

Bernard Franklin New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11th Floor Albany, New York 12233-7017

Subject: NYSEG McMaster Street Former MGP Site Upland PDI Summary Report

Dear Mr. Franklin:

This letter has been prepared on behalf of NYSEG to summarize the activities and results of the Upland Pre-Design Investigation (Upland PDI) completed at the NYSEG McMaster Street former Manufactured Gas Plant (MGP) Site (the site) located in Auburn, New York. The objectives of the Upland PDI were to obtain the data necessary to complete the Remedial Design, including:

- Confirm the horizontal limits of soil removal based on the criteria presented in the November 2009 New York State Department of Environmental Conservation (NYSDEC) Record of Decision (ROD) (NYSDEC, 2009).
- Delineate shallow foundations and obstructions within the soil removal area.
- Obtain geotechnical data necessary to evaluate and design soil excavation support systems.
- Obtain groundwater quality data to support the design of a temporary water treatment system to be used during soil excavation activities.
- Conduct a site survey to document the locations of Upland PDI sampling activities and identified utilities to facilitate preparation of the remedial design.

The following sections present descriptions of the Upland PDI activities, Upland PDI results, and rationale supporting the limits of the proposed soil removal areas for the selected site remedy.

ARCADIS of New York, Inc. 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.0017 www.arcadis-us.com

ENVIRONMENTAL

Date: June 15, 2012

Contact: Jason Brien, PE

Phone: 315.671.9114

Email: jason.brien@arcadis-us.com

Our ref: B0013049.0009 #10

Imagine the result

Upland PDI Activities

Upland PDI activities were conducted in two phases: the first during September/ October 2011 and the second during February/March 2012. Upland PDI activities were conducted in accordance with the NYSDEC ROD, the NYSDEC-approved May 2011 *Remedial Design Work Plan* (RDWP) (ARCADIS, 2011), and a January 17, 2012 letter work plan (describing the additional PDI activities). For the purpose of this summary, Upland PDI field activities are organized as follows:

- Utility Location and Coordination
- Soil Investigation
- Groundwater Investigation
- Site Survey

PDI field activities were conducted in accordance with the methodologies and protocols presented in the *Field Sampling Plan* (FSP), the *Quality Assurance Project Plan* (QAPP), and the *Health and Safety Plan* (HASP) included as appendices to the RDWP.

A detailed description of the Upland PDI field activities is presented below.

Utility Location and Coordination

Kick-off meetings for the initial and additional Upland PDI activities were conducted at the site on September 8, 2011 and on February 27, 2012, respectively. Kick-off meetings were attended by ARCADIS, ARCADIS' drilling subcontractor (Parratt-Wolff, Inc. [Parratt-Wolff]) and a private utility locator (SoftDig, Inc. [SoftDig]). During the kick-off meetings, ARCADIS reviewed investigation locations and identified potential conflicts (i.e., physical obstructions, subsurface utilities) with the proposed investigation locations. Based on the utility markout, soil boring SB-24 was relocated approximately seven feet north of the proposed location due to the presence of subsurface utilities.

During the utility markout conducted as part of the initial Upland PDI kick-off, the location of the sanitary sewer (as marked out by the City of Auburn) did not correspond with the location historically shown on Remedial Investigation (RI) and Feasibility Study (FS) figures. Additionally, during the PDI activities, four additional sanitary and/or storm sewer manholes were identified in an area south of the railroad right-of-way. Based on the location of manholes and the location of the sanitary

sewer (as marked out by the City of Auburn), the sanitary sewer alignment has been updated on project figures/drawings.

Additionally, City of Auburn drawings (review by ARCADIS in support of the Upland PDI) indicate that the 'outlet pipe' located on the Owasco Outlet bank (east of the former gas holder) is associated with a storm sewer that extends from the four additional sanitary and/or storm sewer manholes located south of the railroad right-of-way. The location of the storm sewer shown on the figures included herein is inferred based on manhole locations, the location of the outlet pipe, and City of Auburn drawings. The location of the storm sewer pipe was not physically verified by the private utility locator or the City during the PDI. Based on drawings obtained from the City of Auburn, this storm sewer also appears to serve as a sanitary sewer overflow during peak storm events.

Soil Investigation

Upland PDI soil investigation activities consisted of drilling soil borings and excavating test pits to facilitate soil characterization; sample collection; and identification of potential subsurface obstructions. Descriptions of the Upland PDI soil boring and test pitting activities are presented below. *Soil Borings*

Parratt-Wolff completed a total of 26 soil borings (SB-01 through SB-26) during the Upland PDI activities (soil borings SB-01 through SB-17 were completed during the initial Upland PDI activities and SB-18 through SB-26 were completed during the additional PDI activities). Prior to drilling, soil boring locations were cleared to approximately four feet below grade using an air knife and vacuum truck. Soil boring locations are shown on Figure 1. Variances in the soil borings completed during the Upland PDI relative to the RDWP and the January 17, 2012 letter work plan consisted of the following:

- Soil boring SB-12 was drilled as an additional boring to confirm the eastern limit of the proposed soil removal area.
- Soil borings SB-13 through SB-15 were drilled as additional borings to confirm the western limit of the proposed soil removal area due to visual impacts observed in test pits MTP-1A, MTP-1B, MTP-4A and MTP-5.
- Soil borings SB-16 and SB-17 were drilled in the flood plain area to confirm the northern extent of the proposed soil removal limits.

- Soil borings SB-18 and SB-19 were drilled as part of the additional PDI activities to further confirm the eastern limits of the proposed soil removal area.
- Soil borings SB-20 through SB-26 were drilled as part of the additional PDI activities to further confirm the western limits of the proposed soil removal area due to visual impacts observed in test pits MTP-1A, MTP-1B, MTP-4A and MTP-5 and the absence of visual impacts in soil borings SB-14 and SB-15.

All borings were sampled continuously from the ground surface (to the depth of completion) using 2-inch diameter, 2-foot long, split-spoon sampling devices. An ARCADIS geologist measured and recorded the length of the representative sample recovered from each interval and visually characterized each soil sample for soil type and the presence of visible staining, sheen, NAPL, and obvious odors. Each sample was containerized and labeled with appropriate identification information (e.g., site information, date, blow counts, depth interval, etc.).

Soil samples collected from soil boring locations SB-01, SB-02, SB-03, SB-04, SB-10, and SB-13 through SB-26 were submitted to TestAmerica, Inc. (TestAmerica) located in Amherst, New York for laboratory analysis of benzene, toluene, ethylene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs). Samples collected from soil borings SB-05 through SB-09, SB-11, and SB-12 were not submitted for laboratory analysis based on the presence of visual impacts (e.g., NAPL, blebs). A summary of the soil sample analytical testing is presented in Table 1.

A total of 17 samples collected from soil borings SB-03, SB-05 through SB-09, and SB-11 through SB-14 were submitted for geotechnical testing at GeoTesting Express, Inc. located in Acton, Massachusetts. Geotechnical testing consisted of moisture content, grain size analysis, Atterberg limits, and specific gravity. Cohesive soils were not encountered and therefore undisturbed soil samples were not collected. A summary of the soil sample geotechnical testing is presented in Table 1.

After completing each boring, boreholes were backfilled with cement/bentonite grout and down-hole drilling equipment was decontaminated in accordance with the FSP. Parratt-Wolff constructed a temporary decontamination pad and steam cleaned nondisposable equipment that came into contact with site soils.

Test Pits

Parratt-Wolff excavated a total of 10 test pits to further delineate the extent of visually impacted soils and identify subsurface obstructions that may be relevant during the design of the selected site remedy. Test pit locations are shown on Figure 1.

Each test pit was completed using a track-mounted excavator. Test pits were excavated to a depth of refusal (either on bedrock or a foundation element) or until the sidewalls of the test pit became unstable. Test pits were generally completed to a depth of 9 to 10 feet below ground surface (bgs). Excavated material was staged on polyethylene sheeting adjacent to the test pits. An ARCADIS geologist observed the test pitting activities and noted soil characteristics (i.e., visual impacts, soil type, etc.), the presence/absence, location, and type of subsurface structures encountered, along with the materials of construction. Relevant observations were noted and photographed.

Variances in the test pits completed during the PDI relative to the RDWP consisted of the following:

- Test pits MTP-3A and MTP-3B were expanded significantly in size to determine the extent of a subsurface structure encountered south of the collision shop.
- Test pits MTP-4A and MTP-4B were completed to further delineate visual impacts and the subsurface structure encountered in test pit MTP-3A.
- Test pit MTP-5 was completed to further delineate visual impacts observed in test pit MTP-3A.

Parratt-Wolff backfilled each test pit by replacing excavated material in the reverse order that it was removed.

Community Air Monitoring

ARCADIS conducted community air monitoring for volatile organic compounds (VOCs) and airborne particulate matter with a diameter of 10 micrometers or less (PM_{10}) during intrusive investigation activities (i.e., soil boring drilling and test pit excavation). One upwind station and one downwind station were established each morning before the start of work and removed at the completion of each work day. Station locations were adjusted throughout the day based on prevailing wind direction. Instruments at each location were monitored periodically throughout the

day for potential action level exceedances and data was retrieved from each instrument daily following the completion of site activities. The upwind photoionization detector (PID) used to monitor upwind VOC levels erroneously did not record data during additional PDI activities or air monitoring data was lost when downloading data from the equipment. On days where field personnel recognized that air monitoring equipment was not recording properly, periodic manual readings were used to record upwind VOC conditions.

IDW Management

Investigation-derived waste (IDW) (e.g., soil cuttings, decontamination water, decontamination pad construction materials) was drummed and staged on-site in a NYSEG-approved location. Drums were labeled with non-hazardous labels describing the drum contents, as well as start and end accumulation dates. A composite soil waste characterization sample was collected and submitted to TestAmerica for analysis of toxicity characteristic leaching procedure (TCLP) benzene, polychlorinated-biphenyls, reactivity and total cyanide.

Groundwater Investigation

ARCADIS conducted groundwater investigation activities during the week of September 26, 2011. As described in the RDWP, the groundwater investigation activities were completed in support of designing a temporary groundwater treatment system to be used during remedial construction.

Sampling activities were completed in accordance with the RDWP and the associated FSP. Prior to sampling groundwater, ARCADIS field personnel gauged the wells for depth to water and depth to the bottom of the well. Following well purging, groundwater samples were collected using dedicated polyethylene bailers.

Groundwater samples were collected from eight monitoring wells (MW-04-03, MW-04-04, MW-04-05, MW-05-02R, MW-05-7R, MW-05-08R, MW-06-10 and MW-06-13R) and submitted for the following parameters:

- Total Toxic Organics (TTO)
- Target Analyte List (TAL) inorganics and cyanide (filtered and unfiltered samples)
- Oil and grease
- Total suspended solids (TSS)
- Total dissolved solids (TDS)
- 5-Day biological oxygen demand (BOD5)

- Chemical oxygen demand (COD)
- Bioactivity (via iron-reducing, sulfate-reducing, and slime-forming bacteria)
- Total kjeldahl nitrogen (TKN)
- Hardness
- pH

With the exception of the bioactivity analysis, laboratory analyses were conducted by TestAmerica. Bioactivity analyses were conducted by Microbial Insights, located in Rockford, Tennessee. A summary of the groundwater sample analytical testing is presented in Table 1.

IDW Management

Purge water was combined with the decontamination water generated during soil boring/test pitting activities. A liquid waste characterization composite sample was collected and submitted to TestAmerica for analysis for total benzene and total cyanide.

Site Survey

ARCADIS's surveying subcontractor, Paul James Olszewki, P.L.S., (Mr. Olszewski), completed surveying activities during two site visits in October 2011. Mr. Olszewski surveyed the ground surface elevation and location of each soil boring and test pit completed during soil investigation activities. Mr. Olszewski also collected ground surface elevations to facilitate the generation of a one-foot topographic contour map of the site. In addition, ARCADIS surveyed subsurface obstructions encountered in test pits (e.g., subsurface pipes, walls, etc.), subsurface utilities encountered during test pitting activities, and the location and ground surface elevation of the additional soil borings.

Site survey activities were conducted relative to the following:

- Horizontal datum: North American Datum of 1983, New York State Plane
 Coordinate System, Central Zone
- Vertical datum: North American Vertical Datum of 1988

A topographic map of the site is included on Figure 2.

Upland PDI Results

This section presents the results of the Upland PDI activities.

Soil Investigation

As indicated above, community air monitoring was conducted in support of the soil investigation activities. Upwind and downwind VOC and particulate levels recorded during the soil investigation activities are provided in Attachment 1. Based on the results of the real-time monitoring, action levels for VOCs and PM₁₀ were not exceeded during the soil investigation activities. As indicated previously, field personnel were unable to recover all air monitoring data on days that included intrusive site activities due to technical issues with air monitoring equipment. No visible dust was observed leaving the work area during completion of upland PDI activities. Therefore, it can be assumed that, consistent with recovered data, no air monitoring exceedances occurred on days when air monitoring data was not recorded by perimeter monitoring instrumentation.

Soil borings were completed at the locations shown on Figure 1. Soil boring logs are included as Attachment 2. A summary of the visual impacts observed in the Upland PDI soil borings is presented in Table 2 and briefly described below.

- Heavily NAPL-impacted soil was observed in soil boring SB-08 at 10.2 to 10.3 ft bgs.
- NAPL impacted soil was observed in soil boring SB-11 at 10.7 and 12.3 ft bgs.
- Discontinuous blebs of NAPL were generally observed in soil borings SB-06, SB-07, and SB-09 from 8 to 11 ft bgs and in soil borings SB-05 and SB-11 from 13 to 15 ft bgs.
- Sheens and staining were generally observed in soil borings SB-02, SB-12, and SB-13 from 8 to 12 ft bgs and in SB-07 from 3 to 10 ft bgs.

Analytical results for soil samples collected during the Upland PDI are presented in Table 3. A soil sample collected from soil boring SB-19 (12 to 13.1 ft bgs) contained total PAHs at a concentration of 580 milligrams per kilogram (mg/kg). Remaining soil samples submitted for laboratory analysis did not contain total BTEX or total PAHs at concentrations greater than 10 or 500 mg/kg, respectively. ARCADIS validated the

laboratory results, which are presented in Data Usability Summary Reports (DUSRs), included as Attachment 3.

The results of the geotechnical testing will be used during the design of the selected remedial alternative and are not discussed in detail in this letter report. As indicated previously, cohesive soils were not encountered during the Upland PDI activities and therefore, undisturbed soil samples were not collected. Shallow overburden materials (i.e. materials shallower than 10 feet bgs) generally consist of fill materials. An electronic copy of the geotechnical testing laboratory reports is included as Attachment 4.

Test pits were completed at the locations shown on Figure 1. Test pit logs are included as Attachment 5 and a photo log is included as Attachment 6. Notable findings/observations during the completion of the test pits are as follows:

A brick subsurface structure was encountered in the general vicinity of test pit locations MTP-3A and MTP-3B. The structure consisted of a main tunnel with an arched top (see Photo #14, Attachment 5) and three to four "rooms" or vaults branching off from the main tunnel. When encountered, the structure was noted to be filled with water (which was not flowing). NAPL was observed floating on the surface of the water (see Photo #14), however, additional sheens/NAPL were not observed when sediment at the bottom of the structure was agitated. Although the origin and function of the subsurface structure is unknown, the structure appeared to be a basement-type foundation and was not associated with the nearby sanitary sewer. The structure appeared to be tied into or extend beneath the retaining wall immediately south of the former collision shop, but did not appear to connect to the former collision shop.

An additional unknown concrete structure was encountered east of the basement-type foundation (at the west end of test pit MTP-3B). The concrete structure was left in place during the test pitting activities, as it is likely associated with the sanitary sewer that bisects the site.

- The wall of the former gas holder was encountered in test pits MTP-2 and MTP-2A.
- Test pits completed in the proposed removal area contained numerous potential subsurface obstructions and varying amounts of debris including: abandoned pipes; concrete foundations; timbers/wood; brick walls; and fill materials consisting of brick rubble, cinders, gravel, animal bones, and sand/silt.

- Visual impacts observed in the test pits are summarized in Table 2 and generally consisted of the following:
 - Test pits MTP-1A, MTP-1B, and MTP-1C: blebs and heavy sheens generally observed at 8 to 10 ft bgs
 - Test pit MTP-2: Heavily NAPL coated soils and staining observed at 8 to 10 ft bgs
 - Test pits MTP-3A: Sheen and NAPL coatings observed at 9 ft bgs
 - Test pit MTP-4A: NAPL coated soil observed 3 to 5 ft bgs
 - Test pit MTP-5: Isolated sheens and NAPL coated soils observed from 7 to 9 ft bgs

Groundwater Investigation

Groundwater samples were collected from select monitoring wells in support of designing a temporary water treatment system to be utilized during remedial construction activities. Analytical results for groundwater treatability samples are presented in Table 5. Groundwater sampling logs are included as Attachment 7.

IDW Management

Waste characterization results for soil and liquid IDW generated during the Upland PDI activities are presented in Tables 5 and 6, respectively. Based on the results of the laboratory analysis, the IDW was transported for off-site disposal as non-hazardous waste through NYSEG's waste handling contractor (Clean Harbors).

Proposed Removal Areas

Based on the PDI results, the horizontal and vertical limits of the proposed removal areas have been re-defined in accordance with the removal criteria presented in the NYSDEC ROD. Proposed revised soil removal limits are shown on Figure 3. Rationale for establishing the additional limits of the proposed removal area is presented below.

• Soil excavation is not proposed behind (i.e., north of) the Auburn Tank building. Although NAPL has be observed/recovered from bedrock at monitoring wells

MW-06-13R and MW-06-15R, visual impacts were not observed in the overburden during the drilling of soil borings completed to install the wells. Visual impacts were not observed in soil borings SB-01, SB-03, and SB-04 and only staining and sheens were observed in soil boring SB-02 from 8 to 9 ft bgs. Additionally, soil samples collected from soil borings SB-01 through SB-04 did not contain total BTEX or total PAHs at concentrations greater than 10 and 500 mg/kg, respectively. The northwest extent of the proposed removal area is defined by PDI soil boring SB-03 and RI test pit TP-06-14, which were free of visual impacts and did not contain total PAHs/total BTEX at concentrations greater than 500 and 10 mg/kg, respectively.

- The western extent of the proposed soil removal limits has been revised based on visual impacts observed in soil boring SB-09 and test pit MTP-1A. Soil removal limits to the west are defined by soil borings SB-15, SB-20, SB-23, SB-24, and SB-25, which did not contain any visual impacts. Additionally, soil samples collected from these soil borings did not contain total PAHs/total BTEX at concentrations greater than 500 and 10 mg/kg, respectively.
- Isolated sheens and NAPL coated soils were observed from 7 to 9 ft bgs in a 3foot long section of PDI test pit MTP-5 (located west of the proposed soil removal limits). However, soil excavation is not proposed in this area as the visual impacts were isolated and relatively minor. Soil boring SB-22 was completed immediately adjacent to PDI test pit MTP-5 during the additional PDI activities and was free of visual impacts. Furthermore, a soil sample (SB-22 [6.0-7.2 ft bgs]) collected from the soil boring contained total PAHs and total BTEX at concentrations of 11 mg/kg and less than 1 mg/kg, respectively.
- Based on visual impacts observed in soil boring SB-05, the area immediately east of the former gas holder has been included within the proposed soil removal limits.
- The eastern extent of the proposed soil removal limits has been revised based on elevated total PAH concentrations observed in soil boring SB-19. Soil removal limits to the east are defined by PDI soil boring SB-12 and RI soil borings completed to facilitate installation of monitoring wells MW-04-01 and MW-06-01 RI/RD, which did not contain any visual impacts in overburden material that meet removal criteria (note that a soil sample collected from SB-12 contained wood fragments with NAPL coating). Additionally, soil samples collected from the borings completed to install monitoring wells MW-04-01 and MW-06-01 did not contain total PAHs/total BTEX at concentrations greater than 500 and 10 mg/kg,

respectively. The eastern extent of the proposed soil removal area is also defined by the railroad right-of-way south of monitoring well MW-04-01 and the retaining wall north of soil borings SB-12 and SB-18. Additionally, soil borings SB-16 and SB-17 (completed north of the retaining wall) did not contain any visual impacts and soil samples collected from these borings did not contain total PAHs/total BTEX at concentrations greater than 500 and 10 mg/kg, respectively.

• The southern extent of the proposed soil removal limits has been revised based on visual impacts observed in test pits MTP-3A and MTP-4A. The southern extent is defined by the concrete retaining wall of the elevated railroad right-ofway.

Remedial Design Schedule

Based on the results of the Upland PDI activities presented herein, sufficient site data exists to proceed with the remedial design. An anticipated schedule for the remedial design is presented in the following table.

Schedule Component	Date
Preliminary (50%) Remedial Design Report to NYSDEC	August 30, 2012
NYSEG receives NYSDEC comments on the <i>Preliminary</i> (50%) Remedial Design Report	September 2012
Draft (95%) Remedial Design Report to NYSDEC	December 2012
NYSEG receives comments on the <i>Draft (95%) Remedial Design Report</i>	January 2013
Final (100%) Remedial Design Report to NYSDEC	February 2013

Mr. Bernard Franklin June 15, 2012

Please do not hesitate to contact Mr. John Ruspantini of NYSEG at 607.762.8787 or the undersigned at 315.671.9114 if you have any questions or comments regarding the information presented in this letter or any other aspects of this project.

Sincerely,

ARCADIS of New York, Inc.

an

Jason Brien, P.E. Principal Engineer

Copies: John Ruspantini, NYSEG (2 copies) Margaret A. Carrillo-Sheridan, P.E., ARCADIS (w/o attachments) Keith A. White, C.P.G., ARCADIS (w/o attachments)

Figures

Figure 1	Pre-Design Investigation Location Map
Figure 2	Topographic Map
Figure 3	Proposed Soil Removal Areas

Tables

- Table 2Visual Impacts Summary
- Table 3Soil Analytical Results
- Table 4Groundwater Analytical Results
- Table 5
 Soil Waste Characterization Results
- Table 6
 Liquid Waste Characterization Results

Attachments

- Attachment 1 Air Monitoring Logs (on CD)
- Attachment 2 Soil Boring Logs
- Attachment 3 Data Usability Summary Reports (on CD)
- Attachment 4 Geotechnical Testing Laboratory Reports (on CD)
- Attachment 5 Test Pit Logs
- Attachment 6 Photo Log w/ figure
- Attachment 7 Groundwater Sampling Logs (on CD)

Tables

Table 1 Sample Analysis Summary

NYSEG - McMaster Street Former MGP Site - Auburn, New York Upland PDI Summary Report

Location	Depth	Date	втех	PAHs	Total Toxic Organics - VOCs	Total Toxic Organics - SVOCs	Target Analyte List - Inorganics + Mercury	Cyanide	Oil & Grease	Total Suspended Solids (TSS)	Total Dissolved Solids (TDS)	5 Day Biochemical Oxygen Demand	Chemical Oxygen Demand	Bioactivity	Total Kjeldahl Nitrogen	Hardness	Hd	Moisture Content	Atterberg Limits	Grain-size analysis - #200 wash	Grain-size Analysis - Sieve and Hydrometer	Specific Gravity
Soli Samples	5		1	ī		ī				ī		-	ī					ī				
SB-01	5.0-6.8	9/30/2011	Х	Х																		
SB-01	10.9-11.9	9/30/2011	х	х																		
SB-02	8.0-10.5	9/26/2011	Х	х																		
SB-03	8.0-9.5	9/26/2011	x	x																		
SB-04	8.0-10.9	9/26/2011	Y	Y																		
CD 04	0.0 10.0 9 0 10 4	0/26/2011	Ň	×																		-
SD-10	0.0-10.4	9/20/2011	^	^ 			-														<u> </u>	-
SB-13	9.0-10.8	9/29/2011	Х	х																	l	
SB-14	7.0-9.3	9/30/2011	Х	Х																		
SB-15	7.0-8.9	10/1/2011	Х	х																		
SB-16	2.0-4.3	10/2/2011	х	х																		
SB-17	2.0-4.3	10/3/2011	х	х																		
SB-18	12.0-13.4	2/29/2012	x	x																		
SB-10	12 0-13 1	2/20/2012	v	v																		
SP 20	2000	2/1/2012	v	v																		
SD-20	0.0-9.0	3/1/2012	×	×																		-
SB-21	8.0-8.7	2/29/2012	х	х																	l	
SB-22	6.0-7.2	3/1/2012	Х	Х																		
SB-23	8.0-8.7	3/1/2012	Х	Х																		
SB-24	8.0-8.9	2/29/2012	х	х																		
SB-25	8.0-10.4	2/29/2012	х	х																		
SB-26	8.0-10.6	2/29/2012	x	x																		
Groundwato	Samples	_,,																				
Gloundwaler	Samples		1				1					1										
MW-04-03		9/29/2011			Х	Х	х	Х	Х	Х	Х	х	Х	Х	Х	Х	Х					
MW-04-04		9/30/2011			х	Х	х	х	х	х	х	х	Х	х	х	х	х					
MW-04-05		9/30/2011			х	х	х	х	х	х	х	х	х	х	х	х	х					
MW-05-2R		9/29/2011			х	х	х	х	х	х	х	х	х	х	х	х	х					
MW-05-07R		9/29/2011			х	х	х	х	х	х	х	х	х	х	х	х	х					
MW-05-08R		9/29/2011			x	x	x	x	x	x	x	x	x	x	х	x	x					
MW-06-10		9/28/2011			Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y					-
MW-06-13P		0/20/2011			v	v	v	v	v	v	v	v	v	v	v	v	v					-
Controhning		3/23/2011			^	^	^	^	^	^	^	^	^	^	^	^	^				L	
Geolechnica	i Samples		1					_	-		-	1			_			1	_			
SB-03	0.0-5.0	9/26/2011																Х			X	
SB-05	5.0-15.0	9/27/2011																Х			Х	Х
SB-06	0.0-5.0	9/27/2011																х			х	
SB-06	5.0-10.7	9/27/2011																			х	
SB-07	5.0-9.7	9/27/2011																х		х		
SB-08	0.0-5.0	9/28/2011																			x	
SB-08	10.0-12.0	9/28/2011																x	x			x
SB-09	1 0-5 0	9/27/2011																, v	, n	<u> </u>	×	Ê
SP 00	5.0.44.2	0/27/2011	<u> </u>																		<u> </u>	┣
SB-09	5.0-11.5	9/21/2011																×		X	<u> </u>	
SB-11	0.0-5.0	9/20/2011	I															X			X	—
SB-11	5.0-12.0	9/28/2011																	Х	х	L	X
SB-11	12.0-14.0	9/28/2011																х				\vdash
SB-12	10.0-12.0	9/28/2011																х	х	х		
SB-13	0.0-4.5	9/29/2011																х			х	1
SB-13	7.4-8.4	9/29/2011					I					I						х			1	1
SB-14	0.0-4.0	9/30/2011	1																		x	1
SB-14	5.0-9.0	9/30/2011																x			x	1
																		. ^				

Notes:

Analysis conducted by Microbial Insights located in Rockford, Tennessee.

Analysis conducted by TestAmerica located in Buffalo, New York.

Analysis conducted by GeoTesting Express located in Acton, Massachusetts.

Table 2 Visual Impacts Summary

Boring/ Test Pit ID	Date Advanced	Potential Impacts	General Subsurface Soils	Completion Depth	Samples Collected BTEX & PAH Analysis
Soil Borings					
SB-1	9/30/2011	No obvious impacts	0 - 6.8 ft bgs - FILL	6.8 ft bgs	5 - 6.8 ft bgs
SB-2	9/26/2011	Trace dark staining and sheen from 8 to 9.1 ft bgs	0 - 7.1 ft bgs - Sand & Gravel fill 7.1 - 10.5 ft bgs - Fine SAND, some gravel and silt	10.5 ft bgs	8 - 10.5 ft bgs
SB-3	9/26/2011	No obvious impacts	0 - 7 ft bgs - FILL 7-9.5 ft bgs - F-SAND, some silt and gravel, trace clav	9.5 ft bgs	8 - 9.5 ft bgs
SB-4	9/26/2011	No obvious impacts	0 - 7 ft bgs - Sand & Gravel FILL 7 - 9.5 ft bgs - F-SAND, some gravel	10.9 ft bgs	8 - 10.9 ft bgs
SB-5	9/27/2011	Little NAPL blebs and moderate sheen from 13 to 15 feet bgs	0 - 15 ft bgs - SAND & GRAVEL Fill	15 ft bgs	None
SB-6	9/27/2011	Little NAPL blebs and sheen from 10 to 10.7 ft bgs.	0 - 8.1 ft bgs - Fill 8.1 - 10.7 ft bgs - Fine SAND, little Silt and Gravel 10.7 - 11.4 ft bgs Gravel (till-like)	11.4 ft bgs	None
SB-7	9/27/2011	Sheen and staining from 3 to 9.7 ft bgs Heavy sheen, NAPL blebs and staining from 8 to 9.7 ft bgs	0 - 9.7 ft bgs - SAND & GRAVEL Fill	9.7 ft bgs	None
SB-8	9/28/2011	Heavily impacted between 10.2 and 10.3 feet bgs with brown-black NAPL	0 - 6 ft bgs - Fill 6 - 10 ft bgs - SAND & GRAVEL 10 - 11.9 ft bgs - Clayey SILT, little Gravel	11.9 feet bgs	None
SB-9	9/27/2011	Sheen from 8 to 11.2 ft bgs Little to trace NAPL blebs from 11 to 11.2 ft bgs	0 - 11.2 ft bgs - Sand & Gravel Fill	11.2 ft bgs	None
SB-10	9/26/2011	Sheen and trace NAPL blebs from 3.5 to 5 ft bgs Trace sheen from 8 to 9 ft bgs	0 - 8 ft bgs - Sand & Gravel Fill 8 - 10.4 ft bgs - f-Sand and Silt, little gravel and clay	10.4 ft bgs	8 - 10.4 ft bgs
SB-11	9/28/2011	1-inch thick band of brown-black NAPL at 10.7 ft bgs 1/2-inch thick band of brown-black NAPL at 12.3 ft bgs Trace NAPL blebs from 14 to 14.2 ft bgs	0 - 14.2 ft bgs - SILT with varying amounts of Sand and Gravel.	14.2 ft bgs	None
SB-12	9/28/2011	Trace brown NAPL coating organics from 10-11.2 ft bgs	0 - 10 ft bgs - FILL 10-12.4 ft bgs - Brown SILT, little F-Sand and Gravel	12.4 ft bgs	None
SB-13	10/6/2011	Trace sheen at 9.3 ft bgs	0 - 4.5 ft bgs - FILL 4.5 - 10.2 ft bgs - SAND and SILT, little organics, little gravel increasing with depth 10.2 - 10.4 ft bgs - Weathered rock	10.8 ft bgs	9.0 - 10.8 ft bgs
SB-14	10/6/2011	No obvious impacts	0 - 4 ft bgs - FILL 4 - 9 ft bgs - SILT, little f-sand, clay, f-m gravel 9 - 9.3 ft bgs - Weathered rock	9.3 ft bgs	7.0 - 9.3 ft bgs
SB-15	10/6/2011	No obvious impacts	0 - 8 ft bgs - SAND and SILT, little f-m-c gravel increasing with depth, trace clay	8.9 ft bgs	7.0 - 8.9 ft bgs
SB-16	10/6/2011	No obvious impacts	0 - 4 ft bgs - FILL	4.3 ft bgs	2.0 - 4.3 ft bgs
SB-17	10/6/2011	No obvious impacts	0 - 4.3 ft bgs - FILL	4.3 ft bgs	2.0 - 4.3 ft bgs
SB-18	2/29/2012	No obvious impacts	0 - 6.5 ft bgs - SAND, some silt 6.5 - 10 ft bgs - CLAY, f-sand, silt 10 - 12.8 ft bgs - PEAT, little silt, f-sand, clay 12.8 - 13 ft bgs - Weathered BEDROCK	13.4 ft bgs	12.0 - 13.4 ft bgs
SB-19	2/29/2012	Faint to Moderate MGP-like odor from 10.4 to 13.0 ft bgs	0 - 12.6 ft bgs - SAND, gravel, silt, trace red brick 12.6 - 13 ft bgs - Weathered BEDROCK, little sand	13.1 ft bgs	12.0 - 13.1 ft bgs
SB-20	3/1/2012	No obvious impacts	0 - 5 ft bgs - ŠAND, some silt, gravel 5 - 8 ft bgs - CLAY, little sand, silt, gravel, trace brick 8 - 8.8 ft bgs - SAND and GRAVEL	9.0 ft bgs	8.0 - 9.0 ft bgs
SB-21	2/29/2012	No obvious impacts	0 - 5 ft bgs - SAND, little silt, gravel, red brick 5 - 5.7 ft bgs - SILT, sand, gravel, little clay 6 - 8 ft bgs - SAND, some silt, gravel, trace clay 8 - 8.7 ft bgs - Weathered BEDROCK, some sand, silt	9.2 ft bgs	8.0 - 8.7 ft bgs

Table 2 Visual Impacts Summary

NYSEG - McMaster Street Former MGP Site - Auburn, New York Upland PDI Summary Report

Boring/ Test Pit ID	Date Advanced	Potential Impacts	General Subsurface Soils	Completion Depth	Samples Collected BTEX & PAH Analysis
Soil Borings (cont	'd)				
SB-22	3/1/2012	No obvious impacts	0 - 5 ft bgs - SAND, little gravel, silt, organics, brick 5 - 6 ft bgs - brick 6 - 9.7 ft bgs - CLAY, little sand, silt, brick	9.7 ft bgs	6.0 - 7.2 ft bgs
SB-23	3/1/2012	No obvious impacts	0 - 4.5 ft bgs - SAND, little grave, trace organics 4.5 - 5 ft bgs - COBBLES, little sand 5 - 8 ft bgs - SAND, little silt, gravel, clay 8 - 8.7 ft bgs - GRAVEL, weathered BEDROCK, silt	9.5 ft bgs	8.0 - 8.7 ft bgs
SB-24	2/29/2012	No obvious impacts	0 - 8 ft bgs - SAND, some gravel, brick 8 - 8.9 - SAND and SILT, gravel, weathered BEDROCK	8.9 ft bgs	8.0 - 8.9 ft bgs
SB-25	2/29/2012	Faint to Moderate MGP-like odor from 6.0 to 10. ft bgs	0 - 2 ft bgs - SAND, little gravel, brick 2 - 5.2 ft bgs - COBBLES, little sand, silt 5.2 - 9 ft bgs - SAND and SILT, little gravel, clay 9 - 10.4 ft bgs - Weathered BEDROCK, little silt, sand	10.4 ft bgs	8.0 - 10.4 ft bgs
SB-26	2/29/2012	Faint MGP-like odor from 5.2 to 5.4 and 8.8 to 9.0 ft bgs	0 - 1.5 ft bgs - SAND, little gravel, brick 1.5 - 5 ft bgs - brick 5 - 5.2 ft bgs - SAND and GRAVEL, little brick 5.2 - 5.6 ft bgs - wood 6 - 7.2 ft bgs - SAND and SILT, little gravel, wood 8 - 8.8 ft bgs - SAND, some silt, little clay, gravel 8.8 - 10.6 ft bgs - Weathered BEDROCK, silt, sand	10.6 ft bgs	8.0 - 10.6 bgs
Test Pits					
MTP-1A	9/12/2011	NAPL blebs and heavy sheen observed from 8 to 9.5 ft bgs	0 - 8 ft bgs - m-SAND, m-f GRAVEL, little cobbles, bricl 8 - 9.5 ft bgs - SAND, m-c GRAVEL	9.5 ft bgs	None
MTP-1B	9/12/2011	Heavy sheen and NAPL coating on top of bedrock	Same as MTP-1A	9 ft bgs	None
MTP-1C	9/12/2011	Moderate NAPL coating on soil from 8 to 9.5 ft bgs	0 - 9.5 ft bgs - SAND, gravel, cobbles, brick	9.5 ft bgs	None
MTP-2	9/9/2011	Stained soil, heavy NAPL coating on soil from 8 to 10 ft bgs	0 - 4 ft bgs - f-SAND, roots, brick, trace clay and silt 4 - 8 ft bgs - large COBBLES, f-sand, coarse fill 8 - 10 ft bgs - coarse fill	10 ft bgs	None
MTP-2A	9/9/2011	No obvious impacts	0 - 10 ft bgs - f-SAND, cobbles, f-m-c gravel, bones	10 ft bgs	None
MTP-3A	9/13/2011	MGP-like odor from 0 to 3.3 ft bgs NAPL coating and sheen on top of bedrock	0 - 3 ft bgs - SAND, wood, gravel, brick 3 - 7.5 ft bgs - f-m SAND, little gravel, brick 7.5 - 9 ft bgs - SAND and gravel	9 ft bgs	None
MTP-3B	9/13/2011	No obvious impacts	0 - 1 ft bgs - 0.8 ft thick concrete pad 1 - 8 ft bgs - Hard fill and debris (east end of test pit) 1 - 8 ft bgs - Concrete structure (west end of test pit)	8 ft bgs	None
MTP-4A	9/13/2011	NAPL coated soil 3 to 5 ft bgs	0 - 5 ft bgs - SAND, little gravel, roots 5 - 8 ft bgs - SAND, little grave, wood timbers, silt 8 - 9 ft bgs - SAND, gravel 9 - 9.5 ft bgs - weathered BEDROCK	9.5 ft bgs	None
MTP-4B	9/14/2011	No obvious impacts	0 - 2 ft bgs - SAND, f-m gravel, silt, roots 2 - 5 ft bgs - f-m SAND, some silt 5 - 10 ft bgs - f-SAND, little silt, trace f-m gravel	10.5 ft bgs	None
MTP-5	9/12/2011	NAPL coated soil and sheens from 7 to 9 ft bgs	0 - 0.5 ft bgs - Asphalt 0.5 - 3 ft bgs - f-SAND, little gravel, silt, trace organics 3 - 3.5 ft bgs - cinders 3.5 - 7 ft bgs - f-SAND, little cinders, brick, f-m gravel 7 - 10.5 ft bgs - f-SAND, little silt, f-gravel	10.5 ft bgs	None

Notes:

1. Samples collected and visually characterized by an ARCADIS geologist on the date indicated.

2. Split spoon refusal assumed to be bedrock surface.

3. bgs - Below ground surface

4. MS/MSD - Matrix Spike/Matrix Spike Duplicate

Table 3 Soil Analytical Results

Location ID:		SB-01	SB-01	SB-02	SB-03	SB-04	SB-10	SB-13	SB-14	SB-15	SB-16
Sample Depth(Feet):		5 - 6.8	10.9 - 11.9	8 - 10.5	8 - 9.5	8 - 10.9	8 - 10.4	9 - 10.8	7 - 9.3	7 - 8.9	2 - 4.3
Date Collected:	Units	09/30/11	09/30/11	09/26/11	09/26/11	09/26/11	09/26/11	10/06/11	10/06/11	10/06/11	10/06/11
BTEX											
Benzene	mg/kg	0.0062 U [0.0056 U]	0.0055 U	0.0059 U	0.0060 U	0.0055 U	0.0061 U	0.0053 U	0.0058 U	0.0063 U	0.0065 U
Ethylbenzene	mg/kg	0.0062 U [0.0056 U]	0.0055 U	0.0059 U	0.0060 U	0.0055 U	0.0061 U	0.0053 U	0.0058 U	0.0063 U	0.0065 U
Toluene	mg/kg	0.0062 U [0.0056 U]	0.0055 U	0.0059 U	0.0060 U	0.0055 U	0.0061 U	0.00080 J	0.00097 J	0.0013 J	0.0011 J
Xylene (Total)	mg/kg	0.012 U [0.011 U]	0.011 U	0.012 U	0.012 U	0.011 U	0.012 U	0.011 UB	0.012 UB	0.013 UB	0.013 UB
Total BTEX	mg/kg	ND [ND]	ND	ND	ND	ND	ND	0.00080 J	0.00097 J	0.0013 J	0.0011 J
PAHs											
2-Methylnaphthalene	mg/kg	0.043 J [0.059 J]	0.19 U	0.27 J	0.28 J	0.19 U	0.21 U	0.0084 J	2.0 U	2.2 U	2.3 U
Acenaphthene	mg/kg	0.14 J [0.098 J]	0.19 U	0.90 J	3.7	0.19 U	0.21 U	0.018 J	2.0 U	2.2 U	2.3 U
Acenaphthylene	mg/kg	0.13 J [0.17 J]	0.19 U	0.48 J	1.1 J	0.19 U	0.21 U	0.18 U	2.0 U	2.2 U	2.3 U
Anthracene	mg/kg	0.44 J [0.38 J]	0.19 U	2.6	9.1	0.038 J	0.21 U	0.015 J	0.24 J	2.2 U	2.3 U
Benzo(a)anthracene	mg/kg	1.5 J [1.4]	0.19 U	4.9	8.6	0.054 J	0.035 J	0.18 U	0.64 J	2.2 U	2.3 U
Benzo(a)pyrene	mg/kg	1.4 J [1.3]	0.19 U	3.9	7.0	0.053 J	0.043 J	0.017 J	0.87 J	2.2 U	2.3 U
Benzo(b)fluoranthene	mg/kg	1.6 J [1.3]	0.19 U	4.1	7.1	0.069 J	0.039 J	0.18 U	0.80 J	2.2 U	2.3 U
Benzo(g,h,i)perylene	mg/kg	0.94 J [0.89 J]	0.19 U	2.1	4.2	0.040 J	0.035 J	0.18 U	0.58 J	2.2 U	2.3 U
Benzo(k)fluoranthene	mg/kg	0.64 J [0.80 J]	0.19 U	1.9	3.3	0.037 J	0.025 J	0.18 U	0.47 J	2.2 U	2.3 U
Chrysene	mg/kg	1.4 [1.4]	0.19 U	3.7	7.4	0.062 J	0.032 J	0.18 U	0.67 J	2.2 U	2.3 U
Dibenz(a,h)anthracene	mg/kg	1.0 UJ [0.97 U]	0.19 U	0.68 J	1.3 J	0.19 U	0.21 U	0.18 U	0.16 J	2.2 U	2.3 U
Dibenzofuran	mg/kg	0.11 J [0.10 J]	0.19 U	0.49 J	2.7	0.19 U	0.21 U	0.18 U	2.0 U	2.2 U	2.3 U
Fluoranthene	mg/kg	3.0 J [2.8]	0.19 U	9.5	19	0.13 J	0.044 J	0.036 J	0.89 J	0.16 J	0.22 J
Fluorene	mg/kg	0.14 J [0.14 J]	0.19 U	1.0	4.7	0.19 U	0.21 U	0.18 U	2.0 U	2.2 U	2.3 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.77 J [0.75 J]	0.19 U	2.0	3.5	0.034 J	0.029 J	0.18 U	0.49 J	2.2 U	2.3 U
Naphthalene	mg/kg	1.0 U [0.13 J]	0.19 U	0.56 J	0.95 J	0.19 U	0.21 U	0.022 J	2.0 U	2.2 U	2.3 U
Phenanthrene	mg/kg	2.2 J [2.1]	0.19 U	5.3	21	0.12 J	0.025 J	0.066 J	0.93 J	0.12 J	2.3 U
Pyrene	mg/kg	2.8 J [2.6]	0.19 U	7.7	15	0.11 J	0.044 J	0.045 J	0.99 J	0.15 J	0.20 J
Total PAHs	mg/kg	17 J [16 J]	ND	52 J	120 J	0.75 J	0.35 J	0.23 J	7.7 J	0.43 J	0.42 J

Table 3 Soil Analytical Results

NYSEG - McMaster Street Former MGP Site - Auburn, New York Upland PDI Summary Report

Location ID:		SB-17	SB-18	SB-19	SB-20	SB-21	SB-22	SB-23	SB-24	SB-25	SB-26
Sample Depth(Feet):		2 - 4.3	12 - 13.4	12 - 13.1	8 - 9	8 - 8.7	6 - 7.2	8 - 8.7	8 - 8.9	8 - 10.4	8 - 10.6
Date Collected:	Units	10/06/11	02/29/12	02/29/12	03/01/12	02/29/12	03/01/12	03/01/12	02/29/12	02/29/12	02/29/12
BTEX											
Benzene	mg/kg	0.0076 U	0.0081 U	0.0044 J	0.0066 U [0.0063 U]	0.0062 U	0.0071 U	0.0061 UJ	0.0029 J	0.043	0.019
Ethylbenzene	mg/kg	0.0076 U	0.0081 U	0.0089 J	0.0066 U [0.0063 U]	0.00055 J	0.0018 J	0.0061 UJ	0.0061 U	0.12	0.010
Toluene	mg/kg	0.0014 J	0.0081 U	0.013 J	0.0066 U [0.0063 U]	0.0062 U	0.00080 J	0.0061 UJ	0.0017 J	0.0071	0.013
Xylene (Total)	mg/kg	0.015 UB	0.016 U	0.47	0.013 U [0.013 U]	0.012 U	0.0050 J	0.012 UJ	0.0023 J	0.16	0.069
Total BTEX	mg/kg	0.0014 J	ND	0.50 J	ND [ND]	0.00055 J	0.0076 J	ND	0.0069 J	0.33	0.11
PAHs											
2-Methylnaphthalene	mg/kg	0.21 J	0.18 J	14	0.38 [0.68]	0.29	0.58	1.5	0.36	12	15
Acenaphthene	mg/kg	1.2 J	0.13 J	56 D	0.061 J [0.071 J]	0.34	0.44	0.31	0.17 J	37	49
Acenaphthylene	mg/kg	2.9	0.074 J	6.4	0.069 J [0.074 J]	0.16 J	0.20 J	0.25	0.087 J	15	13
Anthracene	mg/kg	4.5	0.056 J	25 D	0.11 J [0.12 J]	0.082 J	0.22 J	0.34	0.14 J	5.5	5.1
Benzo(a)anthracene	mg/kg	11	0.022 J	58 D	0.036 J [0.050 J]	0.13 J	0.53	0.13 J	0.064 J	12	4.7
Benzo(a)pyrene	mg/kg	10	0.085 J	32 D	0.097 J [0.12 J]	0.19 J	0.43	0.34	0.11 J	18	14
Benzo(b)fluoranthene	mg/kg	6.9	0.11 J	30 D	0.21 J [0.30]	0.23	0.54	0.71	0.24	17	14
Benzo(g,h,i)perylene	mg/kg	4.4	0.61	230 D	0.63 [0.89]	0.82	2.4	2.1 J	0.77	61 D	54 D
Benzo(k)fluoranthene	mg/kg	6.8	0.43	4.9	0.79 [1.4]	0.64	1.2	3.1 J	0.87	41	50
Chrysene	mg/kg	10	0.42	0.87 D	0.75 [1.2]	0.55	1.1	2.7 J	0.87	32	40
Dibenz(a,h)anthracene	mg/kg	1.5 J	0.22 J	14 D	0.44 [0.87]	0.32	0.68	1.8 J	0.39	16	19
Dibenzofuran	mg/kg	0.54 J	0.15 J	5.3	0.55 [0.76]	0.34	0.61	2.1 J	0.41	12	16
Fluoranthene	mg/kg	18	0.089 J	0.51	0.23 [0.45]	0.16 J	0.30	0.78	0.18 J	7.1	6.7
Fluorene	mg/kg	1.4 J	0.16 J	4.1	0.40 [0.69]	0.27	0.56	1.6 J	0.32	11	13
Indeno(1,2,3-cd)pyrene	mg/kg	4.0	0.055 J	0.92 D	0.15 J [0.21 J]	0.11 J	0.20 J	0.58 J	0.12 J	3.4	4.8
Naphthalene	mg/kg	2.7 U	0.012 J	0.43	0.053 J [0.072 J]	0.039 J	0.075 J	0.18 J	0.036 J	0.92 J	1.4 J
Phenanthrene	mg/kg	17	0.059 J	1.0	0.17 J [0.22]	0.12 J	0.21 J	0.59 J	0.14 J	3.4	5.6
Pyrene	mg/kg	19	0.078 J	100 D	0.050 J [0.037 J]	0.095 J	0.41	0.16 J	0.059 J	6.7	11
Total PAHs	mg/kg	120 J	2.9 J	580	5.1 J [8.1 J]	4.7 J	10 J	19 J	5.2 J	300 J	320 J

Notes:

- 1. Samples collected by ARCADIS on the date indicated.
- 2. Samples analyzed by TestAmerica located in Buffalo, New York.
- 3. Concentrations reported in milligrams per kilogram (mg/kg) which is equivalent to parts per million (ppm) unless otherwise noted.
- 4. J Indicates an estimated value.
- 5. U Indicates that the compound was not detected at a concentration greater that the indicated laboratory detection limit.
- 6. ND Reported for sum of BTEX or PAH compounds where none of the individual compounds exceeded laboratory detection limits.
- 7. B Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).
- 8. D Indicates that the reported concentration is based on the analysis of a diluted sample.

