
Soil / MW installedia / GW Soil gas

Phase II Environmental Sice Investigation

for

Dover Electronics

Prepared By:

Hagopian Engineering Associates

28 Alice Street

Binghamton, NY 13964

(507) 772-0012

Algori 29, 1991

Phase II Environmental Site Investigation

for

Dover Electronics

Prepared By:
Hagopian Engineering Associates
28 Alice Street
Binghamton, NY 13904
(607) 772-0012

			\$ • •
			·

Table of Contents

Phase II Environmental Site Investigation Report	. 1 -	
Conklin - DEM-East Test Results		
Conklin Test Bore Location Drawings and Monitoring Well Locations Following	Page	47
Kirkwood-North Test Results	48 -	98
Kirkwood-North Boring Locations Following	Page	98

CONKLIN - DEM-EAST TEST RESULTS

CONKLIN - DEM-EAST

Oil Sample	Sampling Date:	12/18/90	EPA 8080			
Water Sample A.E.J.K Extraction by soil gas	Sampling Date:	12/18/90	EPA 601			
Soil Gas SG-G	Sampling Date:	12/18/90	EPA 8010			
Soil Gas M-X	Sampling Date:	4/3/91	EPA 8010			
Soil Sample MW1	Sampling Date:	4/29/91	EPA 5030/8010			
MW3 Soil	Sampling Date:	4/30/91	EPA 5030/8010			
MW2 Soil	Sampling Date:	5/3/91	EPA 5030/8010			
MW4 Soil	Sampling Date:	5/6/91	EPA 5030/8010			
MW1 Water	Sampling Date:	6/4/91	EPA 8270			
MW1 Water	Sampling Date:	6/4/91	EPA 8240			
MW2 Water	Sampling Date:	6/4/91	EPA 8240			
MW3 Water	Sampling Date:	6/4/91	EPA 8240			
MW4 Water	Sampling Date:	6/4/91	EPA 8240			
Trip Blank	Sampling Date:	6/4/91	EPA 8240			
Empire Soils MW1 - MW4 Boring Logs April 29, 1991						
Monitoring Well Development Log June 5. 1991						
Map of Monitoring Well Locations 1 - 4						
Map of Soil Gas Samples and Water Samples						

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

Report Date:

1/17/91

Lab Log Number:

N902938

LABORATORY REPORT

Client: Hagopian Engineering Associates

28 Alice Street

Binghamton, New York 13901

Site: Dover Station "G"

DEM East

Sample Description: Oil

Date of Sample: 12/18/90 by D. Wright, received 12/19/90

METHOD

Sample was dissolved in hexane, prepared for gas chromatography by method 3620 (SW-846), and analyzed by gas chromatography as per EPA 8080.

EPA 8080 PC.Bs

ND (<0.5 mg/L)

ND - None detected greater than detection limits noted.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. . CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Associates

Report Date: 1/23/91 Sampling Date: 12/18/90

Site: Dover, Conklin Avenue

Sampled By: P.S.

Analysis Date: 12/18/90 N902937

Samples: (Water

Lab Log No:

Purgeable Halocarbons (By EPA 601)

		I	T	
CAS No.	Compound	A *	E	J *
75-27-4	bromodichloromethane	ND	ND	ND
75-25-2	bromoform	ND	ND	ND
74-83-9	bromomethane	ND	2120	ND
56-23-5	carbon tetrachloride	ND	ND	ND
108-90-7	chlorobenzene	ND	ND	ND
75-00-3	chloroethane	ND	***	ND
100-75-8	2-chloroethylvinylether	ND	NĐ	ND
67-66-3	chloroform	ND	ND	13.4
74-87-3	chloromethane	ND	**	**
124-38-1	dibromochloromethane	ND	ND	ND
95-50-1	1,2-dichlorobenzene	ND	ND	ND
541-73-1	1,3-dichlorobenzene	ND	ND	ND
106-46-7	1,4-dichlorobenzene	ND	ND	ND
75-71-8	dichlorodifluoromethane	ND	ND	ND
75-34-3	1,1-dichloroethane	18.1	1740	5.8
107-06-2	1,2-dichloroethane	ND	ND	ND
75-35-4	1,1-dichloroethene	ND	604.	16.8
156-60-5	trans-1,2-dichloroethene	ND	64.8	3.0
78-87-5	1,2-dichloropropane	ND	ND	ND
10061-01-5	cis-1,3-dichloropropene	ND	ND	ND
10061-01-6	trans-1,3-dichloropropene	ND	ND	ND
75-09-2	methylene chloride	ND	ND	ND
79-34-5	1,1,2,2-tetrachloroethane	ND	ND	ND
127-18-4	tetrachloroethene	2.9	18.1	3.8
71-55-6	1,1,1-t ric hloroethane	74.8	2870	95.7
79-00-5	1,1,2-trichloroethane	ND	ND	ND
79-01-6	trichloroethene	481.	958.	4260
75-69-4	trichlorofluoromethane	149.	ND	ND
75-01-4	vinyl chloride	ND	(16,400)	8.2

All concentrations are reported as ug/L.

ND - None detected greater than detection limit of 1.0 ug/L.

***- Coeluted with Bromdmethane.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health

Department ELAP program;

John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

H. Duce

^{* -} Analyzed oh 1/4/91. ** - Coeluted with Vinyl Chloride.

100 TOMPKINS ST. • CORTLAND, N.Y. 13045

607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Associates

Report Date: 1/23/91 Sampling Date: 12/18/90

Site: Dover, Conklin Avenue

Sampled By: P.S.

Analysis Date: 1/4/91 Lab Log No: N902937

Samples: Water

Purgeable Halocarbons (By EPA 601)

CAS No.	Compound	K		
75-27-4	bromodichloromethane	ND		
75-25-2	bromoform	ND		
74-83-9	bromomethane	ND		
56-23-5	carbon tetrachloride	ND		
108-90-7	chlorobenzene	ND		ĺ
75-00-3	chloroethane	ND		·
100-75-8	2-chloroethylvinylether	.ND	, .	
67-66-3	chloroform	ND	•	
74-87-3	chloromethane	*		
124-38-1	dibromochloromethane	ND		
95-50-1	1,2-dichlorobenzene	ND		
541-73-1	1,3-dichlorobenzene	ND		ļ
106-46-7	1,4-dichlorobenzene	ND		
75-71-8	dichlorodifluoromethane	ND		
75-34-3	1,1-dichloroethane	79.7		
107-06-2	1,2-dichloroethane	ND		
75-35-4	1,1-dichloroethene	4.6		
156-60-5	trans-1,2-dichloroethene	ND		
78-87-5	1,2-dichloropropane	ND		
10061-01-5	cis-1,3-dichloropropene	ND		
10061-01-6	trans-1,3-dichloropropene	ND		
75-09-2	methylene chloride	ND		
79-34-5	1,1,2,2-tetrachloroethane	ND		
127-18-4	tetrachloroethene	1.1		
71-55-6	1,1,1-trichloroethane	3.6		
79-00-5	1,1,2-trichloroethane	ND		
79-01-6	trichloroethene	332.		
75-69-4	trichlorofluoromethane	. ND		
75-01-4	vinyl chloride	25.4		
11		I	1	1

All concentrations are reported as ug/L.

ND - None detected greater than detection limit of 1.0 ug/L.

- Coeluted with Vinyl Chloride.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

> John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

A. Duck

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Assoc.

Report Date: 1/23/91 Sampling Date: 12/18/90

Site: Dover, Conklin Avenue

Sampled By: P.S.

•

Samples: Soil Vapor

Analysis Date: 1/4/91 Lab Log No: N902937

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	SG-F 17.2	SG-H 21.1	SG-I 19.9	SG-L 19.9
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	97.9	34.4	29.6	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	14.0	240.	ND	ND
1,1,1-trichloroethane	1120	236.	249.	126.
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	1270	ND	193.	195.

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 10 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

10

ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. + CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Assoc.

Report Date: 1/23/91

Site: Dover, Conklin Avenue

Sampling Date: 12/18/90 Sampled By: P.S.

Analysis Date: 12/18/90

Samples: Soil Vapor

Lab Log No: N902937

Soil Gas Vapor by EPA 8010 Instrumentation

	,			,
Sample Description Air Volume (liters)	SG-G 19.9			
bromodichloromethane	ND			
bromoform	ND			
bromomethane	ND			
carbon tetrachloride	ND	ĺ		
chlorobenzene	ND			
chloroethane	ND		ĺ	
2-chloroethylvinylether	ND			
chloroform	ND			
dibromochloromethane	ND]
1,2-dichlorobenzene	ND			
1,3-dichlorobenzene	ND			
1,4-dichlorobenzene	ND			
dichlorodifluoromethane	ND			
1,1-dichloroethane	106.			
1,2-dichloroethane	ND]
1,1-dichloroethene	ND		į] [
trans-1,2-dichlorothene	ND			j
1,2-dichloropropane	ND			
cis-1,3-dichloropropene	ND			
trans-1,3-dichloropropene	ND	[
methylene chloride	ND]	
1,1,2,2-tetrachloroethane	ND			
tetrachloroethene	34.4			
1,1,1-trichloroethane	1410			
1,1,2-trichloroethane	ND			
trichloroethene	783.			

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 10 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

> John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

Mutt. Duck

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Site: Dover - Conklin Avenue

Samples: Soil Gas Vapor

Report Date: 4/12/91 Sampling Date: 4/03/91

Sampled By: Analysis Date:

D. S. 4/10/91

Lab Log No: N910777

Soil Gas Vapor by EPA 8010 Instrumentation

	r		r · · · · · · · · · · · · · · · · · · ·	,
Sample Description	M	N	0	P
Air Volume (liters)	20.0	20.0	20.0	20.0
		1		
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ИD	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	239.	ND	351.	ND
1,1,1-trichloroethane	681.	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	133.	ND	168.	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Site: Dover - Conklin Avenue

Samples: Soil Gas Vapor

Report Date: 4/12/91 Sampling Date: 4/03/91

Lab Log No:

Sampled By: D. S. Analysis Date: 4/10/91

N910777

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	Q 20.0	R 20.0	S 20.0	T 20.0
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	312.	ND	ND	ND
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program / _

BUCK ENVIRONMENTAL ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: 4/12/91

Site: Dover - Conklin Avenue

Sampling Date: 4/03/91 Sampled By: D. S.

Samples: Soil Gas Vapor

Analysis Date: 4/10/91 Lab Log No: N910777

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	U 20.0	V 20.0	X 20.0	BLANK 20.0
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ИD	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	ND	ND	ND	ND
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. + CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover, Conklin Avenue

Sample: Soil - MW-1 8-10'

Report Date:

6/04/91 Sampling Date: 4/29/91

Sampled By:

P. Shaffner

Analysis Date: 5/06/91 Lab Log No: N910958

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	MW-1	
75-27-4	bromodichloromethane	ND	
75-25-2	bromoform	ND	
74-83-9	bromomethane	ND	
56-23-5	carbon tetrachloride	ND	
108-90-7	chlorobenzene	ND	
75-00-3	chloroethane	ND	
100-75-8	2-chloroethylvinylether	ND	
67-66-3	chloroform	ND	
74-87-3	chloromethane	ND	
124-38-1	dibromochloromethane	ND	
95-50-1	1,2-dichlorobenzene	ND	
541-73-1	1,3-dichlorobenzene	ND	
106-46-7	1,4-dichlorobenzene	ND	
75-71-8	dichlorodifluoromethane	ND	
75-34-3	1,1-dichloroethane	35.4	
107-06-2	1,2-dichloroethane	ND	
75-35-4	1,1-dichloroethene	9.9	
156-60-5	trans-1,2-dichloroethene	ND	
78-87-5	1,2-dichloropropane	ND	
10061-01-5	cis-1,3-dichloropropene	ND	
10061-01-6	trans-1,3-dichloropropene	ND	
75-09-2	methylene chloride	ND	
79-34-5	1,1,2,2-tetrachloroethane	ND	
127-18-4	tetrachloroethene	98.2	
71-55-6	1,1,1-trichloroethane	1,470	
79-00-5	1,1,2-trichloroethane	ND	
79-01-6	trichloroethene	2,070	
75-69-4	trichlorofluoromethane	ND	
75-01-4	vinyl chloride	ND	
Additional	Compound:		
cis 1,2-Dic	thloroethene	511.	

All concentrations are reported as ug/Kg.

ND - None detected greater than detection limit of 1.0 ug/Kg.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

> John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

ohn H. Deuce

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES
DOVER - CONKLIN
MONITORING WELL #1
APRIL 29, 1991

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	SPLIT SPOON READING (PPM)	HNU HDSPCE (PPM)			
0-2	0	0	N/A			
2-4	0	0	N/A			
Open Auger @ 4 ft.	0	N/A	0.5			
4-6	0	0	14			
6-8	0	0	12			
8-10	0	2	30-50			
10-12	0	2-3	30-40			
Open Auger @ 10 ft.	0	N/A	20-30			
12-14	0	0	30-40			
14-16	0	0	30	Poor	spoon	recover
16-18	0	0			_	recover
18-20	0	0.5	4		-	
20-22	0		1			

Notes:

(1) Headspace HNu readings taken in the field after the split spoon sample was obtained and the sample jar was heated

BUCK ENYIRATORIESTAL

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Assoc. Report Date:

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Sample: Water - MW-1 Report Date: 7/24/91

Sampling Date: 6/04/91 Sampled By: P.Shaffner

Analysis Date: 7/12/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8270 GC/MS Methodology)

T			
CAS No.	COMPOUND	DL	RESULT
83-32-9	Acenaphthene	5	ND
208-96-8	Acenaphthylene	5	ND
120-12-7	Anthracene	5	ND
92-87-5	Benzidene	50	ND
56-55-3	Benzo(a)anthracene	10	ND
50-32-8	Benzo(a)pyrene	5	ND
205-99-2	Benzo(b)fluoranthene	5	ND
191-24-2	Benzo(ghi)perylene	5	ND
207-08-9	Benzo(k)fluoranthene	5	ND
65-85-0	Benzoic Acid	50	ND
100-51-6	Benzyl Alcohol	20	ND
85-68-7	Benzyl butyl phthalate	5	ND
111-91-1	Bis(2-chloroethoxy)methane	10	ND
111-44-4	Bis(2-chloroethy1)ether	10	ND
39638-32-9	Bis(2-chloroisopropyl) ether	10	ND
117-81-7	Bis(2-ethylhexyl)phthalate	5	14.0
101-55-3	4-Bromophenylphenyl ether	5	ND
59-50-7	4-chloro-3-methylphenol	5	ND
106-47-8	4-Chloroaniline	20	ND
91-58-7	2-Chloronaphthalene	5	ND
95-57-8	2-Chlorophenol	5	ND
7005-72-3	4-Chlorophenyl phenyl ether	5	ND
218-01-9	Chrysene	5	ND
53-70-3	Dibenzo(a,h)anthracene	5	ND
132-64-9	Dibenzofuran	10	ND

Continued on page 2

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering Assoc. Report Date:

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Sample: Water - MW-1 Report Date: 7/24/91

Sampling Date: 6/04/91
Sampled By: P.Shaffner

Analysis Date: 7/12/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8270 GC/MS Methodology)

CAS No.	COMPOUND	DL	RESULT
95-50-1	1,2-Dichlorobenzene	5	ND
541-73-1	1,3-Dichlorobenzene	5	ND
106-46-7	1,4-Dichlorobenzene	5	ND
91-94-1	3,3'-Dichlorobenzidine	20	ND
120-83-2	2,4-Dichlorophenol	5	ND
84-66-2	Diethyl phthalate	5	ND
105-67-9	2,4-Dimethylphenol	5	ND
131-11-3	Dimethyl phthalate	5	ND
84-74-2	Di-n-butyl phthalate	5	55.0
117-84-0	Di-n-octyl phthalate	5	ND
51-28-5	2,4-Dinitrophenol	50	ND
121-14-2	2,4-Dinitrotoluene	10	ND
606-20-2	2,6-Dinitrotoluene	5	ND
206-44-0	Fluoranthene	5	ND
86-73-7	Fluorene	5	ND
118-74-1	Hexachlorobenzene	5	ND
87-68-3	Hexachlorobutadiene	5	ND
77-47-4	Hexachlorocyclopentadiene	5	ND
67-72-1	Hexachloroethane	5	ND
193-39-5	Indeno(1,2,3-c,d)pyrene	5	ND
78-59-1	Isophorone	5	ND
534-52-1	2-Methyl-4,6-dinitrophenol	25	ND
91-57-6	2-Methylnaphthalene	10	ND
95-48-7	2-Methylphenol	10	ND
106-44-5	4-Methylphenol	10	ND

