FINAL ABBREVIATED 2013 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

Contract Number FA8903-10-D-8596 Task Order: 0080

> Project Number: ACHQ20135001 CDRL A001C

Prepared for

Air Force Civil Engineer Center

Prepared by

HydroGeoLogic, Inc.

April 2014

FINAL

ABBREVIATED 2013 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

Contract Number FA8903-10-D-8596 Task Order: 0080

> Project Number: ACHQ20135001 CDRL A001C

Prepared for

Air Force Civil Engineer Center 772D Enterprise Sourcing Squadron 2261 Hughes Avenue Suite 163 JBSA Lackland AFB, TX 78236

Prepared by

HydroGeoLogic, Inc. 313 Ushers Road Ballston Lake, NY 12019

April 2014

This page intentionally left blank.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	. 1
2.0	LONG	G-TERM MONITORING ACTIVITIES	1
	2.1	PURPOSE OF THE LONG-TERM MONITORING ACTIVITIES	1
	2.2	PROCEDURES USED FOR THE LONG-TERM MONITORING	
		ACTIVITIES	2
	2.3	ANALYTICAL RESULTS FROM THE LONG-TERM MONITORING	
		ACTIVITIES	2
		2.3.1 Shallow Zone of the Aquifer	2
		2.3.2 Deep Zone of the Aquifer	3
		2.3.3 Municipal Well and Air Stripper	3
	2.4	TREND ANALYSIS	4
3.0	CONC	CLUSIONS AND RECOMMENDATIONS	4
4.0	REFE	RENCES	. 5

LIST OF FIGURES

Figure 1 Site Location

Figure 2 Sampling Results

LIST OF TABLES

Table 1Summary of Detected VOCs – October 2013

Table 2Trend Analysis of VOCs in Groundwater

LIST OF ATTACHMENTS

Attachment 1 Field Forms

Attachment 2 Laboratory Report

Attachment 3 Data Validation Report

LIST OF ACRONYMS AND ABBREVIATIONS

AFCEC	Air Force Civil Engineer Center
AFP 59	Air Force Plant 59
<i>cis</i> -1,2-DCE COPC	<i>cis</i> -1,2-dichloroethene chemicals of potential concern
1,1-DCA	1,1-dichloroethane
1,1-DCE	1,1-dichloroethene
FSP	Field Sampling Plan
HGL	HydroGeoLogic, Inc.
LTM	long-term monitoring
μg/L	micrograms per liter
MCL	maximum contaminant level
ND	non-detect
ng/L	nanograms per liter
NYSDEC	New York State Department of Environmental Conservation
PCE	tetrachloroethene
TAL	Test America Laboratory
1,1,1-TCA	1,1,-trichloroethane
TCA	trichloroethane
TCE	trichloroethene
<i>trans</i> -1,2-DCE	<i>trans</i> -1,2-dichloroethene
USEPA	U.S. Environmental Protection Agency
VC	vinyl chloride
VOC	volatile organic compound

FINAL ABBREVIATED 2013 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

1.0 INTRODUCTION

In 2013, HydroGeoLogic, Inc. (HGL) completed the long-term monitoring (LTM) activities at Air Force Plant 59 (AFP 59) in Johnson City, New York (Figure 1). The Air Force Civil Engineer Center (AFCEC) contracted HGL to complete the LTM activities.

The objectives of this abbreviated monitoring report are to summarize:

- The purpose, collection procedures, and results of the LTM activities; and
- The conclusions and recommendations based on the results of the LTM activities.

2.0 LONG-TERM MONITORING ACTIVITIES

2.1 PURPOSE OF THE LONG-TERM MONITORING ACTIVITIES

Based on the conclusions presented in the *Final Remedial Investigation Report* (Earth Tech, 1996) and recommendations made by the New York State Department of Environmental Conservation (NYSDEC), it was determined that volatile organic compounds (VOC) represent the only chemicals of potential concern (COPC) in the groundwater at AFP 59. The LTM objectives for this project were to sample and evaluate VOC levels in groundwater that are above current maximum contaminant level (MCL) standards.

Groundwater samples were collected using the procedures found in the AFP 59 *Final Field Sampling Plan (FSP) Addendum* (HGL, 2014a). Samples were collected and analyzed at Test America Laboratory (TAL) for VOCs (U.S. Environmental Protection Agency [USEPA] Method 8260B) and 1,4-dioxane (USEPA Method 8270C). The LTM included sampling the following monitoring wells: SW1, DW1, SW3, DW3, SW4, SW7, BM-121, URS-2D, URS-2S, URS-3D, and URS-5S. The LTM additionally included sampling municipal well JC2 (before treatment) and the air stripper (after treatment). Monitoring wells SW1 and DW1 represent upgradient (background) wells, and monitoring wells SW3 and DW3 represent downgradient wells. Five monitoring wells (BM-121, URS-2D, URS-2S, URS-3D, and URS-5S) and one municipal well (JC2) are located off site, to the west and south of the site.

2.2 PROCEDURES USED FOR THE LONG-TERM MONITORING ACTIVITIES

Sampling activities followed protocols presented in the Final Work Plan Base Long-Term Monitoring at AFP 59 (HGL, 2014b) and the Final Field Sampling Plan Addendum (HGL, 2014a). HGL collected groundwater samples from six on-site AFP 59 monitoring wells (SW1, DW1, SW3, DW3, SW4, and SW7); five off-site monitoring wells (BM-121, URS-2D, URS-2S, URS-3D, and URS-5S); and one municipal well (JC2) in October 2013. All of the samples collected were analyzed for VOCS by USEPA Method SW8260B and 1,4-dioxane using USEPA Method SW8270C.

All the wells were sampled using the micropurge methodology, which is a low flow-rate monitoring well purging and sampling method that induces laminar (non-turbulent) flow in the immediate vicinity of the sampling pump intake, thus drawing groundwater directly from the sampled aquifer horizontally through the monitoring well screen and into the sampling device. Purging of the monitoring wells was performed to evacuate water that had been stagnant in the monitoring wells, thereby obtaining a sample that is representative of the aquifer. The temperature, pH, specific conductivity and turbidity were also measured and recorded on the monitoring well sampling forms during purging. The field forms and calibration forms are appended as Attachment 1.

2.3 ANALYTICAL RESULTS FROM THE LONG-TERM MONITORING **ACTIVITIES**

The following paragraphs discuss the VOCs that were detected in the groundwater samples, including those samples collected from both on-site and off-site monitoring wells. The analytical results for groundwater samples collected from monitoring wells installed in the shallow and deep zones of the aquifer are discussed below. The VOCs detected in groundwater samples are illustrated on Figure 2. The analytical results for all groundwater samples collected during the October 2013 sampling event are summarized in Table 1. The laboratory report is appended as Attachment 2.

2.3.1 Shallow Zone of the Aquifer

VOCs were detected in the groundwater samples collected from on-site monitoring wells SW3, SW4, and SW7, and off-site monitoring wells URS-2S and URS-5S (Refer to Figure 2). Chlorinated hydrocarbons were the only detected VOCs in the samples collected from the shallow zone of the aquifer in October 2013. VOCs and 1,4-dioxane were not detected in the groundwater samples collected from on-site monitoring well SW1 or off-site monitoring well BM-121.

The following maximum concentrations were detected in the groundwater samples collected from on-site monitoring well SW3 during the October 2013 event: trichloroethene (TCE) at 0.70 F micrograms per liter (μ g/L) and *cis*-1,2-dichloroethene (*cis*-1,2-DCE) at 1 μ g/L. The following maximum concentrations were detected in the groundwater samples collected from on-site monitoring well SW4 during the October 2013 event: 1,1,1- trichloroethane (1,1,1-TCA) at 1.8 µg/L; 1,1-dichloroethane (1,1-DCA) at 0.77 F µg/L; 1,1-dichloroethene (1,1DCE) at 0.26 F; *cis*-1,2-DCE at 2.6 μ g/L; tetrachloroethene (PCE) at 0.39 F μ g/L; and TCE at 6.6 μ g/L. The following maximum concentrations were detected in the groundwater sample collected from on-site monitoring well SW7 during October 2013 event: 1,1,1-TCA at 1.2 μ g/L; 1,1-DCA at 0.93 F μ g/L; PCE at 0.27 F μ g/L; *cis*-1,2-DCE at 7 μ g/L; and TCE at 2.5 μ g/L. The following maximum concentrations were detected in the groundwater sample collected from off-site monitoring well URS-2S during the October 2013 event: 1,1-DCA at 1.1 μ g/L; 1,1,1-TCA at 1.6 μ g/L; TCE at 2.3 μ g/L; and *cis*-1,2-DCE at 1.2 μ g/L. The following maximum concentrations were detected in the groundwater sample collected from off-site monitoring well URS-2S during the October 2013 event: 1,1-DCA at 0.50 F μ g/L; and TCE at 0.63 F μ g/L.

Exceedances occurred above the New York State Groundwater Quality Standard of 5 μ g/L for *cis*-1,2-DCE at well SW7. An exceedance also occurred at well SW4 for TCE. These results are highlighted on Figure 2.

During the October 2013 sampling effort, 1,4-dioxane was sampled in the four on-site and two off-site shallow monitoring wells. 1,4-dioxane was detected in monitoring wells SW4, SW7, and URS-2S at concentrations of 810 F nanograms per liter (ng/L), 430 F ng/L, and 1,800 F ng/L, respectively. 1,4-dioxane was not detected in monitoring wells SW1, SW3 and BM-121.

2.3.2 Deep Zone of the Aquifer

VOCs were detected in the groundwater samples collected from on-site monitoring well DW3 and the off-site monitoring wells URS-2D and URS-3D (Refer to Figure 2). Chlorinated hydrocarbons were the only VOCs detected in the samples collected from the deep zone of the aquifer. VOCs were not detected in the groundwater samples collected from monitoring well DW1. The only VOCs detected in monitoring well DW3 were *cis*-1,2-DCE at 57 µg/L; 1,1-DCA at 0.32 F µg/L; and vinyl chloride (VC) at 0.18 F µg/L. The following maximum concentrations were detected in the groundwater sample collected from the off-site monitoring well URS-2D: 1,1-DCA at 0.21 F µg/L; *cis*-1,2-DCE at 62 µg/L; and trans-1,2-Dichloroethene at 0.17 F µg/L. Additionally, the following maximum concentrations were detected in the groundwater guality Standard of 5 µg/L in on-site well DW3 and off-site well URS-2D. Also, 1,4-dioxane was sampled in both the on-site and off-site deep monitoring wells. 1,4-dioxane was only detected in monitoring wells DW3 at 2,700 nanograms per liter (ng/L); URS-2D at 7,400 ng/L; and URS-3D at 1,800 F ng/L.

2.3.3 Municipal Well and Air Stripper

VOCs were detected in the untreated water sample collected from a sample port at municipal well JC2. Detected VOCs constituents at JC2 included 1,1,1-TCA (0.36 μ g/L F); TCE (0.48 μ g/L F); and *cis*-1,2-DCE (0.29 μ g/L F). 1,4-dioxane was not detected in water sampled

from JC2. The treated water sample, after the air stripper, was below detection limits for 1,4dioxane and all VOCs constituents.

2.4 TREND ANALYSIS

Table 2 presents concentrations of the most commonly detected chlorinated hydrocarbons in groundwater at AFP 59 over time. Only monitoring wells that were sampled as part of the groundwater monitoring program are included in the table.

In the groundwater samples collected from the shallow monitoring wells during the October 2013 sampling event, concentrations of the chlorinated hydrocarbons in monitoring well SW3 remained relatively constant (TCE) or increased slightly (*cis*-1,2-DCE) when compared to the previous sampling event in August 2012. The concentration of *cis*-1,2-DCE increased from the August 2012 sampling event; however, the concentration detected in October 2013 was well below the New York State Groundwater Effluent Limitations Class GA of 5 μ g/L.

The concentrations of the chlorinated hydrocarbons in monitoring well SW4 remained relatively constant, with only moderate variation in TCE concentrations when compared to the August 2012 sampling event. TCE concentrations decreased from 11 μ g/L in August 2012 to 6.6 μ g/L in October 2013. The concentrations of 1,1-DCE (non-detect [ND] to 0.26 F μ g/L); *cis*-1,2-DCE (2.3 μ g/L to 2.6 μ g/L); and TCA (0.66 μ g/L to 1.8 μ g/L) each increased during the October 2013 sampling event. The concentration of 1,1-DCA slightly decreased in the October sampling event (0.64 F to ND) as compared to the August 2012 sampling event.

Concentrations of chlorinated compounds at SW7 generally showed a decrease during the October 2013 sampling event relative to the August 2012 sampling event. The concentrations of *trans*-1,2-DCE ($0.21 \text{ F} \mu\text{g/L}$ to ND); *cis*-1,2-DCE ($44 \mu\text{g/L}$ to 7 $\mu\text{g/L}$); TCE ($9.9 \mu\text{g/L}$ to 2.5 $\mu\text{g/L}$); VC ($1.2 \mu\text{g/L}$ to ND); and TCA ($2.0 \mu\text{g/L}$ to ND) each decreased based on the October 2013 sampling event. Concentrations of 1,1-DCE remained relatively constant based on a comparison of the October 2013 ($0.93 \text{ F} \mu\text{g/L}$) and August 2012 ($0.65 \mu\text{g/L}$) analytical data sets.

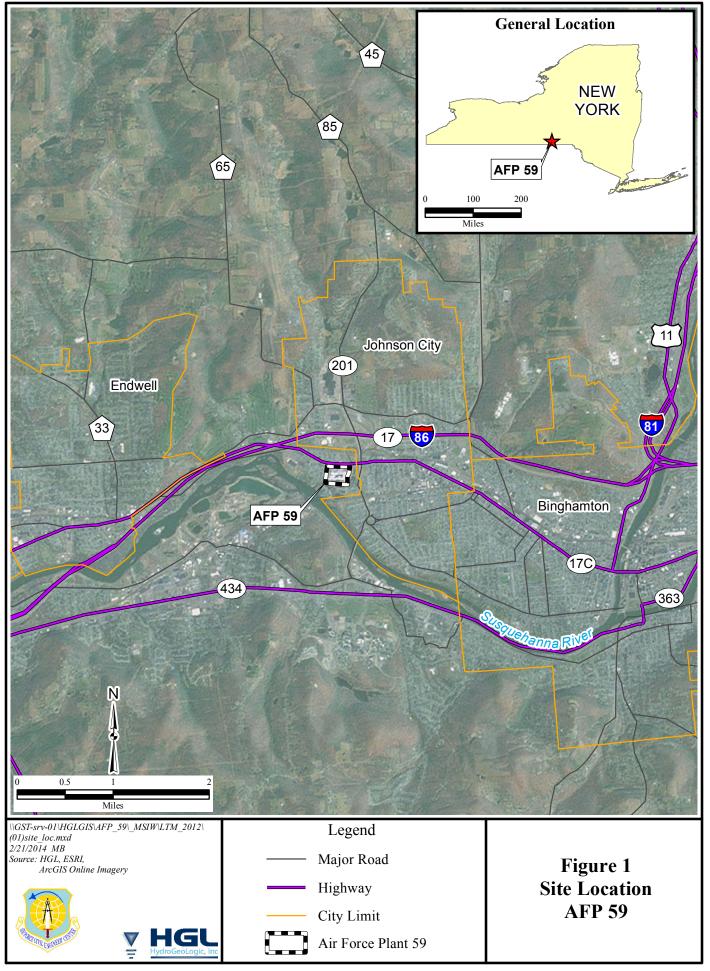
In the groundwater sample collected from deep monitoring well DW3 during the October 2013 sampling event, the concentrations of chlorinated hydrocarbons generally either remained below detection limits (TCA, TCE and *trans*-1,2-dichloroethene [*trans*-1,2-DCE]) or showed very minor increases (VC, 1,1-DCE and *cis*-1,2-DCE) or decreases (1,1-DCA). VOCs were not detected in the groundwater sample collected from deep monitoring well DW1 and shallow monitoring well SW1. These results are consistent with previous sampling events.

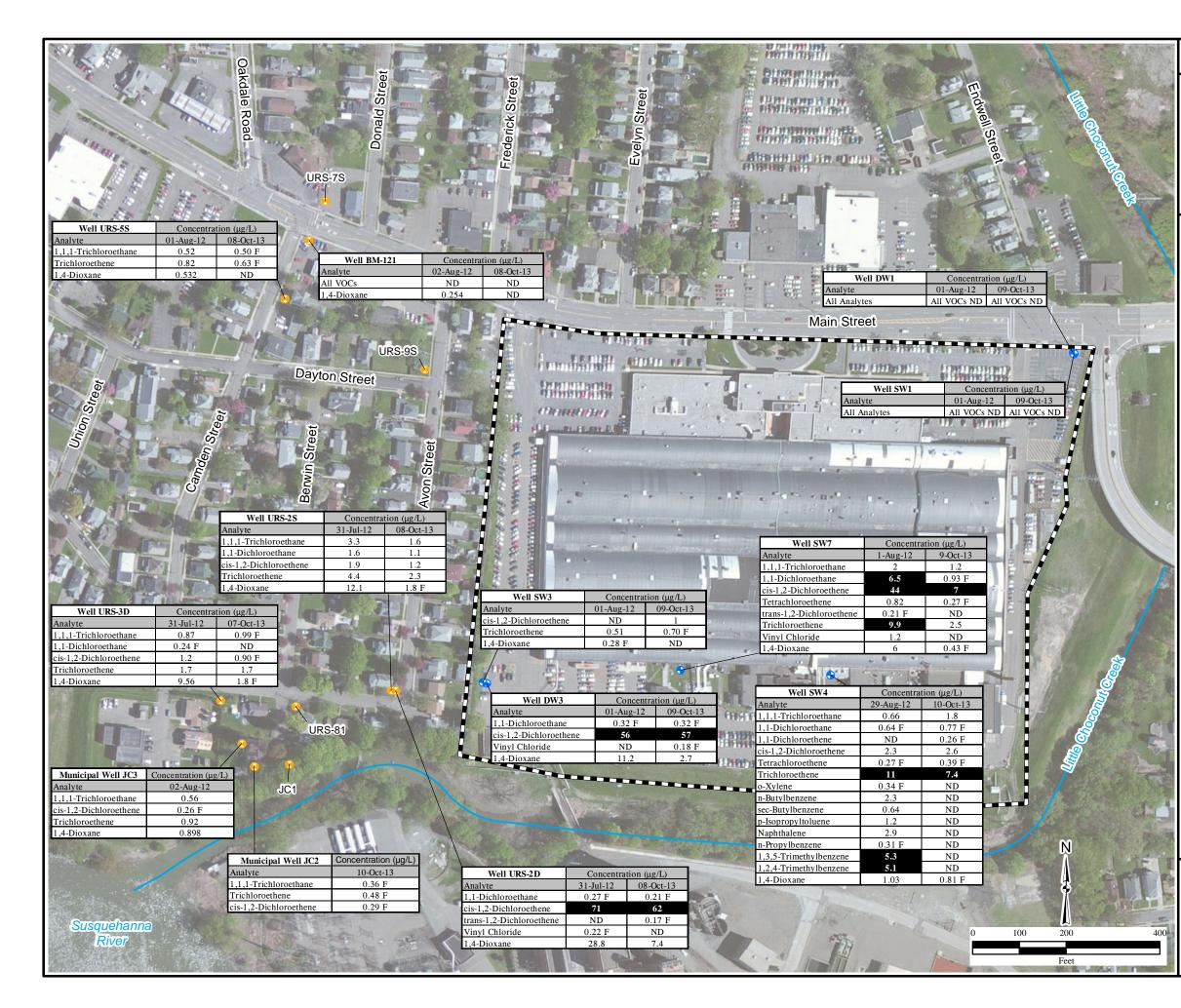
3.0 CONCLUSIONS AND RECOMMENDATIONS

Although VOC concentrations in the shallow monitoring wells have generally decreased since August 2012, concentrations of *cis*-1,2-DCE continued to exceed the New York State Groundwater Quality Standard of 5 μ g/L in well SW7. Additionally, the concentration of TCE exceeded the New York State Groundwater Quality Standard of 5 μ g/L during the

October 2013 sampling event in monitoring well SW4. Last, groundwater concentrations detected in off-site shallow monitoring well URS-2S and URS-5S did not exceed the New York State Groundwater Quality Standard of 5 μ g/L for chlorinated compounds.

In the deep monitoring wells, *cis*-1,2-DCE was the only contaminant that had concentrations exceeding the New York State Groundwater Quality Standard of 5 μ g/L. Monitoring well DW3, located on the AFP 59 boundary downgradient of the suspected source, and monitoring well URS-2D, located at a downgradient, off-site location, exceeded the New York State Groundwater Quality Standard for *cis*-1,2-DCE during the October 2013 groundwater sampling event.


Water samples collected from both the municipal well JC2 and after the air stripper (Sample 59JCEFFWG1 IN Table 1) were below New York State Groundwater Quality Standards for all VOCs constituents.


Based on the results of the LTM activities, groundwater exceeding the New York State Groundwater Quality Standards is migrating off of AFP 59 property in the deep monitoring wells. Additional groundwater monitoring is recommended to monitor the migration of contaminants off site.

4.0 **REFERENCES**

- Earth Tech, 1996. Installation Restoration Program Final Remedial Investigation Report, Air Force Plant 59.
- HydroGeoLogic, Inc. (HGL), 2014a. Final Field Sampling Plan Addendum, Basewide Long-Term Monitoring at Air Force Plant 59, Johnson City, New York. January.
- HGL, 2014b. Final Work Plan, Basewide Long-Term Monitoring at Air Force Plant 59, Johnson City, New York. January.

FIGURES

HGL—Abbreviated 2013 Long-Term Monitoring Report for Air Force Plant 59—Johnson City, NY

Figure 2

Groundwater Sampling Results July and August 2012 On-site and Off-site Monitoring Wells

Legend

- AFP 59 Monitoring Well
- Off-site Monitoring Well
- URS-9S Monitoring Well Identification
 - Surface Water Course

Air Force Plant 59

53.3 M =Shaded values indicate a New York State (NYS) groundwater effluent Class GA exceedance.

J=The analyte was posively detected but the quantitation is an estimation

F= The analyte was positively identified but the associated numerical value is below the reporting limit.

M=Matrix Effect. The analyte concentration was estimated due to matrix effect and therefore estimated.

ND=Analyte not detected above laboratory method detection limits.

NS=Monitoring well "Not Sampled" during event.

VOC=volatile organic compound

µg/L=microgram per liter

\\gst-srv-01\hglgis\AFP_59_MSIW\LTM_2013\ (02)samp_result.mxd 2/21/2014 MB Source: HGL, ESRI, AECOM, ArcGIS Online Imagery

TABLES

Table 1Summary of Detected VOCsOctober 2013

		NYS		59DW1WG1	59DW3WG1	59JC2WG1	59JCEFFWG1	59SW1WG1	59SW3WG1	59BM121WG1	59SW7WG1	59URS2DWG1
		GW Effluent		10/9/2013	10/9/2013	10/10/2013	10/10/2013	10/9/2013	10/9/2013	10/8/2013	10/9/2013	10/8/2013
Method	Analyte	Limitations Class GA	Units	280-47755-6	280-47755-8	280-47755-13	280-47755-12	280-47755-7	280-47755-9	280-47755-8	280-47755-10	280-47755-3
VOLATILES by	Methylene chloride	5	$\mu g/L$	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Method 8260B	1,1-Dichloroethane	5	μ g/L	0.16 U	0.32 F	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.93 F	0.21 F
	Chloroform	7	$\mu g/L$	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
	Tetrachloroethene	5	μ g/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.27 F	0.20 U
	1,1,1-Trichloroethane	5	$\mu g/L$	0.16 U	0.16 U	0.36 F	0.16 U	0.16 U	0.16 U	0.16 U	1.2	0.16 U
	1,1-Dichloropropene	5	$\mu g/L$	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
	1,1,2,2-Tetrachloroethane	5	$\mu g/L$	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
	Toluene	5	$\mu g/L$	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	Vinyl chloride	2	$\mu g/L$	0.10 U	0.18 F	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	1,1-Dichloroethene	5	$\mu g/L$	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
	trans-1,2-Dichloroethene	5	$\mu g/L$	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.17 F
	Trichloroethene	5	$\mu g/L$	0.16 U	0.16 U	0.48 F	0.16 U	0.16 U	0.70 F	0.16 U	2.5	0.16 U
	o-Xylene	5	μg/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
	cis-1,2-Dichloroethene	5	μg/L	0.15 U	57	0.29 F	0.15 U	0.15 U	1	0.15 U	7	62
	Acetone	NS	μg/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
	Bromochloromethane	5	μg/L	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	n-Butylbenzene	5	$\mu g/L$	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
	sec-Butylbenzene	5	$\mu g/L$	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	p-Isopropyltoluene	5	$\mu g/L$	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	Naphthalene	10	$\mu g/L$	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
	n-Propylbenzene	5	μg/L	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
	1,3,5-Trimethylbenzene	5	$\mu g/L$	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
	1,2,4-Trimethylbenzene	5	μg/L	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
SEMI-VOLATILES by Method 8270C	1,4-Dioxane	NS	ng/l	140 U	2,700	140 U	140 U	140 U	140 U	140 U	430 F	7,400
FIELD PARAMETERS	Temperature, Initial		° Celsius	12.63	15.39	NA	NA	13.36	16.3	12.43	15.95	14.41
	Temperature, Final	7	° Celsius	12.65	15.37	13.83	13.26	13.32	16.56	12.6	15.26	14.26
	pH	7	Std units	7.1	7.12	7.58	8.06	7.09	6.99	7.98	7.08	7.18
	Specific Conductance	NS	µS/cm	1,920	1,595	1,084	1,144	2,105	1,407	697	1,801	1,526
	ORP	7	mV	148.8	-38.6	200.9	203.4	83.5	91.1	-245.8	83.3	-72.1
	Dissolved Oxygen	1	mg/L	2.58	0.31	2.65	9.48	0.28	1.2	0.74	4.34	2.47
	Turbidity	1	NTU	19.9	22.4	1.5	1.87	4.75	1.7	14.9	6.7	15.9

Notes:

NA - Not Applicable

F - The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

NS - No Standard

<2.5 - Non-Detect

- NYS GW Effluent; Class GA exceedances

6.5 Bolded numbers are detections

Table 1Summary of Detected VOCsOctober 2013

		NYS		59URS2SWG1	59URS3DWG1	59URS5SWG1	59EB101013	59TB073112	59DUP01WG1	59AB080112	59SW4WG1
		GW Effluent		10/8/2013	10/7/2013	10/8/2013	10/10/2013	10/7/2013	10/10/2013	10/10/2013	10/10/2013
Method	Analyte	Limitations Class GA	Units	280-47755-4	280-47755-1	280-47755-5	Equipment Blank 280-47755-16	Trip Blank 280-47755-17	Duplicate: 59SW4WG1 280- 47755-14	Ambient Blank 280-47755-15	280-47755-11
VOLATILES by	Methylene chloride	5	$\mu g/L$	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
Method 8260B	1,1-Dichloroethane	5	$\mu g/L$	1.1	0.16 U	0.16 U	0.16 U	0.16 U	0.73 F	0.16 U	0.77 F
	Chloroform	7	$\mu g/L$	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
	Tetrachloroethene	5	$\mu g/L$	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.35 F	0.20 U	0.39 F
	1,1,1-Trichloroethane	5	$\mu g/L$	1.6	0.99 F	0.50 F	0.16 U	0.16 U	1.6	0.16 U	1.8
	1,1-Dichloropropene	5	$\mu g/L$	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
	1,1,2,2-Tetrachloroethane	5	μ g/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
	Toluene	5	$\mu g/L$	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	Vinyl chloride	2	$\mu g/L$	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	1,1-Dichloroethene	5	$\mu g/L$	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.25 F	0.14 U	0.26 F
	trans-1,2-Dichloroethene	5	$\mu g/L$	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U
	Trichloroethene	5	μ g/L	2.3	1.7	0.63 F	0.16 U	0.16 U	7.4	0.16 U	6.6
	o-Xylene	5	μ g/L	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U	0.19 U
	cis-1,2-Dichloroethene	5	μ g/L	1.2	0.90 F	0.15 U	0.15 U	0.15 U	2.6	0.15 U	2.6
	Acetone	NS	μ g/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
	Bromochloromethane	5	$\mu g/L$	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
	n-Butylbenzene	5	$\mu g/L$	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U
	sec-Butylbenzene	5	$\mu g/L$	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	p-Isopropyltoluene	5	μ g/L	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U	0.17 U
	Naphthalene	10	μ g/L	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
	n-Propylbenzene	5	μ g/L	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
	1,3,5-Trimethylbenzene	5	μ g/L	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
	1,2,4-Trimethylbenzene	5	μ g/L	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
SEMI-VOLATILES by Method 8270C	1,4-Dioxane	NS	ng/l	1,800 F	1,800 F	140 U	140 U	NA	800 F	NA	810 F
FIELD PARAMETERS	Temperature, Initial		° Celsius	14.94	12.82	14.13					14.25
	Temperature, Final		° Celsius	14.38	12.80	13.29]				14.34
	рН	NS	Std units	6.47	7.21	7.3]				7.05
	Specific Conductance		µS/cm	1,251	1,576	1,551	NA	NA	NA	NA	1,736
	ORP	7	mV	-17.8	50.0	46.9]				172.7
	Dissolved Oxygen	1	mg/L	0.55	3.41	2.82]				2.41
	Turbidity	7	NTU	19.5	583	28.7]				13.6

Notes:

NA - Not Applicable

F - The analyte was positively identified but the associated numerical

NS - No Standard

< 2.5 - Non-Detect 6.5 - NYS GW Ef

- NYS GW Effluent; Class GA exceedances

Bolded numbers are detections

Well ID SW1	Date Sampled Sep-86 Jan-92 Dec-94 Nov-99 May-00 Nov-01 May-02 Nov-02 May-03	TCA - 0.5 - - - - 0.11 J -	TCE	VC 	1,1-DCE	<i>trans</i> - 1,2 DCE – – –	1,1-DCA - - -	<i>cis</i> - 1,2 DCE – –
SW1	Jan-92 Dec-94 Nov-99 May-00 Nov-00 May-01 Nov-01 May-02 Nov-02	- - - 0.11 J	- - - - -		_ _ _	-	_	
	Dec-94 Nov-99 May-00 Nov-00 May-01 Nov-01 May-02 Nov-02	- - - 0.11 J	- - - - -	_ _ _	_ _	-		
	Nov-99 May-00 Nov-00 May-01 Nov-01 May-02 Nov-02	- - - 0.11 J	- - -		-		_	—
	May-00 Nov-00 May-01 Nov-01 May-02 Nov-02	- - 0.11 J	_ _ _	_		_		
	Nov-00 May-01 Nov-01 May-02 Nov-02	- - 0.11 J	_		_		—	-
	May-01 Nov-01 May-02 Nov-02	– 0.11 J	—	_		_	_	_
	Nov-01 May-02 Nov-02	0.11 J			_	_	_	_
	May-02 Nov-02		_	_	_	_	_	_
	Nov-02	-		_	—	_	_	-
			-	_	_	_	_	_
	Mav-03	-	-	_	_	_	_	_
		-	-	_	—	_	_	-
	Nov-03	_	_	-	—	-	_	_
	Jun-04	-	-	_	—	_	_	_
	Nov-04	_	_	-	—	-	_	_
	Oct-05	-	-		—	-	_	_
	Jun-08	-	-		-	-	—	—
	Nov-08	NS	NS	NS	NS	NS	NS	NS
	Nov-09	-	-		-	-	—	-
	Nov-10	0.11	-		-	-	—	-
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	-	-		-	-	—	—
	Oct-13	-	-	-	—	-	—	—
DW1	Jan-92	0.6	_	_	-	-	_	—
	Dec-94	_	_	_	-	_	_	1.8
	Nov-99	-	_	_	_	_		_
	May-00	-	_	_	_	_	_	_
	Nov-00	-	-	_	_	_		_
	May-01	_	_	_	_	_	_	_
	Nov-01	-	_	_	-	_	_	_
	May-02	_	_	_	_	_	_	_
	Nov-02	-	_	_	-	_	_	_
	May-03	_	_	_	-	_	_	_
	Nov-03	_	_	_	-	_	_	—
	Jun-04	_	_	_	-	_	_	-
	Nov-04	_	_	_	-	_	_	_
	Oct-05	_	_	_	_	_	_	_
	Jun-08	_	_	_	_	_	_	_
	Nov-08	NS	NS	NS	NS	NS	NS	NS
	Nov-09	-	-	_	-	_	-	-
	Nov-10	0.18	_	_	_	_	_	_
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	-	-	- -	-		-	-
	Oct-13	_	_	_	_	_	_	_

Table 2Trend Analysis of VOCs in Groundwater

	Date		Concent	trations o	f Analyte i	n Groundw	vater µg/L	
Well ID	Sampled	ТСА	TCE	VC	1,1-DCE	<i>trans</i> - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE
SW3	Sep-86	-	6	-	-	-	_	-
	Jan-92	12	9	-	-	_	5	—
	Dec-94	0.5	1.8	_	-	-	-	_
	Dec-95	0.86	2.8	_	_	_	_	0.44
	Jul-97	_	1	_	_	_	_	_
	Nov-98	0.22	0.81	_	_	_	_	0.1
	Apr-99	0.51	0.71	_	_	_	_	0.17
	Nov-99	0.29	0.71	_	_	_		0.17
							-	
	May-00	0.69	1	_	_	_	0.55	1.29
	Nov-00	0.43	0.9	_	-	-	-	0.22
	May-01	0.46	0.8	_	-	_	0.32	1.29
	Nov-01	0.32 J	0.5 J	-	-	-	-	—
	May-02	0.42 J	0.8 J	_	-	_	0.46 J	_
	May-03	0.584 J	0.893 J	-	-	-	0.302 J	1.37 J
	Nov-03	0.398 J	0.856 J	-	_	_	-	0.511 J
	Jun-04	0.9 J	0.94 J	_	_	_	0.95 J	3.7
	Nov-04	0.52 J	1	0.26 J	_	_	0.38 J	1.5
	Oct-05	0.47 J	0.86 J	-	_	_	-	0.55 J
	Jun-08	0.661 J	1.31	_	_	_	0.403 J	1.45
	Nov-08	0.345 J	0.759 J	_	_	_	_	_
	Nov-09	0.343 J 0.367 J	0.62 J		_	_	_	0.539 J
	Nov-09	1	0.59		_	_	_	0.17
		0.41						
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	-	0.51	-	-	-	-	0.28 F
DUU	Oct-13	-	0.70 F	-	-	-	-	1
DW3	Jan-92	0.3	_	-	-	_	0.3	-
	Dec-94 Dec-95	_		0.28	_		0.26	36 5.2
	Apr-97	_	_		_	_	_	41
	Jul-97	_	_	_	_	_	_	49
	Nov-98	_	_	_	-	-	0.34	66
	Apr-99	-	_	0.28	0.11	-	0.35	67
	Nov-99	_	_	_	_	—	_	_
	May-00	-	-	-	-	0.25	0.16	24.98
	Nov-00	_	_	_	_	_	_	16.85
	May-01	-	_	_	_	_	_	13.29
	Nov-01	-	_	_	-	_		13.58
	May-02 May-03	_			_	_	0.1 J _	21.08
	Nov-03	-			_	_	_	 1.18 J
	Jun-04	_				_	_	1.18 J
	Nov-04	_	_	_	_	_	_	2.1
	Oct-05	-	_	_	_	_	_	3
	Jun-08	_	_	_	_	_	-	73.1

