

Paul Wm. Hare Program Manager, Northeast/Midwest Regions

General Electric Company 319 Great Oaks Boulevard Albany, New York 12203

T (518) 862-2713 F (518) 862-2702 Paul.Hare@ge.com

VIA OVERNIGHT EXPRESS

April 12, 2013

Mr. Kevin Kelly Division of Hazardous Waste Remediation New York State Department of Environmental Conservation 615 Erie Boulevard West Syracuse, New York 13204

Subject: Phase 1 Interim Report Enhanced In-Situ Biodegradation Pilot Test Former Powerex, Inc. Facility (Site No. 7-06-006) Auburn, New York

Dear Kevin:

Enclosed please find the Phase 1 Interim Report associated with the enhanced in-situ biodegradation (EISB) pilot test at the North Evaporation Pit, which data show to be the most significant source area at the above-referenced site. The results from the first phase of the pilot test demonstrate the feasibility of injecting and distributing lactate and emulsified vegetable oil (EVO) in the I1 unit at the North Evaporation Pit. As expected, the results also show that the geochemical conditions in the I1 unit at and near the North Evaporation Pit are already favorable for the reductive dechlorination of trichloroethene (TCE) and its degradation products.

The General Electric Company (GE), Geosyntec Consultants, Inc. (Geosyntec) and O'Brien & Gere Engineers, Inc. (O'Brien & Gere) are ready to commence implementation of the second phase of the pilot test, during which lactate and EVO will be injected into the 11 unit at the North Evaporation Pit to enhance the degradation of chlorinate solvents.

As always, please contact me if you have any questions.

Sincerely,

Paul and

Paul Wm. Hare Program Manager, Northeast/Midwest Regions

enclosure (one physical copy, one electronic copy)

Michael Lesser, Esq., NYSDEC (physical copy only) CC: Kevin Farrar, NYSDEC (one physical copy, one electronic copy) Justin Deming, NYSDOH (one physical copy, one electronic copy) Isabel Rodrigues, USEPA (one physical copy, electronic copy only) Carol Berns, Esq., USEPA (electronic copy only) Joseph Mayo, CDM (electronic copy only) John Dougherty, CDM (electronic copy only) John Williams, USGS (electronic copy only) Dick Yager, USGS (electronic copy only) Ralph Morse, O'Brien & Gere (electronic copy only) Maureen Markert, O'Brien & Gere (electronic copy only) Donald Sauda, ARCADIS (electronic copy only) Bernie Kueper, Kueper & Associates (electronic copy only) David Major, Geosyntec (electronic copy only) Mark Watling, Geosyntec (electronic copy only) Dave Reynolds, Geosyntec (electronic copy only) Mark Harkness, GE (electronic copy only) Dean Sommer, Esa., Young Sommer (electronic copy only) Donna Waniak, Esq., GE (electronic copy only)

PH/ph 13087

Prepared for

General Electric Company Albany, New York

PHASE 1 INTERIM REPORT

Enhanced In-Situ Bioremediation Pilot Test

FORMER POWEREX, INC. FACILITY SITE CODE 7-06-006 AUBURN, NEW YORK

engineers | scientists | innovators

130 Research Lane, Suite 2 Guelph. Ontario N1G 5G3

April 12, 2013

TABLE OF CONTENTS

1.	INTRODUCTION					
	1.1	Purpose and Scope				
	1.2	Site Background	2			
		1.2.1 Site History	2			
		1.2.2 Past Waste Solvent Handling Practices	2			
		1.2.3 Previous Investigations	4			
		1.2.4 Remedial Investigation/Feasibility Study	4			
		1.2.5 Interim Remedial Measures				
		1.2.6 Interim Actions	5			
2.	SUMMARY OF SITE CONDITIONS					
	2.1	Site Geology and Hydrogeology	7			
		2.1.1 Geology	7			
		2.1.2 Hydrogeology				
	2.2	Nature and Extent of Contamination				
		2.2.1 Subsurface Soils in Source Areas	10			
		2.2.2 Overburden Groundwater	11			
		2.2.3 Shallow Bedrock Groundwater	12			
	2.3	Summary of Known/Ongoing Degradation Processes in Shallow Bedrock	13			
3.	BIOREMEDIATION OVERVIEW					
	3.1 Degradation Mechanisms of TCE and Daughter Products					
		3.1.1 Anaerobic Biodegradation	14			
		3.1.2 Aerobic Biodegradation				
		3.1.3 Abiotic Degradation	15			
	3.2	EISB for Treatment of Source Areas	16			
	3.3	Application of EISB in Fractured Rock Settings	17			
4.	OVERVIEW OF PILOT TEST OBJECTIVES AND APPROACH					
	4.1	Pilot Test Objectives				
	4.2	Overview of Pilot Test Approach				
5.	рн∆	SE 1 METHODOLOGY	20			
5.	5.1					
	2.1	5.1.1 Installation of New Bedrock Injection and Monitoring Wells				
		5.1.1 Instantion of New Bedrock Injection and Monitoring Wens				
		5.1.2 Wen Development				
	5.2	Water Level Monitoring				
		0	-			

Geosyntec[▷]

		501 0		consultants	
		-	ot Measurements of Water Levels		
			ar Continuous Water Level Monitoring		
	5.3	Hydraulic	Testing	25	
		5.3.1 Hy	draulic Conductivity Testing	25	
		5.3.2 Co	nstant Head Testing	26	
			oss-hole Testing		
	5.4	Conservati	ve Tracer Test	27	
	5.5	Groundwa	ter Sample Collection and Analysis		
6.	PHA	SE 1 OBSI	ERVATIONS AND RESULTS		
	6.1	Geology in Pilot Test Area			
	6.2	Hydraulic Testing			
	6.3	Water Lev	el Monitoring		
	6.4	Conservati	ve Tracer Test		
	6.5	Shallow B	edrock Groundwater Monitoring	34	
	6.6	Intermedia	te Bedrock Groundwater Monitoring		
7.	PHA	IASE 2 PILOT TEST ACTIVITIES			
	7.1	Additional	Monitoring Wells		
	7.2	Baseline S	ampling		
	7.3	Lactate an	d EVO Addition		
	7.4	Performan	ce Monitoring		
8.	REF	REFERENCES			

Geosyntec^o consultants

LIST OF TABLES

- Table 1:
 Subsurface Soil Screening Criteria Exceedances
- Table 2:Pilot Test Criteria
- Table 3:Representative Groundwater Data
- Table 4:Drilling Information for Phase 1 Pilot Test Boreholes
- Table 5:
 Construction Details for Phase 1 Pilot Test Monitoring and Injection Wells
- Table 6:Pulsed Pumping Schedule for Phase 1 of Pilot Test
- Table 7:Hydraulic Conductivity Test Data
- Table 8:Constant Head Test Data
- Table 9:Water Level Measurements
- Table 10:
 Summary of Tracer Test Laboratory-Measured Bromide Data
- Table 11:
 Summary of Estimated Effective Porosity on Tracer Test Bromide Breakthrough Data
- Table 12:
 Summary of Post-Tracer Test Groundwater Data
- Table 13:
 Anticipated Groundwater Sampling Schedule for Phase 2 and 3

LIST OF FIGURES

- Figure 1: Site Location Map Figure 2: Cumulative VOCs Removed from Aqueous and Vapor Treatment Systems Figure 3: VOCs Removed from Aqueous and Vapor Treatment Systems Figure 4: Generalized Geologic Section Figure 5a: Potentiometric Surface Map for Shallow Bedrock Interval During Pre-Pumping Conditions Figure 5b: Potentiometric Surface Map for Shallow Bedrock Interval During Pumping Conditions Figure 6a: **DNAPL** Presence Lines of Evidence Figure 6b: Probable and Potential DNAPL Presence in Overburden Figure 7: VOCs in Soil Exceeding Part 375 Industrial Criteria Figure 8a: Isoconcentration Map of TCE in Overburden Groundwater Figure 8b: Isoconcentration Map of 1,2-DCE in Overburden Groundwater Figure 8c: Isoconcentration Map of Vinyl Chloride in Overburden Groundwater Figure 8d: Isoconcentration Map of TCE in Shallow Bedrock Groundwater Figure 8e: Isoconcentration Map of 1,2-DCE in Shallow Bedrock Groundwater Figure 8f: Isoconcentration Map of Vinyl Chloride in Shallow Bedrock Groundwater Figure 9: Percent of Total VOC Mass Removed From Each Extraction Well Figure 10: Pathways for Biodegradation of Chlorinated Ethenes Location of Pilot Test Area Figure 11: Figure 12: Location of Proposed Pilot Test Wells
- Figure 13: Phase 1 Pilot Test Monitoring and Injection Well Location Map

- Figure 14: Cross Section Location Map
- Figure 15: Cross Section A-A'
- Figure 16: Cross Section B-B'
- Figure 17: Potentiometric Surface Map for I1 Bedrock Unit in Pilot Test Area on February 5, 2013
- Figure 18: Near Continuous Water Level Logging Data
- Figure 19: Bromide Concentration Profiles During Phase 1 Tracer Test
- Figure 20: Peak Bromide Concentrations During Phase 1 Tracer Test and Post-Test Sampling Periods
- Figure 21: Revised Locations of Proposed Phase 2 Pilot Test Monitoring Wells
- Figure 22: Process and Instrumentation Diagram for Lactate and EVO Injections

LIST OF ATTACHMENTS

- Attachment A: Core Logs
- Attachment B: Well Completion Logs
- Attachment C: Hydraulic Conductivity Test Data
- Attachment D: Constant Head Test Results
- Attachment E: Low Flow Sampling Logs
- Attachment F: Laboratory Analytical Results

LIST OF ABBREVIATIONS

°C	degrees Celsius
ASTM	American Society for Testing and Materials
BAZ	biologically active zone
BiRD	biogeochemical reductive dechlorination
cm/sec	centimeters per second
CSIA	compound-specific isotope analysis
CVOCs	chlorinated volatile organic compounds
DHC	Dehalococcoides ethenogenes
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
1,1 - DCA	1,1-dichloroethane
1, 2-DCE	cis-1,2-dichloroethene
1,1 - DCE	1,1-dichloroethene
EVO	emulsified vegetable oil
EISB	enhanced in-situ bioremediation
FFS	Focused Feasibility Study
FS	Feasibility Study
ft	feet
ft amsl	feet above mean sea level
ft/day	feet per day
GE	General Electric Company
gpm	gallons per minute
gpm/ft	gallons per minute per foot
HDPE	high-density polyethylene
HSA	hollow stem auger
IAROD	Interim Action Record of Decision
ID	inside diameter
IRI	Interim Remediation Investigation
IRM	Interim Remedial Measure
ISCR	in-situ chemical reduction
LDPE	low-density polyethylene
lbs	pounds
mg/kg	milligram per kilogram
mg/L	milligram per liter
mL/min	milliliters per minute
mV	millivolts
NAPL	non-aqueous phase liquid
N _{CL}	chlorine number
NGVD	National Geodetic Vertical Datum
NTU	Nephelometric Turbidity Unit
NYSDEC	New York State Department of Environmental Conservation

Geosyntec[>]

NYSDOH	New York State Department of Health
ORP	oxidation-reduction potential
PCE	tetrachloroethene
PIAP	Proposed Interim Action Plan
ppm	parts per million
psi	pounds per square inch
PTA	pilot test area
PVC	polyvinyl chloride
QA/QC	quality assurance/quality control
RI	Remedial Investigation
RQD	rock quality designation
SBGWIA	Shallow Bedrock Groundwater Interim Action
S/cm	Siemens per centimeter
SCOs	Soil Cleanup Objectives
SU	standard units
TCA	1,1,1-trichloroethane
TCE	trichloroethene
TOC	total organic carbon
μg/L	microgram per liter
UIC	Underground Injection Control
USEPA	United States Environmental Protection Agency
USGS	Unites States Geological Survey
VC	vinyl chloride
vcrA	vinyl chloride reductase
VFAs	volatile fatty acids
VOCs	volatile organic compounds
	- •

1. INTRODUCTION

1.1 Purpose and Scope

Geosyntec Consultants (Geosyntec) has been retained by the General Electric Company (GE) to prepare this Phase 1 Interim Report for the enhanced in-situ bioremediation (EISB) pilot test at the former Powerex, Inc. (Powerex) facility in Auburn, New York (the "Site"). This report presents results of the first phase (Phase 1) of the EISB pilot test to accelerate the removal of chlorinated solvents (specifically chlorinated ethenes such as trichloroethene [TCE] and its degradation products, cis-1,2-dichloroethene [1,2-DCE] and vinyl chloride [VC]) in shallow bedrock source area groundwater at the Site. Details of the pilot test are presented in the revised Remedial Investigation/Feasibility Study (RI/FS) Addendum No. 4 (also known as the EISB Pilot Test Work Plan [Work Plan]), prepared by Geosyntec dated June 29, 2012 and are discussed below.

The goal of the pilot test is to determine if EISB is a viable approach to enhancing the removal of chlorinated solvents in the shallow bedrock groundwater source areas at the Site, and if EISB can be used as an environmentally sustainable technology to replace the existing 2-PHASE Extraction[™] system. The United States Environmental Protection Agency (USEPA) Region 2 has issued a "Clean and Green" policy in order to enhance the environmental benefits of site cleanup activities by promoting sustainable technologies (USEPA, 2010). New York State Department of Environmental Conservation (NYSDEC) has also developed a "Green Remediation" guidance document (DER-31) on the use of more sustainable technologies and their application at remedial sites in order to minimize the environmental footprint of site cleanup activities (NYSDEC, 2010). An in-situ bioremediation approach to contaminant conditions in the shallow bedrock source areas is consistent with such policies and guidance.

A secondary goal of the pilot test is to determine if electron donor (lactate and emulsified vegetable oil [EVO]) added in the shallower bedrock units within the footprint of the source zone will positively impact groundwater conditions in the deeper units, and in particular the migration of chlorinated volatile organic compounds (CVOCs) across the southern boundary of the former Powerex facility in the D3 interval (which consists of a gypsum-rich interval within the Forge Hollow Member of the Bertie Formation).

While the goal of the pilot test is to assess the viability of EISB for source area groundwater in the shallow bedrock unit (i.e., the "S" interval, which consists of the Moorehouse and Nedrow Members of the Onondaga Formation), the pilot test is being performed in the intermediate bedrock (specifically, the "I1" interval, which consists of the upper, limestone portion of the Manlius Formation) that underlies the shallow bedrock unit. This is due to the potential engineering and compliance complications of performing such a test in the shallow bedrock while the 2-PHASE ExtractionTM system is operating, or resuming operation of the 2-PHASE ExtractionTM system after performing such a test in the shallow bedrock. By performing the EISB pilot test in the I1 interval, operation of the 2-PHASE ExtractionTM system can continue in accordance with the Interim Action Record of Decision (IAROD) and Amended Order on Consent while the pilot test is implemented.

This report is divided into eight sections. The remainder of this section provides background information on the Site, including a summary of past solvent handling practices, prior investigation activities, and remedial actions that have been completed and/or are currently underway. Section 2 provides a summary of Site conditions. Section 3 provides an overview of chlorinated ethene biodegradation mechanisms, the use of bioremediation to treat source areas, and a summary of case studies involving the use of EISB in fractured bedrock. Section 4 presents an overview of the pilot test objectives and approach. Section 5 outlines the methods and procedures that were used to perform the Phase 1 activities. Section 6 presents the results from the Phase 1 testing activities. Section 7 presents the methodology for the Phase 2 and 3 activities, along with proposed changes to these phases of the pilot test based on results of the Phase 1 testing. Finally, references are provided in Section 8. Note that the remainder of Section 1, and Sections 2, 3, and 4, are largely unchanged from the Work Plan, with minor updates in Sections 1.2.4 and 4.2.

1.2 Site Background

The following information is, with only minor modifications, taken from RI/FS Work Plan Addendum No. 3 (O'Brien & Gere Engineers, Inc. [O'Brien & Gere], 2003), and summarizes the Site history, past waste solvent handling practices, previous investigations, the RI/FS, Interim Remedial Measures (IRMs), and Interim Actions at the Site.

1.2.1 Site History

The Site consists of 55.4 acres of land located on the boundary of the Town of Aurelius and the City of Auburn in Cayuga County, New York (Figure 1). GE purchased the property in 1951 and constructed a manufacturing plant where a variety of electric components, including radar equipment, printed circuit boards for high-fidelity equipment, and high-voltage semi-conductors were manufactured. The property was acquired by Powerex in January 1986. Powerex continued to manufacture high voltage semi-conductors until May 1990, when the plant was closed. In November 1990, GE purchased the property back from Powerex, largely to facilitate remedial activities. No manufacturing operations are currently conducted at the Site.

1.2.2 Past Waste Solvent Handling Practices

Past waste solvent practices at the Site included the placement of waste solvents into one, possibly two, unlined evaporation pits: the purported West Evaporation Pit; and the North Evaporation Pit. As described below, the purported West Evaporation Pit has never been physically identified; however, because of elevated concentrations of volatile organic

compounds (VOCs) in the area, GE has routinely referred to this area as a purported pit location. As such, the term purported West Evaporation Pit is used to denote this area of elevated VOC detections.

Solvents were reportedly placed in the purported West Evaporation Pit located in the field just west of the plant building. The West Evaporation Pit is alleged to have been abandoned in 1962 by bulldozing. However, although VOCs have been detected in overburden soils and groundwater in the field west of the plant building, the actual existence, location, dimensions, and history of the purported West Evaporation Pit have not been determined. Aerial photographs show that an evaporation pit was not present in this field in July 1954. Additionally, there is no visible expression of a former evaporation pit in aerial photographs taken in June 1963, and analysis of samples from a series of 49 test pits installed in November 1989 failed to show any signs of the purported West Evaporation Pit.

The North Evaporation Pit was located north of the northwestern corner of the plant building. Reports suggest that use of this pit began in 1962 or 1963. During its use, the North Evaporation Pit received waste solvents that were gravity-fed to the pit through pipes from the Drum Storage Building located on the north side of the plant building. Use of the North Evaporation Pit was reportedly discontinued when the underground Waste Solvent Tank was installed in 1966 or 1967.

The Waste Solvent Tank was a 21,000-gallon, underground concrete tank located just outside the northwestern corner of the plant building. Waste solvents were periodically removed from the tank and transported off-site for reclamation or disposal. Powerex discontinued use of the Waste Solvent Tank in August 1988 and closed the tank in December 1988 in accordance with a NYSDEC-approved Closure Plan. The Waste Solvent Tank was subsequently removed as part of the Site Preparation Activities for the first phase of construction for the Shallow Bedrock Ground Water Interim Action.

Waste solvents were also stored in two small underground tanks located along the eastern side of the plant building. These two Laboratory Waste Solvent Tanks, which were installed in approximately 1960, were reportedly used to collect waste solvents that were gravity fed via underground piping from the Engineering Laboratory located just inside the eastern wall of the plant building. Periodically, the contents of these tanks were reportedly pumped into 55-gallon drums and subsequently taken to the Drum Storage Building and later emptied into the North Evaporation Pit. Use of the two tanks was reportedly discontinued in 1966 or 1967 when the Waste Solvent Tank and the drain lines that connected it to the Engineering Laboratory were installed. The two Laboratory Waste Solvent Tanks were removed in February 1994 as a NYSDEC-approved IRM performed under the Order on Consent executed with NYSDEC for the RI/FS.

1.2.3 Previous Investigations

Systematic studies of subsurface environmental conditions at the site have been performed and are ongoing. Initial studies included the Phase I through Phase IV Investigations, which preceded the commencement of the RI/FS that is being conducted pursuant to the Order on Consent executed with NYSDEC, as discussed below.

1.2.4 Remedial Investigation/Feasibility Study

An Order on Consent (Index No. A 7-0286-92-08) was executed between GE and NYSDEC on March 31, 1993. This order requires that GE perform a RI/FS for the Site, including both onand off-site areas, and a RI/FS Work Plan was approved by NYSDEC and incorporated into the order. The RI/FS is currently in progress. The Order on Consent also allows GE to propose IRMs for NYSDEC's consideration. With NYSDEC's approval, GE has completed three such IRMs to date.

GE initially retained Dunn Engineering Company (Dunn) to perform the RI. Task 1L of the original RI/FS Work Plan involved a Biodegradation Study, which was completed by Beak Consultants, Ltd., and is documented in an April 1995 report. After the IAROD was issued, GE retained O'Brien & Gere to continue to perform the RI. All of the field activities associated with the RI have been completed, and an RI Report was submitted on June 15, 2012. NYSDEC approved the RI Report in a letter dated January 31, 2013.

GE retained O'Brien & Gere to perform the FS, and the screening of remedial technologies and the development and detailed evaluation of remedial alternatives is underway. Pursuant to the Order on Consent, the FS Report must be completed within 120 days after receipt of NYSDEC's approval of the RI Report. NYSDEC's approval was received on February 4, 2013, and the FS Report is therefore due on or before June 4, 2013.

1.2.5 Interim Remedial Measures

Three IRMs have been completed at the Site. Under the observation of Dunn, OBG Technical Services, Inc. (OBG Tech) excavated and removed the two Laboratory Waste Solvent Tanks and their contents in February 1994. This IRM was performed under the Order on Consent pursuant to the NYSDEC-approved Laboratory Waste Solvent Tanks IRM Work Plan dated September 1993. Soil from the base and walls of the excavations was sampled in accordance with the work plan, and VOCs were detected. The excavations were subsequently backfilled and the contingent investigative activities identified in the work plan were performed to determine the extent of VOCs in the vicinity of the two tanks. These investigative activities included soil borings radiating outward from the two tanks and the installation of overburden and shallow bedrock monitoring wells. The resulting data were incorporated into the Interim

Remedial Investigation (IRI) Report, and these source areas are to be addressed in the FS for the Site.

The second IRM involved the installation of additional fencing and gates at the Site. This Access Restriction IRM was performed by Atlas Fence, Inc. and was completed in December 1994. Construction observation was conducted by O'Brien & Gere. This IRM was also performed under the Order on Consent, in accordance with the NYSDEC-approved Access Restriction IRM Work Plan dated July 1994.

The third IRM focused on surface water, and represented the accelerated implementation of the surface water portion of the Interim Actions that were subsequently included in the IAROD issued by NYSDEC. Therefore, this IRM is discussed in the following section.

1.2.6 Interim Actions

To support development and implementation of Interim Actions addressing the surface water and groundwater in the shallow bedrock source areas, Dunn prepared an IRI Report, submitted to NYSDEC in January 1995, to document the investigative activities which had been performed to date pursuant to the NYSDEC-approved RI/FS Work Plan. The investigative activities conducted pursuant to implementation of the Laboratory Waste Solvent Tanks IRM Work Plan are also described in the IRI Report.

To expedite implementation of the Interim Actions, GE proposed to conduct certain predesign investigation activities and also pilot test the use of dual-phase extraction technology (specifically, 2-PHASE Extraction[™] patented by Xerox Corporation) at the Site. These activities were incorporated into the RI/FS via an Addendum No. 1 to the RI/FS Work Plan. The pre-design investigation activities included: sampling of sediments in the drainage ditch at the Site; a geotechnical assessment of three existing building foundations for possible reuse during the remedial program; and, a constant-head pumping test of the large-diameter well previously installed next to the North Evaporation Pit (designated PW-1). The pilot testing consisted of three dual-phase extraction tests; one test was performed on the large-diameter well previously installed next to the North Evaporation Pit, and the two other tests were performed on largediameter wells installed in the Waste Solvent Tank area and in the purported West Evaporation Pit area (designated as PW-2 and PW-3, respectively).

After completing the pre-design investigation and pilot testing activities, O'Brien & Gere performed a Focused Feasibility Study (FFS) to evaluate various interim remedial alternatives for surface water and source area shallow bedrock groundwater. A FFS Report was submitted to NYSDEC in February 1995. An addendum to the FFS Report that evaluates two additional interim remedial alternatives for the shallow bedrock groundwater, both of which involve hybridized discharge options, was submitted to NYSDEC in September 1995.

In the FFS Report and its addendum, a number of interim remedial alternatives were developed to address the source area shallow bedrock groundwater at the Site. Alternative SBGW4D was the recommended remedial alternative and included the following activities:

- Extracting groundwater from the shallow bedrock unit in the primary source areas (i.e., the North Evaporation Pit, the Waste Solvent Tank area and the purported West Evaporation Pit area) and, as determined in the design phase, in the secondary source areas (i.e., the Laboratory Waste Solvent Tanks area);
- Constructing, starting up, and operating an on-site groundwater treatment system;
- Discharging treated groundwater by a combination of several methods including (a) recharge of treated or partially-treated (i.e., bioactive) water back to the shallow bedrock unit via injection wells, (b) discharge to the on-site storm sewer, (c) discharge via the sanitary sewer to the City of Auburn's wastewater treatment plant, and: possibly, (d) recharge to the ground surface via sprinkle irrigation during the growing season; and
- Conducting a comprehensive monitoring program to document effectiveness.

NYSDEC released a Proposed Interim Action Plan (PIAP) in February 1996 for public comment, and held a public meeting. After responding to comments, NYSDEC, in consultation with the New York State Department of Health (NYSDOH), issued an IAROD in March 1996. The Order on Consent was subsequently amended on May 12, 1997 to allow implementation of the IAROD. The Interim Actions, including subsequent enhancements, are described in RI/FS Work Plan Addendum No. 3 (O'Brien & Gere, 2003).

As stated previously, the FFS Report and associated addendum recommended alternative SBGW4D to address groundwater in the shallow bedrock source areas at the Site, and this alternative was adopted in the IAROD issued by NYSDEC. The 2-PHASE ExtractionTM technology was selected to perform the groundwater extraction component of the Shallow Bedrock Ground Water Interim Action (SBGWIA) because it is the most aggressive method for accomplishing hydraulic control of groundwater at this Site. Currently, a total of thirteen recovery wells are operating at the Site. Through December 2011, more than 55,500,000 gallons of groundwater have been extracted, treated, and discharged by the SBGWIA system. Figures 2 and 3 illustrate the total mass of VOCs removed by the system since operation began in May 2001. As shown in Figure 2, the 2-PHASE ExtractionTM system has removed more than 107,000 pounds (lbs) of VOCs, with more than 94,000 lbs being chlorinated (i.e., TCE, 1,2-DCE, VC). In recent years, however, VOC mass removal has diminished (as depicted in Figure 3). Based on this decline, it seems that an EISB approach is now a more viable option for VOC removal (through in-situ treatment rather than extraction) than the existing 2-PHASE ExtractionTM system.

2. SUMMARY OF SITE CONDITIONS

2.1 Site Geology and Hydrogeology

The geology and hydrogeology at the Site has been investigated over several years and documented in previous reports, including the Phase IV Subsurface Investigation and IRI Reports (Dunn, 1991; Dunn, 1995). A detailed description is presented in the RI Report (O'Brien & Gere, 2012). However, for the purpose of this report, the following information provides a suitable high-level summary.

2.1.1 Geology

The Site is underlain by about 5 to 25 feet (ft) of overburden materials which are generally fine-grained and of low permeability. The average thickness is about 15 ft, with 8 ft of glaciolacustrine silts and clays overlaying 7 ft of glacial till. The contact between the overburden and the bedrock is irregular with a relief of about 15 ft. A thick sequence of carbonate bedrock strata underlies the overburden materials.

The bedrock strata dip gently to the south at approximately 35 ft per mile. Across the former Powerex facility, approximately 10 ft of change occurs in the elevation of the bedrock strata in a north-south direction. The upper portion of the bedrock (i.e., approximately 34 ft) is composed of limestones of the Onondaga Formation. As shown on Figure 4, the Onondaga Formation is divided into four members, which are, in descending order, the Seneca, Moorehouse, Nedrow and Edgecliff. However, at the former Powerex facility, the Seneca Member of the Onondaga Formation has been eroded away and the Moorehouse Member is the uppermost bedrock unit encountered. In the northern and northwestern portions of the Site the Nedrow Member is the uppermost bedrock unit encountered.

Below the Onondaga Formation lies the Manlius Formation, which is separated from the Onondaga Formation by a discontinuous, thin, intervening remnant of the Springvale Member of the Bois Blanc Formation (formerly referred to as the Oriskany Sandstone). The upper portion of the Manlius Formation is a limestone and has an average thickness of about 15 ft. The lower portion of the Manlius Formation consists of a dolomite and averages about 24 ft in thickness.

The deeper carbonate bedrock units encountered at the Site are the limestones and dolomites of the Rondout, Cobleskill and the Bertie Formations. In the vicinity of the Site, the Rondout Formation averages about 30 ft in thickness and consists of argillaceous dolomites with shaley partings. The Cobleskill Formation is a limestone and averages about 16 ft thick. Below the Cobleskill Formation lies the dolomites of the Bertie Formation, which is divided into three members and are, in descending order, the Oxbow, Forge Hollow and the Fiddlers Green. The uppermost Oxbow Member is about 6.5 ft thick in the vicinity of the Site. The Forge Hollow

Member is approximately 50 ft thick at the Site and includes a 1.7- to 7.9-ft thick gypsum-rich interval within the upper portion of the unit. The lower Fiddlers Green Member is approximately 26 ft thick.

2.1.2 Hydrogeology

A conceptual model of the hydrogeologic system in the vicinity of the former Powerex facility has been developed based on information obtained during the various investigations performed at the Site. The conceptual model includes four hydrogeologic units: the overburden materials and the shallow, intermediate and deep bedrock.

The overburden hydrogeologic unit consists of fill materials, glaciolacustrine silts and clays and glacial till and, at the former Powerex facility, has a thickness ranging from 7.3 to 24.5 ft. Groundwater in the overburden unit occurs just below ground surface during the late fall, winter and early spring. However, the water table is "wicked" down by evapotranspiration during the growing season and significant desaturation of the overburden materials occurs. Recharge to the overburden occurs as a result of precipitation events. Groundwater flow is directed toward local discharge zones including various subsurface storm sewer drains, the drainage ditch and streams located off-site to the northwest and east.

Prior to operation of the SBGWIA system, a temporally persistent water-table divide occurred immediately east of the plant building and was oriented in a north-south direction. Source areas such as the North Evaporation Pit, purported West Evaporation Pit and Waste Solvent Tank area occur on the western side of this divide and groundwater flow from these areas was generally to the northwest.

Due to operation of the SBGWIA system, groundwater flow has been altered in the overburden unit in the vicinity of the groundwater extraction wells, most noticeably east of the plant building near the Laboratory Waste Solvent Tanks area where the extraction wells are screened within both the overburden and shallow bedrock. In addition, dewatering of the upper portion of the shallow bedrock unit has induced downward flow from the overburden unit in this and the other source areas (i.e., the North Evaporation Pit, purported West Evaporation Pit and Waste Solvent Tank areas).

The shallow bedrock unit is composed of the Moorehouse and Nedrow Members of the Onondaga Formation. This unit is thickest in the southern portion of the facility, where it averages about 26 ft thick, and pinches out to the north and northwest due to the southern dip of the bedrock strata. Figures 5a and 5b depict the potentiometric surface within the shallow bedrock during pre-pumping and pumping conditions, respectively. As shown on Figure 5a, prior to operation of the SBGWIA system, groundwater flow in the shallow bedrock hydrogeologic unit was directed toward the streams located off-site to the northwest and east. As a result, a north-south trending divide occurred in the potentiometric surface in the central portion of the facility. The North Evaporation Pit is located near but slightly west of the divide.

The purported West Evaporation Pit and Waste Solvent Tank areas are located along the western side of the divide, and shallow bedrock groundwater flow from these areas is generally directed toward the northwest.

As shown on Figure 5b, shallow bedrock groundwater flow in the southern portion of the former Powerex facility is generally to the north. The effect of groundwater extraction through operation of the SBGWIA system is easily observed by the depressions in the potentiometric surface in the vicinity of the extraction wells located near the North Evaporation Pit, the Waste Solvent Tank area, the purported West Evaporation Pit and the Laboratory Waste Solvent Tanks area.

To the northwest of the facility, shallow bedrock groundwater flow is influenced by extraction well PW-11 and may also be directed toward the "swallets" which are located approximately 1,700 to 2,000 ft northwest of the plant. Surface water flow in the stream to the northwest of the facility "sinks" at these swallets and appears to feed the deep bedrock hydrogeologic unit.

Flow in the shallow bedrock is believed to be primarily along bedding planes which may be widened by solution. The horizontal permeability of the shallow bedrock was calculated during the Phase IV investigation to be 250 to 500 times the vertical permeability. At the former Powerex facility, downward hydraulic gradients exist from the shallow to the intermediate bedrock units, and also from the intermediate to the deep bedrock units. Average water level differences between the I1 and I2 monitoring zones and between the I2 and underlying deep bedrock unit (i.e., the D1, D2 and D3 monitoring zones) are 13 ft and 19 ft, respectively.

As shown on Figure 4, the intermediate bedrock hydrogeologic unit is composed of the upper (i.e., limestone) portion of the Manlius Formation, including the interface between the Manlius and Onondaga Formations (i.e., 11 monitoring zone) and the lower (i.e., dolostone) portion of the Manlius Formation, including the interface between the Rondout and Manlius Formations (i.e., the I2 monitoring zone). Groundwater flow in the intermediate bedrock hydrogeologic system appears to be transitional between the generally northern flow direction in the shallow bedrock unit and a generally southward flow direction in the deep bedrock unit. The mean hydraulic conductivity of the upper and lower intermediate bedrock units is approximately 0.45 and 0.30 feet per day (ft/day), respectively. For comparison purposes, the mean hydraulic conductivity of the shallow bedrock unit is approximately 1.2 ft/day.

As shown on Figure 4, the deep bedrock hydrogeologic system is composed of three monitoring zones. In descending order, they are: the Rondout Formation (i.e., the D1 monitoring zone); the Cobleskill Formation, including the interface between the Cobleskill and Rondout Formations (i.e., the D2 monitoring zone); and the upper 15 ft of the Forge Hollow Member of the Bertie Formation, including the gypsum-rich interval (i.e., the D3 monitoring zone). Groundwater flow in the deep bedrock is generally to the south or south-southwest.

2.2 Nature and Extent of Contamination

The nature and extent of contamination at the Site has been investigated over several years and documented in previous reports, including the Phase IV Subsurface Investigation and IRI Reports (Dunn, 1991; Dunn, 1995). A detailed description is presented in the RI Report (O'Brien & Gere, 2012). The following information, adapted from the IRI Report (Dunn, 1995), provides a summary of the contaminant distribution in the source area soils, overburden groundwater and shallow bedrock (i.e., the S unit) groundwater at the Site. Because drilling from the shallow bedrock unit downward into the lower bedrock units would exacerbate contaminant migration, prior to this EISB pilot test there were no upper intermediate bedrock (i.e., I1 unit) or deeper monitoring wells within the source areas.

2.2.1 Subsurface Soils in Source Areas

Subsurface soil samples were obtained at or near the North Evaporation Pit during the Phase I and Phase IV investigations and were analyzed for VOCs. The most frequently detected VOCs were TCE, 1,2-DCE, acetone, xylenes, toluene and ethylbenzene. The maximum concentrations detected for TCE and xylenes were 12,000 and 6,700 milligrams per kilogram (mg/kg), respectively, suggesting that these compounds may be present as non-aqueous phase liquids (NAPLs) at some locations. The maximum concentration detected for acetone was 2,800 mg/kg, and the presence of this constituent is important to the intrinsic biodegradation of the CVOCs. The maximum concentrations of toluene, ethylbenzene and 1,2-DCE were somewhat lower at 96 mg/kg, 370 mg/kg and 96 mg/kg, respectively. During the Phase I investigation, methanol was detected at elevated concentrations in subsurface soil samples obtained from within the North Evaporation Pit and is considered to be a contaminant in subsurface soils at the North Evaporation Pit; the presence of this constituent is also important to the intrinsic biodegradation of CVOCs at the Site.

A detailed discussion of the extent of free and residual NAPL at the North Evaporation Pit and the other source areas is provided in the RI Report (O'Brien & Gere, 2012), and is based on the data presented in the Phase IV Subsurface Investigation and IRI Reports and also the results of numerous additional subsurface soil samples collected during later phases of the RI. Figure 6a depicts the various lines of evidence regarding the presence of dense non-aqueous phase liquid (DNAPL) in overburden soils, and Figure 6b depicts the probable and potential extent of DNAPL in overburden soils at the three primary source areas. These figures support the selection of the North Evaporation Pit, over the other source areas (including the other two primary source areas [namely, the Waste Solvent Tank and purported West Evaporation Pit areas]), for conducting the EISB pilot test.

Figure 7, which is from the RI Report (O'Brien & Gere, 2012), depicts the extent of VOCs above NYSDEC's industrial use Soil Cleanup Objectives (SCOs). Table 1, which is adapted from the RI Report (O'Brien & Gere, 2012), summarizes the number of soil samples that exceed

the industrial use SCOs and mean soil VOC concentrations by source area. As is evident in Figures 6a and 6b and Table 1, most exceedances of the industrial use SCO for TCE occur within the North Evaporation Pit area. The mean concentration of TCE is also greatest in the soil samples collected within the North Evaporation Pit area. These data support the selection of the North Evaporation Pit, over the other source areas (including the other two primary source areas), for conducting the EISB pilot test.

2.2.2 Overburden Groundwater

The most comprehensive 'snapshot' of groundwater quality information available to date for the overburden unit was collected during the Phase IV investigation. The most frequently detected VOCs were TCE, 1,2-DCE, VC, acetone, toluene, xylenes and methylene chloride. Three of these VOCs (i.e., acetone, toluene and methylene chloride) are recognized by USEPA as common laboratory contaminants, but are nevertheless believed to be present in localized areas at the Site. Additionally, while not detected frequently, tetrachloroethene (PCE) and 1,1,1trichloroethane (TCA) were also detected at the Site in localized areas. Methanol was detected at the North Evaporation Pit and Waste Solvent Tank areas based on analyses of subsurface soil samples at and near the North Evaporation Pit and analytical results from groundwater samples obtained from the shallow bedrock unit near the North Evaporation Pit and adjacent to the former Waste Solvent Tank. Results showed that the lateral extent of acetone, methylene chloride and methanol in groundwater in the overburden unit was limited. The limited extent of acetone and methanol, both of which are completely miscible in water and very mobile, is believed to be due to rapid biodegradation, as confirmed by the biodegradation study performed during the early portion of the RI.

Groundwater in the immediate vicinity of the three primary source areas exhibited VOC concentrations exceeding their respective groundwater standards by several orders of magnitude. Groundwater from overburden monitoring well DGC-8S, located near the North Evaporation Pit, exhibited elevated concentrations of TCE, 1,2-DCE, acetone and toluene. In the Waste Solvent Tank area, well DGC-9S exhibited elevated concentrations of these same four compounds. However, the concentration of PCE, 1,2-DCE, 1,1-dichloroethene (1,1-DCE), TCA, 1,1-dichloroethane (1,1-DCA) methylene chloride, ethylbenzene and xylenes also exceeded their respective groundwater standards in this well. Groundwater from monitoring wells DGC- 12S and DGC- 121, both located in the overburden in the vicinity of the purported West Evaporation Pit, exhibited concentrations of TCE, 1,2-DCE, VC and acetone in excess of their respective groundwater standards.

At the former Laboratory Waste Solvent Tanks (which are secondary source areas at the Site), VOC concentrations in overburden groundwater were also found to exceed New York State's groundwater standards. Specifically, the standards for TCE, 1,2-DCE, 1,1-DCE and VC were exceeded in wells DGC- 14S and/or DGC-15S.

Isoconcentration contour maps for TCE, 1,2-DCE and VC in the overburden groundwater are presented in Figures 8a, 8b and 8c, respectively, and indicate that concentrations of these VOCs decrease rapidly in the overburden groundwater with increasing distance from the source areas. There is no evidence of off-site migration of TCE, 1,2-DCE or VC within the overburden.

2.2.3 Shallow Bedrock Groundwater

The results of groundwater samples obtained during the Phase II and III investigations documented the presence of VOCs in groundwater within the shallow bedrock unit at elevated concentrations in the vicinity of the primary source areas (namely, the North Evaporation Pit, Waste Solvent Tank and purported West Evaporation Pit areas). Numerous additional shallow bedrock wells were installed during the subsequent investigation phases. A detailed discussion of these results is provided in the RI Report (O'Brien & Gere, 2012).

During the RI, analytical results for VOCs indicate that shallow bedrock groundwater exceeds New York State's groundwater standards in several wells. The isoconcentration contour map for TCE in the S unit is presented in Figure 8d. The analytical results indicate that the highest TCE concentrations were generally detected in monitoring wells located near the primary source areas, namely well DGC-8B, located near the North Evaporation Pit, well DGC-9B, located adjacent to the former Waste Solvent Tank, and well DGC-12B, located in the vicinity of the purported West Evaporation Pit. Moreover, the concentrations of TCE in wells DGC-8B and DGC-9B are sufficiently high to indicate the potential presence of NAPL at or upgradient from these wells, and a small amount of NAPL was recovered from recovery well PW-1, located near the North Evaporation Pit, during an initial pump test. TCE was also detected in wells DGC-14B and DGC-15B, located near the former Laboratory Waste Solvent Tanks, but at concentrations roughly three to four orders of magnitude lower than in well DGC-8B.

1,2-DCE and VC were the two most frequently detected VOCs in shallow bedrock groundwater. The isoconcentration contour maps for 1,2-DCE and VC are shown in Figures 8e and 8f, respectively. 1,2-DCE and VC appear to migrate away from the primary source areas in the shallow bedrock groundwater to the northwest and to the northeast of the primary source areas.

As shown in Figures 8d through 8f, the highest concentrations of TCE and its degradation products (i.e., 1,2-DCE and VC) in the shallow bedrock groundwater are located just west (downgradient) and within the North Evaporation Pit area. VOC concentration data from the existing 2-PHASE ExtractionTM system also demonstrates that most of the contaminant mass (i.e., mass of TCE, 1,2-DCE and VC) is being removed by recovery wells located next to or immediately downgradient from the North Evaporation Pit (e.g., recovery wells PW-1, PW-4 and PW-9), with lesser amounts of contaminant mass being removed by recovery wells located at or near the other source areas. This is shown in Figure 9 (which is from the RI Report [O'Brien &

Gere, 2012]), and is further support for performing the EISB pilot test in the North Evaporation Pit area.

2.3 Summary of Known/Ongoing Degradation Processes in Shallow Bedrock

Results from past bioremediation studies (Beak, 1995) establish that VOCs are being biodegraded in a biological active zone (BAZ) in the shallow bedrock groundwater, which has formed and is being maintained by the presence of acetone and methanol. The BAZ is located in the vicinity of the primary source areas (North Evaporation Pit, purported West Evaporation Pit, and Waste Solvent Tank areas), appears to be horseshoe-shaped, and extends to the northwest (near wells B-7S and B-8S) and east-northeast (near DGC-1B) of the North Evaporation Pit and Waste Solvent Tank area, and to the west of the purported West Evaporation Pit area. Results from subsequent investigations of shallow bedrock groundwater at the Site have also revealed the presence of a robust population of *Dehalococcoides ethenogenes* (DHC) microorganisms in the shallow bedrock that are capable of dechlorinating TCE and its daughter products to ethene. A detailed discussion about the identification of these microorganisms within the shallow bedrock is provided in the RI Report (O'Brien & Gere, 2012).

Although TCE and its daughter products (primarily 1,2-DCE and VC) are undergoing biodegradation in the BAZ, lower concentrations of these VOCs are present on the downgradient side of the BAZ (i.e., primarily to the northwest, but to a lesser degree also to the northeast). Isotopic analysis of the methane in the groundwater samples collected during the biodegradation study clearly shows that intrinsic bioremediation is operating in the shallow bedrock hydrogeologic unit (Beak, 1995).

Although there were no I1 monitoring wells located in or near the North Evaporation Pit prior to this EISB pilot test that could be used to directly assess the extent of biodegradation within the I1 unit, it is likely that groundwater conditions in the I1 unit are very similar to those in the shallow bedrock and that biodegradation of VOCs is likely occurring in the I1 unit. Data to support this will be collected during the EISB pilot test.

3. **BIOREMEDIATION OVERVIEW**

The following sections provide background information regarding: biotic and abiotic degradation mechanisms of CVOCs (Section 3.1); the application of EISB for source area treatment (Section 3.2); and the application of EISB in fractured rock settings (Section 3.3).

3.1 Degradation Mechanisms of TCE and Daughter Products

3.1.1 Anaerobic Biodegradation

In anaerobic environments, chlorinated ethenes (such as TCE and its degradation products) act as electron acceptors in a process called reductive dehalogenation (specifically, reductive dechlorination). Reductive dechlorination involves the sequential removal of chlorine atoms from the ethene molecule. Each step requires the input of two electrons and two molecules of hydrogen. The electrons and hydrogen come from the oxidation of an electron donor. The extent of dechlorination has been shown to vary in anaerobic dechlorination studies, depending upon the flow and availability of electrons within the anaerobic microbial community (i.e., interspecies hydrogen transfer). For example, in some studies, 1,2-DCE and/or VC were found to accumulate while other studies demonstrated complete dechlorination to non-toxic ethene, carbon dioxide, water and chloride. The electron flow and availability within an anaerobic microbial community is related to the catabolic capabilities of microbial groups or species that are present, and the availability of a suitable electron donor. Figure 10 shows the biodegradation pathways for the chlorinated ethenes detected at the Site.

Microorganisms capable of degrading chlorinated ethenes are common in aquifers. Biodegradation of organic compounds can be enhanced by adding amendments in a process known as biostimulation. Typically, the required amendments are electron donors (i.e., a carbon source) for the degradation of chlorinated ethenes through reduction (dehalogenation) reactions (anaerobic), or electron acceptors for chlorinated ethene degradation through oxidation reactions (aerobic). The reductive mechanism is typically the most efficient and viable degradation pathway for chlorinated ethenes, and the one considered for this Site.

At some sites indigenous microorganisms are not capable of completely degrading the chlorinated ethenes to the desired end products or the population of indigenous microorganisms is insufficient to demonstrate degradation in a reasonable time frame. In these cases, bioremediation may require the addition of both amendments and microorganisms, the latter of which involves a process referred to as bioaugmentation. Even when indigenous microorganisms are present, bioaugmentation can help to shorten the timeframe required to attain an increased level of bioactivity and hasten the degradation of chlorinated ethenes. Several anaerobic microbial consortia have been isolated that completely reduce TCE to ethene, a non-toxic end product. One such microbial consortium (referred to as KB-1®) degrades TCE to ethene when added at sites where this activity is otherwise deficient (Major et al., 2002). KB-1® is a naturally occurring, non-pathogenic microbial culture that contains DHC, the only group of microorganisms documented to promote the complete dechlorination of chlorinated ethenes to non-toxic ethene. At sites where DHC are absent, PCE and TCE dechlorination typically stalls at 1,2-DCE, despite ample electron donor availability. Since DHC are capable of completely dechlorinating PCE and TCE to ethene, the presence of DHC at sites contaminated with these chlorinated ethenes can aid in achieving remedial goals. However, at sites where an appropriate

microbial community exists that is capable of dechlorinating PCE and TCE to ethene, but where an insufficient availability of electron donors persists, the addition of electron donors can help promote biodegradation of PCE and TCE to ethene.

As discussed in Section 2.3 above, VOCs are being biodegraded in a BAZ in the shallow bedrock groundwater in and near the primary source areas. Acetone and methanol are being biodegraded (likely to acetic acid and hydrogen) in the BAZ and support a diverse anaerobic microbial community consisting of acetogenic, sulfate-reducing, and methanogenic bacteria, along with a robust population of DHC. Although there were no I1 monitoring wells located within the primary source areas prior to this EISB pilot test, it is likely that reducing conditions also exist in the I1 unit in the source areas, and more specifically beneath the North Evaporation Pit where the EISB pilot test will be performed. Data to support this will be collected during the EISB pilot test.

3.1.2 Aerobic Biodegradation

The aerobic biodegradation of chlorinated ethenes is understood to be the result of cometabolic oxidation mediated by the powerful oxygenase enzymes found in many aerobic bacteria (e.g., methanotrophic and Pseudomonas bacteria). These enzymes are extremely non-specific and react with chlorinated ethenes to bring about their transformation. Oxidation reactions usually require the input of molecular oxygen, and thus proceed under aerobic conditions. Recent studies have shown, however, that some chlorinated ethenes, such as 1,2-DCE and VC, can undergo aerobic biodegradation under conditions of limited oxygen (i.e., dissolved oxygen [DO] concentrations <0.1 milligrams per liter [mg/L]) (Gossett, 2010). Three general mechanisms have been suggested for the action of oxygenase enzymes: incorporation of oxygen in the carbon-hydrogen bond; oxidation. The first two reactions result in the production of a lcohols that are easily biodegraded. The epoxide formed in the third reaction is very unstable and spontaneously decomposes.

Although it is possible that aerobic conditions may be present within the bedrock groundwater in some areas of the Site, results from past bioremediation studies (Beak, 1995) and subsequent groundwater investigations conducted during the RI indicate that conditions within the source area overburden and shallow bedrock intervals (and probably the underlying I1 interval) are generally anaerobic. Thus, the aerobic biodegradation process described above is not believed to be a significant process for the shallow bedrock or I1 bedrock source area groundwater at the Site.

3.1.3 Abiotic Degradation

In addition to the biotic processes for biodegradation of chlorinated ethenes discussed in Sections 3.1.1 and 3.1.2 above, non-biological (or abiotic) degradation process can also exist in

Geosyntec Consultants

subsurface groundwater environments. He et al. (2009) recently reported on the role of reactive minerals in degrading chlorinated organic compounds in groundwater. The authors noted that iron and sulfur minerals are common corrosion products in zero-valent iron reactive barriers, and many of these minerals can transform or degrade chlorinated organic compounds. If the ambient concentrations of sulfate are high, reactive iron and sulfur minerals can be expected to form during in-situ anaerobic bioremediation of chlorinated hydrocarbons (e.g., TCE and its daughter products). Abiotic degradation of TCE tends to favor dichloro-elimination reactions to produce acetylene over a sequential hydrogenolysis reaction to produce 1,2-DCE and VC (Butler and Haves, 2000). Abiotic processes can also degrade chlorinated ethenes to glycolate, acetate, formate, and carbon dioxide (Darlington et al., 2008). While anaerobic biological reactions follow the hydrogenolysis pathways exclusively, the degradation of hydrocarbons through abiotic reactions may avoid the production of toxic daughter products such as VC. However, because the production of 1.2-DCE and VC during abiotic degradation of TCE is not significant. and since the occurrence of acetylene is very short-lived (and thus not generally analyzed for in groundwater samples), it is much more difficult to observe direct evidence of abiotic degradation than it is for degradation by biotic processes. Recent work approached from an engineered perspective has shown that abiotic degradation via biogeochemical reductive dechlorination (BiRD) and in-situ chemical reduction (ISCR) processes (Stroo and Ward, 2010) can play an important role in the overall degradation of chlorinated ethenes.

A variety of iron-bearing soil minerals can degrade chlorinated hydrocarbons. Iron sulfides (disordered mackinawite, mackinawite, and pyrite), iron oxides (magnetite), green rust, and ironbearing clays have been shown to support complete or nearly complete transformation of PCE, TCE, and carbon tetrachloride. These minerals have been identified in aquatic environments, typically in iron-reducing and/or sulfate-reducing environments. Mineral surfaces act as electron donors and/or reaction mediators to increase the rate of reductive dechlorination. Results from a microcosm study performed using groundwater and fine-grained iron sulfide-rich material from the D3 unit at the Site revealed that abiotic degradation contributes to the significant attenuation of TCE and its daughter products in the D3 unit at the Site (GE, 2011; Harkness et al., 2011). Compound-specific isotope analysis (CSIA) confirmed the losses were at least partially due to degradation and not sorption or other sampling losses. Although abiotic degradation processes are occurring within the D3 unit at the Site, abiotic degradation is not believed to be a significant process for degradation of TCE and its daughter products in the shallow bedrock and I1 units due to the lack of a significant source of sulfate in these units, unlike the gypsum-rich bedrock in the D3 unit.

3.2 EISB for Treatment of Source Areas

As discussed earlier, EISB is the use of bioaugmentation and/or biostimulation to create anaerobic conditions in groundwater and promote contaminant biodegradation for the purposes of minimizing contaminant migration and/or accelerating contaminant mass removal (ITRC, 2005). The majority of the contaminants in the source areas at the Site are DNAPLs in their pure

form. DNAPLs are liquids that are heavier (denser) than water, are not completely miscible in water (typically concentrations in the hundreds to thousands of parts per million [ppm]), and occur as a separate phase from the water. Although dechlorinating organisms can withstand very high dissolved concentrations of solvents (e.g., greater than 100,000 micrograms per liter [μ g/L]), EISB does not work directly on free-phase DNAPL (ITRC, 2005). Instead, EISB technology relies on solubilization and degradation processes that occur at and near the water-DNAPL interface, respectively. These processes result in enhanced removal through the following proven or proposed mechanisms (ITRC, 2005):

- Increasing the concentration gradient by degradation of the dissolved compounds, thereby increasing the dissolution and diffusion rates;
- Effectively increasing the solubility of chlorinated solvents beyond the DNAPL interface by transforming highly chlorinated species (e.g., PCE and TCE) to daughter products that have significantly lower sorption coefficients (e.g., 1,2-DCE and VC); and
- Possibly increasing the solubility of the DNAPL constituents due to addition of the electron donor solution directly and/or indirectly through the effects of its fermentation products.

The basic requirements for successful EISB implementation for chlorinated ethene DNAPLs include sufficient electron donor distribution, appropriate geochemical conditions, sufficient nutrients, and a capable microbial community (ITRC, 2005). As discussed in Sections 2.3 and 3.1.1, a BAZ with a robust population of microorganisms capable of completely biodegrading TCE and its daughter products to ethene already exists in the shallow bedrock groundwater at the Site. However, lower concentrations of these VOCs are present on the downgradient side of the BAZ, possibly due to nutrient limitations which decrease the efficiency of the BAZ in certain areas. In cases such as this, the most common EISB treatment approach is enhanced reductive dechlorination, which consists of adding organic substrates (i.e., electron donors) to ensure highly reducing conditions and to provide the hydrogen needed by dechlorinating organisms (ITRC, 2005). Several key EISB source area treatment demonstrations are highlighted below.

3.3 Application of EISB in Fractured Rock Settings

Several field demonstrations have shown the ability of the EISB technology, either through biostimulation (addition of electron donors alone), bioaugmentation (addition of TCE-degrading bacteria) or both, to treat PCE and TCE in fractured bedrock settings. For example, Sorenson et al. (2001) conducted an EISB field demonstration to treat a TCE source area in a fractured basalt aquifer in Idaho. High concentrations of electron donor (sodium lactate) were injected into the subsurface. Rapid biostimulation was observed and enhanced reductive dechlorination of TCE was observed after the initial lactate injection. Accelerated mass transfer of TCE was also observed due to enhanced dissolution of the TCE DNAPL.

Geosyntec conducted EISB demonstrations involving bioaugmentation to treat TCE in fractured bedrock at the Caldwell Trucking Superfund Site in Fairfield, New Jersey. The field demonstration involved EISB of a TCE DNAPL source area in fractured basaltic bedrock in a test area measuring approximately 120 ft wide and 40 ft long. Results indicate an order of magnitude decline in PCE and TCE concentrations, with an accompanied increase in the concentration of 1,2-DCE, VC and ethene. There is currently evidence that 1,2-DCE production has peaked and is starting to decline. TCE concentrations in the well containing the highest TCE concentration (680 mg/L) have declined by 90%.

At the former Naval Air Warfare Center in West Trenton, New Jersey, a large-scale pilot study was designed to test EISB as a remedy for the in-situ treatment of TCE- impacted groundwater in bedrock (Geosyntec, 2010). The approach included the addition of a culture containing TCE-degrading bacteria and EVO to sustain growth and activity. The treatment plot has an areal extent of approximately 9,000 square feet and is up to 115 ft deep. The concentration of TCE in the pilot test monitoring wells during the study ranged from 206 μ g/L to 17,000 μ g/L TCE. The pilot test lasted four years and demonstrated that bioaugmentation was effective in degrading TCE in the treatment plot. Based on the concentration of total organic carbon in groundwater monitoring wells, the electron donor substrate was utilized in approximately one year.

4. OVERVIEW OF PILOT TEST OBJECTIVES AND APPROACH

4.1 Pilot Test Objectives

As stated in Section 1, the primary objective of the pilot test is to determine if EISB is a viable alternative to the existing SBGWIA system for groundwater in the shallow bedrock source areas at the Site (using the I1 interval as a surrogate for the shallow bedrock unit due to continued operation of the 2-PHASE Extraction[™] system) and to determine if EISB can be used as an environmentally sustainable technology to replace the existing 2-PHASE Extraction[™] system.

A secondary objective of the EISB pilot test is to determine if, given sufficient time, the addition of electron donor in the shallower bedrock unit will positively impact the concentrations of VOCs in the deep bedrock (i.e., D3) wells along the southern boundary of the former Powerex facility. This "top-down" approach relies on the hydraulic gradient and density-driven movement of the electron donor vertically through the system. The use of a denser-than-water electron donor fluid helps to mimic DNAPL migration, and has the potential to deliver electron donor to the deeper units to promote biodegradation.

The performance criteria that will be used to evaluate the performance of EISB in the I1 and D3 intervals during the pilot test, as well as expectations for each of the criteria, are provided in Table 2.

4.2 Overview of Pilot Test Approach

The pilot test area (PTA) is shown in Figure 11 and measures 180 ft by 150 ft and encompasses the entire North Evaporation Pit. The pilot test will consist of injecting electron donors (lactate and EVO) into the I1 bedrock unit via multiple injection wells installed within the PTA. The pilot test injection and monitoring well installations are being performed in two separate phases in order to assess the direction of groundwater flow within the I1 unit before all of the monitoring wells are installed. During Phase 1, all six injection wells and seven of the monitoring wells were installed for water level measurements, hydraulic testing and tracer testing as discussed in Section 5. The remaining pilot test monitoring wells will be installed during Phase 2 as discussed in Section 7. Figure 12 illustrates the layout of the pilot test injection wells and seven monitoring wells as presented in the Work Plan; as shown on Figures 13 and 21, the six injection wells and seven monitoring wells installed during the Phase 1 activities were located as originally proposed.

Following the Phase 2 well installations, groundwater samples will be collected from the pilot test injection and monitoring wells in order to establish baseline geochemical conditions, VOC concentrations, and microbiological activity in the vicinity of the North Evaporation Pit, the Waste Solvent Tank area and the purported West Evaporation Pit area. Once baseline sampling is complete, the electron donor delivery system will be installed and instrumented, and the injection of electron donors will be initiated. Electron donor addition to the PTA is expected to be conducted for a period of up to six weeks. The PTA may also be bioaugmented with a dehalorespiring microbial culture (e.g., KB-1®) to increase the rate and extent of anaerobic reductive dechlorination.

Performance of the pilot test within the I1 interval will be assessed by monitoring a suite of different parameters as listed below and summarized in Table 3:

- Total organic carbon (TOC) will be used to monitor the distribution of electron donors (lactate and EVO) throughout the treatment area;
- Subsequent biological activity will be measured by changes in geochemical parameters such as DO, nitrate, dissolved iron, sulfate, sodium/chloride ratios, potassium concentrations and oxidation-reduction potential (ORP);
- Increases in population of DHC with the vinyl chloride reductase [vcrA] gene;
- TCE biodegradation will be evidenced by the decline in TCE and daughter product concentrations and the production of ethene and chloride;
- Decrease in chlorine number (N_{CL}), as calculated using concentrations of TCE, 1,2-DCE, and VC;

- Increase in δ^{13} C for TCE, 1,2-DCE and VC; and
- Increase in the rate of VOC mass removal over time.

VOC concentrations in the D3 wells located along the southern boundary of the former Powerex facility will also be monitored to determine if, given sufficient time, the addition of electron donor in the shallower bedrock units will positively impact the concentrations of VOCs in these deep bedrock wells. Concentrations of other select parameters (see Table 13) in these wells will also be monitored to assess groundwater conditions in the D3 unit at the southern boundary of the former Powerex facility.

The collected data will be used to estimate TCE biodegradation rates and the effectiveness of the EISB technology for the Site.

5. PHASE 1 METHODOLOGY

The Phase 1 pilot test field activities began in August 2012 and were completed in February 2013. Field work was performed by representatives from Geosyntec, O'Brien & Gere, and ARCADIS U.S., Inc. (ARCADIS) as discussed in the following sections.

5.1 Well Installation

5.1.1 Installation of New Bedrock Injection and Monitoring Wells

As discussed in Section 4.2, six new I1 injection wells designated PT-INJ-1 through PT-INJ-6 were installed at the North Evaporation Pit. Additionally, seven new I1 monitoring wells designated PT-MW-1 through PT-MW-7 were installed, five near the North Evaporation Pit and one each at the Waste Solvent Tank and purported West Evaporation Pit areas. The new I1 injection and monitoring wells were installed by Parratt Wolff, Inc. of East Syracuse, New York, with oversight by O'Brien & Gere. The locations of the new I1 injection and monitoring wells are presented in Figure 13. The target interval for each new well was the I1 interval, which consists of the upper limestone portion of the Manlius Formation, including the contact between the Manlius Formation and overlying Edgecliff Member of the Onondaga Formation and the contact between the upper (i.e., limestone) and lower (i.e., dolostone) portions of the Manlius Formation.

At each well location, a borehole was advanced through the overburden to the overburdenbedrock interface utilizing a combination of 8¹/₄-inch hollow stem auger (HSA) and 9⁷/₈-inch mud rotary drilling techniques. The borehole was advanced into the top of the bedrock a minimum of 2 ft. The top of the bedrock was identified by prolonged grinding of the rotary bit.

The overburden was sealed off by grouting a 6-inch inside diameter (ID) iron casing into the rock socket prior to shallow bedrock drilling. The casing was lowered into each borehole and a

cement-bentonite grout was tremied into the annular space surrounding the casing, filling the annular space to ground surface. The grout was allowed to set overnight before any further bedrock drilling was performed. The grout material consisted of Type I Portland cement mixed with either a powdered or granular bentonite. The grout mixture was prepared in accordance with American Society for Testing and Materials (ASTM) D5092-90, such that approximately 3 to 5 lbs of bentonite was mixed with 6½ to 7 gallons of water per 94-pound sack of cement.

Each borehole was advanced through the shallow bedrock unit to a target depth corresponding to approximately 1 foot above the interface between the Edgecliff Member of the Onondaga Formation and the Manlius Formation. At each of the seven I1 monitoring well locations and at injection well location PT-INJ-1, shallow bedrock drilling was completed utilizing wireline coring techniques with triple tube core barrels equipped with a HQ3 diamond core bit. Following completion of rock coring at these locations, the borehole was reamed using a 5⁷/₈-inch roller bit to facilitate the installation of a 4-inch ID telescoping casing. At each of the other five I1 injection well locations (i.e., PT-INJ-2 through PT-INJ-6), no coring was performed and the shallow bedrock drilling was completed using a 5⁷/₈-inch roller bit.

The shallow bedrock unit was subsequently sealed off by grouting a 4-inch ID iron casing into the 5%-inch rock socket prior to the advancement of the borehole into the intermediate bedrock unit. The casing was lowered into each borehole and a cement-bentonite grout was tremied into the annular space surrounding the casing, filling the annulus to ground surface. The grout was allowed to set overnight before any further bedrock drilling was performed.

After setting the second casing, each borehole was drilled to its total depth using wireline coring techniques with triple tube core barrels equipped with a HQ3 diamond core bit. The target total depth of each borehole was just below the interface between the upper (i.e., limestone) portion of the Manlius Formation and the lower (i.e., dolostone) portion of the Manlius Formation.

Following extraction of the rock core from the bottom of each borehole, the core was described by a qualified O'Brien & Gere geologist and recorded along with related depth, identification of visible fractures, percent recovery and percent rock quality designation (RQD) information. Recovered rock core was placed in labeled core boxes for storage at the site. Detailed information is presented on the core logs in Attachment A. Additional information regarding ground surface elevation, depth to bedrock, depth to the bottom of the casings, the diameter of the casings and the total depth of each borehole is presented on Table 4.

In accordance with the Work Plan, injection wells PT-INJ-1 through PT-INJ-6 were completed as open bedrock boreholes in the I1 interval. However, at monitoring well locations PT-MW-1 through PT-MW-7, the boreholes required stabilization to minimize the potential for bedrock fragments collapsing into the borehole. At these seven locations, 3-inch ID schedule 40 polyvinyl chloride (PVC) well screens and riser pipes were placed in the open borehole, but

without the installation of a sand pack, bentonite seal or annular grout seal. Thus, the well screens and riser pipes in the I1 monitoring wells can be easily removed.

For each I1 monitoring and injection well, a lockable cap was installed on top of the 4-inch iron casing that was grouted into the shallow bedrock unit. Table 5 is a summary of the monitoring well construction and survey data, including ground surface and measuring point elevations and open intervals. For detailed information, refer to the well completion logs provided in Attachment B.

5.1.2 Well Development

The injection and monitoring wells installed as part of the Phase 1 pilot test activities were developed following installation to:

- Remove fine-grained materials from the formation;
- Reduce the turbidity of groundwater within the borehole; and,
- Enhance the hydraulic connection between the bedrock borehole and the formation.

Each newly constructed injection and monitoring well was developed as soon as practicable, but not less than 24 hours after installation. Well development activities were performed by O'Brien & Gere.

In accordance with the Work Plan, the goal for well development was to obtain groundwater which exhibited a turbidity of less than or equal to 50 Nephelometric Turbidity Units (NTUs). If this goal could not be obtained, then well development continued until the turbidity level stabilized or until an amount of groundwater equivalent to 10 well volumes was removed. In addition, pH, temperature and specific conductivity measurements were obtained at regular intervals during development to monitor development effectiveness.

Each injection and monitoring well was developed using dedicated high-density polyethylene (HDPE) tubing with one-way check valves and attached surge blocks. Water was evacuated from the well casings by rapidly raising or lowering the tubing and attached foot valve with a Waterra inertial pump system. Addition of a surge block helped to loosen and remove the fine-grained material from within and around the well screen or open section of the borehole.

The specific dates of well development are included on the well completion logs provided in Attachment B.

5.1.3 Surveying

The location and elevations of each newly installed I1 well were surveyed for horizontal and vertical control and were incorporated into the existing site base map. For each of the monitoring wells, the top of the riser pipe and the top of the protective steel casing were surveyed vertically to the nearest 0.01 ft. The top of the protective casing at each injection well was also surveyed vertically to the nearest 0.01 ft. The ground surface at each well location was surveyed to the nearest 0.1 ft. Surveying activities were performed by Richard Rybinski of Richard Rybinski Land Surveying of Manlius, New York, with oversight by O'Brien & Gere.

Survey elevations are based on Benchmark T35 which is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29). Benchmark T35 was established by the United States Geological Survey (USGS) in 1932 and has a published elevation of 631.37 feet above mean sea level (ft amsl). Horizontal control is referenced to the New York State Plane Coordinate System using the North American Datum of 1983. Survey information for the newly installed wells, including ground surface, steel casing, and measuring point elevations, as well as the easting and northing values for each location are presented in Table 5.

5.2 Water Level Monitoring

5.2.1 Spot Measurements of Water Levels

In accordance with Section 4.3.3 of the Work Plan, water level measurements were obtained from each newly installed I1 injection and monitoring well and also pre-existing I1 interval monitoring wells B-26I1, B-28I1, B-29I1 through B-34I1, B-41I1 and B-42I1 on October 15, 2012. In addition, water level measurements were obtained from each of the I1 injection wells and the I1 monitoring wells listed above on November 12, 2012 and February 5, 2013 in conjunction with the water levels obtained pursuant to the SBGWIA monitoring program. Water level measurements were also obtained from each of the I1 injection and monitoring wells and select shallow bedrock monitoring wells on December 12, 2012 and January 16, 2013 during the near continuous water level monitoring program to benchmark the logged data and allow for calibration of the data loggers, if necessary.

Spot water level measurements were performed by O'Brien & Gere, and were obtained with an electric water level indicator. The electronic water level measurement method involved lowering a probe into the well, which, upon contact with groundwater, completed an electric circuit. At the instant the circuit is closed, the water level indicator provided an audible and/or visual alarm. The depth to water was measured to the nearest 0.01 ft using the marked measuring point on the riser pipe or casing as a reference and was recorded on a field log with the approximate times of measurement. Depths to water were converted to water level elevations with respect to mean sea level using the surveyed measuring point as a reference. The water level probe was washed with deionized distilled water and Alconox between each measurement, and nitrile gloves were worn by the field personnel during measurement.

5.2.2 Near Continuous Water Level Monitoring

As discussed in Section 4.3.3 of the Work Plan, one of objectives of the Phase 1 work was to assess the direction of groundwater flow within the I1 unit in the vicinity of the North Evaporation Pit, to the extent that it is not complicated by the effect of groundwater pumping in the overlying shallow bedrock unit. Therefore, each of the newly installed I1 monitoring and injection wells and certain shallow bedrock wells located near the North Evaporation Pit were fitted with pressure transducers and data loggers to provide data on the interaction of the S and I1 units under variable pumping conditions (due to the routine pulsed pumping schedule and/or more frequent pulsing performed specifically for the Phase 1 work) in the shallow bedrock unit.

The near continuous water level monitoring was initiated by O'Brien & Gere immediately after the completion of the constant head testing on October 29, 2012 (see Section 5.6) and was discontinued on January 16, 2013 in preparation for the tracer test. A summary of the pulsed pumping schedule during the water level logging is presented on Table 6.

Water level fluctuations were monitored using two-channel data loggers and associated pressure transducers manufactured by In-Situ, Inc. (In-Situ). One channel was utilized to collect water level elevation data and the other channel was used to collect temperature data. Water level elevation and groundwater temperature measurements were obtained using a 15-minute recording interval. The pressure transducers used in this testing had a range of 15 and 30 pounds per square inch (psi), or approximately 34.5 and 69 ft of water, respectively. The reported accuracy is within 0.05 % of the full range, or approximately 0.017 and 0.034 ft of water, respectively.

The data loggers were installed as dedicated equipment, whereby all the components of the data logger were installed within the monitoring well and any extra extension cables were coiled within the protective casing. In this manner, the protective casing could be locked during the monitoring period.

At the beginning of the monitoring period, water level measurements were collected from each of the wells in which data loggers were installed. These water levels were used to reference the instrumentation. Water level measurements were also collected manually during the monitoring period in order to benchmark the logged data and allow for calibration, if necessary.

At the end of the monitoring period, the water level elevation data were transferred from the data loggers to a portable computer for processing. In addition, the water levels collected manually were converted to elevations using the surveyed measuring points.

Climatic data (i.e., precipitation and temperature) were obtained from the Cayuga Lock No. 1 weather station via a web-based data retrieval system offered by the Northeast Regional Climate Center located at Cornell University, Ithaca, New York. This weather station is located approximately seven miles west-northwest of the facility.

5.3 Hydraulic Testing

5.3.1 Hydraulic Conductivity Testing

Hydraulic conductivity tests were performed on each of the newly installed I1 injection and monitoring wells to estimate the hydraulic conductivity of the geologic materials immediately surrounding each well. O'Brien & Gere performed the hydraulic conductivity tests on each well using conventional testing methods. Conventional testing methods involved the use of a solid PVC slug or a three-gallon slug of deionized, distilled water to create a rapid perturbation of the static water level followed by monitoring the recovery of water levels toward equilibrium.

Prior to conducting each test, background water levels were collected manually and digitally using an In-Situ data logger and associated pressure transducer. The data logger and cable were cleaned after use in each well using a phosphate-free detergent, distilled water wash and rinse and then wiped dry using paper towels. Following the installation of the data logger, the water level in each well was allowed to re-equilibrate to static conditions prior to starting the test. Once the groundwater recovered to the pre-disturbed level, the data logger was programmed to record water levels on a logarithmic scale, and the test was performed. When feasible the hydraulic conductivity tests were performed until a minimum of 90% recovery was achieved.

As illustrated by the data collected during the hydraulic conductivity tests (see Section 6.2), all of the I1 monitoring and injection wells exhibited a normal response (versus an oscillatory response) to the slug injection/withdrawal and were analyzed using the Hvorslev (1951) method. Analysis of the hydraulic conductivity test data was performed by O'Brien & Gere.

The principle behind Hvorslev's method is that a plot of recovery data (H-h) versus time (t) theoretically follows an exponential decline. If normalized to the initial perturbation (H-Ho), recovery data follows a straight line on a semi-log plot. Horizontal hydraulic conductivity (K) is then calculated as follows:

 $K = r2\ln(L/R)/2LTo$

where:

K = hydraulic conductivity;

r = radius of riser in which water level fluctuations occur;

L = length of saturated well screen/sand pack/open hole;

R = radius of well screen/sand pack; and

To = basic time lag.

The basic time lag (To) is determined from the straight-line fit (on a semi-log plot) to the recovery data and is the time at which 37% recovery has occurred. The computer program used to calculate horizontal hydraulic conductivity by this method utilizes linear regression techniques applied to the recovery data after logarithmic transformations:

Ln (H-h/H-Ho) = bo = b1t

where:

H = head at equilibrium;

h = head at some time (t);

Ho = head at t=0;

bo = y-intercept;

b1 = slope; and

t = time.

This methodology results in a quantitative and objective "forcing" of a straight line to the recovery data. The slope (b1) and y-intercept (b0) can be used to find To and thus K. The accuracy of fit can be assessed using the coefficient of determination (R2) and residuals.

The Hvorslev method assumes that the aquifer tested is homogeneous. Additionally, application of the above equations to bedrock wells assumes that sufficient joints and bedding planes intersect the intake so as to behave like a porous medium with Darcian flow conditions.

5.3.2 Constant Head Testing

Constant head testing was performed on each of the six newly installed I1 injection wells. O'Brien & Gere performed the constant head tests by injecting treated groundwater from the existing 2-PHASE Extraction[™] system through a drop pipe and into each injection well. At each injection well, the rate of injection was adjusted in an attempt to maintain constant heads of about 5 and 10 ft above static water level, except for injection well PT-INJ-1 in which heads of approximately 5 and 25 ft above static water level were targeted. The rate of flow during each test was monitored using an in-line flow meter. Additionally, the total volume of water injected into the formation during each test was monitored using the totalizer on the flow meter. Water level elevation data were obtained from the test I1 injection well, the other nearby I1 injection wells and each of the newly installed I1 monitoring wells using pressure transducers and associated data loggers.

5.3.3 Cross-hole Testing

The cross-hole testing included in Section 4.4.3 of the Work Plan was not performed. This part of the Phase 1 work was eliminated based on the additional monitoring performed during, and the results obtained from, the constant-head tests.

5.4 Conservative Tracer Test

Tracer testing was conducted to provide additional information about the I1 aquifer hydraulics, aid in finalizing the locations of the remaining I1 monitoring wells to be installed at the beginning of Phase 2, and refine the electron donor delivery system and approach. The tracer test was performed by Geosyntec as outlined in Section 4.5 of the Work Plan and as detailed below.

The tracer test was performed at the Site in late January 2013 and involved injecting water containing dissolved bromide (i.e., potassium bromide) and helium tracers into the 11 formation within the North Evaporation Pit via the central injection well (i.e., PT-INJ-1, see Figure 13) and then following the tracer solution with 'clean' water (chase water, without the bromide and helium tracers). The water for the tracer solution and chase water was treated groundwater from the existing 2-PHASE Extraction[™] system.

The tracer solution was formulated by dissolving potassium bromide and helium gas into approximately 1,050 gallons of water in a holding tank to produce the desired tracer concentrations of roughly 500 mg/L bromide and 1.5 mg/L helium. A submersible pump was used to continuously mix the contents of the tank throughout the test. The test was initiated on January 29, 2013 when tracer solution was injected into PT-INJ-1 at a rate of approximately 1 gallon per minute (gpm) for a period of approximately 17.5 hours. Following injection of 1,050 gallons of tracer solution, 930 gallons of chase water from a second holding tank was injected into PT-INJ-1 at a rate of approximately 1 gpm for an additional 15.5 hours. The tracer solution and chase water were injected into PT-INJ-1 through a drop pipe in the well. Submersible pumps located in the holding tanks were used to deliver the tracer solution and chase water from the holding tanks to PT-INJ-1, and injection flow rates and pressures were monitored throughout the test using an in-line flow meter and pressure gauge fitted to the injection piping. Additionally, the total volume of tracer solution and chase water injected into the formation during the test was monitored using the totalizer on the flow meter.

Groundwater samples were collected from all six of the pilot test injection wells (PT-INJ-1 through PT-INJ-6) on January 23, 2013 prior to initiating the tracer injection (i.e., background samples), and then hourly during the injection period (except for PT-INJ-1, which was not sampled during the injection period as this well served as the injection well for the tracer test). Samples were also collected from five PTA monitoring wells (PT-MW-3 through PT-MW-7) on January 22, 2013 prior to initiating the tracer injection (i.e., background samples). Collection of background samples was performed by Geosyntec using the procedures outlined in Section 5.5 below, and background samples were submitted for laboratory analysis of bromide and helium. A summary of the field parameters measured for each injection and monitoring well during background sample collection is presented on the low flow groundwater sampling logs presented in Attachment E. Collection of groundwater samples from five PTA monitoring wells (PT-MW-3 through PT-MW-7) also occurred on January 30, 2013 during the chase water injection period. For this sampling event, Geosyntec used dedicated submersible pumps and low-density polyethylene (LDPE) tubing for each well. The pump intake was set at the mid-point of the well screen and a volume of groundwater equivalent to twice the tubing volume was purged from the well prior to collecting the sample. Quality assurance/quality control (QA/QC) samples for each sampling event consisted of field blanks and field duplicates. All purge water was containerized and treated on-site using the SBGWIA system.

Field analysis of bromide in samples was undertaken as a screening-level tool to indicate breakthrough and tailing of the bromide tracer. Field analysis of all bromide samples was performed by Geosyntec using an ion-selective electrode. Select samples were also sent to Accutest Laboratories in Dayton, New Jersey for analysis of bromide, and to Eurofins Lancaster Laboratories, Inc. in Lancaster, Pennsylvania for analysis of helium. Laboratory result summary packages are included in Attachment F.

5.5 Groundwater Sample Collection and Analysis

In accordance with Section 4.5.1 of the Work Plan, groundwater samples were collected from existing shallow bedrock extraction wells PW-1, PW-4, PW-12 and PW-13 (all located in the North Evaporation Pit area) by O'Brien & Gere on February 1, February 4 and February 8, 2013 for laboratory analysis of potassium and bromide (the two components of the tracer used during the tracer test). In addition, although not required by the Work Plan, O'Brien & Gere also collected groundwater samples on February 1, 2013 from the five PTA monitoring wells (PT-MW-3 through PT-MW-7) for laboratory analysis of sodium, chloride, potassium and bromide.

Each of the four groundwater extraction wells discussed above were in operation on each date of sampling. Therefore, to perform the sampling, each extraction well had to be shut down to gain access to the well to collect the groundwater sample. Because the wells had been in operation, no purging was performed and the groundwater samples were obtained as grab samples using dedicated bailers. The extraction wells were placed back into operation immediately following each sampling event.

Prior to the collection of groundwater samples from the pilot test monitoring wells, each well was purged prior to sampling using low flow sampling techniques. Purge water was containerized and treated on-site using the SBGWIA system.

A Grundfos and/or monsoon submersible pump and dedicated LDPE tubing were used to purge and collect groundwater samples from each monitoring well. The pump intake was set at the mid-point of the well screen. A direct in-line water quality indicator was installed between the monitoring well and the purge-water container so field measurements could be recorded.

The monitoring wells were purged at a rate of about 150 to 500 milliliters per minute (mL/min). This flow rate was adjusted during purging to minimize groundwater drawdown within the well. To provide additional information on general groundwater conditions, the following field parameters were recorded during the sampling event:

- Temperature in degrees Celsius (°C);
- pH in standard units (SU);
- Specific conductivity in Siemens per centimeter (S/cm);
- ORP in millivolts (mV);
- DO in mg/L; and,
- Turbidity in NTU.

The flow rate and field parameter data were measured at approximately 3 to 5 minute intervals until stabilization was achieved. Stabilization was defined as follows: pH within ± 0.1 SU; specific conductivity within $\pm 0.3\%$ S/cm; ORP within ± 10 mV; and, DO and turbidity within $\pm 10\%$. A summary of the field parameters measured for each monitoring well is presented on the low flow groundwater sampling logs presented in Attachment E.

Upon stabilization and prior to sampling, the in-line water quality meter was removed to allow sampling to occur directly from the dedicated LDPE tubing. New nitrile gloves were donned prior to collection of each groundwater sample. Groundwater samples were collected directly from the tubing used to purge the well. Sample containers were labeled with the sample identification, date, time, project identification, and required laboratory analysis. The same information was recorded in the field book. Immediately after sampling, each groundwater sample was placed in a cooler containing wet ice. Chain-of-custody documentation was maintained as described in the Work Plan.

A QA/QC sample consisting of a blind field duplicate sample was also collected. Groundwater samples were analyzed by Columbia Analytical Services, a division of ALS Environmental, in Rochester, New York. Laboratory result summary packages are included in Attachment F.

6. PHASE 1 OBSERVATIONS AND RESULTS

6.1 Geology in Pilot Test Area

Two cross sections were prepared by O'Brien & Gere to depict the overburden, shallow bedrock and intermediate bedrock in the PTA. The location of each cross-section is shown on Figure 14. Figure 15 presents cross section (A-A'), starting at existing monitoring well DGC-8B, located northwest of the pit, and extending southeastward through the pit to new monitoring well PT-MW-7. Figure 16 presents cross section (B-B'), starting near the Waste Solvent Tank area, and extending northeastward through the North Evaporation Pit to extraction well PW-12.

As shown on Figures 15 and 16, the overburden materials in the vicinity of the North Evaporation Pit are generally thinner in the area north and northwest of the pit and increase in thickness to the south, ranging in thickness from about 11.5 to about 18 ft. Also as shown on Figures 15 and 16, the upper portion of the bedrock in the immediate vicinity of the North Evaporation Pit is composed of limestones of the Moorehouse, Nedrow and Edgecliff Members of the Onondaga Formation. Below the Onondaga Formation lies the Manlius Formation, which is considered the intermediate bedrock hydrogeologic unit at the site. The new monitoring and injection wells installed during Phase 1 extended into the upper (i.e., limestone) portion of the Manlius Formation (designated as the I1 interval).

In the vicinity of the North Evaporation Pit, the thickness of the Moorehouse Member of the Onondaga Formation ranges from 5.7 to 8.7 ft and has an average thickness of about 6.9 ft. The thickness of the Nedrow Member ranges from 9.1 to 10.4 ft and has an average thickness of about 9.7 ft. The thickness of the Edgecliff Member of the Onondaga Formation ranges from 9.3 to 10.0 ft and has an average thickness of about 9.5 ft. The thickness of the upper Manlius Formation (i.e., the I1 unit) ranges from 13.5 to 13.9 ft and has an average thickness of about 13.7 ft.

6.2 Hydraulic Testing

In-situ hydraulic conductivity tests were performed in each of the newly installed I1 monitoring and injection wells as part of the Phase 1 work. A summary of the type of slug test, number of tests performed at each well, number of tests analyzed for each well, the analysis method and the length of the open hole is provided in Table 7. Additional details on the data analysis are presented in Attachment C. The bulk rock horizontal hydraulic conductivity of the I1 unit in the vicinity if the North Evaporation Pit (i.e., monitoring wells PT-MW-3 through PT-MW-7 and injection wells PT-INJ-1 through PT-INJ-6) ranged from 0.13 to 13.5 ft/day (4.56E-05 to 4.77E-03 centimeters per second [cm/sec]), with a geometric mean of approximately 2.82

ft/day (9.95E-04 cm/sec). Five of the six newly installed I1 injection wells (PT-INJ-1, PT-INJ-2, PT-INJ-3, PT-INJ-5 and PT-INJ-6) had relatively similar hydraulic conductivities ranging from 4.31 to 10.51 ft/day (1.52E-03 to 3.72E-03 cm/sec). The hydraulic conductivity of injection well PT-INJ-4 was roughly an order of magnitude lower than the other injection wells at 0.68 ft/day (2.42E-04 cm/sec).

Constant head testing was also performed on each of the six newly installed 11 injection wells. At each injection well, the rate of injection was adjusted in an attempt to create and maintain constant heads of about 5 and 10 ft above static water level, except for injection well PT-INJ-1 in which heads of approximately 5 and 25 ft above static water level were targeted. Table 8 summarizes the results of the constant head testing. The table includes a summary of the injection rate, change in groundwater level during each step of the test, an estimate of the specific capacity of each injection well and the total volume of water injected during each constant head test. The results of the constant head testing are presented graphically in Attachment D. As shown on Table 8, the injection rates during the 5-foot constant head tests ranged from 0.3 to 1.2 gpm with an arithmetic mean injection rate of about 1.42 gpm. The injection rate during the 25-foot constant head test at well PT-INJ-1 was 3.5 gpm.

As shown on Table 8, an estimate of the specific capacity for each injection well was made using the injection rate and change in groundwater level during each constant head test. The specific capacity estimates ranged from 0.06 to 0.21 gallons per minute per foot (gpm/ft) with an arithmetic mean specific capacity of about 0.15 gpm/ft. The total volume of water injected into each injection well ranged from 367 gallons at injection well PT-INJ-4 to 2,138 gallons at injection well PT-INJ-1; the total for all six injection wells was 4,865 gallons. The results of the constant head testing coupled with the available head at each injection well demonstrate that a sustainable injection rate of 0.5 gpm (which was assumed in the Work Plan) can be achieved, and probably exceeded, for each of the six I1 injection wells.

As shown graphically in Attachment D, the near continuous water level logging data obtained during the constant head tests document the hydraulic response associated with injection into each of the I1 injection wells. During the testing of each injection well, a marked response was observed at the other five injection wells. Significant hydraulic responses to the injections were also observed at the various I1 monitoring wells located in the North Evaporation Pit area. These data demonstrate good connectivity in the I1 within the PTA. This connectivity was confirmed by the results of the tracer test (see Section 6.4).

6.3 Water Level Monitoring

Water level elevation data are presented in Table 9. As expected and confirmed by the data presented on Table 9, the water level elevations in the I1 monitoring and injection wells in the

PTA are lower than the water level elevations in nearby S monitoring wells. Based on the water level elevation data presented on Table 9 for February 5, 2013, the average water level elevations in the S and the I1 hydrogeologic units in the North Evaporation Pit area were 628.17 and 608.75 ft amsl, respectively, a difference of approximately 19.4 ft. As noted on Table 6, all of the shallow bedrock pumping wells associated with the SBGWIA system were in continuous operation during the February 5, 2013 water level monitoring event, and had been since December 24, 2012, so this difference is representative of pumping conditions. A greater difference might be observed under non-pumping conditions. The average ground surface elevation in the PTA is approximately 639.6 ft amsl, which is approximately 30.8 ft higher than the average water level elevation in the I1 monitoring and injection wells in the North Evaporation Pit area on February 5, 2103. Thus, the available head for injection into the I1 unit is significant even with gravity discharge.

Figure 17 shows the potentiometric surface in the PTA for the I1 hydrogeologic unit on February 5, 2013. As shown on Figure 17, the groundwater flow direction in the I1 unit is generally to the south in the vicinity of the North Evaporation Pit.

Figure 18 presents graphical representations of the near continuous water level elevation data recorded at each of the newly installed I1 monitoring and injection wells and select shallow bedrock monitoring wells located in the North Evaporation Pit area during the pulsed pumping performed as part of the Phase 1 pilot test work. The purpose of this monitoring was to provide data on the interaction of the S and I1 units under variable pumping conditions. As shown on Figure 18, with the exception of I1 monitoring wells PT-MW-1 and PT-MW-2 (which are not located at or near the North Evaporation Pit), all of the I1 injection and monitoring wells responded to the variable pumping of extraction wells PW-1, PW-4, PW-12 and PW-13 (all of which are located around the North Evaporation Pit). This is best illustrated by the hydraulic response observed when these four extraction wells were turned off on December 17, 2013 and subsequently restarted on December 24, 2013 (Interval between I and J as indicated on Figure 18).

6.4 Conservative Tracer Test

The helium results were not useful, as none of the background or tracer test groundwater samples submitted for laboratory analysis of helium yielded detectable concentrations. It is speculated that the helium either did not fully dissolve into the tracer solution water or came out of solution prior to sample collection or during sample transport to the laboratory. Thus, the remainder of this section will focus on the bromide results obtained during the test.

Table 10 presents a summary of the laboratory-measured bromide concentrations for groundwater samples collected from the pilot test injection wells (PT-INJ-1 through PT-INJ-6) and five PTA monitoring wells (PT-MW-3 through PT-MW-7) prior to and during the tracer test, as well as laboratory-measured bromide concentrations for samples collected from the tracer

solution tank. Bromide concentrations in background samples from the pilot test injection and monitoring wells were below the laboratory reporting limits. The concentration of bromide in the tracer solution tank was approximately 425 mg/L (with measured concentrations of 424 mg/L and 428 mg/L at the start and end of the tracer solution injection period, respectively). Figure 19 presents the bromide breakthrough profiles for the pilot test injection wells that were used as monitoring wells during the tracer test (PT-INJ-2 through PT-INJ-6). Both laboratory-measured bromide concentrations as well as bromide concentrations inferred from field analysis using an ion-selectrive electrode are shown in Figure 19. Field-measured concentrations of bromide were generally higher than bromide concentrations measured by the laboratory. Field results are only considered to be partially quantitative due to the limitations of the field instrument and served solely as a screening-level tool to indicate breakthrough and tailing of the bromide tracer.

Once injection of the tracer solution was initiated, bromide was quickly (i.e., within a few hours, even before injection of the chase water) observed in all five surrounding injection wells (PT-INJ-2 through PT-INJ-6). Laboratory-measured bromide concentrations reached the concentration of the tracer solution after only a few hours for wells PT-INJ-2 and PT-INJ-5, within seven hours for PT-INJ-3 and within nine hours for PT-INJ-6 (Figure 19). At well PT-INJ-4, the laboratory-measured bromide concentrations reached levels that were more than 60% of the injected bromide concentration. Bromide was also detected at high concentrations (134 to 180 mg/L) in pilot test monitoring wells PT-MW-3 and PT-MW-6 during the water injection period, while lower concentrations of bromide (<10mg/L) were observed in pilot test monitoring wells PT-MW-7 during the same period. Figure 20 depicts the peak laboratory-measured bromide concentrations in the five pilot test injection wells and the five PTA monitoring wells during the tracer test and post-test sampling periods (i.e., from January 29 through February 1, 2013).

The sustained injection rate during the tracer test was double the 0.5 gpm rate that was assumed in the Work Plan for Phase 2. Based on results of the in-situ hydraulic conductivity and constant head pumping tests (see Section 6.2), the potassium lactate and/or EVO injection rates into the I1 unit during Phase 2 could be further increased if desired.

A simple calculation was performed to estimate the effective porosity of the I1 unit based on breakthrough of the bromide in injection wells PT-INJ-2 through PT-INJ-6. It was assumed that breakthrough occurred when the bromide concentration reached one half the maximum value based on the field measurements. The results are shown in Table 11. The calculated effective porosities ranged from 0.00064 to 0.0038, with an arithmetic mean of 0.0018. This mean value has been used to help calculate the Phase 2 injection volumes for lactate and EVO (see Section 7.2 below).

6.5 Shallow Bedrock Groundwater Monitoring

As presented in Table 12, groundwater samples were obtained on three dates following completion of the tracer test from extraction wells PW-1, PW-4, PW-12 and PW-13 (all of which are located around the North Evaporation Pit) for laboratory analysis of potassium and bromide (the two components of the tracer) to assess the connectivity between the S and I1 monitoring The first sampling event was conducted on February 1, 2013, two days after intervals. completing the tracer test. The subsequent sampling events were conducted on February 4 and 8, 2013, five and nine days after completing the tracer test. As shown in Table 12, bromide was not detected at or above the laboratory reporting limit of 1 mg/L at extraction wells PW-1 and PW-13 during any of the three sampling events. However, bromide was detected at concentrations of 2.5 and 1.3 mg/L in the samples collected on February 1, 2013 (the first sampling event, two days after the tracer test was completed) from extraction wells PW-4 and PW-12. Subsequently, bromide was not detected in the samples collected from extraction well PW-4 on February 4 and 8, 2013. Bromide was detected at an estimated concentration of 0.9 mg/L in the sample collected from extraction well PW-12 on February 4, 2013, but was not detected in the sample collected on February 8, 2013.

Groundwater samples were also collected on eight dates from the main separator of the SBGWIA system for laboratory analysis of bromide. During these sampling events, the groundwater coming into the main separator was from extraction wells PW-1, PW-4, PW-6, PW-7, PW-9, PW-10, PW-12 and PW-13; groundwater from the other extraction wells was going through the auxiliary separator. Collection of samples from the main separator was performed by ARCADIS. As shown on Table 11, bromide was detected at a concentration of 1.5 mg/L in the main separator sample collected on January 30, 2013 (the last day of the tracer test).

The bromide data from the pumping wells and the main separator to the SBGWIA system demonstrate movement of some tracer solution from the I1 unit upward into the S unit in response to the ongoing pumping.

Potassium was detected in all of the samples collected from extraction wells PW-1, PW-4, PW-12 and PW-13 on February 1, 4 and 8, 2013 at concentrations ranging from an estimated 1,070 μ g/L at PW-12 to 2,020 μ g/L at PW-4. Potassium was also detected in four of the eight samples collected from the main separator to the SBGWIA system at concentrations ranging from an estimated 2,100 μ g/L to 2,200 μ g/L (potassium was not detected in the other four samples). The concentrations of potassium in the four extraction wells and the main separator are indicative of background conditions, and, in contrast to the bromide data, do not provide any further evidence of the upward movement of tracer solution from the I1 to S units.

6.6 Intermediate Bedrock Groundwater Monitoring

As discussed in Section 5.4, Geosyntec collected groundwater samples on January 22, 2013 from five PTA monitoring wells (PT-MW-3 through PT-MW-7) and on January 23, 2013 from

the six pilot test injection wells for laboratory analysis of bromide and helium (see Table 10 for bromide results). O'Brien & Gere also collected groundwater samples on February 1, 2013 from five PTA monitoring wells (PT-MW-3 through PT-MW-7) for laboratory analysis of sodium, chloride, potassium and bromide (see Section 5.5 and Table 12). The injection and monitoring wells were sampled using low flow methods, including the measurement of certain field parameters (e.g., DO, ORP and pH) during purging. The field parameter data are presented on the sampling logs in Appendix E. As expected, the pH data are quite neutral, with values ranging from 6.5 to 7.2 SU for all wells except PT-INJ-4, which had an anomalously high pH value of 8.6 SU. The DO results are quite low, ranging from 0.17 to 0.91 mg/L, and the ORP results are negative, ranging from -57 to -164 mV. These data show that conditions within the I1 unit at and near the North Evaporation Pit are favorable for the reductive dechlorination of CVOCs, especially when one considers the potential impact of the tracer test on these sampling results (aerated groundwater from the 2-PHASE ExtractionTM system was used for the tracer solution and chase water).

Based on the laboratory analysis results provided in Table 12, the molar ratio of chloride to sodium is significantly higher than unity for the five PTA monitoring wells sampled on February 1, 2013. The molar ratio ranges from 3.96 and 3.99 for PT-MW-3 and PT-MW-6, respectively, to 11.9 and 12.9 for PT-MW-4 and PT-MW-7, respectively. Moreover, the two wells with the lowest chloride:sodium molar ratios (PT-MW-3 and PT-MW-6) are the same wells that had the highest bromide concentrations, and were therefore likely most influenced by the tracer solution that was injected two days before the sampling event. The concentrations of bromide in the other three monitoring wells were lower by almost one order of magnitude or more, and the chloride:sodium molar ratios were much higher, ranging from 6.94 to 12.9. The chloride:sodium molar ratio in the treated groundwater from the 2-PHASE ExtractionTM system is not known, but available data for the concentration of chloride within the treatment system ranges from 48.8 to 76.1 mg/L, considerably lower than the concentrations of chloride in PT-MW-7 and PT-MW-4 (173 and 185 mg/L, respectively). Thus, the molar ratio of chloride to sodium in at least two of the five PTA monitoring wells suggests that reductive dechlorination of CVOCs may already be occurring in the I1 unit at and near the North Evaporation Pit.

7. PHASE 2 PILOT TEST ACTIVITIES

The Phase 2 and Phase 3 pilot test activities will be performed in accordance with the Work Plan except as modified below based on the Phase 1 results. Additional details are also provided below for certain Phase 2 and Phase 3 activities.

7.1 Additional Monitoring Wells

The Work Plan included the installation of up to 14 new monitoring wells during the pilot test, with seven I1 monitoring wells installed during Phase 1 and up to seven additional I1 monitoring wells to be installed during Phase 2. As discussed in Section 6.3 and shown on

Figure 17, groundwater flow in the I1 unit is generally to the south in the vicinity of the North Evaporation Pit. Adequate coverage for the pilot test can be achieved by installing six additional I1 monitoring wells in the PTA as part of the Phase 2 activities: two additional monitoring wells located within the PTA south of the North Evaporation Pit (designated PT-MW-9 and PT-MW-10); two additional monitoring wells located within the PTA southwest of the North Evaporation Pit (designated PT-MW-8 and PT-MW-11); one additional monitoring well located within the PTA south-southwest of the North Evaporation Pit (designated PT-MW-12); and one additional monitoring well located within the PTA northeast of the North Evaporation Pit (designated PT-MW-13). These six new I1 monitoring wells are shown in Figure 21 along with the I1 injection and monitoring wells that were installed during Phase 1. The additional Phase 2 monitoring wells will be installed, developed, surveyed any hydraulically tested using the same methodology as for the Phase 1 monitoring wells (see Sections 5.1.1, 5.1.2, 5.1.3 and 5.3.1).

7.2 Baseline Sampling

The anticipated number of baseline groundwater samples presented in the Work Plan has been modified to reflect the change to the number of I1 monitoring wells that will be installed during Phase 2, as discussed in Section 7.1. The revised number of groundwater samples anticipated during the baseline sampling is presented in Table 12.

7.3 Lactate and EVO Addition

Per the Work Plan, biostimulation of the indigenous microorganisms will involve the addition of electron donors (both lactate and EVO) via the six pilot test injection wells. As a soluble electron donor, lactate is both quickly metabolized by bacteria and also migrates at approximately the same velocity as groundwater when dissolved in groundwater. EVO is metabolized more slowly than lactate and also tends to either deposit within, and/or adhere to, aquifer materials due to its general immiscible nature, forming a slow-release electron donor source.

Biostimulation using lactate will be conducted first to facilitate rapid biodegradation in the PTA and to provide a source for migration into deeper units. Potassium lactate will be added either as a 60% solution (as purchased) or, if needed, diluted by combining potassium lactate and fully treated water from the existing 2-PHASE Extraction[™] system in a storage tank to achieve somewhat more dilute solutions. Using the lowest and mean effective porosity estimates for the 11 unit calculated in Section 6.4, between 78,000 lbs (or about 6,985 gallons, assuming an effective porosity of 0.00064) and 220,000 lbs (or about 19,705 gallons, assuming an effective porosity of 0.0018) of potassium lactate solution (as purchased) will be injected into the 11 unit via the six pilot test injection wells (i.e., approximately 13,000 to 36,700 lbs [or about 1,165 to 3,285 gallons] in each injection well). Use of an injection rate of 0.5 to 1 gpm is planned, although the results of the Phase 1 pilot test activities suggest that a higher injection rate is possible. The lactate injections will be followed with injection of chase water (i.e., a minimum

of two well volumes for each injection well) in order to push any residual electron donor out of the injection wells.

Following lactate injections, groundwater samples will be collected on at least two occasions from select injection wells and PTA monitoring wells (PT-MW-3 through PT-MW-13) for laboratory analysis of bromide, TOC and/or volatile fatty acids (VFAs). After a minimum of two weeks, EVO will be injected into the PTA to serve as a longer-term, slow-release electron donor in the I1 unit. To prepare the EVO solution, fully treated water from the existing 2-PHASE ExtractionTM system will be amended with EVO to a target concentration of up to 5%. It is envisioned that between 580 lbs (or about 70 gallons, assuming an effective porosity of 0.00064) and 1,600 lbs (or about 195 gallons, assuming an effective porosity of 0.0018) of EVO (as purchased) will be injected into the I1 unit via the six pilot test injection wells (i.e., approximately 97 to 267 lbs, or 12 to 33 gallons, of EVO [as purchased] in each injection well). An injection rate of 1 gpm is planned. The injection of EVO into the I1 unit will be limited to three injections will be followed with injection of chase water (i.e., a minimum of five well volumes for each injection well) in order to push any residual electron donor out of the injection wells.

Fully treated water from the existing 2-PHASE ExtractionTM system will be used as makeup water for both the lactate and EVO solutions (and also for the chase water injections). Nutrients in the form of ammonia-nitrogen phosphate (ammonium phosphate dibasic), yeast extract and/or vitamin B12 will be added with the electron donors, either by incorporation into the donor materials by the electron donor vendors or by mixing with the donors in the field. Potassium bromide will also be added to the lactate solution for use as a tracer; sufficient potassium bromide will be added to the lactate to achieve a tracer concentration of up to 1,000 mg/L bromide.

Injection of the lactate and EVO solutions into the I1 injection wells will be accomplished using either a gravity feed approach or through the use of a metering pump (i.e., pressurized injection). In-line flow sensors will be used to measure the flow rate and total volume of injected electron donor solution. The lactate solution will be continuously mixed in the storage tank throughout the injection period. During EVO solution injections, an in-line mixing column will be used to ensure adequate mixing of the EVO and treated water prior to delivery. The injection system will be fitted with a manual sampling port downstream of the mixing column to allow collection of samples for measuring target electron donor concentrations in the amended treated water. Electron donor (lactate and EVO) and treated water will be contained in storage tanks. Lines will be fitted with backflow preventers to prevent back-siphoning during shutdown periods. The key electron donor delivery components will be housed in a locked, serviced (electrical), temperature-controlled trailer or shed. Figure 22 presents the process and instrumentation diagram (P&ID) for the electron donor injection system (and is unchanged from the Work Plan).

As noted in Sections 6.3 and 6.5, the results of the near continuous water level elevation logging and the bromide data obtained from the four extraction wells and main separator indicate that there is some connectivity between the S and I1 monitoring intervals in the vicinity of the North Evaporation Pit. Due to the documented movement of some bromide tracer from the I1 unit upward into the S unit during and shortly after the tracer test, it is recommended that extraction wells PW-1, PW-4, PW-12 and PW-13 be shut down during periods when lactate and/or EVO are being injected into the pilot test injection wells, and that these four extraction wells remain shut down for a period of two to four weeks after such injections to avoid the potential for induced upward migration of electron donors into the shallow bedrock in the vicinity of the North Evaporation Pit.

7.4 Performance Monitoring

The performance monitoring schedule outlined in the Work Plan has been modified to reflect the change to the number of I1 monitoring wells that will be installed during Phase 2, as discussed in Section 7.1. The revised number of groundwater samples anticipated during the performance monitoring phase is presented in Table 12.

8. **REFERENCES**

Beak Consultants Ltd. 1995. Biodegradation Study Report, Former Powerex, Inc. Facility, Site Code 7-06-006, Auburn, New York. April 12, 1995

Butler, E.C. and K.F. Hayes. 2000. Kinetics of the transformation of halogenated aliphatic compounds by iron sulfide. *Environmental Science & Technology*, 34:422-429.

Darlington, R., L. Lehmicke, R.G. Andrachek and D.L. Freedman. 2008. Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone. *Environmental Science & Technology*, 42(12): 4323-4330.

Dunn Engineering Company. 1991. Phase IV Subsurface Investigation Report, Former Powerex, Inc. Facility, Auburn, New York. September 12, 1991.

Dunn Engineering Company. 1995. Interim Remedial Investigation Report, Former Powerex, Inc. Facility, Site Code 7-06-006, Auburn, New York. January 5, 1995

General Electric Company. 2011. Microcosm Study Report for Abiotic Degradation in the Gypsum-Rich Bedrock Unit at former Powerex, Inc, Auburn, NY Site. 2011GRC799, September 2011.

Geosyntec Consultants. 2010. Final Report, Bioaugmentation Pilot Study, Former NAWC Trenton Site, West Trenton, New Jersey. September 2010.

Gossett, J.M. 2010. Sustained Aerobic Oxidation of Vinyl Chloride at Low Oxygen Concentrations. *Environmental Science & Technology*, 44:1405-1411.

Harkness, M., C. Henderson, N. McLean, A. Fisher, P. Hare, and R. Morse. 2011. Evaluation of the Abiotic Degradation of TCE in a Gypsum-Rich Bedrock Unit. In, Proceedings of the First International Symposium on Bioremediation and Sustainable Environmental Technologies, Reno, NV, June 27-30, 2011.

He, Y, C. Su, J. Wilson, R. Wilkin, C. Adair, T. Lee, P. Bradley, and M. Ferrey. 2009. *Identification and Characterization Methods for Reactive Materials Responsible for Natural Attenuation of Chlorinated Organic Compounds in Ground Water*. EPA 600/R-09/115.

Hvorslev, M.J. 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No.
36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
Interstate Technology & Regulatory Council. 2005. Overview of In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones. <u>www.itrcweb.org</u>

Major, D.W., M.M. McMaster, E.E. Cox, E.A. Edwards, S.M. Dworatzek, E.R. Hendrickson, M.G. Starr, J.A. Payne, and L.W. Buonamici. 2002. Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. *Environmental Science* & *Technology*, 36:5106-5116.

New York State Department of Environmental Conservation. 2010. DER-31 / Green Remediation. August 11, 2010.

O'Brien & Gere Engineers, Inc. 2003. Remedial Investigation/Feasibility Study Work Plan Addendum No. 3, Former Powerex, Inc. Facility, Site Code 7-06-006, Auburn, New York. September 9, 2002 (Revised October 10, 2003).

O'Brien & Gere Engineers, Inc. 2012. Remedial Investigation Report, Former Powerex, Inc. Facility, Site Code 7-06-006, Auburn, New York. June 15, 2012.

Sorenson, K.S., R.L. Ely, and L.N. Peterson. 2001. Combining enhanced bioremediation and natural attenuation for cleanup of a TCE-contaminated basalt aquifer. In, Proceedings of the Fractured Rock 2001 Conference, Toronto, Ontario, March 26-28, 2001.

Stroo, H.F., and C.H. Ward (eds). 2010. In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, 786 pp.