Continued on page 3

100 TOMPKINS ST. • CORTLAND, N.Y. 13045

NYS ELAP ID 10795 Page 3 of 3

LABORATORY REPORT

Client: Hagopian Engineering Assoc. Report Date:

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Sample: Water - MW-1

607-753-3403

7/24/91

Sampling Date: 6/04/91 Sampled By:

P.Shaffner

Analysis Date: 7/12/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8270 GC/MS Methodology)

[
CAS No.	COMPOUND	DL	RESULT
91-20-3	Naphthalene	5	ND
88-74-4	2-Nitroaniline	50	ND
99-09-2	3-Nitroaniline	50	ND
100-01-06	4-Nitroaniline	50	ND
98-95-3	Nitrobenzene	5	ND
88-75-5	2-Nitrophenol	5	ND
100-02-7	4-Nitrophenol	5	ND
62-75-9	n-Nitrosodimethylamine	5	ND
621-64-7	n-Nitrosodi-n-propylamine	5	ND
86-30-6	n-nitrosodiphenylamine	5	ND
87-86-5	Pentachlorophenol	5	ND
85-01-8	Phenanthrene	10	ND
108-95-2	Phenol	5	ND
129-00-0	Pyrene	5	ND
120-82-1	1,2,4-Trichlorobenzene	5	ND
88-06-2	2,4,5-Trichlorophenol	10	ND
88-06-2	2,4,6-Trichlorophenol	5	ND

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-1

607-753-3403

Report Date: 6/18/91 Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/14/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	ND
74-83-9	bromomethane	10	ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	194
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	7.3
74-87-3	chloromethane	10	22.0
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	2,450
75-35-4	1,1-dichloroethene	5	3,100
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	505
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ND
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ND
127-18-4	tetrachloroethene	5	149
71-55-6	1,1,1-trichloroethane	5	(17,500 /
79-00-5	1,1,2-trichloroethane	5	1200
79-01-6	trichloroethene	5	31,100)
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	400

Continued on Page 2

100 TOMPKINS ST. . CORTLAND, N.Y. 13045

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-1

607-753-3403

Report Date: 6/18/91

Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/14/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT	
71-43-2	benzene	5	ND	
100-41-1	ethylbenzene	5	7.0	
108-88-3	toluene	5	64.0	
1330-20-7	xylenes (m, o, & p)	5	21.0	
67-64-1	acetone	100	ND	
75-15-0	carbon disulfide	100	ND	
78-93-3	2-butanone	100	ND	
108-05-4	vinyl acetate	50	ND	
108-10-1	4-methyl-2-pentanone	50	ND	
591-78-6	2-hexanone	50	ND	
100-42-5	styrene	5	ND	
Additional Compound				
cis 1,2-dich	cis 1,2-dichloroethene est. 30,300			

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

John H. Buck, P.E. Laboratory Director

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. + CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Dover, Conklin Avenue Site: Sample: Soil - MW-2 8-10'

6/04/91 Report Date:

Sampling Date: 5/03/91

Sampled By: M. Hofferbert

Analysis Date: 5/09/91 Lab Log No: N910958

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	MW-2		
75-27-4	bromodichloromethane	ND		
75-25-2	bromoform	ND		
74-83-9	bromomethane	ND		
56-23-5	carbon tetrachloride	ND		
108-90-7	chlorobenzene	ND		
75-00-3	chloroethane	ND		
100-75-8	2-chloroethylvinylether	ND		
67-66-3	chloroform	ND		
74-87-3	chloromethane	ND		
124-38-1	dibromochloromethane	ND		
95-50-1	1,2-dichlorobenzene	ND		
541-73-1	1,3-dichlorobenzene	ND		
106-46-7	1,4-dichlorobenzene	ND		
75-71-8	dichlorodifluoromethane	ND		
75-34-3	1,1-dichloroethane	ND		
107-06-2	1,2-dichloroethane	ND		
75-35-4	1,1-dichloroethene	ND		
156-60-5	trans-1,2-dichloroethene	ND		
78-87-5	1,2-dichloropropane	ND		
10061-01-5	cis-1,3-dichloropropene	ND		
10061-01-6	trans-1,3-dichloropropene	ND		
75-09-2	methylene chloride	ND		
79-34-5	1,1,2,2-tetrachloroethane	ND]	
127-18-4	tetrachloroethene	ND		
71-55-6	1,1,1-trichloroethane	ND		
79-00-5	1,1,2-trichloroethane	ND		
79-01-6	trichloroethene	237.		
75-69-4	trichlorofluoromethane	ND		
75-01-4	vinyl chloride	ND		
Additional				
	chloroethene	1.7		

All concentrations are reported as ug/Kg.

ND - None detected greater than detection limit of 1.0 ug/Kg.

These analyses are certified as conforming, to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

> John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

4 Duce

BUCK ENVIRONMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - CONKLIN MONITORING WELL #2 MAY 3, 1991

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	SPLIT SPOON READING (PPM)	HNu HDSPCE (PPM)
0-2	0	0	160
2-4	0	0	120
4-6	0	1	110
6-8	0	20	90
8-10	0	150	210
10-12	0	80	140
12-14	0	2	100
14-16	0	2	65
16-18	0	10	55
18-20	0	1	25
20-22	0	30	35
22-24	Ò	2	40
24-26	0	0	70
26-28	. 0	6	110
28-29.1	0	0	120
30.1-32	0	0	O
32-33.4	0	0	0

Notes:

⁽¹⁾ Headspace HNu readings taken in the field after the split spoon sample was obtained and the sample jar was heated.

REDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-2

Report Date:

6/18/91

Sampling Date: 6/04/91 Sampled By: P. Shaft P. Shaffner

Analysis Date: 6/14/91

Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	MD
74-83-9	bromomethane	10	. ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	ND
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	ND
74-87-3	chloromethane	10	ND
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	ND
75-35-4	1,1-dichloroethene	5	ND
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	ND
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ND
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ND
127-18-4	tetrachloroethene	5	ND
71-55-6	1,1,1-trichloroethane	5	ND
79-00-5	1,1,2-trichloroethane	5	ND
79-01-6	trichloroethene	5	440
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	ND

Continued on Page 2

100 TOMPKINS ST. • CORTLAND, N.Y. 13045

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-2

607-753-3403

Report Date:

6/18/91

Sampling Date: 6/04/91 Sampled By:

P. Shaffner

Analysis Date: 6/14/91

Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone 2-hexanone	5 5 5 100 100 100 50 50	ND
100-42-5	styrene	5	ND

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover, Conklin Avenue Sample: Soil - MW-3 10-12' Report Date: Sampling Date:

6/04/91 4/30/91

Sampled By:

P. Shaffner

Analysis Date: Lab Log No: 5/06/91 N910958

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	MW-3		
75-27-4	bromodichloromethane	ND		
75-25-2	bromoform	ND		
74-83-9	bromomethane	ND		
56-23-5	carbon tetrachloride	ND		
108-90-7	chlorobenzene	ND		
75-00-3	chloroethane	ND		
100-75-8	2-chloroethylvinylether	ND		
67-66-3	chloroform	ND		
74-87-3	chloromethane	ND		
124-38-1	dibromochloromethane	ND		
95-50-1	1,2-dichlorobenzene	ND		
541-73-1	1,3-dichlorobenzene	ND		
106-46-7	1,4-dichlorobenzene	ND		
75-71-8	dichlorodifluoromethane	ND		
75-34-3	1,1-dichloroethane	ND		
107-06-2	1,2-dichloroethane	ND	1	
75-35-4	1,1-dichloroethene	ND		
156-60-5	trans-1,2-dichloroethene	ND		
78-87-5	1,2-dichloropropane	ND		
10061-01-5	cis-1,3-dichloropropene	ND		
10061-01-6	trans-1,3-dichloropropene	ND		
75-09-2	methylene chloride	ND		
79-34-5	1,1,2,2-tetrachloroethane	ND		
127-18-4	tetrachloroethene	ND		
71-55-6	1,1,1-trichloroethane	ND		
79-00-5	1,1,2-trichloroethane	ND		
79-01-6	trichloroethene	ND		
75-69-4	trichlorofluoromethane	ND	1	
75-01-4	vinyl chloride	ND		
Additional	Compound:			
cis 1,2-Dio	chloroethene	ND		

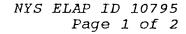
All concentrations are reported as ug/Kg.

ND - None detected greater than detection limit of 1.0 ug/Kg.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

BUCK ENVIRONMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS


100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - CONKLIN MONITORING WELL #3 APRIL 30 AND MAY 1, 1991

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	SPLIT SPOON READING (PPM)	HNU HDSPCE (PPM)	
Tuesday, April 30				
0-2	0	0	1	
2-4	Ō	ő	30-40	
4-6	0	N/A		No spoon recovery
6-8	0	0	40	no spoon recovery
8-10	0	0	30	
10-12	0	0	300	
Open Auger @ 10 ft.	0	N/A	0	
12-14	0	0	80	
14-16	0	N/A	120	••
Open Auger @ 14 ft.	0	Ó	0	
16-18	0	0	0	
18-20	0	0	0	
20-22	0	0	1	
Wednesday, May 1				
22-24	0	0	120	
24-26	0	0	6	
26-28	0	N/A	12	
28-30	0	Ó	30-40	
30-32	0	0	210	
32-32.5	0	0	140	•
34-36	0	0	40	
36-38	0	0	30	
38-39.2	0	0	6	
40-42	0	0	0	
42-44	O	0	3	
44-46	0	0	10	
46-47.8	0	0	50	
48-50	0	0	3	
50-52	0	0	30	
52-54	0	0	30	
Notes:				

Notes:

⁽¹⁾ Headspace HNu readings taken in the field after the split spoon sample was obtained and the sample jar was heated.

100 TOMPKINS ST. · CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-3

Report Date: 6/18/91 Sampling Date: 6/04/91 Sampled By: P. Shaffner

Analysis Date: 6/17/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Hethodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	ND
74-83-9	bromomethane	10	ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	ND
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	ND
74-87-3	chloromethane	10	ND
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	ND
75-35-4	1,1-dichloroethene	5	ND
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	ND
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ND
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ND
127-18-4	tetrachloroethene	5	ND
71-55-6	1,1,1-trichloroethane	5	ND
79-00-5	1,1,2-trichloroethane	5	ND
79-01-6	trichloroethene	5	ND
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	ND

Continued on Page 2

NYS ELAP ID 10795 Page 2 of 2

100 TOMPKINS ST. · CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-3

Report Date: 6/18/91 Sampling Date: 6/04/91

Sampled By: Analysis Date: 6/17/91

P. Shaffner

Lab Log No:

9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6 100-42-5	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone z-hexanone styrene	5 5 5 100 100 100 50 50 50	ND N

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

ACCHEDITED. ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. + CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover, Conklin Avenue

Sample: Soil - MW-4 6-8'

Report Date:

6/04/91 5/06/91

Sampling Date: Sampled By:

M. Hofferbert

5/09/91

Analysis Date: Lab Log No:

N910958

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	MW-4	
75-27-4	bromodichloromethane	ND	
75-25-2	bromoform	ND	
74-83-9	bromomethane	ND	
56-23-5	carbon tetrachloride	ND	
108-90-7	chlorobenzene	ND	
75-00-3	chloroethane	ND	
100-75-8	2-chloroethylvinylether	ND	
67-66-3	chloroform	ND	Į į
74-87-3	chloromethane	ND	
124-38-1	dibromochloromethane	ND	
95-50-1	1,2-dichlorobenzene	ND	j
541-73-1	1,3-dichlorobenzene	ND	
106-46-7	1,4-dichlorobenzene	ND	
75-71-8	dichlorodifluoromethane	ND	
75-34-3	1,1-dichloroethane	ND	
107-06-2	1,2-dichloroethane	ND	
75-35-4	1,1-dichloroethene	ND	
156-60-5	trans-1,2-dichloroethene	ND	
78-87-5	1,2-dichloropropane	ND	
10061-01-5	cis-1,3-dichloropropene	ND	
10061-01-6	trans-1,3-dichloropropene	ND	
75-09-2	methylene chloride	ND	
79-34-5	1,1,2,2-tetrachloroethane	ND	
127-18-4	tetrachloroethene	ND	
71-55-6	1,1,1-trichloroethane	ND	
79-00-5	1,1,2-trichloroethane	ND	
79-01-6	trichloroethene	ND	}
75-69-4	trichlorofluoromethane	ND	
75-01-4	vinyl chloride	ND	
Additional	Compound:		
cis 1,2-Dichloroethene		ND	

All concentrations are reported as ug/Kg.

ND - None detected greater than detection limit of 1.0 ug/Kg.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

bhutt. Ducce John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - CONKLIN MONITORING WELL #4 MAY 6 and 7, 1991

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	SPLIT SPOON READING (PPM)	HNU HDSPCE (PPM)	
Monday, May 6				
0-2	0	0	.0	
2-4	0	0	0	
4-6	0	0	0	
6-8	0	0	7	
8-10	O	0	3	
10-12	0	0	0	Negative HNu readi
12-14	0	0	0	Negative HNu readi
14-16	0	0		Negative HNu readi
16-18	0	0	0	Negative HNu readi
Tuesday, May 7				~
18-20	0	0	0	
Notes:				

⁽¹⁾ Headspace HNu readings taken in the field after the spli spoon sample was obtained and the sample jar was heated.

NYS ELAP ID 10795 Page 1 of 2

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover - Conklin Site

Sample: Water - MW-4

Report Date: 6/18/91 Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/17/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	ND
74-83-9	bromomethane	10	ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	ND
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	ND
74-87-3	chloromethane	10	ND
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	ND
75-35-4	1,1-dichloroethene	5	ND
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	ND
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ND
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ND
127-18-4	tetrachloroethene	5	ND
71-55-6	1,1,1-trichloroethane	5	ND
79-00-5	1,1,2-trichloroethane	5	ND
79-01-6	trichloroethene	5	ND
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	ND

Continued on Page 2

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY

13901

Site: Dover - Conklin Site Sample: Water - MW-4

607-753-3403

Report Date:

6/18/91

Sampling Date: 6/04/91 Sampled By:

P. Shaffner

Analysis Date: 6/17/91

Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6 100-42-5	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone 2-hexanone styrene	5 5 5 100 100 100 50 50 50	ND N

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

CREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

NYS ELAP ID 10795 Page 1 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY 13901 Site: Dover-Conklin & Kirkwood

Sample: Trip Blank

Report Date: 6/18/91 Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/17/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	ND
74-83-9	bromomethane	10	ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	ND
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	ND
74-87-3	chloromethane	10	ND
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	ND
75-35-4	1,1-dichloroethene	5	ND
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	ND
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ИD
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ND
127-18-4	tetrachloroethene	5	ND
71-55-6	1,1,1-trichloroethane	5	ND
79-00-5	1,1,2-trichloroethane	5	ND
79-01-6	trichloroethene	5	ND
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	ND

Continued on Page 2

100 TOMPKINS ST. · CORTLAND, N.Y. 13045

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY

13901 Site: Dover-Conklin & Kirkwood

Sample: Trip Blank

607-753-3403

Report Date:

6/18/91

Sampling Date: 6/04/91

P. Shaffner

Sampled By:

Analysis Date: 6/17/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6 100-42-5	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone 2-hexanone styrene	5 5 5 100 100 100 50 50 50	ND

All concentrations are reported as ug/L. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

SUBSURFACE INVESTIGATION

DOVER ELECTRONICS

BINGHAMTON, NEW YORK DEM-EAST CONKLIN AVE

FOR

Hagopian Engineering Associates
Binghamton, New York

JOB NO. GD-91-051 MAY 1991

May 28, 1991

Hagopian Engineering Associates 28 Alice Street Binghamton, NY 13904

Attention: John K. Hagopian, II, P.E.

