

New York State Department of Environmental Conservation

GLADDING CORDAGE SITE QUARTERLY REPORT

Second Quarter 2015

November 2015

Andy Vitolins, PG

Associate Vice President

Jeremy Wyckoff

Project Geologist

GLADDING CORDAGE SITE QUARTERLY REPORT

Second Quarter 2015

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis CE, Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 250 7301

Our Ref.:

00266406.0000

Date:

November 2015

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Contents

Gla	dding o	cordage site quarterly report	i
TA	BLES		i۷
FIG	URES		iν
ΑP	PENDI	CES	iv
Acr	onyms	and Abbreviations	. v
1	Introdu	uction	6
2	Site D	escription	7
3	Opera	tion and Maintenance	. 8
3.1	Treatn	nent Plant Upgrades	8
3.1	.1	Variable Frequency Drive	8
3.1	.2	Treatment Plant Controls	8
3.1	.3	Geothermal Heat Exchanger	9
3.2	Treatn	nent Plant Operation	. 9
3.3	Treatn	nent System Sampling	. 9
3.3	.1	Influent Sample Results	9
3.3	.2	Effluent Sample Results	10
4	Groun	dwater Monitoring Program	11
4.1	Well Ir	nspection	11
4.2	Water	Level Survey	11
4.3	Groun	dwater Sampling	12
4.4	Groun	dwater Sampling Results	12
4.4	.1	Shallow Groundwater Monitoring Zone	12
4.4	.2	Intermediate Groundwater Monitoring Zone	13
4.4	.3	Deep Groundwater Monitoring Zone	13
5	Recon	nmendations	14
6	Summ	ary	15
7	Refere	ences	16
ТΔ	RLES		17

Figures18

TABLES

- 3-1 Treatment System Status and Flow Summary
- 3-2 Groundwater Treatment System VOCs (RW-1)
- 3-3 Groundwater Treatment System VOCs (RW-2)
- 3-4 Groundwater Treatment System VOCs (Effluent)
- 4-1 Groundwater Monitoring Well Water Level Data
- 4-2 Recovery Well Water Level Data
- 4-3 Summary of Groundwater Detections (VOCs)

FIGURES

- 2-1 Site Location
- 3-1 Treatment System Influent Sample Concentration (1,1,1-TCA)
- 4-1 Groundwater Monitoring Well Locations
- 4-2 Shallow Potentiometric Surface Map (4/21/15)
- 4-3 Intermediate Potentiometric Surface Map (4/21/15)
- 4-4 Deep Potentiometric Surface Map (4/21/15)
- 4-5 Groundwater 1,1,1-TCA Concentrations (5/6/2015)

APPENDICES

PLC Facsimile Reports

O&M Checklists

Analytical Reporting Forms

Generally Acceptable Procedure for PDB Samplers

Groundwater Level Data Form

ACRONYMS AND ABBREVIATIONS

O&M operation and maintenance

NYSDEC New York State Department of Environmental Conservation

VFD variable frequency drive

HZ hertz

μg/L micrograms per liter

1,1,1-TCA 1,1,1-trichloroethane

1,1-DCA 1,2-dichloroethane

1,1-DCE 1,2-dichloroethene

PLC programmable logic controller

USEPA United States Environmental Protection Agency

VOC volatile organic compound

GAP generally accepted procedure

PDB passive diffusion bag

Amsl above mean sea level

Ft feet

1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D007618-9) to ARCADIS CE, Inc. (Arcadis) for Operation, Maintenance, and Monitoring at the Gladding Cordage Site in New York State (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize site activities and results of the 2015 annual groundwater monitoring event.

2 SITE DESCRIPTION

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

3 OPERATION AND MAINTENANCE

On August 23, 2007, NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Since then, Arcadis has maintained operation of the groundwater treatment plant. This includes the operation, maintenance, and influent/effluent sampling in accordance with the NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual).

3.1 Treatment Plant Upgrades

3.1.1 Variable Frequency Drive

A variable frequency drive (VFD) was installed on January 9, 2008 to regulate the speed of the air stripper blower motor for reduced energy usage. Following the installation of the VFD, effluent samples were collected at various blower motor frequencies (speeds) including 40 HZ, 50 HZ, and 60 HZ. The analyte 1,1,1-trichloroethane (1,1,1-TCA) was detected at 6 µg/l in the 40 HZ effluent sample but was not detected in the 50 HZ and 60 HZ samples. Following the completion of the January 9, 2008 sampling event the VFD was set to 50 HZ. Additional sampling was conducted in February 2008 to further optimize the treatment system blower speed. Based on the results, the VFD setting was reduced to 42 HZ beginning in March 2008. Based on the detection of low-level VOCs in effluent samples from the treatment system, the VFD setting was subsequently increased to 46 HZ in September 2010 and was maintained at that frequency until November 19, 2014.

Based on a general trend of lower concentrations of VOCs in influent treatment system samples since September 2010, the NYSDEC authorized a reduction of the VFD frequency to 44 HZ in an attempt to further optimize treatment plant operations and reduce electric usage. The VFD frequency was lowered to 44 HZ on November 19, 2014. Following approximately one-half hour of operation, post-treatment effluent samples were collected in accordance with the Work Plan (see Section 3.2.1). Based on a review of post-treatment effluent sample data from November 19, 2014, 1,1,1 TCA and toluene were detected with the air stripper blower operating at 44 HZ, but at concentrations below the corresponding NYSDEC Class GA Standards. The NYSDEC was notified of the VOC detections and the blower motor frequency was subsequently increased to 46 HZ during the next (December 18, 2014) O&M event.

3.1.2 Treatment Plant Controls

In August 2011, the NYSDEC authorized construction and installation of a new treatment plant controls system. The new control system is designed to provide remote access to treatment plant operating parameters and improve reliability of the groundwater remediation system. The treatment plant was shut down to begin repairs and upgrades on January 30, 2012 by Aztech Technologies, Inc. (Aztech). The upgrades to the treatment system controls were completed and the treatment plant resumed operation on March 22, 2012. The treatment plant functions are controlled and monitored using an EOS Research Ltd. ProControl Programmable Logic Controller (PLC). The interface software allows remote connection to the PLC via analog phone line. The PLC and interface software also allows the treatment system to be started or stopped remotely. The PLC is programmed to send a facsimile with the status of system inputs and outputs on a daily basis. If input and/or output device values exceed the defined operating parameters, an

alarm condition is set and the corresponding alarm information is sent via facsimile to the system user (i.e. Arcadis).

3.1.3 Geothermal Heat Exchanger

The NYSDEC authorized the installation of a geothermal heat exchanger to provide climate control (heating and humidity) for the treatment system building. The treatment plant was shut down to begin installation of the geothermal heat exchanger on May 8, 2012 by Aztech. The geothermal heat exchanger installation and testing was completed on May 10, 2012. The heat-exchanger uses groundwater from the treatment plant as a geo-thermal energy source.

3.2 Treatment Plant Operation

As shown on PLC facsimile reports (Appendix A) and O&M Checklist and Operation Logs (Appendix B), the Gladding Cordage groundwater treatment system was restarted on April 1, 2015 to reset the PLC so facsimile service could be restored. The system shut down on May 18 due to a power failure and was restarted remotely on May 22. The system shut down again on June 12, 2015 due to a power interruption but could not be restarted remotely due to no connectivity with the PLC. The system was restarted during the June 22, 2015 site visit and operated without interruption through the remainder of the second quarter.

The average monthly flow rates and total flow volumes for the second quarter 2015 operating period are summarized in Table 3-1. As shown in Table 3-1, the monthly flow rates from recovery wells RW-1 and RW-2 were generally consistent with an average quarterly flow of approximately were 24.3 gpm and 21.5 gpm, respectively. Based on the total flow values, approximately 5.1 million gallons of water were treated between April and June, 2015.

3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the Work Plan and submitted to Contest Analytical following chain-of-custody protocols for analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 624.

The monthly treatment sampling was performed on April 21, 2015; however, the samples were misplaced by FedEx during shipping and did not arrive at the laboratory until after the sample hold-time had expired. As a result the samples were not analyzed. The NYSDEC Project Manager was notified of the issue and indicated that no additional treatment system sampling would be required for April 2015. Analytical Reporting Forms for the May and June 2015 sampling events are provided in Appendix C.

3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize the previous year of influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since September 2007.

Tables 3-2 and 3-3, and Figure 3-1 show that the concentrations of 1,1,1-TCA in the May and June 2015 samples from recovery well RW-1 were 38 μ g/L and 41 μ g/L, respectively. The concentrations of 1,1,1-

TCA in the samples from RW-2 ranged from 33 μ g/L (May 2015) to 48 μ g/L (June 2015). These results are within the range of historic concentrations and exceed the corresponding NYSDEC Class GA Standard of 5 μ g/L.

As shown in Tables 3-2 and 3-3, 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) were detected in the second quarter 2015 samples from recovery wells RW-1 and RW-2. However, consistent with previous results, the concentrations were less than the applicable NYSDEC Class GA Standard of 5 μ g/L.

Toluene was detected in the May 2015 sample from RW-1 and RW-2 at the estimated (based on the "J" qualifier) concentration of 0.13 μ g/L. As shown in the analytical reporting forms, toluene (0.65 μ g/L) and m+p xylene (0.22 μ g/L) were detected in the May 2015 trip blank. Therefore, it is believed that the toluene detections are not related to the site and are likely laboratory contaminants.

3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. As shown in Table 3-4, 1,1,1-TCA was detected in the June 2015 effluent sample at a concentration of 0.22 μ g/L, which is less than the corresponding NYSDEC Class GA Standard of 5 μ g/L. Toluene was detected at a concentration of 0.12 (estimated) μ g/L; however, as indicated in Section 3.3.1, it is surmised that the contaminant is a laboratory contaminant. No other VOCs were detected in the second quarter 2015 effluent samples.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 1.7 pounds of VOCs were removed by the treatment system during the second quarter, 2015. Since the April 2015 treatment samples were not analyzed, the estimated removal mass for April 2015 was based on the March 2015 analytical data.

4 GROUNDWATER MONITORING PROGRAM

The NYSDEC-approved Work Plan stated that groundwater samples would be collected using low-flow sampling techniques and analyzed for VOCs and metals. The NYSDEC later requested to have groundwater samples collected using passive diffusion bags (PDBs). On July 24, 2007, NYSDEC and Arcadis conducted a conference call regarding groundwater sampling protocols and analysis for the site. Since metals cannot be analyzed from PDB samples, NYSDEC authorized groundwater samples to be analyzed for VOCs only.

Figure 4-1 shows the location of the groundwater monitoring wells. Passive diffusion bags were placed in groundwater monitoring wells on April 21, 2015 in accordance with the Generally Acceptable Procedures (GAP) for PDB Samplers (Appendix D). Samples were collected from the PDBs on May 6, 2015 to provide information on groundwater quality and to monitor contaminant migration in the groundwater at the site.

4.1 Well Inspection

Existing on-site groundwater monitoring wells were evaluated for integrity and suitability for groundwater monitoring and water levels. The condition of each well was visually inspected with no significant damage or deficiencies observed. Therefore, no repair or maintenance was required.

4.2 Water Level Survey

Prior to deploying PDBs, water levels were measured to the nearest hundredth of a foot and recorded on a groundwater level data form (Appendix E). Table 4-1 summarizes the groundwater levels and elevations from the site. As shown in Table 4-1, groundwater elevations in groundwater monitoring wells screened in the shallow groundwater monitoring zone ranged from 1205.47 feet (ft) above mean sea level (amsl) to 1207.24 ft amsl; groundwater elevations in monitoring wells screened in the intermediate groundwater monitoring zone ranged from 1204.60 ft amsl to 1208.42 ft amsl; and groundwater elevations in monitoring wells screened in the deep groundwater monitoring zone ranged from 1204.88 ft amsl to 1206.18 ft amsl.

As shown in the groundwater elevation data presented in Table 4-1 (monitoring wells) and Table 4-2 (recovery wells), monitoring well clusters TW-2, TW-5, TW-6, TW-7, and TW-14 had higher groundwater elevations in the shallow monitoring zones compared to the deep monitoring zones (indicating a downward hydraulic gradient). The difference in the hydraulic gradients in the groundwater monitoring locations is likely due to the influence of the groundwater recovery wells.

Shallow, intermediate, and deep potentiometric surface maps are provided on Figure 4-2, Figure 4-3, and Figure 4-4, respectfully. As shown on Figure 4-2, the direction of groundwater flow in the shallow groundwater monitoring zone is generally to the south, toward the Otselic River. As shown on Figures 4-3 and Figure 4-4, groundwater extraction from recovery wells RW-1 and RW-2 has created a cone of depression, with groundwater flows in the immediate source area being directed toward the recovery wells.

4.3 Groundwater Sampling

Groundwater samples were collected from 21 groundwater monitoring wells in accordance with the Work Plan. However, in consultation with NYSDEC, and based on the recommendations provided in the Periodic Review Report (Malcolm Pirnie, 2011), groundwater monitoring wells TW-9I and TW-9D were added to the recommended sampling list due the presence of VOCs at concentrations more than the NYSDEC Class GA Standards in these wells during the 2009 groundwater monitoring event.

Groundwater samples were collected from the monitoring well network using PDBs as requested by NYSDEC and in accordance with the procedure presented in Appendix D. Groundwater monitoring wells sampled during the monitoring event are listed below:

Groundwater samples were sent to Contest Analytical by chain-of-custody procedures and analyzed for VOCs by USEPA Method 624. Analytical data packages are provided in Appendix C.

4.4 Groundwater Sampling Results

Groundwater sampling results from the second quarter 2015 sampling event are summarized in Table 4-3. Figure 4-5 shows the distribution of 1,1,1-TCA concentrations in shallow, intermediate and deep wells, respectively. As shown in Figure 4-5, the highest concentrations of 1,1,1-TCA are present in the intermediate wells, specifically TW-4I, TW-14I, and TW-15.

4.4.1 Shallow Groundwater Monitoring Zone

As shown in Table 4-3, VOCs were detected at concentrations greater than the corresponding NYSDEC Class GA Standards in one of the five groundwater samples collected from the shallow groundwater monitoring network. As shown in Table 4-3, the 1,1,1-TCA results from groundwater samples collected at, TW-7S (5.1 μ g/L) exceeded the NYSDEC Class GA Standard of 5 μ g/L.

VOCs were not detected at concentrations greater than the applicable NYSDEC Class GA Standards in any other groundwater samples collected from the shallow monitoring network during the second quarter 2015 sampling event.

4.4.2 Intermediate Groundwater Monitoring Zone

Table 4-3 shows that the concentrations of 1,1,1-TCA in groundwater samples collected from intermediate groundwater monitoring wells TW-4I (20 μ g/L), TW-5I (9.6 μ g/L), TW-14I (57 μ g/L), and TW-15 (32 μ g/L) were greater than the applicable NYSDEC Class GA Standard of 5 μ g/L. Table 4-3 shows the concentration of benzene from TW-5I (4.7 μ g/L), TW-6I (1.5 μ g/L), and TW-15 (13 μ g/L) exceeded the NYSDEC Class GA Standard (1 μ g/L).

The sample DUP-X was collected from monitoring well TW-15 and submitted as a field duplicate. As shown in Table 4-3, the concentrations of 1,1,1-TCA in sample DUP-X (33 μ g/L) and sample TW-15 (32 μ g/L) correlate well.

No other VOCs were detected in groundwater samples from intermediate monitoring wells at concentrations greater than the applicable NYSDEC Class GA Standards.

4.4.3 Deep Groundwater Monitoring Zone

As shown in Table 4-3, the concentrations of 1,1,1-TCA exceeded the corresponding NYSDEC Class GA Standard of 5 μ g/L in the groundwater samples collected from deep monitoring wells TW-5D (16 μ g/L), TW-7D (10 μ g/L), and TW-14D (10 μ g/L). Table 4-3 shows that these concentrations are consistent with previous sample results from these wells. Table 4-3 shows the concentration of benzene from TW-14D (5.7 μ g/L) exceeded the NYSDEC Class GA Standard (1 μ g/L).

No other VOCs were detected in groundwater samples collected from the deep monitoring well network at concentrations greater than the applicable NYSDEC Class GA Standard.

5 **RECOMMENDATIONS** Based on the data presented herein, there are no recommended changes to site operations at this time.

6 SUMMARY

The Gladding Cordage groundwater treatment system was shut down temporarily on April 1, 2015 in order to re-establish communications with the PLC. The groundwater treatment system was shut down for four days in May 2015 and 10 days in June 2015 due to power interruptions. The average total flow through the treatment system was approximately 46 GPM. Toluene was detected in the May 2015 effluent samples and corresponding Trip Blank and is therefore expected to be potential laboratory contaminant. 1,1,1-TCA, was detected in the June 2015 effluent samples, but at a concentration below the respective NYSDEC Class GA Standard.

With the exception of the 1,1,1-TCA in the June 2015 effluent samples, the treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results. Approximately 1.7 pounds of VOCs were removed by the treatment system during the second quarter 2015.

Groundwater samples were collected from 21 groundwater monitoring wells at the Gladding Cordage site in 2015. The concentrations of VOCs in samples collected from the shallow, intermediate, and deep groundwater monitoring zones were generally consistent with results from the 2014 monitoring event. Groundwater samples collected from one shallow, five intermediate, and three deep groundwater monitoring wells contained concentrations of VOCs greater than the applicable NYSDEC Class GA Standards. The maximum concentration of total VOCs (57 µg/L) was in the groundwater sample from intermediate monitoring well TW-14I.

In general, groundwater samples collected from monitoring wells in the immediate vicinity of groundwater recovery wells RW-1 and RW-2 contained the greatest concentrations of VOCs.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the third quarter 2016.

7 REFERENCES

Malcolm Pirnie, 2007, Gladding Cordage Site Work Plan, Site 7-09-009, June, 2007.

Malcolm Pirnie, 2011, Periodic Review Report, Gladding Cordage Site, Site 7-09-009, July 2011.

TAMS Consultants, 1996, Operation and Maintenance Manual, Volume I, Gladding Cordage Site. Site 7-09-009

TABLES

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	n-time	Flow F	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
August-07	8 (1)	100%	100%	100%	38	24	-		437,760 ⁽³⁾	276,480 ⁽³⁾	714,240	
September-07	30	100%	100%	100%	38	25	-		1,641,600 ⁽³⁾	1,080,000 ⁽³⁾	2,721,600	3,435,840
October-07	20	65%	100%	100%	38.2	25.7	2,276,270		1,100,160 ⁽³⁾	740,160 ⁽³⁾	1,840,320	
November-07	30	100%	67%	100%	39.9	24.9 ⁽²⁾	3,235,110		958,840 ⁽⁴⁾	1,075,680 ⁽³⁾	2,034,520	6,172,646
December-07	31	100%	39%	100%	31.8	24.9 ⁽²⁾	4,421,380		1,186,270 ⁽⁴⁾	1,111,536 ⁽³⁾	2,297,806	
January-08	31	100%	100%	100%	31.8	24.9 ⁽²⁾	5,278,000		856,620 ⁽⁴⁾	1,111,536 ⁽³⁾	1,968,156	
February-08	26	90%	69%	88%	32	24.9 ⁽²⁾	6,457,610		1,179,610 ⁽⁴⁾	820,385 ⁽³⁾	1,999,995	5,503,499
March-08	23	74%	100%	100%	32.9	24.9 ⁽²⁾	7,168,270		710,660 ⁽⁴⁾	824,688 ⁽³⁾	1,535,348	
April-08	30	100%	100%	100%	30.8	24.9 ⁽²⁾	8,219,790		1,051,520 ⁽⁴⁾	1,075,680 ⁽³⁾	2,127,200	
May-08	31	100%	100%	100%	31.3	24.9 ⁽²⁾	9,458,370		1,238,580 (4)	1,111,536 ⁽³⁾	2,350,116	6,846,908
June-08	27	90%	100%	100%	30.5	24.9 ⁽²⁾	10,859,850		1,401,480 ⁽⁴⁾	968,112 ⁽³⁾	2,369,592	
July-08	28	90%	68%	100%	30.1	24.9 ⁽²⁾	11,889,440		1,029,590 ⁽⁴⁾	1,003,968 ⁽³⁾	2,033,558	
August-08	28	90%	100%	100%	30	24.9 ⁽²⁾	12,832,500		943,060 (4)	1,003,968 ⁽³⁾	1,947,028	6,201,456
September-08	30	100%	100%	100%	29.8	24.9 ⁽²⁾	13,977,690		1,145,190 ⁽⁴⁾	1,075,680 ⁽³⁾	2,220,870	
October-08	31	100%	100%	100%	30	24.9 ⁽²⁾	15,190,100		1,212,410 (4)	1,111,536 ⁽³⁾	2,323,946	
November-08	30	100%	100%	100%	31.7	24.9 (2)	16,722,470		1,532,370 (4)	1,075,680 ⁽³⁾	2,608,050	7,494,552
December-08	31	100%	100%	100%	31.3	24.9 (2)	18,173,490		1,451,020 (4)	1,111,536 ⁽³⁾	2,562,556	

Total Flow 2007 5,324,630 4,283,856 9,608,486
Total Flow 2008 13,752,110 12,294,305 26,046,415

Notes:

- 1 System started on 8/23/07.
- 2 Flow meter inoperative. Flow based on average flow from August, September, and October 2008.
- 3 Calculated based on percentage of system on-time, flow rate, and percentage of recovery well on-time.
- 4 Calculated from totalizer values.

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-09	31	100%	100%	100%	31.3	24.9 ⁽²⁾	19,566,200		1,392,710 ⁽⁴⁾	1,111,536 ⁽³⁾	2,504,246	
February-09	28	100%	100%	100%	30.8	24.9 ⁽²⁾	20,929,320		1,363,120 ⁽⁴⁾	1,003,968 ⁽³⁾	2,367,088	6,931,910
March-09	31	100%	100%	100%	30.8	24.9 ⁽²⁾	21,878,360		949,040 (4)	1,111,536 ⁽³⁾	2,060,576	
April-09	30	100%	100%	100%	31.2	24.9 ⁽²⁾	23,159,480		1,281,120 ⁽⁴⁾	1,075,680 ⁽³⁾	2,356,800	
May-09	31	100%	100%	100%	31.5	24.9 ⁽²⁾	25,128,390		1,968,910 (4)	1,111,536 ⁽³⁾	3,080,446	8,217,156
June-09	30	100%	100%	100%	31.1	24.9 ⁽²⁾	26,832,620		1,704,230 (4)	1,075,680 ⁽³⁾	2,779,910	
July-09	28	90%	100%	100%	30.4	24.9 ⁽²⁾	27,568,640		736,020 (4)	1,003,968 ⁽³⁾	1,739,988	
August-09	29	94%	100%	100%	30.6	24.9 ⁽²⁾	28,551,120		982,480 ⁽⁴⁾	1,039,824 ⁽³⁾	2,022,304	5,833,432
September-09	30	100%	100%	100%	30.3	24.9 ⁽²⁾	29,546,580		995,460 ⁽⁴⁾	1,075,680 ⁽³⁾	2,071,140	
October-09	20	65%	100%	100%	34.1	24.9 (2)	30,909,620		1,363,040 (4)	717,120 ⁽³⁾	2,080,160	
November-09	29	97%	100%	100%	31.7	24.9 (2)	31,775,760		866,140 ⁽⁴⁾	1,039,824 ⁽³⁾	1,905,964	6,228,096
December-09	27	87%	100%	100%	33.7	24.9 (2)	33,049,620		1,273,860 (4)	968,112 ⁽³⁾	2,241,972	
January-10	31	100%	100%	100%	29.2	24.9 ⁽²⁾	34,376,810		1,327,190 ⁽⁴⁾	1,111,536 ⁽³⁾	2,438,726	
February-10	28	100%	100%	100%	34.8	24.9 ⁽²⁾	36,406,400		2,029,590 (4)	1,003,968 ⁽³⁾	3,033,558	7,478,090
March-10	31	100%	100%	100%	33	24.9 (2)	37,300,670		894,270 ⁽⁴⁾	1,111,536 ⁽³⁾	2,005,806	
April-10	26	87%	100%	100%	35.2	24.9 (2)	38,443,930		1,143,260 ⁽⁴⁾	932,256 ⁽³⁾	2,075,516	
May-10	28	90%	36%	100%	35.2	24.9 (2)	38,734,170		290,240 (4)	1,003,968 ⁽³⁾	1,294,208	3,981,724
June-10	17	57%	0%	100%	0	25 ⁽²⁾	38,734,170		0 (4)	612,000 ⁽³⁾	612,000	
July-10	18	58%	0%	100%	0	24.9 ⁽²⁾	NA		0 (3)	645,408 ⁽³⁾	645,408	
August-10	23	74%	0%	100%	0	24.9 (2)	NA		0 (3)	824,688 ⁽³⁾	824,688	4,034,736
September-10	30	100%	100%	100%	34.5 ⁽²⁾	24.9 ⁽²⁾			1,488,960 ⁽³⁾	1,075,680 ⁽³⁾	2,564,640	
October-10	31	100%	100%	90%	33.4 (2)	24.9 (2)	NA		1,489,302 (3)	1,000,382 (3)	2,489,684	
November-10	30	100%	100%	100%	33.4 ⁽²⁾	24.9 (2)			1,441,260 ⁽³⁾	1,075,680 ⁽³⁾	2,516,940	7,271,870
December-10	27	87%	100%	100%	33.4 ⁽²⁾	24.9 (2)	NA		1,297,134 ⁽³⁾	968,112 ⁽³⁾	2,265,246	

Total Flow 2009 14,876,130 12,334,464 27,210,594 Total Flow 2010 11,401,206 11,365,214 22,766,420

Notes:

- 1 System started on 8/23/07.
- 2 Flow meter inoperative. Flow based on previous average flows or from manual tests.
- 3 Calculated based on percentage of system on-time, flow rate, and percentage of recovery well on-time.
- 4 Calculated from totalizer values.

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-11	31	100%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,489,302 ⁽³⁾	1,111,536 ⁽³⁾	2,600,838	
February-11	20	71%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			960,840 ⁽³⁾	717,120 ⁽³⁾	1,677,960	6,292,350
March-11	24	77%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,153,008 ⁽³⁾	860,544 ⁽³⁾	2,013,552	
April-11	27	90%	100%	100%	33.36 ⁽²⁾	24.9 ⁽²⁾			1,297,134 ⁽³⁾	968,112 ⁽³⁾	2,265,246	
May-11	28	90%	100%	100%	33.36 ⁽²⁾	24.9 ⁽²⁾			1,345,176 ⁽³⁾	1,003,968 ⁽³⁾	2,349,144	6,544,044
June-11	23	77%	100%	100%	33.36 ⁽²⁾	24.9 ⁽²⁾			1,104,966 ⁽³⁾	824,688 ⁽³⁾	1,929,654	
July-11	6	19%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			288,576 ⁽³⁾	215,136 ⁽³⁾	503,712	
August-11	31	100%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,490,976 ⁽³⁾	1,111,536 ⁽³⁾	2,602,512	5,592,514
September-11	30	100%	100%	97%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,442,880 ⁽³⁾	1,043,410 ⁽³⁾	2,486,290	
October-11	28	90%	100%	54%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,346,688 ⁽³⁾	542,143 ⁽³⁾	1,888,831	
November-11	30	100%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,442,880 ⁽³⁾	1,075,680 ⁽³⁾	2,518,560	7,009,903
December-11	31	100%	100%	100%	33.4 ⁽²⁾	24.9 ⁽²⁾			1,490,976 ⁽³⁾	1,111,536 ⁽³⁾	2,602,512	
January-12	30	97%	100%	100%	22.7 ⁽⁶⁾	18.0 ⁽⁶⁾			980,640 ⁽³⁾	777,600 ⁽³⁾	1,758,240	
February-12	0 (5)	0%	0%	0%	0	0	0	0	0	0	0	2,311,830
March-12	10	32%	100%	100%	22.7	18.0	308,309	245,281	308,309 ⁽⁴⁾	245,281 ⁽⁴⁾	553,590	
April-12	30	100%	100%	100%	22.2	18.2	1,274,180	1,027,406	965,871 ⁽⁴⁾	782,125 ⁽⁴⁾	1,747,996	
May-12	26	84%	100%	100%	22.8	20.3	2,156,600	1,773,905	882,420 ⁽⁴⁾	746,499 ⁽⁴⁾	1,628,919	5,130,889
June-12	26	87%	100%	100%	23.6	19.9	3,100,285	2,584,194	943,685 ⁽⁴⁾	810,289 ⁽⁴⁾	1,753,974	
July-12	20	65%	100%	100%	23.8	19.7	3,770,411	3,157,520	670,126 ⁽⁴⁾	573,326 ⁽⁴⁾	1,243,452	
August-12	31	100%	100%	100%	23.7	19.4	5,092,016	4,262,219	1,321,605 ⁽⁴⁾	1,104,699 ⁽⁴⁾	2,426,304	5,540,244
September-12	30	100%	100%	100%	23.5	20.1	6,104,443	5,120,280	1,012,427 (4)	858,061 ⁽⁴⁾	1,870,488	
October-12	16	52%	100%	100%	23.4	20.3	6,676,877	5,607,870	572,434 ⁽⁴⁾	487,590 ⁽⁴⁾	1,060,024	
November-12	30	100%	100%	100%	23.6	19.6	7,769,986	6,536,938	1,093,109 (4)	929,068 (4)	2,022,177	3,956,859
December-12	17	55%	100%	100%	24.3	19.7	8,250,333	6,931,249	480,347 ⁽³⁾	394,311 ⁽³⁾	874,658	

Total Flow 2011 14,853,402 10,585,408 25,438,810
Total Flow 2012 9,230,973 7,708,849 16,939,822

Notes:

- 1 System started on 8/23/07.
- 2 Flow meter inoperative. Flow based on previous average flows or from manual tests.
- 3 Calculated based on percentage of system on-time, flow rate, and percentage of recovery well on-time.
- 4 Calculated from totalizer values.
- 5 System shut down for repairs.
- 6 Flow based on March 2012 PLC data.

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	n-time	Flow	Rates	Totalizer	Totalizer	Recovery We	II Total Flows	Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-13	26	84%	100%	100%	23.1	19.5	9,140,834	7,699,661	890,501	768,412	1,658,913	
February-13	28	100%	100%	100%	22.7	19.4	10,078,542	8,496,541	937,708	796,880	1,734,588	5,239,914
March-13	31	100%	100%	100%	23.2	19.6	11,077,204	9,344,292	998,662	847,751	1,846,413	
April-13	27	90%	100%	100%	23.4	19.7	11,750,528	9,913,754	673,324	569,462	1,242,786	
May-13	30	97%	100%	100%	24.2	19.4	12,984,742	10,944,208	1,234,214	1,030,454	2,264,668	5,371,547
June-13	31	100%	100%	100%	23.2	19.6	14,002,162	11,790,881	1,017,420	846,673	1,864,093	
July-13	26	84%	100%	100%	23.8	19.3	14,893,234	12,513,473	891,072	722,592	1,613,664	
August-13	19	61%	100%	100%	22.9	19.4	15,519,778	13,044,257	626,544	530,784	1,157,328	4,241,225
September-13	20	67%	100%	100%	21.7	19.7	16,291,084	13,743,184	771,306	698,927	1,470,233	
October-13	13	42%	100%	100%	21.3	20.0	16,558,269	14,001,381	267,185	258,197	525,382	
November-13	30	100%	100%	100%	21.6	22.6	17,493,334	14,962,574	935,065	961,193	1,896,258	3,722,666
December-13	20	65%	100%	100%	21.3	22.3	18,132,181	15,624,753	638,847	662,179	1,301,026	
January-14	12	39%	100%	100%	22.2	22.9	18,507,983	16,012,662	375,802	387,909	763,711	
February-14	14	50%	100%	100%	21.8	22.7	18,881,664	16,397,973	373,681	385,311	758,992	2,680,630
March-14	17	55%	100%	100%	22.2	23.2	19,447,410	16,990,154	565,746	592,181	1,157,927	
April-14	15	50%	100%	100%	21.7	23.2	19,914,906	17,482,200	467,496	492,046	959,542	
May-14	31	99%	100%	100%	21.8	22.5	20,883,319	18,490,607	968,413	1,008,407	1,976,820	4,810,632
June-14	29	97%	100%	100%	21.4	21.6	21,800,646	19,447,550	917,327	956,943	1,874,270	
July-14	24	77%	100%	100%	22.5	22.6	22,568,327	20,221,473	767,681	773,923	1,541,604	
August-14	17	55%	100%	100%	22.2	22.5	23,152,553	20,797,422	584,226	575,949	1,160,175	4,053,935
September-14	21	70%	100%	100%	22.5	22.8	23,822,623	21,479,508	670,070	682,086	1,352,156	
October-14	31	100%	100%	100%	22.4	23.0	24,817,777	22,505,592	995,154	1,026,084	2,021,238	
November-14	27	90%	100%	100%	21.9	22.6	25,671,847	23,393,737	854,070	888,145	1,742,215	5,312,917
December-14	24	77%	100%	100%	24.4	22.9	26,465,671	24,149,377	793,824	755,640	1,549,464	

 Total Flow 2013
 9,881,848
 8,693,504
 18,575,352

 Total Flow 2014
 8,333,490
 8,524,624
 16,858,114

Notes:

- 1 System started on 8/23/07.
- 2 Flow meter inoperative. Flow based on previous average flows or from manual tests.
- 3 Calculated based on percentage of system on-time, flow rate, and percentage of recovery well on-time.
- 4 Calculated from totalizer values.
- 5 System shut down for repairs.
- 6 Flow based on March 2012 PLC data.

