Pre-design Investigation Report for the Former Bright Outdoors Site Johnson City, New York Site No. 7-04-023

July 2009

Prepared for:

THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING, P.C.

368 Pleasant View Drive Lancaster, New York 14086

©2009 Ecology and Environment Engineering, P.C.

able of Contents

Section		Page
1	Introduction and Site Description	1-1
2	Pre-design Investigation Activities	2-1
	2.1 Monitoring Well Installation and Development	
	2.2 Groundwater Sampling	
	2.3 Soil Vapor Extraction Point Installation	
	2.4 Subsurface Soil Sampling	2-4
	2.5 Investigation-derived Waste	2-4
	2.6 Soil Vapor Extraction Pilot Test	
	2.7 Quality Control and Data Review	2-5
3	Results and Conclusions	3-1
	3.1 Site Hydrogeology	
	3.2 Groundwater Chemistry	
	3.3 Subsurface Soil Results	3-1
	3.4 Soil Vapor Extraction Pilot Test Results	3-3
	3.5 Vapor Discharge Results	3-4
4	Conclusions	4-1
5	References	5-1
Appendi	ix	
Α	Well Logs and Well Development Forms	A-1
В	Well Purge and Sample Records	B-1
С	631 Field Street Property Survey	C-1
D	Borehole Records	D-1
E	Data Usability Summary Reports (DUSRs) and Laboratory Data	E-1

Table of Contents (cont.)

Appen	dix	Page
F	Geotechnical Report	F-1
G	SVE Pilot Test Results	G-1

ist of Tables

Table	Page
2-1	Monitoring Well and Groundwater Elevations, Former Bright Outdoors Site 2-9
2-2	Summary of Well Sampling Data and Groundwater Quality Field Measurements, Former Bright Outdoors Site
2-3	Subsurface Soil Sample Collection Summary, Former Bright Outdoors Site 2-11
2-4	Air Sample Summary, Former Bright Outdoors Site2-12
3-1	Summary of Positive Analytical Results for Groundwater Samples, Former Bright Outdoors Site
3-2	Comparison of Positive Analytical Results for Groundwater Samples, Former Bright Outdoors Site
3-3	Summary of Positive Analytical Results for Soil Samples, Former Bright Outdoors Site
3-4	Summary of TCLP Analytical Results, Former Bright Outdoors Site 3-10
3-5	Observed Vacuum, Former Bright Outdoors Site
3-6	Calculated Radii of Influence for SVE Pilot Test
3-7	Summary of Positive Analytical Results for Air Samples, Former Bright Outdoors Site

ist of Figures

Figure		Page
1-1	Site Location Map, Former Bright Outdoors Site	1-3
2-1	Soil Vapor Extraction Pilot Test Setup, Former Bright Outdoors Site	2-13
3-1	Ground Water Elevation Contours, Former Bright Outdoors Site	3-15
3-2a	SVE Pilot Test Vacuum Pressure Readings, Former Bright Outdoors Site, December 2008	3-17
3-2b	SVE Pilot Test Vacuum Pressure Readings, Former Bright Outdoors Site, December 2008	3-19

ist of Abbreviations and Acronyms

DUSR Data Usability Summary Report

EEEPC Ecology and Environment Engineering, P.C.

EPA (United States) Environmental Protection Agency

ID inner diameter

MS/MSD matrix spike/matrix spike duplicate

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

mg/kg milligrams per kilogram

mg/L milligrams per liter

NAD 83 North American Datum of 1983

NAVD 88 North American Vertical Datum of 1988

NTU nephelometric turbidity unit

NYSDEC New York State Department of Environmental Conservation

PID photo-ionization detector

RI remedial investigation

SSDS sub-slab depressurization system

SVE soil vapor extraction

TCA trichloroethane

TCE trichloroethene

TCL Target Compound List

List of Abbreviations and Acronyms (cont.)

TCLP Toxicity Characteristic Leaching Procedure

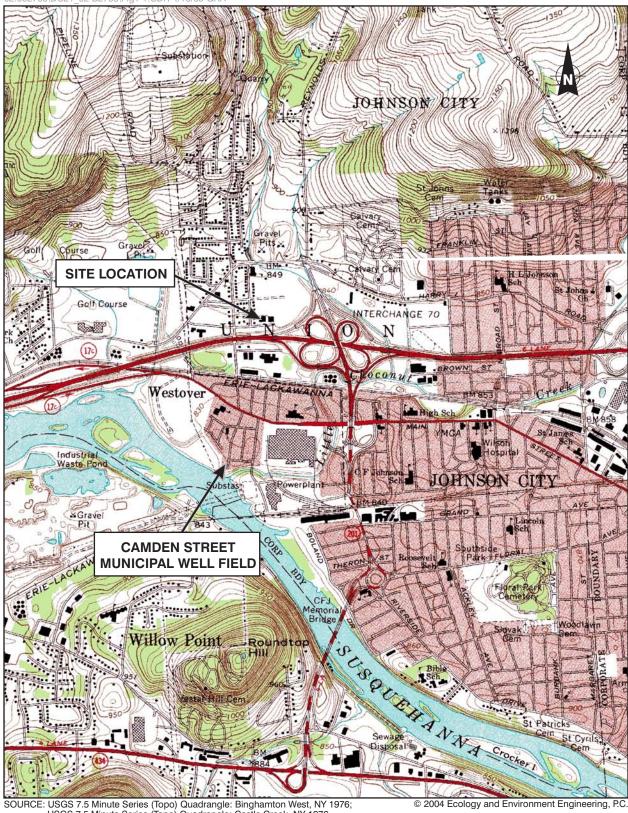
VOC volatile organic compound

1

Introduction and Site Description

Ecology and Environment Engineering, P.C. (EEEPC) performed a pre-design investigation at the Former Bright Outdoors Site (Site No. 7-04-023) located at 631 Field Street in Johnson City, New York (see Figure 1-1). This work was performed under Work Assignment No. D004442-21 issued on August 5, 2008 by the New York State Department of Environmental Conservation (NYSDEC).

A light industrial property known as the Former Bright Outdoors site was identified as a source of 1,1,1-trichloroethane (TCA) and trichloroethene (TCE) contamination to the local groundwater. As described in the RI Report (EEEPC 2005), the 1.8-acre site was first developed in 1966 and was used as a soft drink bottling facility from 1967 until 1984. From 1984 until 2001, the site was owned by American Pipe and Plastics and was operated by Bright Outdoors and then Impact Sports Equipment for the manufacturing of outdoor furniture and sports equipment using PVC pipe and vinyl-coated polyester. In 2001 the property was sold to 631 Field Street LP and operated by Samscreen, Inc., to manufacture wire screens for the mining and aggregate industries. The facility is currently used on a limited basis for material storage and welding. The site is relatively flat lying and is covered mostly by buildings and asphalt, with less than 20% of the ground surface covered by grass.


Historically, TCA and TCE in groundwater have been of concern at this site. Figure 1-4 of the 2005 Remedial Investigation (RI) Report (EEEPC 2005) shows the groundwater analytical results prior to 2004. In 1994, the highest levels of TCA and TCE were found to the south and southwest of the building (445 micrograms per liter $[\mu g/L]$ and 68 $\mu g/L$, respectively). In 1995, the focus of sampling was to the north and east sides of the building. The highest concentrations of TCA and TCE (270 µg/L and 170 µg/L, respectively) were found on the adjoining property on the east side of the Former Bright Outdoors site. In 1996, samples were taken to the north, south, and east of the site. The highest concentrations were again found to the south across the street from the site (260 µg/L TCA and $18 \mu g/L TCE$). In 2001, the highest concentration of TCA (160 $\mu g/L$) was on the east-central side of the site and the highest concentration of TCE (91 µg/L) was on the west-central side of the site. In 2004, an RI was conducted. Analytical results for groundwater samples collected during the RI are shown in Figure 5-3 of the RI Report (EEEPC 2005). The highest concentration of TCA detected in groundwater during the RI was 270 µg/L on the east side of the site in monitoring

1. Introduction and Site Description

well MW-05. The highest concentration of TCE detected in groundwater during the RI was $260 \,\mu g/L$ on the west side of the site in groundwater grab sample BH-08. During the RI, groundwater elevations measured in existing wells indicated that regional groundwater flow was to the south-southwest toward the Susquehanna River and Camden Avenue municipal well field. However, on site, local groundwater flow was west-southwest across the site turning in a more southerly direction south of the site. The variability in groundwater flow is likely related to localized variation in soil type within the aquifer.

The RI concluded that the northeast part of the facility (warehouse/former production area) was a likely source of volatile organic compound (VOC) contamination. The most likely conduit for contaminant entry into the subsurface is a floor trench drain running most of the length of the warehouse/former production area with a pipe exiting at the north end of the trench. However, based on historical groundwater results, an additional contaminant source to the east or northeast is likely also present.

SOURCE: USGS 7.5 Minute Series (Topo) Quadrangle: Binghamton West, NY 1976; USGS 7.5 Minute Series (Topo) Quadrangle: Castle Creek, NY 1976.

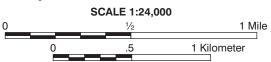


Figure 1-1 **Site Location Map** Former Bright Outdoors Site Johnson City, New York

2

Pre-design Investigation Activities

2.1 Monitoring Well Installation and Development

Two monitoring wells (MW-07 and MW-08) were installed on the east and west sides of the property, respectively, during the week of December 1, 2008. Monitoring well drilling and installation was conducted by Aztech Technologies, Inc., under the supervision of an EEEPC field team. MW-07 was installed inside the existing building (warehouse/former production area) due to a lack of available space and access on the east side of the building. MW-08 was installed at the former location of BH-08 on the west-central side of the site.

The monitoring wells were drilled in accordance with the Project Management Work Plan (EEEPC 2008) using 4½-inch inside diameter (ID), hollow-stem augers. A continuous soil core was collected prior to augering using direct-push techniques. The soil was screened for organic vapors using a photo-ionization detector (PID) (MiniRAE 2000) and the soil types were described and logged. No organic vapors were detected in any of the soil cores. Well drilling logs for MW-07 and MW-08 are provided in Appendix A. The wells were drilled to depths of approximately 10 feet below the groundwater table.

Each monitoring well was constructed using a 10-foot segment of 2-inch ID Schedule 40 PVC screen followed by 2-inch ID PVC riser to approximately 4 inches below grade. Screen slot size was 0.010 inch based on the presence of fine-grained soil (fine sand, silt, and clay). A sand filter pack was placed around the screen to approximately 2 feet above the top of the screen. The sand filter pack consisted of clean silica sand manufactured specifically for well construction and was sized appropriately for the screen slot size used (no more than 0.5% by weight passing). The filter pack was followed by a 6-foot-thick pelletized bentonite seal. Following hydration of the seal, a 5% bentonite/cement grout mix was installed to approximately 6 inches below grade. Each well was fitted with a locked water tight cap (J-plug) and steel, flush-mount protective casing (8-inch diameter by 12 inches deep).

Photo 1 Drilling monitoring well MW-08, Former Bright Outdoors Site

Approximately 24 hours after well construction, the wells were developed. Water levels and total well depths were measured using an electronic water level indicator graduated to 0.01 foot and the volume of standing water was calculated. The wells were surged and purged using a submersible pump equipped with dedicated polyethylene tubing. The pump was placed within the screened interval of the well and water was pumped from the well at a uniform maximum rate that did not draw the water level down to the pump. Parameter measurements (temperature, pH, conductivity, and turbidity) were recorded on well development forms at the outset of pumping and periodically during development (see Appendix B). Well development was performed until pH, conductivity, and temperature stabilized $(\pm 5\%)$ over three consecutive readings and turbidity of the discharge was 50 nephelometric turbidity units (NTUs) or less. Both wells contained fine sand and silt in the surrounding formation causing turbidity to increase when surging was performed. However, reduction of the turbidity level at a consistent pumping rate was demonstrated. A total of 25 and 15 well volumes were pumped from MW-07 and MW-08, respectively, during development.

The two new monitoring wells, in addition to six existing monitoring wells and other site features, were surveyed by Larsen Engineers of Rochester, New York as part of the sitewide property survey and base map development. Monitoring well locations were surveyed relative to New York State Plane Central Zone using the 1983 North American Datum (NAD 83). Elevations were measured relative to the 1988 North American Vertical Datum (NAVD 88). A copy of the 631 Field Street property survey including the surrounding deeded property owners, moni-

toring well locations, and horizontal and vertical coordinates is provided in Appendix C. Well casing and ground elevations are summarized in Table 2-1.

2.2 Groundwater Sampling

Groundwater samples were collected on December 16, 2008 from the two new monitoring wells and six existing monitoring wells at the site. Groundwater samples were submitted to Con-Test Analytical Laboratory in East Longmeadow, Massachusetts, for analysis of Target Compound List (TCL) volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) SW-846 Method 8260B. Prior to sampling the monitoring wells, static water levels were measured in each well (see Table 2-1). The volume of water in each well was then calculated, and at least three volumes of water standing in the well casing were removed using a 12-volt Mini-typhoon pump and new, dedicated polyethylene tubing for each well. Water quality field parameters (i.e., temperature, pH, specific conductance, and turbidity) were recorded throughout the well purging process, and immediately prior to sampling. Purging occurred at a sustainable rate that minimized drawdown and stabilized the water level. The rate was slowed to approximately 100 milliliters per minute for sampling. Well purge and sample forms, including water levels and water quality parameters measured during purging, are provided in Appendix B. A summary of well sampling data, including final groundwater quality parameters measured at the time of sampling is provided in Table 2-2.

2.3 Soil Vapor Extraction Point Installation

Six subsurface soil vapor extraction (SVE) points were installed by Aztech Technologies, Inc., under the supervision of an EEEPC field team inside the northeast portion of the building, in the former warehouse/production area. An SVE point (SVE-01) was installed approximately 10 feet south of the south end of a floor drain and five pressure monitoring points (VM-01 through VM-05) were installed at varying distances from the extraction point. These points were installed for the purpose of conducting an SVE pilot test (see Section 2.6) to aid with the design of an SVE system. The vapor points were installed after coring through the concrete floor at each location. The extraction point (SVE-01) was drilled using 4¹/₄-inch ID hollow-stem augers and continuous soil cores were collected to a depth of 10 feet using direct-push techniques. The extraction point was completed with a 2inch ID, 5-foot section of 0.010-inch slotted PVC screen in a manner similar to that described above for the monitoring wells. The screen was set above the water table between a depth of 4 to 9 feet below grade. Pressure monitoring points VM-01 through VM-05 were constructed similarly but were not augered; instead, continuous soil cores were collected to depths of 10 feet and 1-inch ID PVC screen was set at a depth range of 4 to 9 feet. Borehole logs are provided in Appendix D.

In addition to the subsurface monitoring points, EEEPC installed six sub-slab monitoring points (SS-02 through SS-07) using a ½-inch drill bit to penetrate the concrete slab to the gravel sub-base. Sub-slab monitoring points, SS-02 through SS-05, were collocated with the vapor monitoring points; points SS-06 and SS-07

were installed south of SVE-01 at varying distances to monitor influence to the south. A subslab monitoring point was not installed adjacent to VM-01 as this was the monitoring point closest to the extraction point. Influence from the extraction point was expected to be observed in VM-01 and a subslab point appeared unnecessary.

2.4 Subsurface Soil Sampling

During drilling of the two monitoring wells and six soil vapor test points, continuous soil cores were collected. All soil was screened using a PID. No organic vapors were detected above background at any location. Subsurface soil samples were collected for laboratory analysis of VOCs by EPA Method 8260 for determination of the distribution of VOCs in the subsurface and identifying areas that may require excavation prior to treatment by SVE. In addition, a composite sample was collected for Toxicity Characteristic Leaching Procedure (TCLP) metals and pH analyses. Two geotechnical samples were also collected for grain size distribution analysis. A summary of the subsurface soil samples collected at the site is provided in Table 2-3.

Soil samples for VOC analysis were collected in accordance with EPA Method 5035. Sub-samples of approximately 5 grams were collected from selected intervals using dedicated plastic syringe tubes. TCLP metals and geotechnical samples consisted of composites of aliquots from multiple locations (see Table 2-3) that were collected with dedicated stainless-steel spoons and mixed in stainless-steel bowls.

2.5 Investigation-derived Waste

During monitoring well and soil vapor point drilling, all soil cores and cuttings were screened using a PID. No organic vapors were detected above background at any location. Therefore, the soil was spread on the ground in unpaved areas along the northwest side of the site. Purge water from monitoring well development and sampling was screened with a PID and no readings were observed nor was any sheen or odor observed. Therefore, all purge water was disposed of in an unpaved area on the site.

2.6 Soil Vapor Extraction Pilot Test

An SVE pilot test was conducted to provide information needed for the design of a full-scale SVE system. The data was collected to determine appropriate flow rates and resulting radii of influence in addition to chemical concentrations in the vapor. This information will allow for proper fan/vacuum pump size selection, operational rates, locations and number of extraction points, discharge treatment, etc. As described in Section 2.3, one SVE suction point (SVE-01) was installed to a depth of 9 feet and five pressure monitoring points (VM-01 through VM-05) were distributed throughout the building and each was constructed to a depth of 9 feet. Figure 2-1 shows the layout of the test points. To prevent short circuiting of air flow during the tests, the discharge point of the trench drain located in the center of the room was plugged by sealing the end of the pipe with a wet cloth. After

it was sealed the pipe was smoke tested to see if there was any airflow in or out of the pipe. The smoke test confirmed that no air was entering or escaping.

The pilot test was carried out in several steps at varying pressures and flow rates. Each test step ran for 1.5 to 2 hours at increasing pressures and flow rates. Aztech Technologies, Inc., performed the pilot test, supervised by a field crew from EEEPC. A blower was connected to the 2-inch ID test point (SVE-01) and the maximum pressure at the well head was determined to be 70 inches of water column (in H₂O). Four tests were conducted at increasing vacuum pressures (decreasing gauge pressures), which was controlled with a bleeder valve installed between the SVE test point and blower. Subsurface pressure monitoring points VM-01 through VM-05 were monitored by Aztech using Magnehelic gauges and sub-slab monitoring points SS-02 through SS-07 were monitored by EEEPC using a digital micro-manometer.

The first step test was performed at 5 in H_2O vacuum pressure at the well head for 10 minutes and was then increased to 10 in H_2O for the remainder of the test due to a lack of initial response. The second test ran at a steady 20 in H_2O , the third at 35 in H_2O and the fourth with the valve completely closed. This caused the pump to overheat within 45 minutes, so the fourth step test was terminated. After allowing the pump to cool, the valve was left open slightly and fourth step test was restarted at 60 in H_2O . This test finished successfully.

When monitored pressures became stable during pilot step tests at 20 in H_2O and 60 in H_2O , inline air samples were collected into stainless steel Summa canisters. The air samples were collected from a port in the discharge line near the extraction point upstream of the bleeder valve. The air sample was collected as a grab sample from the air stream that moved through the port. The valve on the Summa canister was fully open and the sample was collected until flow could no longer be heard entering the canister. Airspeed was determined by using a hand-held anemometer. The air samples were submitted to Con-Test Analytical Laboratory for analysis of VOCs by EPA Method TO-15. The sample collection information can be found in Table 2-4.

Vapor and air discharged during the pilot test were run through a 55-gallon drum of vapor-phase activated carbon and discharge outdoors at a height of approximately 10 feet above ground. Periodically during the test, a PID was used to monitor the discharge at the stack and no readings above background were observed.

2.7 Quality Control and Data Review

Field quality control (QC) samples included one field duplicate per matrix for groundwater and soil samples (MW-08/Q and VM-01-Z1/Q, respectively) and one trip blank (TB121608) shipped with the groundwater samples. Duplicate samples provide insight as to the homogeneity of the sample matrix and establish a degree of confidence that the sample represents site conditions. A trip blank was collected to establish that the transport of sample vials to and from the field

did not result in the contamination of the samples from external sources. The trip blank consisted of unopened laboratory vials containing deionized water. A review of the duplicate sample and trip blank results is provided in the Data Usability Summary Reports (DUSRs) provided in Appendix E.

Laboratory QC sample results are presented in the laboratory reports and are discussed in the DUSRs in Appendix E.

The data were qualified following general guidelines in the *EPA CLP National Functional Guidelines for Organic Data Review*, *EPA 540/R-99-008* (EPA 1999). DUSRs were prepared for each laboratory report (based on sample delivery group) as specified in NYSDEC's *Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports* (July 1999). The data review included an evaluation of holding times; initial and continuing calibration; reporting limits; laboratory blanks; matrix spike/matrix spike duplicate (MS/MSD) samples; laboratory control samples; field duplicates; sample result verification; and method-specific QC samples (e.g., GC/MS).

DUSRs were prepared by EEEPC's project chemist. Any deviations from acceptable QC specifications are discussed in the DUSRs. Qualifiers were added to the data, if appropriate, to indicate potential concerns with data usability and these qualifiers were transferred to the data summary tables in Section 3.

Photo 2 SVE pilot test blower prior to final hookup, Former Bright Outdoors Site

Photo 3 SVE pilot test setup, Former Bright Outdoors Site

Photo 4 Vacuum pressure monitoring during SVE pilot test, Former Bright Outdoors Site

Photo 5 Air sample collection during SVE pilot test, Former Bright Outdoors Site

Photo 6 Vapor-phase activated carbon discharge treatment during SVE pilot test, Former Bright Outdoors Site

2-

Table 2-1 Monitoring Well and Groundwater Elevations Former Bright Outdoors Site

	Tollion Bright		Well Elevation	Well Elevation	Depth to Water	Groundwater
Well ID	Date	Time	TOIC (feet)	Ground (feet)	from TOIC (feet)	Elevation (feet)
MW-01	12/16/2009	0815	828.46	828.65	9.30	819.16
MW-02	12/16/2009	0820	828.19	828.34	9.08	819.11
MW-03	12/15/2009	1713	827.71	828.03	9.02	818.69
MW-04	12/15/2009	1703	827.38	827.86	8.55	818.83
MW-05	12/15/2009	1635	828.22	828.47	8.56	819.66
MW-06	12/15/2009	1650	828.10	828.44	8.43	819.67
MW-07	12/15/2009	1617	828.89	829.27	9.20	819.69
MW-08	12/15/2009	1626	828.40	828.82	9.24	819.16

Note: Elevations are relative to North American Vertical Datum of 1988.

Key:

TOIC = Top of inner casing (well).

Table 2-2 Summary of Well Sampling Data and Groundwater Quality Field Measurements Former Bright Outdoors Site

Sample ID	Date Collected	Time Collected	pH (su)	Temp (°C)	Conductivity (µS/cm)	Turbidity (NTU)	Gallons Purged	Well Volumes Purged
MW-01	12/16/2008	1117	6.69	11.3	2030	21.2	20	3.3
MW-02	12/16/2008	1218	6.77	12.8	1550	32.6	20	3.4
MW-03	12/16/2008	1352	6.69	12.0	1500	4.91	20	3.0
MW-04	12/16/2008	1443	6.64	14.0	1650	6.41	18	3.0
MW-05	12/16/2008	1524	6.50	12.9	1680	3.51	10	3.0
MW-06	12/16/2008	1555	6.52	13.6	1660	24.3	10	3.3
MW-07	12/16/2008	0923	6.21	13.2	840	10.8	9.0	4.5
MW-08	12/16/2008	1013	6.41	13.2	1310	31.8	7.5	2.3

°C = Degress Centigrade.

 μ S/cm = MicroSiemens per centimeter.

NTU = Nephelometric turbidity units.

su = Standard units.

Table 2-3 Subsurface Soil Sample Collection Summary Former Bright Outdoors Site

Sample ID	Date Collected	Time Collected	Analyses	Depth (feet BGS)	Soil Description	PID Readings (ppm)
MW-07-Z1	12/3/2008	0810	VOCs, moisture content	1.0	mottled gray to light brown silt	0
SVE-01-Z1	12/3/2008	1410	VOCs, moisture content	1.5	gray to brown silty clay	0
SVE-01-Z2	12/3/2008	1415	VOCs, moisture content	2.0	yellowish brown to light brown silt	0
SVE-01-Z3	12/3/2008	1418	VOCs, moisture content	4.0	yellowish brown to light brown silt	0
SVE-01-Z4	12/3/2008	1435	VOCs, moisture content	8.0	brown, very fine sand grading to a medium brown fine sand well sorted	0
VM-01-Z1	12/3/2008	1525	VOCs, moisture content	1.5	mottled gray silt	0
VM-01-Z1/Q	12/3/2008	1525	VOCs, moisture content	1.5	mottled gray silt	0
VM-02-Z1	12/3/2008	1635	VOCs, moisture content	2.5	gray clayey silt	0
VM-03-Z1	12/3/2008	1555	VOCs, moisture content	0.7	black sandy gravel	0
VM-04-Z1	12/3/2008	0920	VOCs, moisture content	2.0	gray clay with silt	0
VM-05-Z1	12/3/2008	1647	VOCs, moisture content	1.5	grayish brown silt	0
TCLP-01	12/3/2008	1540	TCLP metals, pH	Composite of:	primarily sandy gravel and silty clay that	0
				VM-04 (1 - 3 feet),	was stained gray in all locations	
				SVE-01 (1 - 2 feet),		
				VM-01 (0.6 - 1.5 feet)		
VM-01-GT	12/3/2008	1540	Particle size (ASTM D422), Atterberg Limits (ASTM D4318), and USCS Classification (ASTM D2487)	8 - 9	medium brown very fine grained sand grading down to fine sand	0
VM-04-GT	12/3/2008	0930	Particle size (ASTM D422), Atterberg Limits (ASTM D4318), and USCS Classification (ASTM D2487)	3 - 4	mottled, light brown silt, very hard	0

ASTM = American Society for Testing and Materials.

BGS = Below ground (floor) surface.

PID = Photo-ionization detector.

ppm = Parts per million.

TCLP = Toxicity Characteristic Leaching Procedure.

USCS = Unified Soil Classification System.

VOCs = Volatile oraganic compounds by SW-846 Method 8260.

/Q = Duplicate sample.

Table 2-4 Air Sample Summary Former Bright Outdoors Site

Sample ID	Date Collected	Time Collected	Test Pressure (inches water column)	Analysis
AS-20	12/16/2008	0835	20	VOCs by EPA Method TO-15
AS-60	12/16/2008	1425	60	VOCs by EPA Method TO-15

VOCs = Volatile organic compounds.

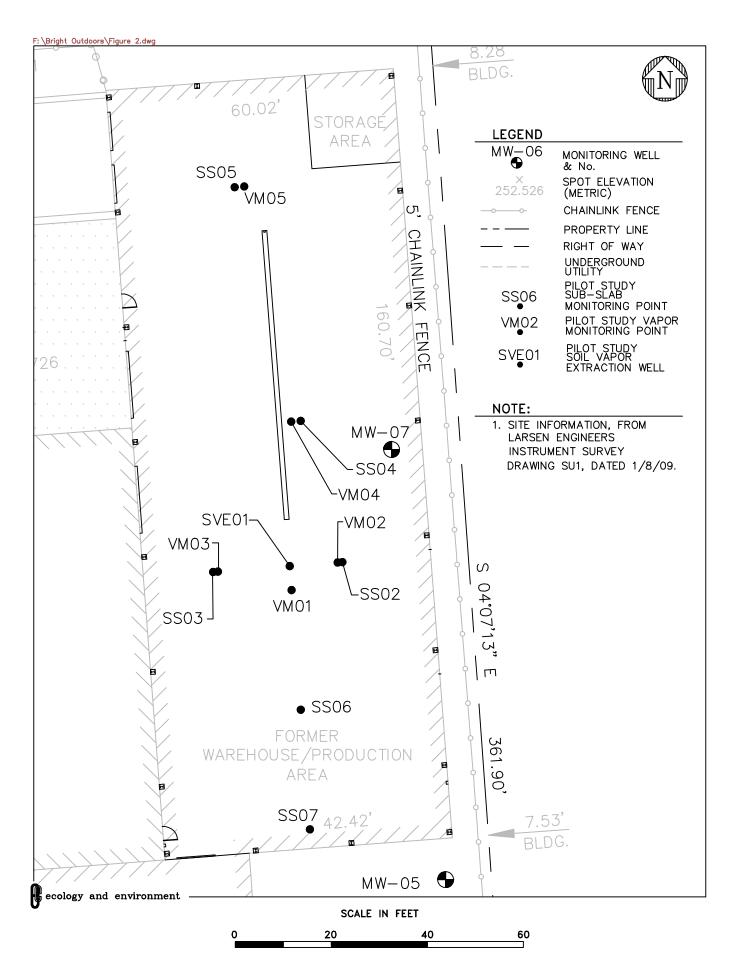


FIGURE 2-1
SOIL VAPOR EXTRACTION PILOT TEST SETUP
FORMER BRIGHT OUTDOORS SITE
BROOME COUNTY, NEW YORK

3

Results and Conclusions

3.1 Site Hydrogeology

Groundwater elevations were measured at MW-01 through MW-08 on December 15 to 16, 2008. Table 2-1 and Figure 3-1 show the groundwater elevations and interpreted elevation contour lines based on these measurements. Groundwater flow has a low horizontal gradient (maximum 0.01 foot/foot) and flow direction is from the east to west and southwest.

3.2 Groundwater Chemistry

A summary of positive analytical results is provided in Table 3-1. Groundwater samples from all eight monitoring wells contained both TCA and TCE. Concentrations of TCA exceeded the NYSDEC Class GA of 5 μ g/L in three wells (MW-01, MW-05, and MW-06) with a maximum of 30.9 μ g/L detected at MW-05. TCE was detected above its Class GA standard of 5 μ g/L in four wells (MW-02, MW-05, MW-06, and MW-08) with a maximum of 13.9 μ g/L at MW-05. 1,1-Dichloroethene was only detected at MW-05 (7.4 μ g/L) and MW-06 (4.1 μ g/L); however, the concentration exceeded the 5 μ g/L Class GA standard only at MW-05.

The most recent groundwater sampling prior to this pre-design investigation was conducted as part of the RI in 2004. In general, where higher concentrations of TCA and TCE were detected in 2004, the concentrations decreased for the 2008 sampling event. Where lower levels were present in 2004, they were generally the same 2008. A comparison of groundwater sample concentrations between 2004 and 2008 is provided in Table 3-2. The maximum TCA concentration detected in 2004 was 270 μ g/L in MW-05 on the east side of the site. In 2008, the TCA concentration in this well was 30.9 μ g/L. The maximum concentration of TCE detected in 2004 was 260 μ g/L in a groundwater grab sample collected on the west side of the site (location BH-08). In 2008, the TCE concentration in this area (MW-08) was 13.7 μ g/L.

3.3 Subsurface Soil Results

A total of 10 subsurface soil samples were collected from the monitoring well and SVE borings for VOC analysis. A summary of the positive analytical results for these soil samples is presented in Table 3-3. Three different VOCs were detected in the soil samples, including: TCA, TCE, and toluene. Five of the samples did

not contain any of the VOCs; the remaining samples contained at least one VOC. TCA was detected in only two shallow samples (black sandy gravel collected at depth of 0.7 feet from VM-03-Z1 and gray-brown silt collected at 1.5 feet deep in VM-05-Z1) at concentrations of 0.010 and 0.013 milligrams per kilogram (mg/kg). TCE was only detected in one sample (VM-03-Z1) at a concentration of 0.002 mg/kg. Toluene was detected only in samples collected from depths of 1.5 feet in SVE-01-Z1 and VM-01-Z1 at concentrations of 0.002 mg/kg and 0.004 mg/kg, respectively. These samples represented a silt or silty clay that was stained gray. None of the detected concentrations exceeded cleanup objectives found in 6 New York Codes, Rules, and Regulations (NYCRR) 375.6-8. The screening criteria included in Table 3-3 are Restricted-Commercial soil cleanup objectives. Additionally, the concentrations of all three compounds detected in site soil are less than Unrestricted-Residential soil cleanup objectives.

A sandy gravel layer was present beneath the gravel sub-base of the building floor and was stained black at location VM-03 (west side of the building). Beneath this layer was a silty clay unit that was primarily mottled brown and yellowish brown, but was stained gray in locations SVE-01, VM-01, VM-02, and VM-03. The VOC samples were collected from these visibly stained areas because this zone was most likely to contain VOC contamination. However, detected concentrations indicate that very little contamination is present and that source removal by excavation is likely not required.

Soil samples taken during the pre-design investigation showed a general decrease in the concentration of TCA from those collected during the RI in 2004. Because identical locations were not sampled, a direct comparison cannot be made between locations; however, a general decrease in VOC concentrations is evident. For example, as shown in Figure 5-2 of the RI Report (EEEPC 2005), TCA was detected in soil from the south end of the floor drain (location SB-01) at 0.019 mg/kg during the RI; whereas, during this sampling event, neither TCA nor TCE were detected in the vicinity (SVE-01 and VM-01).

A single TCLP sample was collected as a composite of soil from around the floor drain in order to determine whether the soil may be considered a characteristic hazardous waste. The only metals detected in the TCLP extract prepared from the soil were barium (0.36 milligrams per liter [mg/L]) and silver (0.023 mg/L). Both of these concentrations are below the regulatory levels considered hazardous waste (6 NYCRR 371). A summary of the analytical TCLP results is presented in Table 3-4. The pH of the composite sample was neutral (6.51 standard units).

Two geotechnical samples of representative subsurface units were collected to determine grain size distribution and classification (Unified Soil Classification System) to aid in design of the full scale SVE system. A sample collected from VM-01 from a depth of 8 to 9 feet that represented a fine-grained sand unit was determined to be approximately 60% sand and 40% silt and was classified as a silty sand (SM). A sample collected from a depth of 3 to 4 feet in VM-04 that represented the hard silt and clayey silt unit was determined to contain approxi-

mately 23% sand and 76% silty and clay and was classified as a lean clay with sand (CL). Appendix F contains the complete geotechnical report.

3.4 Soil Vapor Extraction Pilot Test Results

The SVE pilot test results are presented in a report by Aztech Technologies, Inc. (see Appendix G). As described in Section 2.6, vacuum pressures were measured at monitoring points VM-01 through VM-05 while different vacuum pressures were applied to extraction point SVE-01. In the Aztech report, data from each step test were plotted on a vacuum distribution graph and a best-fit line was plotted to determine the radius of influence for each test pressure. The radius of influence was established as the distance where a vacuum pressure of 0.1 in H₂O (-0.1 in H₂O gauge pressure) can be induced in the subsurface, for a particular vacuum pressure applied at the extraction point. The graphs are presented as Figures 1 through 4 in the Aztech report (see Appendix G). The observed vacuum pressures measured during the pilot tests are presented in Table 3-5. Aztech's determination of the radius of influence for each step test is summarized in Table 3-6.

EEEPC also prepared contour diagrams of stable vacuum pressure measurements in order to observe the data spatially. The diagrams were prepared using Surfer by Golden Software with interpolation of data by the Kriging method. The contour diagrams were prepared separately for the subsurface monitoring point set (VM-01 through VM-05) and sub-slab monitoring point set (SS-02 through SS-07) and are presented in Figures 3-2a and 3-2b. To generate the vacuum pressure contours for the subsurface monitoring points, stabilized vacuum pressure readings at VM-01 through VM-05 were used along with the corresponding step-test pressure at extraction point SVE-01. The contour figures, generated for each step test, suggest that the radii of influence for the subsurface monitoring points are similar to those determined by Aztech. For the 10 in H₂O step test, only one non-zero vacuum pressure was observed at the closest location, VM-01. The mathematically interpolated contours shown in Figure 3-2a overestimate the extent of the vacuum pressure influence, due to the limited number of data points. Therefore, Aztech's graphical approach is considered more appropriate in this instance.

To generate the vacuum pressure contours for the sub-slab monitoring point set shown in Figures 3-2a and 3-2b, stabilized vacuum pressure readings at SS-02 through SS-07 were used. However, the step-test pressure at extraction point SVE-01 was not used like it was for the deeper subsurface monitoring points. It cannot be assumed that the vacuum pressure induced within the screened interval of SVE-01 extended up to sub-slab area without some attenuation. Therefore, the maximum vacuum pressure observed in the sub-slab monitoring points was also used for contouring purposes at extraction point SVE-01 because the vacuum pressure induced immediately above the extraction zone at SVE-01 was at least that seen in the sub-slab monitoring points. Sub-slab monitoring indicated that good sub-slab communication was achieved for all step tests with the exception of the low pressure (10 in H₂O) test (see Figures 3-2a and 3-2b). Communication (i.e., extension of the vacuum pressure field) horizontally within the sub-slab area was achieved by pumping at a depth of up to 9 feet at extraction point SVE-01.

Therefore, based on the observed vertical vacuum pressure distribution and that the sub-slab gravel layer was observed to have a high porosity, it is anticipated that very good sub-slab communication throughout the former ware-house/production area would result if the immediate sub-slab environment was depressurized.

3.5 Vapor Discharge Results

Two air samples were collected during the SVE pilot test. One at a relatively low discharge flow rate (20 in H_2O well head vacuum pressure) and one at a relatively high discharge flow rate (60 in H_2O well head vacuum pressure). There were numerous VOCs detected (25 VOCs in one or both samples), as presented in Table 3-7; however, the three most notable VOCs detected were TCA, TCE, and toluene -- the only VOCs detected in the subsurface soil samples. All three VOCs were detected in both samples. The concentrations of TCA and TCE dropped with an increase in vacuum pressure (there was a 20-fold drop in TCA from 440 to 23 micrograms per cubic meter $[\mu g/m^3]$ and four-fold drop in TCE from 830 to 210 $\mu g/m^3$ between the 20 and 60 in H_2O tests). However, the toluene concentration increased over 150 times from 11 to 1,700 $\mu g/m^3$ between the two tests. No PID readings above background were observed at the discharge stack after treatment of the vapor with activated carbon indicating successful treatment using this methodology.

Table 3-1 Summary of Positive Analytical Results for Groundwater Samples, Former Bright Outdoors Site

Analyte	Screening Criteria ⁽¹⁾	Sample ID: Date:	MW-01 12/16/08	MW-02 12/16/08	MW-03 12/16/08	MW-04 12/16/08	MW-05 12/16/08
Volatile Organics (μg/L)							
1,1,1-Trichloroethane	5		8.3 J	4.6 J	2.0 J	1.7 J	30.9 J
1,1-Dichloroethene	5		1.0 U	1.0 U	1.0 U	1.0 U	7.4
Trichloroethene	5		1.2	7.4	2.4	3.4	13.9

Key: Note:

J = Estimated value. Shaded cells exceed the

U = Not detected at the reported value.

 μ g/L = Micrograms per liter.

/Q = Designates field duplicate.

(1) New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater.

Table 3-1 Summary of Positive Analytical Results for Groundwater Samples, Former Bright Outdoors Site

Analyte	Screening Criteria ⁽¹⁾	Sample ID: Date:	MW-06 12/16/08	MW-07 12/16/08	MW-08 12/16/08	MW-08/Q 12/16/08	TB121608 12/16/08
Volatile Organics (μg/L)							
1,1,1-Trichloroethane	5		15.4 J	3.9 J	3.9 J	3.9 J	1.0 UJ
1,1-Dichloroethene	5		4.1	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5		11.4	1.3	13.7	13.6	1.0 U

Key: Note:

J = Estimated value. Shaded cells exceed the

U = Not detected at the reported value.

 μ g/L = Micrograms per liter.

/Q = Designates field duplicate.

(1) New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater.

Table 3-2 Comparison of Positive Analytical Results for Groundwater Samples Former Bright Outdoors Site

Volatile Organics (µg/L):	TCA		TO	CE	DCE		
	2004	2008	2004	2008	2004	2008	
MW-01	9 J	8.3 J	9 J	1.2	ND	ND	
MW-02	16	4.6 J	11	7.4	ND	ND	
MW-03	ND	2.0 J	1 J	2.4	ND	ND	
MW-04	3 J	1.7 J	3 J	3.4	ND	ND	
MW-05	270	30.9 J	28	13.9	43	7.4	
MW-06	43	15.4 J	11	11.4	6 J	4.1	
MW-07 ¹		3.9 J		1.3		ND	
BH-08 / MW-08 ¹	3 J	3.9 J	260	13.7	ND	ND	

¹ MW-07 and MW-08 were not installed until December 2008; BH-08 was a groundwater grab sample collected from the same location as MW-08.

Note: All results are reported in micrograms per liter ($\mu g/L$).

Key:

DCE = 1,1-Dichloroethene.

J = Estimated value.

ND = Not detected.

TCA = 1,1,1-Trichloroethane.

TCE = Trichloroethene.

Table 3-3
Summary of Positive Analytical Results for Soil Samples, Former Bright Outdoors Site

Analyte	Screening Criteria ⁽¹⁾	Sample ID: Date:	MW-07-Z1 12/03/08	SVE-01-Z1 12/03/08	SVE-01-Z2 12/03/08	SVE-01-Z3 12/03/08	SVE-01-Z4 12/03/08
Volatile Organics (mg/kg dry weigh 1,1,1-Trichloroethane	500		0.002 U	0.002 U	0.002 U	0.002 U	0.003 U
Toluene	500		0.002 U	0.002	0.002 U	0.002 U	0.003 U
Trichloroethene	200		0.002 U	0.002 U	0.002 U	0.002 U	0.003 U
Percent Solids			81.9	79.1	84.3	81.9	88.1

Key: Note:

J = Estimated value. Shaded cells exceed the screening

U = Not detected at the reported value.

mg/Kg = Milligrams per kilogram.

/Q = Designates field duplicate.

(1) New York State Department of Environmental Conservation, 6 NYCRR 375.6-

8 Soil Cleanup Objectives, Restricted-Commercial Use.

Table 3-3 Summary of Positive Analytical Results for Soil Samples, Former Bright Outdoors Site

Analyte	Screening Criteria ⁽¹⁾	Sample ID: Date:	VM-01-Z1 12/03/08	VM-01-Z1/Q 12/03/08	VM-03-Z1 12/03/08	VM-04-Z1 12/03/08	VM-05-Z1 12/03/08			
Volatile Organics (mg/kg dry weight)										
1,1,1-Trichloroethane	500		0.002 U	0.002 U	0.010	0.002 U	0.013			
Toluene	500		0.002	0.004	0.002 U	0.002 U	0.002 U			
Trichloroethene	200		0.002 U	0.002 U	0.002	0.002 U	0.002 U			
Percent Solids			79.4	79.6	87.8	78.8	75.3			

Key: Note:

J = Estimated value. Shaded cells exceed the screening

U = Not detected at the reported value.

mg/Kg = Milligrams per kilogram.

/Q = Designates field duplicate.

(1) New York State Department of Environmental Conservation, 6 NYCRR 375.6-

8 Soil Cleanup Objectives, Restricted-Commercial Use.

Table 3-4
Summary of TCLP Analytical Results, Former Bright Outdoors Site

Analyte	Screening Criteria ⁽¹⁾	Sample ID: Date:	TCLP-01 12/03/08
TCLP - Metals (mg/L)			
Arsenic	5		0.01 U
Barium	100		0.36
Cadmium	1		0.005 U
Chromium	5		0.01 U
Lead	5		0.015 U
Mercury	0.2		0.0001 U
Selemium	1		0.05 U
Silver	5		0.023
pH (SU)			
рН	NA		6.51

J = Estimated value.

Note: Shaded cells exceed the

screening value.

U = Not detected at the reported value.

mg/L = Milligrams per iter.

SU = Standard units.

TCLP = Toxicity Characteristic Leaching Procedure.

(1) 6 NYCRR 371.3, Table 1—Maximum Concentration of Contaminants for Toxicity Characteristic.

Table 3-5 Observed Vacuum Former Bright Outdoors Site

Torrier Bright	Outdoors Site			Vapor N	Monitoring Po	oint (VM)				Sub-Slab	Point (SS)			
	Distance from SVE-01 (Location):		5' (VM-01)			30' (VM-04)	80' (VM-05)	10' (SS-02)	15' (SS-03)			40' (SS-06)	65' (SS-07)	
Date	Time													Comments
	Step Test @ 10 in wc 15:45 - 16:00 1	5:45	-0.21	0	0	0	0	-0.001						Ambient Indoor Temp: 46°F; Outdoor Temp: 49°F. Barometric pressure: 29.94 inHg. Exhaust concentration: 0 ppm. Airspeed: 501 cfm.
	16:01 - 16:15	6:01	-0.04	0	0	0	0	0						Smoke test @ the SVE point. Smoke was observed to dissipate to ambient air.
12/15/2008	16:16 - 16:30	6:16	0.04	0.025	0.015	0	0		0					
12/13/2000	16:31 - 16:45	6:31							0			0	0	Exhaust concentration: 0 ppm.
	16:46 - 17:00 1	6:46	0.05	0.04	0.015	0.01	0		0					Smoke test @ the discharge of the trench drain. Smoke was observed to dissipate to ambient air.
	17:01 - 17:15	7:01	0.02	0	0	0	0			0		0.002		Ambient Indoor Temp: 47.8°F. Outdoor Temp: 50.8°F. Barometric pressure: 29.95 inHg. Humidity: 81%. Exhaust concentration: 0 ppm. Airsneed: 656 cfm
	Step Test @ 20 in wc													
	8:00 - 8:15	8:00	0.85	0.58	0.43	0.09	0.02							Ambient Indoor Temp: 38.3°F. Outdoor Temp: 29.1°F. Barometric pressure: 30.40 inHg. Humidity: 64%. Airspeed: 921 cfm. Smoke test @ the SVE point. Smoke was observed to dissipate to ambient air.
	8:16 - 8:30	8:16	1.4	0.9	0.7	0.11	0.02	0.006	0.008	0		0.065	0.001	
	8:31 - 8:45	8:31	2	1.25	1	0.17	0.035				0.008			Air sample taken (35 minutes into test).
12/16/2008	8:46 - 9:00	8:46	2	1.24	0.95	0.17	0.04	0.003	0.016			0.09	0.003	
	9:01 - 9:15	9:01	1.8	1.1	0.9	0.16	0.03			0.001	0.008			Smoke test @ the trench drain discharge. Smoke was observed sitting on it.
	9:16 - 9:30	9:16	1.8	1.1	0.9	0.16	0.03	0.001	0.012	0.001	0.009	0.071	0.001	Ambient Indoor Temp: 36.3°F. Outdoor Temp: 28.4°F. Barometric pressure: 30.44 inHg. Humidity: 60%. Airspeed 1061 cfm.
	Step Test @ 35 in wc													
	9:35 - 9:50	9:35	4.4	2.6	2.2	0.37	0.08							Airspeed: 1365 cfm.
	9:51 - 10:10	9:51	4.2	2.6	2.2	0.37	0.08	0.005	0.032	0.002	0.02	0.189	0.005	

Table 3-5 Observed Vacuum Former Bright Outdoors Site

		Vapor Monitoring Point (VM) Sub-Slab Point (SS)												
Date	Distance from SVE-01 (Location): Time		5' (VM-01)	10' (VM-02)	15' (VM-03)	30' (VM-04)	80' (VM-05)	10' (SS-02)	15' (SS-03)	30' (SS-04)	80' (SS-05)	40' (SS-06)	65' (SS-07)	Comments
	10:11 - 10:25	10:11	4.2	2.6	2	0.36	0.075	0.004	0.031					
	10:26 - 10:40	10:26	4.2	2.6	2	0.36	0.08			0.003	0.019	0.19	0.004	Exhaust concentration: 0 ppm.
	10:41 - 10:55	10:41	4.2	2.4	2	0.36	0.07	0.005	0.03	0.003	0.017	0.182	0.004	
	10:56 - 11:15	10:56	4.2	2.4	2	0.36	0.07	0.006	0.031	0.002	0.017	0.191	0.003	Ambient Indoor Temp: 35.9°F. Outdoor Temp: 28.9°F. Barometric pressure: 30.44 inHg. Humidity: 57%. Airspeed: 1657 cfm.
	Step Test @ 60 in wc													
	13:10 - 13: 25	13:10	8.8	5.2	4.4	0.9	0.14	0.007	0.062	0.004	0.014	0.386	0.007	Ambient Indoor Temp: 35.4°F. Outdoor Temp: 29.8°F. Barometric pressure: 30.39 inHg. Humidity: 54%. Airspeed: 5922 cfm.
	13:26 - 13:40	13:26	8.2	4.8	4	0.85	0.13	0.008	0.061	0.004	0.032	0.354	0.007	
	13:41 - 13:55	13:41	7.8	4.4	3.8	0.8	0.13	0.009	0.056	0.004	0.032	0.337	0.007	
	13:56 - 14:10	13:56	7.7	4.2	3.6	0.75	0.115	0.009	0.052	0.003	0.026	0.309		
	14:11 - 14:25	14:11	6.8	4	3.4	0.7	0.115	0.006	0.047	0.001	0.025		0.005	Air sample taken (1hr 15min into the t
	14:26 - 14:40	14:26	6.6	3.8	3.2	0.65	0.105					0.29		Ambient Indoor Temp: 35.7°F. Outdoor Temp: 29.6°F. Pressure: 30.38 inHg. Humidity: 53%.

cfm = Cubic feet per minute.

inHg = Inches Mercury.

in wc = Inches water column.

ppm = Parts per million.

