Predesign Study Report Town of Otselic Chenango County, New York Gladding Cordage Site Site No. 7-09-009 Work Assignment Number:

D002520-25.0

Prepared for

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

Prepared by

Dunn Engineering Company

12 Metro Park Road Albany, New York 12205

DRAFT

Predesign Study Report

Town of Otselic

Chenango County, New York

Gladding Cordage Site Site No. 7-09-009 Work Assignment Number: D002520-25.0

Prepared for

SUPERFUND STANDBY PROGRAM

New York State

Department of Environmental Conservation 50 Wolf Road Albany, New York 12233-7010

Prepared by

Dunn Engineering Company 12 Metro Park Road Albany, New York 12205

Date:

September 29, 1994

DRAFT

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION11.1Purpose1.2Project Objectives1.3Health and Safety1
2.0	TOPOGRAPHIC BASE MAP SURVEY22.1Introduction and Scope22.2Methods2
3.0	GROUNDWATER FLOW MODEL33.1Preliminary Model33.1.1Purpose33.1.2Methods33.1.3Input Parameters33.1.4Results3
4.0	GEOPHYSICAL SURVEY44.1Purpose4.2Methods4.3Results4
5.0	MONITORING AND RECOVERY WELL INSTALLATION65.1Monitoring Wells65.1.1Purpose65.1.2Design65.1.3Installation65.1.4Development65.2Recovery Wells75.2.1Purpose75.2.2Design75.2.3Installation75.2.4Development85.3Decontamination85.4Soil and Groundwater Management8
6.0	RECOVERY WELL AND AQUIFER TESTING 10 6.1 100-Minute Step Rate Tests 10 6.1.1 Purpose 10 6.1.2 Methods 10 6.1.3 Results 10

		6.1.5 Temporary Groundwater Treatment System
	6.2	24-Hour Constant Rate Test 11
		6.2.1 Purpose
		6.2.2 Methods
		6.2.3 Results
7.0	GRO	UNDWATER SAMPLING AND ANALYSES
	7.1	Purpose
	7.2	Methods
	7.3	Results
8.0	GRO	UNDWATER FLOW
	8.1	Water Level Measurements 16
	8.2	Flow Directions and Rates 16
9.0	DESI	IGN PARAMETERS
	9.1	Radius of Influence
	9.2	Pumping Rate
	9.3	Specific Capacity and Recovery Well Water Levels
	9.4	Water Quality
	9.5	Water Pretreatment
	9.6	Air Emissions
	9.7	100-Year Flood Elevation
10.0	APPI	LICABLE SCGs

LIST OF FIGURES

Figure

- 1 Site Location Map
- 2 TCA Concentration Contour Map
- 3 Drawdown Contour Map At 30 gpm After 100 Minutes (Both Wells Pumping)
- 4 Drawdown Contour Map At 50 gpm At 24-Hours (Both Wells Pumping)
- 5 Maximum Drawdown At Each Well 24-Hour Test
- 6 Groundwater Contour Map Intermediate Wells (August 29, 1994)

LIST OF PLATES

<u>Plate</u>

1 Site Plan

LIST OF TABLES

<u>Table</u>

- 1 Monitoring Well Elevations
- 2 Monitoring Well Construction Details
- 3 Recovery Well Construction Details
- 4 Maximum Drawdown At Each Well
- 5 Summary Of Streltsova Method Aquifer Analyses 24-Hour Constant Rate Test
- 6 Water Quality Analyses Recovery Well Pumping Tests
- 7 Groundwater Quality Data
- 8 Groundwater Elevations

LIST OF APPENDICES

<u>Appendix</u>

- A Numerical Groundwater Flow Model
- B Geophysical Survey
- C Recovery Well and Monitoring Well Completion Logs
- D Well Development Records
- E Well Design Calculations
- F Boring Logs
- G Gradation Analyses
- H Distance-Drawdown Graphs 30 gpm Step Rate Test
- I Corrected Time-Drawdown Graphs 24-Hour Constant Rate Test
- J Streltsova Method Pumping Test Aquifer Analysis

1.0 INTRODUCTION

1.1 Purpose

Dunn Engineering Company (DUNN) has prepared this report to summarize the activities performed during the predesign investigation at the Gladding Cordage Site, Chenango County, New York (the "Site") (Figure 1). The predesign study has been conducted for the New York State Department of Conservation (NYSDEC) under New York State Superfund Standby Contract Work Assignment No. D002520-25.0. This predesign report identifies and describes the tasks and subtasks as they were performed with respect to the previously submitted June, 1994, Work Plan. The predesign report summarizes methods and results, and presents interpretations and recommendations for remedial design based on DUNN's interpretation of the field and laboratory data.

Background information for the predesign study was provided in the *Preliminary Draft Remedial* Investigation Report (1989) by GHR Engineering Associates, Inc., (RI) and the 1992 Focused Feasibility Study by the NYSDEC (FS).

1.2 Project Objectives

DUNN conducted the predesign study to obtain technical data for the design of a groundwater recovery and treatment system. The proposed remedial action goal is to control and recover groundwater with TCA concentrations above $100 \mu g/l$ (Figure 2).

The study included topographic and geophysical surveying, pilot boring installation, observation well installation, recovery well installation, aquifer pumping tests, and aquifer analysis. Recommendations for final design parameters, including pumping rates, water quality, and air emissions, are based on interpretation of technical data collected during this and previous studies.

1.3 Health and Safety

Health and safety precautions and protective measures were carried out in accordance with the approved Health and Safety Plan prepared by DUNN in March, 1994. There were no reported health and safety related incidents arising from the field activities associated with the predesign study.

2.0 TOPOGRAPHIC BASE MAP SURVEY

2.1 Introduction and Scope

A topographic survey was conducted by DUNN from July 11,1994, through July 15, 1994. The scope of work included a property line survey and detailed topographic mapping of selected portions of the Site that will be impacted during construction. Items that were surveyed include existing structures, foundation slabs, fences, curbs, above ground utilities, manholes, sewer inverts, outfall structures, berms, culverts, ditches and other drainage features. Pilot boreholes, monitoring wells, river staff gauges, and the location of geophysical anomalies were also surveyed. In addition, three elevation traverses were made across the Otselic River in the proposed area for the treatment building.

2.2 Methods

Surveying was performed by a licensed surveyor using an electronic distance meter (EDM) for the majority of measurements. An automatic level instrument was utilized to survey all new monitoring well measuring point elevations and for establishing topographic elevations along the survey baseline (refer to Plate 1).

Horizontal and vertical control was re-established at the Site by setting new benchmarks which were located on the existing topographic base map. Elevations were matched and registered using the surveyed measuring point at monitoring well TW-4D. In addition, topographic elevation points were spot checked in the field by comparison with data points depicted on the former base map. Previous topographic survey data from 1988 included a ground survey and areal photogrammetry. The recent (1994) survey by DUNN was tied into the GHR datum which referenced the National Geodetic Vertical Datum (NGVD). Due to differences in surveying methods and instrumentation, or actual casing movement relative to ground surface, slight discrepancies were noted in the monitoring well measuring point elevations between past and present surveying campaigns (Table 1). For internal consistency, the recent (1994) survey data were used to calculate the August 29, 1994, groundwater elevations.

Three river staff gauges were installed on July 12,1994 and surveyed. Staff gauges SG-1 and SG-3 consisted of approximately 8 foot long, 1/2 inch and 3/8 inch I.D. steel pipes driven roughly 3 feet into the Otselic River stream bed. Both gauges became unusable within a short time. Staff Gauge SG-3 was apparently vandalized soon after it was installed and surveyed. Staff Gauge SG-1 became unreliable on August 18, 1994 when the area received 2 to 3 inches of rain within a period of approximately 12 hours. The river rose (in excess of 5 feet) to an elevation above the top of the staff gauge. As a result the vertically positioned pipe became bent or angled. Staff gauge SG-2 remains reliable and consists of a painted galvanized steel nut located on the guard rail (upstream-side) of the County Route 13 bridge.

The survey results are presented on the base map (Plate 1). Monitoring well measuring point elevations for recently installed wells and the resurveyed monitoring wells installed pre-1994 are presented in Table 1.

3.0 GROUNDWATER FLOW MODEL

3.1 Preliminary Model

3.1.1 Purpose

A preliminary numerical groundwater flow model which was developed prior to well installation was used to evaluate alternative pumping scenarios and groundwater constituents travel times. The model also assisted in designing the aquifer pumping test conducted at the site. A copy of the modeling report has been previously submitted to NYSDEC.

3.1.2 Methods

The computer software, MODFLOW, a three dimensional groundwater modeling program developed in 1984 by McDonald and Harbaugh was used to analyze groundwater flow conditions. The MODFLOW model uses a block centered grid with the flow equation solution based on the finite difference method. A finite difference grid of 130 rows and 80 columns with an equal grid spacing of 20 feet (2600 feet x 1600 feet) was selected for the groundwater flow simulation. To account for monitoring well and recovery well partial penetration conditions, the aquifer was simulated using three layers to correspond with the shallow, intermediate and deep sections of the aquifer (layers 1, 2 and 3, respectively).

3.1.3 Input Parameters

Input parameters and constant head boundary conditions were estimated from data reported in the RI. A series of shallow, intermediate, and deep well clusters were installed during the RI field investigation. Well boring logs, insitu hydraulic conductivity tests, and water level measurements allowed for hydrogeologic characterization of the unconsolidated aquifer materials. The interpreted groundwater plume containing TCA concentrations greater than 100 μ g/l was delineated using 1988 groundwater chemistry data from the RI report and analytical data reported by the NYSDEC for the period 1989 through 1993.

3.1.4 Results

Pumping test simulation, capture zone analysis, and travel time estimations were made using the model and the particle tracking program MODPATH (Pollock, 1990). Results and recommendations based on the model analysis are presented in the report "Numerical Groundwater Flow Modeling - Gladding Cordage Company" prepared for the NYSDEC by Rust Environment and Infrastructure in April, 1994. A copy of this report is provided as Appendix A.

4.0 **GEOPHYSICAL SURVEY**

4.1 Purpose

DUNN retained a subcontractor, Spectrum Northeast, to conduct a geophysical survey on the portion of the site that will involve construction activities. This work was conducted at the start of field activities, before the monitoring and recovery wells were installed. DUNN proposed, and NYSDEC concurred, that the long term historical use of the site as an active industrial facility and the incomplete documentation of possible underground structures warranted a subsurface geophysical survey as part of the predesign study. Specific objectives of the geophysical survey were to locate underground obstructions, utility lines or voids that could affect work safety, the location of remediation-related structures, excavation cost, or foundation stability. The information thus gathered was used to finalize well locations, modify site layout and indicate on the base map some of the areas where the contractor may encounter buried objects. A copy of the subcontractor's report is included in Appendix B.

4.2 Methods

The subcontractor selected for this task specializes in underground utility location. The subcontractor used a variety of instruments for achieving task objectives, including a GSSI System-3 ground penetrating radar unit with 300 MHZ transducer and a number of electromagnetic utility-locating instruments.

The survey crew conducted a series of bi-directional traverses in areas of interest including all proposed drilling locations, several proposed alternative discharge line trench alignments, and the exposed earth and concrete pad in the vicinity of the proposed treatment building. Detected anomalies may indicate the possible presence of underground structures. These anomalies were marked in the field and surveyed by DUNN's mapping crew. The locations of all anomalies discussed below are shown on Plate 1.

4.3 Results

The geophysical survey successfully accomplished task objectives. The proposed location of recovery well RW-2 was shifted slightly to avoid a possible buried utility line beneath the access driveway. Similarly, proposed new monitoring wells at the TW-14 cluster were shifted to avoid local anomalies near the base of the former water tower, and proposed well TW-7D was shifted slightly to avoid a buried water line. As a result of these adjustments, all monitoring and recovery wells were drilled without encountering significant obstructions.

The possible buried utility line referred to above was detected along the full length of the access road and south and east of the two-story building on Gladding Street. Discussions with local residents familiar with the site revealed that this anomaly is most likely associated with a buried water line, reportedly now abandoned and inactive. Any future construction contractor should be alerted to this feature during excavations for wellhead structures at RW-1 and RW-2 and for the discharge line trench. Electromagnetic anomalies were detected at the former dye leaching pit beneath the access roadway just east of RW-2. The anomalies indicate that metallic objects are present in the pit and pipes associated with this structure may be encountered during trench excavation.

Two rectangular shaped anomalies were detected at the south end of the access road just west of TW-4 cluster. These anomalies should not interfere with the proposed excavations. The electromagnetic signatures suggest that these anomalies are caused by shallow, tabular shaped metallic objects.

What appear to be several metallic conduits were detected on the large concrete pad in the vicinity of the east-west leg of the proposed discharge line trench. These possible conduits trend generally north-south and cross the proposed trench alignment.

Using a GPR unit, the survey crew detected a large void in the concrete slab adjacent to the initially proposed treatment building site. Subsequent investigation of appurtenant structures on the concrete surface revealed the existence of a suspected north-south trending sluiceway beneath the slab. This feature resulted in shifting the proposed treatment building to its present location shown on the design drawings.

5.0 MONITORING AND RECOVERY WELL INSTALLATION

5.1 Monitoring Wells

5.1.1 Purpose

The predesign study included the installation of one shallow, two intermediate and two deep monitoring wells. The wells were installed to supplement the existing monitoring well network, primarily in the area designated for the recovery wells. The predesign study Work Plan originally specified the installation of five wells. Well TW-7D was added, at the request of, NYSDEC, to investigate potential downward migration of TCA into the deep portion of the unconsolidated aquifer.

5.1.2 Design

The wells were designed for compatibility with pre-existing onsite wells. Typically, this included 2-inch I.D. Type 304 stainless steel screen (0.010" slot) and riser materials, a #0 Morie silica sandpack, a bentonite slurry seal and a cement/bentonite seal completed to original surface grade. Each well was finished with a lockable, 4-inch steel protective casing. Details of the original well design specifications are included in the predesign study Work Plan.

5.1.3 Installation

All wells were installed in accordance to the procedures outlined in the predesign study Work Plan with the exception of minor variations in screened intervals at locations TW-7D and TW-15I, and the elimination of a sand choke above the well screen sandpack at all locations. The sand choke was eliminated since it was agreed that the potential for bridging of the fine sand material could hinder or prevent placement of an effective bentonite seal. American Auger and Ditching, Inc.(American Auger) provided drilling and well installation services throughout all phases of the project. Table 2 summarizes construction details for the the recently installed (1994) monitoring wells. Individual well completion diagrams are also provided as Appendix C.

5.1.4 Development

Following installation, each monitoring well was developed to remove fine grained sediment and to increase the hydraulic connection between the well and the aquifer. Field parameters, including color, pH, temperature, specific conductivity and turbidity were monitored throughout the development process. Purging was accomplished using a Waterra inertial pump and polyethylene tubing and/or well-dedicated PVC bailers. Well development continued until at least 10 well volumes were removed and field parameters appeared to stabilize. However, a turbidity goal of less than 50 Nephelometric Turbidity Units (NTUs) could not be obtained on a consistent basis. Well development field records are included in Appendix D.

5.2 Recovery Wells

5.2.1 Purpose

Two recovery wells, RW-1 and RW-2 were installed for the primary purpose of controlling the groundwater within the contaminant plume; specifically in the area where TCA concentrations are greater than 100 μ g/l (Figure 2). The recovery wells were also used during three pumping tests to determine distance/drawdown relationships at various pumping rates and to provide data for recovery system design.

5.2.2 Design

Recovery well locations, approximate depths and an estimate of flow velocities were based on the groundwater flow modeling results. DUNN presented a preliminary design for both wells in the predesign study Work Plan. Modifications to the original design were based on the geologic conditions encountered. This included significant variations in the originally proposed screened interval at each well location and a reduction in total depth for RW-1.

Recovery well design was based on interpretation of laboratory gradation analyses of split spoon samples collected during the recovery well pilot borings. Filter gravel pack materials were determined from the grain size distribution curves. Specifically, the gravel pack design was based on the finest sample within the screened interval to minimize well water turbidity. Slot sizes were selected based on the gravel pack. Screen diameter, length and design were chosen so that the average entrance velocity of the water entering the screen at maximum design yield is less than 0.1 feet per second. The screen slot size was selected to retain approximately 90 percent of the gravel pack. Groundwater approach velocity at design yield was also used as a design criterion.

 $V_{A} < \sqrt{k/30}$

where: V_A = approach velocity k = hydraulic conductivity

An aquifer hydraulic conductivity of 170 feet/day (0.06 cm/sec), based on the RI, was used for this calculation. Table 3 summarizes design and construction details for recovery wells RW-1 and RW-2. Well completion diagrams are included in Appendix C and well design calculations are included as Appendix E.

5.2.3 Installation

Pilot borings for laboratory grain size analyses were drilled during the period June 23,1994 to June 28,1994. Continuous split spoon samples were collected from the interval 40 feet to 84 feet at RW-1 and from the interval 46 feet to 80 feet at RW-2. Boring logs are provided as Appendix F. Laboratory reports for gradation analyses are included as Appendix G.

Recovery well drilling and installation took place from August 8, 1994 through August 18, 1994.

At each well location a 14-3/4 inch boring was advanced using a tricone bit and Revert, a natural guar gum polymer drilling additive. A 12 inch I.D. outer steel casing was installed to the total depth of the borehole. The casing was cleaned out prior to placement of the stainless steel screen (equipped with appropriately spaced centralizers) and the riser pipe. An appropriately sized gravel pack was installed in the inside annulus of the 12 inch casing. As the gravel pack was placed, the steel casing was withdrawn incrementally from the well allowing the sandpack to fill the void area surrounding the well screen.

This process continued until the sand pack extended upward to within approximately 6 feet of the ground surface. A bentonite seal was placed above the gravel pack to prevent downward flow of surface water through the gravel pack. The remainder of the annulus was left open to allow for working access to reduce riser pipe stickup (currently approximately 1 to 1.5 ft above grade).

5.2.4 Development

Well development began on August 13, 1994, immediately following installation of well RW-1 and continued on an intermittent basis until August 23,1994. RW-2 development began August 18,1994 and was also completed on August 23,1994. Three development methods were employed; air jetting, mechanical surging, and suction pumping. Initial development at both locations was accomplished by lowering the drill rods with an attached jetting tool into the well. The drilling rig air compressor was utilized as an air pulsating mechanism to displace water. Wells RW-1 and RW-2 were developed by air jetting for approximately 7 hours and 3 hours, respectively.

Mechanical surging was performed by placing a surge block into the well with the drill rig wireline and with a spudding action, gradually lowering the surge block into the well screen. After surging for several minutes, the surge block was removed, again through use of a spudding motion.

Surge block development was immediately followed by pumping with a suction (trash) pump to remove any sediment that was released from the formation into the well screen. Water withdrawal using either of the available trash pumps onsite (5 h.p. and 8 h.p.) allowed for specific capacity measurements to be made throughout well development. Surging and pumping maximized flow rates and reduced turbidity. This process proceeded until specific capacity stabilized or no longer appeared to benefit from continued development.

5.3 Decontamination

American Auger performed decontamination procedures on all equipment used during boring and well installation using steam cleaning procedures outlined in the predesign study Work Plan.

5.4 Soil and Groundwater Management

Other than split spoon samples, soil cuttings were not generated during pilot boring and monitoring well drilling. Soil cuttings generated during drilling of the 14-3/4 inch diameter recovery well were spread out and temporarily staged on polyethylene sheeting to dry and to facilitate Revert breakdown. Several weeks later, prior to demobilization, American Auger stockpiled the drill cuttings in a pre-designated area north of Gladding Braided Product's loading docks.

Purge water generated during monitoring well development was discharged to the ground. Recovery well development water was pumped into a concrete vault located adjacent to well TW-15I. The vault apparently discharges to the ground.

6.0 **RECOVERY WELL AND AQUIFER TESTING**

6.1 100-Minute Step Rate Tests

6.1.1 Purpose

Step rate aquifer pumping tests were conducted on each of the newly installed recovery wells to study well efficiency, performance, and aquifer response.

6.1.2 Methods

American Auger installed Grundfos submersible well pumps in each recovery well after development. The pump intake was positioned at a depth of approximately 46 feet below grade in well RW-1 and at a depth of approximately 64 feet in well RW-2. Pumps were suspended with steel cable while 1 1/2 inch I.D. Schedule 80 PVC pipe was installed to transfer pump discharge to the surface. Niagara flow meters and 1 1/2 inch gate valves were installed inline at the wellhead to measure and regulate flow velocities. In addition, sampling ports (taps) were fitted to allow for groundwater sampling at each recovery well. Sampling was performed using procedures outlined in DUNN's June, 1994 Analytical Quality Assurance Plan (AQAP).

Step rate testing was conducted on August 25 and August 26,1994 for wells RW-1 and RW-2, respectively. Each test consisted of three progressive pumping steps; 30 gpm, 60 gpm and 100 gpm. Recovery well RW-2 was unable to maintain a constant yield of 100 gpm and as a result, the flow was cut back to 80 gpm approximately 15 to 20 minutes into the test.

Pressure transducers were configured in a manner similar to that stated in the predesign work plan. Since pressure transducers were already set up, it was decided in the field that with minimal additional effort, DUNN and the NYSDEC could readily collect even more data than were originally proposed. This included pressure transducer drawdown data at RW-2, TW-5S, TW-5I and TW-5D during RW-1 step rate testing, and at RW-2, TW-3I, TW-4S, TW-4I, and TW-4D during RW-2 step rate testing.

DUNN collected pre-test water level data for approximately 40 hours prior to step rate testing to assist in development of antecedent water level trends and aquifer barometric efficiency relationships.

From the step drawdown tests results, specific capacity calculations were performed to help determine pumping rate design specifications.

6.1.3 Results

After pumping for a period of 100 minutes at a rate of 30 gpm, greater than 0.10 feet of drawdown was observed at radial distances up to 200 feet from well RW-1 and up to 208 feet from well RW-2. When the pumping rates were increased, drawdown in individual observation wells was observed to increase proportionally with increases in flow rate.

Distance drawdown plots (Appendix H) for individual step rate tests at 30 gpm suggest that the cone of depression extends in the range of 300 to 600 feet beyond the pumping well. Interpretation of both plots indicates that approximately 0.1 feet of drawdown occurs at distances of roughly 200 feet. Thus, estimated drawdown based on the distance - drawdown relationship is in agreement with the measured drawdown observed in the field following 100 minutes of pumping.

Table 4 presents maximum recorded drawdown, at each flow rate, for the observation wells that were used during step rate testing. Figure 3 delineates projected drawdown after a period of 100 minutes with both wells pumping at 30 gpm (each).

Based on the 100-minute step rate test data, specific capacity ranges from 15.2 gpm/ft at 100 gpm to 19.4 gpm/ft at 30 gpm for recovery well RW-1 and from 1.50 gpm/ft at 80 gpm to 17.7 gpm/ft at 30 gpm for well RW-2. Intermediate values at 60 gpm are 17.4 gpm/ft and 6.6 gpm/ft for wells RW-1 and RW-2, respectively.

6.1.4 Recommendations

Well RW-1 should not be pumped at a discharge rate that exceeds 80 gpm as significant quantities of very fine sand and silt material have been observed to enter the well screen at these higher flow rates.

Well RW-2 should not be pumped at rates exceeding 30 gpm due to the significant observed loss in specific capacity at discharge rates exceeding 30 gpm.

6.1.5 Temporary Groundwater Treatment System

All water generated during the aquifer pumping tests was treated for TCA using a granular activated carbon (GAC) adsorption system rented from Calgon Carbon Corporation. The system was configured in a manner similar to that illustrated in the treatment system flow diagram included with the predesign study Work Plan. The only significant variation was the addition of a FSI bag filter system placed between the transfer pump and the GAC inlet manifold.

6.2 24-Hour Constant Rate Test

6.2.1 Purpose

A 24-hour constant rate test was performed to study aquifer characteristics by observing drawdowns at various locations throughout the site and collecting groundwater quality samples for air stripper design. With this information, the optimum pumping rate and sizing of the groundwater treatment system was estimated.

6.2.2 Methods

The 24-hour constant rate test was conducted beginning at 1:30 PM on August 29,1994. Recovery wells RW-1 and RW-2 were both pumped at a rate of 50 gpm for a 24 hour period.

American Auger, the NYSDEC, and DUNN monitored flow rates regularly throughout the pumping test. Adjustments were made when needed by regulating the gate valve at each wellhead.

Flow rates remained very constant throughout the test and required very little adjustment, except for several brief periods of generator failure.

DUNN and the NYSDEC measured drawdowns manually and electronically as set forth in the Work Plan, with several minor exceptions. The NYSDEC collected transducer data at TW-3I in addition to the other proposed wells, and DUNN collected data manually at SG-2 instead of placing a pressure transducer in the Otselic River. Additionally, a stilling tube designated RG-1, was installed in the river by DUNN to monitor river stage on an hourly basis during the test. RG-1 was located approximately 30 feet upstream from the outfall for the treated water.

DUNN analyzed water level and barometric pressure data collected over a period of approximately 2.5 days prior to the constant rate pumping test to evaluate background trends. Wells RW-2, the TW-5 well cluster and well TW-15I were monitored during this period. Corrections to the drawdown data were made based on the pre-test antecedent trend.

Corrected time-drawdown data were plotted for each well (Appendix I). Time-drawdown data for selected observation wells were analyzed using Streltsova's (1974) method to estimate aquifer transmissivity and specific yield. Streltsova's method was considered appropriate because it accounts for partial penetration of monitoring and recovery wells in water table aquifers as well as for delayed yield effects typical of unconfined, unconsolidated aquifers. Corrections for well interference were made by subtracting adjusted, single well pumping data collected during step rate testing (drawdown at 30 gpm x 1.667) from the 24 hour constant rate test. This method was employed to analyze drawdown data from wells TW-4I and TW-14I.

Well TW-15I is located roughly equidistant from the pumping wells. Analysis performed on observation well TW-15I used measured drawdown data that was not corrected for well interference. Instead, a combined pumping rate of 100 gpm was assumed for the aquifer analysis.

6.2.3 Results

At each well, an average pumping rate of 49.5 gpm was measured for the 24 hour pumping interval. During the approximate time interval 800 to 1050 minutes, pumping ceased for several seconds/minutes at both wells on several occasions because of temporary diesel generator malfunction. The transducer data collected at the TW-5 cluster and well TW-15I do not appear adversely affected by pump failure. However, a measurable reduction in drawdown (up to several hundredths of a foot) was recorded at the TW-4 cluster, TW-14 cluster and well TW-3I toward the end of the pumping test.

Maximum drawdown observed during the 24-hour pumping test is presented in Table 4 and Figures 4 and 5. The reported drawdowns were corrected for antecedent trend using a correction factor of 0.000067 feet/minute (0.09 feet/day). Analysis of water levels versus barometric pressure over a period of approximately 4 to 5 days indicated no apparent relationship between atmospheric pressure decreases and an increase in hydraulic pressure heads.

