From: Anne.Burnham@parsons.com

To: <u>Anne.Burnham@parsons.com</u>; <u>Spellman, John (DEC)</u>

Cc: lterrell@nyseq.com

Subject: RE: McMaster Street 2022 Report

Date: Friday, December 22, 2023 11:19:04 AM

Attachments: <u>image001.png</u>

image002.png

McMaster St memo 2022 122223.pdf McMaster St memo 2022 122223 red line.pdf

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

John,

Apologies on the delay on this. Please see the attached clean version and redline.

Thanks, Anne

From: Anne.Burnham@parsons.com < Anne.Burnham@parsons.com >

Sent: Wednesday, October 11, 2023 10:49 AM

To: Spellman, John (DEC) <john.spellman@dec.ny.gov>

Cc: TERRELL, LEVIA < Iterrell@nyseg.com> **Subject:** RE: McMaster Street 2022 Report

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hi John,

Yes, we will be submitting a revised report. We will address the typo as well.

Thank you,

Anne

From: Spellman, John (DEC) < john.spellman@dec.ny.gov>

Sent: Wednesday, October 11, 2023 10:48 AM

To: Burnham, Anne [US-US] < <u>Anne.Burnham@parsons.com</u>>

Cc: TERRELL, LEVIA < lterrell@nyseg.com>

Subject: [EXTERNAL] RE: McMaster Street 2022 Report

CAUTION: This email originated from outside of Parsons' email system. Do not click any links or open attachments unless you recognize the sender and know the content is safe.

Hi Anne,

I would like to confirm Parsons will be submitting a revised report. Also, please note the typo error in

MEMORANDUM

December 22, 2023

To: John Spellman, P.E., New York State Department of Environmental Conservation

From: Anne Burnham, Parsons, on behalf of New York State Electric and Gas Corporation

Subject: McMaster Street Former MGP Site- Quarterly NAPL Monitoring and Annual Sampling Update

The McMaster Street Former Manufactured Gas Plant (MGP) Site (NYSDEC Site No. 7-06-010) (Site) is a 1.93-acre site in Auburn, New York (**Figure 1**) that has been remediated to commercial-use criteria in accordance with an Order on Consent (Index # D0-0002-9309) entered into by the New York State Electric and Gas Corporation (NYSEG) and the New York State Department of Environmental Conservation (NYSDEC). This memo serves as the Periodic Review Report, documenting the site activities that occurred in 2022 at the NYSEG McMaster Street Former MGP Site in Auburn, NY.

1.0 Background

Following the completion of remedial activities at the Site, the Site Management Plan (SMP) was developed to detail long-term monitoring at the Site, which began in 2021. Monitoring at the Site consists of three main components:

- Quarterly recovery of residual non-aqueous phase liquid (NAPL), or free product, to the extent practical. Three bedrock recovery wells were installed at the Site in 2021, as stipulated in the November 2009 Record of Decision (ROD) to recover residual NAPL. Additionally, two pre-existing onsite sumps will continue to be monitored for NAPL accumulation and removal as needed. NAPL removal efforts will be conducted on a quarterly basis for a minimum of two years, continuing until negligible quantities (<0.01 gallons) of NAPL are recovered for three successive collection events (quarters) for each well. Efforts started in July of 2021. Quarter two of 2023 will be the two-year mark of conducting NAPL removal at the site.</p>
- In accordance with the SMP, a network of monitoring wells is being utilized for annual groundwater monitoring at the Site. Samples are submitted to an Environmental Laboratory Accreditation Program (ELAP) certified laboratory for analysis. The Site's overburden groundwater monitoring network includes three existing monitoring wells (MW-06-09, MW-04-06, MW-06-10) and two new monitoring wells that were installed in 2021. Pre-existing monitoring well MW-06-09 is located at the southeastern border of the Site and serves as an upgradient well. Two new monitoring wells, MW-PAR-08 and MW-PAR-09, were installed along the southern bank of the Owasco Outlet during the spring of 2021. Groundwater samples are collected and analyzed for site-specific contaminants of concern (COCs), as discussed in Section 4.0. With the exception of MW-PAR-08, future groundwater sampling will be performed on an annual basis and will include analysis for site-specific COCs only. Based on results from the 2021 monitoring event, MW-PAR-08 was monitored quarterly starting in Q3 of 2022. The SMP does not set a duration of the annual groundwater monitoring program. Future recommendations on monitoring frequency will be developed in coordination with NYSDEC.

> Annual Site inspections and vegetation monitoring assess the status of invasive species at the Site and overall vegetative cover was completed in 2022 in accordance with the SMP.

2.0 Groundwater Flow Direction

2.1 Overburden Well Gauging Results - 2022

Water depths in overburden wells, or wells with their entire screen length above bedrock, were collected during the 2022 annual groundwater sampling event on September 21, 2022. The water depths for overburden wells are presented in **Table 1**.

2.2 Bedrock Well Gauging Results - 2022

Bedrock wells, or wells that are screened partially or completely within bedrock, were gauged during the 2022 annual groundwater sampling event on September 21, 2022. The water depths for bedrock wells are presented in **Table 1**.

2.3 Hydraulic Gradient

Overburden groundwater at the Site is expected to flow in a northerly to northwesterly direction and likely discharges into the Owasco Outlet (Arcadis, 2008)¹. The presumed flow direction of overburden groundwater is shown on **Figure 2a**.

Bedrock groundwater flow at the Site likely occurs through a combination of interconnected fractures and bedding planes. The Site Remedial Investigation (RI) Report (Arcadis, 2008) indicates that "groundwater movement is likely to be more complex and interpretations of flow in general will be less certain, than those made for the overburden." However, the RI Report also states that "regional flow in the shallow bedrock unit is interpreted to be northward, toward the Outlet." In consideration of the information presented in the RI Report, and since the new recovery wells installed in the shallow bedrock unit are closely spaced and linearly oriented, no potentiometric map was generated for bedrock at the Site. The presumed groundwater flow direction in shallow bedrock is presented on **Figure 2b**.

3.0 Groundwater Sampling

The 2022 annual groundwater sampling event and the quarter three sampling for MW-PAR-08 was conducted on September 21, 2022. Groundwater samples collected during 2022 annual monitoring were analyzed for VOCs, specifically benzene, toluene, ethylbenzene, and xylenes (BTEX), and total polycyclic aromatic

¹ Arcadis, 2008. Remedial Investigation Report. McMaster Street Former Manufactured Gas Plan Site, Prepared for New York State Electric & Gas Corporation.

hydrocarbons (PAHs) as specified in the SMP. The quarter four sample at MW-PAR-08 was collected on November 28, 2022.

3.1 Groundwater Sampling Methods and Techniques

Groundwater samples were collected from MW-04-06, MW-06-09, MW-06-10, MW-PAR-08, and MW-PAR-09 during the annual monitoring event in September 2022. An additional quarterly sample was collected at MW-PAR-08 in November 2022, as recommended in the 2021 report.

Groundwater samples were collected using low-flow/low-stress techniques. The groundwater in each monitoring well was purged using a peristaltic pump and dedicated high-density polyethylene (HDPE) sample tubing. Water quality parameters were measured in 5-minute increments until the following stabilization criteria were met for three successive readings:

- Temperature <u>+</u> 1°C
- Specific conductance <u>+</u> 3%
- pH <u>+</u> 0.1 units
- Dissolved oxygen <u>+</u> 10%
- Turbidity <u>+</u> 10%, or <10 nephelometric turbidity units (NTUs)

Water quality parameter measurements and field observations during sampling were recorded on groundwater sampling forms, which are provided in **Appendix A**.

Groundwater samples were collected directly from dedicated sample tubing into laboratory-supplied sample bottles. For quality assurance/quality control (QA/QC) purposes, a field blank, a trip blank, a field duplicate sample, and a matrix spike/matrix spike duplicate pair sample were collected. The samples were submitted to Eurofins Test America (Buffalo) for the following analyses:

- PFAS via method E537(M)
- 1,4-dioxane via method SW8270D SIM
- VOCs via method SW8260C
- PAHs via method 8270D

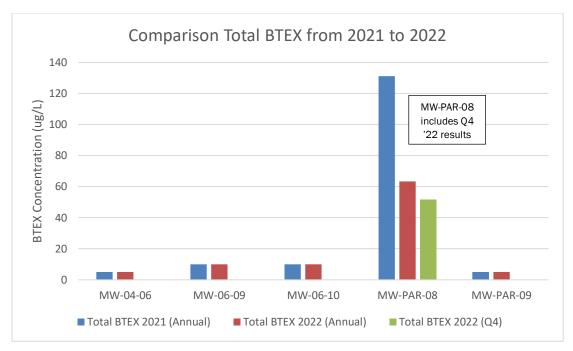
3.2 Groundwater Analytical Results - 2022

Groundwater samples were collected from MW-04-06, MW-06-09, MW-06-10, MW-PAR-08, and MW-PAR-09. The laboratory analytical results are presented in **Table 2** and **Figure 3**. VOC and semivolatile organic compound (SVOC) concentrations were compared to NYSDEC Class GA Ambient Water Quality Standards (AWQS), which are listed in the Division of Water Technical and Operational Guidance Series (1.1.1). The AWQS are referred to as "criteria" in the following paragraphs.

Groundwater analytical results for target VOCs exceeded criteria in MW-PAR-08. The highest detection for a single analyte was 51 micrograms per liter (ug/L) of benzene in MW-PAR-08. VOCs concentrations in MW-04-06, MW-06-09, MW-06-10, and MW-PAR-09 were below detection limits.

The concentrations of BTEX were summed for each of the groundwater samples collected. The highest concentrations of BTEX was 63.4 ug/L in MW-PAR-08.

Groundwater analytical results for target PAHs did not exceed criteria in any of the monitoring wells. The highest detection for a single analyte was 9.0 ug/L of acenaphthene in MW-PAR-08.


3.3 Quality Control and Data Validation

Data validation was performed on the groundwater samples referenced above in accordance with the analytical methodologies and USEPA Standard Operating Procedures (SOPs). All data were considered usable following data validation.

Validated analytical results from QA/QC samples are included in **Table 2**. A Data Usability and Summary Report (DUSR) has been prepared for this Site and is included as **Appendix B**. Individual laboratory reports are included in **Appendix C**.

3.4 Next Steps

Site COCs were observed to exceed criteria in analytical results from MW-PAR-08, however BTEX concentrations appear to be decreasing since the initial groundwater sampling event in 2021, as shown in the bar chart below. Parsons recommends continuing sampling MW-PAR-08 on a quarterly basis to evaluate the nature of BTEX concentrations in the well. Quarterly monitoring will continue in 2023.

Groundwater sampling of the remaining monitoring wells will remain consistent with the SMP and continue on an annual basis. The next annual groundwater sampling event is expected to occur late in the third quarter or early in the fourth quarter of 2023.

4.0 NAPL Removal

Absorbent socks are being used to recover NAPL within all recovery wells and the two collection sumps that are part of the collection trench¹ at the Site. NAPL accumulation is measured using an electronic oil-water interface probe (EIP), and absorbent socks are visually inspected for indications of free product during sock removal and replacement. The amount of NAPL accumulating within each recovery well and the sumps appear to be minimal since no smearing or staining has been observed on the absorbent socks during replacement events. This is consistent with observations during well installation, with no evidence of NAPL observed during bedrock core evaluation.

Absorbent socks were replaced in January 2022, May 2022, September 2022, and November 2022. Future absorbent sock replacement will continue to occur on a quarterly basis. Initially, absorbent socks were 3 inches in diameter and 5 feet long, and were deployed such that the top of the absorbent sock extended approximately six inches above the top of the sump. The sock dimensions changed in September 2022 to be 1.5 inches in diameter and 2 feet in length during the quarter three removal event. The new sock dimensions allow for more effective sock deployment and recovery and are sufficient for the smaller quantities of NAPL observed in the wells at the Site.

NAPL accumulation in each recovery well will continue to be monitored periodically via gauging with an EIP. Absorbent socks will be removed from each well several days in advance of gauging activities to allow water levels to recover to static levels and allow time for NAPL to accumulate within the sump. Should NAPL accumulation appear to increase during future monitoring events, alternative NAPL removal methods will be evaluated and implemented as necessary.

5.0 Monitoring and Maintenance

5.1 Vegetation Monitoring and Invasive Species Treatment

Monitoring activities performed included a comprehensive vegetation plot analysis, which indicated that Site is currently meeting performance goals for perennial vegetative cover. Maintenance activities performed in 2022 included treatment of isolated patches of Japanese knotweed (*Reynoutria japonica*), an invasive species. Specific efforts that were completed in 2022 include the summarized activities below and are represented in a photographic log provided in **Appendix D.**

- July 9, 2022: An invasive species reconnaissance Site visit was performed. Several isolated patches of Japanese knotweed were identified.
- August 26, 2022: A comprehensive vegetation assessment was performed.
- September 23, 2022: The herbicide Rodeo® was applied at two percent concentration to isolated patches of Japanese knotweed (**Figure 4**) that were observed during the June reconnaissance.

¹ A NAPL collection trench was installed on the south bank of the Owasco Outlet and within the outlet at the interface where excavation was completed to competent bedrock and where excavation was completed to fractured bedrock.

The third year of comprehensive vegetation assessment was performed on August 26, 2022 to determine whether seeded and planted areas of the Site are on track to meet performance goals. Five 1-square-meter (m²) plots were selected across the Site to represent the plant community as accurately as possible (**Figure 4**). Vegetation plots surveyed commonly contained the perennial native grasses Canada wildrye (*Elymus canadensis*) and switchgrass (*Panicum virgatum*). Overall percent cover of seeded areas was 95 percent, exceeding the performance goal of 85 percent cover.

Trees and shrubs that were planted in 2018 were also inventoried to determine survival rates. Overall, 37 percent of planted shrubs were found surviving on Site. Based on Site conditions and typical outcomes for small potted woody plantings, this rate of survival is consistent with expectations. Red chokeberry (Aronia arbutifolia) had the highest rate of survival at 53 percent and speckled alder (*Alnus incana* ssp. *rugosa*) had the lowest rate of survival at 7 percent. Overall, 10 percent of planted trees were found surviving on Site. Black willow (*Salix nigra*) and silver maple (*Acer saccharinum*) had the highest rate of survival at 20 percent and cottonwood (*Populus deltoides*) and red maple (*Acer rubrum*) had the lowest rate of survival at zero percent.

In accordance with the SMP, invasive species control will continue at the Site through 2024. The isolated patches of Japanese knotweed that were treated in 2022 were significantly smaller than those treated in 2021, showing that invasive species control efforts have been effective in reducing invasive species on the Site. Following the invasive species treatment performed in 2022, It is expected that invasive species cover will continue to decrease. In addition, the annual vegetation survey results show that the ecological buffer zone is already exceeding the vegetation performance goal of 85 percent cover. In accordance with the SMP, the annual vegetation survey will be conducted annually through 2024.

5.2 Erosion Inspection

In accordance with the SMP, a sitewide inspection was performed on August 26, 2022, to assess the general conditions of the Site, the condition and effectiveness of the engineering controls, and compliance with the institutional controls. The Site was observed to be in good condition, with no bare areas or erosion. No maintenance or follow up actions are recommended. The inspection form is included as **Appendix E** of this document.

