FINAL ABBREVIATED 2015 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

Contract Number FA8903-15-F-0038

Project Number: ACHQ20157001 CDRL A008

Prepared for

Air Force Civil Engineer Center

Prepared by

HydroGeoLogic, Inc.

April 2016

FINAL ABBREVIATED 2015 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

Contract Number FA8903-15-F-0038

Project Number: ACHQ20157001 CDRL A008

Prepared for

Air Force Civil Engineer Center
772D Enterprise Sourcing Squadron
2261 Hughes Avenue
Suite 163
JBSA Lackland AFB, TX 78236

Prepared by

HydroGeoLogic, Inc. 313 Ushers Road Ballston Lake, NY 12019

April 2016

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
	1.1	PURPOSE OF THE LONG-TERM MONITORING ACTIVITIES	
	1.2	PROCEDURES USED FOR THE LONG-TERM MONITORING	
		ACTIVITIES	1
	1.3	ANALYTICAL RESULTS FROM THE LONG-TERM MONITORING	
		ACTIVITIES	2
		1.3.1 Shallow Zone of the Aquifer	
		1.3.2 Deep Zone of the Aquifer	
		1.3.3 Municipal Well	
	1.4	TREND ANALYSIS	
2.0	CONC	LUSIONS AND RECOMMENDATIONS	5
3.0	REFE	RENCES	6
		LIST OF FIGURES	
Figur	e 1	Site Location	
Figur		Groundwater Sampling Results – November 2014 and November 2015	
U			
		LIST OF TABLES	
Table	: 1	Summary of Detected VOCs – November 2015	
Table		Trend Analysis of VOCs in Groundwater	
		LIST OF ATTACHMENTS	
Attac	hment 1	Field Forms	
Attac	hment 2	Laboratory Report	
		Data Validation Report	
		Data Qualifiers	

LIST OF ACRONYMS AND ABBREVIATIONS

AFCEC Air Force Civil Engineer Center

AFP 59 Air Force Plant 59

cis-1,2-DCE cis-1,2-dichloroethene

COPC chemicals of potential concern

1,1-DCA 1,1-dichloroethane 1,1-DCE 1,1-dichloroethene

FSP Field Sampling Plan

GEL Laboratories

HGL HydroGeoLogic, Inc.

LTM long-term monitoring

μg/L micrograms per liter

MCL maximum contaminant level

ng/L nanograms per liter

NYSDEC New York State Department of Environmental Conservation

PCE tetrachloroethene

TAL Test America Laboratory
1,1,1-TCA 1,1,1-trichloroethane
TCA trichloroethane
TCE trichloroethene

trans-1,2-DCE trans-1,2-dichloroethene

USEPA U.S. Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compounds

GS2049 ii HGL 4/13/2016

FINAL ABBREVIATED 2015 LONG-TERM MONITORING REPORT FOR AIR FORCE PLANT 59 JOHNSON CITY, NEW YORK

1.0 INTRODUCTION

HydroGeoLogic, Inc. (HGL) prepared this Final Abbreviated 2015 Long-Term Monitoring Report for the Air Force Civil Engineer Center (AFCEC), under Contract FA8903-15-F-0038, Project Number ACHQ20157001, for the long-term monitoring (LTM) activities at Air Force Plant 59 (AFP 59) in Johnson City, New York (Figure 1). The purpose of this abbreviated monitoring report is to review the LTM activities; outline the sample collection procedures; summarize the results; and provide conclusions and recommendations based on the results of the LTM activities.

1.1 PURPOSE OF THE LONG-TERM MONITORING ACTIVITIES

Based on the conclusions presented in the *Final Remedial Investigation Report* (Earth Tech, 1996) and recommendations made by the New York State Department of Environmental Conservation (NYSDEC), it was determined that volatile organic compounds (VOC) represent the only chemicals of potential concern (COPC) in the groundwater at AFP 59. The LTM objectives for this project were to sample and evaluate VOC levels in groundwater that are above current maximum contaminant level (MCL) standards.

Groundwater samples were collected in accordance with the procedures found in the AFP 59 *Final Field Sampling Plan (FSP) Addendum* (HGL, 2015a). Samples were collected from monitoring wells and analyzed at Test America Laboratory (TAL) for VOCs (U.S. Environmental Protection Agency [USEPA] Method 8260B) and 1,4-dioxane (USEPA Method 8270C). Samples collected from Johnson City municipal well JC2, as part of the LTM program, were analyzed at TAL for VOCs (USEPA Method 8260B) and GEL Laboratories (GEL) for 1,4-dioxane (USEPA Drinking Water Method 522). LTM activities included sampling the following monitoring wells: SW1, DW1, SW3, DW3, SW4, SW7, BM-121, URS-2D, URS-2S, URS-3D, and URS-5S. The LTM also included sampling municipal well JC2 (before treatment by air stripper). Monitoring wells SW1 and DW1 represent upgradient (background) wells, and monitoring wells SW3 and DW3 represent downgradient wells. Five monitoring wells (BM-121, URS-2D, URS-2S, URS-3D, and URS-5S) and one municipal well (JC2) are located off site, to the west and south of the site.

1.2 PROCEDURES USED FOR THE LONG-TERM MONITORING ACTIVITIES

Sampling activities followed protocols presented in the *Final Work Plan Base Long-Term Monitoring at AFP 59* (HGL, 2015b) and the *Final Field Sampling Plan Addendum* (HGL, 2015a). In November 2015, HGL collected groundwater samples from six on-site AFP 59

monitoring wells (SW1, DW1, SW3, DW3, SW4, and SW7); five off-site monitoring wells (BM-121, URS-2D, URS-2S, URS-3D, and URS-5S); and one municipal well (JC2). All of the monitoring well groundwater samples were analyzed for VOCS by USEPA Method SW8260B and 1,4-dioxane using USEPA Method SW8270C. The water sample collected from the municipal well (JC2) was analyzed for VOCS by USEPA Method SW8260B and 1,4-dioxane using USEPA Drinking Water Method 522.

All of the monitoring wells were sampled using micropurge methodology. This is a low flow-rate well purging and sampling method that induces laminar (non-turbulent) flow in the immediate vicinity of the sampling pump intake, thereby drawing groundwater directly from the sampled aquifer horizontally through the monitoring well screen and into the sampling device. The monitoring wells were purged to evacuate stagnant water in the wells and to obtain a sample that is most representative of the aquifer. During purging, the temperature, pH, specific conductivity, and turbidity were measured and recorded on each monitoring well sampling form. The municipal well sample was collected from a sampling valve after a 5-minute purge. Groundwater parameters were recorded immediately after the sample collection. The field forms and calibration forms are appended as Attachment 1.

1.3 ANALYTICAL RESULTS FROM THE LONG-TERM MONITORING ACTIVITIES

The following subsections discuss the analytical results obtained from groundwater samples collected from both on-site and off-site monitoring wells. The VOCs detected in groundwater samples are illustrated on Figure 2. The analytical results for all groundwater samples collected during the November 2015 sampling event are summarized in Table 1. The laboratory reports and data validation reports are appended as Attachments 2 and 3, respectively. Data validation flags utilized in this document are detailed in Attachment 4 and reflect Table 8.2.1.5-1 in the Final Quality Assurance Project Plan (AECOM, 2009).

1.3.1 Shallow Zone of the Aquifer

VOCs were detected in the groundwater samples collected from on-site monitoring wells SW3, SW4, and SW7, and off-site monitoring wells URS-2S and URS-5S (refer to Figure 2). Chlorinated hydrocarbons were detected in the samples collected from the shallow zone of the aquifer in November 2015. VOCs were not detected in the groundwater samples collected from on-site monitoring well SW1 or off-site monitoring well BM-121.

The following results represent the maximum concentrations of contaminants detected in the groundwater samples collected from on-site monitoring wells during the November 2015 event:

• SW3

- o trichloroethene (TCE) at 0.42 F micrograms per liter (μg/L);
- o cis-1,2-dichloroethene (cis-1,2-DCE) at 0.27 F µg/L; and
- o 1,1,1- trichloroethane (1,1,1-TCA) at 0.24 F μ g/L.

• SW4

- o 1,1,1-TCA at 0.64 F μ g/L;
- o 1,1-dichloroethane (1,1-DCA) at 0.58 F μ g/L;
- o cis-1,2-DCE at 2.7 μ g/L;
- o tetrachloroethene (PCE) at 0.32 F µg/L; and
- \circ TCE at 4.9 μ g/L.

• SW7

- o 1,1,1-TCA at 1.8 μ g/L;
- o 1,1-DCA at 5.1 μ g/L;
- o 1,1-dichloroethene (1,1-DCE) at 0.52 F μ g/L;
- \circ PCE at 0.70 F μ g/L;
- o cis-1,2-DCE at 40 μ g/L;
- o trans-1,2-dichloroethene (trans-1,2-DCE) at 0.16 F μ g/L;
- o vinyl chloride (VC) at 1.2 F μg/L; and
- \circ TCE at 9.5 µg/L.

• URS-2S

- o 1,1-DCA at 1.3 μ g/L;
- o 1,1,1-TCA at 2.4 μ g/L;
- O TCE at 2.8 μg/L; and
- \circ cis-1,2-DCE at 1.8 μ g/L.

• URS-5S

GS2049

- o 1,1,1-TCA at 0.52 F μ g/L; and
- o TCE at $0.56 \text{ F} \mu\text{g/L}$.

Exceedances occurred above the New York State Groundwater Quality Standard of 5 μ g/L for cis-1,2-DCE and TCE at well SW7. These results are highlighted on Figure 2.

During the November 2015 sampling event, 1,4-dioxane was sampled in the four on-site and three off-site shallow monitoring wells. 1,4-Dioxane was detected in monitoring wells SW4, SW7, URS-2S, URS-5S, and BM-121 at concentrations of 1.6 micrograms per liter (μ g/L), 6 μ g/L, 12 μ g/L, 0.40 F μ g/L, and 0.40 F μ g/L, respectively. 1,4-Dioxane was not detected in monitoring wells SW1 and SW3.

1.3.2 Deep Zone of the Aquifer

VOCs were detected in the groundwater samples collected from one on-site monitoring well, (DW3) and two off-site monitoring wells (URS-2D and URS-3D) (refer to Figure 2). Chlorinated hydrocarbons were the only VOCs detected in the samples collected from the deep zone of the aquifer. The VOCs detected in monitoring well DW3 include cis-1,2-DCE at 50 μ g/L and 1,1-DCA at 0.31 F μ g/L. The following maximum concentrations were detected in the groundwater sample collected from the off-site monitoring well URS-2D: 1,1-DCA at 0.20 F μ g/L; and cis-1,2-DCE at 61 μ g/L. Additionally, the following maximum concentrations were detected in the groundwater sample collected from the off-site monitoring well URS-3D: 1,1,1-TCA at 1.0 μ g/L; TCE at 1.6 μ g/L; and cis-1,2-DCE at 0.90 F μ g/L. Cis-1,2-DCE exceeded the New York State Groundwater Quality Standard of 5 μ g/L in on-site well DW3 and off-site well URS-2D. Also, 1,4-dioxane was sampled in both the on-site and off-site deep monitoring wells. 1,4-Dioxane was only detected in monitoring wells DW3 at 6.7 μ g/L; URS-2D at 21 μ g/L; and URS-3D at 5.8 μ g/L.

1.3.3 Municipal Well

VOCs were detected in the untreated water sample collected from a sample port at municipal well JC2. Detected VOCs constituents at JC2 included: 1,1,1-TCA at 0.33 F μ g/L; TCE at 0.39 F μ g/L; and cis-1,2-DCE at 0.24 F μ g/L. 1,4-Dioxane was detected at 0.896 F μ g/L in water sampled from JC2.

1.4 TREND ANALYSIS

Concentrations of the most commonly detected chlorinated hydrocarbons in groundwater at AFP 59 over time are presented in Table 2. Only monitoring wells that were sampled as part of the groundwater monitoring program are included in the table.

In the groundwater samples collected from the shallow monitoring wells during the November 2015 sampling event, concentrations of the chlorinated hydrocarbons in monitoring well SW3 decreased slightly (1,1,1-TCA, TCE, and cis-1,2-DCE), compared to the previous sampling event in November 2014.

The concentrations of the chlorinated hydrocarbons in monitoring well SW4 remained relatively constant, with only moderate variations in TCE and cis-1,2-DCE concentrations when compared to the November 2014 sampling event. TCE concentrations increased from 3.4 μ g/L in November 2014 to 4.9 μ g/L in November 2015. Other increases in concentrations during the November 2015 sampling event include: cis-1,2-DCE (1.7 μ g/L to 2.7 μ g/L) and 1,1-dichloroethane (1,1-DCA) (ND to 0.58 F μ g/L). As compared to the November 2014 sampling event, the concentrations of TCA and 1,1-DCE decreased slightly during the November 2015 sampling event (0.75 F μ g/L to 0.64 F μ g/L and 0.46 F μ g/L to ND, respectively).

Concentrations of chlorinated compounds at SW7 showed slight increases and decreases during the November 2015 sampling event relative to the November 2014 sampling event. A comparison of November 2014 and November 2015 concentrations of trans-1,2-DCE (0.20 F

 $\mu g/L$ to 0.16 F $\mu g/L$), TCA (1.9 $\mu g/L$ to 1.8 $\mu g/L$), and 1,1-DCE (0.67 F $\mu g/L$ to 0.52 F $\mu g/L$) indicated only a slight decrease. A comparison of November 2014 to November 2015 concentrations of TCE (7.8 $\mu g/L$ to 9.5 $\mu g/L$), VC (0.78 F $\mu g/L$ to 1.2 F $\mu g/L$), 1,1-DCA (4.6 $\mu g/L$ to 5.1 $\mu g/L$), and cis-1,2 DCE (33 $\mu g/L$ to 40 $\mu g/L$) indicated essentially no change/slight increase or a low to moderate increase.

Concentrations of chlorinated compounds at shallow monitoring well URS-2S indicated primarily minor decreases during the November 2015 sampling event relative to the November 2014 sampling event. A comparison of November 2014 and November 2015 concentrations of TCA (4.1 μ g/L to 2.4 μ g/L), TCE (3.7 μ g/L to 2.8 μ g/L), 1,1-DCE (0.32 F μ g/L to ND) and 1,1-DCA (2.1 μ g/L to 1.3 μ g/L) indicated minor to only slight decreases. A comparison of November 2014 and November 2015 sampling event concentrations of cis-1,2-DCE (1.2 μ g/L to 1.8 μ g/L) indicated a minor increase.

The groundwater sample collected during the November 2015 sampling event from deep monitoring well DW3, revealed chlorinated hydrocarbons to be below detection limits (TCA, TCE, VC, 1,1-DCE, and trans-1,2-DCE) or showed a very minor increase (cis-1,2 DCE) or decrease (1,1-DCA). The groundwater sample collected in November 2015 at deep monitoring well DW1 indicated non-detection for all VOCs compounds, including TCA, which had a detection of 0.19 F μ g/L in November 2014. VOCs were not detected in the groundwater sample collected from shallow monitoring well SW1. These results are consistent with previous sampling events.

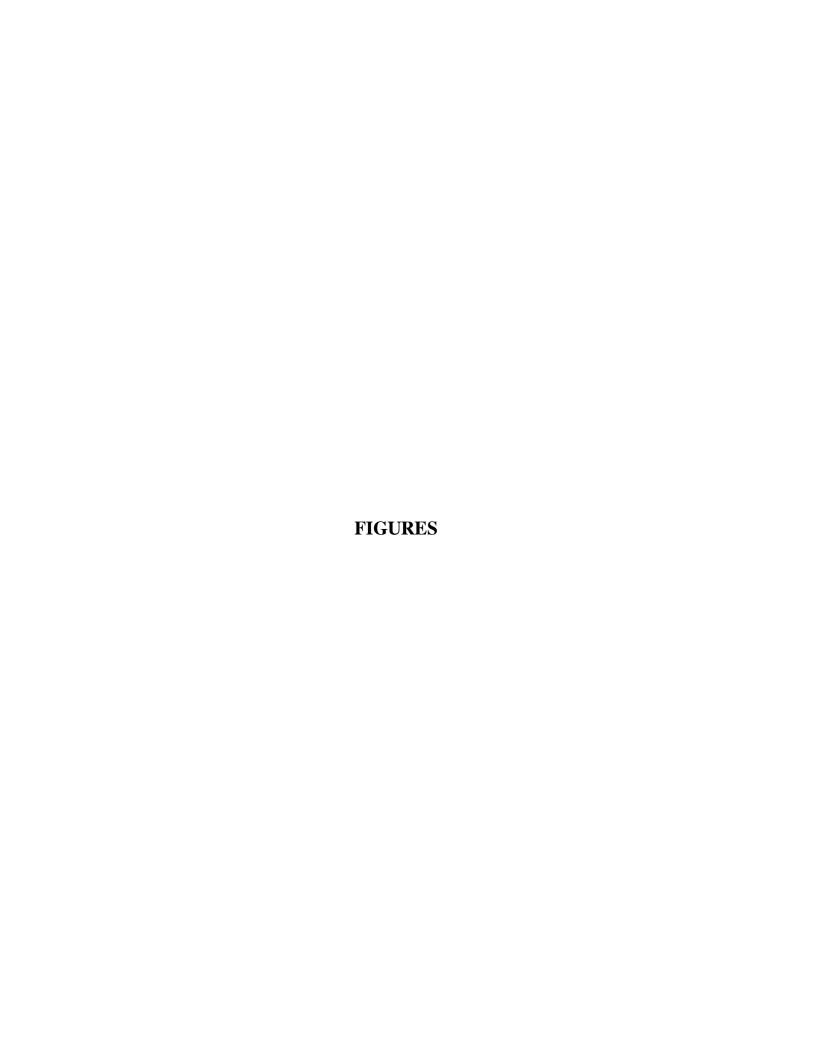
Detectable concentrations of cis-1,2-DCE (61 $\mu g/L$) and 1,1-DCA (0.20 F $\mu g/L$) were found in the groundwater sample collected from off-site deep monitoring well URS-2D in November 2015. The cis-1,2-DCE result for the November 2015 sampling event (61 $\mu g/L$) indicated a decrease relative to the November 2014 sampling event (67 $\mu g/L$). The 1,1-DCA analytical result in November 2015 (0.20 F $\mu g/L$) was similar to the analytical result from November 2014 (0.27 F $\mu g/L$). All other VOCs constituent concentrations were below detection limits (non-detection).

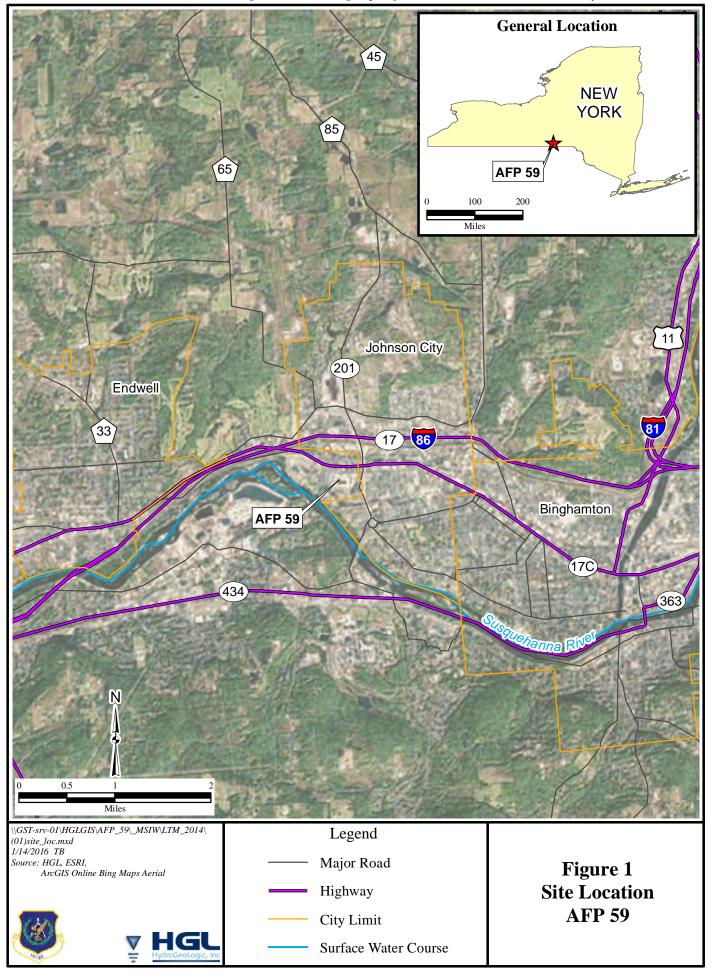
Concentrations of chlorinated compounds at Johnson City Municipal Well JC2 remained relatively unchanged based on a comparison of November 2014 and November 2015 groundwater sampling analytical data. A comparison of November 2014 and November 2015 concentrations of TCA (0.24 F μ g/L to 0.33 F μ g/L), TCE (0.33 F μ g/L to 0.39 F μ g/L) and cis-1,2-DCE (0.23 F μ g/L to 0.24 F μ g/L) indicated low detections with only minor increases and are relatively unchanged.

2.0 CONCLUSIONS AND RECOMMENDATIONS

Concentrations of cis-1,2-DCE continued to exceed the New York State Groundwater Quality Standard of 5 μ g/L in shallow monitoring well SW7. Additionally, the concentration of TCE at well SW7 exceeded the New York State Groundwater Quality Standard of 5 μ g/L during the November 2015 sampling event. Groundwater concentrations detected in off-site shallow

monitoring wells URS-2S and URS-5S did not exceed the New York State Groundwater Quality Standard of 5 μ g/L for chlorinated compounds.


Concentrations of cis-1,2-DCE exceeded the New York State Groundwater Quality Standard of 5 μ g/L in the deeper portion of the aquifer. Monitoring well DW3, located on the AFP 59 boundary downgradient of the suspected source, and monitoring well URS-2D, located at a downgradient off-site location, exceeded the New York State Groundwater Quality Standard for cis-1,2-DCE during the November 2015 groundwater sampling event.


Analytical results from water samples collected from municipal well JC2 revealed all contaminants to be below New York State Groundwater Quality Standards.

Based on the results of these LTM activities, groundwater exceeding the New York State Groundwater Quality Standards is migrating off AFP 59 property in the deep monitoring wells. Additional groundwater monitoring is recommended to monitor the migration of contaminants off site.

3.0 REFERENCES

- AECOM, 2009. Final Quality Assurance Project Plan for the Vapor Intrusion Investigation, Groundwater Monitoring Activities, and Well Abandonment at Air Force Plant 59, Johnson City, New York. August.
- Earth Tech, 1996. Installation Restoration Program Final Remedial Investigation Report, Air Force Plant 59.
- HydroGeoLogic, Inc. (HGL), 2015a. Final Field Sampling Plan Addendum, Basewide Long-Term Monitoring at Air Force Plant 59, Johnson City, New York. December.
- HGL, 2015b. Final Work Plan, Basewide Long-Term Monitoring at Air Force Plant 59, Johnson City, New York. December.

HGL—Abbreviated 2015 Long-Term Monitoring Report for Air Force Plant 59—Johnson City, NY

Figure 2 Groundwater Sampling Results November 2014 and November 2015 On-site and Off-site Monitoring Wells

Legend

- AFP 59 Monitoring Well
- Off-site Monitoring Well

URS-9S Monitoring Well Identification

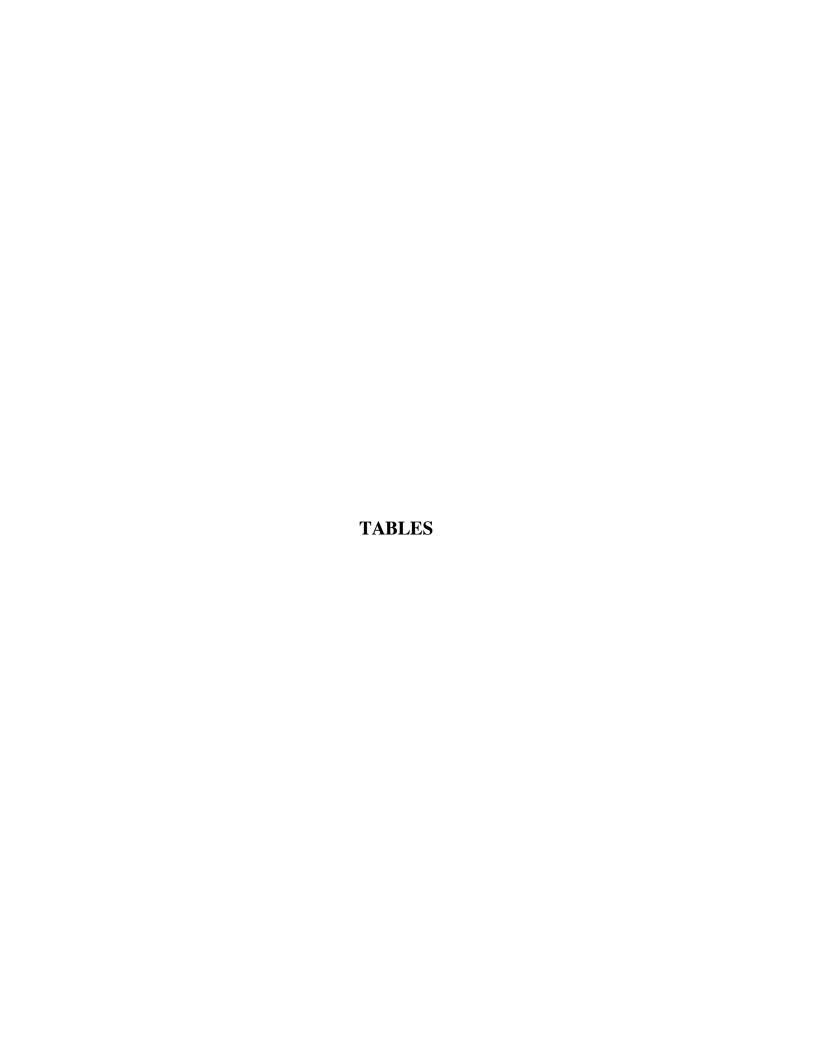
Surface Water Course

Air Force Plant 59

Notes:
35.3 M = Shaded values indicate a New York State (NYS) groundwater effluent Class GA exceedance.

- J=The analyte was posively detected but the quantitation is an estimation
- F= The analyte was positively identified but the associated numerical value is below the reporting limit.
- M=Matrix Effect. The analyte concentration was estimated due to matrix effect and therefore estimated.

ND=Analyte not detected above laboratory method detection limits. NS=Monitoring well "Not Sampled" during event.


VOC=volatile organic compound

μg/L=microgram per liter

After Air Stripper Sample	Concentration (µg/L)				
Analyte	10-Oct-13				
All Analytes	All VOCs ND				

\\gst-srv-01\HGLGIS\AFP_59_MSIW\LTM_2015\\
(02)samp_result.mxd 1/14/2016 TB Source: HGL, ESRI, AECOM, ArcGIS Online Imagery

Table 1 Summary of Detected VOCs November 2015

		NYS		59DW1WG1	59DW3WG1	59JC2WG1	59SW1WG1	59SW3WG1	59BM121WG1	59SW7WG1	59URS2DWG1	59URS2SWG1
Mothod	Analyta	GW Effluent	Units	11/4/2015	11/4/2015	11/5/2015	11/3/2015	11/4/2015	11/2/2015	11/4/2015	11/3/2015	11/3/2015
Method	Analyte	Limitations	Units	280-76497-6	280-76497-17	280-76497-16	280-76497-7	280-76497-8	280-76497-2	280-76497-9	280-76497-3	280-76497-4
		Class GA										
VOLATILES by	1,1-Dichloroethane	5	μg/L	0.16 U	0.31 F	0.16 U	0.16 U	0.16 U	0.16 U	5.1	0.20 F	1.3
Method 8260B	Tetrachloroethene	5	μg/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.70 F	0.20 U	0.20 U
	1,1,1-Trichloroethane	5	μg/L	0.16 U	0.16 U	0.33 F	0.16 U	0.24 F	0.16 U	1.8	0.16 U	2.4
	Vinyl chloride	2	μg/L	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	1.2 F	0.10 U	0.10 U
	1,1-Dichloroethene	5	μg/L	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.52 F	0.14 U	0.14 U
	trans-1,2-Dichloroethene	5	μg/L	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.16 F	0.15 U	0.15 U
	Trichloroethene	5	μg/L	0.16 U	0.16 U	0.39 F	0.16 U	0.42 F	0.16 U	9.5	0.16 U	2.8
	4-Methyl-2-pentanone	5	μg/L	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M
	cis-1,2-Dichloroethene	5	μg/L	0.15 U	50	0.24 F	0.15 U	0.27 F	0.15 U	40	61	1.8
SEMI-VOLATILES	1,4-Dioxane	NS	/1									
by Method 8270C	1,4-Dioxane	NS NS	μg/L	0.082 U	6.7	0.896 F	0.082 U	0.083 U	0.40 F	6.0	21	12
FIELD PARAMETERS	Temperature, Initial		° Celsius	12.37	14.88	-	14.98	15.90	12.29	14.43	12.59	12.70
	Temperature, Final		° Celsius	12.48	14.37	13.32	13.74	15.92	12.22	14.09	12.82	13.22
	рН		Std units	6.9	6.83	6.17	6.68	6.78	7.63	6.90	6.88	6.53
	Specific Conductance	NS	mS/cm	1.445	1.514	1.054	1.981	1.431	0.687	1.403	1.453	1.338
	ORP	7	mV	83.3	-18.7	163.4	100.0	128.3	-156.8	59.7	-41.2	24.2
	Dissolved Oxygen	1	mg/L	2.6	0.58	3.06	0.80	2.66	0.69	0.41	1.51	0.93
	Turbidity	1	NTU	144	7.78	0.08	1.48	0.17	14.1	7.88	82.9	29.2

Notes:

F - The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

M - A matrix effect present.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

NA - Not Applicable

NS - No Standard

< 2.5 - Non-Detect 6.5 - NYS GW E

- NYS GW Effluent; Class GA exceedances

Bolded numbers are detections

Duplicate Sample/Parent Sample Associations:

- 1 Sample 59DUP01WG1 is a duplicate of parent sample 59SW4WG1.
- 2 Sample 59DUP02WG1 is a duplicate of parent sample 59DW3WG1. Duplicate only of 1,4-Dioxane analysis.

