

New York State Department of Environmental Conservation

GLADDING CORDAGE SITE QUARTERLY REPORT

SITE 7-09-009

Second Quarter 2016

October 2016

GLADDING CORDAGE SITE QUARTERLY REPORT - SECOND QUARTER 2016

GLADDING CORDAGE SITE QUARTERLY REPORT

Second Quarter 2016

Andy Vitolins, PG

Associate Vice President

Jeremy Wyckoff

Project Geologist

Prepared for:

New York State Department of Environmental Conservation – Division of Environmental Remediation

625 Broadway

Albany, NY 12233-7011

Prepared by:

Arcadis CE, Inc.

855 Route 146

Suite 210

Clifton Park

New York 12065

Tel 518 250 7300

Fax 518 250 7301

Our Ref.:

00266406.0000

Date:

October 2016

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyms and	d Abbreviations	iii
1	introduction	on	1
2	SITE DES	SCRIPTION	2
3	OPERATI	ON AND MAINTENANCE	3
	3.1 Treat	tment Plant Upgrades	3
	3.1.1	Variable Frequency Drive	3
	3.1.2	Treatment Plant Controls	3
	3.1.3	Geothermal Heat Exchanger	4
	3.2 Treat	tment Plant Operation	4
	3.3 Treat	tment System Sampling	4
	3.3.1	Influent Sample Results	4
	3.3.2	Effluent Sample Results	5
4	GROUND	WATER MONITORING PROGRAM	6
5	RECOMM	IENDATIONS	7
6	SUMMAR	Υ	8
7	REFEREN	NCES	9

TABLES

Table 3-1	Treatment System Status and Flow Summary
Table 3-2	Groundwater Treatment System VOCs (RW-1)
Table 3-3	Groundwater Treatment System VOCs (RW-2)
Table 3-4	Groundwater Treatment System VOCs (Effluent)

FIGURES

Figure 2-1 Site Location

Figure 3-1 Treatment System Influent Sample Concentration (1,1,1-TCA)

GLADDING CORDAGE SITE QUARTERLY REPORT - SECOND QUARTER 2016

APPENDICES

- A PLC Facsimile Reports
- B O&M Checklists
- C Analytical Reporting Forms
- D Groundwater 1,1,1-TCA Concentrations May 2015

ACRONYMS AND ABBREVIATIONS

Amsl above mean sea level

BTEX Benzene, toluene, ethylbenzene, and xylene.

Ft feet

GAP generally accepted procedure

HZ hertz

μg/L micrograms per liter

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance

PDB passive diffusion bag

PLC programmable logic controller

PCE Tetrachloroethene

USEPA United States Environmental Protection Agency

VFD variable frequency drive

VOC volatile organic compound

1,1-DCA 1,2-dichloroethane

1,1-DCE 1,2-dichloroethene

1,1,1-TCA 1,1,1-trichloroethane

1 INTRODUCTION

The New York State Department of Environmental Conservation (NYSDEC) has issued a Work Assignment (# D007618-9) to ARCADIS CE, Inc. (Arcadis) for Operation, Maintenance, and Monitoring at the Gladding Cordage Site (Site # 7-09-009). This Quarterly Report has been prepared in accordance with the NYSDEC-approved Work Plan to summarize second quarter 2016 site activities.

2 SITE DESCRIPTION

The Gladding Cordage Site is located on Ridge Road, South Otselic, Chenango County, New York (Figure 2-1), along the western bank of the Otselic River. The site contains an active braided wire and rope manufacturing facility that has been in operation since 1892.

3 OPERATION AND MAINTENANCE

On August 23, 2007, the NYSDEC provided a training session to Arcadis personnel on the operation and maintenance (O&M) of the groundwater treatment plant at the Gladding Cordage Site. Since then, Arcadis has maintained operation of the groundwater treatment plant. This includes the operation, maintenance, and influent/effluent sampling in accordance with the NYSDEC O&M manual (Operation and Maintenance Manual, Volume I, Gladding Cordage Site, Site 7-09-009, TAMS Consultants, Inc., 1996) (O&M Manual).

3.1 Treatment Plant Upgrades

3.1.1 Variable Frequency Drive

A variable frequency drive (VFD) was installed on January 9, 2008 to regulate the speed of the air stripper blower motor for reduced energy usage. Following the installation of the VFD, effluent samples were collected at various blower motor frequencies (speeds) to evaluate the minimum blower frequency required for the treatment plant to effectively treat groundwater extracted from the source area. Additional sampling was conducted again in February 2008 to further optimize the treatment system blower speed. Based on the results, the VFD setting was reduced to 42 hertz (HZ) beginning in March 2008. However, based on the detection of low-level VOCs in effluent samples from the treatment system, the VFD setting was subsequently increased to 46 HZ in September 2010 and was maintained at that frequency until November 19, 2014.

Based on a general trend of lower concentrations of VOCs in influent treatment system samples since September 2010, the NYSDEC authorized a reduction of the VFD frequency to 44 HZ in an attempt to further optimize treatment plant operations and reduce electric usage. The VFD frequency was lowered to 44 HZ on November 19, 2014. Following approximately one-half hour of operation, post-treatment effluent samples were collected in accordance with the Work Plan (see Section 3.2.1). Based on a review of post-treatment effluent sample data from November 19, 2014, 1,1,1 TCA and toluene were detected with the air stripper blower operating at 44 HZ, but at concentrations below the corresponding NYSDEC Class GA Standards. The NYSDEC was notified of the VOC detections and the blower motor frequency was subsequently increased to 46 HZ and has been maintained at that level since the December 18, 2014 O&M event.

3.1.2 Treatment Plant Controls

In August 2011, the NYSDEC authorized construction and installation of a new treatment plant controls system. The new control system is designed to provide remote access to treatment plant operating parameters and improve reliability of the groundwater remediation system. The treatment plant was shut down to begin repairs and upgrades on January 30, 2012 by Aztech Technologies, Inc. (Aztech). The upgrades to the treatment system controls were completed and the treatment plant resumed operation on March 22, 2012. The treatment plant functions are controlled and monitored using an EOS Research Ltd. ProControl Programmable Logic Controller (PLC). The interface software allows remote connection to the PLC via analog phone line. The PLC and interface software also allows the treatment system to be started or stopped remotely. The PLC is programmed to send a facsimile with the status of system inputs and outputs on a daily basis. If input and/or output device values exceed the defined operating parameters, an

alarm condition is set and the corresponding alarm information is sent via facsimile to the system user (i.e. Arcadis).

3.1.3 Geothermal Heat Exchanger

The NYSDEC authorized the installation of a geothermal heat exchanger to provide climate control (heating and humidity) for the treatment system building. The treatment plant was shut down to begin installation of the system on May 8, 2012 by Aztech. The geothermal heat exchanger installation and testing was completed on May 10, 2012. The heat-exchanger uses groundwater from the treatment plant as a geo-thermal energy source.

3.2 Treatment Plant Operation

As shown on PLC facsimile reports (Appendix A) and O&M Checklist and Operation Logs (Appendix B), the Gladding Cordage groundwater treatment system shut down on April 17, 2016 due to a power interruption. The system was restated remotely on April 18, 2016. The system also shut down on May 7, 2016 and was restarted remotely on May 9, 2016. In June 2016, the treatment plant shut down on three occasions due to power interruptions (June 5, June 7 and June 21). The treatment system was restarted remotely on June 9, 2016 following the June 7 power outage. The system could not be restarted remotely following the June 5, 2016 or June 21, 2016 power outage due to a lack of communication with the PLC. After each of these power outages, the PLC was rebooted and the system was restarted from the site.

The average monthly flow rates and total flow volumes for the second quarter 2016 operating period are summarized in Table 3-1. As shown in Table 3-1, the monthly flow rates from recovery wells RW-1 and RW-2 averaged approximately 23 gpm and 21gpm, respectively. Based on the total flow values, approximately 5.1 million gallons of water were treated and discharged to the Otselic River between April and June 2016.

3.3 Treatment System Sampling

Influent and effluent groundwater samples were collected from the Gladding Cordage treatment system in accordance with the Work Plan and submitted to Contest Analytical following chain-of-custody protocols. Each sample was analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 624. Analytical Reporting Forms are provided in Appendix C.

3.3.1 Influent Sample Results

Table 3-2 and Table 3-3 summarize influent VOC sample results from recovery wells RW-1 and RW-2, respectively. Figure 3-1 provides a summary of 1,1,1-TCA concentrations in samples from recovery wells RW-1 and RW-2 since September 2007.

Table 3-2 and Figure 3-1, show that the concentrations of 1,1,1-TCA in samples from recovery well RW-1 ranged between $31\mu g/L$ in April and $34\mu g/L$ in May. Table 3-3 and Figure 3-1, show that the concentrations of 1,1,1-TCA in the samples from recovery well RW-2 increased slightly from 25 $\mu g/L$ in April to 33 $\mu g/L$ in June. As shown in Tables 3-2 and 3-3, these results are within the range of historic concentrations and exceed the corresponding NYSDEC Class GA Standard of 5 $\mu g/L$.

As shown in Tables 3-2 and 3-3, 1,1-dichloroethane (1,1-DCA) and 1,1-dichloroethene (1,1-DCE) were detected in the second quarter 2016 samples from recovery wells RW-1 and RW-2. However, consistent with previous results, the concentrations were less than the applicable NYSDEC Class GA Standard of 5 μ g/L.

3.3.2 Effluent Sample Results

Table 3-4 summarizes laboratory analytical data for effluent samples collected from the treatment system. As shown in Table 3-4, no VOCs were detected in any of the second quarter 2016 effluent samples at the indicated quantitation limits.

Based on influent sample concentrations and total flow volumes from the Gladding Cordage treatment system, approximately 1.4 pounds of VOCs were removed by the treatment system during the second quarter 2016.

4 GROUNDWATER MONITORING PROGRAM

Groundwater samples were collected from the site during the second quarter 2015 in accordance with the Work Plan. The results of the sampling event were submitted in the second quarter 2015 Gladding Cordage Site Quarterly Report (Arcadis, 2015). The next groundwater sampling event is scheduled to take place during the third quarter 2016. A map showing the distribution of 1,1,1-TCA during the second quarter 2015 sampling event is provided in Appendix D for reference.

5 RECOMMENDATIONS

Based on the data presented herein, there are no recommended changes to site operations at this time.

6 SUMMARY

The Gladding Cordage groundwater treatment system had several interruptions during the second quarter 2016 due to power outages. With the exception of the one event, the system was restarted remotely following each power interruption. The average total flow through the treatment system was approximately 44 GPM.

The concentrations of VOCs detected in pre-treatment influent samples from recovery wells RW-1 and RW-2 were consistent with previous results.

The treatment successfully removes VOCs from groundwater extracted from the capture zone at the current VFD setting of 46 Hz. The VFD setting will continue to be evaluated based on system monitoring results. Approximately 1.4 pounds of VOCs were removed by the treatment system during the second quarter 2016.

Based on the current five-quarter sampling interval, the next groundwater monitoring event is scheduled to occur during the third quarter 2016.

TABLES

TABLE 3-1
TREATMENT SYSTEM STATUS AND FLOW SUMMARY
GLADDING CORDAGE SITE
SOUTH OTSELIC, NEW YORK
NYSDEC SITE NO. 7-04-009A

Date	System	System	Well On-time		Flow Rates		Totalizer Totalizer		Recovery Well Total Flows		Total System	Quarterly
	Operation	On-time	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	RW-1	RW-2	Flow	Totals
	(days)	(% of possible days)	(% possible)	(% possible)	(gpm)	(gpm)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
January-16	29	94%	100%	100%	20.7	22.1	39,095,592	35,850,122	875,567	912,846	1,788,413	
February-16	29	100%	100%	100%	21.9	22.2	39,988,542	36,759,764	892,950	909,642	1,802,592	5,501,623
March-15	31	100%	100%	100%	20.6	21.4	40,931,049	37,727,875	942,507	968,111	1,910,618	
April-16	29	97%	100%	100%	21.1	21.2	41,816,850	38,633,091	885,801	905,216	1,791,017	
May-16	29	94%	100%	100%	21.9	21.1	42,727,616	39,534,066	910,766	900,975	1,811,741	5,088,795
June-16	23	77%	100%	100%	24.9	21.6	43,515,441	40,232,278	787,825	698,212	1,486,037	

Total Flow 2016 5,295,416 5,295,002 10,590,418

Notes:

gpm - Gallons per minute

TABLE 3-2
GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-1)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
Sampling Date	Class GA	7/31/2015	8/28/2015	9/23/2015	10/26/2015	11/20/2015	12/21/2015	1/25/2016	2/26/2016	3/18/2016	4/22/2016	5/23/2016	6/24/2016
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs													
1,1,1-Trichloroethane	5	40	42	32	38	41	32	38	36	36	31	34	32
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	1.6 J	1.8 J	1.5 J	1.8 J	2.1	1.5 J	1.8 J	1.5 J	1.4 J	1.2 J	1.3 J	1.1 J
1,1-Dichloroethene	5	0.96 J	0.97 J	0.8 J	0.85 J	1.0 J	0.8 J	0.84 J	0.79 J	0.86 J	0.84 J	0.77 J	0.69 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethyl Vinyl Ether		10.0 U	10 U	10 U	10.0 U	10 U	10 U	10.0 U	10 U	10 U	10.0 U	10 U	10 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane (Methyl Chloride)	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	0.19 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	2.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Total VOCs		42.6	45.0	34.3	40.7	44.1	34.3	40.6	38.3	38.3	33.0	36.1	33.8

- Concentration exceeds corresponding NYSD Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

TABLE 3-3
GROUNDWATER TREATMENT SYSTEM VOCS (INFLUENT - RW-2)
GLADDING CORDAGE
SOUTH OTSELIC, NEW YORK
NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2	RW-2
Sampling Date	Class GA	7/31/2015	8/28/2015	9/23/2015	10/26/2015	11/20/2015	12/21/2015	1/25/2016	2/26/2016	3/18/2016	4/22/2016	5/23/2016	6/24/2016
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs													
1,1,1-Trichloroethane	5	34	36	26	32	34	26	32	29	29	25	28	33
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	0.74 J	0.77 J	0.61 J	0.75 J	0.85 J	0.61 J	0.86 J	0.62 J	0.62 J	0.53 J	0.56 J	0.58 J
1,1-Dichloroethene	5	0.72 J	0.62 J	0.58 J	0.63 J	0.92 J	0.58 J	0.64 J	0.56 J	0.66 J	0.60 J	0.62 J	0.58 J
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethyl Vinyl Ether		10.0 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane (Methyl Chloride)	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	0.15 J	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Total VOCs		35.5	37.5	27.2	33.4	35.8	27.2	33.5	30.2	30.3	26.1	29.2	34.2

- Concentration exceeds corresponding NYSDEC Class GA Standard.

U - Not detected at the indicated concentration

J - Estimated concentration.

G:\PROJECT\00266406.0000\Reports\2nd Qtr 2016\Table 3-1, 3-2, 3-3, 3-43-3 RW-2

TABLE 3-4 **GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT) GLADDING CORDAGE** SOUTH OTSELIC, NEW YORK NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA	7/31/2015	8/28/2015	9/23/2015	10/26/2015	11/20/2015	12/21/2015
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs							
1,1,1-Trichloroethane	5	0.22 J	0.17 J	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloroethane	0.6	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichloropropane	1	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	3	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethyl Vinyl Ether		10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromoform	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Bromomethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Carbon Tetrachloride	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chlorobenzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroform	7	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloromethane (Methyl Chloride)	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
cis-1,3-Dichloropropene	0.4	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Dibromochloromethane	50	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethyl Benzene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
m/p-Xylenes	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methyl tert-butyl Ether		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	5	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
o-Xylene		2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Tetrachloroethene	5	2.0 U	0.2 J	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
trans-1,3-Dichloropropene	0.4	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlorofluoromethane	5	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Vinyl Chloride	2	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U

Notes

U - Not detected at the indicated concentration.

J - Estimated concentration.

1 of 2

TABLE 3-4 **GROUNDWATER TREATMENT SYSTEM VOCS (EFFLUENT) GLADDING CORDAGE** SOUTH OTSELIC, NEW YORK NYSDEC Site No. 7-09-009

Sample ID	NYSDEC	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)	EFF(46HZ)
Sampling Date	GA	1/25/2016	2/26/2016	3/18/2016	4/22/2016	5/23/2016	6/24/2016
Matrix	Standard	WATER	WATER	WATER	WATER	WATER	WATER
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
VOCs		Ŭ					
1,1,1-Trichloroethane	5	1.0 U					
1,1,2,2-Tetrachloroethane	5	2.0 U					
1,1,2-Trichloroethane	1	2.0 U					
1,1-Dichloroethane	5	2.0 U					
1,1-Dichloroethene	5	2.0 U					
1,2-Dichlorobenzene	3	2.0 U					
1,2-Dichloroethane	0.6	2.0 U					
1,2-Dichloropropane	1	2.0 U					
1,3-Dichlorobenzene	3	2.0 U					
1,4-Dichlorobenzene	3	2.0 U					
2-Chloroethyl Vinyl Ether		10 U					
Benzene	1	1.0 U					
Bromodichloromethane	50	2.0 U					
Bromoform	50	2.0 U					
Bromomethane	5	2.0 U					
Carbon Tetrachloride	5	2.0 U					
Chlorobenzene	5	2.0 U					
Chloroethane	5	2.0 U					
Chloroform	7	2.0 U					
Chloromethane (Methyl Chloride)	5	2.0 U	1.0 J				
cis-1,3-Dichloropropene	0.4	2.0 U					
Dibromochloromethane	50	2.0 U					
Ethyl Benzene	5	2.0 U					
m/p-Xylenes	5	2.0 U					
Methyl tert-butyl Ether		2.0 U					
Methylene Chloride	5	5.0 U					
o-Xylene		2.0 U					
Tetrachloroethene	5	2.0 U					
Toluene	5	1.0 U					
trans-1,2-Dichloroethene	5	2.0 U					
trans-1,3-Dichloropropene	0.4	5.0 U	2.0 U	2.0 U	5.0 U	2.0 U	2.0 U
Trichloroethene	5	2.0 U					
Trichlorofluoromethane	5	2.0 U					
Vinyl Chloride	2	2.0 U					

Notes

U - Not detected at the indicated concentration.

J - Estimated concentration.

