a. ATL Sample Results Form		
b. Target Compound Raw Data		
-Internal Standard Area and Retention Time Summary		
-Surrogate Recovery Summary (If Applicable)		
-Chromatogram(s) and Ion Profiles (If Applicable)		
. QC Results and Raw Data		
a. Method Blank (Results+ Raw Data)	155	162
b. Surrogate Recover Summary Form (If Applicable)	163	163
c. Internal Standard Summary Form (If Applicable)	164	166
d. Duplicate Results Summary Sheet	167	167
e. Matrix Spike/Matrix Spike Duplicate (Results + Raw Data		
f. Initial Calibration Data (Summary Sheet + Raw Data)	168	290
g. MDL Study (If Applicable)		
h. Continuing Calibration Verification Data (Summary Sheet	291	308
i. Second Source LCS(Summary + Raw Data)	309	414
i. Extraction Logs	415	415
k. Instrument Run Logs/Software Verification	416	419
1. GC/MS Tune (Results + Raw Data)	420	439
	420	437
a. Login Receipt Summary Sheet	440	441
b. Chain-of-Custody Records	442	443
c. Sample Log-In Sheet	444	444
d. Misc Shipping/Receiving Records (list of individual records)	444	444
Sample Receipt Discrepancy Report		
. Other Records (describe or list)		
a. Manual Spectral Defense		
b. Manual Integrations	445	465
c. Manual Calculations		
d. Canister Dilution Factors		
e. Laboratory Corrective Action Request		
f. CAS Number Reference	466	466
g. Variance Table		
h. Canister Certification		
i. Data Review Check Sheet	467	467

Comments:

Completed by:

Kara McKiernan

Kara McKiernan / Document Control

6/23/11

WORK ORDER #: 1105031A

Work Order Summary

CLIENT: Mr. Dave Bertrand BILL TO: Accounts Payable

GeoSyntec Consultants

GeoSyntec Consultants

GeoSyntec Consultants

5901 Broken Sound Parkway

Suite 2 Suite 300

Guelph, Ontario N1G5G3 Boca Raton, FL 33487

PHONE: 519-822-2230 **P.O.** # TR0386 2.3

FAX: 519-822-3151 **PROJECT** # AF 59

DATE RECEIVED: 05/03/2011 **CONTACT:** Ausha Scott **DATE COMPLETED:** 05/23/2011

FRACTION #	<u>NAME</u>	<u>TEST</u>
01A	IA-SL118	Passive S.E. WMS
02A	PSS-SL118	Passive S.E. WMS
03A	IA-SL022	Passive S.E. WMS
04A	IA-SL084	Passive S.E. WMS
05A	HPV-118-1	Passive S.E. WMS
07A	PSS-SL084	Passive S.E. WMS
08A	HPV-084-1	Passive S.E. WMS
10A	PSS-SL022	Passive S.E. WMS
11A	HPV-022-1	Passive S.E. WMS
13A	TRIP BLANK A1	Passive S.E. WMS
14A	TRIP BLANK B1	Passive S.E. WMS
15A	Lab Blank	Passive S.E. WMS
16A	LCS	Passive S.E. WMS
16AA	LCSD	Passive S.E. WMS

CERTIFIED BY: DATE: 05/23/11

Laboratory Director

LABORATORY NARRATIVE Passive SE GC/MS GeoSyntec Consultants Workorder# 1105031A

Eleven WMS-TD samples were received on May 03, 2011. The laboratory extracted the charcoal sorbent bed of the passive sampler using carbon disulfide. An aliquot of the extract was injected into a GC/MS for identification and quantification of volatile organic compounds (VOCs).

The mass of each target compound adsorbed by the sampler was converted to units of concentration using the sample deployment time and the sampling rate for each VOC. If sampling rates were calculated by the lab or the manufacturer, the concentration result has been flagged as an estimated value.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Sample concentrations were calculated using sampling rates provided by the manufacturer. Results were calculated based on 25 deg C without temperature correction.

An exposure time of 21033 minutes was used to calculate concentrations for the Field Blank and the Laboratory Blank.

Recovery of Chloromethane in the both LCS and LCSD exceeded acceptance criteria. Recoveries were high and as Chloromethane was not detected in the samples, there was no impact on data quality.

Sample concentration for Naphthalene was calculated using estimated sampling rate provided by the manufacturer.

Sample TRIP BLANK A1 has reportable levels of target compounds present. Reanalysis of the extract confirmed the initial results.

The Relative Percent Difference (RPD) of the LCS/LCSD exceeded acceptance limits for Hexane.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Table	1
-------	---

					Sample		Sample Extra	act
Client Sample ID	Lab Sample ID	Date Collected	Date Received	Date Extracted	Holding Time (Days)	Date Analyzed	Holding Time (Days)	Sample Condition
IA-SL118	1105031A-01A	4/28/2011	5/ 3/2011	5/19/2011	21	5/19/2011	0	Good
PSS-SL118	1105031A-02A	4/28/2011	5/ 3/2011	5/19/2011	21	5/19/2011	0	Good
IA-SL022	1105031A-03A	4/28/2011	5/ 3/2011	5/19/2011	21	5/19/2011	0	Good
IA-SL084	1105031A-04A	4/28/2011	5/ 3/2011	5/19/2011	21	5/19/2011	0	Good
HPV-118-1	1105031A-05A	4/28/2011	5/ 3/2011	5/19/2011	21	5/19/2011	0	Good
PSS-SL084	1105031A-07A	4/29/2011	5/ 3/2011	5/19/2011	20	5/19/2011	0	Good
HPV-084-1	1105031A-08A	4/29/2011	5/ 3/2011	5/19/2011	20	5/19/2011	0	Good
PSS-SL022	1105031A-10A	4/29/2011	5/ 3/2011	5/19/2011	20	5/19/2011	0	Good
HPV-022-1	1105031A-11A	4/29/2011	5/ 3/2011	5/19/2011	20	5/19/2011	0	Good
TRIP BLANK A1	1105031A-13A	NA	5/ 3/2011	5/19/2011	NA	5/19/2011	0	Good
TRIP BLANK B1	1105031A-14A	NA	5/ 3/2011	5/19/2011	NA	5/19/2011	0	Good
Lab Blank	1105031A-15A	NA	NA	5/19/2011	NA	5/19/2011	0	Good
LCS	1105031A-16A	NA	NA	5/19/2011	NA	5/19/2011	0	Good
LCSD	1105031A-16AA	NA	NA	5/19/2011	NA	5/19/2011	0	Good

Sample Results and Raw Data

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-SL118

Lab ID#: 1105031A-01A

No Detections Were Found.

Client Sample ID: IA-SL118 Lab ID#: 1105031A-01A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051922sim
 Date of Collection: 4/28/11 4:03:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 06:31 PM

 Date of Extraction: 5/19/11
 5/19/11

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Vinyl Chloride	21	8.2	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.8	0.96	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.3	0.33	Not Detected	Not Detected
1,1,1-Trichloroethane	2.0	0.36	Not Detected	Not Detected
Carbon Tetrachloride	1.7	0.26	Not Detected	Not Detected
Trichloroethene	0.76	0.14	Not Detected	Not Detected
Tetrachloroethene	0.47	0.069	Not Detected	Not Detected

Container Type: WMS-SE

Surrogates	%Recovery	Limits
Toluene-d8	104	70-130

Data File: /chem/msd10.i/19May2011a.b/10051922sim.d

Report Date: 20-May-2011 09:03

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051922sim.d

Lab Smp Id: 1105031A-01A

Inj Date : 19-MAY-2011 18:31

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-01A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 15800short.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

				CONCENTRATIONS	
		QUANT SIG		ON-COLUMN FINAL	
C	ompounds	MASS	RT EXP RT REL RT RESI	PONSE (ug/mL) (ug)	
= :		====	== ====== ====		
*	29 2-Fluorotoluene	109	9.700 9.700 (1.000) 36	53335 5.00000	
\$	26 Toluene-d8	98	9.435 9.435 (0.973) 34	43987 5.22330 5.22330	
	2 Vinyl Chloride	62	Compound Not Detected.		
	8 trans-1,2-Dichloroethene	96	Compound Not Detected.		
	14 cis-1,2-Dichloroethene	96	Compound Not Detected.		
	17 1,1,1-Trichloroethane	97	Compound Not Detected.		
	18 Carbon Tetrachloride	117	Compound Not Detected.		
	22 Trichloroethene	130	Compound Not Detected.		
	31 Tetrachloroethene	164	Compound Not Detected.		

Data File: /chem/msd10.i/19May2011a.b/10051922sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051922sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-01A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======== 29 2-Fluorotoluene	393119	196560	786238	363335	===== -7.58

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051922sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-01A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: 15800short.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	 LIMITS
\$ 26 Toluene-d8	5.00000	5.22330	104.47	70-130

Page 1

Sample Info: ;1105031A-01A;

Volume Injected (uL): 1.0 Column phase: DB-5.625

Operator: LZ Column diameter:

0,25

Instrument: msd10.i

Client ID:

Date : 19-MAY-2011 18:31

Data File: /chem/msd10.i/19May2011a.b/10051922sim.d

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: PSS-SL118

Lab ID#: 1105031A-02A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Chloroform	1.3	0.27	3.3	0.67
Cyclohexane	1.3	0.37	6.6	1.9
1,1,1-Trichloroethane	2.0	0.38	650	120
Carbon Tetrachloride	1.7	0.28	4.4	0.70
Trichloroethene	0.80	0.15	510	96
Toluene	0.62	0.16	2.8	0.76
Tetrachloroethene	0.49	0.072	3.9	0.58
Ethyl Benzene	0.39	0.091	0.61	0.14
m,p-Xylene	0.42	0.096	2.0	0.47
o-Xylene	0.37	0.085	0.60	0.14
1,3,5-Trimethylbenzene	0.24	0.049	0.38	0.077
1,2,4-Trimethylbenzene	0.21	0.042	0.87	0.18
Naphthalene	0.10	0.019	1.0 C	0.19 C

Client Sample ID: PSS-SL118 Lab ID#: 1105031A-02A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051927sim Date of Collection: 4/28/11 4:12:00 PM
Dil. Factor: 1.00 Date of Analysis: 5/19/11 08:23 PM
Date of Extraction: 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	23	11	Not Detected	Not Detected
Vinyl Chloride	22	8.5	Not Detected	Not Detected
1,1-Dichloroethene	13	3.2	Not Detected	Not Detected
Acetone	16	6.7	Not Detected	Not Detected
Methyl tert-butyl ether	2.1	0.59	Not Detected	Not Detected
trans-1,2-Dichloroethene	4.0	1.0	Not Detected	Not Detected
Hexane	8.0	2.3	Not Detected	Not Detected
1,1-Dichloroethane	2.2	0.54	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.1	0.71	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.4	0.74	Not Detected	Not Detected
	1.3	0.27	3.3	0.67
Chloroform	1.3			
Cyclohexane		0.37	6.6	1.9
1,1,1-Trichloroethane	2.0	0.38	650	120
Carbon Tetrachloride	1.7	0.28	4.4	0.70
Benzene	2.4	0.76	Not Detected	Not Detected
1,2-Dichloroethane	1.0	0.25	Not Detected	Not Detected
Heptane	1.1	0.28	Not Detected	Not Detected
Trichloroethene	0.80	0.15	510	96
4-Methyl-2-pentanone	1.7	0.41	Not Detected	Not Detected
Toluene	0.62	0.16	2.8	0.76
1,1,2-Trichloroethane	0.79	0.14	Not Detected	Not Detected
Tetrachloroethene	0.49	0.072	3.9	0.58
Chlorobenzene	0.49	0.11	Not Detected	Not Detected
Ethyl Benzene	0.39	0.091	0.61	0.14
m,p-Xylene	0.42	0.096	2.0	0.47
o-Xylene	0.37	0.085	0.60	0.14
Styrene	0.36	0.086	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.37	0.054	Not Detected	Not Detected
Propylbenzene	0.27	0.056	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.24	0.049	0.38	0.077
1,2,4-Trimethylbenzene	0.21	0.042	0.87	0.18
1,3-Dichlorobenzene	0.20	0.034	Not Detected	Not Detected
1,4-Dichlorobenzene	0.20	0.033	Not Detected	Not Detected
1,2-Dichlorobenzene	0.18	0.030	Not Detected	Not Detected
Naphthalene	0.10	0.019	1.0 C	0.19 C

C = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: PSS-SL118 Lab ID#: 1105031A-02A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051927sim
 Date of Collection: 4/28/11 4:12:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 08:23 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130

Report Date: 20-May-2011 09:13

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051927sim.d

Lab Smp Id: 1105031A-02A

Inj Date : 19-MAY-2011 20:23

Inst ID: msd10.i Operator : LZ

Smp Info : ;1105031A-02A;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 12

Dil Factor: 1.00000

Compound Sublist: fullnosp.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

						CONCENTR	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
=====		====	==		======	======	======
1	Chloromethane	50	Comp	ound Not Detected	1.		
2	Vinyl Chloride	62	Comp	ound Not Detected	1.		
3	Ethanol	45	Comp	ound Not Detected			
4	1,1-Dichloroethene-CCC	96	Comp	ound Not Detected			
5	Acetone	58	Comp	ound Not Detected			
7	MTBE	73	Comp	ound Not Detected			
8	trans-1,2-Dichloroethene	96	Comp	ound Not Detected			
9	Hexane	57	Comp	ound Not Detected			
11	1,1-Dichloroethane-SPCC	63	Comp	ound Not Detected			
13	2-Butanone	72	Comp	ound Not Detected			
14	cis-1,2-Dichloroethene	96	Comp	ound Not Detected			
15	Chloroform-CCC	83	7.279	7.279 (0.750)	3407	0.12177	0.121772
16	Cyclohexane	84	7.444	7.444 (0.767)	8692	0.25994	0.259940
17	1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	441317	15.7622	15.7622
18	Carbon Tetrachloride	117	7.581	7.581 (0.782)	2769	0.12632	0.126322
19	Benzene	78	Comp	ound Not Detected			

Report Date: 20-May-2011 09:13

					CONCENT	RATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==		======	======	======
20 1,2-Dichloroethane	62	Comp	ound Not Detecte	d.		
21 Heptane	71	Comp	ound Not Detecte	d.		
22 Trichloroethene	130	8.326	8.326 (0.858)	582640	32.3042	32.3042
25 4-Methyl-2-pentanone	85	Comp	ound Not Detecte	d.		
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	344850	5.09915	5.09915
28 Toluene-CCC	92	9.483	9.483 (0.978)	12177	0.23107	0.231069
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	373115	5.00000	
30 1,1,2-Trichloroethane	97	Comp	ound Not Detecte	d.		
31 Tetrachloroethene	164	9.965	9.989 (1.027)	6312	0.40167	0.401670
32 Chlorobenzene	112	Comp	ound Not Detecte	d.		
33 Ethylbenzene-CCC	106	10.854	10.875 (1.119)	2513	0.07760	0.0775987
34 m,p-Xylene	106	10.958	10.958 (1.130)	9541	0.24318	0.243181
36 o-Xylene	106	11.343	11.344 (1.169)	3233	0.08038	0.0803840
37 Styrene	104	Comp	ound Not Detecte	d.		
39 1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detecte	d.		
40 Propylbenzene	91	Comp	ound Not Detecte	d.		
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	6643	0.07856	0.0785556
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	13958	0.20921	0.209209
44 1,3-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
45 1,4-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
46 1,2-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
49 Naphthalene	128	14.963	14.963 (1.543)	47249	0.49718	0.497183

Data File: /chem/msd10.i/19May2011a.b/10051927sim.d

Report Date: 20-May-2011 09:13

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051927sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-02A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 393119	196560	786238	373115	===== -5.09

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051927sim.d

Report Date: 20-May-2011 09:13

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-02A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

 SURROGATE COMPOUND 	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	 LIMITS
 \$ 26 Toluene-d8	5.00000	 5.09915 	101.98	 70-130

Page 1

Date : 19-MAY-2011 20:23

Data File: /chem/msd10.i/19May2011a.b/10051927sim.d

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

15 Chloroform-CCC Concentration: 0.121772 ug

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

17 1,1,1-Trichloroethane Concentration: 15,7622 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

18 Carbon Tetrachloride Concentration: 0.126322 ug

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

22 Trichloroethene Concentration: 32,3042 ug

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-02A; Volume Injected (uL): 1.0

1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

34 m,p-Xylene Concentration: 0.243181 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A; Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

36 o-Xylene Concentration: 0.0803840 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

41 1,3,5-Trimethylbenzene

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

42 1,2,4-Trimethylbenzene Concentration: 0,209209 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-02A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

49 Naphthalene Concentration: 0.497183 ug

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-SL022

Lab ID#: 1105031A-03A

No Detections Were Found.

Client Sample ID: IA-SL022 Lab ID#: 1105031A-03A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051923sim
 Date of Collection: 4/28/11 4:19:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 06:54 PM

 Date of Extraction: 5/19/11

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Vinyl Chloride	21	8.2	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.8	0.96	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.3	0.33	Not Detected	Not Detected
1,1,1-Trichloroethane	2.0	0.36	Not Detected	Not Detected
Carbon Tetrachloride	1.7	0.27	Not Detected	Not Detected
Trichloroethene	0.77	0.14	Not Detected	Not Detected
Tetrachloroethene	0.47	0.069	Not Detected	Not Detected

Container Type: WMS-SE

••		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	

Data File: /chem/msd10.i/19May2011a.b/10051923sim.d

Report Date: 20-May-2011 09:03

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051923sim.d

Lab Smp Id: 1105031A-03A

Inj Date : 19-MAY-2011 18:54

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-03A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 8

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 15800short.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

				CONCENTRATIONS
		QUANT SIG		ON-COLUMN FINAL
C	ompounds	MASS	RT EXP RT REL RT RESPONS	E (ug/mL) (ug)
=		====	== ====== ======	= ======
*	29 2-Fluorotoluene	109	9.700 9.700 (1.000) 37356	2 5.00000
\$	26 Toluene-d8	98	9.435 9.435 (0.973) 35397	5 5.22781 5.22781
	2 Vinyl Chloride	62	Compound Not Detected.	
	8 trans-1,2-Dichloroethene	96	Compound Not Detected.	
	14 cis-1,2-Dichloroethene	96	Compound Not Detected.	
	17 1,1,1-Trichloroethane	97	Compound Not Detected.	
	18 Carbon Tetrachloride	117	Compound Not Detected.	
	22 Trichloroethene	130	Compound Not Detected.	
	31 Tetrachloroethene	164	Compound Not Detected.	

Data File: /chem/msd10.i/19May2011a.b/10051923sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051923sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-03A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 393119	196560	786238	373562	===== -4.97
					[

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051923sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-03A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: 15800short.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.22781	104.56	70-130

Page 1

Sample Info: ;1105031A-03A;

Volume Injected (uL): 1.0 Column phase: IB-5.625

Column diameter: 0.25

Operator: LZ

Instrument: msd10.i

Client ID:

Date : 19-MAY-2011 18:54

Data File: /chem/msd10.i/19May2011a.b/10051923sim.d

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: IA-SL084

Lab ID#: 1105031A-04A

No Detections Were Found.

Client Sample ID: IA-SL084 Lab ID#: 1105031A-04A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051924sim
 Date of Collection: 4/28/11 4:25:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 07:16 PM

 Date of Extraction: 5/19/11

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Vinyl Chloride	21	8.2	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.8	0.96	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.3	0.33	Not Detected	Not Detected
1,1,1-Trichloroethane	2.0	0.36	Not Detected	Not Detected
Carbon Tetrachloride	1.7	0.27	Not Detected	Not Detected
Trichloroethene	0.77	0.14	Not Detected	Not Detected
Tetrachloroethene	0.47	0.070	Not Detected	Not Detected

Container Type: WMS-SE

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	105	70-130	

Data File: /chem/msd10.i/19May2011a.b/10051924sim.d

Report Date: 20-May-2011 09:03

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051924sim.d

Lab Smp Id: 1105031A-04A

Inj Date : 19-MAY-2011 19:16

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-04A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 9

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: 15800short.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

				CONCENTRATIONS
		QUANT SIG		ON-COLUMN FINAL
C	ompounds	MASS	RT EXP RT REL RT RESPON	SE (ug/mL) (ug)
=	=======================================	====	== ====== =====	= ======
*	29 2-Fluorotoluene	109	9.700 9.700 (1.000) 3824	95 5.00000
\$	26 Toluene-d8	98	9.435 9.435 (0.973) 3641	59 5.25261 5.25261
	2 Vinyl Chloride	62	Compound Not Detected.	
	8 trans-1,2-Dichloroethene	96	Compound Not Detected.	
	14 cis-1,2-Dichloroethene	96	Compound Not Detected.	
	17 1,1,1-Trichloroethane	97	Compound Not Detected.	
	18 Carbon Tetrachloride	117	Compound Not Detected.	
	22 Trichloroethene	130	Compound Not Detected.	
	31 Tetrachloroethene	164	Compound Not Detected.	

Data File: /chem/msd10.i/19May2011a.b/10051924sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051924sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-04A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	393119	196560	786238	382495	-2.70

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051924sim.d

Report Date: 20-May-2011 09:03

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-04A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: 15800short.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	 LIMITS
\$ 26 Toluene-d8	5.00000	5.25261	105.05	70-130

Page 1

Instrument: msd10.i

Sample Info: ;1105031A-04A;

Client ID:

Date : 19-MAY-2011 19:16

Data File: /chem/msd10.i/19May2011a.b/10051924sim.d

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: HPV-118-1

Lab ID#: 1105031A-05A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Acetone	1100	470	1400	600
Hexane	560	160	740	210
1,1,1-Trichloroethane	140	27	550	100
Trichloroethene	56	10	610	110
Toluene	44	12	54	14
Naphthalene	7.2	1.4	9.9 C	1.9 C

Client Sample ID: HPV-118-1 Lab ID#: 1105031A-05A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051928sim
 Date of Collection: 4/28/11 9:20:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 08:45 PM

 Date of Extraction: 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	1600	780	Not Detected	Not Detected
Vinyl Chloride	1500	600	Not Detected	Not Detected
1,1-Dichloroethene	900	230	Not Detected	Not Detected
Acetone	1100	470	1400	600
Methyl tert-butyl ether	150	42	Not Detected	Not Detected
trans-1,2-Dichloroethene	280	70	Not Detected	Not Detected
Hexane	560	160	740	210
1,1-Dichloroethane	160	38	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	150	50	Not Detected	Not Detected
cis-1,2-Dichloroethene	96	24	Not Detected	Not Detected
Chloroform	95	19	Not Detected	Not Detected
Cyclohexane	90	26	Not Detected	Not Detected
1,1,1-Trichloroethane	140	27	550	100
Carbon Tetrachloride	120	20	Not Detected	Not Detected
Benzene	170	54	Not Detected	Not Detected
1,2-Dichloroethane	72	18	Not Detected	Not Detected
Heptane	81	20	Not Detected	Not Detected
Trichloroethene	56	10	610	110
4-Methyl-2-pentanone	120	29	Not Detected	Not Detected
Toluene	44	12	54	14
1,1,2-Trichloroethane	56	10	Not Detected	Not Detected
Tetrachloroethene	34	5.1	Not Detected	Not Detected
Chlorobenzene	35	7.5	Not Detected	Not Detected
Ethyl Benzene	28	6.4	Not Detected	Not Detected
m,p-Xylene	29	6.8	Not Detected	Not Detected
o-Xylene	26	6.0	Not Detected	Not Detected
Styrene	26	6.1	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	26	3.8	Not Detected	Not Detected
Propylbenzene	19	3.9	Not Detected	Not Detected
1,3,5-Trimethylbenzene	17	3.4	Not Detected	Not Detected
1,2,4-Trimethylbenzene	15	3.0	Not Detected	Not Detected
1,3-Dichlorobenzene	14	2.4	Not Detected	Not Detected
1,4-Dichlorobenzene	14	2.3	Not Detected	Not Detected
1,2-Dichlorobenzene	12	2.1	Not Detected	Not Detected
Naphthalene	7.2	1.4	9.9 C	1.9 C

C = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: HPV-118-1 Lab ID#: 1105031A-05A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051928sim
 Date of Collection: 4/28/11 9:20:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 08:45 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	106	70-130

Report Date: 20-May-2011 09:14

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051928sim.d

Lab Smp Id: 1105031A-05A

Inj Date : 19-MAY-2011 20:45

Inst ID: msd10.i Operator : LZ

Smp Info : ;1105031A-05A;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 13

Dil Factor: 1.00000

Compound Sublist: fullnosp.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					CONCENTR	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
1 Chloromethane	50	Comp	ound Not Detecte	d.		
2 Vinyl Chloride	62	Comp	ound Not Detecte	d.		
3 Ethanol	45	Comp	ound Not Detecte	d.		
4 1,1-Dichloroethene-	CCC 96	Comp	ound Not Detecte	d.		
5 Acetone	58	5.228	5.229 (0.539)	2324	0.25318	0.253180
7 MTBE	73	Comp	ound Not Detecte	d.		
8 trans-1,2-Dichloroe	thene 96	Comp	ound Not Detecte	d.		
9 Hexane	57	6.238	6.211 (0.643)	8361	0.26138	0.261384
11 1,1-Dichloroethane-	SPCC 63	Comp	ound Not Detecte	d.		
13 2-Butanone	72	Comp	ound Not Detecte	d.		
14 cis-1,2-Dichloroeth	iene 96	Comp	ound Not Detecte	d.		
15 Chloroform-CCC	83	Comp	ound Not Detecte	d.		
16 Cyclohexane	84	Comp	ound Not Detecte	d.		
17 1,1,1-Trichloroetha	ne 97	7.471	7.444 (0.770)	5687	0.18911	0.189112
18 Carbon Tetrachlorid	le 117	Comp	ound Not Detecte	d.		
19 Benzene	78	Comp	ound Not Detecte	d.		

Page 2

Report Date: 20-May-2011 09:14

						CONCENT	RATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==	=======================================	====	==	======	======	======	======
	20 1,2-Dichloroethane	62	Compo	ound Not Detected	i.		
	21 Heptane	71	Compo	ound Not Detected	i.		
	22 Trichloroethene	130	8.350	8.326 (0.861)	10542	0.54419	0.544191
	25 4-Methyl-2-pentanone	85	Compo	ound Not Detected	i.		
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	386653	5.32302	5.32302
	28 Toluene-CCC	92	9.483	9.483 (0.978)	3512	0.06205	0.0620475
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	400750	5.00000	
	30 1,1,2-Trichloroethane	97	Compo	ound Not Detected	i.		
	31 Tetrachloroethene	164	Compo	ound Not Detected	ł.		
	32 Chlorobenzene	112	Compo	ound Not Detected	i.		
	33 Ethylbenzene-CCC	106	Compo	ound Not Detected	i.		
	34 m,p-Xylene	106	Compo	ound Not Detected	i.		
	36 o-Xylene	106	Compo	ound Not Detected	ł.		
	37 Styrene	104	Compo	ound Not Detected	ł.		
	39 1,1,2,2-Tetrachloroethane-SPC	83	Compo	ound Not Detected	ł.		
	40 Propylbenzene	91	Compo	ound Not Detected	ł.		
	41 1,3,5-Trimethylbenzene	105	Compo	ound Not Detected	ł.		
	42 1,2,4-Trimethylbenzene	105	Compo	ound Not Detected	ł.		
	44 1,3-Dichlorobenzene	146	Compo	ound Not Detected	i.		
	45 1,4-Dichlorobenzene	146	Compo	ound Not Detected	i.		
	46 1,2-Dichlorobenzene	146	Compo	ound Not Detected	i.		
	49 Naphthalene	128	14.963	14.963 (1.543)	7016	0.06874	0.0687358

Data File: /chem/msd10.i/19May2011a.b/10051928sim.d

Report Date: 20-May-2011 09:14

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051928sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-05A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 393119	196560	786238	400750	====== 1.94

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	========	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051928sim.d

Report Date: 20-May-2011 09:14

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-05A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.32302	106.46	70-130

Page 1

Instrument: msd10.i

Client ID:

Date : 19-MAY-2011 20:45

Data File: /chem/msd10.i/19May2011a.b/10051928sim.d

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

17 1,1,1-Trichloroethane

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

22 Trichloroethene Concentration: 0.544191 ug

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

28 Toluene-CCC Concentration: 0.0620475 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-05A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: PSS-SL084

Lab ID#: 1105031A-07A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
trans-1,2-Dichloroethene	3.6	0.92	190	47
Hexane	7.3	2.1	20	5.8
1,1-Dichloroethane	2.0	0.50	13	3.2
2-Butanone (Methyl Ethyl Ketone)	1.9	0.65	10	3.4
cis-1,2-Dichloroethene	1.2	0.32	370	94
Chloroform	1.2	0.25	8.0	1.6
Cyclohexane	1.2	0.34	1.6	0.45
1,1,1-Trichloroethane	1.9	0.35	13	2.4
Benzene	2.2	0.70	4.1	1.3
Heptane	1.0	0.26	4.3	1.0
Trichloroethene	3.7	0.68	11000	2000
Toluene	0.57	0.15	5.7	1.5
Tetrachloroethene	0.45	0.066	4.2	0.62
Ethyl Benzene	0.36	0.084	1.0	0.24
m,p-Xylene	0.38	0.088	4.6	1.0
o-Xylene	0.34	0.079	1.4	0.33
Propylbenzene	0.25	0.051	0.48	0.099
1,3,5-Trimethylbenzene	0.22	0.045	0.48	0.098
1,2,4-Trimethylbenzene	0.19	0.039	0.85	0.17
Naphthalene	0.094	0.018	0.40 C	0.076 C

Client Sample ID: PSS-SL084 Lab ID#: 1105031A-07A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051929sim
 Date of Collection: 4/29/11 9:43:00 AM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:08 PM

 Date of Extraction: 5/19/11
 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	21	10	Not Detected	Not Detected
Vinyl Chloride	20	7.8	Not Detected	Not Detected
1,1-Dichloroethene	12	3.0	Not Detected	Not Detected
Acetone	14	6.1	Not Detected	Not Detected
Methyl tert-butyl ether	2.0	0.54	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.6	0.92	190	47
Hexane	7.3	2.1	20	5.8
1,1-Dichloroethane	2.0	0.50	13	3.2
2-Butanone (Methyl Ethyl Ketone)	1.9	0.65	10	3.4
cis-1,2-Dichloroethene	1.2	0.32	370	94
Chloroform	1.2	0.25	8.0	1.6
Cyclohexane	1.2	0.34	1.6	0.45
1,1,1-Trichloroethane	1.9	0.35	13	2.4
Carbon Tetrachloride	1.6	0.25	Not Detected	Not Detected
Benzene	2.2	0.70	4.1	1.3
1,2-Dichloroethane	0.93	0.23	Not Detected	Not Detected
Heptane	1.0	0.26	4.3	1.0
Trichloroethene	3.7	0.68	11000	2000
4-Methyl-2-pentanone	1.5	0.38	Not Detected	Not Detected
Toluene	0.57	0.15	5.7	1.5
1,1,2-Trichloroethane	0.73	0.13	Not Detected	Not Detected
Tetrachloroethene	0.45	0.066	4.2	0.62
Chlorobenzene	0.45	0.098	Not Detected	Not Detected
Ethyl Benzene	0.36	0.084	1.0	0.24
m,p-Xylene	0.38	0.088	4.6	1.0
o-Xylene	0.34	0.079	1.4	0.33
Styrene	0.34	0.079	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.34	0.050	Not Detected	Not Detected
Propylbenzene	0.25	0.051	0.48	0.099
1,3,5-Trimethylbenzene	0.22	0.045	0.48	0.098
1,2,4-Trimethylbenzene	0.19	0.039	0.85	0.17
1,3-Dichlorobenzene	0.19	0.031	Not Detected	Not Detected
1,4-Dichlorobenzene	0.18	0.030	Not Detected	Not Detected
1,2-Dichlorobenzene	0.16	0.027	Not Detected	Not Detected
Naphthalene	0.094	0.018	0.40 C	0.076 C

C = Estimated concentration due to calculated sampling rate.

The result for Trichloroethene is reported from file 10052011sim, analyzed on 5/20/2011 with dilution factor 5.0.

Container Type: WMS-SE

Client Sample ID: PSS-SL084 Lab ID#: 1105031A-07A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051929sim
 Date of Collection: 4/29/11 9:43:00 AM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:08 PM

Date of Extraction: 5/19/11

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130

Report Date: 20-May-2011 09:17

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051929sim.d

Lab Smp Id: 1105031A-07A

Inj Date : 19-MAY-2011 21:08

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-07A;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 14

Dil Factor: 1.00000

Compound Sublist: fullnosp.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

 Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

					CONCENT	RATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
1 Chloromethane	50	Comp	ound Not Detecte	d.		
2 Vinyl Chloride	62	Comp	ound Not Detecte	d.		
3 Ethanol	45	Comp	ound Not Detecte	d.		
4 1,1-Dichloroethene-CCC	96	Comp	ound Not Detecte	d.		
5 Acetone	58	Comp	ound Not Detecte	d.		
7 MTBE	73	Comp	ound Not Detecte	d.		
8 trans-1,2-Dichloroethene	96	6.114	6.090 (0.630)	78801	5.13397	5.13397
9 Hexane	57	6.238	6.211 (0.643)	17595	0.55967	0.559669
11 1,1-Dichloroethane-SPCC	63	6.513	6.486 (0.671)	8906	0.31736	0.317359
13 2-Butanone	72	7.039	7.017 (0.726)	3118	0.26273	0.262726
14 cis-1,2-Dichloroethene	96	7.039	7.040 (0.726)	254437	14.8445	14.8445
15 Chloroform-CCC	83	7.279	7.279 (0.750)	9552	0.32341	0.323414
16 Cyclohexane	84	7.444	7.444 (0.767)	2347	0.06649	0.0664899
17 1,1,1-Trichloroethane	97	7.471	7.444 (0.770)	10190	0.34477	0.344771
18 Carbon Tetrachloride	117	Comp	ound Not Detecte	d.		
19 Benzene	78	7.800	7.801 (0.804)	15012	0.18138	0.181376(M)
20 1,2-Dichloroethane	62	Comp	ound Not Detecte	d.		

Report Date: 20-May-2011 09:17

						CONCENT	RATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==		====	==	======	======	======	======
	21 Heptane	71	7.855	7.855 (0.810)	4414	0.20231	0.202312
	22 Trichloroethene	130	8.350	8.326 (0.861)	18717129	983.079	983.078(A)
	25 4-Methyl-2-pentanone	85	Comp	ound Not Detected	•		
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	365866	5.12483	5.12483
	28 Toluene-CCC	92	9.483	9.483 (0.978)	27989	0.50313	0.503127
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	393870	5.00000	
	30 1,1,2-Trichloroethane	97	Comp	ound Not Detected	•		
	31 Tetrachloroethene	164	9.989	9.989 (1.030)	7777	0.46882	0.468818
	32 Chlorobenzene	112	Comp	ound Not Detected	•		
	33 Ethylbenzene-CCC	106	10.854	10.875 (1.119)	4832	0.14134	0.141344
	34 m,p-Xylene	106	10.958	10.958 (1.130)	24690	0.59614	0.596139
	36 o-Xylene	106	11.343	11.344 (1.169)	8950	0.21080	0.210803
	37 Styrene	104	Comp	ound Not Detected	•		
	39 1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detected	•		
	40 Propylbenzene	91	11.967	11.967 (1.234)	12434	0.09583	0.0958314
	41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	9691	0.10856	0.108560
	42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	15503	0.22012	0.220121
	44 1,3-Dichlorobenzene	146	Comp	ound Not Detected	•		
	45 1,4-Dichlorobenzene	146	Comp	ound Not Detected	•		
	46 1,2-Dichlorobenzene	146	Comp	ound Not Detected	· •		
	49 Naphthalene	128	14.937	14.963 (1.540)	21233	0.21165	0.211653

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
- M Compound response manually integrated.