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well O	Well On-time		Flow Rates		Totalizer	Recovery Well Total Flows		Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-15	30	97%	100%	100%	23.8	22.3	27,482,764	25,089,994	1,017,093	940,617	1,957,710	
February-15	27	96%	100%	100%	21.3	24.1	28,457,483	25,964,709	974,719	874,715	1,849,434	5,839,875
March-15	31	100%	100%	100%	21.7	23.9	29,512,439	26,942,484	1,054,956	977,775	2,032,731	
April-15	30	100%	100%	100%	23.9	21.6	30,572,172	27,868,651	1,059,733	926,167	1,985,900	
May-15	26	84%	100%	100%	23.6	21.1	31,474,040	28,682,253	901,868	813,602	1,715,470	5,125,831
June-15	20	67%	100%	100%	25.3	21.8	32,221,714	29,359,040	747,674	676,787	1,424,461	

Total Flow 2015 5,756,043 5,209,663 10,965,706

Notes:

- 1 System started on 8/23/07.
- 2 Flow meter inoperative. Flow based on previous average flows or from manual tests.
- 3 Calculated based on percentage of system on-time, flow rate, and percentage of recovery well on-time.
- 4 Calculated from totalizer values.
- 5 System shut down for repairs.
- 6 Flow based on March 2012 PLC data.

TABLE 3-2
GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	Class GA	6/25/2014	7/30/2014	8/21/2014	9/30/2014	10/21/2014	11/19/2014	12/18/2014	1/20/2015	2/25/2015	3/19/2015	5/6/2015	6/22/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs													
1,1,1-Trichloroethane	5	43	42	42	36	43	51	44	43	40	36	38	41
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,1,2-Trichloroethane	1	2.0 U	0.16	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,1-Dichloroethane	5	1.6	1.6	1.6	1.5	1.6	1.8	1.5	1.8 J	1.6 J	1.5 J	2 U	1.8 J
1,1-Dichloroethene	5	0.63	0.85	0.83	0.87	1.2	2.4	2.0 U	1.3 J	0.93 J	0.89 J	0.92 J	0.99 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
2-Chloroethyl Vinyl Ether		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 U				
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1 U				
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5 U				
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.13 J	2 U				
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2 U	2 U				
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2 U	2 U				
Total VOCs		45.2	44.5	44.4	38.4	45.8	55.4	45.5	46.1	44.5	38.4	39.1	43.8

- Concentration exceeds corresponding NYSDEC Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

G:\PROJECT\00266406.0000\Reports\2nd Qtr 2015\Table 3-1, 3-2, 3-3, 3-4_REV11062015.xls3-2 RW-1

TABLE 3-3
GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Sampling Date	Class GA	6/25/2014	7/30/2014	8/21/2014	9/29/2014	10/21/2014	11/19/2014	12/18/2014	1/20/2015	2/25/2015	3/19/2015	5/6/2015	6/23/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs													
1,1,1-Trichloroethane	5	38	37	37	32	37	45	37	15	34	31	33	48
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,1-Dichloroethane	5	0.81	0.73	0.80	0.66	0.82	0.99	0.72	2.0 U	0.76 J	0.69 J	2.0 U	1.1 J
1,1-Dichloroethene	5	0.62	0.63	0.62	0.76	1.3	1.4	0.93	0.38 J	0.7 J	0.68 J	0.72 J	1 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
2-Chloroethyl Vinyl Ether		10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10 U	10 U				
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U				
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U				
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.13 J	2.0 U				
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	2.0 U	2.0 U				
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U				
Total VOCs		39.4	38.4	38.4	33.4	39.1	47.4	38.7	15.4	35.4	32.4	33.9	50.1

- Concentration exceeds corresponding NYSDEC Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

G:\PROJECT\00266406.0000\Reports\2nd Qtr 2015\Table 3-1, 3-2, 3-3, 3-4_REV11062015.xls3-3 RW-2

TABLE 3-4
GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(44HZ)
Sampling Date	GA	6/25/2014	7/30/2014	8/21/2014	9/30/2014	10/21/2014	11/19/2014
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs					_	_	
1,1,1-Trichloroethane	5	2.0 U	0.16 J				
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U				
1,1,2-Trichloroethane	1	2.0 U	2.0 U				
1,1-Dichloroethane	5	2.0 U	2.0 U				
1,1-Dichloroethene	5	2.0 U	2.0 U				
1,2-Dichlorobenzene	3	2.0 U	2.0 U				
1,2-Dichloroethane	0.6	2.0 U	2.0 U				
1,2-Dichloropropane	1	2.0 U	2.0 U				
1,3-Dichlorobenzene	3	2.0 U	2.0 U				
1,4-Dichlorobenzene	3	2.0 U	2.0 U				
2-Chloroethyl Vinyl Ether		10.0 U	10.0 U				
Benzene	1	1.0 U	1.0 U				
Bromodichloromethane	50	2.0 U	2.0 U				
Bromoform	50	2.0 U	2.0 U				
Bromomethane	5	2.0 U	2.0 U				
Carbon Tetrachloride	5	2.0 U	2.0 U				
Chlorobenzene	5	2.0 U	2.0 U				
Chloroethane	5	2.0 U	2.0 U				
Chloroform	7	2.0 U	2.0 U				
Chloromethane		2.0 U	2.0 U				
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U				
Dibromochloromethane	50	2.0 U	2.0 U				
Ethyl Benzene	5	2.0 U	2.0 U				
m/p-Xylenes	5	2.0 U	2.0 U				
Methyl tert-butyl Ether		2.0 U	2.0 U				
Methylene Chloride	5	5.0 U	5.0 U				
o-Xylene		2.0 U	2.0 U				
Tetrachloroethene	5	2.0 U	2.0 U				
Toluene	5	1.0 U	0.19 J				
trans-1,2-Dichloroethene	5	2.0 U	2.0 U				
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U				
Trichloroethene	5	2.0 U	2.0 U				
Trichlorofluoromethane	5	2.0 U	2.0 U				
Vinyl Chloride	2	2.0 U	2.0 U				

U - Not detected at the indicated concentration.

J - Estimated concentration.

TABLE 3-4
GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA	12/18/2014	1/20/2015	2/25/2015	3/19/2015	5/6/2015	6/23/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs			_				_
1,1,1-Trichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U	0.22 J
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethyl Vinyl Ether		10.0 U	10.0 U	10.0 U	10.0 U	2.0 U	2.0 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	10.0 U	10.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	0.12 J	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	5.0 U	5.0 U	5.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

U - Not detected at the indicated concentration.

J - Estimated concentration.

Table 4-1

Well ID	Monitored	Measuring Point	6/7/	2011	7/10	/2012	10/1	5/2013	4/21	/2015
	Interval	Elevation (1)	DTW	Elevation	DTW	Elevation	DTW	Elevation	DTW	Elevation
		(feet)	(feet)	(feet amsl)						
TW-1	Shallow	1212.71 ⁽⁴⁾	7.40	1205.31	8.03	1204.68	7.29	1205.42	5.47	1207.24
TW-2S	Shallow	1212.57 ⁽⁴⁾	8.48	1204.09	8.84	1203.73	8.22	1204.35	6.31	1206.26
TW-2I	Intermediate	1212.16 ⁽⁴⁾	8.07	1204.09	8.51	1203.65	7.84	1204.32	6.03	1206.13
TW-2D	Deep	1212.26 ⁽⁴⁾	8.24	1204.02	8.48	1203.78	7.93	1204.33	6.08	1206.18
TW-3S	Shallow	1213.60	9.74	1203.86	9.91	1203.69	9.40	1204.20	7.83	1205.77
TW-3I	Intermediate	1213.19	9.10	1204.09	9.5	1203.69	8.75	1204.44	8.59	1204.60
TW-3D	Deep	1213.47	9.38	1204.09	9.75	1203.72	9.05	1204.42	7.33	1206.14
TW-4I	Intermediate	1209.96 ⁽²⁾	6.75	1203.21	7.16	1202.80	5.65	1204.31	5.01	1204.95
TW-5S	Shallow	1211.78	7.93	1203.85	8.38	1203.40	7.60	1204.18	6.04	1205.74
TW-5I	Intermediate	1211.89	8.29	1203.60	8.76	1203.13	8.90	1202.99	6.36	1205.53
TW-5D	Deep	1212.55	9.11	1203.44	9.63	1202.92	8.75	1203.80	7.26	1205.29
TW-6S	Shallow	1210.08 ⁽⁵⁾	6.38	1203.70	6.62	1203.46	6.02	1204.06	4.55	1205.53
TW-6I	Intermediate	1210.61 ⁽⁵⁾	7.26	1203.35	7.74	1202.87	6.94	1203.67	5.40	1205.21
TW-6D	Deep	1210.36 ⁽⁵⁾	7.01	1203.35	7.49	1202.87	6.70	1203.66	5.13	1205.23
TW-7S	Shallow	1213.48	8.83	1204.65	8.5	1204.98	8.70	1204.78	6.88	1206.60
TW-7I	Intermediate	1213.60	9.33	1204.27	9.85	1203.75	9.02	1204.58	7.30	1206.30
TW-7D	Deep	1213.25	9.05	1204.20	9.68	1203.57	8.85	1204.40	7.09	1206.16
TW-9I	Intermediate	1213.75 ⁽⁴⁾	9.80	1203.95	10.58	1203.17	9.54	1204.21	7.97	1205.78
TW-9D	Deep	1213.84 ⁽⁴⁾	10.11	1203.73	10.78	1203.06	9.93	1203.91	8.30	1205.54
TW-10D	Deep	1209.58 ⁽⁵⁾	6.45	1203.13	6.94	1202.64	6.21	1203.37	4.70	1204.88
TW-12I	Intermediate	-	-	-	7.88	-	7.10	-	6.09	-
TW-12D	Deep	-	-	-	7.9	-	7.13	-	6.03	-
TW-14S	Shallow	1210.05 ⁽²⁾	6.46	1203.59	6.79	1203.26	6.04	1204.01	4.58	1205.47
TW-14I	Intermediate	1210.17 ⁽²⁾	6.95	1203.22	7.29	1202.88	6.25	1203.92	5.08	1205.09
TW-14D	Deep	1209.98 ⁽²⁾	6.64	1203.34	7.05	1202.93	6.26	1203.72	4.70	1205.28
TW-15	Intermediate	1212.94 ⁽²⁾	9.94	1203.00	9.72	1203.22	9.11	1203.83	4.52	1208.42

- 1 Measuring point elevations from: Operation and Maintenance Manual,
 2 Based on December 2007 survey referenced from TW-5D.
 3 Elevation calculated from water level pressure transducer reading.
- 4 Based on June 2009 survey referenced from TW-3S, 5D, and 6D. 5 Based on September 2010 survey referenced from TW-4I.

Table 4-2
RECOVERY WELL WATER LEVEL DATA
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE No. 7-09-009

Recovery	Top of Casing Transducer Elevation Cable Length		asing Transducer Transducer		/2013	4/21/2015		
Well ID			Elevation	Pumping Level	Elevation	Pumping Level	Elevation	
	ft amsl	ft	ft amsl	ft above transducer	ft amsl	ft above transducer	ft amsl	
RW-1	1209.30	40	1169.30	33.04	1202.34	35.49	1204.79	
RW-2	1212.20	65	1147.20	54.94	1202.14	57.46	1204.66	

Top of casing elevation from: Operation and Maintenance Manual, Volume I, Gladding Cordage Site, TAMS Consulting, Inc., 1996.

ft amsl - feet above mean sea level

Pumping level from instrument control panel reading

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-1	TW-2S	TW-2I	TW-2D	TW-3S	TW-3S	TW-3S	TW-3S
Sampling Date	Class GA	6/25/2009	6/25/2009	6/25/2009	6/25/2009	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	0.4 U	0.4 U	1.4	0.4 U	0.32 U	3.4	0.4 U	6.2
1,1-Dichloroethane	*	0.36 U	0.36 U	0.36 U	0.36 U	0.38 U	1 U	0.36 U	1 U
1,1-Dichloroethene	5	0.47 U	0.47 U	0.47 U	0.47 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	1.3 U	1.3 U	1.3 U	1.3 U	1.1 U	5 U	1.3 U	5 U
Acetone	50	10	11	9.5	19	2.3 U	5 U	13	14
Benzene	1	0.32 U	0.32 U	0.32 U	0.32 U	0.39 U	1 U	0.32 U	1.1
Carbon Tetrachloride	5	0.62 U	0.62 U	0.62 U	0.62 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	0.66 U	0.66 U	0.66 U	0.66 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	0.34 U	0.34 U	0.34 U	0.34 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		0.54 U	0.54 U	0.54 U	0.54 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	0.35 U	0.35 U	0.35 U	0.35 U	0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	0.27 U	0.27 U	0.27 U	0.27 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	0.37 U	0.37 U	0.37 U	0.37 U	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	0.28 U	0.28 U	0.28 U	0.28 U	0.46 U	1 U	0.28 U	1 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-3S	TW-3S	TW-3S	TW-3S	TW-3I	TW-3I	TW-3I	TW-3I
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	4	2	2.9	2	9.1	6.7	0.4 U	1 U
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	1 U	0.36 U	1 U
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	1.4 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	64	12			2.3 U	5 U	16	13
Benzene	1	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.41 J	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	0.10 J	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

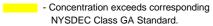
- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-3I	TW-3I	TW-3I	TW-3I	TW-3D	TW-3D	TW-3D	TW-3D
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	5	6.1	3.6	0.32 U	1.3	1.4	1 U
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	1 U	0.36 U	1 U
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.6 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	6	14			2.3 U	5 U	11	13
Benzene	1	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U	0.76 J
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	1 U	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U


- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-3D	TW-3D	TW-3D	TW-3D	TW-4I	TW-4I	TW-4I	TW-4I
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	1.2	2 U	0.96 J	6.6	1.1	0.4 U	23
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	3.8	3.8	2.5
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.7 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	9.5	17			2.3 U	5 U	16	18
Benzene	1	1.9	0.67 J	1 U	1.9	0.39 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	0.11 J	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-4I	TW-4I	TW-4I	TW-4I	TW-5S	TW-5S	TW-5S	TW-5S
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	33	28	23	20	0.32 U	11	13	7.4
1,1-Dichloroethane	*	5.3	4.4	4.4	4.1	0.38 U	1 U	0.48 J	1 U
1,1-Dichloroethene	5	1.6	0.5 U	2 U	0.3 J	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.2 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	20	15			2.3 U	5 U	9.2	18
Benzene	1	1 U	0.5 U	1 U	0.15 J	0.39 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	2.5	2.8	2.3	1.7 J	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	0.11 J	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-5S	TW-5S	TW-5S	TW-5S	TW-5I	TW-5I	TW-5I	TW-5I
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/8/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	7.9	11	7.9	2 J	4.8 J	8.8	90	8.6
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	1	3.5	2.3
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.7 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	5 U	14			2.3 U	5 U	13	15
Benzene	1	1 U	0.5 U	1 U	1 U	6.2	3.5	0.32 U	32
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	0.16 J	0.36 U	1 U	0.37 U	0.63 J
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-5I	TW-5I	TW-5I	TW-5I	TW-5D	TW-5D	TW-5D	TW-5D
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	5.5	4.3	4.1	9.6	41	28	32	28
1,1-Dichloroethane	*	1.7	0.5 U	2 U	0.47 J	0.38 U	1 U	0.36 U	1 U
1,1-Dichloroethene	5	1 U	0.5 U	2 U	0.22 J	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.3 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	18	14			2.3 U	5 U	20	17
Benzene	1	1 U	4.8	1.9	4.7	0.39 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.43 J	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.44 J	1 U	0.17 J	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-5D	TW-5D	TW-5D	TW-5D	TW-6S	TW-6S	TW-6S
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs								
1,1,1-Trichloroethane	5	25	28	39	16	0.32 U	0.53 J	0.4 U
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	1 U	0.36 U
1,1-Dichloroethene	5	1.3	0.5 U	2 U	0.29 J	0.42 U	1 U	0.47 U
2-Butanone	50	5 U	2.1 J			1.1 U	5 U	1.3 U
Acetone	50	41	14			2.3 U	5 U	11
Benzene	1	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1.6	1
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U
Toluene	5	1 U	0.5 U	1 U	0.12 J	0.36 U	1 U	0.37 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.
- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-6S	TW-6S	TW-6S	TW-6S	TW-6S	TW-6I	TW-6I	TW-6I
Sampling Date	Class GA	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.32 U	1.3	0.4 U
1,1-Dichloroethane	*	1 U	1 U	0.5 U	2 U	2 U	0.38 U	1 U	0.36 U
1,1-Dichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U
2-Butanone	50	5 U	5 U	2.3 J			1.1 U	5 U	1.3 U
Acetone	50	15	17	12			2.3 U	4.4 J	11
Benzene	1	1 U	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U
Carbon Tetrachloride	5	1 U	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U
Chloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U
Chloroform	7	1.1	1.2	4.7	8.6	1.4 J	0.33 U	1 U	0.34 U
Chloromethane		1 U	1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U			0.29 U	4.1	0.35 U
Tetrachloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.48 U	2.4	0.27 U
Toluene	5	1 U	1 U	0.5 U	1 U	1 U	0.36 U	1 U	0.37 U
Trichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.46 U	1.2	0.28 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-6I	TW-6I	TW-6I	TW-6I	TW-6I	TW-6D
Sampling Date	Class GA	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs							
1,1,1-Trichloroethane	5	1 U	1 U	3.2	2.2	2.4	0.32 U
1,1-Dichloroethane	*	1 U	1 U	0.5 U	2 U	2 U	0.38 U
1,1-Dichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.42 U
2-Butanone	50	5 U	5 U	2.1 J			1.1 U
Acetone	50	18	14	16			2.3 U
Benzene	1	0.99 J	1.1	0.5 U	1 U	1.5	0.39 U
Carbon Tetrachloride	5	1 U	1 U	0.5 U	2 U	2 U	1.1 U
Chloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.83 U
Chloroform	7	1 U	1 U	0.5 U	2 U	2 U	0.33 U
Chloromethane		1 U	1 U	0.5 U	2 U	2 U	0.34 U
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U			0.29 U
Tetrachloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.48 U
Toluene	5	1 U	1 U	0.5 U	1 U	0.15 J	0.36 U
Trichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.46 U

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-6D	TW-6D	TW-6D	TW-6D	TW-6D	TW-6D	TW-6D
Sampling Date	Class GA	10/17/2008	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs								
1,1,1-Trichloroethane	5	1 U	0.4 U	1 U	1 U	0.5 U	2 U	2 U
1,1-Dichloroethane	*	1 U	0.36 U	1 U	1 U	0.5 U	2 U	2 U
1,1-Dichloroethene	5	1 U	0.47 U	1 U	1 U	0.5 U	2 U	2 U
2-Butanone	50	5 U	1.3 U	5 U	5 U	1.9 J		
Acetone	50	5 U	21	9.5	16	13		
Benzene	1	1 U	1	1 U	1 U	0.5 U	1 U	1 U
Carbon Tetrachloride	5	1 U	0.62 U	1 U	1 U	0.5 U	2 U	2 U
Chloroethane	5	1 U	0.66 U	1 U	1 U	0.5 U	2 U	2 U
Chloroform	7	1 U	0.34 U	1 U	1 U	0.5 U	2 U	2 U
Chloromethane		1 U	0.54 U	1 U	1 U	0.5 U	2 U	2 U
cis-1,2-Dichloroethene	5	1 U	0.35 U	1 U	1 U	0.5 U		
Tetrachloroethene	5	1 U	0.27 U	1 U	1 U	0.5 U	2 U	2 U
Toluene	5	1 U	0.37 U	1 U	1 U	0.5 U	1 U	0.11 J
Trichloroethene	5	1 U	0.28 U	1 U	1 U	0.5 U	2 U	2 U

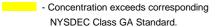
- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-7S	TW-7S	TW-7S	TW-7S	TW-7S	TW-7S	TW-7S	TW-7S
Sampling Date	Class GA	9/6/2007	10/17/2008	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	8.2	18	7.8	6.8	5	11	12	5.1
1,1-Dichloroethane	*	0.38 U	1 U	0.36 U	1 U	1 U	0.5 U	2 U	2 U
1,1-Dichloroethene	5	0.42 U	1 U	0.47 U	1 U	1 U	0.5 U	2 U	2 U
2-Butanone	50	1.1 U	5 U	1.3 U	5 U	5 U	2.9 J		
Acetone	50	2.3 U	3.3 J	22	12	19	15		
Benzene	1	0.39 U	1 U	0.32 U	1 U	1 U	0.5 U	1 U	1 U
Carbon Tetrachloride	5	1.1 U	2.6	0.62 U	1 U	1 U	0.5 U	2 U	2 U
Chloroethane	5	0.83 U	1 U	0.66 U	1 U	1 U	0.5 U	2 U	2 U
Chloroform	7	0.33 U	1 U	0.34 U	1 U	1 U	0.5 U	2 U	2 U
Chloromethane		0.34 U	1 U	0.54 U	1 U	1 U	0.5 U	2 U	2 U
cis-1,2-Dichloroethene	5	0.29 U	1 U	0.35 U	1 U	1 U	0.5 U		
Tetrachloroethene	5	0.48 U	1 U	0.27 U	1 U	1 U	0.5 U	2 U	2 U
Toluene	5	0.36 U	1 U	0.37 U	1 U	1 U	0.5 U	1 U	1 U
Trichloroethene	5	0.46 U	1 U	0.28 U	1 U	1 U	0.5 U	2 U	2 U


- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

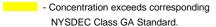
Sample ID	NYSDEC	TW-7I	TW-7I	TW-7I	TW-7I	TW-7I	TW-7I	TW-7I	TW-7I
Sampling Date	Class GA	9/6/2007	10/17/2008	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	0.32 U	1.5	0.4 U	2.2	0.69 J	1.6	2 U	1.1 J
1,1-Dichloroethane	*	0.38 U	1 U	0.36 U	1 U	1 U	0.5 U	2 U	2 U
1,1-Dichloroethene	5	0.42 U	1 U	0.47 U	1 U	1 U	0.5 U	2 U	2 U
2-Butanone	50	1.1 U	5 U	1.3 U	5 U	5 U	1.8 J		
Acetone	50	2.3 U	5 U	15	17	21	11		
Benzene	1	0.39 U	1 U	0.32 U	1 U	1 U	0.5 U	1 U	1 U
Carbon Tetrachloride	5	1.1 U	1 U	0.62 U	1 U	1 U	0.5 U	2 U	2 U
Chloroethane	5	0.83 U	1 U	0.66 U	1 U	1 U	0.5 U	2 U	2 U
Chloroform	7	0.33 U	1 U	0.34 U	1 U	1 U	0.5 U	2 U	2 U
Chloromethane		0.34 U	1 U	0.54 U	1 U	1 U	0.5 U	2 U	2 U
cis-1,2-Dichloroethene	5	0.29 U	1 U	0.35 U	1 U	1 U	0.5 U		
Tetrachloroethene	5	0.48 U	1 U	0.27 U	1 U	1 U	0.5 U	2 U	2 U
Toluene	5	0.36 U	1 U	0.37 U	1 U	1 U	0.5 U	1 U	0.11 J
Trichloroethene	5	0.46 U	1 U	0.28 U	1 U	1 U	0.5 U	2 U	2 U

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-7D	TW-7D	TW-7D	TW-7D	TW-7D	TW-7D	TW-7D	TW-7D
Sampling Date	Class GA	9/6/2007	10/17/2008	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	21	3.8	9.1	5.2	4.5	4.4	5.9	10
1,1-Dichloroethane	*	0.38 U	1 U	0.36 U	1 U	1 U	0.5 U	2 U	2 U
1,1-Dichloroethene	5	4.8 J	1 U	0.47 U	1 U	1 U	0.5 U	2 U	2 U
2-Butanone	50	1.1 U	5 U	1.3 U	5 U	5 U	2.4 J		
Acetone	50	2.3 U	5 U	17	18	14	13		
Benzene	1	0.39 U	1 U	0.32 U	1 U	1 U	0.5 U	1 U	1 U
Carbon Tetrachloride	5	1.1 U	1 U	0.62 U	1 U	1 U	0.5 U	2 U	2 U
Chloroethane	5	0.83 U	1 U	0.66 U	1 U	1 U	0.5 U	2 U	2 U
Chloroform	7	0.33 U	1 U	0.34 U	1 U	1 U	0.5 U	2 U	2 U
Chloromethane		0.34 U	1 U	0.54 U	1 U	1 U	0.5 U	2 U	2 U
cis-1,2-Dichloroethene	5	0.29 U	1 U	0.35 U	1 U	1 U	0.5 U		
Tetrachloroethene	5	0.48 U	1 U	0.27 U	1 U	1 U	0.5 U	2 U	2 U
Toluene	5	0.36 U	1 U	0.37 U	1 U	1 U	0.5 U	1 U	1 U
Trichloroethene	5	0.46 U	1 U	0.28 U	1 U	1 U	0.5 U	2 U	2 U

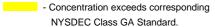

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-9I	TW-9I	TW-9I	TW-9I	TW-9I	TW-9I	TW-9D	TW-9D
Sampling Date	Class GA	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	5.5	4.3	4.2	4.2	4	3	0.4 U	1 U
1,1-Dichloroethane	*	0.36 U	1 U	1 U	0.5 U	2 U	2 U	0.36 U	1 U
1,1-Dichloroethene	5	0.47 U	1 U	1 U	0.5 U	2 U	2 U	0.47 U	1 U
2-Butanone	50	1.3 U	5 U	5 U	2.6 J			1.3 U	5 U
Acetone	50	17	14	19	16			9.1	13
Benzene	1	0.32 U	1 U	1 U	0.5 U	1 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	0.62 U	1 U	1 U	0.5 U	2 U	2 U	0.62 U	1 U
Chloroethane	5	0.66 U	1 U	1 U	0.5 U	2 U	2 U	0.66 U	1 U
Chloroform	7	0.34 U	1 U	1 U	0.5 U	2 U	2 U	0.34 U	1 U
Chloromethane		0.54 U	1 U	1 U	0.41 J	2 U	2 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	0.35 U	1 U	1 U	0.5 U			0.35 U	1 U
Tetrachloroethene	5	0.27 U	1 U	1 U	0.5 U	2 U	2 U	0.27 U	1 U
Toluene	5	0.37 U	1 U	1 U	0.5 U	1 U	1 U	0.37 U	1 U
Trichloroethene	5	0.28 U	1 U	1 U	0.5 U	2 U	2 U	0.28 U	1 U

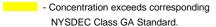


- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-9D	TW-9D	TW-9D	TW-9D	TW-10D	TW-12I	TW-12I	TW-12I
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	6/25/2009	9/6/2007	10/17/2008	6/25/2009
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	0.5 U	2 U	2 U	0.53 J	0.32 U	1 U	0.4 U
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.36 U	0.38 U	1 U	0.36 U
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.47 U	0.42 U	1 U	0.47 U
2-Butanone	50	5 U	1.9 J			1.3 U	1.1 U	5 U	1.3 U
Acetone	50	3.6 J	14			19	2.3 U	5 U	10
Benzene	1	1 U	0.5 U	1 U	1 U	0.32 U	0.39 U	1 U	0.32 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	0.62 U	1.1 U	1 U	0.62 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.66 U	0.83 U	1 U	0.66 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.34 U	0.33 U	1 U	0.34 U
Chloromethane		1 U	0.4 J	2 U	2 U	0.54 U	0.34 U	1 U	0.54 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.35 U	0.29 U	1 U	0.35 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.27 U	0.48 U	1 U	0.27 U
Toluene	5	1 U	0.5 U	1 U	1 U	0.37 U	0.36 U	1 U	0.37 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.28 U	0.46 U	1 U	0.28 U



- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-12I	TW-12I	TW-12I	TW-12I	TW-12I	TW-12D	TW-12D	TW-12D
Sampling Date	Class GA	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.32 U	0.4 U	1 U
1,1-Dichloroethane	*	1 U	1 U	0.5 U	2 U	2 U	0.38 U	0.36 U	1 U
1,1-Dichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.42 U	0.47 U	1 U
2-Butanone	50	5 U	5 U	1.8 J			1.1 U	1.3 U	5 U
Acetone	50	21	13	12			2.3 U	14	13
Benzene	1	1 U	1 U	0.5 U	1 U	1 U	0.39 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	1 U	0.5 U	2 U	2 U	1.1 U	0.62 U	1 U
Chloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.83 U	0.66 U	1 U
Chloroform	7	1 U	1 U	0.5 U	2 U	2 U	0.33 U	0.34 U	1 U
Chloromethane		1 U	1 U	0.43 J	2 U	2 U	0.34 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U			0.29 U	0.35 U	1 U
Tetrachloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.48 U	0.27 U	1 U
Toluene	5	1 U	1 U	0.5 U	1 U	1 U	0.36 U	0.37 U	1 U
Trichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.46 U	0.28 U	1 U

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-12D	TW-12D	TW-12D	TW-12D	TW-14S	TW-14S	TW-14S	TW-14S
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009	3/23/2010
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	1 U	0.5 U	2 U	2 U	0.32 U	68	0.4 U	16
1,1-Dichloroethane	*	1 U	0.5 U	2 U	2 U	0.38 U	5.8	1.2	0.64 J
1,1-Dichloroethene	5	1 U	0.5 U	2 U	2 U	0.42 U	1 U	0.47 U	1 U
2-Butanone	50	5 U	2.8 J			1.1 U	5 U	1.3 U	5 U
Acetone	50	11	18			2.3 U	5 U	14	16
Benzene	1	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U	1 U
Carbon Tetrachloride	5	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U	1 U
Chloroethane	5	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U	1 U
Chloroform	7	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U	1 U
Chloromethane		1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U	1 U
cis-1,2-Dichloroethene	5	1 U	0.5 U			0.29 U	1 U	0.35 U	1 U
Tetrachloroethene	5	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U	1 U
Toluene	5	1 U	0.5 U	1 U	1 U	0.36 U	1 U	0.37 U	1 U
Trichloroethene	5	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U	1 U

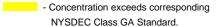
- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-14S	TW-14S	TW-14S	;	TW-14S	TW-14I	TW-14I	TW-14I
Sampling Date	Class GA	6/21/2011	7/24/2012	10/29/201	13	5/6/2015	9/6/2007	10/17/2008	6/25/2009
Matrix	Standard	WATER	WATER	WATER	1	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	12	21	10		4.5	39	95	83
1,1-Dichloroethane	*	0.55 J	0.95 J	2	U	2 U	0.38 U	2.8	3.2
1,1-Dichloroethene	5	0.67 J	0.5 U	2	С	2 U	3.7 J	1.5	0.47 U
2-Butanone	50	5 U	2 J				1.1 U	5 U	1.3 U
Acetone	50	18	14				2.3 U	5 U	13
Benzene	1	1 U	0.5 U	1	U	1 U	0.39 U	1 U	0.32 U
Carbon Tetrachloride	5	1 U	0.5 U	2	С	2 U	1.1 U	1 U	0.62 U
Chloroethane	5	1 U	0.5 U	2	С	2 U	0.83 U	1 U	0.66 U
Chloroform	7	1 U	0.5 U	2	С	2 U	0.33 U	1 U	0.34 U
Chloromethane		1 U	0.5 U	2	U	2 U	0.34 U	1 U	0.54 U
cis-1,2-Dichloroethene	5	1 U	0.5 U				0.29 U	1 U	0.35 U
Tetrachloroethene	5	1 U	0.5 U		2 U	2 U	0.48 U	1 U	0.27 U
Toluene	5	1 U	0.5 U		1 U	0.15 J	0.36 U	1 U	0.37 U
Trichloroethene	5	1 U	0.5 U		2 U	2 U	0.46 U	1 U	0.28 U


- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-14I	TW-14I	TW-14I	TW-14I	TW-14I	TW-14D	TW-14D	TW-14D
Sampling Date	Class GA	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007	10/17/2008	6/25/2009
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs									
1,1,1-Trichloroethane	5	82	87	76	59	57	42	18	0.4 U
1,1-Dichloroethane	*	3.2	3.5	2.6	2.1	2 J	0.38 U	1 U	0.36 U
1,1-Dichloroethene	5	2.1	4.4	1.4	2 U	1.1 J	7.2	1 U	0.47 U
2-Butanone	50	5 U	5 U	2.2 J			1.1 U	5 U	1.3 U
Acetone	50	17	20	16			2.3 U	5 U	15
Benzene	1	1 U	1 U	0.5 U	1 U	1 U	0.39 U	1 U	0.32 U
Carbon Tetrachloride	5	1 U	1 U	0.5 U	2 U	2 U	1.1 U	1 U	0.62 U
Chloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.83 U	1 U	0.66 U
Chloroform	7	1 U	1 U	0.5 U	2 U	2 U	0.33 U	1 U	0.34 U
Chloromethane		1 U	1 U	0.5 U	2 U	2 U	0.34 U	1 U	0.54 U
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U			0.29 U	1 U	0.35 U
Tetrachloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.48 U	1 U	0.27 U
Toluene	5	1 U	1 U	0.5 U	1 U	1 U	0.36 U	1 U	0.37 U
Trichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.46 U	1 U	0.28 U

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-14D	TW-14D	TW-14D	TW-14D	TW-14D	TW-15					
Sampling Date	Class GA	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	9/6/2007					
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER					
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L					
VOCs												
1,1,1-Trichloroethane	5	9.1	12	11	56	10	17					
1,1-Dichloroethane	*	1 U	1 U	0.5 U	2 U	2 U	0.38 U					
1,1-Dichloroethene	5	1 U	0.67 J	0.5 U	2 U	2 U	4.6 J					
2-Butanone	50	5 U	5 U	2.2 J			1.1 U					
Acetone	50	18	25	17			2.3 U					
Benzene	1	1 U	1 U	0.5 U	1 U	5.7	0.39 U					
Carbon Tetrachloride	5	1 U	1 U	0.5 U	2 U	2 U	1.1 U					
Chloroethane	5	1 U	1 U	0.5 U	2 U	2 U	0.83 U					
Chloroform	7	1 U	1 U	0.5 U	2 U	2 U	0.33 U					
Chloromethane		1 U	1 U	0.5 U	2 U	2 U	0.34 U					
cis-1,2-Dichloroethene	5	1 U	1 U	0.5 U			0.29 U					
Tetrachloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.48 U					
Toluene	5	1 U	1 U	0.5 U	1 U	1 U	0.36 U					
Trichloroethene	5	1 U	1 U	0.5 U	2 U	2 U	0.46 U					

- Concentration exceeds corresponding NYSDEC Class GA Standard.

- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

TW-X is a duplicate sample collected at TW-15

TABLE 4-3
SUMMARY OF GROUNDWATER DETECTIONS (VOCS)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	TW-15	TW-15	TW-15	TW-15	TW-15	TW-15	TW-15	DUP-X			
Sampling Date	Class GA	10/17/2008	6/25/2009	3/23/2010	6/21/2011	7/24/2012	10/29/2013	5/6/2015	5/6/2015			
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER			
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L			
VOCs												
1,1,1-Trichloroethane	5	84 D	95	97	89	85	9.4	32	33			
1,1-Dichloroethane	*	3.3	3.4	4.1	3.8	3.4	2 U	1.6	1.6 J			
1,1-Dichloroethene	5	2	1.8	2.7	5.9	2	2 U	0.93	0.95 J			
2-Butanone	50	5 U	1.3 U	5 U	5 U	2.9 J						
Acetone	50	5 U	9.7	15	35	17						
Benzene	1	1 U	0.32 U	1 U	1 U	0.5 U	1 U	13	13			
Carbon Tetrachloride	5	1 U	0.62 U	1 U	1 U	0.5 U	2 U	2 U	2 U			
Chloroethane	5	1 U	0.66 U	1 U	1 U	0.5 U	2 U	2 U	2 U			
Chloroform	7	1 U	0.34 U	1 U	1 U	0.5 U	2 U	2 U	2 U			
Chloromethane		1 U	0.54 U	1 U	1 U	0.48 J	2 U	2 U	2 U			
cis-1,2-Dichloroethene	5	1 U	0.35 U	1 U	1 U	0.5 U						
Tetrachloroethene	5	1 U	0.27 U	1 U	1 U	0.5 U	2 U	2 U	2 U			
Toluene	5	1 U	0.37 U	1 U	1 U	0.5 U	1 U	1 U	1 U			
Trichloroethene	5	1 U	0.28 U	1 U	1 U	0.5 U	2 U	2 U	2 U			

- Concentration exceeds corresponding NYSDEC Class GA Standard.

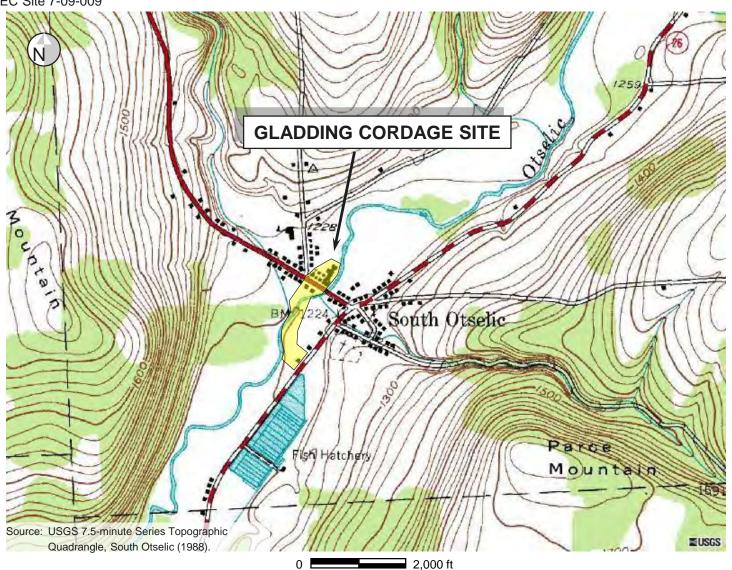
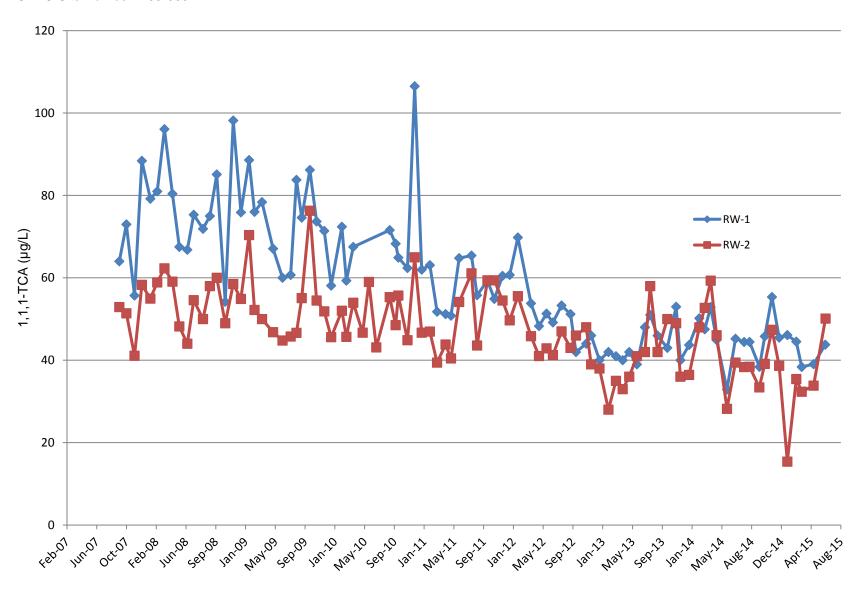
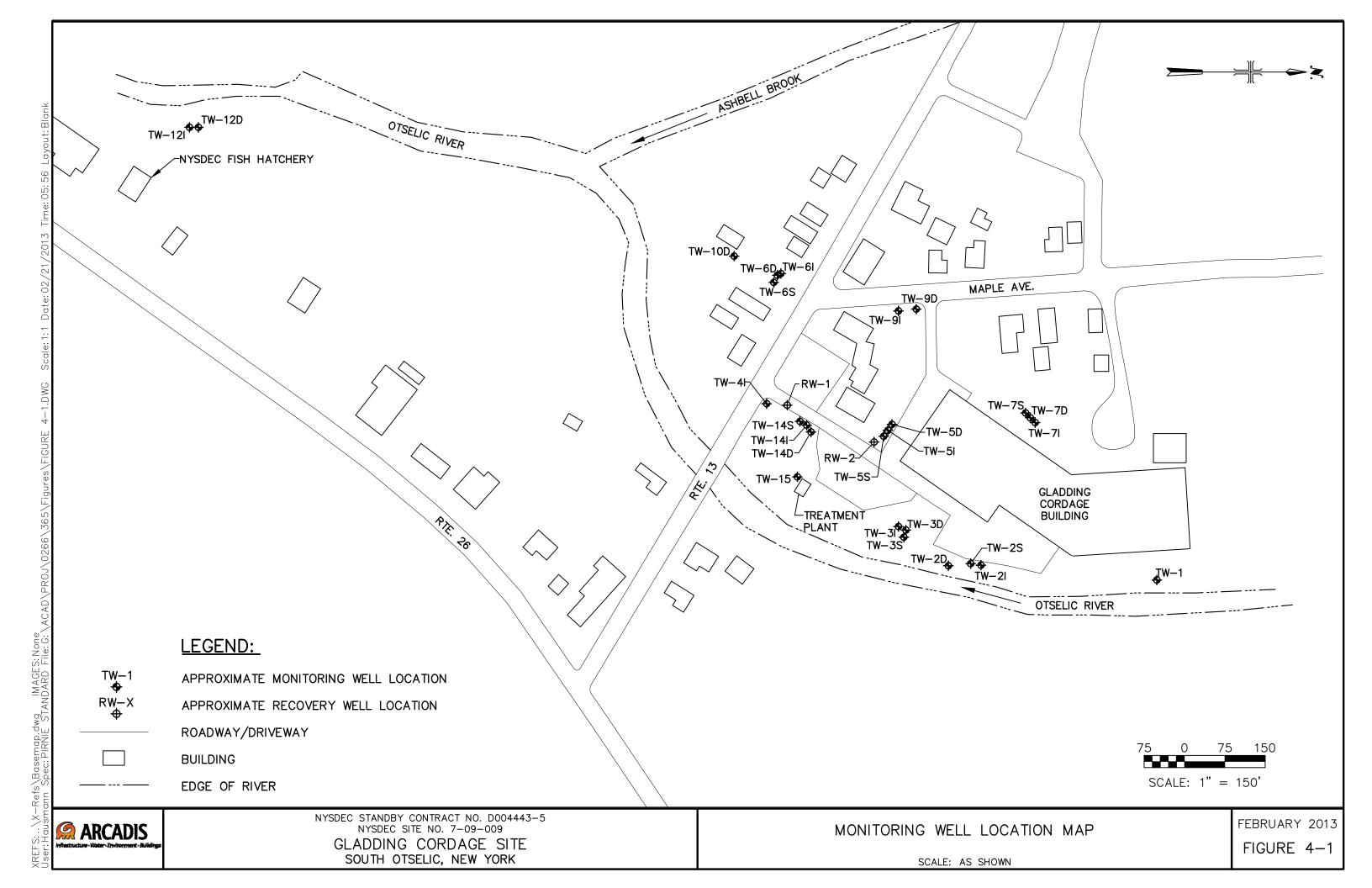
- * NYSDEC Principal Organic Contaminant Standard of 5 ug/l applies to this compound.
- U The compound was not detected at the indicated concentration.
- J Compound detected below the reporting limit or Concentration is estimated for TICS.
- D Sample dilluted

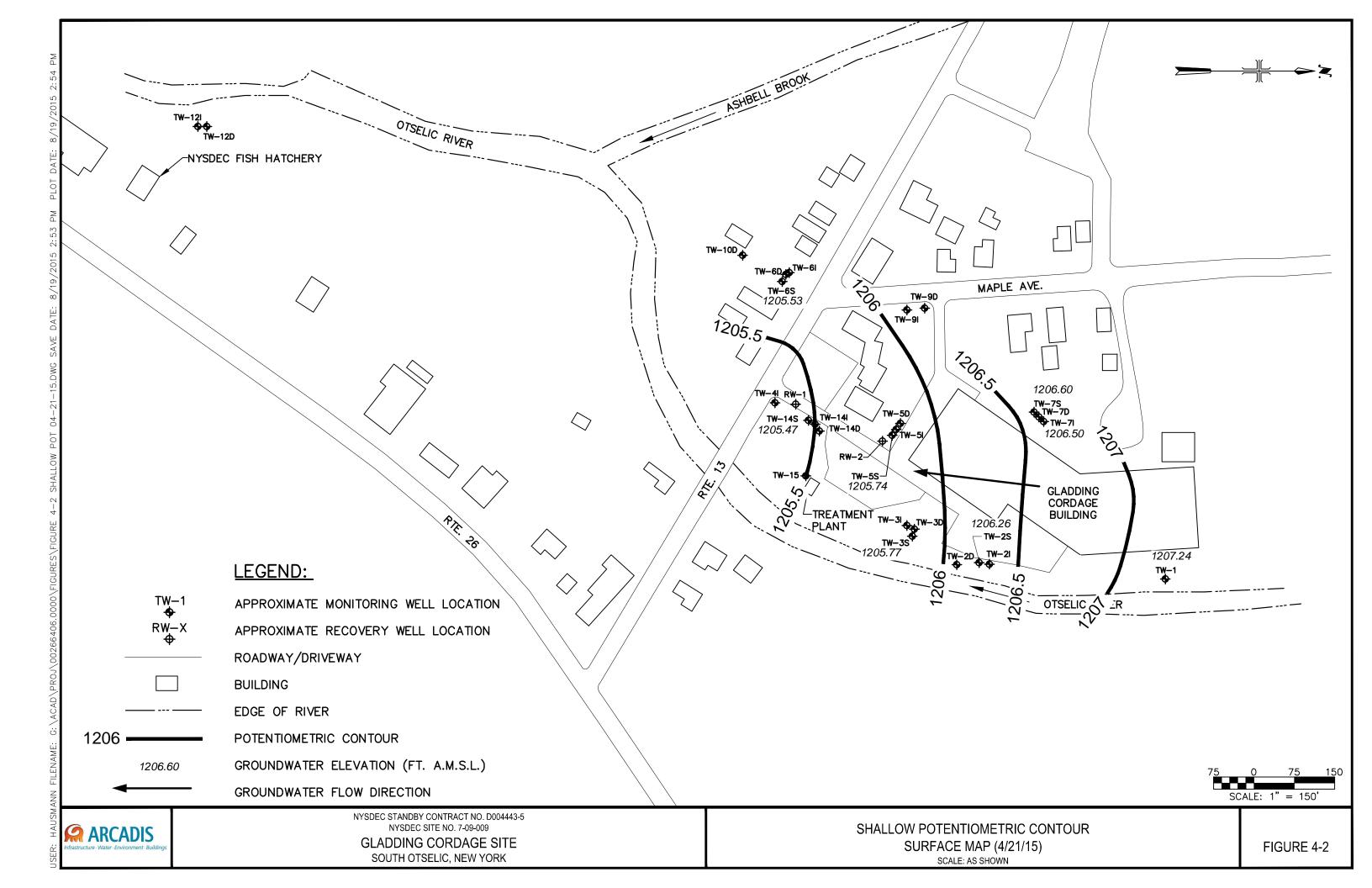
TW-X is a duplicate sample collected at TW-15

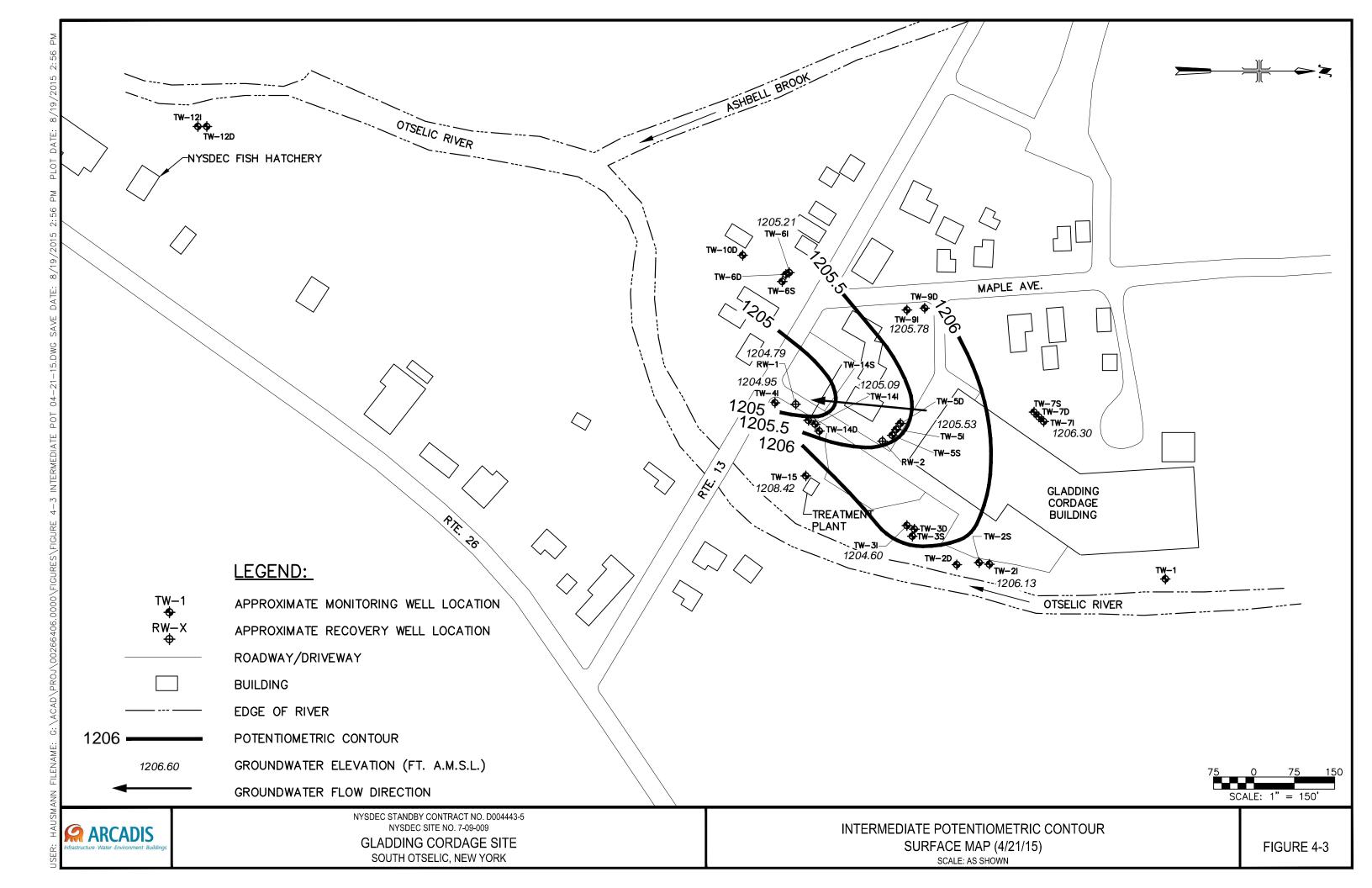
FIGURES

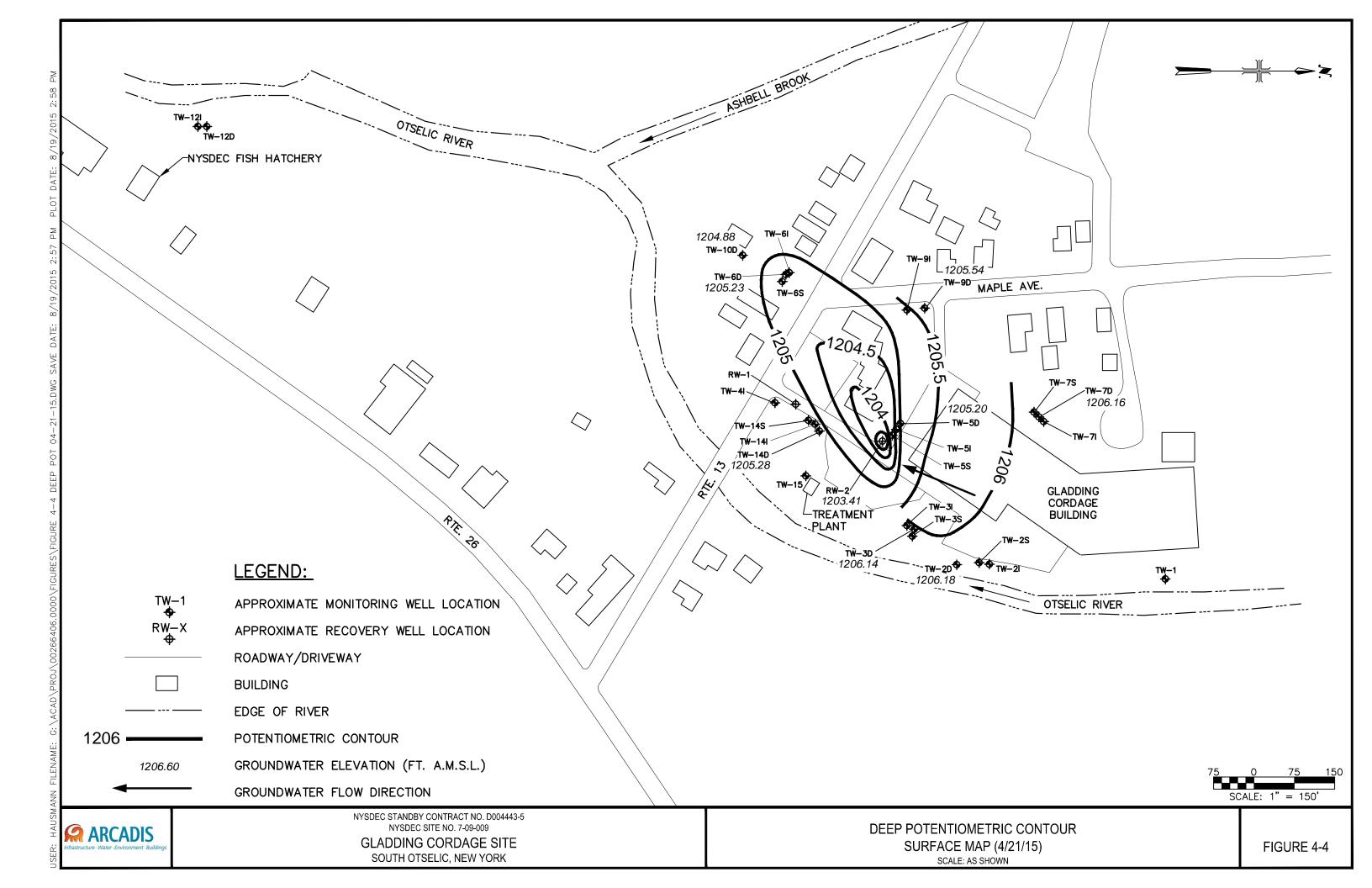
Figure 2-1 Site Location

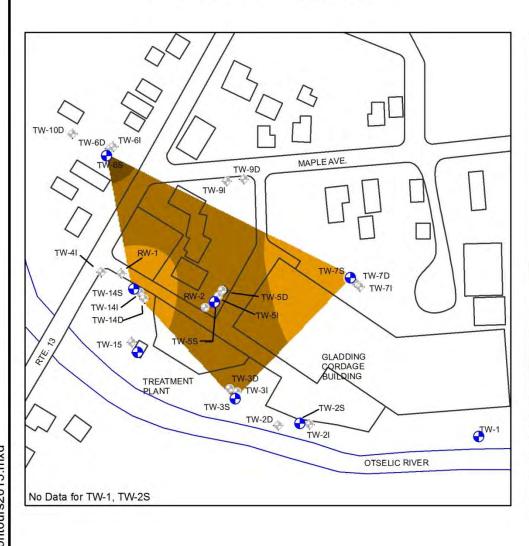
Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009

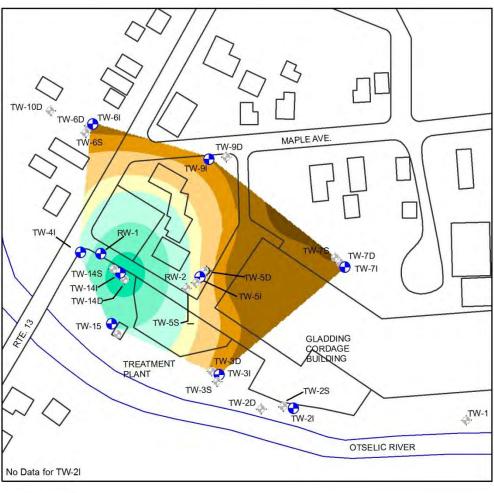




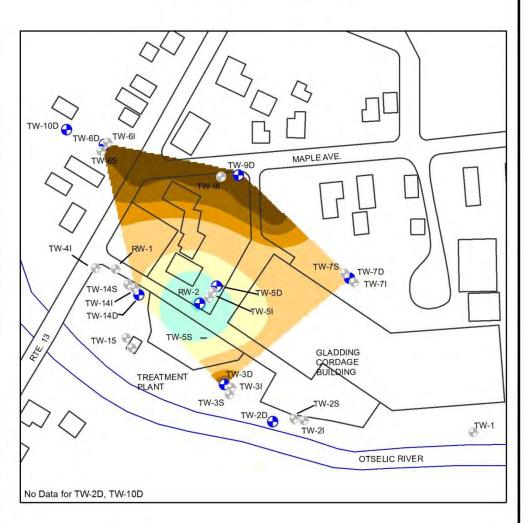

Figure 3-1
Treatment System Influent Sample Concentrations (1,1,1-TCA)

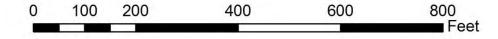



Gladding Cordage Site NYSDEC Site Number 7-09-009






SHALLOW WELLS


INTERMEDIATE WELLS

DEEP WELLS

LEGEND

1,1,1-Trichloroethane Concentrations (ug/L)

GLADDING CORDAGE SITE NUMBER 7-09-009 SOUTH OTSELIC, NEW YORK

GROUNDWATER 1,1,1-TRICHLOROETHANE CONCENTRATIONS

MAY 6, 2015

4-5

APPENDIX A

PLC Facsimile Reports

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/02/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF SMPALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 W2_FLO is 22.2 **GPM** TOTAL FLOW is 29598628 GAL **GPM** TOTAL FLOW is 26989347 GAL ASBPRS is 11.1 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP FLO is 0.00 GPM TOTAL FLOW is 412759 GAL HP_PRS is 1.3 PSI LIMITS are L: -2.0 H: 20.0 PSI PSI HP_AMP is 0.04 W1_AMP is 4.55 AMPLIMITS are L: 0.00AMP H: AMP AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2 AMP is 4.45 ΑMP LIMITS are \mathbf{L} : 0.00 H: 10.00 H: 28.00 AMP AMP W1_LVL is 35.32 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} W2_LVL is 56.38 W1_PRS is 4.6 \mathbf{FT} LIMITS are \mathbf{FT} H: 52.00 \mathbf{FT} LIMITS are PSI L: 0.5PSI H: 100.0 PSI W2 PRS is 5.0 PSI LIMITS are L: 0.5PSI H: 100.0 PSI INTEMP is 56.1 L: 42.0 DEG LIMITS are DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/03/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HA is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.9 **GPM** TOTAL FLOW is 29633245 GAL W2_FLO is 21.9 TOTAL FLOW is **GPM** 27020877 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC TOTAL FLOW is HP_FLO is 0.00 413022 **GPM** GAL HP PRS is 1.3 PSILIMITS are \mathbf{L} : -2.0 PSI H: 20.0 PSI HP AMP is 0.04 LIMITS are AMP L: 0.00 **H**: AMP AMP W1_AMP is 4.59 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.48 W1_LVL is 36.09 AMP LIMITS are L: 0.00AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 ΓT W2 LVL is 57.48 \mathbf{FT} LIMITS are 9.00 \mathbf{L} : ΓT H: 52.00 \mathbf{FT} W1_PRS is 4.5 W2_PRS is 4.9 INTEMP is 61.6 PSI LIMITS are L: 0.5 H: 100.0 PSI PSI PSI LIMITS are L: 0.5PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/04/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL B2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HO is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1 GO W2 GO is ON ASB_GO is ON SMP GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.6 GPM 29668120 TOTAL FLOW is GAL W2_FLO is 22.2 **GPM** TOTAL FLOW is 27052577 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 413271 GAL HP PRS is 1.3 PSI LIMITS are PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP **H**: AMP W1_AMP is 4.67 W2_AMP is 4.58 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are AMP L: 0.00 **AMP** H: 10.00 AMP W1 LVL is 37.24 H: 28.00 H: 52.00 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W2_LVL is 58.81 \mathbf{FT} LIMITS are L: 9.00 ΓT ΓT W1 PRS is 4.5 W2 PRS is 4.8 INTEMP is 58.4 H: 100.0 PSI LIMITS are L: 0.5 PSI PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/05/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HA is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF ARR HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF ARR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.3 **GPM** TOTAL FLOW is 29703104 GAL W2_FLO is 22.1 **GPM** TOTAL FLOW is 27084362 GALASBPRS is 11.0 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 413690 GAL HP PRS is 1.2 PSI LIMITS are -2.0H: 20.0 \mathbf{L} : PSI PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.66 W2_AMP is 4.56 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are AMP L: 0.00AMP H: 10.00 AMP W1 LVL is 37.50 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 ΓT W2 LVL is 58.64 \mathbf{FT} LIMITS are H: 52.00 H: 100.0 L: 9.00 \mathbf{FT} \mathbf{FT} W1_PRS is 4.5 W2_PRS is 4.8 INTEMP is 57.3 PSI LIMITS are L: 0.5 PSI PSI PSI LIMITS are L: 0.5 H: 100.0 PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/06/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.4 GPM TOTAL FLOW is 29737990 GAL W2_FLO is 21.4 TOTAL FLOW is **GPM** 27116102 GAL ASBPRS is 11.0 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 TOTAL FLOW is GPM 414122 GAL HP PRS is 1.2 PSI LIMITS are -2.0H: 20.0 \mathbf{L} : PSI PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.59 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.49 W1_LVL is 37.11 LIMITS are AMP L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8,00 H: 28.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ $W2_LVL$ is 50.07 \mathbf{FT} LIMITS are H: 52.00 H: 100.0 L: 9.00 \mathbf{FT} FT W1_PRS is 4.5 W2_PRS is 4.6 INTEMP is 61.4 LIMITS are L: 0.5 PSI PSI PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREHY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/07/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HA is OFF ASP_LO is OFF FLRSMP is OFF ASP_LO is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.6 W2_FLO is 22.3 GPM TOTAL FLOW is 29772810 GAL **GPM** TOTAL FLOW is 27147815 GAL ASBPRS is 10.8 IMC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 414380 GAL HP PRS is 1.3 PSI LIMITS are L: -2.0 H: 20.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.58 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP $\overline{\mathsf{AMP}}$ is 4.48AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W1_LVL is 37.45 \mathbf{FT} LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 ΓT W2_LVL is 58.43 \mathbf{FT} LIMITS are \mathbf{L} : 9.00 \mathbf{FT} H: 52.00 ΓT W1_PRS is 4.5 PSI LIMITS are 0.5 H: 100.0 H: 100.0 \mathbf{L} : PSI PSI W2_PRS is 4.8 INTEMP is 60.5 PSI LIMITS are PSI L: 0.5 PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/08/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_LO is OFF ASP_LO is OFF FLRSMP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.6 GPM TOTAL FLOW is 29807690 GAL W2_FLO is 22.7 TOTAL FLOW is **GPM** 27179401 GAL ASBPRS is 10.8 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 TOTAL FLOW is **GPM** 414680 GAL HP PRS is 1.2 PSI LIMITS are \mathbf{L} : -2.0PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.52 W2_AMP is 4.42 AMP LIMITS are L: 0.00 10.00 **H**: AMР AMP LIMITS are AMP L: 0.00 AMP H: 10.00 AMP W1_LVL is 37.52 \mathbf{FT} LIMITS are L: 8.00 H: 28.00 $\mathbf{\Gamma}\mathbf{T}$ $\mathbf{F}\mathbf{T}$ W2 LVL is 58.51 \mathbf{FT} LIMITS are \mathbf{L} : 9.00 H: 52.00 ΓT \mathbf{FT} W1 PRS is 4.5 W2 PRS is 4.7 PSI LIMITS are \mathbf{L} : 0.5 PSI H: 100.0 PSI PSI LIMITS are L: 0.5 H: 100.0 PSI PSI INTEMP is 58.7 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/09/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.6 **GPM** TOTAL FLOW is 29842717 GAL W2_FLO is 21.7 TOTAL FLOW is **GPM** 27210997 GAL ASBPRS is 10.8 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC **HP FLO is 2.37** TOTAL FLOW is **GPM** 415055 GAL HP_PRS is 8.5 PSILIMITS are H: 20.0 \mathbf{L} : -2.0PSI PSI HP AMP is 4.86 AMP LIMITS are 0.00 AMP H: AMP W1_AMP is 4.54 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.44 W1_LVL is 37.84 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ W2 LVL is 58.98 ĘΤ LIMITS are H: 52.00 L: 9.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} W1_PRS is 4.5 W2_PRS is 4.8 INTEMP is 59.5 PSI LIMITS are \mathbf{L} : 0.5 PSI H: 100.0 PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

EOS Research Ltd.

To:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/10/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON HP_OP is OFF W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO W2 GO is ON ASB_GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMFLL is OFF W1_ALM is OFF W2 ALM is OFF VFDRUN is OFF ASBALM is OFF VFDRST is OFF SMPALM is OFF AIR_LL is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.7 GPM TOTAL FLOW is 29877840 GAL W2_FLO is 21.9 **GPM** TOTAL FLOW is 27242565 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 415409 GAL HP PRS is 1.3 PSI LIMITS are -2.0 \mathbf{L} : PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP **H**: AMP W1_AMP is 4.61 W2_AMP is 4.50 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are AMP L: 0.00AMP H: 10.00 AMP W1_LVL is 37.91 LIMITS are \mathbf{FT} L: 8.00 H: 28.00 \mathbf{FT} ΓT W2 LVL is 59.21 \mathbf{FT} LIMITS are H: 52.00 H: 100.0 L: 9.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W1_PRS is 4.5 W2_PRS is 4.8 INTEMP is 59.8 L: 0.5 PSI LIMITS are PSI PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT To

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/11/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 ; MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON HP_OP is OFF W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2_{_}GO is ON ASB GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF AIR_LL is OFF SMPALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.6 **GPM** TOTAL FLOW is 29912984 GAL W2_FLO is 21.9 **GPM** TOTAL FLOW is 27274138 GALASBPRS is 10.7 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP FLO is 0.04 **GPM** 415700 TOTAL FLOW is GAL HP PRS is 0.1 PSI LIMITS are \mathbf{L} : -2.0 PSI H: 20.0 PSI HP_AMP is 4.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.65 W2_AMP is 4.54 AMPLIMITS are L: 0.00 H: 10.00 AMP AMP LIMITS are AMP L: 0.00 AMP H: 10.00 AMP W1_LVL is 38.07 LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 $\mathbf{\Gamma}\mathbf{T}$ W2 LVL is 59.38 \mathbf{FT} LIMITS are H: 52.00 H: 100.0 L: 9.00 \mathbf{FT} \mathbf{FT} W1_PRS is 4.4 W2_PRS is 4.6 INTEMP is 59.6 L: 0.5 PSI LIMITS are PSI PSI PSI LIMITS are L: 0.5 H: 100.0 PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/12/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2 GO is ON ASB_GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF ASBALM is OFF VFDRST is OFF W2_ALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.4 **GPM** TOTAL FLOW is 29948057 GAL W2_FLO is 21.8 GPM TOTAL FLOW is 27305659 GAL ASBPRS is 10.8 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 GPM TOTAL FLOW is 416126 GAL HP PRS is 1.3 LIMITS are PSI \mathbf{L} : -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are L: 0.00 AMP H : AMP W1_AMP is 4.58 W2_AMP is 4.47 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 10.00 H: 28.00 H: 52.00 AMP LIMITS are L: 0.00 AMP AMP W1 LVL is 37.67 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W2_LVL is 58.66 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} \mathbf{FT} W1_PRS is 4.5 W2_PRS is 4.8 INTEMP is 56.6 PSI L: 0.5 LIMITS are PSI H: 100.0 PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/13/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.0 **GPM** TOTAL FLOW is 29982996 GAL W2_FLO is 21.9 TOTAL FLOW is **GPM** 27337216 GAL ASBPRS is 10.9 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP FLO is 0.00 416403 **GPM** TOTAL FLOW is GAL HP PRS is 1.2 PSI LIMITS are -2.0 PSI H: 20.0 \mathbf{L} : PSI HP AMP is 0.04 LIMITS are L: 0.00 AMP AMP **H**: AMP W1_AMP is 4.51 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.42 W1_LVL is 37.44 LIMITS are AMP L: 0.00AMP H: 10.00 AMP H: 28.00 H: 52.00 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} W2_LVL is 58.41 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W1_PRS is 4.5 H: 100.0 PSI LIMITS are L: 0.5 PSI PSI W2_PRS is 4.7 INTEMP is 58.8 PSI L: 0.5 LIMITS are PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/14/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.3 **G₽M** TOTAL FLOW is 30017882 GAL TOTAL FLOW is W2_FLO is 22.1 **GPM** 27368783 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 GPM TOTAL FLOW is 416540 GAL ₽SI LIMITS are -2.0PSI H: 20.0 \mathbf{L} : PSI HP AMP is 0.04 LIMITS are L: 0.00 AMP AMP **H** : AMP $W1_AMP$ is 4.57AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.45 W1_LVL is 37.79 LIMITS are AMP L: 0.00 AMP H: 10.00 AMP $\mathbf{F}\mathbf{T}$ LIMITS are L: 8.00 \mathbf{FT} H: 28.00 ΓT W2 LVL is 58.89 \mathbf{FT} L: 9.00 LIMITS are \mathbf{FT} H: 52.00 \mathbf{FT} L: 0.5 W1_PRS is 4.4 PSI LIMITS are PSI H: 100.0 PSI W2_PRS is 4.7 INTEMP is 60.4 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/15/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.3 **GPM** TOTAL FLOW is 30052821 GAL W2_FLO is 21.5 **GPM** TOTAL FLOW is 27400321 GAL ASBPRS is 11.0 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 416801 GAL HP PRS is 1.2 LIMITS are PSI H: 20.0 L: -2.0 PSI PSI HP_AMP is 0.04 A MP LIMITS are L: 0.00 AMP AMP H: W1_AMP is 4.54 W2_AMP is 4.43 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP AMP LIMITS are H: 10.00 L: 0.00AMP AMP W1 LVL is 37.35 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 2B.00 $\mathbf{F}\mathbf{T}$ W2 LVL is 58.47 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.4 W2_PRS is 4.7 INTEMP is 58.5 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREHY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/16/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.6 **GPM** TOTAL FLOW is 30087633 GAL W2 FLO is 21.7 TOTAL FLOW is **GPM** 27431752 GAL ASBPRS is 11.0 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.2 TOTAL FLOW is **GPM** 417077 GAL PSI LIMITS are -2.0PSI H: 20.0 \mathbf{L} : PSI HP AMP is 0.04 LIMITS are L: 0.00 AMP AMP Н: AMP. W1 AMP is 4.54 AMP LIMITS are L: 0.00 AMP. H: 10.00 AMP W2_AMP is 4.44 AMP LIMITS are L: 0.00AMP H: 10.00 AMP W1_LVL is 36.98 W2_LVL is 57.86 н: 28.00 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} $\mathbf{r}\mathbf{r}$ H: 52.00 H: 100.0 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ L: 0.5 W1_PRS is 4.5 PSI LIMITS are PSI PSI W2_PRS is 4.8 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI INTEMP is 60.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/17/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.4 GPM TOTAL FLOW is 30122359 GAL W2_FLO is 21.7 TOTAL FLOW is **GPM** 27463147 GAL ASBPRS is 10.6 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 GPM TOTAL FLOW is 417225 GAL HP PRS is 1.2 PSI LIMITS are -2.0 H: 20.0 L: PSI PSI HP_AMP is 0.04 L: 0.00 AMP LIMITS are AMP H: AMP W1_AMP is 4.58 W2_AMP is 4.48 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP. LIMITS are AMP L: 0.00 AMP H: 10.00 AMP W1_LVL is 36.15 \mathbf{FT} LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ W2 LVL is 57.46 \mathbf{FT} LIMITS are 9.00 H: 52.00 H: 100.0 \mathbf{L} : \mathbf{FT} $\mathbf{F}\mathbf{T}$ W1_PRS is 4 4 PSI LIMITS are L: 0.5 PSI PSI W2 PRS is 4.7 INTEMP is 63.2 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/18/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO W2_G0 is ON is ON ASB_GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VEDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.8 W2_FLO is 21.8 **GPM** 30157056 TOTAL FLOW is GAL GPM TOTAL FLOW is 27494511 GAL ASBPRS is 10.7 IWC LIMITS are H: 30.0 \mathbf{L} : IWC IWC HP_FLO is 0.00 TOTAL FLOW is GPM 417421 GAL HP_PRS is 1.3 PSI LIMITS are H: 20.0 -2.0 PSI \mathbf{L} : PSI HP_AMP is 0.04 LIMITS are L: 0.00 AMP H: AMP $W1_AMP$ is 4.58 \mathbf{AMP} L: 0.00 H: 10.00 LIMITS are AMP AMP W2_AMP is 4.48 W1_LVL is 35.9 LIMITS are L: 0.00 AMP AMP AMP H: 10.00 _LVL is 35.93 ΓT LIMITS are 8.00 L: \mathbf{FT} H: 28.00 $\mathbf{F}\mathbf{T}$ W2LVL is 57.37 $\mathbf{F}\mathbf{T}$ H: 52.00 LIMITS are 9.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/19/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ \overline{A} LM is OFF W2_ \overline{A} LM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.9 GPM TOTAL FLOW is 30191702 GAL W2_FLO is 21.6 TOTAL FLOW is GPM 27525838 GAL ASBPRS is 10.9 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.2 TOTAL FLOW is **GPM** 417620 GAL PSI LIMITS are -2.0 \mathbf{L} : PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.64 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.54 W1_LVL is 35.90 LIMITS are AMP L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} W2 LVL is 57.12 \mathbf{FT} H: 52.00 H: 100.0 LIMITS are L: 9.00 \mathbf{FT} \mathbf{FT} L: 0.5 W1_PRS is 4.4 PSI LIMITS are PSI PSI W2_PRS is 4.7 INTEMP is 57.5 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 H: 130.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/20/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB_GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.2 GPM TOTAL FLOW is TOTAL FLOW is 30226313 GAL W2_FLO is 21.4 GPM 27557135 GAL ASBPRS is 10.6 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 GPM TOTAL FLOW is 417770 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP \mathbf{H} : AMP W1_AMP is 4.57 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.47 W1_LVL is 35.20 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP LIMITS are $\mathbf{F}\mathbf{T}$ L: 8,00 $\mathbf{F}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 56.91 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 \mathbf{FT} \mathbf{FT} LIMITS are W1_PRS is 4.4 PSI L: 0.5 H: 100.0 H: 100.0 PSI PSI W2 PRS is 4.6 INTEMP is 60.9 PSI LIMITS are L: 0.5 PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/21/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2_GO is ON ASB GO is ON SMP_GO is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF AIR LL is OFF ASBALM is OFF SMPALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 GPM TOTAL FLOW is 30260877 GAL W2 FLO is 21.6 TOTAL FLOW is GPM 27588370 GAL ASBPRS is 10.5 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 2.35 HP_PRS is 8.3 GPM TOTAL FLOW is 417930 GAL PSI LIMITS are -2.0H: 20.0 \mathbf{L} : PSI PSI HP AMP is 5.05 LIMITS are ÄΜΡ 0.00 \mathbf{L} : AMP H: AMP W1_AMP is 4.52 ÄΜΡ LIMITS are L: 0.00 AMP H: 10.00 AMP $W2_AMP$ is 4.43ÄΜΡ LIMITS are L: 0.00AMP H: 10.00 AMP LVL is 35.49 \mathbf{FT} LIMITS are L: 8.00 H: 28.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W2_LVL is 57.46 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 $\mathbf{F}\mathbf{T}$ H: 100.0 W1_PRS is 4.4 PSI LIMITS are L: 0.5PSI PSI W2_PRS is 4.7 PSI LIMITS are L: 0.5PSI H: 100.0 PSI $IN\overline{I}EMP$ is 64.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

Io

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/22/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

Fax Report

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON HP_OP is OFF W2_CTR is ON ASP_HH is OFF ASBVFD is ON SMPCTR is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON SMP_GO is OFF W1_ALM is OFF ASB_GO is ON AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W2_ALM is OFF VFDRUN is OFF ASBALM is OFF AIR_LL is OFF SMPALM is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.5 **GPM** TOTAL FLOW is 30295576 GAL W2_FLO is 21.7 **GPM** TOTAL FLOW is 27619632 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 418159 GAL HP PRS is 1.2 PSI LIMITS are -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are L: 0.00 AMP AMP **H**: AMP W1_AMP is 4.57 W2_AMP is 4.46 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are AMP L: 0.00 AMP H: 10.00 AMP W1_LVL is 35.59 \mathbf{FT} LIMITS are L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 $\mathbf{\Gamma}\mathbf{T}$ W2 LVL is 57.48 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 H: 100.0 \mathbf{r} $\mathbf{\Gamma}\mathbf{T}$ W1_PRS is 4.4 W2_PRS is 4.6 INTEMP is 60.0 PSI LIMITS are L: 0.5 PSI PSI PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/23/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL B2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVED is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.0 GPM TOTAL FLOW is 30330230 GAL W2_FLO is 21.9 **GPM** TOTAL FLOW is 27650804 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.2 **GPM** TOTAL FLOW is 418482 GAL PSI LIMITS are -2.0 \mathbf{L} : PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 AMP Η: AMP W1_AMP is 4.53 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.43 W1_LVL is 35.51 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 $\Gamma \Upsilon$ H: 28.00 ΓT W2_LVL is 57.39 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 ΓT ΓT W1_PRS is 4.4 PSI LIMITS are L: 0.5 H: 100.0 H: 100.0 PSI PSI W2_PRS is 4.7 INTEMP is 59.7 PSI LIMITS are L: 0.5PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 **DEG**

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/24/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_H is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.3 **GPM** TOTAL FLOW is 30364859 GAL TOTAL FLOW is W2_FLO is 22.1 GPM 27681958 GAL ASBPRS is 10.8 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 TOTAL FLOW is **GPM** 418919 GAL PSI LIMITS are L:-2.0 PSI H: 20.0 PST HP AMP is 0.04 AMP L: 0.00 LIMITS are AMP. **H**: АМР W1_AMP is 4.60 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.48 W1_LVL is 35.48 AMP LIMITS are L: 0.00AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 57.20 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.5 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI W2_PRS is 4.7 INTEMP is 57.3 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/25/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.0 **GPM** 30399462 TOTAL FLOW is GAL W2 FLO is 22.1 GPM TOTAL FLOW is 27713123 GAL ASBPRS is 10.9 LIMITS are L: IWC 5.0 IWC H: 30.0IWC HP_FLO is 0.00 HP_PRS is 1.2 GPM TOTAL FLOW is 419432 GAL HP_PRS is 1.2 HP_AMP is 0.04 LIMITS are L: PSI -2.0 PSI H: 20.0 PSI LIMITS are AMP L: 0.00 AMP H ; AMP W1 AMP is 4.60 AMP LIMITS are H: 10.00 H: 10.00 L:0.00 AMP AMP W2_AMP is 4.49 AMP LIMITS are L: 0.00 AMP AMP W1_LVL is 35.37 W2_LVL is 57.29 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} LIMITS are \mathbf{FT} L: 9.00 \mathbf{FT} H: 52.00 $\mathbf{F}\mathbf{T}$ W1 PRS is 4.4 PSI H: 100.0 H: 100.0 LIMITS are L: 0.5 PSI PSI LIMITS are W2 PRS is 4.7 PSI L: 0.5 PSI PSI INTEMP is 56.4 DEC LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/26/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.7 **GPM** TOTAL FLOW is 30434028 GAL W2 FLO is 22.0 TOTAL FLOW is 27744302 GPM GAL ASBPRS is 10.8 LIMITS are L: IWC 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 HP_AMP is 0.04 TOTAL FLOW is 419798 GPM GAL H: 20.0 PSI LIMITS are -2.0PSI Т.: PSI AMP LIMITS are L: 0.00 AMP H: AMP W1 AMP is 4.60 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.48 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 35.09 W2_LVL is 57.08 W1_PRS is 4.5 \mathbf{FT} LIMITS are L: 8.00 H: 28.00 \mathbf{FT} ΓT H: 52.00 H: 100.0 \mathbf{FT} LIMITS are 9.00 \mathbf{FT} L: ΓT PSI LIMITS are L: 0.5 PSI PSI H: 100,0 W2 PRS is 4.8 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 57.3 LIMITS are L: 42.0 DEG DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/27/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HO is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.1 **GPM** TOTAL FLOW is 30468566 GAL W2 FLO is 21.4 TOTAL FLOW is 27775404 GPM GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 420116 GAL HP PRS is 1.2 PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 **H**: AMP AMP W1 AMP is 4.54AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.43 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.90 W2_LVL is 56.89 \mathbf{FT} LIMITS are L: 8.00 H: 28.00 \mathbf{FT} \mathbf{FT} H: 52.00 H: 100.0 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} $\mathbf{\Gamma}\mathbf{T}$ W1 PRS is 4.4 PSI LIMITS are L: 0.5 PSI PSI W2 PRS is 4.7 PSI LIMITS are H: 100.0 L: 0.5 PSI PSI INTEMP is 58.3 DEG LIMITS are L: 42.0 H: 130.0 DEG DEG

Analog Outputs:

ProControl Series II+

EOS Research Ltd.

 $I_{(i)}$

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/28/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1 CTR is ON W2 CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W2_GO is ON ASMPHH is OFF is ON ASB_GO is ON SMP GO is OFF AIR HH is OFF ASMPLL is OFF SMPALM is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF AIR_LL is OFF VEDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 **GPM** TOTAL FLOW is 30503113 GAL W2 FLO is 21.5 GPM TOTAL FLOW is 27806495 GAL ASBPRS is 10.7 LIMITS are IWC L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 HP_AMP is 0.04 **GPM** TOTAL FLOW is 420398 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI AMP LIMITS are L: 0.00AMP H: AMP W1_AMP is 4.64 AMP H: 10.00 H: 10.00 LIMITS are L:0.00 AMP AMP W2_AMP is 4.53 AMP LIMITS are \mathbf{L} : 0.00 AMP AMP W1_LVL is 34.97 W2_LVL is 56.80 \mathbf{FT} LIMITS are L: 8.00 ΓT H: 28.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} LIMITS are L: 9.00 ΓT H: 52.00 $\mathbf{F}\mathbf{T}$ W1 PRS is 4.5 PSI H: 100.0 LIMITS are 0.5 \mathbf{L} : PSI PSI W2_PRS is 4.7 LIMITS are PSI \mathbf{L} : 0.5 H: 100.0 H: 130.0 PSI PSI INTEMP is 62.4 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/29/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.0 **GPM** TOTAL FLOW is 30537657 GAL W2 FLO is 22.1 GPM TOTAL FLOW is 27837594 GAL ASBPRS is 10.8 LIMITS are L: 5.0 IWC IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 **GPM** TOTAL FLOW is 420593 GAL LIMITS are L: PSI -2.0 PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.59 AMP H: 10.00 LIMITS are \mathbf{L} : 0.00 AMP AMP W2_AMP is 4.49 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W1_LVL is 34.76 W2_LVL is 56.65 \mathbf{FT} LIMITS are L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 ΓT \mathbf{FT} LIMITS are L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 $\mathbf{F}\mathbf{T}$ W1 PRS is 4.5 PSI H: 100.0 LIMITS are \mathbf{L} : PSI PSI W2_PRS is 4.7 LIMITS are H: 100.0 H: 130.0 PSI L: 0.5 PSI ₽SI INTEMP is 57.6 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/30/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 **GPM** TOTAL FLOW is 30572172 GAL W2 FLO is 21.5 G₽M TOTAL FLOW is 27868651 GAL ASBPRS is 10.7 LIMITS are L: 5.0 IWC IWC H: 30.0 IWC HP_FLO is 2.37 HP_PRS is 8.3 **GPM** TOTAL FLOW is 420761 GAL LIMITS are L: PSI -2.0 PSI H: 20.0 PSI HP_AMP is 4.87 AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.58 AMP H: 10.00 LIMITS are L; 0.00 AMP AMP W2_AMP is 4.45 AMP LIMITS are \mathbf{L} : 0.00 AMP H: 10.00 AMP W1_LVL is 34.64 W2_LVL is 56.57 \mathbf{FT} H: 28.00 LIMITS are L: B.00 $\mathbf{\Gamma}\mathbf{T}$ \mathbf{FT} \mathbf{FT} LIMITS are L: 9.00 H: 52.00 ΓT $\mathbf{F}\mathbf{T}$ W1 PRS is 4.5 H: 100.0 H: 100.0 H: 130.0 PSI LIMITS are L:0.5 PSI PSI LIMITS are W2_PRS is 4.7 PSI L: 0.5 PSI PSI INTEMP is 59.3 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/01/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HO is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF SMPALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.3 **GPM** TOTAL FLOW is 30606646 GAL W2_FLO is 21.6 TOTAL FLOW is GPM 27899657 GAL ASBPRS is 10.5 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 420922 GAL HP PRS is 1.2 PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP **H**: AMP W1_AMP is 4.52 AMP LIMITS are L: 0.00 H: 10.00 H: 10.00 AMP AMP W2 AMP is 4.40 AMP LIMITS are L: 0.00 AMP AMP W1 LVL is 34.70 LIMITS are \mathbf{FT} L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 \mathbf{FT} W2_LVL is 56.46 \mathbf{FT} LIMITS are L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 W1_PRS is 4.4 W2_PRS is 4.7 INTEMP is 62.1 $\mathbf{F}\mathbf{T}$ PSI LIMITS are 0.5 \mathbf{L} : H: 100.0 H: 100.0 PSI PSI PSI LIMITS are L: 0.5PSI PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/02/2015 SER NO 9605 : SETUP VER 1 : ROW 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.3 G₽M TOTAL FLOW is 30641104 GAL W2_FLO is 21.7 TOTAL FLOW is **GPM** 27930559 GAL ASBPRS is 10.9 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP FLO is 0.00 G₽M TOTAL FLOW is 421106 GAL HP PRS is 1.2 PSI LIMITS are L: -2.0 H: 20.0 PSI PSI HP AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP H : AMP W1_AMP is 4.62 AMP LIMITS are 0.00 \mathbf{L} : H: 10.00 AMP AMP $\overline{\mathsf{AMP}}$ is 4.49AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W1_LVL is 34.71 LIMITS are \mathbf{FT} L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ W2 LVL is 56.29 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 ΕT W1_PRS is 4.4 W2_PRS is 4.7 INTEMP is 59.7 PSI LIMITS are 0.5 H: 100.0 H: 100.0 \mathbf{L} : PSI PSI PSI LIMITS are L: 0.5 PSI PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/03/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ \overline{A} LM is OFF W2_ \overline{A} LM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.9 **GPM** TOTAL FLOW is TOTAL FLOW is 30675552 GAL W2 FLO is 21.1 **GPM** 27961441 GAL ASBPRS is 10.7 IWC LIMITS are L: H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.2 **GPM** TOTAL FLOW is 421263 GAL PSI LIMITS are \mathbf{L} : -2.0PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP **H**: AMP W1_AMP is 4.55 AMP LIMITS are 0.00 H: 10.00 \mathbf{L} : AMP AMP W2_AMP is 4.42 W1_LVL is 34.74 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are ĒΤ L: B.00 H: 28.00 \mathbf{FT} \mathbf{FT} W2 LVL is 56.23 \mathbf{FT} LIMITS are 9.00 H: 52.00 \mathtt{L} : ΓT \mathbf{FT} W1 PRS is 4.3 PSI LIMITS are 0.5 H: 100.0 H: 100.0 L: PSI PSI W2_PRS is 4.6 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 59.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ProControl Series 17+ EOS Research Lid. Fax Report

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/04/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.1 **GPM** TOTAL FLOW is 30709996 GAL W2_FLO is 21.7 TOTAL FLOW is GPM 27992312 GAL ASBPRS is 10.6 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.12 HP_PRS is 1.3 **GPM** TOTAL FLOW is 421391 GAL PSI LIMITS are L: -2.0 H: 20.0 PSI PSI HP AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP H: AMP W1_AMP is 4.55 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.44 W1_LVL is 34.76 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP LIMITS are \mathbf{FT} L: 8.00 ΓT H: 28.00 FΤ W2_LVL is 56.12 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} W1 PRS is 4.3 PSI LIMITS are H: 100.0 H: 100.0 L: 0,5 PSI PSI W2 PRS is 4.6 INTEMP is 62.5 PSI LIMITS are L: 0.5PSI PSI DEG LIMITS are L: 42.0DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/05/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.9 GPM TOTAL FLOW is 30744393 GAL W2_FLO is 21.4 GPM TOTAL FLOW is 28023148 GAL ASBPRS is 10.5 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.15 HP_PRS is 1.2 HP_AMP is 0.04 **GPM** TOTAL FLOW is 421437 GAL PSI LIMITS are L: -2.0 H: 20.0 PSI PSI AMP LIMITS are L: 0.00AMP H: AMP W1_AMP is 4.55 AMP LIMITS are L: 0,00 AMP H: 10.00 AMP W2 AMP is 4.45 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.77 $\mathbf{F}\mathbf{T}$ LIMITS are L: 8,00 \mathbf{FT} H: 28,00 \mathbf{FT} W2_LVL is 55.93 W1_PRS is 4.3 $\mathbf{F}\mathbf{T}$ LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} H: 100.0 H: 100.0 PSI LIMITS are L: 0.5 PSI PSI W2 PRS is 4.6 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 65.3 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/06/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ \overline{A} LM is OFF W2_ \overline{A} LM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 **GPM** TOTAL FLOW is 30778789 GAL TOTAL FLOW is W2 FLO is 21.5 GPM 28053957 GAL ASBPRS is 10.5 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 **GPM** TOTAL FLOW is 421508 GAL PSI LIMITS are L: -2.0 H: 20.0 PSI PSI HP AMP is 0.04 АMP LIMITS are L: 0.00AMP H: AMP W1_AMP is 4.53 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.40 W1_LVL is 34.75 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP LIMITS are \mathbf{FT} L: 8.00 H: 28.00 \mathbf{FT} \mathbf{FT} W2_LVL is 55.91 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 \mathbf{FT} ΓT W1 PRS is 4.3 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI W2_PRS is 4.5 H: 100.0 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 63.9 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

To.

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/07/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF

Discrete Outputs:

Analog Inputs:

W1 FLO is 23.9 **GPM** TOTAL FLOW is 30813168 GAL W2_FLO is 21.1 GPM TOTAL FLOW is 28084625 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 **GPM** TOTAL FLOW is 421583 GAL PSI LIMITS are H: 20.0 \mathbf{L} : -2.0 PSI PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.50 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.37 W1_LVL is 34.60 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 H: 28.00 $\mathbf{\Gamma}\mathbf{T}$ $\mathbf{F}\mathbf{T}$ W2_LVL is 55.87 \mathbf{FT} LIMITS are L: \mathbf{FT} H: 52.00 $\mathbf{F}\mathbf{T}$ W1_PRS is 4.3 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI W2_PRS is 4.6 INTEMP is 61.1 H: 100.0 PSI LIMITS are L: 0.5PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/08/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF WFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.6 **GPM** TOTAL FLOW is 30847546 GAL W2 FLO is 21.1 TOTAL FLOW is **GPM** 28115252 GAL ASBPRS is 10.6 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 2.34 HP_PRS is 8.2 TOTAL FLOW is 2.34 GPM 421649 GAL PSI LIMITS are -2.0H: 20.0 \mathbf{L} : PSI PSI HP_AMP is 4.96 LIMITS are AMP L: 0.00 AMP н: AMP W1_AMP is 4.49 AMP. LIMITS are L: 0.00 AMP H: 10.00 AMP W2_AMP is 4.36 W1_LVL is 34.47 LIMITS are AMP L: 0.00AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 55.87 \mathbf{FT} H: 52.00 H: 100.0 LIMITS are L: 9.00 \mathbf{FT} ΓT L: 0.5 W1_PRS is 4.3 PSI LIMITS are PSI PSI W2_PRS is 4.5 INTEMP is 63.1 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/09/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.8 GPM TOTAL FLOW is TOTAL FLOW is 30881922 GAL W2 FLO is 21.5 GPM 28145876 GAL ASBPRS is 10.5 LIMITS are L: IWC 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 HP_AMP is 0.05 **GPM** TOTAL FLOW is 421694 GAL LIMITS are PSI L: -2.0 H: 20.0 PSI PSI AMP LIMITS are \mathbf{L} : 0.00 AMP H: AMP W1 AMP is 4.62 AMP LIMITS are H: 10.00 0.00 \mathbf{L} : AMP AMP W2_AMP is 4.51 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.46 W2_LVL is 55.81 \mathbf{FT} L: 8.00 LIMITS are \mathbf{FT} H: 28.00 \mathbf{FT} \mathbf{FT} LIMITS are H: 52.00 L: 9.00 ΓT FT W1 PRS is 4.2 PSI H: 100.0 H: 100.0 0.5 LIMITS are L: PSI PSI W2 PRS is 4.5 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 66.5 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/10/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.8 GPM TOTAL FLOW is 30916273 GAL W2 FLO is 21.5 TOTAL FLOW is 28176499 GPM GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.2 HP_AMP is 0.05 TOTAL FLOW is GPM 421705 GAL PSI LIMITS are L: -2.0 H: 20.0 PSI PSI L: 0.00 LIMITS are AMP AMP H: AMP W1 AMP is 4.66 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP AMP $W2_AMP$ is 4.53LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.37 W2_LVL is 55.74 FΤ LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 FΤ \mathbf{FT} LIMITS are L; 9.00 \mathbf{FT} H: 52.00 FΤ H: 100.0 W1 PRS is 4.2 PSI LIMITS are L: 0.5 PSI PSI $W2_{PRS}$ is 4.4PSI LIMITS are L: 0.5 PSI H: 100.0 PSI INTEMP is 66.2 DEG LIMITS are L: 42.0 H: 130.0 DEG DEG

Analog Outputs:

To.

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/11/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.6 GPM TOTAL FLOW is 30950688 GAL TOTAL FLOW is W2_FLO is 21.4 **GPM** 28207143 GAL ASBPRS is 10.5 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 421725 GAL HP PRS is 1.3 PSI LIMITS are L: ~2.0 PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are L: 0.00 AMP **H**: AMP W1_AMP is 4.50 AMP LIMITS are 0.00 \mathbf{L} : H: 10.00 AMP AMP W2_AMP is 4.38 W1_LVL is 35.12 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 56.67 \mathbf{FT} LIMITS are L: 9,00 \mathbf{FT} H: 52.00 ΕT LIMITS are W1_PRS is 4.1 PSI L: 0.5 H: 100.0 H: 100.0 PSI PSI W2_PRS is 4.4 INTEMP is 65.2 PSI LIMITS are L: 0.5 PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/12/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 GPM TOTAL FLOW is 30985171 GAL TOTAL FLOW is W2 FLO is 21.0 28237831 GPM GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 **GPM** TOTAL FLOW is 421737 GAL PSI -2.0LIMITS are L: PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP H: AMP $W1_AMP$ is 4.55AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.44 W1_LVL is 34.90 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are $\mathbf{F}\mathbf{T}$ L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 \mathbf{FT} W2_LVL is 56.74 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52,00 \mathbf{FT} W1 PRS is 4.1 PSI LIMITS are H: 100.0 H: 100.0 0.5 \mathbf{L} : PSI PSI W2_PRS is 4.4 PSI LIMITS are L: 0.5PSI PSI INTEMP is 67.5 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/13/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.9 GPM TOTAL FLOW is 31019681 GAL W2_FLO is 21.3 TOTAL FLOW is GPM 28268523 GAL ASBPRS is 10.6 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 TOTAL FLOW is GPM 421804 GAL PSI LIMITS are \mathbf{L} : -2.0PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.53 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.40 W1_LVL is 34.84 AMP LIMITS are L: 0.00AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 ΓT W2 LVL is 56.48 \mathbf{FT} H: 52.00 H: 100.0 LIMITS are L: 9.00 \mathbf{FT} ΓT W1_PRS is 4.1 PSI LIMITS are L: 0,5 PSI PSI W2_PRS is 4.3 INTEMP is 64.4 PSI LIMITS are L: 0,5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/14/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVED is ON SMPCTR is OFF HP OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 **GPM** TOTAL FLOW is 31054157 GAL W2_FLO is 20.9 TOTAL FLOW is **GPM** 28299244 GAL ASBPRS is 10.9 IWC LIMITS are L: IWC H: 30.0 IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 421993 GAL HP_PRS is 1.2 PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.50 AMP LIMITS are H: 10.00 0.00 \mathbf{L} : AMP AMP W2_AMP is 4.39 W1_LVL is 35.07 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} W2_LVL is 56.31 LIMITS are \mathbf{FT} L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 \mathbf{FT} W1 PRS is 4.2 LIMITS are PSI L; 0.5 H: 100.0 PSI PSI W2 PRS is 4.4 INTEMP is 60.8 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI DEG LIMITS are L: 42.0 H: 130.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/15/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.2 GPM TOTAL FLOW is 31088576 GAL W2_FLO is 21.3 GPM TOTAL FLOW is 28329942 GAL ASBPRS is 10.8 IWC LIMITS are \mathbf{L} : IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 HP_AMP is 0.04 **GPM** TOTAL FLOW is 422146 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.55 AMP LIMITS are H: 10.00 L: 0.00 AMP AMP W2_AMP is 4,42 AMP LIMITS are L: 0.00 AMP**H**: 10.00 AMP W1_LVL is 34.82 W2_LVL is 56.15 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 FΤ LIMITS are \mathbf{FT} L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 FT W1_PRS is 4.2 PSI LIMITS are 0.5 \mathbf{L} : PSI H: 100.0 PSI LIMITS are $W2_{PRS}$ is 4.5 PSI \mathbf{L} : 0.5 PSI H: 100.0 PST INTEMP is 61.4 LIMITS are DEG H: 130.0 L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/16/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.7 GPM TOTAL FLOW is 31122994 GAL W2 FLO is 21.3 GPM TOTAL FLOW is 28360601 GAL ASBPRS is 10.6 L: IWC LIMITS are IWC H: 30.0 IWC HP_FLO is 0.00 422203 **GPM** TOTAL FLOW is GAL HP_PRS is 1.3 PSI LIMITS are L: ~2.0 PSI H: 20.0 PSI HP AMP is 0.05 AMP LIMITS are L: 0.00 AMP H: AMP W1 AMP is 4.61 AMP H: 10.00 LIMITS are L: 0.00 AMP AMP W2_AMP is 4.49 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.60 W2_LVL is 56.15 $\mathbf{F}\mathbf{T}$ H: 28.00 LIMITS are L: 8.00 \mathbf{FT} FΤ \mathbf{FT} LIMITS are L: 9.00 $\mathbf{\Gamma}\mathbf{T}$ H: 52.00 \mathbf{FT} W1_PRS is 4.2 PSI LIMITS are 0.5 L: PSI H: 100.0 PSI W2_PRS is 4.4 LIMITS are PSI \mathbf{L} : 0.5 H: 100.0 H: 130.0 PSI PSI INTEMP is 66.0 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/17/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 24.1 **GPM** TOTAL FLOW is TOTAL FLOW is 31157425 GAL W2 FLO is 20.9 GPM 28391269 GAL ASBPRS is 10.5 LIMITS are L: IWC 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 GPM TOTAL FLOW is 422224 GAL LIMITS are PSI L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.05 AMP LIMITS are L: 0.00 AMP H: AMP W1 AMP is 4.53 AMP LIMITS are H: 10.00 H: 10.00 0.00 \mathbf{L} : AMP AMP W2_AMP is 4.42 AMP LIMITS are L: 0.00 AMP AMP W1_LVL is 34.80 W2_LVL is 56.27 \mathbf{FT} LIMITS are L: 8,00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS are \mathbf{L} : 0.5 PSI H: 100.0 PSI W2_PRS is 4.4 PSI LIMITS are 0.5 \mathbf{L} : PSI H: 100.0 PSI INTEMP is 65.6 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/18/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 07:05:29 ON 04/01/2015 BY KEYPAD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.7 GPM TOTAL FLOW is 31191868 GAL W2_FLO is 21.2 GPM TOTAL FLOW is 28421929 GAL ASBPRS is 10.4 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 422247 GAL HP_PRS is 1.3 PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 L: 0.00 AMP LIMITS are AMP H: AMP W1_AMP is 4.46 AMP LIMITS are Н: 10.00 0.00 \mathbf{L} : AMP AMP W2_AMP is 4.36 AMP LIMITS are 0.00 L: AMP H: 10.00 A MP W1_LVL is 34.57 W2_LVL is 56.10 \mathbf{FT} H: 28.00 LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} LIMITS are \mathbf{FT} L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1 PSI LIMITS L: 0.5 are PSI H: 100.0 PSI W2_PRS is 4.3 LIMITS are PSI \mathbf{L} ; 0.5 H: 100.0 H: 130.0 PSI PSI INTEMP is 63.9 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/23/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ASP_LO is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 GPM TOTAL FLOW is 31233286 GAL W2 FLO is 22.1 GPM TOTAL FLOW is 28459294 GAL ASBPRS is 10.9 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 GPM TOTAL FLOW is 422362 GAL HP PRS is 1.2 LIMITS are PSI -2.0 $_{
m L}$: PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are \mathbf{L} : 0.00 AMP **H**: AMP W1_AMP is 4.54 AMP LIMITS are H: 10.00 \mathbf{L} : 0.00 AMP AMP W2_AMP is 4.45 W1_LVL is 34.76 AMP LIMITS are $\mathbf{L}:$ 0.00 AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 ΓT H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 56.15 \mathbf{FT} LIMITS are L: 9.00 $\mathbf{\Gamma}\mathbf{T}$ H: 52.00 FT W1 PRS is 4,4 PSI LIMITS are \mathbf{L} : 0.5 PSI H: 100.0 PSI W2_PRS is 4.7 INTEMP is 60.2 PSI LIMITS are \mathbf{L} : 0.5 H: 100.0 H: 130.0 PSI PST DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/24/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ASP_LO is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Imputs:

W1 FLO is 23.7 GPM TOTAL FLOW is 31267908 GAL W2_FLO is 22.2 GPM TOTAL FLOW is 28491245 GAL ASBPRS is 10.9 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 HP_AMP is 0.05 TOTAL FLOW is **GPM** 422514 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI LIMITS are AMP L: 0.00 AMP H: AMPW1_AMP is 4.57 AMP LIMITS are L: 0.00H: 10.00 AMP AMP W2_AMP is 4.50 AMP LIMITS are \mathbf{L} : 0.00 H: 10.00 AMP AMPW1_LVL is 34.64 W2_LVL is 56.00 L: 8.00 \mathbf{FT} LIMITS are $\mathbf{F}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} LIMITS are L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 $\mathbf{F}\mathbf{T}$ W1_PRS is 4.4 L: 0.5 PSI LIMITS are PSI H: 100.0 PSI W2 PRS is 4.7 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI INTEMP is 61.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/25/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRUN is OFF WFDRUN is OFF WFDRUN

Analog Inputs:

W1 FLO is 24.1 GPM TOTAL FLOW is 31302406 GAL W2_FLO is 22.0 GPM TOTAL FLOW is 28523206 GAL ASBPRS is 10.6 IWC LIMITS are \mathbf{L} : IWC H: 30.0 IWC HP_FLO is 0.00 GPM TOTAL FLOW is 422575 GAL HP_PRS is 1.2 PSI LIMITS are PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.62 AMP LIMITS are 0.00 L: AMP H: 10.00 AMP W2_AMP is 4.54 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.42 W2_LVL is 55.91 \mathbf{FT} LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ \mathbf{FT} LIMITS are L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 \mathbf{FT} W1 PRS is 4.4 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI W2_PRS is 4.8 LIMITS are PSI H: 100.0 H: 130.0 L: 0.5PSI PSI INTEMP is 65.0 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

				٠	
7		4	٠		
		1			
÷		×			
		٠,			

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SY SER NO 9605 : SETUP VER 1

SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/26/2015

: ROM 2.1996 : MODEL A2

System Status:

AUTO P35 :

LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON HP_OP is OFF ACFAIL is OFF W2_CTR is ON ASP_HH is OFF E_STOP is OFF ASBVFD is ON ASP_LO is OFF

SMPCTR is OFF FLRSMP is OFF

Discrete Outputs:

W1_GO is ON AIR_HH is OFF W2_ALM is OFF VFDRUN is OFF

W2_GO is ON ASMPHH is OFF ASBALM is OFF VFDRST is OFF ASB_GO is ON ASMPLL is OFF SMPALM is OFF HPMPGO is ON SMP_GO is OFF W1_ALM is OFF AIR_LL is OFF

Analog Inputs:

WI_FLO			GPM	TOTAL I	FLOW	is	31336824	GAL			
W2_FLO			GPM				28555087	GAL			
ASBPRS			IWC	LIMITS				IWC	н:	30.0	IWC
HP_FLO			GPM	TOTAL I				GAL	••••	30.0	1110
HP_PRS	is	1.2	PSI	LIMITS			-2.0	PSI	н.	20.0	PSI
HP_AMP			AMP	LIMITS			0.00	AMP			AMP
W1_AMP			AMP	LIMITS	are	$\overline{\mathbf{L}}$:	0.00	AMP		10.00	AMP
W2_AMP			AMP	LIMITS			0.00	AMP		10.00	AMP
W1_LVL			$\mathbf{F}\mathbf{T}$	LIMITS			8.00	FT		28.00	FT
W2_LVL			$\mathbf{\Gamma}\mathbf{T}$	LIMITS			9.00	FT	•	52.00	FT
W1_PRS			PSI	LIMITS		L:	0.5	PSI		100.0	PSI
W2_PRS			PSI	LIMITS		L:	0.5	PSI		100.0	PST
INTEMP	is	68.8	DEG	LIMITS		L:	42.0	DEG		130.0	DEG
										+0 4 1 A	

Analog Outputs:

ASBSPD

0.0 PCT MAN

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/27/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

 $W1_GO$ is ON $W2_GO$ is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1 ALM is OFF W2 ALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.6 **GPM** TOTAL FLOW is 31371200 GAL W2_FLO is 22.3 TOTAL FLOW is GPM 28586898 GAL ASBPRS is 10.3 IWC LIMITS are L: H: 30.0 IWC IWC HP FLO is 0.00 **GPM** TOTAL FLOW is 422585 GAL HP PRS is 1.3 PSI LIMITS are L: ~2.0 H: 20.0 PSI PSI HP_AMP is 0.04 AMP LIMITS are \mathbf{L} : AMP **H**: AMP W1_AMP is 4.47 AMP LIMITS are 0.00 L: H: 10.00 AMP AMP W2_AMP is 4.40 W1_LVL is 34.11 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP LIMITS are $\mathbf{F}\mathbf{T}$ L: B,00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 \mathbf{FT} W2 LVL is 55.81 \mathbf{FT} LIMITS are L: 9.00 ΓT H: 52.00 $\mathbf{F}\mathbf{T}$ LIMITS are W1_PRS is 4.2 PSI L: 0.5 H: 100.0 H: 100.0 PSI PSI W2 PRS is 4.5 INTEMP is 67.2 LIMITS are PSI L: 0.5 PSI PSI LIMITS are DEG L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/28/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.8 GPM TOTAL FLOW is 31405541 GAL W2_FLO is 22.0 TOTAL FLOW is GPM 28618687 GAL ASBPRS is 10.2 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 422596 GAL HP PRS is 1.3 PSI LIMITS are H: 20.0 \mathbf{L} : -2.0PSI PSI HP AMP is 0.04 AMP LIMITS are L: AMP H: AMP W1_AMP is 4.46 AMP LIMITS are 0.00 L: H: 10.00 AMP AMP AMP is 4.40 AMP LIMITS are L: 0.00 AMP **H**: 10.00 AMP W1_LVL is 34.08 LIMITS are \mathbf{FT} L: 8.00 FΤ H: 28.00 \mathbf{FT} W2_LVL is 55.77 $\mathbf{F}\mathbf{T}$ LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.2 LIMITS are PSI 0.5H: 100.0 H: 100.0 L: PSI PSI W2_PRS is 4.5 INTEMP is 66.2 PSI LIMITS are L: 0.5PSI PSI DEG LIMITS are L: 42.0 H: 130.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/30/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.7 **GPM** TOTAL FLOW is 31474040 GAL W2_FLO is 21.5 GPM TOTAL FLOW is 28682253 GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP FLO is 0.00 TOTAL FLOW is **GPM** 422666 GAL HP PRS is 1.3 PSI LIMITS are PSI H: 20.0 L: -2.0PSI HP_AMP is 0.04 LIMITS are AMP 0.00 L: AMP H: AMP W1_AMP is 4.58 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.51 W1_LVL is 33.94 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 $\mathbf{F}\mathbf{T}$ H: 28.00 \mathbf{FT} W2 LVL is 55.60 \mathbf{FT} LIMITS are L: 9.00 $\mathbf{\Gamma}\mathbf{T}$ H: 52.00 \mathbf{FT} W1 PRS is 4.1 PSI LIMITS are L: 0.5 H: 100.0 PSI PSI W2_PRS is 4.4 INTEMP is 66.9 0.5 PSI LIMITS are L: PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/02/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF ASMPHH is OFF AIR HH is OFF W1 ALM is OFF ASMPLL is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF VFDRUN is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.7 **GPM** TOTAL FLOW is 31576648 GAL W2 FLO is 22.1 **GPM** TOTAL FLOW is 28777905 GAL ASBPRS is 10.5 IWC LIMITS are L: IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 GPM TOTAL FLOW is 422818 GAL LIMITS are PSI L: -2.0 PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 AMP H: AMP $W1_AMP$ is 4.51 AMP LIMITS are 0.00 \mathbf{L} : AMP 10.00 H: AMP W2_AMP is 4.45 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP W1 _LVL is 34.13 \mathbf{FT} LIMITS are L: 8.00 FΤ H: 28.00 \mathbf{FT} W2_LVL is 55.81 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.1 PSI LIMITS are H: 100.0 H: 100.0 L: 0.5PSI PSI W2_PRS is 4.3 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 65.3 DEG H: 130.0 LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/03/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 23.5 **GPM** TOTAL FLOW is 31610793 GAL W2_FLO is 22.2 TOTAL FLOW is **GPM** 28809855 GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 **GPM** TOTAL FLOW is 422892 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are \mathbf{L} : AMP H: AMP W1_AMP is 4.52 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP W2_AMP is 4.47 W1_LVL is 34.14 $\mathbf{A}\mathbf{M}\mathbf{P}$ LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are \mathbf{FT} L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 FΤ W2_LVL is 55.77 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 \mathbf{FT} $\mathbf{F}\mathbf{T}$ W1_PRS is 4.1 PSI LIMITS are 0.5 H: 100.0 H: 100.0 \mathbf{L} : PSI PSI W2 PRS is 4.2 INTEMP is 63.5 PSI LIMITS are L: 0.5PSI PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/04/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.9 **GPM** TOTAL FLOW is 31644877 GAL W2 FLO is 22.1 TOTAL FLOW is 28841724 **GPM** GAL ASBPRS is 10.7 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 HP_PRS is 1.3 422965 GPM TOTAL FLOW is GAL PSI LIMITS are -2.0 \mathbf{L} : PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: AMP **H**: AMP W1 AMP is 4.50 AMP LIMITS are 0.00 $_{
m L}$: H: 10.00 AMP AMP W2_AMP is 4.44 W1_LVL is 34.04 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 55.70 \mathbf{FT} LIMITS are 9.00 H: 52.00 \mathbf{L} : $\mathbf{F}\mathbf{T}$ $\mathbf{F}\mathbf{T}$ W1 PRS is 4.1 PSI LIMITS are 0.5 L:PSI H: 100.0 PSI W2_PRS is 4.3 H: 100.0 PSI LIMITS are L: 0.5 PSI PSI INTEMP is 61.8 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SER NO 9605 ; SETUP VER 1

SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/05/2015

: ROM 2.1996 : MODEL A2

System Status:

AUTO P35 :

LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1 CTR is ON HP_OP is ON

W2_CTR is ON ASP HH is OFF ASBVFD is ON ASP_LO is OFF

SMPCTR is OFF

ACFAIL is OFF

E STOP is OFF

FLRSMP is OFF

Discrete Outputs:

W1 GO is ON AIR HH is OFF W2_ALM is OFF

VFDRUN is OFF

W2_GO is ON ASMPHH is OFF ASBALM is OFF VFDRST is OFF

ASB GO is ON ASMPLL is OFF SMPALM is OFF HPMPGO is ON

SMP_GO is OFF W1_ALM is OFF AIR LL is OFF

Analog Inputs:

W2_FLO is 22.3 ASBPRS is 10.3 HP_FLO is 2.32 HP_PRS is 8.3 HP_AMP is 4.98 W1_AMP is 4.53

W1_FLO is 23.6

W2_AMP is 4.47 W1_LVL is 33.83

AMP

AMP

 $\mathbf{F}\mathbf{T}$

GPM TOTAL FLOW is TOTAL FLOW is GPM LIMITS are IWC L: 5.0 **GPM** TOTAL FLOW is PSI LIMITS are L: -2.0AMP LIMITS are

31678962 GAL 28873507 GAL IWC 422993 GAL PSI

AMP

AMP

 \mathbf{FT}

 $\mathbf{F}\mathbf{T}$

H: 30.0 H: 20.0

H: 28.00

IWC

LIMITS are LIMITS are

LIMITS are

L: 0.00 L: 0.00

L: 8.00

AMP H: H: 10.00 H: 10.00

AMP AMP AMP \mathbf{FT}

PSI

W2_LVL is 55.60 W1_PRS is 4.1 W2 PRS is 4.3 INTEMP is 67.0

 ΓT LIMITS are L: 9.00 PSI L: 0.5LIMITS are PSI LIMITS are L: 0.5DEG LIMITS are L: 42.0

H: 52.00 PSI H: 100.0 PSI H: 100.0 DEG H: 130.0

 \mathbf{FT} PSI PSI DEG

Analog Outputs:

ASBSPD

0.0 PCT

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/07/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 23.8 **GPM** TOTAL FLOW is 31746895 GAL W2_FLO is 22.3 GPM TOTAL FLOW is 28937034 GAL ASBPRS is 10.7 LIMITS are IWC ${f L}$: IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.2 HP_AMP is 0.04 **GPM** TOTAL FLOW is 423112 GALPSI LIMITS are H: 20.0 PSI PSI AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.60 AMP LIMITS are 0.00 \mathbf{L} : AMP H: 10.00 AMP W2_AMP is 4.53 AMP LIMITS are H: 10.00 H: 28.00 L: 0.00AMP AMP W1_LVL is 33.88 W2_LVL is 55.62 LIMITS are \mathbf{FT} L: 8.00 \mathbf{FT} FΤ LIMITS are \mathbf{FT} L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 \mathbf{FT} W1_PRS is 4.2 PSI LIMITS are L: 0.5 H: 100.0 PSI PSI W2 PRS is 4.4 PSI LIMITS are H: 100.0 H: 130.0 L: 0.5 PSI PSI INTEMP is 61.7 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

ProControl Series II+ Fax Report EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SER NO 9605 : SETUP VER 1

SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/08/2015

: ROM 2.1996 : MODEL A2

System Status:

AUTO P35:

LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON HP OP is OFF ACFAIL is OFF W2_CTR is ON ASP_HH is OFF E_STOP is OFF

ASBVFD is ON ASP_LO is OFF SMPCTR is OFF FLRSMP is OFF

Discrete Outputs:

W1 GO is ON AIR HH is OFF W2_ALM is OFF VFDRUN is OFF

W2 GO is ON ASMPHH is OFF ASBALM is OFF VFDRST is OFF

GPM

GPM

IWC

GPM

PSI

AMP

AMP

DEG

ASB_GO is ON ASMPLL is OFF SMPALM is OFF HPMPGO is ON

31780821

28968764

423148

-2.0

9.00

L: 5.0

L: 0.00

L: 42.0

SMP_GO is OFF W1_ALM is OFF AIR_LL is OFF

Analog Inputs:

W1_FLO is 23.5 W2_FLO is 22.0 ASBPRS is 10.2 HP_FLO is 0.00 HP_PRS is 1.3 HP_AMP is 0.04 W1_AMP is 4.49

W2 PRS is 4.4

INTEMP is 65.6

W2_AMP is 4.43 W1_LVL is 33.50 W2_LVL is 55.53 W1_PRS is 4.1

LIMITS are L: 0.00 AMP LIMITS are L: 0.00 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} LIMITS are \mathbf{L} : PSI LIMITS are L: 0.5 PSI LIMITS are L: 0.5

LIMITS are

TOTAL FLOW is

TOTAL FLOW is

TOTAL FLOW is

LIMITS are

LIMITS are

LIMITS are

AMP AMP AMP $\mathbf{\Gamma}\mathbf{T}$ \mathbf{FT} PSI

GAL

GAL

IWC

GAL

PSI

PSI

DEG

H: 10.00 H: 28.00 H: 52.00 H : 100.0 H: 100.0 H: 130.0

10.00

H: 30.0

H: 20.0

H:

H:

 \mathbf{FT} PSI PSI DEG

IWC

PSI

AMP

AMP

AMP

 \mathbf{FT}

Analog Outputs:

ASBSPD

0.0 PCT

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/09/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1 CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP OP is OFF ACFAIL is OFF ASP HH is OFF ASP_LO is OFF FLRSMP is OFF E_STOP is OFF

Discrete Outputs:

is ON W2_GO is ON ASMPHH is OFF ASB GO is ON SMP GO is OFF AIR HH is OFF ASMPLL is OFF SMPALM is OFF HPMPGO is ON W1 ALM is OFF W2_ALH is OFF ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 23.7 GPM TOTAL FLOW is 31814782 W2 FLO is 21.6 GPM TOTAL FLOW is 29000401 GAL ASBPRS is 10.2 IWC LIMITS are ${f L}$; IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 TOTAL FLOW is **GPM** 423180 GAL PSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00AMP H: AMP W1_AMP is 4.52 AMP LIMITS are \mathbf{L} : 0.00 AMP H: 10.00 AMP W2_AMP is 4.45 AMP LIMITS are 0.00 \mathbf{L} : H: 10.00 AMP AMP W1_LVL is 34.04 W2_LVL is 56.25 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} LIMITS are $\mathbf{F}\mathbf{T}$ L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 3.9 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI W2_PRS is 4.2 LIMITS are PSI L: 0.5 H: 100.0 PSI PSI INTEMP is 65.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/10/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 23:37:57 ON 05/18/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ASP_LO is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF WFDRUN is OFF WFDRUN

Analog Inputs:

W1_FLO is 24.1 GPH TOTAL FLOW is 31848845 GAL W2 FLO is 22.1 GPM TOTAL FLOW is 29031981 GAL ASBPRS is 10.4 IWC LIMITS are \mathbf{L} : 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 TOTAL FLOW is **GPM** 423235 GAL HP_PRS is 1.3 PSI LIMITS are HP_AMP is 0.04 PSI H: 20.0 PSI LIMITS are AMP L: 0.00 AMP H: AMP W1_AMP is 4.49 AMP LIMITS are \mathbf{L} : 0.00 AMP H: 10.00 **AMP** W2_AMP is 4.40 LIMITS are AMP \mathbf{L} : 0.00 **AMP** H: 10.00 AMP W1_LVL is 34.51 W2_LVL is 56.53 LIMITS are \mathbf{FT} L: 8.00 \mathbf{r} **H**: 28.00 $\mathbf{F}\mathbf{T}$ LIMITS are \mathbf{FT} L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.0 PSI LIMITS are L: 0,5 PSI H: 100.0 PSI W2_PRS is 4.2 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI INTEMP is 65.0 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/26/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 19:31:38 ON 06/12/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.1 GРМ TOTAL FLOW is 32074290 W2 FLO is 22.1 GРИ TOTAL FLOW is 29231726 GAL ASBPRS is 10.4 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 **GPM** TOTAL FLOW is 423520 GALPSI LIMITS are L: -2.0 PSI H: 20.0 PSI HP_AMP is 0.04 LIMITS are AMP L: 0.00 AMP AMP W1 AMP is 4.63 AMP LIMITS are \mathbf{L} : 0.00 AMP H: 10.00 AМР W2_AMP is 4.47 AMP LIMITS are \mathbf{L} : 0.00 H: 10.00 H: 28.00 AMP AMP W1_LVL is 33.82 W2_LVL is 56.04 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} \mathbf{FT} LIMITS are \mathbf{FT} L: 9.00 $\mathbf{F}\mathbf{T}$ H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI L: 0.5 LIMITS are PSI H: 100.0 PSI W2_PRS is 4.4 LIMITS are PSI H: 100.0 H: 130.0 L: 0.5 PSI PSI INTEMP is 63.6 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

Fronc

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/27/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 19:31:38 ON 06/12/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1_GO is ON W2_GO is ON ASB_GO is ON SMP_GO is OFF
AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF
W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF
VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.7 **GPM** TOTAL FLOW is 32111068 GAL W2 FLO is 22.2 GPM TOTAL FLOW is 2926345B GAL ASBPRS is 10.5 LIMITS are L: 5.0 IWC IWC H: 30.0 IWC HP_FLO is 0.00 HP_PRS is 1.3 GPM TOTAL FLOW is 423663 GAL LIMITS are L: -2.0 PSI PSI H: 20.0 PSI HP AMP is 0.05 AMP LIMITS are L: 0.00 AMP H: AMP W1_AMP is 4.72 AMP H: 10.00 H: 10.00 LIMITS are \mathbf{L} : 0.00 AMP AMP W2_AMP is 4.55 AMP LIMITS are L: 0.00 AMP AMP W1_LVL is 33.80 W2_LVL is 55.93 $\mathbf{F}\mathbf{T}$ LIMITS are L: 8.00 $\mathbf{\Gamma}\mathbf{T}$ H: 28.00 ΓT \mathbf{FT} LIMITS are L: 9.00 ΓT H: 52.00 $\mathbf{F}\mathbf{T}$ W1 PRS is 4,2 PSI H: 100.0 H: 100.0 LIMITS are L; 0.5 PSI PSI W2_PRS is 4.4 LIMITS are PSI L: 0.5 PSI PSI INTEMP is 61.4 H: 130.0 DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

ProControl Series II+ Fax Report

EOS Research Ltd.

 $i\sigma$

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/28/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL Ā2

System Status;

AUTO P35: LAST SHUTDOWN @ 19:31:38 ON 06/12/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON HP_OP is OFF W2_CTR is ON ASBVFD is ON SMPCTR is OFF FLRSMP is OFF ASP_HH is OFF ASP LO is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1 GO is ON W2_GO is ON ASB GO is ON SMP_GO is OFF AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF AIR_LL is OFF W2_ALH is OFF ASBALM is OFF SMPALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 25.7 **GPM** TOTAL FLOW is 32147887 GAL W2_FLO is 22.0 TOTAL FLOW is **GPM** 29295199 GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0 IWC H: 30.0 IWC HP_FLO is 0.00 TOTAL FLOW is **GPM** 423938 GAL HP PRS is 1.3 PSI LIMITS are \mathbf{L} : -2.0PSI H: 20.0 PSI HP AMP is 0.04 LIMITS are AMP 0.00 \mathbf{L} : AMP **H**: AMP W1_AMP is 4.71 W2_AMP is 4.56 AMP LIMITS are L: 0.00 H: 10.00 AMP AMP AMP LIMITS are L: 0.00H: 10.00 AMP AMP W1_LVL is 33.85 $\mathbf{F}\mathbf{T}$ LIMITS are L: 8.00 \mathbf{FT} H: 28.00 FΤ W2 LVL is 56.36 \mathbf{FT} LIMITS are L: 9.00 ΓT H: 52.00 $\mathbf{F}\mathbf{T}$ W1_PRS is 4.2 W2_PRS is 4.4 PSI LIMITS are L: 0.5 H: 100.0 H: 100.0 PSI PSI PSI LIMITS are L: 0.5PSI PSI INTEMP is 60.2 DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ProControl Series 11+ Fax Report

EOS Research Ltd.

To:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/29/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 19:31:38 ON 06/12/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON HP_OP is OFF ACFAIL is OFF W2_CTR is ON ASBVFD is ON SMPCTR is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF E STOP is OFF

Discrete Outputs:

W1 GO W2 GO is ON ASB GO is ON SMP_GO is OFF W1_ALM is OFF AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W2_ALM is OFF VFDRUN is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 25.5 **GPM** TOTAL FLOW is 32184851 GAL W2_FLO is 22.3 **GPM** TOTAL FLOW is 29327115 GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0 H: 30.0 IWC IWC HP_FLO is 0.00 TOTAL FLOW is **GPM** 424192 GAL HP PRS is 1.4 PSI LIMITS are -2.0 \mathbf{L} : PSI H: 20.0 PSI HP_AMP is 0.04 AMP LIMITS are 0.00 L: AMP **H**: AMP W1_AMP is 4.64 W2_AMP is 4.48 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP LIMITS are AMP L: 0.00 AMP H: 10.00 AMP W1_LVL is 34.52 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 $\mathbf{F}\mathbf{T}$ W2_LVL is 56.91 \mathbf{FT} LIMITS are 9.00 H: 52.00 \mathbf{L} : \mathbf{FT} \mathbf{FT} W1_PRS is 4.1 W2_PRS is 4.3 INTEMP is 60.9 PSI LIMITS are L: 0.5 PSI H: 100.0 PSI PSI LIMITS are L: 0.5PSI H: 100.0 PSI DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

	Ì			٠	
٠.			ì		
				7	

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/30/2015 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 19:31:38 ON 06/12/2015 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

W1 GO is ON W2_GO is ON SMP_GO is OFF ASB_GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF W1 ALM is OFF W2 ALM is OFF ASBALM is OFF SMPALM is OFF AIR_LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.4 **GPM** TOTAL FLOW is 32221714 GAL W2_FLO is 22.3 TOTAL FLOW is **GPM** 29359040 GAL ASBPRS is 10.3 IWC LIMITS are L: 5.0H: 30.0 IWC IWC HP_FLO is 0.00 **GPM** TOTAL FLOW is 424387 GAL HP_PRS is 1.3 LIMITS are PSI -2.0 H: 20.0 PSI PSI HP_AMP is 0.04 W1_AMP is 4.60 AMP LIMITS are L: 0.00AMP AMP H: AMP L: 0.00 LIMITS are AMP H: 10.00 AMP W2 AMP is 4.46 W1_LVL is 34.40 AMP LIMITS are L: 0.00AMPH: 10.00 AMP \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} H: 28.00 \mathbf{FT} W2_LVL is 56.65 \mathbf{FT} LIMITS are L: 9.00 \mathbf{FT} H: 52.00 \mathbf{FT} W1_PRS is 4.0 LIMITS are L: 0.5 PSI PSI H: 100.0 PSI W2 PRS is 4.2 PSI LIMITS are L: 0.5 H: 100.0 PSI PSI INTEMP is 61.4 DEG LIMITS are L: 42.0 **DEG** H: 130.0 DEG

Analog Outputs:

APPENDIX B

O&M Checklists

Date	4/1/2015	
Inspector	J.Wyckoff	
Time	7:00	

Treatment System Operation		Alarms		
•		A/C Fail (Y/N)	No	
System On (Y/N) Yes RW-1 On (Y/N) Yes	_		No	
` ,	-	RW-1 (Y/N)	No	
RW-2 On (Y/N) Yes	_	RW-2 (Y/N)		
Blower On (Y/N) Yes	-	Blower Pressure (Y/N)	No No	
Sump Pump On (Y/N) No	_	Sump Level (Y/N)	<u>No</u>	
Recovery Wells	RW-1	RW-2		
Flow Rate (GPM)	NR	NR		
Total Flow (Gallons)	NR	NR	_	
Water Level (Feet Above Probe)	NR	NR	_	
Probe Depth (Feet BTOC)	NR	NR	_	
Aim Chuimman				
Air Stripper Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping Ok	(2 (V/NI)	Yes
System Pressure (inches water)	NR	Water Leaks (Y/N)	X? (1/IN)	
Influent/Effluent Piping OK? (Y/N)		Water Temperature (°F)		Yes
initident/Efficient Piping OK? (1/N)	<u>Yes</u>	water remperature (*F)		NR
Heat Exchanger				
Heat (On/Off)	On	Building Temperature (°F	-)	NR
Heat Exchanger Flow (GPM)	NR	Heat Exchanger Pressure	e (PSI)	NR
General Building/Site	V	O're 't Decelor Objector	1 () (() 1)	NID
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checker	, ,	NR_
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y	,	<u>Yes</u>
Monitoring Wells OK? (Y/N)	NR	Samples Collected (Y/N)		<u>No</u>
Notes:				
System operating but not sending fax no	tifications. Rel	poot PLC to restore fax rep	orts.	
No additional O&M performed today				
NR - Not recorded				
				_

Date	4/21/2015	
Inspector	A. Goodrich	
Time	NR	

Treatment System Operation Alarms System On (Y/N) Yes A/C Fail (Y/N) No RW-1 On (Y/N) Yes RW-1 (Y/N) No RW-2 On (Y/N) Yes RW-2 (Y/N) No Blower On (Y/N) Yes Blower Pressure (Y/N) No	
RW-1 On (Y/N) Yes RW-1 (Y/N) No RW-2 On (Y/N) Yes RW-2 (Y/N) No Blower On (Y/N) Yes Blower Pressure (Y/N) No	
RW-2 On (Y/N) Yes RW-2 (Y/N) No Blower On (Y/N) Yes Blower Pressure (Y/N) No	
Blower On (Y/N) Yes Blower Pressure (Y/N) No	
· /	
Sump Pump On (Y/N) No Sump Level (Y/N) No	
Recovery Wells RW-1 RW-2	
Flow Rate (GPM) 23.9 21.6	
Total Flow (Gallons) 30260887 27588370	
Water Level (Feet Above Probe) 35.49 57.46	
Probe Depth (Feet BTOC) 40.00 65.00	
Air Stripper	
	es
	es
Influent/Effluent Piping OK? (Y/N) Yes Water Temperature (°F) 5	0
Heat Exchanger	
	54
Heat Exchanger Flow (GPM) 2.4 Heat Exchanger Pressure (PSI) 8	.3
General Building/Site	
<u></u>	IR
	es
Monitoring Wells OK? (Y/N) Yes Samples Collected (Y/N) Y	es
Natan	
Notes: Annual groundwater sampling today - place PDBs	
Armual groundwater sampling today - place PDBs	
NR - Not recorded	

Date	5/8/2015
Inspector	A. Goodrich
Time	NR

Treatment System Operation		Alarma		
Treatment System Operation		Alarms	No	
System On (Y/N) Yes RW-1 On (Y/N) Yes	-	A/C Fail (Y/N)	No No	
, ,	<u>-</u>	RW-1 (Y/N)		
RW-2 On (Y/N) Yes	-	RW-2 (Y/N) Blower Pressure (Y/N)	No No	
Blower On (Y/N) Yes	-	, ,	No No	
Sump Pump On (Y/N) No	-	Sump Level (Y/N)	INO	
Recovery Wells	RW-1	RW-2		
Flow Rate (GPM)	23.6	21.2		
Total Flow (Gallons)	30847546	28115252		
Water Level (Feet Above Probe)	34.47	55.87	•	
Probe Depth (Feet BTOC)	40.00	65.00	•	
Air Stripper				
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK	? (Y/N)	Yes
System Pressure (inches water)	10.1	Water Leaks (Y/N)	,	Yes
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)		50
		1 ()		
Heat Exchanger				
Heat (On/Off)	<u>On</u>	Building Temperature (°F)		63
Heat Exchanger Flow (GPM)	2.3	Heat Exchanger Pressure	(PSI)	8.2
General Building/Site				
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked	(Y/N)	NR
Grass Mowed (Y/N)	NA	Outfall Condition OK? (Y/I	N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)		Yes
Notes:				
Collect PDB samples today				
NR - Not recorded				
NK - Not recorded				
				_
				_

Date	6/22/2015	
Inspector	J. Wyckoff	
Time	NR	

Treatment System Operation		Alarms	
System On (Y/N) Yes		A/C Fail (Y/N) Yes	(see below)
RW-1 On (Y/N) Yes		RW-1 (Y/N) No	_` ′
RW-2 On (Y/N) Yes		RW-2 (Y/N) No	_
Blower On (Y/N) Yes		Blower Pressure (Y/N) No	_
Sump Pump On (Y/N) No		Sump Level (Y/N) No	_
			_
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	25.3	21.8	
Total Flow (Gallons)	NR	NR	
Water Level (Feet Above Probe)	34.33	56.34	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stringer			
Air Stripper Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.1	Water Leaks (Y/N)	Yes
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	
initident/Entident Piping OK? (17/N)	res	water remperature (F)	50
Heat Exchanger			
Heat (On/Off)	Off	Building Temperature (°F)	74
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.3
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			
System off due to AC failure.			
Restarted system at 11:45.			
Trim grass.			
NR - Not recorded			

APPENDIX C Analytical Reporting Forms

May 21, 2015

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: South Ostellic, NY.