Encl: Figure 1 – Site Layout

Figure 2a – Groundwater Flow Direction (Overburden)

Figure 2b – Groundwater Flow Direction (Bedrock)

Figure 3 - Groundwater Sampling Results

Figure 4 - Vegetation Plots and Invasive Species Areas

Table 1 – Well Gaging Data (2022)

Table 2 - Groundwater and QC Analytical Result Summary (2022)

Appendix A - Groundwater Sampling Logs

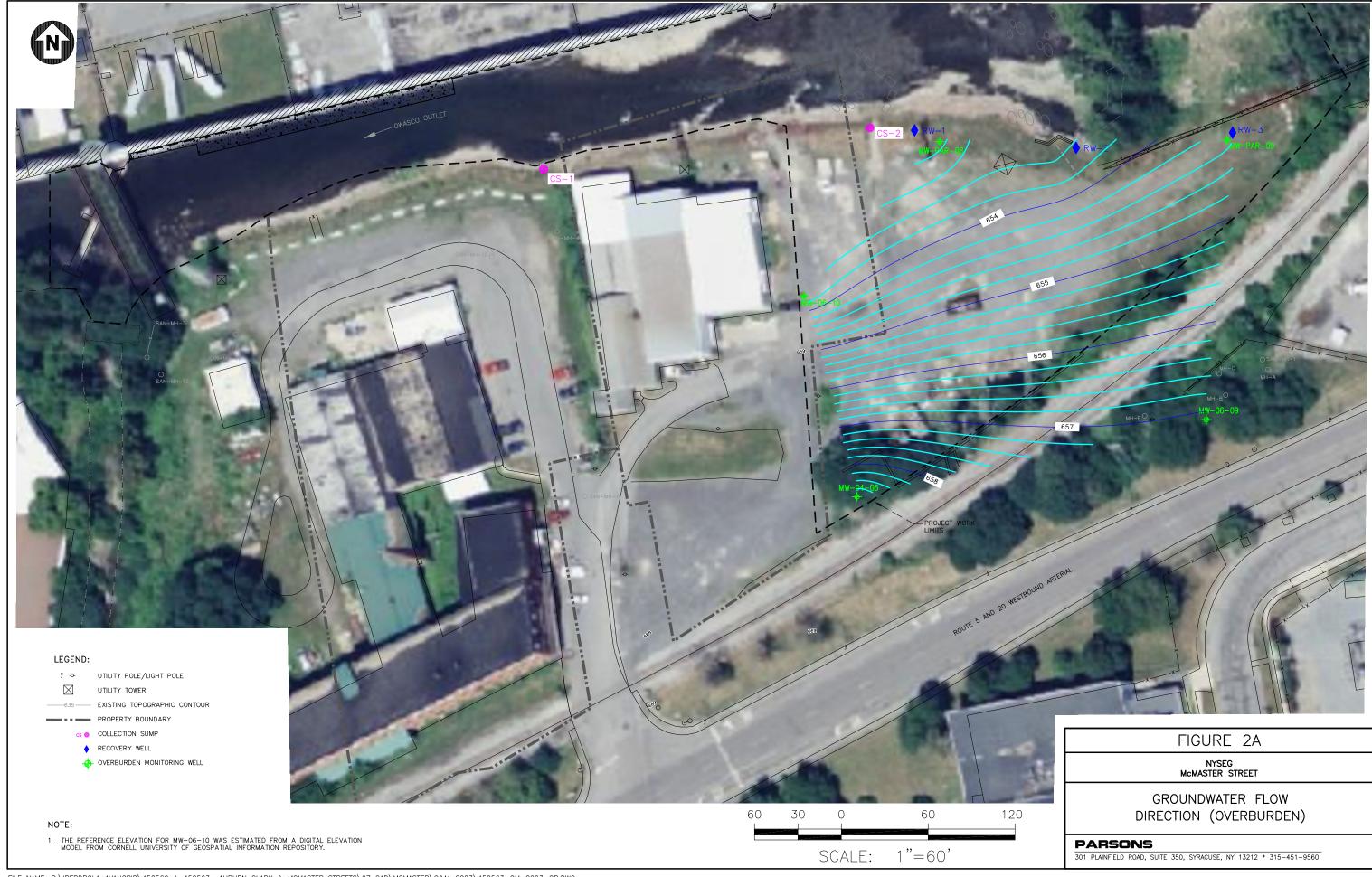
Appendix B – Data Usability Summary Report (2022)

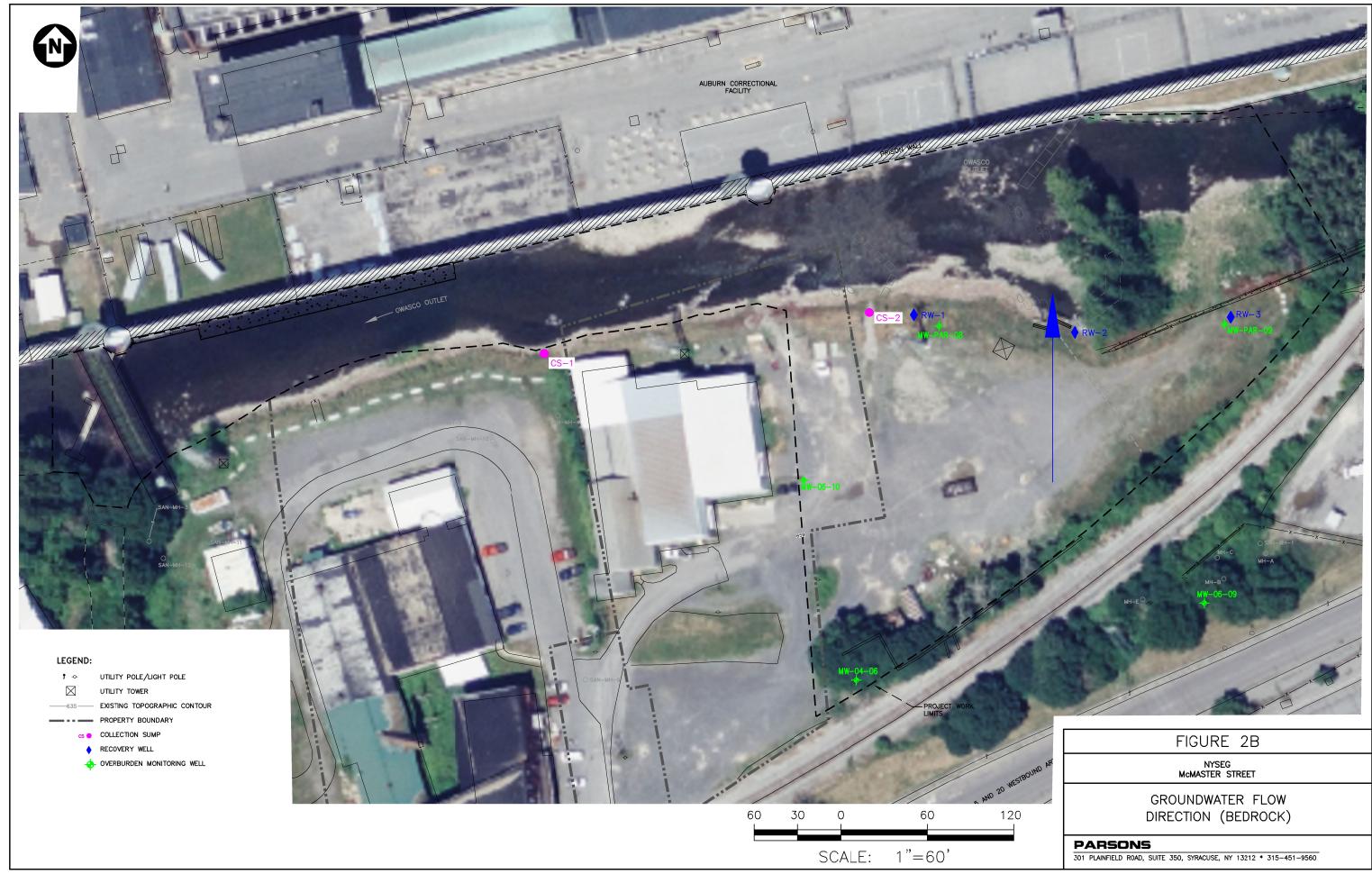
Appendix C – Eurofins TestAmerica Level 2 Laboratory Analytical Reports

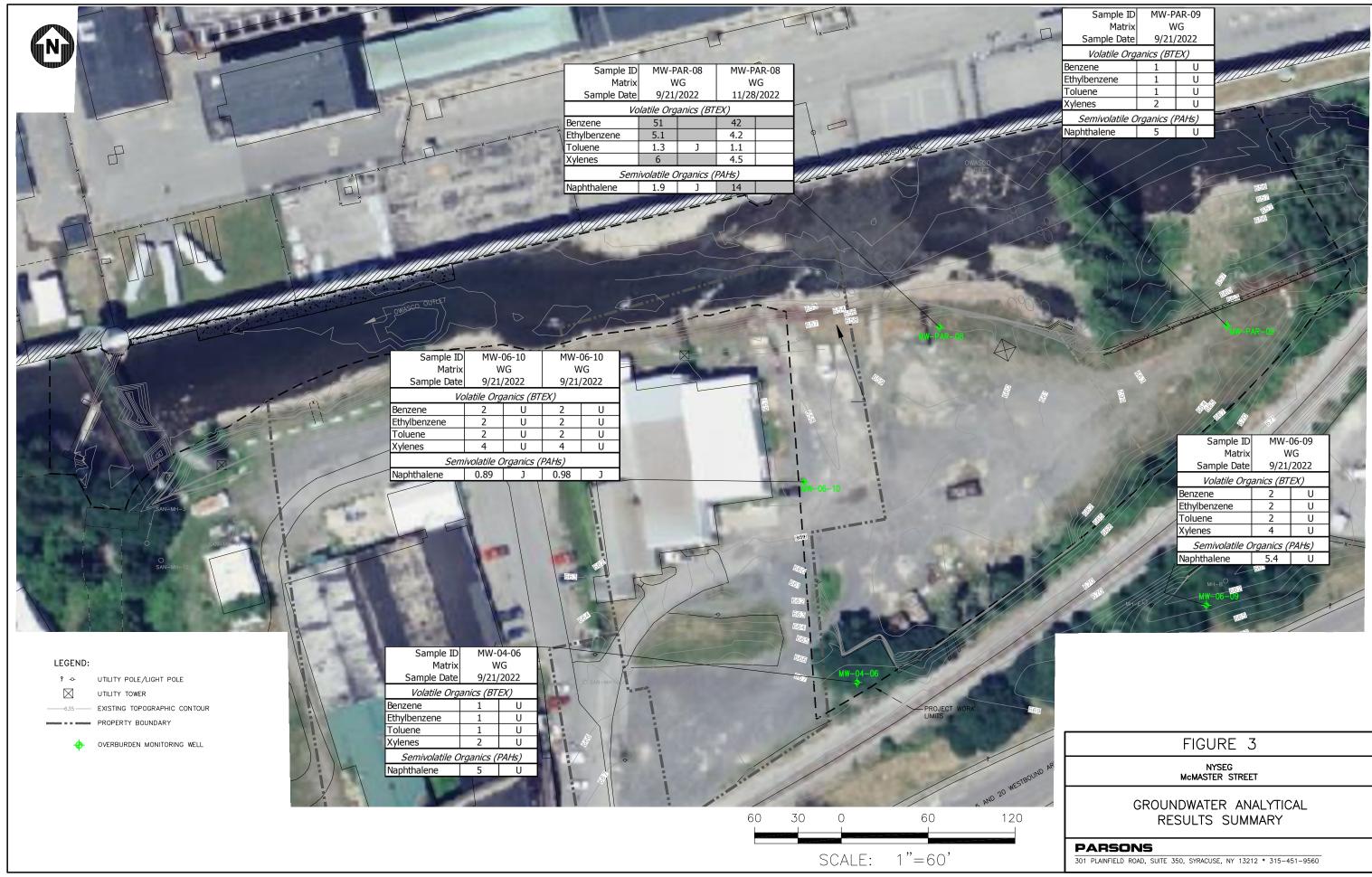
Appendix D - Photographic Log

Appendix E -Site Management Forms

cc:


Ray D'Hollander (Parsons) Zack Cornish (Parsons)




Figures

Tables

Table 1 Well Gauging Data (2022)

Well ID	TOC Elevation (ft)	Screened Interval (feet bgs)	Sump Interval (feet)	Hydrologic Unit Code ³	Water Depth (ft btoc) January 2022	Product Thickness (ft) January 2022	Water Depth (ft btoc) May 2022	Product Thickness (ft) May 2022	Water Depth (ft btoc) September 2022	Product Thickness (ft) September 2022	Water Depth (ft btoc) November 2022	Product Thickness (ft) November 2022
RW-01	658.81 ¹	9.8 - 19.8	19.8 - 25.1	BR	7.9	-	7.91	-	5.75	-	5.75	-
RW-02	659.59 ¹	6.9 - 16.9	16.9 - 22.3	BR	6.65	-	7.04	-	5.95	-	5.79	-
RW-03	663.4 ¹	8.1 - 18.1	18.1 - 23.2	BR	9.8	-	9.6	-	8.9	-	9.23	-
MW-PAR-08	658.53 ¹	6.5 - 11.5	NA	OB	NM*	NM*	NM*	NM*	5.14	NM*	NM*	NM*
MW-PAR-09	663.22 ¹	6.0 - 16.0	NA	OB	NM*	NM*	NM*	NM*	8.93	NM*	NM*	NM*
MW-04-06	668.07 ²	4.9 - 14.9	NA	OB	NM*	NM*	NM*	NM*	9.1	NM*	NM*	NM*
MW-06-09	662.34 ²	5.2 - 15.2	NA	OB	NM*	NM*	NM*	NM*	6.52	NM*	NM*	NM*
MW-06-10	675.76 ²	3.0 - 8.0	NA	OB	NM*	NM*	NM*	NM*	2.5	NM*	NM*	NM*

Notes:

- 1. Top of Casing (TOC) elevation was surveyed using the North American Vertical Datum of 1988 (NAVD88)
- 2. Top of Casing (TOC) elevation was surveyed in feet above mean sea level (amsl)
- 3. Hydrologic Unit Code refers to aquifer well is screened/set in, overburden (OB) or bedrock (BR).
- 4. No product has been observed or measured in any recovery/monitoring wells during periodic monitoring activities
- 5. NM*- Not Measured

Table 2 Analytical and QC Summary (2022)

				Location ID			MW-04-06	MW-06-09	MW-06-10
				Field Sample ID	EB-09212022	TRIP BLANK-09212022-3	MW-04-06-09212022	MW-06-09-09212022	BD-09212022
				Matrix	WQ	WQ	WG	WG	WG
				Lab Sample ID	480-201944-7	480-201944-8	480-201944-5	480-201944-6	480-201944-2
				SDG	4802019441	4802019441	4802019441	4802019441	4802019441
				Sample Date	9/21/2022	9/21/2022	9/21/2022	9/21/2022	9/21/2022
			9	Sample Type Code	EB	ТВ	N	N	FD
Analytical Method	Chemical Name	CAS_RN		NYSDEC Class GA					
SW8260C	Benzene	71-43-2	ug/L	1	1 U	1 U	1 U	2 U	2 U
SW8260C	Ethylbenzene	100-41-4	ug/L	5	1 U	1 U	1 U	2 U	2 U
SW8260C	Toluene	108-88-3	ug/L	5	1 U	1 U	1 U	2 U	2 U
SW8260C	Xylenes	1330-20-7	ug/L	5	2 U	2 U	2 U	4 U	4 U
SW8270D	Acenaphthene	83-32-9	ug/L	20	5.4 U		5 U	5.4 U	1.8 J
SW8270D	Acenaphthylene	208-96-8	ug/L		5.4 U		5 U	5.4 U	5.4 U
SW8270D	Anthracene	120-12-7	ug/L	50	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Benzo(A)Anthracene	56-55-3	ug/L	0.002	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Benzo(A)Pyrene	50-32-8	ug/L	0	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Benzo(B)Fluoranthene	205-99-2	ug/L	0.002	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Benzo(G,H,I)Perylene	191-24-2	ug/L		5.4 U		5 U	5.4 U	5.4 U
SW8270D	Benzo(K)Fluoranthene	207-08-9	ug/L	0.002	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Chrysene	218-01-9	ug/L	0.002	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Dibenz(A,H)Anthracene	53-70-3	ug/L		5.4 U		5 U	5.4 U	5.4 U
SW8270D	Fluoranthene	206-44-0	ug/L	50	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Fluorene	86-73-7	ug/L	50	5.4 U		5 U	5.4 U	1 J
SW8270D	Indeno(1,2,3-C,D)Pyrene	193-39-5	ug/L	0.002	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Naphthalene	91-20-3	ug/L	10	5.4 U		5 U	5.4 U	0.89 J
SW8270D	Phenanthrene	85-01-8	ug/L	50	5.4 U		5 U	5.4 U	5.4 U
SW8270D	Pyrene	129-00-0	ug/L		5.4 U		5 U	5.4 U	5.4 U