Reference: Dover Electronics

Conklin Avenue

Binghamton, New York

Gentlemen:

Enclosed is the Subsurface Investigation which is the complete record of the work our firm has performed for the above referenced project. This investigation consisted of drilling and installing one (1) 4" PVC monitoring well and three (3) 2" PVC monitoring wells. The boring layouts and utility clearances were performed by you.

Hollow stem augers were used to advance the borings and to stabilize the boreholes while split-spoon samples were collected from the underlying soils. Sampling was performed in accordance with the Standard Penetration Test. This is explained as well as other terms and symbols in the Key to Subsurface Logs, which is included with this report.

Borings were advanced to depths ranging from 20.0 to 54.0 feet. The recovered soil samples were retained by you. The information recorded on the driller's field logs is presented in the enclosed report.

Water level readings in the borings were recorded under the circumstances noted. These are short-term observations and may not reflect the true groundwater conditions. Groundwater levels vary due to seasonal fluctuations and prevailing climatic conditions.

Hagopian Engineering Associates Page 2 May 28, 1991

If you have any questions or if we can be of future service, please call me or contact Marvin L'Amoreaux at this office.

Sincerely,

EMPIRE SOILS INVESTIGATIONS, INC.

Steven J Laramee

Central Division Drilling Manager

SJL:sdw
Enc. (3)
xc: file

GENERAL INFORMATION & KEY TO SUBSURFACE LOGS

The Subsurface Logs attached to this report present the observations and mechanical data collected by the driller at the site, supplemented by classification of the material removed from the borings as determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Subsurface Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the project. The evaluation must consider all the recorded details and their significance relative to each other. Often analyses of standard boring data Indicate the need for additional testing or sampling procedures to more accurately evaluate the subsurface conditions. Any evaluation of the contents of this report and the recovered samples must be performed by Professionals. The information presented in the following defines some of the procedures and terms used on the Subsurface Logs to describe the conditions encountered.

- 1. The figures in the Depth column defines the scale of the Subsurface Log.
- 2. The sample column shows, graphically, the depth range from which a sample was recovered. See Table 1 for a description of the symbols used to signify the various types of samples.
- 3. The Sample No. is used for identification on sample containers and/or Laboratory Test Reports.
- 4. Blows on Sampler shows the results of the "Penetration Test", recording the number of blows required to drive a split spoon sampler into the soil. The number of blows required for each six inches of penetration is recorded. The first 6 inches of penetration is considered to be a seating drive. The number of blows required for the second and third 6 inches of penetration is termed the penetration resistance, N. The outside diameter of the sampler, the hammer weight and the length of drop are noted at the bottom of the Subsurface Log.
- 5. Blows on Casing shows the number of blows required to advance the casing a distance of 12 inches. The casing size, the hammer weight and the length of drop are noted at the bottom of the Subsurface Log. If the casing is advanced by means other than driving, the method of advancement will be indicated in the Notes column or under the Method of Investigation at the bottom of the Subsurface Log.
- 6. All recovered soil samples are reviewed in the laboratory by an engineering technician, geologist or geotechnical engineer, unless note otherwise. The visual descriptions are made on the basis of a combination of the driller's field descriptions and observations and the sample as received in the laboratory. The method of visual classification is based primarily on the Unified Soil Classification (ASTM D 2487-83) with regard to the particle size and plasticity. (See Table No. II) Additionally, the relative portion, by weight, of two or more soil types is described for granular soils in accordance with "Suggested Methods of Test for Identification of Soils" by D. M. Burmister, ASTM Special Technical Publication 479, June 1970. (See Table No. III) The description of the relative soil density or consistency is based upon the penetration records as defined on Table No. IV. The description of the soil moisture is based upon the relative wetness of the soil as recovered and is described as dry, moist, wet and saturated. Water introduced in the boring either naturally or during drilling may have affected the moisture condition of the recovered sample. Special terms are used as required to describe materials in greater detail; several such terms are listed in Table V. When sampling gravelly soils with a standard two inch diameter split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing and samplers blows or through the "action" of the drill rig as reported by the driller.
- 7. The description of the rock shown is based on the recovered rock core and the driller's observations. The terms frequently used in the description are included in Table VI.
- 8. The stratification lines represent the approximate boundary between soil types and the transition may be gradual. Solid stratification lines are based on the driller's field observations.
- 9. Miscellaneous observations and procedures noted by the driller are shown in this column, including water level observations. It is important to realize the reliability of the water level observations depends upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the boring may have influenced the observations. The ground water level typically will fluctuate seasonally. One or more perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or water observation wells.
- 10. The length of core run is defined as the length of penetration of the core barrel. Core recovery is the length of core recovered divided by the core run. The RQD (Rock Quality Designation) is the total pieces of NX core exceeding 4 inches in length divided by the core run. The size core barrel used is also noted.

DATE								
1.	0.6	F	MPI	CI.	F			
STARTED 5-1		SOIL	ŝ investigat	IONS	Ne supeup	FACE LOG	HOLE NO	B-175
FINISHED5-1					SUBSUR	FACE LOG	SURF. ELEV	325.6
SHEET1 OF							G. W. DEPTH _	See Note #1
Project					LOCATION		<u> </u>	
					LOCATION _			
F 10 0 810	ws on	i i	T					
] 골 [IPLER	BLOW ON CASING C		SOL	L OR ROCK			
SAMPL SAMPL	12 N	BLOV			SSIFICATION	ļ	гои	ES
0 1 2 2	3 5							
	13 3	10	TOPS				NOTE #1	
· - 	 	15	Brown	SILT.	some Sand, trace cl	lay ·	G.W. at 2.0' co G.W. at 2.2' 24	ompletion
	 	50/.5′	(Moist		,		comple	
		···	Gray S	HALE,	, medium hard weat some fractures	hered,	Run #1, 2.5' -	5.0'
5-11-1-	 		1 11111 00	dued s	l l		95% Recovery 50% RQD	'
1 2 3	4)	(5)	6		\overrightarrow{O}	8 '	Ţ	_
TABLE	TABL	_	O		0	`	9)	(10)
Split Spoon	14	410				TABLE III	· · · · · · · · · · · · · · · · · · ·	
Sample	estir	itification	n of soil type	is mad	le on basis of an the case of fine	The following	g terms are used	in classifying
	graii	ned soil:	s also on basis	of plas	ticity.	solis consist	ing of mixtures on the estimate is ba	of two or more
Shelby Tube	Soil	Туре	Soll Partic	olo Cio		of total samp	ile.	sed on weight
Sample	Boul		> 12"	Je Size		Term	D	
	Cob	_	3" - 12"			"and"		Total Sample 5 - 50
Auger or Test	Grav	el - Coa Fine -			Coarse Grained	"some"		0 - 35
Pit Sample	Sand	- Coar	se #4 - #10		(Granular)	"little" "trace"		0 - 20
	İ	- Medii - Fine				i i	iess ling gravelly soil	than 10
Rock Core	Sill-I		#40 - #20 stic (Granular)			ard split sp	oon, the true c	ercentage of
Nock Core	Clay	-Plastic	(Cohesive)	#200	Fine Grained	gravel is of	ten not recovere nall sampler diar	ed due to the
TABLE IV							nan sampier diar	neter.)
The relative comme						TABLE V		
The relative compact following terms.	mess or c	onsister	ncy is describe	d in ac	cord with the	Varved -	Horizontal unifo	orm layers or
Granular S			Coh	esive S	oils		seams of soil(s).	
Term Blow Loose	s per Foot,		Term	Blov	vs per Foot, N	Layer -	Soil deposit more	than 6" thick.
Firm	< 11 -		Very Soft Soft		< 3	Seam -	Soil deposit less	than 6" thick.
Compact	31 -	50	Medium		3 - 5 6 - 15	Parting -	Soil deposit less	than ¼" thick.
Very Compact	>	51	Stiff Hard		16 - 25	Laminated -	Irregular, horizon	tal and angled
(Large particles in th	e soils will	often si	ignificantly infl	uence	> 26 the blows per	İ	seams and partir	ngs of soil(s).
foot recorded during	the Penetr	ation Te	est.)			İ		.
TABLE VI								
Rock Classification T	Arme							
Terr				ı		Meaning		
Hardness	Soft			Scra	tched by fingernail	Meaning		
	Medium H Hard	lard		Scra	itched easily by pen	knife		
	Very Hard			Scra Can	tched with difficulty not be scratched by	by penknife		
Weathering	Very Weat				ged from the relative		ntegration	
 	Weathered Sound	t		iron	staining, core recov	ery, clay seams,	etc.	
Bedding	Laminated			Nati	ıral breaks in	1-1"		
-	Thin bedd		İ		K Layers	(<1") (1" - 4")		
	Bedded Thick bed	ded				(4" - 12")		1
3	Massive					(12" - 36") (>36")		
/5	و باستان ا					1		ı

(Fracturing refers to natural breaks in the rock oriented at some angle to the rock layers.)

DATE STARTED 4-29-91 SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. FINISHED 4-29-91 G. W. DEPTH See Notes SHEET _____ 1 OF 1 PROJECT __ Dover Electronics Conklin Avenue LOCATION (ESI# GD-91-051) Binghamton, New York BLOWS ON BLOW ON CASING C SAMPLER **SOIL OR ROCK** NOTES CLASSIFICATION Curb Box-FILL: Brown fine-medium GRAVEL, Some Locking Cap-4 5 1.0 Asphalt (Dry) Grout -3 Bentonite 3 6 12 Brown fine-coarse GRAVEL, Some Silt Pellets' 3.1 9 (Wet-Firm) 30 Sand-5 3 9 15 Same 4" PVC_ 9 Riser Pipe 7 8 16 Same Cave In-7.0 14 3Q Sand-Same 10 11 10 21 16 6 8 12 12 24 Same 14 (Moist-Firm) 4" PVC Well 20 40 19 59 Screen,-Brown SILT, Some fine-medium Gravel 0.020" Slot 20 (Moist-Very Compact) 12 18 18 36 Same 15 15. 25 (Moist-Compact) 20 27 26 53 Same 24 (Moist-Very Compact) 13 18 14 32 Same 18 (Moist-Compact) 50 11 11 27 18 45 Same 21 Boring Terminated at 22.0' Groundwater first encountered at 1.0' with augers at 4.0'. 25 Upon completion, no groundwater with augers at 19.0'. N = No blows to drive 2 "spoon 12 "with 140 lb. pin wt. falling 30 "per blow. CLASSIFICATION Visual by C = No blows to drive _____ "casing ____ "with ____ lb. weight falling ____ "per blow. Driller (M.W.) METHOD OF INVESTIGATION 64" I.D. Hollow Stem Augers R/T Form H

DATE HOLE NO. B-2 MUZ STARTED 5-03-91 SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. FINISHED 5-03-91 G. W. DEPTH See Notes __1__or_<u>1</u> SHEET ____ PROJECT Dover Electronics LOCATION ___ Conklin Avenue (ESI# GD-91-051) Binghamton, New York BLOWS ON SAMPLES BLOW ON CASING C SAMPLER SOIL OR ROCK NOTES CLASSIFICATION Curb Box-Locking Cap-12 12 24 GRAVEL 0.25'/ 8 FILL: Brown SAND & GRAVEL, Some Silt (Moist) 6 7 14 8 Brown SILT, Some medium-coarse Sand, little gravel 4 8 13 7 (Moist-Firm) Grout-10 11 16 27 Same 12 12 8 15 27 Same 15 Same 20 23 | 39 16 25 (Moist-Compact) 10 16 20 | 36 Same 24 2" PVC 19 28 63 Same Riser Pipe 8 35 32 (Moist-Very Compact) 42 47 43 90 Same 56 10 6 22 32 54 Same 46 -20-20. 11 55 80 69 149 Same Bentonite 64 Pellets 12 30 64 12 34 Same 10 Sand-40 24. 30 36 66 13 7 Boulder from 29.0' to 30.1' 25 30 3Q Sand-14 49 65 114 Same 53 71 15 15 19100/.1 Same 2" PVC Well 30-Screen,-16 15/4 19 21 Same 0.010" Slot 40 4' 17 53 441001 Same Boulder at 33.7' 35 Boring Terminated at 34.5' 5/6/91-7:30 A.M. Groundwater at 6.0', with augers at 34.0'. N = No blows to drive 2 "spoon 12 "with 140 lb. pin wt. falling 30 "per blow. CLASSIFICATION Visual by Driller (E.C.) C = No blows to drive ____ " casing ___ " with ____ lb. weight falling ___ "per blow. 5" I.D. Hollow Stem Augers METHOD OF INVESTIGATION ____

42

A/T Form H

DATE B-3 STARTED 4-30-91 HOLE NO. ___ SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. ___ FINISHED 5-01-91 G. W. DEPTH See Notes $\frac{1}{OF}$ SHEET ___ Dover Electronics Conklin Avenue PROJECT ... LOCATION _ Binghamton, New York (Boring moved 1.5' South due to (ESI# GD-91-051) BLOWS ON BLOW ON CASING C SAMPLER **SOIL OR ROCK** NOTES CLASSIFICATION Curb Box-GRAVEL 0.25'/ Locking Cap-1.5' Crushed. 12 FILL: Brown SILT, SAND & GRAVEL Stone (Moist) 16 28 11 14 18 Brown SILT, GRAVEL, little sand 3 15 17 16 33 Grout -(Moist-Firm) 15 No Recovery on Sample #3 12 21 29 50 Brown SILT, GRAVEL, little sand 26 (Moist-Compact) 5 12 2d 19 39 Same 26 H10 Same 11 40 59 (Moist-Very Compact) 27 25 Same 28 52 53 6 15 23 38 Same 20 (Moist-Compact) 23 27 29 56 Brown SILT, Some to little 32 medium-coarse Sand & Gravel 10 10 45 51 96 (Moist-Very Compact) 62 Same 20 2" PVC 11 49 491106 Same Riser Pipe 58 19 40 12 20 21 Brown SILT, Some Gravel, little 30 fine-coarse Sand (Moist-Compact) 13 17 24 27 51 Same 28 14 26 37 44 81 Same 53 (Moist-Very Compact) 8 22 36 Same 43 (Moist-Compact) -30 16 8 74 23 51 Same 83 (Moist-Very Compact) Same 17 51100/.1' 18 25 42 Same 35 26 (Moist-Compact) 36.0 Same 19 150/.4 Bentonite Pellets 20 22 98 100/.2 Same 10 Sand 130 Sand-N = No blows to drive 2 "spoon 12" with 140 lb. pin wt. falling 30 "per blow. CLASSIFICATION Visual by C = No blows to drive _____ casing ____ with ____ lb. weight falling ____ "per blow. Driller (E.C.) 5" I.D. Hollow Stem Augers METHOD OF INVESTIGATION __