SVE = Soil vapor extraction.

temp = Temperature.

Note: All exhaust concentrations were measured with a photo ionization detector (PID).

Table 3-6 Calculated Radii of Influence for SVE Pilot Test

Test No.	Wellhead Pressure (inches water column)	Calculated Radius of Influence (feet)
1	10	< 5
2	20	38
3	35	45
4	60	54

Table 3-7
Summary of Positive Analytical Results for Air Samples
Former Bright Outdoors Site

	Sample ID:	AS-20	AS-60
Analyte	Date:		12/16/08
Method TO-15 Volatile Organics (μg/m³)			
1,1,1-Trichloroethane		440	23
1,1-Dichloroethane		1.3	0.40 U
1,1-Dichloroethene		0.84	0.40 U
1,2,4-Trimethylbenzene		0.50 U	0.66 J
2-Butanone		0.60 U	2.7
Acetone		4.4 U	22
Benzene		0.57	0.77
Carbon Disulfide		0.47	0.32 U
Chloroform		14	1.6
Chloromethane		0.61	1.5
Dichlorodifluoromethane (CFC-12)		2.2	1.6
Ethanol		4.1	7.2
Ethylbenzene		0.44 U	1.4
Hexane		0.97	2.6
Isopropyl Alchhol		1.5	5.8
Methylene Chloride		5.1	13
O-xylene		0.44 U	0.83
Propylene (Propene)		0.18 U	1.8
Toluene		11	1700
Tetrachloroethene		34	1.9
Tetrahydrofuran		0.34	0.30 U
Trichloroethene		830	210
Trichlorofluoromethane (CFC-11)		2.4	1.2
Trichlorotrifluoroethane		1.2	0.76 U
Xylenes, M-P		0.86 U	2.1

Key:

J = Estimated value.

U = Not detected at the reported value.

 $\mu g/m^3 = Micrograms per cubic meter.$

/Q = Designates field duplicate.

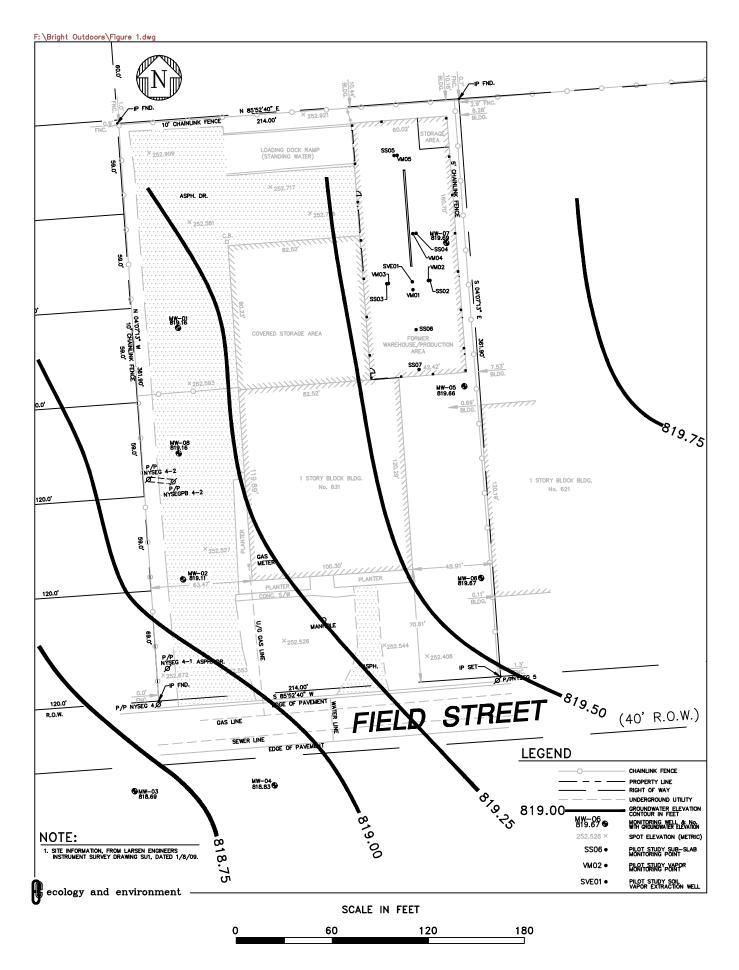
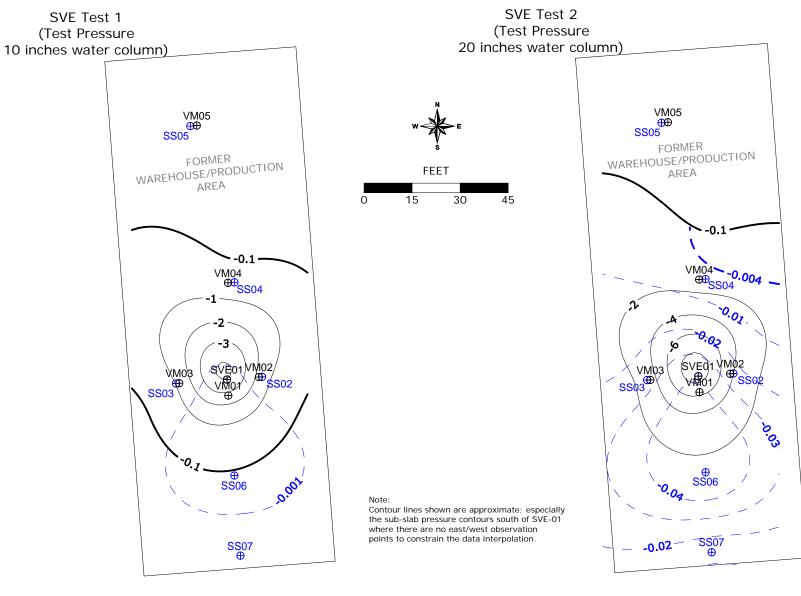



FIGURE 3-1
GROUND WATER ELEVATION CONTOURS
FORMER BRIGHT OUTDOORS SITE
BROOME COUNTY, NEW YORK

Vacuum Pressure Contour for Subsurface (VM) Points

Vacuum Pressure Contour for Sub-slab (SS) Points

All measurements in inches of water column.

Figure 3-2a SVE Pilot Test Vacuum Pressure Readings Former Bright Outdoors Site December 2008

SVE Test 4 SVE Test 3 (Test Pressure (Test Pressure 60 inches water column) 35 inches water column) VM05 SS05 VM05 **⊕** SS05 FORMER USE/PRODUCTION FORMER WAREHOUSE/PRODUCTIO WAREH **AREA** AREA 30 15 **└** -0.004 **-**-0.004 -VM04 VM04 SVE01 VIM02 SVE 01 VM02 VM01 SS VM03 SSd3 Note: Contour lines shown are approximate; especially the sub-slab pressure contours south of SVE-01 where there are no east/west observation points to constrain the data interpolation. -0.05

Vacuum Pressure Contour for Subsurface (VM) Points

Vacuum Pressure Contour for Sub-slab (SS) Points

All measurements in inches of water column.

Figure 3-2b SVE Pilot Test Vacuum Pressure Readings Former Bright Outdoors Site December 2008

Conclusions

Based on the results of the pre-design investigation, the following conclusions were made:

- The groundwater flow direction was observed to be from east to west and continued presence of VOCs in groundwater on the eastern property boundary continues to suggest an off-site source of groundwater contamination.
- Contaminants of concern in groundwater significantly decreased in concentration between 2004 and 2008. The maximum concentration of TCA detected during the RI in 2004 decreased by nearly 90%. The maximum concentration of TCE detected during the RI in 2004 decreased by nearly 95%. Where no change or slight increases were observed, the concentrations were generally below the Class GA groundwater standard of 5 µg/L.
- VOCs have not been detected in subsurface soil samples at concentrations exceeding recommended 6 NYCRR Part 375 soil cleanup objectives. Therefore, excavation of soil from beneath and around the floor drain in the former warehouse/production area does not appear to be warranted.
- SVE implementation at the site is feasible. Vacuum pressures were created laterally throughout the subsurface during the pilot test. An extraction vacuum pressure of 20 in H₂O or more appears to be sufficient to create capture under the full east-west width of the former warehouse/production area; however, two to three extraction points oriented along the north-south axis of this room would be required to cover the north-south length of the room.
- Sub-slab communication is very good and full sub-slab depressurization could likely be achieved with two to three extraction points along the north-south length of the room.

Based on the data collected during the pre-design investigation, a review of the remedial goals should be considered prior to implementing design of an SVE system as stated in the Record of Decision. Based on the observation that soil vapor contaminant concentrations appear to have decreased with time and decrease with depth below the slab of the former warehouse/production area, consideration should be given to altering the design from a subsurface SVE system to a low-

4. Conclusions

impact, low-energy-consumption, sub-slab depressurization system (SSDS). An SSDS would require a longer operating period but is less intrusive and more passive in its operation. Based on the soil sample results, source-area soil removal does not appear to be warranted. However, long-term groundwater monitoring should still be implemented due to the continued presence of chlorinated VOCs in groundwater. Indoor air and sub-slab vapor testing at the nearest residences has not revealed any vapor intrusion concerns except at one residence that was previously mitigated.

References

- Ecology and Environment Engineering, P.C. (EEEPC), 2008, personal communication, letter from Thomas Heins, P.E. of Ecology and Environment Engineering, P.C., to Ms. Karen Quinn, New York State Department of Environmental Conservation, dated September 24, 2008 regarding Project Management Work Plan Remedial Design, Former Bright Outdoors, NYSDEC Site No. 7-04-023, .
- _______, 2005, Remedial Investigation Report for the Former Bright Outdoors Site, Johnson City, New York, prepared for New York State Department of Environmental Conservation by Ecology and Environment Engineering, P.C.
- New York State Department of Environmental Conservation (NYSDEC), 1999, Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports.
- United States Environmental Protection Agency (EPA), 1999, EPA CLP National Functional Guidelines for Organic Data Review, EPA 540/R-99-008.

Well Logs and Well Development Forms

Borehole Record for MW-07

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet

DRILLING LOG FOR _MW-@7	
ct Name FORMER BRIGHT OUTDOORS	
1	Ĺ

Project Name FORMER BRIGHT OUTDOORS

Site Location JOHNSON CITY, NY

Date Started/Finished 12 3 08

Drilling Company AZTECH TECHNOLOGY

Driller's Name MARTY HARRING TON

Geologist's Name MEGAN FRONCKOWIAK

Geologist's Signature HARRING TON

Rig Type (s) MOBILE 83500

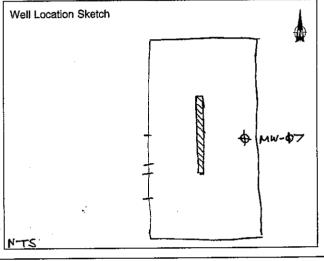
Drilling Method (s) HSA & MACROCORE

Bit Size (s) 9" Auger Size (s) 4"/4" 1D

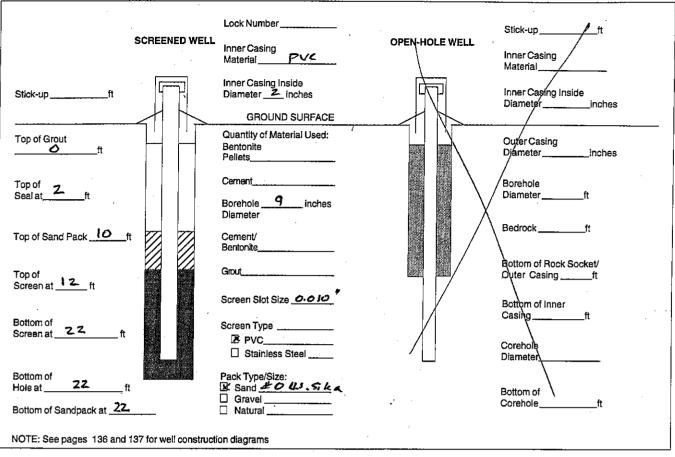
Auger/Split Spoon Refusal NA

Total Depth of Borehole is 22"

NA


Total Depth of Corehole Is_

	Water Level (TOIC)
Date	Time	Level(Feet)
12/3/08	08:40	10.51 (openhole)


.s

H

- 14 - 4 - 12

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNW/OVA (ppm)	Comments
1	-		らレ	08:05	-	l ¹	-	- -	0	collect MW-07- ZI sail sample from 1'
2 ————————————————————————————————————					 _	<u> </u>			<u> </u>	
5				08:15	2	3.3'	-			
6			SL/S		_		-			<u> </u>
9			<u> </u> - 		- -			<u> </u>		
10			S	08:25	3	4'	- - -	 	 	
12			<u> </u> 		_			 		-
14							_		<u> </u>	

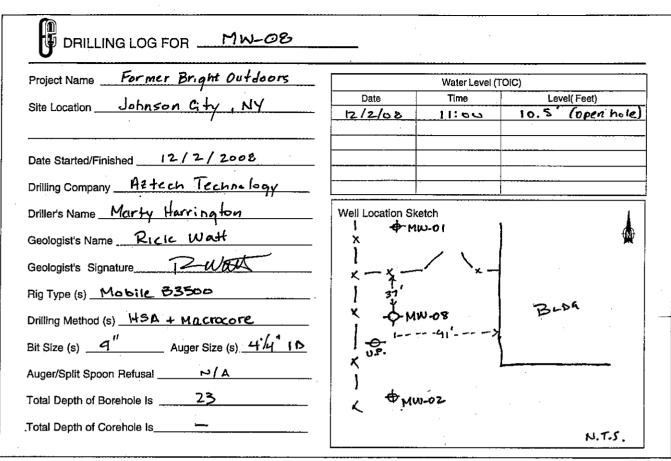
Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	1	oistur Conter	-
		Dry	Moist	Wet
· 	0-0.5' concrete	0	\otimes	0
2 —	0.5-0.8' gravel subbase		Ø	0
3	0.8-1.7' mothed little gray to light brown silt	0	\otimes	0
4		0	Ø	0
5. —			\bigcirc	0
6	5-5.7' silt with little clay, brown to med bown throughout		Ø	0
7 ——	5.7 - 6.8' , Sandy silt w/ trace clay sand fine - coarse		Ø	0
8	6.8-7.4' sandy silt, wet		0	Ø
9	7.4-8.3' very fine sand	$ \hat{O} $	⊗	0
10			Ø	0
11	10-15' very fine to fine sand, med. Lower to brown	\bigcirc	0	80
12		\bigcirc	\circ	\propto
13			\bigcirc	Ø
14		0	0	Ø
15			\circ	Ø

epth(feet)	Sample Number	Blows on Sampler	Soil Components CL SL S GR	Rock Profile	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNu/OVA (ppm)	Comments
			<u>S</u>	-	08:40	나	.61	-		0	little recoven
16						-	_				gravel stuck in shoe
17 —			-			_				<u> </u>	
18 —	-		-			_		_	_ -		†
19	٠			:		-					
20 —				ļ		5	0	 	 I	 -	no recover
21 —			+			-			<u> </u>	 -	no recover likely due to gravel
22 —		<u></u>				_	-		-		to grave
23 ——						-	+			-	+
24						_	_	-		+ -	
25 —			endo	f hole	·	+		<u> </u>			
						_		_			
6				,			ł	_			=
7			7			_					
8 —			-			-	<u> </u>		 		T .
:9 ——			_				+	-			†
30 	· [-			_	+	-	<u> </u>	-	+
31 —	1		-			-	 				+
32						-	<u> </u>	-	 -	+	+
33	<u> </u>	<u> </u>				_		_	-		 .
						_				<u>-</u> -	
34 ——								_		-	
35 ——	†										!
36	†					-			T		
37 —	1.		·			-		-	<u> </u>		
38	1					-	+	-	1		
39	_	-	_			.	-	-		+	+
40			_					.		+	+
41 ——	1							-	+		_
42								-	+	_	+
43										+	
44	1										

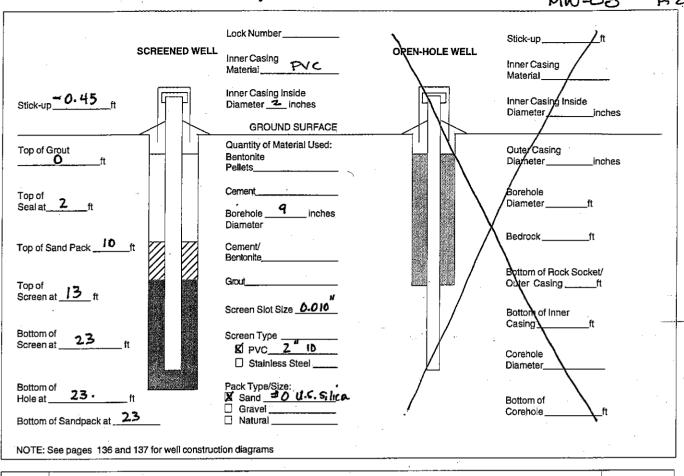
Depth(feet).	NARRATIVE LITHOLOGIC DESCRIPTION	Mc C	oistu onte	re nt
Departicory.	TO THE TOTAL OF THE PARTY OF TH		Moist	Wet
	15-15.6' wet, sandy grave!		$\overline{\circ}$	Ø
16	, <u> </u>	0	0	Ø
		0	0	Ø
18		0	0	Ø
19		0	0	Ŕ
20	20-25 no recovery	0	0	0
22 ——	,	0	0	0
		0	0	0
23 —	,	0	0	0
24		0	0	
25		0	0	0
26		0	0	0
27		0	0	0
28		0	\circ	0
29		Ó	0	0
30		0	0	0
31				0
32				0
33		0	0	
34			0	0
35			0	0
36		0	0	Ö
37			0	Ō
38			0	0
39 ——			0	0
40 ——			0	0
41		0	. 0	\circ
42		0	0	\sim
43		0		
44			\sim	\sim
45				

SITE FORMER BRIGHT CUTP	OORS	DA	TE 12/4	08	
LOCATION LOTY, NY		WE	LL NO. <u>M</u>	w-φ-7	
•					
MEASUREMENT OF WATER LEVEL AND WELL VOLUME		Volume of V	Vater in Ca	asing or Hole	
 Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. 	Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meters per Meter of Depth
Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells. The number of linear feet of static water	1 11/2 2 21/2 3 31/2 4	0.041 0.092 0.163 0.255 0.367 0.500 0.653	0.0055 0.0123 0.0218 0.0341 0.0491 0.0668 0.0873	0.509 1.142 2.024 3.167 4.558 6.209 8.110	0.509 x10 ⁻³ 1.142 x10 ⁻³ 2.024 x10 ⁻³ 3.167 x10 ⁻³ 4.558 x10 ⁻³ 6.209 x10 ⁻³ 8.110 x10 ⁻³
(difference between static water level and total depth of well) will be calculated. The static volume will be calculated using the formula:	41/2 5 51/2 6 7 8 9	0.826 1.020 1.234 1.469 2.000 2.611 3.305 4.080	0.1104 0.1364 0.1650 0.1963 0.2673 0.3491 0.4418 0.5454	10.260 12.670 15.330 18.240 24.840 32.430 41.040 50.670	10.260 x10 ³ 12.670 x10 ³ 15.330 x10 ³ 18.240 x10 ³ 24.840 x10 ³ 32.430 x10 ³ 41.040 x10 ³ 50.670 x10 ³
$V = Tr^{2}(0.163)$ Where:	11 12 14 16 18	4.937 5.875 8.000 10.440	0.6600 0.7854 1.0690 1.3960 1.7670	61.310 72.960 99.350 129.650 164.180	61,310 x10 ⁻⁴ 72,960 x10 ⁻³ 99,350 x10 ⁻³ 129,650 x10 ⁻³ 164,180 x10 ⁻³ 202,680 x10 ⁻³
V = Static volume of well in gallons; T = Depth of water in the well, measured in feet; r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the	20 22 24 26 28 30 32 34 36	16.320 19.750 23.500 27.580 32.000 36.720 41.780 47.160 52.880	2.1820 2.6400 3.1420 3.6870 4.2760 4.9090 5.5850 6.3050 7.0690	202.680 245.280 291.850 342.520 397.410 456.020 518.870 585.680 656.720	245.280 x10* 291.850 x10* 342.520 x10* 397.410 x10* 456.020 x10* 518.870 x 10* 585.680 x10* 656.720 x10*
conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = $\frac{1 \cdot 9}{1 \cdot 9}$ gallons.	1 Liter water v 1 Gallon per f	81 feet r weighs 8.33 lbs. : weighs 1 kilogram : oot of depth = 12.4	2.205 pounds 19 liters per foot		lepth
WATER LEVEL (TOIC) 9.42			•		
WELL DEPTH (TD) 21.93' fin	n botton	1			
ODOR <u>None</u> CLARITY <u>POOV</u>					
FINAL DEVELOPMENT WATER WATER LEVEL (TOIC) 10.02 WELL DEPTH (TD) 21.93	@1242				
COLOR CLEAV ODOR MONE CLARITY GOOD					

12V


pump.

WELL DEVELOPMENT - PARAMETER MEASUREMENTS MW-07 TOTAL VOL. WITHDRAWN TEMP. TURB. COND. Hq COMMENTS TIME (°C/°**)**X(° (NTU) (µmhos/cm) BORE GALS. VOL. flow rate = .77 apm 12.0 674 1510 >1000 1130 water level dropping sjowly 2.5 1586 12,9 5 6.6 71000 1137 1441 13.1 12,59 21000 5 1144 0 6.54 13.2 15 75 1567 1149 >1000 1155 10 6.55 1582 13.3 71000 20 25 12.5 6.56 1536 13.5 1202 71000 15 30 6.54 1549 13,4 continuing to clear and more >1000 1207 1482 17.5 13.2 153 1213 35 6.58 increased flow rate to max. 40 6.53 1472 15.1 20 13.3 1219 development complete 1592 1228 50 25 131 387 6.51 DATE 12 4 08 DEVELOPED BY: MEGAN Fron domax/Rick Watt


Borehole Record for

MW-08

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	P(p HNu/OVA (ppm)	Comments
1			NSM	10:15	! _	3.8			٥	
3					- -	-		 		
4 —					_		_			
6			NSM	10:30	2	4.5	_		0	_
8					_ _		_	-	<u> </u>	
9 -										
11 ——			slar	10:35	3 -	2.4	_	- - -	0	_
13								<u> </u>		-
15						_				

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte	
		Dry Moist	Wet
1	0-0.5' Asphalt, gravel sub-base	⊗-€	0
	0.5-5.0' Hos Mottled light gray / yellow-brown silt with	⊗⊗	\circ
2	little clay and trace very fine sand, dry to moist.	⊗ -©	0
3		⊗ ⊗	
4		⊗ -€	0
5	5-10' Same as above but less nothing more light brown;	0-0	0
6	Soften and Moister below 8' Sand content increase)	Ø - ⊗	0
7		Ø <u></u> -€	0
8	at base of core.	08	0
9		08	0
10		0 &	0
11	10-10-2 Same as above	00	Ø
12	10.2 - 12 Brown Fine-grained sand wet.	00	X
13	12-12.5' Brown gravel witz little sand		
14			⊗`
15		0 0	X

	00			 -	1	. 1		· · · · · · · ·		· · ·	
			Soil	•	_					PID	
Depth(feet)	Sample Number	Blows on Sampler	Components CL SL S GR	Rock Profile	Penetration Times	Run Number	Core Recovery	ROD	Fracture Sketch	HNu/OVA- (ppm)	Comments
	•		CL SL S GR							(1-1-1-)	
			5/48				_4.5			0	
16			5/46	_	10:50	4-	4.5				<u> </u>
17 ——							i	-			-
18 —								_			_
j		'									
19		1					_				
20											
21	-		a r	_	11: 00	5	4.5			-0-	_
22			4	_			4.5 _	_	_		,
			İ								_
23 —						-	-	+		 	-
24					,	_		-			_
25 —			END O	t Hout	į						
				-							
26	-						_	-		- +	-
27	.				İ		_	4	_		· .
-	,				15		·,				
28				·						_	-
29 —	-						_	+		+	-
30 —	+		'n				_	4		_ 1	_
31	-						_	+		_ +	-
32	-					, —	-	-		- +	_
33 —	_			į					<u> </u>	<u> </u>	_
			10						`		
34	. [_	+	- ' ' -	_ +	-
35	-							+			
36	_						_				
				•							
37	-			•	.			+		- +	···
38 ——	[-			Ī		_	_	+		- -	- 1
39					-					_	_
ю —				-		-	_	+	- +		_
11	-					+	_	-		_ +	-
2 —			•				_	`			
											_
13						+	-	-	_		
и —	_				.		_			-	-

7-9 4	f of 4	MW-08
Depth(feet).	NARRATIVE LITHOLOGIC DESCRIPTION	Moisture Content to Moisture
	15-16.7' Brown Fine to Medium - grained soud	
16	Grader @ NIG.7' to fine them course gravel,	000
17	very wet.	008
18	<u> </u>	000
19		000
20	20-25' Brown gravel, Medium to coarse, angular	000
21	to rounded, very wet.	7006
22 ——		000
23		
24		7000
25		
26		7000
27		7000
28		7000
29 —		
30		7000
31 ———		$\exists \circ \circ \circ$
32		7000
33 —	•	000
34		000
35		700c
36		$\exists \circ \circ \circ$
37		
38		
39		0.00
10		
41 ——		
12		$\frac{1}{2}$
13	•	
14		
45	·	

SITE Former Bright Outdoo	ממ	DA	TE	2/4/2008			
OCATION Johnson City, MY		WE	LL NO	90-WM			
			,				
ACAOUDENENT OF WATER LEVE					- · · · · · · · · · · · · · · · · · · ·		
MEASUREMENT OF WATER LEVEL AND WELL VOLUME		Volume of V	Water in Ca	asing or Hole			
 Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. 	Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meters per Meter of Depth		
Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.	1 11/2 2 21/2 3	0.041 0.092 0.163) 0.255 0.367	0.0055 0.0123 0.0218 0.0341 0.0491	0.509 1.142 2.024 3.167 4.558	0.509 x10 ⁻³ 1.142 x10 ⁻³ 2.024 x10 ⁻³ 3.167 x10 ⁻³ 4.558 x10 ⁻³		
 The number of linear feet of static water (difference between static water level and total depth of well) will be calculated. 	31/2 4 41/2 5 51/2 6 7	0.500 0.653 0.826 1.020 1.234 1.469	0.0668 0.0873 0.1104 0.1364 0.1650 0.1963	6.209 8.110 10.260 12.670 15.330 18.240	6.209 x103 8.110 x103 10.260 x103 12.670 x103 15.330 x103 18.240 x103		
 The static volume will be calculated using the formula: V = Tr² (0.163) 	8 9 10 11 12 14	2.000 2.611 3.305 4.080 4.937 5.875 8.000	0.2673 0.3491 0.4418 0.5454 0.6600 0.7854 1.0690	24.840 32.430 41.040 50.670 61.310 72.960 99.350	24.840 x10° 32.430 x10° 41.040 x10° 50.670 x10° 61.310 x10° 72.960 x10° 99.350 x10°		
Where: V = Static volume of well in gallons; T = Depth of water in the well, measured in feet;	16 18	10.440 13.220 16.320 19.750 23.500 27.580	1.3960 1.7670 2.1820 2.6400 3.1420 3.6870	129,650 164,180 202,680 245,280 291,850 342,520	129.650 x10 ⁻³ 164.180 x10 ⁻³ 202.680 x10 ⁻³ 245.280 x10 ⁻³ 291.850 x10 ⁻³ 342.520 x10 ⁻³		
r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the conversion of the casing radius from inches	20 22 24 26 28 30 32 34 36	32.000 36.720 41.780 47.160 52.880	4.2760 4.9090 5.5850 6.3050 7.0690	397.410 456.020 518.870 585.680 656.720	397.410 x10 ³ 456.020 x10 ³ 518.870 x 10 ³ 585.680 x10 ³ 656.720 x10 ³		
to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = 2 gallons.	1 Gallon = 3.785 liters 1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 3.779 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds 1 Gallon per foot of depth = 12.419 liters per foot of depth 1 Gallon per meter of depth = 12.419 x 10 ³ cubic meters per meter of depth						
NITIAL DEVELOPMENT WATER	•						
WATER LEVEL (TOIC) 10-05					•		
WELL DEPTH (TD) 22.72'							
COLOR Brown					····		
ODOR ho							
CLARITY POOT * bottom is soft (seliment)			· ·				
INAL DEVELOPMENT WATER	,	\sim					
WATER LEVEL (TOIC) 10.2 and n's WELL DEPTH (TD) 22.72'	ing (<u> </u>			·		
COLOR ** CICAK			· · · · · · · · · · · · · · · · · · ·				
ODOR 100							
CLARITY Res GOOD							
U ESCRIPTION OF DEVELOPMENT TECHNIQ	UES	inge W/	bailer	then pu	<u>MP</u>		

Į

TIME	TOTAI WITHD	RAWN_	рН	COND.	TEMP.	TURB. (NTU)	COMMENTS
I HVIL	GALS.	BORE VOL.		(µmhos/cm)	(°C/ %).	(NTO)	
0822	0	0	7.28	840	12.5	>1000	Pump Full (N) gpm) well dried
7841	5	2.5	6.67	1162	12.6	>1000 F	it out after 4 gal.
0858	ව	너	665	1233	13,2	71000	Reduce from to 0.25 apm. of WL Maintained & N17'bsi.
1590	15	7.5	6.77	1334	13.1	633	WL Maintained & N17'bsi.
0930	17	8.5	6.61	1312	13.6	70.6	let sit undistrubed for 5 min
7100							*after surging turb. > 1000 a
941	20	10	6.58	1315	13.5	47	
1017	30	15	6.66	1356	[3,1	34.4	development complete
011							
		<u> </u>					
						<u>. </u>	
			 				
					<u> </u>		
					_		
			·				
			1				
		-					
			 				
	<u> </u>	 	<u> </u>		- 		
					 	<u> </u>	
		<u> </u>		<u> </u>			
	-						
							•
· <u>· </u>			· · · · · · · · · · · · · · · · · · ·				DATE 12/4/08

B Well Purge and Sample Records

			WEI	LL PURGE 8	SAMPLE	RECORD			
Si	ite Name/Loca	ation: Brid	ant outd	0015	<u></u>		Well ID:	MW	-01
		t No.: 2700	-		<u> </u>		Date:	12/10	e/08
		970					ted Times	ın d	- 1
lni	·	·	_feet TOIC					10 4 11 1 8	
		Depth: 47.62						<i>```````````````\</i>	
		Pump: <u>4</u>	_						
		Rate: <u>0,5</u>	_					12-17	
	-	ed to:		1105				2	
	adjust	ed to: SIOW	at	Sampling	minutes.	1x We	ll Volume:		
		Purge Volume		Temp.	ORP	Conductivity	DO	Turbidity	
	Time	(gallons/itees)	(s.u.)	(°C(/7))	(mV)	(µS/cm m3/2/g)	(mg/L)	(NTU) 853	Level (feet) 9.43
ŀ	1050	1_2	4.19	9.5		1970			
-	1056	5	6.53	H. (2030		444	9.43
_	1105	10 .	4.62	10.7	<u> </u>	2010		39.7	000
_	1114	15	6.68	10.4		2070	-	33.2	9.38
_	1115	20	6.69	11.3	-	2030		21.2	9.38
L									
L	-		<u> </u>	·					
		<u> </u>		<u></u>			, 		
-									
L									
L									
L				`					
L	.40								
	<u> </u>	,			*				
L	Final Sa	ample Data:	6.69	11.3	<u>-</u>	2030		21.2	9.38
	Sample ID:	MW-01			Duplicate?	Dupe	Samp ID:	N/A	
	Sample Time:			•	MS/MSD?	_	· .		
	•	* 1	Commentar	•	•		•		
	<u>Analyses:</u> ⊠ ′VOCs	Methods: ☐ CLP	Comments:	<u>,</u>					
	pa⊾vocs ⊒ SVOCs	☑ SW846							
	⊟ SVOCs □ PCBs	☐ Drink. Wtr.				***			
	□ Metals							:	
			Sampler(s):	Ru	jostt			<u> </u>	

BUFFALO CORPORATE CENTER 368 Pleasant View Drive, Lancaster, New York 14086 Tel: 716/684-8060, Fax: 716/684-0844

WELL PURGE & SAMPLE RECORD

							ίλ/eil ID·	MW-	(D.Z.
		ation: B	•			·		12/16	
Ε	EEPC Project	No.: <u>27</u> 0	0 DC2	1.01			Date.	12/14	100
Inif	tial Depth to V	Vater: <u>የሪያ</u>	feet TOIC	*	•	S	start Time:	115	7
		Depth: 45.67					End Time:	121	9
		Pump: 40						Z	
		Rate: I.O		,		Pı	ımp Type:	12-U Ty	Phoon
	·	ed to: ≤l&w_	_	sampling	minutes			2	•
	•	ed to:	_		-	1x.We			
	aujust	_			ORP	Conductivity	DO	Turbidity	
	Time	Purge Volume (gallons///ters)	рн (s.u.)	Temp. (°C/⅓)	(mV)	(µS/cm m5/cm)		(NTU)	Level (feet)
Ī	1158	I GENORALIA	le.45	10.1	_	1400	-	711	9.3
H	(103	5	6.68	12.0	-	1540		208	9.3
-		10	6.49	13.2		1550		83.6	9.3
-	1207	15	6.75	13.2		1550		44.1	9.3
ŀ	1217	20	4.77	12.8		1550	_	32.4	9.3
┢	1211	<u> </u>	<u> </u>			,,,,,,			
-								···	
								· · ·	<u> </u>
-									
ŀ	<u> </u>								
ŀ								Þ	
F			<u> </u>			İ			
ŀ				·					
-		ā	. g/r						
F	· · · · · · · · · · · · · · · · · · ·				·_				
-			(, 77	t	<u> </u>	1550	<u></u>	25 .	9.3
L	Final S	ample Data:	. le-77	12-8	<u> </u>	<u> </u>		32.0	
;	Sample ID:	MW-02		_	Duplicate?	☐ Dupe	Samp ID:	N_	[A
;	Sample Time:	1218		_	MS/MSD?				
,	⁄ Analys <u>es:</u>	Methods:	Comments:						
	DK/VOCs	□ CLP							
	□ SVOCs	⊠ SW846						<u></u>	
	□ PCBs	□ Drink. Wtr.			·				
	☐ Metals								
	<u></u>	□ <u></u>	Sampler(s):	_ RW	att	·			

			WE	LL PURGE 8	SAMPLE	RECORD			
Site	e Name/Loca	ation: Bri	aut Out	doors			Well ID:	MW-	03
		No.: 2700	,				Date:	12/16	/2008
						q	tart Time:	133	29
		Vater: <u>9.02</u>							
		Depth: <u>50.70</u>	=					133	
	Depth to F	Pump: 45	feet TOIC					区	
	Initial Pump	Rate: /.4	###/ gpm						Typhoon
	adjust	ed to: <u>Slow</u>	at	sam pling	minutes	Well	Diameter:	2	inches
	adjust	ed to:	at		minutes	1x We	II Volume:	6.7	gallons
-	Time	Purge Volume (gallons/#ers)		Temp. (*Cパグ)	ORP (mV)	Conductivity (µS/cm ங©்ளே)		Turbidity (NTU)	Water Level (feet)
· marketine	1341	1	4.48	10.9		1380	_	217	9.18
	1343	5	4.56	11-8	-	1430		28.0	9.18
-	1346	10	4.43	11.8	-	1480		12.0	9.18
\vdash	1349	15	6.67	11.9		1500		6.33	9.18
-	1352	20	6.69	12.0		1500	_	4-91	9.18
-	1004	20	V.W.	1					
-				<u></u>					
_	· · · · · · · · · · · · · · · · · · ·							·	
-			<u> </u>						
			<u> </u>						
-			<u> </u>						
\vdash	·								
┡									
-			<u> </u>						
								1.6.	A 16
	Final S	ample Data:	6.69	12.0		1500	<u> </u>	4.91	9.18
S	ample ID:	Mw-03			Duplicate?	Dupe	Samp ID:	N/A	
S	ample Time:	1352		_	MS/MSD?	Image: section of the			
A	<u>nalyses:</u>	Methods:	Comments:	·Tr	ish vo	luine (9 v	ieds \ -	For MS/	'nsn
	Z.VOCs	□ CLP			*				
	I SVOCs	₩.SW846							
	I PCBs	☐ Drink. Wtr.							
	I Metals								
⊏	1	□	Sampler(s):	Ru	Vatt,	K Bwell			

-		WEL	LL PURGE 8	SAMPLE	RECORD			
Site Name/Loca	ation: Brid	and outd	oors			Well ID:	MW.	-04
	No.: 2700	•			*.*	Date:	12/16	108
					,	34 (32 4	. 12	a
•	Vater: <u>8.55</u>		•		•		142	
	epth: 45.7 8						<u> 144</u>	
Depth to P	Pump: <u>40</u>	feet TOIC					Z.	•
Initial Pump	Rate: <u>/. 0</u>	∠apan/gpm					12-VT	
adjuste	ed to: slow	at	sampling	minutes-				
adjusto	ed to:	at		minutes	1x We	ell Volume:	6.0	gallons
	Purge Volume	рН	Temp.	ORP	Conductivity	a .	Turbidity	the second of the second of the second
Time	(gallons/ಚಿಚ್ಚು)	(s.u.)	(°C/37)	(mV)	(µS/cm ភេទសភា)		(NTU)	Level (feet)
1423	2	6.60	12-0		17/6		>1000	8.78
1424	5	6.45	/3.5		/ \$ 40		1//	P.76
1432	10	6.47	13.9	•-	1440		14.3	
1438	15	6.74	13.9	_	1440		7.88	8.76
1441	18	6.64	914.0		1650		6.41	
/								
,					- .			
						7		
								1
-				-		<u></u>		
Final Sa	ample Data:	6.64	14-0		16 50		6.41	8.74
1 11101 00								
Sample ID:	MW-04			Duplicate?		e Samp ID:	NIX	
Sample Time:	1443			MS/MSD?				
Analyses:	Methods:	Comments:				<u>-</u>		
Ø VOCs	□ CLP			·				
□ SVOCs	I¥SW846						· · · · · · · · · · · · · · · · · · ·	V
□ PCBs	☐ Drink. Wtr.							
☐ Metals	<u> </u>		ை	سيد ١		<u> </u>		<u></u>
□	<u> </u>	Sampler(s):	Ku	att				

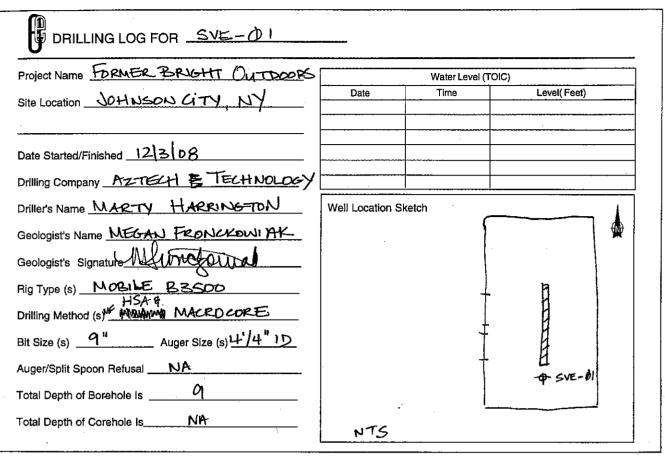
		WEL	Ļ PURGE 8	SAMPLE	RECORD			
Site Name/Loca	ation: <u>Bri</u> e	the Out	doors				MW-	_
EEEPC Project	No.: 270	0 .DC21	. 01			Date:	12/14	108
Initial Depth to V	Vater: 8.54	feet TOIC				Start Time:	150	8
	Depth: 30.25					End Time:	152	4
	Pump: 25	-			. [Z	
	<u> </u>	-					12-V T	
Initial Pump	Rate: 0.5 ed to: 0.8 0	_ Moder ≀ Shui	. = , ,	minutae				
adjust	ed to: O.Y 0	IPM at	1511	minutes	414	toll Volumo:	22	nallone
adjust	ed to:	_ at						
	Purge Volume	1 . +	Temp.	ORP	Conductivity (µS/cm m/S/cm		Turbidity (NTU)	Water Level (feet)
Time	(gallons/ਮਿੰਦਾਤ)		(°C/27)	(mV) 	1640	-	405	8.80
1509		6.55	10.7	 			21.2	გ.§ 7
1513	4	6.48	12.9		1680			
1518		6.48	(3.3		1680		7.29	8.87
1522	10	6.50	12.9		1480		3.51	8.87
								, ,
								·
								·
								
	:							
				·				
-								
-			 		<u> </u>			· · · · · · · · · · · · · · · · · · ·
		/	129		1680		3.51	8.87
Final S	ample Data:	6.20	12 7		1000			
Sample ID:	MW-05	5		Duplicate?	☐ Du	pe Samp ID:	NA	
Sample Time:				MS/MSD?				
<u>Analγses:</u>	Methods:	Comments:						
Ø-VOCs	□ CLP	•						
□ SVOCs	Z (SW846							
□ PCBs	☐ Drink. Wtr.						·	
□ Metals								
	-	Sampler(s):	Ri	Natt.	K. Powel	/		· · · · · ·

_	,	WEI	L PURGE 8	SAMPLE	RECORD			
Site Name/Loca	ation: <u>Bri</u>	ant Ou	+doors			Well ID:	MW.	-06
	i No.: 270	~			· · · · · · · · · · · · · · · · · · ·	Date:	12/14	2/08
Initial Denth to V	Vater: 8-43	feet TOIC				Start Time:	154	/ 3
,	Depth: 27.15		4 - v				155	
	Pump: 22	-					[<u>A</u> '	
•	Rate: /	-			Р	ump Type:	12-V	Typhoon
	ed to: Slow		Samples :	.minules				, .
adjust	ed to:	at	·	minutes	1x We	ell Volume:	3.0	gallons
	Purge Volume				Conductivity		Turbidity	
Time	(gallons/likers)		(°C °E)		(µS/cm r <i>)%(cm</i>)	(mg/L)	(NTU)	Level (feet)
1545	2	6.52	11.9	-	1660		824	9.54
1548		6.54	13.5		1470		73.3	9.88
1551	8	6.53	13.5		1470		44.8	9.92
1553	10	6.52	13.4		1660		74.3	9.93
				·				
							·	
				, ,			·	
								<u> </u>
Final C	ample Data:	6.52	13.4		1660	_	24.3	5.53
Fillal Se	ample Data.	1 3	13.			.1		
Sample ID:	MW-06		•	Duplicate?		e Samp ID:	NIX	<u> </u>
Sample Time:	1885	<u> </u>		MS/MSD?	Ц			
Analyses:	Methods:	Comments:			-			·
Ճ√ VOCs	□ CLP					·		
□ SVOCs	□ X SW846		•					:
□ PCBs	☐ Drink. Wtr.							
☐ Metals	□							
□		Sampler(s):	Ru	iatt K	-Powell			

		WE	LL PURGE 8	k SAMPLE	RECORD			
Site Name/Loca	ation: Brigh	+ Outdoo	ers		 	Well ID:	MW-C	7
	t No.: 2700 .					Date:	12/14	/oe
					c	tod Timor	204	2
	Water: 9.20						090	
	Depth: 21.99						092	
Depth to F	⊃ump: <u>/ &</u>	feet TOIC				Bailer		Pump
Initial Pump	Rate: <u>0.5</u> 7	ぬれ/gpm			· Pı	ımp Type:	12-V Ty	phoon
adjust	ted to: <u>0 - 4 + 9</u>	ρη at	0910	minutes	Well	Diameter:		inches
	ted to: Slow				1x We	ll Volume:	2	gallons
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons///////////////////////////////////	(s.u.)	(°C/∰)	(mV) **	(µS/cm m3/cm)	(mg/L)	(NTU)	Level (feet)
0906	1	5.75	10.5	-	880	<u> </u>	>1000	
0911	411	5.99	12.5		817		242	9.60
09.17	7 7	6.18	12.8		830		26.8	9.65
0921	9	6-21	13.2	<u> </u>	840	,	10.8	
		4.						
			'					
				<u> </u>				
								0 17
Final S	ample Data:	6021	13.2		840		10-8	9,62
Sample ID:	MW-07_			Duplicate?	Dupe	Samp ID:	N/A	
Sample Time:			-	MS/MSD?		·		-
·		0	-					`.
<u>Analyses:</u> À €VOCs	Methods: ☐ CLP	Comments:			<u>. </u>			
DSVOCs □ SVOCs	id CLP iXSW846			<u> </u>				
□ SVOCS □ PCBs	Drink, Wtr.			·	······································			
☐ PCBs ☐ Metals		<u> </u>	V.		******			
	- ·	Sampler(s):	17 1	Vall.	IL. Powe	36		<u></u>
	□	oampiei (8):		V UCI	1.000	· · ·		

ecology and environment engineering, p.c.