Table 2 Analytical and QC Summary (2022)

				Location ID	MW-06-10	MW-PAR-08	MW-PAR-08	MW-PAR-09
				Field Sample ID	MW-06-10-09212022	MW-PAR-08-09212022	MW-PAR-08-1128202	22 MW-PAR-09-09212022
				Matrix	WG	WG	WG	WG
				Lab Sample ID	480-201944-1	480-201944-3	480-204174-1	480-201944-4
				SDG	4802019441	4802019441	4802041741	4802019441
				Sample Date	9/21/2022	9/21/2022	11/28/2022	9/21/2022
				Sample Type Code	N	, , N	N	N
Analytical Method	Chemical Name	CAS_RN		NYSDEC Class GA				
SW8260C	Benzene	71-43-2	ug/L	1	2 U	51	42	1 U
SW8260C	Ethylbenzene	100-41-4	ug/L	5	2 U	5.1	4.2	1 U
SW8260C	Toluene	108-88-3	ug/L	5	2 U	1.3 J	1.1	1 U
SW8260C	Xylenes	1330-20-7	ug/L	5	4 U	6	4.5	2 U
SW8270D	Acenaphthene	83-32-9	ug/L	20	2 J	9	5.7	5 U
SW8270D	Acenaphthylene	208-96-8	ug/L		5.2 U	2.8 J	2 J	5 U
SW8270D	Anthracene	120-12-7	ug/L	50	5.2 U	1.7 J	0.58 J	5 U
SW8270D	Benzo(A)Anthracene	56-55-3	ug/L	0.002	5.2 U	5 U	5 U	5 U
SW8270D	Benzo(A)Pyrene	50-32-8	ug/L	0	5.2 U	5 U	5 U	5 U
	Benzo(B)Fluoranthene	205-99-2	ug/L	0.002	5.2 U	5 U	5 U	5 U
SW8270D	Benzo(G,H,I)Perylene	191-24-2	ug/L		5.2 U	5 U	5 U	5 U
SW8270D	Benzo(K)Fluoranthene	207-08-9	ug/L	0.002	5.2 U	5 U	5 U	5 U
	Chrysene	218-01-9	ug/L	0.002	5.2 U	5 U	5 U	5 U
SW8270D	Dibenz(A,H)Anthracene	53-70-3	ug/L		5.2 U	5 U	5 U	5 U
	Fluoranthene	206-44-0	ug/L	50	5.2 U	2.7 J	1.6 J	5 U
	Fluorene	86-73-7	ug/L	50	1.1 J	2.6 J	2.9 J	5 U
	Indeno(1,2,3-C,D)Pyrene	193-39-5	ug/L	0.002	5.2 U	5 U	5 U	5 U
	Naphthalene	91-20-3	ug/L	10	0.98 J	1.9 J	14	5 U
	Phenanthrene	85-01-8	ug/L	50	5.2 U	1.9 J	3 J	5 U
SW8270D	Pyrene	129-00-0	ug/L		5.2 U	1.8 J	1.1]	5 U

Appendix A – Groundwater Sampling Logs

			Low Flow Ground V	Vater Sampling	Log			
Date	00/	21/22	Personnel	Joe Sull	ivan	Weather	S	unny, 82
Site Name		Aaster	Evacuation Method	Geopu		Well #		W-04-06
Site Location		urn NY	Sampling Method	Low Fl		Project #		452562
YA7 - 11 : ((:						. ,		
Well information Depth of Well	: 14.45	ft		*Measurements	taken from:			
Depth to Water	9.1			Wicasurcincins	Х	Top of Well	Casing	
H _{wc}	5.35				7.	Top of Prote		g
Depth to Intake	12					(Other, Spec	,	,
Start Purge Time:	1515							
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Elapsed Time (min)	Depth to Water (ft)	Temperature (celsius)	рН	Conductivity (ms/cm)	Oxidation Reduction Potential	Dissolved Oxygen (mg/L)	Turbidity (NTU)	Flow Rate (mL/min)
0	9.1	26.31	6.92	1.12	89	7.68	10.6	200
5	9.28	24.06	6.66	0.965	105	3.48	0	200
10	9.28	22.82	6.61	0.93	109	3.15	0	200
15	9.28	21.05	6.59	0.95	113	3.41	0	200
20	9.28	20.26	6.59	0.951	114	3.43	0	200
25	9.28	20.43	6.58	0.931	116	3.34	0	200
End Purge Time: 1	1320							
Water Sample								
Time Collected:	1325			ne of purged wa		1		(gallons)
Physical appearar				Physical appear				
	Color				Color			
Choor	Odor n/Free Product			Shoon/	Odor Free Product	None	•	
Sileer	i/riee i ioduct	None		31166117	riee i ioduct	None	•	
Samples:	(See lis	t of parameters co		No MS/MSD/Fi	ield Dupe			
		MS/MSD/Field	Dup?					
Sample	Contai	ner Type	# Collected	Field Filtered	Preser	vative	Cor	ntainer pH
BTEX	40 n	nL VOA	3	no	HO			-
TCL VOCs		nL VOA	3	no	H			-
PAH	250	Amber	2	no	No	ne		

			Low Flow Ground I	Water Sampling	Log			
Date	09/	/21/22	Personnel	Zack Co	rnish	Weather	S	unny, 75
Site Name		Master	Evacuation Method	Geopu		Well #		IW-06-09
Site Location		urn NY	Sampling Method	Low F		Project #		452562
Well information:	<u> </u>							
Depth of Well	14.38	ft.		*Measurements	taken from:			
Depth to Water	6.52	ft.			Х	Top of Well	Casing	
H_{wc}	7.86	ft.					ective Casing	3
Depth to Intake	10.2	ft.				(Other, Spec	cify)	
Start Purge Time:	1515							
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Elapsed Time	Depth to	Temperature		Conductivity	Oxidation	Dissolved	Turbidity	Flow Rate
(min)	Water	(celsius)	pН	(ms/cm)	Reduction	Oxygen	(NTU)	(mL/min)
` '	(ft)				Potential	(mg/L)		
10	7.1	14.94	7.47	4.8	-172	0		300
15	7.41	15.83	7.46	4.75	-171	0		200
20 25	7.63 7.71	15.86 15.82	7.46	4.77	-166 -173			200
30	7.71	15.82	7.51 7.53	4.77 4.77	-173 -175	0		200 200
35	7.83	15.54	7.54	4.77	-173			200
40	7.99	15.44	7.54	4.76	-176			200
45	8.08	15.55	7.54	4.75	-175	0		200
15	0.00	10.00	7.01	1.70	170			
End Purge Time: 1	218							
Water Sample								
Time Collected:	1220		Total volur	ne of purged wa	tor romovod:	2.5		(gallons)
Physical appearan			Total volul	Physical appear		2.5		(ganons)
r nyorear appearan	Color	Silty		Triy sicar appear	Color	Silty		
	Odor		•			None	-	
Sheen	/Free Product		•	Sheen/	Free Product		-	
C 1	/C 1:			N. MC/MCD/E	11D		-	
Samples:	(See lis	t of parameters co		No MS/MSD/F	iela Dupe			
<u> </u>		M5/M5D/Field	Dup:					
Sample	Contai	ner Type	# Collected	Field Filtered	Preser	vative	Cor	ntainer pH
ВТЕХ	40 r	nL VOA	3	no	H			-
TCL VOCs	40 r	nL VOA	3	no	H	CL		-
PAH	250	Amber	2	no	No	ne		

			Low Flow Ground	Water Sampling	Log			
Date	09/	21/22	Personnel	Zack Co	vrnich	Weather	S	unny <i>,</i> 75
Site Name		Aaster	Evacuation Method	Geopu		Well #		IW-06-10
Site Location		urn NY	Sampling Method	Low F		Project #		452562
Well information	1:		-			_		
Depth of Well	7.63	ft.		*Measurements	taken from:			
Depth to Water	2.5	ft.			X	Top of Well	Casing	
H_{wc}	5.13	ft.				→ -	ective Casin	g
Depth to Intake	5	ft.				(Other, Spe	cify)	
Start Purge Time:	: 1515							
		10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/mir
Elapsed Time	Depth to	Temperature		Conductivity	Oxidation	Dissolved	Turbidity	Flow Rate
(min)	Water	(celsius)	pН	(ms/cm)	Reduction		(NTU)	(mL/min)
	(ft)				Potential	(mg/L)		
5	2.58	17.45		1.44	ļ		77	200
10	2.58	17.6		1.42	-164		60	
15	2.58	17.68		1.4	-167		30.3	
20	2.58	17.7	7.03	1.41	-167		23.3	
25	2.58 2.58	17.8		1.41	-166		13.3	
30 35	2.58	17.88 17.84	6.99 6.99	1.42 1.42	-165 -165		15.5 14.6	
33	2.38	17.84	6.99	1.42	-163	0	14.6	200
End Purge Time:	0955							
Water Sample								
Time Collected:	1000		Total volur	ne of purged wa	ter removed:	3		(gallons)
Physical appeara	nce at start:			Physical appear	rance at start:			-
	Color		_			Clear	_	
		Hydrocarbon	_			Hydrocarbo	on	
Sheer	n/Free Product	None	-	Sheen/	Free Product	None	-	
Samples:	(See list	t of parameters co	ollected below)	No MS/MSD/F	ield Dupe			
		MS/MSD/Field	Dup?					
Co	ollect MS/MSD							
Collect BD-09	212022 @ 1015							
C 1	Ct-:	T		F: 11F:16 1	D			. t
Sample BTEX		ner Type	# Collected	Field Filtered	Ì	vative	Coi	ntainer pH -
BTEX 40 mL VOA 3 no HCL TCL VOCs 40 mL VOA 3 no HCL						-		
PAH	250	Amber	2	no	No	ne		
1			1	l	1		ı	

			Low Flow Ground V	Vater Sampling	Log			
Date	007	21/22	Personnel	Joe Sull	irran	Weather	C.	
Site Name			Evacuation Method	Geopu		Well #		unny, 77 V-PAR-08
Site Location			Sampling Method	Low Fl	_	Project #		452562
			. 1 0			. ,		
Well information Depth of Well	: 11.08	f+		*Measurements	takan fram:			
Depth to Water	5.14			Wieasurements	X	Top of Well	Casing	
H _{wc}	5.14				Λ		ective Casin	or .
Depth to Intake		ft.				(Other, Spe		5
Start Purge Time:	1515							
Start Furge Time:	1010	10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
Elapsed Time (min)	Depth to Water	Temperature (celsius)	рН	Conductivity (ms/cm)	Oxidation Reduction	Dissolved Oxygen	Turbidity (NTU)	Flow Rate (mL/min)
	(ft)		7.50		Potential	(mg/L)		250
5	6.44 5.37	19.38 19.78	7.59 7.39	0.604 0.578	-81 -100	2.6 2.35	0	250 150
10	5.35	20.04	7.39	0.578	-100	2.05	0	150
15	5.4	20.37	7.25	0.58	-98	2.03	0	150
20	5.37	20.45	7.23	0.586	-97	1.95	0	150
25	5.37	20.88	7.25	0.585	-98	1.89	0	150
30	5.37	20.73	7.22	0.588	-96	1.72	0	150
35	5.37	20.8	7.2	0.587	-95	1.74	0	150
End Purge Time: (0937							
Water Sample								
Time Collected:	0950		Total volun	ne of purged wa	ter removed:	3		(gallons)
Physical appearar	nce at start:			Physical appear				. 6 /
	Color	Clear				Clear		
	Odor					None	•	
Sheen	/Free Product	None		Sheen/	Free Product	None		
Samples:	(See list	t of parameters co	llected below)	No MS/MSD/F	ield Dupe			
r	(3.3.3.3	MS/MSD/Field			1			
			•					
	0	T.	" C 11 1	T. 11 T.				
Sample BTEX		ner Type nL VOA	# Collected 3	Field Filtered	Preser		Cor	ntainer pH -
TCL VOCs		nL VOA	3	no	H			-
PAH	250	Amber	2	no	No	ne		

			Low Flow Ground V	Vater Sampling	Log			
Date	09/	/21/22	Personnel	Joe Sull	ivan	Weather	S	unny, 78
Site Name		<u> </u>	Evacuation Method	Geopu		Well #		V-PAR-09
Site Location			Sampling Method	Low Fl		Project #		452562
Well information						•		
Depth of Well	15.67	ft		*Measurements	taken from:			
Depth to Water	8.93			Wiedsarchients	Х	Top of Well	Casing	
H_{wc}	6.74					Top of Prote		3
Depth to Intake	13					(Other, Spec		,
Charle Danier Time a	1515	•				<u>'</u>		
Start Purge Time:	1515	10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
	Depth to		0.1		Oxidation	Dissolved		
Elapsed Time	Water	Temperature	pН	Conductivity	Reduction	Oxygen	Turbidity	Flow Rate
(min)	(ft)	(celsius)	r	(ms/cm)	Potential	(mg/L)	(NTU)	(mL/min)
0	8.93	18.79	6.62	1.16	-100	7.36	352	200
5	8.9	18.25	6.58	1.18	-106	6.41	120	150
10	8.89	20.42	6.55	1.14	-111	5.8	35.5	150
15	8.89	20.24	6.54	1.15	-112	4.85	22.3	150
20	8.89	20.49	6.53	1.15	-115	4.42	12.7	150
25	8.89	20.2	6.53	1.15	-113	4.2	8.5	150
End Purge Time:	1150							
Water Sample								
Time Collected:	1155		Total volur	ne of purged wa	ter removed:	4		(gallons)
Physical appearai	nce at start:			Physical appear				,
	Color	Suspended Solids	3		Color	Clear		
	Odor				Odor	None		
Shee	n/Free Product	None		Sheen/	Free Product	None		
Samples:	(See lis	t of parameters co	llected below)	No MS/MSD/Fi	ield Dupe			
,	(d d d d	MS/MSD/Field	,		1			
			•					
Sample BTEX		ner Type	# Collected	Field Filtered	Preser		Cor	ntainer pH
TCL VOCs		nL VOA nL VOA	3	no	HO			-
PAH		Amber	2	no	No			
				-				
					I.		1	