Location ID:		MW-04-03	MW-04-04	MW-04-05	MW-05-02R	MW-05-07R	MW-05-08R	MW-06-10	MW-06-13R
Date Collected:	Units	09/29/11	09/30/11	09/30/11	09/29/11	09/29/11	09/29/11	09/30/11	09/29/11
VOCs									
1,1,1-Trichloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,1,2,2-Tetrachloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,1,2-Trichloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,1-Dichloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,1-Dichloroethene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2,4-Trichlorobenzene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2-Dibromo-3-chloropropane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2-Dibromoethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2-Dichlorobenzene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2-Dichloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,2-Dichloropropane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,3-Dichlorobenzene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
1,4-Dichlorobenzene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
2-Butanone	ug/L	40 U	10 U [10 U]	10 U	10 U	10 U	10 U	10 U	50 U
2-Hexanone	ug/L	20 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	25 U
4-Methyl-2-Pentanone	ug/L	20 U	5.0 U [5.0 U]	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	25 U
Acetone	ug/L	40 U	10 U [10 U]	10 U	10 U	10 U	4.0 J	10 U	50 U
Benzene	ug/L	170	4.7 [4.7]	1.0 U	0.53 J	57	2.6	1.0 U	1,100
Bromodichloromethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Bromoform	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Bromomethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Carbon Disulfide	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Carbon Tetrachloride	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Chlorobenzene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Chloroethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Chloroform	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Chloromethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
cis-1,2-Dichloroethene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
cis-1,3-Dichloropropene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Cyclohexane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Dibromochloromethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Dichlorodifluoromethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Ethylbenzene	ug/L	380	1.0 U [1.0 U]	1.0 U	0.99 J	1.4	1.0 U	1.0 U	910
Isopropylbenzene	ug/L	63	1.0 U [1.0 U]	1.0 U	0.81 J	1.0 U	1.0 U	2.0	62
Methyl acetate	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Methyl tert-butyl ether	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Methylcyclohexane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	0.84 J	1.5 J

Location ID:		MW-04-03	MW-04-04	MW-04-05	MW-05-02R	MW-05-07R	MW-05-08R	MW-06-10	MW-06-13R
Date Collected:	Units	09/29/11	09/30/11	09/30/11	09/29/11	09/29/11	09/29/11	09/30/11	09/29/11
VOCs (cont'd)									
Methylene Chloride	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Styrene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Tetrachloroethene	ug/L	4.0 U	1.0 U [1.0 U]	0.57 J	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Toluene	ug/L	110	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1,400
trans-1,2-Dichloroethene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
trans-1,3-Dichloropropene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Trichloroethene	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Trichlorofluoromethane	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Vinyl Chloride	ug/L	4.0 U	1.0 U [1.0 U]	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5.0 U
Xylene (Total)	ug/L	700	0.89 J [0.90 J]	2.0 U	2.0 U	2.6	2.0 U	2.0 U	2,800
SVOCs									
2,4,5-Trichlorophenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2,4,6-Trichlorophenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2,4-Dichlorophenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2,4-Dimethylphenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	79
2,4-Dinitrophenol	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
2,4-Dinitrotoluene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2,6-Dinitrotoluene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2-Chloronaphthalene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2-Chlorophenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
2-Methylphenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	0.82 J	5.1 U	48 U
2-Nitroaniline	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
2-Nitrophenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
3,3'-Dichlorobenzidine	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
3-Nitroaniline	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
4,6-Dinitro-2-methylphenol	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
4-Bromophenyl-phenylether	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
4-Chloro-3-methylphenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
4-Chloroaniline	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
4-Chlorophenyl-phenylether	ug/L	100 U	5.3 U [5.6 U]	47 U	0.76 J	5.6 U	4.8 U	5.1 U	48 U
4-Methylphenol	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	1.1 J	10 U	6.5 J
4-Nitroaniline	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
4-Nitrophenol	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
Acetophenone	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Atrazine	ug/L	100 U*	5.3 U* [5.6 U*]	47 U*	5.1 U*	5.6 U*	4.8 U*	5.1 U*	48 U*
Benzaldehyde	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
bis(2-Chloroethoxy)methane	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
bis(2-Chloroethyl)ether	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U

Location ID:		MW-04-03	MW-04-04	MW-04-05	MW-05-02R	MW-05-07R	MW-05-08R	MW-06-10	MW-06-13R
Date Collected:	Units	09/29/11	09/30/11	09/30/11	09/29/11	09/29/11	09/29/11	09/30/11	09/29/11
SVOCs (cont'd)					•				
bis(2-chloroisopropyl)ether	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
bis(2-Ethylhexyl)phthalate	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	3.3 J	4.8 U	5.1 U	48 U
Butylbenzylphthalate	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Caprolactam	ug/L	100 U	5.3 U [5.6 U]	47 U	5.4	7.2	4.8 U	5.1 U	48 U
Chrysene	ug/L	100 U	5.5 [5.9]	77	5.1 U	1.9 J	4.8 U	5.1 U	170
Diethylphthalate	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Dimethylphthalate	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Di-n-butylphthalate	ug/L	100 U	0.44 JB [0.47 JB]	47 U	0.77 JB	0.82 JB	0.51 JB	0.59 JB	48 U
Di-n-octylphthalate	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Hexachlorobenzene	ug/L	100 U	5.3 U [5.6 U]	47 U	0.65 J	5.6 U	4.8 U	5.1 U	48 U
Hexachlorobutadiene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Hexachlorocyclopentadiene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Hexachloroethane	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Isophorone	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Nitrobenzene	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
N-Nitroso-di-n-propylamine	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
N-Nitrosodiphenylamine	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Pentachlorophenol	ug/L	210 U	11 U [11 U]	94 U	10 U	11 U	9.6 U	10 U	95 U
Phenol	ug/L	100 U	5.3 U [5.6 U]	47 U	5.1 U	5.6 U	4.8 U	5.1 U	48 U
Naphthalene	ug/L	1,200	9.4 [5.7]	26 J	2.3 J	5.9	1.5 J	8.6	4,400
Biphenyl	ug/L	100 U	5.3 U [5.6 U]	47 U	1.5 J	5.6 U	4.8 U	5.1 U	60
Dibenzofuran	ug/L	17 J	1.2 J [1.4 J]	17 J	0.70 J	11 U	9.6 U	10 U	220
Acenaphthylene	ug/L	59 J	1.4 J [1.4 J]	22 J	5.0 J	0.83 J	0.82 J	0.83 J	300
Acenaphthene	ug/L	63 J	6.5 [6.6]	27 J	9.0	5.6 U	2.8 J	2.7 J	170
Fluorene	ug/L	30 J	3.2 J [4.3 J]	31 J	4.4 J	0.65 J	0.52 J	2.2 J	310
Anthracene	ug/L	8.1 J	3.6 J [4.7 J]	68	1.4 J	0.92 J	4.8 U	0.41 J	230
Phenanthrene	ug/L	46 J	12 [16]	130	12	2.6 J	4.8 U	1.5 J	760
Fluoranthene	ug/L	100 U	14 [16]	200	0.87 J	4.2 J	4.8 U	5.1 U	490
Pyrene	ug/L	100 U	11 [12]	130	1.0 J	3.7 J	0.36 J	5.1 U	390
Benzo(a)anthracene	ug/L	100 U	5.5 [5.9]	79	5.1 U	2.2 J	4.8 U	5.1 U	220
Benzo(b)fluoranthene	ug/L	100 U	6.1 [6.3]	92	5.1 U	2.4 J	4.8 U	5.1 U	170
Benzo(k)fluoranthene	ug/L	100 U	2.9 J [3.1 J]	46 J	5.1 U	1.1 J	4.8 U	5.1 U	100
Benzo(a)pyrene	ug/L	100 U	5.5 [5.9]	96	5.1 U	2.1 J	4.8 U	5.1 U	180
Indeno(1,2,3-cd)pyrene	ug/L	100 U	2.6 J [2.8 J]	46 J	5.1 U	1.2 J	4.8 U	5.1 U	78
Dibenz(a,h)anthracene	ug/L	100 U	0.93 J [1.0 J]	15 J	5.1 U	0.47 J	4.8 U	5.1 U	27 J
Benzo(g,h,i)perylene	ug/L	100 U	2.9 J [3.3 J]	48	5.1 U	1.4 J	4.8 U	5.1 U	86
2-Methylnaphthalene	ug/L	190	0.76 J [5.6 U]	5.7 J	5.1 U	0.76 J	4.8 U	4.0 J	530
Carbazole	ug/L	28 J	0.71 J [0.94 J]	5.9 J	5.1 U	0.48 J	4.8 U	5.1 U	130

Table 4 Groundwater Analytical Results

Location ID:		MW-04-03	MW-04-04	MW-04-05	MW-05-02R	MW-05-07R	MW-05-08R	MW-06-10	MW-06-13R
Date Collected:	Units	09/29/11	09/30/11	09/30/11	09/29/11	09/29/11	09/29/11	09/30/11	09/29/11
Inorganics					-				
Aluminum	ug/L	91,800	3,700 [72,500]	4,100	12,000	1,500	6,600	28,100	3,300
Antimony	ug/L	20.0 U	20.0 U [19.0 J]	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Arsenic	ug/L	230	30.0 [640]	10.0 U	43.0	10.0 U	130	45.0	10.0 U
Barium	ug/L	950	560 [2,000]	79.0	320	34.0	330	580	250
Beryllium	ug/L	5.10	2.00 U [8.50]	2.00 U	1.10 J	2.00 U	0.730 J	1.10 J	2.00 U
Cadmium	ug/L	2.90	0.710 J [11.0]	1.00 U	1.00 U	1.00 U	1.00 U	0.960 J	1.00 U
Calcium	ug/L	477,000	139,000 [490,000]	65,800	191,000	69,900	179,000	188,000	156,000
Chromium	ug/L	140	9.90 [220]	10.0	22.0	14.0	2.20 J	42.0	5.90
Cobalt	ug/L	42.0	3.20 J [92.0]	4.00 U	9.70	4.00 U	0.890 J	12.0	2.00 J
Copper	ug/L	310	72.0 [1,600]	16.0	23.0	9.50 J	5.10 J	59.0	7.70 J
Iron	ug/L	157,000	26,100 [466,000]	3,400	17,300	2,000	13,900	68,600	5,500
Lead	ug/L	160	240 [5,800]	25.0	47.0	5.30	5.70	72.0	5.00 U
Magnesium	ug/L	172,000	42,300 [117,000]	13,800	27,000	26,400	35,000	64,800	89,400
Manganese	ug/L	4,800	270 [2,700]	27.0	390	28.0	630	920	54.0
Mercury	ug/L	0.950	0.610 [15.0]	0.540	0.200 U	0.200 U	0.200 U	0.150 J	0.200 U
Nickel	ug/L	150	17.0 [310]	4.90 J	7.90 J	4.60 J	2.60 J	51.0	6.60 J
Potassium	ug/L	22,400	18,200 [26,400]	2,500	4,200	3,400	8,900	22,500	7,300
Selenium	ug/L	200	15.0 U [44.0]	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U
Silver	ug/L	3.00 U	3.00 U [2.10 J]	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U
Sodium	ug/L	49,400	20,600 [20,300]	23,900	36,300	3,500	104,000	108,000	44,400
Thallium	ug/L	20.0 U	20.0 U [20.0 U]	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Vanadium	ug/L	170	12.0 [250]	5.10	10.0	4.60 J	2.20 J	60.0	5.70
Zinc	ug/L	310	280 [5,300]	35.0	52.0	31.0	26.0	130	91.0
Inorganics-Filtered									
Aluminum	ug/L	69.0 J	200 U [200 U]	200 U	200 U	60.0 J	83.0 J	200 U	200 U
Antimony	ug/L	20.0 U	20.0 U [20.0 U]	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Arsenic	ug/L	10.0 U	10.0 U [10.0 U]	10.0 U	10.0 U	10.0 U	13.0	10.0 U	10.0 U
Barium	ug/L	290	360 [370]	43.0	150	17.0	220	350	160
Beryllium	ug/L	2.00 U	2.00 U [2.00 U]	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cadmium	ug/L	1.00 U	1.00 U [1.00 U]	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Calcium	ug/L	137,000	115,000 [117,000]	67,100	99,400	38,800	160,000	106,000	116,000
Chromium	ug/L	1.10 J	4.00 U [4.00 U]	4.00 U	4.00 U	4.00 U	4.00 U	4.00 U	4.00 U
Cobalt	ug/L	4.00 U	0.670 J [0.800 J]	4.00 U	1.40 J	4.00 U	0.960 J	4.00 U	4.00 U
Copper	ug/L	4.40 J	1.60 J [10.0 U]	2.10 J	1.50 J	1.50 J	1.80 J	1.80 J	1.70 J
Iron	ug/L	43.0 JB	22.0 JB [25.0 JB]	20.0 JB	50.0 U	50.0 U	48.0 JB	4,700 B	620 B
Lead	ug/L	5.00 U	5.00 U [5.00 U]	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Magnesium	ug/L	33,200	38,200 [38,600]	12,700	19,000	23,400	33,100	24,700	68,300
Manganese	ug/L	600 B	170 B [180 B]	21.0 B	200 B	9.40 B	520 B	180 B	29.0 B

NYSEG - McMaster Street Former MGP Site - Auburn, New York Upland PDI Summary Report

Location ID:		MW-04-03	MW-04-04	MW-04-05	MW-05-02R	MW-05-07R	MW-05-08R	MW-06-10	MW-06-13R
Date Collected:	Units	09/29/11	09/30/11	09/30/11	09/29/11	09/29/11	09/29/11	09/30/11	09/29/11
Inorganics-Filtered (cont'd)									
Mercury	ug/L	0.200 U	0.200 U [0.200 U]	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Nickel	ug/L	2.50 J	4.50 J [5.10 J]	10.0 U	10.0 U	2.10 J	10.0 U	10.0 U	1.90 J
Potassium	ug/L	6,000	15,400 [15,800]	1,600	2,100	3,000	7,400	11,400	5,300
Selenium	ug/L	25.0	15.0 U [15.0 U]	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U	15.0 U
Silver	ug/L	3.00 U	3.00 U [3.00 U]	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U	3.00 U
Sodium	ug/L	45,100	18,500 [18,400]	24,000	32,700	3,400	99,800	107,000	28,600
Thallium	ug/L	20.0 U	20.0 U [20.0 U]	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U
Vanadium	ug/L	1.20 J	1.10 J [5.00 U]	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Zinc	ug/L	3.20 JB	14.0 B [24.0 B]	4.20 JB	4.50 JB	8.30 JB	21.0 B	13.0 B	17.0 B
Misc. Compounds									
Biochemical Oxygen Demand	ug/L	31,700 b	6,000 B [6,800 b]	4,300 B	2,000 U	22,300 B	2,000 U	3,400 b	23,900 B
BARTS(iron related)	cfu/mL	74,500	140,000	74,500	74,500	74,500	140,000	2,300	140,000
BARTS(slime forming)	cfu/mL	350,000	350,000	350,000	350,000	350,000	350,000	350,000	350,000
BARTS(sulfate reducing)	cfu/mL	359,000	359,000	1,200	359,000	18,000	359,000	1,200	18,000
Chemical Oxygen Demand	ug/L	44,300	6,700 J [14,100]	10,000 U	10,000 U	49,500	14,400	34,000	92,600
Cyanide, Total	ug/L	56	28 * [25 *]	24	10 U	10 U	87	10 U*	10 U
Hardness as calcium carbonate	ug/L	1,060,000	680,000 [1,700,000]	215,000	720,000	406,000	660,000	350,000	779,000
Oil & Grease	ug/L	6,800	3,300 J [2,500 J]	1,600 J	2,500 J	1,700 J	5,700	5,300 J	3,200 J
рН	SU	7.52 H	7.54 H [7.57 H]	7.25 H	7.55 H	8.02 H	7.35 H	6.95 H	7.76 H
Total dissolved solids	ug/L	608,000	479,000 [503,000]	261,000	457,000	229,000	883,000	627,000	1,420,000
Total Kjeldahl Nitrogen	ug/L	7,400	1,300 [1,500]	750	870	1,600	1,700	2,100	1,400
Total Suspended Solids	ug/L	1,820,000	224,000 [606,000]	429,000	1,410,000	455,000	127,000	2,110,000	170,000
Total Toxic Organics	ug/L	1,400	5.6 J [5.6 J]	10 U	10 U	61	6.6 J	10 U	63,000

Notes:

1. Samples collected by ARCADIS on the date indicated.

2. Samples analyzed by TestAmerica located in Buffalo, New York.

3. Concentrations reported in micrograms per Liter (ug/L) which is equivalent to parts per billion (ppb) unless otherwise noted.

4. U - Indicates the compound was analyzed for but not detected. The associated value is the compound quantitation limit.

5. J - Indicates an estimated value.

6. * - Indicates the laboratory duplicate was outside of control limits.

7. B- Indicates an estimated value between the instrument detection limit and the Reporting Limit (RL).

8. b - Indicates the dilution water dissolved oxygen was greater than 0.2 mg/L but less than the reporting limit of 2.0 mg/L.

9. H - Indicates sample was extracted or analyzed beyond the specified holding time.

Table 5 Soil Waste Characterization Results

NYSEG - McMaster Street Former MGP Site - Auburn, New York Upland PDI Summary Report

Location ID:		WC-MCMASTER
Date Collected:	Units	10/11/11
PCBs		
Aroclor-1016	mg/kg	0.26 U
Aroclor-1221	mg/kg	0.26 U
Aroclor-1232	mg/kg	0.26 U
Aroclor-1242	mg/kg	0.26 U
Aroclor-1248	mg/kg	0.26 U
Aroclor-1254	mg/kg	0.26 U
Aroclor-1260	mg/kg	0.26 U
Misc. Compounds		
Cyanide, Reactivity	mg/kg	10 U
Sulfide, Reactivity	mg/kg	20.1
VOCs-TCLP		
Benzene	ug/L	10 U

Notes:

- 1. Sample collected by ARCADIS on the date indicated.
- 2. Sample analyzed by TestAmerica located in Buffalo, New York.
- Concentrations reported in milligrams per kilogram (mg/kg) which is equivalent to parts per million (ppm) unless otherwise noted. Benzene analysis reported in micrograms per liter (ug/L) which is equivalent to parts per billion (ppb) due to Toxicity Characteristic Leaching Procedure (TCLP) methodology.
- 4. U Indicates the compound was analyzed for but not detected. The associated value is the compound quantitation limit.

Table 6Liquid Waste Characterization Results

NYSEG - McMaster Street Former MGP Site - Auburn, New York PDI Summary Report

Location ID: Date Collected:	Units	WC-MCMASTER 10/11/11					
VOCs							
Benzene	ug/L	1.0 U					
Misc. Compounds							
Cyanide, Total	ug/L	1,200					

Notes:

1. Samples collected by ARCADIS on the date indicated.

- 2. Samples analyzed by TestAmerica located in Buffalo, NY.
- 3. Concentrations reported in micrograms per Liter (ug/L) which is equivalent to parts per billion (ppb) unless otherwise noted.
- 4. U Indicates the compound was analyzed for but not detected. The associated value is the compound quantitation limit.

Figures

NOTES:

- BASE MAP PREPARED BY MERGING SITE HISTORICAL LOCATIONS FROM ELECTRONIC CADD FILE PROVIDED BY NYSEG ON 2/07/07, NAMED AUBMACMAS2.DWG, AND BASED ON SURVEY (NAD 1983) ACTIVITIES CONDUCTED BY PAUL OLSZEWSKI, PLS LAND SURVEYING DURING OCTOBER 2011.
- 2. SANITARY LINE AND MANHOLE LOCATIONS BASED ON MARK-OUT CONDUCTED DURING PDI AND SURVEYED BY ARCADIS IN SEPTEMBER 2011.
- 3. PROPERTY LINES FOR AUBURN TANK AND AUBURN TRADING POST PROPERTY DIGITIZED FROM TAX MAP 115.52–1, PROVIDED BY NYSEG ON 10/18/06.
- 4. SUBSURFACE VAULT IDENTIFIED DURING TEST PITTING ACTIVITIES. THE AREA CONTAINS TUNNELS AND SUBFLOORS.

ARCADIS

FIGURE

1

Attachment 1

Air Monitoring Logs

(on Compact Disc)

Upwind VOC Monitoring Data

Location:			Upwind VOC			
Date of Monitoring			9/8/2011			
Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 005940			
User ID: 0000	00001		Site ID: 00000003			
Data Points: 2	25	Gas Name: Iso	obutylene	Sample perio	d: 900 sec	
Last Calibration Time: 9/6/2011 11:39						
Measurement Type:			Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm Levels			100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/8/2011	9:04	0.0	0.0	0.0	
2	9/8/2011	9:19	0.0	0.0	0.0	
3	9/8/2011	9:34	0.0	0.0	0.0	
4	9/8/2011	9:49	0.0	0.0	0.0	
5	9/8/2011	10:04	0.0	0.0	0.0	
6	9/8/2011	10:19	0.0	0.0	0.0	
7	9/8/2011	10:34	0.0	0.0	0.0	
8	9/8/2011	10:49	0.0	0.0	0.0	
9	9/8/2011	11:04	0.0	0.0	0.0	
10	9/8/2011	11:19	0.0	0.0	0.0	
11	9/8/2011	11:34	0.0	0.0	0.0	
12	9/8/2011	11:49	0.0	0.0	0.0	
13	9/8/2011	12:04	0.0	0.0	0.0	
14	9/8/2011	12:19	0.0	0.0	0.0	
15	9/8/2011	12:34	0.0	0.0	0.0	
16	9/8/2011	12:49	0.0	0.0	0.0	
17	9/8/2011	13:04	0.0	0.0	0.0	
18	9/8/2011	13:19	0.0	0.0	0.0	
19	9/8/2011	13:34	0.0	0.0	0.0	
20	9/8/2011	13:49	0.0	0.0	0.0	
21	9/8/2011	14:04	0.0	0.0	0.0	
22	9/8/2011	14:19	0.0	0.0	0.0	
23	9/8/2011	14:34	0.0	0.0	0.0	
24	9/8/2011	14:49	0.0	0.0	0.0	
25	9/8/2011	15:04	0.0	0.0	0.0	

Location:			Upwind VOC			
Date of Monitoring			9/9/2011			
Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 005940			
User ID: 0000001			Site ID: 00000004			
Data Points: 22 Gas Name: Is			obutylene Sample period: 900 sec			
Last Calibration Time: 9/6/2011 11:39						
Measurement Type:			Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm Le	evels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/9/2011	8:07	0.0	0.0	0.0	
2	9/9/2011	8:22	0.0	0.0	0.0	
3	9/9/2011	8:37	0.0	0.0	0.0	
4	9/9/2011	8:52	0.0	0.0	0.0	
5	9/9/2011	9:07	0.0	0.0	0.0	
6	9/9/2011	9:22	0.0	0.0	0.0	
7	9/9/2011	9:37	0.0	0.0	0.0	
8	9/9/2011	9:52	0.0	0.0	0.0	
9	9/9/2011	10:07	0.0	0.0	0.0	
10	9/9/2011	10:22	0.0	0.0	0.0	
11	9/9/2011	10:37	0.0	0.0	0.0	
12	9/9/2011	10:52	0.0	0.0	0.0	
13	9/9/2011	11:07	0.0	0.0	0.0	
14	9/9/2011	11:22	0.0	0.0	0.0	
15	9/9/2011	11:37	0.0	0.0	0.0	
16	9/9/2011	11:52	0.0	0.0	0.0	
17	9/9/2011	12:07	0.0	0.0	0.0	
18	9/9/2011	12:22	0.0	0.0	0.0	
19	9/9/2011	12:37	0.0	0.0	0.0	
20	9/9/2011	12:52	0.0	0.0	0.0	
21	9/9/2011	13:07	0.0	0.0	0.0	
22	9/9/2011	13:22	0.0	0.0	0.0	

Location:			Upwind VOC			
Date of Monitoring			9/12/2011			
Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 005940			
User ID: 00000001			Site ID: 0000005			
Data Points: 29 Gas Name: Iso			obutylene Sample period: 900 sec			
Last Calibration Time: 9/6/2011 11:39						
Measurement Type:			Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm Levels			100.0	100.0	100.0	
Low Alarm levels:			50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/12/2011	8:36	0.0	0.0	0.0	
2	9/12/2011	8:51	0.0	0.0	0.0	
3	9/12/2011	9:06	0.0	0.0	0.0	
4	9/12/2011	9:21	0.0	0.0	0.0	
5	9/12/2011	9:36	0.0	0.0	0.0	
6	9/12/2011	9:51	0.0	0.0	0.0	
7	9/12/2011	10:06	0.0	0.0	0.0	
8	9/12/2011	10:21	0.0	0.0	0.0	
9	9/12/2011	10:36	0.0	0.0	0.0	
10	9/12/2011	10:51	0.0	0.0	0.0	
11	9/12/2011	11:06	0.0	0.0	0.0	
12	9/12/2011	11:21	0.0	0.0	0.0	
13	9/12/2011	11:36	0.0	0.0	0.0	
14	9/12/2011	11:51	0.0	0.0	0.2	
15	9/12/2011	12:06	0.0	0.0	0.0	
16	9/12/2011	12:21	0.0	0.0	0.0	
17	9/12/2011	12:36	0.0	0.0	0.0	
18	9/12/2011	12:51	0.0	0.0	0.0	
19	9/12/2011	13:06	0.0	0.0	0.0	
20	9/12/2011	13:21	0.0	0.0	0.0	
21	9/12/2011	13:36	0.0	0.0	0.0	
22	9/12/2011	13:51	0.0	0.0	0.0	
23	9/12/2011	14:06	0.0	0.0	0.0	
24	9/12/2011	14:21	0.0	0.0	0.0	
25	9/12/2011	14:36	0.0	0.0	0.0	
26	9/12/2011	14:51	0.0	0.0	0.0	
27	9/12/2011	15:06	0.0	0.0	0.0	
28	9/12/2011	15:21	0.0	0.0	0.0	
29	9/12/2011	15:36	0.0	0.0	0.0	

Location:			Upwind VOC			
Date of Monitoring			9/13/2011			
Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 005940			
User ID: 0000	00001		Site ID: 00000	0006		
Data Points: 15 Gas Name: Isc			obutylene Sample period: 900 sec			
Last Calibrati	on Time:	9/6/2011	11:39			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/13/2011	8:43	0.0	0.0	0.0	
2	9/13/2011	8:58	0.0	0.0	0.0	
3	9/13/2011	9:13	0.0	0.0	0.0	
4	9/13/2011	9:28	0.0	0.0	0.0	
5	9/13/2011	9:43	0.0	0.0	0.0	
6	9/13/2011	9:58	0.0	0.0	0.0	
7	9/13/2011	10:13	0.0	0.0	0.0	
8	9/13/2011	10:28	0.0	0.0	0.0	
9	9/13/2011	10:43	0.0	0.0	0.0	
10	9/13/2011	10:58	0.0	0.0	0.0	
11	9/13/2011	11:13	0.0	0.0	0.0	
12	9/13/2011	11:28	0.0	0.0	0.0	
13	9/13/2011	11:43	0.0	0.0	0.0	
14	9/13/2011	11:58	0.0	0.0	0.0	
15	15 9/13/2011		0.0	0.0	0.0	
Location:			Upwind VOC			
-------------------	------------------	---------------	----------------	--------------	------------	--
Date of Moni	itoring		9/20/2011			
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 013337		
User ID: 0000	00001		Site ID: 00000	009		
Data Points:	10	Gas Name: Iso	obutyl	Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/6/2011	11:11			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm levels:			50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/20/2011	7:56	0.0	0.0	0.0	
2	9/20/2011	8:11	0.0	0.0	0.0	
3	9/20/2011	8:26	0.0	0.0	0.0	
4	9/20/2011	8:41	0.0	0.0	0.0	
5	9/20/2011	8:56	0.0	0.0	0.0	
6	9/20/2011	9:11	0.0	0.0	0.0	
7	9/20/2011	9:26	0.0	0.0	0.0	
8	8 9/20/2011 9:41		0.0	0.0	0.0	
9	9/20/2011	9:56	0.0	0.0	0.0	
10	9/20/2011	10:11	0.0	0.0	0.0	

Location:			Upwind VOC				
Date of Moni	itoring		9/21/2011				
Instrument: M	liniRAE 2000	(PGM7600)	Serial Numbe	r: 005940			
User ID: 0000	00001		Site ID: 00000012				
Data Points:	31	Gas Name: Iso	obutylene	Sample perio	d: 900 sec		
Last Calibrati	on Time:	9/6/2011	11:39				
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)		
High Alarm L	evels		100.0	100.0	100.0		
Low Alarm le	vels:		50.0	50.0	50.0		
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)		
1	9/21/2011	7:40	0.0	0.0	0.0		
2	9/21/2011	7:55	0.0	0.0	0.0		
3	9/21/2011	8:10	0.0	0.0	0.0		
4	9/21/2011	8:25	0.0	0.0	0.0		
5	9/21/2011	8:40	0.0	0.0	0.0		
6	9/21/2011	8:55	0.0	0.0	1.0		
7	9/21/2011	9:10	0.0	0.0	0.0		
8	9/21/2011	9:25	0.0	0.0	0.0		
9	9/21/2011	9:40	0.0	0.0	0.0		
10	9/21/2011	9:55	0.0	0.0	0.0		
11	11 9/21/2011 10:10		0.0	0.0	0.0		
12	9/21/2011	10:25	0.0	0.0	0.0		
13	9/21/2011	10:40	0.0	0.0	0.0		
14	9/21/2011	10:55	0.0	0.0	0.0		
15	9/21/2011	11:10	0.0	0.0	0.0		
16	9/21/2011	11:25	0.0	0.0	0.0		
17	9/21/2011	11:40	0.0	0.0	0.0		
18	9/21/2011	11:55	0.0	0.0	0.0		
19	9/21/2011	12:10	0.0	0.0	0.0		
20	9/21/2011	12:25	0.0	0.0	0.0		
21	9/21/2011	12:40	0.0	0.0	0.0		
22	9/21/2011	12:55	0.0	0.0	0.0		
23	9/21/2011	13:10	0.0	0.0	0.0		
24	9/21/2011	13:25	0.0	0.0	0.0		
25	9/21/2011	13:40	0.0	0.0	0.0		
26	9/21/2011	13:55	0.0	0.0	0.0		
27	9/21/2011	14:10	0.0	0.0	0.0		
28	9/21/2011	14:25	0.0	0.0	0.0		
29	9/21/2011	14:40	0.0	0.0	0.0		
30	9/21/2011	14:55	0.0	0.0	0.0		
31	9/21/2011	15:10	0.0	0.0	0.0		

Location:			Upwind VOC				
Date of Mon	itoring		9/26/2011				
Instrument: M	liniRAE 2000	(PGM7600)	Serial Number: 013337				
User ID: 0000	00001		Site ID: 00000013				
Data Points:	27	Gas Name: Ise	obutyl	Sample perio	d: 900 sec		
Last Calibrati	on Time:	9/6/2011	11:39				
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)		
High Alarm L	evels		100.0	100.0	100.0		
Low Alarm le	vels:		50.0	50.0	50.0		
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)		
1	9/26/2011	8:47	0.0	0.0	0.0		
2	9/26/2011	9:02	0.0	0.0	0.0		
3	9/26/2011	9:17	0.0	0.0	0.0		
4	9/26/2011	9:32	0.0	0.0	0.0		
5	9/26/2011	9:47	0.0	0.0	0.0		
6	9/26/2011	10:02	0.0	0.0	0.0		
7	9/26/2011	10:17	0.0	0.0	0.0		
8	9/26/2011	10:32	0.0	0.0	0.0		
9	9/26/2011	10:47	0.0	0.0	0.0		
10	9/26/2011	11:02	0.0	0.0	0.0		
11	9/26/2011	11:17	0.0	0.0	0.0		
12	9/26/2011	11:32	0.0	0.0	0.0		
13	9/26/2011	11:47	0.0	0.0	0.0		
14	9/26/2011	12:02	0.0	0.0	0.0		
15	9/26/2011	12:17	0.0	0.0	0.0		
16	9/26/2011	12:32	0.0	0.0	0.0		
17	9/26/2011	12:47	0.0	0.0	0.0		
18	9/26/2011	13:02	0.0	0.0	0.0		
19	9/26/2011	13:17	0.0	0.0	0.0		
20	9/26/2011	13:32	0.0	0.0	0.0		
21	9/26/2011	13:47	0.0	0.0	0.0		
22	9/26/2011	14:02	0.0	0.0	0.0		
23	23 9/26/2011 14:17		0.0	0.0	0.0		
24	9/26/2011	14:32	0.0	0.0	0.0		
25	9/26/2011	14:47	0.0	0.0	0.0		
26	9/26/2011	15:02	0.0	0.0	0.0		
27	9/26/2011	15:17	0.0	0.0	0.0		

Location:			Upwind VOC				
Date of Mor	itoring		9/27/2011				
Instrument:	viniRAE 2000	(PGM7600)	Serial Number: 013337				
User ID: 000	00001		Site ID: 00000013				
Data Points:	29	Gas Name: Is	obutyl	Sample perio	d: 900 sec		
Last Calibrat	ion Time:	9/6/2011	11:39				
Measuremer	nt Type:		Min (ppm)	Avg (ppm)	Max (ppm)		
High Alarm L	evels		100.0	100.0	100.0		
Low Alarm le	evels:		50.0	50.0	50.0		
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)		
1	9/27/2011	8:15	0.0	0.0	0.0		
2	9/27/2011	8:30	0.0	0.0	0.0		
3	9/27/2011	8:45	0.0	0.0	0.0		
4	9/27/2011	9:00	0.0	0.0	0.0		
5	9/27/2011	9:15	0.0	0.0	0.0		
6	9/27/2011	9:30	0.0	0.0	0.0		
7	9/27/2011	9:45	0.0	0.0	0.0		
8	9/27/2011	10:00	0.0	0.0	0.0		
9	9/27/2011	10:15	0.0	0.0	0.0		
10	9/27/2011	10:30	0.0	0.0	0.0		
11	9/27/2011	10:45	0.0	0.0	0.0		
12	9/27/2011	11:00	0.0	0.0	0.0		
13	9/27/2011	11:15	0.0	0.0	0.0		
14	9/27/2011	11:30	0.0	0.0	0.0		
15	9/27/2011	11:45	0.0	0.0	0.0		
16	9/27/2011	12:00	0.0	0.0	0.0		
17	9/27/2011	12:15	0.0	0.0	0.0		
18	9/27/2011	12:30	0.0	0.0	0.0		
19	9/27/2011	12:45	0.0	0.0	0.0		
20	9/27/2011	13:00	0.0	0.0	0.0		
21	9/27/2011	13:15	0.0	0.0	0.0		
22	9/27/2011	13:30	0.0	0.0	0.0		
23	9/27/2011	13:45	0.0	0.0	0.0		
24	9/27/2011	14:00	0.0	0.0	0.0		
25	9/27/2011	14:15	0.0	0.0	0.0		
26	9/27/2011	14:30	0.0	0.0	0.0		
27	9/27/2011	14:45	0.0	0.0	0.0		
28	9/27/2011	15:00	0.0	0.0	0.0		
29	9/27/2011	15:15	0.0	0.0	0.0		

Location:			Upwind VOC				
Date of Moni	itoring		9/28/2011				
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 013337				
User ID: 0000	0001		Site ID: 00000013				
Data Points: 3	32	Gas Name: Is	obutyl	Sample perio	d: 900 sec		
Last Calibrati	on Time:	9/6/2011	11:39				
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)		
High Alarm L	evels		100.0	100.0	100.0		
Low Alarm lev	Low Alarm levels:		50.0	50.0	50.0		
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)		
1	9/28/2011	8:00	0.0	0.0	0.0		
2	9/28/2011	8:15	0.0	0.0	0.0		
3	9/28/2011	8:30	0.0	0.0	0.0		
4	9/28/2011	8:45	0.0	0.0	0.0		
5	9/28/2011	9:00	0.0	0.0	0.0		
6	9/28/2011	9:15	0.0	0.0	0.0		
7	9/28/2011	9:30	0.0	0.0	0.0		
8	9/28/2011	9:45	0.0	0.0	0.0		
9	9/28/2011	10:00	0.0	0.0	0.0		
10	9/28/2011	10:15	0.0	0.0	0.0		
11	9/28/2011	10:30	0.0	0.0	0.0		
12	9/28/2011	10:45	0.0	0.0	0.0		
13	9/28/2011	11:00	0.0	0.0	0.0		
14	9/28/2011	11:15	0.0	0.0	0.0		
15	9/28/2011	11:30	0.0	0.0	0.0		
16	9/28/2011	11:45	0.0	0.0	0.0		
17	9/28/2011	12:00	0.0	0.0	0.0		
18	9/28/2011	12:15	0.0	0.0	0.0		
19	9/28/2011	12:30	0.0	0.0	0.0		
20	9/28/2011	12:45	0.0	0.0	0.0		
21	9/28/2011	13:00	0.0	0.0	0.0		
22	9/28/2011	13:15	0.0	0.0	0.0		
23	9/28/2011	13:30	0.0	0.0	0.0		
24	9/28/2011	13:45	0.0	0.0	0.0		
25	9/28/2011	14:00	0.0	0.0	0.0		
26	9/28/2011	14:15	0.0	0.0	0.0		
27	9/28/2011	14:30	0.0	0.0	0.0		
28	9/28/2011	14:45	0.0	0.0	0.0		
29	9/28/2011	15:00	0.0	0.0	0.0		
30	9/28/2011	15:15	0.0	0.0	0.0		
31	9/28/2011	15:30	0.0	0.0	0.0		
32	9/28/2011	15:45	0.0	0.0	0.0		

Location:			Upwind VOC				
Date of Mon	itoring		9/30/2011				
Instrument: N	/iniRAE 2000	(PGM7600)	Serial Number: 013337				
User ID: 0000	00001		Site ID: 00000013				
Data Points:	36	Gas Name: Is	obutyl	Sample perio	d: 900 sec		
Last Calibrati	on Time:	9/6/2011	11:39				
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)		
High Alarm L	evels		100.0	100.0	100.0		
Low Alarm le	Low Alarm levels:			50.0	50.0		
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)		
1	9/30/2011	8:00	0.0	0.0	0.0		
2	9/30/2011	8:15	0.0	0.0	0.0		
3	9/30/2011	8:30	0.0	0.0	0.0		
4	9/30/2011	8:45	0.0	0.0	0.0		
5	9/30/2011	9:00	0.0	0.0	0.0		
6	9/30/2011	9:15	0.0	0.0	0.0		
7	9/30/2011	9:30	0.0	0.0	0.0		
8	9/30/2011	9:45	0.0	0.0	0.0		
9	9/30/2011	10:00	0.0	0.0	0.0		
10	9/30/2011	10:15	0.0	0.0	0.0		
11	11 9/30/2011		0.0	0.0	0.0		
12	12 9/30/2011		0.0	0.0	0.0		
13	13 9/30/2011		0.0	0.0	0.0		
14	9/30/2011	11:15	0.0	0.0	0.0		
15	9/30/2011	11:30	0.0	0.0	0.0		
16	9/30/2011	11:45	0.0	0.0	0.0		
17	9/30/2011	12:00	0.0	0.0	0.0		
18	9/30/2011	12:15	0.0	0.0	0.0		
19	9/30/2011	12:30	0.0	0.0	0.0		
20	9/30/2011	12:45	0.0	0.0	0.0		
21	9/30/2011	13:00	0.0	0.0	0.0		
22	9/30/2011	13:15	0.0	0.0	0.0		
23	9/30/2011	13:30	0.0	0.0	0.0		
24	9/30/2011	13:45	0.0	0.0	0.0		
25	9/30/2011	14:00	0.0	0.0	0.0		
26	9/30/2011	14:15	0.0	0.0	0.0		
27	9/30/2011	14:30	0.0	0.0	0.0		
28	9/30/2011	14:45	0.0	0.0	0.0		
29	9/30/2011	15:00	0.0	0.0	0.0		
30	9/30/2011	15:15	0.0	0.0	0.0		
31	9/30/2011	15:30	0.0	0.0	0.0		
32	9/30/2011	15:45	0.0	0.0	0.0		
33	9/30/2011	16:00	0.0	0.0	0.0		
34	9/30/2011	16:15	0.0	0.0	0.0		
35	9/30/2011	16:30	0.0	0.0	0.0		
36	9/30/2011	16:45	0.0	0.0	0.0		

Location:				Upwind VOC	
Date of Moni	itoring			10/6/2011	
Instrument: M	liniRAE 2000	(PGM7600)	Serial Numbe	r: 005940	
User ID: 0000	00001		Site ID: 00000	020	
Data Points:	5	Gas Name: Iso	obutylene	Sample perio	d: 900 sec
Last Calibrati	on Time:	9/6/2011	11:39		
Measurement Type:			Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
1	10/6/2011	9:12	0.0	0.0	0.0
2	2 10/6/2011 9:27		0.0	0.0	0.0
3	3 10/6/2011 9:42		0.0	0.0	0.0
4 10/6/2011 9:57		0.0	0.0	0.0	
5	10/6/2011	10:12	0.0	0.0	0.0

Lime			Dee	ding	<u>uy. 70</u>	DI DOI	I contin
line	Dust	PID	LEL	CO	H2S	02	Location
DDD	A REAL PROPERTY OF THE PROPERTY OF THE	0.0		alaria de Carrissia			<u>CA GEN ANAMAN</u>
30		D.0					
160		0.0					
30		0.0					
200		0.0					
230		0.0					
300		0.0					
330		0.0					
400		0.0					
430		0.0					
500		0.0					
530		0.0					
00		0.0					
							a contraction of the second
					·		
		- 0					

) and they.

Ŷ

man.	2/201		Marting in State	ACUV	ILY: 50	11 1201	Ing In
Time	Dust	PID	Re:	CO	H2S	02	Location
0830		0.0	1000		ILCO.		<u> Alexente Musie</u>
0960		0.0					1
0930		0.0					
1000		0.0					
1030		0.0					
1100		0.0					
1150		0.0					
1200		0.0					
1200		0.0					
1230		nD			<u> </u>		
1400		0.0					
1430		0.0					
1500		0.0					
1530		0.0					
and a state strend of the stre							
			and the second s				

Date: Definition Activity: Solid Difference Locat Dust PID LEL CO H2S O2 DBS0 D.0 LEL CO H2S O2 DBS0 D.0 D.0 <thd.0< th=""> <thd.0< th="" th<=""><th></th><th>2/19/</th><th>12</th><th>AIT IVIO</th><th>Activ</th><th>g</th><th>/ Batin</th><th>a TAS</th></thd.0<></thd.0<>		2/19/	12	AIT IVIO	Activ	g	/ Batin	a TAS
International production PID LEL CO H2S O2 0820 0.2	Date.	ajaij	100	The second second	ACUY	ny: 501	1 Dorre	g eno
Dist Dist <thdist< th=""> Dist Dist <thd< th=""><th>1 Ime</th><th>Duiet</th><th>DID</th><th>TET</th><th></th><th>TTOC</th><th>00</th><th>Locatio</th></thd<></thdist<>	1 Ime	Duiet	DID	TET		TTOC	00	Locatio
USUP U.P. D930 0.0 090 0.0 0930 0.0 1000 0.0 1/30 0.0	0000	Dust	TIU C C	LEL	- co	112.5	04	a che estato
D350 0.0 0900 0.0 1000 0.0 1000 0.0 1130 0.0 1130 0.0 1330 0.0 1330 0.0 1400 0.0 1330 0.0 1330 0.0 1400 0.0 1330 0.0 1400 0.0 1330 0.0 1400 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1430 0.0 1440 1 1440 1 1440 1 1440 1 1440 1 1440 1 <	0300		0.0					
0920 0.0 0930 0.0 1000 0.0 1120 0.0 1200 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1300 0.0 1420 0.0	08.50		0.0					
0200 0.0 0.0 1000 0.0 0.0 1100 0.0 0.0 1130 0.0 0.0 1200 0.0 0.0 1300 0.0 0.0 1320 0.0 0.0 1320 0.0 0.0 1320 0.0 0.0 1320 0.0 0.0 1320 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430 0.0 0.0 1430	0400		0.0					
1020 0.0 1/00 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/400	0450		0.0					
1/00 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/400 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/400 0.0 1/400 0.0 1/30 0.0 1/400 0.0	1000		0.0					
1/20 0.0 1/30 0.0 1/20 0.0 1/20 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/30 0.0 1/400 0.0 1/400 0.0 1/30 0.0 1/30 0.0 1/400 0.0 1/30 0.0 1/40	1030		0.0					
1/30 0.0 1200 0.0 1300 0.0 1330 0.0 1400 0.0 1400 0.0 1400 0.0 1430 0.0 1430 0.0 15a fttely bead	1100		0.0					
1/20 0.0 1300 0.0 1320 0.0 1400 0.0 1400 0.0 1400 0.0 1430 0.0	11.50		0.0					
ISU 0.0 1320 0.0 1330 0.0 1420 0.0 IBartishy Dawl 0.0	1200		0.0					
1320 0.0 1330 0.0 1400 0.0 1430 0.0 1330 0.0 1430 0.0 1430 0.0 1330 0.0 1430 0.0	1230		0.0					
	1300		0,0					
	1330		0.0					
	1400		00					
	1430		0,0					
	Be	ettery De	ad					
Image: state stat		/						
Image: Section of the section of th								
								1
				and the second s	the second s	and the second se	the second s	in the second

Date:	3/1/	12	Des	Activ	vity: So	il Bor	ing In
11111e	Dust	PID	TFI		HOS	02	Location
NSAN	- Dust	0.0			11203	04	11 N. Lind
1830		0.0					- inpurred
0900		DD	1	1			
0930		00	1				
1000		D.D		1			
1030		0.0					
1100		0.0					
11.30		0.0					
1200		0.0					
1230		0.0					
1300		0.0					
1330		0.0					
1400		0.0					
1430		0.0					
anne a cor ann							
	· · · · · · · · · · · · · · · · · · ·						
						-	
				·····	-		

ARCADIS

Upwind PM₁₀ Monitoring Data

Location:		Upwind Dust	
		9/8/2011	
Model: DuctTrak 8520	Sorial Number:	95200095	
		15:00	
Dete Deinte: 27	Colibration Data:	5/17/2011	
Data Points. 21		5/17/2011	
Statiation		0.003	
Statistics	Average:	0.001	
Dete		-0.003	
Date	Time (nn:mm:ss)	Aerosol (IIIg/III)	
9/8/2011	9:13:21	0.000	
9/8/2011	9:28:21	0.000	
9/8/2011	9:43:21	-0.001	
9/8/2011	9:58:21	0.000	
9/8/2011	10:13:21	-0.002	
9/8/2011	10:28:21	0.000	
9/8/2011	10:43:21	-0.001	
9/8/2011	10:58:21	-0.003	
9/8/2011	11:13:21	-0.002	
9/8/2011	11:28:21	-0.001	
9/8/2011	11:43:21	0.000	
9/8/2011	11:58:21	0.000	
9/8/2011	12:13:21	0.000	
9/8/2011	12:28:21	0.001	
9/8/2011	12:43:21	0.001	
9/8/2011	12:58:21	0.001	
9/8/2011	13:13:21	0.003	
9/8/2011	13:28:21	0.002	
9/8/2011	13:43:21	0.003	
9/8/2011	13:58:21	0.003	
9/8/2011	14:13:21	0.003	
9/8/2011	14:28:21	0.003	
9/8/2011	14:43:21	0.003	
9/8/2011	14:58:21	0.002	
9/8/2011	15:13:21	0.001	
9/8/2011	15:28:21	0.001	
9/8/2011	15:43:21	0.000	

Location:		Upwind Dust
Date of Monitoring		9/12/2011
TrakPro Ve	ersion 4.41 ASCII Data F	ile
Model: DustTrak 8520	Serial Number:	85200085
Test ID: 002	Log Interval (mm:ss)	
Data Points: 1	Calibration Date:	5/17/2011
	Maximum:	0.067
Statistics	Average:	0.067
	Minimum:	0.067
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
9/12/2011	8:28:27	0.067

Location:		Upwind Dust
Date of Monitoring		9/13/2011
TrakPro Ve	ersion 4.41 ASCII Data F	ile
Model: DustTrak 8520	Serial Number:	85200085
Test ID: 003	Log Interval (mm:ss)	
Data Points: 1	Calibration Date:	5/17/2011
	Maximum:	0.051
Statistics	Average:	0.051
	Minimum:	0.051
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
9/13/2011	8:36:17	0.051

Location:	Upwind Dust				
Date of Monitoring	Date of Monitoring				
TrakPro Version 4.41 ASCII Data File					
Model: DustTrak 8520	85197769				
Test ID: 004	Log Interval (mm:ss)	5:00			
Data Points: 34	Calibration Date:	10/27/2011			
	Maximum:	0.019			
Statistics	Average:	0.012			
	Minimum:	0.008			
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)			
9/20/2011	8:01:12	0.012			
9/20/2011	8:16:12	0.010			
9/20/2011	8:31:12	0.010			
9/20/2011	8:46:12	0.010			
9/20/2011	9:01:12	0.009			
9/20/2011	9:16:12	0.010			
9/20/2011	9:31:12	0.010			
9/20/2011	9:46:12	0.013			
9/20/2011	10:01:12	0.014			
9/20/2011	10:16:12	0.013			
9/20/2011	10:31:12	0.016			

Location:	Upwind Dust	Upwind Dust			
Date of Monitoring	9/21/2011	9/21/2011			
TrakPro Version 4.41 ASCII Data File					
Model: DustTrak 8520	Serial Number:	85197769	85197769		
Test ID: 001	Log Interval (mm:ss)	5:00	5:00		
Data Points: 98	Calibration Date:	10/27/2011	10/27/2011		
	Maximum:	0.137	0.137		
Statistics	Average:	0.037	0.037		
	Minimum:	0.022	0.022		
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)	Aerosol (mg/m ³)		
9/21/2011	7:41:52	0.028	0.027		
9/21/2011	7:56:52	0.030	0.029		
9/21/2011	8:11:52	0.030	0.031		
9/21/2011	8:26:52	0.034	0.032		
9/21/2011	8:41:52	0.042	0.036		
9/21/2011	8:56:52	0.040	0.038		
9/21/2011	9:11:52	0.038	0.040		
9/21/2011	9:26:52	0.038	0.039		
9/21/2011	9:41:52	0.039	0.039		
9/21/2011	9:56:52	0.043	0.041		
9/21/2011	10:11:52	0.047	0.046		
9/21/2011	10:26:52	0.045	0.046		
9/21/2011	10:41:52	0.044	0.044		
9/21/2011	10:56:52	0.043	0.043		
9/21/2011	11:11:52	0.051	0.047		
9/21/2011	11:26:52	0.055	0.045		
9/21/2011	11:41:52	0.036	0.037		
9/21/2011	11:56:52	0.032	0.036		
9/21/2011	12:11:52	0.031	0.031		
9/21/2011	12:26:52	0.031	0.030		
9/21/2011	12:41:52	0.026	0.027		
9/21/2011	12:56:52	0.025	0.025		
9/21/2011	13:11:52	0.027	0.031		
9/21/2011	13:26:52	0.025	0.026		
9/21/2011	13:41:52	0.037	0.041		
9/21/2011	13:56:52	0.033	0.028		
9/21/2011	14:11:52	0.024	0.024		
9/21/2011	14:26:52	0.071	0.040		
9/21/2011	14:41:52	0.071	0.046		
9/21/2011	14:56:52	0.062	0.086		
9/21/2011	15:11:52	0.026	0.027		
9/21/2011	15:26:52	0.031	0.031		

Location:	Upwind Dust			
Date of Monitoring	9/26/2011			
TrakPro Version 4.41 ASCII Data File				
Model: DustTrak 8520	Serial Number:	85197769		
Test ID: 004	Log Interval (mm:ss)	5:00		
Data Points: 86	Calibration Date:	10/27/2011		
	Maximum:	0.038		
Statistics	Average:	0.024		
	Minimum:	0.015		
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)		
9/26/2011	8:52:49	0.028		
9/26/2011	9:07:49	0.029		
9/26/2011	9:22:49	0.028		
9/26/2011	9:37:49	0.027		
9/26/2011	9:52:49	0.026		
9/26/2011	10:07:49	0.028		
9/26/2011	10:22:49	0.031		
9/26/2011	10:37:49	0.033		
9/26/2011	10:52:49	0.036		
9/26/2011	11:07:49	0.035		
9/26/2011	11:22:49	0.030		
9/26/2011	11:37:49	0.027		
9/26/2011	11:52:49	0.025		
9/26/2011	12:07:49	0.022		
9/26/2011	12:22:49	0.019		
9/26/2011	12:37:49	0.020		
9/26/2011	12:52:49	0.022		
9/26/2011	13:07:49	0.023		
9/26/2011	13:22:49	0.022		
9/26/2011	13:37:49	0.023		
9/26/2011	13:52:49	0.020		
9/26/2011	14:07:49	0.019		
9/26/2011	14:22:49	0.018		
9/26/2011	14:37:49	0.017		
9/26/2011	14:52:49	0.015		
9/26/2011	15:07:49	0.015		
9/26/2011	15:22:49	0.016		
9/26/2011	15:37:49	0.016		

Location:	Upwind Dust			
TrakPro Version 4 41 ASCII Data File				
Model: DustTrak 8520	Serial Number	85107760		
	L og Interval (mm·ss)	5:00		
Data Points: 72	Calibration Date:	10/27/2011		
	Maximum:	0.030		
Statistics	Average:	0.008		
	Minimum:	0.003		
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)		
10/6/2011	9:17:14	0.006		
10/6/2011	9:32:14	0.007		
10/6/2011	9:47:14	0.007		
10/6/2011	10:02:14	0.007		
10/6/2011	10:17:14	0.011		
10/6/2011	10:32:14	0.008		
10/6/2011	10:47:14	0.006		
10/6/2011	11:02:14	0.009		
10/6/2011	11:17:14	0.010		
10/6/2011	11:32:14	0.013		
10/6/2011	11:47:14	0.015		
10/6/2011	12:02:14	0.005		
10/6/2011	12:17:14	0.016		
10/6/2011	12:32:14	0.005		
10/6/2011	12:47:14	0.004		
10/6/2011	13:02:14	0.003		
10/6/2011	13:17:14	0.004		
10/6/2011	13:32:14	0.005		
10/6/2011	13:47:14	0.007		
10/6/2011	14:02:14	0.004		
10/6/2011	14:17:14	0.005		
10/6/2011	14:32:14	0.005		
10/6/2011	14:47:14	0.005		
10/6/2011	15:02:14	0.015		