43

R'T Form H

DATE STARTED ____4-30-91 HOLE NO. _____B-3 ~~~~_3 SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. _ FINISHED ____ 5-01-91 SHEET _____2_OF___2 G. W. DEPTH See Notes PROJECT Dover Electronics LOCATION Conklin Avenue (ESI# GD-91-051) Binghamton, New York [Boring moved 1.5' South due to Fence] BLOWS ON SAMPLER SOIL OR ROCK 12/ NOTES CLASSIFICATION 12 18 8 14 18 32 Brown SILT, trace fine sand, gravel 24 ____ (Moist-Compact) 22 25 37 60 97 Brown-Grey, thin bedded SILT with 115 2" PVC Well fine sand & clay lenses Screen,_ 4 17 36 53 (Moist to Wet-Very Compact) 0.010" Slot 29 Same 24 48 46 60 1 06 Same .00 .31 25 4 15 24 Same 16 (Moist to Wet-Compact) 3Q Sand-26 4 8 14 Same 17 27 11 22 37 59 Brown-Grey SILT 37 (Moist-Very Compact) Boring Terminated at 54.0' 55 Groundwater first encountered at 42.0'. 5-1-91 Groundwater encountered at 49.5', 60with augers at 54.0'. N = No. blows to drive 2 "spoon 12" with 140 lb. pin wt. falling 30 "per blow. CLASSIFICATION Visual by C = No blows to drive_____" casing____" with_____lb. weight falling_____"per blow. ____Driller (E.C.) METHOD OF INVESTIGATION ___ 5" I.D. Hollow Stem Augers R-T Form H

L. Wy DATE HOLE NO. _____B-4 STARTED _ 5-06-91 FINISHED 5-06-91 SOILS INVESTIGATIONS INC. SUBSURFACE LOG SURF. ELEV. ___ G. W. DEPTH <u>See Notes</u> 1_OF_1 SHEET ____ Dover Electronics Conklin Avenue LOCATION __ (ESI# GD-91-051) Binghamton, New York BLOWS ON Q BLOW ON CASING C SAMPLER SOIL OR ROCK NOTES CLASSIFICATION Curb Box-12 / 18 =0 = Locking Cap TOPSOIL 0.25' 3 8 1 1 5 1.0 POSSIBLE FILL: Brown SAND & GRAVEL, 10 Grout-2.3 Some Silt (Moist-Firm) 9 11 15 26 Bentonite Pellets 3.5 15 1Q Sand 4.0 Same 22 34 5.0 2" PVC 5 (Wet-Compact) 16 Riser Pipe 7.0' 16 30 15 45 14 Brown SILT, Some Sand & Gravel 8 15 27 12 (Moist-Compact) 12 Same (Moist-Firm) 2" PVC Well Same 10 26 18 44 Screen, -0.010" Slot (Moist-Compact) 18 8 51 78 Same 66 (Moist-Very Compact) 18 73120 15. Same 55 40 52 90142 Same 3Q Sand-108 11 40 80 Same 32 20 Boring Terminated at 20.0' 7:15 A.M. Groundwater at 3.9', with augers at 14.0'. 4:15 P.M. Groundwater at 13.3 -25 with augers at 14.0'. N = No blows to drive ___2 ___ spoon 12 ____ with 140 _ lb. pin wt. falling 30 ___ per blow. CLASSIFICATION Visual by Driller (E.C.) METHOD OF INVESTIGATION: 5" I.D. Hollow Stem Augers

8/T Form H

<u>Time</u>	Entry
0900	On site, Dan and Phil from Buck Labs set up and ready to begin development
1030	Completed development and sampling for MW #4 Conklin site, began decon.
1045	Began development of NW #2, well ran dry, deconned.
1115	Began development of MW #3
1200	Broke for lunch, ran MW #3 dry, deconned.
1230	Back on site, samples taken from #2 and #3, began development of MM #1.
1400	Developed MW #1, samples taken.
1515	Secured site, lost approximately 1/2 hr 45 min. with gas pump problems. Hoved to Kirkwood site.
1645	Developed MW #1, Kirkwood site. Samples taken.

	Techn	ical Well Data		
Well desig.	Conductivity	Water Level	Well Depth	Temp C.
C-MW #1 C-MW #2 C-MW #3 C-MW #4 K-MW #1	463 1050 301 766 471	4.26' 18.03' 29.44' 3.87' 38.27'	14.9' 33.1' 47.74' 15.3' 53.9'	6.7 8.1 11.8 21.5 13.3

C - Conkilln Site

K - Kirkwood Site

<u>Conklin - DEM-East</u>

Test Bore Location Drawing

Monitoring Well Locations

KIRKWOOD-NORTH TEST RESULTS

KIRKWOOD-NORTH

Soil Gas K1 - K13, KS1 - KS7 trip blank Sampling Date 1/16/91, EPA 8010

Soil Gas K14 - K22, KS8 - KS10 Sampling Date 4/4/91, EPA 8010

MW1 soil sample Sampling Date 5/8/91. EPA 5030/8010

MW1 water sample Sampling Date 6/4/91 EPA 8240

Water sample from catch basin Sampling Date 6/13/91 EPA 5030/8010

BK6 - BK15 HNu sampling Sampling Date 6/13/91

Soil sample BK15 Sampling Date 6/13/91 EPA 8240

Empire Soils MW1 boring log May 7 - 9, 1991

Monitoring well development log June 5, 1991

Parratt Wolff boring logs BK6 - BK15

HEA field notes BK-6 - BK15

Map of soil gas borings and MW location

ENVIRONMENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: 1/2

1/29/91

Site: Dover

Sampling Date: Sampled By:

1/16/91 P.S.

Sample: Soil Gas Vapor

Analysis Date: Lab Log No:

1/23/91 N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	K-1 19.9	K-2 19.9	K-3 19.5	K-4 19.5
bromodichloromethane	ND	ND	ND	ND
bromoform ·	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ИD	ND	ND	ND
chloroethane	ИD	ИD	ND	ND
2-chloroethylvinylether	ND	ИD	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ИD	ИD	ИD	ND
tetrachloroethene	17,200	64,400	32,700	7,200
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ИD	ND	ND	ND
trichloroethene	70.0	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program/ /

John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

4. Duca

100 TOMPKINS ST. · CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: 1/29/91

1/16/91

P.S.

Site: Dover Sampling Date: Sampled By:

Sample: Soil Gas Vapor

Analysis Date: 1/23/91 Lab Log No: N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	K-5 20.9	K-6* 20.0	K-7 19.9	K-8 20.5
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ИD	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ИD	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ИD	ИD	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ИD	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	46,800	7,480	263,000	65,300
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	ND	ИD	147	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

* - Sampled 1/17/91

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program,

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date:

1/29/91

Site: Dover

Sampling Date: Sampled By:

1/16/91 P.S.

Sample: Soil Gas Vapor

Analysis Date:

1/23/91

Lab Log No:

N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description	K-9	K-10	K-11	K-12
Air Volume (liters)	11.8	19.9	19.5	19.5
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	·ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND -	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	-ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ИD	ИD	ND
trans-1,2-dichlorothene	ND	ИD	ND	ND
1,2-dichloropropane	ИD	ND	ND	ИD
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	46,200	36,900	70,200	17,600
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ИD	ND	ND	ND
trichloroethene	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

ohn H. Dece

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date:

1/29/91

Site: Dover

Sampling Date: Sampled By:

1/17/91 P.S.

Sample: Soil Gas Vapor

methylene chloride

tetrachloroethene

trichloroethene

1,1,1-trichloroethane

1,1,2-trichloroethane

1,1,2,2-tetrachloroethane

Analysis Date: Lab Log No: 1/23/91 N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	K-13 19.9	KS-1 19.9	KS-2 19.9	KS-3 19.5
bromodichloromethane	ND	ND	ND	ЙD
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	, ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ИD
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ИD	ND	ND	ИD
trans-1,3-dichloropropene	ND	ND	ND	ND
· · · · · · · · · · · · · · · · · · ·			1	ti (

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

ND

ND

ND

ND

ND

809

ND

ND

12,100

ND

ND

ND

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

ND

ND

16,200

ND

ND

ND

ND

ND

ND

ND

ND

1,890

ENAMED AND ENTRY TO BE STATE OF THE STATE OF

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: 1/29/91

•

Sampling Date: 1/17/91

Site: Dover Sampled By:

P.S.

Sample: Soil Gas Vapor

Analysis Date: Lab Log No: 1/23/91 N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	KS-5 19.9	KS-6 19.9	KS-7 19.9	BLANK* 20.0
bromodichloromethane	ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND ··	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	2,260	9,660	8,050	ND
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

* - Sampled 1/16/91

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

BUUM EANORENTAL

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: 1/29/91

Site: Dover

Sampling Date: Sampled By:

1/17/91

P.W.

price. Dover

Analysis Date:

1/23/91

Sample: Soil Gas Vapor

Lab Log No:

N910206

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description	BLANK		
Air Volume (liters)	20.0		
bromodichloromethane	ND		
bromoform	ND		1
bromomethane	ND		
carbon tetrachloride	ND		
chlorobenzene	ND		
chloroethane	ND		
2-chloroethylvinylether	ND		
chloroform	ND		1
dibromochloromethane	ND]
1,2-dichlorobenzene	ND		
1,3-dichlorobenzene	ИD		
1,4-dichlorobenzene	ND		
dichlorodifluoromethane	ND	Ï	1
1,1-dichloroethane	ND		ĺ
1,2-dichloroethane	ND		1
1,1-dichloroethene	ND		
trans-1,2-dichlorothene	ND		
1,2-dichloropropane	ND		
cis-1,3-dichloropropene	ND		·
trans-1,3-dichloropropene	ND		
methylene chloride	ND		
1,1,2,2-tetrachloroethane	ND		
tetrachloroethene	ND		
1,1,1-trichloroethane	ND		
1,1,2-trichloroethane	ND		
trichloroethene	ND		

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

BUUB EXHAPANAERTAL:

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date:

4/12/91

Site: Dover - Kirkwood

Sampling Date: Sampled By:

4/04/91 D. S.

Samples: Soil Gas Vapor

Analysis Date: Lab Log No: 4/10/91 N910777

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	K-14 20.0	K-15 20.0	K-16 20.0	K-17 20.0
bromodichloromethane	ND	ИД	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ИD	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ND	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ND	ND	ND	ND
1,4-dichlorobenzene	ND	ND	ND	ND
dichlorodifluoromethane	ND	ND	ND	ND
1,1-dichloroethane	ND	ND	ИD	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	. ND
trans-1,2-dichlorothene	ND	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	4,440	512.	133.	800.
1,1,1-trichloroethane	ND	ИD	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program./

TITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Report Date: Sampling Date: 4/12/91 4/04/91

Site: Dover - Kirkwood

Sampled By:

D. S.

Samples: Soil Gas Vapor

Analysis Date: Lab Log No:

4/10/91 N910777

Soil Gas Vapor by EPA 8010 Instrumentation

Sample Description Air Volume (liters)	K-18 20.0	K-19 20.0	K-20 20.0	K-21 20.0
bromodichloromethane	ND	ND		
bromoform	ND	ND	ND	ND
bromomethane	ND ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND.
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ЙD	ND	ND ··	ND
chloroform	ND ND	ND	ND	ND
dibromochloromethane	ND ND	ND ND	ND	ND
1,2-dichlorobenzene	ND	ND ND	ND	ND
1,3-dichlorobenzene	ND	1	ND	ND
1,4-dichlorobenzene	ND	ND ND	ND	ND
dichlorodifluoromethane	ND ND	ND ND	ND	ND
1,1-dichloroethane	ND ND	1 1	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene		ND	ND	ИD
trans-1,2-dichlorothene	DИ ND	ND	ND	ND
1,2-dichloropropane	ND ND	ND	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene		ND	ND	ND
methylene chloride	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	ND	ND	ND	ND
	483.	ND	106.	1,100
1,1,1-trichloroethane	ND	ND	ND	ND
1,1,2-trichloroethane trichloroethene	ND	ND	ND	ND
cricuroroecueue	ND	ND	ND	ND

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program!

BUCIA ENVIRONMENTAL:

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: Hagopian Engineering

Site: Dover - Kirkwood

Samples: Soil Gas Vapor

Report Date: Sampling Date: Sampled By: 4/12/91 4/04/91 D. S.

Analysis Date: Lab Log No: 4/10/91 N910777

Soil Gas Vapor by EPA 8010 Instrumentation

	1	ii	1	
Sample Description	K-22	KS-8	KS-9	KS-10
Air Volume (liters)	20.0	20.0	20.0	20.0
			<u> </u>	
bromodichloromethane	. ND	ND	ND	ND
bromoform	ND	ND	ND	ND
bromomethane	ND	ND	ND	ND
carbon tetrachloride	ND	ND	ND	ND
chlorobenzene	ND	ND	ND	ND
chloroethane	ND	ND	ND	ND
2-chloroethylvinylether	ND	ND	ND	ND
chloroform	ND	ND	ND	ND
dibromochloromethane	ND	ИD	ND	ND
1,2-dichlorobenzene	ND	ND	ND	ND
1,3-dichlorobenzene	ИD	ИD	ND	ND
1,4-dichlorobenzene	ND	ИD	ND	ND
dichlorodifluoromethane	ND	ИD	ND	ND
1,1-dichloroethane	ND	ND	ND	ND
1,2-dichloroethane	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	ND	ND
trans-1,2-dichlorothene	ND	ИD	ND	ND
1,2-dichloropropane	ИD	ИD	ND	ND
cis-1,3-dichloropropene	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ИD	ND
methylene chloride	ИD	ND	ND	ND
1,1,2,2-tetrachloroethane	ND	ND	ND	ND
tetrachloroethene	2,800,000	ND	68.	185.
1,1,1-trichloroethane	DN	ND	ND	ND
1,1,2-trichloroethane	ND	ND	ND	ND
trichloroethene	152.	ND	ND	ND
	L	<u></u>	L	L

All concentrations are reported as ug/m3.

ND - None detected greater than detection limit of 50 ug/m3.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

BUUL CABORATORIES IND.:

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

28 Alice Street

Binghamton, NY 13901

Site: Dover, Kirwood Sample: Soil - MW-1 4-6' Report Date: Sampling Date: 6/04/91 5/08/91 Hagopian

Sampled By:
Date Received:
Analysis Date:

Hagopian 5/08/91 5/22/91

Lab Log No: N910595

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	MW-1		
75-27-4	bromodichloromethane	ND		
75-25-2	bromoform	ND		
74-83-9	bromomethane	ND.		
56-23-5	carbon tetrachloride	· ND		
108-90-7	chlorobenzene	ND		
75-00-3	chloroethane	ND		
100-75-8	2-chloroethylvinylether	ND		
67-66-3	chloroform	ND	· ·	
74-87-3	chloromethane	ND		
124-38-1	dibromochloromethane	ND		
95-50-1	1,2-dichlorobenzene	ND		
541-73-1	1,3-dichlorobenzene	ND		
106-46-7	1,4-dichlorobenzene	ND		
75-71-8	dichlorodifluoromethane	ND		
75-34-3	1,1-dichloroethane	ND		
107-06-2	1,2-dichloroethane	ND		
75-35-4	1,1-dichloroethene	ND -		
156-60-5	trans-1,2-dichloroethene	ND		
78-87-5	1,2-dichloropropane	ND		
10061-01-5	cis-1,3-dichloropropene	ND		
10061-01-6	trans-1,3-dichloropropene	ND		
75-09-2	methylene chloride	ND		
79-34-5	1,1,2,2-tetrachloroethane	ND		
127-18-4	tetrachloroethene	372.		
71-55-6	1,1,1-trichloroethane	ND		
79-00-5	1,1,2-trichloroethane	ND		
79-01-6	trichloroethene	ND		
75-69-4	trichlorofluoromethane	ND		
75-01-4	vinyl chloride	ND		
Additional	Compound:			
	chloroethene	ND		

All concentrations are reported as ug/Kg.

ND - None detected greater than detection limit of 1.0 ug/Kg.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

BUCI ENYIPHOMESTAL

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y., 13045 607-753-3403

LABORATORY NOTES DOVER - KIRKWOOD MONITORING WELL #1

SPLIT SPOON DEPTH	HNu BKGRD	HNu HDSPCE
0.5-2	0	11
2-4	0	35
4-6	0	90
6-8	0	0
8-10	0	. 0
10-12	0	0
12-14	0	0
14-16	0	0
16-18	0	0
18-20	0	0
20-22	0	0
22-24	0	0
24-26	0	0
26-28	0	0
28-30	0	0
30-32	0	0
32-34	0	0
34-36	0	0
36-38	0	0
38-40	0	0
40-42	0	0
42-44	0	0
44-46	0	0
46-48	0	0
48-50	0	0
50-52	0	0
52-54	0	0

Note: (1) Samples collected by Hagopian Engineering on May 7 and 8, 1991.