2 of 2

FIGURES

Figure 2-1 Site Location

Gladding Cordage Site South Otselic, New York NYSDEC Site 7-09-009

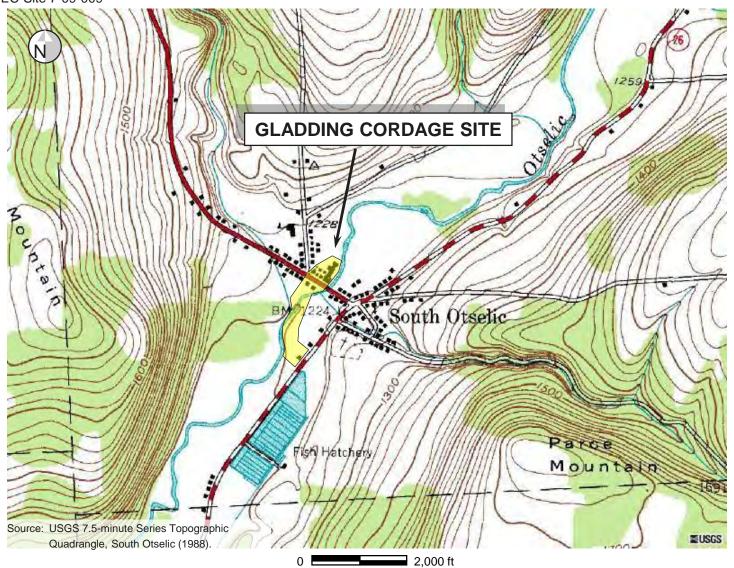
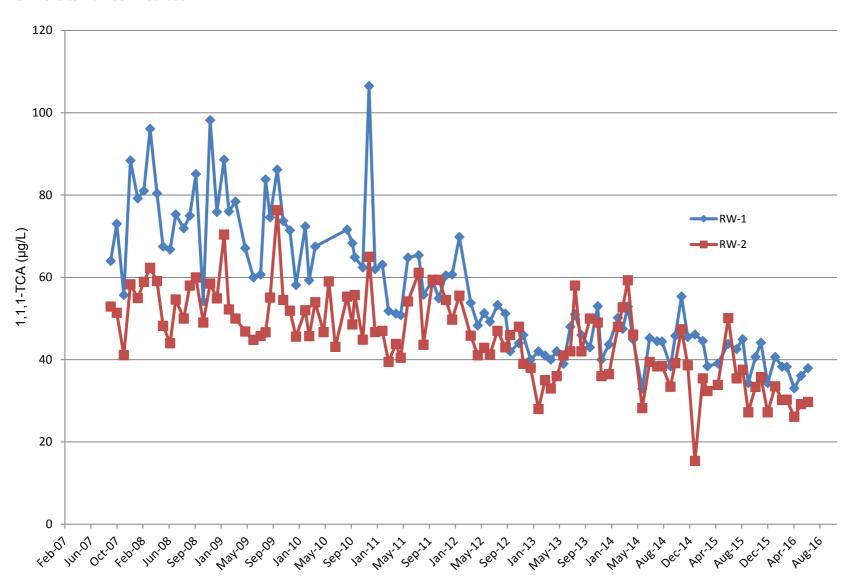



Figure 3-1
Treatment System Influent Sample Concentrations (1,1,1-TCA)

Gladding Cordage Site NYSDEC Site Number 7-09-009

APPENDIX A

PLC Facsim ile Reports

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/01/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.1 W2_FLO is 21.7 **GPM** 40961217 TOTAL FLOW is GAL GPM TOTAL FLOW is 37758964 GAL $AS\overline{B}PRS$ is 10.1H: 30.0 LIMITS are 5.0 IWC IWC \mathbf{L} : IWC 0.00 TOTAL FLOW is 454905 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.52AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.98 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.74 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 63.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/02/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.8 W2_FLO is 21.3 **GPM** 40991425 TOTAL FLOW is GAL 21.3 GPM TOTAL FLOW is 37790043 GAL $AS\overline{B}PRS$ is H: 30.0 10.5 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 455006 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.17 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.06 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 57.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/03/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.1 W2_FLO is 21.5 **GPM** 41021693 TOTAL FLOW is GAL 21.5 GPM TOTAL FLOW is 37821115 GAL ASBPRS is 10.7 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 455158 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.54AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.09 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.06 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 53.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/06/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.7 W2_FLO is 21.7 **GPM** 41112535 TOTAL FLOW is GAL GPM TOTAL FLOW is 37914517 GAL ASBPRS is 11.2 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 455934 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is 33.68 H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.06 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.7 L: 0.5 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 49.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.7 W2_FLO is 21.5 **GPM** 41142700 TOTAL FLOW is GAL GPM TOTAL FLOW is 37945634 GAL $AS\overline{B}PRS$ is L: 5.0 H: 30.0 10.5 LIMITS are IWC IWC IWC TOTAL FLOW is 456116 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 4.51AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.89 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is - 55 . 87 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.4W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 56.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/08/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.1 W2_FLO is 22.0 **GPM** 41172901 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 37976845 GAL ASBPRS is 10.6 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 456253 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.89 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.03 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.6 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 55.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/09/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.0 W2_FLO is 21.9 **GPM** 41203215 TOTAL FLOW is GAL GPM TOTAL FLOW is 38008154 GAL ASBPRS is 10.7 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC 0.00 TOTAL FLOW is 456453 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.89 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.84 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.7 PSI LIMITS are PSI PSI INTEMP is 51.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/10/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.8 W2_FLO is 21.9 **GPM** 41233477 TOTAL FLOW is GAL GPM TOTAL FLOW is 38039448 GAL L: 5.0 $AS\overline{B}PRS$ is 11.1 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 456701 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 34.19 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.76 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.7 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 50.7DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/11/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.6 W2_FLO is 21.9 **GPM** 41263702 TOTAL FLOW is GAL GPM TOTAL FLOW is 38070707 GAL $AS\overline{B}PRS$ is 10.6 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 456888 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:33.80 H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.46 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/12/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.2 W2_FLO is 22.0 **GPM** 41293918 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 38101971 GAL ASBPRS is 10.5 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 457040 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMPL: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.52AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.53 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 57.29 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 55.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/13/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.2 W2_FLO is 21.8 **GPM** 41324249 TOTAL FLOW is GAL GPM TOTAL FLOW is 38133323 GAL L: 5.0 $AS\overline{B}PRS$ is 11.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 457234 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 4.49AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.88 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.27 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.7 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 51.6DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/14/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.9 W2_FLO is 21.8 **GPM** 41354533 TOTAL FLOW is GAL GPM TOTAL FLOW is 38164653 GAL ASBPRS is 10.9 \mathbf{L} : H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 457427 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.55 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 56.91 W2 LVL is 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.7 PSI LIMITS are PSI PSI INTEMP is 52.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/15/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.8 W2_FLO is 21.5 **GPM** 41384795 TOTAL FLOW is GAL GPM TOTAL FLOW is 38195962 GAL ASBPRS is 11.0 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 457579 HP FLO is 2.34 GPM GAL H: 20.0 HP PRS is 8.4 PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 6.60 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.38 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.67 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 53.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/16/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.0 W2_FLO is 21.9 **GPM** 41415011 TOTAL FLOW is GAL GPM TOTAL FLOW is 38227270 GAL L: 5.0 ASBPRS is 10.8 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 457729 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.59AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 4.62AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.22 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.55 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 55.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/17/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.5 **GPM** 41445196 TOTAL FLOW is GAL GPM TOTAL FLOW is 38258562 GAL ASBPRS is 10.8 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 457844 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 34.02 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.42 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 53.9DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 11:40:54 ON 04/17/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

Vstem Status:

LAST SHUTDOWN @ 14:05:23 ON 02/17/2016 BY ACFAIL SHUTD

FAX REPORT INITIATED BY PROCESS 29

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP ASP_LO is OFF is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is OFF W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is OFF SMPALM is OFF ASBALM is ON VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 **GPM** TOTAL FLOW is 41452330 GAL 38265954 W2 FLO is 0.0**GPM** TOTAL FLOW is GAL LIMITS are H: 30.0 IWC ASBPRS is 0.6 IWC IWC L: 5.0 $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 457871 GAL H: 20.0 PRS is 0.9PSI LIMITS are \mathbf{L} : -2.0 PSI PSI AMP is 0.06 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.01 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 0.00 AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 35.48 \mathbf{FT} W1 LVL is \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is M5_TAT 57.27 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 62.6 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/18/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF ASBALM is ON SMPALM is OFF W2_ALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 41452330 TOTAL FLOW is GAL GPM TOTAL FLOW is 38265954 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 457883 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.07 LIMITS are AMPL: 0.00AMP н: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 35.87 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.65 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 55.5DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/19/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF IIP_OP is OFF ASP_III is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRST is OFF VFDRUN is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.4 41479728 **GPM** TOTAL FLOW is GAL **GPM** TOTAL FLOW is 38293082 GAL ASBPRS is 10.5 H: 30.0 IWC IWC LIMITS are \mathbf{L} : IWC 457970 HP FLO is 0.00 **GPM** TOTAL FLOW is GAL HP PRS is 1.2 PSI LIMITS are PSI H: 20.0 PSI HP AMP is 0.04 AMP LIMITS are L: 0.00 AMPн: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are 0.00 AMP AMP $\mathbf{L}:$ W2_AMP is W1_LVL is H: 10.00 H: 28.00 AMPLIMITS 0.00 AMP AMP areL:33.41 \mathbf{FT} LIMITS 8.00 \mathbf{FT} are \mathbf{L} : \mathbf{FT} W2LVL is 56.23 \mathbf{FT} LIMITS are9.00 \mathbf{FT} H: 52.00 \mathbf{FT} $\mathbf{L}:$ W1 PRS is 4.4 PSI LIMITS L: 0.5PSI H: 100.0 PSI are H: 100.0 W2_PRS is 4.6 PSI LIMITS are L: 0.5PSI PSI INTEMP is 59.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/20/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.8 **GPM** 41510837 TOTAL FLOW is GAL GPM TOTAL FLOW is 38324033 GAL L: 5.0 $AS\overline{B}PRS$ is 10.8 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 458128 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 1.14 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.42AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.48 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.21 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.7 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 54.6DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/21/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.7 **GPM** 41541736 TOTAL FLOW is GAL GPM TOTAL FLOW is 38354978 GAL ASBPRS is 10.7 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC 0.00 TOTAL FLOW is 458256 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 33.16 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.12 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.4W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.7 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 53.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/22/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.6 **GPM** 41572548 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 38385903 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 458365 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.86 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 60.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/23/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.4 W2_FLO is 21.6 **GPM** 41603255 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 38416816 GAL $AS\overline{B}PRS$ is H: 30.0 10.5 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 458476 HP FLO is GPM GAL H: 20.0 HP PRS is 8.1 PSI LIMITS are -2.0 PSI PSI HPAMP is 8.59LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.50AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.77 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 55.98 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 57.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/24/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.4 W2_FLO is 21.6 **GPM** 41633977 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 38447730 GAL ASBPRS is 10.8 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is HP FLO is 0.00 GPM 458615 GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.58AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 33.02 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.98 W2 LVL is 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 53.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/25/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is ON ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.2 W2_FLO is 21.4 **GPM** 41664635 TOTAL FLOW is GAL GPM TOTAL FLOW is 38478646 GAL $AS\overline{B}PRS$ is 10.6 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 458743 HP FLO is 2.32 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is LIMITS are 7.41AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.89 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.85 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 57.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/26/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.0 W2_FLO is 21.6 **GPM** 41695146 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 38509522 GAL ASBPRS is 10.3 \mathbf{L} : H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 458854 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.37 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 59.3DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/27/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.3 **GPM** 41725616 TOTAL FLOW is GAL GPM TOTAL FLOW is 38540423 GAL ASBPRS is 10.8 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 459001 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.92 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.02 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 54.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/28/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.7 W2_FLO is 21.4 **GPM** 41756037 TOTAL FLOW is GAL GPM TOTAL FLOW is 38571310 GAL ASBPRS is 10.8 \mathbf{L} : H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 459148 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.77 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.91 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 54.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/29/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.6 W2_FLO is 21.5 **GPM** 41786451 TOTAL FLOW is GAL GPM TOTAL FLOW is 38602195 GAL $AS\overline{B}PRS$ is H: 30.0 10.5 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC 0.00 TOTAL FLOW is 459270 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.50AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.71 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 59.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 04/30/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.9 W2_FLO is 21.5 **GPM** 41816850 TOTAL FLOW is GAL GPM TOTAL FLOW is 38633091 GAL $AS\overline{B}PRS$ is H: 30.0 10.5 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 459392 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.59AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.95 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 57.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/03/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.1 W2_FLO is 21.7 **GPM** 41907842 TOTAL FLOW is GAL 21.7 GPM TOTAL FLOW is 38725866 GAL ASBPRS is 10.5 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 459765 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.44AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is 33.04 H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.25 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 57.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/04/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.1 W2_FLO is 21.6 **GPM** 41938148 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 38756755 GAL ASBPRS is 10.3 \mathbf{L} : H: 30.0 LIMITS are 5.0 IWC IWC IWC TOTAL FLOW is 459885 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.48AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.82 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.08 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 60.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/05/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.8 W2_FLO is 21.5 **GPM** 41968416 TOTAL FLOW is GAL GPM TOTAL FLOW is 38787623 GAL ASBPRS is H: 30.0 10.4 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 459994 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.67 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.04 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.4 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/06/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35: LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.9 W2_FLO is 21.3 **GPM** 41998631 TOTAL FLOW is GAL 21.3 GPM TOTAL FLOW is 38818484 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 460114 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are L: -2.0PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.49AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.64 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.96 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 20.8 W2_FLO is 21.2 **GPM** 42028834 TOTAL FLOW is GAL GPM TOTAL FLOW is 38849340 GAL ASBPRS is 10.4 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 460224 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.55AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.70 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.96 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 58.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 17:35:52 ON 05/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

P19 : LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD

FAX REPORT INITIATED BY PROCESS 18

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is ON E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 **GPM** TOTAL FLOW is 42043431 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 38864226 GAL LIMITS are H: 30.0 IWC ASBPRS is 0.0 IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 460272 GAL H: 20.0 PRS is 0.0 PSI LIMITS are L:-2.0 PSI PSI AMP is 0.00 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 0.00 AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 $W1_LVL$ is 0.00 \mathbf{FT} \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} $W2_LVL$ is 0.00 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 0.0 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

0.0 PCT ASBSPD

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 17:42:00 ON 05/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

ystem Status:

LAST SHUTDOWN @ 11:50:54 ON 04/17/2016 BY ASBVFD SHUTD PO2 :

FAX REPORT INITIATED BY PROCESS 19

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is ON E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 **GPM** TOTAL FLOW is 42043431 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 38864226 GAL LIMITS are H: 30.0 IWC ASBPRS is 0.0 IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 460272 GAL H: 20.0 PRS is 0.0 PSI LIMITS are L:-2.0 PSI PSI AMP is 0.00 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 0.00 AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 $W1_LVL$ is 0.00 \mathbf{FT} \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is W2_LVL 0.00 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 0.0 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/08/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF SMPALM is OFF W2_ALM is ON ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 42043431 TOTAL FLOW is GAL GPM TOTAL FLOW is 38864226 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 460272 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.07 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 34.49 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.18 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 58.7DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/09/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF SMPALM is OFF W2_ALM is ON ASBALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 42043431 TOTAL FLOW is GAL GPM TOTAL FLOW is 38864226 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 460272 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.07 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 34.86 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 57.20 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 56.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/10/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.9 W2_FLO is 21.0 **GPM** 42070532 TOTAL FLOW is GAL GPM TOTAL FLOW is 38890366 GAL ASBPRS is 10.8 5.0 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 460395 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.46AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.94 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 55.93 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 $W2_PRS$ is 4.5PSI LIMITS are PSI PSI INTEMP is 54.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/11/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 22.3 W2_FLO is 21.3 **GPM** 42102229 TOTAL FLOW is GAL GPM TOTAL FLOW is 38921039 GAL ASBPRS is 10.8 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 460518 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.47AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.94 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.89 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 54.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/12/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 22.0 W2_FLO is 21.5 **GPM** 42133840 TOTAL FLOW is GAL GPM TOTAL FLOW is 38951708 GAL ASBPRS is 10.6 \mathbf{L} : H: 30.0 LIMITS are 5.0 IWC IWC IWC TOTAL FLOW is 460608 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.74 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.85 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.6 PSI LIMITS are PSI PSI INTEMP is 58.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/13/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.0 **GPM** 42165378 TOTAL FLOW is GAL GPM TOTAL FLOW is 38982365 GAL $AS\overline{B}PRS$ is 10.1L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 460671 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.54AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.31 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.72 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 62.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/14/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.8 W2_FLO is 21.6 **GPM** 42196937 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 39013011 GAL ASBPRS is 10.5 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 460767 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.61 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.43 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.91 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 59.8DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/15/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.9 W2_FLO is 21.8 **GPM** 42228474 TOTAL FLOW is GAL GPM TOTAL FLOW is 39043673 GAL $AS\overline{B}PRS$ is 10.5H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 460887 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 1.2 PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 1.11 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.66 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.31 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.85 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 56.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/16/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.5 **GPM** 42260037 TOTAL FLOW is GAL 21.5 GPM TOTAL FLOW is 39074364 GAL ASBPRS is 10.7 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 461030 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.50AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.52 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 55.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/17/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.6 **GPM** 42291491 TOTAL FLOW is GAL 21.6 GPM TOTAL FLOW is 39105028 GAL L: 5.0 ASBPRS is 10.6 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 461164 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.45AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.70 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 56.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/18/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.9 W2_FLO is 21.0 **GPM** 42322828 TOTAL FLOW is GAL 21.0 GPM TOTAL FLOW is 39135702 GAL L: 5.0 ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 461293 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.43AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.65 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.74 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 54.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/19/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 22.0 W2_FLO is 21.2 **GPM** 42354097 TOTAL FLOW is GAL 21.2 GPM TOTAL FLOW is 39166360 GAL L: 5.0 ASBPRS is 10.7 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 461408 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.47AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.63 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.72 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 56.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/21/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.7 W2_FLO is 21.4 **GPM** 42416557 TOTAL FLOW is GAL 21.4 GPM TOTAL FLOW is 39227673 GAL ASBPRS is 10.5 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 461603 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.05 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.58AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.49 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.62 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/22/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.7 W2_FLO is 21.5 **GPM** 42447777 TOTAL FLOW is GAL GPM TOTAL FLOW is 39258380 GAL ASBPRS is 10.4 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 461699 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.62 AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.25 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.58 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 60.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/23/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.4 W2_FLO is 21.5 **GPM** 42478952 TOTAL FLOW is GAL GPM TOTAL FLOW is 39289074 GAL ASBPRS is 10.5 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 461774 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.39 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.58 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/24/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.9 W2_FLO is 21.3 **GPM** 42510129 TOTAL FLOW is GAL 21.3 GPM TOTAL FLOW is 39319725 GAL ASBPRS is 10.5 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 461846 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.48AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.17 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is -55.51 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.9DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/25/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.1 **GPM** 42541274 TOTAL FLOW is GAL GPM TOTAL FLOW is 39350353 GAL ASBPRS is 10.6 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 461928 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.56AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.30 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is -55.51 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/26/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.1 **GPM** 42572419 TOTAL FLOW is GAL GPM TOTAL FLOW is 39380983 GAL ASBPRS is 10.4 5.0 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 461989 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 1.15 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.48AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.36 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.39 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/27/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.9 W2_FLO is 21.1 **GPM** 42603533 TOTAL FLOW is GAL GPM TOTAL FLOW is 39411596 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462043 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.51AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.19 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.43 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 61.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/28/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.2 **GPM** 42634617 TOTAL FLOW is GAL GPM TOTAL FLOW is 39442208 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462096 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.62 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.26 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.43 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.1PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 62.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/29/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.2 **GPM** 42665646 TOTAL FLOW is GAL GPM TOTAL FLOW is 39472820 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC 0.00 TOTAL FLOW is 462136 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.56AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.21 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.1W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI INTEMP is 63.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/30/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.6 W2_FLO is 21.5 **GPM** 42696651 TOTAL FLOW is GAL GPM TOTAL FLOW is 39503439 GAL ASBPRS is 10.2 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 462191 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.63AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 4.61 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.11 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.36 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 05/31/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.4 W2_FLO is 21.4 **GPM** 42727616 TOTAL FLOW is GAL 21.4 GPM TOTAL FLOW is 39534066 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC TOTAL FLOW is 462243 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.53AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.05 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.39 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.0 PSI LIMITS are PSI PSI INTEMP is 61.7DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/01/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.5 W2_FLO is 21.4 **GPM** 42758567 TOTAL FLOW is GAL GPM TOTAL FLOW is 39564684 GAL ASBPRS is 10.5 \mathbf{L} : 5.0 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 462304 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.49AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 32.12 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is -55.32 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.0PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI INTEMP is 59.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/02/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.5 W2_FLO is 21.2 **GPM** 42789472 TOTAL FLOW is GAL GPM TOTAL FLOW is 39595292 GAL ASBPRS is 10.2 \mathbf{L} : H: 30.0 LIMITS are 5.0 IWC IWC IWC TOTAL FLOW is 462343 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.56AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 32.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.30 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/03/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.4 W2_FLO is 21.5 **GPM** 42820382 TOTAL FLOW is GAL GPM TOTAL FLOW is 39625926 GAL ASBPRS is 10.2 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462412 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.54AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.98 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 55.30 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 63.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/04/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P36: LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 21.3 W2_FLO is 21.0 **GPM** 42851232 TOTAL FLOW is GAL GPM TOTAL FLOW is 39656522 GAL ASBPRS is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462464 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.56AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.95 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 55.30 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 3.9 PSI LIMITS L: 0.5PSI H: 100.0 PSI areW2_PRS is 3.9 H: 100.0 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 61.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report <u>ProControl Series II+</u>