 Table 2

 Trend Analysis of VOCs in Groundwater (continued)

	Date	Concentrations of Analyte in Groundwater µg/L								
Well ID	Sampled	ТСА	TCE	VC	1,1-DCE	<i>trans</i> - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE		
DW3	Nov-08	_	_	_	_	_	0.41 J	67.3		
(cont.)	Nov-09	-	_	_	-	-	0.369 J	64.3		
	Nov-10	-	-	-	-	-	_	8.4		
	CY2011	NA	NA	NA	NA	NA	NA	NA		
	Aug-12	_	_	_	_	_	0.32 F	56		
ŀ	Oct-13	_	_	0.18 F	0.32 F	_	-	57		
SW4	Jan-92	2	97	_	0.3	_	0.6	_		
	Dec-94	20	370	_	2.1		8.5	19		
	Dec-95	34	1200	_	4.9	2.1	6.9	34		
	Apr-97	_	_	_	_	_	7.1	71		
	Jul-97	23	290		_	_	-	15		
	Nov-98	<u>23</u> 8	<u> </u>	0.42	0.82		9	10		
-				0.42	0.82					
	Apr-99	1.9	9.53	_	-		0.87	1.85		
	Nov-99	2.13	9.5	_	0.18	_	7.7	7.15		
	May-00	2.88	8	0.11	0.21	0.49	1.67	4.3		
	Nov-00	1.14	15.2	1.49	0.29	_	15.25	11.18		
	May-01	3.35	34	-	0.36	0.38	1.3	3.19		
	Nov-01	0.88	5.7	0.43 J	0.12 J	_	7.18	5.27		
	May-02	2.54	21.63	_	0.34 J	_	0.79 J	2.07		
	May-03	3.05 J	9.09 J	_	_	_	1.44 J	3.36 J		
	Nov-03	2.03	4.63	_	_	_	0.93	1.93		
	Jun-04	2.8	41	_	0.57 J	0.11	1.3	3.3		
	Nov-04	3.1	56	_	0.88 J	0.19 J	1.4	4.1		
	Oct-05	2.2	43	_	1	01190	1.7	6.3		
	Jun-08	2.98	17.8	_	0.751 J	0.364 J	1.51	4.35		
	Nov-08	0.513 J	17.3		0.7515	0.304 3	0.825 J	3.38		
	Nov-08		12.7		_		0.536 J	1.85		
		1.38		_		_				
-	Nov-10	1.6	48	-	0.64	_	1.1	3.2		
	CY2011	NA	NA	NA	NA	NA	NA	NA		
	Aug-12	0.66	11	_	-		0.64 F	2.3		
	Oct-13	1.8	6.6	_	0.26 F	-	-	2.6		
SW7	Dec-94	4.6	56	6.2	1	0.3	33	150		
	Dec-95 Jul-97	2.2	43 17.8	6.8	0.8		20	130 2		
	Nov-98	2.5	17.8	3.4	0.65	0.28	12	<u> </u>		
	Apr-99	1.23	12.7		-		1.46	5.25		
	Nov-99	1.01	7.9	_	0.19	_	3.38	18.8		
	May-00	0.67	4	-	-	0.12	0.71	2.43		
	Nov-00	0.91	11	0.52	0.15	_	3.48	16.06		
	May-01	1.18	3.95	_	_	_	0.47	1.46		
	Nov-01	0.8 J	5.7	0.85 J	0.19 J	0.13 J	3.02	25.89		
	May-02	0.87 J	1.5	-	-	_	0.47 J	2.79		
	May-03	1.5 J	3.8	—	-	_	0.409 J	1.43 J		

 Table 2

 Trend Analysis of VOCs in Groundwater (continued)

Table 2
Trend Analysis of VOCs in Groundwater (continued)

	Dete	Concentrations of Analyte in Groundwater µg/L								
Well ID	Date Sampled	ТСА	ТСЕ	VC	1,1-DCE	<i>trans</i> - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE		
SW7	Nov-03	0.674 J	1.9	-	-	_	0.509	2.76		
(cont.)	Jun-04	1	1	-	—	—	0.3 J	1.1		
	Nov-04	1.5	2.1	0.47 J	0.25 J	_	1.5 J	10 J		
	Oct-05	0.73 J	3.1	-	_	_	1.4	12		
	Jun-08	2.5	2.94	-	—	—	1.59	6.34		
	Nov-08	1.88	8.15	1.21 M	_	0.302 J	5.04	35.3 M		
	Nov-09	1.24	2.42	I	-	-	0.905 J	5.21		
	Nov-10	1	2.4	1	0.21	0.096	0.58	4.3		
	CY2011	NA	NA	NA	NA	NA	NA	NA		
	Aug-12	2	9.9	1.2	0.65	0.21 F	6.5	44		
	Oct-13	_	2.5	_	0.93 F	_	_	7		

Notes:

ND: Analyte not detected above laboratory method detection limits

NS: Monitoring well "Not Sampled" during event

NA: Analytical data "Not Available" due to extensive flood event at site and surrounding area in CY2011.

Groundwater sampling not conducted in CY2011.

J: The analyte was positively detected, but the quantitaion is an estimation

F: The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

M: Matrix Effect. The analyte concentration was estimated due to matrix effect and therefore estimated

Bolded numbers are exceedances

ATTACHMENT 1

FIELD FORMS

V	HGL
**	

LOCATION: AFP59	(e)	PROJECT NAME: AFP59 2013 (GWS				
SITE: AFP59		PROJECT NO: AF7080					
SITE: MITS	SAMPL	E INFORMATION					
SAMPLE ID 59URS3		DATE: 10-7-13 TIME: 1715					
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS F	OR OC SAMPLES/				
SAMPLING METHOD:	BP	BLANKS ASSOCIATED WITH					
LOT CONTROL #:		MATRIX SPIKE (MS):	<u>5</u>				
(Ambient Blank # - Equipment Bla		MATRIX SPIKE DUP (SD):					
		FIELD DUP (FD):					
CHAIN-OF-CUSTODY #:	· · · · · · · · · · · · · · · · · · ·	AMBIENT BLANK (AB):					
SAMPLE BEG. DEPTH (FT):							
SAMPLE END DEPTH (FT):		EQUIPMENT BLANK (EB):	1213				
GRAB COMPOSITE		TRIP BLANK (TB): 73/0	07.7				
GRABY COMPOSITE							
CONTAINER	PRESERVATIVE/	ANALYTICAL	ANALYSIS				
SIZE/TYPE #	PREPARATION	METHOD	14 Disyana				
1L Amber 2	Cool to 4C	8270C	I,4 Dioxane VOCs				
40 mL VOA 3	Cool to 4C HCl ph<2	SW8260B	¥003				
	NOTABL	E OBSERVATIONS					
PID READINGS	SAMPLE	CHARACTERISTICS	MISCELLANEOUS				
1st 0.8	COLOR:						
2nd	ODOR:						
	OTHER:	2 */	1 52				
pH 7.21 Tempe Iron (mg/L) C	rature <u>1</u> <u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Oxygen <u>3</u> #/ (mg4.) Specific Con D, O (mv) Turbidity 583	(NTU)				
	GENER	AL INFORMATION					
WEATHER: SUN/CLEAR	OVERCAST/RAIN	WIND DIRECTION AMBL	ENT TEMPERATURE 60				
		OURTER (TAL)					
SHIPPED TO: Test America Lab	oratory Denver, CO / B Kalo	NY					
COMMENTE	Prostory perver co/butinalo) · · /					
COMIMENTS.	100	ODSERVER					
SAMPLER: MIKE	anon	OBSERVER:	INVOR CONTR				
MATRIX TYI		27	G=GRAB				
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER					
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER H=HOLLOW STEM AUGER				
LH=HAZARDOUS LIQUID WAS		PP=PERISTALIC PUMP CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH				
SH=HAZRDOUS SOLID WASTI							
SE=SEDIMENT	E WS=SURFACE WATER SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON				

		PROJECT NAME: AFP5	9 2013 GWS			
LOCATION: AFP59						
SITE: AFP59			00			
	SAMPLE	INFORMATION		6000		
SAMPLE ID 59BM121WG1		DATE: 10/8/13	TIME:	0929		
MATRIX TYPE: WG		ENTER SAMPLE NUM	BERS FOR QC S	SAMPLES/		
SAMPLING METHOD: BP		BLANKS ASSOCIATED WITH THIS SAMPLE:				
OT CONTROL #:		MATRIX SPIKE (MS):				
Ambient Blank # - Equipment Blank # - Trip Blank	# - Cooler #)	MATRIX SPIKE DUP (S	-			
CHAIN-OF-CUSTODY #:	-	FIELD DUP (FD):	~			
		AMBIENT BLANK (AB):				
SAMPLE BEG. DEPTH (FT):		EQUIPMENT BLANK (I				
SAMPLE END DEPTH (FT):		TRIP BLANK (TB):				
GRAB 🕅 COMPOSITE ()		TRIF BLANK (TD).				
CONTAINER PRESERVATIV	3/	ANALYTICAL	AN	ALYSIS		
SIZE/TYPE # PREPARATION	1	METHOD				
40 mL VOA 3 Cool to 4C HCl ph<2		SW8260B		/OCs		
1L Amber 2 Cool to 4C		8270C	1,4	Dioxane		
	NOTABLE	OBSERVATIONS				
PID READINGS	SAMPLE CH	ARACTERISTICS	M	ISCELLANEOUS		
st 5.4 COLOR:						
Ind ODOR:						
OTHER:		004		0 692		
pH 7.78 Temperature 12.60 Iron (mg/L) Oxidation/Reduc			4.9 (NTU)	71/0		
weather: SUN/CLEAR X OVER		L INFORMATION WIND DIRECTION	AMBIENT TEMI	PERATURE SO		
SHIPMENT VIA: FEDEX HAND DEI	IVER 🗙 COL					
SHIPPED TO: Test America Laboratory Denver, (IN OFT	A fela				
COMMENTS:	Piroceris ?	PA				
mitse	L.	OBSERVER:	-			
SAMPLER MIKE SHOTS.			LING METHOD C	ODES		
MATDIN TWDE CODES		Britte				
MATRIX TYPE CODES	YGE	B=BAILER	U-U	RAB		
DC=DRILL CUTTINGS SL=SLUI		B=BAILER BP=BLADDER PUMP		RAB HAND AUGER		
DC=DRILL CUTTINGS SL=SLUI WG=GROUND WATER SO=SOII		B=BAILER BP=BLADDER PUMP PP=PERISTALIC PUMP	HA=			
DC=DRILL CUTTINGS SL=SLUI WG=GROUND WATER SO=SOII LH=HAZARDOUS LIQUID WASTE GS=SOIL	, GAS	BP=BLADDER PUMP	HA= H=H	HAND AUGER		
DC=DRILL CUTTINGSSL=SLUIWG=GROUND WATERSO=SOIILH=HAZARDOUS LIQUID WASTEGS=SOIISH=HAZRDOUS SOLID WASTEWS=SUR		BP=BLADDER PUMP PP=PERISTALIC PUMP	HA= H=H HP=1 .UGER SS=S	HAND AUGER OLLOW STEM AUGER		

LOCATION: AFP59		PROJECT NAME: AFP59 201	3 GWS
SITE: AFP59		PROJECT NO: AF7080	
	SAMPL	E INFORMATION	
SAMPLE ID 59URS2DW		DATE: 10/8/13	TIME: / ZYJ
MATRIX TYPE: WG	v	ENTER SAMPLE NUMBERS	S FOR OC SAMPLES/
SAMPLING METHOD: BP		BLANKS ASSOCIATED WIT	
LOT CONTROL #:		MATRIX SPIKE (MS):	
(Ambient Blank # - Equipment Blank #		MATRIX SPIKE DUP (SD):	
251		FIELD DUP (FD):	5
CHAIN-OF-CUSTODY #:		AMBIENT BLANK (AB)	
SAMPLE BEG. DEPTH (FT):	1		
SAMPLE END DEPTH (FT):		EQUIPMENT BLANK (EB):	96713
GRAB COMPOSITE ()		TRIP BLANK (TB):	
GRABY COMPOSITE()			
	ESERVATIVE/	ANALYTICAL	ANALYSIS
	REPARATION	METHOD 8270C	1,4 Dioxane
	Cool to 4C to 4C HCl ph<2	SW8260B	VOCs
	NOTABL	E OBSERVATIONS	
PID READINGS	SAMPLE	CHARACTERISTICS	MISCELLANEOUS
1. V	COLOR:		
	DOR:		
	OTHER:	245	152/
pHTemperatur	re MC (C) Dissolved	Oxygen 2.77 (mg/L) Specific C 3.3 (mv) Turbidity 15.9	(NTU) (NTU) (NTU)
Iron(mg/L) Oxida	ation/Reduction Potential	(mv) Turbidity [37]	
	GENER	AL INFORMATION	
	OVED OA CT/D A IN		IBIENT TEMPERATURE
WEATHER: SUN/CLEAR	OVERCASI/RAIN	WIND DIRECTION AM	
		OURIER (TAL) OTHER	
SHIPPED TO: Test America Laborato	ITY Deriver, CO PITTSBUR	h, Pa/Bottalo, M	
COMMENTS			
SAMPLER: MILE DA	etson	OBSERVER:	
MATRIX TYPE C		SAMPLING	METHOD CODES
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	
		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP

V	HGL
	HydroficeEogra, lite

LOCATION: AFP59		PROJECT NAME:	AFP59 2013 GV	VS
SITE: AFP59		PROJECT NO:	AF7080	
	SAMPL	E INFORMATION		
SAMPLE ID 59URS2S0	GW1	DATE: 10/8	13т	IME: 1740
MATRIX TYPE: WG		ENTER SAMPLE N	NUMBERS FOR	R QC SAMPLES/
SAMPLING METHOD: BP		BLANKS ASSOCIA	ATED WITH T	HIS SAMPLE:
LOT CONTROL #:		MATRIX SPIKE (N	MS):	
(Ambient Blank # - Equipment Blank	# - Trip Blank # - Cooler #)	MATRIX SPIKE D	UP (SD):	
CHAIN-OF-CUSTODY #:		FIELD DUP (FD):		
		AMBIENT BLANK	K (AB):	
SAMPLE BEG. DEPTH (FT):	-	EQUIPMENT BLA	NK (EB):	
SAMPLE END DEPTH (FT):	- ×	TRIP BLANK (TB)	70100	5713
GRAB 🗙 COMPOSITE ())			
CONTAINER	RESERVATIVE/	ANALYTICAL		ANALYSIS
SIZE/TYPE #	PREPARATION	METHOD		
1L Amber 2	Cool to 4C	8270C		I,4 Dioxane VOCs
40 mL VOA 3 Co	ol to 4C HCl ph<2	SW8260B		1003
	NOTABL	E OBSERVATIONS		
PID READINGS	SAMPLE (CHARACTERISTICS		MISCELLANEOUS
1st /,2	COLOR:			
2nd	ODOR: OTHER:			
pH 6.47 Temperat Iron (mg/L) Oxi	ure 14.38 (C) Dissolved dation/Reduction Potential	1.8 (mv) Turbidity	Specific Condu	etivity 1.25/ (umbes/cm) NTU)
		AL INFORMATION		1-0
WEATHER: SUN/LEAR	OVERCAST/RAIN	WIND DIRECTION	AMBIEN	T TEMPERATURE 62
SHIPMENT VIA: FEDEX	HAND DELIVER	OT	HER	
SHIPPED TO: Test America Labora	tory Donver, CO. PITTEUAL	HSPA/ Brthalo,	المر	e 1.
COMMENTS		(. 4.)		
SAMPLER: MIKE J	ackson	OBSERVER:		
MATRIX TYPE	CODES	S	SAMPLING MET	HOD CODES
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER		G=GRAB
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP		HA=HAND AUGER
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUM		H=HOLLOW STEM AUGER
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAM		HP=HYDRO PUNCH
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIC	JHT AUGER	SS=SPLIT SPOON
		DT=DRIVEN TUBE		SP=SUBMERSIBLE PUMP

LOCATION:	AFP59		I ROJECT WRITE.	P59 2013	3 GWS	w.
SITE:	AFP59		PROJECT NO: AF	7080		
		SAMPLI	E INFORMATION			
SAMPLE ID	59URS5SW0	31	DATE: 10/1	8/13	TIME:	1312
MATRIX TYPE:	: WG		ENTER SAMPLE NU	MBERS	FOR QC SA	AMPLES/
AMPLING METHOD: BP		ENTER SAMPLE NUMBERS FOR QC SAMPLES/ BLANKS ASSOCIATED WITH THIS SAMPLE:				
		MATRIX SPIKE (MS):5	90255	500G1-M5 55W61-M8	
Ambient Blank # - E	Equipment Blank # -	Trip Blank # - Cooler #)	MATRIX SPÌKE DUI	P (SD):	SAAKS	55W61-M8
CHAIN-OF-CUS	STODY #:		FIELD DUP (FD):			
			AMBIENT BLANK (AB):		
SAMPLE BEG. DE	EPTH (FT):		EQUIPMENT BLAN	K (EB):		-
SAMPLE END DE	PTH (FT):		TRIP BLANK (TB):	TB1p	6713	
GRAB	MPOSITE ()			/		
CONTAINER	PRE	SERVATIVE/	ANALYTICAL		ANA	LYSIS
SIZE/TYPE		EPARATION	METHOD		NOG	22(0)
40 mL VOA		o 4C HCl ph<2	SW8260B 8270C			s 8260B Dioxane
IL Amber	2 (-1		
		NOTABLI	E OBSERVATIONS			
PID REAL	DINGS	SAMPLE	CHARACTERISTICS		MI	SCELLANEOUS
1st 4.		OLOR:			*:	
2nd		DOR: THER:				
pH 7.3 Iron	0 Temperature	e 13.29 (C) Dissolved tion/Reduction Potential	(mv) Turbidity	Specific C	onductivity _ (NTU)	1.55) (umhoc/cm) MS/cy
			AL INFORMATION			(
WEATHER: SU	CLEAR X	OVERCAST/RAIN	WIND DIRECTION	AM	BIENT TEMP	ERATURE 65 F
SHIPMENT VIA	FEDEX	HAND DELIVER X CO	OURER (TAL)	ER	_	
SHIPPED TO: Test	t America Laborator	y Benver, CO PITTS BY	33, Pa/ Bothelos	NT	8	
COMMENTS:			<i>I</i>			
SAMPLER: M	ILE DA	Noal	OBSERVER:	-		
	MATRIX TYPE CO		ers entry and entry a	MPLING	METHOD CC	
DC=DRILL CUTTI		SL=SLUDGE	B=BAILER		G=GF HA=F	IAND AUGER
WG=GROUND WA		SO=SOIL	BP=BLADDER PUMP PP=PERISTALIC PUMP			LLOW STEM AUGER
LH=HAZARDOUS	20	GS=SOIL GAS WS=SURFACE WATER	CS=COMPOSITE SAMP	LE		YDRO PUNCH
SH=HAZRDOUS S SE=SEDIMENT	OLID WASTE	SW=SWAB/WIPE	C=CONTINUOUS FLIGI		SS=S	PLIT SPOON
Dis Distantions	25	-TANK MFOMILESTALLASSONES	DT=DRIVEN TUBE		SP=S	UBMERSIBLE PUMP

				AFP59 2013 G	WS	
LOCATION	AFP59		I KOLCI MAML		VY 5	
SITE:	AFP59		PROJECT NO:	AF7080		
		SAM	PLE INFORMATION			
SAMPLE ID	59DW1W0	31	DATE: 10 - 4	1-13 т	TIME: 0902	
MATRIX TYPE:	WG		ENTER SAMPLE 1	NUMBERS FO	R OC SAMPLES/	
SAMPLING METHOD: BP			BLANKS ASSOCI	BLANKS ASSOCIATED WITH THIS SAMPLE:		
LOT CONTROL #:			MATRIX SPIKE (1	MS):		
(Ambient Blank # - Eq	juipment Blank	# - Trip Blank # - Cooler #)	MATRIX SPIKE I	OUP (SD):		
CHAIN-OF-CUST	TODY #	×	FIELD DUP (FD):			
			AMBIENT BLAN	_		
SAMPLE BEG, DEP	PTH (FT):		EQUIPMENT BLA			
SAMPLE END DEP			TRIP BLANK (TB	My 16 de	+13	
GRAB 🔊 COM			I KIP BLANK (IB): //		
CONTAINED	DI	RESERVATIVE/	ANALYTICAL		ANALYSIS	
CONTAINER SIZE/TYPE	_	REPARATION	METHOD			
	2	Cool to 4C	8270C		1,4 Dioxane	
		bl to 4C HCl ph<2	SW8260B		VOCs	
-		NOTA	BLE OBSERVATIONS			
PID READI	NGS	SAMP	LE CHARACTERISTICS		MISCELLANEOUS	
1st 0.5		COLOR:				
2nd		ODOR:				
		OTHER:	~		19120	
pH 7.19	_ Temperat (mg/L) Oxio	are 12.65 (C) Dissolution/Reduction Potential	ved Oxygen 2.58 (mg/L)	Specific Cond	(NTU)	
		GEN	ERAL INFORMATION		6	
WEATHER: SUN/	CLEAR		WIND DIRECTION	AMBIEN	NT TEMPERATURE 40	
SHIPMENT VIA: F	EDEX	HAND DELIVER X	COURIER (TAL)			
SHIPPED TO: Test /	America Labora	Pinsking Sight	I D C MY			
COMMENTS:		PITOBUSSICO/	1 GUTHELD , MI			
	621 102	1	ODSEDVED.			
SAMPLER: N	NKE	JACKSUN	OBSERVER:			
MA	ATRIX TYPE	CODES	and should be the second	SAMPLING MET		
DC=DRILL CUTTING	GS	SL=SLUDGE	B=BAILER		G=GRAB	
WG=GROUND WAT	ER	SO=SOIL	BP=BLADDER PUMP		HA=HAND AUGER	
LH=HAZARDOUS L	IQUID WASTE		PP=PERISTALIC PUM		H=HOLLOW STEM AUGER	
SH=HAZRDOUS SO	LID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAN		HP=HYDRO PUNCH	
SE=SEDIMENT		SW=SWAB/WIPE	C=CONTINUOUS FLI	GHT AUGER	SS=SPLIT SPOON	
			DT=DRIVEN TUBE		SP=SUBMERSIBLE PUMP	

	A ED CO		PROJECT NAME:	AFP59 2013 GV	WS
LOCATION:	AFP59			AF7080	
SITE:	AFP59		PROJECT NO:	AF /000	
		SAM	PLE INFORMATION	1	11.10
SAMPLE ID	59SW1W0	G1	DATE: /0/9	//Зт	IME: // ø2
MATRIX TYPE:	WG		ENTER SAMPLE		
SAMPLING ME	THOD: BF)	BLANKS ASSOC	TATED WITH T	HIS SAMPLE:
LOT CONTROL	#:		MATRIX SPIKE	(MS):	
(Ambient Blank # - E	quipment Blank	# - Trip Blank # - Cooler #)		DUP (SD)	
CHAIN-OF-CUS	TODY #:		FIELD DUP (FD):	
			AMBIENT BLA	NK (AB):	
SAMPLE BEG. DE	PTH (FT)	v	EQUIPMENT B	LANK (EB):	
SAMPLE END DEP			TRIP BLANK (7	тв): Тој	Ø713
GRAB 🔀 CON	MPOSITE ()		C	
CONTAINER	P	RESERVATIVE/	ANALYTICAL		ANALYSIS
SIZE/TYPE	# 1	PREPARATION	METHOD		
1L Amber	2	Cool to 4C	8270C		I,4 Dioxane
40 mL VOA	3 Co	ol to 4C HCl ph<2	SW8260B		VOCs
		NOTA	BLE OBSERVATIONS		
PID READ	INGS	SAMF	LE CHARACTERISTICS		MISCELLANEOUS
lst 1?	>	COLOR:			
2nd		ODOR:			
		OTHER:			2.4.55
pH 7.09 Iron 	Temperat _(mg/L) Oxi) Specific Condu 4.75	nctivity 2./05 (umboo/om) NTU) MS/CM
			ERAL INFORMATION		- 0
WEATHER: SUN	/CLEAR	OVERCAST/RAIN	WIND DIRECTION	AMBIEN	IT TEMPERATURE <u>JO</u>
SHIPMENT VIA:	FEDEX	HAND DELIVER	CONRIER (TAL)	OTHER	
SHIPPED TO: Test	America Labora	tory Benver, CO Pm	surph, Ro / Butthe	6, 17	
COMMENTS:			•		
SAMPLER:	NKE	JACKOUN	OBSERVER:		
	ATRIX TYPE			SAMPLING MET	HOD CODES
DC=DRILL CUTTIN	IGS	SL=SLUDGE	B=BAILER		G=GRAB
WG=GROUND WA	TER	SO=SOIL	BP=BLADDER PUM	IP	HA=HAND AUGER
LH=HAZARDOUS I	LIQUID WASTE	E GS=SOIL GAS	PP=PERISTALIC PU	MP	H=HOLLOW STEM AUGER
SH=HAZRDOUS SC	DLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SA	MPLE	HP=HYDRO PUNCH
SE=SEDIMENT		SW=SWAB/WIPE	C=CONTINUOUS FI	LIGHT AUGER	SS=SPLIT SPOON
			DT=DRIVEN TUBE		SP=SUBMERSIBLE PUMP

(
LOCATION:	AFP59		PROJECT NAME:	AFP59 2013	GWS
SITE:	AFP59		PROJECT NO:	AF7080	
		SAMPL	E INFORMATION		
SAMPLE ID	59DW3WG	1	DATE: /D/	1/13	тіме: 1417-
MATRIX TYPE:	WG		ENTER SAMPLE	E NUMBERS F	FOR QC SAMPLES/
SAMPLING MET	HOD: BP		BLANKS ASSOC		
LOT CONTROL #	:		MATRIX SPIKE	E (MS):	
		- Trip Blank # - Cooler #)	MATRIX SPIKE	E DUP (SD):	
		3	FIELD DUP (FD		
CHAIN-OF-CUST	ODY #:				
SAMPLE BEG. DEP			AMBIENT BLA		-
SAMPLE END DEPT			EQUIPMENT B	LANK (EB):	1 2213
			TRIP BLANK (7	гв): 751	001.5
GRAB 🦈 COM	POSITE ()				
CONTAINER	PRE	SERVATIVE/	ANALYTICAL		ANALYSIS
SIZE/TYPE #		EPARATION	METHOD		VOCs
40 mL VOA 3		to 4C HCl ph<2	SW8260B 8270C		1,4 Dioxane
1L Amber 2		20011040	02700		
		NOTABL	E OBSERVATIONS		
PID READIN	NGS	SAMPLE	CHARACTERISTICS		MISCELLANEOUS
lst 1.6		OLOR:			
2nd		DOR;			
		THER:			-0-
pH 7.12	Temperature mg/L) Oxida	e 15.37 (C) Dissolved tion/Reduction Potential -3	Oxygen <u>0.3</u> (mg/L 8.6 (mv) Turbidity) Specific Con 22.4	nductivity 1.595 (umhos/cm) (NTU) m5/cm
		GENER	AL INFORMATION		
WEATHED SUNU	Y FAR	OVERCAST/RAIN	WIND DIRECTION	AMB	IENT TEMPERATURE 66 •
		HAND DELIVER _ G		OTHER	
SHIPMENT VIA: PI	SDEX		ab Pa / B. there		
SHIPPED TO: Test A	merica Laborator	y Denver, GO PITTS BOT	64) 14/ 100111-1	7.	
COMMENTS:					
SAMPLER: MI	KE J	ackson	OBSERVER:		
	TRIX TYPE CO			SAMPLING M	ETHOD CODES
DC=DRILL CUTTING		SL=SLUDGE	B=BAILER		G=GRAB
WG=GROUND WATE	ER	SO=SOIL	BP=BLADDER PUN	IP	HA=HAND AUGER
LH=HAZARDOUS LIG	QUID WASTE	GS=SOIL GAS	PP=PERISTALIC PU		H=HOLLOW STEM AUGER
SH=HAZRDOUS SOL	ID WASTE	WS=SURFACE WATER	CS=COMPOSITE SA		HP=HYDRO PUNCH
SE=SEDIMENT		SW=SWAB/WIPE	C=CONTINUOUS FI		SS=SPLIT SPOON
			DT=DRIVEN TUBE		SP=SUBMERSIBLE PUMP

LOCATION.	AFP59		PROJECT NAME: AFP59 2013	GWS
SITE:	AFP59		PROJECT NO: AF7080	
		SAMPLE	E INFORMATION	
SAMPLE ID	59SW3WG1		DATE: 10/9/13	TIME: 1000
MATRIX TYPE:	WG		ENTER SAMPLE NUMBERS F	FOR QC SAMPLES/
SAMPLING METHOD: BP		BLANKS ASSOCIATED WITH THIS SAMPLE:		
LOT CONTROL #:			MATRIX SPIKE (MS):	
(Ambient Blank # - E	quipment Blank # -	Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):	
CHAIN-OF-CUS	TODY #:		FIELD DUP (FD):	
			AMBIENT BLANK (AB):	
SAMPLE BEG. DEF	PTH (FT): 🗖		EQUIPMENT BLANK (EB):	
SAMPLE END DEF			TRIP BLANK (TB):	
GRAB 🗙 CON	APOSITE ()	هــــــــــــــــــــــــــــــــــــ		· · · ·
		SERVATIVE/	ANALYTICAL	ANALYSIS
CONTAINER SIZE/TYPE		EPARATION	METHOD	
1L Amber		Cool to 4C	8270C	I,4 Dioxane
40 mL VOA	3 Cool t	o 4C HCl ph<2	SW8260B	VOCs
		NOTADLI	E OBSERVATIONS	
				MISCELLANEOUS
PID READ	the second se		CHARACTERISTICS	MIGGELEANEOUU
		OLOR:		
lst 2.8		100120		
1st 2.8 2nd	0	DOR: THER:		
	O O Temperature	THER: e 16.30 (C) Dissolved (tion/Reduction Potential 9		nductivity 1.447 (mnhos/cm) (NTU) m5/cm
pH 6.99	Ol O Temperature (mg/L) Oxida	THER: e 16.30 (C) Dissolved (tion/Reduction Potential9 GENERA	L INFORMATION	_(N10), , , , , , , , , , , , , , , , , ,
pH 6.99	Ol O Temperature (mg/L) Oxida	THER: e 16.30 (C) Dissolved (tion/Reduction Potential9 GENERA	L INFORMATION	_(N10), , , , , , , , , , , , , , , , , ,
pH 6.99 Iron SUN	Ol Temperature _(mg/L) Oxidat I/CLEAR _ X	THER: (C) Dissolved (tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER CCC	(mv) Turbidity AL INFORMATION WIND DIRECTION AMB DURIER (TAL) OTHER	_(N10), , , , , , , , , , , , , , , , , ,
pH 6.99 Iron SUN	Ol Temperature _(mg/L) Oxidat I/CLEAR _ X	THER: (C) Dissolved (tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER CCC	(mv) Turbidity AL INFORMATION WIND DIRECTION AMB DURIER (TAL) OTHER	_(N10), , , , , , , , , , , , , , , , , ,
pH 6.99 Iron SUN	Ol Temperature _(mg/L) Oxidat I/CLEAR _ X	THER: (C) Dissolved (tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER CCC	(mv) Turbidity Turbidity Turbidity Turbidity <t< td=""><td>_(NIU),,,,,,,</td></t<>	_(NIU),,,,,,,
2nd pH 6.99 Iron weather: SUN SHIPMENT VIA: SHIPPED TO: Test COMMENTS:	OI Temperature _(mg/L) Oxidat I/CLEAR FEDEX America Laborator	THER: e 16.30 (C) Dissolved (tion/Reduction Potential GENERA OVERCAST/RAIN HAND DELIVERCC y Benver, CO	(mv) Turbidity 1.79 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) _ OTHER OURIER (TAL) _ OTHER OURIER (TAL) _ OTHER OBSERVER:	LIENT TEMPERATURE 63°
2nd pH 6.99 Iron SHIPMENT VIA: SHIPPED TO: Test COMMENTS: SAMPLER: MI	Ol Temperature _(mg/L) Oxidat I/CLEAR _ X	THER: a 16.30 (C) Dissolved (tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER CO y Denver, CO P.775 (C CO	(mv) Turbidity 1.79 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) _ OTHER OURIER (TAL) _ OTHER OURIER (TAL) _ OTHER OBSERVER:	ETHOD CODES
2nd pH 6.99 Iron weather: SUN SHIPMENT VIA: SHIPPED TO: Test COMMENTS: SAMPLER: MI	OI Temperature (mg/L) Oxidat I/CLEAR _ X FEDEX America Laborator KG Jack	THER: a 16.30 (C) Dissolved (tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER CO y Denver, CO P.775 (C CO	(mv) Turbidity 1.49 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) _ OTHER OBSERVER: OBSERVER: B=BAILER	ETHOD CODES G=GRAB
2nd pH 6.99 Iron SHIPMENT VIA: SHIPMENT VIA: SHIPPED TO: Test COMMENTS: SAMPLER: MI DC=DRILL CUTTIN WG=GROUND WA	CI CIEAR FEDEX America Laborator CATRIX TYPE CON NGS TER	THER: a 16.30 (C) Dissolved (C) tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER 6 CONTROLOGIES SL=SLUDGE SO=SOIL	(mv) Turbidity 1.79 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) _ OTHER OBSERVER: B=BAILER BP=BLADDER PUMP	TETHOD CODES G=GRAB HA=HAND AUGER
2nd pH 6.99 Iron WEATHER: SUN SHIPMENT VIA: SHIPPED TO: Test COMMENTS: SAMPLER: M DC=DRILL CUTTIN WG=GROUND WA LH=HAZARDOUS	CI Temperature (mg/L) Oxidat CLEAR X FEDEX America Laborator CATRIX TYPE CO NGS TER LIQUID WASTE	THER: a 16.30 (C) Dissolved (tion/Reduction Potential? GENERA OVERCAST/RAIN HAND DELIVERCO y Benver, CO Pins 6 CO SL=SLUDGE SO=SOIL GS=SOIL GAS	(mv) Turbidity 1.79 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) OTHER OBSERVER: B=BAILER BP=BLADDER PUMP PP=PERISTALIC PUMP	EIENT TEMPERATURE 63° EIENT TEMPERATURE 63° G=GRAB HA=HAND AUGER H=HOLLOW STEM AUGER
2nd pH 6.99 Iron SHIPMENT VIA: SHIPMENT VIA: SHIPPED TO: Test COMMENTS: SAMPLER: MI MC=DRILL CUTTIN WG=GROUND WA	CI Temperature (mg/L) Oxidat CLEAR X FEDEX America Laborator CATRIX TYPE CO NGS TER LIQUID WASTE	THER: a 16.30 (C) Dissolved (C) tion/Reduction Potential 9 GENERA OVERCAST/RAIN HAND DELIVER 6 CONTROLOGIES SL=SLUDGE SO=SOIL	(mv) Turbidity 1.79 AL INFORMATION WIND DIRECTION AMB OURIER (TAL) _ OTHER OBSERVER: B=BAILER BP=BLADDER PUMP	TETHOD CODES G=GRAB HA=HAND AUGER