Data File: /chem/msd10.i/20May2011.b/10052011sim.d

Report Date: 20-May-2011 14:26

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/20May2011.b/10052011sim.d

Client Smp ID: 5x Lab Smp Id: 1105311A-07A

Inj Date : 20-MAY-2011 13:52

Inst ID: msd10.i Operator : qm

Smp Info : ;1105311A-07A;5x

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 20-May-2011 09:31 gmash Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 8

Dil Factor: 5.00000

Compound Sublist: TCE.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	5.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	66861	1.04346	5.21729
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	353517	5.00000	
22 Trighloroethene	120	8 326	8 326 (0 858)	2/70200	1/5 070	725 305

Data File: /chem/msd10.i/19May2011a.b/10051929sim.d

Report Date: 20-May-2011 09:17

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051929sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-07A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 393119	196560	786238	393870	===== 0.19

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/20May2011.b/10052011sim.d

Report Date: 20-May-2011 14:26

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 20-MAY-2011 Instrument ID: msd10.i

Lab File ID: 10052011sim.d Calibration Time: 09:12

Client Smp ID: 5x Lab Smp Id: 1105311A-07A

Analysis Type: SV Level: MED

Sample Type: AIR Quant Type: ISTD

Operator: gm

Method File: /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	304814	152407	609628	353517	15.98

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT. RT LOWER LIMIT = - 0.50 minutes of internal standard RT. Data File: /chem/msd10.i/19May2011a.b/10051929sim.d

Report Date: 20-May-2011 09:17

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-07A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.12483	102.50	70-130

Data File: /chem/msd10.i/20May2011.b/10052011sim.d

Report Date: 20-May-2011 14:26

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 20May2011

Sample Matrix: GAS Fraction: SV
Lab Smp Id: 1105311A-07A Client Smp ID: 5x

Level: MED Operator: gm

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: TCE.sub

Method File: /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.21729	104.35	 70-130

age 1

Data File: /chem/msd10.i/19May2011a.b/10051929sim.d

Column phase: DB-5.625

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

8 trans-1,2-Dichloroethene Concentration: 5.13397 ug

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

9 Hexane Concentration: 0.559669 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

13 2-Butanone Concentration: 0,262726 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

14 cis-1,2-Dichloroethene Concentration: 14.8445 ug

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

15 Chloroform-CCC Concentration: 0.323414 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

16 Cyclohexane Concentration: 0.0664899 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-07A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

19 Benzene Concentration: 0,181376 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

21 Heptane Concentration: 0.202312 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

22 Trichloroethene Concentration: 983,078 ug

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

31 Tetrachloroethene Concentration: 0,468818 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

34 m,p-Xylene Concentration: 0.596139 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

41 1,3,5-Trimethylbenzene

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A; Volume Injected (uL): 1.0

Operator: LZ Column phase: DB-5.625 Column diameter: 0.25

42 1,2,4-Trimethylbenzene Concentration: 0.220121 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-07A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

49 Naphthalene Concentration: 0,211653 ug

Page 1

Instrument: msd10.i

Sample Info: ;1105311A-07A;5×

Client ID: 5×

Date : 20-MAY-2011 13:52

Data File: /chem/msd10.i/20May2011.b/10052011sim.d

Date : 20-MAY-2011 13:52

Client ID: 5x Instrument: msd10.i

Sample Info: ;1105311A-07A;5x

Volume Injected (uL): 1.0 Operator: gm

Column phase: DB-5.625 Column diameter: 0.25

22 Trichloroethene Concentration: 725.395 ug

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: HPV-084-1

Lab ID#: 1105031A-08A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)	
cis-1,2-Dichloroethene	320	80	570	140	_
Trichloroethene	180	34	15000	2700	

Client Sample ID: HPV-084-1 Lab ID#: 1105031A-08A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051930sim
 Date of Collection: 4/29/11 12:39:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:30 PM

 Date of Extraction: 5/19/11
 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	5200	2500	Not Detected	Not Detected
Vinyl Chloride	5000	2000	Not Detected	Not Detected
1,1-Dichloroethene	2900	740	Not Detected	Not Detected
Acetone	3600	1500	Not Detected	Not Detected
Methyl tert-butyl ether	490	140	Not Detected	Not Detected
trans-1,2-Dichloroethene	910	230	Not Detected	Not Detected
Hexane	1800	520	Not Detected	Not Detected
1,1-Dichloroethane	510	120	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	480	160	Not Detected	Not Detected
cis-1,2-Dichloroethene	320	80	570	140
Chloroform	310	63	Not Detected	Not Detected
Cyclohexane	290	85	Not Detected	Not Detected
1,1,1-Trichloroethane	470	87	Not Detected	Not Detected
Carbon Tetrachloride	400	64	Not Detected	Not Detected
Benzene	560	180	Not Detected	Not Detected
1,2-Dichloroethane	230	58	Not Detected	Not Detected
Heptane	260	64	Not Detected	Not Detected
Trichloroethene	180	34	15000	2700
4-Methyl-2-pentanone	390	94	Not Detected	Not Detected
Toluene	140	38	Not Detected	Not Detected
1,1,2-Trichloroethane	180	33	Not Detected	Not Detected
Tetrachloroethene	110	16	Not Detected	Not Detected
Chlorobenzene	110	24	Not Detected	Not Detected
Ethyl Benzene	91	21	Not Detected	Not Detected
m,p-Xylene	96	22	Not Detected	Not Detected
o-Xylene	85	20	Not Detected	Not Detected
Styrene	84	20	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	85	12	Not Detected	Not Detected
Propylbenzene	63	13	Not Detected	Not Detected
1,3,5-Trimethylbenzene	55	11	Not Detected	Not Detected
1,2,4-Trimethylbenzene	48	9.8	Not Detected	Not Detected
1,3-Dichlorobenzene	47	7.8	Not Detected	Not Detected
1,4-Dichlorobenzene	46	7.6	Not Detected	Not Detected
1,2-Dichlorobenzene	41	6.8	Not Detected	Not Detected
Naphthalene	23	4.5	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: HPV-084-1 Lab ID#: 1105031A-08A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051930sim
 Date of Collection: 4/29/11 12:39:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:30 PM

Date of Extraction: 5/19/11

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130

Data File: /chem/msd10.i/19May2011a.b/10051930sim.d

Report Date: 20-May-2011 09:24

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051930sim.d

Lab Smp Id: 1105031A-08A

Inj Date : 19-MAY-2011 21:30

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-08A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 15

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: fullnosp.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ug/mL) (ug)
	====	== ====== ======	=======
1 Chloromethane	50	Compound Not Detected.	
2 Vinyl Chloride	62	Compound Not Detected.	
3 Ethanol	45	Compound Not Detected.	
4 1,1-Dichloroethene-CCC	96	Compound Not Detected.	
5 Acetone	58	Compound Not Detected.	
7 MTBE	73	Compound Not Detected.	
8 trans-1,2-Dichloroethene	96	Compound Not Detected.	
9 Hexane	57	Compound Not Detected.	
11 1,1-Dichloroethane-SPCC	63	Compound Not Detected.	
13 2-Butanone	72	Compound Not Detected.	
14 cis-1,2-Dichloroethene	96	7.017 7.040 (0.723) 1303	0.09043 0.0904312
15 Chloroform-CCC	83	Compound Not Detected.	
16 Cyclohexane	84	Compound Not Detected.	
17 1,1,1-Trichloroethane	97	Compound Not Detected.	
18 Carbon Tetrachloride	117	Compound Not Detected.	
19 Benzene	78	Compound Not Detected.	

Page 2

Report Date: 20-May-2011 09:24

							CONCENTRA	ATION	IS
			QUANT SIG				ON-COLUMN	FI	NAL
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==	===		====	==		======	======	===	====
	20	1,2-Dichloroethane	62	Comp	ound Not Detecte	d.			
	21	Heptane	71	Comp	ound Not Detecte	d.			
	22	Trichloroethene	130	8.350	8.326 (0.861)	64161	4.00875	4.0	0875
	25	4-Methyl-2-pentanone	85	Comp	ound Not Detecte	d.			
\$	26	Toluene-d8	98	9.435	9.435 (0.973)	305492	5.09032	5.0	9032
	28	Toluene-CCC	92	Comp	ound Not Detecte	d.			
*	29	2-Fluorotoluene	109	9.700	9.700 (1.000)	331104	5.00000		
	30	1,1,2-Trichloroethane	97	Comp	ound Not Detecte	d.			
	31	Tetrachloroethene	164	Comp	ound Not Detecte	d.			
	32	Chlorobenzene	112	Comp	ound Not Detecte	d.			
	33	Ethylbenzene-CCC	106	Comp	ound Not Detecte	d.			
	34	m,p-Xylene	106	Comp	ound Not Detecte	d.			
	36	o-Xylene	106	Comp	ound Not Detecte	d.			
	37	Styrene	104	Comp	ound Not Detecte	d.			
	39	1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detecte	d.			
	40	Propylbenzene	91	Comp	ound Not Detecte	d.			
	41	1,3,5-Trimethylbenzene	105	Comp	ound Not Detecte	d.			
	42	1,2,4-Trimethylbenzene	105	Comp	ound Not Detecte	d.			
	44	1,3-Dichlorobenzene	146	Comp	ound Not Detecte	d.			
	45	1,4-Dichlorobenzene	146	Comp	ound Not Detecte	d.			
	46	1,2-Dichlorobenzene	146	Comp	ound Not Detecte	d.			
	49	Naphthalene	128	Comp	ound Not Detecte	d.			

Data File: /chem/msd10.i/19May2011a.b/10051930sim.d

Report Date: 20-May-2011 09:24

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051930sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-08A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	393119	196560	786238	331104	====== -15.78

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051930sim.d

Report Date: 20-May-2011 09:24

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-08A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.09032	101.81	70-130

Page 1

Data File: /chem/msd10.i/19May2011a.b/10051930sim.d

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-08A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

14 cis-1,2-Dichloroethene Concentration: 0.0904312 ug

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-08A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

22 Trichloroethene Concentration: 4.00875 ug

Operator: LZ

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: PSS-SL022

Lab ID#: 1105031A-10A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Hexane	7.2	2.0	13	3.7
Chloroform	1.2	0.25	1.6	0.34
Cyclohexane	1.2	0.34	1.2	0.34
1,1,1-Trichloroethane	1.9	0.34	21	3.8
Heptane	1.0	0.25	4.8	1.2
Trichloroethene	0.72	0.13	270	50
Toluene	0.56	0.15	3.5	0.93
Ethyl Benzene	0.36	0.082	0.87	0.20
m,p-Xylene	0.38	0.087	3.9	0.89
o-Xylene	0.34	0.078	1.2	0.27
Propylbenzene	0.25	0.051	0.84	0.17
1,3,5-Trimethylbenzene	0.22	0.044	1.4	0.29
1,2,4-Trimethylbenzene	0.19	0.039	2.5	0.50

Client Sample ID: PSS-SL022 Lab ID#: 1105031A-10A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051931sim
 Date of Collection: 4/29/11 1:07:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:53 PM

 Date of Extraction: 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	21	10	Not Detected	Not Detected
Vinyl Chloride	20	7.7	Not Detected	Not Detected
1,1-Dichloroethene	12	2.9	Not Detected	Not Detected
Acetone	14	6.1	Not Detected	Not Detected
Methyl tert-butyl ether	1.9	0.54	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.6	0.91	Not Detected	Not Detected
Hexane	7.2	2.0	13	3.7
1,1-Dichloroethane	2.0	0.49	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.9	0.64	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.2	0.31	Not Detected	Not Detected
Chloroform	1.2	0.25	1.6	0.34
Cyclohexane	1.2	0.34	1.2	0.34
1,1,1-Trichloroethane	1.9	0.34	21	3.8
Carbon Tetrachloride	1.6	0.25	Not Detected	Not Detected
Benzene	2.2	0.69	Not Detected	Not Detected
1,2-Dichloroethane	0.92	0.23	Not Detected	Not Detected
Heptane	1.0	0.25	4.8	1.2
Trichloroethene	0.72	0.13	270	50
4-Methyl-2-pentanone	1.5	0.37	Not Detected	Not Detected
Toluene	0.56	0.15	3.5	0.93
1,1,2-Trichloroethane	0.72	0.13	Not Detected	Not Detected
Tetrachloroethene	0.44	0.066	Not Detected	Not Detected
Chlorobenzene	0.45	0.097	Not Detected	Not Detected
Ethyl Benzene	0.36	0.082	0.87	0.20
m,p-Xylene	0.38	0.087	3.9	0.89
o-Xylene	0.34	0.078	1.2	0.27
Styrene	0.33	0.078	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.34	0.049	Not Detected	Not Detected
Propylbenzene	0.25	0.051	0.84	0.17
1,3,5-Trimethylbenzene	0.22	0.044	1.4	0.29
1,2,4-Trimethylbenzene	0.19	0.039	2.5	0.50
1,3-Dichlorobenzene	0.19	0.031	Not Detected	Not Detected
1,4-Dichlorobenzene	0.18	0.030	Not Detected	Not Detected
1,2-Dichlorobenzene	0.16	0.027	Not Detected	Not Detected
Naphthalene	0.093	0.018	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: PSS-SL022 Lab ID#: 1105031A-10A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051931sim
 Date of Collection: 4/29/11 1:07:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 09:53 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130

Data File: /chem/msd10.i/19May2011a.b/10051931sim.d

Report Date: 20-May-2011 09:27

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051931sim.d

Lab Smp Id: 1105031A-10A

Inj Date : 19-MAY-2011 21:53

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-10A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 16

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: fullnosp.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
۷t	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

						CONCENT	RATIONS
		QUANT SIG				ON-COLUMN	FINAL
Compour	nds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
======	=======================================	====	==	======	======	======	======
1 (Chloromethane	50	Comp	ound Not Detected			
2 7	Vinyl Chloride	62	Comp	ound Not Detected			
3 1	Ethanol	45	Comp	ound Not Detected			
4	1,1-Dichloroethene-CCC	96	Comp	ound Not Detected			
5 2	Acetone	58	Comp	ound Not Detected			
7 1	MTBE	73	Comp	ound Not Detected	l .		
8 1	trans-1,2-Dichloroethene	96	Comp	ound Not Detected	l .		
9 I	Hexane	57	6.211	6.211 (0.640)	9630	0.35705	0.357054
11	1,1-Dichloroethane-SPCC	63	Comp	ound Not Detected			
13 2	2-Butanone	72	Comp	ound Not Detected	l .		
14 (cis-1,2-Dichloroethene	96	Comp	ound Not Detected			
15 (Chloroform-CCC	83	7.279	7.279 (0.750)	1719	0.06784	0.0678432
16 (Cyclohexane	84	7.444	7.444 (0.767)	1539	0.05082	0.0508215
17	1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	14171	0.55889	0.558886
18 (Carbon Tetrachloride	117	Comp	ound Not Detected			
19 1	Benzene	78	Comp	ound Not Detected			

Page 2

Report Date: 20-May-2011 09:27

						CONCENTR	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Со	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==		====	==	======	======	======	======
	20 1,2-Dichloroethane	62	Comp	ound Not Detected	đ.		
	21 Heptane	71	7.855	7.855 (0.810)	4354	0.23262	0.232619
	22 Trichloroethene	130	8.326	8.326 (0.858)	304388	18.6356	18.6356
	25 4-Methyl-2-pentanone	85	Comp	ound Not Detected	đ.		
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	312504	5.10245	5.10245
	28 Toluene-CCC	92	9.483	9.483 (0.978)	14821	0.31055	0.310552
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	337899	5.00000	
	30 1,1,2-Trichloroethane	97	Comp	ound Not Detected	đ.		
	31 Tetrachloroethene	164	Comp	ound Not Detected	d.		
	32 Chlorobenzene	112	Comp	ound Not Detected	đ.		
	33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	3577	0.12197	0.121965
	34 m,p-Xylene	106	10.958	10.958 (1.130)	18156	0.51099	0.510990
	36 o-Xylene	106	11.343	11.344 (1.169)	6362	0.17467	0.174668
	37 Styrene	104	Comp	ound Not Detected	đ.		
	39 1,1,2,2-Tetrachloroethane-SPG	83	Comp	ound Not Detected	đ.		
	40 Propylbenzene	91	11.967	11.967 (1.234)	18612	0.16721	0.167208
	41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	24930	0.32553	0.325530
	42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	39442	0.65279	0.652787
	44 1,3-Dichlorobenzene	146	Comp	ound Not Detected	d.		
	45 1,4-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	46 1,2-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	49 Naphthalene	128	Comp	ound Not Detected	d.		

Data File: /chem/msd10.i/19May2011a.b/10051931sim.d

Report Date: 20-May-2011 09:27

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051931sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-10A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 393119	196560	786238	337899	===== -14.05

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
==========	=======	========	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011a.b/10051931sim.d

Report Date: 20-May-2011 09:27

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-10A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.10245	102.05	 70-130

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

9 Hexane Concentration: 0.357054 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

15 Chloroform-CCC Concentration: 0.0678432 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

16 Cyclohexane Concentration: 0.0508215 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

17 1,1,1-Trichloroethane

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A; Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

21 Heptane Concentration: 0,232619 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

22 Trichloroethene Concentration: 18,6356 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

34 m,p-Xylene Concentration: 0.510990 ug

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-10A; Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

36 o-Xylene Concentration: 0.174668 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-10A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

40 Propylbenzene Concentration: 0,167208 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-10A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

42 1,2,4-Trimethylbenzene

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: HPV-022-1

Lab ID#: 1105031A-11A

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Trichloroethene	150	27	350	65

Client Sample ID: HPV-022-1 Lab ID#: 1105031A-11A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051932sim
 Date of Collection: 4/29/11 4:43:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 10:15 PM

 Date of Extraction: 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	4200	2000	Not Detected	Not Detected
Vinyl Chloride	4000	1600	Not Detected	Not Detected
1,1-Dichloroethene	2300	590	Not Detected	Not Detected
Acetone	2900	1200	Not Detected	Not Detected
Methyl tert-butyl ether	390	110	Not Detected	Not Detected
trans-1,2-Dichloroethene	730	180	Not Detected	Not Detected
Hexane	1500	420	Not Detected	Not Detected
1,1-Dichloroethane	400	100	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	380	130	Not Detected	Not Detected
cis-1,2-Dichloroethene	250	63	Not Detected	Not Detected
Chloroform	250	50	Not Detected	Not Detected
Cyclohexane	230	68	Not Detected	Not Detected
1,1,1-Trichloroethane	380	69	Not Detected	Not Detected
Carbon Tetrachloride	320	51	Not Detected	Not Detected
Benzene	450	140	Not Detected	Not Detected
1,2-Dichloroethane	190	46	Not Detected	Not Detected
Heptane	210	51	Not Detected	Not Detected
Trichloroethene	150	27	350	65
4-Methyl-2-pentanone	310	75	Not Detected	Not Detected
Toluene	110	30	Not Detected	Not Detected
1,1,2-Trichloroethane	140	27	Not Detected	Not Detected
Tetrachloroethene	90	13	Not Detected	Not Detected
Chlorobenzene	90	20	Not Detected	Not Detected
Ethyl Benzene	72	17	Not Detected	Not Detected
m,p-Xylene	77	18	Not Detected	Not Detected
o-Xylene	68	16	Not Detected	Not Detected
Styrene	67	16	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	68	9.9	Not Detected	Not Detected
Propylbenzene	50	10	Not Detected	Not Detected
1,3,5-Trimethylbenzene	44	9.0	Not Detected	Not Detected
1,2,4-Trimethylbenzene	38	7.8	Not Detected	Not Detected
1,3-Dichlorobenzene	38	6.3	Not Detected	Not Detected
1,4-Dichlorobenzene	37	6.1	Not Detected	Not Detected
1,2-Dichlorobenzene	33	5.4	Not Detected	Not Detected
Naphthalene	19	3.6	Not Detected C	Not Detected C

C = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: HPV-022-1 Lab ID#: 1105031A-11A

VOC BY PASSIVE SAMPLER - GC/MS

 File Name:
 10051932sim
 Date of Collection: 4/29/11 4:43:00 PM

 Dil. Factor:
 1.00
 Date of Analysis: 5/19/11 10:15 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	105	70-130

Report Date: 20-May-2011 09:28

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051932sim.d

Lab Smp Id: 1105031A-11A

Inj Date : 19-MAY-2011 22:15

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-11A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 17

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: fullnosp.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

							CONCENTRA	ATION	S
		QUANT SIG					ON-COLUMN	FI	NAL
Compo	unds	MASS	RT	EXP RT R	EL RT	RESPONSE	(ug/mL)	(ug)
=====		====	==	========	=====	======	======	===	====
1	Chloromethane	50	Comp	ound Not	Detected				
2	Vinyl Chloride	62	Comp	ound Not	Detected				
3	Ethanol	45	Comp	oound Not	Detected				
4	1,1-Dichloroethene-CCC	96	Comp	oound Not	Detected	•			
5	Acetone	58	Comp	oound Not	Detected	•			
7	MTBE	73	Comp	oound Not	Detected	•			
8	trans-1,2-Dichloroethene	96	Comp	oound Not	Detected	•			
9	Hexane	57	Comp	oound Not	Detected	•			
11	1,1-Dichloroethane-SPCC	63	Comp	oound Not	Detected	•			
13	2-Butanone	72	Comp	oound Not	Detected	•			
14	cis-1,2-Dichloroethene	96	Comp	oound Not	Detected	•			
15	Chloroform-CCC	83	Comp	oound Not	Detected	•			
16	Cyclohexane	84	Comp	oound Not	Detected	•			
17	1,1,1-Trichloroethane	97	Comp	ound Not	Detected	•			
18	Carbon Tetrachloride	117	Comp	ound Not	Detected	•			
19	Benzene	78	Comp	pound Not	Detected				

Page 2

Report Date: 20-May-2011 09:28

						CONCENTR	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==	=======================================	====	==	======	======	======	======
	20 1,2-Dichloroethane	62	Comp	ound Not Detected	i.		
	21 Heptane	71	Comp	ound Not Detected	i.		
	22 Trichloroethene	130	8.326	8.326 (0.858)	2055	0.11995	0.119952
	25 4-Methyl-2-pentanone	85	Comp	ound Not Detected	i.		
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	336709	5.24155	5.24155
	28 Toluene-CCC	92	Comp	ound Not Detected	i.		
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	354409	5.00000	
	30 1,1,2-Trichloroethane	97	Comp	ound Not Detected	i.		
	31 Tetrachloroethene	164	Comp	ound Not Detected	i.		
	32 Chlorobenzene	112	Comp	ound Not Detected	i.		
	33 Ethylbenzene-CCC	106	Comp	ound Not Detected	i.		
	34 m,p-Xylene	106	Comp	ound Not Detected	i.		
	36 o-Xylene	106	Comp	ound Not Detected	i.		
	37 Styrene	104	Comp	ound Not Detected	i.		
	39 1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detected	i.		
	40 Propylbenzene	91	Comp	ound Not Detected	i.		
	41 1,3,5-Trimethylbenzene	105	Comp	ound Not Detected	i.		
	42 1,2,4-Trimethylbenzene	105	Comp	ound Not Detected	i.		
	44 1,3-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	45 1,4-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	46 1,2-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	49 Naphthalene	128	Comp	ound Not Detected	i.		

Report Date: 20-May-2011 09:28

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051932sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-11A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	======= 393119	196560	786238	354409	-9.85

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Report Date: 20-May-2011 09:28

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-11A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.24155	104.83	70-130

Page 1

Instrument: msd10.i

Sample Info: ;1105031A-11A;

Client ID:

Date : 19-MAY-2011 22:15

Data File: /chem/msd10.i/19May2011a.b/10051932sim.d

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-11A; Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

22 Trichloroethene Concentration: 0,119952 ug

Operator: LZ

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: TRIP BLANK A1

Lab ID#: 1105031A-13A

Compound	Rpt. Limit (ug/m3)	Rpt. Limit (ppbv)	Amount (ug/m3)	Amount (ppbv)
Acetone	14	6.1	84	35
Hexane	7.2	2.0	26	7.5
2-Butanone (Methyl Ethyl Ketone)	1.9	0.64	3.1	1.0
Toluene	0.56	0.15	2.2	0.59
Ethyl Benzene	0.36	0.082	0.39	0.090
m,p-Xylene	0.38	0.087	1.5	0.35
o-Xylene	0.34	0.078	0.48	0.11

Client Sample ID: TRIP BLANK A1 Lab ID#: 1105031A-13A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051925sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 07:38 PM
Date of Extraction: 5/19/11

Rpt. Limit Rpt. Limit Amount Amount Compound (ug/m3) (ug/m3) (ppbv) (ppbv) 21 10 Chloromethane Not Detected Not Detected 20 7.7 Not Detected Not Detected Vinyl Chloride 1.1-Dichloroethene 12 2.9 Not Detected Not Detected 14 6.1 84 35 Acetone Methyl tert-butyl ether 1.9 0.54 Not Detected Not Detected 3.6 0.91 Not Detected Not Detected trans-1,2-Dichloroethene 7.2 2.0 26 7.5 Hexane Not Detected Not Detected 1,1-Dichloroethane 2.0 0.49 2-Butanone (Methyl Ethyl Ketone) 1.9 0.64 3.1 1.0 1.2 0.31 Not Detected Not Detected cis-1,2-Dichloroethene 1.2 0.25 Not Detected Not Detected Chloroform 1.2 0.34 Not Detected Not Detected Cyclohexane 1.9 0.34 1,1,1-Trichloroethane Not Detected Not Detected 1.6 0.25 Not Detected Not Detected Carbon Tetrachloride 2.2 0.69 Not Detected Not Detected Benzene 0.92 0.23 Not Detected Not Detected 1.2-Dichloroethane Heptane 1.0 0.25 Not Detected Not Detected Trichloroethene 0.72 0.13 Not Detected Not Detected 1.5 0.37 Not Detected Not Detected 4-Methyl-2-pentanone Toluene 0.56 0.15 22 0.59 1,1,2-Trichloroethane 0.72 0.13 Not Detected Not Detected Tetrachloroethene 0.44 0.066 Not Detected Not Detected 0.45 Chlorobenzene 0.097 Not Detected Not Detected 0.36 0.082 0.39 0.090 Ethyl Benzene 0.38 0.087 1.5 0.35 m,p-Xylene 0.11 o-Xylene 0.34 0.078 0.48 Not Detected 0.33 0.078 Not Detected Styrene 0.34 0.049 1,1,2,2-Tetrachloroethane Not Detected Not Detected 0.25 Propylbenzene 0.051 Not Detected Not Detected 0.22 0.044 Not Detected Not Detected 1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 0.19 0.039 Not Detected Not Detected 1,3-Dichlorobenzene 0.19 0.031 Not Detected Not Detected 1,4-Dichlorobenzene 0.18 0.030 Not Detected Not Detected 1.2-Dichlorobenzene 0.16 0.027 Not Detected Not Detected 0.093 Not Detected C Not Detected C Naphthalene 0.018

Container Type: WMS-SE

C = Estimated concentration due to calculated sampling rate.

Client Sample ID: TRIP BLANK A1 Lab ID#: 1105031A-13A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051925sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 07:38 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130

Report Date: 20-May-2011 09:09

Page 1

CONCENTRATIONS

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051925sim.d

Lab Smp Id: 1105031A-13A

Inj Date : 19-MAY-2011 19:38

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A-13A;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 10

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: fullnosp.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

 Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

						CONCENTI	(AIIONS
		QUANT SIG				ON-COLUMN	FINAL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
=====	=======================================	====	==	======	======	======	======
1	Chloromethane	50	Comp	ound Not Detected	d.		
2	Vinyl Chloride	62	Comp	ound Not Detected	d.		
3	Ethanol	45	Comp	ound Not Detected	d.		
4	1,1-Dichloroethene-CCC	96	Comp	ound Not Detected	d.		
5	Acetone	58	5.229	5.229 (0.539)	10153	1.16766	1.16766
7	MTBE	73	Comp	ound Not Detected	d.		
8	trans-1,2-Dichloroethene	96	Comp	ound Not Detected	d.		
9	Hexane	57	6.238	6.211 (0.643)	21967	0.72497	0.724972
11	1,1-Dichloroethane-SPCC	63	Comp	ound Not Detected	d.		
13	2-Butanone	72	7.017	7.017 (0.723)	926	0.08096	0.0809556
14	cis-1,2-Dichloroethene	96	Comp	ound Not Detected	d.		
15	Chloroform-CCC	83	Comp	ound Not Detected	d.		
16	Cyclohexane	84	Comp	ound Not Detected	d.		
17	1,1,1-Trichloroethane	97	Comp	ound Not Detected	d.		
18	Carbon Tetrachloride	117	Comp	ound Not Detected	d.		
19	Benzene	78	Comp	ound Not Detected	d.		

Page 2

Report Date: 20-May-2011 09:09

						CONCENT	RATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==		====	==	======	======	======	======
	20 1,2-Dichloroethane	62	Comp	ound Not Detected	i.		
	21 Heptane	71	Comp	ound Not Detected	i.		
	22 Trichloroethene	130	Comp	ound Not Detected	i.		
	25 4-Methyl-2-pentanone	85	Comp	ound Not Detected	i.		
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	351820	5.11312	5.11312
	28 Toluene-CCC	92	9.483	9.483 (0.978)	10560	0.19695	0.196953
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	379616	5.00000	
	30 1,1,2-Trichloroethane	97	Comp	ound Not Detected	i.		
	31 Tetrachloroethene	164	Comp	ound Not Detected	i.		
	32 Chlorobenzene	112	Comp	ound Not Detected	i.		
	33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	1794	0.05445	0.0544481
	34 m,p-Xylene	106	10.958	10.958 (1.130)	8071	0.20219	0.202191
	36 o-Xylene	106	11.343	11.344 (1.169)	2902	0.07092	0.0709185
	37 Styrene	104	Comp	ound Not Detected	i.		
	39 1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detected	i.		
	40 Propylbenzene	91	Comp	ound Not Detected	i.		
	41 1,3,5-Trimethylbenzene	105	Comp	ound Not Detected	i.		
	42 1,2,4-Trimethylbenzene	105	Comp	ound Not Detected	i.		
	44 1,3-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	45 1,4-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	46 1,2-Dichlorobenzene	146	Comp	ound Not Detected	i.		
	49 Naphthalene	128	Comp	ound Not Detected	i.		

Report Date: 20-May-2011 09:09

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051925sim.d Calibration Time: 16:00

Lab Smp Id: 1105031A-13A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	======= 393119	196560	786238	379616	====== -3.43

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Report Date: 20-May-2011 09:09

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-13A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.11312	102.26	70-130

Page 1

Data File: /chem/msd10.i/19May2011a.b/10051925sim.d

Client ID: Instrument: msd10.i

Sample Info; ;1105031A-13A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

5 Acetone Concentration: 1.16766 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

9 Hexane Concentration: 0.724972 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A; Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

28 Toluene-CCC Concentration: 0.196953 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A; Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

33 Ethylbenzene-CCC Concentration: 0.0544481 ug

Operator: LZ

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A; Volume Injected (uL): 1.0

: 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

34 m,p-Xylene Concentration: 0.202191 ug

Client ID: Instrument: msd10.i

Sample Info: ;1105031A-13A;

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

36 o-Xylene Concentration: 0.0709185 ug

Summary of Detected Compounds VOC BY PASSIVE SAMPLER - GC/MS

Client Sample ID: TRIP BLANK B1

Lab ID#: 1105031A-14A

No Detections Were Found.

Compound

Client Sample ID: TRIP BLANK B1 Lab ID#: 1105031A-14A

VOC BY PASSIVE SAMPLER - GC/MS

Rpt. Limit

(ppbv)

Amount

(ug/m3)

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected C

Amount

(ppbv)

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected C

File Name: 10051926sim Date of Collection: NA

Rpt. Limit

(ug/m3)

0.25

0.22

0.19

0.19

0.18

0.16

0.093

Dil. Factor: 1.00 Date of Analysis: 5/19/11 08:01 PM
Date of Extraction: 5/19/11

21 10 Chloromethane Not Detected Not Detected 20 7.7 Not Detected Not Detected Vinyl Chloride 1,1-Dichloroethene 12 2.9 Not Detected Not Detected 14 6.1 Not Detected Not Detected Acetone 1.9 0.54 Not Detected Not Detected Methyl tert-butyl ether 3.6 0.91 Not Detected Not Detected trans-1,2-Dichloroethene 7.2 2.0 Not Detected Not Detected Hexane 2.0 0.49 Not Detected Not Detected 1,1-Dichloroethane 2-Butanone (Methyl Ethyl Ketone) 1.9 0.64 Not Detected Not Detected 1.2 0.31 cis-1,2-Dichloroethene Not Detected Not Detected 1.2 0.25 Not Detected Not Detected Chloroform 1.2 0.34 Not Detected Not Detected Cyclohexane 1.9 1,1,1-Trichloroethane 0.34 Not Detected Not Detected 1.6 0.25 Not Detected Not Detected Carbon Tetrachloride 2.2 0.69 Not Detected Not Detected Benzene 0.92 0.23 Not Detected Not Detected 1.2-Dichloroethane Heptane 1.0 0.25 Not Detected Not Detected Trichloroethene 0.72 0.13 Not Detected Not Detected 1.5 0.37 Not Detected Not Detected 4-Methyl-2-pentanone Toluene 0.56 0.15 Not Detected Not Detected 1,1,2-Trichloroethane 0.72 0.13 Not Detected Not Detected Tetrachloroethene 0.44 0.066 Not Detected Not Detected Chlorobenzene 0.45 0.097 Not Detected Not Detected 0.36 0.082 Not Detected Not Detected Ethyl Benzene 0.38 0.087 Not Detected Not Detected m,p-Xylene o-Xylene 0.34 0.078 Not Detected Not Detected 0.33 0.078 Not Detected Not Detected Styrene 0.34 1,1,2,2-Tetrachloroethane 0.049 Not Detected Not Detected

Container Type: WMS-SE

Propylbenzene

1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1.2-Dichlorobenzene

Naphthalene

0.051

0.044

0.039

0.031

0.030

0.027

0.018

C = Estimated concentration due to calculated sampling rate.

Client Sample ID: TRIP BLANK B1 Lab ID#: 1105031A-14A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051926sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 08:01 PM

Date of Extraction: 5/19/11

Surrogates%RecoveryMethod
LimitsToluene-d810770-130

Report Date: 20-May-2011 09:29

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051926sim.d

Lab Smp Id: 1105031A-14A

Inj Date : 19-MAY-2011 20:01

Inst ID: msd10.i Operator : LZ

Smp Info : ;1105031A-14A;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 11

Dil Factor: 1.00000

Compound Sublist: fullnosp.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

			CONCENTRATIONS
	QUANT SIG		ON-COLUMN FINAL
Compounds	MASS	RT EXP RT REL RT RESPONSE	(ug/mL) (ug)
	====	== ====== ======	======
1 Chloromethane	50	Compound Not Detected.	
2 Vinyl Chloride	62	Compound Not Detected.	
3 Ethanol	45	Compound Not Detected.	
4 1,1-Dichloroethene-CCC	96	Compound Not Detected.	
5 Acetone	58	Compound Not Detected.	
7 MTBE	73	Compound Not Detected.	
8 trans-1,2-Dichloroethene	96	Compound Not Detected.	
9 Hexane	57	Compound Not Detected.	
11 1,1-Dichloroethane-SPCC	63	Compound Not Detected.	
13 2-Butanone	72	Compound Not Detected.	
14 cis-1,2-Dichloroethene	96	Compound Not Detected.	
15 Chloroform-CCC	83	Compound Not Detected.	
16 Cyclohexane	84	Compound Not Detected.	
17 1,1,1-Trichloroethane	97	Compound Not Detected.	
18 Carbon Tetrachloride	117	Compound Not Detected.	
19 Benzene	78	Compound Not Detected.	

Page 2

Report Date: 20-May-2011 09:29

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==		====	==	======	======	======	======
	20 1,2-Dichloroethane	62	Comp	ound Not Detecte	d.		
	21 Heptane	71	Comp	ound Not Detecte	d.		
	22 Trichloroethene	130	Comp	ound Not Detecte	d.		
	25 4-Methyl-2-pentanone	85	Comp	ound Not Detecte	d.		
\$	26 Toluene-d8	98	9.434	9.435 (0.973)	394132	5.34723	5.34723
	28 Toluene-CCC	92	Comp	ound Not Detecte	d.		
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	406652	5.00000	
	30 1,1,2-Trichloroethane	97	Comp	ound Not Detecte	d.		
	31 Tetrachloroethene	164	Comp	ound Not Detecte	d.		
	32 Chlorobenzene	112	Comp	ound Not Detecte	d.		
	33 Ethylbenzene-CCC	106	Comp	ound Not Detecte	d.		
	34 m,p-Xylene	106	Comp	ound Not Detecte	d.		
	36 o-Xylene	106	Comp	ound Not Detecte	d.		
	37 Styrene	104	Comp	ound Not Detecte	d.		
	39 1,1,2,2-Tetrachloroethane-SPC	83	Comp	ound Not Detecte	d.		
	40 Propylbenzene	91	Comp	ound Not Detecte	d.		
	41 1,3,5-Trimethylbenzene	105	Comp	ound Not Detecte	d.		
	42 1,2,4-Trimethylbenzene	105	Comp	ound Not Detecte	d.		
	44 1,3-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
	45 1,4-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
	46 1,2-Dichlorobenzene	146	Comp	ound Not Detecte	d.		
	49 Naphthalene	128	Comp	ound Not Detecte	d.		

Report Date: 20-May-2011 09:29

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 19-MAY-2011 Instrument ID: msd10.i

Calibration Time: 16:00 Lab File ID: 10051926sim.d

Lab Smp Id: 1105031A-14A

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	====== 393119	196560	786238	406652	3.44
					ĺ

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Report Date: 20-May-2011 09:29

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011a

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A-14A

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.34723	106.94	 70-130

Page 1

Instrument: msd10.i

Sample Info: ;1105031A-14A;

Client ID:

Date : 19-MAY-2011 20:01

Data File: /chem/msd10.i/19May2011a.b/10051926sim.d

QC Results and Raw Data

Client Sample ID: Lab Blank Lab ID#: 1105031A-15A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051913sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 02:54 PM
Date of Extraction: 5/19/11

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ug/m3)	(ppbv)	(ug/m3)	(ppbv)
Chloromethane	21	10	Not Detected	Not Detected
Vinyl Chloride	20	7.7	Not Detected	Not Detected
1,1-Dichloroethene	12	2.9	Not Detected	Not Detected
Acetone	14	6.1	Not Detected	Not Detected
Methyl tert-butyl ether	1.9	0.54	Not Detected	Not Detected
trans-1,2-Dichloroethene	3.6	0.91	Not Detected	Not Detected
Hexane	7.2	2.0	Not Detected	Not Detected
1,1-Dichloroethane	2.0	0.49	Not Detected	Not Detected
2-Butanone (Methyl Ethyl Ketone)	1.9	0.64	Not Detected	Not Detected
cis-1,2-Dichloroethene	1.2	0.31	Not Detected	Not Detected
Chloroform	1.2	0.25	Not Detected	Not Detected
Cyclohexane	1.2	0.34	Not Detected	Not Detected
1,1,1-Trichloroethane	1.9	0.34	Not Detected	Not Detected
Carbon Tetrachloride	1.6	0.25	Not Detected	Not Detected
Benzene	2.2	0.69	Not Detected	Not Detected
1,2-Dichloroethane	0.92	0.23	Not Detected	Not Detected
Heptane	1.0	0.25	Not Detected	Not Detected
Trichloroethene	0.72	0.13	Not Detected	Not Detected
4-Methyl-2-pentanone	1.5	0.37	Not Detected	Not Detected
Toluene	0.56	0.15	Not Detected	Not Detected
1,1,2-Trichloroethane	0.72	0.13	Not Detected	Not Detected
Tetrachloroethene	0.44	0.066	Not Detected	Not Detected
Chlorobenzene	0.45	0.097	Not Detected	Not Detected
Ethyl Benzene	0.36	0.082	Not Detected	Not Detected
m,p-Xylene	0.38	0.087	Not Detected	Not Detected
o-Xylene	0.34	0.078	Not Detected	Not Detected
Styrene	0.33	0.078	Not Detected	Not Detected
1,1,2,2-Tetrachloroethane	0.34	0.049	Not Detected	Not Detected
Propylbenzene	0.25	0.051	Not Detected	Not Detected
1,3,5-Trimethylbenzene	0.22	0.044	Not Detected	Not Detected
1,2,4-Trimethylbenzene	0.19	0.039	Not Detected	Not Detected
1,3-Dichlorobenzene	0.19	0.031	Not Detected	Not Detected
1,4-Dichlorobenzene	0.18	0.030	Not Detected	Not Detected
1,2-Dichlorobenzene	0.16	0.027	Not Detected	Not Detected
Naphthalene	0.093	0.018	Not Detected C	Not Detected C

 $[\]mbox{\bf C}$ = Estimated concentration due to calculated sampling rate.