Within individual well clusters, observed drawdown was consistently greater within the intermediate and deep wells than in the shallow wells (Table 4). Maximum decreases in hydraulic head correspond to the screened sections of the recovery wells where detected concentrations of TCA have historically been highest. Thus, the pumping test data indicate a good hydraulic connection between the recovery wells and the TCA contaminated horizons of the aquifer.

Time-drawdown plots of all wells monitored by data logger show that steady state conditions were not achieved during the 24-hour test but abundant data were available for estimating aquifer transmissivity. The specific yield estimated using Streltsova's solution, is considered less reliable than the transmissivity values since steady state conditions were never achieved during the pumping test.

DUNN analyzed the data using Streltsova's curve matching method. "Type A" curves show the aquifer's initial response to pumping at which time the aquifer releases water from storage, behaving similar to a typical confined aquifer. At the site, this period usually occurred during the first 10 to 20 minutes of pumping as seen in the observation wells located within a radial distance of approximately 150 feet from both of the pumping wells. As the water table continued to decline, flow toward the pumping wells was derived primarily from gravity drainage of the aquifer. During this period, the time-drawdown relationship becomes a function of horizontal to vertical hydraulic conductivity, anisotropy, distance to pumping wells, and aquifer thickness. As time increased, drawdown was observed to gradually decrease. In theory, time-distance data again follow a Theis type curve as storativity equals the specific yield of the aquifer. This later stage of drawdown corresponds with Streltsova's "type B" family of curves. The transmissivities generated from "type B" curve matching are approximately two to three times higher than those calculated using the early drawdown data (Type A curves). Table 5 presents a summary of the aquifer analysis for the 24-hour constant rate pumping test. Streltsova analysis Part A and Part B curve matching graphs are included in Appendix J.

The results indicate that the hydraulic conductivity values used for the groundwater model are consistent with the results of the aquifer test analysis. The average hydraulic conductivity based on the Part A analysis, which is considered more reliable than the Part B analyses, is 25.9 ft/day (9.1x 10⁻³ cm/sec). The value used for the groundwater model was 14 ft/day (5x10⁻³ cm/sec). The hydraulic conductivities derived from the pumping test data are in good agreement with the range of values previously reported in the RI report.

7.0 GROUNDWATER SAMPLING AND ANALYSES

7.1 Purpose

DUNN collected samples of groundwater during the pumping tests for the following purposes:

- to evaluate the temporal changes in TCA concentrations at different pumping rates,
- to help determine the optimum groundwater withdrawal rate,
- to confirm a suitable TCA concentration for air stripper design,
- to characterize well water for physical and chemical parameters that could be indicative of well fouling potential, and
- to verify the effectiveness of the temporary treatment system at removing TCA from the pump test discharge water.

7.2 Methods

DUNN collected water samples from both RW-1 and RW-2 following the procedures set forth in the Work Plan and AQAP. Samples were collected at the start of the 30 gpm step of the step-rate test and at the end of the 30 gpm, 60 gpm, 80 gpm (RW-2) and 100 gpm (RW-1) steps. A sample of treated water from the GAC effluent stream was collected early during the step rate test to ensure that discharge limitations for the temporary treatment system were being met. Water samples were also collected from RW-1 and RW-2 at the start and finish of the 24-hour constant rate test. Field measurements for temperature, pH, specific conductance, and turbidity were made at frequent intervals throughout the constant rate test to identify temporal variations in these parameters. All samples collected for laboratory analysis were analyzed individually except for one sample from RW-1 and RW-2 which was composited in the laboratory prior to analysis.

The individual samples were analyzed for VOCs according to SW-846 Method 8010. The composite sample was analyzed for TCL/TAL as per the NYSDEC Analytical Services Protocol, total dissolved solids per Method 160.1, total suspended solids per Method 160.2, and alkalinity per Method 310.1.

7.3 Results

The preliminary results are summarized in Table 6 which has been submitted previously to NYSDEC. The final validated results are not yet available and will be forwarded to NYSDEC under separate cover during the week of October 10.

TCA concentrations varied from 110 μ g/l to 130 μ g/l in RW-1 and from 88 μ g/l to 130 μ g/l in RW-2. The concentration of the composite sample was 160 μ g/l. These concentrations are below the design concentration of 500 μ g/l; therefore the air stripper effluent should produce an effluent with TCA concentrations well below discharge limits.

Variations in TCA concentrations within the individual wells do not appear to be significant over the range of pumping rates tested. The observed variations lie within the expected range of variations caused by natural and analytical processes. The significance of the slight increase in the concentration of TCA at extraction well RW-1 at pumping rates greater than 50 gpm and above, and RW-2's slightly higher concentrations at 30 gpm may be artificial. Variations in the field parameters measured during the constant rate test were very minor, indicative of the consistent quality of water pumped over a 24- hour period.

TCA was not detected in the GAC effluent indicating that the GAC unit performed as intended and the temporary discharge requirements were met. The low concentrations of the inorganic analytes measured to evaluate fouling potential are indicative of the low potential for fouling.

Table 7 presents a summary of TCA groundwater concentrations reported for past and recent (July, 1994) sampling events.

8.0 **GROUNDWATER FLOW**

8.1 Water Level Measurements

A complete round of water level measurements was collected on the morning of August 29, 1994 prior to the 24-hour constant rate test. Table 8 includes this information along with additional water level elevations recorded at the site since October 1987.

8.2 Flow Directions and Rates

Local groundwater flow is to the south-southeast (Figure 6). Average horizontal gradient is approximately 0.0043 ft/ft. Flow velocities across the site were estimated using the intermediate well groundwater elevations collected on August 29,1994 and an average hydraulic conductivity of 25.9 feet per day as determined from the constant rate pumping test. Horizontal flow velocities were calculated along the flow line from the southern "plume boundary" defined by the 100 μ g/l TCA isoconcentration line south of TW-4 well cluster to well TW-12I, located adjacent to the closest downstream receptor, the fish hatchery well.

Velocities were calculated using a modified form of the Darcy flow equation:

$$V_n = KI_n/n$$

where $V_n =$ linear horizontal groundwater velocity (ft/day);

K = hydraulic conductivity (ft/day);

I = horizontal component of hydraulic gradient;

n = effective porosity (0.25 assumed - from RI).

Based on this equation, horizontal flow velocity is calculated at 0.45 ft/day.

9.0 DESIGN PARAMETERS

DUNN has evaluated pumping rates, specific capacities, influent water quality, potential air emissions, and flood elevations for the Gladding Cordage recovery well system design. Based on the evaluation, recommended design parameters have been developed and are summarized below. Preliminary design parameters were developed and submitted to the NYSDEC on September 15, 1994.

9.1 Radius of Influence

The step-drawdown and constant rate pumping tests were conducted and evaluated to estimate the radius of influence at different pumping rates in a single well and at a combined pumping rate of 100 gpm from both wells. The rates evaluated were based on the range of anticipated pumping rates to be used during system operation. A system pumping rate of 100 gpm had been estimated in the Feasibility Study.

Pumping a recovery well lowers the water table in the vicinity of the well and creates a gradient towards the extraction well ("cone of influence"). The cone of influence will expand radially until the amount of recharge flowing into the cone equals the well discharge. Once this expansion ceases, the cone is considered to be at a steady state, a dynamic equilibrium condition under which some fluctuations may occur. Although the cone of depression may extend to long distances where the drawdown becomes infinitesimal, for practical and design purposes the radius of influence is defined here as the zone where drawdown exceeds a nominal 0.2 ft.

Groundwater levels and the radius of the capture zone will fluctuate with time in response to natural conditions such as seasonal variations in groundwater levels, precipitation, recharge rate, and river stage. It is recommended that pumping rates, monitoring well drawdowns, and well water quality be monitored periodically during operation to identify and characterize the magnitude of these variations. Pumping rates should be modified as necessary to optimize system performance, i.e. the wells should be pumped at the lowest rate necessary to capture the 100 μ g/l plume, within hydraulic design constraints. The average plume extent is shown on Figure 2.

9.2 Pumping Rate

The test results indicated that after 24 hours a combined pumping rate of 100 gpm (50 gpm per well) developed a cone of depression, i.e. capture zone, that extended approximately 350 feet, well beyond the monitoring wells, e.g. TW-3, TW-6, TW-7 and TW-9, that are located slightly outside the targeted 100 μ g/l (ppb) contour line (see Figure 4). Pumping for longer periods would slightly increase the radius of influence because steady state conditions were not completely attained at distant monitoring wells after completion of the 24 hour pump test. It was therefore concluded that a pumping rate of 100 gpm as proposed in the Feasibility Study would exceed the rate needed to achieve project objectives.

Based on these observed drawdowns and that drawdown is linearly proportional to pumping rate, it was determined that a total 60 gpm rate (60 percent of 100 gpm) would be sufficient to develop a 0.2 ft drawdown around the fringe of the 100 μ g/l target zone (see Figure 2). It is therefore

anticipated that the pumping rates required per well to achieve remedial objectives will be between 30 gpm and 50 gpm, i.e. total discharge to the treatment system between 60 gpm and 100 gpm. Lower pumping rates may achieve objectives, but with a lower factor of safety than the 30 gpm rate. As the required capture zone shrinks with time, lower pumping rates may be appropriate. Higher pumping rates would also accomplish the objectives. However, the higher rates would increase cost, lower specific capacity and increase potential for turbidity or well damage.

The well pumping and treatment system should be designed to efficiently handle flows in the range of 30 to 50 gpm per well. To minimize costs it is recommended that the initial flow rate be set at 30 gpm per well or 60 gpm total flow to achieve the desired capture radius. The fine grained aquifer material encountered at RW-2 required that the well be designed with a fine grained filter pack and slot opening to minimize turbidity. This design limits well yield. As a result, it is recommended that RW-2 be pumped at rates no greater than 30 gpm. This constraint does not apply to RW-1 which may be pumped as high as 50 gpm. Higher rates at RW-1 however may increase the potential for entrained suspended solids. The recommended range of operational pumping rates is therefore 60 gpm to 80 gpm.

9.3 Specific Capacity and Recovery Well Water Levels

Specific capacity values for each well (pumping rate, in gpm, divided by drawdown, in feet) were estimated using data collected during the pumping tests. The specific capacity values can be used to estimate the magnitude of drawdown in a pumping well for a specific pumping rate. Specific capacity values may decrease with time and with increased pumping rate. Accordingly, the drawdown in the recovery wells has been conservatively estimated using the specific capacity values estimated from the 24 hour 50 gpm per well constant rate test. After 24 hours, the drawdown in RW-1 appeared to stabilize, and a fairly reliable value of specific capacity can be estimated. The drawdown in RW-2 apparently had not stabilized after 24 hours and therefore, it was necessary to extrapolate forward to estimate drawdown and specific capacity.

RW-1 13.0 gpm/ft RW-2 2.7 gpm/ft

These specific capacities can be used to estimate water levels in the recovery wells during pumping. Regardless of specific capacity values, it is recommended that the pump intakes be installed as low as possible a few feet above the well screens to maximize the available drawdown. Specific capacity may change with time and pumping rate, and in response to additional well development as discussed in the preliminary design parameters report. Pumping levels may also be affected by variations in static (non-pumping) water levels.

For a pumping rate of 30 gpm and a specific capacity of 13.0 gpm/ft in RW-1, the drawdown would be approximately 2.3 feet. The drawdown in RW-2 for the same pumping rate and a specific capacity of 2.7 gpm/ft would be approximately 11.1 feet.

9.4 Water Quality

Based on the FS and ROD, the chemical of concern at the Gladding Cordage Site is 1,1,1-trichloroethane (TCA). The preliminary water quality results indicated that the TCA concentration varied between 99 μ g/l (ppb) and 130 μ g/l (ppb) during the step rate tests which lasted 100 minutes each. The TCA concentrations varied between 88 μ g/l (ppb) and 160 μ g/l during the 24-hour combined well pumping test. These results are below the preliminary (worst case) TCA concentration estimate of 500 μ g/l (ppb) to be used for design.

Water quality within the cone of depression may change with time as the TCA is removed. It is anticipated that TCA concentrations will decrease with time, but short term increases in TCA concentrations may occur. Based on the 500 μ g/l concentration recommended by the NYSDEC for design, a conservative margin of safety is provided.

9.5 Water Pretreatment

The preliminary water quality data included analytical results for iron, manganese, calcium, hardness, alkalinity, total dissolved solids, total suspended sediments, pH, temperature, specific conductance, and turbidity. These analyses were conducted to evaluate the fouling potential or treatment system scaling. The samples were collected from the two recovery wells combined discharge at the end of the 24-hour pumping test. This discharge is assumed to be reasonably representative of future conditions and therefore suitable for design purposes.

An analytical results review indicates that pretreatment of well water to reduce the fouling compounds concentrations is not warranted. The treatment system design should therefore proceed under the assumption that water pretreatment is not required. Future sampling and analyses should be conducted appropriately during operations to verify that water quality and fouling potential have not significantly changed.

9.6 Air Emissions

The emission rate of TCA from the air stripper has been calculated and submitted to NYSDEC. The emission estimates were based on a well water flow rate of 100 gpm, TCA concentration of 500 μ g/l (ppb) and stripper removal efficiency of 98.92 percent. The air stripper modeled was a two tray, low profile air stripper Model 3621. The predicted emission rate is 0.025 lbs/hr TCA - well below the emission rate requiring air pollution controls. Treatment system design is proceeding based on the assumption that vapor phase carbon treatment of air stripper emissions will not be required.

9.7 100-Year Flood Elevation

The FEMA flood insurance map that includes the Gladding Cordage Site delineates a floodway, but does not provide an elevation that can be used for design purposes. It is therefore suggested that a suitable elevation nominally above flood stage be considered for design of the treatment building floor elevation. An appropriate elevation may be the mid-roadway elevation on the Gladding Street bridge that crosses Otselic River adjacent to the site.

10.0 APPLICABLE SCGs

Applicable SCGs will be addressed in the TAMs report.

FIGURES

I IC RIV		⊕ ^{TW-15I} 94	INTERMEDIATE MONITORING WELL AVERAGE TCA CONCENTRATION (μ g/])
OTSEL		RW-2	RECOVERY WELL
	1202.50	100 μg/I	AVERAGE TCA CONCENTRATION CONTOUR OVER LAST 4 YEARS (μg/l) (JAN. 1990 through AUG. 1994) CONTOUR INTERVAL = 50 μg/l
		1204.0	GROUNDWATER ELEVATION, CONTOUR LINE CONTOUR INTERVAL = 0.5 (ft.) (8/29/94)
0' 50' 100' 200 SCALE)'		GROUNDWATER FLOW DIRECTION
	DUNN ENGINEERING	COMPANY	TCA CONCENTRATION CONTOUR MAP
	DIVISION OF RUST ENVI	RONMENT & ASTRUCTURE	GLADDING CORDAGE SITE NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION TOWN OF OTSELICCHENANGO COUNTY, N
	PROJECT No. 37537.002	DATE 9/27/94	DWG. No. 37537-03 SCALE 1"-100' FIGURE No. 2

RET			
OTSEL		€ 6 E N € TW-151 0.18	INTERMEDIATE MONITORING WELL PROJECTED DRAWDOWN (ft.)
⊕ TW-11I		RW-2 0.1'-	RECOVERY WELL ESTIMATED DRAWDOWN (ft.) AFTER 100 MIN. WITH RW-1 and RW-2 PUMPING AT 30 GPM FACH
0' 50' 100' 200 SCALE	DUNN ENGINEERING	Company	DRAWDOWN CONTOUR MAP AT 30 GPM FOR BOTH PUMPING WELLS AFTER 100 MINUTES
	DIVISION OF RUST ENVIR PROJECT No. 37537.002	DATE 9/27/94	GLADDING CORDAGE SITE NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION TOWN OF OTSELIC DWG. No. 37537-02 SCALE 1"-100' FIGURE No. 3

$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$.00	LEGEND			
0' 50' 100' 200 SCALE	S - 0 I - 0 D - 0	. 38 ⊤W-5 .63 ⊕ .64 RW-2 ○	MONITORING WI INTERMEDIATE DRAWDOWN LE RECOVERY WE	ELL and SHALL((1) and DEEP (D VELS (ft.) LL)W (S)),
	DUNN ENGINEERING DIVISION OF RUST ENVINE PROJECT No. 37537.002	COMPANY IRONMENT & ASTRUCTURE DATE 9/27/94 DW	MAXIMUM DRAWI WELL DURING RA (RW-1 and RW-2 GLADD NYS DEPARTMENT WN OF OTSELIC WG. No. 37537-04	OOWN OBSERVE 24 HOUR CO TE PUMP TEST BOTH PUMPING ING CORDAGE S OF ENVIRONMENTAL SCALE 1"-100'	D AT EACH NSTANT AT 50 GPM) SITE CONSERVATION CHENANGO COUNTY, NY FIGURE No. 5

TABLES

Gladding Cordage Site Monitoring Well Elevations Table 1.

	_	1994 Survey	(Revised)
Well ID	1988 Measuring Point Elevations	Surface Elevation	Measuring Point Elevation
TW-3s	1213.53	1211.10	1213.60
TW-3i	1213.18	1210.75	1213.19
TW-3d	1213.45	1211.21	1213.47
TW-4s	1212.05	1210.19	1212.06
TW-4i	1212.07	1210.16	1212.08
TW-4d	1212.39	1210.25	1212.39
TW-5s	1211.77	1209.98	1211.78
TW-5i	1211.85	1209.90	1211.89
TW-5d	1212.52	1210.00	1212.55
TW-7s	1213.44	1211.04	1213.48
TW-7i	1213.56	1211.13	1213.60
TW-7d	-	1211.35	1213.25
TW-14s	-	1209.76	1211.81
TW-14i	-	1209.77	1211.77
TW-14d	-	1209.81	1211.85
TW-15i	-	1209.67	1211.52

Notes:

All elevations are in feet above sea level (USGS datum)

- Indicates that the well was not installed at time of survey.

.

Gladding Cordage Site	994 Monitoring Well Construction, Development and Survey Information	Table 2.
-----------------------	--	----------

105 gallons	54.358	58.070.0	1141.5	1149.7	70.0	60.0	70.0	1211.52	1209.67	TW-15i
140 gallons	68.577.8	77.890.0	1121.9	1129.8	90.0	80.0	90.0	1211.85	1209.81	TW-14d
200 gallons	58.563.0	63.075.0	1136.8	1144.8	75.0	65.0	75.0	1211.77	1209.77	TW-14i
46 gallons	5.88.0	8.020.0	1191.8	1199.8	20.0	10.0	20.0	1211.81	1209.76	TW-14s
152 gallons	63.065.8	65.879.0	1135.3	1143.4	78.0	68.0	100.5	1213.25	1211.35	DV-7d
Development	Interval	Interval	Bottom	Top	Bottom	Iop	Depth	Elevation	Elevation	Well
Removed During	Seal	Sandpack	of Screen	Elevation c	to Screen	Depth 1	Boring	Point	Surface	Monitoring
Volume of Water	Bentonite							Measuring		

Notes:

Elevations are in feet above sea level (USGS datum). All depths and intervals expressed as feet below grade.

Each well was equipped with a locking protective steel casing and gripper cap. All wells are constructed of 2 inch ID Type 304 stainless steel design.

	Well	ID
Well Details	RW-1	RW-2
Surface Elevation (ft)	1210.03	1210.13
Screen Length (ft)	18.7	12.2
Slot Size (in)	0.095	0.025
Depth to Screen (ft) Top Bottom	48.3 67.0	67.8 80.0
Elevation of Screen (ft) Top Bottom	1161.73 1143.03	1142.33 1130.13
Sandpack Interval (ft)	5.567.0	6.080.0
Sand pack Material Size Amount	#4 Morie 4300lbs	#0 Morie 5700 lbs
Bentonite Seal Interval	5.57.0	4.06.0

Gladding Cordage Site Groundwater Recovery Well Construction Details Table 3.
Gladding Cordage Site Maximum Drawdown at Each Well Table 4.

Г		RW-1 Pumping			RW-2 Pumping			RW-1 and RW-2 Pumping
								Simultaneously
	Well ID	30 gpm	60 gpm	100 gpm	30 gpm	60 gpm	80 gpm	50 gpm each
Г	TW-1S	-	-	-	-	-	-	0.05
	TW-2S	-	-	-	-	-	-	0.12
	TW-2I	-	-	-	-	-	-	0.21
	TW-2D	-	-	-	-	-	-	0.23
	TW-3S	-	-	-	-	-	-	0.17
	TW-3I	-	-	-	0.075	0.125	0.194	0.28
	TW-3D	-	-	-	-	-	-	0.29
	TW-4S	0.115	0.242	0.247	0.050	0.077	0.125	0.45
	TW-4I	0.122	0.269	0.470	0.137	0.274	0.369	0.69
	TW-4D	0.084	0.175	0.297	0.147	0.280	0.368	0.56
	TW-5S	0.060	0.108	0.184	0.060	0.130	0.248	0.38
	TW-5I	0.100	0.186	0.306	0.192	0.398	0.528	0.63
	TW-5D	0.090	0.184	0.301	0.240	0.450	0.561	0.64
	TW-6S	-	-	-	-	-	-	0.17
	TW-6I	-	-	-	-	-	-	0.41
	TW-6D	-	-	-	-	-	-	0.40
	TW-7S	-	-	-	-	-	-	0.06
	TW-7I	-	-	-	-	-	-	0.32
	TW-7D	-	-	-	-	-	-	0.36
	TW-8S	-	-	-	-	-	-	0.22
	TW-8I	-	-	-	-	-	-	0.26
	TW-91	-	-	-	-	-	-	0.34
	TW-9D	-	-	-	-	-	-	0.46
	TW-10D	-	-	-	-	-	-	0.22
	TW-11S	-	-	-	-	-	-	0.00
	TW-111	-	-	-	-	-	-	0.00
	TW-12I	-	-	-	-	-	-	0.03
	TW-12D	-	-	-	-	-	-	0.03
	TW-13S	-	-	-	-	-	-	0.05
	TW-13I	-	-	-	-	-	-	0.07
	TW-14S	0.141	0.291	0.510	0.073	0.142	0.237	0.33
	TW-14I	0.340	0.717	1.250	0.080	0.168	0.266	1.10
	TW-14D	0.080	0.186	0.330	0.173	0.357	0.466	1.08
	TW-15I	0.052	0.126	0.211	0.110	0.198	0.252	0.43
	RW-1	2.210	3.690	6.690	0.069	0.162	0.270	3.52
	RW-2	0.080	0.163	0.270	1.455	9.002	28.500	24.76

•

Gladding Cordage Aquifer Test Analysis Using Streltsova's (1974) Curve Fitting Method for Partial Penetrating Recovery and Monitoring Wells Table 5.

	Well Setup			P	art A Result	S	Pá	art B Result	ts
					Hydraulic conductivity			Hydraulic conductivity	
Well ID	Interference Effects	Radial Distance (ft)	Pumping Rate (gpm)	Transmissivity (ft^2/day)	(ft/day) (cm/s)	Storativity (Sa)	Transmissivity (ft^2/day)	(ft/day) (cm/s)	Storativity (Sy)
TW-4i	RW- 1 primary pumping				19.99			51.893	
	RW-2 interference	35	50	1794.489	7.03E-03	5.66E-03	4670.368	1.83E-02	7.63E-01
TW-5i	RW-2 primary pumping				19.956			62.577	
	RW-1 interference	37	50	1795.998	7.04E-03	1.57E-03	5631.915	2.21E-02	4.94E-01
TW-14i	RW- 1 primary pumping				8.723			17.298	
	RW-2 interference	56	50	785.089	3.08E-03	3.00E-04	1556.789	6.10E-03	1.49E-01
TW-15i					55.503			103.157	
	NO interference	149	100	4995.263	1.96E-02	3. <u>33E-0</u> 4	9284.126	3.64E-02	1.00E-01

f

f

Ē

ype of Test &	Recov. Well	Recov. Well			ů ,	mbined		;	
umping Hate	нw-1 1.1.1-TCA	нw-2 1.1.1-TCA	1.1.1-TCA	iron	Sample manganese	e (100 gpm) calc hardness	alkalinitv	TDS	TSS
	l/gu	Vôn	l/on	ng/	l/bn	Mg/l	Mg/l	l/om	mg/l
tep-Rate ach well 0 gpm sl	art 110 ish 120	120							
) gpm fin	ish 110	66							
) gpm fin	ish	110							
00 gpm fin	ish 130	ı							
onstant-Rate oth wells 0 gpm each v st	vell art 130 ish 130	110 88	160	48.1	153	160	188	194	0.8
arbon Efflue mid-t	nt		0						

and turbidity was 0 in RW-1 and RW-2, respectively.

PRELWQ.WK4

09/30/94

r	<u>, </u>				г — —	т	г	r			1			1
Wolld	Alou -86	000.86	' ر و ا	' مور ایرا	A		100-80		Mar -01	000.01	1			Average
Weilig	110000	000.00	Jui07	Jui00	Aug co	001.000	Jun07	Jun70	Wiui,-71	1080.971	Muy-75	001,-75	Jul94	
11/1	╂── <u>─</u> ──		<u> </u>		┟──┤──┘		┟────┙		10		└─ _─'			10*
TM/25	27	A07		1		3			30		125		19	30
TA/21	57	47/	1 '' '				15	2	16	25	75		20	
			l <u>'</u> '	1 _ '	1 _ '		14		6	20	20	2	20 8	11
TW3S	263	437	160	26	85	32	34	42	28	48	40	36	25	37
TW3	-	-	· ~ '	-	-	14		8	16	32		37	33	38
TW3D	Ι. '	1 .	_ '	1 .		5	5	ND	ND	5	ND		3	3
TW4S	178	103	17	1 7	23	18	18	10	8	175	15	64	22	49
TW4		31	8	1 11	8	17	38	39	54	97	250		90	107
TW4D	-		' '	1		5	6	4	3	9	ND	2	9	5
TW5S	4	475	659	150	422	270	130	59	14	190	40	63	38	67
TW5I	186	243	111	99	116	190	320	180	83	180	500	215	154	219
TW5D		-	l - 1	1 -		150	150	120	74	150	300	42	80	128
TW6S	l - 1	1 - '	- 1	· -	- ·	3	- 1	ND	ND	ND	ND	2	i 1	2
TW6I	- 1	-	1 1	- 1	- '	ND	-	15	5	20	15	8	6	12
TW6D	-	l - '	-	-	-	ND	-	ND	ND	ND	ND	ND 1	ND '	ND
TW7S	- 1	í - '	[- ¹	1 -	l - '	79	150	74	10	50	35	57	31	43
TW71	- 1	·		l -	- '	110	ND	150	34	185	75	88	44	96
TW7D	-	1 -	-	-	- '	l - !	-		- 1	- 1	- '	-	16	16*
TW8S	1 -	- 1		-	- 1	ND	ND	ND	ND	ND	ND	ND	ND	ND
TW8	-	-	-	-	- '	ND	l - '	ND	ND	ND	ND	ND	ND	ND
TW9	[- '	1 - 1	[- '	- 1	- '	3	4	3	ND	7	15	5	4	7
TW9D	-	- 1] - '	- 1	- I	ND	-	ND	ND	ND	ND	ND	ND	ND
TW10D	-	-	-	- 1		4	ND	ND	4	ND	ND	. ND	ND	ND
TWHS	-	- 1	-	- 1	- '	17	ND	9	14	45	30	6	9	19
TW11	-	1 -	-	- 1	-	17	ND	13	9	55	50	21	16	27
TW12I	-	-	-	- 1	-	ND /	- 1	- '	7	60	30	8	10	23
TW12D	- 1	· ·	<u>-</u>	-	- '	ND	- '	- '	- '] - '	ND	ND	ND	ND
TW13S	-	-	-	- 1	- '	ND	[- '	- '	-		- '	ND	-	ND
TW13I	-	-			- '	ND	· '	- '	-	- '	1 - '	ND	-	ND
TW14S	-	-		- 1	-		- 1		- '	· · ·	- 1	-	118	118*
TW14i	1 -	l -	- 1	- 1	-	- /	-	- '	-		- /	-	39	39*
TW14D	· ·	· ·	-	-	- '		-	- '	- '	- '		-	90	90*
TW15I	-		-	-	- '	- '	1 - '	l - '	· · ·	1 - '	(- '	- 1	94 /	94*

GLADDING CORDAGE SITE GROUNDWATER QUALITY DATA Trichloroethane (TCA) concentrations in Groundwater (ppb) Table 7.