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 15E0319

Enclosed are results of analyses for samples received by the laboratory on May 8, 2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	6
15E0319-01	6
15E0319-02	7
15E0319-03	8
15E0319-04	9
15E0319-05	10
15E0319-06	11
15E0319-07	12
15E0319-08	13
15E0319-09	14
15E0319-10	15
15E0319-11	16
15E0319-12	17
15E0319-13	18
15E0319-14	19
15E0319-15	20
15E0319-16	21
15E0319-17	22
15E0319-18	23
15E0319-19	24
15E0319-20	25
15E0319-21	26
15E0319-22	27
15E0319-23	28

Table of Contents (continued)

15E0319-24	29
15E0319-25	30
15E0319-26	31
15E0319-27	32
Sample Preparation Information	33
QC Data	34
Volatile Organic Compounds by GC/MS	34
B121894	34
B121895	35
Flag/Qualifier Summary	39
Certifications	40
Chain of Custody/Sample Receipt	42

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

ATTN: Jeremy Wyckoff

PURCHASE ORDER NUMBER:

REPORT DATE: 5/21/2015

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 15E0319

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: South Ostellic, NY.

RW-1 15E0319-01 Ground Water EPA 624 RW-2 15E0319-02 Ground Water EPA 624 EFF46HZ 15E0319-03 Ground Water EPA 624 Trip Blank 15E0319-04 Trip Blank Water EPA 624 Field Blank 15E0319-05 Ground Water EPA 624 TW-3D 15E0319-06 Ground Water EPA 624 TW-3S 15E0319-07 Ground Water EPA 624 TW-31 15E0319-08 Ground Water EPA 624 TW-3S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-14D 15E0319-11 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-13 Ground Water EPA 624 TW-15 15E0319-15 Ground Water EPA 624 TW-78 15E0319-15 Ground Water EPA 624 TW-79 15E0319-12 Ground Water EPA 624 TW-90	FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
EFF46HZ 15E0319-03 Ground Water EPA 624 Trip Blank 15E0319-04 Trip Blank Water EPA 624 Field Blank 15E0319-05 Ground Water EPA 624 TW-3D 15E0319-06 Ground Water EPA 624 TW-3S 15E0319-09 Ground Water EPA 624 TW-3I 15E0319-09 Ground Water EPA 624 MW-5S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-14D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-13 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-17S 15E0319-16 Ground Water EPA 624 TW-70 15E0319-17 Ground Water EPA 624 TW-90 15E0319-20 Ground Water EPA 624	RW-1	15E0319-01	Ground Water		EPA 624	
Trip Blank 15E0319-04 Trip Blank Water EPA 624 Field Blank 15E0319-05 Ground Water EPA 624 TW-3D 15E0319-06 Ground Water EPA 624 TW-3S 15E0319-07 Ground Water EPA 624 TW-31 15E0319-09 Ground Water EPA 624 TW-5S 15E0319-10 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-14D 15E0319-11 Ground Water EPA 624 TW-14B 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-78 15E0319-16 Ground Water EPA 624 TW-79 15E0319-17 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-6 15E0319-22 Ground Water EPA 624 TW-6	RW-2	15E0319-02	Ground Water		EPA 624	
Field Blank 15E0319-05 Ground Water EPA 624 TW-3D 15E0319-06 Ground Water EPA 624 TW-3S 15E0319-07 Ground Water EPA 624 TW-3I 15E0319-08 Ground Water EPA 624 TW-5S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-5D 15E0319-11 Ground Water EPA 624 MW-4D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-78 15E0319-17 Ground Water EPA 624 TW-7D 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9D 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-20 Ground Water EPA 624 TW-6S 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-21 Ground Water EPA 624 TW-6D 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-25 Ground Water EPA 624 TW-121 15E0319-25 Ground Water EPA 624	EFF46HZ	15E0319-03	Ground Water		EPA 624	
TW-3D 15E0319-06 Ground Water EPA 624 TW-3S 15E0319-07 Ground Water EPA 624 TW-3I 15E0319-08 Ground Water EPA 624 TW-5S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-5D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14 15E0319-15 Ground Water EPA 624 TW-71 15E0319-16 Ground Water EPA 624 TW-72 15E0319-17 Ground Water EPA 624 TW-70 15E0319-19 Ground Water EPA 624 TW-9D 15E0319-20 Ground Water EPA 624 TW-68 15E0319-21 Ground Water EPA 624 TW-61 15E0319-22 Ground Water EPA 624 TW-61 <	Trip Blank	15E0319-04	Trip Blank Water		EPA 624	
TW-3S 15E0319-07 Ground Water EPA 624 TW-3I 15E0319-08 Ground Water EPA 624 TW-5S 15E0319-10 Ground Water EPA 624 MW-51 15E0319-11 Ground Water EPA 624 MW-5D 15E0319-12 Ground Water EPA 624 MW-14ID 15E0319-13 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-9I 15E0319-19 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D	Field Blank	15E0319-05	Ground Water		EPA 624	
TW-31 15E0319-08 Ground Water EPA 624 TW-5S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-5D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-15 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-78 15E0319-17 Ground Water EPA 624 TW-71 15E0319-18 Ground Water EPA 624 TW-91 15E0319-20 Ground Water EPA 624 TW-90 15E0319-21 Ground Water EPA 624 TW-68 15E0319-22 Ground Water EPA 624 TW-60 15E0319-24 Ground Water EPA 624 TW-121 15E0319-25 Ground Water EPA 624 TW-121	TW-3D	15E0319-06	Ground Water		EPA 624	
TW-5S 15E0319-09 Ground Water EPA 624 MW-51 15E0319-10 Ground Water EPA 624 MW-5D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-9I 15E0319-19 Ground Water EPA 624 TW-9D 15E0319-20 Ground Water EPA 624 TW-6S 15E0319-23 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-25 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12I <t< td=""><td>TW-3S</td><td>15E0319-07</td><td>Ground Water</td><td></td><td>EPA 624</td><td></td></t<>	TW-3S	15E0319-07	Ground Water		EPA 624	
MW-51 15E0319-10 Ground Water EPA 624 MW-5D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-78 15E0319-17 Ground Water EPA 624 TW-71 15E0319-19 Ground Water EPA 624 TW-90 15E0319-19 Ground Water EPA 624 TW-91 15E0319-21 Ground Water EPA 624 TW-68 15E0319-22 Ground Water EPA 624 TW-61 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-121 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-3I	15E0319-08	Ground Water		EPA 624	
MW-5D 15E0319-11 Ground Water EPA 624 MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-9D 15E0319-29 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-5S	15E0319-09	Ground Water		EPA 624	
MW-14D 15E0319-12 Ground Water EPA 624 TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-9D 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	MW-51	15E0319-10	Ground Water		EPA 624	
TW-14I 15E0319-13 Ground Water EPA 624 TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	MW-5D	15E0319-11	Ground Water		EPA 624	
TW-14S 15E0319-14 Ground Water EPA 624 TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	MW-14D	15E0319-12	Ground Water		EPA 624	
TW-14I 15E0319-15 Ground Water EPA 624 TW-15 15E0319-16 Ground Water EPA 624 TW-78 15E0319-17 Ground Water EPA 624 TW-71 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-14I	15E0319-13	Ground Water		EPA 624	
TW-15 15E0319-16 Ground Water EPA 624 TW-78 15E0319-17 Ground Water EPA 624 TW-71 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-14S	15E0319-14	Ground Water		EPA 624	
TW-7S 15E0319-17 Ground Water EPA 624 TW-7I 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-14I	15E0319-15	Ground Water		EPA 624	
TW-7I 15E0319-18 Ground Water EPA 624 TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-15	15E0319-16	Ground Water		EPA 624	
TW-7D 15E0319-19 Ground Water EPA 624 TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-7S	15E0319-17	Ground Water		EPA 624	
TW-9I 15E0319-20 Ground Water EPA 624 TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-7I	15E0319-18	Ground Water		EPA 624	
TW-9D 15E0319-21 Ground Water EPA 624 TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-7D	15E0319-19	Ground Water		EPA 624	
TW-6S 15E0319-22 Ground Water EPA 624 TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-9I	15E0319-20	Ground Water		EPA 624	
TW-6I 15E0319-23 Ground Water EPA 624 TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-9D	15E0319-21	Ground Water		EPA 624	
TW-6D 15E0319-24 Ground Water EPA 624 TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-6S	15E0319-22	Ground Water		EPA 624	
TW-12I 15E0319-25 Ground Water EPA 624 TW-12D 15E0319-26 Ground Water EPA 624	TW-6I	15E0319-23	Ground Water		EPA 624	
TW-12D 15E0319-26 Ground Water EPA 624	TW-6D	15E0319-24	Ground Water		EPA 624	
	TW-12I	15E0319-25	Ground Water		EPA 624	
DUP-X 15E0319-27 Ground Water EPA 624	TW-12D	15E0319-26	Ground Water		EPA 624	
	DUP-X	15E0319-27	Ground Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 624

Qualifications:

MS-09

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

2-Chloroethyl Vinyl Ether

15E0319-15[TW-14I], B121895-MS1, B121895-MSD1

R-06

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

Analyte & Samples(s) Qualified:

Chloromethane

15E0319-15[TW-14I], B121895-MS1, B121895-MSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Johanna K. Harrington

Manager, Laboratory Reporting

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015 Field Sample #: RW-1

Sampled: 5/6/2015 14:32

Sample ID: 15E0319-01 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,1-Dichloroethylene	0.92	2.0	0.21	μg/L	1	J	EPA 624	5/16/15	5/17/15 9:57	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Toluene	0.13	1.0	0.090	μg/L	1	J	EPA 624	5/16/15	5/17/15 9:57	EEH
1,1,1-Trichloroethane	38	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
m+p Xylene	ND	2.0	0.18	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:57	EEH
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 9:57	
Toluene-d8		99.8		70-130					5/17/15 9:57	
4-Bromofluorobenzene		100		70-130					5/17/15 9:57	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: RW-2

Sampled: 5/6/2015 14:36

Sample ID: 15E0319-02
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,1-Dichloroethylene	0.72	2.0	0.21	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 10:24	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Toluene	0.13	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 10:24	EEH
1,1,1-Trichloroethane	33	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 10:24	EEH
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 10:24	EEH
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:24	EEH
Surrogates		% Reco	overy	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 10:24	
Toluene-d8		99.4		70-130					5/17/15 10:24	
4-Bromofluorobenzene		100		70-130					5/17/15 10:24	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: EFF46HZ

Sampled: 5/6/2015 14:40

Sample ID: 15E0319-03
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Toluene	0.12	1.0	0.090	μg/L	1	J	EPA 624	5/16/15	5/17/15 9:30	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:30	EEH
Surrogates		% Reco	very	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 9:30	
Toluene-d8		99.6		70-130					5/17/15 9:30	
4-Bromofluorobenzene		99.6		70-130					5/17/15 9:30	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: Trip Blank

Sampled: 5/6/2015 00:00

Sample ID: 15E0319-04
Sample Matrix: Trip Blank Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Toluene	0.65	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 8:37	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 8:37	EEH
m+p Xylene	0.22	2.0	0.18	μg/L	1	J	EPA 624	5/16/15	5/17/15 8:37	EEH
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 8:37	EEH
Surrogates		% Reco	overy	Recovery Limits	.	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 8:37	
Toluene-d8		98.4		70-130					5/17/15 8:37	
4-Bromofluorobenzene		99.4		70-130					5/17/15 8:37	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: Field Blank

Sampled: 5/6/2015 14:50

Sample ID: 15E0319-05 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 9:04	EEH
Surrogates		% Reco	overy	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 9:04	
Toluene-d8		99.4		70-130					5/17/15 9:04	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015 Field Sample #: TW-3D

Sampled: 5/6/2015 13:20

Sample ID: 15E0319-06 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	1.9	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Toluene	0.11	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 10:50	EEH
1,1,1-Trichloroethane	0.96	2.0	0.094	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 10:50	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 10:50	EEH
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 10:50	EEH
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/17/15 10:50	
Toluene-d8		100		70-130					5/17/15 10:50	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		5/17/15 10:50
Toluene-d8	100	70-130		5/17/15 10:50
4-Bromofluorobenzene	99.4	70-130		5/17/15 10:50

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-3S

Sampled: 5/6/2015 13:24

Sample ID: 15E0319-07 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Toluene	0.10	1.0	0.090	μg/L	1	J	EPA 624	5/16/15	5/17/15 11:19	EEH
1,1,1-Trichloroethane	2.0	2.0	0.094	μg/L	1	v	EPA 624	5/16/15	5/17/15 11:19	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Trichloroethylene	ND	2.0	0.077	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15		1		EPA 624	5/16/15	5/17/15 11:19	EEH
Vinyl Chloride				μg/L	1				5/17/15 11:19	
m+p Xylene	ND ND	2.0 2.0	0.13	μg/L μg/L	1		EPA 624 EPA 624	5/16/15 5/16/15	5/17/15 11:19	EEH EEH
o-Xylene	ND ND	2.0	0.18	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 11:19	EEH
	ND					FI /C .	Er A 024	3/10/13	3/1//13 11.19	ЕЕП
Surrogates		% Reco	overy	Recovery Limit	s	Flag/Qual			5/17/15 11:10	
1,2-Dichloroethane-d4 Toluene-d8		105 98.6		70-130 70-130					5/17/15 11:19 5/17/15 11:19	
4 D. G. I		20.0		70-130					5/11/15 11.19	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-3I

Sampled: 5/6/2015 13:29

Sample ID: 15E0319-08 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,1,1-Trichloroethane	3.6	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 14:37	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 14:37	CMR
Surrogates		% Reco	overy	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		103		70-130					5/17/15 14:37	
Toluene-d8		98.9		70-130					5/17/15 14:37	
4-Bromofluorobenzene		99.6		70-130					5/17/15 14:37	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-5S

Sampled: 5/6/2015 13:35

Sample ID: 15E0319-09 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Toluene	0.16	1.0	0.090	μg/L	1	J	EPA 624	5/16/15	5/17/15 15:05	CMR
1,1,1-Trichloroethane	2.0	2.0	0.094	μg/L	1	J	EPA 624	5/16/15	5/17/15 15:05	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 15:05	CMR
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		103		70-130					5/17/15 15:05	
Toluene-d8		99.9		70-130					5/17/15 15:05	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015 Field Sample #: MW-51

Sampled: 5/6/2015 13:40

Sample ID: 15E0319-10 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	4.7	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,1-Dichloroethane	0.47	2.0	0.16	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 15:31	CMR
1,1-Dichloroethylene	0.22	2.0	0.21	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 15:31	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Toluene	0.17	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 15:31	CMR
1,1,1-Trichloroethane	9.6	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:31	CMR
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 15:31	
Toluene-d8		100		70-130					5/17/15 15:31	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Sampled: 5/6/2015 13:45 Field Sample #: MW-5D

Sample ID: 15E0319-11 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,2-Dichloroethane	1.0	2.0	0.19	μg/L	1	J	EPA 624	5/16/15	5/17/15 15:58	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,1-Dichloroethylene	0.29	2.0	0.21	μg/L	1	J	EPA 624	5/16/15	5/17/15 15:58	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Toluene	0.12	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 15:58	CMR
1,1,1-Trichloroethane	16	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 15:58	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 15:58	CMR
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 15:58	_
Toluene-d8		98.9		70-130					5/17/15 15:58	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	106	70-130		5/17/15 15:58
Toluene-d8	98.9	70-130		5/17/15 15:58
4-Bromofluorobenzene	99.2	70-130		5/17/15 15:58

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: MW-14D

Sampled: 5/6/2015 13:55

Sample ID: 15E0319-12 Sample Matrix: Ground Water

						T. (0.1		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	5.7	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 16:30	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,1,1-Trichloroethane	10	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 16:30	CMR
Surrogates	<u> </u>	% Reco		Recovery Limit		Flag/Qual				
1,2-Dichloroethane-d4		105	· J	70-130	-				5/17/15 16:30	
Toluene-d8		99.3		70-130					5/17/15 16:30	
4.75 . 01 . 1				= 0.420						

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Sampled: 5/6/2015 14:03 Field Sample #: TW-14I

Sample ID: 15E0319-13 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,1-Dichloroethane	2.0	2.0	0.16	μg/L	1	J	EPA 624	5/16/15	5/17/15 17:01	CMR
1,1-Dichloroethylene	1.1	2.0	0.21	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 17:01	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,1,1-Trichloroethane	57	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 17:01	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:01	CMR
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		102		70-130					5/17/15 17:01	_
Toluene-d8		98.8		70-130					5/17/15 17:01	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	102	70-130		5/17/15 17:01
Toluene-d8	98.8	70-130		5/17/15 17:01
4-Bromofluorobenzene	98.9	70-130		5/17/15 17:01

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-14S

Sampled: 5/6/2015 14:08

Sample ID: 15E0319-14 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1	riag/Quai	EPA 624	5/16/15	5/17/15 17:31	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Bromoform	ND	2.0	0.21	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Toluene	0.15	1.0	0.090	μg/L	1	J	EPA 624	5/16/15	5/17/15 17:31	CMR
1,1,1-Trichloroethane	4.5	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 17:31	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 17:31	CMR
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/17/15 17:31	
Toluene-d8		100		70-130					5/17/15 17:31	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Sampled: 5/6/2015 14:14 Field Sample #: TW-14I

Sample ID: 15E0319-15 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	0.15	1.0	0.079	μg/L	1	J	EPA 624	5/16/15	5/17/15 18:01	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Chloroethane	1.7	2.0	0.16	μg/L	1	J	EPA 624	5/16/15	5/17/15 18:01	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1	MS-09	EPA 624	5/16/15	5/17/15 18:01	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1	R-06	EPA 624	5/16/15	5/17/15 18:01	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,1-Dichloroethane	4.1	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,1-Dichloroethylene	0.30	2.0	0.21	μg/L	1	J	EPA 624	5/16/15	5/17/15 18:01	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 18:01	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Toluene	0.11	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 18:01	CMR
1,1,1-Trichloroethane	20	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:01	CMR
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/17/15 18:01	_
Toluene-d8		98.7		70-130					5/17/15 18:01	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		5/17/15 18:01
Toluene-d8	98.7	70-130		5/17/15 18:01
4-Bromofluorobenzene	99.4	70-130		5/17/15 18:01

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-15

Sampled: 5/6/2015 14:26

Sample ID: 15E0319-16 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	13	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,1-Dichloroethane	1.6	2.0	0.16	μg/L	1	J	EPA 624	5/16/15	5/17/15 18:31	CMR
1,1-Dichloroethylene	0.93	2.0	0.21	μg/L	1	J	EPA 624	5/16/15	5/17/15 18:31	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,1,1-Trichloroethane	32	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 18:31	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 18:31	CMR
Surrogates		% Reco	overy	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 18:31	
Toluene-d8		101		70-130					5/17/15 18:31	
4-Bromofluorobenzene		99.8		70-130					5/17/15 18:31	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: TW-7S

Sampled: 5/6/2015 15:04

Sample ID: 15E0319-17
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:00	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,1,1-Trichloroethane	5.1	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 19:00	CMR
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 19:00	
Toluene-d8		101		70-130					5/17/15 19:00	
4-Bromofluorobenzene		100		70-130					5/17/15 19:00	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-7I

Sampled: 5/6/2015 15:06

Sample ID: 15E0319-18 Sample Matrix: Ground Water

Benzene Bromodichloromethane Bromoform	ND ND ND	1.0 2.0	0.079	μg/L						
		2.0		FB -	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Bromoform	ND		0.088	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
		2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Toluene	0.11	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 19:27	CMR
1,1,1-Trichloroethane	1.1	2.0	0.094	μg/L	1	J	EPA 624	5/16/15	5/17/15 19:27	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:27	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 19:27	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:27	CMR
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 19:27	
Toluene-d8 4-Bromofluorobenzene		100 101		70-130 70-130					5/17/15 19:27 5/17/15 19:27	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-7D

Sampled: 5/6/2015 15:09

Sample ID: 15E0319-19 Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,1,1-Trichloroethane	10	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
m+p Xylene	ND	2.0	0.13	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
o-Xylene	ND	2.0	0.18	μg/L μg/L	1		EPA 624	5/16/15	5/17/15 19:54	CMR
	ND					El/C 1	EFA 024	3/10/13	17.04	CIVIK
Surrogates 1,2-Dichloroethane-d4		% Reco	overy	Recovery Limit	s	Flag/Qual			5/17/15 19:54	
Toluene-d8		98.5		70-130 70-130					5/17/15 19:54 5/17/15 19:54	
4 D		,0.5		70-130					5/17/15 17.54	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-9I

Sampled: 5/6/2015 15:20

Sample ID: 15E0319-20 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,1,1-Trichloroethane	3.0	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 20:21	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:21	CMR
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		106		70-130					5/17/15 20:21	
Toluene-d8		100		70-130					5/17/15 20:21	
4-Bromofluorobenzene		98.8		70-130					5/17/15 20:21	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: TW-9D

Sampled: 5/6/2015 15:26

Sample ID: 15E0319-21
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 20:47	CMR
Surrogates		% Reco	very	Recovery Limits	5	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/17/15 20:47	
Toluene-d8		99.4		70-130					5/17/15 20:47	
4-Bromofluorobenzene		98.6		70-130					5/17/15 20:47	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: TW-6S

Sampled: 5/6/2015 15:35

Sample ID: 15E0319-22
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Chloroform	1.4	2.0	0.14	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 21:14	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:14	CMR
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		107		70-130					5/17/15 21:14	
Toluene-d8		99.4		70-130					5/17/15 21:14	
4-Bromofluorobenzene		98.1		70-130					5/17/15 21:14	

Project Location: South Ostellic, NY. Work Order: 15E0319 Sample Description:

Date Received: 5/8/2015 Field Sample #: TW-6I

Sampled: 5/6/2015 15:40

Sample ID: 15E0319-23 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	1.5	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Toluene	0.15	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 21:41	CMR
1,1,1-Trichloroethane	2.4	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 21:41	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 21:41	CMR
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 21:41	
Toluene-d8		99.1		70-130					5/17/15 21:41	
4-Bromofluorobenzene		98.6		70-130					5/17/15 21:41	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015
Field Sample #: TW-6D

Sampled: 5/6/2015 15:45

Sample ID: 15E0319-24
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Toluene	0.11	1.0	0.090	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 22:07	CMR
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:07	CMR
Surrogates		% Reco	overy	Recovery Limits	1	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 22:07	
Toluene-d8		99.4		70-130					5/17/15 22:07	
4-Bromofluorobenzene		99.1		70-130					5/17/15 22:07	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Field Sample #: TW-12I Sampled: 5/6/2015 15:50

Sample ID: 15E0319-25
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
o-Xylene	ND	2.0	0.11	μg/L	1		EPA 624	5/16/15	5/17/15 22:34	CMR
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 22:34	
Toluene-d8		98.8		70-130					5/17/15 22:34	
4-Bromofluorobenzene		99.4		70-130					5/17/15 22:34	

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015 Field Sample #: TW-12D

Sampled: 5/6/2015 15:55

Sample ID: 15E0319-26 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/16/15	5/17/15 23:01	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:01	CMR
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		104		70-130					5/17/15 23:01	
Toluene-d8		99.3		70-130					5/17/15 23:01	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	104	70-130		5/17/15 23:01
Toluene-d8	99.3	70-130		5/17/15 23:01
4-Bromofluorobenzene	99.0	70-130		5/17/15 23:01

Project Location: South Ostellic, NY. Sample Description: Work Order: 15E0319

Date Received: 5/8/2015

Sampled: 5/6/2015 00:00 Field Sample #: DUP-X

Sample ID: 15E0319-27 Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	13	1.0	0.079	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Chloroform	ND	2.0	0.14	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,1-Dichloroethane	1.6	2.0	0.16	$\mu g/L$	1	J	EPA 624	5/16/15	5/17/15 23:28	CMR
1,1-Dichloroethylene	0.95	2.0	0.21	μg/L	1	J	EPA 624	5/16/15	5/17/15 23:28	CMR
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,1,1-Trichloroethane	33	2.0	0.094	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Trichloroethylene	ND	2.0	0.077	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
m+p Xylene	ND	2.0	0.18	μg/L	1		EPA 624	5/16/15	5/17/15 23:28	CMR
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/16/15	5/17/15 23:28	CMR
Surrogates		% Reco	overy	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/17/15 23:28	
Toluene-d8		98.1		70-130					5/17/15 23:28	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		5/17/15 23:28
Toluene-d8	98.1	70-130		5/17/15 23:28
4-Bromofluorobenzene	101	70-130		5/17/15 23:28

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
15E0319-01 [RW-1]	B121894	5	5.00	05/16/15	
15E0319-02 [RW-2]	B121894	5	5.00	05/16/15	
15E0319-03 [EFF46HZ]	B121894	5	5.00	05/16/15	
15E0319-04 [Trip Blank]	B121894	5	5.00	05/16/15	
15E0319-05 [Field Blank]	B121894	5	5.00	05/16/15	
15E0319-06 [TW-3D]	B121894	5	5.00	05/16/15	
15E0319-07 [TW-3S]	B121894	5	5.00	05/16/15	

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
15E0319-08 [TW-3I]	B121895	5	5.00	05/16/15	
15E0319-09 [TW-5S]	B121895	5	5.00	05/16/15	
15E0319-10 [MW-51]	B121895	5	5.00	05/16/15	
15E0319-11 [MW-5D]	B121895	5	5.00	05/16/15	
15E0319-12 [MW-14D]	B121895	5	5.00	05/16/15	
15E0319-13 [TW-14I]	B121895	5	5.00	05/16/15	
15E0319-14 [TW-14S]	B121895	5	5.00	05/16/15	
15E0319-15 [TW-14I]	B121895	5	5.00	05/16/15	
15E0319-16 [TW-15]	B121895	5	5.00	05/16/15	
15E0319-17 [TW-7S]	B121895	5	5.00	05/16/15	
15E0319-18 [TW-7I]	B121895	5	5.00	05/16/15	
15E0319-19 [TW-7D]	B121895	5	5.00	05/16/15	
15E0319-20 [TW-9I]	B121895	5	5.00	05/16/15	
15E0319-21 [TW-9D]	B121895	5	5.00	05/16/15	
15E0319-22 [TW-6S]	B121895	5	5.00	05/16/15	
15E0319-23 [TW-6I]	B121895	5	5.00	05/16/15	
15E0319-24 [TW-6D]	B121895	5	5.00	05/16/15	
15E0319-25 [TW-12I]	B121895	5	5.00	05/16/15	
15E0319-26 [TW-12D]	B121895	5	5.00	05/16/15	
15E0319-27 [DUP-X]	B121895	5	5.00	05/16/15	

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B121894 - SW-846 5030B										
Blank (B121894-BLK1)				Prepared: 05	5/16/15 Anal	yzed: 05/17/1	.5			
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	$\mu g/L$							
Bromoform	ND	2.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
-Chloroethyl Vinyl Ether	ND	10	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	μg/L							
,2-Dichlorobenzene	ND	2.0	μg/L							
,3-Dichlorobenzene	ND	2.0	μg/L							
,4-Dichlorobenzene	ND	2.0	μg/L							
,2-Dichloroethane	ND	2.0	μg/L							
,1-Dichloroethane	ND	2.0	μg/L							
,1-Dichloroethylene	ND	2.0	μg/L							
rans-1,2-Dichloroethylene	ND ND	2.0	μg/L							
,2-Dichloropropane	ND ND	2.0	μg/L μg/L							
is-1,3-Dichloropropene		2.0	μg/L μg/L							
• •	ND									
rans-1,3-Dichloropropene thylbenzene	ND	2.0 2.0	μg/L μg/L							
Anytoenzene Methyl tert-Butyl Ether (MTBE)	ND	2.0								
	ND	5.0	μg/L μα/Ι							
Methylene Chloride	ND		μg/L							
,1,2,2-Tetrachloroethane	ND	2.0	μg/L							
etrachloroethylene	ND	2.0	μg/L							
oluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	μg/L							
,1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	26.1		μg/L	25.0		104	70-130			
urrogate: Toluene-d8	25.1		$\mu g/L$	25.0		100	70-130			
urrogate: 4-Bromofluorobenzene	25.3		$\mu g/L$	25.0		101	70-130			
CS (B121894-BS1)				Prepared &	Analyzed: 05	/16/15				
enzene	9.33	1.0	μg/L	10.0		93.3	37-151			
romodichloromethane	9.38	2.0	$\mu g/L$	10.0		93.8	35-155			
Bromoform	9.60	2.0	$\mu g/L$	10.0		96.0	45-169			
romomethane	13.2	2.0	$\mu g/L$	10.0		132	20-242			
arbon Tetrachloride	10.1	2.0	$\mu g/L$	10.0		101	70-140			
hlorobenzene	9.21	2.0	μg/L	10.0		92.1	37-160			
hlorodibromomethane	9.50	2.0	μg/L	10.0		95.0	53-149			
Chloroethane	9.66	2.0	μg/L	10.0		96.6	70-130			
-Chloroethyl Vinyl Ether	83.7	10	μg/L	100		83.7	10-305			
Chloroform	9.56	2.0	μg/L	10.0		95.6	51-138			
Chloromethane	16.3	2.0	μg/L	10.0		163	20-273			
,2-Dichlorobenzene	9.49	2.0	μg/L	10.0		94.9	18-190			
,	7.47	2.0	μg/L μg/L	10.0		71.7	10 170			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B121894 - SW-846 5030B										
.CS (B121894-BS1)				Prepared &	Analyzed: 05	/16/15				
,4-Dichlorobenzene	9.34	2.0	μg/L	10.0		93.4	18-190			
,2-Dichloroethane	9.41	2.0	μg/L	10.0		94.1	49-155			
,1-Dichloroethane	9.57	2.0	μg/L	10.0		95.7	59-155			
,1-Dichloroethylene	9.99	2.0	μg/L	10.0		99.9	20-234			
rans-1,2-Dichloroethylene	8.99	2.0	μg/L	10.0		89.9	54-156			
,2-Dichloropropane	9.24	2.0	μg/L	10.0		92.4	20-210			
is-1,3-Dichloropropene	9.11	2.0	μg/L	10.0		91.1	20-227			
rans-1,3-Dichloropropene	9.04	2.0	μg/L	10.0		90.4	17-183			
thylbenzene	9.50	2.0	μg/L	10.0		95.0	37-162			
Methyl tert-Butyl Ether (MTBE)	9.63	2.0	μg/L	10.0		96.3	70-130			
Methylene Chloride	9.77	5.0	$\mu g/L$	10.0		97.7	50-221			
,1,2,2-Tetrachloroethane	9.50	2.0	μg/L	10.0		95.0	46-157			
etrachloroethylene	9.17	2.0	μg/L	10.0		91.7	64-148			
oluene	9.29	1.0	μg/L	10.0		92.9	47-150			
,1,1-Trichloroethane	9.87	2.0	μg/L	10.0		98.7	52-162			
,1,2-Trichloroethane	9.39	2.0	μg/L	10.0		93.9	52-150			
richloroethylene	9.71	2.0	μg/L	10.0		97.1	71-157			
richlorofluoromethane (Freon 11)	10.5	2.0	μg/L	10.0		105	17-181			
7inyl Chloride	9.96	2.0	μg/L	10.0		99.6	20-251			
n+p Xylene	18.9	2.0	μg/L	20.0		94.3	70-130			
-Xylene	9.48	2.0	μg/L	10.0		94.8	70-130			
		2.0								
			μg/L	25.0		104	70-130			
- '	26.1									
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene	26.1 24.4 24.8		μg/L μg/L	25.0 25.0		97.6 99.0	70-130 70-130			
urrogate: 1,2-Dichloroethane-d4 urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B	24.4		$\mu g/L$	25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene	24.4	1.0	μg/L μg/L μg/L	25.0 25.0	:/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B	24.4 24.8	1.0	μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane	24.4 24.8 ND		μg/L μg/L μg/L	25.0 25.0	/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene	24.4 24.8 ND ND	2.0	μg/L μg/L μg/L μg/L	25.0 25.0	/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene eatch B121895 - SW-846 5030B elank (B121895-BLK1) eienzene eromodichloromethane eromomomethane eromomomethane	24.4 24.8 ND ND ND	2.0 2.0	μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane	24.4 24.8 ND ND ND ND ND ND	2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene satch B121895 - SW-846 5030B slank (B121895-BLK1) senzene stromodichloromethane stromoform stromomethane sarbon Tetrachloride schlorobenzene	24.4 24.8 ND ND ND ND ND ND ND	2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromoform Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Bromoform Bromomethane Bromoform Bromomethane Bromodichlorode Bromoform Bromomethane Bromoform Bromomethane Bromoform Bromomethane	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene satch B121895 - SW-846 5030B slank (B121895-BLK1) senzene sromodichloromethane sromoform	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane Bromomethane Bromomethane Brohlorobenzene Chloroethane Chloroethyl Vinyl Ether	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane Bromofluorobenzene Bromofluo	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane Bromomethane Bromomethane Bromomethane Bromomethane Brohlorobenzene Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 10 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane B	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane B	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene satch B121895 - SW-846 5030B slank (B121895-BLK1) senzene stromodichloromethane stromomethane stromomethane stromothane	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene atch B121895 - SW-846 5030B lank (B121895-BLK1) enzene romodichloromethane romoform romomethane arbon Tetrachloride hlorobenzene hlorodibromomethane -Chloroethyl Vinyl Ether hloroform hloromethane ,2-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorobenzene	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene satch B121895 - SW-846 5030B slank (B121895-BLK1) senzene stromodichloromethane stromomethane stromomethane stromothane	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene atch B121895 - SW-846 5030B lank (B121895-BLK1) enzene romodichloromethane romoform romomethane arbon Tetrachloride hlorobenzene hlorodibromomethane hloroethane -Chloroethyl Vinyl Ether hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,2-Dichlorobenzene ,2-Dichlorobenzene ,1-Dichloroethane ,1-Dichloroethylene	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene atch B121895 - SW-846 5030B lank (B121895-BLK1) enzene romodichloromethane romoform romomethane arbon Tetrachloride hlorobenzene hlorodibromomethane hloroethane -Chloroethyl Vinyl Ether hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,1-Dichloroethylene ans-1,2-Dichloroethylene	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene atch B121895 - SW-846 5030B lank (B121895-BLK1) enzene romodichloromethane romoform romomethane arbon Tetrachloride hlorodibromomethane hlorodibromomethane -Chloroethyl Vinyl Ether hloroform hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 1-Dichloroethylene ans-1,2-Dichloroethylene 2-Dichloropopane	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene atch B121895 - SW-846 5030B lank (B121895-BLK1) enzene romodichloromethane romoform romomethane arbon Tetrachloride hlorobenzene hlorodibromomethane hloroethane -Chloroethyl Vinyl Ether hloroform hloromethane ,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,1-Dichloroethylene ,1-Dichloroethylene ans-1,2-Dichloroethylene ,2-Dichloropropane is-1,3-Dichloropropene	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane B	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane B	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J
urrogate: Toluene-d8 urrogate: 4-Bromofluorobenzene Batch B121895 - SW-846 5030B Blank (B121895-BLK1) Benzene Bromodichloromethane Bromomethane B	24.4 24.8 ND	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	25.0 25.0	7/16/15 Anal	99.0	70-130			J