Table 1 **Summary of Detected VOCs** November 2015

		NYS		59URS3DWG1	59URS5SWG1	59EB110515	TB110415	TB110215	59DUP01WG1	59DUP02WG1	59AB110515	59SW4WG1
Method	Analyta	GW Effluent	Units	11/2/2015	11/3/2015	11/5/2015	11/4/2015	11/2/2015	11/5/2015	11/19/2014	11/5/2015	11/5/2015
Method	Analyte	Limitations	Ullits	200 77407 1	200 77407 5	280-76497-	280-76497-	280-76497-	280-76497-	280-62916-	280-76497-	200 77407 10
		Class GA		280-76497-1	280-76497-5	14EB	15TB	18TB	11FD	13FD	13FB	280-76497-10
VOLATILES by	1,1-Dichloroethane	5	μg/L	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U	0.59 F	-	0.16 U	0.58 F
Method 8260B	Tetrachloroethene	5	μg/L	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.32 F	-	0.20 U	0.32 F
	1,1,1-Trichloroethane	5	μg/L	1.0	0.52 F	0.16 U	0.16 U	0.16 U	0.66 F	-	0.16 U	0.64 F
	Vinyl chloride	2	μg/L	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	-	0.10 U	0.10 U
	1,1-Dichloroethene	5	μg/L	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U	-	0.14 U	0.14 U
	trans-1,2-Dichloroethene	5	μg/L	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	-	0.15 U	0.15 U
	Trichloroethene	5	μg/L	1.6	0.56 F	0.16 U	0.16 U	0.16 U	5.2	-	0.16 U	4.9
	4-Methyl-2-pentanone	5	μg/L	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	1.0 M	-	1.0 M	1.0 M
	cis-1,2-Dichloroethene	5	μg/L	0.90 F	0.15 U	0.15 U	0.15 U	0.15 U	2.8	-	0.15 U	2.7
SEMI-VOLATILES	1,4-Dioxane	NS	/1									
by Method 8270C	1,4-Dioxane	NS	μg/L	5.8	0.40 F	0.083 U			1.6	8.1		1.6
FIELD PARAMETERS	Temperature, Initial		° Celsius	12.37	13.25							13.26
	Temperature, Final		° Celsius	12.48	12.81							13.29
	pН		Std units	6.90	6.90							6.66
	Specific Conductance	NS	mS/cm	1.445	1.453							1.302
	ORP		mV	83.3	63.1							112.3
	Dissolved Oxygen		mg/L	2.60	1.02							2.60
	Turbidity		NTU	144	16.2							2.87

F - The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

M - A matrix effect present.

U - The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL.

NA - Not Applicable

NS - No Standard

- Non-Detect < 2.5 6.5

- NYS GW Effluent; Class GA exceedances

Bolded numbers are detections

Duplicate Sample/Parent Sample Associations:

- 1 Sample 59DUP01WG1 is a duplicate of parent sample 59SW4WG1.
- 2 Sample 59DUP02WG1 is a duplicate of parent sample 59DW3WG1. Duplicate only of 1,4-Dioxane analysis.

Table 2
Trend Analysis of VOCs in Groundwater

	D.4.		Concen	trations o	f Analyte ii	n Groundw	ater μg/L	
Well ID	Date Sampled	TCA	TCE	VC	1,1-DCE	trans - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE
SW1	Sep-86	_		_	_	_	_	_
	Jan-92	0.5	-	_	_	_	_	_
	Dec-94	_	_	_	_	_	_	_
	Nov-99	_	_	_	_	_	_	_
	May-00	_	_	_	_	_	_	_
	Nov-00	_	_	_	_	_	_	_
	May-01	_	ı	_	_	_	_	_
	Nov-01	0.11 J	ı		_	-	_	
	May-02	_	1	1	_	1	-	
	Nov-02	_	ı	1	_	1	_	_
	May-03	_	_	_	_	_	_	_
Ī	Nov-03	_	_	_	_	_	_	_
Ī	Jun-04	_	_	_	_	_	_	_
Ī	Nov-04	_	-	_	_	_	_	_
ľ	Oct-05	_	-	_	_	_	_	_
	Jun-08	_	_	_	_	_	_	_
	Nov-08	NS	NS	NS	NS	NS	NS	NS
	Nov-09	_	-	_	_	_	_	_
	Nov-10	0.11	_	_	_	_	_	_
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	_	_	_	_	_	_	_
	Oct-13	_	-	_	_	_	_	_
	Nov-14	_	_	_	_	_	_	_
	Nov-15	_	_	_	_	_	_	_
DW1	Jan-92	0.6	_	_	_	_	_	_
	Dec-94	_	_	_	_	_	_	1.8
	Nov-99	_	_	_	_	_	_	_
	May-00	_	_	_	_	_	_	_
	Nov-00	_	_	_	_	_	_	_
	May-01	_	_	_	_	_	_	_
	Nov-01	_	_	_	_	_	_	_
	May-02	_	-	_	_	_	_	_
	Nov-02	_	_	_	_	_	-	_
	May-03	_	_	_	_	_	_	_
	Nov-03	_	_	_	_	_	_	_
	Jun-04	_	_	_	_	_	_	_
	Nov-04	_	_	_	_	_	_	_
-	Oct-05	_		_	_	_	_	_
	Jun-08	_	_	_	_		_	_
-	Nov-08	NS	NS	NS	NS	NS	NS	NS

Table 2
Trend Analysis of VOCs in Groundwater (continued)

	Date		Concen	trations o	f Analyte i	n Groundw	ater μg/L	
Well ID	Sampled	TCA	ТСЕ	VC	1,1-DCE	trans - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE
DW1	Nov-09	_	_	_	_	_	_	_
(cont.)	Nov-10	0.18	_	_	_	_	_	_
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	_	_	_	_	_	_	_
	Oct-13	_	_	_	_	_	_	_
	Nov-14	0.19 F	_	_	_	_	_	_
	Nov-15	_	-	_	_	_	_	_
SW3	Sep-86	_	6	_	_	_	_	_
	Jan-92	12	9	_	_	_	5	_
	Dec-94	0.5	1.8	_	_	_	_	_
	Dec-95	0.86	2.8	_	_	_	_	0.44
Ī	Jul-97	_	1	_	_	_	_	_
	Nov-98	0.22	0.81	_	_	_	_	0.1
Ī	Apr-99	0.51	0.71	_	_	_	_	0.17
	Nov-99	0.29	0.9	_	_	_	_	0.39
ľ	May-00	0.69	1	_	_	_	0.55	1.29
	Nov-00	0.43	0.9	_	_	_	_	0.22
	May-01	0.46	0.8	_	_	_	0.32	1.29
ľ	Nov-01	0.32 J	0.5 J	_	_	_	_	_
	May-02	0.42 J	0.8 J	_	_	_	0.46 J	_
	May-03	0.584 J	0.893 J	_	_	_	0.302 J	1.37 J
	Nov-03	0.398 J	0.856 J	_	_	_	_	0.511 J
	Jun-04	0.9 J	0.94 J	_	_	_	0.95 J	3.7
	Nov-04	0.52 J	1	0.26 J	_	_	0.38 J	1.5
	Oct-05	0.47 J	0.86 J	_	_	-	_	0.55 J
	Jun-08	0.661 J	1.31	_	_	_	0.403 J	1.45
ľ	Nov-08	0.345 J	0.759 J	_	_	_	_	_
	Nov-09	0.367 J	0.62 J	_	_	_	_	0.539 J
	Nov-10	0.41	0.59	_	_	_	_	0.17
ľ	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	_	0.51	_	_	_	_	0.28 F
	Oct-13	_	0.70 F	_	_	_	_	1
	Nov-14	0.26 F	0.51 F	_	_	_	_	0.31 F
	Nov-15	0.24 F	0.42 F	_	_	_	_	0.27 F
DW3	Jan-92	0.3	_	-	_	_	0.3	_
	Dec-94	_	_	0.28	_	_	0.26	36
-	Dec-95 Apr-97	_			_	_	_	5.2 41
•	Jul-97	_	_	_	_	_	_	49
-	Nov-98	_	_	_	_	_	0.34	66
	Apr-99	_	_	0.28	0.11	_	0.35	67
	Nov-99	_	_	_	_	_	_	_

Table 2
Trend Analysis of VOCs in Groundwater (continued)

	D-4-		Concen	trations o	f Analyte ii	n Groundw	ater μg/L	
Well ID	Date Sampled	TCA	TCE	VC	1,1-DCE	trans - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE
DW3	May-00	_	-	_	_	0.25	0.16	24.98
(cont.)	Nov-00	_	-	_	_	_	_	16.85
	May-01	_	_	_	_	_	_	13.29
	Nov-01	_	-	_	_	_	-	13.58
	May-02	_	-	_		_	0.1 J	21.08
	May-03	_	_	_	_	_	_	_
	Nov-03	_	ı	_	_	-	_	1.18 J
	Jun-04	_	-	_	_	_	-	1.3
	Nov-04	_	1	_	_	1	_	2.1
	Oct-05	_	-	_	_	_	_	3
	Jun-08	_	-	_	_	_	_	73.1
	Nov-08	_	1	_	_	_	0.41 J	67.3
	Nov-09	_	_	_	_	_	0.369 J	64.3
	Nov-10	_	_	_	_	_	_	8.4
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	_	_	_	_	_	0.32 F	56
	Oct-13	_	I	0.18 F	0.32 F	-	_	57
	Nov-14	_	-	_	_	_	0.32 F	49
	Nov-15	_	ı	_	_	_	0.31 F	50
SW4	Jan-92	2	97	_	0.3	_	0.6	_
	Dec-94	20	370	_	2.1		8.5	19
	Dec-95	34	1200	_	4.9	2.1	6.9	34
	Apr-97	_	_	_	_	_	7.1	71
	Jul-97	23	290	_	_	_	_	15
	Nov-98	8	46	0.42	0.82	_	9	10
	Apr-99	1.9	9.53	_	_	_	0.87	1.85
	Nov-99	2.13	9.5	_	0.18	_	7.7	7.15
	May-00	2.88	8	0.11	0.21	0.49	1.67	4.3
	Nov-00	1.14	15.2	1.49	0.29	_	15.25	11.18
	May-01	3.35	34	_	0.36	0.38	1.3	3.19
	Nov-01	0.88	5.7	0.43 J	0.12 J	_	7.18	5.27
	May-02	2.54	21.63	_	0.34 J	_	0.79 J	2.07
	May-03	3.05 J	9.09 J	_	_	_	1.44 J	3.36 J
	Nov-03	2.03	4.63	_	-	_	0.93	1.93
	Jun-04	2.8	41	_	0.57 J	0.11	1.3	3.3
	Nov-04	3.1	56	_	0.88 J	0.19 J	1.4	4.1
	Oct-05	2.2	43	_	1		1.7	6.3
	Jun-08	2.98	17.8	_	0.751 J	0.364 J	1.51	4.35
	Nov-08	0.513 J	12.7	_	_	_	0.825 J	3.38
	Nov-09	1.38	11.1	_	_	_	0.536 J	1.85
	Nov-10	1.6	48	_	0.64	_	1.1	3.2

Table 2
Trend Analysis of VOCs in Groundwater (continued)

	D-4-		Concen	trations o	f Analyte ii	n Groundw	ater μg/L	
Well ID	Date Sampled	TCA	TCE	VC	1,1-DCE	trans - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE
SW4	CY2011	NA	NA	NA	NA	NA	NA	NA
(cont.)	Aug-12	0.66	11	_	_	_	0.64 F	2.3
	Oct-13	1.8	6.6	_	0.26 F	_	_	2.6
	Nov-14	0.75 F	3.4	_	0.46 F	_	-	1.7
	Nov-15	0.64 F	4.9	_	_	_	0.58 F	2.7
SW7	Dec-94	4.6	56	6.2	1	0.3	33	150
	Dec-95 Jul-97	2.2	43 17.8	6.8	0.8		20	130 2
	Nov-98	2.5	12.7	3.4	0.65	0.28	12	82
	Apr-99	1.23	15		0.03	-	1.46	5.25
	Nov-99	1.01	7.9	_	0.19	_	3.38	18.8
	May-00	0.67	4	_	0.19	0.12	0.71	2.43
	Nov-00	0.07	11	0.52	0.15	0.12	3.48	16.06
	May-01	1.18	3.95	0.32	0.13		0.47	1.46
	Nov-01	0.8 J	5.7	0.85 J	0.19 J	0.13 J	3.02	25.89
	May-02	0.87 J	1.5	0.65 J	0.193	0.13 3	0.47 J	2.79
	· ·	1		_	_			
	May-03 Nov-03	1.5 J 0.674 J	3.8 1.9	_	_		0.409 J 0.509	1.43 J 2.76
	Jun-04	1	1.9	_	_		0.309 0.3 J	1.1
	Nov-04	1.5	2.1	0.47 J	0.25 J		1.5 J	10 J
	Oct-05	0.73 J	3.1	0.47 J	0.23 J —		1.3 3	10 3
	Jun-08	2.5	2.94				1.59	6.34
	Nov-08	1.88	8.15	1.21 M	_	0.302 J	5.04	35.3 M
	Nov-09	1.24	2.42	1,21 1	_	0.302 3	0.905 J	5.21
	Nov-10	1.24	2.4	1	0.21	0.096	0.58	4.3
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Aug-12	2	9.9	1.2	0.65	0.21 F	6.5	44
	Oct-13		2.5		0.93 F	-	_	7
	Nov-14	1.9	7.8	0.78 F	0.67 F	0.20 F	4.6	33
	Nov-14	1.8	9.5	1.2 F	0.67 F	0.20 F	5.1	40
URS-2S	Jun-08	2.2	2.19	1.2 Г	U.32 F	0.10 F —	0.569 J	0.996 J
01020	Nov-09	2.29	2.79				1.07	1.46
	Nov-10	2.99	2.79	_	0.37 J		1.07	1.40
	CY2011	NA	NA	NA	NA	NA	NA	NA
	Jul-12	3.3	4.4				1.6	1.9
	Oct-13	<u> </u>	2.3	_	_		1.0	1.9
 	Nov-14	1.6	3.7	_	0.32 F		2.1	
		4.1		_	0.32 F		1.3	1.2
URS-2D	Nov-15	2.4	2.8		_	_		
UK3-2D	Jun-08	_	_	0.354 J	_	_	0.339 J	71.9
	Nov-09	_	_	0.364 J	_	0.11.1	0.244 J	72.7
	Nov-10	_	_	0.22 J	_	0.11 J	0.23 J	69

Table 2
Trend Analysis of VOCs in Groundwater (continued)

	D.4:	Concentrations of Analyte in Groundwater µg/L									
Well ID	Date Sampled	TCA TCE VC 1,1-DCE		trans - 1,2 DCE	1,1-DCA	<i>cis</i> - 1,2 DCE					
URS-2D	CY2011	NA	NA	NA	NA	NA	NA	NA			
(cont.)	Jul-12	_	-	0.22 J	_	_	0.27 J	71			
	Oct-13	-	-	_	_	0.17 F	0.21 F	62			
	Nov-14	_	-	_	_	_	0.27 F	67			
	Nov-15	_	1	-	-	_	0.20 F	61			
JC-2	Aug-12	NA	NA	NA	NA	NA	NA	NA			
	Oct-13	0.36 F	0.48 F		_	-	_	0.29 F			
	Nov-14	0.24 F	0.33 F		_	_	_	0.23 F			
	Nov-15	0.33 F	0.39 F	-	_	_	_	0.24 F			
JC-3	Aug-12	0.56	0.92	_	-	-	_	0.26 J			
	Oct-13	NA	NA	NA	NA	NA	NA	NA			
	Nov-14	NA	NA	NA	NA	NA	NA	NA			
	Nov-15	NA	NA	NA	NA	NA	NA	NA			

Notes:

NS: Monitoring well "Not Sampled" during event

NA: Analytical data "Not Available" due to extensive flood event at site and surrounding area in CY2011.

Groundwater sampling not conducted in CY2011.

J: The analyte was positively detected, but the quantitaion is an estimation

F: The analyte was positively identified but the associated numerical value is below the reporting limit (RL).

M: Matrix Effect. The analyte concentration was estimated due to matrix effect and therefore estimated

Bolded numbers are exceedances

[&]quot;-": Analyte not detected above laboratory method detection limits

ATTACHMENT 1 FIELD FORMS

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: URS-3D	Location: AFF'59
Sampler(s): MIKE Trekson	Project Name: AFP59 2015 GWS
Well Depth: 87.75+0.28 = 88.03	Project #: GS2049.04 Date: /1-2-15 Time: /4/5
DTW (ft): 36.03 DTP Top (ft): 82.8	Courier:FedExUPSHand _X_TAL Pickup
MP Ht. Above/Below Ground Surface:	Sampling Method: BP
Condition of Bottom of Well: Soft	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (65.33 - 95.33)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2-175	dem/sway, 60°, calm
Placement of Pump Inlet (ft): 83	, , , , , ,

					Field	Parameter	S+/- 10		+/-10	
Time	Depth to	Flow	Total	pН	Temp.	Cond.	ORP	DO	Turb.	Type, Size, and Amount
	Water	Rate	Volume	+/-	+/(C)	(unitos/cm)	(mv)	(mg/L)	(NTU)	of Sediment Discharged
1.00	(ft)	(L/m)	(L)	0.1	0,5	M3/cz			A STATE OF	
1457	36.26	6.200	1.5	6.65	1237	1,436	113.3	5.37	ole Many	CAMINE, NOB!
1502	36.29	0.200	2.5	6.62	12.35		- 1137	-2.71	Overn	200
15/1	36,34	tb.201	3.5	6.68	12.22	1.444	109.3	3.65	oven	PAGE
15/12	36.36	6.200	4.5	6:72	12.24	1.441	102.5	2.64	817	0
1517	36.38	cb.200	5.5	6.74	12.22	1.442	99.4	2.66	635	
1522	36.41	0.100	6.6	6.77	12,31	1:442	967	3.64	398	
1527	36.42	\$130	6.5	6.79	12.40	1.442	95.3	2,63	356	
1532	26.45	D.18\$	7.\$	6.84	12.51	1.443	92.1	2.75	327	-
1537	36,47	\$ 144	75	6.86	12.54	1.444	91.3	2.76	286	
1542	36.47	0,100	8.0	6.87	12,57	1,443	90.7	2.72	259	
1547	36.49	Ø.100	8,5	6,88	12,58	1.444	88.9	2.69	222	
1552	250	Billet	9,0	6.89	12.57	1.444	87.4	2.69	187	
1557	34.34	Dilat	9,5	6.40	12.54	1.445	84.4	2.6/	148	
1662	36.32	Ø.166	10,6	6.90	12.53	1.442	83.5	2.65	114	
160+	36,31	\$16×	10,5	6.90	12.48	1.445	83.3	2,64	144	
1649	Ce	lhect	51	anole	5	(VOS S	d	1,4	-DIDX	are)

Closed	Observations
Color: Clear Other (describe):	
Odor: None Low Medium Hi	gh Very Strong H2S Fuel-like
Notes: PUP# 299	99 (QED 1.75-Inch pump) POST Pump DTW = 36.
QED MP10 (Pine# EVELSMIT MANINE	Britis (92, 500,75) QEO 3020 Compressi)
(# 4088 Pine) Signed/Sampler(s):	ADD DE FARINACE LIKELY from wearby well

FIELD SAMPLING REPORT

LOCATION;	AFP59	PROJECT NAME: AFP5	PROJECT NAME: AFP59 2015 GWS				
SITE:	AFP59	PROJECT NO: GS2049.	.04				
		SAMPLE INFORMATION					
SAMPLE ID	59URS3DWG1	DATE: 11-2-20	15 TIME: 1609				
MATRIX TYPE	WG	ENTER SAMPLE NUM	BERS FOR QC SAMPLES/				
SAMPLING ME	THOD: BP		BLANKS ASSOCIATED WITH THIS SAMPLE:				
LOT CONTROL	#:	MATRIX SPIKE (MS): _					
(Ambient Blank # - E	Equipment Blank # - Trip Blank # - Cooler	#) MATRIX SPIKE DUP (S	SD):				
CHAIN-OF-CUS	STODY #:	FIELD DUP (FD):					
		AMBIENT BLANK (AB):				
SAMPLE BEG. DE	PTH (FT):	EQUIPMENT BLANK (I	EB):				
SAMPLE END DE	PTH (FT):	TRIP BLANK (TB):	TB 110215				
GRAB 💢 CO	MPOSITE ()						
CONTAINER	PRESERVATIVE/	ANALYTICAL	ANALYSIS				
SIZE/TYPE	# PREPARATION	METHOD					
1L Amber	2 Cool to 4C	8270C	1,4 Dioxane				
40 mL VOA	3 Cool to 4C HCl ph<2	SW8260B	VOCs				
	NO	OTABLE OBSERVATIONS					
PID READ		AMPLE CHARACTERISTICS	MISCELLANEOUS				
1st 0, 7		at dwdy					
2nd	ODOR: NO	NE I					
	OTHER:	2 (1	1445				
pH 6,90 Iron	Temperature 12.48 (C) D (mg/L) Oxidation/Reduction Poten	issolved Oxygen 3.69 (mg/L) Spetial 83.3 (mv) Turbidity	ecific Conductivity 1.445 (umhos/em) 144 (NTU) nS/cn				
		GENERAL INFORMATION	/ 6				
WEATHER: SUN	i/clear X overcast/rai	N WIND DIRECTION CALL	AMBIENT TEMPERATURE 60				
SHIPMENT VIA:	FEDEX HAND DELIVER	COURIER (TAL)x OTHER					
SHIPPED TO: Test	America Laboratory Denver, CO						
COMMENTS:	1 \						
The state of the s	IKE JACKSON	OBSERVER:					
M	IATRIX TYPE CODES	SAMP	PLING METHOD CODES				
DC=DRILL CUTTIN	NGS SL=SLUDGE	B=BAILER	G=GRAB				
WG=GROUND WA	TER SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER				
LH=HAZARDOUS		PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER				
SH=HAZRDOUS SO			HP=HYDRO PUNCH AUGER SS=SPLIT SPOON				
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT A DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP				

WELL NUMBER: URS-3D	PROJECT NAME: AFP59
DATE/TIME: 11/2/15	CITY/STATE: Johnson City, NY
NSPECTED BY: MOT	Water Level Indicator Serial No.: Socoust made by PHS 9244)
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs):	<u>ф.</u> ф ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASURE	
WELL DEPTH (FEET FROM TOP OF PXC)	8775+0,28=88.43
WATER LEVEL DEPTH (FEET FROM TOP OF PXC)	36.\$3
SS WELL STICK-UP (FEET, ABOVE GRADE)	1.8\$
PROTECTIVE CASING STICK-UP (FEET, AGS)	1.94
WELL DIAMETER (INCHES)	2
WELL CONSTRUCTION (PVC, STEEL, ETC.)	STAINLESS STEEL
WILL CONSTRUCTION (1 ve, 51522, 210)	(OLD CUTLOCK)
LOCKED UPON ARRIVAL?	(YES) NO (CUT COCK)
LOCK REPLACED?	YES NO
OBSTRUCTIONS?	YES NO
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES NO (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATION	2NOS:

n,

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: BM-121	Location: AFP59
Sampler(s): MIKE DAZKOUN	Project Name: AFP59 2015 GWS
Well Depth: 56.07+0.25 = 56,35	Project #: GS2049.04 Date: 11-2-17 Time: 1716
DTW (ft): 2647 DTP Top (ft): 3,18	Courier: FedEx UPS Hand X_TAL Pickup
MP Ht. Above/Below Ground Surface: 3.2	Sampling Method: BP
Condition of Bottom of Well: SOFT	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (- 56.04)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 6	Party doudy, cally, 580
Placement of Pump Inlet (ft):	

					Field	Paramete	rs		+/-10	
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	+/-0,1	Temp.	Cond. (umhos/cm)	ORP	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
1732	26.62	6.2dd	0.50d	7.84	12,29	Ø.60	-95.4	1.43	15.5	
1737	2663	0.300	1500	7.65	12.29	0:677	-134.	Ø.97	14.4	
1742	2663	Cb 260	12,544	7.63	12.27	\$.681	158.3	\$.85	142	
1747	26.63	0 2dis	3.504	762	12.25	6:684	-1491	60,78	Its	
1752	26,62	CB 200	4.504	7.62	1225	6,686	-1586	9.71	14.5	
757	26.63	\$1260	5.5de	7.63	12.23	\$.686	16.2	Ø.67	14.0	
1802	26.63	0,260	6.50	763	1222	6,687	-1568	0.69	14:1	
1804	· C0	Med	T SA	when	. (Vocs	1	,4- Di	SWAND),
								/		•
5.0										

Observations

Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	/
Notes: #12026 (QD) 1,75-125 Sande DD), POST hap IN-574(1 Dru= 26)	36
15I 956 MPS (#085101237), Anch 2100, a (#024785, PM	19
QES MP10 (PINE # 030/46) BOLUNST Model 101(#59249/1	Salt
ENOL THAT MANINE HATTEN MIT QED 320 COMPRESSO (# 40882 PM	re)
Signed/Sampler(s):	

FIELD SAMPLING REPORT

LOCATION: AFF	259	PROJECT NAME: A	PROJECT NAME: AFP59 2015 GWS		
SITE: AFF	259	PROJECT NO: GS204	PROJECT NO: GS2049.04		
	S	SAMPLE INFORMATION			
SAMPLE ID 59B	M121WG1	DATE: //-2-	-15 TIME: 1894		
MATRIX TYPE: WG		ENTER SAMPLE NU	UMBERS FOR QC SAMPLES/		
SAMPLING METHOD	: BP		BLANKS ASSOCIATED WITH THIS SAMPLE:		
LOT CONTROL #:		MATRIX SPIKE (M.	3):		
(Ambient Blank # - Equipmer	t Blank # - Trip Blank # - Cooler	#) MATRIX SPIKE DU	P (SD):		
CHAIN-OF-CUSTODY	#:	FIELD DUP (FD): _			
		AMRIENT RI ANK	(AB):		
SAMPLE BEG. DEPTH (F	r): —	EOUIPMENT BLAN	IK (EB):		
SAMPLE END DEPTH (FT	<u>-</u>): –	TRIP BLANK (TB):	TB110215		
GRAB (COMPOSI	TE()	THE BEHAN (18).			
CONTAINER	PRESERVATIVE/	ANALYTICAL	ANALYSIS		
SIZE/TYPE #	PREPARATION	METHOD			
40 mL VOA 3	Cool to 4C HCl ph<2	SW8260B	VOCs		
1L Amber 2	Cool to 4C	8270C	1,4 Dioxane		
	NO	OTABLE OBSERVATIONS			
PID READINGS	S	SAMPLE CHARACTERISTICS	MISCELLANEOUS		
Ist Q.D	COLOR: C	ean			
2nd		we			
	OTHER:	1 /0	- 18t		
pH 7.63 Te	mperature 12.22(C) D Oxidation/Reduction Poten	rissolved Oxygen <u>P, 69</u> (mg/L) etial <u>~156.8</u> (mv) Turbidity	Specific Conductivity 0.687 (umhos/em) 14.1 (NTU) MS/cr3		
		SENERAL INFORMATION N WIND DIRECTION COURIER (TAL) X OTH.	AWBIENT TEWI EXATORE		
SHIPPED TO: Test America					
The state of the s	Laboratory Deliver, CO				
COMMENTS:	= Dacksow				
SAMPLER: MIKE	0 40,000	OBSERVER:			
MATRIX	TYPE CODES	SA	MPLING METHOD CODES		
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB		
WG=GROUND WATER	SO=SO1L	BP=BLADDER PUMP	HA=HAND AUGER		
LH=HAZARDOUS LIQUID	WASTE GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER		
SH=HAZRDOUS SOLID WA					
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGH			
		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP		

WELL NUMBER:	BM-121	PROJECT NAME: AFP59
DATE/TIME:	11-2-15 1924	CITY/STATE: Johnson City, NY
INSPECTED BY:	MDT	Water Level Indicator Serial No.
VENT WELL		ms#59244 (#59244)
MONITORING WELL IN	NSTRUMENT READING (VO	Cs): ppm
WELL INSPECTION/GR	ROUNDWATER LEVEL MEA	SUREMENT
WELL DEPTH (FEET F	STEE	56.07+0.28=56.35
	(FEET FROM TOP OF PXC	1/ 4 1
PIC WELL STICK-UP (FEET, ABOVE GRADE)	3.18
PROTECTIVE CASING	STICK-UP (FEET, AGS)	NO PROTECTIVE CASIA
WELL DIAMETER (INC	CHES)	6
WELL CONSTRUCTION	N (PVC, STEEL), ETC.)	m' & 57EEC
LOCKED UPON ARRIV	AL?	(YES) NO SCREWED FLUT
LOCK REPLACED?		YES NO
OBSTRUCTIONS?		YES NO
DAMAGE TO WELL PA	AD/STICKUP/CASING, ETC	YES (If YES, detail in comments below)
WELL RELABELED?		YES NO
WELL PHOTOGRAPHE	ED?	YES NO
GENERAL CONDITION	N/COMMENTS/RECOMMEN	DATIONS:

CHRYSLEL BOXT ON FINSH MOUNT

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: URS-2D	Location: AFP59
Sampler(s): MIKE JACKS W	Project Name: AFP59 2015 GWS
Well Depth: 90,24+0,28= 90,52	Project #: GS2049.04 Date: 11-3-15 Time: 0815
DTW (ft): 31.46 DTP Top (ft):	Courier:FedExUPSHand _X_TAL Pickup
MP Ht. Above/Below Ground Surface:	Sampling Method: BP
Condition of Bottom of Well:	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (65 - 90)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2 (5.5)	Clem, Sundy , 55°
Placement of Pump Inlet (ft):	

Field Parameters

						+1-390				
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	рН +/-о. Ј	Temp. (C) +/-0.5	Cond. (umhos/cm) ms/cm	ORP (mv) +/-/0	DO (mg/L)	Turb. (NTU) +/-/0	Type, Size, and Amount of Sediment Discharged
0837	31.45	\$ 266	φ.φ	6.73	12.59	1.292	21.9	2.41	38,0	
0842	3/45	46.244	1.0	6.80	12.7	1.417	-9.2	1.78	40.1	10
0847	-31.45	Ø.260	2.4	683	12.76	1.445	-23.5	1.33	69.4	
6852	31.45	\$ 26%	0 1	6.85	12.78	1457	-32.	1.29	82.5	
6857	31.45	Ø. 24¢		6.86	12.81	1.451	-36.2	1.91	86.6	
0962	31.45	\$ 245	1 /	6,87	13,85	1.452	-38.7	1.88	84.4	
0987	31.45	\$ 200		6.88	12.82	1.453	-41.2	1:51	82.9	
0 9 19	CE	Heut		mple	5 (VOSS	£ 1,	4-010	(sure)	
7 17 1				,			1	-		
	4									
		-								
									1	

Color: Clear Other (describe):

Odor: None Low Medium High Very Strong H2S Fuel-like

Notes: Pup# 2999 (QEO) 75-Inch pup POST Punt It STALL DTV = 31.45

YSI 556 MPS (# 085101237-); Hack 2/00 Q (# 024785) Pine)

QEO MP10 (Pine # 030146), Solars mode (101 (#592443 (1001))

OGO 3000 Compressor fine# 4088), Eurosiani Manine Bastery

Signed/Sampler(s):