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 02:09:54 ON 06/05/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

P19 : LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL FAX REPORT INITIATED BY PROCESS 18

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is ON E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 42877122 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 39682176 GAL LIMITS are H: 30.0 IWC ASBPRS is 0.0 IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 462504 GAL H: 20.0 PRS is 0.0PSI LIMITS are L:-2.0 PSI PSI AMP is 0.00 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.00 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 0.00 AMP LIMITS are L: 0.00 AMP H: 10.00 AMP H: 28.00 $W1_LVL$ is 0.00 \mathbf{FT} \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} $W2_LVL$ is 0.00 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0 PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 0.0 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 02:16:00 ON 06/05/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

ystem Status:

LAST SHUTDOWN @ 17:45:53 ON 05/07/2016 BY ACFAIL SHUTD PO2 :

FAX REPORT INITIATED BY PROCESS 19

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP ASP_LO is OFF is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 42877122 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 39682176 GAL LIMITS are H: 30.0 IWC ASBPRS is 0.2 IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 462504 GAL PRS is H: 20.0 0.9PSI LIMITS are L:-2.0 PSI PSI AMP is 0.06 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.01 AMP LIMITS are 0.00 AMP H: 10.00 AMP $W2^{-}AMP$ is 0.00AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 \mathbf{FT} W1 LVL is 33.49 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is 56.50 M5_TAT \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 63.4 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/05/2016

SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 02:19:55 ON 06/05/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF SMPALM is OFF W2_ALM is ON ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 42877122 TOTAL FLOW is GAL GPM TOTAL FLOW is 39682176 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462504 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMPL: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 33.71 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 56.57 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI INTEMP is 64.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/06/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 02:19:55 ON 06/05/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF SMPALM is OFF W2_ALM is ON ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 42877122 TOTAL FLOW is GAL GPM TOTAL FLOW is 39682176 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462504 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is 0.9 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} 34.60 are \mathbf{L} : 57.62 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 63.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 02:19:55 ON 06/05/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.1 W2_FLO is 21.5 **GPM** 42910504 TOTAL FLOW is GAL GPM TOTAL FLOW is 39712088 GAL $AS\overline{B}PRS$ is 10.3 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462563 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.59AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.72 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 -55.93 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.3 PSI LIMITS are PSI PSI INTEMP is 61.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 13:18:08 ON 06/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

vstem Status:

P19 : LAST SHUTDOWN @ 02:19:55 ON 06/05/2016 BY ACFAIL FAX REPORT INITIATED BY PROCESS 18

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is ON SMPCTR is OFF HP_OP ASP_LO is OFF is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 42920986 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 39721490 GAL ASBPRS is LIMITS are H: 30.0 IWC 9.4IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 462588 GAL H: 20.0 PRS is 0.9PSI LIMITS are \mathbf{L} : -2.0 PSI PSI AMP is 0.05 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.01 AMP LIMITS are 0.00 AMP H: 10.00 AMP $W2^{-}AMP$ is 0.00AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 33.38 \mathbf{FT} W1 LVL is \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is M5_TAT 56.86 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 65.9DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

ALARM Fax Report ProControl Series II+

EOS Research Ltd.

To:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 13:24:00 ON 06/07/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

ystem Status:

LAST SHUTDOWN @ 02:19:55 ON 06/05/2016 BY ACFAIL SHUTD PO2 :

FAX REPORT INITIATED BY PROCESS 19

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF ASP_HH is OFF FLRSMP is OFF ACFAIL is OFF E STOP is OFF

Discrete Outputs:

SMP_GO is OFF W1_ALM is ON W1 GO is OFF W2 GO is OFF ASB GO is ON AIR HH is OFF ASMPHH is OFF ASMPLL is OFF AIR_LL is OFF W2 ALM is ON SMPALM is OFF ASBALM is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 42920986 GAL W2 FLO is 0.0**GPM** TOTAL FLOW is 39721490 GAL ASBPRS is LIMITS are H: 30.0 IWC 9.3 IWC L: 5.0 IWC $ext{HP}$ $ext{FLO}$ is 0.00 **GPM** TOTAL FLOW is 462588 GAL PRS is H: 20.0 0.9PSI LIMITS are \mathbf{L} : -2.0 PSI PSI AMP is 0.05 0.00 AMP LIMITS AMPH: AMPare \mathbf{L} : W1 AMP is 0.01 AMP LIMITS are 0.00 AMP H: 10.00 AMP W2 AMP is 0.00 AMP LIMITS L: 0.00 AMP H: 10.00 AMP H: 28.00 \mathbf{FT} W1 LVL is 33.69 \mathbf{FT} LIMITS are L: 8.00 \mathbf{FT} is M5_TAT 57.03 \mathbf{FT} LIMITS areL:9.00 \mathbf{FT} H: 52.00 \mathbf{FT} PRS is 0.0PSI LIMITS are L:0.5PSI н: 100.0 PSI W2 PRS is H: 100.0 0.0PSI LIMITS are \mathbf{L} : 0.5 PSI PSI INTEMP is 65.8 DEG LIMITS are \mathbf{L} : 42.0 DEG H: 130.0 DEG

Analog Outputs:

ASBSPD 0.0 PCT

JEREMY WYCKOFF

Fronc

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/08/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL MANUAL

Discrete Inputs:

W1 CTR is OFF W2 CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP HH is OFF ASP LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

is OFF is OFF SMD_GO is OFF $W1_GO$ W2_GO ASB_GO is OFF W1_ALM is ON AIR_HH is OFF ASMPHH is OFF ASMPLL is OFF W2 ALM is ON ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is OFF

Analog Inputs:

W1 FLO is 0.0 GPM TOTAL FLOW is 42920986 GAL W2FLO is 0.0 **GPM** TOTAL FLOW is 39721490 GAL H: 30.0 ASBPRS is 0.2 IWC LIMITS are IWC IWC 462588 HP_FIO is 0.00GPM TOTAL FLOW is GAL LIMITS are HP PRS is 0.9 PSI -2.0PSI H: 20.0 PSI L:AMP0.07AMP LIMITS 0.00 AMP AMP is are \mathbf{L} : \mathbf{H} : W1 AMP H: 10.00 is 0.01 LIMITS 0.00 AMPareAMPAMPH: 10.00 W2 AMP is 0.00ΛMD LIMITS 0.00 ΛMD ΛMD are \mathbf{L} : 34.02 8.00 н: 28.00 WI LVL is F.T. LIMITS аге $\mathbf{F}^{*}\mathbf{T}^{*}$ $\mathbf{F}\mathbf{T}$ \mathbf{FT} W2 LVL is 57.08 \mathbf{FT} LIMITS are L: 9.00 H: 52.00 \mathbf{FT} $T_0 := 0..5$ H: 100.0 W1_PRS is 0.0 PST LIMITS are PST PST L: 0.5PSI H: 100.0 W2_PRS is 0.0 PSI LIMITS are PSI INTEMP is 60.3DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs.

0.0 PUT ASBSPD MAN

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/10/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

MANUAL : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is OFF W2_CTR is OFF ASBVFD is OFF SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is OFF W2 GO is OFF ASB GO is OFF SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is ON AIR HH is OFF SMPALM is OFF W2_ALM is ON ASBALM is OFF AIR LL is OFF HPMPGO is OFF VFDRUN is OFF VFDRST is OFF

Analog Inputs:

W1_FLO is 0.0 W2_FLO is 0.0 **GPM** 42920986 TOTAL FLOW is GAL GPM TOTAL FLOW is 39721490 GAL ASBPRS is H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC 462588 HP FLO is 0.00 GPM TOTAL FLOW is GAL H: 20.0 HP PRS is 0.8 PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.07 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 0.01 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis 0.00 AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 34.29 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 56.89 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 0.0 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 0.0 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 59.0DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/11/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.9 W2_FLO is 21.3 **GPM** 42948755 TOTAL FLOW is GAL GPM TOTAL FLOW is 39745178 GAL ASBPRS is 10.6 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462656 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.76AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.70 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.53 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/12/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.1 W2_FLO is 21.4 **GPM** 42984912 TOTAL FLOW is GAL 21.4 GPM TOTAL FLOW is 39776152 GAL $AS\overline{B}PRS$ is 10.15.0 H: 30.0 LIMITS are \mathbf{L} : IWC IWC IWC 0.00 TOTAL FLOW is 462726 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 4.77 W1_AMP is AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.81 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.5PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 62.0DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/13/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.2 W2_FLO is 21.3 **GPM** 43021040 TOTAL FLOW is GAL GPM TOTAL FLOW is 39807148 GAL L: 5.0 ASBPRS is 10.4 H: 30.0 LIMITS are IWC IWC IWC TOTAL FLOW is 462831 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.71 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.90 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 55.74 9.00 W2 LVL is \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.4W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 59.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/14/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.2 W2_FLO is 21.3 **GPM** 43057052 TOTAL FLOW is GAL GPM TOTAL FLOW is 39838125 GAL ASBPRS is 10.6 H: 30.0 LIMITS are \mathbf{L} : 5.0 IWC IWC IWC TOTAL FLOW is 462943 HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.64 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.89 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.68 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 W2_PRS is 4.5 L: 0.5 PSI LIMITS are PSI PSI INTEMP is 57.6DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/15/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.7 W2_FLO is 22.0 **GPM** 43092977 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 39869066 GAL ASBPRS is 10.6 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 463031 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP H: AMPH: 10.00 W1_AMP is 4.64 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.77 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.55 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.4PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.5 PSI LIMITS are PSI PSI INTEMP is 57.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/16/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.5 W2_FLO is 21.4 **GPM** 43128820 TOTAL FLOW is GAL 21.4 GPM TOTAL FLOW is 39899987 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 463092 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.66 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.47 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.53 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 61.4DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/17/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.7 W2_FLO is 21.5 **GPM** 43164642 TOTAL FLOW is GAL GPM TOTAL FLOW is 39930871 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 463144 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.66AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.49 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.49 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 61.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/18/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.8 W2_FLO is 21.5 **GPM** 43200436 TOTAL FLOW is GAL 21.5 GPM TOTAL FLOW is 39961733 GAL $AS\overline{B}PRS$ is L: 5.0 H: 30.0 10.5 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 463206 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.04 AMP L: 0.00AMP н: AMPH: 10.00 4.73 W1_AMP is AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.73 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2 LVL is 9.00 55.41 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.2DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/19/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.0 W2_FLO is 21.5 **GPM** 43236208 TOTAL FLOW is GAL GPM TOTAL FLOW is 39992558 GAL ASBPRS is 10.6 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is 463269 HP FLO is GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI LIMITS are HP AMP is 0.05 AMP L: 0.00AMP н: AMPH: 10.00 4.77 W1_AMP is AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.79 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is -55.34 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} 4.4W1 PRS is PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 60.5DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/20/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 13:28:08 ON 06/07/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.7 W2_FLO is 21.5 **GPM** 43271964 TOTAL FLOW is GAL GPM TOTAL FLOW is 40023375 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 463333 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.64 AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.56 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : W2_LVL is 55.30 9.00 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.3 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.4 PSI LIMITS are PSI PSI INTEMP is 62.1DEG LIMITS are L: 42.0 DEG H: 130.0 DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/29/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 01:16:41 ON 06/21/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 25.1 W2_FLO is 21.3 **GPM** 43479512 TOTAL FLOW is GAL GPM TOTAL FLOW is 40201397 GAL ASBPRS is 10.3 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 0.00 TOTAL FLOW is HP FLO is GPM 463625 GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP_AMP is 0.05 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.67AMP LIMITS are0.00 AMP AMP \mathbf{L} : W2_AMP is W1_LVL is AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:H: 28.00 31.62 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.87 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.2 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 62.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

JEREMY WYCKOFF

From:

THE NYSDEC GLADDING SYSTEM IN SOUTH OTSELIC NY @ 06:00:00 ON 06/30/2016 SER NO 9605 : SETUP VER 1 : ROM 2.1996 : MODEL A2

System Status:

AUTO P35 : LAST SHUTDOWN @ 01:16:41 ON 06/21/2016 BY ACFAIL

Discrete Inputs:

W1_CTR is ON W2_CTR is ON ASBVFD is ON SMPCTR is OFF HP_OP is OFF ASP_HH is OFF ASP_LO is OFF FLRSMP is OFF ACFAIL is OFF E_STOP is OFF

Discrete Outputs:

W1 GO is ON W2 GO is ON ASB GO is ON SMP GO is OFF ASMPHH is OFF ASMPLL is OFF W1_ALM is OFF AIR HH is OFF W2_ALM is OFF ASBALM is OFF SMPALM is OFF AIR LL is OFF VFDRUN is OFF VFDRST is OFF HPMPGO is ON

Analog Inputs:

W1_FLO is 24.7 W2_FLO is 22.0 **GPM** 43515441 TOTAL FLOW is GAL 22.0 GPM TOTAL FLOW is 40232278 GAL ASBPRS is 10.4 L: 5.0 H: 30.0 LIMITS are IWC IWC IWC 463702 TOTAL FLOW is HP FLO is 0.00 GPM GAL H: 20.0 HP PRS is PSI LIMITS are -2.0 PSI PSI HP AMP is 0.04 LIMITS are AMP L: 0.00AMP н: AMPH: 10.00 W1_AMP is 4.68 AMP LIMITS are0.00 AMP AMP \mathbf{L} : AMPis AMPLIMITS are 0.00 AMP**H**: 10.00 AMP L:W1_LVL is H: 28.00 31.58 \mathbf{FT} LIMITS 8.00 \mathbf{FT} \mathbf{FT} are \mathbf{L} : 9.00 W2 LVL is 55.60 \mathbf{FT} LIMITS are $\mathbf{L}:$ \mathbf{FT} H: 52.00 \mathbf{FT} W1 PRS is 4.2 PSI LIMITS L: 0.5PSI H: 100.0 PSI areH: 100.0 L: 0.5 W2_PRS is 4.1 PSI LIMITS are PSI PSI H: 130.0 INTEMP is 60.4DEG LIMITS are L: 42.0 DEG DEG

Analog Outputs:

APPENDIX B

O&M Checklists

Date	4/22/2016				
Inspector	L. Whalen				
Time	7:45				

Treatment System Operation		Alarms	
System On (Y/N) Yes		A/C Fail (Y/N) No	
RW-1 On (Y/N) Yes	=	RW-1 (Y/N) No	
RW-2 On (Y/N) Yes	=	RW-2 (Y/N) No	
Blower On (Y/N) Yes	-	Blower Pressure (Y/N) No	
Sump Pump On (Y/N) No	-	Sump Level (Y/N) No	
	-	Sump Level (1/14)	
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	21.1	21.2	
Total Flow (Gallons)	41572548	38385903	
Water Level (Feet Above Probe)	32.93	55.98	
Probe Depth (Feet BTOC)	40.00	65.00	
, ,			
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.3	Water Leaks (Y/N)	<u>No</u>
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	52
Heat Exchanger		D 11 11 T (0E)	
Heat (On/Off)	On	Building Temperature (°F)	69
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.4
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	No	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Worldoning Wells OK: (1714)	163	Samples Collected (1/14)	163
Notes:			

Date	5/23/2016				
Inspector	L. Whalen				
Time	7:00				

Treatment System Operation		Alarms	
System On (Y/N) Yes		A/C Fail (Y/N) No	
RW-1 On (Y/N) Yes	-	RW-1 (Y/N) No	
RW-2 On (Y/N) Yes	-	RW-2 (Y/N) No	
Blower On (Y/N) Yes	-	Blower Pressure (Y/N) No	
Sump Pump On (Y/N) No	-	Sump Level (Y/N) No	
No. No.	_	Sump Lever (1714)	
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	21.9	21.1	
Total Flow (Gallons)	42478952	39289074	
Water Level (Feet Above Probe)	32.36	55.53	
Probe Depth (Feet BTOC)	40.00	65.00	
, ,			
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.4	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	51
Hoot Evolunger			
Heat Exchanger Heat (On/Off)	On	Building Temperature (°F)	67
Heat Exchanger Flow (GPM)	On 0.0	• • • • • • • • • • • • • • • • • • • •	1.2
neat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.2
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	No	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	Yes
Notes:			

Date	6/6/2016				
Inspector	L. Whalen				
Time	7:30				

Treatment System Operation		Alarms	
System On (Y/N) Yes	_	A/C Fail (Y/N) No	
RW-1 On (Y/N) Yes	_	RW-1 (Y/N) No	
RW-2 On (Y/N) Yes	_	RW-2 (Y/N) No	
Blower On (Y/N) Yes	_	Blower Pressure (Y/N) No	
Sump Pump On (Y/N) No	_	Sump Level (Y/N) No	
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	24.6	21.0	
Total Flow (Gallons)		<u> </u>	
Water Level (Feet Above Probe)	32.26	56.29	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Ctrinnor			
Air Stripper Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.2	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	51
		. ,	
Heat Exchanger		D 1111 T (05)	07
Heat (On/Off)	On	Building Temperature (°F)	67
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.4
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	No
Notes:			
System shut down on 6/5/16 @ 02:16.	Could not be re	estarted remotely.	
Re-boot PLC and restarted system at 07		·	
Mowed grass.			
		-	

Date_	6/24/2016				
Inspector	L. Whalen				
Time	6.00				

Tuestine and Occatana On andian		A1	
Treatment System Operation		Alarms	
System On (Y/N) Yes RW-1 On (Y/N) Yes	_	A/C Fail (Y/N) No No	<u>-</u>
	_	RW-1 (Y/N) No No	-
RW-2 On (Y/N) Yes Blower On (Y/N) Yes	_	Blower Pressure (Y/N) No	-
Sump Pump On (Y/N) No	-	Sump Level (Y/N) No	-
3ump r ump 3m (1/N) 110	_	Sump Level (1/14) 140	-
Recovery Wells	RW-1	RW-2	
Flow Rate (GPM)	24.9	21.6	
Total Flow (Gallons)	43515441	40232278	
Water Level (Feet Above Probe)	31.47	55.34	
Probe Depth (Feet BTOC)	40.00	65.00	
Air Stripper			
Blower VFD Setting (Hertz)	46	Intake/Exhaust Piping OK? (Y/N)	Yes
System Pressure (inches water)	10.5	Water Leaks (Y/N)	No
Influent/Effluent Piping OK? (Y/N)	Yes	Water Temperature (°F)	52
Heat Exchanger			
Heat (On/Off)	On	Building Temperature (°F)	67
Heat Exchanger Flow (GPM)	0.0	Heat Exchanger Pressure (PSI)	1.4
General Building/Site			
Building Condition OK? (Y/N)	Yes	Circuit Breakers Checked (Y/N)	Yes
Grass Mowed (Y/N)	Yes	Outfall Condition OK? (Y/N)	Yes
Monitoring Wells OK? (Y/N)	Yes	Samples Collected (Y/N)	No
Notes:		10.111.0	
System restarted upon arrival. System s			
Restarted system at 06:30. Values above	ve atter restart.		
Mowed grass.			