United States Environmental Protection Agency. 2010. EPA Region 2 Clean and Green Policy. March 11, 2010.

TABLES

TABLE 1: SUBSURFACE SOIL SCREENING CRITERIA EXCEEDANCES Former Powerex, Inc. Facility, Auburn, NY

		Mean ^a Det	ected Concentratio	on (mg/kg)		Number of Industrial Use Screening Criteria ^b Exceedances ^{c,d}					
Volatile Organic Compounds	North Evaporation Pit Area	Concrete Waste Solvent Tank Area	Purported West Evaporation Pit Area	Laboratory Waste Solvent Tanks Area	Purported Fire Training Pit Area	North Evaporation Pit Area	Concrete Waste Solvent Tank Area	Purported West Evaporation Pit Area	Laboratory Waste Solvent Tanks Area	Purported Fire Training Pit Area	
1,1,1-Trichloroethane	6.9	9.4		0.006		0	0		0		
1,1,2,2-Tetrachloroethane	0.99		0.001								
1,1,2-Trichloroethane	0.97										
1,1-Dichloroethane		0.35		0.003			0		0		
1,1-Dichloroethene		0.40	0.002	0.006	0.01		0	0	0	0	
1,2-Dichlorobenzene	0.36					0					
1,2-Dichloroethane			0.044	0.002				0	0		
1,2-Dichloroethene (total)		8.7	0.95	0.71	0.33		0	0	0	0	
1,2-Dichloropropane					0.011						
1,3-Dichlorobenzene											
1.4-Dichlorobenzene											
2-Butanone		0.01	0.002	0.05	0.02		0	0	0	0	
2-Chloroethyl vinyl ether											
2-Hexanone	0.055			0.01							
4-Methyl-2-pentanone	0.009				0.011						
Acetone	343	43	40	4.1	0.47	6	0	0	0	0	
Benzene	0.001	0.002	0.0006	0.004		0	0	0	0		
Bromodichloromethane					0.03						
Bromoform											
Bromomethane		0.56	0.36		0.001						
Carbon disulfide		0.002	0.09	0.01	0.004						
Carbon tetrachloride	19	0.002	0.003	0.01		0		0			
Chlorobenzene	0.84				1.1	0				0	
Chloroethane	0.84										
Chloroform		0.3					0				
Chloromethane		0.64	0.23		0.001						
cis-1,2-Dichloroethene	3.8	6.1	0.62	0.18	0.31	0	0	0	0	0	
cis-1,2-Dichloropropene	5.8			0.18							
Dibromochloromethane											
Dichlorodifluoromethane											
Ethylbenzene	29		0.33	0.08	0.01	0	0	0	0	0	
	11		0.55		0.01	0	-	-			
m&p-Xylenes Methyl isopropyl ketone	1.2										
, 11,	1.2		0.27	0.01	0.02	0	0	0	0	0	
Methylene chloride		6.8				0	0	0	0	÷	
o-Xylene	2.9	14.2	0.11	0.03			-	-			
Styrene											
Tetrachloroethene	4	83	0.46	0.02	4.7	0	2	0	0	0	
Toluene	23	6	2.1	0.004	0.03	0	0	0	0	0	
trans-1,2-Dichloroethene	0.54	0.00	0.02	0.01	0.01	0	0	0	0	0	
trans-1,3-Dichloropropene											
Trichloroethene	617	309	86	14	0.60	18	7	4	0	0	
Trichlorofluoromethane	20		1								
Vinyl acetate											
Vinyl chloride	0.00	0.39	0.003	0.97	0.08	0	0	0	0	0	
Xylenes (total)	281	43	3.4	0.3	0.03	4	0	0	0	0	

Notes:

mg/kg - Milligrams per kilogram.

^a - Mean (arithmetic) concentrations were calculated using detected concentrations only.

^b - Subsurface soil screening criteria: Part 375-6.8 (b) restricted use Soil Cleanup Objectives (SCOs) for industrial use.

^c - There are no Part 375-6.8 (b) SCOs for total 1,2-dichloroethene. The Part 375-6.8 (b) SCOs for cis-1,2-dichloroethene are used because this is the primary isomer of 1,2-dichloroethene found on-site.

^d - Indicates there are no Part 375-6.8 (b) SCOs for individual isomers of xylene. The Part 375-6.8 (b) SCOs apply to mixed xylene, and are used for individual isomers in the above statistical analysis.

- Number of items.

--- Compound was not detected and/or compound does not have a Part 375-6.8 (b) SCO for industrial use.

Duplicate samples were included in the data set used to generate this table.

TABLE 2: PILOT TEST CRITERIA Former Powerex, Inc. Facility, Auburn, NY

Pilot Test Criteria	Expectations							
Intermediate Bedrock (I1) Interval								
1) Reduction in VOC concentrations in pilot test area	Change in VOC (TCE, 1,2-DCE, VC) concentrations in pilot test area over baseline conditions based on groundwater samples collected from the monitoring wells.							
2) More efficient VOC mass removal compared to existing 2-PHASE Extraction [™] system	EISB will have lower O&M costs versus existing 2- PHASE Extraction [™] system for a given VOC mass removal, or EISB will have greater VOC mass removal than existing 2-PHASE Extraction [™] system at the same O&M cost.							
 Greater energy efficiency compared to existing 2-PHASE Extraction[™] system (i.e., decreased energy consumption)^{a,b} 	EISB will consume less energy than existing 2-PHASE Extraction [™] system for a given VOC mass removal, or will remove more VOC mass at the same energy consumption level than the existing 2-PHASE Extraction [™] system.							
4) Decrease in chlorine number (N_{CL}) in pilot test area	Decrease in N_{CL} (calculated using concentrations of TCE, 1,2-DCE and VC) in pilot test area over baseline conditions based on groundwater samples collected from the monitoring wells.							
5) Increase in δ^{13} C for TCE, 1,2-DCE and VC in pilot test area	Increase in the ratio of ¹³ C to ¹² C for TCE, 1,2-DCE and VC in pilot test area over baseline conditions based on groundwater samples collected from monitoring wells.							
6) Increase in VOC mass removal rate in pilot test area	The rate of VOC mass removal with time will increase within the pilot test area following addition of electron donor.							
7) Increase in chloride, TOC and potassium concentrations in pilot test area	Increase in chloride, TOC and potassium concentrations in pilot test area over baseline conditions based groundwater samples collected from the monitoring wells.							
8) Increase in Cl/Na ratio in pilot test area	Increase in ratio of chloride to sodium concentrations in pilot test area over baseline conditions based groundwater samples collected from the monitoring wells.							
9) Increase in population of DHC with the vcrA gene in pilot test area	Addition of electron donor will promote increased growth of DHC with the vcrA gene in the I1 interval within the pilot test area.							
 Reduction in ORP and sulfate and dissolved oxygen concentrations in pilot test area 	Addition of electron donor will enhance reducing conditions in the pilot test area; decreases in ORP and in concentrations of dissolved oxygen and sulfate are expected over baseline conditions based on groundwater samples collected from the monitoring wells.							
Deep Bedrock (D3) Interval								
11) Increase in TOC, VFAs, or potassium in D3 wells along the southern Site boundary	VFAs include lactic and acetic acids and other lactate fermentation products. TOC is a surrogate measure for these compounds. Potassium is directly associated with lactate. These are all indicators that electron donor has reached the D3 wells.							
12) Changes in VOC concentrations or VOC ratios (e.g., DCE/TCE) in D3 wells along the southern Site boundary	Changes in VOC concentrations or ratios indicate biological activity upgradient of Site boundary due to the presence of additional electron donor.							
13) Increase in chloride or Cl/Na ratio in D3 wells along the southern Site boundary	Increases in chloride or chloride/sodium indicate accelerated biodegradation of TCE and daughter products upgradient of Site boundary.							
14) Decrease in chlorine number (N_{CL}) in D3 wells along the southern Site boundary	Decrease in N_{CL} (calculated using concentrations of TCE, 1,2-DCE and VC) over baseline conditions based on groundwater samples collected from the D3 wells along the southern Site boundary.							

Notes:

^a - Critieria conforms to demonstration metrics oulined in the USEPA Region 2 "Clean & Green" policy.

^b - Criteria conforms to NYSDEC concepts and techniques for "Green Remediation".

^{1,2-}DCE - cis-1,2-dichloroethene.

TABLE 3: REPRESENTATIVE GROUNDWATER DATA Former Powerex, Inc. Facility, Auburn, NY

Analyte	Specific Parameters of Interest	Rationale/Use
Field Parameters	DO, ORP, pH, conductivity, temperature	Primarily to monitor significant shifts in redox conditions and pH
Field Test Kits	Nitrate, sulfide, ferrous iron, dissolved manganese	Assess nitrate, sulfate, iron and manganese reduction
Inorganic Chemistry	Anions (chloride, nitrate, sulfate, bromide, sulfide)	Assess extent of VOC degradation; assess nitrate and sulfate reduction; monitor bromide transport during tracer test and electron donor additions
	Dissolved Metals (ferrous iron, manganese, sodium, potassium)	Monitor the occurrence of iron and manganese reduction; monitor changes in ratio of chloride to sodium; monitor incraeses in potassium
Organic Chemistry	VOCs (PCE, TCE, 1,2-DCE, trans- 1,2-DCE, VC)	Assess the extent of VOC degradation
	DHGs (methane, ethane, ethene, acetylene ^a)	Assess the extent of VOC degradation and whether anaerobic degradation processes are occurring to completion
	VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	Assess the extent of VOC degradation and whether anaerobic degradation processes are occurring
	Total Organic Carbon (TOC)	Quantify presence of organic matter in groundwater and assess extent of increase due to electron donor addition
	TCE, 1,2-DCE and VC Carbon Isotopes (¹³ C, ¹² C) ^b	Changes in ¹³ C/ ¹² C fraction of TCE, 1,2-DCE and VC will be used to assess biological transformation of these compounds
Microbiology	Total biomass ^c , <i>Dehalococcoides</i> (DHC) ^c , vcrA ^c	Assess the growth and distribution of biomass and DHC with the vcrA gene

Notes:

1,2-DCE - cis-1,2-dichloroethene.

^a - Analyses for acetylene will only be performed during baseline sampling, and only for select wells.

^b - Analyses for carbon isotopes will be contingent upon results of dechlorination data (e.g., VOCs, DHGs, etc.).

^c - Analyses for total biomass, DHC and vcrA will be contingent upon results of dechlorination data (e.g., VOCs, DHGs, etc.).

Table 4Drilling Information for Phase I Pilot Test Boreholes

Former Powerex, Inc. Facility Auburn, New York

	Ground	Bedro	ck Info	Overburder	n Casing Info	Shallow Bedro	ock Casing Info	Boreh	ole Info
Well	Elevation (ft amsl)	Depth (ft bgs)	Elevation (ft amsl)	Diameter (inches)	Depth (ft bgs)	Diameter (inches)	Depth (ft bgs)	Diameter (inches)	Total Depth (ft bgs)
Phase I Pilot T	est Monitorin	g Wells							
PT-MW-1	637.4	15.5	621.9	6.0	17.7	4.0	46.8	4.0	65.8
PT-MW-2	637.9	15.7	622.2	6.0	18.8	4.0	41.4	4.0	59.8
PT-MW-3	638.9	15.7	623.2	6.0	17.0	4.0	42.2	4.0	56.5
PT-MW-4	638.0	13.2	624.8	6.0	16.0	4.0	40.0	4.0	54.8
PT-MW-5	637.2	15.0	622.2	6.0	16.6	4.0	39.0	4.0	54.4
PT-MW-6	637.3	14.0	623.3	6.0	16.0	4.0	39.0	4.0	54.1
PT-MW-7	638.8	19.0	619.8	6.0	21.5	4.0	43.6	4.0	58.7
Phase I Pilot T	est Injection \	Nells							
PT-INJ-1	640.8	17.0	623.8	6.0	19.0	4.0	43.1	4.0	58.1
PT-INJ-2	637.9	15.5	622.4	6.0	17.5	4.0	40.0	4.0	54.2
PT-INJ-3	640.2	16.5	623.7	6.0	18.5	4.0	41.5	4.0	56.3
PT-INJ-4	638.6	16.0	622.6	6.0	18.0	4.0	40.5	4.0	55.8
PT-INJ-5	639.7	16.5	623.2	6.0	18.7	4.0	41.0	4.0	57.3
PT-INJ-6	640.4	17.5	622.9	6.0	19.5	4.0	41.5	4.0	57.1

Notes:

1. "ft amsl" designates feet above mean sea level.

2. "ft bgs" designates feet below ground surface.

3. Vertical datum is NGVD 1929.

Table 5Construction Details for Phase 1 Pilot Test Monitoring and Injection Wells

Former Powerex, Inc. Facility Auburn, New York

		Surveyed E	levations	Horizontal	coordinates			Oper	n Rock			Scr	creen		
		Measuring	Ground			Total	De	pth	Elev	ation	De	epth	Eleva	ation	
	Date	Point	Surface			Depth	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	
Well	Completed	(ft amsl)	(ft amsl)	Easting	Northing	(ft bmp)	(ft bgs)	(ft bgs)	(ft amsl)	(ft amsl)	(ft bgs)	(ft bgs)	(ft amsl)	(ft amsl)	
Phase I Pilot	: Test Monito	ring Wells													
PT-MW-1 ^a	09/11/12	639.79	637.4	816348.6	1063818.5	68.05	46.8	65.8	590.6	571.6	45.9	65.1	591.5	572.3	
PT-MW-2 ^a	09/11/12	637.68	637.9	816537.3	1063980.2	59.37	41.4	59.8	596.5	578.1	39.9	59.1	598.0	578.8	
PT-MW-3 ^a	09/20/12	641.56	638.9	816618.3	1064118.5	58.76	42.2	56.5	596.7	582.4	41.7	55.8	597.2	583.1	
PT-MW-4 ^a	09/19/12	640.66	638.0	816679.4	1064149.4	57.37	40.0	54.8	598.0	583.2	40.0	54.1	598.0	583.9	
PT-MW-5 ^a	09/17/12	639.83	637.2	816524.2	1064173.6	56.99	39.0	54.4	598.2	582.8	39.6	53.7	597.6	583.5	
PT-MW-6 ^a	09/20/12	639.78	637.3	816560.8	1064182.2	56.42	39.0	54.1	598.3	583.2	39.3	53.4	598.0	583.9	
PT-MW-7 ^a	09/17/12	641.41	638.8	816654.9	1064088.2	60.78	43.6	58.7	595.2	580.1	43.9	58.0	594.9	580.8	
Phase I Pilot	Test Injectio	n Wells													
PT-INJ-1	09/26/12	643.11	640.8	816591.5	1064154.3	60.25	43.1	58.1	597.7	582.7					
PT-INJ-2	09/25/12	639.81	637.9	816589.0	1064175.1	56.03	40.0	54.2	597.9	583.7					
PT-INJ-3	10/01/12	642.76	640.2	816609.2	1064161.0	58.85	41.5	56.3	598.7	583.9					
PT-INJ-4	09/25/12	641.22	638.6	816605.1	1064140.3	58.43	40.5	55.8	598.1	582.8					
PT-INJ-5	10/01/12	642.12	639.7	816580.4	1064139.4	59.54	41.0	57.3	598.7	582.4					
PT-INJ-6	10/02/12	642.80	640.4	816570.7	1064160.6	59.56	41.5	57.1	598.9	583.3					

Notes:

1. "ft amsl" designates feet above mean sea level.

2. "ft bmp" designates feet below measuring point.

3. "ft bgs" designates feet below ground surface.

4. "a" designates PVC installed to stabilize borehole. 3-inch ID schedule 40 polyvinyl chloride well screens and riser pipes were placed in the open borehole, but without the installation of a sand pack, bentonite seal or annular grout seal.

5. "---" designates depth or elevation not applicable.

6. Vertical datum is NGVD 1929.

7. Horizontal coordinates (easting and northing) are measured in NAD83 State Plane coordinate system.

8. Survey information measured by Richard Rybinski Land Surveying of Manlius, New York.

Table 6Pulsed Pumping Schedule for Phase 1 of Pilot Test

Former Powerex, Inc. Facility Auburn, New York

Date					We	ll id					Notes
	PW-1	PW-2	PW-3	PW-4	PW-5	PW-8	PW-9	PW-10	PW-12	PW-13	
Monday, October 22, 2012	х	х	0	х	х	0	0	0	х	х	PW-1, -2, -4, -5, -12 and -13 still off from drilling program
Tuesday, October 23, 2012	x	x	0	x	x	0	0	0	x	x	
Wednesday, October 24, 2012	x	0	0	x	0	0	0	0	x	x	PW-2 and PW-5 on
Thursday, October 25, 2012	х	0	0	х	0	0	0	0	х	х	
Friday, October 26, 2012	х	0	0	х	0	0	0	0	х	х	
Saturday, October 27, 2012	х	0	0	х	0	0	0	0	х	х	
Sunday, October 28, 2012	х	0	0	х	0	0	0	0	х	х	
Monday, October 29, 2012	х	0	0	х	0	0	0	0	х	х	
Tuesday, October 30, 2012	х	0	0	х	0	0	0	0	х	х	
Wednesday, October 31, 2012	х	0	0	х	0	0	0	0	х	х	
Thursday, November 01, 2012	х	0	0	х	0	0	0	0	х	х	
Friday, November 02, 2012	х	0	0	х	0	х	х	х	х	х	PW-8, PW-9 and PW-10 off
Saturday, November 03, 2012	х	0	0	х	0	х	х	х	х	х	
Sunday, November 04, 2012	х	0	0	х	0	х	х	х	х	х	
Monday, November 05, 2012	0	0	0	0	0	х	х	х	х	х	PW-1 and PW-4 on
Tuesday, November 06, 2012	0	0	0	0	0	х	х	х	х	х	
Wednesday, November 07, 2012	0	0	0	0	0	х	х	х	х	х	
Thursday, November 08, 2012	0	0	0	0	0	х	х	х	х	х	
Friday, November 09, 2012	0	0	0	0	0	х	х	х	х	х	Last day of constant head testing
Saturday, November 10, 2012	0	0	0	0	0	х	х	х	х	х	
Sunday, November 11, 2012	0	0	0	0	0	х	х	х	х	х	
Monday, November 12, 2012	0	0	0	0	0	х	х	х	х	х	
Tuesday, November 13, 2012	0	0	0	0	0	х	х	х	х	х	
Wednesday, November 14, 2012	0	х	х	0	х	х	х	х	х	Х	PW-2, PW-3 and PW-5 off
Thursday, November 15, 2012	0	х	х	0	х	х	х	х	х	Х	
Friday, November 16, 2012	0	х	х	0	х	х	х	х	х	х	
Saturday, November 17, 2012	0	х	х	0	х	х	х	х	х	х	
Sunday, November 18, 2012	0	х	х	0	х	х	х	х	х	Х	
Monday, November 19, 2012	0	х	0	0	х	х	х	х	х	х	PW-3 on
Tuesday, November 20, 2012	0	х	0	0	х	х	х	х	х	Х	
Wednesday, November 21, 2012	0	0	0	0	0	х	х	х	х	Х	PW-2 and PW-5 on
Thursday, November 22, 2012	0	0	0	0	0	х	х	х	х	х	
Friday, November 23, 2012	0	0	0	0	0	х	х	х	х	Х	
Saturday, November 24, 2012	0	0	0	0	0	х	х	х	х	х	
Sunday, November 25, 2012	0	0	0	0	0	Х	х	х	Х	Х	
Monday, November 26, 2012	0	0	0	0	0	Х	х	х	0	Х	PW-12 on
Tuesday, November 27, 2012	0	0	0	0	0	х	х	х	0	х	
Wednesday, November 28, 2012	0	0	0	0	0	Х	х	х	0	Х	
Thursday, November 29, 2012	0	0	0	0	0	х	х	х	0	х	
Friday, November 30, 2012	0	0	0	0	0	х	х	х	0	х	

Table 6Pulsed Pumping Schedule for Phase 1 of Pilot Test

Former Powerex, Inc. Facility Auburn, New York

Date					We	ll ID					Notes
	PW-1	PW-2	PW-3	PW-4	PW-5	PW-8	PW-9	PW-10	PW-12	PW-13	
Saturday, December 01, 2012	0	0	0	0	0	х	х	х	0	х	
Sunday, December 02, 2012	0	0	0	0	0	х	х	х	0	х	
Monday, December 03, 2012	0	0	0	0	0	х	х	х	0	0	PW-13 on
Tuesday, December 04, 2012	0	0	0	0	0	х	х	х	0	0	
Wednesday, December 05, 2012	0	0	0	0	0	х	х	х	0	0	
Thursday, December 06, 2012	0	0	0	0	0	х	х	х	0	0	
Friday, December 07, 2012	0	0	0	0	0	х	х	х	0	0	
Saturday, December 08, 2012	0	0	0	0	0	х	х	х	0	0	
Sunday, December 09, 2012	0	0	0	0	0	х	х	х	0	0	
Monday, December 10, 2012	0	0	0	0	0	0	0	0	0	0	PW-8, PW-9 and PW-10 on
Tuesday, December 11, 2012	0	0	0	0	0	0	0	0	0	0	
Wednesday, December 12, 2012	0	0	0	0	0	0	0	0	0	0	
Thursday, December 13, 2012	0	0	0	0	0	0	0	0	0	0	
Friday, December 14, 2012	0	0	0	0	0	0	0	0	0	0	
Saturday, December 15, 2012	0	0	0	0	0	0	0	0	0	0	
Sunday, December 16, 2012	0	0	0	0	0	0	0	0	0	0	
Monday, December 17, 2012	х	0	0	х	0	0	0	0	х	х	PW-1, PW-4, PW-12 and PW-13 off
Tuesday, December 18, 2012	х	0	0	х	0	0	0	0	х	х	
Wednesday, December 19, 2012	х	0	0	х	0	0	0	0	х	х	
Thursday, December 20, 2012	х	0	0	х	0	0	0	0	х	х	
Friday, December 21, 2012	х	0	0	х	0	0	0	0	х	х	
Saturday, December 22, 2012	х	0	0	х	0	0	0	0	х	х	
Sunday, December 23, 2012	х	0	0	х	0	0	0	0	х	х	
Monday, December 24, 2012	0	0	0	0	0	0	0	0	0	0	PW-1, PW-4, PW-12 and PW-13 on
Tuesday, December 25, 2012	0	0	0	0	0	0	0	0	0	0	
Wednesday, December 26, 2012	0	0	0	0	0	0	0	0	0	0	
Thursday, December 27, 2012	0	0	0	0	0	0	0	0	0	0	
Friday, December 28, 2012	0	0	0	0	0	0	0	0	0	0	
Saturday, December 29, 2012	0	0	0	0	0	0	0	0	0	0	
Sunday, December 30, 2012	0	0	0	0	0	0	0	0	0	0	
Monday, December 31, 2012	0	0	0	0	0	0	0	0	0	0	

Notes:

1. "X" designates the well is off; "O" designates well is on.

2. Pumping wells PW-6, PW-7 and PW-11 not shown, but remained on for duration of test.

3. All pumping wells remained on after December 31, 2012 through performance of the Phase 1 tracer test on January 29 and 30, 2013

and completion of the associated post-tracer test monitoring on February 8, 2013, at which point pulsed pumping resumed in

accordance with the schedule previously approved by NYSDEC.

Table 7Hydraulic Conductivity Test Data

Former Powerex, Inc. Facility Auburn, New York

Well ID	Slug Test Type	Number of Tests	Number Analyzed	Analysis Method	Average K value (cm/sec)	Average K value (ft/day)	Open Hole Length (feet)	Transmissivity (ft ² /day)
PT-MW-1	Conventional	6	3	Confined - Hvorslev	2.03E-02	57.53	14.9	857.16
PT-MW-2	Conventional	2	1	Confined - Hvorslev	1.54E-05	0.04	8.6	0.38
PT-MW-3	Conventional	3	3	Confined - Hvorslev	6.31E-04	1.78	14.4	25.70
PT-MW-4	Conventional	3	3	Confined - Hvorslev	4.56E-05	0.13	14.8	1.91
PT-MW-5	Conventional	5	3	Confined - Hvorslev	6.81E-04	1.93	15.4	29.70
PT-MW-6	Conventional	6	6	Confined - Hvorslev	4.77E-03	13.51	15.1	204.01
PT-MW-7	Conventional	4	3	Confined - Hvorslev	3.32E-04	0.94	15.1	14.18
PT-INJ-1	Conventional	5	5	Confined - Hvorslev	3.49E-03	9.87	15.0	148.04
PT-INJ-2	Conventional	5	5	Confined - Hvorslev	2.54E-03	7.20	14.2	102.27
PT-INJ-3	Conventional	6	5	Confined - Hvorslev	3.72E-03	10.51	14.8	155.61
PT-INJ-4	Conventional	2	2	Confined - Hvorslev	2.42E-04	0.68	15.3	10.47
PT-INJ-5	Conventional	3	3	Confined - Hvorslev	1.52E-03	4.31	16.3	70.27
PT-INJ-6	Conventional	6	6	Confined - Hvorslev	2.50E-03	7.09	15.6	110.54

Notes:

1. "cm/sec" designates centimeters per second.

2. "ft/day" designates feet per day.

3. "ft²/day" designates square feet per day.

Table 8Constant Head Test Data

Former Powerex, Inc. Facility Auburn, New York

	5- Injection Rate	-Foot Head Te Change in Groundwater	st Calculated Specific Capacity	10 Injection Rate	-Foot Head Te Change in Groundwater	est Calculated Specific Capacity	25 Injection Rate	-Foot Head Te Change in Groundwater	est Calculated Specific Capacity	Total Volume of Water Injected
Well ID	(gpm)	Level (ft)	(gpm/ft)	(gpm)	Level (ft)	(gpm/ft)	(gpm)	Level (ft)	(gpm/ft)	(gal)
PT-INJ-1	0.3	5.1	0.06				3.5	24.3	0.14	2138
PT-INJ-2	1.2	5.7	0.21	1.4	9.6	0.15				655
PT-INJ-3	1.05	5.4	0.19	1.95	10.2	0.19				460
PT-INJ-4	0.5	5.7	0.09	0.9	10.3	0.09				367
PT-INJ-5	1.05	5.3	0.20	1.55	10.3	0.15				639
PT-INJ-6	0.9	4.9	0.18	1.3	9.8	0.13				606

Notes:

1. "gpm" designates gallons per minute.

2. "ft" designates feet.

3. "gal" designates gallons.

4. "gpm/ft" designates gallons per minute per foot of head increase.

5. "---" designates test not performed.

Table 9Water Level Measurements

Former Powerex, Inc. Facility Auburn, New York

Well	Geologi c Unit	Measurir Steel	ng Point E PVC	levations Ground	MP	15-Oct-12	12-Nov-12	12-Dec-12	16-Jan-13	05-Feb-13
DGC-8B	S	639.29	639.11	636.8	2	NM	620.32	619.38	623.71	619.62
DGC-9BR	S	636.32		636.7	1	NM	626.24	628.35	630.47	628.91
DGC-12B	S	639.29	639.01	637.8	2	NM	626.94	630.30	631.51	629.79
IW-1	S	638.99		638.4	1	NM	NM	627.79	630.37	NM
OW-1	S	639.14		637.4	1	NM	620.57	623.37	628.28	624.89
OW-4	S	638.78		637.5	1	NM	625.18	627.13	629.59	628.51
OW-5	S	639.32		637.8	1	NM	626.06	627.35	629.65	628.77
B-26I₁	I ₁	629.51	629.29	627.8	2	612.46	618.40	NM	NM	623.58
B-28I ₁	I_1	628.18	627.88	626.9	2	610.69	613.79	NM	NM	619.45
B-29I ₁	I_1	640.63	640.39	638.5	2	612.17	613.98	NM	NM	622.70
B-30I ₁	I_1	631.33	631.18	629.8	2	612.02	613.22	NM	NM	618.63
B-31I ₁	I ₁	644.00	643.85	641.8	2	603.46	604.98	NM	NM	615.94
B-32I ₁	I ₁	640.04	639.62	637.0	2	604.34	605.29	NM	NM	614.46
B-33I ₁	I_1	644.24	644.06	642.1	2	578.40	578.62	NM	NM	589.67
B-34I ₁	I_1	643.99	643.74	642.0	2	585.46	585.23	NM	NM	599.92
B-41I ₁	I_1	633.32	633.07	631.2	2	604.75	609.04	NM	NM	614.21
B-42I ₁	I ₁	643.28	642.96	640.5	2	605.21	606.44	NM	NM	613.38
PT-MW-1	I ₁	639.79	638.93	637.39	1	586.01	586.08	589.97	607.11	605.03
PT-MW-2	I_1	637.68	637.12	637.91	1	586.47	584.55	587.87	603.17	599.64
PT-MW-3	I_1	641.56	640.68	638.87	1	598.59	602.71	602.08	608.73	608.62
PT-MW-4	I_1	640.66	638.34	638.01	1	599.17	602.68	602.14	608.66	608.59
PT-MW-5	I_1	639.83	638.36	637.24	1	599.41	603.18	602.57	609.06	609.02
PT-MW-6	I_1	639.78	638.86	637.33	1	599.37	603.09	602.49	609.01	608.99
PT-MW-7	I ₁	641.41	640.61	638.80	1	597.95	601.01	600.43	607.51	607.12
PT-INJ-1	I ₁	643.11		640.83	1	599.40	603.11	602.47	608.99	608.96
PT-INJ-2	I_1	639.81		637.92	1	599.37	603.08	602.47	608.98	608.96
PT-INJ-3	I_1	642.76		640.19	1	599.39	603.11	602.46	608.96	608.97
PT-INJ-4	I_1	641.22		638.62	1	600.58	604.83	603.80	608.79	609.11
PT-INJ-5	I_1	642.12		639.73	1	599.39	603.10	602.46	608.96	608.94
PT-INJ-6	I ₁	642.80		640.36	1	599.38	603.10	602.47	608.97	608.98

Notes:

1. "S" designates shallow bedrock unit and " I_1 " designates upper intermediate bedrock unit.

2. "MP" designates measuring point identifier.

Measuring Point IdentifiersSteel:1PVC:2Ground:3

3. Elevations are in feet above mean sea level (ft amsl) and are referenced to benchmark T35, established by the United States Geological Survey in 1932. The published elevation of this benchmark is 631.37 ft amsl (NGVD 1929).

4. Depths are in feet below measuring point (ft bmp).

5. "---" designates not applicable.

6. "NM" designated not measured.

Geosyntec Consultants

TABLE 10: SUMMARY OF TRACER TEST LABORATORY-MEASURED BROMIDE DATA Former Powerex, Inc. Facility, Auburn, NY

Date	Tracer Test Period	Elapsed Time ¹ (hr)	Tracer Solution Tank	PT-INJ-1	PT-INJ-2	PT-INJ-3	PT-INJ-4	PT-INJ-5	PT-INJ-6	PT-MW-3	PT-MW-4	PT-MW-5	PT-MW-6	PT-MW-7
				Bromide Concentration ² (mg/L)										
1/22/2013	Dealtanaund	N/A								0.040 B	0.028 B	0.12 B	0.065 B	0.048 B
1/23/2013	Background	N/A		0.056 B	0.068 B	0.071 B	0.063 B	0.12 B	0.11 B					
1/29/2013		0	424											
1/29/2013		1			24.1	63.6	0.13	215	21.3					
1/29/2013		3						406						
1/29/2013		4			386									
1/29/2013	Tracer	7			421	411			326					
1/29/2013	Solution	8					134	418	384					
1/29/2013	Injection	10			425	422	153							[
1/29/2013		11						415						
1/30/2013		14					188							
1/30/2013		16	428					421						
1/30/2013		17					249							
1/30/2013		18			425	390	263	419	368					
1/30/2013		19			354	226	161	286	390					
1/30/2013	Chase Water	23							150					
1/30/2013	Injection	25			65.3	63.4								
1/30/2013	injection	28								134	0.093 B	7.6	180	2.3
1/30/2013		33			37.2	38.8								
1/30/2013		34					54.5	27.7	80.6					

Notes:

¹ - elapsed time from start of tracer solution injection; tracer solution injection occurred from 0 to 17.5 hours; chase water injection occurred from 17.5 to 33 hours

² - bromide concentration in samples submitted for laboratory analysis

N/A - not applicable

mg/L - milligrams per liter

B - result was greater than laboratory method detection limit (MDL) but less than laboratory reporting limit (RL)

-- - sample not analyzed by laboratory

Cells shaded grey indicate sample was not collected

Concentrations in bold indicate peak bromide concentrations for each well as measured in samples submitted for laboratory analysis

TABLE 11: SUMMARY OF ESTIMATED EFFECTIVE POROSITY BASED ON TRACER TEST BROMIDE BREAKTHROUGH DATA Former Powerex, Inc. Facility, Auburn, NY

Observation Well	Distance from PT-INJ-1 (r)	I1 Unit Thickness (<i>h</i>)	Injection Rate (Q)	Time to Tracer Breakthrough (t)	Estimated Porosity
	(ft)	(ft)	(gpm)	(min)	
PT-INJ-2	20	15	1	120	0.00085
PT-INJ-3	20	15	1	90	0.00064
PT-INJ-4	20	15	1	540	0.0038
PT-INJ-5	20	15	1	90	0.00064
PT-INJ-6	20	15	1	420	0.0030
				Mean	0.0018

Notes:

ft - feet

gpm - gallons per minute

min - minutes

¹ - time to tracer breakthrough assumed to be time when bromide concentration at observation well measured one half of the maximum bromide concentration based on field measurements Estimated porosities calculated using the equation:

$$\eta = \frac{Q \times t}{(\pi \times r^2 \times h)}$$

Table 12

Tracer Test Analytical Results

Former Powerex, Inc. Facility Auburn, New York

	7/25/2012	8/1/2012	8/22/2012	9/5/2012	1/21/2013	1/30/2013	2/1/2013	2/4/2013	2/8/2013
	<u> </u>	<u> </u>		Bromide (n		<u> </u>	<u> </u>		
Main Separator	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.5	1.0 U		1.0 U
PW-1							1.0 U	1.0 U	1.0 U
PW-4							2.5	1.0 U	1.0 U
PW-12							1.3	0.9 J	1.0 U
PW-13							1.0 U	1.0 U	1.0 U
PT-MW-3							132		
PT-MW-4							2.9		
PT-MW-5							2		
PT-MW-6							97.4		
PT-MW-7							11.2		
					(1)				
	2000.11	24.00	T	Potassium (2000.11	2000 11		2000.11
Main Separator	2000 U	2100	2100	2100	2200	2000 U	2000 U		2000 U
PW-1							1280 J	1370 J	1510 J
PW-4							1550 J	2020	1760 J
PW-12							1070 J	1150 J	3190 J
PW-13							1730 J	1720 J	1860 J
PT-MW-3							7890		
PT-MW-4							11300		
PT-MW-5							1780 J		
PT-MW-6							14900		
PT-MW-7							2950		
	İ								
	T		I	Chloride (n	ng/L)	-		-	
PT-MW-3							89.2		
PT-MW-4							185		
PT-MW-5							52.2		
PT-MW-6							73.2		
PT-MW-7							173		
				Sodium (u	g/l)				
PT-MW-3					5/		14600		
PT-MW-4							10600		
PT-MW-5							4920		
PT-MW-6							11900		
PT-MW-7							8690		

Notes:

1. "U" indicates parameter not detected; the value shown is the reporting limit.

2. "---" indicates the compound was not analysed.

3. "J" indicates analyte detected at an estimated concentration below the reporting limit but above the detection limit.

4. Detections are bolded.

5. Tracer solution injected on January 29, 2013; chase water injected on January 30, 2013

TABLE 13: ANTICIPATED GROUNDWATER SAMPLING SCHEDULE FOR PHASES 2 AND 3^a Former Powerex, Inc. Facility, Auburn, NY

Event(s)	Well(s)	Parameter ^b	Number of Samples per Event	Number of QA/QC Samples per Event ^c	Frequency per Event	Number of Events	Total Number o Samples
Intermediate Bedrock (I1) I	nterval						
Baseline	PT-INJ-1 to PT-INJ-6;	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	19	3	Once	1	22
	PT-MW-1 to PT-MW-13	DHGs (methane, ethane, ethene, acetylene ^d)	19	1	Once	1	20
		VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	19	1	Once	1	20
		Anions (chloride, nitrate, sulfate, bromide)	19	1	Once	1	20
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	19	1	Once	1	20
		TOC	19	1	Once	1	20
		TCE, 1,2-DCE and VC Carbon Isotopes (13C, 12C)e	Up to 19	1	Once	1	Up to 20
		Total biomass ^f , DHC ^f , vcrA ^f	Up to 19	1	Once	1	Up to 20
Phase 2 Donor Injections	PT-INJ-1 to PT-INJ-6;	Anions (bromide)	Up to 17	1	At least twice	1	Up to 36g
	PT-MW-3 to PT-MW-13	TOC	Up to 17	1	At least twice	1	Up to 36 ^g
		VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	Up to 17	1	At least twice	1	Up to 36 ^g
rear 1, Q1 & Q3	PT-MW-3 to PT-MW-13	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	11	3	Once	6	84
rear 2, Q1 & Q3*		DHGs (methane, ethane, ethene)	11	1	Once	6	72
Year 3, Q1* & Q3*		Anions (chloride, nitrate, sulfate, bromide)	11	1	Once	6	72
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	11	1	Once	6	72
		TOC	11	1	Once	6	72
Year 1, Q2 & Q4	PT-MW-3 to PT-MW-13	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	11	3	Once	6	84
Year 2, Q2 & Q4*		DHGs (methane, ethane, ethene)	11	1	Once	6	72
rear 3, Q2* & Q4*		VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	11	1	Once	6	72
		Anions (chloride, nitrate, sulfate, bromide)	11	1	Once	6	72
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	11	1	Once	6	72
		TOC	11	1	Once	6	72
		TCE, 1,2-DCE and VC Carbon Isotopes (¹³ C, ¹² C) ^e	Up to 11	Up to 1	Once	6	Up to 72
		Total biomass ^f , DHC ^f , vcrA ^f	Up to 11	Up to 1	Once	6	Up to 72
	PT-MW-2	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	1	00101	Once	6	6
	11-01-0-2	DHGs (methane, ethane, ethene)	1	-	Once	6	6
		Anions (chloride, nitrate, sulfate, bromide)	1		Once	6	6
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	1	-	Once	6	6
		TOC	1	-	Once	6	6
Deep Bedrock (D3) Interval		100	1		Once	0	0
Baseline	B-31D3, B-32D3, B-33D3,	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	4	1	Once	1	5
Basenie	B-53D3	DHGs (methane, ethane, ethene)	4	1	Once	1	5
		VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	4	1	Once	1	5
		Anions (chloride, nitrate, sulfate, bromide)	4	1	Once	1	5
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	4	1	Once	1	5
		TOC	4	1	Once	1	5
L D'M di b	B-31D3, B-32D3, B-33D3,	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	4	1	Once	6	30
Year 1, Bi-Monthly ^h	B-51D5, B-52D5, B-55D5, B-53D3	DHGs (methane, ethane, ethene)	4	1	Once	6	30
	0 0000	VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	4	1	Once	6	30
		Anions (chloride, nitrate, sulfate, bromide)	4	1	Once	6	30
			4	1	Once		
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)				6	30
N 2 01 02 02* C **	D 21D2 D 22D2 D 22D2		4	1	Once	6	30
Year 2, Q1, Q2, Q3*, Q4* Year 3, Q1*, Q2*, Q3*, Q4*	B-31D3, B-32D3, B-33D3, B-53D3	VOCs (PCE, TCE, 1,2-DCE, trans-1,2-DCE, VC)	4	-	Once	8	32
	6-5505	DHGs (methane, ethane, ethene)	4	-	Once	8	32
		VFAs (acetic, butyric, lactic, propionic, pyruvic acids)	4	-	Once	8	32
		Anions (chloride, nitrate, sulfate, bromide)	4	-	Once	8	32
		Dissolved Metals (ferrous iron, manganese, sodium, potassium)	4	-	Once	8	32
	1	TOC	4	-	Once	8	32

Notes: 1,2-DCE - cis-1,2-dichloroethene.

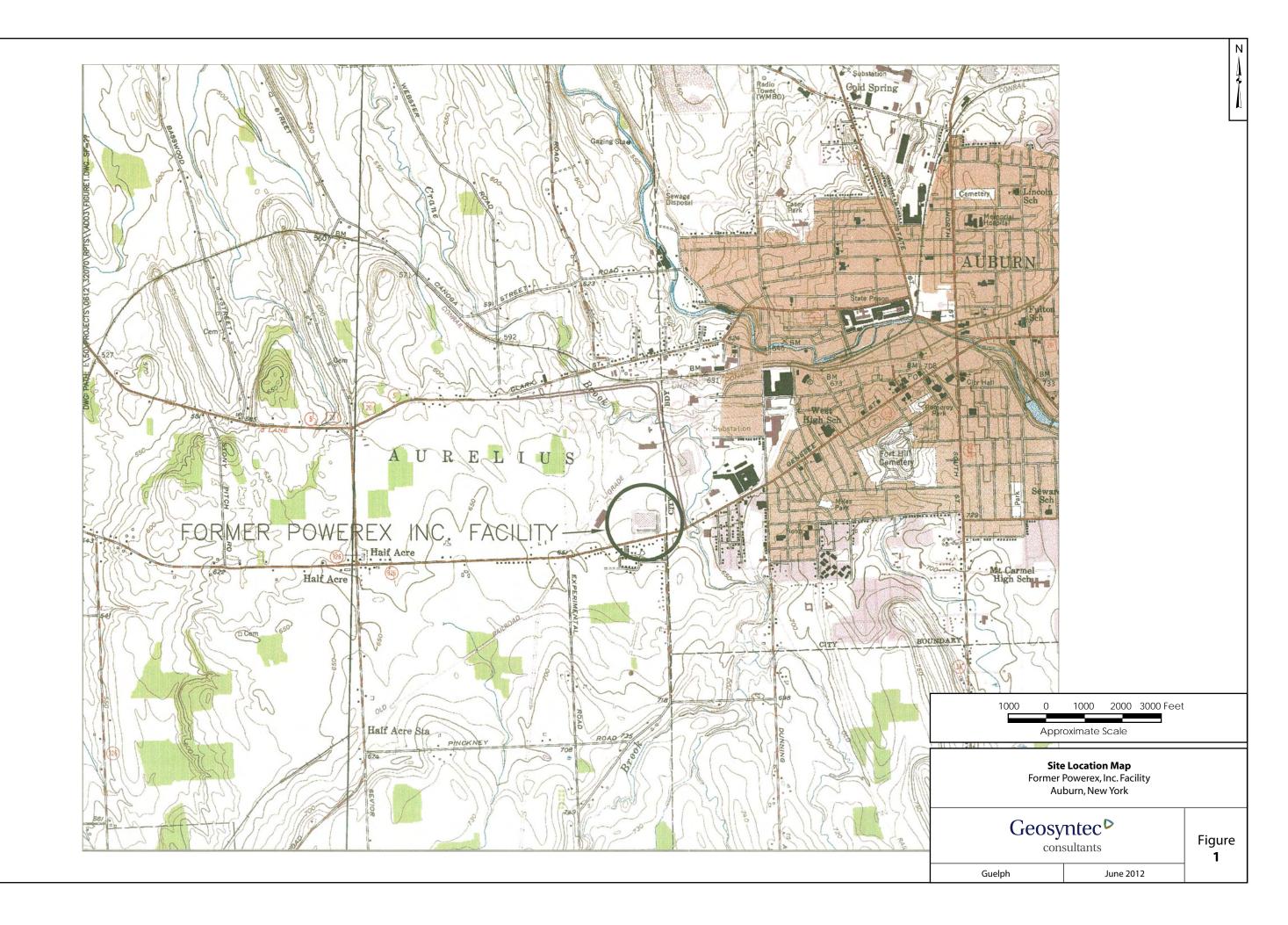
^a - This monitoring schedule may be modified during the pilot test based on performance data (as it becomes available).

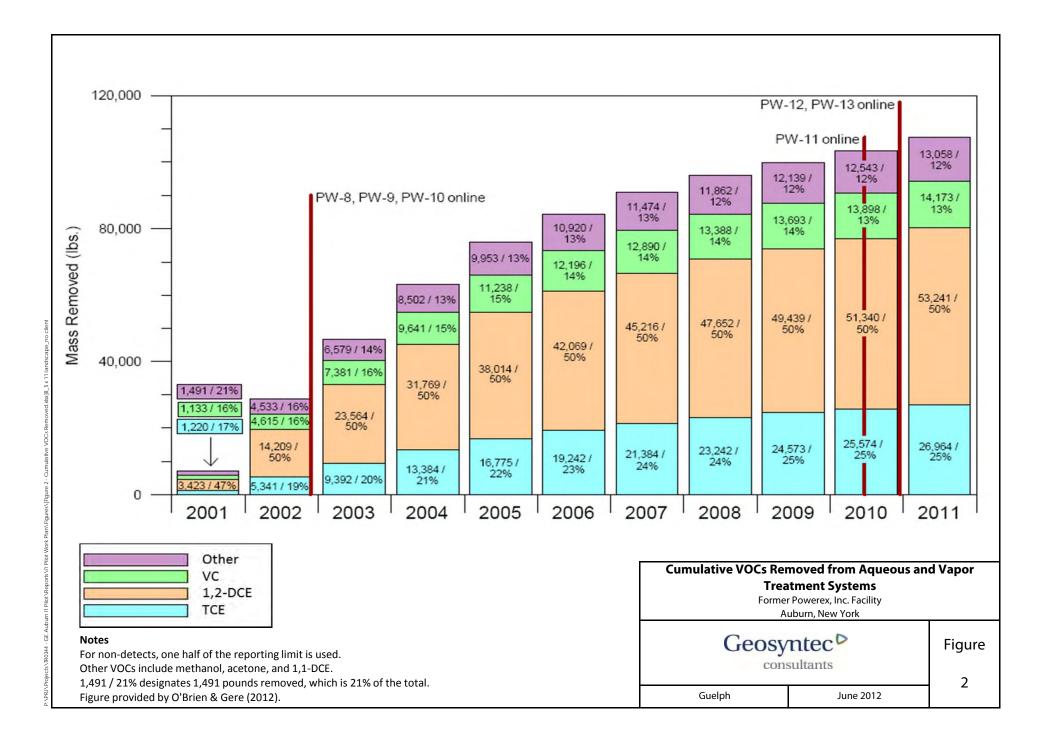
^b - Field Parameters and Field Test Kits not shown; these will be performed during all sampling events.

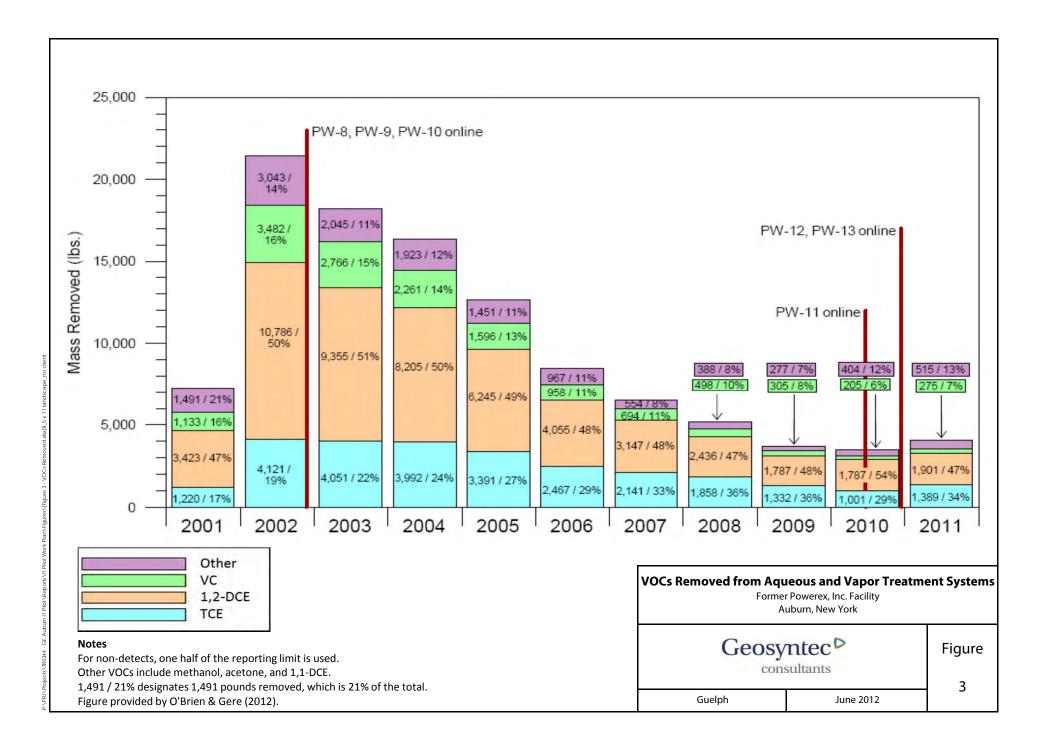
^c - For VOCs, QA/QC samples include 1 duplicate, 1 matrix spike/matrix spike duplicate, and 1 trip blank for every 20 samples. For all other parameters, QA/QC samples include 1 duplicate for every 20 samples.

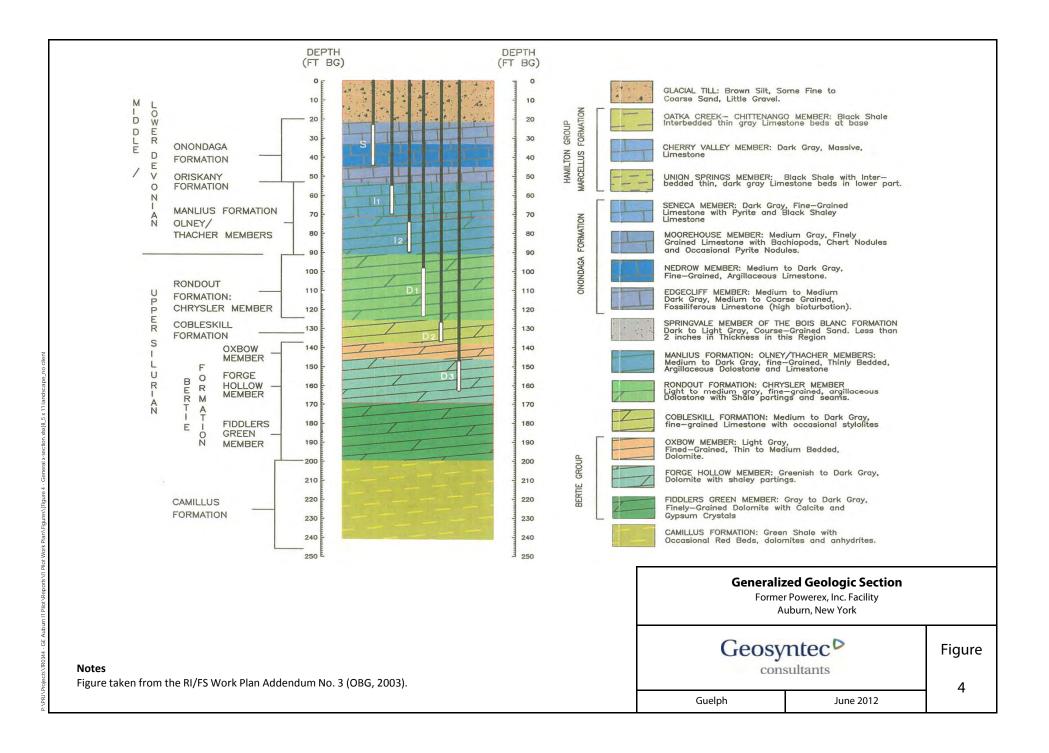
^d - Samples for analyses of acetylene will only be collected from select wells.

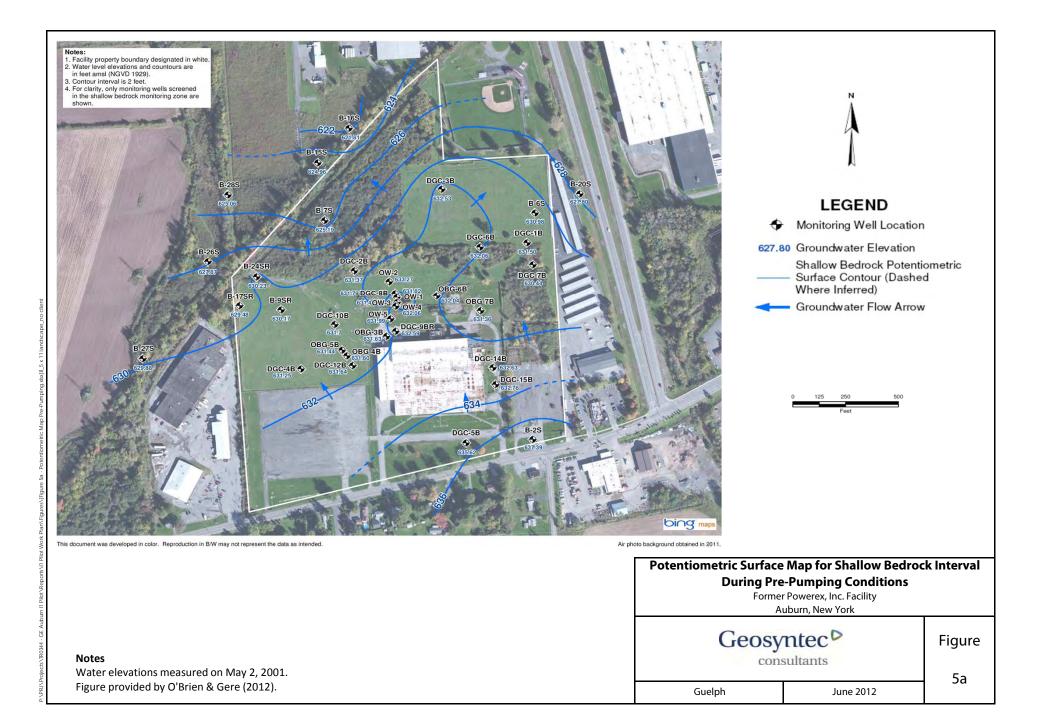
e - Samples for analyses of carbon isotopes will only be collected from select wells. Analyses for carbon isotopes will be contingent upon results of dechlorination data (e.g., VOCs, DHGs, etc.).

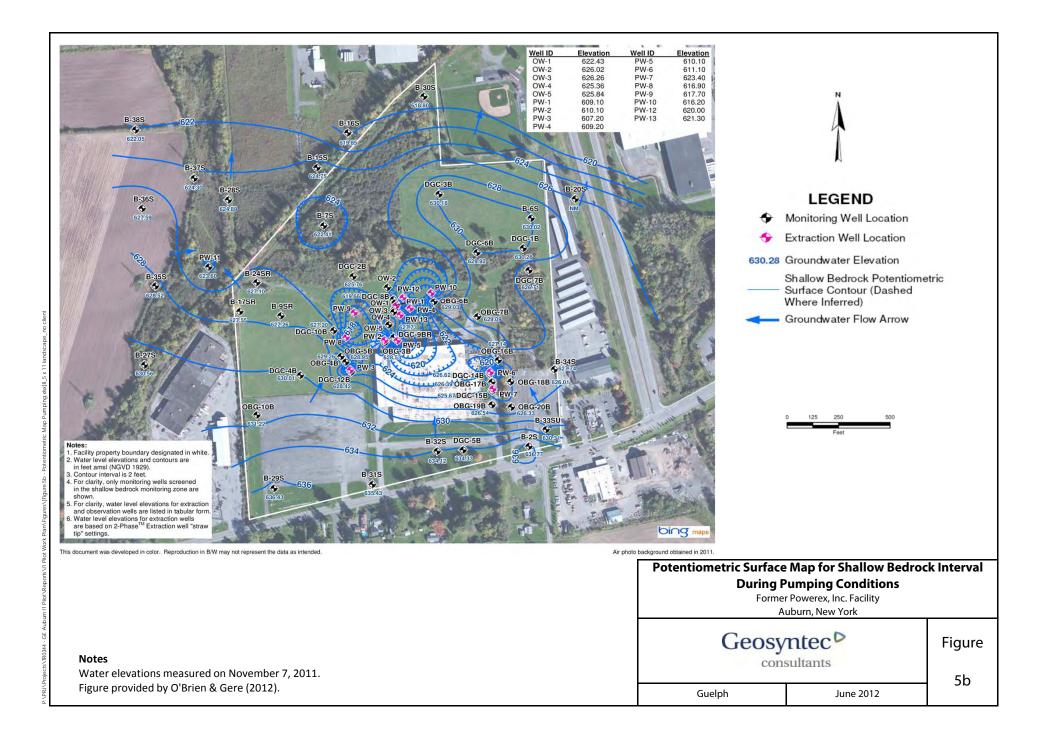

f - Samples for analyses of total biomass, DHC and vcrA will only be collected from select wells. Analyses for total biomass, DHC and vcrA will be contingent upon results of dechlorination data (e.g., VOCs, DHGs, etc.).

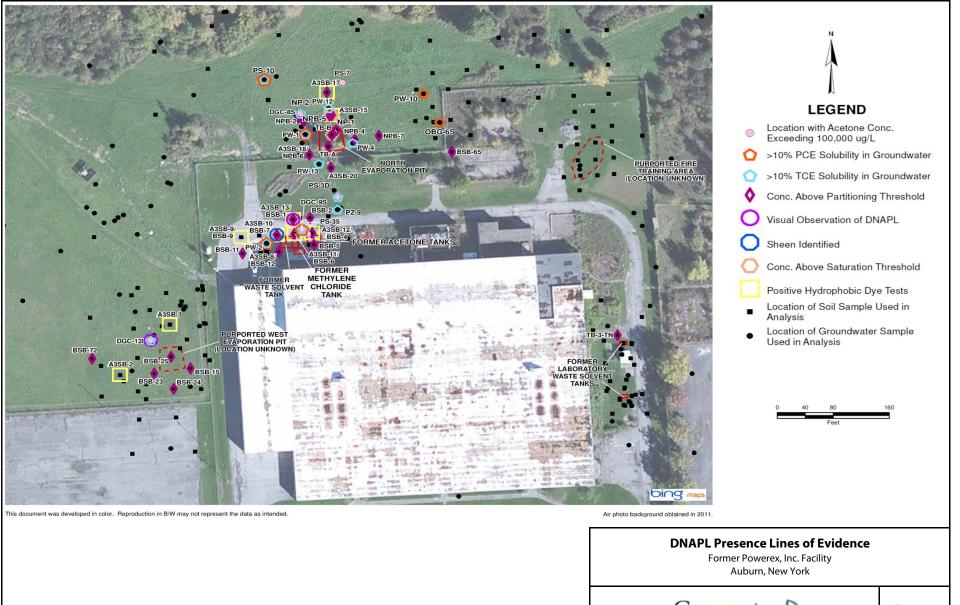

g - Number of samples assumes two sampling events.

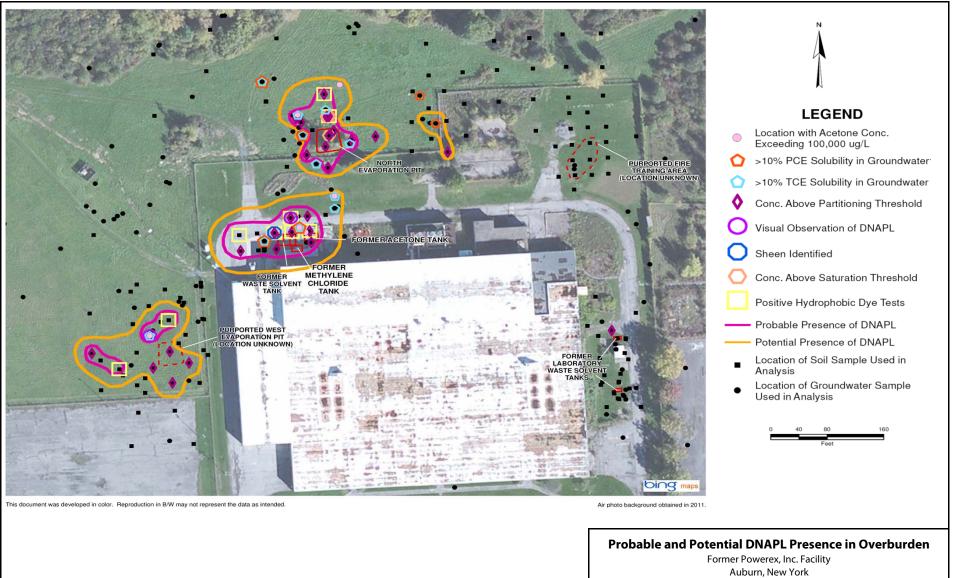

h - Bi-monthly sampling = sample collection once every 2 months.

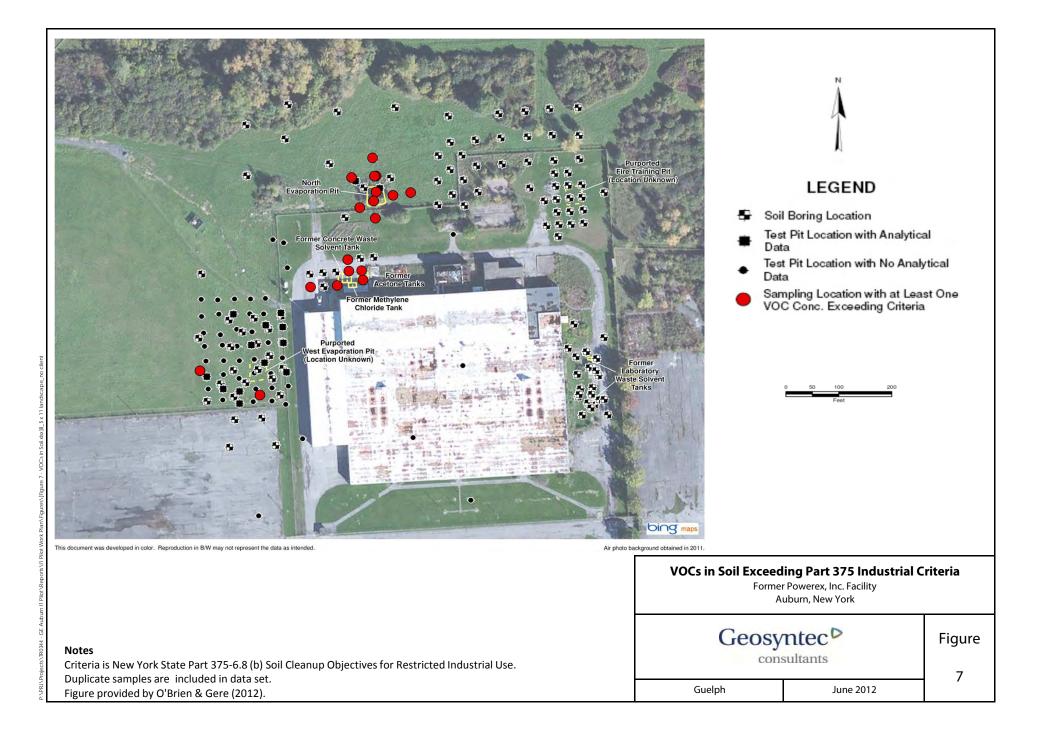

* - Pilot test continuation contingent upon results from first 18 months of performance monitoring.


FIGURES

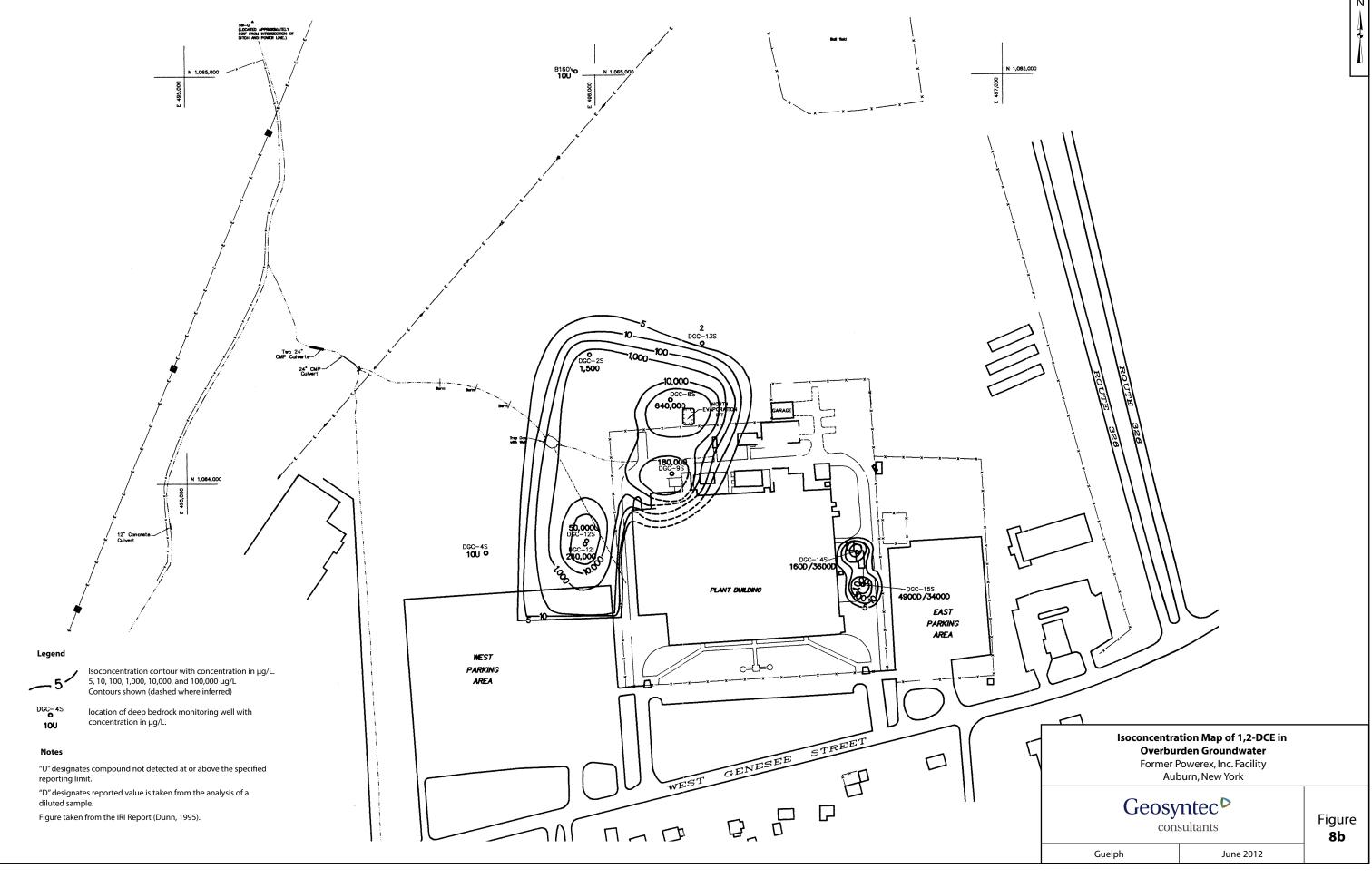


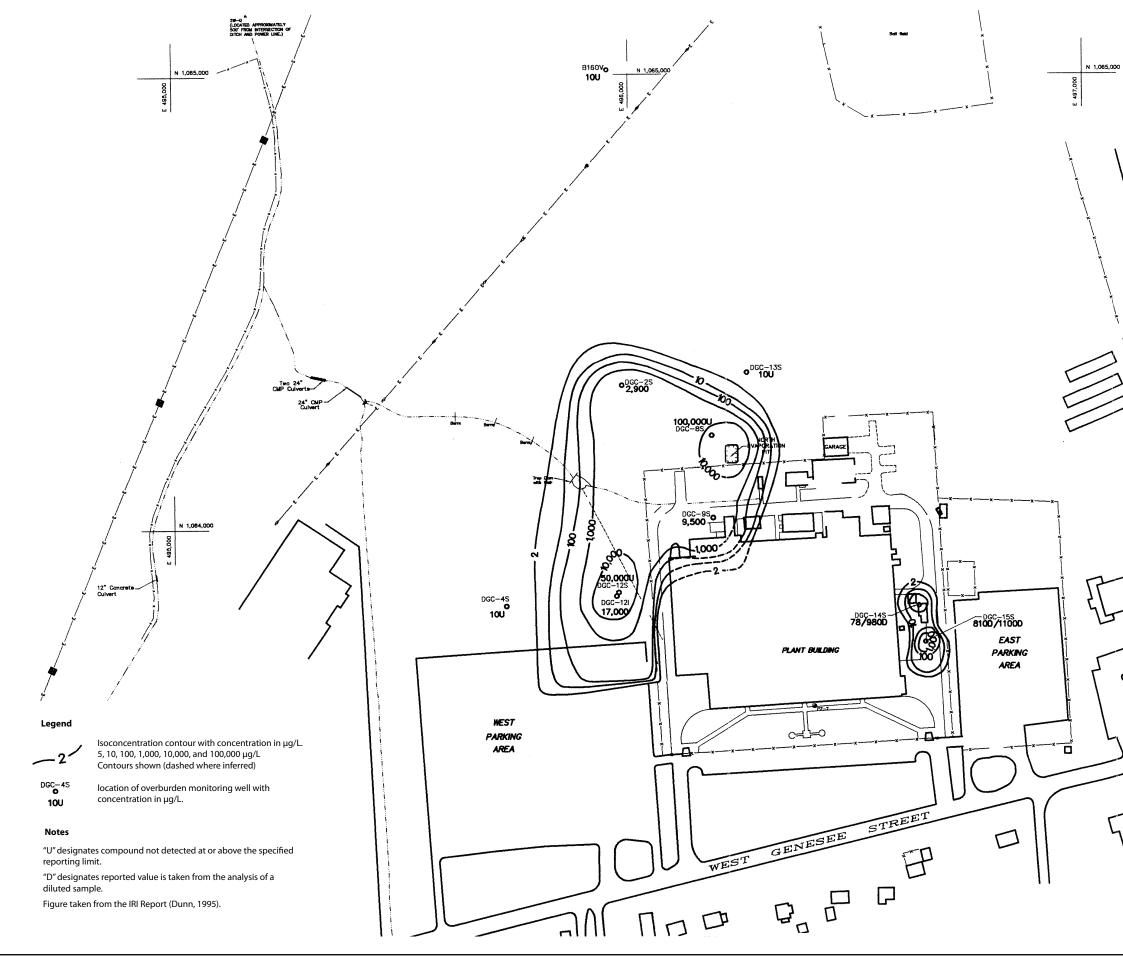


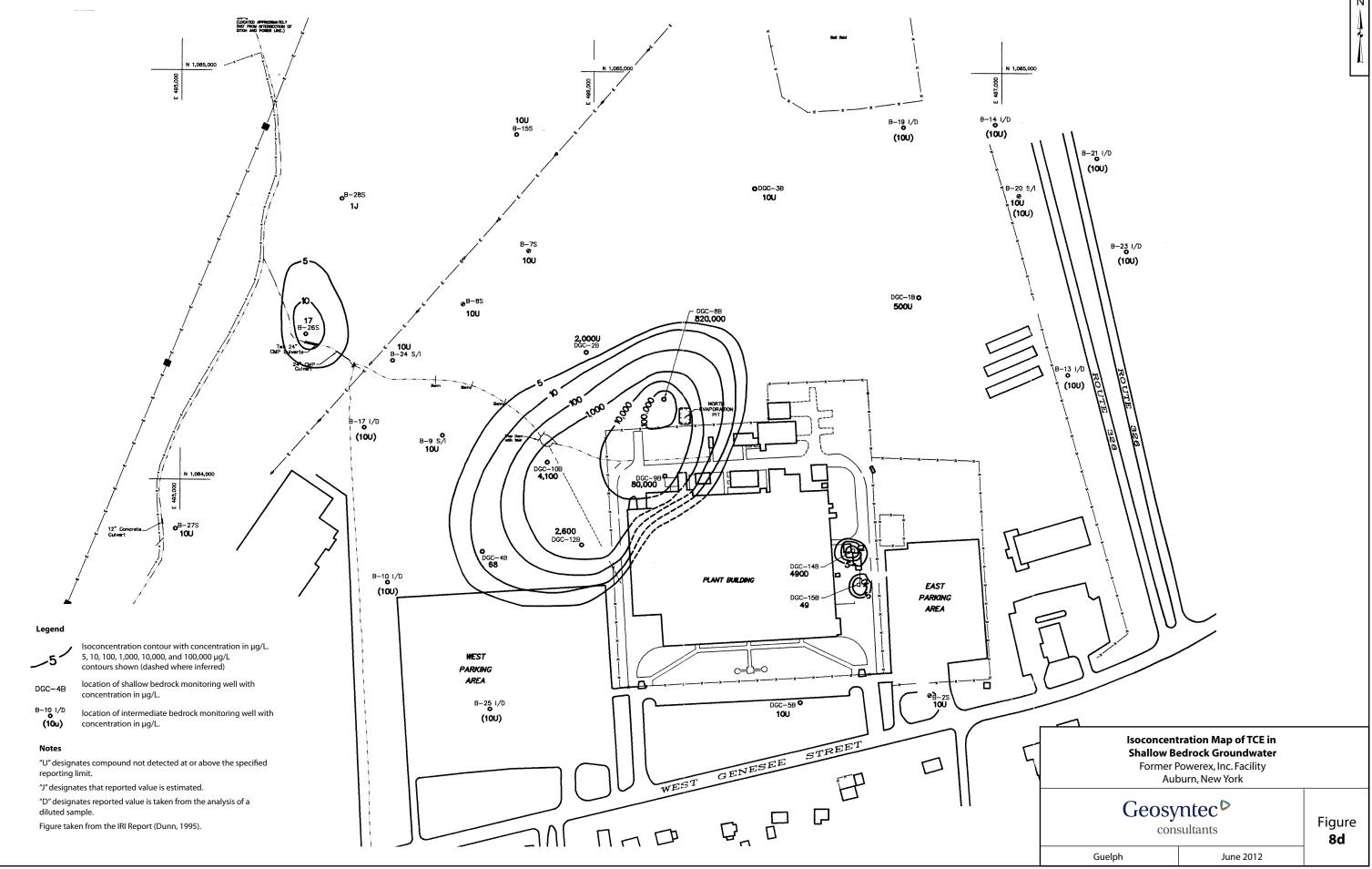




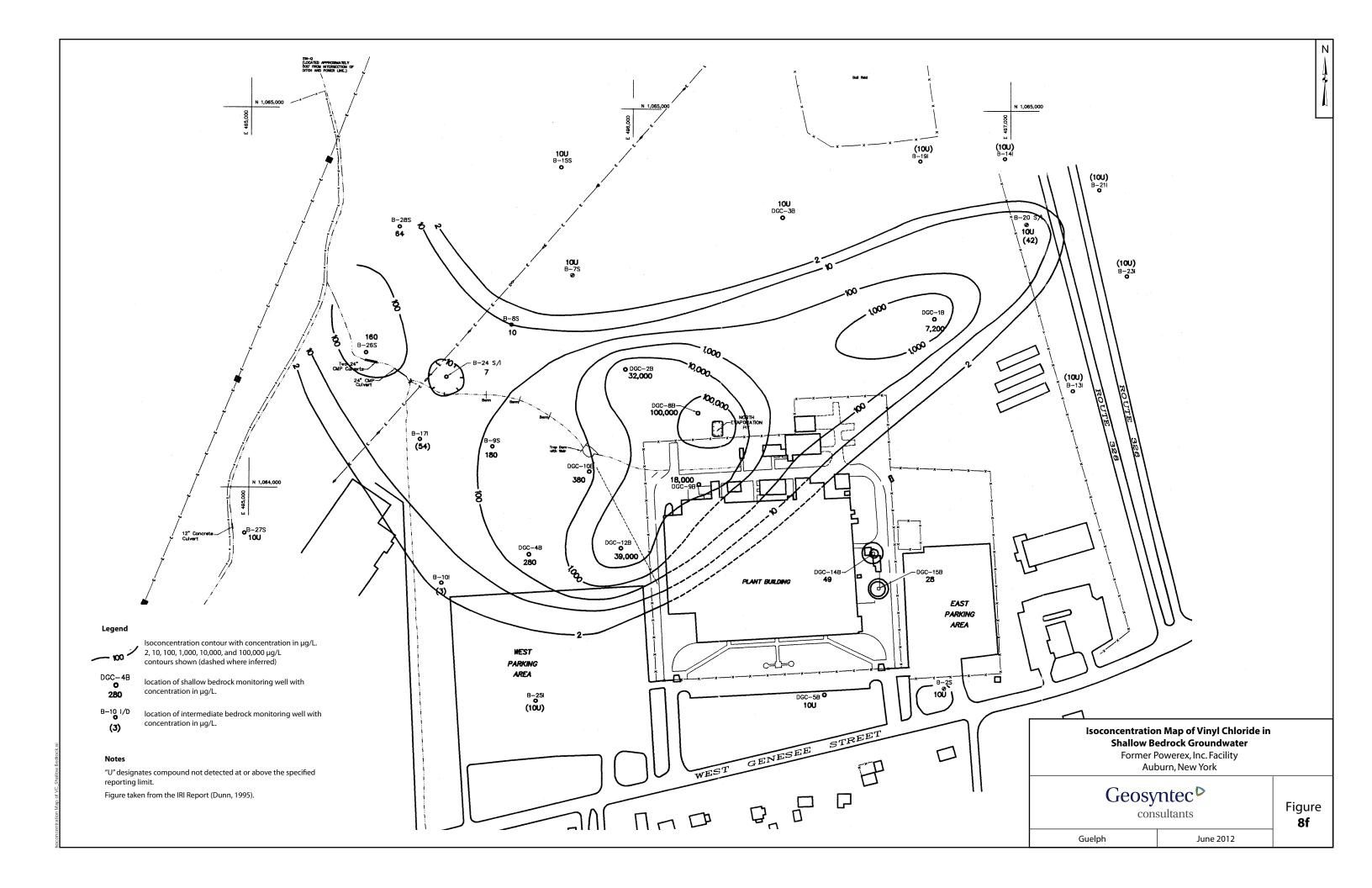


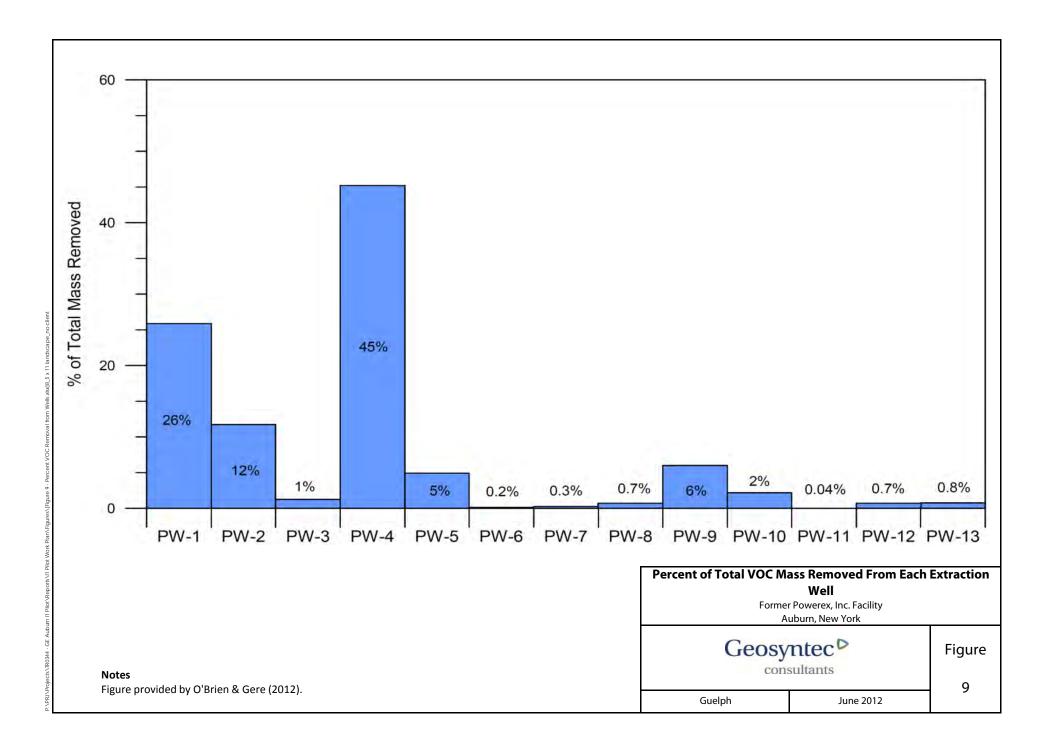


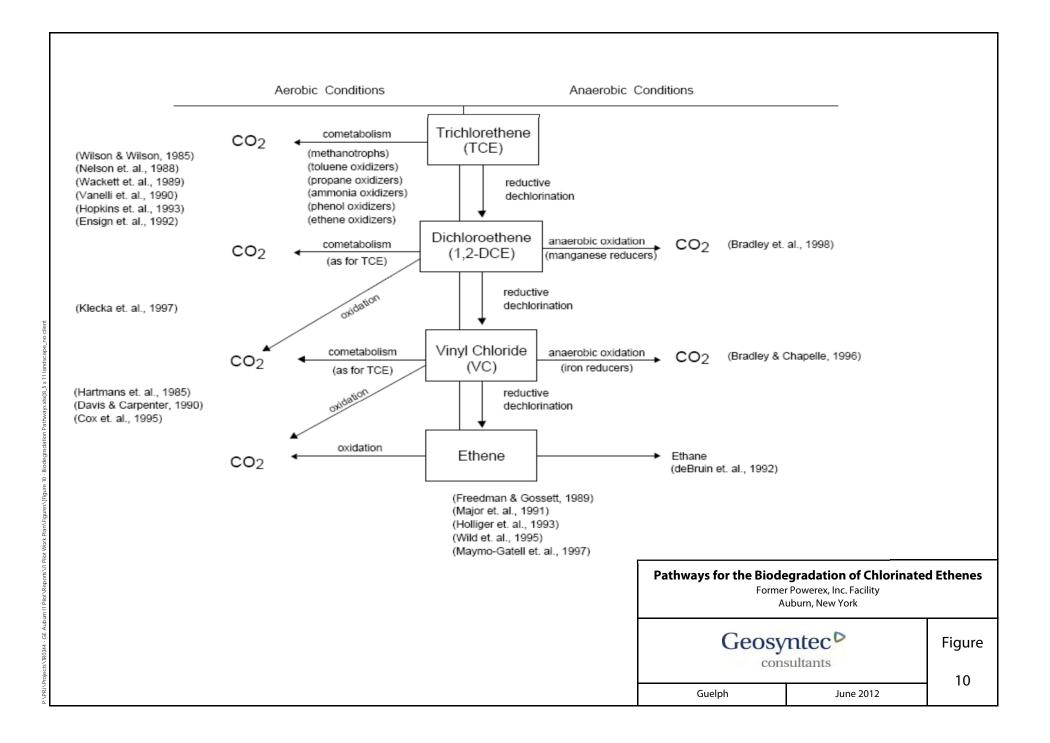


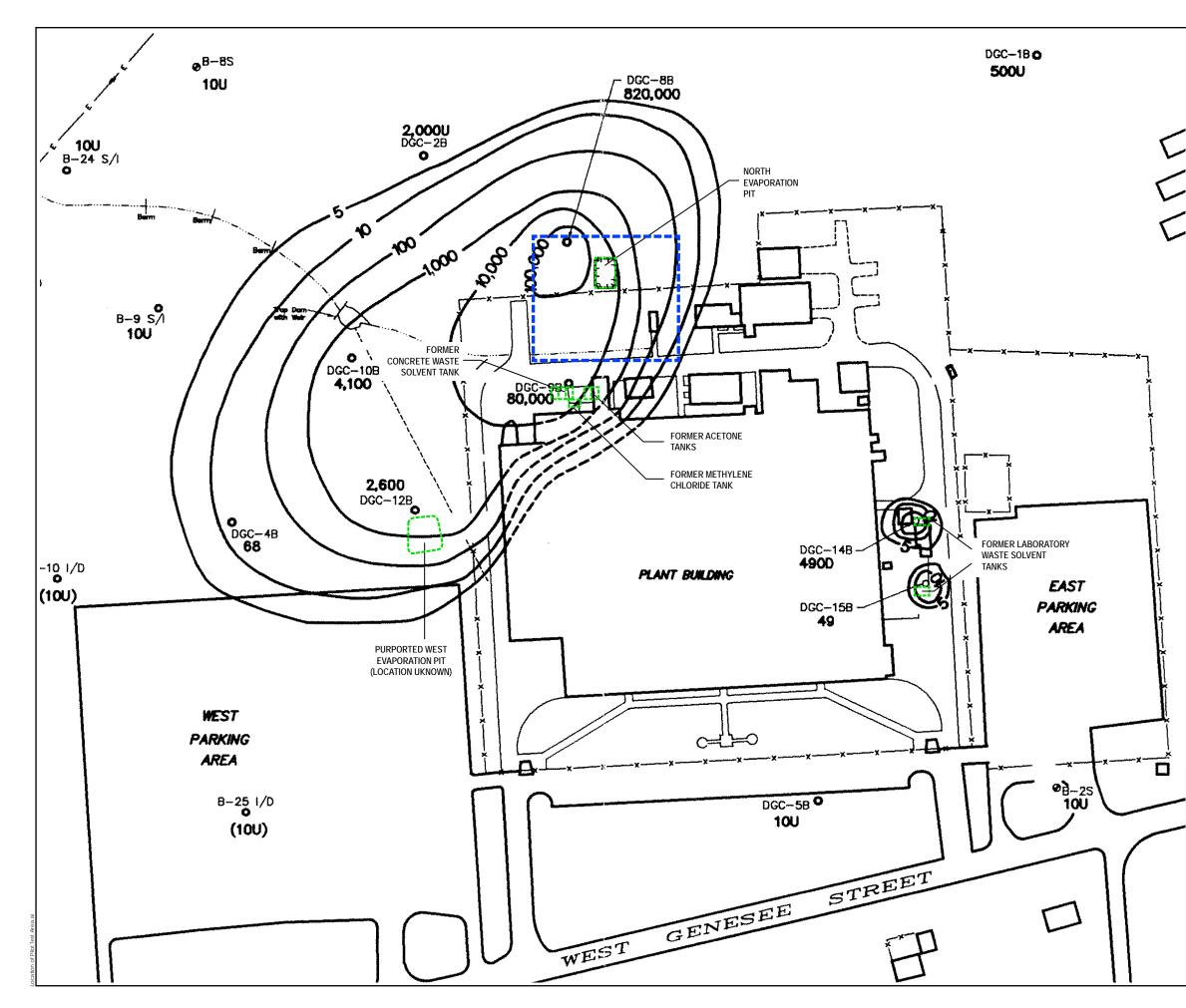


Ν




Isoconcentration Map of Vinyl Chloride in Overburden Groundwater Former Powerex, Inc. Facility Auburn, New York	
Geosyntec Consultants Figure 8c	




Ν

Legend

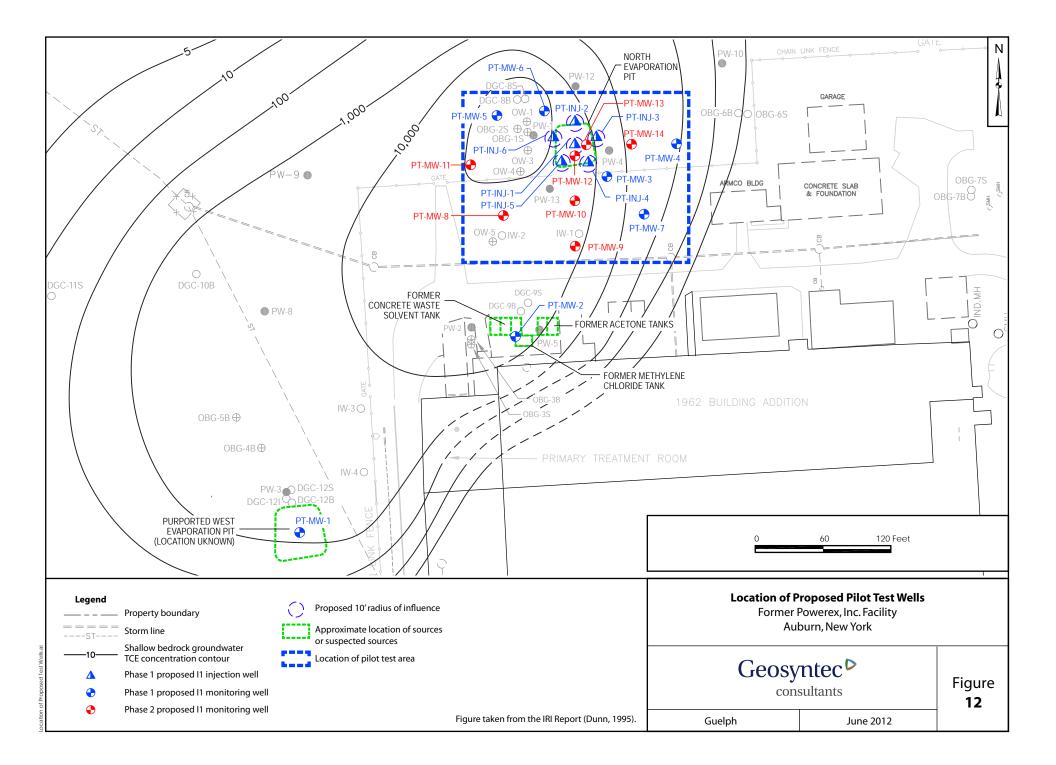
DGC-4B

Location of intermediate bedrock monitoring well with concentration in µg/L.

100,000 μ g/L contours shown (dashed where inferred).

Location of shallow bedrock monitoring well with

Shallow bedrock groundwater TCE isoconcentration contour with concentration in $\mu g/L.$ 5, 10, 100, 1,000, 10,000, and


Approximate location of primary sources.

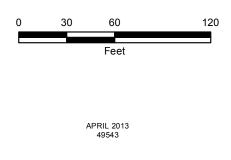
Location of pilot test area.

concentration in µg/L.

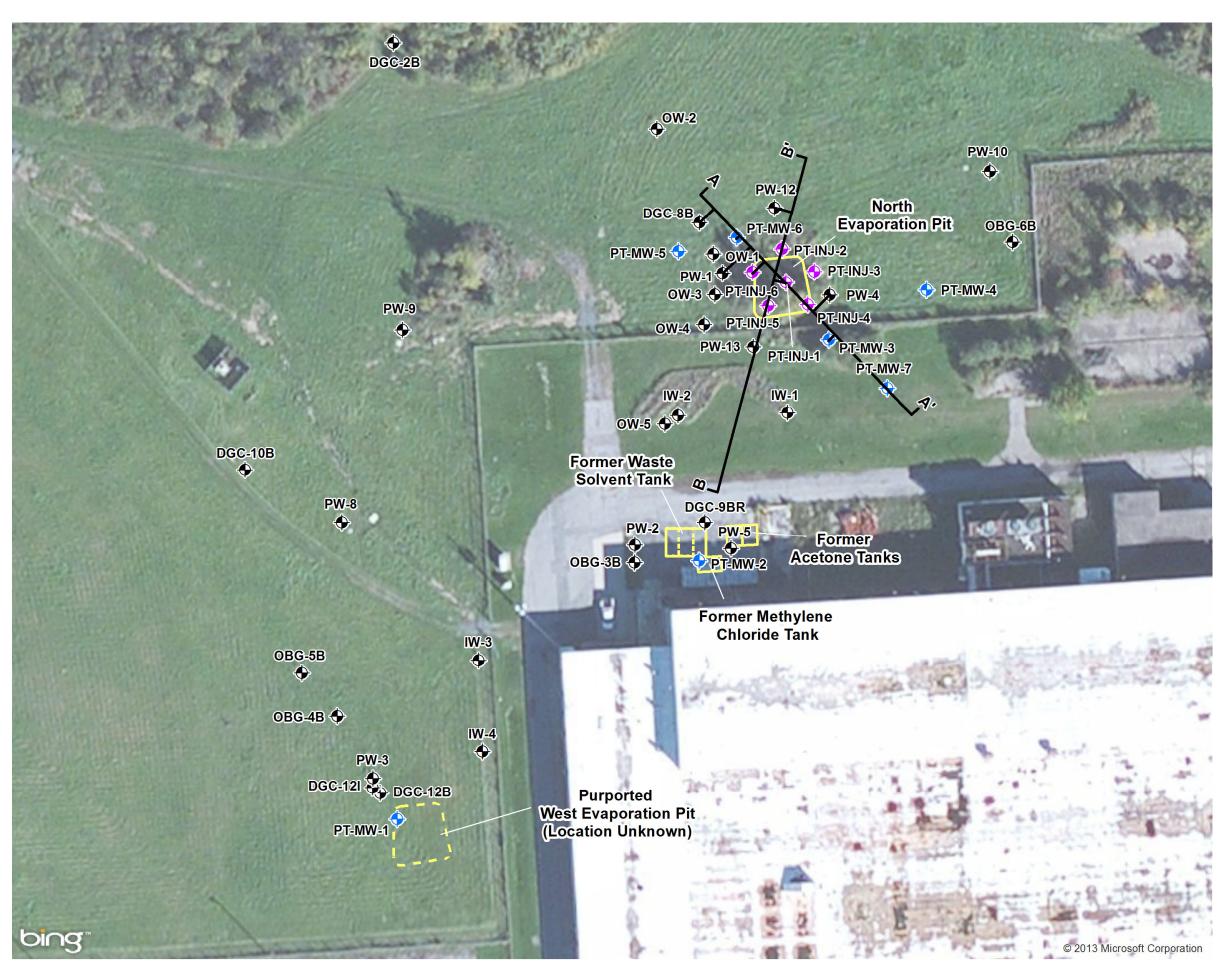
Notes													
"U" designate reporting lim		detected at or above	the specified										
"J" designate	"J" designates that reported value is estimated.												
	"D" designates reported value is taken from the analysis of a diluted sample. Figure taken from the IRI Report (Dunn, 1995).												
Figure taken													
12	20 60	0	120 Fee	t									
1 1													
н													
	Former	n of Pilot Test Ar Powerex, Inc. Facil burn, New York											
	Geosy	ntec ^D sultants		Figure 11									
Guelp	h	June 201	2										

This document was developed in color. Reproduction in B/W may not represent the data as intended

FIGURE 13


LEGEND

- Phase 1 Pilot Test Monitoring Well
- Phase 1 Pilot Test Injection Well
- Existing Shallow Bedrock Pumping, Injection or Monitoring Well


Former Powerex, Inc. Facility EISB Pilot Test Phase 1 Interim Report

General Electric Company Albany, New York

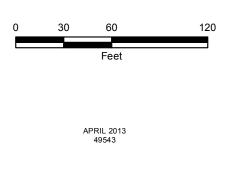
PHASE 1 PILOT TEST MONITORING AND INJECTION WELL LOCATION MAP

This document was developed in color. Reproduction in B/W may not represent the data as intended

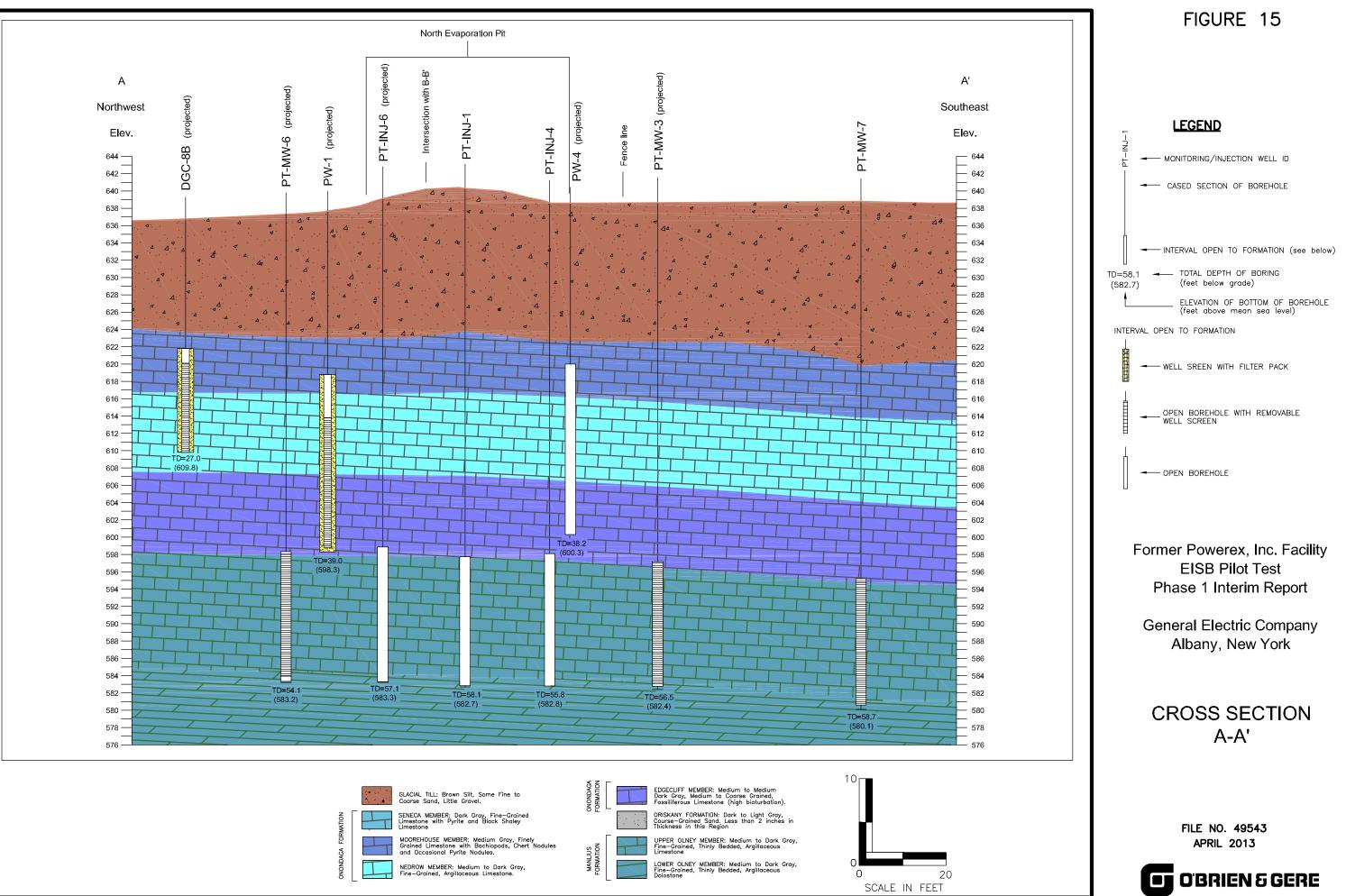
FIGURE 14

LEGEND

- Phase 1 Pilot Test Monitoring Well \bullet
- Phase 1 Pilot Test Injection Well

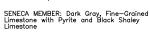


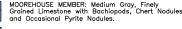
- Existing Shallow Bedrock Pumping, Injection or Monitoring Well
- Cross Section Location Line


Former Powerex, Inc. Facility **EISB** Pilot Test Phase 1 Interim Report

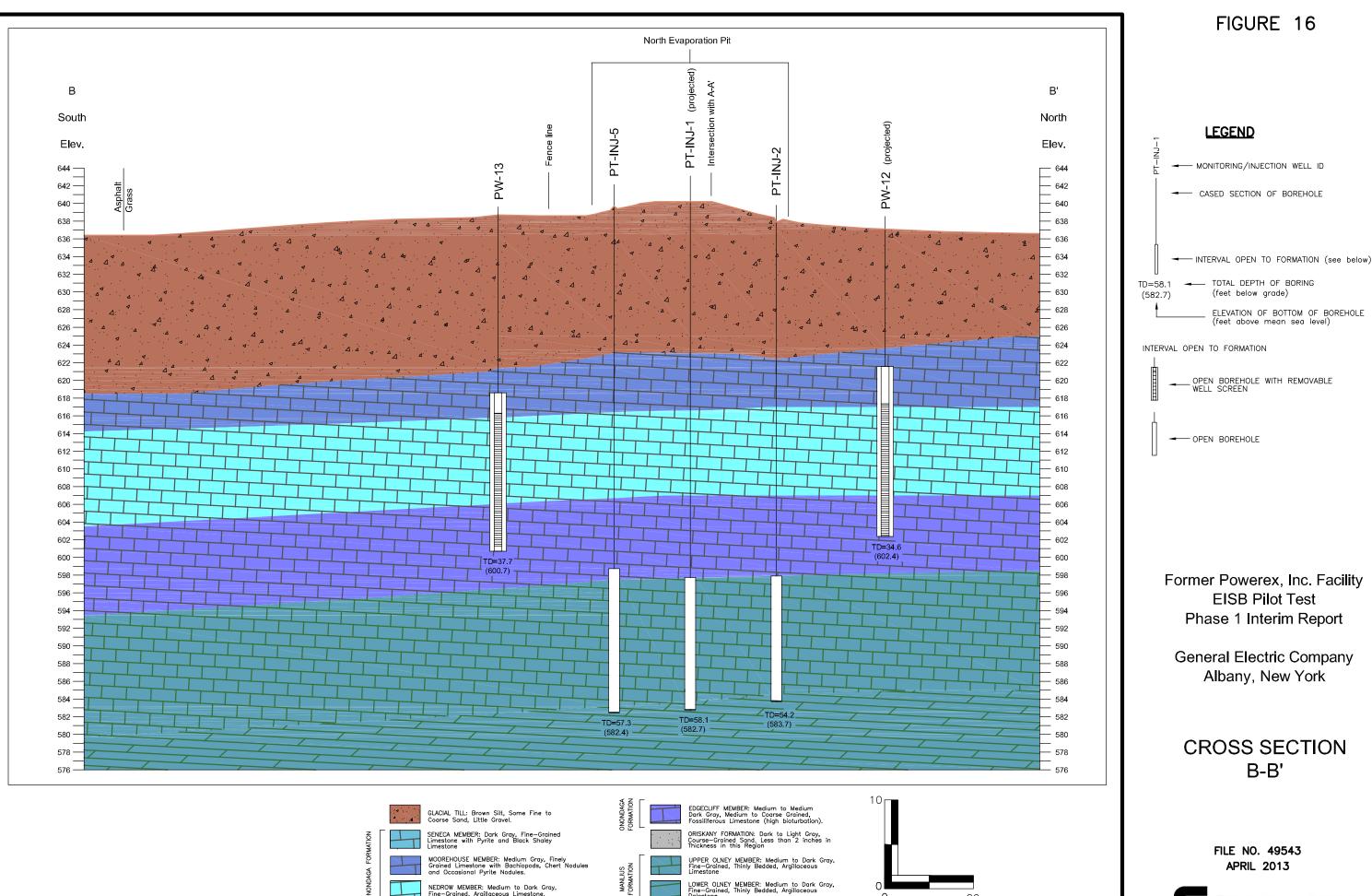
General Electric Company Albany, New York

CROSS SECTION LOCATION MAP


Ŝ


ns/Cros

Secti


olan\Docs\DWG\Cross

l:\Ge.612\49543.Ri-

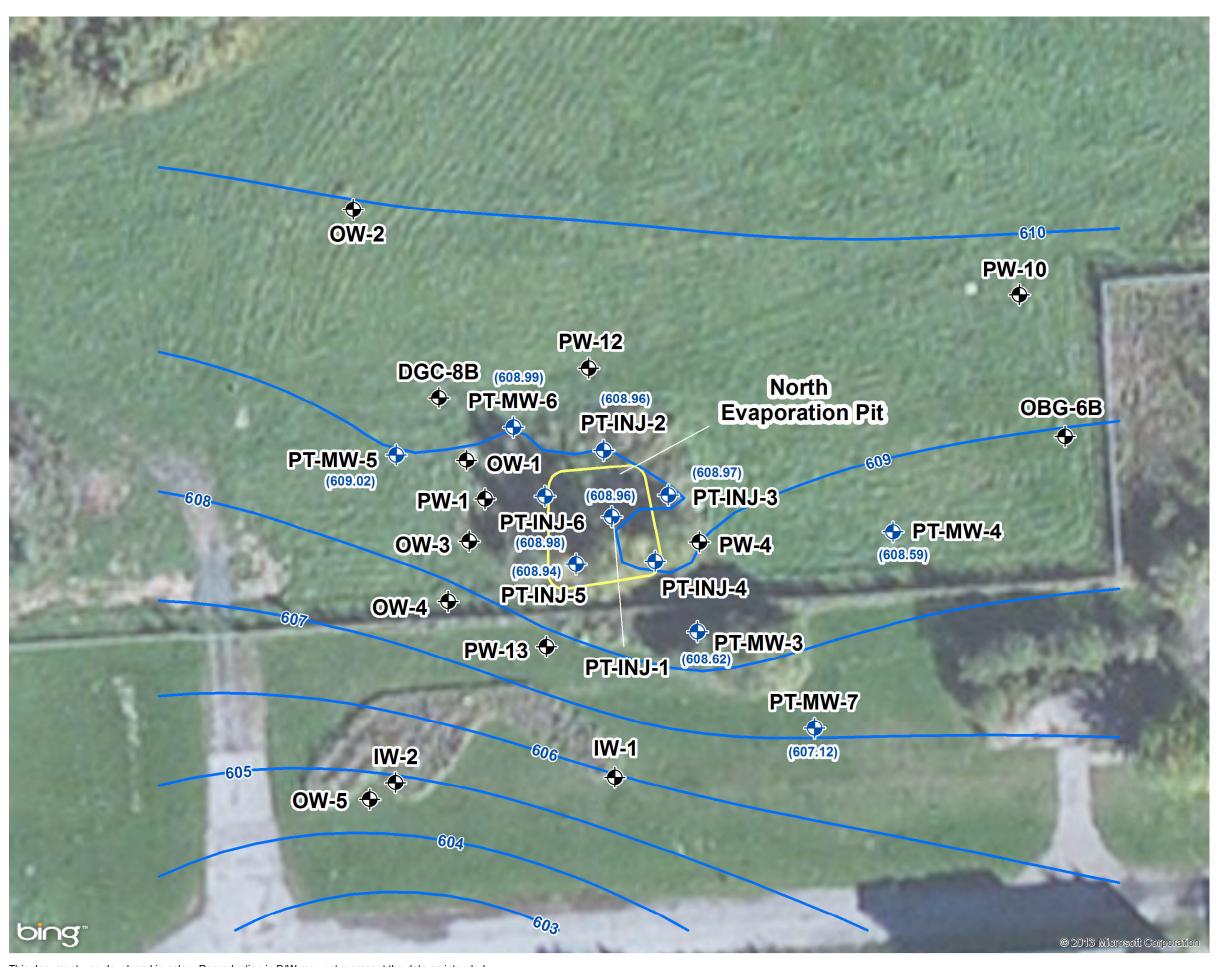
OWER OLNEY MEMBER: Medium to Dark Gray

0

20

SCALE IN FEET

8


Š

Docs/DWG/Cros

l:\Ge.612\49543.Ri-

NEDROW MEMBER: Medium to Dark Gray, ine-Grained. Araillaceous Lin

This document was developed in color. Reproduction in B/W may not represent the data as intended