FIELD SAMPLING REPORT

LOCATION: AFP59		PROJECT NAME: AFP59 2015 G	PROJECT NAME: AFP59 2015 GWS		
SITE: AFP59		PROJECT NO: GS2049.04			
	SAMPL	E INFORMATION	1		
SAMPLE ID 59URS2D	WG1	DATE: 11-3-15	гіме: ф 9 Ф 9		
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS FO	OR QC SAMPLES/		
SAMPLING METHOD: BE		BLANKS ASSOCIATED WITH			
LOT CONTROL #:		MATRIX SPIKE (MS):			
(Ambient Blank # - Equipment Blank	# - Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):			
CHAIN-OF-CUSTODY #:		FIELD DUP (FD):			
		AMBIENT BLANK (AB):			
SAMPLE BEG. DEPTH (FT):		EQUIDMENT BLANK (FR):			
SAMPLE END DEPTH (FT):	•	TRIP BLANK (TB):	\$315		
GRAB COMPOSITE		TRIP BLANK (16).			
	RESERVATIVE/	ANALYTICAL	ANALYSIS		
CONTINUEN	PREPARATION	METHOD			
1L Amber 2	Cool to 4C	8270C	1,4 Dioxane		
	ol to 4C HCl ph<2	SW8260B	VOCs		
	NOTADI	E OBSERVATIONS			
		CHARACTERISTICS	MISCELLANEOUS		
PID READINGS	COLOR: Claudy	CHARACTERISTICS	141100222 1112000		
1st O, P	ODOR: NONE				
ziid	OTHER:				
pH 6.88 Tempera Iron (mg/L) Ox	ture 12.82 (C) Dissolved dation/Reduction Potential -4	Oxygen / 5/ (mg/L) Specific Conc 1.2 (mv) Turbidity 82.9	(NTU) (umhos/cm) (NTU) // // // // // // // // // // // // //		
		AL INFORMATION	·200		
WEATHER: SUN/CLEAR X	OVERCAST/RAIN	WIND DIRECTION AMBIE	NT TEMPERATURE		
SHIPMENT VIA: FEDEX	HAND DELIVER 4 C	OURIER (TAL) _x OTHER			
SHIPPED TO: Test America Labora					
COMMENTS:					
SAMPLER: MIKE	JASKSON)	OBSERVER:			
MATRIX TYPE	CODES	SAMPLING ME			
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB		
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER		
LH=HAZARDOUS LIQUID WAST	E GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER		
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH		
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER DT=DRIVEN TUBE	SS=SPLIT SPOON SP=SUBMERSIBLE PUMP		

WELL NUMBER:	URS-2D	PROJECT NAME: AFP59		
DATE/TIME:	11-3-15	CITY/STATE: Johnson City, NY		
INSPECTED BY:	MOT	Water Level Indicator Serial No.: Jel 101 (100) (# 59284)		
VENT WELL				
MONITORING WE	LL INSTRUMENT READING (VOCs):	ppm		
WELL INSPECTION	N/GROUNDWATER LEVEL MEASUR	EMENT		
the state of the s	ET FROM TOP OF PXC)	90,24+0.28 = 90,52		
	EPTH (FEET FROM TOP OF PXC)	31.46		
PVC WELL STICK-	UP (FEET, ABOVE GRADE)	-0,36 CFIUSH MOLIT		
PROTECTIVE CAS	ING STICK-UP (FEET, AGS)	N/A (FIUSH MOUNT)		
WELL DIAMETER	(INCHES)			
WELL CONSTRUC	TION (PVC, STEEL, ETC.)	<u>55</u>		
LOCKED UPON A	RRIVAL?	(YES) NO BOLTED		
LOCK REPLACED	?	YES NO		
OBSTRUCTIONS?		YES NO		
DAMAGE TO WEL	L PAD/STICKUP/CASING, ETC?	YES (If YES, detail in comments below)		
WELL RELABELE	D?	YES NO		
WELL PHOTOGRA	APHED?	(YES) NO		
Linear T	TION/COMMENTS/RECOMMENDAT	TIONS: CHRYSLer Coak		

Normal 9/16 4 Box well Box

GROUNDWATER FIELD SAMPLING DATA SHEET

Location: AFP59
Project Name: AFP59 2015 GWS
Project #: GS2049.04 Date: 1-3-15 Time: 095
Courier:FedExUPSHand _X_TAL Pickup
Sampling Method: BP
Type of Pump: Bladder Pump
Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
SUNNY/clem, & CALM, 56
1/C) ANT

Field Parameters

						+1-300				
Time	Depth to Water	Flow Rate	Total Volume	pH +/-0./	Temp.	Cond.	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
AL P	(ft)	(L/m)	(L)		H-0.5	ms/cm	+/-10	3 . 6	4/-10	and a Fire
1026	31.85	ϕ . $\zeta \phi$	60.549	6.84	12.70	1.256	25.3	2,63	158	ORANGE Floc
1451	31.85	0266	1.200	6.73	12.85	1,261	31.6	1.20	101	- 7
1436	31.85	(D.204	2,500	6.67	12.89	1.762	26.7	1.34	180	- '- '- '- '- '- '- '- '- '- '- '- '- '-
1441	3/,85	0.200	3.500	6.62	12.92	1.262	25.3	1.00	198	
1446	3/.85	Ø.200	1 1	16.59	12.94	1.262	3218	0.96	187	
1451	3/85	Ø.298	5.50	6.56	12.96	1.263	26.0	4.90	166	
1056	3/.45	0.260	6.504	6.54	12.98	1.264	27.2	Ø.84	150	~
1101	3/.85	\$ 200	7.50	\$6.53	12.99		29.0	Ø.83	130	
1166	3/85	0,200	8.50	6.50	13.02	1.27	34.2	\$.83		
111	3/.85	6264	9.500	6.49	17.44	1:585	30.2	0.86	12 -	}
1116	31.85	\$240	14,50	6.49	13,4	1.295	29,4	\$.89	66,5	
1121	3/85	Ø-200	11.50	\$ 6.56	13.07	1.306		6.91	52.9	5
1126	31.85	Ø,260	12.50	66.51	13.14	1.326	26.2	\$.92	38.9	
1131	31.85	0.204	17 70		13.13	1.336	271	0.94	35.2	
1136	315	\$240	1 1	\$6.53	13.22	1.338	24.2	6.93	29.2	
1134	(6)	VecT	- 5	mole	25	CVOC) £	0	154	- DIOXANE)
	1 0	42						,		

Observations

Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: Prof 12026 (QD Sample Pro 1.75-Inch), POST pup Ins	all Din
21,62, 45IS56MPS (#085/01237), Hact 2100 Q (#0247-85,)	fre)
QED 340 compressor (Pine # 4088), EVELSTAT MARINE DITTERY	
Signed/Sampler(s):	1

FIELD SAMPLING REPORT

LOCATION:	AFP59	PROJECT NAME: AFP59 2015	GWS	
SITE:	AFP59	PROJECT NO: GS2049.04		
OITE.	SAMI	PLE INFORMATION		
SAMPLE ID	59URS2SGW1	DATE: 11-3-15	TIME: 1138	
MATRIX TYPE:	WG	ENTER SAMPLE NUMBERS F	OR OC SAMPLES/	
SAMPLING MET	ГНОD: ВР	BLANKS ASSOCIATED WITH	THIS SAMPLE:	
OT CONTROL	#:	MATRIX SPIKE (MS):		
(Ambient Blank # - Ec	quipment Blank # - Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD): FIELD DUP (FD):		
CHAIN-OF-CUST	TODY #:	FIELD DUP (FD);	-	
ESSTERNING TO		AMBIENT BLANK (AB):		
SAMPLE BEG. DEF	PTH (FT):	EQUIDMENT BLANK (ER):		
		EQUIPMENT BLANK (EB).	14215	
SAMPLE END DEP		EQUIPMENT BLANK (EB): TRIP BLANK (TB):	14213	
GRAB (X) COM	1POSITE ()			
CONTAINER	PRESERVATIVE/	ANALYTICAL	ANALYSIS	
	# PREPARATION	METHOD		
	2 Cool to 4C	8270C	1,4 Dioxane	
	3 Cool to 4C HCl ph<2	SW8260B	V.OCs	
	NOMA	OLE ODGEDVATIONS		
		BLE OBSERVATIONS	MICCELLAMEOUS	
PID READ	11.00	LE CHARACTERISTICS	MISCELLANEOUS	
Ist Q.Ø	COLOR: Clean			
2nd	ODOR: NONE			
1 - 2	OTHER:	0 93 (well) Specific Cor	ndustivity 1,338 (mahas/am	
pH 6.53	Temperature	red Oxygen <u>0.93</u> (mg/L) Specific Cor 24.2 (mv) Turbidity 29.2	(NTU) mS/c	
	GENI	ERAL INFORMATION	- 6	
	/CLEAR OVERCAST/RAIN	CALM AND	IENT TEMPERATURE	
WEATHER: SUN	/CLEAR OVERCAST/RAIN	WIND DIRECTION AMB	IEM TEM EXATORE	
SHIPMENT VIA: I	FEDEX HAND DELIVER	COURIER (TAL)x OTHER		
	America Laboratory Denver, CO			
COMMENTS:				
A To The Control of the Control	hike Jackson	OBSERVER:		
The second secon			ETHOD CODES	
N. A. (20), 2775	ATRIX TYPE CODES		ETHOD CODES G=GRAB	
DC=DRILL CUTTIN		B=BAILER BP=BLADDER PUMP	HA=HAND AUGER	
WG=GROUND WAT		PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER	
LH=HAZARDOUS L SH=HAZRDOUS SO		CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH	
SH=HAZRDOUS SU	SW=SWAR/WIPF	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON	

DT=DRIVEN TUBE

SP=SUBMERSIBLE PUMP

WELL INSPECTION AND GROUNDW	ATER LEVEL MEASUREMENT SHEET
WELL NUMBER; URS-2S	PROJECT NAME: AFP59
DATE/TIME: 11-3-15	CITY/STATE: Johnson City, NY
INSPECTED BY:	Water Level Indicator Serial Not: 10/(100')
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs):	ppm ppm
WELL INSPECTION/GROUNDWATER LEVEL MEASUREM	MENT
WELL DEPTH (FEET FROM TOP OF P) 55	58.35+0.28= 58.63
WATER LEVEL DEPTH (FEET FROM TOP OF PV)	31.61
PXC WELL STICK-UP (FEET, ABOVE GRADE)	-0.26 (FIUSHMONT)
PROTECTIVE CASING STICK-UP (FEET, AGS)	N/A (FIUSH MOUNT)
WELL DIAMETER (INCHES)	2
WELL CONSTRUCTION (PVC STEEL ETC.)	STAINLESS STEEC
LOCKED UPON ARRIVAL?	YES (NO BOLTOO Shot
LOCK REPLACED?	YES NO
OBSTRUCTIONS?	YES (NO)
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	YES (If YES, detail in comments below)
WELL RELABELED?	YES NO
WELL PHOTOGRAPHED?	YES NO
GENERAL CONDITION/COMMENTS/RECOMMENDATIO	NS:

MS+ MSD

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: URS-5S	Location: AFP59				
Sampler(s): MIKE DAKKOW	Project Name: AFP59 2015 GWS				
Sampler(s): MIKE MIKE Well Depth: 66.04 +0, 28 = 66.32	Project #: GS2049.04 Date: //_3_15Time: 1326				
DTW (ft): 22 .9 + DTP Top (ft): 58 80(Courier: FedEx UPS Hand X TAL Pickup				
MP Ht. Above Below Ground Surface:	Sampling Method: BP				
Condition of Bottom of Well:	Type of Pump: Bladder Pump				
Screen Interval FTOC(ft): (-)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):				
Well Diameter (in): 2 (STAINLES) STEEL	SUNNY/clear, SUDDT WWD, 600				
Placement of Pump Inlet (ft): 59					

Field Parameters

						1/-370				
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	рН 	Temp. (C) +/-0.5	Cond. (umhos/om)	ORP (mv) +/-/D	DO (mg/L)	Turb. (NTU) +/-10	Type, Size, and Amount of Sediment Discharged
1354	22.97	0.260	0.500	7.21.	13.25	1.365	67.7	2.12	133	
359	22.97	-8,200	1.780	7.02	13,13	1.437	62.2	1.44	89.5	
1484	22,47	0.260	2,500	6.95	13.20	1.447	60.3	1.18	55.6	
1449	2297	0,200	3.500	6.91	12.89	1.451	60.5	1.09	41.2	
1414	22.97	78.260	4,500	6.94		1.453	61.6	1.14	36.7	
1419	22,97	0.260	5,500	66.89	12.84	1.454	61.8	1.10		
1424	22.97	\$.267	6.500	\$ 69\$	12.87	1.453	62.3	1,47	23.9	
1429	27.97	0,260	7.5%		12.82	1.453	62.8	1.01	17.3	
1434	22.97	6,260	8,500	640	12.81	1,453	63,1	1.02	16.2	
1436	Co,	Vect	590	Ples	(VOC		,4-1	DANG) (MS+MSD)
					_					
									_	

Observations

Color: Clear Other (describe):	Fix
Odor: (None) Low Medium High Very Strong H2S Fuel-like	
Notes: PUMP# 12026 (QED Sample (no 1.75-1957) for fur DSHH	
And = 22 07 45 I 556 MPS (# 085 085101237), Anch 2/00 Q (#24785	, Pine)
QED MP10 (Pirett \$3\$146), 50 (ONST Model 10:11(1003) (#59244),	,
Q60 3000 Compressa (Pino#4088)	
\mathcal{L}	
Signed/Sampler(s):	

LOCATION:	AFP59	PROJECT NAME: AF	P59 2015 GWS		
SITE:	AFP59	PROJECT NO: GS204	PROJECT NO: GS2049.04		
	S	AMPLE INFORMATION			
SAMPLE ID	59URS5SWG1	DATE: 11-3-1	5 TIME: 1436		
MATRIX TYPE:	WG	ENTER SAMPLE NU	MBERS FOR QC SAMPLES/		
SAMPLING ME	THOD: BP	TA ANALIS A GOO CITAT	ED IL THIC CAMPIE.		
LOT CONTROL	#:	MATRIX SPIKE (MS)	59URSSWGI-MSD (SD): 59 URSSWGI-MSD		
(Ambient Blank # - E	Equipment Blank # - Trip Blank # - Cooler #) MATRIX SPIKE DUP	(SD): 07028 0 100 7 7 100		
CHAIN-OF-CUS	TODY #:	FIELD DUP (FD):			
550,450,0		AMBIENT BLANK (A	AB):		
SAMPLE BEG. DE	PTH (FT):	EQUIPMENT BLANK	(EB): —		
SAMPLE END DE	PTH (FT):	TRID DI ANK (TR)	TB110215		
GRAB CO		TRIF BLANK (1B).			
	PRESERVATIVE/	ANALYTICAL	ANALYSIS		
CONTAINER SIZE/TYPE	# PREPARATION	METHOD			
40 mL VOA	3 Cool to 4C HCl ph<2	SW8260B	VOCs 8260B		
1L Amber	2 Cool to 4C	8270C	1,4 Dioxane		
		TABLE OBSERVATIONS			
PID REAL	11.10	AMPLE CHARACTERISTICS	MISCELLANEOUS		
lst Ø. ø	COLOR: CLEAR				
2nd / /	ODOR: NONE				
	OTHER:	1 12	1453		
pH 6.99 Iron —	Temperature 72 81 (C) Di (mg/L) Oxidation/Reduction Potent	ssolved Oxygen 1.9 (mg/L) Sial 63.1 (mv) Turbidity	Specific Conductivity 1.453 (umhos/cm) 16.2 (NTU) MS/cm		
	G	ENERAL INFORMATION Stip	AT AMPLEMENT TEMPERATURE 60		
WEATHER: SUN	·				
SHIPMENT VIA:	FEDEX HAND DELIVER	COURIER (TAL) _x OTHE	ER		
SHIPPED TO: Test	America Laboratory Denver, CO				
COMMENTS:	- 12-01				
SAMPLER:	MIKE JAZKSON	OBSERVER;			
N	IATRIX TYPE CODES	SAI	MPLING METHOD CODES		
DC=DRILL CUTTI	NGS SL=SLUDGE	B=BAILER	G=GRAB		
WG=GROUND WA		BP=BLADDER PUMP	HA=HAND AUGER		
LH=HAZARDOUS	LIQUID WASTE GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER		
SH=HAZRDOUS S					
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGH			
1		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP		

WELL NUMBER: URS-5S	PROJECT NAME: AFP59
DATE/TIME: 1/-3-15	CITY/STATE: Johnson City, NY
INSPECTED BY: MDT	Water Level Indicator Serial Ng.: 80 (ONST Model 101 (100)) (#59 244)
VENT WELL	
MONITORING WELL INSTRUMENT READING (VOCs):	
WELL INSPECTION/GROUNDWATER LEVEL MEASUR WELL DEPTH (FEET FROM TOP OF PYC) WATER LEVEL DEPTH (FEET FROM TOP OF PYC) PYC WELL STICK-UP (FEET, ABOVE GRADE) PROTECTIVE CASING STICK-UP (FEET, AGS) WELL DIAMETER (INCHES) WELL CONSTRUCTION (PVC STEEL ETC.) LOCKED UPON ARRIVAL?	22.97 -1.64 (Flust Mount) 2 Stanless Steel YES NO
LOCK REPLACED?	YES (NO)
OBSTRUCTIONS?	
DAMAGE TO WELL PAD/STICKUP/CASING, ETC?	
WELL RELABELED?	YES (NO)
WELL PHOTOGRAPHED?	(YES) NO
GENERAL CONDITION/COMMENTS/RECOMMENDAT	TIONS;

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: SW-1	Location: AFP59		
Sampler(s): MIKE JACKSUN	Project Name: AFP59 2015 GWS		
Well Depth: 28.35+0.28=28.63	Project #: GS2049.04 Date: 1/-3-15 Time: 163-4		
DTW (ft): 17, 8 DTP Top (ft):	Courier: FedEx UPS Hand X_TAL Pickup		
MP Ht. Above Below Ground Surface: 2.46	Sampling Method: BP		
Condition of Bottom of Well: Finn	Type of Pump: Bladder Pump		
Screen Interval FTOC(ft): (15.74 - 25.74)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature): Clear, Skyht wind) 580		
Well Diameter (in): 8 2			
Placement of Pump Inlet (ft): 23.5			

Field Parameters

						+/-390				
Time	Depth to Water	Flow Rate	Total Volume	pН	Temp. (C)	Cond. (umhos/em)	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
	(ft)	(L/m)	(L)	+/-0.1	+1-0.5	mslon		(8 -)	+/-10	
1744	17.85	01.200	0,200		14.9	8 1.923	102.9	1.78	12.0	
P09	17.85	\$ 264	1.244	6.78	14.35	1.961	1087	-1.19	7.20	
17/14	17:85	Ø.2gg	2.200	6.7	14.09	1.974	106.9		4.41	
1719	12.85	1245	3.200	6,70	13.98	1.978	105.8		3,54	
1729	17.85	2.200	14.200	6.69	13,88	1.980	102.9	0.88	2,36	
1729	17.85	\$ 244			13.87	1,981	101.5	0.85	1,86	
1734	17.85	Ø.200	6.209	6.68	13.7	1.981	100.0	d.8%	1.48	
1736	C	oller	- 54	mple	5 (VOCS	Et .	1,4-	DIOXA	ne)

Observations

Color: Clear Other (describe):	
Odor: None Low Medium High Very Strong H2S Fuel-like	
Notes: (UMP# 29999 (QCD 1.75-mon Sangle Pro), DIW PUT PUMP	
Insmil = 17.45, YSI 556 MPS (# 085/01237) Hart 2/600	# 27
QES MP10 (Pine #050146), SolonST mode 101 (100) (#59244)	,
QED BOLD COMPRESSON (PINE#4688)	
21000 11	
Signed/Sampler(s):	

LOCATION:	AFP59	PROJECT NAME: AFP59 20	015 GWS
SITE:	AFP59	PROJECT NO: GS2049.04	
		SAMPLE INFORMATION	
SAMPLE ID	59SW1WG1	DATE: 11-3-15	TIME: 1736
MATRIX TYPE:	WG	ENTER SAMPLE NUMBER	RS FOR QC SAMPLES/
SAMPLING MET	HOD: BP	BLANKS ASSOCIATED W	
LOT CONTROL	#; ;	MATRIX SPIKE (MS):	
(Ambient Blank # - Ed	uipment Blank # - Trip Blank # - Coole	matrix spike dup (SD): _	
CHAIN-OF-CUST	TODY #:	FIELD DUP (FD):	
		AMBIENT BLANK (AB):	-
SAMPLE BEG. DEF	PTH (FT): —	EQUIPMENT BLANK (EB):	
SAMPLE END DEP		TRIP BLANK (TB):	3/10215
GRAB (X) COM		TRIP BLANK (1B):	2.1
CONTAINER	PRESERVATIVE/	ANALYTICAL	ANALYSIS
	# PREPARATION	METHOD	
	2 Cool to 4C	8270C	1,4 Dioxane
40 mL VOA	Cool to 4C HCl ph<2	SW8260B	VOCs
	N	OTABLE OBSERVATIONS	
PID READI	NGS	SAMPLE CHARACTERISTICS	MISCELLANEOUS
Ist 6.0	color: de		
2nd	ODOR: NO~	6	
111	OTHER:	4.41	1 981
pH 6.68 Iron	Temperature 3.77 (C) (mg/L) Oxidation/Reduction Pote	Dissolved Oxygen 0.50 (mg/L) Specific (mv) Turbidity 1.45	Conductivity 1, 191 (amhos/em/ 8 (NTU) mS/cm
WEATHER: SUN/	clear X overcast/ra	GENERAL INFORMATION SLIPT IN WIND DIRECTION A	MBIENT TEMPERATURE 58°
SHIPMENT VIA: F	EDEX HAND DELIVER	COURIER (TAL)x OTHER	_
SHIPPED TO: Test A	America Laboratory Denver, CO		
COMMENTS:			
SAMPLER: N	11KE JACKSON	OBSERVER:	
	ATRIX TYPE CODES	SAMPLING	G METHOD CODES
DC=DRILL CUTTING		B=BAILER	G=GRAB
WG=GROUND WAT		BP=BLADDER PUMP	HA=HAND AUGER
LH=HAZARDOUS L		PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER
SH=HAZRDOUS SO			HP=HYDRO PUNCH
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGE	
		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP

WELL NUMBER:	SW-1	PROJECT NAME:	AFP59
DATE/TIME:	11-3-15	CITY/STATE:	Johnson City, NY
INSPECTED BY:	MOT	Water Level Indicator S	erial No.: 101 (100') 59244)
VENT WELL MONITORING WEL	L INSTRUMENT READING (VOCs):	d ./	ッ 9 2 7 9 / ppm
WELL INSPECTION	GROUNDWATER LEVEL MEASUR	REMENT	28 = 20 /3
WELL DEPTH (FEE	T FROM TOP OF PVC)		.28 = 28.63
WATER LEVEL DE	PTH (FEET FROM TOP OF PVC)	17.85	
PVC WELL STICK-U	JP (FEET, ABOVE GRADE)	2.40	
PROTECTIVE CASI	NG STICK-UP (FEET, AGS)	2,25 Agure Cus	MOTE POD (2.80 Amore G
WELL DIAMETER ((INCHES)	2	
	TION (PVC, STEEL, ETC.)	PIC	(C) 450 HGO
LOCKED UPON AR	RIVAL?	YES NO	LOCK W EXPAIONS
LOCK REPLACED?		YES NO	CAP GOOD
OBSTRUCTIONS?		YES NO	
DAMAGE TO WELI	L PAD/STICKUP/CASING, ETC?	YES NO (If	YES, detail in comments below)
WELL RELABELED	0?	YES NO	
WELL PHOTOGRA	PHED?	YES NO	l l
toninino (a	TON/COMMENTS/RECOMMENDAT	TONS:	

			GROUN	DWAT	ER FIEL	D SAMPI	ING D	ATA SH	EET	
Well No.:	DW-1				Location:	AFP59				
Sampler(s	s): MI	EZ	rekso.	7	Project Na	me: AFP59	2015 GW	3		
Well Dep			0.28=1		Project #: (GS2049.04			Date: //_	4-15 Time: 0805
DTW (ft)	_	()	op (ft):		Courier: _	FedEx	_UPS _	Hand	_X_TAL I	Pickup
MP Ht. A	bove/Belo	w Ground	Surface: 🏒	2.65	Sampling N	Method: Bl	P			
Condition	of Botton	n of Well:	FIR	m	Type of Pu	ımp: Bla	dder Pum	р		
)C(ft): (5	2 - 62)		Weather (s	un/clear, over	rcast/rain,	wind direc	ction, ambi	ent temperature);
Well Dia	meter (in):	64			Sunn	y/dea	1, C	alm.	47	
Placemen	t of Pump	Inlet (ft):	54						/	
					Field	Parameter	rs			
Time	Depth to Water (ft)	Flow Rate (L/m)	Total Volume (L)	рН +/-о.	Temp. (C) +/-0.5	Cond. (umhos/em)	ORP (mv) †/-/o	DO (mg/L)	Turb. (NTU) +/-/0	Type, Size, and Amount of Sediment Discharged
0843	1786	छ.२०४	0.564	7.12	12.70	1.165	193.5	6.25	3,82	
4848	17.86	126.8	1.506	6.98	1272	1,559	189,6	4.45	3.84	
10053	17.86	(h.260)	2.584	6.90	12:71	1.78)	1837	-3.55	2,96	
0858	17.86	0,200	3,500	6.86	12.79	1,847	-181.6	3,05	2.67	
11962	17.26	0.260	4,54	6.86	12.74	1.881	175.	2.90	1.96	
10908	17.86	\$120x	5,500	66.8	2 12.77	1.892	175,2	2.84	1.8	
09/3	17.86	0216	6.500	6.8	18.89	1.966	170.9	12.77	1.69	
0915	Co	HecT	5	mpl	45 (Vocs	4	1,4-7	IOXAN).

Color	lear Other (describe):	
Odor:	None Low Medium High Very Strong H2S Fuel-like	
Notes:	Dino# 12026 (QEO SAMLE NO 1,75-Inch) PUST PLAPILISAND IN	1=/7
45	556 MPS (# 085101237), Hurt 2100 Q (#24785) PINE),	,
Q	5 MP10. (PINE# 030146), SOLONSTMODE (101 (# 59244) (100	1),
Q	5 3020 compresson (YINE# 4088),	1
	200011	
Signed	ampler(s):	

•

LOCATION: AFP59		PROJECT NAME: AFP59 2015 GWS		
SITE: AFP59		PROJECT NO: GS2049.04		
	SAMPLI	E INFORMATION		
SAMPLE ID 59DW1W0	G1	DATE: 11-4-15	тіме: \$915	
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS FO	OR OC SAMPLES/	
SAMPLING METHOD: BP		BLANKS ASSOCIATED WITH		
LOT CONTROL #;		MATRIX SPIKE (MS):	_	
(Ambient Blank # - Equipment Blank	# - Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):		
CHAIN-OF-CUSTODY #:		FIELD DUP (FD):	2	
Office Court of The Court of Th		AMBIENT BLANK (AB)		
SAMPLE BEG. DEPTH (FT):	٠		-	
SAMPLE END DEPTH (FT):		EQUIPMENT BLANK (EB):	16215	
GRAB () COMPOSITE()		TRIP BLANK (1B):		
	RESERVATIVE/	ANALYTICAL	ANALYSIS	
CONTINUENCE	REPARATION	METHOD		
1L Amber 2	Cool to 4C	8270C	I,4 Dioxane	
	ol to 4C HCl ph<2	SW8260B	VOCs	
	NOTABLI	E OBSERVATIONS		
PID READINGS		CHARACTERISTICS	MISCELLANEOUS	
	COLOR: CLEAN			
	ODOR: NONE			
	OTHER:		1.1/	
pH 6.82 Temperat Iron(mg/L) Oxid	ure 12.84 (C) Dissolved (dation/Reduction Potential	Exygen 2.77 (mg/L) Specific Cond (mv) Turbidity 1,69	ductivity 1,906 (umhos/cm) (NTU) MS/C/	
WEATHER: SUN/CLEAR X		L INFORMATION CALM WIND DIRECTION AMBIE	ENT TEMPERATURE 47°	
SHIPMENT VIA: FEDEX				
SHIPPED TO: Test America Labora				
COMMENTS:	1			
SAMPLER: MIKE	JACKS ON	OBSERVER:		
MATRIX TYPE	CODES	SAMPLING ME		
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB	
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER	
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER	
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH	
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON	
		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP	

WELL NUMBER:	DW-1	PROJECT NAME:	AFP59
DATE/TIME:	11-4-15	CITY/STATE:	Johnson City, NY
NSPECTED BY:	MDT	Water Level Indicator	Serial No.: No.: 101 (105'
VENT WELL			, , , , ,
MONITORING WE	LL INSTRUMENT READING (VOCs):	<u>\$.</u>	✓ ppm
WELL INSPECTIO	N/GROUNDWATER LEVEL MEASURE	MENT	
WELL DEPTH (FE	ET FROM TOP OF PVC)	62.43+0).28 = 62.7
WATER LEVEL DI	EPTH (FEET FROM TOP OF PVC)	17.86	
	-UP (FEET, ABOVE GRADE)	2.65	
	ING STICK-UP (FEET, AGS)	2.85	
WELL DIAMETER		4	
	CTION (PVC, STEEL, ETC.)	*	WEDDAME
LOCKED UPON A	RRIVAL?	YES NO	AP
LOCK REPLACED	?	YES NO	
OBSTRUCTIONS?		YES NO	
DAMAGE TO WE	LL PAD/STICKUP/CASING, ETC?	YES NO (If YES, detail in comments below)
WELL RELABELE	D?	YES NO	
WELL PHOTOGRA	APHED?	YES NO	
GENERAL CONDI	TION/COMMENTS/RECOMMENDATION	ONS:	