APPENDIX C

Analytical Reporting Forms

May 3, 2016

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 16D1100

Enclosed are results of analyses for samples received by the laboratory on April 25, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16D1100-01	5
16D1100-02	6
16D1100-03	7
16D1100-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B147970	10
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	15

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

ATTN: Jeremy Wyckoff

Clifton Park, NY 12065 PURCHASE ORDER NUMBER: REPORT DATE: 5/3/2016

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

16D1100 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1	16D1100-01	Ground Water		EPA 624	
RW-2	16D1100-02	Ground Water		EPA 624	
EFF 46 HZ	16D1100-03	Ground Water		EPA 624	
Trip Blanks	16D1100-04	Trip Blank Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Sample Description: Work Order: 16D1100

Project Location: S. Otselic, NY
Date Received: 4/25/2016
Field Sample #: RW-1

Sampled: 4/22/2016 07:00

Sample ID: 16D1100-01
Sample Matrix: Ground Water

Volatile (Organic	Compounds	bv	GC/MS
------------	---------	-----------	----	-------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Carbon Tetrachloride	ND	2.0	0.12	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Chlorobenzene	ND	2.0	0.16	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Chlorodibromomethane	ND	2.0	0.10	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,1-Dichloroethane	1.2	2.0	0.16	$\mu g/L$	1	J	EPA 624	4/29/16	5/3/16 0:16	EEH
1,1-Dichloroethylene	0.84	2.0	0.21	μg/L	1	J	EPA 624	4/29/16	5/3/16 0:16	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,1,1-Trichloroethane	31	2.0	0.094	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
m+p Xylene	ND	2.0	0.25	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
o-Xylene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:16	EEH
Surrogates		% Reco		Recovery Limit	<u> </u>	Flag/Qual				
1.2.0:11		102	J	70.120	-	8			5/2/16 0.16	

Work Order: 16D1100 Sample Description:

Project Location: S. Otselic, NY Date Received: 4/25/2016 Field Sample #: RW-2

Sampled: 4/22/2016 07:10

Sample ID: 16D1100-02 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Carbon Tetrachloride	ND	2.0	0.12	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Chlorobenzene	ND	2.0	0.16	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Chlorodibromomethane	ND	2.0	0.10	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,1-Dichloroethane	0.53	2.0	0.16	μg/L	1	J	EPA 624	4/29/16	5/3/16 0:43	EEH
1,1-Dichloroethylene	0.60	2.0	0.21	μg/L	1	J	EPA 624	4/29/16	5/3/16 0:43	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,1,1-Trichloroethane	25	2.0	0.094	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
m+p Xylene	ND	2.0	0.25	μg/L μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
o-Xylene	ND	2.0	0.13	μg/L μg/L	1		EPA 624	4/29/16	5/3/16 0:43	EEH
Surrogates		% Reco		Recovery Limit		Flag/Qual				
1,2-Dichloroethane-d4		104	 y	70-130	-	P. Annı			5/3/16 0:43	
Toluene-d8		99.6		70-130					5/3/16 0:43	
4.D. G. 1				= 0.400						

Project Location: S. Otselic, NY Sample Description: Work Order: 16D1100

Date Received: 4/25/2016 Field Sample #: EFF 46 HZ

Sampled: 4/22/2016 07:20

Sample ID: 16D1100-03 Sample Matrix: Ground Water

Volatile Organic (Compounds by	GC/MS
--------------------	--------------	-------

	D 1	D.	D.	***	D11 .1	FI. (0. 1		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Bromodichloromethane Bromoform	ND	2.0	0.088	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Bromomethane	ND	2.0	0.21	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
	ND	2.0	0.94	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Carbon Tetrachloride	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
m+p Xylene	ND	2.0	0.25	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
o-Xylene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:50	EEH
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					5/2/16 23:50	
Toluene-d8		99.4		70-130					5/2/16 23:50	

Project Location: S. Otselic, NY Sample Description: Work Order: 16D1100

Date Received: 4/25/2016

Field Sample #: Trip Blanks

Sampled: 4/22/2016 00:00

Sample ID: 16D1100-04
Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Carbon Tetrachloride	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
m+p Xylene	ND	2.0	0.25	μg/L	1		EPA 624	4/29/16	5/2/16 23:23	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	4/29/16	5/2/16 23:23	EEH
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		103		70-130					5/2/16 23:23	
Toluene-d8		99.2		70-130					5/2/16 23:23	
4-Bromofluorobenzene		99.0		70-130					5/2/16 23:23	

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16D1100-01 [RW-1]	B147970	5	5.00	04/29/16
16D1100-02 [RW-2]	B147970	5	5.00	04/29/16
16D1100-03 [EFF 46 HZ]	B147970	5	5.00	04/29/16
16D1100-04 [Trip Blanks]	B147970	5	5.00	04/29/16

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B147970 - SW-846 5030B										
Blank (B147970-BLK1)				Prepared: 04	/29/16 Anal	yzed: 05/02/1	6			
Benzene	ND	1.0	μg/L			_ _	_ _		_ _	
Bromodichloromethane	ND	2.0	$\mu \text{g}/L$							
Bromoform	ND	2.0	$\mu \text{g}/L$							
Bromomethane	ND	2.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu \text{g/L}$							
2-Chloroethyl Vinyl Ether	ND	10	$\mu \text{g}/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
,2-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$							
,4-Dichlorobenzene	ND	2.0	$\mu g/L$							
,2-Dichloroethane	ND	2.0	$\mu g/L$							
1,1-Dichloroethane	ND	2.0	$\mu g/L$							
,1-Dichloroethylene	ND	2.0	$\mu g/L$							
rans-1,2-Dichloroethylene	ND	2.0	$\mu \text{g/L}$							
,2-Dichloropropane	ND	2.0	$\mu \text{g/L}$							
sis-1,3-Dichloropropene	ND	2.0	$\mu \text{g/L}$							
rans-1,3-Dichloropropene	ND	2.0	$\mu \text{g/L}$							
Ethylbenzene	ND	2.0	$\mu \text{g/L}$							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu \text{g/L}$							
Methylene Chloride	ND	5.0	$\mu \text{g/L}$							
,1,2,2-Tetrachloroethane	ND	2.0	$\mu \text{g/L}$							
Tetrachloroethylene	ND	2.0	$\mu \text{g/L}$							
oluene	ND	1.0	$\mu \text{g/L}$							
,1,1-Trichloroethane	ND	2.0	$\mu g/L$							
,1,2-Trichloroethane	ND	2.0	$\mu g/L$							
Trichloroethylene	ND	2.0	$\mu g/L$							
Crichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
Vinyl Chloride	ND	2.0	$\mu g/L$							
n+p Xylene	ND	2.0	$\mu g/L$							
o-Xylene	ND	2.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.2		μg/L	25.0		101	70-130			
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.4	70-130			
Surrogate: 4-Bromofluorobenzene	24.4		μg/L	25.0		97.6	70-130			
LCS (B147970-BS1)				Prepared: 04	/29/16 Anal	-				
Benzene	7.46	1.0	μg/L	10.0		74.6	37-151			
Bromodichloromethane	8.00	2.0	μg/L	10.0		80.0	35-155			
Bromoform	8.28	2.0	μg/L	10.0		82.8	45-169			
Bromomethane	9.11	2.0	μg/L	10.0		91.1	20-242			
Carbon Tetrachloride	7.88	2.0	μg/L	10.0		78.8	70-140			
Chlorobenzene	7.72	2.0	μg/L	10.0		77.2	37-160			
Chlorodibromomethane	8.06	2.0	μg/L	10.0		80.6	53-149			
Chloroethane	7.97	2.0	$\mu \text{g/L}$	10.0		79.7	70-130			
-Chloroethyl Vinyl Ether	77.8	10	$\mu \text{g/L}$	100		77.8	10-305			
Chloroform	7.62	2.0	$\mu \text{g/L}$	10.0		76.2	51-138			
Chloromethane	9.85	2.0	$\mu \text{g}/L$	10.0		98.5	20-273			
,2-Dichlorobenzene	8.23	2.0	$\mu g/L$	10.0		82.3	18-190			
1,3-Dichlorobenzene	8.31	2.0	$\mu g/L$	10.0		83.1	59-156			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B147970 - SW-846 5030B										
LCS (B147970-BS1)				Prepared: 04	1/29/16 Anal	yzed: 05/02/1	6			
1,4-Dichlorobenzene	8.02	2.0	μg/L	10.0		80.2	18-190			
1,2-Dichloroethane	7.83	2.0	$\mu g/L$	10.0		78.3	49-155			
1,1-Dichloroethane	7.66	2.0	$\mu \text{g/L}$	10.0		76.6	59-155			
1,1-Dichloroethylene	7.40	2.0	$\mu g/L$	10.0		74.0	20-234			
trans-1,2-Dichloroethylene	7.76	2.0	$\mu g/L$	10.0		77.6	54-156			
1,2-Dichloropropane	7.58	2.0	$\mu g/L$	10.0		75.8	20-210			
cis-1,3-Dichloropropene	8.00	2.0	$\mu g/L$	10.0		80.0	20-227			
trans-1,3-Dichloropropene	7.70	2.0	$\mu g/L$	10.0		77.0	17-183			
Ethylbenzene	7.86	2.0	$\mu g/L$	10.0		78.6	37-162			
Methyl tert-Butyl Ether (MTBE)	8.01	2.0	$\mu g/L$	10.0		80.1	70-130			
Methylene Chloride	8.21	5.0	$\mu g/L$	10.0		82.1	50-221			
1,1,2,2-Tetrachloroethane	8.50	2.0	$\mu g/L$	10.0		85.0	46-157			
Tetrachloroethylene	7.91	2.0	$\mu g/L$	10.0		79.1	64-148			
Toluene	7.52	1.0	$\mu g/L$	10.0		75.2	47-150			
1,1,1-Trichloroethane	7.97	2.0	$\mu g/L$	10.0		79.7	52-162			
1,1,2-Trichloroethane	8.23	2.0	$\mu g/L$	10.0		82.3	52-150			
Trichloroethylene	7.82	2.0	$\mu g/L$	10.0		78.2	71-157			
Trichlorofluoromethane (Freon 11)	7.60	2.0	$\mu g/L$	10.0		76.0	17-181			
Vinyl Chloride	7.60	2.0	$\mu \text{g/L}$	10.0		76.0	20-251			
m+p Xylene	15.9	2.0	$\mu \text{g/L}$	20.0		79.6	70-130			
o-Xylene	8.04	2.0	$\mu g/L$	10.0		80.4	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.2		μg/L	25.0		105	70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.2	70-130			
Surrogate: 4-Bromofluorobenzene	25.0		$\mu g/L$	25.0		99.9	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is	outside of	established	limits.
---	--------------	------------	-------------	---------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 624 in Water	
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2016
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

Oother

O Part 360 GW (Landfill)

☐ 7 D; [4] 10-1 RUSH [↑]

Date/Time:

Relinquished by:

Date/Time:

iquished by: (signature)

Defiverables

4 day 48 hr O

CHAIN OF CUSTODY RECORD

NEW YORK STATE

0011091

39 Spruce Street Gours East longmeadow, MA 01028

Dissolved Metals ***Container Code O Field Filtered # of Containers O Lab to Filter ** Preservation ***Cont. Code: A=amber glass S=summa can T=tedlar bag ST=sterile **P**=plastic G=glass V= vial ANALYSIS REQUESTED HZ9 > Cone Cade 00266406.000 relephone: 518-250-7300 OWEBSITE GISO "Enhanced Data Package DATA DELIVERY (check all that apply) *Matrix Code EXCEL 🚭 Composite Grab EMAIL PDF 🚭 O OTHER 0 O FAX Project # Client PO# Date/Time Ending Format: Email: Fax# Collection Email: info@contestlabs.com Beginning Date/Time Phone: 413-525-2332 www.contestlabs.com STE 210 Client Sample ID / Description 3 ANALYTICAL LABORATORY O Project Proposal Provided? (for billing Company Name: Accades alco 800 Con-Test Lab ID Project Location: Sampled By: (sasodind Attention: Address:

**Preservation

0=Other

٤

₹ 3

00/0

4/27/10

EL.	7730		975	7	<u> </u>	<u>×</u>		l = Iced
(0)	5				-	Т		T="HCT
20	カキ、テレロン		0770	7	لــ	*		M = Methanol
					*			N = Nitric Acid
3	Trio Bleak	Þ	1	ナ	! *	*		S = Sulfuric Acid
								B = Sodium bisulfate
					1			X = Na hydroxide
								T = Na thiosulfate
	AND THE RESERVE THE PARTY OF TH							0 = Other
								*Matrix Code:
					<u> </u>			GW= groundwater
	A CONTRACTOR OF THE PROPERTY O							DW= drinking water
								A = air
								Т
Comments:					Please us	e the following code:	Please use the following codes to let Con-Test know if a specific sample	SL = sludge
					E :	ay be high in concer	may be high in concentration in Matrix/Conc. Code Box:	D = other
						- High; M - Medium;	H - High; M - Medium; L - Low; C - Clean; U - Unknown	
Relinquished by: (signature)		Relinquished by:		Date/Time:		Turnaround	Program Information/Regulatory	*
	Ź					5-Day	NY TOGS ONY Restricted Use	
Redeived by (signature)		Received b		Date/Time:		1 7 Day	O AWQ STDS O NY Unrestricted Use	
	4.85.11					7 10-Day or	O NYC Sewer Discharge	Other:
	77) 5				T			

IRNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT OEquis (1 file) Equis (4 file) O ASP-A ASP-B 24 hr O 72 hr O MPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. Date/Time: Received by: Date/Time; eived by: (signature) 15 of 17 Page

PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405
www.contestlabs.com

Page 1 of 2

Sample Receipt Checklist

I) Was the chain(s) of quetodic			RECEIVE	D BY:	F	РВ	_DATE:_	4/25/2016
Was the chain(s) of custody i	relinquishe	d and sign	red?	Yes	<u>x</u>	No		No COC Incl.
P) Does the chain agree with the lift not, explain:	e samples?				X	-	W	
Are all the samples in good c If not, explain:	ondition?			Yes	x	_ No		
How were the samples receiv	/ed:							
In Ice x Direct from S		,	Ambient		In Coc	oler(s)	Y	
ere the samples received in Te								N/A
emperature °C by Temp blank								
Are there Dissolved samples	for the lab t	o filter?		Yes		No	v	
Who was notified	Date	e	Time	165	*****	. 110		
Are there any RUSH or SHOR						Na	v	
M/ha was a suffer t		<u>. Juli</u>	Time	169		. 140		
Who was notified	1		i iiiie	Permis	sion to	subco	ntract sar	noles? Yes No
	Pro ed:	oscience	TO THE TAXABLE PROPERTY OF TAXABLE PRO	Permis (Walk-	ssion to in client	subco ts only) if not alr	nples? Yes No eady approved
Location where samples are store	Pro red:	oscience		Permis (Walk- Client	ssion to in client Signatu	subco ts only re:) if not alro	•
Location where samples are store	er Acid pH:	oscience Yes	No	Permis (Walk- Client	ssion to in client Signatu N/A	subco ts only re: x) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope	er Acid pH: er Base pH:	oscience Yes Yes	No	Permis (Walk- Client	ssion to in client Signatu N/A N/A	subco ts only re: x x) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: er Base pH: screpancies	Yes _ Yes _ Yes _ S with the	No No CoC vs th	Permis (Walk- Client s	in client Signatu N/A N/A les:	subco ts only re: x x Yes) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: er Base pH:	Yes _ Yes _ Yes _ S with the	No No CoC vs th	Permis (Walk- Client s	in client Signatu N/A N/A les:	subco ts only re: x x Yes) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis	er Acid pH: er Base pH: screpancies	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client s	in client Signatu N/A N/A les:	subco ts only re: x x Yes) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client s	in client Signatu N/A N/A les:	subco ts only re:x x Yes) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client S	oz amb	subco ts only re: x x Yes est) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber)	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client S ne samp at Co 16 8 oz ar 4 oz ar	in client Signatu N/A N/A les: n-Te	subco ts only re: x x Yes est) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis CC 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client S Te samp 16 8 oz ar 4 oz ar 2 oz ar	in client Signatu N/A N/A les: n-Te oz amb mber/cle mber/cle	subco ts only re: x x Yes est per ear jar ear jar ear jar) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes Yes s with the	No No CoC vs th	Permis (Walk- Client S ne samp at Co 16 8 oz ar 4 oz ar 2 oz ar Plastic	oz amber/clember/cles: Bag / 2	subco ts only re: x Yes ear jar ear jar ear jar Ziploc) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	er Acid pH: er Base pH: screpancies ontaine # of cont	Yes Yes S with the	No No CoC vs th	Permis (Walk- Client S ne samp 16 8 oz ar 4 oz ar 2 oz ar Plastic	in client Signatu N/A N/A les: n-Te oz amb mber/cle mber/cle mber/cle s Bag / 2	subco ts only re: x x Yes est per ear jar ear jar ear jar Ziploc) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	ed: er Acid pH: er Base pH: screpancies ontaine	Yes Yes S with the	No No CoC vs th	Permis (Walk-Client S ne samp at Co 16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc	oz amb mber/cle Bag / z	subco ts only re: x x Yes est per ear jar ear jar ear jar Ziploc Kit) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	er Acid pH: er Base pH: screpancies ontaine # of cont	Yes Yes S with the	No No CoC vs th	Permis (Walk- Client S ne samp 16 8 oz ar 4 oz ar 2 oz ar Plastic Flash	oz amb mber/cle	subco ts only tre: x Yes ear jar ear jar ear jar ziploc Kit ottle) if not alro	eady approved
Location where samples are store Do all samples have the prope Do all samples have the prope) Was the PC notified of any dis Co 1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	er Acid pH: er Base pH: screpancies ontaine # of cont	Yes Yes S with the	No No CoC vs th	Permis (Walk- Client S ne samp 16 8 oz ar 4 oz ar 2 oz ar Plastic Flash Othe	oz amb mber/cle Bag / z	subco ts only tre: x Yes ear jar ear jar ear jar ziploc Kit ottle) if not alro	eady approved

Page 2 of 2

Login Sample Receipt Checklist

(Rejection Criteria Listing - Using Sample Acceptance Policy)
Any False statement will be brought to the attention of Client

Question	Answer (True/False)	Comment
	IIFINA	
1) The cooler's custody seal, if present, is intact.	NA NA	
2) The cooler or samples do not appear to have		
been compromised or tampered with.	T	
3) Samples were received on ice.	Т	
4) Cooler Temperature is acceptable.	Т	
5) Cooler Temperature is recorded.	Т	
6) COC is filled out in ink and legible.	Т	
7) COC is filled out with all pertinent information.	Т	
8) Field Sampler's name present on COC.	T	
9) There are no discrepancies between the sample IDs on the container and the COC.	T	
10) Samples are received within Holding Time.	Т	***************************************
11) Sample containers have legible labels.	Т	
12) Containers are not broken or leaking.	T	
13) Air Cassettes are not broken/open.	NA	
14) Sample collection date/times are provided.	Т	TRIVING
15) Appropriate sample containers are used.	Т	
16) Proper collection media used.	Т	
17) No headspace sample bottles are completely filled.	Т	
18) There is sufficient volume for all requsted		
analyses, including any requested MS/MSDs.	T	
19) Trip blanks provided if applicable.	7	
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	T	
21) Samples do not require splitting or compositing.	Т	
Who notified of Fals		ate/Time:

Doc #277 Rev. 4 August 2013

Who notified of False statements?