Location:		Upwind Dust	Upwind Dust
Date of Monitoring	Date of Monitoring		
Trak	II Data File		
Model: DustTrak 8520	Serial Number:	85203518	85203518
Test ID: 1	Log Interval (mm:ss)	5:00	5:00
Data Points: 65	Calibration Date:	3/1/2011	3/1/2011
	Maximum:	-0.001	-0.001
Statistics	Average:	-0.009	-0.009
	Minimum:	-0.018	-0.018
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)	Aerosol (mg/m ³)
2/27/2012	9:57:30	-0.017	-0.017
2/27/2012	10:12:30	-0.017	-0.017
2/27/2012	10:27:30	-0.015	-0.016
2/27/2012	10:42:30	-0.013	-0.013
2/27/2012	10:57:30	-0.011	-0.012
2/27/2012	11:12:30	-0.010	-0.010
2/27/2012	11:27:30	-0.008	-0.009
2/27/2012	11:42:30	-0.008	-0.007
2/27/2012	11:57:30	-0.008	-0.008
2/27/2012	12:12:30	-0.008	-0.008
2/27/2012	12:27:30	-0.008	-0.007
2/27/2012	12:42:30	-0.007	-0.007
2/27/2012	12:57:30	-0.008	-0.005
2/27/2012	13:12:30	-0.009	-0.008
2/27/2012	13:27:30	-0.008	-0.008
2/27/2012	13:42:30	-0.007	-0.008
2/27/2012	13:57:30	-0.008	-0.008
2/27/2012	14:12:30	-0.008	-0.008
2/27/2012	14:27:30	-0.006	-0.007
2/27/2012	14:42:30	-0.005	-0.005
2/27/2012	14:57:30	-0.003	-0.004

Location:	Upwind Dust				
Date of Monitoring	2/28/2012				
TrakPro Version 4.41 ASCII Data File					
Model: DustTrak 8520	Serial Number:	85203518			
Test ID: 2	Log Interval (mm:ss)	15:00			
Data Points: 26	Calibration Date:	3/1/2011			
	Maximum:	-0.017			
Statistics	Average:	-0.023			
	Minimum:	-0.026			
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)			
2/28/2012	7:28:58	-0.023			
2/28/2012	7:43:58	-0.026			
2/28/2012	7:58:58	-0.026			
2/28/2012	8:13:58	-0.025			
2/28/2012	8:28:58	-0.026			
2/28/2012	8:43:58	-0.026			
2/28/2012	8:58:58	-0.025			
2/28/2012	9:13:58	-0.023			
2/28/2012	9:28:58	-0.025			
2/28/2012	9:43:58	-0.024			
2/28/2012	9:58:58	-0.023			
2/28/2012	10:13:58	-0.024			
2/28/2012	10:28:58	-0.024			
2/28/2012	10:43:58	-0.024			
2/28/2012	10:58:58	-0.023			
2/28/2012	11:13:58	-0.022			
2/28/2012	11:28:58	-0.022			
2/28/2012	11:43:58	-0.021			
2/28/2012	11:58:58	-0.021			
2/28/2012	12:13:58	-0.021			
2/28/2012	12:28:58	-0.020			
2/28/2012	12:43:58	-0.020			
2/28/2012	12:58:58	-0.019			
2/28/2012	13:13:58	-0.018			
2/28/2012	13:28:58	-0.018			
2/28/2012	13:43:58	-0.017			

Location:	Upwind Dust				
Date of Monitoring	2/29/2012				
TrakPro Version 4.41 ASCII Data File					
Model: DustTrak 8520	Serial Number:	85203518			
Test ID: 3	Log Interval (mm:ss)	5:00			
Data Points: 94	Calibration Date:	3/1/2011			
	Maximum:	0.013			
Statistics	Average:	-0.001			
	Minimum:	-0.013			
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)			
2/29/2012	7:45:41	-0.012			
2/29/2012	8:00:41	-0.012			
2/29/2012	8:15:41	-0.012			
2/29/2012	8:30:41	-0.013			
2/29/2012	8:45:41	-0.012			
2/29/2012	9:00:41	-0.011			
2/29/2012	9:15:41	-0.009			
2/29/2012	9:30:41	-0.009			
2/29/2012	9:45:41	-0.009			
2/29/2012	10:00:41	-0.007			
2/29/2012	10:15:41	-0.007			
2/29/2012	10:30:41	-0.003			
2/29/2012	10:45:41	-0.001			
2/29/2012	11:00:41	0.000			
2/29/2012	11:15:41	0.000			
2/29/2012	11:30:41	0.001			
2/29/2012	11:45:41	0.002			
2/29/2012	12:00:41	0.004			
2/29/2012	12:15:41	0.004			
2/29/2012	12:30:41	0.005			
2/29/2012	12:45:41	0.008			
2/29/2012	13:00:41	0.009			
2/29/2012	13:15:41	0.011			
2/29/2012	13:30:41	0.010			
2/29/2012	13:45:41	0.010			
2/29/2012	14:00:41	0.010			
2/29/2012	14:15:41	0.008			
2/29/2012	14:30:41	0.005			
2/29/2012	14:45:41	0.004			
2/29/2012	15:00:41	0.002			
2/29/2012	15:15:41	0.004			

ARCADIS

Downwind VOC Monitoring Data

Location:		Downwind VOC			
Date of Moni	itoring	ıg 9/8/2011			
Instrument: N	ent: MiniRAE 2000 (PGM7600) Serial Number: 013337				
User ID: 00000001 Site ID: 0000002					
Data Points: 26 Gas Name: Isc			obutyl	Sample perio	d: 900 sec
Last Calibration Time: 9/6/2011 11:11					
Measuremen Type:			Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm Levels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
1	9/8/2011	9:07	0.0	0.0	0.0
2	9/8/2011	9:22	0.0	0.0	0.0
3	9/8/2011	9:37	0.0	0.0	0.0
4	9/8/2011	9:52	0.0	0.0	0.0
5	9/8/2011	10:07	0.0	0.0	0.0
6	9/8/2011	10:22	0.0	0.0	0.0
7	9/8/2011	10:37	0.0	0.0	0.0
8	9/8/2011	10:52	0.0	0.0	0.0
9	9/8/2011	11:07	0.0	0.0	0.0
10	9/8/2011	11:22	0.0	0.0	0.0
11	9/8/2011	11:37	0.0	0.0	0.0
12	9/8/2011	11:52	0.0	0.0	0.0
13	9/8/2011	12:07	0.0	0.0	0.0
14	9/8/2011	12:22	0.0	0.0	0.0
15	9/8/2011	12:37	0.0	0.0	0.0
16	9/8/2011	12:52	0.0	0.0	0.0
17	9/8/2011	13:07	0.0	0.0	0.0
18	9/8/2011	13:22	0.0	0.0	0.0
19	9/8/2011	13:37	0.0	0.0	0.0
20	9/8/2011	13:52	0.0	0.0	0.0
21	9/8/2011	14:07	0.0	0.0	0.0
22	9/8/2011	14:22	0.0	0.0	0.0
23	9/8/2011	14:37	0.0	0.0	0.0
24	9/8/2011	14:52	0.0	0.0	0.0
25	9/8/2011	15:07	0.0	0.0	0.0
26	9/8/2011	15:22	0.0	0.0	0.0

Location:		Downwind VOC		С	
Date of Moni	itoring		9/9/2011		
Instrument: N	1iniRAE 2000	(PGM7600)) Serial Number: 013337		
User ID: 00000001 Site ID: 00000003					
Data Points: 29 Gas Name: Isobutyl			obutyl	Sample perio	d: 900 sec
Last Calibration Time: 9/6/2011 11:11					
Measuremen Type: Min (ppm) Avg (ppm) Max (p				Max (ppm)	
High Alarm Levels		100.0	100.0	100.0	
Low Alarm lev	Low Alarm levels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
1	9/9/2011	8:05	0.0	0.0	0.0
2	9/9/2011	8:20	0.0	0.0	0.0
3	9/9/2011	8:35	0.0	0.0	0.0
4	9/9/2011	8:50	0.0	0.0	0.0
5	9/9/2011	9:05	0.0	0.0	0.0
6	9/9/2011	9:20	0.0	0.0	0.0
7	9/9/2011	9:35	0.0	0.0	0.0
8	9/9/2011	9:50	0.0	0.0	0.0
9	9/9/2011	10:05	0.0	0.0	0.0
10	9/9/2011	10:20	0.0	0.0	0.0
11	9/9/2011	10:35	0.0	0.0	0.0
12	9/9/2011	10:50	0.0	0.0	0.0
13	9/9/2011	11:05	0.0	0.0	0.0
14	9/9/2011	11:20	0.0	0.0	0.0
15	9/9/2011	11:35	0.0	0.0	0.0
16	9/9/2011	11:50	0.0	0.0	0.0
17	9/9/2011	12:05	0.0	0.0	0.0
18	9/9/2011	12:20	0.0	0.0	0.0
19	9/9/2011	12:35	0.0	0.0	0.0
20	9/9/2011	12:50	0.0	0.0	0.0
21	9/9/2011	13:05	0.0	0.0	0.0
22	9/9/2011	13:20	0.0	0.0	0.0
23	9/9/2011	13:35	0.0	0.0	0.0
24	9/9/2011	13:50	0.0	0.0	0.0
25	9/9/2011	14:05	0.0	0.0	0.0
26	9/9/2011	14:20	0.0	0.0	0.0
27	9/9/2011	14:35	0.0	0.0	0.0
28	9/9/2011	14:50	0.0	0.0	0.0
29	9/9/2011	15:05	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Moni	of Monitoring 9/12/2011				
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 013337		
User ID: 00000001 Site ID: 00000004					
Data Points: 3	30	Gas Name: Iso	obutyl Sample period: 900 sec		
Last Calibration Time: 9/6/2011 11:11					
Measuremen Type: Min (ppm) Avg (ppm) Max (ppr					Max (ppm)
High Alarm Levels		100.0	100.0	100.0	
Low Alarm levels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
1	9/12/2011	8:32	0.0	0.0	0.0
2	9/12/2011	8:47	0.0	0.0	0.0
3	9/12/2011	9:02	0.0	0.0	0.0
4	9/12/2011	9:17	0.0	0.0	0.0
5	9/12/2011	9:32	0.0	0.0	0.0
6	9/12/2011	9:47	0.0	0.0	0.0
7	9/12/2011	10:02	0.0	0.0	0.0
8	9/12/2011	10:17	0.0	0.0	0.0
9	9/12/2011	10:32	0.0	0.0	0.0
10	9/12/2011	10:47	0.0	0.0	0.0
11	9/12/2011	11:02	0.0	0.0	0.0
12	9/12/2011	11:17	0.0	0.0	0.0
13	9/12/2011	11:32	0.0	0.0	0.0
14	9/12/2011	11:47	0.0	0.0	0.0
15	9/12/2011	12:02	0.0	0.0	0.0
16	9/12/2011	12:17	0.0	0.0	0.0
17	9/12/2011	12:32	0.0	0.0	0.0
18	9/12/2011	12:47	0.0	0.0	0.0
19	9/12/2011	13:02	0.0	0.0	0.0
20	9/12/2011	13:17	0.0	0.0	0.0
21	9/12/2011	13:32	0.0	0.0	0.0
22	9/12/2011	13:47	0.0	0.0	0.0
23	9/12/2011	14:02	0.0	0.0	0.0
24	9/12/2011	14:17	0.0	0.0	0.0
25	9/12/2011	14:32	0.0	0.0	0.0
26	9/12/2011	14:47	0.0	0.0	0.0
27	9/12/2011	15:02	0.0	0.0	0.0
28	9/12/2011	15:17	0.0	0.0	0.0
29	9/12/2011	15:32	0.0	0.0	0.0
30	9/12/2011	15:47	0.0	0.0	0.0

Location:			Downwind VOC			
Date of Monitoring			9/13/2011			
Instrument: M	liniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 0000	00001		Site ID: 00000	0005		
Data Points: 2	20	Gas Name: Iso	obutyl	Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/6/2011	11:11			
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/13/2011	8:40	0.0	0.0	0.0	
2	9/13/2011	8:55	0.0	0.0	0.0	
3	9/13/2011	9:10	0.0	0.0	0.0	
4	9/13/2011	9:25	0.0	0.0	0.0	
5	9/13/2011	9:40	0.0	0.0	0.0	
6	9/13/2011	9:55	0.0	0.0	0.0	
7	9/13/2011	10:10	0.0	0.0	0.0	
8	9/13/2011	10:25	0.0	0.0	0.0	
9	9/13/2011	10:40	0.0	0.0	0.0	
10	9/13/2011	10:55	0.0	0.0	0.0	
11	9/13/2011	11:10	0.0	0.0	0.0	
12	9/13/2011	11:25	0.0	0.0	0.0	
13	9/13/2011	11:40	0.0	0.0	0.0	
14	9/13/2011	11:55	0.0	0.0	0.0	
15	9/13/2011	12:10	0.0	0.0	0.0	
16	9/13/2011	12:25	0.0	0.0	0.0	
17	9/13/2011	12:40	0.0	0.0	0.0	
18	9/13/2011	12:55	0.0	0.0	0.0	
19	9/13/2011	13:10	0.0	0.0	0.0	
20	9/13/2011	13:25	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Moni	Date of Monitoring			9/20/2011		
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 005940		
User ID: 0000	00001		Site ID: 00000	011		
Data Points:	10	Gas Name: Iso	obutylene	Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/6/2011	11:39			
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/20/2011	7:48	0.0	0.0	0.0	
2	9/20/2011	8:03	0.0	0.0	0.0	
3	9/20/2011	8:18	0.0	0.0	0.0	
4	9/20/2011	8:33	0.0	0.0	0.0	
5	9/20/2011	8:48	0.0	0.0	0.0	
6	9/20/2011	9:03	0.0	0.0	0.0	
7	9/20/2011	9:18	0.0	0.0	0.0	
8	9/20/2011	9:33	0.0	0.0	0.0	
9	9/20/2011	9:48	0.0	0.0	0.0	
10	9/20/2011	10:03	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Moni	Date of Monitoring			9/21/2011		
Instrument: M	liniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 0000	00001		Site ID: 00000	00010		
Data Points: 3	31	Gas Name: Iso	obutyl Sample period: 900 sec			
Last Calibrati	on Time:	9/6/2011	11:11			
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/21/2011	7:35	0.0	0.0	0.0	
2	9/21/2011	7:50	0.0	0.0	0.0	
3	9/21/2011	8:05	0.0	0.0	0.0	
4	9/21/2011	8:20	0.0	0.0	0.0	
5	9/21/2011	8:35	0.0	0.0	0.0	
6	9/21/2011	8:50	0.0	0.0	0.0	
7	9/21/2011	9:05	0.0	0.0	0.0	
8	9/21/2011	9:20	0.0	0.0	0.0	
9	9/21/2011	9:35	0.0	0.0	0.0	
10	9/21/2011	9:50	0.0	0.0	0.0	
11	9/21/2011	10:05	0.0	0.0	0.0	
12	9/21/2011	10:20	0.0	0.0	0.0	
13	9/21/2011	10:35	0.0	0.0	0.0	
14	9/21/2011	10:50	0.0	0.0	0.0	
15	9/21/2011	11:05	0.0	0.0	0.0	
16	9/21/2011	11:20	0.0	0.0	0.0	
17	9/21/2011	11:35	0.0	0.0	0.0	
18	9/21/2011	11:50	0.0	0.0	0.0	
19	9/21/2011	12:05	0.0	0.0	0.0	
20	9/21/2011	12:20	0.0	0.0	0.0	
21	9/21/2011	12:35	0.0	0.0	0.0	
22	9/21/2011	12:50	0.0	0.0	0.0	
23	9/21/2011	13:05	0.0	0.0	0.0	
24	9/21/2011	13:20	0.0	0.0	0.0	
25	9/21/2011	13:35	0.0	0.0	0.0	
26	9/21/2011	13:50	0.0	0.0	0.0	
27	9/21/2011	14:05	0.0	0.0	0.0	
28	9/21/2011	14:20	0.0	0.0	0.0	
29	9/21/2011	14:35	0.0	0.0	0.0	
30	9/21/2011	14:50	0.0	0.0	0.0	
31	9/21/2011	15:05	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Mon	itoring		9/26/2011			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 005940			
User ID: 000	00001		Site ID: 00000015			
Data Points:	Data Points: 28 Gas Name: Is			Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/6/2011	11:39			
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/26/2011	8:44	0.0	0.0	0.0	
2	9/26/2011	8:59	0.0	0.0	0.0	
3	9/26/2011	9:14	0.0	0.0	0.0	
4	9/26/2011	9:29	0.0	0.0	0.0	
5	9/26/2011	9:44	0.0	0.0	0.0	
6	9/26/2011	9:59	0.0	0.0	0.0	
7	9/26/2011	10:14	0.0	0.0	0.0	
8	9/26/2011	10:29	0.0	0.0	0.0	
9	9/26/2011	10:44	0.0	0.0	0.0	
10	9/26/2011	10:59	0.0	0.0	0.0	
11	9/26/2011	11:14	0.0	0.0	0.0	
12	9/26/2011	11:29	0.0	0.0	0.0	
13	9/26/2011	11:44	0.0	0.0	0.0	
14	9/26/2011	11:59	0.0	0.0	0.0	
15	9/26/2011	12:14	0.0	0.0	0.0	
16	9/26/2011	12:29	0.0	0.0	0.0	
17	9/26/2011	12:44	0.0	0.0	0.0	
18	9/26/2011	12:59	0.0	0.0	0.0	
19	9/26/2011	13:14	0.0	0.0	0.0	
20	9/26/2011	13:29	0.0	0.0	0.0	
21	9/26/2011	13:44	0.0	0.0	0.0	
22	9/26/2011	13:59	0.0	0.0	0.0	
23	9/26/2011	14:14	0.0	0.0	0.0	
24	9/26/2011	14:29	0.0	0.0	0.0	
25	9/26/2011	14:44	0.0	0.0	0.0	
26	9/26/2011	14:59	0.0	0.0	0.0	
27	9/26/2011	15:14	0.0	0.0	0.0	
28	9/26/2011	15:29	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Monitoring			9/28/2011			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 0000	00001		Site ID: 00000013			
Data Points: 3	Data Points: 30 Gas Name: Iso			Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/27/2011	8:00			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/27/2011	8:15	0.0	0.0	0.0	
2	9/27/2011	8:30	0.0	0.0	0.0	
3	9/27/2011	8:45	0.0	0.0	0.0	
4	9/27/2011	9:00	0.0	0.0	0.0	
5	9/27/2011	9:15	0.0	0.0	0.0	
6	9/27/2011	9:30	0.0	0.0	0.0	
7	9/27/2011	9:45	0.0	0.0	0.0	
8	9/27/2011	10:00	0.0	0.0	0.0	
9	9/27/2011	10:15	0.0	0.0	0.0	
10	9/27/2011	10:30	0.0	0.0	0.0	
11	9/27/2011	10:45	0.0	0.0	0.0	
12	9/27/2011	11:00	0.0	0.0	0.0	
13	9/27/2011	11:15	0.0	0.0	0.0	
14	9/27/2011	11:30	0.0	0.0	0.0	
15	9/27/2011	11:45	0.0	0.0	0.0	
16	9/27/2011	12:00	0.0	0.0	0.0	
17	9/27/2011	12:15	0.0	0.0	0.0	
18	9/27/2011	12:30	0.0	0.0	0.0	
19	9/27/2011	12:45	0.0	0.0	0.0	
20	9/27/2011	13:00	0.0	0.0	0.0	
21	9/27/2011	13:15	0.0	0.0	0.0	
22	9/27/2011	13:30	0.0	0.0	0.0	
23	9/27/2011	13:45	0.0	0.0	0.0	
24	9/27/2011	14:00	0.0	0.0	0.0	
25	9/27/2011	14:15	0.0	0.0	0.0	
26	9/27/2011	14:30	0.0	0.0	0.0	
27	9/27/2011	14:45	0.0	0.0	0.0	
28	9/27/2011	15:00	0.0	0.0	0.0	
29	9/27/2011	15:15	0.0	0.0	0.0	
30	9/27/2011	15:15	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Monitoring			9/28/2011			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 0000	00001		Site ID: 00000	013		
Data Points: 3	32	Gas Name: Ise	obutyl	Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/28/2011	8:00			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/28/2011	8:00	0.0	0.0	0.0	
2	9/28/2011	8:15	0.0	0.0	0.0	
3	9/28/2011	8:30	0.0	0.0	0.0	
4	9/28/2011	8:45	0.0	0.0	0.0	
5	9/28/2011	9:00	0.0	0.0	0.0	
6	9/28/2011	9:15	0.0	0.0	0.0	
7	9/28/2011	9:30	0.0	0.0	0.0	
8	9/28/2011	9:45	0.0	0.0	0.0	
9	9/28/2011	10:00	0.0	0.0	0.0	
10	9/28/2011	10:15	0.0	0.0	0.0	
11	9/28/2011	10:30	0.0	0.0	0.0	
12	9/28/2011	10:45	0.0	0.0	0.0	
13	9/28/2011	11:00	0.0	0.0	0.0	
14	9/28/2011	11:15	0.0	0.0	0.0	
15	9/28/2011	11:30	0.0	0.0	0.0	
16	9/28/2011	11:45	0.0	0.0	0.0	
17	9/28/2011	12:00	0.0	0.0	0.0	
18	9/28/2011	12:15	0.0	0.0	0.0	
19	9/28/2011	12:30	0.0	0.0	0.0	
20	9/28/2011	12:45	0.0	0.0	0.0	
21	9/28/2011	13:00	0.0	0.0	0.0	
22	9/28/2011	13:15	0.0	0.0	0.0	
23	9/28/2011	13:30	0.0	0.0	0.0	
24	9/28/2011	13:45	0.0	0.0	0.0	
25	9/28/2011	14:00	0.0	0.0	0.0	
26	9/28/2011	14:15	0.0	0.0	0.0	
27	9/28/2011	14:30	0.0	0.0	0.0	
28	9/28/2011	14:45	0.0	0.0	0.0	
29	9/28/2011	15:00	0.0	0.0	0.0	
30	9/28/2011	15:15	0.0	0.0	0.0	
31	9/28/2011	15:30	0.0	0.0	0.0	
32	9/28/2011	15:45	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Monitoring			9/30/2011			
Instrument: N	/liniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 000	00001		Site ID: 00000013			
Data Points:	35	Gas Name: Is	obutyl Sample period: 900 sec			
Last Calibrati	ion Time:	9/30/2011	8:00			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	9/30/2011	8:00	0.0	0.0	0.0	
2	9/30/2011	8:15	0.0	0.0	0.0	
3	9/30/2011	8:30	0.0	0.0	0.0	
4	9/30/2011	8:45	0.0	0.0	0.0	
5	9/30/2011	9:00	0.0	0.0	0.0	
6	9/30/2011	9:15	0.0	0.0	0.0	
7	9/30/2011	9:30	0.0	0.0	0.0	
8	9/30/2011	9:45	0.0	0.0	0.0	
9	9/30/2011	10:00	0.0	0.0	0.0	
10	9/30/2011	10:15	0.0	0.0	0.0	
11	9/30/2011	10:30	0.0	0.0	0.0	
12	9/30/2011	10:45	0.0	0.0	0.0	
13	9/30/2011	11:00	0.0	0.0	0.0	
14	9/30/2011	11:15	0.0	0.0	0.0	
15	9/30/2011	11:30	0.0	0.0	0.0	
16	9/30/2011	11:45	0.0	0.0	0.0	
17	9/30/2011	12:00	0.0	0.0	0.0	
18	9/30/2011	12:15	0.0	0.0	0.0	
19	9/30/2011	12:30	0.0	0.0	0.0	
20	9/30/2011	12:45	0.0	0.0	0.0	
21	9/30/2011	13:00	0.0	0.0	0.0	
22	9/30/2011	13:15	0.0	0.0	0.0	
23	9/30/2011	13:30	0.0	0.0	0.0	
24	9/30/2011	13:45	0.0	0.0	0.0	
25	9/30/2011	14:00	0.0	0.0	0.0	
26	9/30/2011	14:15	0.0	0.0	0.0	
27	9/30/2011	14:30	0.0	0.0	0.0	
28	9/30/2011	14:45	0.0	0.0	0.0	
29	9/30/2011	15:00	0.0	0.0	0.0	
30	9/30/2011	15:15	0.0	0.0	0.0	
31	9/30/2011	15:30	0.0	0.0	0.0	
32	9/30/2011	15:45	0.0	0.0	0.0	
33	9/30/2011	16:00	0.0	0.0	0.0	
34	9/30/2011	16:15	0.0	0.0	0.0	
35	9/30/2011	16:30	0.0	0.0	0.0	
36	9/30/2011	16:45	0.0	0.0	0.0	

Location:			Downwind VOC			
Date of Mon	itoring		10/6/2011			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 013337			
User ID: 000	00001		Site ID: 00000018			
Data Points:	Data Points: 28 Gas Name: Is			Sample perio	d: 900 sec	
Last Calibrati	on Time:	9/6/2011	11:11			
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	10/6/2011	9:08	0.0	0.0	0.0	
2	10/6/2011	9:23	0.0	0.0	0.0	
3	10/6/2011	9:38	0.0	0.0	0.0	
4	10/6/2011	9:53	0.0	0.0	0.0	
5	10/6/2011	10:08	0.0	0.0	0.0	
6	10/6/2011	10:23	0.0	0.0	0.0	
7	10/6/2011	10:38	0.0	0.0	0.0	
8	10/6/2011	10:53	0.0	0.0	0.0	
9	10/6/2011	11:08	0.0	0.0	0.0	
10	10/6/2011	11:23	0.0	0.0	0.0	
11	10/6/2011	11:38	0.0	0.0	0.0	
12	10/6/2011	11:53	0.0	0.0	0.0	
13	10/6/2011	12:08	0.0	0.0	0.0	
14	10/6/2011	12:23	0.0	0.0	0.0	
15	10/6/2011	12:38	0.0	0.0	0.0	
16	10/6/2011	12:53	0.0	0.0	0.0	
17	10/6/2011	13:08	0.0	0.0	0.0	
18	10/6/2011	13:23	0.0	0.0	0.0	
19	10/6/2011	13:38	0.0	0.0	0.0	
20	10/6/2011	13:53	0.0	0.0	0.0	
21	10/6/2011	14:08	0.0	0.0	0.0	
22	10/6/2011	14:23	0.0	0.0	0.0	
23	10/6/2011	14:38	0.0	0.0	0.0	
24	10/6/2011	14:53	0.0	0.0	0.0	
25	10/6/2011	15:08	0.0	0.0	0.0	
26	10/6/2011	15:23	0.0	0.0	0.0	
27	10/6/2011	15:38	0.0	0.0	0.0	
28	10/6/2011	15:53	0.0	0.0	0.0	

Location:		Downwind VOC				
Date of Monitoring		2/27/2012				
Instrument: M	liniRAE 2000	(PGM7600)	Serial Number: 902672			
User ID: 0000	00001		Site ID: 00000	02		
Data Points: 3	330	Gas Name: Iso	sobutyl Sample period: 60 sec			
Last Calibrati	on Time:	2/13/2012	11:48:00 AM			
Measuremen	Measurement Type:			Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
1	2/27/2012	9:29	0.0	0.0	0.0	
2	2/27/2012	9:30	0.0	0.0	0.0	
3	2/27/2012	9:31	0.0	0.0	0.0	
4	2/27/2012	9:32	0.0	0.0	0.0	
5	2/27/2012	9:33	0.0	0.0	0.0	
6	2/27/2012	9:34	0.0	0.0	0.0	
7	2/27/2012	9:35	0.0	0.0	0.0	
8	2/27/2012	9:36	0.0	0.0	0.0	
9	2/27/2012	9:37	0.0	0.0	0.0	
10	2/27/2012	9:38	0.0	0.0	0.0	
11	2/27/2012	9:39	0.0	0.0	0.0	
12	2/27/2012	9:40	0.0	0.0	0.0	
13	2/27/2012	9:41	0.0	0.0	0.0	
14	2/27/2012	9:42	0.0	0.0	0.0	
15	2/27/2012	9:43	0.0	0.0	0.0	
16	2/27/2012	9:44	0.0	0.0	0.0	
17	2/27/2012	9:45	0.0	0.0	0.0	
18	2/27/2012	9:46	0.0	0.0	0.0	
19	2/27/2012	9:47	0.0	0.0	0.0	
20	2/27/2012	9:48	0.0	0.0	0.0	
21	2/27/2012	9:49	0.0	0.0	0.0	
22	2/27/2012	9:50	0.0	0.0	0.0	
23	2/27/2012	9:51	0.0	0.0	0.0	
24	2/27/2012	9:52	0.0	0.0	0.0	
25	2/27/2012	9:53	0.0	0.0	0.0	
26	2/27/2012	9:54	0.0	0.0	0.0	
27	2/27/2012	9:55	0.0	0.0	0.0	
28	2/27/2012	9:56	0.0	0.0	0.0	
29	2/27/2012	9:57	0.0	0.0	0.0	
30	2/27/2012	9:58	0.0	0.0	0.0	
31	2/27/2012	9:59	0.0	0.0	0.0	
32	2/27/2012	10:00	0.0	0.0	0.0	
33	2/27/2012	10:01	0.0	0.0	0.0	

Location:		Downwind VOC				
Date of Monitoring		2/27/2012				
Instrument: N	liniRAE 2000	(PGM7600)	Serial Number: 902672			
User ID: 0000	00001		Site ID: 00000	02		
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec	
Last Calibrati	on Time:	2/13/2012	11:48:00 AM			
Measuremen	Measurement Type:			Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
34	2/27/2012	10:02	0.0	0.0	0.0	
35	2/27/2012	10:03	0.0	0.0	0.0	
36	2/27/2012	10:04	0.0	0.0	0.0	
37	2/27/2012	10:05	0.0	0.0	0.0	
38	2/27/2012	10:06	0.0	0.0	0.0	
39	2/27/2012	10:07	0.0	0.0	0.0	
40	2/27/2012	10:08	0.0	0.0	0.0	
41	2/27/2012	10:09	0.0	0.0	0.0	
42	2/27/2012	10:10	0.0	0.0	0.0	
43	2/27/2012	10:11	0.0	0.0	0.0	
44	2/27/2012	10:12	0.0	0.0	0.0	
45	2/27/2012	10:13	0.0	0.0	0.0	
46	2/27/2012	10:14	0.0	0.0	0.0	
47	2/27/2012	10:15	0.0	0.0	0.0	
48	2/27/2012	10:16	0.0	0.0	0.0	
49	2/27/2012	10:17	0.0	0.0	0.0	
50	2/27/2012	10:18	0.0	0.0	0.0	
51	2/27/2012	10:19	0.0	0.0	0.0	
52	2/27/2012	10:20	0.0	0.0	0.0	
53	2/27/2012	10:21	0.0	0.0	0.0	
54	2/27/2012	10:22	0.0	0.0	0.0	
55	2/27/2012	10:23	0.0	0.0	0.0	
56	2/27/2012	10:24	0.0	0.0	0.0	
57	2/27/2012	10:25	0.0	0.0	0.0	
58	2/27/2012	10:26	0.0	0.0	0.0	
59	2/27/2012	10:27	0.0	0.0	0.0	
60	2/27/2012	10:28	0.0	0.0	0.0	
61	2/27/2012	10:29	0.0	0.0	0.0	
62	2/27/2012	10:30	0.0	0.0	0.0	
63	2/27/2012	10:31	0.0	0.0	0.0	
64	2/27/2012	10:32	0.0	0.0	0.0	
65	2/27/2012	10:33	0.0	0.0	0.0	
66	2/27/2012	10:34	0.0	0.0	0.0	
Location:		Downwind VOC				
--------------------	--------------	---------------	----------------	--------------	-----------	
Date of Monitoring			2/27/2012			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672		
User ID: 0000	00001		Site ID: 00000	02		
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec	
Last Calibrati	on Time:	2/13/2012	11:48:00 AM			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm lev	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
67	2/27/2012	10:35	0.0	0.0	0.0	
68	2/27/2012	10:36	0.0	0.0	0.0	
69	2/27/2012	10:37	0.0	0.0	0.0	
70	2/27/2012	10:38	0.0	0.0	0.0	
71	2/27/2012	10:39	0.0	0.0	0.0	
72	2/27/2012	10:40	0.0	0.0	0.0	
73	2/27/2012	10:41	0.0	0.0	0.0	
74	2/27/2012	10:42	0.0	0.0	0.0	
75	2/27/2012	10:43	0.0	0.0	0.0	
76	2/27/2012	10:44	0.0	0.0	0.0	
77	2/27/2012	10:45	0.0	0.0	0.0	
78	2/27/2012	10:46	0.0	0.0	0.0	
79	2/27/2012	10:47	0.0	0.0	0.0	
80	2/27/2012	10:48	0.0	0.0	0.0	
81	2/27/2012	10:49	0.0	0.0	0.0	
82	2/27/2012	10:50	0.0	0.0	0.0	
83	2/27/2012	10:51	0.0	0.0	0.0	
84	2/27/2012	10:52	0.0	0.0	0.0	
85	2/27/2012	10:53	0.0	0.0	0.0	
86	2/27/2012	10:54	0.0	0.0	0.0	
87	2/27/2012	10:55	0.0	0.0	0.0	
88	2/27/2012	10:56	0.0	0.0	0.0	
89	2/27/2012	10:57	0.0	0.0	0.0	
90	2/27/2012	10:58	0.0	0.0	0.0	
91	2/27/2012	10:59	0.0	0.0	0.0	
92	2/27/2012	11:00	0.0	0.0	0.0	
93	2/27/2012	11:01	0.0	0.0	0.0	
94	2/27/2012	11:02	0.0	0.0	0.0	
95	2/27/2012	11:03	0.0	0.0	0.0	
96	2/27/2012	11:04	0.0	0.0	0.0	
97	2/27/2012	11:05	0.0	0.0	0.0	
98	2/27/2012	11:06	0.0	0.0	0.0	
99	2/27/2012	11:07	0.0	0.0	0.0	

Location:		Downwind VOC			
Date of Monitoring		2/27/2012			
Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 902672		
User ID: 0000	0001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm lev	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
100	2/27/2012	11:08	0.0	0.0	0.0
101	2/27/2012	11:09	0.0	0.0	0.0
102	2/27/2012	11:10	0.0	0.0	0.0
103	2/27/2012	11:11	0.0	0.0	0.0
104	2/27/2012	11:12	0.0	0.0	0.0
105	2/27/2012	11:13	0.0	0.0	0.0
106	2/27/2012	11:14	0.0	0.0	0.0
107	2/27/2012	11:15	0.0	0.0	0.0
108	2/27/2012	11:16	0.0	0.0	0.0
109	2/27/2012	11:17	0.0	0.0	0.0
110	2/27/2012	11:18	0.0	0.0	0.0
111	2/27/2012	11:19	0.0	0.0	0.0
112	2/27/2012	11:20	0.0	0.0	0.0
113	2/27/2012	11:21	0.0	0.0	0.0
114	2/27/2012	11:22	0.0	0.0	0.0
115	2/27/2012	11:23	0.0	0.0	0.0
116	2/27/2012	11:24	0.0	0.0	0.0
117	2/27/2012	11:25	0.0	0.0	0.0
118	2/27/2012	11:26	0.0	0.0	0.0
119	2/27/2012	11:27	0.0	0.0	0.0
120	2/27/2012	11:28	0.0	0.0	0.0
121	2/27/2012	11:29	0.0	0.0	0.0
122	2/27/2012	11:30	0.0	0.0	0.0
123	2/27/2012	11:31	0.0	0.0	0.0
124	2/27/2012	11:32	0.0	0.0	0.0
125	2/27/2012	11:33	0.0	0.0	0.0
126	2/27/2012	11:34	0.0	0.0	0.0
127	2/27/2012	11:35	0.0	0.0	0.0
128	2/27/2012	11:36	0.0	0.0	0.0
129	2/27/2012	11:37	0.0	0.0	0.0
130	2/27/2012	11:38	0.0	0.0	0.0
131	2/27/2012	11:39	0.0	0.0	0.0
132	2/27/2012	11:40	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Monitoring			2/27/2012		
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 0000	00001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
133	2/27/2012	11:41	0.0	0.0	0.0
134	2/27/2012	11:42	0.0	0.0	0.0
135	2/27/2012	11:43	0.0	0.0	0.0
136	2/27/2012	11:44	0.0	0.0	0.0
137	2/27/2012	11:45	0.0	0.0	0.0
138	2/27/2012	11:46	0.0	0.0	0.0
139	2/27/2012	11:47	0.0	0.0	0.0
140	2/27/2012	11:48	0.0	0.0	0.0
141	2/27/2012	11:49	0.0	0.0	0.0
142	2/27/2012	11:50	0.0	0.0	0.0
143	2/27/2012	11:51	0.0	0.0	0.0
144	2/27/2012	11:52	0.0	0.0	0.0
145	2/27/2012	11:53	0.0	0.0	0.0
146	2/27/2012	11:54	0.0	0.0	0.0
147	2/27/2012	11:55	0.0	0.0	0.0
148	2/27/2012	11:56	0.0	0.0	0.0
149	2/27/2012	11:57	0.0	0.0	0.0
150	2/27/2012	11:58	0.0	0.0	0.0
151	2/27/2012	11:59	0.0	0.0	0.0
152	2/27/2012	12:00	0.0	0.0	0.0
153	2/27/2012	12:01	0.0	0.0	0.0
154	2/27/2012	12:02	0.0	0.0	0.0
155	2/27/2012	12:03	0.0	0.0	0.0
156	2/27/2012	12:04	0.0	0.0	0.0
157	2/27/2012	12:05	0.0	0.0	0.0
158	2/27/2012	12:06	0.0	0.0	0.0
159	2/27/2012	12:07	0.0	0.0	0.0
160	2/27/2012	12:08	0.0	0.0	0.0
161	2/27/2012	12:09	0.0	0.0	0.0
162	2/27/2012	12:10	0.0	0.0	0.0
163	2/27/2012	12:11	0.0	0.0	0.0
164	2/27/2012	12:12	0.0	0.0	0.0
165	2/27/2012	12:13	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Monitoring		2/27/2012			
Instrument: N	1iniRAE 2000	(PGM7600)	Serial Number: 902672		
User ID: 0000	00001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Iso	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm lev	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
166	2/27/2012	12:14	0.0	0.0	0.0
167	2/27/2012	12:15	0.0	0.0	0.0
168	2/27/2012	12:16	0.0	0.0	0.0
169	2/27/2012	12:17	0.0	0.0	0.0
170	2/27/2012	12:18	0.0	0.0	0.0
171	2/27/2012	12:19	0.0	0.0	0.0
172	2/27/2012	12:20	0.0	0.0	0.0
173	2/27/2012	12:21	0.0	0.0	0.0
174	2/27/2012	12:22	0.0	0.0	0.0
175	2/27/2012	12:23	0.0	0.0	0.0
176	2/27/2012	12:24	0.0	0.0	0.0
177	2/27/2012	12:25	0.0	0.0	0.0
178	2/27/2012	12:26	0.0	0.0	0.0
179	2/27/2012	12:27	0.0	0.0	0.0
180	2/27/2012	12:28	0.0	0.0	0.0
181	2/27/2012	12:29	0.0	0.0	0.0
182	2/27/2012	12:30	0.0	0.0	0.0
183	2/27/2012	12:31	0.0	0.0	0.0
184	2/27/2012	12:32	0.0	0.0	0.0
185	2/27/2012	12:33	0.0	0.0	0.0
186	2/27/2012	12:34	0.0	0.0	0.0
187	2/27/2012	12:35	0.0	0.0	0.0
188	2/27/2012	12:36	0.0	0.0	0.0
189	2/27/2012	12:37	0.0	0.0	0.0
190	2/27/2012	12:38	0.0	0.0	0.0
191	2/27/2012	12:39	0.0	0.0	0.0
192	2/27/2012	12:40	0.0	0.0	0.0
193	2/27/2012	12:41	0.0	0.0	0.0
194	2/27/2012	12:42	0.0	0.0	0.0
195	2/27/2012	12:43	0.0	0.0	0.0
196	2/27/2012	12:44	0.0	0.0	0.0
197	2/27/2012	12:45	0.0	0.0	0.0
198	2/27/2012	12:46	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Monitoring			2/27/2012		
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 0000	00001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
199	2/27/2012	12:47	0.0	0.0	0.0
200	2/27/2012	12:48	0.0	0.0	0.0
201	2/27/2012	12:49	0.0	0.0	0.0
202	2/27/2012	12:50	0.0	0.0	0.0
203	2/27/2012	12:51	0.0	0.0	0.0
204	2/27/2012	12:52	0.0	0.0	0.0
205	2/27/2012	12:53	0.0	0.0	0.0
206	2/27/2012	12:54	0.0	0.0	0.0
207	2/27/2012	12:55	0.0	0.0	0.0
208	2/27/2012	12:56	0.0	0.0	0.0
209	2/27/2012	12:57	0.0	0.0	0.0
210	2/27/2012	12:58	0.0	0.0	0.0
211	2/27/2012	12:59	0.0	0.0	0.0
212	2/27/2012	13:00	0.0	0.0	0.0
213	2/27/2012	13:01	0.0	0.0	0.0
214	2/27/2012	13:02	0.0	0.0	0.0
215	2/27/2012	13:03	0.0	0.0	0.0
216	2/27/2012	13:04	0.0	0.0	0.0
217	2/27/2012	13:05	0.0	0.0	0.0
218	2/27/2012	13:06	0.0	0.0	0.0
219	2/27/2012	13:07	0.0	0.0	0.0
220	2/27/2012	13:08	0.0	0.0	0.0
221	2/27/2012	13:09	0.0	0.0	0.0
222	2/27/2012	13:10	0.0	0.0	0.0
223	2/27/2012	13:11	0.0	0.0	0.0
224	2/27/2012	13:12	0.0	0.0	0.0
225	2/27/2012	13:13	0.0	0.0	0.0
226	2/27/2012	13:14	0.0	0.0	0.0
227	2/27/2012	13:15	0.0	0.0	0.0
228	2/27/2012	13:16	0.0	0.0	0.0
229	2/27/2012	13:17	0.0	0.0	0.0
230	2/27/2012	13:18	0.0	0.0	0.0
231	2/27/2012	13:19	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Monitoring			2/27/2012		
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 0000	00001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
232	2/27/2012	13:20	0.0	0.0	0.0
233	2/27/2012	13:21	0.0	0.0	0.0
234	2/27/2012	13:22	0.0	0.0	0.0
235	2/27/2012	13:23	0.0	0.0	0.0
236	2/27/2012	13:24	0.0	0.0	0.0
237	2/27/2012	13:25	0.0	0.0	0.0
238	2/27/2012	13:26	0.0	0.0	0.0
239	2/27/2012	13:27	0.0	0.0	0.0
240	2/27/2012	13:28	0.0	0.0	0.0
241	2/27/2012	13:29	0.0	0.0	0.0
242	2/27/2012	13:30	0.0	0.0	0.0
243	2/27/2012	13:31	0.0	0.0	0.0
244	2/27/2012	13:32	0.0	0.0	0.0
245	2/27/2012	13:33	0.0	0.0	0.0
246	2/27/2012	13:34	0.0	0.0	0.0
247	2/27/2012	13:35	0.0	0.0	0.0
248	2/27/2012	13:36	0.0	0.0	0.0
249	2/27/2012	13:37	0.0	0.0	0.0
250	2/27/2012	13:38	0.0	0.0	0.0
251	2/27/2012	13:39	0.0	0.0	0.0
252	2/27/2012	13:40	0.0	0.0	0.0
253	2/27/2012	13:41	0.0	0.0	0.0
254	2/27/2012	13:42	0.0	0.0	0.0
255	2/27/2012	13:43	0.0	0.0	0.0
256	2/27/2012	13:44	0.0	0.0	0.0
257	2/27/2012	13:45	0.0	0.0	0.0
258	2/27/2012	13:46	0.0	0.0	0.0
259	2/27/2012	13:47	0.0	0.0	0.0
260	2/27/2012	13:48	0.0	0.0	0.0
261	2/27/2012	13:49	0.0	0.0	0.0
262	2/27/2012	13:50	0.0	0.0	0.0
263	2/27/2012	13:51	0.0	0.0	0.0
264	2/27/2012	13:52	0.0	0.0	0.0

Location:		Downwind VOC				
Date of Monitoring			2/27/2012			
Instrument: M	Instrument: MiniRAE 2000 (PGM7600)			Serial Number: 902672		
User ID: 0000	00001		Site ID: 00000	02		
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec	
Last Calibrati	on Time:	2/13/2012	11:48:00 AM			
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)	
High Alarm L	evels		100.0	100.0	100.0	
Low Alarm le	vels:		50.0	50.0	50.0	
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)	
265	2/27/2012	13:53	0.0	0.0	0.0	
266	2/27/2012	13:54	0.0	0.0	0.0	
267	2/27/2012	13:55	0.0	0.0	0.0	
268	2/27/2012	13:56	0.0	0.0	0.0	
269	2/27/2012	13:57	0.0	0.0	0.0	
270	2/27/2012	13:58	0.0	0.0	0.0	
271	2/27/2012	13:59	0.0	0.0	0.0	
272	2/27/2012	14:00	0.0	0.0	0.0	
273	2/27/2012	14:01	0.0	0.0	0.0	
274	2/27/2012	14:02	0.0	0.0	0.0	
275	2/27/2012	14:03	0.0	0.0	0.0	
276	2/27/2012	14:04	0.0	0.0	0.0	
277	2/27/2012	14:05	0.0	0.0	0.0	
278	2/27/2012	14:06	0.0	0.0	0.0	
279	2/27/2012	14:07	0.0	0.0	0.0	
280	2/27/2012	14:08	0.0	0.0	0.0	
281	2/27/2012	14:09	0.0	0.0	0.0	
282	2/27/2012	14:10	0.0	0.0	0.0	
283	2/27/2012	14:11	0.0	0.0	0.0	
284	2/27/2012	14:12	0.0	0.0	0.0	
285	2/27/2012	14:13	0.0	0.0	0.0	
286	2/27/2012	14:14	0.0	0.0	0.0	
287	2/27/2012	14:15	0.0	0.0	0.0	
288	2/27/2012	14:16	0.0	0.0	0.0	
289	2/27/2012	14:17	0.0	0.0	0.0	
290	2/27/2012	14:18	0.0	0.0	0.0	
291	2/27/2012	14:19	0.0	0.0	0.0	
292	2/27/2012	14:20	0.0	0.0	0.0	
293	2/27/2012	14:21	0.0	0.0	0.0	
294	2/27/2012	14:22	0.0	0.0	0.0	
295	2/27/2012	14:23	0.0	0.0	0.0	
296	2/27/2012	14:24	0.0	0.0	0.0	
297	2/27/2012	14:25	0.0	0.0	0.0	

Location:		Downwind VOC			
Date of Monitoring		2/27/2012			
Instrument: M	liniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 0000	00001		Site ID: 00000	02	
Data Points: 3	330	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	t Type:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
298	2/27/2012	14:26	0.0	0.0	0.0
299	2/27/2012	14:27	0.0	0.0	0.0
300	2/27/2012	14:28	0.0	0.0	0.0
301	2/27/2012	14:29	0.0	0.0	0.0
302	2/27/2012	14:30	0.0	0.0	0.0
303	2/27/2012	14:31	0.0	0.0	0.0
304	2/27/2012	14:32	0.0	0.0	0.0
305	2/27/2012	14:33	0.0	0.0	0.0
306	2/27/2012	14:34	0.0	0.0	0.0
307	2/27/2012	14:35	0.0	0.0	0.0
308	2/27/2012	14:36	0.0	0.0	0.0
309	2/27/2012	14:37	0.0	0.0	0.0
310	2/27/2012	14:38	0.0	0.0	0.0
311	2/27/2012	14:39	0.0	0.0	0.0
312	2/27/2012	14:40	0.0	0.0	0.0
313	2/27/2012	14:41	0.0	0.0	0.0
314	2/27/2012	14:42	0.0	0.0	0.0
315	2/27/2012	14:43	0.0	0.0	0.0
316	2/27/2012	14:44	0.0	0.0	0.0
317	2/27/2012	14:45	0.0	0.0	0.0
318	2/27/2012	14:46	0.0	0.0	0.0
319	2/27/2012	14:47	0.0	0.0	0.0
320	2/27/2012	14:48	0.0	0.0	0.0
321	2/27/2012	14:49	0.0	0.0	0.0
322	2/27/2012	14:50	0.0	0.0	0.0
323	2/27/2012	14:51	0.0	0.0	0.0
324	2/27/2012	14:52	0.0	0.0	0.0
325	2/27/2012	14:53	0.0	0.0	0.0
326	2/27/2012	14:54	0.0	0.0	0.0
327	2/27/2012	14:55	0.0	0.0	0.0
328	2/27/2012	14:56	0.0	0.0	0.0
329	2/27/2012	14:57	0.0	0.0	0.0
330	2/27/2012	14:58	0.0	0.0	0.0

Location:			Downwind VOC		
Date of Monitoring			2/28/2012		
Instrument: M	1iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 0000	00001		Site ID: 00000	003	
Data Points: 3	374	Gas Name: Iso	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
1	2/28/2012	7:05	0.0	0.0	0.0
16	2/28/2012	7:20	0.0	0.0	0.0
31	2/28/2012	7:35	0.0	0.0	0.0
46	2/28/2012	7:50	0.0	0.0	0.0
61	2/28/2012	8:05	0.0	0.0	0.0
76	2/28/2012	8:20	0.0	0.0	0.0
91	2/28/2012	8:35	0.0	0.0	0.0
106	2/28/2012	8:50	0.0	0.0	0.0
121	2/28/2012	9:05	0.0	0.0	0.0
136	2/28/2012	9:20	0.0	0.0	0.0
151	2/28/2012	9:35	0.0	0.0	0.0
166	2/28/2012	9:50	0.0	0.0	0.0
181	2/28/2012	10:05	0.0	0.0	0.0
196	2/28/2012	10:20	0.0	0.0	0.0
211	2/28/2012	10:35	0.0	0.0	0.0
226	2/28/2012	10:50	0.0	0.0	0.0
241	2/28/2012	11:05	0.0	0.0	0.0
256	2/28/2012	11:20	0.0	0.0	0.0
271	2/28/2012	11:35	0.0	0.0	0.0
286	2/28/2012	11:50	0.0	0.0	0.0
301	2/28/2012	12:05	0.0	0.0	0.0
316	2/28/2012	12:20	0.0	0.0	0.0
331	2/28/2012	12:35	0.0	0.0	0.0
346	2/28/2012	12:50	0.0	0.0	0.0
361	2/28/2012	13:05	0.0	0.0	0.0
375	2/28/2012	13:19	0.0	0.0	0.0

Location:			Downwind VOC		
Date of Monitoring			2/29/2012		
Instrument: N	liniRAE 2000	(PGM7600)	Serial Number: 902672		
User ID: 00000001 Site ID: 0000005					
Data Points: 4	471	Gas Name: Ise	obutyl	Sample perio	d: 60 sec
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm lev	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
15	2/29/2012	7:32	0.0	0.0	0.0
30	2/29/2012	7:47	0.0	0.0	0.0
45	2/29/2012	8:02	0.0	0.0	0.0
60	2/29/2012	8:17	0.0	0.0	0.0
75	2/29/2012	8:32	0.0	0.0	0.0
90	2/29/2012	8:47	0.0	0.0	0.0
105	2/29/2012	9:02	0.0	0.0	0.0
120	2/29/2012	9:17	0.0	0.0	0.0
135	2/29/2012	9:32	0.0	0.0	0.0
150	2/29/2012	9:47	0.0	0.0	0.0
165	2/29/2012	10:02	0.0	0.0	0.0
180	2/29/2012	10:17	0.0	0.0	0.0
195	2/29/2012	10:32	0.0	0.0	0.0
210	2/29/2012	10:47	0.0	0.0	0.0
225	2/29/2012	11:02	0.0	0.0	0.0
240	2/29/2012	11:17	0.0	0.0	0.0
255	2/29/2012	11:32	0.0	0.0	0.0
270	2/29/2012	11:47	0.0	0.0	0.0
285	2/29/2012	12:02	0.0	0.0	0.0
300	2/29/2012	12:17	0.0	0.0	0.0
315	2/29/2012	12:32	0.0	0.0	0.0
330	2/29/2012	12:47	0.0	0.0	0.0
345	2/29/2012	13:02	0.0	0.0	0.0
360	2/29/2012	13:17	0.0	0.0	0.0
375	2/29/2012	13:32	0.0	0.0	0.0
390	2/29/2012	13:47	0.0	0.0	0.0
405	2/29/2012	14:02	0.0	0.0	0.0
420	2/29/2012	14:17	0.0	0.0	0.0
435	2/29/2012	14:32	0.0	0.0	0.0
450	2/29/2012	14:47	0.0	0.0	0.0
465	2/29/2012	15:02	0.0	0.0	0.0