Notes:

ND - indicates no TCA detected.

- - indicates no sample taken.

- indicates only one sample.

9/30/94

Gladding Cordage Site Groundwater Elevations Table 8.

1204.51 1204.32 1204.36 1203.40 1203.38 Aug-94 1205.85 1204.63 1204.52 1204.36 1203.75 1203.09 1203.63 1204.92 1204.56 1204.40 1203.97 1203.97 1203.95 1203.76 1203.03 1202.28 1198.12 1205.92 1203.69 1203.52 1203.64 203.48 203.40 203.43 1203.64 204.01 1202.30 1198.30 1205.93 1204.93 1203.96 1204.15 1204.10 1204.16 1203.18 1204.33 1203.53 1203.28 1202.80 1204.13 1203.24 1202.86 1202.97 1204.49 1203.72 1203.70 1202.50 1198.63 1205.46 <u> Oct-93</u> 1205.51 1203.04 1202.99 1203.04 1203.51 1203.47 1198.81 1205.57 202.77 1198.27 1198.50 1203.78 1204.60 1204.60 1204.29 1204.45 1203.56 1203.57 1204.27 1203.84 1203.72 1205.23 1205.03 1203.85 1203.94 1202.53 1203.61 1206.33 1203.59 1203.96 1204.29 1202.55 May-91 1204.47 1203.54 1204.04 1198.91 1198.12 1204.94 1204.81 1205.23 1203.96 1203.76 1206.04 1203.44 1205.40 1205.09 1204.64 1204.53 1206.14 Dec-91 1206.02 205.44 1204.53 1204.86 1204.21 1204.77 1203.73 1203.58 1204.16 1204.42 1203.64 1203.53 1204.22 1205.56 1204.95 1203.55 1198.20 1198.37 1205.05 1204.85 204.84 1206.03 1203.72 1203.57 1203.94 1203.47 1205.02 1204.03 1204.38 1203.24 1206.67 1206.73 1204.61 204.10 203.76 1202.39 <u> Mar-90</u> 204.68 203.69 1204.21 204.56 1202.56 204.61 205.77 1206.27 1203.12 1203.33 1203.43 1203.76 1204.95 1204.65 1202.53 1198.56 1206.19 Jan-90 1204.08 1203.07 1203.44 1204.11 1204.11 1203.04 1202.34 1205.97 1204.99 204.58 1204.73 1204.22 1203.71 1203.87 1203.81 1206.21 1204.98 1203.35 1198.37 1204.61 1197.45 1197.70 1205.83 1205.54 Sep-89 1202.99 1203.79 1203.46 1203.34 1205.98 1204.64 1204.40 1203.18 1204.73 1203.84 1202.84 1201.88 1204.83 1204.39 1203.05 203.50 1203.52 1206.24 1203.67 1204.37 1202.81 1203.21 1203.11 205.17 1203.66 1203.63 1203.55 1197.95 1204.96 1205.45 1203.30 1203.39 1203.52 1203.97 205.98 1204.68 1204.45 1203.07 1203.81 1205.31 1204.89 1203.69 1198.16 1205.79 1205.76 Jun-89 204.61 204.53 1202.97 1203.40 1203.34 1202.92 1201.84 1201.81 1203.05 1203.72 1204.12 1204.39 1204.30 1204.35 1204.17 1199.14 1205.23 1205.11 1204.85 1203.64 1203.74 1204.35 1203.84 1205.29 1199.27 206.98 Feb-89 1205.44 1204.94 1203.93 1203.81 203.55 203.12 1206.47 1206.72 204.96 203.44 1205.20 1202.75 Jan-89 1204.15 1203.42 1203.78 1202.67 1202.69 1203.50 1203.02 1202.49 1204.54 204.05 203.15 1201.71 1201.81 204.13 1204.16 1202.34 1203.94 . • 4 , 1202.45 1198.30 1202.07 1203.94 **Oct-88** 1203.70 1203.66 1203.01 1205.08 1204.84 202.19 1201.59 1201.71 1202.40 1200.79 1201.26 204.06 1203.64 1203.53 203.38 1203.35 1202.17 1202.77 1202.20 1201.69 203.09 1202.77 1201.31 198.42 1205.37 10¹ **11S** 12 12D 13S 14S 14S 14D 15I 11 55 55 50 68 68 60 60 73 88 88 88 <u>8</u> 8 8 4 ₹ ₹ ₹ ₹ ≥≥ ₹ ₹ ₹₹ ≥≥ ₹ ≥≥ ₹ ₹ ₹ ₹ ₹ ₹ ₹ <u>}</u> ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ≥

RUST Environment and Infrastructure

APPENDIX A

NUMERICAL GROUNDWATER FLOW MODEL

NUMERICAL GROUNDWATER FLOW MODELING GLADDING CORDAGE COMPANY

ŧ

Prepared for: New York State Department of Environmental Conservation

.

Prepared by: RUST Environment & Infrastructure Barrington Commons 208 White Horse Pike, Suite 13 Barrington, New Jersey 08007

April, 1994

TABLE OF CONTENTS

<u>Chapter</u>

<u>Page</u>

1.0	INTR	RODUCTION
	1.1	GENERAL 1-1
	1.2	SITE SETTING 1-2
		1.2.1 Site Geology 1-2
		1.2.2 Site Hydrogeology 1-2
		1.2.3 Groundwater Chemistry 1-4
2.0	ANA	LYSIS
	2.1	GROUNDWATER FLOW MODEL SET-UP 2-1
	2.2	GROUNDWATER FLOW MODEL CALIBRATION 2-3
3.0	RESU	ULTS
	3.1	PUMPING TEST SIMULATION
	3.2	CAPTURE ZONE ANALYSIS AND TRAVEL TIME ESTIMATIONS 3-1
4.0	DEC	
4.0	KEU	$\bigcup M M E N D A H U N S \qquad \dots \qquad$

LIST OF TABLES

<u>Ta</u>	<u>ble</u> Follows I	Page
1	Calculation of Streambed Conductance for an Individual Modeling Cell	4-1
2	Summary of Groundwater Flow Modeling	4-1

LIST OF FIGURES

<u>Figure</u>

<u>Follows Page</u>

1	Well Location Map	4-1
2	Interpreted TCA Concentrations Contours (1993)	4-1
3	Simulated Hydraulic Head Contours (Layer 1)	4-1
4	Simulated Drawdown Contours After 1 Day of Pumping (Layer 1)	4-1
5	Simulated Drawdown Contours After 1 Day of Pumping (Layer 2)	4-1
6	Simulated Drawdown Contours After 1 Day of Pumping (Layer 3)	4-1
7	Scenario A Steady State	4-1
8	Scenario B Steady State	4-1

1.0 INTRODUCTION

1.1 GENERAL

RUST Environment & Infrastructure (RUST) has been retained by New York State Department of Environmental Conservation (NYSDEC) to design an extraction system at the Gladding Cordage Company site, South Otselic, New York. The goal of the proposed remedial action is to control the area of groundwater degradation with TCA concentrations above 100 μ g/l.

A numerical groundwater flow model was used to evaluate potential pumping scenarios and groundwater constituents travel times. In addition, the numerical groundwater flow model was used to assist in the design of a proposed pumping test at the site.

Details of the site setting are presented in the "Preliminary Draft Remedial Investigation Report Gladding Cordage Company Site, South Otselic, Chenango County, New York (June, 1989), prepared by GHR Engineering Associates, Inc. (RI report). The RI report was used as a data source for the design of the extraction system at the site. A brief presentation of the site geology, hydrogeology and groundwater chemistry with references to the RI report figures, plates and tables is presented below.

1-1

1.2 SITE SETTING

1.2.1 Site Geology

The site is located in the Appalachian Uplands physiographic province. The bedrock consists of Upper Devonian sandstones, shales and limestones. The bedrock dips regionally at a low angle (up to 10 degrees) to the south-southwest. Structural contours to the top of bedrock are presented in Plate 6 of the RI report.

Pleistocene unconsolidated glacial deposits (till, outwash and glacio-lacustrine sediments) overlie the bedrock, and Recent Holocene unconsolidated deposits are present along the river valleys. The thickness of the unconsolidated deposits at the site varies from 50 feet in the northern part of the site to 110 feet in the southern part of the site (see geologic sections presented in Plate 7 of the RI report).

1.2.2 Site Hydrogeology

The site is located in the Otselic River valley. This valley is part of the Tioughnioga tributary system of the Susquehanna River basin. The main aquifers in the region are represented by stratified drift aquifers located along the broad valleys. The bedrock and till aquifers produce on average much lower yields (0.5 gpm to 8 gpm) than the stratified drift aquifers (400 gpm).

In the site area the main aquifer is developed in the unconsolidated Pleistocene and Holocene deposits. This upper aquifer was the focus of the RI site investigation. During the RI field investigation a series of shallow intermediate and deep cluster wells were installed. Slug testing and water level measurements allowed the hydrogeologic characterization of the aquifer materials.

The hydraulic conductivity of the aquifer ranges from 2.9 ft/day to 33.5 ft /day $(3.5 \times 10^{-3} \text{ cm/s})$ to $1.2 \times 10^{-2} \text{ cm/s}$ with an average of 14 ft/day $(5 \times 10^{-3} \text{ cm/s})$; see Table 3-3 in the RI report). The vertical distribution of the hydraulic conductivity data does not suggest the presence of continuous confining units. At the scale of the study area the aquifer seems to display a relative homogeneous distribution of hydraulic conductivity as indicated by the results of the hydrogeologic testing (see Table 3-3 in the RI report).

The groundwater level data (see Table 3-4 in the RI report) indicated that horizontal hydraulic gradients range from $2x10^{-3}$ ft/ft to $8x10^{-3}$ ft/ft. The vertical hydraulic gradients range from an upward gradient of $+4x10^{-3}$ ft/ft to a downward gradient of $-2x10^{-2}$ ft/ft (see Table 4-4 in the RI report). The general groundwater flow direction is from north to south. The area north of cluster well TW-4 is an aquifer recharge zone, characterized by downward hydraulic gradients. In this area the Otselic River is a loosing stream (water from the river is recharging the aquifer). South of cluster well TW-4 the aquifer presents upward hydraulic gradients indicating a tendency of the aquifer to discharge into the Otselic River. Figure 1, attached, presents the monitoring well locations and the extent of the modeling grid. Plates 9 to 11 in the RI report present the groundwater elevation contours and interpreted flow paths.

1-3

1.2.3 Groundwater Chemistry

The RI field investigation indicated the presence of a volatile organic compound (VOC) plume at the site. Plate 12 in the RI report presents the interpreted total volatile organic isoconcentration contours for October 1988 sampling event. The main constituent of the plume is 1,1,1-trichloroethane (TCA). Figure 2 (attached) presents the outline of the 100 μ g/l TCA isoconcentration contour for 1993 sampling events.

ŧ

2.0 ANALYSIS

2.1 GROUNDWATER FLOW MODEL SET-UP

Following is a brief presentation of the boundary conditions and input parameters for the MODFLOW groundwater flow model (McDonald and Harbaugh, 1984).

Finite Difference Grid and Boundary Conditions

The MODFLOW model uses a block centered grid. A finite difference grid of 130 rows and 80 columns with an equal grid spacing of 20 feet (2600 feet x 1600 feet) was selected for the groundwater flow simulation. To account for partial penetration conditions the aquifer was simulated using three layers. The modeling layers correspond with the shallow, intermediate and deep sections of the aquifer (layers 1, 2 and 3, respectively).

The Otselic River and Ashbell Brook were simulated by defining "river nodes" within layer 1 of the modeling grid. The following parameters were used for the definition of the river nodes:

- The surface water elevation of the Otselic River was decrease in stages from 1,207 ft in the northern part of the grid (upstream) to 1,198 feet in the southern part of the grid (downstream) in accordance with the topographic map of the area;
- The surface water elevation of the Ashbell Brook was decreased in stages from 1,204 ft in the northwestern part of the grid to 1,201 ft at the confluence with Otselic River;
- The river bottom elevation was calculated as the surface water elevation minus the estimated surface water thickness (5 ft) minus the estimated river bed thickness (5 ft);
- Hydraulic conductivity of the river bed was assumed to be 0.03 ft/day (1x10⁻⁵ cm/s) in the northern part of the grid (loosing stream area) and 1.4 ft/day (5x10⁻⁴ cm/s) in the southern part of the grid (gaining stream area);

• River bed conductance calculations are presented in Table 1 (attached).

Constant head boundary conditions were set for all the layers along the northern and southern sides of the model. The values assigned to the constant head cells were taken from the interpreted groundwater elevation contours for October 3 to October 6, 1988 (Plates 9 to 11 in the RI report).

Hydraulic Conductivity

The average hydraulic conductivity value of 14 ft/day (5x10⁻³ cm/s) was assigned for the major portion of the modeling layers. Within layers 2 and 3 hydraulic conductivities of 20 ft/day and 25 ft/day, respectively, were used along the Otselic River channel. This is in accordance with site data which indicates increased hydraulic conductivity in the vicinity of the river. It is expected that along the main outwash channels (the ancestral Otselic River channel) the hydraulic conductivity will be higher because the coarser, more permeable material tends to be deposited along the center of the valley (high energy deposits).

Base of the Aquifer

The base of the aquifer was considered to be the top of the bedrock surface. The bottom elevation of modeling layer 3 was input in accordance with the top of bedrock structural contours presented in Plate 6 of the RI report. The bottom elevations of modeling layers 2 and 1 were input as intermediate elevations between the bedrock elevation and the average ground surface elevation.

Precipitation Recharge

The net precipitation recharge assigned to the model was 11.3 inches/year $(2.6 \times 10^{-3} \text{ ft/day})$ in accordance with Section 4.2.2.1 of the RI report.

2.2 GROUNDWATER FLOW MODEL CALIBRATION

The goal of the model calibration was to obtain simulated hydraulic heads similar to the measured water level data. The October 3 to October 6, 1988 water level data set was used as a target for model calibration. Figure 3 (attached) presents the simulated hydraulic heads and the differences between measured versus simulated heads. Table 2 (attached) includes a summary of these differences. As can be seen, the average head difference is -0.12 ft.

3.0 RESULTS

3.1 PUMPING TEST SIMULATION

The pumping test simulation results are presented in Figures 4, 5 and 6, attached. The pumping well (EW1) was located approximately 50 ft upgradient of cluster wells TW-4. The simulated pumping rate was 50 gpm. For convenience, the pumping well was considered to be screened in the central part of the aquifer (modeling layer 2).

The attached figures (Figures 4 to 6) show the simulated drawdown contours after 24 hours of pumping. As can be seen, the drawdown cone could extend more than 200 ft radially from the pumping well. The monitoring wells within the area of influence of the pumping well could be used as observation wells for the pumping test.

3.2 CAPTURE ZONE ANALYSIS AND TRAVEL TIME ESTIMATIONS

The goal of an extraction system at the site is to control the portion of the TCA plume that has concentrations higher than 100 μ g/l. The computer code MODPATH (Pollok, 1990) was used to estimate the effectiveness of pumping scenarios at the site. Particles were set along the 100 μ g/l TCA isoconcentration contours and pumping rate and well locations were changed until all particles were controlled by the extraction well.

The capture zone analysis indicate the following:

gladding\...\gcc01.wpw

- The plume can be controlled by one extraction well pumping at a rate of about 50 gpm (Scenario A; see Figure 7, attached);
- A two well scenario can be used to control the TCA plume (Scenario B). The extraction wells (EW1 and EW2) were located along the plume axis. The total pumping rate is estimated to be at 50 gpm, 25 gpm for each well (see Figure 8, attached).

The second scenario presents the advantage that the extraction system performance is not dependant on only one well. The repairs and instrumentations could be completed by shutting off one of the wells, while the other would still be pumping. This would result in greater security of plume control when in comparison with the one extraction well scenario.

The computer code MODPATH was used to estimate the travel time required to remove the TCA plume with concentrations higher than 100 μ g/l. This estimate is based on several simplifying assumptions listed below:

- The advective contaminant flow is dominant in the transport process and the dispersive contaminant flux can be neglected;
- The retardation factor of TCA for the site conditions is 2;
- No source of TCA is currently present at the site which would continue to pollute the groundwater.

Based on these assumptions, travel time lines were calculated. The travel time lines show the distribution of the 100 μ g/l contours after the specified number of years.

The comparison of the two scenarios shows that with one pumping well approximately 5 years would be required for the removal of TCA plume with concentrations higher than 100 μ g/l. Two pumping wells (Scenario B) would remove the plume in approximately 3 years.

These travel time simulations should be viewed as estimates only and as a tool for comparison of the efficiency of the two considered pumping scenarios. Specific site conditions may result in a longer time frame for contaminant removal.

ŧ

4.0 **RECOMMENDATIONS**

Based on the results of the preliminary numerical groundwater flow modeling the following are recommended:

- Install a groundwater pumping well (EW1) at a location approximately 50 ft upgradient from well cluster TW-4. This pumping well can be used for the proposed 24-hour constant rate pumping test. In addition, this well can be used as a permanent groundwater extraction well to control the on-site TCA plume;
- Install a set of shallow, intermediate and deep observation wells at a location between EW1 and the upgradient well cluster TW-5;
- As a minimum, during the constant rate pumping test, monitor the observation wells included in the area of influence of the pumping well (Figures 4 to 6);
- Consider a two pumping well scenario for the design of the extraction system; and,
- Refine the numerical groundwater flow model following the analysis of the pumping test.

We trust this report is satisfactory for your current requirements.

Very truly yours,

RUST Environment & Infrastructure

Mitrofan Josan, C.P.G. Senior Hydrogeologist/Geophysicist

Richard C. F. King, P.Eng. Department Manager

WELL NAME	TARGET HEAD	MODEL HEAD	RESIDUAL
TW-2S	1204.06	1203.67	0.39
.TW-3S	1203.53	1203.27	0.26
TW-4S	1202.45	1202.28	0.17
TW-5S	1202.77	1202.95	-0.18
TW-6S	1201.59	1202.02	-0.43
TW-7S	1203.94	1203.77	0.17
TW-8S	1203.09	1202.75	0.34
TW-115	1201.26	1201.14	0.12
TW-13S	1205.08	1205.26	-0.18
TW-21	1203.70	1203.65	0.05
TW-3I	1203.38	1203.27	0.11
TW-4I	1202.17	1202.26	-0.09
TW-5I	1202.20	1202.99	-0.79
TW-61	1201.71	1202.03	-0.32
TW-7I	1203.66	1203.67	-0.01
TW-8I	1203.01	1202.67	0.34
TW-91	1202.77	1202.70	0.07
TW-111	1201.31	1201.19	0.12
TW-12I	1198.30	1198.74	-0.44
TW-13I	1204.84	1205.25	-0.41
TW-2D	1203.64	1203.65	-0.01
TW-3D	1203.35	1203.24	0.11
TW-4D	1202.19	1202.26	-0.07
TW-5D	1202.07	1202.95	-0.88
TW-6D	1201.69	1201.98	-0.29
TW-9D	1202.40	1202.76	-0.36
TW-10D	1200.79	1201.59	-0.80
TW-12D	1198.42	1198.75	-0.33

 TABLE 2

 SUMMARY OF GROUNDWATER FLOW MODEL CALIBRATION

----- Summary Statistics For Entire Model -----

Residual Mean	= -0.119703
Residual Standard Dev.	= 0.341232
Residual Sum of Squares	= 3.661500
Absolute Residual Mean	= 0.279739
Minimum Residual	= -0.883491
Maximum Residual	= 0.387148

why impriredly nell?

TABLE 1 CALCULATION OF STREAMBED CONDUCTANCE FOR AN INDIVIDUAL MODELING CELL

UNIT	POND / RIVER BOTTOM LAYER THICKNESS	HYDRAULIC OF THE BO MAT	CONDUCTIVITY TTOM LAYER "ERIAL	WIDTH OF THE POND / RIVER WITHIN A MODELING CELL	LENGTH OF REACH WITHIN A MODELING CELL	STREAMBED CONDUCTANCE
	M (FT)	K (CM/S)	K (FT/DAY)	W (FT)	L	C = KLW/M (sqFT/DAY)
RECHARGE POND (MIN)	5.00	1E-05	0.03	20.00	20.00	2.40
RECHARGE POND (MAX)	5.00	5E-04	1.40	20.00	20.00	112

04/28/9403:49 PM1TBL3.WK4

WELL NAME	TARGET HEAD	MODEL HEAD	RESIDUAL.
TW-2S	1204.06	1203.67	0.39
TW-3S	1203.53	1203.27	0.26
TW-4S	1202.45	1202.28	0.17
TW-5S	1202.77	1202.95	-0.18
TW-6S	1201.59	1202.02	-0.43
TW-7S	1203.94	1203.77	0.17
TW-8S	1203.09	1202.75	0.34
TW-115	1201.26	1201.14	0.12
TW-138	1205.08	1205.26	-0.18
TW-2I	1203.70	1203.65	0.05
TW-3I	1203.38	1203.27	0.11
TW-4I	1202.17	1202.26	-0.09
TW-51	1202.20	1202.99	-0.79
TW-61	1201.71	1202.03	-0.32
TW-71	1203.66	1203.67	-0.01
TW-8I	1203.01	1202.67	0.34
TW-91	1202.77	1202.70	0.07
TW-11I	1201.31	1201.19	0.12
TW-12I	1198.30	1198.74	-0.44
TW-13I	1204.84	1205.25	-0.41
	1203.64	1203.65	-0.01
TW-3D	1203.35	1203.24	0.11
TW-4D	1202.19	1202.26	-0.07
TW-5D	1202.07	1202.95	-0.88
TW-6D	1201.69	1201.98	-0.29
TW-9D	1202.40	1202.76	-0.36
TW-10D	1200.79	1201.59	-0.80
TW-12D	1198.42	1198.75	-0.33

TABLE 2 SUMMARY OF GROUNDWATER FLOW MODEL CALIBRATION

---- Summary Statistics For Entire ModelResidual Mean= -0.119703Residual Standard Dev.= 0.341232Residual Sum of Squares= 3.661500Absolute Residual Mean= 0.279739Minimum Residual= -0.883491

= 0.387148

Maximum Residual

Not deniation

GEOPHYSICAL SURVEY

.

VDDENDIX B

GPR	
SEISMICS MAGNETICS	Results of Subsur
UTILITY LOCATION ELECTROMAGNETICS	Gladding Cordage Gladding Street South Otselic, New Yor
	Prepared for: RUS Infr Alba
	Date of Investigation:
	Prepared by:
	David Office Spectru P.O. Be Tappan

PO Box 576 Tappan, NY 10983 (Near New York City) (914) 365-4000 (914) 365-0498 - fax

Spectrum Northeast

GPR

AFFILIATES:

Southern California:

Spectrum ESI 622 Glenoaks Boulevard San Fernando, Ca 91340 (818)-365-9371 (019) 504 1509 57 (818) 361-1680 - Fax

Northern California:

Spectrum ESI PO Box 14199 Fremont, Ca 94539 (510) 249-9038 (510) 249-9039 - Fax

face Investigation

·k

ST Environmental and astructure any, New York

June 21, 1994

Bissiri Manager um Northeast Box 576 n, NY 10983

Contents

Introduction Methods

Results

GPR profiles: A-A' **B-B**′ C-C' D-D' E-E' F-F' G-G' H-H 1-1

Plot Map

Results of Subsurface Investigation Gladding Cordage Gladding Street South Otselic, New York

Introduction On June 21, 1994 Spectrum Northeast, Inc. conducted a subsurface investigation on a portion of the Gladding Cordage facility located in South Otselic, New York. The purpose was four-fold: 1) investigate eight proposed exploratory boring sites (PEBS); 2) investigate portions of an approximately 100 by 200-foot concrete pad for possible voids/sluice-ways that could interfere with the construction of later structures on top of this concrete pad; 3) delineate detectable utilities along approximately 250 feet of a driveway; and 4) investigate the area in front of the two-story building on Gladdings Street for the possible existence of an underground storage tank (UST).

The equipment selected for this investigation included a GSSI System-3 ground penetrating radar (GPR) with a 300 MHz transducer and electromagnetic (EM) utility-locating instruments.

GPR data were collected as bidirectional traverses over the following PEBS: TW-7, TW-14, RW-1, and RW-2 and along a proposed trench pathway from the driveway eastward across the concrete pad area toward the Otselic River.

Abundant surface trash and other obstructions, both metallic and non-metallic, prevented the GPR equipment from being operated in a uniform, smooth fashion and hampered the use of some EM equipment. The fudicial marks (vertical dashed lines) on the reprints of the GPR profiles were placed at 5foot intervals, unless otherwise noted on the profiles.

Results

No unusual buried obstructions to the PEBS were detected. Boring locations were moved only as necessary.

Several metallic conduits of relatively short length were detected, via the EM equipment, on the large concrete pad in the vicinity of the proposed trench. The surface trace of these conduits were painted on the concrtete surface. Their orientation and limited extent are suggestive of rienforcement bars, though their exact source could not be determined.

One area of voids was detected in the concrete slab along GPR traverse A-A'(see plot map and GPR profile A-A'). Subsequent investigation of access plates revealed the existence of a sluice-way.