			Low Flow Ground	Water Sampling	Log			
Date	11/	/28/22	Personnel	Joe Sull	livan	Weather	I	Rain, 42
Site Name		Master	- Evacuation Method	Geopu		Well #		V-PAR-08
Site Location	Aubi	urn NY	Sampling Method	Low F		Project #		452562
Well information	•							
Depth of Well	9.5	ft.		*Measurements	taken from:			
Depth to Water	5.1				Х	Top of Well	Casing	
H _{wc}	4.4						ective Casing	7
Depth to Intake	7	ft.				(Other, Spec	cify)	-
Start Purge Time:	1515				·	-		
Start i urge Tille.	1313	10%	0.1	3%	10 mV	10%	10%	100 - 500 mL/min
	Depth to		0.1	370	Oxidation	Dissolved	10 /0	
Elapsed Time	Water	Temperature	pН	Conductivity		Oxygen	Turbidity	Flow Rate
(min)	(ft)	(celsius)	P	(ms/cm)	Potential	(mg/L)	(NTU)	(mL/min)
0	5.12	10.43	7.58	0.54	1		10.9	150
5	5.12	10.46	7.68	0.484	-10	0.74	4.3	150
10	5.24	10.29	7.67	0.467	-10	1.55	2.1	150
15	5.36	10.35	7.64	0.472	-16	1.57	2.6	150
20	5.48	10.25	7.64	0.468	-21	1.83	1.8	150
25	5.48	10.22	7.62	0.471	-19	1.9	1.6	150
30	5.48	10.16	7.58	0.467	-22	1.93	1.4	150
35	5.48	10.1	7.57	0.472	-21	1.63	1.3	150
End Purge Time:	1050							
Water Sample								
Time Collected:	1050		Total volui	ne of purged wa	iter removed:	4		(gallons)
Physical appearar				Physical appear				(8)
7 11		Light Red		7 11		Clear		
	Odor		-		Odor	None	•	
Sheer	n/Free Product	None	_	Sheen/	Free Product	None		
Samples:	(See list	t of parameters co	allosted below)	No MS/MSD/F	iold Duno			
Samples:	(See IIs)	MS/MSD/Field		NO WISHVISD/I	ieiu Dupe			
•		WIS/WISD/I ICIC	Dup:					
Sample	Contai	ner Type	# Collected	Field Filtered	Preser	vative	Cor	ntainer pH
BTEX		nL VOA	3	no	Н	CL		-
PAH	250	Amber	2	no	No	ne		-
			I	I .	1			

Appendix B – Data Usability Summary Report (2022)

DATA USABILITY SUMMARY REPORT

McMASTER STREET FORMER MANUFACTURED GAS PLANT SITE AUBURN, NEW YORK

Prepared For:

NEW YORK STATE ELECTRIC AND GAS CORPORATION

Prepared By:

301 Plainfield Road, Suite 350 Syracuse, New York 13212

DECEMBER 2022

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	1-1
1.1 Laboratory Data Packages	1-1
1.2 Sampling and Chain-of-Custody	1-1
1.3 Laboratory Analytical Methods	1-1
1.3.1 Volatile Organic Analysis	1-2
1.3.2 Semivolatile Organic Analysis	
SECTION 2 DATA VALIDATION REPORT	2-1
2.1 Groundwater Samples	2-1
2.1.1 BTEX	2-1
2.1.2 PAHs	2-1

LIST OF ATTACHMENTS

ATTACHMENT A - VALIDATED LABORATORY DATA

SECTION 1 DATA USABILITY SUMMARY

Groundwater samples were collected from the Iberdrola McMaster Street site in Auburn, New York on September 21, 2022 and November 28, 2022. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Work Plan.
- Analytical methodologies, and
- USEPA Region II Standard Operating Procedures (SOPs) for organic data review.

The analytical laboratory for this project was Eurofins – Environment Testing America (Eurofins) in Buffalo, New York. This laboratory is certified to perform project analyses through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

1.1 Laboratory Data Packages

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 6-10 days for the project samples.

The data packages received from Eurofins were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report which is summarized in Section 2.

1.2 Sampling and Chain-of-Custody

The samples were collected, properly preserved, shipped under a chain-of-custody (COC) record, and received at Eurofins within one to two days of sampling. All samples were received intact and in good condition at the laboratory.

1.3 Laboratory Analytical Methods

The groundwater samples that were collected from the site were analyzed for the volatiles benzene, toluene, ethylbenzene, and xylenes (BTEX) and polynuclear aromatic hydrocarbons (PAHs). Summaries of issues concerning these laboratory analyses are presented in Subsections 1.3.1 through 1.3.2. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) are discussed for each analytical method in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

"U" - not detected at the value given,

"UJ" - estimated and not detected at the value given,

"J" - estimated at the value given,

"J+" - estimated biased high at the value given,

"J-" - estimated biased low at the value given,

"N" - presumptive evidence at the value given, and

"R" - unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis

The project samples were analyzed for BTEX using the USEPA SW-846 8260C analytical method. The reported results for these samples did not require qualification resulting from data validation. The reported BTEX analytical results were 100% (i.e., usable) for the project data. PARCCS requirements were met.

1.3.2 Semivolatile Organic Analysis

The project samples were analyzed for PAHs using the USEPA SW-846 8270D analytical method. The reported results for these samples did not require qualification resulting from data validation. The reported PAHs analytical results were 100% complete (i.e., usable) for the project data. PARCCS requirements were met.

SECTION 2 DATA VALIDATION REPORT

2.1 Groundwater Samples

Data review has been completed for data packages generated by Eurofins containing groundwater samples collected from the site. Analytical results from these samples were contained within sample delivery groups (SDGs) 480-201944-1 and 480-204174-1. All of these samples were properly preserved, shipped under a COC record, and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs for organic data review. This data validation and usability report is presented by analysis type.

2.1.1 BTEX

The following items were reviewed for compliancy in the BTEX analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy
- Laboratory control sample (LCS) recoveries
- Laboratory method blank and trip/equipment blank contamination
- GC/MS instrument performance
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols.

Usability

All BTEX sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, comparability, and sensitivity. The BTEX data presented by Eurofins were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A.

2.1.2 PAHs

The following items were reviewed for compliancy in the PAH analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- MS/MSD precision and accuracy

- LCS recoveries
- Laboratory method blank and equipment blank contamination
- GC/MS instrument performance
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Field duplicate precision
- Sample result verification and identification
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of surrogate recoveries as discussed below.

Surrogate Recoveries

All sample surrogate recoveries were considered acceptable and within QC limits with the exception of the low surrogate recoveries for p-terphenyl-d14 (QC limit 60-148%R) in samples MW-06-10-09212022 (47%R), BD-09212022 (43%R), MW-PAR-08-09212022 (53%R), MW-PAR-09-09212022 (42%R), and MW-04-06-09212022 (46%R). Validation qualification was not required for the affected samples.

Usability

All PAH sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, comparability, and sensitivity. The PAH data presented by Eurofins were 100% complete (i.e., usable). The validated laboratory data are tabulated and presented in Attachment A.

ATTACHMENT A - VALIDATED LABORATORY DATA

		Location ID			MW-04-06	MW-06-09	MW-06-10	MW-06-10
		Field Sample ID	EB-09212022	TRIP BLANK-09212022-3	MW-04-06-09212022	MW-06-09-09212022	BD-09212022	MW-06-10-09212022
		Matrix	WQ	WQ	WG	WG	WG	WG
		Lab Sample ID	480-201944-7	480-201944-8	480-201944-5	480-201944-6	480-201944-2	480-201944-1
		SDG	4802019441	4802019441	4802019441	4802019441	4802019441	4802019441
		Sample Date	9/21/2022	9/21/2022	9/21/2022	9/21/2022	9/21/2022	9/21/2022
		Sample Type Code	EB	ТВ	N	N	FD	N
Analytical Method	Chemical Name	cas_rn Unit						
SW8260C	Benzene	71-43-2 ug/L	1 U	1 U	1 U	2 U	2 U	2 U
SW8260C	Ethylbenzene	100-41-4 ug/L	1 U	1 U	1 U	2 U	2 U	2 U
SW8260C	Toluene	108-88-3 ug/L	1 U	1 U	1 U	2 U	2 U	2 U
SW8260C	Xylenes	1330-20-7 ug/L	2 U	2 U	2 U	4 U	4 U	4 U
SW8270D	Acenaphthene	83-32-9 ug/L	5.4 U		5 U	5.4 U	1.8 J	2 J
SW8270D	Acenaphthylene	208-96-8 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Anthracene	120-12-7 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Benzo(A)Anthracene	56-55-3 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Benzo(A)Pyrene	50-32-8 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Benzo(B)Fluoranthene	205-99-2 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Benzo(G,H,I)Perylene	191-24-2 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Benzo(K)Fluoranthene	207-08-9 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Chrysene	218-01-9 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Dibenz(A,H)Anthracene	53-70-3 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Fluoranthene	206-44-0 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Fluorene	86-73-7 ug/L	5.4 U		5 U	5.4 U	1 J	1.1 J
SW8270D	Indeno(1,2,3-C,D)Pyrene	193-39-5 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Naphthalene	91-20-3 ug/L	5.4 U		5 U	5.4 U	0.89 J	0.98 J
SW8270D	Phenanthrene	85-01-8 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U
SW8270D	Pyrene	129-00-0 ug/L	5.4 U		5 U	5.4 U	5.4 U	5.2 U

		Locatio		MW-PAR-08	MW-PAR-08	MW-PAR-09
		Field Samp		MW-PAR-08-09212022	MW-PAR-08-11282022	MW-PAR-09-09212022
		M	latrix	WG	WG	WG
		Lab Samp	le ID	480-201944-3	480-204174-1	480-201944-4
			SDG	4802019441	4802041741	4802019441
		Sample	Date	9/21/2022	11/28/2022	9/21/2022
		Sample Type	Code	N	N	N
Analytical Method	Chemical Name	cas_rn	Unit			
SW8260C	Benzene	71-43-2	ug/L	51	42	1 U
SW8260C	Ethylbenzene	100-41-4	ug/L	5.1	4.2	1 U
SW8260C	Toluene	108-88-3	ug/L	1.3 J	1.1	1 U
SW8260C	Xylenes	1330-20-7	ug/L	6	4.5	2 U
SW8270D	Acenaphthene	83-32-9	ug/L	9	5.7	5 U
SW8270D	Acenaphthylene	208-96-8	ug/L	2.8 J	2 J	5 U
SW8270D	Anthracene	120-12-7	ug/L	1.7 J	0.58 J	5 U
SW8270D	Benzo(A)Anthracene	56-55-3	ug/L	5 U	5 U	5 U
SW8270D	Benzo(A)Pyrene	50-32-8	ug/L	5 U	5 U	5 U
SW8270D	Benzo(B)Fluoranthene	205-99-2	ug/L	5 U	5 U	5 U
SW8270D	Benzo(G,H,I)Perylene	191-24-2	ug/L	5 U	5 U	5 U
SW8270D	Benzo(K)Fluoranthene	207-08-9	ug/L	5 U	5 U	5 U
SW8270D	Chrysene	218-01-9	ug/L	5 U	5 U	5 U
SW8270D	Dibenz(A,H)Anthracene	53-70-3	ug/L	5 U	5 U	5 U
SW8270D	Fluoranthene	206-44-0	ug/L	2.7 J	1.6 J	5 U
SW8270D	Fluorene	86-73-7	ug/L	2.6 J	2.9 J	5 U
SW8270D	Indeno(1,2,3-C,D)Pyrene	193-39-5	ug/L	5 U	5 U	5 U
SW8270D	Naphthalene	91-20-3	ug/L	1.9 J	14	5 U
SW8270D	Phenanthrene	85-01-8	ug/L	1.9 J	3 J	5 U
SW8270D	Pyrene	129-00-0	ug/L	1.8 J	1.1 J	5 U

Appendix C – Eurofins TestAmerica Level 2 Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-201944-1

Client Project/Site: Avangrid - McMaster Street

Revision: 1

For:

Parsons Corporation 301 Plainfield Road Suite 350 Syracuse, New York 13212

Attn: Cathy Adamitis

7

Authorized for release by:

11/9/2022 2:24:23 PM

Rebecca Jones, Project Management Assistant I

(716)504-9884

Rebecca.Jones@et.eurofinsus.com

Designee for

John Schove, Project Manager II

(716)504-9838

John.Schove@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the {0} Project Manager.

Client: Parsons Corporation
Project/Site: Avangrid - McMaster Street

Laboratory Job ID: 480-201944-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	19
Lab Chronicle	20
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.
U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Δ

10

12

13

4 6

Case Narrative

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-201944-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-201944-1

Revision

This report has been revised to only include BTEX as the analyte list for method 8260C.

The samples were received on 9/23/2022 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-PAR-08-09212022 (480-201944-3). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-06-10-09212022 (480-201944-1), MW-06-10-09212022 MS (480-201944-1[MS]), MW-06-10-09212022 MSD (480-201944-1[MSD]), BD-09212022 (480-201944-2) and MW-06-09-09212022 (480-201944-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: Three surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: MW-06-10-09212022 (480-201944-1), MW-06-10-09212022 MS (480-201944-1[MS]), MW-06-10-09212022 MSD (480-201944-1[MSD]), BD-09212022 (480-201944-2), MW-PAR-08-09212022 (480-201944-3), MW-PAR-09-09212022 (480-201944-4) and MW-04-06-09212022 (480-201944-5). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-201944-1

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-06-10-09212022	Lab Sample ID: 480-201944-1
-------------------------------------	-----------------------------

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	2.0 J	5.2	0.43	ug/L	1	_	8270D	Total/NA
Fluorene	1.1 J	5.2	0.38	ug/L	1		8270D	Total/NA
Naphthalene	0.98 J	5.2	0.79	ug/L	1		8270D	Total/NA

Client Sample ID: BD-09212022

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	1.8	J	5.4	0.45	ug/L	1	_	8270D	Total/NA
Fluorene	1.0	J	5.4	0.39	ug/L	1		8270D	Total/NA
Naphthalene	0.89	J	5.4	0.83	ug/L	1		8270D	Total/NA

Client Sample ID: MW-PAR-08-09212022

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Benzene	51		2.0	0.82	ug/L	2	_ 8	3260C	Total/NA
Ethylbenzene	5.1		2.0	1.5	ug/L	2	8	8260C	Total/NA
Toluene	1.3	J	2.0	1.0	ug/L	2	8	8260C	Total/NA
Xylenes, Total	6.0		4.0	1.3	ug/L	2	8	3260C	Total/NA
Acenaphthene	9.0		5.0	0.41	ug/L	1	8	8270D	Total/NA
Acenaphthylene	2.8	J	5.0	0.38	ug/L	1	8	8270D	Total/NA
Anthracene	1.7	J	5.0	0.28	ug/L	1	8	8270D	Total/NA
Fluoranthene	2.7	J	5.0	0.40	ug/L	1	8	8270D	Total/NA
Fluorene	2.6	J	5.0	0.36	ug/L	1	8	8270D	Total/NA
Naphthalene	1.9	J	5.0	0.76	ug/L	1	8	8270D	Total/NA
Phenanthrene	1.9	J	5.0	0.44	ug/L	1	8	8270D	Total/NA
Pyrene	1.8	J	5.0	0.34	ug/L	1	8	8270D	Total/NA

Client Sample ID: MW-PAR-09-09212022	Lab Sample ID:
--------------------------------------	----------------

No Detections.

Client Sample ID: MW-04-06-09212022	Lab Sample ID: 480-201944-5
-------------------------------------	-----------------------------

No Detections.

Client Sample ID: MW-06-09-09212022 Lab Sample ID: 480-201944-6

No Detections.

Client Sample ID: EB-09212022 Lab Sample ID: 480-201944-7

No Detections.