		WE	LL PURGE 8	SAMPLE	RECORD			
Site Name/Loca	ation: <u>Brid</u>	ant Outo	loors	<u>.</u>			MW-	
	t No.: 270	•				Date:	12/10	e/2008
Initial Depth to V	Vater: 9.2 4	feet TOIC			S	Start Time:	094	(F
	Depth: 22.77					End Time:	1016	(
	Pump: (8/						IZ	
	Rate: 0.3				Pı	ітр Туре:	12-V Ty	phoen
	ed to: Slow		Sampling	minutes	Well	Diameter:	2	inches
	ed to:		•					gallons
Time	Purge Volume (gallons//terd)	4 . "	Temp.	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
0950	0.5	4.12	11.8	-	1210		300	9.93
0955	2	k·22	13-1	-	1270		312	9.90
1000	3.5	6.31	13.4	-	1290	-	200	9.88
1005	5	6.38	13.(_	1290	-	LP.9	9.9/
10 10	7.5	6.41	13.2		1310		31.8	9.92
		·						
-								
Final Sa	ample Data:	હ. લા	13.2		1310	•••	31-8	9.92
Sample ID:	MW-08		_	Duplicate?		Samp ID:	MW-Ø	8/Q
Sample Time:	1013		-	MS/MSD?				
Analyses:	Methods:	Comments:						<u></u>
⊈ VOCs	☐ CLP					<u>.</u>	<u> </u>	
□ SVOCs	⊠ SW846							
□ PCBs	□ Drink. Wtr.							
□ Metals	□	·						
П	П	Sampler(s):	7 u) atot	K. Powell			

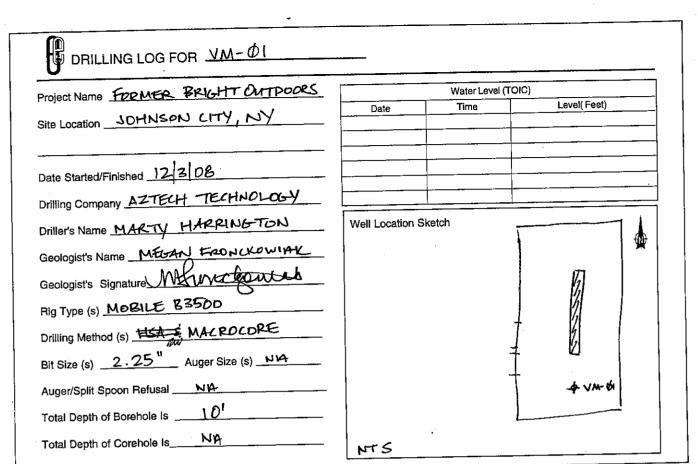

C 631 Field Street Property Survey

	Tabre Inam (.W.O.A 'O+)	.W.O.A
TAX ACCT. No. 143.037-0001-022 N/F KATHLEEN P. CANFIELD DEED L. 2054, P. 407 R.O.W.	TAX ACCT. No. 120.0'	TAX ACCT. No. 143.037-0001-028 N/F CON B. MIELLED & ELIZABETH I MIELLED C.
214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 214.00 2	MW-01 WESSESS COVERED STORAGE AREA MW-02 MW-02 MW-02 MW-02 MW-02 MW-02 MW-02 MW-02 MW-03 MW-03 MW-03 MW-04 MW-05 MW-05 MW-05 MW-05 MW-05 MW-05 MW-06 MW-06 MW-06 MW-07 MW-08	TAX ACC:
STREET (40° R.O.W.) REFERENCES COMES OF THE DEEDS LISTED BELOW MERE OBTAMED USED IN THE PRESENTATION OF THIS MAP DEEDS LISTED 402 2174 432 2174 432 2174 539 THESING IS NO PROFESSIONAL SERVICE AND DESIGNS INCORPORATED INST DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED INST DOCUMENT, AND THE IDEAS AND DESIGNS INCORPORATED INST DOCUMENT, OR PART, FOR ANY OTHER PROJECT OR BURGEDS ENHANCE IN PART, FOR ANY OTHER PROJECT OR DURPOSE WHOLE IN MADIE THE WINDOW AUTHORIZED AUTHORIZED AUTHORIZED AUTHORIZED IN LOSP THE WINDOW AUTHORIZED AUTHORIZED AUTHORIZED AUTHORIZED IN LOSP THE WINDOW AUTHORIZED A	WW-05 STORY BLOCK BLDC. No. 821 No. 8	CT. No.
WW-06 ×252.5: ×252.5: ×252.5:		S E
PROJECT: FORMER BRIGHT OUTDOORS SITE NYSDEC SITE No. 7-04-023 TOWN OF UNION, COUNTY OF BROOME, STATE OF NEW YORK INSTRUMENT SURVEY 631 FIELD STREET VILLAGE OF JOHNSON CITY	PROJECT ENGINEER: R.S.B. DRAFTED BY: R.S.B. CHECKED BY: R.J.P. SCALE: 1" = 30' DATE: DECEMBER, 2008 FIRM PRINCIPAL PROJECT MANAGER	NO ALTERATION PERMITTED HEREON EXCEPT AS PROVIDED UNDER SECTION 7209 SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW. P B S S S S S S S S S S S S S S S S S

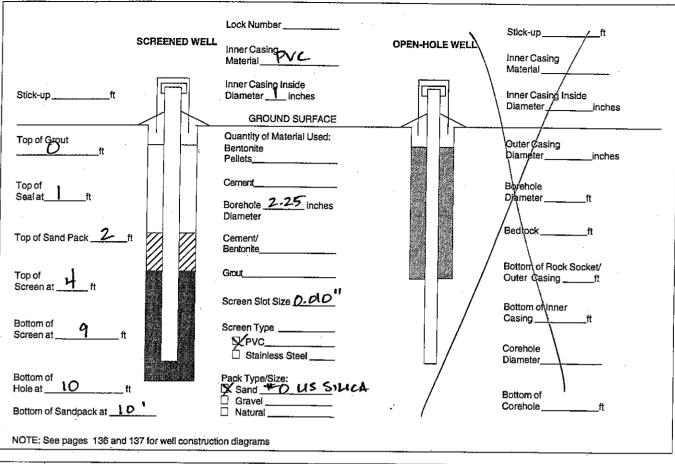
D Borehole Records

Borehole Record for SVE-ØI

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet


Ţ

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNU/OVA (ppm)	Comments
1 —			CL/SL	13:50]	3.6'	-		0	Collect sample -SVE-DI-ZI -@dopth of 1.5'
3						- -	- -			-@ dath of 1.3 - @ 14:10
5			su s	村:00	2 -	_4.5 [']	 			sample SVE-01-Z2
8					_				<u> </u>	sample - gvE-01-Z2 - depth= 2.5' @ 14:15
9						<u> </u>			- -	Sample -2
12					1			 , -		Sample - 5V6-01-23 - depth=4' @14:18
13							_	 -		sample sve-01-z4 depth=8' - (-) 14:35 Ms/MSD


Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moisture Content
		Dry Moist Wet
	.7-1.2 sandy gravel	Ø-Ø ○
2	1.2-1.9' gray to brown silty clay	Ø-⊗ O
3	1.9-5' yellowish brown to light brown silt	Q
4	, and the second	2 3 O
5		⊗ ⊗ ○
6 —	5-6.8' yellowish brown to light brown silt	Ø ₩ O
7	6.8-10' brown very fine sand grading down	Ø Ø ○
8	to a med brown & fine sand, well	X X O
9	sorted, few	X X O
10		$8 - 8 \circ$
11		000
12		000
13		
14		000
15		000
1	,	

Borehole Record for VM-ØI

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet

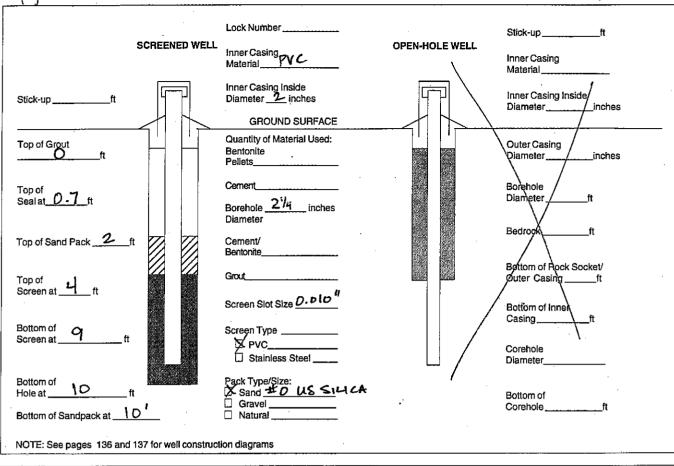
epth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID H Nu/OV A (ppm)	Comments
1 ——			SL	15:20	1 _	4.01	-		0	Sample VM-01-21 depth=1.51 @ 15:25
2 —— 3 ——					- -	_		· ·	- -	sample VM-01-21/Q depth=1.51 @ 15:25
			SUS	15:35	2 -	4.81			† - -	@ 15:25
9 —	+				-		- -		- -	
1 —	-				-		_			
3 — 4 —						+	-			

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte	
<u> </u>		Dry Moist	Wet
1	# 06' woncrete floor	00	0
,	0.6-1' sandy grave!	8 8	0
2 3——	1-5' mottled silt gray from 1.5-1.7'	Ø Ø	0
4	yellowish brown to brown silt, gets	X - X	0
5	somewhat Larker as more down	Q-80	\circ
e		Ø-Ø	\circ
7	5-7.5' brown silt	Q Q	\circ
8	7.5-10' very fine sand grading down to fine sand med brown	Ø Ø	0
9	med brown	$\nabla \nabla$	0
10		Q Q	0
11		Q-8	0
12		00	0
13		00	0
14		00	
15		00	O

Borehole Record for VM- 42

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet

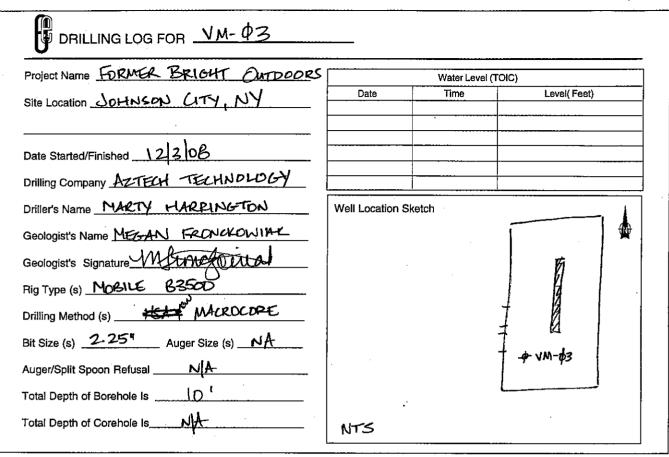
Geologist's Name MEAN TRONKOWINK	Date	Time	Level(Feet)
Orilling Company AZTECH TECHNOLOGY Oriller's Name MARTY HARRINGTON Geologist's Name MEAN TRONKOWIKK	l Location Sk	retch	
eologist's Name MEGAN TRONLYOW) AK	Location Sk	retch	
eologist's Name MEGAN TRONCKOWIAK	Location Sk	etch	
. Ο			
c b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		T	4
eologist's Signature Notate College			
ig Type (s) MORILE 83506			e /
rilling Method (s) PISA MCROCORE		+	# /
t Size (s) 2-25 Auger Size (s) NA		‡	<u> </u>
uger/Split Spoon Refusal NA		+	8
otal Depth of Borehole Is10'		}	· - VM-02

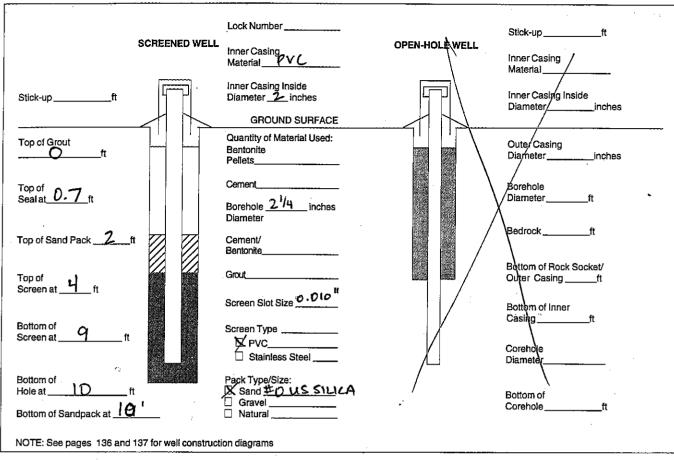

(M)

(KII

au i

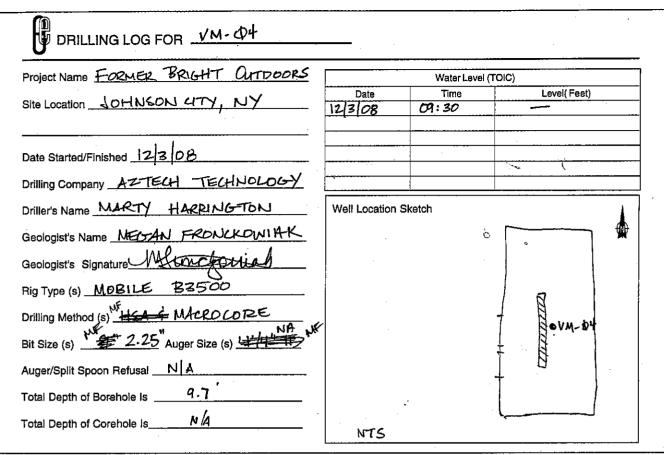
IN.I

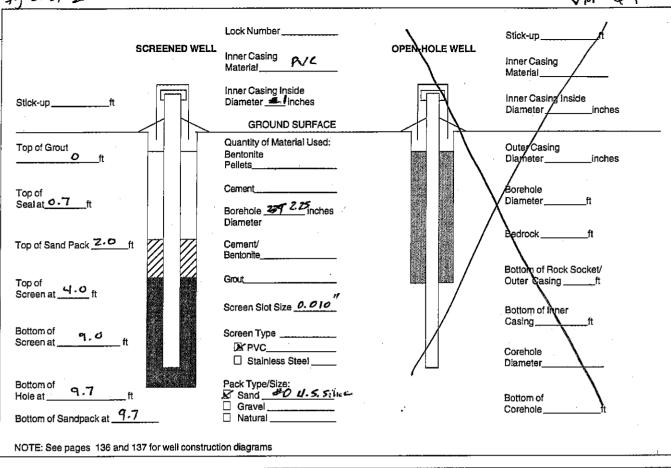

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNW/OVA (ppm)	Comments
1			SL	16:30	ł	4.1'			0	sample VM-02-Z1 depth = 2.5'
2			 -		_					depth = 2.5'
з —					_					_
5					- -	- 	<u> </u>			
6 —			SLS	16:35	2_	3.7'	-		_0 _	_
7			j		_	_				-
9					_					_
10							-		<u> </u>	
11 ————————————————————————————————————				:		_		_ <u>-</u>		_
13					_				<u> </u>	_
14						_				<u> </u>
15					_					


Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistur Conter Xion Xion M	- 1
1	0-0.6' concrete floor 0.6-1.2' sandy gravel subbase 1.2-2.6' gray clayey silt 2.6-5' mottled gray to light brown silt 5-6.7' need brown silt slightly mottled at top 6.7-10' med brown very the sand grading down to ik. from fine sand		00000000000
10 11 12 13 14 15		0000	000000

Borehole Record for VM-Ø3

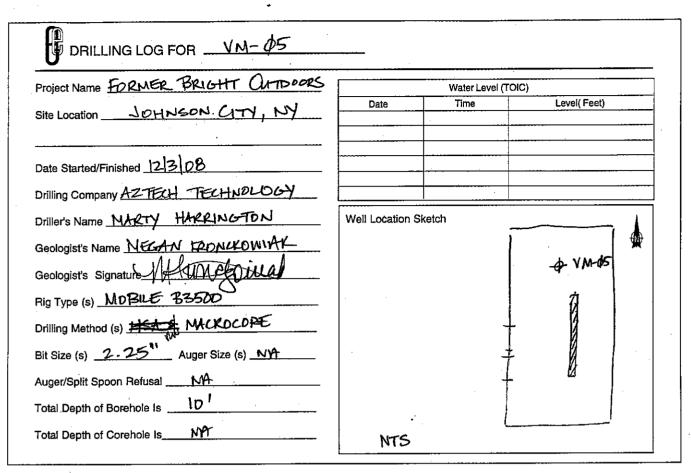
- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet


Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNu/OVA (ppm)	Comments
1			S/SL	15:50	1 _	4.2'	<u>-</u>		0	sample VM-103-Z1 -depth=0.7' -015:55
3			. .							_ _ _
5 — 6 — 7			SL/S	15:55	2_	4.1'			_	
9										_
11 ———————————————————————————————————							_	 		- - -
14					-					

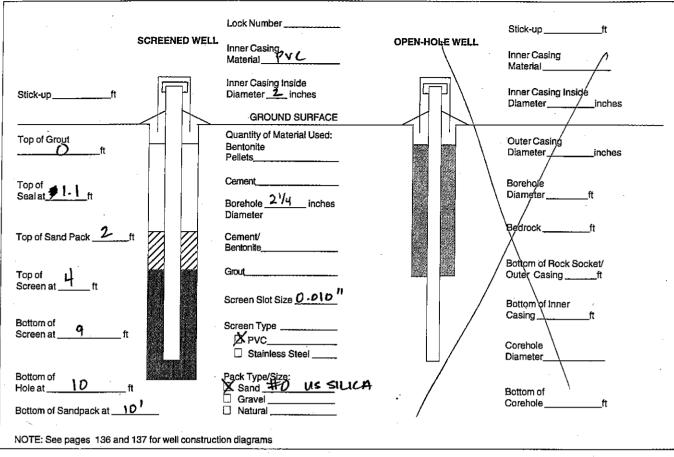

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte	nt
		Dry Moist	Wet
1	0-0-6' concrete froor	X X	
2	0.6-0.8' black sandy gravel	₩	0
3	0.8-1' brown sandy silt	Q - 20	. 0
4	1-1.4' gray silty clay	X	0
5	1.4-5' mottled gray to light brown silt	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0
6		Ø -Ø	0
7 —	5-6.6 brown silt	X 48	0
8	6.6-10' very fine sand grading down to fine sand	 	\cdot
9	med brown	100 100	
10		₩ -₩	
11			
12			
13			
14			0
15		100	\circ

Borehole Record for vm- 44

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet



		1	T			1		<u> </u>	1	
Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNH/OVA (ppm)	Comments
			cysl	09:15	1	3.61	-		6	Collect VM-Q4-ZI
1					_	_			<u> </u>	soil sample
2			-				-		 	Soil sample from 2' e 09:20
3 ——			1				+		-	
4	•		_		_	_	-			
5				-017-			 -		ーー -	
6			SL/S	09:30	2_	_4.9 ^t			<u></u>	<u>-</u>
7	. •		<u> </u>			_			 	
8 —	-		<u> </u>		-	_	-	 -		
9	i		1			_			 -	_
10									 -	
11 —						_	╽		<u> </u>	
12 —					_		_		<u> </u>	
13 ——									<u> </u>	
							.]			Ĺ
14										
15				<u> </u>		Ī				Τ



Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistu Conte Vio Woistu	nt
1 — 2 — 3 — 4 — 5 — 6 — 7 — — 10 — 11 — 12 — 13 — 14 — 15	0-1.1' concrete floor 1.1-1.5' grave! 1.5'-2.5' gray clay w silt 2.5-5' mothed silt, very hard, light brown 5.8-6.2' silty grave! \$ zone, light brown 6.2-8' same silt w some sand and trace clay 8-10' darker brown, fine sand		000000000

- Drilling Log
- Narrative Lithologic Description
- Well Development Record
- Well Development -- Parameter Measurements
- Investigation Derived Waste Inventory Sheet

Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	PID HNu/OVA (ppm)	
1	112		SL	16:45	1 -	3.41	_		0_	Sample VM-05-21 depth=1.5' -@16:47
3							_	 	- -	-@ 16:47 -
4 —								_		
6			sl/S	16:50	2 _ _	_4.1°	1	-	_O	
8 —						<u>.</u>	_			
10									 	
12								 		
13					_		_ -	- -		
15 —	<u> </u>				· -		_		<u> </u>	

Depth-ft.	NARRATIVE LITHOLOGIC DESCRIPTION	Moistui Contei	_
		Dry Moist	Wet
1	0-1' concrete floor	> ⊗	0
2	1-1-5' grayish brown silt	9 - ⊗	0
3	1-5-5' mottled tan-brown silt	Ø - ⊗	0
		₩ Ø	0
5		8 8	0
6	5-7' light brown silt	$\nabla - \nabla$	0
7	7-7.8' sand-fine to coarse	\$	0
8	7-8-8.2' med brown fine sand	D S	0
9	8.2-10' med brown sandy gravel	Ø ⊗	\circ
10	, 0	W W	\circ
11		0 0	\mathcal{O}
12		0	\bigcirc
13		\circ	C
14		00	0
15		00	0

Data Usability Summary Reports (DUSRs) and Laboratory Data

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

ProjectID	Lab Work Order
Former Bright Outdoors	LIMT-21835

Table 1 Sample Summary Tables from Electronic Data Deliverable

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
LIMT-21835	Soil	MW-07-Z1	08B48557	12/03/2008			None
LIMT-21835	Soil	VM-04-Z1	08B48558	12/3/2008			None
LIMT-21835	Soil	SVE-01-Z1	08B48559	12/3/2008			None
LIMT-21835	Soil	SVE-01-Z2	08B48560	12/3/2008			None
LIMT-21835	Soil	SVE-01-Z3	08B48561	12/3/2008			None
LIMT-21835	Soil	SVE-01-Z4 QC	08B48562	12/3/2008		MS/MSD	SVE-01-Z4
LIMT-21835	Soil	VM-01-Z1	08B48563	12/3/2008			None
LIMT-21835	Soil	VM-01-Z1/Q	08B48564	12/3/2008			None
LIMT-21835	Soil	VM-03-Z1	08B48565	12/3/2008			None
LIMT-21835	Soil	VM-02-Z1	08B48566	12/3/2008			None
LIMT-21835	Soil	VM-05-Z1	08B48567	12/3/2008			None
LIMT-21835	Soil	TCLP-01	08B48568	12/3/2008			None

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
LIMT-21835	Soil	SM2540G	Percent Moisture	13	SAMP
LIMT-21835	Soil	SW8260	Volatile Organic Compounds	13	SAMP
LIMT-21835	Soil	1311/6010	TCLP Metals	1	SAMP
LIMT-21835	Soil	1311/7470	TCLP Mercury	1	SAMP
LIMT-21835	Soil	SW9045	рН	1	SAMP

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples	Yes – Field duplicate included (VM-01-Z1/Q); trip/equipment blank not

Data Usability Summary Report	Project: Former Bright Outdoors	
Date Completed: January 15, 2009	Completed by: BKrajewski	

Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	required.
All ASP Forms complete?	Not included – information included on lab forms
Case narrative present and complete?	Yes
Any holding time violations?	No - All samples were prepared and analyzed within holding times.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to **Tables** List

Volatile Organics by GCMS	
Description	Notes and Qualifiers
Any compounds present in method, trip and field blanks (see Table 2)?	No
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	Not Applicable
Surrogate for method blanks and LCS within limits?	Yes
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re-analyzed for VOCs. Matrix effects should be established.	Yes
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No – Bromomethane recovery low for MS/MSD and chloromethane for MSD RPD values high for acetone and 2-butanone. Lab designates RPD for 1,2,4-trichlorobenzene high at 30.4% (limit 30%) – considered within limits based on rounding.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes
Is initial calibration for target compounds <15 %RSD or curve fit?	Yes
Is continuing calibration for target compounds < 20.5%D.	Yes - RF <0.05 for acetone, 2- butanone, tetrahydrofuran, 1,4-dioxane and t-butyl alcohol. Response sufficient for detection; compound not detected in samples.

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

Volatile Organics by GCMS	
Description	Notes and Qualifiers
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	No
For TICs are there any system related compounds that should not be reported?	Not Applicable
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes – Absolute difference <2xPQL.

Metals by ICP and Mercury by CVAA	
Description	Notes and Qualifiers
Any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are <5 times the blank then "U" flag data.	Not Applicable
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	Not Applicable
Were elements recovered ≤30%? If so, "R" flag associated NDs on Form 1's.	Not Applicable
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	No
Spot check ICS recoveries 80-120%. Contact lab.	Data not provided; no outlier noted in case narrative
Spot check ICV 95-105%. Contact lab.	Data not provided; no outlier noted in case narrative
Spot check CCV 90-110% or 80-120% for Hg. Contact lab.	Data not provided; no outlier noted in case narrative
Do field duplicate results show good precision for all compounds (see Table 7)?	Not Applicable

Summary of Potential Impacts on Data Usability
Major Concerns
None
Minor Concerns
Acetone, 2-butanone, bromomethane and chloromethane results for SVE-01-Z4 qualified as estimated
"J" based on matrix spike/spike duplicate recoveries and RPD values.

Data Usability Summary Report	Project: Former Bright Outdoors		
Date Completed: January 15, 2009	Completed by: BKrajewski		

Table 2 - List of Positive Results for Blank Samples

None

Table 2A - List of Samples Qualified for Method Blank Contamination

None

Table 2B - List of Samples Qualified for Field Blank Contamination

None

Table 3 - List of Samples with Surrogates outside Control Limits

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
SW8260	SVE-01-Z4	MS	Bromomethane	<0.014	0.017	68	1	70	130	J Flag
SW8260	SVE-01-Z4	MSD	Bromomethane	<0.014	0.013	68	1	70	130	J Flag
SW8260	SVE-01-Z4	MSD	Chloromethane	<0.014	0.013	68	1	70	130	J Flag

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	Sample Qual.
SW8260	SVE-01-Z4	MSD	Acetone	42	30	J Flag
SW8260	SVE-01-Z4	MSD	2-Butanone	32	30	J Flag

Table 5 - List LCS Recoveries outside Control Limits

None

Table 6 -Samples that were Reanalyzed

None

Table 7 - Summary of Field Duplicate Results

Method	Analyte	Unit	Anal Type	PQL	VM-01-Z1	VM-01- Z1/Q	Absolute Difference	Rating	Samp Qual
SW8260	Toluene	mg/Kg	Α	0.002	0.002	0.004	0.002	Good	None

Data Usability Summary Report	Project: Former Bright Outdoors		
Date Completed: January 15, 2009	Completed by: BKrajewski		

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

Data Usability Summary Report	Project: Former Bright Outdoors		
Date Completed: January 15, 2009	Completed by: BKrajewski		

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

ProjectID	Lab Work Order		
Former Bright Outdoors	LIMT-22130		

Table 1 Sample Summary Tables from Electronic Data Deliverable

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
LIMT-22130	Water	MW-01	08B50004	12/16/2008			None
LIMT-22130	Water	MW-02	08B50005	12/16/2008			None
LIMT-22130	Water	MW-03Q	08B50006	12/16/2008		MS/MSD	MW-03
LIMT-22130	Water	MW-04	08B50007	12/16/2008			None
LIMT-22130	Water	MW-05	08B50008	12/16/2008			None
LIMT-22130	Water	MW-06	08B50009	12/16/2008			None
LIMT-22130	Water	MW-07	08B50010	12/16/2008			None
LIMT-22130	Water	MW-08	08B50011	12/16/2008			None
LIMT-22130	Water	MW-08/Q	08B50012	12/16/2008			None
LIMT-22130	Water	TB121608	08B50013	12/16/2008			None

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
LIMT-22130	Water	SW8260	Volatile Organic Compounds	10	SAMP

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes – Field duplicate (MW-08/Q) and trip blank included; equipment blank not required.
All ASP Forms complete?	Not included – information included on lab forms
Case narrative present and complete?	Yes
Any holding time violations?	No - All samples were prepared and analyzed within holding times.

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organics by GCMS	
Description	Notes and Qualifiers
Any compounds present in method, trip and field blanks (see	Yes – chloroform detected in method
Table 2)?	blank
For samples, if results are <5 times the blank or < 10 times	Not Applicable – chloroform not
blank for common laboratory contaminants then "U" flag	detected in samples
data. Qualification also applies to TICs.	
Surrogate for method blanks and LCS within limits?	Yes
Surrogate for samples and MS/MSD within limits? (See	Yes
Table 3). All samples should be re-analyzed for VOCs.	
Matrix effects should be established.	Yes
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	res
MS/MSD within QC criteria (see Table 4)? If out and LCS is	No – Multiple low recoveries. MW-03
compliant, then J flag positive data in original sample due to	results for affected compounds qualified
matrix?	"J".
LCS within QC criteria (see Table 5)? If out, and the	No - Multiple low recoveries. All
recovery high with no positive values, then no data	associated sample results qualified "J";
qualification is required.	All sample tert-Butyl alcohol results
,	rejected since LCS recovery <10%.
Do internal standards areas and retention time meet criteria?	Yes
If not was sample re-analyzed to establish matrix (see Table	
6)?	
Is initial calibration for target compounds <15 %RSD or	Yes – Curve fit used for several
curve fit?	compounds.
Is continuing calibration for target compounds < 20.5%D.	No – CCV indicates low bias for
	acetone, tert-butyl alcohol, MTBE,
	carbon tetrachloride, tert-butyl ethyl
	ether, 2,2-dichloropropane, tetrahydrofuran, 1,1,1-trichloroethane,
	terramylmethyl ether, 1,4-dioxane, cis-
	1,3-dichloropropene, 2-hexanone, trans-
	1,3-dichloropropene, 1,2-
	dibromoethane, 1,1,1,2-
	tetrachloroethane, 1,2,4-
	trichlorobenzene, trans-1,4-dichloro-2-
	butene, and 1,2-dibromo-3-
	chloropropane.
	RRF for tert-butyl alcohol, 1,4-dioxane
	and 1,2-dibromo-3-chloropropane <0.5.

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

Volatile Organics by GCMS	
Description	Notes and Qualifiers
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	No
For TICs are there any system related compounds that should not be reported?	Not Applicable
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes

Summary of Potential Impacts on Data Usability
Major Concerns
CCV and LCS indicate low bias in quantitation of several compounds. Sample tert-Butyl alcohol results rejected based on LCS recovery <10%.
Minor Concerns
Several results qualified as estimated based on low MS/MSD/LCS recoveries.

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
SW8260	BLANK-127963	MBLK	Chloroform	2.3		A	ug/L	2.0

Table 2A - List of Samples Qualified for Method Blank ContaminationNone

Table 2B - List of Samples Qualified for Field Blank ContaminationNone

Table 3 - List of Samples with Surrogates outside Control Limits None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
SW8260	MW-03	MS	Carbon Tetrachloride	<1.0	10.0	66	1	70	130	J Flag
SW8260	MW-03	MSD	trans-1,2-Dichloroethene	<1.0	10.0	131	1	70	130	J Flag
SW8260	MW-03	MS	cis-1,3-Dichloropropene	<1.0	10.0	66	1	70	130	J Flag
SW8260	MW-03	MS	trans-1,3-Dichloropropene	<0.5	10.0	47	1	70	130	J Flag
SW8260	MW-03	MSD	trans-1,3-Dichloropropene	<0.5	10.0	52	1	70	130	J Flag
SW8260	MW-03	MS	2,2-Dichloropropane	<1.0	10.0	28	1	70	130	J Flag
SW8260	MW-03	MSD	2,2-Dichloropropane	<1.0	10.0	30	1	70	130	J Flag
SW8260	MW-03	MS	trans-1,4-dichloro-2-butene	<2.0	10.0	63	1	70	130	J Flag
SW8260	MW-03	MSD	trans-1,4-dichloro-2-butene	<2.0	10.0	60	1	70	130	J Flag
SW8260	MW-03	MS	1,2-Dibromo-3-chloropropane	<5.0	10.0	65	1	70	130	J Flag
SW8260	MW-03	MS	tert-Butyl alcohol	<20.0	10.0	27	1	70	130	J Flag
SW8260	MW-03	MSD	tert-Butyl alcohol	<20.0	10.0	28	1	70	130	J Flag
SW8260	MW-03	MS	tert-Butyl ethyl ether	<0.5	10.0	52	1	70	130	J Flag
SW8260	MW-03	MSD	tert-Butyl ethyl ether	<0.5	10.0	58	1	70	130	J Flag
SW8260	MW-03	MS	tert-Amyl methyl ether	<0.5	10.0	55	1	70	130	J Flag
SW8260	MW-03	MSD	tert-Amyl methyl ether	<0.5	10.0	60	1	70	130	J Flag

Data Usability Summary Report	Project: Former Bright Outdoors		
Date Completed: January 15, 2009	Completed by: BKrajewski		

Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	No. of Affected Samples Samp Qual
SW8260	LFBLANK-89963	Acetone	66	70	160	9 J Flag
SW8260	LFBLANK-89963	Carbon tetrachloride	64	70	130	9 J Flag
SW8260	LFBLANK-89963	1,1,1-Trichloroethane	65	70	130	9 J Flag
SW8260	LFBLANK-89963	1,4-Dioxane	23	40	130	9 J Flag
SW8260	LFBLANK-89963	cis-1,3-Dichloropropene	65	70	130	9 J Flag
SW8260	LFBLANK-89963	trans-1,3-Dichloropropene	48	70	130	9 J Flag
SW8260	LFBLANK-89963	2,2-Dichloropropane	29	40	130	9 J Flag
SW8260	LFBLANK-89963	trans-1,4-dichloro-2-butene	58	70	130	9 J Flag
SW8260	LFBLANK-89963	1,2-Dibromo-3- chloropropane	62	70	130	9 J Flag
SW8260	LFBLANK-89963	tert-Butyl alcohol	9	40	160	9 R Flag
SW8260	LFBLANK-89963	tert-Butyl ethyl ether	55	70	160	9 J Flag
SW8260	LFBLANK-89963	tert-Amyl methyl ether	60	70	130	9 J Flag

Table 6 –Samples that were Reanalyzed None

Table 7 - Summary of Field Duplicate Results

Method	Analyte	Unit	Anal Type	PQL	MW-08	MW-08/Q	RPD	RPD Rating	Samp Qual
SW8260	1,1,1-Trichloroethane	ug/L	Α	1.0	3.9	3.9	0.0%	Good	None
SW8260	Trichloroethene	ug/L	Α	1.0	13.7	13.6	0.7%	Good	None

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 15, 2009	Completed by: BKrajewski

Data Usability Summary Report	Project: Former Bright Outdoors
Date Completed: January 16, 2009	Completed by: BKrajewski

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project	Lab Work Order
Former Bright Outdoors	LIMT-22131

Table 1 Sample Summary Tables

Sample ID	Matrix	Sample Date	Lab ID	Lab QC	MS/MSD	ID Corrections
AS-20	Air	12/16/2008	08B50014			None
AS-60	Air	12/16/2008	08B50015			None

Work Orders, Tests and Number of Samples included in this DUSR

Matrix	Test Method	Method Name	Number of Samples
Air	EPATO15	VOCs in Air by GCMS Method TO-15	2

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes – Canisters received in good condition. Temperature requirement not applicable to air samples. Canister pressure at -11 and -18 Hg
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes – Field Duplicate not included in SDG. Trip and Equipment Blank not required.
All ASP Forms complete?	Not present – information available in equivalent forms.
Case narrative present and complete?	Yes
Any holding time violations?	No - All samples were prepared and analyzed within holding times (30 days from collection).

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Data Usability Summary Report	Project: Former Bright Outdoors			
Date Completed: January 16, 2009	Completed by: BKrajewski			

Go to **Tables** List

Volatile Organic by GCMS	
Description	Notes and Qualifiers
Any compounds present in method, trip and field blanks (see Table 2)?	Yes – Acetone at 0.15 ug/m3 detected at canister certification. No additional qualifier applied.
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	Yes – Acetone and 2-butanone results for sample AS-20 are qualified "U" at the concentration detected
Surrogate for method blanks and LCS within limits? Surrogate for samples within limits? (See Table 3). All samples should be re-analyzed for VOCs? Matrix effects should be established.	Yes Yes
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes – MS/MSD not required for Method.
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	Not Applicable.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	No – Recovery high for benzyl chloride and 1,2,4-trimethylbenzene. 1,2,4- trimethylbenzene result for sample AS- 60 qualified "J" as estimated
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes
Is initial calibration for target compounds <30%RSD or curve fit?	Yes
Is continuing calibration for target compounds < 30%D.	Yes - Second source standard low for benzyl chloride, 1,2,4-trimethylbenzene and 4-ethyltoluene. No qualifier applied.
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes – Samples required dilution (2x) based on level of target compounds detected. Additional 20x dilution performed for select compounds.
For TICs are there any system related compounds that should not be reported?	Not Applicable.
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Not Applicable.

Summary of Potential Impacts on Data Usability				
Major Concerns				
None				
Minor Concerns				
Results qualified based on method blank and LCS results.				

Data Usability Summary Report	Project: Former Bright Outdoors			
Date Completed: January 16, 2009	Completed by: BKrajewski			

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	PQL
TO-15	BLANK-127841	MBLK	Isopropyl alcohol	0.9		А	ug/m3	0.06
TO-15	BLANK-127841	MBLK	Acetone	1.3		А	ug/m3	0.06
TO-15	BLANK-127841	MBLK	Hexachlorobutadiene	0.28		А	ug/m3	0.27
TO-15	BLANK-127841	MBLK	Methylene Chloride	0.21		А	ug/m3	0.09
TO-15	BLANK-127841	MBLK	1,2,4-Trichlorobenzene	0.34		А	ug/m3	0.19
TO-15	BLANK-127841	MBLK	2-Butanone	0.19		А	ug/m3	0.08

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Lab Blank	Matrix	Analyte	Blank Result	Sample Result	Lab Qual	PQL	Affected Samples	Sample Flag
ТО	BLANK-127841	Air	Acetone	1.3	4.4		0.24	AS-20	U Qualified
ТО	BLANK-127841	Air	2-Butanone	0.19	0.60		0.30	AS-20	U Qualified

Table 2B - List of Samples Qualified for Field Blank Contamination None

Table 3 - List of Samples with Surrogates outside Control Limits None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits Not Applicable

Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Affected Samples	Samp Qual
TO-15	LFBLANK-89832	Benzyl chloride	137	70	130	None – Not Detected	None
TO-15	LFBLANK-89832	1,2,4-Trimethylbenzene	131	70	130	AS-60	J Flag

Data Usability Summary Report	Project: Former Bright Outdoors			
Date Completed: January 16, 2009	Completed by: BKrajewski			

Table 6 -Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
AS-20	08B50014	TO-15	Dilution	111-TCA;TCE reported at 20X
AS-60	08B50015	TO-15	Dilution	Toluene reported at 20X

Table 7 – Summary of Field Duplicate Results

Not Applicable

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

REPORT DATE 12/10/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER:

PURCHASE ORDER NUMBER: 2700.DC21.01

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-21835

JOB NUMBER: 2700.DC21.01

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. Results are based on samples as submitted to the laboratory and relate only to the items collected and tested.

PROJECT LOCATION: FORMER BRIGHT OUTDOORS

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.		
MW-07-Z1	08B48557	SOIL	Not Specified	8260 dry weight			
MW-07-Z1	08B48557	SOIL	Not Specified	solids (percent)			
SVE-01-Z1	08B48559	SOIL	Not Specified	8260 dry weight			
SVE-01-Z1	08B48559	SOIL	Not Specified	solids (percent)			
SVE-01-Z2	08B48560	SOIL	Not Specified	8260 dry weight			
SVE-01-Z2	08B48560	SOIL	Not Specified	solids (percent)			
SVE-01-Z3	08B48561	SOIL	Not Specified	8260 dry weight			
SVE-01-Z3	08B48561	SOIL	Not Specified	solids (percent)			
SVE-01-Z4 QC	08B48562	SOIL	Not Specified	8260 dry weight			
SVE-01-Z4 QC	08B48562	SOIL	Not Specified	solids (percent)			
TCLP-01	08B48568	SOIL	Not Specified	ph solids			
TCLP-01	08B48568	SOIL	Not Specified	tclp - metals			
VM-01-Z1	08B48563	SOIL	Not Specified	8260 dry weight			
VM-01-Z1	08B48563	SOIL	Not Specified	solids (percent)			
VM-01-Z1/Q	08B48564	SOIL	Not Specified	8260 dry weight			
VM-01-Z1/Q	08B48564	SOIL	Not Specified	solids (percent)			
VM-02-Z1	08B48566	SOIL	Not Specified	8260 dry weight			
VM-02-Z1	08B48566	SOIL	Not Specified	solids (percent)			
VM-03-Z1	08B48565	SOIL	Not Specified	8260 dry weight			
VM-03-Z1	08B48565	SOIL	Not Specified	solids (percent)			
VM-04-Z1	08B48558	SOIL	Not Specified	8260 dry weight			
VM-04-Z1	08B48558	SOIL	Not Specified	solids (percent)			
VM-05-Z1	08B48567	SOIL	Not Specified	8260 dry weight			
VM-05-Z1	08B48567	SOIL	Not Specified	solids (percent)			

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

REPORT DATE 12/10/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER:

PURCHASE ORDER NUMBER: 2700.DC21.01

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-21835

JOB NUMBER: 2700.DC21.01

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. Results are based on samples as submitted to the laboratory and relate only to the items collected and tested.

Comments:

LIMS BATCH NO.: LIMT-21835

CASE NARRATIVE SUMMARY

Recommended sample holding times were not exceeded for all samples unless listed below: None Exceeded

All samples for the method(s) listed were received preserved properly in the proper containers at $4^{\circ}C$ +/- 2 degrees as specified on the chain-of-custody form unless listed below: All properly preserved

In method 8260, the initial and/or continuing calibration did not meet method specifications. For samples 08B48557 - 48567, tert-Butyl Alcohol, Acetone, 2-Butanone, Tetrahydrofuran, and 1,4-Dioxane were calibrated with a relative response factor <0.05.

In method 8260 for sample 08B48562, the matrix spike and matrix spike duplicate recoveries for Bromomethane are biased on the low side. Analysis is in control based on laboratory control sample. Possibility of sample matrix effects that lead to low bias for reported results cannot be eliminated.

In method 8260 for sample 08B48562, the matrix spike duplicate RPD for Acetone, 2-Butanone, and 1,2,4-Trichlorobenzene is outside of control limits. Reduced precision is anticipated for any reported results for these compounds in this sample.

There are no other analytical issues which affect the usability of the data.

DETAILED CASE NARRATIVE

METHOD SW846-6010 - ADDITIONAL DETAILS

Only RCRA 8 metals results were requested and reported.

METHOD 7471A - ADDITIONAL DETAILS

A matrix spike was performed on TCLP sample 08B48568.

METHOD SW846 8260 - ADDITIONAL DETAILS

In method 8260 for Bromomethane in samples 08B48557 - 48567, data is not affected by continuing calibration non-conformance since bias is on the high side and all results are "not detected".

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits somewhere between 40-160% are used and/or unless otherwise listed in this narrative.

Difficult analytes: MIBK, MEK, tetrachloroethylene, tert-butyl alcohol, acetone, 1,4-dioxane, vinyl chloride, chloromethane, dichlorodifluoromethane, 2-hexanone, naphthalene, and bromomethane Additional difficult analytes in water only: 2,2-dichloropropane, and tert-butylethyl ether

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL, 413/525-2332

REPORT DATE 12/10/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER:

PURCHASE ORDER NUMBER: 2700.DC21.01

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-21835 JOB NUMBER: 2700.DC21.01

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report. Results are based on samples as submitted to the laboratory and relate only to the items collected and tested.

Additional difficult analytes in soil only: acrylonitrile, chloroethane, 1,2,3-trichloropropane, 1,2,4-trichlorobenzene, methylene chloride, n-butylbenzene, and tert-butylbenzene Duplicate laboratory fortified blank RPDs were all within control limits specified by the method except for "difficult analytes" where RPDs of 50% are used and/or unless otherwise listed in this narrative.

Difficult analyte: 1,4-dioxane

Additional difficult analytes for soil only: acetone, MEK, and 2-hexanone

All 8260 matrix spike and matrix spike duplicate recoveries, sample duplicate RPDs and MSDRPDs, if requested in this batch were within control limits specified by the method unless listed below:

In method 8260 for sample 08B48562, either matrix spike or matrix spike duplicate recovery for Chloromethane is outside of control limits, but the other is within limits. Outlier should be viewed as a one-time anomaly.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA ELLAP (LEAD) 100033 AIHA 100033 NORTH CAROLINA CERT. # 652 MASSACHUSETTS MA0100 NEW HAMPSHIRE NELAP 2516 NEW JERSEY NELAP NJ MA007 (AIR) CONNECTICUT PH-0567 VERMONT DOH (LEAD) No. LL015036 FLORIDA DOH E871027 (AIR)

NEW YORK ELAP/NELAP 10899 RHODE ISLAND (LIC. No. 112)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Denson 12/11/08 **SIGNATURE** DATE Tod Kopyscinski Michael Erickson

Air Laboratory Manager

Assistant Laboratory Director

Edward Denson

Daren Damboragian

Technical Director Organics Department Supervisor

^{*} See end of data tabulation for notes and comments pertaining to this sample

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 1 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

2700.DC21.01 Date Received: 12/4/2008 Job Number:

Field Sample #: MW-07-Z1

Sample ID: 08B48557 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.077			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.031			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.031			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 2 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Date Received: 12/4/2008
Field Sample #: MW-07-Z1

Sample ID: 08B48557 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.016			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.077			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.016			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 3 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 Date Received: 12/4/2008

Job Number: 2700.DC21.01

Field Sample #: MW-07-Z1

08B48557 **\$Sampled: 12/3/2008** Sample ID:

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	800.0			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.008			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 4 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: SVE-01-Z1

Sample ID: 08B48559 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.073			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.030			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.030			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 5 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: SVE-01-Z1

Sample ID: 08B48559 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.015			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.073			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.015			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 Page 6 of 39 368 PLEASANT VIEW

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 Date Received: 12/4/2008

Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z1

08B48559 **\$Sampled: 12/3/2008** Sample ID:

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.008			
Toluene	mg/kg dry wt	0.002	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.008			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 7 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z2

Sample ID: 08B48560 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.069			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.007			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.028			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.028			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.007			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 8 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: SVE-01-Z2

Sample ID: 08B48560 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.014			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.069			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.014			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.014			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.014			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 9 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z2

Sample ID: 08B48560 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.007			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.007			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.007			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.007			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 10 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z3

Sample ID: 08B48561 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.075			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.030			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.030			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 11 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z3

Sample ID: 08B48561 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.015			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.075			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.015			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.015			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 12 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z3

Sample ID: 08B48561 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.008			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	800.0			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.008			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 13 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: SVE-01-Z4 QC

Sample ID: 08B48562 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.14			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.009			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.054			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.054			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.009			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.027			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 14 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: SVE-01-Z4 QC

Sample ID: 08B48562 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.027			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.006			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.027			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.14			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.027			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.027			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.027			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.006			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 15 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Date Received: 12/4/2008

Field Sample #: SVE-01-Z4 QC

Sample ID: 08B48562 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.014			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.014			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.003			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.014			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.006			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.003			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 16 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 2700.DC21.01 Date Received: 12/4/2008 Job Number:

Field Sample #: VM-01-Z1

Sample ID: 08B48563 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.085			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.006			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.034			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.034			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 17 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

2700.DC21.01 Date Received: 12/4/2008 Job Number:

Field Sample #: VM-01-Z1

Sample ID: 08B48563 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.085			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.017			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 18 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-01-Z1

Sample ID: 08B48563 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.009			
Toluene	mg/kg dry wt	0.002	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.009			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 19 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: VM-01-Z1/Q

Sample ID: 08B48564 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.098			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.006			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.010			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.039			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.039			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.020			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.010			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 20 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-01-Z1/Q

Sample ID: 08B48564 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC Limit		P/ F
			Analyzed			Lo	Hi	
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.020			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.020			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.098			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.020			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.020			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.020			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 21 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-01-Z1/Q

Sample ID: 08B48564 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.010			
Toluene	mg/kg dry wt	0.004	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.010			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.010			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.010			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 22 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-02-Z1

Sample ID: 08B48566 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.077		- 111	
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane		ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt				0.002			
	mg/kg dry wt	ND	12/05/08	MFF				
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.031			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.031			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 23 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: VM-02-Z1

Sample ID: 08B48566 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.016			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.077			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.016			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.016			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 24 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-02-Z1

Sample ID: 08B48566 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.008			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.008			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.008			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 25 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

2700.DC21.01 Date Received: 12/4/2008 Job Number:

Field Sample #: VM-03-Z1

Sample ID: 08B48565 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.083			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.034			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.034			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 26 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 2700.DC21.01 Date Received: 12/4/2008 Job Number:

Field Sample #: VM-03-Z1

Sample ID: 08B48565 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.083			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.017			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 27 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-03-Z1

Sample ID: 08B48565 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.009			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	0.010	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	0.002	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.009			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 28 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-04-Z1

Sample ID: 08B48558 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.090			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.006			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.036			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.036			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.006			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.018			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 29 of 39

Purchase Order No.: 2700.DC21.01 LANCASTER, NY 14086

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

12/4/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: VM-04-Z1

Sample ID: 08B48558 **\$Sampled: 12/3/2008**

Not Specified

SOIL Sample Matrix:

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.018			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.018			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.090			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.018			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.018			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.018			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 30 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-04-Z1

Sample ID: 08B48558 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.009			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.009			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 31 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-05-Z1

Sample ID: 08B48567 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	mg/kg dry wt	ND	12/05/08	MFF	0.082			
Acrylonitrile	mg/kg dry wt	ND	12/05/08	MFF	0.005			
tert-Amylmethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromochloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromodichloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromoform	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Bromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Butanone (MEK)	mg/kg dry wt	ND	12/05/08	MFF	0.033			
tert-Butyl Alcohol	mg/kg dry wt	ND	12/05/08	MFF	0.033			
n-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
sec-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
tert-Butylethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Carbon Disulfide	mg/kg dry wt	ND	12/05/08	MFF	0.005			
Carbon Tetrachloride	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Chlorodibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Chloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Chloroform	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Chloromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
2-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
4-Chlorotoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromo-3-Chloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dibromoethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Dibromomethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 32 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-05-Z1

Sample ID: 08B48567 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,4-Dichloro-2-Butene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Dichlorodifluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.017			
1,1-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
cis-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
trans-1,2-Dichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
2,2-Dichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
cis-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
trans-1,3-Dichloropropene	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Diethyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Diisopropyl Ether	mg/kg dry wt	ND	12/05/08	MFF	0.001			
1,4-Dioxane	mg/kg dry wt	ND	12/05/08	MFF	0.082			
Ethyl Benzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Hexachlorobutadiene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
2-Hexanone	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Isopropylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
p-Isopropyltoluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
MTBE	mg/kg dry wt	ND	12/05/08	MFF	0.004			
Methylene Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.017			
MIBK	mg/kg dry wt	ND	12/05/08	MFF	0.017			
Naphthalene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
n-Propylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Styrene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 33 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-05-Z1

Sample ID: 08B48567 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.001			
Tetrachloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Tetrahydrofuran	mg/kg dry wt	ND	12/05/08	MFF	0.009			
Toluene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,3-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,2,4-Trichlorobenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,1-Trichloroethane	mg/kg dry wt	0.013	12/05/08	MFF	0.002			
1,1,2-Trichloroethane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichloroethylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Trichlorofluoromethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,3-Trichloropropane	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,1,2-Trichloro-1,2,2-Trifluoroethane	mg/kg dry wt	ND	12/05/08	MFF	0.009			
1,2,4-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
1,3,5-Trimethylbenzene	mg/kg dry wt	ND	12/05/08	MFF	0.002			
Vinyl Chloride	mg/kg dry wt	ND	12/05/08	MFF	0.009			
m + p Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.004			
o-Xylene	mg/kg dry wt	ND	12/05/08	MFF	0.002			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 34 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: TCLP-01

Not Specified

Sample Matrix: SOIL

 Units
 Results
 Date Analyst RL SPEC Limit P/ F Analyzed
 SPEC Limit P/ F Lo Hi

 pH
 units
 6.51
 12/05/08 LL

Analytical Method: SW846 9045

ELECTRODE DETERMINATION.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 35 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835 Date Received: 12/4/2008

Job Number: 2700.DC21.01

Field Sample #: MW-07-Z1

08B48557 **\$Sampled: 12/3/2008** Sample ID:

Not Specified

SOIL Sample Matrix:

Units SPEC Limit P/F Results Date Analyst RL

Lo Analyzed Ηi

% Solids, total 81.9 12/08/08 JM

Field Sample #: SVE-01-Z1

Sample ID: 08B48559 \$Sampled: 12/3/2008

Not Specified

SOIL Sample Matrix:

Units Results Date Analyst RL SPEC Limit P/F Analyzed Hi Lo

79.1 % 12/08/08 JM Solids, total

Field Sample #: SVE-01-Z2

Sample ID: 08B48560 **\$Sampled: 12/3/2008**

Not Specified

Sample Matrix: SOIL

Units Results Date RLSPEC Limit P/F Analyst Analyzed Lo Ηi % 84.3 12/08/08 Solids, total JM

Field Sample #: SVE-01-Z3

\$Sampled: 12/3/2008 Sample ID: 08B48561

Not Specified

Sample Matrix: SOIL

Units Results Date RL **SPEC Limit** P/F Analyst Analyzed Lo % Solids, total 81.9 12/08/08 JM

Field Sample #: SVE-01-Z4 QC

\$Sampled: 12/3/2008 Sample ID: 08B48562

Not Specified

SOIL Sample Matrix:

Units Results Date RL **SPEC Limit** P/F Analyst Analyzed Ηi Lo Solids, total % 88.1 12/08/08 JM

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008 368 PLEASANT VIEW Page 36 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-01-Z1

08B48563 **\$Sampled: 12/3/2008** Sample ID:

Not Specified

Sample Matrix: SOIL

Units SPEC Limit P/F Results Date Analyst RL Lo Analyzed Ηi

% Solids, total 79.4 12/08/08 JM

Field Sample #: VM-01-Z1/Q

Sample ID: 08B48564 \$Sampled: 12/3/2008

Not Specified

SOIL Sample Matrix:

Units Results Date RL SPEC Limit P/F Analyst Analyzed Hi Lo

% 12/08/08 JM Solids, total 79.6

Field Sample #: VM-02-Z1

Sample ID: 08B48566 **\$Sampled: 12/3/2008**

Not Specified

Sample Matrix: SOIL

Units Results Date RLSPEC Limit P/F Analyst Analyzed Lo Ηi JM

% 72.0 12/08/08 Solids, total

Field Sample #: VM-03-Z1

Sample ID: **\$Sampled: 12/3/2008** 08B48565

Not Specified

Sample Matrix: SOIL

Units Results Date RL **SPEC Limit** P/F Analyst Analyzed Lo % Solids, total 87.8 12/08/08 JM

Field Sample #: VM-04-Z1

\$Sampled: 12/3/2008 Sample ID: 08B48558

Not Specified

SOIL Sample Matrix:

Units Results Date **SPEC Limit** P/F Analyst RL Analyzed Hi Lo Solids, total % 78.8 12/08/08 JM

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to

ND = Not Detected at or above the Reporting Limit

determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

= See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 37 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-05-Z1

Sample ID: 08B48567 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

 Units
 Results
 Date Analyst
 Analyst
 RL RL
 SPEC Limit Lo
 P/ F

 Analyzed
 Lo
 Hi

Solids, total

%
75.3
12/08/08
JM

Analytical Method:

SM 2540G

PERCENT OF SAMPLE REMAINING AFTER DRYING OVERNIGHT AT 103-105 DEGREES CENTIGRADE.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 38 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: TCLP-01

Sample ID: 08B48568 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

	Units	Results	Date	Analyst	RL	SPEC	SPEC Limit	
			Analyzed			Lo	Hi	
Arsenic	mg/l leachate	ND	12/08/08	OP	0.010		5	Р
Barium	mg/l leachate	0.36	12/08/08	OP	0.10		100	Р
Cadmium	mg/l leachate	ND	12/08/08	OP	0.005		1	Р
Chromium	mg/l leachate	ND	12/08/08	OP	0.01		5	Р
Lead	mg/l leachate	ND	12/08/08	OP	0.015		5	Р
Mercury	mg/l leachate	ND	12/09/08	KM	0.00010		0.2	Р
Selenium	mg/l leachate	ND	12/08/08	OP	0.05		1	Р
Silver	mg/l leachate	0.023	12/08/08	OP	0.005		5	Р

Analytical Method:

SW846 1311/6010 1311/7470

SW846 1311 TCLP EXTRACTION. SAMPLES ARE EXTRACTED FOR 18-24 HOURS INTO A pH 5.0 BUFFER SOLUTION TO PRODUCE A LEACHATE. WATER SAMPLES ARE FILTERED, NOT EXTRACTED.