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B121895 - SW-846 5030B										
Blank (B121895-BLK1)				Prepared: 05	5/16/15 Anal	yzed: 05/17/1	15			
Tetrachloroethylene	ND	2.0	μg/L							
Гoluene	ND	1.0	$\mu g/L$							
,1,1-Trichloroethane	ND	2.0	$\mu g/L$							
,1,2-Trichloroethane	ND	2.0	$\mu g/L$							
Trichloroethylene	ND	2.0	$\mu g/L$							
Frichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
Vinyl Chloride	ND	2.0	$\mu g/L$							
n+p Xylene	ND	2.0	$\mu g/L$							
-Xylene	ND	2.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.6		μg/L	25.0		103	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.0		99.2	70-130			
Surrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		99.8	70-130			
.CS (B121895-BS1)				Prepared: 05	5/16/15 Anal	yzed: 05/17/1	15			
Benzene	9.75	1.0	μg/L	10.0	·	97.5	37-151			
Bromodichloromethane	10.1	2.0	μg/L	10.0		101	35-155			
Bromoform	9.89	2.0	$\mu g/L$	10.0		98.9	45-169			
Bromomethane	11.6	2.0	μg/L	10.0		116	20-242			
Carbon Tetrachloride	10.6	2.0	$\mu g/L$	10.0		106	70-140			
Chlorobenzene	9.89	2.0	$\mu g/L$	10.0		98.9	37-160			
Chlorodibromomethane	9.85	2.0	$\mu g/L$	10.0		98.5	53-149			
Chloroethane	9.78	2.0	$\mu g/L$	10.0		97.8	70-130			
-Chloroethyl Vinyl Ether	84.0	10	$\mu g/L$	100		84.0	10-305			
Chloroform	10.3	2.0	$\mu \text{g/L}$	10.0		103	51-138			
Chloromethane	15.6	2.0	$\mu \text{g/L}$	10.0		156	20-273			
,2-Dichlorobenzene	10.0	2.0	$\mu \text{g/L}$	10.0		100	18-190			
,3-Dichlorobenzene	9.78	2.0	μg/L	10.0		97.8	59-156			
,4-Dichlorobenzene	9.67	2.0	μg/L	10.0		96.7	18-190			
,2-Dichloroethane	10.2	2.0	μg/L	10.0		102	49-155			
,1-Dichloroethane	9.88	2.0	μg/L	10.0		98.8	59-155			
,1-Dichloroethylene	10.4	2.0	μg/L	10.0		104	20-234			
rans-1,2-Dichloroethylene	9.76	2.0	μg/L	10.0		97.6	54-156			
,2-Dichloropropane	9.69	2.0	μg/L	10.0		96.9	20-210			
cis-1,3-Dichloropropene	9.23	2.0	μg/L	10.0		92.3	20-227			
rans-1,3-Dichloropropene	9.29	2.0	μg/L	10.0		92.9	17-183			
Ethylbenzene	9.97	2.0	μg/L	10.0		99.7	37-162			
Methyl tert-Butyl Ether (MTBE)	9.97	2.0	μg/L	10.0		99.7	70-130			
Methylene Chloride	10.4	5.0	μg/L	10.0		104	50-221			
,1,2,2-Tetrachloroethane	9.50	2.0	μg/L	10.0		95.0	46-157			
Tetrachloroethylene	9.59	2.0	μg/L	10.0		95.9	64-148			
Toluene	9.99	1.0	μg/L	10.0		99.9	47-150			
,1,1-Trichloroethane	10.4	2.0	μg/L	10.0		104	52-162			
.,1,2-Trichloroethane	9.97	2.0	μg/L	10.0		99.7	52-150			
	10.4	2.0	μg/L	10.0		104	71-157			
Frichlorofluoromethane (Freon 11)	11.0	2.0	μg/L	10.0		110	17-181			
/inyl Chloride	10.1	2.0 2.0	μg/L	10.0		101	20-251			
n+p Xylene o-Xylene	19.6	2.0	μg/L μg/I	20.0		98.0 99.1	70-130 70-130			
	9.91	2.0	μg/L	10.0						
urrogate: 1,2-Dichloroethane-d4	26.7		μg/L	25.0		107	70-130			
Surrogate: Toluene-d8	24.9		μg/L	25.0		99.6	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source	0	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B121895 - SW-846 5030B										
Matrix Spike (B121895-MS1)		ce: 15E0319-			5/16/15 Analy					
Benzene	10.5	1.0	μg/L	10.0	0.150	103	37-151			
Bromodichloromethane	9.97	2.0	μg/L	10.0	ND	99.7	35-155			
Bromoform	10.2	2.0	μg/L	10.0	ND	102	45-169			
Bromomethane	12.4	2.0	μg/L	10.0	ND	124	20-242			
Carbon Tetrachloride	11.4	2.0	μg/L	10.0	ND	114	70-140			
Chlorobenzene Chlorodibromomethane	10.1	2.0 2.0	μg/L μg/L	10.0	ND	101	37-160			
Chloroethane	10.1	2.0		10.0	ND	101	53-149			
	12.1	10	μg/L μg/L	10.0	1.71	104	70-130			MC 00
-Chloroethyl Vinyl Ether Chloroform	ND	2.0	μg/L μg/L	100	ND ND	106	10-305 51-138			MS-09
Chloromethane	10.6	2.0	μg/L μg/L	10.0 10.0	ND ND	106 115	20-273			R-06
,2-Dichlorobenzene	11.5	2.0	μg/L μg/L	10.0	ND ND	102	18-190			K-00
,3-Dichlorobenzene	10.2 10.1	2.0	μg/L μg/L	10.0	ND ND	102	59-156			
.4-Dichlorobenzene	10.1 10.0	2.0	μg/L μg/L	10.0	ND ND	100	18-190			
,2-Dichloroethane	10.0	2.0	μg/L μg/L	10.0	ND ND	100	49-155			
1-Dichloroethane	14.4	2.0	μg/L	10.0	4.06	104	59-155			
,1-Dichloroethylene	11.6	2.0	μg/L	10.0	0.300	113	20-234			
rans-1,2-Dichloroethylene	10.1	2.0	μg/L	10.0	0.500 ND	101	54-156			
,2-Dichloropropane	10.0	2.0	μg/L	10.0	ND	100	20-210			
is-1,3-Dichloropropene	8.72	2.0	μg/L	10.0	ND	87.2	20-227			
ans-1,3-Dichloropropene	8.92	2.0	μg/L	10.0	ND	89.2	17-183			
thylbenzene	10.5	2.0	μg/L	10.0	ND	105	37-162			
fethyl tert-Butyl Ether (MTBE)	10.0	2.0	μg/L	10.0	ND	100	70-130			
lethylene Chloride	10.2	5.0	μg/L	10.0	ND	102	50-221			
1,2,2-Tetrachloroethane	9.86	2.0	μg/L	10.0	ND	98.6	46-157			
etrachloroethylene	10.4	2.0	μg/L	10.0	ND	104	64-148			
foluene	10.4	1.0	μg/L	10.0	0.110	103	47-150			
,1,1-Trichloroethane	31.0	2.0	μg/L	10.0	19.6	114	52-162			
,1,2-Trichloroethane	10.4	2.0	$\mu \text{g/L}$	10.0	ND	104	52-150			
richloroethylene	11.0	2.0	$\mu g \! / \! L$	10.0	ND	110	71-157			
richlorofluoromethane (Freon 11)	12.1	2.0	$\mu \text{g}/L$	10.0	ND	121	17-181			
7inyl Chloride	11.2	2.0	$\mu \text{g}/L$	10.0	ND	112	20-251			
n+p Xylene	20.6	2.0	$\mu \text{g}/L$	20.0	ND	103	70-130			
-Xylene	10.3	2.0	$\mu \text{g/L}$	10.0	ND	103	70-130			
urrogate: 1,2-Dichloroethane-d4	26.5		μg/L	25.0		106	70-130			
urrogate: Toluene-d8	25.1		μg/L	25.0		100	70-130			
urrogate: 4-Bromofluorobenzene	24.9		μg/L	25.0		99.6	70-130			
Iatrix Spike Dup (B121895-MSD1)	Som	rce: 15E0319-		Prepared: 05	5/16/15 Analy:	zed: 05/18/	15			
Benzene	10.5	1.0	μg/L	10.0	0.150	104	37-151	0.286	20	
romodichloromethane	10.5	2.0	μg/L	10.0	ND	105	35-155	4.89	20	
romoform	10.1	2.0	μg/L	10.0	ND	101	45-169	0.493	20	
romomethane	11.8	2.0	μg/L	10.0	ND	118	20-242	5.36	20	
arbon Tetrachloride	11.7	2.0	μg/L	10.0	ND	117	70-140	2.69	20	
hlorobenzene	10.4	2.0	μg/L	10.0	ND	104	37-160	2.73	20	
hlorodibromomethane	10.3	2.0	μg/L	10.0	ND	103	53-149	2.25	20	
hloroethane	12.0	2.0	μg/L	10.0	1.71	103	70-130	0.664	20	
-Chloroethyl Vinyl Ether	ND	10	μg/L	100	ND	*		NC	20	MS-09
hloroform	10.8	2.0	μg/L	10.0	ND	108	51-138	1.03	20	
Chloromethane	16.6	2.0	μg/L	10.0	ND	166	20-273	36.3		R-06
,2-Dichlorobenzene	10.4	2.0	μg/L	10.0	ND	104	18-190	1.94	20	
,3-Dichlorobenzene	10.4	2.0	μg/L	10.0	ND	104	59-156	2.74	20	

Surrogate: 4-Bromofluorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

											1
		Reporting		Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Batch B121895 - SW-846 5030B									
Matrix Spike Dup (B121895-MSD1)	Source	e: 15E0319-	15	Prepared: 05/1	16/15 Analyz	zed: 05/18	3/15		
1,4-Dichlorobenzene	10.4	2.0	μg/L	10.0	ND	104	18-190	3.44	20
1,2-Dichloroethane	10.2	2.0	$\mu \text{g/L}$	10.0	ND	102	49-155	0.391	20
1,1-Dichloroethane	14.5	2.0	$\mu \text{g/L}$	10.0	4.06	105	59-155	0.829	20
1,1-Dichloroethylene	11.7	2.0	$\mu \text{g/L}$	10.0	0.300	114	20-234	0.344	20
trans-1,2-Dichloroethylene	10.6	2.0	$\mu \text{g/L}$	10.0	ND	106	54-156	5.41	20
1,2-Dichloropropane	9.98	2.0	$\mu \text{g/L}$	10.0	ND	99.8	20-210	0.500	20
cis-1,3-Dichloropropene	8.95	2.0	$\mu g \! / \! L$	10.0	ND	89.5	20-227	2.60	20
trans-1,3-Dichloropropene	9.01	2.0	$\mu \text{g/L}$	10.0	ND	90.1	17-183	1.00	20
Ethylbenzene	10.7	2.0	$\mu \text{g/L}$	10.0	ND	107	37-162	1.51	20
Methyl tert-Butyl Ether (MTBE)	10.1	2.0	$\mu \text{g/L}$	10.0	ND	101	70-130	0.992	20
Methylene Chloride	10.8	5.0	$\mu \text{g/L}$	10.0	ND	108	50-221	5.71	20
1,1,2,2-Tetrachloroethane	9.73	2.0	$\mu \text{g}/L$	10.0	ND	97.3	46-157	1.33	20
Tetrachloroethylene	10.4	2.0	$\mu \text{g}/L$	10.0	ND	104	64-148	0.0961	20
Toluene	10.5	1.0	$\mu \text{g}/L$	10.0	0.110	104	47-150	0.573	20
1,1,1-Trichloroethane	30.6	2.0	$\mu g \! / \! L$	10.0	19.6	110	52-162	1.26	20
1,1,2-Trichloroethane	10.3	2.0	$\mu \text{g}/L$	10.0	ND	103	52-150	0.484	20
Trichloroethylene	11.1	2.0	μg/L	10.0	ND	111	71-157	0.995	20
Trichlorofluoromethane (Freon 11)	12.4	2.0	$\mu \text{g}/L$	10.0	ND	124	17-181	2.94	20
Vinyl Chloride	12.8	2.0	$\mu \text{g/L}$	10.0	ND	128	20-251	13.7	20
m+p Xylene	21.0	2.0	$\mu \text{g/L}$	20.0	ND	105	70-130	1.78	20
o-Xylene	10.4	2.0	μg/L	10.0	ND	104	70-130	0.966	20
Surrogate: 1,2-Dichloroethane-d4	26.4		μg/L	25.0		105	70-130		
Surrogate: Toluene-d8	24.8		$\mu g/L$	25.0		99.2	70-130		

 $\mu g/L$

25.0

99.3

70-130

24.8

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
MS-09	Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.
R-06	Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

QC result is outside of established limits.

CERTIFICATIONS

Certifications

Certified Analyses included in this Report

Analyte

Analyte	Certifications	
EPA 624 in Water		
Benzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Methyl tert-Butyl Ether (MTBE)	NC	
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Toluene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
m+p Xylene	CT,MA,NH,NY,RI,NC,VA,NJ	
o-Xylene	CT,MA,NH,NY,RI,NC,VA,NJ	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2016
MA	Massachusetts DEP	M-MA100	06/30/2015
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2015
NY	New York State Department of Health	10899 NELAP	04/1/2016
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2016
RI	Rhode Island Department of Health	LAO00112	12/30/2015
NC	North Carolina Div. of Water Quality	652	12/31/2015
NJ	New Jersey DEP	MA007 NELAP	06/30/2015
FL	Florida Department of Health	E871027 NELAP	06/30/2015
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2015
WA	State of Washington Department of Ecology	C2065	02/23/2016
ME	State of Maine	2011028	06/9/2015
VA	Commonwealth of Virginia	460217	12/14/2015
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2015

Phone: 413-525-2332

CHAIN OF CUSTODY RECORD **NEW YORK STATE**

East longmeadow, MA 01028

39 Spruce Street

O Field Filtered
O Lab to Filter

***Cont. Code: A=amber glass

P=plastic G=glass

Email: Jergany With Colors Format: Pop O Excel 6150

13. Qualita

Project Location: South Otselic, NY

A. Creatich

Sampled By:

Attention: Jeremy Wyckoff

Clifter Back

PDF O EXCELO

Fax # amber-gootrehoruardis -wer

○ WEBSITE

EMAIL

O FA

DATA DELIVERY (check all that apply)

Client PO#

Dissolved Metals ***Container Code # of Containers ** Preservation **ANALYSIS REQUESTED** I CDD-01011-01-01-00 Telephone: 518-350-7300 1560319 Project # Email: info@contestlabs.com www.contestlabs.com SURAID Fax: 413-525-6405 Address: 855 Route 140 ANALYTICAL LABORATORY Company Name: ARCHDIS

																			-1					7	abl	le (
ST=sterile	S=summa can	T=tedlar bag	O=Other	1 = 1ced	H = HCL M = Methanol	N = Nitric Acid	S = Sulfuric Acid	B = Sodium bisuifate X = Na hydroxide	T = Na thiosulfate	O = Other	Matrix Code.	GW = groundwater WW = wastewater	DW= drinking water	ı ı	S = soil/solid	SL = sludge	O = other			,	_		Other:		Cother:	
																Please use the following codes to let Con-Test know if a specific sample	may be high in concentration in Matrix/Conc. Code Box:	l	H - High; M - Medium; L - Low; C - Clean; U - Unknown	Program Information/Regulatory	O NY TOGS ONY Restricted Use	○ AWQ STDS ○ NY Unrestricted Use	O NYC Sewer Discharge	O Part 360 GW (Landfill)	Deliverables	
0 1527 1528		our Codes 🛧	<u>i</u>	4 3	7/1		6		3	2	^	<u>~</u>			W	e use the following codes	may be high in concen	*	H - High; M - Medium;	Turnaround	□ 5-Day	O 7 Day	10-Day or	되 (\mathcal{L}	72 hr C 4 day C
OTHERNYSDE COURS	O "Enhanced Data Package"	Composite Grab Cata	X		**************************************	MD X	1	1	о Х		WLD V	多 × 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	+	Notice St)		Date/Time:		Date/Time:		Date/Time:		Date/Time:
Format:	Collection	Ending	Date/lime Date/lime	10.11	2001	5/0/15/14:40			Sin Linia	200	51615115-20	たらりと同じ		C/2/2/2/2	72,5%	^		4 - BART	***	Relinquished by:		Beceived hv.	Tecessor by.	Relinquished by:		Received by:
	L	Client Sample ID / Description					2/2:5K	カングンド		1 IEC BILINE						7.5	AW 1, 2 MC JUNG CEENTY	Aut OG HOHLPLINGE	,	Date/Time:	クジェルディー		Jaile 1-5 1-	Date/Time:		Date/Time:
O Project Proposal Provided? (for billing	purposes)	Con-Test Lab ID Client Samo	(laboratory use only)		SO KW CA	OS IEFCUBHZ	CH Trio Blink	7		0311 85	08-3E-30		25-37 B 25-57	けんりません	7	8	Comments: (2 tv / 2)	160 60 67		() () () () () () () () () ()	Helinquished by (signature)	3	Received by (signature) 3.0	elinguished by: (signature)		- :
O Pr	<u>6</u>	ŏ		1		١.				V.			1				<u></u> §0	<u> </u>			<u> </u>	<u> </u>	B		Pa	ge

OMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. ocived by: (signature)
Complete the complete

PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT

of Contents

CHAIN OF CUSTODY RECORD Phone: 413-525-2332

NEW YORK STATE

East fongmeadow, MA 01028

39 Spruce Street

Page 2 of 3

Dissolved Metals ***Container Code # of Containers ** Preservation ANALYSIS REQUESTED Telephone: 518-350-7300 1560319 Email: info@contestlabs.com www.contestiabs.com Frione: 413-525-23 ANALYTICAL LABORATORY Company Name: A P (A D IS

O NY Part 375 DW= drinking water B = Sodium bisulfate **GW**= groundwater O NY CP-51 WW= wastewater T = Na thiosulfate X = Na hydroxide O Field Filtered S = Sulfuric Acid O Other: O Lab to Filter **Preservation *Matrix Code: ***Cont. Code: N = Nitric Acid A=amber glass **M** ≝ Methanol S = soil/solid S≖summa can T=tedlar bag 0 = Other 0 = other ST=sterile P≕plastic 0=Other H#HCL l = Iced G=glass V= vial O AWQ STDS O NY Unrestricted Use Program Information/Regulatory O NY Restricted Use Please use the following codes to let Con-Test know if a specific sample H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: O NYC Sewer Discharge O NY TOGS 5-Day
7 Day
10-Day or ... Turnaround **(**N) VOCS *Matrix | Sonc Gade Project # OCOLUMNICOCOCO CTHER NYSDEC ECLUSIS ○ WEBSITE Fax # anser good rich Colonis -"Enhanced Data Package" DATA DELIVERY (check all that apply) 3 Composite Grab Lode PDF O EXCELO 🕝 EMAIL Date/Time: Date/Time: **※**0:日 15:06 30° n 13.45 35 14:03 サード からい O F 15:0 Client PO# Date/Time 5/2/8:40 Ending Email: Collection Relinquished by: 9.59 Received by: Beginning Date/Time B. Quality Client Sample ID / Description Project Location: South Office IIC , NY Attention: Texerny Myckoff (1/1 - MI) I 41-MU TATION - 14 S THE -4T 1+- M ナナースト いけし Clifton Park, NY Address: 855 Rowte 140 MWST 21- CIM Sampled By: A. Locadrican O Project Proposal Provided? (for billing Relinquished by: (signature) peived by: (Signature) Con-Test Lab ID 7 9 INNER purposes)

TURNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT OEquis (1 file) O Part 360 GW (Landfill) **Deliverables** O ASP-A ASP-B 4 day 48 hr 🔾 Require lab approval RUSH 72 hr O 24 hr 🔾 Date/Time: Date/Time: Relinquished by: Received by: Date/Time: Date/Time: inquished by: (signature) ceived by: (signature) of 47 Page 43

PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT OMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED.

Table of Contents

Phone: 413-525-2332

CHAIN OF CUSTODY RECORD **NEW YORK STATE**

East longmeadow, MA 01028 39 Spruce Street

Page 3 of 3

Table of Contents O NY Part 375 とよりかってのとい DW= drinking water B = Sodjum bisulfate Dissolved Metals GW= groundwater ***Container Code WW= wastewater O NY CP-51 T = Na thiosulfate X = Na hydroxide PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT O Field Filtered S = Sulfuric Acid Oother: # of Containers O Lab to Filter ** Preservation **Preservation ***Cont. Code: *Matrix Code: N = Nitric Acid A=amber glass M = Methanol S=summa can S = soil/solid T=tedlar bag SL = sludge URNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OU 0 = Other O = other ST=sterile 0=Other P=plastic H=HCL G=glass i = Iced V= Via ○ AWQ STDS ○ NY Unrestricted Use ○ NYC Sewer Discharge ○ Part 360 GW (Landfill) Program Information/Regulatory O NY Restricted Use Please use the following codes to let Con-Test know if a specific sample OEquis (1 file) H - High; M - Mediüm; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ANALYSIS REQUESTED **Defiverables** O NY TOGS O ASP-A ♠ ASP-B 4 day 48 hr 🔾 **Furnaround** 10-Day or 7 Day 5-Day RUSH 24 hr O 72 hr O OMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. **□** □ **⊠** *Matrix | Conc Code Project # OCHO GUOGO Project Telephone: 218-350-7300 Faytomber godrich agricult ○ WEBSITE O OTHER NYSDEL ECIVIS "Enhanced Data Package" DATA DELIVERY (check all that apply) 3 Composite Grab Lode ⋺ 15E03() 😂 EMAIL Date/Time: Date/Time: Date/Time: Date/Time: PPF O 15:50 ナギナ O FĀ 15:36 15:55 させ Client PO# 15.30 15:35 15:40 Date/Time 0.tr. SI Ending Format: Relinquished by: Collection Relinquished by: Email: info@contestlabs.com Received by: Received by: 5/6/15 Beginning 41/4310 www.contestlabs.com B. Quag lieri COO FEET 813-525-6405 Client Sample ID / Description Project Location: South Otsein, NY TW-47-MJ Date(Time: TREE MAN WACKUTS Date/Time: Date/Time: をせ CLIFFUL Park, NY IN-HI-M TW-DT IN CON JW-IDD ANALYTICAL LABORATORY TW- 9P ARCADI NUPLX TM-9I Sampled By: A. YOCOLVICA 855 Rout O Project Proposal Provided? (for billing <u>}</u> linquished by: (signature) Relinquished by: (signature) ceived by: (signature) Con-Test Lab ID Company Name: \mathcal{R} purposes) Attention: Address: して न्त Page 44 of 47

Track your package or shipment with FedEx Tracking

My Profile My FedEx Rewards Locations English Search

Fed

Ship

Track

Manage

Learn

FedEx Office ®

FedEx * Tracking

773551501396

Ship (P/U) date : Thur 5/07/2015 4:21 pm

Clifton Park, NY US

Delivered

Signed for by: P.BLAKE

Actual delivery Fri 5/08/2015 9:59 am

EAST LONGMEADOW, MA US

Travel History

▲ Date/Time	Activity	Location
5/08/2015	i - Friday	
9:59 am	Delivered	EAST CONGLETADOW, MA
8:43 am	On FedEx vehicle for delivery	WINDSOR FOCKS CT
8:37 am	At local FedEx facility	WINDSOR LOCKS CT
4:14 am	Departed FedEx location	NEWARK, NJ
12:14 am	Arrived at FedEx location	NEWARK, NJ
5/07/2015	i - Thursday	
9:00 pm	Left FedEx origin facility	MENANDS, NY
4:21 pm	Picked up	MENANDS, NY
2:16 pm	Shipment information sent to FedEx	

Tracking	773551501396	Service	FedEx Priority Overnight		
number	77350 50 1396	Delivered To	Shipping/Receiving		
Weight	29 lbs / 13.15 kgs	Total shipment	29 lbs / 13.15 kgs		
Total pieces	1	weight	Za 105 / 10.10 kgs		
Shipper reference	00266406.0000	Packaging	Your Packaging		
Special handling section	Deliver Weekday				

FedEx.

Customer Focus New Customer Center Small Business Center Service Guide Customer Support

Company Information About FedEx

Careers Investor Relations

Other Resources FedEx Compatible

> Developer Resource Center FedEx Ship Manager Software

Ancillary Clearance Services

FedEx Mobile

Featured Services

FedEx One Rate

FedEx SameDay

FedEx Home Delivery

Healthcare Solutions

Packaging Services

Online Retail Solutions

Companies

FedEx Express FedEx Ground FedEx Office FedEx Freight FedEx Custom Critical FedEx Trade Networks

FedEx SupplyChain FedEx TechConnect Follow FedEx

United States - English

Search

Global Home | Site Map | fedex.com Terms of Use | Security and Privacy

© FedEx 1995-2015

Page 45 of 47

Login

Page 2 of 2 Login Sample Receipt Checklist

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client Answer (True/False)

Question	Answer (True/False)	Comment			
	T/F/NA				
1) The cooler's custody seal, if present, is intact.	AIA				
2) The cooler or samples do not appear to have					
been compromised or tampered with.	T	****			
3) Samples were received on ice.	T	A STATE OF THE STA			
4) Cooler Temperature is acceptable.	T				
5) Cooler Temperature is recorded.					
6) COC is filled out in ink and legible.					
7) COC is filled out with all pertinent information.	Τ	A STATE OF THE STA			
8) Field Sampler's name present on COC.	T	A Section of the sect			
9) There are no discrepancies between the sample IDs on the container and the COC.	T				
10) Samples are received within Holding Time.	7				
11) Sample containers have legible labels.					
12) Containers are not broken or leaking.	Τ				
13) Air Cassettes are not broken/open.	AA				
14) Sample collection date/times are provided.	τ				
15) Appropriate sample containers are used.					
16) Proper collection media used.	T				
17) No headspace sample bottles are completely filled.	T				
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.					
19) Trip blanks provided if applicable.	1	4.49			
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	7				
21) Samples do not require splitting or compositing.	so statements?	Date/Time:			

Doc #277 Rev. 4 August 2013

Who notified of False statements?

Log-In Technician Initials:

Date/Time: 5.8.15

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332

F: 413-525-6405 www.contestlabs.com

Page 1 of 2

Page 47 of 47

Sample Receipt Checklist

CLIENT NAME: Av Ca dis		RECEIVED BY:	\overline{R}	DATE:	5.8.15
1) Was the chain(s) of custody re	elinguished and sig	ned?	Yes	No No Co	oC Included
			Yes	No	
2) Does the chain agree with the If not, explain:	samples i		()		
3) Are all the samples in good co If not, explain:	ndition?		(S	No	
4) How were the samples receive				न	
On Ice Direct from Sa	· ·	Ambient 🗀	_	er(s) 🖾	
Were the samples received in Te	mperature Complia	nce of (2-6°C)?	Yes	No N/A	
Temperature °C by Temp blank	<u> </u>	_Temperature °C	by Temp g	jun	
5) Are there Dissolved samples t	or the lab to filter?		Yes	Nø	
Who was notified	Date	Time			
6) Are there any RUSH or SHOR			Yes	No	
Who was notified					
11,10 1100 11011100		Per	mission to	subcontract s	amples? Yes No
					lready approved
Location where samples are stor	ed: Locata	`			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	1 , , , , , ,		nt Signatur	Б	
8) Do all samples have the prope	er Acid pH: Yes	No (N/A			•
9) Do all samples have the prope	er Base pH: Yes	No N/A			<u>.</u>
10) Was the PC notified of any di		ne CoC vs the sa	mples:	res No (i	V/A
	ontainers rec			st	
	# of containers				# of containers
d Litan Ambor	# Of COTRAINETS	1 80	z amber/cl	ear iar	
1 Liter Amber		_	z amber/cl		
500 mL Amber 250 mL Amber (8oz amber)			~		
250 ML Amber (802 amber)			z amber/cl	ear iar	
······································			z amber/cloastic Bag / 3		
1 Liter Plastic			astic Bag / :	Ziploc	
1 Liter Plastic 500 mL Plastic		Pla		Ziploc	
1 Liter Plastic 500 mL Plastic 250 mL plastic	83	Pl: Non-	astic Bag / . SOC Kil	Ziploc i ontainer	
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	83	Pla Non-	astic Bag / . SOC Kil ConTest C	Ziploc ontainer Kit	
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	83	Non-	soc Kill SOC Kill ConTest C Perchlorate Flashpoint b	Ziploc i ontainer e Kit oottle	
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle		Non-	SOC Kill ConTest C Perchlorate Plashpoint b Other glass Other	Ziploc ontainer e Kit oottle s jar	
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle		Non-	SOC Kill ConTest C Perchlorate Plashpoint b Other glass Other	Ziploc ontainer e Kit oottle s jar	5 Brokan
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Laboratory Comments: San O		Non-	SOC Kill SOC Kill ConTest C Perchlorate Plashpoint b Other glass Other	Ziploc i ontainer e Kit oottle s jar	s Broken al Broken
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Laboratory Comments: Sample	2#1 " RW-1 2#3" EFF4	Non-	SOC Kill SOC Kill ConTest C Perchlorate Plashpoint b Other glass Other	Ziploc i container i kit cottle is jar 2 V (CA)	SOKAN al Broken and Date Frozen:
1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Laboratory Comments: San O	2#1 " RW-1 2#3" EFF4 #Me	Non- Recieved "Recieved	SOC Kill SOC Kill ConTest C Perchlorate Plashpoint b Other glass Other	Ziploc i container i kit cottle is jar 2 V (CA)	al Broken

July 8, 2015

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 15F1140

Enclosed are results of analyses for samples received by the laboratory on June 24, 2015. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
15F1140-01	5
15F1140-02	6
15F1140-03	7
15F1140-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B125501	10
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	15

Arcadis US, Inc. - Clifton Park-NY

855 Route 146, Suite 210 Clifton Park, NY 12065 ATTN: Jeremy Wyckoff

PURCHASE ORDER NUMBER:

REPORT DATE: 7/8/2015

CREINISE GRBER NOMBER

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 15F1140

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1	15F1140-01	Water		EPA 624	
RW-2	15F1140-02	Water		EPA 624	
EFF 46 HZ	15F1140-03	Water		EPA 624	
Trip Blank	15F1140-04	Trip Blank Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 624

Qualifications:

V-06

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,4-Dioxane B125501-BS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Johanna K. Harrington

Manager, Laboratory Reporting

Project Location: S. Otselic, NY Sample Description: Work Order: 15F1140

Date Received: 6/24/2015 Field Sample #: RW-1

Sampled: 6/22/2015 12:30

Sample ID: 15F1140-01 Sample Matrix: Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Chlorobenzene	ND	2.0	0.12	μg/L	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	7/6/15	7/6/15 21:03	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,1-Dichloroethane	1.8	2.0	0.16	$\mu g/L$	1	J	EPA 624	7/6/15	7/6/15 21:03	MFF
1,1-Dichloroethylene	0.99	2.0	0.21	$\mu g/L$	1	J	EPA 624	7/6/15	7/6/15 21:03	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,1,1-Trichloroethane	41	2.0	0.094	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:03	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		100		70-130					7/6/15 21:03	
Toluene-d8		98.8		70-130					7/6/15 21:03	