(2) Headspace HNu readings taken by Buck Environmental Laboratories on May 9, 1991, in the laboratory.

100 TOMPKINS ST. · CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY

13901 Site: Dover - Kirkwood Site

Sample: Water - MW-1

Report Date: 6/18/91 Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/17/91 Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	5	ND
75-25-2	bromoform	5	ND
74-83-9	bromomethane	10	ND
56-23-5	carbon tetrachloride	5	ND
108-90-7	chlorobenzene	5	ND
75-00-3	chloroethane	10	ND
100-75-8	2-chloroethylvinylether	10	ND
67-66-3	chloroform	5	ND
74-87-3	chloromethane	10	ND
124-38-1	dibromochloromethane	5	ND
95-50-1	1,2-dichlorobenzene	5	ND
541-73-1	1,3-dichlorobenzene	5	ND
106-46-7	1,4-dichlorobenzene	5	ND
75-34-3	1,1-dichloroethane	5	ND
75-35-4	1,1-dichloroethene	5	ND
107-06-2	1,2-dichloroethane	5	ND
156-60-5	trans-1,2-dichloroethene	5	ND
78-87-5	1,2-dichloropropane	5	ND
10061-01-5	cis-1,3-dichloropropene	5	ND
10061-02-6	trans-1,3-dichloropropene	5	ND
75-09-2	methylene chloride	5	ND
79-34-5	1,1,2,2-tetrachloroethane	5	ИD
127-18-4	tetrachloroethene	5	48.0
71-55-6	1,1,1-trichloroethane	5	ND
79-00-5	1,1,2-trichloroethane	5	ND
79-01-6	trichloroethene	5	8.0
75-69-4	trichlorofluoromethane	5	ND
75-01-4	vinyl chloride	10	ND

Continued on Page 2

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ASSOCIATES

28 Alice Street

Binghamton, NY · 13901

Site: Dover - Kirkwood Site

Sample: Water - MW-1

Report Date: 6/18/91

Sampling Date: 6/04/91

Sampled By: P. Shaffner

Analysis Date: 6/17/91

Lab Log No: 9106045

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6 100-42-5	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone 2-hexanone styrene	5 5 5 100 100 100 50 50 50	11.0 ND ND ND ND ND ND ND ND

All concentrations are reported as ug/L, ND indicates that no amount greater than the detection Timit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

ELULIA CABORATORIES ING.

100 TOMPKINS ST. . CORTLAND, N.Y. 13045 607-759-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING ASSOCIATES

Report Date: 7/10/91

Sampling Date:

6/13/91

Site: Dover - Kirkwood Sampled By:

D. Shearer 6/26/91

Water - Catch Basin at BK-9 Sample:

Analysis Date: Lab Log No:

9106155

Purgeable Halocarbons (By EPA 5030 and 8010)

CAS No.	Compound	Water	
75-27-4	bromodichloromethane	ND	
75-25-2	bromoform	ИD	
74-83-9	bromomethane	ND	
56-23-5	carbon tetrachloride	ND	
108-90-7	chlorobenzene	ND	
75-00-3	chloroethane	ND	
100-75-8	2-chloroethylvinylether	ND	
67-66-3	chloroform	ND	
74-87-3	chloromethane	ND	
124-38-1	dibromochloromethane	ND	
95-50-1	1,2-dichlorobenzene	ND	
541-73-1	1,3-dichlorobenzene	ND	
106-46-7	1,4-dichlorobenzene	ND	
75-71-8	dichlorodifluoromethane	ND	
75-34-3	1,1-dichloroethane	ND	
107-06-2	1,2-dichloroethane	, ND	
75-35-4	1,1-dichloroethene	ND	
156-60-5	trans-1,2-dichloroethene	ND	
78-87-5	1,2-dichloropropane	ND	
10061-01-5	cis-1,3-dichloropropene	ND	
10061-01-6	trans-1,3-dichloropropene	, ND	
75-09-2	methylene chloride	ND	
79-34-5	1,1,2,2-tetrachloroethane	ND	
127-18-4	tetrachloroethene	10,400	
71-55-6	1,1,1-trichloroethane	ND	
79-00-5	1,1,2-trichloroethane	ND	
79-01-6	trichloroethene	327.	
75-69-4	trichlorofluoromethane	ND	
75-01-4	vinyl chloride	ND	
Additional	Compound:		
1	shloroothono	1 760	

cis-1,2-dichloroethene

1,760

All concentrations are reported as ug/L)

ND - None detected greater than detection limit of 10.0 ug/L.

These analyses are certified as conforming to generally accepted laboratory practices and requirements of the New York State Health Department ELAP program.

> John H. Buck, P.E. Laboratory Director NYS ELAP CERT 10795

Duce

BUUD EANARANAENTAL:

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK6

SPLIT SPOON DEPTH	HNU BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)
0-2'	0	0.5	0 .
2-4'	0	0.2	2.0
4-6'	0	0.2	0.2
6-8'	0	8.2	2.8
8-10'	0.2	0.2	0.2
10-12'	0.2	0.2	0.2
12-14'	0	0	0

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK7

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)	
0-2'	0.1	0.1	0	
2-4'	0.1	0.1	0	
4-6'	0.1	0.1	0.3	Slight odor
6-8'	0.1	0.1	0	
8-10'	0.1	0.1	0	

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK8

SPLIT		HNu	HNu
SPOON	HNu	SPLIT	COOKED
DEPTH	BKGRD	SPOON	SAMPLE
	(PPM)	(PPM)	(PPM)
		•	•*
0-2'	0.1	0.1	0.4
2-4'	0.1	0.1	0
4-5'	0.1	0.1	0

Note: Bore hole BK8 was terminated at 5' after striking an underground electrical conduit.

BUCH ENVIRONMENTAL

ACCHEDITED ENVIRONMENTAL ANALYBIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK8A

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)
4-5.3'	0.1	0.1	0.3
6-6.3'	0.1	0.1	0.3
8-10'	0.1	0.1	0

Note: Bore hole BK8 Λ was a continuation of bore hole BK8.

SPLIT		HNu	HNu
SPOON	HNu	SPLIT	COOKED
DEPTH	BKGRD	SPOON	SAMPLE
	(PPM)	(PPM)	(PPM)
0-2'	0.2	0.2	0.2
2-4'	0.2	0.2	0.2
4-6'	0.2	0.2	0.2
6-8'	0.2	0.2	0.2
8-10'	0.2	0.2	0.2

BUUM EANORATOMESTAL

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK10

HNu BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)
0.2	0.2	1.8
0.2	0.2	42
0.2	4.2	88
0.2	2.2	23
0.2	2.8	4.4
0.2	1.8	33
0.2	0.2	3.8
0.2	1.2	5.6
0.2	0.8	1.4
0.2	0.2	0.8
0.2	0.2	0.8
0.2	0.8	2
0.2	0.2	0.2
	BKGRD (PPM) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	HNU SPLIT BKGRD (PPM) (PPM) 0.2 0.2 0.2 0.2 0.2 2.2 0.2 2.2 0.2 2.8 0.2 2.8 0.2 1.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8

SPLIT		HNu	HNu
SPOON	HNu	SPLIT	COOKED
DEPTH	BKGRD	SPOON	SAMPLE
	(PPM)	(PPM)	(PPM)
0-2'	0.3	0.3	3.0
2-4'	0.2	0.2	15.6
4-6'	0.2	3.0	40
6-8'	0.2	0.7	14
8-10'	0.2	0.7	2.2
10-12'	0.2	0.3	0.4
12-14'	0.2	0.3	0.3
14-16'	0.2	0.2	8.4

BUUL ENBORATOMENTAL:

ACCREDITED ENVIRONMENTAL ANALYSIS

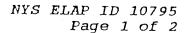
100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK12

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)
0.5-2'	0.2	0.2	0.2
2-4'	0.2	0.2	0.2
4-6'	0.2	0.2	0.2
6-8'	0.2	0.2	0.2
8-10'	0.2	0.2	0.2

SPLIT		HNu	HNu
SPOON	HNu	SPLIT	COOKED
DEPTH	BKGRD	SPOON	SAMPLE
	(PPM)	(PPM)	(PPM)
0-2'	0.2	0.2	0.2
2-4'	0.2	0.2	0.2
4-4.8'	0.2	0.2	0.2
6-6.9'	0.2	0.2	0.2
8-9'	0.2	0.2	0.2

ENSURED TABLE TO BE THE STALE


ACCREDITED ENVIRONMENTAL ANALYBIB

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

FIELD NOTES DOVER - KIRKWOOD BORE HOLE BK14

SPLIT SPOON DEPTH	HNu BKGRD (PPM)	HNU SPLIT SPOON (PPM)	HNU COOKED SAMPLE (PPM)
0.5-2'	0.2 No recove	0.2	0.2
4-4.9' 6-7.3' 8-10'	0.2 0.2 0.2	0.2 0.2 0.2	0.2 0.2 0.2

SPLIT		HNu	HNu
SPOON	HNu	SPLIT	COOKED
DEPTH	BKGRD	SPOON	SAMPLE
	(PPM)	(PPM)	(PPM)
0-2'	0.2	0.2	0,2
2-4'	0.2	0.2	0.2
4-6'	0.2	0.2	0.2
6-8'	0.2	0.2	0.2
8-10'	0.2	0.2	0.2

ACCHEDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. • CORTLAND, N.Y. 13045 607-753-3403

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

ACCOUNTED

Report Date: 7/22/91

ASSOCIATES

Sampling Date: 6/13/91 Sampled By: D. Shearer

Site: Dover - Kirkwood Sample: Soil - BK-15 4'-6'

Analysis Date: 6/22/91 Lab Log No: 9106155

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
75-27-4	bromodichloromethane	10	ND
75-25-2	bromoform	10	ND
74-83-9	bromomethane	20	ND
56-23-5	carbon tetrachloride	10	ND
108-90-7	chlorobenzene	10	ND
75-00-3	chloroethane	20	ND
100-75-8	2-chloroethylvinylether	20	ND
67-66-3	chloroform	10	ND
74-87-3	chloromethane	20	ND
124-38-1	dibromochloromethane	10	ND
95-50-1	1,2-dichlorobenzene	10	ND
541-73-1	1,3-dichlorobenzene	10	ND
106-46-7	1,4-dichlorobenzene	10	ND
75-34-3	1,1-dichloroethane	10	ND
75-35-4	1,1-dichloroethene	10	ND
107-06-2	1,2-dichloroethane	10	ND
156-60-5	trans-1,2-dichloroethene	10	ND
78-87-5	1,2-dichloropropane	10	ND
10061-01-5	cis-1,3-dichloropropene	10	ND
10061-02-6	trans-1,3-dichloropropene	10	ND
75-09-2	methylene chloride	10	ND
79-34-5	1,1,2,2-tetrachloroethane	10	ND
127-18-4	tetrachloroethene	10	ND
71-55-6	1,1,1-trichloroethane	10	ND
79-00-5	1,1,2-trichloroethane	10	ND
79-01-6	trichloroethene	10	ND
75-69-4	trichlorofluoromethane	10	ND
75-01-4	vinyl chloride	20	ND

Continued on Page 2

ACCREDITED ENVIRONMENTAL ANALYSIS

100 TOMPKINS ST. · CORTLAND, N.Y. 13045 607-753-3403

NYS ELAP ID 10795 Page 2 of 2

LABORATORY REPORT

Client: HAGOPIAN ENGINEERING

Report Date:

7/22/91

ASSOCIATES

Sampling Date: 6/13/91

Site:

Dover - Kirkwood Sample: Soil - BK-15 4'-6' Sampled By: Analysis Date: 6/22/91

D. Shearer

Lab Log No:

9106155

TARGET COMPOUND LIST (EPA 8240 GC/MS Methodology)

CAS No.	Compound	DL	RESULT
71-43-2 100-41-1 108-88-3 1330-20-7 67-64-1 75-15-0 78-93-3 108-05-4 108-10-1 591-78-6 100-42-5	benzene ethylbenzene toluene xylenes (m, o, & p) acetone carbon disulfide 2-butanone vinyl acetate 4-methyl-2-pentanone z-hexanone styrene	10 10 10 200 200 200 100 100 100	ND ND ND ND ND ND ND ND ND ND ND ND ND N

All concentrations are reported as ug/kg. ND indicates that no amount greater than the detection limit (DL) was detected.

These analyses are certified as conforming to generally accepted laboratory practices, the analytical method cited, requirements of the New York State Health Department ELAP program, and the New York State Department of Environmental Conservation.

> John H. Buck, P.E. Laboratory Director

SUBSURFACE INVESTIGATION DOVER ELECTRONICS KIRKWOOD, NEW YORK NORTH

FOR

Hagopian Engineering Associates Binghamton, New York

> JOB NO. GD-91-053 MAY 1991

May 28, 1991

Hagopian Engineering Associates 28 Alice Street Binghamton, NY 13904

Attention: John K. Hagopian, II, P.E.

Reference: Dover Electronics

Kirkwood, New York

Gentlemen:

Enclosed is the Subsurface Investigation which is the complete record of the work our firm has performed for the above referenced project. This investigation consisted of drilling and installing one (1) 2" PVC monitoring well. The boring layout and utility clearances were performed by you.

Hollow stem augers were used to advance the boring and to stabilize the borehole while split-spoon samples were collected from the underlying soils. Sampling was performed in accordance with the Standard Penetration Test. This is explained as well as other terms and symbols in the Key to Subsurface Logs, which is included with this report.

The boring was advanced to a depth of 54.0 feet. The recovered soil samples were retained by you. The information recorded on the driller's field log is presented in the enclosed report.

Water level readings in the boring were recorded under the circumstances noted. These are short-term observations and may not reflect the true groundwater conditions. Groundwater levels vary due to seasonal fluctuations and prevailing climatic conditions.

Hagopian Engineering Associates Page 2 May 28, 1991

If you have any questions or if we can be of future service, please call me or contact Marvin L'Amoreaux at this office.

Sincerely,

EMPIRE SOILS INVESTIGATIONS, INC.

Steven J. Laramee

Central Division Drilling Manager

SJL:sdw Enc. (3)

xc: file

GENERAL INFORMATION & KEY TO SUBSURFACE LOGS

The Subsurface Logs attached to this report present the observations and mechanical data collected by the driller at the site, supplemented by classification of the material removed from the borings as determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Subsurface Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the project. The evaluation must consider all the recorded details and their significance relative to each other. Often analyses of standard boring data indicate the need for additional testing or sampling procedures to more accurately evaluate the subsurface conditions. Any evaluation of the contents of this report and the recovered samples must be performed by Professionals. The information presented in the following defines some of the procedures and terms used on the Subsurface Logs to describe the conditions encountered.