Log-In Technician Initials: PB

? Date/Ti

Date/Time: 4/25/16

May 31, 2016

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 16E1189

Enclosed are results of analyses for samples received by the laboratory on May 26, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

July 12, 2016

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. Otselic, NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 16F1367

Enclosed are results of analyses for samples received by the laboratory on June 27, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16F1367-01	5
16F1367-02	6
16F1367-03	7
16F1367-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B153127	10
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	15

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

Clifton Park, NY 12065 ATTN: Jeremy Wyckoff PURCHASE ORDER NUMBER:

REPORT DATE: 7/12/2016

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16F1367

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. Otselic, NY

RW-1 16F1367-01 Ground Water EPA 624
RW-2 16F1367-02 Ground Water EPA 624
EFF 46 HZ 16F1367-03 Ground Water EPA 624
Trip Blank 16F1367-04 Trip Blank Water EPA 624

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: S. Otselic, NY Sample Description: Work Order: 16F1367

Date Received: 6/27/2016 Field Sample #: RW-1

Sampled: 6/24/2016 07:30

Sample ID: 16F1367-01 Sample Matrix: Ground Water

Volatile	Organic	Compounds by	GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1	I ing/ Quai	EPA 624	7/7/16	7/8/16 7:52	MFF
Bromodichloromethane	ND	2.0	0.30	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Bromoform	ND	2.0	0.21	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Chloromethane	ND	2.0	0.55	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,1-Dichloroethane	1.1	2.0	0.16	μg/L	1	J	EPA 624	7/7/16	7/8/16 7:52	MFF
1,1-Dichloroethylene	0.69	2.0	0.21	μg/L μg/L	1	J	EPA 624	7/7/16	7/8/16 7:52	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1	·	EPA 624	7/7/16	7/8/16 7:52	MFF
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090		1		EPA 624	7/7/16	7/8/16 7:52	MFF
Methylene Chloride	ND	5.0	3.2	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Tetrachloroethylene	ND	2.0	0.27	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Toluene	ND	1.0	0.17	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,1,1-Trichloroethane	32	2.0	0.13	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
1,1,2-Trichloroethane	ND	2.0	0.24	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Trichloroethylene	ND	2.0	0.20	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Vinyl Chloride	ND	2.0	0.13	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
m+p Xylene	ND	2.0	0.13	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
o-Xylene	ND	2.0	0.20	μg/L μg/L	1		EPA 624	7/7/16	7/8/16 7:52	MFF
Surrogates	- 1,2	% Reco		Recovery Limits		Flag/Qual	2111021	777710	770710 7.02	
1,2-Dichloroethane-d4		98.4	J	70-130	-	B. 5 mm			7/8/16 7:52	
Toluene-d8		97.3		70-130					7/8/16 7:52	
		104		70.120					7/0/1/6 7 50	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.4	70-130		7/8/16 7:52
Toluene-d8	97.3	70-130		7/8/16 7:52
4-Bromofluorobenzene	104	70-130		7/8/16 7:52

Project Location: S. Otselic, NY Sample Description: Work Order: 16F1367

Date Received: 6/27/2016
Field Sample #: RW-2

Sampled: 6/24/2016 07:35

Sample ID: 16F1367-02

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Bromodichloromethane	ND	2.0	0.30	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Chloromethane	ND	2.0	0.55	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,1-Dichloroethane	0.58	2.0	0.16	μg/L	1	J	EPA 624	7/7/16	7/8/16 8:19	MFF
1,1-Dichloroethylene	0.58	2.0	0.21	μg/L	1	J	EPA 624	7/7/16	7/8/16 8:19	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,2-Dichloropropane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Tetrachloroethylene	ND	2.0	0.27	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,1,1-Trichloroethane	33	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
1,1,2-Trichloroethane	ND	2.0	0.24	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 8:19	MFF
Surrogates		% Reco	very	Recovery Limits	<u> </u>	Flag/Qual				
1.2-Dichloroethane-d4		99.0		70-130					7/8/16 8:19	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	99.0	70-130		7/8/16 8:19
Toluene-d8	97.0	70-130		7/8/16 8:19
4-Bromofluorobenzene	102	70-130		7/8/16 8:19

Project Location: S. Otselic, NY Sample Description: Work Order: 16F1367

Date Received: 6/27/2016

Field Sample #: EFF 46 HZ

Sampled: 6/24/2016 07:40

Sample ID: 16F1367-03

Sample Matrix: Ground Water

Volatile O	rganic	Compounds	bv	GC/MS
------------	--------	-----------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Bromodichloromethane	ND	2.0	0.30	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Chloromethane	ND	2.0	0.55	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,4-Dichlorobenzene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,2-Dichloropropane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Ethylbenzene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Tetrachloroethylene	ND	2.0	0.27	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Toluene	ND	1.0	0.17	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,1,1-Trichloroethane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Trichloroethylene	ND	2.0	0.20	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 6:58	MFF
o-Xylene	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 6:58	MFF
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		98.5		70-130					7/8/16 6:58	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.5	70-130		7/8/16 6:58
Toluene-d8	97.4	70-130		7/8/16 6:58
4-Bromofluorobenzene	104	70-130		7/8/16 6:58

Project Location: S. Otselic, NY Sample Description: Work Order: 16F1367

Date Received: 6/27/2016

Field Sample #: Trip Blank

Sampled: 6/24/2016 00:00

Sample ID: 16F1367-04
Sample Matrix: Trip Blank Water

Volatile O	rganic	Compounds	bv	GC/MS
------------	--------	-----------	----	-------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Bromodichloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Carbon Tetrachloride	ND	2.0	0.25	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Chlorobenzene	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Chloromethane	ND	2.0	0.55	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,4-Dichlorobenzene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Tetrachloroethylene	ND	2.0	0.27	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Toluene	0.96	1.0	0.17	$\mu g/L$	1	J	EPA 624	7/7/16	7/8/16 7:25	MFF
1,1,1-Trichloroethane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	7/7/16	7/8/16 7:25	MFF
m+p Xylene	0.46	2.0	0.26	μg/L	1	J	EPA 624	7/7/16	7/8/16 7:25	MFF
o-Xylene	0.19	2.0	0.13	$\mu g/L$	1	J	EPA 624	7/7/16	7/8/16 7:25	MFF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		96.6		70-130					7/8/16 7:25	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.6	70-130		7/8/16 7:25
Toluene-d8	97.7	70-130		7/8/16 7:25
4-Bromofluorobenzene	104	70-130		7/8/16 7:25

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16F1367-01 [RW-1]	B153127	5	5.00	07/07/16
16F1367-02 [RW-2]	B153127	5	5.00	07/07/16
16F1367-03 [EFF 46 HZ]	B153127	5	5.00	07/07/16
16F1367-04 [Trip Blank]	B153127	5	5.00	07/07/16

%REC

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B153127 - SW-846 5030B										
Blank (B153127-BLK1)				Prepared &	Analyzed: 07	//07/16				
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	$\mu g \! / \! L$							
Bromoform	ND	2.0	$\mu g \! / \! L$							
Bromomethane	ND	2.0	$\mu \text{g/L}$							
Carbon Tetrachloride	ND	2.0	$\mu \text{g/L}$							
Chlorobenzene	ND	2.0	$\mu \text{g/L}$							
Chlorodibromomethane	ND	2.0	$\mu g \! / \! L$							
Chloroethane	ND	2.0	$\mu g \! / \! L$							
2-Chloroethyl Vinyl Ether	ND	10	μg/L							
Chloroform	ND	2.0	$\mu g \! / \! L$							
Chloromethane	ND	2.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.0	$\mu g \! / \! L$							
1,3-Dichlorobenzene	ND	2.0	$\mu g \! / \! L$							
1,4-Dichlorobenzene	ND	2.0	μg/L							
1,2-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethane	ND	2.0	μg/L							
1,1-Dichloroethylene	ND	2.0	μg/L							
trans-1,2-Dichloroethylene	ND	2.0	μg/L							
1,2-Dichloropropane	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	2.0	$\mu g \! / \! L$							
trans-1,3-Dichloropropene	ND	2.0	μg/L							
Ethylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L							
Γetrachloroethylene	ND	2.0	μg/L							
Γoluene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	2.0	μg/L							
1,1,2-Trichloroethane	ND	2.0	μg/L							
Trichloroethylene	ND	2.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	2.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	24.3		$\mu g/L$	25.0		97.1	70-130			
Surrogate: 4-Bromofluorobenzene	25.8		$\mu g/L$	25.0		103	70-130			
LCS (B153127-BS1)				Prepared &	Analyzed: 07					
Benzene	8.52	1.0	μg/L	10.0		85.2	37-151			
Bromodichloromethane	8.90	2.0	μg/L	10.0		89.0	35-155			
Bromoform	11.0	2.0	μg/L	10.0		110	45-169			
Bromomethane	10.7	2.0	μg/L	10.0		107	20-242			
Carbon Tetrachloride	10.1	2.0	μg/L	10.0		101	70-140			
Chlorobenzene	8.85	2.0	μg/L	10.0		88.5	37-160			
Chlorodibromomethane	9.46	2.0	μg/L	10.0		94.6	53-149			
Chloroethane	12.5	2.0	μg/L	10.0		125	70-130			
2-Chloroethyl Vinyl Ether	90.8	10	μg/L	100		90.8	10-305			
Chloroform	8.59	2.0	μg/L	10.0		85.9	51-138			
Chloromethane	13.9	2.0	μg/L	10.0		139	20-273			
1,2-Dichlorobenzene	9.09	2.0	$\mu \text{g/L}$	10.0		90.9	18-190			
1,3-Dichlorobenzene	8.96	2.0	$\mu g/L$	10.0		89.6	59-156			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B153127 - SW-846 5030B										
LCS (B153127-BS1)		Prepared & Analyzed: 07/07/16								
1,4-Dichlorobenzene	8.81	2.0	μg/L	10.0		88.1	18-190			
1,2-Dichloroethane	8.98	2.0	μg/L	10.0		89.8	49-155			
1,1-Dichloroethane	8.16	2.0	μg/L	10.0		81.6	59-155			
1,1-Dichloroethylene	9.03	2.0	μg/L	10.0		90.3	20-234			
trans-1,2-Dichloroethylene	8.05	2.0	μg/L	10.0		80.5	54-156			
1,2-Dichloropropane	8.22	2.0	μg/L	10.0		82.2	20-210			
cis-1,3-Dichloropropene	9.08	2.0	μg/L	10.0		90.8	20-227			
trans-1,3-Dichloropropene	9.47	2.0	μg/L	10.0		94.7	17-183			
Ethylbenzene	9.92	2.0	μg/L	10.0		99.2	37-162			
Methyl tert-Butyl Ether (MTBE)	9.85	2.0	μg/L	10.0		98.5	70-130			
Methylene Chloride	9.11	5.0	μg/L	10.0		91.1	50-221			
1,1,2,2-Tetrachloroethane	9.69	2.0	μg/L	10.0		96.9	46-157			
Tetrachloroethylene	9.72	2.0	μg/L	10.0		97.2	64-148			
Toluene	9.27	1.0	$\mu g\!/\!L$	10.0		92.7	47-150			
1,1,1-Trichloroethane	10.0	2.0	$\mu g\!/\!L$	10.0		100	52-162			
1,1,2-Trichloroethane	9.12	2.0	$\mu g\!/\!L$	10.0		91.2	52-150			
Trichloroethylene	9.05	2.0	$\mu g\!/\!L$	10.0		90.5	71-157			
Trichlorofluoromethane (Freon 11)	11.9	2.0	$\mu g\!/\!L$	10.0		119	17-181			
Vinyl Chloride	16.4	2.0	μg/L	10.0		164	20-251			
m+p Xylene	20.1	2.0	μg/L	20.0		100	70-130			
o-Xylene	9.92	2.0	$\mu g/L$	10.0		99.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	26.1		μg/L	25.0		105	70-130			
Surrogate: Toluene-d8	24.5		$\mu g/L$	25.0		98.0	70-130			
Surrogate: 4-Bromofluorobenzene	26.0		$\mu g/L$	25.0		104	70-130			

FLAG/QUALIFIER SUMMARY

*	QC resi	alt is	outside	e of	establish	ned l	ımıts.

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 624 in Water	
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,NC
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2017
FL	Florida Department of Health	E871027 NELAP	06/30/2017
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2017
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

Table of Contents ***Container Code Dissolved Metals B = Sodium bisulfate DW= drinking water O NY Part 375 **GW**= groundwater WW= wastewater T = Na thiosulfate O Field Filtered O NY CP-51 X = Na hydroxide # of Containers ** Preservation Lab to Filter S = Sulfuric Acid ***Cont. Code: **Preservation *Matrix Code: PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT A=amber glass N = Nitric Acid O Other: Oother: M = Methanol S=summa can T=tedlar bag S = soil/solid SL = sludge o = Other URNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT ST=sterile P=plastic 0 = other G=glass 0=Other I = Iced H" HC Aaair V= vial O AWQ STDS O NY Unrestricted Use Program Information/Regulatory NY TOGS NY Restricted Use Please use the following codes to let Con-Test know if a specific sample East longmeadow, MA 01028 ○Equis (1 file) H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ NYC Sewer Discharge ○ Part 360 GW (Landfill) ANALYSIS REQUESTED 39 Spruce Street Deliverables O ASP-A **CHAIN OF CUSTODY RECORD** 48 hr 🔾 4 day ☐ 5-Day ☐ 7 Day **A** 10-Day or __ **RUSH** [†] Furnaround h29 > × × 72 hr O 24 hr 🔾 Project # 00266406.000 Canc Cade MPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. Telephone: 518-250-7300 <u>১</u> ٤ **OWEBSITE** GIS O O "Enhanced Data Package" DATA DELIVERY (check all that apply) *Matrix Composite | Grab | Lude EXCEL GF BG **NEW YORK STATE** EMAIL Date/Time: Date/Time: Date/Time: PDF • Date/Time: O OTHER O FAX Client PO# Date/Time 0HG 725 Ending 05/0/21/20 Format: Email: Collection Oco Relinquished by: Email: info@contestlabs.com Relinquished by: Received by: Received by: Beginning Date/Time www.contestlabs.com Phone: 413-525-2332 Þ COMPACTOR Fax: 413-525-23 STE 210 Nobs Date/Time: 13:30 Client Sample ID / Description 0/12/g 2 Date/Time: Date/Time: Date/Time: EFF 40 H7 ANALYTICAL LABORATORY Rate 146 otselic olitian Park NY 14 75 CM Company Name: Arcadis O Project Proposal Provided? (for billing RW-1 7500-7 L. Whalen Project Location: 5. linquished by: (signature) Relinquisted by: (signature) egeivedrby: (signature) ceived by: (signature) Con-Test Lab ID (laboratory use only) Sampled By: රි ブ 0 3 ō Attention: purposes) Address: Comments