Container Type: WMS-SE

Client Sample ID: Lab Blank Lab ID#: 1105031A-15A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051913sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 02:54 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130

Report Date: 19-May-2011 15:09

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011.b/10051913sim.d

Lab Smp Id: 1105031A Client Smp ID: Lab Blank

Inj Date : 19-MAY-2011 14:54

Operator : LZ Inst ID: msd10.i

Smp Info : ;1105031A;Lab Blank

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 14:09 lzhang Quant Type: ISTD

Als bottle: 9

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: fullnosp.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

								CONCENTRA	CONCENTRATIONS		
		QUANT SIG					ON-COLUMN		FINAL		
Compounds		MASS	RT	EXP	RT RE	L RT	RESPONSE	(ug/mL)	(ug)	
=====	=======================================	====	==	====	== ==	====	======	======	==	=====	
1	Chloromethane	50	Com	pound	Not D	etected	l.				
2	Vinyl Chloride	62	Com	pound	Not D	etected	l.				
3	Ethanol	45	Com	pound	Not D	etected	l.				
4	1,1-Dichloroethene-CCC	96	Com	pound	Not D	etected	l.				
5	Acetone	58	Com	pound	Not D	etected	l.				
7	MTBE	73	Com	pound	Not D	etected	l.				
8	trans-1,2-Dichloroethene	96	Compound Not Detected.								
9	Hexane	57	Compound Not Detected.								
11	1,1-Dichloroethane-SPCC	63	Compound Not Detected.								
13	2-Butanone	72	Compound Not Detected.								
14	cis-1,2-Dichloroethene	96	Com	pound	Not D	etected	l.				
15	Chloroform-CCC	83	Com	pound	Not D	etected	l.				
16	Cyclohexane	84	Com	pound	Not D	etected	l.				
17	1,1,1-Trichloroethane	97	Com	pound	Not D	etected	l.				
18	Carbon Tetrachloride	117	Com	pound	Not D	etected	l.				
19	Benzene	78	Com	pound	Not D	etected	l.				

Data File: /chem/msd10.i/19May2011.b/10051913sim.d

Report Date: 19-May-2011 15:09

Page 2

			CONCENTRATI	ONS
		QUANT SIG	ON-COLUMN	FINAL
Co	mpounds	MASS	RT EXP RT REL RT RESPONSE (ug/mL) ((ug)
==		====		
	20 1,2-Dichloroethane	62	Compound Not Detected.	
	21 Heptane	71	Compound Not Detected.	
	22 Trichloroethene	130	Compound Not Detected.	
	25 4-Methyl-2-pentanone	85	Compound Not Detected.	
\$	26 Toluene-d8	98	9.435 9.435 (0.973) 347366 5.18350 5	5.18350
	28 Toluene-CCC	92	Compound Not Detected.	
*	29 2-Fluorotoluene	109	9.700 9.700 (1.000) 369721 5.00000	
	30 1,1,2-Trichloroethane	97	Compound Not Detected.	
	31 Tetrachloroethene	164	Compound Not Detected.	
	32 Chlorobenzene	112	Compound Not Detected.	
	33 Ethylbenzene-CCC	106	Compound Not Detected.	
	34 m,p-Xylene	106	Compound Not Detected.	
	36 o-Xylene	106	Compound Not Detected.	
	37 Styrene	104	Compound Not Detected.	
	39 1,1,2,2-Tetrachloroethane-SPC	83	Compound Not Detected.	
	40 Propylbenzene	91	Compound Not Detected.	
	41 1,3,5-Trimethylbenzene	105	Compound Not Detected.	
	42 1,2,4-Trimethylbenzene	105	Compound Not Detected.	
	44 1,3-Dichlorobenzene	146	Compound Not Detected.	
	45 1,4-Dichlorobenzene	146	Compound Not Detected.	
	46 1,2-Dichlorobenzene	146	Compound Not Detected.	
	49 Naphthalene	128	Compound Not Detected.	

Data File: /chem/msd10.i/19May2011.b/10051913sim.d

Report Date: 19-May-2011 15:09

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051913sim.d Calibration Time: 09:35
Lab Smp Id: 1105031A Client Smp ID: Lab Blank

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	385421	192710	770842	369721	-4.07

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/19May2011.b/10051913sim.d

Report Date: 19-May-2011 15:09

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A Client Smp ID: Lab Blank

Level: MED Operator: LZ

Data Type: MS DATA SampleType: SAMPLE SpikeList File: LCS-CMR130.spk Quant Type: ISTD

Sublist File: fullnosp.sub

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	LIMITS
\$ 26 Toluene-d8	5.00000	5.18350	103.67	70-130

Page 1

Sample Info: ;1105031A;Lab Blank

Client ID: Lab Blank

Instrument: msd10.i

Date : 19-MAY-2011 14:54

Data File: /chem/msd10.i/19May2011.b/10051913sim.d

VOC BY PASSIVE SAMPLER - GC/MS SURROGATE RECOVERY FORM

Lab Name: A	AIR TOXICS LIMITED.	SDG No.:	1105031A
_			

	CLIENT			SURROG	SAT	TE % RECOVERY			
	SAMPLE NO.	Toluene-d8	#		#		#	#	TOTAL OUT
01	IA-SL118	104							0
02	PSS-SL118	102							0
03	IA-SL022	104							0
04	IA-SL084	105							0
05	HPV-118-1	106							0
06	PSS-SL084	102							0
07	HPV-084-1	102						Ī	0
80	PSS-SL022	102							0
09	HPV-022-1	105							0
10	TRIP BLANK A1	102							0
11	TRIP BLANK B1	107							0
12	Lab Blank	104							0
13	LCS	102							0
14	LCSD	103							0
15									0
16									0
17									0
18									0
19									0
20									0
21									0
22									0
23									0
24									0

Surrogate Recovery Limits Toluene-d8 70 - 130

^{*} Designates values outside of QC limits

Passive S.E. WMS

INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	AIR TOXICS, LTD	SDG No:	1105031A
Lab File ID:	10051902sim.d	Date Analyzed:	05/19/2011
Instrument ID:	msd10.i	Time Analyzed:	<u>09:35 AM</u>

ĺ			1 1			1		I I		
		2-Fluorotoluene Area	#	RT	#	#	RT	#		
	24-HOUR STD	385421		9.70						
	UPPER LIMIT	770842		10.20						
	LOWER LIMIT	192710		9.20						
	CLIENT SAMPLE NO									
01	Lab Blank	369721		9.70						
02	LCS	324401		9.70						
03	LCSD	365836		9.70						
04										
05										
06										
07										
80										
09										
10										
11										
12										
13										
14										
15										 \vdash
16										\vdash
17										\vdash
18										$\vdash \mid$
19			+							\vdash
20 21										\vdash
										\vdash
22										i l

'Area Upper Limit=+100% of internal standard area' 'Area Lower Limit=-50% of internal standard area'

RT Upper Limit=+0.50 minutes of internal standard RT RT Lower Limit=-0.50 minutes of internal standard RT

^{*} Designates values outside of QC limits

Passive S.E. WMS

INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	AIR TOXICS, LTD	SDG No:	1105031A
Lab File ID:	10051916sim.d	Date Analyzed:	05/19/2011
Instrument ID:	msd10.i	Time Analyzed:	04:00 PM

					l					Π	\neg
		2-Fluorotoluene		RT			RT				
		Area	#		#	#		#			
	24-HOUR STD	393119		9.70							
	UPPER LIMIT	786238		10.20							
	LOWER LIMIT	196560		9.20							
	CLIENT SAMPLE NO										
01	IA-SL118	363335		9.70							
02	PSS-SL118	373115		9.70							
03	IA-SL022	373562		9.70							
04	IA-SL084	382495		9.70							
05	HPV-118-1	400750		9.70							
06	PSS-SL084	393870		9.70							
07	HPV-084-1	331104		9.70							
80	PSS-SL022	337899		9.70							
09	HPV-022-1	354409		9.70							
10	TRIP BLANK A1	379616		9.70							
11	TRIP BLANK B1	406652		9.70							
12											
13											
14											
15											
16											
17											
18											
19											
20											
21											
22											

'Area Upper Limit=+100% of internal standard area' 'Area Lower Limit=-50% of internal standard area'

RT Upper Limit=+0.50 minutes of internal standard RT RT Lower Limit=-0.50 minutes of internal standard RT

^{*} Designates values outside of QC limits

Passive S.E. WMS

INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:	AIR TOXICS, LTD	SDG No:	<u>1105031A</u>
Lab File ID:	10052011sim.d	Date Analyzed:	05/20/2011
Instrument ID:	msd10.i	Time Analyzed:	<u>09:12 AM</u>

		2-Fluorotoluene		RT			RT			
		Area	#		#	#		#		
	24-HOUR STD	304814		9.70						
	UPPER LIMIT	609628		10.20						
	LOWER LIMIT	152407		9.20						
	CLIENT SAMPLE NO									
01	PSS-SL084	353517		9.70						
02										
03										
04										
05										
06										
07										
80										
09										
10										
11										
12										
13										
14										
15										
16										
17										
18										\vdash
19										\vdash
20										\vdash
21										\vdash
22										

'Area Upper Limit=+100% of internal standard area' 'Area Lower Limit=-50% of internal standard area'

RT Upper Limit=+0.50 minutes of internal standard RT RT Lower Limit=-0.50 minutes of internal standard RT

^{*} Designates values outside of QC limits

SAMPLE RESULTS/SAMPLE RESULTS DUPLICATE

Lab Name: Air Toxics Ltd. Lab File ID: 10051907sim.d & 10051906sim.d

Lab Sample ID: & Dilution: 1.00 & 1.00

Client Sample ID: LCS & LCSD Date Analyzed: 5/19/11 & 5/19/11

77-55-6 1,1,1-Trichloroethane 107 99 7.8 79-34-5 1,1,2-Trichloroethane 98 96 2.1 79-34-5 1,1,2-Trichloroethane 106 106 0 75-34-3 1,1-Dichloroethane 104 98 5.9 75-35-4 1,1-Dichloroethane 96 98 2.1 95-63-6 1,2-4-Trimethylbenzene 106 106 0 95-50-1 1,2-Dichloroethane 100 106 0 95-50-1 1,2-Dichloroethane 100 106 5.8 107-06-2 1,2-Dichloroethane 100 106 5.8 108-67-8 1,3-5-Trimethylbenzene 110 110 0 95-50-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 67-84-1 Acetone 76 77 1.3 108-90-7 Chlorobenzene 87 87 87 0 65-62-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 67-68-3 Chloroform 108 102 111 3.4 100-41-4 Ethyl Benzene 108 108 0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 108-80-3 Methyl terb-buly ether 105 104 0.96 191-20-3 Naphthalene 36 31 15 195-47-6 O-Xylene 96 94 2.1 110-80-5 Nylene 96 94 2.1 110-80-60 107 108-80 107 0.93 110-80-61 Propylbenzene 113 112 0.89 110-80-61 Propylbenzene 115 106 104 1.9 110-80-61 Propylbenzene 116 106 104 1.9 110-80-61 Propylbenzene 117 106 104 1.9 110-80-61 Propylbenzene 116 106 104 1.9 110-80-61 Propylbenzene 108 104 5.9 170-16 Trichloroethene 108 108 108 108 108 108 108 108 108 108			Origir	nal	Duplic	ate		Result Less Than		
79-34-5 1,1,2,2-Terhachioroethane 106 106 0 79-00-5 1,1,2-Trichioroethane 106 106 0 75-34-3 1,1-Dichloroethane 104 98 5,9 75-35-4 1,1-Dichloroethane 96 98 2,1 95-63-6 1,2-Dichlorobezene 83 80 3,7 107-06-2 1,2-Dichloroethane 100 106 5,8 108-67-8 1,3-Dichlorobezene 87 85 2,3 108-67-8 1,3-Dichlorobezene 87 85 2,3 108-64-7 1,4-Dichlorobezene 88 86 2,3 18-33 2,8 Utanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1,7 176-8-1 Acetone 76 77 1,3 18-2-5 Carbon Tetrachloride 102 111 8.4 18-9-0-7 Chloroform 108 112 3,6 18-8-2-5 Car	CAS Number	Compound	Amount	Flags	Amount	Flags	RPD	5X RL		
79-00-5 1,1.2-Trichloroethane 106 106 0 75-34-3 1,1-Dichloroethane 104 98 5.9 75-36-4 1,1-Dichloroethane 96 98 2.1 95-63-6 1,2-4-Trimethybenzene 106 106 00 95-50-1 1,2-Dichloroethane 100 106 5.8 107-00-2 1,2-Dichloroethane 100 100 100 5.8 108-67-8 1,3-5-Trimethybenzene 110 110 0 0 541-73-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 108-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 0 108-10-1 4 Methyl-2-pentanone 116 114 1.7 67-64-1 Actone 76 77 1.3 1-71-43-2 Benzene 87 87 87 0 108-90-7 Chlorobenzene 87 87 87 0 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 67-68-3 Chloroform 108 109 99 1.0 110-82-7 Cyclohexane 111 116 4.4 110-41-4 Ethyl Benzene 100 108 108 0 110-41-4 Ethyl Benzene 100 108 108 0 110-41-4 Ethyl Benzene 100 109 92 →>26	71-55-6	1,1,1-Trichloroethane	107		99		7.8			
75-34-3 1,1-Dichloroethane 104 98 5.9 75-35-4 1,1-Dichloroethene 96 98 2.1 95-63-6 1,2-Lichloroetherzene 106 106 0 95-50-1 1,2-Dichloroethane 100 106 5.8 108-67-8 1,3-Frimethylbenzene 110 110 0 541-73-1 1,3-Dichloroebanzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-84-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-68-3 Chloromethane 241 220 9.1 168-69-2 cis-1,2-Dichloroet	79-34-5	1,1,2,2-Tetrachloroethane	98		96		2.1			
75-35-4 1,1-Dichloroethene 96 98 2.1 95-63-6 1,2-Dichloroethene 106 106 0 95-50-1 1,2-Dichloroethene 83 80 3.7 107-06-2 1,2-Dichloroethane 100 106 5.8 108-67-8 1,3-5-Trimethylbenzene 110 110 0 541-73-1 1,3-Dichlorobenzene 87 85 2.3 166-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 84 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chlorobenzene	79-00-5	1,1,2-Trichloroethane	106		106		0			
95-63-6 1,2,4-Trimethylbenzene 106 106 0 95-50-1 1,2-Dichlorobenzene 83 80 3.7 107-06-2 1,2-Dichlorobenzene 100 106 5.8 108-67-8 1,3.5-Trimethylbenzene 110 110 0 541-73-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 A-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 66-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chloroferm 108 112 3.6 74-87-3 Chloroferm 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichlorotethen	75-34-3	1,1-Dichloroethane	104		98		5.9			
95-50-1 1,2-Dichlorobenzene 83 80 3.7 107-06-2 1,2-Dichloroethane 100 106 5.8 108-67-8 1,3-Firmethylbenzene 110 110 0 541-73-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 67-66-3 Chloroform 108 112 3.6 67-66-3 Chloromethane 241 220 9.1 116-65-9 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 110-84-1 Ethyl Benzene 108 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26< 108-38-3 m,p-Xylene 108 107 0.93 1634-04-4 Methyl tet-butyl ether 105 104 0.96 191-20-3 Naphthalene 36 31 15 195-47-6 o-Xylene 96 94 2.1 103-65-1 Propylbenzene 113 112 0.89 100-42-5 Slyrene 86 86 0 102-77-18-4 Tetrachloroethene 106 104 1.9 110-88-83 Toluene 106 104 1.9 110-88-83 Toluene 106 104 5.9 17-61-6 Trichloroethene 98 104 5.9	75-35-4	1,1-Dichloroethene	96		98		2.1			
107-06-2 1,2-Dichloroethane 100 106 5.8 108-67-8 1,3,5-Trimethylbenzene 110 10 0 541-73-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1,7 67-64-1 Acetone 76 77 1,3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1,0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9,1 166-59-2 cis-1,2-Dichloroethene 97 101 4,0 110-82-7 Cyclohexane 111 116 4,4 110-82-7 Cyclohexane	95-63-6	1,2,4-Trimethylbenzene	106		106		0			
108-67-8 1,3,5-Trimethylbenzene 110 110 0 541-73-1 1,3-Dichlorobenzene 87 85 2,3 106-46-7 1,4-Dichlorobenzene 88 86 2,3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1,7 67-64-1 Acetone 76 77 1,3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chloroform 108 112 3.6 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 116-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108	95-50-1	1,2-Dichlorobenzene	83		80		3.7			
541-73-1 1,3-Dichlorobenzene 87 85 2.3 106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26 108-33 m,p-Xylene 108 107	107-06-2	1,2-Dichloroethane	100		106		5.8			
106-46-7 1,4-Dichlorobenzene 88 86 2.3 78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 110-62-7 Cyclohexane 111 116 4.4 100-82-7 Cyclohexane 111 116 4.4 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 114-282-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26<	108-67-8	1,3,5-Trimethylbenzene	110		110		0			
78-93-3 2-Butanone (Methyl Ethyl Ketone) 96 96 0 108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 1156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 108-38-3 mp-Xylene 108 107 0.93 163-0-4 Methyl tert-butyl ether 105 104 0.96 91-20-3 Naphthalene 36	541-73-1	1,3-Dichlorobenzene	87		85		2.3			
108-10-1 4-Methyl-2-pentanone 116 114 1.7 67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 105-3 Hexane 120 92 ->26 108-38-3 m,p-Xylene 108 107 0.93 163-0-4 Methyl tert-butyl ether 105 104 0.96 91-20-3 Naphthalene 36 31 15 95-47-6 o-Xylene 96 94 2.1	106-46-7	1,4-Dichlorobenzene	88		86		2.3			
67-64-1 Acetone 76 77 1.3 71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26<	78-93-3	2-Butanone (Methyl Ethyl Ketone)	96		96		0			
71-43-2 Benzene 87 87 0 56-23-5 Carbon Tetrachloride 102 111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26<	108-10-1	4-Methyl-2-pentanone	116		114		1.7			
56-23-5 Carbon Tetrachloride 102 1111 8.4 108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->-26<	67-64-1	Acetone	76		77		1.3			
108-90-7 Chlorobenzene 100 99 1.0 67-66-3 Chlorofrm 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	71-43-2	Benzene	87		87		0			
67-66-3 Chloroform 108 112 3.6 74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 ->26<	56-23-5	Carbon Tetrachloride	102		111		8.4			
74-87-3 Chloromethane 241 220 9.1 156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	108-90-7	Chlorobenzene	100		99		1.0			
156-59-2 cis-1,2-Dichloroethene 97 101 4.0 110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	67-66-3	Chloroform	108		112		3.6			
110-82-7 Cyclohexane 111 116 4.4 100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	74-87-3	Chloromethane	241		220		9.1			
100-41-4 Ethyl Benzene 108 108 0 142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	156-59-2	cis-1,2-Dichloroethene	97		101		4.0			
142-82-5 Heptane 107 111 3.7 110-54-3 Hexane 120 92 >26<	110-82-7	Cyclohexane	111		116		4.4			
110-54-3 Hexane 120 92 >26<	100-41-4	Ethyl Benzene	108		108		0			
108-38-3 m,p-Xylene 108 107 0.93 1634-04-4 Methyl tert-butyl ether 105 104 0.96 91-20-3 Naphthalene 36 31 15 95-47-6 o-Xylene 96 94 2.1 103-65-1 Propylbenzene 113 112 0.89 100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	142-82-5	Heptane	107		111		3.7			
1634-04-4 Methyl tert-butyl ether 105 104 0.96 91-20-3 Naphthalene 36 31 15 95-47-6 o-Xylene 96 94 2.1 103-65-1 Propylbenzene 113 112 0.89 100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	110-54-3	Hexane	120		92		> <u>2</u> 6<			
91-20-3 Naphthalene 36 31 15 95-47-6 o-Xylene 96 94 2.1 103-65-1 Propylbenzene 113 112 0.89 100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	108-38-3	m,p-Xylene	108		107		0.93			
95-47-6 o-Xylene 96 94 2.1 103-65-1 Propylbenzene 113 112 0.89 100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	1634-04-4	Methyl tert-butyl ether	105		104		0.96			
103-65-1 Propylbenzene 113 112 0.89 100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	91-20-3	Naphthalene	36		31		15			
100-42-5 Styrene 86 86 0 127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	95-47-6	o-Xylene	96		94		2.1			
127-18-4 Tetrachloroethene 105 105 0 108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	103-65-1	Propylbenzene	113		112		0.89			
108-88-3 Toluene 106 104 1.9 156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	100-42-5	Styrene	86		86		0			
156-60-5 trans-1,2-Dichloroethene 98 104 5.9 79-01-6 Trichloroethene 108 108 0	127-18-4	Tetrachloroethene	105		105		0			
79-01-6 Trichloroethene 108 108 0	108-88-3	Toluene	106		104		1.9			
	156-60-5	trans-1,2-Dichloroethene	98		104		5.9			
75-01-4 Vinyl Chloride 80 77 3.8	79-01-6	Trichloroethene	108		108		0			
	75-01-4	Vinyl Chloride	80		77		3.8			

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50
Integrator : HP RTE

Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

Curve Type : Average

Calibration File Names:

Level 1: /chem/msd10.i/17May2011.b/10051705sim.d Level 2: /chem/msd10.i/17May2011.b/10051706sim.d Level 3: /chem/msd10.i/17May2011.b/10051707sim.d Level 4: /chem/msd10.i/17May2011.b/10051708sim.d Level 5: /chem/msd10.i/17May2011.b/10051709sim.d Level 6: /chem/msd10.i/17May2011.b/10051710sim.d Level 7: /chem/msd10.i/17May2011.b/10051711sim.d Level 8: /chem/msd10.i/17May2011.b/10051711sim.d Level 9: /chem/msd10.i/17May2011.b/10051714sim.d Level 10: /chem/msd10.i/17May2011.b/10051717sim.d

0.05000	0.10000	0.20000	0.50000	1.000	5.000		
Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
20.000	50.000	100.000	200.000				
Level 7	Level 8	!	!	!			
= ======	======				======	======	
+++++	0.03966	0.03682	0.03427	0.03518	0.02784		
0.03004	0.04587	+++++	+++++			0.03567	16.838
-			l	l	ı	l	
'		'	!	0.14151	0.12880	'	
			!				
1 1		!	l	l	ı	ı	
'		'	!	0.07796	0.07224	'	
0.08977							
-			l	ı		ı	
'		!	!	•	0.14/85	'	 7011
		!	!	!	 	Į.	!
1 1						Į.	
'		!	!	•	0.10222	ı	 11.896
		!	!	 	 		
1 1		'	l	l 0 14791	l 0 11415	ı	
'		'	!	!	0.11415	'	 16.355
					ı 		
		 	 	 	 	I 	
	Level 1	Level 1 Level 2	Level 1 Level 2 Level 3	Level 1 Level 2 Level 3 Level 4	Level 1 Level 2 Level 3 Level 4 Level 5	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6	Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 RRF

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

	0.05000	0.10000	0.20000	0.50000	1.000	5.000	l	
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	'	50.000	100.000	200.000				
		Level 8	Level 9	Level 10	'			
	1		'		'	=======		======:
7 MTBE	0.71543		'		'	0.59441		
	0.66072			0.68821		 	0.66159	8.2
8 trans-1,2-Dichloroethene	+++++	0.21059	1	1	1	1	1	
o clans 1,2 biomorocchene	0.18806		'		'	0.10373	0.19485	l 6.2
		1				' 		
9 Hexane	0.47115	0.46562	0.34023	0.38325	0.34896	0.33415		
	0.42763	0.39014	0.40384	0.42597			0.39909	12.3
10 Halothane	0.09235	0.13940	0.12316	0.11197	0.11697	0.10313		
	0.11368	0.09949	0.11954	0.11321			0.11329	11.6
11 1,1-Dichloroethane-SPCC	0.35344	0.42537	0.38413	0.33943	0.36362	0.34259		
	0.34681				'		0.35625	'
		1	1	1		1		
12 Ethyl Acetate	+++++	0.07956	'		0.06332	0.05579		
	0.06486		'		 	 	0.06576	
13 2-Butanone	0.15905	1	1	1	0.14402	1		
13 2-Bucanone	0.15727		'		'	1 0.13309	0.15066	 8.9
14 cis-1,2-Dichloroethene	0.20921		'		0.22237	1		'
	0.21370		0.23225	0.24251			0.21759	' 7.6
15 Chloroform-CCC	0.31410	0.42740	0.39564	0.39146	0.38624	0.35051		
	0.40954	0.29034	0.43258	0.35150			0.37493	12.6
16 Cyclohexane	0.40417	0.44866	0.45993	0.43783	0.44373	0.40400		
	0.47057	0.35786	0.55996	0.49428			0.44810	12.3
		l	l	l	l	l	l	

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

	0.05000	0.10000	0.20000	0.50000	1.000	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	20.000	50.000	100.000	'				
	Level 7		Level 9		'			
17 1,1,1-Trichloroethane	======= 0.37453							=======
1/ 1,1,1-111cmoroechane	0.38363		'			0.3333 <u>2</u> 	0.37520	14.77
	!				'	 	'	
18 Carbon Tetrachloride	0.26508	0.27546	0.28324	0.28367	0.30347	0.25583		
	0.30081	0.30067	0.33645	0.33278			0.29377	9.02
	-							
19 Benzene	+++++	1.53269	1.18931	1.11843	1.03187	0.83949		
	0.86346			'			1.05071	
	'			'	'	'		
20 1,2-Dichloroethane	0.32607			'	!	0.32507		10 10
	0.36261		0.42050 		'		0.36499	12.10
21 Heptane	0.28475		'		'		'	
	0.26094			'			0.27697	8.81
	-	 					 	
22 Trichloroethene	0.26622	0.24954	0.23372	0.22735	0.23368	0.21975		
	0.24357	0.23392	0.24572	0.26349			0.24170	6.21
	-							
23 Ethyl Acrylate	+++++	+++++	+++++	+++++	+++++	+++++		
	+++++	+++++	+++++	++++			+++++	++++
24 Methyl Methacrylate	0.25624		 0.25902	'	'	 0.27688		
24 Methyl Methacrylate	0.23024			'	!	0.27666 	ا 0.29589	15.03
	-				'	 		
25 4-Methyl-2-pentanone	+++++	0.08768	0.08883	0.09092	0.10114	0.09871		
	0.11991	0.11002	0.12350	0.13200			0.10586	15.40
	-							
27 2-Chloroethyl Vinyl Ether	+++++	+++++	+++++	+++++	++++	+++++		
	+++++	+++++	+++++	+++++			+++++	+++++
	-							

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

	L 0 05000	l o 10000		0 50000	1 000			
Compound			0.20000 Level 3			5.000 Level 6	 RRF	% RSD
Compound			 	'			KKF	* K5D
	20.000		100.000				! 	
	Level 7	Level 8	Level 9	Level 10			· 	
	= ======	======	======	=======	=======	=======	======	=======
28 Toluene-CCC	0.80293	0.70429	0.67819	0.64822	0.69363	0.64861		
	0.73525	0.68472	0.75995	++++			0.70620	7.28
	-							
30 1,1,2-Trichloroethane	0.24712	0.23950			0.22898	0.21558		
	0.24001		'				0.23354	
	1	1		'		ı		
31 Tetrachloroethene	0.20522		'	'		0.19673		
	0.21149		0.22745 	'			0.21058	
32 Chlorobenzene	0.78155			0.74159		l	1	
32 Chioropenzene	0.82689			+++++	0.76127	0.75141	 0.78978	6.47
	-		0.90110 	'	 	 	0.70570	
33 Ethylbenzene-CCC	0.38451	1				l		
-	0.44921		'	'			0.43398	15.78
	-							
34 m,p-Xylene	0.46175	0.47034	0.46620	0.47406	0.50720	0.49762		
	0.57650	0.58029	0.69791	+++++			0.52576	14.99
	-							
35 n-Butyl Acrylate	+++++	+++++	+++++	+++++	+++++	+++++		
	+++++	++++	+++++	++++			++++	++++
	-							
36 o-Xylene	0.48256		0.46220	'	0.49579	0.50277		
	0.57986			'			0.53897	
27 Styrono	0.57263				0.62358	0 62011		
37 Styrene	0.57263		'	'	U.02358	0.02911	 0.66030	18.33
	1		0.69133 	'	 	 		10.33
38 a-Pinene	0.53130	1	'		0.58946			
	0.69267			'			0.61785	16.97
	· 		' 					
	1						Ii	

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

I	0.05000	0.10000	0.20000	0.50000	1.000	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	20.000	50.000	100.000	200.000		 		
İ	Level 7	Level 8	Level 9	Level 10	ĺ		İ	
	,	'	'	'	'		======	=======
39 1,1,2,2-Tetrachloroethane-SPC	0.45576 0.51378	'	'	'	'	0.45719 	0.48907	19.07
	,	'	'		'			
40 Propylbenzene	1.78828			1.55357	1.61166	1.56702	 1.64710	9.28
ا 	'					 		
41 1,3,5-Trimethylbenzene	0.99675	0.95478	0.96316	1.05183	1.08033	1.09850	İ	
!	1.28867	'	'	'			1.13322	15.24
42 1,2,4-Trimethylbenzene	0.75562		'	'	0.87570	 0.87847		
	1.00616	'	'	'	0.07370	0.07017	0.89407	14.13
43 R-(+)-Limonene	+++++	+++++	+++++	0.33247	0.38419	0.47598		0.00
ا اا	0.58321	'	'	'		 	0.51473	27.27
44 1,3-Dichlorobenzene	0.67467	0.66260	0.65023	'	'	0.69119		
1	0.77738						0.75461	16.26
45 1,4-Dichlorobenzene	0.57548	'		0.56511	0 60722	 0.60947		
43 1,4-bichiolobenzene	0.65732	'				0.00947	0.63118	9.86
·								
46 1,2-Dichlorobenzene	0.53586	'	'	'	'	0.54360		
 	0.58407	0.60150		0.71382		 	0.57200	10.63
47 1,4-Dithiane	+++++	+++++	+++++	+++++	+++++	+++++		
<u> </u>	+++++	+++++	+++++	+++++	!		+++++	+++++
48 1,2,4-Trichlorobenzene	0.38451		'	0.38035	'			
10 1,2,1-111CH1010DeH2eHe	0.36431	'	'	'	0.40230	0.41033	0.44791	19.77

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

	0.05000	0.10000	0.20000	0.50000	1.000	5.000		
Compound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	20.000	50.000	100.000	200.000				
	Level 7	Level 8	Level 9	Level 10				
	========	======	======	=======	========	======	=======	======
49 Naphthalene	1.19029	1.12811	1.06464	1.09905	1.20359	1.28903		
	1.52654	1.68687	++++	+++++			1.27351	17.360
50 1,2,3-Trichlorobenzene	0.38536	0.37377	0.36488	0.37650	0.39577	0.40368		
	0.45945	0.51726	0.53407	0.69194			0.45027	23.168
51 2,2,4-Trimethylpentane	++++	++++	+++++	+++++	+++++	++++		
	+++++	++++	++++	+++++			++++	+++++
\$ 26 Toluene-d8	0.89509	0.90602	0.89996	0.90773	0.90999	0.89926		
1	0.90320	0.90415	0.91499	0.92235			0.90627	0.885

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE
Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:30 lzhang

Curve Type : Average

Calibration History

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Start Cal Date: 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Initial Calibration

	+ Sublist	
Cal Level: 1 , Cal	•	+
	•	++
Cal Level: 2 , Cal		,
17-MAY-2011 13:20		/chem/msd10.i/17May2011.b/10051706sim.d
		· ++
Cal Level: 3 , Cal		
17-MAY-2011 13:43	•	/chem/msd10.i/17May2011.b/10051707sim.d
+	· +	· ++
Cal Level: 4 , Cal		 +====================================
I .	ı	/chem/msd10.i/17May2011.b/10051708sim.d
+	+	++
Cal Level: 5 , Cal	l Amount: 1.00000	 +====================================
17-MAY-2011 14:41 +	!	/chem/msd10.i/17May2011.b/10051709sim.d
+	+	++
Cal Level: 6 , Cal	l Amount: 5.00000	 +====================================
		/chem/msd10.i/17May2011.b/10051710sim.d
+	+	++
Cal Level: 7 , Cal	l Amount: 20.00000	 +====================================
•	1	/chem/msd10.i/17May2011.b/10051711sim.d
+	+	++
•	l Amount: 50.00000	 +====================================
17-MAY-2011 16:12 17-MAY-2011 15:50	cm-su	/chem/msd10.i/17May2011.b/10051713sim.d /chem/msd10.i/17May2011.b/10051712sim.d

+	-+									
Cal Level: 9 , Cal Amount: 100.0000	00									
17-MAY-2011 16:36 100-47	======================================									
+										
+=====================================	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
17-MAY-2011 17:43 200-47	/chem/msd10.i/17May2011.b/10051717sim.d									
Continuing Calibration Ccal Level Mode: GLOBAL LEVEL 6										
Ccal Level: 6 , Ccal Amount: 5.0000	00									
17-MAY-2011 15:03 all-2cve-47	/chem/msd10.i/17May2011.b/10051710sim.d									
Ccal Level: 6 , Ccal Amount: 5.00000										
17-MAY-2011 15:03 all-2cve-47	/chem/msd10.i/17May2011.b/10051710sima.d									
•	•									

BFB Injection Date: BFB Injection Time: BFB File ID: 10051701 1030

μg/L of compound Calculation Check:

Area_{Sample} × Area_{IS}

Conc._{IS}

RRF

 $- \times DF =$

82968) (407864)

(0,24170) 0.0

Reported Result 4.546

4546

Compound:

File ID: 100577108ima

Initials:

2-Fluorotoluene sim 4 0 7864 IS/S Std.#: 1869-12/F-125 Exp. Date: 1/01/11

Verified CCV IS vs ICAL mid-point (-50% to +100% D)

initials 8

---- 3 12 10 9 4 ∞ 7 6 S S 1 Use 1005170 File# 7 o 3 = ō f 1869-17915 -50 1867-179A Sample / Client Name 1869-179-0.65 -6281 1476-1562 BFB 179-0,05-70,065 -0,20 -0.10 -1.0 -5.0 -0150 250 520 7/18 Vial# Ч ō u 7 3 1.00 \mathbf{DF} Date Analyzed 11/11/5 Analyzed 1320 W 57181111 (030 Time 1612 1441 1550 1503 1414 1221 ニター 1258 1232 1209 Initial ۲, TOBY, PCZA Comments

5/18/1 Date

Signed

511870

Date

Reviewed

Revision 12/2010

Page 121

MSD-10

Logbook #: 2180

Signed

\$118111 Date

Reviewed

Date

Revision 12/2010

Brb injection Date:	4118111
BFB Injection Time:_	1260
BFB File ID:	10051801

Calculation Check:

IS/S Std.#: /8/7/2/F - ,25
2-Fluorotoluene \$174 237377 Exp. Date: ///0////

 μ g/L of compound Area_{IS} Conc._{IS} RRF — × DF = (294186) (0,21058) Reported Result_ 4.770 Initials: File ID: 1005/fo35/m Compound: PCZ

13	12	11	10	9	<u></u>	7	6	(y	4	w	2	<u> </u>	
								<	<	<	<	<	Use
								7	Ą	3	2	1081500	File#
						٧		-Lcs	1105204/230/332-LCS	1869-165-51CV	1869-1640-5000	13-14-16-18-18-18-18-18-18-18-18-18-18-18-18-18-	Sample / Client Name
							1	-LCSD 4	ţ	V3	2	-	Vial#
5.						/						1,00	DF
r. 2118111												11.18115	Date Analyzed
								8411	1124	1013	0943	0921	Time Analyzed
							-					M	Initial
													Comments

8118111

Date

Signed

Revision 12/2010

Page 1

Report Date : 18-May-2011 11:26

Air Toxics Ltd.