Location:		Downwind VOC			
Date of Mon	itoring			3/1/2012	
Instrument: N	/iniRAE 2000	(PGM7600)	Serial Numbe	r: 902672	
User ID: 000	00001		Site ID: 00000	006	
Data Points:	33	Gas Name: Ise	ame: Isobutyl Sample period: 60 sec		
Last Calibrati	on Time:	2/13/2012	11:48:00 AM		
Measuremen	Туре:		Min (ppm)	Avg (ppm)	Max (ppm)
High Alarm L	evels		100.0	100.0	100.0
Low Alarm le	vels:		50.0	50.0	50.0
Line #	Date	Time	Min (ppm)	Avg (ppm)	Max (ppm)
15	3/14/2012	7:13	0.0	0.0	0.0
30	3/29/2012	7:28	0.0	0.0	0.0

ARCADIS

Downwind PM₁₀ Monitoring Data

Location:	Downwind Dust	
Date of Monitoring		9/20/2011
TrakPro Vers	ion 4.41 ASCII Data I	File
Model: DustTrak 8520	Serial Number:	85200085
Test ID: 003	Log Interval (mm:ss)	1:00
Data Points: 179	Calibration Date:	5/17/2011
	Maximum:	0.104
Statistics	Average:	0.004
	Minimum:	-0.001
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
9/20/2011	7:55:52	0.002
9/20/2011	8:10:52	0.000
9/20/2011	8:25:52	0.000
9/20/2011	8:40:52	0.001
9/20/2011	8:55:52	0.002
9/20/2011	9:10:52	0.000
9/20/2011	9:25:52	0.001
9/20/2011	9:40:52	0.001
9/20/2011	9:55:52	0.008
9/20/2011	10:10:52	0.008
9/20/2011	10:25:52	0.003
9/20/2011	10:39:52	0.017

Location:	Downwind Dust			
Date of Monitoring		9/21/2011		
TrakPro Ve	rsion 4.41 ASCII Data I	-ile		
Model: DustTrak 8520	Serial Number:	85200085		
Test ID: 004	Log Interval (mm:ss)	1:00		
Data Points: 489	Calibration Date:	5/17/2011		
	Maximum:	0.104		
Statistics	Average:	0.021		
	Minimum:	0.011		
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)		
9/21/2011	7:47:50	0.016		
9/21/2011	8:02:50	0.018		
9/21/2011	8:17:50	0.018		
9/21/2011	8:32:50	0.020		
9/21/2011	8:47:50	0.028		
9/21/2011	9:02:50	0.024		
9/21/2011	9:17:50	0.026		
9/21/2011	9:32:50	0.024		
9/21/2011	9:48:50	0.024		
9/21/2011	10:02:50	0.027		
9/21/2011	10:17:50	0.032		
9/21/2011	10:32:50	0.033		
9/21/2011	10:47:50	0.030		
9/21/2011	11:02:50	0.030		
9/21/2011	11:17:50	0.028		
9/21/2011	11:32:50	0.026		
9/21/2011	11:47:50	0.024		
9/21/2011	12:02:50	0.021		
9/21/2011	12:17:50	0.020		
9/21/2011	12:32:50	0.019		
9/21/2011	12:47:50	0.023		
9/21/2011	13:02:50	0.015		
9/21/2011	13:17:50	0.015		
9/21/2011	13:32:50	0.015		
9/21/2011	13:47:50	0.015		
9/21/2011	14:02:50	0.014		
9/21/2011	14:17:50	0.016		
9/21/2011	14:32:50	0.019		
9/21/2011	14:47:50	0.015		
9/21/2011	15:02:50	0.012		
9/21/2011	15:17:50	0.013		
9/21/2011	15:32:50	0.015		

Location:	Downwind Dust	
Date of Monitoring		9/26/2011
TrakPro Ver	sion 4.41 ASCII Data I	File
Model: DustTrak 8520	Serial Number:	85200085
Test ID: 007	Log Interval (mm:ss)	1:00
Data Points: 438	Calibration Date:	5/17/2011
	Maximum:	0.139
Statistics	Average:	0.014
	Minimum:	0.005
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
9/26/2011	8:52:44	0.014
9/26/2011	9:07:44	0.013
9/26/2011	9:22:44	0.014
9/26/2011	9:37:44	0.015
9/26/2011	9:52:44	0.015
9/26/2011	10:07:44	0.015
9/26/2011	10:22:44	0.017
9/26/2011	10:37:44	0.029
9/26/2011	10:52:44	0.035
9/26/2011	11:07:44	0.027
9/26/2011	11:22:44	0.019
9/26/2011	11:37:44	0.018
9/26/2011	11:52:44	0.013
9/26/2011	12:07:44	0.012
9/26/2011	12:22:44	0.008
9/26/2011	12:37:44	0.008
9/26/2011	12:52:44	0.011
9/26/2011	13:07:44	0.012
9/26/2011	13:22:44	0.011
9/26/2011	13:37:44	0.016
9/26/2011	13:52:44	0.012
9/26/2011	14:07:44	0.012
9/26/2011	14:22:44	0.008
9/26/2011	14:37:44	0.008
9/26/2011	14:52:44	0.007
9/26/2011	15:07:44	0.007
9/26/2011	15:22:44	0.009
9/26/2011	15:37:44	0.008
9/26/2011	15:52:44	0.012

Location:		Downwind Dust
Date of Monitoring		10/6/2011
TrakPro Vers	File	
Model: DustTrak 8520	Serial Number:	85200085
Test ID: 012	Log Interval (mm:ss)	1:00
Data Points: 174	Calibration Date:	5/17/2011
	Maximum:	0.023
Statistics	Average:	-0.002
	Minimum:	-0.005
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
10/6/2011	9:18:54	-0.003
10/6/2011	9:33:54	-0.002
10/6/2011	9:48:54	-0.001
10/6/2011	10:03:54	-0.003
10/6/2011	10:18:54	-0.001
10/6/2011	10:33:54	-0.003
10/6/2011	10:48:54	-0.003
10/6/2011	11:03:54	-0.003
10/6/2011	11:18:54	-0.002
10/6/2011	11:33:54	-0.004
10/6/2011	11:48:54	-0.004

Location:		Downwind Dust
Date of Monitoring		2/27/2012
TrakPro Ve	rsion 4.41 ASCII Data I	File
Model: DustTrak 8520	Serial Number:	85200169
Test ID: 012	Log Interval (mm:ss)	0:01
Data Points: 19971	Calibration Date:	1/27/2011
	Maximum:	0.500
Statistics	Average:	0.034
	Minimum:	0.019
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)
2/27/2012	9:59:09	0.044
2/27/2012	10:14:09	0.038
2/27/2012	10:29:09	0.034
2/27/2012	10:44:09	0.033
2/27/2012	10:59:09	0.034
2/27/2012	11:14:09	0.034
2/27/2012	11:29:09	0.034
2/27/2012	11:44:09	0.034
2/27/2012	11:59:09	0.033
2/27/2012	12:14:09	0.034
2/27/2012	12:29:09	0.035
2/27/2012	12:44:09	0.035
2/27/2012	12:59:09	0.037
2/27/2012	13:14:09	0.034
2/27/2012	13:29:09	0.034
2/27/2012	13:44:09	0.033
2/27/2012	13:59:09	0.031
2/27/2012	14:14:09	0.029
2/27/2012	14:29:09	0.029
2/27/2012	14:44:09	0.028
2/27/2012	14:59:09	0.029
2/27/2012	15:14:09	0.030

Location:	Downwind Dust		
Date of Monitoring		2/28/2012	
TrakPro Ve	ersion 4.41 ASCII Data I	File	
Model: DustTrak 8520	Serial Number:	85200169	
Test ID: 2	Log Interval (mm:ss)	1:00	
Data Points: 377	Calibration Date:	1/27/2011	
	Maximum:	0.112	
Statistics	Average:	0.020	
	Minimum:	0.013	
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)	
2/28/2012	7:35:38	0.040	
2/28/2012	7:50:38	0.026	
2/28/2012	8:05:38	0.024	
2/28/2012	8:20:38	0.021	
2/28/2012	8:35:38	0.021	
2/28/2012	8:50:38	0.020	
2/28/2012	9:05:38	0.020	
2/28/2012	9:20:38	0.022	
2/28/2012	9:35:38	0.021	
2/28/2012	9:50:38	0.025	
2/28/2012	10:05:38	0.021	
2/28/2012	10:20:38	0.019	
2/28/2012	10:35:38	0.020	
2/28/2012	10:50:38	0.016	
2/28/2012	11:05:38	0.015	
2/28/2012	11:20:38	0.016	
2/28/2012	11:35:38	0.018	
2/28/2012	11:50:38	0.017	
2/28/2012	12:05:38	0.017	
2/28/2012	12:20:38	0.017	
2/28/2012	12:35:38	0.018	
2/28/2012	12:50:38	0.018	
2/28/2012	13:05:38	0.020	
2/28/2012	13:20:38	0.019	

Location:	Downwind Dust			
Date of Monitoring		2/29/2012		
TrakPro Vers	ion 4.41 ASCII Data I	ile		
Model: DustTrak 8520	Serial Number:	85200169		
Test ID: 3	Log Interval (mm:ss)	1:00		
Data Points: 457	Calibration Date:	1/27/2011		
	Maximum:	0.134		
Statistics	Average:	0.080		
	Minimum:	0.050		
Date	Time (hh:mm:ss)	Aerosol (mg/m ³)		
2/29/2012	7:52:50	0.067		
2/29/2012	8:07:50	0.061		
2/29/2012	8:22:50	0.056		
2/29/2012	8:37:50	0.054		
2/29/2012	8:52:50	0.053		
2/29/2012	9:07:50	0.052		
2/29/2012	9:22:50	0.054		
2/29/2012	9:37:50	0.054		
2/29/2012	9:52:50	0.055		
2/29/2012	10:07:50	0.057		
2/29/2012	10:22:50	0.059		
2/29/2012	10:37:50	0.069		
2/29/2012	10:52:50	0.075		
2/29/2012	11:07:50	0.077		
2/29/2012	11:22:50	0.083		
2/29/2012	11:37:50	0.087		
2/29/2012	11:52:50	0.092		
2/29/2012	12:07:50	0.095		
2/29/2012	12:22:50	0.098		
2/29/2012	12:37:50	0.098		
2/29/2012	12:52:50	0.104		
2/29/2012	13:07:50	0.108		
2/29/2012	13:22:50	0.106		
2/29/2012	13:37:50	0.106		
2/29/2012	13:52:50	0.104		
2/29/2012	14:07:50	0.104		
2/29/2012	14:22:50	0.103		
2/29/2012	14:37:50	0.094		
2/29/2012	14:52:50	0.089		
2/29/2012	15:07:50	0.085		

ARCADIS

Attachment 2

Soil Boring Logs

Dat Dril Dril Cas Rig San	e Stal ling (ler's ling N sing D Type npling	rt/Fini Compa Name Methoo Diamet : CME g Meth	sh: 9, any: F : Brac d: Hol er: 4. E-55 aod: 2	/21/20 Parratt d Paln llow S 25" IE 2" x 2')11 - t Wol ner tem / Split	9/30/: ff Auger : Spoo	2011 r on		Northing: 822991.5 Easting: 1068978 Borehole Depth: 6.8' bgs Surface Elevation: 657.14' AMSL Descriptions By: M. Eriksson/L. Terrell	Well/Boring Client: NY: Location: I	g ID: SB-01 SEG McMaster Street Former MGP Site Auburn, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction		
-	- 660 - -	-											
-	-	1	0-2	Grab	0.0	NA	NA		Brown fine SAND, some Silt, red Brick and Cobble fragments, tra (fill material, very boney) and Clay.	ace Organics			
-	655 - 2 2-4 Grab 0.0 NA NA			NA				Borehole backfilled to grade with bentonite/coment					
- 5	-	3	5-6	0.3	0.0	9 5 50/4"	NA		Dark brown fine, medium and coarse subangular GRAVEL, little and coarse Sand and red Brick, trace Silt, loose, wet.	fine, medium	grout.		
-	650 -	-							End of boring at 6.8' bgs.				
- 10	-	-											
-	645 - -												
- 15	-	-											
Proje	Castruc ect Nu	A cture	R(Water B0013	CA • Enviro 8049.0	0007.	00001	S uildir 5	ngs	Remarks: bgs = below ground surface; NA = no level; VOC = volatile organic compou Geotechnical samples collected from VOC/SVOC sample collected from 5 Blow counts are not available above Template: H:\NYSEG\boringHSA 2	marks: bgs = below ground surface; NA = not applicable/available; AMSL = above mean sea level; VOC = volatile organic compound; SVOC = semi-volatile organic compound. Geotechnical samples collected from 0-4' bgs and 5-6.8' bgs. VOC/SVOC sample collected from 5-6.8' bgs. Blow counts are not available above 5 feet bgs due to hand clearing. Template: H:\NYSEG\boringHSA 2007 GEOTECH 2 ldfv			

Dat Dril Dril Cas Rig San	e Star ling C ler's I ling M sing D Type npling	rt/Fini Compa Name Metho Diamet : CME g Meth	sh: 9/ any: F : Brac d: Hol cer: 4. E-55 nod: 2	20/20 Parratt d Paln low S 25" IE 2" x 2'	Split	9/26/ ff Auger	2011 on		Northing: 823051.5 Easting: 1068985 Borehole Depth: 10.5' bgs Surface Elevation: 658.04' AMSL Descriptions By: Marcus Eriksson	Well/Borin Client: NY Location:	g ID: SB-02 SEG McMaster Street Former MGP Site Auburn, NY							
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction							
-	660 -																	
-	-	1	0-2	Grab	0.0	NA	NA		Gray/brown fine SAND, some Silt, little to some fine, medium Gravel, Organics (roots) and Cobbles, little red Brick and fire plastic.	and coarse Brick, moist, non-								
-	655 - -	2	2-4	Grab	0.0	NA	NA		Trace Clau from 4.5' to 5.0' bas									
- 5	_	4	5-6	0.8	0.0	4 6	NA		Little Cinders and Coal.		Borehole backfilled to grade with bentonite/cement grout.							
-	- 650 - -	5	6-8 8-10	1.1	0.0	NA 2 2 2 2 2	NA 4		Dark gray/brown, some fine, medium and coarse Gravel dark staining, sheen, faint MGP-like odor, saturated, nor	and Silt, trace ·plastic.	•							
- 10	-	7	10-12	0.5	0.0	NA	NA		End of boring at 10.5' bgs.									
-	645 -																	
- 15									Remarks: bgs = below ground surface; NA = level; BTEX = benzene, toluene, e bydrocarbons: MGP = manufacture	not applicable/a hylbenzene an	available; AMSL = above mean sea d xylenes; PAH = polycyclic aromatic							
Infr	R rastruc	A cture ·	R	Envir		ent - B	uildir	ngs	BTEX/PAH sample collected from Blow counts are not available abov	nydrocarbons; MGP = manufactured gas plant. BTEX/PAH sample collected from 8-10.5' bgs. Blow counts are not available above 5 feet bgs due to hand clearing.								

Da Dri Dri Ca Rig Sa	te Stal Iling (Iler's Iling N sing D Type npling	rt/Fini Compa Name Metho Diamet : CME g Meth	sh: 9, any: F : Brac d: Hol er: 4. E-55 hod: 2	/20/20 Parratt d Paln low S 25" IE 2" x 2')11 - : Wol ner tem /) Split	9/26/. ff Auger : Spoo	2011 r on		Northing: 82 Easting: 106 Borehole De Surface Elev Description	23125.1 69002 epth: 9.5' bgs vation: 657.99' AMSL s By: Marcus Eriksson	Well/Boring ID: SB-03 Client: NYSEG Location: McMaster Street Former MGP Site Auburn, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column		Stratigraphic Description		Well/Boring Construction	
-	660 - -	-											
-	-	1	0-2	Grab	0.0	NA	NA		Brown fine SAND, little (roots), Cobbles, moist,	Silt and fine, medium and coarse Gravel non-plastic.	trace Organics		
-	655 - -	655 – 2 2-4 Grab 0.0			0.0	NA	NA		Trace red Brick, fire Brick and Coal from 4-5' bgs.		Deschola		
-5	-	3	4-5 5-6	Grab	0.0	NA 4-7	NA 12		Dark brown fine SAND fragments, trace Clay, r	and SILT, little Brick, fine to medium Gra noist, non-plastic.	vel, and coal	Borehole backfilled to grade with bentonite/cement	
-	-	5	6-8	1.0	0.0	5-5 5 4 9	9		Trace Slag.			grout.	
-	-	6	8-10	0.9	0.0	9 7 50/4"	NA		Dark brown fine SAND, Clay, saturated, non-pla Auger refusal at 9	some Silt and fine, medium and coarse sastic. .5' bgs; rock in tip of spoon.	Gravel, trace		
10	- 645 -								End of boring at 9.	.5' bgs.			
- 15	_	-											
Inf	rastruc ect Nu	A cture	R(Water B0013			0001	5	ngs	Remarks: bgs = level; hydrod BTEX Blow d	below ground surface; NA = ne BTEX = benzene, toluene, eth carbons. /PAH sample collected from 8- counts are not available above mplate: H:\NYSEG\boringHSA 2	ot applicable/ ylbenzene and 9.5' bgs. 5 feet bgs du	available; AMSL = above mean sea d xylenes; PAH = polycyclic aromatic e to hand clearing. CH 2.ldfx Page: 1 of 1	

Da Dri Dri Ca: Rig Sai	te Stal Iling (Iler's Iling N sing D Type npling	rt/Fini Compa Name Metho Diamet : CMB g Meth	sh: 9/ any: F : Brac d: Hol cer: 4. E-55 nod: 2	/20/20 Parratt d Paln low S 25" IE 2" x 2')11 - : Wol her tem /) Split	9/26/. ff Auger : Spoo	2011 r on		Northing: 823058.6 Easting: 1068964 Borehole Depth: 10.9' bgs Surface Elevation: 657.93' AMSL Descriptions By: Marcus Eriksson	Well/Boring Client: NY Location: I	g ID: SB-04 SEG McMaster Street Former MGP Site Auburn, NY	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-	- 660 -	-										
-	-	1	0-2	Grab	0.0	NA	NA		Dark brown/gray fine SAND, some fine, medium and coarse Gr and Cobbles, trace red Brick and Slag.	avel, little Silt		
-	655 -	2	2-4	Grab	0.0	NA	NA		Trace Clay.			
5	-	3	4-5 5-6	Grab	0.0	NA 3	NA 12				Borehole	
-	-	5	6-8	1.3	0.0	2 4 5 4	9		Trace fine Gravel.		grade with bentonite/cement grout.	
-	-	6	8-10	1.3	0.0	4 6 46 40	52	00	Saturated, non-plastic. Gray/brown fine SAND and fine, medium and coarse GRAVEL, plastic.	saturated, non-	×	
		7	10-12	0.9	0.0	58 50/4"	NA	0.0	Weathered BEDROCK from 10.5-10.9' bgs.			
- 15	- 645 - -								End of boring at 10.9' bgs.			
Int	rastruc	cture -	R(Water			DIS ent · B 0001	S Suildir 5	ngs	Remarks: bgs = below ground surface; NA = r level; BTEX = benzene, toluene, eth hydrocarbons. BTEX/PAH sample collected from 8 Blow counts are not available above Template: H:\NYSEG\boringHSA	ot applicable/a ylbenzene an -10.9' bgs. 9 5 feet bgs du 2007 GEOTF0	available; AMSL = above mean sea d xylenes; PAH = polycyclic aromatic e to hand clearing. CH 2.ldfx Page: 1 of 1	

Dat Dri Dri Cas Rig Sar	te Sta Iling (Iler's Iling N sing D Type npling	rt/Fini Compa Name Metho Diamet : CME g Meth	sh: 9/ any: F : Brac d: Hol er: 4. E-55 hod: 2	/21/20 Parratt J Paln low S 25" IE 2" x 2')11 - t Wol ner tem / Split	9/27/: ff Auger : Spoo	2011 r on			Northing: 823309.8 Easting: 1068979 Borehole Depth: 15' bgs Surface Elevation: 663.86' AMSL Descriptions By: Marcus Eriksson	Well/Borin Client: NY Location:	g ID: SB-05 SEG McMaster Street Former MGP Site Auburn, NY
DEPTH	ELEVATION	Sample Run Num	Sample/Int/Type	Recovery (feet)	PID Headspace (p	Blow Counts	N - Value	Geologic Column		Stratigraphic Description		Well/Boring Construction
-	- 665 -	-										
-	-	1	0-2	Grab	0.0	NA	NA		Brow Orga	n fine SAND, little to some fine, medium and coarse Grave nics and Silt (very stiff).	I, trace	
-	-	2	2-4	NA	NA	NA	NA		Large	e COBBLES, little red Brick and Concrete, trace fine Sand.		
-5	-	3	4-5	NA	NA	NA	NA	× x × x				
-	-	4	5-7	0.9	0.0	5 2 2 3	4		Brow moist	n fine to medium SAND, little to some fine to medium Grav , non-plastic.	el and Silt,	
-	- 655 -	5	7-9	1.0	0.0	4 6 3 4	9					Borehole backfilled to grade with bentonite/cement grout.
- 10	-	6	9-11	1.7	0.0	7 6 11 10	17	0000	Gray/ fragm	/brown fine SAND and fine, medium and coarse GRAVEL, nents, trace Coal and Silt, moist, non-plastic.	little Cobble	
-	-	7	11-13	1.0	0.0	9 7 16 11	23	0000		Increasing Cobbles and Gravel with depth (no Coal).		
-	650 -	8	13-15	2.0	24.3	11 9 6 50/5"	15	0000		Moderate sheen, little NAPL blebs, moderate MGP-like od	or.	
- 15-										End of boring at 15' bgs.		
Inf	rastrue	A	RC			DIS ent · B	S	ngs	Rem	 bgs = below ground surface; NA = n level; MGP = manufactured gas plar Geotechnical sample collected from Blow counts are not available above 	ot applicable/a ht; NAPL = noi 0-2' bgs. 5 feet bgs du	available; AMSL = above mean sea n-aqueous phase liquid. ne to hand clearing.
Proi	ect Nu	umber:	B0013	049.0	007.	0001	5			Template: H:\NYSEG\boringHSA	2007 GEOTE	CH 2.ldfx Page: 1 of 1

Data File:SB-05.dat

Dat Dri Dri Cas Rig Sar	te Star Iling C Iler's I Iling N sing D Type npling	rt/Fini Compa Name Metho Diamet : CMI g Meth	sh: 9/ any: F : Brac d: Hol ter: 4. E-55 nod: 2	/21/20 Parrati J Paln low S 25" IE 2" x 2')11 - t Wol ner tem / Split	9/27/ ff Auger	2011 r on		Northing: 823344.9 Easting: 1068964 Borehole Depth: 11.4' bgs Surface Elevation: 662.33' AMSL Descriptions By: Marcus Eriksson	Well/Boring Client: NY Location: 1	g ID: SB-06 SEG McMaster Street Former MGP Site Auburn, NY		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction		
-	665 - -												
-	-	1	0-2	Grab	0.0	NA	NA		Dark brown fine to medium SAND, little Silt, fine, medium and co Organics (roots, mainly 0-1' bgs), and Coal fragments, moist, no	oarse Gravel, n-plastic.			
-	660 - -	2	2-4	Grab	0.0	NA	NA		Silt increasing with depth.				
-5	-	3	4-5	Grab	0.0	NA	NA						
-	- - 655 -	4	5-6 6-8	1.0	0.0	2 2 3 7 6 9	NA 13		Trace Silt, fire Brick at 6' bgs.		Borehole backfilled to grade with bentonite/cement grout.		
-	-	6	8-10	1.2	0.0	2 2 4 6	6		Trace Slag below 8' bgs.		•		
- 10	-	7	10-12	1.4	16.2	NA	NA		Little NAPL blebs throughout, sheen. Little fine to medium subrounded Gravel (till-like).				
	- 650 - -								End of boring at 11.4' bgs (BEDROCK).				
	-								Remarks: has - below around surface: NA - a	nt applicable/	available: AMSL - above mean sea		
Inf	R rastruc	A cture	R		Onme	ent · B	S	ngs	Geotechnical samples collected from Blow counts are not available above	 Geotechnical samples collected from 0-5' bgs, 5-10.7' bgs and 10.7-11.4' bgs. Blow counts are not available above 5 feet bgs due to hand clearing. 			

Da	te Sta	rt/Fini	sh: 9	/21/20)11 -	9/27/	2011			Northing: 82323	6.9		Well/Boring	g ID: SB-0	7	
Dri Dri	lling (ller's	Sompa Name	any: F : Brad	d Paln	t Wol ner	TŤ				Easting: 106893	33		Client: NYS	SEG		
Dri Ca	lling N sing D	Vetho Diame	d: Ho ter: 4	llow S .25" IE	tem / D	Augei	ſ			Borehole Depth Surface Elevation	: 9.7' bgs on: 659.36' AM	ISL	Location: I	McMaster St	treet Former N	/GP Site
Rig Sa	ı Type npling	: CMI g Meth	E-55 n od: 2	2" x 2'	Split	Spo	on						/	Auburn, NY		
		-								Descriptions By	: Marcus Eriks	son				
		mber	0		mdd)			Ę								
	N	nN ur	t/Type	(feet)	space	nts		Colum		Ctur	atiaranhia Daga	rintian			Well/Boring	1
Ŧ	VATIC	ole Ru	ple/In	overy	Heads	Coul	/alue	ogic (302	aligraphic Desc	приоп			Construction	1
DEP	ELE,	Sam	Sam	Rec	PID	Blow	/- Z	Geol								
	-	-														
Ī	-	-														
-	660 -															
-0									Dark	prown fine SAND, little S	Silt, fine to medium (Gravel, and Org	anics (roots),			
ŀ		1	0-2	Grab	0.0	NA	NA		moist	non-plastic. Some to little Silt and fir	ne, medium and coar	rse Gravel, trac	e Organics,			
_	-								•	Coal fragments and red	Brick, moist, non-pla	astic.	-			
	-	-														
-	-	2	2-4	Grab	4.9	NA	NA		•	Faint MGP-like odor at 3	3' bgs (increases with	h depth).				
F	- 655 -								•	Strong MGP-like odor (4	4-9.2' bgs), dark stair	ning, trace shee	en.			
-5	-	3	4-5	Grab	79.1	NA	NA			Nood in tip of spoon at	6' bgs.				E E	Borehole backfilled to
-	-	4	5-6	0.6	118	4 11	NA		•						t c	pentonite/cement grout.
	-					4 17			•							
	-	5	6-8	0.8	20.5	27 23	44		•						_	
Ī	-	-				4		0.0	Black NAPL	fine to medium SAND a sheen, blebs, staining,	and GRAVEL, little w saturated, non-plas	vood, rock in tip tic.	of shoe, heavy			
ŀ	650 -	6	8-10	1.2	52.6	5 9 50/2"	14	0,								
- 10										End of boring at 9.7' bgs	s (BEDROCK).					
-																
	-															
	-															
Ī	-	-														
F	645 -	-														
- 15																
										_						
									Rem	arks: bgs = belo level; NAP	w ground surfa L = non-aqueo	ice; NA = no us phase lio	ot applicable/a quid; MGP = r	available; AN nanufacture	MSL = above i d gas plant.	mean sea
(6	Δ	R	~/		19				Geotechni	cal samples co	llected from	0-5' bgs and	5-9.7' bgs.		
Int	rastru	cture	Water	· Envir	onme	ent B	uildir	ngs		Blow coun	ts are not avail	able above	5 feet bgs du	e to hand cle	earing.	
								-								
Proj Data	ect Nu a File:	imber: SB-07	B0013 .dat	3049.0	0007.	0001	5			Templa Date: 4	te: H:\NYSEG\b /2/2012	oringHSA 2 Created/Ed	2007 GEOTEC	CH 2.ldfx	Page.	1 of 1

Da Dri Dri Ca Rig Sa	te Sta Iling (Iler's Iling I sing D Type mpling	rt/Fini Compa Name Metho Diamet :: CMI g Meth	sh: 9, any: F : Brac d: Hol cer: 4. E-55 nod: 2	/21/20 Parratt d Paln llow S 25" IE 2" x 2')11 - t Wol ner tem / Split	9/28/: ff Auger : Spoo	2011 on			Northing: 82 Easting: 106 Borehole De Surface Elev Description	23328.1 68910 epth: 11.9 vation: 66 ns By: M. E	9' bgs 51.73' AMSL Eriksson/L. Terr	rell	Well Clie Loca	I/Boring nt: NY: ation: /	g ID: SB SEG McMaster Auburn, N	- 08 • Stre	et Forn	ner MGP Sit	e
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column			Stratigrap	hic Description						Well/Bo Constru	oring action	
-	-	-							Deels		U.S. CAND IN		lium on	4						
-	- 660 - -	1	0-2	Grab	0.0	NA	NA		Dark Grave Orga	rown fine to med I, little Silt, trace r ics, loose.	fum SAND, litt red Brick, Coal	le to some fine, med I fragments (increasi	ng with	d coarse depth) a	e and					
-	-	2	2-4	Grab	0.0	NA	NA													
5	-	3	4-5 5-6	Grab	0.0	NA 4	NA			race yellow Brick	k below 5' bgs.									
-	- 655 - -	5	6-8	1.0	0.0	4 9 4 5	13	0000	Dark medi	prown and light br m and coarse GR	rown/tan fine, r RAVEL, some \$	nedium and coarse s Silt, trace Clay, loose	SAND a	and fine, t.	,		_		Borehole backfilled t grade with bentonite/c grout.	o cement
-	-	6	8-10	0.6	0.0	4 4 5 4	9	0000		Slight MGP-like or	dor from 8-10' l	bgs.	and 10 (2' bgo			×			
- 10	-	7	10-12	1.2	0.0	2 10 12 50/4"	22		Brow	Clayey SILT, littl	MGP-like odor. le fine subroun	nd Gravel, low plastic	city, moi	ist, very	stiff.					
- 15	End of boring at 11.9' bgs.																			
I nt	Remarks: bgs = below ground surface; NA = not applicable/available; AMSL = above mean sea level; NAPL = non-aqueous phase liquid; MGP = manufactured gas plant. Geotechnical samples collected from 0-5' bgs, 5-10' bgs and 10-12' bgs. Blow counts are not available above 5 feet bgs due to hand clearing.																			
Proj Data	ect Nu a File:	umber: SB-08	B0013 .dat	049.0	007.	0001	5			Ter Da	mplate: H:\ 1 ate: 4/2/2012	NYSEG\boringF 2 Create	HSA 2 ed/Edi	2007 G ited by	EOTE /:RAS	CH 2.ldfx		P	age: 1 of 1	

Da Dri Dri Ca Riç Sa	te Sta Iling (Iler's Iling I sing D Type mpling	rt/Fini Compa Name Metho Diamet CMI g Meth	sh: 9, any: F : Brac d: Hol er: 4. E-55 aod: 2	/27/20 Parratt d Paln low S 25" IE 2" x 2')11 : Wol ner tem / Split	ff Auger : Spoo	r on			Northing: 823167 Easting: 1068950 Borehole Depth: Surface Elevatior Descriptions By:	.9 11.2' bgs : 658.83' AMSL Marcus Eriksson	Well/Boring Client: NY Location:	g ID: SB-09 SEG McMaster Street Former MGP Site Auburn, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column		Strat	igraphic Description		Well/Boring Construction
-	- 660	-											
-	-	1	0-2	Grab	0.0	NA	NA		Dark I Dark I red Bi	prown fine SAND and sub prown fine SAND, some f ick and Silt, moist, non-p	bangular GRAVEL (run-a-crush). ine, medium and coarse Gravel, lastic.	little Cobbles,	
-	655 -	2	2-4	Grab	0.0	NA	NA		•	silt increases with depth.			
-5	-	3	4-5	Grab	0.0	NA	NA		-	race Clay and Cinders a	t 5' bgs.		
	_	4	5-6	0.5	0.0	4 4	NA		Dark I Clay (prown fine SAND and SIL aminated), moist, non-pl	.T, little fine, medium and coarse astic.	Gravel, trace	Borehole backfilled to
-	-	5	6-8	1.0	0.0	2 6 7 7	13			race red Brick, faint MG	P-like odor below 6' bgs.		grade with bentonite/cement grout.
-	- 650	6	8-10	0.6	0.0	4 6 4 26	10		i	Possible weathered Bedro ncreasing fine, medium a ndor, trace sheen.	ock in shoe, saturated, non-plast ind coarse Gravel with depth, fai	ic, nt MGP-like	
- 10	-	7	10-12	1.2	42.5	17 27 50/2"	NA	000	Dark I	prown fine SAND and GR Little to trace NAPL blebs	AVEL, little Silt and weathered E at 11-11.2' bgs, moderate MGP	Bedrock. -like odor,	
15	- 645 - -					50/2			1	neen.	: (spoon refusal).		
R R R R R R R R R R R R R R R R R R R									Rem	arks: bgs = below level; NAPL Geotechnic Blow counts Template	v ground surface; NA = n . = non-aqueous phase li al sample collected from s are not available above a: H:\NYSEG\boringHSA	ot applicable/a quid; MGP = r 5-11.3' bgs. 9 5 feet bgs du	I available; AMSL = above mean sea manufactured gas plant. He to hand clearing. CH 2.ldfx Page: 1 of 1

Da Dri Dri Dri	te Sta Iling (Iler's Iling N	rt/Fini Compa Name Metho	sh: 9/ any: F : Brac d: Hol	22/20 Parrati Paln low S)11 - t Wol ner tem /	9/26/ ff Augei	2011 r		Northing: 823208.9 Easting: 1068864 Borehole Depth: 10.4' bgs	Well/Boring	g ID: SB-10 SEG
Rig Sa	j Type mpling	: CMI g Meth	E-55 nod: 2	2" x 2'	Split	Spoo	on		Descriptions By: Marcus Eriksson	Location: I	McMaster Street Former MGP Site Auburn, NY
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	- 660 -	-									
-	-	1	0-2	Grab	0.0	NA	NA		Dark brown SAND and GRAVEL (run-a-crush). Dark brown fine SAND, little fine Gravel and Coal fragments, trac 4' bgs), red Brick, fire Brick and Cobbles, moist, non-plastic.	ce Organics (3-	
-	-								Cobbles increasing with depth.		
-	-	_ 2	2-4	Grab	0.0	NA	NA				
-5	655 - -	3	4-5	Grab	0.0	NA	NA				Develo
-	-	4	5-6	0.4	0.0	2 3	NA				Borehole backfilled to grade with bentonite/cement
-	-	5	6-8	0.8	17.3	2 3 7 7	10				grout.
-	- - 650 -	6	8-10	1.0	119	4 3 2 3	5		Gray/brown fine SAND and SILT, little fine, medium and coarse Clay, moist, non-plastic, trace sheen.	Gravel and	×
- 10	-	7	10-12	0.4	0.0	50/4"	NA	7.	Gray Weathered BEDROCK, little Clay, Silt and fine Sand, satur plastic; bedrock in shoe.	ated, non-	
End of boring at 10.4' bgs.											
6	2	A	R	CA	D		5		Remarks: bgs = below ground surface; NA = no level; BTEX = benzene, toluene, ethy hydrocarbons. Geotechnical sample collected from BTEX/PAH sample collected from 8-	ot applicable/a /lbenzene and 0-5' bgs. 10.4' bgs.	available; AMSL = above mean sea d xylenes; PAH = polycyclic aromatic
Int	rastru	cture ·	Water	Envir	onme	ent · B	luildir	ngs	Blow counts are not available above	5 feet bgs du	e to hand clearing.
Proj Data	ect Nu a File:	umber: SB-10	B0013 .dat	049.0	007.	0001	5		Template: H:\NYSEG\boringHSA 2 Date: 4/2/2012 Created/Ed	2007 GEOTEC	CH 2.ldfx Page: 1 of 1

Da	te Sta	rt/Fini	sh: 9/	/21/20)11 -	9/28/ ff	2011		Northing: 823392.4	Well/Boring	g ID: SB-11
Dri	ller's	Name	any:⊢ :Brac	d Paln	ner	11				Client: NYS	SEG
Dri Ca	lling N sing D	liamet	a: Hol ter: 4.	iow S 25" IE	tem / D	Augei	r		Borehole Depth: 14.7' bgs Surface Elevation: 663.50' AMSL	Location:	McMaster Street Former MGP Site
Rig Sai	npling	: CME g Meth	=-55 nod: 2	2" x 2'	Split	Spoo	on			,	Auburn, NY
									Descriptions By: M. Eriksson/L. Terrell		
					ĉ						
		Inder	e e		udd) e			ц			
	NO	nn Nr	nt/Typ	/ (feet	space	ints		Colur	Stratigraphic Description		Well/Boring Construction
TH	VATI	ple R	nple/I	Covery	Head	v Col	Value	logic	.		
DEF	ELE	San	San	Rec	DIG	Blov	ż	Geo			
	-										
	665 -	-									
F	-	-									
									Brown fine SAND, little Organics (roots), fine to medium Gravel	and Silt, moist,	
-		1	0-2	Grab	0.0	NA	NA		non-plastic. Some Silt, fine, medium and coarse Gravel and Cobble fra- verv stiff, moist, non-plastic.	gments,	
	-										
	-	-									
Ē	660 -	2	2-4	Grab	0.0	NA	NA				
F	-										
-5	- 3 4-5 Grab 0.0 NA NA							······	Dark brown SILT, little fine to medium Sand and fine to medium	subangular	
-	-	4	5-6	1.0	0.0	4 6	NA		Gravel, trace Organics, moist, non-plastic. Light brown, trace fine Sand, coarse subangular Gravel and	d Organics.	
	-	-				5					
	-	5	6-8	0.3	0.0	16 41	27				Borehole backfilled to
F	- 655 -	-				7		<u></u>			grade with bentonite/cement grout.
ŀ		6	8-10	1.0	0.0	8 13	21				
- 10	-					20			Dade become to become find to modium CAND. CILT and find modi		
	-	-				10 28			GRAVEL, dense, moist. Brown-black NAPL at 10.7' bgs (approx. 1" thick), MGP odd	or.	
	-	7	10-12	1.1	48.2	7 11	35				
f	-	-				<u>4</u> 1		D.	Brown fine to medium SAND and fine, medium and coarse suba GRAVEL, little Silt, dense, very stiff, moist to dry.	ngular	
F	8 12-14 1.4 0.0 38 79								0.5" band of brown-black NAPL, MGP odor.		
ŀ								Ď,	Trace brown-black NAPL blebs on outside of sample		
-15 0.0 50/2 NA ().									End of boring at 14.7' bgs.		
			•		-	-			Remarks: bgs = below ground surface; NA = no level: MGP = manufactured das plan	ot applicable/a	available; AMSL = above mean sea
(6	Λ	D/	~/		I			Geotechnical samples collected from	1 0-5' bgs, 5-1	2' bgs and 12-14' bgs.
	III	A	N	Fourier	L	L		205	Blow counts are not available above	5 feet bgs du	e to hand clearing.
int	rastru	lure	vvater	CIVI	Unme	ent-B	allall	igs			
Proj Data	ect Nu a File:	imber: SB-11	B0013 .dat	049.0	0007.	0001	5		Template: H:\NYSEG\boringHSA 2 Date: 4/2/2012 Created/Ed	2007 GEOTE	CH 2.ldfx Page: 1 of 1

Da	te Sta	rt/Fini	sh: 9/	21/20)11 -	9/28/: "	2011		Northing: 823396.7	Well/Boring	g ID: SB-12
Dri	ller's	Name	Brac	l Paln	ner				Easting: 1068998	Client: NYS	SEG
Dri Cas Rig	lling N sing D Type	iamet CME	d: Hol er: 4. E-55	low S 25" IE	tem /)	Auger			Borehole Depth: 12.4' bgs Surface Elevation: 663.55' AMSL	Location:	McMaster Street Former MGP Site
Sai	npling	g Meth	iod: 2	2" x 2'	Split	Spoo	on		Descriptions By: M. Eriksson/L. Terrell	,	
ЭЕРТН	ELEVATION	ample Run Number	3ample/Int/Type	Recovery (feet)	ID Headspace (ppm)	slow Counts	V - Value	Beologic Column	Stratigraphic Description		Well/Boring Construction
		S S	0)	-		ш	2	0			
F	665 -	-									
-	-	-									
-	-	1	0-2	Grab	0.0	NA	NA		Dark brown fine SAND, little fine, medium and coarse Gravel and trace Shells and red Brick, moist, non-plastic. Increasing red-brown color with depth.	d Organics,	
-	- 660 -	2	2-4	Grab	0.0	NA	NA				
-5	-	3	4-5	Grab	0.0	NA	NA				
	-	4	5-6	0.7	0.0	3 3	NA		Some Silt, little fine to medium subangular Gravel, trace Org Cinders and Coal, loose, moist.		
-	-	5	6-8	0.2	0.0	3 3 4 4	6				Borehole backfilled to grade with bentonite/cement grout.
-	655 -	6	8-10	0.8	0.0	2 2 2 4	4	000	Trace Slag at 8' bgs. Tan/pink fine, medium and coarse SAND and fine to medium sub GRAVEL, loose, moist.	pangular	
- 10	-	7	10-12	1.3	0.0	2 1 1 5	2		Dark brown SILT, little fine Sand, trace Organics (wood), trace br coating the wood, MGP odor, soft, moist.	rown NAPL	
 		8	12-14	0.4	0.0	50/4"	NA	<u></u>	No NAPL observed from 12-12.4' bgs.		
650 -									End of boring at 12.4' bgs (refusal).		
- 15											
	E Trastruc	A	R(CA Envir		DIS ent - B	S	ngs	Remarks: bgs = below ground surface; NA = no level; VOC = volatile organic compou = manufactured gas plant; NAPL = no Geotechnical samples collected from VOC/SVOC sample collected from 10	ot applicable/a Ind; SVOC = on-aqueous p I 0-5' bgs, 5-1 0.2-12.2' bgs.	available; AMSL = above mean sea semi-volatile organic compound; MGP shase liquid. 0' bgs and 10-12' bgs.
			Deete	0.46	000-	0000			Blow counts are not available above	5 feet bgs du	e to hand clearing.
Proj Data	ect Nu a File:	imber: SB-12	B0013 .dat	049.0	007.0	0001	D		I emplate: H:\NYSEG\boringHSA 2 Date: 4/2/2012 Created/Edi	2007 GEOTEC	CH 2.ldtx Page: 1 of 1

DEPTH Well/Boring Construction Sample/Int/Type Blow Counts Sample/Int/Type No No No No <th></th>									
Brown fine to medium SAND, little to some fine, medium and coarse Gravel									
- 1 0-2 Grab 0.0 NA NA									
2 2-4 Grab 0.0 NA NA Red/brown/gray fine, medium and coarse SAND and fine to medium GRAVEL, little Slag, Cinders, red Brick, fire Brick and Silt, trace Clay, moist, non-plastic.									
-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -									
4 5-7 1.5 0.0 3 6 Image: Single s	ed to with iite/cement								
- 5 7-9 1.4 0.0 7 14 9 Gray/brown SILT, little fine, medium and coarse Gravel, trace Clay and fine Sand (possible Till).									
-10 -10 - 6 9-10.8 1.4 0.0 $\begin{vmatrix} 14 \\ 36 \\ 50/3" \end{vmatrix}$ 81 $\begin{vmatrix} Gravel content increases with depth (some) below 9' bgs.Trace sheen, very faint MGP-like odor.$									
End of boring at 10.8' bgs (auger refusal).									
Remarks: bgs = below ground surface; NA = not applicable/available; BTEX = benzene, to ethylbenzene and xylenes; PAH = polycyclic aromatic hydrocarbons; MGP = manufactured gas plant. Geotechnical samples collected from 0-4.5' bgs and 5-6.5' bgs. BTEX/PAH sample collected from 9-10.8' bgs.	luene,								
Blow counts are not available above 5 feet bgs due to hand clearing. Project Number: B0013049.0007.00015 Template: H:\NYSEG\boringHSA 2007 GEOTECH 2.ldfx Page: 1 c	1								

Drilling Company: Paratt Wolff Driller's Name: Brad Palmer Drilling Method: Hollow Stem Auger Casing Diameter: 4.25" ID Rig Type: CME-55 Sampling Method: 2" x 2' Split Spoon										Northing: NA Easting: NA Borehole Dept Surface Elevat Descriptions I	th: 9.3' bgs tion: NA By: Marcus Eri	iksson	Well/Boring Client: NY: Location: /	g ID: SB-14 SEG McMaster St Auburn, NY	4 reet Former MGP Site
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm	Blow Counts	N - Value	Geologic Column		S	tratigraphic De	scription			Well/Boring Construction
- -	_ 														
-	_	1	0-2	Grab	0.0	NA	NA		Gray, Dark to tra	brown RUN-A-CRUS prown fine to medium ce Silt, trace Cobbles	H, little fine to media SAND, some fine, Coal fragments an	um Sand, moist, n medium and coars d red Brick, moist,	on-plastic. se Gravel, little non-plastic.		
-	-	2	2-4	Grab	0.0	NA	NA			Asphalt-like layer at 4	^{l'} bgs, little Cinders.				
-5	-5 -	3	4-5	Grab	0.0	NA 5	NA		Gray, mode	brown SILT, little fine rately plastic.	Sand, Clay and fine	e to medium Grave	el, moist,		Borehole backfilled to grade with bentonite/cement
-	-	4	5-7	1.2	0.0	12 8 6	20		Gray	BLE.	and coarse subangu	ular GRAVEL and I	ine, medium		grou.
-	-	5	7-9	0.6	0.0	4 5 6	10	000	and c	Nostbord REDROC	ilt and Clay, saturate	ed, non-plastic.			
6 9-10.8 0.3 NA 100/3" NA Veathered BEDROCK. -10 -10 -															
Project Number: B0013049.0007.00015 Remarks: bgs = below ground surface; NA = not applicable/available; BTEX = benzene, toluene ethylbenzene and xylenes; PAH = polycyclic aromatic hydrocarbons. Geotechnical samples collected from 0-4' bgs and 5-9' bgs. BTEX/PAH sample collected from 7-9.3' bgs. Blow counts are not available above 5 feet bgs due to hand clearing. Project Number: B0013049.0007.00015													EX = benzene, toluene, rbons. earing. Page: 1 of 1		

Dat Dril Dril Cas Rig San	e Star ling C ler's I ling N ing D Type ppling	rt/Fini Compa Name Method iamet : CME g Meth	sh: 1 any: F : Brad d: Hol er: 4. E-55 hod: 2	0/6/11 Parratt d Paln llow S 25" IE 2" x 2'	t Wol ner tem / Split	ff Auger t Spoo	r on			Northing: NA Easting: NA Borehole Depti Surface Elevati Descriptions B	h: 8.9' bgs ion: NA 3y: Marcus Er	riksson	Well/Boring Client: NY: Location: I	g ID: SB-1 SEG McMaster St Auburn, NY	5 reet Former MGP Site
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column		St	ratigraphic De	escription			Well/Boring Construction
-															_
-	-	1	0-2	Grab	0.0	NA	NA		Gray, Brick	brown fine SAND and trace Clay, moist, nor	I SILT, little fine, m n-plastic.	edium and coarse (Gravel and red		
-	-	2	2-4	Grab	NA	NA	NA		CON	Concrete encountered	l at 2.4' bgs; reloca ugh to 5' bgs).	ated boring.			
- 5	-5 -	3	4-5 5-7	Grab	NA 0.0	NA 2 3 2	NA 5		Gray, Clay	brown fine SAND and and red Brick, saturate	SILT, little fine to ed, non-plastic.	medium subangula	r Gravel, trace		Borehole backfilled to grade with bentonite/cement grout.
-	-	5	7-9	1.0	0.0	5 5 7 7 65/4"	14			Gravel increases with	depth below 7' bg: edrock in shoe.	S.		3	z
- 10	-10 -									End of boring at 8.9' b	gs.				
- 15	-15 -														
Proje	Remarks: bgs = below ground surface; NA = not applicable/available; BTEX = benzene, toluene, ethylbenzene and xylenes; PAH = polycyclic aromatic hydrocarbons. Geotechnical samples collected from 0-2' bgs and 5-8' bgs. BTEX/PAH sample collected from 7-8.9' bgs. Blow counts are not available above 5 feet bgs due to hand clearing. Project Number: B0013049.0007.00015 Template: H:\NYSEG\boringHSA 2007 GEOTECH 2.ldfx Page: 1 of 1														

Date Drill Drill Cas Rig Sam	e Star ling C ler's I ling N ing D Type pling	rt/Fini Compa Name Methoo Piamet : CME g Meth	sh: 10 any: F : Brac d: Hol er: 4. E-55 aod: 2	0/6/11 Parratt d Paln llow S 25" IE 2" x 2'	: Wol ner tem / Split	ff Auger : Spoo	r on		Northing: NA Easting: NA Borehole Depth: 4.3' bgs Surface Elevation: NA Descriptions By: Marcus Eriksson	Well/Boring Client: NYS Location: M	g ID: SB-16 SEG McMaster Street Former MGP Site Auburn, NY	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-												
-	_	1	0-2	1.0	0.0	4 4 2 2	6		Brown fine SAND, little to some Silt, little Organics (roots) and fi Gravel, trace Coal and red Brick, moist, non-plastic.	ne to medium	Deskela	
-	-	2	2-4	1.2	0.0	3 3 6 47	9 NA		Possible weathered Bedrock in shoe.		borenoie backfilled to grade with bentonite/cement grout.	
- 5	-5								End of boring at 4.3' bgs (auger refusal).			
- 10	-10 -											
- 15	-15 -								Pemarks: bas - below ground surface: NA - b	ot applicable/s	available: BTEX - benzene, toluene	
Proie	Image: State of the second state of											
Date Drill Drill Cas Rig Sam	e Stai ling C ler's I ling N ing D Type pling	rt/Fini Compa Name Metho Viamet CME CME Meth	sh: 1 any: F : Brad d: Hol er: 4. E-55 nod: 2	0/6/11 Parratt d Paln Ilow S .25" IE 2" x 2'	t Wol ner tem /) ' Split	ff Auger t Spoo	r on		Northing: NA Easting: NA Borehole Depth: 4.3' bgs Surface Elevation: NA Descriptions By: Marcus Eriksson	Well/Boring Client: NY Location: I	g ID: SB-17 SEG McMaster Street Former MGP Site Auburn, NY	
--	---	---	---	---	---------------------------------------	------------------------	-----------	-----------------	---	---	---	
ДЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Blow Counts	N - Value	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-	-											
	-	1	0-2	1.2	0.0	3 4 24 16	28		Gray/brown fine to medium SAND, little fine to medium Gravel, C roots) and Silt, trace red Brick, saturated, non-plastic.	Organics (peat,	•	
-	-	2	2-4	1.0	0.0	4 20 16 4	36		Faint MGP-like odor below 2' bgs. Gray weathered BEDROCK.		Borehole backfilled to grade with bentonite/cement grout.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									End of boring at 4.3' bgs (auger refusal).			
Proie	astruc ect Nu	A cture	R(Water B0013	CA • Envir)]] ent - B	Suildir	ngs	Remarks: bgs = below ground surface; NA = no ethylbenzene and xylenes; PAH = po manufactured gas plant. Geotechnical sample collected from (BTEX/PAH sample collected from 2-4 Template: H:\NYSEG\boringHSA 2	ot applicable/a blycyclic arom 0-4' bgs. 4.3' bgs.	available; BTEX = benzene, toluene, atic hydrocarbons; MGP = CH 2.ldfx Page: 1 of 1	