Page

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405

www.contestlabs.com

Page 1 of 2

Sample Receipt Checklist

CLIENT NAME: HCCadis		RECEIVED	BY:	PB	ı	DATE	6.21.16
1) Was the chain(s) of custody		gned?	Yes	<u> </u>	-		•
2) Does the chain agree with th If not, explain:	e samples?		Yes	· ·	_ No		
3) Are all the samples in good of If not, explain:	condition?		Yes	<u> </u>	No		
4) How were the samples receive	/ed:						V. S00
On Ice Direct from S	Sampling	Ambient		In Coc	ler(s)	$\sqrt{}$	comments
Were the samples received in Te						No	
Temperature °C by Temp blank	, , , , , , , , , , , , , , , , , , ,	_ Temperatu	re °C by	/ Temp	gun	26	.3
5) Are there Dissolved samples	for the lab to filter?		Yes		No	<u> </u>	
Who was notified	Date	Time _					
6) Are there any RUSH or SHOR	T HOLDING TIME s	amples?	Yes		No	\checkmark	
Who was notified	Date	Time_					
			1	sion to	subcor	ntract sa	amples? Yes No
7) Location where samples are stor	red:		(Walk-	in clien	ts only)	if not a	Iready approved
	Logn		Client S				* **
8) Do all samples have the prop	er Acid nH· Yes			-	,	•	
	-				1	,	
9) Do all samples have the prop	_				·····		. /
4 A \ \ 182 = = 41 = 25 A 4121 C		~ ~		_			****
			SEASON SEED FOR THE SEASON SERVICES	AND BELLEVIEW OF THE PARTY	enderen generalische		N/A
	iscrepancies with th ontainers rec		SEASON SEED FOR THE SEASON SERVICES	AND BELLEVIEW OF THE PARTY	enderen generalische		N/A V
	ontainers red		SEASON SEED FOR THE SEASON SERVICES	AND BELLEVIEW OF THE PARTY	enderen generalische		
			t Co	AND BELLEVIEW OF THE PARTY	st		# of containers
C	ontainers red		t Co	n-Te	est		
1 Liter Amber	ontainers red		t Co	oz aml	est per ear jar		
1 Liter Amber 500 mL Amber	ontainers red		16 8 oz ar	oz aml	est Der ear jar ear jar		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber)	ontainers red		16 8 oz ar 4 oz ar 2 oz ar	oz aml	est Der ear jar ear jar ear jar		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic	ontainers red		16 8 oz ar 4 oz ar 2 oz ar Plastic	oz aml mber/cl mber/cl	est Der ear jar ear jar ear jar ziploc		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	ontainers red		16 8 oz ar 4 oz ar 2 oz ar Plastic	oz aml mber/cl mber/cl mber/cl Bag /	per ear jar ear jar ear jar Ziploc		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	# of containers		16 8 oz ar 4 oz ar 2 oz ar Plastic	oz aml mber/cl mber/cl mber/cl Bag /	per ear jar ear jar ear jar Ziploc t		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	# of containers		16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc	oz aml mber/cl mber/cl mber/cl Bag / BOC Ki chlorate	per ear jar ear jar Ziploc t Ekit bottle		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	# of containers		16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc	oz aml mber/cl mber/cl mber/cl Bag /	per ear jar ear jar Ziploc t Ekit bottle		
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore	# of containers	ceived a	16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc Flash Othe	oz aml mber/cl mber/cl mber/cl Bag / GOC Ki chlorate mpoint ber glass	per ear jar ear jar Ziploc t ear jar ottle s jar	w 2	# of containers
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	# of containers	ceived a	16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc Flash Othe	oz aml mber/cl mber/cl mber/cl Bag / GOC Ki chlorate mpoint ber glass	per ear jar ear jar Ziploc t ear jar ottle s jar	n 2	# of containers
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore Sauples were OF warm wo	# of containers # of containers III recieved .v. Her. cools	ceived a	16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc Flash Othe	oz aml mber/cl mber/cl mber/cl s Bag / soOC Ki chlorate apoint be er glass Other	per ear jar ear jar Ziploc te Kit bottle sijar	w 2 and w	# of containers Logs 26.3
1 Liter Amber 500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Encore	# of containers # of containers II recieved .v. Her. cools:	ceived a	16 8 oz ar 4 oz ar 2 oz ar Plastic S Perc Flash Othe	oz aml mber/cl mber/cl mber/cl s Bag / soOC Ki chlorate apoint be er glass Other	per ear jar ear jar Ziploc te Kit bottle sijar		# of containers Logs 26.3

Page 2 of 2

Login Sample Receipt Checklist (Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question	Answer (True/False) Comment					
	T/F/NA					
1) The cooler's custody seal, if present, is intact.	NA					
The cooler or samples do not appear to have been compromised or tampered with.	T					
3) Samples were received on ice.	· entermination	Ice was multed				
4) Cooler Temperature is acceptable.	F					
5) Cooler Temperature is recorded.	T					
6) COC is filled out in ink and legible.	Τ					
7) COC is filled out with all pertinent information.						
8) Field Sampler's name present on COC.						
9) There are no discrepancies between the sample IDs on the container and the COC.	T					
10) Samples are received within Holding Time.	T					
11) Sample containers have legible labels.	7					
12) Containers are not broken ാ leaking.	T					
13) Air Cassettes are not broken/open.	NA					
14) Sample collection date/times are provided.	T					
15) Appropriate sample containers are used.	T					
16) Proper collection media used.	T					
17) No headspace sample bottles are completely filled.						
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.						
19) Trip blanks provided if applicable.	T					
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	T					
21) Samples do not require splitting or compositing. Who notified of False		Date/Time:				

Doc #277 Rev. 4 August 2013

Who notified of False statements? Log-In Technician Initials: 03

Date/Time: 6.21.16

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16E1189-01	5
16E1189-02	6
16E1189-03	7
16E1189-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B150221	10
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	15

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

ATTN: Jeremy Wyckoff

PURCHASE ORDER NUMBER:

REPORT DATE: 5/31/2016

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

16E1189 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. Otselic, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1	16E1189-01	Ground Water		EPA 624	
RW-2	16E1189-02	Ground Water		EPA 624	
EFF 46 HZ	16E1189-03	Ground Water		EPA 624	
Trip Blank	16E1189-04	Ground Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Sample Description: Work Order: 16E1189

Project Location: S. Otselic, NY Date Received: 5/26/2016 Field Sample #: RW-1

Sampled: 5/23/2016 06:30

Sample ID: 16E1189-01 Sample Matrix: Ground Water

Volatile O	rganic	Compounds	bv	GC/MS
------------	--------	-----------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1	8 0	EPA 624	5/27/16	5/28/16 12:55	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Carbon Tetrachloride	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,1-Dichloroethane	1.3	2.0	0.16	μg/L	1	J	EPA 624	5/27/16	5/28/16 12:55	EEH
1,1-Dichloroethylene	0.77	2.0	0.21	$\mu g/L$	1	J	EPA 624	5/27/16	5/28/16 12:55	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Tetrachloroethylene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Toluene	ND	1.0	0.17	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,1,1-Trichloroethane	34	2.0	0.094	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
m+p Xylene	ND	2.0	0.25	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:55	EEH
Surrogates		% Reco	overy	Recovery Limits	;	Flag/Qual				
1,2-Dichloroethane-d4		113		70-130					5/28/16 12:55	
Toluene-d8		98.7		70-130					5/28/16 12:55	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	113	70-130		5/28/16 12:55
Toluene-d8	98.7	70-130		5/28/16 12:55
4-Bromofluorobenzene	100	70-130		5/28/16 12:55

Project Location: S. Otselic, NY Sample Description: Work Order: 16E1189

Date Received: 5/26/2016
Field Sample #: RW-2

Sampled: 5/23/2016 06:40

Sample ID: 16E1189-02
Sample Matrix: Ground Water

Volatile	Organic	Compounds by	GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Carbon Tetrachloride	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,1-Dichloroethane	0.56	2.0	0.16	μg/L	1	J	EPA 624	5/27/16	5/28/16 13:21	EEH
1,1-Dichloroethylene	0.62	2.0	0.21	μg/L	1	J	EPA 624	5/27/16	5/28/16 13:21	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,1,1-Trichloroethane	28	2.0	0.094	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 13:21	EEH
m+p Xylene	ND	2.0	0.25	μg/L	1		EPA 624	5/27/16	5/28/16 13:21	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 13:21	EEH
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
1,2-Dichloroethane-d4		111		70-130					5/28/16 13:21	
Toluene-d8		98.4		70-130					5/28/16 13:21	
4-Bromofluorobenzene		101		70-130					5/28/16 13:21	

Project Location: S. Otselic, NY Work Order: 16E1189 Sample Description:

Date Received: 5/26/2016 Field Sample #: EFF 46 HZ

Sampled: 5/23/2016 06:50

Sample ID: 16E1189-03 Sample Matrix: Ground Water

Volatile Organic	Compounds by	GC/MS
------------------	--------------	-------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzene	ND	1.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Bromodichloromethane	ND	2.0	0.088	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Carbon Tetrachloride	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Chlorobenzene	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Chlorodibromomethane	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 11:34	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Chloromethane	ND	2.0	0.32	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Tetrachloroethylene	ND	2.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
m+p Xylene	ND	2.0	0.25	μg/L μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
o-Xylene	ND	2.0	0.13	μg/L μg/L	1		EPA 624	5/27/16	5/28/16 11:34	EEH
Surrogates		% Reco		Recovery Limits		Flag/Qual		2.27710		
1,2-Dichloroethane-d4		111	,, c1 y	70-130		rag/Quai			5/28/16 11:34	
Toluene-d8		98.1		70-130					5/28/16 11:34	
4.D. 0. 1										

Project Location: S. Otselic, NY Sample Description: Work Order: 16E1189

Date Received: 5/26/2016

Field Sample #: Trip Blank

Sampled: 5/23/2016 00:00

Sample ID: 16E1189-04
Sample Matrix: Ground Water

Volatile Organic	Compounds by	GC/MS
------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Bromodichloromethane	ND	2.0	0.088	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Bromoform	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Bromomethane	ND	2.0	0.94	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Carbon Tetrachloride	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Chlorobenzene	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Chlorodibromomethane	ND	2.0	0.10	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Chloromethane	ND	2.0	0.32	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,4-Dichlorobenzene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,1-Dichloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,1-Dichloroethylene	ND	2.0	0.21	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	5/27/16	5/28/16 12:01	EEH
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Ethylbenzene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Tetrachloroethylene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Toluene	0.79	1.0	0.17	$\mu g/L$	1	J	EPA 624	5/27/16	5/28/16 12:01	EEH
1,1,1-Trichloroethane	ND	2.0	0.094	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
1,1,2-Trichloroethane	ND	2.0	0.12	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Trichloroethylene	ND	2.0	0.20	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
m+p Xylene	0.30	2.0	0.25	$\mu g/L$	1	J	EPA 624	5/27/16	5/28/16 12:01	EEH
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	5/27/16	5/28/16 12:01	EEH
Surrogates		% Reco	overy	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		111		70-130					5/28/16 12:01	
Toluene-d8		98.3		70-130					5/28/16 12:01	
4-Bromofluorobenzene		97.8		70-130					5/28/16 12:01	

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16E1189-01 [RW-1]	B150221	5	5.00	05/27/16
16E1189-02 [RW-2]	B150221	5	5.00	05/27/16
16E1189-03 [EFF 46 HZ]	B150221	5	5.00	05/27/16
16E1189-04 [Trip Blank]	B150221	5	5.00	05/27/16

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B150221 - SW-846 5030B										
Blank (B150221-BLK1)				Prepared: 05	5/27/16 Anal	yzed: 05/28/1	16			
Benzene	ND	1.0	μg/L							
Bromodichloromethane	ND	2.0	$\mu g\!/\!L$							
Bromoform	ND	2.0	$\mu g\!/\!L$							
Bromomethane	ND	2.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g\!/\!L$							
Chlorodibromomethane	ND	2.0	$\mu g \! / \! L$							
Chloroethane	ND	2.0	$\mu g/L$							
-Chloroethyl Vinyl Ether	ND	10	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
2-Dichlorobenzene	ND	2.0	$\mu g/L$							
,3-Dichlorobenzene	ND	2.0	μg/L							
4-Dichlorobenzene	ND	2.0	μg/L							
,2-Dichloroethane	ND	2.0	μg/L							
,1-Dichloroethane	ND	2.0	μg/L							
,1-Dichloroethylene	ND	2.0	μg/L							
ans-1,2-Dichloroethylene	ND	2.0	μg/L							
,2-Dichloropropane	ND	2.0	μg/L							
is-1,3-Dichloropropene	ND	2.0	μg/L							
rans-1,3-Dichloropropene	ND	2.0	μg/L							
thylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
fethylene Chloride	ND	5.0	μg/L							
1,2,2-Tetrachloroethane	ND	2.0	μg/L							
etrachloroethylene	ND	2.0	μg/L							
Soluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	μg/L							
,1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
Yinyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
surrogate: 1,2-Dichloroethane-d4	28.3		$\mu g/L$	25.0		113	70-130			
urrogate: Toluene-d8	24.7		$\mu g/L$	25.0		98.7	70-130			
urrogate: 4-Bromofluorobenzene	25.1		μg/L	25.0		100	70-130			
CS (B150221-BS1)		1.0	/1		Analyzed: 05		25.15:			
enzene	8.29	1.0	μg/L	10.0		82.9	37-151			
Bromodichloromethane	9.69	2.0	μg/L	10.0		96.9	35-155			
Bromoform Bromomethane	10.9	2.0	μg/L	10.0		109	45-169			
	9.27	2.0	μg/L	10.0		92.7	20-242			
arbon Tetrachloride	10.2	2.0	μg/L	10.0		102	70-140			
Chlorobenzene	9.20	2.0	μg/L	10.0		92.0	37-160			
Chlorodibromomethane	9.94	2.0	μg/L	10.0		99.4	53-149			
hloroethane	9.56	2.0	μg/L	10.0		95.6	70-130			
-Chloroethyl Vinyl Ether	95.9	10	μg/L	100		95.9	10-305			
Chloroform	9.27	2.0	μg/L	10.0		92.7	51-138			
Chloromethane	12.4	2.0	μg/L	10.0		124	20-273			
,2-Dichlorobenzene	9.69	2.0	μg/L	10.0		96.9	18-190			
,3-Dichlorobenzene	9.75	2.0	μg/L	10.0		97.5	59-156			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

trans-1,3-Dichloropropene 9,24 2.0 µg/L 10.0 92.4 17-183 Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyl tert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 111 50-221 1,1,2,2-Tetrachloroethane 9,87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 µg/L 10.0 97.1 64-148 Toluene 8,83 1.0 µg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 µg/L 10.0 101 52-162 1,1,2-Trichloroethane 9,32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 10.1 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 102 20-251 m+p Xylene 9,62 2.0 µg/L 10.0 95.6 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 µg/L 25.0 110 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 µg/L 25.0 96.6 70-130	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
1,4-Dichlorobenzene	Batch B150221 - SW-846 5030B										
1,2-Dichloroethane 10,0 2,0 µg/L 10,0 100 49-155 1,1-Dichloroethane 9,01 2,0 µg/L 10,0 90,1 59-155 1,1-Dichloroethylene 10,4 2,0 µg/L 10,0 104 20-234 17-183 1,2-Dichloroptopane 9,04 2,0 µg/L 10,0 94,0 54-156 1,2-Dichloroptopane 9,04 2,0 µg/L 10,0 91,6 20-210 1,1-Dichloroptopane 9,16 2,0 µg/L 10,0 91,6 20-227 1,1-Dichloroptopane 9,16 2,0 µg/L 10,0 91,6 20-227 1,1-S-Dichloroptopane 9,24 2,0 µg/L 10,0 92,4 1,7-183 1,1-Dichloroptopane 9,24 2,0 µg/L 10,0 92,4 1,7-183 1,1-Dichloroptopane 9,40 2,0 µg/L 10,0 94,0 37-162 1,1-Dichloroptopane 9,54 2,0 µg/L 10,0 94,0 37-162 1,1-Dichloroptopane 9,54 2,0 µg/L 10,0 95,4 70-130 1,1-Dichloroptopane 9,54 2,0 µg/L 10,0 95,4 70-130 1,1-Dichloroptopane 9,87 2,0 µg/L 10,0 98,7 46-157 1,1-Dichloroptopane 9,87 2,0 µg/L 10,0 98,7 46-157 1,1-Dichloroptopane 9,11 2,0 µg/L 10,0 98,7 46-157 1,1-Dichloroptopane 9,11 2,0 µg/L 10,0 97,1 64-148 1,1-Dichloroptopane 9,11 2,0 µg/L 10,0 10,0 10,0 10,0 1,1-Dichloroptopane 1,1-Dichloroptopane 9,44 2,0 µg/L 10,0 10,0 10,0 1,1-Dichloroptopane 1,1-	LCS (B150221-BS1)				Prepared &	Analyzed: 05	/27/16				
1,1-Dichloroethane	1,4-Dichlorobenzene	9.20	2.0	μg/L	10.0		92.0	18-190			
1,1-Dichloroethylene	1,2-Dichloroethane	10.0	2.0	$\mu g/L$	10.0		100	49-155			
trans-1,2-Dichloroethylene 9,40 2.0 µg/L 10.0 94.0 54-156 1,2-Dichloropropane 9,04 2.0 µg/L 10.0 90.4 20-210 cis-1,3-Dichloropropene 9,16 2.0 µg/L 10.0 91.6 20-227 trans-1,3-Dichloropropene 9,24 2.0 µg/L 10.0 92.4 17-183 Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyltert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 98.7 46-157 Tetrachloroethane 9,87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 10.1 2.0 µg/L 10.0 97.1 64-148 Toluene 8.83 1.0 µg/L 10.0 97.1 64-148 Toluene 8.83 1.0 µg/L 10.0 97.1 64-148 Toluene 9,32 2.0 µg/L 10.0 93.2 52-150 1,1,2-Trichloroethane (Fron 11) 10.1 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 94.4 71-157 Trichloroethylene 10.1 2.0 µg/L 10.0 94.4 71-157 Trichloroethylene 10.2 2.0 µg/L 10.0 94.4 71-157 Trichloroethylene 10.2 2.0 µg/L 10.0 95.6 70-130 Surrogate: 1,2-Dichloroethane-44 27.6 µg/L 25.0 110 70-130 Surrogate: 1,2-Dichloroethane-44 27.6 µg/L 25.0 110 70-130 Surrogate: 1,2-Dichloroethane-44 27.6 µg/L 25.0 96.6 70-130	1,1-Dichloroethane	9.01	2.0	$\mu \text{g/L}$	10.0		90.1	59-155			
1,2-Dichloropropane 9,04 2.0 µg/L 10.0 90.4 20-210 cis-1,3-Dichloropropene 9,16 2.0 µg/L 10.0 91.6 20-227 trans-1,3-Dichloropropene 9,24 2.0 µg/L 10.0 92.4 17-183 Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyl tert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9.87 2.0 µg/L 10.0 97.1 64-148 Toluene 8.83 1.0 µg/L 10.0 97.1 64-148 Toluene 8.83 1.0 µg/L 10.0 97.1 52-162 1,1,2-Trichloroethane 9.32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9.44 2.0 µg/L 10.0 <td>1,1-Dichloroethylene</td> <td>10.4</td> <td>2.0</td> <td>$\mu g/L$</td> <td>10.0</td> <td></td> <td>104</td> <td>20-234</td> <td></td> <td></td> <td></td>	1,1-Dichloroethylene	10.4	2.0	$\mu g/L$	10.0		104	20-234			
cis-1,3-Dichloropropene 9,16 2.0 µg/L 10.0 91.6 20-227 trans-1,3-Dichloropropene 9,24 2.0 µg/L 10.0 92.4 17-183 Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyl tert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 98.7 46-157 Tetrachloroethane 9,87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 µg/L 10.0 97.1 64-148 Toluene 8,83 1.0 µg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 µg/L 10.0 93.2 52-162 1,1,2-Trichloroethylene 9,32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 <td< td=""><td>trans-1,2-Dichloroethylene</td><td>9.40</td><td>2.0</td><td>$\mu g/L$</td><td>10.0</td><td></td><td>94.0</td><td>54-156</td><td></td><td></td><td></td></td<>	trans-1,2-Dichloroethylene	9.40	2.0	$\mu g/L$	10.0		94.0	54-156			
trans-1,3-Dichloropropene 9,24 2.0 µg/L 10.0 92.4 17-183 Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyl tert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 111 50-221 1,1,2,2-Tetrachloroethane 9,87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 µg/L 10.0 97.1 64-148 Toluene 8,83 1.0 µg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 µg/L 10.0 101 52-162 1,1,2-Trichloroethane 9,32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 10.1 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 102 20-251 m+p Xylene 9,62 2.0 µg/L 10.0 95.6 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 µg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 µg/L 25.0 96.6 70-130	1,2-Dichloropropane	9.04	2.0	$\mu g/L$	10.0		90.4	20-210			
Ethylbenzene 9,40 2.0 µg/L 10.0 94.0 37-162 Methyl tert-Butyl Ether (MTBE) 9,54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 111 50-221 1,1,2,2-Tetrachloroethane 9,87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 µg/L 10.0 97.1 64-148 Toluene 8,83 1.0 µg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 µg/L 10.0 101 52-162 1,1,2-Trichloroethane 9,32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 20.0 95.6	cis-1,3-Dichloropropene	9.16	2.0	$\mu g/L$	10.0		91.6	20-227			
Methyl tert-Butyl Ether (MTBE) 9.54 2.0 µg/L 10.0 95.4 70-130 Methylene Chloride 11.1 5.0 µg/L 10.0 111 50-221 1,1,2,2-Tetrachloroethane 9.87 2.0 µg/L 10.0 98.7 46-157 Tetrachloroethylene 9.71 2.0 µg/L 10.0 97.1 64-148 Toluene 8.83 1.0 µg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 µg/L 10.0 101 52-162 1,1,2-Trichloroethylene 9.32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9.44 2.0 µg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 µg/L 20.0 95.6<	trans-1,3-Dichloropropene	9.24	2.0	$\mu g/L$	10.0		92.4	17-183			
Methylene Chloride 11.1 5.0 μg/L 10.0 111 50-221 1,1,2,2-Tetrachloroethane 9.87 2.0 μg/L 10.0 98.7 46-157 Tetrachloroethylene 9.71 2.0 μg/L 10.0 97.1 64-148 Toluene 8.83 1.0 μg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 μg/L 10.0 101 52-162 1,1,2-Trichloroethane 9.32 2.0 μg/L 10.0 93.2 52-150 Trichloroethylene 9.44 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 9	Ethylbenzene	9.40	2.0	$\mu \text{g}/L$	10.0		94.0	37-162			
1,1,2,2-Tetrachloroethane 9,87 2.0 μg/L 10.0 98.7 46-157 Tetrachloroethylene 9,71 2.0 μg/L 10.0 97.1 64-148 Toluene 8,83 1.0 μg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 9,32 2.0 μg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 μg/L 10.0 93.2 52-150 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 ο-Xylene 9,62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8	Methyl tert-Butyl Ether (MTBE)	9.54	2.0	$\mu \text{g}/L$	10.0		95.4	70-130			
Tetrachloroethylene 9.71 2.0 μg/L 10.0 97.1 64-148 Toluene 8.83 1.0 μg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 μg/L 10.0 101 52-162 1,1,2-Trichloroethane 9.32 2.0 μg/L 10.0 93.2 52-150 Trichloroethylene 9.44 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	Methylene Chloride	11.1	5.0	$\mu \text{g}/L$	10.0		111	50-221			
Toluene 8.83 1.0 μg/L 10.0 88.3 47-150 1,1,1-Trichloroethane 10.1 2.0 μg/L 10.0 101 52-162 1,1,2-Trichloroethane 9.32 2.0 μg/L 10.0 93.2 52-150 Trichloroethylene 9.44 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 ο-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	1,1,2,2-Tetrachloroethane	9.87	2.0	$\mu \text{g}/L$	10.0		98.7	46-157			
1,1,1-Trichloroethane 10.1 2.0 μg/L 10.0 101 52-162 1,1,2-Trichloroethane 9,32 2.0 μg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	Tetrachloroethylene	9.71	2.0	$\mu \text{g/L}$	10.0		97.1	64-148			
1,1,2-Trichloroethane 9,32 2.0 µg/L 10.0 93.2 52-150 Trichloroethylene 9,44 2.0 µg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 µg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 µg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 µg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 µg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 µg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 µg/L 25.0 96.6 70-130	Toluene	8.83	1.0	$\mu g/L$	10.0		88.3	47-150			
Trichloroethylene 9.44 2.0 μg/L 10.0 94.4 71-157 Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	1,1,1-Trichloroethane	10.1	2.0	$\mu g/L$	10.0		101	52-162			
Trichlorofluoromethane (Freon 11) 10.1 2.0 μg/L 10.0 101 17-181 Vinyl Chloride 10.2 2.0 μg/L 10.0 102 20-251 m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	1,1,2-Trichloroethane	9.32	2.0	$\mu \text{g}/L$	10.0		93.2	52-150			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trichloroethylene	9.44	2.0	$\mu \text{g}/L$	10.0		94.4	71-157			
m+p Xylene 19.1 2.0 μg/L 20.0 95.6 70-130 o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	Trichlorofluoromethane (Freon 11)	10.1	2.0	$\mu \text{g}/L$	10.0		101	17-181			
o-Xylene 9.62 2.0 μg/L 10.0 96.2 70-130 Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	Vinyl Chloride	10.2	2.0	$\mu \text{g/L}$	10.0		102	20-251			
Surrogate: 1,2-Dichloroethane-d4 27.6 μg/L 25.0 110 70-130 Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	m+p Xylene	19.1	2.0	$\mu \text{g}/L$	20.0		95.6	70-130			
Surrogate: Toluene-d8 24.2 μg/L 25.0 96.6 70-130	o-Xylene	9.62	2.0	$\mu g/L$	10.0		96.2	70-130			
	Surrogate: 1,2-Dichloroethane-d4	27.6		μg/L	25.0		110	70-130			
Surrogate: 4-Bromofluorobenzene 25.4 ug/L 25.0 101 70-130	Surrogate: Toluene-d8	24.2		$\mu g/L$	25.0		96.6	70-130			
	Surrogate: 4-Bromofluorobenzene	25.4		$\mu g/L$	25.0		101	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limit	s.
---	---	----