INITIAL CALIBRATION DATA

Start Cal Date : 17-MAY-2011 12:58 End Cal Date : 17-MAY-2011 17:43

Quant Method : ISTD
Origin : Disabled
Target Version : 3.50

Integrator : HP RTE

Method file : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Cal Date : 18-May-2011 11:22 lzhang

Curve Type : Average

Calibration File Names:

Level 1: /chem/msd10.i/17May2011.b/10051705sim.d Level 2: /chem/msd10.i/17May2011.b/10051706sim.d Level 3: /chem/msd10.i/17May2011.b/10051707sim.d Level 4: /chem/msd10.i/17May2011.b/10051708sim.d Level 5: /chem/msd10.i/17May2011.b/10051709sim.d Level 6: /chem/msd10.i/17May2011.b/10051710sim.d Level 7: /chem/msd10.i/17May2011.b/10051711sim.d Level 8: /chem/msd10.i/17May2011.b/10051713sim.d Level 9: /chem/msd10.i/17May2011.b/10051714sim.d

Level 10: /chem/msd10.i/17May2011.b/10051717sim.d

Please see Calibration History page(s) for all the calibration files.

A 5/18/11

	0.05000	0.10000	0.20000	0.50000	1.000	5.000		
ompound	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	RRF	% RSD
	20.000	50.000	100.000	200.000	1			į
	Level 7 ======	Level 8	Level 9	Level 10				
Chloromethane	+++++	0.03966	' '		0.03518	0.02784	,- 	
	0.03004	0.04587	+++++ 	+++++ 	 		0.03567	16.838
2 Vinyl Chloride	+++++	0.15541	0.14176	0.13632	0.14151	0.12880	1	İ
	0.12646	0.11944	0.14821	+++++ 	 		0.13724	8,683
3 Ethanol	+++++	0.09246	0.08569	0.07677	0.07796	0.07224	İ	i
	0.08977	0.06645	0.08313	+++++ 	 		0.08056	10.989
4 1,1-Dichloroethene-CCC	·		٠,			0.14785		نے ،
	0.16025	<pre>/ 0.13565</pre>	0.16383	0.14986 	 		0.15939	7.844
5 Acetone	+++++	0.13414	0.13522	0.11135	0.11435	0.10222	i	i
	0.11465	0.09297	0.11741	0.10842	 		0.11453	11.896
6 2-Propanol	++++	++++	0.17193	0.12728	0.14791	0.11415		
	0.13408	0.10749	0.13266	0.16302		 	0.13731	16.355

Initial Calibration Narrative

A 10 point initial calibration was analyzed on MSD-10 on 05/17/2011. The curve passed for SOP 100 requirements.

ICAL – none out, ICV – 2 out (file ID: 10051803sim, 1869-165-5)

All compounds were curved from $0.05 \, \text{ug/mL}$ to $200 \, \text{ug/mL}$, but there are exceptions. Please refer to ICAL summary for calibration ranges each compound.

Unit: ug/mL

The analysis based on 2uL injection in slow mode

The MDL date: 9/30/10 for Chloromethane and 01/31/2011 for the rest of the analytes.

As noted on the accompanying analytical run logs, the following point calibration level 10 was re-analyzed due to:

a. anomalous unacceptable linearity for Carbon Tetrachloride, Cyclohexane, and PCE.

	w511811
After	
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	
THE RESIDENCE OF THE PARTY OF T	

55 5/18/11

Correct Baseline	
Split Peak	
Merge Peak	godinite*
Zoom In	-
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

55 5/18/11

After	W5118111
Correct Baseline	
Split Peak	V Comment of the Comm
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

5/18/11

After	12511814
Correct Baseline	V
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

55 S/R/11

After	w5118111
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	ententententententententententententente
Corrected Peak Integration	

5/16/11

not peopled

	w5/1811
After	
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	The second second second second second second second second second second second second second second second s
Peak Misidentified	
Corrected Peak Integration	

رته 18 ¹ ا

5 5/16/11

After

Correct Baseline

Split Peak

Merge Peak

Zoom In

Change Parameter

System Peak Subtraction

Peak Misidentified

Corrected Peak Integration

65 5/14/11

Report Date: 19-May-2011 08:58

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/18May2011.b/10051803sim.d

Lab Smp Id: 1869-165-5 Client Smp ID: ICV

Inj Date : 18-MAY-2011 10:13

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-165-5;ICV

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/18May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 08:57 lzhang Quant Type: ISTD

Als bottle: 3 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	ATTONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	13808	6.57969	6.57969(R)
2 Vinyl Chloride	62	3.420	3.420 (0.353)	45265	5.60577	5.60577
3 Ethanol	45	4.696	4.696 (0.484)	18731	3.95178	3.95178
4 1,1-Dichloroethene-CCC	96	5.116	5.116 (0.527)	42442	4.52571	4.52571
5 Acetone	58	5.228	5.228 (0.539)	29046	4.31054	4.31054
6 2-Propanol	45	5.296	5.296 (0.546)	86133	10.6611	10.6611(R)
7 MTBE	73	5.994	5.970 (0.618)	182183	4.68019	4.68019
8 trans-1,2-Dichloroethene	96	6.042	6.018 (0.623)	50348	4.39172	4.39172
9 Hexane	57	6.187	6.187 (0.638)	98189	4.18154	4.18154
10 Halothane	117	6.376	6.376 (0.657)	31273	4.69162	4.69162
11 1,1-Dichloroethane-SPCC	63	6.486	6.458 (0.669)	99369	4.74078	4.74078
12 Ethyl Acetate	70	6.972	6.972 (0.719)	17753	4.58844	4.58844
13 2-Butanone	72	7.017	6.995 (0.723)	41106	4.63728	4.63728
14 cis-1,2-Dichloroethene	96	7.017	7.017 (0.723)	60531	4.72818	4.72818
15 Chloroform-CCC	83	7.279	7.251 (0.750)	99506	4.51071	4.51071
16 Cyclohexane	84	7.443	7.416 (0.767)	115061	4.36417	4.36417

Page 2

Report Date: 19-May-2011 08:58

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
==		====	==		======	======	======
	17 1,1,1-Trichloroethane	97	7.443	7.443 (0.767)	111305	5.04199	5.04199
	18 Carbon Tetrachloride	117	7.553	7.553 (0.779)	80821	4.67585	4.67585
	19 Benzene	78	7.773	7.773 (0.801)	266847	4.31646	4.31646
	20 1,2-Dichloroethane	62	7.855	7.828 (0.810)	92665	4.31500	4.31500
	21 Heptane	71	7.855	7.828 (0.810)	70994	4.35655	4.35655
	22 Trichloroethene	130	8.326	8.326 (0.858)	67614	4.75463	4.75463
	24 Methyl Methacrylate	69	8.567	8.567 (0.883)	88359	5.07541	5.07541
	25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	31725	5.09368	5.09368
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	264955	4.96890	4.96890
	28 Toluene-CCC	92	9.483	9.483 (0.978)	197815	4.76081	4.76081
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	294186	5.00000	
	30 1,1,2-Trichloroethane	97	9.917	9.892 (1.022)	66228	4.81969	4.81969
	31 Tetrachloroethene	164	9.989	9.989 (1.030)	59104	4.77024	4.77024
	32 Chlorobenzene	112	10.833	10.833 (1.117)	228725	4.92215	4.92215
	33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	121989	4.77753	4.77753
	34 m,p-Xylene	106	10.958	10.958 (1.130)	301776	9.75533	9.75533
	36 o-Xylene	106	11.343	11.343 (1.169)	156663	4.94028	4.94028
	37 Styrene	104	11.343	11.343 (1.169)	193730	4.98656	4.98656
	38 a-Pinene	93	11.590	11.590 (1.195)	195279	5.37179	5.37179
	39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	144211	5.01161	5.01161
	40 Propylbenzene	91	11.967	11.967 (1.234)	506905	5.23064	5.23064
	41 1,3,5-Trimethylbenzene	105	12.101	12.101 (1.248)	348594	5.22822	5.22822
	42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	267755	5.08997	5.08997
	43 R-(+)-Limonene	68	12.594	12.594 (1.298)	156056	5.15289	5.15289
	44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	210867	4.74933	4.74933
	45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	181469	4.88650	4.88650
	46 1,2-Dichlorobenzene	146	13.124	13.124 (1.353)	163579	4.86051	4.86051
	48 1,2,4-Trichlorobenzene	180	14.654	14.644 (1.511)	139772	5.30369	5.30369
	49 Naphthalene	128	14.963	14.981 (1.543)	466136	6.22096	6.22096
	50 1,2,3-Trichlorobenzene	180	15.247	15.246 (1.572)	132773	5.01171	5.01171

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Report Date: 19-May-2011 08:58

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 18-MAY-2011

Lab File ID: 10051803sim.d Calibration Time: 09:43

Lab Smp Id: 1869-165-5 Client Smp ID: ICV

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/18May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	====== 237377	118688	474754	294186	23.93
	<u> </u>				

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	======= 9.70	9.20	10.20	9.70	====== 0.00
Z9 Z=Fidolocoldene	9.70	9.20	10.20	j 9.70	

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Report Date: 19-May-2011 08:58

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 18May2011

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1869-165-5 Client Smp ID: ICV

Level: MED Operator: LZ
Data Type: MS DATA SampleType: LCS
SpikeList File: ICV.spk Quant Type: ISTD

Sublist File: all-2cve-47.sub

Method File: /chem/msd10.i/18May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

Ug Ug Ug Ug			CONC	CONC	8	
1 Chloromethane	SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
2 Vinyl Chloride			ug	ug		İ
2 Vinyl Chloride						
3 Ethanol		1			•	
4 1,1-Dichloroethene 5.00000 4.52571 90.51 80-1 5 Acetone 5.00000 4.31054 86.21 70-1 6 2-Propanol 5.00000 10.6611 213.22* 50-1 7 MTBE 5.00000 4.68019 93.60 70-1 8 trans-1,2-Dichloro 5.00000 4.39172 87.83 70-1 9 Hexane 5.00000 4.18154 83.63 70-1 10 Halothane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.58844 91.77 70-1 14 cis-1,2-Dichloroet 5.00000 4.581071 90.21 80-1 15 Chloroform-CCC 5.00000 4.36417 87.28 70-1 16 Cyclohexane 5.00000 4.67585 93.52 80-1 17 1,1,1-Trichloroeth 5.00000 4.67585 93.52						70-130
5 Acetone 5.00000 4.31054 86.21 70-1 6 2-Propanol 5.00000 10.6611 213.22* 50-1 7 MTBE 5.00000 4.68019 93.60 70-1 8 trans-1,2-Dichloro 5.00000 4.68019 93.60 70-1 9 Hexane 5.00000 4.68019 93.60 70-1 10 Halothane 5.00000 4.18154 83.63 70-1 11 1,1-Dichloroethane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.58844 91.77 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1-Trichloroeth 5.00000 4.67585 93.52 80-1 18 Carbon Tetrachlori 5.00000 4.31646 86.33			5.00000			70-130
6 2-Propanol 5.00000 10.6611 213.22* 50-1 7 MTBE 5.00000 4.68019 93.60 70-1 8 trans-1,2-Dichloro 5.00000 4.39172 87.83 70-1 9 Hexane 5.00000 4.18154 83.63 70-1 10 Halothane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 4.67585 93.52 80-1 18 Carbon Tetrachlori 5.00000 4.31646 86.33 70-1 19 Benzene 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 <	4	1,1-Dichloroethene	5.00000	4.52571	I	80-120
7 MTBE 5.00000 4.68019 93.60 70-1 8 trans-1,2-Dichloro 5.00000 4.39172 87.83 70-1 9 Hexane 5.00000 4.18154 83.63 70-1 10 Halothane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.51071 90.21 80-1 17 1,1,1-Trichloroeth 5.00000 4.67585 93.52 80-1 18 Carbon Tetrachlori 5.00000 4.31646 86.33 70-1 19 Benzene 5.00000 4.31500 86.30 80-1 20 1,2-Dichloroethane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09<	5	Acetone	5.00000	4.31054	86.21	70-130
8 trans-1,2-Dichloro 5.00000 4.39172 87.83 70-1 9 Hexane 5.00000 4.18154 83.63 70-1 10 Halothane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.36417 87.28 70-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 4.36417 87.28 70-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.35655 87.13 80-1 21 Heptane 5.00000 4.75463 95.09 80-1 22 Trichloroethene 5.00000 5.07541 10	6	2-Propanol	5.00000	10.6611	213.22*	50-150
9 Hexane	7	MTBE	5.00000	4.68019	93.60	70-130
10 Halothane 5.00000 4.69162 93.83 70-1 11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 5.04199 100.84 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.75463 95.09 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 4.76081 </td <td>8</td> <td>trans-1,2-Dichloro</td> <td>5.00000</td> <td>4.39172</td> <td>87.83</td> <td>70-130</td>	8	trans-1,2-Dichloro	5.00000	4.39172	87.83	70-130
11 1,1-Dichloroethane 5.00000 4.74078 94.82 80-1 12 Ethyl Acetate 5.00000 4.58844 91.77 70-1 13 2-Butanone 5.00000 4.63728 92.75 70-1 14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 4.67585 93.52 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.75463 95.09 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081	9	Hexane	5.00000	4.18154	83.63	70-130
12 Ethyl Acetate	10	Halothane	5.00000	4.69162	93.83	70-130
13 2-Butanone	11	1,1-Dichloroethane	5.00000	4.74078	94.82	80-120
14 cis-1,2-Dichloroet 5.00000 4.72818 94.56 80-1 15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 5.04199 100.84 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.76081 95.22 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4	12	Ethyl Acetate	5.00000	4.58844	91.77	70-130
15 Chloroform-CCC 5.00000 4.51071 90.21 80-1 16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 5.04199 100.84 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 5.00000 4.94028<	13	2-Butanone	5.00000	4.63728	92.75	70-130
16 Cyclohexane 5.00000 4.36417 87.28 70-1 17 1,1,1-Trichloroeth 5.00000 5.04199 100.84 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028	14	cis-1,2-Dichloroet	5.00000	4.72818	94.56	80-120
17 1,1,1-Trichloroeth 5.00000 5.04199 100.84 80-1 18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 <td>15</td> <td>Chloroform-CCC</td> <td>5.00000</td> <td>4.51071</td> <td>90.21</td> <td>80-120</td>	15	Chloroform-CCC	5.00000	4.51071	90.21	80-120
18 Carbon Tetrachlori 5.00000 4.67585 93.52 80-1 19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	16	Cyclohexane	5.00000	4.36417	87.28	70-130
19 Benzene 5.00000 4.31646 86.33 70-1 20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	17	1,1,1-Trichloroeth	5.00000	5.04199	100.84	80-120
20 1,2-Dichloroethane 5.00000 4.31500 86.30 80-1 21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	18	Carbon Tetrachlori	5.00000	4.67585	93.52	80-120
21 Heptane 5.00000 4.35655 87.13 80-1 22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.77753 95.55 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	19	Benzene	5.00000	4.31646	86.33	70-130
22 Trichloroethene 5.00000 4.75463 95.09 80-1 24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	20	1,2-Dichloroethane	5.00000	4.31500	86.30	80-120
24 Methyl Methacrylat 5.00000 5.07541 101.51 70-1 25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	21	Heptane	5.00000	4.35655	87.13	80-120
25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	22	Trichloroethene	5.00000	4.75463	95.09	80-120
25 4-Methyl-2-pentano 5.00000 5.09368 101.87 70-1 28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	24	Methyl Methacrylat	5.00000	5.07541	101.51	70-130
28 Toluene-CCC 5.00000 4.76081 95.22 80-1 30 1,1,2-Trichloroeth 5.00000 4.81969 96.39 80-1 31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	25	4-Methyl-2-pentano	5.00000	5.09368	101.87	70-130
31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1			5.00000	4.76081	95.22	80-120
31 Tetrachloroethene 5.00000 4.77024 95.40 80-1 32 Chlorobenzene 5.00000 4.92215 98.44 80-1 33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	30	1,1,2-Trichloroeth	5.00000	4.81969	96.39	80-120
33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1		· · · · · · · · · · · · · · · · · · ·		4.77024	95.40	80-120
33 Ethylbenzene-CCC 5.00000 4.77753 95.55 80-1 34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1	32	Chlorobenzene		4.92215	98.44	80-120
34 m,p-Xylene 10.0000 9.75533 97.55 80-1 36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1						80-120
36 o-Xylene 5.00000 4.94028 98.81 70-1 37 Styrene 5.00000 4.98656 99.73 70-1						80-120
37 Styrene 5.00000 4.98656 99.73 70-1						70-130
·						70-130
i i i i i		- '				70-130
]						İ

Page 2 Report Date: 19-May-2011 08:58

	CONC	CONC	ૄ	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ug	ug		
				ļ ——— ļ
39 1,1,2,2-Tetrachlor	5.00000	5.01161	100.23	70-130
40 Propylbenzene	5.00000	5.23064	104.61	80-120
41 1,3,5-Trimethylben	5.00000	5.22822	104.56	80-120
42 1,2,4-Trimethylben	5.00000	5.08997	101.80	80-120
43 R-(+)-Limonene	5.00000	5.15289	103.06	70-130
44 1,3-Dichlorobenzen	5.00000	4.74933	94.99	70-130
45 1,4-Dichlorobenzen	5.00000	4.88650	97.73	70-130
46 1,2-Dichlorobenzen	5.00000	4.86051	97.21	70-130
47 1,4-Dithiane	5.00000	0.00000	0.00*	70-130
48 1,2,4-Trichloroben	5.00000	5.30369	106.07	70-130
49 Naphthalene	5.00000	6.22096	124.42	70-130
50 1,2,3-Trichloroben	5.00000	5.01171	100.23	70-130
				İ

SURROGATE COMPOUND	CONC ADDED ug	CONC RECOVERED ug	% RECOVERED	 LIMITS
\$ 26 Toluene-d8	5.00000	4.96890	99.38	70-130

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

1 Chloromethane Concentration: 6.57969 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

2 Vinyl Chloride Concentration: 5.60577 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Column phase: DB-5.625

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column diameter: 0.25

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

5 Acetone Concentration: 4.31054 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

6 2-Propanol Concentration: 10,6611 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

8 trans-1,2-Dichloroethene Concentration: 4.39172 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

9 Hexane Concentration: 4.18154 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

10 Halothane Concentration: 4.69162 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

11 1,1-Dichloroethane-SPCC

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ Column phase: DB-5.625 Column diameter: 0.25

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

13 2-Butanone Concentration: 4.63728 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

14 cis-1,2-Dichloroethene Concentration: 4.72818 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

15 Chloroform-CCC Concentration: 4.51071 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

16 Cyclohexane Concentration: 4.36417 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

17 1,1,1-Trichloroethane Concentration: 5.04199 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

18 Carbon Tetrachloride

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

19 Benzene Concentration: 4.31646 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

20 1,2-Dichloroethane Concentration: 4.31500 ug

Date : 18-MAY-2011 10:13

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

21 Heptane Concentration: 4,35655 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

22 Trichloroethene Concentration: 4,75463 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

24 Methyl Methacrylate

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

25 4-Methyl-2-pentanone Concentration: 5.09368 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

28 Toluene-CCC Concentration: 4.76081 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

30 1,1,2-Trichloroethane Concentration: 4.81969 ug

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

31 Tetrachloroethene Concentration: 4.77024 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

32 Chlorobenzene Concentration: 4.92215 ug

Column phase: DB-5.625

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

33 Ethylbenzene-CCC Concentration: 4.77753 ug

Column diameter: 0.25

Client ID: ICV Instrument: msd10.i

Sample Info; ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Page 32

Date : 18-MAY-2011 10:13

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

36 o-Xylene Concentration: 4.94028 ug

Page 33

Date : 18-MAY-2011 10:13

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

37 Styrene Concentration: 4.98656 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Data File: /chem/msd10.i/18May2011.b/10051803sim.d

Date : 18-MAY-2011 10:13

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

39 1,1,2,2-Tetrachloroethane-SPC

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

40 Propylbenzene Concentration: 5.23064 ug

Data File: /chem/msd10.i/18May2011.b/10051803sim.d

Date : 18-MAY-2011 10:13

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

Operator: LZ

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

Operator: LZ

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

43 R-(+)-Limonene Concentration: 5.15289 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

44 1,3-Dichlorobenzene Concentration: 4.74933 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

45 1,4-Dichlorobenzene Concentration: 4.88650 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

46 1,2-Dichlorobenzene

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

48 1,2,4-Trichlorobenzene Concentration: 5.30369 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

49 Naphthalene Concentration: 6.22096 ug

Client ID: ICV Instrument: msd10.i

Sample Info: ;1869-165-5;ICV

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

50 1,2,3-Trichlorobenzene

Report Date: 18-May-2011 13:27

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051705sim.d

Lab Smp Id: 1869-179-0.05

Inj Date : 17-MAY-2011 12:58

Inst ID: msd10.i Operator : LZ

Smp Info : ;1869-179-0.05;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:30 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 12:58 Cal File: 10051705sim.d Als bottle: 4 Calibration Sample, Level: 1

Dil Factor: 1.00000

Compound Sublist: 0.05-47.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

					AMOU	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
7 MTBE	73	5.994	6.018 (0.618)	2510	0.05000	0.0540683
9 Hexane	57	6.187	6.211 (0.638)	1653	0.05000	0.0590281
10 Halothane	117	6.376	6.403 (0.657)	324	0.05000	0.0407578(M)
11 1,1-Dichloroethane-SPCC	63	6.458	6.486 (0.666)	1240	0.05000	0.0496059
14 cis-1,2-Dichloroethene	96	7.017	7.017 (0.723)	734	0.05000	0.0480756
13 2-Butanone	72	6.995	7.017 (0.721)	558	0.05000	0.0527844
15 Chloroform-CCC	83	7.279	7.279 (0.750)	1102	0.05000	0.0418880(M)
16 Cyclohexane	84	7.444	7.444 (0.767)	1418	0.05000	0.0450986
17 1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	1314	0.05000	0.0499110
18 Carbon Tetrachloride	117	7.553	7.581 (0.779)	930	0.05000	0.0451613(M)
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	1144	0.05000	0.0446688
21 Heptane	71	7.828	7.855 (0.807)	999	0.05000	0.0514043
22 Trichloroethene	130	8.326	8.326 (0.858)	934	0.05000	0.0550731
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	899	0.05000	0.0433005
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	314034	5.00000	4.93830
28 Toluene-CCC	92	9.483	9.483 (0.978)	2817	0.05000	0.0568488

Report Date: 18-May-2011 13:27

					AMOU	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==		======	======	======
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	350840	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.917 (1.020)	867	0.05000	0.0529066
31 Tetrachloroethene	164	9.989	9.989 (1.030)	720	0.05000	0.0487269
32 Chlorobenzene	112	10.834	10.834 (1.117)	2742	0.05000	0.0494790
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	1349	0.05000	0.0443004
34 m,p-Xylene	106	10.958	10.958 (1.130)	3240	0.10000	0.0878244
36 o-Xylene	106	11.343	11.344 (1.169)	1693	0.05000	0.0447667
37 Styrene	104	11.343	11.344 (1.169)	2009	0.05000	0.0433608(a)
38 a-Pinene	93	11.590	11.591 (1.195)	1864	0.05000	0.0429955
39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	1599	0.05000	0.0465951
40 Propylbenzene	91	11.967	11.967 (1.234)	6274	0.05000	0.0542857
41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	3497	0.05000	0.0439787
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	2651	0.05000	0.0422571
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	1021	0.05000	0.0282689(a)
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	2367	0.05000	0.0447028
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	2019	0.05000	0.0455874
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	1880	0.05000	0.0468409
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	1349	0.05000	0.0429223
49 Naphthalene	128	14.981	14.981 (1.544)	4176	0.05000	0.0467324
50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	1352	0.05000	0.0427923

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

 $[\]ensuremath{\mathtt{M}}$ - Compound response manually integrated.

Data File: /chem/msd10.i/17May2011.b/10051705sim.d

Report Date: 18-May-2011 13:27

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051705sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-0.05

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	======= 407864	203932	815728	350840	===== -13.98

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Page 1

Data file : /chem/msd10.i/17May2011.b/10051706sim.d

Lab Smp Id: 1869-179-0.10

Inj Date : 17-MAY-2011 13:20

Inst ID: msd10.i Operator : LZ

Smp Info : ;1869-179-0.10;

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 13:20 Cal File: 10051706sim.d Als bottle: 5 Calibration Sample, Level: 2

Dil Factor: 1.00000

Compound Sublist: 0.1-47.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description	
 DF	1.00000	Dilution Factor	
Vt	1.00000	Volume of final extract (mi	L)

Cpnd Variable Local Compound Variable

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=======================================	====	==		=======	======	======
Chloromethane	50	3.227	3.227 (0.333)	332	0.10000	0.111188
Vinyl Chloride	62	3.420	3.420 (0.353)	1301	0.10000	0.113239
Ethanol	45	4.696	4.697 (0.484)	774	0.10000	0.114767
1,1-Dichloroethene-CCC	96	5.116	5.117 (0.527)	1417	0.10000	0.106196(M)
Acetone	58	5.229	5.229 (0.539)	1123	0.10000	0.117131
2-Propanol	45	5.296	5.296 (0.546)	2063	0.10000	0.179464
MTBE	73	6.018	6.018 (0.620)	6108	0.10000	0.110281
trans-1,2-Dichloroethene	96	6.066	6.066 (0.625)	1763	0.10000	0.108081
Hexane	57	6.211	6.211 (0.640)	3898	0.10000	0.116670
Halothane	117	6.403	6.403 (0.660)	1167	0.10000	0.123047
1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	3561	0.10000	0.119403
Ethyl Acetate	70	6.995	6.995 (0.721)	666	0.10000	0.120980
2-Butanone	72	7.017	7.017 (0.723)	1272	0.10000	0.100854
cis-1,2-Dichloroethene	96	7.039	7.017 (0.726)	1832	0.10000	0.100574
Chloroform-CCC	83	7.279	7.279 (0.750)	3578	0.10000	0.113994
Cyclohexane	84	7.443	7.444 (0.767)	3756	0.10000	0.100126
	Unds	unds MASS ====================================	unds MASS RT ====================================	unds MASS RT EXP RT REL RT ====================================	unds MASS RT EXP RT REL RT RESPONSE E====================================	QUANT SIG CAL-AMT unds MASS RT EXP RT REL RT RESPONSE (ug/mL) Chloromethane 50 3.227 3.227 (0.333) 332 0.10000 Vinyl Chloride 62 3.420 3.420 (0.353) 1301 0.10000 Ethanol 45 4.696 4.697 (0.484) 774 0.10000 1,1-Dichloroethene-CCC 96 5.116 5.117 (0.527) 1417 0.10000 Acetone 58 5.229 5.229 (0.539) 1123 0.10000 2-Propanol 45 5.296 5.296 (0.546) 2063 0.10000 MTBE 73 6.018 (0.620) 6108 0.10000 trans-1,2-Dichloroethene 96 6.066 (0.666) 0.620) 6108 0.10000 Hexane 57 6.211 (0.640) 3898 0.10000 1,1-Dichloroethane-SPCC 63 6.486 (0.660) 3561 (0.1000) 0.10000 Ethyl Acetate 70 6.995 (0.721) 666 (0.1000) 0.10000

Report Date: 18-May-2011 11:21

						AMOU	INTS
		QUANT SIG				CAL-AMT	ON-COL
Con	pounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
===	=======================================	====	==	======	======	======	======
	17 1,1,1-Trichloroethane	97	7.443	7.444 (0.767)	3001	0.10000	0.0955431
	18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	2306	0.10000	0.0900009
	19 Benzene	78	7.773	7.773 (0.801)	12831	0.10000	0.145872(M)
	20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	3371	0.10000	0.110324
	21 Heptane	71	7.855	7.855 (0.810)	2410	0.10000	0.103940
	22 Trichloroethene	130	8.326	8.326 (0.858)	2089	0.10000	0.103244
	24 Methyl Methacrylate	69	8.567	8.567 (0.883)	2251	0.10000	0.0908744
	25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	734	0.10000	0.0828269(aM)
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	379240	5.00000	4.99859
	28 Toluene-CCC	92	9.483	9.483 (0.978)	5896	0.10000	0.0997297
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	418578	5.00000	
	30 1,1,2-Trichloroethane	97	9.892	9.917 (1.020)	2005	0.10000	0.102550
	31 Tetrachloroethene	164	9.989	9.989 (1.030)	1712	0.10000	0.0971120
	32 Chlorobenzene	112	10.834	10.834 (1.117)	6440	0.10000	0.0974030
	33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	3295	0.10000	0.0906951
	34 m,p-Xylene	106	10.958	10.958 (1.130)	7875	0.20000	0.178918
	36 o-Xylene	106	11.343	11.344 (1.169)	3807	0.10000	0.0843749
	37 Styrene	104	11.343	11.344 (1.169)	4991	0.10000	0.0902895(a)
	38 a-Pinene	93	11.590	11.591 (1.195)	4309	0.10000	0.0833079
	39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	3387	0.10000	0.0827255
	40 Propylbenzene	91	11.967	11.967 (1.234)	12680	0.10000	0.0919587
	41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	7993	0.10000	0.0842537
	42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	6897	0.10000	0.0921474
	43 R-(+)-Limonene	68	12.594	12.594 (1.298)	2464	0.10000	0.0571816
	44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	5547	0.10000	0.0878067
	45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	5019	0.10000	0.0949857
	46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	4535	0.10000	0.0947059
	48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	3271	0.10000	0.0872337
	49 Naphthalene	128	14.957	14.981 (1.542)	9444	0.10000	0.0885822
	50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	3129	0.10000	0.0830094

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

Data File: /chem/msd10.i/17May2011.b/10051706sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051706sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-0.10

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======== 29 2-Fluorotoluene	407864	203932	815728	418578	===== 2.63

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051707sim.d

Report Date: 18-May-2011 11:21

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051707sim.d

Lab Smp Id: 1869-179-0.20

Inj Date : 17-MAY-2011 13:43

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-0.20;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

					AMOUN	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==		======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	681	0.20000	0.206451
2 Vinyl Chloride	62	3.420	3.420 (0.353)	2622	0.20000	0.206586
3 Ethanol	45	4.696	4.697 (0.484)	1585	0.20000	0.212743
4 1,1-Dichloroethene-CCC	96	5.139	5.117 (0.530)	3051	0.20000	0.206980(M)
5 Acetone	58	5.229	5.229 (0.539)	2501	0.20000	0.236131
6 2-Propanol	45	5.296	5.296 (0.546)	3180	0.20000	0.250412
7 MTBE	73	6.042	6.018 (0.623)	12878	0.20000	0.210474
8 trans-1,2-Dichloroethene	96	6.090	6.066 (0.628)	3855	0.20000	0.213930
9 Hexane	57	6.238	6.211 (0.643)	6293	0.20000	0.170500
10 Halothane	117	6.403	6.403 (0.660)	2278	0.20000	0.217421
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	7105	0.20000	0.215654
12 Ethyl Acetate	70	6.995	6.995 (0.721)	1273	0.20000	0.209323
13 2-Butanone	72	7.017	7.017 (0.723)	2626	0.20000	0.188472
14 cis-1,2-Dichloroethene	96	7.040	7.017 (0.726)	4365	0.20000	0.216918
15 Chloroform-CCC	83	7.279	7.279 (0.750)	7318	0.20000	0.211049
16 Cyclohexane	84	7.444	7.444 (0.767)	8507	0.20000	0.205279

Report Date: 18-May-2011 11:21

						AMOUI	NTS
		QUANT SIG				CAL-AMT	ON-COL
Compo	punds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
====		====	==	======	======	======	======
17	1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	6208	0.20000	0.178910
18	3 Carbon Tetrachloride	117	7.581	7.581 (0.782)	5239	0.20000	0.185091
19	9 Benzene	78	7.801	7.773 (0.804)	21998	0.20000	0.226383(M)
20	1,2-Dichloroethane	62	7.855	7.855 (0.810)	7282	0.20000	0.215730
21	Heptane	71	7.855	7.855 (0.810)	5415	0.20000	0.211405
22	2 Trichloroethene	130	8.350	8.326 (0.861)	4323	0.20000	0.193402
24	Methyl Methacrylate	69	8.567	8.567 (0.883)	4791	0.20000	0.175082
25	4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	1643	0.20000	0.167827(M)
\$ 26	5 Toluene-d8	98	9.435	9.435 (0.973)	416149	5.00000	4.96514
28	B Toluene-CCC	92	9.483	9.483 (0.978)	12544	0.20000	0.192067
* 29	2-Fluorotoluene	109	9.700	9.700 (1.000)	462410	5.00000	
30	1,1,2-Trichloroethane	97	9.893	9.917 (1.020)	4123	0.20000	0.190891
31	Tetrachloroethene	164	9.989	9.989 (1.030)	3691	0.20000	0.189523
32	2 Chlorobenzene	112	10.834	10.834 (1.117)	13727	0.20000	0.187937
33	B Ethylbenzene-CCC	106	10.875	10.875 (1.121)	7037	0.20000	0.175334
34	1 m,p-Xylene	106	10.958	10.958 (1.130)	17246	0.40000	0.354683
36	5 o-Xylene	106	11.343	11.344 (1.169)	8549	0.20000	0.171512
35	7 Styrene	104	11.343	11.344 (1.169)	10266	0.20000	0.168112
38	B a-Pinene	93	11.591	11.591 (1.195)	9481	0.20000	0.165925
39	9 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	7458	0.20000	0.164890
40) Propylbenzene	91	11.967	11.967 (1.234)	27053	0.20000	0.177598
41	1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	17815	0.20000	0.169986
42	2 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	14534	0.20000	0.175775
43	R-(+)-Limonene	68	12.594	12.594 (1.298)	5514	0.20000	0.115833
44	1 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	12027	0.20000	0.172336
45	5 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	10614	0.20000	0.181832
46	5 1,2-Dichlorobenzene	146	13.125	13.125 (1.353)	9542	0.20000	0.180380
48	3 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	6907	0.20000	0.166741
49	Naphthalene	128	14.981	14.981 (1.544)	19692	0.20000	0.167197
50	1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	6749	0.20000	0.162073

QC Flag Legend

M - Compound response manually integrated.