Date Drill Drill Drill Auge Rig Sam	Star ing C er's I ing N er Siz Fype pling	rt/Fir Comp Nam Metho ze: 3 : IR- g Met	nish: bany: e: N od: 3.25" 8200 thod:	2-28 : Par 1. Mar HSA ID : 2" >	-12/2- ratt W shall	29-12 olff	on		Northing: 1068999.49 Easting: 823412.47 Casing Elevation: NA Borehole Depth: 13.4' bgs. Surface Elevation: NA Descriptions By: MWE	Well/Boring Client: NY: Location: P	g ID: SB-18 SEG McMaster Street Former MGP Site Auburn, New York
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
-											
-	-	1	0-2	Grab	NA	NA	0.0		Grey/brown fine SAND, some fine to medium subangular Gravel Organics (roots) (M,NP) dark Brown fine SAND, little to some Silt, little fine to medium su	I, little Silt, trace	
-	-	2	2-4	Grab	NA	NA	0.0		Gravel, trace Organics (roots) (wi,NP)		
-5	-5 -	3	4-5	Grab	NA 4	NA	0.0		dark Brown fine to medium SAND, little fine to medium subangu	lar Gravel, trace	
-	-	4	5-6 6-8	0.8	1 1 2 2 3	NA 4	0.0		Brown CLAY, little fine Sand, Silt, Coal, trace red Brick (M,MP)		Cement/Bentonite Grout (0-13.4' bgs.)
- 10	-10 -	6	8-10	0.9	3 3 2 1	5	0.0				
-	-	7	10-12	2.0	1 1 2 1	3	0.0		Brown PEAT, little Silt, fine Sand, trace Clay, fine Gravel (S,NP)		
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$							0.0		Weathered ROCK, little to trace fine Sand, Silt (rock in shoe) (S, Bottom of Boring at 13.4' bgs.	NP)	
- 15	-15 -										
Proje	ofrast	mbe		RC /ater · E	A Environ	DI ment	S Buildin	gs e:G:\D	Remarks: bgs = below ground surface; ND = ne recovery; M = moist; S = saturated; M plastic SB-18 (12-13.4') sampled for BTEX a v11\Rockware\LogPlot 2001\LogFiles\Templates\	on-detect; NA NP = non-plas and PAHs boring_well H	A = not available/applicable; NR = no stic; P = plastic; MP = moderately SA 2007 .ldfx Page: 1 of 1

Dat Dril Dril Dril Aug Rig San	e Star ling C ler's I ling M er Siz Type ppling	rt/Fir Comp Nam Metho ze: : IR- g Met	nish: bany e: M od: 3.25" 8200 thod	2-28 : Par 1. Mar HSA ID) : 2" >	-12/2- ratt W shall (2' Sp	29-12 olff olitspoo	on		Northing: 1068980.85 Easting: 823424.95 Casing Elevation: NA Borehole Depth: 13.1' bgs. Surface Elevation: NA Descriptions By: MWE	Well/Borin Client: NY Location:	g ID: SB-19 SEG McMaster Street Former MGP Site Auburn, New York
ДЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	- - -										
-	-	1	0-2	Grab	NA	ngular Gravel, Silt,					
-	-	2	2-4	Grab	NA	NA	0.0				
-5	-5 -	3	4-5 5-6	Grab 0.6	NA 5 5	NA NA	0.0		dark Brown fine SAND and SILT, little red Brick, fine to med Gravel, trace Clay (M,NP)	um subangular	
-	-	5	6-8	0.9	4 4 4 3	8	0.0				Cement/Bentonite Grout (0-13.1' bgs.)
- 10	-10 -	6	8-10	0.5	3 3 1 2	4	0.0				
	-	7	10-12	1.0	1 1 5 3	6	3.9		dark Brown fine SAND and fine to medium subangular GRA red Brick (S,NP) faint to moderate MGP-like odor (10.4-13.1' bgs.)	VEL, little Silt, trace	
		8	12-14	1.0	6 50	100	13.0		Grey Weathered ROCK, little fine Sand (S,NP) Bottom of Boring at 13.1' bgs.		
- 15	-15 -										
Proje	Confrast ect Nu	tructu	A Ire · W	RC /ater · E	A Environ	DI Inment	S Buildin	gs e:G:\D	Remarks: bgs = below ground surface; ND = recovery; M = moist; S = saturate plastic SB-19 (12-13.1') sampled for BTE	= non-detect; NA d; NP = non-plas X and PAHs es\boring_well F	A = not available/applicable; NR = no stic; P = plastic; MP = moderately ISA 2007 .ldfx Page: 1 of 1

Dat Dril Dril Dril Aug Rig San	e Star ling C ler's I ling M jer Siz Type: npling	rt/Fir Comp Nam Metho ze: : : : : : R- g Met	nish: bany: e: M od: 3.25" 8200 thod:	2-28 : Pari 1. Mar HSA ID : 2" >	-12/3- ratt W shall < 2' Sp	1-12 olff litspoo	on			Northing: 106883 Easting: 823244 Casing Elevation Borehole Depth: Surface Elevatio Descriptions By:	32.06 .12 .: NA : 9.0' bgs. n: NA : MWE		Well/Boring Client: NY: Location: I	g ID: SE SEG McMaste Auburn, N	5-20 r Stree New Yo	t Former MGP Site vrk
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stra	tigraphic Des	scription			C.	/ell/Boring onstruction
-	-															
-	_	1	0-2	Grab	NA	NA	0.0		dark Coal,	Brown fine to medium SA trace Slag, Silt, Organic:	AND, little fine to r s (roots) (M,NP)	medium subangu	lar Gravel,			
-	-	2	2-4	Grab	NA	NA	0.0		Brow	n fine SAND, some Silt, I	ittle Clay, fine to	coarse subangula	ar Gravel			Cement/Bentonite
-5	-5 -	3	4-5 5-6	Grab	NA 2	NA	0.0		(M,N Grey, red B	P) brown CLAY, little fine S rick, Coal (M,NP)	and, Silt, fine to r	nedium subangul	ar Gravel, trace	-		Grout (0-9' bgs.)
-	-	5	6-8	0.3	8 7 10 16	17	0.0		Grey	brown fine SAND and Gl	RAVEL (weather	ed) (S,NP)				
		6	8-10	0.8	8 50/.2	50+	0.0	\subseteq								
- 10	-10 -									Bollom of Boring at 9	uys.					
- 15	- -15 -															
Proje		ructu	Al re W	RC /ater · E	A Inviron	DI. ment	S Buildir	ngs e:G:\D	Rem	arks: bgs = belov recovery; N plastic SB-20 (8-9 Rockware\LogPlot 2	w ground sur / = moist; S = ') sampled fo 2001\LogFile	face; ND = n = saturated; f r BTEX and s\Templates\	on-detect; NA NP = non-plas PAHs boring_well H	= not av stic; P = p SA 2007	ailable, lastic;	/applicable; NR = no MP = moderately Page: 1 of 1

Date Drilli Drilli Auge Rig T Sam	e Star ing C er's N ing N er Siz Fype: pling	t/Fir Comp Name Ietho ze: 3 : IR- I Met	nish: bany e: N od: 3.25" 8200 thod	2-27 : Pari 1. Mar HSA ID : 2" >	'-12/2- ratt W shall < 2' Sp	29-12 olff litspoo	on		Northing: 1068824.00 Easting: 823210.06 Casing Elevation: NA Borehole Depth: 9.2' bgs. Surface Elevation: NA Descriptions By: MWE	Well/Borin Client: NY Location:	ng ID: SB-21 /SEG McMaster Street Former MGP Site Auburn, New York
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
-	-								dark Brown fine to medium SAND, little Silt, fine to medium	subagular Gravel	
-	- 1 0-2 Grab NA NA 0.0								little to trace Organics (roots) (M,NP)	suvangulai Gravel,	
-	-	2 3	2-4 4-5	Grab Grab	NA NA	NA NA	0.0		dark Brown fine to medium SAND, some fine to medium su trace red Brick, fire Brick, Silt (S,NP)	pangular Gravel,	Cement/Bentonite
- 5	-5 -	4	5-6	0.7	1	NA	0.0		Grey SILT, some fine Sand, little fine to medium subangula (till-like) (M,NP)	Gravel, little Clay	bgs.)
-	-	5	6-8	1.2	3 2 2 3	4	0.0		Gravel, trace Clay, Organics (roots) (S,NP)	n subangulai	
_	_	6	8-10	0.7	17 4 50/.2	54	0.0		Grey/brown Weathered ROCK, some fine Sand, little Silt (S	NP)	
- 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Bottom of Boring at 9.2' bgs.		
- 15	-15 -										
Projec	Cf Nu	ructu	A) re W	RC /ater · E	A Environ	DI ment	S Buildir	e:G:\D	Remarks: bgs = below ground surface; ND recovery; M = moist; S = saturate plastic SB-21 (8-8.7') sampled for BTEX	= non-detect; N/ d; NP = non-pla and PAHs es\boring_well F	A = not available/applicable; NR = no stic; P = plastic; MP = moderately

Date Drill Drill Aug Rig Sam	e Star ing C er's I ing N er Siz Type: pling	rt/Fir Comp Nam Metho ze: : : : : : R- g Met	nish: bany: e: M od: 1 3.25" 8200 thod:	2-27 : Pari 1. Mar HSA ID : 2" >	'-12/3- ratt W shall	1-12 olff litspoo	on		Northing: 1068841.58 Easting: 823191.76 Casing Elevation: NA Borehole Depth: 9.7' bgs. Surface Elevation: NA Descriptions By: MWE	Well/Boring Client: NYS Location: N	g ID: SB-22 SEG McMaster Street Former MGP Site Auburn, New York
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
-									dark Brown fine to medium SAND, little fine to medium subannu	lar Gravel Silt	
-	-	1	0-2	Grab	NA	NA	0.0		trace Organics (wood) (M,NP)		
-	_	2	2-4	Grab	NA	NA	0.0		Red/dark brown fine SAND, little fine to coarse Gravel, Silt, trace (M,NP) Red/brown fine SAND, some Silt, fine to coarse subangular Grav	e Slag, Coal vel, little fire	
5	- 5	3	4-5	Grab	NA	NA	0.0		BICK, trace Clay, red BICK, Organics (roots) (S,NP)		Cement/Bentonite
	5	4	5-6	NR	4 4	NA	NA		No Recovery		Grout (0-9.7' bgs.)
_	_	5	6-8	1.2	4 4 7 8	4	6.1		Grey/brown CLAY, little fine Sand, Silt, red Brick, fine Gravel, tra	ace Coal (S,MP)	
-	-	6	8-10	1.5	4 2 2 50/2	54	0.0		Grey Weathered ROCK, little fine Sand, Silt (S,NP)		
- 10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								Bottom of Boring at 9.7' bgs.		
- 15	-15 -										
Proje	C Nu	mbe	Al are W	RC Pater · E	A Environ	DI.	S Buildin	<i>gs</i> e:G:\D	Remarks: bgs = below ground surface; ND = no recovery; M = moist; S = saturated; N plastic SB-22 (6-7.2') sampled for BTEX and	on-detect; NA NP = non-plas d PAHs boring_well H	I = not available/applicable; NR = no tic; P = plastic; MP = moderately SA 2007 .ldfx Page: 1 of 1

Dat Dril Dril Aug Rig San	e Star lling C ller's I lling M ger Siz Type npling	rt/Fir Comp Nam Metho ze: : IR- g Met	nish: bany e: M od: 3.25" 8200 thod	2-28 : Par 1. Mar HSA ID : 2" >	-12/3- ratt Wi shall	1-12 olff	on			Northing: 10688 Easting: 823226 Casing Elevatio Borehole Depth Surface Elevatio Descriptions By	348.58 5.39 n: NA n: 9.5' bgs. on: NA y: MWE		Well/Boring Client: NY: Location:	g ID: SEG SEG McMaste Auburn, I	3-23 er Street New Yo	t Former MGP Site rk
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stra	atigraphic De	scription			W Co	/ell/Boring onstruction
-																
-	-	1	0-2	Grab	NA	NA	0.0		dark Orga	Brown fine to medium S hics (roots), Coal, Silt (Ν	AND, little fine to Λ,NP)	medium subangu	lar Gravel, trace			
-	_	2	2-4	Grab	NA	NA	0.0									
5 _	-5 -	4	5-6	1.0	3	NA	0.8		Grey	fine SAND, little Silt, fin	e to medium suba	angular Gravel, tra	ce Clay (S,NP)	-		Cement/Bentonite Grout (0-9.5' bgs.)
-	-	5	6-8	1.2	3 4 7 10	4	0.0									
-	_	6	8-10	0.7	6 7 9 50/.3	54	1.2	\square	Grey/ (S,NF	brown fine to coarse GF ')	RAVEL (weathere	d rock), little Silt, f	ine Sand			
- 10	-10 -									Bottom of Boring at 9	.5' bgs.					
Proje	Infrast	mbe	A re W	RC /ater · E	A Environ	DI ment	S Buildin	e:G:\D	Rem	arks: bgs = belo recovery; plastic SB-23 (8-4 *MS/MSD	ow ground sur M = moist; S 8.7') sampled 2001\LogFile	rface; ND = n = saturated; f for BTEX and ss\Templates\	on-detect; NA NP = non-plas d PAHs boring_well H	= not av tic; P = p SA 2007	vailable/ blastic;	applicable; NR = no MP = moderately Page: 1 of 1

Date Drilli Drilli Auge Rig 1 Sam	e Star ing C er's N ing N er Siz Fype: pling	t/Fir comp Name letho ce: : IR- I Met	nish: bany: e: M bd: 3.25" 8200 :hod:	2-28 : Par /I. Mar HSA ID : 2" >	-12/2- ratt W shall < 2' Sp	29-12 olff olitspoo	on		Northing: 1068897.98 Easting: 823208.54 Casing Elevation: NA Borehole Depth: 8.9' bgs. Surface Elevation: NA Descriptions By: MWE	Well/Borin Client: NY Location:	g ID: SB-24 SEG McMaster Street Former MGP Site Auburn, New York
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column	Stratigraphic Description		Well/Boring Construction
-											
-	-	1	0-2	Grab	NA	NA	0.0		dark Brown fine to medium SAND, little to some fine to med Gravel, trace Silt, red Brick (M,NP)	um subangular	
-	-	2	2-4	Grab	NA	NA	0.0		dark Brown fine SAND, some medium to coarse subangular little fire Brick, Coal, trace Silt (M,NP)	Gravel, red Brick,	
— 5	-5 -	3	4-5	Grab	NA	NA	NA		dark Brown fine to medium SAND, some fine to medium sut	angular Gravel,	Cement/Bentonite Grout (0-8.9' bgs.)
-	1	5	5-6 6-8	0.5	50/.5 3 6 3 4	50+ 9	0.8		Brown fine SAND, some Silt, fine to medium subangular Gra	vel, trace red Brick,	
-		6	8-10	0.9	1 50/.8	50+	1.2	\subseteq	Brown fine SAND and SILT, some fine to medium subangul: (weathered rock) (S,NP)	r Gravel	
- 10	6 8-10 0.9 1 50/.8 50+ 1.2 .10 -10 -								Bottom of Boring at 8.9' bgs.		
- 15	-15 -										
Projec	ofrast.	ructu	Al re · W	RC /ater · E	A Environ	DI ment	S Buildin	gs e:G:\D	Image:	= non-detect; NA d; NP = non-plas and PAHs es\boring_well F	A = not available/applicable; NR = no stic; P = plastic; MP = moderately ISA 2007 .ldfx Page: 1 of 1

Dat Dri Dri Aug Rig Sar	te Star Iling C Iler's I Iling M ger Siz Type npling	rt/Fir Comp Nam Metho ze: 3 : IR- g Met	hish: bany: e: M bd: 3.25" 8200 :hod:	2-27 : Pari 1. Mar HSA ID : 2" >	'-12/2- ratt W shall < 2' Sp	29-12 olff litspoo	on			Northing: 1068922.5 Easting: 823183.27 Casing Elevation: N Borehole Depth: 10 Surface Elevation: Descriptions By: M	54 NA 0.4' bgs. NA IWE	Well/Boring Client: NY: Location: I	g ID: SB-25 SEG McMaster Stree Auburn, New Yo	t Former MGP Site ork
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stratigra	aphic Description		v c	Vell/Boring onstruction
-	- - 0-													
_	-	1	0-2	Grab	NA	NA	0.0		dark I Silt (N	3rown fine to medium SAND, 1,NP) red Brick, Slag, fire Brick at	little fine subangular Gravel, t 2.0' bgs. (floor/wall like)	red Brick, trace		
-	-	2	2-4	Grab	NA	NA	0.0		Grey	medium to coarse COBBLES	S, little brown fine Sand, Silt (N	И,NP)		
-5	-5 -	3	4-5	Grab	NA	NA	0.0		Grev	brown fine SAND and SILT	little fine to medium subangul	ar Gravel trace	_	Cement/Bentonite
-	-	4	5-6 6-8	0.6	3 2 2 2 2 2	NA 4	3.2		Coal,	Clay (M,NP)	l' bgs)			bgs.)
- 10	-10 -	6	8-10	2.0	8 4 7 41	11	3.5		Grey	Weathered ROCK, little Silt, f	fine Sand (S,NP)			
-		7	10-12	0.4	50/.4	50+	2.4			Bottom of Boring at 10.4' by	gs.			<u> </u>
- 15	-15 -													
Proje	Infrast ect Nu	ructu	A re · W	RC /ater · E	A Inviron	DI ment	S Buildin	gs e:G:\D		arks: bgs = below gr recovery; M = plastic SB-25 (8-10.4'	round surface; ND = n moist; S = saturated; ') sampled for BTEX a 1\LogFiles\Templates\	on-detect; NA NP = non-plas nd PAHs boring_well H	not available stic; P = plastic; SA 2007 .ldfx	/applicable; NR = no MP = moderately <i>Page: 1 of 1</i>

Dat Dri Dri Dri Rig Sar	te Stat Iling C Iler's I Iling M ger Siz Type npling	rt/Fir Comp Nam Metho ze: 3 : IR- g Met	nish: bany e: M od: 3.25" 8200 thod	2-27 : Par 1. Mar HSA ID : 2" >	'-12/2- ratt W shall < 2' Sp	29-12 olff olitspoo	on			Northing: 1068889.06 Easting: 823191.13 Casing Elevation: N/ Borehole Depth: 10.0 Surface Elevation: N Descriptions By: MW	S A 6' bgs. IA VE	Well/Boring Client: NY: Location: I	g ID: SB-26 SEG McMaster Stree Auburn, New Yo	t Former MGP Site ork
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blow Counts	N - Value	PID Headspace (ppm)	Geologic Column		Stratigrap	ohic Description		v c	Vell/Boring onstruction
-	- - -													
-	-	1	0-2	Grab	NA	NA	0.0		dark Brick Red I	Brown fine to medium SAND, lit trace Silt, fire Brick (M,NP) BRICK, some fire Brick (possible	ttle fine to medium subangul e wall, E to W direction) (M,	ar Gravel, red		
-	-	2	2-4	Grab	NA	NA	0.0							
5	-5 -	3	4-5 5-6	Grab 0.6	NA 14 12	NA	0.0		dark trace	Brown fine SAND and fine to mo Coal (M,NP) D (possible wood blocking) fain	edium subangular GRAVEL	, little red Brick,		Cement/Bentonite Grout (0-10.6' brs.)
-	-	5	6-8	1.2	5 4 4 2	8	2.5		Grey/ to tra	brown fine SAND and SILT, littl ce Wood (M,NP) faint MGP-like	le fine to medium subangula odor	r Gravel, little		-3-7
-	-	6	8-10	1.0	8 9 8 7	17	3.2		Brow (till-lik Grey/	n/grey fine SAND, some Silt, litt e), Silt, fine Sand (S,NP) brown Weathered ROCK, little	tle Clay, fine to medium sub-	angular Gravel //GP-like odor		
- 10	-10 -	7	10-12	0.6	26 50/.1	50+	3.5							
15	-15 -									Bottom of Boring at 10.6' bgs				
Proje				RC /ater · E	A Environ	DI ment	S Buildin	e:G:\D	Rem	arks: bgs = below gro recovery; M = m plastic SB-26 (8-10.6')	ound surface; ND = no noist; S = saturated; N sampled for BTEX ar \LogFiles\Templates\	on-detect; NA NP = non-plas nd PAHs pooring_well H	L = not available tic; P = plastic; SA 2007 .ldfx	/applicable; NR = no MP = moderately <i>Page: 1 of 1</i>

ARCADIS

Attachment 3

Data Usability Summary Report

(on Compact Disc)

Imagine the result

NYSEG McMaster Street Former MGP Site

Data Usability Summary Report (DUSR)

AUBURN, NEW YORK

Volatile and Semivolatile Organic Compounds (VOCs and SVOCs) Analyses

SDG #s: 480-10396 and 480-10509

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #: 15107R Review Level: Tier III Project: B0013049.0007.00016

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 480-10396 and 480-10509 for samples collected in association with the NYSEG McMaster Street Former MGP site in Auburn, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

				Sample	Doront		A	nalysi	s	
SDG	Sample ID	Lab ID	Matrix	Date	Sample	voc	svoc	РСВ	MET	MISC
	SB-10 (8-10.4)	480-10396-1	Soil	9/26/2011		Х	Х			
	SB-03 (8-9.5)	480-10396-2	Soil	9/26/2011		Х	Х			
	SB-02 (8-10.5)	480-10396-3	Soil	9/26/2011		Х	Х			
	SB-04 (8-10.9)	480-10396-4	Soil	9/26/2011		Х	Х			
	SB-01 (5-6.8)	480-10576-1	Soil	9/30/2011		Х	Х			
480-10396	BD-093011	480-10576-2	Soil	9/30/2011	SB-01 (5-6.8)	х	Х			
	MSB-13 (9-10.8)	480-10967-1	Soil	10/6/2011		Х	Х			
	MSB-14 (7-9.3)	480-10967-2	Soil	10/6/2011		Х	Х			
	MSB-15 (7-8.9)	480-10967-3	Soil	10/6/2011		Х	Х			
	MSB-16 (2-4.3)	480-10967-4	Soil	10/6/2011		Х	Х			
	MSB-17 (2-4.3)	480-10967-5	Soil	10/6/2011		Х	Х			
480-10509	SB-12 (10.2-12.2)	480-10509-1	Soil	9/28/2011		Х	Х			

Note: Sample results were reported on a dry-weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Repo	orted	Perfor Acce	mance otable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1. Sa	ample receipt condition		Х		Х	
2. Re	equested analyses and sample results		Х		Х	
3. Ma	aster tracking list		Х		Х	
4. Me	ethods of analysis		Х		Х	
5. Re	eporting limits		Х		Х	
6. Sa	ample collection date		Х		Х	
7. La	aboratory sample received date		Х		Х	
8. Sa	ample preservation verification (as applicable)		Х		Х	
9. Sa	ample preparation/extraction/analysis dates		Х		Х	
10. Fu	ully executed Chain-of-Custody (COC) form		Х		Х	
11. Na pro	arrative summary of QA or sample problems ovided		х		Х	
12. Da	ata Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270D (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW/ 846 8260P	Water	14 days from collection to analysis	Cool to 4±2 °C; pH < 2 with HCl
300-040 02000	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to 4±2 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
MSB-13 (9-10.8) MSB-14 (7-9.3) MSB-15 (7-8.9) MSB-16 (2-4.3) MSB-17 (2-4.3)	m&p-Xylenes Total Xylenes	Detected sample results < RL and < BAL	"UB" at the RL

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard area counts were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location SB-01 (5-6.8) was used in the MS/MSD analysis. Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compounds	MS Recovery	MSD Recovery
SB-01 (5-6.8)	Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	< LL but > 10%	< LL but > 10%

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of MS/MSD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (LUL)	Non-detect	No Action
	Detect	J
the lower control limit (11) but a 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
. 109/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > 4x the	Detect	No Action
MS/MSD spiking solution concentration.	Non-detect	NU ACIION

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SB-01 (5-6.8) / BD-093011	All Compounds	U	U	AC

AC Acceptable

U Not detected

The field duplicate sample results are acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B		orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	′ (GC/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	

%R

Percent recovery Relative percent difference RPD

%RSD Relative standard deviation

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Water		7 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration Verification (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration Verification (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location SB-01 (5-6.8) was used in the MS/MSD analysis. Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compounds	MS Recovery	MSD Recovery
SB-01 (5-6.8)	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Chrysene	AC	> UL

Sample Location	Compounds	MS Recovery	MSD Recovery
SB-01 (5-6.8)	Fluoranthene Phenanthrene Pyrene	AC	> UL

AC Acceptable

UL Upper control limit

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of MS/MSD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (LUL)	Non-detect	No Action
	Detect	J
ϵ the lower control limit (11) but ϵ 10%	Non-detect	UJ
	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > 4x the	Detect	No Action
MS/MSD spiking solution concentration.	Non-detect	NU ACIUIT

Sample locations associated with MS/MSDs exhibiting RPDs greater than of the control limit are presented in the following table.

Sample Locations	Compound
SB-01 (5-6.8)	Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-c,d)pyrene Phenanthrene Pyrene

The criteria used to evaluate the RPD between the MS and MSD are presented in the following table. In the case of RPD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
5.111	Non-detect	UJ
> 0L	Detect	J

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit recoveries and relative percent differences (RPDs) between the LCS and LCSD results within the laboratory-established or analytical method-referenced acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the method-referenced control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample Duplicate Sample ID/Duplicate ID Compound Result Result RPD 140 J 98 J AC Acenaphthene 130 J 170 J AC Acenaphthylene 440 J 380 J Anthracene AC 1400 Benz(a)anthracene 1500 6.9 % Benzo(a)pyrene 1400 1300 7.4 % 1600 1300 20.7 % Benzo(b)fluoranthene 890 J Benzo(g,h,i)perylene 940 J AC Benzo(k)fluoranthene 640 J 800 J AC SB-01 (5-6.8) / 1400 1400 0% Chrysene BD-093011 Fluoranthene 3000 2800 6.9 % Fluorene 140 J 140 J AC Indeno(1,2,3-c,d)pyrene 770 J 750 J AC

1000 U

2200

2800

43 J

110 J

130 J

2100

2600

59 J

100 J

AC

4.7 %

7.4 %

AC

AC

Naphthalene

Phenanthrene

Dibenzofuran

2-Methylnaphthalene

Pyrene

Results (in µg/kg) for the field duplicate samples are summarized in the following table.

AC Acceptable

J Estimated (result is < RL)

U Not detected

The field duplicate sample results are acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA V	ALIDATION	CHECKLIST	FOR SVOCs
--------	-----------	-----------	-----------

SVOCs: SW-846 8270C	Repo	orted	Perfor Acce	mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)				
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment/Field Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R		Х		Х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х	Х		
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System Performance and Column Resolution		Х		Х	
Initial Calibration %RSDs		Х		Х	
Continuing Calibration RRFs		Х		Х	
Continuing Calibration %Ds		Х		Х	
Instrument Tune and Performance Check		Х		Х	
Ion Abundance Criteria for Each Instrument Used		Х		Х	
Internal Standards		Х		Х	
Compound Identification and Quantitation					
A. Reconstructed Ion Chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of Sample Compounds Within the Established RT Windows		Х		х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х	

%R

Percent Recovery Relative Percent Difference RPD

%RSD Relative Standard Deviation

%D Percent Difference

SAMPLE COMPLIANCE REPORT

Sample						Co	mplian	cy ¹	_	
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	РСВ	MET	MISC	Noncompliance
	9/26/2011	SW846	SB-10 (8-10.4)	Soil	Yes	Yes				
	9/26/2011	SW846	SB-03 (8-9.5)	Soil	Yes	Yes				
	9/26/2011	SW846	SB-02 (8-10.5)	Soil	Yes	Yes				
	9/26/2011	SW846	SB-04 (8-10.9)	Soil	Yes	Yes				
	9/30/2011	SW846	SB-01 (5-6.8)	Soil	No	No				VOC: MS/MSD %R SVOC: MS/MSD %R, RPD
480-10396	9/30/2011	SW846	BD-093011	Soil	Yes	Yes				
	10/6/2011	SW846	MSB-13 (9-10.8)	Soil	No	Yes				VOC: Blank contamination
	10/6/2011	SW846	MSB-14 (7-9.3)	Soil	No	Yes				VOC: Blank contamination
	10/6/2011	SW846	MSB-15 (7-8.9)	Soil	No	Yes				VOC: Blank contamination
	10/6/2011	SW846	MSB-16 (2-4.3)	Soil	No	Yes				VOC: Blank contamination
	10/6/2011	SW846	MSB-17 (2-4.3)	Soil	No	Yes				VOC: Blank contamination
480-10509	9/28/2011	SW846	SB-12 (10.2-12.2)	Soil	Yes	Yes				

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By:	Dennis Dyke
Signature:	Deumster
Date:	November 29, 2011
Peer Review:	Dennis Capria
Date:	December 4, 2011

CHAIN OF CUSTODY / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Chain of Custody Record

<u>TestAmerica</u>

ENTAL	
ļ	
Ĭ	
l	
Ľ	

	Samper							Ar Trackhan	level.	4 000			Г
Client Information	Marus Enk	SSam	Giglla	Denise			<u>}</u>		^{int} es	480	16552-3935.	-	
C-t∎mi Contect: Laura Zurenski	Prov 215-247-5	282	E-Mai denise	alĝejojo.	stamerica	nc.com				Page Page	1 0f 2		
Company: ARCADIS U.S., Inc.						Analva	s Reque:	bat					
Address: 6723 Towordti PO BOX 68	Dur Date Requested:				F					1	Internation		T
Chy: Syracuse	TAT Requested (days):										E E E	M - Horens N - Home D - AchaO?	
Steer. zb: NY, 13214-0066			<u></u>								HSO4	P - Ne2049	
Phone.	P0# 4700141280									¥₹₹ .01 	soft redikt kontikt Acc	R - NG23303 S - N2504 T - TSP (Streat-chain)	
Erraw:	wo #: Aubum McMæster/John	Rusp			e i p					<u>3</u> 日 	Water	V. NCM	
Propes Nama NYSEG MANASter Street Sediment Analysis	Ријеса # 48003612			<i>1</i> 0 44	iovinae					inninn X E B	×.	W - ph 4-5 Z - const (specify)	
in a constant of the constant	SSOWK.			0920	6 H¥					ot con E			
		Sample Type (Cecono.		. X318 - 80	a (acim) - co					tedmuk is			1
Sample Identification	Sample Data Tim	6 G=grab)	alton Code:	83 년 83 년 84 (1988)	229 T	SI REFL TAN			Acres State	<u>Р</u>	Special Ins	structions/Note;	Т.
58-10 (8-10.4)	9-26-11 110	3	Selid Selid		<u>}</u>								
58-03(8-9.5X	9-26-11 130	0	Solid	3		-				5			
58-02 (4-10.5)	9-26-11 141	5 G	Salid	7	~		: 						
58-04 (2-10.2)	9-26-11 154	s G	Solid	2	1					199			
			Solid		_								
			Solid				:			1			
			Solid				· 						
			Solid							ر ابت			
			Solid						 				
			Salid										
		-	Solid										
Possible Hazard Identification	son B 🗖 Unknown 🗆		je,	Sampte R	Disposal atum To (f A fee m Jient	ay be asse Disp	ssed if se. osal By Lei		retained Ion Archive Fi	nger then 1 or	month) Months	
Deliverable Requested: 1, II, III, IV, Other (specify)				Special	Instruction	IS/OC Rec	uirements:						
Empty Kot Retinouished by:	Date:		T	ime: /				Method of 2	Shipment				
The First	7-27-11/15Q	0	Company	ž		$\frac{3}{3}$			Determine	27.(Company (D)	T
Remarkers in the S	Deletime	6:30	company Company	Rece		\overline{A}				8 8 8	30	Company	<u> </u>
Cuelody Seels Intect: Custody Seel No.:				202	r Temperatu	рыя (в) ₆ .	Other Remarks]	د ر ۲۰				
				$\left \right $			ļ			ļ			٦

Lab Work Order #	Reys Preservation Key: Container Informution Key: A, H SO, 1 40 m Vial B, HCL 2 1 LAmber C HNO, 2 1 LAmber C HNO, 3 250 m Plastic E Anone 6 5 5000	F Other 2 or Gass C Other 7 4 or Gass G. Other 9 8 or Gass H Other 9 Other 10.0ther Marthx Kuy: SE-Sediment NL NAPLOB W-Waler SL-Studge SW-Sample Wryce					BY Laboratory Received By Privat Name R. W. C. C. C. C. Sopuration D. C. Frank	2 2 PINK - Retained by BBL
RATORY SRM Page L of L		ALYSIS & METHOD				GARCO Initructions (*):	Accelved by Ratinguisted	Ados q#1-MOTTA
F CUSTODY & LABO ALYSIS REQUEST FC	Pratervativa Pratervativa Piktarea (~) 4 et Contistiona Contistional	PARAMETER AN	8/ 24/ 2 1				Relinquered By Provided Provid	- 1/1/
035 CHAIN C	315-446-9120	Var 1. Brand Andre 13.00	Callection Type (*) Matrix Date Thre Curry Grib 2 & // 1300 X C	11 11 11 11 11 11 11 11 11 11 11 11 11	× × ×		Cooler Custody Seal (*) Cooler Custody Seal (*) Cooler Custody Seal (*) Condition Cooler Termo:	Distribution: WHRE
ARCADIS Interdeture environment facilities 1 44	Concert Roman International Concert Results to CA33 Town South Results	Cly Structure I am Zo F	Sample 1D 1158-13 9-10.8	115B-15/7-83	2 df 795	Special Instructions/Comments:	Laboratizy Information Laboratizy Information Laboratizy Information Description and Requirements	26736126 Coft Ak Form es. (12067

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 480-10396-1

Client Sample ID:	SB-10 (8-10.4)						
Lab Sample ID: Client Matrix:	480-10396-1 Solid	% Moisture	: 19.2			ate Sampled: 09/26/2011 Date Received: 09/28/2011	1100 1030
		8260B Volatile Orga	nic Compoun	ds (GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/01/2011 1613 10/01/2011 1613	Analysis Batch: Prep Batch:	480-33610 N/A	Ins Lal Init Fin	strument ID: b File ID: tial Weight/Volum nal Weight/Volume	HP5973F F4327.D e: 5.04 g e: 5 mL	
Analyte	DryWt Corrected	I: Y Result (u	g/Kg)	Qualifier	MDL	RL	
Benzene		ND			0.30	6.1	
Toluene		ND			0.46	6.1	
Ethylbenzene		ND			0.42	6.1	
m-Xylene & p-Xyler	ne	ND			1.0	12	
o-Xylene		ND			0.80	6.1	
Xylenes, Total		ND			1.0	12	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
1,2-Dichloroethane	-d4 (Surr)	102			64 - 1	126	
Toluene-d8 (Surr)		102			71 - 1	125	
4-Bromofluorobenz	ene (Surr)	95			72 - 1	126	

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 480-10396-1

Client Sample ID:	SB-03 (8-9.5)						
Lab Sample ID: Client Matrix:	480-10396-2 Solid	% Moisture	:: 17.2			Date Sampled: 09/26/2011 1 Date Received: 09/28/2011 1	300 030
		8260B Volatile Orga	nic Compoun	ds (GC/MS)			
Analysis Method:	8260B	Analysis Batch:	480-33610	Ins	trument ID:	HP5973F	
Prep Method:	5030B	Prep Batch:	N/A	Lat	b File ID:	F4328.D	
Dilution:	1.0			Init	ial Weight/Volum	e: 5.02 g	
Analysis Date:	10/01/2011 1638			Fin	al Weight/Volume	e: 5 mL	
Prep Date:	10/01/2011 1638						
Analyte	DryWt Corrected	d: Y Result (ug	g/Kg)	Qualifier	MDL	RL	
Benzene		ND			0.29	6.0	
Toluene		ND			0.45	6.0	
Ethylbenzene		ND			0.41	6.0	
m-Xylene & p-Xyler	ne	ND			1.0	12	
o-Xylene		ND			0.79	6.0	
Xylenes, Total		ND			1.0	12	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
1,2-Dichloroethane	-d4 (Surr)	99			64 -	126	
Toluene-d8 (Surr)		101			71 - 1	125	
4-Bromofluorobenz	ene (Surr)	94			72 - 1	126	

Analytical Data

Client: ARCADIS U.S., Inc.

Job Number: 480-10396-1

Client Sample ID:	SB-02 (8-10.5)						
Lab Sample ID: Client Matrix:	480-10396-3 Solid	% Moisture	: 17.7		[[Date Sampled: 09/26 Date Received: 09/28	/2011 1415 /2011 1030
		8260B Volatile Orga	nic Compoun	ds (GC/MS))		
Analysis Method:	8260B	Analysis Batch:	480-33610	Ir	nstrument ID:	HP5973F	
Dilution: Analysis Date: Prep Date:	5030B 1.0 10/01/2011 1704 10/01/2011 1704	Ргер Ватсп:	N/A	L Ir F	ab File ID: nitial Weight/Volum Final Weight/Volum	F4329.D le: 5.17 g e: 5 mL	
Analyte	DryWt Correcte	d: Y Result (ug	J/Kg)	Qualifier	MDL	RL	
Benzene		ND			0.29	5.9	
Toluene		ND			0.44	5.9	
Ethylbenzene		ND			0.41	5.9	
m-Xylene & p-Xyler	ne	ND			0.99	12	
o-Xylene		ND			0.77	5.9	
Xylenes, Total		ND			0.99	12	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane	-d4 (Surr)	102			64 -	126	
Toluene-d8 (Surr)		101			71 -	125	
4-Bromofluorobenz	ene (Surr)	94			72 -	126	
Analytical Data

Client: ARCADIS U.S., Inc.

Client Sample ID:	SB-04 (8-10.9)						
Lab Sample ID: Client Matrix:	480-10396-4 Solid	% Moisture	9.5		[Date Sampled: 09/26/2 Date Received: 09/28/2	011 1545 011 1030
		8260B Volatile Orga	nic Compoun	ds (GC/MS)			
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/01/2011 1729 10/01/2011 1729	Analysis Batch: Prep Batch:	480-33610 N/A	Instr Lab Initia Fina	ument ID: File ID: al Weight/Volum I Weight/Volum	HP5973F F4330.D ne: 5 g ne: 5 mL	
Analyte	DryWt Corrected	I: Y Result (u	g/Kg)	Qualifier	MDL	RL	
Benzene		ND			0.27	5.5	
Toluene		ND			0.42	5.5	
Ethylbenzene		ND			0.38	5.5	
m-Xylene & p-Xyler	ne	ND			0.93	11	
o-Xylene		ND			0.72	5.5	
Xylenes, Total		ND			0.93	11	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane	-d4 (Surr)	102			64 -	126	
Toluene-d8 (Surr)		100			71 -	125	
4-Bromofluorobenz	ene (Surr)	96			72 -	126	

AGIE MILLAL DALLA

Client: ARCADIS U.S., Inc.

Analytical Data

Client Sample ID:	SB-01	1 (5-6.8)						
Lab Sample ID:	480-1	0576-1	*				Date Sampled:	09/30/2011 0950
Client Matrix:	Solid		% Moistu	ure: 19.5			Date Received:	10/01/2011 0915
		8	260B Volatile Or	ganic Compoun	ds (GC/M	IS)		
Analysis Method:	8260B		Analysis Batch:	480-33978		Instrument ID:	HP5973	P
Prep Method:	5030B		Prep Batch:	N/A		Lab File ID:	P5647.1)
Dilution:	1.0					Initial Weight/Volu	me: 5.02 g	
Analysis Date:	10/05/20	11 0702				Final Weight/Volur	ne: 5 mL	
Prep Date:	10/05/20	11 0702				100		
Analyte		DryWt Corrected: Y	Result	(ug/Kg)	Qualifie	r MDL	RL	
Benzene			ND		US	0.30	6.2	100 ELC.001
Toluene			ND		T	0.47	6.2	
Ethylbenzene			ND			0.43	6.2	
m-Xylene & p-Xylene			ND			1.0	12	
o-Xylene			ND			0.81	6.2	
Xylenes, Total			ND		1	1.0	12	
Surrogate			%Rec		Qualifie	r Acc	eptance Limits	
1,2-Dichloroethane-d	4 (Surr)		86			64	- 126	The second second
Toluene-d8 (Surr)			90			71	- 125	
4-Bromofluorobenzer	ne (Sum)		86			72 -	- 126	

Analytical Data

Client Sample ID:	BD-093011								
Lab Sample ID: Client Matrix:	480-10576-2 Solid	j	% Moisture	s: 14	.1	ć	C	Date Sampled: 09/3 Date Received: 10/0	30/2011 0000 01/2011 0915
		8260B V	olatile Orga	nic Com	pound	ds (GC/M	S)		
Analysis Method:	8260B	Analys	sis Batch:	480-3	3978		Instrument ID:	HP5973P	
Prep Method:	5030B	Prep 6	Batch:	N/A			Lab File ID:	P5650.D	
Dilution:	1.0						Initial Weight/Volum	ie: 5.15 g	
Analysis Date:	10/05/2011 0817						Final Weight/Volum	e: 5 mL	
Prep Date:	10/05/2011 0817								
Analyte	DryWt Corrected:	Y	Result (u	g/Kg)		Qualifie	r MDL	RL	
Benzene		24	ND				0.28	5.6	
Toluene			ND				0.43	5.6	
Ethylbenzene			ND				0.39	5.6	
m-Xylene & p-Xylen	e	- 32	ND				0.95	11	
o-Xylene			ND				0.74	5.6	
Xylenes, Total		1	ND				0.95	11	
Surrogate			%Rec			Qualifie	r. Acce	ptance Limits	
1,2-Dichloroethane-	d4 (Surr)		89				64 -	126	
Toluene-d8 (Surr)	Contraction and the second		91				. 71 -	125	
4-Bromofluorobenze	ene (Surr)		89				72 -	126	

Analytical Data

Client Sample ID:	MSB-13	(9-10.8)									
Lab Sample ID: Client Matrix:	480-109 Solid	67-1	9	% Moisture:	6.2				Date Samp Date Recei	led: ved:	10/06/2011 1300 10/08/2011 0850
			8260B Vol	atile Organ	lc Compoun	ds (GC/N	IS)				
Analysis Method:	8260B		Analysi	s Batch:	480-35031		Instrume	nt ID:	HP	5973	P
Prep Method:	5030B		Prep Ba	atch:	N/A		Lab File	ID:	P57	767.D	1
Dilution:	1.0						Initial We	ight/Volum	ne: 5.0	5 g	
Analysis Date:	10/12/2011	1326					Final We	ight/Volum	ne: 5 i	mL	
Prep Date:	10/12/2011	1326						-			
Analyte	D	ryWt Corrected: 1	Y	Result (ug	/Kg)	Qualifie	ər	MDL		RL	
Benzene				ND				0.26		5.3	
Toluene				0.80		J		0.40		5.3	
Ethylbenzene				ND				0.36		5.3	
m-Xylene & p-Xylene			ND	12-		-0-1	JB	D89-1.:	2	11	
o-Xylene			(in the second	ND				0.69		5.3	
Xylenes, Total			ND	1.2		-18-1	JB	0 .89 <i>i</i> .	2	11	
Surrogate				%Rec		Qualific	er.	Aco	eptance Lin	nits	
1.2-Dichloroethane-d	4 (Surr)			75				64 -	126		
Toluene-d8 (Surr)	1			83				71 -	125		
4-Bromofluorobenzer	ne (Surr)			88				72 -	126		

Analytical Data

Client Sample ID:	MSB-14 (7-9.3)						
Lab Sample ID: Client Matrix:	480-10967-2 Solid	% Moistu	re: 16.4		D	ate Sampled: ate Received:	10/06/2011 1405 10/08/2011 0850
		8260B Volatile Org	anic Compoun	ds (GC/MS)			
Analysis Method:	82608	Analysis Batch:	480-35031	Inst	trument ID:	HP5973	
Prep Method:	5030B	Prep Batch:	N/A	Lab	File ID:	P5768.D	
Dilution:	1.0			Initi	al Weight/Volume	e: 5.13 g	
Analysis Date:	10/12/2011 1351			Fina	al Weight/Volume	: 5 mL	
Prep Date:	10/12/2011 1351						
Analyte	DryWt Corrected:	Y Result (ug/Kg)	Qualifier	MDL	RL	
Benzene		ND			0.29	5.8	
Toluene		0.97		J	0.44	5.8	
Ethylbenzene		ND		3354	0.40	5.8	
m-Xylene & p-Xyler	ie	1.5 1	57	H- 13	0.98	12	
o-Xylene		ND	-		0.76	5.8	
Xylenes, Total		1-1-1	19	100B	0.98	12	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
1,2-Dichloroethane	d4 (Surr)	80			64 - 1	26	
Toluene-d8 (Surr)	454 (CC-0.0705*	87			71 - 1	25	
4-Bromofluorobenz	ene (Surr)	91			72 - 1	26	

Analytical Data

Client Sample ID:	MSB-15 (7-	3.9)						
Lab Sample ID: Client Matrix:	480-10967- Solid	3	% Moistur	e: 23.5	2	- 18	Date Sampled: Date Received:	10/06/2011 1440 10/08/2011 0850
		8:	260B Volatile Org	anic Compoun	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/12/2011 14 10/12/2011 14	16 16	Analysis Batch: Prep Batch:	480-35031 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	HP5973 P5769.0 me: 5.22 g me: 5 mL	
Analyte	DryV	A Corrected: Y	Result (ug/Kg)	Qualifier	MDL	RL	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylen o-Xylene Xylenes, Total	e .	8	ND 1.3 ND 1.2 ND 1.2 ND 1.2	פר - יישר -	ງ 	0.31 0.47 0.43 B 1.1 0.82 B 1.1	6.3 6.3 13 6.3 13	
Surrogate 1,2-Dichloroethane- Toluene-d8 (Surr) 4-Bromofluorobenze	d4 (Surr) ene (Surr)		%Rec 85 88 92		Qualifier	Ac 64 71 72	ceptance Limits - 126 - 125 - 126	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Analytical Data

Client Sample ID:	MSB-16	(2-4.3)						
Lab Sample ID: Client Matrix:	480-109 Solid	67-4	% Moisi	ture: 27.3	6		Date Sampled: Date Received:	10/06/2011 1530 10/08/2011 0850
		8	260B Volatile O	rganic Compour	nds (GC/MS	5)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 10/12/2011 10/12/2011	1442 1442	Analysis Batch Prep Batch:	n: 480-35031 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volur	HP5973 P5770.0 me: 5.26 g ne: 5 mL	P
Analyte	D	ryWt Corrected: Y	Result	t (ug/Kg)	Qualifier	MDL	RL	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylen o-Xylene Xylenes, Total	e		ND 1.1 ND 1.2 ND 1.2	an Gu	ر اک عد آک جب	0.32 0.49 0.45 1.1 0.85 1.1	6.5 6.5 13 6.5 13	
Surrogate			%Rec		Qualifier	Acc	eptance Limits	
1,2-Dichloroethane- Toluene-d8 (Surr) 4-Bromofluorobenze	d4 (Surr) ene (Surr)		82 87 90			64 71 72	- 126 - 125 - 126	

Analytical Data

Client Sample ID: MS	B-17 (2-4.3)						
Lab Sample ID: 480 Client Matrix: Sol	0-10967-5 id	% Moisture	: 38.4		Dat Dat	e Sampled: 10 e Received: 10	0/06/2011 1600 0/08/2011 0850
	C#18	260B Volatile Orga	nic Compour	ids (GC/MS)			
Analysis Method:8260BPrep Method:5030BDilution:1.0Analysis Date:10/12/Prep Date:10/12/	2011 1507 2011 1507	Analysis Batch: Prep Batch:	480-35031 N/A	Inst Lab Initi Fina	rument ID: File ID: al Weight/Volume: al Weight/Volume:	HP5973P P5771.D 5.31 g 5 mL	
Analyte	DryWt Corrected: Y	Result (ut	a/Ka)	Qualifier	MDL	RL	
Benzene		ND			0.37	7.6	1
Toluene		1.4		J	0.58	7.6	
Ethylbenzene		ND			0.53	7.6	
m-Xylene & p-Xylene		-to NT)	-JB-UB	1.3	15	
o-Xylene		ND			1.0	7.6	
Xylenes, Total		10 PL	D	+B-UB	1.3	15	
Surrogate		%Rec		Qualifier	Accepta	ince Limits	
1.2-Dichloroethane-d4 (Surr)	85			64 - 126	3	
Toluene-d8 (Surr)		89			71 - 12	5	
4-Bromofluorobenzene (Sun)	93			72 - 126	5	

Analytical Data

Client Sample ID:	SB-10 (8-10.4)						
Lab Sample ID: Client Matrix:	480-10396-1 Solid	% Moisture	: 19.2		[[Date Sampled: 09/26/20 Date Received: 09/28/20	011 1100 011 1030
	٤	3270C Semivolatile Or	ganic Compou	Inds (GC/N	IS)		
Analysis Method:	8270C	Analysis Batch:	480-33584	Ir	nstrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-33544	L	ab File ID:	V5791.D	
Dilution:	1.0			Ir	nitial Weight/Volum	e: +30.58 g	
Analysis Date:	10/03/2011 0425			F	inal Weight/Volum	e: 1 mL	
Prep Date:	09/30/2011 1659			Ir	njection Volume:	1 uL	
Analyte	DryWt Corrected	: Y Result (u	g/Kg)	Qualifier	MDL	RL	
Acenaphthene		ND			2.4	210	
Acenaphthylene		ND			1.7	210	
Anthracene		ND			5.2	210	
Benz(a)anthracene		35		J	3.5	210	
Benzo(a)pyrene		43		J	4.9	210	
Benzo(b)fluoranther	ne	39		J	4.0	210	
Benzo(g,h,i)perylene	9	35		J	2.5	210	
Benzo(k)fluoranther	ne	25		J	2.3	210	
Chrysene		32		J	2.1	210	
Dibenz(a,h)anthrace	ene	ND			2.4	210	
Fluoranthene		44		J	3.0	210	
Fluorene		ND			4.7	210	
Indeno(1,2,3-c,d)pyr	rene	29		J	5.7	210	
Naphthalene		ND			3.4	210	
Phenanthrene		25		J	4.3	210	
Pyrene		44		J	1.3	210	
2-Methylnaphthalen	e	ND			2.5	210	
Dibenzofuran		ND			2.1	210	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
Nitrobenzene-d5		56			34 -	132	
2-Fluorobiphenyl		64			37 -	120	
p-Terphenyl-d14		90			58 -	147	

Analytical Data

Client Sample ID:	SB-03 (8-9.5)						
Lab Sample ID:	480-10396-2				[Date Sampled: 09/26/	2011 1300
Client Matrix:	Solid	% Moisture	: 17.2		I	Date Received: 09/28/	2011 1030
		8270C Semivolatile Org	ganic Compou	unds (GC/N	IS)		
Analysis Method:	8270C	Analysis Batch:	480-33584	h	nstrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-33544	L	ab File ID:	V5792.D	
Dilution:	10			li	nitial Weight/Volum	ie: +30.49 g	
Analysis Date:	10/03/2011 0448			F	- inal Weight/Volum	e: 1 mL	
Prep Date:	09/30/2011 1659			li	njection Volume:	1 uL	
Analyte	DryWt Correcte	ed: Y Result (ug	J/Kg)	Qualifier	MDL	RL	
Acenaphthene		3700			24	2000	
Acenaphthylene		1100		J	16	2000	
Anthracene		9100			51	2000	
Benz(a)anthracene		8600			35	2000	
Benzo(a)pyrene		7000			48	2000	
Benzo(b)fluoranther	ne	7100			39	2000	
Benzo(g,h,i)perylen	e	4200			24	2000	
Benzo(k)fluoranther	ne	3300			22	2000	
Chrysene		7400			20	2000	
Dibenz(a,h)anthrace	ene	1300		J	24	2000	
Fluoranthene		19000			29	2000	
Fluorene		4700			46	2000	
Indeno(1,2,3-c,d)py	rene	3500			55	2000	
Naphthalene		950		J	33	2000	
Phenanthrene		21000			42	2000	
Pyrene		15000			13	2000	
2-Methylnaphthalen	e	280		J	24	2000	
Dibenzofuran		2700			21	2000	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
Nitrobenzene-d5		79			34 -	132	
2-Fluorobiphenyl		96			37 -	120	
p-Terphenyl-d14		118			58 -	147	