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: SW-3	Location: AFP59
Sampler(s): MIKE TACKSUN	Project Name: AFP59 2015 GWS
Well Depth: 29,64 +28 = 29,93	- · · · · · · · · · · · · · · · · · · ·
DTW (ft): 18 79 DTP Top (ft): 293	Courier: FedEx UPS Hand X_TAL Pickup
MP Ht. Above Below Ground Surface:	
A	
Condition of Bottom of Well: Finm	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (17.68 - 28.68)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in):	Swy/clean, Cala, 590
Placement of Pump Inlet (ft):	
	Field Parameters
Time Depth to Flow Total pl Water Rate Volume	Temp. Cond. ORP DO Turb. Type, Size, and Amount (C) (umhos/em) (mv) (mg/L) (NTU) of Sediment Discharged
(ft) (L/m) (L)	15 15 m3/m +1-10 3,52 +1-10
1038 18.79 0,200 0.302 7.	08 13.70 1.374 131.0 3.75 3.3
1043 18,79 \$200 1.20\$ 6.9	15.85 1.416 131.7 265 950
191011111111111111111111111111111111111	65 15.83 1.42 \$\phi\$ 133.5 2.78 \pi, \forall 5
1053 1877 0,24 3,200 6,9	2 15.85 1.424 131.4 2.64 0.19
1058 18,79 0,200 7,260 6,8	
1103 18.79 10.26\$ 5.20\$ 6.3	19 15.89 1.424 128.9 2.67 6.11
1/28 1879 10.200 6.20 6.7	8 15.92 1.431 1283 2.66 0.17
11/10 collect 5am	voles (vocs = 1,4-Diaxale)
	Observations
Color: Clear Other (describe):	
Odor: None Low Medium High Very	Strong H2S Fuel-like
Notes: 10, 7 + 29999	(Q50 1.75-10 & Suple 170),
FOST PUND I SMILL DI	N= 18.80, 45ISS6MPS(#085101237)
HARH 2100 Q (#2487)	QED MPLO (PINETTO30146).
Solost model 101 (100	(#59244) DEN 300 COMMESSOR Clinett 4088
1000	
Signed/Sampler(s):	

LOCATION: AFP59			PROJECT NAME: AFP59 2015 C	3WS		
SITE:	AFP59		PROJECT NO: GS2049.04			
DITE.		SAMPLI	E INFORMATION			
SAMPLE ID	59SW3W0			тіме: 111ф		
MATRIX TYPE:	WG		ENTER SAMPLE NUMBERS FOR QC SAMPLES/			
SAMPLING METHOD: BP LOT CONTROL #;			BLANKS ASSOCIATED WITH THIS SAMPLE:			
			MATRIX SPIKE (MS):			
(Ambient Blank # - Equ	iipment Blank	# - Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):			
CHAIN-OF-CUST	ODY #:		FIELD DUP (FD):			
SAMPLE BEG. DEP	ГН (FT): -	-	AMBIENT BLANK (AB): EQUIPMENT BLANK (EB):	1		
SAMPLE END DEPT			TRIP BLANK (TB): TB/102/5			
GRAB (X COM			TRIF BLANK (1B).			
CONTAINER	P	RESERVATIVE/	ANALYTICAL	ANALYSIS		
SIZE/TYPE #		REPARATION	METHOD			
1L Amber 2		Cool to 4C	8270C	1,4 Dioxane		
40 mL VOA 3	Co	ol to 4C HCl ph<2	SW8260B	VOCs		
-		NOTABLI	E OBSERVATIONS			
PID READIN	NGS	SAMPLE (CHARACTERISTICS	MISCELLANEOUS		
lst Ø.ø		COLOR: CICAN				
2nd		ODOR: NUNE				
		OTHER:	~ 77	1921		
pH 6.78 Iron — (1	Temperat mg/L) Oxi	ure 15.92(C) Dissolved dation/Reduction Potential 12	Oxygen $\frac{2.66 \text{(mg/L)}}{8.3 \text{(mv)}}$ Specific Converges $\frac{3.17}{4.17}$	ductivity 1.431 (umhos/em) (NTU) mS/cn		
		GENERA	AL INFORMATION	5.00		
WEATHER: SUN/C	CLEAR X	OVERCAST/RAIN	WIND DIRECTION AMBIE	ENT TEMPERATURE 59°		
I .			OURIER (TAL)x OTHER			
SHIPPED TO: Test A	merica Labora	tory Denver, CO				
COMMENTS:	4	> 1/C > \				
SAMPLER:	MIK	5 JACKSUN	OBSERVER:			
ВЛА	TRIX TYPE	CODES	SAMPLING ME	THOD CODES		
DC=DRILL CUTTING		SL=SLUDGE	B=BAILER	G=GRAB		
WG=GROUND WATE		SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER		
LH=HAZARDOUS LI			PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER		
SH=HAZRDOUS SOL		WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH		
SE=SEDIMENT	TT NULL	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON		
OL-OLDIMENT		J	DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP		

WELL NUMBER:	SW-3	PROJECT NAME:	AFP59
DATE/TIME:	11-4-15	CITY/STATE:	Johnson City, NY
INSPECTED BY:	MOT	Water Level Indicator S Socos	erial No.: noise 10/ (10) = 59274)
VENT WELL		do ×	
MONITORING WELL	, INSTRUMENT READING (VOCs):	$-\varphi,\varphi$	ppm
WELL INSPECTION/	GROUNDWATER LEVEL MEASUR	REMENT	
	FROM TOP OF PVC)	29,64	+0,28=29,92
WATER LEVEL DEP	TH (FEET FROM TOP OF PVC)	18.7	9
PVC WELL STICK-U	P (FEET, ABOVE GRADE)		,65
PROTECTIVE CASIN	G STICK-UP (FEET, AGS)	1.13 CONCRET	(0.93 tt Ags
WELL DIAMETER (I	NCHES)	2	
WELL CONSTRUCTI	ON (PVC, STEEL, ETC.)	PNO	Howoms e cap coc
LOCKED UPON ARR	RIVAL?	YES NO	
LOCK REPLACED?		YES NO	
OBSTRUCTIONS?		YES (NO)	
DAMAGE TO WELL	PAD/STICKUP/CASING, ETC?	YES NO (If	YES, detail in comments below)
WELL RELABELED	?	YES NO	
WELL PHOTOGRAP	HED?	(YES) NO	
GENERAL CONDITI	ON/COMMENTS/RECOMMENDA'	TIONS:	

GROUNDWATER FIELD SAMPLING DATA SHEET

DuPoz GP (1,4-Droxane Odly)

OROUND WAY	EKTIELD SAMELING BITTI SILEET			
Well No.: DW-3	Location: AFP59			
Sampler(s): MIKE DACKSUL	Project Name: AFP59 2015 GWS			
Well Depth: 85,0/+0.28=85.29				
DTW (ft): DTP Top (ft):	Courier:FedExUPSHand _X_TAL Pickup			
MP Ht. Above/Below Ground Surface:	Sampling Method: BP			
Condition of Bottom of Well:	Type of Pump: Bladder Pump			
Screen Interval FTOC(ft): (67.58 - 87.58)	Weather (sun/clear, overçast/rain, wind direction, ambient temperature):			
Well Diameter (in):	SUNNY /clean, scint wind, 73°			
Placement of Pump Inlet (ft):				
	Field Parameters			

						+/- 390			T	
Time	Depth to	Flow	Total	pН	Temp.	Cond.	ORP	DO	Turb.	Type, Size, and Amount
SIVE!	Water	Rate		+/-0.1	(C)	(umhos/cm)	_ (mv)	(mg/L)		of Sediment Discharged
TOS	(ft)	(L/m)	(L)	7 0.1	4/-0.5	molon	77-70	基	7-10	C C
6	16.02	Ø.200	0.200	7.93	14.88	1.216	28,1	2.8	16.X	
319	16.02	0200	1,26%	6.94	14.56	1.474	14.8	1.22	16.5	
324	16.62	Ø.26x	2.26+	6.89	14.55	1.496	5.6	0.82	166	
329	1 40	Ø. 3dd	3.200	6.86	14.47	1,512	-4.5	0.70	14.7	
334	1/ X	0200	4,268	6.83	14:26	1,515	-10.6	0.73	138	
334	16.42	0,26%	5.200	6.83	14.31	1.515	-13.2	0.65	10.3	
344	16.60	0,2de	16.200	16.83	14.37	1.514	-18.7	0.58	7.70	
24/	1	10 -	50	plas	(VD	- 5 9	14-	DIDYA	Can	
116	(0)	reci	250		7		111			JLY) (DUPTIME=
				+	Dup	O.T	(1)	- 1.11 U)	THE O	MIY) CHUP MIKE
							-			
									-	
_									-	
The second secon	319 324 324 334	Water (ft) 6-16.02 319 16.62 324 16.62 334 16.62 334 16.62	Water (1/m) (ft) (L/m) (h)	Water (ft) (L/m) (L) 16.02 Ø.266 Ø.266 319 16.62 Ø.266 Ø.266 324 16.62 Ø.266 3.266 324 16.62 Ø.266 5.266 344 16.62 Ø.266 5.266 344 16.62 Ø.266 5.266	Water (ft) (L/m) (L) +/-0.1 - 16.02 0.200 0.200 7.93 319 16.02 0.200 1.200 6.89 324 16.02 0.200 3.200 6.89 324 16.03 0.200 4.200 6.83 234 16.03 0.200 4.200 6.83 234 16.03 0.200 4.200 6.83	Water (ft) (L/m) (L) +/0.1 +/0.5 16.02 0.260 0.200 7.93 /4.88 319 16.62 0.260 0.200 6.89 14.56 324 16.62 0.260 3.260 6.89 14.55 324 16.62 0.260 3.260 6.86 14.47 334 16.62 0.260 5.260 6.83 14.26 344 16.62 0.260 5.260 6.83 14.31 344 16.60 0.260 6.83 14.37 686 Colect Savles (Vo	Water (ft) (L/m) (L) +/-0.1 +/-0.5 (umhos/em) (ft) (L/m) (L) +/-0.1 +/-0.5 (ms/cm) (D) (L/m) (L) +/-0.5 (ms/cm) (D) (L/m) (L) +/-0.5 (ms/cm) (D) (L/m) (L) +/-0.5 (ms/cm) (D) (L/m) (L/m) (L) +/-0.1 +/-0.5 (L/m)	Water (ft) (L/m) (L) +/0.1 +/0.5 (umhos/em) - (mv) +/0.5 (h) //0.5 (m) //0.5	Water (ft) (L/m) (L) +/0.1 +/0.5 (mm/cs/cm) (mv) (mg/L) (ft) (L/m) (L) +/0.5 (m5/cs/cm) (mv) (mg/L)	Water (ft) (L/m) (L) +/O.1 +/O.5 (umhos/em) (my) (mg/L) (NTU) 16.02 0.200 0.200 7.93 /4.88 1.216 28,1 2.81 /6.8 319 16.22 0.200 1.268 6.98 14.56 1.474 14.8 1.22 16.5 324 16.22 0.200 2.200 6.89 14.55 1.496 5.6 0.82 16.6 329 16.22 0.300 3.200 6.86 14.47 1.512 -4.5 0.70 14.9 334 16.03 0.200 4.200 6.83 14.21 1.515 -10.6 0.73 13.8 334 16.42 0.200 5.200 6.83 14.31 1.515 -13.2 0.65 10.3 344 16.42 0.200 5.200 6.83 14.31 1.515 -13.2 0.65 10.3 344 16.42 0.200 6.83 14.31 1.515 -13.2 0.65 10.3

Observations

Odor: None Low Medium High Very Strong H2S Fuel-like		
	1	
Notes: Pump# 2 9999/ QEO 5 Apple 1/20 1.75-1	not Rung)	1
POST OVE FROMILL DIV = 16.02, QOD 302	o compressi	1 Pine# 4088
45T 556MPS (#085/01237), HACH 21000	x (#2479	(5),
QEO MP10 (PINE# 030146) SOLONST MO	lel 101 (100	() (#59244)
200010		
Signed/Sampler(s):		

LOCATION: AFP59	PROJECT NAME	2: AFP59 2015 GWS		
SITE: AFP59	PROJECT NO:	GS2049.04		
	SAMPLE INFORMATION			
SAMPLE ID 59DW3WG1	DATE: 11-	-4-15 TIME: 1346		
MATRIX TYPE: WG	ENTER SAMPI	ENTER SAMPLE NUMBERS FOR QC SAMPLES/		
SAMPLING METHOD: BP	BLANKS ASSO	OCIATED WITH THIS SAMPLE:		
LOT CONTROL #:	MATRIX SPI	KE (MS):		
(Ambient Blank # - Equipment Blank # - Trip Blank # -	Cooler #) MATRIX SPII	KE DUP (SD):		
CHAIN-OF-CUSTODY #:	FIELD DUP (I	KE DUP (SD):		
OHMIT OF COOLER I II.		LANK (AB):		
SAMPLE BEG. DEPTH (FT):		BLANK (EB):		
SAMPLE END DEPTH (FT):		(TB): TB1104/5		
GRAB X COMPOSITE()	TRIPBLANK	(IB):		
CONTAINER PRESERVATIVE/	ANALYTICAL	ANALYSIS		
SIZE/TYPE # PREPARATION	METHOD			
40 mL VOA 3 Cool to 4C HCl ph<2	SW8260B	VOCs		
1L Amber 2 Cool to 4C	8270C	1,4 Dioxane		
	NOTABLE OBSERVATIONS			
PID READINGS	SAMPLE CHARACTERISTICS	MISCELLANEOUS		
1st $\phi \cdot \phi$ COLOR:	Clear			
2nd ODOR:	None			
OTHER:	V 5-8	1514		
pH 6.85 Temperature 14.370 Iron (mg/L) Oxidation/Reduction	C) Dissolved Oxygen O. 58 (mg	Specific Conductivity 1, 017 (umhos/en) ity 7, 78 (NTU) MS/CA		
	GENERAL INFORMATION			
WEATHER: SUN/CLEAR OVERCA	ST/P AIN WIND DIRECTION	WIND AMBIENT TEMPERATURE 73		
SHIPMENT VIA: FEDEX HAND DELIV	ERCOURIER (TAL)_x	OTHER		
SHIPPED TO: Test America Laboratory Denver, CO				
COMMENTS:	1			
SAMPLER: MIKE JA	cksvl observer:	_		
MATRIX TYPE CODES		SAMPLING METHOD CODES		
DC=DRILL CUTTINGS SL=SLUDG	B=BAILER	G=GRAB		
WG=GROUND WATER SO=SOIL	BP=BLADDER PU	UMP HA=HAND AUGER		
LH=HAZARDOUS LIQUID WASTE GS=SOIL G.	AS PP=PERISTALIC I	PUMP H=HOLLOW STEM AUGER		
11 11 11 11 11 11 11 11 11 11 11 11 11	CE WATER CS=COMPOSITE	SAMPLE HP=HYDRO PUNCH		
SE=SEDIMENT SW=SWAB	WIPE C=CONTINUOUS	FLIGHT AUGER SS=SPLIT SPOON		
magazine States	DT=DRIVEN TUE	SP=SUBMERSIBLE PUMP		

WELL NUMBER:	DW-3	PROJECT NAME:	AFP59
DATE/TIME:	11-4-15	CITY/STATE:	Johnson City, NY
INSPECTED BY:	MOT	Water Level Indicator 50(4-5) # 5	Serial No. 10 10 (100)
VENT WELL		(, ,
MONITORING WE	LL INSTRUMENT READING (VOCs):	Ø.8	ppm ppm
WELL INSPECTION	N/GROUNDWATER LEVEL MEASURE		05 39
WELL DEPTH (FE	ET FROM TOP OF PVC)		1 +0.28 = 85.29
WATER LEVEL DI	EPTH (FEET FROM TOP OF PVC)		6.02
	-UP (FEET, APOVE GRADE)	0.40	A CFLUSH MOUNT
PROTECTIVE CAS	ING STICK-UP (FEET, AGS)	N/	A CFLUSH MOUNT
WELL DIAMETER	(INCHES)		
WELL CONSTRUC	CTION (PVC, STEEL, ETC.)	PUC	
LOCKED UPON A	RRIVAL?	YES (NO)	
LOCK REPLACED	?	yes (No)	
OBSTRUCTIONS?		YES (NO	
DAMAGE TO WEI	LL PAD/STICKUP/CASING, ETC?	YES NO	If YES, detail in comments below)
WELL RELABELE	D?	YES NO	
WELL PHOTOGRA	APHED?	YES NO	
GENERAL CONDI	TION/COMMENTS/RECOMMENDATION	ONS:	

GROUNDWATER FIELD SAMPLING DATA SHEET

GROOMD WILL	EKTED SIMILDING BITTI SILDI
Well No.: SW-7	Location: AFP59
Sampler(s): MIKE Trakson	Project Name: AFP59 2015 GWS
Well Depth: 2871+0126=289	Project #: GS2049.04 Date: //-4-/ Time: /500
DTW (ft): 19,35 DTP Top (ft): 19,15	Courier:FedExUPSHand _X_TAL Pickup
MP Ht. Above/Below Ground Surface: 285	Sampling Method: BP
Condition of Bottom of Well:	Type of Pump: Bladder Pump
Screen Interval FTOC(ft): (-28.85)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): 2	dem/sway, slight wind, 76°
Placement of Pump Inlet (ft): 24,5	, , , ,

Field Parameters

Time	Depth to	Flow	Total	pН	Temp.	Cond.	ORP	DO	Turb.	Type, Size, and Amount
11110	Water	Rate	Volume		(C)	(umhos/cm)		(mg/L)	(NTU)	of Sediment Discharged
	(ft)	(L/m)	(L)	+/0.1	+/-0.5	ms/cm	4/-10		1/-10	S 100 1 1 1 1 2
1534	19.35	Ø.202	Ø. 584	7.21	14.93	1.424		1.34		
1535	19.35	0.290	1.500	7.05	14.47	1.415	78.3	0,77	16.3	
1540	19.35	0.240	2.5th	6.98	14.34	1.414	73,5		14.5	
1545	19.35	\$1249	3,500	66.95	14,26	1.409	67,8	0.54	12,3	
1550	19.35	0,200	4,500	6.92	14.09	1.408	63.9	0,53	10.5	
1555	19.35	\$2dd	5.50	06.91	14,07	1.458	61.2	0-47	-9.45	
1600	19.35	0,200	6.900	16.90	14.09	1.403	59.7	0.41	7.88	7
1662	(0)	llest	5	mple) (VOCS	\$	1,4-	DIOXAL	WE)
(
							5.	(
								-		
							91			
			-							

1	Observations
Color: Clear	Other (describe):
Odor: (None	Low Medium High Very Strong H2S Fuel-like
Notes: POSTO HACH 2 QEO	INP# 12d26 (QED Sample Pro 1.75-1nds) Punp Ingmill DIW = 19.35 ft, 9SI S56 MPS (#085/01237 Llowa (#24785), Splanst model 101 (100) (#59244), MP 10 (Pine# \$30/46), QED 3020 Commesson (Pine#4088
Signed/Samp	ler(s):

LOCATION: AFP59		PROJECT NAME: AFP59 2015 GWS				
SITE: AFP59		PROJECT NO: GS2049.04				
	SAMPLE	INFORMATION				
SAMPLE ID 59SW7WG1		DATE: 11-4-15	TIME: 16\$2			
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS I	ENTER SAMPLE NUMBERS FOR QC SAMPLES/			
SAMPLING METHOD: BP		BLANKS ASSOCIATED WITH THIS SAMPLE:				
LOT CONTROL #:		MATRIX SPIKE (MS):				
(Ambient Blank # - Equipment Blank #	- Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):	· · · · · · · · · · · · · · · · · · ·			
CHAIN-OF-CUSTODY #:		FIELD DUP (FD):				
CHAIR OF COOLORS III.		AMBIENT BLANK (AB):				
SAMPLE BEG. DEPTH (FT):		EQUIPMENT BLANK (EB):				
SAMPLE END DEPTH (FT):		TRIP BLANK (TB): TB 1	10415			
GRAB (X) COMPOSITE()		TRIP BLANK (1B):	- 1 			
	SERVATIVE/	ANALYTICAL	ANALYSIS			
0011111111	EPARATION	METHOD				
	to 4C HCl ph<2	SW8260B	VOCs			
1L Amber 2	Cool to 4C	8270C	1,4 Dioxane			
	NOTABLE	OBSERVATIONS				
PID READINGS	SAMPLE C	HARACTERISTICS	MISCELLANEOUS			
	OLOR: Clean					
2nd O	DOR: NOME					
pH 6,9% Temperatur Iron (mg/L) Oxida	THER: e 1449(C) Dissolved O tion/Reduction Potential 5	xygen O.H (mg/L) Specific Co 9.7 (mv) Turbidity 7.88	onductivity 1.443 (umhos/cm) (NTU) MS/cm			
	OVERCAST/RAIN	L INFORMATION WIND DIRECTION WIND AMB URIER (TAL) _ X OTHER				
SHIPPED TO: Test America Laborator	ry Denver, CO					
COMMENTS:						
SAMPLER: MIKE	JACKSUN	OBSERVER:				
MATRIX TYPE CO	ODES	SAMPLING M	1ETHOD CODES			
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB			
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER			
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER			
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH			
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON			
		DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP			

WELL NUMBER:	SW-7	PROJECT NAME:	AFP59
DATE/TIME:	11-4-15	CITY/STATE:	Johnson City, NY
INSPECTED BY:	MOJ	Water Level Indicator SolowST	Serial No.: 101 (100)
VENT WELL		(1. 3	5/2//
MONITORING WEL	L INSTRUMENT READING (VOCs):		ppm ppm
WELL INSPECTION	/GROUNDWATER LEVEL MEASURE		- 20 0- 0d
WELL DEPTH (FEE	T FROM TOP OF PVC)	27.71+1	0.28 = 27.99
WATER LEVEL DEI	PTH (FEET FROM TOP OF PVC)		13)
PVC WELL STICK-U	JP (FEET, ABOVE GRADE)	2, 3,15-0	3= 2.85 GRA
PROTECTIVE CASI	NG STICK-UP (FEET, AGS)	2.95 from	CU-METE PAD (GA
WELL DIAMETER ((INCHES)	2	
WELL CONSTRUCT	TION (PVC, STEEL, ETC.)	- No	ock = Dexpandask (
LOCKED UPON AR	RIVAL?	YES NO	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LOCK REPLACED?		YES NO	
OBSTRUCTIONS?		YES NO	
DAMAGE TO WELI	L PAD/STICKUP/CASING, ETC?	YES NO	If YES, detail in comments below
WELL RELABELED	0?	YES (NO)	
WELL PHOTOGRA	PHED?	YES NO	
GENERAL CONDIT	TON/COMMENTS/RECOMMENDATI	ONS:	

GROUNDWATER FIELD SAMPLING DATA SHEET

W 1131	AFDEO
Well No.: JC 2	Location: AFP59
Sampler(s): MIKE DACKSON	Project Name: AFP59 2015 GWS
Well Depth:	Project #: GS2049.04 Date: 1/5-1/6 Time: 0830
DTW (ft): DTP Top (ft):	Courier:FedExUPSHand _X_TAL Pickup
MP Ht. Above/Below Ground Surface: -	Sampling Method: Grab (sample valve)
Condition of Bottom of Well:	Type of Pump: N/A
Screen Interval FTOC(ft): -	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):
Well Diameter (in): -	Overchot, calm, 55°
Placement of Pump Inlet (ft):	, , ,
	Field Parameters
Time Depth to Flow Total Water Rate Volume (ft) (L/m) (L)	OH Temp. Cond. ORP DO Turb. Type, Size, and Amount (my) (my/L) (NTU) of Sediment Discharged
	5 minures. Open Garden Hase
	ons in purp Hose (Pre-Tremment).
0845 colles Sm	ples for vocs 82604 (TEST AMERICA)
and 1,4- Diax	1 1567
at 1	my).
284 Panhas - 6	17 13.32 1.054 1634 3.46 0.08
9010 120411109)	10001 10001
	Observations
Color: Clear Other (describe):	
Odor: None Low Medium High Ver	y Strong H2S Fuel-like
Notes: JCZ /OURTED	in blick 15LDG SOLTH OF DUNNSON CI
WHEN DEPARTAGET	Frenk Room C make a pight
when leading	Break Room FRONT Room) (
Brick BOB CI	DSEST TO. RIVER.
2.50	
Signed/Sampler(s):)). \

LOCATION:	AFP59		PROJECT NAME: AFP59 2015 GWS								
SITE:	AFP59		PROJECT NO: GS2049.04								
		SAMPLE	E INFORMATION								
SAMPLE ID	59JC2WG1		DATE: 11-5-15	TIME: \$845							
MATRIX TYPE:	WG		ENTER SAMPLE NUMBERS FOR QC SAMPLES/								
SAMPLING METI	HOD: G		BLANKS ASSOCIATED WITH								
LOT CONTROL#	·		MATRIX SPIKE (MS);								
(Ambient Blank # - Equ	ipment Blank # - Trip Blank #	- Cooler #)	MATRIX SPIKE DUP (SD):								
CHAIN-OF-CUST	ODY #:		FIELD DUP (FD):								
			AMBIENT BLANK (AB):								
SAMPLE BEG. DEPT	TH (FT):		EQUIPMENT BLANK (FR):								
SAMPLE END DEPT			TRIP BLANK (TB):	10415							
GRAB (X) COM			TRIP BLANK (IB):	17							
			ANALYTICAL	ANALYSIS							
CONTAINER SIZE/TYPE #	PRESERVATIVE PREPARATION		METHOD	MALETOIS							
SIZE/TYPE # 40 mL VOA 3	4	2	SW8260B	VOCs							
1L Amber 2		-	8270C 1,4 Dioxane								
		NOTABLE	OBSERVATIONS								
PID READIN	IGS		HARACTERISTICS	MISCELLANEOUS							
1st —	COLOR:	deal									
2nd	ODOR:	more									
pH 6, 17 Iron(1	Temperature 3.32 ng/L) Oxidation/Reducti	on Potential	(mv) Turbidity 4.98	nductivity 1, \$57 (umhos/em) _(NTU) PS/cn							
WEATHER: SUN/C		ASP/RAIN_X_	WIND DIRECTION AMBI	ENT TEMPERATURE55°							
SHIPPED TO: Test A	nerica Laboratory Denver, Co)									
COMMENTS:	hike Jaz	ksal	OBSERVER:								
MA	TRIX TYPE CODES		SAMPLING MI	ETHOD CODES							
DC=DRILL CUTTING		GE .	B=BAILER	G=GRAB							
WG=GROUND WATE			BP=BLADDER PUMP	HA=HAND AUGER							
LH=HAZARDOUS LIG		GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER							
SH=HAZRDOUS SOL		ACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH							
SE=SEDIMENT	SW=SWA	3/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON							
The state of the s			DT=DRIVEN TUBE	SP=SUBMERSIBLE PUMP							

DUPO 1 (vocs t W, DIOXANE)

GROUNDWATER FIELD SAMPLING DATA SHEET

Well No.: SW-4	Location: AFP59						
Sampler(s): MIXE Jacksul	Project Name: AFP59 2015 GWS						
Well Depth: 27:10-0.28 = 28.18	Project #: GS2049.04	Date: 11-5-15Time: 1\$15					
DTW (ft): 13,41 DTP Top (ft): 22,91	Courier: FedEx UPS H	and _X_TAL Pickup					
MP Ht. Above/Below Ground Surface: -0.18	Sampling Method: BP						
Condition of Bottom of Well: Film	Type of Pump: Bladder Pump						
Screen Interval FTOC(ft): (-27.52)	Weather (sun/clear, overcast/rain, wind direction, ambient temperature):						
Well Diameter (in): 🔏 👤	overcast, 65°, cala, Humid						
Placement of Pump Inlet (ft):	, ,						
	The state of the s						

Field Parameters

						+1-370				
Time	Depth to Water	Flow Rate	Total Volume	pH +/-	Temp.	Cond. (umhos/cm)	ORP (mv)	DO (mg/L)	Turb. (NTU)	Type, Size, and Amount of Sediment Discharged
	(ft)	(L/m)	(L)	6.1	8.5	m5/cm	11-10		+/-10	
1045	13.44	0,200	0.201	6.67	13.26	1294	131,6	3.37	18.80	
1050	13.44	0,200	1.200	6.56	13,17	1.302	128.4	2.29	12.50	
45	13.44	\$297	2.241	6.57	13.18	1.343	124:6	2.28	10.0	
1104	13.44	0,200	3,790	6.60	13.20	1.302	12.3	2,36	815	
1105	13,44	1/201	4.200	6.63	13.23	1.299	117.2	2.46	5.47	
110	13.44	6.204	5.200	6.65	13,27	1,295	1147	5.22	3.24	
1115	13.44	\$24\$	6.200	6.66	13.29	1.3,62	112.3	2,60	2.87	
1117	(011	eut	Sav	n Phe	0	vocs'	7 /	4-1)/0	(AME)	10/5
-		F	hl.	Dip	LICA	E. C.	19 Dup	0/461	Tine	= 12/3)
				A.						
								1		

Color: Clear Other (describe): 1106 (describe)	Observations offer Ambient	HANK (VOCS ONLY) (59AB110515
	ng H2S Fuel-like		NBING.
Notes: PUND# 29999/C	10 1.75-nos	Sample Mo.	0
POST- Purp insmil Dru= 17	5.42 , YSI 556	MPS (#08510R3	7)
HAZY 2000 (#24785)	splats male	100 (100) (#582)	140,
Q60MP10 (Pre#930)14	In Q60 30	20 conpresso (PIN	re #4088)
FUELSMIT MANNING	Sport por		
Signed/Sampler(s):	. 1 6	gupmontBlank = 12	220
	0	159EB1105WG1	/

LOCATION: AFP59	GWS								
SITE: AFP59		PROJECT NO: GS2049.04							
	SAMPLI	E INFORMATION	//						
SAMPLE ID 59SW4WG	1	DATE: 11-5-15	TIME: ///>						
MATRIX TYPE: WG		ENTER SAMPLE NUMBERS FO	OR QC SAMPLES/						
SAMPLING METHOD: BP		BLANKS ASSOCIATED WITH	THIS SAMPLE:						
LOT CONTROL #:		MATRIX SPIKE (MS):							
(Ambient Blank # - Equipment Blank #	- Trip Blank # - Cooler #)	MATRIX SPIKE DUP (SD):	· COOTING.						
CHAIN-OF-CUSTODY #:		FIELD DUP (FD): 59 DUP	BIIDSIS (ABTIME: 11						
		AMBIENT BLANK (AB): 59 A	= ON HOST (BATIAL						
SAMPLE BEG. DEPTH (FT);		EQUIPMENT BLANK (EB): 0 7	Epilosis (Come						
SAMPLE END DEPTH (FT):		TRIP BLANK (TB): TB11	19412						
GRAB COMPOSITE()									
CONTAINER PR	ESERVATIVE/	ANALYTICAL	ANALYSIS						
SIZE/TYPE # PI	REPARATION	METHOD							
40 mL VOA 3 Coo	l to 4C HCl ph<2	SW8260B	VOCs						
1L Amber 2	Cool to 4C	8270C	1,4 Dioxane						
	NOTABLI	E OBSERVATIONS							
PID READINGS	SAMPLE (CHARACTERISTICS	MISCELLANEOUS						
130	COLOR: CLEAR	N.							
		FUEL LIKE ODD							
111	OTHER:	5/1	12/2						
pH 6.66 Temperatu Iron (mg/L) Oxid		Oxygen 2.60 (mg/L) Specific Con 2.3 (mv) Turbidity 2,87	(NTU) mS/cm						
WEATHER: SUN/CLEARSHIPMENT VIA: FEDEX	OVERCAST/RAIN_X	AL INFORMATION CALL WIND DIRECTION AMBIE OURIER (TAL) X OTHER	ENT TEMPERATURE 650 Homid						
SHIPPED TO: Test America Laborat									
COMMENTS:									
SAMPLER: MIKE	DACKSON	OBSERVER:							
MATRIX TYPE O	CODES	SAMPLING ME	THOD CODES						
DC=DRILL CUTTINGS	SL=SLUDGE	B=BAILER	G=GRAB						
WG=GROUND WATER	SO=SOIL	BP=BLADDER PUMP	HA=HAND AUGER						
LH=HAZARDOUS LIQUID WASTE	GS=SOIL GAS	PP=PERISTALIC PUMP	H=HOLLOW STEM AUGER						
SH=HAZRDOUS SOLID WASTE	WS=SURFACE WATER	CS=COMPOSITE SAMPLE	HP=HYDRO PUNCH						
SE=SEDIMENT	SW=SWAB/WIPE	C=CONTINUOUS FLIGHT AUGER	SS=SPLIT SPOON SP=SUBMERSIBLE PUMP						
		DT=DRIVEN TUBE	2L=20BMEK2IRTE LOMIL						