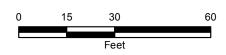
FIGURE 17

LEGEND

Ð

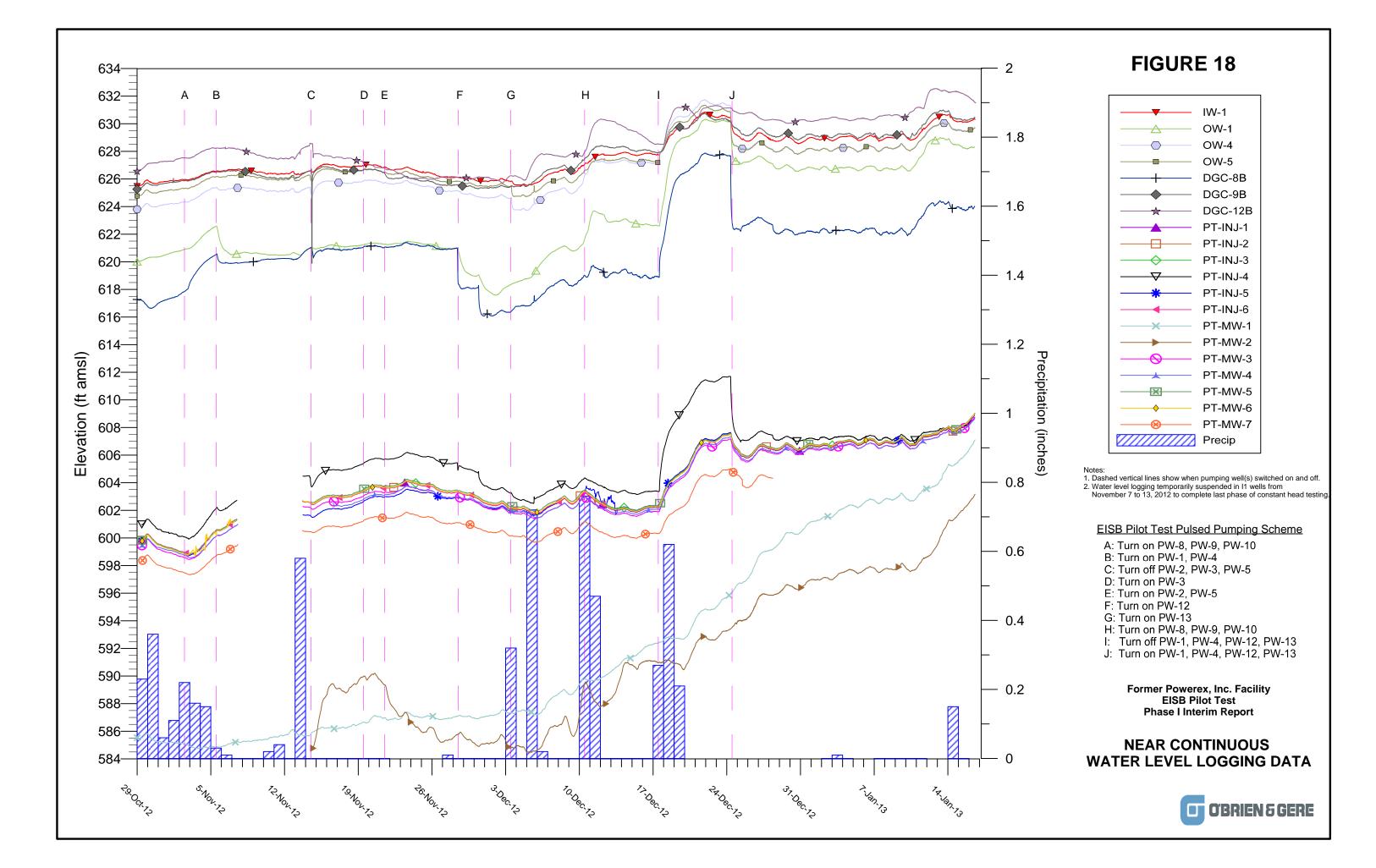
Phase 1 Pilot Test Monitoring/ Injection Well

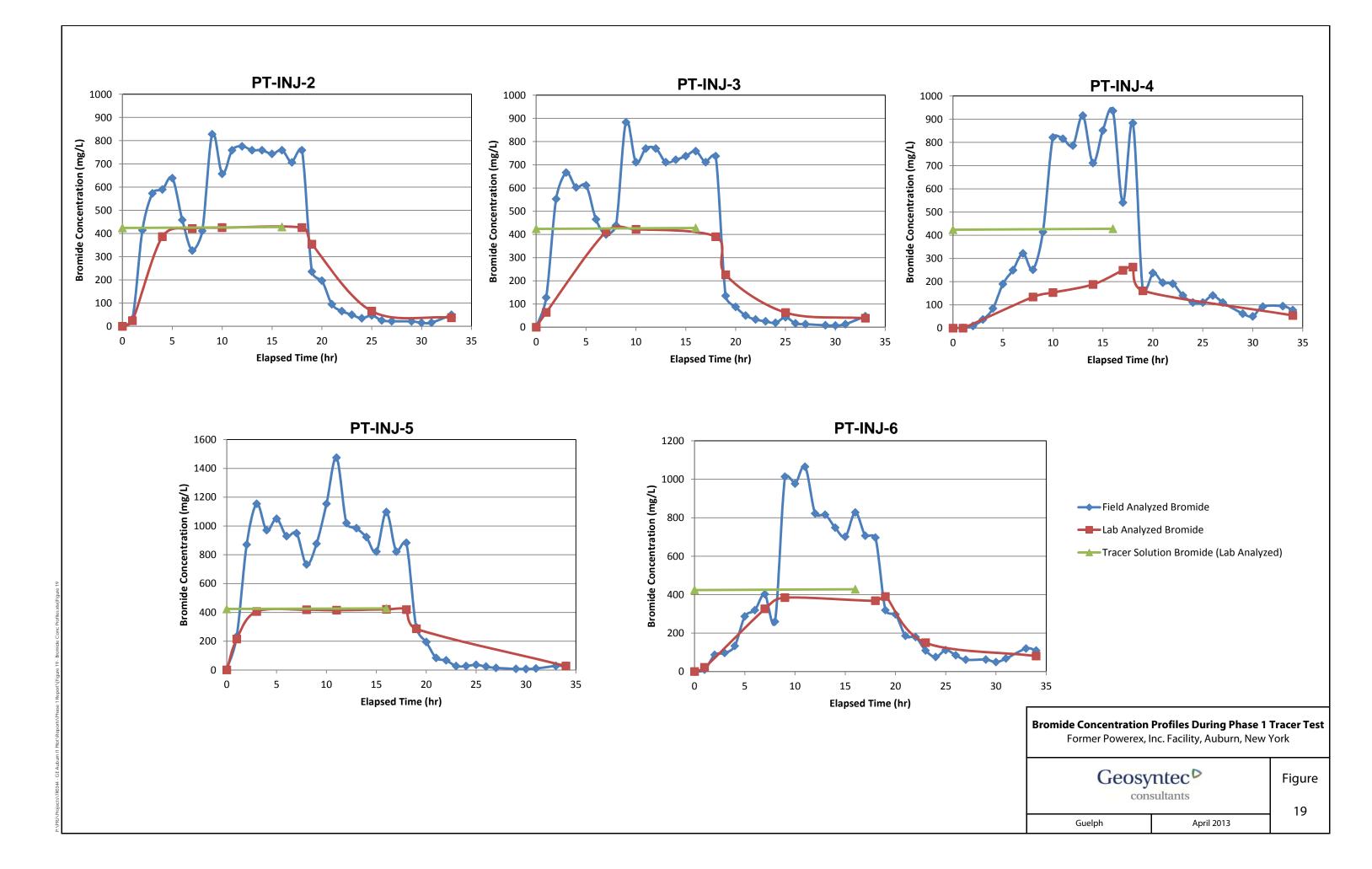
(609.02) Water Level Elevation (ft amsl)

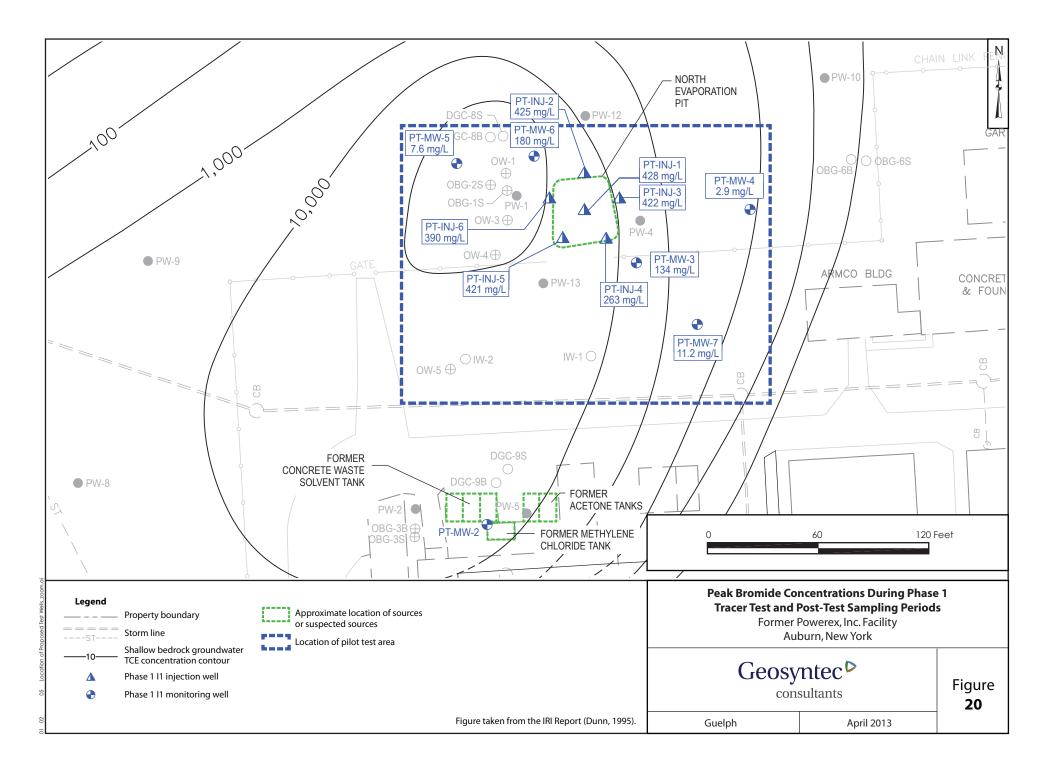

 I1 Groundwater Contour Line Contour Interval: 1 foot

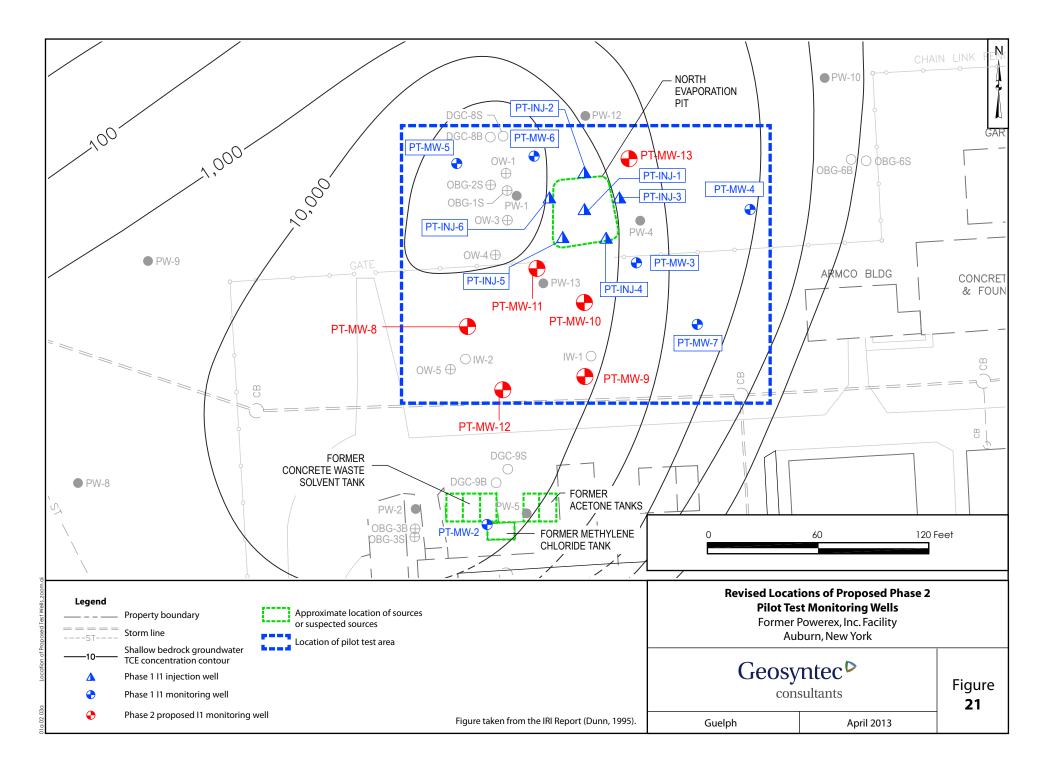
Existing Shallow Bedrock Pumping, Injection or Monitoring Well

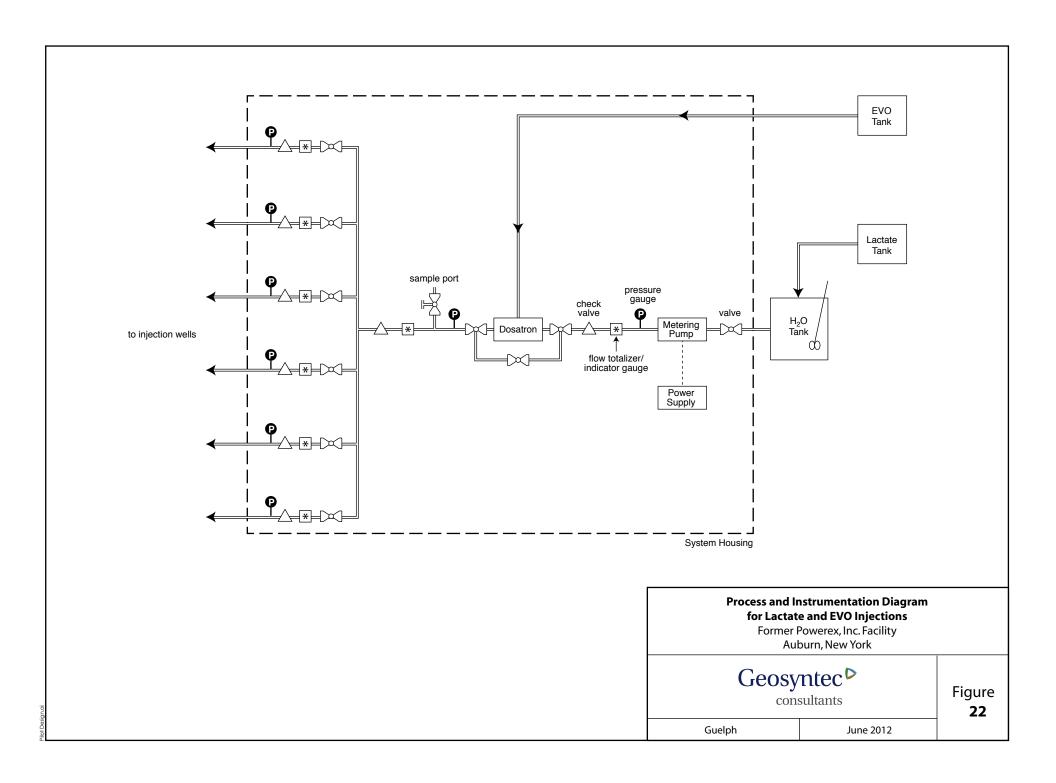
Former Powerex, Inc. Facility EISB Pilot Test Phase 1 Interim Report


General Electric Company Albany, New York


POTENTIOMETRIC SURFACE MAP FOR THE I1 BEDROCK UNIT IN PILOT TEST AREA ON FEBRUARY 5, 2013




APRIL 2013 49543



ATTACHMENT A

CORE LOGS

LIEN	ECT: NT: ECTOF		Powerex F General E P. Freyer,	lectric	Compa	ny	. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, N.Y. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 40.5 feet W of PW-1				
PURPOSE: EISB Pilot Test Phase DRILLING CONTRACTOR: Parratt Wolff, Inc. DRILLER: Layne Pech/Mark Eave DRILL RIG TYPE: CME 850 LICENSE NUMBER: NYRD01621									CASING LENGTH:19 ft.GROUND ELEV:640HOLE DIAMETER:0.315 ft.HORIZ. DATUM:NA	.8 D 83 VD 1929) 83 /D 1929		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302) Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	Elevation (ft amsI)	Notes		
Overburden	Overburden					8			Boring advanced through overburden utilizing 9-7/8" roller bit. Top of competent bedrock at 17.0' bgs. Set 6" steel casing to 19.0' bgs. Seat spin-joint casing with drive shoe to 19.2' bgs.	- - - - - - - - - - - - - - - - - - -			
Onondaga	Moorehouse		20	^{29:18} 1 ^{09:24} ^{29:39}	5	1.2	83.3	0 49	Limestone, medium dark gray (N4), fine grained, thinly bedded, moderately fractured, Breaks @ 19.2-19.5 (core crushed, medium angular gravel), 19.5 (horizontal, weathered), 19.8-19.9 (core crushed), 19.9 (horizontal, slightly weathered). D-2, S-1-2, F-4 Limestone, medium dark gray (N4) with 0.1-0.3 few distinct dark gray (N3) layers, thinly bedded, Breaks @ 21.2-21.45, 21.7-22.05 (high angle, slightly weathered), 21.8-21.9 (low angle, fresh), 22.7-22.9 (low angle, fresh), 23.0 (shaley), 23.1 (horizontal, non-planar,	- 625 - - - - - - - - - - - - - - - - - - -	Top of Bedrock @ 17.0' bgs (623.8' amsl)		

O'BRIEN 5 GERE

CORE LOG

PT-INJ-1

PROJECT:	
CLIENT:	
NODECTOR	

Powerex RI/FS Work Plan Add. No. 4 General Electric Company P. Frever, P. D'Annihale

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes				
			-	10:04 10:13					Limestone, dark gray (N3) to black (N1), fine grained, fossiliferous (brachiopods), pyrite, Breaks @ 24.15 (horizontal, shaley partings), 24.45 (horizontal, moderately weathered).	- 615	(616.7' amsl)				
Onondaga Nedrow		-	3	4	4.7	110.6	86	Limestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, thin-medium bedded, very slightly fractured, fossiliferous (brachiopods), horizontal burrows in distinct intervals, pyrite,	-						
ONO	Ne		30	- <u>10:32</u> 10:48					Breaks @ 26.2 (horizontal, fresh), 27.0 (horizontal, non-planar, slightly weathered), 28.15-28.2 (low angle, fresh), 28.5 (shaley, moderately weathered, matrix weakened, trace residual clay), 29.65 (horizontal, fresh), 30.0 (horizontal, non-planar, pitting, moderately weathered). D-2, S-1, F-2 Limestone, medium dark gray (N4) with portions of medium gray (N5) and dark gray (N3), thin-medium bedded, slightly fractured, fossiliferous (brachiopods), pyrite,	- 610					
		-	4	2.9	5.1	100	85	Breaks @ 30.65 (horizontal, fresh), 30.7-31.0 (high angle, fresh), 30.9-31.2 (high angle, fresh), 32.4 (horizontal, very slightly weathered), 32.8 (horizontal, fresh). D-2, S-1, F-2	-	Nedrow-Edgecliff contact @ 33.7' bgs					
Onondaga Edgecliff		35 —	<u>11:03</u> 11:17					Limestone, medium gray (N5), medium grained, thin-medium bedded, slightly fractured, fossiliferous (brachiopods, crinoids), portions argillaceous,	-	(607.1' amsl)					
	liff		-	5	4.3	4.9	104.1	92	Breaks @ 34.4 (low angle, slightly weathered), 34.6 (horizontal, weathered). Limestone, medium gray (N5), medium grained, medium bedded, slightly fractured, fossiliferous, portions argillaceous (tabulate coral, crinoids), few styolites,	- 605					
	Edgecli	Edgecli	Edgeci	Edgec	Edgec	Edgec		40 —	11:38					Breaks @ 36.25 (horizontal, shaley, moderately weathered, matrix weakened), 36.4 (core crushed), 37.8-37.9 (core crushed to fine-medium sub-angular to sub-rounded gravel), 39.4 (horizontal, non-planar, moderately weathered). D-2, S-1, F-2	-
										11:56	4.4	2.5	76	76	Limestone, medium gray (N5), medium grained, medium bedded, very slightly fractured, fossiliferous (crinoids, tabulate coral), styolites, Break @ 42.0 (horizontal, non-planar, along styolite, fresh).
				12:07 12:26 72:27	0	0.5	000	00	D-1, S-1, F-1 Limestone, SAA,						
			-	07:49	2 3.3	0.5 1.8	200 94.4	60 94	Breaks @ 42.65 (horizontal, non-planar, along styolite, fresh), 42.75-43.1 (high angle, very slightly weathered).	_	Edgecliff-Olney contact @ 43.1' bgs (597.7' amsl)				
			45 —	<u>07:55</u> 08:05					Utilized 5-7/8" roller bit to advance through bedrock from 19.2-43.1 and set 4" shallow bedrock casing to a depth of 43.1' bgs. Limestone, medium dark gray (N4) with bands of dark gray						
			-	9	3.6	5	97	94	(N3), fine grained, slightly fossiliferous, styolites common, Break @ 44.3 (horizontal). D-1, S-1, F-2 Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, some fossils, frequent styolites,	-					
Manius	Olney		50 —	08:23 08:35					Breaks @ 46.1 (slightly weathered), 48.2 (horizontal), 48.35 (weathered), 49.5 (horizontal). D-1, S-1, F-2 Limestone, medium dark gray (N4) with bands of dark gray	_					
2)		-	10	3.4	5	102	78	(N3), fine grained, some fossils, styolites common, Breaks @ 50.0 (horizontal), 50.15 (horizontal), 50.6 (sub-vertical), 50.95 (horizontal), 51.0-51.2 (vertical), 51.25 (weathered), 51.45 (weathered), 51.8 (high angle), 53.35 (horizontal), 54.1 (sub-vertical). D-1, S-1-2, F-2-3	— 590 -					

O'BRIEN & GERE
O DI IILI O OLIIL

CORE LOG

PT-INJ-1

PROJECT:
CLIENT:
INSPECTOR.

Powerex RI/FS Work Plan Add. No. 4 General Electric Company

INSPE	INSPECTOR: P. Freyer, P. D'Annibale													
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes			
			- 55 — -	<u>08:52</u> 09:03 11	3.5	2	95	42	Limestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, fossils and styolites common, Breaks @ 55.05 (weathered), 55.4-55.7 (high angle),	- 				
Manlius	Olney		- - -	09:10 09:26 12 09:29	2.5	1.2	100	100	56.2-56.5 (high angle, clay filled), 56.55 (horizontal). D-2, S-1-2, F-3 Limestone from 56.9-57.0, SAA. Dolostone, medium light gray (N6), thick bedded. D-1, S-1,	-	Olney Limestone-Dolostone contact @ 57.0' bgs (583.8' amsl)			

F-1 End of core @ 58.1' bgs

LIEN	ECT: NT: ECTOR		Powerex F General E P. Freyer,	lectric	: Compa	ny	l. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, N.Y. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 25.5 feet S of PW-12				
PURPOSE: EISB Pilot Test Phase 1 DRILLING CONTRACTOR: Parratt Wolff, Inc. DRILLER: Layne Pech DRILL RIG TYPE: CME 850 LICENSE NUMBER: NYRDO1621							ase 1		CASING DIAMETER:6 in.CCCASING LENGTH:17.5 ft.GRHOLE DIAMETER:0.315 ft.HOCORE TYPE:HQ3 CoreVETOTAL DEPTH:54.2 ft. bgsST	064175.094 7.9 ND 83 GVD 1929	1929		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Descriptio (per TPPI 302)		Elevation (ft amsl)	Notes	
						8			Boring advanced through overburden to 8-1/4" HSA.	8.0' bgs utilizing	- 635 - -		
Overburden	Overburden								Boring advanced through overburden ut bit. Top of competent bedrock at 15.5' by casing to 17.5' bgs.	tilizing 9-7/8" roller gs. Set 6" steel	- 		
						9.5					625 	Top of Bedrock @ 15.5' bgs (622.4' amsl)	
Bedrock	Bedrock		20-						Reamed through bedrock to set shallow utilizing 5-7/8" roller bit. Set 4" shallow b 40.0' bgs. Seat spin-joint casing with driv	pedrock casing to	- 620 - 620 		
			25								615 -		

CLIEN	ECT:	F	Powerex Beneral E 2. Freyer	RI/FS	: Compa	ny	. No. 4		CORE LOG	PT-INJ-2	-2		
Formation	Member	Rock Type	(ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsI)	Notes		
Bedrock	Bedrock					22.7				610 - - - - - - - - - - - - - - - - - - -			
Manlius	Olney		- - 45	09:05 1 09:26 09:40	4.2	5	100	52	Limestone, medium dark gray (N4) with bands of me gray (N5) and dark gray (N3), fine grained, moderate fractured, occasional fossils, styolites common, Breaks @ 40.9 and 41.6 (both horizontal), 41.9 (sub 42.4 (sub-vertical), 42.5 (sub-vertical), 43.3 (horizon 43.15-44.6 (vertical, weathering residue), 44.85-45.0 (shattered). D-1, S-1-2, F-2 Limestone, medium dark gray (N4) with bands of me gray (N5) and dark gray (N3), fine grained, styolites of Breaks @ 45.2-45.45 (crushed), 45.45-46.15 (vertica 46.15, 46.75, and 47.45 (all horizontal), 47.8 (clayey S-1-2, F-3	ely – -vertical), – tal), – 595 – - 			
Manlius	Olney		50 - - -	09:57 10:15 3 10:26 10:44 4 10:47	3.7	3	171.7 95	77	Limestone, medium dark gray (N4) with bands of dar (N3), fine grained, occasional fossils, styolites, Breaks @ 50.35 (horizontal), 51.35 (horizontal, shale 51.55-51.75 (shattered), 52.1 (horizontal), 52.9 (sub- D-1, S-1, F-2 Limestone from 53.2-53.3, SAA. Dolostone, medium light gray (N6), fine grained, thic bedded. D-1, S-1, F-2 End of core @ 54.2' bgs	ey), -vertical). - 585	Olney Limestone-Dolostone contact @ 53.3' bgs (584.6' amsl)		

Page 2 of 2

LIEN	ECT: IT: ECTOI		Powerex F General E P. D'Annil	lectric	Work Pla Compa	an Ado ny	l. No. 4	ļ	I, N.Y.				
PURPOSE: EISB Pilot Te DRILLING CONTRACTOR: Parratt Wolff, DRILLER: Layne Pech DRILL RIG TYPE: CME 850 LICENSE NUMBER: NYRDO1621							ase 1		CASING DIAMETER:6 in.COORDINACASING LENGTH:18.5 ft.GROUND EIHOLE DIAMETER:0.315 ft.HORIZ. DATCORE TYPE:HQ3 CoreVERT. DATTOTAL DEPTH:56.3 ft. bgsSTART/ENE	64160.974 E816609.214 2 0 83 /D 1929 //2012-10/1/2012			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302) Boring advanced through overburden to 8.0' bgs u	tilizing	9 Elevation (ft amsl)	Notes	
Overburgen	Overburden					8			Boring advanced through overburden utilizing 9-7. bit. Top of competent bedrock at 16.5' bgs. Set 6" casing to 18.5' bgs.	/8" roller	- - - - - - - - - - - - - - - - - - -		
Bedrock	Bedrock								Reamed through bedrock to set shallow bedrock c utilizing 5-7/8" roller bit. Set 4" shallow bedrock ca 41.5' bgs.	asing Ising to	- - - - - - - - - - - - - - - - - - -	Top of Bedrock @ 16.5' bgs (623.7' amsl)	

O'BRIEN & GERE

CORE LOG

PT-INJ-3

PROJECT: CLIENT: Powerex RI/FS Work Plan Add. No. 4 General Electric Company

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
			 30 			23				- 610 -	
Bedrock	Bedrock		- 35 — - -							- 605	
Onondaga	Edgecliff		 40 - - 45	10:13 1 10:26 10:37	4.1	3.2	70.3	79	Limestone, medium light gray (N6), medium grained, medium bedded, pyrite, Break @ 41.85 (high angle). D-2, S-1, F-2 Limestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, fossils and styolites common,	- 	Edgecliff-Olney contact @ 42.3' bgs (597.9' amsl)
Manlius	Olney		- - -	2 10:55	3.6	5	98	77	Breaks @ 42.8 (shaley), 43.4 (shaley), 43.55 (shaley), 43.8-44.05 (shattered). Limestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, occasional fossils, frequent styolites, Breaks @ 45.1 (horizontal), 45.7 (weathered), 46.9 (horizontal), 47.1 (shaley), 47.25 (shaley), 47.4 (weathered), 48.55 (shaley), 49.1 (horizontal), 49.3 (horizontal). D-2, S-1, F-2		
			50 — - -	3	3.8	5	98	78	Limestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, fossils and styolites common, Breaks @ 49.85 (horizontal), 50.35-50.45 (shattered), 52.2 (horizontal), 52.85 (horizontal), 53.45 (horizontal), 53.45-54.05 (vertical, core shattered at basal end). D-2, S-1, F-2	590 	
Manlius	Olney		- 55 — 	<u>11:24</u> 11:25 4 11:43	11.3	1.6	115.6	100	Limestone from 54.7-55.9, SAA Break @ 54.75 (horizontal). Dolostone, medium light gray (N6). D-1, S-1, F-1 End of core @ 56.3' bgs	- 	Olney Limestone-Doloston contact @ 55.9' bgs ((584.3' amsl)

LIEN	ECT: IT: CTOF	(Powerex F General E P. Freyer,	lectric	: Compa	ny	. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, N.Y. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 17 feet W of PW-4					
rill Rill Rill	.er: . rig '	Contr Type: Umbei	ACTOR:	Pari Layi CM	B Pilot T ratt Wolf ne Pech E 850 RDO162	f, Inc.	ase 1		CASING DIAMETER:6 in.COORDINATES:CASING LENGTH:18 ft.GROUND ELEV:HOLE DIAMETER:0.315 ft.HORIZ. DATUM:CORE TYPE:HQ3 CoreVERT. DATUM:TOTAL DEPTH:55.8 ft. bgsSTART/END DATE:	N1064140.254 638.6 NAD 83 NGVD 1929 8/30/2012-9/25,				
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsI)	Notes			
			-						Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	-				
						8				- 635 -				
Overburden	Overburden		-							-				
Uver	Over		- 10 —						Boring advanced through overburden utilizing 9-7/8" roller bit. Top of competent bedrock at 16.0' bgs. Set 6" steel casing to 18.0' bgs.	630 -				
			- - 15—			10				- - - 625 -				
			-							-	Top of Bedrock @ 16.0' bgs (622.6' amsl)			
K	ž		20 —						Reamed through bedrock to set shallow bedrock casing utilizing 5-7/8" roller bit. Set 4" shallow bedrock casing to 40.5' bgs.	- 620 - -				
Bedrock	Bedrock		-							- 615				
			_ 25 —							-				

	OE	BRIEN	l & GE	RE					CORE LOG	PT-INJ-	4	
PROJ CLIEN INSPE	NT:	G	Powerex General E P. Freyer	Electric	Compa	ny	. No. 4	•				
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)		Elevation (ft amsl)	Notes
Bedrock	Bedrock		- 30 — - - 35 — -			22.5					610 605 	
Onondaga	Edgeqliff		- 40 - - -	13:09 1	4	4.3	98.8	89	Limestone, medium light gray (N6), medium bedde styolites, pyrite. Limestone, medium dark gray (N4) with bands of d (N3), fine grained, occasional fossils, styolites com Breaks @ 41.2 (contact), 42.7 (horizontal), 43.0 (ho shaley), 43.8 (horizontal).	lark gray mon,	600 595	Edgecliff-Olney contact @ 41.2' bgs (597.4' amsl)
Manlius	Olney		-	13:26 13:39 2 13:59	4	5	102	82	Limestone, medium dark gray (N4) with bands of d. (N3), fine grained, occasional fossils, frequent styol Breaks @ 44.85 (weathered), 46.2 (weathered, sha (weathered), 46.5 (weathered), 46.9, 47.6, 48.15, 4 49.3 (all horizontal), 49.4 (weathered, clayey). D-1	lites, aley), 46.4 19.0, 49.2, , S-1, F-2	- - - 590	
Manlius			-	14:15 3	4.4	5	98	92	Limestone, medium dark gray (N4) with bands of d. (N3), fine grained, few fossils, occasional styolites, Breaks @ 51.2 (high angle, weathered), 52.6 (horiz 53.05 (weathered), 53.15 (weathered), 54.3 (high a 54.4 (horizontal). D-1, S-1, F-2	zontal),	- - 585 -	
Manlius	Olney		55 —	14:55 4 15:00	5	1	100	100	Limestone from 54.8-54.9, SAA. Dolostone, medium light gray (N6), thick bedded, Break @ 55.3 (horizontal). D-1, S-1, F-2 End of core @ 55.8' bgs	/		Olney Limestone-Dolostone contact @ 54.9' bgs (583.7' amsl)

LIEN	ECT: IT: CTOF	(Powerex F General E P. Freyer,	lectric	: Compa	ny	l. No. 4	ļ	PROJECT LOCATION:Former Powerex, Inc. Facility, Auburn, N.Y.IOB NUMBER:49543.004.402IOLE LOCATION:NE of PW-13, Approximately 35.5 feet SE of PW-1					
rill Rill Rill	.er: . rig '	Contr Type: Umbe		Par Lay CM	B Pilot T ratt Wolf ne Pech E 850 RDO162	f, Inc.	ase 1		CASING LENGTH:18.7 ft.GROUND ELEV:639HOLE DIAMETER:0.315 ft.HORIZ. DATUM:NAD	.7 0 83 /D 1929	E816580.354 2012			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes			
			-						Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	-				
			5			8				- 635 -				
Overburgen	Overburden								Boring advanced through overburden utilizing 9-7/8" roller bit. Top of competent bedrock at 16.5' bgs. Set 6" steel casing to a depth of 18.7' bgs.	- - - 630 -				
						10.7				- - 625 -	Tan d Dadarah @			
			20 —						Reamed through bedrock to set shallow bedrock casing utilizing 5-7/8" roller bit. Set 4" shallow bedrock casing to 41.0' bgs.	- 620	Top of Bedrock @ 16.5' bgs (623.2' amsl)			
Bedrock	Bedrock		25-							- - - 615 -				

		RIEN	15GE	RE					CORE LOG F	PT-INJ-5	
LIEN	ECT: IT: CTOI	0	Powerex General I P. Freyer	Electric	Compa	ny	. No. 4	ļ			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ff amst)	Notes
			- 30 —			22.3				- 610	
Bearock	Bedrock		- - 35 — -							- - - 605 - -	
Unondaga	Edgecliff		- - - - - -	13:24 1	3.4	3.5	77.1	50	Limestone, medium light gray (N6), medium bedded, fossiliferous, Breaks @ 41.25 (high angle), 41.55 (weathered). Linestone, medium dark gray (N4) with bands of dark	- 600 - 600 	Edgecliff-Olney contact @ 42.2' b (597.5' amsl)
Manius	Olney		45 - - -	13:36 13:45 2 14:07	4.4	5	98	82	 (N3), fine grained, fossils common, Breaks @ 42.4 (weathered), 43.15 (horizontal), 43.55 (shattered). D-2, S-1, F-2 Limestone, medium dark gray (N4) with bands of med gray (N6) and dark gray (N3), fine grained, styolites a fossils common, Breaks @ 44.7-44.85 (shattered, weathered), 45.65 (horizontal), 46.5 (shaley), 47.55 (horizontal), 48.15 (stattered, weathered), 49.25 (horizontal) S-1, F-2 	lium nd _ shaley),	
Ma	ō		50 — - -	14:20 3	3	5	100	81	Limestone, medium dark gray (N4) with bands of med gray (N6) and dark gray (N3), fine grained, fossils and styolites common, Breaks @ 49.8 (horizontal), 50.05 (horizontal), 51.15 (weathered), 51.3-51.4 (shattered, weathered), 52.0 (horizontal), 52.65 (high angle), 53.15 (sub-vertical, weathered), 54.25 (horizontal). D-2, S-1, F-2	lium — 590 d	
SUI	ey-		- 55 — -	<u>14:35</u> 14:45 4 <u>14:50</u> 15:01 5	3.3	1.5	100	100	Limestone, SAA, Breaks @ 55.0, 55.4 (both weathered). D-1, S-1, F-2 Limestone from 56.0-56.5, SAA.		Olney
Manlius	Olney	ĹŹ		15:05					Dolostone. D-1, S-1, F-1 End of core @ 57.3' bgs		Limestone-Dolosi contact @ 56.5' b (583.2' amsl)

LIEN	ECT: NT: ECTOR	(Powerex F General E P. Freyer,	lectric	: Compa	ny	l. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, A JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 19 feet E of PW-7		
rill Rill Rill	.ER: . RIG	CONTF TYPE: UMBE		Par Lay CM	B Pilot T ratt Wolf ne Pech E 850 RDO162	ff, Inc.	ase 1		CASING LENGTH:19.5 ft.GROUND ELEV:HOLE DIAMETER:0.315 ft.HORIZ. DATUM:	N1064160.634 640.4 NAD 83 NGVD 1929 8/31/2012-10/2/	
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
			_						Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	- 640	
			5			8				- - 635 -	
Overburden	Overburden								Boring advanced through overburden utilizing 9-7/8" roller bit. Top of competent bedrock at 17.5' bgs. Set 6" steel casing to 19.5' bgs.	- 630	
						11.5				- - 625 -	
			20						Reamed through bedrock to set shallow bedrock casing	-	Top of Bedrock @ 17.5' bgs (622.9' amsl)
Bedrock	Bedrock								utilizing 5-7/8" roller bit. Set 4" shallow bedrock casing to 41.5' bgs.	620 	
			25 —							- 615 -	

EVENTION FOR THE PROJECT	: TOR:	Ger : P. f	neral E	Electric			. No. 4				
Formation	ber				Annibale	ny	. NO. 4				
	Mem	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation	(If ams) Notes
Bedrock Redrock	Bedrock		- 30 — - - - 35 — - - -			22				- 611 - - - - - 60: - - - -	
Onondaga	Edgecliff		-	07:40 1 07:54	4.2	3.3	97	86	Limestone, medium light gray (N6), medium beddec common, Breaks @ 41.75 (horizontal), 42.2 (shaley, weathere Limestone, medium dark gray (N4) with bands of da (N3), fossils common, occasional styolites,	ed).	0 Edgecliff-Olney contact @ 43.0' (597.4' amsl)
SU	×		45 — - - -	2	4	5	102	77	Breaks @ 44.35 (horizontal). D-1, S-1, F-1 Limestone, medium dark gray (N4) with bands of da (N3), fine grained, frequent fossils and styolites, Breaks @ 44.9-45.35 (shattered, weathered), 46.0 (horizontal), 47.0 (horizontal), 48.35 (shaley), 48.5-4 (shattered, weathered), 48.9 (horizontal), 49.15 (hor 49.6 (shaley), 49.65 (shaley). D-1, S-1, F-2	48.65	5
Manlius	Olney		50 	<u>08:21</u> 08:30 3	4	5	100	68	Limestone, medium dark gray (N4) with bands of da (N3), fine grained, frequent fossils, occasional styoli Breaks @ 50.05 (clay filled), 50.05-50.45 (vertical), (shaley), 50.95-51.15 (vertical), 52.35 (horizontal), 5 (vertical), 54.15 (horizontal). D-2, S-1, F-2	tes, - 590 50.95 -	0
Manlius	Olney		55	08:50 09:00 4 09:11	4.8	2.3	100	68	Limestone from 54.8-56.8, SAA, Breaks @ 54.9-55.05 (shattered, weathered), 55.25 (horizontal), 55.7 (high angle), 55.9 (high angle), 56 angle), 56.75 (horizontal). D-2, S-1, F-2 Dolostone, medium light gray (N6).		5 Olney Limestone-Dolos contact @ 56.8'

LIEN	ECT: IT: CTOF	(Powerex F General E R. Hornun	lectric	Compa		l. No. 4	ŀ	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 10 feet SE of DGC-12E		
RILL RILL RILL	.er: . rig ⁻	ONTR TYPE: UMBE	ACTOR:	Parr Mick CMI	3 Pilot T att Wolf key Mars 5 850 RDO162	f, Inc. shall	ase 1		CASING LENGTH:17.7 ft.GROUND ELEV:637.4HOLE DIAMETER:0.315 ft.HORIZ. DATUM:NAD	33 0 1929	E816348.604
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302) Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	Elevation (ft amsl)	Notes
			_			8				- 635 -	
Overburden	Overburden		5						Boring advanced through overburden utilizing 9-7/8" roller bit. Top of weathered bedrock @ 15.5' bgs. Top of competent bedrock at 16.0' bgs. Set 6" steel casing to 17.7' bgs. Seat spin-joint casing with drive shoe to 17.8' bgs.	- - 	
			-			9.8				625 	
			15 —							- 620	Top of Bedrock @ 15.5' bgs (621.9' amsl)
			- 20	^{19:36} 1 10:11	11.7	3	91.7	76	Limestone, medium dark gray (N4) to medium gray (N5), fine grained, thinly bedded, very few brachiopod fossils, chert nodules from 17.95-18.05, 18.2-18.35, 18.55-18.75, 18.95-19.15, 19.4-19.55, and 19.85-20.2, Breaks @ 17.9 (horizontal, faint weathering residue), 18.1 (horizontal, faint weathering residue, trace clay and grains), 18.3 (horizontal, fresh), 18.8-18.9 (low angle), 20.0	-	While coring Run #1 multiple start and end times were recorded. The penetration rate represents the first and last start and end time recorded during the run
Unondaga	Moorehouse			2	5.8	5	103	11	 Inorizontal, itesh), 18.8-18.9 (tow arigle), 20.0 (horizontal, along chert nodule), 20.55 (horizontal, fresh). D-2, S-2, F-2-3 Limestone, dark gray (N3) to medium dark gray (N4), fine grained, thinly bedded to very thinly bedded, severely fractured throughout run, brachiopod fossils, some fossil burrows, pyrite, Breaks @ 21.35-22.3 (multiple, horizontal, high angle, low 	- 615 -	during the run. While coring Run #2 multiple start and end times were recorded. The penetration rate represents the first and last start and end time recorded

CORE LOG

PT-MW-1

PROJECT: CLIENT: INSPECTOR: Powerex RI/FS Work Plan Add. No. 4 General Electric Company R. Hornung, P. Freyer

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
				40.50					weathered, trace clay and grains, fracture zone). D-3, S-3, F-4-5	-	
			-	10:59 11:38			100		Limestone, medium dark gray (N4) to medium gray (N5), fine grained, thinly bedded, very fractured, few crinoid stems and brachiopod fossils, fossil rich zone from 29.4-29.75 (brachiopods, burrows, shaley), styolites, pitting from 29.2-29.35,	- 610	
			- 30 —	3	5	5	102	28	Breaks @ 25.8 (fresh), 26.45-26.65 (with gravel fragments, trace clay), 26.65-28.6 (multiple, vertical, sub-vertical, clay, slightly weathered, gravel fragments), 28.6-29.35 (re-cemented), 29.35 (low angle, clay and grains), 29.4-29.6 (high angle, clay and grains), 29.6-30.8 (multiple, vertical, sub-vertical, clay and grains). D-2, S-2, F-4	-	
			-	13:00					Limestone, medium dark gray (N4) to dark gray (N3), fine grained, thinly bedded, high bioturbation (brachiopod fossils, burrows), shaley from 30.9-31.9, pyrite,		Moorehouse-Nedrow contact @ 30.8' bgs (606.6' amsl)
aga	M		- 35 —	4	6.2	5	97	24	Breaks @ 30.9-33.1 (multiple, horizontal, high angle, gravel fragments), 33.1-33.2 (horizontal, high angle, slightly weathered), 33.5 (low angle, fresh), 33.75 (gravel fragments, trace residual clay and grains), 34.25 (slight weathering residue), 34.4-34.5 (gravel fragments, horizontal), 34.85-34.95 (horizontal, clay rich), 35.6 (horizontal, trace clay and grains), 35.7 (trace clay and grains). D-2, S-2, F-4	- 605 - -	
Onondaga	Nedrow		-	<u>13:31</u> 13:41					Limestone, medium dark gray (N4) to medium gray (N5) at basal end, fine grained, thinly bedded, some brachiopod fossils, burrows, few crinoid stems, pyrite, Breaks @ 35.8 (fresh), 36.2 (gravel fragments, trace clay and	- 600	While coring Run #5, multiple start and end times were recorded. The
			- - 40 —	5	4.4	5	97	48	grains), 37.8-40.5 (multiple, horizontal, low angle, high angle, fracture zone, many with gravel fragments), 40.5 (horizontal, slight weathering residue), 39.5-40.65 (multiple, horizontal, vertical, low angle, many with pebble fragments, slightly weathered), 40.75 (horizontal, trace clay and grains). D-2, S-2, F-4	-	penetration rate represents the first and last start and end time recorded during the run.
			-	14:03 14:25					Limestone, medium gray (N5), fine grained, core shattered from 40.8-41.2. D-1-4, S-1-2, F-3	-	Nedrow-Edgecliff contact @ 41.2' bgs
			-	6	5.8	4	110	68	Limestone, medium gray (N5) to medium light gray (N6), medium grained, thin-medium bedded, fossiliferous (crinoid stems, brachiopods), argillaceous from 41.7-43.7, styolites at basal end, pyrite,	595	(596.2' amsl)
а	<u> </u>		- 45 —	14:48 15:11 7	6	1	90	0	Breaks @ 41.2-41.7 (vertical, weathering residue, trace clay and grains), 42.9 (trace clay and grains), 43.7 (gravel fragments), 43.8 (gravel fragments, trace clay and grains), 44.95 (gravel fragments, weathering residue).	-	
Onondaga	Edgecliff		-	15:17		1			Limestone, medium dark gray (N4), medium grained, thinly bedded.		
NO	Ĕ		-	08:22					Breaks @ 45.25-45.7 (vertical). D-2, S-2, F-4 Utilized 5-7/8" roller bit to advance through bedrock from 17.8-46.8 and set 4" shallow bedrock casing to a depth of		
			-	8	4.5	4	105	88	\46.8' bgs. Limestone, medium gray (N5), medium grained, medium bedded, very slightly fractured, fossiliferous (crinoid platelets, tabulate corals throughout), pyrite,	-	
			50 — -	<u>08:40</u> 08:58					Breaks @ 47.15-47.3 (high angle), 48.6 (sub-horizontal fracture, solution modified, residual clay), 49.95 (horizontal, solution modified), lost approximately 100 gallons of drilling water at 48.6. D-2, S-1, F-2		Edgecliff-Olney contact @ 51.0' bgs
			-						water at 48.6. D-2, S-1, F-2 Limestone from 50.8-51.0, SAA,		contact @ 51. (586.4' amsl)

CORE LOG

PT-MW-1

PROJECT: CLIENT: INSPECTOR: Powerex RI/FS Work Plan Add. No. 4 General Electric Company R. Hornung, P. Frever

INSPE	ECTO	R: F	R. Hornu	ng, P.	Freyer	-	1		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)
				9	6	5	92.6	31	sub-angular fragments). D-2, S-2, F-3
			55	-					Limestone, medium dark gray (N4) with frequent horizontal laminations, thin-medium bedded, fine grained, slightly fractured, styolites common, sparse fossil debris throughout, soft sediment deformation feature at 54.55,
Manlius	Olney		- 60	09:38 09:38 10 09:57	3.9	4.9	107.1	59	Breaks @ 51.2, 51.35 (low angle), 52.15 (crushed to sub-rounded gravel), 52.15-52.6 (sub-vertical fracture, weathered), 52.6, 52.7 (horizontal), 53.6 (core crushed to sub-rounded medium gravel), 53.8 (sub-horizontal, non-planar), 53.9 (low angle), 53.9-54.4 (sub-vertical), 54.6 (sub-horizontal), 55.15-55.35 (sub-vertical), 55.35 (sub-horizontal, weathered along styolite). Limestone, medium dark gray (N4) with dark gray (N3) laminations common, thinly bedded, fine grained, slightly fractured, fossiliferous (crinoids, brachiopods visible, often in thin beds), shaley partings, styolites and other soft sediment deformation features throughout,
				10:16 11 <u>10:39</u>	7.7	3	90	0	Breaks @ 55.93 (weathered), multiple breaks along shaley partings at 56.0, 56.3, 56.5, 56.7, 57.25, 57.8, 58.75, 58.95 (weathered), 59.1, 59.4-60.2 (several, high angle, low angle). D-2, S-2, F-3 Limestone, medium dark gray (N4) with dark gray (N3) laminations, fine grained, few coarse grained lenses, thinly bedded, moderate-severely fractured, sparsely fossiliferous, few styolites,
Manlius	Olney		65 —	12	3.8	2.1	119	50	Breaks @ 60.95 (horizontal), 60.95-61.6 (sub-vertical), 61.9 (weathered), 62.35-63.2 (sub-vertical), 63.5-63.9 (core crushed). D-1, S-2, F-5
2		. / _ /							Limestone from 63.7-64.9, SAA, Breaks @ 64.0 (horizontal, weathered), 64.35, 64.5 (low angle), 64.8 (horizontal, weathered). Dolostone, medium light gray (N6) to medium gray (N5), fine grained, thick bedded, very sparsely fossiliferous, Break @ 65.0-65.7 (low angle). D-1, S-1, F-3 End of core @ 65.8' bgs

LIEN	ECT: IT: ECTOR	C	Powerex F General E R. Hornun	lectric	Compa		. No. 4	ŀ	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, N.Y. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 20 feet SW of PW-5, 20 feet S of DGC-9B				
RILL RILL RILL	.er: . rig 1		ACTOR:	Pari Micl CM	B Pilot T ratt Wolf key Mars E 850 RDO162	f, Inc. shall	ase 1		CASING LENGTH:18.8 ft.HOLE DIAMETER:0.315 ft.CORE TYPE:HQ3 Core	GROUND ELEV: 6 HORIZ. DATUM: N VERT. DATUM: N	DUND ELEV: 637.9 RIZ. DATUM: NAD 83		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Descr (per TPPI 30 Boring advanced through overburder	2)	Elevation (ft amsl)	Notes	
			- - - 5			8					- 635 - -		
Overburden	Overburden								Boring advanced through overburder bit. Top of weathered bedrock at 15. bedrock at 16.0' bgs. Set 6" steel cas	7' bgs. Top of competent	- 		
			- - 15 —			10.8					- - 625 -		
			_								- 620	Top of Bedrock @ 15.7' bgs (622.2' amsl)	

П	O'BRIEN & GERE
_	

PT-MW-2

PROJECT: CLIENT: Powerex RI/FS Work Plan Add. No. 4 General Electric Company R. Hornung, P. Frever

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
			- 20	09:39 1 09:55	10.7	1.5	86.7	0	Limestone, medium dark gray (N4), fine grained, medium bedded, severely fractured, Breaks @ 19.0-20.3 (multiple horizontal joints (>4), vertical, weathered, core shattered), core block at 20.3. D-2, S-2, F-5	-	While coring Run #1, multiple start and end times were recorded. The penetration rate represents the first
Onondaga	Moorehouse		-	10:22 - - 2	8.8	4.8	85.4	12.5	Limestone, medium dark gray (N4), fine grained, medium bedded, severely fractured from 20.3-23.8, few fossils and burrows, core crushed to medium gravel from 20.3-23.8, Breaks @ 23.9 (low angle), 24.1 (low angle). D-2, S-2, F-5		and last start and end time recorded during the run.
Onondaga	Nedrow		25 - - - - - - - - - - - - - - - - - -	- <u>11:04</u> <u>11:173:27</u> <u>11:33</u> <u>11:33</u> <u>11:52</u> - 5 - 5 - 5 - 12:29 - 13:16	50 30	0.2 0.2 4.9	150 100 85.7	0 0 24.5	Limestone, dark gray (N3), argillaceous lens with fossil debris at 24.6, Breaks @ 24.2 (weathered), 24.2-24.3 (core crushed), 24.9 (low angle). Limestone, dark gray (N3), fine grained, thin-medium bedded, severely fractured, fossils, core crushed, core block at 25.3. D-2, S-2, F-5 Limestone, dark gray (N3), fine grained, severely fractured, core crushed, core block at 25.5. D-2, S-2, F-5 Limestone, dark gray (N3) to medium gray (N5), moderately to severely fractured, brachiopods (some pyritized), burrows, pyrite, Breaks @ 25.5-26.85 (core crushed), 26.85 (slightly weathered), 27.0 (low angle), 27.25 (low angle), 28.05 (low angle), 28.05-28.35 (crushed), 28.35 (low angle), 28.55, 28.65 (horizontal), 29.7 (weathered), 30.05-30.4 (multiple horizontal breaks). D-2, S-2, F-4 Limestone, medium dark gray (N4) to medium gray (N5), fine grained, moderately fractured, portions crushed, brachiopods, crinoids, burrows, Breaks @ 30.5 (weathered), 31.1, 31.55, 31.6, 31.6-31.8 (low angle), 31.8-32.05 (low angle), 32.9 (horizontal), 33.35-34.4 (multiple, high angle), 34.95-35.15 (two, low angle). D-1, S-1, F-3		Moorehouse-Nedrow contact @ 24.2' bgs (613.7' amsl)
			35	<u>13:41</u> 13:50 7 <u>14:02</u> 14:18	6	2	100	75	Limestone, medium dark gray (N4), SAA, Break @ 35.55. D-2, S-1, F-2 Limestone, medium gray (N5), fine grained, slightly fractured, fossil debris (crinoid columnals), portions more argillaceous, Breaks @ 35.65, 36.4, 36.5, 37.15 (horizontal, non-planar),	-	Nedrow-Edgecliff contact @ 35.6' bgs (602.3' amsl)
			-	- 8	4.7	3	100	73	Core crushed from 35.55-35.65 and 36.4-36.5. Limestone, medium gray (N5), fine-medium grained, slightly fractured, portions argillaceous above 38.4, below 38.4 fossil content increases considerably, Breaks @ 38.25 (core crushed), 38.45 (weathered), 39.9	- 600	

CORE LOG

PT-MW-2

_		e			0	Ľ					
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
laga	cliff		40 —	14:32 14:50					(weathered), 40.0 (weathered), 40.2-40.5 (high angle, continuation into following run). D-1, S-1, F-1	-	
Onondaga	Edgecliff		-	9 14:56	6	1	105	100	Limestone, medium gray (N5), fine grained, fossil debris, portions argillaceous, few styolites.	-	
			-	13:29					Utilized 5-7/8" roller bit to advance through bedrock from 18.8-41.4 and set 4" shallow bedrock casing to a depth of 41.4' bgs. Limestone, medium gray (N5), fine-medium grained, medium bedded, slightly-moderately fractured, few styolites, fossiliferous (crinoids, tabulate corals), minor pitting along		
			45 —	10	3.9	4.4	90.9	72	sub-vertical fractures, Breaks @ 41.9 (horizontal, very slightly weathered), 44.4-44.5 (solution modified, medium-coarse sub-rounded gravel sized fragments), 44.9, 45.0, 45.2 (horizontal), 45.2-45.4 (sub-vertical). D-1, S-1, F-2	-	
			-	<u>13:46</u> 13:58					Limestone, medium gray (N5) to medium dark gray (N4), fine grained with few lenses medium grained, thinly bedded, moderately fractured, sparsely fossiliferous (crinoids, brachiopods) with few lenses densely fossiliferous, styolites	-	Edgecliff-Olney contact @ 45.8' bgs (592.1' amsl)
			-	11	4.2	5	68	47	and portions argillaceous, Breaks @ 46.0-46.2 (high-low angle), 46.5 (horizontal), 46.9 (low angle), 47.55 (possible 0.2 void), 48.0, 48.1, 48.35, 48.5 (sub-horizontal, very slightly weathered). D-1, S-1, F-2-3	- 590	
IIUS			50 — - -	<u>14:19</u> 14:34					Limestone, medium gray (N5) to medium dark gray (N4), fine grained with lenses of medium grained fossiliferous material, thinly bedded, moderately fractured, fossiliferous (crinoids, brachiopods), styolites, wavy/argillaceous laminations common,	-	
	Olney		- 55 —	12	5	5	122	49	Breaks @ 49.9, 50.25-50.35 (high angle, possibly mechanical) 51.3, 51.4, 51.5 (horizontal), 52.2 (shaley parting), 52.5, 52.5-52.6 (low angle, slickensides), 53.0, 53.6 (horizontal), 54.0-54.05 (low angle), 54.0-54.75 (high angle), 54.9-55.1 (high angle). D-1, S-1, F-3	- 585	
			-	14:59 15:48					Limestone, medium gray (N5) to medium dark gray (N4), fine grained with coarser fossiliferous lenses, thinly bedded,	-	
			-	13	4	3	101.7	26	fossiliferous, styolites, portions argillaceous, minor pitting, Breaks @ 56.0, 56.1, 56.5 (horizontal), 56.7-56.85 (multiple horizontal breaks), 57.1 (horizontal), 57.6-57.65 (low angle), 57.9, 58.0 (horizontal), 58.4-58.75 (high angle), 58.6-58.8 (core mostly crushed). D-1, S-1, F-4		
sn	У		-	16:00 .16:13 14	5	1	70	35	Limestone from 58.8-59.4, SAA,	-	
	Olney	7,7		16:18	-				Breaks @ 58.9, 59.0, 59.4 (core overcored). D-1, S-1, F-1-2		Olney Limestone-Dolostone contact @ 59.4' bgs

LIEN	ECT: NT: ECTOF	(Powerex F General E R. Hornun	lectric	Compa		l. No. 4	ļ	JOB NUMBER: 49543	Powerex, Inc. I 004.402 imately 20 feet :	-		FPT-INJ-4
URPOSE: EISB F RILLING CONTRACTOR: Parratt RILLER: Mickey RILL RIG TYPE: CME & ICENSE NUMBER: NYRD						f, Inc. shall/M		ives	CASING DIAMETER:6 in.CASING LENGTH:17 ft.HOLE DIAMETER:0.315 ftCORE TYPE:HQ3 CoTOTAL DEPTH:56.5 ft.	ATES: N1064118.454 E816618.344 ELEV: 638.9 ITUM: NAD 83 TUM: NGVD 1929 ID DATE: 8/29/2012-9/20/2012			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic D (per TPF Boring advanced through overbi 8-1/4" HSA.	302)	utilizing	Elevation (ft amsl)	Notes
Overburden	Overburden		- - - - - - - - - - - - - - - - - - -			8			Boring advanced through overbubit. Top of competent bedrock at casing to 17.0' bgs.	rden utilizing 9-7 15.7' bgs. Set 6"	7/8" roller steel	- 	
			- 15 —									- - 625 -	Top of Bedrock @ 15.7' bgs (623.2'

σ	O'BRIEN & GERE
	OBINENCOLINE

PT-MW-3

	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
			-	09:25 1 09:43	8.6	2.1	95.2	43	Limestone, medium dark gray (N4), fine grained, thin-medium bedded, slight to severely fractured, trace fossils, chert nodules, Breaks @ 17.0-17.8 (several high angle fractures, portions of core crushed to fine-medium sub-angular gravel sized fragments), 17.8 (horizontal, solution modified), core block at 19.1. D-1-2, S-1-2, F-2-5	- 620	
Onondaga	Moorehouse		20 —	11:04 2 1:08 11:22	20	0.2	200		Limestone, SAA, severely fractured, core fragments sub-rounded. Limestone, medium dark gray (N4) to medium gray (N5), fine grained, medium bedded, slightly fractured, fossiliferous (crinoids, brachiopods), pyrite,	-	
			-	3	4.6	5	101	80	Breaks @ 21.15 (horizontal), 21.95 (horizontal, shaley), 22.2-22.25 (shaley, crushed to sub-angular fine-medium gravel), 22.35 (solution modified, shaley). D-2, S-1, F-1	-	
			-	11:45					Limestone, dark gray (N3), fine grained, thinly bedded, moderately-severely fractured, fossiliferous, horizontal burrows,	- 615	Moorehouse-Nedrow contact @ 23.3' bgs (615.6' amsl)
ondaga	edrow		25 — - -	4	3.6	5	98	54	Breaks @ 23.75 (solution modified), 23.75-23.95 (sub-vertical), 23.95 (shaley), 24.1 (shaley), 24.1-24.3 (high angle). Limestone, medium dark gray (N4) to medium gray (N5), fine grained with few lenses of medium grained, thin-medium bedded, slightly to moderately fractured, fossiliferous (brachiopods), horizontal burrows common, pyrite, Breaks @ 24.45, 24.5 (horizontal, shaley), 24.9-25.3 (high angle, multiple), 27.2 (solution modified), 28.0, 28.5, 28.75 (shaley), 28.75-29.0 (sub-vertical with multiple horizontal and low angle), 29.1-29.2 (multiple). D-1-2, S-1-2, F-3	-	
Ono	Ne		_	<u>13:14</u> 13:29						- 610	
			30 — - -	5	2.8	5	102	58	Limestone, medium dark gray (N4) to medium gray (N5), fine grained, thin-medium bedded, moderate-slightly fractured, fossiliferous (brachiopods), horizontal burrows common, pyrite, Breaks @ 30.15 (two, both horizontal, closely spaced, shaley), 30.15-32.3 (sub-vertical, non-planar fracture), 32.8 (shaley). D-2, S-1, F-3	-	
			-	13:43					Limestone, medium gray (N5), medium grained, medium bedded, slightly fractured, fossiliferous (brachiopods, crinoids),	- 605	Nedrow-Edgecliff contact @ 33.1' bgs (605.8' amsl)

Page 2 of 4

CORE LOG

PT-MW-3

PROJECT:
CLIENT:
NODEOTOE

Powerex RI/FS Work Plan Add. No. 4 General Electric Company B. Hornung P. Erever

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsI)	Notes
Onondaga	Edgecliff		-	6	4.6	5	95	85	(tabulate corals, brachiopods, possible orthocone cephalopod), portions argillaceous, Breaks @ 35.4, 35.55 (residual clay and grains), 36.9 (horizontal, non-planar), 38.45 (along carbonaceous parting). D-1-2, S-1, F-1	-	
			- 40 — -	14:22 14:34 7 14:44	3.4	2.9	89.7	37	Limestone, medium gray (N5) to medium light gray (N6), medium bedded, severely fractured, fossiliferous (crinoids, tabulate corals, brachiopods), styolites, pyrite, Breaks @ 40.4-41.75 (sub-vertical fracture, solution modified), 41.5-41.7 (high angle). D-1-2, S-1, F-4 Utilized 5-7/8" roller bit to advance through bedrock from 17.0-42.2 and set 4" shallow bedrock casing to a depth of 42.2' bgs.		
			- - 45 —	09:40 8 10:02	7.9	2.8	96.4	54	Limestone from 42.2-42.5, SAA, abruptly overlying. Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, thin-medium bedded, slightly fractured, fossil material concentrated in medium grained bands, Breaks @ 42.8 (solution modified, moderate-severely weathered), 43.75 (horizontal, very slightly weathered), 44.0 (horizontal, fresh), 44.2 (solution modified, moderately		Edgecliff-Olney contact @ 42.5' bgs (596.4' amsl)
Manlius	Olney		-	10:22 9 -	7	5	100	47	 weathered), 44.35 (horizontal, slightly weathered), 44.35-44.65 (high angle, fresh). D-2, S-1, F-3 Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, thinly bedded, slightly-severely fractured, fossiliferous (most fossil debris concentrated in bands, minor amounts dispersed throughout core), Breaks @ 45.9-47.7 (multiple, high angle, sub-vertical, moderately weathered), 45.95 (horizontal, shaley, non-planar, slightly weathered), 46.0 (horizontal), 46.95 (horizontal, slightly weathered), 47.6, 47.7 (shaley, sub-rounded gravel sized fragments), 48.5, 48.8 (shaley), 49.65-49.7 (low angle, shaley, fresh). D-2, S-1, F-3 		
			50 — - -	11:16	5.4	5	95	24	Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, thinly bedded, slightly-moderately fractured, fossiliferous (fossil debris concentrated in bands, minor amounts dispersed throughout the core), Breaks @ 50.1, 50.5 (horizontal, slightly weathered), 50.6 (horizontal, core crushed to fine-medium sub-angular gravel), 50.65-50.7 (low angle, slightly weathered), 51.65, 51.9 (horizontal, fresh), 52.25-52.9 (slightly to moderately weathered, high angle), 52.95-53.05 (low angle, slightly weathered), 53.4-53.55 (two, closely spaced, low angle, slightly weathered), 53.65-53.9 (high angle, fresh), 54.3 (shaley, core crushed), 54.3-54.75 (high angle, slightly weathered). D-2, S-1-2, F-4		

O'BRIEN & GERE
O BINIEN O GENE

PT-MW-3

PROJECT: CLIENT: INSPECTOF Powerex RI/FS Work Plan Add. No. 4 General Electric Company R. Hornung, P. Freyer

INSPE	ECTOR	?: F	R. Hornui	ng, P.	Freyer						
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
Manlius	Olney		_	11:58 11 12:08	6.7	1.5	113.3	0	Limestone from 55.0-56.1, SAA, very severely fractured, Breaks @ 54.75-55.65 (multiple, moderately weathered, high angle breaks).		Olney Limestone-Dolostone
									medium-thick bedded, sparsely fossiliferous, Breaks @ 55.65-56.5 (multiple, high angle, slightly		(582.8' amsl)

Breaks @ 55.65-56.5 (multiple, high angle, slightly weathered), 55.65 (horizontal, moderately weathered, solution modified), 55.9 (low angle, moderately weathered), 56.1 (horizontal, fresh). D-2, S-1-2, F-5 End of core @ 56.5' bgs

LIEN	ECT: IT: CTOF	Ģ	Powerex F General E R. Hornun	lectric	Compa		. No. 4		PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 60 feet E of PW-4, 60 f		f OBG-6B
RILL RILL RILL	ER: RIG	Contr Type: Umbei	ACTOR:	Parr Micl CMI	B Pilot T ratt Wolf key Mars E 850 RDO162	f, Inc. shall/La		ech	CASING LENGTH:16 ft.GROUND ELEV:638HOLE DIAMETER:0.315 ft.HORIZ. DATUM:NAD	83 0 1929	E816679.434 //2012
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
			-						Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	_	
			-			8				- 635	
Jverburgen	Overburden		5 —							-	
Over	Over								Boring advanced through overburden utilizing 9-7/8" roller bit. Top of weathered bedrock at 13.2' bgs. Top of competent bedrock at 14.0' bgs. Set 6" steel casing to 16.0' bgs. Seat spin-joint casing with drive shoe to 16.1' bgs.	630 	
			-			8.1				- - 625	
			- 15 —							-	Top of Bedrock @ 13.2' bgs (624.8' amsl)
ра	nse		1 1 1 1	^{14:29} 14:46 14:59		0.6	100	0	Limestone, medium dark gray (N4), fine grained, thin-medium bedded, moderately fractured, sparsely fossiliferous, pyrite. D-1, S-1, F-4 Limestone, medium dark gray (N4), fine grained, thick bedded, severely fractured, sparsely fossiliferous (crinoids, possible ostracod), pyrite,	- 	While coring Run # multiple start and end times were recorded. The penetration rate represents the first and last start and
Unondaga	Moorehouse		20	2 <u>15:16</u> 15:44	4.6	3.7	95.9	20	Breaks @ 17.5-17.65 (core crushed, sub-rounded fragments), 17.65-19.95 (sub-vertical fracture, partially remineralized), 19.95-20.0 (two, closely spaced, horizontal). D-1, S-1, F-4 Limestone, medium dark gray (N4), fine grained, thin-medium bedded, slightly fractured, fossiliferous, pyrite,	-	end time recorded during the run.
			-	3	3.8	5	97	53	Breaks @ 20.4, 20.5 (horizontal), 20.7 (shaley). Limestone, dark gray (N3) to medium gray (N5), fine grained, medium bedded, slightly fractured, fossiliferous, horizontal burrows throughout, trace nodules, pyrite,	- 615	Moorehouse-Nedrov contact @ 21.9' bgs (616.1' amsl)

CORE LOG

PT-MW-4

PROJECT: CLIENT: INSPECTOF Powerex RI/FS Work Plan Add. No. 4 General Electric Company R Hornung P Frever

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes
Onondaga	Nedrow		- - - 30 —	<u>16:03</u> 16:18 - 4 16:37	3.8	5	105	80	 24.3-24.4 (low angle). D-1, S-1, F-3 Limestone, medium dark gray (N4) to medium gray (N5), medium bedded, slightly fractured, sparsely fossiliferous, horizontal burrows throughout, pyrite, Breaks @ 25.4 (horizontal), 25.7 (horizontal, shaley), 27.15-27.2 (core crushed, shaley, fine fissle fragments), 28.45, 28.55 (horizontal), 29.2-29.35 (low angle), 29.9 (horizontal), 24.65-24.75 (low angle). D-1-3, S-1, F-2 	- - - 610 -	
ја			- - - 35 —	08:25	4.6	5	102	80	Limestone, medium dark gray (N4) to medium gray (N5), fine grained, thinly bedded, horizontal burrows, pyrite. Limestone, medium gray (N5), medium grained with argillaceous portions, more fine grained with sandy lenses from 33.85-34.2, medium bedded, slightly fractured, fossiliferous, Breaks @ 31.2 (horizontal, solution modified), 31.2-31.3 (low angle), 32.15-32.2 (horizontal, non-planar, solution modified), 34.2-34.3 (core crushed to sub-angular fine-medium gravel), 34.8, 34.85 (horizontal), 34.95-40.05 (multiple, closely	- - - 605 -	Nedrow-Edgecliff contact @ 31.2' bgs (606.8' amsl)
Onondaga	Edgecliff		- - - 40 —	08:38 6 08:54 14:38	3.5	4.6	95.7	45	 spaced, horizontal). D-1-2, S-1, F-1-2 Limestone, medium gray (N5), medium grained, medium bedded, very severely fractured from 35.5-37.8, fossiliferous (tabulate corals, crinoids, brachiopods), no fractures below 37.8, Breaks @ 35.6 (horizontal, solution modified), 35.6-37.35 (multiple, sub-vertical fractures, pitting, solution modification), 37.5-37.8 (high angle, solution modified). D-1-2, S-1, F-1-4 Utilized 5-7/8" roller bit to advance through bedrock from 16.1-40.0 and set 4" shallow bedrock casing to a depth of 40.0' bas. 	- 600	
			-	7	3.1	4.5	100	50	Linestone, medium gray (N5), medium grained, medium bedded, slightly fractured, abundantly fossiliferous, abrupt pyrite along contact, Breaks @ 40.25 (low angle), 40.7 (horizontal, solution modified, matrix weakened). Linestone, medium dark gray (N4) with bands of dark gray (N3), fine grained, thin-medium bedded, moderately fractured, fossiliferous (sparsely with few bands of dense fossil material), styolites common,	- 	Edgecliff-Olney contact @ 40.7' bgs (597.3' amsl)
Manlius	Olney		45 	15:25 8 15:25 15:42	3.5	5.2	100	70	Breaks @ 41.3-41.35 (low angle, solution modified), 42.1 (shaley), 42.15-42.65 (high angle, multiple parallel fractures, core crushed from 42.5-42.65), 42.8 (low angle), 43.35 (horizontal, along styolite), 43.35-43.9 (high angle, severely weathered), 44.0-44.35 (high angle, severely weathered). D-2, S-1, F-2-3 Limestone, medium dark gray (N4) with bands of dark gray (N3) and medium gray (N5), fine grained with few 0.05-0.1 layers of medium grained (mostly fossil debris), slightly fractured with two 0.05 intervals of core crushed, fossils mostly in isolated bands, styolites, shaley carbonaceous partings common,	- - 590 -	
			50 — - -	9	4.3	5.1	101	72	Breaks @ 44.9 (Iow angle), 45.95-46.1 (multiple, horizontal, core crushed from 46.0-46.1), 46.9 (horizontal, non-planar, shaley), 47.45 (shaley), 47.95 (horizontal), 48.9-48.95 (core crushed to fine-medium gravel), 48.95-49.7 (sub-vertical, solution modification). D-2, S-1, F-2 Limestone, medium dark gray (N4) with bands of dark gray (N3) and medium gray (N5), fine grained with medium	-	

	ОВ	RIEN	l & GEI	RE					CORE LOG	PT-MW	-4	
PROJ CLIEI INSPE		C	Powerex F General E R. Hornur	lectric	Compar		. No. 4					
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)		Elevation (ft amsl)	Notes
Manlius	Olney		_	16:04					 grained band consisting of fossil debris, thin-med bedded, slightly fractured, bands of fossils abrupt sparsely dispersed throughout the core, Breaks @ 49.95 (horizontal, non-planar), 52.0-52 angle, minor staining, matrix along plane weakene modified), 50.75-50.9 (high angle, fresh), 52.95 (h moderately weathered), 53.7 (low angle, slighty w D-2, S-1, F-2 Dolostone, medium light gray (N6), fine grained. End of core @ 54.8' bgs 	ly overlying .8 (high ed, solution norizontal,	-	Olney Limestone-Dolostone contact @ 54.3' bgs (583.7' amsi)

LIEN	ECT: NT: ECTOF	(Powerex F General E R. Hornun	lectric	Compa	an Add ny	. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, Au JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 20 feet SW of DGG		IW of OBG-2S			
RILI RILI RILI	.ER: . RIG ⁻	Contr Type: Umbe		Parr Micl CMI	B Pilot T ratt Wolf key Mars E 850 RDO162	f, Inc. shall/La		ech	CASING DIAMETER: 6 in. COORDINATES: N1064173.644 E816524 CASING LENGTH: 16.6 ft. GROUND ELEV: 637.2 HOLE DIAMETER: 0.315 ft. HORIZ. DATUM: NAD 83 CORE TYPE: HQ3 Core VERT. DATUM: NGVD 1929 TOTAL DEPTH: 54.4 ft. bgs START/END DATE: 8/31/2012-9/17/2012					
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes			
									Boring advanced through overburden to 6.0' bgs utilizing air knife with vac truck. Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	- - 635 -				
Overburden	Overburden		5			8				- - 630				
Over	Over								Boring advanced through overburden utilizing 9-7/8" roller bit. Top of weathered bedrock at 15.0' bgs. Top of competent bedrock at 15.5' bgs. Set 6" steel casing to 16.6' bgs.	-				
			-			8.6				- 625				
			15 —							-	Top of Bedrock @ 15.0' bgs (622.2' amsl)			

CORE LOG

PT-MW-5

Elevation (ft amsl)

- 620

-615

-610

- 605

Notes

While coring Run #1, multiple start and end times were recorded. The penetration rate represents the first and last start and end time recorded during the run.

Moorehouse-Nedrow contact @ 20.7' bgs (616.5' amsl)

Nedrow-Edgecliff contact @ 29.8' bgs (607.4' amsl)

PROJ					Work Pla Compa		l. No. 4	1	
	сто		R. Hornu			iiy			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)
Onondaga	Moorehouse		-	16:02 1 	-157.3	3	100	0	Limestone, medium light gray (N6) to medium gray (thinly bedded, severely fractured, few black styolites shattered 16.6-16.85, Breaks @ 16.85 (horizontal), 16.85-19.15 (vertical, staining, weathering residue, calcite precipitation, tra fine-medium gravel fragments, trace clay and grains (horizontal, weathering residue), 19.15 (fine gravel fragments, trace clay and grains), 19.25 (trace clay a grains). D-2-3, S-2, F-5
			20	08:32	3.8	5	98	43	Limestone, medium light gray (N6) to medium gray (medium bedded, severely fractured, few fossils (brachiopods), Breaks @ 19.6-20.6 (vertical fracture, weathering re calcite precipitation), 20.7 (horizontal, shaley parting S-2, F-3 Limestone, medium dark gray (N4) to dark gray (N3) bedded, very fractured, fossiliferous (frequent burrow styolites, pyrite,
Onondaga	Nedrow			09:04	4	5	100	28	Breaks @ 20.9-21.05 (core shattered), 21.05 (fresh) (few gravel fragments), 22.2-22.25 (low angle, fresh (along shaley parting), 23.15, 23.8, 24.0, 24.25 (all f 24.6 (trace clay). Limestone, medium gray (N5) to medium dark gray thinly bedded, very fractured, sparse fossils (brachic few burrows, pyrite, Breaks @ 24.7 (horizontal, weathering residue), 24.4 (core shattered), 24.7-25.25 (vertical, fresh), 25.5 (tr and grains), 25.95 (weathering residue), 26.6-26.65 angle, coarse gravel fragments), 27.8 (low angle, cla grains), 27.45-27.5 (high angle), 27.65-27.85 (sub- coarse gravel fragments), 27.8-28.1 (core shattered) 28.0-28.1 (high angle, coarse gravel fragments), 29.
				09:22 09:49 4	4.4	5	100	81	horizontal, low angle, fresh), 28.75 (low angle), 29.3 (core shattered). D-2-3, S-2-3, F-3 Limestone, medium dark gray (N4), SAA. Limestone, medium gray (N5) to medium light gray (black wavy laminates, medium grained, medium bec moderately fractured, fossiliferous (crinoid stems, brachiopods), argillaceous from 30.4-32.7, pyrite, Breaks @ 29.9-30.0 (high angle, fresh), 30.1 (low ar weathering residue), 30.35 (horizontal, weathering re 31.2-31.3 (trace clay and grains, coarse gravel frago 33.0 (low angle, trace clay and grains, coarse angula gravel), 33.1 (horizontal, weathering residue), 34.6 (horizontal, clay and grains). D-2, S-1-2, F-2
Onondaga	Edgecliff			<u>10:1</u> 10:35					Limestone, medium gray (N5) to medium light gray (black wavy laminates from 34.6-35.4, medium bedd

П	O'BRIEN 5 GERE

PT-MW-5

Elevation (ft amsl)

- 600

- 595

- 590

- 585

Notes

Edgecliff-Olney contact @ 39.8' bgs (597.4' amsl)

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)
			-	5	3.7	4.3	98.8	94	styolites common, fossiliferous (crinoid stems, coral), pyrite, Breaks @ 34.6 (horizontal, clay and grains), 36.1 (low angle clay and grains, weathering residue, fine pebble fragments), 36.25-36.35 (high angle, trace clay and grains, weathering residue), 38.75 (horizontal, crystalline, weathering residue), 38.85 (horizontal, clay and grains). D-2, S-1, F-1
			-	10:51 14:48 6 14:52	4.4	0.1	100	72	Utilized 5-7/8" roller bit to advance through bedrock from 16.6-39.0 and set 4" shallow bedrock casing to a depth of 39.0' bgs. Limestone, medium gray (N5) to medium light gray (N6).
			40	7 7 7	4	5	100	90	 medium-coarse grained, slightly fractured, abundantly fossiliferous, Break @ 39.2 (core crushed). D-1, S-1, F-2 Limestone, medium dark gray (N4), fine grained, thinly bedded, slightly fractured. Limestone, medium dark gray (N4) with alternating bands of medium gray (N5) and dark gray (N3), fine grained with few medium grained lenses, medium bedded, very slightly fractured, sparsely fossiliferous, styolites common, Breaks @ 41.3 (horizontal, shaley), 42.1-42.15 (horizontal, core crushed to fine-medium sub-angular gravel sized fragments), 43.95 (horizontal, non-planar, along styolite), 44.2-44.3 (low angle). D-1, S-1, F-2
Manlius	Olney		45 - - -	15:29 15:47 8	3	5	101	65	Limestone, medium gray (N5) to dark gray (N3) in alternatin bands with black styolites common, thin-medium bedded, slightly fractured, fossil material concentrated in bands, possibly crinoids, most fossils indistinguishable, Breaks @ 44.9-45.2 (multiple high angle breaks), 45.4-45.6 (high angle), 45.6 (shaley, horizontal), 45.7-45.75 (horizonta core crushed to fine-medium gravel), 45.9 (shaley), 46.85 (shaley, horizontal), 48.45-48.55 (horizontal, core crushed to fine-medium gravel sized fragments), 48.7 (horizontal, non-planar, shaley). D-1-3, S-1, F-3
			50 — - -	<u>16:02</u> 16:17	3	4	92.5	64	Limestone, medium gray (N5) to dark gray (N3) in alternatin bands with black styolites common, fine grained with few thi lenses of medium grained material, thin-medium bedded, slightly fractured, fossil material concentrated in bands throughout, few distinguishable fossils, Breaks @ 50.4, 50.75 (horizontal), 51.85 (horizontal, non-planar, core crushed, sub-rounded fragments), 52.6, 52.7 (shaley, solution modified, weathering residue), 52.8 (shaley), 53.3 (shaley/carbonaceous parting, non-planar), 53.55 (horizontal, trace residual clay). D-2, S-1, F-3

	IEN & GE						CORE LOG	PT-MW	-5	
PROJECT: CLIENT: INSPECTOR:	Powerex General R. Hornu	Electric	Compa	an Add ny	. No. 4	•				
s Formation Member	Rock Type Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)		Elevation (ft amsl)	Notes
Manlius		16:49 16:49 16:49	4	0.5	180	100	Dolostone, medium light gray (N6), fine grained, medium-thick bedded, rip up clasts above contact Break @ 53.55 (horizontal, trace residual clay). Dolostone, medium light gray (N6), fine grained, medium-thick bedded, sparsely fossiliferous. D- End of core @ 54.4' bgs			Oiney Limestone-Dolostone contact @ 53.5' bgs (583.7' amsl)

LIEN	ECT: NT: ECTOF	C	Powerex R General El R. Hornun	lectric	Compa		l. No. 4	ļ	PROJECT LOCATION: Former Powerex, Inc. Facility, J JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 20 feet NE of ON		of DGC-8S	
DRILI DRILI DRILI	.ER: . RIG ⁻	ontr Type: Umbei		Parr Layı CMI	B Pilot T ratt Wolf ne Pech E 850 RDO162	f, Inc. /Mark			CASING DIAMETER:6 in.COORDINATES:CASING LENGTH:16 ft.GROUND ELEV:HOLE DIAMETER:0.315 ft.HORIZ. DATUM:CORE TYPE:HQ3 CoreVERT. DATUM:TOTAL DEPTH:54.1 ft. bgsSTART/END DATE:	N1064182.194 E816560.814 637.3 NAD 83 NGVD 1929 8/31/2012-9/20/2012		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes	
			-						Boring advanced through overburden to 6.0' bgs utilizing a knife with vac truck. Boring advanced through overburden 8.0' bgs utilizing 8-1/4" HSA.	ir		
			- 5			8				-		
Overburden	Overburden		_						Boring advanced through overburden utilizing 9-7/8" roller	- 630		
									bit. Top of weathered bedrock at 14.0' bgs. Top of compete bedrock at 14.5' bgs. Set 6" steel overburden casing to 16. bgs.	nt -		
			-			8				- - 625 -		
			- 15							_	Top of Bedrock @ 14.0' bgs (623.3' amsl)	

ODDIENCOEDE
O'BRIEN & GERE

PT-MW-6

Elevation (ft amsl)

- 620

-615

-610

-605

Notes

Moorehouse-Nedrow contact @ 20.1' bgs (617.2' amsl)

Nedrow-Edgecliff contact @ 30.1' bgs (607.2' amsl)

Ľ									CORELOG	
CLIEN	ECT: NT: ECTO	(Powerex General I R. Hornu	Electric	c Compa		i. No. 4	1		
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	
Onondaga	Moorehouse			13:06	5.2	4.2	97.6	77	Limestone, medium gray (N5), fine grained, thinly slightly fractured, fossiliferous (brachiopods, poss ostracods), Breaks @ 16.1 (horizontal, non-planar), 16.3, 16. (horizontal), 18.6-18.7 (solution modified, core cri fine-medium gravel sized fragments), 18.9-18.95 solution modified), 19.1 (solution modified). D-2,	sible 7 ushed to (horizontal,
aga	MC		-	<u>13.24</u> 13.41 2	3.1	4.9	94.9	88	Limestone, dark gray (N3), fine grained, slightly fipyrite. Limestone, dark gray (N3) to medium gray (N5), fithin-medium bedded, very slightly fractured, foss (brachiopods, horizontal burrows common), pyrite Breaks @ 20.4 (shaley), 20.65 (horizontal), 21.05 22.0 (shaley), 23.9 (shaley). D-1, S-1, F-2	fine grained iliferous e,
Onondaga	Nedrow			- <u>13.56</u> 14:07	3.2	5	104	38	 Limestone, medium dark gray (N4) to medium gragrained, thin-medium bedded, moderately fractur fossiliferous (brachiopods), horizontal burrows copyrite, Breaks @ 24.9-25.3 (high angle), 25.65 (horizontanon-planar, solution modified), 25.95-26.1 (high a 26.75 (horizontal), 27.0-27.6 (multiple, high angle 28.6 (horizontal, non-planar), 28.9-29.0 (high angle 29.05-29.2 (high angle), 29.55 (core crushed to s fragments). D-2, S-1, F-3 	ed, immon, tal, angle), e), 28.5, gle),
				- <u>14:23</u> 14:37 - 4	4.2	5	94	63	Limestone, medium gray (N5), medium grained, i bedded, slightly to moderately fractured, fossilifer (brachiopods, tabulate coral, crinoids), portions a Breaks @ 30.7 (horizontal, non-planar, solution n residual clay and grains), 31.7-32.4 (sub-vertical) (severely fractured), 34.15 (horizontal, non-plana modified), 34.2 (low angle, non-planar, solution n D-2, S-1, F-2-3	ous rgillaceous, nodified,), 32.4-32.6 r, solution

O'BRIEN 5 GERE	
-----------------------	--

PT-MW-6

ISPEC			R. Hornu										
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes		
Onondaga	Edgecliff				- 35 - -	<u>14:58</u> 15:20	2.8	3.9	103.8	98	Limestone, medium gray (N5), medium grained, medium bedded, very slightly fractured, fossiliferous (tabulate corals, crinoids), argillaceous wavy parting few-common, pyrite, Breaks @ 35.85 (moderately weathered), 38.15, 38.95 (horizontal, slightly weathered). D-1, S-1, F-1 Utilized 5-7/8" roller bit to advance through bedrock from 16.0-39.0 and set 4" shallow bedrock casing to a depth of 39.0' bgs.	600	
					- 40 —	15:31 14:41 6 14:49 15:04	11.4	0.7	57.1	0	Limestone from 39.0-39.4, SAA, Break @ 39.2-39.4. Limestone, dark gray (N3), fine grained, thinly bedded,		Edgecliff-Olney contact @ 39.4' bg: (597.9' amsl)
								-	7	3.4	5	105	67
Manlius	Olney		45 — - -	15:21 15:30 8	3.6	5.3	99.1	72	Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, slightly fractured, sparsely fossiliferous (often consolidated in bands), styolites common, Breaks @ 44.75, 45.0 (slightly weathered), 45.2 (horizontal, fresh), 45.8, 46.25 (horizontal, non-planar, shaley partings), 46.7-47.4 (high angle, slightly weathered), 47.0 (horizontal, shaley), 47.3-47.35 (core crushed), 47.5 (moderately weathered), 48.3-48.4 (low angle, fresh). D-2, S-1, F-3	 590 			
			50 —	<u>15:49</u> 16:14					Limestone, medium dark gray (N4) with bands of medium gray (N5) and dark gray (N3), fine grained, slightly fractured, sparsely fossiliferous (consolidated in bands),	-			

O'BRIEN 5 GERE

PT-MW-6

PROJECT:
CLIENT:
INSPECTOR:

Powerex RI/FS Work Plan Add. No. 4 General Electric Company R. Hornung, P. Erever

INSPE	NSPECTOR: R. Hornung, P. Freyer													
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes			
			_	9	3.7	4.1	100	78	non-planar, along styolite), 52.3 (horizontal, along styolite), 52.65-52.75 (low angle, slightly weathered). D-2, S-1, F-2	585				
Manlius	Olney			16:29					Dolostone, medium light gray (N6), fine grained, thick bedded, very sparsely fossiliferous.	_	Olney Limestone-Dolostone contact @ 52.9' bgs (584.4' amsl)			

End of core @ 54.1' bgs

CLIENT: General Electric Company							. No. 4	1	PROJECT LOCATION: Former Powerex, Inc. Facility, Auburn, N.Y. JOB NUMBER: 49543.004.402 HOLE LOCATION: Approximately 65 feet SE of PT-MW-3					
PURPOSE: EISB Pilot Test Phase 1 0 DRILLING CONTRACTOR: Parratt Wolff, Inc. 0 DRILLER: Mickey Marshall/Layne Pech H DRILL RIG TYPE: CME 850 0								ech	CASING DIAMETER:6 in.COORDINATES:N1CASING LENGTH:21.5 ft.GROUND ELEV:63HOLE DIAMETER:0.315 ft.HORIZ. DATUM:NA	064088.17 3.8 D 83 6VD 1929	4 E816654.874 7/2012			
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302) Boring advanced through overburden to 8.0' bgs utilizing 8-1/4" HSA.	Elevation (ft amsl)	Notes			
						8				- 635 -				
Overburden	Overburden		- - - 10 —						Boring advanced through overburden utilizing 9-7/8" roller bit. Top of weathered bedrock at 19.0' bgs. Top of competent bedrock at 19.5' bgs. Set 6" steel casing to 21.5' bgs.	- - 630 -				
						13.5				- - 625 -				
										- - 620 -	Top of Bedrock @ 19.0' bgs (619.8' amsl)			

PT-MW-7

PROJECT: CLIENT:

Powerex RI/FS Work Plan Add. No. 4 General Electric Company

Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes	
Onondaga	Moorehouse		_	^{09:18}	7.3	4.1	92.7	0	Limestone, medium gray (N5), fine grained, medium bedded, extremely fractured, fossiliferous (brachiopods), pyrite, Breaks @ 21.5-25.3 (vertical fracture throughout run), 21.8 (horizontal, non-planar), 22.9 (low angle), 23.5 (weathered, solution modified, trace residual grains), 23.8 (weathered, pitting, solution modified). D-2, S-1, F-5	- 	While coring Run #1, multiple start and end times were recorded. The penetration rate represents the first and last start and end time recorded during the run.	
Onondaga Nedrow	edrow	drow		25	 10:02 2	5	5	102	92	Limestone, dark gray (N3), fine grained, thinly bedded, Breaks @ 25.0 (horizontal), 25.25-25.3 (core crushed). Limestone, medium gray (N5) to medium dark gray (N4), fine grained, medium bedded, slightly fractured, fossiliferous, horizontal burrows common, pyrite, Breaks @ 25.4 (horizontal, solution modified), 25.95, 26.0, 26.1 (horizontal), 27.2 (solution modified), 27.95 (solution modified), 28.3 (horizontal, possible mechanical), 28.8 (solution modified, pitting, shaley), 29.65 (horizontal). D-2, S-1, F-2	- - 	Moorehouse-Nedrow contact @ 25.0' bgs (613.8' amsl)
				10:27 10:41 3	6	5	97	73	Limestone, medium gray (N5) to medium dark gray (N4), fine grained, medium bedded, slightly to moderately fractured, fossiliferous (brachiopods, horizontal burrows), residual clays, pyrite, Breaks @ 30.8, 31.0 (horizontal, minor solution modification), 31.0-31.7 (high angle, multiple parallel), 32.55-32.75 (low angle), 33.1, 33.5 (horizontal), 34.3 (horizontal, solution modified). D-2, S-1-2, F-3	- - - 605	Nedrow-Edgecliff	
Onondaga	Edgecliff			<u>11:11</u> 11:21 4	4.8	5	100	88	Limestone, medium gray (N5), medium grained, medium bedded, slightly fractured, fossiliferous (crinoids, tabulate corals, abundant in portions), portions more argillaceous with carbonaceous partings common, Breaks @ 35.4, 36.15 (horizontal, non-planar), 37.05 (shaley, horizontal, solution modified), 37.1-37.2 (core crushed, shaley partings), 38.6 (core crushed, fine-medium gravel, solution modified), 39.2 (carbonaceous parting), 40.1 (core crushed to fine-medium sub-rounded gravel). D-1, S-1, F-2	- - 600	contact @ 34.7' bgs (604.1' amsl)	
			-	<u>11:45</u> 12:39 5 12:54	5	3	110	15	Limestone, medium gray (N5), medium grained, medium bedded, moderately fractured (portions of core crushed), fossiliferous (crinoid platelets, brachiopods visible), trace residual clay on fractures, Breaks @ 40.4 (horizontal), 40.5 (horizontal), 40.6-41.2 (core crushed to medium-coarse sub-angular gravel), 41.2 (low angle, horizontal, non-planar), 41.25-41.35 (low angle), 42.05-42.35 (high angle, solution modified), 42.35	-		
			_	10:24 6 10:34	9.1	1.1	100	54	(horizontal, non-planar), 42.65-42.8 (core crushed to fine-medium-coarse sub-angular to sub-rounded gravel sized fragments), 42.65-43.4 (sub-vertical, solution modified, minor	595	Edgecliff-Olney contact @ 44.0' bgs	

PT-MW-7

PROJECT: CLIENT: INSPECTOR: Powerex RI/FS Work Plan Add. No. 4 General Electric Company P. Freyer

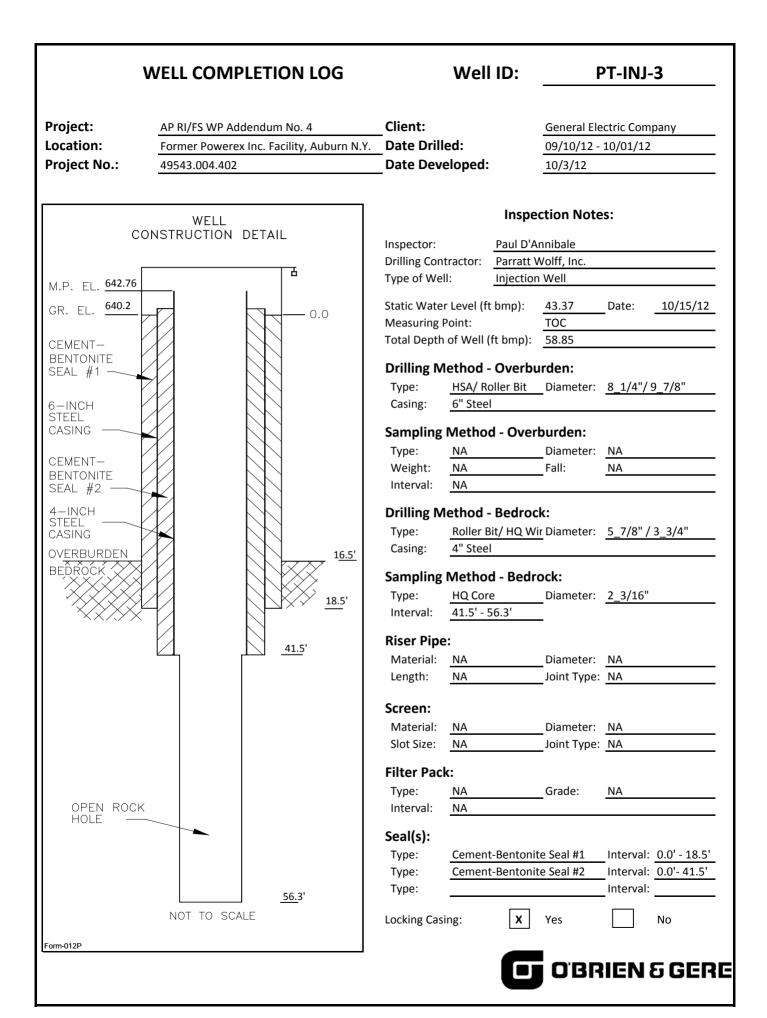
		. -	'. ⊢reyer			1									
Formation	Member	Rock Type	Depth (ft bgs)	Run No.	Pen. Rate (min/ft)	Penetration (ft)	Recovery (%)	RQD (%)	Lithologic Description (per TPPI 302)	Elevation (ft amsl)	Notes				
			-	- 7 - 	4.6	5	103	54	21.5-43.6 and set 4" shallow bedrock casing to a depth of 43.6' bgs. Limestone, medium gray (N5), medium grained, medium bedded, very slightly fractured, fossiliferous, phosphate nodules. D-1, S-1, F-1 Limestone, medium dark gray (N4), fine grained, thin-medium bedded, very slightly fractured, few fossils (crinoid platelets). Limestone, medium dark gray (N4), with portions medium gray (N5) and dark gray (N3), fine grained, moderately to severely fractured, styolites, fossil material mostly						
Manlius	Olney		50 — - -	8	3.2	5	100	56	concentrated in bands with sparse fossil debris between, Breaks @ 45.4 (horizontal, non-planar, along carbonaceous parting), 45.4-46.0 (sub-vertical), 47.5 (horizontal, shaley), 47.7-48.0 (high angle, possibly mechanical), 48.3-48.7 (multiple low and high angle breaks), 49.3-49.6 (multiple, shaley parting, one weathered to clay and grains, core severely fractured). D-1-4, S-1-3, F-2 Limestone, medium gray (N5) to dark gray (N3), fine grained with few medium grained lenses (mostly fossil debris), thinly bedded, slightly to moderately fractured, styolites and shaley partings throughout,						
Ø							55 — - -	<u>11:40</u> 11:53 9 12:03	3.3	3	98.3	0	Breaks @ 49.75 (shaley, horizontal, non-planar), 50.4 (shaley), 50.85 (non-planar, low angle), 51.7 (horizontal, slightly solution modified), 52.1-52.45 (severely fractured, core crushed), 52.75 (horizontal, non-planar), 53.1-53.2 (high angle), 53.5-53.7 (high angle), 54.2-54.35 (low angle). D-1-2, S-1-2, F-3 Limestone, medium gray (N5) to dark gray (N3), fine grained, thinly bedded, severely fractured, styolites, shaley partings, sparsely fossiliferous in alternating bands, burrows,	-	Querri
Manlius	Olney			12:16 10 12:20	4	1	115	52	Breaks @ 54.6-54.9 (high angle), 55.1 (horizontal, along styolite), 55.1-55.6 (high angle), 55.7-56.25 (high angle, pitting, portions of core crushed, fine-medium sub-angular to angular gravel), 55.95 (horizontal), 56.25 (horizontal, core crushed), 56.25-56.7 (sub-vertical), 56.7-57.3 (high angle), 57.3 (horizontal, non-planar). Dolostone from 57.6-57.7, SAB. D-1-2, S-1-2, F-4-5 Dolostone, medium light gray (N6), fine grained, medium-thick bedded, moderately fractured, sparsely fossiliferous, Breaks @ 58.2-58.7 (high angle) and 57.55 (horizontal, possible mechanical). D-1, S-1, F-1 End of core @ 58.7' bgs		Olney Limestone-Dolostone contact @ 57.6' bgs (581.2' amsl)				

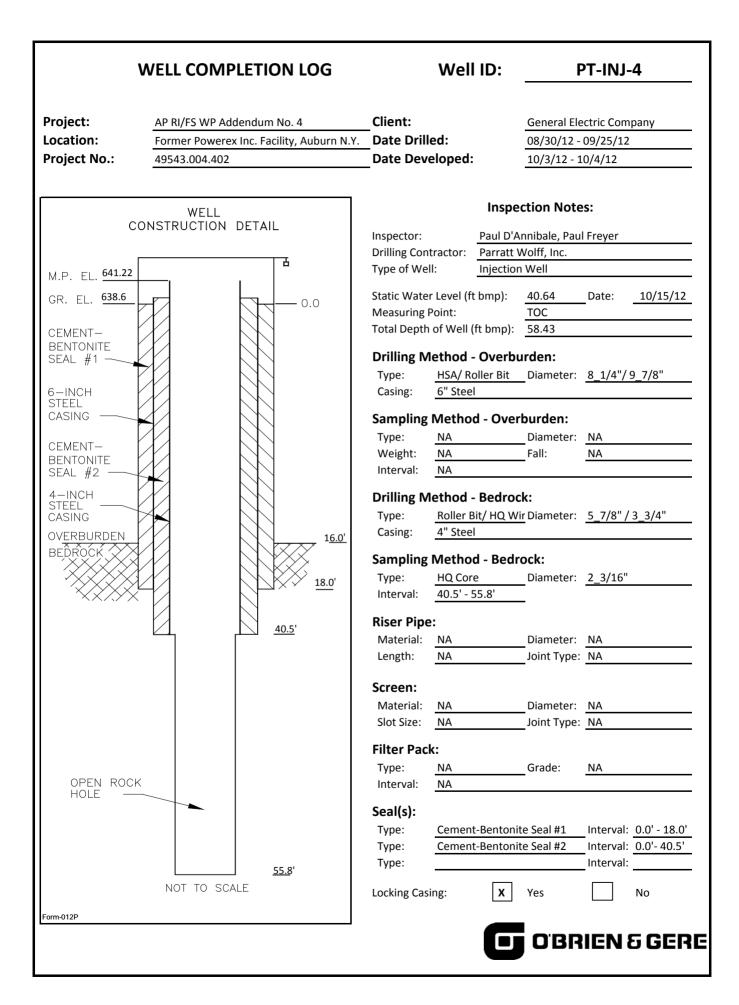
ATTACHMENT B

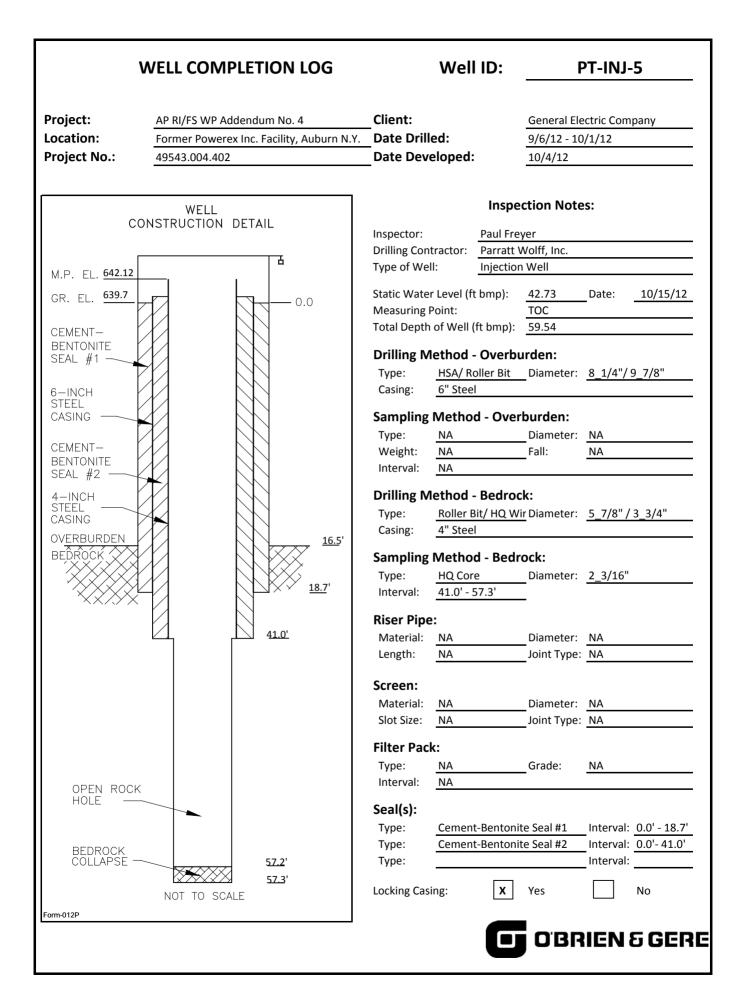
WELL COMPLETION LOGS

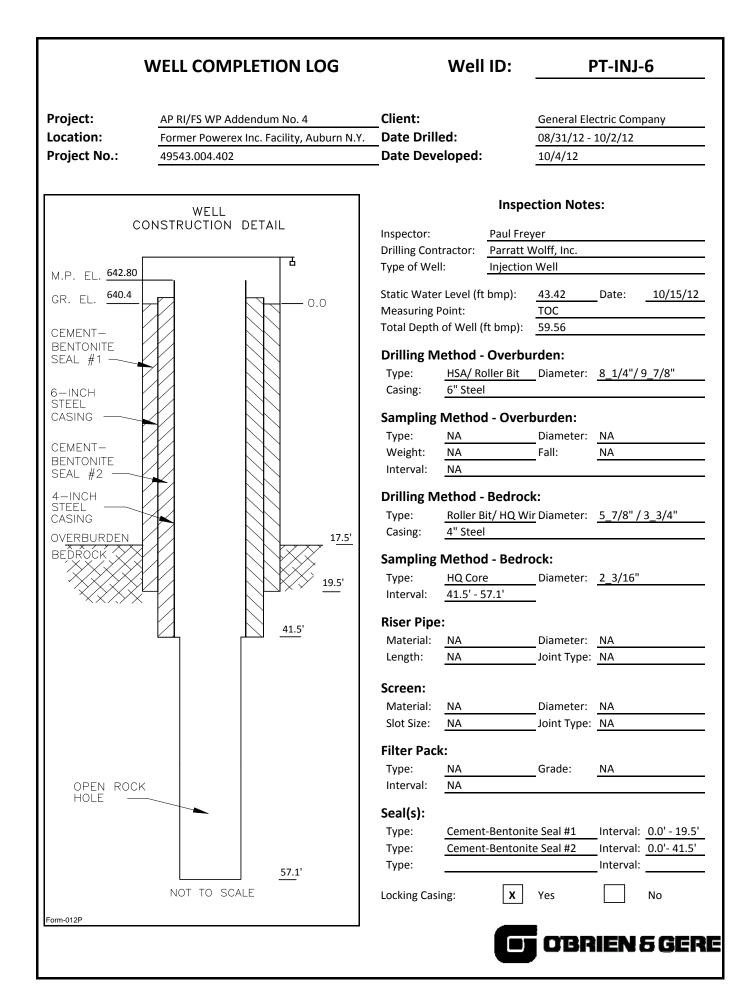
WELL COMPLETION LOG

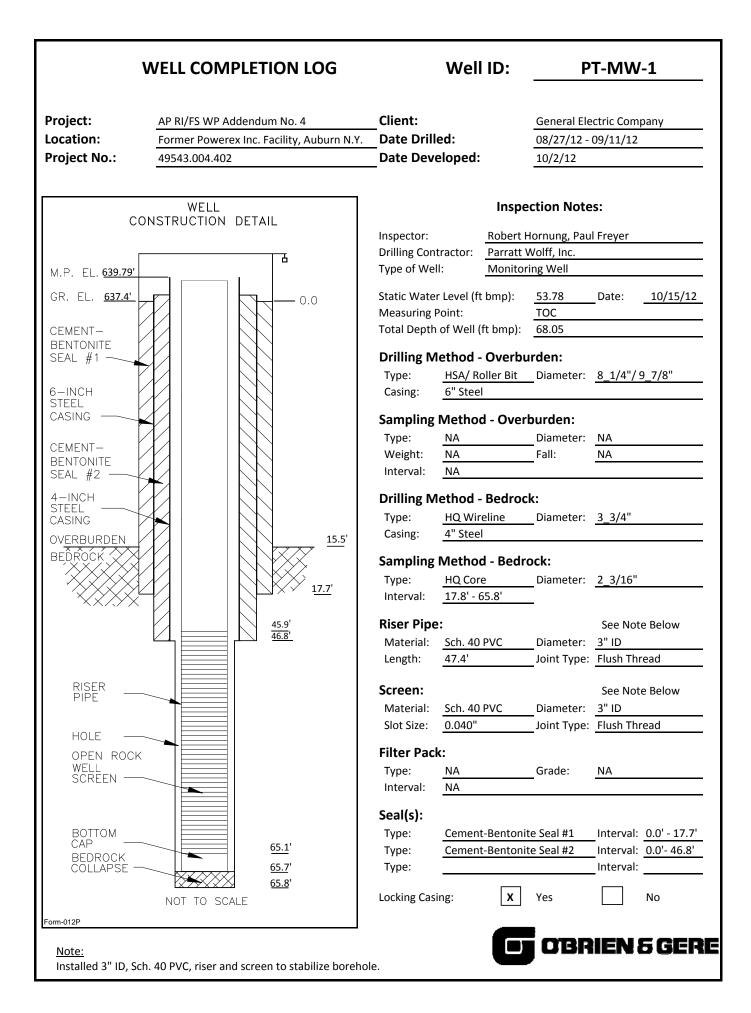
Well ID:

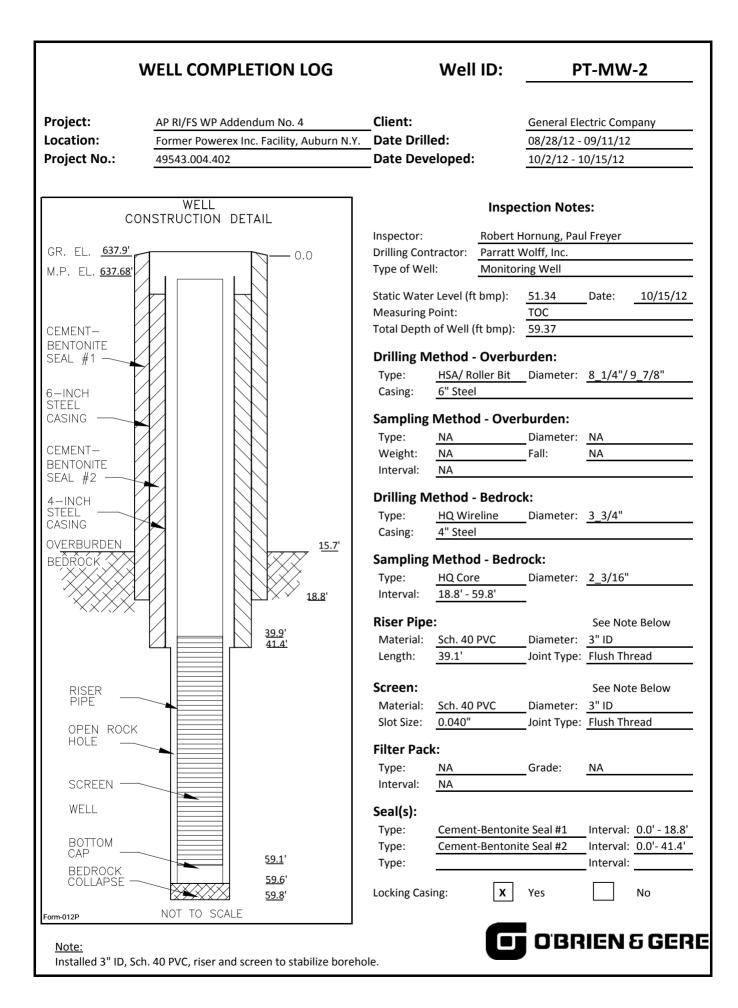

PT-INJ-1

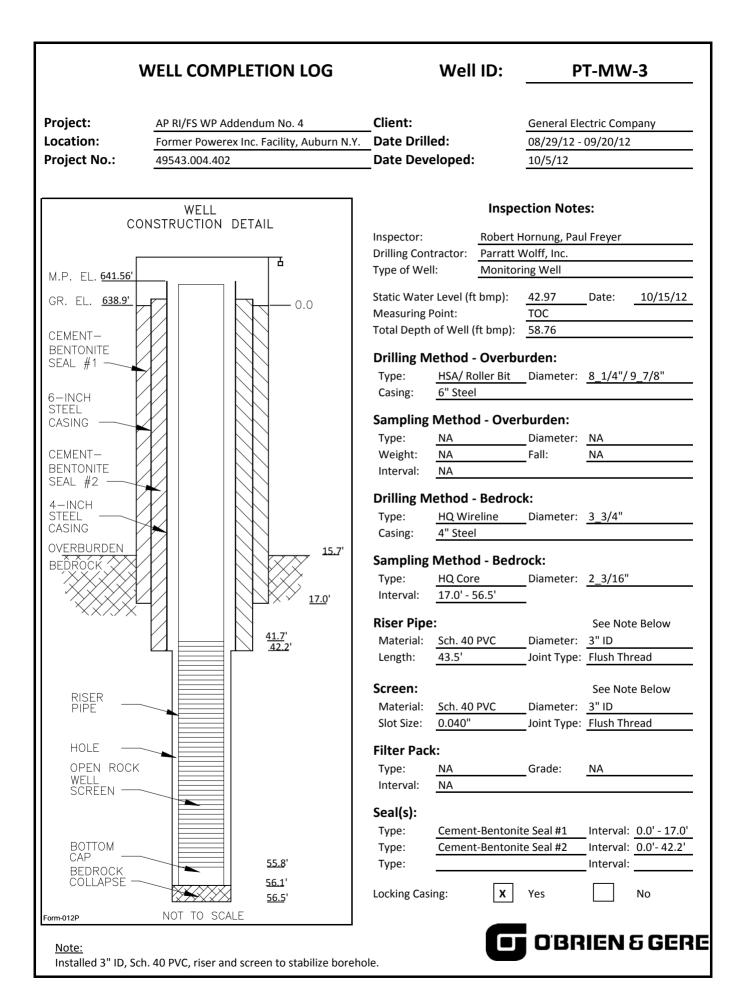

Project: Client: AP RI/FS WP Addendum No. 4 General Electric Company Location: **Date Drilled:** 09/05/12-09/26/12 Former Powerex Inc. Facility, Auburn N.Y. Project No.: Date Developed: 49543.004.402 10/3/12 **Inspection Notes:** WELL CONSTRUCTION DETAIL Inspector: Paul D'Annibale, Paul Freyer Drilling Contractor: Parratt Wolff, Inc. Ъ Type of Well: Injection Well M.P. EL. <u>643.11</u> Static Water Level (ft bmp): 43.71 Date: 10/15/12 GR. EL. <u>640.8</u> - 0.0 **Measuring Point:** TOC Total Depth of Well (ft bmp): 60.25 CEMENT-BENTONITE **Drilling Method - Overburden:** SEAL #1 -HSA/ Roller Bit Diameter: 8_1/4"/9_7/8" Type: Casing: 6" Steel 6-INCH STEEL Sampling Method - Overburden: CASING Type: NA Diameter: NA CEMENT-Weight: NA Fall: NA BENTONITE Interval: NA SEAL #2 **Drilling Method - Bedrock:** 4-INCH STEEL Type: HQ Wireline Diameter: 3_3/4" CASING 4" Steel Casing: **OVERBURDEN** 17.0' BEDROCK Sampling Method - Bedrock: Type: HQ Core Diameter: 2_3/16" 19.0' 19.2' - 58.1' Interval: **Riser Pipe:** 43.1' Material: NA Diameter: NA Length: NA Joint Type: NA Screen: Material: NA Diameter: NA Slot Size: NA Joint Type: NA Filter Pack: Type: NA Grade: NA Interval: NA OPEN ROCK HOLE Seal(s): Type: Cement-Bentonite Seal #1 Interval: 0.0' - 19.0' Type: Cement-Bentonite Seal #2 Interval: 0.0'- 43.1' BEDROCK Type: Interval: <u>58.0</u>' COLLAPSE 58.1 Locking Casing: Х Yes No NOT TO SCALE Form-012P **O'BRIEN 5 GERE**

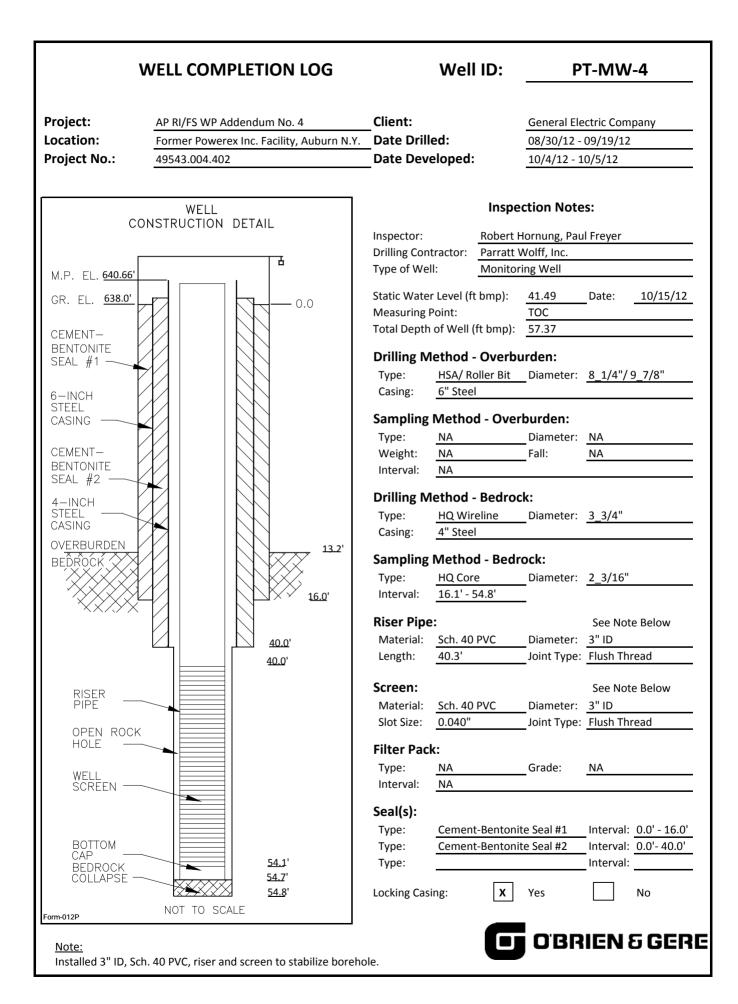

WELL COMPLETION LOG Well ID: PT-INJ-2 **Project: Client:** AP RI/FS WP Addendum No. 4 General Electric Company Location: Former Powerex Inc. Facility, Auburn N.Y. Date Drilled: 08/29/12 - 09/25/12 **Project No.: Date Developed:** 49543.004.402 10/3/12 **Inspection Notes:** WELL CONSTRUCTION DETAIL Paul D'Annibale, Paul Freyer Inspector: Drilling Contractor: Parratt Wolff, Inc. Ъ Type of Well: Injection Well M.P. EL. 639.81 GR. EL. <u>637.9</u> Static Water Level (ft bmp): 40.44 Date: 10/15/12 - 0.0 тос Measuring Point: Total Depth of Well (ft bmp): 56.03 CEMENT-BENTONITE **Drilling Method - Overburden:** SEAL #1 -Type: HSA/ Roller Bit Diameter: <u>8_1/4"/ 9_7/8"</u> 6" Steel Casing: 6-INCH STEEL CASING Sampling Method - Overburden: Type: NA Diameter: NA CEMENT-Weight: NA Fall: NA BENTONITE Interval: NA SEAL #2 **Drilling Method - Bedrock:** 4-INCH STEEL Roller Bit/ HQ Wir Diameter: 5_7/8" / 3_3/4" Type: CASING 4" Steel Casing: **OVERBURDEN** <u>15</u>.5' BEDROCK Sampling Method - Bedrock: Type: HQ Core Diameter: 2_3/16" 17.5' Interval: 40.2' - 54.2' **Riser Pipe:** <u>40.0'</u> Material: NA Diameter: NA Length: NA Joint Type: NA Screen: Material: Diameter: NA NA Slot Size: NA Joint Type: NA Filter Pack: Type: NA Grade: NA Interval: NA OPEN ROCK HOLE Seal(s): Type: Interval: 0.0' - 17.5' Cement-Bentonite Seal #1 Type: Cement-Bentonite Seal #2 Interval: 0.0'- 40.0' BEDROCK COLLAPSE Type: Interval: 54.1 54.2 Х Locking Casing: Yes No NOT TO SCALE

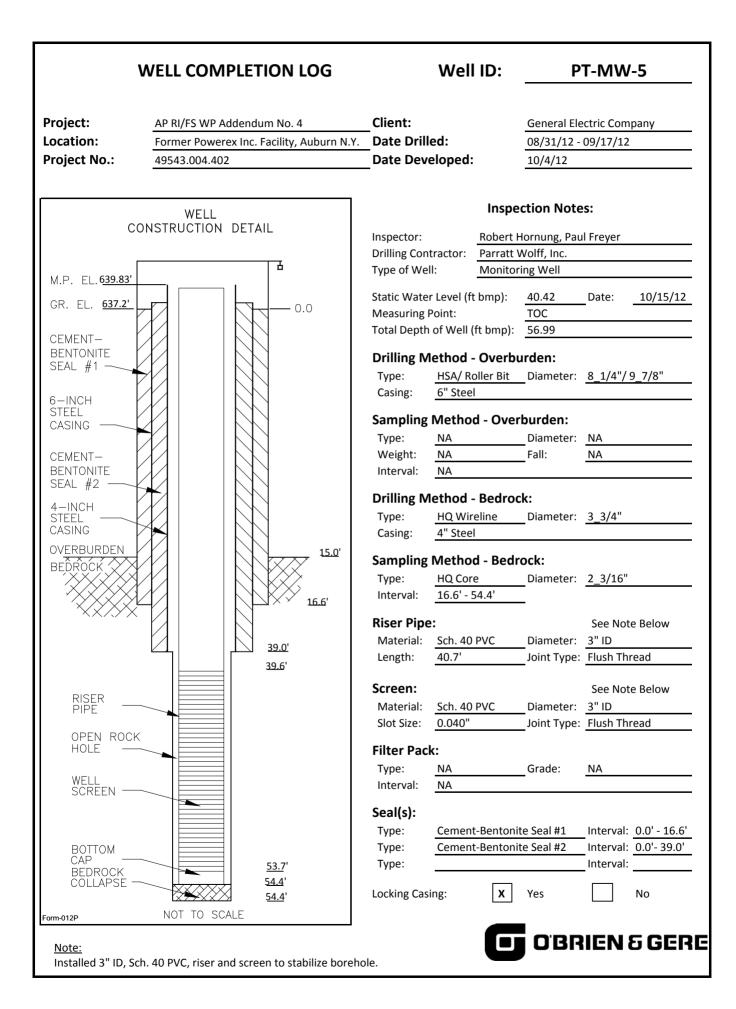

Form-012P

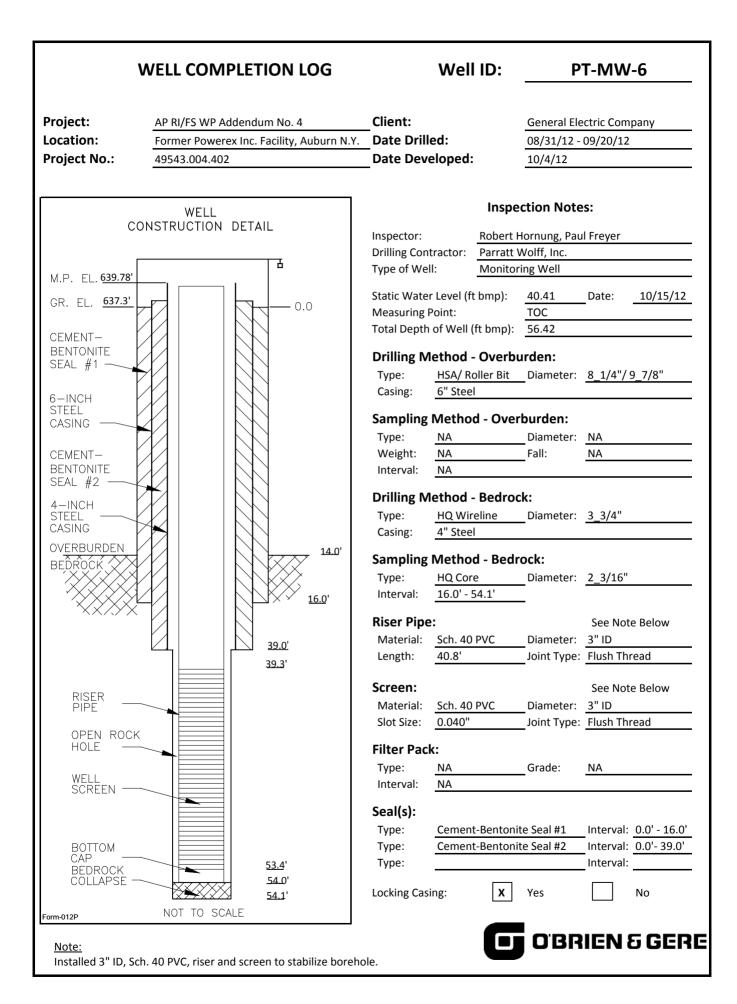

O'BRIEN & GERE

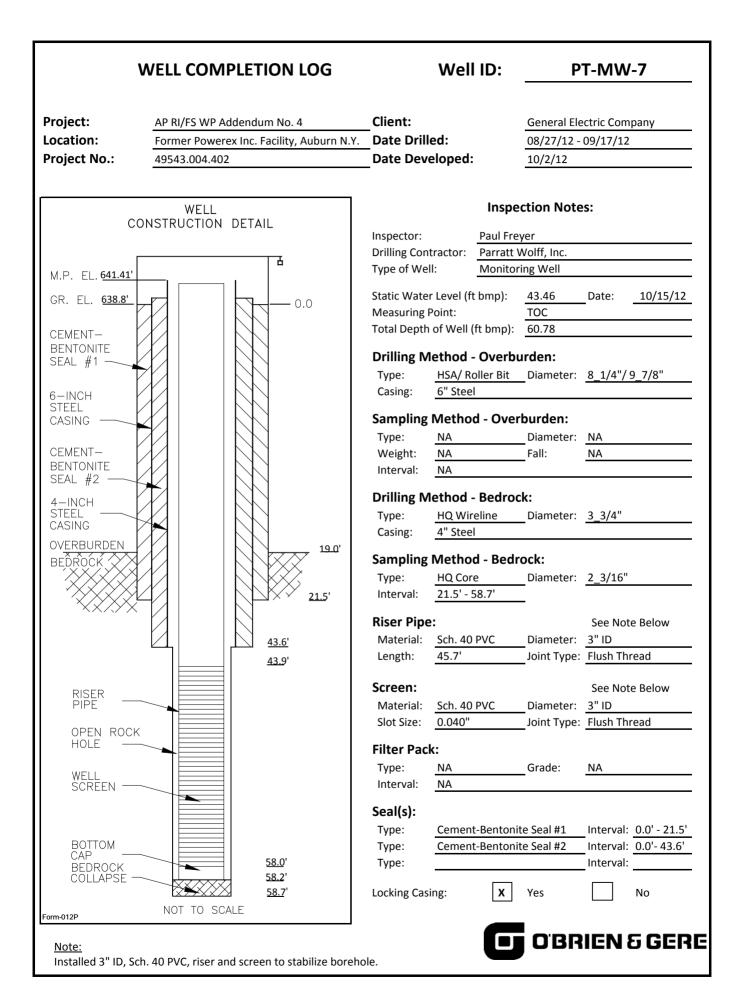


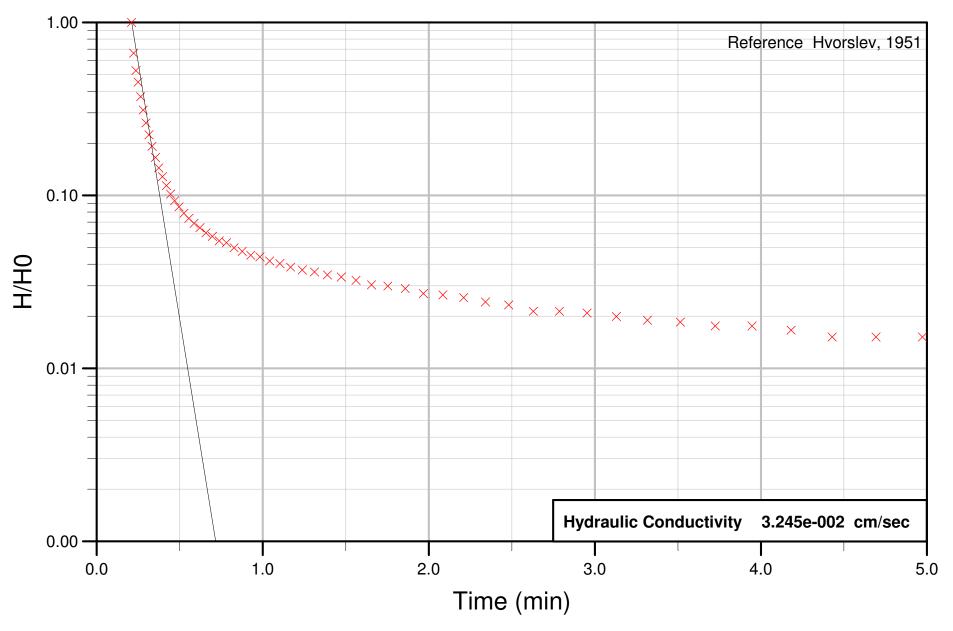












ATTACHMENT C

HYDRAULIC CONDUCTIVITY TEST DATA

PT-MW-1 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-1 Rising Test 1 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

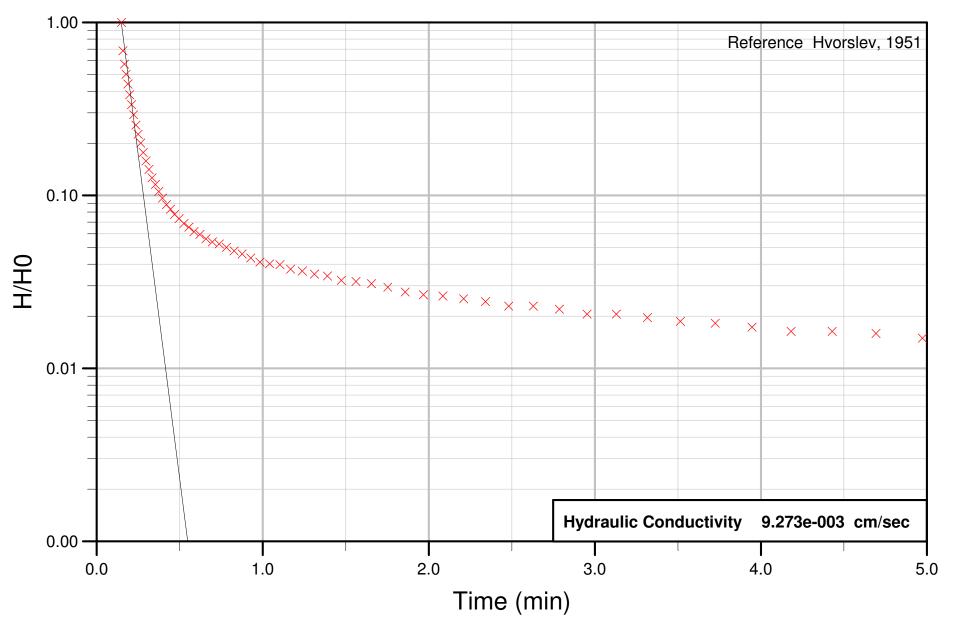
Number of Points = 56

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.9 ft

Initial Displacement Fixed Value	= 2.107 ft
Hydraulic Conductivity Calculated Value	= 0.0324491 cm/sec
Time to 37% Displacement Calculated Value	= 0.0728405 min
Linear Regression Slope Fixed Value	= -13.6497 /min
Linear Regression Intercept Fixed Value	= 18.2285
Calculation Type Selected Value	= Partial - Top
Kz/Kr Fixed Value	= 0.5

ANALYSIS STATISTICS


	-13.649724	/min
	18.228461	dimensionless
=	0.031709	
=	0.125476	
=	0.937976	
=	0.098478	
=	-0.443615	
=	0.137112	
	=	-13.649724 18.228461 = 0.031709 = 0.125476 = 0.937976 = 0.098478 = -0.443615 = 0.137112

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.21	2.11	2.19	-0.08
1	0.22	1.40	1.84	-0.44
2	0.24	1.11	1.54	-0.43
3	0.25	0.95	1.27	-0.32
4	0.26	0.78	1.04	-0.25
5	0.28	0.66	0.84	-0.18
6	0.30	0.55	0.67	-0.11

Index	Time	Obs. Displacement	Calc. Displacement	Residual
7	0.31	0.47	0.52	-0.05
8	0.33	0.41	0.41	0.00
9	0.35	0.35	0.31	0.04
10	0.37	0.30	0.23	0.07
11	0.40	0.27	0.17	0.10
12	0.42	0.24	0.12	0.12
13	0.44	0.21	0.09	0.12
14	0.47	0.20	0.06	0.13
15	0.50	0.18	0.04	0.14
16	0.52	0.17	0.03	0.14
17	0.55	0.16	0.02	0.14
18	0.59	0.15	0.01	0.13
19	0.62	0.14	0.01	0.13
20	0.66	0.13	0.00	0.12
21	0.70	0.12	0.00	0.12
22	0.74	0.12	0.00	0.11
23	0.78	0.11	0.00	0.11
24	0.83	0.11	0.00	0.10
25	0.88	0.10	0.00	0.10
26	0.93	0.10	0.00	0.09
27	0.98	0.09	0.00	0.09
28	1.04	0.09	0.00	0.09
29	1.10	0.09	0.00	0.08
30	1.17	0.08	0.00	0.08
31	1.24	0.08	0.00	0.08
32	1.31	0.08	0.00	0.08
33	1.39	0.07	0.00	0.07
34	1.47	0.07	0.00	0.07
35	1.56	0.07	0.00	0.07
36	1.65	0.06	0.00	0.06
37	1.75	0.06	0.00	0.06
38	1.86	0.06	0.00	0.06
39	1.97	0.06	0.00	0.06
40	2.08	0.06	0.00	0.06
41	2.21	0.05	0.00	0.05
42	2.34	0.05	0.00	0.05
43	2.48	0.05	0.00	0.05
44	2.63	0.05	0.00	0.05
45	2.79	0.05	0.00	0.05
46	2.95	0.04	0.00	0.04
47	3.13	0.04	0.00	0.04

Index	Time	Obs. Displacement	Calc. Displacement	Residual
48	3.32	0.04	0.00	0.04
49	3.51	0.04	0.00	0.04
50	3.72	0.04	0.00	0.04
51	3.95	0.04	0.00	0.04
52	4.18	0.04	0.00	0.04
53	4.43	0.03	0.00	0.03
54	4.69	0.03	0.00	0.03
55	4.97	0.03	0.00	0.03

PT-MW-1 Rising Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-1 Rising Test 2 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

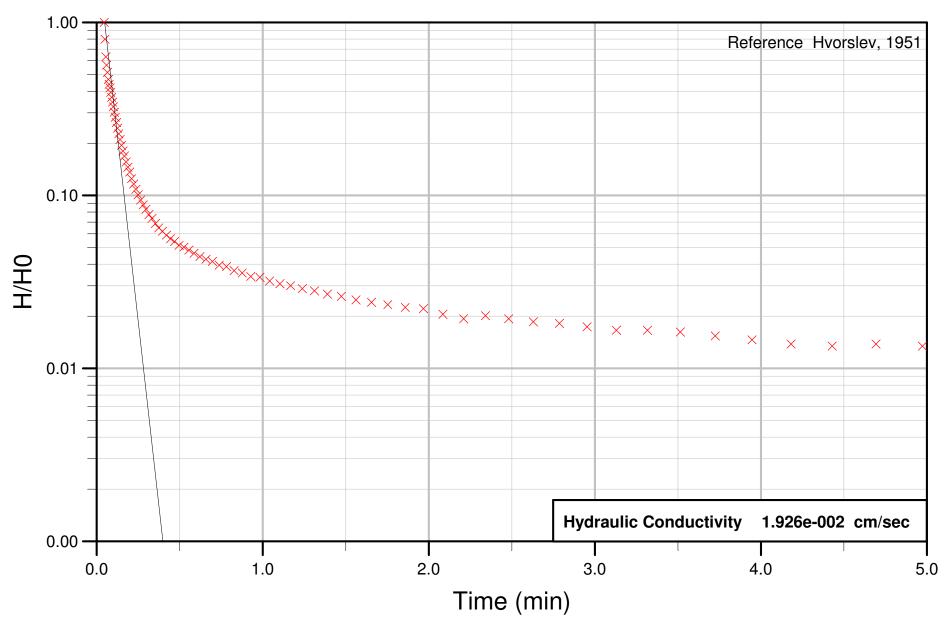
Simple Analysis - No Wells Defined

Number of Points = 62

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.9 ft

Initial Displacement Fixed Value	= 2.139 ft
Hydraulic Conductivity Calculated Value	= 0.00927295 cm/sec
Time to 37% Displacement Calculated Value	= 0.207478 min
Linear Regression Slope Fixed Value	= -17.2979 /min
Linear Regression Intercept Fixed Value	= 13.3924
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line			
Slope:		-17.297896	/min
Intercept:		13.392361	dimensionless
Residual Mean	=	0.059349	
Residual Standard Dev.	=	0.113907	
Residual Sum of Squares	=	1.022825	
Absolute Residual Mean	=	0.105078	
Minimum Residual	=	-0.404021	
Maximum Residual	=	0.183365	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.15	2.14	2.18	-0.04
1	0.16	1.47	1.87	-0.40
2	0.17	1.23	1.59	-0.37
3	0.18	1.07	1.35	-0.27
4	0.19	0.94	1.12	-0.18
5	0.20	0.82	0.92	-0.11
6	0.21	0.72	0.76	-0.04
7	0.22	0.63	0.61	0.02
8	0.24	0.55	0.48	0.06
9	0.25	0.48	0.38	0.10

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.26	0.43	0.29	0.13
11	0.28	0.38	0.22	0.15
12	0.30	0.34	0.17	0.17
13	0.31	0.30	0.12	0.18
14	0.33	0.27	0.09	0.18
15	0.35	0.25	0.06	0.18
16	0.37	0.23	0.04	0.18
17	0.40	0.21	0.03	0.18
18	0.42	0.19	0.02	0.17
19	0.44	0.18	0.01	0.16
20	0.47	0.17	0.01	0.16
21	0.50	0.16	0.01	0.15
22	0.52	0.15	0.00	0.14
23	0.55	0.14	0.00	0.14
24	0.59	0.13	0.00	0.13
25	0.62	0.13	0.00	0.13
26	0.66	0.12	0.00	0.12
27	0.70	0.12	0.00	0.11
28	0.74	0.11	0.00	0.11
29	0.78	0.11	0.00	0.11
30	0.83	0.10	0.00	0.10
31	0.88	0.10	0.00	0.10
32	0.93	0.09	0.00	0.09
33	0.98	0.09	0.00	0.09
34	1.04	0.09	0.00	0.09
35	1.10	0.09	0.00	0.08
36	1.17	0.08	0.00	0.08
37	1.24	0.08	0.00	0.08
38	1.31	0.08	0.00	0.08
39	1.39	0.07	0.00	0.07
40	1.47	0.07	0.00	0.07
41	1.56	0.07	0.00	0.07
42	1.65	0.07	0.00	0.07
43	1.75	0.06	0.00	0.06
44	1.86	0.06	0.00	0.06
45	1.97	0.06	0.00	0.06
46	2.08	0.06	0.00	0.06
47	2.21	0.05	0.00	0.05
48	2.34	0.05	0.00	0.05
49	2.48	0.05	0.00	0.05
50	2.63	0.05	0.00	0.05

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	2.79	0.05	0.00	0.05
52	2.95	0.04	0.00	0.04
53	3.13	0.04	0.00	0.04
54	3.32	0.04	0.00	0.04
55	3.51	0.04	0.00	0.04
56	3.72	0.04	0.00	0.04
57	3.95	0.04	0.00	0.04
58	4.18	0.04	0.00	0.04
59	4.43	0.04	0.00	0.04
60	4.69	0.03	0.00	0.03
61	4.97	0.03	0.00	0.03

PT-MW-1 Rising Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-1 Rising Test 3 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

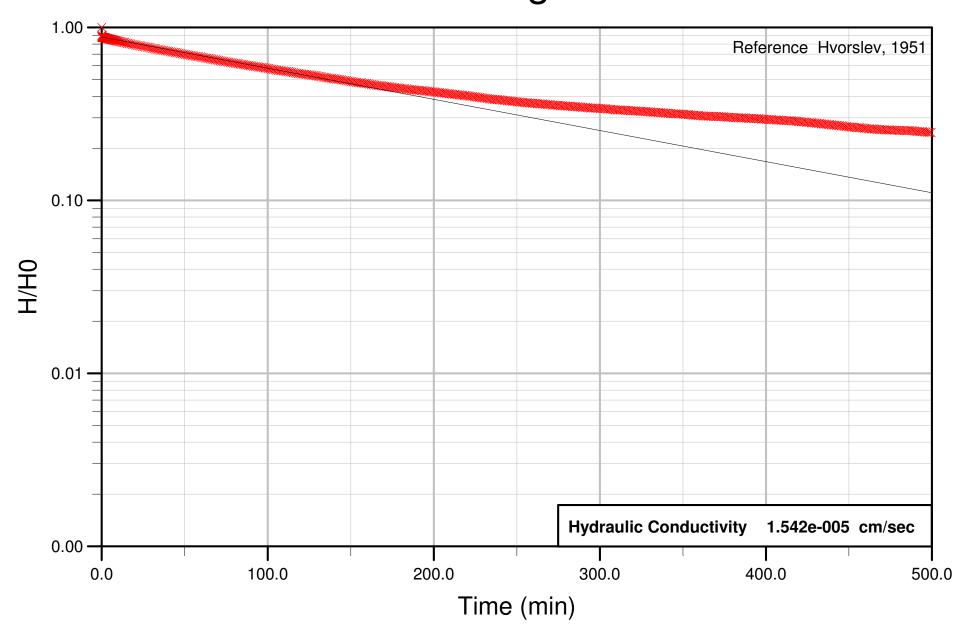
Simple Analysis - No Wells Defined

Number of Points = 80

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.9 ft

Initial Displacement Fixed Value	= 2.531 ft
Hydraulic Conductivity Calculated Value	= 0.0192636 cm/sec
Time to 37% Displacement Calculated Value	= 0.099874 min
Linear Regression Slope Fixed Value	= -19.9353 /min
Linear Regression Intercept Fixed Value	= 2.7095
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	


	Regression Line			
	Slope:		-19.935270 /min	
	Intercept:		2.709498 dimensionless	
	Residual Mean	=	0.026525	
	Residual Standard Dev.	=	0.199720	
	Residual Sum of Squares	=	3.247319	
	Absolute Residual Mean	=	0.146852	
Minimum Residual			-0.699037	
	Maximum Residual	=	0.213897	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.05	2.53	2.80	-0.27
1	0.05	2.02	2.53	-0.51
2	0.05	1.60	2.30	-0.70
3	0.06	1.43	2.07	-0.64
4	0.06	1.30	1.88	-0.58
5	0.07	1.18	1.70	-0.51
6	0.08	1.11	1.54	-0.43
7	0.08	1.06	1.40	-0.34
8	0.08	1.00	1.26	-0.27
9	0.09	0.93	1.14	-0.21

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.10	0.88	1.03	-0.16
11	0.10	0.82	0.93	-0.11
12	0.11	0.77	0.83	-0.07
13	0.11	0.72	0.74	-0.02
14	0.12	0.67	0.65	0.02
15	0.13	0.62	0.56	0.06
16	0.13	0.57	0.49	0.09
17	0.14	0.53	0.42	0.12
18	0.15	0.49	0.35	0.14
19	0.16	0.46	0.30	0.16
20	0.17	0.43	0.25	0.18
21	0.18	0.40	0.20	0.19
22	0.19	0.37	0.16	0.20
23	0.20	0.35	0.13	0.21
24	0.21	0.32	0.10	0.21
25	0.22	0.29	0.08	0.21
26	0.24	0.27	0.06	0.21
27	0.25	0.26	0.05	0.21
28	0.26	0.24	0.04	0.20
29	0.28	0.22	0.03	0.20
30	0.30	0.21	0.02	0.19
31	0.31	0.20	0.01	0.18
32	0.33	0.19	0.01	0.18
33	0.35	0.17	0.01	0.17
34	0.37	0.16	0.00	0.16
35	0.40	0.16	0.00	0.15
36	0.42	0.15	0.00	0.15
37	0.44	0.14	0.00	0.14
38	0.47	0.14	0.00	0.14
39	0.50	0.13	0.00	0.13
40	0.52	0.13	0.00	0.13
41	0.55	0.12	0.00	0.12
42	0.59	0.12	0.00	0.12
43	0.62	0.11	0.00	0.11
44	0.66	0.11	0.00	0.11
45	0.70	0.11	0.00	0.10
46	0.74	0.10	0.00	0.10
47	0.78	0.10	0.00	0.10
48	0.83	0.09	0.00	0.09
49	0.88	0.09	0.00	0.09
50	0.93	0.09	0.00	0.09

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	0.98	0.09	0.00	0.08
52	1.04	0.08	0.00	0.08
53	1.10	0.08	0.00	0.08
54	1.17	0.08	0.00	0.08
55	1.24	0.07	0.00	0.07
56	1.31	0.07	0.00	0.07
57	1.39	0.07	0.00	0.07
58	1.47	0.07	0.00	0.07
59	1.56	0.06	0.00	0.06
60	1.65	0.06	0.00	0.06
61	1.75	0.06	0.00	0.06
62	1.86	0.06	0.00	0.06
63	1.97	0.06	0.00	0.06
64	2.08	0.05	0.00	0.05
65	2.21	0.05	0.00	0.05
66	2.34	0.05	0.00	0.05
67	2.48	0.05	0.00	0.05
68	2.63	0.05	0.00	0.05
69	2.79	0.05	0.00	0.05
70	2.95	0.04	0.00	0.04
71	3.13	0.04	0.00	0.04
72	3.32	0.04	0.00	0.04
73	3.51	0.04	0.00	0.04
74	3.72	0.04	0.00	0.04
75	3.95	0.04	0.00	0.04
76	4.18	0.04	0.00	0.04
77	4.43	0.03	0.00	0.03
78	4.69	0.04	0.00	0.04
79	4.97	0.03	0.00	0.03

PT-MW-2 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-2 Rising Test 1 Job Number: 49543.004.403 Date: 10/23/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 551

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 8.6 ft

Initial Displacement Fixed Value	= 2.883 ft
Hydraulic Conductivity Calculated Value	= 1.54156e-005 cm/sec
Time to 37% Displacement Calculated Value	= 239.527 min
Linear Regression Slope Fixed Value	= -0.0041509 /min
Linear Regression Intercept Fixed Value	= 0.88308
Calculation Type Selected Value	= Partial - Top
Kz/Kr Fixed Value	= 0.5

ANALYSIS STATISTICS

Regression Line						
	Slope:		-0.004151	/min		
	Intercept:		0.883080	dimensionless		
Residual	Mean	=	0.154316			
Residual	Standard Dev.	=	0.163104			
Residual	Sum of Squares	=	27.779359	9		
Absolute	Residual Mean	=	0.174990			
Minimum R	esidual	=	-0.064470			
Maximum R	esidual	=	0.392985			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.04	2.88	2.55	0.34
1	0.06	2.60	2.55	0.05
2	0.08	2.57	2.55	0.02
3	0.11	2.56	2.54	0.01
4	0.13	2.55	2.54	0.00
5	0.16	2.54	2.54	0.00
6	0.18	2.53	2.54	-0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
7	0.21	2.54	2.54	0.00
8	0.24	2.52	2.54	-0.02
9	0.27	2.51	2.54	-0.03
10	0.31	2.54	2.54	0.00
11	0.34	2.53	2.54	-0.02
12	0.38	2.52	2.54	-0.02
13	0.42	2.52	2.54	-0.02
14	0.47	2.52	2.54	-0.02
15	0.51	2.52	2.54	-0.02
16	0.56	2.52	2.54	-0.02
17	0.61	2.52	2.54	-0.02
18	0.67	2.52	2.54	-0.02
19	0.73	2.52	2.54	-0.01
20	0.79	2.52	2.54	-0.01
21	0.85	2.52	2.54	-0.02
22	0.92	2.52	2.54	-0.02
23	1.00	2.52	2.54	-0.01
24	1.08	2.52	2.53	-0.01
25	1.16	2.52	2.53	-0.01
26	1.25	2.52	2.53	-0.01
27	1.34	2.52	2.53	-0.01
28	1.44	2.52	2.53	-0.01
29	1.54	2.52	2.53	-0.01
30	1.65	2.51	2.53	-0.01
31	1.77	2.51	2.53	-0.02
32	1.90	2.51	2.53	-0.02
33	2.03	2.51	2.52	-0.02
34	2.17	2.51	2.52	-0.02
35	2.32	2.50	2.52	-0.02
36	2.47	2.50	2.52	-0.02
37	2.64	2.50	2.52	-0.02
38	2.82	2.49	2.52	-0.02
39	3.00	2.49	2.51	-0.02
40	3.20	2.49	2.51	-0.02
41	3.41	2.48	2.51	-0.03
42	3.63	2.48	2.51	-0.03
43	3.87	2.48	2.51	-0.03
44	4.12	2.47	2.50	-0.03
45	4.38	2.47	2.50	-0.03
46	4.66	2.47	2.50	-0.03
47	4.96	2.46	2.49	-0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
48	5.27	2.46	2.49	-0.03
49	5.60	2.45	2.49	-0.03
50	5.95	2.45	2.48	-0.04
51	6.33	2.44	2.48	-0.04
52	6.72	2.44	2.48	-0.04
53	7.14	2.43	2.47	-0.04
54	7.58	2.43	2.47	-0.04
55	8.05	2.42	2.46	-0.04
56	8.55	2.42	2.46	-0.04
57	9.08	2.41	2.45	-0.04
58	9.64	2.40	2.45	-0.05
59	10.23	2.39	2.44	-0.05
60	10.85	2.39	2.43	-0.05
61	11.52	2.38	2.43	-0.05
62	12.22	2.37	2.42	-0.05
63	12.97	2.36	2.41	-0.05
64	13.76	2.35	2.40	-0.05
65	14.59	2.34	2.40	-0.06
66	15.48	2.33	2.39	-0.06
67	16.42	2.32	2.38	-0.06
68	17.41	2.31	2.37	-0.06
69	18.41	2.30	2.36	-0.06
70	19.41	2.29	2.35	-0.06
71	20.41	2.28	2.34	-0.06
72	21.41	2.27	2.33	-0.06
73	22.41	2.26	2.32	-0.06
74	23.41	2.25	2.31	-0.06
75	24.41	2.24	2.30	-0.06
76	25.41	2.23	2.29	-0.06
77	26.41	2.22	2.28	-0.06
78	27.41	2.21	2.27	-0.06
79	28.41	2.20	2.26	-0.06
80	29.41	2.19	2.25	-0.06
81	30.41	2.18	2.24	-0.06
82	31.41	2.17	2.23	-0.06
83	32.41	2.16	2.23	-0.06
84	33.41	2.15	2.22	-0.06
85	34.41	2.14	2.21	-0.06
86	35.41	2.13	2.20	-0.06
87	36.41	2.13	2.19	-0.06
88	37.41	2.12	2.18	-0.06

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
89	38.41	2.11	2.17	-0.06
90	39.41	2.10	2.16	-0.06
91	40.41	2.10	2.15	-0.06
92	41.41	2.09	2.14	-0.06
93	42.41	2.08	2.13	-0.06
94	43.41	2.07	2.13	-0.06
95	44.41	2.06	2.12	-0.06
96	45.41	2.05	2.11	-0.06
97	46.41	2.04	2.10	-0.06
98	47.41	2.03	2.09	-0.06
99	48.41	2.03	2.08	-0.06
100	49.41	2.02	2.07	-0.06
101	50.41	2.01	2.07	-0.06
102	51.41	2.00	2.06	-0.05
103	52.41	2.00	2.05	-0.05
104	53.41	1.99	2.04	-0.05
105	54.41	1.98	2.03	-0.05
106	55.41	1.97	2.02	-0.05
107	56.41	1.97	2.01	-0.05
108	57.41	1.96	2.01	-0.05
109	58.41	1.95	2.00	-0.05
110	59.41	1.94	1.99	-0.05
111	60.41	1.93	1.98	-0.05
112	61.41	1.92	1.97	-0.05
113	62.41	1.92	1.96	-0.05
114	63.41	1.91	1.96	-0.05
115	64.41	1.90	1.95	-0.05
116	65.41	1.89	1.94	-0.05
117	66.41	1.89	1.93	-0.05
118	67.41	1.88	1.92	-0.05
119	68.41	1.87	1.92	-0.05
120	69.41	1.86	1.91	-0.04
121	70.41	1.86	1.90	-0.04
122	71.41	1.85	1.89	-0.04
123	72.41	1.84	1.89	-0.04
124	73.41	1.83	1.88	-0.04
125	74.41	1.83	1.87	-0.04
126	75.41	1.82	1.86	-0.04
127	76.41	1.81	1.85	-0.04
128	77.41	1.81	1.85	-0.04
129	78.41	1.80	1.84	-0.04

Index	Time	Obs. Displacement	Calc. Displacement	Residual
130	79.41	1.79	1.83	-0.04
131	80.41	1.79	1.82	-0.04
132	81.41	1.78	1.82	-0.03
133	82.41	1.78	1.81	-0.03
134	83.41	1.77	1.80	-0.03
135	84.41	1.76	1.79	-0.03
136	85.41	1.76	1.79	-0.03
137	86.41	1.75	1.78	-0.03
138	87.41	1.74	1.77	-0.03
139	88.41	1.74	1.76	-0.03
140	89.41	1.73	1.76	-0.03
141	90.41	1.72	1.75	-0.03
142	91.41	1.72	1.74	-0.03
143	92.41	1.71	1.73	-0.02
144	93.41	1.71	1.73	-0.02
145	94.41	1.70	1.72	-0.02
146	95.41	1.70	1.71	-0.02
147	96.41	1.69	1.71	-0.02
148	97.41	1.68	1.70	-0.02
149	98.41	1.68	1.69	-0.02
150	99.41	1.67	1.69	-0.01
151	100.41	1.67	1.68	-0.01
152	101.41	1.66	1.67	-0.01
153	102.41	1.65	1.66	-0.01
154	103.41	1.65	1.66	-0.01
155	104.41	1.64	1.65	-0.01
156	105.41	1.63	1.64	-0.01
157	106.41	1.63	1.64	-0.01
158	107.41	1.62	1.63	-0.01
159	108.41	1.62	1.62	0.00
160	109.41	1.62	1.62	0.00
161	110.41	1.61	1.61	0.00
162	111.41	1.60	1.60	0.00
163	112.41	1.60	1.60	0.00
164	113.41	1.59	1.59	0.00
165	114.41	1.59	1.58	0.00
166	115.41	1.58	1.58	0.00
167	116.41	1.57	1.57	0.00
168	117.41	1.57	1.56	0.00
169	118.41	1.56	1.56	0.00
170	119.41	1.56	1.55	0.00

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
171	120.41	1.55	1.54	0.01
172	121.41	1.55	1.54	0.01
173	122.41	1.54	1.53	0.01
174	123.41	1.54	1.53	0.01
175	124.41	1.53	1.52	0.01
176	125.41	1.53	1.51	0.02
177	126.41	1.53	1.51	0.02
178	127.41	1.52	1.50	0.02
179	128.41	1.52	1.49	0.02
180	129.41	1.51	1.49	0.02
181	130.41	1.50	1.48	0.02
182	131.41	1.50	1.48	0.02
183	132.41	1.49	1.47	0.02
184	133.41	1.49	1.46	0.02
185	134.41	1.48	1.46	0.02
186	135.41	1.47	1.45	0.02
187	136.41	1.47	1.45	0.02
188	137.41	1.47	1.44	0.03
189	138.41	1.46	1.43	0.03
190	139.41	1.46	1.43	0.03
191	140.41	1.45	1.42	0.03
192	141.41	1.45	1.42	0.03
193	142.41	1.44	1.41	0.03
194	143.41	1.44	1.40	0.04
195	144.41	1.44	1.40	0.04
196	145.41	1.43	1.39	0.04
197	146.41	1.42	1.39	0.04
198	147.41	1.42	1.38	0.04
199	148.41	1.41	1.38	0.04
200	149.41	1.41	1.37	0.04
201	150.41	1.40	1.36	0.04
202	151.41	1.40	1.36	0.04
203	152.41	1.39	1.35	0.04
204	153.41	1.38	1.35	0.04
205	154.41	1.38	1.34	0.04
206	155.41	1.38	1.34	0.04
207	156.41	1.38	1.33	0.04
208	157.41	1.37	1.32	0.05
209	158.41	1.37	1.32	0.05
210	159.41	1.36	1.31	0.05
211	160.41	1.36	1.31	0.05

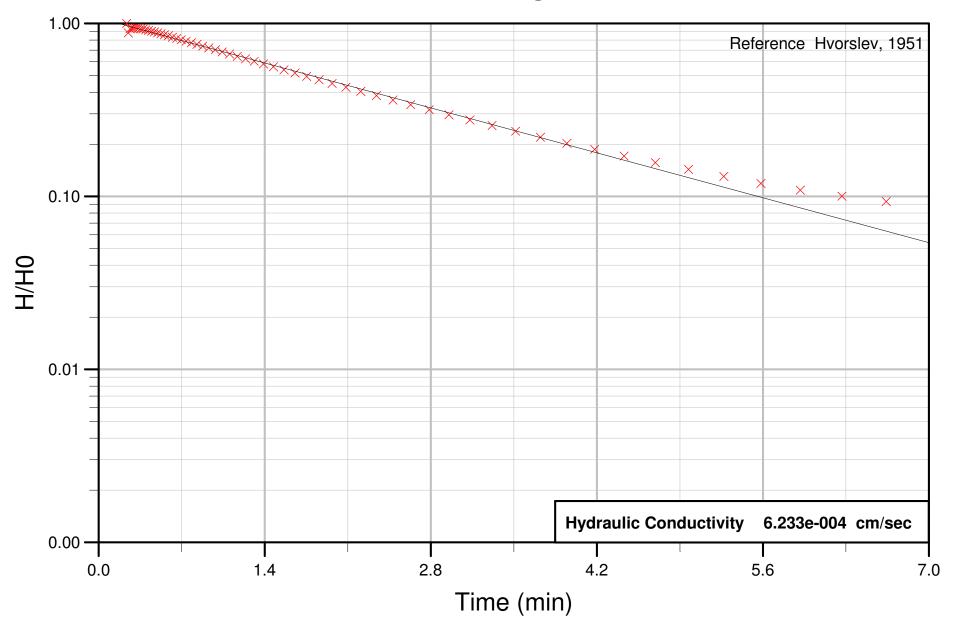
Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
212	161.41	1.35	1.30	0.05
213	162.41	1.35	1.30	0.05
214	163.41	1.34	1.29	0.05
215	164.41	1.34	1.29	0.05
216	165.41	1.34	1.28	0.05
217	166.41	1.33	1.28	0.05
218	167.41	1.33	1.27	0.06
219	168.41	1.32	1.27	0.06
220	169.41	1.32	1.26	0.06
221	170.41	1.32	1.26	0.06
222	171.41	1.31	1.25	0.06
223	172.41	1.31	1.24	0.06
224	173.41	1.31	1.24	0.07
225	174.41	1.30	1.23	0.07
226	175.41	1.30	1.23	0.07
227	176.41	1.29	1.22	0.07
228	177.41	1.29	1.22	0.07
229	178.41	1.29	1.21	0.07
230	179.41	1.28	1.21	0.07
231	180.41	1.28	1.20	0.08
232	181.41	1.28	1.20	0.08
233	182.41	1.27	1.19	0.08
234	183.41	1.27	1.19	0.08
235	184.41	1.27	1.18	0.08
236	185.41	1.26	1.18	0.08
237	186.41	1.26	1.17	0.08
238	187.41	1.26	1.17	0.09
239	188.41	1.25	1.16	0.09
240	189.41	1.25	1.16	0.09
241	190.41	1.25	1.16	0.09
242	191.41	1.25	1.15	0.10
243	192.41	1.24	1.15	0.10
244	193.41	1.24	1.14	0.10
245	194.41	1.24	1.14	0.10
246	195.41	1.23	1.13	0.10
247	196.41	1.23	1.13	0.11
248	197.41	1.23	1.12	0.11
249	198.41	1.23	1.12	0.11
250	199.41	1.22	1.11	0.11
251	200.41	1.22	1.11	0.11
252	201.41	1.22	1.10	0.11

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
253	202.41	1.21	1.10	0.11
254	203.41	1.21	1.09	0.11
255	204.41	1.21	1.09	0.12
256	205.41	1.20	1.09	0.12
257	206.41	1.20	1.08	0.12
258	207.41	1.20	1.08	0.12
259	208.41	1.19	1.07	0.12
260	209.41	1.19	1.07	0.12
261	210.41	1.19	1.06	0.12
262	211.41	1.18	1.06	0.12
263	212.41	1.18	1.05	0.13
264	213.41	1.18	1.05	0.13
265	214.41	1.18	1.05	0.13
266	215.41	1.17	1.04	0.13
267	216.41	1.17	1.04	0.13
268	217.41	1.17	1.03	0.13
269	218.41	1.16	1.03	0.13
270	219.41	1.16	1.02	0.14
271	220.41	1.16	1.02	0.14
272	221.41	1.16	1.02	0.14
273	222.41	1.15	1.01	0.14
274	223.41	1.15	1.01	0.14
275	224.41	1.14	1.00	0.14
276	225.41	1.14	1.00	0.14
277	226.41	1.14	0.99	0.14
278	227.41	1.13	0.99	0.14
279	228.41	1.13	0.99	0.14
280	229.41	1.13	0.98	0.14
281	230.41	1.12	0.98	0.14
282	231.41	1.12	0.97	0.15
283	232.41	1.12	0.97	0.15
284	233.41	1.11	0.97	0.15
285	234.41	1.11	0.96	0.15
286	235.41	1.11	0.96	0.15
287	236.41	1.11	0.95	0.15
288	237.41	1.11	0.95	0.15
289	238.41	1.10	0.95	0.16
290	239.41	1.10	0.94	0.16
291	240.41	1.10	0.94	0.16
292	241.41	1.09	0.93	0.16
293	242.41	1.09	0.93	0.16

Index	Time	Obs. Displacement	Calc. Displacement	Residual
294	243.41	1.09	0.93	0.16
295	244.41	1.08	0.92	0.16
296	245.41	1.08	0.92	0.16
297	246.41	1.08	0.92	0.16
298	247.41	1.08	0.91	0.17
299	248.41	1.08	0.91	0.17
300	249.41	1.08	0.90	0.17
301	250.41	1.07	0.90	0.17
302	251.41	1.07	0.90	0.17
303	252.41	1.07	0.89	0.17
304	253.41	1.06	0.89	0.17
305	254.41	1.06	0.89	0.18
306	255.41	1.06	0.88	0.18
307	256.41	1.06	0.88	0.18
308	257.41	1.05	0.87	0.18
309	258.41	1.05	0.87	0.18
310	259.41	1.05	0.87	0.18
311	260.41	1.05	0.86	0.18
312	261.41	1.05	0.86	0.19
313	262.41	1.04	0.86	0.19
314	263.41	1.04	0.85	0.19
315	264.41	1.04	0.85	0.19
316	265.41	1.04	0.85	0.19
317	266.41	1.04	0.84	0.20
318	267.41	1.03	0.84	0.19
319	268.41	1.03	0.84	0.20
320	269.41	1.03	0.83	0.20
321	270.41	1.03	0.83	0.20
322	271.41	1.02	0.83	0.20
323	272.41	1.02	0.82	0.20
324	273.41	1.02	0.82	0.20
325	274.41	1.02	0.82	0.21
326	275.41	1.02	0.81	0.21
327	276.41	1.02	0.81	0.21
328	277.41	1.02	0.80	0.21
329	278.41	1.02	0.80	0.21
330	279.41	1.01	0.80	0.21
331	280.41	1.01	0.79	0.22
332	281.41	1.01	0.79	0.22
333	282.41	1.01	0.79	0.22
334	283.41	1.01	0.79	0.22

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
335	284.41	1.00	0.78	0.22
336	285.41	1.00	0.78	0.22
337	286.41	1.00	0.78	0.23
338	287.41	1.00	0.77	0.23
339	288.41	1.00	0.77	0.23
340	289.41	0.99	0.77	0.23
341	290.41	0.99	0.76	0.23
342	291.41	0.99	0.76	0.23
343	292.41	0.99	0.76	0.23
344	293.41	0.99	0.75	0.23
345	294.41	0.99	0.75	0.23
346	295.41	0.99	0.75	0.24
347	296.41	0.99	0.74	0.24
348	297.41	0.98	0.74	0.24
349	298.41	0.98	0.74	0.24
350	299.41	0.98	0.73	0.25
351	300.41	0.98	0.73	0.25
352	301.41	0.98	0.73	0.25
353	302.41	0.98	0.73	0.25
354	303.41	0.98	0.72	0.25
355	304.41	0.97	0.72	0.25
356	305.41	0.97	0.72	0.25
357	306.41	0.97	0.71	0.26
358	307.41	0.97	0.71	0.26
359	308.41	0.96	0.71	0.26
360	309.41	0.96	0.70	0.26
361	310.41	0.96	0.70	0.26
362	311.41	0.96	0.70	0.26
363	312.41	0.96	0.70	0.26
364	313.41	0.96	0.69	0.26
365	314.41	0.96	0.69	0.27
366	315.41	0.96	0.69	0.27
367	316.41	0.95	0.68	0.27
368	317.41	0.95	0.68	0.27
369	318.41	0.95	0.68	0.27
370	319.41	0.95	0.68	0.27
371	320.41	0.95	0.67	0.28
372	321.41	0.95	0.67	0.28
373	322.41	0.95	0.67	0.28
374	323.41	0.94	0.67	0.28
375	324.41	0.94	0.66	0.28

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
376	325.41	0.94	0.66	0.28
377	326.41	0.94	0.66	0.28
378	327.41	0.94	0.65	0.28
379	328.41	0.94	0.65	0.29
380	329.41	0.94	0.65	0.29
381	330.41	0.93	0.65	0.29
382	331.41	0.93	0.64	0.29
383	332.41	0.93	0.64	0.29
384	333.41	0.93	0.64	0.29
385	334.41	0.93	0.64	0.29
386	335.41	0.93	0.63	0.29
387	336.41	0.93	0.63	0.30
388	337.41	0.93	0.63	0.30
389	338.41	0.92	0.62	0.30
390	339.41	0.92	0.62	0.30
391	340.41	0.92	0.62	0.30
392	341.41	0.92	0.62	0.30
393	342.41	0.92	0.61	0.30
394	343.41	0.91	0.61	0.30
395	344.41	0.91	0.61	0.30
396	345.41	0.91	0.61	0.31
397	346.41	0.91	0.60	0.31
398	347.41	0.91	0.60	0.31
399	348.41	0.91	0.60	0.31
400	349.41	0.91	0.60	0.31
401	350.41	0.91	0.59	0.31
402	351.41	0.90	0.59	0.31
403	352.41	0.90	0.59	0.31
404	353.41	0.90	0.59	0.31
405	354.41	0.90	0.58	0.32
406	355.41	0.90	0.58	0.31
407	356.41	0.90	0.58	0.32
408	357.41	0.90	0.58	0.32
409	358.41	0.89	0.58	0.32
410	359.41	0.89	0.57	0.32
411	360.41	0.89	0.57	0.32
412	361.41	0.89	0.57	0.32
413	362.41	0.89	0.57	0.32
414	363.41	0.89	0.56	0.32
415	364.41	0.88	0.56	0.32
416	365.41	0.88	0.56	0.33


Index	Time	Obs. Displacement	Calc. Displacement	Residual
417	366.41	0.88	0.56	0.33
418	367.41	0.88	0.55	0.33
419	368.41	0.88	0.55	0.33
420	369.41	0.88	0.55	0.33
421	370.41	0.88	0.55	0.33
422	371.41	0.88	0.54	0.33
423	372.41	0.88	0.54	0.33
424	373.41	0.88	0.54	0.34
425	374.41	0.88	0.54	0.34
426	375.41	0.87	0.54	0.34
427	376.41	0.87	0.53	0.34
428	377.41	0.87	0.53	0.34
429	378.41	0.87	0.53	0.34
430	379.41	0.87	0.53	0.34
431	380.41	0.87	0.52	0.34
432	381.41	0.87	0.52	0.34
433	382.41	0.87	0.52	0.35
434	383.41	0.87	0.52	0.35
435	384.41	0.87	0.52	0.35
436	385.41	0.87	0.51	0.35
437	386.41	0.86	0.51	0.35
438	387.41	0.86	0.51	0.35
439	388.41	0.86	0.51	0.35
440	389.41	0.86	0.51	0.35
441	390.41	0.86	0.50	0.35
442	391.41	0.86	0.50	0.36
443	392.41	0.86	0.50	0.36
444	393.41	0.86	0.50	0.36
445	394.41	0.86	0.50	0.36
446	395.41	0.85	0.49	0.36
447	396.41	0.85	0.49	0.36
448	397.41	0.85	0.49	0.36
449	398.41	0.85	0.49	0.36
450	399.41	0.85	0.49	0.36
451	400.41	0.85	0.48	0.36
452	401.41	0.85	0.48	0.37
453	402.41	0.84	0.48	0.36
454	403.41	0.84	0.48	0.37
455	404.41	0.84	0.48	0.37
456	405.41	0.84	0.47	0.37
457	406.41	0.84	0.47	0.37

Index	Time	Obs. Displacement	Calc. Displacement	Residual
458	407.41	0.84	0.47	0.37
459	408.41	0.84	0.47	0.37
460	409.41	0.84	0.47	0.37
461	410.41	0.84	0.46	0.37
462	411.41	0.83	0.46	0.37
463	412.41	0.83	0.46	0.37
464	413.41	0.83	0.46	0.38
465	414.41	0.83	0.46	0.38
466	415.41	0.83	0.45	0.38
467	416.41	0.83	0.45	0.38
468	417.41	0.83	0.45	0.38
469	418.41	0.83	0.45	0.38
470	419.41	0.82	0.45	0.38
471	420.41	0.82	0.44	0.38
472	421.41	0.82	0.44	0.38
473	422.41	0.82	0.44	0.38
474	423.41	0.82	0.44	0.38
475	424.41	0.81	0.44	0.38
476	425.41	0.81	0.44	0.38
477	426.41	0.81	0.43	0.38
478	427.41	0.81	0.43	0.38
479	428.41	0.81	0.43	0.38
480	429.41	0.81	0.43	0.38
481	430.41	0.81	0.43	0.38
482	431.41	0.80	0.42	0.38
483	432.41	0.80	0.42	0.38
484	433.41	0.80	0.42	0.38
485	434.41	0.80	0.42	0.38
486	435.41	0.80	0.42	0.38
487	436.41	0.79	0.42	0.38
488	437.41	0.79	0.41	0.38
489	438.41	0.79	0.41	0.38
490	439.41	0.79	0.41	0.38
491	440.41	0.78	0.41	0.37
492	441.41	0.78	0.41	0.38
493	442.41	0.78	0.41	0.38
494	443.41	0.78	0.40	0.38
495	444.41	0.78	0.40	0.38
496	445.41	0.78	0.40	0.38
497	446.41	0.78	0.40	0.38
498	447.41	0.77	0.40	0.37

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
499	448.41	0.77	0.40	0.37
500	449.41	0.77	0.39	0.37
501	450.41	0.77	0.39	0.37
502	451.41	0.76	0.39	0.37
503	452.41	0.76	0.39	0.37
504	453.41	0.76	0.39	0.37
505	454.41	0.76	0.39	0.37
506	455.41	0.76	0.38	0.37
507	456.41	0.76	0.38	0.37
508	457.41	0.76	0.38	0.38
509	458.41	0.75	0.38	0.37
510	459.41	0.75	0.38	0.37
511	460.41	0.75	0.38	0.38
512	461.41	0.75	0.38	0.37
513	462.41	0.75	0.37	0.37
514	463.41	0.75	0.37	0.37
515	464.41	0.75	0.37	0.37
516	465.41	0.74	0.37	0.37
517	466.41	0.74	0.37	0.38
518	467.41	0.74	0.37	0.37
519	468.41	0.74	0.36	0.38
520	469.41	0.74	0.36	0.38
521	470.41	0.74	0.36	0.38
522	471.41	0.74	0.36	0.38
523	472.41	0.74	0.36	0.38
524	473.41	0.74	0.36	0.38
525	474.41	0.74	0.36	0.38
526	475.41	0.74	0.35	0.38
527	476.41	0.73	0.35	0.38
528	477.41	0.73	0.35	0.38
529	478.41	0.73	0.35	0.38
530	479.41	0.73	0.35	0.38
531	480.41	0.73	0.35	0.38
532	481.41	0.73	0.35	0.39
533	482.41	0.73	0.34	0.39
534	483.41	0.73	0.34	0.39
535	484.41	0.73	0.34	0.39
536	485.41	0.73	0.34	0.39
537	486.41	0.73	0.34	0.39
538	487.41	0.73	0.34	0.39
539	488.41	0.73	0.34	0.39

Index	Time	Obs. Displacement	Calc. Displacement	Residual
540	489.41	0.72	0.33	0.39
541	490.41	0.72	0.33	0.39
542	491.41	0.72	0.33	0.39
543	492.41	0.72	0.33	0.39
544	493.41	0.72	0.33	0.39
545	494.41	0.72	0.33	0.39
546	495.41	0.72	0.33	0.39
547	496.41	0.72	0.32	0.39
548	497.41	0.71	0.32	0.39
549	498.41	0.71	0.32	0.39
550	499.41	0.71	0.32	0.39

PT-MW-3 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-3 Falling Test 1 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

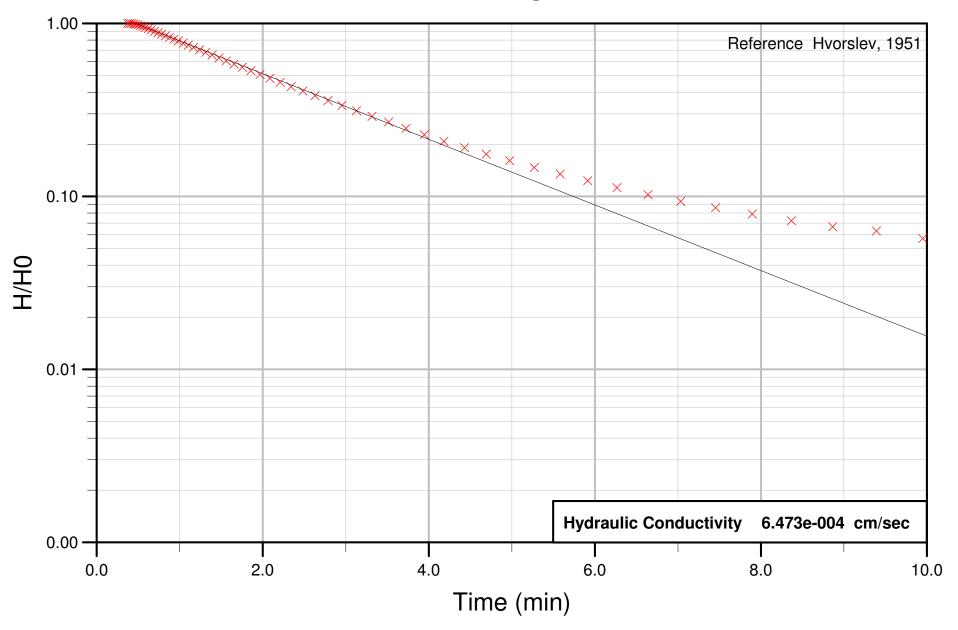
Simple Analysis - No Wells Defined

Number of Points = 59

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 14.4 ft

Initial Displacement Fixed Value	= 5.23 ft
Hydraulic Conductivity Calculated Value	= 0.000623336 cm/sec
Time to 37% Displacement Calculated Value	= 2.50099 min
Linear Regression Slope Fixed Value	= -0.427453 /min
Linear Regression Intercept Fixed Value	= 1.07767
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	


Regression Line			
Slope:		-0.427453	/min
Intercept:		1.077673	dimensionless
Residual Mean	=	-0.011092	
Residual Standard Dev.	=	0.087592	
Residual Sum of Squares	=	0.459924	
Absolute Residual Mean	=	0.061620	
Minimum Residual	=	-0.453424	
Maximum Residual	=	0.158064	

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.24	5.23	5.10	0.13
1	0.25	4.61	5.07	-0.45
2	0.26	4.87	5.03	-0.16
3	0.28	4.90	5.00	-0.10
4	0.30	4.90	4.96	-0.07
5	0.31	4.91	4.93	-0.02
6	0.33	4.90	4.89	0.01
7	0.35	4.86	4.85	0.01
8	0.37	4.84	4.80	0.03
9	0.40	4.80	4.76	0.04

Index	Time	Obs.	Calc.	Residual
10	0.42	Displacement 4.76	Displacement 4.71	0.05
11	0.44	4.71	4.66	0.05
12	0.47	4.67	4.61	0.05
13	0.50	4.61	4.56	0.05
14	0.52	4.55	4.50	0.05
15	0.55	4.49	4.45	0.05
16	0.59	4.43	4.39	0.04
17	0.62	4.35	4.32	0.03
18	0.66	4.28	4.25	0.02
19	0.70	4.20	4.19	0.02
20	0.74	4.12	4.11	0.01
21	0.78	4.04	4.04	0.01
22	0.83	3.95	3.96	0.00
23	0.88	3.86	3.88	-0.01
24	0.93	3.77	3.79	-0.02
25	0.98	3.68	3.70	-0.03
26	1.04	3.58	3.61	-0.03
27	1.10	3.48	3.52	-0.04
28	1.17	3.37	3.42	-0.05
29	1.24	3.27	3.32	-0.05
30	1.31	3.16	3.22	-0.06
31	1.39	3.05	3.11	-0.06
32	1.47	2.93	3.00	-0.07
33	1.56	2.82	2.89	-0.07
34	1.65	2.70	2.78	-0.08
35	1.75	2.58	2.66	-0.08
36	1.86	2.47	2.55	-0.08
37	1.97	2.35	2.43	-0.08
38	2.08	2.23	2.31	-0.08
39	2.21	2.11	2.19	-0.08
40	2.34	2.00	2.07	-0.07
41	2.48	1.88	1.95	-0.07
42	2.63	1.77	1.83	-0.06
43	2.79	1.66	1.71	-0.06
44	2.95	1.55	1.60	-0.05
45	3.13	1.45	1.48	-0.03
46	3.32	1.34	1.37	-0.02
47	3.51	1.25	1.25	-0.01
48	3.72	1.15	1.15	0.00
49	3.95	1.06	1.04	0.02
50	4.18	0.98	0.94	0.03

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	4.43	0.89	0.85	0.05
52	4.69	0.82	0.76	0.06
53	4.97	0.75	0.67	0.08
54	5.27	0.68	0.59	0.09
55	5.58	0.62	0.52	0.10
56	5.91	0.57	0.45	0.12
57	6.27	0.52	0.39	0.14
58	6.64	0.49	0.33	0.16

PT-MW-3 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-3 Falling Test 2 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

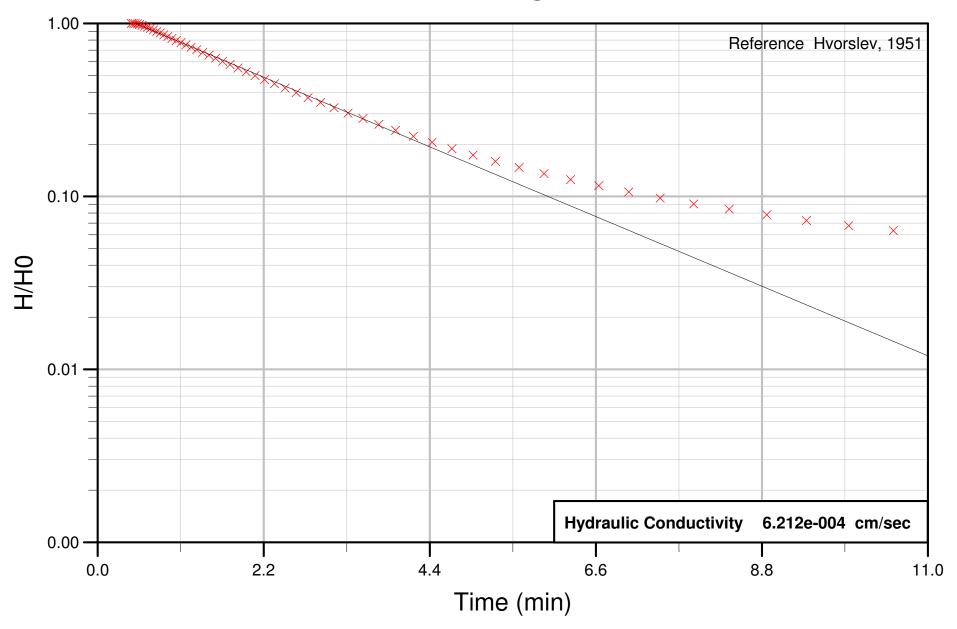
Simple Analysis - No Wells Defined

Number of Points = 58

Manual Match

Casing Inner Diameter Fixed Value	= 0.297 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 14.4 ft

Initial Displacement Fixed Value	= 4.768 ft
Hydraulic Conductivity Calculated Value	= 0.000647322 cm/sec
Time to 37% Displacement Calculated Value	= 2.74877 min
Linear Regression Slope Fixed Value	= -0.437271 /min
Linear Regression Intercept Fixed Value	= 1.23085
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	127271 /min


Regression Line			
Slope:		-0.437271	/min
Intercept:		1.230849	dimensionless
Residual Mean	=	0.002193	
Residual Standard Dev.	=	0.100318	
Residual Sum of Squares	=	0.583974	
Absolute Residual Mean	=	0.082015	
Minimum Residual	=	-0.215295	
Maximum Residual	=	0.204375	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.37	4.77	4.98	-0.22
1	0.40	4.77	4.93	-0.17
2	0.42	4.76	4.88	-0.13
3	0.44	4.74	4.83	-0.10
4	0.47	4.70	4.78	-0.08
5	0.50	4.67	4.72	-0.06
6	0.52	4.61	4.67	-0.05
7	0.55	4.57	4.60	-0.04
8	0.59	4.51	4.54	-0.03
9	0.62	4.45	4.47	-0.03

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.66	4.37	4.40	-0.03
11	0.70	4.30	4.33	-0.03
12	0.74	4.21	4.25	-0.04
13	0.78	4.13	4.17	-0.04
14	0.83	4.04	4.09	-0.04
15	0.88	3.96	4.00	-0.05
16	0.93	3.86	3.91	-0.05
17	0.98	3.77	3.82	-0.05
18	1.04	3.67	3.72	-0.06
19	1.10	3.57	3.62	-0.06
20	1.17	3.46	3.52	-0.06
21	1.24	3.35	3.42	-0.06
22	1.31	3.24	3.31	-0.07
23	1.39	3.13	3.20	-0.07
24	1.47	3.01	3.08	-0.07
25	1.56	2.89	2.97	-0.07
26	1.65	2.77	2.85	-0.07
27	1.75	2.66	2.73	-0.07
28	1.86	2.54	2.60	-0.07
29	1.97	2.42	2.48	-0.07
30	2.08	2.30	2.36	-0.06
31	2.21	2.17	2.23	-0.06
32	2.34	2.06	2.11	-0.05
33	2.48	1.94	1.98	-0.05
34	2.63	1.82	1.86	-0.04
35	2.79	1.71	1.74	-0.03
36	2.95	1.60	1.61	-0.02
37	3.13	1.49	1.49	0.00
38	3.32	1.38	1.38	0.01
39	3.51	1.28	1.26	0.02
40	3.72	1.18	1.15	0.03
41	3.95	1.08	1.05	0.04
42	4.18	0.99	0.94	0.05
43	4.43	0.91	0.85	0.07
44	4.69	0.84	0.75	0.08
45	4.97	0.77	0.67	0.10
46	5.27	0.70	0.59	0.12
47	5.58	0.64	0.51	0.13
48	5.91	0.59	0.44	0.15
49	6.27	0.54	0.38	0.16
50	6.64	0.49	0.32	0.17

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	7.03	0.45	0.27	0.18
52	7.45	0.41	0.23	0.18
53	7.90	0.38	0.19	0.19
54	8.37	0.35	0.15	0.19
55	8.86	0.32	0.12	0.20
56	9.39	0.30	0.10	0.20
57	9.95	0.27	0.08	0.20

PT-MW-3 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-3 Falling Test 3 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

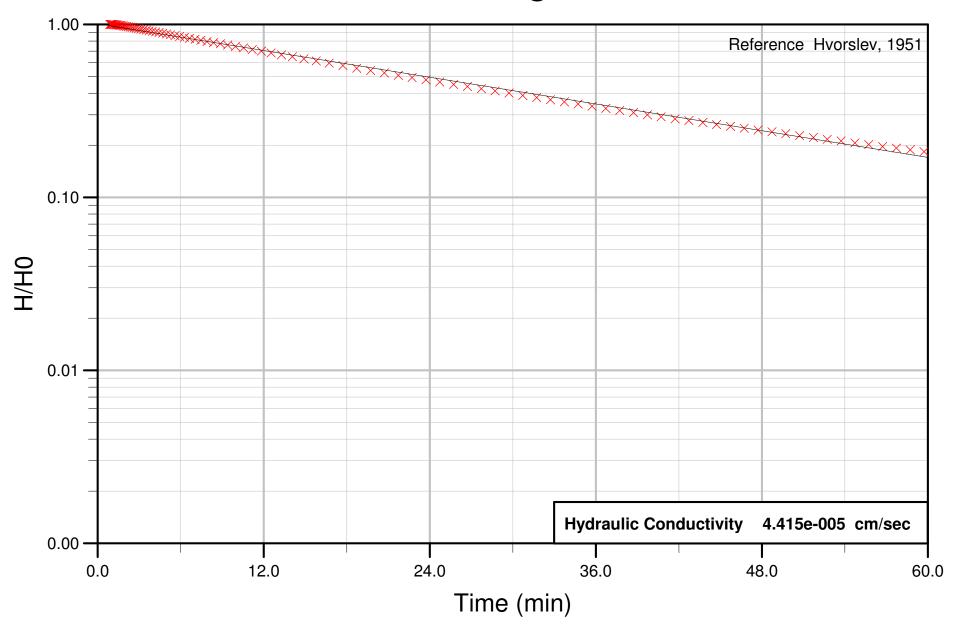
Simple Analysis - No Wells Defined

Number of Points = 56

Manual Match

Casing Inner Diameter Fixed Value	= 0.297 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 14.4 ft

Initial Displacement Fixed Value	= 4.565 ft
Hydraulic Conductivity Calculated Value	= 0.000621171 cm/sec
Time to 37% Displacement Calculated Value	= 2.86449 min
Linear Regression Slope Fixed Value	= -0.422056 /min
Linear Regression Intercept Fixed Value	= 1.23952
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line	
Slope:	-0.422056 /min
Intercept:	1.239516 dimensionless
Residual Mean	= 0.033418
Residual Standard Dev.	= 0.097376
Residual Sum of Squares	= 0.593535
Absolute Residual Mean	= 0.076729
Minimum Residual	= -0.125483
Maximum Residual	= 0.224092

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.44	4.57	4.69	-0.13
1	0.47	4.57	4.64	-0.08
2	0.50	4.55	4.59	-0.04
3	0.52	4.53	4.53	0.00
4	0.55	4.49	4.48	0.01
5	0.59	4.45	4.42	0.03
6	0.62	4.39	4.35	0.04
7	0.66	4.33	4.29	0.04
8	0.70	4.26	4.22	0.04
9	0.74	4.18	4.14	0.04

Displacement Displacement Displacement Displacement 10 0.78 4.10 4.07 0.03 11 0.83 4.01 3.99 0.02 12 0.88 3.92 3.91 0.01 13 0.93 3.83 3.62 0.01 14 0.98 3.73 3.74 0.00 15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.23 -0.07	Index	Time	Obs.	Calc.	Residual
11 0.83 4.01 3.99 0.02 12 0.88 3.92 3.91 0.01 13 0.93 3.83 3.82 0.01 14 0.98 3.73 3.74 0.00 15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 27 2.08 2.23 -0.07 23 26 1.97 2.40 2.11 -0.06	Inden	1 1110			nebidddi
12 0.88 3.92 3.91 0.01 13 0.93 3.83 3.82 0.01 14 0.98 3.73 3.74 0.00 15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 <	10	0.78	4.10	4.07	0.03
13 0.93 3.83 3.82 0.01 14 0.98 3.73 3.74 0.00 15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.23 -0.07 2.3 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06	11	0.83	4.01	3.99	0.02
14 0.98 3.73 3.74 0.00 15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 <th>12</th> <th>0.88</th> <th>3.92</th> <th>3.91</th> <th>0.01</th>	12	0.88	3.92	3.91	0.01
15 1.04 3.64 3.65 -0.01 16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 </th <th>13</th> <th>0.93</th> <th>3.83</th> <th>3.82</th> <th>0.01</th>	13	0.93	3.83	3.82	0.01
16 1.10 3.53 3.55 -0.02 17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 </th <th>14</th> <th>0.98</th> <th>3.73</th> <th>3.74</th> <th>0.00</th>	14	0.98	3.73	3.74	0.00
17 1.17 3.43 3.46 -0.03 18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.23 -0.07 28 2.21 2.16 2.23 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.03 34 3.13 1.49	15	1.04	3.64	3.65	-0.01
18 1.24 3.32 3.36 -0.03 19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.03 </th <th>16</th> <th>1.10</th> <th>3.53</th> <th>3.55</th> <th>-0.02</th>	16	1.10	3.53	3.55	-0.02
19 1.31 3.21 3.25 -0.04 20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.02 35 3.32 1.38 1.40 -0.01 </th <th>17</th> <th>1.17</th> <th>3.43</th> <th>3.46</th> <th>-0.03</th>	17	1.17	3.43	3.46	-0.03
20 1.39 3.10 3.15 -0.05 21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 <th>18</th> <th>1.24</th> <th>3.32</th> <th>3.36</th> <th>-0.03</th>	18	1.24	3.32	3.36	-0.03
21 1.47 2.99 3.04 -0.05 22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 <th>19</th> <th>1.31</th> <th>3.21</th> <th>3.25</th> <th>-0.04</th>	19	1.31	3.21	3.25	-0.04
22 1.56 2.87 2.93 -0.06 23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 38 3.95 1.10 1.07 0.03	20	1.39	3.10	3.15	-0.05
23 1.65 2.75 2.81 -0.06 24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.07 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.02 33 2.95 1.59 1.63 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 38 3.95 1.10 1.07 0.03 39 4.18 1.02 0.97 0.05 40 4.43 0.94 0.87 0.07	21	1.47	2.99	3.04	-0.05
24 1.75 2.64 2.70 -0.06 25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 38 3.95 1.10 1.07 0.03 39 4.18 1.02 0.97 0.05 40 4.43 0.94 0.87 0.07	22	1.56	2.87	2.93	-0.06
25 1.86 2.52 2.58 -0.06 26 1.97 2.40 2.47 -0.07 27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.03 34 3.13 1.49 1.51 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 38 3.95 1.10 1.07 0.03 39 4.18 1.02 0.97 0.05 40 4.43 0.94 0.87 0.07	23	1.65	2.75	2.81	-0.06
261.972.402.47-0.07272.082.282.35-0.07282.212.162.23-0.07292.342.042.11-0.06302.481.931.99-0.06312.631.811.86-0.05322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	24	1.75	2.64	2.70	-0.06
27 2.08 2.28 2.35 -0.07 28 2.21 2.16 2.23 -0.07 29 2.34 2.04 2.11 -0.06 30 2.48 1.93 1.99 -0.06 31 2.63 1.81 1.86 -0.05 32 2.79 1.70 1.75 -0.05 33 2.95 1.59 1.63 -0.03 34 3.13 1.49 1.51 -0.02 35 3.32 1.38 1.40 -0.01 36 3.51 1.29 1.28 0.00 37 3.72 1.19 1.17 0.01 38 3.95 1.10 1.07 0.03 39 4.18 1.02 0.97 0.05 40 4.43 0.94 0.87 0.07 41 4.69 0.86 0.78 0.08 42 4.97 0.79 0.69 0.10	25	1.86	2.52	2.58	-0.06
282.212.162.23-0.07292.342.042.11-0.06302.481.931.99-0.06312.631.811.86-0.05322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	26	1.97	2.40	2.47	-0.07
292.342.042.11-0.06302.481.931.99-0.06312.631.811.86-0.05322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	27	2.08	2.28	2.35	-0.07
302.481.931.99-0.06312.631.811.86-0.05322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	28	2.21	2.16	2.23	-0.07
312.631.811.86-0.05322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	29	2.34	2.04	2.11	-0.06
322.791.701.75-0.05332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	30	2.48	1.93	1.99	-0.06
332.951.591.63-0.03343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	31	2.63	1.81	1.86	-0.05
343.131.491.51-0.02353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	32	2.79	1.70	1.75	-0.05
353.321.381.40-0.01363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	33	2.95	1.59	1.63	-0.03
363.511.291.280.00373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	34	3.13	1.49	1.51	-0.02
373.721.191.170.01383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	35	3.32	1.38	1.40	-0.01
383.951.101.070.03394.181.020.970.05404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19		3.51	1.29	1.28	0.00
39 4.181.020.970.05 40 4.430.940.870.07 41 4.690.860.780.08 42 4.970.790.690.10 43 5.270.730.610.11 44 5.580.670.540.13 45 5.910.620.470.15 46 6.270.570.400.17 47 6.640.530.340.18 48 7.030.480.290.19		3.72		1.17	
404.430.940.870.07414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19		3.95	1.10	1.07	0.03
414.690.860.780.08424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	39			0.97	
424.970.790.690.10435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19	40	4.43	0.94	0.87	0.07
435.270.730.610.11445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19					
445.580.670.540.13455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19		4.97			
455.910.620.470.15466.270.570.400.17476.640.530.340.18487.030.480.290.19					
466.270.570.400.17476.640.530.340.18487.030.480.290.19					
476.640.530.340.18487.030.480.290.19					
48 7.03 0.48 0.29 0.19					
49 7.45 0.45 0.24 0.20					
50 7.90 0.41 0.20 0.21	50	7.90	0.41	0.20	0.21

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	8.37	0.39	0.17	0.22
52	8.86	0.36	0.13	0.22
53	9.39	0.33	0.11	0.22
54	9.95	0.31	0.08	0.22
55	10.54	0.29	0.07	0.22

PT-MW-4 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-4 Falling Test 1 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

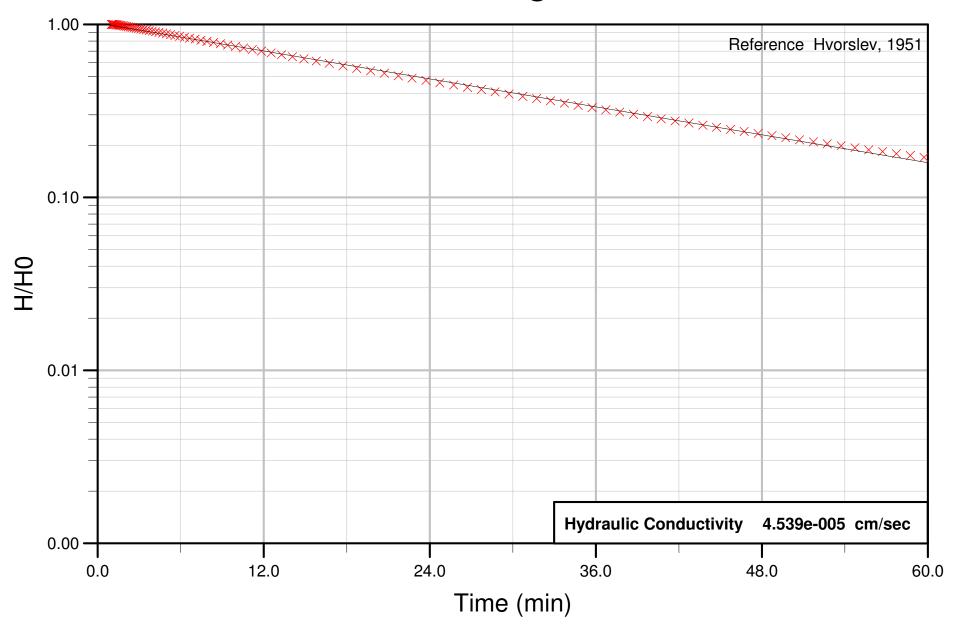
Number of Points = 95

Optimized Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 5.257 ft
Hydraulic Conductivity Calculated Value	= 4.41523e-005 cm/sec
Time to 37% Displacement Calculated Value	= 33.6784 min
Linear Regression Slope Fixed Value	= -0.0298385 /min
Linear Regression Intercept Fixed Value	= 1.01072
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	

Regression Lin	le			
C N	Slope:		-0.029838	/min
	Intercept:		1.010718	dimensionless
Residual Mean		=	0.008996	
Residual Stand	dard Dev.	=	0.075702	
Residual Sum o	of Squares	=	0.552120	
Absolute Resid	dual Mean	=	0.067542	
Minimum Residu	Jal	=	-0.108858	
Maximum Residu	Jal	=	0.119509	


Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.88	5.26	5.18	0.08
1	0.93	5.25	5.17	0.08
2	0.98	5.25	5.16	0.09
3	1.04	5.25	5.15	0.10
4	1.10	5.25	5.14	0.10
5	1.17	5.24	5.13	0.11
6	1.24	5.23	5.12	0.11
7	1.31	5.22	5.11	0.11
8	1.39	5.22	5.10	0.12
9	1.47	5.20	5.08	0.12

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	1.56	5.19	5.07	0.12
11	1.65	5.18	5.06	0.12
12	1.75	5.16	5.04	0.12
13	1.86	5.15	5.03	0.12
14	1.97	5.13	5.01	0.12
15	2.08	5.11	4.99	0.11
16	2.21	5.09	4.97	0.11
17	2.34	5.07	4.95	0.11
18	2.48	5.04	4.93	0.11
19	2.63	5.01	4.91	0.10
20	2.79	4.99	4.89	0.10
21	2.95	4.96	4.87	0.09
22	3.13	4.93	4.84	0.09
23	3.32	4.90	4.81	0.09
24	3.51	4.87	4.78	0.08
25	3.72	4.83	4.75	0.07
26	3.95	4.79	4.72	0.07
27	4.18	4.75	4.69	0.06
28	4.43	4.72	4.66	0.06
29	4.69	4.67	4.62	0.05
30	4.97	4.62	4.58	0.04
31	5.27	4.58	4.54	0.04
32	5.58	4.53	4.50	0.03
33	5.91	4.48	4.45	0.02
34	6.27	4.43	4.41	0.02
35	6.64	4.37	4.36	0.01
36	7.03	4.31	4.31	0.00
37	7.45	4.25	4.25	0.00
38	7.90	4.19	4.20	-0.01
39	8.37	4.12	4.14	-0.02
40	8.86	4.06	4.08	-0.02
41	9.39	3.99	4.01	-0.03
42	9.95	3.92	3.95	-0.03
43	10.54	3.85	3.88	-0.03
44	11.17	3.76	3.81	-0.05
45	11.83	3.68	3.73	-0.05
46	12.53	3.60	3.66	-0.06
47	13.28	3.51	3.58	-0.07
48	14.07	3.42	3.49	-0.07
49	14.91	3.32	3.41	-0.08
50	15.79	3.23	3.32	-0.09

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	16.73	3.14	3.23	-0.09
52	17.72	3.04	3.13	-0.10
53	18.72	2.93	3.04	-0.11
54	19.72	2.84	2.95	-0.11
55	20.72	2.76	2.86	-0.11
56	21.72	2.67	2.78	-0.11
57	22.72	2.59	2.70	-0.11
58	23.72	2.51	2.62	-0.10
59	24.72	2.44	2.54	-0.10
60	25.72	2.36	2.47	-0.10
61	26.72	2.30	2.39	-0.10
62	27.72	2.23	2.32	-0.09
63	28.72	2.17	2.26	-0.09
64	29.72	2.11	2.19	-0.08
65	30.72	2.04	2.12	-0.08
66	31.72	1.98	2.06	-0.08
67	32.72	1.93	2.00	-0.07
68	33.72	1.87	1.94	-0.07
69	34.72	1.82	1.89	-0.06
70	35.72	1.77	1.83	-0.06
71	36.72	1.72	1.78	-0.06
72	37.72	1.67	1.72	-0.05
73	38.72	1.63	1.67	-0.05
74	39.72	1.58	1.62	-0.05
75	40.72	1.54	1.58	-0.04
76	41.72	1.50	1.53	-0.03
77	42.72	1.46	1.49	-0.03
78	43.72	1.42	1.44	-0.02
79	44.72	1.39	1.40	-0.01
80	45.72	1.35	1.36	0.00
81	46.72	1.32	1.32	0.00
82	47.72	1.29	1.28	0.01
83	48.72	1.26	1.24	0.02
84	49.72	1.23	1.21	0.02
85	50.72	1.20	1.17	0.03
86	51.72	1.17	1.14	0.03
87	52.72	1.14	1.10	0.04
88	53.72	1.11	1.07	0.04
89	54.72	1.09	1.04	0.05
90	55.72	1.06	1.01	0.05
91	56.72	1.04	0.98	0.06

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
92	57.72	1.01	0.95	0.06
93	58.72	0.99	0.92	0.07
94	59.72	0.97	0.89	0.07

PT-MW-4 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-4 Falling Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

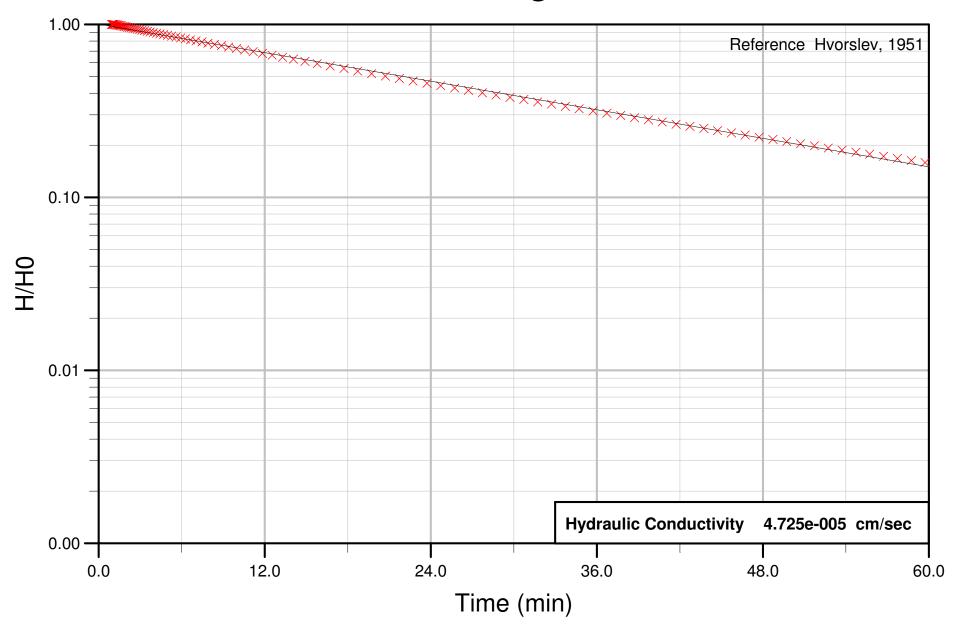
Number of Points = 93

Optimized Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 5.222 ft
Hydraulic Conductivity Calculated Value	= 4.53862e-005 cm/sec
Time to 37% Displacement Calculated Value	= 32.7628 min
Linear Regression Slope Fixed Value	= -0.0309347 /min
Linear Regression Intercept Fixed Value	= 1.01944
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	

Regression Line			
Slope:		-0.030935	/min
Intercept:		1.019440	dimensionless
Residual Mean	=	0.006608	
Residual Standard Dev.	=	0.055125	
Residual Sum of Squares	=	0.286669	
Absolute Residual Mean	=	0.048407	
Minimum Residual	=	-0.083662	
Maximum Residual	=	0.088878	


Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.98	5.22	5.16	0.06
1	1.04	5.22	5.15	0.07
2	1.10	5.22	5.14	0.07
3	1.17	5.21	5.13	0.07
4	1.24	5.20	5.12	0.08
5	1.31	5.19	5.11	0.08
6	1.39	5.19	5.10	0.09
7	1.47	5.17	5.09	0.09
8	1.56	5.16	5.07	0.09
9	1.65	5.15	5.06	0.09

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	1.75	5.13	5.04	0.09
11	1.86	5.12	5.03	0.09
12	1.97	5.10	5.01	0.09
13	2.08	5.08	4.99	0.09
14	2.21	5.06	4.97	0.09
15	2.34	5.04	4.95	0.08
16	2.48	5.01	4.93	0.08
17	2.63	4.99	4.91	0.08
18	2.79	4.96	4.88	0.08
19	2.95	4.93	4.86	0.07
20	3.13	4.90	4.83	0.07
21	3.32	4.87	4.80	0.07
22	3.51	4.84	4.78	0.06
23	3.72	4.80	4.74	0.06
24	3.95	4.77	4.71	0.06
25	4.18	4.73	4.68	0.05
26	4.43	4.69	4.64	0.05
27	4.69	4.65	4.60	0.04
28	4.97	4.60	4.56	0.03
29	5.27	4.55	4.52	0.03
30	5.58	4.51	4.48	0.03
31	5.91	4.45	4.43	0.02
32	6.27	4.40	4.39	0.01
33	6.64	4.35	4.34	0.01
34	7.03	4.29	4.28	0.00
35	7.45	4.23	4.23	0.00
36	7.90	4.16	4.17	-0.01
37	8.37	4.10	4.11	-0.01
38	8.86	4.03	4.05	-0.01
39	9.39	3.96	3.98	-0.02
40	9.95	3.89	3.91	-0.02
41	10.54	3.82	3.84	-0.03
42	11.17	3.74	3.77	-0.03
43	11.83	3.66	3.69	-0.03
44	12.53	3.57	3.61	-0.04
45	13.28	3.49	3.53	-0.05
46	14.07	3.39	3.44	-0.05
47	14.91	3.30	3.36	-0.06
48	15.79	3.20	3.27	-0.06
49	16.73	3.11	3.17	-0.07
50	17.72	3.01	3.08	-0.07

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	18.72	2.90	2.98	-0.08
52	19.72	2.81	2.89	-0.08
53	20.72	2.72	2.80	-0.08
54	21.72	2.64	2.72	-0.08
55	22.72	2.55	2.64	-0.08
56	23.72	2.48	2.56	-0.08
57	24.72	2.40	2.48	-0.08
58	25.72	2.33	2.40	-0.08
59	26.72	2.26	2.33	-0.07
60	27.72	2.19	2.26	-0.07
61	28.72	2.13	2.19	-0.06
62	29.72	2.06	2.12	-0.06
63	30.72	2.00	2.06	-0.06
64	31.72	1.95	2.00	-0.05
65	32.72	1.89	1.93	-0.05
66	33.72	1.83	1.88	-0.05
67	34.72	1.78	1.82	-0.04
68	35.72	1.73	1.76	-0.04
69	36.72	1.67	1.71	-0.04
70	37.72	1.63	1.66	-0.03
71	38.72	1.58	1.61	-0.03
72	39.72	1.53	1.56	-0.03
73	40.72	1.49	1.51	-0.02
74	41.72	1.44	1.46	-0.02
75	42.72	1.40	1.42	-0.02
76	43.72	1.37	1.38	-0.01
77	44.72	1.33	1.33	-0.01
78	45.72	1.29	1.29	0.00
79	46.72	1.25	1.25	0.00
80	47.72	1.22	1.22	0.01
81	48.72	1.19	1.18	0.01
82	49.72	1.16	1.14	0.01
83	50.72	1.12	1.11	0.01
84	51.72	1.09	1.07	0.02
85	52.72	1.07	1.04	0.02
86	53.72	1.04	1.01	0.03
87	54.72	1.01	0.98	0.03
88	55.72	0.98	0.95	0.03
89	56.72	0.96	0.92	0.04
90	57.72	0.93	0.89	0.04
91	58.72	0.91	0.87	0.05

Index	Time	Obs. Displacement	Calc. Displacement	Residual
92	59.72	0.89	0.84	0.05

PT-MW-4 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addedum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-4 Falling Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

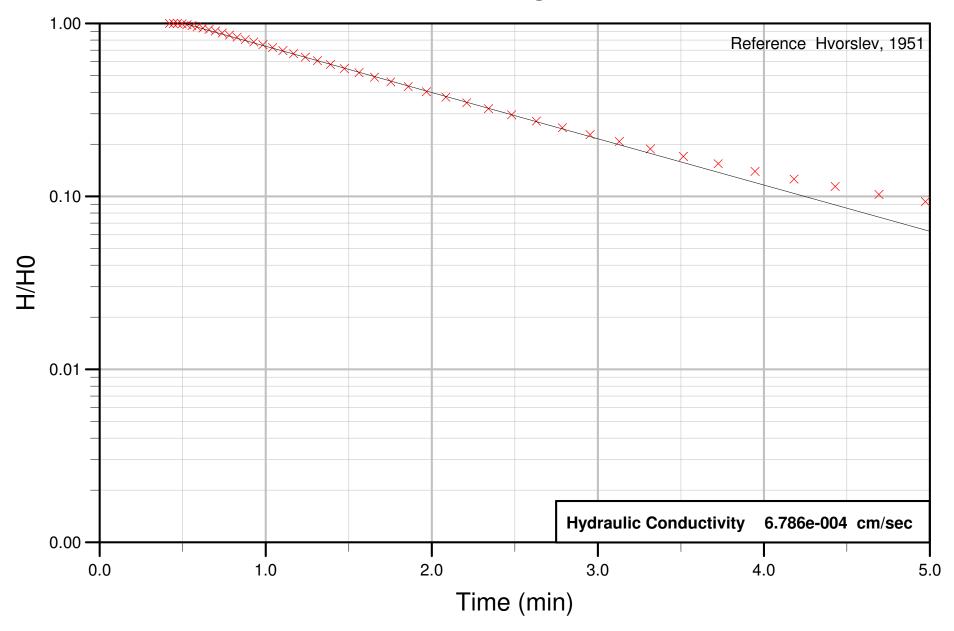
Number of Points = 94

Optimized Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 5.09 ft
Hydraulic Conductivity Calculated Value	= 4.72523e-005 cm/sec
Time to 37% Displacement Calculated Value	= 31.4689 min
Linear Regression Slope Fixed Value	= -0.0318165 /min
Linear Regression Intercep Fixed Value	= 1.007
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
± ±	-0.031816 /min 1.007002 dimensionless

Residual Mean	=	0.007963
Residual Standard Dev.	=	0.069374
Residual Sum of Squares	=	0.458363
Absolute Residual Mean	=	0.058401
Minimum Residual	=	-0.096134
Maximum Residual	=	0.132308


Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.93	5.09	4.98	0.11
1	0.98	5.09	4.97	0.12
2	1.04	5.09	4.96	0.13
3	1.10	5.08	4.95	0.13
4	1.17	5.07	4.94	0.13
5	1.24	5.06	4.93	0.13
6	1.31	5.05	4.92	0.13
7	1.39	5.03	4.90	0.13
8	1.47	5.02	4.89	0.13
9	1.56	5.00	4.88	0.12

Index	Time	Obs.	Calc.	Residual
10	1.65	Displacement 4.99	Displacement 4.86	0.12
11	1.75	4.96	4.85	0.12
12	1.86	4.94	4.83	0.11
13	1.97	4.92	4.81	0.11
14	2.08	4.90	4.80	0.10
15	2.00	4.88	4.78	0.10
16	2.34	4.85	4.76	0.09
17	2.48	4.82	4.74	0.09
18	2.63	4.80	4.71	0.08
19	2.03	4.77	4.69	0.08
20	2.95	4.74	4.67	0.07
21	3.13	4.71	4.64	0.07
22	3.32	4.68	4.61	0.06
23	3.51	4.64	4.58	0.06
24	3.72	4.60	4.55	0.05
25	3.95	4.57	4.52	0.05
26	4.18	4.53	4.49	0.04
27	4.43	4.48	4.45	0.03
28	4.69	4.44	4.41	0.03
29	4.97	4.40	4.38	0.02
30	5.27	4.35	4.33	0.02
31	5.58	4.30	4.29	0.01
32	5.91	4.25	4.25	0.00
33	6.27	4.20	4.20	0.00
34	6.64	4.14	4.15	-0.01
35	7.03	4.08	4.10	-0.02
36	7.45	4.02	4.04	-0.02
37	7.90	3.96	3.99	-0.03
38	8.37	3.90	3.93	-0.03
39	8.86	3.83	3.87	-0.03
40	9.39	3.76	3.80	-0.04
41	9.95	3.69	3.73	-0.04
42	10.54	3.62	3.67	-0.05
43	11.17	3.54	3.59	-0.05
44	11.83	3.46	3.52	-0.06
45	12.53	3.38	3.44	-0.06
46	13.28	3.29	3.36	-0.07
47	14.07	3.20	3.28	-0.07
48	14.91	3.11	3.19	-0.08
49	15.79	3.02	3.10	-0.08
50	16.73	2.92	3.01	-0.09