ſ

LOCATION:	AFP59		PF	ROJECT NAME:	AFP59 2013 GV	VS
SITE:	AFP59		PI	ROJECT NO:	AF7080	
		SA	MPLE INF	ORMATION		
SAMPLE ID	59SW7WG1			DATE: 10/9/	13 TI	IME: 1804
MATRIX TYPE:	WG		1	ENTER SAMPLE	NUMBERS FOR	R OC SAMPLES/
SAMPLING METH	OD: BP			BLANKS ASSOC		
LOT CONTROL #:				MATRIX SPIKE	(MS):	
(Ambient Blank # - Equip					DUP (SD):	
);	
CHAIN-OF-CUSTC	DI#:				NK (AB):	
SAMPLE BEG. DEPTH						
					LANK (EB):	17
SAMPLE END DEPTH (FT):			TRIP BLANK (TB):78/6 57 13		10	
GRAB COMP	USITE ()					
CONTAINER	4	ERVATIVE/		ALYTICAL		ANALYSIS
SIZE/TYPE #		PARATION		METHOD SW8260B		VOCs
40 mL VOA 3 IL Amber 2		od to 4C		8270C		I,4 Dioxane
		NO	TABLE OBS	SERVATIONS		
PID READING	GS	SA	MPLE CHARA	CTERISTICS		MISCELLANEOUS
1st 1.1		LOR:				
2nd		OR:				
0	01	HER:		4 24		1 201 (1. ())
pH 7.5% Iron (m	Temperature g/L) Oxidati	5.26 (C) Dison/Reduction Potentia	solved Oxyger al 83.3	1) Specific Condu 6.73_(1	ctivity /. ¥0/ (umhos/cm) NTU) /////
		GE	ENERAL IN	FORMATION		160
WEATHER: SUN/CL	_{EAR} ×	OVERCAST/RAIN	V	IND DIRECTION	AMBIEN	T TEMPERATURE 61
SHIPMENT VIA: FEE						
		no colad	Kalo NI	()	-	
SHIPPED TO: Test Am	erica Laboratory	Benver, ee, ov				
COMMENTS:	PI	יייןיע ישבר				
SHIPPED TO: Test Am COMMENTS: SAMPLER:	KE ()	Actor		OBSERVER:		
	RIX TYPE CO				SAMPLING METH	HOD CODES
DC=DRILL CUTTINGS		SL=SLUDGE		B=BAILER		G=GRAB
WG=GROUND WATER	R	SO=SOIL		BP=BLADDER PUM		HA=HAND AUGER
LH=HAZARDOUS LIQU	uid waste	GS=SOIL GAS		PP=PERISTALIC PU		H=HOLLOW STEM AUGER
SH=HAZRDOUS SOLIE) WASTE	WS=SURFACE WAT	ER	CS=COMPOSITE SA		HP=HYDRO PUNCH
SE=SEDIMENT		SW=SWAB/WIPE		C=CONTINUOUS FI	JGHT AUGER	SS=SPLIT SPOON SP=SUBMERSIBLE PUMP
				DT=DRIVEN TUBE		51-50DMERGIDED I OMI

LOCATION: AFP59	PROJECT NAME: AFP59 2013 GWS	
SITE: AFP59	PROJECT NO: AF7080	
SA	AMPLE INFORMATION	
SAMPLE ID 59SW4WG1	DATE: 10/10/13 TIME: 1327-	
MATRIX TYPE: WG	ENTER SAMPLE NUMBERS FOR QC SAMPLES/	
SAMPLING METHOD: BP	BLANKS ASSOCIATED WITH THIS SAMPLE:	
LOT CONTROL #:	MATRIX SPIKE (MS):	
(Ambient Blank # - Equipment Blank # - Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):	
CHAIN-OF-CUSTODY #:	FIELD DUP (FD): AMBIENT BLANK (AB): 59 2008 59 EB101013 EQUIPMENT BLANK (EB): 59 2008 59 EB101013	Comade
	AMBIENT BLANK (AB)	Cucsery
SAMPLE BEG. DEPTH (FT):	EQUIPMENT BLANK (EB) 59 2005 59 2101913	
SAMPLE END DEPTH (FT): 🖛	TRIP BLANK (TB): TB100713 (VOCSary)	
GRAB (X COMPOSITE ()		
CONTAINER PRESERVATIVE/	ANALYTICAL ANALYSIS	
SIZE/TYPE # PREPARATION	METHOD	
40 mL VOA 3 Cool to 4C HCl ph<2	SW8260B VOCs	
1L Amber 2 Cool to 4C	8270C 1,4 Dioxane	
NOT	TABLE OBSERVATIONS	
	MPLE CHARACTERISTICS MISCELLANEOUS	
Ist 9.2 COLOR:		
2nd ODOR:		
OTHER:	column 2.41 (mg/l) Specific Conductivity 1.736 (umbos/cm)	
pH 7.05 Temperature 14.34(C) Dist Iron (mg/L) Oxidation/Reduction Potentia	Survey Oxygen	
GE	ENERAL INFORMATION	
WEATHER: SUN/CLEAR OVERCAST/RAIN	\times wind direction Ambient temperature $53^{\circ}F$	
SHIPMENT VIA: FEDEX HAND DELIVER		
SHIPPED TO: Test America Laboratory Denver, CO		
COMMENTS:		
SAMPLER: MIKE JAckson	OBSERVER:	
MATRIX TYPE CODES	SAMPLING METHOD CODES	
DC=DRILL CUTTINGS SL=SLUDGE	B=BAILER G=GRAB BP=BLADDER PUMP HA=HAND AUGER	
WG=GROUND WATER SO=SOIL		
LH=HAZARDOUS LIQUID WASTE GS=SOIL GAS	PP=PERISTALIC PUMP H=HOLLOW STEM AUGER CS=COMPOSITE SAMPLE HP=HYDRO PUNCH	
SH=HAZRDOUS SOLID WASTE WS=SURFACE WAT		
SE=SEDIMENT SW=SWAB/WIPE		
	DT=DRIVEN TUBE SP=SUBMERSIBLE PUMP	ŧ

V	HGL
-	HydraGeoLagic, Inc.

[
LOCATION: AFP59	¥	PROJECT NAME: AFP59 2013 G	WS
SITE: AFP59		PROJECT NO: AF7080	
	SAMPLE	E INFORMATION	
SAMPLE ID 591C1WG1	59JCEFFWGI	DATE: 10/10/13	гіме: /дсь
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS FC	OR OC SAMPLES/
SAMPLING METHOD: G		BLANKS ASSOCIATED WITH	
LOT CONTROL #:		MATRIX SPIKE (MS):	
(Ambient Blank # - Equipment Blank #	- Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):	
CHAIN-OF-CUSTODY #:		FIELD DUP (FD)	2
		AMBIENT BLANK (AB)	
SAMPLE BEG. DEPTH (FT):		EQUIPMENT BLANK (EB):	
SAMPLE END DEPTH (FT):			
$GRAB \bigotimes COMPOSITE()$		TRIP BLANK (TB):	<u>9</u> -17
	OEDVATBUE/	ANALYTICAL	ANALYSIS
	SERVATIVE/ EPARATION	METHOD	
	to 4C HCl ph<2	SW8260B	VOCs
1L Amber 2	Cool to 4C	8270C	I,4 Dioxane
	NOTABLE	OBSERVATIONS	
PID READINGS		HARACTERISTICS	MISCELLANEOUS
	OLOR:		
100	DOR:		
	THER:		
pH 7.5% Temperature Iron (mg/L) Oxida	e 13.83 (C) Dissolved C tion/Reduction Potential 20	Dxygen 2.65 (mg/L) Specific Cond	uctivity 1.637 (umhos/cm) (NTU) ~S/c~
		L INFORMATION	~ 2*.
WEATHER: SUN/CLEAR	OVERCAST/RAIN	WIND DIRECTION AMBLE	NT TEMPERATURE
		URIER (TAL) OTHER	
SHIPPED TO: Test America Laborator			
lessons course or relations	TIC DIMY		
COMMENTS:	BA		
SAMPLER: MIKE	Jackson	OBSERVER:	
MATRIX TYPE CO	DDES	SAMPLING MET	THOD CODES
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON SP=SUBMERSIBLE PUMP
		DT=DRIVEN TUBE	91-90 DIVIERGIDLE FOMP

V	HGL
	HERWORDHURDEN PS

·····							
LOCATION:	AFP59		PROJECT NAME:	AFP59 2013	GWS		
SITE:	AFP59 PROJECT NO: AF7080						
		SAN	APLE INFORMATION				
SAMPLE ID	59JCIWCI	59JC2WG	DATE: 10 -1	0-13	TIME:	Ipp pp pp	
MATRIX TYPE:	WG		ENTER SAMPLE	E NUMBERS I	FOR QC S.	AMPLES/	
SAMPLING MET	THOD: G		BLANKS ASSOC				
LOT CONTROL	#:		MATRIX SPIKE	E (MS):		3	
(Ambient Blank # - Ec	uipment Blank # -	Trip Blank # - Cooler #)	MATRIX SPIKE	E DUP (SD):		-	
CHAIN-OF-CUS	ΓΟ ΡΥ #·		FIELD DUP (FD):			
				NK (AB):			
SAMPLE BEG. DEF	РТН (FT): 🗕			LANK (EB):			
SAMPLE END DEP	TH (FT):			тв): ТВ/Ф			
GRAB 🗙 COM			I KIP BLANK (I	(B)			
			ANALYTICAL		ANA	ALYSIS	
CONTAINER SIZE/TYPE		SERVATIVE/ EPARATION	METHOD				
		o 4C HCl ph<2	SW8260B				
		Cool to 4C	8270C		1,4 I	Dioxane	
			THE OBSTREET				
			ABLE OBSERVATIONS				
PID READI			PLE CHARACTERISTICS		MI	SCELLANEOUS	
1st —		DLOR:					
2nd		DOR: THER:					
pH 8.06 Iron -	Temperature (mg/L) Oxidat	e <u>[}26 (C)</u> Disso ion/Reduction Potential	lved Oxygen <u>9,1%</u> (mg/L 2-9,4 (mv) Turbidity) Specific Co 1.87	nductivity _ (NTU)	1.144 (emilios/cm) MS/C	
WEATHER: SUN/	CLEAR		ERAL INFORMATION	AMB	IENT TEMP	erature 53°	
SHIPMENT VIA: F	EDEX	HAND DELIVER	COURIER (TAL) x (OTHER	-		
SHIPPED TO: Test A	America Laborator	Donver, 00 / Butt	mio, NT				
COMMENTS:		P, Tropingh, Por					
SAMPLER: A	NIKE J	P, Trspungh, Por Weksul	OBSERVER:			-	
	TRIX TYPE CO	the second s	0	SAMPLING M	ETHOD CO	DES	
DC=DRILL CUTTING	3S	SL=SLUDGE	B=BAILER				
WG≕GROUND WAT	ER	SO=SOIL	BP=BLADDER PUM			IAND AUGER	
LH=HAZARDOUS L	IQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PU			LLOW STEM AUGER	
SH=HAZRDOUS SO	LID WASTE	WS=SURFACE WATEF				YDRO PUNCH PLIT SPOON	
SE=SEDIMENT		SW=SWAB/WIPE	C=CONTINUOUS FI	LIGHT AUGEK		JBMERSIBLE PUMP	
			DI-DRIVEN TUBE	DT=DRIVEN TUBE SP=SUBMERSIBLE PO			

Page of

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: URS-3D	Location: AFP59
Sampler(s): MIKE DAcks	Project Name: AFP59 2013 GWS
Well Depth: 86.75	Project #: AF7080 Date: 10 - 7 -13 Time: 1520
DTW (ft): 37.38 DTP Top (ft): 82.80	Courier: FedEx UPS Hand _ TAL Pickup
MP Ht. Above Below Ground Surface 1.78	Sampling Method : BP
Condition of Bottom of Well: Filter Sors	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (65.33 - 95.33)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2 -112 (55)	Overcast, about a Anyo, 60°
Placement of Pump Inlet (ft): 33	

				+1-0.1	Field	Parameter	"S #/-10		+/-10	X
Time	Depth to Water	Flow Rate (L/m)	Total Volume (L)	рН	Temp. (C) #/0.5	Cond. (umhos/cm) MS/cm	ORP	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
1542	(ft) 35,82		0.5	7.30	12.82	1.575	47.9	3.75	E3 Werrm	0 Northing
1547	-35.82	0,25		7.25	1281	1.574	50,9	3,86	OVERSA	
1552	3572	025	3.00	7.23	12.82	1.572	54.2	3,95	overn	TA ME
1557	35.82	0.25	4,25	7.22	12.83	1.574	56.8	4.01	overn	nnje
1602	35,82	0.25	5.50	7,21	12.83		57.3-	to be the same diverse in the same of the	aver	raring
1607-	35,82	0,25	6.75	7.21	12.83				ortent	
	35.82		8.00	7.21	12.84	1.576	565		alleri	anyt
	35,82		9.25	7.2	12.85	1.577	56.0	3,87	882	
	35,82	- All and a second s	10.50	7.21	12,85		53,8		982	
-	35.82		11.75	7,20	12.86		51.4	3.91	1000	
	35.82		13.00		12.87	1:577	50.0	3,82		
	-35.82		14,23						597-496	
1692	35.82	0.21	15.50	0			52.7	3.61	688	
164+	35.82	0.1.3	16.75	1	12.81	1:577	53.0	3.54	778	
1654	- 35.82	0.25	19.25	7.2	12.80	1.577	5214	10.51	379	

Observations

Color: Clear Other (describe): 3(1)hTly cloudy	13
Odor: None Low Medium High Very Strong H2S Fuel-like	X
Notes: 48/35 h5-pmp-mbd= 35186	
HARLIZIONO WARDINGTON (#15613PMC) 457 556 (#12K 101897), 850MPID (#30)	15.
QED WELL WIRD Compresser model 3320 (407799 Pine) Solonist modal 101 (pa
(#900732)	-
m 000 A0	-
Signed/Sampler(s):	1

GROUNDWATER FIELD SAMPLING DATA SHEET

Well Name.: UR	(5-30)	Project Name: AFFS9 GWS	LOCID:
Sampler(s): M)	KETAKSIA	Project No.: AF708	¢
Well Depth:	86.35	Date:10-7-13	Time: 1520
DTW (ft TOC):	35.82	Screen Interval: 65.3	3-95.33705
Well Diameter (in):	2-1-14	Placement of Pump (ft TOC):	83
Type of Pump:	Colder		

LIMis

Field Parameters

Time	Depth to Water (ft)	Flow Rate	Total Volume	pП	Temp. (C)	Cond. (umhos/cm) MS/cm	ORP	D.O. (mg/L)	Turb. (N.T.U.)	Description
1702	35.82	0.25	20.5	7.2	12.80	1.577	5%0	3.47	326	
1707	25.82	0,25	21.75	7.2	12.80	1.577	49.5	3.41	336	
17.12	35.82	0,25	22.00	7.21	12.80	1.5-16	50.0	3.41	583	
7.15		PUT	SA	phe	\	5901	BOWE	1m [5	PURS 30	WGI
	4									
×										
							d			
				·						
					1.1					
			· ^				-			
										4
	(
							_		1	

Observations

See De Notes: Signed/Sampler(s):

FORMS-standard ppl

Page 2 2+2

Well No.: BM-121	Location: AFP59							
Sampler(s): MIKE DACKOW	Project Name: AFP59 2013 GWS							
Well Depth: 56,18+0.28 = 56.46								
DTW (ft): 25.70 DTP Top (ft): 25.50	Courier: FedEx UPS X Hand A TAL Power							
MP Ht. Above/Below Ground Surface: 3.2	Sampling Method : BP							
Condition of Bottom of Well: FIRM	Type of Pump: Bladder Pump							
Screen Interval FTOC(ft): (-56.04)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):							
Well Diameter (in): 6	Clem, calm, 500							
Placement of Pump Inlet (ft): 51								

+/-0.1 +/ Field Parameters +/-10

+/-10

Time	Depth to Water	Flow Rate (L/m)	Total Volume (L)	pH	Temp. (C)	Cond. (umhos/em) MS/CM	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
08<2	(ft) 25.81	0.2	1,0	7.97	12.43	0.694	-173,4	1.11	16.8	
157		0:2	2.0	7,47					18.3	
6902	25.51		3.0	8.01		-0.696		6.78	21.0	
6907	1	and the second se	4.0	8.00	12.49	0.696	-224.6	0;78	15.8	
\$912	25.31		5.0	8:00		0.696			15.6	
6917-		0.2	6.0	7.99	12.55		and the second se	the second se		
<u> 0922</u>	25.81	0.2	7.0	7.98		-0.697	-249.			1
0927	2,5.8		8.0		12.60	1		Provent in the second	14.9 BM12	14161
3929	Co	Hect	61	0000	WIEL	52	ples	PPI	OFTC.	~~~ <u>~</u>
			1							
							-			

Observations	
Color: Clear Other (describe);	
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: QEO Sample Pro 1.75" pup (Pine # 8135) POST Pup DTW = 25.58 YSI 556MPS (12×101897) QEO MPIO COMPOLIER (#3095), Hacit 2100 P 2BIDIMETER (# 15613) (2EO WEIL WIZMO COMPLESSIN 3. FINGE FINE DTW = 25.77. 531005, Model 101 WII (100') (#48793)	රුදුර
Everstant MALL 13 12 V BASTERY Signed/Sampler(s): MID.J.	

Well No.: URS-2D	Location: AFP59
Sampler(s): Mike Onekan	Project Name: AFP59 2013 GWS
Well Depth: 40.35 P28 = 90.63	Project #: AF7080 Date: /3/8/13 Time: //20
DTW (ft): 30.84 DTP Top (ft): 30.64	Courier:FedExUPSHand _X_TAL Pickup De (1001 >
MP Ht. Above/Below Ground Surface:	Sampling Method : BP
Condition of Bottom of Well: SOFT	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (65 - 90)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2-1905	and about se ht in D 60"
Placement of Pump Inlet (ft):	PANTLY CLOUDY) SLIDHT WIND, 600

5				°.	1.0.1	Field	Parameter	*s+/-/0		+/-10	
	Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	рН	Temp. (C)	Cond. (umhos/cm) MS/CM	ORP	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
	1208		0,230	0,5	7.03	14,41	1.469	-54.1).99	14.9	
	1213	30.83	0.230	1.650	7.10	14:35	1:513	-71.3	1,44	18,7	
	1218	30,87	0.230	2.800	7.15	14:34	1.523	-80,1	2.74	20.5	
	12:23	30.83	Ø.230	3,950	7.18	14.40	1.524	-73.6	3.56		
	1228	30.83	\$,230	5,100		14.42	1.525	-70,2	3,47	19.8	
	1233	30,83	Ø.23Ø	6,250	7.20	14.30	1.527		3.37	19.1	
	1238	30.83	Ø.230	7,400	7,20	14,26	1.526	-73,3	2,98	19.5	
	1240	CO				ste al	1 = 1/		247	109	-MOT 10/8/13
243)		30.83	0.230				1.526	+++++++++++++++++++++++++++++++++++++++		15.9	DOD ()CI
	1245	C31	Peut	Gr	OUND	who	en S	mph	PS L	5900	52DW61

Color: Clear) Other (describe): None Low Medium High Very Strong H2S Fuel-like Odor: Insall =30,8) Pizo 813 # 20 Notes: 0 3100 0 HARH TURB 9 IME Ŧ 3095 # ond 20 Sak 1Ell QGO WEIL WI ne 779 O ¥ 2 -n pre #48 Ø Solors 30.83 1 P DATTER FJELSTA Signed/Sampler(s):

Well No.: URS-2S	Location: AFP59
Sampler(s): MIKE TACKSON	Project Name: AFP59 2013 GWS
Well Depth: 58.2+0.28 = 58.78	Project #: AF7080 Date: 10/8/13 Time: 1335
DTW (ft): 3454 DTP Top (ft): 30.84	Courier:FedExUPS _X Hand _X TAL Etchap
MP Ht. Above/Below Ground Surface:	Sampling Method : BP
Condition of Bottom of Well: 50F5	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (35,45 - 60.45)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in):	Partly cloudy , moderase wind, 62°
Placement of Pump Inlet (ft): 53,45	

		1	+/-0.1	Field	Parameter	rs+/-10		+1-10		
Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	рН	Temp.	Cond.	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged	. /
31.21	0,220	Ø.5	7,55	14.94	1.298	-99,7	1370	398	ORANGE FLOC SUDAN	Jal (
31.31	\$.22\$	1.600	7.16	14,72	21,310	-102,5		154		
31.21	0.220	2.7pd	6.77	- 14.65	1,304	-52.4	2.24	82.5		
31.21	6,220	3.800	6.71	14.51	1.303	-35.3	1.42	67.1		
31.21	0.220	4.900	6.62	1457	1,303	-35.X	1.05	37.2		
31.21	Ø.224	6.0001	16.48	14.56	, 1, 291	- 34.8	9.85	37.4		
31.21	0,220	7.1000	6.44	14.57	7-1,279	-25:7	0.71	010		
31.21	TI	10 22	6.46	14,52		1 1		-		
31.21	\$.224	9,300	6.47	14.38	-			19:2		
o Co.	Keit	GROU	JOL H	son	Sample	es,	1590	<u>es 25</u>	W61	
		/	′			<u> </u> '				
		<u> </u> /								
							<u> </u>			
		/		<u> </u>			-			
_		[]								
>	Water (ft) 31.21 31.21 31.21 31.21 31.21 31.21 31.21 31.21 31.21 31.21 31.21 31.21	Water (ft)Rate (L/m) $3 .2 $ 0.22ϕ $3 .2 $ 0.22ϕ $3 .2 $ $\phi.22\phi$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

0,55: MARD Color: Clear Other (describe): FLOL Odor: None Low Medium High Very Strong H2S Fuel-like DST-PUMPINSTON DW = 30.81 Dre Notes: # Sapl RED TRBIMETER 2100P Pinet 15613 Matt 457556 QED Well WIZAND 3020 compressor #3095 ant (DED Ine. PINE# 900732 # 48793 Jolons MOD DN=31.62 FINA EVELSMANT M Signed/Sampler(s):

Well No.: URS-5S	Location: AFP59
Sampler(s): MIKE DA-180N	Project Name: AFP59 2013 GWS
Well Depth: 66,15+0,28=66.73	Project #: AF7080 Date: 10/8/13 Time: 16/5
DTW (ft): 22.16 DTP Top (ft): 21.96	Courier:FedExUPSX HandX TAL Dickep.
MP Ht. Above/Below Ground Surface: -	Sampling Method : BP
Condition of Bottom of Well:	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (-)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2	Clen, SUNNY, 65°
Placement of Pump Inlet (ft): 59'	

				1-0.1	+/- D.S	Parameter	\$/-10		+/-10		
Time	Depth to Water	Flow Rate	Total Volume	pH	Temp.	Cond. (umhos/em) MS/CM	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, of Sedimen	and Amount at Discharged
1635	(ft) 5 22.14	(L/m)	(L)	17,33	14.13	and the second sec	86.9	4,73	30,5		
1640		0.230	11 111	1	1 - 62		79,6	3.80	34.2		
1615	5 27.14		2.800			1.573					
1650	022.14	Ø, 239	3.950	7.26	13.42					1	
1655	1 - 2 111		5.100	7:28		1			100		
1700	> 22.1	and the sub-				6 1.553	\$4,3	2,80			
1705	5 22.14	· 0,23	7.400	7.34	6 13.34	- 1.35<	50.4		29.9	-	
1718	622.14		8.550			9 1,551	46.9		and the state of t	SSWG	11
1713	2 01	opert	1 GA	DUN DU	unson	SAN	res			SWGI	
			-							5 WGI	
						2		12	1		
		1								_	
					0	bservation	S	MS/n	15D (lacmo	JI
Color:	Clear Oth	her (descril	oe):								
	To)	24.12	t Link	Very Str	ong H2S	S Fuel-like					
21.4.1	()		. 0	A. 0.	(1)r	n CP1	ve#	8135	DTW	POST Pung	O Inshalls
45		0 - 1 - 1 - 1 - 1	1. 1. 1941	1 11	-11-17-12	4 monEll	1123	11100		01/	
0	- A AAL	OIN CO	YTA LOA	A / Mir	no I ho	145 1. (.	JEN V	uon w	CANO	3020 0	massin (
50	ONST	model	101 WE	I(100	5)(#47	OTIDIE	Then n	0075	2		-
	VERST		Anne	MAG	93 D	2V BASA	sry_	MA	CON	= 22,1	T
Signe	d/Sampler(s	3): //h	V Y). Ju	S						

Well No.: DW-1	Location: AFP59					
Sampler(s): MIKE DACKDW	Project Name: AFP59 2013 GWS					
Well Depth: 62.44+0.28 = 63.72	Project #: AF7080	Date: 10-9-13 Time: 0745				
DTW (ft): 17.38 DTP Top (ft): 17.18	Courier:FedExUPS 🔀 Han	d <u>*</u> TAL Pickup				
MP Ht. Above Below Ground Surface: 2.63	Sampling Method : BP					
Condition of Bottom of Well: FURA SOFT	Type of Pump: Bladder Pump					
Screen Interval FTOC(ft): (52 - 626421)	Weather (sun/clear, overcast/rain, wind di	rection, ambient temperature):				
Well Diameter (in): ~ 6 4	Overchy, slight WIND, 40°, some FOG					
Placement of Pump Inlet (ft): 54		J				

.....

				+10,1	Field	Parameter	\$1-10		+/-10	
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	pH	Temp. (C)	Cond. (unthos/em) MS/M	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
0825	17.36	0.220	9.500	7.12	12.63	1.659	156.4	5,20	26.8	
1830	17.36	1	1.600	7.69	12,55	1.814	155.9	2,91	28.2	
1235	17.36		2.700	7.10	12.59	1,876	1545	2.69	26.9	
1840	17.36	d.770	3.800	7.14	12.57	-1.890	153.5		26.0	
7845	17.36	0.220	4.900	7.10	12.58	1.899	157.4		25.8	
5854		1	6.000		12.63	1.914	15p.7	2.64	20.3	
6855		1	7.100		12.64	1.917			20.1	
babt	17.36	0,20	8.200	7.10	12.65	1,920	148.8		19,9	
040		He J	- 6	nound	war	n Gr	note	SF	9DW	IWGL
<u></u>								-		

\sim	
Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: QEO Sample Pro Pump (1.75-inct) (Pine # 8135) Post and Install Drus 13	2.37
1957 556 MPK (12K181897) QEOMPIOCONTHOLIEN (#3095)	
Hort 2100P JUNBIDIMETER (#15613) QED WELL WIZMD COMPRESSON 3020 (00 1779
15 1005 Male 101 (100) (#48799) (MACH 900772)	
EVERSTATE MARINE BARRAY 92 NRV. FINAL DTW = 17.36	
Signed/Sampler(s):	

Well No.: SW-1	Location: AFP59
Sampler(s): MIKE DACKSUN	Project Name: AFP59 2013 GWS
Well Depth: 28.7+0.28= 28,68	Project #: AF7080 Date: 10-9-13 Time: 1010
DTW (ft): 17.35 DTP Top (ft): 17.15	Courier: FedEx UPS X Hand Z TAL # Hand
MP Ht. Above Below Ground Surface: 2.46	Sampling Method : BP
Condition of Bottom of Well: SLIShTy SoFt	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (15.74 - 25.742 85	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 😽 2	PARTLY douly, 50°, 54ght WIND
Placement of Pump Inlet (ft): 23,5	

				+/-0,1	+/- Field	Parameter	rs+/-10		+/- 10	
Time	Depth to Water	Flow Rate (L/m)	Total Volume	pН	Temp. (C)	Cond. (umhos/cm)	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
1625	(ft) (7.34	Q.200	(L) 15. 500	57.13	13.36	ms/cm 2,086	117.8	4,35	12.9	
1030	17.34	Ø.204	1.500	7.69	13.33	2.099	<u> 111.ф</u>	¢.91	12.5	
1035	17.34	Ø ZØØ		1	13:32	2.101	105.7	0.52	8.87	
1\$45	17.34	Q.204	3,500	7.09	13,30	2.195	100.3 94,7	Ø.44 Ø.40	7,10	
1057	17.34	0,200	5.500	7.09	13.32	2.105	9\$.9	\$.39	6.18	
1053	17.31	Ф.200 Ф.200	6.500	7.04	13.31	2.105	87.8	0.33	5.76	
100	San	ple		7.91 NO W			9521	A COLUMN TWO IS NOT	1015	

Color: Clear Other (describe):
Odor: None Low Medium High Very Strong H2S Fuel-like
Notes: QED Sample Pro 1.75-inch (Pine# 17341), Postpump Install Drus= 14;24
45I 556 MP5 (12K101897), RED MPID CONTRoller (#3095)
HACH 2100P TURBIMETER (#15613), QED WELL WIZMD COMMESSUN 3020 (#001775)
Solonst MODE(101 (100') (#487.93) (Pine#900732)
EVENSIME MANNE BATTELY IN FINAL DIN = 17.34
Signed/Sampler(s): Mell D. John

Well No.: DW-3	Location: AFP59					
Sampler(s): MIKE DAZKSON	Project Name: AFP59 2013 GWS (10/9/13					
Sampler(s): MIKE DAzter Well Depth: 85+0.28= 85,28	Project #: AF7080 Date: 1315 Time: 1315					
DTW (ft): /5,22 DTP Top (ft): 15.02	Courier:FedExUPS _X Hand X TAL Pickup					
MP Ht. Above/Below Ground Surface: -	Sampling Method : BP					
Condition of Bottom of Well: SOFT	Type of Pump: Bladder Pump					
Screen Interval FTOC(ft): (67.58 - 87.58867)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):					
Well Diameter (in): 7, 4"	Clear, moderne wind, 60°					
Placement of Pump Inlet (ft): $\neg q'$						

				+/-0.1	+Field	Parameter	s+/-10		4-10	
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	pН	Temp. (C)	Cond. (umhos/cm) MS/cm	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
1340	15.25	6.210	0.5	7,60	15.39	1,532	21.2	1.49	56,5	
1345	15.23	0.210	1.550	7.44	15.47	- 1,566	1.5	\$.75	42,7	
1350	15.23	0,210	7.600	7,29	15.41	1.595	-11.6	\$,51	45,5	
1355	15.23	0,21%	3.650	7.20	15.43	1.546	-22.9	Ø.44	39,7	
1400	15.23	0,210	4:700	· .	15.43	1.595	-32.3	\$.37	-37.7	-
1405	15.23	17.	5.752	7.17	15.45	1,594	-35.1	\$.35	31.8	
1410	15.23	0,210	6,800	7,14	15.42	1,595	-37,2	- <i>ф.</i> 34	30.8	
1415	15.27	0.210	7.850	7.12	15.37	1.595	-38.6	0.31	22.4	
1417	COL	ear	Groun	DINA	en i	Tompke	5/5	9DW?	bWG1	
				0	180					

Color: Clear Other (describe):	
Odor: None) Low Medium High Very Strong H2S Fuel-like	
Notes: (260 Spaple Mo 1,75-inch (PINE# 1734), POST- Pup INSHAll DTW = 15,23	
45T 556 MPS (12K10/897) Q60 MMO CONTAGRED (#3095)	* `
HALT 2100P TURBIMETER (#15613), QED WELL WITAND COMPRESSON 3020	(201777
Salonst proper 101 (bg') (#48793) (Phe #900732)	
EVERSTAT MANIE BRITTERY 121 FIND ON = 15,22	
Signed/Sampler(s): Model D. John Gray oud on prose Enddong DrB Grage	

Well No.: SW-3	Location: AFP59	
Sampler(s): MIKE DAckson	Project Name: AFP59 2013 GWS	
Well Depth: 29.7+0.28 = 29.98	Project #: AF7080	Date: 10-9-13 Time: 1450
DTW (ft): 7.84 DTP Top (ft): 17.64		andTAL Proteins
MP Ht. Above Below Ground Surface: 1, 17	Sampling Method : BP	
Condition of Bottom of Well: Soft	Type of Pump: Bladder Pump	
Screen Interval FTOC(ft): (17.68 - 28.68295	Weather (sun/clear, overcast/rain, wind	direction, ambient temperature):
Well Diameter (in): % 2 ^{/i}	Party doudy, 630	modernit (um)
Placement of Pump Inlet (ft): 24.5	(') .	