WELL NUMBER:	SW-4	PROJECT NAME:	AFP59
DATE/TIME:	-5-15	CITY/STATE:	Johnson City, NY
INSPECTED BY:	hOT	Water Level Indicator	Serial No. 1/20 / 1/20
VENT WELL			11 01211)
MONITORING WELL INS	STRUMENT READING (VOC	s):	ppm ppm
WELL INSPECTION/GRO	OUNDWATER LEVEL MEAS	UREMENT	
WELL DEPTH (FEET FRO	OM TOP OF PVC)	27.90+0	28 = 28.18
	(FEET FROM TOP OF PVC)	-0.18	CFIUSH MUSI
PVC WELL STICK-UP (F	EET, ABOVE GRADE)		FLUSH ADUT
PROTECTIVE CASING S	TICK-UP (FEET, AGS)	N/A C	PLUSII HWAI
WELL DIAMETER (INCH	HES)		
WELL CONSTRUCTION	(PVC, STEEL, ETC.)	NC	1 5-0 Shot (3/4")
LOCKED UPON ARRIVA	L?	YES NO	SOUT (3/4)
LOCK REPLACED?		YES (NO	
OBSTRUCTIONS?		YES (NO)	
DAMAGE TO WELL PAI	D/STICKUP/CASING, ETC?	YES (NO) (II	YES, detail in comments below)
WELL RELABELED?		YES (NO)	
WELL PHOTOGRAPHED)?	(YES) NO	
GENERAL CONDITION/	COMMENTS/RECOMMEND	ATIONS:	

ý

STATIC GROUNDWATER ELEVATION LOG

Project Name:	AFP59 2015	Groundwater Sampling Event
---------------	------------	----------------------------

Project No.: GS2049.04

Water Level Indicator ID#:

Water Level Indicator (592 ++)

PID Meter ID#: Mi

MiniRAE 2000

Well Identification	Date	Time	Static Depth to Water (from TOC)	Depth to Product (from TOC)	PID Reading	Comments
DW-1	11-2-15	1236	17.86		0.00	4" FENCE BETWEEN DW-1 5 SW-1
SW-1	3	1220	17.77		0,0	, and a second s
SW-4		1304	13.45		0,0	
SW-7	1 2 1	1251	19.41	- Name of the last	4.6	
SW-3	Je ije ije	1243	18.82) and the party	0.6	
DW-3		1245	16.03		0,6	411
URS-2D		1249	3145-31.	42_	0.0	2" SS, CHASSLER key BOLT 31,46
URS-2S	V	124	31.69	ан _т уулу Р	8 6	2 55, normal lid.
URS-3D	11-2-15	1151	36.13	-	0.8	
URS-5S	11-2-15	12/3	22.98	~	0,0	
BM-121	V	1159	26.47		0,6	

AFP59 2015 LTM Event Daily Instrument and Calibration Log

Circle One: Spring/Fall

1	Date:	AYUA Phoenix So	ほかかかく		- 1,413'	ns/cm itam	The second secon
	Standard Value	pH4	рН7	pH10	SC 1000	ORP 100 mv	100% Sat.
	Standard Lot Number	3AL686	TAC SIG	400099	4AL221	8039	
ľ	Januara Lot Hambon	12/31/15	3/2016	4AD999 4/2016	12/2015	9/2019	
Ī	nstrument Serial #	pH4 3,85	3/2016 pH7	pH10	SC 1000 MS/C3	ORP	D.O.
2-15	Pre Calibration	4.38	6.91	10.11	1.506	210.1	82.7% 7.
	Calibrated	4.55	7.00	10.03	1,413	270,0	100,6% 9.4
	End of Day Drift	4.69	7.09	10.28	1.413	2799	100.6% 9.9
_	Instrument Serial #	pH4	рН7	pH10	SC 1000	ORP	D.O.
	08 2101237	P	. 6				
-3-15	Pre Calibration	4.05	7.04	10.15	1,401	243.0	110,8%
	Calibrated	4.00	7.88	10.02	1,413	240.5	100.890
	End of Day Drift	4.23	6,94	9,96	1.427	235.7	84.790
			1.17	-1110	SC 1000	ORP	D.O.
	Instrument Serial #	pH4	рН7	pH10	-		
-4-15	Pre Calibration	4.05	5.91	10.20	1.425	235.4	83,070
	Calibrated	4.80	7-00	10.03	1.413	240.0	101.490
	End of Day Drift	4.N9	6.97	10.30	1,417	239.2	17.800
	Instrument Coriol #	pH4	рН7	pH10	SC 1000	ORP	D.O.
5-15	Instrument Serial # 085/01237	рпч	pili	p			-
)-()	Pre Calibration	4,64	6.91	12,15	1.423	235.4	154.7%
	Calibrated	tido	7.16.6	10.43	1.413	240,0	101.170
	End of Day Drift	4,00	6.10	10:11	1,407	1238:0	94190
	Instrument Serial #	4.93 pH4	pH7 6 98	pH10	SC 1000	ORP	D.O.
	motiument ochai #	P	. 670				1
- 1	Pre Calibration						
	Calibrated		1				
	End of Day Drift						

TestAmerica Albany

25 Kraft Avenue

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

one 518.438.8140 fax 518.438.8150 Regulatory Program: DW NPDE												In-	to:					CO	COC No:			
																			COCs			
	1011 411 110 110 110 110					Lab	ab Contact: Patrick McEntee Carrier: FedE							Î			Sar	npler: Mike	Jackson			
Northway 10 Executive Park, 313 Ushers Road	Analysis Turnaround Time CALENDAR DAYS WORKING DAYS											1 1				Lab Use Or						
Ballston Lake, NY 12019	✓ CALEN			RKING DAY									11		Ш	1	1 1	Wa	lk-in Client:	10		
(518) 877-0390 Phone (518) 953-0026 FAX		T if different f				_ Z		- 1			1.1		1.1					Lat	Sampling:			
Project Name: Air Force Plant 59 October 2015 GWS			2 weeks			진	1 1	6			1.1		11		11							
Site: AFP59 Johnson City, NY			1 week		- 1	୍ଲାଚ୍ଚ		20		/ 10			11		II			Job	/ SDG No.:			
P O # GS2049.04			2 days 1 day		- 1	힘	اما	8							1.4							
			Sample			쪬뙬	8	Ē		M			1.1	1	11		11					
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sample (Y/N) Perform MS / MSD (Y / N)	VOCs 8260B	1,4-Dioxane (8270C)									Ш	ļ,	Sample	Specific	Notes:	
590RS3DWG1	^		G	gw/	5	N	×	x				1	N			1		4				
59BM121WG1	1		G	8W		N	×	x			1			1			14					
59URS2DWG1	,		G /	GW	5	M	x	x		1	1			1		1	1					
59URS2SWG1		1	g/	GW	5	N .	x	X	1						N	X						
59URS5SWG1		X	G	GW	5	N	ж	x	X		JE.					X						
59URS5SWG1-MS		/	G	GW	5	NY	×	×							\mathcal{L}	1	V				-/	
59URS5SWG1-MSD	/		G	GW	5	NY	1 3/	×						1	44	4	1	1			_	
59DW1WG1	/		G	GW	5	N	×	x				1		1		-	11	1		_		
59SW1WG1			G	GW	15	M	x	x					V				\Box	Elly				
59DW3WG1	11-4-15	13%	G	GW	5	N	x ,	х	1									1		_		
99¢W3WG1			G	GW	5	N	x	x	X		-			4		×		1	/	-	_	
59URS3BWG1			6	GW-	5	N	×	×			1		*		1		N	4	_	\searrow	>	
reservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N	(aOH; 6= 0	Other	- X	188						1.				P.	1.	基準 L			anger than	1 month)		
ossible Hazard Identification: re any samples from a listed EPA Hazardous Waste? Please List omments Section if the lab is to dispose of the sample.	st any EPA	Waste Co	odes for the	sample	in the	S	amp	le D	isposa	ıl (Af	ee ma	y be a	SSess	sed If	sampi				onger than '			
Non-Hazard ☐ Flammable ☐ Skin Irritant	Poisor	n B	Unk	nown				Retur	m to Clie	ent		✓ Disp	posal by	/ Lab		L_ A	rchive fo	or	PIONIG	3		
pecial Instructions/QC Requirements & Comments:																			-			
							_	_	ICoole	r Tem	n /°C): Obs	d:		Con	d:			herm ID No.			
elinquished by:	Custody S Company:			Date/T	ime: 1	19	Recei	ved	by:	_					pany:		D	1	Date/Time:	5	1700	
hichard Packsos // UCD L	HGL				5-157	380		W	u	5	۵	~		Con	npany:	AL	5		Date/Time:	J	1 ,	
	Company	•		Date/T	ime:	IF.	Recei	Devi	Dy.					100.	·p-u					1.2		

TestAmerica Albany

25 Kraft Avenue

Chain of Custody Record

Albany, NY 12205 phone 518.438.8140 fax 518.438.8150 Regulatory Program: DW NPDES RCRA Other: TestAmerica Laboratories, Inc. **Client Contact** COC No: Project Manager: Peter Dacyk Site Contact: Mike Jackson Date: HydroGeoLogic, Inc. Tel/Fax: 518-265-2204 Carrier: FedEX Lab Contact: Patrick McEntee 2 COCs of Northway 10 Executive Park, 313 Ushers Road Analysis Turnaround Time Sampler: Mike Jackson Ballston Lake, NY 12019 CALENDAR DAYS **WORKING DAYS** For Lab Use Only: (518) 877-0390 Phone Filtered Sample (Y/N)
Perform MS / MSD (Y/N) Walk-in Client: TAT if different from Below (518) 953-0026 FAX Lab Sampling: \overline{A} 2 weeks Project Name: Air Force Plant 59 October 2015 GWS 1,4-Dioxane (8270C) 1 week Site: AFP59 Johnson City, NY Job / SDG No .: 2 days PO# GS2049.04 1 day Type Sample Sample # of Sample Identification Date Time G=Grab) Matrix Cont Sample Specific Notes: 1602 59SW7WG1 GW 59SW4WG1 GW GW 59DUP01WG1 1,4-DIOXAMECUA GW 59DUP02WG1 59AB110515 WA 5 N Y X 59EB1105/5 WA Vacs 82605 016 1345 G TB110415 WA 11-5-15 0845G 59JC2WG1 WA Preservation Used: 1= ice, 2= HGI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Skin Irritant Poison B Unknown Non-Hazard Return to Client Archive for ☐ Flammable ✓ Disposal by Lab Special Instructions/QC Requirements & Comments: Corr'd: Therm ID No.: Cooler Temp. (°C): Obs'd: Custody Seals Intact: Custody Seal No .: Received by: Company: Date/Time: Company: Date/Time: 11-5-151467 HG Alberr 11-8-15 TA 1700 Date/Time: Relinguished by: Date/Time: Company: Company: Received by: Relinquished by: Date/Time: Date/Time: Received in Laboratory by: Company: Company:

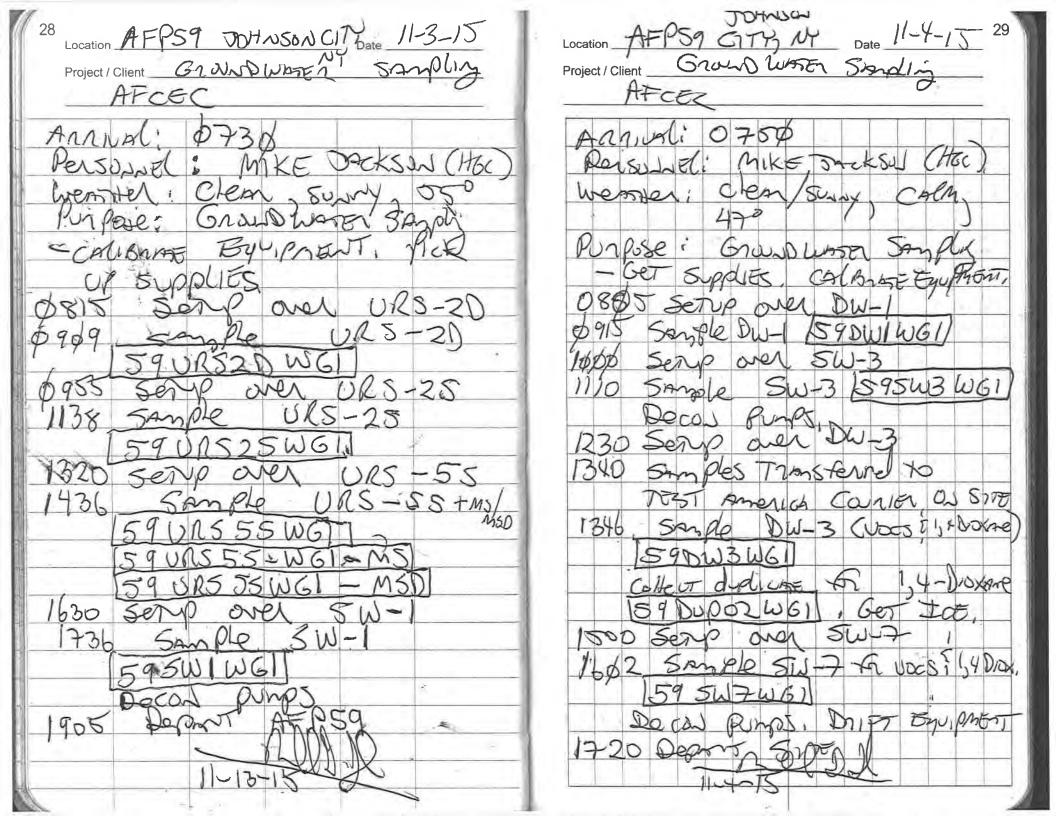
Tracking 8075 7180 9220

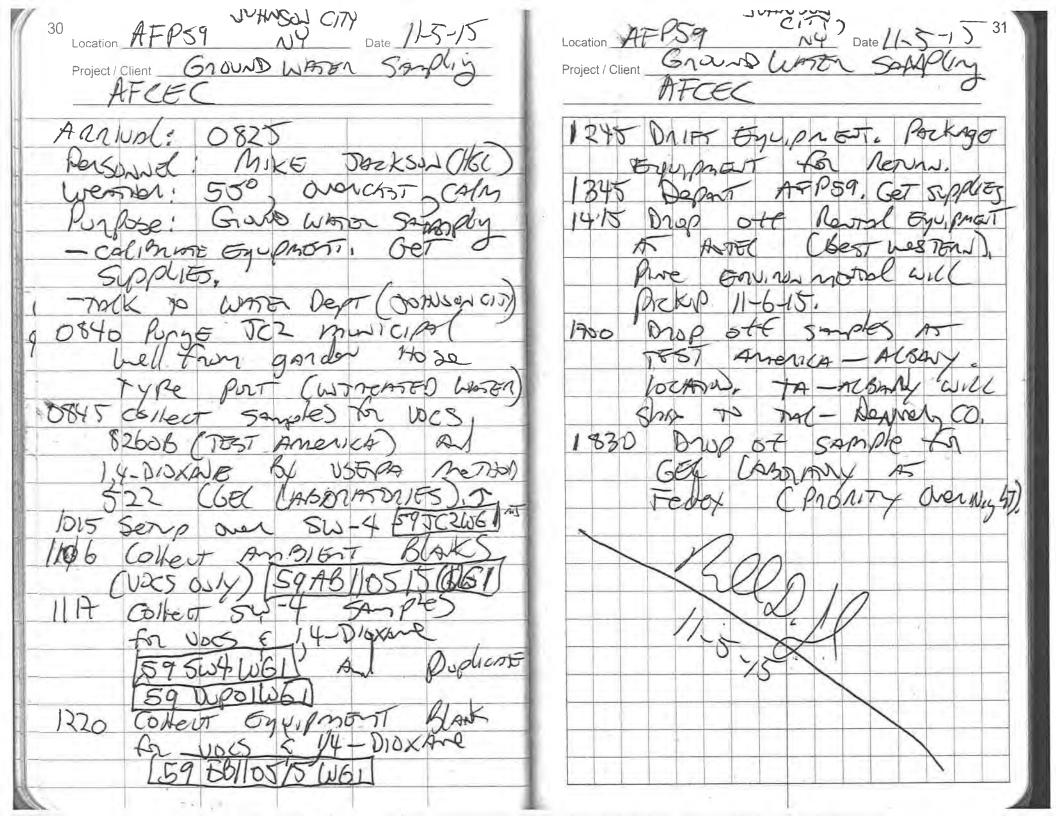
ET 0215

1 From Please print and press hard. Date N - 5 - 2015 Sender's FedEx Account Number 2661 - 0156 - 2	4 Express Package Service *To most loostions. NOTE: Service order has changed Please select carefully. Packages up to 150 lbs. For packages up to 150 lbs. For packages up to 150 lbs. For packages up to 150 lbs.
Sender's MELANIE COLEMAN Phone (518) 877-0390	Next Business Day FedEx First Overnight Earlinet rout duarious morning delivery to select locations. Friday signments will be delivered on Menday unioned SEUROR Delevery is selected. Second outerwas microgram on the delivered on Menday unioned SEUROR Delevery is selected.
Company HYRDGEOLOGIC INC	FedEx Priority Overnight Next business morning, "Fridey subpresers will be delivered on Minday shipmens will be delivered on Minday shipmens SATURDAY Celvery is selected. FedEx 2Day Seçond business ethermoon." Thurnday shipments will be delivered on Monday pricess SATURDAY Delivery is selected.
Address 313 USHERS RD Dept/Floor/Suita/Room	FedEx Standard Overnight Next business afternoon.* Standay Delivery NOT svellable. FedEx Express Sever Third business day.* Standay Delivery NOT svellable.
City BALLSTON LAKE State NY ZIP 12019-1548 2 Your Internal Billing Reference First 24 characters will appear on imotics.	5 Packaging * Declared value limit 500. ☐ FedEx Envelope* ☐ FedEx Pak* ☐ FedEx Box ☐ FedEx Tube Other
3 To Recipient's ATTN: VALERIE DAVIS Phone 843 556-817	6 Special Handling and Delivery Signature Options SATURDAY Delivery 107 Hotels Strindard Overnight, FedEx 2Day A.M., or FedEx Express Sever.
Company GEL LABORATORIES LLC Address 2446 SAVAGE ROAD HOLD Weekday FELDIFED, LOCK of The RECURSION of The R	No Signature Required Pectage may be left-witnest Someone et recipierte address may aign for delivery. Fee apprise. Does this shipment contain dangerous goods? Indirect Signature If no one is available at hecipierts address, may aign for delivery. Fee apprise.
We cannot deliver to RO, boxes or RO, CIP codes. Dept/Roor/SuitayRoom HOLD SaturdBy FedEx First Overright HOLD SaturdBy FedEx Existion address RECURED. FedEx First Overright HOLD SaturdBy FedEx First Overright HOLD SaturdBy FedEx First Overright HOLD Factorish Recured. FedEx First Overright House for the HOLD location address or for commission of your shipping address.	No Yes As per entached Shipper's Decianding on the Company Shipper's Decianding on the Company Shipper's Decianding on the Shipper's Deciandin
City CHANLESTON State 5C ZIP 29487 0118679226	7 Payment Bill to: Sender Act No. in Section Recipient X Third Party Credit Card Cash/Check Fadix Act No. 1279-0912-9

Get transit times. Schedule pickups Create labels. Go to fedex.com.

Rev. Date 2/12 - Part #183134 - @1994-2012 FedEx - PRINTED IN U.S.A. SRM


611


Page: of												C	EL Lab	oratorie	s, LLC	
Project #: 652049.04	GEL Chain of Custody and Analytical Request 2040 Savage Road															
GEL Quote #: COC Number (1):	Charleston, SC 29407															
COC Number (1):																
PO Number:					,							F	ax: (843	3) 766-1	178	
Client Name: Approceedings F Project/Site Name: AFPS9	nc. (HGL)	Phone #: 518	-877-	639y			Sam	ple Ana	alysis F	Reques	ted ⁽⁵⁾	(Fill ir	the nu	imber o	f conta	iners for each test)
Project/Site Name: AFPS9		Fax #:			Shoul		ainers	53								< Preservative Type (6)
Project/Site Name: Address: Collected by: Send Results To: Should this sample be considered: Somple ID * Date Collected (Military) (hmm) * For composites - indicate start and stop date/time Should this sample be considered: * Date Collected (Military) (hmm) * For composites - indicate start and stop date/time * For composites - indicate start and stop date/time * Should this sample be considered: * Time Collected (Military) (hmm) * For composites - indicate start and stop date/time * For composites - indicate star																
Collected by: MIKE MCKSIV S	Send Results To:	E Ma	Les			ated	ber o	13								Note: extra sample is
	*Date Collected	*Time			live	egul	E	25								required for sample
Sample ID * For composites - indicate start and stop date/tin		(Military) (hhmm)		Sample Matrix (4)	Radioactive	TSCA Regulated	Fotal r	320								specific QC
595 CZ WG1	11-5-15	0845	N	GW			2	X								1,4-DIOXANE
										,,						
																8
		· ·														
									1							
TAT Requested: Normal: Rush: Sp	pecify: (Subject to Surcha	rge) Fax Results	: Yes	· /	(N	()	Cir	cle Deli	verable	: C of	4 / Ç	C Sum	mary /	Level	1 / Le	evel 2 / Level 3 / Level 4
Remarks: Are there any known hazards app				zards										Sam	ple Col	lection Time Zone
11	*														stern	Pacific
														- 1	ntral ountain	Other
	20 . 101 .				-	T	-	-		Sai	mpla	Chinnin	a and			ils
Relinquished By (Signed) Date Time Received by (signed) Date Time Second Date Time GEL PM:																
Refinquished By (Signed) GEL PM: Method of Shipment: Date Shipped:					5-15											
1 CORPUTA	100 5 300 9234															
2 Airbill#:																
3 Airbill #: 1.) Chain of Custody Number = Client Determined For Lab Receiving Use Only																
2.) QC Codes: N = Normal Sample, TB = Trip Blank, FD = Field Duplicate, EB = Equipment Blank, MS = Matrix Spike Sample, MSD = Matrix Spike Duplicate Sample, G = Grab, C = Composite Custody Seal Intact? 3.) Field Filtered: For liquid matrices, indicate with a - Y - for yes the sample was field filtered or - N - for sample was not field filtered.																
 3.) Field Filtered: For liquid matrices, indicate with a - Y - for ye 4.) Matrix Codes: DW=Drinking Water, GW=Groundwater, SW 	es the sample was field filtered or - N	- for sample was not	SD=Sediment	SL=Slude	e. SS=S	olid Wa	ste, O=C	il, F =Filte	er, P=Win	e, U=Uri	ne, F=Fe	cal, N=N	asal			YES NO
5.) Sample Applysis Requested: Applytical method requested (i.e.	e. 8260B, 6010B/7470A) and number	of containers provid	ed for each (i.e	8260B - 3	3, 6010B	/7470A	- 1)-									Cooler Temp:
6.) Preservative Type: HA = Hydrochloric Acid, NI = Nitric Acid	d, SH = Sodium Hydroxide, SA = Sul = LABORATORY	furic Acid, AA = As	orbic Acid, H. LLOW = F	K = Hexane	, ST = S	odium 1	lhiosulfa	$\mathbf{K} = \mathbf{C}\mathbf{I}$	reservativ LIENT	e is added] = Jeave	neid blan	IK			
.,																

Location AFP59-JOHUSW CITY, Notate 11-20-14 Project / Client Grown was & Sampling/ AFCEC 0945 Security AT AFP59 opens GAT TO ARCRES 5W-4. DASS sonp over SW-4 1124 Sample SW-4 1595W4WG1 AV Collect Duplicate 159 DUPOL WGD (Relsmple 1. Time = 0938 1105 COllected AMBIENT BC=K [AB112014] (VOCS ONLY) 1240 collect Eyupnort BCANK EB1/2014 dem upil OriPT YSI 1345 Depart AFP59 1415 Dropost Pine Environer 131 GUPMONT A BEST WESTON JOHNSUNCIN FOR PICKUP 1750 Arme AT 155, presica - Albary 1845 sangles for gel 70 Fedex (menands) 11-20-14

Location AFP 59 JOHNSULCIT Date 11-2-75 27 Project / Client Grand Waster Sayplin 6 AFCEC Agril D890 Rensonte : MIKE DACK SW CHEL member, SSO cless, CACA Rispose: GREDWATT SAMPLING - PICKED UP ICE, CALIBRATION Env. PMENT, -Meet 150 CUINELLY BS DANSUL CITY WHEN DOOT - Meet Socurity as AFPS9 Area (607-744-9258) (PM Doug Soreino 908-854. 5-235) - open wells and sollow to Ey Brat, Garge wells for worth bevols Decan purps, 1415 Serry over 1725-32 1609 5000 URS-3D KS 1710 Serp over BM-12) 18 04 Spape BM-12/18 VOCS \$50005 (59BM/216061

1925 Depart 5 no

ATTACHMENT 2 LABORATORY REPORT

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS3DWG1

Lab Sample ID:

280-76497-1

Client Matrix:

Water

Date Sampled: 11/02/2015 1609 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B

5030B

Analysis Batch:

280-303876

Instrument ID:

VMS_R1

Prep Method:

Prep Batch:

Lab File ID:

R2225.D

Dilution:

1.0

N/A

Initial Weight/Volume: 20 mL

Analysis Date: Prep Date:

11/12/2015 2136 11/12/2015 2136 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,1,1,2-Tetrachloroethane	0.17	Ù	0.17	1.0	
1,1,1-Trichloroethane	1.0		0.16	1.0	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0	
1,1,2-Trichloroethane	0.32	U	0.32	1.0	
1,1-Dichloroethane	0.16	U	0.16	1.0	
1,1-Dichloroethene	0.14	U	0.14	1.0	
1,1-Dichloropropene	0.15	U	0.15	1.0	
1,2,3-Trichlorobenzene	0.18	Ū	0.18	1.0	
1,2,3-Trichloropropane	0.77	Ū	0.77	3.0	
1,2,4-Trichlorobenzene	0.32	Ü	0.32	1.0	
1,2,4-Trimethylbenzene	0.14	Ū	0.14	1.0	
1,2-Dibromo-3-Chloropropane	0.81	Ü	0.81	5.0	
1,2-Dichlorobenzene	0.13	Ü	0.13	1.0	
1,2-Dichloroethane	0.13	Ü	0.13	1.0	
1,2-Dichloropropane	0.13	ŭ	0.13	1.0	
1,3,5-Trimethylbenzene	0.14	Ŭ	0.14	1.0	
1,3-Dichlorobenzene	0.16	Ŭ	0.16	1.0	
1,3-Dichloropropane	0.15	Ü	0.15	1.0	
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0	
1-Chlorohexane	0.17	Ü	0.17	1.0	
2,2-Dichloropropane	0.20	Ü	0.20	1.0	
2-Butanone (MEK)	1.8	Ü	1.8	6.0	
2-Chlorotoluene	0.17	Ü	0.17	1.0	
4-Chlorotoluene	0.17	U	0.17	1.0	
	0.17	Ü	0.17	1.0	
4-Isopropyltoluene	1.0	um	1.0	5.0	
4-Methyl-2-pentanone (MIBK) Acetone	1.9	U	1.9	10	
	0.16	Ü	0.16	1.0	
Benzene		U	0.17	1.0	
Bromobenzene	0.17	U	0.17	1.0	
Bromoform	0.19 0.21	U	0.19	2.0	
Bromomethane					
Carbon tetrachloride	0.19	U	0.19	2.0	
Chlorobenzene	0.17	U	0.17	1.0	
Chlorobromomethane	0.10	U	0.10	1.0	
Chloroform	0.16	U	0.16	1.0	
Chloromethane	0.30	U	0.30	2.0	
cis-1,2-Dichloroethene	0.90	#F	0.15	1.0	
cis-1,3-Dichloropropene	0.16	U	0.16	1.0	
Dibromomethane	0.17	U	0.17	1.0	
Dichlorobromomethane	0.17	U	0.17	1.0	
Dichlorodifluoromethane	0.31	U	0.31	2.0	
Ethylbenzene	0.16	U	0.16	1.0	
Ethylene Dibromide	0.18	U	0.18	1.0	
Hexachlorobutadiene	0.36	U	0.36	1.0	
Isopropylbenzene	0.19	U	0.19	1.0	
Methyl tert-butyl ether	0.25	U	0.25	5.0	

TestAmerica Denver

Page 14 of 943

11/23/2015

Analytical Data

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS3DWG1

Lab Sample ID:

280-76497-1

Client Matrix:

Water

Date Sampled: 11/02/2015 1609 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B

Analysis Batch: Prep Batch:

280-303876

Instrument ID:

VMS_R1

Prep Method:

5030B 1.0

N/A

Lab File ID:

R2225.D Initial Weight/Volume: 20 mL

Dilution:

11/12/2015 2136

Final Weight/Volume:

Analysis Date: Prep Date:

11/12/2015 2136

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	1.6		0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 120
4-Bromofluorobenzene (Surr)	92		75 - 120
Dibromofluoromethane (Surr)	93		85 - 115
Toluene-d8 (Surr)	91		85 - 120

Job Number: 280-76497-1 Client: HydroGeoLogic Inc

59BM121WG1 Client Sample ID:

Lab Sample ID: 280-76497-2

Client Matrix: Water

Prep Date:

Date Sampled: 11/02/2015 1804 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

280-303876 Analysis Batch: Instrument ID: VMS_{R1} Analysis Method: 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: R2226.D 1.0 Initial Weight/Volume: 20 mL Dilution: Analysis Date:

Final Weight/Volume: 20 mL 11/12/2015 2156 11/12/2015 2156

Result (ug/L) Qualifier DL LOQ Analyte 0.17 0.17 1.0 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 0.16 U 0.16 1.0 0.20 U 0.20 1.0 1,1,2,2-Tetrachloroethane 0.32 U 0.32 1.0 1,1,2-Trichloroethane 0.16 U 0.16 1.0 1.1-Dichloroethane 0.14 U 0.14 1.0 1,1-Dichloroethene U 0.15 1.0 1,1-Dichloropropene 0.15 U 0.18 1.0 0.18 1,2,3-Trichlorobenzene 0.77 U 0.77 3.0 1,2,3-Trichloropropane 0.32 U 0.32 1.0 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 0.14 U 0.14 1.0 1.2-Dibromo-3-Chloropropane 0.81 U 0.81 5.0 1.2-Dichlorobenzene 0.13 U 0.13 1.0 1.2-Dichloroethane 0.13 U 0.13 1.0 1.0 1,2-Dichloropropane 0.13 U 0.13 1,3,5-Trimethylbenzene 0.14 11 0.14 1.0 U 0.16 1.0 1,3-Dichlorobenzene 0.16 1.0 11 0.15 1,3-Dichloropropane 0.15 П 1.0 0.16 0.16 1,4-Dichlorobenzene 0.17 П 0.17 1.0 1-Chlorohexane 1.0 2,2-Dichloropropane 0.20 U 0.20 U 6.0 2-Butanone (MEK) 1.8 1.8 U 0.17 1.0 0.17 2-Chlorotoluene 0.17 U 0.17 1.0 4-Chlorotoluene 4-Isopropyltoluene 0.17 U 0.17 1.0 4M 5.0 4-Methyl-2-pentanone (MIBK) 1.0 1.0 U 10 Acetone 1.9 1.9 0.16 U 0.16 1.0 Benzene Bromobenzene 0.17 U 0.17 1.0 Bromoform 0.19 U 0.19 1.0 2.0 Bromomethane 0.21 U 0.21 2.0 Carbon tetrachloride 0.19 U 0.19 Chlorobenzene 0.17 U 0.17 1.0 Chlorobromomethane 0.10 U 0.10 1.0 U 0.16 1.0 Chloroform 0.16 U 0.30 2.0 0.30 Chloromethane 11 0.15 1.0 0.15 cis-1,2-Dichloroethene cis-1,3-Dichloropropene 0.16 U 0.16 1.0 1.0 0.17 U 0.17 Dibromomethane U 0.17 1.0 Dichlorobromomethane 0.17 0.31 U 0.31 2.0 Dichlorodifluoromethane 0.16 U 0.16 1.0 Ethylbenzene Ethylene Dibromide 0.18 U 0.18 1.0 U Hexachlorobutadiene 0.36 0.36 1.0 U 0.19 1.0 Isopropylbenzene 0.19 U 0.25 Methyl tert-butyl ether 0.25 5.0

Analytical Data

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59BM121WG1

Lab Sample ID:

280-76497-2

Client Matrix:

Water

Date Sampled: 11/02/2015 1804 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method:

5030B

1.0

Analysis Date: Prep Date:

Dilution:

11/12/2015 2156 11/12/2015 2156 Analysis Batch: Prep Batch:

280-303876

N/A

Instrument ID:

Lab File ID:

VMS_R1 R2226.D

Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	Ü	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	107		70 - 120
4-Bromofluorobenzene (Surr)	96		75 - 120
Dibromofluoromethane (Surr)	101		85 - 115
Toluene-d8 (Surr)	89		85 - 120

Job Number: 280-76497-1 Client: HydroGeoLogic Inc

Client Sample ID: 59URS2DWG1

280-76497-3 Lab Sample ID: Client Matrix:

Analysis Date:

Prep Date:

Water

Date Sampled: 11/03/2015 0909 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: Prep Method: 5030B Prep Batch: Dilution: 1.0

11/12/2015 2300

11/12/2015 2300

280-303876 N/A

Instrument ID: VMS_R1 Lab File ID: R2229.D

Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0	
1.1.1-Trichloroethane	0.16	U	0.16	1.0	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0	
1,1,2-Trichloroethane	0.32	U	0.32	1.0	
1,1-Dichloroethane	0.20	JF	0.16	1.0	
1,1-Dichloroethene	0.14	U	0.14	1.0	
1,1-Dichloropropene	0.15	U	0.15	1.0	
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0	
1,2,3-Trichloropropane	0.77	U	0.77	3.0	
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0	
1,2,4-Trimethylbenzene	0.14	Ū	0.14	1.0	
1,2-Dibromo-3-Chloropropane	0.81	Ü	0.81	5.0	
1,2-Dichlorobenzene	0.13	Ü	0.13	1.0	
1,2-Dichloroethane	0.13	Ü	0.13	1.0	
1,2-Dichloropropane	0.13	Ŭ	0.13	1.0	
1,3,5-Trimethylbenzene	0.14	Ŭ	0.14	1.0	
1,3-Dichlorobenzene	0.16	Ŭ	0.16	1.0	
•	0.15	Ü	0.15	1.0	
1,3-Dichloropropane	0.16	Ü	0.16	1.0	
1,4-Dichlorobenzene	0.17	Ü	0.17	1.0	
1-Chlorohexane	0.17	Ü	0.20	1.0	
2,2-Dichloropropane	1.8	U	1.8	6.0	
2-Butanone (MEK)	0.17	Ü	0.17	1.0	
2-Chlorotoluene		U	0.17	1.0	
4-Chlorotoluene	0.17	U			
4-Isopropyltoluene	0.17	øm	0.17 1.0	1.0 5.0	
4-Methyl-2-pentanone (MIBK)	1.0				
Acetone	1.9	U	1.9	10	
Benzene	0.16	U	0.16	1.0	
Bromobenzene	0.17	U	0.17	1.0	
Bromoform	0.19	U	0.19	1.0	
Bromomethane	0.21	U	0.21	2.0	
Carbon tetrachloride	0.19	U	0.19	2.0	
Chlorobenzene	0.17	U	0.17	1.0	
Chlorobromomethane	0.10	U	0.10	1.0	
Chloroform	0.16	U	0.16	1.0	
Chloromethane	0.30	U	0.30	2.0	
cis-1,2-Dichloroethene	60	-17X	0.15	1.0	
cis-1,3-Dichloropropene	0.16	U	0.16	1.0	
Dibromomethane	0.17	U	0.17	1.0	
Dichlorobromomethane	0.17	U	0.17	1.0	
Dichlorodifluoromethane	0.31	U	0.31	2.0	
Ethylbenzene	0.16	U	0.16	1.0	
Ethylene Dibromide	0.18	U	0.18	1.0	
Hexachlorobutadiene	0.36	U	0.36	1.0	
Isopropylbenzene	0.19	U	0.19	1.0	
Methyl tert-butyl ether	0.25	U	0.25	5.0	

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59URS2DWG1

 Lab Sample ID:
 280-76497-3
 Date Sampled: 11/03/2015 0909

 Client Matrix:
 Water
 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 280-303876 Instrument ID: VMS_R1 Prep Method: 5030B Prep Batch: Lab File ID: R2229.D N/A Dilution: 1.0 Initial Weight/Volume: 20 mL Analysis Date: 11/12/2015 2300 Final Weight/Volume: 20 mL Prep Date: 11/12/2015 2300

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	104		70 - 120	
4-Bromofluorobenzene (Surr)	93		75 - 120	
Dibromofluoromethane (Surr)	100		85 - 115	
Toluene-d8 (Surr)	87		85 - 120	

AF 12/23/15

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59URS2DWG1

Lab Sample ID:

280-76497-3

11/12/2015 2320

Client Matrix:

Prep Date:

Water

Date Sampled: 11/03/2015 0909

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

8260B Analysis Batch: 280-303876 Instrument ID: VMS_{R1} Analysis Method: Prep Method: 5030B Prep Batch: N/A Lab File ID: R2230.D Dilution: 4.0 Initial Weight/Volume: 20 mL Analysis Date: 11/12/2015 2320 Run Type: DL Final Weight/Volume: 20 mL

1,1,1,2-Tetrachloroethane		Qualifier	DL	LOQ	
1, 1, 1,2-1 cu acrito ocuitatio	0.68	YWY	0.68	4.0	
1,1,1-Trichloroethane	0.64	U	0.64	4.0	
1,1,2,2-Tetrachloroethane	0.80	U \	0.80	4.0	
1,1,2-Trichloroethane	1.3	Ü	1.3	4.0	
1,1-Dichloroethane	0.64	U I	0.64	4.0	
1,1-Dichloroethene	0.56	U	0.56	4.0	
1,1-Dichloropropene	0.60	U /	0.60	4.0	
1,2,3-Trichlorobenzene	0.72	4	0.72	4.0	
1,2,3-Trichloropropane	3.1	U I	3.1	12	
1,2,4-Trichlorobenzene	1.3	u l	1.3	4.0	
1,2,4-Trimethylbenzene	0.56	U I	0.56	4.0	
1,2-Dibromo-3-Chloropropane	3.2	Ú l	3.2	20	
1,2-Dichlorobenzene	0.52	U l	0.52	4.0	
1,2-Dichloroethane	0.52	U	0.52	4.0	
1,2-Dichloropropane	0.52	ů l	0.52	4.0	
1,3,5-Trimethylbenzene	0.56	U	0.56	4.0	
1,3-Dichlorobenzene	0.64	U I	0.64	4.0	
1,3-Dichloropropane	0.60	Ú l	0.60	4.0	
1,4-Dichlorobenzene	0.64	U	0.64	4.0	
1-Chlorohexane	0.68	U	0.68	4.0	
2,2-Dichloropropane	0.80	u l	0.80	4.0	
2-Butanone (MEK)	7.3	Ů l	7.3	24	
2-Chlorotoluene	0.68	V	0.68	4.0	
4-Chlorotoluene	0.68	U	0.68	4.0	
4-Isopropyltoluene	0.68	U	0.68	4.0	
4-Methyl-2-pentanone (MIBK)	4.2	U	4.2	20	
Acetone	7.6	ψ	7.6	40	
Benzene	0.64	U/	0.64	4.0	
Bromobenzene	0.68	0	0.68	4.0	
Bromoform	0.76	U	0.76	4.0	
Bromomethane	0.84	ų l	0.84	8.0	
Carbon tetrachloride	0.76	U	0.76	8.0	
Chlorobenzene	0.68	U	0.68	4.0	
Chlorobromomethane	0.40	0.1	0.40	4.0	
Chloroform	0.64	44	0.64	4.0	
Chloromethane	1.2	dus.	1.2	8.0	
cis-1,2-Dichloroethene	61	D	0.60	4.0	
cis-1,3-Dichloropropene	0.64	Pur.	0.64	4.0	
Dibromomethane	0.68	U i	0.68	4.0	
Dichlorobromomethane	0.68	U \	0.68	4.0	
Dichlorodifluoromethane	1.2	ψ	1.2	8.0	
Ethylbenzene	0.64	ψ.	0.64	4.0	
Ethylene Dibromide	0.72	ψ	0.72	4.0	
Hexachlorobutadiene	1.4	ų l	1.4	4.0	
Isopropylbenzene	0.76	ψ 1	0.76	4.0	
Methyl tert-butyl ether	1.0	MAX	1.0	20	

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS2DWG1

Lab Sample ID:

280-76497-3

Client Matrix:

Water

Date Sampled: 11/03/2015 0909

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method Prep Method:

8260B

5030B 4.0

Dilution: Analysis Date: Prep Date:

11/12/2015 2320 11/12/2015 2320

Analysis Batch: Prep Batch:

280-303876

N/A

Instrument ID: Lab File ID:

VMS_{R1} R2230.D

Initial Weight/Volume:

20 mL

Run Type:

DL

Result (ug/L)

1.3

1.4

1.3

0.64

0.76

0.68

0.68

0.64

0.80

0.68

0.60

0.76

0.64

96

93

104

0.88

Final Weight/Volume:

DL

1.3

1.4

0.88

1.3

0.64

0.76

0.40

0.68

LOQ

20

8.0

4.0 4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0 4.0

4.0

4.0

8.0

6.0

4.0

Analyte	
Methylene Chloride	
m-Xylene & p-Xylene	
Naphthalene	
n-Butylbenzene	
N-Propylbenzene	
o-Xylene	
sec-Butylbenzene	

sec-Butylbenzene

Styrene tert-Butylbenzene Tetrachloroethene Toluene

trans-1,2-Dichloroethene

Dibromochloromethane

Surrogate

Toluene-d8 (Surr)

trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Vinyl chloride

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1.2 0.40 0.68 %Rec 1,2-Dichloroethane-d4 (Surr) 109

Qualifier

Qualifier

W.

0.68 0.68 0.64 0.80 0.68 0.60 0.76 0.64 1.2

> Acceptance Limits 70 - 120

75 - 120 85 - 115 85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS2SWG1

Lab Sample ID:

280-76497-4

Client Matrix:

Water

Date Sampled: 11/03/2015 1138

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method; 8260B 5030B Prep Method:

Dilution.

Р

Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID: VMS_{R1} Lab File ID: R2231.D

Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

Analysis Date:	11/12/2015	2340
Prep Date:	11/12/2015	2340

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	2.4		0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	1.3		0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0
1,2-Dichlorobenzene	0.13	Ų	0.13	1.0
1,2-Dichloroethane	0.13	U	0.13	1.0
1,2-Dichloropropane	0.13	U	0.13	1.0
1,3,5-Trimethylbenzene	0.14	U	0.14	1.0
1,3-Dichlorobenzene	0.16	U	0.16	1.0
1,3-Dichloropropane	0.15	U	0.15	1.0
1,4-Dichlorobenzene	0.16	U	0.16	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	M	1.0	5.0
Acetone	1.9	U	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	1.8		0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	U	0.31	2.0
Ethylbenzene	0.16	Ū	0.16	1.0
Ethylene Dibromide	0.18	Ü	0.18	1.0
Hexachlorobutadiene	0.36	Ü	0.36	1.0
Isopropylbenzene	0.19	Ü	0.19	1.0
Methyl tert-butyl ether	0.25	Ü	0.25	5.0

Page 22 of 943 11/23/2015 **TestAmerica Denver**

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS2SWG1

Lab Sample ID:

280-76497-4

Client Matrix:

Water

Date Sampled: 11/03/2015 1138

Date Received: 11/06/2015 0930

2.0

1.5

1.0

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5030B

1.0

Dilution: Analysis Date:

Trichlorofluoromethane

Dibromochloromethane

Vinyl chloride

11/12/2015 2340

Analysis Batch: Prep Batch: N/A

280-303876

U

U

U

Instrument ID: Lab File ID:

VMS_{R1} R2231.D

Initial Weight/Volume: 20 mL 20 mL Final Weight/Volume:

0.29

0.10

0.17

Prep Date:	11/12/2015	2340
Analyte		

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	2.8		0.16	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	107		70 - 120
4-Bromofluorobenzene (Surr)	92		75 - 120
Dibromofluoromethane (Surr)	100		85 - 115
Toluene-d8 (Surr)	86		85 - 120

0.29

0.10

0.17

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59URS5SWG1

Lab Sample ID:

280-76497-5

Client Matrix:

Water

Date Sampled: 11/03/2015 1436 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method: 5030B

Dilution:

Analysis Date:

Prep Date:

1.0

11/12/2015 2116 11/12/2015 2116

Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID: Lab File ID:

VMS_R1 R2224.D

Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.52	#F	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	Ū	0.15	1.0
1,2,3-Trichlorobenzene	0.18	Ü	0.18	1.0
1,2,3-Trichloropropane	0.77	Ŭ	0.77	3.0
1,2,4-Trichlorobenzene	0.32	Ü	0.32	1.0
1,2,4-Trimethylbenzene	0.14	Ü	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	Ü	0.81	5.0
1,2-Dichlorobenzene	0.13	Ü	0.13	1.0
1,2-Dichloroethane	0.13	Ü	0.13	1.0
	0.13	Ü	0.13	1.0
1,2-Dichloropropane	0.13	Ü	0.13	1.0
1,3,5-Trimethylbenzene	0.14	Ü	0.14	1.0
1,3-Dichlorobenzene				
1,3-Dichloropropane	0.15	U	0.15 0.16	1.0 1.0
1,4-Dichlorobenzene	0.16	-		
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	ьm	1.0	5.0
Acetone	1.9	U	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	0.15	U	0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	U	0.31	2.0
Ethylbenzene	0.16	U	0.16	1.0
Ethylene Dibromide	0.18	Ü	0.18	1.0
Hexachlorobutadiene	0.36	Ū	0.36	1.0
Isopropylbenzene	0.19	Ū	0.19	1.0
Methyl tert-butyl ether	0.25	Ü	0.25	5.0
month tort buth onto	0.20	•	JJ	

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS5SWG1

Lab Sample ID:

280-76497-5

Client Matrix:

Water

Date Sampled: 11/03/2015 1436 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method:

Analysis Batch:

280-303876

U

U

Instrument ID:

VMS_{R1}

Dilution:

5030B

Prep Batch:

N/A

Lab File ID:

R2224.D

1.0

11/12/2015 2116

Initial Weight/Volume: Final Weight/Volume:

0.10

0.17

20 mL

1.5

1.0

Analysis Date: Prep Date:

Vinyl chloride

Dibromochloromethane

11/12/2015 2116

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.56	0F	0.16	1.0
Trichlorofluoromethane	0.29	Ū	0.29	2.0

0.10

0.17

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 120
4-Bromofluorobenzene (Surr)	95		75 - 120
Dibromofluoromethane (Surr)	95		85 - 115
Toluene-d8 (Surr)	95		85 - 120

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59DW1WG1

11/12/2015 2359

Prep Date:

 Lab Sample ID:
 280-76497-6
 Date Sampled: 11/04/2015 0915

 Client Matrix:
 Water
 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Batch: 280-303876 Instrument ID: Analysis Method: 8260B VMS_{R1} Prep Method: 5030B Prep Batch: N/A Lab File ID: R2232.D Dilution: Initial Weight/Volume: 20 mL 1.0 Final Weight/Volume: Analysis Date: 11/12/2015 2359

1,1,1,2-Tetrachloroethane 0.17 1,1,1-Trichloroethane 0.16	U	0.17	1.0
1,1,1	11		1.0
	•	0.16	1.0
1,1,2,2-Tetrachloroethane 0.20	U	0.20	1.0
1,1,2-Trichloroethane 0.32	U	0.32	1.0
1,1-Dichloroethane 0.16	U	0.16	1.0
1,1-Dichloroethene 0.14	Ü	0.14	1.0
1,1-Dichloropropene 0.15	Ü	0.15	1.0
1,2,3-Trichlorobenzene 0.18	Ü	0.18	1.0
1,2,3-Trichloropropane 0.77	Ü	0.77	3.0
1,2,4-Trichlorobenzene 0.32	Ü	0.32	1.0
1,2,4-Trimethylbenzene 0.14	Ü	0.14	1.0
1,2-Dibromo-3-Chloropropane 0.81	Ü	0.81	5.0
	Ü	0.13	1.0
·	Ü	0.13	
			1.0
1,2-Dichloropropane 0.13	U	0.13	1.0
1,3,5-Trimethylbenzene 0.14	U	0.14	1.0
1,3-Dichlorobenzene 0.16	U	0.16	1.0
1,3-Dichloropropane 0.15	U	0.15	1.0
1,4-Dichlorobenzene 0.16	U	0.16	1.0
1-Chlorohexane 0.17	U	0.17	1.0
2,2-Dichloropropane 0.20	U	0.20	1.0
2-Butanone (MEK) 1.8	U	1.8	6.0
2-Chlorotoluene 0.17	U	0.17	1.0
4-Chlorotoluene 0.17	U	0.17	1.0
4-Isopropyltoluene 0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK) 1.0	JHM	1.0	5.0
Acetone 1.9	U	1.9	10
Benzene 0.16	U	0.16	1.0
Bromobenzene 0.17	Ü	0.17	1.0
Bromoform 0.19	Ū	0.19	1.0
Bromomethane 0.21	Ū	0.21	2.0
Carbon tetrachloride 0.19	Ü	0.19	2.0
Chlorobenzene 0.17	Ŭ	0.17	1.0
Chlorobromomethane 0.10	Ü	0.10	1.0
Chloroform 0.16	Ŭ	0.16	1.0
Chloromethane 0.30	Ü	0.30	2.0
	U	0.15	1.0
	U	0.16	1.0
, , ,			
Dibromomethane 0.17	U	0.17	1.0
Dichlorobromomethane 0.17	U	0.17	1.0
Dichlorodifluoromethane 0.31	U	0.31	2.0
Ethylbenzene 0.16	U	0.16	1.0
Ethylene Dibromide 0.18	U	0.18	1.0
Hexachlorobutadiene 0.36	U	0.36	1.0
Isopropylbenzene 0.19	U	0.19	1.0
Methyl tert-butyl ether 0.25	U	0.25	5.0

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DW1WG1

Lab Sample ID:

280-76497-6

Client Matrix:

Water

Date Sampled: 11/04/2015 0915 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch: Prep Batch:

280-303876

Instrument ID:

VMS_R1

Prep Method:

5030B

N/A

Lab File ID:

R2232.D

Dilution:

1.0

Initial Weight/Volume: 20 mL

Analysis Date:

11/12/2015 2359

Final Weight/Volume: 20 mL

Prep	Date:

11/12/2015 2359

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	112		70 - 120
4-Bromofluorobenzene (Surr)	97		75 - 120
Dibromofluoromethane (Surr)	104		85 - 115
Toluene-d8 (Surr)	91		85 - 120

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59SW1WG1

Lab Sample ID:

280-76497-7

Client Matrix:

Water

Date Sampled: 11/03/2015 1736

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Analysis Batch: 280-303876
Prep Method: 5030B Prep Batch: N/A
Dilution: 1.0
Analysis Date: 11/13/2015 0018

Instrument ID: VMS_R1
Lab File ID: R2233.D
Initial Weight/Volume: 20 mL

Final Weight/Volume: 20 mL

Analysis Date.	11/13/2013	0010
Prep Date:	11/13/2015	0018

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	Ü	0.17	1.0
1,1,1-Trichloroethane	0.16	U	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1.2.4-Trichlorobenzene	0.32	Ü	0.32	1.0
1,2,4-Trimethylbenzene	0.14	Ū	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	Ŭ	0.81	5.0
1,2-Dichlorobenzene	0.13	Ŭ	0.13	1.0
,	0.13	Ü	0.13	1.0
1,2-Dichloroethane	0.13	U	0.13	1.0
1,2-Dichloropropane	0.13	U	0.13	1.0
1,3,5-Trimethylbenzene				
1,3-Dichlorobenzene	0.16	U	0.16	1.0
1,3-Dichloropropane	0.15	U	0.15	1.0
1,4-Dichlorobenzene	0.16	U	0.16	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	.UM	1.0	5.0
Acetone	1.9	U	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	Ū	0.16	1.0
Chloromethane	0.30	Ü	0.30	2.0
cis-1,2-Dichloroethene	0.15	Ŭ	0.15	1.0
cis-1,3-Dichloropropene	0.16	Ŭ	0.16	1.0
Dibromomethane	0.17	Ü	0.17	1.0
Dichlorobromomethane	0.17	Ü	0.17	1.0
	0.17	Ü	0.17	2.0
Dichlorodifluoromethane		U		1.0
Ethylbenzene	0.16		0.16	
Ethylene Dibromide	0.18	U	0.18	1.0
Hexachlorobutadiene	0.36	U	0.36	1.0
Isopropylbenzene	0.19	U	0.19	1.0
Methyl tert-butyl ether	0.25	U	0.25	5.0

TestAmerica Denver Page 28 of 943 11/23/2015

AF 12/23/15

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW1WG1

Lab Sample ID:

280-76497-7

Client Matrix:

Water

Date Sampled: 11/03/2015 1736

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)	8260B Volatile	Organic	Compounds	(GC/MS)
--	----------------	---------	-----------	---------

Analysis Method: Prep Method:

8260B 5030B Analysis Batch: Prep Batch:

280-303876

Instrument ID: Lab File ID:

VMS_R1 R2233.D

Dilution:

1.0

N/A

Initial Weight/Volume: 20 mL

Analysis Date: Prep Date:

11/13/2015 0018 11/13/2015 0018

Final Weight/Volume: 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	110		70 - 120
4-Bromofluorobenzene (Surr)	95		75 - 120
Dibromofluoromethane (Surr)	103		85 - 115
Toluene-d8 (Surr)	89		85 - 120

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59SW3WG1

Lab Sample 1D: 280-76497-8

11/13/2015 0038

Client Matrix: Water

Prep Date:

Date Sampled: 11/04/2015 1110
Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

280-303876 Analysis Batch: Instrument ID: VMS_R1 8260B Analysis Method: 5030B Prep Batch: N/A Lab File ID: R2234.D Prep Method: Initial Weight/Volume: 20 mL Dilution: 1.0 Final Weight/Volume: 20 mL Analysis Date: 11/13/2015 0038

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1,0
1,1,1-Trichloroethane	0.24	SF.	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0
1,2-Dichlorobenzene	0.13	U	0.13	1.0
1,2-Dichloroethane	0.13	Ü	0.13	1.0
1,2-Dichloropropane	0.13	Ū	0.13	1.0
1,3,5-Trimethylbenzene	0.14	Ū	0.14	1.0
1,3-Dichlorobenzene	0.16	Ü	0.16	1.0
1,3-Dichloropropane	0.15	Ü	0.15	1.0
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0
1-Chlorohexane	0.17	Ü	0.17	1.0
2,2-Dichloropropane	0.20	Ŭ	0.20	1.0
2-Butanone (MEK)	1.8	Ŭ	1.8	6.0
2-Chlorotoluene	0.17	Ŭ	0.17	1.0
4-Chlorotoluene	0.17	Ü	- 0.17	1.0
4-Isopropyltoluene	0.17	Ü	0.17	1.0
4-Nethyl-2-pentanone (MIBK)	1.0	ьм	1.0	5.0
Acetone	1.9	U	1.9	10
	0.16	Ü	0.16	1.0
Benzene	0.17	Ü	0.17	1.0
Bromobenzene	0.17	Ü	0.17	1.0
Bromoform	0.19	Ü	0.13	2.0
Bromomethane	0.19	Ü	0.19	2.0
Carbon tetrachloride	0.19	U	0.19	1.0
Chlorobenzene	0.17	Ü	0.10	1.0
Chlorobromomethane	0.16	Ü	0.16	1.0
Chloroform	0.30	U	0.10	2.0
Chloromethane	0.30	SF	0.30	1.0
cis-1,2-Dichloroethene	0.27	-sor U	0.16	1.0
cis-1,3-Dichloropropene		U	0.16	1.0
Dibromomethane	0.17	U		1.0
Dichlorobromomethane	0.17 0.31	U	0.17 0.31	2.0
Dichlorodifluoromethane		_		
Ethylbenzene	0.16	U	0.16	1.0
Ethylene Dibromide	0.18	U	0.18	1.0
Hexachlorobutadiene	0.36	U	0.36	1.0
Isopropylbenzene	0.19	U	0.19	1.0
Methyl tert-butyl ether	0.25	U	0.25	5.0

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW3WG1

Lab Sample ID:

280-76497-8

Client Matrix:

Water

Date Sampled: 11/04/2015 1110

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

280-303876

Instrument ID:

VMS_R1

Prep Method:

5030B

Lab File ID:

R2234.D

Dilution:

1.0

Prep Batch:

N/A

Initial Weight/Volume:

20 mL

Analysis Date: Prep Date:

11/13/2015 0038 11/13/2015 0038

Final Weight/Volume: 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.42	8F	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	112		70 - 120
4-Bromofluorobenzene (Surr)	96		75 - 120
Dibromofluoromethane (Surr)	105		85 - 115
Toluene-d8 (Surr)	92		85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW7WG1

Lab Sample ID:

280-76497-9

Client Matrix:

Water

Date Sampled: 11/04/2015 1602

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B

5030B

1.0

Analysis Date: Prep Da

Dilution:

11/13/2015 0057

Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID:

VMS_{R1} Lab File ID: R2235.D

Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

is Date.	11/13/2013	0007
ate:	11/13/2015	0057

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	1.8		0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	5.1		0.16	1.0
1,1-Dichloroethene	0.52	4F	0.14	1.0
1,1-Dichloropropene	0.15	ΰ	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	Ü	0.77	3.0
1,2,4-Trichlorobenzene	0.32	Ü	0.32	1.0
1,2,4-Trimethylbenzene	0.14	Ü	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	Ü	0.81	5.0
1,2-Dichlorobenzene	0.13	Ü	0.13	1.0
1,2-Dichloroethane	0.13	Ü	0.13	1.0
1,2-Dichloropropane	0.13	Ŭ	0.13	1.0
1,3,5-Trimethylbenzene	0.14	Ŭ	0.14	1.0
1,3-Dichlorobenzene	0.16	Ü	0.16	1.0
·	0.15	Ü	0.15	1.0
1,3-Dichloropropane	0.16	Ü	0.16	1.0
1,4-Dichlorobenzene	0.16	U	0.17	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane				
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U U	0.17	1.0
4-Chlorotoluene	0.17		0.17	1.0
4-Isopropyltoluene	0.17	₩ O	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0		1.0	5.0
Acetone	1.9	U	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	40		0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	U	0.31	2.0
Ethylbenzene	0.16	U	0.16	1.0
Ethylene Dibromide	0.18	U	0.18	1.0
Hexachlorobutadiene	0.36	U	0.36	1.0
Isopropylbenzene	0.19	U	0.19	1.0
Methyl tert-butyl ether	0.25	U	0.25	5.0

AF 12/23/15

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59SW7WG1

11/13/2015 0057

Prep Date:

 Lab Sample ID:
 280-76497-9
 Date Sampled: 11/04/2015 1602

 Client Matrix:
 Water
 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

280-303876 8260B Analysis Batch: Instrument ID: VMS_R1 Analysis Method: Prep Method: 5030B Prep Batch: N/A Lab File ID: R2235.D Initial Weight/Volume: Dilution: 1.0 20 mL Final Weight/Volume: 11/13/2015 0057 20 mL Analysis Date:

Result (ug/L) Qualifier LOQ Analyte DL Methylene Chloride 0.32 U 0.32 5.0 m-Xylene & p-Xylene 0.34 U 0.34 2.0 Naphthalene 0.22 U 0.22 1.0 0.32 U 0.32 1.0 n-Butylbenzene N-Propylbenzene 0.16 U 0.16 1.0 0.19 U 0.19 1.0 o-Xylene U 1.0 sec-Butylbenzene 0.17 0.17 0.17 U 0.17 1.0 Styrene 0.16 0.16 1.0 tert-Butylbenzene Tetrachloroethene 0.70 0.20 1.0 Toluene 0.17 0.17 1.0 trans-1,2-Dichloroethene 0.16 0.15 1.0 trans-1,3-Dichloropropene 0.19 0.19 1.0 Trichloroethene 9.5 0.16 1.0 2.0 Trichlorofluoromethane 0.29 0.29 Vinyl chloride 1.2 0.10 1.5 Dibromochloromethane 0.17 1.0 0.17