Client Sample ID: TRIP BLANK Lab Sample ID: 480-201944-8

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-201944-2

Lab Sample ID: 480-201944-3

480-201944-4

Client: Parsons Corporation

p-Terphenyl-d14 (Surr)

Project/Site: Avangrid - McMaster Street

Lab Sample ID: 480-201944-1 Client Sample ID: MW-06-10-09212022

Date Collected: 09/21/22 10:00

Matrix: Water Date Received: 09/23/22 10:30

Method: SW846 8260C - Vo	olatile Organic	Compoun	ds by GC/MS	i					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0	U	2.0	0.82	ug/L			09/26/22 22:00	2
Ethylbenzene	2.0	U	2.0	1.5	ug/L			09/26/22 22:00	2
Toluene	2.0	U	2.0	1.0	ug/L			09/26/22 22:00	2
Xylenes, Total	4.0	U	4.0	1.3	ug/L			09/26/22 22:00	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					09/26/22 22:00	2
4-Bromofluorobenzene (Surr)	96		73 - 120					09/26/22 22:00	2
Dibromofluoromethane (Surr)	96		75 - 123					09/26/22 22:00	2
Toluene-d8 (Surr)	91		80 - 120					09/26/22 22:00	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.0	J	5.2	0.43	ug/L		09/28/22 08:13	09/29/22 16:45	1
Acenaphthylene	5.2	U	5.2	0.40	ug/L		09/28/22 08:13	09/29/22 16:45	1
Anthracene	5.2	U	5.2	0.29	ug/L		09/28/22 08:13	09/29/22 16:45	1
Benzo(a)anthracene	5.2	U	5.2	0.38	ug/L		09/28/22 08:13	09/29/22 16:45	1
Benzo(a)pyrene	5.2	U	5.2	0.49	ug/L		09/28/22 08:13	09/29/22 16:45	1
Benzo(b)fluoranthene	5.2	U	5.2	0.35	ug/L		09/28/22 08:13	09/29/22 16:45	1
Benzo(g,h,i) perylene	5.2	U	5.2	0.36	ug/L		09/28/22 08:13	09/29/22 16:45	1
Benzo(k)fluoranthene	5.2	U	5.2	0.76	ug/L		09/28/22 08:13	09/29/22 16:45	1
Chrysene	5.2	U	5.2	0.34	ug/L		09/28/22 08:13	09/29/22 16:45	1
Dibenz(a,h)anthracene	5.2	U	5.2	0.44	ug/L		09/28/22 08:13	09/29/22 16:45	1
Fluoranthene	5.2	U	5.2	0.42	ug/L		09/28/22 08:13	09/29/22 16:45	1
Fluorene	1.1	J	5.2	0.38	ug/L		09/28/22 08:13	09/29/22 16:45	1
Ideno(1,2,3-cd)pyrene	5.2	U	5.2	0.49	ug/L		09/28/22 08:13	09/29/22 16:45	1
Naphthalene	0.98	J	5.2	0.79	ug/L		09/28/22 08:13	09/29/22 16:45	1
Phenanthrene	5.2	U	5.2	0.46	ug/L		09/28/22 08:13	09/29/22 16:45	1
Pyrene	5.2	U	5.2	0.35	ug/L		09/28/22 08:13	09/29/22 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		48 - 120				09/28/22 08:13	09/29/22 16:45	1
Nitrobenzene-d5 (Surr)	77		46 - 120				09/28/22 08:13	09/29/22 16:45	1

60 - 148

47 S1-

Eurofins	Buffalo
----------	---------

09/28/22 08:13 09/29/22 16:45

Job ID: 480-201944-1

Client: Parsons Corporation

Toluene-d8 (Surr)

p-Terphenyl-d14 (Surr)

Project/Site: Avangrid - McMaster Street

Client Sample ID: BD-09212022

Date Collected: 09/21/22 10:15

Date Received: 09/23/22 10:30

Lab Sample ID: 480-201944-2

Matrix: Water

Job ID: 480-201944-1

09/26/22 22:22

09/28/22 08:13 09/29/22 20:22

Method: SW846 8260C - Vo	latile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0	U	2.0	0.82	ug/L			09/26/22 22:22	2
Ethylbenzene	2.0	U	2.0	1.5	ug/L			09/26/22 22:22	2
Toluene	2.0	U	2.0	1.0	ug/L			09/26/22 22:22	2
Xylenes, Total	4.0	U	4.0	1.3	ug/L			09/26/22 22:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					09/26/22 22:22	2
4-Bromofluorobenzene (Surr)	93		73 - 120					09/26/22 22:22	2
Dibromofluoromethane (Surr)	99		75 - 123					09/26/22 22:22	2

80 - 120

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1.8	J	5.4	0.45	ug/L		09/28/22 08:13	09/29/22 20:22	1
Acenaphthylene	5.4	U	5.4	0.41	ug/L		09/28/22 08:13	09/29/22 20:22	1
Anthracene	5.4	U	5.4	0.30	ug/L		09/28/22 08:13	09/29/22 20:22	1
Benzo(a)anthracene	5.4	U	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 20:22	1
Benzo(a)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 20:22	1
Benzo(b)fluoranthene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 20:22	1
Benzo(g,h,i) perylene	5.4	U	5.4	0.38	ug/L		09/28/22 08:13	09/29/22 20:22	1
Benzo(k)fluoranthene	5.4	U	5.4	0.79	ug/L		09/28/22 08:13	09/29/22 20:22	1
Chrysene	5.4	U	5.4	0.36	ug/L		09/28/22 08:13	09/29/22 20:22	1
Dibenz(a,h)anthracene	5.4	U	5.4	0.46	ug/L		09/28/22 08:13	09/29/22 20:22	1
Fluoranthene	5.4	U	5.4	0.43	ug/L		09/28/22 08:13	09/29/22 20:22	1
Fluorene	1.0	J	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 20:22	1
Ideno(1,2,3-cd)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 20:22	1
Naphthalene	0.89	J	5.4	0.83	ug/L		09/28/22 08:13	09/29/22 20:22	1
Phenanthrene	5.4	U	5.4	0.48	ug/L		09/28/22 08:13	09/29/22 20:22	1
Pyrene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	83		48 - 120				09/28/22 08:13	09/29/22 20:22	1
Nitrobenzene-d5 (Surr)	67		46 - 120				09/28/22 08:13	09/29/22 20:22	1

60 - 148

43 S1-

Eurofins Buffalo

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-PAR-08-09212022

Lab Sample ID: 480-201944-3 Date Collected: 09/21/22 09:50 **Matrix: Water**

Date Received: 09/23/22 10:30

p-Terphenyl-d14 (Surr)

Method: SW846 8260C - Vo	latile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	51		2.0	0.82	ug/L			09/26/22 22:44	2
Ethylbenzene	5.1		2.0	1.5	ug/L			09/26/22 22:44	2
Toluene	1.3	J	2.0	1.0	ug/L			09/26/22 22:44	2
Xylenes, Total	6.0		4.0	1.3	ug/L			09/26/22 22:44	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					09/26/22 22:44	2
4-Bromofluorobenzene (Surr)	94		73 - 120					09/26/22 22:44	2
Dibromofluoromethane (Surr)	98		75 - 123					09/26/22 22:44	2
Toluene-d8 (Surr)	91		80 - 120					09/26/22 22:44	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	9.0		5.0	0.41	ug/L		09/28/22 08:13	09/29/22 20:49	1
Acenaphthylene	2.8	J	5.0	0.38	ug/L		09/28/22 08:13	09/29/22 20:49	1
Anthracene	1.7	J	5.0	0.28	ug/L		09/28/22 08:13	09/29/22 20:49	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 20:49	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 20:49	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 20:49	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		09/28/22 08:13	09/29/22 20:49	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		09/28/22 08:13	09/29/22 20:49	1
Chrysene	5.0	U	5.0	0.33	ug/L		09/28/22 08:13	09/29/22 20:49	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		09/28/22 08:13	09/29/22 20:49	1
Fluoranthene	2.7	J	5.0	0.40	ug/L		09/28/22 08:13	09/29/22 20:49	1
Fluorene	2.6	J	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 20:49	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 20:49	1
Naphthalene	1.9	J	5.0	0.76	ug/L		09/28/22 08:13	09/29/22 20:49	1
Phenanthrene	1.9	J	5.0	0.44	ug/L		09/28/22 08:13	09/29/22 20:49	1
Pyrene	1.8	J	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 20:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	81		48 - 120				09/28/22 08:13	09/29/22 20:49	1
Nitrobenzene-d5 (Surr)	67		46 - 120				09/28/22 08:13	09/29/22 20:49	1

60 - 148

53 S1-

09/28/22 08:13 09/29/22 20:49

Client: Parsons Corporation

p-Terphenyl-d14 (Surr)

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-PAR-09-09212022 Lab Sample ID: 480-201944-4

Date Collected: 09/21/22 11:55 Date Received: 09/23/22 10:30

Matrix: Water

Job ID: 480-201944-1

Method: SW846 8260C - Vo	latile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			09/26/22 23:06	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			09/26/22 23:06	1
Toluene	1.0	U	1.0	0.51	ug/L			09/26/22 23:06	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			09/26/22 23:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					09/26/22 23:06	1
4-Bromofluorobenzene (Surr)	97		73 - 120					09/26/22 23:06	1
Dibromofluoromethane (Surr)	98		75 - 123					09/26/22 23:06	1
Toluene-d8 (Surr)	89		80 - 120					09/26/22 23:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		09/28/22 08:13	09/29/22 21:17	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		09/28/22 08:13	09/29/22 21:17	1
Anthracene	5.0	U	5.0	0.28	ug/L		09/28/22 08:13	09/29/22 21:17	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 21:17	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 21:17	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 21:17	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		09/28/22 08:13	09/29/22 21:17	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		09/28/22 08:13	09/29/22 21:17	1
Chrysene	5.0	U	5.0	0.33	ug/L		09/28/22 08:13	09/29/22 21:17	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		09/28/22 08:13	09/29/22 21:17	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		09/28/22 08:13	09/29/22 21:17	1
Fluorene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 21:17	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 21:17	1
Naphthalene	5.0	U	5.0	0.76	ug/L		09/28/22 08:13	09/29/22 21:17	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		09/28/22 08:13	09/29/22 21:17	1
Pyrene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	88		48 - 120				09/28/22 08:13	09/29/22 21:17	1
Nitrobenzene-d5 (Surr)	69		46 - 120				09/28/22 08:13	09/29/22 21:17	1

60 - 148

42 S1-

09/28/22 08:13 09/29/22 21:17

Client: Parsons Corporation

Result Qualifier

1.0 U

1.0 U

1.0 U

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-04-06-09212022

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Date Collected: 09/21/22 13:25 Date Received: 09/23/22 10:30

Analyte

Benzene

Toluene

Ethylbenzene

Lab Sample ID: 480-201944-5

09/26/22 23:29

09/26/22 23:29

Matrix: Water

Job ID: 480-201944-1

MDL	Unit	D	Prepared	Analyzed	Dil F
0.41	ug/L			09/26/22 23:29	

Xylenes, Total	2.0 U	2.0	0.66 ug/L		09/26/22 23:29	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	77 - 120			09/26/22 23:29	1
4-Bromofluorobenzene (Surr)	95	73 - 120			09/26/22 23:29	1
Dibromofluoromethane (Surr)	99	75 - 123			09/26/22 23:29	1
Toluene-d8 (Surr)	88	80 - 120			09/26/22 23:29	1

1.0

1.0

1.0

0.74 ug/L

0.51 ug/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		09/28/22 08:13	09/29/22 21:44	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		09/28/22 08:13	09/29/22 21:44	1
Anthracene	5.0	U	5.0	0.28	ug/L		09/28/22 08:13	09/29/22 21:44	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 21:44	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 21:44	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 21:44	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		09/28/22 08:13	09/29/22 21:44	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		09/28/22 08:13	09/29/22 21:44	1
Chrysene	5.0	U	5.0	0.33	ug/L		09/28/22 08:13	09/29/22 21:44	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		09/28/22 08:13	09/29/22 21:44	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		09/28/22 08:13	09/29/22 21:44	1
Fluorene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 21:44	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 21:44	1
Naphthalene	5.0	U	5.0	0.76	ug/L		09/28/22 08:13	09/29/22 21:44	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		09/28/22 08:13	09/29/22 21:44	1
Pyrene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 21:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2 Fluorobinhomy			40 400				00/00/00 00:40	00/00/00 04:44	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		48 - 120	09/28/22 08:13	09/29/22 21:44	1
Nitrobenzene-d5 (Surr)	69		46 - 120	09/28/22 08:13	09/29/22 21:44	1
p-Terphenyl-d14 (Surr)	46	S1-	60 - 148	09/28/22 08:13	09/29/22 21:44	1

Client: Parsons Corporation

97

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-06-09-09212022

Date Collected: 09/21/22 12:20 Date Received: 09/23/22 10:30

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-201944-6

09/26/22 23:51

09/26/22 23:51

Matrix: Water

Job ID: 480-201944-1

Method: SW846 8260C - Vo	latile Organic	Compound	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.0	U	2.0	0.82	ug/L			09/26/22 23:51	2
Ethylbenzene	2.0	U	2.0	1.5	ug/L			09/26/22 23:51	2
Toluene	2.0	U	2.0	1.0	ug/L			09/26/22 23:51	2
Xylenes, Total	4.0	U	4.0	1.3	ug/L			09/26/22 23:51	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			-		09/26/22 23:51	2
4-Bromofluorobenzene (Surr)	96		73 - 120					09/26/22 23:51	2

75 - 123

80 - 120

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.4	U	5.4	0.45	ug/L		09/28/22 08:13	09/29/22 22:11	1
Acenaphthylene	5.4	U	5.4	0.41	ug/L		09/28/22 08:13	09/29/22 22:11	1
Anthracene	5.4	U	5.4	0.30	ug/L		09/28/22 08:13	09/29/22 22:11	1
Benzo(a)anthracene	5.4	U	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 22:11	1
Benzo(a)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 22:11	1
Benzo(b)fluoranthene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 22:11	1
Benzo(g,h,i) perylene	5.4	U	5.4	0.38	ug/L		09/28/22 08:13	09/29/22 22:11	1
Benzo(k)fluoranthene	5.4	U	5.4	0.79	ug/L		09/28/22 08:13	09/29/22 22:11	1
Chrysene	5.4	U	5.4	0.36	ug/L		09/28/22 08:13	09/29/22 22:11	1
Dibenz(a,h)anthracene	5.4	U	5.4	0.46	ug/L		09/28/22 08:13	09/29/22 22:11	1
Fluoranthene	5.4	U	5.4	0.43	ug/L		09/28/22 08:13	09/29/22 22:11	1
Fluorene	5.4	U	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 22:11	1
Ideno(1,2,3-cd)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 22:11	1
Naphthalene	5.4	U	5.4	0.83	ug/L		09/28/22 08:13	09/29/22 22:11	1
Phenanthrene	5.4	U	5.4	0.48	ug/L		09/28/22 08:13	09/29/22 22:11	1
Pyrene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 22:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	92		48 - 120				09/28/22 08:13	09/29/22 22:11	1
Nitrobenzene-d5 (Surr)	73		46 - 120				09/28/22 08:13	09/29/22 22:11	1
p-Terphenyl-d14 (Surr)	73		60 - 148				09/28/22 08:13	09/29/22 22:11	1

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: EB-09212022

Lab Sample ID: 480-201944-7 Date Collected: 09/21/22 12:50 **Matrix: Water**

Date Received: 09/23/22 10:30

Method: SW846 8260C - Vo	latile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			09/26/22 18:30	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			09/26/22 18:30	1
Toluene	1.0	U	1.0	0.51	ug/L			09/26/22 18:30	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			09/26/22 18:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		77 - 120					09/26/22 18:30	1
4-Bromofluorobenzene (Surr)	103		73 - 120					09/26/22 18:30	1
Dibromofluoromethane (Surr)	100		75 - 123					09/26/22 18:30	1
Toluene-d8 (Surr)	98		80 - 120					09/26/22 18:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.4	U	5.4	0.45	ug/L		09/28/22 08:13	09/29/22 22:38	1
Acenaphthylene	5.4	U	5.4	0.41	ug/L		09/28/22 08:13	09/29/22 22:38	1
Anthracene	5.4	U	5.4	0.30	ug/L		09/28/22 08:13	09/29/22 22:38	1
Benzo(a)anthracene	5.4	U	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 22:38	1
Benzo(a)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 22:38	1
Benzo(b)fluoranthene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 22:38	1
Benzo(g,h,i) perylene	5.4	U	5.4	0.38	ug/L		09/28/22 08:13	09/29/22 22:38	1
Benzo(k)fluoranthene	5.4	U	5.4	0.79	ug/L		09/28/22 08:13	09/29/22 22:38	1
Chrysene	5.4	U	5.4	0.36	ug/L		09/28/22 08:13	09/29/22 22:38	1
Dibenz(a,h)anthracene	5.4	U	5.4	0.46	ug/L		09/28/22 08:13	09/29/22 22:38	1
Fluoranthene	5.4	U	5.4	0.43	ug/L		09/28/22 08:13	09/29/22 22:38	1
Fluorene	5.4	U	5.4	0.39	ug/L		09/28/22 08:13	09/29/22 22:38	1
Ideno(1,2,3-cd)pyrene	5.4	U	5.4	0.51	ug/L		09/28/22 08:13	09/29/22 22:38	1
Naphthalene	5.4	U	5.4	0.83	ug/L		09/28/22 08:13	09/29/22 22:38	1
Phenanthrene	5.4	U	5.4	0.48	ug/L		09/28/22 08:13	09/29/22 22:38	1
Pyrene	5.4	U	5.4	0.37	ug/L		09/28/22 08:13	09/29/22 22:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120				09/28/22 08:13	09/29/22 22:38	1
Nitrobenzene-d5 (Surr)	78		46 - 120				09/28/22 08:13	09/29/22 22:38	1
p-Terphenyl-d14 (Surr)	79		60 - 148				09/28/22 08:13	09/29/22 22:38	1