				+/-0.1	Field	Parameter	°s+/-10		#-10	
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	pH	Temp. (C)	Cond. (amhos/cm)	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
1523	17.83	D. 240	Ø.5	7,15	16.56	1.374	96.0	1.93	576	
1528	17,82	6.200	1,500	7.48	16,44	1.388	95:2	1.88	3,22	5.
1533	17.82	0.269	12	- 111	16.38		93,9	1.51	2,23	
1538	17.82	(Di 2004	D		16.38	1.405	92.7	1.31	1,85	
1543	17,82	Ø.200	4.580	7.01	16.33	1.406	92.4	1.28	2.00	
1548	17,82	0,200	5.5760	7.60	16,33	1.407	91.8	1.25	1.71	
1553	17.82	0,204	6.500	6.99	16:31	1.407	91.5	1.22	1.71	
1558	17.82	0.260	7.500	6.99	16,30	1,457	91.1	1:20	1.70	
1600	ED		- 6-	QUND	win	SAN	ples,	59	5W34	GI
								1		
									<u> </u>	

Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	11
Notes: QED Sample Pro 1.75" prop (Pine # 8135), BST prop Inswill Dru=	17.84
UCT STEMPS (12K101897) DEN MPID CULTNOMEN (#3095)	
HART 2100 PTURBIDIMETER (# 15613), 260 WELLWIZAD COMPRESSON 3020	(#00177
Salonst Model toot 101 (100') (#48793) (fine # 900732)	
EVERSTANT MAX 13 12N BASTERY F. AD DTW = 12,82	
Signed/Sampler(s): Mull D. John /	

Well No.: SW-7	Location: AFP59				
Sampler(s): MIKE DACKSUN	Project Name: AFP59 2013 GWS 10 -9 -13				
Well Depth: 28.81 + 0.28 = 29.09	Project #: AF7080 Date: 16-3				
DTW (ft): 14,54 DTP Top (ft): 18.34	Courier: FedEx UPS X Hand Son TAL Pickup				
MP Ht. Above Below Ground Surface: 2.65	Sampling Method : BP				
Condition of Bottom of Well: Firm	Type of Pump: Bladder Pump				
Screen Interval FTOC(ft): (-28.85)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):				
Well Diameter (in): 🐁 2	PARTLY Cloudy, 640, CALM				
Placement of Pump Inlet (ft): 24,5					

+/-0.1 +/-0.5 +/-3% +/-10

+/-10

Depth to Water	Flow Rate	Total Volume	pН	Temp. (C)		ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
and a state of the	1 12 2	and the second second	7.29	15.95	1,807	100	5.65	44,6	
1 50				15.63	1,812	96,8		111	
				15.54			4.55	140	
18,53	Ø.22¢	3.800	7.11	15,49			4,53	116	
18,53	\$,226	4.900	7.10	15,44			2	<i>(</i>)	
-18.53	\$.220	6,000							
								4 0.00	
and the second s					1.11				
1	1				Ci al	h	and the second design of the s	And and a design of the local division of the local division of the local division of the local division of the	~
COL	fect	Groc	NDW	are	Dande	es l	5956	7WG.	J
	Water (ft) 18,53 18,53 18,53 18,53 18,53 18,53 18,53 18,53 18,53 18,53 18,53	Water (ft)Rate (L/m) $/8,57$ 0.22ϕ $/8,53$ $\phi.22\phi$ $/8,53$ $\phi.22\phi$ $18,53$ $\phi.22\phi$	Water (ft)Rate (L/m)Volume (L) $/8,53$ 0.22ϕ $0.5\phi\phi$ $/8,53$ 0.22ϕ $1.6\phi\phi$ $/8,53$ 0.22ϕ $1.7\phi\phi$ $18,53$ 0.22ϕ $3.8\phi\phi$ $18,53$ 0.22ϕ $4.9\phi\phi$ $18,53$ 0.22ϕ 8.26ϕ $-18,53$ 0.22ϕ 8.26ϕ $-18,53$ 0.22ϕ $9.3\phi\phi$ $18,53$ 0.22ϕ $10.4\phi\phi$	Water (ft)Rate (L/m)Volume (L) $18,53$ 0.22ϕ $9.5\phi\phi$ 7.29 $18,53$ 0.22ϕ $1.6\phi\phi$ 7.17 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.10 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.10 $18,53$ 0.22ϕ $4.9\phi\phi$ 7.69 18.53 0.22ϕ $6.\phi\phi\phi$ $7.\phi8$ 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 18.53 0.22ϕ $19.4\phi\phi$ $7.\phi8$	Water (ft)Rate (L/m)Volume (L)(C) $18,53$ 0.22ϕ $9.5\phi\phi$ 7.29 15.95 $18,53$ 0.22ϕ $1.6\phi\phi$ 7.17 15.63 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.13 15.57 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.87 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.49 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.10 15.37 18.53 0.22ϕ $6.\phi\phi\phi$ $7.\phi8$ 15.37 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.35 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.21 $-18,53$ 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.24 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.24	Water (ft)Rate (L/m)Volume (L)(C)(emhos/cm) M^{5}/cm $18,53$ 0.22ϕ $0.5\phi\phi$ 7.29 15.95 $1.8\phi7$ $18,53$ 0.22ϕ $1.6\phi\phi$ 7.17 15.63 1.812 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 15.63 1.812 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 15.63 1.812 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.74 $1.8\phi7$ $18,53$ 0.22ϕ $3.8\phi\phi$ 7.10 15.37 1.807 $18,53$ 0.22ϕ $6.\phi\phi\phi$ $7.\phi9$ 15.37 1.811 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.35 1.811 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.26 1.806 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.26 $1.8\phi6$	Water (ft)Rate (L/m)Volume (L)(C)(umhos/cm) (ms/cm)(mv) $18,53$ 0.22ϕ 0.56ϕ 7.29 15.95 $1.8\phi7$ $1\phi1$ $18,53$ 0.22ϕ $1.6\phi\phi$ 7.17 15.63 1.812 96.8 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 15.63 1.812 96.8 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 15.57 $1.8\phi7$ 94.5 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.74 $1.8\phi5$ 93.3 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.44 $1.8\phi5$ 93.3 $18,53$ 0.22ϕ $4.9\phi\phi$ 7.1ϕ 15.37 $1.8\mu5$ 93.3 $18,53$ 0.22ϕ 8.26ϕ 7.68 15.35 1.811 87.6 18.53 0.22ϕ 8.26ϕ 7.58 15.35 1.811 87.6 18.53 0.22ϕ 8.26ϕ 7.58 15.35 1.809 $86.\phi$ 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.26 $1.8\phi1$ 83.3 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.26 $1.8\phi1$ 83.3	Water (ft)Rate (L/m)Volume (L)(C)(umhos/cm) 	Water (ft)Rate (L/m)Volume (L)(C)(umhos/cm) m^{5}/cm (mv)(mg/L)(NTU) $18,53$ 0.22ϕ 0.56ϕ 7.29 15.95 1.8ϕ 101 5.455 44.6 $18,53$ 0.22ϕ 0.56ϕ 7.29 15.95 $1.8f$ 96.8 4.63 111 $18,53$ 0.22ϕ $1.6\phi\phi$ 7.17 15.63 $1.8f$ 96.8 4.63 111 $18,53$ 0.22ϕ $1.7\phi\phi$ 7.17 15.63 $1.8f$ 93.3 4.53 140 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.11 15.74 $1.8\phi5$ 93.3 4.53 116 $18,53$ 0.22ϕ $3.8\phi\phi$ 7.10 15.44 $1.8\phi5$ 91.8 4.53 55.5 $18,53$ 0.22ϕ $4.9\phi\phi$ $7.\phi9$ 15.37 $1.8f$ 87.6 4.46 36.4 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.35 1.811 87.6 4.42 22.3 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.35 1.811 87.6 4.42 22.3 18.53 0.22ϕ 8.26ϕ $7.\phi8$ 15.31 1.809 $86.\phi$ 4.42 12.3 18.53 0.22ϕ $9.3\phi\phi$ $7.\phi8$ 15.26 $1.8\phi1$ 83.3 4.37 6.73 18.53 0.22ϕ $10.4\phi\phi$ $7.\phi8$ 15.26 $1.8\phi1$ 83.3 4.37 6.73 18.53 0.22ϕ $10.4\phi\phi$ $7.\phi8$ 15.26 $1.$

Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: (250 SAMP(EPRO 1.75" purp (Prine# 17341), POST Aug Install DTU=	18.54
YSE 556 MPS (12K/01897), QED MPID CONTRO/101 (# 3095)	
HART ZIOOP TURBIDIMETER (# 15613) QEQUEIL WITHARD COMPRESSA BUDG	(#00/779
SOLONST MODE(101 (100') (#48793) (Pine #900732)	
EVERSTANT MAXX 93 RN BASENY FINAL DRUS=18.53	20
Signed/Sampler(s):	

Well No.: SW-4	Location: AFP59
Sampler(s): MIKE JACKSON	Project Name: AFP59 2013 GWS
Well Depth: 27.95+0.28 = 28.23	Project #: AF7080 Date: 10/10/13 Time: 1246
DTW (ft): 13.04 DTP Top (ft): 22.91	Courier:FedExUPS X Hand _ TAL Pickup
MP Ht. Above/Below Ground Surface:	Sampling Method : BP
Condition of Bottom of Well: F.2M	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (-27.52)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 🦹 🤰	ovelcast, calm, 530
Placement of Pump Inlet (ft): 23,1]))

				+/-0.1	+Field	Parameter	rs+/-/b		+/-10	
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	pН	Temp. (C)	Cond. (tumhos/om) ms/cm	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amoun of Sediment Discharged
1255	13.06	0.210	Ø. \$60	7.27	14.25	1.680	197.7	-3.16	23.9	
1360	13,66		1.050	7.15	14.21	1,724	191.1	2.3¢	17.3	
1325	13.06			7.11	14.22	1.731	185.5	2.32	18.4	
13/05	13.66	7 1	3.150	7.69	14.24	1.731	181.5	2.48	16.8	
1315	13.0%	\$.21\$	4.264	10	14.26	1.719	178.0	2.31	16.2	
1320	13.06	0.216	5,280	7.46	14.32	1.72	175.2		14,7	-
1325	13.06	\$.210		1.1		1.736	1727		13.6	
132=	- Ce	Theor		IJUND		Sano	les +	- or	our	re
									1595	WYWGI
									1590	UPO1 WGI
					Ob	servations			A	plicate

Color: Clear Other (describe):	TOC PID=9.2 ppm
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: Q50 Sample Pro 1.75" Pump (# 8135), POT Rup Entral DTN=13.06
4ST S56MPS (12K/01897), QEDMPIOCONTION	ler (#3095)
AARH 2100P TUNBIPIMETER (#15613), Q50	WEII WEAN OMMESSON 3070 (00177
506015T model 106 (100) (#487-93) (Pine # 91	00732)
EVELSTART MAXX 97 12V BASTERY F.	nol on = 13,64
Signed/Sampler(s):	

0m 13.06

Well Name .: EFFlowT (Port - 57)	Broject Name:	LOCID:
76	Project No.: AF7	080
Well Depth: N/A-	Date: 10-10-13	Time: 0945
DTW (ft TOC):	Screen Interval:	U/A
Well Diameter (in): N/A	Placement of Pump (ft TOC):	N/A
Type of Pump: N/A		

Field Parameters

Time	Depth to Water (ff)	Flow Rate (gpm)	Total Volume (gal)	pH	Temp. (C)	Cond. (umbosiem) Bitch	ORP	D.O. (mg/L)	Turb. (N.T.U.)	Description
0955	Ange	FEP	nert	LINE	Kr	5 mminos	. Gr	noon	4020 (CONNECTIN
4			ren	POLV	phose	har mark	- Voly), Dis	CUNNELT	Nose,
1000	Colhe		smp.	ks'	159 5	EFF WG	<u>л</u> .		,	
1001	Rendi		SGALt	8.06	13.26	1.144	203.4	9.48	o 1.8:	-
		V								
1015	Pum	F JC	#2	for	Sm	notes 1	TC#2		musi	1
	450	3 N	has a	1/01	FAS	NECDED	157	,#3 L	al ISJ	ve)
	-15	2 mil	NTAS	Bock		171 01	f.			
1020	colle	UT S	mple		9002					
10211	Jenly 3			7.58	13,83	1.084	20019	2,65	1,50	
	61					55				

N otes:		
Signed/Sampler(s):	MOLD. Il	

WELL NUMBER: URS-3D	PROJECT NAME: AFP59
DATE/TIME: 10-7-13 1757	CITY/STATE: Johnson City, NY
INSPECTED BY:	Water Level Indicator Serial No.: 50(0nst N) 54 90073
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs):	ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURE	MENT
WELL DEPTH (FEET FROM TOP OF PVC)	\$6.35
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	35,86
PVG WELL STICK-UP (FEET, ABOVE GRADE)	1,78
PROTECTIVE CASING STICK-UP (FEET, AGS)	1.95
WELL DIAMETER (INCHES)	2
WELL CONSTRUCTION (PVC, STEEL) ETC.)	55
LOCKED UPON ARRIVAL?	YES NOT
LOCK REPLACED?	YES NO
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES NO (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATIC	DNS:

WELL INSPECTION AND GROUNDWA	ATER LEVEL MEASUREMENT SHEET
WELL NUMBER: $\underline{BM-121}$ DATE/TIME: $\underline{0/8/13}$ 0935 INSPECTED BY: $\underline{M05}$	PROJECT NAME: AFP59 CITY/STATE: Johnson City, NY Water Level Indicator Serial/No.: 5(0nstmodel 101 (100)) (#48793)(Ine # 900732)
MONITORING WELL INSTRUMENT READING (VOCs):	<u> </u>
WELL INSPECTION/GROUNDWATER LEVEL MEASUREM WELL DEPTH (FEET FROM TOP OF PVC) WATER LEVEL DEPTH (FEET FROM TOP OF PVC) PVC WELL STICK-UP (FEET, ABOVE GRADE) PROTECTIVE CASING STICK-UP (FEET, AGS) WELL DIAMETER (INCHES) WELL CONSTRUCTION (PVC STEED, ETC.)	<u>56.46</u> (56.18+0.28) <u>25.76</u> <u>3.2.</u> <u>N/A</u> <u>6</u> <u>5.75E</u> C
LOCKED UPON ARRIVAL? LOCK REPLACED? OBSTRUCTIONS? DAMAGE TO WELL PAD/STICKUP/CASING, ETC? WELL RELABELED? WELL PHOTOGRAPHED?	YES NO YES NO YES NO YES NO YES NO YES NO NO
GENERAL CONDITION/COMMENTS/RECOMMENDATION	NS:

WELL INSPECTION AND GROUNI	WATER LEVEL MEASUREMENT SHEET
WELL NUMBER: URS-2D	PROJECT NAME: AFP59
DATE/TIME: 10/8/13 1250	CITY/STATE: Johnson City, NY
INSPECTED BY: MDJ	Water Level Indicator Serial No.: <u>Soconst made 101</u> (100') (#48793, Pine# 900732)
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs):	ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASUR	REMENT Qa 12
WELL DEPTH (FEET FROM TOP OF PVC)	90.35+0.28= 90.63
WATER LEVEL DEPTH (FEET FROM TOP OF PKC)	30.84
PVC WELL STICK-UP (FEET, ABOVE GRADE)	FIUSH MOUNT
PROTECTIVE CASING STICK-UP (FEET, AGS)	00
WELL DIAMETER (INCHES)	2
WELL CONSTRUCTION (PVC, STEEL, ETC.)	Jankos JJEO)
LOCKED UPON ARRIVAL?	YES NO
LOCK REPLACED?	YES NO
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES NO (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDAT	TIONS:

WELL INSPECTION AND GROUND	WATER LEVEL MEASUREMENT SHEET
WELL NUMBER: URS-2S DATE/TIME: 10/8/13 1445 INSPECTED BY:	PROJECT NAME: AFP59 CITY/STATE: Johnson City, NY Water Level Indicator Serial No.: Soloni malel 10/(por) (#487-93, Pine # 900732)
<u>VENT WELL</u> MONITORING WELL INSTRUMENT READING (VOCs):	(#487-93, Pine # 900732) ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURI WELL DEPTH (FEET FROM TOP OF PAC) WATER LEVEL DEPTH (FEET FROM TOP OF PAC) PVC WELL STICK-UP (FEET, ABOVE GRADE) PROTECTIVE CASING STICK-UP (FEET, AGS) WELL DIAMETER (INCHES) WELL CONSTRUCTION (PVC, STEEL, ETC.)	58.48 (58.2+0.28) 31.04 FINSH MOUNT 2 2 57014/253 STEEL
LOCKED UPON ARRIVAL? LOCK REPLACED? OBSTRUCTIONS?	YES NO YES NO YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC? WELL RELABELED? WELL PHOTOGRAPHED?	YES NO (If YES, detail in comments below) YES NO .
GENERAL CONDITION/COMMENTS/RECOMMENDATI	IONS:

WELL INSPECTION AND GROUND	WATER LEVEL MEASUF	REMENT SHEET
WELL NUMBER: URS-5S	PROJECT NAME:	AFP59
DATE/TIME: 10/8/13 17.18	CITY/STATE:	Johnson City, NY
INSPECTED BY:	Water Level Indicator S	Serial No.: <u>model 10</u> Pore # 900732
VENT WELL		met roots()
MONITORING WELL INSTRUMENT READING (VOCs):	<u>4)</u>	ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURE		
WELL DEPTH (FEET FROM TOP OF PYC) 55	6.1	
WATER LEVEL DEPTH (FEET FROM TOP OF PYC)	22	.16
PVC WELL STICK-UP (FEET, ABOVE GRADE)	FLUS	H Mours
PROTECTIVE CASING STICK-UP (FEET, AGS)		
WELL DIAMETER (INCHES)	2	
WELL CONSTRUCTION (PVC, STEEL, ETC.)	Soundest	STEEL
LOCKED UPON ARRIVAL?	YES NO	
LOCK REPLACED?	YES NO	
OBSTRUCTIONS?	YES NO	
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES 🚺 (If	YES, detail in comments below)
WELL RELABELED?	YES NO	
WELL PHOTOGRAPHED?	YES NO	
GENERAL CONDITION/COMMENTS/RECOMMENDATI	ONS:	

	PROJECT NAME:	AFP59
WELL NUMBER: DW-1		8
DATE/TIME: <u>10/9/13 09/5</u>	CITY/STATE:	Johnson City, NY
INSPECTED BY: MOD	Water Level Indicator Se	nale los (100)
	(#48793) (Pr	nalel 101 (100) Ne# 900732
VENT WELL		
MONITORING WELL INSTRUMENT READING (VOCs):	0.5	ppm
	C. 475.00	
WELL INSPECTION/GROUNDWATER LEVEL MEASUR	1272 (62.44+0.28)
WELL DEPTH (FEET FROM TOP OF PVC)	17.38	
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	2,63	
PVC WELL STICK-UP (FEET, ABOVE GRADE)	•	
PROTECTIVE CASING STICK-UP (FEET, AGS)	2.84	
WELL DIAMETER (INCHES)		
WELL CONSTRUCTION (PVC, STEEL, ETC.)	_PVC	
	YES NO	
LOCKED UPON ARRIVAL?		
LOCK REPLACED?	YES NO	
OBSTRUCTIONS?	YES NO	
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES NO (If Y	ES, detail in comments below)
	YES NO	
WELL RELABELED?		

WELL NUMBER: SW-1	PROJECT NAME:	AFP59
11		
DATE/TIME: <u>10/9/13</u>	CITY/STATE:	Johnson City, NY
INSPECTED BY: MOT	Water Level Indicator	Serial No.: <u>solel 101 (100</u>) Brae#900732)
VENT WELL	(#48+10)(1121-10015A)
MONITORING WELL INSTRUMENT READING (VOCs):	1.3	ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURE		Laca Par
WELL DEPTH (FEET FROM TOP OF PVC)	28,68 (~	28.4 + 0.28)
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	17.35	· ·
PVC WELL STICK-UP (FEET, ABOVE GRADE)	2.48	
PROTECTIVE CASING STICK-UP (FEET, AGS)	2,88	
WELL DIAMETER (INCHES)	2-100	
WELL CONSTRUCTION (PVC), STEEL, ETC.)	Puc	
LOCKED UPON ARRIVAL?	yes no	,
LOCK REPLACED?	YES NO	• (8) 1 - 12
OBSTRUCTIONS?	YES NO	12
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES (If	YES, detail in comments below)
WELL RELABELED?	YES: NO	
WELL PHOTOGRAPHED?	YES NO	
GENERAL CONDITION/COMMENTS/RECOMMENDATIC	DNS:	Â
•		

WELL INSPECTION AND GROUNDV	VATER LEVEL MEASUREMENT SHEET
WELL NUMBER: DW-3	PROJECT NAME: AFP59
DATE/TIME: 10/9/13 1425	CITY/STATE: Johnson City, NY
INSPECTED BY: MOJ	Water Level Indicator Serial No.: 50(0757 Model 101 (100) (#48793) (Proc # 900732)
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs);	1.6 ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURE	MENT
WELL DEPTH (FEET FROM TOP OF PVC)	85.28 (85+0.28)
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	15,22
PVC WELL STICK-UP (FEET, ABOVE GRADE)	FM (FUSH MOUNT)
PROTECTIVE CASING STICK-UP (FEET, AGS)	
WELL DIAMETER (INCHES)	4
WELL CONSTRUCTION (PVC STEEL, ETC.)	psc
LOCKED UPON ARRIVAL?	YES NO
LOCK REPLACED?	YES (NO
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATIO	DNS:

WELL INSPECTION AND GROUNDW	ATER LEVEL MEASUREMENT SHEET
WELL NUMBER: SW-3	PROJECT NAME: AFP59
DATE/TIME: 10/9/13 1615	CITY/STATE: Johnson City, NY
INSPECTED BY: MOJ	Water Level Indicator Semial No.: <u>50(045T Model 101 (100')</u> (#48743) (Proc # 900 732)
<u>VENT WELL</u>	
MONITORING WELL INSTRUMENT READING (VOCs):	2.8 ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASUREM	
WELL DEPTH (FEET FROM TOP OF PVC)	-29.2 29.98 (29.7+0.28)
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	17.84
PVC WELL STICK-UP (FEET, ABOVE GRADE)	1.17
PROTECTIVE CASING STICK-UP (FEET, AGS)	1.47
WELL DIAMETER (INCHES)	21
WELL CONSTRUCTION (PVG, STEEL, ETC.)	PVC
LOCKED UPON ARRIVAL?	YES NO
LOCK REPLACED?	YES NO
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATIO	NS:

WELL INSPECTION AND GROUNDWA	ATER LEVEL MEASUREMENT SHEET
WELL NUMBER: SW-7 DATE/TIME: <u>10-9-13</u> 1815 INSPECTED BY: <u>MD5</u> VENT WELL	PROJECT NAME: AFP59 CITY/STATE: Johnson City, NY Water Level Indicator Serial No.: <u>Solonst model 101 (106</u>)
MONITORING WELL INSTRUMENT READING (VOCs): <u>WELL INSPECTION/GROUNDWATER LEVEL MEASUREM</u> WELL DEPTH (FEET FROM TOP OF PVC) WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	$\frac{1.1}{29.59} \text{ (28.81 + 6.28)} \\ 18.53$
PVC WELL STICK-UP (FEET, ABOVE GRADE) PROTECTIVE CASING STICK-UP (FEET, AGS) WELL DIAMETER (INCHES) WELL CONSTRUCTION (PVC STEEL, ETC.)	26.25 2.95 2. PVC
LOCKED UPON ARRIVAL? LOCK REPLACED? OBSTRUCTIONS? DAMAGE TO WELL PAD/STICKUP/CASING, ETC? WELL RELABELED?	YES NO YES NO YES NO YES NO (If YES, detail in comments below) YES NO
WELL PHOTOGRAPHED? GENERAL CONDITION/COMMENTS/RECOMMENDATION	YES NO

WELL INSPECTION AND GROUNDW	ATER LEVEL MEASUREMENT SHEET
WELL NUMBER: SW-4	PROJECT NAME: AFP59
DATE/TIME: 10/10/13 7415	CITY/STATE: Johnson City, NY
INSPECTED BY:	Water Level Indicator Serial 10. 101 (100') 50/0057 model 101 (100') (#48793(Pine # 90073
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs);	9. ~ ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASUREM	MENT
WELL DEPTH (FEET FROM TOP OF PVC)	28.23(27.95+0.28)
WATER LEVEL DEPTH (FEET FROM TOP OF PVC)	13.04
PVC WELL STICK-UP (FEET, ABOVE GRADE)	Flush mount
PROTECTIVE CASING STICK-UP (FEET, AGS)	V.
WELL DIAMETER (INCHES)	2
WELL CONSTRUCTION (PVC, STEEL, ETC.)	PJC
LOCKED UPON ARRIVAL?	YES NO
LOCK REPLACED?	YES
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATIO	NS:

HydroGeoLogic, Inc

STATIC GROUNDWATER ELEVATION LOG

Page 1 of 1

Project No.: AF7061 Project No.: AF7061

Project No.:	AF7061					a series of
fidic		Water Level Indicator (exanst mobel 10	PID Meter ID#:	D#: MiniRAE 2000	4
		SI	Depth to	PID Reading	Comments	
Well Identification	Date	from TOC)	(from TOC)	Support of t		
DW-1	SH1 81/2/01	82°t1 9	and the second	0.5	BKGro = 0.1 ppr	
SW-1	W/ 8-4-01			1.3	BKGND = 0.2 PPM	
SW-4	UNDERLUAR	er. Drain	Cplean on	anino pryges	6D	¥6
SW-7	281 KUJ K/01	18.81	1	1,1	BKGND = 0.3 PPM	
SW-3	F211 E1/4/01	- 18.27		2.5	BK620=0.5 pm	
DW-3	+211 C1/4/01	1	-15,59-	1.6	BLEND = Oiz Dan L4-Inch Fra)	
URS-2D	Cto/ 4/2/0/	31.04	1. 1. K.	1.5	BKGAD= to In por (worn of 25	all
URS-2S	107/13/14/13/	10-16 3	431.25	4+1,2ms	bk Gro = 0,9 pon	and in
URS-3D	2501 C1/2/01	- 35,54	1	03 894	BLEAND = C. 6 Pon	K
URS-5S	2011e EN 4 CI	7.20 20)	Sit them	B+678-0.5 ppetre BK610=0.7 (52) Then.	the server
BM-121	11/1/2//0/	25.89	4	5.4 ppm	BRGRD= 0.5 Mm	FCPE /
	2 1			14		atan
			-			
••			14			
			- 18.1	- 2	s ····································	A
1 24			*			Se of F
1.5.	1.5-2 000 N (1.1 12x 9-4	(25) (res)		5-3 North	5 -> North > 2.5 (0,7 Br 4)	
1.1.	1.2 -22 anno (0.9 1200) (20%)	(202) (20%)		mos, 67.	4,1 (2.T.	n" Vite

roGeoLogic, Inc	iding Expectations
Hydi	Exceeding

AFP59 2013 LTM Event Daily Instrument and Calibration Log

Circle One: Spring/Fall

	Date:			2		*			
	Standard Value pH4 pH7 Standard Lot Number スートレイト 136/v 3 ユード 34/デ	PH4	PH7	PH10 46213 4/31/14	SC 1000 2 AL 309 12(31/13	5700 400	100% Sat.		
E1/t/01		pH4	pH7	pH10	sc-1003	ORP	D.O.		
		4.63	7.05	10.00	1.389	256	90.600 8.52	7/20	
	Calibrated	4.00	7.00	00.01	6141		99.72 Y.3	JI P	
	End of Day Drift	3,85	So.4	10.12	1412	222	102.370 4	た	
			117	110	SC 1000	ORP	00		
1/8/8/	10/8/15 Instrument Serial #	pH4	/Hd						
	Pre Calibration	3.96	5012	20.02	1.406	2.38.7	100.9%	1/ fr 7/1/	
	Calibrated	4,00	7,00	10.01	1.413	240.		2121121C	
	End of Day Drift	3,93	6.99	10.07	1.4.1	246	100.6%	Ner 61.7	
	1								
5-2-01	lns	pH4	pH7	pH10	SC 1000	OKP			c
	12×101897				0111	200	10000	0 X2 m //	
	Pre Calibration	3.99	86.0	10.08	1.4.1	< × × ×	4	1 20 76	
	Calibrated	4.8	4:00	0.01	1. 413	2.2.0	000	人、ゆ、たち、6	
	End of Day Drift	20.11	7,03	10.03	1171	1.20%+	Q D'VD/	J/1/11/1	
	Instrument Serial #	pH4	pH7	pH10	SC 1000	OKF			
lailai		707	1-94	1014	512.1	680	C6 191	101.2.90	1030 10
	Calibrated	1.00	e (†	20.01	512.7	240	1 2 2 3 m h	9.25ms/C 9.28ml	9. Zank
5	End of Day Drift	1 4.03	33.56	10,0%	1.407	542		ł	
					0007.00				
	Instrument Serial #	pH4	PH7	pH10	SC 1000	OKP	О.О.		
	Pre Calibration								
	Calibrated								
	End of Day Drift		3			+			

N

	26 Kraft Dood				4	and an and a	į
	Albany, NY 12205		Chain of	Chain of Custody Record		THE LEADER IN EWITRONMENTAL JESTING	
	Client Information	MIKE DACKSUL	Lab PM:	Lab PM: Parkick Mr. Fatter: Carrier Tracking No(s)	0 -	COC No: 180.11753 3710 1	
	Frontinen MR. PETER DATK	Phone 518-877-0310				1 05 0	Τ
	r. JeoLogic Inc			Analysis Reginested		5	T
	Address. Northway 10 Executive Park 313 Ushers Rd.	Due Date Requested:			Prese	Preservation Codes:	T
	City. Ballston Lake	TAT Requested (days):	5 (j.~	(:	A A C	A - HCL M - Hexane B - NaOH N - None	
	State. Zip: NY, 12019		শব্যা	>0-	ν Ξ Ξ		
	Princies 18-877-0390	PO#	(0	623	Х 	F - MeOH R - N22S2S03 G - Amchlor S - H2S04	
		# OM	N 10	Ø			ate
	ct Name. - Orce Plant 59	Project #.	88Y) 6	097		 C - EDTA W - ph 4-5 C - EDA Z - other (specify) 	
	AFPS9 JOHNSON CITY, NY	SSOW#:	IdmeS	85	tinoə to Otter		
		Sample Type	e Matrix (W=water, S=solid,	۵۱ <u>۵-۲</u> ۵۲۵۰۶	a tedmuV.l		
	Sample Identification	-	O=wastefoil, ET=Tissue, A=Air)	\wedge	IelőT	Special Instructions/Note:	
*	- Squdsanuki		de:	14000			
49)		_	3-	×	5		
	2	10-642 0929					
AN (A) (242		XX			
	54 UKS 25 W61	P++1	_				
6	-	715		× ×			
10 VO	59	7451					T
•	- 1	191					Τ
-		10-9-13 0902		××			Τ
*	59 b 59 swi wei	102		× ×			Τ
0 1		-57/					Γ
*	-	V 1600 V					
	Possible Hazard Identification	Unknow		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	amples are retained lon	iger than 1 month)	
	, III, IV, Other (specify)			Special Instructions/QC Requirements:	NCHINE LOI	I MONUNS	Т
	Empty Kit Relinquished by:	Date:	Time:	1 B B	Stated of Shipment		Τ
	Michael Ackend/ UW Novig	10-11-13 1225	Unterny HEC	Receiver of Child	Date/Time: 13 12	2120 Company M	
	N -	Date/Time:	Company	Heceived by: C		Company	Γ
		Date/Time:	Čompany	Received by:	Date/Time:	Company	Γ
	Custody Seals Intact: Custody Seal No.: A Yes A No			Cooler Temperature(s) *C and Other Remarks.		a Charles and Street	1
		The second	A CONTRACTOR OF A CONTRACTOR O	100111111111111111111111111111111111	○ の活動がの空間構成にない。		