- 1. The figures in the Depth column defines the scale of the Subsurface Log.
- 2. The sample column shows, graphically, the depth range from which a sample was recovered. See Table 1 for a description of the symbols used to signify the various types of samples.
- 3. The Sample No. is used for identification on sample containers and/or Laboratory Test Reports.
- 4. Blows on Sampler shows the results of the "Penetration Test", recording the number of blows required to drive a split spoon sampler into the soil. The number of blows required for each six inches of penetration is recorded. The first 6 inches of penetration is considered to be a seating drive. The number of blows required for the second and third 6 inches of penetration is termed the penetration resistance, N. The outside diameter of the sampler, the hammer weight and the length of drop are noted at the bottom of the Subsurface Log.
- 5. Blows on Casing shows the number of blows required to advance the casing a distance of 12 Inches. The casing size, the hammer weight and the length of drop are noted at the bottom of the Subsurface Log. If the casing is advanced by means other than driving, the method of advancement will be indicated in the Notes column or under the Method of Investigation at the bottom of the Subsurface Log.
- 6. All recovered soil samples are reviewed in the laboratory by an engineering technician, geologist or geotechnical engineer, unless note otherwise. The visual descriptions are made on the basis of a combination of the driller's field descriptions and observations and the sample as received in the laboratory. The method of visual classification is based primarily on the Unified Soil Classification (ASTM D 2487-83) with regard to the particle size and plasticity. (See Table No. II) Additionally, the relative portion, by weight, of two or more soil types is described for granular soils in accordance with "Suggested Methods of Test for Identification of Soils" by D. M. Burmister, ASTM Special Technical Publication 479, June 1970. (See Table No. III) The description of the relative soil density or consistency is based upon the penetration records as defined on Table No. IV. The description of the soil moisture is based upon the relative wetness of the soil as recovered and is described as dry, moist, wet and saturated. Water introduced in the boring either naturally or during drilling may have affected the moisture condition of the recovered sample. Special terms are used as required to describe materials in greater detail; several such terms are listed in Table V. When sampling gravely soils with a standard two inch diameter split spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing and samplers blows or through the "action" of the drill rig as reported by the driller.
- 7. The description of the rock shown is based on the recovered rock core and the driller's observations. The terms frequently used in the description are included in Table VI.
- 8. The stratification lines represent the approximate boundary between soil types and the transition may be gradual. Solid stratification lines are based on the driller's field observations.
- 9. Miscellaneous observations and procedures noted by the driller are shown in this column, including water level observations. It is important to realize the reliability of the water level observations depends upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the boring may have influenced the observations. The ground water level typically will fluctuate seasonally. One or more perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or water observation wells.
- 10. The length of core run is defined as the length of penetration of the core barrel. Core recovery is the length of core recovered divided by the core run. The RQD (Rock Quality Designation) is the total pieces of NX core exceeding 4 inches in length divided by the core run. The size core barrel used is also noted.

DATE						
<u>'</u>	F	MPI	DF			
STARTED5-1-86	<u>\$</u> 51	is investigati	ON INC.	FACE LOG	HOLE NO.	
FINISHED 5-1-86			OODSON	ACELUG	SURF. ELEV.	325.6
SHEET1_OF					G. W. DEPTH _	See Note #1
Project			LOCATION .			
E SI 9 BLOWS OF	1 70					
SAMPLES SYMPLES OF BLOWS OF BL	BLOW ON CASING C		SOIL OR ROCK		N.O	- m. m.
0 8 12 1	B. N BLC		CLASSIFICATION		NOT	ES
1 2 2 3	5 10	TOPSO) II 2"		NOTE	
	15		SILT, some Sand, trace c	/	NOTE #1 G.W. at 2.0' co	ompletion
	50/.5	(Molst	- Loose)	lay	G.W. at 2.2' 24	hrs. after
5		Gray Si	HALE, medium hard weat	hered	comple	
5		thin bed	dded some fractures	.riered,	Run #1, 2.5' - 95% Recovery	5.0° ′
		1		(8)	50% RQD	_
TABLE I	5	(6)	(i)		9	10
	TABLE II		•	TABLE III		
Split Spoon Sample	Identificat	ion of soil type i	s made on basis of an	The followin	ig terms are used	l in classifying
V Cample	grained so	or particle sizes, a also on basis c	and in the case of fine	solls consist	ling of mixtures o	of two or more
Shelby Tube	1	1		of total samp	he estimate is ba ple.	sed on weight
Sample	Soll Type Boulder	Soil Partic	le Size			
	Cobble	3" - 12"		Term "and"		<mark>l Tolal Sample</mark> 5 - 50
Auger or Test	Gravel - Co		Coarse Grained	"some"		3 - 30 O - 35
Pit Sample	Sand - Coa	arse #4 - #10	(Granular)	"little" "trace"		0 - 20 than 10
	- Med	dium #10 - #40 e #40 - #20	, ,		pling gravelly soil	1
Rock Core		astic (Granular)	0	ard split s	poon, the true p	percentage of
TOCK COTE	Clay-Plasti	c (Cohesive)	1200 Fine Grained	graver is of	Iten not recovere mall sampler diar	ed due to the
TABLE IV				TABLE V		
The relative compactne	ss or consist	ency is described	d'In against with the			
ronowing terms.		ency is described	in accord with the	Varved	- Horizontal unif	
Granular Solls Term Blows p	er Fool, N	Cohe Term	esive Soils	Layer	seams of soil(s)	
Loose	< 11	Very Soft	Blows per Fool, N		- Soil deposit mor	
Firm	11 - 30	Soft	3 - 5	1	- Soil deposit less	
Compact Very Compact	31 - 50 > 51	Medium Stiff	6 - 15 16 - 25	1	- Soll deposit less	1
//	,	Hard	26	Callinated	 Irregular, horizor seams and parti 	ngs of soil(s).
(Large particles in the s foot recorded during the	oils will often Penetration	significantly infli Test)	uence the blows per			
TABLE VI						
Rock Classification Term	ns		1			
Hardness I Sc	oft		Saralahadhadhad	Meaning	· · · · · · · · · · · · · · · · · · ·	
M	edium Hard		Scratched by lingernal Scratched easily by pe	nknife		
,	ard ery Hard		Scratched with difficul	ly by penknife		
Weathering (Ve	ry Weathered	-	Cannot be scratched b Judged from the relativ		olotog==!!=	
{ w	eathered ound		fron staining, core reco	overy, clay seams	sintegration s, etc.	
	minated					
TH	in bedded		Natural breaks in Rock Layers	(<1") (1" - 4")		
	edded nick bedded			(4" - 12")		
¹ Ma	assive			(12" - 36") (>36")		
(Fracti	uring refers to	natural breaks in	the rock oriented at som	e angle to the ro	ck layers.)	

ATE. TOTAL	1		
STARTED 5-07-91 FINISHED 5-09-91 SOILS INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO.	MW-1	[]
FINISHED 5-09-91 SOILS INVESTIGATIONS INC. SUBSURFACE LOC	SURF. ELEV		·
IEET 1 OF 2	G. W. DEPTH	See Note	es_
ROJECT Dover Electronics LOCATION Kirkwood,	New York		
(ESI# GD-91-053)			- 11
O BLOWS ON			
w Z & U	N	\TE6	
SOIL OR ROCK CLASSIFICATION		DTES	
1 0 14 16	Curb Box		
1 12 16 16 32 FILL: SAND & GRAVEL, Some Silt	Lock cap		
/ 2 22 18 23 41 (Moist)		X	1 11
Same		'`	1 H I
3 7 20 20 40 Brown SILT, medium-coarse SAND &			.] H [
GRAVEL (Moist-Compact)			\-+
4 32 24 48 72			
100/.0 (Moist-Very Compact)			1 11 1
5 6 12 12 24 Brown SILT, Some fine-coarse Sand &			\prod
Gravel (Moist-Firm)		1 1 14	<u> </u>
6 8 73 22 95 Same	· •		
(Moist-very Compact)	Grout	11/	
7 24 27 28 55 Same			
8 10 19 21 40 Same		1 1]
(Moist-Compact)			
9 40 56 55 111 Same			H
(Moist-Very Compact)		11	H
_ / 10 9 21 22 43 Same			1 H I
(Moist-Compact)			1 H I
11 5 14 18 32 Same		1 14	\ -
/ 22			
12 24 32 29 61 Same			
(Moist-Very Compact)		141	
13 6 17 18 35 Same (Moist-Compact)			
26.0		1 1 14	111
14 36 40 31 71 Brown SILT, Sand & GRAVEL (Moist-Very Compact)			
The semple of th			
-1/		141	
			1-11
- / 15 5 20 44 64 Same		1 1	1 - 1
/ 17106 54 86143 Same			`
			1
/ 18 7 17 27 44 Same		141	IHI
(Moist-Compact)			
_ 19 84 75100/.4' Same			
		1 1 1	1 11 1
20 7 20 54 74 Same (Moist-Very Compact)] 3
<u> </u>	Bentonite Pellets	-1 //}	
No blows to drive 2 "spoon 12 "with 140 lb. pin wt. falling 30 "per blow. CLASSI		ual by	
	Drille		
HOD OF INVESTIGATION: 5" I.D. Hollow Stem Augers			

DATE						75-7			
STAF	RTED	5	-07	-91			VIPIRE INVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. MW-1	
FINIS	SHED	5	-09	-91		SOILS	investigations inc. SUBSURFACE LOC	SURF. ELEV.	
SHEET								G. W. DEPTH See Notes	
					$= \perp$	=====		G. W. BEPTH BEE NOTES	
PROJE	CT _					ronics	LOCATION Kirkwood	, New York	
		(ESI	# GE	91	-053)			
	Q	Ī	BLOW	'S ON		T _			
DEPTH-CT	Z 2		SAMI	PLER		BLOW ON CASING C	SOIL OR ROCK	NOTES	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SAMPLE	0/	6/12	12/18	N	S.S.	CLASSIFICATION	NOTES	Ì
40	 		1	ř	!			[D]	
- /	21			45	77	ļ	Grey SILT, SAND & GRAVEL	Bentonite // Pellets	
1 -X	1 00	55					(Moist-Very Compact) Same	1Q Sand	42.0 42.5
- /	22		66	70	136				42.5
1 -	 	55			<u> </u>		44.0'	2" PVC	44.0
45	23	31		15	24		SILT LAYER 45.0'	⋅	
-	-		 		100	ļ	Grey SILT, SAND & GRAVEL	3Q Sand	
- /	24		47	53	100		(Moist-Very Compact)	2" PVC	
1 - Y -	-	56	1	 -	 		Grey SILT, little sand, gravel	Well Screen .	
- /	25	19	20	20	40		(Moist-Compact)	0.010" slot .	
50-	26		14	1,	25		Grey layered SILT, little		
	20	16			43		fine-medium sand		
	27		14	15	29		Grey SILT, SAND & GRAVEL (Moist-Firm)		1.
		18					Grey SILT, fine-medium SAND		
	†		ļ				(Moist-Firm)		
55							Boring Terminated at 54.0'	5-8-91-7:00 A.M.	
				-			·	No groundwater with	
								augers at 14.0'.	
								5-8-91-12:00 P.M.	
							·	No groundwater with	
							·	augers at 34.0'.	
								5-9-91-7:15 A.M.	
							,	Groundwater at 46.1',	ļ
								with augers at 48.0'.	
								H	
								- †1	
								H	
								· H	
	_							· H	
				<u> </u>					
								\exists	
	<u> </u>								
				ļ			_	. 1	
	<u> </u>			ļ				·	
-		<u> </u>			 				
-	-								
-	-		ļ					· []	
-				 					
	-		-	 -					
L _L	<u> </u>	L	!	1	L	l		. 1	
N = No	blow	s to d	rive_	. 2	_" spc	on12	"with 140 lb. pin wt. falling 30 "per blow. CLASS	IFICATION Visual by	
C = No	blow	s to d	rive		_'' cas	ing	' withlb. weight falling"per blow.	Driller (E.C.)	
METHOI							.D. Hollow Stem Augers		

Time	<u>Entry</u>
0900	On site, Dan and Phil from Buck Labs set up and ready to begin development
1030	Completed development and sampling for NW #4 Conklin site, began decon.
1045	Began development of HW #2, well ran dry, deconned.
1115	Began development of MN #3
1200	Broke for lunch, ran HW #3 dry, deconned.
1230	Back on site, namples taken from #2 and #3, began development of MW #1.
1400	Developed MW #1, samples taken.
1515	Secured site, lost approximately 1/2 hr 45 min. with gas pump problems. Moved to Kirkwood site.
1645	Developed MW #1, Kirkwood site. Samples taken.

	Techn	ical Well Data		
Well desig.	Conductivity	Water Level	Well Depth	Temp C.
C-IIW #1 C-IAW #2 C-IAW #3 C-IAW #4 	463 1050 301 766 471	4.26' 18.03' 29.44' 3.87' 38.27'	14.9' 33.1' 47.74' 15.3' 53.9'	6.7 8.1 11.8 21.5 13.3

C - Conkiln Site

K - Kirkwood Site

TEST BORINGS

DOVER ELECTRONICS

KIRKWOOD INDUSTRIAL PARK

BINGHAMTON, NEW YORK

June 20, 1991

Hagopian Engineering Associates 28 Alice Street Binghamton, New York 13904

Re:

91165

Dover Electronics

Kirkwood Industrial Park Binghamton, New York

Gentlemen:

Enclosed are the logs of eleven test borings made for you for the above project.

Soil samples from these borings have been delivered to your office under separate cover.

The borings were made at the locations requested and drilling was done in accordance with ASTM method D-1586 for split barrel sampling in soils.

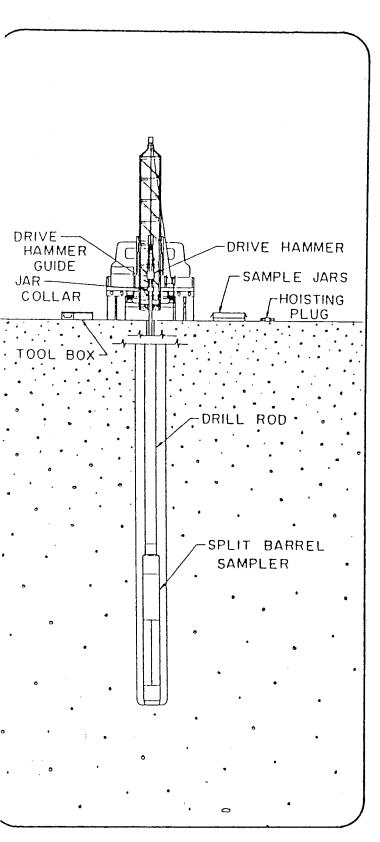
All eleven borings revealed similar subsurface soil conditions. A brown-gray, dry to moist silt with subordinate amounts of fine to coarse gravel and fine to coarse sand extends from the surface to a depth of 4 to 6 feet.

Below and extending to depth lies a gray-brown, moist silt with clay, minor amounts of fine to coarse sand and fine to coarse gravel. This unit is stained with brown organic matter.

Interbedded with this unit are layers of wet, brown, fine to coarse gravel and fine to coarse sand. These are infrequent and do not appear to be very extensive.

Although most of the holes were dry, groundwater was encountered in some borings at depths ranging from 1.0 to 4.0 feet below the ground surface.

Thank you for this opportunity to work with you.


Very truly yours,

PARRATT - WOLFF, INC.

Greg R/Flick Engineering Geologist

GRF/Inc encs:

SOIL SAMPLING METHODS

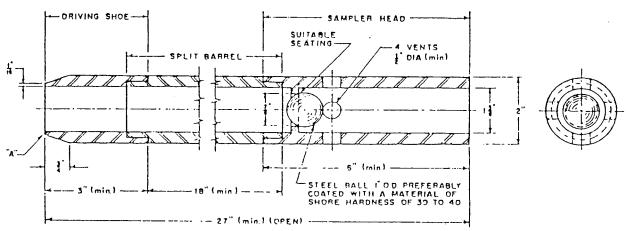
Split barrel sampling

The following excerpts are from "Standard Method for penetration test and split-barrel sampling of soils." (ASTM designation: D-1586-67 AASHO Designation: T-206-70.)

1. Scope

1.1 This method describes a procedure for using a splitbarrel sampler to obtain respresentative samples of soil for identification purposes and other laboratory tests, and to obtain a measure of the resistance of the soil to penetration of the sampler.

2. Apparatus


2.1 Drilling Equipment — Any drilling equipment shall be acceptable that provides a reasonably clean hole before insertion of the sampler to ensure that the penetration test is performed on undisturbed soil, and that will permit the driving of the sampler to obtain the sample and penetration record in accordance with the procedure described in 3. Procedure. To avoid "whips" under the blows of the hammer, it is recommended that the drill rod have stiffness equal to or greater than the A-rod. An "A" rod is a hollow drill rod or "steel" having an outside diameter of 1-5/8 in. or 41.2 mm and an inside diameter of 1-1/8 in. or 28.5 mm, through which the rotary motion of drilling is transferred from the drilling motor to the cutting bit. A stiffer drill rod is suggested for holes deeper than 50 ft (15m). The hole shall be limited in diameter to between 2-1/4 and 6 in. (57.2 and 152mm).