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: TRIP BLANK Lab Sample ID: 480-201944-8

Date Collected: 09/21/22 09:30 **Matrix: Water**

Date Received: 09/23/22 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			09/26/22 18:53	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			09/26/22 18:53	1
Toluene	1.0	U	1.0	0.51	ug/L			09/26/22 18:53	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			09/26/22 18:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		77 - 120					09/26/22 18:53	1
4-Bromofluorobenzene (Surr)	104		73 - 120					09/26/22 18:53	1
Dibromofluoromethane (Surr)	100		75 - 123					09/26/22 18:53	1
Toluene-d8 (Surr)	97		80 - 120					09/26/22 18:53	1

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(75-123)	(80-120)
480-201944-1	MW-06-10-09212022	100	96	96	91
480-201944-1 MS	MW-06-10-09212022 MS	99	96	98	93
480-201944-1 MSD	MW-06-10-09212022 MSD	100	98	98	90
480-201944-2	BD-09212022	101	93	99	89
480-201944-3	MW-PAR-08-09212022	99	94	98	91
480-201944-4	MW-PAR-09-09212022	101	97	98	89
480-201944-5	MW-04-06-09212022	103	95	99	88
480-201944-6	MW-06-09-09212022	99	96	97	90
480-201944-7	EB-09212022	90	103	100	98
480-201944-8	TRIP BLANK	92	104	100	97
LCS 480-642738/5	Lab Control Sample	91	102	100	101
LCS 480-642778/6	Lab Control Sample	98	93	97	87
MB 480-642738/7	Method Blank	92	102	103	97
MB 480-642778/8	Method Blank	98	97	94	88

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		FBP	NBZ	TPHd14	
ab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)	
180-201944-1	MW-06-10-09212022	92	77	47 S1-	
180-201944-1 MS	MW-06-10-09212022 MS	87	80	39 S1-	
80-201944-1 MSD	MW-06-10-09212022 MSD	85	77	37 S1-	
80-201944-2	BD-09212022	83	67	43 S1-	
80-201944-3	MW-PAR-08-09212022	81	67	53 S1-	
80-201944-4	MW-PAR-09-09212022	88	69	42 S1-	
80-201944-5	MW-04-06-09212022	84	69	46 S1-	
80-201944-6	MW-06-09-09212022	92	73	73	
80-201944-7	EB-09212022	95	78	79	
CS 480-643043/2-A	Lab Control Sample	86	77	76	
ИВ 480-643043/1-A	Method Blank	94	78	73	

Surrogate Legend

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Job ID: 480-201944-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-642738/7

Matrix: Water

Analysis Batch: 642738

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB
Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			09/26/22 12:06	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			09/26/22 12:06	1
Toluene	1.0	U	1.0	0.51	ug/L			09/26/22 12:06	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			09/26/22 12:06	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 77 - 120 92 09/26/22 12:06 4-Bromofluorobenzene (Surr) 102 73 - 120 09/26/22 12:06 Dibromofluoromethane (Surr) 103 75 - 123 09/26/22 12:06 Toluene-d8 (Surr) 97 80 - 120 09/26/22 12:06

Lab Sample ID: LCS 480-642738/5

Matrix: Water

Analysis Batch: 642738

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spil	ce LCS	LCS			%Rec	
Analyte	Adde	ed Result	Qualifier l	Unit D	%Rec	Limits	
Benzene	25	.0 24.5		ug/L	98	71 - 124	
Ethylbenzene	25	.0 23.5	ι	ug/L	94	77 - 123	
Toluene	25	.0 24.7	ι	ug/L	99	80 - 122	

LCS LCS %Recovery Qualifier Surrogate Limits 1,2-Dichloroethane-d4 (Surr) 91 77 - 120 4-Bromofluorobenzene (Surr) 102 73 - 120 Dibromofluoromethane (Surr) 75 - 123 100 Toluene-d8 (Surr) 101 80 - 120

Lab Sample ID: MB 480-642778/8

Matrix: Water

Analysis Batch: 642778

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			09/26/22 16:51	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			09/26/22 16:51	1
Toluene	1.0	U	1.0	0.51	ug/L			09/26/22 16:51	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			09/26/22 16:51	1

	MB MB				
Surrogate	%Recovery Quality	fier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		09/26/22 16:51	1
4-Bromofluorobenzene (Surr)	97	73 - 120		09/26/22 16:51	1
Dibromofluoromethane (Surr)	94	75 - 123		09/26/22 16:51	1
Toluene-d8 (Surr)	88	80 - 120		09/26/22 16:51	1

Lab Sample ID: LCS 480-642778/6

Matrix: Water

Analysis Batch: 642778

Analysis Baton: 042110								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.3		ug/L		93	71 - 124	

Eurofins Buffalo

Prep Type: Total/NA

3

4

6

8

10

11

13

14

Job ID: 480-201944-1

Client: Parsons Corporation Project/Site: Avangrid - McMaster Street

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-642778/6

Matrix: Water

Analysis Batch: 642778

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Ethylbenzene 25.0 22 6 90 77 - 123 ug/L Toluene 25.0 21.5 ug/L 86 80 - 122

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 98 77 - 120 4-Bromofluorobenzene (Surr) 93 73 - 120 Dibromofluoromethane (Surr) 97 75 - 123 Toluene-d8 (Surr) 87 80 - 120

Lab Sample ID: 480-201944-1 MS Client Sample ID: MW-06-10-09212022 MS

Matrix: Water

Analysis Batch: 642778

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Benzene 2.0 U 50.0 46.5 ug/L 93 71 - 124 Ethylbenzene 2.0 U 50.0 47.5 ug/L 95 77 - 123 Toluene 2.0 U 50.0 44.3 ug/L 89 80 - 122

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 77 - 120 4-Bromofluorobenzene (Surr) 96 73 - 120 Dibromofluoromethane (Surr) 98 75 - 123 Toluene-d8 (Surr) 93 80 - 120

Lab Sample ID: 480-201944-1 MSD Client Sample ID: MW-06-10-09212022 MSD Prep Type: Total/NA

Matrix: Water

Analysis Batch: 642778

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	2.0	U	50.0	47.1		ug/L		94	71 - 124	1	13
Ethylbenzene	2.0	U	50.0	47.0		ug/L		94	77 - 123	1	15
Toluene	2.0	U	50.0	43.4		ug/L		87	80 - 122	2	15

MSD MSD %Recovery Limits Qualifier Surrogate 77 - 120 1,2-Dichloroethane-d4 (Surr) 100 98 4-Bromofluorobenzene (Surr) 73 - 120 Dibromofluoromethane (Surr) 98 75 - 123 Toluene-d8 (Surr) 90 80 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water

Analysis Batch: 643248

Lab Sample ID: MB 480-643043/1-A Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 643043 MB MB

	1110	11.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		09/28/22 08:13	09/29/22 13:34	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		09/28/22 08:13	09/29/22 13:34	1

Eurofins Buffalo

Page 16 of 26

11/9/2022 (Rev. 1)

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-201944-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-643043/1-A

Matrix: Water

Analysis Batch: 643248

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 643043

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Anthracene	5.0	U	5.0	0.28	ug/L		09/28/22 08:13	09/29/22 13:34	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 13:34	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 13:34	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 13:34	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		09/28/22 08:13	09/29/22 13:34	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		09/28/22 08:13	09/29/22 13:34	1
Chrysene	5.0	U	5.0	0.33	ug/L		09/28/22 08:13	09/29/22 13:34	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		09/28/22 08:13	09/29/22 13:34	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		09/28/22 08:13	09/29/22 13:34	1
Fluorene	5.0	U	5.0	0.36	ug/L		09/28/22 08:13	09/29/22 13:34	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		09/28/22 08:13	09/29/22 13:34	1
Naphthalene	5.0	U	5.0	0.76	ug/L		09/28/22 08:13	09/29/22 13:34	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		09/28/22 08:13	09/29/22 13:34	1
Pyrene	5.0	U	5.0	0.34	ug/L		09/28/22 08:13	09/29/22 13:34	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	94		48 - 120	09/28/22 08:13	09/29/22 13:34	1
Nitrobenzene-d5 (Surr)	78		46 - 120	09/28/22 08:13	09/29/22 13:34	1
p-Terphenyl-d14 (Surr)	73		60 - 148	09/28/22 08:13	09/29/22 13:34	1

Lab Sample ID: LCS 480-643043/2-A

Matrix: Water

Analysis Batch: 643248

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 643043

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	32.0	26.6		ug/L		83	60 - 120
Acenaphthylene	32.0	28.3		ug/L		89	63 - 120
Anthracene	32.0	29.6		ug/L		92	67 - 120
Benzo(a)anthracene	32.0	27.4		ug/L		86	70 - 121
Benzo(a)pyrene	32.0	27.8		ug/L		87	60 - 123
Benzo(b)fluoranthene	32.0	27.6		ug/L		86	66 - 126
Benzo(g,h,i) perylene	32.0	26.2		ug/L		82	66 - 150
Benzo(k)fluoranthene	32.0	27.8		ug/L		87	65 - 124
Chrysene	32.0	27.5		ug/L		86	69 - 120
Dibenz(a,h)anthracene	32.0	27.4		ug/L		86	65 - 135
Fluoranthene	32.0	29.8		ug/L		93	69 - 126
Fluorene	32.0	27.5		ug/L		86	66 - 120
Ideno(1,2,3-cd)pyrene	32.0	27.2		ug/L		85	69 - 146
Naphthalene	32.0	24.9		ug/L		78	57 - 120
Phenanthrene	32.0	28.8		ug/L		90	68 - 120
Pyrene	32.0	28.5		ug/L		89	70 - 125

LCS LCS

Surrogate	%Recovery Qua	alifier Limits
2-Fluorobiphenyl	86	48 - 120
Nitrobenzene-d5 (Surr)	77	46 - 120
p-Terphenyl-d14 (Surr)	76	60 - 148

Eurofins Buffalo

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-201944-1 MS

Matrix: Water

Analysis Batch: 643248

Client Sample ID: MW-06-10-09212022 MS

Prep Type: Total/NA Prep Batch: 643043

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	2.0	J	34.8	31.1		ug/L		84	48 - 120	
Acenaphthylene	5.2	U	34.8	31.2		ug/L		90	63 - 120	
Anthracene	5.2	U	34.8	29.8		ug/L		86	65 - 122	
Benzo(a)anthracene	5.2	U	34.8	19.6		ug/L		56	43 - 124	
Benzo(a)pyrene	5.2	U	34.8	19.4		ug/L		56	23 - 125	
Benzo(b)fluoranthene	5.2	U	34.8	19.7		ug/L		57	27 - 127	
Benzo(g,h,i) perylene	5.2	U	34.8	17.5		ug/L		50	16 - 147	
Benzo(k)fluoranthene	5.2	U	34.8	19.8		ug/L		57	20 - 124	
Chrysene	5.2	U	34.8	19.1		ug/L		55	44 - 122	
Dibenz(a,h)anthracene	5.2	U	34.8	18.2		ug/L		52	16 - 139	
Fluoranthene	5.2	U	34.8	28.3		ug/L		81	63 - 129	
Fluorene	1.1	J	34.8	30.4		ug/L		84	62 _ 120	
Ideno(1,2,3-cd)pyrene	5.2	U	34.8	17.9		ug/L		51	16 - 140	
Naphthalene	0.98	J	34.8	29.5		ug/L		82	45 - 120	
Phenanthrene	5.2	U	34.8	30.1		ug/L		87	65 - 122	
Pyrene	5.2	U	34.8	26.1		ug/L		75	58 - 128	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	87		48 - 120
Nitrobenzene-d5 (Surr)	80		46 - 120
p-Terphenyl-d14 (Surr)	39	S1-	60 - 148