SW846 6010 ARSENIC, BARIUM, CADMIUM, CHROMIUM, LEAD, SELENIUM AND SILVER LEACHATES ARE ANALYZED BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY.

SW846 7470 MERCURY LEACHATE IS ANALYZED BY COLD VAPOR (FLAMELESS) ATOMIC ABSORPTION SPECTROPHOTOMETRY.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RICK WATT

ECOLOGY & ENVIRONMENT 12/10/2008
368 PLEASANT VIEW Page 39 of 39

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21835

Date Received: 12/4/2008 Job Number: 2700.DC21.01

The following notes were attached to the reported analysis:

Sample ID: * 08B48568

Analysis: pH

19.4 degrees celsius

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 1 of	27
QC Batch Number	: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B48557					
	1,2-Dichloroethane-d4	Surrogate Recovery	106.600	%	70-130
	Toluene-d8	Surrogate Recovery	99.560	%	70-130
	Bromofluorobenzene	Surrogate Recovery	100.200	%	70-130
08B48558					
	1,2-Dichloroethane-d4	Surrogate Recovery	104.720	%	70-130
	Toluene-d8	Surrogate Recovery	98.080	%	70-130
	Bromofluorobenzene	Surrogate Recovery	100.600	%	70-130
08B48559					
	1,2-Dichloroethane-d4	Surrogate Recovery	106.400	%	70-130
	Toluene-d8	Surrogate Recovery	99.600	%	70-130
	Bromofluorobenzene	Surrogate Recovery	99.960	%	70-130
08B48560					
	1,2-Dichloroethane-d4	Surrogate Recovery	101.400	%	70-130
	Toluene-d8	Surrogate Recovery	98.840	%	70-130
	Bromofluorobenzene	Surrogate Recovery	100.880	%	70-130
08B48561					
	1,2-Dichloroethane-d4	Surrogate Recovery	104.760	%	70-130
	Toluene-d8	Surrogate Recovery	99.360	%	70-130
	Bromofluorobenzene	Surrogate Recovery	99.480	%	70-130
08B48562					
	Acetone	Sample Amount	<0.14	mg/kg dry wt	
		Matrix Spk Amt Added	0.170	mg/kg dry wt	
		MS Amt Measured	0.168	mg/kg dry wt	
		Matrix Spike % Rec.	98.910	%	70-130
		MSD Amount Added	0.138	mg/kg dry wt	
		MSD Amt Measured	0.108	mg/kg dry wt	
		MSD % Recovery	78.620	%	
		MSD Range	20.289	units	
		MS Duplicate RPD	42.815	%	0-30
	Benzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	93.600	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.400	%	
		MSD Range	4.199	units	
		MS Duplicate RPD	24.989	%	0-30
	Carbon Tetrachloride	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	96.500	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835	Page 2 of 27			
QC Batch Number	er: GCMS/VOL-21117					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
)8B48562						
	Carbon Tetrachloride	MSD Amt Measured	0.012	mg/kg dry wt		
		MSD % Recovery	90.800	%		
		MSD Range	5.699	units		
		MS Duplicate RPD	26.461	%	0-30	
	Chloroform	Sample Amount	<0.006	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.014	mg/kg dry wt		
		Matrix Spike % Rec.	86.100	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.011	mg/kg dry wt		
		MSD % Recovery	80.900	%		
		MSD Range	5.199	units		
		MS Duplicate RPD	26.600	%	0-30	
	1,2-Dichloroethane	Sample Amount	< 0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.015	mg/kg dry wt		
		Matrix Spike % Rec.	92.499	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.012	mg/kg dry wt		
		MSD % Recovery	88.000	%		
		MSD Range	4.499	units		
		MS Duplicate RPD	25.379	%	0-30	
	1,4-Dichlorobenzene	Sample Amount	< 0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.015	mg/kg dry wt		
		Matrix Spike % Rec.	91.699	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.011	mg/kg dry wt		
		MSD % Recovery	85.900	%		
		MSD Range	5.799	units		
		MS Duplicate RPD	26.899	%	0-30	
	Ethyl Benzene	Sample Amount	< 0.003	mg/kg dry wt		
	•	Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.016	mg/kg dry wt		
		Matrix Spike % Rec.	99.400	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.012	mg/kg dry wt		
		MSD % Recovery	92.600	%		
		MSD Range	6.799	units		
		MS Duplicate RPD	27.441	%	0-30	
	2-Butanone (MEK)	Sample Amount	<0.054	mg/kg dry wt		
	,	Matrix Spk Amt Added	0.170	mg/kg dry wt		
		MS Amt Measured	0.155	mg/kg dry wt		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 3 of	27
QC Batch Number:	GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
3B48562					
	2-Butanone (MEK)	Matrix Spike % Rec.	91.240	%	70-130
		MSD Amount Added	0.138	mg/kg dry wt	
		MSD Amt Measured	0.111	mg/kg dry wt	
		MSD % Recovery	80.730	%	
		MSD Range	10.509	units	
		MS Duplicate RPD	32.477	%	0-30
	MIBK	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.170	mg/kg dry wt	
		MS Amt Measured	0.159	mg/kg dry wt	
		Matrix Spike % Rec.	93.670	%	70-130
		MSD Amount Added	0.138	mg/kg dry wt	
		MSD Amt Measured	0.120	mg/kg dry wt	
		MSD % Recovery	87.110	%	
		MSD Range	6.559	units	
		MS Duplicate RPD	27.612	%	0-30
	Naphthalene	Sample Amount	<0.006	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	87.499	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.100	%	
		MSD Range	1.399	units	
		MS Duplicate RPD	22.052	%	0-30
	Styrene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	99.799	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	93.700	%	
		MSD Range	6.099	units	
		MS Duplicate RPD	26.676	%	0-30
	Tetrachloroethylene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	97.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.000	%	
		MSD Range	8.200	units	
		MS Duplicate RPD	29.134	%	0-30
	Toluene	Sample Amount	< 0.003	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008 Lims Ba	at # : LIMT-21835		Page 4 of	27
QC Batch Numbe					
Sample Id	Analysis	QC Analysis	Values	Units	Limits
)8B48562					
	Toluene	Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	94.699	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.900	%	
		MSD Range	4.799	units	
		MS Duplicate RPD	25.589	%	0-30
	1,1,1-Trichloroethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	94.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.500	%	
		MSD Range	4.799	units	
		MS Duplicate RPD	25.612	%	0-30
	Trichloroethylene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	93.299	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	88.800	%	
		MSD Range	4.499	units	
		MS Duplicate RPD	25.335	%	0-30
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Sample Amount	<0.014	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	99.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	94.600	%	
		MSD Range	4.699	units	
		MS Duplicate RPD	25.242	%	0-30
	Trichlorofluoromethane	Sample Amount	<0.014	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	91.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.299	%	
		MSD Range	5.000	units	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 5 of	27
QC Batch Number	er: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	Trichlorofluoromethane	MS Duplicate RPD	26.013	%	0-30
	o-Xylene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	94.799	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	90.600	%	
		MSD Range	4.199	units	
		MS Duplicate RPD	24.930	%	0-30
	m + p Xylene	Sample Amount	<0.006	mg/kg dry wt	
		Matrix Spk Amt Added	0.034	mg/kg dry wt	
		MS Amt Measured	0.033	mg/kg dry wt	
		Matrix Spike % Rec.	98.350	%	70-130
		MSD Amount Added	0.027	mg/kg dry wt	
		MSD Amt Measured	0.025	mg/kg dry wt	
		MSD % Recovery	91.700	%	
		MSD Range	6.650	units	
		MS Duplicate RPD	27.357	%	0-30
	1,2-Dichlorobenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	94.100	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	87.500	%	
		MSD Range	6.599	units	
		MS Duplicate RPD	27.623	%	0-30
	1,3-Dichlorobenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	95.900	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	88.900	%	
		MSD Range	6.999	units	
		MS Duplicate RPD	27.925	%	0-30
	1,1-Dichloroethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	92.000	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 6 of	27
QC Batch Numbe	er: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	1,1-Dichloroethane	MSD % Recovery	86.900	%	
		MSD Range	5.099	units	
		MS Duplicate RPD	26.083	%	0-30
	1,1-Dichloroethylene	Sample Amount	<0.006	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	87.900	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	83.600	%	
		MSD Range	4.299	units	
		MS Duplicate RPD	25.407	%	0-30
	1,4-Dioxane	Sample Amount	<0.14	mg/kg dry wt	
		Matrix Spk Amt Added	0.170	mg/kg dry wt	
		MS Amt Measured	0.139	mg/kg dry wt	
		Matrix Spike % Rec.	81.920	%	70-130
		MSD Amount Added	0.138	mg/kg dry wt	
		MSD Amt Measured	0.111	mg/kg dry wt	
		MSD % Recovery	80.390	%	
		MSD Range	1.529	units	
		MS Duplicate RPD	22.321	%	0-30
	MTBE	Sample Amount	<0.006	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	97.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	90.600	%	
		MSD Range	6.699	units	
		MS Duplicate RPD	27.488	%	0-30
	trans-1,2-Dichloroethylene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	90.100	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	85.100	%	
		MSD Range	5.000	units	
		MS Duplicate RPD	26.089	%	0-30
	Vinyl Chloride	Sample Amount	<0.014	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	82.500	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 7 of	27
QC Batch Number	GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
3B48562					
	Vinyl Chloride	MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	77.400	%	
		MSD Range	5.099	units	
		MS Duplicate RPD	26.749	%	0-30
	Methylene Chloride	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	
		Matrix Spike % Rec.	102.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	100.800	%	
		MSD Range	1.499	units	
		MS Duplicate RPD	21.918	%	0-30
	Chlorobenzene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	95.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.300	%	
		MSD Range	5.899	units	
		MS Duplicate RPD	26.765	%	0-30
	Chloromethane	Sample Amount	< 0.014	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.012	mg/kg dry wt	
		Matrix Spike % Rec.	74.000	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.009	mg/kg dry wt	
		MSD % Recovery	68.400	%	
		MSD Range	5.599	units	
		MS Duplicate RPD	28.209	%	0-30
	Bromomethane	Sample Amount	< 0.014	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.011	mg/kg dry wt	
		Matrix Spike % Rec.	68.499	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.009	mg/kg dry wt	
		MSD % Recovery	68.300	%	
		MSD Range	0.199	units	
		MS Duplicate RPD	20.746	%	0-30
	Chloroethane	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 8 of	2/
QC Batch Number	r: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
)8B48562					
	Chloroethane	MS Amt Measured	0.013	mg/kg dry wt	
		Matrix Spike % Rec.	80.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	78.800	%	
		MSD Range	1.499	units	
		MS Duplicate RPD	22.321	%	0-30
	cis-1,3-Dichloropropene	Sample Amount	<0.002	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	95.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.300	%	
		MSD Range	5.899	units	
		MS Duplicate RPD	26.765	%	0-30
	trans-1,3-Dichloropropene	Sample Amount	<0.002	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	
		Matrix Spike % Rec.	102.500	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	96.400	%	
		MSD Range	6.100	units	
		MS Duplicate RPD	26.508	%	0-30
	Chlorodibromomethane	Sample Amount	<0.002	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	91.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	85.400	%	
		MSD Range	5.799	units	
		MS Duplicate RPD	26.935	%	0-30
	1,1,2-Trichloroethane	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	88.199	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	84.800	%	
		MSD Range	3.399	units	
		MS Duplicate RPD	24.339	%	0-30

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:		Lims Bat #: LIMT-21835		Page 9 of	2/
QC Batch Number					
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	Bromoform	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	
		Matrix Spike % Rec.	103.000	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	96.200	%	
		MSD Range	6.799	units	0.00
	4.4.0.0. Takan akila an akina a	MS Duplicate RPD	27.189	%	0-30
	1,1,2,2-Tetrachloroethane	Sample Amount	< 0.002	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	70 400
		Matrix Spike % Rec.	93.600	%	70-130
		MSD Amt Massured	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	87.500	%	
		MSD Range	6.099	units	0.00
	2 Chlarataluana	MS Duplicate RPD	27.100	%	0-30
	2-Chlorotoluene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016 95.700	mg/kg dry wt	70-130
		Matrix Spike % Rec.		%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	90.200	%	
		MSD Range	5.499	units	0.00
	Hovashlorobutediese	MS Duplicate RPD	26.295	%	0-30
	Hexachlorobutadiene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	70 400
		Matrix Spike % Rec.	101.300	%	70-130
		MSD Amt Massured	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt %	
		MSD % Recovery MSD Range	93.200 8.099	% units	
		ū	28.664	wiits %	0-30
	Isopropylbenzene	MS Duplicate RPD Sample Amount	< 0.003		0-30
	isopiopyinelizelle	•	0.003	mg/kg dry wt	
		Matrix Spk Amt Added MS Amt Measured	0.017	mg/kg dry wt mg/kg dry wt	
			109.300	mg/kg ary wt %	70-130
		Matrix Spike % Rec.			70-130
		MSD Amount Added MSD Amt Measured	0.013 0.014	mg/kg dry wt mg/kg dry wt	
		IVIOU AITILIVIERSUIEU	0.014	mu/ku div wi	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835	Page 10 of 27			
QC Batch Number:	: GCMS/VOL-21117					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
3B48562						
	Isopropylbenzene	MSD Range	6.599	units		
		MS Duplicate RPD	26.599	%	0-30	
	p-Isopropyltoluene	Sample Amount	<0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.017	mg/kg dry wt		
		Matrix Spike % Rec.	101.800	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.013	mg/kg dry wt		
		MSD % Recovery	95.300	%		
		MSD Range	6.499	units		
		MS Duplicate RPD	26.962	%	0-30	
	n-Propylbenzene	Sample Amount	<0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.016	mg/kg dry wt		
		Matrix Spike % Rec.	99.699	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.013	mg/kg dry wt		
		MSD % Recovery	94.000	%		
		MSD Range	5.699	units		
		MS Duplicate RPD	26.263	%	0-30	
	sec-Butylbenzene	Sample Amount	<0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.017	mg/kg dry wt		
		Matrix Spike % Rec.	101.500	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.013	mg/kg dry wt		
		MSD % Recovery	94.600	%		
		MSD Range	6.899	units		
		MS Duplicate RPD	27.396	%	0-30	
	tert-Butylbenzene	Sample Amount	<0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.016	mg/kg dry wt		
		Matrix Spike % Rec.	98.500	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		
		MSD Amt Measured	0.012	mg/kg dry wt		
		MSD % Recovery	92.300	%		
		MSD Range	6.199	units		
		MS Duplicate RPD	26.867	%	0-30	
	1,2,3-Trichlorobenzene	Sample Amount	< 0.003	mg/kg dry wt		
		Matrix Spk Amt Added	0.017	mg/kg dry wt		
		MS Amt Measured	0.015	mg/kg dry wt		
		Matrix Spike % Rec.	92.100	%	70-130	
		MSD Amount Added	0.013	mg/kg dry wt		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 11 o	f 27
C Batch Number	GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	1,2,3-Trichlorobenzene	MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	85.500	%	
		MSD Range	6.599	units	
		MS Duplicate RPD	27.784	%	0-30
	1,2,4-Trichlorobenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	95.399	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.200	%	
		MSD Range	9.199	units	
		MS Duplicate RPD	30.432	%	0-30
	1,2,4-Trimethylbenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	98.500	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	92.200	%	
		MSD Range	6.299	units	
		MS Duplicate RPD	26.973	%	0-30
	1,3,5-Trimethylbenzene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	
		Matrix Spike % Rec.	101.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	95.100	%	
		MSD Range	6.199	units	
		MS Duplicate RPD	26.685	%	0-30
	4-Chlorotoluene	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	96.700	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	91.300	%	
		MSD Range	5.400	units	
		MS Duplicate RPD	26.125	%	0-30
	Dibromomethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
				J J ,	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 12 o	f 27
QC Batch Number:	: GCMS/VOL-21117				
ample Id	Analysis	QC Analysis	Values	Units	Limits
3B48562					
	Dibromomethane	Matrix Spike % Rec.	91.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.100	%	
		MSD Range	5.099	units	
		MS Duplicate RPD	26.133	%	0-30
	cis-1,2-Dichloroethylene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	92.900	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	85.600	%	
		MSD Range	7.299	units	
		MS Duplicate RPD	28.517	%	0-30
	1,1-Dichloropropene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	97.699	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	90.700	%	
		MSD Range	6.999	units	
		MS Duplicate RPD	27.783	%	0-30
	1,2-Dichloropropane	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	89.100	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.000	%	
		MSD Range	3.100	units	
		MS Duplicate RPD	23.955	%	0-30
	1,3-Dichloropropane	Sample Amount	<0.002	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	92.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	86.500	%	
		MSD Range	5.799	units	
		MS Duplicate RPD	26.856	%	0-30
	2,2-Dichloropropane	Sample Amount	< 0.003	mg/kg dry wt	-

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 13 o	t 27
QC Batch Number	: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	2,2-Dichloropropane	Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	92.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	85.700	%	
		MSD Range	6.500	units	
		MS Duplicate RPD	27.661	%	0-30
	1,1,1,2-Tetrachloroethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	95.499	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	89.800	%	
		MSD Range	5.699	units	
		MS Duplicate RPD	26.526	%	0-30
	1,2,3-Trichloropropane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	82.299	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	77.200	%	
		MSD Range	5.099	units	
		MS Duplicate RPD	26.765	%	0-30
	n-Butylbenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.017	mg/kg dry wt	
		Matrix Spike % Rec.	102.100	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.013	mg/kg dry wt	
		MSD % Recovery	94.200	%	
		MSD Range	7.899	units	
		MS Duplicate RPD	28.389	%	0-30
	Dichlorodifluoromethane	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.013	mg/kg dry wt	
		Matrix Spike % Rec.	79.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	73.400	%	
		MSD Range	5.800	units	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 14 o	f 27
QC Batch Numbe	r: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	Dichlorodifluoromethane	MS Duplicate RPD	27.950	%	0-30
	Bromochloromethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	99.699	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	93.400	%	
		MSD Range	6.299	units	
		MS Duplicate RPD	26.892	%	0-30
	Bromobenzene	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	96.099	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	90.700	%	
		MSD Range	5.399	units	
		MS Duplicate RPD	26.161	%	0-30
	Acrylonitrile	Sample Amount	<0.009	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	88.300	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	83.100	%	
		MSD Range	5.199	units	
		MS Duplicate RPD	26.443	%	0-30
	Carbon Disulfide	Sample Amount	<0.009	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.016	mg/kg dry wt	
		Matrix Spike % Rec.	97.900	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	92.800	%	
		MSD Range	5.099	units	
		MS Duplicate RPD	25.735	%	0-30
	2-Hexanone	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.170	mg/kg dry wt	
		MS Amt Measured	0.154	mg/kg dry wt	
		Matrix Spike % Rec.	91.019	%	70-130
		MSD Amount Added	0.138	mg/kg dry wt	
		MSD Amt Measured	0.117	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 15 o	f 27
QC Batch Number:	GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B48562					
	2-Hexanone	MSD % Recovery	84.570	%	
		MSD Range	6.449	units	
		MS Duplicate RPD	27.700	%	0-30
	trans-1,4-Dichloro-2-Butene	Sample Amount	<0.006	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.013	mg/kg dry wt	
		Matrix Spike % Rec.	81.499	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	74.000	%	
		MSD Range	7.499	units	
		MS Duplicate RPD	29.956	%	0-30
	Diethyl Ether	Sample Amount	<0.027	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.015	mg/kg dry wt	
		Matrix Spike % Rec.	88.199	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.012	mg/kg dry wt	
		MSD % Recovery	86.800	%	
		MSD Range	1.399	units	
		MS Duplicate RPD	22.039	%	0-30
	Bromodichloromethane	Sample Amount	<0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	88.000	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.011	mg/kg dry wt	
		MSD % Recovery	83.200	%	
		MSD Range	4.799	units	
		MS Duplicate RPD	25.990	%	0-30
	1,2-Dichloroethane-d4	Surrogate Recovery	102.600	%	70-130
	Toluene-d8	Surrogate Recovery	99.600	%	70-130
	Bromofluorobenzene	Surrogate Recovery	100.160	%	70-130
	1,2-Dibromo-3-Chloropropane	Sample Amount	< 0.003	mg/kg dry wt	
		Matrix Spk Amt Added	0.017	mg/kg dry wt	
		MS Amt Measured	0.014	mg/kg dry wt	
		Matrix Spike % Rec.	84.200	%	70-130
		MSD Amount Added	0.013	mg/kg dry wt	
		MSD Amt Measured	0.010	mg/kg dry wt	
		MSD % Recovery	78.500	%	
		MSD Range	5.699	units	
		MS Duplicate RPD	27.366	%	0-30
	1,2-Dibromoethane	Sample Amount	<0.002	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 16 of 27			
QC Batch Number	: GCMS/VOL-21117						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
8B48562							
	1,2-Dibromoethane	Matrix Spk Amt Added	0.017	mg/kg dry wt			
		MS Amt Measured	0.015	mg/kg dry wt			
		Matrix Spike % Rec.	92.800	%	70-130		
		MSD Amount Added	0.013	mg/kg dry wt			
		MSD Amt Measured	0.012	mg/kg dry wt			
		MSD % Recovery	86.600	%			
		MSD Range	6.199	units			
		MS Duplicate RPD	27.273	%	0-30		
	Tetrahydrofuran	Sample Amount	<0.014	mg/kg dry wt			
		Matrix Spk Amt Added	0.017	mg/kg dry wt			
		MS Amt Measured	0.015	mg/kg dry wt			
		Matrix Spike % Rec.	93.899	%	70-130		
		MSD Amount Added	0.013	mg/kg dry wt			
		MSD Amt Measured	0.011	mg/kg dry wt			
		MSD % Recovery	86.000	%			
		MSD Range	7.899	units			
		MS Duplicate RPD	29.109	%	0-30		
	tert-Butyl Alcohol	Sample Amount	< 0.054	mg/kg dry wt			
		Matrix Spk Amt Added	0.170	mg/kg dry wt			
		MS Amt Measured	0.137	mg/kg dry wt			
		Matrix Spike % Rec.	80.909	%	70-130		
		MSD Amount Added	0.138	mg/kg dry wt			
		MSD Amt Measured	0.102	mg/kg dry wt			
		MSD % Recovery	73.710	%			
		MSD Range	7.199	units			
		MS Duplicate RPD	29.629	%	0-30		
	Diisopropyl Ether	Sample Amount	< 0.002	mg/kg dry wt			
		Matrix Spk Amt Added	0.017	mg/kg dry wt			
		MS Amt Measured	0.016	mg/kg dry wt			
		Matrix Spike % Rec.	95.600	%	70-130		
		MSD Amount Added	0.013	mg/kg dry wt			
		MSD Amt Measured	0.012	mg/kg dry wt			
		MSD % Recovery	90.000	%			
		MSD Range	5.599	units			
		MS Duplicate RPD	26.410	%	0-30		
	tert-Butylethyl Ether	Sample Amount	<0.002	mg/kg dry wt			
	-	Matrix Spk Amt Added	0.017	mg/kg dry wt			
		MS Amt Measured	0.016	mg/kg dry wt			
		Matrix Spike % Rec.	95.600	%	70-130		
		MSD Amount Added	0.013	mg/kg dry wt			
		MSD Amt Measured	0.012	mg/kg dry wt			
		MSD % Recovery	89.300	%			
		MSD Range	6.299	units			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 17 of 27			
QC Batch Number	GCMS/VOL-21117						
Sample Id	Analysis	QC Analysis	Values	Units	Limits		
08B48562							
	tert-Butylethyl Ether	MS Duplicate RPD	27.177	%	0-30		
	tert-Amylmethyl Ether	Sample Amount	<0.002	mg/kg dry wt			
		Matrix Spk Amt Added	0.017	mg/kg dry wt			
		MS Amt Measured	0.016	mg/kg dry wt			
		Matrix Spike % Rec.	97.100	%	70-130		
		MSD Amount Added	0.013	mg/kg dry wt			
		MSD Amt Measured	0.012	mg/kg dry wt			
		MSD % Recovery	90.299	%			
		MSD Range	6.800	units			
		MS Duplicate RPD	27.612	%	0-30		
08B48563							
	1,2-Dichloroethane-d4	Surrogate Recovery	106.200	%	70-130		
	Toluene-d8	Surrogate Recovery	99.360	%	70-130		
	Bromofluorobenzene	Surrogate Recovery	99.520	%	70-130		
08B48564							
	1,2-Dichloroethane-d4	Surrogate Recovery	106.120	%	70-130		
	Toluene-d8	Surrogate Recovery	99.400	%	70-130		
	Bromofluorobenzene	Surrogate Recovery	99.920	%	70-130		
08B48565							
	1,2-Dichloroethane-d4	Surrogate Recovery	104.640	%	70-130		
	Toluene-d8	Surrogate Recovery	98.960	%	70-130		
	Bromofluorobenzene	Surrogate Recovery	97.960	%	70-130		
08B48566							
	1,2-Dichloroethane-d4	Surrogate Recovery	103.680	%	70-130		
	Toluene-d8	Surrogate Recovery	99.320	%	70-130		
	Bromofluorobenzene	Surrogate Recovery	100.600	%	70-130		
08B48567							
	1,2-Dichloroethane-d4	Surrogate Recovery	107.360	%	70-130		
	Toluene-d8	Surrogate Recovery	98.560	%	70-130		
	Bromofluorobenzene	Surrogate Recovery	100.080	%	70-130		
BLANK-127457							
	Acetone	Blank	<0.10	mg/kg dry wt			
	Benzene	Blank	<0.002	mg/kg dry wt			
	Carbon Tetrachloride	Blank	<0.002	mg/kg dry wt			
	Chloroform	Blank	<0.004	mg/kg dry wt			
	1,2-Dichloroethane	Blank	<0.002	mg/kg dry wt			
	1,4-Dichlorobenzene	Blank	<0.002	mg/kg dry wt			
	Ethyl Benzene	Blank	<0.002	mg/kg dry wt			
	2-Butanone (MEK)	Blank	<0.040	mg/kg dry wt			
	MIBK	Blank	<0.020	mg/kg dry wt			
	Naphthalene	Blank	<0.004	mg/kg dry wt			
	Styrene	Blank	<0.002	mg/kg dry wt			
	Tetrachloroethylene	Blank	<0.002	mg/kg dry wt			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008 Lims Ba	t # : LIMT-21835		Page 18 of	27
QC Batch Number:	GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-127457					
	Toluene	Blank	<0.002	mg/kg dry wt	
	1,1,1-Trichloroethane	Blank	<0.002	mg/kg dry wt	
	Trichloroethylene	Blank	<0.002	mg/kg dry wt	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<0.010	mg/kg dry wt	
	Trichlorofluoromethane	Blank	<0.010	mg/kg dry wt	
	o-Xylene	Blank	<0.002	mg/kg dry wt	
	m + p Xylene	Blank	<0.004	mg/kg dry wt	
	1,2-Dichlorobenzene	Blank	<0.002	mg/kg dry wt	
	1,3-Dichlorobenzene	Blank	<0.002	mg/kg dry wt	
	1,1-Dichloroethane	Blank	<0.002	mg/kg dry wt	
	1,1-Dichloroethylene	Blank	<0.004	mg/kg dry wt	
	1,4-Dioxane	Blank	<0.10	mg/kg dry wt	
	MTBE	Blank	<0.004	mg/kg dry wt	
	trans-1,2-Dichloroethylene	Blank	<0.002	mg/kg dry wt	
	Vinyl Chloride	Blank	<0.010	mg/kg dry wt	
	Methylene Chloride	Blank	<0.020	mg/kg dry wt	
	Chlorobenzene	Blank	<0.002	mg/kg dry wt	
	Chloromethane	Blank	<0.010	mg/kg dry wt	
	Bromomethane	Blank	<0.010	mg/kg dry wt	
	Chloroethane	Blank	<0.020	mg/kg dry wt	
	cis-1,3-Dichloropropene	Blank	<0.001	mg/kg dry wt	
	trans-1,3-Dichloropropene	Blank	<0.001	mg/kg dry wt	
	Chlorodibromomethane	Blank	<0.001	mg/kg dry wt	
	1,1,2-Trichloroethane	Blank	<0.002	mg/kg dry wt	
	Bromoform	Blank	<0.002	mg/kg dry wt	
	1,1,2,2-Tetrachloroethane	Blank	<0.001	mg/kg dry wt	
	2-Chlorotoluene	Blank	<0.002	mg/kg dry wt	
	Hexachlorobutadiene	Blank	<0.002	mg/kg dry wt	
	Isopropylbenzene	Blank	<0.002	mg/kg dry wt	
	p-Isopropyltoluene	Blank	<0.002	mg/kg dry wt	
	n-Propylbenzene	Blank	<0.002	mg/kg dry wt	
	sec-Butylbenzene	Blank	<0.002	mg/kg dry wt	
	tert-Butylbenzene	Blank	<0.002	mg/kg dry wt	
	1,2,3-Trichlorobenzene	Blank	<0.002	mg/kg dry wt	
	1,2,4-Trichlorobenzene	Blank	<0.002	mg/kg dry wt	
	1,2,4-Trimethylbenzene	Blank	<0.002	mg/kg dry wt	
	1,3,5-Trimethylbenzene	Blank	<0.002	mg/kg dry wt	
	4-Chlorotoluene	Blank	<0.002	mg/kg dry wt	
	Dibromomethane	Blank	<0.002	mg/kg dry wt	
	cis-1,2-Dichloroethylene	Blank	<0.002	mg/kg dry wt	
	1,1-Dichloropropene	Blank	<0.002	mg/kg dry wt	
	1,2-Dichloropropane	Blank	<0.002	mg/kg dry wt	
	1,3-Dichloropropane	Blank	<0.001	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date: 12/10/2008		Lims Bat #: LIMT-21835	Page 19 of 27		
QC Batch Number	r: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-127457					
	2,2-Dichloropropane	Blank	<0.002	mg/kg dry wt	
	1,1,1,2-Tetrachloroethane	Blank	<0.002	mg/kg dry wt	
	1,2,3-Trichloropropane	Blank	<0.002	mg/kg dry wt	
	n-Butylbenzene	Blank	<0.002	mg/kg dry wt	
	Dichlorodifluoromethane	Blank	<0.020	mg/kg dry wt	
	Bromochloromethane	Blank	<0.002	mg/kg dry wt	
	Bromobenzene	Blank	<0.002	mg/kg dry wt	
	Acrylonitrile	Blank	<0.006	mg/kg dry wt	
	Carbon Disulfide	Blank	<0.006	mg/kg dry wt	
	2-Hexanone	Blank	<0.020	mg/kg dry wt	
	trans-1,4-Dichloro-2-Butene	Blank	<0.004	mg/kg dry wt	
	Diethyl Ether	Blank	<0.020	mg/kg dry wt	
	Bromodichloromethane	Blank	<0.002	mg/kg dry wt	
	1,2-Dibromo-3-Chloropropane	Blank	<0.002	mg/kg dry wt	
	1,2-Dibromoethane	Blank	<0.001	mg/kg dry wt	
	Tetrahydrofuran	Blank	<0.010	mg/kg dry wt	
	tert-Butyl Alcohol	Blank	<0.040	mg/kg dry wt	
	Diisopropyl Ether	Blank	<0.001	mg/kg dry wt	
	tert-Butylethyl Ether	Blank	<0.001	mg/kg dry wt	
LEDI ANIK 00200	tert-Amylmethyl Ether	Blank	<0.001	mg/kg dry wt	
LFBLANK-89398	Acetone	Lab Fort Blank Amt.	0.200	mg/kg dry wt	
	Acetone	Lab Fort Blank Ann.	0.190	mg/kg dry wt	
		Lab Fort Blk. % Rec.	95.470	%	50-160
	Benzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	30-100
	Benzene	Lab Fort Blank And	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	102.400	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	0.020	mg/kg dry wt	70-100
	Carbon retractionate	Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	105.800	%	70-130
	Chloroform	Lab Fort Blank Amt.	0.020	mg/kg dry wt	70 100
	G.1G.G.G.1.1.1	Lab Fort Blk. Found	0.019	mg/kg dry wt	
		Lab Fort Blk. % Rec.	95.400	%	70-130
	1,2-Dichloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
	.,	Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	103.900	%	70-130
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
	,	Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	100.700	%	70-130
	Ethyl Benzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	110.200	%	70-130
	2-Butanone (MEK)	Lab Fort Blank Amt.	0.200	mg/kg dry wt	
	,		0.200		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008 Lims B	at #: LIMT-21835		Page 20 o	f 27
QC Batch Number	er: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-89398					
	2-Butanone (MEK)	Lab Fort Blk. Found	0.190	mg/kg dry wt	
		Lab Fort Blk. % Rec.	95.140	%	70-160
	MIBK	Lab Fort Blank Amt.	0.200	mg/kg dry wt	
		Lab Fort Blk. Found	0.217	mg/kg dry wt	
		Lab Fort Blk. % Rec.	108.540	%	70-160
	Naphthalene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	113.700	%	40-130
	Styrene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	112.500	%	70-130
	Tetrachloroethylene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	106.300	%	70-160
	Toluene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	102.900	%	70-130
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	104.100	%	70-130
	Trichloroethylene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	102.800	%	70-130
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	111.000	%	70-130
	Trichlorofluoromethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	100.200	%	70-130
	o-Xylene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	106.900	%	70-130
	m + p Xylene	Lab Fort Blank Amt.	0.040	mg/kg dry wt	
		Lab Fort Blk. Found	0.043	mg/kg dry wt	
		Lab Fort Blk. % Rec.	108.250	%	70-130
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	104.600	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	105.400	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.019	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835	Page 21 of 27		
QC Batch Numb	er: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-89398	3				
	1,1-Dichloroethane	Lab Fort Blk. % Rec.	99.600	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.019	mg/kg dry wt	
		Lab Fort Blk. % Rec.	95.400	%	70-130
	1,4-Dioxane	Lab Fort Blank Amt.	0.200	mg/kg dry wt	
		Lab Fort Blk. Found	0.181	mg/kg dry wt	
		Lab Fort Blk. % Rec.	90.790	%	40-160
	MTBE	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	104.700	%	70-130
	trans-1,2-Dichloroethylene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.019	mg/kg dry wt	
		Lab Fort Blk. % Rec.	98.700	%	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.018	mg/kg dry wt	
		Lab Fort Blk. % Rec.	93.000	%	40-130
	Methylene Chloride	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	105.000	%	40-160
	Chlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	106.200	%	70-130
	Chloromethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.016	mg/kg dry wt	
		Lab Fort Blk. % Rec.	80.700	%	40-130
	Bromomethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.013	mg/kg dry wt	
		Lab Fort Blk. % Rec.	66.500	%	40-130
	Chloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.017	mg/kg dry wt	
		Lab Fort Blk. % Rec.	87.800	%	40-160
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	106.400	%	70-130
	trans-1,3-Dichloropropene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.023	mg/kg dry wt	
		Lab Fort Blk. % Rec.	115.200	%	70-130
	Chlorodibromomethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	105.700	%	70-130
	1,1,2-Trichloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	102.100	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835	Page 22 of 27		
QC Batch Numbe	r: GCMS/VOL-21117				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-89398					
	Bromoform	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.024	mg/kg dry wt	
		Lab Fort Blk. % Rec.	122.900	%	70-130
	1,1,2,2-Tetrachloroethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	107.400	%	70-130
	2-Chlorotoluene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	106.900	%	70-130
	Hexachlorobutadiene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.023	mg/kg dry wt	
		Lab Fort Blk. % Rec.	115.000	%	70-130
	Isopropylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.024	mg/kg dry wt	
		Lab Fort Blk. % Rec.	123.700	%	70-130
	p-Isopropyltoluene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	112.800	%	70-130
	n-Propylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	110.900	%	70-130
	sec-Butylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	113.500	%	70-130
	tert-Butylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	111.500	%	70-160
	1,2,3-Trichlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	105.500	%	70-130
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.020	mg/kg dry wt	
		Lab Fort Blk. % Rec.	101.900	%	40-130
	1,2,4-Trimethylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	109.300	%	70-130
	1,3,5-Trimethylbenzene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.022	mg/kg dry wt	
		Lab Fort Blk. % Rec.	112.800	%	70-130
	4-Chlorotoluene	Lab Fort Blank Amt.	0.020	mg/kg dry wt	
		Lab Fort Blk. Found	0.021	mg/kg dry wt	
		Lab Fort Blk. % Rec.	107.700	%	70-130
	Dibromomethane	Lab Fort Blank Amt.	0.020	mg/kg dry wt	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat # :	LIMT-21835		Page 23 of 27		
QC Batch Number:	GCMS/VOL-21117						
Sample Id	Analysis	Q	C Analysis	Values	Units	Limits	
LFBLANK-89398							
	Dibromomethane	Lal	b Fort Blk. Found	0.020	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	101.400	%	70-130	
	cis-1,2-Dichloroethylene	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.019	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	98.700	%	70-130	
	1,1-Dichloropropene	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.020	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	104.200	%	70-130	
	1,2-Dichloropropane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.020	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	101.100	%	70-130	
	1,3-Dichloropropane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.020	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	104.400	%	70-130	
	2,2-Dichloropropane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.019	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	97.000	%	70-130	
	1,1,1,2-Tetrachloroethane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.022	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	110.600	%	70-130	
	1,2,3-Trichloropropane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.017	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	87.400	%	70-130	
	n-Butylbenzene	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
	•	Lal	b Fort Blk. Found	0.022	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	111.300	%	70-130	
	Dichlorodifluoromethane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.018	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	90.300	%	40-160	
	Bromochloromethane	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
		Lal	b Fort Blk. Found	0.021	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	107.400	%	70-130	
	Bromobenzene	Lal	b Fort Blank Amt.	0.020	mg/kg dry wt		
			b Fort Blk. Found	0.021	mg/kg dry wt		
		Lal	b Fort Blk. % Rec.	108.100	%	70-130	
	Acrylonitrile		b Fort Blank Amt.	0.020	mg/kg dry wt	-	
	•		b Fort Blk. Found	0.019	mg/kg dry wt		
			b Fort Blk. % Rec.	97.100	%	70-160	
	Carbon Disulfide		b Fort Blank Amt.	0.020	mg/kg dry wt		
			b Fort Blk. Found	0.021	mg/kg dry wt		
			b Fort Blk. % Rec.	108.700	%	70-130	
	2-Hexanone		b Fort Blank Amt.	0.200	mg/kg dry wt		
			b Fort Blk. Found	0.210	mg/kg dry wt		
		La		0.2.0			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat # :	LIMT-21835		Page 24 o	f 27
QC Batch Number:	GCMS/VOL-21117					
Sample Id	Analysis	Q	C Analysis	Values	Units	Limits
LFBLANK-89398						
	2-Hexanone	La	b Fort Blk. % Rec.	105.400	%	70-160
	trans-1,4-Dichloro-2-Butene	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.018	mg/kg dry wt	
		La	b Fort Blk. % Rec.	92.000	%	70-130
	Diethyl Ether	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.019	mg/kg dry wt	
		La	b Fort Blk. % Rec.	96.300	%	70-130
	Bromodichloromethane	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.019	mg/kg dry wt	
		La	b Fort Blk. % Rec.	99.700	%	70-130
	1,2-Dibromo-3-Chloropropane	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.020	mg/kg dry wt	
		La	b Fort Blk. % Rec.	101.800	%	70-130
	1,2-Dibromoethane	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.021	mg/kg dry wt	
		La	b Fort Blk. % Rec.	106.300	%	70-130
	Tetrahydrofuran	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.019	mg/kg dry wt	
		La	b Fort Blk. % Rec.	97.800	%	70-130
	tert-Butyl Alcohol	La	b Fort Blank Amt.	0.200	mg/kg dry wt	
		La	b Fort Blk. Found	0.181	mg/kg dry wt	
		La	b Fort Blk. % Rec.	90.920	%	40-130
	Diisopropyl Ether	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.020	mg/kg dry wt	
		La	b Fort Blk. % Rec.	102.800	%	70-130
	tert-Butylethyl Ether	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.020	mg/kg dry wt	
		La	b Fort Blk. % Rec.	103.100	%	70-130
	tert-Amylmethyl Ether	La	b Fort Blank Amt.	0.020	mg/kg dry wt	
		La	b Fort Blk. Found	0.021	mg/kg dry wt	
		La	b Fort Blk. % Rec.	105.700	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 25 of	27
QC Batch Number	HG/TCLP-3396				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B48568					_
	Mercury	Sample Amount	<0.00010	mg/l leachate	
		Matrix Spk Amt Added	0.00200	mg/l leachate	
		MS Amt Measured	0.00190	mg/l leachate	
		Matrix Spike % Rec.	95.45000	%	75-125
BLANK-127531					
	Mercury	Blank	<0.00010	mg/l leachate	
LFBLANK-89488					
	Mercury	Lab Fort Blank Amt.	0.00200	mg/l leachate	
		Lab Fort Blk. Found	0.00198	mg/l leachate	
		Lab Fort Blk. % Rec.	99.25000	%	80-120
		Dup Lab Fort BI Amt.	0.00200	mg/l leachate	
		Dup Lab Fort Bl. Fnd	0.00196	mg/l leachate	
		Dup Lab Fort BI %Rec	98.45000	%	
		Lab Fort Blank Range	0.79999	units	
		Lab Fort Bl. Av. Rec	98.85000	%	
		LFB Duplicate RPD	0.80930	%	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/10/2008	Lims Bat #: LIMT-21835		Page 26 of	27
QC Batch Numb	er: ICP/TCLP-4605				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-127472					
	Silver	Blank	<0.005	mg/l leachate	
	Arsenic	Blank	<0.010	mg/l leachate	
	Barium	Blank	<0.10	mg/l leachate	
	Cadmium	Blank	<0.005	mg/l leachate	
	Chromium	Blank	<0.01	mg/l leachate	
	Lead	Blank	<0.015	mg/l leachate	
	Selenium	Blank	<0.05	mg/l leachate	
FBLANK-89427	7				
	Silver	Lab Fort Blank Amt.	0.500	mg/l leachate	
		Lab Fort Blk. Found	0.494	mg/l leachate	
		Lab Fort Blk. % Rec.	98.840	%	80-120
	Arsenic	Lab Fort Blank Amt.	0.500	mg/l leachate	
		Lab Fort Blk. Found	0.556	mg/l leachate	
		Lab Fort Blk. % Rec.	111.200	%	80-120
	Barium	Lab Fort Blank Amt.	0.50	mg/l leachate	
		Lab Fort Blk. Found	0.49	mg/l leachate	
		Lab Fort Blk. % Rec.	99.20	%	80-120
	Cadmium	Lab Fort Blank Amt.	0.500	mg/l leachate	
		Lab Fort Blk. Found	0.532	mg/l leachate	
		Lab Fort Blk. % Rec.	106.420	%	80-120
	Chromium	Lab Fort Blank Amt.	0.50	mg/l leachate	
		Lab Fort Blk. Found	0.48	mg/l leachate	
		Lab Fort Blk. % Rec.	96.94	%	80-120
	Lead	Lab Fort Blank Amt.	0.500	mg/l leachate	
		Lab Fort Blk. Found	0.470	mg/l leachate	
		Lab Fort Blk. % Rec.	94.160	%	80-120
	Selenium	Lab Fort Blank Amt.	0.50	mg/l leachate	
		Lab Fort Blk. Found	0.53	mg/l leachate	
		Lab Fort Blk. % Rec.	106.96	%	80-120

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 12/10/2008 Lims Bat #: LIMT-21835 Page 27 of 27

QUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

QC BATCH NUMBER This is the number assigned to all samples analyzed together that

would be subject to comparison with a particular set of Quality

Control Data.

LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All

values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY

REPORT. Not all QC results will have Limits defined.

Sample Amount of analyte found in a sample.

Blank Method Blank that has been taken though all the steps of the

analysis.

LFBLANK Laboratory Fortified Blank (a control sample)

STDADD Standard Added (a laboratory control sample)

Matrix Spk Amt Added Amount of analyte spiked into a sample

MS Amt Measured Amount of analyte found including amount that was spiked

Matrix Spike % Rec. % Recovery of spiked amount in sample.

Duplicate Value The result from the Duplicate analysis of the sample.

Duplicate RPD The Relative Percent Difference between two Duplicate Analyses.

Surrogate Recovery The % Recovery for non-environmental compounds (surrogates)

spiked into samples to determine the performance of the

analytical methods.

Sur. Recovery (ELCD) Surrogate Recovery on the Electrolytic Conductivity Detector.

Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector.

Standard Measured Amount measured for a laboratory control sample Standard Amt Added Known value for a laboratory control sample

Standard % Recovery % recovered for a laboratory control sample with a known value.