Analytical Data

Client Sample ID:	SB-02 (8-10.5)						
Lab Sample ID: Client Matrix:	480-10396-3 Solid	% Moisture	e: 17.7			Date Sampled: 09/26/2 Date Received: 09/28/2	2011 1415 2011 1030
	82	270C Semivolatile Or	ganic Compou	unds (GC)	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-33642		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-33544		Lab File ID:	V5810.D	
Dilution:	5.0				Initial Weight/Volur	ne: +30.23 g	
Analysis Date:	10/03/2011 1200				Final Weight/Volun	ne: 1 mL	
Prep Date:	09/30/2011 1659				Injection Volume:	1 uL	
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL	
Acenaphthene		900		J	12	1000	
Acenaphthylene		480		J	8.3	1000	
Anthracene		2600			26	1000	
Benz(a)anthracene		4900			18	1000	
Benzo(a)pyrene		3900			25	1000	
Benzo(b)fluoranther	ne	4100			20	1000	
Benzo(g,h,i)perylen	e	2100			12	1000	
Benzo(k)fluoranther	ne	1900			11	1000	
Chrysene		3700			10	1000	
Dibenz(a,h)anthrace	ene	680		J	12	1000	
Fluoranthene		9500			15	1000	
Fluorene		1000			23	1000	
Indeno(1,2,3-c,d)py	rene	2000			28	1000	
Naphthalene		560		J	17	1000	
Phenanthrene		5300			21	1000	
Pyrene		7700			6.6	1000	
2-Methylnaphthalen	e	270		J	12	1000	
Dibenzofuran		490		J	11	1000	
Surrogate		%Rec		Qualifie	r Acc	eptance Limits	
Nitrobenzene-d5		71			34 -	132	
2-Fluorobiphenyl		86			37 -	120	
p-Terphenyl-d14		105			58 -	147	

Analytical Data

Client Sample ID:	SB-04 (8-10.9)						
Lab Sample ID: Client Matrix:	480-10396-4 Solid	% Moisture	: 9.5			Date Sampled: 09/26/20 Date Received: 09/28/20	11 1545 11 1030
		8270C Semivolatile Or	ganic Compou	Inds (GC/	(MS)		
Analysis Method:	8270C	Analysis Batch:	480-33642		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-33544		Lab File ID:	V5811.D	
Dilution:	1.0				Initial Weight/Volun	ne: +30.28 g	
Analysis Date:	10/03/2011 1224				Final Weight/Volum	ne: 1 mL	
Prep Date:	09/30/2011 1659				Injection Volume:	1 uL	
Analyte	DryWt Corrected	I: Y Result (u	g/Kg)	Qualifier	r MDL	RL	
Acenaphthene		ND			2.2	190	
Acenaphthylene		ND			1.5	190	
Anthracene		38		J	4.7	190	
Benz(a)anthracene		54		J	3.2	190	
Benzo(a)pyrene		53		J	4.5	190	
Benzo(b)fluoranther	ne	69		J	3.6	190	
Benzo(g,h,i)perylen	e	40		J	2.2	190	
Benzo(k)fluoranther	ne	37		J	2.0	190	
Chrysene		62		J	1.8	190	
Dibenz(a,h)anthrace	ene	ND			2.2	190	
Fluoranthene		130		J	2.7	190	
Fluorene		ND			4.3	190	
Indeno(1,2,3-c,d)py	rene	34		J	5.1	190	
Naphthalene		ND			3.1	190	
Phenanthrene		120		J	3.9	190	
Pyrene		110		J	1.2	190	
2-Methylnaphthalen	e	ND			2.2	190	
Dibenzofuran		ND			1.9	190	
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
Nitrobenzene-d5		72			34 -	132	
2-Fluorobiphenyl		81			37 -	120	
p-Terphenyl-d14		108			58 -	147	

Analytical Data

Client Sample ID:	SB-01 (5-6.8)						
Lab Sample ID: Client Matrix:	480-10576-1 Solid	% Moisture	19.5		Da Da	te Sampled: 09/30 te Received: 10/01	/2011 0950 /2011 0915
		8270C Semivolatile Org	ganic Compou	unds (GC/M	IS)		
Analysis Method:	8270C	Analysis Batch:	480-34970	Ir	strument ID:	HP5973U	
Prep Method:	3550B	Prep Batch:	480-34039	L	ab File ID:	U5133.D	
Dilution:	5.0	10.00003555800031		In	itial Weight/Volume	+30.21 g	
Analysis Date:	10/12/2011 1227			F	inal Weight/Volume:	1 mL	
Prep Date:	10/05/2011 0931			Ir	jection Volume:	1 uL	
Analyte	DryWt Corrected	d: Y Result (ug	/Kg)	Qualifier	MDL	RL	
Acenaphthene		140	0.0	J	12	1000	
Acenaphthylene		130		J	8.5	1000	
Anthracene		440		J	27	1000	
Benz(a)anthracene		1500		J	18	1000	
Benzo(a)pyrene		1400		エ	25	1000	
Benzo(b)fluoranthe	ne	1600		J	20	1000	
Benzo(g,h,i)perylen	e	940		J	12	1000	
Benzo(k)fluoranther	ne	640		J	11	1000	
Chrysene		1400		J	10	1000	
Dibenz(a,h)anthrac	ene	ND		05	12	1000	
Fluoranthene		3000		ゴ	15	1000	
Fluorene		140		7	24	1000	
Indeno(1,2,3-c,d)py	rene	770		J	29	1000	
Naphthalene		ND			17	1000	
Phenanthrene		2200		5	22	1000	
Pyrene		2800		1	6.7	1000	
2-Methylnaphthaler	ie .	43		J	13	1000	
Dibenzofuran		110		J	11	1000	
Surrogate		%Rec		Qualifier	Accep	tance Limits	
Nitrobenzene-d5		80			34 - 13	32	
2-Fluorobiphenyl		94			37 - 12	20	
p-Terphenyl-d14		111			58 - 14	47	

Analytical Data

Client Sample ID:	BD-093011						
Lab Sample ID: Client Matrix:	480-10576-2 Solid	% Moisture:	14.1			Date Sampled: 09/30 Date Received: 10/01	0/2011 0000 1/2011 0915
		8270C Semivolatile Org	anic Compou	nds (GC/	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-34970		Instrument ID:	HP5973U	
Prep Method:	3550B	Prep Batch:	480-34039		Lab File ID:	U5134.D	
Dilution:	5.0				Initial Weight/Volu	me: +30.60 g	
Analysis Date:	10/12/2011 1250				Final Weight/Volur	ne: 1 mL	
Prep Date:	10/05/2011 0931				Injection Volume:	1 uL	
Analyte	DryWt Corrected	d: Y Result (ug	/Kg)	Qualifier	m MDL	RL	
Acenaphthene		98		J	11	970	
Acenaphthylene		170		J	7.9	970	
Anthracene		380		J	25	970	
Benz(a)anthracene		1400			17	970	
Benzo(a)pyrene		1300			23	970	
Benzo(b)fluoranther	ne	1300			19	970	
Benzo(g,h,i)perylene	9	890		J	12	970	
Benzo(k)fluoranthen	ne	800		J	11	970	
Chrysene		1400			9.6	970	
Dibenz(a,h)anthrace	ene	ND			11	970	
Fluoranthene		2800			14	970	
Fluorene		140		J	22	970	
Indeno(1,2,3-c,d)pyr	rene	750		J	27	970	
Naphthalene		130		J	16	970	
Phenanthrene		2100			20	970	
Pyrene		2600			6.2	970	
2-Methylnaphthalen	e	59		J	12	970	
Dibenzofuran		100		J	10	970	
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
Nitrobenzene-d5		71			34	- 132	
2-Fluorobiphenyl		80			37 -	- 120	
p-Terphenyl-d14		94			58	- 147	

Analytical Data

Client Sample ID:	MSB-13 (9-10.8)						
Lab Sample ID: Client Matrix:	480-10967-1 Solid	% Moisture	: 6.2			Date Sampled: 10/06/2011 Date Received: 10/08/2011	1 1300 1 0850
	٤	3270C Semivolatile Org	ganic Compou	Inds (GC	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-34838		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-34709		Lab File ID:	V6153.D	
Dilution:	1.0				Initial Weight/Volu	me: +30.74 g	
Analysis Date:	10/11/2011 1659				Final Weight/Volur	me: 1 mL	
Prep Date:	10/10/2011 1146				Injection Volume:	1 uL	
Analyte	DryWt Corrected	Y Result (ug	J/Kg)	Qualifie	r MDL	RL	
Acenaphthene		18		J	2.1	180	
Acenaphthylene		ND			1.4	180	
Anthracene		15		J	4.5	180	
Benz(a)anthracene		ND			3.0	180	
Benzo(a)pyrene		17		J	4.2	180	
Benzo(b)fluoranther	ne	ND			3.4	180	
Benzo(g,h,i)perylen	е	ND			2.1	180	
Benzo(k)fluoranther	ne	ND			1.9	180	
Chrysene		ND			1.8	180	
Dibenz(a,h)anthrace	ene	ND			2.1	180	
Fluoranthene		36		J	2.5	180	
Fluorene		ND			4.0	180	
Indeno(1,2,3-c,d)py	rene	ND			4.9	180	
Naphthalene		22		J	2.9	180	
Phenanthrene		66		J	3.7	180	
Pyrene		45		J	1.1	180	
2-Methylnaphthalen	e	8.4		J	2.1	180	
Dibenzofuran		ND			1.8	180	
Surrogate		%Rec		Qualifie	r Acc	ceptance Limits	
Nitrobenzene-d5		71			34	- 132	
2-Fluorobiphenyl		75			37	- 120	
p-Terphenyl-d14		98			58	- 147	

Analytical Data

Client Sample ID:	MSB-14 (7-9.3)						
Lab Sample ID: Client Matrix:	480-10967-2 Solid	% Moisture	: 16.4			Date Sampled: 10/06/20 Date Received: 10/08/20	11 1405 11 0850
	8	3270C Semivolatile Or	ganic Compou	unds (GC/	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-34838		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-34709		Lab File ID:	V6154.D	
Dilution:	10				Initial Weight/Volur	ne: +30.25 g	
Analysis Date:	10/11/2011 1723				Final Weight/Volum	ne: 1 mL	
Prep Date:	10/10/2011 1146				Injection Volume:	1 uL	
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	r MDL	RL	
Acenaphthene		ND			24	2000	
Acenaphthylene		ND			16	2000	
Anthracene		240		J	51	2000	
Benz(a)anthracene		640		J	35	2000	
Benzo(a)pyrene		870		J	48	2000	
Benzo(b)fluoranther	ne	800		J	39	2000	
Benzo(g,h,i)perylene	e	580		J	24	2000	
Benzo(k)fluoranther	ne	470		J	22	2000	
Chrysene		670		J	20	2000	
Dibenz(a,h)anthrace	ene	160		J	24	2000	
Fluoranthene		890		J	29	2000	
Fluorene		ND			46	2000	
Indeno(1,2,3-c,d)pyr	rene	490		J	55	2000	
Naphthalene		ND			33	2000	
Phenanthrene		930		J	42	2000	
Pyrene		990		J	13	2000	
2-Methylnaphthalen	e	ND			24	2000	
Dibenzofuran		ND			21	2000	
Surrogate		%Rec		Qualifier	r Acc	eptance Limits	
Nitrobenzene-d5		54			34 -	132	
2-Fluorobiphenyl		70			37 -	120	
p-Terphenyl-d14		104			58 -	147	

Analytical Data

Client Sample ID:	MSB-15 (7-8.9)						
Lab Sample ID: Client Matrix:	480-10967-3 Solid	% Moisture	23.5			Date Sampled: 10/06/2 Date Received: 10/08/2	2011 1440 2011 0850
		8270C Semivolatile Org	ganic Compou	unds (GC/I	MS)		
Analysis Method:	8270C	Analysis Batch:	480-34838	I	Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-34709	I	Lab File ID:	V6155.D	
Dilution:	10			1	Initial Weight/Volur	ne: +30.18 g	
Analysis Date:	10/11/2011 1747			1	Final Weight/Volun	ne: 1 mL	
Prep Date:	10/10/2011 1146			I	Injection Volume:	1 uL	
Analyte	DryWt Corrected	: Y Result (ug	ı/Kg)	Qualifier	MDL	RL	
Acenaphthene		ND			26	2200	
Acenaphthylene		ND			18	2200	
Anthracene		ND			56	2200	
Benz(a)anthracene		ND			38	2200	
Benzo(a)pyrene		ND			53	2200	
Benzo(b)fluoranthen	e	ND			43	2200	
Benzo(g,h,i)perylene	9	ND			26	2200	
Benzo(k)fluoranthen	e	ND			24	2200	
Chrysene		ND			22	2200	
Dibenz(a,h)anthrace	ne	ND			26	2200	
Fluoranthene		160		J	32	2200	
Fluorene		ND			51	2200	
Indeno(1,2,3-c,d)pyr	ene	ND			61	2200	
Naphthalene		ND			36	2200	
Phenanthrene		120		J	46	2200	
Pyrene		150		J	14	2200	
2-Methylnaphthalene	e	ND			27	2200	
Dibenzofuran		ND			23	2200	
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
Nitrobenzene-d5		68			34 -	132	
2-Fluorobiphenyl		84			37 -	120	
p-Terphenyl-d14		107			58 -	147	

Analytical Data

Client Sample ID:	MSB-16 (2-4.3)						
Lab Sample ID: Client Matrix:	480-10967-4 Solid	% Moisture	: 27.3			Date Sampled: 10/06/2017 Date Received: 10/08/2017	1 1530 1 0850
	٤	3270C Semivolatile Org	ganic Compou	unds (GC/	MS)		
Analysis Method:	8270C	Analysis Batch:	480-34838		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-34709		Lab File ID:	V6156.D	
Dilution:	10				Initial Weight/Volu	me: +30.26 g	
Analysis Date:	10/11/2011 1811				Final Weight/Volur	me: 1 mL	
Prep Date:	10/10/2011 1146				Injection Volume:	1 uL	
Analyte	DryWt Corrected	Y Result (ug	J/Kg)	Qualifier	MDL	RL	
Acenaphthene		ND			27	2300	
Acenaphthylene		ND			19	2300	
Anthracene		ND			59	2300	
Benz(a)anthracene		ND			40	2300	
Benzo(a)pyrene		ND			56	2300	
Benzo(b)fluoranthen	ie	ND			45	2300	
Benzo(g,h,i)perylene	9	ND			28	2300	
Benzo(k)fluoranthen	e	ND			25	2300	
Chrysene		ND			23	2300	
Dibenz(a,h)anthrace	ene	ND			27	2300	
Fluoranthene		220		J	33	2300	
Fluorene		ND			53	2300	
Indeno(1,2,3-c,d)pyr	ene	ND			64	2300	
Naphthalene		ND			38	2300	
Phenanthrene		ND			48	2300	
Pyrene		200		J	15	2300	
2-Methylnaphthalene	e	ND			28	2300	
Dibenzofuran		ND			24	2300	
Surrogate		%Rec		Qualifier	- Acc	ceptance Limits	
Nitrobenzene-d5		69			34	- 132	
2-Fluorobiphenyl		80			37	- 120	
p-Terphenyl-d14		94			58	- 147	

Analytical Data

Client Sample ID:	MSB-17 (2-4.3)						
Lab Sample ID: Client Matrix:	480-10967-5 Solid	% Moisture	: 38.4			Date Sampled: 1 Date Received: 1	0/06/2011 1600 0/08/2011 0850
	82	270C Semivolatile Or	ganic Compou	unds (GC/	MS)		
Analysis Method:	8270C	Analysis Batch:	480-34838		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-34709		Lab File ID:	V6157.D	
Dilution:	10				Initial Weight/Volur	ne: +30.30 g	1
Analysis Date:	10/11/2011 1835				Final Weight/Volum	ne: 1 mL	
Prep Date:	10/10/2011 1146				Injection Volume:	1 uL	
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	- MDL	RL	
Acenaphthene		1200		J	32	2700	
Acenaphthylene		2900			22	2700)
Anthracene		4500			69	2700)
Benz(a)anthracene		11000			47	2700)
Benzo(a)pyrene		10000			65	2700)
Benzo(b)fluoranthen	e	6900			53	2700)
Benzo(g,h,i)perylene	9	4400			33	2700)
Benzo(k)fluoranthen	e	6800			30	2700)
Chrysene		10000			27	2700)
Dibenz(a,h)anthrace	ne	1500		J	32	2700)
Fluoranthene		18000			39	2700)
Fluorene		1400		J	62	2700)
Indeno(1,2,3-c,d)pyr	ene	4000			75	2700)
Naphthalene		ND			45	2700)
Phenanthrene		17000			57	2700)
Pyrene		19000			18	2700)
2-Methylnaphthalene	e	210		J	33	2700)
Dibenzofuran		540		J	28	2700)
Surrogate		%Rec		Qualifier	- Acc	eptance Limits	
Nitrobenzene-d5		89			34 -	132	
2-Fluorobiphenyl		97			37 -	120	
p-Terphenyl-d14		108			58 -	147	

			J	hain of	Custoc	ly Record	Ð	\sim	Testar	nerica
	Cllent Information	Cevily Tark	- - t t	Lub PM. Gigha,	Denise		Carrier Tracking	No(=)	COC:No 480-16552-3935.2	
	Client Contect. Listers Zutstricki	Phone 315 - 263 -	2167	E-Mai denise	glglia@testar	hericanc.com			Page 2 of 2	
	Company Arcathis U.S., Inc.					Analysis R	equested		# 95,	
	Address 6723 Townarth PO BOX 85	Due Date Requested:							Preservation Codes	
	Ctr	TAT Requested (days): TA- O1 ()	h naus							V - Norm V - Norm D - Autheody
	State: 20: NY, 13214-0066	And the second s					_	-	D - Netric Acad E - Netris D.4	- NeZO+6
	Phone: 712.0	PO4 4700141280		·· (0					G - AmcHor Sold T	R - NE252503 - H2504 - T50 - H2504
	Enter	work: CTALK S	r In Rusp	N 10 1					1-Druving	- Io- Loos- goest J - Acatone 1- AlCAA
	Propert Nurve NYSEC	Project #" 48003612		<u>*// 1</u>	1			en ker	K-EDTA V	V - ph 4-5 (- other (specify)
NN N	R. WARK STREET	S60mm		owes	••••+ 3 1560 1560			юа ј о	Other	
2			Sample Tune	i benefil	10001 b 10001 b 110001 b			, redrev		
Pag	Sample Identification	Sen Date TI	nple (C=come, ne G=grab)		9520C - 9520G - 966G -			N 14903	Schoial Inth	
e		\mathbb{N}	< Preservat	Bon Code: 🕅	XN N					BOLISHOPP
219	56-12 (10.2 - 12.2)	1-28-11 [3]	ງ ຊ	Solid	ХX			<u>.</u>		
of	ا الم الم الم الم الم الم الم الم الم ال	ן 1_ייין לי	ا م	Bolid	1 X X			<u>c</u>		
22	8-03(9-12)	9-21-11 12	col C l	Solid	XX					
20	SB-C2 (12-14)	9-21-1J 12	15 C	Solid	メズ				~~~	
	Sh-04 (7-9)	S) (1-12-16	3K C	Bolid	XX					
	TRIPOLANK	9-29-11 -	J	Solid	LX		-			
				Solid						
				Solid						
		_		Solid	-					
			_							
	, Possible Nezerd Menthication	ار بر			Sample Dia	posai (A fae msy.ba	9839596d // SA	mples are retain	1 Ted longer then 1 m	anth)
	- woutheread retruitions - Skin unterruit - Join Unterruit - Join Contraction - Skin unterruit - Join - Skin - Skin unterruit - Join - Skin -		racionalizario		Special Instr	uctons/QC Requirem	ents.	D HO	AINB FOF	SIDLOW
10	Ergför Kalinquisted by	Dete			ië E		Method of S	Shipmank		T
0/14	A Miller & weed	ne/68/km	06421/1	RCAD	SI SI	249/12V	1	08-35-11.	17.30	24.2
/201	Reindunned y 1 19 1. 1. 6. Reinneden w	Denemtine 09-55-77, 7 Denemtine	9:00	Company Company	Received 1 Received 1	. *	$\left\langle \right\rangle$	Dual"The / 2. 73. (1 Deletime /	2 4550	سکریکریں (ج) الاسلامیں
1	Custody Seats Intact: Custody Seal No.:				Cooler Ter	Inperdomics) ⁵ C and Other (Remarker	ſ	5	
	3 Yes 2 No				_			1		

C

Analytical Data

Client: ARCADIS U.S. Inc

Client Sample ID:	SB-12 (10.2-12.2)						
Lab Sample ID: Client Matrix:	480-10509-1 Solid	% Moisture	e: 33.8		[Date Sampled: 09/28/ Date Received: 09/30/	'2011 1330 '2011 0930
		8260B Volatile Orga	nic Compoun	ds (GC/MS	i)		
Analysis Method:	8260B	Analysis Batch:	480-33610	I	nstrument ID:	HP5973F	
Prep Method: Dilution: Analysis Date:	5030B 1.0 10/01/2011 2144	Prep Batch:	N/A	L I F	∟ab File ID: Initial Weight/Volum Final Weight/Volum	F4340.D ne: 5.12 g e: 5 mL	
Prep Date:	10/01/2011 2144						
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL	
Benzene		3.7		J	0.36	7.4	
Toluene		2.0		J	0.56	7.4	
Ethylbenzene		180			0.51	7.4	
m-Xylene & p-Xyler	ne	12		J	1.2	15	
o-Xylene		9.1			0.96	7.4	
Xylenes, Total		21			1.2	15	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane	-d4 (Surr)	101			64 -	126	
Toluene-d8 (Surr)		99			71 -	125	
4-Bromofluorobenz	ene (Surr)	96			72 -	126	

Analytical Data

Client Sample ID:	SB-12 (10.2-12.2)						
Lab Sample ID: Client Matrix:	480-10509-1 Solid	% Moisture	33.8			Date Sampled: 09/28/20 Date Received: 09/30/20	011 1330 011 0930
	٤	3270C Semivolatile Org	janic Compou	unds (GC/	MS)		
Analysis Method:	8270C	Analysis Batch:	480-33584		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-33544		Lab File ID:	V5781.D	
Dilution:	10				Initial Weight/Volur	me: +30.22 g	
Analysis Date:	10/03/2011 0029				Final Weight/Volur	ne: 1 mL	
Prep Date:	09/30/2011 1659				Injection Volume:	1 uL	
Analyte	DryWt Corrected	Y Result (ug	/Kg)	Qualifier	MDL	RL	
Acenaphthene		23000			30	2500	
Acenaphthylene		6800			21	2500	
Anthracene		15000			65	2500	
Benz(a)anthracene		12000			44	2500	
Benzo(a)pyrene		9400			61	2500	
Benzo(b)fluoranther	ne	6100			49	2500	
Benzo(g,h,i)perylen	e	3800			30	2500	
Benzo(k)fluoranther	ne	3100			28	2500	
Chrysene		12000			25	2500	
Dibenz(a,h)anthrace	ene	1400		J	30	2500	
Fluoranthene		14000			37	2500	
Fluorene		8500			58	2500	
Indeno(1,2,3-c,d)py	rene	3600			70	2500	
Naphthalene		9700			42	2500	
Phenanthrene		67000			53	2500	
Pyrene		24000			16	2500	
2-Methylnaphthalen	e	3400			31	2500	
Dibenzofuran		ND			26	2500	
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
Nitrobenzene-d5		81			34 -	132	
2-Fluorobiphenyl		95			37 -	- 120	
p-Terphenyl-d14		111			58 -	- 147	

Imagine the result

NYSEG McMaster Street Former MGP Site

Data Usability Summary Report (DUSR)

AUBURN, NEW YORK

Volatile and Semivolatile Organic Compounds (VOCs and SVOCs) Analyses

SDG #480-16792

Analyses Performed By: TestAmerica Laboratories Buffalo, New York

Report #15900R Review Level: Tier III Project: B0013049.0007.00016

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) #480-16792-1 for samples collected in association with the NYSEG McMaster Street Former MGP site in Auburn, New York. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample			A	nalysi	s	
Sample ID	Lab ID	Matrix	Date	Parent Sample	voc	svoc	РСВ	MET	MISC
MSB-18(12-13.4)	480-16792-1	Soil	2/29/2012		Х	Х			
DUP-3112	480-16792-10	Soil	3/1/2012	MSB-20(8-9')	Х	Х			
MSB-19(12-13.1)	480-16792-2	Soil	2/29/2012		Х	Х			
MSB-24(8-8.9)	480-16792-3	Soil	2/29/2012		Х	Х			
MSB-26(8-10.6)	480-16792-4	Soil	2/29/2012		Х	Х			
MSB-25(8-10.4)	480-16792-5	Soil	2/29/2012		Х	Х			
MSB-21(8-8.7)	480-16792-6	Soil	2/29/2012		Х	Х			
MSB-22(6-7.2)	480-16792-7	Soil	3/1/2012		Х	Х			
MSB-23(8-8.7)	480-16792-8	Soil	3/1/2012		Х	Х			
MSB-20(8-9')	480-16792-9	Soil	3/1/2012		Х	Х			

Note:

1. The matrix spike/matrix spike duplicate analysis was performed on sample location MSB-23(8-8.7).

2. ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	Reported		mance otable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		Х	
9. Sample preparation/extraction/analysis dates		Х		Х	
10. Fully executed Chain-of-Custody (COC) form		Х		Х	
11. Narrative summary of QA or sample problems provided		х		Х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260B and 8270C as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOPs associated with USEPA SW-846 Validating Volatile Organic Compounds by GC/MS SW-846 Method 8260B (SOP HW-24 Revision 2, October 2006) and Validating Semivolatile Organic Compounds by GC/MS SW-846 Method 8270D (SOP HW-22 Revision 3, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Water 14 days from collect		14 days from collection to analysis	Cool to 4±2 °C; pH < 2 with HCl
311-040 0200D	Soil	48 hours from collection to extraction and 14 days from collection to analysis	Cool to 4±2 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks, trip blanks, and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure sample storage contamination. Rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99, and a RRF value greater than control limit (0.05).

4.2 Continuing Calibration (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within the control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard area counts were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The spiked compounds used in the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSDs performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD spiking concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compounds	MS Recovery	MSD Recovery
MSB-23(8-8.7)	Benzene		40
	Toluene		AC
	Ethylbenzene	< LL but > 10%	< LL but > 10%
	m-Xylene & p-Xylene		4.0
	o-Xylene		AC

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of MS/MSD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No Action
	Detect	J
the lower control limit (11) but > 10%	Non-detect	UJ
	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > 4x the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACION

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The spiked compounds used in the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MSB-20(8-9')/ DUP-3112	All Compounds	U	U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260B	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	′ (GC/MS))			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment/Field blanks					Х
C. Trip blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD Precision RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		Х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	

%RPercent recoveryRPDRelative percent difference%RSDRelative standard deviation

%D Percent difference

SEMIVOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Water Water		7 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C
300-040 02700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution are acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration Verification (ICV)

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration Verification (CCV)

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits, and that all SVOC surrogate recoveries be greater than ten percent.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
MSB-19(12-13.1)	Nitrobenzene-d5	
	2-Fluorobiphenyl	AC
	Terphenyl-d14	
MSB-19(12-13.1) DL	Nitrobenzene-d5	AC
	2-Fluorobiphenyl	> UL
	Terphenyl-d14	AC
UL Upper control limit		

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
s 10	Non-detect	No Action
	Detect	J
~ 11 but $\sim 10\%$	Non-detect	UJ
< LL Dut > 10%	Detect	J
- 10%	Non-detect	R
< 10%	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	UJ^{1}
high concentration of a target compounds	Detect	J ¹

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC analysis exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within the control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit recoveries within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS and MSD results must be within the laboratory-established or analytical method-referenced acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Location	Compounds	MS Recovery	MSD Recovery
MSB-23(8-8.7)	Benzo(a)pyrene	< LL but > 10%	AC
	Benzo(b)fluoranthene	< LL but > 10%	AC
	Benzo(g,h,i)perylene	AC	< LL but > 10%
	Dibenz(a,h)anthracene	AC	< LL but > 10%
	Indeno(1,2,3-c,d)pyrene	AC	< LL but > 10%
	Phenanthrene	AC	> UL

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of MS/MSD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper control limit (III.)	Non-detect	No Action
	Detect	J
the lower control limit (11) but > 10%	Non-detect	UJ
	Detect	J
. 100/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > 4x the MS/MSD	Detect	No. Action
spiking solution concentration.	Non-detect	NU ACIION

Sample locations associated with MS/MSDs exhibiting RPDs greater than of the control limit are presented in the following table.

Sample Locations	Compound
MSB-23(8-8.7)	Benz(a)anthracene
	Benzo(a)pyrene
	Benzo(b)fluoranthene
	Fluoranthene
	Phenanthrene

The criteria used to evaluate the RPD between the MS and MSD are presented in the following table. In the case of RPD deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
× 10	Non-detect	UJ
> 0L	Detect	J

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit recoveries and relative percent differences (RPDs) between the LCS and LCSD results within the laboratory-established or analytical method-referenced acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries and RPDs within the control limits.

9. Field Duplicate Sample Analysis

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the reporting limit (RL), a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
MSB-20(8-9')/ DUP-3112	2-Methylnaphthalene	0.05 J	0.037 J	AC
	Acenaphthene	0.036 J	0.05 J	
	Acenaphthylene	0.11 J	0.12 J	
	Anthracene	0.21 J	0.3	
	Benz(a)anthracene	0.44	0.87	

Results (in µg/kg) for the field duplicate samples are summarized in the following table.
Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzo(a)pyrene	0.4	0.69	
	Benzo(b)fluoranthene	0.55	0.76	
	Benzo(g,h,i)perylene	0.17 J	0.22	
	Benzo(k)fluoranthene	0.23	0.45	
	Chrysene	0.38	0.68	
	Dibenz(a,h)anthracene	0.053 J	0.072 J	
	Dibenzofuran	0.069 J	0.074 J	
	Fluoranthene	0.79	1.4	AC
	Fluorene	0.097 J	0.12 J	
	Indeno(1,2,3-c,d)pyrene	0.15 J	0.21 J	
	Naphthalene	0.061 J	0.071 J	
	Phenanthrene	0.63	0.89	
	Pyrene	0.75	1.2	
	Total PAHs	5.1 J	8.1 J	
	Total SVOCs	5.2 J	8.2 J	

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
MSB-19(12-13.1)	Acenaphthene	34000 E	58000 D	58000 D
	Acenaphthylene	18000 E	25000 D	25000 D
	Anthracene	12000 E	30000 D	30000 D
	Benzo(a)anthracene	7600 E	14000 D	14000 D
	Chrysene	8100 E	14000 D	14000 D
	Fluorene	22000 E	32000 D	32000 D
	Naphthalene	32000 E	56000 D	56000 D
	Phenanthrene	46000 E	230000 D	230000 D
	2-Methylnaphthalene	62000 E	100000 D	100000 D
MSB-26(8-10.6)	Phenanthrene	71000 E	54000 D	54000 D

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
MSB-25(8-10.4)	Phenanthrene	76000 E	61000 D	61000 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentrations greater than the linear range are qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOC

SVOCs: SW-846 8270C	Repo	orted	Perfor Acce	mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	(GC/MS)				
Tier II Validation					
Holding Times		Х		Х	
Reporting Limits (units)		Х		Х	
Blanks					
A. Method Blanks		Х		Х	
B. Equipment/Field Blanks					Х
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate (MSD) %R		Х	Х		
MS/MSD RPD		Х	Х		
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Spike %R		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System Performance and Column Resolution		Х		Х	
Initial Calibration %RSDs		Х		Х	
Continuing Calibration RRFs		Х		Х	
Continuing Calibration %Ds		Х		Х	
Instrument Tune and Performance Check		Х		Х	
Ion Abundance Criteria for Each Instrument Used		Х		Х	
Internal Standards		Х		Х	
Compound Identification and Quantitation					
A. Reconstructed Ion Chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of Sample Compounds Within the Established RT Windows		Х		х	
D. Quantitation transcriptions/calculations		Х		Х	
E. Reporting Limits Adjusted for Sample Dilutions		Х		Х	

%RPercent RecoveryRPDRelative Percent Difference%RSDRelative Standard Deviation%DPercent Difference

SAMPLE COMPLIANCE REPORT

Sample Delivery						Co	mplian	cy ¹	-	
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	MET	MISC	Noncompliance
480-16792	2/29/2012	SW846	MSB-18(12-13.4)	Soil	Yes	Yes				
	3/1/2012	SW846	DUP-3112	Soil	Yes	Yes				
	2/29/2012	SW846	MSB-19(12-13.1)	Soil	Yes	No				SVOC - Dilution
	2/29/2012	SW846	MSB-24(8-8.9)	Soil	Yes	Yes				
	2/29/2012	SW846	MSB-26(8-10.6)	Soil	Yes	No				SVOC - Dilution
	2/29/2012	SW846	MSB-25(8-10.4)	Soil	Yes	No				SVOC - Dilution
	2/29/2012	SW846	MSB-21(8-8.7)	Soil	Yes	Yes				
	3/1/2012	SW846	MSB-22(6-7.2)	Soil	Yes	Yes				
	3/1/2012	SW846	MSB-23(8-8.7)	Soil	No	No				VOC – MS/MSD %recovery, MS/MSD RPD SVOC – MS/MSD %recovery
	3/1/2012	SW846	MSB-20(8-9')	Soil	Yes	Yes				

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By: <u>Todd Church</u>

Signature:

le Jal

Date: March 30, 2012

Peer Review: Dennis Capria

Date: April 4, 2012

CHAIN OF CUSTODY / CORRECTED SAMPLE ANALYSIS DATA SHEETS

			Ché	ain of	Cust	ody Reco	rd		, i	(estA	matica
Client Information	Sampler Reverse	EnKs	ar .	Lab PM: Deyo,	Melissa L		Carrie	- Tracking No(s):		COC Na: 480-22294-5506	1
Client Contact: Laura Zuranski	Phone:	47-57	82	E-Mail: meliss	a.deyo@(estamericainc.cor		1		Page: Page 1 of 2	
Company: ARCADIS U.S., Inc.						Anal)	sis Reques	ted		:# qor	
Address: 6723 Towpath PO BOX 66	Oue Date Request	į							h	Preservation Cov A - HCL	les; M - Hexane
Cth: Syracuse	TAT Requested (d	iys):					·····		<u> </u>	B - NaOH C - Zh Acetate	N - None O - AsNaO2
State, Zp. NY, 13214-0066										0 - Nitric Acid E - NaHSO4 F - MADH	P - NA204S Q - NA2S03 R - NA2S2503
Phone:	PO#: 4700141280	i i		101	ž					G - Amchlor H - Ascorbic Acid	S - H2SO4 T - T6P Dodecehydrate
Email. Iaura zuranski@arcadis-us.com	Wo ⊭: Auburn McMast	er/John Rusp	antini			60 M/121			SH SH	i - Ice J - Di Water	U - Acetone V - MCAA
Project Name: NYSEG McMaster Street	Project #: 48003612			5A) 9		ovins.			ənlıştır	K-EUA L-EDA	W - pri 4-5 Z - other (specify)
Site	SSOW#:			Lats	8580	2 HA			03 10	Other:	-
			Sample (v		- X378	4 (QOW)			nedmul		
Samole Identification	Sample Date	Sample Time	C=comp.	-Articles	- 8092	- 2022			N leto 1	Snecial In	structions/Note.
		X	Preservation	Code:	ZX	Z					
M5B-18(12-13.4)	2.29.12	0830	Ģ	Solid	W 2						
158-19712-13.15	2-29-12	0945	ۍ ک	Solid A	Ma						
1158-24(2-2.9)	2.79.12	0011	Ð	Solid.	W3						
M58-26 (8-10.6)	2.19.12	1250	3	Solid	<u>18</u>						
M5B-25(8-10.4)	2-29-12	1400	¢,	Solid	R N						
#58-21 (8-8.7)	2.19.12	1500	Ø	Solid	2						
M68-22 (6-7.2)	8-1-12	06:25	E	Solid	えび						
M58-23(8-2.7)	5-1-12	0130	-চ	Solid	<u>Y</u> H	ন্থ				12/11/21	
1158-20 (8-9")	3-1-12		C)	Solid	R						
Dup.313	3-1-12	31	3	Solid	2			-+ -+			
0				Solid							
Possible Hazard dentincation	ison B	own	ediotogical			Uisposai (A ree etum To Ciient	may be asses	sed it samples al By Lab		ed longer than 1 hive For	month) Months
Deliverable Requested: I, II, II, IV, Other (specify)					Special	Instructions/QC R	equírements:				Ţ
Empty Kit Relinquished by:	J	Date:		1	me:		<	dethod of Shipment			
Religning by P	13:05/3	CI-1-		Silburg	A BC	V A MAR		LC S DataTin	1-1-5	12/2/	dompany.
Reinfunder by The The The She			C. Com	Augu		ind beau	S	Dete/Tin		0400	Company
Custody Seals Intract: Custody Seal No :					Cool	r Temperature(s) °C a	nd Other Remarks	2	7. []		
Q 168 Q 100									F		

03/14/2012

Client: New York State Electric & Gas

Client Sample ID:	MSB-18(12-13.4)					
Lab Sample ID: Client Matrix:	480-16792-1 Solid	% Moisture	e: 39.5			Date Sampled: 02/29/2012 0830 Date Received: 03/02/2012 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0059 03/03/2012 0059	Analysis Batch: Prep Batch:	480-53738 N/A	 	nstrument ID: ₋ab File ID: nitial Weight/Volun ⁻inal Weight/Volum	HP5973F F7168.D ne: 5.08 g ne: 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Э	ND ND ND ND ND		ga wag and an and a second and a second and	0.40 0.62 0.56 1.4 1.1 1.4	8.1 8.1 8.1 16 8.1 16
Surrogate 1,2-Dichloroethane-o Toluene-d8 (Surr) 4-Bromofluorobenze	14 (Surr) ne (Surr)	%Rec 90 106 103	dan magama kang kang kanala dari kang kang kang kang kang kang kang kang	Qualifier	Acca 64 - 71 - 72 -	eptance Limits 126 125 126

Client: New York State Electric & Gas

Client Sample ID:	MSB-19(12-13.1)					
Lab Sample ID: Client Matrix:	480-16792-2 Solid	% Moisture	e: 18.9			Date Sampled: 02/29/2012 0945 Date Received: 03/02/2012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/M	S)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/06/2012 2127 03/06/2012 2127	Analysis Batch: Prep Batch:	480-54017 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	HP5973F F7201.D ne: 1 g ne: 5 mL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL
Benzene	на на проставление на проставлите на проставлите на проставление на проставление на проставлите на проставлите На проставление на проставлите на проставлите на проставление на проставление на проставление на проставлите на	••••••••••••••••••••••••••••••••••••••		J	1.5	
Toluene		13		J	2.3	31
Ethylbenzene		8.9		J	2.1	31
m-Xylene & p-Xyler	e	170			5.2	62
o-Xylene		300			4.0	31
Xylenes, Total		470			5.2	62
Surrogate		%Rec		Qualifie	r Acc	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	92	an a sa s	1937-999-999-999-999-999-999-999-999-999-	64 -	• 126
Toluene-d8 (Surr)		104			71 -	· 125
4-Bromofluorobenze	ene (Surr)	102			72 -	· 126

Client: New York State Electric & Gas

Job Number: 480-16792-1

Client Sample ID:	MSB-24(8-8.9)						
Lab Sample ID: Client Matrix:	480-16792-3 Solid	% Moisture	: 21.4		C C	Date Sampled: 02/29/20 Date Received: 03/02/20	012 1100 012 0900
		8260B Volatile Orga	nic Compound	ds (GC/M	5)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0124 03/03/2012 0124	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	HP5973F F7169.D le: 5.19 g e: 5 mL	
Analyte	DryWt Correcte	ed: Y Result (ug	J/Kg)	Qualifie	MDL.	RL	
Benzene	للمان في من المان ال	2.9	90990000000000000000000000000000000000	J	0.30	6.1	Shizhili Millelekoon o oosa do.
Toluene		1.7		J	0.46	6.1	
Ethylbenzene		ND			0.42	6.1	
m-Xylene & p-Xyler	ne	1.5		J	1.0	12	
o-Xylene		0.80		J	0.80	6.1	
Xylenes, Total		2.3		J	1.0	12	
Surrogate		%Rec		Qualifier	- Acce	ptance Limits	
1,2-Dichloroethane-	·d4 (Surr)	88	ang manangkangkangkangkangkangkangkangkangkan		64 -	126	vasilinas n'astronovo rokanômo k
Toluene-d8 (Surr)		106			71 -	125	
4-Bromofluorobenzo	ene (Surr)	103			72 -	126	

Client: New York State Electric & Gas

Client Sample ID:	MSB-26(8-10.6)					
Lab Sample ID: Client Matrix:	480-16792-4 Solid	% Moisture	: 21.9		[Date Sampled: 02/29/2012 1250 Date Received: 03/02/2012 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS	;)	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0150 03/03/2012 0150	Analysis Batch: Prep Batch:	480-53738 N/A	1 	nstrument ID: Lab File ID: nitial Weight/Volum Final Weight/Volum	HP5973F F7170.D ne: 5.19 g e: 5 mL
Analyte	DryWt Corrected: `	Y Result (u	g/Kg)	Qualifier	MDL	RL
Benzene	We'r yf felet fan a wy glyfan gan gyfrang a wrai ar fal yn yr yn yn yn yn yn yn y	19		anna da sera anna an	0.30	48111111111111111111111111111111111111
Toluene		13			0.47	6.2
Ethylbenzene		10			0.43	6.2
m-Xylene & p-Xylen	e	46			1.0	12
o-Xylene		23			0.81	6.2
Xylenes, Total		69			1.0	12
Surrogate		%Rec		Qualifier	Acce	eptance Limits
1,2-Dichloroethane-	d4 (Surr)	89		a BRACTION BRACH, A COLORAD CONTRACTOR (1997-199	64 -	1226
Toluene-d8 (Surr)		105			71 -	125
4-Bromofluorobenze	ene (Surr)	103			72 -	126

Client: New York State Electric & Gas

Client Sample ID:	MSB-25(8-10.4)						
Lab Sample ID: Client Matrix:	480-16792-5 Solid	% Moisture	: 23.1		C C	Date Sampled: 02/29/2 Date Received: 03/02/2	012 1400 012 0900
		8260B Volatile Orga	nic Compoun	ds (GC/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0215 03/03/2012 0215	Analysis Batch: Prep Batch:	480-53738 N/A	li L F	nstrument ID: .ab File ID: nitial Weight/Volum ⁻ inal Weight/Volume	HP5973F F7171.D e: 5.06 g e: 5 mL	
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL	
Benzene	re na na mana na mana di kanang gina na mangkanana na kangkang mana kana dina kina ngina manjang na kanahagi ka	43			0.31	6.4	jazās posetros contrastas da data da
Toluene		7.1			0.49	6.4	
Ethylbenzene		120			0.44	6.4	
m-Xylene & p-Xyler	1e	100			1.1	13	
o-Xylene		60			0.84	6.4	
Xylenes, Total		160			1.1	13	
Surrogate		%Rec		Qualifier	Acce	ptance Limits	
1,2-Dichloroethane-	d4 (Surr)	93	na in an	italiano o magnar ar nan-paranon	64 - 1	126	unuu jaan maa ka ya ahaa ka ka
Toluene-d8 (Surr)		103			71 - 1	125	
4-Bromofluorobenze	ene (Surr)	104			72 - 1	126	

Client: New York State Electric & Gas

Job Number: 480-16792-1

Client Sample ID:	MSB-21(8-8.7)						
Lab Sample ID: Client Matrix:	480-16792-6 Solid	% Moisture	20.4		Da D	ate Sampled: 02/29/20 ate Received: 03/02/20	12 1500 12 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS	5)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0240 03/03/2012 0240	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	HP5973F F7172.D e: 5.05 g : 5 mL	
Analyte	DryWt Corrected	d:Y Result (ug	/Kg)	Qualifier	MDL	RL	
Benzene	na na mana na mangkangkan pang talan na kaka na ang kaka kaka kaka na kaka na kaka ng kang ka	ND	gen gen an generalise op de ser generalise de se	on a support of the s	0.30	6.2	eionanaannynsionajaady
Toluene		ND			0.47	6.2	
Ethylbenzene		0.55		J	0.43	6.2	
m-Xylene & p-Xylen	e	ND			1.0	12	
o-Xylene		ND			0.81	6.2	
Xylenes, Total		ND			1.0	12	
Surrogate		%Rec		Qualifier	Accep	otance Limits	
1,2-Dichloroethane-	d4 (Surr)	88	an dan sebagai kanan sebagai kalan kanan kan	ilitiijiiittee ootoon 2000 aadalaayay	64 - 1	26	an a transformer an a fan de fan d
Toluene-d8 (Surr)		107			71 - 1	25	
4-Bromofluorobenze	ene (Surr)	104			72 - 1	26	

ър. С

Client: New York State Electric & Gas

Client Sample ID:	MSB-22(6-7.2)						
Lab Sample ID: Client Matrix:	480-16792-7 Solid	% Moisture	e: 29.7			Date Sampled: 03/0 Date Received: 03/0	01/2012 0825 02/2012 0900
Brenner (Brenner) , <u>Brenner (Brenner)</u> , <u>Brenner </u>		8260B Volatile Orga	nic Compound	ds (GC/M	S)	· · · · ·	
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0306 03/03/2012 0306	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu	HP5973F F7173.D me: 5.03 g me: 5 mL	
Analyte	DryWt Corrected: `	۲ Result (u	g/Kg)	Qualifie	r MDL	RL	
Benzene	n 2000 In 2010 In 2020 In 2020 In 2020 In 2020 In 2020	ND	ųpassolyšiese arto inpasses ir kario erono sine ero kario kiel	(~ West () () () () () () () () () (0.35	7.1	an a
Toluene		0.80		J	0.53	7.1	
Ethylbenzene		1.8		J	0.49	7.1	
m-Xylene & p-Xylen	e	2.6		J	1.2	14	
o-Xylene		2.4		J	0.92	7.1	
Xylenes, Total		5.0		J	1.2	14	
Surrogate		%Rec		Qualifie	r Aco	ceptance Limits	
1,2-Dichloroethane-	d4 (Surr)	92	na na de la companya		64	- 126	
Toluene-d8 (Surr)		106			71	- 125	
4-Bromofluorobenze	ene (Surr)	106			72	- 126	

Job Number: 480-16792-1

Client Sample ID:	MSB-23(8-8.7)						
Lab Sample ID: Client Matrix:	480-16792-8 Solid	% Moisture	: 18.9]	Date Sampled: 03/01/ Date Received: 03/02/	2012 0930 2012 0900
		8260B Volatile Orga	nic Compound	ds (GC/MS	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0331 03/03/2012 0331	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volum Final Weight/Volum	HP5973F F7174.D ne: 5.04 g ne: 5 mL	
Analyte	DryWt Corrected:	Y Result (ug	a/Kg)	Qualifier	MDL	RL	
Benzene	zen elde ja jane bekenen felgen gygge felden staden sok als sok om en grade is fordalar næderen sjøne en generad men	NDÚ	5	на спореднателор теренорие стр	0.30	⁶ 6.1	ani ang
Toluene		ND			0.46	6.1	
Ethylbenzene		ND			0.42	6.1	
m-Xylene & p-Xylen	e	ND			1.0	12	
o-Xylene		ND .	/		0.80	6.1	
Xylenes, Total		ND ¥			1.0	12	
Surrogate		%Rec		Qualifier	Acce	eptance Limits	
1,2-Dichloroethane-	d4 (Surr)	88		ennis Corver Dane (19 California Science and	64 -	126	
Toluene-d8 (Surr)		104			71 -	125	
4-Bromofluorobenze	ene (Surr)	105			72 -	126	

Client: New York State Electric & Gas

Client Sample ID:	MSB-20(8-9')						
Lab Sample ID: Client Matrix:	480-16792-9 Solid	% Moisture	: 24.9		D	ate Sampled: 03/01/2012 100 ate Received: 03/02/2012 090	0
		8260B Volatile Orga	nic Compound	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0357 03/03/2012 0357	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	HP5973F F7175.D ≆: 5.04 g %: 5 mL	
Analyte	DryWt Correct	ed: Y Result (ug	J/Kg)	Qualifier	MDL	RL	
Benzene	landstähd (voltak (onder förjalen grynnagen mysika (ander mår manden mår om depredensis at som en dannet mår amb	ND		100100000000000000000000000000000000000	0.32	45000000000000000000000000000000000000	ψη σ κ
Toluene		ND			0.50	6.6	
Ethylbenzene		ND			0.46	6.6	
m-Xylene & p-Xylen	e	ND			1.1	13	
o-Xylene		ND			0.86	6.6	
Xylenes, Total		ND			1.1	13	
Surrogate		%Rec		Qualifier	- Accep	ptance Limits	
1,2-Dichloroethane-	d4 (Surr)	92		ing ng ang ang ang ang ang ang ang ang an	64 - 1	26	sang.
Toluene-d8 (Surr)		107			7 1 - 1	25	
4-Bromofluorobenze	ene (Surr)	104			72 - 1	26	

Client: New York State Electric & Gas

Client Sample ID:	DUP-3112						
Lab Sample ID: Client Matrix:	480-16792-10 Solid	% Moisture	: 23.2			Date Sampled: 03/01/2012 000 Date Received: 03/02/2012 090	00 00
	{	3260B Volatile Orga	nic Compoun	ds (GC/M	S)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8260B 5030B 1.0 03/03/2012 0422 03/03/2012 0422	Analysis Batch: Prep Batch:	480-53738 N/A		Instrument ID: Lab File ID: Initial Weight/Volur Final Weight/Volun	HP5973F F7176.D ne: 5.19 g ne: 5 mL	
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylen o-Xylene Xylenes, Total	e	ND ND ND ND ND		Υδιουδιατική δημοριτική στη ματική της	0.31 0.47 0.43 1.1 0.82 1.1	6.3 6.3 6.3 13 6.3 13	
Surrogate 1,2-Dichloroethane- Toluene-d8 (Surr) 4-Bromofluorobenze	d4 (Surr) ene (Surr)	%Rec 93 109 106	agama ang mga ng mga	Qualifier	- Acc 64 - 71 - 72 -	eptance Limits 126 125 126	ettere

Client Sample ID:	MSB-18(12-13.4)				
Lab Sample ID: Client Matrix:	480-16792-1 Solid	% Moisture	e: 39.5		Date Sampled: 02/29/2012 0830 Date Received: 03/02/2012 0900
50	он на	8270C Semivolatile Or	ganic Compounds	(GC/MS)	
Analysis Method:	8270C	Analysis Batch:	480-54403	Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-53764	Lab File ID:	V7278.D
Dilution:	1.0			Initial Weight/Volun	ne: +30.49 a
Analysis Date:	03/08/2012 1915			Final Weight/Volum	ne: 1 mL
Prep Date:	03/03/2012 0702			Injection Volume:	1 uL
Analyte	DryWt Correcte	ed: Y Result (u	g/Kg) Qua	lifier MDL	RL
Acenaphthene	n Sanna a Baran ang manang kang kang mang kang kang kang nang mang mang kang kang kang kang kang kang kang k	22		^{3.2}	280
Acenaphthylene		56	J	2.2	280
Anthracene		110	J	7.0	280
Benz(a)anthracene		220	J	4.7	280
Benzo(a)pyrene		160	J	6.6	280
Benzo(b)fluoranther	ne	150	J	5.3	280
Benzo(g,h,i)perylen	e	59	J	3.3	280
Benzo(k)fluoranther	ne	89	J	3.0	280
Chrysene		180	J	2.7	280
Dibenz(a,h)anthrace	ene	12	J	3.2	280
Fluoranthene		430		4.0	280
Fluorene		85	J	6.3	280
Indeno(1,2,3-c,d)py	rene	55	J	7.6	280
Naphthalene		130	J	4.6	280
Phenanthrene		610		5.8	280
Pyrene		420		1.8	280
2-Methylnaphthalen	e	78	J	3.3	280
Dibenzofuran		74	J	2.9	280
Surrogate		%Rec	Qua	lifier Acce	eptance Limits
Nitrobenzene-d5		80		34 -	132
2-Fluorobiphenyl		89		37 -	120