Data File: /chem/msd10.i/17May2011.b/10051707sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051707sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-0.20

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	======= 407864	203932	815728	462410	====== 13.37

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051708sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051708sim.d

Lab Smp Id: 1869-179-0.50

Inj Date : 17-MAY-2011 14:14

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-0.50;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 14:14 Cal File: 10051708sim.d Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====	=======================================	====	==	======	======	======	======
1	Chloromethane	50	3.227	3.227 (0.333)	1540	0.50000	0.480383
2	Vinyl Chloride	62	3.420	3.420 (0.353)	6126	0.50000	0.496640
3	Ethanol	45	4.696	4.697 (0.484)	3450	0.50000	0.476478
4	1,1-Dichloroethene-CCC	96	5.116	5.117 (0.527)	7861	0.50000	0.548732
5	Acetone	58	5.228	5.229 (0.539)	5004	0.50000	0.486132
6	2-Propanol	45	5.296	5.296 (0.546)	5720	0.50000	0.463470
7	MTBE	73	6.018	6.018 (0.620)	28233	0.50000	0.474794
8	trans-1,2-Dichloroethene	96	6.090	6.066 (0.628)	8808	0.50000	0.502946
9	Hexane	57	6.211	6.211 (0.640)	17223	0.50000	0.480146
10	Halothane	117	6.403	6.403 (0.660)	5032	0.50000	0.494181
11	1,1-Dichloroethane-SPCC	63	6.485	6.486 (0.669)	15254	0.50000	0.476403
12	Ethyl Acetate	70	6.995	6.995 (0.721)	2892	0.50000	0.489309
13	2-Butanone	72	7.017	7.017 (0.723)	6307	0.50000	0.465772
14	cis-1,2-Dichloroethene	96	7.039	7.017 (0.726)	9651	0.50000	0.493492
15	Chloroform-CCC	83	7.279	7.279 (0.750)	17592	0.50000	0.522038
16	Cyclohexane	84	7.443	7.444 (0.767)	19676	0.50000	0.488542

Report Date: 18-May-2011 11:21

					AMOUI	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==		======	======	======
17 1,1,1-Trichloroethane	97	7.443	7.444 (0.767)	14943	0.50000	0.443116
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	12748	0.50000	0.463421
19 Benzene	78	7.800	7.773 (0.804)	50262	0.50000	0.532227
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	17000	0.50000	0.518210
21 Heptane	71	7.855	7.855 (0.810)	12612	0.50000	0.506637
22 Trichloroethene	130	8.350	8.326 (0.861)	10217	0.50000	0.470322
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	11613	0.50000	0.436673
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	4086	0.50000	0.429457
\$ 26 Toluene-d8	98	9.434	9.435 (0.973)	407932	5.00000	5.00804
28 Toluene-CCC	92	9.483	9.483 (0.978)	29131	0.50000	0.458953
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	449397	5.00000	
30 1,1,2-Trichloroethane	97	9.916	9.917 (1.022)	9882	0.50000	0.470776
31 Tetrachloroethene	164	9.989	9.989 (1.030)	8983	0.50000	0.474610
32 Chlorobenzene	112	10.833	10.834 (1.117)	33327	0.50000	0.469493
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	17444	0.50000	0.447219
34 m,p-Xylene	106	10.958	10.958 (1.130)	42608	1.00000	0.901655
36 o-Xylene	106	11.343	11.344 (1.169)	22542	0.50000	0.465339
37 Styrene	104	11.343	11.344 (1.169)	24199	0.50000	0.407749
38 a-Pinene	93	11.590	11.591 (1.195)	25767	0.50000	0.464002
39 1,1,2,2-Tetrachloroethane-SPO	83	11.922	11.922 (1.229)	19032	0.50000	0.432967
40 Propylbenzene	91	11.967	11.967 (1.234)	69817	0.50000	0.471608
41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	47269	0.50000	0.464090
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	35345	0.50000	0.439842
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	14941	0.50000	0.322955
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	29841	0.50000	0.439976
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	25396	0.50000	0.447665
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	23169	0.50000	0.450664
48 1,2,4-Trichlorobenzene	180	14.643	14.644 (1.510)	17093	0.50000	0.424588
49 Naphthalene	128	14.981	14.981 (1.545)	49391	0.50000	0.431504
50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	16920	0.50000	0.418089

Data File: /chem/msd10.i/17May2011.b/10051708sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051708sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-0.50

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	407864	203932	815728	449397	10.18

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051709sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051709sim.d

Lab Smp Id: 1869-179-1.0

Inj Date : 17-MAY-2011 14:41

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-1.0;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 14:41 Cal File: 10051709sim.d Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

						AMOUN	ITS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====	=======================================	====	==	======	======	======	======
1	Chloromethane	50	3.227	3.227 (0.333)	3336	1.00000	0.986408
2	Vinyl Chloride	62	3.420	3.420 (0.353)	13418	1.00000	1.03114
3	Ethanol	45	4.696	4.697 (0.484)	7392	1.00000	0.967720
4	1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	15922	1.00000	1.05352
5	Acetone	58	5.229	5.229 (0.539)	10843	1.00000	0.998505
6	2-Propanol	45	5.296	5.296 (0.546)	14025	1.00000	1.07719
7	MTBE	73	6.042	6.018 (0.623)	64404	1.00000	1.02666
8	trans-1,2-Dichloroethene	96	6.090	6.066 (0.628)	18782	1.00000	1.01660
9	Hexane	57	6.238	6.211 (0.643)	33088	1.00000	0.874378
10	Halothane	117	6.403	6.403 (0.660)	11091	1.00000	1.03248
11	1,1-Dichloroethane-SPCC	63	6.513	6.486 (0.671)	34478	1.00000	1.02070
12	Ethyl Acetate	70	6.995	6.995 (0.721)	6004	1.00000	0.962918
13	2-Butanone	72	7.017	7.017 (0.723)	13656	1.00000	0.955955
14	cis-1,2-Dichloroethene	96	7.040	7.017 (0.726)	21085	1.00000	1.02199
15	Chloroform-CCC	83	7.279	7.279 (0.750)	36623	1.00000	1.03016
16	Cyclohexane	84	7.444	7.444 (0.767)	42074	1.00000	0.990246

Report Date: 18-May-2011 11:21

					AMOUI	NTS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==		======	======	======
17 1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	30932	1.00000	0.869463
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	28775	1.00000	0.991546
19 Benzene	78	7.800	7.773 (0.804)	97841	1.00000	0.982069
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	37989	1.00000	1.09769
21 Heptane	71	7.855	7.855 (0.810)	27037	1.00000	1.02952
22 Trichloroethene	130	8.326	8.326 (0.858)	22157	1.00000	0.966822
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	26363	1.00000	0.939661
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	9590	1.00000	0.955441
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	431423	5.00000	5.02050
28 Toluene-CCC	92	9.483	9.483 (0.978)	65769	1.00000	0.982196
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	474096	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.917 (1.020)	21712	1.00000	0.980468
31 Tetrachloroethene	164	9.989	9.989 (1.030)	19685	1.00000	0.985858
32 Chlorobenzene	112	10.834	10.834 (1.117)	74079	1.00000	0.989217
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	38573	1.00000	0.937393
34 m,p-Xylene	106	10.958	10.958 (1.130)	96185	2.00000	1.92939
36 o-Xylene	106	11.343	11.344 (1.169)	47010	1.00000	0.919879
37 Styrene	104	11.343	11.344 (1.169)	59127	1.00000	0.944377
38 a-Pinene	93	11.591	11.591 (1.195)	55892	1.00000	0.954046
39 1,1,2,2-Tetrachloroethane-SPO	C 83	11.922	11.922 (1.229)	41411	1.00000	0.892997
40 Propylbenzene	91	11.967	11.967 (1.234)	152816	1.00000	0.978481
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	102436	1.00000	0.953327
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	83033	1.00000	0.979453
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	36429	1.00000	0.746403
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	65415	1.00000	0.914233
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	57576	1.00000	0.962039
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	52016	1.00000	0.959062
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	38146	1.00000	0.898179
49 Naphthalene	128	14.981	14.981 (1.544)	114123	1.00000	0.945091
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	37527	1.00000	0.878974

Data File: /chem/msd10.i/17May2011.b/10051709sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Calibration Date: 17-MAY-2011 Instrument ID: msd10.i

Calibration Time: 15:03 Lab File ID: 10051709sim.d

Lab Smp Id: 1869-179-1.0

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	======= 407864	203932	815728	474096	===== 16.24
					İ

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051710sim.d

Report Date: 19-May-2011 09:54

Air Toxics Ltd.

Page 1

AMOUNTS

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051710sim.d

Lab Smp Id: 1869-179-5.0

Inj Date : 17-MAY-2011 15:03

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-5.0;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 09:54 lzhang Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====		====	==	======	======	======	======
1	Chloromethane	50	3.227	3.227 (0.333)	11353	5.00000	3.90204
2	Vinyl Chloride	62	3.420	3.420 (0.353)	52534	5.00000	4.69266
3	Ethanol	45	4.697	4.697 (0.484)	29465	5.00000	4.48379
4	1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	60302	5.00000	4.63798
5	Acetone	58	5.229	5.229 (0.539)	41690	5.00000	4.46255
6	2-Propanol	45	5.296	5.296 (0.546)	46556	5.00000	4.15639
7	MTBE	73	6.018	6.018 (0.620)	242438	5.00000	4.49224
8	trans-1,2-Dichloroethene	96	6.066	6.066 (0.625)	75760	5.00000	4.76649
9	Hexane	57	6.211	6.211 (0.640)	136289	5.00000	4.18640
10	Halothane	117	6.403	6.403 (0.660)	42063	5.00000	4.55156
11	1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	139729	5.00000	4.80830
12	Ethyl Acetate	70	6.995	6.995 (0.721)	22753	5.00000	4.24168
13	2-Butanone	72	7.017	7.017 (0.723)	55424	5.00000	4.50986
14	cis-1,2-Dichloroethene	96	7.017	7.017 (0.723)	79902	5.00000	4.50174
15	Chloroform-CCC	83	7.279	7.279 (0.750)	142960	5.00000	4.67430
16	Cyclohexane	84	7.444	7.444 (0.767)	164779	5.00000	4.50798

Report Date: 19-May-2011 09:54

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
17 1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	144106	5.00000	4.70843
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	104343	5.00000	4.35457
19 Benzene	78	7.773	7.773 (0.801)	342397	5.00000	3.99486
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	132586	5.00000	4.45317
21 Heptane	71	7.855	7.855 (0.810)	97290	5.00000	4.30622
22 Trichloroethene	130	8.326	8.326 (0.858)	89628	5.00000	4.54601
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	112928	5.00000	4.67874
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	40262	5.00000	4.66264
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	366776	5.00000	4.96130
28 Toluene-CCC	92	9.483	9.483 (0.978)	264544	5.00000	4.59225
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	407864	5.00000	
30 1,1,2-Trichloroethane	97	9.917	9.917 (1.022)	87929	5.00000	4.61548
31 Tetrachloroethene	164	9.989	9.989 (1.030)	80240	5.00000	4.67112
32 Chlorobenzene	112	10.834	10.834 (1.117)	306472	5.00000	4.75706
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	161647	5.00000	4.56622
34 m,p-Xylene	106	10.958	10.958 (1.130)	405922	10.0000	9.46469
36 o-Xylene	106	11.344	11.344 (1.169)	205062	5.00000	4.66419
37 Styrene	104	11.344	11.344 (1.169)	256590	5.00000	4.76376
38 a-Pinene	93	11.591	11.591 (1.195)	248180	5.00000	4.92422
39 1,1,2,2-Tetrachloroethane-SPG	C 83	11.922	11.922 (1.229)	186472	5.00000	4.67411
40 Propylbenzene	91	11.967	11.967 (1.234)	639133	5.00000	4.75692
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	448038	5.00000	4.84680
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	358297	5.00000	4.91278
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	194134	5.00000	4.62358
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	281910	5.00000	4.57974
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	248581	5.00000	4.82803
46 1,2-Dichlorobenzene	146	13.125	13.125 (1.353)	221716	5.00000	4.75180
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	167368	5.00000	4.58076
49 Naphthalene	128	14.981	14.981 (1.544)	525748	5.00000	5.06091
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	164645	5.00000	4.48262

Data File: /chem/msd10.i/17May2011.b/10051710sim.d

Report Date: 19-May-2011 09:54

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051710sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-5.0

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	407864	203932	815728	407864	0.00

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051711sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051711sim.d

Lab Smp Id: 1869-179-20

Inj Date : 17-MAY-2011 15:27

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-20;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description	
 DF	1.00000	Dilution Factor	
Vt	1.00000	Volume of final extract (mi	L)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====	=======================================	====	==	======	======	======	======
1	Chloromethane	50	3.227	3.227 (0.333)	53690	20.0000	16.8472
2	Vinyl Chloride	62	3.420	3.420 (0.353)	225990	20.0000	18.4298
3	Ethanol	45	4.696	4.697 (0.484)	160414	20.0000	22.2861
4	1,1-Dichloroethene-CCC	96	5.139	5.117 (0.530)	286358	20.0000	20.1076
5	Acetone	58	5.228	5.229 (0.539)	204879	20.0000	20.0217
6	2-Propanol	45	5.296	5.296 (0.546)	239601	20.0000	19.5291
7	MTBE	73	6.018	6.018 (0.620)	1180698	20.0000	19.9735
8	trans-1,2-Dichloroethene	96	6.066	6.066 (0.625)	336059	20.0000	19.3031
9	Hexane	57	6.211	6.211 (0.640)	764170	20.0000	21.4300
10	Halothane	117	6.403	6.403 (0.660)	203154	20.0000	20.0696
11	1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	619753	20.0000	19.4705
12	Ethyl Acetate	70	6.995	6.995 (0.721)	115900	20.0000	19.7258
13	2-Butanone	72	7.017	7.017 (0.723)	281041	20.0000	20.8779
14	cis-1,2-Dichloroethene	96	7.039	7.017 (0.726)	381885	20.0000	19.6430
15	Chloroform-CCC	83	7.279	7.279 (0.750)	731840	20.0000	21.8460
16	Cyclohexane	84	7.443	7.444 (0.767)	840903	20.0000	21.0029

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=======	====	==	======	======	======	======
17 1,1,1-Trichloroethane	97	7.443	7.444 (0.767)	685542	20.0000	20.4494
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	537549	20.0000	19.6571
19 Benzene	78	7.773	7.773 (0.801)	1543002	20.0000	16.4358
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	647985	20.0000	19.8696
21 Heptane	71	7.855	7.855 (0.810)	466289	20.0000	18.8424
22 Trichloroethene	130	8.326	8.326 (0.858)	435262	20.0000	20.1553
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	580352	20.0000	21.9519
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	214278	20.0000	22.6551
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	403505	5.00000	4.98306
28 Toluene-CCC	92	9.483	9.483 (0.978)	1313891	20.0000	20.8228
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	446748	5.00000	
30 1,1,2-Trichloroethane	97	9.892	9.917 (1.020)	428892	20.0000	20.5535
31 Tetrachloroethene	164	9.989	9.989 (1.030)	377931	20.0000	20.0861
32 Chlorobenzene	112	10.833	10.834 (1.117)	1477646	20.0000	20.9397
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	802727	20.0000	20.7019
34 m,p-Xylene	106	10.958	10.958 (1.130)	2060411	40.0000	43.8602
36 o-Xylene	106	11.343	11.344 (1.169)	1036211	20.0000	21.5175
37 Styrene	104	11.343	11.344 (1.169)	1401149	20.0000	23.7491
38 a-Pinene	93	11.590	11.591 (1.195)	1237790	20.0000	22.4218
39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	918115	20.0000	21.0104
40 Propylbenzene	91	11.967	11.967 (1.234)	3235825	20.0000	21.9873
41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	2302850	20.0000	22.7436
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	1798006	20.0000	22.5075
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	1042189	20.0000	22.6608
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	1389170	20.0000	20.6034
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	1174626	20.0000	20.8283
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	1043725	20.0000	20.4221
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	825591	20.0000	20.6292
49 Naphthalene	128	14.981	14.981 (1.544)	2727912	20.0000	23.9737
50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	821040	20.0000	20.4080

Data File: /chem/msd10.i/17May2011.b/10051711sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051711sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-20

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
========= 29 2-Fluorotoluene	407864	203932	815728	446748	9.53
					İ

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/17May2011.b/10051713sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051713sim.d

Lab Smp Id: 1869-179B-50

Inj Date : 17-MAY-2011 16:12

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179B-50;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: cm-su.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==		======	======	======
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	382463	5.00000	
1 Chloromethane	5.0	3.227	3.227 (0.333)	175419	50.0000	64.2960(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /chem/msd10.i/17May2011.b/10051713sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051713sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179B-50

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	407864	203932	815728	382463	===== -6.23
					ĺ

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

Page 1

Instrument: msd10.i

Sample Info: ;1869-179B-50;

Client ID:

Date : 17-MAY-2011 16:12

Data File: /chem/msd10.i/17May2011.b/10051713sim.d

Data File: /chem/msd10.i/17May2011.b/10051712sim.d

Report Date: 18-May-2011 11:21

Page 1

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051712sim.d

Lab Smp Id: 1869-179A-50

Inj Date : 17-MAY-2011 15:50

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179A-50;

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cvecm47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description	
 DF	1.00000	Dilution Factor	
Vt	1.00000	Volume of final extract (mi	L)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compou	nds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====		====	==	======	======	======	======
2	Vinyl Chloride	62	3.420	3.420 (0.353)	396867	50.0000	43.5158
3	Ethanol	45	4.697	4.697 (0.484)	220808	50.0000	41.2455
4	1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	450734	50.0000	42.5540
5	Acetone	58	5.229	5.229 (0.539)	308916	50.0000	40.5896
6	2-Propanol	45	5.296	5.296 (0.546)	357149	50.0000	39.1393
7	MTBE	73	5.970	6.018 (0.615)	1841770	50.0000	41.8910
8	trans-1,2-Dichloroethene	96	6.042	6.066 (0.623)	569504	50.0000	43.9824
9	Hexane	57	6.187	6.211 (0.638)	1296310	50.0000	48.8778
10	Halothane	117	6.376	6.403 (0.657)	330583	50.0000	43.9100
11	1,1-Dichloroethane-SPCC	63	6.458	6.486 (0.666)	1021527	50.0000	43.1497
12	Ethyl Acetate	70	6.972	6.995 (0.719)	187509	50.0000	42.9086
13	2-Butanone	72	6.995	7.017 (0.721)	445928	50.0000	44.5402
14	cis-1,2-Dichloroethene	96	7.017	7.017 (0.723)	632429	50.0000	43.7379
15	Chloroform-CCC	83	7.251	7.279 (0.748)	964730	50.0000	38.7196
16	Cyclohexane	84	7.416	7.444 (0.765)	1189053	50.0000	39.9305
17	1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	1182782	50.0000	47.4375

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=======================================	====	==	======	======	======	======
18 Carbon Tetrachloride	117	7.553	7.581 (0.779)	999041	50.0000	49.1196
19 Benzene	78	7.773	7.773 (0.801)	3192719	50.0000	45.7252
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	921546	50.0000	37.9937
21 Heptane	71	7.828	7.855 (0.807)	816579	50.0000	44.3659
22 Trichloroethene	130	8.326	8.326 (0.858)	777234	50.0000	48.3906
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	996554	50.0000	50.6817
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	365567	50.0000	51.9668
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	300423	5.00000	4.98828
28 Toluene-CCC	92	9.483	9.483 (0.978)	2275134	50.0000	48.4795
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	332271	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.917 (1.020)	734245	50.0000	47.3095
31 Tetrachloroethene	164	9.989	9.989 (1.030)	673423	50.0000	48.1217
32 Chlorobenzene	112	10.834	10.834 (1.117)	2700453	50.0000	51.4526
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	1462222	50.0000	50.7021
34 m,p-Xylene	106	10.958	10.958 (1.130)	3856284	100.000	110.371
36 o-Xylene	106	11.344	11.344 (1.169)	2029955	50.0000	56.6762
37 Styrene	104	11.344	11.344 (1.169)	2499759	50.0000	56.9681
38 a-Pinene	93	11.591	11.591 (1.195)	2395323	50.0000	58.3388
39 1,1,2,2-Tetrachloroethane-SP	C 83	11.922	11.922 (1.229)	1721110	50.0000	52.9562
40 Propylbenzene	91	11.967	11.967 (1.234)	6207641	50.0000	56.7132
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	4551806	50.0000	60.4431
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	3346161	50.0000	56.3188
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	2074156	50.0000	60.6375
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	2746031	50.0000	54.7594
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	2243966	50.0000	53.4985
46 1,2-Dichlorobenzene	146	13.125	13.125 (1.353)	1998619	50.0000	52.5792
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	1680087	50.0000	56.4442
49 Naphthalene	128	14.981	14.981 (1.544)	5604971	50.0000	66.2289
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	1718711	50.0000	57.4392

Data File: /chem/msd10.i/17May2011.b/10051712sim.d

Report Date: 18-May-2011 11:21

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051712sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179A-50

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Operator: Hz

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	407864	203932	815728	332271	-18.53

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051714sim.d

Lab Smp Id: 1869-179-500->100 Inj Date : 17-MAY-2011 16:36

Inst ID: msd10.i Operator : LZ

Smp Info : ;1869-179-500->100;20:100

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:21 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 16:36 Cal File: 10051714sim.d Als bottle: 13 Calibration Sample, Level: 9

Dil Factor: 1.00000

Compound Sublist: 100-47.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

					AMOUN	rs
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	=======	======	======
2 Vinyl Chloride	62	3.420	3.420 (0.353)	1346981	100.000	107.993(A)
3 Ethanol	45	4.696	4.697 (0.484)	755562	100.000	103.196
4 1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	1489001	100.000	102.789
5 Acetone	58	5.229	5.229 (0.539)	1067071	100.000	102.518
6 2-Propanol	45	5.296	5.296 (0.546)	1205634	100.000	96.6074
7 MTBE	73	6.018	6.018 (0.620)	6085304	100.000	101.204
8 trans-1,2-Dichloroethene	96	6.090	6.066 (0.628)	1837869	100.000	103.783
9 Hexane	57	6.211	6.211 (0.640)	3670255	100.000	101.188
10 Halothane	117	6.403	6.403 (0.660)	1086450	100.000	105.517(A)
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	3169861	100.000	97.9038
12 Ethyl Acetate	70	6.995	6.995 (0.721)	636472	100.000	106.496(A)
13 2-Butanone	72	7.017	7.017 (0.723)	1558089	100.000	113.792(A)
14 cis-1,2-Dichloroethene	96	7.039	7.017 (0.726)	2110820	100.000	106.740(A)
15 Chloroform-CCC	83	7.279	7.279 (0.750)	3931534	100.000	115.377(A)
16 Cyclohexane	84	7.443	7.444 (0.767)	5089157	100.000	124.963(A)
17 1,1,1-Trichloroethane	97	7.443	7.444 (0.767)	3814760	100.000	111.870(A)

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	3057818	100.000	109.929(A)
19 Benzene	78	7.800	7.773 (0.804)	7902840	100.000	82.7578
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	3821662	100.000	115.207(A)
21 Heptane	71	7.855	7.855 (0.810)	2874668	100.000	114.201(A)
22 Trichloroethene	130	8.326	8.326 (0.858)	2233258	100.000	101.667
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	3176789	100.000	118.132(A)
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	1122395	100.000	116.664(A)
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	415792	5.00000	5.04806(A)
28 Toluene-CCC	92	9.483	9.483 (0.978)	6906750	100.000	107.611(A)
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	454424	5.00000	
30 1,1,2-Trichloroethane	97	9.892	9.917 (1.020)	2204939	100.000	103.881
31 Tetrachloroethene	164	9.989	9.989 (1.030)	2067192	100.000	108.010(A)
32 Chlorobenzene	112	10.834	10.834 (1.117)	8190388	100.000	114.105(A)
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	4610244	100.000	116.887(A)
34 m,p-Xylene	106	10.958	10.958 (1.130)	12685900	200.000	265.484(A)
36 o-Xylene	106	11.343	11.344 (1.169)	6909492	100.000	141.056(A)
37 Styrene	104	11.343	11.344 (1.169)	8100850	100.000	134.988(A)
38 a-Pinene	93	11.590	11.591 (1.195)	7426987	100.000	132.263(A)
39 1,1,2,2-Tetrachloroethane-SP	C 83	11.922	11.922 (1.229)	5222563	100.000	117.496(A)
41 1,3,5-Trimethylbenzene	105	12.101	12.102 (1.248)	12678887	100.000	123.105(A)
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	10247025	100.000	126.106(A)
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	6255441	100.000	133.718(A)
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	8118507	100.000	118.375(A)
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	6285994	100.000	109.580(A)
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	5629258	100.000	108.284(A)
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	4717845	100.000	115.894(A)
50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	4853864	100.000	118.611(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /chem/msd10.i/17May2011.b/10051714sim.d

Report Date: 18-May-2011 11:22

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051714sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-500->100

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	407864	203932	815728	454424	====== 11.42

		RT I			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/17May2011.b/10051717sim.d

Lab Smp Id: 1869-179-500->200 Inj Date : 17-MAY-2011 17:43

Inst ID: msd10.i Operator : LZ

Smp Info : ;1869-179-500->200;40:100

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 18-May-2011 11:22 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 17:43 Cal File: 10051717sim.d

Als bottle: 16 Calibration Sample, Level: 10

Dil Factor: 1.00000

Compound Sublist: 200-47.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL

Cpnd Variable Local Compound Variable

						AMOUN'	rs
		QUANT SIG				CAL-AMT	ON-COL
Compound	ds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
======		====	==	======	======	======	======
4 1	,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	1686089	200.000	188.043
5 A	cetone	58	5.229	5.229 (0.539)	1219864	200.000	189.340
6 2	-Propanol	45	5.296	5.296 (0.546)	1834169	200.000	237.443(A)
7 M	TBE	73	5.994	6.018 (0.618)	7743087	200.000	208.044(A)
8 t:	rans-1,2-Dichloroethene	96	6.042	6.066 (0.623)	2172779	200.000	198.223
9 He	exane	57	6.187	6.211 (0.638)	4792654	200.000	213.469(A)
10 Ha	alothane	117	6.376	6.403 (0.657)	1273717	200.000	199.854
11 1	,1-Dichloroethane-SPCC	63	6.458	6.486 (0.666)	3947475	200.000	196.972
12 E	thyl Acetate	70	6.972	6.995 (0.719)	772632	200.000	208.858(A)
13 2	-Butanone	72	6.995	7.017 (0.721)	1917667	200.000	226.265(A)
14 c:	is-1,2-Dichloroethene	96	7.017	7.017 (0.723)	2728455	200.000	222.905(A)
15 Cl	hloroform-CCC	83	7.279	7.279 (0.750)	3954764	200.000	187.500
16 C	yclohexane	84	7.444	7.444 (0.767)	5561255	200.000	220.614(A)
17 1	,1,1-Trichloroethane	97	7.444	7.444 (0.767)	5760070	200.000	272.899(A)
18 Ca	arbon Tetrachloride	117	7.553	7.581 (0.779)	3744184	200.000	217.463(A)
20 1	,2-Dichloroethane	62	7.855	7.855 (0.810)	4084286	200.000	198.915

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
21 Heptane	71	7.855	7.855 (0.810)	3365471	200.000	216.000(A)
22 Trichloroethene	130	8.326	8.326 (0.858)	2964563	200.000	218.035(A)
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	4356187	200.000	261.706(A)
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	1485163	200.000	249.396(A)
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	259438	5.00000	5.08871(A)
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	281278	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.917 (1.020)	2901231	200.000	220.824(A)
31 Tetrachloroethene	164	9.989	9.989 (1.030)	2820858	200.000	238.117(A)
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	6676067	200.000	273.457(A)
39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	7912849	200.000	287.606(A)
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	9174700	200.000	316.846(A)
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	11435958	200.000	269.391(A)
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	8515207	200.000	239.815(A)
46 1,2-Dichlorobenzene	146	13.124	13.125 (1.353)	8031262	200.000	249.588(A)
48 1,2,4-Trichlorobenzene	180	14.644	14.644 (1.510)	7320925	200.000	290.543(A)
50 1,2,3-Trichlorobenzene	180	15.246	15.247 (1.572)	7785095	200.000	307.345(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: /chem/msd10.i/17May2011.b/10051717sim.d

Report Date: 18-May-2011 11:22

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 17-MAY-2011

Lab File ID: 10051717sim.d Calibration Time: 15:03

Lab Smp Id: 1869-179-500->200

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/17May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
========= 29 2-Fluorotoluene	407864	203932	815728	281278	====== -31.04
					İ

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	=======	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = -0.50 minutes of internal standard RT.

Air Toxics Ltd.

Page 1

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 19-MAY-2011 09:35

Lab File ID: 10051902sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Analysis Type: AIR Init. Cal. Times: 12:58 17:43

Lab Sample ID: 1869-179-5 Quant Type: ISTD

Method: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

	l ———		MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
	= =======	=======	=====	=======	=======	
1 Chloromethane	0.03567	0.02945	0.020	17.44390	40.00000	Average
2 Vinyl Chloride	0.13724	0.13700	0.050	0.17306	40.00000	Average
3 Ethanol	0.08056	0.07905	0.030	1.87528	30.00000	Average
4 1,1-Dichloroethene-CCC	0.15939	0.15388	0.050	3.45705	30.00000	Average
5 Acetone	0.11453	0.10858	0.050	5.19162	30.00000	Average
6 2-Propanol	0.13731	0.13154	0.050	4.20721	30.00000	Average
7 MTBE	0.66159	0.60993	0.050	7.80983	30.00000	Average
8 trans-1,2-Dichloroethene	0.19485	0.17968	0.050	7.78643	30.00000	Average
9 Hexane	0.39909	0.37548	0.020	5.91810	30.00000	Average
10 Halothane	0.11329	0.10962	0.050	3.23752	30.00000	Average
11 1,1-Dichloroethane-SPCC	0.35625	0.32751	0.050	8.06636	20.00000	Average
12 Ethyl Acetate	0.06576	0.06054	0.040	7.93016	30.00000	Average
13 2-Butanone	0.15066	0.14273	0.050	5.26367	30.00000	Average
14 cis-1,2-Dichloroethene	0.21759	0.19950	0.050	8.31407	20.00000	Average
15 Chloroform-CCC	0.37493	0.37867	0.050	-0.99672	20.00000	Average
16 Cyclohexane	0.44810	0.42670	0.050	4.77508	30.00000	Average
17 1,1,1-Trichloroethane	0.37520	0.33937	0.050	9.54929	20.00000	Average
18 Carbon Tetrachloride	0.29375	0.28470	0.050	3.07821	20.00000	Average
19 Benzene	1.05071	0.82828	0.050	21.16959	30.00000	Average
20 1,2-Dichloroethane	0.36499	0.35709	0.050	2.16419	20.00000	Average
21 Heptane	0.27697	0.25479	0.050	8.00625	20.00000	Average
22 Trichloroethene	0.24170	0.22067	0.050	8.69891	20.00000	Average
24 Methyl Methacrylate	0.29589	0.28870	0.050	2.42937	30.00000	Average
25 4-Methyl-2-pentanone	0.10586	0.10684	0.050	-0.93042	30.00000	Average
26 Toluene-d8	0.90627	0.89418	0.050	1.33478	30.00000	Average
28 Toluene-CCC	0.70620	0.64963	0.050	8.00990	20.00000	Average
30 1,1,2-Trichloroethane	0.23354	0.21927	0.050	6.11141	20.00000	Average
31 Tetrachloroethene	0.21058	0.19669	0.050	6.59949	20.00000	Average
32 Chlorobenzene	0.78978	0.74797	0.050	5.29354	20.00000	Average
33 Ethylbenzene-CCC	0.43398	0.40300	0.050	7.13742	20.00000	Average
34 m,p-Xylene	0.52576	0.50262	0.050	4.40234	20.00000	Average
36 o-Xylene	0.53897	0.51116	0.050	5.15991	30.00000	
37 Styrene	0.66030			•	•	
38 a-Pinene	0.61785					
39 1,1,2,2-Tetrachloroethane-S	0.48907			•	•	
40 Propylbenzene	1.64710			•	•	

Data File: /chem/msd10.i/19May2011.b/10051902sim.d

Report Date: 19-May-2011 16:18

Page 2

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 19-MAY-2011 09:35

Lab File ID: 10051902sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Analysis Type: AIR Init. Cal. Times: 12:58 17:43

Lab Sample ID: 1869-179-5 Quant Type: ISTD

Method: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

		1	MI	1	MAX	
COMPOUND	RRF / A	AMOUNT RE	75 RR	F %D / %DRIFT	%D / %DRIFT	CURVE TYPE
	===== =====					======
41 1,3,5-Trimethylbenzene	1.	.13322 1	1.12064 0.0	50 1.11018	20.00000	Averaged
42 1,2,4-Trimethylbenzene	0.	.89407 0	0.87503 0.0	50 2.12908	20.00000	Averaged
43 R-(+)-Limonene	0.	.51473 0	0.49054 0.0	50 4.69884	30.00000	Averaged
44 1,3-Dichlorobenzene	0.	.75461 0	0.68659 0.0	50 9.01399	30.00000	Averaged
45 1,4-Dichlorobenzene	0.	63118	0.58699 0.0	7.00028	30.00000	Averaged
46 1,2-Dichlorobenzene	0.	.57200 0	0.53019 0.0	50 7.30958	30.00000	Averaged
48 1,2,4-Trichlorobenzene	0.	.44791 0	0.41770 0.0	6.74466	30.00000	Averaged
49 Naphthalene	1.	. 27351 1	1.24744 0.0	50 2.04721	30.00000	Averaged
50 1,2,3-Trichlorobenzene	0.	45027 0	0.38914 0.0	50 13.57587	30.00000	Averaged
				1	l	II

Data File: /chem/msd10.i/19May2011.b/10051902sim.d

Report Date: 19-May-2011 16:18

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Page 1

Data file : /chem/msd10.i/19May2011.b/10051902sim.d

Lab Smp Id: 1869-179-5 Client Smp ID: CCV

Inj Date : 19-MAY-2011 09:35

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-5;CCV

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 14:09 lzhang Quant Type: ISTD

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
 DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	11349	5.00000	4.12780
2 Vinyl Chloride	62	3.420	3.420 (0.353)	52803	5.00000	4.99135
3 Ethanol	45	4.696	4.696 (0.484)	30467	5.00000	4.90624
4 1,1-Dichloroethene-CCC	96	5.116	5.116 (0.527)	59308	5.00000	4.82715
5 Acetone	58	5.229	5.229 (0.539)	41849	5.00000	4.74042
6 2-Propanol	45	5.296	5.296 (0.546)	50697	5.00000	4.78964
7 MTBE	73	6.018	6.018 (0.620)	235078	5.00000	4.60951
8 trans-1,2-Dichloroethene	96	6.090	6.090 (0.628)	69251	5.00000	4.61068
9 Hexane	57	6.211	6.211 (0.640)	144716	5.00000	4.70410
10 Halothane	117	6.403	6.403 (0.660)	42251	5.00000	4.83812
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	126229	5.00000	4.59668
12 Ethyl Acetate	70	6.995	6.995 (0.721)	23335	5.00000	4.60349
13 2-Butanone	72	7.017	7.017 (0.723)	55010	5.00000	4.73682
14 cis-1,2-Dichloroethene	96	7.039	7.039 (0.726)	76890	5.00000	4.58430
15 Chloroform-CCC	83	7.279	7.279 (0.750)	145947	5.00000	5.04984
16 Cyclohexane	84	7.443	7.443 (0.767)	164460	5.00000	4.76124

					AMOUN	ITS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
17 1,1,1-Trichloroethane	97	7.443	7.443 (0.767)	130800	5.00000	4.52254
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	109731	5.00000	4.84609
19 Benzene	78	7.800	7.800 (0.804)	319236	5.00000	3.94152
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	137631	5.00000	4.89179
21 Heptane	71	7.855	7.855 (0.810)	98202	5.00000	4.59969
22 Trichloroethene	130	8.326	8.326 (0.858)	85051	5.00000	4.56505
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	111271	5.00000	4.87853
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	41179	5.00000	5.04652
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	344635	5.00000	4.93326
28 Toluene-CCC	92	9.483	9.483 (0.978)	250382	5.00000	4.59950
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	385421	5.00000	
30 1,1,2-Trichloroethane	97	9.892	9.892 (1.020)	84512	5.00000	4.69443
31 Tetrachloroethene	164	9.989	9.989 (1.030)	75807	5.00000	4.67002
32 Chlorobenzene	112	10.833	10.833 (1.117)	288285	5.00000	4.73532
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	155325	5.00000	4.64313
34 m,p-Xylene	106	10.958	10.958 (1.130)	387439	10.0000	9.55976
36 o-Xylene	106	11.343	11.343 (1.169)	197011	5.00000	4.74200
37 Styrene	104	11.343	11.343 (1.169)	253185	5.00000	4.97426
38 a-Pinene	93	11.590	11.590 (1.195)	239689	5.00000	5.03267
39 1,1,2,2-Tetrachloroethane-SP	C 83	11.922	11.922 (1.229)	179438	5.00000	4.75970
40 Propylbenzene	91	11.967	11.967 (1.234)	613720	5.00000	4.83376
41 1,3,5-Trimethylbenzene	105	12.101	12.101 (1.248)	431918	5.00000	4.94449
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	337256	5.00000	4.89354
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	189065	5.00000	4.76506
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	264627	5.00000	4.54930
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	226240	5.00000	4.64999
46 1,2-Dichlorobenzene	146	13.124	13.124 (1.353)	204345	5.00000	4.63452
48 1,2,4-Trichlorobenzene	180	14.654	14.654 (1.511)	160990	5.00000	4.66277
49 Naphthalene	128	14.963	14.963 (1.543)	480790	5.00000	4.89764
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	149983	5.00000	4.32121

Data File: /chem/msd10.i/19May2011.b/10051902sim.d

Report Date: 19-May-2011 16:18

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051902sim.d Calibration Time: 09:35

Lab Smp Id: 1869-179-5 Client Smp ID: CCV

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

			AREA	LIMIT		
COMPOUN	D	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======= 29 2-Fl	========= uorotoluene	====== 385421	192710	770842	385421	0.00
	aorocoraciic	303121	102/10	770012	303121	

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	9.70	9.20	10.20	9.70	====== 0.00
Z9 Z=Fidolocoldene		9.20	10.20	j 9.70	

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Page 1

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 19-MAY-2011 16:00

Lab File ID: 10051916sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Init. Cal. Times: Analysis Type: AIR 12:58 17:43

Lab Sample ID: 1869-179-5 Quant Type: ISTD

Report Date: 19-May-2011 16:18

Method: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

I			MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYP
		=======	=====	=======		======
1 Chloromethane	0.03567	0.02652	0.020	25.63608	40.00000	Averaged
2 Vinyl Chloride	0.13724	0.12578	0.050	8.34832	40.00000	Averaged
3 Ethanol	0.08056	0.07110	0.030	11.74132	30.00000	Averaged
4 1,1-Dichloroethene-CCC	0.15939	0.15071	0.050	5.44329	30.00000	Average
5 Acetone	0.11453	0.10352	0.050	9.61132	30.00000	Average
6 2-Propanol	0.13731	0.12403	0.050	9.67504	30.00000	Average
7 MTBE	0.66159	0.60700	0.050	8.25169	30.00000	Average
8 trans-1,2-Dichloroethene	0.19485	0.18868	0.050	3.16642	30.00000	Average
9 Hexane	0.39909	0.32744	0.020	17.95535	30.00000	Averaged
10 Halothane	0.11329	0.10747	0.050	5.13456	30.00000	Average
11 1,1-Dichloroethane-SPCC	0.35625	0.32247	0.050	9.48172	20.00000	Average
12 Ethyl Acetate	0.06576	0.06004	0.040	8.70022	30.00000	Average
13 2-Butanone	0.15066	0.14281	0.050	5.20578	30.00000	Average
14 cis-1,2-Dichloroethene	0.21759	0.20113	0.050	7.56319	20.00000	Average
15 Chloroform-CCC	0.37493	0.37875	0.050	-1.01911	20.00000	Average
16 Cyclohexane	0.44810	0.43413	0.050	3.11789	30.00000	Average
17 1,1,1-Trichloroethane	0.37520	0.33348	0.050	11.11777	20.00000	Average
18 Carbon Tetrachloride	0.29375	0.28854	0.050	1.77116	20.00000	Average
19 Benzene	1.05071	0.85819	0.050	18.32325	30.00000	Average
20 1,2-Dichloroethane	0.36499	0.36175	0.050	0.88873	20.00000	Average
21 Heptane	0.27697	0.26413	0.050	4.63319	20.00000	Average
22 Trichloroethene	0.24170	0.22379	0.050	7.40619	20.00000	Average
24 Methyl Methacrylate	0.29589	0.29335	0.050	0.85819	30.00000	Average
25 4-Methyl-2-pentanone	0.10586	0.10750	0.050	-1.55168	30.00000	Average
26 Toluene-d8	0.90627	0.89951	0.050	0.74686	30.00000	Average
28 Toluene-CCC	0.70620	0.66344	0.050	6.05502	20.00000	Average
30 1,1,2-Trichloroethane	0.23354	0.22212	0.050	4.89146	20.00000	Average
31 Tetrachloroethene	0.21058	0.19850	0.050	5.73953	20.00000	Average
32 Chlorobenzene	0.78978	0.75948	0.050	3.83672	20.00000	
33 Ethylbenzene-CCC	0.43398	0.40470	0.050	6.74604	20.00000	Average
34 m,p-Xylene	0.52576	0.50355	0.050	4.22582	20.00000	Average
36 o-Xylene	0.53897	0.49588	0.050	7.99450	30.00000	Average
37 Styrene	0.66030	0.67251	0.050	-1.84796	30.00000	Average
38 a-Pinene	0.61785	0.59486	0.050	3.72070	30.00000	Average
39 1,1,2,2-Tetrachloroethane-S	0.48907	0.45591	0.050	6.78082	30.00000	Average
40 Propylbenzene	1.64710	1.51435	N N S N	8.05962	20.00000	

Data File: /chem/msd10.i/19May2011a.b/10051916sim.d

Report Date: 19-May-2011 16:18

Air Toxics Ltd.