Lab Sample ID: 480-201944-1 MSD

Matrix: Water

Analysis Batch: 643248

Client Sample ID: MW-06-10-09212022 MSD

Prep Type: Total/NA

Prep Batch: 643043

								i ich De	11011. 0-	10070
Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2.0	J	33.3	29.1		ug/L		81	48 - 120	7	24
5.2	U	33.3	29.7		ug/L		89	63 - 120	5	18
5.2	U	33.3	28.5		ug/L		86	65 - 122	4	15
5.2	U	33.3	19.6		ug/L		59	43 - 124	0	15
5.2	U	33.3	18.0		ug/L		54	23 - 125	8	15
5.2	U	33.3	18.4		ug/L		55	27 - 127	7	15
5.2	U	33.3	16.6		ug/L		50	16 - 147	5	15
5.2	U	33.3	18.4		ug/L		55	20 - 124	7	22
5.2	U	33.3	18.5		ug/L		56	44 - 122	3	15
5.2	U	33.3	16.8		ug/L		50	16 - 139	8	15
5.2	U	33.3	27.6		ug/L		83	63 - 129	3	15
1.1	J	33.3	29.6		ug/L		85	62 - 120	3	15
5.2	U	33.3	17.2		ug/L		52	16 - 140	4	15
0.98	J	33.3	27.0		ug/L		78	45 - 120	9	29
5.2	U	33.3	28.7		ug/L		86	65 - 122	5	15
5.2	U	33.3	25.6		ug/L		77	58 - 128	2	19
	Result 2.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Sample Sample Result Qualifier 2.0 J 5.2 U 0.98 J 5.2 U 5.2 U 5.2 U	Result Qualifier Added 2.0 J 33.3 5.2 U 33.3	Result Qualifier Added Result 2.0 J 33.3 29.1 5.2 U 33.3 28.5 5.2 U 33.3 19.6 5.2 U 33.3 18.0 5.2 U 33.3 16.6 5.2 U 33.3 16.6 5.2 U 33.3 16.8 5.2 U 33.3 16.8 5.2 U 33.3 27.6 1.1 J 33.3 29.6 5.2 U 33.3 27.0 5.2 U 33.3 27.0	Result Qualifier Added Result Qualifier 2.0 J 33.3 29.1 5.2 U 33.3 29.7 5.2 U 33.3 19.6 5.2 U 33.3 18.0 5.2 U 33.3 18.4 5.2 U 33.3 16.6 5.2 U 33.3 18.4 5.2 U 33.3 16.8 5.2 U 33.3 27.6 1.1 J 33.3 29.6 5.2 U 33.3 17.2 0.98 J 33.3 27.0 5.2 U 33.3 27.0 5.2 U 33.3 27.0 5.2 U 33.3 27.0 5.2 U 33.3 27.0	Result Qualifier Added Result Qualifier Unit 2.0 J 33.3 29.1 ug/L 5.2 U 33.3 29.7 ug/L 5.2 U 33.3 28.5 ug/L 5.2 U 33.3 19.6 ug/L 5.2 U 33.3 18.0 ug/L 5.2 U 33.3 18.4 ug/L 5.2 U 33.3 16.6 ug/L 5.2 U 33.3 18.4 ug/L 5.2 U 33.3 18.5 ug/L 5.2 U 33.3 16.8 ug/L 5.2 U 33.3 27.6 ug/L 5.2 U 33.3 27.6 ug/L 5.2 U 33.3 17.2 ug/L 5.2 U 33.3 27.0 ug/L 5.2 U 33.3 27.0 ug/L	Result Qualifier Added Result Qualifier Unit D 2.0 J 33.3 29.1 ug/L 5.2 U 33.3 29.7 ug/L 5.2 U 33.3 28.5 ug/L 5.2 U 33.3 19.6 ug/L 5.2 U 33.3 18.0 ug/L 5.2 U 33.3 18.4 ug/L 5.2 U 33.3 16.6 ug/L 5.2 U 33.3 18.4 ug/L 5.2 U 33.3 16.8 ug/L 5.2 U 33.3 27.6 ug/L 5.2 U 33.3 27.6 ug/L 5.2 U 33.3 27.0 ug/L 0.98 J 33.3 27.0 ug/L 5.2 U 33.3 27.0 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 2.0 J 33.3 29.1 ug/L 81 5.2 U 33.3 29.7 ug/L 89 5.2 U 33.3 19.6 ug/L 59 5.2 U 33.3 18.0 ug/L 54 5.2 U 33.3 18.4 ug/L 55 5.2 U 33.3 16.6 ug/L 50 5.2 U 33.3 18.4 ug/L 55 5.2 U 33.3 18.4 ug/L 55 5.2 U 33.3 18.5 ug/L 56 5.2 U 33.3 27.6 ug/L 83 1.1 J 33.3 27.6 ug/L 85 5.2 U 33.3 17.2 ug/L 85 5.2 U 33.3 27.0	Sample Result Qualifier Added Added Result Qualifier Unit D %Rec Limits 2.0 J 33.3 29.1 ug/L 81 48 - 120 5.2 U 33.3 29.7 ug/L 89 63 - 120 5.2 U 33.3 28.5 ug/L 59 43 - 124 5.2 U 33.3 19.6 ug/L 59 43 - 124 5.2 U 33.3 18.0 ug/L 54 23 - 125 5.2 U 33.3 18.4 ug/L 55 27 - 127 5.2 U 33.3 18.4 ug/L 55 20 - 124 5.2 U 33.3 18.4 ug/L 55 20 - 124 5.2 U 33.3 18.5 ug/L 56 44 - 122 5.2 U 33.3 16.8 ug/L 50 16 - 139 5.2 U 33.3 27.6 ug/L 83 63 - 129 1.1 J 33.3 27.0 ug/L 52	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 2.0 J 33.3 29.1 ug/L 81 48-120 7 5.2 U 33.3 29.7 ug/L 89 63-120 5 5.2 U 33.3 28.5 ug/L 59 43-124 0 5.2 U 33.3 19.6 ug/L 59 43-124 0 5.2 U 33.3 18.0 ug/L 54 23-125 8 5.2 U 33.3 18.4 ug/L 55 27-127 7 5.2 U 33.3 16.6 ug/L 50 16-147 5 5.2 U 33.3 18.4 ug/L 55 20-124 7 5.2 U 33.3 18.5 ug/L 56 44-122 3 5.2 U 33.3 27.6

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	85		48 - 120
Nitrobenzene-d5 (Surr)	77		46 - 120
p-Terphenyl-d14 (Surr)	37	S1-	60 - 148

Eurofins Buffalo

QC Association Summary

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

GC/MS VOA

Analysis Batch: 642738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-201944-7	EB-09212022	Total/NA	Water	8260C
480-201944-8	TRIP BLANK	Total/NA	Water	8260C
MB 480-642738/7	Method Blank	Total/NA	Water	8260C
LCS 480-642738/5	Lab Control Sample	Total/NA	Water	8260C

Analysis Batch: 642778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-201944-1	MW-06-10-09212022	Total/NA	Water	8260C	
480-201944-2	BD-09212022	Total/NA	Water	8260C	
480-201944-3	MW-PAR-08-09212022	Total/NA	Water	8260C	
480-201944-4	MW-PAR-09-09212022	Total/NA	Water	8260C	
480-201944-5	MW-04-06-09212022	Total/NA	Water	8260C	
480-201944-6	MW-06-09-09212022	Total/NA	Water	8260C	
MB 480-642778/8	Method Blank	Total/NA	Water	8260C	
LCS 480-642778/6	Lab Control Sample	Total/NA	Water	8260C	
480-201944-1 MS	MW-06-10-09212022 MS	Total/NA	Water	8260C	
480-201944-1 MSD	MW-06-10-09212022 MSD	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 643043

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-201944-1	MW-06-10-09212022	Total/NA	Water	3510C	
480-201944-2	BD-09212022	Total/NA	Water	3510C	
480-201944-3	MW-PAR-08-09212022	Total/NA	Water	3510C	
480-201944-4	MW-PAR-09-09212022	Total/NA	Water	3510C	
480-201944-5	MW-04-06-09212022	Total/NA	Water	3510C	
480-201944-6	MW-06-09-09212022	Total/NA	Water	3510C	
480-201944-7	EB-09212022	Total/NA	Water	3510C	
MB 480-643043/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-643043/2-A	Lab Control Sample	Total/NA	Water	3510C	
480-201944-1 MS	MW-06-10-09212022 MS	Total/NA	Water	3510C	
480-201944-1 MSD	MW-06-10-09212022 MSD	Total/NA	Water	3510C	

Analysis Batch: 643248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-201944-1	MW-06-10-09212022	Total/NA	Water	8270D	643043
480-201944-2	-201944-2 BD-09212022		Water	8270D	643043
480-201944-3	MW-PAR-08-09212022	Total/NA	Water	8270D	643043
480-201944-4	MW-PAR-09-09212022	Total/NA	Water	8270D	643043
480-201944-5	MW-04-06-09212022	Total/NA	Water	8270D	643043
480-201944-6	MW-06-09-09212022	Total/NA	Water	8270D	643043
480-201944-7	EB-09212022	Total/NA	Water	8270D	643043
MB 480-643043/1-A	Method Blank	Total/NA	Water	8270D	643043
LCS 480-643043/2-A	Lab Control Sample	Total/NA	Water	8270D	643043
480-201944-1 MS	MW-06-10-09212022 MS	Total/NA	Water	8270D	643043
480-201944-1 MSD	MW-06-10-09212022 MSD	Total/NA	Water	8270D	643043

Job ID: 480-201944-1

643248 JMM

EET BUF

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 480-201944-1

Lab Sample ID: 480-201944-2

Lab Sample ID: 480-201944-3

Lab Sample ID: 480-201944-4

Lab Sample ID: 480-201944-5

Lab Sample ID: 480-201944-6

09/29/22 16:45

Client Sample ID: MW-06-10-09212022

Date Collected: 09/21/22 10:00 Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			642778	CR	EET BUF	09/26/22 22:00
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13

Client Sample ID: BD-09212022

Analysis

8270D

Date Collected: 09/21/22 10:15 Date Received: 09/23/22 10:30

Total/NA

								
_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			642778	CR	EET BUF	09/26/22 22:22
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 20:22

Client Sample ID: MW-PAR-08-09212022

Date Collected: 09/21/22 09:50

Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	642778	CR	EET BUF	09/26/22 22:44
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 20:49

Client Sample ID: MW-PAR-09-09212022

Date Collected: 09/21/22 11:55

Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	642778	CR	EET BUF	09/26/22 23:06
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 21:17

Client Sample ID: MW-04-06-09212022

Date Collected: 09/21/22 13:25

Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	642778	CR	EET BUF	09/26/22 23:29
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 21:44

Client Sample ID: MW-06-09-09212022

Date Collected: 09/21/22 12:20 Date Received: 09/23/22 10:30

		0							
ſ									
		Batch	Batch		Dilution	Batch			Prepared
		_		_					
	Prep Type	Type	Method	Rur	n Factor	Number	Analyst	Lab	or Analyzed
	Prep Type	туре	wethod	Rur	i Factor	Number	Analyst		Lab

EET BUF 09/26/22 23:51 642778 CR Total/NA Analysis 8260C

Eurofins Buffalo

Matrix: Water

Page 20 of 26

11/9/2022 (Rev. 1)

Lab Chronicle

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-06-09-09212022

Lab Sample ID: 480-201944-6 Date Collected: 09/21/22 12:20

Matrix: Water

Date Received: 09/23/22 10:30

ı		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
	Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
	Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 22:11

Lab Sample ID: 480-201944-7 Client Sample ID: EB-09212022

Date Collected: 09/21/22 12:50 **Matrix: Water**

Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	642738	AXK	EET BUF	09/26/22 18:30
Total/NA	Prep	3510C			643043	MS	EET BUF	09/28/22 08:13
Total/NA	Analysis	8270D		1	643248	JMM	EET BUF	09/29/22 22:38

Client Sample ID: TRIP BLANK Lab Sample ID: 480-201944-8

Date Collected: 09/21/22 09:30 **Matrix: Water**

Date Received: 09/23/22 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	642738	AXK	EET BUF	09/26/22 18:53

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-201944-1

Project/Site: Avangrid - McMaster Street

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-23

1

3

4

5

0

9

11

40

14

Method Summary

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Method **Method Description** Protocol Laboratory 8260C Volatile Organic Compounds by GC/MS SW846 EET BUF 8270D Semivolatile Organic Compounds (GC/MS) SW846 **EET BUF** 3510C Liquid-Liquid Extraction (Separatory Funnel) SW846 **EET BUF** 5030C Purge and Trap SW846 EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-201944-1

3

4

5

6

0

10

11

13

14

Sample Summary

Client: Parsons Corporation Job ID: 480-201944-1

Client: Parsons Corporation Project/Site: Avangrid - McMaster Street

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-201944-1	MW-06-10-09212022	Water	09/21/22 10:00	09/23/22 10:30
480-201944-2	BD-09212022	Water	09/21/22 10:15	09/23/22 10:30
480-201944-3	MW-PAR-08-09212022	Water	09/21/22 09:50	09/23/22 10:30
480-201944-4	MW-PAR-09-09212022	Water	09/21/22 11:55	09/23/22 10:30
480-201944-5	MW-04-06-09212022	Water	09/21/22 13:25	09/23/22 10:30
480-201944-6	MW-06-09-09212022	Water	09/21/22 12:20	09/23/22 10:30
480-201944-7	EB-09212022	Water	09/21/22 12:50	09/23/22 10:30
480-201944-8	TRIP BLANK	Water	09/21/22 09:30	09/23/22 10:30

Ver: 06/08/2021

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14226-2268 Phone: 716-661-2600 Fax: 716-661-7661

CIBIIDO DIIIO

Seurofins Environment Testing America

Client Information	Sampler:	Paraish		Lab PM			Certier Tracking No(s):	GOG No:
Clent Contact Cethy Ademitie	Phone	25.5	200	E-Mail	Schove, John R		State of Charles	480-177529-38060.1
Company		-100	6104 BWBIN	John	Schove	John. Schove@et.eurofinsus.com		Page 1 of 3
Parsons Corporation			9			Analysis	Dodinostod	Job #:
301 Plainfield Road Suite 350	Due Date Requested:	led;						Preserve
Syracuse	TAT Requested (days):	lays):		T				
State, Zip. NY, 13212	つ xot /	000			400			C - Zh Acetate O - AsNaO2
Phone.	PO#	4 Yes	A No					
E G	452562.452563	3.60214.07			f			12804
catherine adamitis@parsons.com	WO#: 452582.02000				MANAGEMENT AND ADDRESS OF THE PARTY OF THE P			SP Dodecahydraft cetone
Project Name Wangrid - McMaster Street	Project #: 48024388					Sag	480-201944 Chain of (Custody 'tzma
.e.c.	\$80W#				Maria Company		-	her (specify)
			Sample	T	:			-
Sample Identification	Sample Date	Sample	Type (C=comp, G=grab)	(Wewester, Besolid, Owweste/oil,	Seoc - Bl Jeujoum Jeop Lin	M4 - 00/2		McMest Scuttly
		X	- 65		X	1		Special Instructions/Note:
MW-06-10-09212022	9/21/22	1000	9	Water	>	100		0
MU-06-10-09212022 MS	9121122	(000)	0	Water	2	1		0 3
	9121122	(000)	2	Water N	143	22		2 36
0-0	9 (2)[22	000	O	Water N	5	4		2 0
1-PAR-08-	912122	0980	D	Water N	3			D ox
1	9/21/22	11555	Ġ	Water	183			2 00
	9121122	1325	G	Water	N X 3	8		0 00
- 1	9 121/22	1220	S	Water	3	-		0 00
09	9121122	1250	9	Water	123	-) 80
TRIP Blank	6(27(29	9130	0	Water	X	x d		
Possible Herard Identification				Water				
Non-Hazard Flammable Skin Irritant Poison B	olson B Unknown		Radiological		Sample	Disposal (A fee ma	y be assessed if samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
I, III, IV, Other (specify)					Special	Special Instructions/QC Requirements:	Disposal By Lab	Archive For Months
Empty Kit Relinquished by:		Date		F	Time:		Method of Shipment	
Relincished by	Date/Time: 7 (22/22	@ 1800		Company		Regulved by A	100	7 / 1 / Sx Company
Dalland Leband h.	Date/filme:		Con	Company	Received	ved by:	Date/Time:	an pp1
	Date/Time:		Con	Company	Rece	Received by:	Date/Time:	Company
Custody Seats Intect. Custody Seat No.				Name of Contrast o	Cools	Cooler Tamperalure(s) °C and Other Remarks	5	-
		STATE OF THE PERSON NAMED IN			-		7,4	4 1 106

Client: Parsons Corporation

Job Number: 480-201944-1

Login Number: 201944 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

eroniori etopa; ariit e		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	PARSONS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

PREPARED FOR

Attn: Cathy Adamitis
Parsons Corporation
301 Plainfield Road
Suite 350
Syracuse, New York 13212
Generated 12/5/2022 3:13:18 PM

JOB DESCRIPTION

Avangrid - McMaster Street

JOB NUMBER

480-204174-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 12/5/2022 3:13:18 PM

Authorized for release by Rebecca Jones, Project Management Assistant I Rebecca.Jones@et.eurofinsus.com Designee for John Schove, Project Manager II John.Schove@et.eurofinsus.com (716)504-9838

Client: Parsons Corporation
Project/Site: Avangrid - McMaster Street

Laboratory Job ID: 480-204174-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

4

Q

40

11

13

14

Definitions/Glossary

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery

CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

Too Numerous To Count **TNTC**

Eurofins Buffalo

Page 4 of 17

12/5/2022

Case Narrative

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-204174-1

Job ID: 480-204174-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-204174-1

Comments

No additional comments.