2.2 Split-Barrel Sampler — The sampler shall be constructed with the dimensions indicated (in Fig. 1.) The drive shoe shall be of hardened steel and shall be replaced or repaired when it becomes dented or distorted. The coupling head shall have four 1/2-in. (12.7-mm) (minimum diameter) vent ports and shall contain a ball check valve. If sizes other than the 2-in. (50.8-mm) sampler are permitted, the size shall be conspicuously noted on all penetration records.

2.3 Drive Weight Assembly — The assembly shall consist of a 140-lb (63.5-kg) weight, a driving head, and a guide permitting a free fall of 30 in. (0.76 m). Special precautions shall be taken to ensure that the energy of the falling weight is not reduced by friction between the drive weight and the guides.

2.4 Accessory Equipment — Labels, data sheets, sample jars, paraffin, and other necessary supplies should accompany the sampling equipment.

SUIL SAMPLING METHODS

Note 1 — Split barrel may be 1-1/2 in, inside diameter provided it contains a liner of 16-gage wall thickness.

Note 2 — Core retainers in the driving shoe to prevent loss of sample are permitted.

Note 3 - The corners at A. may be slightly rounded.

3. Procedure

- 3.1 Clear out the hole to sampling elevation using equipment that will ensure that the material to be sampled is not disturbed by the operation. In saturated sands and silts withdraw the drill bit slowly to prevent loosening of the soil around the hole. Maintain the water level in the hole at or above ground water level.
- 3.2 In no case shall a bottom-discharge hit he permitted. (Side-discharge bits are permissible.) The process of jetting through an open-tube sampler and then sampling when the desired depth is reached shall not be permitted. Where casing is used, it may not be driven below sampling plevation. Record any loss of circulation or excess pressure in drilling fluid during advancing of holes.
- 3.3 With the sampler resting on the bottom of the hole, drive the sampler with blows from the 140-16 (63.5 kg) hammer falling 30 in. (0.76 m) until either 18 in. (0.45 m) have been penetrated or 100 blows have been applied.
- 3.4 Repeat this operation at intervals not longer than 5 ft (1.5 m) in homogeneous strata and at every change of strata.
- 3.5 Record the number of blows required to effect each 6 in. (0.15 m) of penetration or fractions thereof. The first 6 in. (0.15 m) is considered to be a seating drive. The number of blows required for the second and third 6 in. (0.15 m) of penetration added is termed the penetration resistance, N. If the sampler is driven less than 18 in. (0.45 m), the penetration resistance is that for the last 1 ft (0.30 m) of penetration (if less than 1 ft (0.30 m) is penetrated, the logs shall state the number of blows and the fraction of 1 ft (0.30 m) penetrated).
- 3.6 Bring the sampler to the surface and open. Describe carefully typical samples of soils recovered as to composition, structure, consistency, color, and condition; then put into jars without ramming. Seal them with wax or hermetically seal to prevent evaporation of the soil moisture. Affix labels to the jar

Table of Metric Equivalents.

	able of ivi	euic Eqi	alvaien	13.	
fn.	Mm	Cm	In.	Мπ	Cm
1/16 (16 gage)	1.5		2		5.08
1/2	12.7		3		7.62
3/4	19.0	1.90	6		15.24
7/8	22.2	2.22	18		45.72
1-3/8	34.9	3.49	27	68.58	
1-1/2	38.1	3.81			

Fig. 1 - Standard Split Barrel Sampler Assembly

or make notations on the covers (or both) bearing job designation, boring number, sample number, depth penetration record, and length of recovery. Protect samples against extreme temperature changes.

4. Report

- 4.1 Data obtained in borings shall be recorded in the field and shall include the following:
 - 4.1.1 Name and location of job.
 - 4.1.2 Date of boring start, finish,
 - 4.1.3 Boring number and coordinate, if available,
 - 4.1.4 Surface elevation, if available,
 - 4.1.5 Sample number and depth,
- 4.1.6 Method of advancing sampler, penetration and recovery lengths,
 - 4.1.7 Type and size of sampler,
 - 4.1.8 Description of soil,
 - 4.1.9 Thickness of layer,
- 4.1.10 Depth to water surface; to loss of water; to artesian head; time at which reading was made,
 - 4.1.11 Type and make of machine,
 - 4.1.12 Size of casing, depth of cased hole,
 - 4.1.13 Number of blows per 6 in. (0.15 m)
 - 4.1.14 Names of crewmen, and
 - 4.1.15 Weather, remarks.

¹Under the standardization procedure of the Society, this method is under the jurisdiction of the ASTM Committee D-18 on Soil and Rock for Engineering Purposes. A list of members may be found in the ASTM Year Book.

Current edition accepted October 20, 1967. Originally issued, 1958. Replaces D-1586-64T.

TELEPHONE AREA CODE 315/437-1429

GENERAL NOTES

1. Soil boring logs, notes and other data shown are the results of personal observations and interpretations made by Parratt-Wolff, Inc.

Exploration records prepared by our drilling foreman in the field form the basis of all logs, and samples of subsurface materials retained by the driller are observed by technical personnel in our laboratory to check field classifications.

- 2. Explanation of the classifications and terms:
 - a. Bedrock Natural solid mineral matter occurring in great thickness and extent in its natural location. It is classified according to geological type and structure (joints, bedding, etc.) and described as solid, weathered, broken or fragmented depending on its condition.
 - b. Soils Sediments or other unconsolidated accumulations of particles produced by the physical and chemical disintegration of rocks and which may or may not contain organic matter.

PENETRATION RESISTANCE

		PENETRATION RESI	STANCE		
COHESIONL	ESS SOIL	S		COHESIVE SC	ILS
Blows Per Ft.	Relati	ve Density	Blows Per	Ft.	Consistency
0 to 4	Very I	Loose	0 to 2		Very Soft
4 to 10	Loose)	2 to 4		Soft
10 to 30	Mediu	ım Dense	4 to 8		Medium Stiff
30 to 50	Dense	Э	8 to 15		Stiff
Over 50	Very [Dense	15 to 30		Very Stiff
			Over 30		Hard
Size C	omponent	Terms		Proportio	n By Weight
Boulder		-		-	onent is shown rs capitalized.
		3 inches to 1 inch 1 inch to 3/8 inch 3/8 inch to 4.76 mm		•	onent percen- f total sample
— medium		4.76 mm to 2.00 mm 2.00 mm to 0.42 mm 0.42 mm to 0.074 mm Finer than 0.074 mm	,	some . 20	to 50 percent to 35 percent to 20 percent o 10 percent

- c. Gradation Terms The terms coarse, medium and fine are used to describe gradation of Sand and Gravel.
- d. The terms used to describe the various soil components and proportions are arrived at by visual estimates of the recovered soil samples. Other terms are used when the recovered samples are not truly representative of the natural materials, such as soil containing numerous cobbles and boulders which cannot be sampled, thinly stratified soils, organic soils, and fills.
- e. Ground water The measurement was made during exploration work or immediately after completion, unless otherwise noted. The depth recorded is influenced by exploration methods, soil type and weather conditions during exploration. Where no water was observed it is so indicated. It is anticipated that the ground water will rise during periods of wet weather. In addition, perched ground water above the water levels indicated (or above the bottom of the hole where no ground water is indicated) may be encountered at changes in soil strata or top of rock.

A BRIEF DESCRIPTION OF THE UNIFIED SOIL SYSTEM

The Unified Classification System is an engineering soil classification that is an outgrowth of the Air-Field classification developed by Casagrande.

The system incorporates the textural characteristics of a soil into the engineering classification. All soils are classified into fifteen groups, each group being designated by two letters. These letters are as follows: G—gravel, S—sand, M—Non plastic or low plasticity fines, C—plastic fines, Pt—peat, humus and swamp soils, O—organic, W—well graded, P—poorly graded, L—low liquid limit, H—high liquid limit.

GW and SW Groups

These groups comprise well graded gravelly and sandy soils which contain less than 5% of non plastic fines passing a #200 sieve. Fines which are present must not noticeably change the strength characteristics of the coarse grain fraction and must not interfere with its free draining characteristics. In areas subject to frost action the material should not contain more than about 3% of soil grains smaller than .02 millimeters in size.

GP and SP Groups

These groups are poorly graded gravels and sands containing less than 5% non plastic fines. They may consist of uniform gravels, uniform sands, or non uniform mixtures of very coarse material and very fine sand with Intermediate sizes lacking. Materials of this latter type are sometimes referred to as skip graded, cap graded, or step graded.

GM and SM Groups

In general, these groups include gravels or sands which contain more than 12% of fines having little or no plasticity. The plasticity index and liquid limit of a soil in either of these groups plot below the "A" line on a plasticity chart. Gradation is not important and both low grade and poorly graded materials are included. Some sands and gravels in these groups may have a binder composed of natural cementing agents so proportioned that the mixture shows negligible swelling or shrinkage. Thus, the dry strength is provided by a small amount of soil binder or dry cementation of calcareous materials or iron oxide. A fine fraction of non cemented materials may be composed of silts or rock flour types having little or no plasticity, and the mixture will exhibit no dry strength.

GC and SC Groups

These groups comprise gravelly or sandy solls with more than 12% of fines which exhibit either low or high plasticity. The plasticity index and liquid limit of a soil in either of these groups plot above the "A" line on the plasticity chart. Gradation of these materials is not important. Plasticity of the binder fraction has more influence on the behavior of the soils than does the variation in gradation. A fine fraction is generally composed of clays.

ML and MH Groups

These groups include predominantly silty materials and micaceous or diatomaceous soils. An arbitrary division between the two groups has been established with a liquid limit of 50. Soils in these groups are sandy silts, clayey silts or organic silts with relatively low plasticity. Also included are loessial soils and rock flours. Micaceous and diatomaceous soils generally fall within the MH group, but may extend into the ML group when their liquid limit is less than 50. The same is true for certain types of kaolin clays and some lilite clays having relatively low plasticity.

CL and CH Groups

The CL and CH groups embrace clays with low and high liquid limits respectively. They are primarily inorganic clays. Low plasticity clays are classified as CL and are usually lean clays, sandy clays, and sifty clays. The medium plasticity and high plasticity clays are classified as CH. These include fat clays, gumbo clays, certain volcanic clays and bentonite.

OL and OH Groups

The solls in these groups are characterized by the presence of organic matter including organic silts and clays. They have a plasticity range that corresponds with the ML and MH groups.

Pt Group

Highly organic soils which are very compressible have undesirable construction characteristics and are classified in one group with the symbol Pt. Peat, humus and swamp soils with a highly organic texture are typical of the group. Particles of leaves, grass, branches of bushes and other librous vegetable matter are common components of these soils.

Borderline Classification

Soils in the GW, SW, GP and SP groups are non plastic materials having less than 5% passing the #200 sleve, while GM, SM, GC, and SC soils have more than 12% passing the #200 sleve. When these coarse grain materials contain between 5% and 12% of fines they are classified as borderline, and are designated by the dual symbol such as GW-GM. Similarly coarse grain soils which have less than 5% passing the #200 sleve, but which are not free draining or in which the fine fraction exhibits plasticity are also classed as borderline and are given a dual symbol. Still another type of borderline classification occurs when a liquid limit of a fine grain soil is less than 29 and the plasticity index lies in the range of four to seven. These limits are indicated by the shaded area on the plasticity chart.

Silty and Clayey

In the Unified System, these terms are used to describe soils whose Atterberg limits plot below and above the "A" line on the plasticity chart. The adjectives silty and clayey are used to describe soils whose limits plot close to the "A" line.

		GGIE OL/10011	· · · · · · · · · · · · · · · · · · ·	0 0 2 11	
M	AJOR DIVISIONS		GROUP SYMBOLS	TYPICAL NAMES	
	GRAVELS .	CLEAN GRAVELS	GW	Well graded gravels, gravel - sand mixtures, little or no f	ines,
	(More than 50% of coarse fraction is	(Little or no lines)	GP	Poorly graded gravels or gravel - sand mixtures, little or	no fines
COARSE GRAINED	LARCER than the No. 4 sieve size)	GRAVELS WITH FINES	GM	Silty gravels, gravel - sand - silt mixtures.	
SOILS (More than 50% of		(Appreciable emt. of fines)	GC	Clayey gravels, gravel - sand - clay mixtures.	
material is LARGER than No. 200 lieve size!	_	CLEAN SANDS	sw	Well graded sands, gravelly sands, little or no fines.	
#: . 開	SANDS (More than 50% of coarse fraction is	(Little or na lines)	SP SP	Poorly graded sands or gravelly sands, fittle or no fines.	
	SMALLER than the No. 4 sieve size)	SANDS WITH FINES	SM	Silty sands, sand-silt mixtures,	
•		(Appreciable amt. of fines)	sc	Clayey sands, sand-clay mixtures.	
,			ML	Inorganic silts and very fine saids, rock flour, silty or cl fine sands or clayey silts with slight plasticity.	#Y E Y
FINE GRAINED	SILTS ANI ILiquid limit Li	· · · -	CL	Inorganic clays of low to medium plasticity, gravelly cla sandy clays, silty clays, lean clays.	γ1,
SOILS [More than 50% of material is SMALLER]			OL	Organic silts and organic silty clays of low plasticity.	
than No. 200 sieve tizel			MH	Inorganic silts, micaceous or diatomaceous line sandy o soils, elastic silts.	r silly
	SILTS ANI fLiquid limit GRE		СН	Inorganic clays of high plasticity, fat clays.	
		-	0H	Organic clays of medium to high plasticity, organic silts.	
HII	GHLY ORGANIC SOILS		P1	Peat and other highly organic soils	
OUNDARY CLASSIFI				lesignated by combinations of group symbols.	
	SAN	RTICLE	SIZE	LIMITS '	~ · · · · · · · · · · · · · · · · · · ·
SILT OR CLAY	FINE		ARSE F	INE COARSE COBBLES BOULDE	AS
		0.40 No.10 U.5 STAND	No.4 DARD SI	44 In. 3 In. (12 In.) E ∨ E S I Z E	
	PLASTICITY	CHART			
			no		
		41	/ r	EQUAL LL NCAEASING PT	
		p. 157 Cod MOET COD			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		.617		THEREISES	
्रा इ. ८/३	uts for aroup of	151109		DECREASES TABOUT THE SAME	
	NPLES OF THE SAME OLOGICAL ORIGIN FALL	P		├ ├-	
ON	LINE APPROXIMATELY	CH	4	COMPRESSENTY - INCREASES PERMEABILITY - INCREASES	
	A FIRE			ORY STRENGTH DECREASES	
				FOUAL PE	
	**/		THI	OA OH INGREASING LL	
er.	1-12/101/	 	ZOYNO	OLS FOR SOIL GROUPS IN	
	9/	 	UNIFIE	TO CLASSIFICATION SYSTEM	
71		 		 	
8	O AO AO SO	Ao io	1 /20		

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

HOLE NO.

LOCATION

Kirkwood Industrial Park

SURF. EL.

B-6

DATE STARTED

Binghamton, New York 6/13/91

DATE COMPLETED

6/13/91

JOB NO.

91165

GROUND WATER DEPTH WHILE DRILLING Dry

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING

C — NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER FALLING

REMOVED

Dry

AFTER CASING

"/OR -- % CORE RECOVERY

REMOVED

Dry

CASINGTYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.5'-	1		15		ASPHALT	0.5'
	2.0'			14/15	29	Brown moist very stiff to hard SILT,	
ĺ	2.0'~	2		17/19		little fine to coarse gravel, little fine	
	3.41			504'		to coarse sand	3.01
5.0	4.0'-	3		23/39		Gray-brown moist hard SILT, little	
	6.01			46/50	85	fine to medium gravel, trace fine to	
	6.01-	4		26/44		coarse sand, trace clay	
	8.01			34/38	78	,,	
	8.01-	5		22/27			
10.0	10.0			24/28	51		
	10.01-	6		13/20			
	12.0			67/75	87		
	12.0'-	7		50/30			
Ī	14.01			51/61	81		
15.0						Bottom of Boring	14.01
						,	
					Ī		
Ī							
,							
1							

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

HOLE NO.