Lab Fort Blank Amt
Laboratory Fortified Blank Amount Added
Lab Fort Blk. Found
Laboratory Fortified Blank Amount Found
Laboratory Fortified Blank % Recovered

Dup Lab Fort Bl Amt
Duplicate Laboratory Fortified Blank Amount Added
Dup Lab Fort Bl Fnd
Duplicate Laboratory Fortified Blank Amount Found
Dup Lab Fort Bl % Rec
Duplicate Laboratory Fortified Blank % Recovery

Lab Fort Blank Range Laboratory Fortified Blank Range (Absolute value of difference between recoveries for Lab Fortified Blank and Lab Fortified

Blank Duplicate).

Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate

MSD Amount Added Matrix Spike Duplicate Amount Added (Spiked)
MSD Amt Measured Matrix Spike Duplicate Amount Measured

MSD % Recovery

Matrix Spike Duplicate % Recovery

MSD Range Absolute difference between Matrix Spike and Matrix Spike

Duplicate Recoveries

Phone: 413-525-2332 Fax: 413-525-6405 TON TEST ANALYTICAL LABORATORY

CHAIN OF CUSTODY RECORD

39 SPRUCE ST, 2ND FLOOR

ンなっますい

EAST LONGMEADOW, MA 01028

الم

ŏ

Page_

-Cont. Code: A=amber glass 771 2 8.0 MS/MSD # of containers サンドラ Comments: S=summa can **Preservation To IN T = Na thiosulfate Fediar bag ar X = Na hydroxide Cont.Code Š Q Client ST=sterile P=plastic G=glass V= viat **Preservation Codes: ī, S 0,4 _ 707 ň Š [JJ) KLUJ (CL) Please use the following codes to let Con-Test know if a specific sample may S = Sulfuric Acid N = Nitric Acid **M** = Methanol ___ H HOL peol = l ANAL YSIS REQUESTED 12+04+08 10:47 ū C - Clean; U - Unknown THO THE DW= drinking water be high in concentration in Matrix/Conc. Code Box: GW= groundwater WW= wastewater *Matrix Code: S = soil/solid A = air H - High; M - Medium; L - Low; Data Enhancement Project/RCP? DY ALN X X Ny **Detection Limit Requirements** `> > ত ナンストロン > > > > NASDEC - SEE \$/0/¥ 500N > Ů 0918 > > > > > > Special Requirements or DL's: *Matrix | Conc. ل لـ CI GIS KEY CLEMAIL MWEBSITE CLIENT V Ŋ S) S S S S S 08-1-80 rwate ene con 2700.0221.01 Regulations? Grab 7 > > > > > DATA DELIVERY (check one): W 151 POF VM-DIZI/Q (msofficent volume Composite MOISTURE CONTENT OF VM-101-21 to report SC R RUSH-F Commen **M**OTHER 1525 Date/Time | Date/Time 735 Turnaround ** 0250 1525 のエ Telephone:(7)に) Date Sampled 5141 卫工 Format: [] EXCEL ☐ *24-Hr ☐ *48-Hr 10-Day 12/3/08 0810 7-Day Client PO# Project # OFAX Fax # .. Email: Start Email: info@contestlabs.com www.contestlabs.com State Form Required? Date/Time: 04:33 17/08 (7:46 Ecology and Environment ☐ yes ☐ no Lab # 08/3 4888 48864 18560 282 18558 533817 C3827 89897 Former Bright Outdoors Date/Time: 4086 368 Pleasanthew Dr Proposal Provided? (For Billing purposes) ういなとと Lancaster NY proposal date RICK WATE VM-01-21/05 Field ID Sample Description SVE-01-23 12-10-W/ SVE-01-72 5ve-01-24 dry weight 2-40-MA SVE-01-21 Jagar. MW-07-21 ed by: (signature) Refinquished by: (Signature) Received by: (signature) _aboratory Comments: Company Name: 1 8 1 Project Location: Sampled By: O yes Attention:

E-91

TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS 0 = Other DI 0 ≈ other INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. * Require lab approval

☐ *72-Hr ☐ *4-Day

Date/Time:

Received by: (signature)

AIHA, NELAC & WBE/DBE Certified

B = Sodium bisulfate

St. = sludge

55%で生でご

Email: info@contestlabs.com

Phone: 413-525-2332 Fax: 413-525-6405

ANALYTICAL LABORATORY

CHAIN OF CUSTODY RECORD

Page_ EAST LONGMEADOW, MA 01028 39 SPRUCE ST, 2ND FLOOR

Ç

Ŋ

of containers **1**≃amber glass 5-зилта сап Comments: Tetedlar bag 0=Other **Preservation -Cont. Code: X = Na hydroxide T = Na thiosulfate -Cont.Code JY ST=sterile P-plastic G=glass V= vial "Preservation Codes; 0 B = Sodium bisulfate 0.0 M Pease use the following codes to let Con-Test know if a specific sample may FROZENA S = Sulfuric Acid Z O = Other DE - XX N = Nitric Acid M = Methanol H=HCL ANALYSIS REQUESTED |= |ced JIAI co \ | |-O H - High; M - Medium; L - Low; C - Clean; U - Unknown DW= drinking water be high in concentration in Matrix/Conc. Code Box: GW= groundwater WW= wastewater 'Matrix Code: S = soil/solid St. = sludge 0 = other A ≂air Į, Data Enhancement Project/RCP? C Y CIN **Detection Limit Requirements** > > Special Requirements or DL's: *Matrix | Conc. Regulations? NYCOE. _1 _ CI GIS KEY M A M CLIENT WEBSITE CLIENT Code V S ٧) S Telephone:(5%) 671-7050 resort penercon 2700. DC21.01 Grab DATA DELIVERY (check one): A T Comp-osite 7-Day * Require lab approval COTHER Start Stop Date/Time Date/Time 1635 Turnaround ** 13/08 1555 Date Sampled 240 でとり 0 *24-Hr 0 *48-Hr Format: D EXCEL ☐ *72-Hr ☐ *4-Day Client PO# Project # CID KORA 8 par Rick Iwath, (MP) 1215108 CIFAX Fax #: Email: Start www.contestlabs.com State Form Required? Date/Time: ロバイズの133 ☐ yes ☐ no Lab # O8B Forker Brout Ordons 485 GA 45066 78282 Ecology & Environment Date/Time: Date/Time: Laxasto, NY ISOR 368 Aleasantrica Dr. Proposal Provided? (For Billing purposes) Pice Wat العمودر __ proposal date Field ID |Sample Description VX-00-H VM-03-4 17-20-WA TOLA-DI Relinquished by: (signature) Received by: (signature) Received by: (signature) aboratory Comments: Company Name: Project Location: Sampled By: < O yes Address: Attention:

E-92

TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

AIHA, NELAC & WBE/DBE Certified

超Close Window

Tracking Summary

Tracking Numbers

Tracking Number:

J217 9514 331

Type:

Package

Status:

Delivered

Delivered On:

12/04/2008 9:33 A.M.

Delivered To:

EAST LONGMEADOW, MA, US

Signed By:

MURPHY

Service:

NEXT DAY AIR

Tracking results provided by UPS: 12/04/2008 10:53 A.M. ET

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipments tendered by or for you to UPS for delivery and for no other purpose. Any other use of UPS tracking systems and information is strictly prohibited.

©Close Window

Copyright © 1994-2008 United Parcel Service of America, Inc. All rights reserved.

www.contestlabs.com

Sample Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

CLIENT NAME: Ecolo	37 Em	RECEIVED BY:	<u>ko</u> DA	TE: 12/4/08
1) Was the chain(s) of custod 2) Does the chain agree with If not, explain:	the samples?	gned?	Yes No Yes No	
3) Are all the samples in goo If not, explain:	d condition?		Yes No	
4) How were the samples rec	eived:			
On Ice Direct fro	m Sampling 🔲	Ambient 🔲	In Cooler(s)	
Were the samples received in	ı Temperature Complia	ance of (2-6°C)?	Yes No	an , C
Temperature °C by Temp blank	<	Temperature °C	by Temp gun3	
5) Are there Dissolved sampl Who was notified			Yes No	
6) Are there any samples "Or			Yes (No) Sto	red where:
7) Are there any RUSH or SH		amples?	Yes No	
Who was notified				
8) Location where samples a	re stored:	(Wal	k-in clients only) if no	ct samples? Yes No ot already approved
		Clien	t Signature:	
	Containers s	ent in to Co	n-Test	
	# of containers			# of containers
1 Liter Amber		8	oz clear jar	
500 mL Amber		4	oz clear jar	
250 mL Amber (8oz amber)		2	oz clear jar	
1 Liter Plastic		Ot Ot	her glass jar	
500 mL Plastic		Plas	tic Bag / Ziploc	
250 mL plastic			ir Cassette	
40 mL Vial - type listed below	39	Br	ass Sleeves	
Colisure / bacteria bottle			Tubes	
Dissolved Oxygen bottle	NAME OF THE PARTY	Sı	ımma Cans	
Flashpoint bottle			Regulators	
Encore			Other DI VIA	LS / ENCORE
				RGZEN AT:
aboratory Comments:			12-()4-08 10:47 OUT
40 mL vials: # HCI	# Methanol	<u> </u>	•	
# Bisulfate	# DI Water 2	Time	and Date Frozen: _	
# Thiosulfate	 Unpreserved			
o all samples have the prope				

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

REPORT DATE 12/26/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-22130

JOB NUMBER: 2700.DC21.01

PROJECT LOCATION: BRIGHT OUTDOORS

FIELD SAMPLE#	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.
MW-01	08B50004	GRND WATER	Not Specified	8260 water	
MW-02	08B50005	GRND WATER	Not Specified	8260 water	
MW-03 QC	08B50006	GRND WATER	Not Specified	8260 water	
MW-04	08B50007	GRND WATER	Not Specified	8260 water	
MW-05	08B50008	GRND WATER	Not Specified	8260 water	
MW-06	08B50009	GRND WATER	Not Specified	8260 water	
MW-07	08B50010	GRND WATER	Not Specified	8260 water	
MW-08	08B50011	GRND WATER	Not Specified	8260 water	
MW-08/Q	08B50012	GRND WATER	Not Specified	8260 water	
TB121608	08B50013	WATER OTHE	Not Specified	8260 water	

REPORT DATE 12/26/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #:

LIMT-22130

JOB NUMBER: 2700.DC21.01

Comments:

LIMS BATCH NO.: LIMT-22130

In method 8260, the initial and/or continuing calibration did not meet method specifications. For all samples, tert-Bulyl Alcohol, 1,4-Dioxane, and 1,2-Dibromo-3-chloropropane were calibrated with a relative response factor < 0.05.

In method 8260, any reported result for Acetone, tert-Butyl Alcohol, Methyl tert-Butyl Ether, Carbon Tetrachloride, Dilsopropyl Ether, tert-Butyl Ethyl Ether, 2,2-Dichloropropane, Tetrahydrofuran, 1,1,1-Trichloroethane, tert-Amyl Methyl Ether, 1,4-Dioxane, cis-1,3-Dichloropropene, 2-Hexanone, trans-1,3-Dichloropropene, 1,2-Dibromoethane, 1,1,1,2-Tetrachloroethane, 1,2,4-Trichlorobenzene, trans-1,4-Dichloro-2-butene, and 1,2-Dibromo-3-chloropropane in all samples is estimated and likely to be biased on the low side based on continuing calibration bias.

In method 8260, any reported result for Acetone, Carbon Tetrachloride, 1,1,1-Trichloroethane, 1,4-Dioxane, cis-1,3-Dichloropropene, trans-1,3-Dichloropropene, 2,2-Dichloropropane, tert-Butyl Alcohol, trans-1,4-Dichloro-2-butene, 1,2-Dibromo-3-chloropropane, tert-Butyl Ethyl Ether, and tert-Amyl Methyl Ether in all samples is likely to be biased on the low side based on laboratory fortified blank (laboratory control sample) recovery bias.

In method 8260 for sample 08B50006, either matrix spike or matrix spike duplicate recovery for Carbon Tetrachloride, trans-1,2-Dichloroethene, cis-1,3-Dichloropropene, and 1,2-Dibromo-3-chloropropane is outside of control limits, but the other is within limits. Outlier should be viewed as a one-time anomaly.

In method 8260 for sample 08B50006, matrix spike and matrix spike duplicate recovery for tert-Butyl Alcohl, trans-1,3-Dichloropropene, 2,2-Dichloropropane, trans-1,4-Dichloro-2-butene, tert-Butyl Ethyl Ether, and tert-Amyl Methyl Ether is biased on the low side. Possibility of sample matrix effects that lead to low bias for reported results cannot be eliminated.

The results of analyses performed are based on samples as submitted to the laboratory and relate only to the items collected and tested.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA ELLAP (LEAD) - 100033

NEW HAMPSHIRE NELAP 2516

NORTH CAROLINA CERT. # 652

MASSACHUSETTS MA0100 CONNECTICUT PH-0567

NEW JERSEY NELAP NJ MA007 (AIR)

VERMONT DOH (LEAD) No. LL015036

FLORIDA DOH E871027 (AIR)

NEW YORK ELAP/NELAP 10899

RHODE ISLAND (LIC, No. 112)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

-dward Demon 12/26/08 **SIGNATURE**

Tod Kopyscinski Air Laboratory Manager Michael Erickson

Assistant Laboratory Director

Edward Denson **Technical Director** Daren Damboragian

Organics Department Supervisor

^{*} See end of data tabulation for notes and comments pertaining to this sample

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 1 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-01

Sample ID: 08B50004 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/18/08	LBD	50.0	LU	111	
	9							
Acrylonitrile	ug/l	ND	12/18/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l 	ND	12/18/08	LBD	0.5			
Benzene	ug/l	ND	12/18/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/18/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromoform	ug/l	ND	12/18/08	LBD	4.0			
Bromomethane	ug/l	ND	12/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/18/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/18/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/18/08	LBD	0.5			
Chloroethane	ug/l	ND	12/18/08	LBD	2.0			
Chloroform	ug/l	ND	12/18/08	LBD	2.0			
Chloromethane	ug/l	ND	12/18/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/18/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 2 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008 Field Sample #: MW-01

Sample ID: 08B50004 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/18/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/18/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/18/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/18/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/18/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/18/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/18/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/18/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/18/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/18/08	LBD	1.0			
MTBE	ug/l	ND	12/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/18/08	LBD	5.0			
MIBK	ug/l	ND	12/18/08	LBD	10.0			
Naphthalene	ug/l	ND	12/18/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Styrene	ug/l	ND	12/18/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 3 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-01

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/18/08	LBD	10.0			
Toluene	ug/l	ND	12/18/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/18/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/18/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	8.3	12/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
Trichloroethylene	ug/l	1.2	12/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/18/08	LBD	2.0			
o-Xylene	ug/l	ND	12/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 4 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-02

Sample ID: 08B50005 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/18/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/18/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Benzene	ug/l	ND	12/18/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/18/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromoform	ug/l	ND	12/18/08	LBD	4.0			
Bromomethane	ug/l	ND	12/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/18/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/18/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/18/08	LBD	0.5			
Chloroethane	ug/l	ND	12/18/08	LBD	2.0			
Chloroform	ug/l	ND	12/18/08	LBD	2.0			
Chloromethane	ug/l	ND	12/18/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/18/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008 368 PLEASANT VIEW Page 5 of 31

Purchase Order No.: LANCASTER, NY 14086

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

12/17/2008 2700.DC21.01 Date Received: Job Number:

Field Sample #: MW-02

Sample ID: 08B50005 **\$Sampled: 12/16/2008**

Not Specified

Sample Matrix: **GRND WATER**

	Units	Results	Date Analyzed	Analyst	RL	SPEC I	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/18/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/18/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/18/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/18/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/18/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/18/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/18/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/18/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/18/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/18/08	LBD	1.0			
MTBE	ug/l	ND	12/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/18/08	LBD	5.0			
MIBK	ug/l	ND	12/18/08	LBD	10.0			
Naphthalene	ug/l	ND	12/18/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Styrene	ug/l	ND	12/18/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 6 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-02

Sample ID: 08B50005 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC I Lo	₋imit Hi	P/ F
1,1,2,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/18/08	LBD	10.0			
Toluene	ug/l	ND	12/18/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/18/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/18/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	4.6	12/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
Trichloroethylene	ug/l	7.4	12/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/18/08	LBD	2.0			
o-Xylene	ug/l	ND	12/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 7 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008
Field Sample #: MW-03 QC

Sample ID: 08B50006 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC I Lo	_imit Hi	P/ F
Acetone	ug/l	ND	12/19/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/19/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Benzene	ug/l	ND	12/19/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/19/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromoform	ug/l	ND	12/19/08	LBD	4.0			
Bromomethane	ug/l	ND	12/19/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/19/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/19/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/19/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/19/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/19/08	LBD	0.5			
Chloroethane	ug/l	ND	12/19/08	LBD	2.0			
Chloroform	ug/l	ND	12/19/08	LBD	2.0			
Chloromethane	ug/l	ND	12/19/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/19/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/19/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 8 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008 Job Number:
Field Sample #: MW-03 QC

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/19/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/19/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/19/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/19/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/19/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/19/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/19/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/19/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/19/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/19/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/19/08	LBD	1.0			
MTBE	ug/l	ND	12/19/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/19/08	LBD	5.0			
MIBK	ug/l	ND	12/19/08	LBD	10.0			
Naphthalene	ug/l	ND	12/19/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Styrene	ug/l	ND	12/19/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 9 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-03 QC

Sample ID: 08B50006 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC I Lo	₋imit Hi	P/ F
1,1,2,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/19/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/19/08	LBD	10.0			
Toluene	ug/l	ND	12/19/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/19/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/19/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	2.0	12/19/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/19/08	LBD	1.0			
Trichloroethylene	ug/l	2.4	12/19/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/19/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/19/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/19/08	LBD	2.0			
o-Xylene	ug/l	ND	12/19/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 10 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-04

Sample ID: 08B50007 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/18/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/18/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Benzene	ug/l	ND	12/18/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/18/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromoform	ug/l	ND	12/18/08	LBD	4.0			
Bromomethane	ug/l	ND	12/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/18/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/18/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/18/08	LBD	0.5			
Chloroethane	ug/l	ND	12/18/08	LBD	2.0			
Chloroform	ug/l	ND	12/18/08	LBD	2.0			
Chloromethane	ug/l	ND	12/18/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/18/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 11 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008
Field Sample #: MW-04

Sample ID: 08B50007 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
1,4-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/18/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/18/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/18/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/18/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/18/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/18/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/18/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/18/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/18/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/18/08	LBD	1.0			
MTBE	ug/l	ND	12/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/18/08	LBD	5.0			
MIBK	ug/l	ND	12/18/08	LBD	10.0			
Naphthalene	ug/l	ND	12/18/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Styrene	ug/l	ND	12/18/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 12 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-04

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst RL		SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/18/08	LBD	10.0			
Toluene	ug/l	ND	12/18/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/18/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/18/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	1.7	12/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
Trichloroethylene	ug/l	3.4	12/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/18/08	LBD	2.0			
o-Xylene	ug/l	ND	12/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 13 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2009
Field Sample #: MW-05

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/18/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/18/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Benzene	ug/l	ND	12/18/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/18/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromoform	ug/l	ND	12/18/08	LBD	4.0			
Bromomethane	ug/l	ND	12/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/18/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/18/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/18/08	LBD	0.5			
Chloroethane	ug/l	ND	12/18/08	LBD	2.0			
Chloroform	ug/l	ND	12/18/08	LBD	2.0			
Chloromethane	ug/l	ND	12/18/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/18/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 14 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008 Field Sample #: MW-05

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/18/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	7.4	12/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/18/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/18/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/18/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/18/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/18/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/18/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/18/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/18/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/18/08	LBD	1.0			
MTBE	ug/l	ND	12/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/18/08	LBD	5.0			
MIBK	ug/l	ND	12/18/08	LBD	10.0			
Naphthalene	ug/l	ND	12/18/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Styrene	ug/l	ND	12/18/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 15 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-05

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/18/08	LBD	10.0			
Toluene	ug/l	ND	12/18/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/18/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/18/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	30.9	12/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
Trichloroethylene	ug/l	13.9	12/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/18/08	LBD	2.0			
o-Xylene	ug/l	ND	12/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 16 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-06

Sample ID: 08B50009 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/19/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/19/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Benzene	ug/l	ND	12/19/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/19/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromoform	ug/l	ND	12/19/08	LBD	4.0			
Bromomethane	ug/l	ND	12/19/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/19/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/19/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/19/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/19/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/19/08	LBD	0.5			
Chloroethane	ug/l	ND	12/19/08	LBD	2.0			
Chloroform	ug/l	ND	12/19/08	LBD	2.0			
Chloromethane	ug/l	ND	12/19/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/19/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/19/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 17 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-06

Sample ID: 08B50009 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/19/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	4.1	12/19/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/19/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/19/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/19/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/19/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/19/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/19/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/19/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/19/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/19/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/19/08	LBD	1.0			
MTBE	ug/l	ND	12/19/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/19/08	LBD	5.0			
MIBK	ug/l	ND	12/19/08	LBD	10.0			
Naphthalene	ug/l	ND	12/19/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Styrene	ug/l	ND	12/19/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 18 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-06

Sample ID: 08B50009 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/19/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/19/08	LBD	10.0			
Toluene	ug/l	ND	12/19/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/19/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/19/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	15.4	12/19/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/19/08	LBD	1.0			
Trichloroethylene	ug/l	11.4	12/19/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/19/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/19/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/19/08	LBD	2.0			
o-Xylene	ug/l	ND	12/19/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 19 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-07

Sample ID: 08B50010 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acatono	//	ND	Analyzed	LDD	50.0	LU	П	
Acetone	ug/l		12/19/08	LBD				
Acrylonitrile	ug/l	ND	12/19/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l 	ND	12/19/08	LBD	0.5			
Benzene	ug/l	ND	12/19/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/19/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromoform	ug/l	ND	12/19/08	LBD	4.0			
Bromomethane	ug/l	ND	12/19/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/19/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/19/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/19/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/19/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/19/08	LBD	0.5			
Chloroethane	ug/l	ND	12/19/08	LBD	2.0			
Chloroform	ug/l	ND	12/19/08	LBD	2.0			
Chloromethane	ug/l	ND	12/19/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/19/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/19/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 20 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-07

Sample ID: 08B50010 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/19/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/19/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/19/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/19/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/19/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/19/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/19/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/19/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/19/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/19/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/19/08	LBD	1.0			
MTBE	ug/l	ND	12/19/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/19/08	LBD	5.0			
MIBK	ug/l	ND	12/19/08	LBD	10.0			
Naphthalene	ug/l	ND	12/19/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Styrene	ug/l	ND	12/19/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 21 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-07

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/ F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/19/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/19/08	LBD	10.0			
Toluene	ug/l	ND	12/19/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/19/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/19/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	3.9	12/19/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/19/08	LBD	1.0			
Trichloroethylene	ug/l	1.3	12/19/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/19/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/19/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/19/08	LBD	2.0			
o-Xylene	ug/l	ND	12/19/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 22 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-08

Sample ID: 08B50011 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/19/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/19/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Benzene	ug/l	ND	12/19/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/19/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromoform	ug/l	ND	12/19/08	LBD	4.0			
Bromomethane	ug/l	ND	12/19/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/19/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/19/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/19/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/19/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/19/08	LBD	0.5			
Chloroethane	ug/l	ND	12/19/08	LBD	2.0			
Chloroform	ug/l	ND	12/19/08	LBD	2.0			
Chloromethane	ug/l	ND	12/19/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/19/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/19/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 23 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-08

Sample ID: 08B50011 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/19/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/19/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/19/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/19/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/19/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/19/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/19/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/19/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/19/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/19/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/19/08	LBD	1.0			
MTBE	ug/l	ND	12/19/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/19/08	LBD	5.0			
MIBK	ug/l	ND	12/19/08	LBD	10.0			
Naphthalene	ug/l	ND	12/19/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Styrene	ug/l	ND	12/19/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 24 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-08

Sample ID: 08B50011 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/19/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/19/08	LBD	10.0			
Toluene	ug/l	ND	12/19/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/19/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/19/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	3.9	12/19/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/19/08	LBD	1.0			
Trichloroethylene	ug/l	13.7	12/19/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/19/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/19/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/19/08	LBD	2.0			
o-Xylene	ug/l	ND	12/19/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 25 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-08/Q

Sample ID: 08B50012 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/l	ND	12/19/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/19/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Benzene	ug/l	ND	12/19/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/19/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/19/08	LBD	1.0			
Bromoform	ug/l	ND	12/19/08	LBD	4.0			
Bromomethane	ug/l	ND	12/19/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/19/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/19/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/19/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/19/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/19/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/19/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/19/08	LBD	0.5			
Chloroethane	ug/l	ND	12/19/08	LBD	2.0			
Chloroform	ug/l	ND	12/19/08	LBD	2.0			
Chloromethane	ug/l	ND	12/19/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/19/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/19/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 26 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Date Received: 12/17/2008
Field Sample #: MW-08/Q

Sample ID: 08B50012 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/19/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/19/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/19/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/19/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/19/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/19/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/19/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/19/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/19/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/19/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/19/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/19/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/19/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/19/08	LBD	1.0			
MTBE	ug/l	ND	12/19/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/19/08	LBD	5.0			
MIBK	ug/l	ND	12/19/08	LBD	10.0			
Naphthalene	ug/l	ND	12/19/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Styrene	ug/l	ND	12/19/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 27 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: MW-08/Q

Not Specified

Sample Matrix: GRND WATER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/19/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/19/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/19/08	LBD	10.0			
Toluene	ug/l	ND	12/19/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/19/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/19/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	3.9	12/19/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/19/08	LBD	1.0			
Trichloroethylene	ug/l	13.6	12/19/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/19/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/19/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/19/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/19/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/19/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/19/08	LBD	2.0			
o-Xylene	ug/l	ND	12/19/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 28 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: TB121608

Sample ID: 08B50013 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: WATER OTHER

	Units	Results	Date	Analyst	RL	SPEC		P/ F
			Analyzed			Lo	Hi	
Acetone	ug/l	ND	12/18/08	LBD	50.0			
Acrylonitrile	ug/l	ND	12/18/08	LBD	5.0			
tert-Amylmethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Benzene	ug/l	ND	12/18/08	LBD	1.0			
Bromobenzene	ug/l	ND	12/18/08	LBD	1.0			
Bromochloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromodichloromethane	ug/l	ND	12/18/08	LBD	1.0			
Bromoform	ug/l	ND	12/18/08	LBD	4.0			
Bromomethane	ug/l	ND	12/18/08	LBD	2.0			
2-Butanone (MEK)	ug/l	ND	12/18/08	LBD	20.0			
tert-Butyl Alcohol	ug/l	ND	12/18/08	LBD	20.0			
n-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
sec-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylbenzene	ug/l	ND	12/18/08	LBD	1.0			
tert-Butylethyl Ether	ug/l	ND	12/18/08	LBD	0.5			
Carbon Disulfide	ug/l	ND	12/18/08	LBD	3.0			
Carbon Tetrachloride	ug/l	ND	12/18/08	LBD	1.0			
Chlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
Chlorodibromomethane	ug/l	ND	12/18/08	LBD	0.5			
Chloroethane	ug/l	ND	12/18/08	LBD	2.0			
Chloroform	ug/l	ND	12/18/08	LBD	2.0			
Chloromethane	ug/l	ND	12/18/08	LBD	2.0			
2-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
4-Chlorotoluene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dibromo-3-Chloropropane	ug/l	ND	12/18/08	LBD	5.0			
1,2-Dibromoethane	ug/l	ND	12/18/08	LBD	0.50			
Dibromomethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 29 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: TB121608

Sample ID: 08B50013 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: WATER OTHER

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,4-Dichlorobenzene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,4-Dichloro-2-Butene	ug/l	ND	12/18/08	LBD	2.0			
Dichlorodifluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,1-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
cis-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,2-Dichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
1,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,3-Dichloropropane	ug/l	ND	12/18/08	LBD	0.5			
2,2-Dichloropropane	ug/l	ND	12/18/08	LBD	1.0			
1,1-Dichloropropene	ug/l	ND	12/18/08	LBD	2.0			
cis-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	1.0			
trans-1,3-Dichloropropene	ug/l	ND	12/18/08	LBD	0.5			
Diethyl Ether	ug/l	ND	12/18/08	LBD	2.0			
Diisopropyl Ether	ug/l	ND	12/18/08	LBD	0.5			
1,4-Dioxane	ug/l	ND	12/18/08	LBD	50.0			
Ethyl Benzene	ug/l	ND	12/18/08	LBD	1.0			
Hexachlorobutadiene	ug/l	ND	12/18/08	LBD	3.0			
2-Hexanone	ug/l	ND	12/18/08	LBD	10.0			
Isopropylbenzene	ug/l	ND	12/18/08	LBD	1.0			
p-Isopropyltoluene	ug/l	ND	12/18/08	LBD	1.0			
MTBE	ug/l	ND	12/18/08	LBD	1.0			
Methylene Chloride	ug/l	ND	12/18/08	LBD	5.0			
MIBK	ug/l	ND	12/18/08	LBD	10.0			
Naphthalene	ug/l	ND	12/18/08	LBD	7.0			
n-Propylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Styrene	ug/l	ND	12/18/08	LBD	1.0			
1,1,1,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	1.0			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008
368 PLEASANT VIEW Page 30 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130

Date Received: 12/17/2008 Job Number: 2700.DC21.01

Field Sample #: TB121608

Not Specified

Sample Matrix: WATER OTHER

	Units	Results	Date	Analyst	RL	SPEC	Limit	P/F
			Analyzed			Lo	Hi	
1,1,2,2-Tetrachloroethane	ug/l	ND	12/18/08	LBD	0.5			
Tetrachloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Tetrahydrofuran	ug/l	ND	12/18/08	LBD	10.0			
Toluene	ug/l	ND	12/18/08	LBD	1.0			
1,2,3-Trichlorobenzene	ug/l	ND	12/18/08	LBD	6.0			
1,2,4-Trichlorobenzene	ug/l	ND	12/18/08	LBD	4.0			
1,1,1-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
1,1,2-Trichloroethane	ug/l	ND	12/18/08	LBD	1.0			
Trichloroethylene	ug/l	ND	12/18/08	LBD	1.0			
Trichlorofluoromethane	ug/l	ND	12/18/08	LBD	2.0			
1,2,3-Trichloropropane	ug/l	ND	12/18/08	LBD	2.0			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	ND	12/18/08	LBD	1.0			
1,2,4-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
1,3,5-Trimethylbenzene	ug/l	ND	12/18/08	LBD	1.0			
Vinyl Chloride	ug/l	ND	12/18/08	LBD	2.0			
m + p Xylene	ug/l	ND	12/18/08	LBD	2.0			
o-Xylene	ug/l	ND	12/18/08	LBD	1.0			

Analytical Method:

SW846 8260

SAMPLES ARE CONCENTRATED BY PURGE & TRAP, FOLLOWED BY GC/MS TARGET COMPOUND ANALYSIS. REPORTED RESULTS AND REPORTING LIMITS FOR 1,4-DIOXANE AND TERT-BUTYLALCOHOL ARE ESTIMATED SINCE RESPONSE FACTORS FOR THESE COMPOUNDS ARE BELOW METHOD SPECIFICATIONS.

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/26/2008 368 PLEASANT VIEW Page 31 of 31

LANCASTER, NY 14086 Purchase Order No.:

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22130 Date Received: 12/17/2008

Job Number: 2700.DC21.01

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 1 of 25			
QC Batch Numb	per: GCMS/VOL-21190					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
08B50004						
	1,2-Dichloroethane-d4	Surrogate Recovery	104.1	%	70-130	
	Toluene-d8	Surrogate Recovery	101.8	%	70-130	
	Bromofluorobenzene	Surrogate Recovery	92.0	%	70-130	
08B50005						
	1,2-Dichloroethane-d4	Surrogate Recovery	107.6	%	70-130	
	Toluene-d8	Surrogate Recovery	101.1	%	70-130	
	Bromofluorobenzene	Surrogate Recovery	90.0	%	70-130	
08B50006						
	Acetone	Sample Amount	<50.0	ug/l		
		Matrix Spk Amt Added	100.0	ug/l		
		MS Amt Measured	85.7	ug/l		
		Matrix Spike % Rec.	85.7	%	70-130	
		MSD Amount Added	100.0	ug/l		
		MSD Amt Measured	82.0	ug/l		
		MSD % Recovery	82.0	%		
		MSD Range	3.6	units		
		MS Duplicate RPD	4.3	%	0-30	
	Benzene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	11.9	ug/l		
		Matrix Spike % Rec.	119.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	12.7	ug/l		
		MSD % Recovery	127.6	%		
		MSD Range	8.0	units		
		MS Duplicate RPD	6.4	%	0-30	
	Carbon Tetrachloride	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	6.6	ug/l		
		Matrix Spike % Rec.	66.3	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	7.6	ug/l		
		MSD % Recovery	76.8	%		
		MSD Range	10.5	units		
		MS Duplicate RPD	14.6	%	0-30	
	Chloroform	Sample Amount	<2.0	ug/l	0 00	
	3111010101111	Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	11.3	ug/l		
		Matrix Spike % Rec.	113.3	www.	70-130	
		MSD Amount Added	10.0	ug/l	70-100	
		MSD Amount Added MSD Amt Measured	12.2	•		
			12.2	ug/l %		
		MSD Range	9.3			
		MSD Range	9.3	units		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 2 of 25			
QC Batch Number	er: GCMS/VOL-21190					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
08B50006						
	Chloroform	MS Duplicate RPD	7.9	%	0-30	
	1,2-Dichloroethane	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	11.3	ug/l		
		Matrix Spike % Rec.	113.9	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	12.2	ug/l		
		MSD % Recovery	122.9	%		
		MSD Range	9.0	units		
		MS Duplicate RPD	7.6	%	0-30	
	1,4-Dichlorobenzene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.3	ug/l		
		Matrix Spike % Rec.	103.8	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.6	ug/l		
		MSD % Recovery	116.1	%		
		MSD Range	12.3	units		
		MS Duplicate RPD	11.1	%	0-30	
	Ethyl Benzene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.7	ug/l		
		Matrix Spike % Rec.	107.5	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.6	ug/l		
		MSD % Recovery	116.2	%		
		MSD Range	8.7	units		
		MS Duplicate RPD	7.7	%	0-30	
	2-Butanone (MEK)	Sample Amount	<20.0	ug/l		
		Matrix Spk Amt Added	100.0	ug/l		
		MS Amt Measured	103.8	ug/l		
		Matrix Spike % Rec.	103.8	%	70-130	
		MSD Amount Added	100.0	ug/l		
		MSD Amt Measured	95.0	ug/l		
		MSD % Recovery	95.0	%		
		MSD Range	8.7	units		
		MS Duplicate RPD	8.8	%	0-30	
	MIBK	Sample Amount	<10.0	ug/l		
		Matrix Spk Amt Added	100.0	ug/l		
		MS Amt Measured	99.8	ug/l		
		Matrix Spike % Rec.	99.8	%	70-130	
		MSD Amount Added	100.0	ug/l		
		MSD Amt Measured	94.7	ug/l		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 3 of 25			
QC Batch Numbe	er: GCMS/VOL-21190					
ample Id	Analysis	QC Analysis	Values	Units	Limits	
BB50006						
	MIBK	MSD % Recovery	94.7	%		
		MSD Range	5.1	units		
		MS Duplicate RPD	5.2	%	0-30	
	Naphthalene	Sample Amount	<7.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.2	ug/l		
		Matrix Spike % Rec.	92.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	8.9	ug/l		
		MSD % Recovery	89.8	%		
		MSD Range	2.7	units		
		MS Duplicate RPD	3.0	%	0-30	
	Styrene	Sample Amount	<1.0	ug/l		
	,	Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.6	ug/l		
		Matrix Spike % Rec.	106.3	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.2	ug/l		
		MSD % Recovery	112.0	%		
		MSD Range	5.6	units		
		MS Duplicate RPD	5.2	%	0-30	
	Tetrachloroethylene	Sample Amount	<1.0	ug/l	0 00	
	. ca demoredary is no	Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.5	ug/l		
		Matrix Spike % Rec.	105.4	%	70-130	
		MSD Amount Added	10.0	ug/l	70-130	
		MSD Amt Measured	11.8	ug/l		
		MSD % Recovery	118.2	w %		
		MSD 76 Recovery	12.8	units		
			11.4	w	0-30	
	Toluene	MS Duplicate RPD Sample Amount	<1.0		0-30	
	roluerie	•		ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	11.0	ug/l	70-130	
		Matrix Spike % Rec.	110.3	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.8	ug/l		
		MSD % Recovery	118.5	%		
		MSD Range	8.2	units	0.00	
	=	MS Duplicate RPD	7.1	%	0-30	
	1,1,1-Trichloroethane	Sample Amount	1.9	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	9.3	ug/l		
		Matrix Spike % Rec.	73.3	%	70-130	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008 Lims B	at # : LIMT-22130	Page 4 of 25			
QC Batch Numbe	er: GCMS/VOL-21190					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
08B50006						
	1,1,1-Trichloroethane	MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	10.3	ug/l		
		MSD % Recovery	83.5	%		
		MSD Range	10.2	units		
		MS Duplicate RPD	10.3	%	0-30	
	Trichloroethylene	Sample Amount	2.4	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	12.6	ug/l		
		Matrix Spike % Rec.	101.9	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	13.3	ug/l		
		MSD % Recovery	108.9	%		
		MSD Range	7.0	units		
		MS Duplicate RPD	5.3	%	0-30	
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.8	ug/l		
		Matrix Spike % Rec.	108.6	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.9	ug/l		
		MSD % Recovery	119.2	%		
		MSD Range	10.6	units		
		MS Duplicate RPD	9.3	%	0-30	
	Trichlorofluoromethane	Sample Amount	<2.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.4	ug/l		
		Matrix Spike % Rec.	104.7	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.5	ug/l		
		MSD % Recovery	115.9	%		
		MSD Range	11.2	units		
		MS Duplicate RPD	10.1	%	0-30	
	o-Xylene	Sample Amount	<1.0	ug/l		
		Matrix Spk Amt Added	10.0	ug/l		
		MS Amt Measured	10.3	ug/l		
		Matrix Spike % Rec.	103.8	%	70-130	
		MSD Amount Added	10.0	ug/l		
		MSD Amt Measured	11.1	ug/l		
		MSD % Recovery	111.4	%		
		MSD Range	7.6	units		
		MS Duplicate RPD	7.0	%	0-30	
	m + p Xylene	Sample Amount	<2.0	ug/l		
		Matrix Spk Amt Added	20.0	ug/l		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	5 of 25
QC Batch Number	r: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B50006					
	m + p Xylene	MS Amt Measured	21.6	ug/l	
		Matrix Spike % Rec.	108.3	%	70-130
		MSD Amount Added	20.0	ug/l	
		MSD Amt Measured	22.8	ug/l	
		MSD % Recovery	114.2	%	
		MSD Range	5.9	units	
		MS Duplicate RPD	5.3	%	0-30
	1,2-Dichlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.3	ug/l	
		Matrix Spike % Rec.	113.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.0	ug/l	
		MSD % Recovery	120.8	%	
		MSD Range	7.5	units	
		MS Duplicate RPD	6.4	%	0-30
	1,3-Dichlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.1	ug/l	
		Matrix Spike % Rec.	111.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.7	ug/l	
		MSD % Recovery	117.3	%	
		MSD Range	5.6	units	
		MS Duplicate RPD	4.9	%	0-30
	1,1-Dichloroethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.9	ug/l	
		Matrix Spike % Rec.	119.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	13.0	ug/l	
		MSD % Recovery	130.5	%	
		MSD Range	11.0	units	
		MS Duplicate RPD	8.8	%	0-30
	1,1-Dichloroethylene	Sample Amount	<1.0	ug/l	
	, ,	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.7	ug/l	
		Matrix Spike % Rec.	107.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.3	ug/l	
		MSD % Recovery	123.3	%	
		MSD Range	15.4	units	
		MS Duplicate RPD	13.3	%	0-30
		mo Dupiloute Iti D	10.0	, ,	3 30

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	6 of 25
QC Batch Number	r: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	1,4-Dioxane	Sample Amount	<50.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	84.0	ug/l	
		Matrix Spike % Rec.	84.0	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	96.7	ug/l	
		MSD % Recovery	96.7	%	
		MSD Range	12.6	units	
		MS Duplicate RPD	14.0	%	0-30
	MTBE	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.7	ug/l	
		Matrix Spike % Rec.	87.8	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.1	ug/l	
		MSD % Recovery	91.4	%	
		MSD Range	3.6	units	
		MS Duplicate RPD	4.0	%	0-30
	trans-1,2-Dichloroethylene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.7	ug/l	
		Matrix Spike % Rec.	117.8	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	13.0	ug/l	
		MSD % Recovery	130.8	%	
		MSD Range	13.0	units	
		MS Duplicate RPD	10.4	%	0-30
	Vinyl Chloride	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.5	ug/l	
		Matrix Spike % Rec.	105.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.8	ug/l	
		MSD % Recovery	118.0	%	
		MSD Range	12.4	units	
		MS Duplicate RPD	11.0	%	0-30
	Methylene Chloride	Sample Amount	<5.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.1	ug/l	
		Matrix Spike % Rec.	81.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	8.8	ug/l	
		MSD % Recovery	88.2	%	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008 Lims Bat #: LIMT-22130		Page 7 of 25		
QC Batch Numbe	er: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	Methylene Chloride	MSD Range	7.2	units	
		MS Duplicate RPD	8.5	%	0-30
	Chlorobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.9	ug/l	
		Matrix Spike % Rec.	109.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.7	ug/l	
		MSD % Recovery	117.5	%	
		MSD Range	8.3	units	
		MS Duplicate RPD	7.3	%	0-30
	Chloromethane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.5	ug/l	
		Matrix Spike % Rec.	85.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.4	ug/l	
		MSD % Recovery	94.1	%	
		MSD Range	8.6	units	
		MS Duplicate RPD	9.5	%	0-30
	Bromomethane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	7.0	ug/l	
		Matrix Spike % Rec.	70.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	8.4	ug/l	
		MSD % Recovery	84.3	%	
		MSD Range	13.4	units	
		MS Duplicate RPD	17.2	%	0-30
	Chloroethane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.0	ug/l	
		Matrix Spike % Rec.	100.1	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.5	ug/l	
		MSD % Recovery	115.5	%	
		MSD Range	15.4	units	
		MS Duplicate RPD	14.2	%	0-30
	cis-1,3-Dichloropropene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.6	ug/l	
		Matrix Spike % Rec.	66.0	%	70-130
		MSD Amount Added	10.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	8 of 25
QC Batch Number:	GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B50006					
	cis-1,3-Dichloropropene	MSD Amt Measured	7.3	ug/l	
		MSD % Recovery	73.5	%	
		MSD Range	7.5	units	
		MS Duplicate RPD	10.7	%	0-30
	trans-1,3-Dichloropropene	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Adde	d 10.0	ug/l	
		MS Amt Measured	4.6	ug/l	
		Matrix Spike % Rec.	46.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	5.1	ug/l	
		MSD % Recovery	51.8	%	
		MSD Range	4.9	units	
		MS Duplicate RPD	9.9	%	0-30
	Chlorodibromomethane	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Adde	d 10.0	ug/l	
		MS Amt Measured	10.5	ug/l	
		Matrix Spike % Rec.	105.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.6	ug/l	
		MSD % Recovery	116.2	%	
		MSD Range	11.0	units	
		MS Duplicate RPD	9.9	%	0-30
	1,1,2-Trichloroethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Adde	d 10.0	ug/l	
		MS Amt Measured	10.6	ug/l	
		Matrix Spike % Rec.	106.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.6	ug/l	
		MSD % Recovery	116.2	%	
		MSD Range	9.3	units	
		MS Duplicate RPD	8.3	%	0-30
	Bromoform	Sample Amount	<4.0	ug/l	
		Matrix Spk Amt Adde	d 10.0	ug/l	
		MS Amt Measured	9.0	ug/l	
		Matrix Spike % Rec.	90.8	%	70-130
		MSD Amount Added	10.0	ug/l	2
		MSD Amt Measured	9.4	ug/l	
		MSD % Recovery	94.6	%	
		MSD Range	3.7	units	
		MS Duplicate RPD	4.0	%	0-30
	1,1,2,2-Tetrachloroethane	Sample Amount	<0.5	ug/l	- 00
	.,.,=,=	Matrix Spk Amt Adde		ug/l	
		MS Amt Measured	12.5	ug/l	
		MO AIII MEasuleu	12.5	ugn	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	9 of 25
QC Batch Number	er: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	1,1,2,2-Tetrachloroethane	Matrix Spike % Rec.	125.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.0	ug/l	
		MSD % Recovery	120.4	%	
		MSD Range	5.4	units	
		MS Duplicate RPD	4.4	%	0-30
	2-Chlorotoluene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.6	ug/l	
		Matrix Spike % Rec.	106.1	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.3	ug/l	
		MSD % Recovery	113.0	%	
		MSD Range	6.9	units	
		MS Duplicate RPD	6.2	%	0-30
	Hexachlorobutadiene	Sample Amount	<3.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.3	ug/l	
		Matrix Spike % Rec.	93.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.3	ug/l	
		MSD % Recovery	103.0	%	
		MSD Range	10.0	units	
		MS Duplicate RPD	10.2	%	0-30
	Isopropylbenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	12.0	ug/l	
		Matrix Spike % Rec.	120.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.8	ug/l	
		MSD % Recovery	128.9	%	
		MSD Range	8.5	units	
		MS Duplicate RPD	6.8	%	0-30
	p-Isopropyltoluene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.9	ug/l	
		Matrix Spike % Rec.	109.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.6	ug/l	
		MSD % Recovery	116.3	%	
		MSD Range	6.7	units	
		MS Duplicate RPD	6.0	%	0-30
	n-Propylbenzene	Sample Amount	<1.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	10 of 25
QC Batch Number	r: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
)8B50006					
	n-Propylbenzene	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.5	ug/l	
		Matrix Spike % Rec.	105.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.4	ug/l	
		MSD % Recovery	114.6	%	
		MSD Range	9.0	units	
		MS Duplicate RPD	8.1	%	0-30
	sec-Butylbenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.2	ug/l	
		Matrix Spike % Rec.	112.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.2	ug/l	
		MSD % Recovery	122.7	%	
		MSD Range	10.3	units	
		MS Duplicate RPD	8.7	%	0-30
	tert-Butylbenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.6	ug/l	
		Matrix Spike % Rec.	106.8	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.8	ug/l	
		MSD % Recovery	118.7	%	
		MSD Range	11.9	units	
		MS Duplicate RPD	10.5	%	0-30
	1,2,3-Trichlorobenzene	Sample Amount	<6.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.6	ug/l	
		Matrix Spike % Rec.	96.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.2	ug/l	
		MSD % Recovery	92.8	%	
		MSD Range	4.1	units	
		MS Duplicate RPD	4.3	%	0-30
	1,2,4-Trichlorobenzene	Sample Amount	<4.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.6	ug/l	
		Matrix Spike % Rec.	86.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	8.2	ug/l	
		MSD % Recovery	82.6	%	
		MSD Range	4.0	units	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 11 of 25		
QC Batch Number	er: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	1,2,4-Trichlorobenzene	MS Duplicate RPD	4.7	%	0-30
	1,2,4-Trimethylbenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.0	ug/l	
		Matrix Spike % Rec.	110.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.0	ug/l	
		MSD % Recovery	120.6	%	
		MSD Range	10.6	units	
		MS Duplicate RPD	9.1	%	0-30
	1,3,5-Trimethylbenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.5	ug/l	
		Matrix Spike % Rec.	105.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.2	ug/l	
		MSD % Recovery	112.5	%	
		MSD Range	7.1	units	
		MS Duplicate RPD	6.5	%	0-30
	Dibromomethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.0	ug/l	
		Matrix Spike % Rec.	110.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.9	ug/l	
		MSD % Recovery	119.8	%	
		MSD Range	9.5	units	
		MS Duplicate RPD	8.2	%	0-30
	cis-1,2-Dichloroethylene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.8	ug/l	
		Matrix Spike % Rec.	108.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.8	ug/l	
		MSD % Recovery	118.1	%	
		MSD Range	9.6	units	
		MS Duplicate RPD	8.5	%	0-30
	4-Chlorotoluene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.9	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	12 of 25
QC Batch Number	r: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B50006					
	4-Chlorotoluene	MSD % Recovery	109.0	%	
		MSD Range	5.6	units	
		MS Duplicate RPD	5.2	%	0-30
	1,1-Dichloropropene	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.5	ug/l	
		Matrix Spike % Rec.	115.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.6	ug/l	
		MSD % Recovery	126.3	%	
		MSD Range	11.3	units	
		MS Duplicate RPD	9.3	%	0-30
	1,2-Dichloropropane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.1	ug/l	
		Matrix Spike % Rec.	111.6	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	12.1	ug/l	
		MSD % Recovery	121.9	%	
		MSD Range	10.3	units	
		MS Duplicate RPD	8.8	%	0-30
	1,3-Dichloropropane	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	11.2	ug/l	
		Matrix Spike % Rec.	112.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.8	ug/l	
		MSD % Recovery	118.1	%	
		MSD Range	5.7	units	
		MS Duplicate RPD	5.0	%	0-30
	2,2-Dichloropropane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	2.7	ug/l	
		Matrix Spike % Rec.	27.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	2.9	ug/l	
		MSD % Recovery	29.9	%	
		MSD Range	2.4	units	
		MS Duplicate RPD	8.3	%	0-30
	1,1,1,2-Tetrachloroethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	7.2	ug/l	
		Matrix Spike % Rec.	72.7	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat # : LIMT-22130	Page 13 of 25		
QC Batch Number	er: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	1,1,1,2-Tetrachloroethane	MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	8.3	ug/l	
		MSD % Recovery	83.6	%	
		MSD Range	10.9	units	
		MS Duplicate RPD	13.9	%	0-30
	1,2,3-Trichloropropane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.1	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.1	ug/l	
		MSD % Recovery	101.4	%	
		MSD Range	1.6	units	
		MS Duplicate RPD	1.6	%	0-30
	n-Butylbenzene	Sample Amount	<1.0	ug/l	
	•	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.9	ug/l	
		Matrix Spike % Rec.	99.8	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.9	ug/l	
		MSD % Recovery	109.6	%	
		MSD Range	9.7	units	
		MS Duplicate RPD	9.3	%	0-30
	Dichlorodifluoromethane	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.9	ug/l	
		Matrix Spike % Rec.	99.5	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.9	ug/l	
		MSD % Recovery	109.0	%	
		MSD Range	9.5	units	
		MS Duplicate RPD	9.1	%	0-30
	Bromochloromethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.4	ug/l	
		Matrix Spike % Rec.	94.1	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.1	ug/l	
		MSD % Recovery	101.9	%	
		MSD Range	7.8	units	
		MS Duplicate RPD	7.9	%	0-30
	Bromobenzene	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	14 of 25
QC Batch Number	: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	Bromobenzene	MS Amt Measured	11.2	ug/l	
		Matrix Spike % Rec.	112.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.9	ug/l	
		MSD % Recovery	119.4	%	
		MSD Range	6.7	units	
		MS Duplicate RPD	5.7	%	0-30
	Acrylonitrile	Sample Amount	<5.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.5	ug/l	
		Matrix Spike % Rec.	95.2	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.4	ug/l	
		MSD % Recovery	94.6	%	
		MSD Range	0.6	units	
		MS Duplicate RPD	0.6	%	0-30
	Carbon Disulfide	Sample Amount	<3.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.8	ug/l	
		MSD % Recovery	118.8	%	
		MSD Range	14.9	units	
		MS Duplicate RPD	13.3	%	0-30
	2-Hexanone	Sample Amount	<10.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	95.3	ug/l	
		Matrix Spike % Rec.	95.3	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	87.4	ug/l	
		MSD % Recovery	87.4	%	
		MSD Range	7.8	units	
		MS Duplicate RPD	8.6	%	0-30
	trans-1,4-Dichloro-2-Butene	Sample Amount	<2.0	ug/l	
	, = = = = = = = = = = = = = = = = =	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.3	ug/l	
		Matrix Spike % Rec.	63.4	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	6.0	ug/l	
		MSD % Recovery	60.4	%	
		MSD Range	3.0	units	
		MS Duplicate RPD	4.8	%	0-30
		ine Euphodie Ni B	4.0	, ,	0 00