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	17.72	2.83	2.92	-0.09
52	18.72	2.73	2.83	-0.10
53	19.72	2.64	2.74	-0.10
54	20.72	2.56	2.65	-0.09
55	21.72	2.47	2.57	-0.09
56	22.72	2.40	2.49	-0.09
57	23.72	2.32	2.41	-0.09
58	24.72	2.25	2.33	-0.09
59	25.72	2.18	2.26	-0.08
60	26.72	2.12	2.19	-0.08
61	27.72	2.05	2.12	-0.07
62	28.72	1.99	2.06	-0.07
63	29.72	1.93	1.99	-0.06
64	30.72	1.87	1.93	-0.06
65	31.72	1.82	1.87	-0.05
66	32.72	1.76	1.81	-0.05
67	33.72	1.71	1.75	-0.04
68	34.72	1.66	1.70	-0.04
69	35.72	1.61	1.64	-0.04
70	36.72	1.56	1.59	-0.03
71	37.72	1.51	1.54	-0.03
72	38.72	1.47	1.50	-0.03
73	39.72	1.43	1.45	-0.02
74	40.72	1.39	1.40	-0.02
75	41.72	1.35	1.36	-0.01
76	42.72	1.31	1.32	-0.01
77	43.72	1.27	1.28	0.00
78	44.72	1.24	1.24	0.00
79	45.72	1.20	1.20	0.00
80	46.72	1.17	1.16	0.01
81	47.72	1.13	1.12	0.01
82	48.72	1.10	1.09	0.01
83	49.72	1.07	1.05	0.02
84	50.72	1.04	1.02	0.02
85	51.72	1.01	0.99	0.02
86	52.72	0.98	0.96	0.02
87	53.72	0.95	0.93	0.03
88	54.72	0.93	0.90	0.03
89	55.72	0.90	0.87	0.03
90	56.72	0.88	0.84	0.04
91	57.72	0.85	0.82	0.04

Index	Time	Obs. Displacement	Calc. Displacement	Residual
92	58.72	0.83	0.79	0.04
93	59.72	0.81	0.77	0.04

PT-MW-5 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-5 Falling Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 44

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.4 ft


Initial Displacement Fixed Value	= 4.544 ft
Hydraulic Conductivity Calculated Value	= 0.000678631 cm/sec
Time to 37% Displacement Calculated Value	= 2.12444 min
Linear Regression Slope Fixed Value	= -0.616806 /min
Linear Regression Intercept Fixed Value	= 1.37179
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	

Regression Line	
Slope:	-0.616806 /min
Intercept:	1.371785 dimensionless
Residual Mean	= 0.003369
Residual Standard Dev.	= 0.071678
Residual Sum of Squares	= 0.226562
Absolute Residual Mean	= 0.047611
Minimum Residual	= -0.267388
Maximum Residual	= 0.132842

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.42	4.54	4.81	-0.27
1	0.44	4.54	4.74	-0.20
2	0.47	4.54	4.67	-0.13
3	0.50	4.51	4.59	-0.08
4	0.52	4.46	4.51	-0.05
5	0.55	4.41	4.43	-0.02
6	0.59	4.34	4.34	0.00
7	0.62	4.27	4.25	0.02
8	0.66	4.19	4.15	0.03
9	0.70	4.10	4.06	0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.74	3.99	3.95	0.04
11	0.78	3.89	3.85	0.04
12	0.83	3.78	3.74	0.04
13	0.88	3.66	3.63	0.03
14	0.93	3.54	3.52	0.03
15	0.98	3.42	3.40	0.02
16	1.04	3.29	3.28	0.01
17	1.10	3.16	3.16	0.01
18	1.17	3.03	3.03	0.00
19	1.24	2.90	2.90	-0.01
20	1.31	2.77	2.78	-0.01
21	1.39	2.63	2.65	-0.02
22	1.47	2.49	2.51	-0.02
23	1.56	2.36	2.38	-0.02
24	1.65	2.22	2.25	-0.03
25	1.75	2.09	2.11	-0.03
26	1.86	1.96	1.98	-0.03
27	1.97	1.83	1.85	-0.02
28	2.08	1.70	1.72	-0.02
29	2.21	1.58	1.60	-0.02
30	2.34	1.46	1.47	-0.01
31	2.48	1.35	1.35	0.00
32	2.63	1.24	1.23	0.00
33	2.79	1.13	1.12	0.01
34	2.95	1.03	1.01	0.02
35	3.13	0.94	0.90	0.04
36	3.32	0.85	0.81	0.05
37	3.51	0.77	0.71	0.06
38	3.72	0.70	0.63	0.08
39	3.95	0.63	0.55	0.09
40	4.18	0.57	0.47	0.10
41	4.43	0.52	0.41	0.11
42	4.69	0.47	0.34	0.12
43	4.97	0.42	0.29	0.13

PT-MW-5 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-5 Falling Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

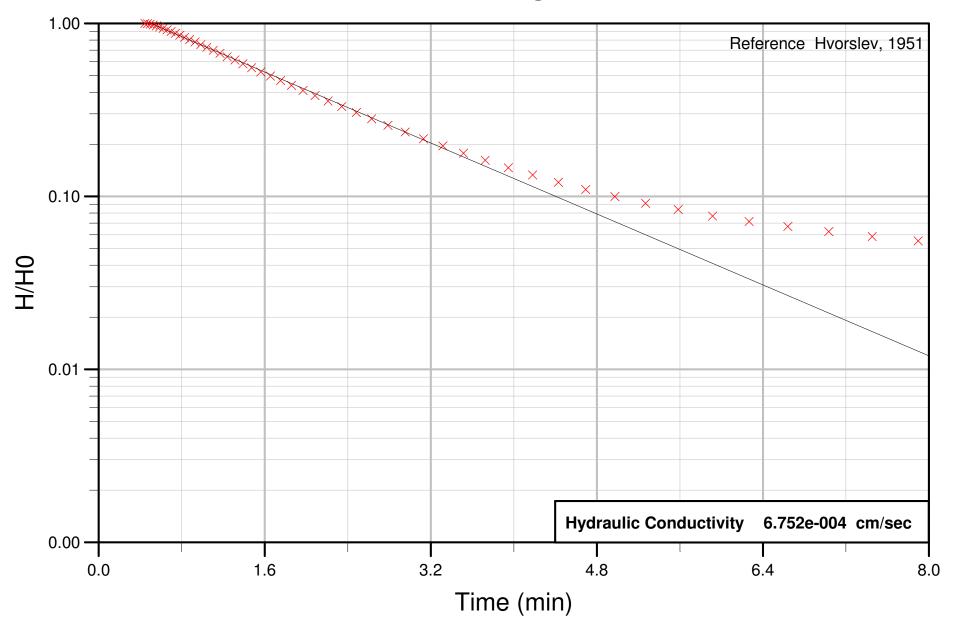
Simple Analysis - No Wells Defined

Number of Points = 54

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.4 ft

Initial Displacement Fixed Value	= 4.874 ft
Hydraulic Conductivity Calculated Value	= 0.000690398 cm/sec
Time to 37% Displacement Calculated Value	= 2.08823 min
Linear Regression Slope Fixed Value	= -0.593664 /min
Linear Regression Intercept Fixed Value	= 1.2782
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	


Regression Line			
Slope:		-0.593664	/min
Intercept:		1.278202	dimensionless
-			
Residual Mean	=	0.000427	
Residual Standard Dev.	=	0.105220	
Residual Sum of Squares	=	0.597853	
Absolute Residual Mean	=	0.082438	
Minimum Residual	=	-0.115517	
Maximum Residual	=	0.264635	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.37	4.87	4.99	-0.12
1	0.40	4.82	4.92	-0.10
2	0.42	4.79	4.86	-0.07
3	0.44	4.74	4.78	-0.04
4	0.47	4.69	4.71	-0.03
5	0.50	4.62	4.64	-0.02
6	0.52	4.55	4.56	-0.02
7	0.55	4.47	4.48	-0.01
8	0.59	4.39	4.40	-0.01
9	0.62	4.29	4.31	-0.02

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.66	4.19	4.22	-0.02
11	0.70	4.09	4.12	-0.03
12	0.74	3.98	4.02	-0.04
13	0.78	3.88	3.92	-0.04
14	0.83	3.76	3.81	-0.05
15	0.88	3.65	3.70	-0.05
16	0.93	3.54	3.59	-0.05
17	0.98	3.42	3.48	-0.06
18	1.04	3.30	3.36	-0.06
19	1.10	3.17	3.24	-0.07
20	1.17	3.04	3.11	-0.07
21	1.24	2.91	2.99	-0.08
22	1.31	2.78	2.86	-0.08
23	1.39	2.64	2.73	-0.09
24	1.47	2.51	2.60	-0.09
25	1.56	2.37	2.47	-0.09
26	1.65	2.24	2.33	-0.10
27	1.75	2.11	2.20	-0.09
28	1.86	1.98	2.07	-0.09
29	1.97	1.85	1.94	-0.09
30	2.08	1.72	1.81	-0.09
31	2.21	1.60	1.68	-0.08
32	2.34	1.48	1.55	-0.07
33	2.48	1.37	1.43	-0.06
34	2.63	1.26	1.31	-0.05
35	2.79	1.15	1.19	-0.04
36	2.95	1.05	1.08	-0.03
37	3.13	0.96	0.97	-0.01
38	3.32	0.87	0.87	0.00
39	3.51	0.80	0.77	0.02
40	3.72	0.72	0.68	0.04
41	3.95	0.65	0.60	0.05
42	4.18	0.59	0.52	0.07
43	4.43	0.53	0.45	0.08
44	4.69	0.48	0.38	0.10
45	4.97	0.45	0.33	0.12
46	5.27	0.42	0.27	0.15
47	5.58	0.40	0.23	0.18
48	5.91	0.39	0.19	0.20
49	6.27	0.37	0.15	0.22
50	6.64	0.36	0.12	0.24

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	7.03	0.35	0.10	0.25
52	7.45	0.33	0.07	0.26
53	7.90	0.32	0.06	0.26

PT-MW-5 Falling Head Test 4

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-5 Falling Test 4 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

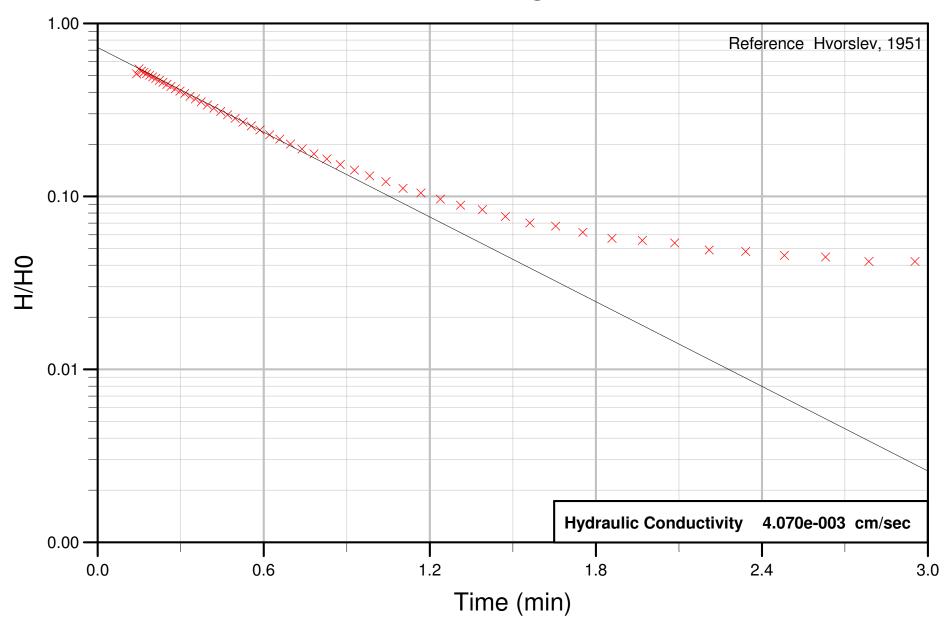
ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 51

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 15.4 ft


Initial Displacement Fixed Value	= 4.288 ft
Hydraulic Conductivity Calculated Value	= 0.000675164 cm/sec
Time to 37% Displacement Calculated Value	= 2.19076 min
Linear Regression Slope Fixed Value	= -0.591548 /min
Linear Regression Intercept Fixed Value	= 1.35214
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	

Regression Line Slope: -0.591548 /min Intercept: 1.352141 dimensionless Residual Mean = 0.014743 Residual Standard Dev. = 0.082148 Residual Sum of Squares = 0.355248 Absolute Residual Mean = 0.061512 Minimum Residual = -0.169405 Maximum Residual = 0.182713

Index	Time	Obs.	Calc.	Residual
	(!)	Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.44	4.29	4.46	-0.17
1	0.47	4.27	4.39	-0.12
2	0.50	4.24	4.32	-0.09
3	0.52	4.19	4.25	-0.06
4	0.55	4.14	4.18	-0.03
5	0.59	4.08	4.10	-0.02
6	0.62	4.01	4.01	0.00
7	0.66	3.93	3.93	0.00
8	0.70	3.85	3.84	0.01
9	0.74	3.76	3.75	0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.78	3.66	3.65	0.01
11	0.83	3.56	3.55	0.01
12	0.88	3.46	3.45	0.00
13	0.93	3.34	3.35	-0.01
14	0.98	3.23	3.24	-0.01
15	1.04	3.12	3.13	-0.02
16	1.10	3.00	3.02	-0.02
17	1.17	2.88	2.91	-0.03
18	1.24	2.75	2.79	-0.03
19	1.31	2.63	2.67	-0.04
20	1.39	2.50	2.55	-0.04
21	1.47	2.38	2.43	-0.05
22	1.56	2.25	2.30	-0.05
23	1.65	2.13	2.18	-0.05
24	1.75	2.00	2.06	-0.05
25	1.86	1.88	1.93	-0.05
26	1.97	1.76	1.81	-0.05
27	2.08	1.64	1.69	-0.05
28	2.21	1.53	1.57	-0.04
29	2.34	1.42	1.45	-0.03
30	2.48	1.31	1.34	-0.03
31	2.63	1.20	1.22	-0.02
32	2.79	1.10	1.12	-0.01
33	2.95	1.01	1.01	0.00
34	3.13	0.92	0.91	0.01
35	3.32	0.84	0.82	0.02
36	3.51	0.76	0.73	0.04
37	3.72	0.69	0.64	0.05
38	3.95	0.63	0.56	0.07
39	4.18	0.57	0.49	0.08
40	4.43	0.52	0.42	0.10
41	4.69	0.47	0.36	0.11
42	4.97	0.43	0.31	0.12
43	5.27	0.39	0.26	0.13
44	5.58	0.36	0.21	0.15
45	5.91	0.33	0.18	0.15
46	6.27	0.31	0.14	0.16
47 48	6.64	0.29	0.11	0.17
48	7.03	0.27	0.09	0.18
49 50	7.45	0.25	0.07	0.18
- 50	1.90	0.24	0.05	0.18

PT-MW-6 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Falling Test 1 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

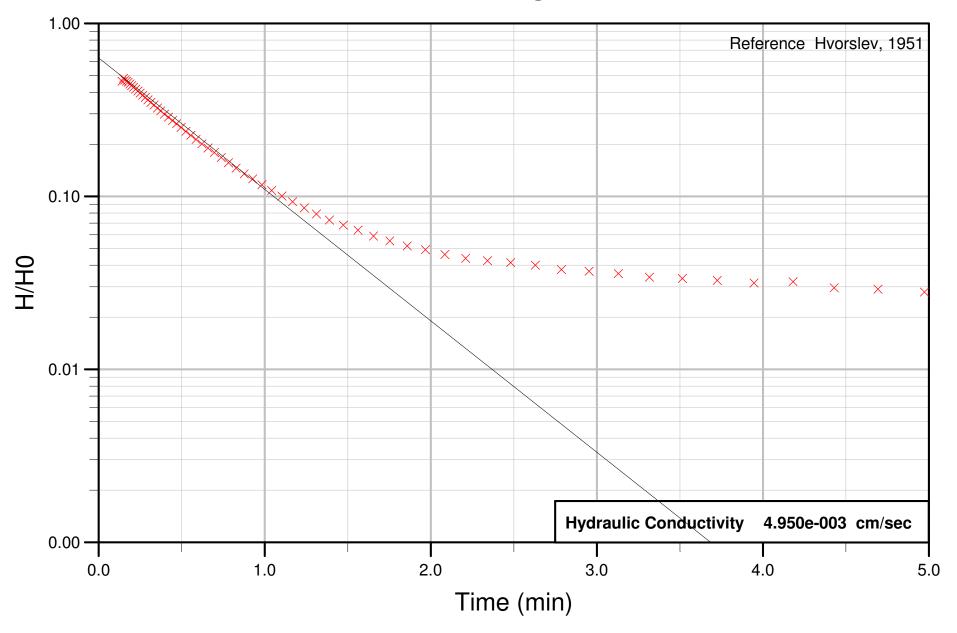
Simple Analysis - No Wells Defined

Number of Points = 60

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 3.164 ft
Hydraulic Conductivity Calculated Value	= 0.00406978 cm/sec
Time to 37% Displacement Calculated Value	= 0.359715 min
Linear Regression Slope Fixed Value	= -1.88065 /min
Linear Regression Intercept Fixed Value	= 0.72778
Calculation Type Selected Value	= Default


Regression Line	
Slope:	-1.880645 /min
Intercept:	0.727780 dimensionless
Residual Mean	= -0.161814
Residual Standard Dev.	= 0.567160
Residual Sum of Squares	= 20.871247
Absolute Residual Mean	= 0.235556
Minimum Residual	= -1.907924
Maximum Residual	= 0.124616

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.10	0.00	1.91	-1.91
1	0.11	0.00	1.89	-1.89
2	0.11	0.00	1.87	-1.87
3	0.12	0.00	1.84	-1.84
4	0.13	0.00	1.82	-1.82
5	0.13	0.00	1.79	-1.79
6	0.14	1.62	1.77	-0.15
7	0.15	1.73	1.74	-0.01
8	0.16	1.68	1.71	-0.04
9	0.17	1.65	1.68	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.18	1.62	1.65	-0.03
11	0.19	1.58	1.62	-0.03
12	0.20	1.55	1.59	-0.03
13	0.21	1.52	1.55	-0.03
14	0.22	1.48	1.52	-0.03
15	0.24	1.44	1.48	-0.03
16	0.25	1.40	1.44	-0.04
17	0.26	1.37	1.40	-0.03
18	0.28	1.32	1.36	-0.04
19	0.30	1.28	1.32	-0.03
20	0.31	1.24	1.27	-0.03
21	0.33	1.20	1.23	-0.03
22	0.35	1.16	1.19	-0.03
23	0.37	1.11	1.14	-0.03
24	0.40	1.07	1.09	-0.03
25	0.42	1.02	1.05	-0.02
26	0.44	0.98	1.00	-0.02
27	0.47	0.94	0.95	-0.02
28	0.50	0.89	0.91	-0.01
29	0.52	0.85	0.86	-0.01
30	0.55	0.81	0.81	0.00
31	0.59	0.77	0.76	0.00
32	0.62	0.72	0.72	0.00
33	0.66	0.68	0.67	0.01
34	0.70	0.64	0.62	0.01
35	0.74	0.59	0.57	0.02
36	0.78	0.56	0.53	0.03
37	0.83	0.52	0.49	0.03
38	0.88	0.48	0.44	0.04
39	0.93	0.45	0.40	0.05
40	0.98	0.42	0.36	0.05
41	1.04	0.39	0.32	0.06
42	1.10	0.35	0.29	0.06
43	1.17	0.33	0.26	0.07
44	1.24	0.31	0.22	0.08
45	1.31	0.28	0.20	0.09
46	1.39	0.27	0.17	0.10
47	1.47	0.24	0.14	0.10
48	1.56	0.22	0.12	0.10
49	1.65	0.21	0.10	0.11
50	1.75	0.20	0.09	0.11

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	1.86	0.18	0.07	0.11
52	1.97	0.18	0.06	0.12
53	2.08	0.17	0.05	0.12
54	2.21	0.16	0.04	0.12
55	2.34	0.15	0.03	0.12
56	2.48	0.14	0.02	0.12
57	2.63	0.14	0.02	0.12
58	2.79	0.13	0.01	0.12
59	2.95	0.13	0.01	0.12

PT-MW-6 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Falling Test 2 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

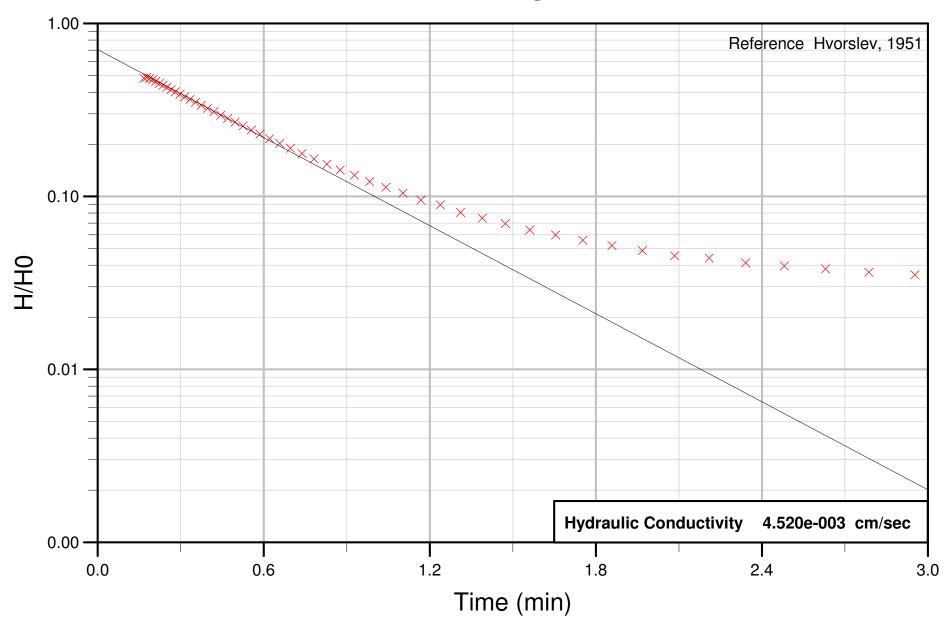
Simple Analysis - No Wells Defined

Number of Points = 63

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 3.579 ft
Hydraulic Conductivity Calculated Value	= 0.0049495 cm/sec
Time to 37% Displacement Calculated Value	= 0.303489 min
Linear Regression Slope Fixed Value	= -1.74876 /min
Linear Regression Intercept Fixed Value	= 0.629064
Calculation Type Selected Value	= Default


Regression Line				
Slope:	-1.748762 /min			
Intercept:	0.629064 dimensionless			
Residual Mean	= 0.021180			
Residual Standard Dev.	= 0.068773			
Residual Sum of Squares	= 0.326236			
Absolute Residual Mean	= 0.061999			
Minimum Residual	= -0.104960			
Maximum Residual	= 0.120340			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.14	1.66	1.76	-0.10
1	0.15	1.72	1.74	-0.01
2	0.16	1.68	1.71	-0.02
3	0.17	1.66	1.68	-0.02
4	0.18	1.63	1.65	-0.02
5	0.19	1.60	1.62	-0.03
6	0.20	1.56	1.59	-0.03
7	0.21	1.53	1.56	-0.03
8	0.22	1.49	1.53	-0.03
9	0.24	1.45	1.49	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.25	1.41	1.45	-0.04
11	0.26	1.37	1.42	-0.04
12	0.28	1.33	1.38	-0.05
13	0.30	1.29	1.34	-0.05
14	0.31	1.25	1.30	-0.05
15	0.33	1.21	1.26	-0.05
16	0.35	1.16	1.21	-0.05
17	0.37	1.12	1.17	-0.05
18	0.40	1.07	1.13	-0.06
19	0.42	1.03	1.08	-0.05
20	0.44	0.98	1.03	-0.05
21	0.47	0.94	0.99	-0.05
22	0.50	0.90	0.95	-0.05
23	0.52	0.85	0.90	-0.05
24	0.55	0.81	0.85	-0.05
25	0.59	0.76	0.81	-0.04
26	0.62	0.72	0.76	-0.04
27	0.66	0.68	0.71	-0.03
28	0.70	0.64	0.67	-0.03
29	0.74	0.60	0.62	-0.02
30	0.78	0.56	0.57	-0.02
31	0.83	0.52	0.53	-0.01
32	0.88	0.48	0.49	0.00
33	0.93	0.45	0.44	0.01
34	0.98	0.42	0.40	0.01
35	1.04	0.39	0.36	0.02
36	1.10	0.36	0.33	0.03
37	1.17	0.33	0.29	0.04
38	1.24	0.31	0.26	0.05
39	1.31	0.28	0.23	0.06
40	1.39	0.26	0.20	0.06
41	1.47	0.24	0.17	0.07
42	1.56	0.23	0.15	0.08
43	1.65	0.21	0.12	0.09
44	1.75	0.20	0.10	0.09
45	1.86	0.19	0.09	0.10
46	1.97	0.18	0.07	0.10
47	2.08	0.17	0.06	0.11
48	2.21	0.16	0.05	0.11
49	2.34	0.15	0.04	0.11
50	2.48	0.15	0.03	0.12

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	2.63	0.14	0.02	0.12
52	2.79	0.14	0.02	0.12
53	2.95	0.13	0.01	0.12
54	3.13	0.13	0.01	0.12
55	3.32	0.12	0.01	0.12
56	3.51	0.12	0.00	0.12
57	3.72	0.12	0.00	0.11
58	3.95	0.11	0.00	0.11
59	4.18	0.12	0.00	0.11
60	4.43	0.11	0.00	0.11
61	4.69	0.10	0.00	0.10
62	4.97	0.10	0.00	0.10

PT-MW-6 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Falling Test 3 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

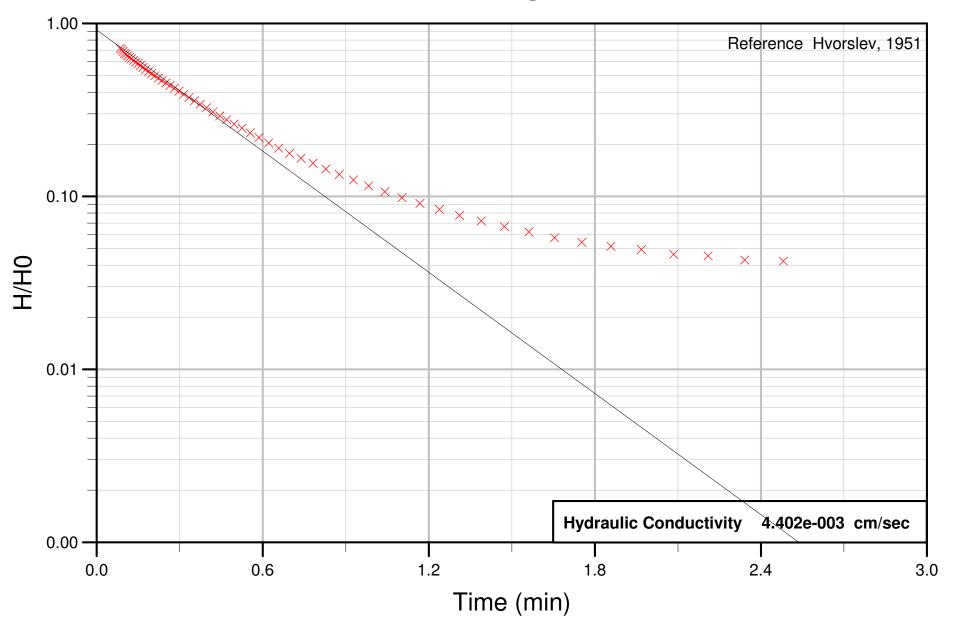
ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 51

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 15.1 ft


Initial Displacement Fixed Value	= 3.464 ft
Hydraulic Conductivity Calculated Value	= 0.00451969 cm/sec
Time to 37% Displacement Calculated Value	= 0.332349 min
Linear Regression Slope Fixed Value	= -1.95236 /min
Linear Regression Intercept Fixed Value	= 0.707946
Calculation Type Selected Value	= Default

Regression Line				
Slope:	-1.952358 /min			
Intercept:	0.707946 dimensionless			
Residual Mean	= 0.035465			
Residual Standard Dev.	= 0.060168			
Residual Sum of Squares	= 0.248777			
Absolute Residual Mean	= 0.056622			
Minimum Residual	= -0.099023			
Maximum Residual	= 0.119192			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.17	1.67	1.77	-0.10
1	0.18	1.69	1.74	-0.05
2	0.19	1.67	1.70	-0.04
3	0.20	1.64	1.66	-0.03
4	0.21	1.60	1.63	-0.03
5	0.22	1.56	1.59	-0.03
6	0.24	1.52	1.55	-0.03
7	0.25	1.48	1.51	-0.03
8	0.26	1.43	1.46	-0.03
9	0.28	1.39	1.42	-0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.30	1.35	1.37	-0.03
11	0.31	1.30	1.33	-0.03
12	0.33	1.26	1.28	-0.02
13	0.35	1.21	1.23	-0.02
14	0.37	1.16	1.18	-0.02
15	0.40	1.12	1.13	-0.01
16	0.42	1.07	1.08	-0.01
17	0.44	1.02	1.03	-0.01
18	0.47	0.98	0.98	0.00
19	0.50	0.93	0.93	0.00
20	0.52	0.88	0.88	0.00
21	0.55	0.84	0.83	0.01
22	0.59	0.79	0.78	0.01
23	0.62	0.75	0.73	0.02
24	0.66	0.70	0.68	0.02
25	0.70	0.66	0.63	0.03
26	0.74	0.61	0.58	0.03
27	0.78	0.57	0.53	0.04
28	0.83	0.53	0.49	0.04
29	0.88	0.49	0.44	0.05
30	0.93	0.46	0.40	0.06
31	0.98	0.42	0.36	0.06
32	1.04	0.39	0.32	0.07
33	1.10	0.36	0.28	0.08
34	1.17	0.33	0.25	0.08
35	1.24	0.31	0.22	0.09
36	1.31	0.28	0.19	0.09
37	1.39	0.26	0.16	0.10
38	1.47	0.24	0.14	0.10
39	1.56	0.22	0.12	0.11
40	1.65	0.21	0.10	0.11
41	1.75	0.19	0.08	0.11
42	1.86	0.18	0.07	0.11
43	1.97	0.17	0.05	0.12
44	2.08	0.16	0.04	0.12
45	2.21	0.15	0.03	0.12
46	2.34	0.14	0.03	0.12
47	2.48	0.14	0.02	0.12
48	2.63	0.13	0.01	0.12
49	2.79	0.13	0.01	0.12
50	2.95	0.12	0.01	0.11

PT-MW-6 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Rising Test 1 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

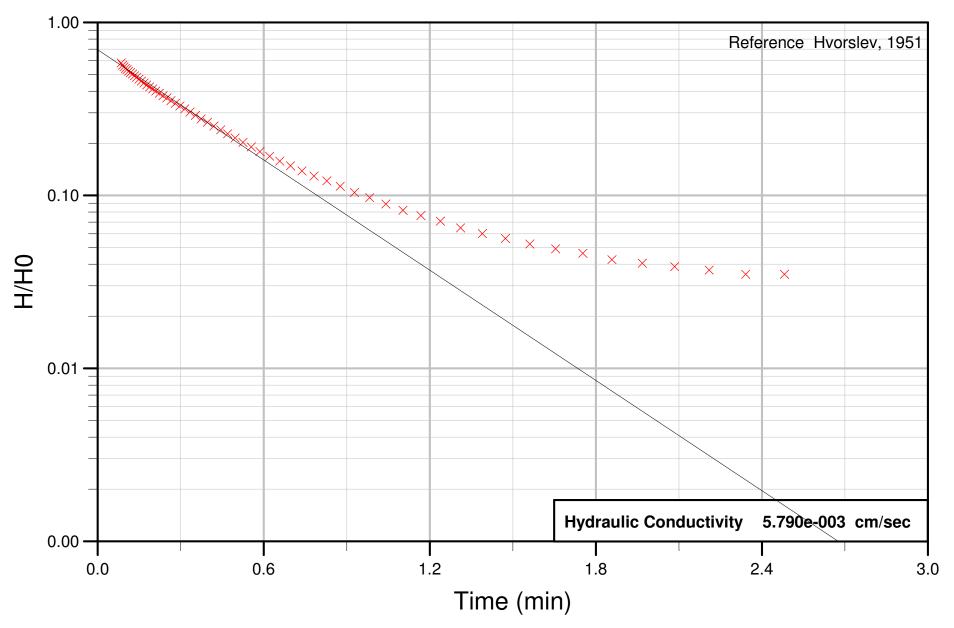
Simple Analysis - No Wells Defined

Number of Points = 60

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 3.245 ft
Hydraulic Conductivity Calculated Value	= 0.00440229 cm/sec
Time to 37% Displacement Calculated Value	= 0.336868 min
Linear Regression Slope Fixed Value	= -2.68659 /min
Linear Regression Intercept Fixed Value	= 0.914638
Calculation Type Selected Value	= Default


Regression Line				
Slope:	-2.686585 /min			
Intercept:	0.914638 dimensionless			
Residual Mean	= 0.041780			
Residual Standard Dev.	= 0.100676			
Residual Sum of Squares	= 0.712873			
Absolute Residual Mean	= 0.097921			
Minimum Residual	= -0.097852			
Maximum Residual	= 0.166339			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.08	2.32	2.36	-0.04
1	0.09	2.28	2.33	-0.05
2	0.10	2.23	2.30	-0.07
3	0.10	2.18	2.27	-0.09
4	0.11	2.15	2.23	-0.09
5	0.11	2.11	2.20	-0.09
6	0.12	2.07	2.16	-0.09
7	0.13	2.02	2.12	-0.09
8	0.13	1.98	2.08	-0.09
9	0.14	1.94	2.03	-0.10

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.15	1.90	1.99	-0.09
11	0.16	1.85	1.94	-0.09
12	0.17	1.81	1.90	-0.09
13	0.18	1.76	1.85	-0.09
14	0.19	1.71	1.79	-0.08
15	0.20	1.66	1.74	-0.08
16	0.21	1.61	1.69	-0.07
17	0.22	1.57	1.63	-0.07
18	0.24	1.52	1.58	-0.06
19	0.25	1.47	1.52	-0.05
20	0.26	1.42	1.46	-0.04
21	0.28	1.37	1.40	-0.03
22	0.30	1.31	1.34	-0.02
23	0.31	1.26	1.28	-0.01
24	0.33	1.21	1.21	0.00
25	0.35	1.16	1.15	0.01
26	0.37	1.11	1.09	0.02
27	0.40	1.06	1.02	0.03
28	0.42	1.00	0.96	0.04
29	0.44	0.95	0.90	0.05
30	0.47	0.90	0.84	0.06
31	0.50	0.85	0.78	0.07
32	0.52	0.80	0.72	0.08
33	0.55	0.76	0.67	0.09
34	0.59	0.71	0.61	0.10
35	0.62	0.66	0.56	0.10
36	0.66	0.62	0.51	0.11
37	0.70	0.58	0.46	0.12
38	0.74	0.54	0.41	0.13
39	0.78	0.50	0.36	0.14
40	0.83	0.47	0.32	0.15
41	0.88	0.43	0.28	0.15
42	0.93	0.40	0.25	0.16
43	0.98	0.37	0.21	0.16
44	1.04	0.35	0.18	0.16
45	1.10	0.32	0.15	0.17
46	1.17	0.30	0.13	0.17
47	1.24	0.27	0.11	0.17
48	1.31	0.25	0.09	0.16
49	1.39	0.23	0.07	0.16
50	1.47	0.22	0.06	0.16

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	1.56	0.20	0.04	0.16
52	1.65	0.19	0.03	0.15
53	1.75	0.18	0.03	0.15
54	1.86	0.17	0.02	0.15
55	1.97	0.16	0.02	0.14
56	2.08	0.15	0.01	0.14
57	2.21	0.15	0.01	0.14
58	2.34	0.14	0.01	0.13
59	2.48	0.14	0.00	0.13

PT-MW-6 Rising Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Rising Test 2 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

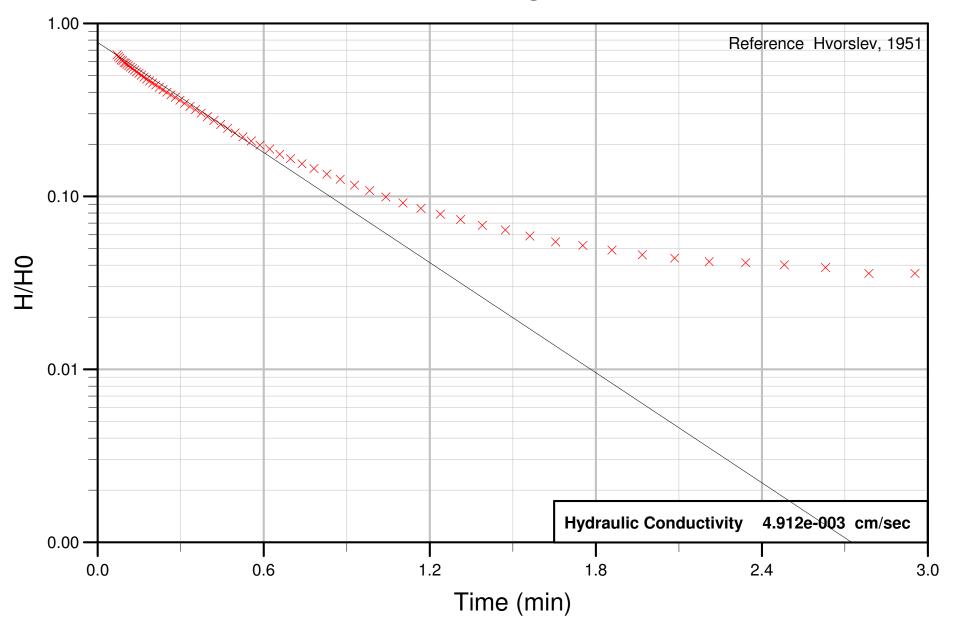
Simple Analysis - No Wells Defined

Number of Points = 60

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 3.977 ft
Hydraulic Conductivity Calculated Value	= 0.00578954 cm/sec
Time to 37% Displacement Calculated Value	= 0.25615 min
Linear Regression Slope Fixed Value	= -2.44223 /min
Linear Regression Intercept Fixed Value	= 0.691651
Calculation Type Selected Value	= Default


Regression Line	
Slope:	-2.442234 /min
Intercept:	0.691651 dimensionless
Residual Mean	= 0.046498
Residual Standard Dev.	= 0.076239
Residual Sum of Squares	= 0.478472
Absolute Residual Mean	= 0.073535
Minimum Residual	= -0.059159
Maximum Residual	= 0.148609

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.08	2.32	2.24	0.08
1	0.09	2.25	2.21	0.04
2	0.10	2.20	2.18	0.02
3	0.10	2.15	2.15	0.00
4	0.11	2.12	2.12	0.00
5	0.11	2.07	2.09	-0.02
6	0.12	2.04	2.06	-0.02
7	0.13	2.00	2.02	-0.03
8	0.13	1.95	1.99	-0.04
9	0.14	1.91	1.95	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.15	1.87	1.91	-0.05
11	0.16	1.82	1.87	-0.05
12	0.17	1.77	1.83	-0.06
13	0.18	1.73	1.79	-0.06
14	0.19	1.68	1.74	-0.06
15	0.20	1.64	1.69	-0.06
16	0.21	1.59	1.65	-0.05
17	0.22	1.55	1.60	-0.05
18	0.24	1.50	1.55	-0.05
19	0.25	1.45	1.49	-0.04
20	0.26	1.40	1.44	-0.04
21	0.28	1.35	1.39	-0.03
22	0.30	1.31	1.33	-0.02
23	0.31	1.26	1.28	-0.02
24	0.33	1.21	1.22	-0.01
25	0.35	1.15	1.16	-0.01
26	0.37	1.10	1.10	0.00
27	0.40	1.05	1.04	0.01
28	0.42	1.00	0.99	0.01
29	0.44	0.95	0.93	0.02
30	0.47	0.90	0.87	0.03
31	0.50	0.85	0.82	0.04
32	0.52	0.81	0.76	0.04
33	0.55	0.76	0.71	0.05
34	0.59	0.71	0.66	0.05
35	0.62	0.67	0.60	0.07
36	0.66	0.63	0.55	0.08
37	0.70	0.59	0.50	0.09
38	0.74	0.55	0.45	0.10
39	0.78	0.51	0.41	0.11
40	0.83	0.48	0.36	0.12
41	0.88	0.45	0.32	0.13
42	0.93	0.41	0.29	0.13
43	0.98	0.39	0.25	0.14
44	1.04	0.35	0.22	0.14
45	1.10	0.33	0.19	0.14
46	1.17	0.30	0.16	0.15
47	1.24	0.28	0.13	0.15
48	1.31	0.26	0.11	0.15
49	1.39	0.24	0.09	0.15
50	1.47	0.22	0.08	0.15

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	1.56	0.21	0.06	0.15
52	1.65	0.20	0.05	0.15
53	1.75	0.18	0.04	0.15
54	1.86	0.17	0.03	0.14
55	1.97	0.16	0.02	0.14
56	2.08	0.15	0.02	0.14
57	2.21	0.15	0.01	0.13
58	2.34	0.14	0.01	0.13
59	2.48	0.14	0.01	0.13

PT-MW-6 Rising Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-6 Rising Test 3 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 66

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 3.46 ft
Hydraulic Conductivity Calculated Value	= 0.00491203 cm/sec
Time to 37% Displacement Calculated Value	= 0.30191 min
Linear Regression Slope Fixed Value	= -2.43922 /min
Linear Regression Intercept Fixed Value	= 0.772729
Calculation Type Selected Value	= Default

Regression Line						
Slope:	-2.439222 /min					
Intercept:	0.772729 dimensionless					
Residual Mean	= 0.027035					
Residual Standard Dev.	= 0.089854					
Residual Sum of Squares	= 0.581107					
Absolute Residual Mean	= 0.082843					
Minimum Residual	= -0.089073					
Maximum Residual	= 0.147395					

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.07	2.28	2.25	0.03
1	0.08	2.23	2.23	0.00
2	0.08	2.18	2.20	-0.02
3	0.08	2.13	2.17	-0.05
4	0.09	2.11	2.15	-0.04
5	0.10	2.05	2.12	-0.07
6	0.10	2.04	2.09	-0.05
7	0.11	2.01	2.07	-0.06
8	0.11	1.97	2.04	-0.07
9	0.12	1.94	2.00	-0.07

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.13	1.89	1.97	-0.07
11	0.13	1.86	1.93	-0.08
12	0.14	1.81	1.90	-0.08
13	0.15	1.78	1.86	-0.08
14	0.16	1.73	1.82	-0.09
15	0.17	1.69	1.78	-0.09
16	0.18	1.65	1.74	-0.09
17	0.19	1.61	1.69	-0.09
18	0.20	1.56	1.65	-0.08
19	0.21	1.52	1.60	-0.08
20	0.22	1.48	1.55	-0.08
21	0.24	1.43	1.50	-0.07
22	0.25	1.38	1.45	-0.07
23	0.26	1.34	1.40	-0.06
24	0.28	1.29	1.35	-0.06
25	0.30	1.24	1.30	-0.05
26	0.31	1.19	1.24	-0.05
27	0.33	1.15	1.19	-0.04
28	0.35	1.10	1.13	-0.03
29	0.37	1.05	1.07	-0.03
30	0.40	1.00	1.02	-0.02
31	0.42	0.95	0.96	-0.01
32	0.44	0.90	0.90	-0.01
33	0.47	0.86	0.85	0.00
34	0.50	0.81	0.80	0.01
35	0.52	0.76	0.74	0.02
36	0.55	0.72	0.69	0.03
37	0.59	0.68	0.64	0.04
38	0.62	0.65	0.59	0.06
39	0.66	0.61	0.54	0.07
40	0.70	0.57	0.49	0.08
41	0.74	0.53	0.44	0.09
42	0.78	0.50	0.40	0.10
43	0.83	0.47	0.35	0.11
44	0.88	0.43	0.32	0.12
45	0.93	0.40	0.28	0.12
46	0.98	0.37	0.24	0.13
47	1.04	0.34	0.21	0.13
48	1.10	0.32	0.18	0.14
49	1.17	0.30	0.15	0.14
50	1.24	0.27	0.13	0.14

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.31	0.25	0.11	0.14
52	1.39	0.24	0.09	0.14
53	1.47	0.22	0.07	0.15
54	1.56	0.20	0.06	0.14
55	1.65	0.19	0.05	0.14
56	1.75	0.18	0.04	0.14
57	1.86	0.17	0.03	0.14
58	1.97	0.16	0.02	0.14
59	2.08	0.15	0.02	0.14
60	2.21	0.15	0.01	0.13
61	2.34	0.14	0.01	0.13
62	2.48	0.14	0.01	0.13
63	2.63	0.13	0.00	0.13
64	2.79	0.12	0.00	0.12
65	2.95	0.12	0.00	0.12

PT-MW-7 Falling Head Test 1 1.00 -****** Reference Hvorslev, 1951 X X X X Х 0.10 -0H/H 0.01 -Hydraulic Conductivity 2.231e-004 cm/sec 0.00 -2.0 6.0 0.0 4.0 8.0 10.0 Time (min)

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-7 Falling Test 1 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

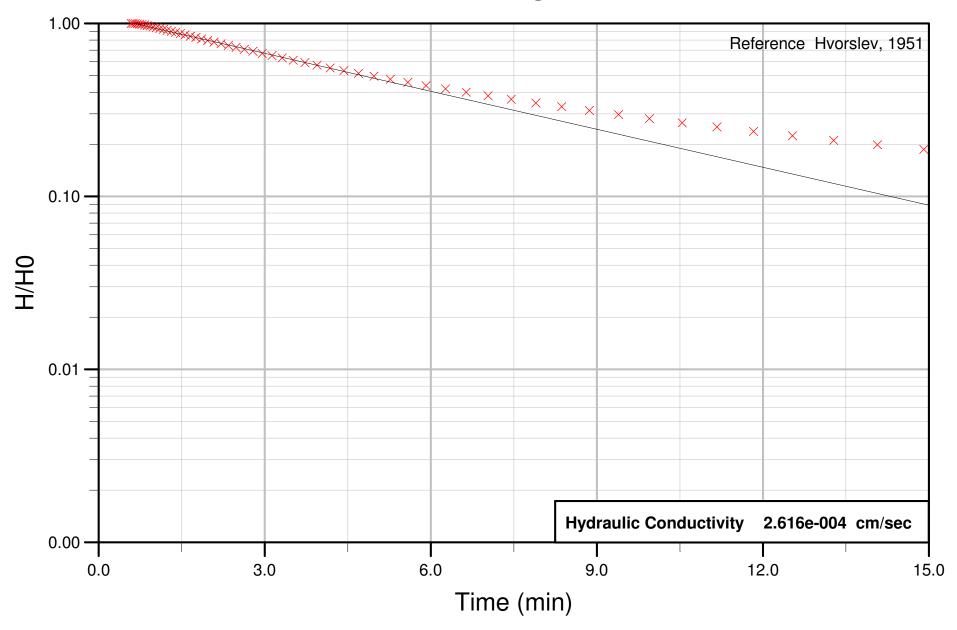
Simple Analysis - No Wells Defined

Number of Points = 52

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 4.548 ft
Hydraulic Conductivity Calculated Value	= 0.000223141 cm/sec
Time to 37% Displacement Calculated Value	= 6.646 min
Linear Regression Slope Fixed Value	= -0.162102 /min
Linear Regression Intercept Fixed Value	= 1.08663
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line Slope: -	-0.162102 /min


	Regression Line			
	Slope:		-0.162102	/min
	Intercept:		1.086626	dimensionless
	Residual Mean	=	0.003562	
	Residual Standard Dev.	=	0.086376	
	Residual Sum of Squares	=	0.388619	
	Absolute Residual Mean	=	0.069403	
Minimum Residual		=	-0.105029	
	Maximum Residual	=	0.242988	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.52	4.55	4.54	0.01
1	0.55	4.54	4.52	0.03
2	0.59	4.54	4.49	0.04
3	0.62	4.52	4.47	0.05
4	0.66	4.50	4.44	0.05
5	0.70	4.47	4.41	0.06
6	0.74	4.44	4.38	0.05
7	0.78	4.41	4.35	0.06
8	0.83	4.38	4.32	0.05
9	0.88	4.34	4.29	0.05

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.93	4.29	4.25	0.04
11	0.98	4.25	4.21	0.03
12	1.04	4.20	4.17	0.03
13	1.10	4.15	4.13	0.02
14	1.17	4.10	4.09	0.01
15	1.24	4.05	4.04	0.00
16	1.31	3.99	4.00	-0.01
17	1.39	3.93	3.95	-0.02
18	1.47	3.87	3.89	-0.03
19	1.56	3.80	3.84	-0.04
20	1.65	3.73	3.78	-0.05
21	1.75	3.66	3.72	-0.06
22	1.86	3.59	3.66	-0.06
23	1.97	3.52	3.59	-0.07
24	2.08	3.45	3.52	-0.08
25	2.21	3.37	3.45	-0.09
26	2.34	3.29	3.38	-0.09
27	2.48	3.21	3.31	-0.10
28	2.63	3.13	3.23	-0.10
29	2.79	3.04	3.15	-0.10
30	2.95	2.96	3.06	-0.11
31	3.13	2.87	2.98	-0.10
32	3.32	2.79	2.89	-0.10
33	3.51	2.70	2.80	-0.10
34	3.72	2.61	2.70	-0.09
35	3.95	2.52	2.61	-0.08
36	4.18	2.44	2.51	-0.07
37	4.43	2.35	2.41	-0.06
38	4.69	2.26	2.31	-0.05
39	4.97	2.17	2.21	-0.03
40	5.27	2.09	2.10	-0.02
41	5.58	2.00	2.00	0.00
42	5.91	1.92	1.89	0.02
43	6.27	1.83	1.79	0.04
44	6.64	1.75	1.68	0.07
45	7.03	1.67	1.58	0.09
46	7.45	1.59	1.48	0.12
47	7.90	1.52	1.37	0.14
48	8.37	1.44	1.27	0.17
49	8.86	1.37	1.17	0.19
50	9.39	1.30	1.08	0.22

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	9.95	1.23	0.99	0.24

PT-MW-7 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-7 Falling Test 2 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

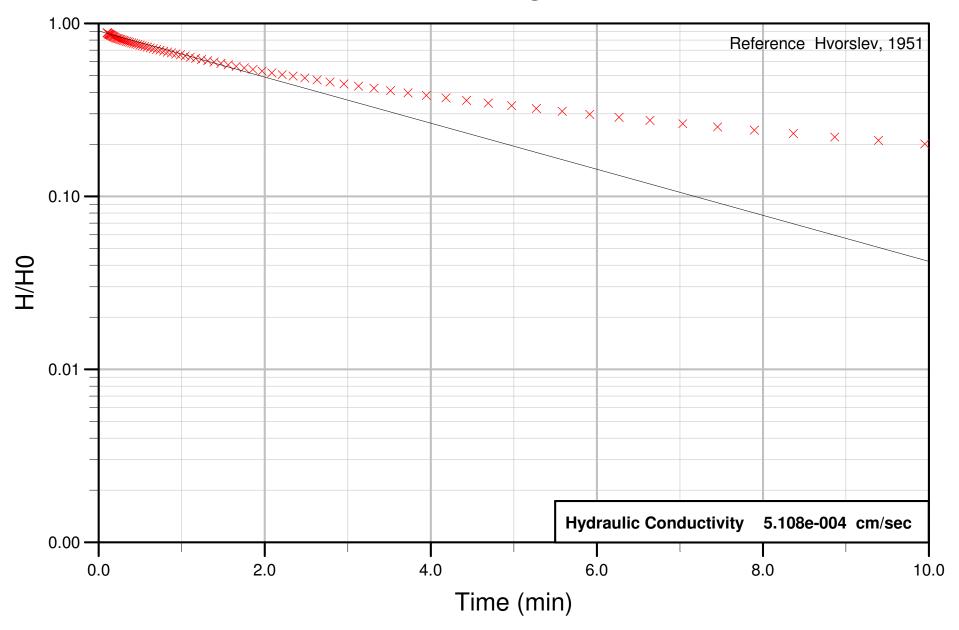
Simple Analysis - No Wells Defined

Number of Points = 57

Manual Match

Casing Inner Diameter Fixed Value	= 0.297 ft
Screen Inner Diameter Fixed Value	= 0.297 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 4.632 ft
Hydraulic Conductivity Calculated Value	= 0.000261598 cm/sec
Time to 37% Displacement Calculated Value	= 6.55379 min
Linear Regression Slope Fixed Value	= -0.168588 /min
Linear Regression Intercept Fixed Value	= 1.11699
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line				
Slope:	-0.168588 /min			
Intercept:	1.116988 dimensionless			
Residual Mean	= 0.090178			
Residual Standard Dev.	= 0.152081			
Residual Sum of Squares	= 1.781866			
Absolute Residual Mean	= 0.110169			
Minimum Residual	= -0.055026			
Maximum Residual	= 0.446787			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.59	4.63	4.69	-0.06
1	0.62	4.63	4.66	-0.03
2	0.66	4.61	4.63	-0.02
3	0.70	4.60	4.60	0.00
4	0.74	4.58	4.57	0.01
5	0.78	4.56	4.54	0.02
6	0.83	4.53	4.50	0.03
7	0.88	4.50	4.46	0.03
8	0.93	4.46	4.42	0.03
9	0.98	4.42	4.38	0.03

Index	Time	Obs.	Calc.	Residual
10	1.04	Displacement 4.37	Displacement 4.34	0.03
11	1.10	4.33	4.30	0.03
12	1.17	4.28	4.25	0.03
13	1.24	4.20	4.20	0.03
14	1.31	4.17	4.15	0.02
15	1.39	4.10	4.09	0.02
16	1.47	4.04	4.04	0.00
17	1.56	3.98	3.98	0.00
18	1.65	3.91	3.91	-0.01
19	1.05	3.84	3.85	-0.01
20	1.86	3.76	3.78	-0.02
21	1.00	3.69	3.71	-0.03
22	2.08	3.61	3.64	-0.03
23	2.00	3.53	3.56	-0.04
24	2.34	3.45	3.49	-0.04
25	2.48	3.36	3.41	-0.04
26	2.63	3.28	3.32	-0.04
27	2.03	3.19	3.23	-0.04
28	2.95	3.10	3.14	-0.04
29	3.13	3.02	3.05	-0.04
30	3.32	2.93	2.96	-0.03
31	3.51	2.84	2.86	-0.02
32	3.72	2.74	2.76	-0.02
33	3.95	2.65	2.66	-0.01
34	4.18	2.56	2.56	0.01
35	4.43	2.47	2.45	0.02
36	4.69	2.38	2.35	0.04
37	4.97	2.29	2.24	0.05
38	5.27	2.20	2.13	0.07
39	5.58	2.11	2.02	0.09
40	5.91	2.02	1.91	0.11
41	6.27	1.94	1.80	0.14
42	6.64	1.85	1.69	0.16
43	7.03	1.77	1.58	0.19
44	7.45	1.69	1.47	0.21
45	7.90	1.61	1.37	0.24
46	8.37	1.53	1.26	0.27
47	8.86	1.45	1.16	0.29
48	9.39	1.38	1.06	0.31
49	9.95	1.30	0.97	0.34
50	10.54	1.23	0.88	0.36

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	11.17	1.17	0.79	0.38
52	11.83	1.10	0.70	0.40
53	12.53	1.04	0.63	0.41
54	13.28	0.98	0.55	0.42
55	14.07	0.92	0.48	0.44
56	14.91	0.87	0.42	0.45

PT-MW-7 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-MW-7 Rising Test 1 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

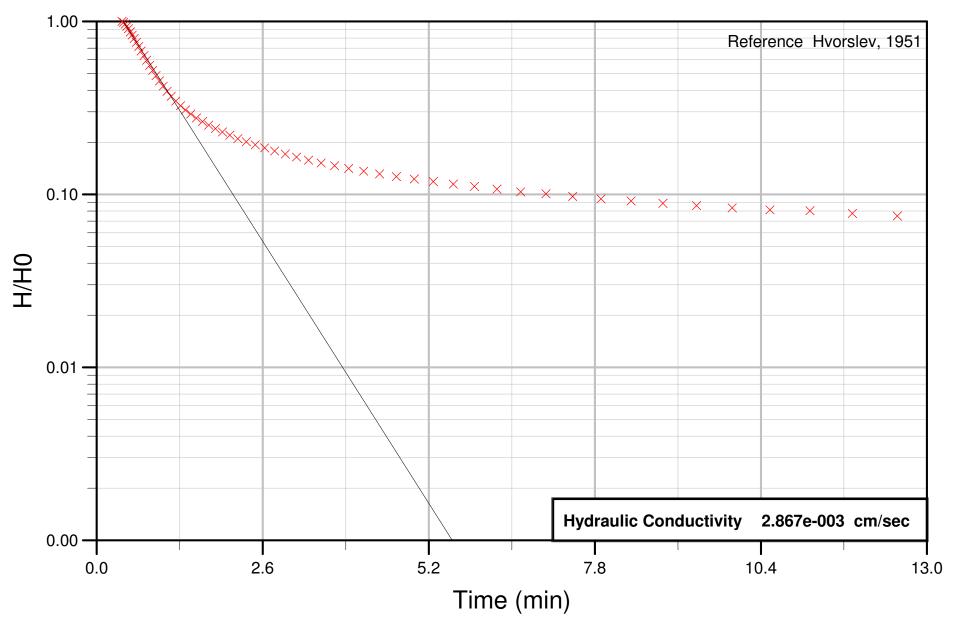
Simple Analysis - No Wells Defined

Number of Points = 81

Manual Match

Casing Inner Diameter Fixed Value	= 0.278 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.1 ft

Initial Displacement Fixed Value	= 2.478 ft
Hydraulic Conductivity Calculated Value	= 0.000510798 cm/sec
Time to 37% Displacement Calculated Value	= 2.90329 min
Linear Regression Slope Fixed Value	= -0.305705 /min
Linear Regression Intercept Fixed Value	= 0.898793
Calculation Type Selected Value	= Default


Regression Line	
Slope:	-0.305705 /min
Intercept:	0.898793 dimensionless
Residual Mean	= 0.086963
Residual Standard Dev.	= 0.164803
Residual Sum of Squares	= 2.812535
Absolute Residual Mean	= 0.129024
Minimum Residual	= -0.062582
Maximum Residual	= 0.399416

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.10	2.19	2.16	0.03
1	0.11	2.19	2.16	0.03
2	0.11	2.17	2.15	0.01
3	0.12	2.15	2.15	0.01
4	0.13	2.14	2.14	0.00
5	0.13	2.13	2.14	-0.01
6	0.14	2.12	2.13	-0.01
7	0.15	2.11	2.13	-0.02
8	0.16	2.10	2.12	-0.02
9	0.17	2.09	2.12	-0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.18	2.08	2.11	-0.03
11	0.19	2.06	2.10	-0.04
12	0.20	2.05	2.10	-0.04
13	0.21	2.03	2.09	-0.06
14	0.22	2.03	2.08	-0.05
15	0.24	2.02	2.07	-0.05
16	0.25	2.01	2.06	-0.05
17	0.26	2.00	2.05	-0.06
18	0.28	1.99	2.04	-0.06
19	0.30	1.97	2.03	-0.06
20	0.31	1.96	2.02	-0.06
21	0.33	1.95	2.01	-0.06
22	0.35	1.94	2.00	-0.06
23	0.37	1.92	1.99	-0.06
24	0.40	1.91	1.97	-0.06
25	0.42	1.90	1.96	-0.06
26	0.44	1.88	1.94	-0.06
27	0.47	1.87	1.93	-0.06
28	0.50	1.85	1.91	-0.06
29	0.52	1.84	1.90	-0.06
30	0.55	1.82	1.88	-0.06
31	0.59	1.81	1.86	-0.06
32	0.62	1.79	1.84	-0.05
33	0.66	1.77	1.82	-0.05
34	0.70	1.75	1.80	-0.05
35	0.74	1.73	1.78	-0.04
36	0.78	1.71	1.75	-0.04
37	0.83	1.69	1.73	-0.04
38	0.88	1.67	1.70	-0.03
39	0.93	1.65	1.68	-0.03
40	0.98	1.63	1.65	-0.02
41	1.04	1.61	1.62	-0.02
42	1.10	1.58	1.59	-0.01
43	1.17	1.56	1.56	0.00
44	1.24	1.53	1.53	0.01
45	1.31	1.51	1.49	0.02
46	1.39	1.48	1.46	0.02
47	1.47	1.45	1.42	0.03
48	1.56	1.43	1.38	0.05
49	1.65	1.40	1.34	0.05
50	1.75	1.37	1.30	0.07

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.86	1.34	1.26	0.08
52	1.97	1.31	1.22	0.09
53	2.08	1.28	1.18	0.10
54	2.21	1.25	1.13	0.12
55	2.34	1.23	1.09	0.14
56	2.48	1.20	1.04	0.16
57	2.63	1.17	1.00	0.17
58	2.79	1.14	0.95	0.19
59	2.95	1.11	0.90	0.20
60	3.13	1.08	0.86	0.22
61	3.32	1.05	0.81	0.24
62	3.51	1.01	0.76	0.25
63	3.72	0.98	0.71	0.27
64	3.95	0.95	0.67	0.28
65	4.18	0.92	0.62	0.30
66	4.43	0.89	0.58	0.31
67	4.69	0.86	0.53	0.33
68	4.97	0.83	0.49	0.34
69	5.27	0.80	0.44	0.35
70	5.58	0.77	0.40	0.36
71	5.91	0.74	0.37	0.37
72	6.27	0.71	0.33	0.38
73	6.64	0.68	0.29	0.39
74	7.03	0.65	0.26	0.39
75	7.45	0.62	0.23	0.40
76	7.90	0.60	0.20	0.40
77	8.37	0.57	0.17	0.40
78	8.86	0.55	0.15	0.40
79	9.39	0.52	0.13	0.40
80	9.95	0.50	0.11	0.39

PT-INJ-1 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-1 Falling Test 1 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

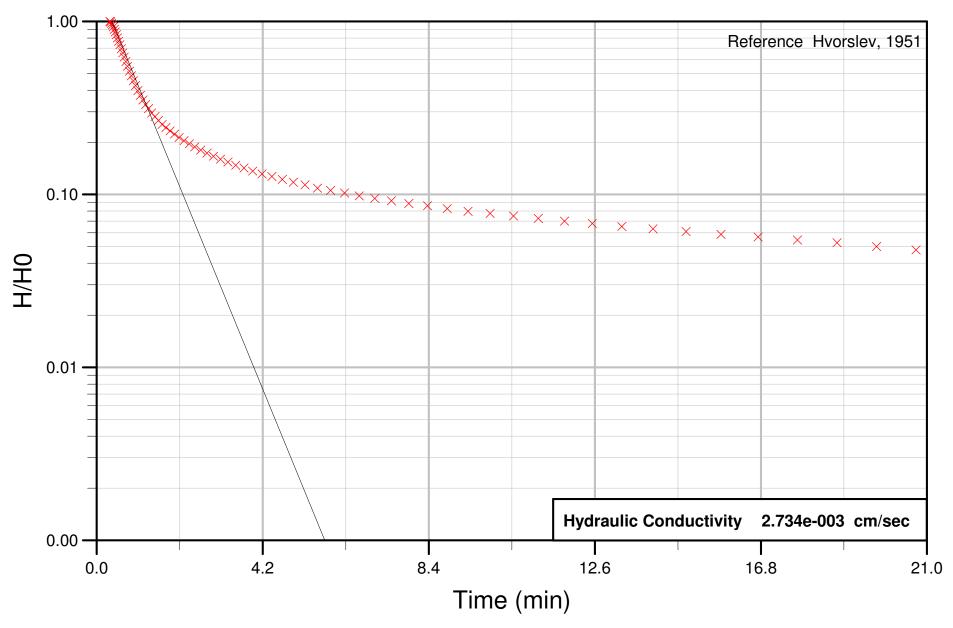
Simple Analysis - No Wells Defined

Number of Points = 61

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15 ft

Initial Displacement Fixed Value	= 3.146 ft
Hydraulic Conductivity Calculated Value	= 0.00286673 cm/sec
Time to 37% Displacement Calculated Value	= 0.740952 min
Linear Regression Slope Fixed Value	= -1.34186 /min
Linear Regression Intercept Fixed Value	= 1.76286
Aquifer Thickness Fixed Value	= 15 ft
Calculation Type Selected Value	= Full Penetration


Regression Line					
Slope:		-1.341859	/min		
Intercept:		1.762856	dimensionless		
Residual Mean	=	0.197552			
Residual Standard Dev.	=	0.188098			
Residual Sum of Squares	=	4.538874			
Absolute Residual Mean	=	0.226037			
Minimum Residual	=	-0.112570			
Maximum Residual	=	0.433803			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.40	3.15	3.26	-0.11
1	0.42	3.10	3.16	-0.05
2	0.44	3.03	3.05	-0.02
3	0.47	2.94	2.95	-0.01
4	0.50	2.85	2.85	0.00
5	0.52	2.73	2.74	-0.01
6	0.55	2.62	2.63	-0.01
7	0.59	2.50	2.53	-0.02

Index	Time	Obs. Displacement	Calc. Displacement	Residual
8	0.62	2.38	2.41	-0.03
9	0.66	2.25	2.29	-0.05
10	0.70	2.12	2.18	-0.06
11	0.74	1.99	2.06	-0.07
12	0.78	1.87	1.94	-0.07
13	0.83	1.75	1.83	-0.08
14	0.88	1.64	1.71	-0.07
15	0.93	1.53	1.60	-0.07
16	0.98	1.42	1.48	-0.06
17	1.04	1.33	1.37	-0.04
18	1.10	1.24	1.26	-0.02
19	1.17	1.16	1.16	0.00
20	1.24	1.09	1.05	0.04
21	1.31	1.02	0.95	0.07
22	1.39	0.97	0.86	0.11
23	1.47	0.92	0.77	0.15
24	1.56	0.87	0.68	0.19
25	1.65	0.83	0.60	0.23
26	1.75	0.79	0.53	0.26
27	1.86	0.76	0.46	0.30
28	1.97	0.72	0.40	0.33
29	2.08	0.69	0.34	0.35
30	2.21	0.66	0.29	0.37
31	2.34	0.63	0.24	0.39
32	2.48	0.61	0.20	0.41
33	2.63	0.58	0.16	0.42
34	2.79	0.56	0.13	0.43
35	2.95	0.54	0.11	0.43
36	3.13	0.52	0.08	0.43
37	3.32	0.50	0.06	0.43
38	3.51	0.48	0.05	0.43
39	3.72	0.46	0.04	0.42
40	3.95	0.44	0.03	0.42
41	4.18	0.43	0.02	0.41
42	4.43	0.41	0.01	0.40
43	4.69	0.40	0.01	0.39
44	4.97	0.39	0.01	0.38
45	5.27	0.37	0.00	0.37
46	5.58	0.36	0.00	0.36
47	5.91	0.35	0.00	0.35
48	6.27	0.34	0.00	0.34

Index	Time	Obs. Displacement	Calc. Displacement	Residual
49	6.64	0.33	0.00	0.32
50	7.03	0.32	0.00	0.32
51	7.45	0.31	0.00	0.31
52	7.90	0.30	0.00	0.30
53	8.37	0.29	0.00	0.29
54	8.86	0.28	0.00	0.28
55	9.39	0.27	0.00	0.27
56	9.95	0.26	0.00	0.26
57	10.54	0.26	0.00	0.26
58	11.17	0.25	0.00	0.25
59	11.83	0.24	0.00	0.24
60	12.53	0.24	0.00	0.24

PT-INJ-1 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-1 Falling Test 2 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

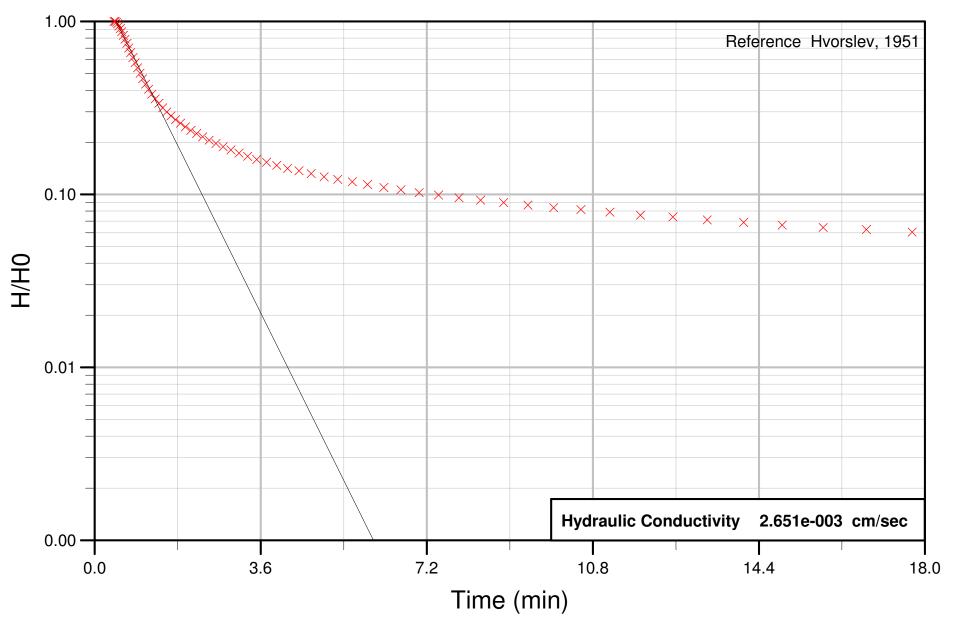
Simple Analysis - No Wells Defined

Number of Points = 73

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15 ft

Initial Displacement Fixed Value	= 3.083 ft
Hydraulic Conductivity Calculated Value	= 0.00273382 cm/sec
Time to 37% Displacement Calculated Value	= 0.776976 min
Linear Regression Slope Fixed Value	= -1.27964 /min
Linear Regression Intercept Fixed Value	= 1.61961
Aquifer Thickness Fixed Value	= 15 ft
Calculation Type Selected Value	= Full Penetration


Regression Line					
Slope:		-1.279644	/min		
Intercept:		1.619615	dimensionless		
Residual Mean	=	0.149211			
Residual Standard Dev.	=	0.190442			
Residual Sum of Squares	=	4.272834			
Absolute Residual Mean	=	0.212770			
Minimum Residual	=	-0.176541			
Maximum Residual	=	0.402314			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.33	3.08	3.26	-0.18
1	0.35	3.06	3.18	-0.12
2	0.37	3.00	3.09	-0.09
3	0.40	2.94	3.01	-0.07
4	0.42	2.87	2.92	-0.05
5	0.44	2.77	2.83	-0.06
6	0.47	2.68	2.74	-0.06
7	0.50	2.58	2.65	-0.07

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
8	0.52	2.47	2.55	-0.08
9	0.55	2.37	2.46	-0.09
10	0.59	2.26	2.36	-0.10
11	0.62	2.14	2.25	-0.11
12	0.66	2.03	2.15	-0.12
13	0.70	1.92	2.05	-0.13
14	0.74	1.81	1.94	-0.14
15	0.78	1.70	1.84	-0.14
16	0.83	1.59	1.73	-0.14
17	0.88	1.49	1.63	-0.14
18	0.93	1.40	1.52	-0.13
19	0.98	1.31	1.42	-0.11
20	1.04	1.23	1.32	-0.09
21	1.10	1.15	1.22	-0.07
22	1.17	1.08	1.12	-0.04
23	1.24	1.02	1.02	-0.01
24	1.31	0.96	0.93	0.03
25	1.39	0.91	0.84	0.07
26	1.47	0.87	0.76	0.11
27	1.56	0.82	0.68	0.15
28	1.65	0.78	0.60	0.18
29	1.75	0.75	0.53	0.22
30	1.86	0.72	0.46	0.25
31	1.97	0.69	0.40	0.28
32	2.08	0.66	0.35	0.31
33	2.21	0.63	0.30	0.33
34	2.34	0.60	0.25	0.35
35	2.48	0.58	0.21	0.37
36	2.63	0.56	0.17	0.38
37	2.79	0.53	0.14	0.39
38	2.95	0.51	0.11	0.40
39	3.13	0.49	0.09	0.40
40	3.32	0.47	0.07	0.40
41	3.51	0.45	0.06	0.40
42	3.72	0.44	0.04	0.40
43	3.95	0.42	0.03	0.39
44	4.18	0.41	0.02	0.38
45	4.43	0.39	0.02	0.37
46	4.69	0.38	0.01	0.36
47	4.97	0.36	0.01	0.35
48	5.27	0.35	0.01	0.34

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
49	5.58	0.34	0.00	0.33
50	5.91	0.33	0.00	0.32
51	6.27	0.31	0.00	0.31
52	6.64	0.30	0.00	0.30
53	7.03	0.29	0.00	0.29
54	7.45	0.28	0.00	0.28
55	7.90	0.27	0.00	0.27
56	8.37	0.27	0.00	0.26
57	8.86	0.26	0.00	0.25
58	9.39	0.25	0.00	0.25
59	9.95	0.24	0.00	0.24
60	10.54	0.23	0.00	0.23
61	11.17	0.22	0.00	0.22
62	11.83	0.22	0.00	0.22
63	12.53	0.21	0.00	0.21
64	13.28	0.20	0.00	0.20
65	14.07	0.20	0.00	0.19
66	14.91	0.19	0.00	0.19
67	15.79	0.18	0.00	0.18
68	16.73	0.18	0.00	0.18
69	17.72	0.17	0.00	0.17
70	18.72	0.16	0.00	0.16
71	19.72	0.15	0.00	0.15
72	20.72	0.15	0.00	0.15

PT-INJ-1 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-1 Falling Test 3 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

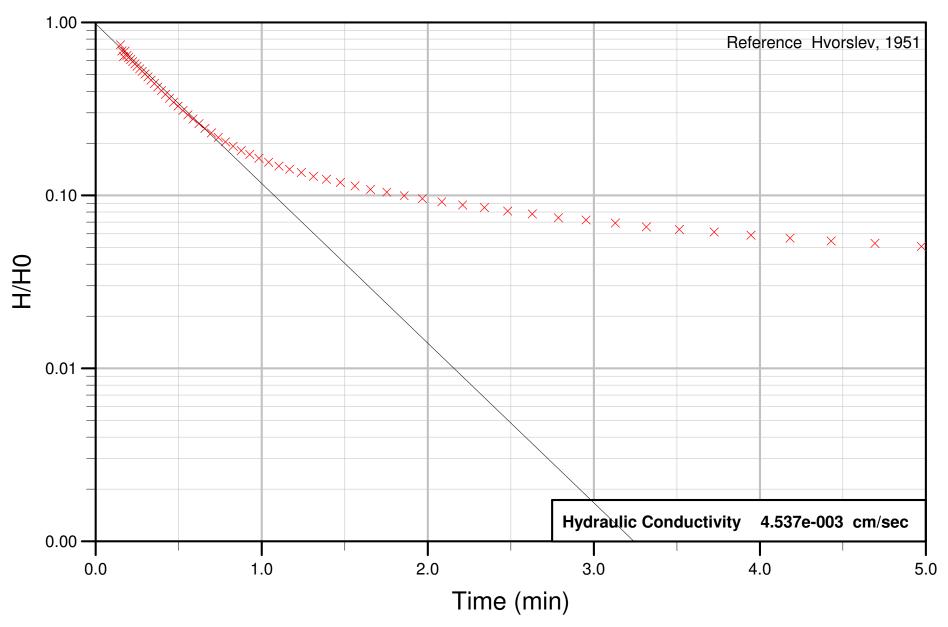
Simple Analysis - No Wells Defined

Number of Points = 66

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15 ft

Initial Displacement Fixed Value	= 2.876 ft
Hydraulic Conductivity Calculated Value	= 0.00265057 cm/sec
Time to 37% Displacement Calculated Value	= 0.801377 min
Linear Regression Slope Fixed Value	= -1.24068 /min
Linear Regression Intercept Fixed Value	= 1.79718
Aquifer Thickness Fixed Value	= 15 ft
Calculation Type Selected Value	= Full Penetration


Regression Line	
Slope:	-1.240680 /min
Intercept:	1.797184 dimensionless
Residual Mean	= 0.172415
Residual Standard Dev.	= 0.170532
Residual Sum of Squares	= 3.881337
Absolute Residual Mean	= 0.204965
Minimum Residual	= -0.194328
Maximum Residual	= 0.392561

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.42	2.88	3.07	-0.19
1	0.44	2.87	2.98	-0.10
2	0.47	2.84	2.89	-0.05
3	0.50	2.78	2.79	-0.01
4	0.52	2.70	2.70	0.01
5	0.55	2.61	2.60	0.02
6	0.59	2.51	2.50	0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
7	0.62	2.39	2.39	0.00
8	0.66	2.27	2.29	-0.02
9	0.70	2.14	2.18	-0.03
10	0.74	2.02	2.07	-0.05
11	0.78	1.90	1.96	-0.06
12	0.83	1.78	1.85	-0.07
13	0.88	1.66	1.74	-0.08
14	0.93	1.55	1.63	-0.09
15	0.98	1.44	1.53	-0.09
16	1.04	1.34	1.42	-0.08
17	1.10	1.25	1.32	-0.07
18	1.17	1.17	1.21	-0.05
19	1.24	1.09	1.11	-0.02
20	1.31	1.02	1.02	0.01
21	1.39	0.97	0.92	0.04
22	1.47	0.91	0.83	0.08
23	1.56	0.86	0.74	0.12
24	1.65	0.82	0.66	0.15
25	1.75	0.78	0.59	0.19
26	1.86	0.74	0.52	0.23
27	1.97	0.71	0.45	0.26
28	2.08	0.67	0.39	0.28
29	2.21	0.65	0.33	0.31
30	2.34	0.62	0.28	0.34
31	2.48	0.59	0.24	0.35
32	2.63	0.57	0.20	0.37
33	2.79	0.54	0.16	0.38
34	2.95	0.52	0.13	0.39
35	3.13	0.50	0.11	0.39
36	3.32	0.48	0.08	0.39
37	3.51	0.46	0.07	0.39
38	3.72	0.44	0.05	0.39
39	3.95	0.42	0.04	0.38
40	4.18	0.41	0.03	0.38
41	4.43	0.39	0.02	0.37
42	4.69	0.38	0.02	0.36
43	4.97	0.36	0.01	0.35
44	5.27	0.35	0.01	0.34
45	5.58	0.34	0.01	0.33
46	5.91	0.33	0.00	0.32
47	6.27	0.32	0.00	0.31

Index	Time	Obs.	Calc.	Residual
48		Displacement	Displacement	0 20
-	6.64	0.31	0.00	0.30
49	7.03	0.29	0.00	0.29
50	7.45	0.29	0.00	0.28
51	7.90	0.28	0.00	0.27
52	8.37	0.27	0.00	0.27
53	8.86	0.26	0.00	0.26
54	9.39	0.25	0.00	0.25
55	9.95	0.24	0.00	0.24
56	10.54	0.24	0.00	0.23
57	11.17	0.23	0.00	0.23
58	11.83	0.22	0.00	0.22
59	12.53	0.21	0.00	0.21
60	13.28	0.21	0.00	0.20
61	14.07	0.20	0.00	0.20
62	14.91	0.19	0.00	0.19
63	15.79	0.19	0.00	0.19
64	16.73	0.18	0.00	0.18
65	17.72	0.17	0.00	0.17

PT-INJ-1 Falling Head Test 4

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-1 Falling Test 4 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

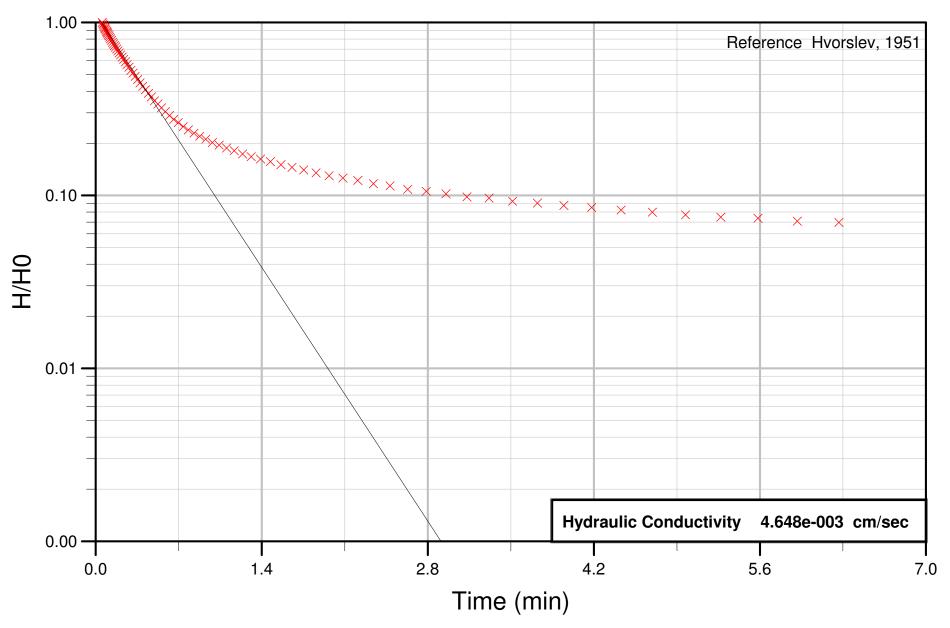
Simple Analysis - No Wells Defined

Number of Points = 62

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15 ft

Initial Displacement Fixed Value	= 2.331 ft
Hydraulic Conductivity Calculated Value	= 0.00453725 cm/sec
Time to 37% Displacement Calculated Value	= 0.468149 min
Linear Regression Slope Fixed Value	= -2.1238 /min
Linear Regression Intercept Fixed Value	= 0.981482
Aquifer Thickness Fixed Value	= 15 ft
Calculation Type Selected Value	= Full Penetration


Regression Line				
Slope:		-2.123796	/min	
Intercept:		0.981482	dimensionless	
Residual Mean	=	0.062021		
Residual Standard Dev.	=	0.095295		
Residual Sum of Squares	=	0.801516		
Absolute Residual Mean	=	0.095645		
Minimum Residual	=	-0.127692		
Maximum Residual	=	0.187972		

Index	Time	Obs.	Calc.	Residual
	(min)	Displacement (ft)	Displacement (ft)	
	(11111)	(10)	(10)	
0	0.15	1.73	1.67	0.06
1	0.16	1.59	1.64	-0.05
2	0.17	1.48	1.60	-0.13
3	0.18	1.59	1.57	0.02
4	0.19	1.50	1.54	-0.04
5	0.20	1.46	1.50	-0.04
6	0.21	1.42	1.46	-0.04
7	0.22	1.38	1.43	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement		
8	0.24	1.34	1.39	-0.05
9	0.25	1.30	1.35	-0.05
10	0.26	1.26	1.30	-0.05
11	0.28	1.22	1.26	-0.05
12	0.30	1.17	1.22	-0.05
13	0.31	1.13	1.17	-0.05
14	0.33	1.08	1.13	-0.05
15	0.35	1.03	1.08	-0.05
16	0.37	0.99	1.03	-0.05
17	0.40	0.94	0.99	-0.05
18	0.42	0.89	0.94	-0.05
19	0.44	0.85	0.89	-0.04
20	0.47	0.81	0.84	-0.04
21	0.50	0.76	0.80	-0.03
22	0.52	0.72	0.75	-0.03
23	0.55	0.68	0.70	-0.02
24	0.59	0.64	0.66	-0.02
25	0.62	0.61	0.61	-0.01
26	0.66	0.57	0.57	0.00
27	0.70	0.54	0.52	0.01
28	0.74	0.50	0.48	0.03
29	0.78	0.48	0.44	0.04
30	0.83	0.45	0.39	0.05
31	0.88	0.42	0.36	0.07
32	0.93	0.40	0.32	0.08
33	0.98	0.38	0.28	0.10
34	1.04	0.36	0.25	0.11
35	1.10	0.34	0.22	0.12
36	1.17	0.33	0.19	0.14
37	1.24	0.32	0.17	0.15
38	1.31	0.30	0.14	0.16
39	1.39	0.29	0.12	0.17
40	1.47	0.28	0.10	0.18
41	1.56	0.26	0.08	0.18
42	1.65	0.25	0.07	0.18
43	1.75	0.24	0.06	0.19
44	1.86	0.23	0.04	0.19
45	1.97	0.22	0.04	0.19
46	2.08	0.21	0.03	0.19
47	2.21	0.21	0.02	0.18
48	2.34	0.20	0.02	0.18

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
49	2.48	0.19	0.01	0.18
50	2.63	0.18	0.01	0.17
51	2.79	0.17	0.01	0.17
52	2.95	0.17	0.00	0.16
53	3.13	0.16	0.00	0.16
54	3.32	0.15	0.00	0.15
55	3.51	0.15	0.00	0.15
56	3.72	0.14	0.00	0.14
57	3.95	0.14	0.00	0.14
58	4.18	0.13	0.00	0.13
59	4.43	0.13	0.00	0.13
60	4.69	0.12	0.00	0.12
61	4.97	0.12	0.00	0.12

PT-INJ-1 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-1 Rising Test 1 Job Number: 49543.004.403 Date: 10/9/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

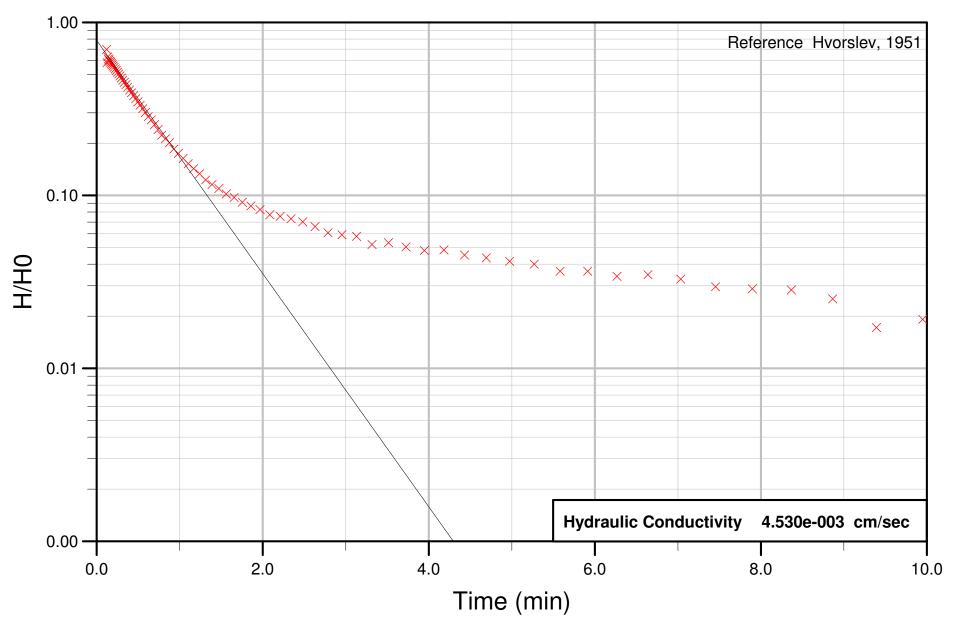
Number of Points = 82

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15 ft

Initial Displacement Fixed Value	= 1.763 ft
Hydraulic Conductivity Calculated Value	= 0.00464847 cm/sec
Time to 37% Displacement Calculated Value	= 0.411731 min
Linear Regression Slope Fixed Value	= -2.41481 /min
Linear Regression Intercept Fixed Value	= 1.13516
Aquifer Thickness Fixed Value	= 15 ft
Calculation Type Selected Value	= Full Penetration

ANALYSIS STATISTICS


Regression Line				
414812 /min				
135165 dimensionless				
065941				
107095				
297038				
104330				
075200				
219190				

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.05	1.76	1.75	0.01
1	0.06	1.73	1.73	0.00
2	0.06	1.70	1.71	-0.01
3	0.07	1.67	1.69	-0.02
4	0.08	1.64	1.67	-0.03
5	0.08	1.62	1.65	-0.03
6	0.08	1.60	1.63	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
7	0.09	1.57	1.61	-0.04
8	0.10	1.55	1.59	-0.04
9	0.10	1.53	1.57	-0.05
10	0.11	1.50	1.55	-0.05
11	0.11	1.48	1.53	-0.05
12	0.12	1.45	1.50	-0.06
13	0.13	1.42	1.48	-0.06
14	0.13	1.39	1.45	-0.06
15	0.14	1.35	1.43	-0.07
16	0.15	1.32	1.40	-0.08
17	0.16	1.29	1.37	-0.07
18	0.17	1.27	1.34	-0.07
19	0.18	1.24	1.31	-0.07
20	0.19	1.21	1.27	-0.07
21	0.20	1.17	1.24	-0.07
22	0.21	1.14	1.21	-0.06
23	0.22	1.11	1.17	-0.06
24	0.24	1.08	1.13	-0.06
25	0.25	1.04	1.09	-0.05
26	0.26	1.01	1.06	-0.05
27	0.28	0.97	1.02	-0.05
28	0.30	0.93	0.98	-0.05
29	0.31	0.90	0.94	-0.04
30	0.33	0.86	0.89	-0.03
31	0.35	0.82	0.85	-0.03
32	0.37	0.79	0.81	-0.02
33	0.40	0.75	0.77	-0.02
34	0.42	0.72	0.73	-0.01
35	0.44	0.69	0.68	0.00
36	0.47	0.65	0.64	0.01
37	0.50	0.62	0.60	0.02
38	0.52	0.59	0.56	0.03
39	0.55	0.57	0.52	0.04
40	0.59	0.54	0.49	0.05
41	0.62	0.51	0.45	0.06
42	0.66	0.49	0.41	0.08
43	0.70	0.46	0.37	0.09
44	0.74	0.44	0.34	0.10
45	0.78	0.42	0.30	0.12
46	0.83	0.40	0.27	0.13
47	0.88	0.39	0.24	0.15

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
48	0.93	0.37	0.21	0.16
49	0.98	0.36	0.19	0.17
50	1.04	0.34	0.16	0.18
51	1.10	0.33	0.14	0.19
52	1.17	0.32	0.12	0.20
53	1.24	0.31	0.10	0.21
54	1.31	0.30	0.08	0.21
55	1.39	0.29	0.07	0.22
56	1.47	0.28	0.06	0.22
57	1.56	0.27	0.05	0.22
58	1.65	0.26	0.04	0.22
59	1.75	0.25	0.03	0.22
60	1.86	0.24	0.02	0.22
61	1.97	0.23	0.02	0.21
62	2.08	0.22	0.01	0.21
63	2.21	0.22	0.01	0.21
64	2.34	0.21	0.01	0.20
65	2.48	0.20	0.01	0.19
66	2.63	0.19	0.00	0.19
67	2.79	0.19	0.00	0.18
68	2.95	0.18	0.00	0.18
69	3.13	0.17	0.00	0.17
70	3.32	0.17	0.00	0.17
71	3.51	0.16	0.00	0.16
72	3.72	0.16	0.00	0.16
73	3.95	0.15	0.00	0.15
74	4.18	0.15	0.00	0.15
75	4.43	0.15	0.00	0.14
76	4.69	0.14	0.00	0.14
77	4.97	0.14	0.00	0.14
78	5.27	0.13	0.00	0.13
79	5.58	0.13	0.00	0.13
80	5.91	0.13	0.00	0.12
81	6.27	0.12	0.00	0.12

PT-INJ-2 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-2 Falling Test 1 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

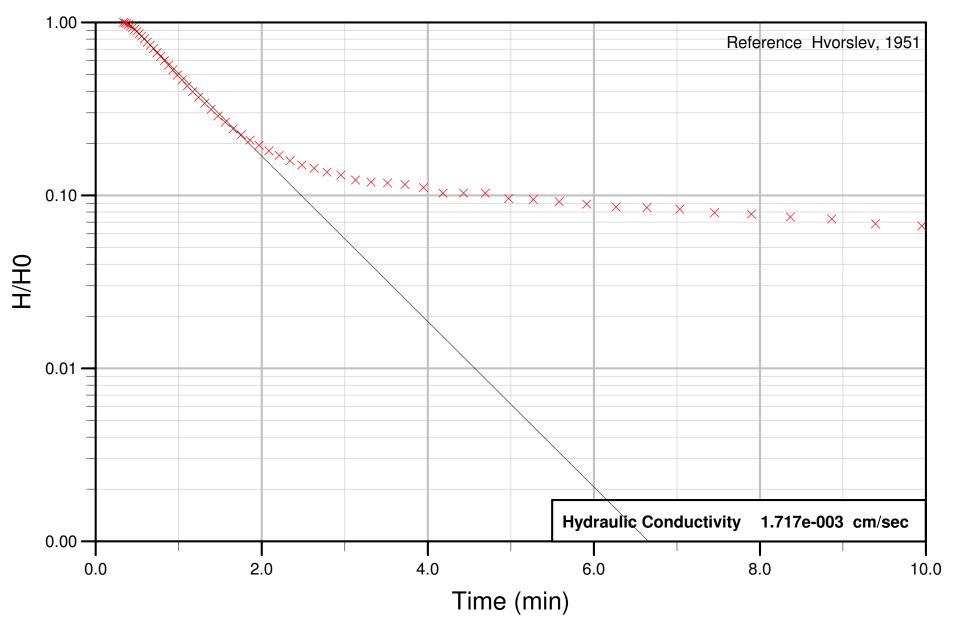
Number of Points = 78

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.2 ft

Initial Displacement Fixed Value	= 2.501 ft
Hydraulic Conductivity Calculated Value	= 0.00452996 cm/sec
Time to 37% Displacement Calculated Value	= 0.489284 min
Linear Regression Slope Fixed Value	= -1.55204 /min
Linear Regression Intercept Fixed Value	= 0.790679
Calculation Type Selected Value	= Default

ANALYSIS STATISTICS


Regression Line	
Slope:	-1.552040 /min
Intercept:	0.790679 dimensionless
Residual Mean	= 0.025680
Residual Standard Dev.	= 0.074581
Residual Sum of Squares	= 0.485305
Absolute Residual Mean	= 0.070133
Minimum Residual	= -0.164501
Maximum Residual	= 0.133958

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.12	1.74	1.65	0.10
1	0.13	1.46	1.63	-0.16
2	0.13	1.58	1.61	-0.03
3	0.14	1.53	1.59	-0.06
4	0.15	1.52	1.57	-0.05
5	0.16	1.49	1.55	-0.06
6	0.17	1.47	1.53	-0.05
7	0.18	1.45	1.50	-0.05
8	0.19	1.42	1.48	-0.05
9	0.20	1.40	1.45	-0.05

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.21	1.37	1.43	-0.05
11	0.22	1.35	1.40	-0.06
12	0.24	1.32	1.37	-0.05
13	0.25	1.29	1.34	-0.05
14	0.26	1.26	1.31	-0.05
15	0.28	1.23	1.28	-0.05
16	0.30	1.19	1.25	-0.06
17	0.31	1.16	1.21	-0.05
18	0.33	1.13	1.18	-0.05
19	0.35	1.09	1.14	-0.05
20	0.37	1.05	1.11	-0.05
21	0.40	1.02	1.07	-0.05
22	0.42	0.98	1.03	-0.05
23	0.44	0.94	0.99	-0.05
24	0.47	0.90	0.95	-0.05
25	0.50	0.87	0.92	-0.05
26	0.52	0.83	0.88	-0.05
27	0.55	0.79	0.84	-0.04
28	0.59	0.75	0.80	-0.04
29	0.62	0.71	0.75	-0.04
30	0.66	0.68	0.71	-0.03
31	0.70	0.64	0.67	-0.03
32	0.74	0.60	0.63	-0.03
33	0.78	0.56	0.59	-0.03
34	0.83	0.53	0.55	-0.02
35	0.88	0.50	0.51	0.00
36	0.93	0.46	0.47	-0.01
37	0.98	0.44	0.43	0.01
38	1.04	0.41	0.39	0.02
39	1.10	0.38	0.36	0.02
40	1.17	0.36	0.32	0.03
41	1.24	0.33	0.29	0.04
42	1.31	0.31	0.26	0.05
43	1.39	0.29	0.23	0.06
44	1.47	0.27	0.20	0.07
45	1.56	0.26	0.18	0.08
46	1.65	0.24	0.15	0.09
47	1.75	0.23	0.13	0.10
48	1.86	0.22	0.11	0.11
49	1.97	0.21	0.09	0.11
50	2.08	0.19	0.08	0.12

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	2.21	0.19	0.06	0.12
52	2.34	0.18	0.05	0.13
53	2.48	0.18	0.04	0.13
54	2.63	0.17	0.03	0.13
55	2.79	0.15	0.03	0.13
56	2.95	0.15	0.02	0.13
57	3.13	0.15	0.02	0.13
58	3.32	0.13	0.01	0.12
59	3.51	0.13	0.01	0.12
60	3.72	0.13	0.01	0.12
61	3.95	0.12	0.00	0.12
62	4.18	0.12	0.00	0.12
63	4.43	0.11	0.00	0.11
64	4.69	0.11	0.00	0.11
65	4.97	0.10	0.00	0.10
66	5.27	0.10	0.00	0.10
67	5.58	0.09	0.00	0.09
68	5.91	0.09	0.00	0.09
69	6.27	0.09	0.00	0.08
70	6.64	0.09	0.00	0.09
71	7.03	0.08	0.00	0.08
72	7.45	0.07	0.00	0.07
73	7.90	0.07	0.00	0.07
74	8.37	0.07	0.00	0.07
75	8.86	0.06	0.00	0.06
76	9.39	0.04	0.00	0.04
77	9.95	0.05	0.00	0.05

PT-INJ-2 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-2 Falling Test 2 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

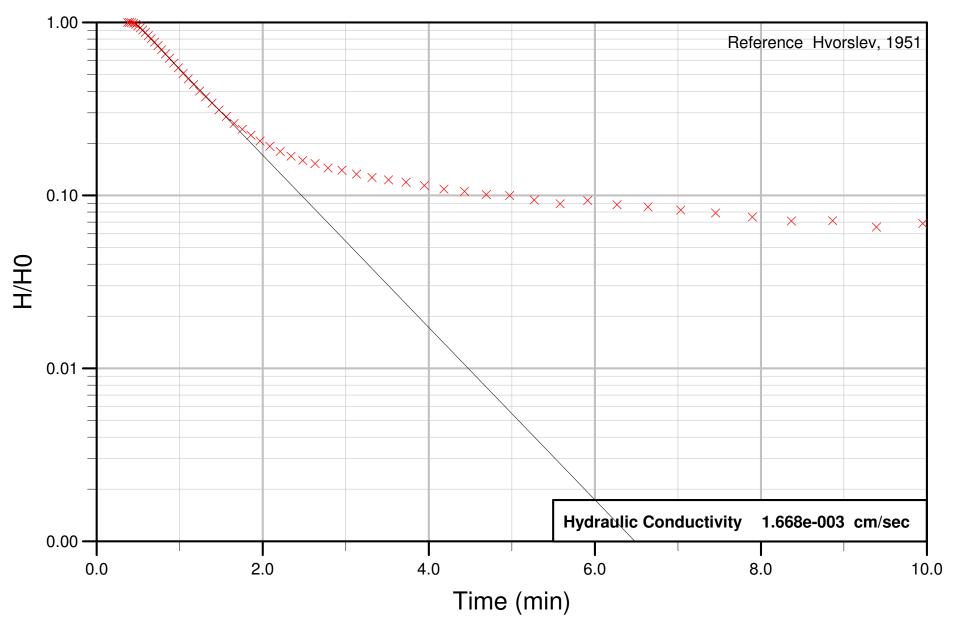
Simple Analysis - No Wells Defined

Number of Points = 60

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.2 ft

Initial Displacement Fixed Value	= 3.351 ft
Hydraulic Conductivity Calculated Value	= 0.00171726 cm/sec
Time to 37% Displacement Calculated Value	= 1.29068 min
Linear Regression Slope Fixed Value	= -1.10084 /min
Linear Regression Intercept Fixed Value	= 1.532
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line			
Slope:		-1.100837	/min
Intercept:		1.532001	dimensionless
Residual Mean	=	0.092227	
Residual Standard Dev.	=	0.157349	
Residual Sum of Squares	=	1.995870	
Absolute Residual Mean	=	0.144654	
Minimum Residual	=	-0.206024	
Maximum Residual	=	0.315700	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.33	3.35	3.56	-0.21
1	0.35	3.33	3.48	-0.15
2	0.37	3.29	3.40	-0.11
3	0.40	3.25	3.32	-0.07
4	0.42	3.19	3.23	-0.04
5	0.44	3.13	3.15	-0.02
6	0.47	3.06	3.06	-0.01
7	0.50	2.98	2.97	0.00
8	0.52	2.88	2.88	0.00
9	0.55	2.79	2.79	0.00

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.59	2.69	2.69	0.00
11	0.62	2.58	2.59	-0.01
12	0.66	2.47	2.49	-0.02
13	0.70	2.36	2.39	-0.03
14	0.74	2.24	2.28	-0.04
15	0.78	2.13	2.17	-0.05
16	0.83	2.01	2.06	-0.05
17	0.88	1.90	1.96	-0.06
18	0.93	1.78	1.85	-0.07
19	0.98	1.66	1.74	-0.08
20	1.04	1.55	1.63	-0.08
21	1.10	1.44	1.52	-0.09
22	1.17	1.33	1.42	-0.09
23	1.24	1.24	1.31	-0.08
24	1.31	1.14	1.21	-0.07
25	1.39	1.05	1.11	-0.06
26	1.47	0.96	1.01	-0.05
27	1.56	0.89	0.92	-0.03
28	1.65	0.81	0.83	-0.02
29	1.75	0.75	0.75	0.00
30	1.86	0.70	0.66	0.03
31	1.97	0.65	0.59	0.06
32	2.08	0.61	0.52	0.09
33	2.21	0.57	0.45	0.12
34	2.34	0.53	0.39	0.14
35	2.48	0.50	0.33	0.17
36	2.63	0.48	0.28	0.20
37	2.79	0.46	0.24	0.22
38	2.95	0.44	0.20	0.24
39	3.13	0.41	0.16	0.25
40	3.32	0.40	0.13	0.27
41	3.51	0.40	0.11	0.29
42	3.72	0.39	0.09	0.30
43	3.95	0.37	0.07	0.31
44	4.18	0.35	0.05	0.29
45	4.43	0.35	0.04	0.31
46	4.69	0.35	0.03	0.32
47	4.97	0.32	0.02	0.30
48	5.27	0.32	0.02	0.30
49	5.58	0.31	0.01	0.30
50	5.91	0.30	0.01	0.29

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	6.27	0.29	0.01	0.28
52	6.64	0.29	0.00	0.28
53	7.03	0.28	0.00	0.28
54	7.45	0.27	0.00	0.26
55	7.90	0.26	0.00	0.26
56	8.37	0.25	0.00	0.25
57	8.86	0.25	0.00	0.24
58	9.39	0.23	0.00	0.23
59	9.95	0.22	0.00	0.22

PT-INJ-2 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-2 Falling Test 3 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

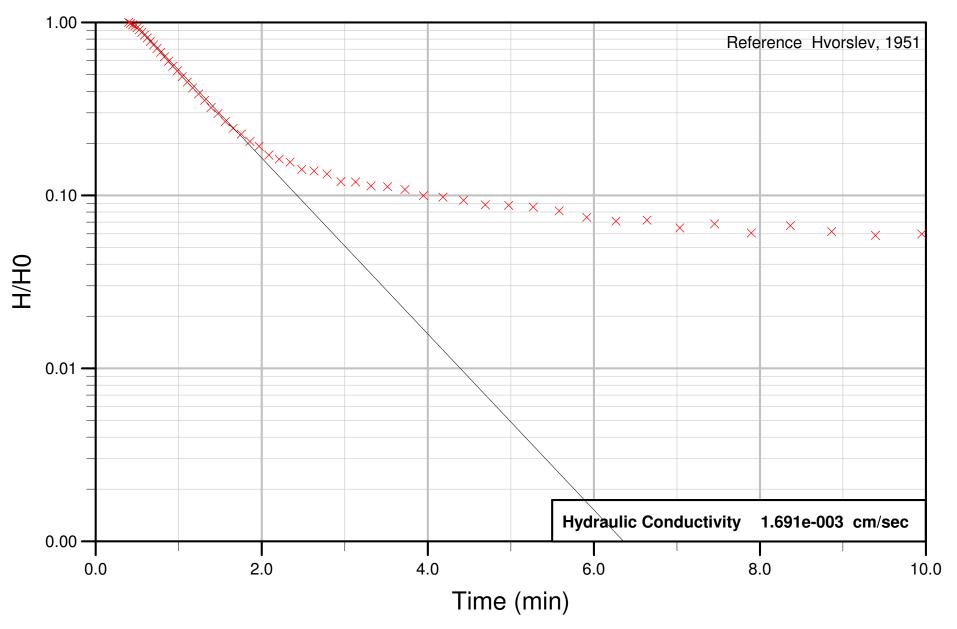
Simple Analysis - No Wells Defined

Number of Points = 58

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.2 ft

Initial Displacement Fixed Value	= 3.418 ft
Hydraulic Conductivity Calculated Value	= 0.00166781 cm/sec
Time to 37% Displacement Calculated Value	= 1.32895 min
Linear Regression Slope Fixed Value	= -1.14575 /min
Linear Regression Intercept Fixed Value	= 1.6962
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line Slope: -1.145747 /min Intercept: 1.696198 dimensionless Residual Mean = 0.115982 Residual Standard Dev. = 0.166137 Residual Sum of Squares = 2.381096 Absolute Residual Mean = 0.156835 Minimum Residual = -0.359020 Maximum Residual = 0.326962

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.37	3.42	3.78	-0.36
1	0.40	3.42	3.68	-0.27
2	0.42	3.40	3.58	-0.18
3	0.44	3.38	3.48	-0.10
4	0.47	3.33	3.39	-0.06
5	0.50	3.26	3.28	-0.02
6	0.52	3.18	3.18	0.00
7	0.55	3.09	3.07	0.02
8	0.59	2.99	2.96	0.02
9	0.62	2.87	2.85	0.02