Methods

No UST-like signatures were observed in the GPR data from either the sidewalk/planter area or the grassy area. The depth of GPR penetration was estimated to be 6 feet. GPR data did confirm the presence of a large subsurface object in the grassy area, buried approximately 9 inches deep. However, its expression in the GPR profiles (see profile I-I') and characterization with the EM equipment is more consistent with a tabular object than a UST. The surface trace of this object was delineated using white spray paint and its center marked by a wooden stake and flagging.

ŧ

APPENDIX C

RECOVERY WELL AND MONITORING WELL COMPLETION LOGS

RECOVERY WELL COMPLETION LOG

Gladding Cordage Project ____ **Rust Environment & Infrastructure** NYSDEC Client _ 12 Metro Park Road Location South Otselic, New York Albany, NY 12205 Project No. ____37537.002 (518) 458-1313 Date Drilled <u>8/8/94-8/13/94</u> Date Developed 8/13/94-8/23/94 **INSPECTION NOTES** WELL CONSTRUCTION DETAIL LOCKING STEEL CAP SURFACE 1210.03 _ 0.0

NOT TO SCALE

Inspector B. Cooper Drilling Contractor American Auger	
Type of Well <u>Ground Water Recovery</u> Static Water Level <u>Date</u> Measuring Point (M.P.)	
Total Depth of Well67'	
Drilling Method Type <u>Mud Rotary</u> Diameter <u>14 3/4</u> Casing <u>12" ID Flush Threaded Steel</u>	
Sampling Method Type D Weight F Interval <u>Refer to RW-1 Pilot</u>	iameter 'all Boring Log
Riser Pipe Left in Place Material <u>Stainless Steel</u> D Length <u>49.3</u>	iameter8" ID pint Type
Screen Material <u>Stainless Steel</u> Slot Size <u>0.095"</u> Stratigraphic Unit Screene	Diameter <u>8"</u> Length <u>18.7</u> ed
Filter Pack Sand X Gravel _ Grade #4 Morie Amount 4300 lbs	Natural Interval5.5'-67.0'
Seal(s) Type <u>Bentonite</u> Type <u>Type</u> Locking Casing X Yes	Interval <u>5.5'-7.0'</u> Interval Interval
Notes:	

WELL NO. RW-1
RECOVERY WELL COMPLETION LOG WELL NO. RW-2

Lust Environment & Infrastructure

12 Metro Park Road Albany, NY 12205

(518) 458-1313

e Project <u>Gladding Cordage</u> Client <u>NYSDEC</u> Location <u>South Otselic, New York</u> Project No. <u>37537.002</u> Date Drilled <u>8/6/94-8/18/94</u> Date Developed <u>8/18/94-8/23/94</u> INSPECTION NOTES
Inspector <u>B. Cooper</u> Drilling Contractor <u>American Auger</u>
Type of WellGround Water Recovery Static Water Level Date Measuring Point (M.P.) Total Depth of Well80'
Drilling Method Type <u>Mud Rotary</u> Diameter <u>14 3/4"</u> Casing <u>12" ID Flush Threaded Steel</u>
Sampling Method Type Diameter Weight Fall Interval Refer to RW-2 Pilot Boring Log
Riser Pipe Left in Place Material <u>Stainless Steel</u> Diameter <u>8" ID</u> Length <u>69.3'</u> Joint Type <u>Threaded</u>
Screen Material Stainless Steel Diameter 8" Slot Size 0.025" Length 12.2' Stratigraphic Unit Screened
Filter Pack Sand X Gravel Natural Grade #0 Morie Amount 5700 lbs. Interval 6.0'-80.0'
Seal(s) Type <u>Bentonite</u> Interval <u>4.0'-6.0'</u> Type Interval Interval
Locking Casing 🛛 Yes 🛛 No Notes:

WELL CONSTRUCTION DETAIL LOCKING STEEL CAP ROUND Ü

MONITORING WELL COMPLETION LOG WELL NO. TW-7D

_ust Environment & Infrastructure

12 Metro Park Road Albany, NY 12205 (518) 458-1313

WELL CONSTRUCTION DETAIL

Project <u>Gladding Cordage</u> Client <u>NYSDEC</u> Location <u>South Otselic, New York</u> Project No. <u>37537.002</u> Date Drilled <u>6/21/94-6/22/94</u> Date Developed <u>6/28/94 and 7/6/94</u> INSPECTION NOTES

M.P. EL. <u>1213.25</u> REL. 1211.35 0.0 CEMENT' 6.0' EMENT/ BENTONITE EAL RISER -63.0' **BENTONITE** SEAL 65.8' 68.0' ILTER PACK CREEN 78.0' 79.0' **RMATION** JLLAPSE 100.5' NOT TO SCALE

INSPECTION NOTES
InspectorB. Cooper Drilling ContractorAmerican Auger
Type of WellEnvironmental Monitoring Static Water Level1204.4' Date8/29/94 Measuring Point (M.P.)Top of Stainless Steel Total Depth of Well
Drilling Method Type <u>Spin & Wash</u> Diameter <u>4" ID</u> Casing <u>Steel, Flush Joint</u>
Sampling Method Type <u>Split Spoon</u> Diameter <u>3" OD</u> Weight <u>140#</u> Fall <u>30"</u> Interval <u>58'-101.5' (standard sampling)</u>
Riser Pipe Left in Place Material Type 304 Stainless Steel Diameter <u>2" ID</u> Length <u>70.0'</u> Joint Type <u>Threaded Flush</u>
Screen Material Type 304 Stainless Steel Diameter 2" ID Slot Size 0.010" Length 10' Stratigraphic Unit Screened
Filter Pack Sand X Gravel Natural Grade #0 Morie Amount ~100# Interval 65.8'-79.0'
Seal(s) Type Bentonite Slurry Interval 63.0'-65.8' Type Cement/Bentonite Interval 6.0'-63.0' Type Portland Cement Concrete Interval 0-6.0'
Locking Casing 🖾 Yes 🛛 No Notes:

MONITORING WELL COMPLETION LOG WELL NO. ______

Project ____Gladding Cordage **Aust Environment & Infrastructure** Client <u>NYSDEC</u> 12 Metro Park Road Location South Otselic, New York Project No. 37537.002 Albany, NY 12205 (518) 458-1313 Date Drilled ____7/6/94____ **INSPECTION NOTES** WELL CONSTRUCTION DETAIL Inspector B. Cooper _____ M.P. EL. <u>121181</u> Drilling Contractor ____ American Auger R EL. <u>1209.7</u>6 0.0 Type of Well ____Observation/Monitoring Well _____ Static Water Level <u>1203.69'</u> Date <u>8/29/94</u> Measuring Point (M.P.) <u>Top of Stainless Steel</u> EMENT_ Total Depth of Well ______ Drilling Method RISER -Type <u>Spin & Wash</u> Diameter <u>4" ID</u> Casing <u>Steel</u> _____ Sampling Method - 5.8' Type _____ Diameter _____ Weight _____ Fall _____ SEAL -Interval Riser Pipe Left in Place - 8.0' Material Type 304 Stainless Steel Diameter 2" ID Length <u>12</u> Joint Type <u>Threaded Flush</u> Screen - 10.0' Material Type 304 Stainless Steel Diameter 2" ID ILTER Slot Size 0.010" Length 10' PACK · Stratigraphic Unit Screened _____ Filter Pack Sand X Gravel Natural Grade #0 Morie Amount 130# Interval 8'-20' Seal(s) CREEN -Type Bentonite Chips Interval 5.8'-8.0' Type Portland Cement Concrete Interval 0-5.8' Type _____ Interval _____ Locking Casing X Yes I No Notes: 20' Refer to TW-14D Boring Log for lithologic description. NOT TO SCALE

MONITORING WELL COMPLETION LOG WELL NO. TW-141

_{ust Environment & Infrastructure

12 Metro Park Road Albany, NY 12205 (518) 458-1313

	ProjectGlad	ding Cordag	le		
Client <u>NYSDEC</u>					
Location South Otselic, New York					
Project No. <u>37537.002</u>					
Date Drilled					
	Date Develope	ed <u>7/7/9</u> 4	and 7/11/94		
	INSPECTIO	N NOTES			
Inspector Drilling Contra	B. Cooper	an Auger			
	Observation (M	- naitoria a 10/al	11		
I ype of vvell _	Observation/Mi	Date	8/29/94		
Measuring Po	int (M.P.) To	p of Stainles	s Steel		
Total Depth of	f \//oll 75'	<u>y or oraini₀₀</u>			
		<u> </u>			
Drilling Metho Type <u>Spin</u> Casing <u>Th</u>	d & Wash ireaded Flush Joi	— Diamet ^{nt}	er <u>4" ID</u>		
Sampling Met	hod				
Туре ———	[Diameter			
Weight		Fall			
Interval					
Riser Pipe Let	it in Place				
Material ^{Type}	e 304 Stainless Steel	Diameter _	2" ID		
Length6	<u> 57'</u> J	loint Type _	Threaded Flush		
Screen					
Material [⊤] yr	be 304 Stainless Steel	Diameter	2" ID		
Slot Size	0.010"	Length	10'		
Stratigrapr	nic Unit Screen	ea			
Filter Pack					
Sand <u>×</u>	Gravel _	N	atural		
Grade <u>#0</u>	Morie		COL 751		
Amount	100#	interval _	03-75		
Seal(s)					
I ype <u>Bento</u>	nite Slurry	Interval	<u>58.5'-63.0'</u>		
	nt/Bentonite		2.0'-58.5'		
i ype Porilan (sand n	a Cement Concrete nix)	_ merval _	<u> </u>		
Locking Cas Notes:	ing 🛛 Yes	🗆 No			

Refer to TW-14D Boring Log for lithologic description.

WELL CONSTRUCTION DETAIL

MONITORING WELL COMPLETION LOG WELL NO. TW-14D

Notes:

_{ust Environment & Infrastructure

12 Metro Park Road Albany, NY 12205 (518) 458-1313

Project <u>Gladding Cordage</u> Client <u>NYSDEC</u> Location <u>South Otselic. New York</u>

Project No. _____37537.002 ______ Date Drilled 6/30/94-7/1/94 Date Developed 7/5/94 **INSPECTION NOTES** Inspector _____ B. Cooper _____ Drilling Contractor ____ American Auger _____ Type of Well ____ Observation/Monitoring Well Static Water Level <u>1203.52</u> Date <u>8/29/94</u> Measuring Point (M.P.)_____ Total Depth of Well <u>90'</u> Drilling Method Type _____Spin & Wash _____ Diameter ___4" ID _____ Casing Steel, Flush Joint Sampling Method Type <u>Split Spoon</u> Diameter <u>3" OD</u> Weight 140# Fall 30"_____ Interval 4'-91' (standard sampling) Riser Pipe Left in Place Material Type 304 Stainless Steel Diameter ______ Length _____82' _____ Joint Type _____ Screen Material Type 304 Stainless Steel Diameter 2" ID Slot Size 0.010" Length 10' Stratigraphic Unit Screened Filter Pack Sand X Gravel Natural Grade #0 Morie Amount ______ Amount _____ Interval 77.8'-90.0' Seal(s) Type Bentonite Slurry Interval 68.5'-77.8' Type Cement/Bentonite Interval 2.0'-68.5' Type Portland Cement Concrete Interval 0-2.0' (sand mix) Locking Casing X Yes

WELL CONSTRUCTION DETAIL

M.P. EL. 1211.85

MONITORING WELL COMPLETION LOG WELL NO. TW-151

Lust Environment & Infrastructure

12 Metro Park Road Albany, NY 12205 (518) 458-1313

WELL CONSTRUCTION DETAIL

Project <u>Gladding Cordage</u> Client <u>NYSDEC</u> Location <u>South Otselic, New York</u> Project No. <u>37537.002</u> Date Drilled <u>6/28/94-6/29/94</u> Date Developed <u>7/5/94</u>

INSPECTION NOTES

Inspector B. Cooper
Drilling Contractor <u>American Auger</u>
Type of Well Observation/Monitoring Well
Static Water Level <u>1203.64'</u> Date <u>8/29/94</u>
Measuring Point (M.P.) Top of Stainless Steel
Total Depth of Well 70'
Drilling Method Type <u>Spin & Wash</u> Diameter <u>4" ID</u> Casing <u>Flush Threaded Steel</u>
Sampling Method Type <u>Split Spoon</u> Diameter <u>3" OD</u> Weight <u>140#</u> Fall <u>30"</u> Interval <u>3'-70' (standard sampling)</u>
Riser Pipe Left in Place
Material Type 304 Stainless Steel Diameter
Length <u>62'</u> Joint Type <u>Threaded Flush</u>
Screen
Material Type 304 Stainless Steel Diameter 2" ID
Slot Size 0.010" Length 10'
Stratigraphic Unit Screened
Filter Pack Sand X Gravel Natural Grade #0 Morie
Amount 120# Interval 58'-70'
Seal(s)
Type <u>Bentonite Slurry</u> Interval <u>54.3'-58.0'</u>
Type Cement/Bentonite Interval 1.5'-54.3'
Type Portland Cement Concrete Interval 0-1.5'
Notes:
•

حننا

WELL DEVELOPMENT RECORDS

APPENDIX D

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well I.D.: TW-145 Date: 7/7/04
Project Name: Glading (kingel
Personnel: B. Courser
Project No.: 37537.202
Time Start: 12:35 Time Finish: 2:30

WELL INFORMATION:

ם Water: Istruction De er Volume: אפאד דבכו-אוכ	pth: <u>20'</u> <u>2.2 gallons</u> NSet D Stratigr Sand/S Field We 2.2 gallons Total V	iameter (I.D.): aphic Unit Screened: ilt Accumulation: <u>A</u> ell Depth: <u>Zeross</u> olume Removed (gals.):.	2" Icne 22 gai Icno
	Bailer Material: <u>Clear</u> Flow Rate: Flow Rate: Flow Rate: Surge Method:	P/C Bailer Diar	neter (I.D.)
DNS: Begin Begin Begin ture. Begin vity Begin	nning: nning: nning: nning: nning: nning:	End: End: End: End: End: End: End:	
	2 4 5	6789	10
1 2	Med Med Med	L+ L+ L+	YWER .
1 2 Ted Med Br Jubr	YWER VUER YWER	WOR LUSA WER WER	1 13
1 2 Ted Med 1Br Jubr .8 6.8	145- 145- 145- 6.8 6.8 68	6-8 6.8 6.2 6.8	50
1 2 16d Med 1Br Jubr 18 6.8 263 0,273	245- 105-145- 6.8 6.8 68 0.28 8.283 5.289	(0.8 6.8 6.8 6.8 6.8 0.287 0.787 2.781-0.727	1 295
1 2 Ted Med 1B- Jub- 1B- Jub- 1B- Jub- 20-3 0,273 999 7990	2WBr 105r 708r 6.8 6.8 68 0.280 8.283 5.280 2999 2933 2000	(~8 6.8 6.8 6.8 0.287 0.282 0.286 0.287	0.285_ >9aa
1 2 Ted Med 1Br - 5r- -8 6.8 -268 0,273	245- 105-165- 6.8 6.8 68 0.280 8.283 5.289	(-B 6.8 6.8 6.8 6.8 0.287 0.287 1281 0.287	6.3

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well 1.D .: TW-145	Date: 7/1/94
Project Name: Gadd	in Consche
Personnel: B. (00,22	
Project No .:	
Time Start: 12:35	Time Finish: 3:20

_ _ _ . . .

WELL INFORMATIO	<u>DN</u> =					
Screen Diamet Screened inter Depth to Wate Well Constructi Well Water Volu	er (I.D.): <u>2''</u> vol: <u>10'-20'</u> r: <u>8.59'</u> on Depth: <u>20'</u> ume: <u>28.59'</u>	_ Riser Dia _ Stratigra _ Sand∕Sil _ Field Wel ∠ Total Vol	imeter (I.D phic Unit S t Accumula I Depth: jume Remo	.):2" Screened: ition:N 22:05 by oved (gals.):	one 24.2	Sallor
DEVELOPMENT TE	CHNOUE:					
Bailer Lift Pump Air Lift Submersible Surge Other Well-dedicated Decontaminatio	Bailer Mate Flow Rate: Flow Rate: Flow Rate: Surge Meth Equipment:	erial: <u>11/1865</u> nod: Bailes C. Bailes	Puc - Hand	_ Bailer Diam _ _ _ _ _ _	eter (I.D.)	///
OBSERVATIONS:						
Color Turbidity Odor PH Temperature Conductivity	Beginning: Beginning: Beginning: Beginning: Beginning:			nd: nd: nd: nd: nd: nd:		
NOTES * Ten we	ell volumos pro reloginent Proc	eviarding r and)C	ourged a	··· 7/7/->	- (2. je,	- :0
DH 6.5	2 3 4 141/WBr Lt/WBr Lt 4 6.6 6.7 6.	- 5 13-441,18-6 7 6.9 6	<-> 7 +%+B+Lt%+B+ 2.8 .6.7	В 9 ЦУшВг-ЦУшВг 6.7 6.8	10 - 44wBr 6-75	11 44wB- 6.7
Conductive 10,285	0 <i>289:0-293:02</i> 7999:>999:>9	99 993 >	2930.293 999 >999	0.294-0.293 >9999-7999	0.294 _ >999	<i>0.2</i> 97 >9999
E. z. and (°C) 14.0	12.9 ;12.6 12.	6 11.8 1	26 12.4	12.3 12.1	12.5 1	2.5
		12.55				

RUST E&I
12 Metro Park Road
Albany, NY 12205
(518) 458-1313

Well 1.D.: TW-14 I Date: 7/7/94
Project Name: Gladdurn Compre
Personnel: F, Course
Project No .: 37537.002
Time Start: 9: 30AM Time Finish: 12:05P

WELL INFORMATION

Screen Diam Screened Int Depth to Wo Well Constru Well Water V ≈18' < DEVELOPMENT	eter (I.D.): <u>200</u> erval: <u>(AGM / M.)</u> eter: <u>2037</u> 2002 ction Depth: <u>75</u> Volume: <u>125</u> Chara p TECHNOUE:	Riser Diameter (I.[Stratigraphic Unit Sand/Silt Accumul Field Well Depth: Total Volume Rem	D.):2'' Screened: lation: <u></u> 76.95 oved (gals.):	144 gal	lons
Bailer Lift Pump Air Lift Submersible Surge Other Well-dedicate Decontamina	Bailer Mater Flow Rate: Flow Rate: Flow Rate: Flow Rate: Surge Metho ded Equipment: tion Procedures:	rial: <u>Big (Uktora) Tubi</u> od: <u>Naterra Punp</u> Herra Tubins	Bailer Diam	// leter (I.D.)_/s	2"
Color Turbidity Odor PH Temperature Conductivity	Beginning: Beginning: Beginning: Beginning: Beginning:		End: End: End: End: End: End:		
NOTES ///// /////////////////////////////	2 3 4 Med Med Hed 5rGy ErGy ErG 8.5 8.3 8.3 0.230 0.240 0.25 879 7999 799 14.7 14.9 13.9	$5 - 6 - 7$ $M_{13} = L_{1} + L_{1} +$	B 9 Hid 14 Er 61 51 B.1 81 0.263 0.266 799 662 13.7 13.7	10 11 Gy Br Gy Br B.1 7.5) 0.2(B, 0.273 494 7999 13.9, 13.6	12 13 Hed Mag (17 B- 17 4 8.2 8.4 0.2 2027 2939 794 13.6 13.4
		(4.18)			

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well 1.D .: TW-14 I	Date: 7/11/54
Project Name: Gladde	c prearp
Personnel: B. Coare	
Project No.:	
Time Start: 3:50	Time Finish: 5:20

Screen Diam Screened Int Depth to Wa Well Construc Well Water V	eter (1.D.): <u>2"</u> erval: <u>15-75'</u> ter: <u>8.58</u> ction Depth: <u>75'</u> olume: <u>11.235</u>	Riser Diameter (I.D Stratigraphic Unit S Sand/Silt Accumula Field Well Depth: Total Volume Rema	.): Screened: Ition: _//ane 76.05 (Ived (gals.):56 sallor
DEVELOPMENT Bailer Lift Pump Air Lift Submersible Surge Other Well-dedicate	Bailer Materi Flow Rate: Flow Rate: Flow Rate: Surge Metho	ol: d. []aterra-Han evra Tubing	_ Bailer Diameter (I.D.) <u>//2″</u> _ _ _ _ _ _
Decontamina OBSERVATIONS Color Turbidity Odor PH Temperature	tion Procedures: Beginning: Beginning: Beginning: Beginning:		Ind: Ind: Ind: Ind: Ind:
Temperature Conductivity	Beginning: Beginning:		Ind:

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well 1.D.: TW-14D	Date: 7/5/24
Project Name: Gladins	Cordance
Personnel: B. Cogye	
Project No .: 37537,00	02
Time Start: 10:50 Tir	ne Finish: 2:15

WELL INFORMATION:

1

Screen Diameter (I.D.): 2" Screen d Interval: 50-70' Screened Interval: 50-70' Stratigraphic Unit Screened: Depth to Water: 30' >>>> Well Construction Depth: 20' Well Water Volume: 13.750 Field Well Depth: 92.2' Job 50.10' Well Water Volume: 13.750
DEVELOPMENT TECHNIQUE:
Bailer Bailer Material: <u>Bally (Indeferre Judoia</u> Bailer Diameter (I.D.) <u>/2"</u> Lift Pump Air Lift Submersible Surge Method: <u>Interva Pump</u>
Well-dedicated Equipment: <u><u>llaterra Tubins</u></u> Decontamination Procedures: <u>OBSERVATIONS</u>
Color Beginning: End: Turbidity Beginning: End: Odor Beginning: End: PH Beginning: End: Temperature Beginning: End: Conductivity Beginning: End:
NOTES fifter # of Nell Volumes Emoved
$\frac{1}{2} = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10$ $\frac{1}{2} = 7 = 4 = 7 = 4 = 7 = 7 = 7 = 7 = 7 = 7$
13.71

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well 1.D.: TU-70	_Date: 1/28/94
Project Name: Gladd.	s Corrige
Personnel: B. Gunzy	0 0 0
Project No .:	- <u> </u>
Time Start: 8:30	Time Finish: 9:40

rbid.

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Well 1.D.: TW-70 De	ate: 7/6/94
Project Name: Glacains (ardato
Personnel: B. Cooper	<u> </u>
Project No .: 37537.002	•
Time Start: /2 20 Time	Finish: 2:25

WELL INFORMATION

TU

Screen Diam Screened Int Depth to Wo Well Constru Well Water V	eter (I.D.): <u>2"</u> ervol: <u>28'-78</u> iter: <u>8.78 in</u> ction Depth: <u>78'</u> folume: <u>78'</u>	Riser Diameter (I.D.): 2" Stratigraphic Unit Screened: Sand/Silt Accumulation: Mone Field Well Depth: 80.7 0mp Total Volume Removed (gals.): 128 gallers
Bailer Lift Pump Air Lift Submersible Surge Other Well=dedicat	Bailer Ma Flow Rate Flow Rate Flow Rate Surge Me	terial: <u>Poly/Warran) Tubur</u> Bailer Diameter (I.D.) <u> 1/2"</u>
Decontamina	tion Procedures:	
OBSERVATIONS:		
Color Turbidity Odor PH Temperature Conductivity	Beginning: Beginning: Beginning: Beginning: Beginning:	End: End: End: End: End: End: End: End:
NOTES Fold	Paroneters and	r a given number of wellings have been remore
1	2 3 4	56718,910
Color Vulto-	Volt Br VyLt Br Vair	Br Vy4 Br V1-+3 VyL15r - VryL1-
<u></u>	7.7 7.7 7.7	7 7.7 7.7 7.7 7.7 7.7 -
0.270	0,268 0,269 0.2	0,273 0,274 0,277 0.271 0,270 0,272
ad 'y (NT45) 398	408 418 90	9 101 237 173 102 80 147
inger v.e (9) 12.8	119 11,8 12	0 11.7 12.2 11.9 11.7 11.8 12.0-
· .		~ 29
* Note: 2 web	l voluinos pri	purged on 6/28/94.