104

Analytical Data

Job Number: 480-16792-1

p-Terphenyl-d14

Client: New York State Electric & Gas

65 - 153

Job Number: 480-16792-1

Client Sample ID:	MSB-19(12-13.1)							
Lab Sample ID: Client Matrix:	480-16792-2 Solid		% Moisture	: 18.9			Date Sampled Date Received	: 02/29/2012 0945 i: 03/02/2012 0900
		8270C Ser	nivolatile Or	ganic Compo	unds (GC/	MS)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Analysis Method:	8270C	Analy	/sis Batch:	480-54403		Instrument ID:	HP597	′3V
Prep Method:	3550B	Prep	Batch:	480-53764		Lab File ID:	V7279	.D
Dilution:	1.0					Initial Weight/Volu	ume: +30.69) g
Analysis Date:	03/08/2012 1939					Final Weight/Volu	me: 1 mL	0
Prep Date:	03/03/2012 0702					Injection Volume:	1 uL.	
Analyte	DryWt Corr	ected: Y	Result (u	g/Kg)	Qualifier	MDL	R	L
Acenaphthene	na na denida na na presidente presidente en esta de la martina de la martina de la martina de la martina de la	58000			-E- >	2.4	2	00
Acenaphthylene		25000	18000-		ED	1.7	2	00
Anthracene		39000			F	5.2	2	00
Benz(a)anthracene		74000	-7600-		ED	3.5	2	00
Benzo(a)pyrene			4100		-	4.9	2	00
Benzo(b)fluoranthen	e		5300			3.9	2	00
Benzo(g,h,i)perylene)		1000			2.4	2	00
Benzo(k)fluoranthen	e	. 6	510			2.2	2	00
Chrysene		14000	-8100		-E	> 2.0	2	00
Dibenz(a,h)anthrace	ne		430			2.4	2	00
Fluoranthene			4900		-	2.9	2	00
Fluorene		32000		•	E	° 4.7	20	00
Indeno(1,2,3-c,d)pyre	ene		920			5.6	20	00
Naphthalene		56000		-	-E-D	3.4	20	00
Phenanthrene			46000		-E-D	4.3	20	00
Pyrene		-	870			1.3	20	00
2-Methylnaphthalene	9	100000	62000		-F-D	2.5	20	00
Dibenzofuran			6400		_	2.1	20	00
Surrogate			%Rec		Qualifier	Ac	ceptance Limits	
Nitrobenzene-d5	na na mana mana mana ng kapagan yang pangkapang na pangkapat da kapada da kapada ng kapada kapada kapada kapad		74	aanaa maanaana gooddaalaa ay kaasaa ay ahaa googaalaa	den understigte bijgde som generalitien dat en	34	- 132	
2-Fluorobiphenyl			65			37	- 120	
p-Terphenyl-d14			117			65	- 153	

Job Number: 480-16792-1

Client Sample ID:	MSB-19(12-13.1)						
Lab Sample 1D:	480-16792-2					Date Sampled: 02/29/20	12 0945
Client Matrix:	Solid	% Moisture	: 18.9			Date Received: 03/02/20	012 0900
	827	0C Semivolatile Or	ganic Compou	unds (GC/	MS)		
Analysis Method:	82700	Analysis Batch:	480-54551		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-53764		Lab File ID:	V7322.D	
Dilution:	50				Initial Weight/Volur	ne: +30.69 g	
Analysis Date:	03/09/2012 1334	Run Type:	DL		Final Weight/Volum	ne: 1 mL	
Prep Date:	03/03/2012 0702				Injection Volume:	1 uL	
Analyte	DryWt Corrected: Y	Result (u	g/Kg)	Qualifier	MDL	RL	
Acenaphthene		58000			120	10000	and an
Acenaphthylene		25000			83	10000	
Anthracene		30000			260	10000	
Benz(a)anthracene		14000			180	10000	
Benzo(a)pyrene		6400		J	250	10000	
Benzo(b)fluoranthen	e	5300		J	200	10000	
Benzo(g,h,i)perylene		2800		J	120	10000	
Benzo(k)fluoranthene	e	2400		J	110	10000	
Chrysene		14000			100	10000	
Dibenz(a,h)anthrace	ne	1200		J	120	10000	
Fluoranthene		20000			150	10000	
Fluorene		32000		\mathbf{i}	230	10000	
Indeno(1,2,3-c,d)pyre	ene	2400		ſ	280	10000	
Naphthalene		56000		1	170	10000	
Phenanthrene		230000			210	10000	
Pyrene		41000			66	10000	
2-Methylnaphthalene		100000			120	10000	
Dibenzofuran		7900		J	170	10000	
Surrogate		%Rec		Qualifier	Acc	eptance Limits	
Nitrobenzene-d5	aayaa haraa caaya ya ahaa ka ah	107	999,9900 - 44,045 - 54,046 / 64,046 - 44,000 -	annon apartananan mene	34 -	132	Security and a second
2-Fluorobiphenyl		123		х	37 -	120	
p-Terphenyl-d14		132			65 -	153	

Client: New York State Electric & Gas

Client Sample ID:	MSB-24(8-8.9)						
Lab Sample ID: Client Matrix:	480-16792-3 Solid	% Moisture	21.4			Date Sampled: 02/29/20 Date Received: 03/02/20	012 1100 012 0900
		8270C Semivolatile Org	ganic Compou	inds (GC/	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-54403		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-53764		Lab File ID:	V7280.D	
Dilution:	1.0				Initial Weight/Volum	e: +30.42 g	
Analysis Date:	03/08/2012 2003				Final Weight/Volume	e: 1 mL	
Prep Date:	03/03/2012 0702				Injection Volume:	1 uL	
Analyte	DryWt Correcte	d: Y Result (ug	/Kg)	Qualifier	r MDL	RL	
Acenaphthene	na talah dari da kana kana kana kana kana kana kana k	64	und data franciska franciska frankrigen frankrigen († 1944 – 1924)	J	2.5	210	eganin gazzan nafarakoa oje
Acenaphthylene		140		J	1.7	210	
Anthracene		240			5.4	210	
Benz(a)anthracene		390			3.7	210	
Benzo(a)pyrene		320			5.1	210	
Benzo(b)fluoranthe	ne	410			4.1	210	
Benzo(g,h,i)perylen	e	140		J	2.5	210	
Benzo(k)fluoranthe	ne	180		J	2.3	210	
Chrysene		360			2.1	210	
Dibenz(a,h)anthrac	ene	36		J	2.5	210	
Fluoranthene		870			3.1	210	
Fluorene		110		J	4.9	210	
Indeno(1,2,3-c,d)py	rene	120		J	5.9	210	
Naphthalene		170		J	3.5	210	
Phenanthrene		770			4.4	210	
Pyrene		870			1.4	210	
2-Methylnaphthaler	1e	59		J	2.6	210	
Dibenzofuran		87		J	2.2	210	
Surrogate	يۇمىيەت (ئەر ئۇمىيەت تەر يۇرىچى تەر يەر يەر يەر يەر يەر يەر يېرىكى بىرى يەر يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى يېرى	%Rec	2010/2011/10/00210111-022/2010/122/2010/2010	Qualifier	Acce	ptance Limits	nine standalan in suid and kanalan
Nitrobenzene-d5		78			34 - 1	132	
2-Fluorobiphenyl		90			37 - 1	120	
p-Terphenyl-d14		117			65 - 1	153	

Job Number: 480-16792-1

Lab Sample ID: 480-16792-4				_	
Client Metrix: Solid	% Moieturo	. 21.0		[r	Date Sampled: 02/29/2012 1250
Client Matrix: Solid		. 21.9	متعارية الأربي والمعاري		Jale Received. 03/02/2012 0900
8270C	Semivolatile Org	ganic Compo	unds (GC/	MS)	
Analysis Method: 8270C Ar	alysis Batch:	480-54403		Instrument ID:	HP5973V
Prep Method: 3550B Pr	ep Batch:	480-53764		Lab File ID:	V7281.D
Dilution: 10				Initial Weight/Volum	1e: +30.11 g
Analysis Date: 03/08/2012 2027				Final Weight/Volum	e: 1 mL
Prep Date: 03/03/2012 0702				Injection Volume:	1 uL
Analyte DryWt Corrected: Y	Result (ug	J/Kg)	Qualifier	MDL	RL
Acenaphthene	4700		ris onio summe ricumidariana di sociala mas	25	22200
Acenaphthylene	5100			18	2200
Anthracene	14000			55	2200
Benz(a)anthracene	19000			37	2200
Benzo(a)pyrene	13000			52	2200
Benzo(b)fluoranthene	16000			42	2200
Benzo(g,h,i)perylene	5600			26	2200
Benzo(k)fluoranthene	6700			24	2200
Chrysene	15000			22	2200
Dibenz(a,h)anthracene	1400		J	25	2200
Fluoranthene	50000			31	2200
Fluorene	14000			50	2200
Indeno(1,2,3-c,d)pyrene	4800			60	2200
Naphthalene	49000			36	2200
Phenanthrene 54000	71000		ÆD	45	2200
Pyrene	40000			14	2200
2-Methylnaphthalene	11000			26	2200
Dibenzofuran	13000			22	2200
Surrogate	%Rec		Qualifier	Acce	eptance Limits
Nitrobenzene-d5	91			34 -	132
2-Fluorobiphenyl	89			37 -	120
p-Terphenyl-d14	97			65 -	153

Job Number: 480-16792-1

Client Sample ID:	MSB-26(8-10.6)				
Lab Sample ID:	480-16792-4				Date Sampled: 02/29/2012 1250
Client Matrix:	Solid	% Moisture	: 21.9		Date Received: 03/02/2012 0900
	8	3270C Semivolatile Or	ganic Compounds	s (GC/MS)	
Analysis Method:	8270C	Analysis Batch:	480-54551	Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-53764	Lab File ID:	V7323.D
Dilution:	50			Initial Weight/Vol	ume: +30.11 a
Analysis Date:	03/09/2012 1358	Run Type:	DL	Final Weight/Volu	ime: 1 mL
Prep Date:	03/03/2012 0702			Injection Volume:	1 uL
Analyte	DryWt Corrected	Y Result (u	g/Kg) Qu	ualifier MDL	RL
Acenaphthene	hele konstructure for the first of t	3700	J	130	11000
Acenaphthylene		3300	J	88	11000
Anthracene		11000		280	11000
Benz(a)anthracene		16000 🔪		190	11000
Benzo(a)pyrene		11000	\mathbf{i}	260	11000
Benzo(b)fluoranthen	e	11000		210	11000
Benzo(g,h,i)perylene		6600	L / J	130	11000
Benzo(k)fluoranthene	e	4500	L /	120	11000
Chrysene		13000		110	11000
Dibenz(a,h)anthrace	ne	1500	J	130	11000
Fluoranthene		39000		160	11000
Fluorene		12000		250	11000
Indeno(1,2,3-c,d)pyre	ene	5900	J	300	11000
Naphthalene		38000		180	11000
Phenanthrene		54000		230	11000
Pyrene		33000		70 🔪	11000
2-Methylnaphthalene		8800	J	130	11000
Dibenzofuran		11000		110	11000
Surrogate		%Rec	Qu	alifier Ac	ceptance Limits
Nitrobenzene-d5	na nel kon di la cina dan na manja kan na na dan gala kapa di kana da na kana da kana da kana da kana da kana m	62	au et men famelen en stelstelsen som efter her met neder om at stolste stelstaden.	34	132
2-Fluorobiphenyl		76		37	- 120
p-Terphenyl-d14		79		65	- 153

Job Number: 480-16792-1

Client Sample ID:	MSB-25(8-10.4)							
Lab Sample ID: Client Matrix:	480-16792-5 Solid		% Moisture:	23.1			Date Sampled: Date Received:	02/29/2012 1400 03/02/2012 0900
		8270C Ser	nivolatile Org	janic Compou	unds (GC/	MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3550B 10 03/08/2012 2052 03/03/2012 0702	Analy Prep	vsis Batch: Batch:	480-54403 480-53764		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volu Injection Volume:	HP5973 V7282.[me: 30.24 g me: 1 mL 1 uL	.V 2 3
Analyte	DryWt Correct	ed: Y	Result (ug	/Kg)	Qualifier	MDL	RL	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthrace Fluoranthene Fluorene Indeno(1,2,3-c,d)pyre Naphthalene Phenanthrene Pyrene 2-Methylnaphthalene Dibenzofuran	e e ne ene	61600	12000 5500 17000 16000 11000 12000 3400 7100 12000 920 41000 18000 3400 3400 3400 3400 3400 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 10000 10000 5000 10000 5000 10000 5000 10000 5000 10000 5000 10000 10000 5000 10000 5000 10000 5000 10000 5000 5000 10000 5000		J L	26 18 56 38 52 42 26 24 22 26 32 50 60 36 46 14 26 23	220 220 220 220 220 220 220 220 220 220	30 30
Surrogate			%Rec		Qualifier		centance Limite	
Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14		н, н кийи боло айта - бол - бор бол айта айта айта айта	84 92 97	989-4941 TA LAN AN A		34 37 65	- 132 - 120 - 153	til for for all an

Lab Sample ID: Client Matrix:	480-16792-5 Solid	% Moisture	· 23.1		C	ate Sampled: 02/29/2012 1400
Client Matrix:	Solid	% Moisture	· 23.1			ale campied. 02/20/2012 1400
	827		. 20.1		C	ate Received: 03/02/2012 0900
	021	0C Semi∨olatile Or	ganic Compo	unds (GC/N	MS)	
Analysis Method: 8	270C	Analysis Batch:	480-54551	1	nstrument ID:	HP5973V
Prep Method: 3	550B	Prep Batch:	480-53764	L	.ab File ID:	V7324.D
Dilution: 5	0			1	nitial Weight/Volum	e: 30.24 g
Analysis Date: 0	3/09/2012 1423	Run Type:	DL	F	Final Weight/Volume	e: 1 mL
Prep Date: 0	3/03/2012 0702			1	njection Volume:	1 uL
Analyte	DryWt Corrected: X	Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene	ŧļav-derās (1996). 1996 (1996) (1996) ieta (1996) (1996) (1996) ieta (1996) ieta (1996) ieta (1996) (1996) (199	10000		J	130	11000
Acenaphthylene		4000		J	89	11000
Anthracene		14000			280	11000
Benz(a)anthracene		14000			190	11000
Benzo(a)pyrene		9000		J	260	11000
Benzo(b)fluoranthene		9300		J	210	11000
Benzo(g,h,i)perylene		4400		J	130	11000
Benzo(k)fluoranthene		3400	No.	J	120	11000
Chrysene		11000	No. of Concession, No. of Conces		110	11000
Dibenz(a,h)anthracene		1400		J	130	11000
Fluoranthene		32000			160	11000
Fluorene		16000			250	11000
Indeno(1,2,3-c,d)pyren	e	4100		J	300	11000
Naphthalene		30000			180	11000
Phenanthrene		61000			230	11000
Pyrene		26000			70	11000
2-Methylnaphthalene		5900		J	130	11000
Dibenzofuran		13000			740	11000
Surrogate		%Rec		Qualifier	Acce	ptance Limits
Nitrobenzene-d5		58			34 -`	132
2-Fluorobiphenyl		73			37 - 1	120
p-Terphenyl-d14		82			65 - 1	153

Client: New York State Electric & Gas

Client Sample ID:	MSB-21(8-8.7)						
Lab Sample ID: Client Matrix:	480-16792-6 Solid	% Moisture	e: 20.4			Date Sampled: 02/29/20 Date Received: 03/02/20	12 1500 12 0900
	8	270C Semivolatile O	rganic Compo	unds (GC	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-54403		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-53764		Lab File ID:	V7283.D	
Dilution:	1.0				Initial Weight/Volur	ne: +30.16 g	
Analysis Date:	03/08/2012 2116				Final Weight/Volum	ne: 1 mL	
Prep Date:	03/03/2012 0702				Injection Volume:	1 uL	
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifie	r MDL	RL	
Acenaphthene		130	an han an an Anna	J	2.5	210	2000 AUTORNAL CONSULT
Acenaphthylene		82		J	1.7	210	
Anthracene		230			5.4	210	
Benz(a)anthracene		320			3.6	210	
Benzo(a)pyrene		270			5.1	210	
Benzo(b)fluoranthe	ne	340			4.1	210	
Benzo(g,h,i)perylen	e	120		J	2.5	210	
Benzo(k)fluoranthe	ne	160		J	2.3	210	
Chrysene		290			2.1	210	
Dibenz(a,h)anthrac	ene	39		J	2.5	210	
Fluoranthene		640			3.1	210	
Fluorene		190		J	4.9	210	
Indeno(1,2,3-c,d)py	rene	110		J	5.8	210	
Naphthalene		340			3.5	210	
Phenanthrene		820			4.4	210	
Pyrene		550			1.4	210	
2-Methylnaphthaler	ne	95		J	2.6	210	
Dibenzofuran		160		J	2.2	210	
Surrogate		%Rec		Qualifie	r Acc	eptance Limits	
Nitrobenzene-d5		82	2.1 2. Address of the second s Second second sec		34 -	132	
2-Fluorobiphenyl		93			37 -	120	
p-Terphenyl-d14		112			65 -	153	

Job Number: 480-16792-1

Client Sample ID:	MSB-22(6-7.2)						
Lab Sample ID:	480-16792-7					Date Sampled: 03/0	01/2012 0825
Client Matrix:	Solid	% Moisture	29.7			Date Received: 03/0	02/2012 0900
	82	70C Semivolatile Or	ganic Compou	unds (GC	/MS)		
Analysis Method:	8270C	Analysis Batch:	480-54403		Instrument ID:	HP5973V	
Prep Method:	3550B	Prep Batch:	480-53764		Lab File ID:	V7284.D	
Dilution:	1.0				Initial Weight/Volu	me: 30.02 g	
Analysis Date:	03/08/2012 2139				Final Weight/Volur	me: 1 mL	
Prep Date:	03/03/2012 0702				Injection Volume:	1 uL	
Analyte	DryWt Corrected: Y	/ Result (u	a/Ka)	Qualifie	r MDL	RL	
Acenaphthene	ск-нитроновларијарски од на из среда у има је на име на рабочје ставори од на слан и Сонктрика и побу су раком	530	10 Mar (8854) Animeter and a faile of the fail of the second second second second second second second second s		2.8	240	
Acenaphthylene		220		J	2.0	240	
Anthracene		540			6.1	240	
Benz(a)anthracene		680			4.1	240	
Benzo(a)pyrene		560			5.8	240	
Benzo(b)fluoranthen	e	610			4.7	240	
Benzo(g,h,i)perylene	9	210		J	2.9	240	
Benzo(k)fluoranthen	e	300			2.6	240	
Chrysene		580			2.4	240	
Dibenz(a,h)anthrace	ne	75		J	2.8	240	
Fluoranthene		1200			3.5	240	
Fluorene		430			5.5	240	
Indeno(1,2,3-c,d)pyr	ene	200		J	6.6	240	
Naphthalene		440			4.0	240	
Phenanthrene		2400			5.0	240	
Pyrene		1100			1.6	240	
2-Methylnaphthalene	e	410			2.9	240	
Dibenzofuran		200		J	2.5	240	
Surrogate		%Rec		Qualifie	r Acc	eptance Limits	
Nitrobenzene-d5	de un mun ann i faillandra connacta an an an an an an ann athairt an ann an ann an ann an ann an ann an a	85	999 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 69 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 699 - 69	ม แต่สมบุรีสมารณราชสมบัตร์สมบุรรม	34	- 132	
2-Fluorobiphenyl		94			37	- 120	
p-Terphenyl-d14		102			65	- 153	

Job Number: 480-16792-1

Client Sample ID:	MSB-23(8-8.7)						
Lab Sample ID: Client Matrix:	480-16792-8 Solid	% Moisture:	18.9			Date Sampled: Date Received	03/01/2012 0930 03/02/2012 0900
		8270C Semivolatile Orga	anic Compour	nds (GC/	MS)		
Analysis Method:	8270C	Analysis Batch:	480-54403		Instrument ID:	HP597	3V
Prep Method:	3550B	Prep Batch:	480-53764		Lab File ID:	V7285.	D
Dilution:	1.0				Initial Weight/Volu	me: +30.42	g
Analysis Date:	03/08/2012 2203				Final Weight/Volur	ne: 1 mL	
Prep Date:	03/03/2012 0702				Injection Volume:	1 uL	
Analyte	DryWt Correcte	d: Y Result (ug/	Kg)	Qualifier	MDL	RI	-
Acenaphthene	ىلىدىن كەرىكەر يەرىكەر يەرىكەر ئەرىكە ئەرىكەر يەرىكەر يەركەر يەركەر يەر	130	an da dana maningkan sa mana kana dalamata kana dalamata kana dalamata kana dalamata kana kana kana kana kana k	J	2.4	21	0
Acenaphthylene		340			1.7	21	0
Anthracene		710			5.3	21	0
Benz(a)anthracene		1800 了,			3.5	21	0
Benzo(a)pyrene		1600 ブ			4.9	21	0
Benzo(b)fluoranthen	e	2100 🤦			4.0	21	0
Benzo(g,h,i)perylene	9	590 J			2.5	21	0
Benzo(k)fluoranthen	e	780			2.3	21	0
Chrysene		1500			2.1	21	0
Dibenz(a,h)anthrace	ne	180 づ		J	2.4	21	0
Fluoranthene		3100 J			3.0	21	0
Fluorene		340			4.7	21	0
Indeno(1,2,3-c,d)pyr	ene	580 づ			5.7	21	0
Naphthalene		310			3.4	21	0
Phenanthrene		2100 J			4.3	21	0
Pyrene		2700 J			1.3	21	0
2-Methylnaphthalene	e	160		J	2.5	21	0
Dibenzofuran		250			2.1	21	0
Surrogate		%Rec		Qualifier	Acc	ceptance Limits	
Nitrobenzene-d5	ni terren minista minista meneral para para periodo ante de de la para para periodo de la meneral y esta para por fosta periodo de la para periodo de la p	84			34 ·	- 132	
2-Fluorobiphenyl		94			37 -	- 120	
p-Terphenyl-d14		107			65 ·	- 153	

Client: New York State Electric & Gas

Analytical Data

Client Sample ID:	MSB-20(8-9')				
Lab Sample ID: Client Matrix:	480-16792-9 Solid	% Moisture:	24.9		Date Sampled: 03/01/2012 1000 Date Received: 03/02/2012 0900
		8270C Semivolatile Org	anic Compounds	s (GC/MS)	
Analysis Method:	8270C	Analysis Batch:	480-54403	Instrument ID:	HP5973V
Prep Method:	3550B	Prep Batch:	480-53764	Lab File ID:	V7286.D
Dilution:	1.0			Initial Weight/Vol	ume: +30.69 g
Analysis Date:	03/08/2012 2227			Final Weight/Volu	ume: 1 mL
Prep Date:	03/03/2012 0702			Injection Volume:	: 1 uL
Analyte	DryWt Correcte	d: Y Result (ug	/Kg) Qı	ualifier MDL	RL
Acenaphthene	سر شه مکول پار پار سر زمین ورزی ورزی شه را په پېر سه که سخ به سخ پور واو پر که سخ که که در در د ورژ د که پر که محکوم محکوم که داره که از	36	J	2.6	
Acenaphthylene		110	J	1.8	220
Anthracene		210	J	5.6	220
Benz(a)anthracene		440		3.8	220
Benzo(a)pyrene		400		5.3	220
Benzo(b)fluoranthe	ne	550		4.3	220
Benzo(g,h,i)perylen	e	170	J	2.6	220
Benzo(k)fluoranther	ne	230		2.4	220
Chrysene		380		2.2	220
Dibenz(a,h)anthrace	ene	53	J	2.6	220
Fluoranthene		790		3.2	220
Fluorene		97	J	5.1	220
Indeno(1,2,3-c,d)py	rene	150	J	6.1	220
Naphthalene		61	J	3.7	220
Phenanthrene		630		4.6	220
Pyrene		750		1.4	220
2-Methylnaphthalen	e	50	J	2.7	220
Dibenzofuran		69	J	2.3	220
Surrogate		%Rec	Qı	alifier Ac	cceptance Limits
Nitrobenzene-d5		80	ىرىمىيەت بەر مەرىپىيە بەر يەرىپىلەر بولغان بەر يەرىپىيە بەر يەرىپىيە بەر يەرىپىيە بەر يەرىپىيە بەر يەرىپىلەر يە	34	4 - 132
2-Fluorobiphenyl		92		37	7 - 120
p-Terphenyl-d14		106		65	5 - 153

Client: New York State Electric & Gas

Analytical Data

Client Sample ID:	DUP-3112						
Lab Sample ID: Client Matrix:	480-16792-10 Solid	% Moisture	23.2			Date Sampled: 03/01/207 Date Received: 03/02/207	12 0000 12 0900
		8270C Semivolatile Org	janic Compou	inds (GC	/MS)		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	8270C 3550B 1.0 03/08/2012 2251 03/03/2012 0702	Analysis Batch: Prep Batch:	480-54403 480-53764		Instrument ID: Lab File ID: Initial Weight/Volu Final Weight/Volur Injection Volume:	HP5973V V7287.D me: +30.23 g ne: 1 mL 1 uL	
Analyte	DryWt Corrected	d: Y Result (ug	/Kg)	Qualifie	MDL	RL	
Acenaphthene	a nyang ngalapatan yang menghan pengenan nya pengenan pengenan pengenan pengenan kanan pengenan pengenan pengen	50	ajanyangi ikangkan pangangan pangangkan pangan p	J	2.6	220	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Acenaphthylene		120		J	1.8	220	
Anthracene		300			5.6	220	
Benz(a)anthracene		870			3.8	220	
Benzo(a)pyrene		690			5.3	220	
Benzo(b)fluoranther	ne	760			4.2	220	
Benzo(g,h,i)perylen	e	220			2.6	220	
Benzo(k)fluoranther	ne	450			2.4	220	
Chrysene		680			2.2	220	
Dibenz(a,h)anthrace	ene	72		J	2.6	220	
Fluoranthene		1400			3.2	220	
Fluorene		120		J	5.0	220	
Indeno(1,2,3-c,d)py	rene	210		J	6.0	220	
Naphthalene		71		J	3.6	220	
Phenanthrene		890			4.6	220	
Pyrene		1200			1.4	220	
2-Methylnaphthalen	e	37		J	2.6	220	
Dibenzofuran		74		J	2.3	220	
Surrogate		%Rec		Qualifier	- Acc	eptance Limits	
Nitrobenzene-d5	na nakazan kantan kana kana kana kana kana kaning kana kana kana kana kana kana kana ka	86	naj on ja jugi puer di ponte con estatori para (con).	vangen isterdense Californie – billi	- 34	· 132	nogenation of the second second second
2-Fluorobiphenyl		94			37 -	120	
p-Terphenyl-d14		108			65 -	153	

ARCADIS

Attachment 4

Geotechnical Testing Laboratory Reports (on Compact Disc)

Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY

Boring ID: ---Sample ID:---Depth : ---

Sample Type: ---Tested By: Test Date:

Project No:

GTX-11290 jef

11/23/11 Checked By: jdt Sample Id: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	MSB-3	0-5 ft	Moist, dark brown silty gravel with sand	9.3
	MSB-5	5-15 ft	Moist, dark grayish brown silty gravel with sand	7.7
	MSB-6	0-5 ft	Moist, dark brown silty gravel with sand	11.1
	MSB-7	5-9.7 ft	Moist, very dark brown silty gravel with sand	21.7
	MSB-8	10-12 ft	Moist, brown clay with gravel	10.4
	MSB-9	1-5 ft	Moist, dark brown silty gravel with sand	12.9
	MSB-9	5-11.3 ft	Moist, very dark brown sandy silt	18.3

Notes: Temperature of Drying : 110° Celsius

Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY Boring ID: ---Sample Type: ---Sample ID:---Test Date:

Depth : ---

Project No:

GTX-11290 jef

Tested By: 11/23/11 Checked By: jdt Sample Id: ---

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	MSB-11	0-5 ft	Moist, dark brown silty sand with gravel	7.9
	MSB-11	12-14 ft	Moist, grayish brown silty sand with gravel	7.5
	MSB-12	10-12 ft	Moist, very dark brown silty sand	47
	MSB-13	0-4.5 ft	Moist, dark brown silty gravel with sand	13.3
	MSB-13	7.4-8.4 ft	Moist, brown sandy silt	11.9
	MSB-14	5-9 ft	Moist, grayish brown silty gravel with sand	15.9

Notes: Temperature of Drying : 110° Celsius

	Client:	Arcadis U.	S., Inc.				
	Project:	McMaster	Street - NYSE	G			
	Location:	Auburn, N	Y			Project No:	GTX-11290
,	Boring ID:			Sample Type	: bag	Tested By:	jbr
	Sample ID	:MSB-3		Test Date:	11/17/11	Checked By:	jdt
	Depth :	0-5 ft		Test Id:	222797		
	Test Comm	nent:					r andri
	Sample De	scription:	Moist, dark b	rown silty grav	el with sand	1	
	Sample Co	mment:					

0.75 in	19.00	71		
0.5 in	12.50	49		
0.375 in	9.50	45		
#4	4.75	37		
#10	2.00	31		
#20	0.85	27		
#40	0.42	24		
#60	0.25	21		
#100	0.15	17		
#200	0.075	14	1	

Co	efficients
D ₈₅ =21.7407 mm	D ₃₀ =1.6108 mm
D ₆₀ =15.5002 mm	D ₁₅ =0.0917 mm
D ₅₀ =12.7756 mm	D ₁₀ =0.0289 mm
$C_u = N/A$	C _c =N/A
	colfication
	ssincation
ASTM N/A	
AASHIO Stone Frag	gments, Gravel and Sand
(A-1-a (0))
L	
Sample/	Chappen DOUNDED
Sand/Gravel Particle	Snape : ROUNDED
Sand/Gravel Hardne	ss:HARD
	,

	Client:	Arcadis U.S	5., Inc.				
	Project:	McMaster S	Street - NYSEG	6			
	Location:	Auburn, N	Y			Project No:	GTX-11290
)	Boring ID:			Sample Type:	bag	Tested By:	jbr
	Sample ID:	:MSB-5		Test Date:	11/17/11	Checked By:	jdt
	Depth :	5-15 ft		Test Id:	222798		
	Test Comm	ent:					
	Sample De	scription:	Moist, dark gr	ayish brown si	lty gravel w	ith sand	
	Sample Co	mment:					

Siève Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1.5 in	37.50	100		
1 in	25.00	67		
0.75 in	19.00	63		
0.5 in	12.50	46		
0.375 in	9.50	45		
#4	4.75	33		
#10	2.00	24		
#20	0.85	18		
#40	0.42	16		
#60	0.25	14		
#100	0.15	13		
#200	0.075	12	1	

Coel	fficients
D ₈₅ =31.1484 mm	D ₃₀ = 3.5196 mm
D ₆₀ =17.6008 mm	D ₁₅ =0.3460 mm
D ₅₀ =13.7607 mm	D ₁₀ =0.0085 mm
C _u =N/A	C _c =N/A
Class	ification
ASTM N/A	miçativn
AASHTO Stone Fragm	nents, Gravel and Sand
(A-1-a (0))	
Sample /Te	st Description
Sand/Gravel Particle S	hape :
Sand/Gravel Hardness	:

	Client:	Arcadis U.	.S., Inc.				
	Project:	McMaster	Street - NYSE	G			
	Location:	Auburn, N	IY			Project No:	GTX-11290
,	Boring ID:			Sample Type	: bag	Tested By:	jbr
	Sample ID:	:MSB-6		Test Date:	11/17/11	Checked By:	jdt
	Depth :	0-5 ft		Test Id:	222799		
	Test Comm	nent:					
	Sample De	scription:	Moist, dark b	rown silty grav	el with sand	i	
	Sample Co	mment:					

<u>AASHTO</u>	Stone Fragments,	Gravel	and	Sand
	(A-1-b (0))			

Sample/Test Description
Sand/Gravel Particle Shape : ROUNDED
Sand/Gravel Hardness : HARD

0.25

0.15

0.075

29

25

21

#60

#100

#200

	Client:	Arcadis U.	Arcadis U.S., Inc.					
	Project:	McMaster Street - NYSEG						
	Location:	Location: Auburn, NY				Project No:	GTX-11290	
, [Boring ID:		Sample Type	: bag	Tested By:	jbr		
	Sample ID:MSB-6		Test Date:	11/17/11	Checked By:	jdt		
	Depth :	5-10.7 ft		Test Id:	222800			
Γ	Test Comm	nent:						
	Sample Description: Moist, dark ol		ive brown silty	sand				
	Sample Comment:							

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
	mm			
0.75 in	19.00	100		~
0.5 in	12.50	96		
0.375 in	9.50	94		
#4	4.75	87		
#10	2.00	76		
#20	0.85	67		
#40	0.42	61		
#60	0.25	55		
#100	0.15	48		
#200	0.075	38		

	Coeffi	<u>cients</u>
D ₈₅ = 4.00)22 mm	$D_{30} = N/A$
D ₆₀ = 0.37	783 mm	D15=N/A
D ₅₀ =0.17	776 mm	$D_{10} = N/A$
$C_u = N/A$		C _c =N/A
	Classifi	ication
ASTM	N/A	
AASHTO	Silty Soils (A-4	1 (0))

Sample/Test Description Sand/Gravel Particle Shape : ROUNDED Sand/Gravel Hardness : HARD

Client:	Arcadis U.S., Inc.					
Project:	McMaster Street - NYSEG					
Location:	ation: Auburn, NY Project No: GTX-11290				GTX-11290	
Boring ID:			Sample Type	: bag	Tested By:	jbr
Sample ID:MSB-7			Test Date:	11/16/11	Checked By:	jdt
Depth :	5-9.7 ft		Test Id:	222808		
Test Comm	Test Comment:					
Sample De	Sample Description: Moist, very dark brown silty gravel with sand					
Sample Co	Sample Comment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
1 in	25.00	100		
0.75 in	19.00	84		
0.5 in	12.50	68		
0.375 in	9.50	64		
#4	4.75	56		
#10	2.00	48		
#20	0.85	41		
#40	0.42	36		
#60	0.25	31		
#100	0.15	26		
#200	0.075	21		
*	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0371	18		
	0.0231	13		
	0.0134	10	[
	0.0094	8		
	0.0066	4		
	0.0047	3		
	0.0033	2		
	0.0017	2		

Coefficients					
D ₈₅ =19.2086 mm	D ₃₀ =0.2340 mm				
D ₆₀ =6.6375 mm	D ₁₅ =0.0277 mm				
D ₅₀ =2.4800 mm	D ₁₀ =0.0135 mm				
C _u =N/A	$C_c = N/A$				
Class	ification				
ASTM N/A					
AASHTO Stone Fragm	nents, Gravel and Sand				
(A-1-b (0))					
Sample/Test Description					
Sand/Gravel Particle S	hape : ROUNDED				
Sand/Gravel Hardness : HARD					

	Client:	Arcadis U.S., Inc.					
	Project:	McMaster	Street - NYSEC	3			
	Location:	Auburn, N	Y			Project No:	GTX-11290
,	Boring ID:		Sample Type	: bag	Tested By:	jbr	
	Sample ID	:MSB-8		Test Date:	11/16/11	Checked By:	jdt
	Depth :	0-5 ft		Test Id:	222801		
	Test Comm	nent:					
	Sample Description: Moist, dark be			rown silty sand	d with gravel		
	Sample Comment:						

Sieve Name	mm	Percent riner	Spec. Percent	Compiles
0.75 in	19.00	100	···· ··· ··· ··· ··· ··· ··· ··· ··· ·	· · · · · · · · · · · · · · · · · · ·
0.5 in	12.50	80		
0.375 in	9.50	71		
#4	4.75	61		
#10	2.00	49		
#20	0.85	41		
#40	0.42	35		
#60	0.25	30		
#100	0.15	24		
#200	0.075	19		

			the second se	
		Coe	fficients	
1	$D_{85} = 13.8$	3662 mm	D ₃₀ =0.2576 mm	
	D ₆₀ = 4.50)52 mm	$D_{15} = N/A$	
	$D_{50} = 2.14$	79 mm	D ₁₀ = N/A	
	$C_u = N/A$		C _c =N/A	
I		Cias	sification	
	<u>ASTM</u>	N/A	Sincation	
	<u>AASHTO</u>	Stone Fragi (A-1-b (0))	ments, Gravel and Sand	
	Sample/Test Description Sand/Gravel Particle Shape : ROUNDED			
	Sand/Gravel Hardness : HARD			
		and an an an an a		

	Client:	Arcadis U.S., Inc.					
	Project:	McMaster	Street - NYSEG	3			
Location: Auburn, NY			Y			Project No:	GTX-11290
	Boring ID:			Sample Type	ample Type: bag Tested By:		jbr
	Sample ID:MSB-9		Test Date:	11/19/11	Checked By:	jdt	
	Depth :	1-5 ft		Test Id:	222802		
	Test Comm	nent:					
	Sample Description: Moist, dark br			own silty grav	el with sand	[
Sample Comment:							

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		
0.5 in	12.50	81		
0.375 in	9.50	74		
#4	4.75	65		
#10	2.00	59		
#20	0.85	54		
#40	0.42	50		
#60	0.25	45		
#100	0.15	41		
#200	0.075	36		

Coet	ficients			
D ₈₅ =13.6482 mm	$D_{30} = N/A$			
D ₆₀ = 2.3558 mm	$D_{15} = N/A$			
D ₅₀ =0.4142 mm	$D_{10} = N/A$			
C _u =N/A	$C_c = N/A$			
Classification				
ASTM N/A	<u>Internet</u>			
AASHTO Silty Soils (A-4 (0))				
Sample/Test Description				
Sand/Gravel Particle Shape : ROUNDED				
Sand/Gravel Hardness	: HARD			

	Client: Arcadis U.S., Inc.						
	Project:	McMaster	Street - NYSEC	3			
	Location:	Auburn, N	Y			Project No:	GTX-11290
,	Boring ID:			Sample Type: bag		Tested By:	jbr
	Sample ID:MSB-9			Test Date:	11/16/11	Checked By:	jdt
	Depth :	5-11.3 ft		Test Id:	222810		
	Test Comm	nent:					
	Sample Description: Moist, very of			ark brown sandy silt			
	Sample Co	mment:					

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
	1			
0.75 in	19.00	100		
0.5 in	12.50	96		
0.375 in	9.50	91		
#4	4.75	86		
#10	2.00	78		
#20	0.85	70		
#40	0.42	65		
#60	0.25	61		
#100	0.15	57		
#200	0.075	51		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0320	45		
	0.0205	36		
	0.0122	29		
	0.0087	24		
	0.0063	20		
	0.0044	15		
	0.0032	12		
	0.0016	10		

Coefficients						
D ₈₅ =4.1401 mm	D ₃₀ = 0.0134 mm					
D ₆₀ =0.2243 mm	D ₁₅ =0.0042 mm					
D ₅₀ =0.0627 mm	D ₁₀ =0.0018 mm					
C _u =N/A	$C_c = N/A$					
Class	ification					
ASTM N/A						
AASHTO Silty Soils (A	-4 (0))					
Sample/Te	st Description					
Sand/Gravel Particle Si	nape: ROUNDED					
Sand/Gravel Hardness	: HARD					

	Client: Arcadis U.S., Inc.						
	Project: McMaster Street - NYSEC Location: Auburn, NY Boring ID: Sample ID:MSB-11			G			
						Project No:	GTX-11290
,				Sample Type: bag		Tested By:	jbr
				Test Date:	11/17/11	Checked By:	jdt
	Depth :	0-5 ft		Test Id:	222803		
	Test Comment: Sample Description: Moist, dark b					B	
				rown silty sand with grave		ł	
	Sample Co	mment:					

Sample/Test Description
Sand/Gravel Particle Shape : ROUNDED
Sand/Gravel Hardness : HARD

0.075

25

#200

	Client:	Arcadis U.	S., Inc.				
	Project:	McMaster	Street - NYSE	G			
	Location:	Auburn, N	Y			Project No:	GTX-11290
,	Boring ID:			Sample Type: bag		Tested By:	jbr
	Sample ID:	:MSB-11		Test Date:	11/16/11	Checked By:	jdt
	Depth :	5-12 ft		Test Id:	222811		
	Test Comm	nent:		·········			
	Sample Description: Moist, brown			gravelly silt with sand			
	Sample Co	mment:					

Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.75 in	19.00	100		<u></u>
0.5 in	12.50	82		
0.375 in	9.50	82		
#4	4.75	80		
#10	2.00	78		
#20	0.85	76		
#40	0.42	74		
#60	0.25	72		
#100	0.15	70		
#200	0.075	65		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0312	48		
	0.0215	43		
	0.0125	35		
	0.0089	28	-	
	0.0064	23		
	0.0046	18		
	0.0033	15		
	0.0015	10		

Coefficients						
D ₃₀ =0.0098 mm						
D ₁₅ =0.0032 mm						
D ₁₀ =0.0015 mm						
C _c =N/A						
<u>cation</u> lay with sand (CL)						
(3))						
Sample/Test Description						
Sand/Gravel Hardness : HARD						
2						
2						

	Client:	Client: Arcadis U.S., Inc.							
	Project:	McMaster	Street - NYSEG	ì					
	Location: Auburn, NY					Project No:	GTX-11290		
ļ	Boring ID: Sample ID:MSB-11			Sample Type: bag		Tested By:	jbr		
				Test Date:	11/16/11	Checked By:	jdt		
	Depth :	12-14 ft		Test Id:	222804				
	Test Comm	nent:							
	Sample Description: Moist, grayish			brown silty sand with gravel					
	Sample Co	mment:							

0.5 in	12.50	91		
0.375 in	9.50	86		
#4	4.75	78		
#10	2.00	67		
#20	0.85	58		
#40	0.42	52		
#60	0.25	47		
#100	0.15	42	1	
#200	0.075	36	+	

$D_{05} = 0.5250$		D30 - 10 A
D ₆₀ = 1.0336	mm	D15 = N/A
D ₅₀ = 0.3400	mm	D10 = N/A
$C_u = N/A$		C _c =N/A
· · · · · ·	Classific	ation
<u>ASTM</u> N/	/A	
AASHTO Si	ilty Soils (A-4	(0))
<u>Si</u>	ample/Test	Description

Sand/Gravel Particle Shape : ROUNDED Sand/Gravel Hardness : HARD

-	Client:	Arcadis	U.S., Inc.				
	Project:	McMaste	er Street - N	/SEG			
	Location:	Auburn,	NY			Project No:	GTX-11290
)	Boring ID:			Sample Type	Sample Type: bag		jbr
	Sample ID:	MSB-12		Test Date:	11/16/11	Checked By:	jdt
	Depth :	10-12 ft		Test Id:	222812		
	Test Comm	ient:					
	Sample Description: Moist, very da			ry dark brown silty	sand		
	Sample Co	mment:					

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
	, ma			10.00
0.75 in	19.00	100		
0.5 in	12.50	91		
0.375 in	9.50	91	••••••	
#4	4.75	87		
#10	2.00	80		
#20	0.85	75		
#40	0.42	71		
#60	0.25	67		
#100	0.15	58		
#200	0.075	41		
	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0359	29	<u> </u>	
	0.0228	23		
	0.0134	16		
	0.0094	11		
	0.0067	8		
	0.0048	5		
	0.0033	3		
	0.0017	2		

Coeff	icients			
D ₈₅ = 3.9020 mm	D ₃₀ =0.0374 mm			
D ₆₀ =0.1653 mm	D ₁₅ =0.0122 mm			
D ₅₀ =0.1082 mm	D ₁₀ =0.0081 mm			
C _u =N/A	$C_c = N/A$			
<u>Classi</u> ASTM Silty sand (SI	fication 1)			
<u>AASHTO</u> Clayey Soils (A-7-5 (2))			
Sample/Tes	t Description			
Sand/Gravel Particle Sh	ape : ROUNDED			
Sand/Gravel Hardness : HARD				

	Client:	Arcadis U.	S., Inc.					
	Project:	McMaster	Street - NYSE	G				
	Location:	Auburn, N	Y			Project No:	GTX-11290	
)	Boring ID:			Sample Type	: bag	Tested By:	jbr	
	Sample ID:	:MSB-13		Test Date:	11/17/11	Checked By:	jdt	
	Depth :	0-4.5 ft		Test Id:	222805			
	Test Comm	nent:			······			
	Sample Description: Moist, dark h			rown silty grav	el with sand	l		
	Sample Co	mment:						

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
11.5	mm		ta see system	
1 in	25.00	100		
0.75 in	19.00	92		
0.5 in	12.50	61		
0.375 in	9.50	55		
#4	4.75	43		
#10	2.00	35		
#20	0.85	29		
#40	0.42	26		
#60	0.25	22		
#100	0.15	18		
#200	0.075	13		

	Coefficients			
D ₈₅ =17.2110 m	m D ₃₀ =0.9346 mm			
D ₆₀ = 11.8847 m	m D ₁₅ = 0.0987 mm			
D ₅₀ =7.0708 mm	$D_{10} = 0.0428 \text{ mm}$			
$C_u = N/A$	C _c =N/A			
	Classification			
<u>ASTM</u> N/A	Classification			
AASHTO Stone (A-1-a	Fragments, Gravel and Sand a (0))			
<u>Sample/Test Description</u> Sand/Gravel Particle Shape : ROUNDED Sand/Gravel Hardness : HARD				

	Client:	Arcadis U.	S., Inc.				
	Project:	McMaster	Street - NYSEG	3			
	Location:	Auburn, N	Y			Project No:	GTX-11290
1	Boring ID:			Sample Type	e: bag	Tested By:	jbr
	Sample ID	:MSB-13		Test Date:	11/16/11	Checked By:	jdt
	Depth :	7.4-8.4 ft		Test Id:	222813		
	Test Comm	nent:					
	Sample De	scription:	Moist, brown	sandy silt			
	Sample Co	mment:					

0.0032

0.0016

15

12

	Client:	Arcadis U.:	S., Inc.					
	Project:	McMaster	Street - NYSE	G				
	Location:	Auburn, N	Y			Project No:	GTX-11290	
,	Boring ID:			Sample Type	: bag	Tested By:	jbr	
	Sample ID	:MSB-14		Test Date:	11/16/11	Checked By:	jdt	
	Depth :	0-4 ft		Test Id:	222806			
	Test Comm	nent:						
	Sample Description: Moist, very of			ark brown grav	el with silt v	and sand		
	Sample Co	mment:						

Particle Size Analysis - ASTM D 422-63 (reapproved 2002) 0.5 in 0.375 in 0.75 in #100 #200 #60 #10 #40 #20 #4 100 90 80 70[.] 60 Percent Finer 50[.] 40 30 20 10 0 1000 100 10 0.1 1 0.01 0.001 Grain Size (mm) % Cobble %Gravel %Sand % Silt & Clay Size 62.9 ____ 26.5 10.6 Sieve Name | Sieve Size, | Percent Finer | Spec. Percent | Complies

	mm		compiles
0.75 in	19.00	100	
0.5 in	12.50	66	
0.375 in	9.50	53	
#4	4.75	37	
#10	2.00	27	
#20	0.85	22	
#40	0.42	19	
#60	0.25	16	
#100	0.15	13	
#200	0.075	11	

	Coef	ficients		
D ₈₅ = 15.7	7570 m m	D ₃₀ =2.5607 mm		
D ₆₀ = 10.9	9556 mm	D ₁₅ =0.2149 mm		
D ₅₀ = 8.32	232 mm	D ₁₀ =0.0641 mm		
C _u =170.	.914	C _c =9.337		
	Class	ification		
ASTM	N/A			
AASHTO	Stone Fragm	ents, Gravel and Sand		
	(A-1-a (0))			
	Sample/Te	st Description		
Sand/Gravel Particle Shape : ROUNDED				
Sand/Gravel Hardness : HARD				

	Client:	Arcadis U.	S., Inc.				
	Project:	McMaster Street - NYSEG					
	Location:	Auburn, N	Y			Project No:	GTX-11290
)	Boring ID:			Sample Type	: bag	Tested By:	jbr
	Sample ID	:MSB-14		Test Date:	11/17/11	Checked By:	jdt
	Depth :	5-9 ft		Test Id:	222807		
	Test Comm	nent:					
	Sample Description: Moist, grayish			n brown silty g	ravel with sa	and	
	Sample Co	mment:					

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
12.1	mm			
1 in	25.00	100		· · · · · · · · · · · · · · · · · · ·
0.75 in	19.00	70		
0.5 in	12.50	70		
0.375 in	9.50	68		
#4	4.75	64		
#10	2.00	54		
#20	0.85	46		
#40	0.42	41		
#60	0.25	37		
#100	0.15	35		
#200	0.075	32		

	Coef	ficients		
D ₈₅ =21.7	588 mm	$D_{30} = N/A$		
D ₆₀ = 3.30	55 mm	D15 = N/A		
D ₅₀ = 1.28	95 mm	$D_{10} = N/A$		
$C_u = N/A$		C _c =N/A		
	Classi	fication		
<u>ASTM</u>	N/A	incation		
<u>AASHTO</u>	Silty Gravel a	and Sand (A-2-4 (0))		
	Sample/Tee	st Description		
Sand/Gravel Particle Shape : ROUNDED				
Sand/Gra	vel Hardness	: HARD		

Client:	Arcadis U.	S., Inc.				
Project:	McMaster	Street - NYSEG				
Location:	Auburn, N	Y			Project No:	GTX-11290
Boring ID:			Sample Type	: bag	Tested By:	cam
Sample ID	:MSB-8		Test Date:	11/21/11	Checked By:	jdt
Depth :	10-12 ft		Test Id:	2227 9 4		
Test Comm	nent:					
Sample De	scription:	Moist, brown clay with gravel				
Sample Co	mment:					
	Client: Project: Location: Boring ID: Sample ID Depth : Test Comm Sample De Sample Co	Client: Arcadis U. Project: McMaster Location: Auburn, N Boring ID: Sample ID:MSB-8 Depth : 10-12 ft Test Comment: Sample Description: Sample Comment:	Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY Boring ID: Sample ID:MSB-8 Depth : 10-12 ft Test Comment: Sample Description: Moist, brown of Sample Comment:	Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY Boring ID: Sample ID:MSB-8 Test Date: Depth : 10-12 ft Test Id: Test Comment: Sample Description: Moist, brown clay with grave Sample Comment:	Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY Boring ID: Sample Type: bag Sample ID:MSB-8 Test Date: 11/21/11 Depth : 10-12 ft Test Id: 222794 Test Comment: Sample Description: Moist, brown clay with gravel Sample Comment:	Client: Arcadis U.S., Inc. Project: McMaster Street - NYSEG Location: Auburn, NY Project No: Boring ID: Sample Type: bag Tested By: Sample ID:MSB-8 Test Date: 11/21/11 Checked By: Depth: 10-12 ft Test Id: 222794 Test Comment: Sample Description: Moist, brown clay with gravel Sample Comment:

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	MSB-8		10-12 ft	10	20	11	9	0	

Sample Prepared using the WET method

Dry Strength: VERY HIGH Dilentancy: SLOW Toughness: LOW

	Client:	Arcadis U.	S., Inc.					
	Project:	McMaster	McMaster Street - NYSEG					
	Location:	Auburn, N	Y			Project No:	GTX-11290	
	Boring ID:			Sample Type	: bag	Tested By:	cam	
	Sample ID:	:MSB-11		Test Date:	11/21/11	Checked By:	jdt	
	Depth :	5-12 ft		Test Id:	222795			
	Test Comm	nent:						
Sample Description: Moist, brown gravelly clay with sand								
	Sample Co	mment:						

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Naturai Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	MSB-11		5-12 ft	8	24	15	9	-1	Gravelly lean clay with sand (CL)

Sample Prepared using the WET method 26% Retained on #40 Sieve Dry Strength: VERY HIGH Dilentancy: SLOW Toughness: LOW

	Chent.	Arcauls U.	5., inc.				
	Project:	McMaster	Street - NYSEG	ì			
	Location:	Auburn, N	Y			Project No:	GTX-11290
y [Boring ID:			Sample Type	: bag	Tested By:	cam
	Sample ID	:MSB-12		Test Date:	11/21/11	Checked By:	jdt
1	Depth :	10-12 ft		Test Id:	222796		
Г	Test Comm	nent:					
	Sample Description: Moist, very dark brown silty sand			sand			
L	Sample Co	mment:					

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	MSB-12		10-12 ft	47	48	36	12	1	Silty sand (SM)

Sample Prepared using the WET method 29% Retained on #40 Sieve Dry Strength: HIGH Dilentancy: SLOW Toughness: LOW

Client:	Arcadis U.S., Inc.				
Project:	McMaster Street - NYSEC	3			
Location:	Auburn, NY			Project No:	GTX-11290
Boring ID:		Sample Type:		Tested By:	ema
Sample ID	:	Test Date:	11/28/11	Checked By:	jdt
Depth :		Test Id:	222816		
			·····		

Specific Gravity of Soils by ASTM D 854-06

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity
	MSB-5	5-15 ft	Moist, dark grayish brown silty gravel with sand	2.72
	MSB-8	10-12 ft	Moist, brown clay with gravel	2.75
	MSB-11	5-12 ft	Moist, brown gravelly silt with sand	2.71

Notes: Specific Gravity performed by using method A (oven dried specimens) of ASTM D 854 Moisture Content determined by ASTM D 2216.