TestAmerica Albany 25 Kraft Road

Ibany		
TestAmerica Albany	oad	VY 12205
TestAn	25 Kraft Road	Albany, 1

Chain of Custody Record

MARTICK MARTICK MCCONTEC (R P37 - y) 3 (P) Martuck Martuck (R P37 - y) 3 (P) Martuck Analysis Requested as Requested as Requested Analysis Requested as Requested Martuck Martuck as Requested Sample Martuck and base Sample <td< th=""><th></th><th>Samoler</th><th></th><th>COC No:</th></td<>		Samoler		COC No:
Antiliantian Antiliantian Antiliantiantian Antiliantiantiantiantiantiantiantiantiantiant	Client Information	LL'S	PATRICK MCENTED	5-53-51
Половидии <	m MR.	- 23		2 of A
Полити (Предовния) Полити	ant onic Inc		Analysis Requested	# 000
State State <th< td=""><td>Address.</td><td>Due Date Requested:</td><td></td><td>Code</td></th<>	Address.	Due Date Requested:		Code
Billion Late Processor	Northway 10 Executive Park 313 UShers Ko.	TAT Remiested (davs):	()	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Ballston Lake	Per contered	24	
Image: manual control Image: manual contro Image: manual contro	State, Zp. NY, 12019		422	
Instrumentation Instrument	Phone:	PO #	8	
Microsoften Image and some Image anditerture Image and some Image a	Emait: mjackson@hgl.com	WO#:	80	1 - ICE J - DI Water K - EDTA
The P of 7 Duration Sample train Sample	Project Name: Air Force Plant 59	Project # 2080	92	L - EDA
terrandometer	JOHNSED CITY	SSOW#.	&	
Sample termitication Sample te		Sample Type (C=comp	Id Filtered	
515 山子 いら1 (カ/1/2) パック (ローク) (1/2) パック (ローク) (1/2) パック (ローク) (1/2) パック パック <t< td=""><td>Sample Identification</td><td>Time G=grab)</td><td></td><td>A second</td></t<>	Sample Identification	Time G=grab)		A second
	Re.	X	HXX	
59 SUU YUU 61 Io/o(1): 13:23+ X X V<		1804 9	XX	1
ST3CEPrWG1 10000 10000 1000 1000 <td>- 59 SW YW61</td> <td></td> <td>XX</td> <td></td>	- 59 SW YW61		XX	
Signal Io20 IXX Vocs 8X866 eVV6 Signal 1313 X Vocs 8X866 eVV6 Signal 1313 X Vocs 8X866 eVV6 Signal 1313 X Vocs 8X866 eVV6 Signal 10313 X Vocs 8X866 eVV6 Nocrossion X Vocs 8X866 Vocs 8X866 eVV6 Nocrossion X Vocs 8X866 Vocs 8X866 Nocrossion X Vocs 8X866 Vocs 8X866 Nocrossion Nocrossion Vocs 8X866 Vocs 8X866 Nocrossion Nocrossion Nocrossion Vocs 8X866 Nocrossion Nocrossion Nocrossion Nocrossion Nocrossion Nocrossion Nocrossion Nocrossion <td></td> <td>000/</td> <td></td> <td></td>		000/		
3 3 ひひゆ (いじ () 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	1020	××	
S1ABL6/6/13 131- 131- 131- 131- Vocs 83006 Arryte 596. 10/13 10/3/13 1260 0/3/13 1260 0/3/15 100/3/15 00/3/15 76/0713 76/0713 1260 0 V X N N N 76/0713 1260 0 V X N N N N 76/0713 1260 0 V X N N N 76/0713 1260 0 V X N N 100-Hazad 11, II, IV, Other (specify) N N N N 100-Hazad Sini Intent Poison B Unknown N N 100-Hazad Sini Intent Poison B Unknown N N 100-Hazad Falum N N N N 100-Hazad Pisposal (A fee may be sessed if samples are relatined longer than 1 month) N 100-Hazad Pisposal (A fee may be sessesed if samples are relatined longer than 1 month) N 100-Hazad Pisposal (A fee may be sessesed if samples are relatined longer than 1 month) N 100-Hazad Pisposal (A fee may be sessesed if samples are relatined longer than 1 month) N 100-Haza	-	0913		
S9EB IQ1P 13 ISSN 1 ISSN 1 ISSN 1 ISSN 1 T6/4013 IO27(5 IV I ISSN 1 ISSN 1 T6/4013 IO27(5 ISSN 1 ISSN 1 ISSN 1 ISSN 1 T6/4013 ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 T6/4013 ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Poster ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Poster ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN 1 Deliverable ISSN 1 ISSN 1 ISSN 1 ISSN 1 ISSN		1317	×	62605 outyte
TC-MOT3 NO/3/15		V 1505 V		Ň
mitiration Participation Participation Participation Participation Planmable Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Planmable Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Contractions Disposal (A fee may be assessed if samples are retained longer than 1 m. Contractions Disposal (A fee may be assessed if samples are retained longer than 1 m. Contractions Disposal (A fee may be assessed if samples are retained longer than 1 m. Contractions Disposal (A fee may be assessed if samples are retained longer than 1 m. Contractions Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained longer than 1 m. Archive For Disposal (A fee may be assessed if samples are retained by the assessed the assesses are retained the assesses ar		ileo Ġ	->	1
edition Flammable Skin Irritant Skin Irritant Poison B Unknown Radiological Semple Disposal (A fee may be assessed if samples are retained longer than 1 m edit I, II, IV, Other (specify) edit I, III, IV, Other (specify) beta br: Date: Date: Date: Archive For Sectial Instructions/OC Requirements: Date: Time: Date: Archive For Sectial Instructions/OC Requirements: Date: Time: Date: Archive For Sectial Instructions/OC Requirements: Date: Time: Date: Archive For Date: Archive For Date: Time: Date: Archive For Date: Time: Date: Archive For Date: Time: Date: Archive For Date: Time: Date: Archive For Date: Archive For Company Received by: Date: Archive For Date: Archive For Company Received by: Date: Archive For Company Received by: Date: Archive For Content For Partice: Date: Archive For Content For Partice: Archive For For Partice: Arch	-	1. 6 6-1		
et: 1, 11, 11, V, other (specify) et 1, 11, 11, V, other (specify) et by: by: by: by: by: by: by: by:		/		
entification		/		14)
Harmable Solution instructions/OC Requirements: ed: I, III, IV, Other (specify) Date: Time: Special instructions/OC Requirements: ed by: Date: Date: Time: Date: Date: MCDBAN_MOM_MomPlace Date: Time: Date: Date: Date: MCDBAN_MOM_MomPlace Date: Time: Date: Date: Date: MCDBAN_MOM_MomPlace Date: Date: Date: Date: Date: MCDBAN_MOM_MomPlace Date: Date: Date: Date: Date: MCDBAN_MOM_MomPlace Date: Company Bateries of the company Date: Date: Date: Company Received by: Date: Date: Date: Date: Company Received by: Date: Date:			Sample Disposal (A fee may be assessed if samples	re retained longer than 1 monun) Archive For Months
led by: Determine: Date: Time: Method of Stipment: DeterTime: 12-11-13 1225 Company Received by: DeterTime: Date/Time:		CHNICONI	Special Instructions/QC Requirements:	
Archest Mathematical Market Ma Market Market Mark	Empty Kit Relinquished by:	Date:	Method of Sh	Contraction of A
Date/Time: Date/Time: Date/Time: Date/Time: Company Received by: Date/Time: Company Act: Company Constructor Seal No Cooler Temperature(s) °C and Other Retriants:	MM	1	W RECEIVED OF COLOR	1/13 12:20
als Intract ¹ Durietodu Sezil No. Date/Time: Company / Received by: Date/Time: Date/Time:			Proceived by:	
Cristody Seal No -	Relinquished by:		Received by:	
	- 67		Cooler Temperature(s) °C and Other Remarks:	

ATTACHMENT 2

LABORATORY REPORT

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Analytical Data

Client Sample ID: 59UR53DWG1 Date Sampled: 10/07/2013 1715 280-47755-1 Lab Sample ID: Date Received: 10/12/2013 0900 Client Matrix: Water 8260B/DoD Volatile Organic Compounds (GC/MS) Analysis Batch: Instrument ID: VMS_H 280-196363 Analysis Method: 8260B/DoD H6674 D Lab File ID: Prep Batch: N/A Prep Method: 5030B 20 mL Initial Weight/Volume: Dilution: 1.0 Final Weight/Volume: 20 mL Analysis Date: 10/17/2013 1131 Prep Date: 10/17/2013 1131 LOQ Qualifier DL Result (ug/L) Analyte U 0.17 1.0 0.17 1,1,1,2-Tetrachloroethane F 0.99 1 0.16 1.0 1,1,1-Trichloroethane 0.20 U 0.20 1.0 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 0.32 U 0.32 1.0 0.16 U 0.16 1.0 1.1-Dichloroethane U 0.14 0.14 1.0 1,1-Dichloroethene U 0.15 1.0 0.15 1,1-Dichloropropene U 0,18 0.18 1.0 1,2,3-Trichlorobenzene U 0.77 3.0 1,2,3-Trichloropropane 0.77 U 0.32 1.0 0.32 1,2,4-Trichlorobenzene υ 1.0 0.14 0.14 1,2,4-Trimethylbenzene υ 0.81 5.0 1,2-Dibromo-3-Chloropropane 0.81 U 0.13 1.0 0.13 1,2-Dichlorobenzene U 0.13 1.0 0.13 1,2-Dichloroethane U 0.13 1.0 0.13 1,2-Dichloropropane υ 0.14 1.0 0.14 1,3,5-Trimethylbenzene U 1.0 0.16 0.16 1,3-Dichlorobenzene 0.15 U 0.15 1.0 1,3-Dichloropropane 0.16 U 0.16 1.0 1,4-Dichlorobenzene U 0.17 1.0 0.17 1-Chlorohexane 0.20 U 0.20 1.0 2,2-Dichloropropane 1.8 U 1.8 6.0 2-Butanone (MEK) 0.17 1.0 2-Chiorotoluene 0.17 U U 0.17 1.0 0.17 4-Chlorotoluene U 0.17 1.0 0.17 4-Isopropyltoluene U 5.0 1.0 1.0 4-Methyl-2-pentanone (MIBK) U 1.9 10 Acetone 1.9 1.0 0.16 U 0.16 Benzene U 0.17 1.0 Bromobenzene 0.17 U 0.19 1.0 Bromoform 0.19 U 0.21 2.0 0.21 Bromomethane 2.0 U 0.19 0.19 Carbon tetrachloride U 0.17 1.0 0.17 Chlorobenzene 0.10 U 0.10 1.0 Chlorobromomethane U 0.17 1.0 Chlorodibromomethane 0.17 U 0.41 2.0 0.41 Chloroethane 0.16 U 0.16 1.0 Chloroform 2.0 0.30 U 0.30 Chloromethane F 0.90 Y 0.15 1.0 cis-1,2-Dichloroethene 1.0 cis-1,3-Dichloropropene 0.16 U 0.16 0.17 1.0 0.17 U Dibromomethane 1.0 0.17 Dichlorobromomethane 0.17 U 2.0 0.31 0.31 U Dichlorodifluoromethane 1.0 0.16 U 0.16 Ethylbenzene 1.0 U 0.18 Ethylene Dibromide 0.18

TestAmerica Denver

Hexachlorobutadiene

0.36

U

W 1/13/14

0.36

1.0

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Date Sampled: 10/07/2013 1715

Date Received: 10/12/2013 0900

Client Sample ID:59UR53DWG1Lab Sample ID:280-47755-1Client Matrix:Water

		8260B/DoD Volatile Or	ganic Compou	md s (GC/M	S)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 1131 10/17/2013 1131	Analysis Batch Prep Batch:	280-196363 N/A	La In	istrument ID: ab File ID: iitial Weight/Volume: inal Weight/Volume:	VMS_H H6674.D 20 mL 20 mL
Analyte		Result (u	a/L)	Qualifier	DL	LOQ
		0.19	9/드/	U	0.19	1.0
Isopropylbenzene		0.15		U	0.25	5.0
Methyl tert-butyl eth Methylene Chloride		0.32		U	0.32	5.0
m-Xylene & p-Xylen		0.34		Ŭ	0.34	2.0
Naphthalene	l¢	0.22		Ŭ	0.22	1.0
n-Butylbenzene		0.32		Ŭ	0.32	1.0
N-Propylbenzene		0.16		Ū	0.16	1.0
o-Xylene		0.19		U	0.19	1.0
sec-Butylbenzene		0.17		U	0.17	1.0
Styrene		0.17		U	0.17	1.0
tert-Butylbenzene		0.16		U	0.16	1.0
Tetrachloroethene		0.20		U	0.20	1.0
Toluene		0.17		U	0.17	1.0
trans-1,2-Dichloroet	thene	0.15		U	0.15	1.0
trans-1,3-Dichlorop		0.19		U	0.19	1.0
Trichloroethene		1.7			0.16	1.0
Trichlorofluorometh	ane	0.29		U	0.29	2.0
Vinyl chloride		0.10		U	0.10	1.5
Surrogate		%Rec		Qualifier		nce Limits
1,2-Dichloroethane-	-d4 (Surr)	98			70 - 120	
4-Bromofluorobenze	ene (Surr)	93			75 - 120	
Dibromofluorometha	ane (Surr)	95			85 - 115	
Toluene-d8 (Surr)		90			85 - 120	

V 1/13/14

Client: HydroGeoLogic Inc

Lab Sample ID:

Client Matrix:

Client Sample ID: 59BM121WG1

280-47755-2

Water

Job Number: 280-47755-1

Date Sampled: 10/08/2013 0929 Date Received: 10/12/2013 0900

		8260B/DoD Volatile Org	janic Compounds (GC	c/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 1320 10/17/2013 1320	Analysis Batch: Prep Batch:	280-196363 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_H H6679.D 20 mL 20 mL	
Analyte		Result (ug	ı/L) Qualifi	er DL	LOQ	
1,1,1,2-Tetrachloroe	thane	0.17	U	0.17	1.0	
1,1,1-Trichloroethan		0,16	Ŭ	0.16	1.0	
1,1,2,2-Tetrachloroe		0.20	U	0.20	1.0	
1,1,2-Trichloroethan		0.32	U	0.32	1.0	
1,1-Dichloroethane		0,16	U	0.16	1_0	
1,1-Dichloroethene		0.14	U	0.14	1.0	
1,1-Dichloropropene)	0.15	U	0.15	1.0	
1,2,3-Trichlorobenze	ene	0.18	U	0.18	1.0	
1,2,3-Trichloropropa	ine	0.77	U	0.77	3.0	
1,2,4-Trichlorobenze	ene	0.32	U	0,32	1.0	
1,2,4-Trimethylbenz	ene	0.14	U	0.14	1.0	
1,2-Dibromo-3-Chlor	ropropane	0.81	U	0.81	5.0	
1,2-Dichlorobenzene	e	0.13	U	0,13	1.0	
1,2-Dichloroethane		0.13	U	0.13	1.0	
1,2-Dichloropropane		0.13	U	0.13	1.0	
1,3,5-Trimethylbenz	ene	0.14	U	0.14	1.0	
1,3-Dichlorobenzene		0.16	U	0.16	1.0	
1,3-Dichloropropane	2	0.15	U	0.15	1.0	
1,4-Dichlorobenzene	e	0.16	U	0.16	1.0	
1-Chlorohexane		0.17	U	0.17	1.0	
2,2-Dichloropropane	•	0.20	U	0.20	1.0	
2-Butanone (MEK)		1.8	U	1.8	6.0	
2-Chlorotoluene		0.17	U	0.17	1.0	
4-Chlorotoluene		0.17	U	0,17	1.0	
4-Isopropyltoluene		0.17	U	0.17	1.0	
4-Methyl-2-pentanor	ie (MIBK)	1.0	U	1.0	5.0	
Acetone		1,9	U	1.9	10	
Benzene		0.16	U	0.16	1.0	
Bromobenzene		0.17	U	0.17	1.0	
Bromoform		0.19	U	0.19	1.0	
Bromomethane Carbon tetrachloride		0.21 0.19	U U	0.21 0.19	2.0 2.0	
Chlorobenzene		0.19	U	0.19	1.0	
Chlorobromomethar	0	0.17	U	0.17	1.0	
Chlorodibromometha		0.10	U	0.17	1.0	
Chloroethane		0.41	U	0.41	2.0	
Chloroform		0.16	U	0.16	1.0	
Chloromethane		0.30	U	0.30	2.0	
cis-1,2-Dichloroethe	ne	0.15	U	0.15	1.0	
cis-1,3-Dichloroprop		0.16	U	0,16	1.0	
Dibromomethane		0.10	U	0.17	1.0	
Dichlorobromometha	ane	0.17	U	0.17	1.0	
Dichlorodifluorometh		0.31	U	0.31	2.0	
Ethylbenzene		0.16	U	0.16	1.0	
Ethylene Dibromide		0.18	Ŭ	0,18	1.0	
Hexachlorobutadien	e	0.36	Ŭ	0.36	1.0	
	-			1		

TestAmerica Denver

Page 26 of 1102

GA 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

 Client Sample ID:
 59BM121WG1

 Lab Sample ID:
 280-47755-2

Water

Client Matrix:

Date Sampled: 10/08/2013 0929 Date Received: 10/12/2013 0900

	8260B/DoD Volatile Organ	ic Compounds (GC/M	3)		
Analysis Method: 8260B/DoD Prep Method: 5030B Dilution: 1.0 Analysis Date: 10/17/2013 1320 Prep Date: 10/17/2013 1320	Analysis Batch: 2	280-196363 In: I/A La Ini	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	VMS_H H6679.D 20 mL 20 mL	
Analyte	Result (ug/L)	Qualifier	DL	LOQ	
Isopropylbenzene	0.19	υ	0.19	1.0	
Methyl tert-butyl ether	0.25	U	0.25	5.0	
Methylene Chloride	0.32	U	0.32	5.0	
m-Xylene & p-Xylene	0.34	U	0.34	2.0	
Naphthalene	0.22	U	0.22	1.0	
n-Butylbenzene	0.32	U	0.32	1.0	
N-Propylbenzene	0.16	U	0.16	1.0	
o-Xylene	0.19	U	0.19	1.0	
sec-Butylbenzene	0.17	U	0.17	1.0	
Styrene	0.17	U	0.17	1.0	
tert-Butylbenzene	0.16	U	0.16	1.0	
Tetrachloroethene	0.20	U	0.20	1.0	
Toluene	0.17	U	0.17	1.0	
trans-1,2-Dichloroethene	0.15	U	0.15	1.0	
trans-1,3-Dichloropropene	0.19	U	0.19	1.0	
Trichloroethene	0.16	U	0.16	1.0	
Trichlorofluoromethane	0.29	U	0.29	2.0	
Vinyl chloride	0.10	U	0.10	1.5	
Surrogate	%Rec	Qualifier	Accepta	nce Limits	
1,2-Dichloroethane-d4 (Surr)	94		70 - 120		
4-Bromofluorobenzene (Surr)	93		75 - 120		
Dibromofluoromethane (Surr)	92		85 - 115		
Toluene-d8 (Surr)	93		85 - 120		

Q/ 1/13/14

Client: HydroGeoLogic Inc

Analytical Data

Job Number: 280-47755-1

Client Sample ID: 59UR52DWG1

280-47755-3

Water

Lab Sample ID: Client Matrix: Date Sampled: 10/08/2013 1245 Date Received: 10/12/2013 0900

Analysis Method:	8260B/DoD	Analysis Batch	280-196363	Instrument ID:	VMS_H
Prep Method:	5030B	Prep Batch:	N/A	Lab File ID:	H6680 D
Dilution:	1.0			Initial Weight/Volume:	20 mL
Analysis Date:	10/17/2013 1342			Final Weight/Volume:	20 mL
Prep Date:	10/17/2013 1342				
riep bate.	10/11/2013 1342				
Analyte		Result (u	g/L) Qua	lifier DL	LOQ
1,1,1,2-Tetrachloro	ethane	0.17	U	0.17	1.0
1,1,1-Trichloroetha		0,16	U	0.16	1.0
1,1,2,2-Tetrachloro		0.20	U	0.20	1.0
1,1,2-Trichloroetha		0.32	U	0.32	1.0
1,1-Dichloroethane		0.21	XF	0.16	1.0
1,1-Dichloroethene		0.14	U	0.14	1.0
1,1-Dichloropropen	e	0.15	U	0.15	1.0
1,2,3-Trichlorobenz		0.18	U	0.18	1.0
1,2,3-Trichloroprop		0.77	U	0.77	3.0
1,2,4-Trichlorobenz		0.32	U	0.32	1,0
1,2,4-Trimethylben	zene	0.14	U U	0.14	1.0
1,2-Dibromo-3-Chl		0.81	U	0.81	5,0
1,2-Dichlorobenzer		0.13	U	0.13	1.0
1,2-Dichloroethane		0.13	U	0.13	1.0
1,2-Dichloropropan	e	0.13	U	0.13	1.0
1,3,5-Trimethylben	zene	0.14	U	0,14	1.0
1,3-Dichlorobenzer	ne	0.16	U	0,16	1.0
1,3-Dichloropropan	e	0.15	U	0.15	1.0
1,4-Dichlorobenzer	ne	0.16	U	0.16	1.0
1-Chlorohexane		0.17	U	0.17	1.0
2,2-Dichloropropan	е	0.20	U	0.20	1.0
2-Butanone (MEK)		1.8	U	1.8	6.0
2-Chlorotoluene		0.17	U	0.17	1.0
4-Chlorotoluene		0,17	U	0.17	1.0
4-Isopropyltoluene		0.17	U	0.17	1.0
4-Methyl-2-pentance	one (MIBK)	1.0	U	1.0	5.0
Acetone		1.9	U	1.9	10
Benzene		0.16	U	0.16	1.0
Bromobenzene		0.17	U	0.17	1.0
Bromoform		0.19	U	0.19	1.0
Bromomethane		0,21	U	0.21	2.0
Carbon tetrachlorid	e	0.19	U	0.19	2.0
Chlorobenzene		0.17	U	0,17	1.0
Chlorobromometha	ine	0.10	U	0.10	1.0
Chlorodibromomet	nane	0.17	U	0.17	1.0
Chloroethane		0.41	U	0.41	2.0
Chloroform		0.16	U	0.16	1.0
Chloromethane		0.30	U	0.30	2.0
cis-1,2-Dichloroeth	ene	66	-	リベ 0.15	1.0
cis-1,3-Dichloropro	pene	0.16	U	0,16	1.0
Dibromomethane		0.17	U	0.17	1.0
Dichlorobromomet	nane	0.17	U	0.17	1.0
Dichlorodifluorome	thane	0.31	U	0.31	2.0
Ethylbenzene		0.16	U	0,16	1.0
/		0.40	U	0.18	1.0
Ethylene Dibromide	9	0.18	0	0.16	1.0

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID:59UR52DWG1Lab Sample ID:280-47755-3

Client Matrix: Water

Date Sampled: 10/08/2013 1245 Date Received: 10/12/2013 0900

8260B/DoD Volatile Organic Compounds (GC/MS)							
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 1342 10/17/2013 1342	Analysis Batch: Prep Batch:	280-196363 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_H H6680.D 20 mL 20 mL	
Apoluto		Result (u	a/L)	Qualifier	- DL	LOQ	
Analyte		0.19	g/L)	U	0.19	1.0	
Isopropylbenzene		0.19		U	0.25	5.0	
Methyl tert-butyl eth		0.32		U	0.32	5.0	
Methylene Chloride		0.32		U	0.34	2.0	2.9
m-Xylene & p-Xyler	he	0.34		U	0.22	1.0	
Naphthalene		0.32		U	0.32	1.0	
n-Butylbenzene		0.16		U	0.16	1.0	
N-Propylbenzene		0.19		U	0.19	1.0	
o-Xylene		0.13		U	0.17	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.16		U	0.16	1.0	
tert-Butylbenzene Tetrachloroethene		0.10		U	0.20	1.0	
Toluene		0.17		U	0.17	1.0	
	thono	0.17		VF	0.15	1.0	
trans-1,2-Dichloroe		0.19		U	0.19	1.0	
trans-1,3-Dichlorop Trichloroethene	ropene	0.19		U	0.16	1.0	
Trichlorofluorometh		0.18		U	0.29	2.0	
	lane	0.10		υ	0.10	1.5	
Vinyl chloride		0.10		0	0.10	1.0	
Surrogate		%Rec		Qualifie	r Acceptar	nce Limits	
1,2-Dichloroethane-d4 (Surr)		97			70 - 120		
4-Bromofluorobenz	ene (Surr)	90			75 - 120		
Dibromofluorometh	ane (Surr)	91			85 - 115		
Toluene-d8 (Surr)	. ,	85			85 - 120		

Q/ 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID: 59UR52DWG1

Lab Sample ID: 280-47755-3 Client Matrix: Water Date Sampled: 10/08/2013 1245 Date Received: 10/12/2013 0900

8260B/DoD Volatile Organic Compounds (GC/MS)							
Analysis Method:	8260B/DoD	Analysis Batch	280-196363		Instrument ID:	VMS_H	
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:	H6681.D	
Dilution:	2.0				Initial Weight/Volume:	20 mL	
Analysis Date:	10/17/2013 1403	Run Type:	DL		Final Weight/Volume:	20 mL	
Prep Date:	10/17/2013 1403						
Analyte		Result (u	ig/L)	Qualifier		LOQ	
1,1,1,2-Tetrachloro	ethane	0.34		y ux		2.0	
1,1,1-Trichloroetha	ne	0.32		U I	0,32	2_0	
1,1,2,2-Tetrachloro	ethane	0.40		U I	0.40	2.0	
1,1,2-Trichloroetha	ne	0.64		μ	0.64	2.0	
1,1-Dichloroethane		0.32		Ψ	0.32	2,0	
1,1-Dichloroethene	•	0.28		Ψ	0.28	2,0	
1,1-Dichloropropen	e	0.30		U	0.30	2.0	
1,2,3-Trichlorobenz	zene	0.36		U	0.36	2.0	
1,2,3-Trichloroprop	ane	1,5		U	1.5	6.0	
1.2.4-Trichlorobenz		0.64		ų	0.64	2.0	
1,2,4-Trimethylben		0.28		U	0.28	2.0	
1,2-Dibromo-3-Chl		1.6		U	1.6	10	
1,2-Dichlorobenzer		0.26		U	0,26	2.0	
1,2-Dichloroethane		0.26		U	0.26	2.0	
1,2-Dichloropropar		0.26		U	0,26	2.0	
1,3,5-Trimethylben		0.28		U	0.28	2.0	
1,3-Dichlorobenzer		0.32		J	0.32	2.0	
1,3-Dichloropropar		0.30		U	0.30	2.0	
1,4-Dichlorobenzer		0.32		U	0.32	2.0	
1-Chlorohexane	ne -	0.34		J	0.34	2.0	
2,2-Dichloropropar		0.40		u	0.40	2.0	
2-Butanone (MEK)		3.7		U	3.7	12	
2-Chlorotoluene		0.34			0.34	2.0	
4-Chlorotoluene		0.34			0.34	2.0	
4-Isopropyltoluene		0.34		T.	0.34	2.0	
		2.1		l.	2,1	10	
4-Methyl-2-pentan		3.8		Ĩ.	3.8	20	
Acetone		0.32		Ĭ.	0.32	2.0	
Benzene		0.32		ŭ	0.34	2.0	
Bromobenzene		0.34		ĭ	0.38	2.0	
Bromoform		0.38		Ľ	0.42	4.0	
Bromomethane		0.38		ŭ	0.38	4.0	
Carbon tetrachloric	le	0.38		ŭ	0.34	2.0	
Chlorobenzene		0.34		Ĭ.	0.20	2.0	
Chlorobromometha		0.20		Ĭ.	0.34	2.0	
Chlorodibromomet	nane			Ĭ.	0.82	4.0	
Chloroethane		0.82		ĭ	0.32	2.0	
Chloroform		0.32			0.60	4.0	
Chloromethane		0.60		0	0.30	2.0	
cis-1,2-Dichloroeth		62		de La		2.0	
cis-1,3-Dichloropro	ppene	0.32		y u	× 0.32		
Dibromomethane		0.34		9 1	0.34	2.0	
Dichlorobromomet		0.34		4	0.34	2.0	
Dichlorodifluorome	ethane	0.62		9	0.62	4.0	
Ethylbenzene		0,32		2	0.32	2.0	
Ethylene Dibromid	e	0.36		0	0.36	2.0	
Hexachlorobutadie	ene	0.72		UU	0.72	2.0	

Q1 1/13/4

10/31/2013

Client: HydroGeoLogic Inc

Client Sample ID: 59UR52DWG1

Date Sampled: 10/08/2013 1245 Date Received: 10/12/2013 0900

Job Number: 280-47755-1

Lab Sample ID: 280-47755-3 Client Matrix: Water

	Water			_			
		8260B/DoD Volatile Or	ganic Compou	nds (GC/MS)	il.		
Analysis Method: Prep Method: Dilution:	8260B/DoD 5030B 2.0	Analysis Batch: Prep Batch:	280-196363 N/A	Lab	rument ID: File ID: al Weight/Volume:	VMS_H H6681.D 20 mL	
Dilution: Analysis Date: Prep Date:	2.0 10/17/2013 1403 10/17/2013 1403	Run Type:	DL		al Weight/Volume:	20 mL	
Analyte		Result (u	g/L)	Qualifier	DL	LOQ	
Isopropylbenzene		0.38		4 4x	0.38	2.0	
Methyl tert-butyl eth	her	0.50		U in	0.50	10	
Methylene Chloride		0.64		U	0.64	10	
m-Xylene & p-Xyler		0.68		U	0.68	4.0	
Naphthalene		0.44		U	0.44	2.0	
n-Butylbenzene		0.64		U	0.64	2.0	
N-Propylbenzene		0.32		U	0.32	2.0	
o-Xylene		0.38		U	0.38	2.0	
sec-Butylbenzene		0.34		U	0.34	2.0	
Styrene		0.34		U	0.34	2.0	
tert-Butylbenzene		0.32		U I	0.32	2.0	
Tetrachloroethene		0.40		U I	0.40	2.0	
Toluene		0.34		Ü	0.34	2.0	
trans-1,2-Dichloroe	thene	0.30		u	0.30	2.0	
trans-1,3-Dichlorop		0.38		U	0.38	2.0	
Trichloroethene		0.32		U	0.32	2.0	
Trichlorofluorometh	nane	0.58		U.J.	0.58	4.0	
Vinyl chloride		0.20		ý 🖤	0.20	3.0	
Surrogate		%Rec		Qualifier	Accepta	nce Limits	
1,2-Dichloroethane	-d4 (Surr)	97		70 - 120			
4-Bromofluorobenz		92			75 - 120		
Dibromofluorometh		92			85 - 115		
Toluene-d8 (Surr)		89			85 - 120		

W 1/13/14

Client: HydroGeoLogic Inc

Analytical Data

Job Number: 280-47755-1

 Client Sample ID:
 59UR52SWG1

 Lab Sample ID:
 280-47755-4

Lab Sample ID:	280-47755-
Client Matrix:	Water

Date Sampled:	10/08/2013 1440
Date Received:	10/12/2013 0900

		8260B/DoD Volatile Or			
Analysis Method:	8260B/DoD	Analysis Batch:	280-196363	Instrument ID:	VMS_H
Prep Method:	5030B	Prep Batch:	N/A	Lab File ID:	H6682.D
Dilution:	1.0			Initial Weight/Volume:	20 mL
Analysis Date:	10/17/2013 1425			Final Weight/Volume:	20 mL
Prep Date:	10/17/2013 1425				
Analyte		Result (u	0. 7	alifier DL	LOQ
1,1,1,2-Tetrachloro		0.17	U	0.17	1.0
1,1,1-Trichloroethar	ne	1.6		0.16	1.0
1,1,2,2-Tetrachloro		0,20	U	0.20	1.0
1,1,2-Trichloroetha	ne	0.32	U	0.32	1.0 1.0
1,1-Dichloroethane		1.1		0.16	1.0
1,1-Dichloroethene		0.14	U	0.14	1.0
1,1-Dichloropropen		0.15	U	0.15	
1,2,3-Trichlorobenz		0.18	U	0.18	1.0 3.0
1,2,3-Trichloroprop		0.77	U	0.77	
1,2,4-Trichlorobenz		0.32	U	0.32	1.0
1,2,4-Trimethylben:		0.14	U	0.14	1.0 5.0
1,2-Dibromo-3-Chlo		0.81	U	0.81	1.0
1,2-Dichlorobenzer		0.13	U	0.13	1.0
1,2-Dichloroethane		0.13	U	0.13	1.0
1,2-Dichloropropan		0.13	U	0.13	1.0
1,3,5-Trimethylben:		0,14	U	0.14	1.0
1,3-Dichlorobenzer		0.16		0.18	1.0
1,3-Dichloropropan		0.15	U	0.15	1.0
1,4-Dichlorobenzer	ie	0.16	U	0.10	1.0
1-Chlorohexane		0.17	U	0.20	1.0
2,2-Dichloropropan	e	0.20	U	1,8	6.0
2-Butanone (MEK)		1.8	U	0.17	1,0
2-Chlorotoluene		0.17	U	0.17	1.0
4-Chlorotoluene		0.17 0.17	U	0.17	1.0
4-Isopropyltoluene		1.0	U	1.0	5.0
4-Methyl-2-pentanc	one (MIBK)	1.0	U	1.9	10
Acetone		0.16	Ŭ	0.16	1.0
Benzene		0.17	Ŭ	0.17	1.0
Bromobenzene		0.19	Ŭ	0,19	1.0
Bromoform Bromomethane		0.21	U	0.21	2.0
Carbon tetrachlorid		0.19	U	0.19	2.0
Chlorobenzene		0.17	U	0.17	1.0
Chlorobromometha	ne	0,10	Ū	0.10	1.0
Chlorodibromomet		0.17	U	0.17	1.0
Chloroethane	nanc	0.41	U	0,41	2.0
Chloroform		0.16	Ū	0.16	1.0
Chloromethane		0.30	U	0.30	2.0
cis-1,2-Dichloroeth	ene	1.2		0.15	1.0
cis-1,3-Dichloropro		0.16	υ	0.16	1.0
Dibromomethane		0.17	Ū		1.0
Dichlorobromomet	hane	0.17	U	0.17	1.0
Dichlorodifluorome		0.31	U	0.31	2.0
Ethylbenzene		0.16	U	0.16	1.0
Ethylene Dibromid	e	0.18	Ū	0.18	1.0
Hexachlorobutadie		0.36	U	0.36	1.0
, iona chilorobataana	=			\circ	
T thus also Dam		Page	32 of 1102		10/31/201

TestAmerica Denver

Page 32 of 1102

W 1/13/14

10/31/2013

Client: HydroGeoLogic Inc

×

Olient. Hydroco	ologio mo						
Client Sample ID:	59UR52SWG1						
Lab Sample ID:	280-47755-4					Date Sampl	ed: 10/08/2013 1440
Client Matrix:	Water					Date Receiv	/ed: 10/12/2013 0900
						_	
		8260B/DoD Volatile Or	ganic Compou				
Analysis Method:	8260B/DoD	Analysis Batch:	280-196363		Instrument ID:		S_H
Prep Method:	5030B	Prep Batch:	N/A		Lab File ID:		682.D
Dilution:	1.0				Initial Weight/Volu		mL
Analysis Date:	10/17/2013 1425				Final Weight/Volur	ne: 20	mL
Prep Date:	10/17/2013 1425						
Analyte		Result (u	ıg/L)	Qualifier	- DL		LOQ
Isopropylbenzene		0.19	0 /	U	0.19		1.0
Methyl tert-butyl eth	her	0.25		U	0.25		5.0
Methylene Chloride		0.32		U	0.32		5.0
m-Xylene & p-Xylei		0.34		U	0.34		2.0
Naphthalene		0.22		U	0.22		1.0
n-Butylbenzene		0.32		U	0.32		1.0
N-Propylbenzene		0.16		U	0.16		1.0
o-Xylene		0.19		U	0.19		1.0
sec-Butylbenzene		0.17		U	0.17		1.0
Styrene		0.17		U	0.17		1.0
tert-Butylbenzene		0.16		U	0.16		1.0
Tetrachloroethene		0.20		U	0.20		1.0
Toluene		0.17		U	0.17		1.0
trans-1,2-Dichloroe	ethene	0.15		U	0.15		1.0
trans-1,3-Dichlorop	propene	0.19		U	0.19		1.0
Trichloroethene		2.3			0.16		1.0
Trichlorofluorometh	nane	0.29		U	0.29		2.0
Vinyl chloride		0.10		U	0.10		1.5
Surrogate		%Rec		Qualifie		ceptance Lir	nits
1,2-Dichloroethane	e-d4 (Surr)	103				- 120	
4-Bromofluorobenz		103				- 120	
Dibromofluorometh	nane (Surr)	100			85	- 115	
Toluene-d8 (Surr)		92			85	- 120	
()							

Q 1/13/14

Analytical Data

Job Number: 280-47755-1

59UR55SWG1 Client Sample ID: 280-47755-5 Lab Sample ID:

Water

Client Matrix:

Date Sampled: 10/08/2013 1712 Date Received: 10/12/2013 0900

	0000D/D . D	Analysis Database	200 100202	Instrument (D)	VMS H	
Analysis Method:	8260B/DoD	Analysis Batch	280-196363	Instrument ID:	VMS_H H6673.D	
Prep Method:	5030B	Prep Batch:	N/A	Lab File ID:	20 mL	
Dilution:	1.0			Initial Weight/Volume:		
Analysis Date:	10/17/2013 1109			Final Weight/Volume:	20 mL	
Prep Date:	10/17/2013 1109					
Analyte		Result (u	g/L) Qua	lifier DL	LOQ	
1,1,1,2-Tetrachloro	ethane	0.17	U	0.17	1.0	
1,1,1-Trichloroetha		0.50	XF	0.16	1.0	
1,1,2,2-Tetrachloro		0.20	U	0.20	1.0	
1,1,2-Trichloroetha		0.32	U	0.32	1.0	
1,1-Dichloroethane		0.16	U	0.16	1.0	
1,1-Dichloroethene		0.14	U	0,14	1.0	
1,1-Dichloropropen	e	0.15	U	0.15	1.0	
1,2,3-Trichlorobenz		0.18	U	0.18	1.0	
1,2,3-Trichloroprop		0,77	U	0.77	3.0	
1,2,4-Trichlorobenz		0.32	U	0.32	1.0	
1,2,4-Trimethylben		0.14	U	0.14	1.0	
1,2-Dibromo-3-Chlo		0.81	U	0.81	5.0	
, 1,2-Dichlorobenzer		0.13	U	0.13	1.0	
1,2-Dichloroethane		0.13	U	0,13	1.0	
1,2-Dichloropropan	e	0.13	U	0.13	1.0	
1,3,5-Trimethylben:	zene	0.14	U	0.14	1.0	
1,3-Dichlorobenzer	e	0.16	U	0.16	1.0	
1,3-Dichloropropan	e	0.15	U	0.15	1.0	
1,4-Dichlorobenzer	e	0.16	U	0.16	1.0	
1-Chlorohexane		0.17	U	0.17	1.0	
2,2-Dichloropropan	e	0.20	U	0.20	1.0	
2-Butanone (MEK)		1,8	U	1.8	6.0	
2-Chlorotoluene		0.17	U	0.17	1.0	
4-Chlorotoluene		0.17	U	0.17	1.0	
4-Isopropyltoluene		0,17	U	0.17	1.0	
4-Methyl-2-pentanc	one (MIBK)	1.0	U	1.0	5.0	
Acetone		1,9	U	1.9	10	
Benzene		0.16	U	0.16	1.0	
Bromobenzene		0.17	U	0.17	1.0	
Bromoform		0.19	U	0.19	1.0	
Bromomethane		0.21	U	0.21	2.0	
Carbon tetrachlorid	e	0,19	U	0.19	2.0	
Chlorobenzene		0,17	U	0.17	1.0	
Chlorobromometha	ine	0.10	U	0.10	1.0	
Chlorodibromometl	nane	0.17	U	0.17	1.0	
Chloroethane		0.41	U	0,41	2.0	
Chloroform		0.16	U	0.16	1.0	
Chloromethane		0.30	U	0.30	2.0	
cis-1,2-Dichloroeth	ene	0.15	U	0.15	1.0	
cis-1,3-Dichloropro	pene	0.16	U	0.16	1.0	
Dibromomethane		0.17	U	0.17	1.0	
Dichlorobromometh	nane	0,17	U	0.17	1.0	
Dichlorodifluorome	thane	0.31	U	0.31	2,0	
Ethylbenzene		0_16	U	0.16	1.0	
Ethylene Dibromide	e	0.18	U	0.18	1.0	
Hexachlorobutadie		0.36	U	0.36	1.0	

Page 34 of 1102

Q 1/13/14 10/31/2013

Analytical Data

Job Number: 280-47755-1

Client Sample ID: 59UR55SWG1 Lab Sample ID: 280-47755-5 Client Matrix: Water Date Received: 10/12/2013 0900

	00	CODID-D V-I-tile Ore	onia Compou	nde (CC/M	2)		
	82	60B/DoD Volatile Org	anic compou	nus (oonm	2)		
Analysis Method:	8260B/DoD	Analysis Batch:	280-196363	In	strument ID:	VMS_H	
Prep Method:	5030B	Prep Batch:	N/A	La	b File ID:	H6673.D	
Dilution:	1.0			In	itial Weight/Volume:	20 mL	
Analysis Date:	10/17/2013 1109			Fi	nal Weight/Volume:	20 mL	
Prep Date:	10/17/2013 1109				0		
Prep Date.	10/17/2013 1103						
Analyte		Result (ug	ı/L)	Qualifier	DL	LOQ	
Isopropylbenzene		0.19		U	0.19	1.0	
Methyl tert-butyl ethe	r	0.25		U	0.25	5.0	
Methylene Chloride		0.32		U	0.32	5.0	
m-Xylene & p-Xylene		0.34		U	0.34	2.0	
Naphthalene	-	0.22		U	0.22	1.0	
n-Butylbenzene		0.32		U	0.32	1.0	
N-Propylbenzene		0.16		U	0.16	1.0	
o-Xylene		0.19		U	0.19	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.17		U	0.17	1.0	
tert-Butylbenzene		0.16		U	0.16	1.0	
Tetrachloroethene		0.20		U	0.20	1.0	
Toluene		0.17		U	0.17	1.0	
trans-1,2-Dichloroeth	iene	0.15		U	0.15	1.0	
trans-1,3-Dichloropro	opene	0.19		U	0.19	1.0	
Trichloroethene		0.63		XF	0.16	1.0	
Trichlorofluorometha	ne	0.29		U	0.29	2.0	
Vinyl chloride		0.10		U	0.10	1.5	
Surrogate		%Rec		Qualifier	Acceptan	ce Limits	
1,2-Dichloroethane-c	14 (Surr)	96			70 - 120		
4-Bromofluorobenze		88			75 - 120		
Dibromofluorometha	. ,	92			85 - 115		
Toluene-d8 (Surr)		91			85 - 120		
· · ·							

Q 1/13/14

Analytical Data

Job Number: 280-47755-1

Client Sample ID: 59DW1WG1 Date Sampled: 10/09/2013 0902 280-47755-6 Lab Sample ID: Date Received: 10/12/2013 0900 Client Matrix: Water 8260B/DoD Volatile Organic Compounds (GC/MS) Instrument ID: VMS_H 280-196363 Analysis Batch: Analysis Method 8260B/DoD H6683.D Lab File ID: Prep Batch: N/A Prep Method: 5030B

Frep Method.	00000	Thep Baterin The F			
Dilution:	1.0		Initia	ll Weight/Volume	20 mL
Analysis Date:	10/17/2013 1447		Fina	I Weight/Volume:	20 mL
Prep Date:	10/17/2013 1447				
Analyte		Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachlor	oethane	0.17	U	0.17	1.0
1,1,1-Trichloroeth		0.16	U	0.16	1_0
1,1,2,2-Tetrachlor		0.20	U	0.20	1.0
1,1,2-Trichloroeth		0.32	U	0.32	1.0
1,1-Dichloroethan		0.16	U	0.16	1.0
1,1-Dichloroethen		0.14	U	0.14	1.0
1,1-Dichloroprope		0.15	U	0.15	1.0
1,2,3-Trichlorober		0.18	U	0.18	1.0
1,2,3-Trichloropro		0.77	U	0.77	3.0
1,2,4-Trichlorober		0.32	U	0.32	1.0
1,2,4-Trimethylbe		0.14	U	0.14	1.0
1,2-Dibromo-3-Ch		0.81	Ŭ	0.81	5.0
1,2-Dichlorobenze		0.13	U	0.13	1.0
1,2-Dichloroethan		0.13	Ŭ	0.13	1.0
-1,2-Dichloropropa		0.13	Ŭ	0.13	1.0
1,3,5-Trimethylbe		0.14	Ŭ	0.14	1.0
1,3-Dichlorobenze		0.16	Ŭ	0.16	1.0
1,3-Dichloropropa		0.15	U	0.15	1.0
1,4-Dichlorobenze		0.16	U	0.16	1.0
1-Chlorohexane		0.17	Ŭ	0.17	1.0
2,2-Dichloropropa	200	0.20	U	0.20	1.0
2-Butanone (MEK		1,8	U	1.8	6.0
2-Butanone (MER 2-Chlorotoluene	()	0,17	Ŭ	0.17	1.0
4-Chlorotoluene		0.17	Ŭ	0.17	1.0
		0.17	Ŭ	0.17	1.0
4-Isopropyltoluen 4-Methyl-2-pentar		1.0	Ŭ	1.0	5.0
	Ione (MIBK)	1.9	U	1.9	10
Acetone Benzene		0,16	Ŭ	0.16	1.0
		0.17	Ŭ	0.17	1.0
Bromobenzene		0.19	U	0.19	1.0
Bromoform		0.19	U	0.21	2.0
Bromomethane	ido	0.21	U	0.19	2.0
Carbon tetrachlor		0.19	U	0.13	1.0
Chlorobenzene Chlorobromometh	2200	0.10	U	0.10	1.0
		0.10	U	0.17	1.0
Chlorodibromome	eurarie	0.41	U	0.41	2.0
Chloroethane		0.16	U	0.16	1.0
Chloroform		0.30	U	0.30	2.0
Chloromethane	hana	0.30	U	0.30	1.0
cis-1,2-Dichloroet		0.16	U	0.15	1.0
cis-1,3-Dichlorop		0.17	U	0.10	1.0
Dibromomethane		0.17	U	0.17	1.0
Dichlorobromome			U	0.31	2.0
Dichlorodifluorom	iemane	0.31	U	0.16	1.0
Ethylbenzene	4-	0.16		0.18	1.0
Ethylene Dibromi		0.18	UU	0.36	1.0
Hexachlorobutad	iene	0.36	Ŭ O /	0.00	1.0
TestAmerica Der		Page 36 of	1102	11/2 lui	10/3
Lestamerica Der	IVEF	raye so or			

TestAmerica Denver

Page 36 of 1102

7 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID:

Lab Sample ID:

Client Matrix:

59DW1WG1

280-47755-6

Water

Job Number: 280-47755-1

Date Sampled: 10/09/2013 0902 Date Received: 10/12/2013 0900

Client Matrix.	Water						_
		8260B/DoD Volatile Or	ganic Compou	nds (GC/I	VIS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1 _x 0 10/17/2013 1447 10/17/2013 1447	Analysis Batch: Prep Batch:	280-196363 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_H H6683.D 20 mL 20 mL	
Analyte		Result (u	a/L)	Qualifier	DL	LOQ	
Isopropylbenzene		0.19	3/	Ū	0.19	1.0	
Methyl tert-butyl eth)er	0.25		U	0.25	5.0	
Methylene Chloride		0.32		U	0.32	5.0	
m-Xylene & p-Xyler		0.34		U	0.34	2.0	
Naphthalene		0.22		U	0.22	1.0	
n-Butylbenzene		0.32		U	0.32	1.0	
N-Propylbenzene		0.16		U	0.16	1.0	
o-Xylene		0.19		U	0.19	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.17		U	0.17	1.0	
tert-Butylbenzene		0.16		U	0.16	1.0	
Tetrachloroethene		0.20		U	0.20	1.0	
Toluene		0.17		U	0.17	1.0	
trans-1,2-Dichloroe	thene	0.15		U	0.15	1.0	
trans-1,3-Dichlorop	ropene	0.19		U	0.19	1.0	
Trichloroethene		0.16		U	0.16	1.0	
Trichlorofluorometh	ane	0.29		U	0.29	2.0	
Vinyl chloride		0.10		U	0.10	1.5	1
Surrogate		%Rec		Qualifier		nce Limits	
1,2-Dichloroethane	-d4 (Surr)	101			70 - 120		
4-Bromofluorobenz	ene (Surr)	86			75 - 120		
Dibromofluorometh	ane (Surr)	94			85 - 115		
Toluene-d8 (Surr)		92			85 - 120)	

Q 1/13/14

Analytical Data

Job Number: 280-47755-1

 Client Sample ID:
 59SW1WG1

 Lab Sample ID:
 280-47755-7

Water

Client Matrix:

Date Sampled: 10/09/2013 1102 Date Received: 10/12/2013 0900

Analysis Method: 9280HDOD Analysis Batch: 280-19933 Instrument ID: VMS_H Prep Method: 50308 Prep Batch: N/A Instrument ID: VMS_H Analysis Date: 10/7/2013 1509 Instrument ID: VMS_H Hei694.D J.2.2 Fritchioroberatione 0.14 U 0.16 1.0 J.2.3 Fritchioroberatione			8260B/DoD Volatile Or	ganic Compour	nds (GC/N	AS)		
1,1,2-Tetrachloroethane 0,17 U 0,17 1 1,1,1:2-Tetrachloroethane 0,16 U 0,16 1.0 1,1,2:-Tetrachloroethane 0,20 U 0,22 1.0 1,1-2:Tritechloroethane 0,22 U 0,32 1.0 1,1-Dichtoroethane 0,16 U 0,16 1.0 1,1-Dichtoroethane 0,16 U 0,15 1.0 1,2:3-Trichtoropenane 0,17 U 0,17 3.0 1,2:3-Trichtoropenane 0,18 U 0,14 1.0 1,2:3-Trichtoropenane 0,14 U 0,14 1.0 1,2:Dirtoros-Alteroropenane 0,13 U 0,13 1.0 1,2-Dichtorotehane 0,13 U 0,13 1.0 1,2-Dichtorotehane 0,16 U 0,14 1.0 1,2-Dichtorotehane 0,16 U 0,14 1.0 1,2-Dichtorotehane 0,16 U 0,16 1.0 1,2-Dichtorotehane 0,	Prep Method: Dilution: Analysis Date:	5030B 1.0 10/17/2013 1509	•		۱ ا	₋ab File ID: nitial Weight/Volume:	H6684.D 20 mL	
1,1,2-Tetrachloroethane 0,17 U 0,17 1 1,1,1:2-Tetrachloroethane 0,16 U 0,16 1.0 1,1,2:-Tetrachloroethane 0,20 U 0,22 1.0 1,1-2:Tritechloroethane 0,22 U 0,32 1.0 1,1-Dichtoroethane 0,16 U 0,16 1.0 1,1-Dichtoroethane 0,16 U 0,15 1.0 1,2:3-Trichtoropenane 0,17 U 0,17 3.0 1,2:3-Trichtoropenane 0,18 U 0,14 1.0 1,2:3-Trichtoropenane 0,14 U 0,14 1.0 1,2:Dirtoros-Alteroropenane 0,13 U 0,13 1.0 1,2-Dichtorotehane 0,13 U 0,13 1.0 1,2-Dichtorotehane 0,16 U 0,14 1.0 1,2-Dichtorotehane 0,16 U 0,14 1.0 1,2-Dichtorotehane 0,16 U 0,16 1.0 1,2-Dichtorotehane 0,	Analyte		Result (u	a/L)	Qualifier	DI	LOQ	
1,1,1-Tribulares and the second se	•	those		0 /				
1,1,2,2-Tetrachloroethane 0.20 U 0.20 1.0 1,1,2-Trichloroethane 0.32 U 0.32 1.0 1,1-Dichloroethane 0.16 U 0.16 1.0 1,1-Dichloroethane 0.14 U 0.15 1.0 1,2-STrichloroppropene 0.15 U 0.18 1.0 1,2-STrichloroppropene 0.77 U 0.77 3.0 1,2-A Trichlorobenzene 0.32 U 0.32 1.0 1,2-A Trichlorobenzene 0.14 U 0.14 1.0 1,2-A Trichlorobenzene 0.13 U 0.13 1.0 1,2-Dichrono-Schloroppane 0.14 U 0.14 1.0 1,2-Dichrono-Schloroppane 0.14 U 0.14 1.0 1,2-Dichronopenzene 0.16 U 0.18 1.0 1,3-Drichroobenzene 0.16 U 0.16 1.0 1,3-Drichroobenzene 0.16 U 0.16 1.0 1,3-Dichroobenzene								
1,12-Trichloroethane 0.32 U 0.32 10 1,12-Trichloroethane 0.16 U 0.16 1.0 1,1-Dichloroethane 0.16 U 0.16 1.0 1,1-Dichloropropene 0.15 U 0.15 1.0 1,2.3-Trichloropropane 0.77 U 0.77 3.0 1,2.4-Trichrobenzene 0.82 U 0.32 1.0 1,2.4-Trichrobenzene 0.81 U 0.81 5.0 1,2.4-Trimethybenzene 0.14 U 0.14 1.0 1,2-Dichloroethane 0.13 U 0.13 1.0 1,2-Dichloroethane 0.13 U 0.13 1.0 1,2-Dichloropropane 0.13 U 0.14 1.0 1,2-Dichloropropane 0.16 U 0.16 1.0 1,2-Dichloropropane 0.16 U 0.16 1.0 1,2-Dichloropropane 0.17 U 0.17 1.0 1,4-Dichlorobenzene 0.17 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
1,1-Dichloroethane 0.16 U 0.16 1.0 1,1-Dichloroethene 0.14 U 0.14 1.0 1,2.3-Trichloropropene 0.18 U 0.18 1.0 1,2.3-Trichloropropene 0.18 U 0.18 1.0 1,2.3-Trichloropropene 0.12 U 0.77 3.0 1,2.4-Trichlorobenzene 0.32 U 0.32 1.0 1,2.4-Trimethylbenzene 0.14 U 0.44 1.0 1,2-Dichlorobenzene 0.13 U 0.13 1.0 1,2-Dichloropane 0.13 U 0.13 1.0 1,2-Dichloropane 0.14 U 0.14 1.0 1,3-Dichloropropane 0.16 U 0.16 1.0 1,3-Dichloropropane 0.16 U 0.16 1.0 1,4-Dichlorobenzene 0.17 U 0.17 1.0 1,4-Dichloropropane 0.16 U 0.16 1.0 1,4-Dichloropropane 0.17 U 0.17 1.0 1,4-Dichloropropane 0.17 U </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,1-Dichloropropene 0.14 U 0.14 1.0 1,1-Dichloropropene 0.15 U 0.18 1.0 1,2,3-Trichloropropane 0.77 U 0.77 3.0 1,2,4-Trichloropropane 0.32 U 0.32 1.0 1,2,4-Trichlorobenzene 0.14 U 0.14 1.0 1,2-Dichlorobenzene 0.13 U 0.13 1.0 1,2-Dichlorobenzene 0.13 U 0.13 1.0 1,2-Dichloropropane 0.13 U 0.13 1.0 1,2-Dichloropropane 0.16 U 0.14 1.0 1,3-Dichloropropane 0.16 U 0.16 1.0 1,3-Dichloropropane 0.16 U 0.16 1.0 1,3-Dichloropropane 0.17 U 0.17 1.0 1,2-Dichloropropane 0.17 U 0.17 1.0 1,2-Dichloropropane 0.17 U 0.17 1.0 1,2-Dichloropropane 0.17 U 0.17 1.0 2-Dichloropropane 0.17 U </td <td></td> <td>le</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		le						
11:Dichloropropene 0.15 U 0.16 1.0 1.2.3-Trichloropropene 0.18 U 0.18 1.0 1.2.3-Trichloropropene 0.32 U 0.32 1.0 1.2.4-Trindenylbenzene 0.32 U 0.32 1.0 1.2.4-Trindenylbenzene 0.14 U 0.44 1.0 1.2.Dichorobenzene 0.13 U 0.13 1.0 1.2.Dichorobenzene 0.13 U 0.13 1.0 1.2.Dichorobenzene 0.14 U 0.14 1.0 1.2.Dichoropropane 0.13 U 0.13 1.0 1.3.Dichropropane 0.14 U 0.14 1.0 1.3.Dichropropane 0.16 U 0.16 1.0 1.3.Dichropropane 0.16 U 0.16 1.0 1.4.Dichropropane 0.16 U 0.16 1.0 1.3.Dichropropane 0.16 U 0.16 1.0 1.4.Dichropropane 0.17 U 0.17 1.0 2.2.Dichropropane 0.17 U								
12.3-Trichlorobenzene 0.16 0 0.18 1.0 12.3-Trichlorobenzene 0.77 0 0.77 3.0 12.4-Trichlorobenzene 0.32 0 0.32 1.0 12.4-Trichlorobenzene 0.14 0 0.14 1.0 12-Dichlorobenzene 0.13 0 0.13 1.0 12-Dichlorobenzene 0.13 0 0.13 1.0 12-Dichloroprapane 0.13 0 0.13 1.0 12-Dichloroprapane 0.16 0 0.16 1.0 13-Dichloroprapane 0.16 0 0.16 1.0 14-Dichloroprapane 0.16 0 0.17 1.0 14-Dichloroprapane 0.17 0 0.17 1.0 2-Dichloropropane 0.20 0 0.17 1.0 2-Dichloropropane 0.17 0 0.								
1.2.3-Trichloropropane 0.77 U 0.77 3.0 1.2.4-Trinelrobenzene 0.32 U 0.52 1.0 1.2.4-Trinelrobenzene 0.14 U 0.14 1.0 1.2-Dichlorobenzene 0.81 U 0.81 5.0 1.2-Dichlorobenzene 0.13 U 0.13 1.0 1.2-Dichloroptopane 0.13 U 0.13 1.0 1.2-Dichloroptopane 0.13 U 0.14 1.0 1.3-Trinehrybenzene 0.16 U 0.14 1.0 1.3-Dichloropropane 0.15 U 0.16 1.0 1.4-Dichloropropane 0.16 U 0.16 1.0 1.4-Dichloropropane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2.2-Dichloropropane 0.17 U 0.17 1.0 2-Dichloropropane 0.20 U 0.20 1.0 2-Dichloropropane 0.20 U 0.17 1.0 2-Dichloropropane 0.20 U								
12.4-Trichlorobenzene 0.32 0 0.32 1.0 12.4-Trichlorobenzene 0.14 0 0.41 1.0 12Ditornos-S-Chloropropane 0.13 0 0.13 1.0 12Ditornos-S-Chloropropane 0.13 0 0.13 1.0 12Dichoropropane 0.13 0 0.13 1.0 1.3-Dichloropropane 0.16 0 0.16 1.0 1.3-Dichloropenzene 0.16 0 0.16 1.0 1.3-Dichloropenzene 0.16 0 0.17 1.0 1.3-Dichloropenzene 0.16 0 0.17 1.0 1.2-Dichloropenzene 0.17 0 0.17 1.0 1.2-Dichloropenzene 0.17 0 0.17 1.0 2-Dichoropenzene 0.17 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12.4-Trimethylbenzene 0.14 U 0.14 1.0 1.2-Dichloropropane 0.81 U 0.81 5.0 1.2-Dichloropthenzene 0.13 U 0.13 1.0 1.2-Dichloropthane 0.13 U 0.13 1.0 1.2-Dichloropthane 0.13 U 0.14 1.0 1.3-Dichloropthenzene 0.16 U 0.16 1.0 1.3-Dichloropthenzene 0.16 U 0.16 1.0 1.3-Dichloropthypane 0.16 U 0.16 1.0 1.3-Dichloropthypane 0.16 U 0.16 1.0 1.4-Dichloropthypane 0.17 U 0.17 1.0 2.2-Dichloropthypane 0.20 U 0.20 1.0 2-Dichloropthypane 0.17 U 0.17 1.0 2-Dichloropthypane 0.17 U 0.17 1.0 2-Dichloropthene 0.17 U 0.17 1.0 2-Dichloropthene 0.17 U 0.17 1.0 2-Dichloropthene 0.17 U								
1.2-Dibrom-3-Chloropropane 0.81 U 0.81 5.0 1.2-Dichlorobenzene 0.13 U 0.13 1.0 1.2-Dichlorobenzene 0.13 U 0.13 1.0 1.2-Dichlorobenzene 0.13 U 0.13 1.0 1.3-Dichlorobenzene 0.16 U 0.16 1.0 1.3-Dichloropropane 0.16 U 0.16 1.0 1.4-Dichlorobenzene 0.16 U 0.16 1.0 1.4-Dichlorobenzene 0.16 U 0.16 1.0 1.4-Dichlorobenzene 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2-Butanone (MEK) 1.8 U 1.8 6.0 2-Chlorobluene 0.17 U 0.17 1.0 4-Stopropylouene 0.17 U 0.17 1.0 4-stopropylouene 0.17 U 0.17 1.0 4-stopropylouene 0.17 U 0.17 1.0 Benzene 0.16 U 0.16 <								
12-Dichlorobenzene 0.13 U 0.13 1.0 12-Dichlorobenzene 0.13 U 0.13 1.0 1.3.5-Trimethylbenzene 0.14 U 0.14 1.0 1.3.5-Trimethylbenzene 0.16 U 0.16 1.0 1.3.Dichloroperpane 0.16 U 0.16 1.0 1.3-Dichloroperpane 0.16 U 0.16 1.0 1.4-Dichloroperpane 0.16 U 0.16 1.0 1.4-Dichloroperpane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2-Dichloropropane 0.17 U 0.17 1.0 2-Dichloropropane 0.17 U 0.17 1.0 2-Dichloropropane 0.17 U 0.17 1.0 4-Khorobluene 0.17 U 0.17 1.0 4-Khorobluene 0.17 U 0.17 1.0 Benzene 0.16 U 0.16 1.0 Bromoform 0.19 U 0.17 1.0								
1.2.Dichloroethane 0.13 U 0.13 1.0 1.2.Dichloropropane 0.13 U 0.13 1.0 1.3.5.Trimetrybenzene 0.14 U 0.14 1.0 1.3.5.Trimetrybenzene 0.16 U 0.16 1.0 1.4-Dichlorobenzene 0.16 U 0.15 1.0 1.4-Dichlorobenzene 0.16 U 0.16 1.0 1.4-Dichlorobenzene 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2.4-Dichoropropane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.17 U 0.17 1.0 2.4-Dicotoluene 0.17 U 0.17 1.0 4-Septorpyltoluene 0.17 U 0.17 1.0 4-septorpyltoluene 0.16 U 0.16 1.0 Benzene 0.16 U 0.17 1.0 Bromotemethane 0.17 U 0.17 1.0 Chlorobnormethane 0.19 U 0.19								
1.2.Dichforopropane 0.13 U 0.13 1.0 1.3.F.Trimethylbenzene 0.14 U 0.14 1.0 1.3.Dichforopropane 0.16 U 0.16 1.0 1.3.Dichforopropane 0.15 U 0.15 1.0 1.4.Dichforobenzene 0.16 U 0.16 1.0 1.Chlorobenzene 0.17 U 0.17 1.0 2.2.Dichforopropane 0.20 U 0.20 1.0 2.2.Dichforopropane 0.17 U 0.17 1.0 2.4.Chlorobluene 0.17 U 0.17 1.0 4.Chlorobluene 0.17 U 0.17 1.0 4.Chlorobluene 0.17 U 0.17 1.0 4.Sopropyltoluene 0.17 U 0.17 1.0 4.Sopropyltoluene 0.17 U 0.17 1.0 Acetone 1.9 U 1.9 10 Bromobenzene 0.17 U 0.17 1.0 Bromomethane 0.21 U 0.19 2.0		e .						
1,3,5-Trimethylbenzene 0.14 U 0.14 1.0 1,3-Dichlorobenzene 0.16 U 0.16 1.0 1,3-Dichlorobenzene 0.16 U 0.15 1.0 1,4-Dichlorobenzene 0.16 U 0.16 1.0 1,4-Dichlorobenzene 0.16 U 0.17 1.0 2,2-Dichloropropane 0.20 U 0.20 1.0 2,2-Dichloropropane 0.17 U 0.17 1.0 2,2-Dichoropropane 0.17 U 0.17 1.0 2-Edutanone (MEK) 1.8 U 1.8 6.0 2-Chlorobluene 0.17 U 0.17 1.0 4-Sopropytoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 0.17 1.0 Berzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.19 2.0								
1.3-Dichlorobenzene 0.16 U 0.16 1.0 1.3-Dichloropropane 0.15 U 0.15 1.0 1.4-Dichlorobenzene 0.16 U 0.16 1.0 1.Chlorohexane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2-Butanone (MEK) 1.8 U 1.8 6.0 2-Chlorotoluene 0.17 U 0.17 1.0 4-Sopropyltoluene 0.17 U 0.17 1.0 4-ketnyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Bromobenzene 0.17 U 0.17 1.0 Bromobenzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromomethane 0.21 U 0.19 2.0 Chlorobiromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0								
1.3-Dichloropropane 0.15 U 0.15 1.0 1.4-Dichloropropane 0.16 U 0.16 1.0 1-Chlorohexane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2-Butanone (MEK) 1.8 U 1.8 6.0 2.Chlorotoluene 0.17 U 0.17 1.0 4-Chlorotoluene 0.17 U 0.17 1.0 4-chlorotoluene 0.17 U 0.17 1.0 4-klorotoluene 0.17 U 0.17 1.0 Bromosenzene 1.9 U 1.0 1.0 Bromosenzene 0.16 U 0.16 1.0 Bromosenzene 0.17 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chloro								
1.4-Dichlorobenzene 0.16 U 0.16 1.0 1.4-Dichlorobexane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2.Butanone (MEK) 1.8 U 0.17 1.0 2-Chlorotoluene 0.17 U 0.17 1.0 4-Sopropyltoluene 0.17 U 0.17 1.0 4-Methyl-Zepentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Bromobenzene 0.17 U 0.17 1.0 Bromoberne 0.19 U 0.19 1.0 Bromoberne 0.17 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene								
1-Chlorohexane 0.17 U 0.17 1.0 2.2-Dichloropropane 0.20 U 0.20 1.0 2-Butanone (MEK) 1.8 U 1.8 6.0 2-Chlorotoluene 0.17 U 0.17 1.0 4-Chlorotoluene 0.17 U 0.17 1.0 4-Sopropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acctone 1.9 U 1.9 10 Benzene 0.16 U 0.16 1.0 Bromoform 0.19 U 0.19 1.0 Bromoform 0.19 U 0.19 1.0 Bromomethane 0.21 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene 0.10 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlo								
2.2-Dichloropropane 0.20 U 0.20 1.0 2-Butanone (MEK) 1.8 U 1.8 6.0 2-Chlorotoluene 0.17 U 0.17 1.0 4-Chlorotoluene 0.17 U 0.17 1.0 4-Sopropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.17 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.18 U 0.19 1.0 Bromomethane 0.21 U 0.19 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.16 U 0.16 1.0 Chloroform		6						
2-Butanone (MEK) 1.8 U 1.8 6.0 2-Chlorotoluene 0.17 U 0.17 1.0 4-Isopropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.17 1.0 Bromobenzene 0.17 U 0.16 1.0 Bromobenzene 0.17 U 0.16 1.0 Bromotername 0.12 U 0.19 1.0 Bromotername 0.17 U 0.17 1.0 Bromotername 0.17 U 0.17 1.0 Bromomethane 0.21 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.16 U 0.16 1.0 Chlorotorm								
2-Chlorotoluene 0.17 U 0.17 1.0 4-Chlorotoluene 0.17 U 0.17 1.0 4-Sapropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.17 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.41 U 0.41 2.0 Chloroform<		5						
4-Chlorotoluene 0.17 U 0.17 1.0 4-Isopropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.17 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromotheme 0.17 U 0.17 1.0 Bromotheme 0.16 U 0.17 1.0 Bromotheme 0.19 U 0.19 1.0 Bromotheme 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorotohane 0.17 U 0.17 1.0 Chlorothane 0.16 U 0.16 1.0 Chlorothane 0.30 U 0.30 2.0 cis-1,3-Dichloropropene	. ,							
4-Isopropyltoluene 0.17 U 0.17 1.0 4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene 0.16 U 0.16 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.30 U 0.30 2.0 Chloroform 0.16 U 0.16 1.0 Chlorofthane								
4-Methyl-2-pentanone (MIBK) 1.0 U 1.0 5.0 Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.19 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.16 U 0.16 1.0 Chlorobromomethane 0.16 U 0.16 1.0 Dibromomethan								
Acetone 1.9 U 1.9 10 Benzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.19 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorobipromomethane 0.17 U 0.17 1.0 Chlorobipromomethane 0.17 U 0.17 1.0 Chloroform 0.16 U 0.16 1.0 cis-1,2-Dichloroptenee								
Benzene 0.16 U 0.16 1.0 Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.19 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chloroform 0.16 U 0.16 1.0 Chlorobromometh	• •							
Bromobenzene 0.17 U 0.17 1.0 Bromoform 0,19 U 0.19 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chlorobromomethane 0.17 U 0.17 1.0 Chloroftane 0.17 U 0.17 1.0 Chloroftane 0.16 U 0.41 2.0 Chloroftane 0.16 U 0.16 1.0 Chloroftane 0.30 U 0.30 2.0 cis-1,2-Dichloroptene 0.16 U 0.16 1.0 Dichloropropene 0.17 U 0.17 1.0								
Bromoform 0,19 U 0.19 1.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorobiromomethane 0.17 U 0.17 1.0 Chlorobiromomethane 0.17 U 0.17 1.0 Chlorobiromomethane 0.17 U 0.17 1.0 Chlorobiromomethane 0.16 U 0.41 2.0 Chloroethane 0.41 U 0.41 2.0 Chloromethane 0.16 U 0.16 1.0 Chloromethane 0.15 U 0.15 1.0 cis-1,2-Dichloropropene 0.16 U 0.17 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.31 U 0.31 2.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.41 U 0.41 2.0 Chloroform 0.16 U 0.16 1.0 Chloroform 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31								
Carbon tetrachloride 0.19 U 0.19 2.0 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.41 U 0.41 2.0 Chloroform 0.16 U 0.16 1.0 Chlorodibromomethane 0.30 U 0.30 2.0 Chloroform 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloropropene 0.16 U 0.15 1.0 cis-1,3-Dichloropropene 0.16 U 0.17 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16								
Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chloroethane 0.41 U 0.41 2.0 Chloroform 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,3-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 <t< td=""><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		2						
Chlorobromomethane 0.10 U 0.10 1.0 Chlorodibromomethane 0.17 U 0.17 1.0 Chlorodibromomethane 0.41 U 0.41 2.0 Chloroform 0.16 U 0.16 1.0 Chloroform 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,3-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0		<u>,</u>						
Chlorodibromomethane0.17U0.171.0Chloroethane0.41U0.412.0Chloroform0.16U0.161.0Chloromethane0.30U0.302.0cis-1,2-Dichloroethene0.15U0.151.0cis-1,3-Dichloropropene0.16U0.161.0Dibromomethane0.17U0.171.0Dichlorobromomethane0.17U0.171.0Dichlorobromomethane0.17U0.171.0Dichlorodifluoromethane0.31U0.312.0Ethylbenzene0.16U0.161.0Ethylene Dibromide0.18U0.181.0		ne						
Chloroethane 0,41 U 0.41 2.0 Chloroethane 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,2-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
Chloroform 0.16 U 0.16 1.0 Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,2-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
Chloromethane 0.30 U 0.30 2.0 cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,3-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
cis-1,2-Dichloroethene 0.15 U 0.15 1.0 cis-1,3-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
cis-1,3-Dichloropropene 0.16 U 0.16 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0		ne						
Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
Dichlorobromomethane 0.17 U 0.17 1.0 Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylnen Dibromide 0.18 U 0.18 1.0								
Dichlorodifluoromethane 0.31 U 0.31 2.0 Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0		ane						
Ethylbenzene 0.16 U 0.16 1.0 Ethylene Dibromide 0.18 U 0.18 1.0								
Ethylene Dibromide 0.18 U 0.18 1.0								
	,							
$Q/I/e_1$, local more balance				-	4/110)	