RUST E&I 12 Metro Park Road Albany, NY 12205 (518) 458-1313

Weil 1.D.: TW-15I	Date: 7/5/94-
Project Name: Gladous	Cordese
Personnel: 75 Coccer	2
Project No .: 37537.0	02
Time Start: 3:30	ime Finish: 5:25

WELL INFORMATION

APPENDIX E

WELL DESIGN CALCULATIONS

PAGE ____ OF _d ST ENVIRONMENT & INFRASTRUCTURE CALCULATION SHEET PROJECT NO. 3757 CLIENT NYSDEC SUBJECT Proping Prepared By MDP Date 7/9/95 PROJECT Gaddins Well Design Reviewed By JRG Date 7/21/94 _ Approved By _____ Date ____ TITLE: DESTON OF RECOVERY WELL RW-1 NEAR MONITORING WELL CLUSTER TW-4 AND RECOVERY IJELL RW-TW-4 AND RECOVERY WELL RW-2 NEAR MONITORING WELL CLUSTER TW-5 OBJECTIVE: DESIGN EFFICIENT RECOVERY WELLS TO BECOVER 1,1,1-TRICHORDETHANE (TCA) IN THE INTERMEDIATE AND/OR DEEP PORTIONS OF THE SITE AQUIFER(S) ASSUMPTIONS: THE NATURE OF THE UNCONSULIDATED DEPOSITS AT LOCATIONS RW-1 and RW-2 UNS DETERMENTED BY PILOT BURINGS. FILOT BORINGS AT RW-1 AND RW-2 INCLUDED THE RETRIEVAL OF FORMATION AMPLES UTILIZING A 3-INCH SPLIT-SPOON SAMPLER, AND ARE REPRESENTATIVE OF THE AQUIFER MATERIAL CHOICE OF FILTER GRAVEL PACK MATERIAL (SIZE, ETC.) WILL BE BASED ON A DECIEN UTILIZING "INFORMATION OBTAINED FROM THE GRAIN SIZE DISTRIBUTION CURVES. SCREEN DESTEN (SLOT SIZE ETC.) WILL BE BASED PRIMARILY ON THE GRAVEL PACK MATERIAL CHOSEN FOR DESIGN PRELIMINARY DESIGN FOR WELLS RU-1 AND RW-2 INCLUDES SCREENED INTERVALS BELOW

50 FT.

RUST ENVIRONMENT & INFRASTRUCTURE	CALCULATION SHEET	page 2 of 12 project no. 37537
CLIENT NYSDEC	SUBJECT Rumping	_ Prepared By <u>MDP</u> Date <u>7/1</u> 9/94
PROJECT Gladding	Lell Design	- Reviewed By JRG Date $\frac{7/2}{19}$
		Approved By Date

METHOD:

- SCREEN DIAMETER, LENGTH AND DESTEN
 WILL BE CHOSEN SO THAT THE AVERAGE
 LITTANCE VELOCITY OF WATER ENTERING THE
 SCREEN AT DESIGN YIELD ITS LESS THAN
 O.I FEET PER SECOND
- THE SCREEN SLOT SIZE WILL REDESTONED TO RETAIN APPROXIMATELY DO PERCENT OF THE GRAVEL PACK MATERIAL
- THE GRAVEL PACK WILL INCREASE THE EFECTIVE HYDRAULIC RADIUS OF THE WELLS AND STABILIZE THE FORMATION

APPROACH VELOCITY WILL ALSO BE USED AS A DESIGN CRITERIA. THE APPROACH VELOCITY AT DESIGN YFELD WILL BE VA < VK/30 WHERE VA = APPROACH VELOCITY AND K= HYDRAULIC CONDUCTIVITY

RUST ENVIRONMENT & INFRASTRUCTURE	CALCULATION SHEET	PAGE 3 OF 12 PROJECT NO. 37537
CLIENT <u>NHEDEC</u>	SUBJECT Complete	_ Prepared By \underline{MDP} Date $\overline{Z/19/94}$
PROJECT Gladding	Well Dosign U	Reviewed By \underline{JRG} Date \underline{Za}^{1}
	·	Approved By Date

- REFERENCES:
- · CAMPBELL MD AND J.H. LEHR, 1973. WATER WELL TECHNOLOGY. MEGRALI HILL BOOK COMPANY
- DRISCOLL, F.G. 1986. GROUNDWATER AND WELLS. JOHNSON DIVISION, ST. PAUL, MINNESOTA.
- GHR ENGINEERING ASSOCIATES, INC, 1989 PRELIMINARY DRAFT- REMEDIAL INVESTIGATION REPORT-GLADDING CORDAGE COMPANY SITE SOUTH OTSELIC, CHENANGO COUNTY, NEW YORK VOLUMES I-IV
 - LSE TECHNOLOGIES, INC. COOK SCREEN. DIVISION - PRICES AND SPECIFICATIONS
 - MORIE SCREENINGS CATALOG, THE MORIE COMPANY, MILLVILLE, NEW JERSEY
 - NATIONAL WATER WELL ASSOCIATON, 1988. DESTON AND CONSTRUCTION OF WATER WELLS. VAN NOSTRAND REINHOLD-NEW YORK
 - NEW YORK STATE DEPARTMENT OF ENUTRONMENT (CINFERVATION, MEMORANDUM, JANUARY 15, 1987, ALAN GRANT TO JOSEPH FORTI-GLADDING CORPORATION FUMPING TEST
 - RUST ENVIRONMENT AND INFRASTRUCTURE, INC, JUNE, 1994. PREDESIGN STUDY WORK PLAN-GLADDING CORDAGE SITE, CHENANGO YOUNTY, NEW YORK, SITE NO. 7-09-009

-	RUST ENVIRONMENT &	CALCULATION SHEET	PAGE OF 12 PROJECT NO
	CLIENT 115DEL	SUBJECT Parping	Prepared By <u>MDP</u> Date <u>7/19/94</u>
-	PROJECT		Reviewed By <u></u> Date <u></u>

REFERENCES CON'T

WILLIAMS, E.D., 1981. FUNDAMENTALS OF WELL
 DESIGN. GROUND WATER VOL. 19, NUMBER 5

્યું અહીં છે. તે કે જ

PAGE _____ OF ____ PROJECT NO. _____7527 CALCULATION SHEET **RUST** ENVIRONMENT & INFRASTRUCTURE SUBJECT Projna Prepared By MUP Date 7/19/94 CLIENT <u>MYDEC</u> PROJECT 5/60 dins C^{-} 1. b // Reviewed By JRG Date 7/21/94 as in ί Approved By _____ Date _ DISTON CALCULATIONS: RW-1 VE J-1 SOTE SAMPLES Das= 2,0 imm 250 = 5.5 mm 50-52 52-51 50 D70= 3.3 DSSI 5.2 54 - 56 $D_{70} = 1.6$ Dsa = D70= 1.7 55 - 58 DSOI D70=1.7 58- 30 Dsa = 74 $D_{so} = \frac{1}{2}$ $D_{so} = \frac{1}{2}$ $D_{so} = \frac{1}{2}$ $D_{so} = \frac{1}{2}$ $D_{70} = a. Y$ 30 - 5a 5a - 54 , D70 = 2.251 - 56, 66 - 68 Djo= 16.0 $D_{70} = 0.66$ 68 - 70 70 - 70 70 - 71 70 - 71 76 - 78 Dso = 0.95 $D_{20} = 0.22$ Dio= 20.75 D50 = -0.75 D50 = 0.66 Dao= 0.15 D70= 0.08 Dso = 0.46 $D_{50} = 0.83$ $D_{50} = 0.97$ DJo= 0.27 78-85' $D_{70} = 0.40$ DSSE BASED ON THE RESULTS OF THE GRAIN STRE MALTITS ABOVE, THE ZONE FROM SO TO 68' IS SELECTED AS THE SCREENED INTERVAL THE FILTER GRAVEL PACK DESTEN WILL BE BASED ON THE GRAIN SIZE ANALYSIS OF THE FINEST SAMPLE IN THE SCREENED INTERVAL THE SAMPLE FROM '66-68' IS THE FINEST SAMPLE WITHIN THE SCREENED INTERVAL 66'-68' Do = 2.7 mm Dzo = 0.66 mm. (50% RETAINED) 0.1063 in. (70% RETAINED) 0.0260 in. BAED PRIMARICY ON THE HETEROGENEOUS NATURE OF TH FORMATION, A GRAVEL PACK RATIO OF 6 IS CHOS

PAGE 6 OF 2 CALCULATION SHEET ST ENVIRONMENT & INFRASTRUCTURE PROJECT NO. 37537 CLIENT NYSDEC SUBJECT PUMping Prepared By MOP Date 7/19/94 PROJECT Glading Idell Design Reviewed By JRG Date Z/21/94 Approved By _____ Date ____ GRAUEL PACK BATIO = 6 66'- 68' $D_{50} = 2.7 mm, x G = 16.2 mm$ 0.1063 m, x G = 0.6378 m, $D_{70} = 0.66 \text{ mm} \times 6 = 3.96 \text{ mm} \\ 0.0260 \text{ in } \times 6 = 0.156 \text{ in}.$ A GRAVEL PACK IS CHOSEN THAT HAS A DZO (ZO% RETAINED) VALUE THAT CLOSELY (OARESPONDS TO THE VALUE OF 3.96 mm WHICH REPRESENTS THE DZO OF THE SAMPLE X THE 6 GRAVEL PACK RATIO. THIS COMPARISON RESULTS IN A MORIE GRAVEL PACK #4 SELECTION THE SCREEN SLOT SIZE NECESSARY TO RETAIN 90% OF THE GRAVEL PACK MATERIAL TS EQUAL TO THE DOGO RETAINED SIZE OF THE MORIE # 4 GRAVEL. THE DO RETAINED SAZE FOR MORIE #4 GRAVEL AS 0.098 INCHES. A SCREEN SLOT SIZE OF 0.095" WILL BE USED FOR DESJEN PURPOSES TO RETAIN~90% OF THE GRAVEL PACK AT RW-1.

PAGE I OF 12 PROJECT NO. 37537 **RUST** ENVIRONMENT & INFRASTRUCTURE CALCULATION SHEET ____ SUBJECT <u>fumping</u> Prepared By MDP Date 7/19/94 CLIENT NYSDEL PROJECT Gladding Well Destand ____ Reviewed By JRG Date Z/21/9 _ Approved By _____ Date ____ DESTEN CALCULATIONS: RW-2 RW-2 SOIL SAMPLES 50'-52' $V_{50} = 0.17 \text{ mm}$ D70 = < 0.075 mm $D_{70} = 0.29$ $D_{70} = 0.26$ $D_{70} = 4.0.075$ $D_{70} = 0.075$ $D_{70} = 0.075$ $5a'_{-}54'_{-}54'_{-}56'_{-}58'_{-}$ Dso = 0.47 D50 = 0.43 D50 = 0.13 58' - 60' 60' - 6a' 6a' - 64' $D_{50} = 0.17$ D70 = 20.075 $D_{50} = 0.17$ $D_{50} = 0.17$ $D_{50} = 0.13$ 070=20.075 64' - 66', 66' - 66.8, 66.8 - 68, $D_{70} = < 0.075$ D50 = 0.15 0.70=<0.075 $D_{50} = 1.7$ $D_{50} = 4.7$ D7 = 0.60 D70= 1.7 68'- 70' 68 - 70 , 70 ,- 72 , 72 ,- 74 , 74 - 76 , $D_{50} = 3.8$ $D_{50} = 4.5$ D70 = 1.4 D70 = 1.7 050= 4,0 0.70= 0.77 76- 78' 78- 80' Uzo=0.16 6 $D_{50} = 1.3$ 3.8 070 1.7 Dros

BASET ON THE RESULTS OF THE GRAIN SIZE ANALYSIS ABOVE, THE ZONE FROM 68-80' IS SELECTED AS THE SCREENED INTERVAL

THE FILTER GRAVEL PACK DESIGN WILL BE BASED ON THE GRAIN SIZE ANALYSIS OF THE FINEST SAMPLE IN THE SCREENED INTERVAL

76-78 Dos= 1.3 mm 50% RETAINED) 0.0513 10.

(70% RETAINED) 0,0063 in

PAGE 8 OF 12 CALCULATION SHEET **RUST** ENVIRONMENT & INFRASTRUCTURE PROJECT NO. 37537 SUBJECT PAMOING Prepared By MDP Date 7/19/94 CLIENT \underline{NYSDEC} PROJECT Gladding Well Desid Reviewed By JRG Date 7/21/94 Approved By _____ Date ____ BASED PRIMARILY ON THE HETEROGENEOUS NATURE OF THE FORMATION, A GRAVEL PACK RATIO OF 6 JS CHOSEN GRAVEL PAR BATIO = 6 76-78' $D_{50} = 1.3 \text{ mm} \times 6 = 7.8 \text{ mm}$ 0.0512 in $\times 6 = 0.3072 \text{ in}$ $D_{70} = 0.16 \text{ mm} \times 6 = 0.96 \text{ mm}$ $0.0063 \text{ in} \times 6 = 0.0378 \text{ in}$ A GRAVEL PACK IS CHOSEN THAT HAS A DTO (70% RETAINED) VALUE THAT CLOSELY CORRESPONDS (TO THE VALUE OF 0.96 mm WHICH REPRESENTS THE DID OF THE SAMPLEX THE 6 GRAVEL PACK RATIO. THIS COMPAR-ISON RESULTS IN A MORIE GRAVEL PACK # O SELECTION THE SCREEN SLOT SIZE NECESSARY TO RETAIN 90% OF THE GRAVEL PACK MATERIAL IS EQUAL TO THE DOD RETAINED SIZE OF THE MORIE # O GRAVEL THE DGO RETAINED SIZE FOR MORIE #0 GRAVEL IS O. OAY INCHES. A SCREEN SLOT SIZE OF QUAS INCHES WILL BE USED FOR DESIGN PURPOSES TO RETAIN ~ 90% OF THE GRAVEL PACK AT RW-2 SCREEN CAPACITY RW-1: FOR AN 8-INCH DIAMETER CONTINUOUS

SLOT STREEN, 18 FT AND 0.095 INCH SLOT STREE

RUST ENVIRONMENT& INFRASTRUCTURE CLIENT <u>NYSDEC</u> PROJECT <u>Clading</u>	CALCULATION SHEET SUBJECT Rumping Well Design	PAGE <u>1</u> of <u>12</u> PROJECT NO. <u>37537</u> Prepared By <u>MDP</u> Date <u>7/19/94</u> Reviewed By <u>TRG</u> Date <u>7/21/94</u> Approved By <u>Date</u>
RW-1 ~ (128 CAPAC ENTR	in?/ft) (18 ft) (0 ITY, MEETING ANCE UELOCITY	0,31) = 714 GPM 0.1 FT/SEC CRITERIA
RW-2: FOR A SLOT SLOT	AN 8-INCH DI SCREEN, 12 FT. SIZE	AMETER CONTINUOUS AND O.ORS INCH
RW-2 ~ (G2 1 CAPAC ENTRI	n²/ft) (12 ft.) (0 ITY, MEETING ANCE VELOCITY	,31) = 230 GPM O.1 FT/SEC CRITERIA
MAXIMUM TREA BEEN ESTABLISHU MAXIMUM CAP ENTRANCE VEC	ATMENT SYSTEM ED AS ISOGPM. PACITY WILL B COCITY CALCULA	CAPACITY HAS A ISOGRM E USED FOR TIONS
RW-1 SURFA SCREE	CE AREA PER I	-FT CENGTH OF
AREN TOTA % C	$A = TTd \cdot 12 = 3.14 \cdot 8 in \cdot 12 = 301.6 in ?/ft. = 301.6 in ?/ft. = 301.6 in ?/ft. = 5,428.8 in ?PEN AREA$	in 18 ft.
=	$= \frac{5/0T}{512E} \frac{512E}{507} \frac{512E}{512E} \frac{512E}{500} \frac{500}{500} \frac{500}{5$	100 UIDTH 100 In.

PAGE LL OF 12 PROJECT NO. 37537 ENVIRONMENT & INFRASTRUCTURE CALCULATION SHEET CLIENT <u>IVISUEC</u> SUBJECT <u>Pumping</u> PROJECT <u>Gladding</u> Well <u>Design</u> Prepared By MDP Date 7/19/94 Reviewed By JBG Date 7/21/94 Approved By _____ Date ___ ENTRANCE VELOCITY (V) V = Q/A V = 0.345 f + 3/sec5.43 f + 2 Q = 150 gpm = 0.345 443/sec. V= 0.064 ft/sec APPROACH VELOCITY ESTIMATION OF THE TOTAL CIRCUMFERENTIAL AREA THROUGH WHICH RW-1 FLOW OLLURS IS 58.1 FT? VA = APPROACH UELOCITY = RATE/AREA $= \frac{150}{58.1} \frac{6}{77} = \frac{9.46 \times 10^3}{5.40} \frac{m^3/sec}{m^2}$ = 0.0018 m/sec VA < VK/30 ASSUME HYDRAULIC CONDUCTIVITY OF 0.0018< 0.0045 YES THE AQUIFER = 0.0006 m/sec. AW-2 ESTIMATION OF THE TOTAL CIRCUMFERENTIAL AREA THROUGH WHICH FLOW OCCURS IS J9.3 FT? VA = APPBOACH VELOCITY = RATE / AREA $= \frac{150 \text{ GPM}}{39.3 \text{ FT}^2} = \frac{9.46 \times 10^{-3} \text{ m}^3/\text{sec}}{3.65 \text{ m}^2}$

= 0.0206 m/xec

page 12 of 12 project no. 37537 CALCULATION SHEET RUST ENVIRONMENT & INFRASTRUCTURE SUBJECT <u>Pumping</u> Prepared By <u>MDP</u> Date <u>7/19/99</u> <u>Well Design</u> Reviewed By JRG Date <u>7/21/99</u> CLIENT <u>ALYSDEC</u> ____ PROJECT_Glading____Well Design _ Approved By _____ Date ____ $V_{A} < V K / 30$ ASSUME HYDRAULTE CONDUCTIVITY OF THE ADUIFER = 0,0026 < 0.0045 YES 0.0006 m/sec . • x e j general ۲ ۲ 1 Main

14

APPENDIX F

BORING LOGS

PROJECT: Gladding Cordage Sheet 1 of 4 CLIENT: NYSDEC Job No. 37537.002 DRILLING CONTRACTOR: American Auger Meas. PL Elev. NA PURPOSE: Recovery Well Pilot Boring Ground Elev. 1210.02 DRILLING METHOD: Spin & Wash SAMPLE CORE CASING Date Started: 6/23/94 DRILL RIG TYPE: Mobile B-59 TYPE Split Spoon Steel Date Started: 6/23/94 GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/94 MEAS. PT.: WEIGHT 140# Driller: John Pietruck DATE OF MEAS: FALL 30" Inspector: B. Cooper Lost water at - 30' Spin and Wash Sample Blow Unified Los 40' w/ 4"LD. Flush Joint Casing No samples taken 10	RUST E&I Albany, NY ((518) 458-1313	3		Test Bo	oring L	Boring No. RW-1				
CLIENT: NYSDEC Job No. 37537.002 DRILLING CONTRACTOR: American Auger Meas. PL Elev. NA PURPOSE: Recovery Well Pilot Boring Ground Elev. 1210.01 DRILLING METHOD: Spin & Wash SAMPLE CORE CASING DRILL RIG TYPE: Mobile B-59 TYPE Split Spoon Steel Date Started: 6/23/9 GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT.: WEIGHT 140# Driller: John Pietruci DATE OF MEAS:: FALL 30" Inspector: B. Cooper Depth sample Blow Unified GRAPHIC GEOLOGIC DESCRIPTION REMARKS 10	PROJECT:	Gladding Cord	dage					Sheet 1 of 4			
DRILLING CONTRACTOR: American Auger Meas. Pt. Elev. NA PURPOSE: Recovery Well Pilot Boring Ground Elev. 1210.0: DRILLING METHOD: Spin & Wash SAMPLE CORE CASING Date Started: 6/23/94 GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT:: WEIGHT 140# Driller: John Pietruct DATE OF MEAS: FALL 30" Inspector: B. Cooper Depth Sample Blow Unified Classift GROLOGIC DESCRIPTION REMARKS 0 Depth Sample Blow Unified LoG GRAPHIC LOG GEOLOGIC DESCRIPTION REMARKS 10	CLIENT:	CLIENT: NYSDEC									
PURPOSE: Recovery Well Pilot Boring Ground Elev. 1210.01 DRILLING METHOD: Spin & Wash SAMPLE CORE CASING Date MSL DRILL RIG TYPE: Mobile B-59 TYPE Spiit Spoon Steel Date Started: 6/23/94 GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT.: WEIGHT 140# Driller: John Pietruci DATE OF MEAS: FALL 30" Inspector: B. Cooper Depth Sample Blow Unified GRAPHIC GEOLOGIC DESCRIPTION REMARKS 0 - - - - - - - 10 - - - - - - - 20 - - - - - - - - 30 -	DRILLING C	ONTRACTOR	: Americ	an Aug	jer			Meas. Pt. Elev. NA			
DRILLING METHOD: Spin & Wash SAMPLE CORE CASING Date MasL DRILL RIG TYPE: Mobile B-59 TYPE Spilt Spoon Steel Date Started: 6/23/94 GROUNDWATER DEPTH: DIAM, 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT.: WEIGHT 140# Driller: John Pietruci DATE OF MEAS: FALL 30" Inspector: B. Cooper Depth Sample Blow Unified GRAPHIC GEOLOGIC DESCRIPTION REMARKS 0	PURPOSE:	Recovery Wel	II Pilot Bor	ring				Ground Elev. 1210.03			
DRILL RIG TYPE: Mobile B-59 TYPE Split Spoon Steel Date Started: 6/23/94 GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT: WEIGHT 140# Driller: John Pietruci Inspector: B. Cooper DATE OF MEAS: FALL 30" Inspector: B. Cooper Inspector: B. Cooper Depth Sample Blow Unified Classif: GROLOGIC DESCRIPTION REMARKS Depth Sample Blow Unified LoG GEOLOGIC DESCRIPTION REMARKS 10 Spin and Wash Drilled to 40' w/ 4"I.D. Flush Joint Casing No samples taken Inspector: B. Cooper 10 Image: Count Classified to 40' w/ 4"I.D. Flush Joint Casing No samples taken Image: Count Classified to 40' w/ 4"I.D. 10 Image: Count Classified to 40' w/ 4"I.D. Flush Joint Casing Image: Count Classified to 40' w/ 4"I.D. Image: Count Classified to 40' w/ 4"I.D. 10 Image: Count Classified to 40' w/ 4"I.D. 10 Image: Count Classified to 40' w/ 4"I.D. Image: Count Classified to 40' w/	DRILLING M	METHOD: Spir	n & Wash		SAMPLE	CORE	CASING	Datum MSL			
GROUNDWATER DEPTH: DIAM. 3" O.D. 4" I.D. Date Finished: 6/24/9 MEAS. PT.: WEIGHT 140# Driller: John Pietruci DATE OF MEAS: FALL 30" Inspector: B. Cooper Depth Sample Blow Unified Classific GRAPHIC LOG GEOLOGIC DESCRIPTION REMARKS 0 Inspector: Blow Unified Classific GRAPHIC LOG GEOLOGIC DESCRIPTION REMARKS 10 Inspector: Blow Unified to 40" w/ 4"I.D. Flush Joint Casing No samples taken Inspector: Lost water at ~ 30" 20 Inspector: Inspector: Inspector: Lost water at ~ 30"	DRILL RIG T	TYPE: Mobile I	В-59 Т	YPE	Split Spoon		Steel	Date Started: 6/23/94			
MEAS. PT.: WEIGHT 140# Driller: John Pietruck DATE OF MEAS.: FALL 30" Inspector: B. Cooper Depth (Feet) Sample Number Blow Count Unified Classifi ication GRAPHIC LOG GEOLOGIC DESCRIPTION REMARKS 10 Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken No samples taken Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken 20 Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken 30 Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken Image: Spin and Wash Drilled to 40" w/ 4"I.D. Flush Joint Casing No samples taken	GROUNDWAT	ER DEPTH:	D	IAM.	3" O.D.		4" I.D.	Date Finished: 6/24/94			
DATE OF MEAS.: FALL 30" Inspector: B. Cooper Depth (Feet) Sample Numbe Blow Count Unified Classif- ication GRAPHIC LOG GEOLOGIC DESCRIPTION REMARKS	MEAS. PT.:		WE	EIGHT	140#	_		Driller: John Pietruch			
Depth Number Sample Count Blow Icasifi LOG Unified Classifi LOG GEOLOGIC DESCRIPTION REMARKS - - - - - - - - - - - Spin and Wash Drilled to 40' w/ 4"I.D. Flush Joint Casing No samples taken - 10 - - - - 20 - - - - 30 - - - - 30 - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	DATE OF ME	AS.:	F		30"			Inspector: B. Cooper			
Spin and Wash Drilled to 40° w/ 4"I.D. Flush Joint Casing No samples taken	Depth Samp (Feet) Numb	ple Blow Ur ber Count ica	nified lassif- ation	APHIC .OG	GEOLO	GIC DESCRI	PTION	REMARKS			
					Spin and Wa Drilled to 40' Flush Joint C No samples t	sh w/ 4"I.D. asing aken		Lost water at ~ 30'			

.

RUST Albany	' E&I r, NY (51	8) 458-1:	313		Test Boring Log	Boring No. RW-1 Pilot Boring		
PROJE	ECT: GI	Sheet 2 of 4						
CLIEN	T: NYS	Job No. 37537.002						
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Lo Descriptio	Geologic Description	Remarks		
40	S-1	14 10 9 11			BrGr c(+)mfS, I(-)m(+)fG, t\$; angular to subangular G	Rec = 1.1' Wet HNU Bkgd = 0.2 ppm Spoon = Bkgd Head Space = Bkgd		
-	S-2	12 14 16 16			GrBr cmf(+)G a(+),c(+)mfS, t(+)\$ &C subangular to subrounded G	Rec = 1.1' Wet HNU Spoon = Bkgd Head Space = 0.6 ppn		
44 -	S-3	15 23 27 27			Gr cm(+)fG a(-),c(+)mS; subangular - subrounded;occ. rd SS.	Rec = 0.9' Wet HNU Spoon = Bkgd Head Space = 0.8 ppr		
46 - - -	S-4	20 15 20 35			BrGr cmf(+)G s,c(+)mfS, t(-)\$; subrounded to subangular G	Rec = 0.9' Wet HNU Bkgd = 0.4 ppm Spoon = Bkgd		
48 — -	S-5	38 40 25			BrGr cmfG l(+),cmfS, t(-) 	Head Space = Bkgd Rec = 0.9' Wet HNU		
		28			$\begin{bmatrix} Br c(+)mrG l(+),cmrS, t(+) & C, \\ freq cbl fgmts. \\ 50' + \end{bmatrix}$	Spoon = Bkgd Head Space = 0.3 ppr		
	S-6	33 26 30			GrBr cmf(+)G s,c(+)mfS, t \$ &C angular to subrounded;lower 0.3' similar to material at 49-50'	Rec = 1.6' Wet HNU Bkgd = 0.6 ppm Spoon = Bkad		
52 -		28 36			Br&Gr cmfG s(+),cmfS, t(+)\$ & C; Gr toward bottom	Head Space = 0.3 ppn Rec = 0.6' Wet		
- 54	5-7	25 36				HNU Spoon = Bkgd Head Space = 0.6 ppn		
_	S-8	28 27			Do. (Gr & Br) (OUTWASH)	Rec = 1.3' Wet		

Albany,	NY (51	8) 458-1:	313		Test Boring Log	Boring No. RW-1 Pilot Borin
PROJE	CT: Gla	adding Co	ordage			Sheet 3 of 4
CLIENT	T: NYS	DEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Descriptior	Geologic Description	Remarks
56 -	S-8 (cont.)	28 37				
-	S-9	43 40 40			Do.	Rec = 1.6' Wet HNU Spoon = Bkgd
58 -	S-10	58 39 40 45			Do.	Rec = 0.9' Wet HNU Spoon = Bkgd Head Space = 0.5 p
60	S-11	40 29 61 65 49			GrBr cmf(+)G a(-),c(+)mfS, i (+)Cy \$; angular to subrounded.	Rec = 1.0' Wet HNU Spoon = Bkgd Head Space = 0.7 p
62	S-12	38 42 42 28			GrBr cmf(+)G s(+),c(+)mfS, tCy\$; dns lyr approx. 0.5' thick.	Rec = 1.3' Wet HNU Spoon = Bkgd Head Space = NA
64 	S-13	32 45 54			Gr cmfG l(+)S l(-)\$ &C cbl fgmts; large ls rk fgmt	(Low Battery) Rec = 0.3' Wet HNU: NA (Low Batte
66 -		100 33 43			Dk Gr cm(+)fS, t(-)fG 66.0' Dk Gr cm(+)fS, t(-)fG 66.7'	Pec - 1 5'
- - 68 -	S-14	77			BrGr cmf(+)G s(-),c(+)mfS, t\$; wea R cbl frag. 68.0'	Wet HNU: NA Rec = 1.3'
	S-15	25 63			Gr cmfS, s(+)c(+)mfG, t\$	Wet HNU

.