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page	15 of 25
QC Batch Number:	GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
8B50006					
	Diethyl Ether	Sample Amount	<2.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	10.3	ug/l	
		Matrix Spike % Rec.	103.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	11.1	ug/l	
		MSD % Recovery	111.5	%	
		MSD Range	8.5	units	
		MS Duplicate RPD	7.9	%	0-30
	Bromodichloromethane	Sample Amount	<1.0	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.5	ug/l	
		Matrix Spike % Rec.	95.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	10.4	ug/l	
		MSD % Recovery	104.5	%	
		MSD Range	9.5	units	
		MS Duplicate RPD	9.5	%	0-30
	1,2-Dichloroethane-d4	Surrogate Recovery	106.8	%	70-130
	Toluene-d8	Surrogate Recovery	100.3	%	70-130
	Bromofluorobenzene	Surrogate Recovery	88.3	%	70-130
	1,2-Dibromo-3-Chloropropane	Sample Amount	<5.0	ug/l	
	•	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	6.5	ug/l	
		Matrix Spike % Rec.	65.0	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	7.3	ug/l	
		MSD % Recovery	73.5	%	
		MSD Range	8.5	units	
		MS Duplicate RPD	12.2	%	0-30
	1,2-Dibromoethane	Sample Amount	<0.50	ug/l	
	,	Matrix Spk Amt Added	10.00	ug/l	
		MS Amt Measured	8.39	ug/l	
		Matrix Spike % Rec.	83.90	%	70-130
		MSD Amount Added	10.00	ug/l	
		MSD Amt Measured	9.13	ug/l	
		MSD % Recovery	91.30	%	
		MSD Range	7.39	units	
		MS Duplicate RPD	8.44	%	0-30
	Tetrahydrofuran	Sample Amount	<10.0	ug/l	0 00
	. C. any arolanan	Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	9.4	ug/l	
		Matrix Spike % Rec.	94.3	wyn %	70-130
		iviatilix opike % Rec.	94.3	/0	10-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 16 of 25		
QC Batch Numb	er: GCMS/VOL-21190				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
08B50006					
	Tetrahydrofuran	MSD Amount Added	10.0	ug/l	
	·	MSD Amt Measured	9.0	ug/l	
		MSD % Recovery	90.4	%	
		MSD Range	3.8	units	
		MS Duplicate RPD	4.2	%	0-30
	tert-Butyl Alcohol	Sample Amount	<20.0	ug/l	
		Matrix Spk Amt Added	100.0	ug/l	
		MS Amt Measured	27.4	ug/l	
		Matrix Spike % Rec.	27.4	%	70-130
		MSD Amount Added	100.0	ug/l	
		MSD Amt Measured	28.1	ug/l	
		MSD % Recovery	28.1	%	
		MSD Range	0.6	units	
		MS Duplicate RPD	2.4	%	0-30
	Diisopropyl Ether	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	8.4	ug/l	
		Matrix Spike % Rec.	84.9	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	9.2	ug/l	
		MSD % Recovery	92.2	%	
		MSD Range	7.3	units	
		MS Duplicate RPD	8.2	%	0-30
	tert-Butylethyl Ether	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	5.1	ug/l	
		Matrix Spike % Rec.	51.7	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	5.7	ug/l	
		MSD % Recovery	57.6	%	
		MSD Range	5.8	units	
		MS Duplicate RPD	10.7	%	0-30
	tert-Amylmethyl Ether	Sample Amount	<0.5	ug/l	
		Matrix Spk Amt Added	10.0	ug/l	
		MS Amt Measured	5.5	ug/l	
		Matrix Spike % Rec.	55.3	%	70-130
		MSD Amount Added	10.0	ug/l	
		MSD Amt Measured	6.0	ug/l	
		MSD % Recovery	60.4	%	
		MSD Range	5.1	units	
		MS Duplicate RPD	8.8	%	0-30
08B50007					
	1,2-Dichloroethane-d4	Surrogate Recovery	103.1	%	70-130

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008 L	ims Bat #: LIMT-22130		Page 17 of 25							
QC Batch Number:	GCMS/VOL-21190										
Sample Id	Analysis	QC Analysis	Values	Units	Limits						
08B50007											
	Toluene-d8	Surrogate Recovery	100.0	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	91.0	%	70-130						
08B50008											
	1,2-Dichloroethane-d4	Surrogate Recovery	109.2	%	70-130						
	Toluene-d8	Surrogate Recovery	100.8	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	90.9	%	70-130						
08B50009											
	1,2-Dichloroethane-d4	Surrogate Recovery	104.6	%	70-130						
	Toluene-d8	Surrogate Recovery	101.0	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	89.3	%	70-130						
08B50010											
	1,2-Dichloroethane-d4	Surrogate Recovery	108.7	%	70-130						
	Toluene-d8	Surrogate Recovery	101.8	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	91.0	%	70-130						
08B50011											
	1,2-Dichloroethane-d4	Surrogate Recovery	105.6	%	70-130						
	Toluene-d8	Surrogate Recovery	102.1	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	89.2	%	70-130						
08B50012											
	1,2-Dichloroethane-d4	Surrogate Recovery	110.1	%	70-130						
	Toluene-d8	Surrogate Recovery	100.1	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	91.5	%	70-130						
08B50013											
	1,2-Dichloroethane-d4	Surrogate Recovery	105.6	%	70-130						
	Toluene-d8	Surrogate Recovery	99.6	%	70-130						
	Bromofluorobenzene	Surrogate Recovery	90.6	%	70-130						
BLANK-127963											
	Acetone	Blank	<50.0	ug/l							
	Benzene	Blank	<1.0	ug/l							
	Carbon Tetrachloride	Blank	<1.0	ug/l							
	Chloroform	Blank	2.3	ug/l							
	1,2-Dichloroethane	Blank	<1.0	ug/l							
	1,4-Dichlorobenzene	Blank	<1.0	ug/l							
	Ethyl Benzene	Blank	<1.0	ug/l							
	2-Butanone (MEK)	Blank	<20.0	ug/l							
	MIBK	Blank	<10.0	ug/l							
	Naphthalene	Blank	<7.0	ug/l							
	Styrene	Blank	<1.0	ug/l							
	Tetrachloroethylene	Blank	<1.0	ug/l							
	Toluene	Blank	<1.0	ug/l							
	1,1,1-Trichloroethane	Blank	<1.0	ug/l							
	Trichloroethylene	Blank	<1.0	ug/l							
	1,1,2-Trichloro-1,2,2-Trifluoroetha	ane Blank	<1.0	ug/l							

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

	Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 18 of 25							
BLANK-127963 Trichlorofluoromethane Blank <2.0 ug/l	QC Batch Numb	er: GCMS/VOL-21190									
Trichlorofluoromethane Blank <2.0 ug/l o-Xylene Blank <1.0 ug/l m + p Xylene Blank <2.0 ug/l 1,2-Dichlorobenzene Blank <1.0 ug/l 1,3-Dichloroethylene Blank <1.0 ug/l 1,1-Dichloroethylene Blank <1.0 ug/l 1,1-Dichloroethylene Blank <50 ug/l 1,1-Dichloroethylene Blank <1.0 ug/l MTBE Blank <1.0 ug/l Vinyl Chlorde Blank <2.0 ug/l Methylene Chloride Blank <5.0 ug/l Chlorobarcene Blank <5.0 ug/l Chloromethane Blank <2.0 ug/l Chloromethane Blank <2.0 ug/l Chlorodibromomethane Blank <2.0 ug/l Chlorodibromomethane Blank <0.5 ug/l Chlorodibromomethane Blank <0.5 ug/l	Sample Id	Analysis	QC Analysis	Values	Units	Limits					
o-Xylene Blank 4.20 ug/l m + p Xylene Blank 4.20 ug/l 1,2-Dichlorobenzene Blank 4.10 ug/l 1,3-Dichlorobenzene Blank 4.10 ug/l 1,1-Dichlorobethylene Blank 4.10 ug/l 1,4-Dioxane Blank 4.00 ug/l MTBE Blank 4.10 ug/l MTBE Blank 4.10 ug/l Vinyl Chloride Blank 4.20 ug/l Vinyl Chloride Blank 4.20 ug/l Vinyl Chloride Blank 4.20 ug/l Chlorobenzene Blank 4.20 ug/l Chlorodbromethane Blank 4.0 ug/l 1,1,2-Tichlorobenzene	BLANK-127963										
m + p Xylene Blank <2.0		Trichlorofluoromethane	Blank	<2.0	ug/l						
1,2-Dichlorobenzene		o-Xylene	Blank	<1.0	ug/l						
1,3-Dichlorobethane		m + p Xylene	Blank	<2.0	ug/l						
1,1-Dichloroethylene Blank <1,0		1,2-Dichlorobenzene	Blank	<1.0	ug/l						
1,1-Dichloroethylene Blank <1.0		1,3-Dichlorobenzene	Blank	<1.0	ug/l						
1,4-Dioxane		1,1-Dichloroethane	Blank	<1.0	ug/l						
MTBE Blank <1.0 ug/l trans-1,2-Dichloroethylene Blank <1.0		1,1-Dichloroethylene	Blank	<1.0	ug/l						
trans-1,2-Dichloroethylene Blank <1.0		1,4-Dioxane	Blank	<50.0	ug/l						
Vinyl Chloride Blank <2.0 ug/l Methylene Chloride Blank <5.0		MTBE	Blank	<1.0	ug/l						
Methylene Chloride Blank <5.0		trans-1,2-Dichloroethylene	Blank	<1.0	ug/l						
Chlorobenzene Blank <1.0 ug/l Chloromethane Blank <2.0		Vinyl Chloride	Blank	<2.0	ug/l						
Chloromethane Blank <2.0 ug/l Bromomethane Blank <2.0		Methylene Chloride	Blank	<5.0	ug/l						
Bromomethane Blank <2.0 ug/l Chloroethane Blank <2.0		Chlorobenzene	Blank	<1.0	ug/l						
Chloroethane Blank <2.0 ug/l cis-1,3-Dichloropropene Blank <1.0		Chloromethane	Blank	<2.0	ug/l						
cis-1,3-Dichloropropene Blank <1.0 ug/l trans-1,3-Dichloropropene Blank <0.5 ug/l Chlorodibromomethane Blank <0.5 ug/l 1,1,2-Trichloroethane Blank <1.0 ug/l Bromoform Blank <4.0 ug/l 1,1,2-Tetrachloroethane Blank <4.0 ug/l 1,1,2,2-Tetrachloroethane Blank <4.0 ug/l 1,1,2,2-Tetrachloroethane Blank <4.0 ug/l 2-Chlorotoluene Blank <4.0 ug/l Hexachlorobutadiene Blank <4.0 ug/l Blank 43.0 ug/l Blank 43.0 ug/l Isopropylbenzene Blank 41.0 ug/l p-Isopropyltoluene Blank 41.0 ug/l n-Propylbenzene Blank 41.0 ug/l sec-Butylbenzene Blank 41.0 ug/l sec-Butylbenzene Blank 41.0 ug/l 1,2,3-Trichlorobenzene Blank 40.0 ug/l 1,2,4-Trimethylbenzene Blank 40.0 ug/l 1,2,4-Trimethylbenzene Blank 41.0 ug/l 1,3,5-Trimethylbenzene Blank 41.0 ug/l Dibromomethane Blank 41.0 ug/l 1,3,5-Trimethylbenzene Blank 41.0 ug/l 1,1-Dichloropropane Blank 41.0 ug/l 1,2-Dichloropropane Blank 41.0 ug/l 1,2-Dichloropropane Blank 41.0 ug/l 1,2-Dichloropropane Blank 41.0 ug/l 1,3-Dichloropropane Blank 42.0 ug/l 1,3-Dichloropropane Blank 43.0 ug/l 1,4-Dichloropropane Blank 43.0 ug/l 1,5-Dichloropropane Blank 43.0 ug/l 1,5-Dichloropropane Blank 43.0 ug/l 1,5-Dichloropropane Blank 43.0 ug/l 1,5-		Bromomethane	Blank	<2.0	ug/l						
trans-1,3-Dichloropropene Chlorodibromomethane Blank Chlorodibromomethane Blank Chlorodibromomethane Blank Chlorodibromomethane Blank Chloroform Blank Chloroform Blank Chloroform Blank Chloroform Blank Chloroform Blank Chloroform Blank Chloroform Blank Chlorofoluene Blank Chlorofoluene Blank Chlorofoluene Blank Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloropylbenzene Chloro		Chloroethane	Blank	<2.0	ug/l						
Chlorodibromomethane Blank <0.5 ug/l 1,1,2-Trichloroethane Blank <1.0		cis-1,3-Dichloropropene	Blank	<1.0	ug/l						
1,1,2-Trichloroethane Blank \$\ 4.0 ug/l		trans-1,3-Dichloropropene	Blank	<0.5	ug/l						
Bromoform Blank		Chlorodibromomethane	Blank	<0.5	ug/l						
1,1,2,2-Tetrachloroethane Blank <0.5		1,1,2-Trichloroethane	Blank	<1.0	ug/l						
2-Chlorotoluene Blank <1.0		Bromoform	Blank	<4.0	ug/l						
Hexachlorobutadiene Blank <3.0 ug/l lsopropylbenzene Blank <1.0 ug/l p-lsopropyltoluene Blank <1.0 ug/l n-Propylbenzene Blank <1.0 ug/l sec-Butylbenzene Blank <1.0 ug/l sec-Butylbenzene Blank <1.0 ug/l ltert-Butylbenzene Blank <1.0 ug/l ltert-Trichlorobenzene Blank <1.0 ug/l ltert-Trichlorobenzene Blank <1.0 ug/l ltert-Trimethylbenzene Blank <1.0 ug/l ltert-Blank ltert-Blank <1.0 ug/l ltert-Blank <1.0 ug/l ltert-Blank ltert-Blank <1.0 ug/l ltert-Blank lter		1,1,2,2-Tetrachloroethane	Blank	<0.5	ug/l						
Isopropylbenzene Blank <1.0 ug/l p-Isopropyltoluene Blank <1.0 ug/l n-Propylbenzene Blank <1.0 ug/l sec-Butylbenzene Blank <1.0 ug/l sec-Butylbenzene Blank <1.0 ug/l tert-Butylbenzene Blank <1.0 ug/l 1,2,3-Trichlorobenzene Blank <6.0 ug/l 1,2,4-Trichlorobenzene Blank <4.0 ug/l 1,2,4-Trimethylbenzene Blank <1.0 ug/l 1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,1-1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <1.0 ug/l		2-Chlorotoluene	Blank	<1.0	ug/l						
p-Isopropyltoluene Blank		Hexachlorobutadiene	Blank	<3.0	ug/l						
n-Propylbenzene Blank <1.0 ug/l sec-Butylbenzene Blank <1.0 ug/l tert-Butylbenzene Blank <1.0 ug/l 1,2,3-Trichlorobenzene Blank <6.0 ug/l 1,2,4-Trichlorobenzene Blank <4.0 ug/l 1,2,4-Trimethylbenzene Blank <1.0 ug/l 1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Tetrachloroethane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		Isopropylbenzene	Blank	<1.0	ug/l						
sec-Butylbenzene Blank <1.0 ug/l tert-Butylbenzene Blank <1.0		p-Isopropyltoluene	Blank	<1.0	ug/l						
tert-Butylbenzene Blank <1.0 ug/l 1,2,3-Trichlorobenzene Blank <6.0 ug/l 1,2,4-Trichlorobenzene Blank <4.0 ug/l 1,2,4-Trimethylbenzene Blank <1.0 ug/l 1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l Cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropene Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l		n-Propylbenzene	Blank	<1.0	ug/l						
1,2,3-Trichlorobenzene Blank <6.0 ug/l 1,2,4-Trimethylbenzene Blank <4.0 ug/l 1,2,4-Trimethylbenzene Blank <1.0 ug/l 1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <1.0 ug/l 1,2-Dichloropropane Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 1,3-Tetrachloroethane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		sec-Butylbenzene	Blank	<1.0	ug/l						
1,2,4-TrichlorobenzeneBlank<4.0		tert-Butylbenzene	Blank	<1.0	ug/l						
1,2,4-Trimethylbenzene Blank <1.0 ug/l 1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 2,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <0.5 ug/l 2,2-Dichloropropane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		1,2,3-Trichlorobenzene	Blank	<6.0	ug/l						
1,3,5-Trimethylbenzene Blank <1.0 ug/l Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 2,2-Dichloropropane Blank <0.5 ug/l 2,2-Dichloropropane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		1,2,4-Trichlorobenzene	Blank	<4.0	ug/l						
Dibromomethane Blank <1.0 ug/l cis-1,2-Dichloroethylene Blank <1.0 ug/l 4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <1.0 ug/l 2,2-Dichloropropane Blank <0.5 ug/l 2,2-Dichloropropane Blank <1.0 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		1,2,4-Trimethylbenzene	Blank	<1.0	ug/l						
cis-1,2-Dichloroethylene 4-Chlorotoluene Blank 4-Chlorotoluene Blank 4-Chlorotoluene Blank 4-Chloropropene Blank 4-2.0 ug/l 1,2-Dichloropropane Blank 4-0 ug/l 1,3-Dichloropropane Blank 4-0 ug/l 2,2-Dichloropropane Blank 4-0 ug/l 2,2-Dichloropropane Blank 4-0 ug/l 1,1,1,2-Tetrachloroethane Blank 4-0 ug/l 1,2,3-Trichloropropane Blank 4-0 ug/l 4-0 ug/l 4-0 ug/l 4-0 ug/l 4-0 ug/l 4-0 ug/l 4-0 ug/l		1,3,5-Trimethylbenzene	Blank	<1.0	ug/l						
4-Chlorotoluene Blank <1.0 ug/l 1,1-Dichloropropene Blank <2.0 ug/l 1,2-Dichloropropane Blank <1.0 ug/l 1,3-Dichloropropane Blank <0.5 ug/l 2,2-Dichloropropane Blank <0.5 ug/l 1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		Dibromomethane	Blank	<1.0	ug/l						
1,1-DichloropropeneBlank<2.0		cis-1,2-Dichloroethylene	Blank	<1.0	ug/l						
1,2-DichloropropaneBlank<1.0ug/l1,3-DichloropropaneBlank<0.5		4-Chlorotoluene	Blank	<1.0	ug/l						
1,3-DichloropropaneBlank<0.5ug/l2,2-DichloropropaneBlank<1.0		1,1-Dichloropropene	Blank	<2.0	ug/l						
2,2-DichloropropaneBlank<1.0ug/l1,1,1,2-TetrachloroethaneBlank<1.0		1,2-Dichloropropane	Blank	<1.0	ug/l						
1,1,1,2-Tetrachloroethane Blank <1.0 ug/l 1,2,3-Trichloropropane Blank <2.0 ug/l		1,3-Dichloropropane	Blank	<0.5	ug/l						
1,2,3-Trichloropropane Blank <2.0 ug/l		2,2-Dichloropropane	Blank	<1.0	ug/l						
·		1,1,1,2-Tetrachloroethane	Blank	<1.0	ug/l						
n-Butylbenzene Blank <1.0 ug/l		1,2,3-Trichloropropane	Blank	<2.0	ug/l						
		n-Butylbenzene	Blank	<1.0	ug/l						

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 19 of 25								
QC Batch Number	r: GCMS/VOL-21190										
Sample Id	Analysis	QC Analysis	Values	Units	Limits						
BLANK-127963											
	Dichlorodifluoromethane	Blank	<2.0	ug/l							
	Bromochloromethane	Blank	<1.0	ug/l							
	Bromobenzene	Blank	<1.0	ug/l							
	Acrylonitrile	Blank	<5.0	ug/l							
	Carbon Disulfide	Blank	<3.0	ug/l							
	2-Hexanone	Blank	<10.0	ug/l							
	trans-1,4-Dichloro-2-Butene	Blank	<2.0	ug/l							
	Diethyl Ether	Blank	<2.0	ug/l							
	Bromodichloromethane	Blank	<1.0	ug/l							
	1,2-Dibromo-3-Chloropropane	Blank	<5.0	ug/l							
	1,2-Dibromoethane	Blank	<0.50	ug/l							
	Tetrahydrofuran	Blank	<10.0	ug/l							
	tert-Butyl Alcohol	Blank	<20.0	ug/l							
	Diisopropyl Ether	Blank	<0.5	ug/l							
	tert-Butylethyl Ether	Blank	<0.5	ug/l							
LEDI ANIK DODGO	tert-Amylmethyl Ether	Blank	<0.5	ug/l							
LFBLANK-89963	A	Lab Fant Blands Annt	100.0								
	Acetone	Lab Fort Blank Amt.	100.0	ug/l							
		Lab Fort Blk. Found	65.7	ug/l	70.400						
	Danasa	Lab Fort Black Age	65.7	%	70-160						
	Benzene	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found Lab Fort Blk. % Rec.	11.0 110.6	ug/l %	70-130						
	Carbon Tetrachloride	Lab Fort Blank Amt.	10.0		70-130						
	Carbon retractilonde	Lab Fort Blk. Found	6.3	ug/l							
		Lab Fort Blk. % Rec.	63.9	ug/l %	70-130						
	Chloroform	Lab Fort Blank Amt.	10.0		70-130						
	Chiorotomi	Lab Fort Blk. Found	10.9	ug/l							
		Lab Fort Blk. % Rec.	109.1	ug/l %	70-130						
	1,2-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l	70-130						
	1,2-Dichiologularie	Lab Fort Blk. Found	10.4	ug/l							
		Lab Fort Blk. % Rec.	104.1	ug/i %	70-130						
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l	70-130						
	1,4-Dichiolobenzene	Lab Fort Blk. Found	10.0	ug/l							
		Lab Fort Blk. % Rec.	100.9	w	70-130						
	Ethyl Benzene	Lab Fort Blank Amt.	10.0	ug/l	70-130						
	Litty Benzene	Lab Fort Blank Ann.	10.3	ug/l							
		Lab Fort Blk. % Rec.	103.1	ug/i %	70-130						
	2-Butanone (MEK)	Lab Fort Blank Amt.	100.0	70 ug/l	70-130						
	2-Dutatione (MEN)	Lab Fort Blk. Found	78.5	ug/l ug/l							
		Lab Fort Blk. % Rec.	78.5 78.5	ug/i %	40-160						
	MIDK				40-100						
	MIBK	Lab Fort Blank Amt. Lab Fort Blk. Found	100.0 81.6	ug/l							
		LAD FUIL DIK. FUUIIU	01.0	ug/l							

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008 Lim	s Bat #: LIMT-22130	Page 20 of 25							
QC Batch Number:	GCMS/VOL-21190									
Sample Id	Analysis	QC Analysis	Values	Units	Limits					
FBLANK-89963										
	MIBK	Lab Fort Blk. % Rec.	81.6	%	70-160					
	Naphthalene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.6	ug/l						
		Lab Fort Blk. % Rec.	86.8	%	40-130					
	Styrene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.1	ug/l						
		Lab Fort Blk. % Rec.	101.1	%	70-130					
	Tetrachloroethylene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.2	ug/l						
		Lab Fort Blk. % Rec.	102.3	%	70-160					
	Toluene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.1	ug/l						
		Lab Fort Blk. % Rec.	101.6	%	70-130					
	1,1,1-Trichloroethane	Lab Fort Blank Amt.	10.0	ug/l						
	, ,	Lab Fort Blk. Found	6.4	ug/l						
		Lab Fort Blk. % Rec.	64.6	%	70-130					
	Trichloroethylene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.6	ug/l						
		Lab Fort Blk. % Rec.	86.7	%	70-130					
	1,1,2-Trichloro-1,2,2-Trifluoroethan		10.0	ug/l						
	1,1,2 1110111010 1,2,2 1111110100111011	Lab Fort Blk. Found	9.9	ug/l						
		Lab Fort Blk. % Rec.	99.5	%	70-130					
	Trichlorofluoromethane	Lab Fort Blank Amt.	10.0	ug/l	70 100					
	memorenaciemana	Lab Fort Blk. Found	9.4	ug/l						
		Lab Fort Blk. % Rec.	94.3	%	70-130					
	o-Xylene	Lab Fort Blank Amt.	10.0	ug/l	70-130					
	0-Xylcric	Lab Fort Blk. Found	9.9	ug/l						
		Lab Fort Blk. % Rec.	99.3	w %	70-130					
	m + n Yylono	Lab Fort Blank Amt.	20.0		70-130					
	m + p Xylene	Lab Fort Blk. Found		ug/l						
		Lab Fort Blk. % Rec.	20.4 102.0	ug/l %	70-130					
	1.2 Diablarahanzana				70-130					
	1,2-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.8	ug/l	70 120					
	4.2 Diablaraharrana	Lab Fort Blk. % Rec.	108.4	%	70-130					
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.4	ug/l	70 400					
	4.4 Diablamanthas	Lab Fort Blk. % Rec.	104.9	%	70-130					
	1,1-Dichloroethane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.5	ug/l	70.400					
	5	Lab Fort Blk. % Rec.	105.5	%	70-130					
	1,1-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	9.7	ug/l	_,					
		Lab Fort Blk. % Rec.	97.8	%	70-130					

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-221	30	Page 21 of 25							
QC Batch Number	: GCMS/VOL-21190										
Sample Id	Analysis	QC Analysis	Values	Units	Limits						
QC Batch Number											
	1,4-Dioxane	Lab Fort Blan	k Amt. 100.0	ug/l							
		Lab Fort Blk.	Found 23.4	ug/l							
		Lab Fort Blk.	% Rec. 23.4	%	40-130						
	MTBE	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk. I	Found 8.5	ug/l							
		Lab Fort Blk.	% Rec. 85.4	%	70-130						
	trans-1,2-Dichloroethylene	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.	Found 10.7	ug/l							
		Lab Fort Blk.	% Rec. 107.3	%	70-130						
	Vinyl Chloride	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.	Found 9.5	ug/l							
		Lab Fort Blk.	% Rec. 95.8	%	40-160						
	Methylene Chloride	Lab Fort Blan	k Amt. 10.0	ug/l							
	-	Lab Fort Blk.	Found 8.7	ug/l							
		Lab Fort Blk.	% Rec. 87.2	%	70-130						
	Chlorobenzene	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.	Found 10.4	ug/l							
		Lab Fort Blk.	% Rec. 104.8	%	70-130						
	Chloromethane	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.		ug/l							
		Lab Fort Blk.	% Rec. 78.7	%	40-160						
	Bromomethane	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.	Found 4.9	ug/l							
		Lab Fort Blk.	% Rec. 49.0	%	40-160						
	Chloroethane	Lab Fort Blan	k Amt. 10.0	ug/l							
		Lab Fort Blk.	Found 9.8	ug/l							
		Lab Fort Blk.		%	70-130						
	cis-1,3-Dichloropropene	Lab Fort Blan		ug/l							
		Lab Fort Blk.		ug/l							
		Lab Fort Blk.		%	70-130						
	trans-1,3-Dichloropropene	Lab Fort Blan		ug/l							
	,, ,, ,,	Lab Fort Blk.		ug/l							
		Lab Fort Blk.		%	70-130						
	Chlorodibromomethane	Lab Fort Blan		ug/l							
		Lab Fort Blk.		ug/l							
		Lab Fort Blk.		%	70-130						
	1,1,2-Trichloroethane	Lab Fort Blan		ug/l							
	.,.,=	Lab Fort Blk.		ug/l							
		Lab Fort Blk.		%	70-130						
	Bromoform	Lab Fort Blan		ug/l	. 5 100						
	2.3	Lab Fort Blk.		ug/l							
		Lab Fort Blk.		%	70-130						
	1,1,2,2-Tetrachloroethane	Lab Fort Blan		ug/l	70 100						
	1,1,2,2 10000000000000000000000000000000	Lab i dit biani	10.0	49,1							

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 22 of 25							
QC Batch Number	r: GCMS/VOL-21190									
Sample Id	Analysis	QC Analysis	Values	Units	Limits					
LFBLANK-89963										
	1,1,2,2-Tetrachloroethane	Lab Fort Blk. Found	10.6	ug/l						
		Lab Fort Blk. % Rec.	106.8	%	70-130					
	2-Chlorotoluene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.0	ug/l						
		Lab Fort Blk. % Rec.	100.1	%	70-130					
	Hexachlorobutadiene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.7	ug/l						
		Lab Fort Blk. % Rec.	87.3	%	70-130					
	Isopropylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	11.3	ug/l						
		Lab Fort Blk. % Rec.	113.7	%	70-130					
	p-Isopropyltoluene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.2	ug/l						
		Lab Fort Blk. % Rec.	102.7	%	70-130					
	n-Propylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.1	ug/l						
		Lab Fort Blk. % Rec.	101.1	%	70-130					
	sec-Butylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.5	ug/l						
		Lab Fort Blk. % Rec.	105.1	%	70-130					
	tert-Butylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.2	ug/l						
		Lab Fort Blk. % Rec.	102.3	%	70-130					
	1,2,3-Trichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.8	ug/l						
		Lab Fort Blk. % Rec.	88.7	%	70-130					
	1,2,4-Trichlorobenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	7.8	ug/l						
		Lab Fort Blk. % Rec.	78.0	%	70-130					
	1,2,4-Trimethylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.6	ug/l						
		Lab Fort Blk. % Rec.	106.7	%	70-130					
	1,3,5-Trimethylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.1	ug/l						
		Lab Fort Blk. % Rec.	101.3	%	70-130					
	Dibromomethane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.4	ug/l						
		Lab Fort Blk. % Rec.	104.3	%	70-130					
	cis-1,2-Dichloroethylene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.0	ug/l						
		Lab Fort Blk. % Rec.	100.1	%	70-130					
	4-Chlorotoluene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	9.8	ug/l						

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130	Page 23 of 25							
QC Batch Number	r: GCMS/VOL-21190									
Sample Id	Analysis	QC Analysis	Values	Units	Limits					
LFBLANK-89963										
	4-Chlorotoluene	Lab Fort Blk. % Rec.	98.5	%	70-130					
	1,1-Dichloropropene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.4	ug/l						
		Lab Fort Blk. % Rec.	104.5	%	70-130					
	1,2-Dichloropropane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.4	ug/l						
		Lab Fort Blk. % Rec.	104.4	%	70-130					
	1,3-Dichloropropane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.4	ug/l						
		Lab Fort Blk. % Rec.	104.1	%	70-130					
	2,2-Dichloropropane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	2.9	ug/l						
		Lab Fort Blk. % Rec.	29.1	%	40-130					
	1,1,1,2-Tetrachloroethane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	7.3	ug/l						
		Lab Fort Blk. % Rec.	73.4	%	70-130					
	1,2,3-Trichloropropane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	9.2	ug/l						
		Lab Fort Blk. % Rec.	92.3	%	70-130					
	n-Butylbenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	9.4	ug/l						
		Lab Fort Blk. % Rec.	94.5	%	70-130					
	Dichlorodifluoromethane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	9.5	ug/l						
		Lab Fort Blk. % Rec.	95.0	%	40-160					
	Bromochloromethane	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.6	ug/l						
		Lab Fort Blk. % Rec.	86.7	%	70-130					
	Bromobenzene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.6	ug/l						
		Lab Fort Blk. % Rec.	106.2	%	70-130					
	Acrylonitrile	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	8.1	ug/l						
		Lab Fort Blk. % Rec.	81.4	%	70-130					
	Carbon Disulfide	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	10.0	ug/l						
		Lab Fort Blk. % Rec.	100.9	%	70-130					
	2-Hexanone	Lab Fort Blank Amt.	100.0	ug/l						
		Lab Fort Blk. Found	73.3	ug/l						
		Lab Fort Blk. % Rec.	73.3	%	70-160					
	trans-1,4-Dichloro-2-Butene	Lab Fort Blank Amt.	10.0	ug/l						
		Lab Fort Blk. Found	5.7	ug/l						
		Lab Fort Blk. % Rec.	57.9	%	70-130					

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/26/2008	Lims Bat #: LIMT-22130		Page 24 of 25							
QC Batch Number:	GCMS/VOL-21190										
Sample Id	Analysis	QC Analysis	Values	Units	Limits						
LFBLANK-89963											
	Diethyl Ether	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	9.3	ug/l							
		Lab Fort Blk. % Rec.	93.2	%	70-130						
	Bromodichloromethane	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	9.1	ug/l							
		Lab Fort Blk. % Rec.	91.5	%	70-130						
	1,2-Dibromo-3-Chloropropane	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	6.2	ug/l							
		Lab Fort Blk. % Rec.	62.2	%	70-130						
	1,2-Dibromoethane	Lab Fort Blank Amt.	10.00	ug/l							
		Lab Fort Blk. Found	7.99	ug/l							
		Lab Fort Blk. % Rec.	79.90	%	70-130						
	Tetrahydrofuran	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	7.6	ug/l							
		Lab Fort Blk. % Rec.	76.1	%	70-130						
	tert-Butyl Alcohol	Lab Fort Blank Amt.	100.0	ug/l							
		Lab Fort Blk. Found	8.9	ug/l							
		Lab Fort Blk. % Rec.	8.9	%	40-160						
	Diisopropyl Ether	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	8.1	ug/l							
		Lab Fort Blk. % Rec.	81.4	%	70-130						
	tert-Butylethyl Ether	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	5.4	ug/l							
		Lab Fort Blk. % Rec.	54.6	%	70-160						
	tert-Amylmethyl Ether	Lab Fort Blank Amt.	10.0	ug/l							
		Lab Fort Blk. Found	5.9	ug/l							
		Lab Fort Blk. % Rec.	59.6	%	70-130						

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 12/26/2008 Lims Bat #: LIMT-22130 Page 25 of 25

QUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

QC BATCH NUMBER This is the number assigned to all samples analyzed together that

would be subject to comparison with a particular set of Quality

Control Data.

LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All

values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY

REPORT. Not all QC results will have Limits defined.

Sample Amount of analyte found in a sample.

Blank Method Blank that has been taken though all the steps of the

analysis.

LFBLANK Laboratory Fortified Blank (a control sample)

STDADD Standard Added (a laboratory control sample)

Matrix Spk Amt Added Amount of analyte spiked into a sample

MS Amt Measured Amount of analyte found including amount that was spiked

Matrix Spike % Rec. % Recovery of spiked amount in sample.

Duplicate Value The result from the Duplicate analysis of the sample.

Duplicate RPD The Relative Percent Difference between two Duplicate Analyses.

Surrogate Recovery The % Recovery for non-environmental compounds (surrogates)

spiked into samples to determine the performance of the

analytical methods.

Sur. Recovery (ELCD) Surrogate Recovery on the Electrolytic Conductivity Detector.

Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector.

Standard Measured Amount measured for a laboratory control sample Standard Amt Added Known value for a laboratory control sample

Standard % Recovery % recovered for a laboratory control sample with a known value.

Lab Fort Blank Amt
Laboratory Fortified Blank Amount Added
Lab Fort Blk. Found
Laboratory Fortified Blank Amount Found
Laboratory Fortified Blank % Recovered

Dup Lab Fort Bl Amt
Duplicate Laboratory Fortified Blank Amount Added
Dup Lab Fort Bl Fnd
Duplicate Laboratory Fortified Blank Amount Found
Dup Lab Fort Bl % Rec
Duplicate Laboratory Fortified Blank % Recovery

Lab Fort Blank Range Laboratory Fortified Blank Range (Absolute value of difference between recoveries for Lab Fortified Blank and Lab Fortified

Blank Duplicate).

Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate

MSD Amount Added Matrix Spike Duplicate Amount Added (Spiked)
MSD Amt Measured Matrix Spike Duplicate Amount Measured

MSD % Recovery Matrix Spike Duplicate % Recovery

MSD Range Absolute difference between Matrix Spike and Matrix Spike

Duplicate Recoveries

Accompanies of the control of the co	con-test°
	ANALYTICAL LABORATORY

Phone: 413-525-2332

CHAIN OF CUSTODY RECORD

39 SPRUCE ST, 2ND FLOOR

	Name: EGLOGY AND ENVIR 3655 FLEASANT VIEW	Fax: 413-525-6405 Email: info@contestlat	bs.com			ηt	171	30	EAST LONGMEADOW, MA 01028											
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		www.contestlabs.com	, CFRIN	C, FC				Legis	2		T		T	T				# of	contain	ərs
Company	Name: ECOLOGY AND ENVIR	JANENT ENGIN	Telephone	e:(7/6) <u>6</u>	84.	Muc)		44									**Pri	eservati	on
Address:	SUS FLEASMY VIEW	DR	Project #	2700	·DC	-1 1) [h	\vee									~Co	nt.Code	
	LANGASTER NY 1401	86	Client PO	#							ANA	LYSI	IS RE	QUE	STE	ED		37.000	nt. Cod mber gl	
Attention:	RICK WATT		DATA DE	LIVERY (c	heck o	ne):			J.,									G=g	estate data	188
Project Lo	cation: 13216 HT GUTDOOR	₹.	□FAX Fax#:	DEMAIL			LIENT		ू									(02/03/00)	lastic sterile	
Sampled By: KICKWATT/KIM POVELL			1						260									V_ V		
	The state of the state of the	White Laboration	Format:		O PD	=	☐ GIS I	KEY	Ď										umma c	an
Proposal	Provided? (For Billing purposes)	State Form Required?		OTHER			V		100								Name of the last	T =te	dlar baş	
☐ yes	proposal date	☐ yes ☐ no		ampled														0 =0	Other	
Field ID	Sample Description	Lab # 08B	Start Date/Time	Stop Date/Time	Comp- osite	Grab		Conc.	3	;										
m N	101		12-16-08			Х	GįW	Law	1										<u>Client</u> mmen	s:
MW	-02	50005	**************************************	1218		X	GW.	····è	V.								TO TO TO THE TOTAL THE TOT			
1511	<u> </u>	50000	Par op all manages and department of	1352		X	GW	(m)	V										0-03	
	-0 (f	50007	A dir allocations	143		X	GW)	"bararan									V	TPIZ	2
MIN	-05	50008	Negativo pre commensora.	1524		X	GW		V] M) 1 P	
Mil	_	50009	es e e pomoche de el esta	1555		X	GW	· ·	1							-				жимономономо
MIN	-07	50010	Artement in the second	0923		X	GW	States*	1,000							2000				e/IDCII/MAPAINAA
MW		SOOIL		1013		X	GW		أفي											
Laboratory	Comments:					V				ing codes on in Mat					specifi	ic san	nple ma	У		-
							 H - Hial	h: M - N	ledium	; L - Low;	C - Cle	ean: U		nown						.,,
Relinquishe	d by: (signature)	Date/Time:	Turnar	ound **	Dete	ction	Limit		CONTRACTOR AND ADDRESS.	Marie Committee of the		ix Coc			*Pres	servat	tion Co	des:	-	
O-3	and Matthews	12-1605/1700	1	7-Day	Regulat	ions?					GW=	ground	dwater	ŀ	= lce	d	X :	= Na hy	/droxide	- CONTRACTOR - CON
Received b	(Signature)	Date/Time: 1950	1	10-Day		. 1					1	waste			H = H(= Na thi	iosulfate	***************************************
<i>یا کر</i> Relinguishe	d by: (signature)	Date/Time:	RUS	Other	ata Er	ınanceı	nent Pro	oject/HC	,P? 🗆	YON		drinkin ir	ig wate			lethan itric A				
;	A Compression		<u>no.</u> □ *24-Hr □		Special	Requir	ements	or DL's:				A = air N = Nitric Acid S = soil/solid S = Sulfuric Acid								
Received b	y: (signature)	Date/Time:	Ö *72-Hr □		- 12 2 2 10.1							sludge		B = Sodium bisulfate						
			Į.	ab approval				·	,	O = otherO = Other								a) Company of the		

con-test°
ANALYTICAL LABORATORY

Phone: 413-525-2332

CHAIN OF CUSTODY RECORD

39 SPRUCE ST, 2ND FLOOR EAST LONGMEADOW, MA 01028

Fax: 413-525-6405 ANALYTICAL LABORATORY Email: info@contestlabs.com			1	M	1-	12/2	0,			EAST	r Lon	GMEA	DOW	, MA	0102	8	-		
1111		www.contestlabs.com	Jac CC	·					3		T							# of contains	ers
Company	Name: Eto LOGY AND ENVIROR	MENT ENGLYBER	Telephon	e:(716) _	354°	-806	<u> C</u>		3									**Preservatio	วท
Address:	368 PLEASANTVIEW		Project #	2-100 .	002	(10		Ÿ		ļ							~Cont.Code	denti-
	LANCASTER NY 14		Client PO	#							AN/	LYS	IS RE	EQU	EST	ED		-Cont. Code	
Attention:	RICKWATT		DATA DE	LIVERY (c	heck o	ne):	·· ····		0									A⊭amber gla G≒glass	53
Project L	ocation: BELGHT GLADOU	Ø ~	OFAX	DEMAIL	OWEB	SITE (•	3									Paplastic	
				error error					82									ST≘sterile	
Jampieu	BY: RICKWATT/KIME	Le Notation		J EXCEL			CI GIS	KEY	Name of Street, or other Designation of the last of th	ا ز	•		***************************************					V≃ vial S=summa cr	an
Proposal	Provided? (For Billing purposes)	State Form Required?	h	OTHER					(A									T=tedlar bag	
	proposal date	🗖 yes 🗇 no	Date S	ampled				**************************************	Š									o ⊨Other	
Field ID	Sample Description	Lab # ()&B	Start	Stop	Comp-		3	Conc.											
	 			Date/Time	osite	Grab	1	Code	-		-	-						Client	
MM-	08/Q	50612	12-16-08	1013		X	GW		V									Comment	<u>s:</u>
	2					-X.		Same	\$\\ "										
						X	1		648	S					~~~				
113	2-11/08	5000	12-16-08	07.30		Х	G.W		1										

					<u> </u>			 -	-		+								
								ļ	-		-			***************************************					
Laboratory	Comments:		<u> </u>	<u> </u>		<u> </u>	Ploace	nico the	follow	ing codes	to lot (minupasa.	wif o	2200		one my more on a	изэны и	
	COMMINATO.						be high	in con	central	ion in Mat	rix/Cor	ic. Co	de Box	waa C	speci	ne sar	прів та	ay I	
							H - Hig	jh; M - N	Aediun	ı; L - Low;	C - CI	ean; t	J - Unl	(nowl	,	,			
Relinquish	ed by: (signature)	Date/Time:	1	round **	f			Requi			*Mat	rix Co	de:		**Pre	serva	tion Co	odes:	
ļ	ov: (signature)	12-16-08/1700		7-Day	Regula	tions?		***************************************			1	groun			l = lc			= Na hydroxide	
Industried (лу. (ыунакиге)	Date/Time:		10-Day Other	Data F	nhance	ment D	roject/D/	OP2 F	JY ON	1	≃ waste .deblek			H == 1			= Na thiosulfate	,
Relinquish	ed by: (signature)	Date/Time:	-	ISH *	- Ala L	, , lai le	THOLK E	Oleculi	or: L	אום וו	A = a	drinkir ár	ng wat	C!	t	Methar Vitric A			
	5-71-2-1		☐ *24-Hr (Specia	l Requi	rements	or DL's	:		1	 ioil/soli	d		S = Sulfuric Acid				
Received t	oy: (signature)	Date/Time:	☐ *72-Hr (□ *4-Day							SĻ=	sludge	Э		B = 5	3odiun	n bisulfa	ate	
				lab approva	1						O = otherO = Other								

Home | About UPS | Contact UPS | Getting Started | Site Guide

Support

UPS Uni

Shipping

Tracking

Freight Locations

Log-in User ID:

Business Solutions Password:

Forgot Password

Tracking

Track Shipments

Track by Reference Track by E-mail Signature Tracking Import Tracking Numbers

Wireless Tracking Track with Quantum View Access Flex Global View Integrate Tracking Tools Void a Shipment &

Search Support

Enter a keyword:

Track Shipments

Track Packages & Freight Quantum View Flex Global View

Tracking Summary

Printer Friendl

Tracking Number:

J217 9514 500

→ View package progress

Type: Status: Package Delivered 🖾

Delivered On:

12/17/2008 9:50 A.M.

Delivered To:

EAST LONGMEADOW, MA, US

Signed By:

MURPHY

Service:

NEXT DAY AIR

Tracking results provided by UPS: 12/17/2008 10:22 A.M. ET

Printer Friendly []

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipme tendered by or for you to UPS for delivery and for no other purpose. Any other us tracking systems and information is strictly prohibited.