The sample was received on 11/29/2022 10:00 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-PAR-08-11282022

Job ID: 480-204174-1

Lab Sample ID: 480-204174-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Benzene	42		1.0	0.41	ug/L		_ 8	260C	Total/NA
Toluene	1.1		1.0	0.51	ug/L	1	8	260C	Total/NA
Ethylbenzene	4.2		1.0	0.74	ug/L	1	8	260C	Total/NA
m-Xylene & p-Xylene	3.4		2.0	0.66	ug/L	1	8	260C	Total/NA
o-Xylene	1.1		1.0	0.76	ug/L	1	8	260C	Total/NA
Xylenes, Total	4.5		2.0	0.66	ug/L	1	8	260C	Total/NA
Acenaphthene	5.7		5.0	0.41	ug/L	1	8	270D	Total/NA
Acenaphthylene	2.0	J	5.0	0.38	ug/L	1	8	270D	Total/NA
Anthracene	0.58	J	5.0	0.28	ug/L	1	8	270D	Total/NA
Fluoranthene	1.6	J	5.0	0.40	ug/L	1	8	270D	Total/NA
Fluorene	2.9	J	5.0	0.36	ug/L	1	8	270D	Total/NA
Naphthalene	14		5.0	0.76	ug/L	1	8	270D	Total/NA
Phenanthrene	3.0	J	5.0	0.44	ug/L	1	8	270D	Total/NA
Pyrene	11	J	5.0	0.34	ua/l	1	8	270D	Total/NA

4

6

a

10

11

12

14

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Client Sample ID: MW-PAR-08-11282022

Lab Sample ID: 480-204174-1 Date Collected: 11/28/22 10:50

Matrix: Water

Date Received: 11/29/22 10:00

p-Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	42		1.0	0.41	ug/L			12/01/22 14:29	1
Toluene	1.1		1.0	0.51	ug/L			12/01/22 14:29	1
Ethylbenzene	4.2		1.0	0.74	ug/L			12/01/22 14:29	1
m-Xylene & p-Xylene	3.4		2.0	0.66	ug/L			12/01/22 14:29	1
o-Xylene	1.1		1.0	0.76	ug/L			12/01/22 14:29	1
Xylenes, Total	4.5		2.0	0.66	ug/L			12/01/22 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120			_		12/01/22 14:29	1
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					12/01/22 14:29	1
4-Bromofluorobenzene (Surr)	96		73 - 120					12/01/22 14:29	1
Dibromofluoromethane (Surr)	99		75 - 123					12/01/22 14:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.7		5.0	0.41	ug/L		11/30/22 08:31	12/01/22 14:59	1
Acenaphthylene	2.0	J	5.0	0.38	ug/L		11/30/22 08:31	12/01/22 14:59	1
Anthracene	0.58	J	5.0	0.28	ug/L		11/30/22 08:31	12/01/22 14:59	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		11/30/22 08:31	12/01/22 14:59	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		11/30/22 08:31	12/01/22 14:59	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		11/30/22 08:31	12/01/22 14:59	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		11/30/22 08:31	12/01/22 14:59	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		11/30/22 08:31	12/01/22 14:59	1
Chrysene	5.0	U	5.0	0.33	ug/L		11/30/22 08:31	12/01/22 14:59	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		11/30/22 08:31	12/01/22 14:59	1
Fluoranthene	1.6	J	5.0	0.40	ug/L		11/30/22 08:31	12/01/22 14:59	1
Fluorene	2.9	J	5.0	0.36	ug/L		11/30/22 08:31	12/01/22 14:59	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		11/30/22 08:31	12/01/22 14:59	1
Naphthalene	14		5.0	0.76	ug/L		11/30/22 08:31	12/01/22 14:59	1
Phenanthrene	3.0	J	5.0	0.44	ug/L		11/30/22 08:31	12/01/22 14:59	1
Pyrene	1.1	J	5.0	0.34	ug/L		11/30/22 08:31	12/01/22 14:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120				11/30/22 08:31	12/01/22 14:59	1
Nitrobenzene-d5 (Surr)	83		46 - 120				11/30/22 08:31	12/01/22 14:59	1

60 - 148

85

11/30/22 08:31 12/01/22 14:59

Surrogate Summary

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance						
		TOL	DCA	BFB	DBFM			
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)			
480-204174-1	MW-PAR-08-11282022	99	100	96	99			
LCS 480-651792/5	Lab Control Sample	100	98	101	99			
MB 480-651792/7	Method Blank	102	102	104	100			

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Li						
		FBP	NBZ	TPHd14				
Lab Sample ID	Client Sample ID	(48-120)	(46-120)	(60-148)				
480-204174-1	MW-PAR-08-11282022	95	83	85				
LCS 480-651589/2-A	Lab Control Sample	101	89	103				
MB 480-651589/1-A	Method Blank	95	81	105				

FBP = 2-Fluorobiphenyl

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Eurofins Buffalo

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-651792/7

Matrix: Water

Analysis Batch: 651792

Client Sample ID: Method Blank

Prep Type: Total/NA

l .	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0	U	1.0	0.41	ug/L			12/01/22 13:58	1
Toluene	1.0	U	1.0	0.51	ug/L			12/01/22 13:58	1
Ethylbenzene	1.0	U	1.0	0.74	ug/L			12/01/22 13:58	1
m-Xylene & p-Xylene	2.0	U	2.0	0.66	ug/L			12/01/22 13:58	1
o-Xylene	1.0	U	1.0	0.76	ug/L			12/01/22 13:58	1
Xylenes, Total	2.0	U	2.0	0.66	ug/L			12/01/22 13:58	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120		12/01/22 13:58	1
1,2-Dichloroethane-d4 (Surr)	102		77 - 120		12/01/22 13:58	1
4-Bromofluorobenzene (Surr)	104		73 - 120		12/01/22 13:58	1
Dibromofluoromethane (Surr)	100		75 - 123		12/01/22 13:58	1

Lab Sample ID: LCS 480-651792/5

Matrix: Water

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 651792

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits 25.0 25.2 101 71 - 124 ug/L 25.0 25.5 102 80 - 122 ug/L 25.0 25.8 103 77 - 123 ug/L 25.0 26.2 ug/L 105 76 - 122 25.0 26.1 ug/L 104 76 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	99		75 - 123

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-651589/1-A

Matrix: Water

Analysis Batch: 651741

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 651589**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	5.0	U	5.0	0.41	ug/L		11/30/22 08:31	12/01/22 10:52	1
Acenaphthylene	5.0	U	5.0	0.38	ug/L		11/30/22 08:31	12/01/22 10:52	1
Anthracene	5.0	U	5.0	0.28	ug/L		11/30/22 08:31	12/01/22 10:52	1
Benzo(a)anthracene	5.0	U	5.0	0.36	ug/L		11/30/22 08:31	12/01/22 10:52	1
Benzo(a)pyrene	5.0	U	5.0	0.47	ug/L		11/30/22 08:31	12/01/22 10:52	1
Benzo(b)fluoranthene	5.0	U	5.0	0.34	ug/L		11/30/22 08:31	12/01/22 10:52	1
Benzo(g,h,i) perylene	5.0	U	5.0	0.35	ug/L		11/30/22 08:31	12/01/22 10:52	1
Benzo(k)fluoranthene	5.0	U	5.0	0.73	ug/L		11/30/22 08:31	12/01/22 10:52	1
Chrysene	5.0	U	5.0	0.33	ug/L		11/30/22 08:31	12/01/22 10:52	1
Dibenz(a,h)anthracene	5.0	U	5.0	0.42	ug/L		11/30/22 08:31	12/01/22 10:52	1
Fluoranthene	5.0	U	5.0	0.40	ug/L		11/30/22 08:31	12/01/22 10:52	1

Eurofins Buffalo

Page 9 of 17

QC Sample Results

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-204174-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-651589/1-A

Matrix: Water

Analysis Batch: 651741

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 651589

	IND	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	5.0	U	5.0	0.36	ug/L		11/30/22 08:31	12/01/22 10:52	1
Ideno(1,2,3-cd)pyrene	5.0	U	5.0	0.47	ug/L		11/30/22 08:31	12/01/22 10:52	1
Naphthalene	5.0	U	5.0	0.76	ug/L		11/30/22 08:31	12/01/22 10:52	1
Phenanthrene	5.0	U	5.0	0.44	ug/L		11/30/22 08:31	12/01/22 10:52	1
Pyrene	5.0	U	5.0	0.34	ug/L		11/30/22 08:31	12/01/22 10:52	1

мв мв

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120	11/30/22 08:31	12/01/22 10:52	1
Nitrobenzene-d5 (Surr)	81		46 - 120	11/30/22 08:31	12/01/22 10:52	1
p-Terphenyl-d14 (Surr)	105		60 - 148	11/30/22 08:31	12/01/22 10:52	1

LCS LCS

28.2

30.5

32.7

ug/L

ug/L

ug/L

Lab Sample ID: LCS 480-651589/2-A

Matrix: Water

Naphthalene

Phenanthrene

Pyrene

Analysis Batch: 651741

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec

88

95

68 - 120

70 - 125

Prep Batch: 651589

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	32.0	29.7		ug/L		93	60 - 120	
Acenaphthylene	32.0	30.1		ug/L		94	63 - 120	
Anthracene	32.0	30.8		ug/L		96	67 - 120	
Benzo(a)anthracene	32.0	30.7		ug/L		96	70 - 121	
Benzo(a)pyrene	32.0	31.5		ug/L		99	60 - 123	
Benzo(b)fluoranthene	32.0	31.7		ug/L		99	66 - 126	
Benzo(g,h,i) perylene	32.0	32.9		ug/L		103	66 - 150	
Benzo(k)fluoranthene	32.0	32.0		ug/L		100	65 - 124	
Chrysene	32.0	31.9		ug/L		100	69 - 120	
Dibenz(a,h)anthracene	32.0	32.2		ug/L		101	65 - 135	
Fluoranthene	32.0	31.2		ug/L		97	69 - 126	
Fluorene	32.0	30.5		ug/L		95	66 - 120	
Ideno(1.2.3-cd)pyrene	32.0	32.0		ua/L		100	69 - 146	

32.0

32.0

32.0

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	101		48 - 120
Nitrobenzene-d5 (Surr)	89		46 - 120
p-Terphenyl-d14 (Surr)	103		60 - 148

57 - 120

Eurofins Buffalo

QC Association Summary

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

GC/MS VOA

Analysis Batch: 651792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-204174-1	MW-PAR-08-11282022	Total/NA	Water	8260C	
MB 480-651792/7	Method Blank	Total/NA	Water	8260C	
LCS 480-651792/5	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 651589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-204174-1	MW-PAR-08-11282022	Total/NA	Water	3510C	
MB 480-651589/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-651589/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 651741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-204174-1	MW-PAR-08-11282022	Total/NA	Water	8270D	651589
MB 480-651589/1-A	Method Blank	Total/NA	Water	8270D	651589
LCS 480-651589/2-A	Lab Control Sample	Total/NA	Water	8270D	651589

Lab Chronicle

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Date Received: 11/29/22 10:00

Client Sample ID: MW-PAR-08-11282022

Lab Sample ID: 480-204174-1 Date Collected: 11/28/22 10:50

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	651792	СВ	EET BUF	12/01/22 14:29
Total/NA	Prep	3510C			651589	MS	EET BUF	11/30/22 08:31
Total/NA	Analysis	8270D		1	651741	JMM	EET BUF	12/01/22 14:59

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: Parsons Corporation Job ID: 480-204174-1

Project/Site: Avangrid - McMaster Street

Laboratory: Eurofins Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	03-31-23

1

3

4

6

8

11

16

14

Method Summary

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-204174-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030C	Purge and Trap	SW846	EET BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

7

Q

10

12

14

Sample Summary

Client: Parsons Corporation

Project/Site: Avangrid - McMaster Street

Job ID: 480-204174-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-204174-1	MW-PAR-08-11282022	Water	11/28/22 10:50	11/29/22 10:00

3

4 5

8

12

14

1

Special Instructions/Note: Ver: 06/08/2021 1000 Compage C N - None O - AsNaO2 P - Na2O4S Months Sompany Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 480-204174 Chain of Custody COC No: 480-179459-38378.1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid Page: Page 1 of 1 Archive For Date Title 9/34 Total Number 4 Date/Time: Method of Shipment: State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements E-Mail: John. Schove@et. eurofinsus. com Received by: Lab PM: Schove, John R 8270D - PAH Semivolatiles (ev to sex) de Sarbany Sark to (Wewater, Sasolid, Oawaste/oil, Water Matrix Preservation Code Company Company Radiological (C=comp, G=grab) C879 Type O Cernish Sompliance Project: A Yes A No 8 Sample Time 452562.452563..60214.07 Standard 000 354 Unknown Date: fAT Requested (days): Due Date Requested: Sampler: WO #: 452562.02000 Sample Date 11/28/22 III NO 188 Phone: Project #: 48024388 Date/Time: Poison B 1128 3622 Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Fach Prings Custody Seal No. Aubu/n 7 catherine adamitis@parsons.com PAR-08 301 Plainfield Road Suite 350 Avangrid - McMaster Street Empty Kit Relinquished by: Custody Seals Intact:
△ Yes △ No McMuster Sack (Grash Client Information Sample Identification Company: Parsons Corporation Non-Hazard MW-Cathy Adamitis linquished by: linquished by State, Zip: NY, 13212 Syracuse

Environment Testing

💸 eurofins

Chain of Custody Record

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Eurofins Buffalo

10 Hazelwood Drive

Login Sample Receipt Checklist

Client: Parsons Corporation Job Number: 480-204174-1

Login Number: 204174 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

oroator: Francos, Samoron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

Λ

5

9

13

Appendix D – Photographic Log

Observations:

Photographs 1 and 2 show the Isolated patches of Japanese knotweed (*Reynoutria japonica*) at McMaster Street former MGP during the July reconnaissance site visit. Photos 3 and 4 show the August herbicide treatment of Japanese knotweed (*Reynoutria japonica*). Photos 5 and 6 show a vegetation plot and a surviving dogwood (*Cornus* sp.) from the August vegetation survey.

Appendix E – Site Management Form

Institutional and Engineering Controls Inspection Form

I. Site Information

Site No.: **70-06-010** Site Name: **McMaster Street Former Manufactured Gas Plant**

Site Address: **30 McMaster Street** Zip Code: **13021** City/Town: **Auburn, NY** County: **Cayuga**

Current Use: vacant unimproved gravel lot

II. Site Conditions

 Physical characteristics of the Site-flat, open gravel lot with some paved areas adjacent, vegetated banks along the river

• Current Site operations- annual groundwater and quarterly NAPL monitoring, annual inspection. Invasive species management as needed.

III. Site Inspection Checklist

YES NO

 Has some or all of the Site property been sold, subdivided, merged, or undergonea tax map amendment since the initial/last certification? 8/26/22: NO

If YES, is documentation or evidence that documentation has been previously submitted included with this certification?

 Have any amendments and/or additional filings been recorded that may modify or supersede the Environmental Easement? 8/26/22: NO

If YES, is documentation or evidence that documentation has been previously submitted included with this certification?

 Have any federal, state, and/or local permits (e.g., building permit) been issued for or at the property since the initial/last certification? 8/26/22: NO

If YES, is documentation or evidence that documentation has been previously submitted included with this certification?

4. Has there been an actual or pending zoning or land-use change for the

Restricted Area on which the Environmental Easement is filed?

If YES, is documentation or evidence that documentation has been previously submitted included with this certification? 8/26/22: NO

- Have periodic inspections of the Site identified any excavation or other disturbance activities that have taken place within the institutional control areas or other areas subject to the Site Management Plan? 8/26/22: NO
- 6. Is the Site cover is good working condition, free of excess wear and tear, and without obvious signs of failure? Note any observed deficiencies. 8/26/22: Site is in good condition; vegetation cover is excellent, no bare areas or erosion were observed.

If YES, is the new information or evidence that new information has been previously submitted included with this Certification? 8/26/22: Yes, this is new information, included above.

Control Certification Statement

For each Institutional or Engineering control listed above, I certify by checking "Yes" that all of the following statements are true:

- (a) the Institutional Control and/or Engineering Control employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department:
- (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment:
- (c) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control;
- (d) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
- (e) if a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- (f) use of the site is compliant with the Environmental Easement;
- (g) the information presented in this report is accurate and complete;
- (h) no new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and
- (i) the assumptions made in the qualitative exposure assessment remain valid.

IC/EC CERTIFICATIONS SITE NO. 70-06-008

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

print name	print business addr	ress
am certifying as <u>OWNER</u> (Owner or F Information Section of this form.	Remedial Party) for the Site name	d in the Site
Owner or Remedial Party Rendering	ng Certification	Date

QUALIFIED ENVIRONMENTAL PROFESSIONAL (QEP) SIGNATURE

I, Raymond D'Hollander, P.E. at Parsons, 301 Plainfield Road, Ste 350, Syracuse NY, 13212 am certifying as a Qualified Environmental Professional for the Site named in the Site Information Section of this form.

Signature of Qualified Environmental Professional, for

the Owner or Remedial Party, Rendering

Certification

7/28/23

Date