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.66	2.75	2.73	0.02
11	0.70	2.63	2.61	0.02
12	0.74	2.51	2.49	0.02
13	0.78	2.38	2.37	0.01
14	0.83	2.25	2.25	0.00
15	0.88	2.12	2.12	0.00
16	0.93	1.99	2.00	-0.02
17	0.98	1.87	1.88	-0.02
18	1.04	1.73	1.76	-0.03
19	1.10	1.61	1.64	-0.03
20	1.17	1.49	1.52	-0.03
21	1.24	1.37	1.40	-0.03
22	1.31	1.27	1.29	-0.02
23	1.39	1.17	1.18	-0.01
24	1.47	1.07	1.07	-0.01
25	1.56	0.98	0.97	0.01
26	1.65	0.89	0.87	0.02
27	1.75	0.82	0.78	0.05
28	1.86	0.76	0.69	0.07
29	1.97	0.71	0.61	0.10
30	2.08	0.66	0.53	0.12
31	2.21	0.61	0.46	0.15
32	2.34	0.58	0.40	0.18
33	2.48	0.54	0.34	0.21
34	2.63	0.52	0.28	0.24
35	2.79	0.49	0.24	0.25
36	2.95	0.48	0.20	0.28
37	3.13	0.45	0.16	0.29
38	3.32	0.43	0.13	0.30
39	3.51	0.42	0.10	0.32
40	3.72	0.41	0.08	0.33
41	3.95	0.39	0.06	0.33
42	4.18	0.37	0.05	0.32
43	4.43	0.36	0.04	0.32
44	4.69	0.35	0.03	0.32
45	4.97	0.34	0.02	0.32
46	5.27	0.32	0.01	0.31
47	5.58	0.31	0.01	0.30
48	5.91	0.32	0.01	0.31
49	6.27	0.30	0.00	0.30
50	6.64	0.29	0.00	0.29

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	7.03	0.28	0.00	0.28
52	7.45	0.27	0.00	0.27
53	7.90	0.26	0.00	0.26
54	8.37	0.24	0.00	0.24
55	8.86	0.24	0.00	0.24
56	9.39	0.22	0.00	0.22
57	9.95	0.24	0.00	0.23

PT-INJ-2 Falling Head Test 4

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-2 Falling Test 4 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

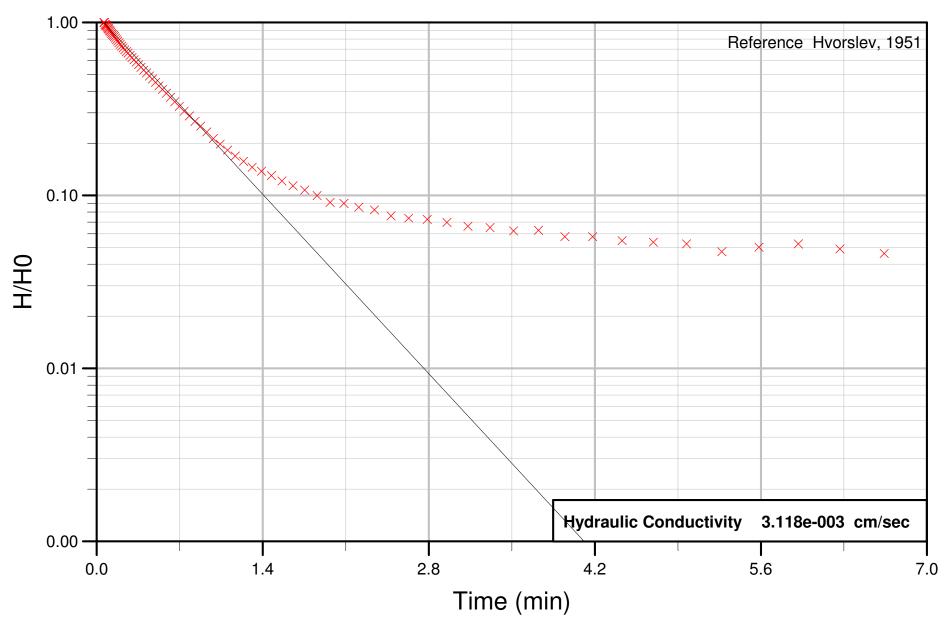
Simple Analysis - No Wells Defined

Number of Points = 57

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.2 ft

Initial Displacement Fixed Value	= 3.564 ft
Hydraulic Conductivity Calculated Value	= 0.00169115 cm/sec
Time to 37% Displacement Calculated Value	= 1.31061 min
Linear Regression Slope Fixed Value	= -1.17134 /min
Linear Regression Intercept Fixed Value	= 1.71759
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line	
Slope:	-1.171344 /min
Intercept:	1.717587 dimensionless
Residual Mean	= 0.080848
Residual Standard Dev.	= 0.169443
Residual Sum of Squares	= 2.009108
Absolute Residual Mean	= 0.160460
Minimum Residual	= -0.284180
Maximum Residual	= 0.306986

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.40	3.56	3.85	-0.28
1	0.42	3.52	3.74	-0.22
2	0.44	3.45	3.64	-0.19
3	0.47	3.39	3.53	-0.14
4	0.50	3.32	3.42	-0.11
5	0.52	3.22	3.31	-0.09
6	0.55	3.12	3.20	-0.08
7	0.59	3.00	3.08	-0.08
8	0.62	2.90	2.96	-0.06
9	0.66	2.77	2.83	-0.07

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.70	2.64	2.71	-0.07
11	0.74	2.52	2.58	-0.06
12	0.78	2.39	2.45	-0.06
13	0.83	2.25	2.32	-0.07
14	0.88	2.12	2.19	-0.07
15	0.93	1.99	2.06	-0.08
16	0.98	1.87	1.94	-0.07
17	1.04	1.73	1.81	-0.08
18	1.10	1.61	1.68	-0.07
19	1.17	1.49	1.56	-0.07
20	1.24	1.37	1.44	-0.06
21	1.31	1.26	1.32	-0.06
22	1.39	1.15	1.20	-0.06
23	1.47	1.06	1.09	-0.03
24	1.56	0.95	0.98	-0.03
25	1.65	0.87	0.88	-0.01
26	1.75	0.81	0.79	0.02
27	1.86	0.73	0.69	0.04
28	1.97	0.69	0.61	0.07
29	2.08	0.61	0.53	0.08
30	2.21	0.58	0.46	0.12
31	2.34	0.56	0.39	0.16
32	2.48	0.50	0.33	0.17
33	2.63	0.49	0.28	0.21
34	2.79	0.47	0.23	0.24
35	2.95	0.43	0.19	0.24
36	3.13	0.43	0.16	0.27
37	3.32	0.40	0.13	0.28
38	3.51	0.40	0.10	0.30
39	3.72	0.39	0.08	0.31
40	3.95	0.36	0.06	0.29
41	4.18	0.35	0.05	0.30
42	4.43	0.33	0.03	0.30
43	4.69	0.31	0.03	0.29
44	4.97	0.31	0.02	0.29
45	5.27	0.31	0.01	0.29
46	5.58	0.29	0.01	0.28
47	5.91	0.27	0.01	0.26
48	6.27	0.25	0.00	0.25
49 50	6.64 7.03	0.26	0.00	0.25
- 50	1.03	0.23	0.00	0.23

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	7.45	0.24	0.00	0.24
52	7.90	0.22	0.00	0.22
53	8.37	0.24	0.00	0.24
54	8.86	0.22	0.00	0.22
55	9.39	0.21	0.00	0.21
56	9.95	0.21	0.00	0.21

PT-INJ-2 Rising Head Test1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-2 Rising Test 1 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

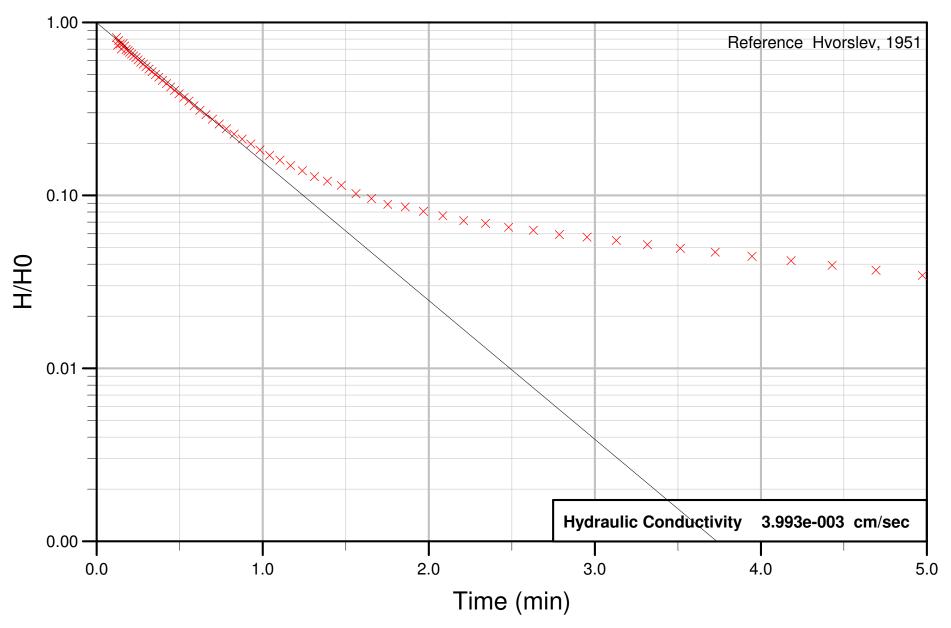
Number of Points = 82

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.2 ft

Initial Displacement Fixed Value	= 1.735 ft
Hydraulic Conductivity Calculated Value	= 0.00311759 cm/sec
Time to 37% Displacement Calculated Value	= 0.640696 min
Linear Regression Slope Fixed Value	= -1.70329 /min
Linear Regression Intercept Fixed Value	= 1.10191
Calculation Type Selected Value	= Default
LYSIS STATISTICS	

ANAL


Regression Line	
Slope:	-1.703294 /min
Intercept:	1.101906 dimensionless
Residual Mean	= 0.012021
Residual Standard Dev.	= 0.064881
Residual Sum of Squares	= 0.357035
Absolute Residual Mean	= 0.057170
Minimum Residual	= -0.076426
Maximum Residual	= 0.109391

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.06	1.74	1.73	0.01
1	0.06	1.73	1.71	0.02
2	0.07	1.69	1.70	-0.01
3	0.08	1.68	1.68	-0.01
4	0.08	1.67	1.67	0.00
5	0.08	1.65	1.65	-0.01
6	0.09	1.63	1.64	-0.02
7	0.10	1.60	1.63	-0.02
8	0.10	1.59	1.61	-0.02
9	0.11	1.57	1.60	-0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.11	1.55	1.58	-0.03
11	0.12	1.53	1.56	-0.04
12	0.13	1.50	1.54	-0.04
13	0.13	1.48	1.53	-0.05
14	0.14	1.46	1.50	-0.05
15	0.15	1.43	1.48	-0.05
16	0.16	1.41	1.46	-0.05
17	0.17	1.38	1.44	-0.06
18	0.18	1.35	1.41	-0.06
19	0.19	1.32	1.39	-0.07
20	0.20	1.30	1.36	-0.07
21	0.21	1.26	1.34	-0.07
22	0.22	1.24	1.31	-0.07
23	0.24	1.20	1.28	-0.08
24	0.25	1.17	1.25	-0.08
25	0.26	1.15	1.22	-0.07
26	0.28	1.12	1.19	-0.07
27	0.30	1.08	1.15	-0.07
28	0.31	1.05	1.12	-0.07
29	0.33	1.02	1.08	-0.06
30	0.35	0.99	1.05	-0.06
31	0.37	0.95	1.01	-0.06
32	0.40	0.92	0.97	-0.05
33	0.42	0.88	0.94	-0.05
34	0.44	0.85	0.90	-0.05
35	0.47	0.82	0.86	-0.04
36	0.50	0.78	0.82	-0.04
37	0.52	0.75	0.78	-0.04
38	0.55	0.71	0.74	-0.03
39	0.59	0.68	0.70	-0.03
40	0.62	0.64	0.66	-0.02
41	0.66	0.60	0.62	-0.02
42	0.70	0.57	0.58	-0.02
43	0.74	0.53	0.54	-0.01
44	0.78	0.50	0.51	-0.01
45	0.83	0.46	0.47	0.00
46	0.88	0.44	0.43	0.01
47	0.93	0.40	0.39	0.01
48	0.98	0.37	0.36	0.01
49	1.04	0.34	0.32	0.02
50	1.10	0.32	0.29	0.02

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.17	0.29	0.26	0.03
52	1.24	0.27	0.23	0.04
53	1.31	0.25	0.20	0.05
54	1.39	0.24	0.18	0.06
55	1.47	0.23	0.16	0.07
56	1.56	0.21	0.13	0.08
57	1.65	0.20	0.11	0.08
58	1.75	0.19	0.10	0.09
59	1.86	0.17	0.08	0.09
60	1.97	0.16	0.07	0.09
61	2.08	0.16	0.05	0.10
62	2.21	0.15	0.04	0.10
63	2.34	0.14	0.04	0.11
64	2.48	0.13	0.03	0.10
65	2.63	0.13	0.02	0.11
66	2.79	0.13	0.02	0.11
67	2.95	0.12	0.01	0.11
68	3.13	0.12	0.01	0.11
69	3.32	0.11	0.01	0.11
70	3.51	0.11	0.00	0.10
71	3.72	0.11	0.00	0.11
72	3.95	0.10	0.00	0.10
73	4.18	0.10	0.00	0.10
74	4.43	0.10	0.00	0.09
75	4.69	0.09	0.00	0.09
76	4.97	0.09	0.00	0.09
77	5.27	0.08	0.00	0.08
78	5.58	0.09	0.00	0.09
79	5.91	0.09	0.00	0.09
80	6.27	0.09	0.00	0.08
81	6.64	0.08	0.00	0.08

PT-INJ-3 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-3 Falling Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

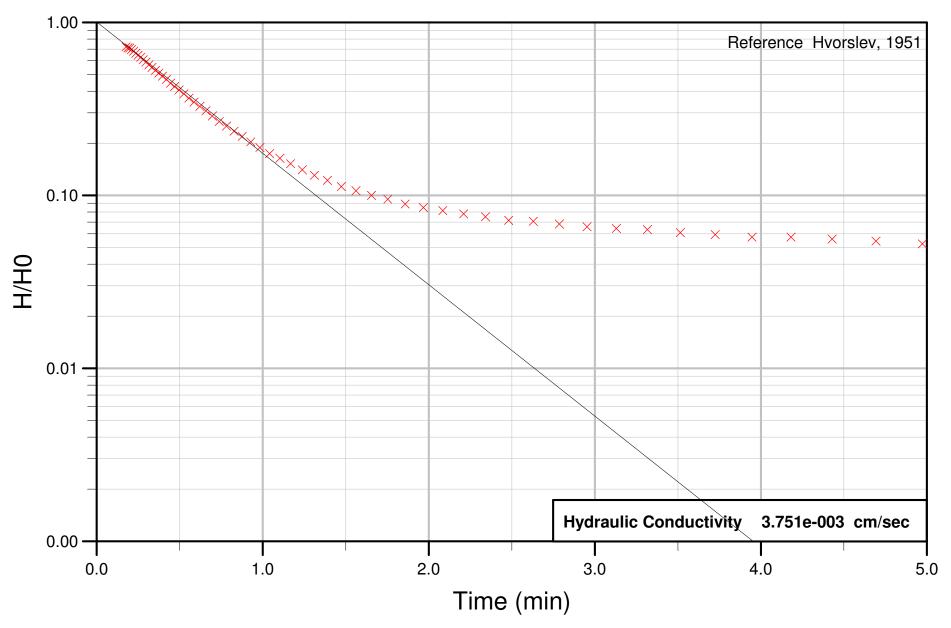
Number of Points = 66

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 2.005 ft
Hydraulic Conductivity Calculated Value	= 0.00399295 cm/sec
Time to 37% Displacement Calculated Value	= 0.537545 min
Linear Regression Slope Fixed Value	= -1.85018 /min
Linear Regression Intercept Fixed Value	= 1.0003
Calculation Type Selected Value	= Default

ANALYSIS STATISTICS


Regression Line				
Slope:	-1.850183 /min			
Intercept:	1.000304 dimensionless			
Residual Mean	= 0.024265			
Residual Standard Dev.	= 0.064549			
Residual Sum of Squares	= 0.313852			
Absolute Residual Mean	= 0.059435			
Minimum Residual	= -0.116938			
Maximum Residual	= 0.111635			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.12	1.64	1.61	0.02
1	0.13	1.48	1.59	-0.11
2	0.13	1.58	1.57	0.01
3	0.14	1.50	1.55	-0.04
4	0.15	1.41	1.52	-0.12
5	0.16	1.51	1.50	0.01
6	0.17	1.46	1.47	-0.01
7	0.18	1.40	1.45	-0.05
8	0.19	1.37	1.42	-0.05
9	0.20	1.34	1.39	-0.05

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.21	1.31	1.36	-0.05
11	0.22	1.28	1.33	-0.05
12	0.24	1.25	1.30	-0.04
13	0.25	1.22	1.26	-0.05
14	0.26	1.18	1.23	-0.05
15	0.28	1.15	1.19	-0.05
16	0.30	1.11	1.16	-0.05
17	0.31	1.08	1.12	-0.04
18	0.33	1.04	1.08	-0.04
19	0.35	1.00	1.04	-0.04
20	0.37	0.97	1.00	-0.04
21	0.40	0.93	0.96	-0.04
22	0.42	0.89	0.92	-0.04
23	0.44	0.85	0.88	-0.03
24	0.47	0.81	0.84	-0.03
25	0.50	0.77	0.80	-0.03
26	0.52	0.74	0.76	-0.02
27	0.55	0.70	0.72	-0.02
28	0.59	0.66	0.68	-0.02
29	0.62	0.62	0.64	-0.01
30	0.66	0.59	0.59	-0.01
31	0.70	0.55	0.55	0.00
32	0.74	0.52	0.51	0.01
33	0.78	0.49	0.47	0.01
34	0.83	0.45	0.43	0.02
35	0.88	0.42	0.40	0.03
36	0.93	0.40	0.36	0.04
37	0.98	0.37	0.33	0.04
38	1.04	0.34	0.29	0.05
39	1.10	0.32	0.26	0.06
40	1.17	0.30	0.23	0.07
41	1.24	0.28	0.20	0.08
42	1.31	0.26	0.18	0.08
43	1.39	0.24	0.15	0.09
44	1.47	0.23	0.13	0.10
45	1.56	0.21	0.11	0.09
46	1.65	0.19	0.09	0.10
47	1.75	0.18	0.08	0.10
48	1.86	0.17	0.06	0.11
49	1.97	0.16	0.05	0.11
50	2.08	0.15	0.04	0.11

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	2.21	0.14	0.03	0.11
52	2.34	0.14	0.03	0.11
53	2.48	0.13	0.02	0.11
54	2.63	0.13	0.02	0.11
55	2.79	0.12	0.01	0.11
56	2.95	0.12	0.01	0.11
57	3.13	0.11	0.01	0.10
58	3.32	0.10	0.00	0.10
59	3.51	0.10	0.00	0.10
60	3.72	0.09	0.00	0.09
61	3.95	0.09	0.00	0.09
62	4.18	0.08	0.00	0.08
63	4.43	0.08	0.00	0.08
64	4.69	0.07	0.00	0.07
65	4.97	0.07	0.00	0.07

PT-INJ-3 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-3 Falling Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

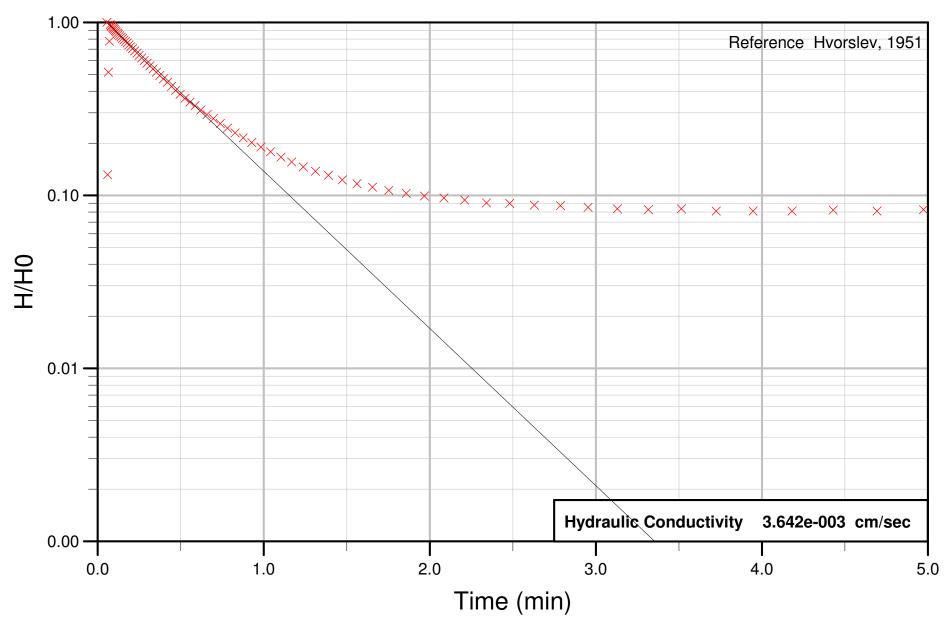
Number of Points = 59

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 2.022 ft
Hydraulic Conductivity Calculated Value	= 0.00375139 cm/sec
Time to 37% Displacement Calculated Value	= 0.572158 min
Linear Regression Slope Fixed Value	= -1.74977 /min
Linear Regression Intercept Fixed Value	= 1.00692
Calculation Type Selected Value	= Default

ANALYSIS STATISTICS


Regression Line				
Slope:	-1.749771 /min			
Intercept:	1.006917 dimensionless			
Residual Mean	= 0.035968			
Residual Standard Dev.	= 0.061610			
Residual Sum of Squares	= 0.300284			
Absolute Residual Mean	= 0.056430			
Minimum Residual	= -0.036389			
Maximum Residual	= 0.122563			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.18	1.46	1.49	-0.03
1	0.19	1.44	1.47	-0.03
2	0.20	1.44	1.44	0.00
3	0.21	1.41	1.41	0.00
4	0.22	1.38	1.38	0.00
5	0.24	1.34	1.35	-0.01
6	0.25	1.31	1.32	-0.01
7	0.26	1.27	1.28	-0.01
8	0.28	1.23	1.25	-0.02
9	0.30	1.19	1.21	-0.02

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.31	1.15	1.17	-0.02
11	0.33	1.11	1.14	-0.03
12	0.35	1.07	1.10	-0.03
13	0.37	1.03	1.06	-0.03
14	0.40	0.99	1.02	-0.03
15	0.42	0.95	0.98	-0.03
16	0.44	0.90	0.94	-0.04
17	0.47	0.86	0.90	-0.04
18	0.50	0.82	0.85	-0.03
19	0.52	0.78	0.81	-0.03
20	0.55	0.74	0.77	-0.03
21	0.59	0.70	0.73	-0.03
22	0.62	0.66	0.69	-0.03
23	0.66	0.62	0.64	-0.02
24	0.70	0.58	0.60	-0.02
25	0.74	0.54	0.56	-0.02
26	0.78	0.51	0.52	-0.01
27	0.83	0.48	0.48	0.00
28	0.88	0.44	0.44	0.00
29	0.93	0.41	0.40	0.01
30	0.98	0.38	0.36	0.02
31	1.04	0.35	0.33	0.02
32	1.10	0.33	0.30	0.04
33	1.17	0.31	0.26	0.04
34	1.24	0.28	0.23	0.05
35	1.31	0.26	0.21	0.06
36	1.39	0.25	0.18	0.07
37	1.47	0.23	0.15	0.07
38	1.56	0.22	0.13	0.08
39	1.65	0.20	0.11	0.09
40	1.75	0.19	0.09	0.10
41	1.86	0.18	0.08	0.10
42	1.97	0.17	0.07	0.11
43	2.08	0.17	0.05	0.11
44	2.21	0.16	0.04	0.12
45	2.34	0.15	0.03	0.12
46	2.48	0.15	0.03	0.12
47	2.63	0.14	0.02	0.12
48	2.79	0.14	0.02	0.12
49	2.95	0.13	0.01	0.12
50	3.13	0.13	0.01	0.12

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	3.32	0.13	0.01	0.12
52	3.51	0.12	0.00	0.12
53	3.72	0.12	0.00	0.12
54	3.95	0.12	0.00	0.11
55	4.18	0.12	0.00	0.11
56	4.43	0.11	0.00	0.11
57	4.69	0.11	0.00	0.11
58	4.97	0.11	0.00	0.11

PT-INJ-3 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-3 Rising Test 1 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

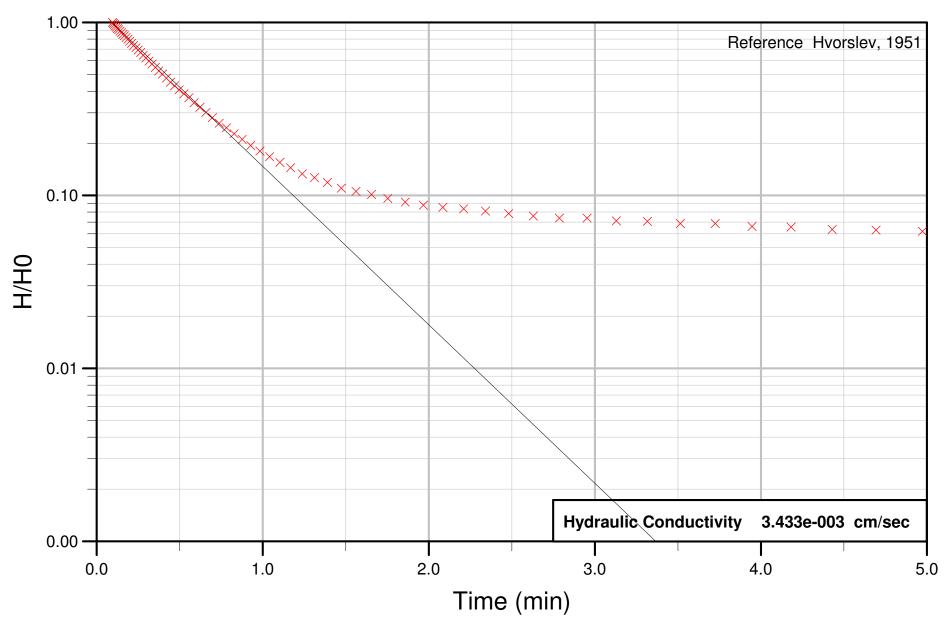
Simple Analysis - No Wells Defined

Number of Points = 78

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 1.937 ft
Hydraulic Conductivity Calculated Value	= 0.00364172 cm/sec
Time to 37% Displacement Calculated Value	= 0.531086 min
Linear Regression Slope Fixed Value	= -2.09388 /min
Linear Regression Intercept Fixed Value	= 1.125
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Democratica Time	


Regression Line			
Slope:		-2.093885	/min
Intercept:		1.124998	dimensionless
Residual Mean	=	0.007956	
Residual Standard Dev.	=	0.238037	
Residual Sum of Squares	=	4.424540	
Absolute Residual Mean	=	0.110462	
Minimum Residual	=	-1.666850	
Maximum Residual	=	0.162624	

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.05	1.94	1.94	-0.01
1	0.06	0.26	1.92	-1.67
2	0.06	1.00	1.90	-0.90
3	0.07	1.51	1.88	-0.38
4	0.08	1.88	1.86	0.02
5	0.08	1.85	1.84	0.01
6	0.08	1.83	1.82	0.01
7	0.09	1.80	1.80	0.00
8	0.10	1.78	1.79	-0.01
9	0.10	1.76	1.77	-0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.11	1.73	1.75	-0.02
11	0.11	1.71	1.72	-0.02
12	0.12	1.68	1.70	-0.02
13	0.13	1.65	1.68	-0.02
14	0.13	1.62	1.65	-0.03
15	0.14	1.59	1.62	-0.03
16	0.15	1.56	1.60	-0.03
17	0.16	1.53	1.57	-0.03
18	0.17	1.50	1.54	-0.03
19	0.18	1.47	1.50	-0.03
20	0.19	1.43	1.47	-0.04
21	0.20	1.40	1.44	-0.04
22	0.21	1.36	1.40	-0.04
23	0.22	1.33	1.37	-0.04
24	0.24	1.29	1.33	-0.04
25	0.25	1.25	1.29	-0.04
26	0.26	1.21	1.25	-0.04
27	0.28	1.17	1.21	-0.05
28	0.30	1.12	1.17	-0.05
29	0.31	1.09	1.13	-0.04
30	0.33	1.04	1.08	-0.04
31	0.35	1.00	1.04	-0.04
32	0.37	0.95	1.00	-0.04
33	0.40	0.91	0.95	-0.04
34	0.42	0.87	0.90	-0.03
35	0.44	0.83	0.86	-0.03
36	0.47	0.78	0.82	-0.03
37	0.50	0.74	0.77	-0.03
38	0.52	0.70	0.73	-0.02
39	0.55	0.67	0.68	-0.01
40	0.59	0.64	0.64	0.00
41	0.62	0.60	0.59	0.01
42	0.66	0.57	0.55	0.02
43	0.70	0.54	0.51	0.03
44	0.74	0.50	0.46	0.04
45	0.78	0.47	0.42	0.05
46	0.83	0.45	0.39	0.06
47	0.88	0.42	0.35	0.07
48	0.93	0.39	0.31	0.08
49	0.98	0.37	0.28	0.09
50	1.04	0.35	0.25	0.10

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.10	0.32	0.22	0.11
52	1.17	0.30	0.19	0.11
53	1.24	0.28	0.16	0.12
54	1.31	0.27	0.14	0.13
55	1.39	0.25	0.12	0.13
56	1.47	0.24	0.10	0.14
57	1.56	0.23	0.08	0.14
58	1.65	0.22	0.07	0.15
59	1.75	0.21	0.06	0.15
60	1.86	0.20	0.04	0.15
61	1.97	0.19	0.04	0.16
62	2.08	0.19	0.03	0.16
63	2.21	0.18	0.02	0.16
64	2.34	0.18	0.02	0.16
65	2.48	0.17	0.01	0.16
66	2.63	0.17	0.01	0.16
67	2.79	0.17	0.01	0.16
68	2.95	0.17	0.00	0.16
69	3.13	0.16	0.00	0.16
70	3.32	0.16	0.00	0.16
71	3.51	0.16	0.00	0.16
72	3.72	0.16	0.00	0.16
73	3.95	0.16	0.00	0.16
74	4.18	0.16	0.00	0.16
75	4.43	0.16	0.00	0.16
76	4.69	0.16	0.00	0.16
77	4.97	0.16	0.00	0.16

PT-INJ-3 Rising Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-3 Rising Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

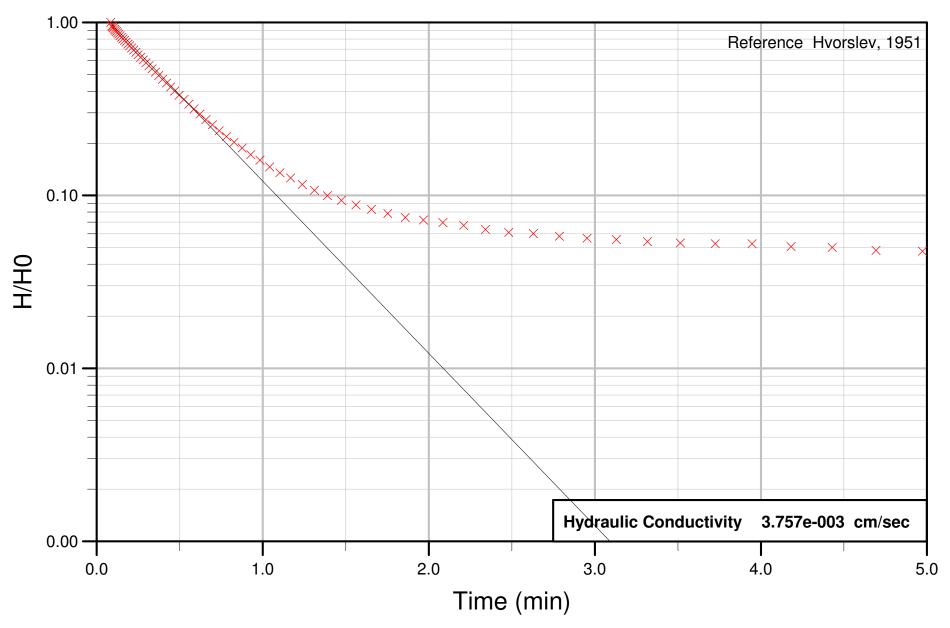
Simple Analysis - No Wells Defined

Number of Points = 70

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 1.937 ft
Hydraulic Conductivity Calculated Value	= 0.00343342 cm/sec
Time to 37% Displacement Calculated Value	= 0.563307 min
Linear Regression Slope Fixed Value	= -2.10787 /min
Linear Regression Intercept Fixed Value	= 1.21303
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line				
Slope:	-2.107867 /min			
Intercept:	1.213032 dimensionless			
Residual Mean	= 0.034709			
Residual Standard Dev.	= 0.074346			
Residual Sum of Squares	= 0.471236			
Absolute Residual Mean	= 0.067534			
Minimum Residual	= -0.054870			
Maximum Residual	= 0.140104			

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.10	1.94	1.92	0.01
1	0.10	1.91	1.90	0.01
2	0.11	1.88	1.88	0.00
3	0.11	1.84	1.86	-0.01
4	0.12	1.82	1.83	-0.01
5	0.13	1.78	1.80	-0.02
6	0.13	1.76	1.78	-0.02
7	0.14	1.72	1.75	-0.03
8	0.15	1.68	1.72	-0.03
9	0.16	1.65	1.68	-0.03

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.17	1.62	1.65	-0.03
11	0.18	1.58	1.62	-0.04
12	0.19	1.55	1.58	-0.03
13	0.20	1.51	1.55	-0.04
14	0.21	1.47	1.51	-0.04
15	0.22	1.42	1.47	-0.05
16	0.24	1.38	1.43	-0.05
17	0.25	1.34	1.39	-0.05
18	0.26	1.30	1.34	-0.05
19	0.28	1.25	1.30	-0.05
20	0.30	1.21	1.26	-0.05
21	0.31	1.16	1.21	-0.05
22	0.33	1.11	1.16	-0.05
23	0.35	1.06	1.12	-0.05
24	0.37	1.02	1.07	-0.05
25	0.40	0.97	1.02	-0.05
26	0.42	0.92	0.97	-0.05
27	0.44	0.87	0.92	-0.05
28	0.47	0.83	0.87	-0.04
29	0.50	0.79	0.83	-0.04
30	0.52	0.75	0.78	-0.03
31	0.55	0.71	0.73	-0.02
32	0.59	0.66	0.68	-0.02
33	0.62	0.62	0.63	-0.01
34	0.66	0.58	0.59	0.00
35	0.70	0.55	0.54	0.00
36	0.74	0.51	0.50	0.01
37	0.78	0.48	0.45	0.02
38	0.83	0.44	0.41	0.03
39	0.88	0.41	0.37	0.04
40	0.93	0.38	0.33	0.04
41	0.98	0.35	0.30	0.05
42	1.04	0.32	0.26	0.06
43	1.10	0.30	0.23	0.07
44	1.17	0.28	0.20	0.08
45	1.24	0.26	0.17	0.09
46	1.31	0.25	0.15	0.10
47	1.39	0.23	0.13	0.10
48	1.47	0.21	0.11	0.11
49	1.56	0.20	0.09	0.12
50	1.65	0.20	0.07	0.12

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.75	0.19	0.06	0.13
52	1.86	0.18	0.05	0.13
53	1.97	0.17	0.04	0.13
54	2.08	0.17	0.03	0.14
55	2.21	0.16	0.02	0.14
56	2.34	0.16	0.02	0.14
57	2.48	0.15	0.01	0.14
58	2.63	0.15	0.01	0.14
59	2.79	0.14	0.01	0.14
60	2.95	0.14	0.00	0.14
61	3.13	0.14	0.00	0.13
62	3.32	0.14	0.00	0.13
63	3.51	0.13	0.00	0.13
64	3.72	0.13	0.00	0.13
65	3.95	0.13	0.00	0.13
66	4.18	0.13	0.00	0.13
67	4.43	0.12	0.00	0.12
68	4.69	0.12	0.00	0.12
69	4.97	0.12	0.00	0.12

PT-INJ-3 Rising Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-3 Rising Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

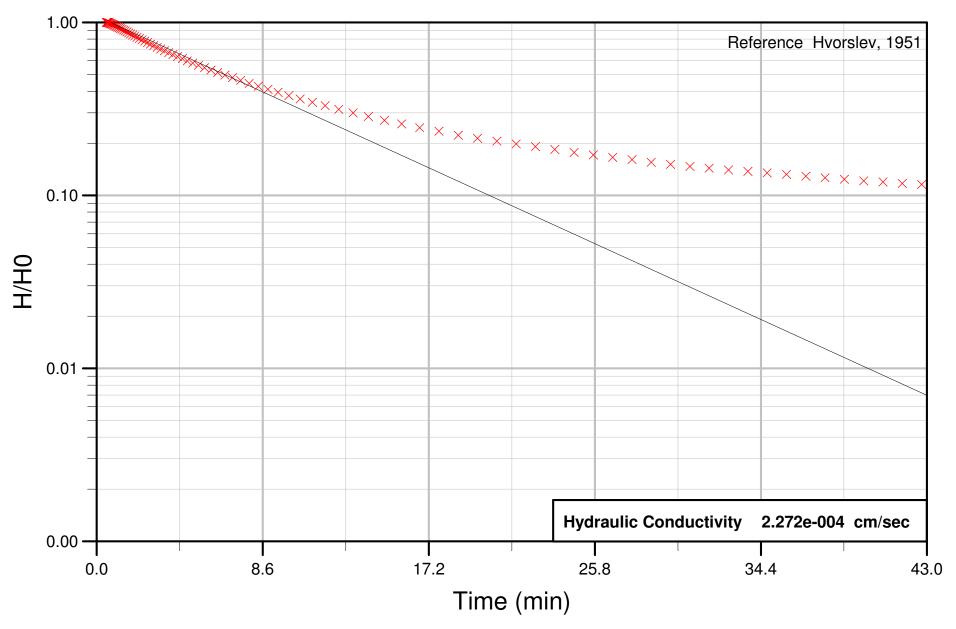
Number of Points = 72

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 14.8 ft

Initial Displacement Fixed Value	= 1.999 ft
Hydraulic Conductivity Calculated Value	= 0.00375677 cm/sec
Time to 37% Displacement Calculated Value	= 0.514821 min
Linear Regression Slope Fixed Value	= -2.29317 /min
Linear Regression Intercept Fixed Value	= 1.20481
Calculation Type Selected Value	= Default
LYSIS STATISTICS	

ANALYSIS STATISTICS


Regression Line			
Slope:		-2.293168	/min
Intercept:		1.204808	dimensionless
Residual Mean	=	0.021394	
Residual Standard Dev.	=	0.073998	
Residual Sum of Squares	=	0.427201	
Absolute Residual Mean	=	0.069392	
Minimum Residual	=	-0.073139	
Maximum Residual	=	0.118827	

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.08	2.00	1.98	0.02
1	0.09	1.90	1.96	-0.06
2	0.10	1.88	1.94	-0.06
3	0.10	1.86	1.91	-0.06
4	0.11	1.82	1.89	-0.07
5	0.11	1.80	1.86	-0.07
6	0.12	1.77	1.84	-0.07
7	0.13	1.74	1.81	-0.07
8	0.13	1.71	1.78	-0.07
9	0.14	1.67	1.75	-0.07

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.15	1.64	1.71	-0.07
11	0.16	1.61	1.68	-0.07
12	0.17	1.57	1.64	-0.07
13	0.18	1.54	1.61	-0.07
14	0.19	1.50	1.57	-0.07
15	0.20	1.46	1.53	-0.06
16	0.21	1.42	1.49	-0.07
17	0.22	1.38	1.45	-0.06
18	0.24	1.34	1.40	-0.06
19	0.25	1.30	1.36	-0.06
20	0.26	1.26	1.31	-0.06
21	0.28	1.21	1.27	-0.05
22	0.30	1.17	1.22	-0.05
23	0.31	1.12	1.17	-0.05
24	0.33	1.08	1.12	-0.04
25	0.35	1.03	1.07	-0.04
26	0.37	0.99	1.02	-0.04
27	0.40	0.94	0.97	-0.03
28	0.42	0.89	0.92	-0.03
29	0.44	0.85	0.87	-0.02
30	0.47	0.80	0.82	-0.02
31	0.50	0.76	0.77	-0.01
32	0.52	0.72	0.72	-0.01
33	0.55	0.67	0.67	0.00
34	0.59	0.63	0.63	0.00
35	0.62	0.59	0.58	0.01
36	0.66	0.55	0.53	0.02
37	0.70	0.51	0.49	0.02
38	0.74	0.47	0.44	0.03
39	0.78	0.44	0.40	0.04
40	0.83	0.41	0.36	0.04
41	0.88	0.38	0.32	0.05
42	0.93	0.34	0.29	0.06
43	0.98	0.32	0.25	0.07
44	1.04	0.29	0.22	0.07
45	1.10	0.27	0.19	0.08
46	1.17	0.25	0.17	0.09
47	1.24	0.23	0.14	0.09
48	1.31	0.21	0.12	0.09
49	1.39	0.20	0.10	0.10
50	1.47	0.19	0.08	0.10

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.56	0.18	0.07	0.11
52	1.65	0.17	0.05	0.11
53	1.75	0.16	0.04	0.11
54	1.86	0.15	0.03	0.12
55	1.97	0.14	0.03	0.12
56	2.08	0.14	0.02	0.12
57	2.21	0.13	0.02	0.12
58	2.34	0.13	0.01	0.12
59	2.48	0.12	0.01	0.11
60	2.63	0.12	0.01	0.11
61	2.79	0.12	0.00	0.11
62	2.95	0.11	0.00	0.11
63	3.13	0.11	0.00	0.11
64	3.32	0.11	0.00	0.11
65	3.51	0.11	0.00	0.11
66	3.72	0.11	0.00	0.10
67	3.95	0.11	0.00	0.10
68	4.18	0.10	0.00	0.10
69	4.43	0.10	0.00	0.10
70	4.69	0.10	0.00	0.10
71	4.97	0.10	0.00	0.09

PT-INJ-4 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-4 Falling Test 1 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

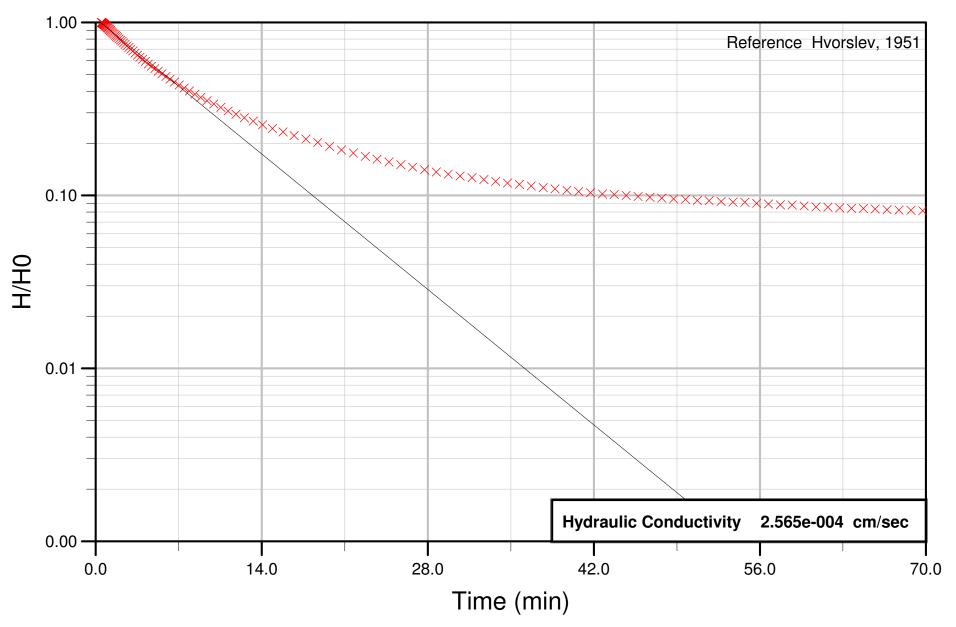
Number of Points = 88

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.3 ft

Initial Displacement Fixed Value	= 3.978 ft
Hydraulic Conductivity Calculated Value	= 0.000227152 cm/sec
Time to 37% Displacement Calculated Value	= 9.20804 min
Linear Regression Slope Fixed Value	= -0.117586 /min
Linear Regression Intercept Fixed Value	= 1.09252
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	

Regression Line			
Slope:		-0.117586	/min
Intercept:		1.092516	dimensionless
Residual Mean	=	0.111145	
Residual Standard Dev.	=	0.252486	
Residual Sum of Squares	=	6.697013	
Absolute Residual Mean	=	0.224787	
Minimum Residual	=	-0.155087	
Maximum Residual	=	0.473135	


Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.50	3.98	4.10	-0.12
1	0.52	3.98	4.09	-0.11
2	0.55	3.97	4.07	-0.10
3	0.59	3.97	4.06	-0.09
4	0.62	3.96	4.04	-0.08
5	0.66	3.94	4.02	-0.08
6	0.70	3.93	4.00	-0.08
7	0.74	3.91	3.98	-0.08
8	0.78	3.89	3.96	-0.08
9	0.83	3.87	3.94	-0.08

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.88	3.84	3.92	-0.08
11	0.93	3.82	3.90	-0.08
12	0.98	3.79	3.87	-0.09
13	1.04	3.76	3.85	-0.09
14	1.10	3.73	3.82	-0.09
15	1.17	3.70	3.79	-0.09
16	1.24	3.66	3.76	-0.10
17	1.31	3.63	3.73	-0.10
18	1.39	3.59	3.69	-0.10
19	1.47	3.55	3.65	-0.11
20	1.56	3.50	3.62	-0.11
21	1.65	3.46	3.58	-0.12
22	1.75	3.41	3.54	-0.13
23	1.86	3.36	3.49	-0.13
24	1.97	3.31	3.45	-0.13
25	2.08	3.26	3.40	-0.14
26	2.21	3.21	3.35	-0.14
27	2.34	3.15	3.30	-0.15
28	2.48	3.10	3.25	-0.15
29	2.63	3.04	3.19	-0.15
30	2.79	2.98	3.13	-0.15
31	2.95	2.92	3.07	-0.16
32	3.13	2.85	3.01	-0.15
33	3.32	2.79	2.94	-0.15
34	3.51	2.72	2.87	-0.15
35	3.72	2.66	2.80	-0.15
36	3.95	2.59	2.73	-0.14
37	4.18	2.52	2.66	-0.13
38	4.43	2.46	2.58	-0.13
39	4.69	2.39	2.50	-0.12
40	4.97	2.32	2.42	-0.11
41	5.27	2.25	2.34	-0.09
42	5.58	2.18	2.25	-0.08
43	5.91	2.11	2.17	-0.06
44	6.27	2.04	2.08	-0.04
45	6.64	1.97	1.99	-0.02
46	7.03	1.91	1.90	0.00
47	7.45	1.84	1.81	0.03

Index	Time	Obs. Displacement	Calc. Displacement	Residual
48	7.90	1.77	1.72	0.05
49	8.37	1.70	1.62	0.07
50	8.86	1.63	1.53	0.10
51	9.39	1.57	1.44	0.13
52	9.95	1.50	1.35	0.15
53	10.54	1.44	1.26	0.18
54	11.17	1.37	1.17	0.21
55	11.83	1.31	1.08	0.23
56	12.53	1.25	1.00	0.26
57	13.28	1.19	0.91	0.28
58	14.07	1.14	0.83	0.30
59	14.91	1.08	0.75	0.33
60	15.79	1.03	0.68	0.35
61	16.73	0.98	0.61	0.37
62	17.72	0.93	0.54	0.39
63	18.72	0.89	0.48	0.40
64	19.72	0.85	0.43	0.42
65	20.72	0.82	0.38	0.44
66	21.72	0.79	0.34	0.45
67	22.72	0.76	0.30	0.46
68	23.72	0.73	0.27	0.47
69	24.72	0.70	0.24	0.47
70	25.72	0.68	0.21	0.47
71	26.72	0.66	0.19	0.47
72	27.72	0.64	0.17	0.47
73	28.72	0.62	0.15	0.47
74	29.72	0.60	0.13	0.47
75	30.72	0.58	0.12	0.47
76	31.72	0.57	0.10	0.47
77	32.72	0.56	0.09	0.47
78	33.72	0.55	0.08	0.46
79	34.72	0.54	0.07	0.46
80	35.72	0.53	0.07	0.46
81	36.72	0.51	0.06	0.46
82	37.72	0.50	0.05	0.45
83	38.72	0.49	0.05	0.45
84	39.72	0.48	0.04	0.44
85	40.72	0.48	0.04	0.44

Index	Time	Obs. Displacement	Calc. Displacement	Residual
86	41.72	0.47	0.03	0.43
87	42.72	0.46	0.03	0.43

PT-INJ-4 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-4 Falling Test 2 Job Number: 49543.004.403 Date: 10/11/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

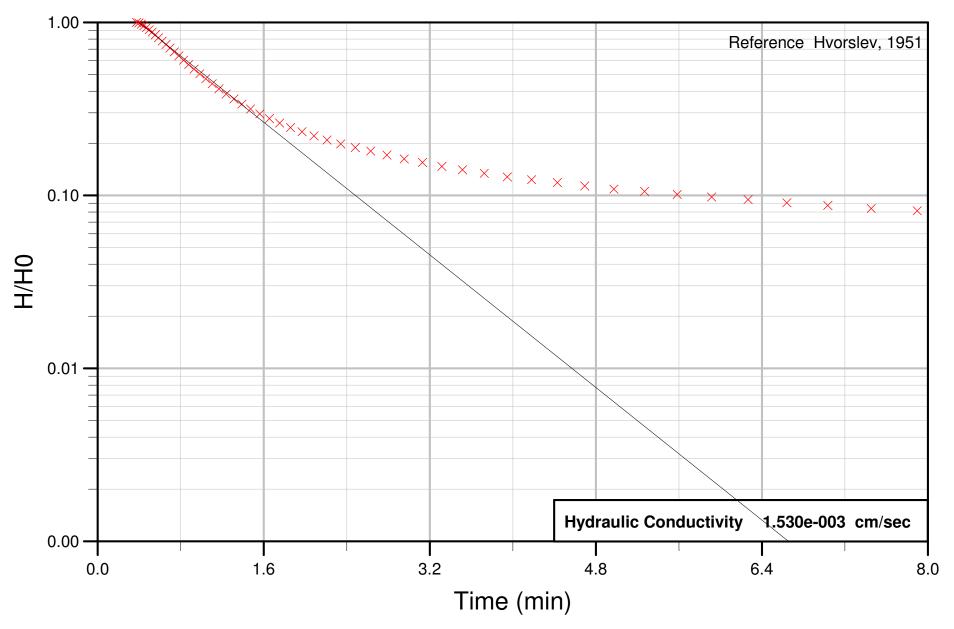
Number of Points = 116

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.3 ft

Initial Displacement Fixed Value	= 3.992 ft
Hydraulic Conductivity Calculated Value	= 0.000256528 cm/sec
Time to 37% Displacement Calculated Value	= 8.15361 min
Linear Regression Slope Fixed Value	= -0.128854 /min
Linear Regression Intercept Fixed Value	= 1.05799
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	
Regression Line	

Regression Line			
Slope:		-0.128854	/min
Intercept:		1.057993	dimensionless
Residual Mean	=	0.192605	
Residual Standard Dev.	=	0.206708	
Residual Sum of Squares	=	9.259682	
Absolute Residual Mean	=	0.228388	
Minimum Residual	=	-0.107843	
Maximum Residual	=	0.448354	


Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.47	3.99	3.98	0.02
1	0.50	3.99	3.96	0.03
2	0.52	3.98	3.95	0.03
3	0.55	3.97	3.93	0.03
4	0.59	3.95	3.92	0.03
5	0.62	3.93	3.90	0.03
6	0.66	3.91	3.88	0.03
7	0.70	3.89	3.86	0.03
8	0.74	3.87	3.84	0.03
9	0.78	3.84	3.82	0.02

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.83	3.82	3.80	0.02
11	0.88	3.79	3.77	0.01
12	0.93	3.76	3.75	0.01
13	0.98	3.72	3.72	0.00
14	1.04	3.69	3.69	0.00
15	1.10	3.66	3.66	-0.01
16	1.17	3.62	3.63	-0.01
17	1.24	3.58	3.60	-0.02
18	1.31	3.54	3.57	-0.03
19	1.39	3.50	3.53	-0.03
20	1.47	3.45	3.49	-0.04
21	1.56	3.41	3.45	-0.05
22	1.65	3.36	3.41	-0.05
23	1.75	3.31	3.37	-0.06
24	1.86	3.26	3.32	-0.07
25	1.97	3.21	3.28	-0.07
26	2.08	3.15	3.23	-0.08
27	2.21	3.10	3.18	-0.08
28	2.34	3.04	3.12	-0.09
29	2.48	2.98	3.07	-0.09
30	2.63	2.92	3.01	-0.09
31	2.79	2.85	2.95	-0.10
32	2.95	2.79	2.89	-0.10
33	3.13	2.72	2.82	-0.10
34	3.32	2.65	2.75	-0.11
35	3.51	2.58	2.69	-0.11
36	3.72	2.51	2.61	-0.10
37	3.95	2.44	2.54	-0.10
38	4.18	2.37	2.46	-0.09
39	4.43	2.29	2.39	-0.10
40	4.69	2.23	2.31	-0.08
41	4.97	2.15	2.23	-0.07
42	5.27	2.08	2.14	-0.06
43	5.58	2.01	2.06	-0.05
44	5.91	1.94	1.97	-0.03
45	6.27	1.87	1.88	-0.01
46	6.64	1.80	1.80	0.01
47	7.03	1.73	1.71	0.03
48	7.45	1.67	1.62	0.05
49	7.90	1.60	1.53	0.07
50	8.37	1.53	1.44	0.10

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	8.86	1.47	1.35	0.12
52	9.39	1.41	1.26	0.15
53	9.95	1.35	1.17	0.17
54	10.54	1.29	1.09	0.20
55	11.17	1.23	1.00	0.23
56	11.83	1.18	0.92	0.26
57	12.53	1.12	0.84	0.28
58	13.28	1.07	0.76	0.31
59	14.07	1.02	0.69	0.33
60	14.91	0.97	0.62	0.35
61	15.79	0.93	0.55	0.38
62	16.73	0.89	0.49	0.40
63	17.72	0.85	0.43	0.41
64	18.72	0.81	0.38	0.43
65	19.72	0.77	0.33	0.43
66	20.72	0.73	0.29	0.44
67	21.72	0.70	0.26	0.44
68	22.72	0.67	0.23	0.45
69	23.72	0.65	0.20	0.45
70	24.72	0.62	0.17	0.45
71	25.72	0.60	0.15	0.45
72	26.72	0.58	0.13	0.45
73	27.72	0.56	0.12	0.44
74	28.72	0.54	0.10	0.44
75	29.72	0.53	0.09	0.44
76	30.72	0.52	0.08	0.44
77	31.72	0.51	0.07	0.43
78	32.72	0.49	0.06	0.43
79	33.72	0.48	0.05	0.43
80	34.72	0.47	0.05	0.42
81	35.72	0.46	0.04	0.42
82	36.72	0.45	0.04	0.41
83	37.72	0.44	0.03	0.41
84	38.72	0.44	0.03	0.41
85 86	39.72	0.43	0.03	0.40
87	40.72	0.42	0.02	0.40
88	41.72 42.72	0.41	0.02	0.39
89	42.72	0.41	0.02	0.39
90	43.72	0.40	0.02	0.39
91	44.72	0.39	0.01	0.39
91 	40.12	0.39	0.01	0.30

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
92	46.72	0.39	0.01	0.38
93	47.72	0.39	0.01	0.38
94	48.72	0.38	0.01	0.37
95	49.72	0.38	0.01	0.37
96	50.72	0.37	0.01	0.37
97	51.72	0.37	0.01	0.37
98	52.72	0.37	0.00	0.36
99	53.72	0.37	0.00	0.36
100	54.72	0.36	0.00	0.36
101	55.72	0.36	0.00	0.36
102	56.72	0.36	0.00	0.35
103	57.72	0.35	0.00	0.35
104	58.72	0.35	0.00	0.35
105	59.72	0.35	0.00	0.35
106	60.72	0.34	0.00	0.34
107	61.72	0.34	0.00	0.34
108	62.72	0.34	0.00	0.34
109	63.72	0.34	0.00	0.33
110	64.72	0.34	0.00	0.33
111	65.72	0.33	0.00	0.33
112	66.72	0.33	0.00	0.33
113	67.72	0.33	0.00	0.33
114	68.72	0.33	0.00	0.33
115	69.72	0.33	0.00	0.32

PT-INJ-5 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-5 Falling Test 1 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

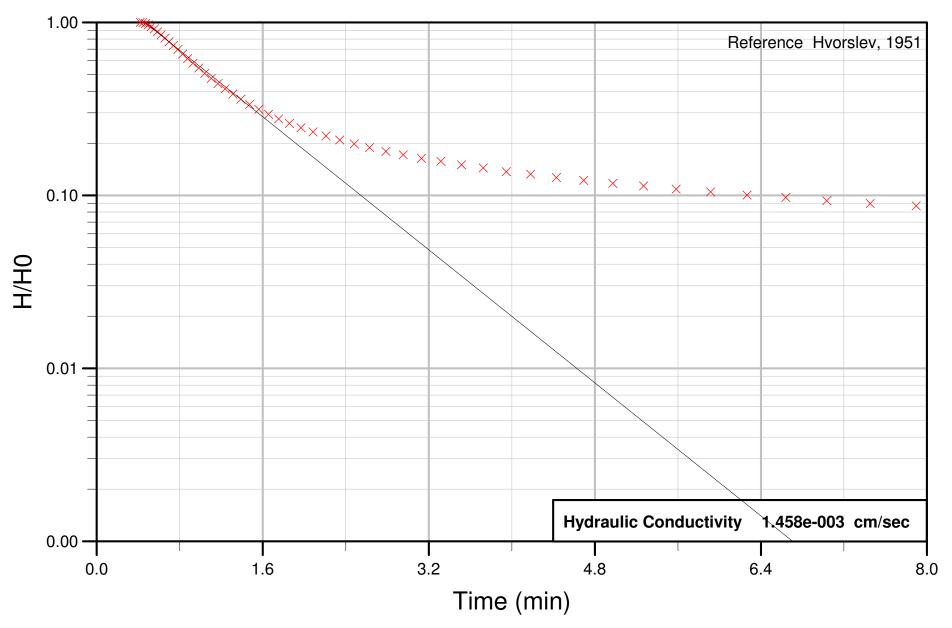
Number of Points = 54

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 16.3 ft

Initial Displacement Fixed Value	= 3.435 ft
Hydraulic Conductivity Calculated Value	= 0.00153046 cm/sec
Time to 37% Displacement Calculated Value	= 1.3008 min
Linear Regression Slope Fixed Value	= -1.10374 /min
Linear Regression Intercept Fixed Value	= 1.55503
Calculation Type Selected Value	= Default
LYSIS STATISTICS	

ANAL


-1.103739 /min
1.555031 dimensionless
= 0.144063
= 0.174825
= 2.771172
= 0.176310
= -0.100003
= 0.373434

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.37	3.44	3.54	-0.10
1	0.40	3.41	3.45	-0.04
2	0.42	3.35	3.36	-0.01
3	0.44	3.29	3.27	0.02
4	0.47	3.21	3.18	0.03
5	0.50	3.12	3.09	0.03
6	0.52	3.02	2.99	0.02
7	0.55	2.91	2.90	0.01
8	0.59	2.80	2.80	0.00
9	0.62	2.68	2.69	-0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.66	2.56	2.58	-0.03
11	0.70	2.44	2.48	-0.04
12	0.74	2.32	2.37	-0.05
13	0.78	2.20	2.26	-0.06
14	0.83	2.08	2.14	-0.07
15	0.88	1.96	2.03	-0.07
16	0.93	1.84	1.92	-0.08
17	0.98	1.73	1.81	-0.07
18	1.04	1.62	1.69	-0.07
19	1.10	1.52	1.58	-0.06
20	1.17	1.42	1.47	-0.05
21	1.24	1.32	1.36	-0.04
22	1.31	1.24	1.26	-0.02
23	1.39	1.16	1.15	0.00
24	1.47	1.08	1.05	0.03
25	1.56	1.02	0.95	0.06
26	1.65	0.95	0.86	0.09
27	1.75	0.90	0.77	0.13
28	1.86	0.85	0.69	0.16
29	1.97	0.80	0.61	0.19
30	2.08	0.76	0.54	0.22
31	2.21	0.72	0.47	0.25
32	2.34	0.68	0.40	0.28
33	2.48	0.65	0.35	0.30
34	2.63	0.62	0.29	0.33
35	2.79	0.59	0.25	0.34
36	2.95	0.56	0.21	0.35
37	3.13	0.53	0.17	0.36
38	3.32	0.51	0.14	0.37
39	3.51	0.48	0.11	0.37
40	3.72	0.46	0.09	0.37
41	3.95	0.44	0.07	0.37
42	4.18	0.42	0.05	0.37
43	4.43	0.41	0.04	0.37
44	4.69	0.39	0.03	0.36
45	4.97	0.37	0.02	0.35
46	5.27	0.36	0.02	0.35
47	5.58	0.35	0.01	0.34
48	5.91	0.34	0.01	0.33
49	6.27	0.33	0.01	0.32
50	6.64	0.31	0.00	0.31

Index	Time	Obs. Displacement	Calc. Displacement	Residual
51	7.03	0.30	0.00	0.30
52	7.45	0.29	0.00	0.29
53	7.90	0.28	0.00	0.28

PT-INJ-5 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-5 Falling Test 2 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

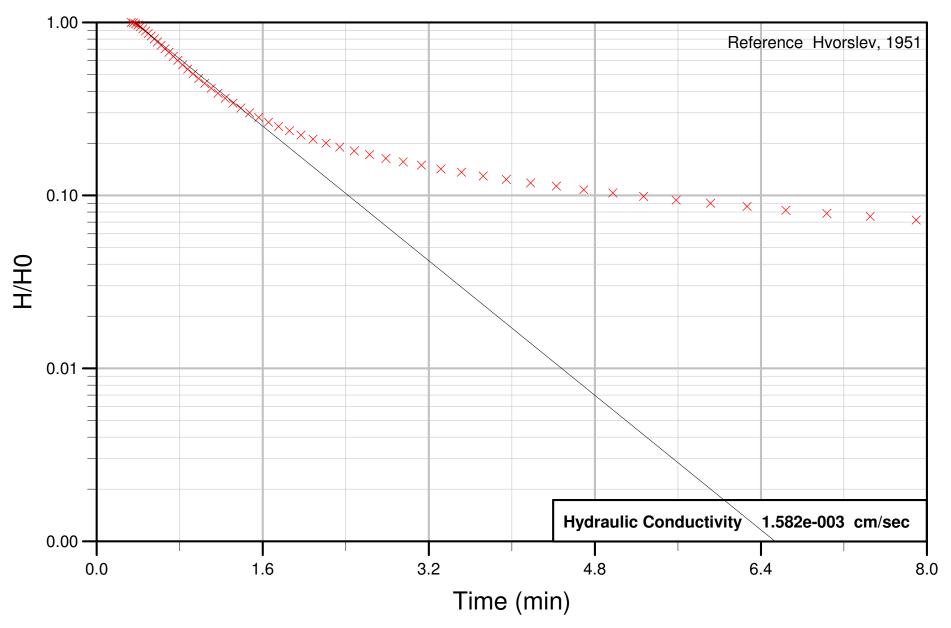
Simple Analysis - No Wells Defined

Number of Points = 52

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 16.3 ft

Initial Displacement Fixed Value	= 3.047 ft
Hydraulic Conductivity Calculated Value	= 0.00145786 cm/sec
Time to 37% Displacement Calculated Value	= 1.36558 min
Linear Regression Slope Fixed Value	= -1.10701 /min
Linear Regression Intercept Fixed Value	= 1.67776
Calculation Type Selected Value	= Default


Regression Line	
Slope:	-1.107012 /min
Intercept:	1.677764 dimensionless
Residual Mean	= 0.138185
Residual Standard Dev.	= 0.168045
Residual Sum of Squares	= 2.461365
Absolute Residual Mean	= 0.170766
Minimum Residual	= -0.165006
Maximum Residual	= 0.356210

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.42	3.05	3.21	-0.17
1	0.44	3.04	3.13	-0.09
2	0.47	3.00	3.04	-0.04
3	0.50	2.95	2.95	0.00
4	0.52	2.87	2.86	0.01
5	0.55	2.79	2.77	0.02
6	0.59	2.69	2.67	0.02
7	0.62	2.58	2.57	0.01
8	0.66	2.47	2.47	0.00
9	0.70	2.36	2.37	-0.01

Index	Time	Obs.	Calc.	Residual
	_	Displacement	Displacement	
10	0.74	2.24	2.26	-0.02
11	0.78	2.12	2.15	-0.03
12	0.83	2.00	2.04	-0.05
13	0.88	1.88	1.94	-0.05
14	0.93	1.77	1.83	-0.06
15	0.98	1.66	1.72	-0.06
16	1.04	1.55	1.61	-0.07
17	1.10	1.45	1.51	-0.06
18	1.17	1.35	1.40	-0.05
19	1.24	1.26	1.30	-0.04
20	1.31	1.17	1.20	-0.02
21	1.39	1.10	1.10	0.00
22	1.47	1.02	1.00	0.02
23	1.56	0.96	0.91	0.05
24	1.65	0.90	0.82	0.08
25	1.75	0.84	0.73	0.11
26	1.86	0.79	0.65	0.14
27	1.97	0.75	0.58	0.17
28	2.08	0.71	0.51	0.20
29	2.21	0.67	0.44	0.23
30	2.34	0.64	0.38	0.25
31	2.48	0.60	0.33	0.28
32	2.63	0.58	0.28	0.30
33	2.79	0.55	0.23	0.31
34	2.95	0.52	0.19	0.33
35	3.13	0.50	0.16	0.34
36	3.32	0.48	0.13	0.35
37	3.51	0.46	0.10	0.35
38	3.72	0.44	0.08	0.36
39	3.95	0.42	0.06	0.35
40	4.18	0.40	0.05	0.35
41	4.43	0.39	0.04	0.35
42	4.69	0.37	0.03	0.34
43	4.97	0.36	0.02	0.34
44	5.27	0.35	0.01	0.33
45	5.58	0.33	0.01	0.32
46	5.91	0.32	0.01	0.31
47	6.27	0.31	0.00	0.30
48	6.64	0.30	0.00	0.29
49	7.03	0.28	0.00	0.28
50	7.45	0.27	0.00	0.27

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	7.90	0.27	0.00	0.26

PT-INJ-5 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-5 Falling Test 3 Job Number: 49543.004.403 Date: 10/12/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

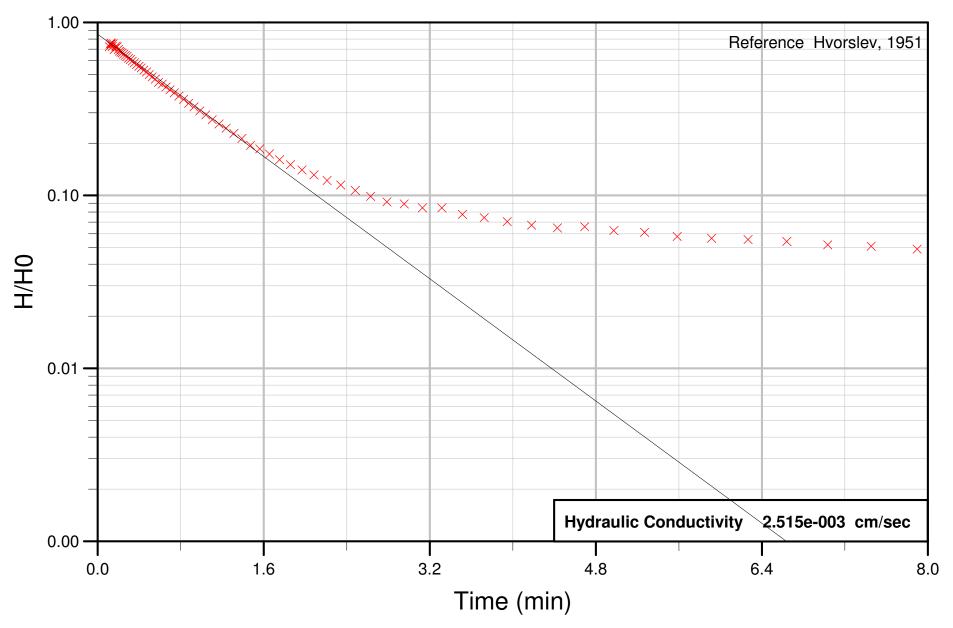
Simple Analysis - No Wells Defined

Number of Points = 56

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 16.3 ft

Initial Displacement Fixed Value	= 3.21 ft
Hydraulic Conductivity Calculated Value	= 0.00158245 cm/sec
Time to 37% Displacement Calculated Value	= 1.25807 min
Linear Regression Slope Fixed Value	= -1.11957 /min
Linear Regression Intercept Fixed Value	= 1.51322
Calculation Type Selected Value	= Default
LYSIS STATISTICS	


Regression Line	
Slope:	-1.119571 /min
Intercept:	1.513222 dimensionless
Residual Mean	= 0.109577
Residual Standard Dev.	= 0.170469
Residual Sum of Squares	= 2.299743
Absolute Residual Mean	= 0.163795
Minimum Residual	= -0.134640
Maximum Residual	= 0.342033

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.33	3.21	3.34	-0.13
1	0.35	3.19	3.27	-0.09
2	0.37	3.15	3.20	-0.05
3	0.40	3.09	3.12	-0.02
4	0.42	3.03	3.04	-0.01
5	0.44	2.95	2.95	-0.01
6	0.47	2.86	2.87	-0.01
7	0.50	2.77	2.79	-0.02
8	0.52	2.68	2.70	-0.02
9	0.55	2.58	2.61	-0.03

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.59	2.48	2.52	-0.04
11	0.62	2.37	2.42	-0.06
12	0.66	2.26	2.33	-0.07
13	0.70	2.15	2.23	-0.08
14	0.74	2.04	2.13	-0.09
15	0.78	1.93	2.03	-0.09
16	0.83	1.82	1.92	-0.10
17	0.88	1.72	1.82	-0.10
18	0.93	1.62	1.72	-0.10
19	0.98	1.52	1.62	-0.10
20	1.04	1.43	1.51	-0.09
21	1.10	1.34	1.41	-0.08
22	1.17	1.25	1.31	-0.07
23	1.24	1.17	1.21	-0.05
24	1.31	1.10	1.12	-0.02
25	1.39	1.03	1.03	0.00
26	1.47	0.96	0.93	0.03
27	1.56	0.91	0.85	0.06
28	1.65	0.85	0.76	0.09
29	1.75	0.80	0.68	0.12
30	1.86	0.76	0.61	0.15
31	1.97	0.72	0.54	0.18
32	2.08	0.68	0.47	0.21
33	2.21	0.64	0.41	0.23
34	2.34	0.61	0.35	0.26
35	2.48	0.58	0.30	0.28
36	2.63	0.55	0.26	0.30
37	2.79	0.53	0.21	0.31
38	2.95	0.50	0.18	0.32
39	3.13	0.48	0.15	0.33
40	3.32	0.46	0.12	0.34
41	3.51	0.44	0.09	0.34
42	3.72	0.42	0.08	0.34
43	3.95	0.40	0.06	0.34
44	4.18	0.38	0.05	0.33
45	4.43	0.36	0.03	0.33
46	4.69	0.35	0.03	0.32
47	4.97	0.33	0.02	0.31
48	5.27	0.32	0.01	0.30
49	5.58	0.30	0.01	0.29
50	5.91	0.29	0.01	0.28

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	6.27	0.28	0.00	0.27
52	6.64	0.26	0.00	0.26
53	7.03	0.25	0.00	0.25
54	7.45	0.24	0.00	0.24
55	7.90	0.23	0.00	0.23

PT-INJ-6 Falling Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Falling Test 1 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

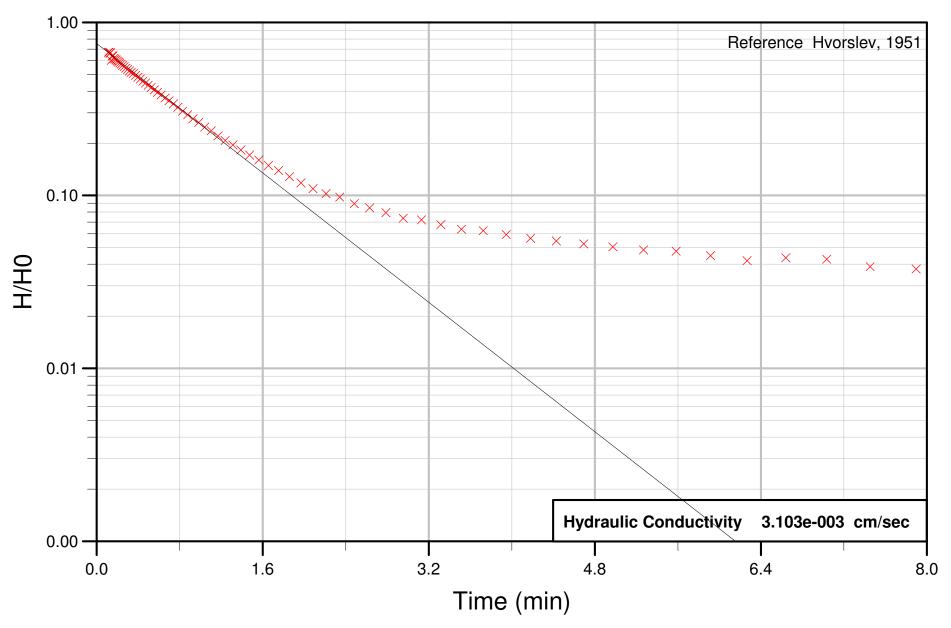
Simple Analysis - No Wells Defined

Number of Points = 83

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 2.127 ft
Hydraulic Conductivity Calculated Value	= 0.00251525 cm/sec
Time to 37% Displacement Calculated Value	= 0.819093 min
Linear Regression Slope Fixed Value	= -1.01591 /min
Linear Regression Intercept Fixed Value	= 0.850331
Calculation Type Selected Value	= Default


Regression Line				
Slope:	-1.015907 /min			
Intercept:	0.850331 dimensionless			
Residual Mean	= -0.134202			
Residual Standard Dev.	= 0.499733			
Residual Sum of Squares	= 22.222673			
Absolute Residual Mean	= 0.204465			
Minimum Residual	= -1.684501			
Maximum Residual	= 0.124623			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.07	0.00	1.68	-1.68
1	0.08	0.00	1.68	-1.68
2	0.08	0.00	1.67	-1.67
3	0.08	0.00	1.66	-1.66
4	0.09	0.00	1.65	-1.65
5	0.10	0.00	1.64	-1.64
6	0.10	0.00	1.63	-1.63
7	0.11	0.00	1.62	-1.62
8	0.11	1.54	1.61	-0.08
9	0.12	1.59	1.60	-0.02

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.13	1.62	1.59	0.02
11	0.13	1.60	1.58	0.02
12	0.14	1.54	1.57	-0.02
13	0.15	1.60	1.55	0.05
14	0.16	1.48	1.54	-0.06
15	0.17	1.50	1.53	-0.02
16	0.18	1.55	1.51	0.04
17	0.19	1.54	1.49	0.04
18	0.20	1.48	1.48	0.00
19	0.21	1.45	1.46	-0.01
20	0.22	1.43	1.44	-0.01
21	0.24	1.41	1.42	-0.01
22	0.25	1.39	1.40	-0.01
23	0.26	1.37	1.38	-0.01
24	0.28	1.35	1.36	-0.01
25	0.30	1.32	1.34	-0.02
26	0.31	1.30	1.31	-0.02
27	0.33	1.27	1.29	-0.02
28	0.35	1.24	1.26	-0.02
29	0.37	1.21	1.24	-0.02
30	0.40	1.18	1.21	-0.03
31	0.42	1.16	1.18	-0.02
32	0.44	1.13	1.15	-0.03
33	0.47	1.10	1.12	-0.02
34	0.50	1.06	1.09	-0.03
35	0.52	1.03	1.06	-0.03
36	0.55	1.00	1.03	-0.03
37	0.59	0.96	1.00	-0.04
38	0.62	0.93	0.96	-0.03
39	0.66	0.90	0.93	-0.03
40	0.70	0.87	0.89	-0.02
41	0.74	0.83	0.85	-0.02
42	0.78	0.80	0.82	-0.02
43	0.83	0.76	0.78	-0.02
44	0.88	0.72	0.74	-0.02
45	0.93	0.69	0.70	-0.01
46	0.98	0.66	0.67	-0.01
47	1.04	0.62	0.63	-0.01
48	1.10	0.58	0.59	-0.01
49	1.17	0.55	0.55	0.00
50	1.24	0.52	0.51	0.01

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.31	0.49	0.48	0.01
52	1.39	0.45	0.44	0.01
53	1.47	0.41	0.41	0.01
54	1.56	0.40	0.37	0.02
55	1.65	0.37	0.34	0.03
56	1.75	0.34	0.30	0.04
57	1.86	0.32	0.27	0.05
58	1.97	0.30	0.24	0.05
59	2.08	0.28	0.22	0.06
60	2.21	0.26	0.19	0.07
61	2.34	0.24	0.17	0.08
62	2.48	0.23	0.15	0.08
63	2.63	0.21	0.13	0.08
64	2.79	0.20	0.11	0.09
65	2.95	0.19	0.09	0.10
66	3.13	0.18	0.08	0.10
67	3.32	0.18	0.06	0.12
68	3.51	0.17	0.05	0.11
69	3.72	0.16	0.04	0.12
70	3.95	0.15	0.03	0.12
71	4.18	0.14	0.03	0.12
72	4.43	0.14	0.02	0.12
73	4.69	0.14	0.02	0.12
74	4.97	0.13	0.01	0.12
75	5.27	0.13	0.01	0.12
76	5.58	0.12	0.01	0.12
77	5.91	0.12	0.00	0.12
78	6.27	0.12	0.00	0.11
79	6.64	0.12	0.00	0.11
80	7.03	0.11	0.00	0.11
81	7.45	0.11	0.00	0.11
82	7.90	0.10	0.00	0.10

PT-INJ-6 Falling Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Falling Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

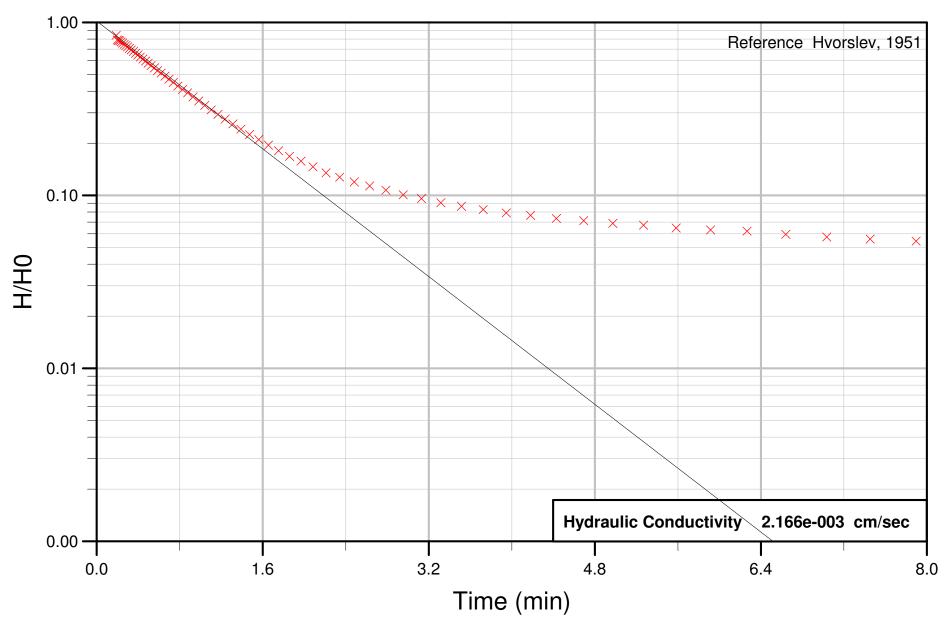
Simple Analysis - No Wells Defined

Number of Points = 75

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 2.481 ft
Hydraulic Conductivity Calculated Value	= 0.00310317 cm/sec
Time to 37% Displacement Calculated Value	= 0.663908 min
Linear Regression Slope Fixed Value	= -1.0768 /min
Linear Regression Intercept Fixed Value	= 0.756269
Calculation Type Selected Value	= Default


Regression Line	
Slope:	-1.076797 /min
Intercept:	0.756269 dimensionless
Residual Mean	= 0.028115
Residual Standard Dev.	= 0.060483
Residual Sum of Squares	= 0.333649
Absolute Residual Mean	= 0.053017
Minimum Residual	= -0.117868
Maximum Residual	= 0.120994

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.11	1.66	1.66	0.00
1	0.12	1.67	1.65	0.02
2	0.13	1.64	1.64	0.00
3	0.13	1.66	1.63	0.03
4	0.14	1.50	1.61	-0.12
5	0.15	1.59	1.60	-0.01
6	0.16	1.59	1.58	0.01
7	0.17	1.54	1.57	-0.03
8	0.18	1.52	1.55	-0.03
9	0.19	1.50	1.53	-0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.20	1.48	1.52	-0.03
11	0.21	1.46	1.50	-0.04
12	0.22	1.44	1.48	-0.03
13	0.24	1.42	1.46	-0.03
14	0.25	1.40	1.43	-0.03
15	0.26	1.38	1.41	-0.03
16	0.28	1.35	1.39	-0.04
17	0.30	1.33	1.36	-0.04
18	0.31	1.30	1.34	-0.04
19	0.33	1.28	1.31	-0.03
20	0.35	1.25	1.28	-0.03
21	0.37	1.22	1.25	-0.03
22	0.40	1.19	1.22	-0.03
23	0.42	1.17	1.19	-0.03
24	0.44	1.13	1.16	-0.03
25	0.47	1.11	1.13	-0.03
26	0.50	1.07	1.10	-0.03
27	0.52	1.04	1.07	-0.02
28	0.55	1.01	1.03	-0.02
29	0.59	0.98	1.00	-0.02
30	0.62	0.95	0.96	-0.02
31	0.66	0.91	0.92	-0.02
32	0.70	0.87	0.89	-0.01
33	0.74	0.84	0.85	-0.01
34	0.78	0.80	0.81	-0.01
35	0.83	0.76	0.77	-0.01
36	0.88	0.73	0.73	-0.01
37	0.93	0.69	0.69	0.00
38	0.98	0.66	0.65	0.00
39	1.04	0.62	0.61	0.00
40	1.10	0.59	0.57	0.01
41	1.17	0.55	0.53	0.01
42	1.24	0.52	0.49	0.02
43	1.31	0.49	0.46	0.03
44	1.39	0.45	0.42	0.03
45	1.47	0.42	0.38	0.04
46	1.56	0.40	0.35	0.05
47	1.65	0.37	0.32	0.05
48	1.75	0.35	0.28	0.06
49	1.86	0.32	0.25	0.06
50	1.97	0.29	0.23	0.07

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	2.08	0.27	0.20	0.07
52	2.21	0.25	0.17	0.08
53	2.34	0.24	0.15	0.09
54	2.48	0.22	0.13	0.09
55	2.63	0.21	0.11	0.10
56	2.79	0.20	0.09	0.10
57	2.95	0.18	0.08	0.10
58	3.13	0.18	0.06	0.11
59	3.32	0.17	0.05	0.12
60	3.51	0.16	0.04	0.12
61	3.72	0.16	0.03	0.12
62	3.95	0.15	0.03	0.12
63	4.18	0.14	0.02	0.12
64	4.43	0.14	0.02	0.12
65	4.69	0.13	0.01	0.12
66	4.97	0.13	0.01	0.12
67	5.27	0.12	0.01	0.11
68	5.58	0.12	0.00	0.11
69	5.91	0.11	0.00	0.11
70	6.27	0.10	0.00	0.10
71	6.64	0.11	0.00	0.11
72	7.03	0.11	0.00	0.11
73	7.45	0.10	0.00	0.10
74	7.90	0.09	0.00	0.09

PT-INJ-6 Falling Head Test 3

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Falling Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

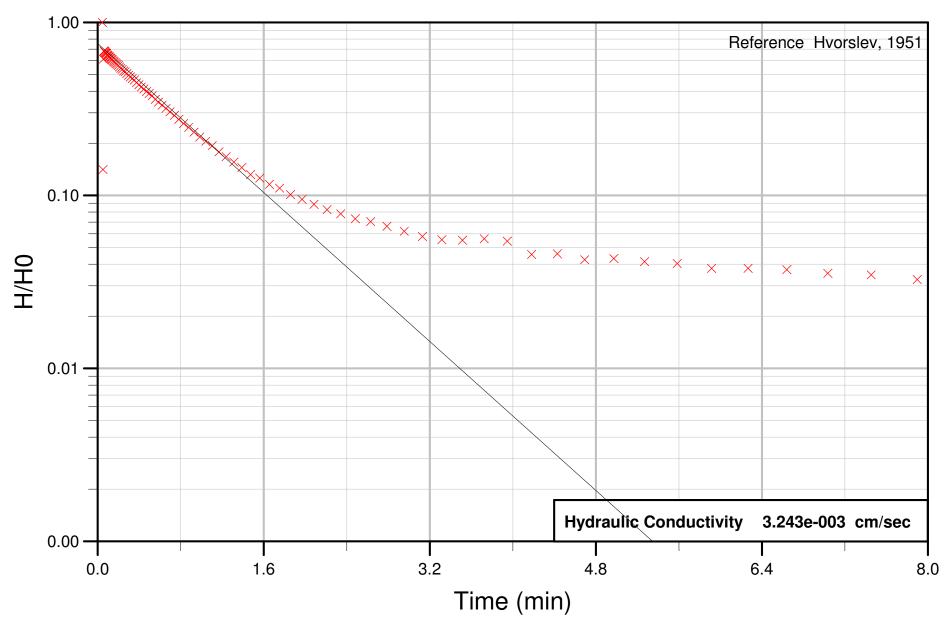
Simple Analysis - No Wells Defined

Number of Points = 66

Manual Match

Casing Inner Diameter Fixed Value	= 0.334 ft
Screen Inner Diameter Fixed Value	= 0.334 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 1.933 ft
Hydraulic Conductivity Calculated Value	= 0.00216583 cm/sec
Time to 37% Displacement Calculated Value	= 0.951239 min
Linear Regression Slope Fixed Value	= -1.06191 /min
Linear Regression Intercept Fixed Value	= 1.016
Calculation Type Selected Value	= Default


Regression Line				
Slope:	-1.061906 /min			
Intercept:	1.016002 dimensionless			
Residual Mean	= 0.028449			
Residual Standard Dev.	= 0.066818			
Residual Sum of Squares	= 0.348082			
Absolute Residual Mean	= 0.060607			
Minimum Residual	= -0.063677			
Maximum Residual	= 0.124835			

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.19	1.63	1.61	0.02
1	0.20	1.53	1.59	-0.06
2	0.21	1.52	1.57	-0.05
3	0.22	1.51	1.55	-0.04
4	0.24	1.49	1.53	-0.04
5	0.25	1.47	1.51	-0.04
6	0.26	1.44	1.48	-0.04
7	0.28	1.42	1.46	-0.04
8	0.30	1.39	1.43	-0.04
9	0.31	1.37	1.41	-0.04

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
10	0.33	1.34	1.38	-0.04
11	0.35	1.31	1.35	-0.04
12	0.37	1.28	1.32	-0.04
13	0.40	1.25	1.29	-0.04
14	0.42	1.22	1.26	-0.04
15	0.44	1.19	1.22	-0.04
16	0.47	1.15	1.19	-0.04
17	0.50	1.12	1.16	-0.04
18	0.52	1.09	1.12	-0.04
19	0.55	1.05	1.09	-0.04
20	0.59	1.02	1.05	-0.04
21	0.62	0.98	1.02	-0.03
22	0.66	0.95	0.98	-0.03
23	0.70	0.91	0.94	-0.03
24	0.74	0.87	0.90	-0.03
25	0.78	0.83	0.86	-0.03
26	0.83	0.79	0.82	-0.02
27	0.88	0.76	0.77	-0.02
28	0.93	0.72	0.73	-0.02
29	0.98	0.68	0.69	-0.01
30	1.04	0.64	0.65	-0.01
31	1.10	0.60	0.61	-0.01
32	1.17	0.57	0.57	0.00
33	1.24	0.53	0.53	0.01
34	1.31	0.50	0.49	0.01
35	1.39	0.47	0.45	0.02
36	1.47	0.43	0.41	0.02
37	1.56	0.41	0.37	0.03
38	1.65	0.38	0.34	0.04
39	1.75	0.35	0.31	0.04
40	1.86	0.33	0.27	0.05
41	1.97	0.31	0.24	0.06
42	2.08	0.28	0.21	0.07
43	2.21	0.26	0.19	0.07
44	2.34	0.25	0.16	0.08
45	2.48	0.23	0.14	0.09
46	2.63	0.22	0.12	0.10
47	2.79	0.21	0.10	0.11
48	2.95	0.20	0.09	0.11
49	3.13	0.19	0.07	0.11
50	3.32	0.18	0.06	0.12

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	3.51	0.17	0.05	0.12
52	3.72	0.16	0.04	0.12
53	3.95	0.15	0.03	0.12
54	4.18	0.15	0.02	0.12
55	4.43	0.14	0.02	0.12
56	4.69	0.14	0.01	0.12
57	4.97	0.13	0.01	0.12
58	5.27	0.13	0.01	0.12
59	5.58	0.13	0.01	0.12
60	5.91	0.12	0.00	0.12
61	6.27	0.12	0.00	0.12
62	6.64	0.12	0.00	0.11
63	7.03	0.11	0.00	0.11
64	7.45	0.11	0.00	0.11
65	7.90	0.11	0.00	0.10

PT-INJ-6 Rising Head Test 1

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Rising Test 1 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

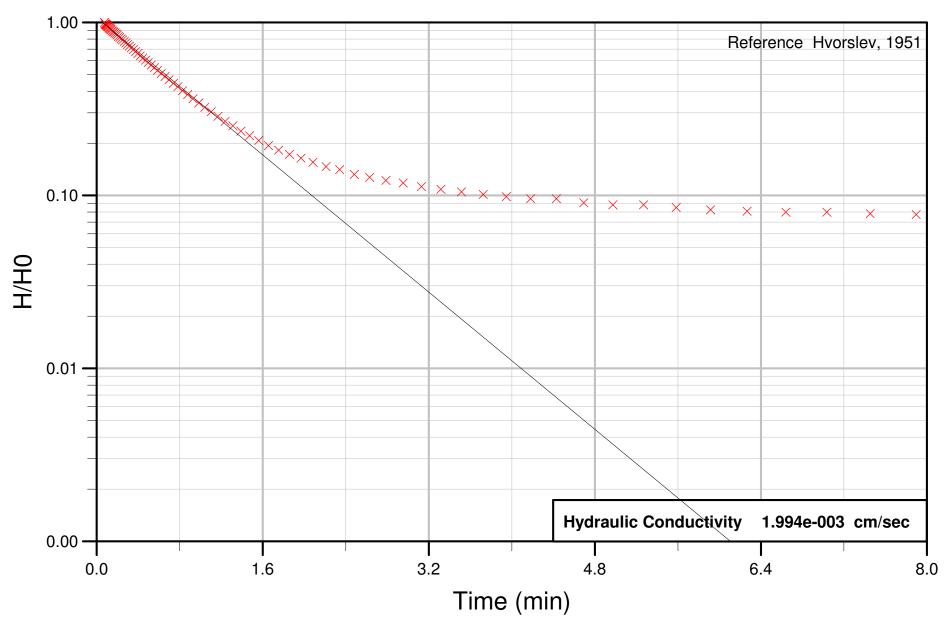
Simple Analysis - No Wells Defined

Number of Points = 88

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 2.852 ft
Hydraulic Conductivity Calculated Value	= 0.00324295 cm/sec
Time to 37% Displacement Calculated Value	= 0.572363 min
Linear Regression Slope Fixed Value	= -1.23775 /min
Linear Regression Intercept Fixed Value	= 0.751404
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line Slope: Intercept: -1.237746 /min 0.751404 dimensionless Residual Mean = -0.008969 Residual Standard Dev. = 0.209528 Residual Sum of Squares = 3.870442 Absolute Residual Mean = 0.099448 Minimum Residual = -1.612400 Maximum Residual = 0.825094

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
	(min)	(ft)	(ft)	
0	0.05	2.85	2.03	0.83
1	0.05	0.40	2.01	-1.61
2	0.05	1.75	2.00	-0.25
3	0.06	1.95	1.99	-0.04
4	0.06	1.94	1.98	-0.04
5	0.07	1.92	1.97	-0.04
6	0.08	1.90	1.95	-0.05
7	0.08	1.90	1.94	-0.05
8	0.08	1.88	1.93	-0.05
9	0.09	1.85	1.92	-0.07

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.10	1.84	1.91	-0.07
11	0.10	1.82	1.89	-0.07
12	0.11	1.80	1.88	-0.08
13	0.11	1.80	1.87	-0.07
14	0.12	1.78	1.85	-0.08
15	0.13	1.77	1.83	-0.07
16	0.13	1.74	1.82	-0.08
17	0.14	1.73	1.80	-0.07
18	0.15	1.70	1.78	-0.08
19	0.16	1.69	1.76	-0.08
20	0.17	1.67	1.74	-0.07
21	0.18	1.65	1.72	-0.07
22	0.19	1.63	1.70	-0.07
23	0.20	1.61	1.68	-0.07
24	0.21	1.57	1.65	-0.08
25	0.22	1.55	1.63	-0.08
26	0.24	1.53	1.60	-0.08
27	0.25	1.49	1.57	-0.08
28	0.26	1.48	1.54	-0.06
29	0.28	1.44	1.51	-0.07
30	0.30	1.41	1.48	-0.07
31	0.31	1.38	1.45	-0.07
32	0.33	1.35	1.42	-0.07
33	0.35	1.32	1.38	-0.06
34	0.37	1.28	1.35	-0.07
35	0.40	1.24	1.31	-0.07
36	0.42	1.21	1.27	-0.07
37	0.44	1.18	1.24	-0.06
38	0.47	1.14	1.20	-0.06
39	0.50	1.11	1.16	-0.05
40	0.52	1.07	1.12	-0.05
41	0.55	1.02	1.08	-0.06
42	0.59	0.99	1.04	-0.05
43	0.62	0.95	0.99	-0.05
44	0.66	0.91	0.95	-0.04
45	0.70	0.87	0.91	-0.04
46	0.74	0.83	0.86	-0.03
47	0.78	0.78	0.81	-0.03
48	0.83	0.74	0.77	-0.03
49	0.88	0.71	0.72	-0.02
50	0.93	0.66	0.68	-0.02

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	0.98	0.62	0.63	-0.01
52	1.04	0.59	0.59	-0.01
53	1.10	0.55	0.55	0.01
54	1.17	0.51	0.50	0.00
55	1.24	0.48	0.46	0.01
56	1.31	0.44	0.42	0.02
57	1.39	0.41	0.38	0.03
58	1.47	0.38	0.35	0.03
59	1.56	0.36	0.31	0.05
60	1.65	0.33	0.28	0.05
61	1.75	0.31	0.24	0.07
62	1.86	0.29	0.21	0.07
63	1.97	0.27	0.19	0.08
64	2.08	0.25	0.16	0.09
65	2.21	0.24	0.14	0.10
66	2.34	0.22	0.12	0.10
67	2.48	0.21	0.10	0.11
68	2.63	0.20	0.08	0.12
69	2.79	0.19	0.07	0.12
70	2.95	0.18	0.06	0.12
71	3.13	0.17	0.04	0.12
72	3.32	0.16	0.04	0.12
73	3.51	0.16	0.03	0.13
74	3.72	0.16	0.02	0.14
75	3.95	0.16	0.02	0.14
76	4.18	0.13	0.01	0.12
77	4.43	0.13	0.01	0.12
78	4.69	0.12	0.01	0.11
79	4.97	0.12	0.00	0.12
80	5.27	0.12	0.00	0.11
81	5.58	0.12	0.00	0.11
82	5.91	0.11	0.00	0.11
83	6.27	0.11	0.00	0.11
84	6.64	0.11	0.00	0.11
85	7.03	0.10	0.00	0.10
86	7.45	0.10	0.00	0.10
87	7.90	0.09	0.00	0.09

PT-INJ-6 Rising Head Test 2

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Rising Test 2 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

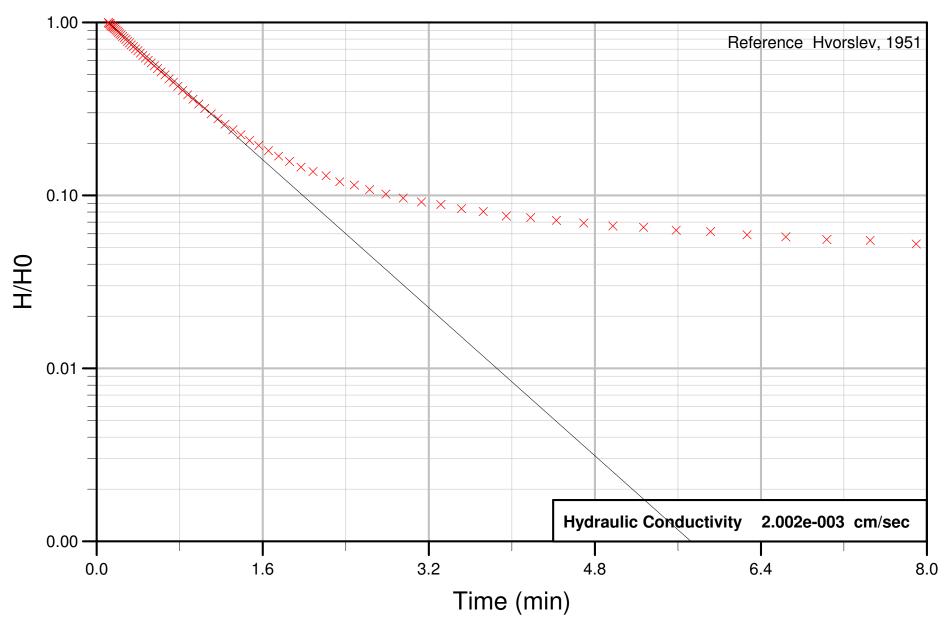
Simple Analysis - No Wells Defined

Number of Points = 82

Manual Match

Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 1.976 ft
Hydraulic Conductivity Calculated Value	= 0.00199416 cm/sec
Time to 37% Displacement Calculated Value	= 0.930793 min
Linear Regression Slope Fixed Value	= -1.14178 /min
Linear Regression Intercept Fixed Value	= 1.07091
Calculation Type Selected Value	= Default
ANALYSIS STATISTICS	


Regression Line	
Slope:	-1.141778 /min
Intercept:	1.070908 dimensionless
Residual Mean	= 0.038873
Residual Standard Dev.	= 0.081337
Residual Sum of Squares	= 0.666398
Absolute Residual Mean	= 0.066410
Minimum Residual	= -0.044872
Maximum Residual	= 0.175539

Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.08	1.98	1.94	0.03
1	0.08	1.94	1.93	0.01
2	0.08	1.93	1.92	0.00
3	0.09	1.92	1.91	0.01
4	0.10	1.91	1.90	0.01
5	0.10	1.89	1.89	0.00
6	0.11	1.87	1.88	0.00
7	0.11	1.86	1.86	0.00
8	0.12	1.84	1.85	-0.01
9	0.13	1.82	1.83	-0.01

Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.13	1.81	1.82	-0.01
11	0.14	1.79	1.80	-0.01
12	0.15	1.77	1.79	-0.02
13	0.16	1.75	1.77	-0.02
14	0.17	1.74	1.75	-0.01
15	0.18	1.72	1.73	-0.01
16	0.19	1.69	1.71	-0.02
17	0.20	1.67	1.69	-0.01
18	0.21	1.64	1.66	-0.03
19	0.22	1.62	1.64	-0.02
20	0.24	1.59	1.62	-0.03
21	0.25	1.56	1.59	-0.03
22	0.26	1.53	1.56	-0.03
23	0.28	1.50	1.54	-0.03
24	0.30	1.47	1.51	-0.04
25	0.31	1.44	1.48	-0.04
26	0.33	1.41	1.45	-0.04
27	0.35	1.37	1.41	-0.04
28	0.37	1.34	1.38	-0.04
29	0.40	1.30	1.35	-0.04
30	0.42	1.27	1.31	-0.04
31	0.44	1.23	1.27	-0.04
32	0.47	1.19	1.24	-0.04
33	0.50	1.16	1.20	-0.04
34	0.52	1.12	1.16	-0.04
35	0.55	1.08	1.12	-0.04
36	0.59	1.04	1.08	-0.04
37	0.62	1.00	1.04	-0.04
38	0.66	0.96	1.00	-0.04
39	0.70	0.92	0.96	-0.03
40	0.74	0.88	0.91	-0.03
41	0.78	0.84	0.87	-0.03
42	0.83	0.80	0.82	-0.03
43	0.88	0.76	0.78	-0.02
44	0.93	0.72	0.73	-0.02
45	0.98	0.68	0.69	-0.01
46	1.04	0.64	0.64	-0.01
47	1.10	0.60	0.60	0.00
48	1.17	0.57	0.56	0.01
49	1.24	0.53	0.51	0.01
50	1.31	0.50	0.47	0.03

Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	1.39	0.46	0.43	0.03
52	1.47	0.44	0.39	0.04
53	1.56	0.41	0.36	0.05
54	1.65	0.38	0.32	0.06
55	1.75	0.36	0.29	0.08
56	1.86	0.34	0.25	0.09
57	1.97	0.32	0.22	0.10
58	2.08	0.31	0.20	0.11
59	2.21	0.29	0.17	0.12
60	2.34	0.28	0.15	0.13
61	2.48	0.26	0.12	0.14
62	2.63	0.25	0.11	0.15
63	2.79	0.24	0.09	0.15
64	2.95	0.23	0.07	0.16
65	3.13	0.22	0.06	0.16
66	3.32	0.21	0.05	0.17
67	3.51	0.21	0.04	0.17
68	3.72	0.20	0.03	0.17
69	3.95	0.19	0.02	0.17
70	4.18	0.19	0.02	0.17
71	4.43	0.19	0.01	0.18
72	4.69	0.18	0.01	0.17
73	4.97	0.17	0.01	0.17
74	5.27	0.17	0.01	0.17
75	5.58	0.17	0.00	0.16
76	5.91	0.16	0.00	0.16
77	6.27	0.16	0.00	0.16
78	6.64	0.16	0.00	0.16
79	7.03	0.16	0.00	0.16
80	7.45	0.16	0.00	0.15
81	7.90	0.15	0.00	0.15

PT-INJ-6 Rising Head Test 3

Selected Analysis: Hvorslev, 1951

Time Lag and Soil Permeability in Ground-Water Observations

SITE INFORMATION

Site Designator: Job Number: 49543.004.403 Client: General Electric Company Site Name: Former Powerex, Inc. Facility Additional Info: RI/FS WP Addendum No. 4

AQUIFER TEST INFORMATION

Test Designator: PT-INJ-6 Rising Test 3 Job Number: 49543.004.403 Date: 10/10/12 Area Name: Additional Info:

ANALYSIS INFORMATION

Analysis Designator:	
Job Number:	49543.004.403
Date:	10/22/12
Analyst Name:	PLD
Additional Info:	

ANALYSIS SUMMARY

Simple Analysis - No Wells Defined

Number of Points = 75

Manual Match

ANALYSIS PARAMETERS

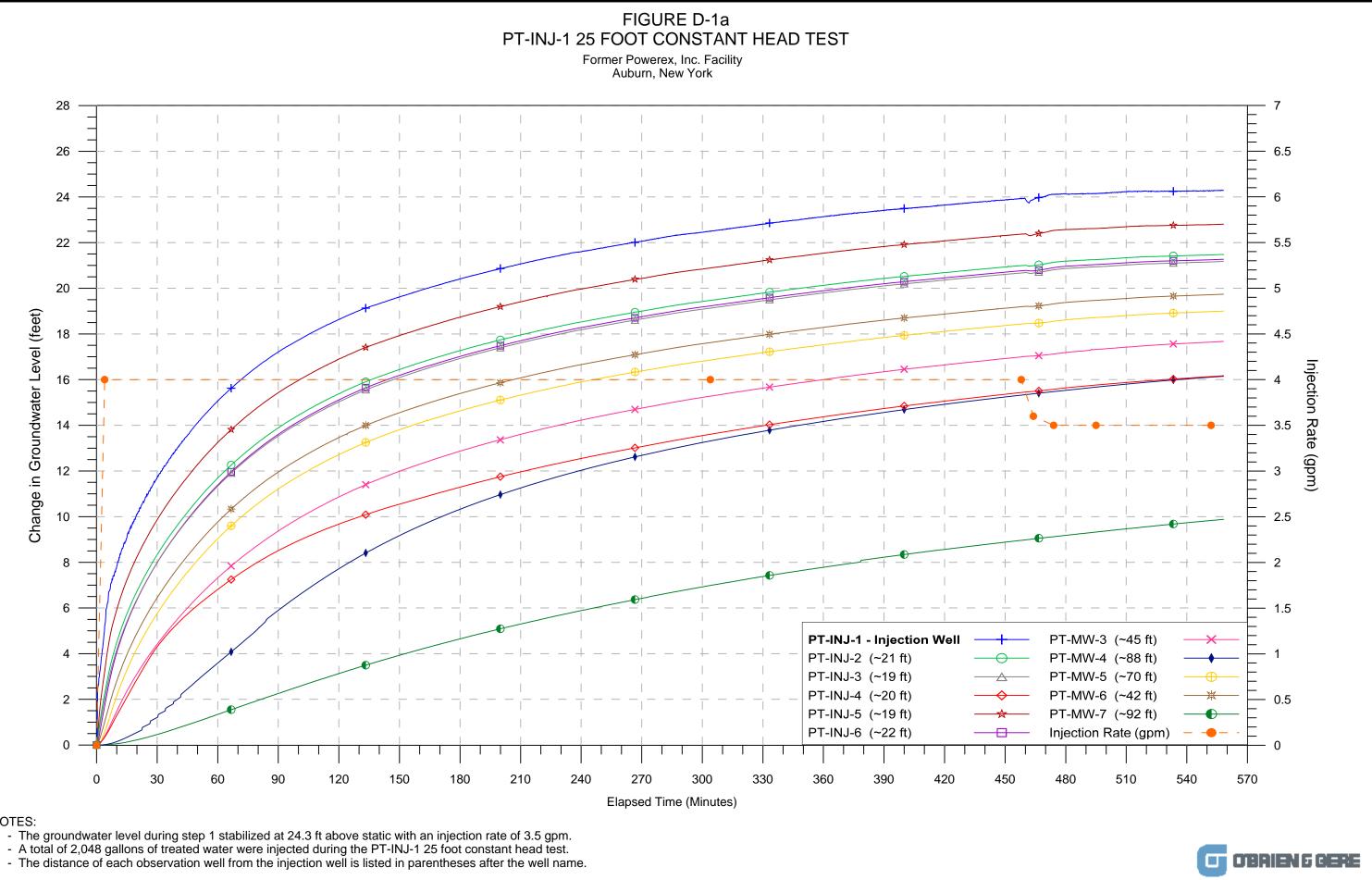
Casing Inner Diameter Fixed Value	= 0.315 ft
Screen Inner Diameter Fixed Value	= 0.315 ft
Screen Length Fixed Value	= 15.6 ft

Initial Displacement Fixed Value	= 1.91 ft
Hydraulic Conductivity Calculated Value	= 0.00200185 cm/sec
Time to 37% Displacement Calculated Value	= 0.927214 min
Linear Regression Slope Fixed Value	= -1.23171 /min
Linear Regression Intercept Fixed Value	= 1.15929
Calculation Type Selected Value	= Default
LYSIS STATISTICS	

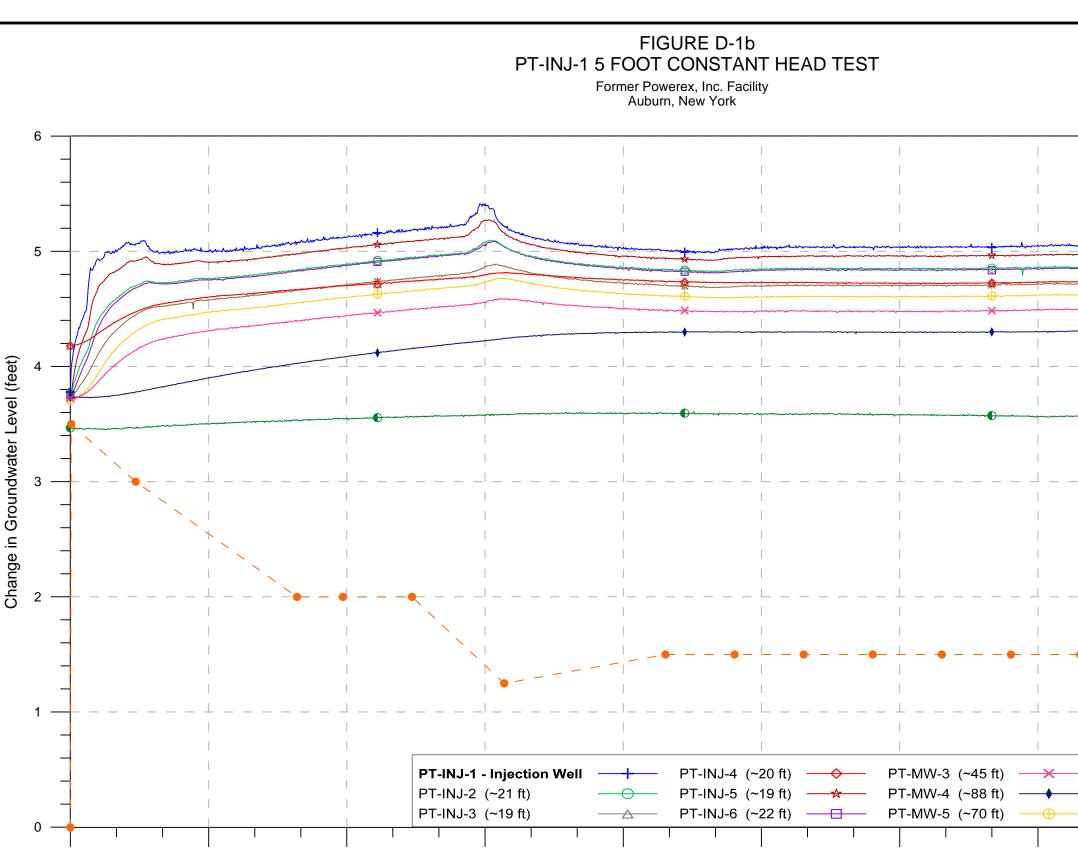
ANALYSIS STATISTICS

Regression Line								
Slope:		-1.231708	/min					
Intercept:		1.159287	dimensionless					
Residual Mean	=	0.022414						
Residual Standard Dev.	=	0.071964						
Residual Sum of Squares	=	0.426089						
Absolute Residual Mean	=	0.064128						
Minimum Residual	=	-0.053891						
Maximum Residual	=	0.131734						

DATA DETAIL


Index	Time	Obs. Displacement	Calc. Displacement	Residual
	(min)	(ft)	(ft)	
0	0.11	1.91	1.93	-0.02
1	0.12	1.88	1.91	-0.03
2	0.13	1.88	1.90	-0.02
3	0.13	1.84	1.88	-0.04
4	0.14	1.82	1.86	-0.04
5	0.15	1.80	1.84	-0.04
6	0.16	1.79	1.82	-0.03
7	0.17	1.77	1.80	-0.03
8	0.18	1.75	1.78	-0.03
9	0.19	1.72	1.76	-0.03

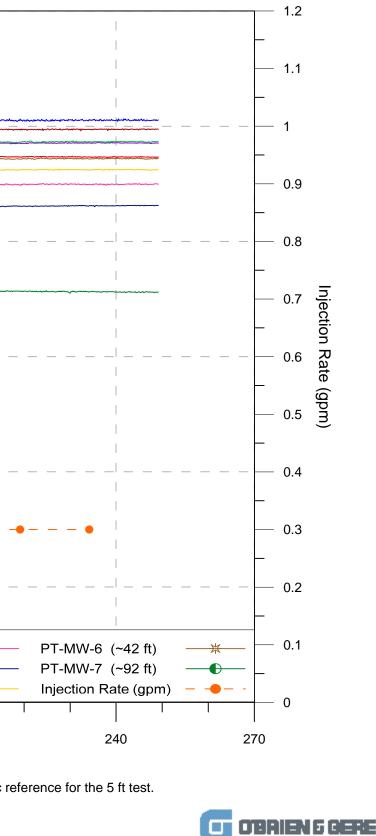
Index	Time	Obs. Displacement	Calc. Displacement	Residual
10	0.20	1.70	1.73	-0.04
11	0.21	1.67	1.71	-0.04
12	0.22	1.64	1.68	-0.04
13	0.24	1.62	1.66	-0.04
14	0.25	1.58	1.63	-0.05
15	0.26	1.55	1.60	-0.05
16	0.28	1.52	1.57	-0.05
17	0.30	1.49	1.54	-0.05
18	0.31	1.45	1.50	-0.05
19	0.33	1.42	1.47	-0.05
20	0.35	1.38	1.43	-0.05
21	0.37	1.34	1.40	-0.05
22	0.40	1.31	1.36	-0.05
23	0.42	1.27	1.32	-0.05
24	0.44	1.23	1.28	-0.05
25	0.47	1.19	1.24	-0.05
26	0.50	1.15	1.20	-0.05
27	0.52	1.11	1.16	-0.05
28	0.55	1.07	1.12	-0.05
29	0.59	1.03	1.08	-0.04
30	0.62	0.99	1.03	-0.04
31	0.66	0.95	0.98	-0.04
32	0.70	0.90	0.94	-0.04
33	0.74	0.86	0.89	-0.03
34	0.78	0.81	0.85	-0.03
35	0.83	0.77	0.80	-0.03
36	0.88	0.73	0.75	-0.02
37	0.93	0.69	0.71	-0.02
38	0.98	0.64	0.66	-0.02
39	1.04	0.61	0.61	-0.01
40	1.10	0.57	0.57	0.00
41	1.17	0.53	0.53	0.00
42	1.24	0.49	0.48	0.01
43	1.31	0.46	0.44	0.02
44	1.39	0.43	0.40	0.03
45	1.47	0.40	0.36	0.04
46	1.56	0.37	0.32	0.05
47	1.65	0.35	0.29	0.06
48	1.75	0.32	0.26	0.07
49	1.86	0.30	0.22	0.08
50	1.97	0.28	0.20	0.08


Index	Time	Obs.	Calc.	Residual
		Displacement	Displacement	
51	2.08	0.26	0.17	0.09
52	2.21	0.25	0.15	0.10
53	2.34	0.23	0.12	0.11
54	2.48	0.22	0.10	0.11
55	2.63	0.21	0.09	0.12
56	2.79	0.19	0.07	0.12
57	2.95	0.18	0.06	0.13
58	3.13	0.18	0.05	0.13
59	3.32	0.17	0.04	0.13
60	3.51	0.16	0.03	0.13
61	3.72	0.15	0.02	0.13
62	3.95	0.15	0.02	0.13
63	4.18	0.14	0.01	0.13
64	4.43	0.14	0.01	0.13
65	4.69	0.13	0.01	0.13
66	4.97	0.13	0.00	0.12
67	5.27	0.13	0.00	0.12
68	5.58	0.12	0.00	0.12
69	5.91	0.12	0.00	0.12
70	6.27	0.11	0.00	0.11
71	6.64	0.11	0.00	0.11
72	7.03	0.11	0.00	0.11
73	7.45	0.11	0.00	0.10
74	7.90	0.10	0.00	0.10

ATTACHMENT D

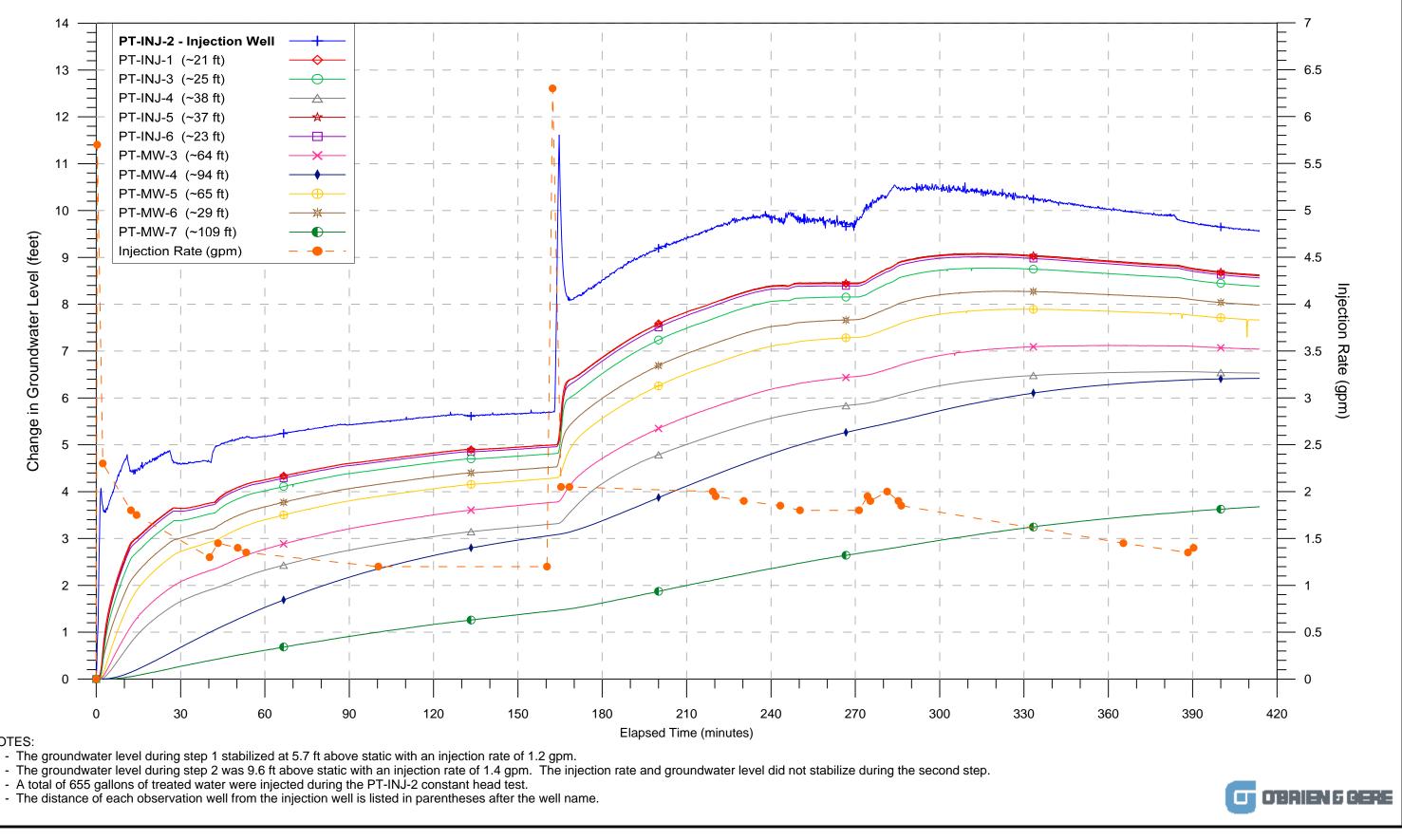
CONSTANT HEAD TEST RESULTS

NOTES:


NOTES:

The 5 ft constant head test on PT-INJ-1 was performed after the 25 ft test before the aquifer had returned to static conditions. The initial level from the 25 ft test was used as the static reference for the 5 ft test.
The groundwater level during step 1 stabilized at 5.1 ft above static with an injection rate of 0.3 gpm.