Home | Shipping | Tracking | Freight | Locations | Support | Business Solutions | About UPS | Contact UPS | Register | Manage E-mail Prefer Getting Started | Site Guide | Advanced Search | UPS Global | UPS Corporate

Copyright © 1994-2008 United Parcel Service of America, Inc. All rights reserved. Web Site Terms of Use | Privacy Policy | Trademarks | UPS Tariff/Terms and Conditions www.contestlabs.com

Sample Receipt Checklist

39 Spruce St.
East Longmeadow, MA.
01028
P: 413-525-2332

F: 413-525-6405

CLIENT NAME: COL	sy & Cau	RECEIVED BY	:_ <u> </u>	ATE: 12/17/58
1) Was the chain(s) of custody re 2) Does the chain agree with the If not, explain:	samples?	ned?	Yes No Yes No	
3) Are all the samples in good co If not, explain:	ndition?		TES NO	
4) How were the samples received On Ice Direct from Sa Were the samples received in Te	ampling mperature Complia	nce of (2-6°C)?	In Cooler(s)	Г И. г
Temperature °C by Temp blank		Temperature °(
5) Are there Dissolved samples for Who was notified6) Are there any samples "On Ho	Date	Time		tored where:
7) Are there any RUSH or SHORT		mples?	Yes No	
Who was notified		Time		
8) Location where samples are st	tored: 19 A	1		not already approved
		Cli	ent Signature:	
	ontainers s	ent in to C	on-Test	
	# of containers			# of containers
1 Liter Amber			8 oz clear jar	
		10,000,000,000		B 1
500 mL Amber			4 oz clear jar	
500 mL Amber 250 mL Amber (8oz amber)			4 oz clear jar 2 oz clear jar	
250 mL Amber (8oz amber)		(19) (84)	2 oz clear jar	
250 mL Amber (8oz amber) 1 Liter Plastic		(19) (84)	2 oz clear jar Other glass jar	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette Brass Sleeves	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette Brass Sleeves Tubes	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore	35	(19) (84)	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators	
250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle	# Methanol	PI	2 oz clear jar Other glass jar astic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators Other	7:

REPORT DATE 12/19/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2700.DC21

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-22131

JOB NUMBER: 2700.DC21

PROJECT LOCATION: BRIGHT OUTDOORS

FIELD SAMPLE#	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.
AS-20	08B50014	AIR	Not Specified	to-15 ppbv	
AS-20	08B50014	AIR	Not Specified	to-15 ug/m3	
AS-60	08B50015	AIR	Not Specified	to-15 ppbv	
AS-60	08B50015	AIR	Not Specified	to-15 ug/m3	

REPORT DATE 12/19/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2700.DC21

ANALYTICAL SUMMARY

LIMS BAT #:

LIMT-22131

JOB NUMBER: 2700.DC21

Comments:

LIMS BATCH NO.: LIMT-22131

CASE NARRATIVE

In method TO-15, any reported result for 1,2,4-Trimethylbenzene in sample is likely to be biased on the high side based on laboratory fortified blank recovery bias.

In method TO-15, method blank associated with sample contained acetone at 0.56 ppbv = 1.3 ug/m3, methylene chloride at 0.06 ppbv = 0.20 ug/m3, IPA at 0.03 ppbv = 0.08 ug/m3, 2-butanone at 0.06 ppbv = 0.19 ug/m3, 1,2,4-trichlorobenzene at 0.04 ppbv = 0.34 ug/m3 and hexachlorobutadiene at 0.02 ppbv = 0.27 ug/m3.

There are no (other) analytical issues that affect the usability of the data.

METHOD TO-15 - ADDITIONAL DETAILS

In method TO-15, data is not affected by laboratory fortified blank recovery outlier(s) for benzyl chloride since all results are "not detected" and recovery bias is on the high side.

All TO-15 samples were analyzed undiluted unless specified below:

Sample Dilution Compound(s) 08B50014 20X 1,1,1-trichloroethane, TCE

08B50015 most 20X toluene

The results of analyses performed are based on samples as submitted to the laboratory and relate only to the items collected and tested.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA 100033

AIHA ELLAP (LEAD) 100033

NORTH CAROLINA CERT. # 652

MASSACHUSETTS MA0100

NEW HAMPSHIRE NELAP 2516

NEW JERSEY NELAP NJ MA007 (AIR)

CONNECTICUT PH-0567

VERMONT DOH (LEAD) No. LL015036

NEW YORK ELAP/NELAP 10899

FLORIDA DOH E871027 (AIR)

RHODE ISLAND (LIC. No. 112)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Denson 12/19/08 SIGNATURE

Michael Erickson

Air Laboratory Manager Assistant Laboratory Director

Edward Denson

Daren Damboragian

Technical Director

Organics Department Supervisor

REPORT DATE 12/19/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER: PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2700.DC21

ANALYTICAL SUMMARY

LIMS BAT #: LIMT-22131 JOB NUMBER: 2700.DC21

^{*} See end of data tabulation for notes and comments pertaining to this sample

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 1 of 13 Purchase Order No.: LANCASTER, NY 14086 Project Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

Date Received: 12/17/2008 Field Sample #: AS-20

Job Number: 2700.DC21

LIMS-BAT #: LIMT-22131

Sample ID: 08B50014 **\$Sampled: 12/16/2008**

Not Specified

Sample Medium : SUMMA Sample Matrix: AIR

	Units	Results	Date	Analyst	RL	SPEC		P/F
			Analyzed			Lo	Hi	
Acetone	PPBv	1.8	12/18/08	TPH	0.10			
Benzene	PPBv	0.18	12/18/08	TPH	0.10			
Benzyl Chloride	PPBv	ND	12/18/08	TPH	0.10			
Bromodichloromethane	PPBv	ND	12/18/08	TPH	0.10			
Bromoform	PPBv	ND	12/18/08	TPH	0.10			
Bromomethane	PPBv	ND	12/18/08	TPH	0.10			
1,3-Butadiene	PPBv	ND	12/18/08	TPH	0.10			
2-Butanone (MEK)	PPBv	0.20	12/18/08	TPH	0.10			
Carbon Disulfide	PPBv	0.15	12/18/08	TPH	0.10			
Carbon Tetrachloride	PPBv	ND	12/18/08	TPH	0.10			
Chlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
Chlorodibromomethane	PPBv	ND	12/18/08	TPH	0.10			
Chloroethane	PPBv	ND	12/18/08	TPH	0.10			
Chloroform	PPBv	3.0	12/18/08	TPH	0.10			
Chloromethane	PPBv	0.29	12/18/08	TPH	0.10			
Cyclohexane	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dibromoethane	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,3-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,4-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
Dichlorodifluoromethane	PPBv	0.44	12/18/08	TPH	0.10			
1,1-Dichloroethane	PPBv	0.32	12/18/08	TPH	0.10			
1,2-Dichloroethane	PPBv	ND	12/18/08	TPH	0.10			
1,1-Dichloroethylene	PPBv	0.21	12/18/08	TPH	0.10			
cis-1,2-Dichloroethylene	PPBv	ND	12/18/08	TPH	0.10			
t-1,2-Dichloroethylene	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dichloropropane	PPBv	ND	12/18/08	TPH	0.10			
cis-1,3-Dichloropropene	PPBv	ND	12/18/08	TPH	0.10			
trans-1,3-Dichloropropene	PPBv	ND	12/18/08	TPH	0.10			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{# =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 2 of 13
LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21
Field Sample #: AS-20

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,2-Dichlorotetrafluoroethane (114)	PPBv	ND	12/18/08	TPH	0.10			
Ethanol	PPBv	2.2	12/18/08	TPH	0.10			
Ethyl Acetate	PPBv	ND	12/18/08	TPH	0.20			
Ethylbenzene	PPBv	ND	12/18/08	TPH	0.10			
4-Ethyl Toluene	PPBv	ND	12/18/08	TPH	0.10			
n-Heptane	PPBv	ND	12/18/08	TPH	0.10			
Hexachlorobutadiene	PPBv	ND	12/18/08	TPH	0.10			
Hexane	PPBv	0.28	12/18/08	TPH	0.10			
2-Hexanone	PPBv	ND	12/18/08	TPH	0.10			
Isopropanol	PPBv	0.61	12/18/08	TPH	0.10			
Methyl tert-Butyl Ether (MTBE)	PPBv	ND	12/18/08	TPH	0.10			
Methylene Chloride	PPBv	1.5	12/18/08	TPH	0.10			
4-Methyl-2-Pentanone (MIBK)	PPBv	ND	12/18/08	TPH	0.10			
Propene	PPBv	ND	12/18/08	TPH	0.10			
Styrene	PPBv	ND	12/18/08	TPH	0.10			
1,1,2,2-Tetrachloroethane	PPBv	ND	12/18/08	TPH	0.10			
Tetrachloroethylene	PPBv	5.1	12/18/08	TPH	0.10			
Tetrahydrofuran	PPBv	0.12	12/18/08	TPH	0.10			
Toluene	PPBv	3.0	12/18/08	TPH	0.10			
1,2,4-Trichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,1,1-Trichloroethane	PPBv	81	12/18/08	TPH	0.10			
1,1,2-Trichloroethane	PPBv	ND	12/18/08	TPH	0.10			
Trichloroethylene	PPBv	150	12/18/08	TPH	0.10			
Trichlorofluoromethane (Freon 11)	PPBv	0.43	12/18/08	TPH	0.10			
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	0.15	12/18/08	TPH	0.10			
1,2,4-Trimethylbenzene	PPBv	ND	12/18/08	TPH	0.10			
1,3,5-Trimethylbenzene	PPBv	ND	12/18/08	TPH	0.10			
Vinyl Acetate	PPBv	ND	12/18/08	TPH	0.10			
Vinyl Chloride	PPBv	ND	12/18/08	TPH	0.10			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 3 of 13

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21
Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21

Field Sample #: AS-20

Sample ID: 08B50014 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
m/p-Xylene	PPBv	ND	12/18/08	TPH	0.20			
o-Xvlene	PPBv	ND	12/18/08	TPH	0.10			

Analytical Method:

EPA TO-15

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 4 of 13 Purchase Order No.: LANCASTER, NY 14086 Project Number: 2700.DC21

> LIMS-BAT #: LIMT-22131 Job Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

Date Received: 12/17/2008

Field Sample #: AS-60

Sample ID: 08B50015 **\$Sampled: 12/16/2008**

Not Specified

Sample Medium : SUMMA Sample Matrix: AIR

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	PPBv	9.1	12/18/08	TPH	0.10			
Benzene	PPBv	0.24	12/18/08	TPH	0.10			
Benzyl Chloride	PPBv	ND	12/18/08	TPH	0.10			
Bromodichloromethane	PPBv	ND	12/18/08	TPH	0.10			
Bromoform	PPBv	ND	12/18/08	TPH	0.10			
Bromomethane	PPBv	ND	12/18/08	TPH	0.10			
1,3-Butadiene	PPBv	ND	12/18/08	TPH	0.10			
2-Butanone (MEK)	PPBv	0.92	12/18/08	TPH	0.10			
Carbon Disulfide	PPBv	ND	12/18/08	TPH	0.10			
Carbon Tetrachloride	PPBv	ND	12/18/08	TPH	0.10			
Chlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
Chlorodibromomethane	PPBv	ND	12/18/08	TPH	0.10			
Chloroethane	PPBv	ND	12/18/08	TPH	0.10			
Chloroform	PPBv	0.33	12/18/08	TPH	0.10			
Chloromethane	PPBv	0.70	12/18/08	TPH	0.10			
Cyclohexane	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dibromoethane	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,3-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,4-Dichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
Dichlorodifluoromethane	PPBv	0.32	12/18/08	TPH	0.10			
1,1-Dichloroethane	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dichloroethane	PPBv	ND	12/18/08	TPH	0.10			
1,1-Dichloroethylene	PPBv	ND	12/18/08	TPH	0.10			
cis-1,2-Dichloroethylene	PPBv	ND	12/18/08	TPH	0.10			
t-1,2-Dichloroethylene	PPBv	ND	12/18/08	TPH	0.10			
1,2-Dichloropropane	PPBv	ND	12/18/08	TPH	0.10			
cis-1,3-Dichloropropene	PPBv	ND	12/18/08	TPH	0.10			
trans-1,3-Dichloropropene	PPBv	ND	12/18/08	TPH	0.10			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008
368 PLEASANT VIEW Page 5 of 1

368 PLEASANT VIEW
Page 5 of 13
LANCASTER, NY 14086
Purchase Order No.:
Project Number: 2700 DC3

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21
Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21

Field Sample #: AS-60

Sample ID: 08B50015 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Li Lo	mit Hi	P/ F
1,2-Dichlorotetrafluoroethane (114)	PPBv	ND	12/18/08	TPH	0.10			
Ethanol	PPBv	3.8	12/18/08	TPH	0.10			
Ethyl Acetate	PPBv	ND	12/18/08	TPH	0.20			
Ethylbenzene	PPBv	0.32	12/18/08	TPH	0.10			
4-Ethyl Toluene	PPBv	ND	12/18/08	TPH	0.10			
n-Heptane	PPBv	ND	12/18/08	TPH	0.10			
Hexachlorobutadiene	PPBv	ND	12/18/08	TPH	0.10			
Hexane	PPBv	0.73	12/18/08	TPH	0.10			
2-Hexanone	PPBv	ND	12/18/08	TPH	0.10			
Isopropanol	PPBv	2.4	12/18/08	TPH	0.10			
Methyl tert-Butyl Ether (MTBE)	PPBv	ND	12/18/08	TPH	0.10			
Methylene Chloride	PPBv	3.8	12/18/08	TPH	0.10			
4-Methyl-2-Pentanone (MIBK)	PPBv	ND	12/18/08	TPH	0.10			
Propene	PPBv	1.0	12/18/08	TPH	0.10			
Styrene	PPBv	ND	12/18/08	TPH	0.10			
1,1,2,2-Tetrachloroethane	PPBv	ND	12/18/08	TPH	0.10			
Tetrachloroethylene	PPBv	0.27	12/18/08	TPH	0.10			
Tetrahydrofuran	PPBv	ND	12/18/08	TPH	0.10			
Toluene	PPBv	440	12/18/08	TPH	0.10			
1,2,4-Trichlorobenzene	PPBv	ND	12/18/08	TPH	0.10			
1,1,1-Trichloroethane	PPBv	4.3	12/18/08	TPH	0.10			
1,1,2-Trichloroethane	PPBv	ND	12/18/08	TPH	0.10			
Trichloroethylene	PPBv	38	12/18/08	TPH	0.10			
Trichlorofluoromethane (Freon 11)	PPBv	0.22	12/18/08	TPH	0.10			
1,1,2-Trichloro-1,2,2-Trifluoroethane	PPBv	ND	12/18/08	TPH	0.10			
1,2,4-Trimethylbenzene	PPBv	0.13	12/18/08	TPH	0.10			
1,3,5-Trimethylbenzene	PPBv	ND	12/18/08	TPH	0.10			
Vinyl Acetate	PPBv	ND	12/18/08	TPH	0.10			
Vinyl Chloride	PPBv	ND	12/18/08	TPH	0.10			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 6 of 13

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21
Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21

Field Sample #: AS-60

Sample ID: 08B50015 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/F
m/p-Xylene	PPBv	0.48	12/18/08	TPH	0.20			
o-Xylene	PPBv	0.19	12/18/08	TPH	0.10			

Analytical Method:

EPA TO-15

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 7 of 13 Purchase Order No.: LANCASTER, NY 14086 Project Number: 2700.DC21

> LIMS-BAT #: LIMT-22131 Job Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

Date Received: 12/17/2008

Field Sample #: AS-20

Sample ID: 08B50014 **\$Sampled: 12/16/2008**

Not Specified

Sample Medium : SUMMA Sample Matrix: AIR

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
Acetone	ug/m3	4.4	12/18/08	TPH	0.24			
Benzene	ug/m3	0.57	12/18/08	TPH	0.32			
Benzyl Chloride	ug/m3	ND	12/18/08	TPH	0.52			
Bromodichloromethane	ug/m3	ND	12/18/08	TPH	0.66			
Bromoform	ug/m3	ND	12/18/08	TPH	1.1			
Bromomethane	ug/m3	ND	12/18/08	TPH	0.38			
1,3-Butadiene	ug/m3	ND	12/18/08	TPH	0.22			
2-Butanone (MEK)	ug/m3	0.60	12/18/08	TPH	0.30			
Carbon Disulfide	ug/m3	0.47	12/18/08	TPH	0.32			
Carbon Tetrachloride	ug/m3	ND	12/18/08	TPH	0.62			
Chlorobenzene	ug/m3	ND	12/18/08	TPH	0.46			
Chlorodibromomethane	ug/m3	ND	12/18/08	TPH	0.86			
Chloroethane	ug/m3	ND	12/18/08	TPH	0.26			
Chloroform	ug/m3	14	12/18/08	TPH	0.48			
Chloromethane	ug/m3	0.61	12/18/08	TPH	0.20			
Cyclohexane	ug/m3	ND	12/18/08	TPH	0.34			
1,2-Dibromoethane	ug/m3	ND	12/18/08	TPH	0.76			
1,2-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60			
1,3-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60			
1,4-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60			
Dichlorodifluoromethane	ug/m3	2.2	12/18/08	TPH	0.50			
1,1-Dichloroethane	ug/m3	1.3	12/18/08	TPH	0.40			
1,2-Dichloroethane	ug/m3	ND	12/18/08	TPH	0.40			
1,1-Dichloroethylene	ug/m3	0.84	12/18/08	TPH	0.40			
cis-1,2-Dichloroethylene	ug/m3	ND	12/18/08	TPH	0.40			
t-1,2-Dichloroethylene	ug/m3	ND	12/18/08	TPH	0.40			
1,2-Dichloropropane	ug/m3	ND	12/18/08	TPH	0.46			
cis-1,3-Dichloropropene	ug/m3	ND	12/18/08	TPH	0.44			
trans-1,3-Dichloropropene	ug/m3	ND	12/18/08	TPH	0.44			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 8 of 13
LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21

LIMS-BAT #: LIMT-22131 Job Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

Date Received: 12/17/2008
Field Sample #: AS-20

Sample ID: 08B50014 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F
1,2-Dichlorotetrafluoroethane (114)	ug/m3	ND	12/18/08	TPH	0.70			
Ethanol	ug/m3	4.1	12/18/08	TPH	0.18			
Ethyl Acetate	ug/m3	ND	12/18/08	TPH	0.73			
Ethylbenzene	ug/m3	ND	12/18/08	TPH	0.44			
4-Ethyl Toluene	ug/m3	ND	12/18/08	TPH	0.50			
n-Heptane	ug/m3	ND	12/18/08	TPH	0.40			
Hexachlorobutadiene	ug/m3	ND	12/18/08	TPH	1.1			
Hexane	ug/m3	0.97	12/18/08	TPH	0.36			
2-Hexanone	ug/m3	ND	12/18/08	TPH	0.40			
Isopropanol	ug/m3	1.5	12/18/08	TPH	0.24			
Methyl tert-Butyl Ether (MTBE)	ug/m3	ND	12/18/08	TPH	0.36			
Methylene Chloride	ug/m3	5.1	12/18/08	TPH	0.34			
4-Methyl-2-Pentanone (MIBK)	ug/m3	ND	12/18/08	TPH	0.40			
Propene	ug/m3	ND	12/18/08	TPH	0.18			
Styrene	ug/m3	ND	12/18/08	TPH	0.42			
1,1,2,2-Tetrachloroethane	ug/m3	ND	12/18/08	TPH	0.68			
Tetrachloroethylene	ug/m3	34	12/18/08	TPH	0.68			
Tetrahydrofuran	ug/m3	0.34	12/18/08	TPH	0.30			
Toluene	ug/m3	11	12/18/08	TPH	0.38			
1,2,4-Trichlorobenzene	ug/m3	ND	12/18/08	TPH	0.74			
1,1,1-Trichloroethane	ug/m3	440	12/18/08	TPH	0.54			
1,1,2-Trichloroethane	ug/m3	ND	12/18/08	TPH	0.54			
Trichloroethylene	ug/m3	830	12/18/08	TPH	0.54			
Trichlorofluoromethane	ug/m3	2.4	12/18/08	TPH	0.56			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.2	12/18/08	TPH	0.76			
1,2,4-Trimethylbenzene	ug/m3	ND	12/18/08	TPH	0.50			
1,3,5-Trimethylbenzene	ug/m3	ND	12/18/08	TPH	0.50			
Vinyl Acetate	ug/m3	ND	12/18/08	TPH	0.36			
Vinyl Chloride	ug/m3	ND	12/18/08	TPH	0.26			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 9 of 13

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21
Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21

Field Sample #: AS-20

Sample ID: 08B50014 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F	
m/p-Xylene	ug/m3	ND	12/18/08	TPH	0.86				
o-Xvlene	ug/m3	ND	12/18/08	TPH	0.44				

Analytical Method:

EPA TO-15

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008 368 PLEASANT VIEW Page 10 of 13

Purchase Order No.: LANCASTER, NY 14086 Project Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

LIMS-BAT #: LIMT-22131 Job Number: 2700.DC21 Date Received: 12/17/2008

Field Sample #: AS-60

Sample ID: 08B50015 **\$Sampled: 12/16/2008**

Not Specified

Sample Medium : SUMMA Sample Matrix: AIR

	Units	Results	Date	Analyst	RL	SPEC Limit	P/F
			Analyzed			Lo Hi	
Acetone	ug/m3	22	12/18/08	TPH	0.24		
Benzene	ug/m3	0.77	12/18/08	TPH	0.32		
Benzyl Chloride	ug/m3	ND	12/18/08	TPH	0.52		
Bromodichloromethane	ug/m3	ND	12/18/08	TPH	0.66		
Bromoform	ug/m3	ND	12/18/08	TPH	1.1		
Bromomethane	ug/m3	ND	12/18/08	TPH	0.38		
1,3-Butadiene	ug/m3	ND	12/18/08	TPH	0.22		
2-Butanone (MEK)	ug/m3	2.7	12/18/08	TPH	0.30		
Carbon Disulfide	ug/m3	ND	12/18/08	TPH	0.32		
Carbon Tetrachloride	ug/m3	ND	12/18/08	TPH	0.62		
Chlorobenzene	ug/m3	ND	12/18/08	TPH	0.46		
Chlorodibromomethane	ug/m3	ND	12/18/08	TPH	0.86		
Chloroethane	ug/m3	ND	12/18/08	TPH	0.26		
Chloroform	ug/m3	1.6	12/18/08	TPH	0.48		
Chloromethane	ug/m3	1.5	12/18/08	TPH	0.20		
Cyclohexane	ug/m3	ND	12/18/08	TPH	0.34		
1,2-Dibromoethane	ug/m3	ND	12/18/08	TPH	0.76		
1,2-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60		
1,3-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60		
1,4-Dichlorobenzene	ug/m3	ND	12/18/08	TPH	0.60		
Dichlorodifluoromethane	ug/m3	1.6	12/18/08	TPH	0.50		
1,1-Dichloroethane	ug/m3	ND	12/18/08	TPH	0.40		
1,2-Dichloroethane	ug/m3	ND	12/18/08	TPH	0.40		
1,1-Dichloroethylene	ug/m3	ND	12/18/08	TPH	0.40		
cis-1,2-Dichloroethylene	ug/m3	ND	12/18/08	TPH	0.40		
t-1,2-Dichloroethylene	ug/m3	ND	12/18/08	TPH	0.40		
1,2-Dichloropropane	ug/m3	ND	12/18/08	TPH	0.46		
cis-1,3-Dichloropropene	ug/m3	ND	12/18/08	TPH	0.44		
trans-1,3-Dichloropropene	ug/m3	ND	12/18/08	TPH	0.44		

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008
368 PLEASANT VIEW Page 11 of

368 PLEASANT VIEW Page 11 of 13 LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21

LIMS-BAT #: LIMT-22131 Job Number: 2700.DC21

Project Location: BRIGHT OUTDOORS

Date Received: 12/17/2008
Field Sample #: AS-60

Sample ID: 08B50015 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC L Lo	imit Hi	P/ F
1,2-Dichlorotetrafluoroethane (114)	ug/m3	ND	12/18/08	TPH	0.70			
Ethanol	ug/m3	7.2	12/18/08	TPH	0.18			
Ethyl Acetate	ug/m3	ND	12/18/08	TPH	0.73			
Ethylbenzene	ug/m3	1.4	12/18/08	TPH	0.44			
4-Ethyl Toluene	ug/m3	ND	12/18/08	TPH	0.50			
n-Heptane	ug/m3	ND	12/18/08	TPH	0.40			
Hexachlorobutadiene	ug/m3	ND	12/18/08	TPH	1.1			
Hexane	ug/m3	2.6	12/18/08	TPH	0.36			
2-Hexanone	ug/m3	ND	12/18/08	TPH	0.40			
Isopropanol	ug/m3	5.8	12/18/08	TPH	0.24			
Methyl tert-Butyl Ether (MTBE)	ug/m3	ND	12/18/08	TPH	0.36			
Methylene Chloride	ug/m3	13	12/18/08	TPH	0.34			
4-Methyl-2-Pentanone (MIBK)	ug/m3	ND	12/18/08	TPH	0.40			
Propene	ug/m3	1.8	12/18/08	TPH	0.18			
Styrene	ug/m3	ND	12/18/08	TPH	0.42			
1,1,2,2-Tetrachloroethane	ug/m3	ND	12/18/08	TPH	0.68			
Tetrachloroethylene	ug/m3	1.9	12/18/08	TPH	0.68			
Tetrahydrofuran	ug/m3	ND	12/18/08	TPH	0.30			
Toluene	ug/m3	1700	12/18/08	TPH	0.38			
1,2,4-Trichlorobenzene	ug/m3	ND	12/18/08	TPH	0.74			
1,1,1-Trichloroethane	ug/m3	23	12/18/08	TPH	0.54			
1,1,2-Trichloroethane	ug/m3	ND	12/18/08	TPH	0.54			
Trichloroethylene	ug/m3	210	12/18/08	TPH	0.54			
Trichlorofluoromethane	ug/m3	1.2	12/18/08	TPH	0.56			
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	ND	12/18/08	TPH	0.76			
1,2,4-Trimethylbenzene	ug/m3	0.66	12/18/08	TPH	0.50			
1,3,5-Trimethylbenzene	ug/m3	ND	12/18/08	TPH	0.50			
Vinyl Acetate	ug/m3	ND	12/18/08	TPH	0.36			
Vinyl Chloride	ug/m3	ND	12/18/08	TPH	0.26			

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

RICK WATT

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW Page 12 of 13

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21

Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Date Received: 12/17/2008 Job Number: 2700.DC21

Field Sample #: AS-60

Sample ID: 08B50015 ‡Sampled: 12/16/2008

Not Specified

Sample Matrix: AIR Sample Medium : SUMMA

	Units	Results	Date Analyzed	Analyst	RL	SPEC Lo	Limit Hi	P/ F	
m/p-Xylene	ug/m3	2.1	12/18/08	TPH	0.86				
o-Xylene	ug/m3	0.83	12/18/08	TPH	0.44				

Analytical Method:

EPA TO-15

SAMPLES ARE TAKEN IN SUMMA CANISTERS AND ANALYZED BY GAS CHROMATOGRAPHY WITH MASS SPECTROMETRY DETECTION. (GC/MS)

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

^{* =} See end of report for comments and notes applying to this sample

[‡] = See attached chain-of-custody record for time sampled

12/17/2008

39 Spruce Street ° East Longmeadow, MA 01028 ° FAX 413/525-6405 ° TEL. 413/525-2332

RICK WATT

Date Received:

ECOLOGY & ENVIRONMENT 12/19/2008

368 PLEASANT VIEW
Page 13 of 13
LANCASTER, NY 14086
Purchase Order No.:
Project Number: 2700 DC21

LANCASTER, NY 14086 Purchase Order No.: Project Number: 2700.DC21
Project Location: BRIGHT OUTDOORS LIMS-BAT #: LIMT-22131

Job Number: 2700.DC21

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/19/2008 Lims B	at #: LIMT-22131	Page 1 of 8			
QC Batch Number:	BATCH-15724					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
08B50014						
	4-Bromofluorobenzene	Surrogate Recovery	98.50	%	70-130	
08B50015						
	4-Bromofluorobenzene	Surrogate Recovery	99.37	%	70-130	
BLANK-127841						
	Acetone	Blank	1.33	ug/m3		
	Benzene	Blank	<0.08	ug/m3		
	Carbon Tetrachloride	Blank	<0.16	ug/m3		
	Chloroform	Blank	<0.12	ug/m3		
	1,2-Dichloroethane	Blank	<0.10	ug/m3		
	1,4-Dichlorobenzene	Blank	<0.15	ug/m3		
	Ethyl Acetate	Blank	<0.19	ug/m3		
	Ethylbenzene	Blank	<0.11	ug/m3		
	Hexane	Blank	<0.09	ug/m3		
	Isopropanol	Blank	0.08	ug/m3		
	2-Butanone (MEK)	Blank	0.19	ug/m3		
	4-Methyl-2-Pentanone (MIBK)	Blank	<0.10	ug/m3		
	Styrene	Blank	<0.11	ug/m3		
	Tetrachloroethylene	Blank	<0.17	ug/m3		
	Toluene	Blank	<0.10	ug/m3		
	1,1,1-Trichloroethane	Blank	<0.14	ug/m3		
	Trichloroethylene	Blank	<0.14	ug/m3		
	1,1,2-Trichloro-1,2,2-Trifluoroethane	Blank	<0.19	ug/m3		
	Trichlorofluoromethane	Blank	<0.14	ug/m3		
	o-Xylene	Blank	<0.11	ug/m3		
	m/p-Xylene	Blank	<0.22	ug/m3		
	1,2-Dichlorobenzene	Blank	<0.15	ug/m3		
	1,3-Dichlorobenzene	Blank	<0.15	ug/m3		
	1,1-Dichloroethane	Blank	<0.10	ug/m3		
	1,1-Dichloroethylene	Blank	<0.10	ug/m3		
	Ethanol	Blank	<0.19	ug/m3		
	4-Ethyl Toluene	Blank	<0.13	ug/m3		
	Methyl tert-Butyl Ether (MTBE)	Blank	<0.09	ug/m3		
	t-1,2-Dichloroethylene	Blank	<0.10	ug/m3		
	Vinyl Chloride	Blank	<0.07	ug/m3		
	Methylene Chloride	Blank	0.20	ug/m3		
	Chlorobenzene	Blank	<0.12	ug/m3		
	Chloromethane	Blank	<0.05	ug/m3		
	Bromomethane	Blank	<0.10	ug/m3		
	Chloroethane	Blank	<0.07	ug/m3		
	cis-1,3-Dichloropropene	Blank	<0.11	ug/m3		
	trans-1,3-Dichloropropene	Blank	<0.11	ug/m3		
	Chlorodibromomethane	Blank	<0.11	-		
				ug/m3		
	1,1,2-Trichloroethane	Blank	<0.14	ug/m3		

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/19/2008 Lir	ns Bat # : LIMT-22131		Page 2	2 of 8
QC Batch Numbe	er: BATCH-15724				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
BLANK-127841					
	Bromoform	Blank	<0.26	ug/m3	
	1,1,2,2-Tetrachloroethane	Blank	<0.17	ug/m3	
	Hexachlorobutadiene	Blank	0.27	ug/m3	
	1,2,4-Trichlorobenzene	Blank	0.34	ug/m3	
	1,2,4-Trimethylbenzene	Blank	<0.13	ug/m3	
	1,3,5-Trimethylbenzene	Blank	<0.13	ug/m3	
	Cyclohexane	Blank	<0.09	ug/m3	
	cis-1,2-Dichloroethylene	Blank	<0.10	ug/m3	
	1,2-Dichloropropane	Blank	<0.12	ug/m3	
	Dichlorodifluoromethane	Blank	<0.13	ug/m3	
	Benzyl Chloride	Blank	<0.13	ug/m3	
	Carbon Disulfide	Blank	<0.08	ug/m3	
	Vinyl Acetate	Blank	<0.09	ug/m3	
	2-Hexanone	Blank	<0.10	ug/m3	
	Bromodichloromethane	Blank	<0.17	ug/m3	
	1,2-Dibromoethane	Blank	<0.19	ug/m3	
	n-Heptane	Blank	<0.10	ug/m3	
	1,2-Dichlorotetrafluoroethane (114)	Blank	<0.18	ug/m3	
	Tetrahydrofuran	Blank	<0.08	ug/m3	
	Propene	Blank	<0.05	ug/m3	
	1,3-Butadiene	Blank	<0.06	ug/m3	
LFBLANK-89832					
	Acetone	Lab Fort Blank Amt.	11.87	ug/m3	
		Lab Fort Blk. Found	12.73	ug/m3	
		Lab Fort Blk. % Rec.	107.22	%	50-150
	Benzene	Lab Fort Blank Amt.	15.95	ug/m3	
		Lab Fort Blk. Found	13.50	ug/m3	
		Lab Fort Blk. % Rec.	84.68	%	70-130
	Carbon Tetrachloride	Lab Fort Blank Amt.	31.45	ug/m3	
		Lab Fort Blk. Found	32.79	ug/m3	
		Lab Fort Blk. % Rec.	104.26	%	70-130
	Chloroform	Lab Fort Blank Amt.	24.33	ug/m3	
		Lab Fort Blk. Found	25.88	ug/m3	
		Lab Fort Blk. % Rec.	106.36	%	70-130
	1,2-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	25.16	ug/m3	
		Lab Fort Blk. % Rec.	124.28	%	70-130
	1,4-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	37.59	ug/m3	
		Lab Fort Blk. % Rec.	125.06	%	70-130
	Ethyl Acetate	Lab Fort Blank Amt.	18.01	ug/m3	
	•	Lab Fort Blk. Found	17.23	ug/m3	
		Lab Fort Blk. % Rec.	95.66	%	50-150

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Carrie C	Report Date:	12/19/2008 L	ims Bat # :	LIMT-22131		3 of 8	
LEBLANK-89832 Ethylbenzene	QC Batch Number:	BATCH-15724					
Ethylbenzene	Sample Id	Analysis	Q	C Analysis	Values	Units	Limits
Lab Fort Bik. Found	LFBLANK-89832						
Lab Fort Bik. % Rec. 107.14		Ethylbenzene	Lab	Fort Blank Amt.	21.67	ug/m3	
Hexane			Lab	Fort Blk. Found	23.22	ug/m3	
Lab Fort Blik. Found 20.05 ug/m3 70-130 Lab Fort Blik. % Rec. 113.82 % 70-130 130			Lab	Fort Blk. % Rec.	107.14	%	70-130
Lab Fort Blk. % Rec. 113.82 % 70-130		Hexane	Lab	Fort Blank Amt.	17.62	ug/m3	
Isopropanol			Lab	Fort Blk. Found	20.05	ug/m3	
Lab Fort Blk. Found			Lab	Fort Blk. % Rec.	113.82	%	70-130
Lab Fort Blk. % Rec. 123.38 % 50-150		Isopropanol	Lab	Fort Blank Amt.	12.28	ug/m3	
2-Butanone (MEK)			Lab	Fort Blk. Found	15.16	ug/m3	
Lab Fort Blk. Found 14.17 ug/m3			Lab	Fort Blk. % Rec.	123.38	%	50-150
Lab Fort Bik. % Rec. 96.12		2-Butanone (MEK)	Lab	Fort Blank Amt.	14.74	ug/m3	
A-Methyl-2-Pentanone (MIBK)			Lab	Fort Blk. Found	14.17	ug/m3	
Lab Fort Blk. % Rec. 96.95 % 70-130			Lab	Fort Blk. % Rec.	96.12	%	70-130
Lab Fort Bik. % Rec. 96.95 % 70-130 Styrene		4-Methyl-2-Pentanone (MIBK)	Lab	Fort Blank Amt.	20.48	ug/m3	
Styrene			Lab	Fort Blk. Found	19.85	ug/m3	
Lab Fort Blk. Found 25.77 ug/m3 121.18 % 70-130			Lab	Fort Blk. % Rec.	96.95	%	70-130
Tetrachloroethylene		Styrene	Lab	Fort Blank Amt.	21.26	ug/m3	
Tetrachloroethylene Lab Fort Blank Amt. 33.90 ug/m3 Lab Fort Blk. Found 34.38 ug/m3 Lab Fort Blk. % Rec. 101.40 % 70-130 Toluene Lab Fort Blank Amt. 18.81 ug/m3 Lab Fort Blk. Found 18.82 ug/m3 Lab Fort Blk. % Rec. 100.04 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 27.28 ug/m3 Lab Fort Blk. % Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blk. Found 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 O-Xylene Lab Fort Blk. Found </td <td></td> <td></td> <td>Lab</td> <td>Fort Blk. Found</td> <td>25.77</td> <td>ug/m3</td> <td></td>			Lab	Fort Blk. Found	25.77	ug/m3	
Lab Fort Blk. Found 34.38 ug/m3 Lab Fort Blk. W Rec. 101.40 % 70-130 Toluene Lab Fort Blank Amt. 18.81 ug/m3 Lab Fort Blk. Found 18.82 ug/m3 Lab Fort Blk. W Rec. 100.04 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 27.28 ug/m3 Lab Fort Blk. Found 28.03 ug/m3 Lab Fort Blk. W Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. W Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. W Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3			Lab	Fort Blk. % Rec.	121.18	%	70-130
Toluene Lab Fort Blk. % Rec. 101.40 % 70-130 Lab Fort Blak Amt. 18.81 ug/m3 Lab Fort Blk. Found 18.82 ug/m3 Lab Fort Blk. % Rec. 100.04 % 70-130 1,1,1-Trichloroethane Lab Fort Blak Amt. 27.28 ug/m3 Lab Fort Blk. Found 28.03 ug/m3 Lab Fort Blk. Found 28.03 ug/m3 Lab Fort Blk. % Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3		Tetrachloroethylene	Lab	Fort Blank Amt.	33.90	ug/m3	
Toluene Lab Fort Blank Amt. 18.81 ug/m3 Lab Fort Blk. Found 18.82 ug/m3 Lab Fort Blk. % Rec. 100.04 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. 27.28 ug/m3 Lab Fort Blk. Found 28.03 ug/m3 Lab Fort Blk. % Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 0-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	34.38	ug/m3	
Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 100.04 % 70-130 1,1,1-Trichloroethane Lab Fort Blank Amt. Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 102.76 % 70-130 Trichloroethylene Lab Fort Blk. WRec. 102.76 % 70-130 Trichloroethylene Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blk. WRec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 117.26 % 70-130 o-Xylene Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. WRec. 111.54 % 70-130			Lab	Fort Blk. % Rec.	101.40	%	70-130
Lab Fort Blk. % Rec. 100.04		Toluene	Lab	Fort Blank Amt.	18.81	ug/m3	
1,1,1-Trichloroethane Lab Fort Blank Amt. 27.28 ug/m3 Lab Fort Blk. Found 28.03 ug/m3 Lab Fort Blk. % Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blk. Matt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 0-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	18.82	ug/m3	
Lab Fort Blk. Found Lab Fort Blk. % Rec. 102.76 % 70-130 Trichloroethylene Lab Fort Blank Amt. Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blk. Found Lab Fort Blk. Found Lab Fort Blk. % Rec. 117.26 % 70-130 111.54 % 70-130			Lab	Fort Blk. % Rec.	100.04	%	70-130
Lab Fort Blk. % Rec. 102.76		1,1,1-Trichloroethane	Lab	Fort Blank Amt.	27.28	ug/m3	
Trichloroethylene Lab Fort Blank Amt. 26.87 ug/m3 Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	28.03	ug/m3	
Lab Fort Blk. Found 25.26 ug/m3 Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. % Rec.	102.76	%	70-130
Lab Fort Blk. % Rec. 94.01 % 70-130 1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130		Trichloroethylene	Lab	Fort Blank Amt.	26.87	ug/m3	
1,1,2-Trichloro-1,2,2-Trifluoroethane Lab Fort Blank Amt. 38.31 ug/m3 Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	25.26	ug/m3	
Lab Fort Blk. Found 41.16 ug/m3 Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. % Rec.	94.01	%	70-130
Lab Fort Blk. % Rec. 107.44 % 70-130 Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130		1,1,2-Trichloro-1,2,2-Trifluoroetha	ane Lab	Fort Blank Amt.	38.31	ug/m3	
Trichlorofluoromethane Lab Fort Blank Amt. 28.09 ug/m3 Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	41.16	ug/m3	
Lab Fort Blk. Found 32.94 ug/m3 Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. % Rec.	107.44	%	70-130
Lab Fort Blk. % Rec. 117.26 % 70-130 o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130		Trichlorofluoromethane	Lab	Fort Blank Amt.	28.09	ug/m3	
o-Xylene Lab Fort Blank Amt. 21.71 ug/m3 Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. Found	32.94	ug/m3	
Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130			Lab	Fort Blk. % Rec.	117.26	%	70-130
Lab Fort Blk. Found 24.22 ug/m3 Lab Fort Blk. % Rec. 111.54 % 70-130		o-Xylene	Lab	Fort Blank Amt.	21.71	ug/m3	
			Lab	Fort Blk. Found	24.22	ug/m3	
			Lab	Fort Blk. % Rec.	111.54	%	70-130
m/p-Xylene Lab Fort Blank Amt. 43.43 ug/m3		m/p-Xylene	Lab	Fort Blank Amt.	43.43	ug/m3	
Lab Fort Blk. Found 52.37 ug/m3		-	Lab	Fort Blk. Found	52.37	•	
Lab Fort Blk. % Rec. 120.58 % 70-130			Lab	Fort Blk. % Rec.	120.58	•	70-130
1,2-Dichlorobenzene Lab Fort Blank Amt. 30.06 ug/m3		1,2-Dichlorobenzene	Lab	Fort Blank Amt.	30.06	ug/m3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/19/2008	Lims Bat #: LIMT-22131		Page 4	1 of 8
QC Batch Number	er: BATCH-15724				
Sample Id	Analysis	QC Analysis	Values	Units	Limits
LFBLANK-89832)				
	1,2-Dichlorobenzene	Lab Fort Blk. Found	38.29	ug/m3	
		Lab Fort Blk. % Rec.	127.40	%	70-130
	1,3-Dichlorobenzene	Lab Fort Blank Amt.	30.06	ug/m3	
		Lab Fort Blk. Found	37.10	ug/m3	
		Lab Fort Blk. % Rec.	123.44	%	70-130
	1,1-Dichloroethane	Lab Fort Blank Amt.	20.24	ug/m3	
		Lab Fort Blk. Found	20.54	ug/m3	
		Lab Fort Blk. % Rec.	101.46	%	70-130
	1,1-Dichloroethylene	Lab Fort Blank Amt.	19.83	ug/m3	
		Lab Fort Blk. Found	21.74	ug/m3	
		Lab Fort Blk. % Rec.	109.62	%	70-130
	Ethanol	Lab Fort Blank Amt.	9.42	ug/m3	
		Lab Fort Blk. Found	11.26	ug/m3	
		Lab Fort Blk. % Rec.	119.62	%	50-150
	4-Ethyl Toluene	Lab Fort Blank Amt.	24.58	ug/m3	
		Lab Fort Blk. Found	32.22	ug/m3	
		Lab Fort Blk. % Rec.	131.08	%	50-150
	Methyl tert-Butyl Ether (MTBE)	Lab Fort Blank Amt.	18.02	ug/m3	
		Lab Fort Blk. Found	21.36	ug/m3	
		Lab Fort Blk. % Rec.	118.50	%	70-130
	t-1,2-Dichloroethylene	Lab Fort Blank Amt.	19.82	ug/m3	
	·	Lab Fort Blk. Found	20.85	ug/m3	
		Lab Fort Blk. % Rec.	105.20	%	70-130
	Vinyl Chloride	Lab Fort Blank Amt.	12.78	ug/m3	
		Lab Fort Blk. Found	15.27	ug/m3	
		Lab Fort Blk. % Rec.	119.52	%	70-130
	Methylene Chloride	Lab Fort Blank Amt.	17.36	ug/m3	
	-	Lab Fort Blk. Found	16.41	ug/m3	
		Lab Fort Blk. % Rec.	94.54	%	70-130
	Chlorobenzene	Lab Fort Blank Amt.	23.02	ug/m3	
		Lab Fort Blk. Found	23.67	ug/m3	
		Lab Fort Blk. % Rec.	102.80	%	70-130
	Chloromethane	Lab Fort Blank Amt.	10.32	ug/m3	
		Lab Fort Blk. Found	13.10	ug/m3	
		Lab Fort Blk. % Rec.	126.94	%	70-130
	Bromomethane	Lab Fort Blank Amt.	19.40	ug/m3	
		Lab Fort Blk. Found	17.86	ug/m3	
		Lab Fort Blk. % Rec.	92.08	%	70-130
	Chloroethane	Lab Fort Blank Amt.	13.19	ug/m3	
		Lab Fort Blk. Found	15.36	ug/m3	
		Lab Fort Blk. % Rec.	116.48	%	70-130
	cis-1,3-Dichloropropene	Lab Fort Blank Amt.	22.69	ug/m3	
	,- =	Lab Fort Blk. Found	21.13	ug/m3	
			5	-3	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/19/2008	12/19/2008 Lims Bat #: LIMT-22131			Page 5 of 8				
QC Batch Number:	: BATCH-15724								
Sample Id	Analysis	Q	C Analysis	Values	Units	Limits			
FBLANK-89832									
	cis-1,3-Dichloropropene	Lal	b Fort Blk. % Rec.	93.12	%	70-130			
	trans-1,3-Dichloropropene	Lal	b Fort Blank Amt.	22.69	ug/m3				
		Lal	b Fort Blk. Found	23.08	ug/m3				
		Lal	b Fort Blk. % Rec.	101.72	%	70-130			
	Chlorodibromomethane	Lal	b Fort Blank Amt.	42.59	ug/m3				
		Lal	b Fort Blk. Found	44.95	ug/m3				
		Lal	b Fort Blk. % Rec.	105.54	%	70-130			
	1,1,2-Trichloroethane	Lal	b Fort Blank Amt.	27.28	ug/m3				
		Lal	b Fort Blk. Found	23.11	ug/m3				
		Lal	b Fort Blk. % Rec.	84.73	%	70-130			
	Bromoform	Lal	b Fort Blank Amt.	51.69	ug/m3				
		Lal	b Fort Blk. Found	53.98	ug/m3				
		Lal	b Fort Blk. % Rec.	104.42	%	70-130			
	1,1,2,2-Tetrachloroethane	Lal	b Fort Blank Amt.	34.33	ug/m3				
		Lal	b Fort Blk. Found	31.15	ug/m3				
		Lal	b Fort Blk. % Rec.	90.74	%	70-130			
	Hexachlorobutadiene	Lal	b Fort Blank Amt.	53.33	ug/m3				
		Lal	b Fort Blk. Found	54.04	ug/m3				
		Lal	b Fort Blk. % Rec.	101.34	%	70-130			
	1,2,4-Trichlorobenzene	Lal	b Fort Blank Amt.	37.10	ug/m3				
	, ,		b Fort Blk. Found	43.71	ug/m3				
			b Fort Blk. % Rec.	117.80	%	70-130			
	1,2,4-Trimethylbenzene		b Fort Blank Amt.	24.58	ug/m3				
	, ,		b Fort Blk. Found	32.20	ug/m3				
			b Fort Blk. % Rec.	131.00	%	70-130			
	1,3,5-Trimethylbenzene		b Fort Blank Amt.	24.58	ug/m3				
	.,0,0		b Fort Blk. Found	31.70	ug/m3				
			b Fort Blk. % Rec.	129.00	%	70-130			
	Cyclohexane		b Fort Blank Amt.	17.21	ug/m3	70 100			
	System States		b Fort Blk. Found	15.14	ug/m3				
			b Fort Blk. % Rec.	88.01	%	50-150			
	cis-1,2-Dichloroethylene		b Fort Blank Amt.	19.82	ug/m3	00 100			
	olo 1,2 Biornorocarrytorio		b Fort Blk. Found	21.52	ug/m3				
			b Fort Blk. % Rec.	108.58	%	70-130			
	1,2-Dichloropropane		b Fort Blank Amt.	23.10	ug/m3	70 100			
	1,2-Dichioroproparic		b Fort Blk. Found	18.00	ug/m3				
			b Fort Blk. % Rec.	77.93	w %	70-130			
	Dichlorodifluoromethane		b Fort Blank Amt.	24.72	ug/m3	70-100			
	Pictuorodinacionicularie		b Fort Blk. Found	28.32	ug/m3				
			b Fort Blk. % Rec.	26.32 114.56	ug/ms %	70-130			
	Benzyl Chloride		b Fort Blank Amt.	25.88		10-130			
	Denzyi Chionde				ug/m3				
			b Fort Blk. Found	35.49	ug/m3	70.400			
		Lai	b Fort Blk. % Rec.	137.13	%	70-130			

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Report Date:	12/19/2008 Lir	ns Bat # : LIMT-22131	Page 6 of 8			
QC Batch Numb	er: BATCH-15724					
Sample Id	Analysis	QC Analysis	Values	Units	Limits	
LFBLANK-89832	2					
	Carbon Disulfide	Lab Fort Blank Amt.	15.57	ug/m3		
		Lab Fort Blk. Found	13.30	ug/m3		
		Lab Fort Blk. % Rec.	85.43	%	70-130	
	Vinyl Acetate	Lab Fort Blank Amt.	17.60	ug/m3		
		Lab Fort Blk. Found	16.07	ug/m3		
		Lab Fort Blk. % Rec.	91.28	%	70-130	
	2-Hexanone	Lab Fort Blank Amt.	20.48	ug/m3		
		Lab Fort Blk. Found	20.65	ug/m3		
		Lab Fort Blk. % Rec.	100.86	%	50-150	
	Bromodichloromethane	Lab Fort Blank Amt.	33.50	ug/m3		
		Lab Fort Blk. Found	33.59	ug/m3		
		Lab Fort Blk. % Rec.	100.26	%	70-130	
	1,2-Dibromoethane	Lab Fort Blank Amt.	38.42	ug/m3		
		Lab Fort Blk. Found	35.72	ug/m3		
		Lab Fort Blk. % Rec.	92.98	%	70-130	
	n-Heptane	Lab Fort Blank Amt.	20.49	ug/m3		
		Lab Fort Blk. Found	17.92	ug/m3		
		Lab Fort Blk. % Rec.	87.49	%	50-150	
	1,2-Dichlorotetrafluoroethane (114) Lab Fort Blank Amt.	34.95	ug/m3		
		Lab Fort Blk. Found	40.45	ug/m3		
		Lab Fort Blk. % Rec.	115.74	%	70-130	
	Tetrahydrofuran	Lab Fort Blank Amt.	14.74	ug/m3		
		Lab Fort Blk. Found	15.01	ug/m3		
		Lab Fort Blk. % Rec.	101.82	%	50-150	
	Propene	Lab Fort Blank Amt.	8.60	ug/m3		
		Lab Fort Blk. Found	7.48	ug/m3		
		Lab Fort Blk. % Rec.	87.00	%	50-150	
	1,3-Butadiene	Lab Fort Blank Amt.	11.06	ug/m3		
		Lab Fort Blk. Found	12.20	ug/m3		
		Lab Fort Blk. % Rec.	110.36	%	70-130	

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 12/19/2008 Lims Bat #: LIMT-22131 Page 7 of 8

NOTES:

QC Batch No. : BATCH-15724
Sample ID : LFBLANK-89832
Analysis : 1,2,4-Trimethylbenzene

LABORATORY FORTIFIED BLANK RECOVERY IS OUTSIDE OF CONTROL LIMITS. ANY REPORTED VALUE FOR THIS COMPOUND IS LIKELY TO BE BIASED ON THE HIGH SIDE.