ARCADIS

Attachment 5

Test Pit Logs

Test Pit ID: MTP-1A ARCA **Project:** Upland Pre-Design Investigation Location: McMaster Street Former MGP Site, Auburn, New York Project #: B0013049 Geologist: Marcus Eriksson 9/12/11 Date: Parratt-Wolff, Inc. Subcontractor: Equipment: Deere 120C track excavator

Sketch of Test Pit Layout:

Page 1 of 2

G:\Clients\Iberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachments - Test Pit Logs\1031211487_MTP-1A.docx

(feet)	
0'-8'	Gray/brown fine to medium sand, some fine to medium to coarse gravel, little cobbles, red brick
8'-9.5'	Gray sand and fine to medium to coarse gravel (NAPL blebs and heavy sheen)
10'	Bedrock

NA = Not Available/Applicable; bgs = below ground surface

* Not to scale

01	View of stone wall corner
02	Looking N to S of MTP-1

Test Pit ID: MTP-1B Project: Upland Pre-Design Investigation Location: McMaster Street Former MGP Site, Auburn, New York Project #: B0013049 Geologist: Marcus Eriksson

 Date:
 9/12/11

 Subcontractor:
 Parratt-Wolff, Inc.

 Equipment:
 Deere 120C track excavator

Sketch of Test Pit Layout:

Interval

G:\Clients\Iberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment5 - Test Pit Logs\1031211487_MTP-1B.docx

(feet)	
0'-9'	Notes not recorded during test pitting activities (Heavy sheen and NAPL coating at bedrock at approximately 9' bgs)
9'	Bedrock

NA = Not Available/Applicable; bgs = below ground surface.

* Not to scale

03	8" iron pipe observed in MTP-1B
04	Looking S to N of MTP-1B

Test Pit ID: MTP-1C

Client:	NYSEG		
Project:	Upland Pre-Design Investigation		
Location:	McMaster Street Former MGP Site, Auburn, New York		
Project #:	B0013049		
Geologist:	Marcus Eriksson		
Date:	9/12/11		
Subcontractor:	Parratt-Wolff, Inc.		
Equipment:	Deere 120C track excavator		

Sketch of Test Pit Layout:

		Plan \	/iew		
	Tower B Hi 37	MTP-IC s' Black Z CT-9 B 24 E-5 Concrete cindet - Chartes about 6' ha	Ton Pipe 5'645) 	St to A star	
	d	Cross Sect	tion View		
Cross Section View St Black Iron Pipe Verticals 1.5'-5' Horizonta 15 Uly to SE Verticals 1.5'-5' Horizonta 15 Uly to SE Provident I Provident I					
Test Pit Length:	24'	Total Depth:	9.5'	Depth to Water:	8.5'
		Page 1	of 2		

Depth Interval (feet)	Description of Soil/Material
0.0-9.5'	Gray brown sand, gravel, cobbles, red brick (Moderate NAPL coating from 8' to 9.5' bgs)
9.5	Bedrock

- NA = Not Available/Applicable; bgs = below ground surface
- * Gas holder wall observed from 1.5' to 9.5' bgs

* Not to scale

05	View from west to east of MTP-1C
06	View from west to east of MTP-1C

Test Pit ID: MTP-2

Client:	NYSEG		
Project:	Pre Design Investigation		
Location:	McMaster Street Former MGP Site, Auburn, New York		
Project #:	B0013049		
Geologist:	Marcus Eriksson		
Date:	9/9/11		
Subcontractor:	Parratt-Wolff, Inc.		
Equipment:	Deere 120C track excavator		

Sketch of Test Pit Layout:

		Plan and Cross	Section View		
9-9-11 Possible Store + Motto 3 bass	F Wall Brick W. 2 Wide 4 Bgs.	<u>Tep view</u> 55 8'-1', 36 1 36 1 36	Dutside Hok Stone + M 2 Wide 1 Bq5	t Hold Ta 25'	Red Bhick
N Closs W Grade H' F.Bm. SAND, Rock E H' F.Bm. SAND, Rock I Large Cobbles, F.Sand, the Brick, there I Very coalse F.W. methial E Very coalse F.W. methial Fill Stas Dirk. Stained Stas Dirk. Stained Very coalse F.W. methial Fill Very coalse F.W. methial Fill Stas Dirk. Stained Stas Dirk. Stained Very DNAR coaling Debits Iobgs Fill Iobgs Fill Iobgs Fill Iobgs Fill					
rest Fit Length:	4ð	Total Depth:	13	Depth to water:	D.

5/24/2012 G:\Clients\lberdrola USAWYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 5 - Test Pit Logs\1031211487_MTP-2.docx

Depth Interval (feet)	Description of Soil/Material
0'-4'	Fine brown sand, roots, red brick, trace clay, silt
4'-8'	Large cobbles, fine sand, very coarse fill material
8'-10'	Dark brown/black stained soil, heavy NAPL coating (stained soil, NAPL coating)
10'	Bedrock
	Photograph Summary:

NA = Not Available/Applicable; bgs = below ground surface * Not to scale

07	Facing north at the east end of test pit.
08	South side of test pit toward the west end.

Project: Upland Pre-Design Investigation Location: McMaster Street Former MGP Site, Auburn, New York

Project:	Upland Pre-Design Investigation
Location:	McMaster Street Former MGP Site, Auburn, New York
Project #:	B0013049
Geologist:	Marcus Eriksson
Date:	9/9/11
Subcontractor:	Parratt-Wolff, Inc.
Equipment:	Deere 120C track excavator

Sketch of Test Pit Layout:

Plan and Cross Section View						
Tour A	Holder Holder Tank	19+0 h 19+0 h	Plan and Cross	Section View Tel Tel Tel Tel Tel Tel Tel Tel	MTP-2A	E oF Taul
Test Pit Le	ength:	48'	Total Depth:	13'	Depth to Water:	6'
	Depth Interval		Descrip	otion of Soil/Mater	ial	

Page 1 of 2

G:\Clients\Iberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment5 - Test Pit Logs\1031211487_MTP-2A.docx

(feet)	
0'-10'	Fine brown sand, cobbles, fine to medium to coarse gravel, bones
10'	Bedrock

NA = Not Available/Applicable; bgs = below ground surface * Gas holder observed at 1' bgs

* Not to scale

Photograph Summary:

No photos for MTP-2A

Test Pit ID: MTP-3A and MTP-3B

Client:	NYSEG		
Project:	Upland Pre-Design Investigation		
Location:	IcMaster Street Former MGP Site, Auburn, New York		
Project #:	B0013049		
Geologist:	Marcus Eriksson		
Date:	9/13/11		
Subcontractor:	Parratt-Wolff, Inc.		
Equipment:	Deere 120C track excavator		

Sketch of Test Pit Layout:

Page 1 of 3

Depth Interval (feet)	Description of Soil/Material (MTP-3A)
0'-3'	Dark brown sand, some wood, gravel, silt, red brick (Little MGP-like odor from 0' to 3')
3'-7.5'	Brown fine to medium sand, little gravel, red brick (MGP-like odor from 3' to 3.3')
7.5'-9'	Sand and gravel
9'	Bedrock (NAPL coating and sheen)

Depth Interval (feet)	Description of Soil/Material (MTP-3B)
0'-1'	~ 0.8' thick concrete pad
1'-8'	Hard fill and debris (eastern 15' of test pit). Concrete structure (possibly sewer) on western portion of test pit. See notes below.
8'	Bedrock (eastern portion of TP).

Page 2 of 3

-NA = Not Available/Applicable; bgs = below ground surface -Not to scale

-General area of MTP-3A and MTP-3B scrapped to 1' to 2' feet below grade to locate extent of subsurface vault/basement area. West end of MTP-3B not completed to bedrock (additional concrete structure present, possible location of sanitary sewer). Sanitary sewer not encountered on east end of MTP-3B.

09	Red brick structure at MTP-3A
10	Looking at MTP-3A
11	Looking at MTP-3A
12	West end of MTP-3A
13	East end of MTP-3A
14	Subsurface vault between MTP-3A and MTP-3B

Test Pit ID: MTP-4A

Client:	NYSEG
Project:	Pre Design Investigation
Location:	McMaster Street Former MGP Site, Auburn, New York
Project #:	B0013049
Geologist:	Marcus Eriksson
Date:	9/13/11
Subcontractor:	Parratt-Wolff, Inc.
Equipment:	Deere 120C track excavator

Sketch of Test Pit Layout:

Depth Interval (feet)	Description of Soil/Material
0'-5'	Gray/brown sand, little gravel, roots, silt (NAPL coated soil from 3' to 5')
5'-8'	Gray/brown sand, little gravel, wood (timber pieces), silt
8'-9'	Transition into sand and gravel over bedrock
9'-9.5'	Sand and gravel, weathered rock

NA = Not Available/Applicable; bgs = below ground surface * Not to scale

15	Looking into MTP-4A
16	Looking into MTP-4A

Test Pit ID: MTP-4B

Client:	NYSEG
Project:	Pre Design Investigation
Location:	McMaster Street Former MGP Site, Auburn, New York
Project #:	B0013049
Geologist:	Marcus Eriksson
Date:	9/14/11
Subcontractor:	Parratt-Wolff, Inc.
Equipment:	Deere 120C track excavator

Sketch of Test Pit Layout:

Page 1 of 2

		Cross Sect	ion View		
18 	B F Brn 2 1 Oragan 2 3 Gray/R 2 5 4 cd Bi 5 Gray 7 F-M 7 5 10-10.5'	MTP-4B SAWD, Vittle CS (rects mainly) ad/BM. Drk. F-M Tick, trace Cindens (BM. F-SAND, In Gravel C Reiched Portsible Bedro	F.M. Gravel, Silt M. SAWD, little Car (Fill-like) the Silt, trace	I, East	
Test Pit Length:	41'	Total Depth:	10.5'	Depth to Water:	9'

Depth Interval (feet)	Description of Soil/Material
0'-2'	Fine brown sand, little fine to medium gravel, silt, organics (roots mainly)
2'-5'	Brown, fine to medium sand, some silt, moist
5'-10'	Gray/brown fine sand, little silt, trace fine to medium gravel
10.5'	Possible bedrock

NA = Not Available/Applicable; bgs = below ground surface

* Not to scale

17	Looking west to east into MTP-4B
18	East end of MTP-4B

Test Pit ID: MTP-5

Client:	NYSEG
Project:	Pre Design Investigation
Location:	McMaster Street Former MGP Site, Auburn, New York
Project #:	B0013049
Geologist:	Marcus Eriksson
Date:	9/12/11
Subcontractor:	Parratt-Wolff, Inc.
Equipment:	Deere 120C track excavator

Sketch of Test Pit Layout:

G:/Clients/Iberdrola USA/NYSEG/McMaster Street/10 Final Reports and Presentations/2012/Upland PDI Summary/Attachments/Attachment 5 - Test Pit Logs/1031211487_MTP-5.docx
Depth Interval (feet)	Description of Soil/Material
0'-0.5'	Asphalt
0.5'-3'	Fine brown sand, little gravel, silt, trace organics
3'-3.5'	Cinders layer
3.5'-7'	Gray/brown fine sand, little cinders, red brick, fine to medium gravel (sheen NAPL coated at 7')
7'-10.5'	Gray/brown fine sand, little sit, fine gravel (sheen NAPL coated area from 7' to 9')
10.5'	Possible bedrock

Notes:

NA = Not Available/Applicable; bgs = below ground surface

* Not to scale

Photograph Summary:

19	Looking W to E into MTP-5
20	S wall of MTP-5

ARCADIS

Attachment 6

Photo Log with Figure

<u> </u>	WATER EDGE
	PROPERTY BOUNDARY
	HISTORICAL MGP STRUCTURE
2	SANITARY SEWER
ST	STORM SEWER (LOCATION INFERRED)
SAN-MH-1 O	MANHOLE
The second second	CONCRETE
SB-05 🔺	SOIL BORING LOCATION
MTP-1A	TEST PIT LOCATION
	-DIRECTION PHOTO WAS TAKEN
1-	-PHOTO NUMBER

G:\Clients\\berdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

G:\Clients\Uberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

Photo #5 (2010.09.12): MTP-1C. Looking west to east at gas holder wall.

G:\Clients\lberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

G:\Clients\lberdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

Photo #9 (2010.09.13): MTP-3A. Concrete, brick and wood structure.

Photo #10 (2010.09.13):MTP-3A. Cinder Layer.

1	Client: NYSEG
	Project: B0013049.0007.00015
	Site: McMaster Street Former Manufactured Gas Plant Site
	Site Location: Auburn, New York

G:\Clients\\berdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

ARCADIS

Photo #11 (2010.09.13): MTP-3A. Red brick structure atop wood structure, 8" clay tile pipe just below.

Photo #12 (2010.09.13): MTP-3A. Concrete structures found at west end of test pit (0.5' – 1' bgs).

-		
	Client: NYSEG	
	Project: B0013049.0007.00015	ADCADIC
	Site: McMaster Street Former Manufactured Gas Plant Site	
	Site Location: Auburn, New York	

G:\Clients\\berdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

Photo #13 (2010.09.08): MTP-3A. Basement/foundation at east end of test pit.

Photo #14 (2010.09.08): MTP-3B. Basement 'tunnel' filled with water, heavy NAPL precense.

Client: NYSEG	
Project: B0013049.0007.00015	ADCADIC
Site: McMaster Street Former Manufactured Gas Plant Site	AKCADIS
Site Location: Auburn, New York	

G:\Clients\\berdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

G:\Clients\\berdrola USA\NYSEG\McMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo log.xlsx

Photo #19 (2010.09.20): MTP-5. Looking west to east down test pit.

Site Location: Auburn, New York
G:\Clients\\berdrola USA\NYSEG\\CMaster Street\10 Final Reports and Presentations\2012\Upland PDI Summary\Attachments\Attachment 6 - Photo Log w-Figure\1031211487_McMaster photo
log.xlsx

ARCADIS

Attachment 7

Groundwater Sampling Logs

(on Compact Disc)

			GROU	NDWATE	R SAMP	LING LO	DG					
Site McMaster St.				NYSE	G Aubur	n, NY		E	vent: 2	011 Trea	atability	Sampling
Sampling Personnel:	: LGT/LZ	2			Welf ID	: MW 7	.65-	89				
Client / Job Number:	NYSEC	G/B0013049			Date:	91291	1	····				
Weather: (20 ⁰ F, R	aining	<u> </u>			Time Ir	I:		Time Out:				
Well Information					<u></u>							
Depth to Water:	2.82	(feel	TIC)		Well Ty	pe:	Fius	hmount	Stick-I	Jp	_	
Total Depth: 2	8.05	(feel	TIC)		Well Ma	terial:	Stair	niess Steel	PVC	>		
Length of Water Colur	nn: 2123	(feet)		Well Loo	cked:		(Yes)		No		
Volume of Water in W	ell: 3,4(Q (gal)			Measuri	ng Point Mar	ked:	Yes		No		
					Well Dia	imeter:	1"	2"	Other:			
Purging Information												
Purging Method:	(Bailer)	Per	istaltic	Grundfos	Othe	er:			Сопуе	sion Fac	tors	
Tubing/Bailer Material	St. Steel	Pol	vethylene	Teflon	Otho			gal / ft.	1" ID	2" ID	4" ID	6" ID
	Poilor		intaltia	Cruedfee	- Othe			of water	0.041	0.163	0.653	1.469
Sampling Method:	Bailei	rei		Grundios	Othe	er:		1 gal = 3.	.785 L ≍37	785 ml = 0	.1337 cut	bic feet
Duration of Pumping:		(min)							Uni	t Stabilit	 v	
Average Pumping Rate:		(mł/min)	Wate	r-Quality Meter	Type: U-22	2 Horiba		рН	DO	Cond	, 1. ,	ORP
Total Volume Removed:	4.0	(gal)		Did well ge	o dry: Ye	s (NO)	±0.1	± 10%	± 3.0	% ±	10 mV
	re						$\underline{}$					
	1	2	3	4	5	6		7	8		9	10
Parameter:												
Volume Purged (gal)	1.5	3.5										
Rate (mL/min)												
Depth to Water (ft.)		~										
рН	7.64	6.89										
Temp. (C)	15,40	15.24										
Conductivity (mS/cm)	.924	1.05					-					
Dissolved Oxygen (mg/l)	6.61	1.75										
ORP (mV)	-58	- 98					-					
Turbidity (NTU)	60.6	27/0										
Notes:	trunid	slightly										
	gray	hurbid 1										
	<u> </u>	chraig 1										
		slight										
Sampling Information	on	U COV			Proh	leme / OF	servat	tions				
Analyses #	# Labor	atory			<u>1 10L</u>		/361 VA					
			l In	itial Purce:								

Sample ID: MU -05- 9 & Sample Time: 10-30 MS/MSD: Yes No Duplicate: Yes No Duplicate ID Dup. Time: -Chain of Custody Signed By:

1

Site McMaster St. Event: 2011 Trea. Sampling Personnet: LGT/LZ Well ID: $MUO-05 - 2R$ Client / Job Number: NYSEG/80013049 Date: $9/29/1/1$ Weather: $OODE_1$ RCL I True Time In: Time Out: Well Information Well Type: (Flushmount) Slick Up Depth to Water: 9.9 Mode Med Material: Stable Kup Well Information Well Type: (Flushmount) Slick Up Using/Galer Material: Stable Velocked Type: No Volume of Water Column: (4 (eet TIC)) Well Material: Stables Steel PCC Volume of Water in Welt: 9.20 (gal) Measuring Point Marked: No Purging Information Purging Method: Baile Peristablic Grundfos Other: Duration of Punping: (min) Water-Quality Meter Type: U-22 Horba Uait Stability Parameter: 1 2 3 4 5 6 7 8 Purging Method: Baile Peristablic Grundfos Other: U.22 Horba<	<u></u>			GROU	NDWATE	R SAMP	LING LOO	<u>G</u>					
Sampling Personnel: LGT/LZ Well ID: $MW - 05 - 2R$ Client / Job Number: NYSEG/80013049 Date: $7/29/1/1$ Weather: 00° F1 R.a. In U Time In: Time Out: Well Information Well Cycle Flushmount Stick-Up Total Depth: $29,41$ (feet TIC) Well Type: Flushmount Stick-Up Length of Water Column: 19/24/1 (feet TIC) Well Diameter: 7° No Volume of Water Column: 19/24/1 (feet TIC) Well Diameter: 7° No Purging Information Purging Information Peristallic Crundlos Other: Time In: No Purging Method: Bailes Peristallic Grundlos Other: 7° Other: 7°	Site McMaster St.				NYSE	EG Aubur	n, NY		E	E vent: 20	11 Treatab	oility S	ampling
Client / Job Number: NYSEG/B0013049 Date: $\frac{7/29}{//}$ Weather: QOPT, Rain U Time In: Time Out: Well Information Well Type: Floatmount Stock Up Total Depth: $39,497$ (teet TIC) Well Type: Stock Up Longth of Water Column: $19,164$ (teet TIC) Well Type: Stock Up Volume of Water in Well: $3,200$ (gal) Well Locked: Yas No Purging Information Baller Peristaltic Grundfos Other: 1 2 / D 0/description Purging Method: Baller Peristaltic Grundfos Other: 1 2 / D 0/description Sampling Method: Baller Peristaltic Grundfos Other: 1 1 2 / D 1 1 2 / D 0/description 1 1 2 / D 1 1 2 / D 0/description 1 1 2 / D 0/description 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sampling Personnel	LGT/LZ				Well ID	: MW - C	25 - 2	R				
Weather: Ime In: Time Out: Well Information Ime In: Time Out: Depth to Water: 9.91 (feet TIC) Total Depth: 94.47 (feet TIC) Length of Water Column: 19.602 (feet TIC) Volume of Water in Well: 9.3.00 (gal) Purging Information 9.402 (feet) Purging Method: Bailer Peristaltic Grundfos Other: 1 2 0 Tubing/Bailer Material: St. Steel Polyethylen? Tefton Duration of Pumping: (min) Water-Quality Meter Type: U-22 Honba Duration of Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Honba Total Volume Removed 3.5 (gal) Did well go dry: Yes Volume Purged (gal) 1.5 3.3 Image: Condition of pumping: Image: Condition of pumping: Volume Purged (gal) 1.5 3.3 Image: Condition of pumping: Image: Condition of pumping: Volume Purged (gal) 1.5 3.4 5 6 7 8 Volume Removed	Client / Job Number:	NYSEG	/B0013049			Date:	9/29/11						-
Well Information Well Type: Flustmount Stick-Up Total Depth: \mathcal{G} , $$	Weather: (000F)	Rainy				Time Ir	1	Tin	ne Out:				-
Well InformationDepth to Water: $9S1$ (feet TIC)Total Depth: $24S1$ (feet TIC)Length of Water Column: $1910U$ (feet)Volume of Water in Wall: 2.20 (gal)Purging InformationBallelPurging Method:BallelParameter: 1^{12} Conversion FactTotal Volume Removed: 3.5 (gal)Duration of Pumping:(min)Average Pumping Rate:(min)Volume Removed: 3.5 (gal)Did well go dry:YesYesNoParameter:1122345678Parameter:11212345678Parameter:1121234567812345678991212345678991212132345536778991111121<		U											
Depth to Water:9.81(feet TIC)Total Depth: 29.4 4° (feet TIC)Length of Water Column: $19.(g)$ 4° (feet TIC)Volume of Water in Well: 3.20 (gal)Well Type:FlustmountStick-UpWell Type:FlustmountStick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Tocked:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpWell Type:Stick-UpPurging InformationPurging Method:BailerPeristaticOther:Duration of Pumping:(mim)Average Pumping Rate:(mimin)Value Colspan="2">Value Solution of Pumping:Other:Unit StabilityPeristatic <td>Well Information</td> <td></td>	Well Information												
Total Depth: $94,44$ (teet TIC)Length of Water Column: $19,10,42$ (feet TIC)Well Material:Stainless Steel Pvc Volume of Water in Well: $2,20$ (gal)Well Locked: $vasNoPurging InformationBailerPeristalticGrundfosOther:1^{-1}2^{-2}Other:Purging Method:BailerPeristalticGrundfosOther:1^{-1}2^{-2}Other:Duration of Pumping:(min)Water-Quality Meter Type:U-22 HonbaUnit StabilityAverage Pumping Rate:(mi/min)Water-Quality Meter Type:U-22 HonbaVolume Time Time Time Time Time Time Time Ti$	Depth to Water:	981	(feet	TIC)		Well Ty	be:	Flushm	ount	Stick-U	p		
Length of Water Column: [9] (g/L) (test) Volume of Water in Well: 9: 2 (gal) Purging Information Well Diameter: 1° 2° Other: Purging Method: Baile Peristaltic Grundfos Other: gal / ft. 1° 10 2° 10 Sampling Method: Baile Peristaltic Grundfos Other: gal / ft. 1° 10 2° 10 Duration of Pumping: (min) Water-Quality Meter Type: U-22 Horiba Unit Stability Average Pumping Rate: (ml/min) Water-Quality Meter Type: U-22 Horiba Unit Stability Planetter: 1 2 3 4 5 6 7 8 Volume Removed: 3.5 (gal) Did well go dry: Yes No Vol 10.1 ± 10% ± 3.0% Volume Purged (gal) 1.5 3.3 I <td>Total Depth:</td> <td>9.47</td> <td>(feet</td> <td>TIC)</td> <td></td> <td>Well Ma</td> <td>terial:</td> <td>Stainles</td> <td>ss Steel</td> <td>PVC</td> <td></td> <td></td> <td></td>	Total Depth:	9.47	(feet	TIC)		Well Ma	terial:	Stainles	ss Steel	PVC			
Volume of Water in Well: $9 \cdot 30$ (gal) Measuring Point Marked: γ_{BS} No Purging Information Well Diameter: 1° 2° Other: Purging Method: Baile Peristaltic Grundfos Other: Guide for the state of the sta	Length of Water Colur	nn: 19.62	(feet)			Well Lo	cked:	(Yes)		No		
Well Diameter: 1" Other: Purging Information Purging Method: Bailer Peristaltic Grundfos Other: Tubing/Bailer Material: St. Steel Polyethylen? Teflon Other: Sampling Method: Bailer Peristaltic Grundfos Other: Grundfos Other: Duration of Pumping: (min) Water-Quality Meter Type: U-22 Horiba Unit Stability Average Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Horiba Unit Stability Total Volume Removed: 3.5 (gal) Did well go dry: Yes No Volume Purged (gal) 1.5 3.3 Rate (mL/min) — — — — Depth to Water (ft.) PH U.32 $7.1Q_{-1}$ — — Conductivity (mS/cm) $0.00D_{-1}$ — — — Dissolved Oxygen (mg/l) $1{.45}$ $5{.6}$ — — Outer for thight of the stability	Volume of Water in W	ell: 3.20	(gai)			Measuri	ng Point Marke	:d: (Yes		No		
Purging Information Purging Method: Baile Peristaltic Grundfos Other: Tubing/Bailer Material: St. Steel Polyethylen Teflon Other: $gal / ft.$ $1^{11}D$ $2^{11}D$ Sampling Method: Baile Peristaltic Grundfos Other: $gal / ft.$ $1^{11}D$ $2^{11}D$ Duration of Pumping: (min) Water-Quality Meter Type: U-22 Horiba 1 $gal = 3.785 L = 3785 m = 0.$ Duration of Pumping: (mi/min) Water-Quality Meter Type: U-22 Horiba 1 $gal = 3.785 L = 3785 m = 0.$ Total Volume Removed: 3.5 (gal) Did well go dry. Yes No Volume Purged (gal) 1.5 3.3 3.4 5 6 7 8 Volume Purged (gal) 1.5 3.3 4 5 6 7 8 Parameter: 1 2 3 4 5 6 7 8 PH 4.32 7.12 4 5 6 7 8 7						Well Dia	meter:	1"	6	Other:			
Purging information Purging Method: Bailer Peristaltic Grundfos Other: Tubing/Bailer Material: St. Steel Polyethylen) Teflon Other: gal / ft. $1^{1/D}$ $2^{1/D}$ Sampling Method: Bailer Peristaltic Grundfos Other: 0 0.041 0.163 Duration of Pumping: (min) Water-Quality Meter Type: U-22 Honba 1 2^{3} 4^{5} 6^{6} 7^{8} Variage Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Honba Unit Stability PH DO Cond 0.01 1^{10} 3^{10} 1^{10} 3^{10} 1^{10} 3^{10} 1^{10} 3^{10} 1^{10} 3^{10} 1^{1	Duraina Information								<u> </u>				
Purging Method: Bailer Peristaltic Grundfos Other: Tubing/Bailer Material: St. Steel Polyethylene Tefton Other: $gal / ft.$ $1'LD$ $2'LD$ Sampling Method: Bailer Peristaltic Grundfos Other: $gal / ft.$ $1'LD$ $2'LD$ Duration of Pumping: (min) Water-Quality Meter Type: $U-22$ Honba U	Purging mormation												
Tubing/Bailer Material: St. Steel Polyethylene Teflon Other: $gal / ft.$ $1^{T} lb$ $2^{T} lb$ Sampling Method: Bailer Peristaltic Grundfos Other: $1^{T} lb$ $2^{T} lb$ 0.041 0.183 Duration of Pumping: (min) Water-Quality Meter Type: $U-22$ Horiba U U U mit Stability Average Pumping Rate: (mi/min) Water-Quality Meter Type: $U-22$ Horiba U U U mit Stability Total Volume Removed: 3.5 (gal) Did well go dry: Yes No U	Purging Method:	Bailer	Peri	staltic	Grundfos	Othe	er:		[Солуег	sion Factor	5	
Induiting Date in Material. Other Other Sampling Method: Bailer Peristattic Grundfos Other: 1 1 gal = 3.785 L = 3785 ml = 0. Duration of Pumping: (min) Water-Quality Meter Type: U-22 Horiba Unit Stability Average Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Horiba Unit Stability Total Volume Removed: 3 .5 (gal) Did well go dry: Yes No Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3	Tubing/Railer Material:	St. Steel	Poly	ethylene	Teflon	Oth	۵ <i>۲</i> ٬		gal / ft.	1" ID	2" ID 4"	D	6" ID
Sampling Method: Bailer Penstattic Grundros Other: 1 gal = 3.785 L =3785 ml = 0. Duration of Pumping: (mi/min) Water-Quality Meter Type: U-22 Horiba Unit Stability Average Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Horiba PH DO Cond Total Volume Removed: 3.5 (gal) Did well go dry: Yes No 1 ± 10% ± 3.05 Volume Purged (gal) 1.5 3.3			<u>` </u>						of water	0.041	0.163 0.1	353	1.469
Duration of Pumping: (min) Average Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Horiba Total Volume Removed: 3.5 (gal) Did well go dry: Yes No Parameter: Volume Purged (gal) 1.5 3.3 4 5 6 7 8 Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3 2 2 3 4 5 6 7 8 Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3 2 2 2 3 4 5 6 7 8 Physical (multicle) 1.5 3.3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sampling Method:	Bailer	Peris	stattic	Grunatos	Othe	er:		1 gal = 3	8.785 L =37	85 ml = 0.133	37 cubi	c feet
Average Pumping Rate: (mi/min) Water-Quality Meter Type: U-22 Horiba Total Volume Removed: 3.5 (gal) Did well go dry: Yes No Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3 3 1 </td <td>Duration of Pumping:</td> <td>·</td> <td>(min)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>r</td> <td></td> <td>Č4-1-11:4</td> <td></td> <td></td>	Duration of Pumping:	·	(min)						r		Č4-1-11:4		
Total Volume Removed: 3.5 (gal) Did well go dry: Yes No 1 </td <td>Average Pumping Rate:</td> <td></td> <td>(ml/min)</td> <td>Wate</td> <td>er-Quality Meter</td> <td>Type: U-2</td> <td>2 Horiba</td> <td></td> <td>рН</td> <td></td> <td>Cond</td> <td></td> <td>RP</td>	Average Pumping Rate:		(ml/min)	Wate	er-Quality Meter	Type: U-2	2 Horiba		рН		Cond		RP
Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3	Total Volume Removed:	25	(gal)		Did well o	boldry: Ye	is (No.	±0.1	± 10%	± 3.0%	± 1	0 mV
Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3 Rate (mL/min) $ -$ Depth to Water (ft.) $ -$ pH $\lfloor 1.6 7.12 conductivity (mS/cm) 0.000 0.000 Dissolved Oxygen (mg/l) 1(.95 1(.0 ORP (mV) 135 8(o $		<u> </u>	(3-7			9··)·		\leq	L		_L	£	
Parameter: 1 2 3 4 5 6 7 8 Volume Purged (gal) 1.5 3.3 Rate (mL/min) - - Depth to Water (ft.) - - pH $\pounds.32$ 7.12 COnductivity (mS/cm) $b.060$ 0.000 Dissolved Oxygen (mg/l) 1.95 8.60													
Parameter: Image: Constraint of the state o		1	2	3	4	5	6		7	8	9		10
Volume Purged (gal) 1.5 3.3	Parameter:												
Rate (mL/min) — — Image: Conductivity (mS/cm) Image: Conductivity	/olume Purged (gal)	1.5	3.3										
Depth to Water (ft.) - - Image: Constraint of the state of th	Rate (mL/min)												
pH L.32 7.12 Image: Constraint of the state of t	Depth to Water (fl.)												
Temp. (C) 16.74 10.80 Conductivity (mS/cm) 0.000 0.000 Dissolved Oxygen (mg/l) 11.95 (1.10)	рН	6.32	7.12										
Conductivity (mS/cm) 0.000 0.000 Dissolved Oxygen (mg/l) 1(.95) ((.00) ORP (mV) 1.35 0.000	Гетр. (С)	Katt	110.86										
Dissolved Oxygen (mg/l) 1(.9.5 (() ORP (mV) 1.3.5 \$\oveeline{D}_{00}\$	Conductivity (mS/cm)	p.000	0.000										
ORP (mV) 135 0(0	Dissolved Oxygen (mg/l)	11.95	1(.10										
	 DRP (mV)	135	36										
Turbidity (NTU) 109 202	Furbidity (NTU)	109	202										
Notes:	Notes:	1-1-1 1											
schuber		Shubid	->										

Analyses	#	Laboratory
Sample ID: $\mathcal{M}\mathcal{W}\mathcal{H}$	05-2R	Sample Time: 1/32
MS/MSD:	Yes	N
Duplicate:	Yes	\bigcirc
Duplicate ID		Dup, Time:
Chain of Custody Signed By:		

Initial Purge:

Problems / Observations

			GROU	NDWATE	R SAM	PLING	LOG					
Site McMaster St.				NYSI	EG Aubu	rn, NY	, .		Event: 20	011 Trea	tability	Sampling
Sampling Personnel:	LGT/LZ				Well	n ml	N-04	1-03				
Client / Job Number:	NYSEG	5/B0013049	• ٨		Date	912	9/11					
Weather: LOOF	OVERC	ast, hu	mid		Time	In:		Time Out:				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~												_
Well Information												
De alle te Mister	727	<u> </u>			Well	Гуре:	Flu	shmount	Stick-U	Jp		
Depth to water:	118	<u>/ (iee</u>	<u>t TIC)</u>		Well I	Aaterial:	Sta	inless Steel	PVC)			
Length of Water Colum	in: 3.9/	(fee	t)		Weli I	ocked:		(Yes)		No		
Volume of Water in We	all: 0.64	/ (gai	)		Meas	uring Point	Marked:	Yes	\	No		
					Well [	Diameter:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V Other:			
<b>Burging Information</b>					<u></u>		•	_ <u>_</u>	)			
r drying intornation												
Purging Method:	Bailer	Pe	ristaltic	Grundfos	0	ther:			Conve	sion Fac	tors	
Tubino/Bailer Material:	St. Steel	Po	lyethylene	Teflon		ber:		gal / j	ft. 1" ID	2" ID	4" ID	6" ID
	Bailer	Pei		Grundfos		hor		or war	er 0.041	0.163	0.653	1.469
Sampling Method:						iner:		1 gal	= 3.785 L =37	785 ml ≈ 0.	1337 cu	bic feet
Duration of Pumping:		(min)						[	Uni	t Stability		
Average Pumping Rate:		(ml/min)	Wate	er-Quality Mete	r Туре: U.	22 Horiba		рH	DO	Cond		ORP
Total Volume Removed:	ole	(gal)		Did well	go dry:	Yes	No	±0.1	± 10%	± 3.0°	% ±	10 mV
	1 1	2	3	4	F		6	7	8		9	10
D			Ŭ		, t		Ŭ	•	Ŭ		Ŭ	
Volume Purred (cal)	~ 2	61.										
Dete (ml/mie)	0.3	10.0										
Depth to Water (ft.)	- 11m											
pH	7.48	7.48										
Temp. (C)	17.50	17.50										
Conductivity (mS/cm)	0.810	0.001										
Dissolved Oxygen (mg/l)	8.19	10.95										
ORP (mV)	-77	-118										
Turbidity (NTU)	0.0	aog										
Notes:	ador,	odor	m.									
	browny	yellow op	A to F									
·····	TUPDIO	turban.	L.,									

Analyses	#	Laboratory
Sample ID $\mathcal{M}\mathcal{W}_{-1}$	04-03	Sample Time: (21D
MS/MSD:	Yes	No
Duplicate:	Yes (	No
Duplicate ID		Dup, Time:
Chain of Custody Signed By:		

Initial Purge:

#### Final Purge:

Problems / Observations

<b>Site</b> McMaster St.					NYSE	G Aubur	n, NY			E	Event: 2	011 Treata	ability Samp
Sampling Personnel:	LGT/LZ	2				Well ID	: MI	$\mathcal{N}_{i}$ .	- 04	e-13	R		
Client / Job Number:	NYSEC	G/B001304	19			Date:	9/20	1/11	1				· · · · · · · · · · · · · · · · · · ·
Weather: QOP	overca	st nu	mia			Time Ir	1:		Tir	me Out:			
Well Information													
Depth to Water:	20,11		(feet TIC)	_		Well Ty	pe:	(	Flushm	10unt	Stick-	Up	
Total Depth: 3	1.05		(feet TIC)	_		Well Ma	iterial:		Stainle	ss Steel	(PVC	)	
Length of Water Colun	n: 13.94		(feet)			Well Lo	cked:			(Yes)	$\sim$	No	
Volume of Water in Wo	all: Å.2 ⁻⁷	7	(gal)	_		Measuri	ng Point	Marke	d:	(Yes)		No	
						Well Dia	meter:		1"	27	Other	:	
Purging Information												,	
Purging Method:	Bailer	$\overline{}$	Peristaltic		Grundfos	Othe	er:				Сопуе	rsion Facto	ors
Tubing/Bailer Material	St. Steel	<u> </u>	Polyethylen	e	Teflon					gal / ft.	1″ ID	2" ID	4" ID 6" ID
	Caller				0		21,			of water	0.041	0.163	0.653 1.469
Sampling Method:	Baller	<u>ر</u>	renstattic		Grunotos	Othe	er:			1 gal = 3	3.785 L =3	785 ml = 0.1	337 cubic feet
Duration of Pumping:		(min)								[	11-	it Stahilik.	
Average Pumping Rate:		(mi/min)		Wate	-Quality Meter T	ype: U-22	2 Horiba			На	DO	Cond.	ORP
Total Volume Removed:	23	(gal)			Did well go	dry: Ye	s		vo)	±0.1	± 10%	± 3.0%	± 10 mV
	1		· · · ··						_				
	1		2	3	4	5		6		7	8	g	1
Parameter:													
olume Purged (gal)	2.30												
ate (mL/min)													
epth to Water (ft.)													
H	7.91												
emp. (C)	15.77	•											
onductivity (mS/cm)	-812	· · ·											
issolved Oxygen (mg/l)	2.00												
	_55												
urbídity (NTU)	291												
otes.	Visible												
	free												
	Colorles												
	Shong							k.					
mpling Informatio	n					Dech	Jame (	Ohe					
Analyses #	Labor	atory				<u>-100</u>	nems /	005	ervatio	<u>115</u>			
				ini	tial Purge:								
	-		^	,11	pot	NIAPI	;	n	bG	Hom	R	well	
	-13RSample	Time:	<u>o</u> li "	4				0.0	ر ر اہر ہے	iffer	. OF	to ha	10100
۲e ۱S/MSD:	$\sim 2$			N	APL COC	iting	rue	لغلا			and	10 pu	$\sim \sim $
uplicate: Ye	s (No)			( Fir	UUL HO (	COCH	ngo	nI	ew			- UA81	' y.
uplicate ID	Dup. Ti	me:											
hain of Custody													
<u>x</u>			<i>.</i>		i		0.100	/					
		¥	well 9	510	to to	V CC	EV EN		. ~	<b>`</b>		<i></i>	
		1'	<u> </u>	10	colles	للہ 0	AL	15		1001	$\nabla$	VQA	
			Samo	)UL	- UNYE	ACU	CO A	0	$\circ$		Y		

			GROU	NDWATE	R SAMPLING	G LOG					
Site McMaster St.				NYSE	G Auburn, NY	/	E	vent: 20	11 Treatai	bility S	Sampling
Sampling Personnel	LGT/LZ					W - C	5-07	R			
Client / Job Number:	NYSEG	/B0013049 .	~		Date: 9/	29/11					
Weather: 700 p	antly cl	oudy, V	unid		Time In:	<i>i</i>	Time Out:				
	- ¥	"J									
Well Information											
Dooth to Water	3.110	(feet	T(C)		Well Type:	( Flu:	shmount	Stick-U	p		
Total Depth:	9.50	(feet	TIC)		Well Material:	Sta	inless Steel	(PVC)			
Length of Water Colum	n: WIY	(feet	)		Well Locked:		Yes		No		
Volume of Water in We	1: 2.10-	Y (gal)			Measuring Poir	nt Marked:	Yes		 No		
					Well Diameter:		6	Other:			
Purging Information	$\bigcirc$										
Puraina Method:	Bailer	Per	istaltic	Grundfos	Other:			Conver	sion Factor	rs	
	St. Steel	Pot	vethvlene)	Teflon	Othor		gal / ft.	1" ID	2" ID 4	t. ID	6" ID
i ubing/Bailer Materiai:	$\rightarrow$	<u> </u>	,		Other.		of water	0.041	0.163 0	.653	1.469
Sampling Method:	Bailer	Per	istaltic	Grundfos	Other:		1 gal = 3	.785 L =37	85 ml = 0.13	37 cub	ic feet
Duration of Pumping:		(min)					[	Unit	Stability		······
Average Pumping Rate:		(mi/min)	Wate	er-Quality Meter	Type: U-22 Horib	a	рН	DO	Cond.		DRP
Total Volume Removed:	22	(gal)		Did well g	odry: Yes	No	±0.1	± 10%	± 3.0%	± ·	10 mV
	Ø 1					$- \bigcirc$					
	1	2	3	4	5	6	7	8	9		10
Parameter:											
Volume Purged (gal)	1.3	d. 7								_	
Rate (mL/min)										_	
Depth to Water (ft.)		·									
pН	8.10	8.01									
Temp. (C)	12.49	15.01									
Conductivity (mS/cm)	6.00	0:280									
Dissolved Oxygen (mg/l)	3.15	5.12									
ORP (mV)	-410	-53									
Turbidity (NTU)	89.0	190									
Notes:	colorles	, colorless,									
	slight	SI.hurpia	)								
	odor,	shightin	<u> </u>								
	clear	- 00,0									

Analyses	#	Laboratory
Sample ID: MW	-05-0	1200 ple Time: 540
MS/MSD:	Yes	No
Duplicate:	Yes	
Duplicate ID	<u>ـــــ</u>	Dup. Time: 🔭
Chain of Custody Signed By:		

Initial Purge:

Problems / Observations

			GROUI	NDWATE	R SAMPL	ING LO	G				
Site McMaster St.				NYSE	G Auburn,	NY			<b>Event:</b> 20	11 Treatab	ility Sampling
Sampling Personnel:	~ <del>↓ 67// ヌ</del>	120711	MED		Well ID:	mw.	- 04	1 - D'	$\geq$		
Client / Job Number:	NYSEG/	30013049			Date: 9	130/11	, <b>.</b>	.j			
Weather: $(o)^{\circ} \leq (o)^{\circ}$	Sunn	ч			Time In:		Т	ime Out:			
		$\cup$									
Well Information											
Dooth to Water:	5 91	(feet '	TIC)		Well Type		Flush	mount	Stick-U	p	
Total Depth:	9 50	(feet			Well Mate	rial:	Stainl	ess Steel	(PVC)		
Length of Water Colum	n: 2.59	(feet)			Well Locke	ed:		(Yes)		No	
Volume of Water in We	1: 0.59	(gai)			Measuring	Point Marke	ed:	Yes		 No	
					Well Diam	eter:	1"	S	Other:		
								9			
Purging Information											
Puraina Method:	Bailer	) Peri	staltic	Grundfos	Other:				Conver	sion Factor	5
T bissip	St. Steel	Poiv	ethylene)	Teflon	Other			gal / ft.	1" ID	2" ID 4"	'ID 6" ID
Tubing/Baller Material:					Other.			of water	0.041	0.163 0.	653 1.469
Sampling Method:	Bailer	) Pen	staltic	Grunatos	Other:			1 gal = 3	3.785 L =37	85 ml = 0.133	37 cubic feet
Duration of Pumping:		(min)							Unit	Stability	
Average Pumping Rate:	(	ml/min)	Wate	r-Quality Meter	Type: U-22 H	loriba		рН	DO	Cond.	ORP
Total Volume Removed:	6.1a	(gal)		Did well	go dry: Yes		No	±0.1	± 10%	± 3.0%	± 10 mV
	0.000										
					=	6	I	7	0	0	10
	1	2	3	4	2	0		'	0	3	
Parameter:										······	
Volume Purged (gal)	0.50										
Rate (mL/min)											
Depth to Water (ft.)							ļ				
рH	7.61						ļ				
Temp. (C)	17,55										
Conductivity (mS/cm)	0.387										
Dissolved Oxygen (mg/l)	MAI										
ORP (mV)	107										
Turbidity (NTU)	168										
Notes:	colorless										
	sugnity	1									
	fuiled										<u> </u>

Analyses	#	Laboratory
Sample ID: Maril	-04-0	5 Semple Time: 94D
MS/MSD:	Yes	General 110
Duplicate:	Yes	(No)
Duplicate ID	~	Dup. Time:
Chain of Custody Signed By:	Ym	y

Problems / Observations

Initial Purge:

			GROU	NDWATE	R SAMPL	ING LO	<u>G</u>				
Site McMaster St.				NYSE	G Auburn,	NY		1	<b>Event:</b> 20	)11 Treatai	oility Sampling
Sampling Personnel:	LGTHZ	LMT	7/ME		Well ID:	mu	V - D	4-	04		
Client / Job Number:	NYSEG/	B0013049		-	Date: '	শ/৫০	/11				
Weather: 400	° 54	my "	مہ، 'ب	h-	Time In:		Time	Out:			
		$\sim$	-								
Well Information								_			
	591	lfeet			Well Type		Flushmou	Int	Stick-L	Jp	
	12 30	(feet			Well Mate	rial:	Stainless	Steel	(PVC	$\overline{)}$	
Longth of Water Colum	130		)		Well Lock	ed:	(	Yes	)	No	
Volume of Water in We	⊪ 1.2	(nal)	/		Measuring	Point Marke	ed:	<u> </u>	>	No	
Volume of Water in We					Well Diam	eter:	47		) Other:	140	
							1				
Purging Information											
Purging Method:	Bailer	) Per	istaltic	Grundfos	Other		Г		Conver	sion Factor	rs
	Ct Stool			T-8			T	oal / fl.	1" ID	2" ID 4	"ID 6" ID
Tubing/Bailer Material:				Tenon	Other:			of water	0,041	0.163 0	.653 1.469
Sampling Method:	Bailer	Per	istaltic	Grundfos	Other:		[	1 gal =	3.785 L =37	'85 ml = 0.13	37 cubic feet
Duration of Pumping:		(min)					["		Uni	t Stahility	
Average Pumping Rate:		(ml/min)	Wate	r-Quality Meter	Type: U-22 H	loriba		pН	DO	Cond.	ORP
Total Volume Removed:	12	(gal)		Did well g	odry: Yes		No	±0.1	± 10%	± 3.0%	± 10 mV
	1.7			-							
	1	2	3	4	5	6		7	8	9	10
Parameter:											
Volume Purged (gal)	0.8	1.3									
Rate (mL/min)		(									
Depth to Water (ft.)		-									
рН	7.11	7.20									
Temp. (C)	16.02	15.70									
Conductivity (mS/cm)	0.207	0.710									
Dissolved Oxygen (mg/l)	7.56	7.210									
ORP (mV)	-152	-158									
Turbidity (NTU)	103	143									
Notes:	lightbrown	ии									
	S. turbid										
											<u> </u>

Analyses	#	Laboratory
- · - 004	1 ~1	
Sample ID: (1)	1-01	-Usemple Time: 1010
MS/MSD:	Yes	(No)
Duplicate:	Yes	No
Duplicate ID	VP~C	
Chain of Custody Signed By:	m	$\checkmark$
	1.1	U

Initial Purge:

Problems / Observations

			GR	OUN	<b>IDWATE</b>	R SAMP	LING I	_OG					
Site McMaster St.					NYSE	G Auburi	n, NY			Event: 20 ⁻	11 Treat	ability	Sampling
Sampling Personnel:	LGT/LZ	un	·Z/M	ED	>	Well ID	. mu	)-0(e	- 10				_
Client / Job Number:	NYSEG	S/B001304	49	ŧ		Date:	9/2	0/11					
Weather: 65° [	<u> </u>	<u> </u>	<u>win</u>	dy		Time In	:	1	Time Out:				
		$\mathcal{O}$		$\sim$									
Well Information				_									
Depth to Water:	1.69		(feet TIC)	_		Well Typ	be:	( Flush		Stick-U	p		
Total Depth:	7.4		(feet TIC)	_		Well Ma	terial:	Stain	less Steel	<u>PVC</u>			
Length of Water Colum	<u>n: 2.71</u>		(feet)			Well Loo	ked:		(Yes	1 (	<u>ام ا</u>		
Volume of Water in We	1: 0.4º	ł	(gal)			Measuri	ng Point N	larked:	(Yes)	ł	No		
		•				Well Dia	meter:	1"	(2"	) Other:			
Purging Information									$\overline{}$				
		<u> </u>									·		1
Purging Method:	Bailer	/	Peristaltic	-	Grundfos	Othe	er:				2" ID	4" ID	S ID
Tubing/Bailer Material:	St. Steel	(	Polyethyler	ie	Teflon	Othe	er.		gal / ft of wate	er 0.041	0.163	0.653	1.469
Sampling Method:	Bailer	) (	Peristaltic		Grundfos	Othe	er:		1 gai =	= 3.785 L =37	85 ml = 0.1	1337 cu	bic feet
Duration of Pumping:	$\overline{}$	(min)							г <u></u>		<u>.</u>		
Average Pumping Rate:		(m⊮min)		Water	-Quality Meter	Type: U-2:	2 Horiba				Cond	, 	ORP
Total Volume Removed:	0.50	(gal)			Did well g	o dry: Ye	s)	No	±0.1	± 10%	± 3.09	% ±	10 mV
	1	1	2	3	4	5		6	7	8		9	10
Parameter													
Volume Purged (gal)	n 45												
Rate (mL/min)	~ ~												
Depth to Water (ft.)													
рН	6.04												
	17.65												
Conductivity (mS/cm)	0.00						<u> </u>						
Dissolved Oxygen (mg/i)	11.91												
ORP (mV)	147												
Turbidity (NTU)	197												
Notes:	light bron	in											
	forbid 1	ł											
	slighton	1					<u> </u>						

Analyses	#	Laboratory
Sample ID: MU	5-6-11	Sample Time: 1120
MS/MSD:	Yes	No
Duplicate:	Yes	(NO)
Duplicate ID	~~~	Dup. Time:
Chain of Custody Signed By:	fmz	

### Problems / Observations

Initial Purge:

Final Purge: Well slow to recharge @1140. WILL return to collect remaining whene. Final IL of volume wheched at 1330.