LOCATION

Kirkwood Industrial Park Binghamton, New York

SURF. EL.

B-7

DATE STARTED

6/13/91

DATE COMPLETED

6/13/91

JOB NO.

91165

GROUND WATER DEPTH WHILE DRILLING Dry

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" - ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING

C — NO. OF BLOWS TO DRIVE CASING 12" W/

HAMMER FALLING

REMOVED

Dry

AFTER CASING **REMOVED**

Dry

"/OR - % CORE RECOVERY

CASING TYPE -	HOLLOW	STEM	AUGER
---------------	--------	------	-------

					,		
DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.0'-			3/36		Brown moist hard SILT, little fine to	
	2.0'		-	43/17	79	coarse gravel, little fine to coarse	
	2.0'-	2		10/20		sand, trace clay	
	4.0'			15/18	35	Jana, trace clay	4.01
5.0	4.01-	3		7/5		Gray-brown moist stiff to hard SILT,	4.0
	6.01			6/12	11	some fine to coarse gravel, trace clay,	
	6.01-	4		13/21		trace fine to coarse sand	
	8.01			18/20	39	trace fine to course sand	
	8.0'-	5		18/22			
10.0	10.0'			24/27	46		
					-	Bottom of Boring	10.0'
				·			
			-				
			1				
			İ				
		-					

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

B-8

PROJECT

Dover Electronics

HOLE NO.

LOCATION

Kirkwood Industrial Park Binghamton, New York

SURF. EL.

DATE STARTED

6/13/91

DATE COMPLETED

6/13/91 JOB NO.

91165

GROUND WATER DEPTH WHILE DRILLING 4.0'

N -- NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING

REMOVED

Dry

C — NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR — % CORE RECOVERY

HAMMER FALLING

AFTER CASING

Hole caved

REMOVED

at 4.01

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	l	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.0'-	1		15/18	1	Brown-gray dry dense fine to coarse	
	2.0			27/13	45	SAND, little silt, little fine to coarse	
	2.0'-	2		8/7	T	gravel, trace clay	2.0
WL 🔻	4.01			5/3	12	Brown-gray moist stiff SILT and fine	1 2.0
5.0	4.01-	3		5/100		to coarse SAND, little fine to medium	
	5.0'					sand, trace clay	4.01
						Brown wet very dense coarse to fine	7.0
						GRAVEL, little silt, trace fine to	
						coarse sand	
						Auger Refusal	5.01
						Bottom of Boring	5.0
						bottom of borning	3.0
					-		
							1
							ĺ
					-		
						•	
				-	-		
			-				
			-				
	-						

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

HOLE NO.

LOCATION

Kirkwood Industrial Park

SURF. EL.

B-8A

DATE STARTED

Binghamton, New York 6/13/91

DATE COMPLETED

6/13/91

JOB NO.

91165

WHILE DRILLING Dry

GROUND WATER DEPTH

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING REMOVED

Dry

C — NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR - % CORE RECOVERY

HAMMER FALLING

AFTER CASING

REMOVED

Dry

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	7	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
						Drilled to 4.0' without sampling	
5.0	4.0'-	1		17/21		Brown-gray dry hard SILT, little fine	4.01
3.0	5.3 ¹ 6.0 ¹ -	2		1003'		to coarse gravel, little fine to coarse sand, trace clay	6.0'
	6.3' 8.0'-	3		22/20	27	Brown dry very dense coarse to fine GRAVEL, little fine to coarse sand	8.01
10.0	10.0'			17/27	37	Gray moist hard SILT, little fine to medium gravel, little fine to coarse sand, trace clay	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
						Bottom of Boring	10.0
·							
:							
:							
		-					

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

B-9

PROJECT

Dover Electronics

HOLE NO.

LOCATION

Kirkwood Industrial Park

SURF. EL.

DATE STARTED

Binghamton, New York 6/13/91 DATE COMPLETED

6/13/91

JOB NO.

91165

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

WHILE DRILLING BEFORE CASING

GROUND WATER DEPTH

REMOVED

Dry

Dry

C - NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

HAMMER FALLING

AFTER CASING

REMOVED

Dry

CASING TYPE - HOLLOW STEM AUGER

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	И	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
5.0	0.5'- 2.0' 2.0'- 4.0' 4.0'- 6.0'	3		32 48/56 1 35/30 28/30 108/72 40/48 1 37/49	58	ASPHALT Brown-gray moist to dry hard SILT, some to little fine to coarse gravel, little fine to coarse sand, trace clay	0.5
10.0	8.0' 8.0'- 10.0'	5		64/82 1 37/91 111/114 2		Bottom of Boring	10.0

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION Dover Electronics

Kirkwood Industrial Park

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" -- ASTM D-1586, STANDARD PENETRATION TEST

Binghamton, New York

DATE STARTED

6/13/91

DATE COMPLETED

6/13/91

B-10

SURF. EL.

HOLE NO.

JOB NO. 91165

GROUND WATER DEPTH Dry

WHILE DRILLING

BEFORE CASING

REMOVED

Dry

C - NO. OF BLOWS TO DRIVE CASING 12" W/ "/OR — % CORE RECOVERY

HAMMER FALLING

AFTER CASING

REMOVED

Dry

CASING TYPE - HOLLOW STEM AUGER

		T					
DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.5'-	1		16		Brown-gray moist to dry hard SILT,	
	2.01			27/32	59	some to little fine to coarse gravel,	
	2.01	2		38/57		little fine to coarse sand, trace clay	
	4.01			67/74	24	,	ļ
5.0	4.0'-	3		13/34	ļ		
	6.01			51/36	85		
	6.01-	4		24/24			
	8.01			29/32	53		
	8.0'-	5		44/50			
10.0	10.0'			62/71 1	12		
	10.01-	6		14/51			
	11.5				51		
	12.0'-	7		27/32			
	14.0'		İ	29/23	61		
15.0	14.0'-	8		100			
	14.51						
	16.0'-	9		24/27			
	18.0¹			28/30	55		
	18.0'-	10		32/40			
20.0	20.0'			47/48	87		
	20.0'-	11		32/37			
	22.01			48/41	85		
	22.0'-	12		28/50			
	24.01		<u> </u>	42/48	92		
25.0		13		23/30			
	26.0			38/46	68		
						Bottom of Boring	26.01
			—				
		İ					
30.0		<u> </u>	-				
					1		
			 				
		+			1		
		 			1		
			<u> </u>		1		
	-	 			1		
			 				
					1		
			-				
			†		1		
		1			1		

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

HOLE NO.

B-11

Kirkwood Industrial Park

SURF. EL.

LOCATION

Binghamton, New York

6/13/91

91165

DATE STARTED

6/13/91 DATE COMPLETED

JOB NO.

GROUND WATER DEPTH

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

WHILE DRILLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING REMOVED

Dry

Dry

C - NO. OF BLOWS TO DRIVE CASING 12" W/

CASING TYPE - HOLLOW STEM AUGER

HAMMER FALLING

AFTER CASING REMOVED

Dry

"/OR - % CORE RECOVERY

	,	· · ·			1		1
		SAMPLE NUMBER		SAMPLE			STRATA
DEPTH	SAMPLE	F S	С	DRIVE	N	DESCRIPTION OF MATERIAL	CHANGE
	DEPTH	Α̈́		PER 6"			DEPTH
	0.0'-	1		5/16	+	Drawn and weigh hand SUT	-
	2.0'	1		26/67	42	Brown-gray moist hard SILT, some	
	2.0'-	2		100/41	72	fine to coarse gravel, little fine to	
İ	4.0'			38/44	79	coarse sand, trace clay	
5.0	4.01-	3	ļ	67/72	1,3		
	6.01				147		
	6.0'-	4		100/74			
	8.0'			82/50	156		
	8.0'-	5		20/27	 		
10.0	10.0'			32/34	59		
	10.0'-	6		22/23			ĺ
	12.0'			32/38	55		
	12.0'-	7		32/32			
	14.0			40/48	72		
15.0	14.0'-	8		36/72			
	16.0'			100/41	72		
						Bottom of Boring	16.0'
						3	
20.0							
					ļ		
		-					
					<u> </u>		
					1	·	
		ļ	ļ		ļ <u>.</u>		
			<u> </u>]
		<u> </u>			ļ		
					<u> </u>		

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT LOCATION Dover Electronics

Kirkwood Industrial Park

Binghamton, New York

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

6/14/91

DATE COMPLETED

6/14/91

HAMMER FALLING

HOLE NO. B-12

SURF. EL.

JOB NO. 91165

GROUND WATER DEPTH WHILE DRILLING 2.01

BEFORE CASING

REMOVED

Dry

AFTER CASING

Hole caved

REMOVED

at 3.5'

CASING TYPE - HOLLOW STEM AUGER

C — NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGI DEPTH
	0.5'-	1		5		ASPHALT	0.51
WL 🔻	2.01			1	13	Brown wet stiff SILT and fine to	0.5
	2.0'-	2		24/28		coarse GRAVEL, little fine to coarse	
	4.01				71	sand	2.01
5.0	4.0'-	3		26/35		Brown-gray moist to dry hard SILT,	
	6.01			50/48	85	some to little fine to coarse gravel,	
	6.0'-	4		42/50		little fine to coarse sand, trace clay	
	8.01			51/57 1	01		
	8.01-	5		47/51			
10.0	10.01			57/67 1	08		
						Bottom of Boring	10.01
			-				
}		-					
}							
ļ							
			-				
ļ							
							}
							1
			1				1

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

HOLE NO.

B-13

LOCATION

Kirkwood Industrial Park

SURF. EL.

DATE STARTED

6/14/91

Binghamton, New York DATE COMPLETED

6/14/91

JOB NO.

91165

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

WHILE DRILLING Dry

GROUND WATER DEPTH

30" — ASTM D-1586, STANDARD PENETRATION TEST

BEFORE CASING REMOVED

Dry

C — NO. OF BLOWS TO DRIVE CASING 12" WI

HAMMER FALLING

AFTER CASING

"/OR - % CORE RECOVERY

REMOVED

Dry

CASING TYPE - HOLLOW STEM AUGER

			,		· · · · · ·		
DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.01-	1		3/15		Brown moist hard SILT, some fine to	
	2.0			17/21	32	coarse gravel, little fine to coarse	
	2.0'-	2		19/27		sand, trace clay	2.0'
	4.0'			23/22	50	Brown-gray moist hard SILT, some to	
5.0	4.01-	3		27/503		little fine to coarse gravel, little to	
	4.81					trace fine to coarse sand, trace clay	
	6.01-	4		17/504		·	
	6.9'						
	8.01-	5		47/50			
10.0	9.01					Bottom of Boring	9.01
				!			
		-					
						·	
					-		
			-				
						· ·	
			1				

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

LOCATION

Kirkwood Industrial Park Binghamton, New York

N — NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING 30" — ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

6/14/91

DATE COMPLETED

6/14/91

HAMMER FALLING

HOLE NO. B-14

SURF. EL.

JOB NO.

91165

GROUND WATER DEPTH WHILE DRILLING 1.0'

BEFORE CASING

REMOVED

1.0'

AFTER CASING

Hole caved

REMOVED

at 1.0'

CASING TYPE - HOLLOW STEM AUGER

C — NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

	T	· ~			T		·
DEPTH	SAMPLE DEPTH	SAMPLE NUMBER	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
WL	0.5'-	1		9		ASPHALT	0.5
	2.01			9/20	29	Brown wet medium dense fine to coarse	0.5
	2.0'-	2	No	5041		SAND and fine to coarse GRAVEL,	
	2.4		Rec			little silt , trace boulders	4.0'
5.0	4.01-	3		7/504		Brown-gray wet very dense fine to	1,0
	4.91					coarse SAND, some fine to coarse	
	6.0'-	4		17/37		gravel, some silt, trace clay	6.0'
	7.3'			5031		Brown wet hard SILT, some fine to	
	8.0'-	5		37/40		coarse gravel, little fine to coarse	
10.0	10.0'			48/50	88	sand, trace clay	
						Bottom of Boring	10.0'
							13.0
		-					
					-		
				-			
				• • • • • • • • • • • • • • • • • • • •			
}							
}							
		-					
						į.	
						·	

FISHER ROAD

EAST SYRACUSE, N.Y. 13057

PROJECT

Dover Electronics

LOCATION

Kirkwood Industrial Park Binghamton, New York

N - NO. OF BLOWS TO DRIVE SAMPLER 12" W/140# HAMMER FALLING

30" — ASTM D-1586, STANDARD PENETRATION TEST

DATE STARTED

6/14/91

DATE COMPLETED

6/14/91

HAMMER FALLING

HOLE NO.

B-15

SURF. EL.

JOB NO. 91165

GROUND WATER DEPTH

WHILE DRILLING

BEFORE CASING

REMOVED

Dry

AFTER CASING

REMOVED

Dry

CASING TYPE - HOLLOW STEM AUGER

C — NO. OF BLOWS TO DRIVE CASING 12" W/

"/OR — % CORE RECOVERY

DEPTH	SAMPLE DEPTH	SAMPLE	С	SAMPLE DRIVE RECORD PER 6"	N	DESCRIPTION OF MATERIAL	STRATA CHANGE DEPTH
	0.0'- 2.0' 2.0'-	2		8/8 13/15 8/9	21	Brown dry to moist very stiff SILT, some fine to coarse gravel, little fine to coarse sand	
-	4.0'			10/8	19	to dod be build	4.0
5.0	4.0'-	3		9/14		Brown moist hard SILT, some fine to	
	6.0¹ 6.0¹-	4		37/28 9/9	51	coarse gravel, some fine to coarse	
	8.0'	4			19	sand, trace clay Brown moist medium dense fine to	6.01
	8.0'-	5		21/20	13	coarse SAND, little silt, little fine to	
10.0	10.01			22/21	42	coarse gravel, trace clay	8.0'
						Brown dry hard SILT and fine to	0.0
						coarse SAND, some fine to coarse	
						gravel	
						Bottom of Boring	10.0
						· ·	
<u> </u>							
					-		

- 8:00 Met Scott Rodabaugh from NYS DEC. Reviewed test hole locations at loading dock. Scott requested water sample to be taken from catch basin. Test highest HNu meter reading sample and first non-detectable sample after for each test hole. Minimum depth 10' or second non-detectable sample beyond non-detectable. Scott departs 8:10.
- 8:20 Dan and Phil from Buck Labs arrive; Parrott/Wolff (drillers; Arnold, Justin) on site.
- On BK-8 hit spoon refusal at 5' sampled to 4'. Suspect we hit protective tile of elect. conduit. Moved TH #8 to new location designated BK-8A. New location approved by John Mack of Dover.
- 1:00 JKH stopped by to review location of BK10 BK15. Reviewed updated utility plan as provided by John Mack of Dover.
- 3:15 Completed BK6, BK7, BK8, BK8A, and BK11. Commencing BK9; no detectable odors.
- 4:30 Completed BK9, no detectable odors. Commenced BK10.
- 7:00 BK10 taken to 26'. Still detectable levels out of auger. Secured site.

June 14, 1991

- 7:00 Drillers on site. BK12 taken to 4'. Awaiting Dan from Buck Labs.
- 7:15 Buck Labs on site. Water level 2'-0" on BK12.
- 8:00 BK12 completed at 10'; no detectable levels. Commenced BK13.
- 9:00 Completed BK13 at 10'; no detectable levels. Commenced BK14.
 - 9:20 No recovery at 2' 4' on BK14 due to large cobbles.
 - 10:30 Completed BK14 at 10'; no detectable levels. Commenced BK15.
 - 11:30 Completed BK15 at 10'; no detectable levels. Secured site.