RUST Albany	' E&I , NY (51	8) 458-1:	313		Test Boring Log	Boring No. RW-1 Pilot Borin
PROJE	CT: GI	Sheet 4 of 4				
CLIEN	T: NYS	Job No. 37537.002				
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks
70		23			Gr\$, IfS; Iyrd; homogeneous;	Rec = 1.5'
	S-16	20			freq. fS seam in lower 0.2';rd. fG at base.	Wet
	0-10	24				1
72 -		35			72'	
, <u>_</u>		12			Gr m(+)fG a(+), cmfS, t\$	Rec = 1.5'
	0.47	23			73'	Wet
	5-17	27			Gr cmfS, t\$, t(-)mfG;\$ & vfS in	
74		35			seams and lyrd.	
		17			74.7'	Rec = 1.6'
_	S-18	29			Gr&Brc(+)mfS, afG, \$; \$ seams at	Wet
-		30			base near bottom.	
76 -		27			Do	Rec = 1 6'
-					76.7'	Wet
-	S-19	61			GrBr cmfG a,c(+)mfS, tCy\$; cbis.	
-		55	1		78'	
78 -		20			BrGr c(+)mfS t(-)\$ a(+)mf(+)G	Rec = 1.6'
	6 20	24				Wet
	5-20	22			79.7'	
80 -		25			Br cmfS, t\$, t(+)fG	
_		15			Br fS. s\$	Rec = 2.0'
_	S-21	20			P1 21	Wet
_		58			GrBr c(+)mfS. amf(+)G	
82 -		50			BrGr G I(+) cmfS +0; chl fram	$P_{00} = 1.1!$
_		31			רטוס ועד), כוווס, נט; כטו ודמקג. איז פא	Wet
	S-22	42			GrBr cm(+)fG e(+) cmfS t(+) & C = 0	
_		40			cbl frags.	
84 -		40			84'	
	I				End of Boring Total Depth = 84'	

RUST E&I Albany, NY (51	8) 458-1	313		Test B	oring L	og	Boring No.	RW-2 lot Boring		
PROJECT: Gla	adding C	Cordage					Sheet 1 of 4	Ļ		
CLIENT: NYSI	CLIENT: NYSDEC									
DRILLING CON	NTRACT	OR: Am	erican Aug	ler			Meas. Pt. Elev	. NA		
PURPOSE: R	ecovery	Well Pilot	Boring				Ground Elev.	1210.13		
DRILLING MET	THOD: S	Spin & W	ash	SAMPLE	CORE	CASING	Datum MSL			
DRILL RIG TYP	PE: Mob	ile B-59	TYPE	Split Spoon			Date Started:	6/27/94		
GROUNDWATER	R DEPTH:		DIAM.	3" O.D.		4" I.D.	Date Finished:	6/28/94		
MEAS. PT.:			WEIGHT	140 #		-	Driller: J. Pie	etruch		
DATE OF MEAS	l.:		FALL	30"			Inspector: B	. Cooper		
Depth Sample (Feet) Number	Blow Count	Unified Classif- ication	GRAPHIC LOG	GEOLO	GIC DESCRI	PTION	REMAR	RKS		
				Spin and wa I.D. Flush Jo No samples f Lost water a Regained wa Lost water a	sh drilled to int Spin Casi taken. t 30.5' <u>+</u> ater at 32' <u>+</u> t 34' <u>+</u>	46.0' w/ 4" ng				

Albany	/, NY (51	8) 458-13	313		lest Boring Log	Boring No. RW-2 Pilot Boring	
PROJ	ECT: Gla	adding Co	ordage			Sheet 2 of 4	
CLIEN		Job No. 37537.002					
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks	
	S-1	7 8 10			GrBr mfS, s(+)\$; occ. mS lyrs. and sms; angled bedding.	Rec = 1.7' Wet HNU Bkgd = 0 Spoon = Bkgd Head Space = 0.4 ppn	
48 -	S-2	11 10 9 12			Dk Gr Br cmf(+)S, t(+)\$, ImfG; G rded. occurs in upper portion of interval; freq. mS seams	Rec = 1.5' Wet HNU Spoon = Bkgd Head Space = 0.6 ppn	
50	S-3	8 9 14 17			Dk Gr Br mf(+)S, t\$; angled bedding	Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = 0.6 ppm	
52 -	S-4	9 14 19 24			Dr Gr Br cmfS, t(-)\$, tmfG; G rded.	Rec = 2.0' Wet HNU Bkgd = 0.2 ppm Spoon = Bkgd	
54 -	S-5	13 10 14 19			Dk Gr Br cm(+)fS, t(-)\$, t(-)G; cross-bedded	Head Space = 0.4 ppr Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = 0.3 ppr	
56 -	S-6	10 17 18			Gr Br to Dk Gr Br mf(+)S, t(+)\$; \$ seams in middle & bottom of interval; coarsens upward.	Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = 0.3 ppn	
58 — —	S-7	23 12 24 23			Do. w/ \$ seams at top.	Rec = 2.0' Wet HNU	
_		29			(OUTWASH)	Head Space = Bkgd	

RUST E& Albany, NY	l ′ (518	8) 458-13	313		Test Boring Log	Boring No. RW-2 Pilot Boring	
PROJECT:	Gla	adding C	ordage			Sheet 3 of 4	
CLIENT: N	NYSD	DEC				Job No. 37537.002	
Depth Sar (Feet) Nur	mple nber	Blow Counts	Unified Classif- ication	Visual Lo Descriptio	g Geologic Description	Remarks	
60 - S	-8	10 16 23 30			GrBr mf(+)S, l(-)\$; homogeneous.	Rec = 1.9' Wet HNU Bkgd = 0.2 ppm Spoon = Bkgd Head Space = Bkgd	
62	-9	13 15 30			Do. <u>63.2'</u> Dk GrBr cm(+)fS s, \$, I(+)mf(+)G; isolated mG at base	Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = Bkgd	
64	10	7 11 13 19			64.3' GrBr mf(+)S, l(-)\$, occ. rded. mG frags.	Rec = 1.7' Wet HNU Spoon = Bkgd Head Space = Bkgd	
- s-	.11	8 16 23 32			<u> 66.8'</u> GrBr c(+)mfS, t(-)\$, a(+)cmf(+)G. 68.0'	Rec = 1.9' Wet HNU Spoon = Bkgd Head Space = 0.2 ppm	
	12	33 27 30 39			GrBr cmf(+)G s, c(+)mfS, t(-)\$; subangular G.	Rec = 1.2' Wet HNU Bkgd = 0.2 ppm Spoon = Bkgd Head Space = Bkgd	
- S-	-13	18 21 48 33			GrBr cmf(+)G a, c(+)mfS, t\$ & C; subangular to subrounded G.	Rec = 0.8' Wet HNU Spoon = Bkgd Head Space = Bkgd	
72 - - - S-	14	14 21 26 30			Do.	Rec = 1.2' Wet HNU Spoon = Bkgd Head Space = Bkgd	
74 <u>-</u> S-	15	24 24			Do. (OUTWASH)	Rec. = 1.2' Wet	
RUST Albany	E&I /, NY (51	8) 458-13	313		Test Boring Log	Boring No. RW-2 Pilot Boring	
------------------	-----------------------------	----------------------	--------------------------------	---------------------------	---	---	
PROJ	ECT: GI	adding C	ordage			Sheet 4 of 4	
CLIEN		DEC				Job No. 37537.002	
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks	
 76	S-15 (cont)	33 21			GrBr fS, I\$, \$ seams at bottom.	HNU Spoon = Bkgd Head Space = Bkgd	
	S-16	16 30 33			BrGr mf(+)G s, c(+)mfS, t(-)\$; subrounded G.	Rec = 1.3' Wet HNU Spoon = Bkgd Head Space = Bkgd	
	S-17	40 39 33 42			GrBr cmf(+)G a(+), c(+)mfS, t\$ &C dense.	Rec = 0.9' Wet HNU Spoon = Bkgd Head Space = Bkgd	
80 <u>-</u> -					(OUTWASH) 80.0' End of Boring Total Depth = 80.0'		
-							
-							
-							
-							

RUST E&I Albany, NY (518) 458-1	313		Test Bo	oring L	og	Boring No.	TW-7D
PROJECT: Gladding	Cordage					Sheet 1 of 5	
CLIENT: NYSDEC						Job No. 3753	37.002
DRILLING CONTRACT	OR: America	n Auge	er			Meas. Pt. Elev.	1213.25
PURPOSE: Environme	ental Monitorin	ig				Ground Elev.	1211.35
DRILLING METHOD:	Spin & Wash		SAMPLE	CORE	CASING	Datum MSL	
DRILL RIG TYPE: Mob	ile B-59 TY	PE	Split Spoon		Steel	Date Started:	6/21/94
GROUNDWATER DEPTH:	DI	AM.	3" O.D.		4" I.D.	Date Finished:	6/22/94
MEAS. PT.:	WE	IGHT	140#			Driller: John	Pietruch
DATE OF MEAS.:	F.	ALL	30"		<u> </u>	Inspector: B.	Cooper
Depth Sample Blow (Feet) Number Count	Unified Classif- ication	PHIC XG	GEOLOG	GIC DESCRI	PTION	REMAR	KS
			Spin and wa 4" ID steel sp taken, no cut TW-7I Boring details.	sh drilled to bin casing. I ting returns. Log for llith	58.0' with No samples Refer to ologic		

Albany	/, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-7D
PROJ	ECT: G	ladding C	ordage	• <u> </u>		Sheet 2 of 5
CLIEN	IT: N	YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks
50						
				1		
_						
_						
				1		
_				T		
_				1		
				1		
				I		
55 -				I		
					, ·	
-						
				1		
58 -		13			BrGr c(+)mfS, t(-)Cy \$, a(-)cmfG;	Rec = 1.8'
	S-1	14			sl odr; subangular to subrounded	Wet
		22	1		G and cS.	Bkgd = 0.2 ppm
60 -		23				Spoon = 5-15 ppm Head Space = 2.6 ppr
	1 .		ľ	l.		NOTE: Lost drilling
				I		return water at 60' ±.
~						
						
-						
63 -						
-		20			BrGr c(+)mfS, t(-)Cy \$, lcmfG; very faint odr.	Rec = 1.9' Wet
_	S-2	25				HNU Speen = 1
		31				Spoon = 1 ppm

RUST Albany	E&I v, NY (51	8) 458-1:	313		Test Boring Log	Boring No. TW-7D
PROJE	ECT: G	ladding C	Cordage			Sheet 3 of 5
CLIEN	T: N	YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Descriptio	Geologic Description	Remarks
65 	S-3	24 32 32 36			BrGr cm(+)fG a(-), c(+)mfS, t(-)Cy \$; subangular to subrounded G.	Rec = 1.4' Wet HNU Spoon = Bkgd Head Space = 0.7 ppr Hit hard material at ~ 7'
73 -	S-4	23 29 65 ⁵⁰ 0.33			BrGr c(+)mfS, a(+)mf(+)G, t\$ & C; occ. lyrs or lenses of Sy C & \$.	Rec = 1.2' Wet HNU Spoon = 1.8 ppm Head Space = 1.1 ppm
- - 78 - - -	S-5	24 29 34 34			BrGr cmfG l(+), cmfS, tC & \$; dense, occ. wea G, (TILL)	Rec = 1.4' Wet HNU Spoon = Bkgd Head Space = 0.8 ppm

RUST E&I Albany, NY (518) 4	58-1313		Test Boring Log	Boring No. TW-7D
PROJECT: Gladd	ing Cordage			Sheet 4 of 5
CLIENT: NYSD	EC			Job No. 37537.002
Depth Sample B (Feet) Number Co	low Unified ounts Classif-	Visual Log Description	Geologic Description	Remarks
80 - - - - - - - - - - - - -			GrBr mf(+)S, I(-)\$; coarsens, upward; (84.6-85.0); fS with vertical infilling of mS; dense. GrBr mf(+)S, I(-)\$; homogeneous; coarser zone near top.	Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = 0.9 ppm Rec = 2.0' Wet HNU Spoon = Bkgd Head Space = 1.2 ppm
93	14		GrBr mf(+)S, t\$ & C, lm(+)fG; dense	Rec ≈ 1.6' Wet HNU
- 95	43 63			Head Space = 1.0 ppm

.

-

Albany	, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-7D
PROJE	ECT: G	ladding C	ordage			Sheet 5 of 5
CLIEN	T: N	YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks
95						
	6					
98 -		22			Gr fS, s(-)\$, homogeneous	Rec = 0.9'
-	S-9	48				HNU
-		50/0.1'				Spoon = Bkgd
100 -						neau Space - Bkgu
					100.5'	Rec. = 0'
_	S-10	50/0			End of Boring	Spoon Refusal at 100.5
_					Total Depth = 100.5'	
_						
-		{				
-						
_						
_						
_						
-		1				
-						
_						
-						
-						
-		{				
-						
-		┝───┤				
-						

RUST Albany	E&I , NY (51	8) 458-1	313		Test Boring Log				Boring No. TW-14
PROJE	ECT: Gla	adding (Cordage						Sheet 1 of 7
CLIEN	T: NY	Job No. 37537.002							
DRILL	ING COM	NTRACT	OR: An	nerican	Aug	jer			Meas. Pt. Elev. 1211.85
PURP	OSE: O	bservati	on Well						Ground Elev. 1209.81
DRILLI	NG MET	THOD:	Spin & W	/ash		SAMPLE	CORE	CASING	Datum MSL
DRILL	RIG TY	PE: Mol	bile B-59	TYP	'E	Split Spoon		Steel	Date Started: 6/30/94
GROUN		DEPTH:		DIA	М.	3" O.D.		4" I.D.	Date Finished: 7/1/94
MEAS	. PT.:			WEIG	нт	140#			Driller: John Pietruch
DATE	OF MEAS	.:		FAL	LL	30"	_		Inspector: B. Cooper
Depth (Feet)	Sample Number	Blow Count	Unified Classif- ication	GRAPH	HIC	GEOLO	GIC DESCRI	PTION	REMARKS
	S-1	13 14 17 14							Rec = 0'
- - 8 -	S-2	7 16 21 17				Br mf(+)G t(+), c(+)mfS		Rec = 0.15' Wet HNU Bkgd = 0.2 ppm Spoon = Bkgd Head Space = Bkgd

Albany	EGI /, NY (51	8) 458-1:	313		Test Boring Log	Boring No. TW-14
PROJE	ECT: G	ladding C	ordage			Sheet 2 of 7
CLIEN	IT: N	SDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks
10 11	S-3 (cont)	48 38				Spoon = Bkgd Head Space = 0.2 pp
14	S-4	38 39 68 52			Br & Gr c(+)mfG s(-), c(+)mfS, t\$ & C; angular Gr & rk (cbl) fgmts; dense (becoming somewhat less dense toward bottom).	Rec = 1.3' Wet HNU Spoon = Bkgd Head Space = Bkgd
	S-5	35 52 48 70			Br & Gr cm(+)fG s(-), c(+)mfS, t\$ & C, looser than material at 14' - 16'.	Rec = 1.3' Wet HNU Spoon = Bkgd Head Space = Bkgd
					<u>22.5' ±</u>	
24 — 	S-6	14			Dk Gr Br to it. Gr Br mf(+)S, l(-) \$; coarsens upward;	Rec = 1.3' Wet

Albany	, NY (51	8) 458-1:	313		Test Boring Log	Boring No. TW-14
PROJE	ECT: G	adding C	Cordage			Sheet 3 of 7
CLIEN	ד: N	SDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif-	Visual Log Description	Geologic Description	Remarks
26 -	S-6 (cont)	18 23			Occ. mS ptgs & freq. \$ ptgs in lower zone; crossbedded	HNU Spoon = NA Head Space = 0.2 pp (Moisture problems w HNU)
- 29 - - - 31 -	S-7	16 13 23 35			Br & Gr cm(-)fG s(+), c(+)mfS, t(-) \$; freq. stnd. reddish orange.	Rec = 1.3' Wet HNU Spoon = Bkgd Head Space = 0.2 pt
						Lost water at ~ 32'
34 - - - 36 -	S-8	19 24 28 32			Br & Gr cm(+)fG t(+), c(+)mfS; minor silt (<1%); subangular to subrounded G.	Rec = 0.8' Wet HNU Spoon = Bkgd Head Space = 0.2 pp
- - 39 -					Br & Gr c(+)mfG, t(+)c(+)mfS, t(-)	Rec = 0.8'
-	S-9	28			Cy \$; c G is mostly cbl frags.;	Wet

-

RUST Albany	'E&I /, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-14
PROJE	ECT: G	ladding C	ordage			Sheet 4 of 7
CLIEN	ד: N <u>'</u>	YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Descriptio	Geologic Description	Remarks
41	S-9 (cont)	35 33			subangular to subrounded mfG	HNU Spoon = Bkgd Head Space = 0.2 pp
				·		
44 - - -	S-10	35 29 32			Gr c(-)mfG l, cS; clean, large cbl fgmt. in drive shoe.	Rec = 0.4' Wet HNU Spoon = 0.1 ppm
46 - - -		33				Head Space = 0.3 pp
49 -	S-11	20 20			BrGr cmfG I, c(+)mfS, t(-)\$; angular to subrounded G; occ. cbls.	Rec = 0.7' Wet HNU Speen = Bkgd
		21				Head Space = Bkgd
-						
54 -	S-12	20 22			BrGr c(+)mfG l(-), c(+)mfS, t(-)\$, occ. cbl frag.; subangular to subrounded	Rec = 0.6' Wet HNU

Albany	, NY (51	8) 458-1:	313		Test Boring Log	Boring No. TW-14
PROJE	ECT: GI	adding C	ordage			Sheet 5 of 7
CLIEN	T: N	SDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif-	Visual Lo Descriptio	Geologic Description	Remarks
55 -	S-12 (cont)	42 58				Spoon = Bkgd Head Space = 0.2 ppm
- 59 - 61 -	S-13	19 21 27 33			Gr & Br c(+)mfG l(+), cm(+)fS, t(-)\$, more dense w/ \$yS matrix, freq. cbl. fgmts.	Rec = 0.9' Wet HNU Spoon = Bkgd Head Space = 0.4 ppn
64 66 66	S-14	38 42 37 27			Br Gr c(+)mfG l(-), c(+)mfS, t(-)Cy \$; freq. cbl. frags.; subangular to subrounded G.	Rec = 0.75' Wet HNU Spoon = Bkgd Head Space = 0.2 ppr
- - - 69 -	· · · · · · · · · · · · · · · · · · ·				Gr & Yw Gr cm G; cbl. fgmts.	Rec = 0.6'

RUST Albany	E&I /, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-14D
PROJI	ECT: GI	ladding C	ordage			Sheet 6 of 7
CLIEN		YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif-	Visual Log Descriptior	Geologic Description	Remarks
70 	S-15 (cont)	28 			Gr mf(+)G a(+), fS, s(-)\$; subrounded G.	HNU Spoon = Bkgd Head Space = 0.4 ppm
- - -						
74 - -	S-16	29 28 30 32			Gr c(+)mfG t(+), cmfS, t(-)\$; cG includes cbl frags.	Rec = 0.8' Wet HNU Spoon = Bkgd Head Space = 0.2 ppm
76 - - -						
- - 79 -		20			BrGr mf(+)G s(-), c(+)mfS, t(-)\$;	Rec = 0.45'
-	S-17	32 59 70			subangular to subrounded G; cbls.	Wet HNU Spoon = Bkgd Head Space = 0.1 ppm
81 - -						
-						
84 — -	S-18	22 32			GrBr c(+)mfG a, c(+)mfS, t(-)\$; isolated cbl. frag.; angular to subrounded G.	Rec = 1.1' Wet

Albany	ECKI v, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-14D
PROJE	ECT: GI	adding C	ordage	I		Sheet 7 of 7
CLIEN	T: N	SDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif-	Visual Log Description	Geologic Description	Remarks
85 	S-18 (cont)	48 44				HNU Spoon = Bkgd Head Space = 0.2 ppm
	S-19	 			Dk BrGr cmf(-)S, t(-)\$, tfG; coarsens upward; subangular to subrounded G.	Rec = 1.1' Wet HNU
 91 		29			91.0' End of Boring Total Depth = 91.0'	Spoon = Bkgd Head Space = 0.3 ppm see well construction detail TW-14D for well installation information
1						
					-	

RUST E&I Albany, NY (518) 458-1313		Test B	oring L	Boring No. TW-15	
PROJECT: Gladding Cordage		•			Sheet 1 of 5
CLIENT: NYSDEC					Job No. 37537.002
DRILLING CONTRACTOR: Am	nerican Aug	ger & Ditching	, Inc.		Meas. Pt. Elev. 1211.52
PURPOSE: Observation Well					Ground Elev. 1209.67
DRILLING METHOD: Spin & W	/ash	SAMPLE	CORE	CASING	Datum MSL
DRILL RIG TYPE: Mobile B-59	TYPE	Split Spoon		Steel	Date Started: 6/28/94
GROUNDWATER DEPTH:	DIAM.	3" O.D.		4" I.D.	Date Finished: 6/29/94
MEAS. PT.:	WEIGHT	140#			Driller: John Pietruch
DATE OF MEAS.:	FALL	30"			Inspector: B. Cooper
Depth Sample Blow Classif- (Feet) Number Count ication	GRAPHIC LOG	GEOLO	GIC DESCRI	PTION	REMARKS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Br cmfS, a(+) \$ & C, smfG	, angular G.	Rec = 0.8' Wet HNU Bkgd = 0 Spoon = Bkgd Head Space = Bkgd
9 <u>27</u> S-2 <u>45</u>		Br & Gr cmf0 freq. cbl. frag	ິອ s, c(+)mfS, յs.	t\$ & C;	Rec = 0.9' Wet HNU Spoon = Bkgd

RUSTE&I Albany, NY (518) 458-1313					Test Boring Log	Boring No. TW-15		
PROJECT: Gladding Cordage						Sheet 2 of 5		
CLIENT: NYSDEC						Job No. 37537.002		
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Descriptior	Geologic Description	Remarks		
- 11	S-2 (cont)	75 49						
- 12 -								
- 13 -								
14 - - 15 -	S-3	35 34			Gr & Br cmf(+)G s, c(+)mfS, t(-)\$; subangular to subrounded G.	Rec = 1.2' Wet HNU		
- 16 -		35 45				Spoon = Bkgd Head Space = 0.2 p		
18 - - 19 -						Lost water at 19'		
- 20 - -	S-4	20 18 19			Gr cmf(+)G, s(+), c(+)mS, clean, isolated Cy & zone (matrix material) at bottom; subangular to subrounded G.	Rec = 1.4' Wet HNU Spoon = Bkgd		
21 - - 22 -						⊓ead Space ≃ Bkgd		
_ 23 _								
 24	S-5	14			GrBr cm(+)fG s, c(+)mfS, t(+) Cy \$	Rec = 0.9' Wet		

RUST E&I Albany, NY (518) 458-1313					Test Boring Log	Boring No. TW-15		
PROJE	ECT: GI	adding C	ordage			Sheet 3 of 5		
CLIENT: NYSDEC						Job No. 37537.002		
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks		
25 	S-5 (cont)	41 23			freq. Cy \$, sfS lyr (0.1')	HNU Spoon = Bkgd Head Space = Bkgd Return water came back at 25'		
27 -					<u>27.5' +</u>			
28 - -								
29 -		9			Dk Gr Br cmf(-)S, t(-)\$, lmfG; subrounded mG; ls&qtz. rk frag.	Rec = 1.2' Wet		
30	S-6	25 18				HNU Spoon = Bkgd Head Space = 0.2 ppm		
- 32 -								
33 - -								
34 -		14			Dk Br Gr c(+)mfS, t(-)\$, a(+)m(+)fG; clean; subrounded G.	Rec = 1.4' Wet		
35 -	S-7	16 16 16				HNU Bkgd = 0.1 ppm Spoon = Bkgd		
36 - -						Head Space = Bkgd		
37 -		·						
38 – –								
39 — -	S-8	18 22			Gr Br c(-)mfG s(-), c(+)mfS, t(-)\$, subangular to subrounded G.	Rec = 1.3' Wet		

RUST Albany	' E&I v, NY (51	8) 458-13	313		Test Boring Log	Boring No. TW-15
PROJE	ECT: GI	adding C	ordage			Sheet 4 of 5
CLIEN	T: N	YSDEC				Job No. 37537.002
Depth (Feet)	Sample Number	Blow Counts	Unified Classif-	Visual Log Description	Geologic Description	Remarks
40 	S-8 (cont)	22 23				HNU Spoon = Bkgd Head Space = Bkgd
44 -	S-9	18 20 23			Br Gr cmf(+)G s(+), c(+)mfS, t(-)\$; freq. cbl. fgmts; angular to subrounded G.	Rec = 1.1' Wet HNU Spoon = Bkgd
46		18				Head Space ≃ Bkgd
- 49 -		12			Gr mfG a(+), fS, t\$, subrounded G; red SS49.6' <u>+</u>	Rec = 1.5' Wet
- - 51 -	S-10	11 8 8			Gr fS, s\$; homogeneous; vfS with occ. fS ptgs.	HNU Spoon = Bkgd Head Space = 0.2 pp
		· · · · · · · · · · · · · · · · · · ·				Coarse gravel (large r & white pebbles are quartzite)
54 — —	S-11	28 21			GrBr fS, l\$, s(-)mfG.	Rec = 0.1' Reattempt same interval

RUST E&I Albany, NY (518) 458-1313					Test Boring Log	Boring No. TW-15I		
PROJE	ECT: GI	adding C	ordage			Sheet 5 of 5		
CLIEN	יא :Tt	YSDEC				Job No. 37537.002		
Depth (Feet)	Sample Number	Blow Counts	Unified Classif- ication	Visual Log Description	Geologic Description	Remarks		
	S-11 (cont)	18 9			<u>55</u> .0' <u>+</u> _∕ Br fS, s(-)\$	Rec = 1.5' Wet HNU Spoon = Bkgd Head Space = 0.2 ppm		
59 - - - 61 - -	S-12	22 18 12 18			Br Gr cmf(+)G s(-), c(+)mS, t(-)\$; silty matrix zone at top; subrounded G; isolated Is cbl piece.	Rec = 1.1' Wet HNU Spoon = Bkgd Head Space = 0.1 ppm		
64	S-13	25 15 15 17			Gr Br mf(+)G s, c(+)mfS, t\$ 64.7' <u>+</u> Dk Gr Br cmf(-)S, t(-)\$	Rec = 1.2' Wet HNU Spoon = Bkgd Head Space = 0.5 ppm		
68 -		16			<u>67.0 +</u> Gr Br cmfS, t\$, amf(+)G.	Rec = 1.4'		
	S-14	21 17 19			End of Boring Total Depth = 70.0'	Wet HNU Spoon = Bkgd Head Space = Bkgd		

APPENDIX G

GRADATION ANALYSES

.