W 1/13/14

Analytical Data

Job Number: 280-47755-1

 Client Sample ID:
 59SW1WG1

 Lab Sample ID:
 280-47755-7

Lab Sample ID: 280-47 Client Matrix: Water Date Sampled: 10/09/2013 1102 Date Received: 10/12/2013 0900

		3260B/DoD Volatile Or	annia Common	mde (OC/MS	H		
		S260B/DOD volatile Or	ganic Compor	inds (GOIMB	1		
Analysis Method	8260B/DoD	Analysis Batch:	280-196363	Ins	strument ID:	VMS_H	
Prep Method:	5030B	Prep Batch:	N/A	La	b File ID:	H6684.D	
Dilution:	1.0			Init	tial Weight/Volume:	20 mL	
Analysis Date:	10/17/2013 1509			Fir	nal Weight/Volume:	20 mL	
Prep Date:	10/17/2013 1509				·		
Tiep Date.	10/1//2010 1000						
Analyte		Result (u	g/L)	Qualifier	DL	LOQ	
Isopropylbenzene		0.19		U	0.19	1.0	
Methyl tert-butyl eth	er	0.25		U	0.25	5.0	
Methylene Chloride		0.32		U	0.32	5.0	
m-Xylene & p-Xylen	e	0.34		U	0.34	2.0	
Naphthalene		0.22		U	0.22	1.0	
n-Butylbenzene		0.32		U	0.32	1.0	
N-Propylbenzene		0.16		U	0.16	1.0	
o-Xylene		0.19		U	0.19	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.17		U	0.17	1.0	
tert-Butylbenzene		0.16		U	0.16	1.0	
Tetrachloroethene		0.20		U	0.20	1,0	
Toluene		0_17		U	0.17	1.0	
trans-1,2-Dichloroet	hene	0.15		U	0.15	1.0	
trans-1,3-Dichloropr	opene	0.19		U	0.19	1.0	
Trichloroethene		0.16		U	0.16	1.0	
Trichlorofluorometha	ane	0.29		U	0.29	2.0	
Vinyl chloride		0.10		U	0.10	1.5	
Surrogate		%Rec		Qualifier		ice Limits	
1,2-Dichloroethane-	d4 (Surr)	99			70 - 120		
4-Bromofluorobenze	ene (Surr)	95			75 - 120		
Dibromofluorometha	ane (Surr)	95			85 - 115		
Toluene-d8 (Surr)		89			85 - 120		

Q 1/13/14

Analytical Data

Job Number: 280-47755-1

59DW3WG1 Client Sample ID: Date Sampled: 10/09/2013 1417 280-47755-8 Lab Sample ID: Date Received: 10/12/2013 0900 Client Matrix: Water 8260B/DoD Volatile Organic Compounds (GC/MS) VMS G2 8260B/DoD Analysis Batch: 280-196524 Instrument ID: Analysis Method G2_3803.D 5030B Prep Batch: N/A Lab File ID: Prep Method: Initial Weight/Volume: 20 mL Dilution: 1.0 20 mL Final Weight/Volume: 10/17/2013 2111 Analysis Date: 10/17/2013 2111 Prep Date: Result (ug/L) Qualifier DL LOQ Analyte U 0.17 1.0 0.17 1,1,1,2-Tetrachloroethane υ 0.16 1.0 0.16 1,1,1-Trichloroethane 1.0 U 0.20 0.20 1,1,2,2-Tetrachloroethane U 0.32 1.0 1,1,2-Trichloroethane 0.32 1.0 0.32 V F 0.16 1,1-Dichloroethane U 1.0 0.14 0.14 1,1-Dichloroethene 0.15 1.0 0.15 U 1,1-Dichloropropene 0.18 1.0 0.18 υ 1,2,3-Trichlorobenzene 0.77 U 0.77 3.0 1,2,3-Trichloropropane U 0.32 1.0 0.32 1,2,4-Trichlorobenzene U 0.14 1.0 0.14 1,2,4-Trimethylbenzene 5.0 1,2-Dibromo-3-Chloropropane 0.81 U 0.81 1.0 0.13 U 0.13 1,2-Dichlorobenzene 0.13 U 0.13 1.0 1,2-Dichloroethane 1,0 0.13 1,2-Dichloropropane 0.13 U 1.0 0.14 0.14 U 1,3,5-Trimethylbenzene 1.0 U 0.16 0.16 1,3-Dichlorobenzene 1.0 U 0.15 0.15 1,3-Dichloropropane 1.0 0.16 1,4-Dichlorobenzene 0.16 υ U 0.17 1.0 1-Chlorohexane 0.17 1.0 2,2-D 6.0 2-But 1.0 2-Chl 1.0 4-Chi

I-Childronexarie	0.11	0		
2,2-Dichloropropane	0.20	U	0.20	
2-Butanone (MEK)	1.8	U	1.8	
2-Chlorotoluene	0.17	U	0.17	
4-Chlorotoluene	0.17	U	0.17	
4-Isopropyltoluene	0.17	U	0.17	
4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	
Acetone	1.9	U	1.9	
Benzene	0.16	U	0.16	
Bromobenzene	0.17	U	0.17	
Bromoform	0.19	U	0.19	
Bromomethane	0.21	U	0.21	
Carbon tetrachloride	0.19	U	0.19	
Chlorobenzene	0.17	U	0,17	
Chlorobromomethane	0.10	U	0.10	
Chlorodibromomethane	0.17	U	0.17	
Chloroethane	0.41	U	0.41	
Chloroform	0.16	U	0.16	
Chloromethane	0.30	U	0.30	
cis-1,2-Dichloroethene	57		0.15	
cis-1,3-Dichloropropene	0.16	U	0,16	
Dibromomethane	0_17	U	0.17	
Dichlorobromomethane	0.17	U	0.17	
Dichlorodifluoromethane	0.31	U	0.31	
Ethylbenzene	0.16	U	0.16	
Ethylene Dibromide	0.18	U	0.18	
Hexachlorobutadiene	0.36	U	0.36	
			~	

TestAmerica Denver

Page 40 of 1102

V 1/13/14

10/31/2013

1.0

5.0

10

1.0

1.0

1.0

2.0

2.0

1.0

1.0

1.0

2.0

1.0

2.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

Job Number: 280-47755-1

.

Client: HydroGeoLogic Inc

Client Sample ID: 59DW3WG1

Lab Sample ID: 280-47755-8 Client Matrix: Water

Date Sampled:	10/09/2013	1417
Date Received:	10/12/2013	0900

. Bij		8260B/DoD Volatile Or	ganic Compou	nds (GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2111 10/17/2013 2111	Analysis Batch: Prep Batch:	280-196524 N/A	Lab Initi	rument ID:) File 1D: al Weight/Volume: al Weight/Volume:	VMS_G2 G2_3803.D 20 mL 20 mL	
Analyta		Result (u	a/l)	Qualifier	DL	LOQ	
Analyte		0.19	g/L)	U	0.19	1.0	
Isopropylbenzene		0.19		U	0.25	5.0	
Methyl tert-butyl eth		0.25		U	0.32	5.0	
Methylene Chloride		0.32		U	0.34	2.0	
m-Xylene & p-Xyler	ne	0.22		U	0.22	1.0	
Naphthalene		0.32		U	0.32	1.0	
n-Butylbenzene		0.16		U	0.16	1.0	
N-Propylbenzene		0.18		U	0.19	1.0	
o-Xylene		0.19		U	0.13	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.16		U	0.16	1.0	
tert-Butylbenzene		0.10		U	0.20	1.0	
Tetrachloroethene		0.17		U	0.17	1.0	
Toluene	thana	0.15		U	0.15	1.0	
trans-1,2-Dichloroe trans-1,3-Dichlorop		0.19		U	0.19	1.0	
Trichloroethene	nopene	0.16		Ŭ	0.16	1.0	
Trichlorofluorometh	2000	0.29		U I	0.29	2.0	
Vinyl chloride	lane	0.18		XF	0.10	1.5	
vinyi chionde		0.10			0.10	110	
Surrogate		%Rec		Qualifier	Accepta	nce Limits	
1,2-Dichloroethane	-d4 (Surr)	85			70 - 120		
4-Bromofluorobenz	• •	93			75 - 120		
Dibromofluorometh		98			85 - 115		
Toluene-d8 (Surr)	, ,	91			85 - 120		

QV 1/13/14

.

59SW3WG1

Analytical Data

Job Number: 280-47755-1

Client Sample ID: Date Sampled: 10/09/2013 1600 280-47755-9 Lab Sample ID: Date Received: 10/12/2013 0900 **Client Matrix:** Water 8260B/DoD Volatile Organic Compounds (GC/MS) VMS_G2 Analysis Method: 8260B/DoD Analysis Batch: 280-196524 Instrument ID: G2 3804 D Prep Method: 5030B Prep Batch: N/A Lab File ID: Initial Weight/Volume: 20 mL Dilution: 1.0 Analysis Date: 10/17/2013 2131 Final Weight/Volume: 20 mL 10/17/2013 2131 Prep Date: Qualifier DL LOQ Result (ug/L) Analyte 1,1,1,2-Tetrachloroethane 0.17 U 0.17 1.0 0.16 1.0 1,1,1-Trichloroethane 0.16 U 0.20 U 0.20 1.0 1,1,2,2-Tetrachloroethane 0.32 1.0 U 1,1,2-Trichloroethane 0.32 0.16 U 0.16 1.0 1,1-Dichloroethane U 0.14 1.0 0.14 1,1-Dichloroethene 0.15 U 0.15 1.0 1,1-Dichloropropene 0.18 U 0.18 1.0 1,2,3-Trichlorobenzene 0.77 U 0.77 3.0 1,2,3-Trichloropropane 0.32 1.0 0.32 U 1,2,4-Trichlorobenzene U 0.14 1.0 0.14 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane 0.81 U 0.81 5.0 U 0.13 1.0 1,2-Dichlorobenzene 0.13 0.13 U 0.13 1.0 1.2-Dichloroethane 1.2-Dichloropropane 0.13 U 0.13 1.0 0.14 U 0.14 1.0 1,3,5-Trimethylbenzene 0.16 U 0.16 1.0 1,3-Dichlorobenzene 1.0 1,3-Dichloropropane 0.15 U 0.15 1,4-Dichlorobenzene 0.16 U 0.16 1.0 U 0.17 10 1-Chlorohexane 0.17 0.20 Ð 0.20 10 2,2-Dichloropropane U 6.0 1.8 1.8 2-Butanone (MEK) 0.17 U 0.17 1.0 2-Chlorotoluene U 0.17 1.0 0.17 4-Chlorotoluene 0,17 U 0.17 1.0 4-Isopropyltoluene 5.0 1.0 U 1.0 4-Methyl-2-pentanone (MIBK) 1.9 U 1.9 10 Acetone 0.16 U 0.16 1.0 Benzene 0.17 U 0.17 1.0 Bromobenzene 0.19 U 0.19 1.0 Bromoform 2.0 Bromomethane 0.21 U 0.21 0.19 Carbon tetrachloride 0.19 U 2.0 1.0 U 0.17 Chlorobenzene 0.17 0.10 1.0 0.10 U Chlorobromomethane U 0.17 1.0 0.17 Chlorodibromomethane U 0.41 2.0 0.41 Chloroethane 0.16 1.0 0.16 U Chloroform U 0.30 2.0 0.30 Chloromethane 1.0 0.15 1.0 cis-1,2-Dichloroethene 0.16 U 0.16 1.0 cis-1,3-Dichloropropene 0.17 U 0.17 1.0 Dibromomethane 0.17 U 0.17 1.0 Dichlorobromomethane 2,0 0.31 U 0.31 Dichlorodifluoromethane U 1.0 0.16 0.16 Ethylbenzene 0.18 U 0.18 1.0 Ethylene Dibromide 0.36 U 0.36 1.0 Hexachlorobutadiene

TestAmerica Denver

Page 42 of 1102

Q/ 1/13/14

10/31/2013

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID: 59SW3WG1

Lab Sample ID: 280-47755-9 Client Matrix: Water Date Sampled: 10/09/2013 1600 Date Received: 10/12/2013 0900

		1 0 1 1001	1401	
	8260B/DoD Volatile Org	janic Compounds (GC/I	ws)	
Analysis Method: 8260B/DoD Prep Method: 5030B Dilution: 1.0 Analysis Date: 10/17/2013 2 Prep Date: 10/17/2013 2		N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_G2 G2_3804.D 20 mL 20 mL
Angluto	Result (ug	a/L) Qualifier	DL	LOQ
Analyte	0.19	U U	0.19	1.0
Isopropylbenzene	0.19	U	0.25	5.0
Methyl tert-butyl ether	0.23	U	0.32	5.0
Methylene Chloride	0.32	U	0.34	2.0
m-Xylene & p-Xylene	0.34	Ŭ	0.22	1.0
Naphthalene	0.32	U	0.32	1.0
	0.16	U	0.16	1.0
N-Propylbenzene	0.19	U	0.19	1.0
o-Xylene	0.13	U	0.17	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.16	U	0.16	1.0
tert-Butylbenzene	0.20	U	0.20	1.0
Tetrachloroethene	0.20	U	0.17	1.0
Toluene	0.17	U	0.15	1.0
trans-1,2-Dichloroethene	0.13	U	0.19	1.0
trans-1,3-Dichloropropene Trichloroethene	0.19	XF	0.16	1.0
	0.29	U	0.29	2.0
Trichlorofluoromethane	0.29	U	0.10	1.5
Vinyl chloride	0.10	0	0,10	1.0
Surrogate	%Rec	Qualifier	- Accepta	nce Limits
1,2-Dichloroethane-d4 (Surr)	85		70 - 120	
4-Bromofluorobenzene (Surr)	94		75 - 120)
Dibromofluoromethane (Surr)	98		85 - 115	i
Toluene-d8 (Surr)	90		85 - 120)

Q/ 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID:59SW7WG1Lab Sample ID:280-47755-10Client Matrix:Water

Date Sampled: 10/09/2013 1804 Date Received: 10/12/2013 0900

Analysis Method	8260B/DoD	Analysis Batch:	280-196524	Instrument ID:	VMS_G2	
Prep Method:	5030B	Prep Batch:	N/A	Lab File ID:	G2_3805.D	
Dilution:	1.0			Initial Weight/Volume:	20 mL	
Analysis Date:	10/17/2013 2151			Final Weight/Volume:	20 mL	
Prep Date:	10/17/2013 2151					
			(1)		LOQ	
Analyte		Result (u				
1,1,1,2-Tetrachloro		0.17	U	0.17	1.0 1.0	
1,1,1-Trichloroetha		1.2	U	0.16 0.20	1.0	
1,1,2,2-Tetrachloro		0.20	U	0.32	1.0	
1,1,2-Trichloroetha		0.32 0.93	N F		1.0	
1,1-Dichloroethane		0.93	3, F U	0.14	1.0	
1,1-Dichloroethene			U	0.15	1.0	
1,1-Dichloropropen		0.15	U	0.18	1.0	
1,2,3-Trichlorobenz		0.18 0.77	U	0.77	3.0	
1,2,3-Trichloroprop		0.32	U	0.32	1.0	-
1,2,4-Trichlorobenz		0.32	U	0.14	1.0	
1,2,4-Trimethylben:		0.14	U	0.81	5.0	
1,2-Dibromo-3-Chlo		0.01	U	0.13	1.0	
1,2-Dichlorobenzer		0.13	U	0.13	1.0	
1,2-Dichloroethane		0.13	U	0.13	1.0	
1,2-Dichloropropan		0.13	U	0.14	1.0	
1,3,5-Trimethylben		0.14	U	0.16	1.0	
1,3-Dichlorobenzer		0.10	Ű	0.15	1.0	
1,3-Dichloropropan		0.15	U	0.16	1.0	
1,4-Dichlorobenzer 1-Chlorohexane	le	0.10	U	0.17	1.0	
2,2-Dichloropropan	0	0.20	U	0.20	1.0	
2-Butanone (MEK)		1.8	Ű	1.8	6.0	
2-Chlorotoluene		0.17	Ŭ	0,17	1.0	
4-Chlorotoluene		0.17	Ŭ	0.17	1.0	
4-Isopropyltoluene		0.17	U	0.17	1.0	
4-Methyl-2-pentance		1.0	U	1.0	5.0	
Acetone	(1.9	U	1.9	10	
Benzene		0.16	U	0.16	1.0	
Bromobenzene		0.17	U	0.17	1.0	
Bromoform		0.19	U	0.19	1.0	
Bromomethane		0.21	U	0.21	2.0	
Carbon tetrachloric	le	0.19	U	0.19	2.0	
Chlorobenzene		0.17	U	0.17	1.0	
Chlorobromometha	ane	0.10	U	0.10	1.0	
Chlorodibromomet	hane	0.17	U	0,17	1,0	
Chloroethane		0.41	U	0.41	2.0	
Chloroform		0.16	U	0.16	1.0	
Chloromethane		0.30	U	0.30	2.0	
cis-1,2-Dichloroeth	iene	7.0		0.15	1.0	
cis-1,3-Dichloropro	ppene	0.16	U	0.16	1.0	
Dibromomethane		0.17	U	0.17	1.0	
Dichlorobromomet	hane	0.17	U	0.17	1.0	
Dichlorodifluorome	ethane	0,31	U	0.31	2.0	
Ethylbenzene		0.16	U	0.16	1.0	
Ethylene Dibromid	e	0.18	U	0.18	1.0	
Hexachlorobutadie	ene	0.36	U	0.36	1.0	

Page 44 of 1102

V 1/13/14

10/31/2013

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

 Client Sample ID:
 59SW7WG1

 Lab Sample ID:
 280-47755-10
 Date Sampled: 10/09/2013 1804

 Client Matrix:
 Water
 Date Received: 10/12/2013 0900

		8260B/DoD Volatile Or	ganic Compounds	GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2151 10/17/2013 2151	Analysis Batch: Prep Batch:	280-196524 N/A	Instrument IE Lab File ID: Initial Weight Final Weight/	(Volume: 2	/MS_G2 G2_3805.D 20 mL 20 mL
Analyte		Result (u	a/L) Qu	ualifier DL		LOQ
Isopropylbenzene		0.19		0.1	9	1.0
Methyl tert-butyl et	her	0.25	Ū	0.2		5.0
Methylene Chloride		0.32	Ū	0.3		5.0
m-Xylene & p-Xyle		0.34	U	0.3		2.0
Naphthalene		0.22	U	0.2	2	1.0
n-Butylbenzene		0.32	U	0.3	2	1.0
N-Propylbenzene		0.16	U	0.1	6	1.0
o-Xylene		0.19	U	0.1	9	1.0
sec-Butylbenzene		0.17	U	0.1	7	1.0
Styrene		0.17	U	0.1	7	1.0
tert-Butylbenzene		0.16	U	0.1	6	1.0
Tetrachloroethene		0.27	×	F 0.2	0	1.0
Toluene		0.17	U	0.1	7	1.0
trans-1,2-Dichloroe	ethene	0.15	U	0.1	5	1.0
trans-1,3-Dichlorop	propene	0.19	U	0.1	9	1.0
Trichloroethene		2.5		0.1	6	1.0
Trichlorofluorometh	nane	0.29	U	0.2	9	2.0
Vinyl chloride		0.10	U	0.1	0	1.5
Surrogate		%Rec	Q	ualifier	Acceptance	Limits
1,2-Dichloroethane	e-d4 (Surr)	83			70 - 120	
4-Bromofluorobenz	zene (Surr)	91			75 - 120	
Dibromofluorometh	nane (Surr)	95			85 - 115	
Toluene-d8 (Surr)		89			85 - 120	

gr 1/13/14

Job Number: 280-47755-1

Date Sampled: 10/10/2013 1327

Date Received: 10/12/2013 0900

Client: HydroGeoLogic Inc

59SW4WG1 Client Sample ID:

280-47755-11 Lab Sample ID: Client Matrix: Water

	Client Matrix:	vvaler						
_			8260B/DoD Volatile Org	anic Compound	ds (GC/MS)			
	Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2211 10/17/2013 2211	Analysis Batch: Prep Batch:	280-196524 N/A	Instr Lab Initia	rument ID: File ID: al Weight/Volume: Il Weight/Volume:	VMS_G2 G2_3806.D 20 mL 20 mL	
							1.00	
	Analyte		Result (u		Qualifier	DL	LOQ	
	1,1,1,2-Tetrachloroe	thane	0.17	ι	U	0.17	1.0	
	1,1,1-Trichloroethan		1.8			0.16	1.0	
	1,1,2,2-Tetrachloroe		0.20		U U	0.20 0.32	1.0 1₌0	
	1,1,2-Trichloroethan	e	0.32		L F	0.32	1.0	
	1,1-Dichloroethane		0.77			0.14	1.0	
	1,1-Dichloroethene		0.26		l F U	0.14	1.0	
	1,1-Dichloropropene		0,15		U	0.18	1.0	
	1,2,3-Trichlorobenze		0.18 0.77		U	0.77	3.0	
	1,2,3-Trichloropropa		0.77		U	0.32	1.0	
	1,2,4-Trichlorobenze		0.32		U	0.14	1.0	
	1,2,4-Trimethylbenze		0.14		U	0.81	5.0	
	1,2-Dibromo-3-Chlor		0.13		U	0.13	1.0	
	1,2-Dichlorobenzene	9	0.13		U	0.13	1.0	
	1,2-Dichloroethane 1,2-Dichloropropane		0.13		U	0.13	1.0	
	1,3,5-Trimethylbenzo		0.14		U	0.14	1.0	
	1.3-Dichlorobenzene		0.16		Ŭ	0.16	1.0	
	1,3-Dichloropropane		0.15		U	0.15	1.0	
	1,4-Dichlorobenzene		0.16		U	0.16	1.0	
	1-Chlorohexane	-	0.17		U	0.17	1.0	
	2,2-Dichloropropane	1	0.20	I	U	0.20	1.0	
	2-Butanone (MEK)		1.8	I	U	1.8	6.0	
	2-Chlorotoluene		0.17	I	U	0,17	1.0	
	4-Chlorotoluene		0.17		U	0.17	1.0	
	4-Isopropyltoluene		0.17	1	U	0.17	1.0	
	4-Methyl-2-pentanor	ne (MIBK)	1.0	1	U	1.0	5.0	
	Acetone		1.9	I	U	1.9	10	
	Benzene		0.16		U	0.16	1.0	
	Bromobenzene		0.17		U	0.17	1.0	
	Bromoform		0.19		U	0.19	1.0	
	Bromomethane		0.21		U	0.21	2.0	
	Carbon tetrachloride)	0.19		U	0.19	2.0	
	Chlorobenzene		0.17		U	0.17	1.0	
	Chlorobromomethar	ne	0,10		U	0.10	1.0	
	Chlorodibromometh	ane	0.17		U	0.17	1.0	
	Chloroethane		0.41		U	0.41	2.0	
	Chloroform		0.16		U	0,16	1.0 2.0	
	Chloromethane		0.30		U	0.30	2.0	
	cis-1,2-Dichloroethe		2.6			0.15 0.16	1.0	
	cis-1,3-Dichloroprop	ene	0.16		U		1.0	
	Dibromomethane		0.17		U U	0.17 0.17	1.0	
	Dichlorobromometh		0.17		U	0.31	2.0	
	Dichlorodifluorometh	nane	0.31		U	0.16	1.0	
	Ethylbenzene		0.16		U	0.18	1.0	
	Ethylene Dibromide		0.18 0.36		U	0.36	1.0	
	Hexachlorobutadien	le	0.30		0	0.00	1.0	
						~ 11	1	10/21/0

TestAmerica Denver

Page 46 of 1102

Q 1/13/14 10/31/2013

Analytical Data

Job Number: 280-47755-1

Client Sample ID: 59SW4WG1

Lab Sample ID: 280-47755-11 Client Matrix: Water Date Sampled: 10/10/2013 1327 Date Received: 10/12/2013 0900

		8260B/DoD Volatile Or	ganic Compou	nds (GC/M	s)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2211 10/17/2013 2211	Analysis Batch: Prep Batch:	280-196524 N/A	La In	strument ID: ab File ID: itial Weight/Volume: nal Weight/Volume:	VMS_G2 G2_3806.D 20 mL 20 mL	
		Deput (m	a /l)	Qualifier	DL	LOQ	
Analyte		Result (u	g/L)		0.19	1.0	
Isopropylbenzene		0.19		U U	0.19	5.0	
Methyl tert-butyl ethe	er	0.25			0.25	5.0	
Methylene Chloride		0.32		U		2.0	
m-Xylene & p-Xylene	e	0.34		U	0.34		
Naphthalene		0.22		U	0.22	1.0	
n-Butylbenzene		0.32		U	0.32	1.0	
N-Propylbenzene		0.16		U	0.16	1.0	
o-Xylene		0.19		U	0.19	1.0	
sec-Butylbenzene		0.17		U	0.17	1.0	
Styrene		0.17		U	0.17	1.0	
tert-Butylbenzene		0,16		U	0.16	1.0	
Tetrachloroethene		0.39		XF	0.20	1.0	
Toluene		0.17		U	0.17	1.0	
trans-1,2-Dichloroeth	nene	0.15		U	0.15	1.0	
trans-1,3-Dichloropro	opene	0.19		U	0.19	1.0	
Trichloroethene		6.6			0.16	1.0	
Trichlorofluorometha	ine	0,29		U	0.29	2.0	
Vinyl chloride		0.10		U	0.10	1.5	
Surrogate		%Rec		Qualifier		nce Limits	
1,2-Dichloroethane-o	d4 (Surr)	85			70 - 120		
4-Bromofluorobenze	ne (Surr)	94			75 - 120		
Dibromofluorometha	ne (Surr)	97			85 - 115		
Toluene-d8 (Surr)	. ,	91			85 - 120		

Q/ 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID: 59JCEFFWG1

Lab Sample ID: 280-47755-12 Client Matrix: Water Date Sampled: 10/10/2013 1000 Date Received: 10/12/2013 0900

Job Number: 280-47755-1

		3260B/DoD Volatile Or	ganic Compounds (GC	C/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2231 10/17/2013 2231	Analysis Batch: Prep Batch:	280-196524 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_G2 G2_3807.D 20 mL 20 mL	
Analyte		Result (u	g/L) Qualifie	er DL	LOQ	
1,1,1,2-Tetrachloroe	thana	0.17	U U	0.17	1.0	
1,1,1-Trichloroethar		0.16	Ŭ	0.16	1.0	
1,1,2,2-Tetrachloroe		0.20	U	0.20	1.0	
1,1,2-Trichloroethan		0.32	Ŭ	0.32	1.0	
1,1-Dichloroethane	le	0.16	Ŭ	0.16	1.0	
1,1-Dichloroethene		0.14	Ŭ	0.14	1.0	
1,1-Dichloropropene	2	0.15	υ	0.15	1.0	
1,2,3-Trichlorobenze		0.18	U	0.18	1.0	
1,2,3-Trichloropropa		0,77	U	0.77	3.0	
1,2,4-Trichlorobenze		0.32	Ŭ	0.32	1.0	
1,2,4-Trimethylbenz		0.14	U	0.14	1.0	
1,2-Dibromo-3-Chlo		0.81	Ŭ	0.81	5.0	
1,2-Dichlorobenzen		0.13	Ŭ	0.13	1.0	
1,2-Dichloroethane	6	0.13	Ŭ	0.13	1.0	
1,2-Dichloropropane	-	0.13	Ŭ	0.13	1.0	
1,3,5-Trimethylbenz		0.14	Ŭ	0.14	1.0	
1,3-Dichlorobenzen		0.16	U	0.16	1.0	
1,3-Dichloropropane		0.15	Ű	0.15	1.0	
1,4-Dichlorobenzen		0,16	U	0.16	1.0	
1-Chlorohexane	0	0.17	Ŭ	0.17	1.0	
2,2-Dichloropropane	2	0.20	Ŭ	0.20	1.0	
2-Butanone (MEK)	-	1.8	Ŭ	1.8	6.0	
2-Chlorotoluene		0.17	U	0.17	1.0	
4-Chlorotoluene		0.17	Ŭ	0.17	1.0	
4-Isopropyltoluene		0.17	Ŭ	0.17	1.0	
4-Methyl-2-pentano	ne (MIBK)	1.0	Ŭ	1.0	5.0	
Acetone		1.9	Ŭ	1.9	10	
Benzene		0.16	U	0.16	1.0	
Bromobenzene		0.17	U	0.17	1.0	
Bromoform		0.19	U	0.19	1.0	
Bromomethane		0.21	U	0.21	2.0	
Carbon tetrachloride	9	0.19	U	0.19	2.0	
Chlorobenzene	-	0.17	U	0.17	1.0	
Chlorobromometha	ne	0.10	U	0.10	1.0	
Chlorodibromometh		0.17	U	0.17	1.0	
Chloroethane		0.41	U	0.41	2.0	
Chloroform		0.16	U	0.16	1.0	
Chloromethane		0.30	U	0.30	2.0	
cis-1,2-Dichloroethe	ene	0.15	U	0.15	1.0	
cis-1,3-Dichloroprop		0.16	U	0.16	1.0	
Dibromomethane		0,17	Ū	0.17	1.0	
Dichlorobromometh	ane	0.17	U	0.17	1.0	
Dichlorodifluoromet		0.31	U	0.31	2.0	
Ethylbenzene		0.16	U	0.16	1.0	
Ethylene Dibromide		0.18	U	0,18	1.0	
Hexachlorobutadier		0.36	U	0.36	1.0	

TestAmerica Denver

Q 1/13/14

10/31/2013

Job Number: 280-47755-1

Date Sampled: 10/10/2013 1000

Date Received: 10/12/2013 0900

Client: HydroGeoLogic Inc

Client Sample ID:59JCEFFWG1Lab Sample ID:280-47755-12Client Matrix:Water

		8260B/DoD Volatile Or	gani c Compo u	unds (GC/	MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2231 10/17/2013 2231	Analysis Batch: Prep Batch:	280-196524 N/A		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_G2 G2_3807.D 20 mL 20 mL
Analyte		Result (u	a/L)	Qualifier	DL	LOQ
Isopropylbenzene		0.19	9 /	U	0,19	1.0
Methyl tert-butyl eth)er	0.25		U	0.25	5.0
Methylene Chloride		0.32		Ŭ	0.32	5.0
m-Xylene & p-Xyler		0.34		U	0.34	2.0
Naphthalene		0.22		U	0.22	1.0
n-Butylbenzene		0.32		U	0.32	1.0
N-Propylbenzene		0.16		U	0.16	1.0
o-Xylene		0.19		U	0.19	1.0
sec-Butylbenzene		0.17		U	0.17	1.0
Styrene		0.17		U	0.17	1.0
tert-Butylbenzene		0.16		U	0.16	1.0
Tetrachloroethene		0.20		U	0.20	1.0
Toluene		0.17		U	0.17	1.0
trans-1,2-Dichloroe	thene	0.15		U	0.15	1.0
trans-1,3-Dichlorop	ropene	0.19		U	0.19	1.0
Trichloroethene		0.16		U	0.16	1.0
Trichlorofluorometh	ane	0.29		U	0.29	2.0
Vinyl chloride		0.10		U	0.10	1.5
Surrogate		%Rec		Qualifie	· · · · · · · · · · · · · · · · · · ·	ince Limits
1,2-Dichloroethane-	-d4 (Surr)	83			70 - 120	
4-Bromofluorobenze	ene (Surr)	94			75 - 120	
Dibromofluorometha	ane (Surr)	96			85 - 115	
Toluene-d8 (Surr)		86			85 - 120)

Q1 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID: 59JC2WG1

Lab Sample ID: 280-47755-13 Client Matrix: Water Date Sampled: 10/10/2013 1020 Date Received: 10/12/2013 0900

Analysis Method Prep Method:	8260B/DoD 5030B	Analysis Batch: Prep Batch:	280-196524 N/A	Instrument ID: Lab File ID:	VMS_G2 G2_3808.D
Dilution:	1.0			Initial Weight/Volume:	20 mL
Analysis Date:	10/17/2013 2251			Final Weight/Volume:	20 mL
Prep Date:	10/17/2013 2251				
Analyte		Result (u	g/L) Q	ualifier DL	LOQ
1,1,1,2-Tetrachloroe	ethane	0.17	U		1.0
1,1,1-Trichloroethar	ne	0.36	3	0.16	1.0
1,1,2,2-Tetrachloroe	ethane	0,20	U	0.20	1.0
1,1,2-Trichloroethar	ie	0.32	U	0.32	1.0
1,1-Dichloroethane		0.16	U	0.16	1.0
1,1-Dichloroethene		0.14	U	0.14	1.0
1,1-Dichloropropene	e	0.15	U	0.15	1.0
1,2,3-Trichlorobenz	ene	0.18	U	0.18	1.0
1,2,3-Trichloropropa	ane	0.77	U		3.0
1,2,4-Trichlorobenz	ene	0.32	U	0.32	1.0
1,2,4-Trimethylbenz	ene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chlo	ropropane	0,81	U	0.81	5.0
1,2-Dichlorobenzen	e	0.13	U	0.13	1.0
1,2-Dichloroethane		0.13	U	0.13	1.0
1,2-Dichloropropane	9	0.13	υ		1.0
1,3,5-Trimethylbenz	ene	0.14	U		1.0
1,3-Dichlorobenzen	e	0.16	U		1.0
1,3-Dichloropropan	e	0.15	U		1.0
1,4-Dichlorobenzen	e	0.16	U		1.0
1-Chlorohexane		0.17	U		1.0
2,2-Dichloropropan	9	0.20	U		1.0
2-Butanone (MEK)		1.8	U		6.0
2-Chlorotoluene		0.17	U		1.0
4-Chlorotoluene		0.17	U		1.0
4-Isopropyltoluene		0.17	U		1.0
4-Methyl-2-pentano	ne (MIBK)	1.0	U		5.0
Acetone		1.9	U		10
Benzene		0.16	U		1.0 1.0
Bromobenzene		0.17	U		1.0
Bromoform		0.19	U		2.0
Bromomethane		0.21	U U		2.0
Carbon tetrachlorid	e	0.19	U		1.0
Chlorobenzene		0.17	U		1.0
Chlorobromometha		0.10	U		1.0
Chlorodibromometh	lane	0.17 0.41	U		2.0
Chloroethane		0.41	U		1.0
Chloroform Chloromethane		0.30	U		2.0
cis-1,2-Dichloroethe		0.30		F 0.15	1.0
cis-1,3-Dichloropro		0.29	U		1.0
Dibromomethane	JUNU	0.17	U		1.0
Dichlorobromometh	ane	0.17	U		1.0
Dichlorodifluoromet		0.31	U		2.0
Ethylbenzene		0.16	U		1.0
Ethylene Dibromide	2	0.18	U		1.0
	,	0.10			· · -