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 624 in Water	
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2016
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2016
FL	Florida Department of Health	E871027 NELAP	06/30/2016
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2016
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

Oother:

OEquis (1 file)

Deliverables O ASP-A

4 day 🔾 48 hr 🔾

72 hr O 24 hr 🔾

Date/Time:

Received by:

Date/Time:

ived by: (signature)

Page

quished by: (signature)

Date/Time:

CHAIN OF CUSTODY RECORD Phone: 413-525-2332

39 Spruce Street

NEW YORK STATE

Dissolved Metals ***Container Code O Field Filtered # of Containers ** Preservation O Lab to Filter ***Cont. Code: A=amber glass S=summa can ST=sterile P=plastic G-glass V= vial East longmeadow, MA 01028 **ANALYSIS REQUESTED** 45 9 > T Conc Code 0026406.000 ○ WEBSITE 6550 Telephone: 518-250-7360 O 'Enhanced Data Package" *Matrix DATA DELIVERY (check all that apply) 16E189 EXCEL • Composite | Grab **EMAIL** O OTHER O FA Project # Client PO# Ending Format: Email: Fax# Collection Email: info@contestlabs.com Beginning 270 www.contestlabs.com 12065 CON - 13-525-23 STE Client Sample ID / Description 77 ANALYTICAL LABORATORY といって O Project Proposal Provided? (for billing Company Name: Hrca21'5 Park 1.fton Con-Test Lab ID Project Location: Sampled By:

DW= drinking water O NY Part 375 GW= groundwater WW= wastewater O NY CP-51 Other: S = soil/solid 0 = other_ A = air O AWQ STDS O NY Unrestricted Use Program Information/Regulatory Please use the following codes to let Con-Test know if a specific sample NY TOGS NY Restricted Use H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: ○ NYC Sewer Discharge ○ Part 360 GW (Landfill) Turnaround 10-Day or 7 Day 5-Day RUSH Date/Time: Date/Time Relinquished by: 10 99 Relinquished by: Hy Received by: 5/23/16 Date/Time: Date/Time: Relinquished by: (signature) ceived by: Comments:

B = Sodium bisulfate

S = Sulfuric Acid

ゾ

١

0590 2520

EFF 40 HZ

7-27

RW-1

purposes)

Attention:

Address:

Blank

M = Methanol N = Nitric Acid

**Preservation

1 = 1ced

H* HCL

T≕tedlar bag

0=Other

Y

٤

3

Date/Time 0630

5/13/16 Date/Time

٤

T = Na thiosulfate

0 = Other

*Matrix Code:

X = Na hydroxide

RNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT Equis (4 file) ASP-B Require lab approval APLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. 15 of 17

PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT

Page 16 of 17

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F: 413-525-6405

Page 1 of 2

www.contestlabs.com Sample Receipt Checklist RECEIVED BY: CLIENT NAME: 1) Was the chain(s) of custody relinquished and signed? Yes \ No No COC Incl. 2) Does the chain agree with the samples? If not, explain: 3) Are all the samples in good condition? If not, explain: 4) How were the samples received: Direct from Sampling Ambient In Cooler(s) On Ice 🗸 Were the samples received in Temperature Compliance of (2-6°C)? Yes, Temperature °C by Temp blank Temperature °C by Temp gun 5) Are there Dissolved samples for the lab to filter? Yes No \ Who was notified _____ Date ____ Time ____ 6) Are there any RUSH or SHORT HOLDING TIME samples? Yes Who was notified Date Permission to subcontract samples? Yes No (Walk-in clients only) if not already approved 7) Location where samples are stored: Client Signature: Yes 8) Do all samples have the proper Acid pH: No 9) Do all samples have the proper Base pH: Yes No 10) Was the PC notified of any discrepancies with the CoC vs the samples: Containers received at Con-Test # of containers # of containers 1 Liter Amber 16 oz amber 500 mL Amber 8 oz amber/clear jar 250 mL Amber (8oz amber) 4 oz amber/clear jar 1 Liter Plastic 2 oz amber/clear jar 500 mL Plastic Plastic Bag / Ziploc 250 mL plastic SOC Kit 40 mL Vial - type listed below Perchlorate Kit Colisure / bacteria bottle Flashpoint bottle Dissolved Oxygen bottle Other glass jar Encore Other Time and Date Frozen: 40 mL vials: # HCl # Methanol Doc# 277 # Bisulfate # DI Water Unpreserved Rev. 4 August 2013 # Thiosulfate

Page 2 of 2 **Login Sample Receipt Checklist**

(Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question Question	Answer (True/Fa	
	T/F/NA	
1) The cooler's custody seal, if present, is intact.	L T	
The cooler or samples do not appear to have been compromised or tampered with.		
3) Samples were received on ice.	Ť	
4) Cooler Temperature is acceptable.	1	
5) Cooler Temperature is recorded.	T	
6) COC is filled out in ink and legible.	T	
7) COC is filled out with all pertinent information.	T	
8) Field Sampler's name present on COC.	· T	
9) There are no discrepancies between the sample IDs on the container and the COC.	T	
10) Samples are received within Holding Time.	T	
11) Sample containers have legible labels.	7	
12) Containers are not broken or leaking.		
13) Air Cassettes are not broken/open.	NA	
14) Sample collection date/times are provided.	T	
15) Appropriate sample containers are used.	一丁	
16) Proper collection media used.	T	
17) No headspace sample bottles are completely filled.	T	
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.		
19) Trip blanks provided if applicable.	<u> </u>	
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	T	
21) Samples do not require splitting or compositing.	T	
Who notified of Fals Doc #277 Rev. 4 August 2013 Log-In Technician I		Date/Time:
	nitials:	261'Y
		Page 17

Page 17 of 17

August 8, 2016

Jeremy Wyckoff Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210 Clifton Park, NY 12065

Project Location: S. OtselIC,NY

Client Job Number:

Project Number: 00266406.0000

Laboratory Work Order Number: 16G1140

Enclosed are results of analyses for samples received by the laboratory on July 26, 2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Aaron L. Benoit Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
16G1140-01	5
16G1140-02	6
16G1140-03	7
16G1140-04	8
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B155071	10
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	15

Arcadis US, Inc. - Clifton Park-NY 855 Route 146, Suite 210

ATTN: Jeremy Wyckoff

Clifton Park, NY 12065 PU

REPORT DATE: 8/8/2016

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 00266406.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 16G1140

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: S. OtselIC,NY

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
RW-1	16G1140-01	Ground Water		EPA 624	
RW-2	16G1140-02	Ground Water		EPA 624	
EFF 46 HZ	16G1140-03	Ground Water		EPA 624	
Trip Blank	16G1140-04	Trip Blank Water		EPA 624	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: S. OtselIC,NY Work Order: 16G1140 Sample Description:

Date Received: 7/26/2016 Field Sample #: RW-1

Sampled: 7/25/2016 06:45

Sample ID: 16G1140-01 Sample Matrix: Ground Water

Volotile	Ougania	Compounds by	CCME
Volatile	Organic	Compounds by	GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flog/Ossal	Method	Date	Date/Time	Analyst
Benzene	ND	1.0	0.12		Dilution	Flag/Qual	EPA 624	Prepared 8/2/16	8/4/16 2:50	LBD
Bromodichloromethane	ND ND			μg/L			EPA 624 EPA 624			
Bromoform	ND ND	2.0 2.0	0.30	μg/L	1 1		EPA 624 EPA 624	8/2/16 8/2/16	8/4/16 2:50	LBD
Bromomethane	ND ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 2:50 8/4/16 2:50	LBD LBD
Carbon Tetrachloride	ND ND	2.0	0.94	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Chlorobenzene	ND ND	2.0	0.23	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Chlorodibromomethane	ND ND	2.0	0.10	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Chloroethane	ND ND	2.0		μg/L			EPA 624	8/2/16		LBD
2-Chloroethyl Vinyl Ether	ND ND	10	0.28	μg/L	1				8/4/16 2:50	
Chloroform			2.2	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Chloromethane	ND 0.77	2.0	0.22	μg/L	1 1	J	EPA 624	8/2/16	8/4/16 2:50	LBD
1,2-Dichlorobenzene		2.0	0.55	μg/L		J	EPA 624	8/2/16	8/4/16 2:50	LBD
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,4-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
·	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,1-Dichloroethane	1.5	2.0	0.16	μg/L	1	J	EPA 624	8/2/16	8/4/16 2:50	LBD
1,1-Dichloroethylene	0.68	2.0	0.21	μg/L	1	J	EPA 624	8/2/16	8/4/16 2:50	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Tetrachloroethylene	ND	2.0	0.27	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,1,1-Trichloroethane	35	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
1,1,2-Trichloroethane	ND	2.0	0.24	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 2:50	LBD
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:50	LBD
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:50	LBD
Surrogates		% Reco	overy	Recovery Limits	_	Flag/Qual				
1,2-Dichloroethane-d4		89.7		70-130					8/4/16 2:50	
Toluene-d8		94.8		70-130					8/4/16 2:50	

Project Location: S. OtselIC,NY Sample Description: Work Order: 16G1140

Date Received: 7/26/2016
Field Sample #: RW-2

Sampled: 7/25/2016 06:50

Sample ID: 16G1140-02
Sample Matrix: Ground Water

Volatile	Organic	Compounds by	GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1	1 mg/ 2 mm	EPA 624	8/2/16	8/4/16 3:20	LBD
Bromodichloromethane	ND	2.0	0.30	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Chloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
2-Chloroethyl Vinyl Ether	ND	10	2.2	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Chloroform	ND	2.0	0.22	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Chloromethane	0.59	2.0	0.55	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 3:20	LBD
1,2-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,3-Dichlorobenzene	ND	2.0	0.17	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,4-Dichlorobenzene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,2-Dichloroethane	ND	2.0	0.19	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,1-Dichloroethane	0.66	2.0	0.16	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 3:20	LBD
1,1-Dichloroethylene	0.48	2.0	0.21	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 3:20	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,2-Dichloropropane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Ethylbenzene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Tetrachloroethylene	ND	2.0	0.27	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Toluene	ND	1.0	0.17	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,1,1-Trichloroethane	28	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Trichloroethylene	ND	2.0	0.20	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
m+p Xylene	ND	2.0	0.26	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:20	LBD
Surrogates		% Reco	overy	Recovery Limit	ts	Flag/Qual				
1,2-Dichloroethane-d4		90.7		70-130					8/4/16 3:20	
T 1 10		0.5.2		70.130					014146 000	

Project Location: S. OtselIC,NY Sample Description: Work Order: 16G1140

Date Received: 7/26/2016 Field Sample #: EFF 46 HZ

Sampled: 7/25/2016 07:00

Sample ID: 16G1140-03 Sample Matrix: Ground Water

Volatile Organic	Compounds by	GC/MS
------------------	--------------	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	ND	1.0	0.12	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Bromodichloromethane	ND	2.0	0.30	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Chloromethane	1.0	2.0	0.55	μg/L	1	J	EPA 624	8/2/16	8/4/16 3:51	LBD
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
cis-1,3-Dichloropropene	ND	2.0	0.12	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
trans-1,3-Dichloropropene	ND	2.0	0.11	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Ethylbenzene	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Methylene Chloride	ND	5.0	3.2	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Tetrachloroethylene	ND	2.0	0.27	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Toluene	ND	1.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,1,1-Trichloroethane	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
1,1,2-Trichloroethane	ND	2.0	0.24	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Trichloroethylene	ND	2.0	0.20	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Vinyl Chloride	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
m+p Xylene	ND	2.0	0.26	μg/L	1		EPA 624	8/2/16	8/4/16 3:51	LBD
o-Xylene	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 3:51	LBD
Surrogates		% Reco	overy	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4		88.5		70-130					8/4/16 3:51	
Toluene-d8		96.5		70-130					8/4/16 3:51	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	88.5	70-130		8/4/16 3:51
Toluene-d8	96.5	70-130		8/4/16 3:51
4-Bromofluorobenzene	94.8	70-130		8/4/16 3:51

Project Location: S. OtselIC,NY Work Order: 16G1140 Sample Description:

Date Received: 7/26/2016 Field Sample #: Trip Blank

Sampled: 7/25/2016 00:00

Sample ID: 16G1140-04 Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene	0.21	1.0	0.12	μg/L	1	J	EPA 624	8/2/16	8/4/16 2:19	LBD
Bromodichloromethane	ND	2.0	0.30	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Bromoform	ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Bromomethane	ND	2.0	0.94	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Carbon Tetrachloride	ND	2.0	0.25	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Chlorobenzene	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Chlorodibromomethane	ND	2.0	0.10	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Chloroethane	ND	2.0	0.28	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
2-Chloroethyl Vinyl Ether	ND	10	2.2	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Chloroform	ND	2.0	0.22	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Chloromethane	ND	2.0	0.55	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,2-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,3-Dichlorobenzene	ND	2.0	0.17	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,4-Dichlorobenzene	ND	2.0	0.15	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,2-Dichloroethane	ND	2.0	0.19	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,1-Dichloroethane	ND	2.0	0.16	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,1-Dichloroethylene	ND	2.0	0.21	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.15	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,2-Dichloropropane	ND	2.0	0.13	μg/L	1		EPA 624	8/2/16	8/4/16 2:19	LBD
cis-1,3-Dichloropropene	ND	2.0	0.12	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
trans-1,3-Dichloropropene	ND	2.0	0.11	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Ethylbenzene	0.13	2.0	0.13	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 2:19	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.090	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Methylene Chloride	ND	5.0	3.2	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.16	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Tetrachloroethylene	ND	2.0	0.27	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Toluene	1.0	1.0	0.17	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,1,1-Trichloroethane	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
1,1,2-Trichloroethane	ND	2.0	0.24	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Trichloroethylene	ND	2.0	0.20	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		EPA 624	8/2/16	8/4/16 2:19	LBD
m+p Xylene	0.53	2.0	0.26	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 2:19	LBD
o-Xylene	0.25	2.0	0.13	$\mu g/L$	1	J	EPA 624	8/2/16	8/4/16 2:19	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		89.5		70-130					8/4/16 2:19	
Toluene-d8		95.6		70-130					8/4/16 2:19	