Page 2

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 19-MAY-2011 16:00

Lab File ID: 10051916sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Analysis Type: AIR Init. Cal. Times: 12:58 17:43

Lab Sample ID: 1869-179-5 Quant Type: ISTD

Method: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

		1		MIN		XAM	
COMPOUND	RRF	/ AMOUNT	RF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	==== ====	:====== :	========	====	========	=======	=======
41 1,3,5-Trimethylbenzene		1.13322	1.05282	0.050	7.09453	20.00000	Averaged
42 1,2,4-Trimethylbenzene		0.89407	0.87768	0.050	1.83319	20.00000	Averaged
43 R-(+)-Limonene		0.51473	0.46668	0.050	9.33449	30.00000	Averaged
44 1,3-Dichlorobenzene		0.75461	0.67774	0.050	10.18687	30.00000	Averaged
45 1,4-Dichlorobenzene		0.63118	0.58919	0.050	6.65195	30.00000	Averaged
46 1,2-Dichlorobenzene		0.57200	0.52826	0.050	7.64640	30.00000	Averaged
48 1,2,4-Trichlorobenzene		0.44791	0.38727	0.050	13.53892	30.00000	Averaged
49 Naphthalene		1.27351	1.15809	0.050	9.06316	30.00000	Averaged
50 1,2,3-Trichlorobenzene		0.45027	0.36107	0.050	19.81092	30.00000	Averaged
	1	1		I		I	

Data File: /chem/msd10.i/19May2011a.b/10051916sim.d

Report Date: 19-May-2011 16:18

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011a.b/10051916sim.d

Lab Smp Id: 1869-179-5 Client Smp ID: CCV

Inj Date : 19-MAY-2011 16:00

Operator : LZ Inst ID: msd10.i

Smp Info : ;1869-179-5;CCV

Misc Info : ,NOTICS

Comment :

Method : /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 16:18 lzhang Quant Type: ISTD

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve-47.sub

Target Version: 3.50
Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

	Name	Value	Description
_	DF	1.00000	Dilution Factor
	Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

						AMOUN	TS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=====	=======================================	====	==	======	======	======	======
1	Chloromethane	50	3.227	3.227 (0.333)	10427	5.00000	3.71820
2	Vinyl Chloride	62	3.420	3.420 (0.353)	49447	5.00000	4.58258
3	Ethanol	45	4.697	4.697 (0.484)	27951	5.00000	4.41293
4	1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	59248	5.00000	4.72784
5	Acetone	58	5.229	5.229 (0.539)	40695	5.00000	4.51943
6	2-Propanol	45	5.296	5.296 (0.546)	48758	5.00000	4.51625
7	MTBE	73	6.018	6.018 (0.620)	238624	5.00000	4.58742
8	trans-1,2-Dichloroethene	96	6.090	6.090 (0.628)	74173	5.00000	4.84168
9	Hexane	57	6.211	6.211 (0.640)	128721	5.00000	4.10223
10	Halothane	117	6.403	6.403 (0.660)	42250	5.00000	4.74327
11	1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	126768	5.00000	4.52591
12	Ethyl Acetate	70	6.995	6.995 (0.721)	23602	5.00000	4.56499
13	2-Butanone	72	7.017	7.017 (0.723)	56143	5.00000	4.73971
14	cis-1,2-Dichloroethene	96	7.040	7.040 (0.726)	79068	5.00000	4.62184
15	Chloroform-CCC	83	7.279	7.279 (0.750)	148895	5.00000	5.05096
16	Cyclohexane	84	7.444	7.444 (0.767)	170664	5.00000	4.84410

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=======================================	====	==		======	======	======
17 1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	131099	5.00000	4.44411
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	113432	5.00000	4.91144
19 Benzene	78	7.801	7.801 (0.804)	337369	5.00000	4.08384
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	142210	5.00000	4.95556
21 Heptane	71	7.855	7.855 (0.810)	103836	5.00000	4.76834
22 Trichloroethene	130	8.326	8.326 (0.858)	87978	5.00000	4.62969
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	115321	5.00000	4.95709
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	42260	5.00000	5.07758
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	353613	5.00000	4.96266
28 Toluene-CCC	92	9.483	9.483 (0.978)	260810	5.00000	4.69725
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	393119	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.893 (1.020)	87320	5.00000	4.75543
31 Tetrachloroethene	164	9.989	9.989 (1.030)	78033	5.00000	4.71302
32 Chlorobenzene	112	10.834	10.834 (1.117)	298566	5.00000	4.80816
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	159095	5.00000	4.66270
34 m,p-Xylene	106	10.958	10.958 (1.130)	395907	10.0000	9.57742
36 o-Xylene	106	11.344	11.344 (1.169)	194940	5.00000	4.60027
37 Styrene	104	11.344	11.344 (1.169)	264375	5.00000	5.09240
38 a-Pinene	93	11.591	11.591 (1.195)	233852	5.00000	4.81396
39 1,1,2,2-Tetrachloroethane-Si	PC 83	11.922	11.922 (1.229)	179225	5.00000	4.66096
40 Propylbenzene	91	11.967	11.967 (1.234)	595320	5.00000	4.59702
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	413885	5.00000	4.64527
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	345032	5.00000	4.90834
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	183461	5.00000	4.53328
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	266433	5.00000	4.49066
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	231623	5.00000	4.66740
46 1,2-Dichlorobenzene	146	13.125	13.125 (1.353)	207669	5.00000	4.61768
48 1,2,4-Trichlorobenzene	180	14.654	14.654 (1.511)	152242	5.00000	4.32305
49 Naphthalene	128	14.963	14.963 (1.543)	455268	5.00000	4.54684
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	141942	5.00000	4.00945

Data File: /chem/msd10.i/19May2011a.b/10051916sim.d

Report Date: 19-May-2011 16:18

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051916sim.d Calibration Time: 16:00

Lab Smp Id: 1869-179-5 Client Smp ID: CCV

Analysis Type: SV Level: MED

Sample Type: AIR Quant Type: ISTD

Operator: LZ

Method File: /chem/msd10.i/19May2011a.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
29 2-Fluorotoluene	393119	196560	786238	393119	0.00

	RT LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Data File: /chem/msd10.i/20May2011.b/10052002sim.d

Report Date: 20-May-2011 09:31

Air Toxics Ltd.

Page 1

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 20-MAY-2011 09:12

Lab File ID: 10052002sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Analysis Type: AIR Init. Cal. Times: 12:58 17:43

Lab Sample ID: 1869-164C-5 Quant Type: ISTD

Method: /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

				MIN		MAX	
	POUND	RRF / AMOUNT	RF5			%D / %DRIFT	
	Chloromethane	0.03567	0.03091	1	ı	1	ı
2	Vinyl Chloride	0.13724	0.10022	0.050	•		
	Ethanol	0.08056	0.05580	'			,
4	1,1-Dichloroethene-CCC	0.15939	0.14372		•	•	
5	Acetone	0.11453	0.09386	'	•	•	
6	2-Propanol	0.13731	0.11248	'	•	30.00000	
	MTBE	0.66159	0.60597		•	•	
8	trans-1,2-Dichloroethene	0.19485	0.17250	'	•	•	
9	Hexane	0.39909	0.33085	'	•	30.00000	
10	Halothane	0.11329	0.09998	'	•	•	
11	1,1-Dichloroethane-SPCC	0.35625	0.32815	'	•	•	
12	Ethyl Acetate	0.06576	0.05804	0.040	 11.74030	30.00000	. –
	2-Butanone	0.15066	0.13658		•	•	
14	cis-1,2-Dichloroethene	0.21759	0.20385	0.050	6.31359	20.00000	Averaged
15	Chloroform-CCC	0.37493	0.32652	0.050	12.91297	20.00000	Averaged
16	Cyclohexane	0.44810	0.37540	0.050	16.22480	30.00000	Averaged
17	1,1,1-Trichloroethane	0.37520	0.36522	0.050	2.66040	20.00000	Averaged
18	Carbon Tetrachloride	0.29375	0.26806	0.050	8.74602	20.00000	Averaged
19	Benzene	1.05071	0.92168	0.050	12.28023	30.00000	Averaged
20	1,2-Dichloroethane	0.36499	0.29487	0.050	19.21233	20.00000	Averaged
21	Heptane	0.27697	0.23620	0.050	14.71889	20.00000	Averaged
22	Trichloroethene	0.24170	0.23072	0.050	4.53916	20.00000	Averaged
24	Methyl Methacrylate	0.29589	0.28592	0.050	3.36934	30.00000	Averaged
25	4-Methyl-2-pentanone	0.10586	0.10455	0.050	1.23224	30.00000	Averaged
26	Toluene-d8	0.90627	0.89648	0.050	1.08029	30.00000	Averaged
28	Toluene-CCC	0.70620	0.66651	0.050	5.61933	20.00000	Averaged
30	1,1,2-Trichloroethane	0.23354	0.22110	0.050	5.33059	20.00000	Averaged
31	Tetrachloroethene	0.21058	0.20001	0.050	5.01933	20.00000	Averaged
32	Chlorobenzene	0.78978	0.76592	0.050	3.02136	20.00000	Averaged
33	Ethylbenzene-CCC	0.43398	0.40823	0.050	5.93189	20.00000	Averaged
34	m,p-Xylene	0.52576	0.50579	0.050	3.79831	20.00000	Averaged
36	o-Xylene	0.53897	0.51008	0.050	5.35962	30.00000	Averaged
37	Styrene	0.66030	0.64553	0.050	2.23777	30.00000	Averaged
38	a-Pinene	0.61785	0.61742	0.050	0.06945	30.00000	Averaged
39	1,1,2,2-Tetrachloroethane-S	0.48907	0.47861	0.050	2.13838	30.00000	Averaged
4.0	Propylbenzene	1.64710	1.57175	10.050	4.57503	20.00000	Averaged

Page 2

Report Date: 20-May-2011 09:31

Air Toxics Ltd.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: msd10.i Injection Date: 20-MAY-2011 09:12

Lab File ID: 10052002sim.d Init. Cal. Date(s): 17-MAY-2011 17-MAY-2011

Analysis Type: AIR Init. Cal. Times: 12:58 17:43

Lab Sample ID: 1869-164C-5 Quant Type: ISTD

Method: /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

	l			MIN		MAX	
COMPOUND	RRF	/ AMOUNT	RF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	==== ====		=======	=====	=======	=======	======
41 1,3,5-Trimethylbenzene		1.13322	1.10716	0.050	2.29934	20.00000	Averaged
42 1,2,4-Trimethylbenzene		0.89407	0.87240	0.050	2.42309	20.00000	Averaged
43 R-(+)-Limonene		0.51473	0.47148	0.050	8.40251	30.00000	Averaged
44 1,3-Dichlorobenzene		0.75461	0.70239	0.050	6.92061	30.00000	Averaged
45 1,4-Dichlorobenzene		0.63118	0.60990	0.050	3.37078	30.00000	Averaged
46 1,2-Dichlorobenzene		0.57200	0.55018	0.050	3.81452	30.00000	Averaged
47 1,4-Dithiane		++++	0.00494	0.050	++++	30.00000	Averaged
48 1,2,4-Trichlorobenzene		0.44791	0.40753	0.050	9.01416	30.00000	Averaged
49 Naphthalene		1.27351	1.18758	0.050	6.74768	30.00000	Averaged
50 1,2,3-Trichlorobenzene		0.45027	0.38002	0.050	15.60252	30.00000	Averaged
	1		1	I	1		

Page 1 Report Date: 20-May-2011 09:31

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/20May2011.b/10052002sim.d

Lab Smp Id: 1869-164C-5 Client Smp ID: CCV

Inj Date : 20-MAY-2011 09:12

Inst ID: msd10.i Operator : qm

Smp Info : ;1869-164C-5;CCV

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

Meth Date : 20-May-2011 09:31 gmash Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Compound Sublist: all-2cve.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
	====	==	======	======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	9423	5.00000	4.33362
2 Vinyl Chloride	62	3.420	3.420 (0.353)	30548	5.00000	3.65126
3 Ethanol	45	4.696	4.696 (0.484)	17008	5.00000	3.46316
4 1,1-Dichloroethene-CCC	96	5.117	5.117 (0.527)	43808	5.00000	4.50849
5 Acetone	58	5.229	5.229 (0.539)	28610	5.00000	4.09779
6 2-Propanol	45	5.296	5.296 (0.546)	34285	5.00000	4.09567
7 MTBE	73	5.994	5.994 (0.618)	184709	5.00000	4.57964
8 trans-1,2-Dichloroethene	96	6.042	6.042 (0.623)	52581	5.00000	4.42658
9 Hexane	57	6.187	6.187 (0.638)	100849	5.00000	4.14507
10 Halothane	117	6.376	6.376 (0.657)	30475	5.00000	4.41249
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	100026	5.00000	4.60573
12 Ethyl Acetate	70	6.972	6.972 (0.719)	17691	5.00000	4.41298
13 2-Butanone	72	6.995	6.995 (0.721)	41631	5.00000	4.53275
14 cis-1,2-Dichloroethene	96	7.017	7.017 (0.723)	62136	5.00000	4.68432
15 Chloroform-CCC	83	7.279	7.279 (0.750)	99527	5.00000	4.35435
16 Cyclohexane	84	7.444	7.444 (0.767)	114426	5.00000	4.18876

Report Date: 20-May-2011 09:31

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug/mL)
=======================================	====	==	======	======	======	======
17 1,1,1-Trichloroethane	97	7.444	7.444 (0.767)	111323	5.00000	4.86698
18 Carbon Tetrachloride	117	7.553	7.553 (0.779)	81707	5.00000	4.56270
19 Benzene	78	7.773	7.773 (0.801)	280941	5.00000	4.38599
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	89880	5.00000	4.03938
21 Heptane	71	7.828	7.828 (0.807)	71997	5.00000	4.26406
22 Trichloroethene	130	8.326	8.326 (0.858)	70328	5.00000	4.77304
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	87152	5.00000	4.83153
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	31869	5.00000	4.93839
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	273261	5.00000	4.94598
28 Toluene-CCC	92	9.483	9.483 (0.978)	203163	5.00000	4.71903
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	304814	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.893 (1.020)	67393	5.00000	4.73347
31 Tetrachloroethene	164	9.989	9.989 (1.030)	60967	5.00000	4.74903
32 Chlorobenzene	112	10.834	10.834 (1.117)	233463	5.00000	4.84893
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	124435	5.00000	4.70340
34 m,p-Xylene	106	10.958	10.958 (1.130)	308346	10.0000	9.62017
36 o-Xylene	106	11.344	11.344 (1.169)	155480	5.00000	4.73202
37 Styrene	104	11.344	11.344 (1.169)	196766	5.00000	4.88811
38 a-Pinene	93	11.591	11.591 (1.195)	188199	5.00000	4.99653
39 1,1,2,2-Tetrachloroethane	-SPC 83	11.922	11.922 (1.229)	145887	5.00000	4.89308
40 Propylbenzene	91	11.967	11.967 (1.234)	479090	5.00000	4.77125
41 1,3,5-Trimethylbenzene	105	12.102	12.102 (1.248)	337479	5.00000	4.88503
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	265921	5.00000	4.87884
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	143713	5.00000	4.57987
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	214098	5.00000	4.65397
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	185907	5.00000	4.83146
46 1,2-Dichlorobenzene	146	13.125	13.125 (1.353)	167702	5.00000	4.80927
48 1,2,4-Trichlorobenzene	180	14.654	14.654 (1.511)	124222	5.00000	4.54929
49 Naphthalene	128	14.963	14.963 (1.543)	361991	5.00000	4.66262
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	115834	5.00000	4.21987

Data File: /chem/msd10.i/20May2011.b/10052002sim.d

Report Date: 20-May-2011 09:31

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 20-MAY-2011

Lab File ID: 10052002sim.d Calibration Time: 09:12

Lab Smp Id: 1869-164C-5 Client Smp ID: CCV

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: gm

Method File: /chem/msd10.i/20May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

	AREA LIMIT				
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	304814	152407	609628	304814	0.00

		RT I	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
========= 29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Client Sample ID: LCS Lab ID#: 1105031A-16A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051906sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 12:17 PM

Date of Extraction: 5/19/11

Compound	%Recovery
Chloromethane	241 Q
Vinyl Chloride	80
1,1-Dichloroethene	96
Acetone	76
Methyl tert-butyl ether	105
trans-1,2-Dichloroethene	98
Hexane	120
1,1-Dichloroethane	104
2-Butanone (Methyl Ethyl Ketone)	96
cis-1,2-Dichloroethene	97
Chloroform	108
Cyclohexane	111
1,1,1-Trichloroethane	107
Carbon Tetrachloride	102
Benzene	87
1,2-Dichloroethane	100
Heptane	107
Trichloroethene	108
4-Methyl-2-pentanone	116
Toluene	106
1,1,2-Trichloroethane	106
Tetrachloroethene	105
Chlorobenzene	100
Ethyl Benzene	108
m,p-Xylene	108
o-Xylene	96
Styrene	86
1,1,2,2-Tetrachloroethane	98
Propylbenzene	113
1,3,5-Trimethylbenzene	110
1,2,4-Trimethylbenzene	106
1,3-Dichlorobenzene	87
1,4-Dichlorobenzene	88
1,2-Dichlorobenzene	83
Naphthalene	36

Q = Exceeds Quality Control limits.

Container Type: WMS-SE

Client Sample ID: LCS Lab ID#: 1105031A-16A

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051906sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 12:17 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	102	70-130

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Report Date: 19-May-2011 12:39

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A Client Smp ID: LCS

Level: MED Operator: LZ
Data Type: MS DATA SampleType: LCS
SpikeList File: LCS.spk Quant Type: ISTD

Sublist File: all-2cve.sub

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		CONC	CONC	%	
SPIKE COMPOUN	ן	ADDED	RECOVERED	RECOVERED	LIMITS
		ug	ug 		
1 Chlorom	ethane	5.00000	12.0341	240.68*	50-140
2 Vinyl C	hloride	5.00000	3.99021	79.80	50-140
3 Ethanol		5.00000	2.33653	46.73*	50-130
4 1,1-Dic	hloroethene	5.00000	4.77910	95.58	70-130
5 Acetone	: [5.00000	3.80800	76.16	70-130
6 2-Propa	nol	5.00000	8.31225	166.24*	50-150
7 MTBE	İ	5.00000	5.27059	105.41	70-130
8 trans-1	,2-Dichloro	5.00000	4.92013	98.40	70-130
9 Hexane	İ	5.00000	6.02838	120.57	70-130
10 Halotha	ne	5.00000	4.96910	99.38	70-130
11 1,1-Dic	hloroethane	5.00000	5.19222	103.84	70-130
12 Ethyl A	cetate	5.00000	4.97411	99.48	70-130
13 2-Butan	ione	5.00000	4.77953	95.59	70-130
14 cis-1,2	-Dichloroet	5.00000	4.86630	97.33	70-130
15 Chlorof	orm-CCC	5.00000	5.38049	107.61	70-130
16 Cyclohe	xane	5.00000	5.55940	111.19	70-130
17 1,1,1-T	richloroeth	5.00000	5.36984	107.40	70-130
	Tetrachlori	5.00000	5.12822	102.56	70-130
19 Benzene	: İ	5.00000	4.35753	87.15	70-130
20 1,2-Dic	hloroethane	5.00000	4.97641	99.53	70-130
21 Heptane	: İ	5.00000	5.36767	107.35	70-130
22 Trichlo	roethene	5.00000	5.39266	107.85	70-130
24 Methyl	Methacrylat	5.00000	5.45475	109.10	70-130
25 4-Methy	1-2-pentano	5.00000	5.78345	115.67	70-130
28 Toluene	-CCC	5.00000	5.29676	105.94	70-130
30 1,1,2-T	richloroeth	5.00000	5.29753	105.95	70-130
31 Tetrach	loroethene	5.00000	5.23904	104.78	70-130
32 Chlorob	enzene	5.00000	5.01499	100.30	70-130
33 Ethylbe	nzene-CCC	5.00000	5.42438	108.49	70-130
34 m,p-Xyl		10.0000	10.7550	107.55	70-130
36 o-Xylen	ie İ	5.00000	4.77739	95.55	70-130
37 Styrene		5.00000	4.30795	86.16	70-130
38 a-Pinen		5.00000	6.08952	121.79	70-130

Data File: /chem/msd10.i/19May2011.b/10051906sim.d Report Date: 19-May-2011 12:39

Page 2

	CONC	CONC	%	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ug	ug 		
39 1,1,2,2-Tetrachlor	5.00000	4.89852	97.97	70-130
40 Propylbenzene	5.00000	5.64192	112.84	70-130
41 1,3,5-Trimethylben	5.00000	5.50128	110.03	70-130
42 1,2,4-Trimethylben	5.00000	5.31339	106.27	70-130
43 R-(+)-Limonene	5.00000	5.84456	116.89	70-130
44 1,3-Dichlorobenzen	5.00000	4.37152	87.43	50-120
45 1,4-Dichlorobenzen	5.00000	4.42591	88.52	50-120
46 1,2-Dichlorobenzen	5.00000	4.14921	82.98	50-130
48 1,2,4-Trichloroben	5.00000	3.47994	69.60	40-140
49 Naphthalene	5.00000	1.80813	36.16	5-80
50 1,2,3-Trichloroben	5.00000	2.89813	57.96	40-140
		<u> </u>	<u> </u>	İ

SURROGATE COMPOUND	CONC	CONC	%	
	ADDED	RECOVERED	RECOVERED	LIMITS
	ug	ug		
 \$ 26 Toluene-d8	5.00000	5.10172	102.03	 70-130

Report Date: 19-May-2011 12:39

Air Toxics Ltd.

VOCs in CS2 Extract by GC/MS

Page 1

Data file : /chem/msd10.i/19May2011.b/10051906sim.d

Client Smp ID: LCS Lab Smp Id: 1105031A

Inj Date : 19-MAY-2011 12:17

Inst ID: msd10.i Operator : LZ

Smp Info : ;1105351;LCS

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 09:57 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 6 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all-2cve.sub

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					CONCENTRATIONS	
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	27848	12.0341	12.0341(R)
2 Vinyl Chloride	62	3.420	3.420 (0.353)	35529	3.99021	3.99021
3 Ethanol	45	4.696	4.696 (0.484)	12212	2.33653	2.33653(R)
4 1,1-Dichloroethene-CCC	96	5.139	5.116 (0.530)	49421	4.77910	4.77910
5 Acetone	58	5.229	5.229 (0.539)	28295	3.80800	3.80800
6 2-Propanol	45	5.296	5.296 (0.546)	74053	8.31225	8.31225(R)
7 MTBE	73	6.018	6.018 (0.620)	226236	5.27059	5.27059
8 trans-1,2-Dichloroethene	96	6.066	6.090 (0.625)	62199	4.92013	4.92013
9 Hexane	57	6.211	6.211 (0.640)	156094	6.02838	6.02838
10 Halothane	117	6.403	6.403 (0.660)	36524	4.96910	4.96910
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	120009	5.19222	5.19222
12 Ethyl Acetate	70	6.995	6.995 (0.721)	21221	4.97411	4.97411
13 2-Butanone	72	7.017	7.017 (0.723)	46718	4.77953	4.77953
14 cis-1,2-Dichloroethene	96	7.017	7.039 (0.723)	68697	4.86630	4.86630
15 Chloroform-CCC	83	7.279	7.279 (0.750)	130883	5.38049	5.38049
16 Cyclohexane	84	7.444	7.443 (0.767)	161627	5.55940	5.55940

Report Date: 19-May-2011 12:39

					CONCENTRATIONS	
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==		======	======	======
17 1,1,1-Trichloroethane	97	7.444	7.443 (0.767)	130717	5.36984	5.36984
18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	97735	5.12822	5.12822
19 Benzene	78	7.773	7.800 (0.801)	297054	4.35753	4.35753
20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	117845	4.97641	4.97641
21 Heptane	71	7.855	7.855 (0.810)	96455	5.36767	5.36767
22 Trichloroethene	130	8.326	8.326 (0.858)	84563	5.39266	5.39266
24 Methyl Methacrylate	69	8.567	8.567 (0.883)	104716	5.45475	5.45475
25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	39720	5.78345	5.78345
\$ 26 Toluene-d8	98	9.435	9.435 (0.973)	299977	5.10172	5.10172
28 Toluene-CCC	92	9.483	9.483 (0.978)	242688	5.29677	5.29676
* 29 2-Fluorotoluene	109	9.700	9.700 (1.000)	324401	5.00000	
30 1,1,2-Trichloroethane	97	9.893	9.892 (1.020)	80270	5.29753	5.29753
31 Tetrachloroethene	164	9.989	9.989 (1.030)	71579	5.23904	5.23904
32 Chlorobenzene	112	10.834	10.833 (1.117)	256974	5.01499	5.01499
33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	152731	5.42438	5.42438
34 m,p-Xylene	106	10.958	10.958 (1.130)	366871	10.7550	10.7550
36 o-Xylene	106	11.343	11.343 (1.169)	167057	4.77739	4.77739
37 Styrene	104	11.343	11.343 (1.169)	184555	4.30795	4.30795
38 a-Pinene	93	11.591	11.590 (1.195)	244106	6.08953	6.08952
39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	155434	4.89852	4.89852
40 Propylbenzene	91	11.967	11.967 (1.234)	602919	5.64192	5.64192
41 1,3,5-Trimethylbenzene	105	12.102	12.101 (1.248)	404473	5.50128	5.50128
42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	308215	5.31339	5.31339
43 R-(+)-Limonene	68	12.594	12.594 (1.298)	195183	5.84456	5.84456
44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	214027	4.37152	4.37152
45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	181245	4.42591	4.42591
46 1,2-Dichlorobenzene	146	13.125	13.124 (1.353)	153982	4.14921	4.14921
48 1,2,4-Trichlorobenzene	180	14.654	14.654 (1.511)	101128	3.47994	3.47994
49 Naphthalene	128	14.963	14.963 (1.543)	149398	1.80813	1.80813
50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	84664	2.89813	2.89813

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Report Date: 19-May-2011 12:39

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051906sim.d Calibration Time: 09:35

Lab Smp Id: 1105031A Client Smp ID: LCS

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	385421	192710	770842	324401	===== -15.83

		RT LIMIT			
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
======================================	======	=======	========	=======	=====
29 2-Fluorotoluene	9.70	9.20	10.20	9.70	0.00
		·			

AREA UPPER LIMIT = +100% of internal standard area.

AREA LOWER LIMIT = - 50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

2 Vinyl Chloride Concentration: 3.99021 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

3 Ethanol Concentration: 2.33653 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

4 1,1-Dichloroethene-CCC Concentration: 4.77910 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

5 Acetone Concentration: 3,80800 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

6 2-Propanol Concentration: 8.31225 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

7 MTBE Concentration: 5.27059 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

8 trans-1,2-Dichloroethene Concentration: 4.92013 ug

Column diameter: 0.25

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

9 Hexane Concentration: 6.02838 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

10 Halothane Concentration: 4.96910 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

13 2-Butanone Concentration: 4.77953 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

14 cis-1,2-Dichloroethene Concentration: 4.86630 ug

Operator: LZ

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

15 Chloroform-CCC Concentration: 5.38049 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

16 Cyclohexane Concentration: 5.55940 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

17 1,1,1-Trichloroethane Concentration: 5.36984 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

18 Carbon Tetrachloride Concentration: 5.12822 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

19 Benzene Concentration: 4,35753 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

20 1,2-Dichloroethane Concentration: 4.97641 ug

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

21 Heptane Concentration: 5.36767 ug

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

22 Trichloroethene Concentration: 5.39266 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

24 Hatharl Hatharmalata Canasatustiant E 45475 au

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

25 4-Methyl-2-pentanone Concentration: 5.78345 ug

Operator: LZ

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

28 Toluene-CCC Concentration: 5.29676 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

30 1,1,2-Trichloroethane Concentration: 5,29753 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

31 Tetrachloroethene Concentration: 5.23904 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

32 Chlorobenzene Concentration: 5.01499 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

33 Ethylbenzene-CCC Concentration: 5.42438 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

34 m,p-Xylene Concentration: 10.7550 ug

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

36 o-Xylene Concentration: 4.77739 ug

Operator: LZ

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

37 Styrene Concentration: 4.30795 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

38 a-Pinene Concentration: 6.08952 ug

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

40 Propylbenzene Concentration: 5.64192 ug

Data File: /chem/msd10.i/19May2011.b/10051906sim.d

Date : 19-MAY-2011 12:17

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

41 1,3,5-Trimethylbenzene

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

43 R-(+)-Limonene Concentration: 5.84456 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

44 1,3-Dichlorobenzene Concentration: 4.37152 ug

Client ID: LCS Instrument: msd10.i

Sample Info: ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

45 1,4-Dichlorobenzene Concentration: 4.42591 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

46 1,2-Dichlorobenzene Concentration: 4.14921 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

47 1,4-Dithiane

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

48 1,2,4-Trichlorobenzene Concentration: 3,47994 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

49 Naphthalene Concentration: 1.80813 ug

Client ID: LCS Instrument: msd10.i

Sample Info; ;1105351;LCS

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

50 1,2,3-Trichlorobenzene Concentration: 2.89813 ug

Client Sample ID: LCSD Lab ID#: 1105031A-16AA

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051907sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 12:39 PM

Date of Extraction: 5/19/11

Compound	%Recovery
Chloromethane	220 Q
Vinyl Chloride	77
1,1-Dichloroethene	98
Acetone	77
Methyl tert-butyl ether	104
trans-1,2-Dichloroethene	104
Hexane	92
1,1-Dichloroethane	98
2-Butanone (Methyl Ethyl Ketone)	96
cis-1,2-Dichloroethene	101
Chloroform	112
Cyclohexane	116
1,1,1-Trichloroethane	99
Carbon Tetrachloride	111
Benzene	87
1,2-Dichloroethane	106
Heptane	111
Trichloroethene	108
4-Methyl-2-pentanone	114
Toluene	104
1,1,2-Trichloroethane	106
Tetrachloroethene	105
Chlorobenzene	99
Ethyl Benzene	108
m,p-Xylene	107
o-Xylene	94
Styrene	86
1,1,2,2-Tetrachloroethane	96
Propylbenzene	112
1,3,5-Trimethylbenzene	110
1,2,4-Trimethylbenzene	106
1,3-Dichlorobenzene	85
1,4-Dichlorobenzene	86
1,2-Dichlorobenzene	80
Naphthalene	31

Q = Exceeds Quality Control limits.

Container Type: WMS-SE

Client Sample ID: LCSD Lab ID#: 1105031A-16AA

VOC BY PASSIVE SAMPLER - GC/MS

File Name: 10051907sim Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/19/11 12:39 PM

Date of Extraction: 5/19/11

Surrogates	%Recovery	Method Limits
Toluene-d8	103	70-130

Data File: /chem/msd10.i/19May2011.b/10051907sim.d

Report Date: 19-May-2011 13:06

Air Toxics Ltd.

Page 1

RECOVERY REPORT

Client Name: Client SDG: 19May2011

Sample Matrix: GAS Fraction: SV

Lab Smp Id: 1105031A Client Smp ID: LCSD

Level: MED Operator: LZ
Data Type: MS DATA SampleType: LCSD
SpikeList File: LCS.spk Quant Type: ISTD

Sublist File: all-2cve.sub

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

 SPIKE	COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	 LIMITS
ļ	İ	ug	ug		<u> </u>
1	Chloromethane	5.00000	11.0050	220.10*	50-140
2	Vinyl Chloride	5.00000	3.84842	76.97	50-140
] 3	Ethanol	5.00000	2.27578	45.52*	50-130
4	1,1-Dichloroethene	5.00000	4.87776	97.56	70-130
5	Acetone	5.00000	3.84946	76.99	70-130
6	2-Propanol	5.00000	8.41139	168.23*	50-150
7	MTBE	5.00000	5.22099	104.42	70-130
8	trans-1,2-Dichloro	5.00000	5.22623	104.52	70-130
9	Hexane	5.00000	4.59587	91.92	70-130
10	Halothane	5.00000	5.12554	102.51	70-130
11	1,1-Dichloroethane	5.00000	4.88813	97.76	70-130
12	Ethyl Acetate	5.00000	5.20792	104.16	70-130
13	2-Butanone	5.00000	4.81599	96.32	70-130
14	cis-1,2-Dichloroet	5.00000	5.05722	101.14	70-130
15	Chloroform-CCC	5.00000	5.58572	111.71	70-130
16	Cyclohexane	5.00000	5.77948	115.59	70-130
17	1,1,1-Trichloroeth	5.00000	4.95783	99.16	70-130
18	Carbon Tetrachlori	5.00000	5.53286	110.66	70-130
19	Benzene	5.00000	4.34510	86.90	70-130
20	1,2-Dichloroethane	5.00000	5.32632	106.53	70-130
21	Heptane	5.00000	5.56046	111.21	70-130
22	Trichloroethene	5.00000	5.39057	107.81	70-130
24	Methyl Methacrylat	5.00000	5.48622	109.72	70-130
1	4-Methyl-2-pentano	5.00000	5.71596	114.32	70-130
1	Toluene-CCC	5.00000	5.21258	104.25	70-130
	1,1,2-Trichloroeth	5.00000	5.31262	106.25	70-130
31	Tetrachloroethene	5.00000	5.25323	105.06	70-130
1	Chlorobenzene	5.00000	4.94251	98.85	70-130
33	Ethylbenzene-CCC	5.00000	5.41352	108.27	70-130
34	m,p-Xylene	10.0000	10.6789	106.79	70-130
	o-Xylene	5.00000	4.72527	94.51	70-130
1	Styrene	5.00000	4.30404	86.08	70-130
38	a-Pinene	5.00000	6.06200	121.24	70-130

Data File: /chem/msd10.i/19May2011.b/10051907sim.d

Report Date: 19-May-2011 13:06

	CONC	CONC	%	
SPIKE COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	ug	ug I		
39 1,1,2,2-Tetrachlor	5.00000	4.82391	96.48	70-130
40 Propylbenzene	5.00000	5.61931	112.39	70-130
41 1,3,5-Trimethylben	5.00000	5.51539	110.31	70-130
42 1,2,4-Trimethylben	5.00000	5.30268	106.05	70-130
43 R-(+)-Limonene	5.00000	5.76673	115.33	70-130
44 1,3-Dichlorobenzen	5.00000	4.25483	85.10	50-120
45 1,4-Dichlorobenzen	5.00000	4.29043	85.81	50-120
46 1,2-Dichlorobenzen	5.00000	4.01774	80.35	50-130
48 1,2,4-Trichloroben	5.00000	3.44800	68.96	40-140
49 Naphthalene	5.00000	1.55298	31.06	5-80
50 1,2,3-Trichloroben	5.00000	2.81748	56.35	40-140

SURROGATE COMPOUND	CONC ADDED	CONC RECOVERED		 LIMITS
	ug 	ug 		
\$ 26 Toluene-d8	5.00000	5.15867	103.17	70-130

Page 2

Report Date: 19-May-2011 13:06

Air Toxics Ltd.