QC Batch No. : BATCH-15724
Sample ID : LFBLANK-89832
Analysis : Benzyl Chloride

LABORATORY FORTIFIED BLANK RECOVERY OUTSIDE OF CONTROL LIMITS. DATA VALIDATION IS NOT AFFECTED SINCE ALL RESULTS ARE "NOT DETECTED" FOR ALL SAMPLES IN THIS BATCH FOR THIS COMPOUND AND BIAS IS ON THE HIGH SIDE.

QC SUMMARY REPORT

SAMPLE QC: Sample Results with Duplicates

BATCH QC: Lab fortified Blanks and Duplicates

Sample Matrix Spikes and Matrix Spike Duplicates

Standard Reference Materials and Duplicates

Method Blanks

Report Date: 12/19/2008 Lims Bat #: LIMT-22131 Page 8 of 8

OUALITY CONTROL DEFINITIONS AND ABBREVIATIONS

This is the number assigned to all samples analyzed together that QC BATCH NUMBER

would be subject to comparison with a particular set of Quality

Control Data.

LIMITS Upper and Lower Control Limits for the QC ANALYSIS Reported. All

values normally would fall within these statistically determined limits, unless there is an unusual circumstance that would be documented in a NOTE appearing on the last page of the QC SUMMARY

REPORT. Not all QC results will have Limits defined.

Sample Amount Amount of analyte found in a sample.

Method Blank that has been taken though all the steps of the Blank

analysis.

LFBLANK Laboratory Fortified Blank (a control sample)

STDADD Standard Added (a laboratory control sample)

Amount of analyte spiked into a sample Matrix Spk Amt Added

MS Amt Measured Amount of analyte found including amount that was spiked

Matrix Spike % Rec. % Recovery of spiked amount in sample.

Duplicate Value The result from the Duplicate analysis of the sample.

Duplicate RPD The Relative Percent Difference between two Duplicate Analyses.

The % Recovery for non-environmental compounds (surrogates) Surrogate Recovery

spiked into samples to determine the performance of

analytical methods.

Sur. Recovery (ELCD) Surrogate Recovery on the Electrolytic Conductivity Detector.

Sur. Recovery (PID) Surrogate Recovery on the Photoionization Detector.

Standard Measured Amount measured for a laboratory control sample

Standard Amt Added

Known value for a laboratory control sample % recovered for a laboratory control sample with a known value. Standard % Recovery

Laboratory Fortified Blank Amount Added Lab Fort Blank Amt Lab Fort Blk. Found Laboratory Fortified Blank Amount Found

Lab Fort Blk % Rec Laboratory Fortified Blank % Recovered

Duplicate Laboratory Fortified Blank Amount Added Dup Lab Fort Bl Amt Duplicate Laboratory Fortified Blank Amount Found Dup Lab Fort Bl Fnd

Duplicate Laboratory Fortified Blank % Recovery Dup Lab Fort Bl % Rec

Lab Fort Blank Range Laboratory Fortified Blank Range (Absolute value of difference

between recoveries for Lab Fortified Blank and Lab Fortified

Blank Duplicate).

Lab Fort Bl. Av. Rec. Laboratory Fortified Blank Average Recovery

Duplicate Sample Amt Sample Value for Duplicate used with Matrix Spike Duplicate

MSD Amount Added Matrix Spike Duplicate Amount Added (Spiked)

MSD Amt Measured Matrix Spike Duplicate Amount Measured

MSD % Recovery Matrix Spike Duplicate % Recovery

MSD Range Absolute difference between Matrix Spike and Matrix Spike

Duplicate Recoveries

	con-test°
יוווווי	ANALYTICAL LABORATORY

Phone: 413-525-2332 AIR SAMPLE CHAIN OF CUSTODY

39 SPRUCE ST

Fax:	413-525-6405	
------	--------------	--

RECORD

EAST LONGMEADOW, MA 01028

,111111	ANALT IIVAL LADONATOR		Email: info@contestia			-5-N	バーノ	2151			······································		1			I	
Company N	Name: Ecology AND (avir.	www.contestlabs.com これなといてといいと	າ Telephon	e:(714) _	684-J	060			-TANK OF STATE OF STATE	LYSIS	*************************************		Hg	L	Please fill ou completely, and retain th	sign, date
Address:	25 AERTH			Project #	2700.	DC 2-	34			REQU	JESTE	D	n		ab	copy for you	
	LAVCASTER			Client PO							***************************************			F	R	Summa can	
				g-03-07/AND-01-01-01-01-01-01-01-01-01-01-01-01-01-				THE PROPERTY OF THE PROPERTY O						n	e	returned wit	hin 14 days
Attention:	RICKWATT			DATA DE	LIVERY (c	heck one	<u>):</u> TE CLIENT				W) The second of the second of		a	a	e	of receipt or	rental fees
Project Loc	eation: 3CUGHT GI	ATD	-n2 C	ì									•	[.	þ	will apply. Summa cani	istare will he
Sampled B				1			***************************************						p r	P	t	retained for	a minimum
ŗ	the state of the s		S TO ST IN STRUCTURE STRUC		JEXCEL	☐ PDF	G GIS KE	/ OTHE	R	W			e	é	P	of 14 days a sampling da	
	rovided? (For Billing purpos	es)		Date S	Sampled	ONLY US	E WHEN US	ING PUMPS					S	s	e	cleaning.	mo prior to
🛚 yes	proposal date	9	ş	Start	Stop	Total	Flow Rate	Volume					u	u	s	Summa	Flow
Field ID	Sample Description	Media	Lab #	Date Time	Date Time	Minutes Sampled	M³/Min. o r L / M in.	Liters or M ³	Matrix Code*	1			r e	r e	r e	Canister ID	Controller ID
AS-20		Summ	08850014	355	12/16/03	1-1214	1		S,	V						BU015	N/A
〇 (基)191		Suna	06350015	-1211168 1425	1425		MANAGEMENT AND AND AND AND AND AND AND AND AND AND	response and the second second second second second second second second second second second second second se	SG	V						BCILLE	N/A
91												DOM:					
	The second secon					<u> </u>											
			· · · · · · · · · · · · · · · · · · ·		43												
								C4-23-C7333-24-3-C-4-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-									
							1000										
							отт манастоп				-						
							The state of the s										
aboratory C	omments:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		and the second s		CLIENT COM	MENTS:								laurovii inininininininininininininininininin	
Relinquished	, by: (signature)		Date/Time:	Turna	round **		Special	Requiren	nents		*Mat	rix Co	de:	Ave bacons	**M€	edia Codes:	
4/4			12/10/08/1700		7-Day	Regulation					SG=	SOIL	GAS		S=Si	umma can	
Received by:	(signature)		Date/Time: 12 10 108	3	10-Day		nancement/F				1	NDOC		3	å	tedlar bag	
Relinquished	by: (signature)		Date/Time:		Other	Ennance	d Data Pacl (Surchage	Ψ	UN			=AMB SUB			P=P T=tu		
	<u> </u>			□ *24-Hr (Required	Detection L				D = I		シレハレ		F= fi		
Received by:	(signature)		Date/Time:	☐ *72-Hr (☐ *4-Day	1	· · · · · · · · · · · · · · · · · · ·				BL =	BLAN	K		C=ci	assette	
	A SA Jan Mark and Provide Marketon and Annual			*Approval R	equired				······································		0 = 0	other_			0 =	Other	

Home (About UPS | Contact UPS | Getting Started | Site Guide

Support

UPS Uni

Shipping

Tracking

Freight Locations

Password:

Si

Forgot Password

Tracking

Track Shipments

Track by Reference
Track by E-mail
Signature Tracking
Import Tracking Numbers

Wireless Tracking
Track with Quantum View
Access Flex Global View
Integrate Tracking Tools
Void a Shipment &

Search Support

Enter a keyword:

Track Packages & Freight

Track Shipments

Quantum View

Flex Global View

Tracking Summary

Printer Friend

Tracking Number:

J217 9514 439

→ View package progress

Type:

Package

Business Solutions

Status:

Log-In User ID:

<u>Delivered</u> ☑ 12/17/2008

9:50 A.M.

Delivered To:

Delivered On:

EAST LONGMEADOW, MA, US

Signed By:

MURPHY

Service:

NEXT DAY AIR

Welcome Center for DHL Customers

Switch Now It clearly

Frinter Friendly []

Tracking results provided by UPS: 12/17/2008 10:26 A.M. ET

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipme tendered by or for you to UPS for delivery and for no other purpose. Any other us tracking systems and information is strictly prohibited.

Home | Shipping | Tracking | Freight | Locations | Support | Business Solutions | About UPS | Contact UPS | Register | Manage 5-mail Prefer Getting Started | Site Guide | Advanced Search | UPS Global | UPS Corporate

Copyright © 1994-2008 United Parcel Service of America, Inc. All rights reserved.

Web Site Terms of Use | Privacy Policy | Trademarks | UPS Tariff/Terms and Conditions

www.contestlabs.com

39 Spruce Street East Longmeadow, MA Phone: 1-413-525-2332

Fax: 1-413-525-6405

AIR ONLY RECEIPT CHECKLIST Fax: 1-413-525-6405
LIENT NAME: 500 Sety & 500 DATE: (2 107 OS) ECEIVED BY: 12 VES NO
ECEIVED BY:
Was chain of custody relinquished and signed? Does Chain agree with samples?
If not, explain:
All Samples in good condition?
If not, explain:
Are there any on hold samples?YES NO STORED WHERE:
ARE THERE ANY RUSH OR SHORT HOLDING TIME SAMPLES: WHO WAS NOTIFIED?DATETIME
cocation where samples are stored: A Permission to sub-contract samples? Yes No (circle) (Walk in clients only) if not already approved. Client Signature
CONTAINERS SENT TO CON-TEST # of containers Summa cans 2 Tedlar Bags Regulators
Restrictors Tubes Other Flox 2
(read & unused) checked into the WASP asset management programmed
2. Were all returned summa cans, restrictors, & regulators documented as returns ALD Lab Outbound excel sheet?
3. Were the Lab ID's documented in the Air Lab Outbound excel sheet?
4. Was the job documented in the Air Lab Log-In Access Database?
Laboratory comments:
E / GE & V

Geotechnical Report

REPORT DATE 12/16/2008

ECOLOGY & ENVIRONMENT 368 PLEASANT VIEW LANCASTER, NY 14086 ATTN: RICK WATT

CONTRACT NUMBER:

PURCHASE ORDER NUMBER: 2700.DC21.01

PROJECT NUMBER:

ANALYTICAL SUMMARY

LIMS BAT #:

LIMT-21841

JOB NUMBER: 2700.DC21.01

PROJECT LOCATION: FORMER BRIGHT OUTDOORS

FIELD SAMPLE #	LAB ID	MATRIX	SAMPLE DESCRIPTION	TEST	Subcontract Lab (if any) Cert. Nos.
VM-01-GT (8-9) VM-04-GT (3-4)	08B48595 08B48596	SOIL SOIL	Not Specified Not Specified	sub special test	Geo Testing Express Geo Testing Express

The results of analyses performed are based on samples as submitted to the laboratory and relate only to the items collected and tested.

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations. AIHA accreditations only apply to NIOSH methods and Environmental Lead Analyses.

AIHA 100033

AIHA ELLAP (LEAD) 100033

NORTH CAROLINA CERT. # 652

MASSACHUSETTS MA0100 CONNECTICUT PH-0567

NEW HAMPSHIRE NELAP 2516

NEW JERSEY NELAP NJ MA007 (AIR)

NEW YORK ELAP/NELAP 10899

VERMONT DOH (LEAD) No. LL015036 RHODE ISLAND (LIC. No. 112)

FLORIDA DOH E871027 (AIR)

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Edward Denson 12/16/08

Tod Kopyscinski

Michael Erickson

Air Laboratory Manager

Assistant Laboratory Director

SIGNATURE

DATE

Edward Denson

Daren Damboragian

Technical Director

Organics Department Supervisor

RICK WATT

ECOLOGY & ENVIRONMENT 12/16/2008
368 PLEASANT VIEW Page 1 of 2

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21841

Date Received: 12/4/2008 Job Number: 2700.DC21.01

Field Sample #: VM-01-GT (8-9)

Not Specified

Sample Matrix: SOIL

Units Results Date Analyst RL SPEC Limit P/ F

Analyzed Lo Hi

SPECIAL TEST 12/15/08 GTE

Subcontracted analysis for Particle Size by method ASTM D 422 - 63, Atterberg Limits by method ASTM D 4318 - 05 and USCS Classification by method

ASTM D 2487 - 06.

Please see attached hard copy for results. Field Sample #: VM-04-GT (3-4)

Sample ID: 08B48596 ‡Sampled: 12/3/2008

Not Specified

Sample Matrix: SOIL

Units Results Date Analyst RL SPEC Limit P/F

Analyzed Lo Hi

SPECIAL TEST 12/15/08 GTE

Subcontracted analysis for Particle Size by method ASTM D 422 - 63, Atterberg Limits by method ASTM D 4318 - 05 and USCS Classification by method

ASTM D 2487 - 06.

Please see attached hard copy for results.

RL = Reporting Limit

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

NM = Not Measured

* = See end of report for comments and notes applying to this sample

‡ = See attached chain-of-custody record for time sampled

ND = Not Detected at or above the Reporting Limit

RICK WATT

ECOLOGY & ENVIRONMENT 12/16/2008
368 PLEASANT VIEW Page 2 of 2

LANCASTER, NY 14086 Purchase Order No.: 2700.DC21.01

Project Location: FORMER BRIGHT OUTDOORS LIMS-BAT #: LIMT-21841

Date Received: 12/4/2008 Job Number: 2700.DC21.01

** END OF REPORT **

RL = Reporting Limit

ND = Not Detected at or above the Reporting Limit

NM = Not Measured

SPEC LIMIT = a client specified recommended or regulatory level for comparison with data to determine PASS (P) or FAIL (F) condition of results.

^{* =} See end of report for comments and notes applying to this sample

^{‡ =} See attached chain-of-custody record for time sampled

Geolesting express

a subsidiary of Geocomp Corporation

Client: Con-Test Analytical Lab

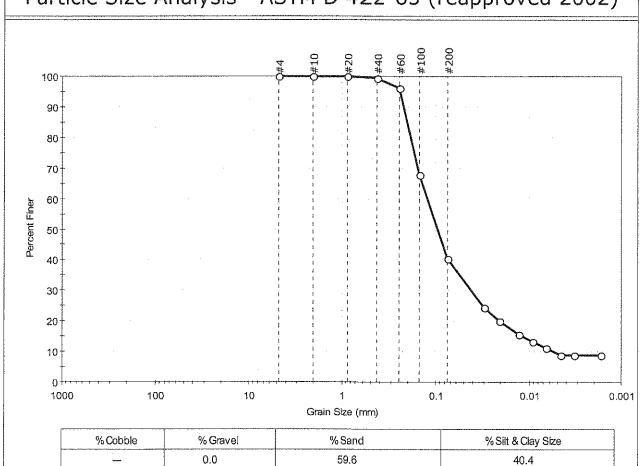
Project: LIMT: 21841

Location: ---

Boring ID: --- Sample Type: bag

Project No: ag Tested By: GTX-8731

Sample ID:08B48595


Test Date: 12/08/08 Test Id: 143529 Checked By: jdt

Depth: ---Test Comment:

Sample Description: Moist, dark olive brown silty sand

Sample Comment:

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

Sleve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
10.000 12.000 10.000	mm		majatika.	14 (21 h) 18 18 19 1
#4	4.75	100		
#10	2.00	100		
#20	0.85	100		
#40	0.42	99		
#60	0.25	96		
#100	0.15	68		
#200	0.075	40		
	Particle Size (mm)	Percent Finer	- Spec. Percent	Complies
	0.0304	24	**************************************	
	0.0206	20		
***	0.0128	16		
	0.0092	13		
F 7 7	0.0066	11		
***	0.0047	9	***************************************	
VH P	0.0033	9		
	0.0017	9		

	Coefficients
$D_{85} = 0.2041 \text{ mm}$	$D_{30} = 0.0416 \text{ mm}$
$D_{60} = 0.1227 \text{ mm}$	$D_{15} = 0.0118 \text{ mm}$
$D_{50} = 0.0954 \text{ mm}$	$D_{10} = 0.0055 \text{ mm}$
$C_u = N/A$	C _c =N/A

Classification
ASTM Silty sand (SM)

AASHTO Silty Soils (A-4 (0))

Sample/Test Description
Sand/Gravel Particle Shape : --Sand/Gravel Hardness : ---

printed 12/15/2008 12:27:25 PM

Geolesting express

a subsidiary of Geocomp Corporation

Client: Con-Test Analytical Lab

Project: LIMT: 21841

Location:

Sample Type: bag

143531

Project No:

GTX-8731

Boring ID: ---Tested By: ар Sample ID:08B48595 Test Date: 12/11/08 Checked By: jdt

Test Id:

Depth: ---

Test Comment: Sample Description:

Moist, dark olive brown silty sand

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	08B48595		 w	12	n/a	n/a	n/a	n/a	Silty sand (SM)

1% Retained on #40 Sieve

Dry Strength: LOW Dilentancy: RAPID Toughness: n/a

The sample was determined to be Non-Plastic

printed 12/15/2008 12:27:37 PM

a subsidiary of Geocomp Corporation

Client: Con-Test Analytical Lab

LIMT: 21841 Project:

Location:

Boring ID: ---Sample Type: bag Tested By: Sample ID:08B48595 Test Date: 12/15/08 Checked By: jdt

Project No:

GTX-8731

ар

Depth: ---Test Id: 143533

Test Comment:

Sample Description: Moist, dark olive brown silty sand

Sample Comment:

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	08B48595		Silty sand	SM	0.0	59.6	40.4
					•		

Remarks:

Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

Geolesting express

a subsidiary of Geocomp Corporation

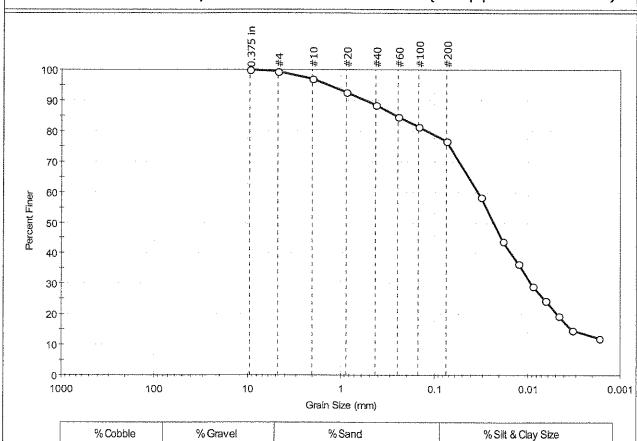
Client: Con-Test Analytical Lab

Project: LIMT: 21841

Location: --- Project No:

Boring ID: --- Sample Type: bag Tested By: ap Sample ID:08B48596 Test Date: 12/08/08 Checked By: jdt

Test Id:


143530

Depth: --Test Comment: ---

Sample Description: Moist, dark olive brown clay with sand

Sample Comment: --

Particle Size Analysis - ASTM D 422-63 (reapproved 2002)

% Cobble	% Gravel	% Sand	% Silt & Clay Size
	0.6	22.8	76.6

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	99		
#10	2.00	97		
#20	0.85	93		
#40	0.42	89		
#50	0.25	85		
#100	0.15	81		
#200	0.075	77		
711.01735.4421,754.860	Particle Size (mm)	Percent Finer	Spec. Percent	Compiles
	0.0318	59		
	0.0182	44		
	0.0124	37		
***	8800.0	29		
	0.0064	24	***************************************	
***	0.0046	20		***************************************
***	0.0033	15		
	0.0017	12	***************************************	

Coefficients								
$D_{85} = 0.2659 \text{ mm}$	$D_{30} = 0.0091 \text{ mm}$							
D ₆₀ =0.0341 mm	D ₁₅ = 0.0034 mm							
D ₅₀ =0.0230 mm	$D_{10} = 0.0009 \text{ mm}$							
$C_u = N/A$	$C_c = N/A$							

GTX-8731

Classification
ASTM lean clay with sand (CL)

AASHTO Silty Soils (A-4 (5))

Sample/Test Description
Sand/Gravel Particle Shape : --Sand/Gravel Hardness : ---

printed 12/15/2008 12:28:10 PM

Geolesting express

a subsidiary of Geocomp Corporation

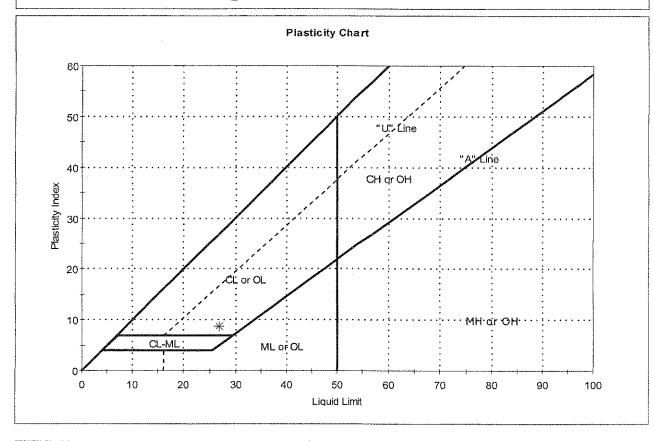
Client: Con-Test Analytical Lab

Project: LIMT: 21841

Location: Project No: Sample Type: bag Boring ID: ---Tested By: Sample ID:08B48596 Test Date: 12/11/08 Checked By: jdt

GTX-8731

ар


Depth: Test Id: 143532

Test Comment:

Sample Description: Moist, dark olive brown clay with sand

Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	08B48596	~ ~ ~	ing appl pits	18	27	18	9	0	lean clay with sand (CL)

Sample Prepared using the WET method

11% Retained on #40 Sieve

Dry Strength: HIGH Dilentancy: SLOW Toughness: LOW

printed 12/15/2008 12:28:21 PM

Geolesting express

a subsidiary of Geocomp Corporation

Client: Con-Test Analytical Lab

Project: LIMT: 21841

Location: ---

Boring ID: --- Sample Type: bag Tested By: ap Sample ID:08B48596 Test Date: 12/15/08 Checked By: jdt

Project No:

GTX-8731

Depth: --- Test Id: 143534

Test Comment: --

Sample Description: Moist, dark olive brown clay with sand

Sample Comment: -

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	08848596		lean clay with sand	CL	0.6	22.8	76.6

Remarks:

Grain Size analysis performed by ASTM D422, results enclosed

Atterbeg Limits performed by ASTM 4318, results enclosed

	con-test
ALL LILL	ANALYTICAL LABORATORY

Phone: 413-525-2332

Fax: 413-525-6405

Email: info@contestlabs.com

CHAIN OF CUSTODY RECORD

39 SPRUCE ST, 2ND FLOOR EAST LONGMEADOW, MA 01028

Page	 of	

com UMT- 91841

18 8 3 1		www.contestlabs.com									Ĭ	П					# of containers
Company	Name: Ecology & Ec	everoupeent	Telephone	=:(716e) <u>4</u>	084-	806	<u>د</u>	**************************************	E								**Preservation
Address:	Name: Ecology &	روس ٥٠.	Project #	279	<u>4.00</u>	C21	· 01		#								-Cont.Code
	Laucaster NY	14086	Client PO	#	er well				tou A		AN/	LYSI	S REC	UES	TED		-Cont. Code:
Attention:	Rich wat			LIVERY (c				· · · · · · · · · · · · · · · · · · ·									G=glass
	•	- 011-0		□EMAIL 🖊	MEB	SITE	CLIENT		200								P⇒plastic
Campled	ocation: Former Bright	CNLEGGI.	Fax # :		00				3								ST≘sterile
Sampleo	Ву: 13/45	***************************************	Email:				GIS K	ŒV	Class								V= vial
	Provided? (For Billing purposes)	State Form Required?		ON THER	DEP.	Ē	u dio r	CE T	6								S≔summe çan T≃tedlar bag
yes	proposal date	Oyes Ono	·	ampled		,		·	S				ŀ				O=Other
Field ID	Sample Description	Lab # OFB	Start Date/Time	Stop Date/Time	Comp- osite	Grab	*Matrix Code	Conc.	3								1 1 1 1
**************************************	VM-01-GT (8-9)	48595	12/3/08	१८५०	<u></u>		5	· L	1								Client Comments:
	VM-04-GT (3-4)	48596	le	0930	U		2	٧	V								_
								····									
·																	
				~									- Anna Anna Anna Anna Anna Anna Anna Ann				
		÷															
																	-
Laboratory	•	se gezeife zem	les out a	of the	etur	,	Please be high	use the	follov centra	ving codes tion in Mate	to let C	Con-Te	st know le Box:	f a spe	cific sar	nple may	
	tabe ber cli	Mc, W, this					H - High	h; M - N	/lediun	n; L - Low;	C - Cl	ean; U	- Unkno	own			
Relinquish	eddy: (signaturo)	Date/Time:	Turnaı	ound **			Limit I	Requi	reme	ents		rix Coc	***************************************	washaarer	reserva	tion Cod	es:
				7-Day	Regula	itions?					1	ground		- 1	lced	X ==	Na hydroxide
Heceived	by: (signature)	Date/Time: ca33		Othe Othe	Doto E	nhanaa	mont De	olant/D/	ana e	NO YC	1	- waste		1	: HCL		Na thiosulfate
Religiquish	ned by (signature)	Date/Time:	7	SH *	Data E	isitalice	aneni ett	nienn Lif	JT! L	TI MIN	A = a		ng water	- 1	= Methar = Nitric A		
<u></u>	ed by C(signature) tomp 1910		☐ *24-Hr (Specia	l Requi	rements	or DL's	: _		1	oil/solic	d		Sulfurio		
Received I	by: (signature)	Date/Time:	☐ *72-Hr (J *4-Day							SL =	sludge		B =	Sodiun	n bisulfate	9
<u>.</u>			* Require I	ab approva	l						0 = 0	other		0 =	Other_		

** TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS

INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT.

AIHA, NELAC & WBE/DBE Certified

UPS Next Day Air® UPS Worldwide Express™

Shipping Document

DOCUMENTS ONLY

SATURDAY DELIVERY

J217 951 426 O

2700-D(21,01

716-684-8060 TELEPHONE

RICK WATT

ELOLOGY and EnvironMENT

108 PLEASANT LIEW DR.

NORG

UPS Next Day Air®

RECEIVING 413-525-233

CON-TEST LAB

39 SPRUCE ST

EAST LONG-MEADOW MA

J217 951 426 D

EXTREMELY URGE

UPS Next Day Air.

United Parcel Service, Lou

39 SPRINE ST EAST LONGNEADOW MA

010191120 1/07 S

United Parcel Service, Louisville, KY

≝3Close Window

Tracking Summary

Tracking Numbers

Tracking Number:

J217 9514 260

Type:

Package

Status:

Delivered

Delivered On:

12/04/2008 9:33 A.M.

Delivered To:

EAST LONGMEADOW, MA, US

Signed By:

MURPHY

Service:

NEXT DAY AIR

Tracking results provided by UPS: 12/04/2008 2:33 P.M. ET

NOTICE: UPS authorizes you to use UPS tracking systems solely to track shipments tendered by or for you to UPS for delivery and for no other purpose. Any other use of UPS tracking systems and information is strictly prohibited.

EAClose Window

Copyright @ 1994-2008 United Parcel Service of America, Inc. All rights reserved.

www.contestlabs.com

Do all samples have the proper pH: Yes

Sample Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

> P: 413-525-2332 F: 413-525-6405

CLIENT NAME:	Ecology En	<u> </u>	RECEIN	/ED BY: KA	DAT	LE: 19/1/08
1) Was the chain(s) of comparison of compari	eustody relinquis with the sample ain: n good condition ain: es received: ect from Sampling ved in Temperate blank samples for the la	hed and signs? ? Ure Compliant to filter?	Ambient nce of (2:	t In Co-6°C)? Yes	No No No No No No No No No No No No No N	j · C
6) Are there any sample	s "On Hold"?			Yes	Store	ed where:
7) Are there any RUSH of	or SHORT HOLDI	NG TIME sa	mples?	Yes	i (No)	
Who was notified		Date	Tin	ne		
8) Location where samp	oles are stored:	19B				samples? Yes No taiready approved
				Client Signa	iture:	
	Conta	iners se	ent in	to Con-Te	est	
	# of	containers				# of containers
1 Liter Amber				8 oz cle	ar jar	
500 mt. Amber				4 oz cle	ar jar	
250 mL Amber (8oz a	mber)			2 oz cles	ar jar	
1 Liter Plastic				Other gla	ıss jar	
500 mL Plastic				Plastic Bag	/ Ziploc	12
250 mL plastic				Air Cass	sette	
40 mL Vial - type listed	below			Brass Sle	eeves	
Colisure / bacteria be	ottle			Tube	s	
Dissolved Oxygen bo	ottle			Summa	Cans	
Flashpoint bottle				Regula	tors	
Encore				Othe	Γ	£
aboratory Comments:						
10 mL vials: # HCI	# Metha	inol				
# Bisulfate	# DI Wa	iter		Time and D	ate Frozen: _	
# Thiosulfat	e l	Inpreserved				

No

N/A

G SVE Pilot Test Results

Aztech Technologies, Inc.

EXPERTISE YOU CAN COUNT ON

5 McCrea Hill Road Ballston Spa New York 12020 Phone: 518-885-5383 Fax: 518-885-5385 www.aztechtech.com

February 4, 2009

Mr. Rick Watt Ecology & Environment, Inc. 368 Pleasant View Drive Lancaster, NY 14086

Re: Soil Vapor Extraction Pilot Test Data Former Bright Outdoors Site Johnson City, NY 13790

Dear Mr. Watt:

Aztech Technologies, Inc., (Aztech), on behalf of Ecology & Environment, Inc. (E&E), performed soil vapor extraction (SVE) pilot testing at the former Bright Outdoors Site, Johnson City, Broome County, New York. The SVE Pilot testing was conducted on December 15, and 16, 2008.

INTRODUCTION

The purpose of the pilot testing was to determine the feasibility of installing an SVE system to assist in remediating soil vapor concentrations of 1,1,1-trichloroethane and trichloroethene previously identified in the vapor underneath the building at the site. The testing was conducted on one (1) pilot test well (well SVE-1) by applying a wellhead vacuum to the tested well and monitoring the induced vacuum within the vadose zone.

Site Description

The property is a light industrial facility that included (but may have not been limited to) tenants such as a manufacturer of outdoor furniture and equipment that uses PVC pipe and vinyl polyester, a soft drink bottling company, and a wire screen manufacturer. The site is primarily level and the majority of it is paved.

Site Geology and Current Conditions

According to documentation provided by E&E, Inc., the site is underlain by shale bedrock which in turn is overlain by relatively impermeable glacial till. Above the till are relatively permeable glacial kame and outwash deposits. The uppermost deposits consist mainly of a poorly sorted mixture of disturbed, highly compacted sand and silt with beds of silt and clay. These overburden deposits are estimated to extend to depths between 60 and 100 feet below ground surface (bgs), with groundwater present at depths of approximately 10 to 15 feet bgs.

SVE PILOT TESTING

SVE pilot testing was performed in order to evaluate the response of unsaturated soil to the extraction of soil vapor via the tested well. The data obtained from the pilot testing can be used to develop a design and layout for an SVE remedial system at the site.

Methodology

Pilot testing was conducted utilizing a SVE blower to facilitate soil vapor extraction. The pilot testing involved the withdrawal of soil vapors from the vadose zone, and monitoring the vacuum induced into the subsurface via nearby monitoring wells and/or monitoring points.

Pilot testing was conducted on December 15 and 16, 2008. The SVE pilot test was initiated first by connecting the blower to a two (2)-inch inside diameter (ID) test well, and connecting magnehelic gauges to selected monitoring wells/observation points. The maximum vacuum achieved at the tested well was determined (60-inches H_2O), and the test conducted in four (4) steps by adjusting the wellhead vacuum applied to the well. This was accomplished by the introduction of bleed air into the intake side of the SVE blower. During the first step of the test (10 inches H_2O), the vacuum induced into the subsurface was monitored at selected observation points until stabilization had occurred. Subsequent to stabilization, the vacuum at the test well was increased to 20 inches (H_2O), and the second step of the test conducted until stabilization had occurred. Subsequent to stabilization, the vacuum at the test well was increased to 35 inches (H_2O), and the third step of the test conducted until stabilization had occurred. Lastly, after stabilization, the vacuum at the test well was increased to 60 inches (H_2O), and the final step was conducted until stabilization had occurred.

Pilot Test Results

Upon completing the pilot testing, the data for the SVE test were reduced and graphically represented by plotting the vacuum recorded in the monitoring wells and/or monitoring points versus their distance from the test well. These Vacuum Distribution Plots are prepared for each step of the test. A best-fit line is drawn through the data in order to determine the effective radius of influence (ROI) at that wellhead vacuum. The effective ROI is considered to be that distance where 0.1-inches of vacuum (H_2O) can be induced into the subsurface at a particular wellhead vacuum.

The data collected from the first step of the test (**Figure 1**; wellhead vacuum of 10 inches H_2O) a indicated that an induced vacuum of 0.1 inches H_2O was not recorded at any of the monitoring points (i.e., ROI less than five [5] feet).

The vacuum distribution plot presented as **Figure 2** (attached) represents data collected from the second step of the pilot test (wellhead vacuum of 20 inches H_2O). The vacuum distribution plot presented in Figure 2 indicates that a measurable induced vacuum in excess of 0.1 inches H_2O in well VM-04, located 30 feet from the tested well. This suggests an observed ROI of approximately 38 feet under this test configuration.

The vacuum distribution plot presented as **Figure 3** (attached) represents data collected from the third step (wellhead vacuum of 35 inches H_2O) of the pilot test. The data collected from this test configuration is similar to the distribution of vacuum observed in the second step of the SVE test. The vacuum distribution plot presented in Figure 3 indicates that a measurable induced vacuum of 0.07 inches H_2O at a distance of 80 feet from the tested well in VM-05 and 0.36 inches H_2O in well VM-04, 30 feet from the tested well. As such, the ROI is estimated at approximately 45 feet under this test configuration.

The vacuum distribution plot presented as **Figure 4** (attached) represents data collected from the fourth step (wellhead vacuum of 60 inches H_2O) of the test. The vacuum distribution plot presented in Figure 4 indicates that a measurable induced vacuum of 0.1 inches H_2O was recorded as far as 80 feet from the tested well in VM-05. However, the observed vacuum recorded in well VM-04 (0.065 inches H_2O), approximately 30 feet from the tested well, suggests a heterogeneous response at this wellhead vacuum. As such, the ROI is estimated at approximately 54 feet.

The field notes collected during the pilot testing are attached. Additionally, the field data has been compiled and reduced into the attached vacuum distribution plots.

If you have any questions or comments regarding the enclosed information, please feel free to contact the undersigned at (518) 885-5383.

Sincerely,

AZTECH TECHNOLOGIES, INC.

for

Paul M. Shannon Senior Geologist

Reviewed By:

Randolph Hoose

Senior Hydrogeologist

Attachments:

FIGURES

PILOT TEST FIELD DATA SHEETS

FIGURES

Data Collected During SVE Pilot Test Former Bright Outdoors Site Johnson City, NY

tep 1:

Tested Well: SVE-1 Vacuum @ Wellhead: 10 " H₂O Flow Rate from well (2"): 501 fpm @ 44.5°F Bleed Air (2"): 3,892 fpm Humidity: 87.1%

Observed Vacuum	0.030 0.040 0.015 0.010
ر Distance	5.0 10 30 80
Observation Point	VM-01 VM-02 VM-03 VM-04

ROI < 5 ft 80 Distance from Tested Well Former Bright Outdoors Site Johnson City, NY Vacuum Distribution Plot Well SVE-1 @ 10" H₂O FIGURE 1 0.00 0.90 0.80 0.70 09.0 0.50 0.40 0:30 0.20 Observed Vacuum (inches H_2O)

Test Date: December 15, 2008

100

FIGURE 2

				-	100	
		ROI ~38 ft	\	•	. 80	
ion Plot 0" H ₂ O doors Site , NY					. 09	Distance from Tested Well (feet)
Vacuum Distribution Plot Well SVE-1 @ 20" H ₂ O Former Bright Outdoors Site Johnson City, NY					40	Distance fro (f
		•	•	-	- 50	
S	000	3 6	0 1	06.0	0	
		l Vacuum S H ₂ O)	observed ehoni)			

Test Date: December 16, 2008

1	
7	
Q	
의	
Step	

Tested Well: SVE-1 Vacuum @ Wellhead: 20 " H₂O Flow Rate from well (2"): 1,061 fpm @ 39.5°F Bleed Air (2"): 3,750 fpm Humidity: 47.4%

Observation Point	Distance	Observed Vacuum
VM-01 VM-03 VM-04	5.0 15 30	1.800 1.100 0.900 0.160
CO-IMI	200	0.030

FIGURE 3

Vacuum @ Wellhead: 35 " H₂O Tested Well: SVE-1

Flow Rate from well (2"): 1,657 fpm @ 39.5°F

5.0

4.0

3.0

Observed Vacuum (inches H_2O)

2.0

0.1

Bleed Air (2"): 3,046 fpm Humidity: 45.1%

Observed Vacuum	4.20 2.40 2.00 0.36 0.07
n Distance	5.0 10 15 30 80
Observation Point	VM-01 VM-02 VM-03 VM-04 VM-05

ROI ~45 ft Former Bright Outdoors Site Johnson City, NY Vacuum Distribution Plot Well SVE-1 @ 35" H₂O

Test Date: December 16, 2008

100

80

Distance from Tested Well

20

0.0

(feet)

FIGURE 4

					100
		ROI ~ 54 ft			08
tion Plot 0" H ₂ O doors Site , NY					40 60 Distance from Tested Well (feet)
Vacuum Distribution Plot Well SVE-1 @ 60" H ₂ O Former Bright Outdoors Site Johnson City, NY					40 Distance fro
L.					50
0 2	0.0	(O ₂ H sər	(inch	0.0	0
	ı	ed Vacuum			

Observation Point	າ Distance	Observed Vacuum
VM-01	2.0	09:9
VM-02	10	3.80
VM-03	15	3.20
VM-04	30	0.065
VM-05	80	0.105

Vacuum Distribution Plot Well SVE-1 @ 60" H ₂ O Former Bright Outdoors Site Johnson City, NY	6.0	nches H ₂ O) ROI ~ 54 ft			O 20 40 80 80 Bistance from Tested Well (feet)
	w	erved Vacuu	osdO		
Tested Well: SVE-1 Vacuum @ Wellhead: 60 " H ₂ O Flow Rate from well (2"): 5,732 fpm @ 43.1°F		Observed Vacuum	6.60 3.80	3.20 0.065	0.105
SVE-1 Vellhead: 60 om well (2"):): 2,172 tpm .6%	Distance	5.0	15 30	80
Tested Well: SVE-1 Vacuum @ Wellhead: 60 " H ₂ O Flow Rate from well (2"): 5,732	Bleed Air (2"): 2,172 fpm Humidity: 41.6%	Observation Point	VM-01 VM-02	VM-03 VM-04	VM-05

Test Date: December 16, 2008

Step 4: Tested Well: SVE-1

PILOT TEST FIELD DATA SHEETS

Pilot Test Data Vapor Extraction

ART

Site: EBright Outdoors

Blower Make/Model: R61360 - 50

Pipe Diameter - Manifold: 2"

Date: 12/15/08

Max Vacuum @ Wellhead: W Hao

Pipe Diameter – Bleed Air: 2

Tested Well:

5.20 5.70

8:01

Well Diameter: 2"

Pipe Diameter – Effluent: 2 "

ſ	Distance	· .	,	,	,_ 1	- /	000	
	From Tes	ted Well	5	10'	15	30'	B 0'	
	Well ID		VM 01	<u>VM 02</u>	<u>VM 03</u>	VM 04	VM 05	
١			<u> </u>			01	Observed	Observed
	Step 1:	Start	Φbserved <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>
ی ا	Vac @ Wellhead:	5" H30	3:52 021	U	Ö	0	6	
•		501	47.04	0	0	0	0	
	Air Speed: Bleed Alf	3893	4:30 ,04	1025	: de 36	0	0	
	Air Speed: Effluent:		4:50 , 0.3	, DHE, 04	1015	· U1	0	
	PHDIIMANIA	87.1%	510 002	0	0	0	<u>a</u>	
	Step 1:	End	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>
١	Vac @ Wellhead:	10" Hzo						
	Airspeed Manifold: 🗸	656						
	Air Speed: 7 Bleed Air:	Jung 46,2°F						
	Air Speed:							
lz	Effluent:	87.5%						
0	Step 2:	Start	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>
	Vac @ Wellhead:	20"1130	8:10 :85	, 58	.43	,09	.02	
	Airspeed Manifold:	421	83 1.40	.90	.10	, 11	102	
	Air Speed: *Bleed Air:	3435	840 2.0	1,25	1.0	,17	. 035	
	Air Speed: Effluent:		8 55 2.0	1.24	.95	.17	104	
ni D	PHOMINIA	47.92%	410 Addio a	1,10	.40	, 16	.03	
13	Step 2:	End	21180		20.0	3.7	, -3	
اڙ	Vac @ Wellhead:	20"H20	411 80	1.10	,90	, 16	.03	
	Airspeed Manifold:	1061						, , , en , , , en , , = en , , = ;
	Air Speed: 1 Bleed Air:	150 395°F						March 25 To the State of State
	Air Speed: Effluent:	7-			The second secon			
	PID Hand	, 47.4%) !					

Pilot Test Data Vapor Extraction

ART

Site: EBALGIT OUTDOOKS

Blower Make/Model: R61300 - 50

Pipe Diameter - Manifold: 2"

Date: 12/16/08

Max Vacuum @ Wellhead:

Pipe Diameter – Bleed Air: 2"

Tested Well:

Well Diameter: 2"

Pipe Diameter – Effluent: 3 "

١	Distance	ا سسر	10	15	30'	80'	
١	From Tested Well						
-	Well ID	VM01	VM 02	VM 03	VM 04	<u>VM · OY</u>	
١							
	Step 3: Start	Observed	Observed	Observed	Observed	Observed <u>Vacuum</u>	Observed Vacuum
.		<u>Vacuum</u>	Vacuum • • •	<u>Vacuum</u>	Vacuum		<u>vacuum</u>
١	Vac @ 135 "H ₂ 0	450 440	2.60	220	·37	.05	and the second s
Ì	Airspeed 1365	l l	2.60	3 36	,37	.08	
	Manifold: 1363	10:05 4.20	J. 00	330	And the second s		is the common of the transfer of the same of the common of
	Air Speed: 12mf 40.3 F Bleed Air: 3565	10 20 4 20	2.60	200	036	.075	
	Air Speed:				CHARLES AND DESCRIPTION OF THE PARTY.		_{رو} په و منتاز <u>داد . مو</u> داکه ای منافقت اندروان و نموند بودنون و و
	Effluent:	10:35 4.20	2.60	04000 200	The state of the s	.08	
	#10 11 miles 46.5%	10:50 4.20	3.40	2.00	ا کی ا	1070	
1	Step 3: End	Observed	Observed	Observed	Observed	Observed	Observed
	111.00	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	Vacuum	<u>Vacuum</u>	<u>Vacuum</u>
	Vac @ 35 "H ₂ ¢	11.05 4.20	2.40	200	136	,070	و بریدند مطالب این این افراد مشاد می واقع و اوی و اوی و
	Airspeed Manifold: 1657			Page 1		general and the second of the	and the second
	Air Speed: Tank 59.5% Bleed Air: 30/16						
	Bleed Air: 3016	4 \					
	Air Speed: Effluent:				:		
	PHD Jun 1 45.1%	1					
		Observed	Observed	Observed	Observed	Observed	Observed
•		<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>
_	Vac @ Wellhead:	11.40 7.40	4.20	3.50	. 75	6/3	AND THE STREET
	Airspeed		ng Lagan Amada ang Angaran lair at a Afficia ang Angaran ang Angaran ang Angaran ang Angaran ang Angaran ang A Angaran ang Angaran ang An	A STATE OF THE PARTY OF THE PAR		Michigan and the Company of the Comp	
	Manifold: Titof	11:35		The product of the state of the	and the second s		
	Air Speed: Trent Bleed Air:	13:10		A second of the	and the control of th		,
	Air Speed:	935					•
	Effluent:		A processor of the control of the co		Minima service and a service and a service of	AND THE PART OF TH	results to the fit
	PHD Harding						
	Step 4: End	13:55	a depart				
	Vac @	120				<u> </u>	A CANADA AND DESCRIPTION OF THE PARTY OF THE
•	Wellhead:	The same of the sa	E THE PROPERTY FOR SHEET AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS	· · · · · · · · · · · · · · · · · · ·	COMMENT AND THE PROPERTY OF THE PARTY AND TH		
	Airspeed Manifold:						
	Air Speed: Ent	1					\
	Bleed Air:						
	Air Speed:						
	Effluent:	┨					
	PID Hundly		<u></u>	<u> </u>		L	L

1.35

E110 Time 11:13

Time Start 1125

> ENd T.MC

Pilot Test Data Vapor Extraction

Site: EBRIGHT OUTBORS

Blower Make/Model: R61360-50

Pipe Diameter - Manifold: 2"

Date: 12/11/64

Max Vacuum @ Wellhead: 60"Hz6

Pipe Diameter - Bleed Air: 2

Tested Well:

Well Diameter:

Pipe Diameter – Effluent: 2 "

Distance From Te Well ID	ested Well	5' VM 01	10' V1102	15 ' V103	30' YM 04	80' 4M65	
Step 1	Start	Observed	Observed	Observed	Observed Vacuum	Observed Vacuum	Observed Va <u>cuum</u>
Vac @		Vacuum (3.50)	Vacuum	<u>Vacuum</u>	 :		<u> </u>
Wellhead:	60"110.	1:35 8	5.20	4.40	,90	<u> 17</u>	
Airspeed	5922	1.40 820	480	4 00	185	015	
Manifold: Name of the Manifold: Name of the			CONTRACTOR SANDARDON CONTRACTOR C	2 4/	.80	.13	
Bleed Air:	1746	1:53 7 80	4.40	3 50			and the same of th
Air Speed: Effluent:		2:10 746	4.20	3.60	,75	115	
	44.2%	3:25 6.80	4.00	3.40	,70	115	
	End	Observed Vacuum	Observed Vacuum	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>	Observed <u>Vacuum</u>
Vac @		2.40 6.60	3.50	3.20	165	.105	
Wellhead: Airspeed	75.72.)	6.60		- X		<u></u>	
Manifold:	5/25						
Air Speed: Bleed Air:	7172 43.1° 10						,
Air Speed:		1 (ļ				
Effluent:	41.6%	-					
PID Hand		Observed	Observed	Observed	Observed	Observed	Observed
Step 2:	Start	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>	<u>Vacuum</u>
Vac @ Wellhead:						1	
Airspeed		1	ŀ				:
Manifold: Air Speed							
Bleed Air:							
Air Speed	:						
Effluent: PID		-					
	End						
Step 2: Vac @	Ellu						
Wellhead		1					
Airspeed Manifold:							
Air Speed	:	1					
Bleed Air:		_					
Air Speed Effluent:	i:						
PID		1					

Start 1:10