Elapsed Time (minutes)


- A total of 90 gallons of treated water were injected during the PT-INJ-1 5 foot constant head test.

- The distance of each observation well from the injection well is listed in parentheses after the well name in the legend.

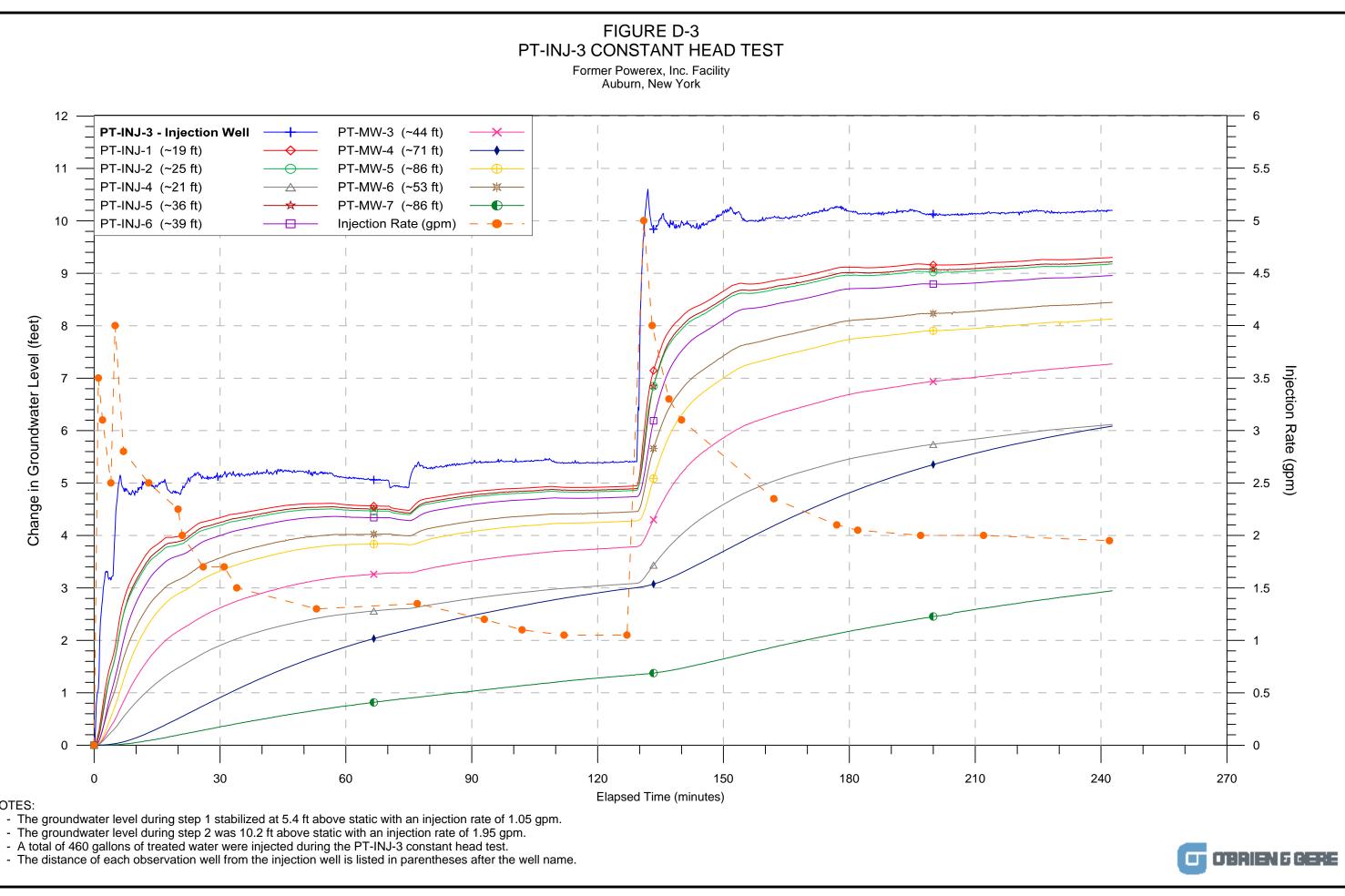
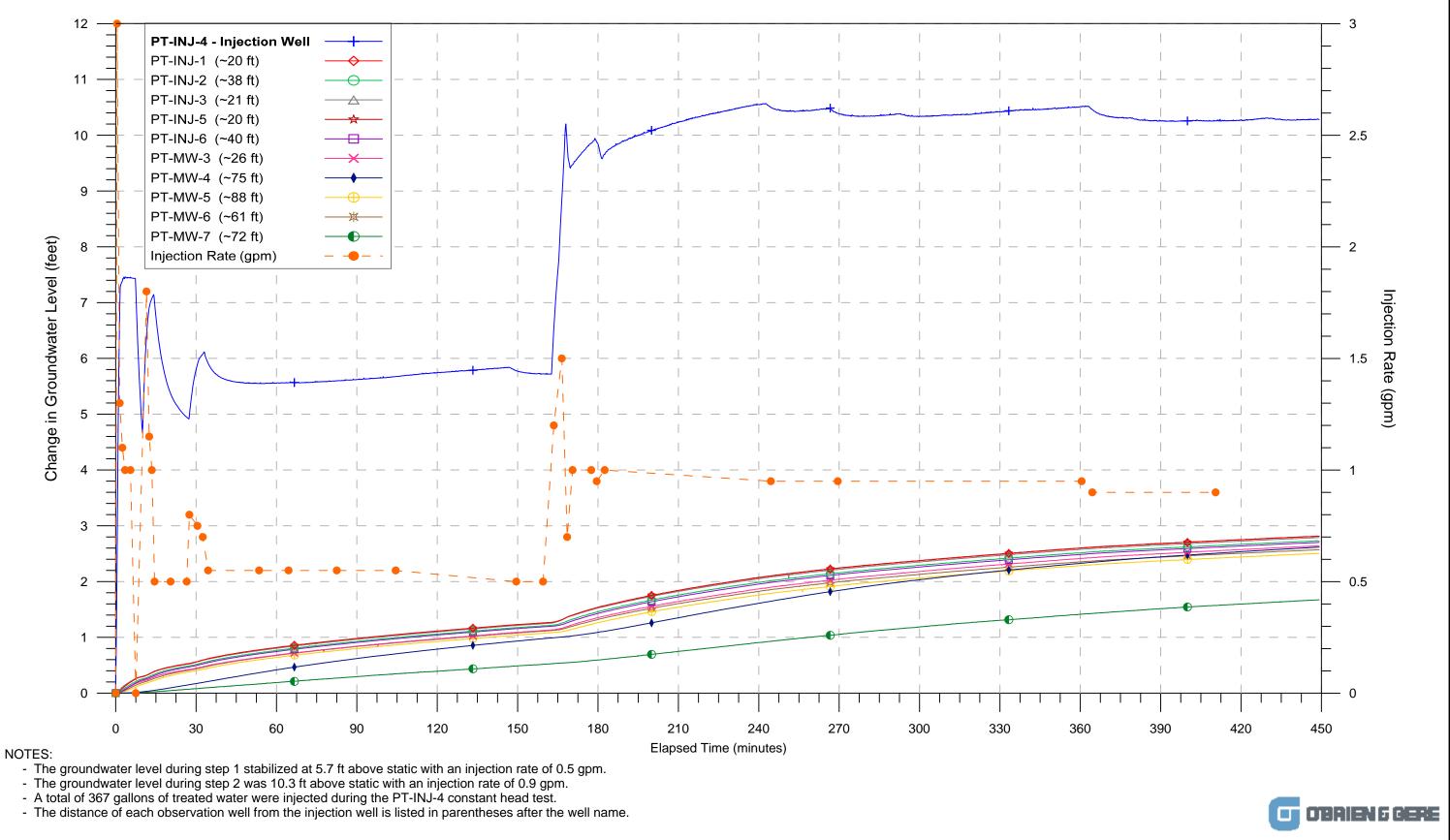
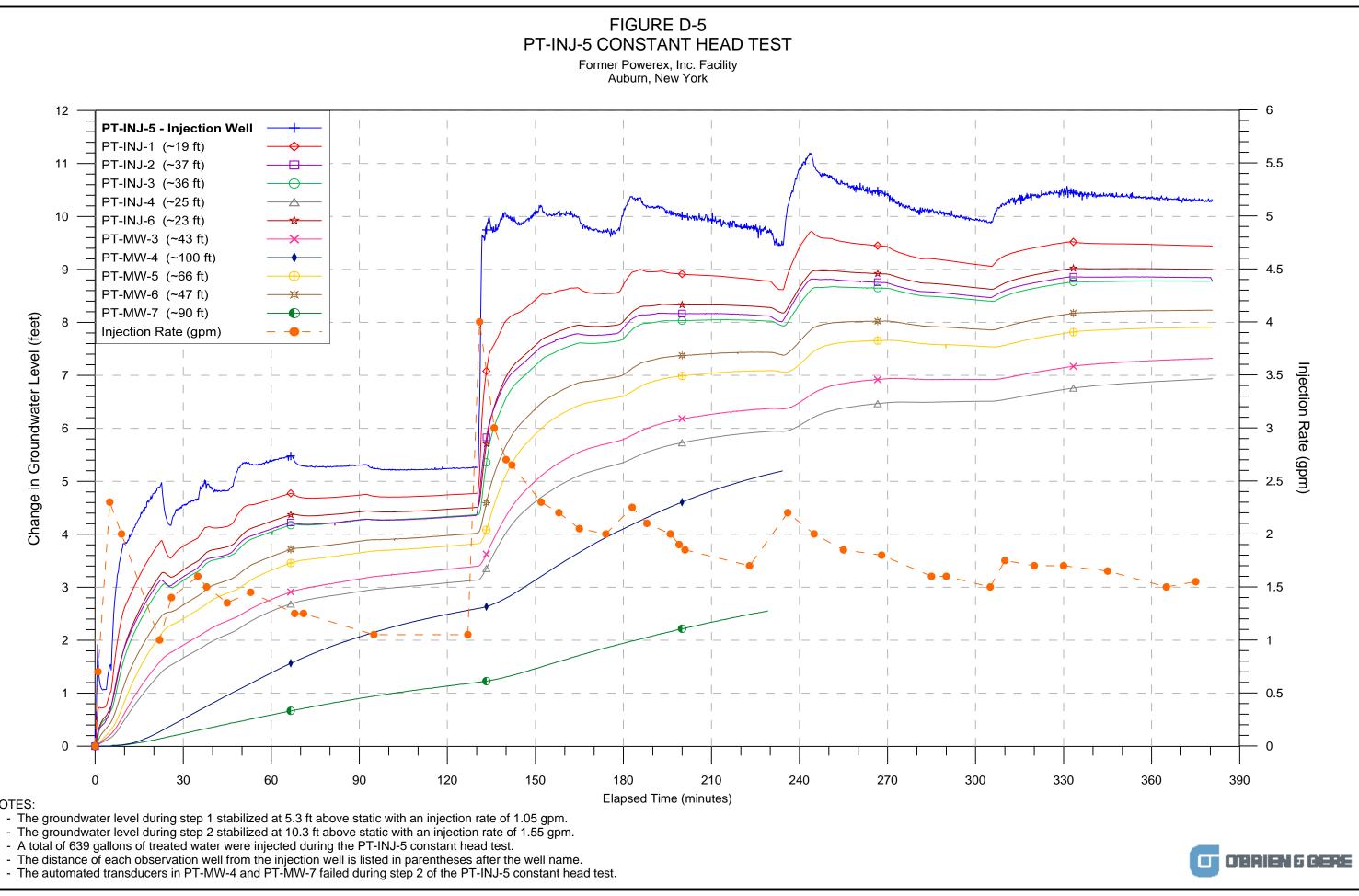


FIGURE D-2 PT-INJ-2 CONSTANT HEAD TEST

Former Powerex, Inc. Facility Auburn, New York

NOTES:

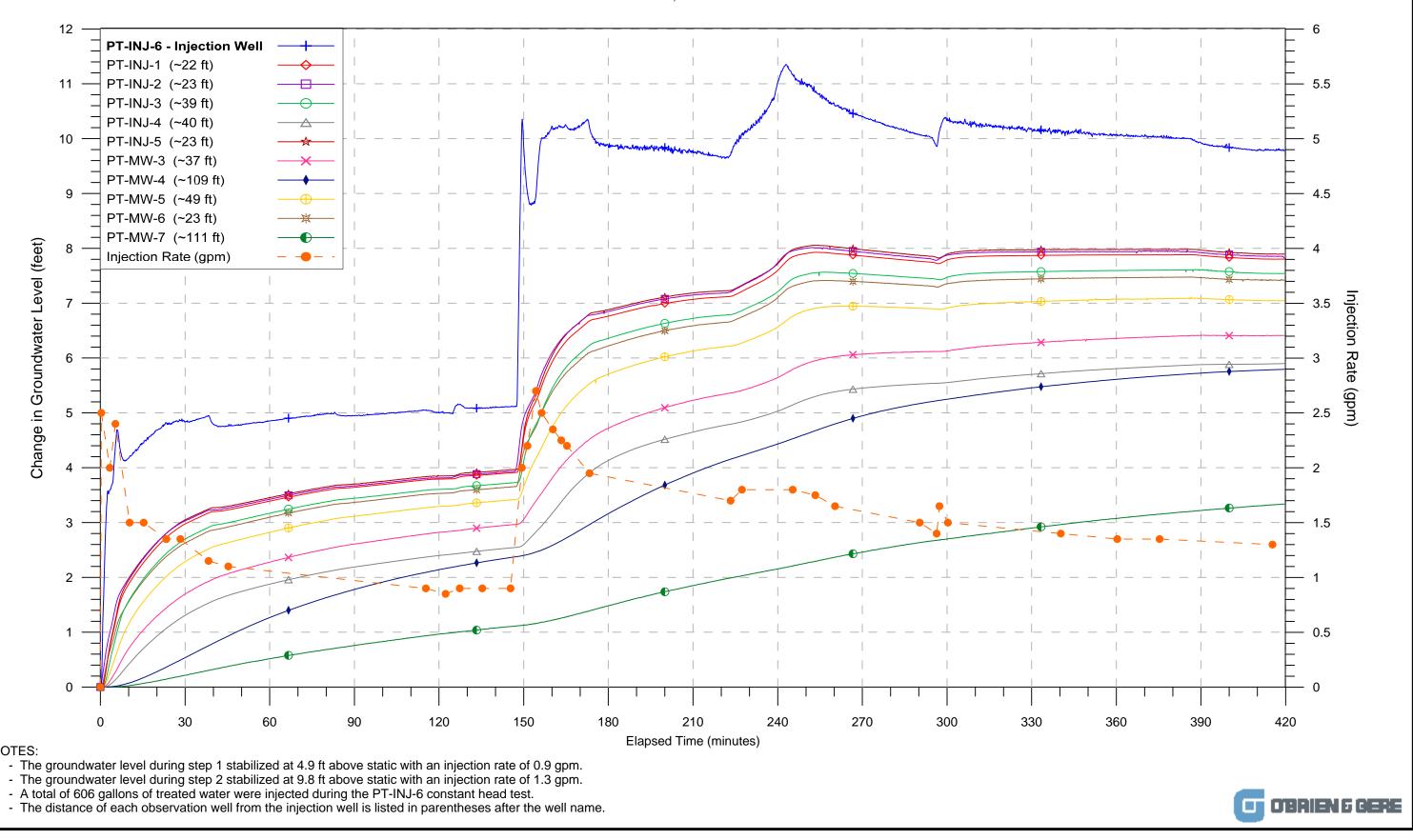



NOTES:

Change in Groundwater Level (feet)

FIGURE D-4 PT-INJ-4 CONSTANT HEAD TEST

Former Powerex, Inc. Facility Auburn, New York



NOTES:

FIGURE D-6 PT-INJ-6 CONSTANT HEAD TEST

Former Powerex, Inc. Facility Auburn, New York

NOTES:

ATTACHMENT E

LOW FLOW SAMPLING LOGS

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

MONITORI	NG WELL	DEVELOP	MENT
PURGING	& SAMPL	ING RECO	ORDS

Well ID: MW-3 Project Name: GE Auburn Project Number: TR0344A Date: 22-January 2013 Recorded By: L-30 Sample ID: PT - MW-3 MBMS Duplicate ID:					 	Well Diameter: Total Depth of V Initial Depth to Casing Volume: Depth to Water Method of Purg Method of Sam	Water: After Pur jing: LC	ging: w-Flow Low-Flov	34.40 Time: 15/17
time	intake depth	pumping rate	cumulative volume	temp.	pН	specific conductance	D.O.	ORP	comments
	ft m	gpm / Lpm	fitres / gallons	°F/C	(units)	/ም § / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
1502		- st	if ph	mi	2				
15:05	48	R	41	763	730	1.31	1.01	-M5-2	WL-34.40
15.08			b	9.33	7.30	1.339	0.61.	-137.2	WL 34.40
15:11			5	COT	7.29	,344	0,44	-131.1	WL= 34.40
5:14			R	10.37	7.25	1.341	0,36	-126.7	34.40
15:17	V	V	12	1014	7.22	1.329	0.32	-121.8	WL= 34.40

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	15:18	pliestic	500ml	1	nore
Helium	\mathcal{T}	Vial	YOML	2	Y

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

MONITORING WELL DEVELOPMENT **PURGING & SAMPLING RECORDS**

Monitoring Well Purging & Sampling

Project	Name: Numbe 27J ed By: e ID: ate ID:	anuary 20	0344A 13))W-4 ANS	Kig		Well Diameter: Total Depth of Initial Depth to Casing Volume Depth to Water Method of Purg Method of Sam	Water: : r After Pur ging: <u>Lc</u>	ging: pw-Flow Low-Floy	40-54 Time: <u>14-2</u> 2 <u>34.85</u> Time: <u>14:45</u> N	ň
time	intake depth	pumping rate	cumulative volume	temp.	рН	specific conductance	D.O.	ORP	comments	
2	ft m	gpm (Lpm	litres / gallons	°F (°C	(units)	(QS / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product	
14.200	i.	eU	storter							
14:33	47	1	46	793	7.15	1.776	284	104.0	WL-34.4 VH2	Flow
14:36	-))	5L	6.05	7.15	1.745	0.55-	103-1	WL-34.55	
14.39		1	61.	361	7.12	1.759	0.49	107.9	= 34.75	
14.42			ŤĹ	300	7.11	1.760	517	-1299	INC. 34.75	
14:45	V		XL	5.13	7.11	1.700	0.43	-148.	WW 34.85	
			0	· ·						
				-						
	sample		time		tainer	container		ntainer	preservative	Ĩ

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	4:40	blastic	500 ml	21	nora
Helium	5	Vial	YOML	2	×
Notes: (well condition, ne	arby activities or o	changes in land u	se, odors, problems, o	deviations from p	olan, etc.)

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

Project	Name: Number 22 Ji ed By: e ID:	anuary 20	burn 344A 13 Dw -SA	NBARA		Well Diameter: 4" Total Depth of Well: 57 Initial Depth to Water: 31.17 Casing Volume: 31.17 Depth to Water After Purging: 31.75 Depth to Water After Purging: 13.75 Method of Purging: Low-Flow Method of Sampling: Low-Flow			
time	intake depth	pumping rate	cumulative volume	temp.	pН	specific conductance	D.O.	ORP	comments
	(t/)m	gpm /Lpm	litres gallons	°F/°C	(units)	(45 / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
328	1	stort	pin	P					
1338	40	1	4	9.10	6.89	0.183	3.91	-1329	
13:33	1		6	1025	6.95	0.988	1.32	-134.1	WE31.85
13:30			8	16 07	697	0.991	1.10	-1258	WL= 31.375
13:39			10	1032	6.98	6.993	0.91	-120.	y wi= 31.75
3-42	U								

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	13:4	Diastic	500	1	nore
Helium	V	VIA	YOML	2	$\langle \rangle$

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

g

Well Purging & Sai

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

Well ID: MW-6 Project Name: GE Auburn Project Number: TR0344A Date: 22 January 2013 Recorded By: L.30 Sample ID: PT-MW-6-M&AG Duplicate ID: -25°C						Well Diameter: Y Total Depth of Well: 39-53 Initial Depth to Water: 31.31 Casing Volume: 31.31 Depth to Water After Purging: 31.85 Method of Purging: Low-Flow Method of Sampling: Low-Flow			
time	intake depth	pumping rate	cumulative volume	temp.	pH	specific conductance	D.O.	ORP	comments odour, colour, sediment, load, well
11.11.00	ft/m	gpm .pm	itres gallons	°F/°C	(units)	(µS / cm)	(mg / L)	(mV)	condition, presence of product
14:00 14:00	46	1 41 2	14 01	8.14	7.17	1.072	1.77	- 119-1	WL= 31.65
14:14			1312	747	7.05	1.0500	051	- 115.4	MU - 21 85
UII	V		16	9.25	761	1.11	0.53	-114.0	WL = 31.85
				1.63	1.021		1	1	
					_				
							<u> </u>		
	sample	es ed	time collected		tainer /pe	container container size lot no.			preservative
	Brom	ide	14:12	ble	istic	ZOOML			nano
	Heliu	um	14:12	4		YOUN	0 7	2	W.
Notes: (well con	dition, nearb	by activities or	changes	in land u	se, odors, proble	ms, deviat	ions from p	ilan, etc.)
		11							

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

130 Re	search Lane, Suite 2
Guelph, Ontario	o, Canada N1G 5G3
(519)822-2230	Fax (519)822-3151

Well ID: HUS MW-7 Project Name: GE Auburn Project Number: TR0344A Date: ZZ January 2013 Recorded By: L-JO Sample ID: PT-MW-7 MSKG	Well Diameter: Total Depth of Well: Initial Depth to Water: Casing Volume: Depth to Water After Purging: Method of Purging: Method of Sampling: Low-Flow					
Duplicate ID: Weather:						
time intake pumping cumulative temp. pH	specific D.O. ORP comments					

	depth	rate	volume	0		conductance			
	fton	gpm / Lpm	itres / gallons	°F/°C	(units)	₩ 5 / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
352		DUMO	01						
5:55	51	2	4	8.17	679	1534	0.67	-84.6	WL- 35-55
5 38			6	863	693	1.535	0.47	946	WL- 35.70
541			2	8.42	6.97	1.542	64D	-97.1	W1 - 35.77
5:44	V	J.	10 .	561.	1.02	1551	636	966	WIL- 35.83
				0.		~)-			

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	15:45	Dlashe	SODMU	2	none
Helium	V	vial	40 ML	2	V

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

itoring Well Purging & Sampling

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

CONCERNS 112	t Name: t Number 23 Ja led By: e ID: ate ID:	GE Au GE Au anuary 20 PT-IN Cold	344A 13	ský		Well Diameter: Y Total Depth of Well: 40 Initial Depth to Water: 33 Casing Volume: 35 Depth to Water After Purging: 35.80 Time: 12:23 Method of Purging: Low-Flow Method of Sampling: Low-Flow			
time	intake depth	pumping rate	cumulative volume	temp.	pН	specific conductance	D.O.	ORP	comments
	ft/m	gpm / Lpm	litres / gallons	°F/C	(units)	β / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
12:11	51	a	mp c	n.				8	
12:14		1.5	4	11.42	6.68	1.439	670.	111-1	WL= 35.75
12:17		-	-8-	1.83	670	1.440	6.09	-1166	WL= 35.75
12:24	P ,		12	11.89	674	1.435	0.74	-1200	WL = 35.80
12:23	V	V	15	11.97	6.74	1.451	0.33-	- 120.2	WL=35.80
									0112-1014

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	12.24	Dastri C	SOML		none
Helium	V	Mal	YONI	2	V

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

in the

ing Well Purging & Sampling

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

Project	Name: Number 23 Ja ed By: e ID:	anuary 20	344A 13 D - INJ - Z	2-BF		Well Diameter: 4 ¹¹ Total Depth of Well: 58 40-55 Initial Depth to Water: 32.60 Time: 09.39 Casing Volume: 32.32 Time: 13.02 Depth to Water After Purging: 32.32 Time: 13.02 Method of Purging: Low-Flow			
time	intake depth	pumping rate	cumulative volume	temp.	pН	specific conductance	D.O.	ORP	comments
	ft/m	gpm /Lpm	litres gallons	°F€°C	(units)	(µ\$ / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
12:50	98	1	Auto	on					
2:53	i	15	TYN	10.73	6.02	1.379	1.3	-1226	WL= 32.00
12:56			6	11.18	6.91	1.382	0.43	-1753	WLC 32.20
12:59			È	11.29	652	1.384	0.37 -	132.6	WL- 3230
BOU	V	V	10	11.44	057	1.38	0.34	-35.4	WL: 32.32
									-

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	13:05	plastic	SOOML	2	none
Helium	V	Mal	yome)	$\overline{\mathcal{P}}$

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

5

Well Purging & Sar

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

								<u> </u>	
Proiect	I Name: Number Dy Ja led By: E ID:	anuary 20 D PT-1N	iburn 1344A 13 3-3 - 6KG			Well Diameter: Y'' Total Depth of Well: S1 YI - S6 Initial Depth to Water: Yime: JI:Y4 Casing Volume: 35.35 Time: J2:D) Method of Purging: Low-Flow Method of Sampling: Low-Flow			
time	intake depth	pumping rate	cumulative	temp.	pН	specific conductance	D.O.	ORP	comments
	ft/m	gpm	litres gallons	°F / °C	(units)	S / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
11:50	46		Dum	2	Ont				
11:53		11	5	11.19	6.74	1.400	1.21	-124.9	NL-35.25
11:56			Q	11.47	6.74	1413	1275	-1262	WL-35.30
11:59			N N	11.60	676	1.416	0.91	-1267	WL= 35.30
12:61	J	V	15	11.59	6.76	1.416	0.44	-126.7	WL-3335
		ļ							
8		1110-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		1					
			tainer /pe	container size		ntainer ot no.	preservative		
	Bromi	ide	12:02	Dast	hic	500 m L			None

MONITORING WELL DEVELOPMENT

PURGING & SAMPLING RECORDS

250mych Mal J Helium Z 11

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

itoring Well Purging & Sampling

No.

5

			WELL DEV						Geosyntec consultants 130 Research Lane, Suite 2 ah, Ontario, Canada N1G 5G3 322-2230 Fax (519)822-3151
Project	t Name: t Numbe <u>23</u> J led By: e ID: ate ID:	anuary 20	344A 13 - <u></u>			Well Diameter: Total Depth of M Initial Depth to Casing Volume: Depth to Water Method of Purg Method of Sam	Water: After Purg jing: LC	Sb 332 ging: pw-Flow Low-Flow	40-54 <u>Time: 1108</u> <u>34.90</u> Time: <u>11:33</u> N
time	intake depth	pumping rate	cumulative volume	temp.	рН	specific conductance	D.O.	ORP	comments
	uepui	1 ale	volume	1					
	ft/m	gpm / Lom	ttres/gallons	°F / C	(units)	(µ§ / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product
1:21		(h)	6	°F/C) (units)	(µ¶§ / cm)	(mg / L)	(mV)	
121		(h)	tres/gallons		(units)	(115/cm)	(mg / L)	(mV) -79.5	
1-21 1-24 1-24 1-27		(h)	tres/gallons	*F/C	(units) 10.63	(1.245 1.213	(mg/L) (mg/L) (mg/L) (mg/L)	(mV) - 79.5 -82.9	
1/21 1/24 1/27 1/20		(h)	tres/gallons	F/C	(units) 10.63 10.52 9.63	1.245 1.213 1.153	(mg/L) (mg/L) ().51 ().51 ().31	(mV) - 79.5 - 82.9 - 95-1	
1124 1124 1127 1120 1130		(h)	tres/gallons	F/C	(units) 10.63 10.52 9.63 8.63	(m ⁶ /cm) 1.245 1.213 1.153 1.253	(mg/L) ().87 ().5) ().31 ().22	(mV) - 79,5 - 82,9 - 95-1 - 109	
121 124 124 127 120 120		(h)	tres/gallons	A 112.74 11.79 11.19	10.63	(ms/cm) 1.245 1.213 1.153 1.253	(mg/L) (mg/L) ().51 ().51 ().51 ().22 ().22	(mV) = 79.5 -82.9 -95-1 -109	
121 124 127 120 120		(h)	tres/gallons	A 112.74 11.79 11.19	10.63	(ms/cm) 1.245 1.213 1.153 1.253	(mg/L) (mg/L) ().51 ().51 ().22 ;	(mV) - 79.5 - 82.9 - 95-1 - 109	
121 124 127 120 120		(h)	tres/gallons	A 112.74 11.79 11.19	10.63	(ms/cm) 1.245 1.213 1.153 1.253	(mg/L) (mg/L) ().51 ().51 ().51 ().22	(mV) -79.5 -829 -95-1 -109	
121 124 127 120 120 123		(h)	tres/gallons	A 112.74 11.79 11.19	10.63	(mg/cm) 1.245 1.213 1.153 1.253	(mg/L) (mg/L) ().51 ().51 ().31 ().22 ;	(mV) - 79.5 -82.9 -95-1 -109	
121		(h)	tres/gallons	A 112.74 11.79 11.19	10.63	(ms/cm) 1.245 1.213 1.153 1.253	(mg/L) (mg/L) ().51 ().51 ().51 ().22 ().22	(mV) -79.5 -829 -95-1 -109	

samples collected	time collected	container type	container size	container lot no.	preservative
Bromide	TK34	Plashic	500 mC	1	none
Helium		vial	yong	2	\mathcal{V}

Notes: (well condition, nearby activities or changes in land use, odors, problems, deviations from plan, etc.)

Purging & Sampling

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

ng Well Purging & Sampling

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

Well ID Project Project Date: 1 Record Sample Duplica Weathe	Name: Numbe 23 Ji ed By: e ID: ate ID:	anuary 20	344A	دم		Well Diameter: 9 1 Total Depth of Well: 59.5 41-57 Initial Depth to Water: 34.3 Time: 10,40 Casing Volume:				
time	intake depth	pumping rate	cumulative volume	temp.	pH	specific conductance	D.0		ORP	comments odour, colour, sediment, load, well
10000	ft/m	gpm (Lpm	litres / gallons	°F (°C)	(units)	/pS / cm)	(mg	/ L)	(mV)	condition, presence of product
10 43			ритр 10 12 14	0.78 1.10 11.4 11.55 11.55	9.22	1.400 1.395 1.368 1.392 1.972	3.1 2.1 1.3 D.4	7 8 6 1 52	-81.9 -91.2 -122.2 -239.3 -169.2	34.62 34.65 34.70 34.70 34.725
	sample collecte Brom Heliu	ide	time collected	ty Pk	tainer ype USAC	container size 500 m 40 m	/		tainer t no.	preservative
Notes: ((well con	dition, near	by activities or	changes	in land us	se, odors, proble	ms, de	eviati	ons from p	lan, etc.)

MONITORING WELL DEVELOPMENT PURGING & SAMPLING RECORDS

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 (519)822-2230 Fax (519)822-3151

Project Date:	t Name: t Numbe 23 J led By: e ID: ate ID:	GE Au GE Au anuary 20 L-D PT-INJ Cold	burn 344A 13							
time	intake depth	pumping rate	cumulative Volume	temp.	рН	specific conductance	D.O.	ORP	comments	
	(ft)m	gpm / Lpm	litres gallons	°F/°C	(units)	(p§ / cm)	(mg / L)	(mV)	odour, colour, sediment, load, well condition, presence of product	
10:15 10:21 10:21 10:21	49	2m LS	pon	1019 1035 1030	657 6.42 6.46 6.46	1.430 1.433 1.429 1.429	0.73 0.57 0.41 0.31	=107.2 - 1099 - 111.0 111.3	WL= 35.30 WL= 35.30 WL= 35.30 WL= 35.30	
	sample collect	ed	time collected	ty	tainer ype	container size		ntainer ot no.	preservative	
	Heliu	um	V	VIC	21	40ml	1	2	\lor	
Buildung & Buildung & Buildung	(well cor	idition, near	by activities or	changes	i in land u	se, odors, proble	ms, deviat	ions from p	olan, etc.)	

		O'BRIE	N & GER	}E					
					Low Fl	ow Grou	nd Water S		
	Date	2/1/2013	- Persor	nnel	P. Freyer,		Weather	12°F 20,	iph, dark
	Site Name	Powerex	_ Evacu	ation Method		² ump	Well #	PT-MW-3	·
	Site Location	Auburn, NY	Sampl	ing Method	Mension Grundfos I	Pump	Project #	49543.004.40	2
	Well inform	ation:	<u>.</u>						
	Depth of We		58.76 ft.		* Measure	ments taken fro	om		
	Depth to Wa		54.17 ft.			Х	Top of Well Cas	sing	
	Length of W	ater Column	ft.				Top of Protectiv	-	
							(Other, Specify)		
	Start Purge	Time:17	2.6		indicate units	· · ·		r	r
		Depth To	T		Specific		Dissolved	Turbidity	Flow Rate
	Elapsed Time	Water (ft bmp)	Temperature (Celsius)	pH (SU)	Conductivity (w2/m)	Eh (mV)	Oxygen (mg/l)		(ml/min)
12.6	0	34:42	7.0	7.10	1.14	W7.10	v 1Z	28.3	500
	4-	34.4Z	3.4	7.07	1.17	- 127.8	0,47	29.0	500
	3	34.61	9.10	7.07	1.17	-143.9	0.40	203	400
	13	31.52	9.0	7.0f	1.17	-152.	0:34	\$6.9	400
	17	34.41	8.1	7.00	lila	-158	0.26	12.6	300
	21	3.4.10	8.1	7,05	-167 1.16	- 161	0.27	10,af	3,200
	25	31.39	8.2	7,05	1.17	-164	0.26	1,43	300
							· · · · · · · · · · · · · · · · · · ·		
	End Purge T	ime: 17	:5Z_ 55						
	Water samp	le: 172	55						
	Time collecte				Total volume of				
	Physical app	pearance at star	drear			Physical app	earance at samp Color	bling	
		Color Odor	Bulfar	•			Odor		
	Sheen/Free		Non			Sheen/F	ree Product		
	Analytical P								
ļ	Container		ntainer Type	# Collect	ed Field	Filtered	Preservat		Lab
	Na, K		Plastic	11		No No			ALS ALS
	Br, Cl		Plastic				140110		
							· · · ·		

.

-

•

	171 Jay 178 Jay 1	N & GEF	IE	Low FI	ow Grou	nd Water S	Sampling	Log
Date	2/1/2013	Perso	nnel	P. Freyer,		Weather		20 mpla, Ltsio
Site Name	Powerex	- Evacu	ation Method	Magas	- ump		PT-MW-4	
Site Locatior	Auburn, NY	- Sampl	ling Method	Grundfos F		- Project #	49543.004.40	2
Vell inform							10010.001.10	
epth of We		57.37 ft.		* Moosuror	nents taken fr	077		
epth to We		<u>33, 46</u> ft.		weasurer	X	Top of Well Cas	sina	
•	ater Column	23,9/ ft.				Top of Protectiv	0	
3						(Other, Specify)	-	
urt Purge 1	ïme: 15	si 15		indicate units				
	Depth To			Specific		<u> </u>		
Elapsed	Water	Temperature		Conductivity		Dissolved	Turbidity	Flow Rate
Time	(ft bmp)	(Celsius)	pH (SU)	_()_	Eh (mV)	Oxygen (mg/l)		(ml/min) 300
0	<u>33.45</u> 3 3. 55						10, 63	300
10	34.05	6:6	6.81	1.40	-86	5,1	11.90	350
10	34.72	86	4.83	1.4Z	-11, 5	0.5Z	8.61	420
23	35 13	6,1	6.82	1.43	-108.9	0.10	7.74	2.80
28	35.28	4.8	6.82	1.40	-115.8	0,24	8.32	120
34	35.65	7.1	6.86	1.43	-117.4	0.31	4.60	200
40	35.90	3.1	6.8!	1.47	-123.6	0.24	7.68	2.00
45	35.90	6.9	6.8	1.44	-12.4.4	0,54	6.78	180
55	35.87	6.1	6.78	1.42	-124.3	0.40	6.87	150
58	35 88	87,5	6.79	1.48	-12 8.9	0.31	6.13	220
61	35.13	7.9	677	1.45	-129.9	0.25	6.17	280
			I	<u> </u>				
d Purge Tii	ne: 16:1	9						
ter sample	e:						1	,
ne collecter	a: 16:20		-	Fotal volume of p	*	-	4.5 g	en l
	earance at start	a . 11.18	Int	l	Physical app	earance at samp		
	Color	Clear W/dark	η τι η τ			Color	(levi,	
	Ddor	Sulfur Nonc			Shoon/E	Odor ree Product	Sultur	<i>.</i> ,
en/Free P		10010		7. Alexandra - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	Sheen/h		<u>- Non-</u>	ť
	rameters:		# Collecte		P11	<u> </u>	·····	, ,
•			# Collopto	a i Field	Filtered	Preservati	ve I	Lab
alytical Pa Container 5 Na, K		tainer Type Plastic	1	·····	No	HNO3		ALS

					ow Grou	nd Water S			
Date	2/1/2013	- Persor	nnel	P. Freyer,	L. Reid	Weather	2001 15-	20 mph wrac	,2+3
Site Name	Powerex	Evacu	ation Methoc	Grundfos F	Pump	Well #	PT-MW-5	¥	
Site Locatior	Auburn, NY	Sampl	ing Method	Grundfos F	oump	Project #	49543.004.402	2	
Well informa	ation:		Pump	# FADDIZ	4 Count	without El	10013-2		
Depth of Wel	II *	56.99 ft.	. 1	* Measurer	nents taken fr	voller # FA	10007		
Depth to Wat	ter *	<u>91.78</u> ft.			Х	Top of Well Cas	sing		
Length of Wa	ater Column	<u>25,51</u> ft.				Top of Protectiv			
Start Purge T	rime: 12	. 18				(Other, Specify)	<u> </u>		
	Depth To	<u> </u>	11	indicate units Specific					
Elapsed	Water	Temperature		Conductivity		Dissolved	Turbidity	Flow Rate	
Time	(ft bmp)	(Celsius)	pH (SU)	(m5/an)	Eh (mV)	Oxygen (mg/l)	(NTU)	(ml/min)	
Ð	31.14	8	6.98	0.96	14.8	0.51	3.10	600	
6	31.68	6.5	6.84	0.96	25.	0.44	2.46	200	
10	31.70	8.7	6.86	0.16	<u> </u>	2.8(%)	2.22 2.92	260 250	
15	31.71	8,5 8.4	435	0.96	-12.7 -26.8	0.29205 (H) D. 41	2.41	250	
21	31.73 31.75	- /	6.85	0.97 0.97	-30.5	0 29	2.48	7.25	
26 34	AL	4.0	6.36	0.97	-50,9	0.24	2.56	275	
		9.6	6.86	0.11	-63,9	0.20	2.10	215	
	31.76	9,2	6,86	0.97	-11.Z	0.20	2.11	215	
45 50	31.78	9,2	6.86	0.97	- 78.1	0.17	1,82	215	
55	31.79	8.6	6.86	0.97	- 36,4	0.20	2.01		Sun
	- 21.11	<u>a</u> · 10	0.00						
					· <u>-</u>				
End Purge Ti	me: 13:18					- <u>-</u> ,-			
Water samp	le:	<u> </u>	1				1		
Time collecte	57.777	(X-	1)	Total volume of			4 gal		
Physical app	pearance at star				Physical app	earance at samp			
	Color	(leni				Color	(lear		
	Odor	None			Choon/	Odor Free Product	None		
Sheen/Free F	roduct	None			Sheerly		ajone.		
Analytical Pa									
Container		ntainer Type	# Collecte	ed Field	Filtered	Preservat	ive	Lab	
Na, K		Plastic	1		No No	HNO3 None		ALS ALS	
						1			

.____.

	2/1/2013 Powerex Auburn, NY	-	nnel ation Method ling Method	P. Freyer, Grundfos F Grundfos F	Pump		Mostly, Clar PT-MW-6 49543.004.402	
Well inform	ation		 	adviller #	FAOC136	Pump # FAOD	35	
Depth of We		56.42 ft.			/ nents taken fr			
Depth to Wa		<u>31,45</u> ft.		Weddarei	X	Top of Well Cas	ina	
•	ater Column					Top of Protective	-	
congui or m		<u></u>				(Other, Specify)		
Ptort Durgo	Fime: ነኒን) / ·					·. ·	
Start Purge			1	indicate units		_		
Flored	Depth To Water	Tamananatura		Specific		Dissolved	Turbidity	Flow Rate
Elapsed Time	(ft bmp)	Temperature (Celsius)	pH (SU)	Conductivity	Eh (mV)	Oxygen (mg/l)	(NTU)	(mi/min)
THRE			Pumple	/	vable to	Incharge Fla		
A+	empting	o purge i	The first	a Edital		volter FA		
14-200		7.8	7.04	1.08	-41.7	0.21	2.73	220
# 5	31.60	1.3	7.00	1.08	- 48.0	0.26	5.51	z40
10	31.74	8,4	7.00	1.09	-51.5	0.23	5 21	2.30
13	31.74	8.1	6.98	1.10	-53,5	0.21	5.21	240
18	31.74	8.7	6.97	1.11	-56.7	0.18	4.0Z	2.40
23	31.74	7.8	6.47	1.12	-57.7	0.13	3.13	230
26		7.8	6.97	1.14	-57.6	017	2.61	2.30
	31.74	7.6	\$47	1.17	-57.0	0.17	2.42	230
30	31.74	1.0	377		21.0		676	2.50
						·		
						· · · · · · · · · · · · · · · · · · ·		
	<u></u>							
	<u></u>	[·		
								· · · · · · · · · · · · · · · · · · ·
								
nd Purge Ti	me:] f :	51			+			
Vater samp	le:	<u></u>						/
ime collecte	1.6.71	>	-	Total volume of p	ourged water r	emoved:	2.5	19/
Physical app	pearance at star	t			Physical app	earance at samp	ling	J
	Color <u> </u>	lear				Color -	1/2 Ar Mone	
		Jone				Odor -		
Sheen/Free I	Product	inne			Sheen/F	ree Product	1/11	
nalytical Pa	arameters:							
Container		ntainer Type	# Collecte	ed Field	Filtered	Preservati	/e	Lab
Na, K		Plastic	1		No	HNO3		ALS
Br, Cl		Plastic	1		No	None		ALS

1420

· ·--

Date	2/1/2013	Perso	nnel	P. Freyer,	L. Reid	Weather	Mostly S.	nny, he every,
Site Name	Powerex	Evacu	ation Metho	d Grundfos I	Pump	Well #	PT-MW-7	<u>}</u> ,
Site Locatio	r Auburn, NY	Samp	ling Method	Grundfos F	Pump	Project #	49543.004.402	2
Well inform	ation:			Pimp FAO	0134 C	on trailer F	A-60137	
Depth of We	ell *	60.78 ft.		* Measurer	ments taken fro	om		
Depth to Wa	ater *	35,14 ft.			Х	Top of Well Cas	sing	
Length of W	ater Column	15.64 ft.				Top of Protectiv	-	
						(Other, Specify)		
Start Purge	Time: <u>しい</u> と	<u>.</u>		indicate units				
	Depth To	[1	Specific				
Elapsed	Water	Temperature	рН (SII)	Conductivity	Eb (ma)/)	Dissolved	Turbidity	Flow Rate
Time C	(ft bmp) 35 \\-\	(Celsius)	pH (SU)	(ms/cm) 1.43	Eh (mV) ~[[는, 스	Oxygen (mg/l)	<u>(NTU)</u> ど(5)	(ml/min) • • • • • • • • • • • • • • • • • • •
5	36,10	1.1	6.92	<u>। न २</u> । नप	-110.2 	0.51	7.47	270
10	36.09	1.9	4,76	1.44	~131.9	0.37	1.11 (4.64	PTICC
15	34.01	7.2	6.15	1,44	~ 138,4	0.32	5.21	140
20	36,08	6.5	6.75	i,44	- 142.1	0,27	1.5	140
25	34.07	6.4	6.75	1.45	-145.3	0.27	1.6	160
30	34.10	(2.8	6.74	1.44	-146,6	0.23	0.8	170
35	36.12	6.1	6.75	1.47	-152.4	0.34	5,61	190
40	34114	6.5	10.74	1,46	-151.9	0.32	5.44	220
45	36.16	10.7	(e. 75	1.45	-152.9	0.24	5.11	220
50	36.18	6.8	6.74	1,48	-157.0	0.20	5.24	230
53	34.18	4.8	4174	1.47	~158.3	0,20	5.14	230
						-		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
End Purge Ti								
Nater samp				Total volume of	ourgod wator r	amound:	NH	1
Time collecte	ed: <u>1715</u> Dearance at star	t				arance at samp	NH ya	1
	Color r	1000				Color	<u> </u>	
	Odor <u>st</u>	None Sulfa	(ichian	al cher		Odor	sfl Siller	/ Chammen 1
Sheen/Free f	Product	Nunk	1		Sheen/F	ree Product	None	
Analytical Pa	arameters:				<u></u>			
Container		ntainer Type	# Collecte	ed Field	Filtered	Preservati	ve	Lab
		Plastic	1		No	HNO3		ALS
Na, K		Flash	I					ALS

- -

ATTACHMENT F

LABORATORY ANALYTICAL RESULTS

Analysis Report

Account

LLI Sample # WW 6941964 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Sample Description: FB-1 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/29/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAFB1	GAFB1											
CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor					
GC Vo	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l						
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1					

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 19:06	Elizabeth J Marin	1				

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941965 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: FB-2 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAFB2

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 19:14	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-2-1 Grab Groundwater Auburn, NY

LLI Sample # WW 6941966 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 11:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI21

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 19:22	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-2-9 Grab Groundwater Auburn, NY

LLI Sample # WW 6941967 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 19:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI29

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Hel	ium 7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 19:45	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-2-18 Grab Groundwater Auburn, NY

LLI Sample # WW 6941968 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 05:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA218

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vola	atiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 19:53	Elizabeth J Marin	1		

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941969 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-2-23 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 09:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA223

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846 8015B modified	d ug/l	ug/l	ug/l	
12869	Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:01	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-3-1 Grab Groundwater Auburn, NY

LLI Sample # WW 6941970 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 19:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI31

CAT No. Analysis Nam	e CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	l ug/l	ug/l	ug/l	
12869 Dissolved He	lium 7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:16	Elizabeth J Marin	1	

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-3-9 Grab Groundwater Auburn, NY

LLI Sample # WW 6941971 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 11:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI39

CAT No. A	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vola	atiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869 E	Dissolved Helium		7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:24	Elizabeth J Marin	1	

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-3-18 Grab Groundwater Auburn, NY

LLI Sample # WW 6941972 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 05:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA318

CAT No. Analysis Nar	e CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modifi	ied ug/1	ug/l	ug/l	
12869 Dissolved He	lium 7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:32	Elizabeth J Marin	1	

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-3-23 Grab Groundwater Auburn, NY

LLI Sample # WW 6941973 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 09:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA323

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:40	Elizabeth J Marin	1	

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-4-1 Grab Groundwater Auburn, NY

LLI Sample # WW 6941974 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 11:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI41

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:48	Elizabeth J Marin	1	

Analysis Report

Account

LLI Sample # WW 6941975 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-4-11 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 21:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA411					
CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modif:	ied ug/l	ug/l	ug/l	
12869 Dissolved Heliur	n 7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 20:56	Elizabeth J Marin	1	

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-4-18 Grab Groundwater Auburn, NY

LLI Sample # WW 6941976 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 05:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA418

CAT No. Anal	Lysis Name	CAS N		As Received Result	Method	As Received Limit of Quantitation	Dilution Factor
GC Volati	les SW-	846 8015B mc	odified u	ıg/l	ug/l	ug/l	
12869 Diss	solved Helium	7440-	59-7 N	I.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:03	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-4-23 Grab Groundwater Auburn, NY

LLI Sample # WW 6941977 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 09:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA423

CAT No. An	alysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volat	les	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869 Di	ssolved Helium		7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:11	Elizabeth J Marin	1		

Analysis Report

Account

LLI Sample # WW 6941978 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-4-32 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 20:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

						-			
GA432	2								
CAT No.	Analysis Name		CA	S Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor	
GC Vo	olatiles	SW-846	8015B	modified	ug/l	ug/l	ug/l		
12869	Dissolved Helium		74	40-59-7	N.D.	30	30	1	

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:19	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-1 Grab Groundwater Auburn, NY

LLI Sample # WW 6941979 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 11:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI51

CAT No. Anal	ysis Name	CLC March and	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volati	les SW-	846 8015B modified	ug/l	ug/l	ug/l	
12869 Diss	olved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:27	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-11 Grab Groundwater Auburn, NY

LLI Sample # WW 6941980 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 21:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA511

CAT No. Anal	ysis Name	CLC March and	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volati	les SW-	846 8015B modified	ug/l	ug/l	ug/l	
12869 Diss	olved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:42	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-18 Grab Groundwater Auburn, NY

LLI Sample # WW 6941981 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 05:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA518

CAT No. Anal	Lysis Name	CAS N	· · · · · · · · ·	As Received Result	Method	As Received Limit of Quantitation	Dilution Factor
GC Volati	les SW-	846 8015B mc	odified u	ıg/l	ug/l	ug/l	
12869 Diss	solved Helium	7440-	59-7 N	I.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:50	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-23 Grab Groundwater Auburn, NY

LLI Sample # WW 6941982 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 09:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA523

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 21:58	Elizabeth J Marin	1			

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941983 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-32 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 20:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

C7 5 3 2

GA532						
CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130420004A	02/11/2013 22:06	Elizabeth J Marin	1			

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941984 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Sample Description: DUP1 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GADU1							
CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 18:36	Elizabeth J Marin	1			

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941985 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: DUP2 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GADU2

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 19:13	Elizabeth J Marin	1			

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941986 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-1 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 11:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI61

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 19:21	Elizabeth J Marin	1			

*=This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-9 Grab Groundwater Auburn, NY

LLI Sample # WW 6941987 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 19:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAI69

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 19:29	Elizabeth J Marin	1			

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941988 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-18 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 05:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA618

CAT No. Ana	alysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volat	iles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869 Di:	ssolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 19:37	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-23 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 09:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GA623

LLI Sample # WW 6941989 LLI Group # 1366352 Account # 11920

GeoSyntec Consultants Suite 2 130 Research Lane Guelph ON N1G 5G3

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 19:55	Elizabeth J Marin	1		

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941990 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-32 Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/30/2013 20:00

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

CAESS

GA632							
CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846 8	015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:03	Elizabeth J Marin	1		

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941991 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: Tank-Start Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/29/2013 08:15

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GATAS

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vol	atiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 18:29	Elizabeth J Marin	1		

Submitted: 02/01/2013 09:15

Reported: 02/20/2013 15:55

Lancaster Laboratories

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: Tank-End Grab Groundwater Auburn, NY Project Name: Helium as Tracer Gas Collected: 01/30/2013 03:30 LLI Sample # WW 6941992 LLI Group # 1366352 Account # 11920

GeoSyntec Consultants Suite 2 130 Research Lane Guelph ON N1G 5G3

GATAE

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:11	Elizabeth J Marin	1		

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941993 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-1-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/23/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

ON TW

GAIW1	-					
CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	olatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:19	Elizabeth J Marin	1		

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-2-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/23/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAIW2

LLI Sample	e # WW 6941994
LLI Group	# 1366352
Account	# 11920

GeoSyntec Consultants Suite 2 130 Research Lane Guelph ON N1G 5G3

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:26	Elizabeth J Marin	1

Analysis Report

Account

LLI Sample # WW 6941995 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-3-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/23/2013

Submitted: Reported:

GAIW3

		As Received Method	As Received Limit of	Dilution	
02/01/2013 09:15 02/20/2013 15:55	13	ite 2 0 Research Lane elph ON N1G 5G3			

GeoSyntec Consultants

CAT No. Analysis Name	CAS Number	As Received Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:34	Elizabeth J Marin	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-5-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/23/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAIW5

LLI	Sample	#	WW	6941997
LLI	Group	#	136	56352
Acco	unt	#	119	20

GeoSyntec Consultants Suite 2 130 Research Lane Guelph ON N1G 5G3

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:42	Elizabeth J Marin	1

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941998 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-INJ-6-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/23/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAIW6

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vol	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

	Laboratory Sample Analysis Record						
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:50	Elizabeth J Marin	1

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6941999 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-MW-7-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/22/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAMW1

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vol	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

		Laborat	ory Sa	ample Analysi:	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 20:58	Elizabeth J Marin	1

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-MW-3-BKG Grab Groundwater Auburn, NY

LLI Sampi LLI Group

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6942001 LLI Group # 1366352 Account # 11920

Project Name: Helium as Tracer Gas

Collected: 01/22/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAMW3

CAT No. Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	SW-846 8015B modified	ug/l	ug/l	ug/l	
12869 Dissolved Helium	7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

		Laborat	ory Sa	ample Analysia	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 21:05	Elizabeth J Marin	1

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6942002 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-MW-4-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/22/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAMW4

CAT No. An	nalysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volat	tiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869 Di	issolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

		Laborat	ory Sa	ample Analysi	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 21:32	Elizabeth J Marin	1

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6942003 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Sample Description: PT-MW-5-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/22/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAMW5

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Vo	latiles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869	Dissolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

		Laborat	ory Sa	ample Analysi:	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 21:39	Elizabeth J Marin	1

Analysis Report

Account

GeoSyntec Consultants

130 Research Lane

Guelph ON N1G 5G3

Suite 2

LLI Sample # WW 6942004 LLI Group # 1366352

11920

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Description: PT-MW-6-BKG Grab Groundwater Auburn, NY

Project Name: Helium as Tracer Gas

Collected: 01/22/2013

Submitted: 02/01/2013 09:15 Reported: 02/20/2013 15:55

GAMW6

CAT No. Ana	alysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volat	iles	SW-846	8015B modified	ug/l	ug/l	ug/l	
12869 Dis	ssolved Helium		7440-59-7	N.D.	30	30	1

General Sample Comments

State of New York Certification No. 10670

		Laborat	ory Sa	ample Analysi	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12869	Dissolved Helium	SW-846 8015B modified	1	130430029A	02/12/2013 21:47	Elizabeth J Marin	1

			Er	nvirg	n	me	en	tal	A	n	al	ys	is	R	equ	les	st/	Ch	ain	of (Cust	ody
🔅 eurofins	Lancaster Laboratori	A	.cct. #	920	_ Gro	For E oup #_ Instruct		s Lanca 263 reverse si	aster I	Labo Sam	ratorie ple # I with ci	es use ircled nu	only 941 mbers.	96	pЧ − 1	200	<u>54</u>		С	:0C ;	#3 20	793
(1)	Client I	nformatior	า				4	Mat	rix			5		Α	nalysis	Req	ueste	d		For Lab	Jse Only	
1) Client:			Ácct. #:											F	Preserva	tion	Codes	5		FSC:		
Geosyntec								M				nore	·							SCR#:	1342	
Project Name/#: @UUIN			PWSID #:					pun	ace											H=HC	servation	Codes hiosulfate
Project Manager:			P.O. #:				Sediment	Ground	Surface											N=HN		laOH
Mark Wat	ling		TROS	44A.DT	2		đin				ers									S =H ₂ S	5 -	Other
Sampler:	0		Quote #:				s				ain									6) Re	marks	
Dave Lief I Name of state where samples we	are collected:					T		able	<u>ы</u>		Containers											
New York	ere conected.				3	ite		Potable	NPDES		of C	5										
2) Sample k	lentification		Coll	ected	l a	Composite		Water		Other:	#	Helium										
			Date	Time	Grab	ပီ	Soil	Wa		đ	Total	Ť										
FB-1			Jan 29	/	X			×	<u></u>		2	Х										
FB-2			Jan 3D	/							1	X										
PT-INJ-	2 -1		Jan 29	11:00	Ш							X										
	2-9			19:00								\star			•							Actor
	2-18		Jun30	04050	[]_							\times								per m	in the	1500 pn-
	2 - 23	, ,		09:00	Ц_							×		\rightarrow		_						·
and the second discovery second s	2 - 32			[19:0]	μ_							×				_	_			-not R	cdell	nnet
PT-INJ-			Jan29		↓↓					× 1		\mathbf{X}									•	
	3-9		. V	19:00			<u> </u>		/ 		\square	X								CONCET	ion time	.0500
7) Turnarou nd Tin	3-18	upotod /=/=	Jun30	04.50		quis be d	by	V			V	17	Date		Time	Rece	ived by			pern	Date	Time (9
7) Turnarou nd Tin (Standar	$\gamma j - \gamma$		ase circie) ush		Ø	K		<u> </u>	M	4			-21-		1320		\sim			\searrow	2 dio	
(Rush TAT is subject to)	Refin	quished	JEV.			Luc	na		Date	ľ	Time		ived by			$\overline{)}$	Date	Time
				(L	\geq	\leq	\subseteq	1	<u> </u>	نک		1973	-	14:00	<u> </u>			<u> </u>			
Date results are needed	l:			-	Relin	quished	by			,			Date		Time	Rece	ived by				Date	Time
E-mail address:					Relin	quished	by			\leftarrow			Date		Time	Rece	ived by			$\overline{}$	Date	Time
8) Data Package O	ptions (circle	if required)		_	1															~~ `	<u>ا</u>	
Type I (Validation/	non-CLP)	Type VI (Raw Data	Only)	Relin	quished	by				$\overline{\ }$		Date		Time		ived by	- G	4		Date 2-/1/13	Time C9 15
Type III (Reduced	Type III (Reduced non-CLP) TX TRRP-13							EDD , forma	ıt:			Yes	No				JPS _					
Type IV (CLP SOV	ype IV (CLP SOW) MA MCP CT RCP						•	ecific (ate QC :	•			• •	Yes te samp		NO ume.)		Te	mpera	ture upo	on receipt	3.0-5.	<u>4</u> °с

Eurofins Lancaster Laboratories, Inc. • 2426 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

١

Issued by Dept. 40 Management 7044.02

Environmental Analysis Request/Chain of Custody

Curofins Lancaster Laboratories	Acct. # <u>11</u>	920	Gro	For E oup #_ Instructi	ions on	s Lang s 6 2 reverse	side cor	Labo San	nple # d with c	ircled nu	only 9 <u>9</u> 1 umbers.	191	64 -	20	04	-	(CO	C #	320	795
1) Client Informati	on				(4)	Ma	trix			(5)		A	nalysis	Requ	Jeste	d		For	Lab Us	e Only	
Client:	Acct. #:								1	<u> </u>			Preserva	-				FSC	:		
. (I ∑ I				NOR	ł				Π			SCF	R#:		
Project Name/#:	PWSID #:					Ground	Surface											-	Prese I=HCI	rvation C T=Th	odes iiosulfate
Project Manager:	P.O. #:				Sediment	ð] Su		srs										N=HNO₃ S=H₂SO,		
Sampler:	Quote #:				Se		S		Containers									6)	Rem	arks	<u>_</u>
Name of state where samples were collected:			3	site	1	Potable	NPDES		of Cor	ξ											
2) Sample Identification	Coll	ected	Grab	Composite	Soil	Wator	arei	Other:	Total # (Heliu											
-	Date	Time		ŭ	ő			ō													
PT-INJ-3-23	_lan 30	09.00	X			>	κ .		2	X											
3-32	31	19:00	1			1				X								not	rec'd	eun	111-27/13
PT-INJ-4-1	Jan 29	G0.7/								X											•
1 4-11	\checkmark	19:00								×								n CC Des	MW	MANUE -	100
4-18	Jun 30	64 NO								X								e (Ve Der	inction .	time = (500 UN
4-23	1	09:00							П	X								ľ		•	
4-32		400	1						Π	X								ne Du	iconor Mu) H	17112-1. 14/13 N	1000
PT-INJ-5-1	Jun 29	11:02	Π						Π	X								ľ	•		
1 5-11	<i>y</i>	19:00*							Π	X								NCC Du	MN	11112 -2	100 LNK
5-18	Jun 30								V	1								+ α γ	C MUS	TIMES	NA NA
7) Turnaround Time (TAT) Requested (Standard				quished	by	\sim	\geq		<u> </u>	,	Date Jun 3 Zon	1	Time 14.0		ived by					Date	Time 9
(Rush TAT is subject to Lancaster Laboratories approva	l and surcharge	.)	Relin	quished	lby			1			Date		Time	Rece	ived by				ſ	Date	Time
Date results are needed:		_	Relin	quished	l by				\setminus		Date		Time	Rece	ived by			$\overline{\ }$		Date	Time
E-mail address:		_	Relin	quished	l by				$\overline{}$		Date		Time	Rece	ived by					Date	Time
8 Data Package Options (circle if required)																-					
Type I (Validation/non-CLP) Type V	'l (Raw Data	Only)	Relin	quished	lby						Date		Time		ived by	at	jh.			Date 2/1/13	Time
Type III (Reduced non-CLP) TX TR	RP-13					, form					No			Reli L	nquish	ned by K	/ Comr FedEx	mercial	Carrier Other	:	
Type IV (CLP SOW) MA MC	р ст	RCP			-	ecific ate QC		•		• •	? Ye ate samp		NO ume.)		Те	mpera	iture u	pon rec	eipt 5	<u>.0-5.4</u>	L°C

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

2

				=nv	ro	n	m	en	ta		4/1	al	ys	is	R	eq	U	es	:t/	Ch	ai	n	of (Cust	ody
🔅 eurofins	Lancaster Laboratori	A es	cct. #	1192	0	Gro	For E oup # Instruct	urofin 36 ions on	is Lan 663 reverse	side co	r Labo <u>-</u> Sar mespor	oratorio nple # nd with c	es use Coq ircled nu	only YI mbers.	16	-1-	20	00	-1			СС	C	#3 20	794
1) Client:	Client li	nformatior	1					4	Ма	atrix		Τ	5		Á	nalys	sis R	equ	este	d		F	For Lab	Use Only	
Client:			Acct. #	:					57			1				Prese	rvatio	on C	ode	5		F	-sc:		
	11								M				An	/								5	SCR#:		
Project Name/#: Project Manager:	AME	R.	PWSIC P.O. #:					Jent	Ground	Surface													Pre H=H¢ N=H!		Codes hiosulfate laOH
Sampler:	(?	<u>Y</u>	Quote	#:				Sediment				iners										7	S=H2	0	
Name of state where samples w								Ű	able	NPDES		Containers										ŀ			
						3	osite		Potable	NPL		2	٤												
2) Sample lo	dentification			Collected		Grab	Composite	Soil 🗌		Water	Other:	Total #	Helium												
PT-INJ-	5-23		Da	1 te Ti 30 09	<mark>me</mark> იი		Ŭ	Ň		<u> </u>	Ó	1 <u>F</u> 2	× ×												
	5-32		V	20		Ιx	t			i		Ī	X												
DUP	<u> </u>		lan i		-	X							X												
DUP2			Jun		/	X				/	T	T.	X												
PT-INJ-	2-3		Jan		ر ي:					1		1											Но		
	2-5				00					1		П											1		
	2-7			· · · · ·	တ																				
	2-11				ത					1		Π													
	2-13				:0)						1	\mathbf{T}													
	2-16		Jav	x 3002		J				V		V											1	/	
7 Turnaround Tin		uested (ple				Relind	uished	þу	\sum	\leq	Lue	ann		Date	21	Time	Ī	Receiv	ved by	۱.				Date	Time 9
Standar	d	Ru	ush		(\square		\leq) 0		20	13	1420		<u> </u>		<u> </u>	<u> </u>			Data	T
(Rush TAT is subject to	Lancaster Laborato	ries approval an	id surch	narge.)		Relind	quished	by		`				Date		Time		Receiv	ved by					Date	Time
Date results are needed	d:					Relind	quished	by			$\overline{\}$		*****	Date		Time		Recei	ved by			$\overline{}$	$\overline{\ }$	Date	Time
E-mail address:						Relind	quished	by			$\overline{}$			Date		Time		Recei	ved by					Date	Time
8) Data Package C	Options (circle i	f required)				1						$\overline{)}$		_											
Type I (Validation/non-CLP) Type VI (Raw Data Only)					Relind	quished	lby						Date		Time			ved by	$t\zeta$	h			Date 2/1/13	Time CP915	
Type III (Reduced	non-CLP)	TX TRRP	-13				EDD Required? If yes, format:			d?	Yes	No		_	Relinquished by Commercial Carrie UPS <u>X</u> FedEx Other				ier						
Type IV (CLP SOV	Type IV (CLP SOW) MA MCP CT RCP					Site-Specific QC (MS/MSD/Dup)? Yes No (If yes, indicate QC sample and submit triplicate sample volume.)								Temperature upon receipt <u>3.0-5.4</u> °C					<u>∕</u> rc						

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

Issued by Dept. 40 Management 7044.02

3

	En	viro	n	me	en	tal A	n	al	ys	is	R	eq	ues	st/(Cha	ain	of C	Cust	ody
eurofins Lancaster Laboratorie	Acct. # <u>۱۱</u> ۹	20	_ Gro	For E up #		s Lancaster 6352 everse side cor	Labo Sar	oratorie nple # id with ci	rcled nu	mbers.	19	64-	20	<u> </u>	_	C	:0C ;	#3 22	359
1) Client Ir	formation				4)	Matrix			(5)		F	nalysi	s Req	ueste	d		For Lab	Jse Only	
Client:	Acct. #:								<u> </u>			Preserv					FSC:		
N.K.																	SCR#:		
Project Name/#: Project Manager:	PWSID #:					Ground Surface											Pre	servation (Codes
SKPI					nt	oul											H=HC	i T =T'	hiosulfate
Project Manager:	P.O. #:				me	សី		ر س									N=HN	0	aOH
XQ					Sediment			ler;									S=H ₂ S		Other
Sampler:	Quote #:				Š	e s		tair									6) Re	marks	
Name of state where samples were collected:			3	ite		Potable		f Containers	2										
2) Sample Identification	Collec	ted	Grab	Composite	Soil 🗌	Water	Other:	Total # of	Heliun										
	Date	Time	ß	ŏ	Sc		ō	l ₽											
Pt-1N J-5-31	Jun 302	2007	X			X		2	Ť	40)	ľ						- Dec mi	waine	- 1900 NUN
\$1 5-33	kn.31 (1							5							T		
PT-1NJ-6-1	10 29	11'00							¥										
		13700							Γ,	101	10								
		1500								1	<u> </u>	<u> </u>							
		17:00		u						\vdash		<u> </u>							
6-+		19:00					<u> </u>		X	14	k								
6-)												+					-		
6-11		CO: 11							17/1								_		
6-13		<u>13,00</u>							14		10	 	_				_		
1-16		0200		Ļ						\overline{r}		<u> </u>	-						ITime (A
7) Turnaround Time (TAT) Requ			Reiinq	uished	^{Dy}	\rightarrow	~			Date	Jan	Time		ived by	-			Date	Time (9
Standard	Rush	1	Relina	uished	by	······································	$ \ge$)		Date	5	1 11 - 4		ived by			<u></u>	Date	Time
(Rush TAT is subject to Lancaster Laborator	ies approval and surcharge.)	7		alonou	.,		١												
Date results are needed:			Relinq	uished	by			\backslash		Date		Time	Rece	ived by			\checkmark	Date	Time
E-mail address:			Relinq	uished	by			+		Date		Time	Rece	ived by		· · · · · · · · · · · · · · · · · · ·		Date	Time
8) Data Package Options (circle if	required)																		
Type I (Validation/non-CLP)	Type VI (Raw Data O	niy)	Relinq	uished	by				۱.	Date		Time	Rece	ived by	it s	Ĺ		Date J.////3	Time
Type III (Reduced non-CLP)	TX TRRP-13				lf yes	EDD Rec	quire	d?	Yes	No		_		inquisi JPS		Comm FedEx _	ercial Carr Othe		
Type IV (CLP SOW)	Type IV (CLP SOW) MA MCP CT RCP					ecific QC (ate QC samp			• •			NO No		Те	mperat	ure up	on receipt	3.0-5.4	<u>∕_</u> °C

Eurofins Lancaster Laboratories, Inc. • 2425 New Helland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

in

Issued by Dept. 40 Management 7044.02

Environmental Analysis Request/Chain of Custody For Eurofins Lancaster Laboratories use only

Curofins Lancaster Laboratories	Acct. # <u>[</u>]	920	Gr	For E oup # _ Instruct	ions on	reverse	icastej 35 de side col	r Labo 2San rrespon	nple # nd with c	es use	only 41 umbers.	96	<u>-1-</u> 2	200	Ч	_		CO)C #	32 23	360
1 Client Information	n				4	Ма	atrix			5		A	nalysi	s Rec	ueste	ed		Fo	or Lab Us	e Only	
Client:	Acct. #:								1				Preser	ation	Code	S			SC:		
						Ϋ́				none				_				S	CR#:		
Project Name/#:	PWSID #:				μ	Ground-	Surface													rvation (
Project Manager:	P.O. #:	· · · ·			Sediment	Į į	Sur												H=HCI N=HNO3		niosulfate
					E E	Ľ	5		S										S=H ₂ SO		
Sampler:	Quote #:				Se l	IП	Ш		line l									6) Rem	-	
						ple	NPDES		Containers												
Name of state where samples were collected:			3	e		Potable	D			2	Ļ							1			
	1		4	Sit		٦	z		q	22											
2) Sample Identification	Col	lected	م ا	d		.	ler	er:	al #		1										
Sample Mentineation	Date	Time	Grab	Composite	Soil		Water	Other	Total	La											
PT-1NJ-6-18	Jo 30	04:00	-			<u> </u>			2	X								4	Collecto	n nme: 21413	=0:500
1 6-20		DEVUD	Í						1		ou	6						-17		- حببهمره	
6-23		04.00			· · · · ·					ば											
6-24		10:03								1	bus	Þ									
6-25		11:02	╉┼							l n											
6-26		12:00	++				<u>├</u> ──		H						-						
6-23		13.02	++		· · · · ·	<u> </u>			╉╌┼╴			<u> </u>									
6-28		15:00	╈	1					╉┼							<u> </u>					
6-29		16203	╂┢╴						\mathbf{H}							+	╂──╂				
6-30		1005	╈			Η,	17				\checkmark				-	+					
7) Turnaround Time (JAT) Requested (p	lease circle) Rush		Relin	quished	by	\leq	<u> </u>	\leq			Date	」 3い ション	Time 1 M v ~O		eived by	′ 、				Date	Time 9
(Rush TAT is subject to Lancaster Laboratories approval		.)	Retin	quished	l by			the second)		Date		Time	_	eived by	/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overline{}$		Date	Time
			Delin				\rightarrow				Data		7:		aired by					Date	Time
Date results are needed:	<u></u>	_	Reim	quished	гду						Date		Time	Rec	eived by	'			7	Jale	Time
E-mail address:			Relin	quished	l by			\uparrow			Date		Time	Rec	eived by	/				Date	Time
8) Data Package Options (circle if required)																					
	(Raw Data	Only)	Relin	quished	l by						Date		Time	Rec	eived by	, † G	h			Date 2/1/13	Time 091.S
Type III (Reduced non-CLP) TX TRR	P-13				lf yes		D Rec nat:	quire	d?	Yes	No				linquis UPS _	shed t	y Corr FedE		al Carrier	:	
Type IV (CLP SOW) MA MCI	р ст	RCP			-			-		Dup)?			No lume.)		Te	empei	rature (upon re	eceipt <u>5</u>	R.O-54	<u>⁄</u> °C

Eurofins Lancaster Laboratories, Inc. • 2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

Issued by Dept. 40 Management 7044.02

11

			Er	nvirc	n	m	en	ta		n	al	ys	is	R	eq	ue	st/		nai	n	of C	Sust	tody
🔅 eurofins	Lancaster Laboratori		Acct. # ^C												<u>,4-</u>								2361
1	Client I	nformatio	n				4	Ма	trix			5		A	nalys	is Re	quest	led			For Lab U	se Only	
Client:	· · · · · · · · · · · · · · · · · · ·		Acct. #:												Preser		-				FSC:		
		NQ						 ₩													SCR#:		
Project Name/#:	ANG	Ø	PWSID #:					Ground	Surface													ervation	
(XIVIO	<u> </u>	P.O. #:	<u></u>			ert	D D	nti												H=HCI		Thiosulfate
Project Manager:	106	Λ	P.O. #:				Sediment	0	လ		δ										N=HNC S=H2S	•	NaOH Other
Sampler:			Quote #:				led led				ne											narks	Other
•								e	က္သ		nta									1		nuino	
Name of state where samples w	ere collected:				(3)		1	Potable	NPDES		Containers	d											
					M	site		6	۳Ę		5	5											
2			Coll	ected		18			5	ï	**	Heliun											
Sample le	dentification				Grab	Com	Soil		water	Other:	Total	ア											
-			Date	Time			S	5	5	0											Clean	time -	and her
PT-INJ-	-6-31		Jn 30	1700			ļ	Ļ-Х			2	Η	or	\vdash			_	_			Mic 21	4/13 m	900 per m
	6-32			19:00	11	<u> </u>	ļ				-+	LX.				-		_		·····-	Min A	413 12	2000 per
L L	6-33			08'00	\vdash	1		4	/		$\downarrow \downarrow$		OL	ĮD_				_					
tank-ste	rt		Jun 29	18:15								X					_						
tonk-m	<u>'6</u>		L	18:15								N	oU	D_									
tank-	Bend		54730	037/32							\downarrow	٢X											
				T																			
7) Turnaround Tin	ne (TAT) Req	uested (ple	ase circle)		Relinc	uished	by P		\geq	$\overline{}$		•	Date	3)	Time		ceived b	¹ / ₂				Date	Time (9
C Standar	rd)	R	ush		(\geq	\geq)		20	13	14:0	2							
(Rush TAT is subject to	Lancaster Laborato	ries approval ar	nd surcharge.)	Relinc	quished	by						Date		Time	Re	ceived b	у				Date	Time
					Dalia				\setminus				Data		Time a							Data	Time
Date results are needed	d:	· •		_	Reinc	quished	БУ		\mathbf{A}				Date		Time	Re	ceived b	у				Date	Time
E-mail address:					Relinc	quished	by		\rightarrow	<u> </u>			Date		Time	Re	ceived t	v				Date	Time
8) Data Package C	Dotions (circle i	f required)		-	1	•				\mathbf{i}													
<u> </u>	•			~	Relinc	uished	by			-			Date		Time	Re	ceived b	^y 1.	/	1	-	Date	Time
Type I (Validation/	non-CLP)	Type VI (Raw Data	Unly)							1							at	- 5/	h		2/113	3 091S
Type III (Reduced		TX TRRP	0_13					ED	D Req	uirec	1? `	Yes	No		-	R		ished l	by Cor	nmer	cial Carri		•
i ype iir (Reduced	non-CLP)		-13					, form							_		UPS	<u>_X</u>	FedE	Ex	Othe	r	
Type IV (CLP SOW) MA MCP CT RCP				Site-Specific QC (MS/MSD/Dup)? Yes No (If yes, indicate QC sample and submit triplicate sample volume.)							empe	nperature upon receipt <u>30-54</u> °C											
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,					(If ye	s, indic	ate QC	sampl	e and	submit	triplica	ite san	nple vo	lume.)			·					

Eurofins Lancaster Laboratories, Inc. • 2425 New Helland Bike, Lancaster, PA 17601 • 717-656-2300 The white copy should accompany samples to Eurofins Lancaster Laboratories. The yellow copy should be retained by the client.

12

🔅 eurofins	Acct. #	11920	F G	or Lan Group #	caster # 13	Labo	oratorie 352	es use	only	69	4196	4-2	DD		:OC #	I		
Laboratories		Please print. In:											-	C		F		
<u> </u>			511 0 0					lespo		<	alyses		eto	4	1	Use Only		
) Concurto		11920			Mat	trix	5	<u> </u>	(:		servatio			<u> </u>	FSC: SCR#:			_
client: Geosyntec	Acct. #:	<u> 920</u> #:X		-			(4)		T					TT		ation Codes		-
Project Name/#: <u>AUDUCO</u>	PWSID	#: <u> </u>			u je	Surface									н=нсі	T =Thios		6
Project Manager: Mark Watung	P.O.#:	R0344A.1	52	<u>-</u>		Sur	lers								N=HNO S=H₂SC			
Sampler: <u>DWE LICH</u>	Quote #	ŧ:			Sediment		Itain								3-11250			f samples requested)
Name of state where samples were collected:	1			Composite	L S	Water NPDES	Other: Total # of Containers	Helium										e of sar t (if requ
)	Date	Time	ن م	ödu		N N	al # 0	Ξ										beratu receip
ample Identification	Collected	Collected	Gra	Co	Soil	Vater		HOH							Rema	rks		Temp
PT-INJ-1-BKG	1/23/13		X			X		×										
PT-INJ-2-BKG															ad	dition	ial	
PT-INJ-3-BKG															Sar	ndles	RECL	ived
PT-INJ-5-BKG															not	USKO	1 on	
PT-INJ-6-BKG			Π												one	inal	COC	but
PT-MW-7-BKG								\square					1			e ana		
PT-MW-3-BKG													1			R MN		
PT-MW-4-BKG														++	<i>P0</i>	<u>n</u> n n	3/19/3	
PT-MW-5-BKG					+	$\uparrow \uparrow$						-	<u> </u>		¥	-(i)		
PT-MW-6-BKG					+			IJ						+		<u> </u>		
Turnaround Time Requested (TAT) (please	circle): Stand	lard Rush	<u> </u>	Relin	auish	ed by	 v [.]	· ·		1	Date	Time	1 Re	eceived	by:		Date	Time
Rush TAT is subject to Lancaster Laboratories ap	-		1		quion	00.0	y .								.			
Date results are needed:				Relin	auish	ed b	v:			. 1	Date	Time	Re	eceived	by:	. 115	Date	Time
Rush results requested by (please circle): Phone #:	Phone E-ma	11			•	•				Stick					. ^ .	3/10/1		
E-mail address:				Relin	quish	ed b	y: ,			<u> </u>	Date	Time	Re	eceived			Date	Time
Data Package Options (please circle if require	d) E	DD Required?	,				١	10e						. \	Maria			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CTRCP	es No		Relin	quish	ed b	x X				Date	Time	Re	collet	by:		Date	Time
Type III (Reduced non-CLP) Type IV (CLP SOW) Site-specific C	C (MS/MSD/D	un)? Yes	No			Ľ	X						/	, e				
	QC sample and			Relin	quiati	ed b	y:				Date	Time	1 -	eceived	by: Mr.	EX:	Date	Time
TX TRRP-13 sample volume)			/									P	. Enc	110			0915
	Lancaster e copy should ac	Laboratories, Ir							ster, P)	Issued	by Dept. 40	Managem 7044

		1		ð		8
Client Sample ID: Lab Sample ID:	FB-1 JB28084-1				Date §	Sampled: 01/29/13
Matrix:	AQ - Field Blank Wate	r			Date I	Received: 02/05/13
Drainate	CE Dourory Auburn	NIV			Percer	nt Solids: n/a
Project:	GE Powerex, Auburn,					
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.013 U	0.50	0.013	mg/l	1	02/12/13 11:50 NP EPA 300/SW846 9056A

Report of Analysis

Page 1 of 1

		Repo	rt of Ar	nalysis		Page 1 of 1
Client Sample ID: Lab Sample ID:	JB28084-2					Sampled: 01/30/13
Matrix: Project:	AQ - Field Blank Wate GE Powerex, Auburn,					Received: 02/05/13 nt Solids: n/a
General Chemistry	r					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.013 U	0.50	0.013	mg/l	1	02/12/13 12:38 NP EPA 300/SW846 9056A

Client Sample ID:	PT-INJ-2-1					
Lab Sample ID:	JB28084-3				Date S	Sampled: 01/29/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	24.1	5.0	0.13	mg/l	10	02/13/13 12:37 NP EPA 300/SW846 9056A

Report of Analysis

		-		v		
Client Sample ID:						Sompled: 01/90/13
Lab Sample ID:	JB28084-4				Date S	Sampled: 01/29/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	386	100	2.7	mg/l	200	02/13/13 13:01 NP EPA 300/SW846 9056A
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

**Report of Analysis** 



		p •				ruge i ei i
Client Sample ID:	PT-INJ-2-7					
Lab Sample ID:	JB28084-5				Date S	Sampled: 01/29/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Percer	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					I
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	421	100	2.7	mg/l	200	02/13/13 13:25 NP EPA 300/SW846 9056A

**Report of Analysis** 



		- <b>T</b>				0
Client Sample ID: Lab Sample ID: Matrix:	PT-INJ-2-10 JB28084-6 AQ - Water				Date I	Sampled: 01/29/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	, NY			i ci ce	
General Chemistry	7					J
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	425	100	2.7	mg/l	200	02/13/13 13:49 NP EPA 300/SW846 9056A

**Report of Analysis** 



		L		J		8
Client Sample ID: Lab Sample ID: Matrix:	PT-INJ-2-18 JB28084-7 AQ - Water				Date 1	Sampled: 01/30/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	, NY			1000	
General Chemistry	7					J
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	425	100	2.7	mg/l	200	02/13/13 14:13 NP EPA 300/SW846 9056A

Report of Analysis



		- <b>T</b>				8
Client Sample ID: Lab Sample ID: Matrix:	PT-INJ-2-19 JB28084-8 AQ - Water				Date I	Sampled: 01/30/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn,	NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	354	100	2.7	mg/l	200	02/13/13 14:37 NP EPA 300/SW846 9056A

**Report of Analysis** 



				J ~_~		
Client Sample ID: Lab Sample ID:	JB28084-9					Sampled: 01/30/13
Matrix:	AQ - Water					Received: 02/05/13 ent Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	,					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	65.3	20	0.53	mg/l	40	02/13/13 15:01 NP EPA 300/SW846 9056A

**Report of Analysis** 



			J ×=×		14801011
PT-INJ-2-31					4
JB28084-10				Date S	Sampled: 01/30/13 6
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
ÿ					J
Result	RL	MDL	Units	DF	Analyzed By Method
37.2	10	0.27	mg/l	20	02/13/13 15:25 NP EPA 300/SW846 9056A
	JB28084-10 AQ - Water GE Powerex, Auburn 7 Result	PT-INJ-2-31 JB28084-10 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-2-31 JB28084-10 AQ - Water GE Powerex, Auburn, NY	JB28084-10 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-2-31 JB28084-10 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1000		141,9 515		Tuge T of T
PT-INJ-3-1					4
JB28084-11				Date §	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
-				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
y					
Result	RL	MDL	Units	DF	Analyzed By Method
63.6	20	0.53	mg/l	40	02/13/13 16:37 NP EPA 300/SW846 9056A
	JB28084-11 AQ - Water GE Powerex, Auburn, Result	PT-INJ-3-1 JB28084-11 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-3-1 JB28084-11 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-11 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-3-1 JB28084-11 Date S AQ - Water Date Date C GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		nepo		July 515		Tage I of I
Client Sample ID:	PT-INJ-3-7					4
Lab Sample ID:	JB28084-12				Date S	Sampled: 01/29/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Percer	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	,					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	411	100	2.7	mg/l	200	02/13/13 17:01 NP EPA 300/SW846 9056A

**Report of Analysis** 



	<b>r</b> -		J ~_~		
PT-INJ-3-10					4
JB28084-13				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
422	100	2.7	mg/l	200	02/13/13 17:25 NP EPA 300/SW846 9056A
	JB28084-13 AQ - Water GE Powerex, Auburn	PT-INJ-3-10 JB28084-13 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-3-10 JB28084-13 AQ - Water GE Powerex, Auburn, NY	JB28084-13 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-3-10 JB28084-13 Date S AQ - Water Date Date C GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		- <b>T</b>		J		0
Client Sample ID: Lab Sample ID: Matrix:	PT-INJ-3-18 JB28084-14 AQ - Water				Date 1	Sampled: 01/30/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	, NY			1000	
General Chemistry	7					J
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	390	100	2.7	mg/l	200	02/13/13 17:49 NP EPA 300/SW846 9056A

**Report of Analysis** 



	1000		<b>141</b> 515		Tuge T of T
PT-INJ-3-19					4
JB28084-15				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
226	50	1.3	mg/l	100	02/13/13 18:13 NP EPA 300/SW846 9056A
	JB28084-15 AQ - Water GE Powerex, Auburn Result	PT-INJ-3-19 JB28084-15 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-3-19 JB28084-15 AQ - Water GE Powerex, Auburn, NY Result RL MDL	PT-INJ-3-19 JB28084-15 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-15 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1000				ruge i oi i
PT-INJ-3-25					4
JB28084-16				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	ent Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
63.4	20	0.53	mg/l	40	02/13/13 18:37 NP EPA 300/SW846 9056A
	JB28084-16 AQ - Water GE Powerex, Auburn, Result	PT-INJ-3-25 JB28084-16 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-3-25 JB28084-16 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-16 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-3-25 JB28084-16 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1.		J ~_~		
PT-INJ-3-31					4
JB28084-17				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
ÿ					
Result	RL	MDL	Units	DF	Analyzed By Method
38.8	10	0.27	mg/l	20	02/13/13 19:01 NP EPA 300/SW846 9056A
	JB28084-17 AQ - Water GE Powerex, Auburn, 7 Result	PT-INJ-3-31 JB28084-17 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-3-31 JB28084-17 AQ - Water GE Powerex, Auburn, NY	PT-INJ-3-31 JB28084-17 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-17 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1000		141,9 515		
PT-INJ-4-1					4
JB28084-18				Date S	4. 2 Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
ÿ					J
Result	RL	MDL	Units	DF	Analyzed By Method
0.13 B	0.50	0.013	mg/l	1	02/12/13 20:36 NP EPA 300/SW846 9056A
	JB28084-18 AQ - Water GE Powerex, Auburn, 7 Result	PT-INJ-4-1 JB28084-18 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-1 JB28084-18 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-18 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-1 JB28084-18 Date 3 AQ - Water Date 3 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



PT-INJ-4-8					4
JB28084-19				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
ÿ					1
Result	RL	MDL	Units	DF	Analyzed By Method
134	35	0.93	mg/l	70	02/13/13 19:25 NP EPA 300/SW846 9056A
	JB28084-19 AQ - Water GE Powerex, Auburn	PT-INJ-4-8 JB28084-19 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-8 JB28084-19 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-19 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-8 JB28084-19 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		p		<b>141 y</b> 515		1
Client Sample ID:						Sampled: 01/29/13
Lab Sample ID:	JB28084-20				Date S	Sampled: 01/29/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
Ŭ						
<b>General Chemistry</b>	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	153	40	1.1	mg/l	80	02/13/13 19:49 NP EPA 300/SW846 9056A
				-		



	1				14601011
PT-INJ-4-14					Sampled: 01/30/13
JB28084-21				Date S	Sampled: 01/30/13 🏻 🛛 🎽
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	NY				
ÿ					
Result	RL	MDL	Units	DF	Analyzed By Method
188	50	1.3	mg/l	100	02/13/13 22:36 NP EPA 300/SW846 9056A
	JB28084-21 AQ - Water GE Powerex, Auburn,	PT-INJ-4-14 JB28084-21 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-14 JB28084-21 AQ - Water GE Powerex, Auburn, NY Result RL MDL	PT-INJ-4-14 JB28084-21 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-14 JB28084-21 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



PT-INJ-4-17					4
JB28084-22				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 📭
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
249	75	2.0	mg/l	150	02/13/13 23:24 NP EPA 300/SW846 9056A
	JB28084-22 AQ - Water GE Powerex, Auburn 7 Result	PT-INJ-4-17 JB28084-22 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-17 JB28084-22 AQ - Water GE Powerex, Auburn, NY	JB28084-22 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-17 JB28084-22 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	<b>F</b> •		J ~_~		
PT-INJ-4-18					4
JB28084-23				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
263	75	2.0	mg/l	150	02/13/13 23:48 NP EPA 300/SW846 9056A
	JB28084-23 AQ - Water GE Powerex, Auburn 7 Result	PT-INJ-4-18 JB28084-23 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-18 JB28084-23 AQ - Water GE Powerex, Auburn, NY	JB28084-23 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-18 JB28084-23 Date 3 AQ - Water Date 3 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



			100-3 200		ruge i oi i
PT-INJ-4-19					4
JB28084-24				Date S	Sampled: 01/30/13
AQ - Water				Date I	Received: 02/05/13
				Percer	nt Solids: n/a
GE Powerex, Auburn	, NY				
ÿ					1
Result	RL	MDL	Units	DF	Analyzed By Method
161	40	1.1	mg/l	80	02/14/13 00:12 NP EPA 300/SW846 9056A
	JB28084-24 AQ - Water GE Powerex, Auburn, 7 Result	PT-INJ-4-19 JB28084-24 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-4-19 JB28084-24 AQ - Water GE Powerex, Auburn, NY	JB28084-24 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-4-19 JB28084-24 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		P				
Client Sample ID:	PT-INJ-4-32					4
Lab Sample ID:	JB28084-25				Date	Sampled: 01/30/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	ent Solids: n/a
Project:	GE Powerex, Auburn	i, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	54.5	15	0.40	mg/l	30	02/14/13 00:36 NP EPA 300/SW846 9056A

**Report of Analysis** 



	-		141,515		Tuge I of I
PT-INJ-5-1					4
JB28084-26				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a
GE Powerex, Auburn	, NY				
ÿ					
Result	RL	MDL	Units	DF	Analyzed By Method
215	50	1.3	mg/l	100	02/14/13 01:47 NP EPA 300/SW846 9056A
	JB28084-26 AQ - Water GE Powerex, Auburn	JB28084-26 AQ - Water GE Powerex, Auburn, NY Result RL	JB28084-26 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-26 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-26 Date S AQ - Water Date I GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	P •				
PT-INJ-5-3					4
JB28084-27				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
406	100	2.7	mg/l	200	02/14/13 02:11 NP EPA 300/SW846 9056A
	JB28084-27 AQ - Water GE Powerex, Auburn	PT-INJ-5-3 JB28084-27 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-5-3 JB28084-27 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-27 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-5-3 JB28084-27 Date S AQ - Water Date I GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	4
Date Sampled: 01/29/13	4.28
Date Received: 02/05/13	
Percent Solids: n/a	4
DF Analyzed By Method	i
200 02/14/13 02:35 NP EPA 300/	/SW846 9056A
	Date Received: 02/05/13 Percent Solids: n/a DF Analyzed By Method

**Report of Analysis** 



					-
PT-INJ-5-11					4
JB28084-29				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
415	100	2.7	mg/l	200	02/14/13 02:59 NP EPA 300/SW846 9056A
	JB28084-29 AQ - Water GE Powerex, Auburn	JB28084-29 AQ - Water GE Powerex, Auburn, NY 7 Result RL	JB28084-29 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-29 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-29 Date 3 AQ - Water Date 1 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



PT-INJ-5-16					4
JB28084-30				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
421	100	2.7	mg/l	200	02/14/13 03:23 NP EPA 300/SW846 9056A
	JB28084-30 AQ - Water GE Powerex, Auburn Result	JB28084-30 AQ - Water GE Powerex, Auburn, NY Result RL	JB28084-30 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-30 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-30 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



			<b></b>		1
PT-INJ-5-18					4
JB28084-31				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
419	100	2.7	mg/l	200	02/14/13 03:47 NP EPA 300/SW846 9056A
	JB28084-31 AQ - Water GE Powerex, Auburn 7 Result	PT-INJ-5-18 JB28084-31 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-5-18 JB28084-31 AQ - Water GE Powerex, Auburn, NY	JB28084-31 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-5-18 JB28084-31 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		1				
Client Sample ID:						Sampled: 01/30/13
Lab Sample ID:	JB28084-32				Date S	Sampled: 01/30/13 8
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
0		<i>.</i>				
General Chemistry	7					
-						
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
v						
Bromide	286	100	2.7	mg/l	200	02/14/13 04:11 NP EPA 300/SW846 9056A
Bronnuc	200	1	~	B	200	

**Report of Analysis** 



			J		
PT-INJ-5-32					4 Sompled: 01/20/12 ω
JB28084-33				Date S	Sampled: 01/30/13 🛛 🖁 🔀
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
ÿ					
Result	RL	MDL	Units	DF	Analyzed By Method
27.7	7.5	0.20	mg/l	15	02/14/13 04:35 NP EPA 300/SW846 9056A
	JB28084-33 AQ - Water GE Powerex, Auburn, Result	PT-INJ-5-32 JB28084-33 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-5-32 JB28084-33 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-33 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-5-32 JB28084-33 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1		J ~		
PT-INJ-6-1					4
JB28084-34				Date S	Sampled: 01/29/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
y					
Result	RL	MDL	Units	DF	Analyzed By Method
21.3	5.0	0.13	mg/l	10	02/14/13 04:59 NP EPA 300/SW846 9056A
	JB28084-34 AQ - Water GE Powerex, Auburn, K Result	PT-INJ-6-1 JB28084-34 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-6-1 JB28084-34 AQ - Water GE Powerex, Auburn, NY W Result RL MDL	PT-INJ-6-1 JB28084-34 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	JB28084-34 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



					ruge r or r
PT-INJ-6-7					4
JB28084-35				Date S	Sampled: 01/29/13
AQ - Water				Date I	Received: 02/05/13
				Percer	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
7					J
Result	RL	MDL	Units	DF	Analyzed By Method
326	100	2.7	mg/l	200	02/14/13 05:23 NP EPA 300/SW846 9056A
	JB28084-35 AQ - Water GE Powerex, Auburn, Result	PT-INJ-6-7 JB28084-35 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-6-7 JB28084-35 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-35 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-6-7 JB28084-35 Date S AQ - Water Date I GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



			J ×=×		14801011
PT-INJ-6-9					4
JB28084-36				Date S	Sampled: 01/29/13
trix: AQ - Water				Received: 02/05/13	
				Percer	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
384	100	2.7	mg/l	200	02/14/13 06:34 NP EPA 300/SW846 9056A
	JB28084-36 AQ - Water GE Powerex, Auburn	PT-INJ-6-9 JB28084-36 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-6-9 JB28084-36 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-36 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-6-9 JB28084-36 Date 3 AQ - Water Date 3 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



			J ~_~		
PT-INJ-6-18					4
JB28084-37				Date S	Sampled: 01/30/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
368	100	2.7	mg/l	200	02/14/13 06:58 NP EPA 300/SW846 9056A
	JB28084-37 AQ - Water GE Powerex, Auburn 7 Result	PT-INJ-6-18 JB28084-37 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-6-18 JB28084-37 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-37 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-6-18 JB28084-37 Date S AQ - Water Date D GE Powerex, Auburn, NY Result RL MDL Units DF





		- <b>I</b>				8
Client Sample ID:	PT-INJ-6-19					4
Lab Sample ID:	JB28084-38				Date S	4. Sampled: 01/30/13 8
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Percer	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	390	100	2.7	mg/l	200	02/14/13 12:12 NP EPA 300/SW846 9056A

**Report of Analysis** 



		P 0		<b></b>		
Client Sample ID:	PT-INJ-6-32					4
Lab Sample ID:	JB28084-39				Date S	Sampled: 01/30/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	80.6	20	0.53	mg/l	40	02/14/13 13:00 NP EPA 300/SW846 9056A

**Report of Analysis** 



		-10p		<b>141 y</b> 515		Tuge T of T
Client Sample ID:						Sampled: 01/30/13
Lab Sample ID:	JB28084-40				Date S	Sampled: 01/30/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
0		-				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
-						
Bromide	150	40	1.1	mg/l	80	02/15/13 02:09 NP EPA 300/SW846 9056A
				0		

**Report of Analysis** 



	Report of Analysis					Page 1 of 1
Client Sample ID:						mpled: 01/30/13
Lab Sample ID: Matrix:	JB28084-41 AQ - Water				Date Sar Date Ree	mpled: 01/30/13 📫 📫
Project:	GE Powerex, A	uburn, NY			Percent	Solids: n/a
General Chemistry	r					
Analyte	Resu	ılt RI	L MDL	Units	DF	Analyzed By Method
Bromide	148	40	0 1.1	mg/l	80	02/15/13 02:33 NP EPA 300/SW846 9056A

	1.		J ×=×		
DUP2					4
JB28084-42				Date S	Sampled: 01/30/13
Iatrix: AQ - Water				Date 1	Received: 02/05/13
				Percer	nt Solids: n/a 🗛
GE Powerex, Auburn	, NY				
y					
Result	RL	MDL	Units	DF	Analyzed By Method
430	100	2.7	mg/l	200	02/15/13 02:57 NP EPA 300/SW846 9056A
	JB28084-42 AQ - Water GE Powerex, Auburn, Result	DUP2 JB28084-42 AQ - Water GE Powerex, Auburn, NY Result RL	DUP2 JB28084-42 AQ - Water GE Powerex, Auburn, NY W Result RL MDL	JB28084-42 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	DUP2 JB28084-42 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		1		Ð		8	
Client Sample ID:						Sampled: 01/29/13	
Lab Sample ID:	JB28084-43						
Matrix:	AQ - Water				Date Received: 02/05/13		
		<b>.</b>			Percei	nt Solids: n/a	
Project:	GE Powerex, Auburn,	NY					
General Chemistry	,						
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method	
Bromide	424	100	2.7	mg/l	200	02/15/13 03:21 NP EPA 300/SW846 9056A	

# **Report of Analysis**



		Page 1 of 1					
Client Sample ID: Lab Sample ID: Matrix:	TANK-END JB28084-44					Sampled: 01/30/13 Received: 02/05/13	1
Matrix: Project:	AQ - Water GE Powerex, Auburr	ı, NY				nt Solids: n/a	4
General Chemistry	7						
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method	
Bromide	428	100	2.7	mg/l	200	02/15/13 03:45 NP EPA 300/SW846 9056A	ł





	1000		iaiy bib		
PT-MW-3					4
JB28084-45				Date S	Sampled: 01/22/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn,	NY				
y					J
Result	RL	MDL	Units	DF	Analyzed By Method
0.040 B	0.50	0.013	mg/l	1	02/14/13 16:11 NP EPA 300/SW846 9056A
	JB28084-45 AQ - Water GE Powerex, Auburn, Result	PT-MW-3 JB28084-45 AQ - Water GE Powerex, Auburn, NY Result RL	PT-MW-3 JB28084-45 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-45 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-MW-3 JB28084-45 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		Rep	Page 1 of 1				
Client Sample ID: Lab Sample ID:					Sampled: 01/22/13		
Matrix:	AQ - Water					Received: 02/05/13 nt Solids: n/a	
Project:	GE Powerex, Auburn, NY						
General Chemistry	,						
Analyte	Resu	lt RL	MDL	Units	DF	Analyzed By Method	
Chloride ^a	132	2.0	0.011	mg/l	1	03/01/13 17:47 NP EPA 300/SW846 9056A	

(a) Analysis done out of holding time as per client request. Initial analysis within holding time, but over verified calibration range, was 134 mg/l.