CLIENT: LAB NUMBE TEST BY: REVIEWED SAMPLE DE	NYS R: 7-94 REF BY: WG(SCR: RW-1	DEC, GLADI 1-22/37537. 1, S-5, 48-	DING CORDAC .002 -50 feet	E SITE DATE RECEIVED DATE TESTED: DATE REPORTED): 7/6/94 7/8/94): 7/12/94
		<u>G</u>	RAIN SIZE DIS		
U.S. STAN	DARD SIEVE OPENIN IN INCHES	IGS L	I.S. STANDARD SIEVE NUMBERS		HYDROMETER
4	321/2 11/2 1 3/4	1/2 3/6 1/4 8 1/	0 16 20 30 40 50 6	0 100 140 200	·····
10 -		ت میں بی میں میں میں میں میں میں میں میں میں می	بور بر ۲۰۰۰ تر در ا	• • • •	• • • •
20		n an	an An an an An an an an an an	۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰	· · ·
30 -		<pre>c > y food f op a set set set set set set set set set set</pre>	ni 2 2 - an anal 2000 - 2010 - 2010 2	, e, e, e, , , , , , , , , , , , , , ,	مرار در از دهم از در در به از مرار در از در از در
40 -		ուս ու էր էր էր էր ուր էլ էլ էր	یوه و مینه د . د م د	n n de la construcción de la constru La construcción de la construcción d	سیلاس داده از به از ا ام م جامه از مانی

	COBBLE	s _c	GRAVEL	. F	с		ND I	F		SILI	Γ	CLAY	
		COA	RSE				FI	NE			н	YDROMETER	4
SIZ	E PERCE (as) RETAIN		JMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCEN RETAINE		UMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
	3 0.	.00	100.00	5	4	10.	. 40	35.05	i e	_			
	2 11	. 80	88.20)	ε	3 8.	. 21	26.84					
	1 23.	.31	64.89	Э	16	5 7	.12	19.73	;				
3	/4 7.	. 10	57.79)	30) 5.	.37	14.35	i				
1	/2 7.	.08	50.70)	50) 4.	.07	10.28	3				
3	/8 5.	. 25	45.46	5	100) 1.	.78	8.50)				

1.09

1.0 0.6

Pan = 7.41%

; ..

0.2 .15 .10 .06

7.41

.

i. . . . ha

.01 .006

.002

.02

Wash Loss Was Not Tested.

ASTM C 136 SPECIFICATION: TEST STANDARD: ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON NOTES:

200

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

. با ان المحمد الم

4. .

50

60

70

80

90

100

200

60

20

10 6

100

ed By Weigh

Ô

Percent Finer By Weight

- 50

40

- 20

10

n

٦

.0006 millimeter

et an • 30

.001

CLIENT:	NYS DEC, GLADDING CORDA	GE SITE	
LAB NUMBER:	6-94-60/37537.002	DATE RECEIVED:	6/29/94
TEST BY:	KASJ	DATE TESTED:	6/30/94
REVIEWED BY:	WSC	DATE REPORTED:	776794
SAMPLE DESCR:	RW-1, S-6, 50-52 feet		

GRAIN SIZE DISTRIBUTION

COARSE	FINE	HYDROMETER
SIZE PERCENT CUMULATIVE (inches) RETAINED PERCENT SPECS. PASSING	SIEVE PERCENT CUMULATIVE PERCENT SPECS. RETAINED PASSING	PARTICLE PERCENT DIAMETER PASSING SPECS. (mm) PASSING
2 0.00 100.00	4 13.27 42.72 8 11 12 21 50	
3/4 8.34 70.93	16 10.04 21.56	
1/2 9.39 61.53 3/8 5.54 55.99	30 7.23 14.34 50 4.38 9.96	
	100 1.86 8.09 200 1.02 7.08	

Pan = 7.08%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ercent Retained By

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM Cº 136

Formerly DUNN Corporation

Pan = 12.55%

Wash Loss Was Not Tested.

SPECIFICATION: ASTM C 136 TEST STANDARD: NOTES: ALL SAMPLE

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

Quality through teamwork

JG

Pan = 13.85% Wash Loss Was Not Tested.

ASTM C 136

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

 Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

S

Percent Retained By Weigh

CLIENT:	NYS DEC, GLADDING CORDA	GE SITE	
LAB NUMBER:	6-94-61/37537.002	DATE RECEIVED: 6/29/94	1
TEST BY:	KASJ	DATE TESTED: 6/30/94	1
REVIEWED BY:	WSC	DATE REPORTED: 7/6/94	
SAMFLE DESCR:	RW-1, S-9, 56-58 feet		

GRAIN SIZE DISTRIBUTION

COARSE			.	FINE		_	HYDROMETER		
SIZE PERCENT CUMULATIVE (inches) RETAINED PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
2 0.00 100.00 1 20.88 79.11 3/4 5.75 73.36 1/2 9.01 64.36 3/8 5.28 59.08) 2 5 5 8	4 8 16 30 50 100	12.86 11.55 10.22 7.38 3.85 1.79	6 46.22 5 34.67 2 24.44 3 17.06 5 13.21 9 11.42 3 10 34	2 7 4 3 2				

		Wash	Pan Loss	= 10.0 Was No	34% 5t	Tested.	-		
SPECIFICATION: TEST STANDARD:	ASTM C 136								
NOTES:	ALL SAMPLES	WERE	TAKEN	FROM	A (3 inch	0.D.	SPLIT	SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

NOTES:

Quality through teamwork

JG

CLIENT: NYS DEC LAB NUMBER: 6-94-62 FEST BY: KASJ REVIEWED BY: WSC	. GLADDING CORDA /37537.002	GE SITE DATE RECEIVEI DATE TESTED: DATE REFORTEI	D: 6/29/94 6/30/94 D: 7/6/94	
SAMPLE DESCR: RW-1, S	-11. 60-62 feet			
	GRAIN SIZE DIS	TRIBUTION		
U.S. STANDARD SIEVE OPENINGS IN INCHES	U.S. STANDARD SIEVE NUMBERS		HYDROMETER	
4 3 21/2 2 11/2 1 3/4 1/2 3/8	14 8 10 16 20 30 40 50	60 100 140 200		100
	n ing ing dina dina dina dina dina dina dina dina	· · · · ·	a di seria d Seria di seria di seri	- 90
20	• • • • • • • • • • • • •	ан сайта. Жала сайта с		- 80
in the second		e e en	ra, governa paras	
	ی میں کا ڈریوسی 19 م کی 19 م کی میں اور	n de la companya de l La companya de la comp		- 70
40	ing and a second se Second second		• . • .	
		9	۰ -	~
	and a second second Second second second Second second	4 ym	ر به سر و در د مر خور ج	50
60 -				- 40
		کې قې د مېړ کې ور کې کې کې کې کې کې د کې کې د کې کې کې د کې	an a	· · · · · · · · · · · ·
		a a la composition de	······································	- 30
80 -		می در میں شود میں اور	· · · · · · · · · · · · · · · · · · ·	- 20
	and the second s	n na hanna an ann an Anna an Anna an Anna an Anna an Anna Ann Anna Anna	الم والمعالية في عو	
مىدىلەر بارىيە ئەر ئەر يەر يەر يەر بەر يەر يەر يەر يەر يەر يەر يەر يەر يەر ي	است. ۱۹۹۵ - میرید از میرونان ۱۹۹۵ - میرید از ۲۰۰۰ ا		, , , , , , , , , , , , , , , , , , ,	-10
100				o
	6 2 1.0 0.6	0.2 .15 .10 .06 .02	.01 .006 .002	.001 .0006 millim
	F C M	F	SILT	CLAY

	C	OARSE				FINE		_	H	YDROMETE	R
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLÉ DIAMETER (mm)	PERCENT PASSING	SPECS.
	2 0.00	100.0	Ō		12.7	6 37.48	3.	_			
-	1 23.30	76.7	Ō	8	3 8.7	6 28.73	2				
3/4	4 8.95	67.7	5	16	5 7.4	1 21.3:	1		*		
1/2	2 10.53	57.2	3	30) 5.3	8 15.93	3				
3/8	3 6.99	50.2	4	50) 3.2	2 12.7	1				
				100) 2.0	1 10.70	5				
				200) 1.2	0 9.50)				

Pan = 9.50%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLE WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

 Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

16

O

Formerly DUNN Corporation

Formerly DUNN Corporation

CLIENT:	NYS DEC, GLADDING CORDAGE SI	TE
LAB NUMBER:	6-94-63/37537.002 DATE	RECEIVED: 6/29/94
TEST BY:	KASJ DATE	TESTED: 6/30/94
PEVIEWED BY:	WSC DATE	REPORTED: 7/6/94
SAMPLE DESCR:	RW-1, S-12, 62-64 feet	

GRAIN SIZE DISTRIBUTION

	C	OARSE				FINE		_	HYDROMETER		
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT	SPECS.
2	0.00	100.00)	4	13.41	41.10					
1	19.53	80.47	,	3	10.95	30.15					
3/4	9.08	71.39)	16	8.83	21.31					
1/2	11.20	60.19)	30	5.14	15.17					
3/8	5.68	54.50)	50	3.51	11.67					
				100	2.07	9.60					
				200	1 33	8 27					

Pan = 8.27%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Percent Retained By Weig

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Pan = 12.31%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

J6

Formerly DUNN Corporation

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

NOTES:

Quality through teamwork

J6

CLIENT:	NYS DEC, GLADDING CORDAGE SITE
LAB NUMBER:	6-94-64/37537.002 DATE RECEIVED: 6/29/94
TEST BY:	KASJ DATE TESTED: 6/30/94
REVIEWED BY:	WSC DATE REPORTED: 7/5/94
SAMPLE DESCR:	RW-1, S-15, 68-70 feet

GRAIN SIZE DISTRIBUTION

COARSE				FINE					HYDROMETER			
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.	
2	0.00	100.00	0	4	5.82	2 67.70	>	-				
1	16.32	83.60	3	8	5.35	5 62.35	5					
3/4	1.91	81.78	3	16	8.79) 53.50	5					
1/2	5.59	76.18	3	30	12.60) 40.96	5					
3/8	2.66	73.5	3	50	8.55	5 32.41	2					
				100	4.64	4 27.78	3					
				200	3.80	5 23.92	2					

Pan = 23.92% Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Percent Retained By Weig

ALL SAMPLES TAKEN FROM A 3 INCH O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

JG

Formerly DUNN Corporation

CLIENT:	NYS DEC, GLADDING	CORDAGE SITE	
LAB NUMBER:	6-94-65/37537.002	DATE RECEIVED:	6/29/94
TEST BY:	KASJ	DATE TESTED:	6/30/94
REVIEWED BY:	WSC	DATE REPORTED:	7/6/94
SAMPLE DESCR:	RW-1, S-16, 70-72	feet .	

GRAIN SIZE DISTRIBUTION

	C	DARSE		_	FINE				HYDROMETER		
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
3/4	+ 0.00	100.00)		L 0.77	7 98.14	+				
1/2	0.98	99.03	2	8	े. ७६	5 97.18	}				
378	0.11	98.93	L	16	1.83	3 95.35	,				
				30) 2.48	3 92.87	,				
				50) 1.93	90.88	}				
				100) 1.92	2 88.96	,				
				200) 5.33	3 83.63	;				

Pan = 83.63%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Percent Retained By Welg

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

CLIENT:	MYS DEC, GLADDING CO	ORDAGE SITE	
LAB NUMBER:	6-94-66/37537.002	DATE RECEIVED:	6/29/94
TEST BY:	KASJ	DATE TESTED:	6/30/94
REVIEWED BY:	WSC	DATE REPORTED:	7/6/94
SAMPLE DESCR:	RW-1, S-17, 72-74 fe	et	

GRAIN SIZE DISTRIBUTION

	C	OARSE			1	FINE		HYDROMETER			R
SIZE (inches	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
	2 0.00	100.00)	4	6.42	80.13	3	-			
	1 2.25	97.75	5	8	7.80) 72.34	ļ				
37	4 5.07	92.68	3	16	11.84	4 60.49	ÿ				
1/	2 4.50	88.18	3	30	12.50) 47.99)			•	
37	8 1.62	86.55	5	50	9.95	9 38.00)				
				100	7.77	7 30.23	3				
				200	A 90) 22 23)				

Pan = 23.32%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Percent Retained By We

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Formerly DUNN Corporation

CLIENT:	NYS DEC, GLADDING	CORDAGE SITE	
LAB NUMBER:	6-94-67/37537.002	DATE RECEIVED:	6/29/94
TEST BY:	KASJ	DATE TESTED:	6/30/94
REVIEWED BY:	WSC	DATE REPORTED:	776794
SAMPLE DESCR:	RW-1, S-18, 74-76	feet	

GRAIN SIZE DISTRIBUTION

								_			-
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
1	0.00	100.00)	<u>د</u>	8.9	3 84.8	3				
3/4	2.08	97.92	2	E	10.7	7 74.06	5				
1/2	1.36	96.50	5	16	9.70	0 64.30	ŝ				
3/8	2.79	93.76	5	30	10.70	53.60)				
				5C	9.80	6 43.74	4				
				100	9.00	5 34.68	3				
				200	5.30	6 29.33	2				

Pan 1 = 29.32%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Retained By

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Quality through teamwork

Formerly DUNN Corporation

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

NOTES:

Quality through teamwork

J6

Formerly DUNN Corporation

CLIENT:	NYS DEC, GLADDING C	ORDAGE SITE	
LAB NUMBER:	6-94-68/37537.002	DATE RECEIVED:	6/29/94
TEST BY:	KASI	DATE TESTED:	6/30/94
REVIEWED BY:	WSC	DATE REPORTED:	7/6/94
SAMPLE DESCR:	RW-1, S-20, 78-80 f	leet	

GRAIN SIZE DISTRIBUTION

	C	OARSE				FINE			HYDROMETE	R
SIZE (inches)	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.	PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
1	0,00	100.00)	4	9.41	. 78.30	0		_	
3/4	2.13	97.87	,	В	8.72	2 69.50	3			
1/2	6.42	91.45	5	16	15.05	5 54.50	3			
3/8	3.74	87.71		30	18.62	35.93	2			
				50	12.66	3 23.25	5			
				100	10.38	12.83	7 -			
				200	5.16	5 7.73	1			

Fan = 7.71%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

stained By

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

U.S. STANDARD SIEVE OPENINGS IN INCHES U.S. STANDARD SIEVE NUMBERS HYDROMETER 4 321/2 2 11/2 1 1/4 1/2 1/4 4 8 10 16 20 30 40 50 60 100 140 200	- 90
	- 90
	- 90
	- 90
	- 80
	70
	• • • • • 60
50	
	······································
	30
	······································
ى يەرىپ دەلىرى يەرىپ مەمىيە ۋېتى تەرىپ كېتىر يەرىپ يېچىكى يەرىپ يېچىكى يېچىكى يېچىكى يېچىكى يېچىكى يەرىپ تەرىپ ئېچىكى يېچىكى	- 10
100 100 60 20 10 6 2 1.0 0.6 0.2 15 10 .06 .02 .01 .006 .00	0 2 .001 .0006 r
COBBLES C M F C M F SILT	CLAY
COARSE FINE HYD	ROMETER
SIZE PERCENT CUMULATIVE PARTICLE IN PERCENT SPECS. SIEVE PERCENT PERCENT SPECS. (inches) RETAINED PASSING (mm) F	PASSING SP
1 0.00 100.00 4 0.05 98.97	
1/2 0.00 99.01 16 0.14 98.75	
3/8 0.00 99.01	
100 19.80 69.32	
200 17.71 31.61	

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

0

JG

Pan = 29.96%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Quality through teamwork

JG

Ô

CLIENT:	NYS DEC. GLADDING	CORDAGE SITE	
LAB NUMBER:	7-94-1/37537.002	DATE RECEIVED:	6/30/94
TEST BY:	KASJ	DATE TESTED:	7/1/94
REVIEWED BY:	WSC	DATE REPORTED:	7/6/94
SAMPLE DESCR:	RW-2, 50-52 feet		

GRAIN SIZE DISTRIBUTION

U.S. STANDARD S IN INC	HES	NINGS	U.S	NUMBER	D SIEVE RS			HYDROMETER		
4 32%2	1½ 1¾	1/2 3/6 1/4	4 810	16 20 3	0 40 50 60	100 140 2	200			- 100
· · · · · · · · · · · · · · · · · · ·	, , , ,	· · · · · · · · · · · · · · · · · · ·						·	· · · · · · · · · · · · · · · · · · ·	T
0	1 ² 4 4	a - 24 g			AA, I			a to take a		- 90
و موسق و جو مو	ana an	-	•				**** . *	· · · · · · ·		
.0 	~ ~ ~ ~		,		· 1			~		- 80
n marine and an analysis of the specific specifi	ana sula in san Na sa	. · ·			ંદ્	•	5 4 6 - 1	· · · · ·	- * · ·	
0		· • • •	:				· · · ·		·	- 70
			· · · ·	•			180 AL	•		
		، ۱۰ , ۱۰				1	A			
	tarim s	مر در م مربع م			÷ .	Д . н.		en a ger witt in h		50
المشقوة المسلم الأ			fet a si gare	e -		dų –	· · 4· · 4		·	
o 4	معرب الم			1. A. A.	1	- X	e	a series a	يهيه مدينة ج	40
يۇ استا بىر بىلى	1 j.4 h	e terstaan in te			1 <u>1</u> 1	<	ana a constana ana	a a construction of the second se	ی ژو هر میرد ای سیس د د و	• ~
o de la constante de la consta	1 1 7 7 7 7 1	2-1 5-1-1-1-4 1-1-1-1-4	a a ar uwar		· · · ;	. C	· · · · · · · · ·	a and a second s	· · · · · · · · · · · · · · · · · · ·	- 30
الم	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$					· · · ·	ا و بعد م	стан жана ул У	· · ·	1
	ng in su in			· · ·	ч ли с		· 4 : · · · · · ·	• • • • • • • • • • • • • • • • • • •		- 20
				• •	4 1 4 14 14 14	· · · · · · · · ·		n and in a second s	5 april 16	
	ان الد معد ال المهاسة محمدة	ر بیشدر را رو این هرهٔ هیون رسیدریا	ութուտ։ Դ Հրուստու հերջանգությո	د در در او د د بو برهم د	ی د میں میں دیکھی	an a	n hand and a second a second a second a second	الد الدر الالكي ويراد الم المراجعة المراجع في مراجع المراجع	and a second second	10
			<u>.</u>	ر ۲۹۰۰ و. <u>مر</u> انين د		: 	<u></u>			\mathbf{T}^{0}
200 100 60	20	10 6	2	1.0 0.0	<u> </u>	2 .15 .10	.06 .02	.01 .006	.002 .001	0006 millin
	- GR	AVEL			SAND					٦ `

	C	OARSE				FINE			. Н	YDROMETE	7
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT	SPECS.
3/4	0.00	100.00)	4	0.23	99.16	5	-			
-1/2	े.33	99.67	,	8	0.37	7 98.79	9				
3/8	0.28	99.39	÷	16	0.22	98.57	7				
				30	1.19	97.38	3				
				50	14.06	5 83.32	2				
				100	36.52	46.80)				
				200	14.80	32.00	D				

Fan = 32.00%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

Percent Retained By Weight

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Quality through teamwork

J6

Ô

CLIEN	T: IMBER:	NYS	DEC, GL	ADDIN(G CORDA	GE SIT	E RECEIVEI): 7/6/94	<u>·</u>	
TEST REVIE SAMPL	BY: WED BY E DESCI	REF : WSC R: RW-1	2, 52-54	l feet	_	DATE DATE	TESTED: REPORTED	7/8/94): 7//1/9	ł)4	
				GRAIN	SIZE DIS	TRIBUTIC	ON			
U	.S. STANDARD IN IN	SIEVE OPENIN ICHES	IGS	U.S. STA NI	NDARD SIEVE JMBERS			HYDROMETER		
°Т	4 32%	2 11/2 1 3/4	1/2 3/8 1/4 4	8 10 16	20 30 40 50 6	0 100 140	200			T ¹⁰⁰
10 - 10 - 10	ىرىپ ز يې سى يې ئىچى ئې ئې ئې سىسى ئىچى ئې	1 - 1 		- PA	· · ·		*			- 90
20 -	م بر بود وله در در م ه مر بود وله در در م ه مر بودهم وبیت دریت	n up a co		· •			м			- 80
30 -	ىشىمۇلۇر ۋە يىسىمە ئىمبۇرلەتلىپ		ېودېکېدو. د د د مالو د د د د مالو د د	یں ۲۰۰۰ کی در ۱۰۰۰ ۲۰۰۰ م	a X ana ang		γ e ≟ ≱yersα γ		•	- 70
40		en la constante de la constante		· · ·			· ·		· · · · · · · · · · · · · · · · · · ·	- 60
60 -		rinin in kana aga ninin in kana aga niningan in kanananan niningan in kanananan	n na	* ** * *			n an	• • • • • • • •	- e -	- 40
70	قىسىمىلارىغى يىدىم 1943-يىل ۋىرى يۈنىچىدى		€ =	ng panén N		- <i>,</i>	······································	- · · · · · · · · · · · · · · · · · · ·		• 30
80		a man a chan a chan	مر میں میں اور				r un den son son son son son son son son son so	· · · · · · · ·		- 20
90 -		na , pa na a , a , a , a , a , a , a , a , a ,	an a shi a s	n an na a ch <mark>u</mark> n n n	، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		9	an a		- 10
100200	100 60	20	10 6	2 1	.0 0.6	0.2 .15 .10	.06 .02	.01 .006	.002 .001	
cc	BBLES		EL F	c	SAND M	F		SILT	CLAY	
	C(-	、		FINE		H	YDROMETE	R
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	PERCENT PASSING	E SPECS.	DIAMETER (mm)	PERCENT PASSING	SPECS
	0.00	100 0	00		1 1 59	5 97	05			

Pan = 11.11%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

30.19

16.51

11.11

• Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

50

100 200

29.62

13.67

5.41

						G	RAIN	SIZE DI	STR	IBUTIC	DN						
	⁻ U.S. S	TANDARD	O SIEVE OF NCHES	ENING	S	 ۱	J.S. STAN NUI	NDARD SIEVI MBERS	E				ΗΥ	DROMETER			
		4 321/2	2 11/2 1	3/4 1/2	* * 14 4	8 1	0 16 ;	20 30 40 5	50 60	100 140 2	200						
0			••••••••••••••••••••••••••••••••••••••														T ¹⁰⁰
10 -	•		÷.	· •	2 		1 1	· .						** <u>*</u> *			- 90
	<u> </u>		* ,	1	yr Ar s		1	s .	4		<u>.</u>						
20 -	[·		ي ، و د ميني م ، ميني	3				∖ , ∷								r	- 80
30 -	 	44-	· · · · · · · · · · · · · · · · · · ·	;. ,	and your 'r						• •			. 12 x		а (л. ,	70
40 -		د ام تولیع برد. بر ام محمد برد. در ام محمد برد. برد.	na ing kanalan Ding Ananan kanalan	يانين مانياني مانياني	in a sub-	· •		4	,		• • •					r ignis Santa s	60
		م ایند اند. ایند اند		5	1 - E - 1 14 - 15			٦.			~					مىرى يەر	
50 ·	• • • • •	ا بې مېلې و. د د د د د	austa 1		الام عنومون ا			· · · •			• •	• •		e an e		····	50
60 ·		ار سېلېل ام	T i Tel		i i i i i i Alexandre de la composición			· \		,,	- 	ية ميرين مريدة مريدة		en an en			40
				an,≞ v	an a	1 No. 40-17 2		<u>)</u>	li	- 14 - 14 - 1		а . ф иллон — на		· · · ·	· ,	پريشو – در. فر	• •
70 ·		ىم ۋەچىسى بىلىكى بىلىكى دى	1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	ilan mun An	i i i i i i i i i i i i i i i i i i i	e w ee An Ar				در م ۱۰ ۱۰	·	in istration and a state of the		1	а — 22 1 а	in nin herenden. Lin herenden	30
80 -		- 14-3-1-	1 2		ينه مقاطعة محد م	ά τ _ι .					- a	· ·· •·			· •		- 20
00.	in s t	1 1 4-~4		ся. ^{	ang ng taong taon Taong taong tao Taong taong					all and a second se	9	· · · ·	· ·	.•			
90.	[يېږينې دې لمېنې و درس	n i na. File	n	ing Angenering Angenering Angenering	e e antes e e antes	· · ·	· · · · · · · · · · · · · · · · · · ·		···			.	ي وي الم وت ال ما وي الم وت ا			1 ¹⁰
100 -	200	100 60	•	20	10 6	2	1.0	0.6	0.2	.15 .10	.06	02		1.006	002	001	- ↓ 0 0006 mill
ſ	COBB	LES		GRAVEL		Ī		SANC	ਸ਼ਾ	F			SILT			CLAY	7
		 C	OARSE			I			 Fib				_	F			
SIZE (inches) PEI	RCENT	CUMULA PERCE PASSI		SPECS.] [SIEVE	PERCENT		JMULATIVE PERCENT PASSING	•	SPECS.	ſ	PARTICLE DIAMETER (mm)	PEP	RCENT	SPEC
3/	/4	0.00	100	0.00)		ـــــــــــــــــــــــــــــــــــــ	. O. (82	97.4	44		L		1		
1/	2	0.77	99	9.23	3		8	0.(69	96.1	75						

Fan = 14.23%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

G

Formerly DUNN Corporation

Formerly DUNN Corporation

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

JG

Formerly DUNN Corporation

U.S	5. STAN	DARD	SIEVE C	PENIN	IGS [.]		U.S	S. STAN	DARD	SIEVE								
		in in	CHES					NU	MBERS	6					TTORONETER			
0	4	32%2	11/2 1	% 	½ ¾ ++-	4 4	8 10	16	20 30	40 50	60 1 ⁻	00 140	200					
		•			· •			444 ⁴⁴⁴		•								
10	، بر باشد ارتسان 	ipidenen de Andrean de			یں مراجعہ اور بر مالعہ	an seanna An seanna	• •			N.			, 		6° 44 1 - 1 - 1		~	1 90
20			i The second se	*					,	N.								- 80
	، وسيت بين تري	ىقا بىلا بىرىدىد. 12-13-13-13-13-13-13-13-13-13-13-13-13-13-	, sources	, .	· · · ·	• • •) I					ан сарана х			
30	ې کې د مې د دې د مېمې	n de ferman en 1921 - Angel 1922 - Angel Ang		n nyen en	مريق . ا د م د مه	-; •• · ;	e"	:			Ĭ.	· ,	а – с ж. ч.е.		n ann a An	ξ	يىسىرى سى مەرى بىسىرى مەرى	70
40	1 		- 4- 7	Ĩ		an Arain Arain		4	• 1		1			•	•	• •	a begin pr	60
			و مستخد ا الما دار					, waa - 1	*		l		• 14				يويد مدينيان ب مقاصيت	
50	·····•	4		e e							. 1		, ko er	•			يون مير در مراجع مي	F ⁵⁰
60					iyir baw s		1 1 1		į	· · ·		and the second s	1999 parti - 1999 - 19		ې د چې ور د . د په خونه د .	n jant	ىلىيۇ بىلىۋە بېر	40
70	م العد المانية ع المانية	يو در بيد. از ا او د المود	ۍ د اور د اور د اور	e des Electronic Antica de	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0		ی که ا	ر المع ال		· .			· · · ·		مېسېنې يې. او مېروغات د .	
	•		· · ·				а 1. ж. с					•	ina anin's	- - -	, e a porte	· · · ·		
80 -					in der Station	ىيەنەت مەھىر سىيەنەت مەھىر				· · ·	∞ .		4	4 i.s	eran na ann	i ini i ini ini ini i	t serie i i	20
		and a second			1 - 21970 2 - 3 2 - 3 2 - 3	i i i i i i i i i i i i i i i i i i i					u ju		an kanan				- 	
	: منهجه مع معد منه م	••• •••	، . فىسىچە، -	د. سرد بودینه		ه، این مربوع ملک د چ		:		e Anti-Ay			hi ngagan pi na		ىرىت بىۋ ۋىلامۇن. بىرىت بىۋ ۋىلامۇن		a comoj e c u e	.['`
				<u> </u>	، <u>در</u> ان معتبر س	<u>14 h .</u>		<u> </u>	<u>u., i</u>	1 1			<u></u>				<u>`</u>	• 0

SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PA\$SING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.]	PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
1	0.00	100.00	5		4 0.0	0 98.63	2			_	-
3/4	1.04	98.96	5		8 0.1:	2 98.50)				
1/2	0.34	98.6:	2	1	6 0.3	9 98.1:	1				
3/8	0.00	98.61	2	З	0 1.9	4 96.18	3				
				5	0 20.5	6 75.63	2				
				10	0 32.0	1 43.6:	1				
				20	0 .13.0	7 30.54	4				

Pan = 30.54% Wash Loss Was Not Tested.