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	110		70 - 120	
4-Bromofluorobenzene (Surr)	94		75 - 120	
Dibromofluoromethane (Surr)	104		85 - 115	
Toluene-d8 (Surr)	91		85 - 120	

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW4WG1

Lab Sample ID:

280-76497-10

Client Matrix:

Water

Date Sampled: 11/05/2015 1117

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

8260B Analysis Method:

5030B

Analysis Batch: Prep Batch:

280-303876

Instrument ID:

VMS_{R1}

Prep Method: Dilution:

1.0

N/A

Lab File ID:

R2236.D Initial Weight/Volume: 20 mL

Analysis Date:

11/13/2015 0116

Final Weight/Volume:

20 mL

$\overline{}$	ııaı	1313	0	21
P	rep	Dat	te:	

11/13/2015 0116

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.64	.or	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.58	SF	0.16	1.0
1,1-Dichloroethene	0.14	Ū	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	Ū	0.18	1.0
1,2,3-Trichloropropane	0.77	Ü	0.77	3.0
1,2,4-Trichlorobenzene	0.32	Ü	0.32	1.0
	0.14	Ü	0.14	1.0
1,2,4-Trimethylbenzene	0.81	Ü	0.81	5.0
1,2-Dibromo-3-Chloropropane				1.0
1,2-Dichlorobenzene	0.13	U	0.13	
1,2-Dichloroethane	0.13	υ	0.13	1.0
1,2-Dichloropropane	0.13	U	0.13	1.0
1,3,5-Trimethylbenzene	0.14	U	0.14	1.0
1,3-Dichlorobenzene	0.16	U	0.16	1.0
1,3-Dichloropropane	0.15	U	0.15	1.0
1,4-Dichlorobenzene	0.16	U	0.16	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	Ū	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	rm m	1.0	5.0
Acetone (WIBIC)	1.9	Ü	1.9	10
	0.16	ŭ	0.16	1.0
Benzene	0.17	Ŭ	0.17	1.0
Bromobenzene	0.17	Ü	0.17	1.0
Bromoform		U	0.19	2.0
Bromomethane	0.21			
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	2.7		0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	U	0.31	2.0
Ethylbenzene	0.16	Ü	0.16	1.0
Ethylene Dibromide	0.18	Ü	0.18	1.0
Hexachlorobutadiene	0.36	ŭ	0.36	1.0
	0.19	Ü	0.19	1.0
Isopropylbenzene		Ü		5.0
Methyl tert-butyl ether	0.25	U	0.25	5.0

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW4WG1

Lab Sample ID:

280-76497-10

Client Matrix:

Water

Date Sampled: 11/05/2015 1117

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: Prep Method:

8260B

5030B

Analysis Batch: Prep Batch:

280-303876

Instrument ID:

VMS_R1 R2236.D

LOQ

5.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.5

1.0

Dilution:

1.0 11/13/2015 0116 N/A

Result (ug/L)

0.32

U

Qualifier

Lab File ID: Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL

DL

0.32

0.16

Analysis Date: Prep Date:

11/13/2015 0116

Analyte Methylene Chloride

m-Xylene & p-Xylene Naphthalene n-Butylbenzene N-Propylbenzene

o-Xylene sec-Butylbenzene

Styrene tert-Butylbenzene

Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene

Trichloroethene Trichlorofluoromethane Vinyl chloride

Dibromochloromethane

Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)

0.34 U 0.34 0.22 U 0.22 0.32 U 0.32 0.16 U 0.16 0.19 U 0.19 U 0.17 0.17 U 0.17 0.17 0.16 U 0.16 0.32 0.20 0.17 0.17 U 0.15 0.15 0.19 U 0.19

4.9 0.29 0.10 0.17

%Rec

112

104

90

95

U 0.29 U 0.10 U 0.17 Qualifier

Acceptance Limits 70 - 120 75 - 120 85 - 115

85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DUP01WG1

Lab Sample ID:

280-76497-11FD

Client Matrix:

Water

Date Sampled: 11/05/2015 1203

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B

Prep Method:

5030B

Dilution:

Analysis Date:

1.0

11/13/2015 0136

Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID: Lab File ID:

VMS_R1 R2237.D

Initial Weight/Volume: Final Weight/Volume:

20 mL 20 mL

Prep	Date:	11	/

11/1	3/2015	0136
------	--------	------

Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0	
1,1,1-Trichloroethane	0.66	2F	0.16	1.0	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0	
1,1,2-Trichloroethane	0.32	U	0.32	1.0	
1,1-Dichloroethane	0.59	2F	0.16	1.0	
1,1-Dichloroethene	0.14	U	0.14	1.0	
1,1-Dichloropropene	0.15	U	0.15	1.0	
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0	
1,2,3-Trichloropropane	0.77	U	0.77	3.0	
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0	
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0	
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0	
1,2-Dichlorobenzene	0.13	U	0.13	1.0	
1,2-Dichloroethane	0.13	Ü	0.13	1.0	
1,2-Dichloropropane	0.13	Ü	0.13	1.0	
1,3,5-Trimethylbenzene	0.14	Ü	0.14	1.0	
1,3-Dichlorobenzene	0.16	Ü	0.16	1.0	
1,3-Dichloropropane	0.15	Ü	0.15	1.0	
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0	
1-Chlorohexane	0.17	Ü	0.17	1.0	
2,2-Dichloropropane	0.20	Ü	0.20	1.0	
2-Butanone (MEK)	1.8	Ü	1.8	6.0	
2-Chlorotoluene	0.17	Ŭ	0.17	1.0	
4-Chlorotoluene	0.17	Ŭ	0.17	1.0	
4-Isopropyltoluene	0.17	Ü	0.17	1.0	
4-Methyl-2-pentanone (MIBK)	1.0	.vm	1.0	5.0	
Acetone	1.9	Ü	1.9	10	
Benzene	0.16	Ŭ	0.16	1.0	
Bromobenzene	0.17	Ü	0.17	1.0	
Bromoform	0.19	ŭ	0.19	1.0	
Bromomethane	0.21	Ü	0.21	2.0	
Carbon tetrachloride	0.19	Ŭ	0.19	2.0	
Chlorobenzene	0.17	ŭ	0.17	1.0	
Chlorobromomethane	0.10	Ü	0.10	1.0	
Chloroform	0.16	Ŭ	0.16	1.0	
Chloromethane	0.30	Ŭ	0.30	2.0	
cis-1,2-Dichloroethene	2.8	· ·	0.15	1.0	
cis-1,3-Dichloropropene	0.16	U	0.16	1.0	
Dibromomethane	0.17	Ŭ	0.17	1.0	
Dichlorobromomethane	0.17	Ŭ	0.17	1.0	
Dichlorodifluoromethane	0.31	Ŭ	0.31	2.0	
	0.16	Ü	0.16	1.0	
Ethylbenzene Ethylene Dibromide	0.18	Ü	0.18	1.0	
Hexachlorobutadiene	0.36	Ü	0.36	1.0	
Isopropylbenzene	0.36	U	0.30	1.0	
	0.19	U	0.19	5.0	
Methyl tert-butyl ether	0.25	U	0.20	5.0	

12/23/15

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DUP01WG1

Lab Sample ID:

280-76497-11FD

Client Matrix:

Water

Date Sampled: 11/05/2015 1203

Date Received: 11/06/2015 0930

8260B Volatile Organic Compou	ınds	(GC/MS)	
-------------------------------	------	---------	--

Analysis Method: Prep Method:

8260B 5030B Analysis Batch:

280-303876

3876 Instrument ID:

VMS_R1

Dilution:

5030B 1.0 Prep Batch:

N/A

Lab File ID: Initial Weight/Volume:

R2237.D 20 mL

Analysis Date:

11/13/2015 0136

Final Weight/Volume:

20 mL 20 mL

Prep Date:

11/13/2015 0136

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.32	JF	0.20	1.0
Toluene	0.17	u'	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	5.2		0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	115		70 - 120
4-Bromofluorobenzene (Surr)	97		75 - 120
Dibromofluoromethane (Surr)	108		85 - 115
Toluene-d8 (Surr)	93		85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59AB110515

Lab Sample ID:

280-76497-13FB

Client Matrix:

Water

Date Sampled: 11/05/2015 1106

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

280-303876

Instrument ID:

VMS_{R1}

Prep Method:

5030B

Prep Batch: N/A

Lab File ID:

R2238.D

Dilution:

1.0 11/13/2015 0155

Initial Weight/Volume: Final Weight/Volume:

20 mL 20 mL

Analysis Date: Prep Date:

11/13/2015 0155

Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0	
1,1,1-Trichloroethane	0.16	U	0.16	1.0	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0	
1,1,2-Trichloroethane	0.32	U	0.32	1.0	
1,1-Dichloroethane	0.16	U	0.16	1.0	
1,1-Dichloroethene	0.14	U	0.14	1.0	
1,1-Dichloropropene	0.15	U	0.15	1.0	
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0	
1,2,3-Trichloropropane	0.77	U	0.77	3.0	
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0	
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0	
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0	
1,2-Dichlorobenzene	0.13	U	0.13	1.0	
1.2-Dichloroethane	0.13	U	0.13	1.0	
1,2-Dichloropropane	0.13	U	0.13	1.0	
1,3,5-Trimethylbenzene	0.14	Ü	0.14	1.0	
1,3-Dichlorobenzene	0.16	Ū	0.16	1.0	
1,3-Dichloropropane	0.15	Ū	0.15	1.0	
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0	
1-Chlorohexane	0.17	Ü	0.17	1.0	
2,2-Dichloropropane	0.20	Ü	0.20	1.0	
2-Butanone (MEK)	1.8	Ŭ	1.8	6.0	
2-Chlorotoluene	0.17	Ü	0.17	1.0	
4-Chlorotoluene	0.17	Ü	0.17	1.0	
4-Isopropyltoluene	0.17	Ū	0.17	1.0	
4-Methyl-2-pentanone (MIBK)	1.0	Ü	1.0	5.0	
Acetone	1.9	Ü	1.9	10	
Benzene	0.16	Ü	0.16	1.0	
Bromobenzene	0.17	Ū	0.17	1.0	
Bromoform	0.19	Ü	0.19	1.0	
Bromomethane	0.21	U	0.21	2.0	
Carbon tetrachloride	0.19	U	0.19	2.0	
Chlorobenzene	0.17	Ü	0.17	1.0	
Chlorobromomethane	0.10	Ü	0.10	1.0	
Chloroform	0.16	Ū	0.16	1.0	
Chloromethane	0.30	Ū	0.30	2.0	
cis-1,2-Dichloroethene	0.15	Ū	0.15	1.0	
cis-1,3-Dichloropropene	0.16	Ü	0.16	1.0	
Dibromomethane	0.17	Ū	0.17	1.0	
Dichlorobromomethane	0.17	Ū	0.17	1.0	
Dichlorodifluoromethane	0.31	Ū	0.31	2.0	
Ethylbenzene	0.16	Ū	0.16	1.0	
Ethylene Dibromide	0.18	Ü	0.18	1.0	
Hexachlorobutadiene	0.36	Ü	0.36	1.0	
Isopropylbenzene	0.19	Ŭ	0.19	1.0	
Methyl tert-butyl ether	0.25	ŭ	0.25	5.0	
	0.20	•	VV	0.0	

11/23/2015

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59AB110515

Lab Sample ID:

280-76497-13FB

Client Matrix:

Water

Date Sampled: 11/05/2015 1106

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method:

5030B

Prep Batch:

Analysis Batch:

280-303876

Instrument ID:

VMS_R1

Dilution:

1.0

N/A

Lab File ID: Initial Weight/Volume: 20 mL

R2238.D

Analysis Date:

11/13/2015 0155

Final Weight/Volume: 20 mL

Prep Date:

11/13/2015 0155

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	Ü	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	113		70 - 120
4-Bromofluorobenzene (Surr)	97		75 - 120
Dibromofluoromethane (Surr)	105		85 - 115
Toluene-d8 (Surr)	92		85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59EB110515

Lab Sample ID:

280-76497-14EB

Client Matrix:

Water

Date Sampled: 11/05/2015 1220

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method:

8260B

Analysis Batch:

280-304402

Instrument ID:

VMS_Z

Prep Method:

5030B

Prep Batch:

N/A

Lab File ID: Initial Weight/Volume:

Z2553.D

Dilution:

1.0

11/17/2015 0816

Final Weight/Volume:

20 mL 20 mL

Analysis Date: Prep Date:

11/17/2015 0816

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.16	U	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0
1,2-Dichlorobenzene	0.13	U	0.13	1.0
1,2-Dichloroethane	0.13	Ū	0.13	1.0
1,2-Dichloropropane	0.13	Ū	0.13	1.0
1,3,5-Trimethylbenzene	0.14	Ū	0.14	1.0
1,3-Dichlorobenzene	0.16	Ü	0.16	1.0
1,3-Dichloropropane	0.15	Ü	0.15	1.0
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0
1-Chlorohexane	0.17	Ü	0.17	1.0
2.2-Dichloropropane	0.20	Ŭ	0.20	1.0
2-Butanone (MEK)	1.8	Ü	1.8	6.0
2-Chlorotoluene	0.17	Ü	0.17	1.0
4-Chlorotoluene	0.17	Ü	0.17	1.0
4-Isopropyltoluene	0.17	Ü	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	Ū	1.0	5.0
Acetone	1.9	Ü	1.9	10
Benzene	0.16	Ü	0.16	1.0
Bromobenzene	0.17	Ü	0.17	1.0
Bromoform	0.19	Ŭ	0.19	1.0
Bromomethane	0.21	Ü	0.21	2.0
Carbon tetrachloride	0.19	Ŭ	0.19	2.0
Chlorobenzene	0.17	Ŭ	0.17	1.0
Chlorobromomethane	0.10	Ü	0.10	1.0
Chloroform	0.16	Ŭ	0.16	1.0
Chloromethane	0.30	Ü	0.30	2.0
cis-1,2-Dichloroethene	0.15	Ü	0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	Ü	0.17	1.0
Dichlorobromomethane	0.17	Ü	0.17	1.0
	0.17	Ü	0.17	2.0
Dichlorodifluoromethane	0.16	Ü	0.16	1.0
Ethylbenzene	0.18	U	0.18	1.0
Ethylene Dibromide		U	0.36	1.0
Hexachlorobutadiene	0.36 0.19	U	0.36	1.0
Isopropylbenzene	0.19 0.25			
Methyl tert-butyl ether	0.25	υ	0.25	5.0

Page 40 of 943

11/23/2015

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59EB110515

Lab Sample ID: 280-76497-14EB

Client Matrix:

Water

Date Sampled: 11/05/2015 1220 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Batch: 280-304402 Instrument ID: VMS Z Analysis Method: 8260B Prep Method: 5030B Prep Batch: N/A Lab File ID: Z2553.D Initial Weight/Volume: 20 mL Dilution: 1.0 Analysis Date: 11/17/2015 0816 Final Weight/Volume: 20 mL

Prep Date: 11/17/2015 0816

Qualifier Result (ug/L) DL LOQ Analyte 0.32 Methylene Chloride 0.32 5.0 m-Xylene & p-Xylene 0.34 U 0.34 2.0 Naphthalene 0.22 U 0.22 1.0 n-Butylbenzene 0.32 U 0.32 1.0 1.0 N-Propylbenzene 0.16 U 0.16 U 0.19 1.0 o-Xylene 0.19 1.0 sec-Butylbenzene 0.17 U 0.17 0.17 U 0.17 1.0 Styrene 1.0 0.16 U 0.16 tert-Butylbenzene 0.20 U 0.20 1.0 Tetrachloroethene 0.17 U 0.17 1.0 Toluene trans-1,2-Dichloroethene 0.15 U 0.15 1.0 1.0 trans-1,3-Dichloropropene 0.19 U 0.19 Trichloroethene 0.16 1.0 0.16 U 0.29 U 0.29 2.0 Trichlorofluoromethane 0.10 U 0.10 1.5 Vinyl chloride Dibromochloromethane 0.17 U 0.17 1.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	84		70 - 120	
4-Bromofluorobenzene (Surr)	95		75 - 120	
Dibromofluoromethane (Surr)	94		85 - 115	
Toluene-d8 (Surr)	96		85 - 120	

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

TB110415

Lab Sample ID:

280-76497-15TB

Client Matrix:

Water

Date Sampled: 11/04/2015 1345

Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B 5030B Prep Method: Dilution:

1.0

Analysis Date:

11/13/2015 0233

Analysis Batch: Prep Batch: N/A

280-303876

Instrument ID: Lab File ID:

VMS_R1 R2240.D

Initial Weight/Volume: 20 mL Final Weight/Volume:

20 mL

·		
Prep Date:	11/13/2015	0233

Analyte	Result (ug/L)	Qualifier	DL	LOQ	
1,1,1,2-Tetrachloroethane	0.17	Ü	0.17	1.0	
1,1,1-Trichloroethane	0.16	U	0.16	1.0	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0	
1,1,2-Trichloroethane	0.32	U	0.32	1.0	
1,1-Dichloroethane	0.16	U	0.16	1.0	
1,1-Dichloroethene	0.14	U	0.14	1.0	
1,1-Dichloropropene	0.15	U	0.15	1.0	
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0	
1,2,3-Trichloropropane	0.77	U	0.77	3.0	
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0	
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0	
1,2-Dibromo-3-Chloropropane	0.81	Ü	0.81	5.0	
1,2-Dichlorobenzene	0.13	Ū	0.13	1.0	
1,2-Dichloroethane	0.13	Ü	0.13	1.0	
1,2-Dichloropropane	0.13	Ū	0.13	1.0	
1,3,5-Trimethylbenzene	0.14	Ū	0.14	1.0	
1,3-Dichlorobenzene	0.16	Ü	0.16	1.0	
1,3-Dichloropropane	0.15	Ü	0.15	1.0	
1,4-Dichlorobenzene	0.16	Ü	0.16	1.0	
1-Chlorohexane	0.17	Ü	0.17	1.0	
2,2-Dichloropropane	0.20	Ŭ	0.20	1.0	
2-Butanone (MEK)	1.8	Ü	1.8	6.0	
2-Chlorotoluene	0.17	Ŭ	0.17	1.0	
4-Chlorotoluene	0.17	ŭ	0.17	1.0	
4-Isopropyltoluene	0.17	ŭ	0.17	1.0	
4-Methyl-2-pentanone (MIBK)	1.0	ŭ	1.0	5.0	
Acetone	1.9	Ŭ	1.9	10	
Benzene	0.16	ŭ	0.16	1.0	
Bromobenzene	0.17	Ŭ	0.17	1.0	
Bromoform	0.19	ŭ	0.19	1.0	
Bromomethane	0.21	ΰ	0.21	2.0	
Carbon tetrachloride	0.19	Ü	0.19	2.0	
Chlorobenzene	0.17	Ŭ	0.17	1.0	
Chlorobromomethane	0.10	Ŭ	0.10	1.0	
Chloroform	0.16	Ŭ	0.16	1.0	
Chloromethane	0.30	Ŭ	0.30	2.0	
cis-1,2-Dichloroethene	0.15	Ü	0.15	1.0	
cis-1,3-Dichloropropene	0.16	Ŭ	0.16	1.0	
Dibromomethane	0.17	Ü	0.17	1.0	
Dichlorobromomethane	0.17	Ü	0.17	1.0	
Dichlorodifluoromethane	0.31	Ü	0.31	2.0	
	0.16	Ü	0.16	1.0	
Ethylbenzene Ethylene Dibromide	0.18	U	0.18	1.0	
•	0.16	U	0.16	1.0	
Hexachlorobutadiene	0.36	U	0.38	1.0	
Isopropylbenzene		U	0.19	5.0	
Methyl tert-butyl ether	0.25	U	0.25	0.0	

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

TB110415

Lab Sample ID:

280-76497-15TB

Client Matrix:

Water

Date Sampled: 11/04/2015 1345

Date Received: 11/06/2015 0930

8260B	Volatile	Organic	Compounds	(GC/MS)
02000	VOIGLIS	Oluallic	OUIIDOUIIGS	

Analysis Method: Prep Method:

8260B 5030B

1.0

Analysis Date: Prep Date:

Dilution:

11/13/2015 0233 11/13/2015 0233

Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID:

Lab File ID:

VMS_R1 R2240.D

Initial Weight/Volume: Final Weight/Volume:

20 mL 20 mL

Analyte	Result (ug/L)	Qualifier	DL	LOQ
Methylene Chloride	0.32	U	0.32	5.0
m-Xylene & p-Xylene	0.34	U	0.34	2.0
Naphthalene	0.22	U	0.22	1.0
n-Butylbenzene	0.32	U	0.32	1.0
N-Propylbenzene	0.16	U	0.16	1.0
o-Xylene	0.19	U	0.19	1.0
sec-Butylbenzene	0.17	U	0.17	1.0
Styrene	0.17	U	0.17	1.0
tert-Butylbenzene	0.16	U	0.16	1.0
Tetrachloroethene	0.20	U	0.20	1.0
Toluene	0.17	U	0.17	1.0
trans-1,2-Dichloroethene	0.15	U	0.15	1.0
trans-1,3-Dichloropropene	0.19	U	0.19	1.0
Trichloroethene	0.16	U	0.16	1.0
Trichlorofluoromethane	0.29	U	0.29	2.0
Vinyl chloride	0.10	U	0.10	1.5
Dibromochloromethane	0.17	U	0.17	1.0

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	115		70 - 120
4-Bromofluorobenzene (Surr)	96		75 - 120
Dibromofluoromethane (Surr)	106		85 - 115
Toluene-d8 (Surr)	92		85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59JC2WG1

Lab Sample ID:

280-76497-16

Client Matrix:

Water

Date Sampled: 11/05/2015 0845 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

8260B Analysis Method: Prep Method:

5030B

Analysis Batch: Prep Batch:

280-303876

Instrument ID: Lab File ID:

VMS_{R1}

Dilution:

1.0

N/A

Initial Weight/Volume: 20 mL

R2241.D

Analysis Date:

11/13/2015 0252

Final Weight/Volume: 20 mL

Prep Date:

11/13/2015 0252

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.33	JP.	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0
1,2-Dichlorobenzene	0.13	U	0.13	1.0
1,2-Dichloroethane	0.13	U	0.13	1.0
1,2-Dichloropropane	0.13	U	0.13	1.0
1,3,5-Trimethylbenzene	0.14	U	0.14	1.0
1,3-Dichlorobenzene	0.16	U	0.16	1.0
1,3-Dichloropropane	0.15	U	0.15	1.0
1,4-Dichlorobenzene	0.16	U	0.16	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	AM	1.0	5.0
Acetone	1.9	Ū	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	Ü	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	Ū	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	Ū	0.10	1.0
Chloroform	0.16	Ü	0.16	1.0
Chloromethane	0.30	Ü	0.30	2.0
cis-1,2-Dichloroethene	0.24	ST	0.15	1.0
cis-1,3-Dichloropropene	0.16	Ü	0.16	1.0
Dibromomethane	0.17	Ŭ	0.17	1.0
Dichlorobromomethane	0.17	Ü	0.17	1.0
Dichlorodifluoromethane	0.31	Ŭ	0.31	2.0
Ethylbenzene	0.16	Ŭ	0.16	1.0
Ethylene Dibromide	0.18	Ŭ	0.18	1.0
Hexachlorobutadiene	0.36	Ü	0.36	1.0
Isopropylbenzene	0.19	Ü	0.19	1.0
Methyl tert-butyl ether	0.19	U	0.19	5.0
ivietriyi tert-butyi etrief	0.25	U	0.20	5.0

Job Number: 280-76497-1 Client: HydroGeoLogic Inc

Client Sample ID: 59JC2WG1

Lab Sample ID: 280-76497-16 Date Sampled: 11/05/2015 0845 Client Matrix: Date Received: 11/06/2015 0930 Water

	Analysis Batch: Prep Batch: Result (u. 0.32	280-303876 N/A g/L) Qu	Instrument ID: Lab File ID: Initial Weight/Vol Final Weight/Vol		
		g/L) Qu	alifier DI	100	
	0.32		DL	LOG	
ne	0.02	Ü	0.32	5.0	
	0.34	U	0.34	2.0	
	0.22	U	0.22	1.0	
	0.32	U	0.32	1,0	
	0.16	U	0.16	1.0	
	0.19	U	0.19	1.0	
	0.17	U	0.17	1.0	
	0.17	U	0.17	1.0	
	0.16	U	0.16	1.0	
	0.20	U	0.20	1.0	
	0.17	U	0.17	1.0	
thene	0.15	U	0.15	1.0	
ropene	0.19	U	0.19	1.0	
	0.39	1		1.0	
ane	0.29	U	0.29	2.0	
	0.10	U	0.10	1.5	
ane	0.17	U	0.17	1.0	
	%Rec	Qu	Qualifier Acceptance Limits		
-d4 (Surr)	117		70 - 120		
	102		75	- 120	
	109		85 - 115		
	thene ropene ane ane -d4 (Surr) ene (Surr) ane (Surr)	0.22 0.32 0.16 0.19 0.17 0.17 0.16 0.20 0.17 thene 0.15 ropene 0.19 0.39 ane 0.29 0.10 0.17 %Rec -d4 (Surr) 117 ene (Surr) 102	ne 0.34 U 0.22 U 0.32 U 0.16 U 0.19 U 0.17 U 0.17 U 0.16 U 0.19 U 0.17 U 0.16 U 0.19 U 0.17 U 0.16 U 0.20 U 0.17 U 0.19 U 0.19 U 0.39 J	ne 0.34 U 0.34 0.22 U 0.22 0.32 U 0.32 0.16 U 0.19 0.17 U 0.17 0.17 U 0.17 0.16 U 0.16 0.20 U 0.20 0.17 U 0.17 thene 0.15 U 0.15 ropene 0.19 U 0.19 ane 0.29 U 0.29 0.10 U 0.29 0.17 U 0.17 0.16 0.29 C 0.10 0.17 C 0.16 0.29 0.10 U 0.19 0.10 0.17 C 0.16 0.29 C 0.10 0.17 C 0.16 0.29 C 0.10 0.17 C 0.17 0.17 0.18 C 0.18 C 0.18 0.19 C 0.19 0.10 C 0.10 0.17 0.17 0.17 0.17 0.17 0.17 0.17	

95

85 - 120

Toluene-d8 (Surr)

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DW3WG1

Lab Sample ID:

280-76497-17

Client Matrix:

Water

Date Sampled: 11/04/2015 1346 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method:

5030B 1.0

Dilution: Analysis Date: Prep Date:

11/13/2015 0311 11/13/2015 0311 Analysis Batch: Prep Batch:

280-303876 N/A

Instrument ID:

VMS_R1

Lab File ID: Initial Weight/Volume:

R2242.D 20 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.16	U	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.31	of F	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	Ū	0.81	5.0
1,2-Dichlorobenzene	0.13	U	0.13	1.0
1,2-Dichloroethane	0.13	Ü	0.13	1.0
1,2-Dichloropropane	0.13	Ü	0.13	1.0
1,3,5-Trimethylbenzene	0.14	Ü	0.14	1.0
1.3-Dichlorobenzene	0.16	Ŭ	0.16	1.0
1,3-Dichloropropane	0.15	Ü	0.15	1.0
1,4-Dichlorobenzene	0.16	Ŭ	0.16	1.0
1-Chlorohexane	0.17	Ü	0.17	1.0
2,2-Dichloropropane	0.20	Ü	0.20	1.0
· · ·	1.8	Ü	1.8	6.0
2-Butanone (MEK)	0.17	U	0.17	1.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	Ü	0.17	1.0
4-Isopropyltoluene	1.0	rm.	1.0	5.0
4-Methyl-2-pentanone (MIBK)				10
Acetone	1.9	U	1.9	1.0
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	50		0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	U	0.31	2.0
Ethylbenzene	0.16	U	0.16	1.0
Ethylene Dibromide	0.18	U	0.18	1.0
Hexachlorobutadiene	0.36	U	0.36	1.0
Isopropylbenzene	0.19	U	0.19	1.0
Methyl tert-butyl ether	0.25	U	0.25	5.0

Date Sampled: 11/04/2015 1346

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59DW3WG1

11/13/2015 0311

Prep Date:

Lab Sample ID: 280-76497-17

Client Matrix: Water Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

8260B 280-303876 Instrument ID: VMS_{R1} Analysis Method: Analysis Batch: Lab File ID: R2242.D Prep Method: 5030B Prep Batch: N/A Dilution: 1.0 Initial Weight/Volume: 20 mL Analysis Date: 11/13/2015 0311 Final Weight/Volume:

Analyte Result (ug/L) Qualifier DL LOQ Methylene Chloride 0.32 U 0.32 5.0 0.34 U 0.34 2.0 m-Xylene & p-Xylene Naphthalene 0.22 U 0.22 1.0 n-Butylbenzene 0.32 U 0.32 1.0 N-Propylbenzene 0.16 U 0.16 1.0 1.0 o-Xylene 0.19 U 0.19 1.0 sec-Butylbenzene 0.17 U 0.17 U 1.0 Styrene 0.17 0.17 tert-Butylbenzene U 0.16 1.0 0.16 1.0 Tetrachloroethene 0.20 U 0.20 1.0 U 0.17 Toluene 0.17 0.15 U 1.0 0.15 trans-1,2-Dichloroethene U 0.19 1.0 0.19 trans-1,3-Dichloropropene 1.0 0.16 U 0.16 Trichloroethene 2.0 0.29 U 0.29 Trichlorofluoromethane 0.10 1.5 0.10 U Vinyl chloride U 0.17 1.0 Dibromochloromethane 0.17

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	115		70 - 120
4-Bromofluorobenzene (Surr)	99		75 - 120
Dibromofluoromethane (Surr)	107		85 - 115
Toluene-d8 (Surr)	91		85 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

TB110215

Lab Sample ID:

280-76497-18TB

Client Matrix:

Water

Date Sampled: 11/02/2015 0800 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Method: 8260B Prep Method:

5030B 1.0

Analysis Date: Prep Date:

Dilution:

11/13/2015 0330 11/13/2015 0330 Analysis Batch: 280-303876 Prep Batch:

N/A

Instrument ID:

VMS_R1 R2243.D

Lab File ID: Initial Weight/Volume:

20 mL

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	DL	LOQ
1,1,1,2-Tetrachloroethane	0.17	U	0.17	1.0
1,1,1-Trichloroethane	0.16	U	0.16	1.0
1,1,2,2-Tetrachloroethane	0.20	U	0.20	1.0
1,1,2-Trichloroethane	0.32	U	0.32	1.0
1,1-Dichloroethane	0.16	U	0.16	1.0
1,1-Dichloroethene	0.14	U	0.14	1.0
1,1-Dichloropropene	0.15	U	0.15	1.0
1,2,3-Trichlorobenzene	0.18	U	0.18	1.0
1,2,3-Trichloropropane	0.77	U	0.77	3.0
1,2,4-Trichlorobenzene	0.32	U	0.32	1.0
1,2,4-Trimethylbenzene	0.14	U	0.14	1.0
1,2-Dibromo-3-Chloropropane	0.81	U	0.81	5.0
1,2-Dichlorobenzene	0.13	U	0.13	1.0
1,2-Dichloroethane	0.13	U	0.13	1.0
1,2-Dichloropropane	0.13	U	0.13	1.0
1,3,5-Trimethylbenzene	0.14	U	0.14	1.0
1,3-Dichlorobenzene	0.16	U	0.16	1.0
1,3-Dichloropropane	0.15	U	0.15	1.0
1,4-Dichlorobenzene	0.16	U	0.16	1.0
1-Chlorohexane	0.17	U	0.17	1.0
2,2-Dichloropropane	0.20	U	0.20	1.0
2-Butanone (MEK)	1.8	U	1.8	6.0
2-Chlorotoluene	0.17	U	0.17	1.0
4-Chlorotoluene	0.17	U	0.17	1.0
4-Isopropyltoluene	0.17	U	0.17	1.0
4-Methyl-2-pentanone (MIBK)	1.0	U	1.0	5.0
Acetone	1.9	U	1.9	10
Benzene	0.16	U	0.16	1.0
Bromobenzene	0.17	U	0.17	1.0
Bromoform	0.19	U	0.19	1.0
Bromomethane	0.21	U	0.21	2.0
Carbon tetrachloride	0.19	U	0.19	2.0
Chlorobenzene	0.17	U	0.17	1.0
Chlorobromomethane	0.10	U	0.10	1.0
Chloroform	0.16	U	0.16	1.0
Chloromethane	0.30	U	0.30	2.0
cis-1,2-Dichloroethene	0.15	U	0.15	1.0
cis-1,3-Dichloropropene	0.16	U	0.16	1.0
Dibromomethane	0.17	U	0.17	1.0
Dichlorobromomethane	0.17	U	0.17	1.0
Dichlorodifluoromethane	0.31	Ū	0.31	2.0
Ethylbenzene	0.16	Ü	0.16	1.0
Ethylene Dibromide	0.18	Ū	0.18	1.0
Hexachlorobutadiene	0.36	Ü	0.36	1.0
Isopropylbenzene	0.19	Ü	0.19	1.0
Methyl tert-butyl ether	0.25	Ü	0.25	5.0
monty to cough one	5.20	~	0.20	- · -

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: TB110215

11/13/2015 0330

Prep Date:

 Lab Sample ID:
 280-76497-18TB
 Date Sampled: 11/02/2015 0800

 Client Matrix:
 Water
 Date Received: 11/06/2015 0930

8260B Volatile Organic Compounds (GC/MS)

Analysis Batch: 280-303876 Instrument ID: VMS_R1 Analysis Method: 8260B Prep Batch: N/A Lab File ID: R2243.D Prep Method: 5030B Dilution: 1.0 Initial Weight/Volume: 20 mL Final Weight/Volume: 20 mL Analysis Date: 11/13/2015 0330

Result (ug/L) Qualifier DL LOQ Analyte Methylene Chloride 0.32 U 0.32 5.0 U 0.34 2.0 m-Xylene & p-Xylene 0.34 0.22 U 0.22 1.0 Naphthalene 0.32 U 0.32 1.0 n-Butylbenzene 0.16 U 0.16 1.0 N-Propylbenzene o-Xylene 0.19 U 0.19 1.0 0.17 U 0.17 1.0 sec-Butylbenzene 0.17 U 0.17 1.0 Styrene U tert-Butylbenzene 0.16 0.16 1.0 Tetrachloroethene 0.20 U 0.20 1.0 Toluene 0.17 U 0.17 1.0 U 0.15 1.0 trans-1,2-Dichloroethene 0.15 U 1.0 0.19 trans-1,3-Dichloropropene 0.19 U 0.16 1.0 Trichloroethene 0.16 0.29 U 2.0 Trichlorofluoromethane 0.29 U 0.10 1.5 Vinyl chloride 0.10 U 1.0 0.17 Dibromochloromethane 0.17

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	116		70 - 120
4-Bromofluorobenzene (Surr)	98		75 - 120
Dibromofluoromethane (Surr)	108		85 - 115
Toluene-d8 (Surr)	94		85 - 120

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59URS3DWG1

Date Sampled: 11/02/2015 1609 Lab Sample ID: 280-76497-1

Date Received: 11/06/2015 0930 Client Matrix: Water

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C/DoD Analysis Batch: 280-303603 Instrument ID: SMS_G4 G4 9950.D Prep Batch: 280-303206 Lab File ID: Prep Method: 3520C

Dilution: 1.0 Initial Weight/Volume: 1045.6 mL Analysis Date: 11/11/2015 1630 Final Weight/Volume: 2 mL

Injection Volume: 1 uL Prep Date: 11/09/2015 1500

Result (ug/L) Qualifier DL LOQ Analyte 1,4-Dioxane 5.8 0.082 0.96

%Rec Qualifier Acceptance Limits Surrogate

2-Fluorobiphenyl 54 - 120 80

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59BM121WG1

Lab Sample ID:

280-76497-2

Client Matrix:

Water

Date Sampled: 11/02/2015 1804

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch: 280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

280-303206

Lab File ID:

G4_9951.D

Dilution:

1.0

Prep Batch:

Initial Weight/Volume: 1041.5 mL 2 mL

Analysis Date: Prep Date:

11/11/2015 1650 11/09/2015 1500 Final Weight/Volume: Injection Volume:

Analyte 1,4-Dioxane Result (ug/L) 0.40

Qualifier JF.

DL 0.083 LOQ 0.96

Surrogate 2-Fluorobiphenyl

%Rec 81

Qualifier

Acceptance Limits

54 - 120

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59URS2DWG1

 Lab Sample ID:
 280-76497-3
 Date Sampled: 11/03/2015 0909

 Client Matrix:
 Water
 Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C/DoD Analysis Batch: 280-303603 Instrument ID: SMS_G4
Prep Method: 3520C Prep Batch: 280-303206 Lab File ID: G4_9952.D

 Dilution:
 1.0
 Initial Weight/Volume:
 1043.1 mL

 Analysis Date:
 11/11/2015 1710
 Final Weight/Volume:
 2 mL

 Prep Date:
 11/09/2015 1500
 Injection Volume:
 1 uL

 Analyte
 Result (ug/L)
 Qualifier
 DL
 LOQ

 1,4-Dioxane
 21
 0.082
 0.96

Surrogate %Rec Qualifier Acceptance Limits
2-Fluorobiphenyl 81 54 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS2SWG1

Lab Sample ID:

280-76497-4

Client Matrix:

Water

Date Sampled: 11/03/2015 1138

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

Lab File ID:

G4_9953.D

Dilution:

1.0

280-303206

Initial Weight/Volume: 1042.3 mL

Analysis Date:

11/11/2015 1729

Final Weight/Volume: Injection Volume:

2 mL 1 uL

Prep Date:

11/09/2015 1500

Result (ug/L)

Qualifier

DL

LOQ

1,4-Dioxane

Analyte

12

0.083

0.96

Surrogate 2-Fluorobiphenyl %Rec 78

Qualifier

Acceptance Limits

54 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59URS5SWG1

Lab Sample ID:

280-76497-5

Client Matrix:

Water

Date Sampled: 11/03/2015 1436

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS G4

Prep Method:

3520C

Prep Batch:

280-303206

Lab File ID:

G4 9954.D

Dilution:

1.0

Initial Weight/Volume: 1045.2 mL

Analysis Date:

Final Weight/Volume:

Prep Date:

11/11/2015 1749 11/09/2015 1500

Injection Volume:

2 mL 1 uL

Analyte 1,4-Dioxane Result (ug/L) 0.40

Qualifier NF

DL 0.082 LOQ 0.96

11/23/2015

Surrogate 2-Fluorobiphenyl

TestAmerica Denver

%Rec

Qualifier

Acceptance Limits

80

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59DW1WG1

Lab Sample ID: 280-76497-6 Date Sampled: 11/04/2015 0915

Client Matrix: Water Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C/DoD Analysis Batch: 280-303603 Instrument ID: SMS_G4 Prep Method: 3520C Prep Batch: 280-303206 Lab File ID: G4 9957.D

Dilution: 1.0 Initial Weight/Volume: 1048.2 mL Analysis Date: 11/11/2015 1848 Final Weight/Volume: 2 mL

Prep Date: 11/09/2015 1500 Injection Volume: 1 uL

Analyte Result (ug/L) Qualifier DL LOQ 1,4-Dioxane 0.082 0.082 0.95

Surrogate %Rec Acceptance Limits Qualifier 2-Fluorobiphenyl 77 54 - 120

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW1WG1

Lab Sample ID:

280-76497-7

Client Matrix:

Water

Date Sampled: 11/03/2015 1736

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Dilution:

Prep Batch:

280-303206

Lab File ID:

G4 9958.D

1.0

Initial Weight/Volume:

1047.1 mL

Analysis Date: Prep Date:

11/11/2015 1907 11/09/2015 1500

Final Weight/Volume: Injection Volume:

2 mL 1 uL

Analyte 1,4-Dioxane

Result (ug/L) 0.082

Qualifier

DL 0.082 LOQ 0.96

Surrogate

2-Fluorobiphenyl

%Rec

Qualifier

Acceptance Limits

89

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW3WG1

Lab Sample ID:

280-76497-8

Client Matrix:

Water

Date Sampled: 11/04/2015 1110

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS G4

Prep Method:

3520C

Prep Batch:

280-303206

Lab File ID:

G4_9959.D

Dilution:

1.0

Initial Weight/Volume:

Analysis Date:

Final Weight/Volume:

1040.8 mL

Prep Date:

11/11/2015 1927

Injection Volume:

Analyte

11/09/2015 1500

Result (ug/L) 0.083

Qualifier U

DL 0.083 LOQ 0.96

1,4-Dioxane Surrogate

2-Fluorobiphenyl

%Rec

Qualifier

Acceptance Limits

80

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW7WG1

Lab Sample ID:

280-76497-9

Client Matrix:

Water

Date Sampled: 11/04/2015 1602

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

280-303206

Lab File ID:

G4_9960.D

Dilution:

1.0

Initial Weight/Volume:

1040.5 mL

Analysis Date:

11/11/2015 1947

Final Weight/Volume: Injection Volume:

1 uL

Prep Date:

11/09/2015 1500

Result (ug/L)

Qualifier

DL 0.083 LOQ 0.96

1,4-Dioxane

Analyte

6.0

Surrogate 2-Fluorobiphenyl %Rec 89

Qualifier

Acceptance Limits

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59SW4WG1

Lab Sample ID:

280-76497-10

Client Matrix:

Water

Date Sampled: 11/05/2015 1117

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

Lab File ID:

G4_9961.D

Dilution:

1.0

280-303206

Initial Weight/Volume: 1039.7 mL

Analysis Date:

Final Weight/Volume:

Prep Date:

11/11/2015 2006 11/09/2015 1500

Injection Volume:

2 mL 1 uL

Analyte 1,4-Dioxane Result (ug/L) 1.6

Qualifier

DL 0.083 LOQ 0.96

Surrogate

%Rec

Qualifier

Acceptance Limits

2-Fluorobiphenyl

90

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DUP01WG1

Lab Sample ID:

280-76497-11FD

Client Matrix:

Water

Date Sampled: 11/05/2015 1203

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch:

280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

280-303206

Lab File ID:

G4_9962.D

Dilution:

1.0

Initial Weight/Volume: 1044 mL

Analysis Date: Prep Date:

11/11/2015 2026 11/09/2015 1500 Final Weight/Volume: Injection Volume:

2 mL

Analyte

Result (ug/L)

Qualifier

DL 0.082 LOQ 0.96

1,4-Dioxane Surrogate

1.6

Qualifier

Acceptance Limits

2-Fluorobiphenyl

%Rec 77

Client: HydroGeoLogic Inc Job Number: 280-76497-1

Client Sample ID: 59DUP02WG1

Lab Sample ID: 280-76497-12FD Date Sampled: 11/04/2015 1204 Client Matrix: Water Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C/DoD Analysis Batch: 280-305166 Instrument ID:

SMS_G4 280-303590 Lab File ID: G4_0060.D Prep Method: 3520C Prep Batch: Initial Weight/Volume: 1045.4 mL Dilution: 1.0

11/21/2015 1006 Final Weight/Volume: Analysis Date: Prep Date: 11/11/2015 1435 Injection Volume:

Qualifier DL Analyte Result (ug/L) LOQ 0.082 0.96 1,4-Dioxane 8.1

Surrogate %Rec Qualifier Acceptance Limits 54 - 120 2-Fluorobiphenyl 78

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59EB110515

Lab Sample ID:

280-76497-14EB

Client Matrix:

Water

Date Sampled: 11/05/2015 1220

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method:

8270C/DoD

Analysis Batch: 280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

Lab File ID:

G4_9963.D

Dilution:

1.0

280-303206

Analysis Date:

11/11/2015 2046

Final Weight/Volume:

Initial Weight/Volume: 1041.3 mL 2 mL

Prep Date:

11/09/2015 1500

Injection Volume:

1 uL

Analyte 1,4-Dioxane Result (ug/L) 0.083

Qualifier

DL 0.083 LOQ 0.96

Surrogate

2-Fluorobiphenyl

%Rec

Qualifier

Acceptance Limits

86

Client: HydroGeoLogic Inc

Job Number: 280-76497-1

Client Sample ID:

59DW3WG1

Lab Sample ID:

280-76497-17

Client Matrix:

Water

Date Sampled: 11/04/2015 1346

Date Received: 11/06/2015 0930

8270C/DoD Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270C/DoD

Analysis Batch: 280-303603

Instrument ID:

SMS_G4

Prep Method:

3520C

Prep Batch:

Lab File ID:

Dilution:

1.0

280-303206

G4_9964.D

Analysis Date:

11/11/2015 2106

Final Weight/Volume:

1040.7 mL 2 mL

Prep Date:

11/09/2015 1500

Injection Volume:

1 uL

Analyte 1,4-Dioxane Result (ug/L) 6.7

Qualifier

DL 0.083

Initial Weight/Volume:

LOQ 0.96

Surrogate 2-Fluorobiphenyl %Rec

Qualifier

Acceptance Limits

73

ratories LLC				Report	Date: Novembe	er 23, 2015
	Certificate	of Analysis			Page 1	of 1
384963	Date Collected:	11/05/2015 08:45	Mat	rix:	WATER	
384963001	Date Received: Client:	11/06/2015 09;40 HGLG007	Proj	ect:	HGLG00714	
59JC2WG1	Method:	EPA 522	SOP	Ref:	GL-OA-E-073	
1522680	Inst:	MSD6.I	Dilu	tion:	1	
11/22/2015 15:21	Analyst:	LOF	Inj.	Vol:	1 uL	
11/20/2015 11:20	Aliquot:	100 mL	Fina	l Volume:	2 mL	
s112215.B\s6k2207.D		RTX-624				
Parmname	Qualifier Resu	ılt Units	MDL	LOD	LOQ	
1,4-Dioxane	₩ F 0.896	ug/L	0.320	0.320	1.00	
	384963 384963001 59JC2WG1 1522680 11/22/2015 15:21 11/20/2015 11:20 s112215.B\s6k2207.D	Semi-V Certificate Sample S	Semi-Volatile Certificate of Analysis Sample Summary	Semi-Volatile Certificate of Analysis Sample Summary	Semi-Volatile Certificate of Analysis Sample Summary 384963	Semi-Volatile

ATTACHMENT 3 DATA VALIDATION REPORT

Volatile Organic Compounds

SW-846 Method 8260B USEPA Level II Review

Site: Air Force Plant 59	SDG #: 280-76497-1
Laboratory: TestAmerica Laboratories	Date: 12/23/2015
HydroGeoLogic, Inc. Reviewer: Andrea Fletcher	Project: GS2049.05.01
Peer Reviewer: Joseph Vilain (12/23/15)	110ject. 032049.03.01

Client Sample ID	Laboratory Sample ID	Analysis Batch Matrix		
59URS3DWG1	280-76497-1	280-303876	Groundwater	
59BM121WG1	280-76497-2	280-303876	Groundwater	
59URS2DWG1	280-76497-3	280-303876	Groundwater	
59URS2SWG1	280-76497-4	280-303876	Groundwater	
59URS5SWG1	280-76497-5	280-303876	Groundwater	
59DW1WG1	280-76497-6	280-303876	Groundwater	
59SW1WG1	280-76497-7	280-303876	Groundwater	
59SW3WG1	280-76497-8	280-303876	Groundwater	
59SW7WG1	280-76497-9	280-303876	Groundwater	
59SW4WG1	280-76497-10	280-303876	Groundwater	
59DUP01WG1	280-76497-11FD	280-303876	Groundwater	
59AB110515	280-76497-13FB	280-303876	Water QC	
59EB110515	280-76497-14EB	280-304402	Water QC	
TB110415	280-76497-15TB	280-303876	Water QC	
59JC2WG1	280-76497-16	280-303876	Groundwater	
59DW3WG1	280-76497-17	280-303876	Groundwater	
TB110215	280-76497-18TB	280-303876	Water QC	

<u>Narrative and Completeness Review</u> – The case narrative and data package were checked for completeness. No discrepancies were noted.

Qualification: None required.

<u>Sample Delivery and Condition</u> – All samples arrived at the laboratory in acceptable condition and temperature and were properly preserved. Proper custody was documented.

Qualification: None required.

 $\underline{\text{Holding Times}}$ – The samples were analyzed within the 14-day holding time required by the QAPP for preserved aqueous samples

<u>Surrogates</u> – The laboratory reported different control limits for all VOC surrogates than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

All surrogate recoveries were within the control limits specified in the QAPP.

Qualification: None required.

<u>Laboratory Control Sample</u> – The laboratory reported different recovery and RPD limits for all target analytes than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

One LCS was associated with the samples in this SDG. The LCS met the %R control limits established in the QAPP.

Qualification: None required.

<u>MS/MSD</u> – The laboratory reported different recovery and RPD limits for all target analytes than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

Matrix spike/matrix spike duplicate analyses were performed for all target VOCs on sample 59URS5SWG1 from this SDG. The %R and RPD results were within the QAPP control limits with the exception of the RPD for 4-methyl-2-pentanone (21% RPD, limt RPD < 20%). All results are qualified M.

Qualification: All 4-methyl-2-pentanone results are qualified M.

<u>Laboratory Duplicate</u> – Laboratory duplicate analyses were not requested or performed on a sample from this SDG.

Qualification: None required.

<u>Method Blank</u> – One method blank is associated with the samples in this SDG. The method blank analyzed on 11/12/15 was free from contamination.

Qualification: None required.

<u>Field Blanks</u> – One equipment blank, identified as 59EB110515, was associated with all samples in this SDG and was free from contamination. One ambient blank, identified as 59AB110515, was associated with all samples in this SDG and was free from contamination.

Qualification: None required.

<u>Trip Blank</u> – Two trip blanks, identified as TB110215 and TB110415, were associated with all samples in this SDG and were free from contamination.

<u>Field Duplicate</u> – Sample 59DUP01WG1 is a field duplicate of sample 59SW4WG1. All calculated RPDs were within the control limits established in the QAPP for the duplicate pair.

Qualification: None required.

Compound Quantitation – Analyte non-detections were reported as "ND"; these results should be considered the equivalent of "MDL U." Analyte detections below the RL were reported as J-qualified results. These J qualifiers should be changed to F qualifiers per the QAPP instructions, unless superseded by a more severe qualifier. Due to a target analyte concentration, sample 59UR52DWG1was reanalyzed at 4x dilution. The diluted results should be considered the definitive result and the non-diluted results should have an X appended to the laboratory-applied qualifier.

Qualification: All diluted results for sample 59URS2DWG1 except for cis-1,2-dichloroethene, has an X appended to it, cis-1,2-dichloroethene in original analysis has an X appended to it. The diluted cis-1,2-dichloroethene result should be considered the definitive result. All laboratory detections below the RL are qualified F.

Sample	Analyte	Lab Value	Lab Qualifier	Validated Value	Validated Qualifier
59URS3DWG1	4-Methyl-2-pentanone	1.0	U	1.0	M
370K33DWG1	cis-1,2-Dichloroethene	0.90	J	0.90	F
59BM121WG1	4-Methyl-2-pentanone	1.0	UQ	1.0	U
59URS2DWG1	1,1-Dichloroethane	0.20	J	0.20	F
(Original run)	4-Methyl-2-pentanone	1.0	U	1.0	M
(Original rail)	cis-1,2-Dichloroethene	60	J	60	JX
59URS2DWG1	cis-1,2-Dichloroethene	61	D	Report th	is Value
(Dilution 4x)	All other results	Varies	U	Varies	UX
59URS2SWG1	4-Methyl-2-pentanone	1.0	U	1.0	M
	1,1,1-Trichloroethane	0.52	J	0.52	F
59URS5SWG1	4-Methyl-2-pentanone	1.0	U	1.0	M
	Trichloethene	0.56	J	0.56	F
59DW1WG1	4-Methyl-2-pentanone	1.0	U	1.0	M
59SW1WG1	4-Methyl-2-pentanone	1.0	U	1.0	M
	1,1,1-Trichloroethane	0.24	J	0.24	F
59SW3WG1	4-Methyl-2-pentanone	1.0	U	1.0	M
393 W 3 W G I	cis-1,2-Dichloroethene	0.27	J	0.27	F
	Trichloethene	0.42	J	0.42	F
	1,1-Dichloroethene	0.52	J	0.52	F
59SW7WG1	4-Methyl-2-pentanone	1.0	U	1.0	M
	Tetrachloroethene	0.70	J	0.70	F
	trans-1,2-Dichloroethene	0.16	J	0.16	F
	Vinyl chloride	1.2	J	1.2	F
59SW4WG1	1,1,1-Trichloroethane	0.64	J	0.64	F

	1,1-Dichloroethane	0.58	J	0.58	F
	4-Methyl-2-pentanone	1.0	U	1.0	M
	Tetrachloroethene	0.32	J	0.32	F
	1,1,1-Trichloroethane	0.66	J	0.66	F
59DUP01WG1	1,1-Dichloroethane	0.59	J	0.59	F
39D0P01WG1	4-Methyl-2-pentanone	1.0	U	1.0	M
	Tetrachloroethene	0.32	J	0.32	F
59JC2WG1	1,1,1-Trichloroethane	0.33	J	0.33	F
	4-Methyl-2-pentanone	1.0	U	1.0	M
393C2WG1	cis-1,2-Dichloroethene	0.24	J	0.24	F
	Trichloethene	0.39	J	0.39	F
59DW3WG1	1,1-Dichloroethane	0.31	J	0.31	F
	4-Methyl-2-pentanone	1.0	U	1.0	M

1,4-Dioxane

SW-846 Method 8270C-SIM USEPA Level II Review

Site: Air Force Plant 59	SDG #: 280-76497
Laboratory: Test America Laboratories	Date: 12/23/15
HydroGeoLogic, Inc. Reviewer: Andrea Fletcher Peer Reviewer: Joseph Vilain (12/23/15)	Project: GS2049.05.01

Client Sample ID	Laboratory Sample ID	Analysis/Prep Batch Matrix	
59URS3DWG1	280-76497-1	280-303603/280-303206	Groundwater
59BM121WG1	280-76497-2	280-303603/280-303206	Groundwater
59URS2DWG1	280-76497-3	280-303603/280-303206	Groundwater
59URS2SWG1	280-76497-4	280-303603/280-303206	Groundwater
59URS5SWG1	280-76497-5	280-303603/280-303206	Groundwater
59DW1WG1	280-76497-6	280-303603/280-303206	Groundwater
59SW1WG1	280-76497-7	280-303603/280-303206	Groundwater
59SW3WG1	280-76497-8	280-303603/280-303206	Groundwater
59SW7WG1	280-76497-9	280-303603/280-303206	Groundwater
59SW4WG1	280-76497-10	280-303603/280-303206	Groundwater
59DUP01WG1	280-76497-11FD	280-303603/280-303206	Groundwater
59DUP02WG1	280-76497-12FD	280-305166/280-303590	Groundwater
59EB110515	280-76497-14FB	280-303603/280-303206	Water QC
59DW3WG1	280-76497-17	280-303603/280-303206	Groundwater

<u>Narrative and Completeness Review</u> – The case narrative and data package were checked for completeness. No discrepancies were noted.

Qualification: None required.

<u>Sample Delivery and Condition</u> – All samples arrived at the laboratory in acceptable condition and temperature and were properly preserved. Proper custody was documented.

Qualification: None required.

<u>Holding Times</u> – All samples were extracted within the 7-day holding time required by the QAPP and analyzed within 40 days of extraction.

Qualification: None required.

Surrogates – All surrogate recoveries were within the control limits specified by the laboratory.

<u>Laboratory Control Sample</u> – The laboratory reported different recovery and RPD limits for 1,4-dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data. The LCS for batch 280-303206 met the %R control limit established in the QAPP. The LCS/LCSD for batch 280-303590 met the %R and RPD limits.

Qualification: None required.

<u>MS/MSD</u> – The laboratory reported different recovery and RPD limits for 1,4-dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

Matrix spike/matrix spike duplicate analyses were performed for 1,4-dioxane on sample 59JC2WG1 from this SDG. The %R and RPD results were within the QAPP control limits.

Qualification: None required.

<u>Laboratory Duplicate</u> – Laboratory duplicate analyses were not requested or performed on a sample from this SDG.

Qualification: None required.

<u>Method Blank</u> – Two method blanks were associated with the samples in this SDG. The method blanks analyzed on 11/11/15 and 11/21/15, for batches 280-303206 and 280-303590, respectively, were free from contamination.

Qualification: None required.

<u>Equipment Blank</u> – One equipment blank, identified as 59EB110515, was associated with all samples in this SDG and was free from contamination.

Qualification: None required.

<u>Field Duplicate</u> – Sample 59DUP01WG1 was a field duplicate of sample 59SW4WG1 with a calculated RPD of 0%. Sample 59DUP02WG1 was a field duplicate of sample 59DW3WG1 with a calculated RPD of 18.9%. All RPDs were within the control limits established in the QAPP for duplicate pairs.

Qualification: None required.

<u>Compound Quantitation</u> – Analyte non-detections were reported as "ND"; these results should be considered the equivalent of "MDL U." Analyte detections below the RL were reported as J-qualified results. These J qualifiers should be changed to F qualifiers per the QAPP instructions, unless superseded by a more severe qualifier.

Qualification: None required.

Qualification Summary Table (results in $\mu g/L$):

Sample	Analyte	Lab Value	Lab Qualifier	Validated Value	Validated Qualifier
59URS3DWG1	1,4-Dioxane	No qualificat	ion required.		
59BM121WG1	1,4-Dioxane	0.40	J	0.40	F
59URS2DWG1	1,4-Dioxane	No qualificat	ion required.		
59URS2SWG1	1,4-Dioxane	No qualificat	ion required.		
59URS5SWG1	1,4-Dioxane	0.40	J	0.40	F
59DW1WG1	1,4-Dioxane	No qualification required.			
59SW1WG1	1,4-Dioxane	No qualification required.			
59SW3WG1	1,4-Dioxane	No qualification required.			
59SW7WG1	1,4-Dioxane	No qualification required.			
59SW4WG1	1,4-Dioxane	No qualification required.			
59DUP01WG1	1,4-Dioxane	No qualification required.			
59DUP02WG1	1,4-Dioxane	No qualification required.			
59DW3WG1	1,4-Dioxane	No qualification required.			

1,4-Dioxane

SW-846 Method 522 USEPA Level II Review

Site: Air Force Plant 59	SDG #: 384963	
Laboratory: GEL Laboratories	Date: 12/23/2015	
HydroGeoLogic, Inc. Reviewer: Andrea Fletcher	Project: GS2049.05.01	
Peer Reviewer: Joseph Vilain (12/23/15)	Project. 032049.03.01	

Client Sample ID	Laboratory Sample ID	Analysis/Prep Batch	Matrix
59JC2WG1	384963001	1522680/1522679	Groundwater

<u>Narrative and Completeness Review</u> – The case narrative and data package were checked for completeness. No discrepancies were noted.

Qualification: None required.

<u>Sample Delivery and Condition</u> – The sample arrived at the laboratory in acceptable condition and temperature and was properly preserved. Proper custody was documented.

Qualification: None required.

Holding Times – The sample was extracted within the 28-day holding time required by the method.

Qualification: None required.

Surrogates – All surrogate recoveries were within the control limits specified by the laboratory.

Qualification: None required.

<u>Laboratory Control Sample</u> – The laboratory reported different recovery and RPD limits for 1,4-dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data. One LCS was associated with the sample in this SDG and met the %R control limit established in the QAPP.

Qualification: None required.

 $\overline{\text{MS/MSD}}$ – The laboratory reported different recovery and RPD limits for 1,4-dioxane than were established in the QAPP; those limits listed in the QAPP were used to evaluate the data.

Matrix spike/matrix spike duplicate analyses were performed for 1,4-dioxane on sample 59JC2WG1 from this SDG. The %R and RPD results were within the QAPP control limits.

<u>Laboratory Duplicate</u> – Laboratory duplicate analyses were not requested or performed on a sample from this SDG.

Qualification: None required.

<u>Method Blank</u> – One method blank was associated with the sample in this SDG. The method blank analyzed on 11/20/2015 was free from contamination.

Qualification: None required.

Equipment Blank – An equipment blank was not submitted with this sample.

Qualification: None required.

Field Duplicate – A field duplicate was not submitted with this sample.

Qualification: None required.

<u>Compound Quantitation</u> – Analyte non-detections were reported as "ND"; these results should be considered the equivalent of "MDL U." Analyte detections below the RL were reported as J-qualified results. These J qualifiers should be changed to F qualifiers per the QAPP instructions, unless superseded by a more severe qualifier.

Qualification: The J flag applied by the laboratory was changed to F.

Qualification Summary Table (results in $\mu g/L$):

Sample	Analyte	Lab Value	Lab Qualifier	Validated Value	Validated Qualifier
59JC2WG1	1,4-Dioxane	0.896	J	0.896	F

ATTACHMENT 4 DATA QUALIFIERS

Attachment 4 Data Qualifiers

Qualifier	Description
J	The analyte was positively identified, the quantitation is an estimation.
U	The analyte was analyzed for, but not detected. The associated numerical value is at or
	below the MDL.
UJ	The analyte was not detected; however, the result is estimated due to discrepancies in
	meeting certain analyte-specific quality control criteria.
F	The analyte was positively identified but the associated numerical value is below the RL.
Q	One or more quality control criteria (for example, LCS recovery, surrogate spike recovery)
	failed. Data must be carefully assessed by the prime contractor (or project team) with
	respect to the project-specific requirements and evaluated for usability. Subsequent
	assessment by DOD may result in rejection of data.
В	The analyte was found in an associated blank above ½ the RL, as well as in the sample.
M	A matrix effect was present
S	To be applied to all field screening data.
T	Tentatively identified compound: The analyte is a tentatively identified compound (mass
	spectrometry methods only).

GS2049

HGL 2/17/2016