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
16G1140-01 [RW-1]	B155071	5	5.00	08/02/16
16G1140-02 [RW-2]	B155071	5	5.00	08/02/16
16G1140-03 [EFF 46 HZ]	B155071	5	5.00	08/02/16
16G1140-04 [Trip Blank]	B155071	5	5.00	08/02/16

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B155071 - SW-846 5030B										
ank (B155071-BLK1)				Prepared: 08	3/02/16 Anal	yzed: 08/03/1	16			
enzene	ND	1.0	μg/L							
romodichloromethane	ND	2.0	μg/L							
romoform	ND	2.0	μg/L							
romomethane	ND	2.0	μg/L							
arbon Tetrachloride	ND	2.0	μg/L							
hlorobenzene	ND	2.0	μg/L							
hlorodibromomethane	ND	2.0	μg/L							
hloroethane	ND	2.0	$\mu g/L$							
Chloroethyl Vinyl Ether	ND	10	$\mu g/L$							
hloroform	ND	2.0	$\mu g/L$							
hloromethane	ND	2.0	μg/L							
2-Dichlorobenzene	ND	2.0	$\mu g/L$							
3-Dichlorobenzene	ND	2.0	$\mu g/L$							
4-Dichlorobenzene	ND	2.0	$\mu g/L$							
2-Dichloroethane	ND	2.0	$\mu g/L$							
1-Dichloroethane	ND	2.0	$\mu g/L$							
1-Dichloroethylene	ND	2.0	$\mu \text{g/L}$							
ans-1,2-Dichloroethylene	ND	2.0	$\mu g/L$							
2-Dichloropropane	ND	2.0	$\mu g/L$							
s-1,3-Dichloropropene	ND	2.0	μg/L							
ans-1,3-Dichloropropene	ND	2.0	μg/L							
hylbenzene	ND	2.0	$\mu g/L$							
ethyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$							
ethylene Chloride	ND	5.0	$\mu g/L$							
1,2,2-Tetrachloroethane	ND	2.0	$\mu g/L$							
etrachloroethylene	ND	2.0	μg/L							
bluene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	2.0	μg/L							
1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
Xylene	ND	2.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	22.1		μg/L	25.0		88.4	70-130			
urrogate: Toluene-d8	24.1		μg/L μg/L	25.0		96.5	70-130			
rrogate: 4-Bromofluorobenzene	24.1		μg/L μg/L	25.0		95.9	70-130			
CS (B155071-BS1)	27.V		MB/ L		3/02/16 Anal					
enzene	0.05	1.0	μg/L	10.0	,, 02/10 Allal	98.5	37-151			
romodichloromethane	9.85	2.0	μg/L μg/L	10.0		98.5 90.0	37-151 35-155			
romodicniorometnane	9.00	2.0	μg/L μg/L				35-155 45-169			
romomethane	9.33	2.0	μg/L μg/L	10.0		93.3	20-242			
arbon Tetrachloride	7.02	2.0	μg/L μg/L	10.0		70.2				
nlorobenzene	10.3			10.0		103	70-140			
	10.4	2.0	μg/L	10.0		104	37-160			
nlorodibromomethane	10.4	2.0	μg/L	10.0		104	53-149			
nloroethane	7.77	2.0	μg/L	10.0		77.7	70-130			
Chloroethyl Vinyl Ether	105	10	μg/L	100		105	10-305			
nloroform	9.24	2.0	μg/L	10.0		92.4	51-138			
hloromethane	7.92	2.0	μg/L	10.0		79.2	20-273			
2-Dichlorobenzene	10.9	2.0	μg/L	10.0		109	18-190			
3-Dichlorobenzene	10.9	2.0	$\mu g/L$	10.0		109	59-156			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B155071 - SW-846 5030B										
LCS (B155071-BS1)				Prepared: 08	3/02/16 Analy	yzed: 08/03/1	6			
1,4-Dichlorobenzene	10.8	2.0	μg/L	10.0		108	18-190			
1,2-Dichloroethane	8.49	2.0	$\mu \text{g/L}$	10.0		84.9	49-155			
1,1-Dichloroethane	9.05	2.0	$\mu g/L$	10.0		90.5	59-155			
,1-Dichloroethylene	7.70	2.0	$\mu g/L$	10.0		77.0	20-234			
rans-1,2-Dichloroethylene	9.39	2.0	$\mu g/L$	10.0		93.9	54-156			
1,2-Dichloropropane	9.50	2.0	$\mu g/L$	10.0		95.0	20-210			
eis-1,3-Dichloropropene	9.75	2.0	$\mu g/L$	10.0		97.5	20-227			
rans-1,3-Dichloropropene	9.67	2.0	$\mu g/L$	10.0		96.7	17-183			
Ethylbenzene	9.72	2.0	$\mu g/L$	10.0		97.2	37-162			
Methyl tert-Butyl Ether (MTBE)	10.3	2.0	$\mu g/L$	10.0		103	70-130			
Methylene Chloride	10.1	5.0	$\mu g/L$	10.0		101	50-221			
,1,2,2-Tetrachloroethane	10.0	2.0	$\mu g/L$	10.0		100	46-157			
Tetrachloroethylene	10.5	2.0	$\mu g/L$	10.0		105	64-148			
Toluene	9.25	1.0	$\mu g/L$	10.0		92.5	47-150			
1,1,1-Trichloroethane	9.39	2.0	$\mu g/L$	10.0		93.9	52-162			
1,1,2-Trichloroethane	10.2	2.0	$\mu g/L$	10.0		102	52-150			
Γrichloroethylene	9.31	2.0	$\mu g/L$	10.0		93.1	71-157			
Trichlorofluoromethane (Freon 11)	8.15	2.0	$\mu g/L$	10.0		81.5	17-181			
Vinyl Chloride	7.91	2.0	$\mu g/L$	10.0		79.1	20-251			
n+p Xylene	19.1	2.0	$\mu g/L$	20.0		95.6	70-130			
o-Xylene	9.60	2.0	$\mu g/L$	10.0		96.0	70-130			
Surrogate: 1,2-Dichloroethane-d4	21.4		μg/L	25.0		85.7	70-130			
Surrogate: Toluene-d8	23.4		$\mu g/L$	25.0		93.7	70-130			
Surrogate: 4-Bromofluorobenzene	25.5		μg/L	25.0		102	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limit	s.
---	---	----

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit

DL Method Detection Limit

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 624 in Water	
Benzene	CT,MA,NH,NY,RI,NC,ME,VA
Bromodichloromethane	CT,MA,NH,NY,RI,NC,ME,VA
Bromoform	CT,MA,NH,NY,RI,NC,ME,VA
Bromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Carbon Tetrachloride	CT,MA,NH,NY,RI,NC,ME,VA
Chlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
Chlorodibromomethane	CT,MA,NH,NY,RI,NC,ME,VA
Chloroethane	CT,MA,NH,NY,RI,NC,ME,VA
2-Chloroethyl Vinyl Ether	CT,MA,NH,NY,RI,NC,ME,VA
Chloroform	CT,MA,NH,NY,RI,NC,ME,VA
Chloromethane	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
1,2-Dichloropropane	CT,MA,NH,NY,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,NC,ME,VA
Ethylbenzene	CT,MA,NH,NY,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,NC
Methylene Chloride	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Tetrachloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Toluene	CT,MA,NH,NY,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,NC,ME,VA
Trichloroethylene	CT,MA,NH,NY,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,NC,ME,VA
Vinyl Chloride	CT,MA,NH,NY,RI,NC,ME,VA
m+p Xylene	CT,MA,NH,NY,RI,NC,VA
o-Xylene	CT,MA,NH,NY,RI,NC,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC	100033	02/1/2018
MA	Massachusetts DEP	M-MA100	06/30/2017
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2017
NY	New York State Department of Health	10899 NELAP	04/1/2017
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2017
RI	Rhode Island Department of Health	LAO00112	12/30/2016
NC	North Carolina Div. of Water Quality	652	12/31/2016
NJ	New Jersey DEP	MA007 NELAP	06/30/2017
FL	Florida Department of Health	E871027 NELAP	06/30/2017
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2017
ME	State of Maine	2011028	06/9/2017
VA	Commonwealth of Virginia	460217	12/14/2016
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2016

Table of Contents B = Sodium bisulfate O NY Part 375 Dissolved Metals DW= drinking water ***Container Code GW= groundwater WW= wastewater T = Na thiosulfate O NY CP-51 O Field Filtered X = Na hydroxide # of Containers ** Preservation Lab to Filter S = Sulfuric Acid PLEASE BE CAREFUL TO NOT CONTAMINATE THIS DOCUMENT **Preservation ***Cont. Code: *Matrix Code: Other: Oother: A=amber glass N = Nitric Acid M = Methanol S=summa can T=tedlar bag S = soil/solid St = sludge 0 = Other_ URNAROUND TIME (business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT ST=sterile O = other **P**=plastic 0=Other G=glass V= vial l = [ced 12 ## A = air O AWQ STDS O NY Unrestricted Use Program Information/Regulatory Please use the following codes to let Con-Test know if a specific sample ○ NY Restricted Use OEquis (1 file) Equis (4 file) East longmeadow, MA 01028 H - High; M - Medium; L - Low; C - Clean; U - Unknown may be high in concentration in Matrix/Conc. Code Box: O NYC Sewer Discharge O Part 360 GW (Landfill) **ANALYSIS REQUESTED** 39 Spruce Street Defiverables NY TOGS O ASP-A ASP-B CHAIN OF CUSTODY RECORD 48 hr 🔾 4 day 🔾 ☐ 5-Day ☐ 7 Day **⊈** 10-Day or _ **RUSH** [†] Turnaround 42 \star > 24 hr O 72 hr O Conc Code DMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED. Project # 00266406.0000 ٤ ٤ Telephone: 518-250-7300 **WEBSITE** GIS O O OTHER O "Enhanced Data Package" DATA DELIVERY (check all that apply) *Matrix 3 EXCEL Composite Grab NEW YORK STATE $|C_{\mathcal{O}}\mathcal{C}|$ $|\mathcal{C}|$ × EMAIL Date/Time: Date/Time: Date/Time: Date/Time: PDF O FAX 2000 Client PO# Date/Time **695** 09/20 Ending Format: Email: Fax# Collection Date/Time: I o Relinquished by: Relinquished by: Email: info@contestlabs.com Received by: Received by: J1/57/L Beginning Date/Time www.contestiabs.com Phone: 413-525-2332 STE 210 50021 Client Sample ID / Description ۶. 2 71125/15 Date/Time: / Date/Time: Date/Time: H 7 Blank Roste 146 THE PART SOLL ANALYTICAL LABORATORY アドロコム Company Name: Acca 25 20 O Project Proposal Provided? (for billing 2-02 750-1 احادا Relinquished by: (signature) linquished by: (signature) S Received by: (signature) ceived by: (signature) **⊘** Con-Test Lab ID Project Location: Sampled By: Attention: purposes) Comments Address:

15 of 17

Page

39 Spruce St.
East Longmeadow, MA. 01028
P; 413-525-2332
F: 413-525-6405

www.contestlabs.com

Page 1 of 2

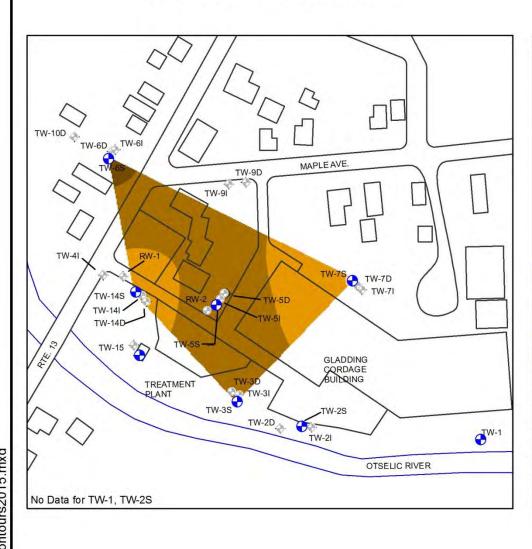
Sample Receipt Checklist

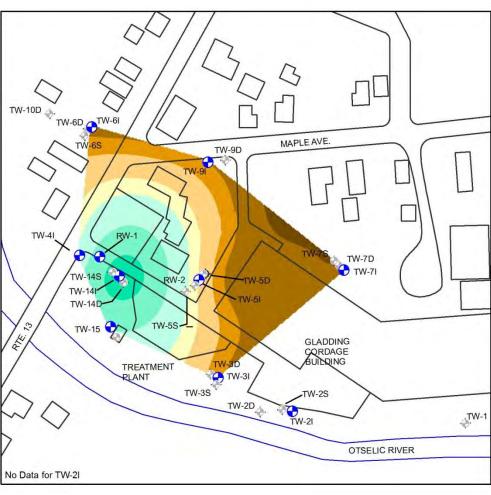
ature Compliand	Ambient ce of (2-6°C)? Temperature °(Y Time mples? Time	Yes C by Temp 'es	gun	No	o COC Incl.
oles? on? ature Compliance e lab to filter? Date DING TIME san	Ambient ce of (2-6°C)? Temperature °C Y Time mples? Time Pe	In Coo Yes C by Temp es es	Noler(s)lgun	No	N/A
on? g ature Compliance e lab to filter? _ DateDING TIME san	Ambient ce of (2-6°C)? Temperature °(Y Time mples? Time Pe	In Coo Yes C by Temp 'es	gun	No	_ N/A
e lab to filter? Date	Ambient ce of (2-6°C)? Temperature °(Y Time mples? Time Pe	In Coo Yes C by Temp 'es	gun	No	_ N/A
e lab to filter? Date DING TIME san	ce of (2-6°C)? Temperature °C Y Time mples? Time Pe	Yes C by Temp es	gun	No	_ N/A
e lab to filter? Date DING TIME san	ce of (2-6°C)? Temperature °C Y Time mples? Time Pe	Yes C by Temp es	gun	No	N/A
e lab to filter? Date DING TIME san	Temperature °(Y Time mples? Time Pe	C by Temp es es	gun	5,0	_ N/A
e lab to filter? Date DING TIME san	Time Time	es	No _	5.9	
Date _DING TIME san	Time Y	es			
_DING TIME san	Time Pe	es	. No _		
	Time Pe		No _	-	
Date	Pe	emission to			
LOGI	~ ^)	uminaian ta			
	Cii	/alk-in clien ient Signatu	ts only) if		
J-U. Vac				/	
			 /		
					i /
		***************************************		N/A	
ainers rec	erved at	Con-16	est		
of containers				#	of containers
		16 oz am	ber		
		oz amber/c	2.00.00.00		
			loar iar		
	4	oz amber/c			
	4 2	oz amber/o	lear jar		
	4 2	oz amber/o Plastic Bag /	lear jar Ziploc		
	4 2	oz amber/o Plastic Bag / SOC K	lear jar Ziploc it		
	4 2 P	oz amber/o Plastic Bag / SOC K Perchlorat	lear jar Ziploc it e Kit		
	4 2 P	oz amber/o Plastic Bag / SOC K	lear jar Ziploc it e Kit		
	4 2 P	oz amber/o Plastic Bag / SOC K Perchlorat	lear jar Ziploc it e Kit bottle		
5 08 2	e pH: Yes ancies with the	e pH: Yes No ancies with the CoC vs the s iners received at	e pH: Yes No N/A ancies with the CoC vs the samples: iners received at Con-Te	e pH: Yes No N/A ancies with the CoC vs the samples: Yes liners received at Con-Test	e pH: Yes No N/A ancies with the CoC vs the samples: Yes N/A niners received at Con-Test of containers #

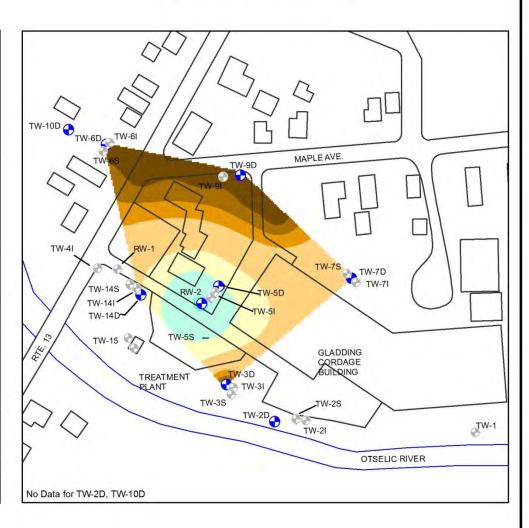
Page 2 of 2 Login Sample Receipt Checklis

Login Sample Receipt Checklist (Rejection Criteria Listing - Using Sample Acceptance Policy) Any False statement will be brought to the attention of Client

Question Any Faise statement will	Answer (True/Fal				
	T/F/NA	-			
1) The cooler's custody seal, if present, is intact.	NA				
The cooler or samples do not appear to have been compromised or tampered with.	T				
3) Samples were received on ice.	7				
4) Cooler Temperature is acceptable.	<u> </u>				
5) Cooler Temperature is recorded.					
6) COC is filled out in ink and legible.					
7) COC is filled out with all pertinent information.					
8) Field Sampler's name present on COC.					
9) There are no discrepancies between the sample IDs on the container and the COC.	1				
10) Samples are received within Holding Time.	T				
11) Sample containers have legible labels.					
12) Containers are not broken or leaking.	T				
13) Air Cassettes are not broken/open.	NA				
14) Sample collection date/times are provided.	1	**************************************			
15) Appropriate sample containers are used.	***************************************				
16) Proper collection media used.					
17) No headspace sample bottles are completely filled.	t				
18) There is sufficient volume for all requsted analyses, including any requested MS/MSDs.	T				
19) Trip blanks provided if applicable.	T				
20) VOA sample vials do not have head space or bubble is <6mm (1/4") in diameter.	T				
21) Samples do not require splitting or compositing.		D. A. T			
Who notified of False statements? Doc #277 Rev. 4 August 2013 Who notified of False statements? Log-In Technician Initials: Date/Time: 7/26//6					


APPENDIX D Groundwater 1,1,1-TCA Concentrations – May 2015




SHALLOW WELLS

INTERMEDIATE WELLS

DEEP WELLS

1,1,1-Trichloroethane Concentrations (ug/L)

GLADDING CORDAGE SITE NUMBER 7-09-009 SOUTH OTSELIC, NEW YORK

GROUNDWATER 1,1,1-TRICHLOROETHANE CONCENTRATIONS MAY 6, 2015

FIGURE

Arcadis CE, Inc.

855 Route 146
Suite 210
Clifton Park, New York 12065
Tel 518 250 7300

www.arcadis.com

Fax 518 250 7301