Page 1

VOCs in CS2 Extract by GC/MS

Data file : /chem/msd10.i/19May2011.b/10051907sim.d

Client Smp ID: LCSD Lab Smp Id: 1105031A

Inj Date : 19-MAY-2011 12:39

Inst ID: msd10.i Operator : LZ

Smp Info : ;1105031A;LCSD

Misc Info : ,NOTICS

Comment

Method : /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Meth Date: 19-May-2011 09:57 lzhang Quant Type: ISTD

Cal Date : 17-MAY-2011 15:03 Cal File: 10051710sim.d

Als bottle: 6 QC Sample: LCSD

Dil Factor: 1.00000

Compound Sublist: all-2cve.sub Integrator: HP RTE

Target Version: 3.50 Processing Host: eeyore

Concentration Formula: Amt * DF * Vt * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Vt	1.00000	Volume of final extract (mL)

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS
	QUANT SIG				ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
	====	==	======	======	======	======
1 Chloromethane	50	3.227	3.227 (0.333)	28719	11.0050	11.0050(R)
2 Vinyl Chloride	62	3.420	3.420 (0.353)	38643	3.84842	3.84842
3 Ethanol	45	4.696	4.696 (0.484)	13414	2.27578	2.27578(R)
4 1,1-Dichloroethene-CCC	96	5.116	5.116 (0.527)	56884	4.87776	4.87776
5 Acetone	58	5.229	5.229 (0.539)	32256	3.84946	3.84946
6 2-Propanol	45	5.296	5.296 (0.546)	84508	8.41139	8.41139(R)
7 MTBE	73	6.042	6.018 (0.623)	252732	5.22099	5.22099
8 trans-1,2-Dichloroethene	96	6.090	6.090 (0.628)	74507	5.22623	5.22623
9 Hexane	57	6.211	6.211 (0.640)	134202	4.59587	4.59587
10 Halothane	117	6.403	6.403 (0.660)	42486	5.12554	5.12554
11 1,1-Dichloroethane-SPCC	63	6.486	6.486 (0.669)	127411	4.88813	4.88813
12 Ethyl Acetate	70	6.995	6.995 (0.721)	25057	5.20792	5.20792
13 2-Butanone	72	7.017	7.017 (0.723)	53087	4.81599	4.81599
14 cis-1,2-Dichloroethene	96	7.039	7.039 (0.726)	80511	5.05722	5.05722
15 Chloroform-CCC	83	7.279	7.279 (0.750)	153231	5.58572	5.58572
16 Cyclohexane	84	7.443	7.443 (0.767)	189487	5.77948	5.77948

Report Date: 19-May-2011 13:06

						CONCENTRA	ATIONS
		QUANT SIG				ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/mL)	(ug)
= :		====	==	======	======	======	======
	17 1,1,1-Trichloroethane	97	7.443	7.443 (0.767)	136103	4.95783	4.95783
	18 Carbon Tetrachloride	117	7.581	7.581 (0.782)	118915	5.53287	5.53286
	19 Benzene	78	7.800	7.800 (0.804)	334040	4.34510	4.34510
	20 1,2-Dichloroethane	62	7.855	7.855 (0.810)	142241	5.32632	5.32632
	21 Heptane	71	7.855	7.855 (0.810)	112681	5.56046	5.56046
	22 Trichloroethene	130	8.326	8.326 (0.858)	95327	5.39057	5.39057
	24 Methyl Methacrylate	69	8.567	8.567 (0.883)	118772	5.48622	5.48622
	25 4-Methyl-2-pentanone	85	9.290	9.290 (0.958)	44271	5.71596	5.71596
\$	26 Toluene-d8	98	9.435	9.435 (0.973)	342069	5.15867	5.15867
	28 Toluene-CCC	92	9.483	9.483 (0.978)	269337	5.21259	5.21258
*	29 2-Fluorotoluene	109	9.700	9.700 (1.000)	365836	5.00000	
	30 1,1,2-Trichloroethane	97	9.892	9.892 (1.020)	90781	5.31262	5.31262
	31 Tetrachloroethene	164	9.989	9.989 (1.030)	80940	5.25323	5.25323
	32 Chlorobenzene	112	10.833	10.833 (1.117)	285608	4.94251	4.94251
	33 Ethylbenzene-CCC	106	10.875	10.875 (1.121)	171894	5.41352	5.41352
	34 m,p-Xylene	106	10.958	10.958 (1.130)	410804	10.6789	10.6789
	36 o-Xylene	106	11.343	11.343 (1.169)	186340	4.72527	4.72527
	37 Styrene	104	11.343	11.343 (1.169)	207939	4.30405	4.30404
	38 a-Pinene	93	11.590	11.590 (1.195)	274041	6.06200	6.06200
	39 1,1,2,2-Tetrachloroethane-SPC	83	11.922	11.922 (1.229)	172617	4.82391	4.82391
	40 Propylbenzene	91	11.967	11.967 (1.234)	677204	5.61931	5.61931
	41 1,3,5-Trimethylbenzene	105	12.101	12.101 (1.248)	457306	5.51539	5.51539
	42 1,2,4-Trimethylbenzene	105	12.401	12.401 (1.279)	346882	5.30268	5.30268
	43 R-(+)-Limonene	68	12.594	12.594 (1.298)	217181	5.76673	5.76673
	44 1,3-Dichlorobenzene	146	12.715	12.715 (1.311)	234921	4.25483	4.25483
	45 1,4-Dichlorobenzene	146	12.787	12.787 (1.318)	198139	4.29043	4.29043
	46 1,2-Dichlorobenzene	146	13.124	13.124 (1.353)	168148	4.01774	4.01774
	48 1,2,4-Trichlorobenzene	180	14.654	14.654 (1.511)	112998	3.44800	3.44800
	49 Naphthalene	128	14.963	14.963 (1.543)	144705	1.55298	1.55298
	50 1,2,3-Trichlorobenzene	180	15.247	15.247 (1.572)	92821	2.81748	2.81748

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: /chem/msd10.i/19May2011.b/10051907sim.d

Report Date: 19-May-2011 13:06

Air Toxics Ltd.

Page 1

INTERNAL STANDARD COMPOUNDS AREA AND RT SUMMARY

Instrument ID: msd10.i Calibration Date: 19-MAY-2011

Lab File ID: 10051907sim.d Calibration Time: 09:35
Lab Smp Id: 1105031A Client Smp ID: LCSD

Analysis Type: SV Level: MED

Quant Type: ISTD Sample Type: AIR

Operator: LZ

Method File: /chem/msd10.i/19May2011.b/1011r0517.m/1011r0517b.m

Misc Info: ,NOTICS

		AREA	LIMIT		
COMPOUND	STANDARD	LOWER	UPPER	SAMPLE	%DIFF
=====================================	385421	192710	770842	365836	====== 5.08
					İ

	RT I	JIMIT		
STANDARD	LOWER	UPPER	SAMPLE	%DIFF
	=======	10.00	========	======
9.70	9.20	10.20	9.70	0.00
	 STANDARD 9.70	STANDARD LOWER	====== =====	STANDARD LOWER UPPER SAMPLE

AREA UPPER LIMIT = +100% of internal standard area. AREA LOWER LIMIT = -50% of internal standard area.

RT UPPER LIMIT = + 0.50 minutes of internal standard RT.

RT LOWER LIMIT = - 0.50 minutes of internal standard RT.

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

1 Chloromethane Concentration: 11,0050 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

3 Ethanol Concentration: 2.27578 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

4 1,1-Dichloroethene-CCC Concentration: 4.87776 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

5 Acetone Concentration: 3.84946 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

6 2-Propanol Concentration: 8.41139 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

7 MTBE Concentration: 5.22099 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

8 trans-1,2-Dichloroethene Concentration: 5.22623 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Column phase: DB-5.625

Volume Injected (uL): 1.0 Operator: LZ

9 Hexane Concentration: 4.59587 ug

Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

10 Halothane Concentration: 5.12554 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

11 1,1-Dichloroethane-SPCC Concentration: 4.88813 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

13 2-Butanone Concentration: 4.81599 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

16 Cyclohexane Concentration: 5.77948 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

17 1,1,1-Trichloroethane Concentration: 4.95783 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

19 Benzene Concentration: 4.34510 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

20 1,2-Dichloroethane Concentration: 5.32632 ug

Operator: LZ

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

21 Heptane Concentration: 5.56046 ug

Operator: LZ

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD Volume Injected (uL): 1.0

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

25 4-Methyl-2-pentanone Concentration: 5.71596 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Column phase: DB-5.625 Column diameter: 0.25

28 Toluene-CCC Concentration: 5,21258 ug

Operator: LZ

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

30 1,1,2-Trichloroethane

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

31 Tetrachloroethene Concentration: 5.25323 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

32 Chlorobenzene Concentration: 4.94251 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

33 Ethylbenzene-CCC Concentration: 5.41352 ug

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

34 m,p-Xylene Concentration: 10.6789 ug

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

36 o-Xylene Concentration: 4.72527 ug

Operator: LZ

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD Volume Injected (uL): 1.0

Column phase: DB-5,625 Column diameter: 0,25

37 Styrene Concentration: 4.30404 ug

Operator: LZ

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

38 a-Pinene Concentration: 6.06200 ug

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

39 1,1,2,2-Tetrachloroethane-SPC

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

40 Propylbenzene Concentration: 5.61931 ug

Date : 19-MAY-2011 12:39

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

41 1,3,5-Trimethylbenzene

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

42 1,2,4-Trimethylbenzene

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

43 R-(+)-Limonene Concentration: 5.76673 ug

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

44 1,3-Dichlorobenzene

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

45 1,4-Dichlorobenzene

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

46 1,2-Dichlorobenzene

Client ID: LCSD Instrument: msd10.i

Sample Info: ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5.625 Column diameter: 0.25

47 1,4-Dithiane

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

48 1,2,4-Trichlorobenzene Concentration: 3.44800 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

49 Naphthalene Concentration: 1.55298 ug

Client ID: LCSD Instrument: msd10.i

Sample Info; ;1105031A;LCSD

Volume Injected (uL): 1.0 Operator: LZ

Column phase: DB-5,625 Column diameter: 0,25

50 1,2,3-Trichlorobenzene Concentration: 2,81748 ug

ATL Application Sample Preparation logbook

Logbook#:2158

Rev. 12/10

Date

Spike Witness Ca	Date	Prepared	5119111				N2	Zero A					: 50335 (012711) : 711211)
S + Surr ID 18 5 12 1 1 1 1 1 1 1 1													
ATL Clients Sample Weight Final Spike Amount		J.F				•						10	
Fraction I.D. # or Cartridge Volume Amount (i)			,				10	Surr	110 <u>(867-7</u>	21 F-	125	Ехр.:	11/01/1)
10 10 10 10 10 10 10 10		Fraction	I.D. #	0	r Cartridge		V	olume		(4)() E)	+Surr	C	comments
10 10 10 10 10 10 10 10	1104	614 11105170 cb BIL	NA	WM:	S-TD 1103-1	CB-R-	16 1	.0	Aنم			Fab 1	afe 31171
10 4 6 14 - 01A 2011 - 05 (Howder pipe) MO7 N/h 09/01 10 5 0 24A - 01A 144 - 01B 144 - 01B 145 - 04B 145		Lc5	Ÿ.					1	10*/5				
10 5 0 314 - 01A		LCSD				-	18		1 V				
10 5 0 314 - 01A	1100	4 614-01A	2011-05 (Header p	ipe)	Mo	7			NB		Ì		941061
10 5 0 0 0 0 1						· 1							. [
1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; ST1911 St1921 S		5031A-01A	11911 1A - SL118		SE MO	59							
1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; ST1911 St1921 S		-ozax	PSS-SLU8	WMS-	AP-1702 SE -4/32	11 //							
-04k					Mb	8							
-07A PSS 084 VSI 111 AP-1702n -4/22"-5 Feb Date 071 -08A		-04A	1A-SL084		, W	79					1		
Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 5 (1911) 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.		-05A			W.	73							
Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 5 (1911) 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.		_67A	PSSSL 084 1 L'571	H11	AP-1707 - 4/72"	211							
Procedure for WMS Extraction Procedure for WMS Extraction		-08A	HPV -084-1		M	12							
Procedure for WMS Extraction Procedure for WMS Extraction Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 571911 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.		-de A	PSS-5L022		AP-170 -4 132	7.2							
Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.			HPV-022-1									Fab D	ate 09106 659
Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.			Trip Blank Al								,	,	
Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.	11050	-14A	1 B)	11/6		טפ		-		_ !		Fab Da Lof 7	4 - 659
Procedure for WMS Extraction 1. De-Crimp and place sorbent contains carbopark B into the 2mL sample vial; 2. Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.				WA	<u> </u>					•		1012	9 65.75
Add 40uL of a internal standard and surrogate STD mix (1869-121F-125) to all samples, lab Blank, LCS and LCSD 3. Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD 4. Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.		Proc			* <u>-</u>	itoin	0.00-	ho	or anase	rb 74	7 v 511	9111	130V
Add spike standard (1869-98A-500, 10uL; 1476-1961, 5uL) to LCS and LCSD Add 1mL Carbon Disulfide to all samples, Lab Blank, LCS and LCSD, cap the vial and shake for 30 minutes.		<u> </u>	samples, lab Bla	nterna ınk, L	al standard CS and LC	and SD	surr	ogate S	TD mix (1	869-1	21F-12	25) to al	
——————————————————————————————————————			Add spike stand	ard (1	869-98A-5	500.	10ul	L; 1476	5-1961, 5uI	L) to L	CS and	d LCSD	
			vial and shake for	n Dis	ulfide to al	l sar	nple	s, Lab 1	Blank, LCS	S and 1	LCSD,	cap the	
			- mary 20 them.			-							

BFB Injection Date:	5119111
BFB Injection Time:	09 (5
BFB File ID:	10051901

IS/S Std.#: 186°	3-121F	-125	Exp. Date: 4/01/11	
2-Fluorotoluene		38542		

Verified CCV IS vs ICAL mid-point (-50% to +100% D) ω

Calculation Check:

μg/L of compound

$$= \frac{\text{Area}_{\text{Sample}}}{\text{Area}_{\text{IS}}} \times \frac{\text{Conc.}_{\text{IS}}}{\text{RRF}} \times \text{DF} = \frac{(6576\%)}{(2838\%)} \times \frac{(5.\%)}{(0.24170)} \times \boxed{= \frac{4.745}{}}$$

File ID: 1005190497M

Compound: TCZ

Initials:

initials

Reported Result 4.745

File# Sample / Client Name Time Vial# DF Date Analyzed Initial Comments Analyzed 10051901 1476-1562-BFB 1,00 5/19/11 0915 1869-179-5 ccv 2 0935 3 X 1104614/1105170-605 1110 25 L 1132 -Lcs 1154 6 1105031A - LCS 1217 - LCSD 1239 1105351 - LCS 1301 - LCSD 1324 10 -Lab BIK 1346 11 1105 031A - LabBIK 1409 12 Napht 1104614/1105170-Lab BIL 1431 13 Napht 1105031 A-Lab BIK 1454

Signed

9-119111 Date

Ly Reviewed 20 | 11 Date

Revision 12/2010

BFB Injection Date: 5 119 111

BFB Injection Time: 1545

BFB File ID: 10051915

IS/S Std.#: 1869-1217-125 Exp. Date: 11/0//1/ 2-Fluorotoluene sim 393119

Verified CCV IS vs ICAL mid-point (-50% to +100% D) _____

Calculation Check: µg/L of compound

L 5/2011

 $\frac{\text{Area}_{\text{Sample}}}{\text{Area}_{\text{IS}}} \times \frac{\text{Conc.}_{\text{IS}}}{\text{RRF}} \times \text{DF} = \frac{(780^{233})}{(393119)} \times \frac{(5.0)}{(0.21058)} \times \frac{1}{1} = \frac{4.713}{1}$

File ID: 1005 19 16 Sim
Compound: PCE

Initials:

Reported Result 4,7/3

	Use	File#		File #		File #		Sample	/ Client Name	Vial #	DF		Date Analyzed	Time Analyzed	Initial	Comments
1	V	1005191	5	1476-	1562 - BFB	L	10	70	5/19/11	1545	W					
2	· /		16	1869-17	19-5 cal	2				1600						
3	_χ_		17	es	iz Blank	3				1623						
4	X		18			4				1647						
5	\checkmark		19			4				1709		·				
6	/		20	11046	14-01A					1747						
7	✓		21		70 - 01A	6				1809						
8			22 US19		31A - 01 A	7				1831						
9			3223		-03A	8				1854						
10	\mathcal{L}		24		-04A	9				1916						
11	/		25		-13A	10				1938						
12	1		26		-14A	()				2001						
13			27		-02A	12				2023						

Signed

5119111 Date

Reviewed

5 w/ll
Date

Revision 12/2010

14	1	10051928	1105	0314-05A	13	1.00	5119111	2045	<i>□</i>			
15		29		-074	14	1		2108				
16		30		-08A	15			2130			W/113411.1	
17		31		-10 A	16			2153				
18		32		- 11A	17			2215				
19		33	1105	351 - 01 A	<u>'8</u>			2237				
20		34		-024	19			2300				
21	<i>\(\)</i>	35		-03A	20			2322	4			
22		36		-04 A	21			2344				
23		37		-05A	.27		5/20/11	0007				
24	1	\$ 8		-06A	23			0029				
25		39		-07A	24			005.				
26				· \								
27												
28												
29												
30						<u> </u>						
31												
32												
33										,		
34			•									
35									-			
36									- 1011			
37					1.51	1912011	778					

-	 	
	*A	

Signed

5119111 Date Reviewed

 $\frac{\sqrt{2o/t}}{\text{Date}}$

Revision 12/2010

BFB Injection Date:	5 (20/11	
BFB Injection Time:	0856	
BFB File ID:	10052001	

IS/S Std.#: /	865 - 121F - 125 Exp. Date:	11/0//11
	1e Sim: 364814	

Verified CCV IS vs ICAL mid-point (-50% to +100% D)_ &

Calculation Check:

μg/L of compound

$$\frac{\text{Area}_{\text{Sample}}}{\text{Area}_{\text{IS}}} \times \frac{\text{Conc.}_{\text{IS}}}{\text{RRF}} \times \text{I}$$

$$\frac{\text{Conc.}_{IS}}{\text{RRF}} \times \text{DF} = \frac{(67524)}{(422965)} \times \frac{(5.0)}{(6.37493)} \times 2$$

$$\frac{)}{)} \times \frac{(5.0)}{(6.37463)}$$

$$(0)$$
 \times (2) $=$ (0)

File ID: 100520035114 Compound:

Initials:

Reported Result 10, 56

:	Use	File#	Sample / Client Name	Vial #	DF	Date Analyzed	Time Analyzed	Initial	Comments
1		10052001	1476-1562-BFB	ľ	1.00	5/20/11	6856	ki	·
2		2	1869-1648-5 COV	2			6912) .	
3		3	11052911366-605	3			1027		
4	V	4	- LCSD	4			1053		
5	V	5-	-Lab Blx	_ 5			1117		
6	V	6	1105291 - 01A	6			1159		
7	\checkmark	. 7	1 - 02A	7			122		
8	X	8	1105031A-07A	8	100		1245		over diluted.
9	✓	9	1105-291 - 03A	9	100		1307	·	
10	V	10	1 - 044	ĺσ			1330		
11	V	11	1105031A - 07A	B	5.00		1352		
12	V	12	1105291-05A	11	1.00		1415		
13	✓	13	1 - 06A	12)		1437		

5 (20[11 Date

Revision 12/2010

Data File: /var/chem/msd10.i/17May2011.b/10051701.d

Report Date: 17-May-2011 10:32

Air Toxics Ltd.

Page 1

Data file : /var/chem/msd10.i/17May2011.b/10051701.d

Lab Smp Id: Client Smp ID: BFB

Inj Date : 17-MAY-2011 10:30

Operator : LZ Inst ID: msd10.i

Smp Info : ;1476-1562;BFB

Misc Info : Comment :

Method : /var/chem/msd10.i/17May2011.b/bfbr.m

Meth Date: 17-May-2011 10:32 Quant Type: ESTD

Cal Date : Cal File:

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: WATER

Processing Host: eeyore

Concentration Formula: Amt * DF * Uf * Vf * Vi * CpndVariable

Name	Value	Description
DF Uf Vf Vi	1.00000 1.00000 1.00000 1.00000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume

Cpnd Variable Local Compound Variable

CONCENTRA	ATIONS
ON-COL	FINAT.

					ON-COL	LINAL			
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	RANGE	RATIO
==	=======================================		====	======	======	======	=====	=====	=====
1 b	fb					CAS #:	460-00-	-4	
6.440	6.490	-0.050	95	99373		1	L00.00-	100.00	100.00
6.440	6.490	-0.050	50	21378			15.00-	40.00	21.51
6.440	6.490	-0.050	75	53474			30.00-	60.00	53.81
6.440	6.490	-0.050	96	6569			5.00-	9.00	6.61
6.440	6.490	-0.050	173	364			0.00-	2.00	0.54
6.440	6.490	-0.050	174	67101			50.00-	100.00	67.52
6.440	6.490	-0.050	175	4752			5.00-	9.00	7.08
6.440	6.490	-0.050	176	64618			95.00-	101.00	96.30
6.440	6.490	-0.050	177	4327			5.00-	9.00	6.70

Data File: /var/chem/msd10.i/17May2011.b/10051701.d

Date : 17-MAY-2011 10:30

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

1 bfb

m/e	ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE	
1		 I		+ I
1 95	Base Peak, 100% relative abundance	1	100,00	ı
1 50	15.00 - 40.00% of mass 95	1	21,51	I
1 75	30.00 - 60.00% of mass 95	1	53,81	I
1 96	5.00 - 9.00% of mass 95	1	6,61	I
1 173	Less than 2.00% of mass 174	1	0,37 (0,54)	I
1 174	50.00 - 100.00% of mass 95	1	67,52	I
l 175	5.00 - 9.00% of mass 174	1	4,78 (7,08)	I
1 176	95.00 - 101.00% of mass 174	1	65,03 (96,30)	I
1 177	5.00 - 9.00% of mass 176	1	4,35 (6,70)	ı

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Data File: 10051701.d

Spectrum: Avg. Scans 360-362 (6.44), Background Scan 349

Location of Maximum: 95.00 Number of points: 74

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
1	36,00	1004	1	58,00	176	1	80,00	957	1	128,00	344	-+
1	37,00	5627	ı	60,00	919	ı	81.00	3458	ı	129,00	160	1
1	38.00	4986	I	61.00	5136	I	82,00	780	ı	130,00	316	١
1	39,00	2099	ı	62,00	5119	I	85.00	165	I	131,00	52	1
1	40,00	54	I	63,00	3948	I	87,00	4090	I	135,00	112	ı
+-			+-			+-			+			-+
Ι	41,00	376	I	64,00	389	I	88,00	3850	I	137,00	176	1
ı	42,00	58	I	67,00	283	I	91,00	420	I	141,00	891	ı
ı	43,00	674	I	68,00	10654	I	92.00	2894	I	142,00	57	ı
1	44.00	733	I	69,00	10997	I	93.00	4104	I	143,00	907	1
ı	45,00	1028	I	70,00	986	I	94.00	12164	I	148,00	204	ı
+-			-+-			+-			+			-+
1	47,00	1258	I	71.00	275	I	95.00	99368	I	155.00	202	ı
ı	48,00	674	I	72,00	527	I	96.00	6569	I	157,00	118	ı
1	49,00	4594	I	73,00	4759	I	97,00	178	I	173,00	364	1
ı	50,00	21376	I	74.00	18200	I	104,00	458	I	174.00	67096	1
1	51,00	6614	I	75,00	53472	I	106,00	377	I	175,00	4752	1
+-			+-			+-			+			-+
1	52,00	274	I	76.00	4643	I	116,00	364	I	176,00	64616	١
1	55,00	427	I	77,00	577	I	117,00	603	I	177,00	4327	1
I	56,00	1938	I	78,00	348	I	118,00	349	I			١
I	57,00	3753	I	79,00	3320	I	119,00	500	I			١
+-			-+-			+-			+			-+

Data File: /var/chem/msd10.i/18May2011.b/10051801.d

Report Date: 18-May-2011 09:24

Page 1

Air Toxics Ltd.

Data file : /var/chem/msd10.i/18May2011.b/10051801.d

Lab Smp Id: Client Smp ID: BFB

Inj Date : 18-MAY-2011 09:21

Operator : qm Inst ID: msd10.i

Smp Info : ;1476-1562;BFB

Misc Info : Comment :

Method : /var/chem/msd10.i/18May2011.b/bfbr.m

Meth Date: 18-May-2011 09:24 Quant Type: ESTD

Cal Date : Cal File:

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: WATER

Processing Host: eeyore

Concentration Formula: Amt * DF * Uf * Vf * Vi * CpndVariable

Name	Value	Description
DF	1.00000	Dilution Factor
Uf	1.00000	ng unit correction factor
Vf	1.00000	Volumetric correction factor
Vi	1.00000	Injection Volume

Cpnd Variable Local Compound Variable

CONCENTRA	ATIONS
ON-COL	FINAT.

					ON-COL	FINAL				
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	RANGE	RATIO	
==	=====	======	====	======	======	======	=====	=====	=====	
1 bf	Eb					CAS #:	460-00-	4		
6.440	6.490	-0.050	95	91074		1	.00.00-	100.00	100.00	
6.440	6.490	-0.050	50	19818			15.00-	40.00	21.76	
6.440	6.490	-0.050	75	48933			30.00-	60.00	53.73	
6.440	6.490	-0.050	96	5911			5.00-	9.00	6.49	
6.440	6.490	-0.050	173	348			0.00-	2.00	0.56	
6.440	6.490	-0.050	174	61738			50.00-	100.00	67.79	
6.440	6.490	-0.050	175	4481			5.00-	9.00	7.26	
6.440	6.490	-0.050	176	59309			95.00-	101.00	96.07	
6.440	6.490	-0.050	177	3873			5.00-	9.00	6.53	

Data File: /var/chem/msd10.i/18May2011.b/10051801.d

Date : 18-MAY-2011 09:21

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: gm

Column phase: Column diameter: 2.00

Date : 18-MAY-2011 09:21

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: gm

Column phase: Column diameter: 2.00

1 bfb

m/e I(N ABUNDANCE CRITERIA		ABUNDANCE	
I		I		t I
95 Base F	eak, 100% relative abundance	1	100,00	- 1
I 50 I 15.00	- 40.00% of mass 95	1	21,76	- 1
I 75 I 30₊00	- 60.00% of mass 95	1	53,73	- 1
96 5.00	- 9.00% of mass 95	1	6,49	- 1
173 Less t	han 2.00% of mass 174	1	0,38 (0,56)	- 1
174 50.00	- 100.00% of mass 95	1	67.79	- 1
175 5.00	- 9.00% of mass 174	1	4,92 (7,26)	- 1
176 95.00	- 101.00% of mass 174	1	65,12 (96,07)	- 1
177 5.00	- 9.00% of mass 176	1	4,25 (6,53)	- 1

Date : 18-MAY-2011 09:21

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB Volume Injected (uL): 1.0

Operator: gm

Column phase: Column diameter: 2.00

Data File: 10051801.d

Spectrum: Avg. Scans 360-362 (6.44), Background Scan 349

Location of Maximum: 95.00 Number of points: 72

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
+-			-+-			+-			+			-+
ı	36,00	928	I	58,00	170	I	80,00	907	I	119,00	472	I
ı	37.00	5277	I	60.00	913	I	81.00	3074	I	128.00	310	I
Ι	38,00	4591	1	61.00	4765	I	82,00	658	١	129,00	51	I
1	39,00	1903	ı	62,00	4709	I	85,00	171	١	130,00	280	I
I	40.00	146	I	63,00	3700	I	87,00	3770	I	135,00	105	I
+-			-+-			+-			+			-+
ı	41.00	468	I	64.00	324	I	88,00	3541	I	137,00	51	I
ı	42,00	66	I	67,00	239	I	91,00	389	I	141.00	787	I
ı	43.00	811	I	68,00	10081	I	92,00	2668	I	143.00	910	I
1	44.00	703	1	69,00	10256	I	93,00	3891	١	148,00	135	I
I	45,00	982	I	70,00	960	I	94.00	10987	I	155,00	144	I
+-			-+-			+-			+			-+
Ι	47,00	1107	1	71.00	332	I	95,00	91072	I	173,00	348	I
1	48,00	607	1	72,00	548	I	96,00	5911	١	174,00	61736	I
Τ	49,00	4330	1	73,00	4392	I	97,00	110	I	175.00	4481	1
Τ	50,00	19816	ı	74.00	16872	I	104.00	472	I	176.00	59304	ı
I	51,00	6240	I	75,00	48928	I	105.00	108	I	177.00	3873	I
+-			-+-			+-			+			-+
ı	52,00	271	I	76.00	4235	I	106,00	398	I			I
I	55,00	408	I	77.00	585	I	116.00	317	I			I
Ι	56,00	1735	ı	78,00	381	I	117,00	564	I			I
I	57,00	3588	I	79,00	3010	I	118,00	302	I			I
+-			-+-			+-			+			-+

Data File: /var/chem/msd10.i/19May2011.b/10051901.d

Report Date: 19-May-2011 09:20

Air Toxics Ltd.

Page 1

Data file : /var/chem/msd10.i/19May2011.b/10051901.d

Client Smp ID: BFB Lab Smp Id:

Inj Date : 19-MAY-2011 09:15

Inst ID: msd10.i Operator : LZ

Smp Info : ;1476-1562;BFB

Misc Info : Comment :

Method : /var/chem/msd10.i/19May2011.b/bfbr.m

Meth Date : 19-May-2011 09:20 Quant Type: ESTD

Cal Date : Cal File:

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Sample Matrix: WATER Target Version: 3.50

Processing Host: eeyore

Concentration Formula: Amt * DF * Uf * Vf * Vi * CpndVariable

Name	Value	Description
DF Uf Vf Vi	1.00000 1.00000 1.00000 1.00000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume

Cpnd Variable Local Compound Variable

CONCENTRA	ATIONS
ON-COL	FINAT.

					ON-COT	LINAL				
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	RANGE	RATIO	
==	=======================================	======	====	======	======	======	=====	=====	=====	
1 b	ofb					CAS #:	460-00-	-4		
6.433	6.490	-0.057	95	106152		1	00.00-	100.00	100.00	
6.433	6.490	-0.057	50	22549			15.00-	40.00	21.24	
6.433	6.490	-0.057	75	56405			30.00-	60.00	53.14	
6.433	6.490	-0.057	96	7106			5.00-	9.00	6.69	
6.433	6.490	-0.057	173	420			0.00-	2.00	0.57	
6.433	6.490	-0.057	174	73584			50.00-	100.00	69.32	
6.433	6.490	-0.057	175	5336			5.00-	9.00	7.25	
6.433	6.490	-0.057	176	71533			95.00-	101.00	97.21	
6.433	6.490	-0.057	177	4691			5.00-	9.00	6.56	

Data File: /var/chem/msd10.i/19May2011.b/10051901.d

Date : 19-MAY-2011 09:15

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

1 bfb

m/e ION ABUNDANCE CRITERIA	ABUNDANCE	
		-+ I
95 Base Peak, 100% relative abundance	1 100.00	ı
50 15.00 - 40.00% of mass 95	l 21,24	ı
75 30.00 - 60.00% of mass 95	I 53₊14	1
96 5.00 - 9.00% of mass 95	I 6₊69	1
173 Less than 2.00% of mass 174	I 0,40 (0,57)	1
174 50.00 - 100.00% of mass 95	I 69₊32	1
175 5.00 - 9.00% of mass 174	l 5,03 (7,25)	1
176 95.00 - 101.00% of mass 174	l 67,39 (97,21)	1
177 5.00 - 9.00% of mass 176	I 4,42 (6,56)	1

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Data File: 10051901.d

Spectrum: Avg. Scans 358-360 (6.43), Background Scan 345

Location of Maximum: 95.00 Number of points: 76

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
+-	36.00	1048	-+- I	60.00	988	+· 1	82.00	786	-+·	129.00	118	+ ا
i	37.00	5816		61.00	5463		83.00			130.00	327	
ï	38.00	5288		62.00	5297		85.00			135.00	172	
i	39.00	2114		63.00		ï	87.00			137.00	127	
	40.00	142		64.00	358		88.00			141.00	932	
<u>'</u>	40,00	142		64.00	300	'	00,00	4300	'	141,00	932	
1	41.00	610	1	67.00	280	Τ.	91.00	430	1	142.00	50	1
i	42.00	133		68.00	11464		92.00			143.00	1010	
i	43.00	1081		69.00	11804		93.00			146.00	51	
÷	44.00	781		70.00	1108		94.00			148.00	226 1	
	45.00	1102		71.00	468		95.00			155.00	207	
	45,00			71,00	460	'	95,00	106102	'	199,00	207	
-	47 ^^		•			+-	96 00	74.64		457 ^^	400	
!	47.00	1236		72,00	601					157.00		
	48,00	673		73,00	5076		97,00			173,00	420	
ı	49,00	4819		74.00	19128		104,00	436	I	174,00	73584	
I	50,00	22544	I	75,00	56400	I	105,00	122	I	175.00	5336	i
I	51,00	6838	I	76.00	4806	I	106.00	450	I	176.00	71528	ĺ
+-			-+-			+-			+			F
Ι	52,00	293	I	77,00	648	I	116,00	396	١	177,00	4691	I
1	55,00	497	1	78.00	375	I	117.00	605	١		1	I
I	56,00	2036	1	79,00	3392	ı	118,00	375	ı		1	I
I	57,00	4386	ı	80,00	1008	ı	119,00	547	ı		1	I
ı	58,00	189	I	81.00	3538	I	128,00	335	I		1	I
+-			-+-			+-			+			۲

Data File: /var/chem/msd10.i/19May2011.b/10051915.d

Report Date: 19-May-2011 15:47

Page 1

Air Toxics Ltd.

Data file : /var/chem/msd10.i/19May2011.b/10051915.d

Lab Smp Id: Client Smp ID: BFB

Inj Date : 19-MAY-2011 15:45

Operator : LZ Inst ID: msd10.i

Smp Info : ;1476-1562;BFB

Misc Info : Comment :

Method : /var/chem/msd10.i/19May2011.b/bfbr.m

Meth Date: 19-May-2011 09:20 Quant Type: ESTD

Cal Date : Cal File:

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: WATER

Processing Host: eeyore

Concentration Formula: Amt * DF * Uf * Vf * Vi * CpndVariable

Name	Value	Description
DF Uf Vf Vi	1.00000 1.00000 1.00000 1.00000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume

Cpnd Variable Local Compound Variable

CONCENTRA	ATIONS
ON-COL	FINAT.

						ON-COL	LINAL				
	RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	range	RATIO	
	==	=====	======	====	======	======	======	=====		=====	
	1 bf	Eb					CAS #:	460-00-	-4		
6	5.436	6.490	-0.054	95	72106		1	100.00-	100.00	100.00	
6	5.436	6.490	-0.054	50	15150			15.00-	40.00	21.01	
6	5.436	6.490	-0.054	75	38056			30.00-	60.00	52.78	
6	5.436	6.490	-0.054	96	4747			5.00-	9.00	6.58	
6	5.436	6.490	-0.054	173	267			0.00-	2.00	0.53	
6	5.436	6.490	-0.054	174	50373			50.00-	100.00	69.86	
6	5.436	6.490	-0.054	175	3454			5.00-	9.00	6.86	
6	5.436	6.490	-0.054	176	49130			95.00-	101.00	97.53	
6	5.436	6.490	-0.054	177	3274			5.00-	9.00	6.66	

Data File: /var/chem/msd10.i/19May2011.b/10051915.d

Date : 19-MAY-2011 15:45

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

1 bfb

m/e	ION ABUNDANCE CRITERIA		% RELATIVE ABUNDANCE
95 I	Base Peak, 100% relative abundance	i	100.00
I 50 I	15.00 - 40.00% of mass 95	1	21,01
1 75 1	30.00 - 60.00% of mass 95	1	52,78
1 96 1	5.00 - 9.00% of mass 95	1	6,58
I 173 I	Less than 2.00% of mass 174	1	0,37 (0,53)
174 I	50.00 - 100.00% of mass 95	1	69,86
l 175 l	5.00 - 9.00% of mass 174	1	4,79 (6,86)
I 176 I	95.00 - 101.00% of mass 174	1	68,14 (97,53)
I 177 I	5.00 - 9.00% of mass 176	1	4,54 (6,66)

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: LZ

Column phase: Column diameter: 2.00

Data File: 10051915.d

Spectrum: Avg. Scans 359-361 (6.44), Background Scan 347

Location of Maximum: 95.00 Number of points: 67

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
+-			-+-			+-			+			-+
I	36,00	695	I	56,00	1456	I	77,00	445	I	106,00	299	I
1	37,00	4030	1	57,00	2950	١	78.00	310	I	116.00	254	1
1	38,00	3519	1	60,00	649	I	79,00	2353	I	117,00	429	1
1	39,00	1452	1	61.00	3651	I	80,00	686	I	118,00	240	1
I	40,00	187	1	62,00	3563	ı	81.00	2396	I	119,00	360	ı
+-			-+-			+-			-+			-+
I	41,00	401	1	63.00	2787	ı	82,00	583	I	128,00	239	1
I	42,00	72	1	64.00	242	ı	85,00	236	I	130,00	252	1
I	43,00	797	1	67.00	193	ı	87.00	2873	ı	141.00	638	1
I	44.00	511	1	68,00	7799	ı	88,00	2841	ı	143,00	683	1
I	45,00	746	1	69,00	7976	ı	91.00	274	ı	148,00	59	1
+-			-+-			+-			-+			-+
1	47.00	926	1	70.00	724	ı	92,00	2046	I	155.00	103	1
I	48,00	430	1	71,00	346	ı	93,00	3004	ı	173,00	267	1
I	49,00	3344	1	72,00	398	ı	94.00	8601	ı	174.00	50368	1
I	50,00	15150	ı	73,00	3320	ı	95.00	72104	ı	175.00	3454	ı
I	51,00	4673	1	74.00	13103	ı	96.00	4747	ı	176.00	49128	1
+-			-+-			+-			-+			-+
I	52,00	195	ı	75,00	38056	ı	97,00	53	ı	177,00	3274	ı
I	55,00	344	ı	76.00	3305	ı	104.00	297	ı			1
+-			-+-			+-			-+			-+

Data File: /var/chem/msd10.i/20May2011.b/10052001.d

Report Date: 20-May-2011 08:59

Air Toxics Ltd.