Project Location: S. Otselic, NY Sample Description: Work Order: 15F1140

Date Received: 6/24/2015 Field Sample #: RW-2

Sampled: 6/22/2015 12:35

Sample ID: 15F1140-02 Sample Matrix: Water

	D 7:	Dr	D.	T T **	D11 41	FI (0.1		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Carbon Tetrachloride	ND	2.0	0.10	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Chlorodibromomethane	ND	2.0	0.054	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Chloroethane	ND	2.0	0.16	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,2-Dichlorobenzene	ND	2.0	0.076	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,3-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,4-Dichlorobenzene	ND	2.0	0.046	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,1-Dichloroethane	1.1	2.0	0.16	μg/L	1	J	EPA 624	7/6/15	7/6/15 21:36	MFF
1,1-Dichloroethylene	1.0	2.0	0.21	μg/L	1	J	EPA 624	7/6/15	7/6/15 21:36	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Tetrachloroethylene	ND	2.0	0.080	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Toluene	ND	1.0	0.090	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,1,1-Trichloroethane	48	2.0	0.094	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
1,1,2-Trichloroethane	ND	2.0	0.034	μg/L μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Trichloroethylene	ND	2.0	0.12		1		EPA 624	7/6/15	7/6/15 21:36	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.077	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Vinyl Chloride				μg/L						
m+p Xylene	ND	2.0	0.13	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
o-Xylene	ND	2.0	0.18	μg/L			EPA 624	7/6/15	7/6/15 21:36	MFF
	ND	2.0	0.11	μg/L	1		EPA 624	7/6/15	7/6/15 21:36	MFF
Surrogates 12 Pi 11 14		% Reco	very	Recovery Limits	5	Flag/Qual			7/6/15 21 26	
1,2-Dichloroethane-d4 Toluene-d8		99.5 99.6		70-130 70-130					7/6/15 21:36 7/6/15 21:36	
4 Bromofluorobenzene		99.0		70-130					7/6/15 21:36	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	99.5	70-130		7/6/15 21:36
Toluene-d8	99.6	70-130		7/6/15 21:36
4-Bromofluorobenzene	97.0	70-130		7/6/15 21:36

Project Location: S. Otselic, NY Sample Description: Work Order: 15F1140

Date Received: 6/24/2015 Field Sample #: EFF 46 HZ

Sampled: 6/22/2015 12:40

Sample ID: 15F1140-03 Sample Matrix: Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Carbon Tetrachloride	ND	2.0	0.10	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Chlorobenzene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Chlorodibromomethane	ND	2.0	0.054	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Chloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Chloroform	ND	2.0	0.14	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,2-Dichlorobenzene	ND	2.0	0.076	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,3-Dichlorobenzene	ND	2.0	0.079	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,4-Dichlorobenzene	ND	2.0	0.046	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,2-Dichloropropane	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
cis-1,3-Dichloropropene	ND	2.0	0.062	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
trans-1,3-Dichloropropene	ND	2.0	0.056	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Ethylbenzene	ND	2.0	0.092	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Toluene	ND	1.0	0.090	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
1,1,1-Trichloroethane	0.22	2.0	0.094	$\mu g/L$	1	J	EPA 624	7/6/15	7/6/15 20:30	MFF
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
m+p Xylene	ND	2.0	0.18	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 20:30	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		99.3		70-130					7/6/15 20:30	
Toluene-d8		99.7		70-130					7/6/15 20:30	

Project Location: S. Otselic, NY Work Order: 15F1140 Sample Description:

Date Received: 6/24/2015 Field Sample #: Trip Blank

Sampled: 6/22/2015 00:00

Sample ID: 15F1140-04 Sample Matrix: Trip Blank Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.079	μg/L	1	riag/Quai	EPA 624	7/6/15	7/6/15 19:58	MFF
Bromodichloromethane	ND ND	2.0	0.079		1		EPA 624	7/6/15	7/6/15 19:58	MFF
Bromoform	ND ND	2.0	0.088	μg/L μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Bromomethane	ND	2.0	0.94	μg/L μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Carbon Tetrachloride	ND	2.0	0.10	μg/L μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Chlorobenzene	0.25	2.0	0.10	μg/L μg/L	1	J	EPA 624	7/6/15	7/6/15 19:58	MFF
Chlorodibromomethane	ND	2.0	0.054	μg/L μg/L	1	J	EPA 624	7/6/15	7/6/15 19:58	MFF
Chloroethane	ND	2.0	0.034		1		EPA 624	7/6/15	7/6/15 19:58	MFF
2-Chloroethyl Vinyl Ether	ND ND	10	2.2	μg/L	1		EPA 624	7/6/15		MFF
Chloroform	ND ND			μg/L	1			7/6/15	7/6/15 19:58	
Chloromethane	ND ND	2.0 2.0	0.14	μg/L			EPA 624 EPA 624	7/6/15	7/6/15 19:58	MFF
1,2-Dichlorobenzene				μg/L	1		EPA 624 EPA 624		7/6/15 19:58	MFF MFF
1,3-Dichlorobenzene	ND	2.0	0.076	μg/L	1			7/6/15	7/6/15 19:58	
1,4-Dichlorobenzene	ND	2.0	0.079	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
,	ND	2.0	0.046	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,2-Dichloropropane	ND	2.0	0.11	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
cis-1,3-Dichloropropene	ND	2.0	0.062	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
trans-1,3-Dichloropropene	ND	2.0	0.056	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Ethylbenzene	ND	2.0	0.092	μg/L	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Tetrachloroethylene	ND	2.0	0.080	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Toluene	0.47	1.0	0.090	$\mu g/L$	1	J	EPA 624	7/6/15	7/6/15 19:58	MFF
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Trichloroethylene	ND	2.0	0.077	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
m+p Xylene	0.27	2.0	0.18	$\mu g/L$	1	J	EPA 624	7/6/15	7/6/15 19:58	MFF
o-Xylene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/6/15	7/6/15 19:58	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		99.2		70-130					7/6/15 19:58	
Toluene-d8		99.8		70-130					7/6/15 19:58	

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
15F1140-01 [RW-1]	B125501	5	5.00	07/06/15
15F1140-02 [RW-2]	B125501	5	5.00	07/06/15
15F1140-03 [EFF 46 HZ]	B125501	5	5.00	07/06/15
15F1140-04 [Trip Blank]	B125501	5	5.00	07/06/15

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B125501 - SW-846 5030B										
Blank (B125501-BLK1)				Prepared &	Analyzed: 07	/06/15				
Acetone	ND	50	μg/L							
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	μg/L							
Bromoform	ND	2.0	μg/L							
Bromomethane	ND	2.0	μg/L							
Carbon Tetrachloride	ND	2.0	μg/L							
Chlorobenzene	ND	2.0	μg/L							
Chlorodibromomethane	ND	2.0	μg/L							
Chloroethane	ND	2.0	μg/L							
2-Chloroethyl Vinyl Ether	ND	10	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
1,2-Dichlorobenzene	ND	2.0	μg/L							
1,3-Dichlorobenzene	ND	2.0	μg/L							
1,4-Dichlorobenzene	ND	2.0	μg/L							
1,2-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethylene	ND	2.0	μg/L							
trans-1,2-Dichloroethylene	ND	2.0	μg/L							
1,2-Dichloropropane	ND	2.0	$\mu g/L$							
cis-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
1,4-Dioxane	ND	50	μg/L							
trans-1,3-Dichloropropene	ND	2.0	$\mu \text{g/L}$							
Ethylbenzene	ND	2.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu \text{g/L}$							
Methylene Chloride	ND	5.0	$\mu \text{g/L}$							
1,1,2,2-Tetrachloroethane	ND	2.0	$\mu g/L$							
Tetrachloroethylene	ND	2.0	$\mu g \! / \! L$							
Toluene	ND	1.0	$\mu \text{g/L}$							
1,1,1-Trichloroethane	ND	2.0	$\mu g \! / \! L$							
1,1,2-Trichloroethane	ND	2.0	$\mu g \! / \! L$							
Trichloroethylene	ND	2.0	$\mu g\!/\!L$							
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g\!/\!L$							
Vinyl Chloride	ND	2.0	$\mu g/L$							
m+p Xylene	ND	2.0	$\mu g/L$							
o-Xylene	ND	2.0	$\mu g/L$							
Surrogate: 1,2-Dichloroethane-d4	24.5		μg/L	25.0		98.2	70-130			
Surrogate: Toluene-d8	24.8		μg/L μg/L	25.0		99.2	70-130			
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130			
LCS (B125501-BS1)				Prepared &	Analyzed: 07	/06/15				
Acetone	105	50	μg/L	100		105	70-160			
Benzene	11.1	1.0	$\mu g/L$	10.0		111	37-151			
Bromodichloromethane	9.80	2.0	$\mu g/L$	10.0		98.0	35-155			
Bromoform	8.73	2.0	$\mu g/L$	10.0		87.3	45-169			
Bromomethane	8.47	2.0	$\mu g/L$	10.0		84.7	20-242			
Carbon Tetrachloride	11.0	2.0	$\mu g/L$	10.0		110	70-140			
Chlorobenzene	10.1	2.0	μg/L	10.0		101	37-160			
Chlorodibromomethane	10.6	2.0	μg/L	10.0		106	53-149			
Chloroethane	9.57	2.0	μg/L	10.0		95.7	70-130			
2-Chloroethyl Vinyl Ether	108	10	μg/L	100		108	10-305			
Chloroform	10.7	2.0	μg/L	10.0		107	51-138			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B125501 - SW-846 5030B											
LCS (B125501-BS1)				Prepared &	Analyzed: 07	//06/15					
Chloromethane	10.2	2.0	μg/L	10.0		102	20-273				
1,2-Dichlorobenzene	8.93	2.0	$\mu g/L$	10.0		89.3	18-190				
1,3-Dichlorobenzene	9.03	2.0	$\mu g/L$	10.0		90.3	59-156				
1,4-Dichlorobenzene	8.69	2.0	$\mu g/L$	10.0		86.9	18-190				
1,2-Dichloroethane	9.31	2.0	$\mu g/L$	10.0		93.1	49-155				
1,1-Dichloroethane	10.8	2.0	$\mu g/L$	10.0		108	59-155				
1,1-Dichloroethylene	9.41	2.0	$\mu g/L$	10.0		94.1	20-234				
trans-1,2-Dichloroethylene	10.7	2.0	$\mu g/L$	10.0		107	54-156				
1,2-Dichloropropane	10.2	2.0	$\mu g/L$	10.0		102	20-210				
cis-1,3-Dichloropropene	9.80	2.0	$\mu g/L$	10.0		98.0	20-227				
1,4-Dioxane	133	50	μg/L	100		133 *	40-130			V-06	1
trans-1,3-Dichloropropene	10.1	2.0	μg/L	10.0		101	17-183				
Ethylbenzene	9.72	2.0	μg/L	10.0		97.2	37-162				
Methyl tert-Butyl Ether (MTBE)	9.46	2.0	μg/L	10.0		94.6	70-130				
Methylene Chloride	12.7	5.0	μg/L	10.0		127	50-221				
1,1,2,2-Tetrachloroethane	10.2	2.0	μg/L	10.0		102	46-157				
Tetrachloroethylene	11.0	2.0	μg/L	10.0		110	64-148				
Toluene	10.6	1.0	μg/L	10.0		106	47-150				
1,1,1-Trichloroethane	10.6	2.0	μg/L	10.0		106	52-162				
1,1,2-Trichloroethane	10.5	2.0	μg/L	10.0		105	52-150				
Trichloroethylene	10.5	2.0	μg/L	10.0		105	71-157				
Trichlorofluoromethane (Freon 11)	10.5	2.0	μg/L	10.0		105	17-181				
Vinyl Chloride	8.45	2.0	μg/L	10.0		84.5	20-251				
m+p Xylene	19.8	2.0	μg/L	20.0		99.1	70-130				
o-Xylene	9.45	2.0	$\mu g/L$	10.0		94.5	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.9		μg/L	25.0		91.6	70-130				
Surrogate: Toluene-d8	25.2		$\mu g/L$	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	26.6		$\mu g/L$	25.0		107	70-130				

V-06

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.

QC result is outside of established limits.

Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).

Continuing calibration did not meet method specifications and was biased on the high side for this compound.

Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
EPA 624 in Water		
Benzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Methyl tert-Butyl Ether (MTBE)	NC	
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Toluene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA,NJ	
m+p Xylene	CT,MA,NH,NY,RI,NC,VA,NJ	
o-Xylene	CT,MA,NH,NY,RI,NC,VA,NJ	

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2016
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2015
NY	New York State Department of Health	10899 NELAP	04/1/2016
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2016
RI	Rhode Island Department of Health	LAO00112	12/30/2015
NC	North Carolina Div. of Water Quality	652	12/31/2015
NJ	New Jersey DEP	MA007 NELAP	09/30/2015
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2015
WA	State of Washington Department of Ecology	C2065	02/23/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2015
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2015

Phone: 413-525-2332

East longmeadow, MA 01028 39 Spruce Street

CHAIN OF CUSTODY RECORD

Dissolved Metals ***Container Code # of Containers ** Preservation ANALYSIS REQUESTED でだこち Telephone: <18-150-7300 Project # 00266406,0000 **NEW YORK STATE** Email: info@contestlabs.com www.contestlabs.com Fax: 413-525-6405 576210 ANALYTICAL LABORATORY Company Name: A RCADIS

B = Sodium bisulfate O NY Part 375 **DW**≖ drinking water GW= groundwater WW= wastewater O NY CP-51 T = Na thiosulfate X = Na hydroxide O Field Filtered S = Sulfuric Acid O Lab to Filter Other: **Preservation ***Cont. Code: *Matrix Code: A=amber glass M = Methano! N = Nitric Acid S=summa can S = soil/solid T=tedlar bag 0 = Other O = other ST=sterile P=plastic 0=Other G=glass H.HCL A = air V≖ vial l='Iced ○ AWQ STDS ○ NY Unrestricted Use Program Information/Regulatory NY TOGS NY Restricted Use Please use the following codes to let Con-Test know if a specific sample H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ NYC Sewer Discharge ○ Part 360 GW (Landfill) Turnaround 10-Day or 5-Day 7 Day 10-Day RUSH * *Matrix Cone Code Email cry, excelfered to seem OWEBSITE Ž PDF EXCEL GIS O "Enhanced Data Package" DATA DELIVERY (check all that apply) Composite | Grab | Lode X X EMAIL Date/Time: Date/Time O FR Client PO# 16/21/15 51/22/9 16/2415 6/11/8 Ending Fax# Collection Relinquished by: Received by: Beginning 40 1230 1235 Client Sample ID / Description 1300 6/22/15 6-23-15 Date/Time: Date/Time: Project Location: S. Otsliz, NY TRIP BLUK IIFten FANK, NY EFF WH Attention: Jeans Wilkett 855 Rate 146 O Project Proposal Provided? (for billing アニース REL Sampled By: ていっこん杆 Relinquished by: (signature) Con-Test Lab ID purposes) Comments: Address:

PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT M. ALL ALLE CHAINS TO A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. Date Time: 9.36 Received by:

Table of Contents

Oother:

OEquis (1 file)

Deliverables O ASP-A

4 day 🔾 48 hr 🔾

72 hr O 24 hr O

Date/Time:

Date/Time:

Relinquished by:

6.23.15 500Pm

35°C

15 of 18

Date/Time:

My Profile

My FedEx Rewards

Support Locations English English

Search

FedEx Office ® Login Ship Track Manage Learn

IMPORTANT!

Hurricane Season Readiness Learn More

FedEx * Trackino

773900564243

Ship (P/U) date Tues 6/23/2015 5:58 pm

ALBANY, NY US

Signed for by: L.WILSON

Actual delivery Wed 6/24/2015 9:36 am

EAST LONGMEADOW, MA US

FAST : ONGENTADOW MA

WINDSOR LOCKS CT

VINDSOR LOCKS CT

NEVARE, N3

NEWARK, NU

MENANDS, NY

ALBANY, NY

Travel History

Location ▲ Date/Time Activity

6/24/2015 - Wednesday

Delivered 9:36 am

On FedEx vehicle for delivery 7:45 am At local FedEx facility 7:39 am 3:15 am Departed FedEx location 12:07 am Arrived at FedEx location

» 6/23/2015 - Tuesday

Left FedEx origin facility 9:00 pm

Picked up 5:58 pm

Tendered at FedEx Office

Shipment information sent to FedEx 4:53 pm

Shipment Facts

Tracking 773900564243 number

80 lbs / 36.29 kgs Weight

Delivered To Shipping/Receiving Total shipment 80 lbs / 36.29 kgs

weight

Packaging Your Packaging

Total pieces 1

Shipper 85 reference

Special handling Deliver Weekday, Additional Handling

Service

Dimensions

section Surcharge

Red Bot.

Careers

© FedEx 1995-2015

Follow FedEx Featured Services Companies Customer Focus FedEx Express FedEx One Rate New Customer Center

Small Business Center FedEx SameDay FedEx Home Delivery Service Guide Customer Support Healthcare Solutions

Online Retail Solutions Packaging Services Company Information About FedEx Ancillary Clearance Services

Investor Relations Other Resources FedEx Compatible Developer Resource Center

FedEx Ship Manager Software

FedEx Mobile

FedEx Priority Overnight

28x15x15 in.

FedEx Ground FedEx Office FedEx Freight FedEx Custom Critical FedEx Trade Networks

FedEx SupplyChain FedEx TechConnect

Global Home | Site Map | fedex com Terms of Use | Security and Privacy

Page 16 of 18

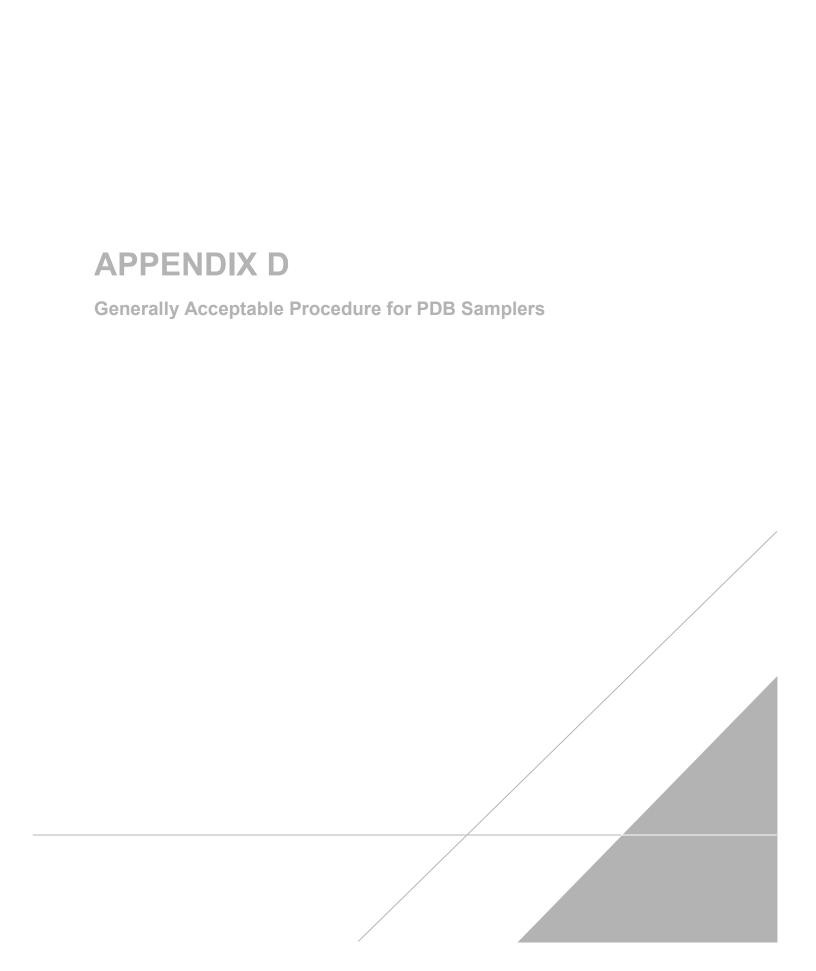
United States - English

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332

F: 413-525-6405 www.contestlabs.com

Page 1 of 2

Table of Contents


Sample Receipt Checklist

If not, explain: Are all the samples in good conditions in the samples received: How were the samples received: Direct from Samples received in Temples received in	Imples? Inition? Inition? Inition I	Ambien ance of (2Temper ?	res No Yes No No Yes No No Yes No		Cincluded
If not, explain: Are all the samples in good conditions if not, explain: How were the samples received: Direct from Samular from Sam	Imples? Inition? Inition? Inition I	Ambien ance of (2Temper ?	Yes No Yes No In Cooler(s) 6°C)? Yes No ature °C by Temp gun Yes No		C Included
If not, explain: How were the samples received: Direct from Sam Were the samples received in Temp Temperature °C by Temp blank Are there Dissolved samples for Who was notified Are there any RUSH or SHORT H	pling Derature Complication? the lab to filter' Date DING TIME s	ance of (2Temper ?Tir	In Cooler(s) 6°C)? Yes No ature °C by Temp gun Yes No) [
If not, explain:) How were the samples received: On Ice Direct from Sam Were the samples received in Temp Temperature °C by Temp blank) Are there Dissolved samples for Who was notified) Are there any RUSH or SHORT H	pling Derature Complications the lab to filter Date DING TIME s	ance of (2Temper ?Tir	In Cooler(s) 6°C)? Yes No ature °C by Temp gun Yes No) [
Direct from Sam Vere the samples received in Temp emperature °C by Temp blank Are there Dissolved samples for Who was notified Are there any RUSH or SHORT H	pling Derature Compliance the lab to filter Date IOLDING TIME s	ance of (2Temper ?Tir	Acceptance (Acceptance) (Accept		
Vere the samples received in Temperature °C by Temp blank Are there Dissolved samples for Who was notified Are there any RUSH or SHORT H	rerature Compliance the lab to filter Date IOLDING TIME	ance of (2Temper ?Tir	Acceptance (Acceptance) (Accept		
emperature °C by Temp blank Are there Dissolved samples for Who was notified Are there any RUSH or SHORT H	the lab to filter' Date	Temper ? Tir	ature °C by Temp gun Yes No	N/A	
) Are there Dissolved samples for Who was notified) Are there any RUSH or SHORT H	the lab to filter' Date		Yes No		
Who was notified Are there any RUSH or SHORT H	Date IOLDING TIME s	Tir	ne		
Who was notified Are there any RUSH or SHORT H	Date IOLDING TIME s	Tir	ne	/	
) Are there any RUSH or SHORT H	IOLDING TIME				
-		annhico;	Yes /No	9	
Who was notified	Date			ン	
		1//	Permission to sub	contract sa	moles? Yes No
) Location where samples are stored:			(Walk-in clients or	ily) if not all	eady approved
			Client Signature:		
) Do all samples have the proper a	Acid pH: Yes	No (N	Â		
) Do all samples have the proper		No (N	Ĩ A		
•				No N	
0) Was the PC notified of any disc				<u> </u>	<u>"</u>
Cor	ntainers re	eceive	d at Con-Test		
	# of containers				# of containers
	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40000			
1 Liter Amber		480200	8 oz amber/clear	jar	
1 Liter Amber 500 mL Amber		\exists	8 oz amber/clear 4 oz amber/clear		
500 mL Amber				jar	
			4 oz amber/clear	jar jar	
500 mL Amber 250 mL Amber (8oz amber)			4 oz amber/clear 2 oz amber/clear Plastic Bag / Zipl SOC Kit	jar jar oc	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic			4 oz amber/clear 2 oz amber/clear Plastic Bag / Zipl	jar jar oc	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta	jar jar oc ainer	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta Perchlorate Kit Flashpoint bottle	jar jar oc ainer	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta Perchlorate Kit Flashpoint bottle Other glass jar	jar jar oc ainer	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta	jar jar oc ainer	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta Perchlorate Kit Flashpoint bottle Other glass jar	jar jar oc ainer	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle			4 oz amber/clear 2 oz amber/clear Plastic Bag / Ziple SOC Kit Non-ConTest Conta Perchlorate Kit Flashpoint bottle	jar jar oc ainer	

Page 2 of 2 Login Sample Receipt Checklist

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/False)	Comment
	T/F/NA	
as True of the contraduced Manager in intent	l MM	
1) The cooler's custody seal, if present, is intact.	 	
2) The cooler or samples do not appear to have		
been compromised or tampered with.		
3) Samples were received on ice.		
4) O star Tarragaratura in accontable		
4) Cooler Temperature is acceptable.		
5) Cooler Temperature is recorded.	T	
	-	
COC is filled out in ink and legible.		
7) COC is filled out with all pertinent information.		
8) Field Sampler's name present on COC.	T	
6) Field Sampler's Hame present on CCC.		
9) There are no discrepancies between the		
sample IDs on the container and the COC.		
10) Samples are received within Holding Time.		
11) Sample containers have legible labels.		
40) O to the second harden as leading		
12) Containers are not broken or leaking.		
13) Air Cassettes are not broken/open.	I NA I	
10) All Cassettes and not offered open.		
14) Sample collection date/times are provided.		
•		
15) Appropriate sample containers are used.		
n e e e e	T	
16) Proper collection media used.		
17) No headspace sample bottles are completely filled.		
17) No fleadspace sample bottles are completely lines.		
18) There is sufficient volume for all requsted		
analyses, including any requested MS/MSDs.		
	4	
19) Trip blanks provided if applicable.		
20) VOA sample vials do not have head space or		
bubble is <6mm (1/4") in diameter.		
All Control of the second seco		
21) Samples do not require splitting or compositing. Who notified of Fa	Ise statements?	Date/Time: / /
Doc #277 Rev. 4 August 2013 Log-In Technician	Intalna	Date/Time: [0] 24 [5
BOOKETT HOLI A LINERACE BOLD BOLD BOOK	Initials: KKM	a 2/2

GENERALLY ACCEPTABLE PROCEDURE

FOR

PASSIVE DIFFUSION BAG SAMPLERS

PURPOSE/APPLICATION

Water-filled passive diffusion bag (PDB) samplers can be an effective, simple and inexpensive alternative to traditional groundwater sampling methods for measuring concentrations of a variety of volatile organic compounds (VOCs) in groundwater.

A typical passive diffusion bag sampler consists of low-density polyethylene lay-flat tube closed at both ends containing deionized water. The samplers operate by chemical diffusion across the semipermeable polyethylene membrane until a chemical equilibrium exists on both sides of the membrane. The samplers may be used individually or in "stacks" (several samplers positioned vertically at target depths) to assess the vertical distribution of VOCs in a well.

ADVANTAGES

- # PDB samplers produce little to no purge water, thus reducing sampling and disposal costs.
- # PDB samplers are relatively inexpensive.
- # PDB samplers are simple to deploy and recover.
- # PDB samplers are dedicated, single use, thus, there is no down-hole equipment to be decontaminated between wells.
- # Sampler deployment and recovery is rapid, making PDB samplers desirable for use where access is a problem or where discretion is necessary (residential communities, business districts, or busy streets).
- # PDB samplers are not affected by turbidity. The pore size of the polyethylene sampler is 10 angstroms or less which prevents sediment from entering the PDB sampler.
- # PDB samplers reduce interference from purge water mixing.
- # PDB samplers typically require less labor compared to traditional purge techniques.

LIMITATIONS

PDB samplers are not effective for obtaining representative concentrations of all compounds. Water-filled polyethylene PDB samplers typically do not provide representative concentrations of MTBE (methyl-*tert*-butyl ether), acetone, SVOCs, PCBs, and metals. Factors that limit the ability of compounds to diffuse

- through the PDB membrane include molecular size, shape, and any hydrophobic properties of the compounds.
- # PDB samplers typically take about 14 days to reach equilibrium concentrations. This could be a limitation if the goal of the sampling event is to gain a representative sample at a single point in time in an aquifer where VOC concentrations change more rapidly than the samplers equilibrate.
- # In wells containing stratified chemical concentrations, concentrations in a single PDB sampler may not represent the zone with the highest concentration.
- # Because wells sampled with PDB samplers are not purged, information on common field parameters is not obtained.
- # Requires careful placement at known depth for repeatable results.
- # PDB samplers provide only a limited sample volume.
- # PDB samplers are not universally accepted by all regulatory agencies. Consult with regulators before using.

RECOMMENDED EQUIPMENT

- # Polyethylene passive diffusion bags.
- # Deionized water
- # Stainless steel weights
- # Rope/wire with sufficient strength to support the weight and sampler. The rope/wire should be non-elastic (i.e. polyester, nylon, or stainless steel or Teflon coated stainless steel wire).
- # Hooks to secure the rope/wire to the well casing
- # Electronic water level probe
- # Measuring tape
- # Nitrile or Latex protective gloves.

EQUIPMENT DECONTAMINATION

PDB samplers are single-use disposable samplers, thus no decontamination is necessary. To prevent cross-contamination, rope should not be used in more than one well. However, stainless steel weights and coated stainless steel wire can be reused after sufficient decontamination with low phosphate detergent (Alconox or equivalent) and water.

PROCEDURES

Deployment

Using the electronic water level probe, measure the depth to water and the total well depth. Compare these measurements with previous measurements from the well and the reported depth of the well screen from the well construction record. This is to check if sediment has accumulated on the bottom of the well and if the well construction records are accurate.

- # Attach a stainless steel weight to the end of the line. Sufficient weight should be added to overcome the buoyancy of the PDB sampler.
- # Calculate the distance from the bottom of the well, to the depth where the PDB sampler is to be placed.
- # At the designated point, secure the PDB sampler to the weighted line using the ring tabs on both ends of the sampler.
- # Label PDB sampler(s) with well I.D. and depth (if using multiple PDBs in one well).
- # For relatively short well screens (less than five feet), the center point of the PDB sampler should be suspended at the vertical midpoint of the saturated well-screen length.
- # For well screens greater than five feet in length, it is suggested to use multiple PDB samplers vertically along the length of the well screen for at least the initial sampling. Multiple samplers are used to determine if contaminant stratification is present and to locate the zone with of highest concentration. The midpoint of each PDB sampler should be positioned at the midpoint of the sample interval.
- # With PDB sampler(s) attached, lower the weighted line to the bottom of the well. The weighted line should be taut when the PDB sampler(s) is at the target depth(s).
- # Secure the assembly in place. Attach the weighted line with a hook to the well riser or well cap. The well should be covered to prevent surface water infiltration.
- # Allow the system to remain undisturbed while the PDB sampler(s) equilibrate (minimum 14 days recommended; 6 months or more allowable if needed).

Sample Recovery

- # Remove the PDB sampler from the well using the attached line. Avoid exposing the sampler to excessive agitation as it is removed from the well.
- # Examine the surface of the PDB sampler for tears, algae, iron, or other coatings. If there are tears in the membrane, the sample should be discarded. If the outside of the sampler is coated with any material, it should be noted.
- # Detach the sampler from the weighted line and remove any excess fluids or materials from the exterior of the bag. This can be accomplished with paper towels.
- # There are several acceptable methods for transferring water from the PDB sampler to the 40ml volatile organic analysis (VOA) vials:
 - If a discharge device is provided by the PDB sampler supplier, it can be inserted either in place of the fill plug or directly into the bag.
 - If no discharge device is provided, the PDB sampler can be cut at one end using scissors or a sharp probe. The water should then be poured gently from the PDB sampler to the 40 ml VOA vials.
- # Samples should be preserved according to the analytical method and stored at approximately 4 °C in accordance with standard sampling protocol.
- # Any unused water from the PDB samplers should be disposed in accordance with local, state, and federal regulations.

PDB Sampler Suppliers

Columbia Analytical Services Lambertville, NJ

Phone: (609) 397-5326 Fax: (609) 397-5327

EON Product, Inc. P.O. Box 390246 Snellville, GA 30039 Toll-Free: (800) 474-2490

Fax: (770) 978-8661

REFERENCES

Vroblesky, D.A., 2001, User's Guide for Polyethylene-Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells: U.S. Geological Survey Water-Resources Investigation Report 01-4060, p. 1-11.

Naval Facilities Engineering Command, Washington D.C. 20374-5065, 2000, Diffusion Membrane Samplers, A Low-Cost Alternative Groundwater Monitoring Tool for VOCs: NFESC TDS-2085-ENV, p. 1-2.

http://www.clu-in.org/products/newsltrs/gwc/gwc1297.htm

APPENDIX E Groundwater Level Data Form

GROUNDWATER LEVEL DATA FORM

 PROJECT NAME:
 Gladding Cordage
 DATE:
 4/21/2015

 PROJECT NUMBER:
 00266406.0000
 NAME:
 AG

WELL ID	Date	Time	Headspace VOCs (ppm)	Depth to Water (feet)	Reference Point
TW-1	4/21/2015		NM	5.47	TOC
TW-2S	4/21/2015		NM	6.31	TOC
TW-2I	4/21/2015		NM	6.03	TOC
TW-2D	4/21/2015		NM	6.08	TOC
TW-3S	4/21/2015	10:25	NM	7.83	TOC
TW-3I	4/21/2015	10:35	NM	8.59	TOC
TW-3D	4/21/2015	10:40	NM	7.33	TOC
TW-4I	4/21/2015	11:30	NM	5.01	TOC
TW-5S	4/21/2015	13:35	NM	6.04	TOC
TW-5I	4/21/2015	13:30	NM	6.36	TOC
TW-5D	4/21/2015	13:25	NM	7.26	TOC
TW-6S	4/21/2015	15:00	NM	4.55	TOC
TW-6I	4/21/2015	14:50	NM	5.40	TOC
TW-6D	4/21/2015	14:55	NM	5.13	TOC
TW-7S	4/21/2015	13:55	NM	6.88	TOC
TW-7I	4/21/2015	14:05	NM	7.30	TOC
TW-7D	4/21/2015	14:10	NM	7.09	TOC
TW-9I	4/21/2015	14:20	NM	7.97	TOC
TW-9D	4/21/2015	14:30	NM	8.30	TOC
TW-10D	4/21/2015	-	NM	4.70	TOC
TW-12I	4/21/2015	15:20	NM	6.09	TOC
TW-12D	4/21/2015	15:30	NM	6.03	TOC
TW-14S	4/21/2015	11:20	NM	4.58	TOC
TW-14I	4/21/2015	11:10	NM	5.08	TOC
TW-14D	4/21/2015	11:15	NM	4.70	TOC
TW-15	4/21/2015	11:55	NM	4.52	TOC

Notes:

NM - Not Measured

Arcadis CE, Inc.

855 Route 146

Suite 210

Clifton Park, New York 12065

Tel 518 250 7300

Fax 518 250 7301

www.arcadis.com