ASTM C 136

SPECIFICATION: TEST STANDARD: NOTES:

......

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

J6

0

Formerly DUNN Corporation

LIENT: NYS DEC, GLADDING CORDAGE SITE LAB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 CEST BY: REF DATE TESTED: 7/1/94 DEVIEWED BY: DATE REPORTED: 7/6/94 SAMPLE DESCR: RW-2, 60-62 feet IN INCHES US.STANDARD SEVE OPENINGS IN STANDARD SEVE OPENINGS IN INCHES IN IN INCHES		
LIENT: NYS DEC, GLADDING CURDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet U.S. STANDARD SEVE OPENINGS U.S. STANDA	2 1.0 0.6 0.2 15 10 0.6 0.2 01 0.06 002	.001 .0006 m
LIENT: NYS DEC, GLADDING CURDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: REF DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US.STANDARD SIEVE OPENINGS US.STANDARD SIEVE NINCHES US.STANDARD SIEVE OPENINGS US.STANDARD SIEVE NINCHES HYDROMETER 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 3242 14 1 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 4 4 8 10 16 20 30 40 5060 100 140 200 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
LIENT: NY5 DEC, GLADDING CURDAGE SITE AS NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: REF DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US.STANDARD SIEVE OPENINGS US.STANDARD SIEVE NUMBERS HYDROMETER 4 32%21% 1% % % 4 810 16 20 30 40 5060 100 140 200 0 10 10 10 10 10 10 10 10 1		- 10
LIENT: NYS DEC, GLADDING CURDAGE STRE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC AMPLE DESCR: RW-2, 60-62 feet U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE NINCHES U.S. STANDARD SIEVE HYDROMETER 4 32%2 1% 1% % % 4 810 16 20 30 40 5060 100 140 200 4 32%2 1% 1% % % 4 810 16 20 30 40 5060 100 140 200 4 32%2 1% 1% % % 4 810 16 20 30 40 5060 100 140 200 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
LIENT: NY5 DEC, GLADDING CORDAGE STIE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: REF DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet MUMBERS HYDROMETER US. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 0 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 10 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 10 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 10 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 10 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER 10 4 32% 2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER	a service a service of the service o	20
LIENT: NYS DEU, GLADDING CORDAGE STRE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: WSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US.STANDARD SIEVE OPENINGS US.STANDARD SIEVE HYDROMETER 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 10 10 10 10 10 100 100 100 100 100 10		- 1 - 30
LIENT: NYS DEC, GLADDING CORDAGE SITE NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: JSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US. STANDARD SIEVE OPENINGS ININCHES US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE NUMBERS HYDROMETER HYDROMETER 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 Image: State S		4 0
LIENT: NYS DEC, GLADDING CORDAGE SITE NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: USC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US STANDARD SIEVE OPENINGS US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE HYDROMETER HYDROMETER 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 10 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 10 4 4 4 4 4 20 4 4 4 6 4 30 4 4 4 4 6 30 4 4 4 4 4 30 4 4 4 4		
LIENT: NYS DEU, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet US. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE NUMBERS NUMBERS HYDROMETER 4 32%2 1% 1 % % % 4 810 16 20 30 40 50 60 100 140 200 4 32%2 1% 1 % % % 4 810 16 20 30 40 50 60 100 140 200 4 32%2 1% 1 % % % 4 810 16 20 30 40 50 60 100 140 200 ABC AND	and the second	
LIENT: NYS DEC, GLADDING CORDAGE SITE NBBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: WSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet MUMBERS HYDROMETER 4 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 0 1 <td></td> <td>60</td>		60
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet DATE REPORTED: 7/6/94 US. STANDARD SIEVE OPENINGS IN INCHES U.S. STANDARD SIEVE OPENINGS	and the second secon	
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: JSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet DATE REPORTED: 7/6/94 US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE OPENINGS US. STANDARD SIEVE OPENINGS U.S. S	and the second	70
LIENT: NYS DEU, GLADDING COMDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet DATE REPORTED: 7/6/94 U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER IN INCHES U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER 10 4 32%2 1% 1% % 4 810 16 20 30 40 50 60 100 140 200 HYDROMETER		- 80
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: JSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet MUMBERS HYDROMETER US. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER IN INCHES U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE 4 32%2 1% 1 % % % 4 810 16 20 30 40 50 60 100 140 200 HYDROMETER 10 Image: Standard Sieve Opening Sieve Openi		
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: WSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet DATE REPORTED: 7/6/94 US. STANDARD SIEVE OPENINGS IN INCHES U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER 4 32%2 1% 1% %% % 4 810 16 20 30 40 50 60 100 140 200 HYDROMETER	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	- 90
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet GRAIN SIZE DISTRIBUTION HYDROMETER U.S. STANDARD SIEVE OPENINGS U.S. STANDARD SIEVE HYDROMETER A 32%2 1% 1 % % % 4 810 16 20 30 40 5060 100 140 200 HYDROMETER		
LIENT: NYS DEC, GLADDING CORDAGE SITE A9 NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet GRAIN SIZE DISTRIBUTION US. STANDARD SIEVE OPENINGS IN INCHES U.S. STANDARD SIEVE OPENINGS	8 10 16 20 30 40 50 60 100 140 200	
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: MSC DATE REPORTED: 7/6/94 AMPLE DESCR: RW-2, 60-62 feet GRAIN SIZE DISTRIBUTION	U.S. STANDARD SIEVE HYDROMETER	
LIENT:NYS DEC, GLADDING CORDAGE SITEAB NUMBER:7-94-4/37537.002DATE RECEIVED:6/30/94EST BY:REFDATE TESTED:7/1/94EVIEWED BY:USCDATE REPORTED:7/6/94AMPLE DESCR:RW-2, 60-62 feetDATE REPORTED:7/6/94	GRAIN SIZE DISTRIBUTION	
LIENT: NYS DEC, GLADDING CORDAGE SITE AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94 EVIEWED BY: JSC DATE REPORTED: 7/6/94 AMELE DESCE: EW-2 E0-62 feet	i Nee You Yo	
AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94 EST BY: REF DATE TESTED: 7/1/94	DATE REPORTED: 7/6/94	
AB NUMBER: 7-94-4/37537.002 DATE RECEIVED: 6/30/94	DATE TESTED: 7/1/94	
CENTE NYS DEF. GLODDING FIREDOGE STE	002 DATE RECEIVED: 6/30/94	
	DDING CORDAGE SITE 2.002 DATE RECEIVED: 6/30/94 DATE TESTED: 7/1/94 DATE REPORTED: 7/6/94 feet	

	C	UARSE						 H	TURUMETER	<u>۲</u>
SIZE (inches)	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	PARTICLE MAMETER (mm)	PERCENT PASSING	SPECS.
3/8	0.00	100.00	_) ·	4	0.02	2 99.98	}			
				8	0.07	7 99.92	2			
				16	0.05	5 99.87	,			
				30	0.37	7 99.49)			
				50	14.43	3 85.07	,			
				100	41.98	3 43.09)			
				200	10.75	5 32.34	ļ.			

Pan = 32.34% Wash Loss Was Not Tested.

SPECIFICATION: ASTM C 136 TEST STANDARD:

NOTES:

Percent Retained By Weigh

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

Quality through teamwork

J6

G

Percent Finer By Weight

SIZE (inches)	PERCENT	CUMULATIVE PERCENT PA\$\$ING	SPECS.	SIEVE	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.		DIAMETER (mm)	PERCENT PASSING	SPECS.
2	0.00	100.00)	4	2.98	3 93.53	3	-			
1	0.98	99.02	2	ε	3.26	90.25	5				
3/4	0.00	99.02	2	16	3.4	7 86.78	3				
1/2	1.50	97.52	2	30) 3.33	2 83.46	b				
3/8	1.02	96.50)	50	11.1	7 72.29)				
				100	23.49	9 48.80)				
			•	200	17.33	3 31.47	,				

Pan = 31.47% Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

	C	DARSE		_		FINE		_	н	YDROMETEI	3
SIZE (inches)	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
2	0.00	100.00)	4	0.14	95.07	,	-			
1	4.12	95.88	3	8	0.20	94.87	,				
3/4	0.62	95.25	5	16	ି. ୫୫	93.99)				
1/2	0.00	95.25	5	30	3.82	90.18	1				
3/8	0.04	95.21	L	50	13.39) 76.79)				
				100	23.28	53.51					
				200	15.99) 37.52	!				

Pan = 37.52%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

J6

CLIENT LAB NU TEST B REVIEW SAMPLE	: MBER: Y: ED BY DESC	NYS I 7-94- REF : WSC R: RW-2,	DEC, GLA -17/3753 , , 66 - 6	DDING 7.002 6.8 f	CORD) eet	AGE SIT DATE DATE DATE DATE	E RECEIVE TESTED: REPORTE	D: 7/6/ 7/8/ D: 7/11/	34 34 /94	
	-			<u>GRAIN</u>	SIZE DI	STRIBUTI	ON			
U.S.	STANDARD	SIEVE OPENING	S	U.S. STAN NU	NDARD SIEVI MBERS	E		HYDROMETER		
0	4 3 2 1/2 :	2 11/2 1 3/4 1/2	₩ % 4	8 10 16 :	20 30 40 5	0 60 100 140	200			
10 -	, , , , , , , , , , , , , , , , , , ,		ð - 0		- B	'n		· · · · ·		- 90
20				- -			2	, *** ***		- 80
30 -			Anna in an						۰۰۰۰۰ ۱۰۰۰ ۱۰۰۰ مه	- 70
40 -					· · ·		• • • • • • • • • • • • • • • • • • •		та стала сущини на стала с миница и	- 60
50 -			ասեց արագանի որ արդ հա ՀՀՀՀ ուն նաագագիտանում է է է			X		n in stander Stander voor de stander Stander voor de stander stander stander voor de stander stander stander stander stander Stander stander	ւ, , , , , , , , , , , , , , , , , , ,	- 50
60 -							ang ay an	در می موند می مرابع میریون در میرد مرابع میریون در میرد	fe service room room ss sss	40
70				-					and and a second s	- 3 0
80 -					i i i i i i i i i i i i i i i i i i i		e e ga e e e e e e e e e e e e e e e e e	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	- 20
. 90 -				nor e Sector e	r a brings and	n Norman Indonesia Marana Alaman Indonesia	<pre>c</pre>			10
100	100 60	20	10 6	2 10		02 15 10	06 02	01 006	002 001	
СОВ	BLES	GRAVEL C M			I SANE			SILT	CLAY	
	C	DARSE				FINE			HYDROMETE	⊐ R∕
SIZE PI (inches) Ri	ERCENT	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT	CUMULATIN PERCENT PASSING	E SPECS.	PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
1	0.00	100.00	>	4	0.1	17 94.	79			
3/4	5.05	94.95	5 =	8	Q. 1	75 94. 21 97	04			
3/8	0.00	94.95	5	30	2.4	48 90.	25			
<u> </u>			-	50	э.	71 80.	54			
				100	30.0	01 50.	53			
				200	16.3	12 34.	40			
					Pan	= 34.4	0%			
SPECIFIC	ATION	: ASTM	1 C 136	Wash	Loss	Was No	t Teste	d.		
NOTES:	NDAKD	: ALL	SAMPLES	WERE	TAKE	N FROM	A 3 incl	h O.D. SP	LIT SPO	DN

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

Quality through teamwork

JG

Pan = 11.59%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL BAG SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

JG

Formerly DUNN Corporation

CLIENT:	NYS DEC, GLADDING	CORDAGE SITE	
LAB NUMBER:	7-94-6/37537.002	DATE RECEIVED:	6/30/94
TEST BY:	HASJ	DATE TESTED:	7/1/94
PEVIEWED BY:	WSC	DATE REPORTED:	7/6/94
SAMPLE DESCR:	RW-2, 68-70 feet		

GRAIN SIZE DISTRIBUTION

COAR <u>SE</u>			FINE			HYDROMETER				
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT	CUMULATIVE PERCENT PASSING	SPECS.	PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
2	0.00	100.00)	4	17.16	5 49.72	2			
1	9.83	90.17	•	8	13.14	1 36.58	3			
3/4	4.43	85.73) ·	16	10.93	1 25.67	7			
1/2	12.71	73.03	;	30	8.33	l 17.37	7			
3/8	6.15	66.88	}	50	5.50	3 11.79	9			
				100	2.3:	L 9.48	3			
				200	1.30	8.1)			

Pan = 8 19%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

J6

ASTM C 136

TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

G

J6

CLIENT: NYS DEC, LAB NUMBER: 7-94-7/3 TEST SY: KASJ REVIEWED BY: WSC SAMPLE DESCR: RW-2, 72	GLADDING CORDAGE S 7537.002 DAT DAT DAT :-74 feet	ITE E RECEIVED: E TESTED: E REPORTED:	6/30/94 7/1/94 7/6/94	
	GRAIN SIZE DISTRIB	JTION		
U.S. STANDARD SIEVE OPENINGS IN INCHES	U.S. STANDARD SIEVE NUMBERS	HYDF	OMETER	
4 321/2 11/2 1 3/4 1/2 3/8 1/4	4 8 10 16 20 30 40 50 60 100	140 200		- 100
	n an			90
20			• • • • • • • •	- 80
30		• • •	• • • • • • • • • • • • •	- 70
40 -	and a second s	n n n n n n n n n n n n n n n n n n n	n Constant de la cons La constant de la cons La constant de la cons	-60
50 - Control of the second sec		ه د م د در ۲۰ مربع مه م	۵۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	- 50
60		ی دیکھینی کی ایران ایران دیکھینی کی ایران در ایران دیکھی کی دیکھینے کو	ی میں دی ہے۔ 1 میں دی ہی جاتے ہے۔ 1 ہی ہی میں میں دی ہے جاتے ہے۔	40
		منین و مستور می مرد می مرد می مرد می مرد م	و پېرې د مېرې کې د و. د ولو مېرې د د د د د د مېرې د د د	- 30
	and a second	n en	n na sana an	- 20
90 - 2 -	angen († 1997) - Anderson († 1997) 1997 - Anderson († 1997) 1997 - Anderson († 1997) - Anderson († 1997)	a na ang ang ang ang ang ang ang ang ang	and the second s	- 10
		and a second sec	an part of the par	
200 100 60 20 10 6	2 1.0 0.6 0.2 15	10 06 02 01		0006 millimeter
SIZE PERCENT CUMULATIVE			HYDROMETEF	SPECS
(inches) RETAINED PASSING	A 19 99 4		(mm) PASSING	
1 1.88 98.12	8 14.66 3	4.38		
3/4 5.31 92.80 1/2 14.98 77.83	16 11.30 2 30 6.68 1	3.08 6.40		
3/8 8.89 68.93	50 3.71 1 100 2.01 1	2.69 0.68		
	200 1.57	9.11		

Pan = 9.11%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

JG

0

Formerly DUNN Corporation

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

JG

Formerly DUNN Corporation

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch 0.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

.

G

JG

Formerly DUNN Corporation

COARSE		_	FINE				HYDROMETER				
SIZE (inches)	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.	SIEVE	PERCENT RETAINED	CUMULATIVE PERCENT PASSING	SPECS.		PARTICLE DIAMETER (mm)	PERCENT PASSING	SPECS.
2	0.00	100.00	0	ے۔۔۔	+ 15.10	- 5 53.70	5	_			
1	9.63	90.33	7	8	3 16.64	4 37.13	2				
3/4	5.34	85.00	3	16	5 12.83	2 24.30	0				
1/2	9.20	75.83	3	30	> 5.58	3 18.73	2				
378	6.91	68.93	2	50) 2.48	3 16.24	4				
				100) 1.5:	1 14.73	3				
				200) 1.22	2 13.5:	1 .				

Pan = 13.51%

Wash Loss Was Not Tested.

SPECIFICATION: TEST STANDARD: NOTES:

ALL SAMPLES WERE TAKEN FROM A 3 inch O.D. SPLIT SPOON

Test Samples are retained for 30 days after submission and then discarded, unless other arrangements are made.

ASTM C 136

Quality through teamwork

G

Percent Finer By Weigh

APPENDIX H

DISTANCE-DRAWDOWN GRAPHS 30 gpm STEP RATE TEST

APPENDIX I

CORRECTED TIME-DRAWDOWN GRAPHS 24-HOUR CONSTANT RATE TEST

.

.

APPENDIX J

STRELTSOVA METHOD PUMPING TEST AQUIFER ANALYSIS

ANALYSIS OF TIME-DRAWDOWN DATA USING STRELTSOVA'S (1974) CURVE-FITTING METHOD

PIEZOMETER I.D.: TW-4i RW-1 Primary Pumping Well RW-2Interference

Nonequilibrium Well Equation

s =
$$\frac{114.6 + Q + W (uA,B; Beta,b1;b2)}{T/b1}$$
 u = $\frac{1.87 + r2 + S}{T + t}$

r2= Radial Distance squared (ft sqd)

b2 = Penetration, observation well (%)

S= Coefficient of Storage

t= Time Since Pumping (days)

where:

s = Drawdown	(ft)
Q = Pumping Rate	(gpm)
b1 = Penetration, pumping	well (%)
T = Transmissivity	(gpd/ft)

TEST PARAMETERS:

r = Radial Distance (ft): 35 Q = Pumping Rate (gpm): 50

		SOLUTION		
1/u = 1/u = 1/u	1	T =	1.34E+04	gpd/ft ft2/day
t = t	0.001	K=	19.939	ft/day
s=	0.35	Sa =	7.03E-03 5.86E-03	cm/sec
	MATCH POIN 1/u = W (u) = t = s=	$\begin{array}{rrrr} \text{MATCH POINT VALUES} \\ 1/u = & 1 \\ W(u) = & 1 \\ t = & 0.001 \\ s = & 0.35 \end{array}$	MATCH POINT VALUES SOLUTION $1/u =$ 1 T = W (u) = 1 K= s = 0.35 Sa =	MATCH POINT VALUESSOLUTION $1/u = 1$ T = 1.34E+04W (u) = 11794.489t = 0.001K= 19.939s= 0.357.03E-03Sa = 5.86E-03

PIEZOMETER I.D.:	TW-4i RW-1 Primary F	umping Wel	I RW-2Interferer	nce
Nonequilibrium Well Equa	tion			
s = <u>114.6 * Q</u> T	<mark>* W (uA,B; Beta,b1;b2)</mark> ' b1		u =	<u>1.87 * r2 * S</u> T * t
where: s = Drawdown Q = Pumping Rate T = Transmissivity	(ft) (gpm) (gpd/ft)	r2= Radial I S= Coefficie t= Time Sin	Distance square ent of Storage ce Pumping (da	ed (ft sqd) Nys)
TEST PARAMETERS: r = Radial Distance (ft): Q= Pumping Rate (gpm):	35 50			
МАТСН РС		SOLUTION		
1/u = W (u) =	1 1	T =	3.49E+04 gp 4670.368 ft2/	d/ft /day

K=

S y=

51.893 ft/day

1.83E-02 cm/sec

7.63E-01

0.05

0.2

t =

s=

Project Name:	(Gladding Cordage Site Pumping Test		
Project No.:	37537	Analysis By:	WC	
Date:	09/26/94	Checked By:	PC	

PIEZOMETER I.D.: TW-5i RW-2 Primary Pumping Well RW-1Interference Nonequilibrium Well Equation 114.6 * Q * W (uA,B; Beta,b1;b2) s = 1.87 * r2 * S u = T/b1 T*t where: s = Drawdown (ft) r2= Radial Distance squared (ft sqd) Q = Pumping Rate (gpm) S= Coefficient of Storage b1 = Penetration, pumping well (%) b2 = Penetration, observation well (%) T = Transmissivity (gpd/ft) t= Time Since Pumping (days) **TEST PARAMETERS:** r = Radial Distance (ft): 37 Q = Pumping Rate (gpm): 50 MATCH POINT VALUES SOLUTION

1/u = W (u) -	1	T =	1.34E+04 gpd/ft 1795 998 ft2/day
t =	0.0003	K=	19.956 ft/day
S=	0.29		7.04E-03 cm/sec
		Sa =	1.57E-03

Project Name:	(Gladding Cordage Site Pumping Test		
Project No.:	37537	Analysis By:	WC	
Date:	09/26/94	Checked By:	PC	

PIEZOMETER I.D.: TW-5i RW-2 Primary Pumping Well RW-1Interference Nonequilibrium Well Equation s = <u>114.6 * Q * W (uA,B; Beta,b1;b2)</u> 1.87 * r2 * S u =T/b1 T*t where: s = Drawdown (ft) r2= Radial Distance squared (ft sqd) Q = Pumping Rate (gpm) S= Coefficient of Storage T = Transmissivity t= Time Since Pumping (days) (gpd/ft) **TEST PARAMETERS:** r = Radial Distance (ft): 37 Q= Pumping Rate (gpm): 50 MATCH POINT VALUES SOLUTION

1/u =	1	Τ=	4.21E+04	gpd/ft
W (u) =	1		5631.915	ft2/day
t = 0	.03	K=	62.577	ft/day
S= ().2		2.21E-02	cm/sec
		S y=	4.94E-01	

Project No.:37537Analysis By:WCDate:09/26/94Checked By:PC

TW-14i RW-1 Primary	Pumping Well RW-2	Interference
ion		
<u>W (uA,B; Beta,b1;b2)</u> b1	. U =	<u>1.87 * r2 * S</u> T * t
(ft) (gpm) well (%) (gpd/ft)	r2= Radial Distance S= Coefficient of Sto b2 = Penetration, ob t= Time Since Pump	squared (ft sqd) orage oservation well (%) oing (days)
56 50		
NT VALUES	SOLUTION	
1 1 0.0003	T = 5.87E+ 785.00 K= 8.	03 gpd/ft 889 ft2/day 723 ft/day
	TW-14i RW-1 Primary ion <u>W (uA,B; Beta,b1;b2)</u> b1 (ft) (gpm) well (%) (gpd/ft) 56 50 NT VALUES 1 1 0.0003 0.8	TW-14i RW-1 Primary Pumping Well RW-21ion W (uA,B; Beta,b1;b2) $u =$ (M) (uA,B; Beta,b1;b2) $u =$ (ft) $r2=$ Radial Distance (gpm) $S=$ Coefficient of State (gpm) $S=$ Coefficient of State (gpd/ft) $t=$ Time Since Pump 56 50 NT VALUES 1 $T =$ $5.87E+$ 1 $T =$ $5.87E+$ 1 $T =$ $5.87E+$ 0.0003 $K=$ $8.$ 0.8 $3.08E$

Sa =

3.00E-04

PIEZOMETER I.D.:

TW-14i RW-1 Primary Pumping Well RW-2Interference

r2= Radial Distance squared (ft sqd)

S= Coefficient of Storage t= Time Since Pumping (days)

Nonequilibrium Well Equation

where:

s = Drawdown	(ft)	
Q = Pumping Rate	(gpm)	
T = Transmissivity	(gpd/ft)	

TEST	PARAMETERS:	

r = Radial Distance (ft):	56
Q= Pumping Rate (gpm):	50

MATCH POI	NT VALUES	SOLUTION	ı	
1/u =	1	T =	1.16E+04 gpd/ft	
t =	0.075	K=	17.298 ft/day	
S=	0.6	S y=	6.10E-03 cm/sec 1.49E-01	

Project Name:	1	Gladding Cordage Site Pumping Test		
Project No.:	37537	Analysis By:	WC	
Date:	09/26/94	Checked By:	PC	

PIEZOMETER I.D.: TW-15i (RW-1 and RW-2 Pumping Wells Combined)

Nonequilibrium Well Equation

s =
$$\frac{114.6 * Q * W (uA,B; Beta,b1;b2)}{T/b1}$$
 u = $\frac{1.87 * r2 * S}{T * t}$

where:

s = Drawdown	(ft)
Q = Pumping Rate	(gpm)
b1 = Penetration, pumping	well (%)
T = Transmissivity	(gpd/ft)

r2= Radial Distance squared (ft sqd) S= Coefficient of Storage b2 = Penetration, observation well (%) t= Time Since Pumping (days)

TEST PARAMETERS:

r = Radial Distance (ft):	149
Q = Pumping Rate (gpm):	100

MATCH POINT VALUES	SOLUTION
1/u = 1	T = 3.74E+04 gpd/ft
W (u) = 1	4995.263 ft2/day
t = 0.00037	K= 55.503 ft/day
s= 0.23	1.96E-02 cm/sec
	Sa = 3.33E-04

Project Name:	(Gladding Cordage Site Pumping Test		
Project No.:	37537	Analysis By:	WC	
Date:	09/26/94	Checked By:	PC	

PIEZOMETER I.D.: TW-15i (RW-1 and RW-2 Pumping Wells Combined)

Nonequilibrium Well Equation

s =	114.6 * Q * W (uA,B; Beta,b1;b2)	u =	<u>1.87 * r2 * S</u>
	T / b1		T * t

where:	
s = Drawd	own

s = Drawdown	(ft)	r2= Radial Distance squared (ft sqd)
Q = Pumping Rate	(gpm)	S= Coefficient of Storage
T = Transmissivity	(gpd/ft)	t= Time Since Pumping (days)

TEST PARAMETERS:

r = Radial Distance (ft):149Q= Pumping Rate (gpm):100

МАТСН РО	INT VALUES	SOLUTION	ı
1/u =	1	Т =	6.95E+04 gpd/ft
W (u) =	1		9284.126 ft2/day
t =	0.06	K=	103.157 ft/day
s=	0.22		3.64E-02 cm/sec
		<u>S y=</u>	1.00E-01