Page 1

Data file : /var/chem/msd10.i/20May2011.b/10052001.d

Lab Smp Id: Client Smp ID: BFB

Inj Date : 20-MAY-2011 08:56

Operator : gm Inst ID: msd10.i

Smp Info : ;1476-1562;BFB

Misc Info : Comment :

Method : /var/chem/msd10.i/20May2011.b/bfbr.m

Meth Date: 20-May-2011 08:59 Quant Type: ESTD

Cal Date : Cal File:

Als bottle: 1 QC Sample: BFB

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 3.50 Sample Matrix: WATER

Processing Host: eeyore

Concentration Formula: Amt * DF * Uf * Vf * Vi * CpndVariable

Name	Value	Description
DF Uf Vf Vi	1.00000 1.00000 1.00000 1.00000	Dilution Factor ng unit correction factor Volumetric correction factor Injection Volume

Cpnd Variable Local Compound Variable

CONCENTRATIONS	2

					ON-COL	FINAL			
RT	EXP RT	DLT RT	MASS	RESPONSE	(ug/L)	(ug/L)	TARGET	r RANGE	RATIO
==	=======================================	======	====	======	======	======	=====	=====	=====
1 bf	b					CAS #:	460-00-	-4	
6.440	6.490	-0.050	95	52173		1	00.00-	100.00	100.00
6.440	6.490	-0.050	50	11205			15.00-	40.00	21.48
6.440	6.490	-0.050	75	27834			30.00-	60.00	53.35
6.440	6.490	-0.050	96	3441			5.00-	9.00	6.60
6.440	6.490	-0.050	173	196			0.00-	2.00	0.55
6.440	6.490	-0.050	174	35880			50.00-	100.00	68.77
6.440	6.490	-0.050	175	2620			5.00-	9.00	7.30
6.440	6.490	-0.050	176	34181			95.00-	101.00	95.26
6.440	6.490	-0.050	177	2376			5.00-	9.00	6.95

Data File: /var/chem/msd10.i/20May2011.b/10052001.d

Date : 20-MAY-2011 08:56

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: gm

Column phase: Column diameter: 2.00

Date : 20-MAY-2011 08:56

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB

Volume Injected (uL): 1.0 Operator: gm

Column phase: Column diameter: 2.00

1 bfb

m/e ION ABUNDANCE CRITERIA	. F	ABUNDANCE	
++			-+ I
95 Base Peak, 100% relative abur	idance I 1	100,00	1
50 15.00 - 40.00% of mass 95	1	21,48	I
75 30.00 - 60.00% of mass 95	1	53,35	ı
96 5.00 - 9.00% of mass 95	1	6.60	1
173 Less than	1	0,38 (0,55)	I
174 50.00 - 100.00% of mass 95	1	68,77	I
175 5.00 - 9.00% of mass 174	1	5,02 (7,30)	1
176 95.00 - 101.00% of mass 174	1	65,51 (95,26)	1
177 5.00 - 9.00% of mass 176	1	4,55 (6,95)	I

Date : 20-MAY-2011 08:56

Client ID: BFB Instrument: msd10.i

Sample Info: ;1476-1562;BFB Volume Injected (uL): 1.0

Operator: gm

Column phase: Column diameter: 2.00

Data File: 10052001.d

Spectrum: Avg. Scans 360-362 (6.44), Background Scan 352

Location of Maximum: 95.00 Number of points: 62

	m/z	Y		m/z	Υ		m/z	Y		m/z	Υ	
+-	36.00	557	-+- I	56.00	991	+- 	76.00	2463	-+ 	106.00	195	·+
ı	37.00	2979	ı	57,00	1914	ı	77.00	289	ı	116.00	187	ı
ı	38,00	2641	1	60,00	511	ı	78,00	206	ı	117,00	307	ı
I	39,00	1031	ı	61,00	2628	ı	79,00	1763	ı	118,00	138	ı
I	40.00	52	1	62,00	2689	ı	80,00	483	I	119,00	277	I
+-			-+-			+-			-+			-+
I	41,00	135	1	63,00	2059	I	81,00	1756	I	128,00	108	I
I	43,00	226	1	64.00	189	I	82,00	438	I	130,00	154	I
I	44.00	392	1	67.00	52	I	87.00	2202	I	141.00	441	I
I	45,00	489	1	68,00	5766	I	88,00	2060	I	143,00	492	I
I	47,00	608	1	69,00	5850	I	91.00	222	I	173,00	196	I
+-			-+-			+-			-+			-+
I	48,00	361	1	70.00	487	I	92,00	1499	I	174.00	35880	I
1	49,00	2355	1	71.00	70	I	93.00	2191	I	175,00	2620	١
I	50,00	11205	1	72,00	280	I	94.00	6311	I	176,00	34176	١
I	51.00	3341	1	73.00	2389	I	95.00	52168	I	177.00	2376	I
I	52,00	57	1	74.00	9547	I	96.00	3441	I			I
+-			-+-			+-			-+			-+
I	55,00	233	I	75,00	27832	I	104.00	208	I			I
+-			-+-			+-			-+			-+

Shipping/ Receiving Documents

Air Toxics Ltd. Sample Receipt Confirmation Cover Page

Thank you for choosing Air Toxics Ltd. We have received your samples and have listed any Sample Receipt Descrepancies below.

In order to expedite analysis and reporting, please review the attached information for For corrections ca **Ausha Scott at 916-985-1000**

ATL will proceed with the analysis as specified on the Chain of Custody and Sample Receipt Summary page.

Please note: The Sample Receipt Confirmation, including the total workorder charge, is subject to change upon secondary review. Our aim is to provide a confirmation to you in a timely manner. Sample Receipt Discrepancies, if any, may not include discrepancies regarding sample receipt pressure(s). Additionally, the Chain of Custody (COC) will be provided with the final report.

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hottline (800) 467-4922.

(916) 985-1000 FAX (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630**

Page __

of 2

Use Only	-	Relin	Relin	Relin	JOH.	\$	08/A	074	かり	(SA)	AHO	YEG)	MO	OIA	Lab J.D	Phone Sin	Addre	Collec	Project Manager
		quish	quish	Relinquish		P	1	حد	7	P.	,		4		ē	<u>J</u>	ss 🔀	ted by	t Man
Heder	Shipper Name	Relinquished by: (signature)	Relinquished by: (signature)	Relinquished by: (signature)	85-56-80	To 4 - 0.05	12 -084	PSS - SL084	三 三 三 京	= 2- =3	14-5684	1A - SLC.	P55 - 5111	1A- 5L1		622 - 2230	Address & Regard, Low	Ĭ	nager Truck
	Air Bill #	Date/Time	Date/Time	Date/Time 5/2/11 Am	Copy in the second seco	am 3				Z. Company	Con- canadari	622	o's	14	Field Sample I.D. (Location)	EX 245 Fax 5/6	Level Sing City Gent / John	Denvi Control	With the second
	ŧ	Received by: (signature)	Received by: (signature)	Received by: (signature)	NOTE OF THE PARTY	153 KB - 1870	さーかと	A-17011-1/23	1103-0324	T with S	7 - 20	700	AP-17-201 4/2"-1	1 - Kg	Sampler #	820-3157	St		
Z	Temp (°C)			1	CHIMA	11/2/F	11/25/11	11/11/11/11	04/28/11	Cii/28/11	7 12	911	2/15	1/41/40	Date of Deployment (mm/dd/yy)	·	ate NTZip NK SKZ		
Crook) Co	Date/Time	Date/Time	Date/Time 5/3/11 0930	20.25	8	17:06	2325	5	640	22:40	28:20		ST.	Time of Deployment (hr:min)	Project Name	Project #Ap	P.O. # 1700	Project Info:
	Condition			30	C4/25/))	CH/20/11	c=1/29/11	04/29/11	OM128/111	04/28/11	228	04/28/11	01/28/11	04/28/11	Date of Retrieval (mm/dd/yy)		5	0386 2	į
Yes No	Oustody Seals Intact?		Notes:	Sample Site	48	Z.	235	 	0.70	2120	628	->	5	16:03	Time of Retrieval (hr:min)			\(\times\)	
o (None	als Intact?			Sample Site Air Temperature:					すること					dialion	Analysis Requested	specify	Rush	Normal	Turn Around Time:
1105	Work Order#			ıre:		Analysis [\$ X		å-					☐ mg/m3	∑ ppov M jug/m3		Reporting Units:
	er #				무										Indoor A Outdoor				
c b					H								<u> </u>	10	Workpla		/lonitori	ng	
g-													K		Other ()

PASSIVE SAMPLE COLLECTION

CHAIN-OF-CUSTODY RECORD

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

(916) 985-1000 FAX (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630**

Page 🙎

) of [,

Use Only	Lab	Relinquish	Relinquish	Relinquishe				E A	- H w	֧֧֓֞֞֞֞֞֞֞֞֞֟֞֝֞֟֞֝֓֞֟֞֝֓֓֓֞֟֞֝֓֓֓֟֝֟֝֟֝֟֝֟ ֓֓֞֓֞֓֞֓֓֞֓֞֓	3	Lab I.D.	Phone	Address	Collected by: (Print and Sign)	Project Manager
e dex	Snipper Name	Relinquished by: (signature) Dat	Relinquished by: (signature) Dat	Relinquished by: (signature) Dat			デス される ファファファ	せったいと			12/035/	Field Sample I.D. (Location)			(Print and Sign)	ger
	Air Bill #	Date/Time	क	Date/Time S[2] (1			3	プミ	* (S	2 (56-052-5)	- Andrews). (Location)	Fax	City	Email	
		Received by: (signature)	Received by: (signature)	Received by: (signature)				11-50	AD LUCE LANGE	1103 CB-R-5	7	Sampler #		StateZip		, puri di tima
2 5	Temp (°C)		4	37				Malikawaggor	Sand	11/20/120	11/55/10	Date of Deployment (mm/dd/yy)				
Chad	X	Date/Time	Date/Time	Date/Time C 5/3/u c				- prosenses.	- this particular.	I.	I S	Time of Deployment (hr:min)	Project Name_	Project #	P.O. #	Project Info:
	Condition			930				lidery daventers	€ CONTRACTOR		4/29/11	Date of Retrieval (mm/dd/yy)			7638K	
Yes	Custody S		Notes:	Sample Sit				Mary Control of	"Killingstor"	1643	E N	Time of Retrieval (hr : min)				
No (None)	ত			Sample Site Air Temperature:								Analysis Requested	specify	Rush	Normal	Turn Around Time:
	Work Order#			ure:						A REAL YORK			L mg/ms	₩ µg/m3	≥ ppmv	Reporting Units:
	→ er #					0						Indoor Outdoo		^		
											1	Workp			oring	
						Ō			0	Ľ	C	Other)

SAMPLE RECEIPT SUMMARY

WORKORDER 1105031A

 Client
 Phone
 Date Promised:
 05/17/11

 Mr. Dave Bertrand
 519-822-2230
 Date Completed:
 5/23/11

 GeoSyntec Consultants
 130 Research Lane
 Fax
 PO#:
 TR0386 2.3

 Suite 2
 519-822-3151
 Project#:
 AF 59

 Sales Rep:
 TL
 Total \$: \$ 1,650.00

 Logged By:
 BSW

Fraction	Sample #	Analysis	Collected	Amount\$
01A	IA-SL118	Passive S.E. WMS	4/28/2011	\$150.00
02A	PSS-SL118	Passive S.E. WMS	4/28/2011	\$150.00
03A	IA-SL022	Passive S.E. WMS	4/28/2011	\$150.00
04A	IA-SL084	Passive S.E. WMS	4/28/2011	\$150.00
05A	HPV-118-1	Passive S.E. WMS	4/28/2011	\$150.00
07A	PSS-SL084	Passive S.E. WMS	4/29/2011	\$150.00
08A	HPV-084-1	Passive S.E. WMS	4/29/2011	\$150.00
10A	PSS-SL022	Passive S.E. WMS	4/29/2011	\$150.00
11A	HPV-022-1	Passive S.E. WMS	4/29/2011	\$150.00
13A	TRIP BLANK A1	Passive S.E. WMS	NA	\$150.00
14A	TRIP BLANK B1	Passive S.E. WMS	NA	\$150.00
15A	Lab Blank	Passive S.E. WMS	NA	\$0.00
16A	LCS	Passive S.E. WMS	NA	\$0.00
16AA	LCSD	Passive S.E. WMS	NA	\$0.00

Note: Samples received after 3 P.M. PST are considered to be received on the following work day.

Atlas Project Name/Profile#: AF Plant 59/15800

BILL TO: Accounts Payable

GeoSyntec Consultants 5901 Broken Sound Parkway

Suite 300

Boca Raton, FL 33487

TERMS: NET 90

Reporting Method: Passive SE GC/MS WMS

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Analysis Code: Other GC

Other Records

After	いち(2^{为(1)}
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

After	V 5 (23 (1)
Correct Baseline	J
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

After	12812311
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

After	W5/23/11
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

After	U5/25/11
Correct Baseline	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	

Correct Baseline	Li 5 (23
Split Peak	
Merge Peak	
Zoom In	and the state of t
Change Parameter	
System Peak Subtraction	
Peak Misidentified	The state of the s
Corrected Peak Integration	

After	しょくしょかい
Correct Baseline	V
The state of the s	
Split Peak	
Merge Peak	
Zoom In	
Change Parameter	
System Peak Subtraction	CONTRACTOR OF THE PROPERTY OF
Peak Misidentified	The state of the s
Corrected Peak Integration	A STATE OF THE STA

After	1. R15711
The state of the s	
Correct Baseline	A STATE OF THE PARTY OF THE PAR
Split Peak	
Merge Peak	The state of the s
Zoom In	
Change Parameter	
System Peak Subtraction	
Peak Misidentified	
Corrected Peak Integration	Commence for Continue to Commence of the Continue of the Conti

After	L 51	ひろは
Correct Baseline		I
Split Peak		
Merg e Peak		
Zoo m In		
Change Parameter		
System Peak Subtraction		
Peak Misidentified		
Corrected Peak Integration		

After	C 5123111		
Correct Baseline			
Split Peak			
Merge Peak			
Zoom In			
Change Parameter			
System Peak Subtraction			
Peak Misidentified			
Corrected Peak Integration	ORTHONORMAN AND AND AND AND AND AND AND AND AND A		
Charles of the Control of the Contro			

Compound List

Passive SE GC/MS WMS

CAS Number	Compound	Detection Limit	
		ug	Туре
74-87-3	4-87-3 Chloromethane 0.20		
75-01-4	Vinyl Chloride	0.20	
110-54-3	Hexane	0.20	
75-34-3	1,1-Dichloroethane	0.050	
78-93-3	2-Butanone (Methyl Ethyl Ketone)	0.050	
156-59-2	cis-1,2-Dichloroethene	0.050	
67-66-3	Chloroform	0.050	
110-82-7	Cyclohexane	0.050	
71-55-6	1,1,1-Trichloroethane	0.050	
56-23-5	Carbon Tetrachloride	0.050	
71-43-2	Benzene	0.10	
107-06-2	1,2-Dichloroethane	0.050	
142-82-5	Heptane	0.050	
79-01-6	Trichloroethene	0.050	
108-10-1	4-Methyl-2-pentanone	0.10	
108-88-3	Toluene	0.050	
79-00-5	1,1,2-Trichloroethane	0.050	
127-18-4	Tetrachloroethene	0.050	
108-90-7	Chlorobenzene	0.050	
100-41-4	Ethyl Benzene		
108-38-3	m,p-Xylene	0.050	
95-47-6	o-Xylene	0.050	
100-42-5	Styrene	0.050	
79-34-5	1,1,2,2-Tetrachloroethane	0.050	
103-65-1	Propylbenzene	0.050	
108-67-8	1,3,5-Trimethylbenzene	0.050	
95-63-6	1,2,4-Trimethylbenzene	0.050	
541-73-1	1,3-Dichlorobenzene	0.050	
106-46-7	1,4-Dichlorobenzene	0.050	
95-50-1	1,2-Dichlorobenzene	0.050	
91-20-3			
2037-26-5	·		
75-35-4			
67-64-1	Acetone	0.20	
1634-04-4			
156-60-5 trans-1,2-Dichloroethene		0.10	

1

	@ Air ⁻	Toxi	cs Ltc	t l					
					Form #: F1.27	Revision #: 2	Revision Date:07/27/	/10	Page #: 1 of 2
					DATA REVIEW CH	ECKLIST	Work Order #:	11	05031A
\mathbf{A}_1	A ₂ W		R	Q	A alesaia /D				
	D D				The final report has the c				00% Dups, J-Flag to MDL, etc)
		LJ	u		Non-Standard sublist prin			idei III	10.
_	Ø				Lab Narrative is correct (=	& Anal	lytical notes correct)
					Sample Discrepancy Rep			- 1 1110	y war notos ourout
					Corrective Action issued				
	ОФ				Unusual circumstances h	ave been documer	nted in the notes section	below	•
	LU	ЛМЕ	EN va	alidat	ion report present and initia	ıled	CIRCLE (YES (NO)	<i>)</i>	
					Tab Diania CCV TCC	-1 DIID + OC	., .		
					Lab Blank, CCV, LCS and Hold time is met for all s	•	riteria		
ш					Appropriate data qualifie	~	1		
	Ø				Manual integrations for s				
	oø				Samples analyzed within	•	~ ~ -		
	Ø				Retention times have bee	n verified	·		
					Appropriate ICAL(s) incl	luded, %RSD Rec	alculation	****	
ſ	п	_			A t loogt on a manult	1. :: <i>C</i> : 1	-1		1 (
					At least one result per sar Dilution factor correctly				
		u		ш	pressurization(s))	caiculated (sample	rioad voidille, syringe a	na vag	g unutions, can
	o ø				Correct amount of sample	e analyzed (i.e. sa	nple not over-diluted)		
	Ø				Spectra verified - docume			tion 5A	A of eCVP pkg)
	JP)				TICs resemble reference	spectra			
	ф				TICs between duplicate s	amples are consist	tent		
					Checked samples for tren		- ·		* ' '
			111		Data for multiple analyse				lity of results
	Ø				Special units for all samp			ted	
	<u> </u>				Manually entered results	~~~~	<u></u>		To a contract of the contract
	0 p 2				Chain of Custody verified		omments (i.e. different o	compo	unds/RLs, action levels)
	☑ Chain of Custody scanned correctly☐ Verify sample id's vs. chain of custody								
	o d			_	Date MDL(s) performed	-	1011110		
			·····		Samples pressurized w/ a			r (i.e. '	Tedlar bag, cartridge, sorbent)
	υф				Final pressure consistent			`	3,
					Verify receipt pressures				
					Verify canister ID #'s				
***************************************	<u> </u>			·····	Final invoice amount corr		ΓΑΤ, Penalties, Re-issue	Char	ges etc.)
N7.4 .	□ /				Final PDF report reviewed			1	
	(10 inci			7	amples with QA/QC problem		ritive hits, narratives, et	c.)	
<u>A/R:</u>			gren !	<u>, ()</u>	in pbV + eig/m3				
			1/0	RI			LCSD no hi	fs in	Samples
-					in 13A(TB). 1				
			_2	RP	D Hexane in LCS,	16050 = 26	7 725%		
T/Q:									
						······	7.43		
		A_1/A		~ ·	W/T		R*		Q
(A	nalytica	ıı Ke	view	/Date		•	Report Review/Date)		(QA Review/Date)
A_1 :					- w: Dra s	(23/11 R:			
A_2 :					T:				

Release Date: 07/28/10

Title: Data Review Checklist

Note (1): Please check all the appropriate boxes. Indicate "NA" for any statement that does not apply.

Note (2): Report reviewer and write-up reviewer must be separate individuals for DoD & Client Specific projects.

^{*} Report Review is completed for DoD & Client Specific projects only.

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hottline (800) 467-4922.

(916) 985-1000 FAX (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630**

Project Info. Project Info	Name Air Bill # Temp (°C) Condition Custody Seals intact?	Lab Use	Relinquish	Relinquish	Melinquist Med Llu		424	C&IA	07/1	も同門	(5)	04A	034	ØΑ.	O P	Lab I.D	Phone 511	Company_ Address_*3	Collected b	Project Manager
Project Info: Turn Around Reporting Time: Turn Around Reporting Units: Time: Units:	Temp (°G) Condition Custody Seals intact?	Name	Relinquished by: (signature) Date/Time	ure)	Lea by: (signature) Date/Time	P	4 - 0 04 -	主なひょ	- SL084	72 - 150		age.	. 500	- 5411	5		822 2230 00 245 Fax 51	Leave Sale JOHy Gara) KEY K	July Brief
Project Info: Turn Around Reporting Units: P.O. # TRO 38C	°C) Condition Custody Seals intact? (ਮੁਲੂਰੀ Yes No (None)		Received by:	Received by:	1	Paration (A)	163-78-R-10	i	AP-176211-1/2-3	1103-038-74		1	6	AP-17-211 452-1	N-69	Sampler #		State Not Zip		The state of the s
Turm Around Reporting Units: Normal ppmv ppb	Condition Custody Seals Intact? Yes No (None)	Temp (°C				gazzen **	11/20/12	24/25/11	11/41/10	04/28/11	1/8/100			2/15	1/41/40	Date of Deployment (mm/dd/yy)		NG SCU		
Turn Around Reporting Units: Normal Depmy	Yes No (None)		Date/Time	Date/Time		73.34 1	11:16	17:06	2325	3.7		22:40	2 : 20		14: 07: 07: 07: 07: 07: 07: 07: 07: 07: 07	Time of Deployment (hr:min)	Project Nam		,	Project Info
Turn Around Reporting Units: Normal Depmy		ondition			730	04/29/11	CH 120/11	155	04/20/	\$ 1.000 m	04/28/11	C4128111	04/28/11	01/28/11	04/28/11	Date of Retrieval (mm/dd/yy)				
Deporting mits: Indoor Air Worlk Order: #		Custody S		Notes:	odilipie o	Sample Si		2255	27.00	0.50	2120	16:25		6.17	16:03	Time of Retrieval (hr : min)			Ň	
Deporting mits: Indoor Air Worlk Order: #) W	beals Intact?		:	te All Tellipera	Air Tompora									distro-	Anah Requi	specify	Rush	Normal	Turn Around Time:
Co U U U U U U U U U U U U U U U U U U U					9		nalysis			76/5/5						ysis ested	☐ mg/m3	1 ppbv 1 µg/m3	☐ ppinv	1 10 10 10
C C C C C C C C C C C C C C C C C C C	der#	Work Or			1			_		-	+		3	1	1 =	T				
	cb	Work Order #						+=-	+=	+=	+=			_						

PASSIVE SAMPLE COLLECTION

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hot harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

(916) 985-1000 FAX (916) 985-1020 180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630**

Page 🕺

| 야

Only	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Relinquish	Relinquish	Relinquish					E P		本	B	a D (Thone	ompany ddress	collected by	^o roject Manager.
Feder	Shipper Name Air Bill #	Relinquished by: (signature) Date/Time	Relinquished by: (signature) Date/Time	Relinquished by: (signature) Date/Time				.	~		HPN-022 - 2 (50-022-2)	H0V-022-1	Field Sample I.D. (Location)	Fax	City	Collected by: (Print and Sign)	ager
		Received by: (signature)	Received by: (signature)	Received B.C					M-100	AR 170911-1/21	103 13 25	7	Sampler #		State Zip		The state of the s
2 P	Temp (°C)			137					Phillintaryggn-	-my-side-a-frichtsprint/side(4)	04/20/11	04/25/11	Date of Deployment (mm/dd/yy)				and the same of th
Good	>	Date/Time	Date/Time	Date/Time					- incommon	-sthooseshie"		3	Time of Deployment (hr:min)	Project Name	Project #	P.O. #	Project Info:
	Condition			930					integrations	⊕ (d) O Kilomiya x x x	100		Date of Retrieval (mm/dd/yy)		AT SZ	163K	
Yes	Custody 8		Notes:	Sample Si					*Approximates	**Obligacion**	1643	3	Time of Retrieval (hr:min)				
No (None	Custody Seals Intact?			Sample Site Air Temperature:									Analysis Requested	specify	Rush	Normal	Turn Around Time:
11050	Work Order#			lre:							And years		\	□ mg/m³	☑ µg/m3	□ ppmv Vmqq	Reporting Units:
	1der#						_	 			_						
					╠										Monito	ring	
					1)

Results of Radon – 222 Measurement

Customer Name:	Mr. Bill Wertz/Geosyntec	Date:	5/2/2011
Street Address:	Main Street	File ID:	20110502-11018
City, State, Zip:	Johnson City, NY 13790		
Home Phone #:		EPA Measurement	Protocol #402-R-92-004
Work Phone #:	518-477-5499	NYSDOH ELAP	Certification #11394
Test Location:	AFD 59, Main Street	Test Type:	Preliminary Screening: Short Term
	Johnson City, NY 13790		
		Test Device:	E-Perm Electret Ion Chamber

Electret No.	Type	Location	Start Date	End Date	Results (pCi/L)
SFS141	SST	AFD 59, Room SL118	4/14/2011	4/28/2011	1.4
SFS103	SST	AFD 59, Room SL084	4/14/2011	4/28/2011	1.2
SFR984	SST	AFD 59, Room SLO22	4/14/2011	4/28/2011	1.1
SFS027	SST	Blank	4/14/2011	4/28/2011	< 0.2

Average Radon Concentration		pCi/L				
Analyzed By: Richard J. Tarnows	ki					

Current EPA guidelines set 4.0 pCi/L as a threshold for continuous residential radon exposure above which remedial action has been determined to be warranted. EPA produced consumer information has been included with this report. Please read these documents carefully.

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Testing was performed within the guideline of the EPA's testing protocols unless noted above. However, radon leve/ls can fluctuate dramatically depending on weather, seasonal conditions, ventilation and other factors. In addition, while due diligence has been undertaken to ensure proper testing protocol, no testing done on property owned by a second party can be guaranteed by the tester to be free of tampering.

If the above count(s) are below 4.0 pCi/L, the level is considered acceptable, however, further long term testing may be advisable if a confirmed annual average below 4.0 pCi/L is desired.

DISCLAIMER:

The uncertainty of this radon measurement is +/- 0.1 pCi/L. Factors contributing to uncertainty include statistical variations, daily and seasonal variations in radon concentrations, sample collection conditions, and operation of the building. Interference with test conditions may influence the test results. All procedures used for generating this report are in complete accordance with the current EPA protocols for the sampling and analysis of radon gas and are believed by ENVIRO TESTING to be accurate and reliable. The levels indicated in this report reflect conditions existing at the time of sampling only. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of ENVIRO TESTING for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages.

This lab report shall not be reproduced (except in full) without the written permission of ENVIRO TESTING.

APPENDIX B

HIGH PURGE VOLUME TEST TRANSIENT VACUUM DATA ANALYSIS

Appendix B

High Purge Volume Test Transient Vacuum Data Analysis

The Hantush and Jacob (1955) leaky aquifer model was used to analyze the transient vacuum response to the cyclic operation of the ShopVac at each location. A conceptual sketch of the model assumptions is shown in the Figure below.

The model assumes that the gravel layer below the slab transmits gas readily (i.e., acts as an aquifer), the floor slab above the gravel allows a restricted but finite recharge of vertical flow (i.e., acts as a "leaky aquitard"), and the native soil below the gravel layer is much less permeable than the gravel layer. If the native soil has a high permeability, the analysis may overestimate the leakage through the slab, which is considered conservative in the context of assessing the potential for subsurface vapor intrusion. The leaky aquifer model has been used in similar situations for analysis of transient vacuum response during soil vapor extraction (SVE) and landfill gas extraction pilot tests (e.g. Beckett and Huntley, 1994; Thrupp et al., 1996, 1998).

The leakage factor (B) is defined as follows:

$$B = \sqrt{\frac{Tb'}{K'}} \qquad (1)$$

where: T = Transmissivity of the zone of extraction (L²/T),

b' = Thickness of the semi-confining zone (L),

K' = Vertical Pneumatic Conductivity of the semi-confining zone (L/T).

The transient vacuum response (drawdown and recovery) data (Figure 2) were fitted to the Hantush-Jacob Leaky Aquifer Model type-curves (Figure 3), after correcting for the density and viscosity of air compared to water (Thrupp et al., 1996) in order to calculate the transmissivity of the sub-slab gravel layer (T) and the vertical leakage through the floor slab (B).

Transmissivity values ranged from 27.5 square feet per day (ft^2 /day) at HPV-022 to 51.2 ft^2 /day at HPV-022 just below the slab, which is consistent with high permeability materials l. Leakance values ranged from 1.3 ft at HPV-084 to 2.8 ft at HPV-022 based on data from the sub-slab probes. The leakance value is inversely proportional to the vertical pneumatic conductivity of the overlying floor slab; therefore, a larger leakance value indicates a less leaky floor slab. The floor slab in the area of HPV-022 and HPV-084 show a high amount of leakage.

An approximation of the leaky aquifer solution for steady-state flow conditions can be used to calculate the subsurface vacuum as a function of distance from the point of extraction (Bear, 1979):

$$S(r) = \frac{Q_W}{2\pi T} K_o(r/B) \quad (2)$$

where: B is the leakage factor as defined above (Equation 1), and

S(r) = (vacuum) in units of air column,

r = distance from extraction point (L),

 $Q_{\rm W}$ = Discharge from the extraction point (L³/T),

T = Transmissivity of the zone of extraction (L^2/T) ,

 K_0 = Modified Bessel Function of the second kind of order zero of (r/B) (dimensionless)

The profile of vacuum versus distance calculated using Equation 2 was compared to the steady-state measured vacuum at each of the CTPs (Figure 4). The calculated vacuum values match reasonably well with the measured vacuum levels; therefore, this provides an independent verification of the calculated T and B values. Once the vacuum and transmissivity are known, the profile of induced sub-slab gas velocity can be calculated using Darcy's Law (Figure).

The leakance value and transmissivity can also be used to calculate the travel time for subslab vapor to be drawn from a certain radial distance to the extraction point (Figure 6). The HPV tests were conducted for a total duration ranging from 70 to 78 minutes (excluding the HPV test at HPV-118 where vacuum influence was not observed at any of the CTPs). By projecting this time on the vertical axis of Figure 6 across to the leaky model curve and down to the horizontal axis, one can determine the radial distance to which vapors were extracted during each test, which is shown as a solid line surrounding each HPV location in Figure 3 (in report). The radial distance to which soil gas was extracted is a function of the amount of leakage occurring at each location, the extraction flow rate and the duration of each test. Three summa canister samples were collected over the duration of the HPV test at approximately 5 and 20 minutes and at the end of the test, therefore the distance from which gas was extracted during the sample collection interval can be determined by projecting the time the summa canister was sampled on the interval on the vertical axis of Figure 6 across to the leaky model curve in a similar fashion.

The proportion of gas withdrawn from the subsurface (Q(r)) as a function of the radius from which the vapors were drawn can be calculated using equation 3.

$$Q(r)/Qw = \frac{r}{R}K_1(r/B) \quad (3)$$

where: r, B, and Qw are as defined above, and

Q(r) is flow through zone of extraction (subslab) at distance r from extraction well (L^3/T), and $K_1 = Modified$ Bessel Function of the second kind of order one of (r/B) (dimensionless).

Equation 3 can be used to calculate the influence of leakage on dilution of samples collected during the HPV test, and make a quantitative adjustment to the results of laboratory analysis for comparison to risk-based screening levels. For a time-weighted sample, the area integrated under the curve drawn using Equation 3 represents the volume of gas drawn from the subsurface, and the area integrated over the curve represents the volume of gas contributed by leakage (see Figure 7). For an instantaneous sample, the point on the curve corresponding to the time the grab sample was collected provides information on the relative proportions contributed to the sample from the porous media and from leakage. Based on the model the percentage of sample consisting of soil gas ranged from 30% (HPV-084) to 34% (HPV-022) for the time-weighted average samples. The Hantush Jacob model assumes that all of the leakage is downward from above, which will tend to overestimate the leakage of indoor air through discontinuities in the slab, which is conservative (protective) for risk assessment purposes. Additional discussion is provided in the main body of the report.

High Purge Volume Test
Transient Vacuum Data Analysis Using the Hantush-Jacob Model
Extraction at HPV-022, monitoring at TP-022-7

Figure 1: Plan View Map of High Purge Volume (HPV) Test Point and Communication Test Points (CTP)

Figure 3: Graphical Output of Hantush-Jacob Model Fit to Transient Vacuum Versus Time Data

Figure 4: Comparison Between Calculated Vacuum Versus Radial Distance and Measured Vacuum at CTP Locations

Figure 5: Comparison Between Subslab Soil Gas Velocity Calculated From Leaky Aquifer Model and Non-Leaky Model

Note: Induced velocity of 10 ft/day or more extends to a radial distance of 22.5feet

Figure 6: Calculated Travel Time to Extraction Point vs.

A = Duration of sample collection (78 minutes)

B = Distance from which gas was extracted during the sample collected interval (16 feet)

Note: Travel time of 1 day (1440 minutes) extends to a radial distance of 22.5 feet from extraction point

Figure 7: Percentage of Total Flow Originating below the Slab vs. Radius

-- •TP-022-7ft Leaky Model Curve

--- Distance from which gas was extracted during the sample collection interval (16 ft)

A - Area intergrated above the curve represents leakage during sample collection interval

B - Area intergrated below the curve represents soil gas extracted from subslab region during the sample collection interval

Proportion of sample consisting of soil gas = B/(B+A)

Location Name	Radius (ft)	Flowrate (ft ³ /min)
TP-022-7	7.67	31.1

Model Fitting Parameters				
$T (ft^2/d)$ r/B $B (ft)$				
27.5	2.80	2.7		

	Value	Units
Total Test Duration	78	min
Radius of Gas Extracted During Test	16	ft
Sample Start Time	0	min
Sample End Time	78	min
Radius of Gas Extracted During Sample Collection (Figure 6)	16	ft
Proportion of sample consisting of soil gas = $B/(B+A)$ (Figure 7)		34%

	Value	Units
Radius of Induced Velocity > 10 ft/day (Figure 5)	23	ft
Radius of Gas Extracted with a Travel Time < 1 day (Figure 6)	23	ft

Notes:

T - transmissivityft - feetft3 - cubic feetB - leakage valued - dayft2 - square feetr - radiusmin - minutesb - aquifer thickness

High Purge Volume Test
Transient Vacuum Data Analysis Using the Hantush-Jacob Model
Extraction at HPV-022, monitoring at TP-022-15 First Cycle

Figure 1: Plan View Map of High Purge Volume (HPV) Test Point and Communication Test Points (CTP)

Figure 2: Vacuum Versus Time at TP-022-15 in Response to Cyclic Operation of the Blower at HPV-022

Figure 3: Graphical Output of Hantush-Jacob Model Fit to Transient Vacuum Versus Time Data

Figure 4: Comparison Between Calculated Vacuum Versus Radial Distance and Measured Vacuum at CTP Locations

Figure 5: Comparison Between Subslab Soil Gas Velocity Calculated From Leaky Aquifer Model and Non-Leaky Model

Note: Induced velocity of 10 ft/day or more extends to a radial distance of 23.5feet

Figure 6: Calculated Travel Time to Extraction Point vs.

A = Duration of sample collection (78 minutes)

B = Distance from which gas was extracted during the sample collected interval (17.5 feet)

Note: Travel time of 1 day (1440 minutes) extends to a radial distance of 24 feet from extraction point

Figure 7: Percentage of Total Flow Originating below the Slab vs. Radius

■ TP-022-15ft Leaky Model Curve

--- Distance from which gas was extracted during the sample collection interval (17.5 ft)

- A Area intergrated above the curve represents leakage during sample collection interval
- B Area intergrated below the curve represents soil gas extracted from subslab region during the sample collection interval

Proportion of sample consisting of soil gas = B/(B+A)

Location Name	Radius (ft)	Flowrate (ft ³ /min)
TP-022-15	15	31.1

Model Fitting Parameters		
$T (ft^2/d)$	r/B	B (ft)
32.3	5.35	2.8

	Value	Units
Total Test Duration	78	min
Radius of Gas Extracted During Test	17.5	ft
Sample Start Time	0	min
Sample End Time	78	min
Radius of Gas Extracted During Sample Collection (Figure 6)	17.5	ft
Proportion of sample consisting of soil gas = $B/(B+A)$ (Figure 7)		32%

	Value	Units
Radius of Induced Velocity > 10 ft/day (Figure 5)	24	ft
Radius of Gas Extracted with a Travel Time < 1 day (Figure 6)	24	ft

Notes:

T - transmissivityft - feetft3 - cubic feetB - leakage valued - dayft2 - square feetr - radiusmin - minutesb - aquifer thickness

High Purge Volume Test Transient Vacuum Data Analysis Using the Hantush-Jacob Model Extraction at HPV-084, monitoring at SL-084

Figure 1: Plan View Map of High Purge Volume (HPV) Test Point and Communication Test Points (CTP)

Figure 3: Graphical Output of Hantush-Jacob Model Fit to Transient Vacuum Versus Time Data

Figure 4: Comparison Between Calculated Vacuum Versus Radial Distance and Measured Vacuum at CTP Locations

Figure 5: Comparison Between Subslab Soil Gas Velocity Calculated From Leaky Aquifer Model and Non-Leaky Model

Note: Induced velocity of 10 ft/day or more extends to a radial distance of 12.5 feet

Figure 6: Calculated Travel Time to Extraction Point vs.

A = Duration of sample collection (71 minutes)

B = Distance from which gas was extracted during the sample collected interval (9 feet)

Note: Travel time of 1 day (1440 minutes) extends to a radial distance of 12.5 feet from extraction point

Figure 7: Percentage of Total Flow Originating below the Slab vs. Radius

-- SL-084 Leaky Model Curve

--- Distance from which gas was extracted during the sample collection interval (9 ft)

- A Area intergrated above the curve represents leakage during sample collection interval
- B Area intergrated below the curve represents soil gas extracted from subslab region during the sample collection interval

Proportion of sample consisting of soil gas = B/(B+A)

Location Name	Radius (ft)	Flowrate (ft ³ /min)
SL-084	0.83	22.0

Model Fitting Parameters		
$T (ft^2/d)$	r/B	B (ft)
51.2	0.65	1.3

	Value	Units
Total Test Duration	71	min
Radius of Gas Extracted During Test	9	ft
Sample Start Time	0	min
Sample End Time	71	min
Radius of Gas Extracted During Sample Collection (Figure 6)	9	ft
Proportion of sample consisting of soil gas = $B/(B+A)$ (Figure 7)		30%

	Value	Units
Radius of Induced Velocity > 10 ft/day (Figure 5)	12.5	ft
Radius of Gas Extracted with a Travel Time < 1 day (Figure 6)	12.5	ft

Notes:

T - transmissivityft - feetft3 - cubic feetB - leakage valued - dayft2 - square feetr - radiusmin - minutesb - aquifer thickness