Client Sample ID: Lab Sample ID: Matrix:	PT-MW-4 JB28084-46 AQ - Water				Date 1	Sampled: 01/22/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	ı, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide Chloride	0.028 B 214	0.50 2.0	0.013 0.011	mg/l mg/l	1 1	02/14/13 16:35 NP EPA 300/SW846 9056A 02/13/13 11:48 NP EPA 300/SW846 9056A

# **Report of Analysis**





Client Sample ID: Lab Sample ID: Matrix:	PT-MW-5 JB28084-47 AQ - Water				Date 1	Sampled: 01/22/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Aubur	n, NY				
General Chemistry						
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide Chloride	0.12 B 52.1	0.50 2.0	0.013 0.011	mg/l mg/l	1	02/14/13 16:59 NP EPA 300/SW846 9056A 02/13/13 12:12 NP EPA 300/SW846 9056A

# **Report of Analysis**

#### RL = Reporting Limit MDL = Method Detection Limit





Client Sample ID: Lab Sample ID: Matrix:	PT-MW-6 JB28084-48 AQ - Water				Date 1	Sampled: 01/22/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	,					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide Chloride	0.065 B 77.2	0.50 2.0	0.013 0.011	mg/l mg/l	1 1	02/14/13 17:23 NP EPA 300/SW846 9056A 02/13/13 12:36 NP EPA 300/SW846 9056A

# **Report of Analysis**

#### RL = Reporting Limit MDL = Method Detection Limit



Page 1 of 1

# 4.49

Client Sample ID: Lab Sample ID: Matrix:	PT-MW-7 JB28084-49 AQ - Water				Date 1	Sampled: 01/22/13 Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Aubur	n, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide Chloride	0.048 B 200	0.50 2.0	0.013 0.011	mg/l mg/l	1 1	02/14/13 17:47 NP EPA 300/SW846 9056A 02/13/13 13:00 NP EPA 300/SW846 9056A

# **Report of Analysis**



		- <b>T</b>		J		8
Client Sample ID: Lab Sample ID:	PT-INJ-1-BKG JB28084-175				Date S	Sampled: 01/23/13
Matrix:	AQ - Water					Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn,	NY			1000	
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.056 B	0.50	0.013	mg/l	1	02/14/13 18:11 NP EPA 300/SW846 9056A

# **Report of Analysis**

#### **RL** = **Reporting Limit** MDL = Method Detection Limit



		I		J		8
Client Sample ID:	PT-INJ-2-BKG					4
Lab Sample ID:	JB28084-176				Date S	Sampled: 01/23/13
Matrix:	AQ - Water					Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn,	NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.068 B	0.50	0.013	mg/l	1	02/14/13 18:35 NP EPA 300/SW846 9056A

# **Report of Analysis**



		1		ð		8
Client Sample ID:	PT-INJ-3-BKG					4
Lab Sample ID:	JB28084-177				Date S	Sampled: 01/23/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
	·				Perce	nt Solids: n/a
Project:	GE Powerex, Auburn,	NY				
General Chemistry	Ÿ					,
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.071 B	0.50	0.013	mg/l	1	02/14/13 19:46 NP EPA 300/SW846 9056A

# **Report of Analysis**



		L		ð		8
Client Sample ID:	PT-INJ-4-BKG					4
Lab Sample ID:	JB28084-178				Date S	Sampled: 01/23/13
Matrix:	AQ - Water					Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn,	NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.063 B	0.50	0.013	mg/l	1	02/14/13 20:10 NP EPA 300/SW846 9056A

# **Report of Analysis**



	- <b>T</b>		J		0
PT-INJ-5-BKG					Sampled: 01/23/13
JB28084-179				Date S	Sampled: 01/23/13
AQ - Water				Date 1	Received: 02/05/13
				Perce	nt Solids: n/a
GE Powerex, Auburn,	NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
0.12 B	0.50	0.013	mg/l	1	02/14/13 20:34 NP EPA 300/SW846 9056A
	JB28084-179 AQ - Water GE Powerex, Auburn, 7 Result	PT-INJ-5-BKG JB28084-179 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-5-BKG JB28084-179 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-179 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-5-BKG JB28084-179 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	- <b>T</b>		J		8
PT-INJ-6-BKG					Sampled: 01/23/13
AQ - Water					Received: 02/05/13
				Perce	nt Solids: n/a 🗛
GE Powerex, Auburn,	NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
0.11 B	0.50	0.013	mg/l	1	02/14/13 20:58 NP EPA 300/SW846 9056A
	JB28084-180 AQ - Water GE Powerex, Auburn, Result	PT-INJ-6-BKG JB28084-180 AQ - Water GE Powerex, Auburn, NY Result RL	PT-INJ-6-BKG JB28084-180 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-180 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-INJ-6-BKG JB28084-180 Date AQ - Water Date GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



	1000		100-3 8-18		
PT-MW-3-1					4
JB28084-181				Date S	Sampled: 01/30/13
AQ - Water				Date J	Received: 02/05/13
				Perce	ent Solids: n/a
GE Powerex, Auburn,	, NY				
ÿ					
Result	RL	MDL	Units	DF	Analyzed By Method
134	30	0.80	mg/l	60	02/15/13 10:42 NP EPA 300/SW846 9056A
	JB28084-181 AQ - Water GE Powerex, Auburn, Result	PT-MW-3-1 JB28084-181 AQ - Water GE Powerex, Auburn, NY Result RL	PT-MW-3-1 JB28084-181 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-181 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-MW-3-1 JB28084-181 Date 3 AQ - Water Date 3 GE Powerex, Auburn, NY Result RL MDL Units DF

**Report of Analysis** 



		1000		<b>iui</b> y 515		ruge i oi i
Client Sample ID: Lab Sample ID:	JB28084-182					Sampled: 01/30/13
Matrix:	AQ - Water					Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn,	NY			rerce	nt Solids: n/a
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	0.093 B	0.50	0.013	mg/l	1	02/14/13 22:34 NP EPA 300/SW846 9056A

**Report of Analysis** 



		перо		larybib		
Client Sample ID:	PT-MW-5-1					4
Lab Sample ID:	JB28084-183				Date S	Sampled: 01/30/13
Matrix:	AQ - Water				Date 1	Received: 02/05/13
					Perce	nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	7.6	1.5	0.040	mg/l	3	02/15/13 11:06 NP EPA 300/SW846 9056A

**Report of Analysis** 

#### RL = Reporting Limit MDL = Method Detection Limit



		перо		iaiy bib		
Client Sample ID: Lab Sample ID:	PT-MW-6-1 JB28084-184				Date §	Sampled: 01/30/13
Matrix:	AQ - Water				Date I	Received: 02/05/13 nt Solids: n/a
Project:	GE Powerex, Auburn	, NY				
General Chemistry	7					
Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Bromide	180	50	1.3	mg/l	100	02/15/13 11:29 NP EPA 300/SW846 9056A

**Report of Analysis** 



	Ксро		1a1 y 515		rage 1 01 1
PT-MW-7-1 IB28084-185				Date	Sampled: 01/30/13
AQ - Water					Received: 02/05/13
v				Perce	nt Solids: n/a
GE Powerex, Auburn	, NY				
7					
Result	RL	MDL	Units	DF	Analyzed By Method
2.3	0.50	0.013	mg/l	1	02/15/13 00:33 NP EPA 300/SW846 9056A
	JB28084-185 AQ - Water GE Powerex, Auburn	PT-MW-7-1 JB28084-185 AQ - Water GE Powerex, Auburn, NY Result RL	PT-MW-7-1 JB28084-185 AQ - Water GE Powerex, Auburn, NY Result RL MDL	JB28084-185 AQ - Water GE Powerex, Auburn, NY Result RL MDL Units	PT-MW-7-1 JB28084-185 Date 2 AQ - Water Date 2 GE Powerex, Auburn, NY Result RL MDL Units DF



AC	Laboratories			2235	Route 130 129-0200	, Daytor FAX 7	antic) Regio 6, NJ 08810 32-129-3490			1		FED 4	755	5037 1312	894	舟 🗆	Content Job #		2808	)F <u>/</u>
Ciler Company Name	nt / Reporting information		SITE NAME	- Provide M		eculest c		Major F	rojec	ts		+ 3	and the second second second	Isted Ani	*****	and the second second	TCODE	and a second second second	103	Matrix Codes
CEO541	×~	Retail Project (8	KRN)									T	1		T	T	1	1	1	-
reet Address		Major Project (A	FE)		EXX	onMot	olt Enviror	menta	I Sen	lices Cr	D.	4								OW - Drinking Wat GW - Ground Wate WW - Water
100 N.C. N	state solita Zo	Project Name				Project ny Name	t is Direct I	Bill to C	onsu	tant		1								SW - Surface Wate SO - Sol
queign	00 108 563	Auria																		SL-Sludge SED-Sediment
miject Contáci Micros - U.	E-mail Industry Distribution of our public	City Angel	RA/M	Siate	Street /	Address						1								Ci - Oli LICi - Olber Liquid
rone #	Fax#	ExxonMcbil Mana	ger		Cay			State			þφ									AIR - Air SOL - Other Solid
amplerts; Name		ExxonMobil Purch	inee Order #		Attentio				Pre			]								WP - Wipe FB-Feld Blank
	martines, 51, 622 Long	and a strategy of the sec	249 YUVD 8		-interibo	an,			2013	403	MAG	4- 0								6B- Equipment Blan RB- Rinse Blank
	Lawn Annorman			Collection			E	Nur	cier of p	received®	cilles	1 2								TB-Trip Blank
enere Fie	Id ID / Point of Collection	MECHIDI Visi #			Sampled			taCH	-TSOA	NONE Ot Water	5 00									
	B-A	one Choice Visit #	Data	Tatte	by		4 of boltes		2	NON NON	¥ [3]	ļ			ļ			<u> </u>		LAB USE ONLY
	B-7		Jan 30			W		++	+	4	++-	X			<u> </u>					
	1NJ-2-1		Jan 20 Jan 29	11 00	$\vdash$			++	++	+							_			WEIO
4	1 2-4		1	14:00				++	++	++-	++-		+						_	WC 15
5	1 2-7			17:00				++	++	-	+-+-		$\left  \right $							WC 17
6	2-10	•		20 00				++	++	++-	++									WC 19
7	7-18		Jan 30	04.00				++	++	++-	++	-								<u> </u>
-8	2-19		1	05 00				++	$^{++}$	+	+									
9	2-2.5	-		11 00				$^{++}$	$\uparrow \uparrow$			1				-				<u> </u>
10	2-331		J	19.00				$\uparrow \uparrow$	††	1	+	1								
and the second second	-INJ-3-1			1100				TT	TT			1				-				
12	1 3-7			17 00				TT	TT											1
5 Day 5 Day 3 Day 2 Day 1 Day	0 Business Days RUSH	Approved By (Accol	est PN) / Date:		(ST) co	inmerci ILI.TT ( Reduce inmerci		4 1) 4 2) A' = Rej B' * Rej	C C Suita Di Iuita + I	NYAS NYAS State EDD Other Ny XC Summ	iary	ory 8				Constient	ts / Specie	i Instructio	ns	
Reimquished by			ple Custody m	ust be docum	ented belo		n time sam	oles ch	ange ş								C	50		
200		013 M-00	leceived By:	FEDOX			Re 2	linquistre	d 8y:	Fel	)rx	•		Data Ta 2/5/	13	000 Rece 2	nived By:	$\mathbf{X}_{\mathbf{u}}$	10_	_
Relinquisted by	Sampler: Dete Time:		Received By:	1			Ro	loguiste.	d Dy:					Date Tir		Reco	nived By:	~JP~	1	
Relinquished by	Date Time:		3 Incolved By:				4 5e	storty Bea	d #		a	Voldert	p	netw bevrage		4		On kte	Conta	(), qmat
			5								Q	Not Street						Z	3 3	ZCB

JB28084: Chain of Custody Page 1 of 19



<u>5</u>

Laboratories			Accutest No 2235	Rouse 13	0. David	w. NJ 088	10					FEO-E	X Tracking	•		9695	e Grider Co	nikal #		
			TEL. 732-3	29-0200	FAX *	732-329-34	(99/348	80				Acc.58	st Choote #			Acos	tes: Job #	 T	B28	080
Client / Reporting Information		SITE NAME	- Provide M				r Majo	or Proj	ects			<u> </u>	Requ	ested Ana	ivsis i si	e TEST	CODE		020	Matrix Codes
-	Retail Project (	NRM)		Fr	vonMo	bil Envir		entral C.					ΠŤ		Π	T	T		ΓΓ	DW - Drinking Wat
et Addess	Najor Project ()	UFE)																		GW - Ground Wate WW - Water
State Zip	Project Name			Comp	f Projec eny Nam	t is Direc s	t BRI 1	to Cont	ullan	1										SW - Surface Wate SC - Soli
ect Contact E-mail	City		State	10000	Addeess															SL-Skutge SED-Sedment
			1010405	1000 8701	MUNDORNE															O - Oil LIQ - Other Liquid AIR - Air
us particus	ExxonMobil Man	A367		City			\$P	(9)4		Zşş										SOL - Other Sold WP - Wipe
pler(s) Name(s) Phone #	ExconMode Purc	hade Order #		Attent	on.			p	N.			A								FB-Field Blare EB- Equipment Blan
Т			Collection		·	r	T					ŝ								RB- Rrise Blank TB-Tip Blank
			Collection	<b></b>			ΗT	TT	TT	eved Boble	, g [	2								
Field ID / Point of Collection	MEDHICI VIN #	Data	Tirrie	Sampled by	Mathie	# of bother	04040	NO3H	BNON	DIWA	3	3								LAB USE ONLY
3 PT-INJ-3-10		Join 29	20 00		W	1	$\square$	++	1	-11	1	Υ,	74							
4 3-18		Jan 30	04 00					††	$\mathbf{T}$		1	~								1
5 3-19	-	1	0500				IT	T	111			-74					1			1
		. V	1100					TT	Ш			7					1			1
3-31		V	1900						1/1			4					1			
8 PT-INJ-4-1		Jan 29	1100																	
9 4-8			1800									7								
9 4-10		V	20.00						Щ			5.								
4-14		Jan 30	0000					11										•		
2 4-17			0300					11	11		$\square$									
7 V 4-18 4 4-19			0400					11-	$\downarrow$		$\square$									
Tumaround Time ( Business days)			05:00		<u></u>	Dava		rable in	11			-+- ]					ليبيا			1
	Approved By (Accu	test PN): 7 Oate:			ommerc	ial "A" (Li		ERNE HI	and the second se	NYASP (	atego	ry A				omments	/ Specie	i instruct	lions [	
Std. 10 Business Days 8 Day RUSH						ial "8" ( Li Leval 3+4			Andreas A.	NYASP C	266776	ry 8	-							
S Day RUSH					ullin ( U Reduc				and the second second	State For										
3 Day EMERGENCY					ommerc				Second	Other		_								
1 Day EMERGENCY						Commerci Commerci			Sec. 201	Currentu			-							
mergency & Rush T/A data available VIA Lablink						NJ Reduci	sd = Re	noofis + C	IC Sun	ramary + P	'artisi P	Raw data	a							
nippuisted (2) Sampler: Date	Sar Time:	iple Custody mi Received By:	st be docume	inted be	low eac	h time sa		chang Island By		session,	inclu	ding c	ourier d				(	7	ρ	
	CO.HIER	1	FEPO	*			2	- en dy		FeP	\$			2/5/1	s 100.	) Receiv 2	eo \$\$Y;	$\geq$	taul	<u> </u>
elinquished by Sempler: Date	Time:	Roceived By:					Relingu	ished (By						Cate Ten	6C	Receiv	ed By:	>>>	1	
elinquished by: Date	Tene:	3 Received By:					4 Custody	· Cast d			0		26-	served where		4		Onice	0	er Tamp,

JB28084: Chain of Custody Page 2 of 19



<u>ა</u>

EACCUTEST			Accutest Ne 2235	Route 13	6. Davte	n NI (191	110					FED-E	X Triki	kong #			liothe	r Order Con	iof#		
			TEL. 732-3	29-0200	FAX. T	32-329-3	499/348	80				Accute	si Qui	1e #			Acod	test Job #	JB	280	84
Client / Reporting informa company Name	Bon Retail Project	SITE NAM	E - Provide M	RN for	Retall o	r AFE fe	or Maj	or Pre	ojects				R	equeste	1 Analy	sis ( se	e TEST	CODE s			Matrix Codes
reet Address				Ex	холМо	bil Envir	າວາເຄຍ	intal S	lervic	es Co											OW - Drinking Wat
an Address	Major Project	AFE)		-								1									GW - Ground Wat WW - Water
V State	Zip Project Name			Comp	Il Projec any Nam	t is Dire 9	ct Bill	to Cor	suitar	18		-									SW - Surface Wat SO - Sol
Hest Costact	-mail City		State	Steel	Address																SL-Skodge SED-Sediment CL-OX
orie #	ax # Exception Ma																				LIQ - Citier Lious AR - Ad
410 <b>*</b> T	ax # ExxonMobil Ma	189ef		Cay			s	date		23	2	1									SOL - Other Sold WP - Wipe
mpler(s) Name(s) P	hone # ExxonMobil Pur	chase Orcer #		Attend	CR.				PON			1									FB-Field Stark EB- Equipment Ba
1		-	Collection	1		r	T					19									RB- Rose Black TB-Ttp Black
. Tanka			Convetion			1	T	TT		inned Bol	Nes 32	- j				2		1			
Field ID / Point of Collectio		Date	Tione	Sampled by	silating	# sf bothe	10H	HND3	ANCH BNCH	Dr Wes	ENCO	120									LAB USE ONLY
15 PT-INJ-4- MA	32	-lan 30	2000		W	1			X			X								1	
6 PT-1NJ-5-1		Jan 29	1100				Ш	Ш				N.								Τ	
7 5-3		<u> </u>	13:00				<u>     </u>	++			ļ	×.									
9 5-11			1800					+-+	4		<u> </u>	<u>N</u>		4				$\square$		ļ	
0 5-16		Jan 30	2100				$\vdash$	++			<b> </b>	×.					_	+			
5-1	2	1	0400				$\vdash$	++	+			$\sim$					+				
2 5-10	1		05:00					++	+	+	$\vdash$									-	
3 5-3	2		2000				H	$^{++}$	+	-		5		++						+	
4 PT-INJ-6-1		Jan 29	11:00					††	$^{\dagger \dagger}$	$\neg$		y.		+	-		+			+	
5 6-=	7	1	1900					††	11			y	****		$\neg$		1			1	
6 V 6-9		J	1900		6.1	9		TT				4			1					1	
Tumaround Time ( Business da	Approved By (Acc	ant PM: / Data:		-		Data al "A" (L	Delive				⁹ Categ			1		Co	mments /	Special I	nstructions	<u> </u>	
Std. 10 Business Days				03	ommerci	al "B" ( L	ovel 2)				² Categ										
S Day RUSH				ULLTI ( J Réduce	Lovel 3+4 Id	)		Success.	State F												
3 Day EMERGENCY 2 Day EMERGENCY				ommerci	ai "C"			$\Box$	Other												
1 Day SMERGENCY						Commerci Commerci				Summa	N					-					
mergency & Rush T/A data available VIA L	Sa	nple Custody m	ist baidocume	ated bei	ow eacl	NJ Reduc	ed = Re males	suits +	QC Sur	nmary +	Pata	Rew data		<u> </u>							
stinguished by Lampiers	Dele Tree 31 14:00	Received By:	FODA	<			Rebnqu	ished B	k: Est horga	_		<u>ະບານຊີ Ci</u>	<u>uune</u>	D	ate freque	100	Receive	a 8y 🤇	P.1	•••••	
stinguished by Eampter:	Date Time:	1 Received By:		· `			2 Relingui	inned #		<u>[-¢;</u>	<i>wy</i>				2/s/3		2 Receive	_6	Full	<u> </u>	-
elinguished by:		3					4							ľ			4	a syk	0		
eendroveen py:	Date Titse:	Received By:					Custody	y tazt <del>U</del>			57	intend Nut intend		Preserved	where ep	opäcebie			>n ice	Cooler	Tsmp.

JB28084: Chain of Custody Page 3 of 19



<u>5</u>

CLABORATOTIES			Accusest N 2235 TEL 732-	Route 1.	30, Dayto	n. NI 088	10						UK Trance					Other Control		
				19399	accutest	1010						ACOSH	M COON				Accus	#5' Job 8	JB2	8084
Client / Reporting Information	Retall Project (	SITE NAME	- Provide M	IRN for	Retail o	r AFE fo	r Majo	r Pro	jects				Re	queste	d Analy	sis ( sec	TEST	CODE she	et)	Matrix Code
	resaurrated t	Keyle)																		
West Address	Major Project (A	JE:		<u> </u>	cxonMo	oil Envin	omnen	ital S	ervice	<u>s Co</u>	·	4								DW - Drittling V GW - Ground W
					If Projac	t is Direc	t Bill to	Con	suiten			1								WW - Water SW - Surface W
Ary State Zip	Project Name			Com	bany Nam	1						1								SC - Sol SL- Sludge
react Contact E-mail	Gity		State	Stree	1 Address							4								SED-Sadimer OL-Oil
			-											1						UQ - Other Lig
Phone # Pax #	ExxonMobil Man	açer		Çøy			Sta	ite		Zig	>	-								AIR - Air SOL - Other St
ampler(s) Name(s) Phone s												1								WP - Wipe FB-Field Blan
sampler(s) Name(s) Phone #	ExxonMobil Purd	hase Order #		Atten	bon			į	00			7.0	1.							EB- Equipment B RB- Rinse Blar
1		r		1	T	r	1							1						TB-Trip Blank
			Collection	r	1		M	ΓT	of prese	ved Ba	tes Turt	18	2	1						
Field ID / Point of Collection	MECHICI Visi a	Diste	Time	Rentpled by	Mature	# of botties	NuOH	FONG4	NONE	DI VINALI MEOH	10.08	10								
-37 PT-INJ-6-18		Jan 30	04 00		W.		2 2	ž -		0 2										LAB USE ON
38 6-19		Jun 10	the second s		950				44		–	*		<u> </u>				ļ	_	
19 6-3 2			05 00		ļ			L	$\square$		<u> </u>	1	ļ	ļ						
0-2-		¥	2000		ļ				$\downarrow$		<u> </u>		L	1						
		W	0900		L							1	L							
-41 DURI		Jan 30										7								
42 DUPZ		V	-									4					T			
43 tank-start		Jan 29	0815						TT	Τ		-								
44 tank-End		Jan 30	0330						TT								1			
45 PT-MW-3		Jan 30	14:00				$\uparrow$	1	††	1									+-+	
46 1 4			1				++	+	++	+		1	- 						+++	
47 5							++		++	+			~				+			
48 5 6	+	1					++	+	++	+							4			
Turnaround Time ( Business days)				]		Dava	Delivers		ĻL		L	*.	1							
	Approved By (Accur	est PM): / Date:		<b></b>	Commerci	al "A" (Le	COLUMN DESIGNATION OF	878 11	adapter and the second	and the second second	P Categ	ory A		<b></b>		1 001	nevents /	Special Ins	aructions	
Std. 10 Business Days						al "8" ( La					P Categ									
B Day RUSH						Level 3+4	1		Sources	State I										
3 Day EMERGENCY				Research	U Reduct Commerci						ormat									
T Day EMERGENCY				ш ^с		n o Conmercia	i "A" ≈ R	iasuta		U LUNCI										
1 Day EMERGENCY Emergency & Rush T/A data available V/A Lablers						Conmercia														
and a rear to base available vir Labers	Sam	ple Custody mu	ist be docume	inted be	low each	O Reduce time sar	d = Resi noles /	dia + i bann	a poss	mary -	Partial at inch	Raw dat	a outer	deliver						
Relinquished by Sempler: Date Time		Received By:				1	Relinquis	hed By				odny C	wusief	I	ate Tishe:		Receive	18y:	1	
	1400 M	1	FEDO	<			2			eα	7-				15/13	1000	2	_2	ford	~
Relinquished by Sempler: Date Time:		Received By:				1	lelioquis	sed By	\$ 					c	ate Time:		Roceive	4 8y:	1	
						1.00.000								10.000 P			1.		U	

<u>ა</u>

G

JB28084: Chain of Custody Page 4 of 19



Laboratories			Accustent N 2235 TEL 732-3	Route   129-023	30; Davto	n, NJ 088 132-329-34	10			1			EX Tosc est Quo			Bottle Gr	nder Caxtro Lulab #		- 40.81	1
Client / Reporting Informatio	n	SITE NAME	- Provide M				r Mair	or Rev	Norte										28084	
Comparty Name	Retail Project	(IBRN)		1	The fail of the	1 14 6 10	a maje	<u>n ru</u>	yeus				1 10	equested Analys	iis ( sée	TEST CO	DDE sh	eet)		Matrix Codes
Net Address	S Major Project	(AFE)		E	xxonMo	bll Envir	onme	ntal S	iervica	es Co	<u>،</u>								DV G	N - Dénking Wa N - Ground Wat
a state 10	Zip Project Name			Con	If Project pany Nam	<u>at is Direc</u> e	t Bill t	o Cor	nsultan	<u>t</u>		_							57	WW - Water V - Sinface Wat SO - Solt SL - Studge
Steril Contact	usi City		State	Sre	et Addreas							-							1 1	SED Sedment OI - Oil IQ - Olber Lioui
ID16 # Fai	# ExconMobil Ma	nager		City			51	8/8	-	ž	φ	-								AIR - Air OL - Other Solo WP - Wide
anclerisi Name(i) Pho	ne# ExxonMobil Pu	chase Order #		Ater	nodr				PO#			-	Y.						58- R	FB-Fleid Blank Equipment Blank IB- Rinse Blank
			Collection	<u> </u>	T	Γ	-	TT	of press	21	197									TB-Tro Blank
Field ID / Point of Collection	MEOHDI VISI 8	Date	Time	Sampler 29	Malariz	# of botton	HCI NuOH	ECNH	NONE	Di Web	ENCOL	1 CL							U	NB USE ONLY
49 PT-MW-7		Janzia	14:00		<u>  W</u>	1		H		+	++		1			++				
										+	+	+	-		+	++				
							4	$\square$	+	_	$\downarrow \downarrow$		ļ							
								$\mathbb{H}$	+	+	++	+	-			++			$\vdash$	
								П		Ţ	Ħ									
								$\vdash$		+	₩	+				++		_		
										T	Ħ									
							+		++	+		-						_		
Turnaround Time ( Business days	1	<u> </u>			<u> </u>	Deta	Deliver		aformal	lion	L.L.	1				ments / S				
Std. 10 Business Days 8 Day RUSH 5 Day RUSH 3 Day EMERGENCY 2 Day EMERGENCY	Approved By (Acc	steat PHj: / Data:		008	Commerci FULLT1 ( NJ Reduce Commerci	al "A" (Le al "B" ( Le Level 3+4 id al "C"	vel 1) vel 2) }			NYAS NYAS State	P Cate P Cate Forms Format	gory B			1.000		person on	0045-00315-1		
1 Day EMERGENCY Emergency & Rush T/A data available VIA Lab	lick					Commercia Commercia NJ Reduce	6*8**\$	Result	+ 00 5											
	Sa	nple Custody mut	st be docume	inted b	now each	n time sar	npies e	chang	n pos	seasi	on, inc	luding (	* ourie	r delivery.		1		> 1		
telloquithed by Sampler	Junal 2015 1400	Received By: 1	FEDE				telinguu ?	the d D	ĸ			A		2/5/13	1000	Received 8	^{br}	For	t	
elinquished by Sampler;	Data Tane:	Received By:				1	telinquis	ned D	ĸ	_				Oate Time:		Received 8	by:	~ . /	(	
elinquished by:	Date Tene:	3 Received By:					٤									4		UU		
CONSTRUCTION OF STREET, STREET	JLARCE THTME:	Received By:				10.000.000	Instaty!	See. 6			1.1	integr		Pressrved where app			and the second s	o ica	Cooler Teoro	-

5<u>.</u>1

JB28084: Chain of Custody Page 5 of 19



GAC	Laboratories			Accutest N	ew Jersey Route 13	( Mid Ai 10, Dayts	lantic) Re sty, NJ -081	gional L: \$10	sb		1		FEDA	SK Fract					se Order (	Control #		OF
					9/14/M	accutest	CO23						About	sst Quot	**			Aos	urtenst ando	' )	1321	8084
Cher Conpany Name	t / Reporting Information	Retail Project	SITE NAME	- Provide M	IRN for	Retail c	or AFE I	or Majo	r Pro	jects				Re	quested	Analy	sis ( s	ee TESI	r copi			Matrix Code
Street Address	<del>\</del>	Major Project (			Ex	xonMo	bil Envi	onmer	stal S	ervic	es Cc	»										OW - Drinking We GW - Ground We
	- NG - 19	indice a reduct of	AV LI			H Reala	t is Dire						-									WW - Water SW - Surface Wa
Ċay	Spiral	P Project Name			Cong	sality hiam	8	-1 0111 11	<u>5 604</u>	avirai	<u>n</u>			-								SID - Sol SL- Sludge SED-Sadiment
Project Contact	V Empai	City		State	Street	LAddress							-									OL- ON LIQ - Other Liqui
Phone #	Fax#	EcconMobil Mar	lagor		Cay			St	sie		2	ip	-									AIE - AI SOL - Other Soli WP - Woe
Sampler(s) Name	5] Pitone #	EoronMotel Pun	chase Orber #		Attent	ion;				0#			-									FB-Field Blank EB- Equipment Bla RB- Ricse Blank
				Gollection	<u></u>	Γ	T	Γ,	 Kuenber	of press	arved Bi	adies	-									TB-Trp Blank
Ancase Service Figh	d ID / Point of Collection	MEOHICI Val #	Date	Tierre	Semped 2y	Kiaota.	# of bottle	HCI NuCOH	rchai	RONE	Di Water	ENCORE										LAB USE ONLY
-50 PT.	-1N3-2-2		Jan 29	1200		Ŵ	T		ΤŤ	X	H	$\uparrow \uparrow$		0	51	-			1		++	
-51	2-3		1	1300				TT	ΠT		T	TT	1	1					1	1	+	
-52	2.5			15 00				$\square$	$\square$	11		$\uparrow \uparrow$	1	1		1			1	1	+	
-53	2-6			1600					İΤ	T		TT		I	$\uparrow$		1		1	1	++	
-54	2-8			18 00			TT		Π	TT	Π	TT		1					1	1	$\square$	
-55	2-9			1900					IT			$\uparrow \uparrow$	1	1	$\uparrow$	1				+		
- 5/6	2-11			2100		1			Π	11					$\square$	1				1	$\square$	
-57	2-12			2200					$\square$	111	T	$\uparrow \uparrow$	T						1	1		
-58	2-13			2300						$\uparrow\uparrow\uparrow$		$^{++}$	1			1				1		
- 59	2-14		Jan 30	0000		1				111		$^{\dagger \dagger}$			$\square$	1			1			
-60	2-15		1	0100						111	T	T				T			1	1		
-61	2-16		y y	0200		V				11		$\top$							1	+		+
Tu	maround Time ( Business days)							Deliver	able Ir		Constant Party	11	1		L	l	c	ommenti	s / Spec	ial Instru	ctions	
5 Day	RUSH	Approved By (Acc)	anst PM): / Data:			Commenc	ial "A" (L ial "B" ( L Level 3+/ ed	evel 2}			nyas State	IP Cale IP Cale Forms Format	gory B			-						
	EMERGENCY EMERGENCY					commerc				$\Box$	Other											
	EMERGENCY						Conmerci Commerci			888933	Summ	20v										
Emergency & R	ush T/A data available VIA Labins		and a first of				NJ Reduc	ed = Res	ulta + (	XC Su	TRINETY	+ Parba	i Raw da	a	L					$\sim$		
Rebnquehed by 1		* Texe: Sen 31 Sents (141-00)	nple Custody mi Received By:	ist be docume I-EDI-		IOW BBC	n time si	mples ( Relaquie			cessi C _C O		iuding (	ourier	0.	Ista	100.	J Place?	ved By:	S	full	
Relinquished by 5		a Time:	Received By	<u> </u>	/			4 Rolingua	shed By	WANNERSD	~~	-7/	ć			[2][) ite Tense:		Recei	ved By:		mil	
Balinguished by:		-	3					4										4			Q	
Kalinguished by: S	Del	a Tieve:	Received By:					Custady	Seal #			0	Intect Not inter		Preserved	where ap	oplicable			Oe los	94	ooler Temp.

5.<u>1</u>

G

JB28084: Chain of Custody Page 6 of 19



				Accutest 8 223 TEL, 732-	5 Route 11 329-0200	10, Dayta	in, NJ 081 772-329-3	110			1			A Truck					le Order Gr dest Job #		2 277	8084
Client Company Neme	/ Reporting Information	1	SITE NAM	E - Provide N				or Maj	or Pr	ojects			+	Re	aueste	d Anah	sis ( se	TEST	CODE		02	Matrix Codes
Street Address		Retall Project (	MRN)				bil Envi							Τ	T			T	1		$\square$	DW - Drinking Wa
oreen Address	-18 er	Major Project (A	FE)		F								7									GW - Ground War WW - Water
City	State	ProjectNamo				If Projet pany Nam	<u>:t is Dire</u> e	ot Bill	to Col	saultar	<u>n</u>		-									SW - Surface Wa SO - 558 SL- Slutge
Project Contact	E-mai	Cay		State	Sizes	t Address							-									SEC-Sediment Ol - Oil
Phone #	F 412 #	ExtonMooil Mare	1361		City			s	itate		Z	p	4									LIQ - Other Liqui AIR - Air SIOL - Other Soli
Sampler(s) Name(s	Phone #	ExxonMobil Purch	nase Order #		Alten	562/1				PCa			-									WP - Wipe FB-Field Blank EB- Equipment Bla
		+		Colection		r	1	Γ-	Numbe	ofpres	erved Bo	(Ses	-									RB- Rinse Blank TB-Trip Blank
Azulant Server 7 Field	ID / Point of Collection	MECHIDI VILI #	Date	Time	Sampled	Alpine	# of bottle	0	SCH SCH	HQSOA NORE	Di Maner	NCORE	1									
-62 PT	-1NJ-2-17	-	Jan30	0300		W				2   Z   X	03	-	+	11	<u> </u>	+						LAB USE ONLY
-63	2-20		1	(7600		13		$\mathbf{f}$	++	+		++	1 733	100	ř	-+		-	-	$\vdash$		
-64	2-21			07.00		11		Ħ	$\uparrow \uparrow$		$\square$	$\dagger$							+	$\vdash$		
-65	2 18 22			0800				Π	$\uparrow \uparrow$	11		Ħ	1			-		1	+	$\square$		-
66	2-23			0900					$\uparrow \uparrow$	11		$\square$	1					+	+			+
67	2-24			1000				T	$\uparrow \uparrow$	$\square$		$\square$	1	1				+		<u> </u>		+
-68	2-26			12.00					$\uparrow \uparrow$			$\square$	1					1				
-69	2-27			1300					††			$\uparrow \uparrow$	1			-		1		$\square$		
-70	2-28			1500					††	11			<b>†</b>					+	+			+
71	2-29			1600					$\uparrow \uparrow$	111	+	h	-				-					+
72	2-30		J.	1700		1			††	11	T	Ħ	1	1		$\neg$		+	$\mathbf{T}$	-		
73	2-33		Jan 31	0800			- )		$\square$	11	1			$\nabla$				1				+
Turn	around Time ( Business days)	1			<u> </u>			Delive				L	<u></u>				Co	nments	/ Specia	/ Instructi	ions	1
Std. 10 P 8 Day R 5 Day R 3 Day E 2 Day E	USH MERGENCY	Approved By (Accul	est PM: / Dete:			lommerc ULLT1 ( U Reduc lommerc		rvoi 2) }		0000	NYASI State	Format	885 G 852									
1 Day E							Commerca	a "B" a	Result	s + QC												
	th T/A data available VIA Labine	Sam	ple Custody m	ust be docum	ented be	low eac	NJ Reduce 1 time se	id = Re moles	chan	GC Su	timery -	Partial Inc. inc.	Ray dat unting r	a	dalium						5	
Refriquesties by Sa		DIS INVOS	Received By:	FEDE				Relinqu		y.			- and a k		1		1001	Receiv	ed By:	Ì	10	
Relinquished by Se			Received By:	<u> </u>	/·			2 Ralingui	ished S		FEO	Ø.				2/5/1	,«ı	2 Receive	ed By:	ALC.	ye	
Relinquisted by	Date Time:		] Received By:				approximation of the local division of the l	4 Custody					Intect					4			V	

JB28084: Chain of Custody Page 7 of 19



<u>5</u>

	UTEST.				Route 13	0, Dayte	in, NJ 08	810						D-2X Trai					ider Confiol	8		
				TEL 732-3		FAX accutest.		499/34	80				Ac	iculest Qoo	4.8			Accusest	100 #	TB	280	284
Client / Company Name	Reporting Information		SITE NAM	E - Provide M	RN for	Retail o	AFE f	or Maj	ior Pr	ojects				R	quested	Analysi	s ( see '	TEST CO	DDE she			Matrix Coder
		Retail Project (I	ARM)															ΤΙ	Γ	T	T	1
treet Address	1.7	Major Project (A	FEI		Ex	xonMo	bil Envi	ronme	entai	Servic	es C	0.	_									DrV - Orinking Wa OW - Ground Wa
w Ch	NA C State Zo						t is Dire	ct Bill	to Co	nsulta	nt											WW - Water SW - Surlace Wa
~"		Project Name			Cont	iany Nam	e															SCI Stol SL- Skidge
router Contact	E-mail	City		State	Stream	Address							_									SED-Sedment Ol - Oil
hone #	- All																					UG - Other Liqu AIR - Ak
10/00 9	porter	ExconMobil Mana	( <b>9</b> 3/		C8y			5	state			Zp										SOL - Other Sol WF - Work
iampier(s) hame(s)	Phone #	ExtonMobil Purch	uase Order #		Attest	ion:				109			_								1	FS Field Blank EB-Equipment Bla
		_																				RB- Rinse Blank TB-Trip Blank
				Collection				L	Narris	e ol pres	erved (	Soties										The trig shares
eouer ende # Field IE	/ Point of Collection				Sampled				1014	H250A	Viter	5.086										
		HEOHOD VIN #	Date Coste	Brise	by	Matex	# of sottle	٩ <u>₹</u>	NeOri	Σ ž	85	202					_					LAB USE ONL
<u> </u>	T-1NJ-3-2	_	Jan29	1200	<u> </u>	N		44		Y				M	20							
75	3-3	_		1300				11														
76	3-4			1400																		
77	3-5			1500																		
78	3-6			1600				TT		П					T							
79	3-8			1800				TT													$\square$	
80	3-9			1900				Π			Π		1					+			$\square$	
81	3-11			21:00				TT	$\square$	TT		$\uparrow \uparrow$	-				1				$\square$	
82	3-12			22.00		-		$\square$	++	TT	$\square$	++		-			+	+			$\vdash$	
83	3-13		1	2300		-		++	++	+		++									$\vdash$	
84	3-14		JOIN 30	00.00				$\square$	++			++			+			$\vdash$			$\vdash$	
85	3-15			0100		÷	<u> </u>	++	++	-++	+	++										-
Turnar	ound "lime ( Bosiness days)	l		loia	l		Data	L Delive	erable	inform	stion	11		<u></u>	<u>1  </u>		Com	ments / S	nocial ini	structions	$\square$	
Std. 10 Bu B Day RU D Day KU D Day EM D Day EM D Day EM D Day EM	ih Ih Irgency Rgency	Approved By (Accus	ent PM; /Date:			lommerc ULLT1 ( U Raduc lommerc	ial "A" (L lai "B" ( L Lavsi 3+ ad	avel 1) sivel 2) t ) (a) "A" =	• Reau	\$0000	NYA NYA Siat EDD Othe	SP Cat e Form Form at										
Emergency & Rush	T/A data available VIA Labank		alle Courte a				NJ Reduc	ed = Ri	esuts -	QC Su	mman	y + Par	tai Raw	data								
Relinquighed by Sam	pers Dete Titpe:	1	pie Custody m faceired By:	ust be docume	inted be	low eac	h time si	Imples Research			15855	lion, ir	cludin	g courie		y Tirpo:		Received	C.	1	10	
	) -3/05/201		1	<u> </u>	DEF			2			Fel	DC	X			Istis	1000	2		Xh	Ml	$\sim$
Relinquisted by Sam	der: Date Time:		Received By:		,			Relieves	uished i	ðy:		1			Can	e Tiron:		Received S	ly:	~~~	1	A
Relinquished by:	Date Time:		3 Received By:					4										4			U	

5.1

G

JB28084: Chain of Custody Page 8 of 19



	CUTEST.			Accutest N 223 TEL 732-	S Route 1	30, David	n. NJ Ol	0138			ł		FED-EX Tra					Order Con			
Client	Reporting Information		LOTT MAN		16/05	accutes	66875							<u> </u>				98 300 8	JE	3280	284
Company Name		Retail Project (	SITE NAME	- Provide N	ARN for	Retail o	IT AFE I	for Ma	or Pro	jects			8	equested	Analys	lis (sec	TEST	CODE a	iteet)		Matrix Codes
Street Address	16.1	Major Project (/	VFE)		E	кхолМо	bil Env	ironm	ental S	ervice	s Co.										DW - Drinking Wa GW - Ground Wat
City (	grann Oly 20	Project Name			Con	If Project	at is Diri 9	ect Bill	to Con	sultant	<u> </u>										WW - Water SW - Surface Wat SO - Sol SL - Studge
Project Contact	Bartes Color	Cty		State	Stree	n Address															SED-Sediment OI - Oil USQ - Other Lister
Phone #	Fax #	ExconMobil Man	9Q21		Ch				State		έø	-									AIR - Air SOL - Other Solid WP - Wips
Sampler(s) Name(s)	Phone #	ExconMobil Puro	hase Order #		Atter	ton:				0#		$\neg$									FB-Fleid Blank EB- Equipment Bla RB- Rinse Blank
Accused				Collection		-	Γ	H	TT	of pressen		9									TB-Trie Blank
tanse Field	D / Point of Collection	MECHICIVIAI#	Date	Since	Sampled by	Matox	# of bodb	es ĝ	1 PED 3	NONE	DI Weat	ENCOR									LAB USE ONLY
-87	1NJ-3-16		Jan 30	0200	ļ	W.		44	44	44			- 40	40							
.88	3-17			0800	ļ		<u> </u>	++	++												<u> </u>
-89	3-20			06 00	ļ	<b>_</b>	ļ	44.	44	44				$\downarrow$						$\square$	L
- 90	3.21			0700	ļ		ļ	44	$\downarrow$	111											
- 10	3-22			0800	ļ		L		44	14											
-92				0900			L	44	44	Щ.	$\square$					4 3					
-93	3-24			1000	ļ			44	44	111.	$\square$										
94	+			1200	L			1.	44	14	Ц										
	3-27			1300						Ш											
95	3-28			1500						11											
-96	5-29		<u>_</u>	1600																	
97	3-30		V	11:02		J.	J			14				1						T	
(uma	round Time ( Business days)	Approved By (Accur				Conumerci			trable in	Ch2200421000	and a second second			1		Cor	nments /	Special	instructions	1	
51d, 10 B 1 Day AL 2 Day AL 3 Day Es	ISH ISM					Commerci RALETS ( NJ Reduce	ial "8" ( ) Level 3+ 16	Level 2)			VYASP Stats F EDO Fi	ormat									
2 Oay EN	IERGENCY					lommerci	as "C" Commerc	cas "A" e	Results		Xther _			1							
1 Day ER	RERGENCY h T/A data available VIA Labirsk						Commerc														
		San	ple Custody mu	st be docum	ented be	low eact	nu Redu h time s	ced = Ri amples	ssuits + ( chang	aC Sum e possi	maiy + essioi	Partal Ra 1, Includ	w data ing court	l Ir delivery			T	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		
Aslanguished by Sas		15 1400	Received By:	GOG				Relinqu	sished By	£		/		Di	ta Titog	104	Receive	d By:	X	10	
Relinquished by Sav			3 / Received By:	ery				2	nebed By	<u>F-61</u>	rη	<i>i</i>			15/13		2	(	XIM	w/	
3			3					4						0	nal 1 abiet		Received	a By:	1	1	
Relinquisted by:	Date	Tariw:	Received By:					Cested	v Seal #			C (n)	103	Preserved	where and	list gibbs	18		Contra	Cooler	Participant Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contra

JB28084: Chain of Custody Page 9 of 19



5.1

-	Laboratories			Accusest N 2333 TEL 733-	5 Route 1. 329-0200	30. Davis	in, NJ -08 732-329-1	810			ł		BD-EX Toe					s Onder Con		B 280	5 d U
Company Nar	lent / Reporting Information		SITE NAM	E - Provide N	IRN for	Retail c	AFE 1	or Maj	or Proi	ects		+	R	equested	Analu	eietea	TEST	CODE -		220	Matrix Codes
Company war	*	Retail Project	(MRN)										<u> </u>			ana / 80	16.55	- CODE S	ineer)		Matax Codes
Sbeet Addres	r	Major Project (	AFEI		E	xxonMo	bil Envi	ronme	intal Se	rvices	Co.										DW - Drinking Wat GW - Ground Wat
<u></u>					-	If Protes	t is Dire	ct Bill I	to Cons	ultant											WW - Water SW - Surface Wat
Cty	State	Zop Project Name			Com	pany Narr	8														SO - Sol SL-Skutge
Project Contac	a E-ma	il City		State	Stee	II Address															SED-Sediment OI - Ot
Phone #																					UQ - Other Liqued AIR - Air
FACE &	Faxi	ExironMobil Mar	nger		Çay			S	laie		Zip										SOL - Other Sald WP - Wipe
Sampler(s) Na	me(i) Phon	e # ExxonMobil Pun	chase Order#		Aten	800			Pi	8		-									FB-Field Blark EB-Equipment Blark RB-Finne Blank
				Colection		J	1	T	Namber o	fpreserve	ම පිරැපින										TB-Trip Blank
Account Serger F	ield ID / Point of Collection	MEDHOLVW #	Date	Tionat	Sampled by	Matha	e ad both	NaDH Madh	1000	NONE St Mater	MEOH	$\square$									LAB USE ONLY
-98 X	NOPT-INJ-3-3	3	Jan31	08 00	<u> </u>	141	1	+		1		++	40		$\rightarrow$			+			CAB USE UNLT
.99 P	T-INJ-4-2		Jan 29	1200	-		<u> </u>	++	++	H†-	++	++	$\neg$	+0	-						
-100	. 4-3		i i	1360				++	++	$\mathbb{H}$	++	++						+			
101	4-4			14 00				$^{++}$		H	++	++		++	-+-			+			+
10Z	4-5			1500				++		++	++	++		++				+			+
193	4-6			1600			<u> </u>	++	<u>+</u>		++	++		++	-+-			++			+
104	4-7			1700			<u> </u>	++	+			++		+ +				++			+
105	4-9			19:00				$^{++}$	$\pm$	11-		++		+				+			+
106	4-11			2100				+			$\vdash$		-++	++				+			
107	4-12			22.00				++	+		++	$\vdash$		+				++			+
108	4-17	2	1	2360				$\mathbf{H}$			++-			+				+-+			+
109	V y l	5	Jan 30	0100			÷.	++-						+-+							
	Turnaround Time ( Business days)	-	12(73	1 01 +0	]		Data	Deliver	i l rabie Inf	ormatio	LL. n	Ц.		<u> </u>		Co	Innents	/ Special	Instruction		1
	10 Business Days ay RUSH ay RUSH Ay EMERGENCY ay EMERGENCY ay EMERGENCY	Асргоме Ву (Асс.	nesi PM): / Date:			Commerc PULLT1 ( 43 Reduc Commerc		#¥8[2] 6] 18["A" =	Results (	Ni St Et Ot	YASP Ca YASP Ca use Fore DD Fore dier	degory ns									
Emergency	E Rush T/A data available VIA Labie		rala Control				NJ Reduc	ad = Re:	suite + O	C Summ	arv + Pa	rbai Ra	o data	1							
Relinquished	ay templer	0405 Tener 1/34/13 114-02	nple Custody m Received By: 1	FEPG	ented be	NOW BAC	n time si		change ubed By:		PC		ng courte	04	zlsli	1 /00	Receiv	ed Sy:	X	M	
Relinguished		Date Time:	Received By: 3					-	ished Sy:			<u></u>			TSH te Time:	<u>ر</u>	A Receive	NI 87:	×1v	Ju	
Relinquished	ay:	Date Time:	Received By:				-	Custody	fleel #			7 100	d	Preserved					On Ice	<u>v</u>	r Temp.

JB28084: Chain of Custody Page 10 of 19



5.1 ე

Needos	CUTEST.		CH	AIN O Accutes: Ne 2235 TEL 732-3	w Jersey Route 13 29-0200	( Mid At 0. Dayte	antic) Re n. NJ -081 32-329-3	gional L ETO	ab	(on	Mc	obil	FED	oje EX Traci	ing #					H Control #		_ OF	
Client	Reporting Information		SITE NAME	- Provide N				or Majo	or Pro	lects			+-	Re	queste	d Anal	Ivsis (	too TF	STCOL	DE shee	sense in a sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense of the sense o	<u></u> T	Matrix Codes
Company Name Street Address	- Ar	Ratall Project   Major Project	(MRN)		T		bil Envi				es Co			T	Ī							Π	DW - Dristing Wa GW - Ground Wa WW - Water
Oty	estero p61	2ip Project Name			Comp	any Nam	t is Dire	ot Bill t	o Con	suitan	1												SW - Sorface Wat SO - Soi SL - Sludge SED-Sedment
Project Coreact	E-mail	City		State	Street	Address							7										OI - Dil LIQ - Other Liqui
Phone #	Faxs	EckonMobil Man	agor		City			SI	318		Zij	p	1										AIR - Air SOL - Other Sols WP - Wipe FB-Field Blank
Sampler(s) Name(s)	Phone	EcconMobil Purt	ziase Order #		Altent	ion:			,	08												E	PB-Pass blank B-Equament Ba RB-Rinas Blank TB-Trip Blank
				Collector				<u> </u>	Number	of press	rved So	etas Turt	]										
	ID / Point of Collecton	MECHID Val #	Date	Tinse	Sempled ty	Matta	# of boths	NaCH	COMM	MCM6	Di Vision MECH	ENCORE											LAB USE ONLY
	-1NJ-4-16		Jun 30	02.00		V.				Y				YAON Y	9								
-111	4-20			0600			L		Ц														
-112	4-21			0700																			
-113	4-22	·		0800																			
-114	4-23			09 00																			
-115	4-24			10:00																			
-11%	4-20	5		1100									1	T									
-117	4-24	2		12 00	1			Π	Π	TTI		TT	T	TT						1			
-118	42	7		1300				TT	TΤ	111		$\square$	T	TT									
-119	4-2	8		1900				$\uparrow$	††	11	-	tt	1	$\uparrow \uparrow$									
-120	4-2	9		1600	1			tt	$\square$	11	-	tt	1	11			$\neg \uparrow$			-	+ +		
121	4 7	40	V	17:00					$\uparrow \uparrow$	$\uparrow$		$\mathbf{t}$	1	17			$\neg \uparrow$				+ +		
Torn	taround Time ( Business days)						Data	Deliver	rable li	i l iforma	ition	1	J	4	ii	I		Comm	ents / Sp	ecial inst	nuctions	L	
8 Day # 5 Day # 3 Day # 2 Day 5 2 Day 5 1 Day 5	IUSH MERGENCY MERGENCY MERGENCY	Approved By (Acc.	olest PM): / Date:			Commerc ULLT1 ( U Reduc Commerc		evel 2) 4 ) 15 "A" =		<u>3</u> 0000	NYAS State EDO 1 Other		iory B										
Emergency & Rus	sh T/A data available VIA Labint		rola Custod	ust ba docum	mand b-		NJ Reduc	ad = Re	suits +	ac su	mmery	+ Paria	Rawd	<u>sta</u>									
Relignmentational by Bar 1	dee _	Date Time: 1/3/15/14/02	nple Custody m Receives By: 1	FEDE		IOW 68C	a cime si	Relingui 2		6	<u>аваяк</u> СР		- -	coune	r delive	Ist	3 /	000 2	iceived By	5	In	T	
Relinquished by Sa 3	impler:	Date Time:	Received By:	1				Relange	isked B	(constraints)		1				Date Sim	e:	Ra	uceined By	-04	Jej	/v	
Relinquished by: 5		Data Tane:	Aeceived By:					Custady	( 8mai #			0	lista ci Not ist		Preserve	d where	app%cabi	• 19		Cas I		Cooler Te	np.

<u>ъ</u>

G

JB28084: Chain of Custody Page 11 of 19



	aboratories			Acoutest Ne 2235 TEL 732-3	Route 13 29-0200	10, Dayte	n, NJ 088 132-329-34	10				FEG-EX Y					Bothe Ce Accuses	itler Coelini 8		8084
	Reporting Information		SITE NAME	- Provide M				r Major I	roject	s		<u> </u>	Regu	ested A	Inalysis	( see	TEST CO	DDE shee		Matrix Code
Company Name	- <u>d</u>	Retail Project			E	uxonMo	bil Envin	onmenta	I Servi	ces Co				Τ	T					DW - Dhriking W GW - Ground W
	SHIM .	Major Project (/	(FE)		-														11	WW - Water
Хy	9269 06\ ²⁰	Project Name				IT Project Seny Nam	e dis Direc	a Bill to C	onsulti	int										SW - Surface We SD - Soil SL-Studge SED-Sedmen
inject Contact	E-mail	City		State	Sree	( Address														01 - 08 EIQ - Other Liss
hone #	Fax#	Exconshobil Man	eðel.		City			State		Z	p									AR - Ar SOL - Other Sol WP - Woot
ampler(s) Name(s)	Phone #	ExxonMobil Purc	hase Order #		Azen	son			PC#											FB-Field Bark EB- Equipment B RB- Rinse Blan
				Collection	- <u>-</u>	-		Nµt	ber al pré	Tal	nties									TB-Trip Blank
essent Field I	D / Point of Collection	ALEOHIOL VILL #	Cale	Tatta	Sampled by	Materia	# of Sottles	Q 10 1	NON5	DI Wat	ENCON									LAB USE ON
122 4850	PT-1NJ-4-3	1	Jan30	(900		w	1			$\dagger$		h	ot	N		1	+		++	
-	-3	2		20:00		1	<u> </u>		††	+	+++		Ť	-		+				
123 PT.	-INJ-5-2		Jan 29	1200					++				1			1				
124	5-4		ŕ	1400		17			$\uparrow \uparrow$		+++		11			+			+-+	
45	5-5			1500		1	İ				+++		++		$\neg$	+			++	
26	5-6			1600						TT	$\mathbf{H}$		++			1	$\vdash$		1-+	
27	5-7			1700					$\mathbf{H}$	$\uparrow \uparrow$		1	+			1			++	
28	5-9			1900					$^{++}$	$\uparrow \uparrow$	$^{++}$		$\dagger \uparrow$			T	$\vdash$		+	
129	5-10			2000					$^{+11}$	++	$\square$		$^{\dagger \uparrow}$			1			+ + +	
30	5-12			22.00		1			111	$\uparrow \uparrow$	$\square$		$^{\dagger \uparrow}$			1				
31	5-13		J.	2300					TT	$\uparrow \uparrow$	$\uparrow \uparrow \uparrow$		tt			1		-		1
132	5-14		Jay 30	0000					111	$\square$	$\mathbf{T}$		ţŤ						$\uparrow$	
Turna	round Time ( Business days)						entro-chalantence-indication	Deliverabl	e Inforn	vation	<u> </u>		<u> </u>			Com	mentó / S	i pecial Inst	nuclions	
Std. 16 Ba 8 Day AU 6 Day AU 1 Day EM 2 Day EM	ISH ISH IERGENCY ERGENCY	Approve: By (Acco	(est PH): / Date:		i i i i i i i i i i i i i i i i i i i	Commerc PULLT1 ( U Reduc Commerc		rvel 2) }		] NYAS ] State ] EDO ] Other	P Categor P Categor Forms Format		-							
T Day EM	ERGENCY						Commercia						Γ							
		San	ple Custody m	ust be docume	inted be	low eac	NJ Reduce h time sa	na = Flesuit mples ch	s + QC S ange po	ummary Issessi	+ Perial R on, Inclui	ter data ding cou	irler di	elivery.				5	. 0	
Reanquished by Sam	Date 7		Received By:	FEDEX			1	Relinquiste		_	X			Dete	5/13	ravi	Received	or S	f i	/
Relinquished by Sam			7 Received By:	1 00 0/1	·		reconstruction	2 Relinquishe	d By:	10	r.				3/13		2 Received I	$\sim$	July	$\sim$
			4				ſ										a statement		//	

5.<u>1</u>

G

JB28084: Chain of Custody Page 12 of 19



	LABORATORIOS			Accustest N 2235 TEL, 732-3	Route 13	0, Dayte	38, NJ 1	08613						PED-EX						the Cittler	Corstol #			
Cliv	ant / Reporting Information		Lours wain		459676	accurest	003															JB.	280	84
Company Name		Retail Project	MRN)	E - Provide N	IRN for	Retail c	x AFE	for N	Asjor P	ojects	\$				Req	uester	d Analy	sis ( si	HE TES	T CODI	E sheet	L		Matrix Codes
Street Address		Major Project (	AFE)		Ex	.xonMo	bil En	viron	mental	Servio	es C													DW - Drinking Wat GW - Cround Wate
						If Prois	of is Di	rect B	liff to Co	insulta	nt													WW - Water SW - Surface Wate
City	State	20 Project Name				sany Narr																		SO - Sol SL- Skuldge
Project Contact	E-ma	i Ciy		State	Stee	Address						·····												SED Sediment 01 - 08 UIQ - Other Liquid
Phone #	Fax s	ExcontiAstel Mar	<b>1</b> 1361		City				State			Z/p												AR - Ar SOL - Other Setd WP - Wore
Sampler(s) Nerr	e(s) Phon	# ExxonMobil Pur	crase Order #		Ašent	8213.				POW														FS-Field Stark ES-Equipment Elan RD-Finse Bark
1			Т	Colection		Г — — — — — — — — — — — — — — — — — — —	T	T	North	er of pres	borood	Pottes												TB-Trip Blant
Accurate				T	Sampled					TT	TTT	1¥	П										ſ	
	eld ID / Foint of Collection	MEOHIDI Viar #	Date	Time	Br.	Madris	# of be	Vites 😳	HOah HOah	NONE NONE	ă	NEOH ENCO												LAB USE ONLY
-133 PT	INJ-5-15		Janzo	000	L	W	ļ		ļ		$\square$			4	24	<u> </u>								
	1 5-17			0300	ļ	ļ	<b> </b>		<u> </u>	<u> </u>	$\square$		$\square$					_			_			
-	5-18		<u> </u>	0400	ļ	ļ	<b> </b>		<u>    _</u>		44		Ц									44	_	
135	5-20		ļ	0600		L	1	_	<u> </u>	Щ	$\square$		$\square$								_			
136	5-21		ļ	0700				_			$\square$		Ц									$\downarrow$		
137	5-22			0800					<u> </u>	Щ	$\square$		$\square$		$\square$							$\square$		
138	5-23			00.00					<u> </u>		$\square$		$\square$		$\square$									
139	5-24			1000				_	L		$\square$													
143	5-25			11:00							$\square$		Ц											
141	5-26		L	1200					<u> </u>		$\square$									_				
142	5-27			13:00					L.L.		$\square$		Ц											
143	1 5-28		3	15:00				1																
🗍 Std.	Furnaround Time ( Business days) 10 Business Days	Approved By (Acc	stest PM): / Date:			Commen Commen	:isi "A"	(Level ( Level			] NY/ ] NY/	ASP Ca ASP Ca	nəgən					<u> </u>	ommen	s / Sper	cial Instru	ctions		
						ULLT1 U Reduc Comment	ad Sal "C"		4" × Rest		] EDI ] Oth	te Fore 0 Fore Ner		-	-									
10	y EMERGENCY						Comm	ercial T	B" = Resi	sta + QK	) Sum				ł									
emergency &	Rush T/A data available VIA Labis		mple Custody m	ust be docum	ented be	low eac	Ni Re h time	duced = samp	Results des cha	+ QC Si	umira Issies	r <u>y + Pa</u> sion i	rtiel R netw	av data ding or	unter	deliver	<u>v</u>				$\sim$	σ		
Relationed b	2 Sinute:	Data Teres: 1/2/15 14:02	Received By:	FeDe					inquished		f	-eP	H			1	Islis	100	0 ^{Race}	ived By:	À	aut	5	
Railinguished b	y Sampler.	Data Time:	Received By:		/			Reti	inquished	8y.			/				Ante Terre:		Rece	ived Sy:	<u>~</u>	1		
Relinguished b	<b>\$</b> 1	Date Time:	And Received By:			tile of a constant			itody Seal				0 7	card .			d where as	nde abia	14		On Sce		Cooler Te	

JB28084: Chain of Custody Page 13 of 19



5 .1

E	ACCUTEST.			AIN O Accusest N 2235 TEL 732-3	rw Jersey Route 1 (29-0200	( Mid Az 30, Dayte FAX,	lantic) Raj in, NJ - 088 732-329-3-	ponst Lat (16				FGO-E	X Tracking I at Ousse #				F M te Order Con Jesi Job #	troi #		F_ <u>b</u>
	Client / Reporting Information		SITE NAME	- Provide N		Retail c		v Malor	Prole	te		+	Rec	nelad 2-					5 28	084
Compan	yy Name	Retail Project	(MRN)		T	- week C		., major	1 KOJSC	-10		1	Upan	ested An	nysis ( s	ee TEST	CODE	neet)		Matrix Codes
Street A	19995 NNV	Major Project (	AFFI		E	cxonMo	bil Envir	onmen	al Seri	rices (		_								DW - Drinking Wat GW - Ground Wet
	CAL	OL-N				if Prolec	t is Direc	180110	Control	tant		-								WW - Water SW - Swrface West
Cry	State	20 Project Name			Com	pany Nam	e													SO - Sol SL Sludge
Project (	Contact X E-me	a Caty		State	Stee	Address						-								SED-Sedment GI - CH
																				LIQ - Other Liqui AR - Ar
Phone #	Faxi	ExxonMobil Mar	19041		Çþ			Stat	1		2:0	1								SOL - Other Sch WP - Work
Sampler	(s) Name(s) Phon	EconMobil Pur	chase Order #		Aten	tion			PO			-								FB-Feld Black 58- Equipment Bla RB- Rinse Black
				Collection	 	1	Γ	Nu	tiper of o		Bottles	1								TB-1np Blank
Acculent Sampin #	Field ID / Point of Collection	MECHIOI Val #	Date	Time	Sampled by	Matria	# of bottlet	Noch	HESON	NONE DI Water	MEOH ENCOR									LAB USE ONLY
144	PT-1NJ-5-29		Jan 30	16 00		W				X		4	0	Ω.						
145	5-30			1700								1							1	
146	1 5-31		L V	1900																
147	5-33		Jan 31	0800						41			J.						T	
148	PT-INJ-6-2		Jan 29	1200															1	
149	6-3			1300																
150	6-4			1400																
161	-151 6-5			1500																
152	6~6			1600																
153	6-8			1800																
154	6-10			2000																
155	<u> </u>		V	2100		Ų.	<b>%</b>			ЧТ			1							
	Turnaround Time ( Business days)							Deliveral							lc	orments	/ Special	Instructions		
		Approved By (Acc	ctest PM): 2 Date:			Commerc	ial "A" (Li Ial "B" ( Li Lavel 3+4 ed	evel 2)		] NY/ ] Stat	ASP Categ ASP Categ le Forms D Format		-							
Ē						Commerc		w~4~~ 0	č	 									*****	
Ĉ	1 Day EMERGENCY						Commenti				mary		T							
Emen	pency & Rush T/A data available MA Labi		nple Custody m	ust be docum	inted he	low eac	NJ Reduc	rd = Resu moles el	ts + OC	Summa IOSS	ry + Partial sion incl	Raw dat	a l	tivery		-1		~_^^ <i>t</i>		
Relians	sisted by Sergier	Data Time: 1/3/13 14:00	Received By:	FeD	100.000	an eas		Reloquet 2	ed By:		HX	comy 6	ouner at	Data Te	Tr3 100	20 Racei	red By:	×1	AL	
	uished by Eampler:	Oate Title:	Received By:		1		111111111111	Rebriquist	ed Øy:		/			Date Te		Recei	red By:	$\sim$	1	
Reling	uished by:	Oate Telle;	3 Received By:					4 Custody 5			- 1	indact.				4			U	
5		1	5					Antioo 2	ned F		17	Notartaci		iserved when	appie.ebłe			On Ice	Cooter	Temp.

JB28084: Chain of Custody Page 14 of 19



<u>ъ</u>

GAC	CUTEST.			Aboutest No 2235 TEL, 732-3	Route 13 129-0200	0. Dayte FAX. 1	n, NJ -088 132-329-34	10		ł		PED-EX	(Trackin It Quote )					er Casibal #	15	
Cile	nt / Reporting Information		SITE NAME	Denvide M		accutest.											L		17328	
Company Name		Retall Project	(MRN)	PIDVICE M		retail 0	TAPE 10	r Major	Projecti	B		+	Reg	uested A	nalysis	(see T	ESTCO	DE sheet)	1	Matrix Codes
Street Address	- Af the	Major Project (	AFEI		Ex	xonMo	bil Envir	onment	I Servi	ces C	o.									DW - Drinking Wat GW - Ground Wat WW - Water
City (	State	2p Project Name			l Comp	if Projec any Nam	t is Direc e	t Bill to t	Consulta	mi		-								SW - Surface Wate SO - Sol SU Sludge
Project Contact	O E-mail	City		State	Sveet	Address						-								SED-Sadmeit Ot - Dil LIQ - Other Classo
Phone #	Fax#	ExxonMobil Mar	19987		City			State			ζιφ									AB - Ar SOL - Other Seld WP - Woe
Sampler(s) Name	(i) Phone	# ExxonMabil Pun	hase Order #		Atenti	cn:			POR											FB-Field Black EB- Equipment Black RIS- Finise Black
				Collection			[	Na	nber of pres	served f										TB-Trip Blank
	Id ID / Point of Collection	MEDHOLV##	Date	Three	Sampled by	Mebre	# of bottles	HC1 NaOH	NONE NONE	DI WVM	INCORE ENCORE									LAB USE ONLY
	HNJ-6-12		Jun 29	2200		W				П			10	2						
-157	613		1	7300			<u> </u>			44					4					
-159	6-19		Jan 30	0000						++										
160	6-1h			0200					++	++	++	+								
-16(	6-17			0300		-			++	$\mathbb{H}$	++		$\dashv$							
162	6-20			0600				11		††			-11		1	$\square$				1
163	6-21			0700						tΤ			$T \uparrow$							
164	6.22			0800						Π			Π							1
165	6.20	1		10:00																
16%	625			11 00						Ш										
167	maround Time (Business days)	6	<u> </u>	12 00			ų.					ĽĽ	<u>v</u>							
Std. 1 4 Day 5 Day 2 Day 1 Day	8 Business Days RUSH	Арргоней Ву (Асс	Akasi PM); / Data:			onmerc ULLT1 ( U Reduci ommerc	la1"A" (La la1"B" ( La Laval 3+4 ed la1"C" Commercio Commercio	vel 2) ) ( "A" = Re ( "D" = Re	suite Only	] NYA ] NYA ] Sist ] EDO ] OSH	nary		-			Com	ients / Sp	eciai instru	citoris (	
		Sa	nple Custody m	ust be docum	ented bei			mples ch	ange po					delivery.		1		$\frown$	0	
Relinquished by		Date Time:	Received By: 1	FeD	V			Relanguiste 2		Ξ¢D	X			Data 2/	5/13		laceived By 2	6	ml	~
Relinguished by		Date Time: Date Time:	Received By: 3 Received By:					Relinquich						Date1	Finter:		taceived By		1	
5		and the second	Received By:					Custody Se	gt 8		. m	intect Not intect		reserved whe	ere applici	ettie		On ice	Coe	er Temp.

JB28084: Chain of Custody Page 15 of 19



5 .1



ACCUTEST.			Accorest N 2239 TEL 7327	Route (3 129-0230	0, Dayto FAX 3	n, NJ () 132-329	legiona 8810	d Lat		1			ED-EXT FROMEST O	racking					e Order Ca Helf Job #	97861 <b>#</b>	13 280	0F <u> </u>
Client / Reporting Information		SITE NAME	- Penulda N		testusse		lor M														DZOC	
Company Name	Retail Project (	MRNI	- 1 101120 0		neals 0	Pre	101 10		roject	3				Hequ	lested	Analys	is ( see	TEST	CODE	sheet)	F	Matrix Codes
iliteet Address	Major Project (J	FE)		Ex	xonMo	bil Em	rironn	nental	Servi	ces (	Co.	_										DW - Ottoking Wat GW - Ground Wat
					If Projec	t in Dir	net Bi	ili to C	onsult	int												WW - Water SW - Surface Vist
Cey State NG Zo	Project Name			Cemp	iany Vam	8																SC - Soli SL - Sludge SED-Sedmest
Project Contact E-mail	City		State	Stee	Adoress																	CI - Oli LIQ - Other Lique
Phone # Eax #	ExcionMobil Man	unar		City				State			Zio											AIR - Air SOL - Other Solo
0/->		egen.		1 car				-9-810			A.96											WP - Wipe FB-Feid Blank
Sampler(s) Name(s) V C Phone #	EsstonMabil Purc	tase Order #		Ateni	ion				809													EB- Equpment Blar RB- Rinse Blark
			Collection		[	1	Τ	Marri	ber of one	server.	Bottles											TB-Trip Blank
Field ID / Point of Collection	MECHIOI VILL #	Date	Tame	Sampled by	Matria	\$ ज bod	ses ĝ	HOW	10204	CX Waster	MEDH											LAB USE ONLY
168 PT-1NJ-6-27		Jon 30	1300		112	T	+	$\square$	1			$\uparrow \uparrow$	1	D	th					+		
69 6-78			1500				1	$\uparrow \uparrow$	$\uparrow \uparrow$	d		$\uparrow \uparrow$	1		-+				+	1		-
170 6-29			16:00	1		$\vdash$	-		++	H		$\uparrow \uparrow$	-						+	+		
6-30			17:00			$\vdash$		$\vdash$	+	1-1		++	+									
172 6-31			1900						+	++		÷	·			-+-		+		<u>}</u>		
6-33		Jan 3	0800			┝╍┿╸	+		+++	++			-+-				_					
174 Tank - Mid		Jan 29	1815						++	+		$\square$	-+-									
In ways - 1- way		SUCT			V	<u> </u>	+		+-+-	+				t								
										++		4							·			
								L				<u> </u>							ļ	ļ		
									<u> </u>	$\square$			_	_								
										11	_		_						Į			
Turneround Time ( Business days)																						
(unacoura ) she ( dusiness days)	Approved By (Acce	ast PSD / Date:		<u> </u>	Commerc		and the second second		e Inforr	and the second second second second second second second second second second second second second second second		itegory	*				Co	ments	/ Specie	al instruct	lions [	
Std. 10 Business Days					commerc							tagory		1								
B Day RUSH     S Day RUSH     S Day RUSH				and the second	ULLTI (		(44)		C		te Fors											
3 Day EMERGENCY				Neethor	U Reduc				-	] EDI ] Oth	0 Fore	12t		-  -								
2 Day EMERGENCY				Second 7			ncial "A	r = Res	uts Ont					L								
1 Day EMERGENCY Emergency & Rush T/A data available V/A Lablas									ults + Q													
	San	ple Cestody mu	st be docum	ented be	low esc	n: Ned h time	sampi	ivea.lis los che	+ QC S Inge po	umme 05565	iry + Pa Islon, i	nai Ra ncludi	e data ng cos	l srier d	elivery.			T		5	1	
Resinquithed by Sengter Date Ten	SINS 14-20	Received By:	FEDE				Reif	uquistiac		_	<u> </u>	5			De	* Tarsej	/000	Recei	red By:	Ň	1 10	1
Relinquished by Sampler; Data Time		1 Received By:	rere	<u> </u>			2	nguished		16	VE	<u>~</u>	-			<u> s i:</u>	s	2		A	tanil	$\sim$
		3					il ata	nyillissiiki	a 219:						(Če	a Terre		Recei	red By:		1	
Relinquished by: Date Tex		Received By:					17-	Lody Sea				D inte				vtiere sp		17		Onlice	*****	ker Temm.

JB28084: Chain of Custody Page 16 of 19



5.<u>1</u>

ACCUTEST	С	HAI	N O	FC	CU	ST	0]	DY	r												PA	GE		OF	
LABORATORIES		22351	Route 130	. Dayton	1, NJ 1	08810				1			FED-E	X Tracki	1g #	*******			1	Bottle Or	der Cont	rol#			
		TEL. 732-32		FAX: 73 ceutest.c		)-3499/	/3480	)					Accule	st Quote	#					Accutest	Job#		328	080	4
Client / Reporting Information		Project I												Re	quest	ed Ar	alvsis	s ( se	e TF	ST CO	DDE s		520	- 5	/ Matrix Codes
Company Name Project Name														T	T	1		100	1						
Street Address GED SYNTEC																									DW - Drinking Water GW - Ground Water
Juget													1												WW - Water SW - Surface Water
130 RESEARCH LANÉ City State Zip City		State	Billing Ir Company	Name	on ( if	differe	nt fro	om Re	port t	lo)															SO - Soil SL- Sludge
																									SED-Sediment OI - Oil
Project Contact Project # Project #	IUBURN		Street Ad	dress									1												LIQ - Other Liquid AIR - Air
Phone # JAPUC AD TOT Fax # Client Purcha	ie Order #		City				S	tate			Zip		-												SOL - Other Solid
																									WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone # Project Manag	er		Attention:						******				1												EB-Equipment Blank RB- Rinse Blank
	Co	diection	L	······································	1			Numbe	or of pro	eserved	d Bottles	3													TB-Trip Blank
Accultest			Sampled			Γ	II		8 1	aner E	H	ž	1											ſ	
Sample # Field ID / Point of Collection MEOH/DI Vial	Ø Date	Time	by	Matrix	# of b	otiles	HCI NeO	HNO	H2S H2U	NON IG	MEOH	ENCORE													LAB USE ONLY
-175 PT-INJ-1-BKG	1-23-13				1																				
-176 PT-INJ-Z-BKG	1-23-13																								
-177 PT-INJ - 3- BKG	1-2313														1										
-178 PT-INS-4 -BKG	1-23-13													1		1									
-179 PT-INJ-5-BKG	1-23-13									1				1	1		1		-						
-180 PT-INJ-6-BKG	(-73-13									-	$\square$	+		1	+	-		+	-						
-181 PT-MW-3-1	1-3013	1400				-				+	$\uparrow \uparrow$	+		1	1	1						_			
-182 PT-MW-4-1		1400				-	+			+							+							-+	,
-183 PT-MW-5-1		1400					+	+	+			-			1	1	+	+-	-+					+	
-184 PT-MW-6-1		1400				-	+		-			-			+			+-	+						
-185 PT-1001-7-1		1400				7	+		+		++			+		+	+		-+					+	
		100				·	+	+	-								+		-+						
Turnaround Time ( Business days)					L	Data D	elive	rable	1 Inforr	matio	1 n		I	1	1		1	C	Comm	ents /	Specia	l Instruc	tions		
Approved By (A	cutest PM): / Date:		Companying of	ommerc					Ľ		YASP				Τ								k		
5 Day RUSH				ommerc ULLT1 (			el 2)		Ľ		YASP ( tate Fo		ory B		-										
3 Day EMERGENCY				J Reduc		,					DD Fo														
2 Day EMERGENCY     1 Day EMERGENCY			c	ommerc							ther														
other						mercial mercial					mmary				-								*******		
Emergency & Rush T/A data available VIA Lablink	Sample Custody must	he docum	antad b-		NJ R	educed	i = Re	esuits	+ QC	Summ	ary + F	Partial	Raw da									-	<u></u>		
Relinquished by Sampler: Date Time:	Sample Custody must Received By:	,	enteu De	iow eac	n um			i char uished					iding (	courie	deliv	Date	Tinhe:		B	eceived	i By:	6.	V.	1	
		FEDER				2				Fe	It7	<u> </u>				2	5/13	/01	200	2		À	tmy	$\sim$	
Relinquished by Sampler: Date Time: 3																- 1. I	Time		1.				· · · ·		
3 Relinquished by: Date Time:	Received By: 3					4	telinqı 1	uished	By:							Date	lime:		2	leceivec L	аву:		Λ		

JB28084: Chain of Custody Page 17 of 19



5.1

	Job Chi	Job Change Order:	JB28084_2_27_2013	27_20
Requested Date: Account Name: Project CSR:	2/27/2013 Geosyntec Consultants GE Powerex, Auburn, NY mariem	Received Da Due Date: Deliverable: TAT (Days):	Received Date: Due Date: Deliverable: TAT (Days):	2/5/2013 2/19/2013 FULT1 14
Sample #: JB2 Dept:	JB28084-45 to 49 Change:	Please revise sample date to 1/22/13, with time of 00:00. Confirmed from the bottle labels (field ID's matched as originally logged in).	te to 1/22/13, with the bottle labels (f iged in).	time of ield ID's
Above Changes Per:	<b>Per:</b> Marie		<b>Date:</b> 2/27/2013	2/27/20
To Client: This Change	To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service P.	viously discussed with the Acc	utest Client Service	e Page 1 of 1

# JB28084: Chain of Custody Page 18 of 19



5.<u>1</u>

# JB28084: Chain of Custody Page 19 of 19



5.1

S

#### COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group Analytical Report

	, Analytical Repor
Client:	O'Brien & Gere Engineers, Incorporated
Project:	GE - CEP Former Powerex - EISB Tracer Study
Sample Matrix:	Water
-	

Service Request: R1300698 Date Collected: 2/ 1/13 1300 Date Received: 2/ 4/13 _

 Sample Name:
 GW-PW-1-020113

 Lab Code:
 R1300698-001

-

Basis: NA

.

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/5/13 21:43	



			METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	R1300698			GW-PW-1-020113
ab Code:	·	Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201
latrix (soi	.l/water):	WATER	Lab Sample ID:	R1300698-001
evel (low/	med): Lo	OW	Date Received:	2/4/2013

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	1280	J	1	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

-

1

· · · · · · ·

•.....

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE - CEP Former Powerex - EISB Tracer StudySample Matrix:WaterSample Name:GW-PW-4-020113

Service Request: R1300698 Date Collected: 2/ 1/13 1312 Date Received: 2/ 4/13

 Sample Name:
 GW-PW-4-020

 Lab Code:
 R1300698-002

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilutior Factor		Date Analyzed	Note
Bromide	300.0	2.5	mg/L	1.0	0.8	10	NA	2/5/13 22:00	



Columbia	Analytical	Services			
			METALS -1-		
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	R1300698			GW-PW-4-020113	
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201	
latrix (soi	1/water):	WATER	Lab Sample ID:	R1300698-002	:
evel (low/	(med): La	WC	Date Received:	2/4/2013	

CAS No.	Analyte	Concentration	c	Q	м
7440-09-7	Potassium	1550	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:
Comments:		1 - <b></b>		
			······································	
				······································

00025

.

.....

1

Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated	Service Request: R1300698
Project:	GE - CEP Former Powerex - EISB Tracer Study	Date Collected: 2/ 1/13 1435
Sample Matrix:	Water	Date Received: 2/ 4/13
Sample Name: Lab Code:	GW-PW-12-020113 R1300698-004	Basis: NA

# **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.3	mg/L	1.0	0.8	10	NA	2/5/13 22:33	

· --

			METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO,
Contract:	R1300698			GW-PW-12-020113
ab Code:	<u></u>	Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201
atrix (so	il/water):	WATER	Lab Sample ID:	R1300698-004
· evel (low,	(med): L	WC	Date Received:	2/4/2013

-

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	1070	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	··· ····
Comments:					



-

_

.....

·· ·· ·· ··

- ;

Analytical Report

	· · ·	
Client:	O'Brien & Gere Engineers, Incorporated	Service R
Project:	GE - CEP Former Powerex - EISB Tracer Study	Date Co
Sample Matrix:	Water	Date Re
Sample Name:	GW-PW-13-020113	

Service Request: R1300698 Date Collected: 2/ 1/13 1450 Date Received: 2/ 4/13

 Sample Name:
 GW-PW-13-02

 Lab Code:
 R1300698-005

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
3romide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/5/13 22:49	



# **Columbia Analytical Services**

## METALS -1-INORGANIC ANALYSIS DATA SHEET

		MONOANIC ANALISIS DATA SHEET	SAMPLE NO.	
			GW-PW-13-020113	
Contract:	R1300698			J
ab Code:	Case No.:	SAS No.:	SDG NO.: GW-PW-1-020	1.
latrix (soi	1/water): WATER	Lab Sample ID:	R1300698-005	
evel (low/	med): LOW	Date Received:	2/4/2013	

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-09-7	Potassium	1730	ĴĴ		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	 
Comments:					
					·

<u>0002</u>4

.

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE - CEP Former Powerex - EISB Tracer StudySample Matrix:Water

Service Request: R1300698 Date Collected: 2/ 1/13 1755 Date Received: 2/ 4/13

 Sample Name:
 GW-PT-MW-3-020113

 Lab Code:
 R1300698-009

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	n Date Extracted	Date Analyzed	Note
Bromide	300.0	132	mg/L	4.0	3.2	40	NA	2/8/13 23:59	
Chloride	300.0	89.2	mg/L	2.0	0.5	10	NA	2/6/13 01:16	



Columbia	Analytical	l Services			
			METALS -1-		
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract:	R1300698			GW-PT-MW-3-020113	J
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201	
latrix (soi	1/water):	WATER	Lab Sample ID:	R1300698-009	
evel (low/	'med): <u> </u>	WO	Date Received:	2/4/2013	

· ---

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	7890		<u></u>	P
7440-23-5	Sodium	14600			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

•

••••

•

-----

الیا میں میں ا الاری الیوں ال الیو الی ال

. .

.

## COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated
Project:	GE - CEP Former Powerex - EISB Tracer Study
Sample Matrix;	Water
<u> </u>	

Service Request: R1300698 Date Collected: 2/ 1/13 1620 Date Received: 2/ 4/13 _

 Sample Name:
 GW-PT-MW-4-020113

 Lab Code:
 R1300698-007

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	2.9	mg/L	1.0	0.8	10	NA	2/6/13 00:11	
Chloride	300.0	185	mg/L	8.0	1.7	40	NA	2/6/13 20:32	

			METALS -1-			
			INORGANIC ANALYSIS DATA SHEET	SAMPLE	NO.	
Contract:	R1300698			GW-PI-N	IW-4-020113	
Jab Code:		Case No.:	SAS No.:	SDG NO.:	GW-PW-1-0201	
fatrix (soi	il/water):	WATER	Lab Sample ID:	R1300698-007	·	
evel (low/	(med): La	WC	Date Received;	2/4/2013		

. ~

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	11300			P
7440-23-5	Sodium	10600			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
				·····	

•

. . . .....

. .

1

ŧ

. . . .

Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated
Project:	GE - CEP Former Powerex - EISB Tracer Study
Sample Matrix:	Water

Service Request: R1300698 Date Collected: 2/ 1/13 1320 Date Received: 2/ 4/13

 Sample Name:
 GW-PT-MW-5-020113

 Lab Code:
 R1300698-003

Basis: NA

## **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	2.0	mg/L	1.0	0.8	10	NA	2/5/13 22:16	
Chloride	300.0	52.2	mg/L	2.0	0.5	10	NA	2/5/13 22:16	

.

Analytica	l Services			
		METALS -1-		
		INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	· ·
			GW-PT-MW-5-020113	
R1300698				
	Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201	• •
l/water):	WATER	Lab Sample ID:	R1300698-003	
med): I	WO	Date Received:	2/4/2013	
	R1300698	Case No.: 1/water): WATER	METALS -1- INORGANIC ANALYSIS DATA SHEET R1300698 Case No.:SAS No.: 1/water): WATER Lab Sample ID:	METALS -1- INORGANIC ANALYSIS DATA SHEET SAMPLE NO. GW-PT-MW-5-020113 GW-PT-MW-5-020113 I/water): WATER Lab Sample ID: R1300698-003

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	1780	J		   P
7440-23-5	Sodium	4920			P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	··· ·
Comments:					
				······································	

•

-----

-----

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE - CEP Former Powerex - EISB Tracer StudySample Matrix:Water

Service Request: R1300698 Date Collected: 2/ 1/13 Date Received: 2/ 4/13

- , -

Sample Name: Lab Code:

GW-X-1-020113 (Dup of PT-mw-5) R1300698-010

Basis: NA

والمتحاجية والمحاجية

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/6/13 01:33	
Chloride	300.0	52.8	mg/L	2.0	0.5	10	NA	2/6/13 01:33	

Columbia 2	Analytical	Services		
			METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	R1300698			GW-X-1-020113 (DUP #) PT-MW-5)
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201
latri <b>x (</b> soil	/water):	WATER	Lab Sample ID:	R1300698-010
evel (low/m	led): L-	OW	Date Received:	2/4/2013

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	1760	J	<u> </u>	   P
7440-23-5	Sodium	4730	ĪĪ		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		······			
-					- · · · · · · · · · · · · · · · · · · ·
-					

<u>9</u>0026

-

----

· · · · · · · · ·

.....

•••••

:

# COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group Analytical Report

Client: Project:	O'Brien & Gere Engineers, Incorporated GE - CEP Former Powerex - EISB Tracer Study
Sample Matrix:	Water
a	

Service Request: R1300698 Date Collected: 2/1/131455 Date Received: 2/4/13

 Sample Name:
 GW-PT-MW-6-020113

 Lab Code:
 R1300698-006

----

Basis: NA

#### **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilutio Factor	n Date Extracted	Date Analyzed	Note
Bromide	300.0	97.4	mg/L	4.0	3.2	40	NA	2/8/13 23:43	
Chloride	300.0	73.2	mg/L	2.0	0.5	10	NA	2/5/13 23:05	

.



Solumbia	Analytic	al Services	METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	R1300698			GW-PI-MW-6-020113
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201
latrix (soi	.1/water):	WATER	Lab Sample ID:	R1300698-006
evel (low/	'med) :	LOW	Date Received:	2/4/2013

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	14900			P
7440-23-5	Sodium	11900		`	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					

•

. ..

## COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated
Project:	GE - CEP Former Powerex - EISB Tracer Study
Sample Matrix:	Water

Service Request: R1300698 Date Collected: 2/ 1/13 1715 Date Received: 2/ 4/13

 Sample Name:
 GW-PT-MW-7-020113

 Lab Code:
 R1300698-008

_

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
3romide	300.0	11.2	mg/L	1.0	0.8	10	NA	2/6/13 01:00	
Chloride	300.0	173	mg/L	8.0	1.7	40	NA	2/6/13 20:46	

Columbia	Analytical	Services		
<u> </u>	· · · · · · · · · · · · · · · · · · ·		METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract:	R1300698			GW-PT-MW-7-020113
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-1-0201
fatrix (so	.l/water):	WATER	Lab Sample ID:	R1300698-008
evel (low,	(med): Lo	WC	Date Received:	2/4/2013

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	2950			P
7440-23-5	Sodium	8690	ÍÍ		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		<u></u>			
-					 

-

• • • • • • • •

`  $z_{i}$ • • .

> . . ....... . ......

> > 3

. . . . .....

1

-

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE -CEP Former Powerex, EISB Tracer StudySample Matrix:Water

Service Request: R1300715 Date Collected: 2/ 4/13 1227 Date Received: 2/ 4/13

 Sample Name:
 GW-PW-1-020413

 Lab Code:
 R1300715-003

-----

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/6/13 02:22	



			METALS -1-		· ·
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.	
Contract: R1300715				GW-PW-1-020413	
ab Code:	,	Case No.:	SAS No.:	SDG NO.: GW-PW-4-0204	
latrix (soi	l/water):	WATER	Lab Sample ID:	R1300715-003	
evel (low/med): LOW		OW	Date Received:	2/4/2013	

~

CAS No.	Analyte	Concentration	c	Q	м
7440-09-7	Potassium	1370	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
			······		······································
					-

•

· · · ......

محملا المراجعة المحمد مانة

. . .

....

·....

Analytical Report

 Client:
 O'Brien & Gere Engineers, Incorporated

 Project:
 GE -CEP Former Powerex, EISB Tracer Study

 Sample Matrix:
 Water

Service Request: R1300715 Date Collected: 2/4/13 1146 Date Received: 2/4/13

 Sample Name:
 GW-PW-4-020413

 Lab Code:
 R1300715-001

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
3romide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/6/13 01:49	- <u></u>



			METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract: R1300715				GW-PW-4-020413
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-4-0204
atrix (soj	il/water):	WATER	Lab Sample ID:	R1300715-001
evel (low/	(med): L(	W	Date Received:	2/4/2013

Í	CAS No.	Analyte	Concentration	С	Q	м
Ĩ	7440-09-7	Potassium	2020			P

Color Before:	YELLOW	Clarity Before:	CLOUDY	Texture:	
Color After:	YELLOW	Clarity After:	CLEAR	Artifacts:	
Comments:			<u>.</u>		-
					-

•

.....

-----

ł

Analytical Report

Client:	O'Brien & Gere Engineers
Project:	GE -CEP Former Powerex
Sample Matrix:	Water

s, Incorporated x, EISB Tracer Study Service Request: R1300715 Date Collected: 2/4/13 Date Received: 2/4/13

Basis: NA

Sample Name: Lab Code:

GW-PW-X-2-020413 ( Dup of Pw - 4) R1300715-005

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/6/13 04:01	



			METALS -1-	
ontract:	D1200715		INORGANIC ANALYSIS DATA SHEET	SAMPLE NO. GW-PW-X-2-020413 DUP 06 DW-4
ab Code:	R1300715	Case No.:	SAS No.:	SDG NO.: GW-PW-4-0204
atrix (soi	1/water):	WATER	Lab Sample ID:	R1300715-005
evel (low/	med): LO	WC	Date Received:	2/4/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

.....

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	2000	Ì		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
			······		-

•

----

. . . .

Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated	Service Requ
Project:	GE -CEP Former Powerex, EISB Tracer Study	Date Collect
Sample Matrix:	Water	Date Receiv
Sample Name:	GW-PW-12-020413	

Service Request: R1300715 Date Collected: 2/4/13 1205 Date Received: 2/4/13

Sample Name:GW-PW-12-02Lab Code:R1300715-002

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilutior Factor		Date Analyzed	Note
Bromide	300.0	0.9 J	mg/L	1.0	0.8	10	NA	2/6/13 02:06	



			METALS -1-			
Contract: R1300715			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.		
				GW-PW-1	2-020413	
ab Code:		Case No.:	SAS No.:	SDG NO.:	GW-PW-4-0204	
atrix (soi	il/water):	WATER	Lab Sample ID:	R1300715-002	<u> </u>	
evel (low,	/med): L(	WC	Date Received:	2/4/2013		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	1150	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:
Comments:				
_				

•

Analytical Report

Client:	O'Brien & Gere Engineers, Incorporated	Service Request: R1300715
'roject:	GE -CEP Former Powerex, EISB Tracer Study	Date Collected: 2/4/13 1240
Jample Matrix:	Water	Date Received: 2/4/13
ample Name: Lab Code:	GW-PW-13-020413 R1300715-004	Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/6/13 03:11	



	<u></u>		METALS -1-	
			INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
				GW-FW-13-020413
Contract:	R1300715			
ab Code:		Case No.:	SAS No.:	SDG NO.: GW-PW-4-0204
latrix (so:	il/water):	WATER	Lab Sample ID:	R1300715-004
evel (low,	(med): L	WC	Date Received:	2/4/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7440-09-7	Potassium	1720	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
					· · · · · · · · · · · · · · · · · · ·

•

----

1

· · · · · · · · · · ·

، سر بر .

				Chain o	Chain of Custody/Analysis Report	/Aná	lysis	Rep	ort		Page 1 of 1
		Sampler(s): Amanda	a S. Young	1 ' Eu	Paul A.	الأر وبالحد	L.				S S
		(Signature) Anaric	Z	, L	Faul J.	- the		١			
	Laboratory:	<u>ъ</u>	3						Ana	Analysis Required	Project Number
Contact: Amy Spooner-Stevens	ALS Envi	ALS Environmental	Holding Ti	Holding Time: As Per methods, H.T.	ethods, H.T.			Pre	Preservatives: (see key	key at bottom)	
Address: 435 New Karner Road, Albany, N.Y. 12205	1565 Jefferson Rd,	rson Rd,	is 28 days (B	is 28 days (Br) and 6 months (K).	hs (K).	-		4	9		Job Number
Phone: (518) 452-9392 x28	Bldg 300, Ste 360	Ste 360	Package Re	Package Requirement:			G				
Email: Amy.Spooner-Stevens@obg.com	Rochester	Rochester, NY 14623	1°		F						Lab ID:
Project: GE-CEP- Former Powerex, Inc. Facility	Attn: Janice Jacger	ce Jacger	N C INT - 25	1 VI (19 01 / M C 107 - 35)		Į					
EISB Tracer Study	Phone:	1	RDD Format	÷		ຮາວກ					
Location: Auburn, New York	(585) 288-5380	5380	EQuIS 4-file	3		iir) II					
Sample Identification						oJ ło	) dere	Potassi Potassi Potassi	inoid		
Unique Field Sample ID (sys_sample_code)	Sample Location	Date	Time	Sample Type (see kev)	Sample Matrix (see kev)	19dmuV	Reporting Units	d tig tig			
	PW -4	2/4/13	1146	2	NG	ц г.	່ ບ				Lao Sampic ILU
2 GW-PW-12-020413 P	PW-12	2/4/13	1205	Z	Ц Ч	7					
3 GW-PW-1-020413 P	PW - 1	2/4/13	1227	Ν	ъ С	2		X Z	×		
4 GW-PW-13-020413	PW - 13	2/4/13	1240	N	WG	2	<u>ں</u>	X z	×		
5 GW-PUX-2-020413 >	X -2	2/4/13	l	FD	ЫG	2	ъ	× z	×		
v							ი	z			
7							9	Z			
0							ც	N			
0				-			U	z			
10							U	z			
11							ს	z			
12							v	z			
Special Instructions: 1) Analyze in accordance with GE spot bid. Deliverables include: 1 bound & 1 PDF copies on disks.	with GE spo on disks.	<b>5</b>	Report dete	ctions abov	Report detections above MDL, but below PQL ("J" flags).	below	PQL	u)	ંગ	GE Level 3 Package with 10 business day TA;	10 business day TA;
Use this space if shipped via courier (e.g., Fed Ex) Relinquished by:	Date		Courier Name:	ย				Date	e	Condition:	Other Comments or Notes
	Time				r			Time	ne		regarung conution of samples as received:
Actinguished by: American S. Young	$\frac{\text{Date } \mathbf{Z}}{\text{Time } \mathbf{I}^{\prime}}$	2/4/2013	Received by	ucer	Mag	2		Date Time	1752 11752	Custody Seals intact?	
Relinquished by:	Date		Received by:					Date	) - 2	Cooler Temperature:	1
ofi	11mc		of:					Time	nc		ļ
Sample Type: N = Normal env. sample, FD = field duplicate, EB = Bquipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waster, WP = Potable Water, AA = Ambient Air, Other (Specify): Preservatives Code: 0 = 2000, 1 = HCT = 0 - UNOC = 0 - MOCT = - 7 - 2000, 0 - 2000, 0 - 2000, 0 - 2000, 0 - 2000	plicate, EB = ound Water, V 3 - UDCOA	Equipment Bla WS = Surface V A = MLOTT =	ink, TB = T Vater, WW = - 72, A	rip Blank, MS : Waste Water	S = Lab Matrix , WP = Potab	Spike, le Wate	Other (	Specify = Amb	y: ient Air, Other		715 5 nginers, incorporated Powerex, EISB Tacer Study
רוכאכולאנולב לטעני. ע - ווטווי, ו - הטבו, ג - הואטא,	5 = H∠v∪4,	4 = NaUH, 0	= Zn Acetat	5, 6 = MeUH	, 7 = NaHSO	* 8 1	ther				

-----

00007

# METALS -1-INORGANIC ANALYSIS DATA SHEET

		INORGANIC ANALISIS DATA SHEET	SAMPLE NO.
Contract:	R1300877		GW-PW-1-020813
Lab Code:	Case No.:	SAS No.:	SDG NO.: GW-PW-1-0208
Matrix (soi	1/water): WATER	Lab Sample ID:	R1300877-001
Level (low/	med):	Date Received:	2/8/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	1510	J	<u> </u>	P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:	<u> </u>				
-			· · · · · -		

.

Analytical Report

	i maij dour roport	
Client:	O'Brien & Gere Engineers, Incorporated	1
Project:	GE-CEP Former Powerex EISB Tracer Study	
Sample Matrix:	Water	
Sample Name	CW DW 1 020812	

Service Request: R1300877 Date Collected: 2/ 8/13 0916 Date Received: 2/ 8/13

 Sample Name:
 GW-PW-1-020813

 Lab Code:
 R1300877-001

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilutior Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/11/13 23:49	



# METALS -1-INORGANIC ANALYSIS DATA SHEET

	MONOAUC AUALISIS DATA SHEET	SAMPLE NO.
Contract: R1300877		GW-PW-4-020813
Lab Code: Case N	.: SAS No.:	SDG NO.: GW-PW-1-0208
Matrix (soil/water): WATER	Lab Sample ID:	R1300877-002
Level (low/med): LOW	Date Received:	2/8/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м
7440-09-7	Potassium	1760	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	·····
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
_	· · · · · · · · · · · · · · · · · · ·			·····	
_		······································			

-

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE-CEP Former Powerex EISB Tracer StudySample Matrix:WaterSample Name:GW-PW-4-020813

Service Request: R1300877 Date Collected: 2/ 8/13 0933 Date Received: 2/ 8/13

Sample Name:GW-PW-4-020Lab Code:R1300877-002

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor		Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	ŇA	2/12/13 00:05	

.

# METALS -1-INORGANIC ANALYSIS DATA SHEET

			SAMPLE NO.
Contract:	R1300877		GW-PW-12-020813
Lab Code:	Case No.:	SAS No.:	SDG NO.: GW-PW-1-0208
Matrix (soi	l/water): WATER	Lab Sample ID:	R1300877-003
Level (low/	med): LOW	Date Received;	2/8/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	Q	м
7440-09-7	Potassium	3190	1		P

Color Before:	YELLOW	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:		- 1,477 - 2 - 2 - 2			
	· · · · · · · · · · · · · · · · · · ·				

-

Analytical Report

Client:O'Brien & Gere Engineers, IncorporatedProject:GE-CEP Former Powerex EISB Tracer StudySample Matrix:WaterSample Name:GW-PW-12-020813

Service Request: R1300877 Date Collected: 2/ 8/13 0952 Date Received: 2/ 8/13

Sample Name:GW-PW-12-02Lab Code:R1300877-003

Basis: NA

						Dilution		Date	
Analyte Name	Method	Result Q	Units	MRL	MDL	Factor	Extracted	Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/12/13 00:22	



# METALS -1-INORGANIC ANALYSIS DATA SHEET

	INORGANIC ANALYSIS DATA SHEET	SAMPLE NO.
Contract: R1300877		GW-PW-13-020813
Lab Code: Case No.:	SAS No.:	SDG NO.: GW-PW-1-0208
Matrix (soil/water): WATER	Lab Sample ID:	R1300877-004
Level (low/med): LOW	Date Received:	2/8/2013

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	м
7440-09-7	Potassium	1860	J		P

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	<u></u>
Comments:		, <u></u>	<u> </u>		
=		· · · · · · · · · · · · · · · · · · ·			

.

.

Analytical Report

O'Brien & Gere Engineers, Incorporated Service Request: R1300877 Client: GE-CEP Former Powerex EISB Tracer Study **Project:** Sample Matrix: Water Date Received: 2/8/13 Sample Name: GW-PW-13-020813 R1300877-004

Date Collected: 2/8/13 1005

Lab Code:

Basis: NA

### **General Chemistry Parameters**

Analyte Name	Method	Result Q	Units	MRL	MDL	Dilution Factor	1 Date Extracted	Date Analyzed	Note
Bromide	300.0	1.0 U	mg/L	1.0	0.8	10	NA	2/12/13 01:11	

.

90020