TestAmerica Denver

```
Page 50 of 1102
```

Q 1/13/14

10/31/2013

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID: 59JC2WG1

Lab Sample ID: 280-47755-13 Client Matrix: Water Date Sampled: 10/10/2013 1020 Date Received: 10/12/2013 0900

	A.		8260B/DoD Volatile	Organic Com	pounds (GC/I	MS)		
	Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2251 10/17/2013 2251	Analysis Batch: Prep Batch:	280-196 N/A	l	nstrument ID: _ab File ID: nitial Weight/Volume: Final Weight/Volume:	VMS_G2 G2_3808.D 20 mL 20 mL	
	Analyte		Result	(ua/L)	Qualifier	DL	LOQ	
			0.19	(ug/L)	U	0.19	1.0	
	Isopropylbenzene		0.19		U	0.25	5.0	
	Methyl tert-butyl ethe Methylene Chloride	÷1	0.32		Ŭ	0.32	5.0	
	•		0.34		U	0.34	2.0	
m-Xylene & p-Xylene Naphthalene		0.22		U	0.22	1.0		
	n-Butylbenzene		0.32		Ŭ	0.32	1.0	
	N-Propylbenzene		0.16		Ū	0.16	1.0	
	o-Xylene		0.19		Ŭ	0.19	1.0	
	sec-Butylbenzene		0.17		Ŭ	0.17	1,0	
	Styrene		0.17		Ū	0.17	1.0	
	tert-Butylbenzene		0.16		U	0.16	1.0	
	Tetrachloroethene		0.20		U	0.20	1.0	
	Toluene		0.17		U	0.17	1.0	
	trans-1.2-Dichloroeth	iene	0.15		υ	0.15	1.0	
	trans-1,3-Dichloropro		0.19		U	0.19	1.0	
	Trichloroethene		0.48		XF	0.16	1.0	
	Trichlorofluorometha	ne	0.29		U	0.29	2.0	
	Vinyl chloride		0.10		U	0.10	1.5	
	Surrogate		%Rec		Qualifier	Accepta	ince Limits	
	1,2-Dichloroethane-c	4 (Surr)	82			70 - 120)	
	4-Bromofluorobenze	i	95			75 - 120)	
	Dibromofluorometha		95			85 - 115	5	
	Toluene-d8 (Surr)	. ,	91			85 - 120)	

6A/ 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID: 59DUP01WG1

Lab Sample ID:	280-47755-14FD
Client Matrix:	Water

Date Sampled: 10/10/2013 0913 Date Received: 10/12/2013 0900

-			8260B/DoD Volatile Or	ganic Compound	s (GC/MS)		
	Analysis Method: Prep Method: Dilution:	8260B/DoD 5030B 1.0	Analysis Batch: Prep Batch:	280-196524 N/A	Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum		D
	Analysis Date: Prep Date:	10/17/2013 2311 10/17/2013 2311				e. 20 mL	
	Analyte		Result (u		ualifier DL	LOQ	
	1,1,1,2-Tetrachloroe		0.17	U	0.17	1.0	
	1,1,1-Trichloroethan	e	1.6		0.16	1.0	
	1,1,2,2-Tetrachloroe	ethane	0.20	U	0.20	1.0	
	1,1,2-Trichloroethan	e	0.32	U		1.0	
	1,1-Dichloroethane		0,73	N		1.0	
	1,1-Dichloroethene		0,25	X		1.0	
	1,1-Dichloropropene	e	0.15	U		1.0	
	1,2,3-Trichlorobenze	ene	0.18	U	0.18	1.0	
	1,2,3-Trichloropropa	ine	0.77	U	0.77	3.0	
	1,2,4-Trichlorobenze	ene	0.32	U	0.32	1.0	
	1,2,4-Trimethylbenz	ene	0.14	U	0.14	1.0	
	1,2-Dibromo-3-Chlo	ropropane	0.81	U	0.81	5.0	
	1,2-Dichlorobenzene	e	0.13	U	0.13	1.0	
	1,2-Dichloroethane		0.13	U		1.0	
	1,2-Dichloropropane	9	0.13	U	0.13	1.0	
	1,3,5-Trimethylbenz	ene	0.14	U	0.14	1.0	
	1,3-Dichlorobenzene	e	0.16	U	0.16	1.0	
	1,3-Dichloropropane	9	0.15	U	0.15	1.0	
	1,4-Dichlorobenzene	e	0.16	U	0.16	1.0	
	1-Chlorohexane		0.17	υ		1.0	
	2,2-Dichloropropane	e	0.20	U	0.20	1.0	
	2-Butanone (MEK)		1.8	U	1.8	6.0	
	2-Chlorotoluene		0.17	U		1.0	
	4-Chlorotoluene		0.17	U		1.0	
	4-Isopropyltoluene		0.17	υ		1.0	
	4-Methyl-2-pentanol	ne (MIBK)	1.0	U		5.0	
	Acetone		1.9	U		10	
	Benzene		0.16	U		1.0	
	Bromobenzene	•	0.17	U		1.0	
	Bromoform		0.19	U		1.0	
	Bromomethane		0.21	U		2.0	
	Carbon tetrachloride	e	0.19	U		2.0	
	Chlorobenzene		0.17	U		1.0	
	Chlorobromomethar		0.10	U	0.10	1.0	
	Chlorodibromometh	ane	0.17	U		1.0	
	Chloroethane		0.41	U		2.0	
	Chloroform		0.16	U		1.0	
	Chloromethane		0.30	υ		2.0	
	cis-1,2-Dichloroethe		2,6		0.15	1.0	
	cis-1,3-Dichloroprop	bene	0.16	U		1.0	
	Dibromomethane		0.17	U		1.0	
	Dichlorobromometh		0.17	U		1.0	
	Dichlorodifluoromet	hane	0.31	U		2.0	
	Ethylbenzene		0.16	U		1.0	
	Ethylene Dibromide		0.18	U		1.0	
	Hexachlorobutadier	ne	0.36	U		1.0	
	TestAmerica Denve	er	Page 5	2 of 1102	W 1/13/11	1	10/31/20

10/31/2013

Client: HydroGeoLogic Inc

Client Sample ID:	59DUP01WG1	
Lab Sample ID: Client Matrix:	280-47755-14FD Water	Date Sampled: 10/10/2013 0913 Date Received: 10/12/2013 0900
		8260B/DoD Volatile Organic Compounds (GC/MS)

		8260B/DoD Volatile Or	ganic Compounds (G	C/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B/DoD 5030B 1.0 10/17/2013 2311 10/17/2013 2311	Analysis Batch: Prep Batch:	280-196524 N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	VMS_G2 G2_3809.D 20 mL 20 mL
Analyte		Result (u	g/L) Qualifi	er DL	LOQ
Isopropylbenzene		0.19	U	0.19	1.0
Methyl tert-butyl eth	her	0.25	U	0.25	5.0
Methylene Chloride		0.32	U	0.32	5.0
m-Xylene & p-Xyle		0.34	U	0.34	2.0
Naphthalene		0.22	U	0.22	1.0
n-Butylbenzene		0.32	U	0.32	1.0
N-Propylbenzene		0.16	U	0.16	1.0
o-Xylene		0.19	U	0.19	1.0
sec-Butylbenzene		0.17	U	0.17	1.0
Styrene		0.17	υ	0.17	1.0
tert-Butylbenzene		0.16	U	0.16	1.0
Tetrachloroethene		0.35	XF	0.20	1.0
Toluene		0.17	U	0.17	1.0
trans-1,2-Dichloroe	ethene	0.15	U	0.15	1.0
trans-1,3-Dichlorop		0.19	U	0.19	1.0
Trichloroethene		7.4		0.16	1.0
Trichlorofluorometh	nane	0.29	U	0.29	2.0
Vinyl chloride		0.10	U	0.10	1.5
Surrogate		%Rec	Qualif	ier Accept	ance Limits
1,2-Dichloroethane	e-d4 (Surr)	81		70 - 12	0
4-Bromofluorobenz	zene (Surr)	93		75 - 12	0
Dibromofluorometh	nane (Surr)	93		85 - 11	5
Toluene-d8 (Surr)		89		85 - 12	0

Q 1/13/14

Client: HydroGeoLogic Inc

e

Job Number: 280-47755-1

Client Sample ID: Lab Sample ID: Client Matrix:	59UR53DWG1 280-47755-1 Water				e Sampled: 10/07/2013 1715 e Received: 10/12/2013 0900	
		8270C/DoD Semivolatile	Organic Compour	nds (GG/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date:	8270C/DoD 3520C 1.0 10/15/2013 1927	Analysis Batch: Prep Batch:	180-86829 180-86588	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	731 V1015020.D 1040 mL 1.0 mL	

Prep Date:	10/14/2013 1018		Injec	tion Volume:	2 uL	
Analyte 1,4-Dioxane		Result (ug/L) 1.8	Qualifier	DL 0.14	LOQ 1.9	
Surrogate Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 (S	. ,	%Rec 71 66 77	Qualifier	Accept 40 - 11 50 - 11 50 - 13	0	

Q1 1/13/14

1.5

.

Client: HydroGeoLogic Inc

Client Sample ID:	59BM121WG1				
Lab Sample ID: Client Matrix:	280-47755-2 Water				Date Sampled: 10/08/2013 0929 Date Received: 10/12/2013 0900
		8270C/DoD Semivolatile	Organic Compoun	ds (GC/MS)	
Analysis Method: Prep Method:	8270C/DoD 3520C	Analysis Batch Prep Batch:	180-86829 180-86588	Instrument ID: Lab File ID:	731 V1015021.D

Prep Method: Dilution: Analysis Date: Prep Date:	3520C 1,0 10/15/2013 1954 10/14/2013 1018	Prep Batch:	180-86588	Initial Final	file ID: Weight/Volume: Weight/Volume: tion Volume:	V1015021.D 1030 mL 1.0 mL 2 uL	
Analyte 1,4-Dioxane		Result (0.14	ug/L)	Qualifier U	DL 0.14	LOQ 1.9	
Surrogate Nitrobenzene-d5 (2-Fluorobiphenyl Terphenyl-d14 (Su	,	%Rec 69 63 73		Qualifier	Acceptar 40 - 110 50 - 110 50 - 135	nce Limits	

Q/ 1/13/14

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

59UR52DWG1 Client Sample ID: Date Sampled: 10/08/2013 1245 280-47755-3 Lab Sample ID: Date Received: 10/12/2013 0900 Client Matrix: Water 8270C/DoD Semivolatile Organic Compounds (GC/MS) 731 Instrument ID: 180-86829 Analysis Method: 8270C/DoD Analysis Batch: V1015022.D 3520C Lab File ID: Prep Method: Prep Batch: 180-86588 1030 mL Initial Weight/Volume: Dilution: 1.0 Final Weight/Volume: 1.0 mL Analysis Date: 10/15/2013 2021 2 uL Injection Volume: Prep Date: 10/14/2013 1018 Result (ug/L) Qualifier DL LOQ Analyte 7.4 0.14 1.9 1,4-Dioxane

Surrogate	%Rec	Qualifier	Acceptance Limits
Nitrobenzene-d5 (Surr)	67		40 - 110
2-Fluorobiphenyl	61		50 - 110
Terphenyl-d14 (Surr)	72		50 - 135

Q/ 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID: Lab Sample ID: Client Matrix:	59UR52SWG1 280-47755-4 Water					sampled: 10/08/2013 1440 Received: 10/12/2013 0900
-		8270C/DoD Semivolatile	Organic Com	oounds (G	C/MS)	14
Analysis Method:	8270C/DoD	Analysis Batch:	180-86829		Instrument ID:	731
Prep Method:	3520C	Prep Batch:	180-86588		Lab File ID:	V1015023.D
Dilution:	1.0				Initial Weight/Volume:	1010 mL
Analysis Date:	10/15/2013 2049				Final Weight/Volume:	1.0 mL
Prep Date:	10/14/2013 1018				Injection Volume:	2 uL
Analyte		Result (u	g/L)	Qualifier	DL	LOQ
4.4 Diaman		1.0		La ser	0.14	20

1,4-Dioxane 1.8 / F 0.14	2.0
Surrogate %Rec Qualifier Acceptance	.imits
Nitrobenzene-d5 (Surr) 66 40 - 110	
2-Fluorobiphenyl 59 50 - 110	
Terphenyl-d14 (Surr) 60 50 - 135	

Q 1/13/19

Client: HydroGeoLogic Inc

Client Sample ID: Lab Sample ID: Client Matrix:	59UR55SWG1 280-47755-5 Water					Sampled: 10/08/2013 1 Received: 10/12/2013 0	
-	8	270C/DoD Semivolatile	Organic Comp	ounds (GC/MS	5)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C/DoD 3520C 1.0 10/16/2013 1417 10/14/2013 1018	Analysis Batch: Prep Batch:	180-86951 180-86588	Lab Initia Final	ument ID: =ile ID: I Weight/Volume: Weight/Volume: tion Volume:	731 V1016003.D 1020 mL 1.0 mL 2 uL	
Analyte 1,4-Dioxane		Result (u 0.14	g/L)	Qualifier U	DL 0.14	LOQ 2.0	
Surrogate Nitrobenzene-d5 (S 2-Fluorobiphenyl Terphenyl-d14 (Sur	,	%Rec 61 53 59		Qualifier	Acceptar 40 - 110 50 - 110 50 - 135	nce Limits	

9/ 1/13/14

Client: HydroGeoLogic Inc

Ŷ

Job Number: 280-47755-1

Client Sample ID: Lab Sample ID:	59DW1WG1 280-47755-6				Date	Sampled: 10/09/201	3 0902
Client Matrix:	Water				Date	Received: 10/12/201	3 0900
		8270C/DoD Semivolatile	Organic Comp	ounds (GC/N	I S)		
Analysis Method:	8270C/DoD	Analysis Batch:	180-86829	Inst	rument ID:	731	
Prep Method:	3520C	Prep Batch:	180-86588	Lab	File ID:	V1015024.D	
Dilution:	1.0			Initi	al Weight/Volume:	1040 mL	
Analysis Date:	10/15/2013 2116			Fina	al Weight/Volume:	1.0 mL	
Prep Date:	10/14/2013 1018			Inje	ction Volume:	2 uL	
Analyte		Result (u	g/L)	Qualifier	DL	LOQ	
1,4-Dioxane		0.14		U	0.14	1.9	
Surrogate		%Rec		Qualifier	Acceptar	nce Limits	*
Nitrobenzene-d5 (S	Surr)	71			40 - 110		
2-Fluorobiphenyl		65			50 - 110		
Terphenyl-d14 (Su	rr)	79			50 - 135		

Q/ 1/13/14

10/31/2013

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

59SW1WG1 **Client Sample ID:** Date Sampled: 10/09/2013 1102 280-47755-7 Lab Sample ID: Date Received: 10/12/2013 0900 Water **Client Matrix:** 8270C/DoD Semivolatile Organic Compounds (GC/MS) 731 Instrument ID: Analysis Method: 8270C/DoD Analysis Batch: 180-86829 V1015025.D Prep Method: 3520C Prep Batch: 180-86588 Lab File ID: Initial Weight/Volume: 1020 mL Dilution: 1.0 1.0 mL Final Weight/Volume: Analysis Date: 10/15/2013 2143 2 uL Prep Date: 10/14/2013 1018 Injection Volume:

The Date. To The Date					
Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,4-Dioxane	0.14	U	0.14	2.0	
Surrogate	%Rec	Qualifier	Accepta	nce Limits	
Nitrobenzene-d5 (Surr)	72		40 - 110		
2-Fluorobiphenyl	66		50 - 110)	
Terphenyl-d14 (Surr)	69		50 - 135	i	

QN 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID: Lab Sample ID: Client Matrix:	59DW3WG1 280-47755-8 Water					Sampled: 10/09/201 Received: 10/12/201	
		3270C/DoD Semivolatile	Organic Comp	ounds (GC/M	15)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C/DoD 3520C 1.0 10/16/2013 1539 10/14/2013 1018	Analysis Batch: Prep Batch:	180-86951 180-86588	Lab Initi Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume: ction Volume:	731 V1016006.D 1030 mL 1.0 mL 2 uL	
Analyte 1,4-Dioxane		Result (ມ 2.7	g/L)	Qualifier	DL 0.14	LOQ 1.9	
Surrogate Nitrobenzene-d5 (S 2-Fluorobiphenyl Terphenyl-d14 (Sur		%Rec 64 58 79		Qualifier	Acceptar 40 - 110 50 - 110 50 - 135	nce Limits	

8 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID: Lab Sample ID: Client Matrix:	59SW3WG1 280-47755-9 Water					Sampled: 10/09/2013 1600 Received: 10/12/2013 0900
	8	270C/DoD Semivolatile	Organic Comp	ounds (GC/MS	3)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C/DoD 3520C 1.0 10/16/2013 1606 10/14/2013 1018	Analysis Batch: Prep Batch:	180-86951 180-86588	Lab I Initia Final	ument ID: File ID: I Weight/Volume: Weight/Volume: tion Volume:	731 V1016007.D 1020 mL 1.0 mL 2 uL
Analyte		Result (u	g/L)	Qualifier	DL	LOQ
1,4-Dioxane		0.14	í	U	0.14	2.0
Surrogate Nitrobenzene-d5 (S 2-Fluorobiphenyl Terphenyl-d14 (Surr	,	%Rec 61 54 64		Qualifier	Acceptar 40 - 110 50 - 110 50 - 135	nce Limits

Qr 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID:	59SW7WG1				
Lab Sample ID: Client Matrix:	280-47755-10 Water				Date Sampled: 10/09/2013 1804 Date Received: 10/12/2013 0900
-		8270C/DoD Semivolatile	Organic Compoun	ds (GC/MS)	
Applysic Method	8270C/DoD	Analysis Batch:	180-86951	Instrument ID:	731

Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C/DoD 3520C 1.0 10/16/2013 1634 10/14/2013 1018	Analysis Batch: Prep Batch:	180-86951 180-86588	Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume: tion Volume:	731 V1016008.D 1030 mL 1.0 mL 2 uL	
Analyte 1,4-Dioxane		Result (u 0.43	g/L)	Qualifier	DL 0.14	LOQ 1.9	
Surrogate Nitrobenzene-d5 (S 2-Fluorobiphenyl Terphenyl-d14 (Sur		%Rec 65 57 70		Qualifier	Acceptar 40 - 110 50 - 110 50 - 135	nce Limits	

8/ 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID:	59SW4WG1				
Lab Sample ID: Client Matrix:	280-47755-11 Water				e Sampled: 10/10/2013 1327 e Received: 10/12/2013 0900
		8270C/DoD Semivolatile	Organic Compour	ds (GC/MS)	
Analysis Method:	8270C/DoD	Analysis Batch:	180-86951	Instrument ID:	731
Prep Method:	3520C	Prep Batch:	180-86588	Lab File ID:	V1016009.D
Dilution:	1.0			Initial Weight/Volume:	1030 mL

r rep Metriou.	00200	riop baton.	100-00000			V 1010000.D	
Dilution:	1.0			Init	ial Weight/Volume:	1030 mL	
Analysis Date:	10/16/2013 1701			Fin	al Weight/Volume:	1.0 mL	
Prep Date:	10/14/2013 1018			Inje	ection Volume:	2 uL	
Analyte		Result (ug/L)	Qualifier	DL	LOQ	
1,4-Dioxane		0.81		AM F	0.14	1.9	
Surrogate		%Rec		Qualifier	Acceptan	ce Limits	
Nitrobenzene-d5 (Su	ırr)	60			40 - 110		
2-Fluorobiphenyl		56			50 - 110		
Terphenyl-d14 (Surr))	72			50 - 135		

8/ 1/13/14

Client: HydroGeoLogic Inc

Client Sample ID: Lab Sample ID: Client Matrix:	59JCEFFWG1 280-47755-12 Water					Sampled: 10/10/2013 Received: 10/12/2013	
	8	270C/DoD Semivolatile	Organic Comp	ounds (GC/M	3)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C/DoD 3520C 1.0 10/16/2013 1728 10/14/2013 1018	Analysis Batch: Prep Batch:	180-86951 180-86588	Lab Initia Fina	ument ID: File ID: I Weight/Volume: I Weight/Volume: tion Volume:	731 V1016010.D 1010 mL 1.0 mL 2 uL	
Analyte 1,4-Dioxane		Result (u 0.14	g/L)	Qualifier U	DL 0.14	LOQ 2.0	
Surrogate Nitrobenzene-d5 (S 2-Fluorobiphenyl Terphenyl-d14 (Sur		%Rec 66 60 79		Qualifier		nce Limits	

Client: HydroGeoLogic Inc

Job Number: 280-47755-1

Client Sample ID:59JC2WG1Lab Sample ID:280-47755-13Client Matrix:Water

Date Sampled: 10/10/2013 1020 Date Received: 10/12/2013 0900

		0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 1 0	- ICOURT	24		
	8	270C/DoD Semivolatile (organic comp	ounds (Germa)		
Analysis Method:	8270C/DoD	Analysis Batch:	180-86951	Instr	ument ID:	731	
Prep Method:	3520C	Prep Batch:	180-86588	Lab I	File ID:	V1016011.D	
Dilution:	1.0			Initia	I Weight/Volume:	1020 mL	
Analysis Date:	10/16/2013 1756			Fina	Weight/Volume:	1.0 mL	
Prep Date:	10/14/2013 1018			Injec	tion Volume:	2 uL	
Analyte		Result (ug	g/L)	Qualifier	DL	LOQ	
1,4-Dioxane		0.14		U	0.14	2.0	
Surrogate		%Rec		Qualifier	Acceptar	ice Limits	
Nitrobenzene-d5 (S	Gurr)	61			40 - 110		
2-Fluorobiphenyl	,	56			50 - 110		
Terphenyl-d14 (Sur	r)	76			50 - 135		

Qr 1/13/14

ATTACHMENT 3

DATA VALIDATION REPORT

Volatile Organic Compounds SW-846 Method 8260B USEPA Level II Review

Site: Air Force Plant 59	SDG #: 280-47755-1
Laboratory: Alpha Analytical Laboratories	Date: 01/11/2014
HydroGeoLogic, Inc. Reviewer: Vanessa Redfield Peer Reviewer: Joseph Vilain (01/13/14)	Project: AF7061

Client Sample ID	Laboratory Sample ID	Analysis Batch	Matrix
59URS3DWG1	280-47755-1	280-196363	Groundwater
59BM121WG1	280-47755-2	280-196363	Groundwater
59URS2DWG1	280-47755-3	280-196363	Groundwater
59URS2SWG1	280-47755-4	280-196363	Groundwater
59URS5SWG1	280-47755-5	280-196363	Groundwater
59DW1WG1	280-47755-6	280-196363	Groundwater
59SW1WG1	280-47755-7	280-196363	Groundwater
59DW3WG1	280-47755-8	280-196524	Groundwater
59SW3WG1	280-47755-9	280-196524	Groundwater
59SW7WG1	280-47755-10	280-196524	Groundwater
59SW4WG1	280-47755-11	280-196524	Groundwater
59JCEFFWG1	280-47755-12	280-196524	Groundwater
59JC2WG1	280-47755-13	280-196524	Groundwater
59DUP01WG1	280-47755-14FD	280-196524	Groundwater
59AB101013	280-47755-15	280-196524	Water QC
59EB101013	280-47755-16EB	280-196524	Water QC
TB100713	280-47755-17TB	280-196524	Water QC

<u>Narrative and Completeness Review</u> – The case narrative and data package were checked for completeness. The four wells containing "UR" in the sample ID were misidentified and the error was carried through the lab reporting process. They have been corrected in this report.

Qualification: None required.

<u>Sample Delivery and Condition</u> – All samples arrived at the laboratory in acceptable condition and temperature and were properly preserved. Proper custody was documented.

Qualification: None required.

Holding Times – The samples were analyzed within the 14-day holding time required by the QAPP for preserved aqueous samples

Qualification: None required.

<u>Surrogates</u> – The laboratory reported different control limits for all VOC surrogates than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

All surrogate recoveries were within the control limits specified in the QAPP.

Qualification: None required.

<u>Laboratory Control Sample</u> – The laboratory reported different recovery and RPD limits for all target analytes than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

One LCS/LCSD pair and one LCS were associated with the samples in this SDG. The LCS/LCSD for batch 280-196524 met the %R and RPD control limits established in the QAPP.

The LCS for batch 280-196363 also met the %R and RPD control limits established in the QAPP.

Qualification: None required.

 $\underline{MS/MSD}$ – The laboratory reported different recovery and RPD limits for all target analytes than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

Matrix spike/matrix spike duplicate analyses were performed for all target VOCs on sample 59URS5SWG1 from this SDG. The %R and RPD results were within the QAPP control limits.

Qualification: None required.

Laboratory Duplicate – Laboratory duplicate analyses were not requested or performed on a sample from this SDG.

Qualification: None required.

<u>Method Blank</u> – Two method blanks were associated with the samples in this SDG. The method blanks analyzed on 10/17/13, for batches 280-196363 and 180-86588, respectively, were free from contamination.

Qualification: None required.

<u>Field Blanks</u> – One equipment blank, identified as 59EB101013, was associated with all samples in this SDG and was free from contamination. One ambient blank, identified as 59AB101013, was associated with all samples in this SDG and was free from contamination.

Qualification: None required.

 $\underline{\text{Trip Blank}}$ – One trip blank, identified as TB100713, was associated with all samples in this SDG and was free from contamination.

Qualification: None required.

<u>Field Duplicate</u> – Sample 59DUP01WG1 was a field duplicate of sample 59SW4WG1. All calculated RPDs were within the control limits established in the QAPP for the duplicate pair.

Qualification: None required.

<u>Compound Quantitation</u> – Analyte non-detections were reported as "ND"; these results should be considered the equivalent of "MDL U." Analyte detections below the RL were reported as J-qualified results. These J qualifiers should be changed to F qualifiers per the QAPP instructions, unless superseded by a more severe qualifier. Due to a target analyte concentration, sample 59UR52DWG1was reanalyzed at 2x dilution. The diluted results should be considered the definitive result and the non-diluted results should have an X appended to the laboratory-applied qualifier.

Qualification: All diluted results for sample 59UR52DWG1 except for cis-1,2dichloroethene, has an X appended to it, cis-1,2-dichloroethene in original analysis has an X appended to it. The diluted results should be considered the definitive result.

Sample	Analyte	Lab Value	Lab Qualifier	Validated Value	Validated Qualifier
59URS3DWG1	1,1,1-Trichloroethane	0.99	J	0.99	F
	cis-1,2-Dichloroethene	0.90	J	0.90	F
59BM121WG1	No qualification required				
59URS2DWG1	cis-1,2-Dichloroethene	66	J	66	JX
(No Dilution)	1,1-Dichloroethane	0.21	J	0.21	F
(110 2 10000)	trans-1,2-Dichloroethene	0.17	J	0.17	F
59URS2DWG1	cis-1,2-dichloroethene	62		Report th	is Value
(Dilution 2x)	All other results	Varies	U	Varies	UX
59URS2SWG1	No qualification required				
59URS5SWG1	1,1,1-Trichloroethane	0.50	J	0.50	F
590K555W01	Trichloroethene	0.63	J	0.63	F
59DW1WG1	No qualification required				
59SW1WG1	No qualification required				
59DW3WG1	1,1-Dichloroethane	0.32	J	0.32	F
<i>39D</i> W <i>3</i> W U	Vinyl chloride	0.18	J	0.18	F
59SW3WG1	Trichloroethene	0.70	J	0.70	F
59SW7WG1	1,1-Dichloroethane	0.93	J	0.93	F
595 W / WOI	Tetrachloroethane	0.27	J	0.27	F
	1,1-Dichloroethane	0.77	J	0.77	F
59SW4WG1	1,1-Dichloroethene	0.26	J	0.26	F
	Tetrachlorothene	0.39	J	0.39	F
59JCEFFWG1	No qualification required				
	1,1,1-Trichloroethane	0.36	J	0.36	F
59JC2WG1	cis-1,2-Dichloroethene	0.29	J	0.29	F
	Trichloroethene	0.48	J	0.48	F

	1,1-Dichloroethane	0.73	J	0.73	F
59DUP01WG1	1,1-Dichloroethene	0.25	J	0.25	F
	Tetrachloroethene	0.35	J	0.35	F

1,4-Dioxane SW-846 Method 8270C-SIM USEPA Level II Review

Site: Air Force Plant 59	SDG #: 280-47755-1
Laboratory: Alpha Analytical Laboratories	Date: 01/11/2014
HydroGeoLogic, Inc. Reviewer: Vanessa Redfield Peer Reviewer: Joseph Vilain (01/9/14)	Project: AF7061

Client Sample ID	Laboratory Sample ID	Analysis/Prep Batch	Matrix
59URS3DWG1	280-47755-1	180-86829/180-86588	Groundwater
59BM121WG1	280-47755-2	180-86829/180-86588	Groundwater
59URS2DWG1	280-47755-03	180-86829/180-86588	Groundwater
59URS2SWG1	280-47755-04	180-86829/180-86588	Groundwater
59URS5SWG1	280-47755-05	180-86829/180-86951	Groundwater
59DW1WG1	280-47755-06	180-86829/180-86588	Groundwater
59SW1WG1	280-47755-07	180-86829/180-86588	Groundwater
59DW3WG1	280-47755-08	180-86829/180-86951	Groundwater
59SW3WG1	280-47755-09	180-86829/180-86951	Groundwater
59SW7WG1	280-47755-10	180-86829/180-86951	Groundwater
59SW4WG1	280-47755-11	180-86829/180-86951	Groundwater
59JCEFFWG1	280-47755-12	180-86829/180-86951	Groundwater
59JC2WG1	280-47755-13	180-86829/180-86951	Groundwater
59DUP01WG1	280-47755-14FD	180-86829/180-86951	Groundwater
59EB101013	280-47755-16EB	180-86829/180-86951	Water QC

<u>Narrative and Completeness Review</u> – The case narrative and data package were checked for completeness. The four wells containing "UR" in the sample ID were misidentified and the error was carried through the lab reporting process. They have been corrected in this report.

Qualification: None required.

<u>Sample Delivery and Condition</u> – All samples arrived at the laboratory in acceptable condition and temperature and were properly preserved. Proper custody was documented.

Qualification: None required.

<u>Holding Times</u> – All samples were extracted within the 7-day holding time required by the QAPP and analyzed within 40 days of extraction.

Qualification: None required.

Surrogates - All surrogate recoveries were within the control limits specified by the laboratory.

Qualification: None required.

<u>Laboratory Control Sample</u> – The laboratory reported different recovery and RPD limits for 1,4dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

One LCS was associated with all samples in this SDG. The LCS for batch 180-86588 met all %R and RPD control limits established in the QAPP.

Qualification: None required.

 $\underline{MS/MSD}$ – The laboratory reported different recovery and RPD limits for 1,4-dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

Matrix spike/matrix spike duplicate analyses were performed for 1,4-dioxane on sample 59URS5SWG1 from this SDG. All %R and RPD results were within the QAPP control limits.

Qualification: None required.

<u>Laboratory Duplicate</u> – Laboratory duplicate analyses were not requested or performed on a sample from this SDG.

Qualification: None required.

<u>Method Blank</u> – One method blank was associated with all samples in this SDG. The method blank analyzed on 10/16/2013 for batch 180-86588 was free from contamination.

Qualification: None required.

<u>Equipment Blank</u> – One equipment blank, identified as 59EB101013, was associated with all samples in this SDG and was free from contamination.

Qualification: None required.

<u>Field Duplicate</u> – Sample 59DUP01WG1 was a field duplicate of sample 59SW4WG1. The calculated RPD (1.2%) was within the control limits established in the QAPP for the duplicate pair.

Qualification: None required.

<u>Compound Quantitation</u> – Analyte non-detections were reported as "ND"; these results should be considered the equivalent of "MDL U." Analyte detections below the RL were reported as J-qualified results. These J qualifiers should be changed to F qualifiers per the QAPP instructions, unless superseded by a more severe qualifier. The laboratory has applied M flags to results in samples 59SW7WG1 and 59SW4WG1, indicating manual integration. These M flags should be removed.

Qualification: required flags are removed from all sample results, and all laboratory applied J qualifiers for detections below the RL are changed to F qualifiers.

Sample	Analyte	Lab Value	Lab Qualifier	Validated Value	Validated Qualifier			
59URS3DWG1	1,4-Dioxane	1.8	J	1.8	F			
59BM121WG1			cation Required		1			
		-	*					
59URS2DWG1		No Qualific	cation Required					
59URS2SWG1	1,4-Dioxane	1.8	J	1.8	F			
59URS5SWG1		No Qualific	cation Required	1				
59DW1WG1		No Qualific	cation Required	1				
59SW1WG1		No Qualific	cation Required	1				
59DW3WG1		No Qualific	cation Required	1				
59SW3WG1		No Qualific	cation Required	1				
59SW7WG1	1,4-Dioxane	0.43	JM	0.43	F			
59SW4WG1	1,4-Dioxane	1,4-Dioxane 0.81 JM 0.81 F						
59JCEFFWG1	No Qualification Required							
59JC2WG1		No Qualification Required						
59DUP01WG1	1,4-Dioxane	0.80	J	0.80	F			

Qualification Summary Table (results in ng/L):